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On the 75th Anniversary 
of Aleksandr Aleksandrovich Kaplyanskiœ
A.A. Kaplyanskiœ was born in Leningrad into the
family of an Elektrosila works engineer. After he grad-
uated from secondary school, Kaplyanskiœ entered the
Faculty of Physics at Leningrad State University. Upon
graduating from university, he was admitted to the Len-
ingrad Physicotechnical Institute for post-graduate
studies. Kaplyanskiœ prepared his dissertation (1957)
under the supervision of Corresponding Member of the
USSR Academy of Sciences E.F. Gross, an outstanding
scientist in the field of spectroscopy. His dissertation
was devoted to the discovery and study of the line struc-
ture of the fundamental absorption edge of semicon-
ductors associated with optical excitation of excitons.

In 1960, Aleksandr Aleksandrovich experimentally
discovered optical anisotropy of cubic crystals; the
anisotropy was observed in crystals of copper oxide
(Cu2O) in the region of excitonic resonance. This dis-
covery has played an important role in the development
of modern crystal optics with inclusion of spatial dis-
1063-7834/05/4712- $26.00 2205
persion. Kaplyanskiœ was the first to observe (in 1960)
the reversible splitting of excitonic transition lines in
the optical spectrum of Cu2O crystals subjected to
uniaxial elastic strains. Those observations initiated
studies on the piezooptic effect in semiconductors. In
1966, a group of scientists, including Kaplyanskiœ, was
awarded the Lenin Prize for research on the physics of
excitons in semiconductors.

In the late 1950s, Aleksandr Aleksandrovich started
studying the optical spectra of dielectric crystals with
impurity ions; these crystals attracted considerable
interest after the invention of the ruby laser. In 1958, he
discovered a new phenomenon in optical spectroscopy,
namely, the reversible splitting of spectral lines of
impurity centers in crystals subjected to directed elastic
strains (Kaplyanskiœ splitting). Based on this phenome-
non, Kaplyanskiœ developed an efficient piezooptic
spectroscopic method for determining the local sym-
metry of impurity centers and point defects in crystals.
This technique is of considerable current use. In 1975,
Kaplyanskiœ, P.P. Feofilov, and V.N. Medvedev (a col-
league of Kaplyanskiœ) were awarded the State Prize of
the USSR for the development of new methods of
studying impurity centers and defects in crystals.

In 1973, Kaplyanskiœ, together with Yu.F. Markov,
discovered a new class of ferroelastics (halides of uni-
valent mercury) possessing highly anisotropic elastic
and optical properties. Raman spectroscopy was used
to establish the mechanism of the ferroelastic phase
transition in these materials and to discover new spec-
troscopic manifestations of the dynamics of lattices
with soft modes, which made it possible to employ
mercury halides as model objects for spectroscopic
studies of the general properties of structural phase
transitions in crystals.

Aleksandr Aleksandrovich is recognized as having
made a considerable contribution to the study of the
fundamental properties of ultrahigh-frequency (tera-
hertz) acoustic phonons to which traditional ultrasonic
techniques are inapplicable. In 1975, Kaplyanskiœ and
coworkers (A.V. Akimov, S.A. Basun, S.P. Feofilov)
began long-term studies in which they employed the
technique of optical detection of nonequilibrium tera-
hertz phonons injected into crystals at liquid-helium
temperature to investigate the various modes of phonon
propagation, phonon scattering from lattice defects and
crystal surfaces, the interaction of phonons with elec-
tronic impurity levels and excitons, and anharmonic
interactions. It has been found that terahertz phonons
© 2005 Pleiades Publishing, Inc.
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exhibit specific behavior in noncrystalline solids, low-
dimensional quantum-well semiconductor structures,
and spatially inhomogeneous (ceramics) and spatially
restricted (filaments) crystalline media. The collective
monograph “Nonequilibrium Phonons in Nonmetallic
Crystals,” edited by W. Eisenmenger and Kaplyanskiœ
and published by the North-Holland Publishing Com-
pany in 1986, summarized the advances made in this
important area of solid-state physics.

In 1983, Kaplyanskiœ together with S.A. Basun and
S.P. Feofilov discovered the following new photoelec-
tric effect in dielectrics with impurities: stable domains
of a strong electric field (105–106 V/cm) that were
opposite in sign were observed to form spontaneously
in crystals of concentrated ruby illuminated by light. It
was shown experimentally that, in accordance with the
phenomenological theory of this effect developed by
D’yakonov, the crystals exhibited a negative absolute
electrical conductivity, and the microscopic mechanism
of this effect was established. The discovery of this phe-
nomenon stimulated Kaplyanskiœ and coworkers to per-
form comprehensive studies (in the 1990s) on various
effects associated with impurity photoionization and
with photoinduced charge transfer in dielectrics, ferro-
electrics, and photorefractive crystals. In particular,
Kaplyanskiœ and coworkers, in cooperation with the
University of Georgia (USA), determined the basic
microscopic processes responsible for the photochemi-
cal (photoionization) burning of a narrow dip (hole) in
the inhomogeneously broadened profile of a spectral
line of impurity ions.

Since 1995, Aleksandr Aleksandrovich and his
coworkers have carried out intensive studies concerned
with a new area of research, spatially structured dielec-
tric materials. In nanosized dielectrics doped with rare-
earth or iron-group ions, the ions serve as a spectro-
scopic probe. This made it possible to use spectroscopic
methods to observe important effects typical of nano-
particles, such as quantum confinement of acoustic
phonons in nanocrystals (the Lamb modes). The study
of dielectric media with a spatially modulated refrac-
tive index (photonic crystals) carried out by Kaplyan-
skiœ and his coworkers in cooperation with a group
headed by V.N. Bogomolov in 1995 was the first in
which a synthetic opal was used as a photonic crystal in
PH
the visible spectral range. Synthetic opals are now basic
materials for use in studying photonic crystals.

Kaplyanskiœ is an expert in many fields of optical
spectroscopy of solids. His studies, the results of which
are universally recognized, were concerned with such
fields as excitonic spectroscopy of semiconductors,
optical and photoelectric spectroscopy of dielectrics
doped with iron-group or rare-earth ions (laser crys-
tals), terahertz microwave ultrasonics, photonic crys-
tals, and spectroscopy of structural phase transitions.

Aleksandr Aleksandrovich places considerable
emphasis on researcher training. He is a professor at the
St. Petersburg State University and head of a branch of
the department of solid-state physics of the Faculty of
Physics at the Ioffe Physicotechnical Institute. In 1996,
Aleksandr Aleksandrovich received a grant of head of a
leading scientific school. He is a member of the edito-
rial boards of the journals Physics of the Solid State,
Physics Uspekhi, and Journal of Luminescence.

Kaplyanskiœ enjoys high prestige in the international
scientific community; he is a member of the permanent
organizing committees of international conferences on
phonon physics, luminescence, defects in dielectric
materials, and dynamic processes in excited solids. He
is a coordinator of the long-term Russian–German pro-
gram “Defects in Dielectrics and Deep Centers in
Semiconductors.”

Kaplyanskiœ has been awarded prizes from Interna-
tional Conferences on Luminescence (1990) and
Phonon Scattering (2001) and the Humboldt Prize for
research (1997). In 2005, Kaplyanskiœ was awarded a
prize of the St. Petersburg government and the St.
Petersburg Center of the Russian Academy of Sciences
for “Optical-Spectroscopy Studies into the Electronic
and Vibrational States in Crystals.”

In 1987, Kaplyanskiœ was elected Corresponding
Member of the USSR Academy of Sciences and then
(in 2003) Member of the Russian Academy of Sci-
ences. In 1999, he received the Order of Honor.

We congratulate Aleksandr Aleksandrovich on the
occasion of his 75th birthday and wish him good health
and every success for the progress of science in Russia.

Editorial Board of the Journal
Physics of the Solid State
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005
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Abstract—Different regimes of excitation of a stimulated spin echo by pseudorandom pulses and short coher-
ent delta-shaped pulses are considered. Radio pulses phase-shifted by a 127-element M sequence are used as
pseudorandom signals. The shape of the complex envelope of the stimulated echo is simulated in linear and
nonlinear regimes with respect to the phase-shifted pulses. It is demonstrated that the excitation pulses can be
described by correlation functions. Appropriate conditions are determined under which the amplitude of the
stimulated echo can be greater than the amplitude corresponding to the classical algorithm used for exciting a
stimulated echo by three delta-shaped pulses. The results obtained can be used for analyzing the formation of
a stimulated photon echo. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In 1970, Ernst and Keiser used white Gaussian noise
for the first time to excite nuclear spin systems [1–3]. In
nuclear magnetic resonance (NMR) spectroscopy, this
method is referred to as stochastic resonance. Unlike
the traditional methods employed in NMR spectros-
copy, the stochastic resonance method has an important
advantage over the methods used in slow-scanning
spectroscopy: it is characterized by a higher sensitivity
owing to the broadband exciting process. The advan-
tage of the stochastic resonance method over pulsed
Fourier-transform spectroscopy is a lower excitation
power; in the former case, the gain can be as large as
104–105. The use of this method makes it possible to
obtain multidimensional spectra. Moreover, a decrease
in the excitation power facilitates solution of the prob-
lem associated with the “dead time” of the receiver.
Apart from NMR spectroscopy, the stochastic excita-
tion method has been employed in electron paramag-
netic resonance spectroscopy and optics.

At present, the stochastic resonance method is under
development. In combination with the two-dimensional
Fourier transform, this method has made it possible to
obtain a large number of two-dimensional NMR spec-
tra. It should be noted that the pseudorandom excitation
has often been used instead of random noise [4]. In this
case, after exciting a free-induction signal, its correla-
tion with the initial pseudorandom signal is calculated
[4, 5] and the spectrum is determined using either the
Fourier transform or a Fourier transform modification.

In this paper, it will be demonstrated that, for inho-
mogeneously broadened systems, the correlation of the
response with the initial pseudorandom signal can be
calculated using the spin-echo technique. For this pur-
pose, the excitation pulse sequence should involve two
1063-7834/05/4712- $26.00 2207
pseudorandom pulses that coincide in shape to within a
constant.

2. THREE-PULSE EXCITATION MODE

The behavior of the magnetization vector in an
external magnetic field is described by the Bloch equa-
tions [1, 6]. When the excitation pulse durations satisfy
the relationship τn ! T1, T2 (where T1 and T2 are the lon-
gitudinal and transverse relaxation times, respectively),
relaxation processes can be ignored. Then, the equation
of motion of the magnetization vector of the isochro-
mate in the coordinate system rotating at the frequency
ω0 can be represented in the form

 

 (1)

 

where (t, Ω) and (t, Ω) are the complex trans-
verse components of the magnetization vector; Mz is the
longitudinal component of the magnetization vector;

(t) = (t) is the complex envelope of the excitation
pulse in terms of the circular frequency (γ is the gyro-
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magnetic ratio,  is the complex transverse component
of the magnetic vector); and Ω = ω – ω0 is the detuning
of the frequency ω with respect to the carrier frequency
ω0 of the radio pulse, which coincides with the central
frequency of the inhomogeneously broadened absorp-
tion line.

The formal solution to the system of equations (1)
can be written in the matrix form

 (2)

where M(t0, Ω) is the vector of the initial conditions at
the instant of time t0 and A(t, t0, Ω) is the transfer matrix
of the state of the system.

In the intervals free of the excitation pulses, we have

(t) = 0 and the solution to the system of equations (1)
takes the form

 (3)

where the transfer matrix B can be written in the
explicit form

 (4)

By specifying the initial conditions for the vector

M(−τ1/2, Ω) in the form  =  = 0 and Mz = M0
(where M0 is the equilibrium magnitude of the magne-
tization vector), it is possible to determine the vector
M(t, Ω) after completing three excitation pulses formed
at the instants of time t1 = 0, t2, and t3. For this purpose,
we sequentially use the formal solution (2) for excita-
tion intervals and the explicit solutions (3) and (4) for
free intervals. In the interval t ≥ t3 + τ3 (where τ3 is the
duration of the third pulse), the stimulated echo can be
separated from the response of the spin system, which

is formed by the transverse component (t, Ω) of the
magnetization vector and consists of nine terms. The
complex envelope of the stimulated echo can be
described by the relationship [6]

 (5)

where  is the element of the transfer matrix for the
nth excitation pulse and g(Ω) is the low-frequency
equivalent of the inhomogeneously broadened absorp-
tion line.
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In our case, the excitation of the stimulated echo is
simulated by two types of pulses, namely, radio pulses
phase-shifted by a 127-element M sequence and short
coherent pulses referred to as delta-shaped pulses.

When forming the phase-shifted pulses, the coher-
ent carrier is modulated in a phase that takes on two val-
ues, 0 and π. This is achieved with a binary M sequence
generated at the output of the feedback shift register
consisting of N stages [4, 7]. In particular, the seven-
stage shift register has 27 = 128 states, one of which
(zero) is forbidden. Therefore, the binary pseudoran-
dom sequence composed of 127 elementary (0, 1)
pulses of duration τ is generated at the output of the
shift register.

The transfer matrix for the elementary pulse has the
form

 (6)

where β2 = R2 + Ω2,  = Rexp(iϕ), R is the amplitude,
and ϕ is the initial phase of the radio pulse. In this case,
the symbols 1 and 0 indicate the carrier phases ϕ = 0
and π, respectively.

The transfer matrix for the entire phase-shifted
pulse is obtained by multiplying matrices (6) for the
elementary pulses with the inclusion of the algorithm
for generating the M sequence in the shift register and
its initial state, which is taken to be 0, 0, 0, 0, 0, 0, 1
from the input to the output. The total duration of the
phase-shifted pulse is τM = 127τ.

Excitation pulses of the second type are delta-
shaped pulses. These are rectangular radio pulses with
an amplitude Rδ and initial phase ϕδ. The duration τδ of
this pulse satisfies the condition τδ ! (∆FL)–1, where
∆FL is the width of the inhomogeneously broadened
line. Excitation pulses of the second type exhibit prop-
erties similar to those of the Dirac delta function: these
pulses are sufficiently short, and their spectrum remains
almost unchanged in the band of frequencies that are
inversely proportional to the pulse duration. For a delta-
shaped pulse, the transfer matrix elements that are of
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interest for the subsequent simulation of the excitation
have the form

 (7)

As a rule, the stimulated echo with a maximum
amplitude can be obtained using 90° pulses with α = π/2.

Let us assume that the first and second excitation
pulses are delta-shaped. In this case, we have α1 = α2 =
π/2, ϕδ1 = 0, and ϕδ2 = –π/2. The third excitation pulse
is assumed to be the phase-shifted pulse.

We will simulate thin polycrystalline ferromagnetic
cobalt films with 59Co nuclear resonance [8–12]. The
central frequency of the absorption line of these films is
equal to 217 MHz, and the linewidth is 10 MHz. The
low-frequency equivalent g(Ω) of the inhomogeneously
broadened absorption line is simulated by a Gaussian
function with the parameter σg = 2π × 107 rad/s.

The duration of the elementary pulse of the M
sequence is taken to be τ = 0.1 µs. Hence, the spectral
width of the pulse ∆F = τ–1 is equal to the width of the
inhomogeneously broadened line of the cobalt films.
The duration of the phase-shifted pulse is τ3 = 12.7 µs.

3. COMPLEX ENVELOPE 
OF THE STIMULATED ECHO

Figure 1 depicts the normalized (to the value of M0)
complex envelope of the stimulated echo for the ampli-
tude of the phase-shifted pulse R3 = 105 rad/s. The inset
shows the time diagram of the excitation pulses. For the
chosen parameters of the phases of the delta-shaped
pulses, the complex envelope of the stimulated echo is

a13 a23* i α iϕδ( );expsin–= =

a32
i
2
--- α iϕδ( ),expsin=

α Rδτδ, R̃δ Rδ iϕδ( ).exp= =

0.004
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t

m
s(

t)
~

Fig. 1. Time diagram of the excitation pulses (inset) and the
complex envelope of the stimulated echo in the linear
regime.
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a real alternating function. The change in the sign indi-
cates a phase-shift keying of the stimulated echo. The
shape of the stimulated echo in this regime follows the
shape of the phase-shifted excitation pulse.

When the amplitudes of the excitation pulses are
small, there arises a linear regime. In this case, the
transfer matrix elements that are of considerable impor-
tance in analyzing the shape of the stimulated echo
have the following form:

 (8)

where S(Ω) is the spectral density of the complex enve-
lope of the excitation pulse.

In the case under consideration, the phase-shifted
pulse is third and its effect is described by the coeffi-

cient (Ω) proportional to the spectral density of the
complex envelope of this pulse. Note that, if we inter-
change the first and third excitation pulses in the initial
algorithm (Fig. 1), the shape of the stimulated echo
appears to be specularly reflected; i.e., the echo is
inverted in time. This can be explained by the fact that
the effect of the phase-shifted pulse is described by the

coefficient (Ω) proportional to the spectral density
S*(Ω). It should also be noted that, upon interchanging
the second and third excitation pulses, the coefficient

(Ω) describing the effect of the phase-shifted pulse
will be again proportional to the spectral density S(Ω)
and the echo will follow the shape of the phase-shifted
pulse without inversion in time.

The initial algorithm of the excitation of the stimu-
lated echo at R3 = 2 × 106 rad/s is illustrated in Fig. 2.
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Fig. 2. Complex envelope of the stimulated echo in the non-
linear regime.
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This regime is nonlinear with respect to the phase-
shifted pulse. Conditions (8) are not satisfied. The
shape of the echo differs from that of the initial phase-
shifted pulse. In particular, the echo duration is dou-
bled. Note also that, when we interchange the first and
third excitation pulses, the echo shown in Fig. 2 is
inverted in time. However, unlike the linear regime, the
interchange of the second and third excitation pulses
leads to a change in the echo shape. This is associated
with the fact that, in the nonlinear regime, unlike the

linear regime, the coefficients (Ω) and (Ω) can
differ significantly.

a13
3( )

a32
2( )

0.002

0
12.7 µs

0 t2 t3 t

t

m
s(

t)
~

0.1 µs

Fig. 3. Time diagram of the excitation pulses in algorithm
Delta 2 (inset) and the complex envelope of the stimulated
echo in the linear regime.
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Fig. 4. Time diagram of the excitation pulses in algorithm
Delta 2 (inset) and the complex envelope of the stimulated
echo in the nonlinear regime.
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Fig. 5. Time diagram of the excitation pulses in algorithm
Delta 3 (inset) and the complex envelope of the stimulated
echo in the nonlinear regime.
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In the next excitation algorithm, the excitation of the
stimulated echo is simulated by two identical phase-
shifted pulses, 1 and 3 (the shift register is started from
the same aforementioned initial state), and delta-
shaped pulse 2. This algorithm will be called Delta 2,
because the delta-shaped pulse is second. The corre-
sponding time diagram of the excitation pulses and the
normalized (to the value of M0) complex envelope of
the stimulated echo are depicted in Fig. 3. The ampli-
tudes of the phase-shifted pulses are equal to each
other: R1 = R3 = R = 105 rad/s. The regime is linear with
respect to these pulses, and they are reproduced in the
form of the third pulse noninverted in time (as in Fig. 1)
and the same (but inverted) first pulse. In this case, the
stimulated echo in the form of the correlation function
of the signal phase-shifted by the 127-element M
sequence corresponds to the product of the spectral

coefficients (Ω) (Ω) ≈ |S(Ω)|2 in the time range.
Thus, the response is symmetric, the total duration of the
response is equal to 25.4 µs, and the width of the corre-
lation peak is 0.1 µs, which corresponds to the duration
τ of the elementary pulse. The maximum of the correla-
tion peak is observed at the instant of time t2 + t3.

If the second and third excitation pulses are inter-
changed, we obtain algorithm Delta 3, in which the
delta-shaped pulse is the third excitation pulse. For R1 =
R2 = R = 105 rad/s, the regime is linear with respect to
the phase-shifted pulses and the echo remains identical
to that in algorithm Delta 2.

When the amplitudes of the phase-shifted pulses in
algorithm Delta 2 increase to values lying outside the
range of the linear regime, the complex envelope of the
stimulated echo is represented by the autocorrelation
function of the signal nonlinearly transformed by the
system rather than of the initial phase-shifted signal.
This is explained by the fact that the relationship

(Ω) = [ (Ω)]* holds for R1 = R3. For R1 = R3 =
R = 2 × 106 rad/s, the shape of the stimulated echo is
determined by the correlation function of the pulse
shown in Fig. 2.

For different amplitudes of the two phase-shifted
pulses, the stimulated echo coincides in shape with the
cross-correlation function of the signals reproduced by
the spin system. For example, at R1 = 2 × 106 rad/s and
R3 = 105 rad/s, this is the cross-correlation function of
the signals depicted in Figs. 2 and 1.

Figure 4 shows the complex envelope of the stimu-
lated echo for algorithm Delta 2 at R1 = 2 × 106 rad/s
and R3 = 3 × 106 rad/s. Upon interchanging the second
and third excitation pulses, we obtain algorithm Delta 3
at R1 = 2 × 106 rad/s and R2 = 3 × 106 rad/s. The shape
of the stimulated echo is shown in Fig. 5. It can be seen
from Figs. 4 and 5 that the stimulated echoes obtained
using these algorithms in the nonlinear regime can dif-
fer substantially. The echo shape corresponds to the

a23
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a13
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a13
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a23
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cross-correlation function of the phase-shifted signals
that are nonlinearly transformed by the spin system.

The difference between these algorithms in the non-
linear regime also clearly manifests itself in the depen-
dences of the amplitude of the correlation peak in the
stimulated echo mk = (t2 + t3) on the amplitude of the
phase-shifted pulse. These amplitude dependences for
algorithm Delta 3 at R1 = R3 = R and algorithm Delta 2 at
R1 = R2 = R are shown in Fig. 6. Both dependences coin-
cide with each other in the linear regime at R < 106 rad/s.
For larger pulse amplitudes R, there is a fundamental
difference between these dependences. For algorithm
Delta 2, the echo amplitude increases with an increase
in the pulse amplitude R, then flattens out, and reaches
a value of 0.313. For algorithm Delta 3, the echo ampli-
tude with an increase in the pulse amplitude R increases
to a maximum value of 0.19 and then decreases.

Figure 7 shows the dependences of the amplitude of
the correlation peak in the stimulated echo mk = (t2 + t3)
on the pulse amplitude R3 = R for algorithm Delta 2 and
on the pulse amplitude R2 = R for algorithm Delta 3 at
a fixed amplitude of the first pulse R1 = 1.5 × 106 rad/s.
These dependences also coincide with each other in the
linear regime at R < 106 rad/s. In the nonlinear regime,
the dependences differ only quantitatively and exhibit a
qualitatively identical behavior: in both cases, the echo
amplitude increases with an increase in the pulse ampli-
tude R, passes through a maximum, and then decreases.

4. CONCLUSIONS

The amplitude dependences obtained for algorithms
Delta 2 and Delta 3 can be compared with those con-
structed upon excitation with white Gaussian noise [13,
14]. These dependences are qualitatively similar to
each other. The somewhat smaller amplitudes of the
echo in the case of pseudorandom excitation are

m̃s

m̃s

0.3

0
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m
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1 2 3 4 5
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Fig. 6. Time diagrams of the excitation pulses in algorithms
(1) Delta 2 and (2) Delta 3 and the corresponding depen-
dences of the amplitude of the correlation peak in the com-
plex envelope of the stimulated echo on the amplitude R of
pseudorandom pulses.
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explained by the fact that, unlike the spectrum of white
Gaussian noise, phase-shifted pulses have an irregular
spectrum.

The obtained amplitudes of the correlation peaks for
algorithms Delta 2 and Delta 3 can be compared with
the amplitude of the stimulated echo for the classical
algorithm of excitation with three identical delta-
shaped pulses. In this case, the amplitude of the stimu-
lated echo is given by

 

The maximum amplitude is As = (1/2)M0 at α = π/2,
and the maximum amplitude normalized to M0 is equal
to 0.5. This echo amplitude is larger than those obtained
for the proposed algorithms. However, the generation
of coherent pulses whose parameters satisfy both con-
ditions τδ ! (∆FL)–1 and α = π/2 is by no means easy.
For an arbitrary parameter α, the amplitude ratio of the
stimulated echoes for these two algorithms is defined
by the expression

 

Specifically, at α = 0.1 and mk ≈ 0.2–0.3, the ampli-
tude gain can reach 50 (power gain, 2500). This is espe-
cially important when exciting broadband NMR spec-
tra. For example, the width of lines in 59Co NMR spec-
tra of Fe–Ni–Co thin films can be as large as 80 MHz at
a central frequency of approximately 200 MHz [12].

The results obtained can be applied to simulate the
stimulated electron spin echo and the photon echo,
because they are based on the same mathematical
model [15].

Aδ 1/2( ) α M0.sin
3

=

mk αsin

0.5 αsin( )3
--------------------------.

0
R, 106 rad/s

m
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0.2
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1 2 3 4 5
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t

t
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Fig. 7. Time diagrams of the excitation pulses in algorithms
(1) Delta 2 and (2) Delta 3 and the corresponding depen-
dences of the amplitude of the correlation peak in the com-
plex envelope of the stimulated echo on the amplitude R of
pseudorandom pulses at the amplitude R1 = 1.5 × 106 rad/s.
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Abstract—The structural properties of MBE-grown GaAs and Al0.3Ga0.7As nanowhiskers were studied. The
formation of wurtzite and 4H-polytype hexagonal structures with characteristic sizes of 100 nm or larger in
these materials was demonstrated. It is concluded that the Au–Ga activation alloy symmetry influences the for-
mation of the hexagonal structure. © 2005 Pleiades Publishing, Inc.
Nanowhiskers (NW) [1] have been recently attract-
ing considerable research interest, which should be
assigned both to the properties of NWs and to recent
novel techniques of their preparation, in particular,
molecular beam epitaxy (MBE) [2–9]. Among the most
essential properties of these objects [10–17] one should
mention the high strength, the large height-to-diameter
ratio (aspect ratio), quasi-one-dimensional optoelec-
tronic spectra, etc. The unique properties of NWs
increase their application potential in such devices as
electronic emitters, gas microanalyzers, etc. It is well
known that the optoelectronic and mechanical proper-
ties of nanoobjects depend strongly on their structure
[6, 10–17], which, in turn, can be determined in large
measure by the method of preparation employed.

Sears [18] had developed a theory of formation of
whiskers around screw dislocations. Later it was found,
however, that whiskers do not contain screw disloca-
tions at all [1, 19, 20]. This motivated the development
[1, 19–21] of a diffusion mechanism and a vapor–liq-
uid–solid (VLS) mechanism of whisker formation.
These mechanisms, while not requiring the presence of
dislocations in a whisker, do not exclude the formation
of defects in the process.

The formation of whiskers on a GaAs surface has
been studied primarily by the chemical vapor deposi-
tion (CVD) method [1, 10, 12–17, 20, 22–24] under
suppression of growth of the major surface. It was
shown that, in these conditions, whiskers grow via the
VLS mechanism, which is characterized by a growth
rate V that increases with the whisker transverse size D:
V ~ (A – B/D)2, where A and B are constants. Some pub-
lications [3–5, 25, 26] reported on the growing of whis-
kers by MBE, a method based predominantly on the
diffusion mechanism [25, 26], in which atoms are sup-
plied to the NW growth zone (the interface between the
1063-7834/05/4712- $26.00 2213
whisker and the drop of the activation alloy) by surface
diffusion; this brings about inverse variation (decreas-
ing) of the NW growth rate with increasing transverse
size. Note that the diffusion mechanism of formation
may become realized in other methods of whisker for-
mation as well [27–29].

Transmission electron microscopy (TEM) studies of
the structure of GaAs whiskers grown both by MOCVD
and by MBE revealed the formation of twins, stacking
faults, and the wurtzite phase [1, 2, 6, 24].

Note that, despite the closeness of the enthalpies [30]
(the difference is less than 0.014 eV/atom), the appear-
ance of the wurtzite phase in GaAs and AlGaAs solid
solutions is a unique effect. As far as we are aware, the
wurtzite phase was observed to form in GaAs in growth
on nonactivated surfaces only once and under fairly
specific growth conditions [31]. The images presented
in [1, 2, 6, 24] do not, however, instill confidence that
the observed structure is indeed an extended wurtzite
phase rather than a result of multiple defect formation.
Moreover, those publications do not explain the mech-
anism of formation of the wurtzite phase.

This has motivated the present study of the structure
of MBE-grown GaAs and AlGaAs NWs intended to
unravel the possible mechanisms of formation of the
wurtzite phase.

Al0.3Ga0.7As NWs were prepared by a three-stage
growth technique proposed earlier [3–5]. The key point
in this technique is combining MBE with our methods
of producing finely dispersed metal films [3–5]. The
substrates were AGChK-3 gallium arsenide plates with
(111)B- and (100)-oriented surfaces. The preliminary
check of the surface quality and in situ NW formation
was realized by RHEED.

The NW structure was studied with a CM 200FEG
electron microscope in the TEM mode. Samples were
© 2005 Pleiades Publishing, Inc.
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prepared by a traditional technique including mechani-
cal treatment and, in the final stage, Ar+ ion milling
with an energy E = 4 keV. To preserve whiskers on the
surface, samples were glued without clamping. The
images were analyzed with a special code, DIAnaTEM
[32].

Special studies revealed that whiskers grown on
(100) and (111)B surfaces are identical in structure.
Also, no dependence of the whisker structure on Al
content was observed within the concentration range
covered.
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Fig. 1. RHEED image of the (111)B GaAs surface with a
whisker array obtained in the [110] direction.
PH
The morphology of the growing Al0.3Ga0.7As and
GaAs whisker ensembles is characterized by a transi-
tion to RHEED point patterns. Figure 1 illustrates such
a pattern obtained in the (110) azimuthal direction. An
analysis of the RHEED patterns showed them to be
actually combinations of diffraction from bulk cubic
(sphalerite) and hexagonal (wurtzite and/or 4H-poly-
type) crystals. Incidentally, the diffraction patterns
reveal the presence of two cubic-phase orientations
turned about the NW axis through 180° with respect to
each other. The characteristic ratio of the distances
between reflections identified as belonging to the hex-
agonal phase in the directions lateral and normal to the
growth surface is 1.90 ± 0.05. This value corresponds to

the (001)/( ) ratio of interplanar distances in
Al0.3Ga0.7As and GaAs crystals with wurtzite and/or
4H-polytype structure.

Figure 2 illustrates electron microscope cross-sec-
tional images of Al0.3Ga0.7As and GaAs whiskers
grown on the (111)B GaAs surface. One clearly sees
NWs grown in several shapes or in combinations of
shapes, namely, prisms (Fig. 2a), bottleneck formations
tapering off to the vertex (Fig. 2b), and truncated pyra-
mids (Fig. 2c). The NW sizes of these three shape types
or of their combinations may vary in overlapping
ranges and were described in considerable detail in
other papers [5].

Electron microscope images of NWs obtained in the
structure-sensitive (220) reflections (Fig. 3) show that a
NW contains regions with different crystallographic
structures. In some cases, randomly periodic variations
of the structure, apparently similar to that reported in
[1, 2, 23, 24], were observed. The electron diffraction
pattern obtained from several NWs and displayed in
Fig. 3c is actually a combination of the diffraction pat-

1120
(a)50 nm 50 nm 40 nm(b) (c)

Fig. 2. Electron microscope images of the (110) cross sections of GaAs whiskers grown on the (111)B GaAs surface with morphol-
ogies of (a) a prism, (b) a bottleneck/truncated pyramid, and (c) a prism/truncated pyramid.
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50 nm (a) (b) (c)50 nm

Fig. 3. (a) (220) bright-field and (b) (220) dark-field electron microscope images and (c) an electron microdiffraction pattern of a
region in a GaAs NW with a variable structure.
terns from regions with different phases and orienta-
tions. One can, in particular, isolate reflections charac-
teristic of the diffraction patterns from GaAs (and/or
Al0.3Ga0.7As) in the (110) direction and turned through
180° about the NW axis with respect to one another. In
addition, one observes reflections typical of twins.
However, the electron diffraction patterns obtained
contain a system of reflections which defy identifica-
tion in terms of scattering from a sphalerite-type crys-
tal. The electron diffraction pattern of the region pre-
sented in Fig. 3c was obtained in the direction coincid-
ing with the [110] zone axis for the substrate and
contains reflections arranged in the form of a rectangu-
lar grid. The ratio of the characteristic dimensions in
the directions along and perpendicular to the NW axis
is 1.92 ± 0.02. Estimating the characteristic distances
yields 0.652 and 0.341 nm for the directions along and
perpendicular to the NW axis, respectively. The
observed diffraction pattern is characteristic of that for

the [ ] cross section of a hexagonal crystal. How-
ever, the appearance of reflections identified as [0001]

and [ ] in the electron diffraction pattern argues for
the formation of the 4H-polytype structure or for
dynamical electron diffraction.

Figure 4 illustrates a high-resolution electron micro-
scope image of a GaAs NW containing regions with
different phases. The high-resolution electron micro-

1100

0001
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      200
scope image of the region isolated in Fig. 4 likewise has

a pattern typical of the [ ] cross section of a hex-
agonal crystal (with a wurtzite and/or 4H-polytype
structure). The Fourier transform of this image is of the
same structure as the diffractogram and contains modes

corresponding to the [0001] and [ ] reflections.
This lends credence to the above conclusion regarding
the formation of 4H polytypes or dynamical electron
diffraction. Estimates of the interplanar distances
drawn from the direct image yield 0.326 and 0.341 nm
for the longitudinal and transverse directions, respec-
tively, which agrees with the interplanar distances for

the (0002) and ( ) planes of the wurtzite GaAs,
respectively. Similar results were also obtained for the
Al0.3Ga0.7As whisker.

A comparison of Al0.3Ga0.7As and GaAs NWs in
shape and structure (Fig. 2) suggests that bottleneck-
and prism-shaped NWs may contain the cubic or hex-
agonal phase. By contrast, NWs shaped like truncated
pyramids are signatures of the cubic phase.

Note that, sometimes in Al0.3Ga0.7As and GaAs
NWs, one observes a quasi-periodic transformation of
phases. Moreover, the NW thickness may vary weakly
(Fig. 5), which is a signal of structural stresses.

The observed quasi-periodic phase transformations
find explanation in the framework of the kinetic theory
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Fig. 4. (a, b, d) High-resolution electron microscope images of NW regions and (c, e) electron diffraction patterns taken from iso-
lated regions with (b, c) cubic and (d, e) hexagonal crystal structures.
50 nm 5 nm

Fig. 5. Electron microscope image of a region of a GaAs NW with varying structure near the NW side face.
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of crystal growth, because the lateral size of an NW is
about 10–100 nm, which is substantially less than the
effective size of a surface nucleus under our conditions
(~1000 nm or greater). One may therefore assume that
the layer-by-layer growth of the crystal phase at the
NW tip from a supersaturated Au–GaAs solution pro-
ceeds via single-center nucleation [33]. This means that
one nucleus has time to cover the entire face before the
next nucleus forms. Hence, the NW structure should be
laterally uniform within a layer.

It was shown in [2, 24] that a drop catalyst has a very
low As content. The Ga/Au ratio was estimated to vary
from 1 to 15% [2, 24]. An estimate of the alloy lattice
parameter from electron microdiffraction patterns
yields 4.07 ± 0.02 Å, which, recalling the dependence
of the solution composition on the lattice parameter,
gives ~0.1 for the Ga/Au ratio. In accordance with the
phase diagram [34, 35], the temperatures used and the
relevant Au–Ga alloy compositions allow observation
of the L, α, and α' phases or of their combinations. Note
that the α phase (substitutional solid solution) has cubic
symmetry and that the peritectic phase α' possesses
hexagonal-type symmetry P63/mmc. Fluctuations in the
alloy composition and temperature may give rise to
structural changes in the alloy. GaAs growing with a
catalyst drop of Au–Ga alloy should apparently inherit
the symmetry of the catalyst seed structure. This could
possibly account for the formation of the 4H-polytype
structure as resulting from inheritance of the α'-phase
structure, which can be viewed as an ABAC... sequence
of closely stacked atomic layers [34, 35]. This mecha-
nism of phase transformation could explain the observed
relation between the shape of a NW and its structure.
Indeed, a decrease in Ga content in a catalyst drop gives
rise to a proportional decrease of the drop in size and a
possible transformation to the α phase (cubic alloy
phase). Because the size of the upper part of an NW is
dominated by that of the drop, a decrease of the drop in
size should bring about a corresponding decrease of the
NW in transverse size in the course of growth and a
change in the alloy structure should cause a change in the
crystal structure of the growing NW layers.

The observed quasi-periodic structural changes may
ensue from changes in supersaturation at the surface.
Indeed, it is known that supersaturation at the growth
surface is related to effective filling of the growing ada-
tom layer [36]. The effective filling varies quasi-period-
ically because of the formation of the next adatom
layer. Hence, assuming NW growth to occur by the dif-
fusion mechanism, the supply of Ga atoms (which
depends on supersaturation on the nonactivated sur-
face) and, as a consequence, the Ga content in the
growth activator drop may vary in a quasi-periodic
manner, which should produce the corresponding phase
transformations in the drop and the NW.

Thus, we have shown that growth of GaAs and
Al0.3Ga0.7As NWs can be accompanied by the forma-
tion of regions with wurtzite and polytype phases mea-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      200
suring up to 100 nm or greater. The formation of a hex-
agonal wurtzite and/or polytype structure is accounted
for by the effect of structural transformations in a cata-
lyst drop.
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Abstract—The spatial distributions of the unpaired-electron wave functions of shallow N donors in SiC crystals
and of shallow P and As donors in silicon crystals were determined by studying crystals with a modified content
of the 29Si and 13C isotopes having a nonzero nuclear magnetic moment. As follows from the present EPR and
available ENDOR data, the distribution of donor electrons in SiC depends substantially on the polytype and posi-
tion in the lattice; indeed, in 4H-SiC, the unpaired electrons occupy primarily the Si s and p orbitals, whereas in
6H-SiC these electrons reside primarily in the s orbitals of C. The electron distributions for the N donor in the hex-
agonal position, which has a shallow level close to that obtained for this material in the effective-mass approxima-
tion, and for the donor occupying the quasi-cubic position differ substantially. The EPR spectrum of N in quasi-
cubic positions was observed to have a hyperfine structure originating from a comparatively strong coupling with
the first two coordination shells of Si and C, which were unambiguously identified. The effective-mass approxi-
mation breaks down close to the N donor occupying the quasi-cubic position, and the donor structure and the donor
electron distribution become less symmetric. In silicon, reduction of the 29Si content brought about a substantial
narrowing of the EPR line of the shallow P and As donors and an increase in the EPR signal intensity, as well as
a noticeable increase in the spin–lattice relaxation time T1. This offers the possibility of selectively studying these
spectra by optically exciting a region of the crystal in order to shorten T1 and thereby precluding EPR signal sat-
uration only in the illuminated part of the material. This method may be used to advantage in developing materials
for quantum computers based on donors in silicon and SiC. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Silicon carbide (SiC) occupies a prominent place
among the promising materials for developing elec-
tronic devices designed for operation under high tem-
peratures, with corrosive media, at high power levels,
and in a hazardous radiation environment. The high
binding energy between carbon and silicon (Si–C)
makes SiC stable against extremal conditions. To
develop instruments based on charge transfer, doping
with donor and acceptor impurities is chosen; the most
widely used among them are n-type nitrogen and phos-
phorus and p-type boron and aluminum. There is no
doubt that it is necessary to gain a deeper insight into
the electronic structure of donor and acceptor centers in
order to further improve the electrical characteristics of
the materials in question. As for SiC, study of this mate-
rial, unlike other major semiconductors (silicon and the
III–V compounds), encounters additional difficulties
associated with the existence of several SiC polytypes
and, accordingly, the presence of several crystallo-
graphic positions for donor and acceptors in these poly-
types. The 4H-SiC and 6H-SiC polytypes hold the most
promise as regards their considerable application
1063-7834/05/4712- $26.00 2219
potential. They are characterized by identical, hexago-
nal symmetry about the c axis. Each Si atom is coordi-
nated by four C atoms, and vice versa. An analysis of
the second coordination shells of 4H-SiC sites reveals
two inequivalent lattice positions: quasi-cubic (k) and
hexagonal (h) position. For the k position, the twelve
atoms in the second coordination shell are arranged just
as in the zinc blende cubic structure. For the h position,
they are located as in the wurtzite hexagonal structure.
These positions are distributed uniformly between the
carbon and silicon sublattices. In 6H-SiC, there are
three inequivalent positions: two quasi-cubic (k1, k2)
and one hexagonal (h). An important model for theoret-
ical calculations is the cubic 3C-SiC polytype, in which
the symmetry and nearest neighbor environment of the
C position are identical to those in the silicon crystal,
whereas the symmetry and nearest neighbor environ-
ment of the Si position are the same as in diamond.

Donors and acceptors occupy different substitu-
tional sites in SiC. It is believed that the nitrogen donors
substitute for carbon and the phosphorus donors, for
silicon, whereas the boron and aluminum acceptors
substitute for silicon. Incidentally, different polytypes
© 2005 Pleiades Publishing, Inc.
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differ markedly in terms of their band structure, which
gives rise to a difference between the carrier effective
masses and, hence, makes it necessary to properly
select materials with optimum characteristics for
device applications.

An essential characteristic of shallow impurities is
the spatial distribution of their wave functions, which is
directly connected with the possibility of employing
effective-mass (EM) theory for description of such sys-
tems [1]. There are two main methods for probing the
wave functions of shallow donors and acceptors,
namely, EPR study of crystals with a modified isotope
composition and ENDOR. Both methods have been
successfully tested in the probing of wave functions of
color centers in alkali halide crystals (F centers in the
ground [2] and excited [3] states) and made it possible
to establish the nature of these centers. These methods
were also used to probe the wave functions of shallow
donors in silicon [4]. EPR is one of the most informa-
tive methods of studying the electronic structure of
impurity and native defects in semiconductors [5],
including donor impurities of nitrogen, phosphorus,
and arsenic in compounds of Group IV elements [4, 6]
and shallow acceptors in silicon [7] and SiC [8, 9].
ENDOR is actually a refinement of the EPR method
intended mainly for investigating systems in which the
hyperfine (HF) structure is not resolved in EPR spectra
[4, 10–12]. Combined use of both techniques is an opti-
mum approach to obtaining reliable information on the
spatial distribution of carrier wave functions, because
these techniques are mutually complementary. ENDOR
studies provide the most complete information possi-
ble, because they permit determination of both isotro-
pic and anisotropic HF interactions, i.e., of the degree
of unpaired-electron localization in the s and p orbitals.
One cannot, however, rule out the possibility that even
the strongest HF interactions may elude detection in
ENDOR experiments, because such interactions occur
with a small number of nuclei and, hence, ENDOR sig-
nals have a low intensity for nuclei of low-abundance
isotopes.

Both carbon and silicon in SiC have isotopes with a
nonzero nuclear spin. The natural abundance of the 29Si
isotope with nuclear spin I = 1/2 in silicon is 4.67%, and
that of the 13C isotope with the same nuclear spin, I =
1/2, is 1.11%. EPR studies yield an integrated charac-
teristic of unresolved HF interactions and are most sen-
sitive to the strongest interactions, which provide the
major contribution to the linewidth. Because of the low
abundance of 29Si and 13C in natural silicon and carbon,
respectively, a resolved HF structure may remain unob-
served in EPR spectra or its interpretation may be
ambiguous. Therefore, investigating crystals enriched
in isotopes can make it possible to tackle this problem
as well.

Variations in the content of isotopes with nonzero
nuclear magnetic moments (29Si in silicon and 29Si and
13C in silicon carbide) should give rise to a change in
PH
the shallow-donor EPR linewidth, because this line-
width is dominated by the HF interaction of the
unpaired electron with the neighboring 29Si and 13C
nuclei. We consider the quantitative aspect of this issue.
Let the EPR linewidth be determined by the unresolved
HF structure, i.e., be inhomogeneously broadened, a
condition mostly met for shallow donors in silicon, ger-
manium, and silicon carbide. According to EM theory,
the wave function of a defect extends over a large num-
ber of coordination shells; therefore, there are many
29Si and 13C isotope nuclei involved in hyperfine inter-
actions.

The probability Pm of finding m specific atoms (in
our case, atoms of a specific isotope) in a coordination
shell around a defect consisting of n identical sites is
given by

 (1)

where  is the number of combinations of n elements
taken m at a time and f is the relative concentration of
the given isotope; f(29Si) = 0.0467 and f(13C) = 0.0111
are the natural abundances of the 29Si and 13C isotopes
in silicon and carbon, respectively.

The FWHM of an unresolved EPR line ∆B for the
case where this width is dominated by HF interactions
is given by [4]

 (2)

where NX stands for 29Si or 13C, ni is the number of
equivalent sites for X atoms in the ith coordination
shell, ai is the HF interaction constant for NX atoms
occupying equivalent sites in the ith coordination shell,
g is the electronic g factor, µB is the Bohr magneton,
and I is the nuclear angular momentum of the NX iso-
tope (I = 1/2 for the 29Si and 13C isotopes). Note that the
g factor for shallow donors may deviate substantially
from g = 2 (for instance, in germanium), a point that
should be taken into account in ∆B calculations. Isotro-
pic HF interaction is proportional to the wave-function
density at the nucleus site of the central or ligand (lth)
atom, al = (8π/3)gµBgIµN |ψ(rl)|2, where gI is the
nuclear g factor, µN is the nuclear magneton, and
|ψ(rl)|2 is the wave-function density of a donor unpaired
electron at site l.

As follows from Eq. (2), the concentration of iso-
topes with nonzero nuclear spins has a considerable
effect on the linewidth if the isotropic HF interaction
constant for these isotopes is large enough. The major
contribution to the linewidth is due to several coordina-
tion shells closest to the impurity (here, we are certainly
disregarding possible strong HF interactions that are
resolvable in EPR spectra). Therefore, weak HF inter-
actions for remote coordination shells can only be
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found by ENDOR or estimated from EM theory. In
practice, of course, an EPR linewidth can yield an esti-
mate of only the isotropic HF interaction constants with
the nearest coordination shells. More exact values of
these quantities, as well as the anisotropic HF interac-
tion constants, can be determined by ENDOR (for
example, for shallow donors in silicon [4, 10], shallow
nitrogen donors in SiC [12], and shallow boron accep-
tors in SiC [11]).

In [12], nitrogen donors in crystals of 4H-SiC (in the
k position) and 6H-SiC (in positions h, k1, k2) were
studied by pulsed microwave ENDOR. Preliminary
EPR experiments were also performed with 13C-
enriched 4H- and 6H-SiC crystals. The general conclu-
sion was that the spatial distributions of the wave func-
tions of unpaired electrons in the 4H-SiC and 6H-SiC
polytypes are essentially different. The main part of the
spin density in 4H-SiC is localized in the s and p orbit-
als on the Si sublattice, with the fraction of the p orbit-
als being very significant. In 6H-SiC, the unpaired elec-
trons for all three nitrogen donor positions are localized
primarily in the s orbitals on the carbon sublattice. This
conclusion found partial confirmation in a study of 4H-
SiC and 6H-SiC crystals enriched in the 13C isotope.
This issue could be settled by studying crystals with a
modified isotope composition in both carbon and sili-
con, and this is what motivated the present work. It
seems appropriate to mention here an additional prob-
lem, namely, the appearance in some experiments of
isotropic satellites in the EPR spectra of shallow nitro-
gen donors in the k positions of 4H-SiC, which have
been assigned to strong HF interactions with four car-
bon atoms [13] or with one silicon atom [14]. We like-
wise observed satellites for nitrogen donors in some
6H-SiC and 4H-SiC crystals. An unambiguous answer
to whether the observed satellites are actually a
resolved HF structure originating from interaction with
carbon and silicon atoms in the nearest coordination
shells can be found only in experiments on crystals with
a modified isotope composition.

For the sake of comparison, we also studied the EPR
spectra of shallow phosphorus and arsenic donors in a
silicon crystal with a modified isotopic composition
grown from the same materials as SiC.

Studies of donors in crystals depleted in isotopes
with nonzero nuclear magnetic moments benefit con-
siderably from the substantial increase in the EPR sig-
nal intensity. The EPR linewidths of shallow donors in
such crystals narrow markedly, which increases the
EPR signal intensity (amplitude) in proportion to the
ratio of the squares of the linewidths obtained on crys-
tals with natural and modified isotope compositions.
The enhanced EPR signal amplitude permits studies of
thin samples of semiconductor materials, for instance,
ion-implanted layers. Recently, such studies have been
attracting considerable interest in connection with
numerous proposals for employing such systems,
namely, shallow donors in Si, Ge, SiGe, and SiC crys-
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tals, for the development of electronic devices for quan-
tum computers. Reducing the concentration of nuclei
with nonzero magnetic moments seems essential for
slowing down spin relaxation processes in these sys-
tems. Earlier, we studied EPR signals due to shallow
arsenic donors in germanium crystals with a low con-
tent of the 73Ge isotope (having a nonzero nuclear mag-
netic moment) [15] and observed a substantial narrow-
ing of the EPR lines.

2. EXPERIMENTAL TECHNIQUE

In this study, the EPR method was applied to 6H-
SiC and 4H-SiC samples, primarily n type. In some
samples, nitrogen was compensated to a considerable
extent by boron and the EPR intensity ratio of nitrogen
to shallow boron was varied by UV irradiation. Sam-
ples of four types were used: (i) with natural isotopic
abundance; (ii) with a low 29Si content, less than 0.5%
29Si (the samples were grown using silicon enriched in
the 28Si isotope); (iii) with a low 29Si content, less than
0.5% 29Si (grown using 30Si-enriched silicon); and
(iv) 13C-enriched 4H-SiC (with an enrichment of ~10%
and ~15%) and 6H-SiC (with an enrichment of ~25%).
Part of the 4H-SiC crystals enriched in the 13C isotope
(~15%) were grown on an n-type 6H-SiC substrate with
natural isotopic abundances. The substrates were pol-
ished down to a thickness of less than 10 µm. In these
crystals, superposition of the nitrogen donor EPR sig-
nals produced in the substrate and in the main crystal
with a modified isotope composition was excluded,
because the EPR signals from the 4H-SiC and 6H-SiC
polytypes do not coincide.

In each case, the isotopic composition of only one
element, Si or C, was varied.

SiC crystals of a chosen isotopic composition were
grown by the sublimation sandwich technique [16]. The
SiC vapor source was a SiC polycrystal grown from a
mixture of silicon and carbon containing the isotope to
be introduced. The source was placed in a sealed con-
tainer together with a substrate (a SiC single crystal of
the 6H or 4H polytype). The growth was carried out in
vacuum at a temperature of 1900–2000°C in conditions
providing reproducible growth of the substrate poly-
type. The thicknesses of the grown crystals ranged from
0.5 to 1.0 mm.

The crystals thus grown exhibited n- or p-type con-
duction with a carrier concentration of 1016–1017 cm–3,
which should be attributed to the presence of nitrogen
and boron impurities in background amounts. The type
of conduction depended on the growth direction. Crys-
tals grown in the [0001]C direction were predominantly
n type, and those grown in the [0001]Si direction were
p type.

The SiC crystals were cut or cleaved in the form of
platelets with known orientations and could be rotated
in the spectrometer cavity in certain planes.
05
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We also studied a nominally undoped 30Si crystal [17]
with the 29Si isotope present in a concentration of less
than 0.5%. The starting material composition was as fol-
lows: 0.499% 28Si, 0.496% 29Si, and 99.005% 30Si.

Experiments were conducted on a JEOL EPR spec-
trometer at a frequency of 9.3 GHz (X band) in a helium
flow cryostat, which was manufactured in the labora-
tory and permitted temperature control within the range
4–300 K. All EPR spectra presented in the figures were
obtained in one scan, without accumulation.

3. EXPERIMENTAL RESULTS

3.1. Nitrogen Donors in SiC

Figure 1 presents EPR spectra of shallow nitrogen
donors in three 6H-SiC crystals: (i) with a natural
isotopic abundance; (ii) enriched in the 28Si isotope
and, hence, depleted in 29Si (less than 0.5%); and
(iii) enriched in 13C (~25%). The spectra were mea-
sured at 40 K for the magnetic field orientation B ⊥  c.
For the crystal enriched in 13C, the spectra are shown
for two orientations, B ⊥  c and B || c. Nitrogen donors
occupying positions k1 and k2 produce three EPR lines
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Fig. 1. EPR spectra of shallow nitrogen donors in three 6H-
SiC crystals: with natural isotopic abundance, enriched in
28Si (<0.5% 29Si), and enriched in 13C (~25%). The spectra
were measured at 40 K with a magnetic field B ⊥  c. The
spectra of 6H-Si13C were obtained for magnetic field orien-
tations B ⊥  c and B || c. The 29Si-depleted sample was used
to obtain the EPR spectra before and after UV interband
optical pumping and the EPR spectrum at 77 K. All spectra
except the top one contain an asterisk-labeled reference sig-
nal of quartz.
PH
each, because nitrogen has only one isotope (14N, with
an abundance of 99.63%) with a nonzero nuclear spin,
I = 1 (the number of lines is 2I + 1). Since the signals
due to N donors in positions k1 and k2 differ in terms of
their parameters, line splitting occurs. The vertical bars
in Fig. 1 specify the nitrogen EPR signals for the k1 and
k2 positions measured for the B ⊥  c orientation.

The EPR spectra of shallow nitrogen donors are
described by the standard spin Hamiltonian

 (3)

where the first term corresponds to the Zeeman interac-
tion in a magnetic field B for a center with spin S = 1/2
and an anisotropic electronic g factor (tensor g); the
second term relates to the HF interaction (characterized
by tensor A) between the unpaired electron of the shal-
low donor and the 14N nucleus with a nuclear spin I = 1;
and the third term describes the HF interaction with
ligands (characterized by tensor ai), more specifically,
between the unpaired electron of the shallow donor and
the nuclei of silicon 29Si or of carbon 13C that occupy
equivalent sites in the ith coordination shell. The last
interaction is frequently called superhyperfine (SHF).
The unresolved HF structure in the EPR spectrum
determines the EPR linewidth.

The HF interaction constant and the g factor are
weakly anisotropic and symmetric about the c axis.
Accounting for this axial symmetry, the HF interaction
tensor components can be expressed in terms of the iso-
tropic, AS, and anisotropic, AP, components as A|| = AS +
2AP and A⊥  = AS – AP. For the interaction with ligand
atoms, whose symmetry axes, as a rule, do not coincide
with the crystal axes, the isotropic and anisotropic con-
stants of the HF interaction are denoted by a and b,
respectively. Table 1 lists experimental characteristics
for shallow N donors in 3C-SiC, 4H-SiC, and 6H-SiC
crystals in different positions found by EPR and
ENDOR [12, 18]. One can also find there the g factors,
the isotropic (AS) and anisotropic (AP) HF interaction
constants, and the corresponding spin densities for s
and p electrons.

The spectrum in Fig. 1 for a natural-abundance 6H-
SiC sample reveals additional lines, which are located
between the main nitrogen HF components and
denoted by rhombs. These lines are due to the interac-
tion with two equivalent nitrogen atoms, which are pos-
sibly located in exchange-coupled pair centers [15, 19]
or in centers of a more complex structure [15]. Because
the transitions of single and pair centers in the central
line coincide, this line is more intense. For the crystal
depleted in 29Si, Fig. 1 shows its spectra measured
before and after UV interband optical pumping. A spec-
trum recorded at 77 K is also shown. We witness a cer-
tain increase in the nitrogen donor signal intensity and
a substantial enhancement of the intensity of shallow

Ĥ µBB g S S A I S
i 1=

N

∑ ai Ii,⋅ ⋅+⋅ ⋅+⋅ ⋅=
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005



PROBING OF THE SHALLOW DONOR AND ACCEPTOR WAVE FUNCTIONS 2223
Table 1.  Experimental characteristics of shallow N donors occupying different positions in 3C-SiC, 4H-SiC, and 6H-SiC
crystals: ionization energies, valley-orbit splitting, g factors, isotropic (AS) and anisotropic (AP) HF interaction constants, and
the corresponding s- and p-electron spin densities on N

SiC
polytype Position

Ionization energy 
Eg, meV (valley-
orbit splitting)

g|| g⊥ AS, MHz AP, MHz s, % p, % s + p, %

3C-SiC k 54 (8.37) 2.0050 2.0050 3.5 0.19 0.19

4H-SiC h 52.1 (7.6) 2.0055 2.0010 2.9 0.080 0.16 0.14 0.3

k 91.8 (45.5) 2.0043 2.0013 50.97 0.004 2.8 0.007 2.81

6H-SiC h 81 (12.6) 2.0048 2.0028 2.52 0.12 0.14 0.22 0.36

k1 137.6 (60.3) 2.0040 2.0026 33.221 0.004 1.83 0.007 1.84

k2 142.4 (62.6) 2.0037 2.0030 33.564 0.009 1.85 0.016 1.87

P 44 (11.7) 1.99850 117.53 0.9 0.9

As 49 (21.1) 1.99837 198.35 1.35 1.35

Note: Analogous parameters are also presented for shallow P and As donors in silicon for the sake of comparison.
acceptor signals induced by optical pumping. The
arrows identify four HF transitions for shallow boron
acceptors in the hexagonal position. Shown below are
EPR spectra of nitrogen donors in 13C-enriched crystals
(~25%) obtained for the B ⊥  c and B || c orientations.
All spectra except for the top one are referenced to a
quartz calibration signal labeled by an asterisk.

The high-field EPR components of shallow nitrogen
donors in the k1 and k2 positions presented in Fig. 1 are
displayed in Fig. 2 in an expanded scale. The slight nar-
rowing of EPR lines resulting from a decrease of the
29Si isotope concentration by an order of magnitude is
seen to bring about a better resolution of the k1 and k2

signals. However, enrichment in the 13C isotope causes
a substantial broadening of the EPR lines. The EPR lin-
ewidths measured in crystals with a natural and modi-
fied isotope composition are listed in Table 2. The spec-
trum of the 29Si-depleted crystal shown in Fig. 2 con-
tains additional lines as satellites, which are arranged
symmetrically about the central lines and identified by
arrows. Such satellites are seen to be present for each
component of the hyperfine structure of nitrogen in
positions k1 and k2 (Fig. 1), with the line splitting,
0.5 mT (14 MHz), being practically independent of
crystal orientation. Because these satellites are
observed in crystals depleted in the 29Si isotope, they
can only be due to the HF interaction with carbon. In
accordance with the natural 13C abundance, the inten-
sity ratio attests to interaction with four or five practi-
cally equivalent carbon atoms; this interaction is prac-
tically isotropic to within experimental error and is the
same for positions k1 and k2.

Figures 3 and 4 illustrate the results of a study of
shallow nitrogen donors in 4H-SiC crystals, which are
similar to those shown in Figs. 1 and 2 for the 6H-SiC
polytype. The EPR spectra in Fig. 3 relate to shallow
nitrogen donors obtained on three 4H-SiC crystals:
(i) with natural isotopic abundance; (ii) enriched in 28Si
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
and, thus, having a low content (less than 0.5%) of the
29Si isotope; and (iii) enriched in 13C (~15%). The spec-
tra were obtained at 40 K in the B ⊥  c and B || c geom-
etries for the last two crystals and only in the B || c
geometry for the crystal with natural isotope abun-
dance. The spectra of the 29Si-depleted crystal were
obtained under UV illumination, because this brought
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Fig. 2. High-field components of the EPR spectra of shallow
nitrogen donors in positions k shown in Fig. 1 (in expanded
scale) for the B ⊥  c orientation. The arrows indicate the satel-
lites in the spectrum of the 29Si-depleted sample.
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about an enhancement of the nitrogen donor signal
intensity by approximately one order of magnitude. All
spectra are provided with the quartz signal labeled by
an asterisk. The arrows in the spectra of 4H-Si13C refer

Table 2.  Experimental and calculated EPR linewidths (in
mT) for shallow nitrogen donors in the k position in 4H-SiC
and in the k1 position in 6H-SiC with different 13C and 29Si
isotope abundances: natural, enriched in 13C (25% for 6H-SiC
and 15% for 4H-SiC), and depleted in 29Si (0.5%)

SiC
polytype

Experiment Calculation
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6H-SiC 0.13 0.5 0.12 0.12 0.55 0.11

4H-SiC 0.21 0.35 0.07 0.21 0.29 0.08

Note: In each experiment, the content of only one isotope was
varied.
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Fig. 3. EPR spectra of shallow nitrogen donors in various
4H-SiC samples: with natural isotopic composition,
enriched in the 28Si isotope (~0.5% 29Si), and enriched in
the 13C isotope (~15%). The spectra were measured at 40 K
for the B || c and B ⊥  c orientations; the spectrum of the nat-
ural-abundance crystal was obtained only for B || c. Vertical
bars refer to the EPR lines of nitrogen in position k only for
the B || c orientation. The EPR spectra of the 29Si-depleted
crystal were measured under UV illumination. All spectra
contain a quartz reference signal labeled by an asterisk. The
EPR spectrum of the 13C-enriched crystal contains EPR
lines (identified by arrows) belonging to nitrogen donors in
the 6H-SiC substrate.
PHY
to signals of nitrogen donors in the remainder of the
6H-SiC substrate on which the 4H-SiC crystal was
grown.

Figure 4a displays components of the nitrogen HF
structure recorded for a 4H-SiC crystal with a low 29Si
content at 40 K (upper two spectra) and for a 13C-rich
crystal at 4.2 K (lower two spectra) in the B ⊥  c and
B || c geometries. The satellite line pairs observed in
crystals depleted in 29Si are identified by vertical bars.
The arrows related to the 13C-enriched crystal specify
the outer satellite-pair lines assigned to HF interaction
with one 29Si nucleus, estimated as 1.46 mT (41 MHz).
The rhomb indicates one of the nitrogen pair lines, and
the asterisk, the quartz signal. The central line of the
nitrogen HF structure is presented in one spectrum
only.

The high-field components of the EPR spectra that
were recorded for shallow nitrogen donors occupying
the k positions in 4H-SiC and shown in Figs. 3 and 4a
are also displayed in Fig. 4b in an expanded scale. A
decrease of the 29Si isotope concentration by an order of
magnitude is seen to result in a substantial narrowing of
the EPR lines. However, enrichment by 13C did not
bring about noticeable EPR line broadening. This
implies that the variation of the EPR linewidth in crys-
tals with a modified isotopic composition in 4H-SiC
differs markedly from what was observed in 6H-SiC.
The 29Si-depleted crystal reveals two additional lines
located symmetrically about the central line. As is evi-
dent from Fig. 4a, similar satellites were observed with
other k-nitrogen lines and there was practically no
change in their relative intensity and line separation as
the crystal orientation in the magnetic field was
changed, although all lines change position because of
the nitrogen donor g factor being slightly anisotropic.
Because these lines were seen in crystals with a low 29Si
content, just as in the case with 6H-SiC, they certainly
cannot originate from HF interaction with 29Si nuclei. It
stands to reason that these satellites are caused by HF
interaction with 13C; for crystals with a natural abun-
dance of the 13C isotope, the satellites are masked by
the broader nitrogen donor lines. As in the case with the
4H-SiC crystal, the intensity ratio suggests that they
derive from interaction with four or five carbon atoms,
with the strength of this interaction being 0.6 mT
(16.8 MHz). The method of isotope composition mod-
ification used in the present study provides compelling
evidence for the HF interaction being with carbon
alone. This conclusion fits the results of the study of
13C-rich crystals. As seen from Fig. 4b, the EPR line
shape for the crystal with natural isotopic abundance
differs from that obtained on the 13C-rich crystal.
Indeed, the wings of the EPR line in the latter case fall
off substantially slower. This is seen clearly from the
bottom spectrum in Fig. 4b, where the dashed line
shows a part of the EPR line of the crystal with natural
isotopic abundance. The observed line shape reflects
SICS OF THE SOLID STATE      Vol. 47      No. 12      2005
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the presence of satellites whose intensities are substan-
tially higher in crystals enriched with the 13C isotope.
The 6H-SiC crystals with natural isotopic abundance
exhibited satellites corresponding to a practically iso-
tropic HF interaction with one Si atom, whose strength
was 0.96 mT (26.9 MHz). No such satellites were
observed in crystals with a low 29Si content.

3.2. Boron Acceptors in SiC

All the crystals studied contained a residual boron
impurity. Weak EPR signals of shallow boron accep-
tors, which were actually boron atoms substituted for
silicon, were observed, as a rule, with no optical illumi-
nation, and their intensity grew noticeably under inter-
band optical pumping. The energy levels of shallow
boron referenced to the valence band edge (EV) are
0.27, 0.31, and 0.38 eV for the h and two k positions in
6H-SiC, respectively. EPR signals of shallow boron
acceptors provide valuable information. These spectra
can be used to extract, besides the HF interaction with
boron, a resolved HF structure due to anisotropic inter-
action with one carbon atom in the first coordination
shell (which accounts for up to 30% of the spin density)
and to practically isotropic interaction (~28 MHz) with
three equivalent silicon atoms of the second coordina-
tion shell [8, 9, 11]. Thus, these spectra provided an
estimate of the content of 29Si in crystals enriched in the
28Si or 30Si isotopes and the concentration of 13C in
crystals enriched in this isotope. The EPR linewidths of
shallow boron acceptors, as in the case of shallow nitro-
gen donors, offered the possibility of judging the spatial
distribution of the shallow-acceptor wave function.
Thus, the boron acceptor structure is characteristic of
deep impurities. Note, however, that the boron level of
about 0.30 eV, which is comparatively shallow for SiC,
is customarily called shallow (shallow boron impurity).
A pulsed microwave ENDOR study [11] suggests that
the spin density is localized primarily on carbon atoms
and that EM theory is applicable apparently only to
comparatively remote coordination shells, the HF inter-
action with which accounts for the EPR linewidth. This
conclusion is borne out by the present study; indeed, a
decrease in the 29Si content by more than one order of
magnitude produced practically no effect on the EPR
linewidth of shallow boron, whereas an increase in the
13C content (by about 20 times) brought about a sub-
stantial broadening of the EPR lines.

3.3. Shallow Phosphorus and Arsenic Donors in 30Si

Figure 5 shows an EPR spectrum of shallow phos-
phorus donors measured in a silicon crystal enriched in
the 30Si isotope (i.e., depleted in 29Si) at 4.2 K under
optical interband pumping. Also presented for compar-
ison is an EPR spectrum of phosphorus in natural sili-
con. The inset displays in expanded scale the high-field
phosphorus line in both crystals. We readily see that the
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Fig. 4. EPR spectra of shallow nitrogen donors in 4H-SiC.
(a) Individual nitrogen HF-structure components measured
in 4H-SiC with a low 29Si content at 40 K (upper two spec-
tra) and in the 13C-enriched crystal at 4.2 K (lower two
spectra) for the B || c and B ⊥  c orientations. The satellite
line pairs deriving from the HF interaction with one 13C
nucleus are identified with vertical bars. Arrows refer to the
outer lines of the satellite pairs assigned to the HF interac-
tion with one 29Si nucleus. The number of equivalent C or
Si nuclei is indicated in parentheses. The rhomb relates to
one of the nitrogen pair lines, and the asterisk, to the quartz
signal. The central line of the carbon HF structure is given
in one spectrum only. (b) The high-field components of the
EPR spectra of shallow nitrogen donors in the k position
presented in Fig. 3 for the B || c orientation (in expanded
scale). The arrows specify the satellites in the EPR spectrum
of the 29Si-depleted crystal. The dashed line shows a part of
the EPR line for the crystal with natural isotopic abundance.
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linewidth, which is 0.06 mT in the crystal with a
reduced content (less than 0.5%) of 29Si having a non-
zero nuclear magnetic moment, narrows strongly as
compared to that measured in the crystal with a natural
abundance of silicon, 0.26 mT. As follows from Eq. (2),
this narrowing corresponds to a 29Si content of ~0.25%,
i.e., to about one-half the figure specified in the certifi-
cate of the material [17].

Figure 6 displays EPR spectra of shallow phospho-
rus and arsenic donors obtained on a silicon crystal
enriched in the 30Si isotope at 4.2 K under optical inter-
band pumping. The inset shows in expanded scale the
high-field components of the EPR spectra of shallow
phosphorus and arsenic donors measured in a silicon
crystal enriched in 30Si.

The EPR spectra of shallow phosphorus and arsenic
donors could be recorded only under illumination,
because with no illumination the EPR signals were sat-
urated as a result of the very long spin–lattice relaxation
time T1. Illumination brings about a sharp decrease in
T1 caused by interaction with carriers [20] and, accord-
ingly, the possibility of observing EPR. This effect is
very useful, because it permits local study of the EPR
signal, i.e., only in regions of optical excitation. This
also opens up possibilities for investigating surface
effects with high-energy photons capable of penetrat-
ing only into a thin surface silicon layer. The effect of
light-induced shortening of T1 may turn out to be prom-
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Fig. 5. EPR spectra of shallow phosphorus donors measured
in a 30Si crystal at 4.2 K under interband light pumping and
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ising in the case where 29Si-depleted silicon with shal-
low donors is employed as a material for electronic
devices intended for use in quantum computers,
because this effect would provide an easy means to
reset the system.

4. DISCUSSION OF THE RESULTS

The EPR spectra of shallow nitrogen donors occupy-
ing positions k in the 4H-SiC and 6H-SiC polytypes and
having the deepest levels (Table 1) exhibit, in addition to
the unresolved HF structure determining the EPR line-
widths, HF interactions with nearest neighbor coordina-
tion shells. These interactions can be resolved as satel-
lites in the EPR spectra. Satellites due to the HF interac-
tion with silicon were observed in [13, 14] and in the
present study, and satellites deriving from interaction
with carbon were observed in this work. These additional
EPR lines were unambiguously identified by studying
crystals with a modified isotopic composition (indeed,
this permitted observation of interaction with carbon due
to EPR line narrowing) and by ENDOR [14].

Being an element of Group V, a donor atom has five
valence electrons, with four of them forming valence
bonds with the nearest lattice atoms and the fifth being
acted upon by the Coulomb field of the remaining pos-
itive charge. In the EM approximation [1], a weakly
bound electron is treated as a hydrogen-like atom in
which the Coulomb attraction of the donor nucleus is

E
PR

 in
te

ns
ity

, a
rb

. u
ni

ts

320 330 340
Magnetic field, mT

Shallow P and As donors in 30Si(29Si < 0.5%)
9.3 GHz
4.2 K

*

31P A = 4.2 mT 

*

31P

76As

76As A = 7.08 mT 
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reduced by the semiconductor dielectric permittivity ε.
It is also assumed that the electron moving in its orbit
has an effective mass of a conduction electron. Under
these assumptions, the wave function of a localized
donor electron can be written as a product of the solu-
tion to the Schrödinger equation for a hydrogen-like
atom formed by the donor and a weakly coupled elec-
tron and a Bloch function for an electron in the conduc-
tion band. Said otherwise, the Bloch function describ-
ing conduction band electrons is modulated by an enve-
lope function which is a solution to the corresponding
hydrogen-like Schrödinger equation. The result is the
formation of a bound donor state with an ionization
energy on the order of tens of millielectronvolts.

Si and SiC belong to Group IV of the periodic table
and, therefore, besides some substantial differences,
possess qualitatively similar energy level structures.
These crystals are indirect-gap semiconductors,
because the conduction band has several minima
shifted relative to the center of the Brillouin zone. The
pattern of this shift depends on the nature of the semi-
conductor material. Indeed, silicon has six minima dis-
placed in the 〈100〉  directions and in SiC the character
of the conduction band depends on the polytype.
Because the conduction band has a many-valley char-
acter, shallow donor levels (which may be considered
to be split off from the conduction band) are degenerate
according to the number of minima; in silicon, for
instance, there are six minima and they correspond to
the A1, E, or T2 states. The EM approximation fails near
the donor impurity, and the degeneracy is lifted. The
level splitting, which is called valley–orbit splitting, is
caused by the differences in electron distribution
among the A1, E, and T2 states near the donor impurity.
This difference is strongest in the energy of the A1 sin-
glet state, because in this case the wave function
reaches its maximum amplitude on the donor atom.

The donor electron wave function (for instance, for
silicon or the 3C-SiC cubic polytype) can be written as

 (4)

where ϕj(r) = uj(r)  is the Bloch function at the jth
minimum, which is located at point kj, and uj(r) is a
periodic function. The coefficients αj characterize the
relative contribution of each valley and, thus, specify
different combinations of the wave functions describ-
ing the regions near each minimum in the conduction
band. The function Fj(r) is the hydrogen-like solution
to the Schrödinger equation for the donor electron.
Because the actual type of ground state is a priori
unknown, the existence of HF interaction in the donor
atom strongly suggests that the ground state is the A1
singlet; indeed, only in this state has the wave function
a finite density at the donor nucleus site. In this case, the
wave function is completely symmetric and the elec-

ψ r( ) α jF j r( )ϕ j r( ),
j 1=

6
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e
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tron is spread uniformly over all the valleys; i.e., for Si
or 3C-SiC, the wave function can be cast as

 (5)

In SiC, the degeneracy and further splitting depend on
the polytype. In the cubic polytype 3C-SiC, we have a
situation similar to that in silicon; i.e., the conduction
band minima lie along the 〈100〉  axes, with the con-
stant-energy surfaces in the proximity of the minima
being shaped like ellipsoids extended along the 〈100〉
directions. The effective masses along and perpendicu-
lar to the ellipsoid axis are ml = 0.677m0 and mt =
0.247m0, respectively. The hexagonal polytypes feature
a more complex pattern. The conduction band minima
in the 4H-SiC and 6H-SiC polytypes are in essentially
different positions, and this is what gives rise in the
final count to differences between their electronic prop-
erties. The conduction band minimum in the 4H-SiC
polytype is at point M, whereas that in 6H-SiC is
located between points M and L, at a relative distance
of approximately 60% from point M. The band struc-
tures are such that the effective masses in the plane per-
pendicular to the c axis are approximately the same for
both polytypes (m⊥  = 0.445m0 for 4H-SiC and m⊥  =
0.43m0 for 6H-SiC, where m0 is the free electron mass),
while differing noticeably along the c axis. Indeed, for
4H-SiC, the effective mass along the c axis is m|| =
0.32m0, whereas for 6H-SiC we have m|| = 1.7m0. Thus,
for the 4H-SiC polytype (and 3C-SiC), the electron
wave function is very nearly spherically symmetric,
while for 6H-SiC the electron wave function is con-
tracted noticeably along the c axis, i.e., is pancake-
shaped. It appears reasonable to use averaged effective
masses m* for electrons in the conduction bands. For
3C-SiC, m* = (mlmtmt)1/3 = 0.345m0; for 4H-SiC, m* =
(mxmymz)1/3 = 0.4m0; and for 6H-SiC, m* = 0.74m0. The
effective Bohr radius of the shallow donor wave func-
tion is a* = [ε/(m*/m0)]a0, where a0 = 0.529 Å is the
Bohr radius. The shallow donor ionization energy is
Eeff = [(m*/m0)/ε2]E0, where E0 is the Rydberg energy.
Thus, the effective Bohr radius of the electron wave
function is a* = 15 Å for 3C-SiC, a* = 13 Å for 4H-SiC,
and a* = 7.2 Å for 6H-SiC and the corresponding shal-
low-donor ionization energies Eeff are 47 meV for 3C-
SiC, 54 meV for 4H-SiC, and 101 meV for 6H-SiC.

Note that we are dealing here with the wave function
of a donor electron which is not localized in any spe-
cific position, k or h, of the polytype under study; it
appears, however, only natural that the properties of
donor electrons should contain information on the free-
electron wave function. Thus, the pronounced differ-
ence between the wave function properties of nitrogen
donors in the k or h positions (which does not depend
on the polytype) apparently derives only from the local
symmetry of these positions and does not have direct
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bearing on the general wave function of a band elec-
tron. These properties should be reflected in HF inter-
actions with C and Si atoms in various coordination
shells, which are proportional to the density of the
donor wave function (5) |ψ(rl)|2 at nucleus site l. Esti-
mates of the wave function density on a nucleus are
usually performed with a dimensionless quantity called
the gain, which characterizes the degree of localization
of the wave function near the nucleus; i.e., the gain is
the density ratio of the actual wave function on the
nucleus to the wave function envelope at the same site.
The gain for the regions where the envelope wave func-
tion varies slowly (in accordance with EM theory and
disregarding interference effects) can be expressed

through a dimensionless quantity η ≡ |uj(rl)|2/〈uj(r) ,
where the denominator contains the cell-averaged
Bloch function. This quantity is independent of the lat-
tice site occupied by an atom but is dependent on the
type of atom involved, Si or C.

As seen from Table 1, the donor level energies for
3C-SiC and for the hexagonal positions are comparable
to the energies calculated in the EM approximation,
whereas the levels for the k positions are substantially
in excess of these values. The level depth should corre-
late with the spatial distribution of the wave functions
of donor (or acceptor) electrons, which is evident, for
instance, for the nitrogen donors in silicon or shallow
boron acceptors in SiC. Introducing the dimensionless
ratio of the level depth to the band width, we see that the
electron localization within the first coordination shell
correlates fairly well with this ratio. The degree of
localization of the nitrogen donor electron in silicon
within the first shell is ~80%, and the relative level
depth is ~0.25, while for the shallow boron acceptor in
SiC the degree of localization of the unpaired electron
within the first shell is about ~40% and the relative level
depth is ~0.12. Thus, judging from the level depths for
the k positions, the degree of electron localization
within the first coordination shell may be significant,
about 5%, and this manifests itself in the resolved HF
structure in EPR spectra. The fact that this structure has
not thus far been observed in SiC for shallow donor lev-
els in 3C-SiC and for hexagonal positions may suggest
that the wave function distribution of donor electrons in
these cases differs substantially from that of donors in
quasi-cubic positions and, therefore, the EPR HF struc-
ture in this case is not resolved.

There are three major factors determining HF inter-
actions for shallow donors in Group IV crystals, which
are indirect-gap semiconductors: (i) smoothly decreas-
ing modulation of HF interactions with increasing dis-
tance from the donor [in the effective mass approxima-
tion, this modulation is described by the envelope func-
tion F(r)]; (ii) the spin density localization on atoms,
which is characterized by dimensionless gain coeffi-
cients and depends on the actual kind of atom and crys-
tal involved; and (iii) interference effects [1, 4, 12] orig-
inating from the existence of several valleys in these

〉 av
2

PH
semiconductors [the interference destroys the smooth
falloff of HF interactions on atoms or groups of atoms
with distance, which is described by the function F(r)].
Incidentally, this interference effect considerably com-
plicates the interpretation of EPR and ENDOR spectra
in indirect-gap semiconductors, unlike in direct-gap
semiconductors (ZnO, AgCl, AgBr), in which HF and
SHF interactions have been assigned with a high degree
of confidence [21–23].

The isotropic structure for nitrogen donors in posi-
tions k due to the HF interaction with one Si atom,
which is directly observed in EPR spectra, is 1.46 mT
(41 MHz) and 0.96 mT (26.9 MHz) in 4H-SiC and 6H-
SiC crystals, respectively. The isotropic HF splitting
caused by interaction with four or five carbon atoms,
which is also observed directly in the EPR spectra of
these donors (incidentally, this splitting becomes
clearly pronounced only in 29Si-depleted crystals,
where the EPR line narrows), is 0.6 mT (16.8 MHz) and
0.5 mT (14 MHz) in 4H-SiC and 6H-SiC, respectively.
The observed isotropic HF interactions make it possible
to estimate the unpaired-electron density in the s orbit-
als of Si and C and, thus, calculate the degree of elec-
tron localization in these orbitals. The corresponding
degrees of localization of the unpaired electron (spin
density) on one Si atom in 4H-SiC and 6H-SiC are 0.89
and 0.6%, respectively, and those on each of the four or
five C atoms in 4H-SiC and 6H-SiC are 0.44 and
0.37%, respectively. Significantly, the spin density ratio
on one Si atom for the 4H-SiC and 6H-SiC polytypes,
which is 1.5, coincides, to within experimental error,
with that on the nitrogen atom (Table 1). This suggests
that N centers in positions k in 4H-SiC and 6H-SiC
have identical structure and that one Si atom occupies
the position closest to the N atom; the wave function
density decreases smoothly to about one-third its value
as we go from N to Si. The spin density ratio on each of
the C atoms of the 4H-SiC and 6H-SiC polytypes,
which is 1.2, is noticeably smaller than that on the N
atom, which implies that these atoms are located farther
away from the nitrogen atom. Thus, the results of our
study support the conclusion that nitrogen in positions
k substitutes for C. It stands to reason that the degree of
localization on the remaining three nearest Si atoms is
of the same order of magnitude as that on one Si atom,
for which isotropic HF splitting in the EPR spectrum
was observed. Quite possibly, localization will take
place in the s and p orbitals, thus implying that the HF
interaction with the three Si atoms of the first coordina-
tion shell may be anisotropic, which would account for
its being not resolved in EPR spectra, because the iso-
tropic HF interaction constant should decrease strongly
if even a small part of the unpaired electron distribution
extends to the p orbital. Thus, in 4H-SiC, the total
degree of localization of the unpaired electron on the
central N atom and in the first coordination shell (con-
taining four Si atoms) should be 6.4%. We should add
to this 2.2% for the assumed five C atoms of the second
shell. Thus, the total spin density within the first two
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005
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coordination shells is approximately 8.5%. For 6H-
SiC, the respective quantities should be 4.24 and
1.85%, adding up to 6.1%. These values should be
added to those obtained in an ENDOR study [12],
which, according to the new data, correspond to the HF
interactions for the nitrogen k positions located beyond
the first or second coordination shell.

Because the EPR linewidths reflect the density distri-
bution of the unpaired electron of the shallow donor over
more remote coordination shells in the case of positions
k in SiC (probably starting with the third shell), to which
the EM approximation applies, we consider the HF inter-
actions with these coordination shells in more detail.
According to Eq. (2), the ratio of the shallow-donor EPR
linewidth in a silicon crystal depleted in the 29Si isotope
to that in a natural isotope abundance crystal is equal to
the square root of the ratio of the percentage contents of
this isotope. Thus, the phosphorus EPR line narrowing in
30Si by a factor of 4.3 observed in our experiments corre-
sponds to a nearly 20-fold decrease in 29Si content. A
similar effect of EPR line narrowing was revealed for As
donors in 30Si silicon.

In the case of SiC, the EPR linewidth ratio for shal-
low donors has a more complex pattern because of the
presence of two types of atoms, Si and C. The actual
value of this ratio depends on the contribution of the HF
interaction with the 29Si and 13C nuclei to the linewidth.
Assuming the linewidth to be completely determined
by the HF interaction with 13C, the linewidth ratio for
6H-SiC enriched in 13C to 25% to that of a crystal with
natural isotopic abundance is calculated to be
(0.25/0.011)1/2 = 4.8 and the EPR linewidth should be
(based on the experimental linewidth in a natural-abun-
dance crystal (Table 2)) 0.62 mT. The analogous ratio
for 4H-SiC enriched in 13C to 15% is (0.15/0.011)1/2 =
3.7, and the EPR linewidth should be 0.78 mT. Assum-
ing now that the linewidth derives fully from the HF
interaction with 29Si, calculating the linewidth ratio for
6H-SiC with 0.5% 29Si (the crystal is enriched in 28Si)
to a natural-abundance crystal yields (0.005/0.047)1/2 =
0.33; so the EPR linewidth should be 0.04 mT. Simi-
larly, the EPR linewidth for 4H-SiC can be found to be
0.07 mT.

A comparison of these figures with experiment
(Table 2) shows that the first case (where the linewidth
is fully determined by the HF interaction with 13C) very
nearly corresponds to the 6H-SiC polytype, whereas
the second case should be identified with 4H-SiC,
where the linewidth is primarily determined by the HF
interaction with 29Si. An increase in the 13C content in
the 6H-SiC polytype by approximately 20 times broad-
ens the EPR linewidth nearly fourfold, while a decrease
in the 29Si content by approximately 10 times has prac-
tically no effect on the linewidth. By contrast, in 4H-
SiC, a similar decrease in 29Si content resulted in EPR
line narrowing to one-third its previous width, with no
noticeable broadening produced by a substantial
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
increase in the 13C content. Thus, our EPR study sug-
gests the conclusion that the nitrogen-donor unpaired
electron wave function distributions in the 4H-SiC and
6H-SiC polytypes are substantially different. In 4H-
SiC, the wave function is primarily localized on silicon
atoms, while in the 6H-SiC polytype it is localized
mainly on carbon. This conclusion is in agreement with
ENDOR studies [12], which also revealed a marked
difference in the spatial distribution of the shallow N
donor wave function between the 4H-SiC and 6H-SiC
polytypes. It was demonstrated that, within the coordi-
nation shells the interactions with which account for the
EPR linewidth, the unpaired electron is predominantly
localized on silicon atoms in 4H-SiC and on carbon
atoms in 6H-SiC. Also, the unpaired electron localized
on silicon is distributed approximately evenly between
the s and p orbitals, whereas on carbon the unpaired
electron occupies predominantly the s orbitals. In other
words, the gain coefficients for Si and C in these poly-
types are essentially different. Indeed, judging from the
maximum isotropic constants of HF interaction with 13C,
which in 4H-SiC and 6H-SiC are 5.02 and 10.75 MHz
(k2), respectively [12], the gain coefficient for carbon in
6H-SiC is approximately twofold that for 4H-SiC.
However, the distribution of the unpaired electron on
silicon s orbitals reveals the reverse; namely, the HF
interaction constants are 6.54 and 3.86 MHz for 4H-
SiC and 6H-SiC, respectively. This means that the gain
coefficient for the isotropic spin density distribution on
silicon in 4H-SiC is about 1.7 times that in 6H-SiC.
Note that a similar gain coefficient for the unpaired
electron distribution over the p orbitals cannot be intro-
duced, because one can speak here only about the den-
sity of the envelope wave function on the Si or C nuclei.
Nevertheless, one has to bear in mind that, while in the
4H-SiC and 6H-SiC polytypes the unpaired electron
density in the p orbitals of C is small and about the
same, the maximum constant of anisotropic SHF inter-
action b in the p orbitals of Si in 4H-SiC (1.26 MHz
[12]) exceeds that for 6H-SiC by about 30 times.

It should be stressed that we do not compare the HF
interaction constants for the first two coordination
shells, for which EPR spectra revealed a split structure.
These quantities have practically no bearing on the
properties of the donor electron that are described by
EM theory and are characteristic of a band electron.
These constants determine the depth of a state, and, for
comparatively deep states, the difference between the
polytypes, as a rule, disappears. Indeed, the properties
of shallow boron acceptors, whose depth is only twice
that of nitrogen donors in the k positions, are practically
independent of polytype.

It appeared of interest to calculate the EPR line-
width of shallow nitrogen donors with Eq. (2) using
ENDOR data from [12]. Like the shallow donors in sil-
icon, where about 80% of the linewidth is governed by
the interaction with the lattice nuclei residing within a
few coordination shells (in silicon, the first four coordi-
05
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nation shells [4]), the linewidth is determined by the
maximum unresolved HF interactions. Therefore, in
our calculations, we included only the coordination
shells for which the isotropic HF interactions exceeded
1 MHz. The number of atoms in each shell was
assumed to be equal to six for both carbon and silicon.
In EPR linewidth calculations for positions k, the HF
interactions with the first two coordination shells (for
which the HF structure in the EPR spectra was
resolved) were disregarded. The results of calculations
for positions k (position k1 in 6H-SiC) are presented in
Table 2. The experimentally observed EPR linewidths
are seen to compare well to the calculations.

Table 1 lists the ionization energies of shallow N
donors in the three SiC polytypes. Analogous parame-
ters for shallow P and As donors in Si are also given for
the sake of comparison. Examining the table reveals
that the ionization energies for shallow N donors do not
correlate directly with the constants of HF interaction
with the nitrogen nucleus. The main feature that can be
discerned for both 4H-SiC and 6H-SiC is that the iso-
tropic HF interaction for the h positions, AS(h), is
weaker than that for positions k, AS(k). The ratio
AS(k)/AS(h) is 17.6 and ~13 for 4H-SiC and 6H-SiC,
respectively (the value of AS for 6H-SiC is taken as the
average over two k positions). For the anisotropic HF
interaction constants AP, the opposite situation occurs:
the ratio AP(h)/AP(k) is about ~20 for both polytypes.
Thus, the wave function on the N atom for quasi-cubic
positions is primarily s-type, whereas for the hexagonal
positions this function has a 50% admixture of the p
orbital. As seen from Table 1, the isotropic HF interac-
tion constant for N donors in 3C-SiC is approximately
as small as that for the h positions in the hexagonal
polytypes. The only feature that is common for all these
cases is a small valley–orbit splitting, which constitutes
in the three cases only 15% of the level depth, whereas
this quantity is in excess of 50% for the k positions in
the 4H-SiC and 6H-SiC polytypes. Thus, it is quite
probable that the admixture of the excited state in
which the isotropic HF interaction is zero brings about
a strong decrease of this interaction in the lowest
ground state. Nevertheless, in all cases, the degree of
donor electron localization on nitrogen is within 0.19–
2.81%, which is comparable to that in silicon. To the
best of our knowledge, only shallow lithium donors in
silicon, which are interstitials, have an inverted energy
level structure [24]; so the constant of HF interaction
with the lithium atom approaches zero at low tempera-
tures and increases with temperature. Because SiC did
not reveal an increase in the isotropic constants of HF
interaction with nitrogen in any of the above cases of
weak isotropic HF interaction [25], one may safely
conclude that the ground state here is the A1 singlet. The
closely lying excited states, however, give rise to a sub-
stantial decrease in the HF interaction constants. A pro-
nounced part is quite probably played here by interfer-
ence effects caused by the complex nature of the con-
PH
duction band, which can manifest themselves
particularly strongly if the donor atom is displaced
from its equilibrium position along the c axis for the
hexagonal positions in the 4H- and 6H-SiC polytypes.

As indicated above, the EPR spectra obtained for
nitrogen k positions in the 4H-SiC and 6H-SiC poly-
types revealed satellites with different but very nearly
isotropic splittings, which can be identified, judging
from their relative intensities with respect to the central
EPR line, with the HF interactions with one silicon
atom and four or five carbon atoms. All these interac-
tion constants are substantially larger than the EPR
lines and, thus, do not contribute to the EPR linewidth,
except for 13C-enriched crystals, where they signifi-
cantly change the line shape by enhancing the wing
intensity. Nevertheless, the EPR linewidth is deter-
mined primarily by the weaker HF interactions. One
may thus suggest that the HF interactions with the first
two Si and C shells are resolved for the k positions in
4H-SiC and 6H-SiC and that the EPR linewidth derives
from the HF interactions with more remote shells, start-
ing from the third. This situation is similar in some
respect to the case of shallow boron acceptors, where
the HF structure is resolved for the interactions with
one C atom and three Si atoms. This problem, however,
can probably be solved by studying 29Si-enriched SiC
crystals.

It appears only natural to compare now the proper-
ties of nitrogen donors in SiC with those in carbon (dia-
mond) and silicon crystals. Nitrogen donors were first
studied by EPR in diamond [26] and silicon [27, 28]. In
both cases, the nitrogen donors had deep levels and
their structure differed strongly from that of other
donors in silicon belonging to Group V of the periodic
table (P, As, Sb), which have shallow levels and whose
electronic properties can be described in terms of the
effective-mass approximation. EPR measurements
show that nitrogen centers in diamond and silicon
undergo strong trigonal distortions along one of the
four 〈111〉 axes, which is caused by the nitrogen being
in an off-center position. The donor electron occupies
an antibonding orbital and is localized partially on the
nitrogen atom in a substitutional position and partially
on one of the four nearest neighbor carbon (in diamond)
or Si (in silicon) atoms. In diamond, the unpaired donor
electron is localized to 54.9% on one carbon atom (6%
in the s orbital and 94% in the p orbital) and to 34% on
the nitrogen atom (19% in the s orbital and 81% in the
p orbital) and the donor level is ~2-eV deep. In silicon,
the unpaired donor electron is localized to 72% on one
Si atom (12% in the s orbital and 88% in the p orbital)
and only to 9% on the nitrogen atom (28% in the s
orbital and 72% in the p orbital) and the donor level
depth is ~0.3 eV. A theoretical analysis of the formation
of deep donor levels of nitrogen in silicon and diamond
was performed in [29–32] and included the Jahn–Teller
effect, pseudo-Jahn–Teller effect, and chemical
rebonding. Because the issue of the formation of deep
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005



PROBING OF THE SHALLOW DONOR AND ACCEPTOR WAVE FUNCTIONS 2231
nitrogen donor levels in silicon and diamond still
remains unsolved, there has not been, as far as we
know, any comparative consideration of the differences
in the nitrogen behavior between silicon and diamond,
on the one hand, and SiC, on the other.

A radically different situation is observed for nitro-
gen donors in SiC, which does not compare, even qual-
itatively, to the behavior of deep donors in Si and C. In
SiC, nitrogen produces donors with relatively shallow
levels and, most remarkably, no bonds are formed with
the nearest lattice atoms and no noticeable lowering of
the symmetry occurs, unlike in Si and C crystals.
While, in the case of the hexagonal polytypes of SiC,
the axial symmetry of the crystal may be suggested to
play a certain role (the g factor and the hyperfine struc-
ture constant exhibit approximately axial symmetry
with respect to the crystal c axis) and the off-center
nitrogen atom in positions k may manifest itself, the
cubic modification of SiC (3C-SiC) has the same sym-
metry as diamond or silicon. Thus, there are firm
grounds for developing a general theory which would
account for the radical difference in the behavior of
nitrogen donor impurities between silicon and dia-
mond, on the one hand, and SiC, on the other.

5. CONCLUSIONS

We have carried out an EPR study of shallow N
donors and shallow B acceptors in SiC and of shallow
P and As donors in silicon with a modified isotopic
composition of Si and C. A change in the content of the
29Si and 13C isotopes having nonzero nuclear magnetic
moments brings about substantial changes in the EPR
spectra of shallow N donors and shallow B acceptors in
SiC, as well as of shallow P and As donors in silicon.
Information has been obtained on the spatial distribu-
tion of the shallow-donor and acceptor wave functions
in these materials. The present study and published
ENDOR measurements revealed that the spatial distri-
bution of the donor electron in SiC depends substan-
tially on the polytype and crystallographic position.
Indeed, the unpaired electron in the 4H-SiC polytype
occupies primarily the Si s and p orbitals, whereas in
6H-SiC it is localized mostly in the C s orbitals. The
electron distribution of the N donor in the hexagonal
position, which has a shallow level close to that calcu-
lated for this material in the EM approximation, differs
strongly from that of the donor in the k position. In the
latter case, the donor level is substantially deeper than
that predicted from EM theory and the EPR spectrum
reveals an HF structure deriving from a comparatively
strong interaction with the first two coordination
spheres of Si and C, which were identified reliably in
measurements on crystals with a modified isotopic
composition. Thus, the EM approximation fails near
the N atom in the k position. Moreover, it can be sug-
gested that the symmetry of the donor structure and of
the donor electron distribution become lower, thus giv-
ing rise to a comparatively high isotropic spin density
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      200
on one Si atom that lies on the c axis near the N atom in
the neighboring carbon position.

The isotropic structure for N donors in the k posi-
tions caused by the HF interaction with one Si atom,
which is observed directly in EPR spectra, is 41 MHz
(a spin density of 0.89%) and 26.9 MHz (0.6%) in the
4H-SiC and 6H-SiC crystals, respectively. The isotro-
pic HF splitting induced by the interaction with four or
five C atoms, which is likewise seen directly in the EPR
spectra of these donors and manifests itself as an EPR
line narrowing in 29Si-depleted crystals, is 16.8 MHz
(0.44%) and 14 MHz (0.37%) in 4H-SiC and 6H-SiC,
respectively. The ratio of the spin densities on one Si
atom in the 4H-SiC and 6H-SiC polytypes (which is
1.5) coincides with that on the N atom, thus implying
that the structure of N centers in positions k of 4H-SiC
and 6H-SiC is qualitatively the same and that the Si
atom involved occupies the position nearest to the N
atom; the wave function density decreases by a factor of
about 3 as one goes from N to Si. The ratio of the spin
densities on each of the nearest C atoms in the 4H-SiC
and 6H-SiC polytypes (which is 1.2) is considerably
smaller than that on the N atom; i.e., these C atoms
occupy more remote positions with respect to the N
atom. Thus, the results of our measurements bear out
the widespread opinion that N substitutes for C in the k
position.

The total degree of localization of the unpaired elec-
tron on the central N atom and in the first shell of four
Si atoms (assuming that the degree of localization on
the other three nearest Si atoms is the same as that for
one Si atom whose HF structure is resolved in the EPR
spectra) is 6.4%, to which we should add 2.2%, the fig-
ure corresponding to electron localization on the
assumed five C atoms of the second coordination shell.
Said otherwise, the spin density within the first two
coordination shells adds up to about 8.5%. For 6H-SiC,
these quantities constitute 4.24 and 1.85%, respec-
tively, adding up to 6.1%. These values should be added
to those obtained by ENDOR for N atoms in positions
k [12], which, according to the new data, should be
identified with the HF interactions beyond the first or
second shell.

The low-symmetry structure forms for the shallow
B acceptor near the impurity [11], with the unpaired
electron in the SiC polytypes studied being distributed
primarily on the C atoms. Decreasing the 29Si content
had practically no effect on the EPR linewidth of the
shallow B acceptor, which observation supports the
above conclusion.

A decrease in the 29Si content brings about a sub-
stantial narrowing of the EPR lines of the shallow P and
As donors in silicon and, as a consequence, an increase
in the EPR signal intensity, as well as a strong length-
ening of the spin–lattice relaxation time T1. In silicon
enriched in 30Si and depleted in 29Si, the time T1 for the
shallow P and As donors is quite long. This offered the
possibility of selectively studying these spectra by opti-
5
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cally exciting the desired region of the crystal and
thereby shortening T1 through interaction with carriers
and preventing EPR signal saturation, which permits
one to observe EPR spectra from this region only. This
observation may prove valuable for developing materi-
als for use in quantum computers.

ACKNOWLEDGMENTS

The support of the Russian Foundation for Basic
Research (project nos. 02-02-17605, 03-02-17645, 04-
02-17632), the program under the Presidium of the
Russian Academy of Sciences “Spin-Dependent
Effects in Solids and Spintronics,” and ISTC (project
no. 2630) is gratefully acknowledged.

REFERENCES
1. W. Kohn and J. M. Luttinger, Phys. Rev. 97, 1721

(1955); Phys. Rev. 98, 915 (1955).
2. A. F. Kip, C. Kittel, R. A. Levy, and A. M. Portis, Phys.

Rev. 91, 1066 (1953).
3. P. G. Baranov, Yu. P. Veshchunov, and N. G. Romanov,

Pis’ma Zh. Éksp. Teor. Fiz. 32 (1), 3 (1980) [JETP Lett.
32 (1), 1 (1980)].

4. G. Feher, Phys. Rev. 114, 1219 (1959).
5. G. D. Watkins, in Point Defects in Solids, Ed. by

J. H. Crowford and L. M. Slifkin (Plenum, New York,
1975), Vol. 2, p. 333; G. D. Watkins, in Deep Centers in
Semiconductors, Ed. by S. T. Pantelides (Gordon and
Breach, New York, 1986), p. 147.

6. D. K. Wilson, Phys. Rev. A 134, 265 (1964).
7. G. Feher, J. C. Hensel, and E. A. Gere, Phys. Rev. Lett.

5, 309 (1960).
8. H. H. Woodbury and G. W. Ludwig, Phys. Rev. 124,

1083 (1961).
9. A. G. Zubatov, I. M. Zaritskiœ, S. N. Lukin, E. N. Mokhov,

and V. G. Stepanov, Fiz. Tverd. Tela (Leningrad) 27, 322
(1985) [Sov. Phys. Solid State 27, 197 (1985)].

10. J. L. Ivey and R. L. Mieher, Phys. Rev. B: Solid State 11,
849 (1975).

11. A. van Duijn-Arnold, J. Mol, R. Verberk, J. Schmidt,
E. N. Mokhov, and P. G. Baranov, Phys. Rev. B: Con-
dens. Matter 60, 15 829 (1999).

12. A. van Duijn-Arnold, R. Zondervan, J. Schmidt,
P. G. Baranov, and E. N. Mokhov, Phys. Rev. B: Con-
dens. Matter 64, 085 206 (2001).

13. E. N. Kalabukhova, S. N. Lukin, and W. C. Mitchel,
Mater. Sci. Forum 433–436, 499 (2003).

14. N. T. Son, J. Isoya, S. Yamasaki, and E. Janzen, in Book
of Abstracts of the 5th European Conference on Silicon
PH
Carbide and Related Materials, Bolonga, Italy, 2004
(CNR–IMM, Area Della Ricerca, Bologna, 2004).

15. P. G. Baranov, A. N. Ionov, I. V. Il’in, P. S. Kop’ev,
E. N. Mokhov, and V. A. Khramtsov, Fiz. Tverd. Tela
(St. Petersburg) 45, 984 (2003) [Phys. Solid State 45,
1030 (2003)].

16. Yu. A. Vodakov, E. N. Mokhov, G. Ramm, and
A. D. Roenkov, Krist. Tech. 14, 729 (1979).

17. O. N. Godison, A. K. Kaliteevskiœ, V. I. Korolev,
B. Y. Ber, V. Y. Davydov, M. A. Kaliteevskii, and
P. S. Kop’ev, Fiz. Tekh. Poluprovodn. (St. Petersburg)
35, 913 (2001) [Semiconductors 35, 877 (2001)].

18. S. Greulich-Weber, Phys. Status Solidi A 162, 95 (1997).

19. C. F. Young, K. Xie, E. H. Poindexter, G. J. Gerardi, and
D. J. Keeble, Appl. Phys. Lett. 70, 1858 (1997).

20. G. Feher and E. A. Gere, Phys. Rev. 114, 1245 (1959).

21. M. T. Bennenbroek, A. Arnold, O. G. Poluektov,
P. G. Baranov, and J. Schmidt, Phys. Rev. B: Condens.
Matter 54, 11 276 (1996).

22. D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou,
F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt,
and P. G. Baranov, Phys. Rev. Lett. 88, 045504 (2002).

23. H. Overhof and U. Gerstmann, Phys. Rev. B: Condens.
Matter 62, 12 585 (2000).

24. G. D. Watkins and Frank S. Ham, Phys. Rev. B: Solid
State 1, 4071 (1970).

25. E. N. Kalabukhova, in Radiospectroscopy of Condensed
Media, Ed. by M. D. Glinchuk (Institute of Semiconduc-
tor Physics, National Academy of Sciences of Ukraine,
Kiev, 2000), Chap. II, p. 157 [in Russian].

26. W. V. Smith, P. P. Sorokin, I. L. Gelles, and G. J. Lasher,
Phys. Rev. 115, 1546 (1959).

27. Keith L. Brower, Phys. Rev. Lett. 44, 1627 (1980).

28. K. Murakami, H. Kuribayashi, and K. Masuda, Phys.
Rev. B: Condens. Matter 38, 1589 (1988).

29. R. P. Messmer and G. D. Watkins, Phys. Rev. B: Solid
State 7, 2568 (1973).

30. G. G. DeLeo, W. B. Fowler, and G. D. Watkins, Phys.
Rev. B: Condens. Matter 29, 3193 (1984).

31. S. T. Pantelides, W. A. Harrison, and F. Yndurain, Phys.
Rev. B: Condens. Matter 34, 6038 (1986).

32. F. G. Anderson, Phys. Rev. B: Condens. Matter 39, 5392
(1989).

Translated by G. Skrebtsov
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005



  

Physics of the Solid State, Vol. 47, No. 12, 2005, pp. 2233–2236. Translated from Fizika Tverdogo Tela, Vol. 47, No. 12, 2005, pp. 2142–2145.
Original Russian Text Copyright © 2005 by Novikov.

                                                                                                                                 

SEMICONDUCTORS
AND DIELECTRICS
The Poole–Frenkel Effect with Allowance for Multiphonon 
Deep-Center Ionization in Amorphous Silicon Nitride

Yu. N. Novikov
Institute for Semiconductor Physics, Siberian Division, Russian Academy of Sciences, 

pr. Akademika Lavrent’eva 13, Novosibirsk, 630090 Russia
e-mail: nov@isp.nsc.ru
Received January 25, 2005

Abstract—The Poole–Frenkel mechanism, both with and without allowance for multiphonon ionization of
deep centers, was used to describe the conductivity of amorphous silicon nitride. The dependence of the fre-
quency factor on electron–phonon coupling strength was considered. Taking into account the weak electron–
phonon coupling in deep centers, the value of the frequency factor was found to be ν ≈ 1015 s–1, which is con-
sistent with the estimates made by Frenkel. © 2005 Pleiades Publishing, Inc.
Amorphous silicon nitride Si3N4 exhibits a memory
effect, i.e., the ability to localize injected carriers for
~10 years at 300 K. This property of Si3N4 underlies the
operation of electrically reprogrammable ROM
devices. However, the charge state of the trap responsi-
ble for the memory effect in Si3N4 remains an open
problem. Two types of traps are currently being dis-
cussed in the literature, namely, Coulomb (attractive,
repulsive) and neutral (centers with a zero-radius
potential) traps. The mechanism of ionization of attrac-
tive centers at high temperatures in weak electric fields
is governed by the Poole–Frenkel effect and mul-
tiphonon phenomena [1, 2]. The mechanism of neutral-
center ionization under the same conditions is deter-
mined by multiphonon phenomena [2]. The Poole–
Frenkel effect consists essentially in a lowering of the
thermal ionization energy of Coulomb attractive cen-
ters induced by an external electric field.

The fact that the traps are indeed of the Coulomb
type and that the Poole–Frenkel effect can occur in
Si3N4 is argued for by the following evidence: (i) some
researchers have observed current–voltage characteris-
tics in Si3N4 [3–6] that become linear when plotted in

the logJ vs  coordinates (J is the current through

the sample,  is the average electric field strength), and
(ii) the trapping cross section is ~5 × 10–13 cm2, which
suggests Coulomb interaction of electrons and holes
with deep centers in Si3N4 [7–9].

However, some attempts at describing experimental
data in terms of the Poole–Frenkel mechanism have
yielded an anomalously small frequency factor, ν ~
105–108 s–1, and a low trap ionization energy, W ~ 1.2 eV
[10–15]. Frenkel [1] estimated the magnitude of the fre-
quency factor to be ν ≈ W/" ≈ 1015 s–1, where " is the
Planck constant. In addition, a shallow trap with W ~

E
1 2⁄

E
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1.2 eV, with no allowance made for electron–phonon
coupling, is not capable of accounting for the long
(~10 years) charge retention times in a localized state.
This motivated our attempt to study, both experimen-
tally and theoretically, the conductivity in silicon
nitride drawing on the Poole–Frenkel effect and invok-
ing the theory of multiphonon ionization.

According to Frenkel [1], the probability of ioniza-
tion per unit time can be written as

 (1)

where E is the electric field strength, β =  is
the Frenkel constant, k is the Boltzmann constant, ε∞ =
4.0 is the high-frequency dielectric permittivity of
Si3N4, ε0 is the electric constant, and e is the electronic
charge.

The Frenkel effect occurs in relatively weak electric
fields, where the barrier is lowered by an amount less
than the Coulomb energy scale in silicon nitride. The

value of  should not exceed the effective electron
energy in the trap Coulomb potential [2] (the Rydberg

energy), i.e.,  < e4m/2ε∞"2, where m is the electron
mass. Estimates show that these conditions are satisfied
if E < 4 × 106 V/cm. Our studies were performed in this
electric field range.

We studied charge transfer in a metal–nitride–
oxide–semiconductor (MNOS) structure. Samples of
MNOS structures were prepared on a Czochralski-
grown n-type silicon substrate with an electrical resis-
tivity of 7.5 Ω cm. A thin, 1.8-nm-thick tunneling-
transparent oxide was grown at 750°C. A 53-nm-thick
silicon nitride layer was deposited at 760°C in a low-
pressure reactor. The SiH2Cl2/NH3 ratio was 0.1. Alu-

PPF E T,( ) ν W β E–
kT

----------------------– 
  ,exp=

e
3
/πε∞ε0

β E

β E
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minum electrodes 5 × 10–3 cm2 in area were deposited
through a mask.

We considered only the stationary conductivity that
involves electrons ejected from the silicon substrate,
with aluminum maintained at a positive potential
(Fig. 1). Consideration of monopolar conductivity (due
to electrons) appears appropriate in this case, because
the tunneling oxide enhances electron injection from
the silicon substrate; the injection of holes from alumi-
num is small [6] because of a high barrier (2.5 eV) for
holes existing at the Al/Si3N4 interface [16]. Charge
transfer is described with the one-dimensional one-
band Shockley–Read–Hall equation

 (2)

and the Poisson equation [10–13, 17] taking into
account the nonuniform electric field distribution in the
silicon nitride

 (3)

where σ is the trapping cross section (σ = 5 × 10–13 cm2

[7–14]), Nt is the trap concentration (Nt = 3 × 1019 cm–3

[8–10]), nt is the concentration of filled traps, εN = 7.5
is the low-frequency dielectric permittivity of Si3N4,
and J is the current density.

To describe the conductivity of silicon nitride, some
authors solve Eqs. (2) and (3) self-consistently [10–14].
The injection current at the interface is calculated, as a
rule, assuming the Fowler–Nordheim mechanism. This
requires knowledge of parameters such as the tunneling
mass and barrier height.

We invoked here another approach proposed in [17].
In a steady state, the time derivative in Eq. (2) vanishes

∂nt x t,( )
∂t

--------------------
σJ
e

------ Nt nt x t,( )–( ) nt x t,( )PPF x t,( )–=

∂E x t,( )
∂x

-------------------
ent x t,( )

εNε0
--------------------,–=

Si
e

SiO2

Si3N4

Al

J

+Ug

h

Fig. 1. Energy diagram for the monopolar conductivity
model of an MNOS structure with a positive potential
applied to the aluminum electrode.
PH
and nt(E, T) = Nt  + . From the Pois-

son equation (3), one can obtain [17]

 (4)

 (5)

where DN is the thickness of Si3N4,  = Ug – EoxDox

is the voltage drop across Si3N4, Ug is the voltage across
the MNOS structure, Eox is the electric field in the tun-
neling thin SiO2 layer of thickness Dox, and E(DN) is the
field at the Si3N4/Al interface. The electric field at the
SiO2/Si3N4 interface in silicon nitride is given by E(0) =
Eoxεox/εN = εox(Ug – UFB)/LoxεN [12, 13], where Lox =
Dox + εoxDN/εN and UFB is the flat-band voltage. The
voltage drop across the semiconductor was neglected,
because electrons are injected from the n semiconduc-
tor in an enriched state (Fig. 1).

The quantities measured experimentally on the
MNOS structure at a given voltage Ug and temperature
T were the current density J and the flat-band voltage
UFB (Fig. 2). Thus, experiment yielded , J, and E(0).
Equations (4) and (5) are left with the unknowns W, ν,
and E(DN). By setting W, one can find E(DN) and ν [17],
and this was done here. We integrated Eqs. (4) and (5)
numerically (using the trapezium rule) for the points in

1
 e

Jσ
------PPF E T,( )
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Fig. 2. Experimental steady-state current–voltage charac-
teristics measured at (1) 423, (2) 380, and (3) 327 K.
Adjoining the points are flat-band voltages UFB.
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Fig. 2. The calculated ν(W) dependence is shown in
Fig. 3.

This dependence can be qualitatively expressed as

ln(ν(W)) = ln(P(E, T) – /kT) + W/kT, which fol-
lows from Eq. (1). The ν(W) lines plotted for different
temperatures have different slopes. The ratio of ν1(Wk)
to ν2(Wk) was found to be ≈1.04 (Wk is a fixed point in
Fig. 3), which is close to unity. Therefore, the ν(W)
graphs in Fig. 3 plotted for different electric fields at
T = const practically coincided. Note that substitution
of the found values of W, ν, and E(DN) and of the values
of J, , and E(0) derived from experiment for each
point in Fig. 2 into the nonlinear equations given in [17]
yields an identity (with a relative error of <0.1%).

Inspection of Fig. 3 shows that all the ν(W) relations
drawn in the scale chosen cross at the same point.
Assuming that the trap ionization energy and the fre-
quency factor do not change with temperature and local
electric field strength in Si3N4, we see that this cross
point corresponds to W = 1.15 eV and ν = 2 × 105 s–1.
The values of W and ν thus found are close to those
quoted in [10–15].

It was shown in [2, 18] that taking into account mul-
tiphonon ionization for Coulomb centers should result
in 1/kT in Eq. (1) being replaced by

 (6)

where T* is an effective temperature and τ1 and τ2 [2,
18] define, in configuration space, the defect tunneling
times under the corresponding adiabatic potentials (see
inset to Fig. 4). The plus sign corresponds to weak elec-

β E
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Fig. 3. Frequency factor vs trap ionization energy relations
calculated for the experimental points from Fig. 2 at various
values of T: (1) 423, (2) 380, and (3) 327 K.
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tron–phonon coupling, and the minus sign, to strong
coupling.

Calculations carried out using the effective temper-
ature T* in place of T revealed that strengthening of the
electron–phonon coupling leads to a decrease in the fre-
quency factor and its weakening, to an increase in this
factor (Fig. 4). The trap energy remains constant, W ≈
1.15 eV. The same conclusion can be drawn qualita-
tively from a study of the slope of ln(ν(W)) relations
described by Eq. (1). For 2τ1/" ~ 50 eV–1, we obtain
τ1 = 1.6 × 10–14 s and the corresponding frequency fac-
tor ν ~ 1015 s–1. Note that the tunneling time τ1 obtained
in this way is comparable in order of magnitude to τ1
found for deep impurities with a weak electron–phonon
coupling in germanium, Ge : Au and Ge : Hg, where
τ1 = 4.1 × 10–14 s [2].

Let us estimate the charge retention time tret in an
MNOS structure with weak electron–phonon coupling

using the relation tret = ν–1exp((W – )/kT*) from
[11]. For E = 2 × 106 V/cm, T = 300 K, 2τ1/" ~ 50 eV−1,
ν ~ 1015 s–1, and W = 1.15 eV, we obtain tret ~ 4 × 108 s ~
10 years.

Thus, we come to the conclusion that a trap with a
captured electron in Si3N4 should be only weakly cou-
pled with lattice vibrations. It is possible that a fairly
shallow trap with W ~ 1 eV is responsible for the mem-

β E

103
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1011

1015

–20 0 20 40 60
2τ1/", eV–1

ν,
 s

–
1

U1

U2ε

U2

ε
τ2

a2 a1 xc x

τ1

Electron-phonon
interaction:

strong weak

Fig. 4. Frequency factor characterizing the Poole–Frenkel
effect as a function of the electron–phonon coupling
strength. The inset shows a configuration diagram for the
case of weak electron–phonon coupling (U1, U2, and U2ε
are the adiabatic potentials for a defect with a trapped elec-
tron, without an electron, and without an electron in an elec-
tric field, respectively; a1, a2 are turning points; xc is the
term crossing point).
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ory effect in Si3N4 (charge retention in a localized state
for ~10 years at 300 K).

To sum up, the conductivity of amorphous silicon
nitride at high temperatures in weak electric fields is
described by the Poole–Frenkel effect. Allowing for
multiphonon ionization and weak electron–phonon
coupling, we have found that the deep-center ionization
energy in Si3N4 is 1.15 eV and the frequency factor ν ~
1015 s–1.
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Abstract—The behavior of the dielectric susceptibility of a semiconductor is studied in the case where the
exciton state is probed by weak-pulse photons in the presence of a high-power laser pulse in the region of the
M band of CuCl luminescence. A pronounced Autler–Townes effect for the exciton transition is shown to occur.
The absorption peak position is determined by the amplitude and frequency of the pump field. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

The pump–probe technique gained particular signif-
icance in experimental studies of the optical properties
of semiconductors in the exciton spectral region at high
excitation levels. This technique is based on the use of
two laser beams: an intense pump beam and a weak
probe beam. The weak beam probes the changes in the
optical properties of a crystal caused by the intense
pump beam.

The pump–probe technique has been applied to
study the kinetics of radiative recombination of biexci-
tons, the nonlinear response of a high-density system of
excitons and biexcitons [1–3], and the red and blue
shifts of the exciton band under picosecond pump con-
ditions [4–6]. The Autler–Townes effect on biexcitons
in CuCl has been studied both experimentally and the-
oretically [7–9]. In [7], splitting of the biexciton
absorption band in CuCl into two lines was observed
experimentally at high excitation levels. In this case,
biexciton states were probed via two-photon absorp-
tion, which causes the excitation of biexcitons from the
crystal ground state in the presence of intense pumping
in the absorption M-band region. From the splitting
value, the authors of [7] determined the corresponding
transition dipole moment in the M-band region. The
idea behind this experiment was first proposed in [10].

Various aspects of the pump–probe technique for a
high-density system of excitons and biexcitons were
considered theoretically in [8–14]. In [14], it was
shown that the susceptibilities of the semiconductor in
the exciton spectral range exhibit a bistable behavior
with variations in the frequency and intensity of a pump
pulse if the elastic exciton–exciton interaction is taken
into account. This behavior suggests that a weak signal
can be amplified. In [8, 9], the dielectric susceptibilities
1063-7834/05/4712- $26.00 2237
of a CuCl-type crystal were studied in the case where
an intense pump pulse corresponds to the M-band
region and where probing is carried out via two-photon
absorption of light with the formation of biexcitons.
This raises the question of whether it is possible to
probe CuCl-type crystals in the exciton spectral range
using single-photon exciton excitation from the crystal
ground state while retaining the pump in the M-band
region. In this case, the model energy spectrum of the
semiconductor consists of substantially nonequidistant
excitonic and biexcitonic energy levels (Fig. 1). Pump
pulse photons can provide only optical exciton–biexci-
ton conversion but cannot be involved in probing due to
the large resonance detuning with respect to the exciton
transition frequency.

E0

E ω

ωl

ω0

Ω0

0

ex

Biex

Fig. 1. Excitonic and biexcitonic energy levels in a CuCl-
type crystal and quantum transitions under exposure to a
pump field E0 and a probe-pulse field E (schematic).
© 2005 Pleiades Publishing, Inc.
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2. STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS

We consider the case where intense monochromatic
coherent pulsed laser radiation (pump) with a field
amplitude E0 and a frequency ωl ≈ Ω0 – ω0 (where Ω0
and ω0 are the eigenfrequencies of a biexciton and an
exciton state, respectively) and a weak wave (probe
pulse) with an amplitude E and a frequency ω ≈ ω0 are
incident onto a CuCl-type semiconductor (Fig. 1). Pho-
tons of the former pulse mix the excitonic and biexci-
tonic states, significantly changing the semiconductor
energy spectrum; photons of the latter pulse probe these
changes in the exciton transition region. The interaction
Hamiltonian of excitons and biexcitons with light in the
resonance approximation can be written as

 (1)

where a and b are the amplitudes of excitonic and biex-
citonic medium polarization waves, respectively; g is
the exciton–photon coupling constant; σ is the optical
exciton–biexciton conversion constant [15]; and

(E+) and (E–) are the positive- and negative-fre-
quency field components, respectively. From Eq. (1),
one can easily derive the Heisenberg (material) equa-
tions for the amplitudes a and b:

 (2)

 (3)

where γ1 and γ2 are phenomenological constants
accounting for the damping of excitonic and biexci-
tonic levels due to scattering processes associated with
excitons and biexcitons transferring from the coherent
to incoherent modes.

Let us study the system response in all orders of per-
turbation theory in amplitude E0 of the pump pulse and
in the first order of perturbation theory in amplitude E0
of the probe pulse field under steady-state conditions.
From Eqs. (2) and (3), it is easy to find the steady-state
amplitudes a and b and the polarization P and deter-
mine the susceptibility χ of the medium:

 (4)

where ∆ = ω – ω0 and ∆l = ωl – Ω0 + ω0 are resonance
detunings.

In the limit of vanishingly small damping constants,
the susceptibility χ is a real function,

 (5)
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This susceptibility diverges at two values of the reso-
nance detuning ∆ for the weak pulse field, which are
given by

 (6)

The detunings ∆± define new, renormalized eigenfre-
quencies ω± = ω0 + ∆± of excitonic states (quasilevels),
which arise under exposure to the pump field. The differ-
ence between the quasilevel frequencies Ω = ω+ – ω– =

 (Autler–Townes splitting) determines the
optical nutation frequency in the system of excitons and
biexcitons in the M-band region [15]. From Eq. (6) and
Fig. 2, it is evident that the Autler–Townes splitting
increases with the pump field amplitude E0 and with the
magnitude of detuning ∆l. In the limit where the Rabi fre-
quency σE0 is much larger than the resonance detuning
|∆l|, the splitting increases linearly with E0. In the inverse

limit, where |∆l| @ σE0, we have ∆+   and
∆−  –∆l at ∆l > 0 and ∆+  –∆l and ∆– 

 at ∆l < 0.

We note that, at γ1, γ2  0, the absorption band of
the weak pulse consists of two δ-function peaks at fre-
quencies ω = ω+ and ω = ω–. Therefore, the curves in
Fig. 2 describe the spectral position of absorption band
peaks of weak light as functions of the resonance detun-
ing ∆l and pump-pulse field amplitude E0.

Using Eq. (5), the dispersion relation ω(k) of probe-
pulse photons in the presence of the pump field can be
found to be

 (7)

where ε∞ is the background permittivity and ωLT is the
longitudinal–transverse splitting in the exciton spectral
range. All the essential features of the dispersion rela-
tion that arise during variation of the pump field ampli-
tude are located in the vicinity of the exciton transition
frequency (Fig. 3). The dispersion dependence for pho-
tons contains three branches. The middle branch covers
the spectral range that is bounded by frequencies ω+

and ω– and expands as E0 increases. The lower and
upper dispersion branches tend to the resonance detun-
ings ∆± = ω+ – ω– at large values of the wave vector k.
As |∆l | increases, the dispersion branches shift to long
(short) wavelengths at ∆l > 0 (∆l < 0) (Fig. 3).

Let us introduce the normalized quantities δ = ∆/γ1,
δl = ∆l/γ1, s = γ2/γ1, f0 = σE0/γ1, and χ0 = "g2/γ1. From
Eq. (4), we find the real part (dispersion component, χ')
and imaginary part (absorption component, χ'') of the
susceptibility to be
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3. DISCUSSION

It is evident from Eq. (9) that the absorption compo-
nent χ'' is positively defined at any value of f0, δ, and δl.
This means that a weak signal can only be absorbed.
The amplification effect is impossible.

It follows from Eqs. (8) and (9) that the susceptibil-
ities χ' and χ'' are nonlinear functions of the field ampli-
tude f0 of the intense pump pulse and depend on the fre-
quencies of both pulses, ω and ωl. At exact resonance
between the frequencies of both pulses and the frequen-
cies of the respective transitions (ω = ω0, ωl = Ω0 – ω0),
we have χ' = 0 and

 (10)

We can see that the absorption susceptibility compo-
nent χ'' at exact resonance saturates rapidly as the pump
intensity increases; i.e., the absorption of the weak
pulse at the exciton transition frequency is suppressed
at high excitation levels by the pump pulse in the
M-band region.

Let us discuss the behavior of the absorption suscep-
tibility component χ'' (the absorption band of the weak
pulse in the exciton spectral range) with variations in
the resonance detuning δ in the case where pump pulse
photons are in exact resonance with the transition fre-
quency in the M-band region (δl = 0, ωl = Ω0 – ω0). At
low excitation levels, the absorption band shape is
Lorentzian, χ''/χ0 = (1 + δ2)–1, with a maximum at δ = 0
(Fig. 4a). As the excitation level f0 increases, the
absorption peak amplitude decreases rapidly according
to Eq. (10) and its half-width gradually increases.

When the pump field intensity reaches  = s3/(1 + 2s),
the spectral shape of the absorption band changes dras-
tically (Fig. 4a): the central peak at δ = 0 transforms
into a minimum and there appear two absorption band
maxima symmetric with respect to δ = 0 at resonance
detunings,

 (11)

The spacing between the new absorption peaks
increases with the pump field f0, and their amplitudes
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2
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Fig. 2. Dependences of the renormalized frequencies ω± –
ω0 = ∆± of excitonic states (quasilevels) (a) on resonance
detunings ∆l of the pump field at fixed values of the pump
field amplitude σE0/ωLT equal to (1) 0.5, (2) 2.5, and (3) 5 and
(b) on the field amplitude E0 at various values of resonance
detuning ∆l/ωLT of the pump pulse: (1) 0, (2) –2, and (3) 2.

(b)



2240 KHADZHI, NAD’KIN
–1 0 1

(a)

–3

3

0

y

–1 0 1

(b)

–1 0 1

(c)

x

–3

3

0

y

–3

3

0

y

Fig. 3. Polariton-like dispersion relations for weak-pulse photons near the excitonic state with the pump field resonance detuning
∆l/ωLT equal to (a) 0, (b) –2, and (c) 2 for the pump field σE0/ωLT equal to 0.5 (dotted curves) and 5 (dashed curves). The dispersion

law of linear exciton polaritons in the absence of a pump field is shown by solid curves. Notation: x = ck/  and y = ∆/ωLT.ε∞ωLT
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Fig. 4. Absorption component of susceptibility χ'' as a function of the resonance detuning δ and of the pump field intensity f0 at
various values of the resonance detuning δl of pump pulse photons: (a) 0, (b) –2, and (c) 2.

10 –10–10
decrease monotonically (Fig. 4a). The formation of the
symmetric maxima and of the minimum is caused by
renormalization of the energy spectrum of the semicon-
ductor under exposure to an intense pump pulse. The
excitonic level splits into two quasilevels, and their dis-
tance from the exciton level position increases mono-

tonically with f0. At  @ s, Eq. (11) yields δ± = ±f0,
which coincides with Eq. (6) at ∆l = 0. We can see in
Fig. 3 that, at δl = 0, the upper and lower polariton
branches of the dispersion relation shift symmetrically

f 0
2

PH
with respect to the frequency ω0 of the exciton transi-
tion as the pump field amplitude f0 increases.

If the resonance detuning of pump pulse photons is
nonzero (δl ≠ 0), an appreciably asymmetric (with
respect to δ = 0) transformation of the absorption sus-
ceptibility component χ'' occurs (Figs. 4b, 4c), which is
caused by a change in the dispersion relation. In the
absence of a pump field (f0 = 0), the absorption band
shape remains a symmetric Lorentzian. As the pump
field amplitude f0 increases at σl = 0, the spectral shape
of the absorption band deforms: its maximum
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005
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decreases rapidly and shifts to long wavelengths;
simultaneously, the half-width of the χ''(δ) peak
increases (Fig. 4b). At a certain value of the pump field
amplitude, a weak short-wavelength peak splits off
from the short-wavelength tail of the intense absorption
band. The amplitude of this peak increases slowly with
the excitation level, and the peak itself shifts monoton-
ically to short wavelengths. As the excitation level f0
increases further, the long-wavelength peak of the
absorption band continues to shift to long wavelengths
and its amplitude decreases monotonically, whereas the
weak short-wavelength peak increases slowly and
shifts to short wavelengths. At high excitation levels,
the absorption component of the susceptibility consists
of a pronounced long-wavelength peak and a weak
short-wavelength peak, with both peaks having an
almost Lorentzian shape (Fig. 4b). Similar effects occur
in the case of δl > 0 (Fig. 4c). 

The dependence of the absorption susceptibility
component χ'' on the pump field amplitude f0 at fixed
values of resonance detunings δ and δl is also of inter-
est. It follows from Eq. (9) that, at δ– < δ < δ+, the func-
tion χ''(f0) decreases monotonically as f0 increases. At
δ ≥ δ+ and δ ≤ δ–, the function χ''(f0) initially increases
with f0 and then, after reaching a maximum at

 

decreases monotonically (Fig. 4). Here,

 

 

This behavior is due to the fact that the function χ'' is
resonant not only in the resonance detuning δ of the
weak pulse but also in the pump field amplitude f0 at a
fixed value of δ. Hence, the weak signal absorption can
also be saturated in this case. However, at small pump
amplitudes, absorption can increase with the excitation
level (Fig. 4).

Figure 5 shows the dependence of absorption on δ
and δl at a fixed excitation level. We can see that the
peak of the long-wavelength (short-wavelength)
absorption band shifts gradually to long wavelengths
and decreases (increases) in amplitude as the resonance
detuning δl of the pump pulse increases. At a large mag-
nitude of negative (positive) detuning δl, only the long-
wavelength (short-wavelength) peak remains in the
absorption band.
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4. CONCLUSIONS

We note that the expressions obtained for the sus-
ceptibility in this study and in [8, 9] are qualitatively
similar. These expressions were derived within the
same model of the semiconductor energy spectrum and
for the same method of pumping but for different meth-
ods of probing with weak pulses. In [8, 9], it was pro-
posed to observe optical properties via two-photon
excitation of biexcitons from the crystal ground state,
whereas in this study we have considered the case of
single-photon excitation of excitons. The Autler–
Townes splitting for excitons and biexcitons is caused
by pumping and, hence, arises in both cases. As for the
spectral shapes of absorption bands, they are qualita-
tively similar in both cases but their details differ.
Moreover, unlike in this study, the susceptibility χ(3)

was calculated in [8, 9]. In those two studies, it was
assumed that the probe pulse is so weak that it does not
change the semiconductor energy spectrum but only
detects changes in the crystal optical properties that
arise under exposure to an intense pump pulse in the
M-band region.

Let us compare the results obtained in this study
with the results of experimental studies on the optical
properties of semiconductors in the exciton spectral
range under exposure to an intense pump. As men-
tioned above, the results of this study agree qualita-
tively with the experimental data on absorption spectra
reported in [7]. We also note that the results of this
study are qualitatively similar to the results of studying
the luminescence spectra in InGaAs quantum dots [16];

0
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–1010

–10

δ

δl

0

1

χ''/χ0

Fig. 5. Absorption component of susceptibility χ'' as a func-
tion of resonance detunings δ and δl of the probe and pump

pulses at a pump field intensity  equal to 5.f 0
2

5
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namely, the following effects were observed: (i) Aut-
ler–Townes splitting and doublet formation, (ii) a
change in the splitting with a change in the pump wave
intensity and in the resonance detuning, (iii) coinci-
dence of the absorption (luminescence) band peaks,
and (iv) a linear dependence of the Rabi frequency on
the pump field amplitude. Changes in absorption bands
with variations in the resonance detunings δ and δl at a
fixed pump amplitude f0 (Fig. 5) were observed both in
[7] and [16]. Rabi oscillations in semiconductor quan-
tum wells were observed in [17]. It was also confirmed
experimentally that the frequency of these oscillations
is proportional to the pump field amplitude.

Let us estimate the exciton transition dipole moment
µ = "σ using Eq. (6) and experimental data from [16],
according to which the Autler–Townes splitting "Ω is
93 µeV at an excitation intensity J0 = 18 kW/cm2. Since

J0 = /4π, we have µ = (1/4)  ≈ 3 ×
10−17 CGSE = 30 D. In this case, the nutation frequency
is 1.5 × 1011 s–1.

Thus, the theoretical results obtained make it possi-
ble to perform more detailed studies not only of the
optical absorption properties of semiconductors in the
exciton spectral region but also of the dispersion prop-
erties using the pump–probe technique.
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Abstract—Dielectric strontium bismuth titanate ceramics SrTiO3 : Bi is a complex solid solution consisting of
the Sr1 − uBi2u/3hu/3TiO3 perovskite matrix and small planar inclusions related to Aurivillius-type layered fer-
roelectric compounds with a high Curie temperature TC (700–950 K). The matrix is characterized by a smeared
ferroelectric phase transition in the temperature range 150–200 K and exhibits relaxation dielectric polarization.
At temperatures below but close to the Curie temperature TC, the state of the ceramics can be treated as super-
paraelectric. The concentration dependence of the temperature corresponding to the maximum of the permit-
tivity is explained. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Dielectric strontium bismuth titanate (SBT) ceramic
materials SrTiO3 : Bi possess a number of unique prop-
erties revealed in 1956 by Skanavi and Matveeva [1].
These are the relaxation behavior of the dielectric
polarization and the high permittivity ε20 (at 20°C),
which, upon cooling, gradually increases, passes
through a maximum at approximately –100°C, and then
gradually decreases with a maximum in the dielectric
loss tangent tanδ (Fig. 1a). As a rule, the SBT ceramics
is considered a solid solution based on the quantum fer-
roelectric SrTiO3 with a perovskite structure, whose
permittivity reaches large values at T = 0 K but does not
pass through a maximum. Owing to the nonclassical
behavior of the ferroelectric properties of strontium
1063-7834/05/4712- $26.00 2243
titanate, the SBT ceramics is assigned to nonferroelec-
tric materials with thermal ion polarization, in which
vacancies are formed in the strontium sublattice
because of the different valences of Sr2+ and Bi3+ ions.
These vacancies distort oxygen octahedra in adjacent
crystal regions, so that Ti4+ ions can hop inside these
octahedra from one potential well to another potential
well due to thermal motion [1–3]. It was experimentally
found that, as the bismuth content increases, the tem-
perature Tm of the maximum in the dependence ε(T)
increases nonlinearly (Fig. 1b) [4].

Smolenskiœ et al. [5] demonstrated that dielectric hys-
teresis loops are observed for strontium bismuth titanate
in strong ac electric fields. These dielectric hysteresis
loops share a number of traits with the dielectric hyster-
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Fig. 1. Dielectric behavior of the (1 – x)SrTiO3 + xBi2O3 · 3TiO2 ceramics: (a) temperature dependences of the permittivity for the
ceramics with x = 0.096 at different frequencies (indicated by numbers in kHz near the curves) [3] and (b) concentration dependences
of the temperature of the maximum in the dependence ε(T) at frequencies of (1) 1.0 kHz and (2) 1.1 MHz [4].
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Fig. 2. Dielectric hysteresis loops for (a) the PMN ceramics at T = 183 K and Emax = 20 kV/cm, (b) the PNN ceramics at T = 77 K
and Emax = 60 kV/cm, and (c) the Sr0.85Bi0.10TiO3 ceramics at T = 90 K and Emax = 67 kV/cm [5].
esis loops characteristic of the well-known perovskites
PbMg1/3Nb2/3O3 (PMN) and PbNi1/3Nb2/3O3(PNN) with
smeared ferroelectric phase transitions (Fig. 2). It should
be noted that the temperature dependences of the permit-
tivity and the dielectric loss tangent for the SBT and
PNN ceramics are also similar to each other (this gave
impetus to investigations into the hysteresis loops of the
SBT ceramics). As a result, the inference was made that
the SBT ceramics also undergoes a smeared ferroelectric
phase transition and that bismuth embedded in the stron-
tium sublattice of the perovskite phase increases the
mean temperature of the smeared ferroelectric phase
transition and enhances its smearing.

The above concepts of the smeared ferroelectric
phase transition in the SBT ceramics were criticized by
Bogdanov (see, for example, [4]), because x-ray dif-
fraction investigations of this ceramics over a wide
range of temperatures [6, 7] did not reveal any phase
transitions. Moreover, although an increase in the bis-
muth content x leads to a decrease in the quantity
dTm/dx, the smearing of the phase transition is
enhanced (whereas this should result in a weakening of
the smearing in accordance with the concept that com-
position fluctuations are responsible for the smearing of
phase transitions [8]). The first argument is of little sig-
nificance. This is associated with the fact that, upon the
smeared ferroelectric phase transition, pseudocubic
distortions of the lattice of samples not subjected to a
strong electric field, as a rule, are not observed because
of the very small sizes of the polar regions. The second
argument is quite true and will be discussed in the
present paper.

In this paper, we will analyze the specific features
revealed in the formation of solid solutions, discuss the
possibility of the superparaelectric state occurring in
SBT ceramic materials, and explain a number of their
physical properties.
PH
2. CONCENTRATION 
AND THE CONCENTRATION RANGES

The problems associated with the bismuth titanate
concentration in the SBT ceramics are rather compli-
cated, if for no other reason than the possible non-sin-
gle phase composition of the ceramics. It is often
unclear which phase should be used as the basis for
writing the composition. In the most general form
reflecting only the chemical composition of the mate-
rial, the composition of the SBT ceramics can be repre-
sented as

 (1)

The advantage of this form is that it does not mislead
with respect to the phase composition. Moreover, the
composition can be written either in the form

 (2)

or in the form

 (3)

These representations refer to the perovskite phase
even in the case where the ceramics has a non-single-
phase composition. It is common practice to use form
(2), which is quite true when describing the total chem-
ical composition of the ceramics. In order to change
over from one form to another, we can use the relation-
ships

 (4)

Hereinafter, we will use the more traditional form (2),
which describes only the chemical composition of the
ceramics.

According to Kashtanova et al. [3], the x-ray dif-
fraction patterns of the ceramics at concentrations y =
0.098 and 0.170 exhibit indications of one phase with a
perovskite-type structure. At the concentration y =

1 x–( )SrTiO3 xBi2O3 3TiO2.⋅+

Sr1 y– Bi2y/3( )TiO3

Sr1 1.5z– Biz( )TiO3.

y 3x/ 1 x+( ); x y/ 3 2y–( ); y 1.5z.= = =
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0.242, traces of a new (anisotropic) phase manifest
themselves in microsections of the ceramics, even
though this phase has not been revealed by x-ray dif-
fraction analysis. In the x-ray diffraction patterns, the
anisotropic phase is identified beginning only from the
concentration y = 0.424 and becomes the sole revealed
phase at the concentration y = 0.522.

The results presented in [3] differ from those
obtained by Chen and Zhi [9]. According to [9], sam-
ples with the concentration y varying in the range from
0 to 0.11 are sintered at a temperature of ~1400°C, eas-
ily lose oxygen, take on a gray color, and possess high
permittivities ε and large dielectric loss tangents tanδ at
20°C, as well as a high electrical conductivity that
passes through a maximum at the concentration y =
0.05. It was assumed that vacancies in the strontium
sublattice are absent and that excess charges of Bi3+

ions are compensated for in part by the transformation
of Ti4+ ions into Ti3+ ions. At the concentration y = 0.11,
the sintering temperature decreases, the gray color of
the samples disappears, and the electrical conductivity
decreases drastically. The assumption was made that
the composition of the perovskite solid solutions
formed in this case is described by formula (2). The tem-
perature dependence of the permittivity turned out to be
consistent with those shown in Fig. 1a. According to the
x-ray diffraction data, a non-perovskite-like phase is
formed in the samples with concentrations y ≥ 0.36. (The
differences between the results obtained in [3] and [9]
can be associated in part with the strong dependence of
the properties of the SBT ceramics on the atmosphere
used during sintering and annealing [10].)

3. THE CONCEPT OF SUPERPARAELECTRICITY

The notion of superparaelectricity was introduced
by Cross [11] for compounds with smeared ferroelec-
tric phase transitions (such as PMN, PNN,
(Ba,Sr)Nb2O6, etc.) by analogy with the term “super-
paramagnetism.” However, as was noted in [12], this
analogy is not valid for the aforementioned crystals.

According to [13–15], superparamagnetism is
observed in composite systems consisting of a great
number of small (with linear sizes of 10–100 Å) single-
domain ferromagnetic particles that are distributed in a
nonmagnetic matrix and interact weakly with each
other. The direction of magnetization in these particles
varies as a result thermal motion in weak magnetic
fields due to the thermal fluctuations (which are very
large because of the small sizes of the particles). As a
consequence, the system behaves like a paramagnetic
gas and obeys the Curie law, whereas the magnetization
in the saturation region is described by the Langevin
formula. The phenomenon of superparamagnetism can
be illustrated by a system of small-sized cobalt particles
that precipitated upon decomposition of Cu–Co (2%
Co) solid solutions and a system of small-sized iron
particles that precipitated in the β brass (0.1% Fe).
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
In a ferroelectric material with a smeared ferroelec-
tric phase transition, polar regions with linear sizes
smaller than 100 Å at temperatures higher than the
mean Curie temperature (Tm) are surrounded by the
paraelectric phase or, more precisely, by crystal
microregions that do not exhibit spontaneous polariza-
tion but, at these temperatures, are close to their local
Curie temperature and, hence, are “ready” to undergo a
local ferroelectric phase transition. Therefore, polar
microregions and microregions that are ready to
become polar fill the entire volume of the crystal. It is
obvious that this system cannot be treated as a paraelec-
tric gas and the term “superparaelectricity” is inappli-
cable to its description.

It is clear that the system can be referred to as super-
paraelectric only in the case when it consists of a non-
ferroelectric matrix with embedded small-sized ferro-
electric particles, such that the matrix either never
transforms into the ferroelectric state or, at least, is far
from its mean Curie temperature, whereas the direction
of the dipole moments of the particles can vary under
thermal fluctuations and in response to external electric
fields.

4. DUAL CHARACTER OF SBT CERAMICS

We will not dwell on SrTiO3 solid solutions with a
low Bi content, in which Ti4+ ions can be reduced to Ti3+

ions and the ferroelectric phase transition can retain a
quantum nature inherent in strontium titanate [16]. Let
us consider the concentration range corresponding to
the dielectric ceramics. We begin with the solid solution
at the concentration y = 0.242, for which precipitates of
the new (anisotropic) phase (thin short bright segments
against the dark background) become visible in micro-
sections [3]. These segments can be indications that the
anisotropic phase can also exist in the form of smaller
precipitates invisible under a microscope. (The new
(anisotropic) phase in larger amounts was revealed by
x-ray diffraction analysis at the concentrations y =
0.424 in [3] and y = 0.36 in [9].)

A question arises as to the nature of the new phase.
Here, it is appropriate to recall that there are so-called
Aurivillius compounds, such as the layered ferroelec-
tric compounds An – 1Bi2BnO3n + 3 (SrBi2Nb2O9 at n = 2,
Bi4Ti3O12 at n = 3, SrBi4Ti4O15 at n = 4, etc.), in which
perovskite-like layers of different thicknesses (deter-
mined by the index n) alternate with bismuth–oxygen
layers (Fig. 3) [17].

For bismuth titanate concentrations at which triva-
lent titanium is already absent but the new phase does
not appear, it is reasonable to assume that the
Sr1 − yBi2y/3hy/3TiO3 perovskite solid solution is formed.
It is evident that this phase serves as a matrix with an
increase in the concentration y when there appear
small-sized planar precipitates of layered compounds.
(It is clear that these planar precipitates, while related,
05
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are far from so-called intergrowth phases until they
grow through macroscopic distances.)

In essence, until the precipitates of the new phase
have nanosizes, the crystal lattice can be considered a
defect solid solution (interstitial solid solution) in
which planar defects in the form of “flakes” of layered
compounds are dissolved in the perovskite matrix
(Sr1 − uBi2u/3hu/3TiO3 substitutional (omission) solid
solutions). (Here, the index u in the formula differs
from the index y due to a partial transfer of bismuth to
flakes.) The crystal lattice can be treated as an intersti-

c
c
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O
TiO6
NbO6

(a)

(b)

Fig. 3. Crystal structures of (a) SrBi2Nb2O9 and
(b) Bi4Ti3O12 compounds in projections onto the (100) plane.

Sr

Bi

O

TiO6

a 0
2a

0
a 0

Fig. 4. A hypothetical bismuth–oxygen layer free of stron-
tium titanate (without displacements of oxygen octahedra in
the adjacent layers of strontium titanate).
PH
tial solid solution, because the atomic planes of flakes
are extensions of the atomic planes of the matrix and,
hence, are coherent to them. As a result, these flakes are
not only precipitates but are embedded in the crystal
lattice of the matrix. We can assume that the planar
defects under consideration are predominantly located
in regions of line dislocations.

The strontium titanate–based matrix, which is
assumed to be ferroelectric and has a low mean Curie
temperature Tm (approximately 150–200 K), can be
considered nonferroelectric at temperatures T ≥ Tm.
However, Aurivillius-type layered compounds have
high Curie temperatures [for example, TC = 700 K for
SrBi2Nb2O9 (Fig. 3a), TC = 950 K for Bi4Ti3O12
(Fig. 3b)]. When layered flakes undergo a ferroelectric
phase transition and acquire spontaneous electric
moments, the state of the crystal as a whole at temper-
atures considerably higher than the temperature Tm and
close to the Curie point TC but be treated as super-
paraelectric.

A question arises as to the composition of the afore-
mentioned layered flakes. This question remains open.
Layers of the Bi4Ti3O12 (n = 3), SrBi4Ti4O15 (n = 4),
Sr2Bi4Ti5O18 (n = 5), and other compounds can be
embedded in the perovskite lattice only with displace-
ments of opposite layers formed by octahedra of the
perovskite phase in the layer plane (Fig. 3). This
induces mechanical stresses in adjacent regions of the
perovskite lattice. Undeniably, these stresses do not
exclude the possible formation of inclusions, because
they do not exceed the mechanical stresses generated
upon the formation of dislocations. However, it is pos-
sible to imagine a bismuth–oxygen layer embedded in
the SrTiO3 lattice without displacement of the octahe-
dra (Fig. 4). These layers or groups of layers can form
a flake. Of course, the layer depicted in Fig. 3 is hypo-
thetical; however, we cannot rule out the possibility that
such a layer exists.

5. DIELECTRIC BEHAVIOR

The smearing of the ferroelectric phase transition
and the relaxation dielectric polarization in the SBT
ceramics in the range 150–200 K are associated with
the behavior of the Sr1 − uBi2u/3hu/3TiO3 perovskite
phase, whose mean Curie temperature Tm increases
with an increase in the bismuth titanate concentration.
In this case, composition fluctuations in nanoregions of
the crystal result in the corresponding distribution of
local Curie temperatures in these nanoregions. This
leads to the formation of polar regions (in the presence
of paraelectric regions), reorientation of the dipole
moments of the polar regions, and motion of their
boundaries due to thermal fluctuations and in response
to electric fields. These factors are responsible for the
relaxation polarization, as is the case with the PMN and
PNN ceramics.
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005
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The behavior of the dependence Tm(y) with an
increase in the total bismuth titanate concentration y in
the ceramics, i.e., a decrease in the rate of increase of
the temperature of the permittivity at the maximum
(Fig. 1b), is explained by the transformation of one type
of solid solution into another type when layered flakes
begin to precipitate from the Sr1 − yBi2y/3hy/3TiO3 substi-
tutional (omission) solid solution. (Most likely, the lay-
ered flakes precipitate during cooling of the ceramics
from the sintering temperature.) Excess bismuth passes
into the flakes, and the perovskite matrix is no longer
enriched in bismuth. As a consequence, the temperature
of the maximum in the dependence ε(T) ceases to
change with an increase in the bismuth titanate concen-
tration y.

We can assume that, at temperatures below but close
to the Curie temperature TC of layered flakes, their
dipole moments can vary under thermal fluctuations
and in response to electric fields. Since the mean tem-
perature Tm of the smeared ferroelectric phase transi-
tion of the perovskite matrix lies far beyond the afore-
mentioned temperature range, an analogy can be drawn
to superparamagnetism and this state of the material
can be termed superparaelectric.

It should be noted that flakes induce random electric
fields, which, as is known, can enhance the smearing of
the ferroelectric phase transition in the matrix [18].
However, the polarization of flakes can provide an addi-
tional mechanism of dielectric relaxation in the SBT
ceramics at high temperatures. Relaxation processes in
the SBT ceramics at high temperatures were actually
observed [19] but were attributed to the motion of oxy-
gen atoms (oxygen vacancies). In this respect, it is nec-
essary to elucidate the mechanism of the observed
relaxation.

6. CONCLUSIONS

(1) Dielectric strontium bismuth titanate ceramics is
a complex defect solid solution consisting of the per-
ovskite matrix (Sr1 − uBi2u/3hu/3TiO3 substitutional
(omission) solid solution) and planar defects related to
Aurivillius-type layered ferroelectric compounds.

(2) The relaxation dielectric polarization of the SBT
ceramics is predominantly determined by the behavior
of the matrix.

(3) The presence of planar defects (i.e., layered
inclusions) in the matrix suggests a superparaelectric
behavior of the system at high temperatures and can be
responsible for the high-temperature relaxation pro-
cesses.

(4) The formation of planar defects (flakes) explains
well the concentration dependence of the temperature
of the permittivity at the maximum.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      200
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Abstract—The electronic structures of four well-known modifications of crystalline SrZrO3 with different sym-
metries, namely, the cubic (Pm3m), tetragonal (I4/mcm), and two orthorhombic (Cmcm, Pbnm) modifications, are
calculated in the framework of the density-functional theory in the basis set of the linear combination of atomic
orbitals (LCAO). A comparative analysis of the electronic properties of the crystals under consideration is per-
formed on the basis of the calculated band structures and densities of states (the total densities of states and the
densities of states projected onto the atomic states). The calculated relative stabilities of the different modifications
are in good agreement with the experimental data on the phase transitions in the SrZrO3 crystal: the low-temper-
ature modifications with lower symmetry are more stable. The ionicities of chemical bonding in different modifi-
cations of crystalline SrZrO3 are compared by analyzing the Mulliken populations and constructing the localized
Wannier functions for the occupied energy bands. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent years, perovskite-like crystals of the gen-
eral formula ABO3 (A = Ga, Ba, Cd, Sr; B = Ti, Sn, Zr)
have been intensively investigated experimentally in
view of the possibility of employing these materials in
practice in the fabrication of fuel cells, gas sensors,
information storage systems, and devices based on their
ferroelectric properties [1].

Theoretically, titanates ATiO3 (A = Ca, Sr, Ba) are
best known [2], whereas zirconates are as yet little
understood. In particular, prior to our recent study [3],
only one calculation of the electronic structure of crys-
talline SrZrO3 in the cubic modification (space group
Pm3m) had been carried out by Mete et al. [4] within
the framework of the density-functional theory (DFT)
in the plane wave basis set. In [3], we briefly described
the results of the first calculations of the electronic
properties for all four modifications of SrZrO3 crystals
in the framework of the density-functional theory in the
plane wave basis set with geometry optimization (the
lattice constants, the parameters determining the posi-
tions of atoms in the unit cell). In our present paper, the
density-functional theory in the linear combination of
atomic orbitals (LCAO) approximation with optimized
parameters of the crystal structure is applied to investi-
gate in greater detail the specific features of the elec-
tronic structure and the nature of chemical bonding in
four different modifications of crystalline SrZrO3,
namely, the cubic (Pm3m), tetragonal (I4/mcm), and
two orthorhombic (Cmcm, Pbnm) modifications.
1063-7834/05/4712- $26.00 ©2248
This paper is organized as follows. In Section 2, we
report the experimental [5] and calculated (in our recent
work [3]) data on the geometric structure of the crystals
under investigation. In Section 3, we briefly describe
the computational scheme based on the density-func-
tional theory in the LCAO approximation and its capa-
bilities for estimating the relative energies of different
phases of the ZrO2 crystals. In Section 4, we compare
the relative stabilities (in terms of the energy per for-
mula unit), the band structures, and the densities of
states (both total and projected onto the atomic states)
for different crystalline modifications of strontium zir-
conate. Moreover, we examine the change in the ionic-
ity of chemical bonding upon phase transitions in stron-
tium zirconate. In Section 5, the change in the ionicity
of chemical bond is analyzed by constructing the local-
ized Wannier functions for the valence energy bands.
Section 6 provides the main conclusions.

2. CRYSTALLOGRAPHIC MODIFICATIONS 
OF THE SrZrO3 ZIRCONATE

Thermal structural investigations [5] demonstrated
that the SrZrO3 zirconate crystallizes in four modifica-
tions existing in different temperature ranges. An
increase in the temperature leads to second-order phase
transitions accompanied by an increase in the symme-
try of the system. The sequence of phase transitions is
as follows: the orthorhombic modification Pbnm at
approximately 970 K transforms into the orthorhombic
modification Cmcm, which then at 1100 K transforms
into the tetragonal modification I4/mcm, which, in turn,
 2005 Pleiades Publishing, Inc.
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Table 1.  Experimental and optimized translation vectors (Å) of the crystallographic unit cell in the SrZrO3 crystal

Phase Pm3m I4/mcm Cmcm Pbnm

Parameter a a b a b c a b c

Experiment [5] 4.154 5.870 8.309 8.270 8.273 8.259 5.786 5.815 8.196

Theory [3] 4.196 5.935 8.393 8.266 8.368 8.318 5.847 5.911 8.295
at 1400 K transforms into the cubic modification
Pm3m. The melting temperature of the cubic modifica-
tion is approximately equal to 2400 K. As a conse-
quence, it is this cubic phase that is of special interest
from the standpoint of high-temperature applications of
SrZrO3 crystals.

The cubic modification has a simple cubic lattice
with space group Pm3m. In this case, the crystallo-
graphic unit cell coincides with the primitive cell and
contains one formula unit SrZrO3. Atoms of the same
type are crystal chemically equivalent and occupy
parameter-free Wyckoff positions: a(0, 0, 0) for Zr;
b(1/2, 1/2, 1/2) for Sr; and d(1/2, 0, 0) for O. The con-
stant of the simple cubic lattice is the sole parameter
that varies in the course of optimization of the crystal
structure without reduction of the symmetry [2].

The crystallographic unit cell of the tetragonal
phase (space group I4/mcm, body-centered Bravais lat-
tice) coincides with the doubled primitive cell and con-
tains four formula units SrZrO3. The structure of this
modification is described by three parameters, namely,
two parameters of the tetragonal lattice and one free
parameter for the Wyckoff position occupied by the
oxygen atom.

The orthorhombic modifications Cmcm (base-cen-
tered lattice, crystallographic unit cell contains two
primitive cells) and Pbnm (simple Bravais lattice, crys-
tallographic unit cell coincides with the primitive cell)
contain four formula units SrZrO3 per primitive cell.
Both structures are described by three parameters of the
orthorhombic lattice and free parameters for the corre-
sponding atoms.

The experimental translation vectors of the crystal-
lographic unit cells in the four SrZrO3 modifications [5]
and the translation vectors calculated in [3] are pre-
sented in Table 1. For the tetragonal (I4/mcm) and
orthorhombic (Cmcm) modifications with the centered
lattices, the crystallographic unit cell is twice as large
as the primitive cell and the translation vectors in all
crystals are orthogonal to each other. It can be seen
from Table 1 that the calculated lattice constants for all
the modifications exceed the experimental lattice con-
stants by 3–5%. This overestimation is characteristic of
DFT calculations with the inclusion of the gradient cor-
rection in the exchange–correlation functional but is
not very significant when comparing different crystal-
line modifications. Table 2 lists only the coordinates for
symmetry-inequivalent atoms that occupy the Wyckoff
positions with free parameters in the crystallographic
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      200
unit cell. The other atomic coordinates are uniquely
determined by specifying the space group and the coor-
dinates of the Wyckoff position occupied by the atoms.
A comparison of the calculated and experimental
atomic coordinates is given in [3]. The difference
between the experimental and calculated values does
not exceed 3–5%.

3. CHOICE OF THE DFT COMPUTATIONAL 
SCHEME IN THE LCAO APPROXIMATION

The calculations were performed by the DFT
method in the LCAO basis set with the CRYSTAL-
2003 code [6] and the Perdew–Burke–Ernzerhof (PBE)
exchange–correlation potential [7] used in [3] for the
geometry optimization in the generalized gradient
approximation (GGA). For the Sr and Zr atoms, we
used the Hay–Wadt pseudopotentials [8] in the small
core approximation. In this case, the 4s, 4p, and 5s
states of the Sr atom in the 4s24p65s2 configuration and
the 4s, 4p, 4d, and 5s states of the Zr atom in the
4s24p64d25s2 configuration were treated as valence
states. The basis functions were taken as the atomic
functions of the Sr atom from [9] and the 8–411G*
functions obtained for the Zr atom in [10] with optimi-
zation of the 5sp, 6sp, and 5d outer orbitals for the ZrO2
crystal with experimental geometric parameters. For
the oxygen atom, we used the full-electron basis set [9]
describing the oxygen atom in the 1s22s22p4 configura-
tion.

Table 2.  Experimental [5] and optimized [3] (given in paren-
theses) fractional coordinates of the symmetry-inequivalent
atoms in the crystallographic unit cell of the SrZrO3 crystal

Phase

A
to

m

Coordinates

x y z

I4/mcm O2 0.265 (0.250) 0.765 (0.750) 0.000

Cmcm Sr1 0.000 0.993 (0.989) 0.250

Sr2 0.000 0.490 (0.495) 0.250

O1 0.269 (0.290) 0.000 0.000

O2 0.000 0.230 (0.214) 0.041 (0.048)

O3 0.286 (0.3000) 0.252 (0.255) 0.250

Pbnm Sr1 0.003 (0.007) 0.526 (0.533) 0.250

O2 0.927 (0.923) 0.982 (0.979) 0.250

O3 0.217 (0.213) 0.284 (0.287) 0.035 (0.041)
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In order to assess the capabilities of the LCAO
approximation for calculating the relative stability of
different crystal phases with the basis set chosen for the
Zr and O atoms, the electronic structure of the ZrO2

crystal in three modifications (cubic Fm3m, tetragonal
P42/nmc, monoclinic P121/c) with experimental values
of the lattice parameters and coordinates of atoms in the
unit cell was calculated by the Hartree–Fock (HF)
method, the DFT method with the PBE gradient correc-
tion (the exchange–correlation potential taken from
[3]), and the B3LYP hybrid method [11]. The relative
energies (the energy per unit cell of the cubic phase was
taken as the zero of the relative energy) calculated per
formula unit by the DFT method in the plane wave
(PW) basis set [12], the HF method, the DFT method
with the PBE gradient correction (the exchange–corre-
lation potential used in [3]), and the B3LYP hybrid
method [11] are compared with the experimental data
in Table 3. The calculated and experimental band gaps
∆Eγ are also given in Table 3. It can be seen from this

Table 3.  Band gap ∆Eγ (eV) at the Γ point for the Fm3m cubic
(c), P42/nmc tetragonal (t), and P121/c monoclinic (m) phases
of the ZrO2 crystal and their relative energies ∆E (eV/ZrO2)

HF B3LYP PBE DFT–PW 
[12]

∆Eγc (4.5) 14.0 5.5 3.7 3.9

∆Eγt (5.0) 14.2 5.8 4.0 4.1

∆Eγm (5.3) 13.8 5.7 3.9 4.0

∆Et (–0.06) +0.01 –0.04 –0.05 –0.05

∆Em (–0.12) –0.04 –0.10 –0.09 –0.11

Note: The experimental values are given in parentheses. The
energy per unit cell of the cubic phase is taken as the zero of
the relative energy ∆E.

Table 4.  Band gap ∆Eγ (eV) at the Γ point for the Pm3m
cubic (c), I42/mcm tetragonal (t), Cmcm orthorhombic (o1),
and Pbnm orthorhombic (o2) phases of the SrZrO3 crystal
and their relative energies ∆E (eV/SrZrO3)

HF B3LYP PBE

 (5.6) 13.0 5.0 3.3

∆Eγt 13.0 5.0 3.3

∆Eγo1 13.2 5.2 3.5

∆Eγo2 13.5 5.4 3.6

∆Et 0.00 0.00 0.00

∆Eo1 –0.16 –0.23 –0.24

∆Eo2 –0.19 –0.28 –0.29

Note: The difference in the energies of the bottom of the conduction
band at the Γ point and the top of the valence band at the X
point is presented for the cubic phase. The experimental value
is given in parentheses. The energy per unit cell of the cubic
phase is taken as the zero of the relative energy ∆E.

∆Eγc*
PH
table that only the inclusion of the electron correlation
makes it possible to reproduce correctly the relative
energies of different phases. Note that the results
obtained using the PBE and B3LYP schemes are close
to each other. The band gap is closer to the experimen-
tal value in the case of the hybrid computational
scheme and is considerably overestimated in the HF
calculations.

For the cubic modification of the SrZrO3 crystal,
there are 46 electrons per unit cell (23 occupied energy
bands, including three bands attributed to the O 1s core
states). It is worth noting that the number of electrons
and occupied energy bands is doubled for the tetragonal
modification and increases fourfold for the orthorhombic
modifications. The summation in the Brillouin zone was
performed over the Monkhorst–Pack special points. For
the isotropic cubic crystal (Pm3m), we used an 8 × 8 × 8
set of special points. This corresponds to the simulation
of an infinite crystal by a cyclic cluster consisting of
512 primitive cells [13]. In order to ensure an approxi-
mately identical density of the k points along each of
the three vectors of the reciprocal lattice, the set of
Monkhorst–Pack special points for the noncubic crys-
tals was reduced in inverse proportion to the translation
vector of the direct lattice in the corresponding direc-
tion. All the calculations were carried out for the geom-
etry optimized in [3]. The accuracy of the summation in
the direct lattice was chosen equal to 10–12 for the
exchange integrals and 10–6 for the other integrals of the
atomic functions. The procedure providing the self-con-
sistency with respect to the density matrix was per-
formed until the difference between the total energies per
unit cell for two consecutive iterations reached 10–7 au.

The band gaps and relative energies calculated for
each of the crystalline modifications of strontium zir-
conate by the same methods that were used in the cal-
culations for the ZrO2 crystals are given in Table 4. For
the cubic crystal, the experimental band gap [14] is
compared with the theoretical values obtained in the
plane wave basis set [4] and in the LCAO basis set [3].
The values listed in Table 4 confirm the inferences
made for the modifications of the ZrO2 crystals.

The results of the calculations discussed below for
the SrZrO3 crystals were obtained (as in [3]) by the
DFT method (the PBE variant).

4. ELECTRONIC STRUCTURES OF DIFFERENT 
MODIFICATIONS OF STRONTIUM ZIRCONATE

The calculated band structures and densities of
states for four modifications of the SrZrO3 crystals are
presented in Figs. 1a–4a and 1b–4b, respectively. A
comparison of the results obtained shows that, in gen-
eral, the electronic structures of the cubic and tetrago-
nal phases are similar to each other. The same is also
true for two orthorhombic structures. A substantial
change in the electronic structure is observed upon
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005
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Fig. 1. (a) Band structure and (b) densities of states for the cubic modification (space group Pm3m) of the SrZrO3 crystal.
changing over from the tetragonal modification to the
orthorhombic modification.

Analysis of the total and partial densities of states
for the cubic and tetragonal crystals (Figs. 1, 2) demon-
strates that the total density of states in the upper
valence band is predominantly formed by the O 2p
states. It can also be seen that the Zr 4d states make the
dominant contribution to the bottom of the conduction
band. Similar features of the electronic structure are
observed for the orthorhombic phases.

The atomic charges determined for all four modifi-
cations from the Mulliken population analysis are com-
pared in Table 5. The charges are given for all crystal
chemically inequivalent atoms in the crystallographic
unit cell. It can be seen from Table 5 that, upon chang-
ing over from the cubic modification to the tetragonal
modification, the atomic charges remain virtually
unchanged. For the two orthorhombic phases, the
atomic charges are also close to each other. However,
upon changing over from the tetragonal phase to the
orthorhombic phases, the atomic charges change signif-
icantly. This distribution of the atomic charges indi-
cates that the electronic structure of the cubic and tet-
ragonal modifications differs substantially from the
electronic structure of the two orthorhombic modifica-
tions of the SrZrO3 crystals.

A comparative analysis of the specific features of
the chemical bonding in different modifications of crys-
talline SrZrO3 was also performed using the localized
YSICS OF THE SOLID STATE      Vol. 47      No. 12      20
Wannier functions. The results obtained are considered
in the next section.

5. LOCALIZED WANNIER FUNCTIONS 
AND CHEMICAL BONDING IN THE SrZrO3 

CRYSTAL

The localized Wannier functions Wn(r – g) (where
n = 1, …, N is the number of localized Wannier func-
tions per primitive cell and g is the translation vector of
the direct lattice) are determined in terms of the Bloch
functions ψt(kj) for N energy bands according to the
relationship

 (1)Wn r g–( ) L
1/2–

Unt k j( )ψik j
r( )e

ik jg–
.

j 1=

L

∑
t 1=

N

∑=

Table 5.  Mulliken charges (e) at the atoms in the SrZrO3
crystal

Atom
Phase

Pm3m I4/mcm Cmcm Pbnm

Sr1 +1.855 +1.855 +1.828 +1.834
Sr2 +1.845
Zr +2.035 +2.035 +2.085 +2.091
O1 –1.297 –1.297 –1.308 –1.307
O2 –1.297 –1.303 –1.309
O3 –1.311
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Fig. 2. (a) Band structure and (b) densities of states for the tetragonal modification (space group I4/mcm) of the SrZrO3 crystal.
Here, L is the number of primitive cells in the cyclic
system (the range of variation in vectors g) and the
points kj (j = 1, 2, 3, …) in the Brillouin zone satisfy the
relationship exp(–ikjT) = 1 for the translation vectors T
of the cyclic system as a whole [15].

The matrices U(kj) of the unitary transformation (1)
of the Bloch functions into the localized Wannier func-
tions are determined in accordance with a specified cri-
terion for localization of the Wannier functions.
Marzari and Vanderbilt [16] and Zicovich-Wilson et al.
[17] used the Boys criterion, according to which the
spread of the localized Wannier functions with respect
to the centroid q in the direct lattice must be minimum;
that is,

 (2)

In order to analyze the chemical bonding in the crys-
tal, the summation in expression (1) is performed over
occupied energy bands [17] or groups of occupied
bands [16]. This determines the symmetry of the con-
structed localized Wannier functions as basis sets of
irreducible representations of the local symmetry group
of the centroid q [18]. The constructed localized Wan-
nier functions describe both the A–B diatomic bonds
between atoms A and B in the crystal (the centroid q is
located either on the line of the bond or in its vicinity)
and the lone electron pairs at atoms or ions (the centroid

min In min r q–( )2
Wn r( ) 2 τ ,d∫=

q Wn r( ) 2r τ .d∫=
PH
q is located near the relevant atomic nucleus). The
Bloch functions can be calculated in the plane wave
basis set [16] and in the LCAO approximation [17]. In
the latter case, the localized Wannier functions can be
expressed in terms of the functions of the initial atomic
basis set:

 (3)

where the coefficients  refer to the atomic function

ϕµ in the cell g and are related to the coefficients  of

the Bloch function  by the expression

 (4)

The contribution from the Ath atom of the cell g to
the population of the nth localized Wannier function
(the total population of the localized Wannier function
is equal to 2) is defined by the relationship

 (5)

Here, the sum  is equal to 2 for any n = 1,
2, …, N (the summation is performed over all atoms

Wn r( ) Cµn
g ϕµ r g–( ),

g

∑
µ 1=

M

∑=

Cµn
g

aµt
k

ψik j

Cµn
g

L
1–

Unt k j( )e
ik jgaµt

k j .
j 1=

L

∑
t 1=

N

∑=

qAn
g

2 Cµn
g

Cνn
g g'+

Sµν
0g'

.
g'

∑
ν
∑

µ A∈
∑

A

∑=

qAn
g

g∑A∑
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Fig. 3. (a) Band structure and (b) densities of states for the orthorhombic modification (space group Cmcm) of the SrZrO3 crystal.
and cells of the chosen cyclic system) and  are the
overlap integrals of the atomic basis functions. It is
obvious that the total number of electrons per primitive
cell is ne = 2N. Since transformation (1) is unitary, the
Mulliken atomic populations satisfy the relationship

 (6)

i.e., they correspond to the results of the traditional
population analysis in the initial atomic basis set.

It should be noted that the population analysis can
also be performed in the basis set of the Wannier-type
atomic functions (WTAF), which correspond to the
minimal basis set and were introduced in [19]. How-
ever, in this case, the localized Wannier functions must
be constructed using the Bloch functions not only of the
occupied states but also of the vacant states determined
from the symmetry requirements [18]. The results of
the population analysis in the WTAF basis set differ
from those obtained in the initial atomic basis set and,
in the majority of cases, more correctly describe the
chemical bonding in the crystal as compared to the tra-
ditional population analysis. Moreover, the atomic pop-
ulations in the crystal can be analyzed using the projec-
tion technique [20], which is not related to the construc-
tion of the localized Wannier functions.

Sµν
0g'

qA 2 qAn
g

ng

∑
A

∑ 2 aµt
k

aν t
k'

Sµν
0g'

;
kk'

∑
νg'

∑
µ A∈
∑

t 1=

N

∑= =
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Zicovich-Wilson et al. [17] introduced an index
characterizing the degree of localization of Wannier
functions, that is,

 (7)

which is equal to unity when the Wannier function is
almost completely localized in the vicinity of an indi-
vidual atom and is larger than unity in other cases (for
the Wannier function localized at the center of the bond,
this index is equal to two).

The ionicity of the chemical bond, which is formed
between atoms A (with the coordinate rA) and B (with
the coordinate rB) and is described by the nth Wannier
function centered at the point qn, can be evaluated using
the index

 (8)

It is assumed that atoms A and B make a maximum
contribution to the population of this Wannier function
as compared to other atoms. The index pn given by
expression (8) is equal to unity for a purely ionic bond
and zero for a purely covalent bond. Intermediate val-
ues of the index pn can be related to the ionicity of
chemical bonds.

λn qAn
g( )

2

g

∑
A

∑
1–

,=

pn 2
qn rB–( ) rA rB–( )

rA rB–
2

------------------------------------------- 1.–=
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Fig. 4. (a) Band structure and (b) densities of states for the orthorhombic modification (space group Pbnm) of the SrZrO3 crystal.
In order to investigate the chemical bonding in the
SrZrO3 crystal, we calculated the localized Wannier
functions for the occupied energy bands with the
CRYSTAL code [5]. The localization characteristics
were determined for two upper valence bands (consist-
ing of 15, 30, and 60 branches for the cubic, tetragonal,
and orthorhombic modifications, respectively). The
lower valence band is hybrid (formed by the O 2s states
and Sr 4p states), whereas the upper valence band, as
can be seen from Figs. 1–4, is formed by the O 2p
states. The numerical values of the delocalization
index, the ionicity of the Zr–O chemical bond, and the
contribution of the oxygen atom (without regard for the
spin) to the population of the symmetry-inequivalent
Wannier functions of the upper valence band were
determined from relationships (7), (8), and (5). The
numerical data obtained for the cubic and orthorhombic
modifications are given in Table 6. The last four col-
umns of Table 6 list numerical values of the populations
of the s and p functions for the oxygen atom near which
the corresponding Wannier function is centered.

In the cubic modification, all three oxygen atoms in
the primitive cell are symmetrically equivalent and four
Wannier functions are centered in the vicinity of each
oxygen atom. Let us assume that the oxygen atom and
the two nearest zirconium atoms are arranged along the
z axis. It can be seen from Table 6 that two of the four
Wannier functions (Figs. 5a, 5b) are located perpendic-
ular to the bond and aligned with the x and y axes (this
is confirmed by the analysis of the corresponding con-
PH
tributions to the population). The ionicity of the Zr–O
bond, which is described by these functions, is close to
unity; i.e., they are actually the O px and O py orbitals in
the crystal. The other two localized orbitals (Figs. 5c,
5d) are equivalent, lie almost exactly along the z axis,
and, as follows from the populations, correspond
approximately to the O spz hybrid orbitals. For these
orbitals, the bond ionicity (0.61) is substantially differ-
ent from unity. This indicates a significant covalency of
the Zr–O bond, which also manifests itself in the
atomic charges (Table 5). The distance from the cen-
troid q to the oxygen atom is equal to 0.25 Å for the
former two Wannier functions and 0.44 Å for the latter
two Wannier functions. The corresponding distances
from the centroid to the line of the Zr–O bond are equal
to 0.24 and 0.16 Å. These data correlate with the above
interpretation of the localized orbitals.

For the tetragonal modification, the indices (charac-
terizing the chemical bonds) of the Wannier functions
localized at the oxygen atoms are close for symmetry-
inequivalent oxygen atoms and differ only slightly from
those for the cubic modification. This correlates with
nearly identical atomic charges in the cubic and tetrag-
onal modifications (Table 5).

It can be seen from Table 6 that, for the orthorhom-
bic modification, the Wannier functions localized at the
symmetry-inequivalent oxygen atoms and directed
along the Zr–O bonds (Figs. 5g, 5h) also differ only
slightly from those for the cubic modification, even
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005
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Table 6.  Characteristics of the localized Wannier functions for the SrZrO3 crystal

Phase, atom λs pn  qs    

Pm3m 1.183 0.999 0.918 0.136 0.005 0.778 0

1.183 0.999 0.918 0.136 0.778 0.005 0

1.302 0.610 0.870 0.343 0.064 0.064 0.403

1.300 0.610 0.870 0.341 0.066 0.066 0.400

Pbnm, O1 1.158 1.050 0.928 0.193 0.694 0.043 0

1.175 1.011 0.921 0.147 0.001 0.775 0

1.296 0.599 0.872 0.308 0.107 0.047 0.414

1.296 0.599 0.872 0.308 0.107 0.047 0.414

Pbnm, O2 1.182 0.994 0.919 0.138 0.179 0.164 0.439

1.153 1.041 0.930 0.196 0.263 0.289 0.184

1.293 0.605 0.873 0.308 0.267 0.146 0.155

1.293 0.601 0.873 0.316 0.161 0.269 0.131

q0n
qpx

qpy
qpz
though they do not correspond to the pure spz hybrid-
ization (∠ ZrOZr = 155°, and the px and py orbitals make
a noticeable contribution to the populations of the Wan-
nier functions due to the symmetry reduction). As
regards the two other pairs of localized orbitals
(Figs. 5e, 5f), their orientation differs from the orienta-
tion of the corresponding pair in the cubic crystal and
the total contribution of the p orbitals to these functions
is somewhat smaller than the analogous contribution in
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
the cubic phase. There is no significant difference
between the orbitals localized at the O1 and O2 atoms.

If the constructed localized orbitals are considered
only in the upper valence band, it is impossible to dis-
tinguish orbitals corresponding to the directional Zr–O
bonds. Therefore, the O s band makes a substantial con-
tribution to the density distribution of valence elec-
trons. However, when analyzing the energy spectrum
and the corresponding density of states, the O p and O
s bands can be treated as relatively independent. For
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Fig. 5. Localized Wannier functions for the oxygen atoms in (a–d) cubic and (e–h) orthorhombic modifications of the SrZrO3 crys-
tal. The electron density distributions are represented in (a, b, e, f) the plane formed by the strontium atoms nearest to the oxygen
atom, (c, d) the σx plane, and (g, h) the plane passing through the bound Zr–O–Zr atoms. Symbols of the elements indicate the posi-
tions of the atoms in the planes under consideration.
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example, as was noted in Section 4, the total density of
states in the energy range of the upper valence band
nearly coincides with the partial density of O p states.

The above treatment demonstrates that the use of the
localized Wannier functions in analyzing the chemical
bonding in the crystal essentially complements and
provides details for the information obtained in the
population analysis.

6. CONCLUSIONS

The electronic structure (the energy band spectrum,
densities of states, and Wannier functions) of four mod-
ifications of crystalline SrZrO3 was calculated in the
framework of the density-functional theory in the
LCAO approximation with the parameters of the
atomic structure previously optimized in the plane
wave basis set. The main results obtained in this study
can be summarized as follows.

(1) The energy stability of the high-temperature (tet-
ragonal and cubic) modifications is less than that of the
low-temperature orthorhombic modifications. This is in
agreement with experimental data.

(2) The calculated band gap for the low-temperature
modifications is greater than that for the high-tempera-
ture modifications. This is consistent with the fact that,
according to the Mulliken population analysis, the
chemical bonding in the low-temperature modifications
is characterized by a higher ionicity.

(3) The localized Wannier functions for the two
upper valence energy bands were calculated and ana-
lyzed. The obtained characteristics of the Wannier
functions (the positions of the centroid, the ionicity
indices, the atomic contributions to the populations of
the localized orbitals) made it possible to describe
quantitatively the covalent component of the chemical
bonding in the SrZrO3 crystals.
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Abstract—Experimental data on the diffusion of 71Ge, 113Sn, 114In, and 124Sb isotopes in dislocation germa-
nium are discussed within the model of a liquid dislocation core and the filament model of diffusion along dis-
locations. The temperature dependences of the diffusion permeability along the dislocations are matched to the
corresponding temperature dependences of the coefficient of diffusion in the melt in order to determine the
absolute values of the coefficient of diffusion along dislocations and the effective diffusion radius of the dislo-
cation core. The experimental results are discussed in terms of thermodynamic parameters of the liquid state
and the parameters of diffusion in the melt. The results obtained are consistent with the cooperative diffusion
mechanism and the mechanism of diffusion through relaxed vacancies. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Numerous experimental and theoretical investiga-
tions into the diffusion along dislocations and low-
angle grain boundaries have revealed that enhanced
transfer occurs in these objects. Enhanced diffusion
along a dislocation has often been explained as result-
ing from the motion of vacancies whose concentration
and mobility are significantly higher than those of
vacancies in the bulk of the material [1, 2]. An increase
in the concentration and mobility of the vacancies is
directly attributed to the disturbance of the crystal
structure in the region around the dislocation [1–4].

The existing mathematical models of diffusion
along dislocations enable one to determine only the dif-
fusion permeability D'S [4], where D' is the coefficient

of diffusion along a dislocation and S =  is the
cross-sectional area of the dislocation (rd is the effective
diffusion radius of the dislocation). Consequently, a
great deal of the reasoning about mechanisms of diffu-
sion along dislocations lacks rigorous justification. In
this respect, it is obviously important to choose a phys-
ical model that would enable one to unambiguously
determine the coefficient of diffusion along a disloca-
tion and the effective cross section of the dislocation.

Earlier [2], it was noted that, as the melting point is
approached, regions of dislocation outcrop on the ger-
manium surface undergo melting in the temperature
range 920–935°C. It can be assumed that, in the vicin-
ity of the melting temperature, the structure of the dis-
location core is similar to the structure of the melt;
therefore, the dislocation core can be simulated by a
liquid state.

πrd
2
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2. MODEL OF A LIQUID DISLOCATION CORE

The model of a liquid dislocation core has been suc-
cessfully used to describe the configuration of the dis-
location core, the energy of the interface between the
core and the matrix, and the elastic stresses arising in
the core and in the matrix [5].

Lange [6] demonstrated that, upon extrapolation to
the melting point, the coefficients of diffusion along the
dislocations and in the melt coincide to within the lim-
its of experimental error. At the same time, there is a
difference of several orders of magnitude between the
experimental data on the diffusion along the disloca-
tions and in the melt, on the one hand, and the results
obtained for the diffusion in the bulk of the material, on
the other hand. The degree of coincidence between the
temperature dependences of the coefficient of diffusion
along the dislocations and in the liquid state depends on
the change in the coordination number upon passing
through the melting point [2].

From the aforesaid, it can be concluded that the
structure of the dislocation core is similar to the struc-
ture of the melt in the vicinity of the melting tempera-
ture. This does not mean that the dislocation core is uni-
versally analogous to the liquid state. The model of a
liquid dislocation core is only an approximation to the
real structure of the dislocation core.

Nonetheless, the physical model of a liquid disloca-
tion core enables one to analyze the processes occur-
ring in dislocation crystals with the use of the thermo-
dynamic potentials and parameters (including diffusion
parameters) characteristic of the liquid state.

In simulating the dislocation core by a liquid state,
we assume that the coefficients of diffusion along the
dislocations are equal to those in the melt at the melting
point: D' = DL at T = Tmelt (where Tmelt is the melting
© 2005 Pleiades Publishing, Inc.
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temperature and DL is the coefficient of diffusion in the
melt). By assuming that the effective diffusion radius of
the dislocation rd is constant and independent of tem-
perature, it is possible to determine the “absolute” val-
ues of the coefficients of diffusion along the disloca-
tions, which cannot be done within the known mathe-
matical models.

In order to use the model of a liquid dislocation core
for analyzing the experimental data on the diffusion in
dislocation crystals, it is necessary to obtain compre-
hensive information on the diffusion in the liquid phase.
For this purpose, we studied the diffusion of 71Ge,
113Sn, 114In, and 124Sb isotopes in germanium in the
temperature range 950–1250°C [7, 8].

Then, we proposed a filament model accounting for
the influence of the dislocation on the diffusion in the
bulk over a wide range of temperatures up to the melt-
ing point [9].

The problem is reduced to solving the system of dif-
ferential equations

 (1)

 (2)

where K is a constant; S is the cross section of the dis-
location; D and D' are the coefficients of diffusion in the
bulk and along the dislocation, respectively; and C' is
the concentration of impurities along the dislocation.

In the above system, Eqs. (1) and (2) describe the
diffusion outside the dislocation region and along the
dislocations, respectively.

The problem is solved at first-order boundary condi-
tions (a steady source at the surface), which are of most
frequent occurrence in practice:

in the bulk,

 

along the dislocation,

 (3)

Under the condition

 (4)

the solution to the system of equations (1) and (2) has
the form

 (5)
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Let us introduce the following notation:

 (6)

Then, relationship (5) takes the form

 (7)

Relationship (7) was used to construct a set of standard

dependences of logC/C0 on  for different

parameters P.
The curves obtained were used for analyzing the

experimental data on the diffusion in plastically
deformed germanium specimens.

3. DISCUSSION OF THE EXPERIMENTAL DATA 
ON THE DIFFUSION IN DISLOCATION 

GERMANIUM WITHIN THE MODEL 
OF A LIQUID DISLOCATION CORE 

AND THE FILAMENT MODEL
Specimens of GES-10 germanium were subjected to

bending about the [112] direction according to the tech-
nique described in our earlier work [9]. The density of
dislocations, which was determined visually with an
MIM-7 microscope, ranged from 5 × 10–3 to 107 cm–3.

The diffusion of 71Ge, 113Sn, 114In, and 124Sb iso-
topes in germanium was studied over a wide range of
temperatures from 600 to 900°C. The annealing time
was varied from ten to several hours. Homogenizing
annealing was performed in sealed quartz ampules with
weighed portions, whose temperature approximately
corresponded to the annealing temperature (i.e., it was
20–30°C lower). The distribution of impurities was
determined using layer-by-layer etching in standard
etchants and was controlled by measuring the length on
an IZV-2 length meter and by weighing on a microana-
lytical balance.

The experimental curves were compared with the
theoretical standard curves according to the technique
described in [9, 10].

Figure 1 shows the temperature dependences of the
coefficient of 71Ge self-diffusion and the coefficient of
diffusion of 113Sn, 114In, and 124Sb isotopes along dislo-
cations in germanium. These dependences are matched
to the corresponding temperature dependences of the
coefficient of diffusion in the germanium melt at T =
Tmelt. The curves were constructed under the above
assumption that the structure of the dislocation core is
similar to the structure of the melt in the vicinity of the
melting point and that the coefficients of diffusion in
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z

2 Dt
--------------,=

Φ2
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------- z
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the melt are equal to those along the dislocations. These
coefficients can be represented in analytical form:

(Ge  Ge), 

(Sb  Ge), 

(Sn  Ge), 

(In  Ge). 

The effective diffusion radii of dislocations are pre-
sented in the table.

For the vacancy mechanism of diffusion along a dis-
location, the preexponential factor  in the diffusion
equation can be written in the form

 (8)

where ε and g are the correlation and geometric factors,
respectively; a is the lattice parameter; νjump is the fre-
quency of jumps, which approximately corresponds to
the Debye frequency; and ∆S is the entropy term.
According to [11, 12], the change in the entropy can be
estimated from the relationship

 (9)

where λ is a constant close to unity, Qd is the activation
energy of diffusion along the dislocation, and µ is the
shear modulus. For the vacancy mechanism of diffu-
sion, the activation energy of diffusion along the dislo-
cation can be represented in the following form [1]:

 (10)

where the first term characterizes the energy of bonding
between the diffusing impurity atom (vacancy in the
case of self-diffusion) and the dislocation, the second
term stands for the energy of migration, and the third
term describes the energy of formation of a vacancy.
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According to the model of a liquid dislocation core, we
can assume that the following relationship holds:

 (11)

The bonding energy was calculated under the
assumption that the impurity atom (or vacancy) and the
dislocation are involved in an elastic interaction with
the inclusion of the dimensional E1 and modular E2
effects (other effects were disregarded). In the case of
an edge dislocation [4, 13], we have

 (12)

 (13)

where ν is the Poisson ratio, b is the strength of the dis-
location, V is the atomic volume of the diffusing ele-
ment, and ∆V is the change in the atomic volume in an
elementary diffusion event. In the case of self-diffu-

Ed
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Fig. 1. Temperature dependences of the diffusion coeffi-
cient of 71Ge, 113Sn, 114In, and 124Sb isotopes in the germa-
nium melt and the temperature dependences of the coeffi-
cient of diffusion of the same elements along the disloca-
tions in germanium according to the calculation within the
model of a liquid dislocation core: (1) self-diffusion of 71Ge
and diffusion of (2) 113Sn, (3) 114In, and (4) 124Sb in germa-
nium.
Calculated and experimental parameters of the diffusion along the dislocations in germanium

Diffusing 
element

, eV rd, Å ∆V, cm/g-at Eb, eV
Eb + , 

eV
Qd, eV

calculation experiment

71Ge 2.1 5 1.53 0.24 0.15 5.0 × 104 2.34 2.3
113Sn 2.1 25 2.6 0.042 0.15 3.1 × 105 2.14 2.35
114In 1.75 12 2.0 0.09 0.16 1.2 × 105 1.8 2.1
124Sb 1.1 40 4.6 0.05 0.09 4.0 × 102 1.15 1.28

QL( )Tmelt

D0' QL( )Tmelt
5
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sion, the parameter ∆V is the change in the volume due
to the formation of a vacancy, which can be estimated
from the following considerations [14, 15].

Taking into account the empirical relationship
between the activation energy of self-diffusion and the
heat of melting, as well as the geometric features of the
crystal structure, the change in the volume due to the
formation of vacancies in a number of materials was
calculated from the expression

 (14)

Here, Q and L are the energy of self-diffusion and the

heat of melting, respectively;  is the relative

change in the volume in an elementary diffusion event;

and  is the relative change in the volume due

to the melting of the crystal.
Kuz’menko [14, 15] disproved the validity of rela-

tionship (14) for diffusion in germanium and silicon
semiconductors, because the relative change in the vol-
ume due to melting is negative for semiconductors, i.e.,

 < 0, and is positive for metals, i.e.,  > 0.

Indeed, the transfer in metals implies that an ele-
mentary diffusion event is a displacement of a single
atom into a single vacancy, which corresponds to the

inequality  > 0 for close-packed structures. If

an elementary event of diffusion in loose structures of
germanium and silicon is considered a cooperative pro-
cess involving a large number of atoms (for example,
local melting or the Seeger mechanism of relaxation
vacancies and interstices [16]), the idea developed in
[14, 15], together with expression (14), can be used to
describe the diffusion in silicon and germanium semi-

conductors satisfying the inequalities  < 0 and

 < 0.

The energy of bonding between the impurity atom
(vacancy) and the dislocation can be written as the sum

 (15)

We demonstrated that the experimental data on the
diffusion along dislocations in metals, which were
obtained using the model of a liquid dislocation core, are
consistent with the vacancy mechanism of diffusion [2].

A comparison of the experimental data on the diffu-
sion in germanium with the results calculated within
the model of a liquid dislocation core is given in the
table. The activation energy of diffusion can be repre-
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sented as Qd ≈  + Eb. It turned out that the

experimental coefficients  are three to five orders of
magnitude greater than the calculated values. This is
explained by the fact that the diffusion can occur
through the mechanism of relaxed vacancies [16] along
dislocations in germanium [2, 4] (as opposed to the
pure vacancy mechanism of diffusion along disloca-
tions in metals). In dislocation regions of close-packed
metals, the elementary diffusion event is determined by
a displacement of a single atom into a single vacancy.
In dislocations of crystals with loose packing, such as
germanium and silicon, this process should probably
involve cooperative motion of a large number of atoms
during the formation and migration of such an extended
vacancy [16].

When an atom leaves the loose lattice with a dia-
mond-type structure, four directional bonds are broken
and the equilibrium between the surrounding atoms is
disturbed. This leads to a local disturbance of the short-
range order (melting) in the region around the vacant
site. It is this mechanism of diffusion through relaxed
vacancies that provides an explanation for the decrease
in the volume during the formation of a vacancy and
which allows the use of the model proposed in [14, 15]
for calculating the quantity ∆V from expression (14). A
relaxed vacancy has a much greater number of config-
urations than a conventional monovacancy, and every
elementary diffusion event involves a large number of
atoms. This brings about an increase in the entropy term
in expression (8) and an increase in the quantity .
Since the dislocation core has an even looser structure
than that in the bulk of the material, the probability of
formation of extended vacancies at dislocations is still
higher than that in the bulk of the material and the coef-
ficient of diffusion along the dislocations ( ), as a
rule, is greater than that in the bulk (D0).

Pavlov et al. [17] explained the large values of 
in terms of another cooperative mechanism of diffusion
along a dislocation. This mechanism is based on the
assumption that, within short time intervals, an atom
travels large (as compared to the volume) distances
through a series of intermediate equilibrium states in
the immediate vicinity of the dislocation core. In other
words, the diffusing atom executes relay-race jumps.
However, this mechanism also involves cooperative
processes.

In close-packed metallic structures, the probability
of formation of relaxed vacancies is apparently not very
high.

Figure 2 shows the dependence of the effective dif-
fusion radius of dislocations rd on the change in the vol-
ume ∆V in an elementary diffusion event. As can be
seen, the effective diffusion radius of the dislocation rd

increases in proportion to the change in the volume ∆V.
It seems likely that an increase in the change in the vol-

QL( )Tmelt

D0'

D0'

D0'

D0'
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ume ∆V favors expansion of the distorted region around
the dislocation.

4. CONCLUSIONS

The experimental data on the diffusion along dislo-
cations in germanium, which were analyzed within the
model of a liquid dislocation core and the filament
model of diffusion along dislocations, are consistent
with the mechanism of diffusion through relaxed
vacancies. A tendency exists toward an increase in the
distorted region around the dislocation, and this
increase is proportional to the change in the volume in
an elementary diffusion event.
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Abstract—The parameters and mechanisms of deformation of a Ti41.5Zr41.5Ni17 quasicrystal and a W + 12 at. %
Ta single crystal under nanoindentation conditions were studied and compared. It was found that, initially, the
deformation of the quasicrystal is elastoplastic; however, beginning from a certain critical load, the deformation
acquires a steplike character with alternating segments of slow elastoplastic deformation and rapid plastic
deformation. A qualitative model is proposed for the plastic deformation of quasicrystals during nanoindenta-
tion. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Since the discovery of a quasicrystalline structure
by Shechtman et al. [1], significant progress has been
achieved in understanding the mechanisms of plastic
deformation of quasicrystalline (QC) materials [2, 3].
In most studies on the mechanical properties of quasic-
rystals, experimental tension–compression curves at
elevated temperatures have been analyzed [4–8]. The
plastic deformation of quasicrystals at high tempera-
tures was shown to occur via dislocation nucleation and
motion [1, 4–7]. At room temperature, quasicrystals are
brittle materials, which is explained by the absence of
translational order and the presence of strong bonds
between the atoms forming clusters. Numerous incom-
mensurate length scales in quasicrystals and the
absence of small repeating periodic cells make disloca-
tion motion rather difficult [1, 4, 9–11]. The ductility–
brittleness transition temperature is ~70–80% of the
liquidus temperature (600–750°C) [1, 2].

One fruitful method of mechanical testing is nanoin-
dentation. Apart from the determination of the nano-
hardness and the Young modulus, this method allows
one to study the nature and mechanisms of deformation
in the real-time mode in a local microvolume [13]. In
particular, nanoindentation has made it possible to
reveal the discrete formation of isolated shear bands in
metallic glasses [14, 15]. In crystalline materials, dis-
placement “bursts” have been detected in nanoindenta-
tion curves and related to the nucleation of single dislo-
cations [16–18]. Moreover, fine effects, such as the
strain-induced crystallization of an amorphous alloy in
1063-7834/05/4712- $26.00 ©2262
the vicinity of an indentation [9] and the semiconduc-
tor–metal phase transformation in a silicon single crys-
tal under an indenter tip at a load of 12 mN [20], have
been revealed.

The load–indenter-displacement curve for the elas-
toplastic region of Al–Cu–Fe quasicrystals was found
to be steplike [21, 22]. In our recent work [23], we
showed that such discreteness of the load–displacement
curve for nanoindentation is characteristic of i-Ti–Zr–
Ni quasicrystals.

The purpose of this work is to continue study of the
plastic behavior of Ti–Zr–Ni quasicrystals during
nanoindentation and to develop a qualitative (phenom-
enological) physical model for the deformation of a
quasicrystal as compared to a single crystal.

2. EXPERIMENTAL

We examined Ti41.5Zr41.5Ni17, Ti45Zr38Ni17, and
Ti53Zr27Ni20 ribbons melt-quenched according to the
process described in [23, 24]. To reveal the specific fea-
tures of the mechanical behavior of quasicrystals as com-
pared to ordinary crystals, we studied a W + 12 at. % Ta
(111) single crystal, whose hardness was estimated to
be close to the hardness of the quasicrystalline samples.

The elemental composition of the samples was con-
trolled by x-ray fluorescence and energy-dispersive x-
ray spectroscopy to an accuracy of better than 0.5%.
The sample structure was examined by x-ray diffrac-
tion, and the x-ray diffraction patterns were compared
with the JCPDS file to reveal crystalline phases [25].
 2005 Pleiades Publishing, Inc.



        

MECHANICAL BEHAVIOR OF Ti–Zr–Ni

 

 

 

QUASICRYSTALS

 

 

 

2263

                                                                                  
The quasicrystalline phase was identified according to
the procedure described in [26–28]. The structure of the
quasicrystalline phase was characterized by a lattice
parameter a6D in six-dimensional (hypercubic) space,
which is connected with the modulus of the diffraction
vector Q by the relation

 (1)

where τ = 1.618… is the irrational golden section, aq is
a quasi-crystallinity parameter in three-dimensional
space, and (N, M) are the Cahn indices [26]. The coher-
ent-domain size L was estimated from the diffraction-
line width by an approximation method. For studies, we
also used scanning electron microscopy (SEM,
REMMA-101A microscope).

The mechanical properties of the samples were
investigated by nanoindentation [29–31] on a Nano
Indenter-II device (MTS Systems Corporation, Oak
Ridge, TN, USA) using a Berkovich trihedral pyramid.
The accuracy of indentation-depth measurements was
±0.04 nm, and the accuracy of measurement of the load
applied to the indenter was ±75 nN. Indentations were
spaced 30 µm apart, and five measurements were car-
ried out on each sample. Each test consisted of two
cycles. In the first cycle, we determined the elastic
modulus and hardness using the Oliver–Pharr tech-
nique [30]. Samples were loaded up to 15 mN at a rate
of 1 mN/s, then held for 10 s at this load, unloaded by
95%, and held for 30 s at a small load to measure the
thermal drift. In the second nanoindentation cycle, we
recorded an elastoplastic loading curve, which charac-
terizes the mechanical behavior of a sample during con-
tact loading. When an indentation was formed, the sam-
ples were repeatedly loaded to 25 mN at a rate of
0.5 mN/s, held for 10 s at this load, and then completely
unloaded. As the load increased, the average contact
pressure (ACP) exerted on an indentation was deter-
mined by the procedure described in [22] with allow-
ance for the elastic flexure of the sample surface at the
edge of the contact area. The strain rate  was calcu-

lated as  = . To analyze the transition from elastic

to plastic deformation, we plotted the load dependences
of the strain rate.

3. RESULTS

X-ray fluorescence analysis shows that the elemen-
tal composition of the samples is close to that described
by the chemical formulas given above. To an accuracy
of 0.5 at. %, the deviation from the nominal composi-
tion at the surface and in the depth of a ribbon is less
than 1.5 at. %. The grain size as determined from SEM
micrographs is 1–20 µm (Fig. 1). It is seen in Fig. 1 that
many grains are shaped like irregular pentagons with
relatively smooth boundaries.

Q
2 ϑsin

λ
---------------

1
a6D

-------- N Mτ+
2 2 τ+( )
--------------------

1
aq

----- N Mτ+
2 τ+

------------------,= = =

ε̇

ε̇ 1
h
---dh

dt
------
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
According to x-ray diffraction analysis, the quasic-
rystalline icosahedral phase (i-QC) is predominant in
all the ribbons. Typical x-ray diffraction patterns were
presented in our previous papers [23, 24], and the
results agree well with the phase diagram from [32–36]
and with the data from [37–39]. The single-phase qua-
sicrystalline samples have the composition of
Ti41.5Zr41.5Ni17. In these samples, the quasi-crystallinity
parameter aq, the lattice parameter a6D, and the coher-
ent-domain size are maximum.

Figure 2 shows typical load–indenter-displacement
curves (P−h curves) for a single-phase quasicrystalline
Ti41.5Zr41.5Ni17 sample and a W + 12% Ta (111) crystal.
In the first nanoindentation cycle, the curves are quali-
tatively similar. However, in the stage of unloading, the
quasicrystal exhibits a higher degree of elastic recovery
as compared to that of the crystal. The stiffness (dP/dh)
of the quasicrystalline sample as determined in the ini-
tial unloading segment is almost half the stiffness of the
crystal. The calculated values of the Young modulus of
the samples range from 60 to 100 GPa (depending on
the composition and perfection of the QC phase) and
agree well with the data from [40].

The maximum differences between the quasicrystal
and crystal are observed in the second nanoindentation
cycle. The P−h curve of the quasicrystal contains clear
steps (plateaus on which the indenter displacement
changes by ∆h in a jump) corresponding to an increase
in the indentation depth with almost no increase in load.
In quasicrystals, analogous jumps have been detected
earlier in the Al–Cu–Fe system [21, 22]. This effect of
steplike deformation is most pronounced in the single-
phase Ti41.5Zr41.5Ni17 sample (Fig. 2b), where the steps
are of almost equal length (about 6 nm). For the single-
crystal W + 12 at. % Ta sample tested under the same
conditions, steps are not observed. Depending on the

50 µm

×1000

Fig. 1. SEM micrograph of the Ti41.5Zr41.5Ni17 quasicrystal
surface.
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Fig. 2. Loading curves for (1) a single crystal and (2) a quasicrystal as recorded with a Berkovich indenter in (a) the first cycle and
(b) the second cycle.
relative indentation depth (h – h0)/h0 (where h0 is the
indentation depth after the first cycle), the ACP in a
quasicrystalline sample increases nonlinearly to ≈30%
and then decreases stepwise by 1–1.5 GPa, with the
increase and decrease segments alternating. In the crys-
tal, the ACP increases almost linearly to 6.2 GPa as the
indentation depth increases to 7.5–8% and then defor-
mation occurs at a constant ACP (experimental curves
can be found in [23]).
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Fig. 3. Strain rate  as a function of load P for (1) the W +
12 at. % Ta single crystal and (2) the Ti41.5Zr41.5Ni17 qua-
sicrystal. The vertical dashed line conventionally separates
region I of elastic strain and region II of plastic strain of the
crystal.

ε̇

PH
The specific features of the quasicrystal deformation
as compared to the crystal deformation are clearly vis-
ible in the dependence of the strain rate  on the load P
(Fig. 3). In the quasicrystal, the initial strain rate is high
(four to six times greater than that for the crystal). How-
ever, as the load increases, the strain rate decreases non-
linearly. As the load reaches P ≈ 16 mN (which corre-
sponds to an indentation depth of greater than 350 nm;
see Fig. 2), the (P) curve exhibits bursts correspond-
ing to very rapid motion of the indenter to a depth of
~4–6 nm. These bursts alternate with drops, whose low-
est points fall on the continuation of the initial depen-
dence (Fig. 3, curve 2). For the crystal, the curve con-
tains a region of elastic strain, where the strain rate is
constant (~0.004 s–1). A transition to plastic deformation
occurs in a certain load range (13–17 mN, which corre-
sponds approximately to the onset of bursts in the curve
for the quasicrystal) and is accompanied by an almost
threefold increase in the strain rate (Fig. 3, curve 1). In
[23], we showed that the lower the volume fraction of
the quasicrystalline phase in a sample, the less intense
and less pronounced the teeth and the smaller their
number. Hence, steplike deformation is characteristic
of the quasicrystal. As noted above, the lower the vol-
ume fraction of the crystalline phases and the higher the
homogeneity of the quasicrystalline phase, the greater
aq. Figure 4 shows the effect of the quasi-crystallinity
parameter aq on the rapid-deformation step length ∆h,
the calculated values of the Young modulus E, the nano-
hardness H, and the coherent-domain size L. Note that,
apart from the E(aq) curve, the other dependences dem-
onstrate a linear increase. According to existing con-

ε̇

ε̇
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cepts [1, 41], the perfection of a quasicrystalline struc-
ture increases with the coherent-domain size and with
the quasi-crystallinity parameter aq. The characteristic
grain size of the quasicrystalline phase (10–20 µm, as
measured by SEM) are well above the indentation size
(~2.5 µm). This means that nanoindentation is per-
formed within one grain and that rapid plastic deforma-
tion takes place in even a smaller volume of the QC
phase. Thus, it is reasonable to assume that steplike
deformation occurs in a single quasicrystal.

4. DISCUSSION OF THE RESULTS

A substantial difference in the character of deforma-
tion between the quasicrystal and the W + 12 at. % Ta
single crystal with a similar hardness manifests itself in
the elastoplastic loading stage. The (P) dependences
can be divided into two characteristic sections (I and II
in Fig. 3). For the crystal, these sections correspond to
elastic and plastic strains, respectively. In the first sec-
tion, the strain rate is constant. The boundary between
the regions of elastic and plastic strains for the crystal
can be taken to be the inflection point in the (P) curve
(shown by the vertical dashed line in Fig. 3). The qua-
sicrystal begins to deform at a rate that is almost five
times that of the crystal, and this rate decreases expo-
nentially with increasing load by the end of the first sec-
tion. The initial ratio between the strain rates of the qua-
sicrystal and the crystal significantly exceeds the ratio
of their elastic moduli. At about P ≈ 13 mN, the strain-
rate ratio is approximately equal to the ratio of the elas-
tic-moduli of these two materials. This behavior sug-
gests that plastic deformation in the quasicrystal occurs
even in the initial segment of the second deformation
cycle. The exponential character of the (P) depen-
dence implies the activated diffusion absorption of
point defects by dislocations during dislocation climb.
The decrease in the strain rate mentioned above is well
known as strain hardening. Many researchers relate this
effect to the accumulation of phason strains and to an
increase in the phason component of the Burgers vector
(b⊥ ) of perfect dislocations [1, 3–8, 12, 42].

The first strain-rate burst in the quasicrystal is
observed at P ≈ 16 mN. The ACP before the burst is P ~
7.4 GPa. Each subsequent burst requires a lower value
of ACP. This phenomenon was earlier detected for qua-
sicrystals subjected to tension–compression tests and is
called strain-induced disordering [1, 6, 7, 12]. The for-
mation of a step in the P(h) curve (Fig. 2b) or a strain-
rate burst may indicate a change in the deformation
mechanism (Fig. 3). The work done by an indenter in
overcoming the material resistance to penetrate into it
can be estimated as the product of the load P multiplied
by the displacement h. During rapid plastic deforma-
tion, the work is consumed in changing the quasicrystal
substructure. The effective work of rapid deformation
can be written as

ε̇

ε̇

ε̇
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 (2)

 (3)

where ∆P is the change in the load per step length ∆hc

(minus the flexure) and dP/dh determines the slope of
the P(h) curve before the burst. The characteristic work
is done on the volume ∆V = ∆hcS, where S is the projec-
tion of the indentation area. To estimate the number of
atoms in this volume NV, we use the crystal approximant
structure model [43, 44]. The quantity Ec = ∆W/NV is the
change in the enthalpy per atom for rapid plastic defor-
mation. As the load and, hence, (h – h0)/h0 increase, Ec

decreases exponentially. Extrapolation to h – h0 = 0
gives a value of about 0.71 eV/atom. This value virtu-
ally coincides with the thermal activation energy for
dislocation motion (~0.75 eV/atom) in Al-based quasi-
crystals [1].

Nanoindentation experiments reveal the discrete
nature of plasticity due to the nucleation and motion of
single dislocations in crystals [16–18] and quasicrystals
[45] or to the formation of shear bands in metallic
glasses [14, 15, 46]. However, the curves in Fig. 3 indi-
cate that the deformation mechanisms operating in
crystals and quasicrystals are different. Plastic defor-
mation of crystals is described by several mechanisms,
namely, dislocation slip, diffusion-controlled disloca-
tion climb, and mechanical twinning [47]. The hypo-
thetic mechanisms of plastic deformation of quasicrys-
tals discussed in the literature are as follows: (i) nucle-
ation of perfect dislocations [1, 4, 10, 11]; (ii)
dislocation motion via pure diffusion climb [48]; (iii)
deformation via a martensite-like transformation [1];
and (iv) deformation as a result of the accumulation of
specific phason strains, the formation of phason walls,
and the recession of partial dislocations [3, 12, 42].

These mechanisms are similar in many respects to
those known for crystals. Nevertheless, there are signif-
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∆h, (3) Young modulus E, and (4) nanohardness H.
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icant differences. In quasicrystals, the motion of perfect
dislocations is hindered at low temperatures; at elevated
temperatures, a wall of phason defects forms behind a
moving dislocation and distorts the perfect quasi-lattice
[1]. The nature of phason strains and their effect on
plastic deformation were studied comprehensively in
[3] and were defined as matching faults. Physically,
these defects consist of discrete but collective atomic
displacements, which introduce a structural and chem-
ical disorder. According to modern concepts, phason
strains play a key role in the plastic deformation of qua-
sicrystals. The Burgers vector of a dislocation in a qua-
sicrystal has two components, b|| and b⊥ , where b|| is
responsible for the phonon part of deformation and b⊥
is related to phason strain. According to a model devel-
oped by Feuerbacher et al. [4–9], plastic deformation in
quasicrystals is related to the evolution of two substruc-
ture parameters, namely, the dislocation density and the
deformation accommodation parameter ξ = |b⊥ |/ |b|||,
which is responsible for strain-induced disordering and
thermally activated reordering. The accommodation
parameter increases with plastic strain, whereas the dis-
location density can decrease. The plastic strain of a
quasicrystal is thought to be sensitive to the loading rate
and temperature [1, 4–9]. The Feuerbacher model was
developed for high deformation temperatures; however,
according to recent data, the dislocation mechanism
can be operative at low temperatures and low strain
rates [10, 49]. During nanoindentation, the martensite-
like mechanism is unlikely to operate, since the strain
rate is insufficiently high. We believe that the observed
effects can be accounted for by the following disloca-
tion mechanisms.

Plastic flow in the initial segment (≤P ≈ 15.5 mN) of
the second loading cycle is caused by the diffusion
climb of dislocations, which effectively absorb point
defects in the stress field created under the indenter
(stress-induced predominant adsorption [49]). The dif-
fusion nature of this process is indicated by the expo-
nential load dependence of the strain rate. A decrease in
the strain rate to the level corresponding to the elastic
limit of the crystal is likely related to a total decrease in
the concentration of quenching-induced point defects
and to the simultaneous accumulation of phason strains
and dislocations. These dislocations cannot move via
slip, which causes hardening.

At P > 15.5 mN, an event of rapid plastic deforma-
tion occurs. We assume that each such event is accom-
panied by the limiting saturation of the phason compo-
nent (b⊥ ) of the Burgers vector of a perfect dislocation.
The strain accommodation parameter ξ reaches a cer-
tain limiting value after which the splitting of a perfect
dislocation into two partial dislocations and their reces-
sion with the formation of a microtwin (“phason step”)
become energetically favorable. Every strain-rate burst
is related to the introduction of new dislocations (as
was the case in crystals subjected to very slow deforma-
tion [16–18]), and every drop is related to the formation
PH
of a phason wall, which can only be overcome by
increasing the load. In the course of deformation, pha-
son strains accumulate continuously in the quasicrystal,
which favors strain-induced disordering, and each sub-
sequent rapid deformation occurs at a lower contact
pressure. Thus, the deformation curve of a quasicrystal
consists of alternating segments of elastoplastic (as in
the initial stage) and rapid plastic strains.

5. CONCLUSIONS

Nanoindentation has been used to perform a com-
parative study into the deformation mechanisms oper-
ating within one grain of a i-Ti41.5Zr41.5Ni17 quasicrystal
and in a W + 12 at. % Ta single crystal. It has been
found that the elastic modulus of the i-Ti41.5Zr41.5Ni17
quasicrystal is 90 ± 1 GPa and its microhardness is
7.1 ± 0.2 GPa. Under contact-loading conditions, above
a certain critical load, the deformation curve for a qua-
sicrystal acquires a steplike character with alternating
segments of elastoplastic deformation and rapid plastic
deformation. Under nanoindentation at room tempera-
ture, the plastic-strain activation energy of the quasic-
rystal has been found to be 0.71 eV/atom, which virtu-
ally coincides with the thermal activation energy for
plastic strain.

The mechanical behavior of the quasicrystal during
nanoindentation is described well by the quasicrystal
deformation mechanisms derived from experiments on
high-temperature deformation. The initial stage of qua-
sicrystal plastic deformation is related to the processes
of diffusion dislocation climb and the accumulation of
phason strains. An increase in the phason-defect den-
sity favors deformation-induced disordering; so each
subsequent rapid deformation occurs at a lower contact
pressure. A strain-rate burst can be caused by the “slip”
of extended dislocations with the formation of a single
slip band, and a drop in the strain rate can be related to
the introduction of new phason defects and the forma-
tion of a phason wall.
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Abstract—Modulation instability of direct bulk magnetostatic waves in structures consisting of two magneti-
cally coupled planar films separated by a nonmagnetic layer is studied. It is found that, depending on the type
of excitation of the waveguide modes, mode coupling can either change the characteristics of the modulation
wave instability or ensure their stability with respect to the corresponding perturbations by affecting the disper-
sion properties of the structure.
1. INTRODUCTION

The interest shown in magnetostatic waves (MSWs)
in recent years is due, above all, to the fact that these
waves are substantially nonlinear even at low intensi-
ties [1–3] and can be used for the creation of new
devices using the nonlinear properties of MSWs in the
microwave range important in engineering [4]. Due to
its nonlinear character, MSW dynamics gives rise to a
number of effects: self-modulation, self-focusing,
instability with respect to disintegration into new waves
[5, 6], and the formation of bright and dark wave enve-
lope solitons [7–9]. Among these effects, modulation
instability occupies a special place, since, for different
system parameters and different initial conditions, it
can result in the formation of various dynamic wave
structures, including ones that are undesirable in terms
of the practical application of MSWs. The theoretical
analysis of MSW dynamics available in the literature is
basically restricted to structures with one waveguide
layer. However, using multilayer structures as a
waveguide medium offers greater possibilities for the
control of dynamic MSW characteristics, since in such
structures, due to the coupling of the magnetic
moments of neighboring layers, the dynamic properties
of the spin subsystem are substantially modified and
new types of spin-wave excitations occur [10–12]. The
main types of interlayer magnetic coupling are dipole–
dipole [13] and exchange [14] interactions or their
combination [15]. The effect of the interlayer magnetic
coupling is most important for the formation of unified
MSW excitations in the case where waves in separate
layers are phase matched. We study the features of the
modulation instability of the envelope of direct bulk
MSWs propagating in a normally magnetized two-
layer ferrite-garnet structure with magnetic interlayer
interaction of sufficient strength for a unified wave
packet to form.
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2. EQUATIONS FOR COUPLED MODES

We consider a three-layer planar structure oriented
normal to the z axis and consisting of two (100)-ori-
ented ferrite-garnet films separated by a nonmagnetic
layer. Let a wave packet formed by interacting MSW
modes belonging to each of the films be excited and
propagate in this structure along the x axis. In this case,
the magnetostatic potential of the wave packet can be
represented as a sum of the eigenmodes of the isolated
magnetic films forming the structure. The interlayer
coupling is effective only between those two modes of
the complete set of modes of each film for which the
phase-matched conditions are most exactly satisfied,
namely, for which the quantities 2δω = ω1 – ω2 and
2δk = k1 – k2 are minimum or zero (here, ω1, 2 are the
carrier frequencies of pulses formed by the MSW
eigenmodes of the isolated films and k1, 2 are the propa-
gation constants of these modes). In what follows, we
assume that there are no other perturbations (for exam-
ple, periodic inhomogeneity of the layer parameters)
that might cause modes of different orders to become
phase matched. Therefore, pulses are formed only by
coupled modes of the same order (in particular, by first-
order modes, since they are less attenuated) corre-
sponding to the different waveguide layers. The magne-
tostatic potential can be written as

 (1)

where M0n is the magnetization of the corresponding
film. We assume that the effective field H (including the
bias magnetic field H0 and the cubic- and growth-anisot-
ropy field Ha) is directed along the z axis (H || M0n || z).

Ψ Ψn

n 1 2,=

∑=

=  
4πM0n

kn χn
2 χan

2
+

-----------------------------Un z( )ϕn x t,( ) i ωnt knx–( )[ ] ,exp
n

∑
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In this case, the diagonal and off-diagonal components
of the magnetic susceptibility tensor (in the absence of
damping) are determined by the expressions χn =

ωMnωHn/(  – ) and χan = χnωn/ωHn, where we
introduced the notation ωMn = 4πγM0n and ωHn = γH –
ωMn. The profile function Un(z) (describing the mode
distribution in a cross section of each of the n layers)
and its coefficient can be found from the relation
between the magnetostatic potential and the variable
magnetic field of an MSW and from the Walker equa-
tion

 (2)

where  is the magnetic permeability tensor for the
nth film. The dimensionless complex amplitude of the
magnetostatic potential is expressed in terms of nor-
malized complex values of the variable components of

the magnetic moments ϕn =  and, due
to mode coupling, is a slowly varying function of coor-
dinate and time. The dispersion equation for direct bulk
MSWs has the form

 (3)

where ln is the thickness of the corresponding film and
the transverse wavenumber of an MSW is related to the
propagation constant by the expression kzn =

. In the long-wavelength approximation,
we have kn ! kzn and the dispersion equation assumes
the form knln = –2/χn. The two dispersion parameters
obtained from this equation and the parameter describing
the nonlinearity of the medium are determined by the
following derivatives taken at kn  0 and ϕn  0:

 

The first dispersion parameter determines the group
velocity of an MSW, the second dispersion parameter
describes the dispersion of the group velocities, and the
parameter gcn characterizes the nonlinear self-action of
the system.

In the presence of a phase mismatch between the
interacting modes, we assume that the coupling of the
propagating modes makes their wavenumbers equal
(δk = 0) and that a slight difference in the parameters of
the films (e.g, in their thickness) produces a difference

ωHn
2 ωn

2

grad Ψn hn, div µ̂n∇Ψ n( ) 0,= =
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in the MSW eigenfrequencies according to dispersion
equation (3), i.e., that δ = δω ≠ 0.

The dynamics of the envelope of the coupled pulses,
i.e., of the slowly varying amplitudes of each of the
interacting MSWs, can be described by the equation

 (4)

where the upper sign in the argument of the exponential
function corresponds to the mode with n = 1, the lower
sign corresponds to the mode with n = 2, and qn is a
mode-coupling coefficient determined by the overlap of
the profile functions.

3. EQUATIONS FOR THE PARTIAL PULSES

Let us introduce the following characteristic times:

the mode interaction time Tqn = , the dispersion time

Tdn = , the group-mismatching time Trn =

L0n/v n, and the self-modulation time Tgn = ,
where L0n and ϕ0n are the initial duration (at t = 0) and
the initial amplitude of the input mode pulses. In the
case of strong mode coupling, we have Tqn ! Tdn, Trn,
Tgn. Therefore, in the absence of losses, the variation in
the pulse power caused by spatial dispersion, group-
velocity dispersion, and cubic nonlinearity in time Tqn

is negligible. Hence, we may assume that, during the
time interval Tqn, the condition |ϕ1|2 + |ϕ2 |2 = const is
satisfied fairly accurately. From this condition, it fol-
lows that the mode-coupling coefficients satisfy the
equation q1 =  = q. The existence of an upper bound
for the quantity q is related to the fact that, for the MSW
envelope, the characteristic time of the amplitude vari-
ation must be much greater than the wave period. Tak-
ing into account this fact and the fact that, for pulses
propagating in the waveguide, the group-mismatching
time is shorter than the self-modulation and dispersion
times, we find that, in the case of strong mode interac-
tion, the mode-coupling coefficient must obey the con-

dition  ! q ! ωn, where τn are the durations of
MSW pulses that form in each of the layers of the struc-
ture. This condition can be satisfied by varying the cou-
pling between the magnetic moments of the layers
through appropriate choice of the intermediate-layer
thickness and the interface topology.

The approximation of strong mode coupling makes
it possible to write the time envelopes of the pulses as
the sum of two partial pulses that are not coupled in the
linear approximation [16, 17]:

i
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 (5)

where aj(x, t) are slowly varying amplitudes of the par-
tial pulses. Here, we introduced the parameters σ =

 and ρj = q*[δ + (–1)jσ]–1. Substituting
Eqs. (5) into Eq. (4) and passing to the running coordi-
nate ξ = x – 2V1V2(V1 + V2)–1t, we obtain equations for
the amplitudes of the partial pulses

 (6)

where  = (–1)jVj(V1 – V2)/(V1 + V2) and the following
effective parameters (describing the dynamics of the
corresponding partial pulses) are introduced: the group
velocity

 

the group velocity dispersion

 

the self-modulation factor

 

and the partial-pulse cross-modulation factor

 

Under the phase-matched conditions (ω1 = ω2 = ω, δ =
0), the effective parameters are given by

 

 

Equations (6) should be solved together with the ini-
tial conditions for the amplitudes of partial pulses.
Starting from the expansion in terms of partial pulses
(5), we can express the initial amplitudes of the partial
pulses in terms of the initial amplitudes of the two cou-
pled modes:

 (7)
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PH
It follows from Eq. (7) that, under the phase-matched
conditions in the case of symmetric or antisymmetric
excitation of the film structure (where ϕ10 = ±ϕ20), the
amplitude of one of the partial pulses is equal to zero
(a1 = a10 = 0 for symmetric excitation, a2 = a20 = 0 for
antisymmetric excitation) and the dynamics of the
entire wave packet is determined by the dynamics of
only one of the partial pulses.

If the input wave packet is sufficiently long and the
dispersion terms can be disregarded (quasi-monochro-
matic approximation), the solutions to Eqs. (6) for the
partial pulses with weak perturbations of their ampli-
tudes can be written as

 (8)

where ζj is the complex amplitude of the partial pulse
perturbation and aj0 @ |ζj |. Substituting Eq. (8) into
Eqs. (6) and linearizing them with respect to weak per-
turbations ζj, we obtain a system of equations for per-
turbations

 (9)

In the case of phase matching, the equations for per-
turbations assume the form

 (10)

We describe the dynamics of perturbations by har-
monic functions:

 (11)

Here, κj and Ωj are the wavenumber and frequency of
perturbations (Ωj = ω – ωij, where ωij is the frequency
of a signal perturbation wave or of spontaneous noise
perturbation). Substituting Eq. (11) into Eq. (10) with
a3 – j0 = 0, we obtain a system of two homogeneous
equations whose solution gives the dispersion relation,

 (12)

where  is the signum function and  =

. It follows from Eq. (12) that, for a posi-
tive effective dispersion, the frequency Ωj is real at any
value of the wavenumber κj and the MSW steady state
is stable with respect to weak perturbations. In the case
where Dj < 0 and |κj | < , the frequency becomes
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imaginary and the perturbation ζj increases exponen-
tially in time. The amplification factor is given by

 (13)

The maximum value of the amplification factor αjmax =

 is reached at |κjm | = . An important fea-
ture of the magnetically coupled structure under study
is that the modulation instability can occur in the case
of normal dispersion of MSW eigenmodes of each of
the layers.

4. NUMERICAL ANALYSIS

Analyzing the above relations numerically makes it
possible to obtain some important dependences charac-
terizing the MSW modulation instability in two-layer
structures. We choose the parameters of the magnetic
layers corresponding to ferrite-garnet films: 4πM0n =
4πM0 = 1750 G and γ = 1.76 × 107 Oe–1 s–1. In the case
where the anisotropy of the magnetic layers is included
and the coordinate axes are taken to be along the {100}
crystallographic directions, we define the effective field
to be H = H0 + Ha. Here, H0 is an external bias magnetic
field and Ha = 2(K1 + Ku)/M0 is the magnetic anisotropy
field, where K1 and Ku are the crystallographic and
growth anisotropy constants of the layers [18, 19]. To
obtain the graphic dependences shown below, the initial
dispersion equation (3) and its first and second deriva-
tives with respect to frequency were solved numeri-
cally, since the kn  0 approximation used to derive
the corresponding analytical expressions appears to be
incorrect in many cases [19].

α j 2Im Ω j( ) D jκ j κ j
2 κ j
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–1

2.5
H, kOe

2.62.4

D
j, 

10
5  c

m
2 /s

–2

0

1
j = 1

1

2
3
4
5

6

7

9
10
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Fig. 1. Field dependence of the effective dispersion Dj for
antisymmetric (j = 1) and symmetric (j = 2) excitation of the
structure calculated for l = 5 (dashed curves) and 10 µm (solid
curves); q = 3 × 108 (curves 1, 4, 7, 10), 5 × 108 (curves 2, 9),
and 7 × 108 s–1 (curves 3, 5, 6, 8); ω/2π = 2.5 GHz.
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Figure 1 shows the dependence of the effective dis-
persion Dj on the effective field H obtained for single-
partial modes in the cases of antisymmetric (j = 1) and
symmetric (j = 2) excitation of the structure, provided
that the phase-matched conditions are satisfied. The
thicknesses of the magnetic layers are chosen to be
identical and equal to l = 5 and 10 µm; the frequency
ω/2π = 2.5 GHz; and the mode-coupling coefficient q =
3 × 108, 5 × 108, and 7 × 108 s–1. From Fig. 1, it follows
that, in the case of antisymmetric excitation of the
structure, the effective dispersion is always positive;
hence, MSWs in a magnetically coupled system are sta-
ble against modulation (in contrast to MSWs in isolated
films). In the case of symmetric excitation, the effective
dispersion is negative and the modulation instability
must appear. An increase in the magnetic field and a
decrease in the mode-coupling coefficient give rise to
an increase in the magnitude of the effective dispersion
of partial pulses, and the H dependence of Dj becomes
more substantial as the thickness of the magnetic layers
increases.

In Fig. 2, the quantity  (which determines the
width of the interval of wavenumbers for which pertur-
bations of the MSWs increase in time) and the maximum
amplification factor α2max normalized to the initial
amplitude of the partial pulses and to its square, respec-
tively, are plotted as a function of the effective magnetic
field for symmetric excitation of the structure with the
abovementioned parameter values: q = (3, 5, 7) × 108 s−1,
and l = 5 and 10 µm. We see that the quantity 
increases as the field H decreases or the mode-coupling
coefficient and the thickness of the magnetic layers
increase. Moreover, the maximum amplification factor
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does not depend on the layer thickness and the coupling
coefficient and increases with the effective magnetic
field. Thus, the narrower the interval of the wavenum-
bers corresponding to the MSW modulation instability,
the smaller the minimum time of the increase in the
amplitude of a modulating quasi-monochromatic signal
wave. We note that, by properly choosing the growth
anisotropy of ferrite-garnet films, one can substantially
reduce the external bias magnetic field necessary to
obtain the required effective magnetic field; this cir-

6

15
κ2, cm–1

30

α 2
, 1

06 
s–1

0

¸

1 2 33 21

Fig. 3. Dependence of the amplification factor of an MSW
perturbation on its wavenumber calculated for q = 3 × 108

(solid lines) and 5 × 108 s–1 (dashed lines),  = (1, 2, 3) ×

10–4 (curves 1–3, respectively), l = 5 µm, and H = 2.6 kOe.

a20
2

PH
cumstance is important for practical control of the
parameters of the modulation instability of coupled
modes in the structure.

The amplification factor for a modulating MSW sig-
nal is plotted in Fig. 3 as a function of its wavenumber.
The following parameter values were used in the calcu-
lations: q = (3, 5) × 108 s–1, l = 5 µm, and H = 2.6 kOe,

and the dimensionless amplitude squared was  = (1,
2, 3) × 10–4, which corresponds to an MSW power of
2.2–6.4 mW per centimeter of the width of the two-
layer waveguide structure. We see that the width of the
region of the modulation instability and the maximum
value of the amplification factor increase as the inten-
sity of the input radiation or the nonlinearity parameter
increases. As noted above, the increase in the coupling
coefficient causes an increase in the width of the mod-
ulation instability region only.

A numerical solution to Eq. (10) for the case of sym-
metric excitation (ζ1 = 0, ζ2 ≠ 0) is shown in Fig. 4; the
following parameter values were used: l = 5 µm, H =

2.6 kOe, q = 5 × 108 s–1,  = 3 × 10–4, and the wave-
number of the modulating signal κ2 = 10 and 22.83 cm−1

(the latter value corresponds to the maximum amplifi-
cation of a perturbation at the chosen values of the sys-
tem parameters and the effective field H). As the initial
condition, we chose a sufficiently broad stepped MSW
pulse modulated by the harmonic function ζ2 =
b21cosκ2ξ, where b21 = a20 × 10–3. Curves 1 correspond
to the initial modulation signal (t = 0), and curves 2 and
3 to the modulation amplitudes at t ≈ 292 and 585 ns,
respectively. The results of the numerical solution of
Eq. (10) confirm the validity of the analytical expres-
sions obtained above and show that a modulation signal
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Fig. 4. Distributions of the MSW perturbation magnitude along the waveguide length at the instants of time (1) t ≈ 0, (2) 292, and

(3) 585 ns calculated for κ2 equal to (a) 10 and (b) 22.83 cm–1;  = 3 × 10–4, l = 5 µm, H = 2.6 kOe, and q = 5 × 108 s–1.a20
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remains almost harmonic over the time during which an
MSW pulse travels a distance of ≈1 cm in the structure.
The distortions arising at the edges are related to the
spatial boundaries of the perturbation. We note that, in
the absence of damping, the growth of the perturbation
amplitude is unbounded. The damping limiting this
growth can be taken into account by introducing either
a relaxation frequency into the components of the mag-
netic permeability tensor [19] or a relaxation term
directly into the original dynamic equations.

5. CONCLUSIONS

Our analysis has shown that, in two-layer magnetic
structures, the modulation instability of direct bulk
MSWs with respect to longitudinal (i.e., growing in the
longitudinal direction) perturbations occurs in the case
of symmetric initial excitation of both waveguide lay-
ers. In the case of antisymmetric excitation, MSWs in
the structure considered appear to be stable against
modulation. The coupling between the magnetostatic
eigenmodes of each of the layers substantially affects
the interval of wavenumbers of an amplified perturba-
tion; namely, an increase in the coupling coefficient
widens this interval and increases the wavelength that
corresponds to the maximum amplification of the mod-
ulating MSW perturbation. However, the maximum
amplification factor appears to be independent of mode
coupling. The simulation has also shown that, as the
effective magnetic field increases, the interval of wave-
numbers of the amplified signal becomes narrower and
the maximum amplification factor increases. Thus,
using the structure under study as a waveguide for
MSWs allows one to realize situations of both modula-
tion stability and modulation instability (with the char-
acteristic parameters preset in certain limits) by choos-
ing the initial excitation only. From the above analysis
it also follows that, in the case where MSWs (in partic-
ular, surface MSWs) in isolated waveguide layers are
stable, a magnetically coupled two-layer structure can
be used to realize (under symmetric excitation) the
modulation instability of coupled MSW modes.
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Abstract—The magnetic properties of Y2B2/3Mo4/3O7 complex oxides (B = Co, Fe) were studied in the tem-
perature range 2–300 K. At low temperatures, these compounds exhibit spin-glass properties with freezing tem-
peratures Tf = 26 and 33 K, respectively, and typical features in the magnetic hysteresis and in the dependences
of the real part of the dynamic magnetic susceptibility on temperature and ac magnetic field frequency. Above
Tf, the static magnetic susceptibility of the samples studied depends on the applied magnetic field, which is ten-
tatively assigned to the presence of metallic cobalt and/or yttrium orthoferrite YFeO3 introduced in the course
of sample preparation. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

A2B2/3 O7 complex oxides [where A stands for
rare-earth (RE) elements; Bi, B is a 3d transition metal;
and B' is Nb5+, Ta5+, Mo5+, or Re5+] are attracting
intense research interest due to the specific features in
their structure and electrical and magnetic properties
[1–9]. The crystal structure of these compounds was
originally identified with that of rhombohedrally dis-
torted pyrochlore A2B2O7 with the following parame-
ters (in the hexagonal basis): ah ~ 21/2ac and ch ~ 31/2ac,
where ac is the lattice parameter of cubic pyrochlore.
High-resolution electron spectroscopy and electron and
x-ray diffraction studies performed in [5, 6] revealed
two structural modifications characteristic of these
compounds, namely, trigonal (space group P3121, z = 6,
zirkelite-type structure) and monoclinic (space group
C2/c, z = 8, 2M CaZrTi2O7 zirconolite-type structure).
In particular, Er2Mn2/3Mo4/3O7, which is similar in
structure to the Y2Co2/3Mo4/3O7 and Y2Fe2/3Mo4/3O7
oxides studied in this work, was assigned to the mono-
clinic crystal system with space group C2/c and lattice
parameters a = 12.781 Å, b = 7.378 Å, c = 11.643 Å,
and β = 100.53°. In the unit cell of this oxide, two kinds
of Er3+ cations are in the 8f positions, a Mo5+ ion is in
the 8f position, Mn2+ cations of the first type are in the
4e positions, and Mn2+ of the second type and the Mo5+

ion are in position 4e in the proportion 0.33Mn +
0.67Mo.

We studied the magnetic properties of the pyro-
chlore-like oxides Ln2Mn2/3Mo4/3O7 (Ln = Y, Sm, Gd,
Tb [10]) in the temperature range 2–300 K. It was

B4/3'
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found that, at low temperatures (T < 10–12 K), these
compounds possess spin-glass properties with charac-
teristic features of magnetic and thermal hysteresis and
with typical dependences of the imaginary and real
parts of the dynamic magnetic susceptibility on temper-
ature and ac magnetic field frequency. In the paramag-
netic region, the temperature dependence of static mag-
netic susceptibility χ is described by a generalized
Curie–Weiss law with a temperature-independent com-
ponent of ~10–6 cm3/g and a negative Weiss constant
θ < 0 (|θ| < 16 K).

It appeared of interest to study the magnetic proper-
ties of analogous oxides, in particular, of compounds
formed by substituting other 3d elements for Mn. We
present here the results of an investigation of
Y2Co2/3Mo4/3O7 and Y2Fe2/3Mo4/3O7.

2. EXPERIMENTAL
The compounds to be studied were prepared in

solid-phase reactions [3] from the oxides Y2O3
(99.95%), Co3O4, Fe2O3, MoO3 (99.9%), and metallic
molybdenum (99.9%). The synthesis was conducted in
vacuum at a pressure of 10–3 Pa at 1423 K in a furnace
with a W heater. The chemical reactions were moni-
tored using a DRON-2 x-ray diffractometer (CuKα radi-
ation). The lattice parameters were deduced from mea-
surements of interplane lattice distances. The data were
processed with the Fullprof 2004 code.

Magnetic measurements were carried out at the
Magnetometry Center of the Institute of Metal Physics
(UD, RAS) with an MPMS-5-XL SQUID magneto-
meter (QUANTUM DESIGN). Samples of
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Experimental (circles), calculated (solid line), and difference (bottom curve) diffractograms of Y2Fe2/3Mo4/3O7. Vertical bars
specify theoretical positions of the reflections.
Y2Co2/3Mo4/3O7 (in powder form) and Y2Fe2/3Mo4/3O7

(sintered) were placed in a gelatin capsule. The temper-
ature interval covered was 2–300 K. The magnetic field
H could be varied up to 50 kOe. Measurements of the
static magnetic moment of a sample were used to cal-
culate the magnetization M and static magnetic suscep-
tibility χ = M/H. The real part χ' of the dynamic mag-
netic susceptibility was measured in an ac magnetic
field with an amplitude of up to 4 Oe at frequencies f
ranging from 1 to 10000 Hz.

3. RESULTS AND DISCUSSION

The products of sintering of the original reagents
performed in the conditions specified above were
shown to produce x-ray diffraction patterns similar to
those of the complex oxides Ln2A2/3B4/3O7 [2–4]. Figure 1
compares an experimental diffractogram of
Y2Fe2/3Mo4/3O7 with the calculated pattern and differ-
ence curve obtained by Rietveld refinement (space
group P3121). Both diffraction patterns were indexed
using the trigonal unit cell with parameters a =
7.425(2) Å and c = 17.028(4) Å for Y2Co2/3Mo4/3O7 and
a = 7.4172(4) Å and c = 17.115(1) Å for
Y2Fe2/3Mo4/3O7. The positions of atoms in the unit cell
were not refined. Inspection of the x-ray data permits
the conclusion that there is almost a complete absence
of any other phases in the samples.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      200
3.1. Magnetic Properties of Y2Co2/3Mo4/3O7

The temperature dependences of the magnetization
M and susceptibility χ were measured in two experi-
mental regimes referred to subsequently as ZFC and
FC. In the ZFC regime, a sample is cooled to T = 2 K,
after which a dc magnetic field of a given strength H is
applied and the magnetization is measured in the course
of heating. In the FC regime, the sample is cooled from
the high temperature reached and magnetic measure-
ments are performed in the course of cooling in the
same field. The χ(T) dependence measured for
Y2Co2/3Mo4/3O7 in a field H = 0.5 kOe is displayed in
Fig. 2. The inset to Fig. 2 shows the reciprocal suscep-
tibility 1/χ plotted versus temperature. The χ(T) graph
in Fig. 2 suggests that the Y2Co2/3Mo4/3O7 oxide under-
goes a magnetic phase transition at about 25 K. It is at
this temperature and below it that the χ(T) function is
strongly dependent on the magnetic prehistory of the
sample. The χ(T) curves obtained for the sample under
cooling at H = 0 (ZFC regime) and under cooling in a
field H = 0.5 kOe (FC regime) diverge at T ≤ 26 K. The
χ(T) curve obtained in the ZFC mode passes through a
maximum at 23.5 K. These results suggest that the spin-
glass state forms in the oxide under study, as has been
observed by us in Ln2Mn2/3Mo4/3O7 [9]. The pro-
nounced divergence of the χ(T) curves at low tempera-
tures (Fig. 2) apparently indicates a cluster character of
the spin-glass state in Y2Co2/3Mo4/3O7.

The formation of the spin-glass state in
Y2Co2/3Mo4/3O7 is corroborated by a study of the tem-
perature and frequency dependence of the real part χ' of
5
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Fig. 2. Temperature dependence of the magnetic susceptibility χ of Y2Co2/3Mo4/3O7 measured in a magnetic field of 0.5 kOe. The
inset shows the reciprocal magnetic susceptibility 1/χ = f(T) measured in a field of 5 kOe.
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Fig. 3. Temperature dependence of the real part χ' of the dynamic magnetic susceptibility of Y2Co2/3Mo4/3O7 measured with an ac
magnetic field with an amplitude of 4 Oe at frequencies from 1 to 801 Hz.
the dynamic magnetic susceptibility. These experi-
ments were conducted at an ac magnetic field ampli-
tude H~ = 4 Oe. The frequency dependence of χ'(f) is
shown graphically in Fig. 3 for the low-temperature
region T ≤ 40 K. We readily see that the magnetic tran-
sition temperature depends substantially on the fre-
quency f, with the maximum in the χ'(T) relation shift-
ing to higher temperatures as the frequency increases.
This behavior of the ac susceptibility is characteristic of
the spin-glass state.
PH
The dependences of the magnetization M on mag-
netic field measured at different temperatures are dis-
played in Figs. 4 and 5. Note that the M(H) functions
are nonlinear at 2 and 20 K; in addition, experiment
reveals magnetic hysteresis (Fig. 4). The coercive force
is 2.5 kOe at 2 K. These findings can likewise be
accounted for within the concept of the cluster charac-
ter of the spin-glass state.

Magnetization measurements suggest (Fig. 5) that
the dependence of the magnetic susceptibility on mag-
netic field persists in a region above the freezing tem-
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005
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(3) 300 K.
perature Tf, including 300 K. The spontaneous mag-
netic moment calculated for 300 K is ~0.001 µB. We
believe that the existence of a ferromagnetic compo-
nent above the magnetic transformation point indicates
the presence of a small amount of metallic cobalt in the
sample. The origin of this metal can be understood
from the analysis of the products of synthesis of
Y2Ni2/3Mo4/3O7 [8]. We made an attempt to obtain not
only Y2Co2/3Mo4/3O7 but also a complex nickel-contain-
ing oxide of a similar composition in the same condi-
tions (in vacuum at a pressure of 10–3 Pa). X-ray diffrac-
tion analysis of the product of Y2Ni2/3Mo4/3O7 synthesis
showed as the main phase, however, a MoO3-based
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
complex oxide and metallic nickel. This may be obvi-
ously accounted for by the redox reaction

Ni2+ + Mo5+  Ni + Mo6+

occurring in the course of the synthesis.
One cannot rule out the possibility that the formation

of Y2Co2/3Mo4/3O7 is accompanied by a chemical reac-
tion in which Co2+ is reduced to the metallic state in
amounts not detectable by x-ray diffraction measure-
ments. The possible occurrence of this reaction is sug-
gested by the electrode potential of Co/Co2+ (–0.277 eV),
which is close to that of Ni/Ni2+ (–0.250 eV) [11].

The χ(T) and M(H) functions (Figs. 3, 4) are similar
in character to those observed with the pyrochlore-like
05
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Curie constant C, Weiss constant θ, and the quantity χ0 involved in the Curie–Weiss law for the Y2Co2/3Mo4/3O7 and Y2Fe2/3Mo4/3O7
compounds

Compound Cexp, cm3 K/mol θ, K χ0 × 106, cm3/mol Ccalc, cm3 K/mol

Y2Co2/3Mo4/3O7 1.60 –9.69 3.95 1.75 (Co2+–Mo5+)

Y2Fe2/3Mo4/3O7 2.95 –82.3 – 2.50 (Fe2+–Mo5+)

3.84 (Fe3+–Mo5+–Mo4+)
oxides Ln2Mn2/3Mo4/3O7 (Ln = Y, Sm, Gd, Tb), in which
a spin glass was identified as the ground magnetic state.

The totality of the data obtained permits the conclu-
sion that below ~30 K the Y2Co2/3Mo4/3O7 oxide resides
in the spin-glass state.

A specific feature of the magnetic susceptibility for
T > 30 K is the deviation of the 1/χ(T) relation from the
Curie–Weiss law. This is indicated by the temperature
dependence of 1/χ measured in a field of 5 kOe (see
inset to Fig. 2). The nonlinear character of this depen-
dence 1/χ(T) at 5 kOe is expressed by the generalized
Curie–Weiss law

where χ0 is a temperature-independent component, C is
the Curie constant, and θ is the Weiss constant. Table 1
lists experimental values of χ0, θ, and Cexp and the val-
ues of Ccalc derived from the corresponding theoretical
values for the Co2+ and Mo5+ cations (1.875 and
0.375 cm3 K/mol, respectively) with due allowance for
their content in the Y2Co2/3Mo4/3O7 molecule. Cexp is
seen to be slightly smaller than Ccalc, which may tenta-
tively be assigned to the fact that the contribution of

χ χ0 C/ T θ–( ),+=
PH
Mo5+ cations to the magnetic susceptibility in the tem-
perature range covered is determined not only by the
Curie–Weiss law but also by the temperature-indepen-
dent component χ0.

3.2. Magnetic Properties of Y2Fe2/3Mo4/3O7

The results of magnetization and magnetic suscepti-
bility measurements performed on a Y2Fe2/3Mo4/3O7
sample are presented in Figs. 6–8. As can be seen from
Fig. 6, the values of the magnetic susceptibility χ
obtained in the ZFC and FC regimes at ~33 K differ
noticeably. In addition, similar to the Co-containing
oxide, χ was found to be magnetic-field-dependent
above this temperature. The origin of the field depen-
dence of susceptibility of Y2Fe2/3Mo4/3O7 is, however,
not associated with the presence of metallic iron,
because the electrode potential of Fe2+/Fe is substan-
tially lower (–0.440 eV [11]) than that of cobalt. It is
very likely that the samples contain as a ferromagnetic
impurity a very small amount of iron orthoferrite
YFeO3, which is a noncollinear antiferromagnet with
TN = 640 K. The presence of the YFeO3 oxide as an
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Fig. 6. Temperature dependence of the magnetic susceptibility χ of Y2Fe2/3Mo4/3O7 measured in the ZFC and FC modes in mag-
netic fields of (1) 0.5 and (2) 5 kOe. The inset shows the temperature dependence of the reciprocal magnetic susceptibility 1/χ =
f(T) obtained in a field of 5 kOe.
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005



THE SPIN-GLASS STATE 2279
χ' × 104, cm3/g

T, K
10

2.4

20 30 40 50

3.2

4.0
10 Hz
100 Hz
1000 Hz
10 000 Hz

Fig. 7. Temperature dependence of the real part χ' of the dynamic magnetic susceptibility of Y2Fe2/3Mo4/3O7 measured with an ac
magnetic field with an amplitude of 4 Oe at frequencies ranging from 10 to 10000 Hz.

–40 –20 20 400
–3

–2

–1

1

2

3

0

H, kOe

M, emu/g

Fig. 8. Magnetization–field isotherm for Y2Fe2/3Mo4/3O7 measured in the cyclic mode at 2 K.
impurity phase was detected earlier [3] in attempts to
synthesize Ln2FeMoO7 compounds, where Ln stands
for RE elements (from Nd to Tm and Y).

As follows from measurements carried out in a mag-
netic field of 5 kOe, the reciprocal magnetic suscepti-
bility 1/χ at temperatures above the magnetic transition
point obeys the Curie–Weiss law χ = C/(T – θ) only in
the range 220–300 K. The value of the constant C listed
in the table slightly exceeds that calculated for the
(2/3)Fe2+–(4/3)Mo5+ cation combination but is smaller
than that obtained for another possible combination,
(2/3)Fe3+–(2/3)Mo5+–(2/3)Mo4+. It is appropriate to
mention here the Mössbauer studies performed in [12],
according to which the cation combination characteris-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
tic of the ALaFeMoO6 perovskites (A = Ca, Ba) is Fe3+–
Mo4+, in contrast to the manganese-containing com-
pounds ALaMn2+Mo5+O6.

We made an attempt to describe the observed tem-
perature dependence of magnetic susceptibility above
the magnetic transition point Tf in terms of a modified
Curie–Weiss law,

where χ0 = 4.19 × 10–6 cm3/g and θ = 1.98 K. The value
of the Curie constant C obtained in this approximation
(1.75 cm3 K mol–1) turned out, however, to be very

χ χ0 C/ T θ–( ),+=
05
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small as compared to those calculated for the above cat-
ion combinations.

According to the data displayed in Figs. 7 and 8, the
temperature of the magnetic transition in
Y2Fe2/3Mo4/3O7, exactly as in the case of
Y2Co2/3Mo4/3O7, shifts to higher temperatures with
increasing frequency and a magnetic hysteresis loop is
observed at 2 K.

4. CONCLUSIONS

The results obtained in this study permit the conclu-
sion that both oxides prepared here, Y2Fe2/3Mo4/3O7 and
Y2Co2/3Mo4/3O7, are spin glasses with freezing temper-
atures of ~33 and 26 K, respectively. Just as in the case
of Ln2Mn2/3Mo4/3O7, the spin-glass state in

Y2/3 Mo4/3O7 (B' = Co, Fe) is a consequence of frus-
trated magnetic interactions among the disordered sub-
systems of the transition metals occupying the B and B'
positions.
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Abstract—The structure, electrical resistivity, and magnetoresistance of La0.67Sr0.33MnO3 heteroepitaxial
films (120-nm thick) practically unstrained by lattice mismatch with the substrate were studied. A strong max-
imum of negative magnetoresistance of ≈27% (for µ0H = 4 T) was observed at T ≈ 360 K. While the magne-
toresistance decreased monotonically in magnitude with decreasing temperature, it was still in excess of 2% at
150 K. For T < 250 K, the temperature dependence of the electrical resistivity ρ of La0.67Sr0.33MnO3 films is
fitted well by the relation ρ = ρ0 + ρ1(H)T2.3, where ρ0 = 1.1 × 10–4 Ω cm, ρ1(H = 0) = 1.8 × 10–9 Ω cm/K2.3,
and ρ1(µ0H = 4 T)/ρ1(H = 0) ≈ 0.96. The temperature dependence of a parameter γ characterizing the extent to
which the electrical resistivity of the ferromagnetic phase of La0.67Sr0.33MnO3 films is suppressed by a magnetic
field (µ0H = 5 T) was determined. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Perovskite-like manganites La1 – x(Sr,Ca)xMnO3
have promising application potential for use in magne-
toresistive sensors [1], memory cells [2], and active (or
passive) elements of spintronics, on which considerable
progress has been made in recent years [3, 4].

Manganites are characterized by a strong interrela-
tion between the spin, charge, and orbital interactions.
This feature makes it possible to optimize (tailoring)
their electronic parameters by properly varying the
doping level (the index x in the chemical formula),
applying a magnetic field, or changing the structure,
type, and magnitude of elastic strains in the unit cell.

To use the potential inherent in La1 – x(Sr,Ca)xMnO3
films to the full extent, as well as to unravel the funda-
mental mechanisms underlying their electric and mag-
netic transport properties, one needs to have thin epi-
taxial layers that are uniform in thickness, composition,
and Curie temperature TCurie. However, even at T < TCurie
and even in compositionally uniform manganite films,
there are not only ferromagnetic domains but also
inclusions of various (paramagnetic, antiferromagnetic,
etc.) phases. The difference between the values of TCurie
in the bulk of a La1 – x(Sr,Ca)xMnO3 film, at the free sur-
face, and near the interface with the substrate can be as
much as a few tens of kelvins [5]. The extent to which
nonferromagnetic phase inclusions can affect electron
transport in a manganite film depends on their concen-
tration, size, and spatial orientation, which vary with
temperature and magnetic field strength [6]. This con-
siderably complicates the obtainment of reliable infor-
1063-7834/05/4712- $26.002281
mation on the electronic parameters of the ferromag-
netic phase in a manganite film.

We report here on a study of the dependence of the
electrical resistivity ρ of La0.67Sr0.33MnO3 films
(LSMO), d = 120 nm thick, on temperature and mag-
netic field strength. To reduce the effect of nonuniform
strains on electron transport, manganite films were
grown on substrates of a perovskite-like oxide with a
very small lattice misfit.

2. EXPERIMENT

LSMO films (120-nm thick) were grown on
(LaAlO3)0.3 + (Sr2AlTaO6)0.7 (LSATO) substrates by
laser evaporation (KrF, λ = 248 nm, τ = 30 ns). In the
course of evaporation of a starting LSMO ceramic tar-
get, the substrate temperature was 790°C and the oxy-
gen pressure in the growth chamber was maintained at
a level of 0.3 mbar. The conditions of preparation of the
manganite films are described in [7].

The structure of LSMO films was studied by x-ray
diffraction (Philips X’pert MRD, ω/2θ and θ scans,
rocking curves). The ω/2θ diffractograms were
obtained with the incident and reflected x-ray beams
lying in the plane normal to (001) or (101) LSATO. The
manganite film surface morphology was visualized
with atomic force microscopy (AFM, NanoScope-IIIa).

The resistance R of the films was measured in the
van der Pauw configuration, both in a magnetic field
and without it. The magnetic field (µH = 0–5 T) was
parallel to the substrate plane but orthogonal to the
measuring current direction. Four silver electrodes in
 © 2005 Pleiades Publishing, Inc.
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the corners of a square were thermally deposited on the
free surface of a manganite film through a metal tem-
plate. The electrical resistivity ρ of the films was calcu-
lated from the relation ρ = πdR/ln2 [8].
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Fig. 1. Diffraction pattern (ω/2θ, CuKα1 radiation) of a
(120-nm) LSMO(LSATO) film. The plane containing the
incident and reflected x-ray beams is perpendicular to the
substrate plane. The inset shows a fragment of the same pat-
tern in proximity to the (002) LSMO peak. The (002) peak
of the manganite film and the stronger substrate peak are
clearly resolved. Arrows in the inset identify satellite Laue
peaks of the manganite film.
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Fig. 2. Fragment of an x-ray φ scan of the (111) reflections
from an LSATO substrate and a (120-nm) LSMO mangan-
ite film grown on its surface. The manganite film peak is
distorted, with tails about 0.4° wide seen on both sides of
the relatively narrow central part of the peak. The inset
shows (ω–2θ) rocking curves for the (002) x-ray peaks due
to the manganite film and the substrate.
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3. RESULTS AND DISCUSSION

Mechanical strains exert a noticeable effect on the
nucleation of films of multicomponent perovskite-like
oxides, in particular, on the stoichiometry of stable
nuclei of the condensing phase. It was shown in [6] that,
as the lattice misfit between a substrate and a manganite
film atop it increases, the composition of the latter devi-
ates progressively more strongly from that of the start-
ing target. The lattice parameter of pseudocubic
LSATO films (a1 = 3.868 Å [9]) closely approaches that
of the rhombohedral cell of LSMO (a2 = 3.876 Å, α =
90.46° [10]). The small lattice misfit and the similar
values of the linear thermal expansion coefficients [9,
10] account for our selection of polished (001) LSATO
plates (5 × 5 mm) as substrates for LSMO films.

3.1. The Structure of LSMO Films

X-ray studies of the grown LSMO films did not
reveal any macroscopic inclusions of secondary phases
in their volume. The ω/2θ diffractograms contained
only peaks due to the substrate and the manganite film
(Fig. 1). For 2θ > 40°, the x-ray peaks from the sub-
strate and the LSMO film were clearly resolved (see
inset to Fig. 1). The presence of Laue satellite peaks
(identified by arrows in the inset) in the diffraction pat-
terns indicates that the films are uniform in thickness d.
The satellite width data were used to monitor the mag-
nitude of d.

Measured φ scans for the {111} LSMO/LSATO
reflections exhibited four equidistant (90°-spaced)
peaks. Since the lattice misfit between the manganite
film and the substrate was small, the peaks due to the
latter in a φ scan overlapped the corresponding peaks
from the LSMO layer (Fig. 2).

The width of the substrate peaks measured at half
maximum (FWHM ≈ 0.01°) coincides with the instru-
mental resolution in angle φ. The peaks due to the man-
ganite film show considerable distortions and are a few
times wider than the substrate peaks. The relatively nar-
row (FWHM ≈ 0.08°) main part of the LSMO peak is
joined on both sides by two tails with an angular width
of about 0.4° each (Fig. 2). The manganite peak in an
x-ray φ scan is shifted by approximately 0.06° with
respect to the corresponding substrate peak. This may
be partially accounted for by rhombohedral distortions
of the LSMO unit cell.

The ω–2θ rocking curve for the (002) reflection
from a (120-nm-thick) film of LSMO/LSATO is given
in the inset to Fig. 2. The width of the rocking curve
measured at half maximum, ~0.07°, is in good agree-
ment with the data obtained for high-quality epitaxial
manganite films thermally treated at a high temperature
in an oxygen environment [11]. This value exceeds,
however, the rocking curve width (~0.006°, shown in
the same inset) of the (002) reflection from the substrate
by about an order of magnitude. The fact that the rock-
ing curve width of a manganite film is larger than that
YSICS OF THE SOLID STATE      Vol. 47      No. 12      2005
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of a single crystal substrate should be assigned to the
comparatively high defect density in the bulk of the
film.

The x-ray diffraction data suggest that the grown
manganite films are predominantly oriented both rela-
tive to the normal to the substrate plane and azimuthally
and that (001)[010]LSMO||(001)[010]LSATO. The
values of 2θ for the (303) and (004) peaks in the mea-
sured ω/2θ x-ray scans were used to determine the lat-
tice parameters of the LSMO film in the substrate plane
(a|| = 3.873 ± 0.005 Å) and along the surface normal
(a⊥  = 3.884 ± 0.005 Å). The parameter a⊥  of the man-
ganite film is slightly in excess of the parameter a||,
which practically coincides with the measured lattice
parameter for the substrate, a = 3.869 ± 0.003 Å. Thus,
the LSMO films were coherently grown on the sub-
strate surface and experienced only very weak mechan-
ical biaxial compressive stresses.

The grown (120-nm-thick) LSMO films consisted
of grains with lateral dimensions of 30–80 nm (Fig. 3).
The azimuthal grain misorientation in the LSMO film
was, on the average, about 0.1°, but there were grains in
the bulk of the film with misorientation two- to fourfold
larger than this value. The main reason accounting for
grain misorientation in a manganite film is the lattice
misfit between LSATO and LSMO. Grain boundaries
in the manganite film were distinctly decorated by
depressions on the free surface (Fig. 3).

3.2. Response of Electrical Resistivity to a Magnetic 
Field at Different Temperatures

Figure 4 shows the temperature dependences of
electrical resistivity ρ of the (120-nm) LSMO/LSATO
film measured under cooling at µ0H = 0 (curve 1) and
4 T (curve 2). The sharp drop in ρ(H = 0) with decreas-
ing temperature started at T ≈ TCurie (for LSMO crystals,
TCurie = 378 K [12]). For T < TCurie, the decrease in the
electrical resistivity of the film with a decrease in tem-
perature is caused by the increased ferromagnetic
domain concentration in its bulk. Growth of domains
with distinct predominant spatial spin orientation gives
rise to the formation of high-conductivity ferromag-
netic percolation channels in the LSMO layer. A mag-
netic field favors an increase in the temperature of fer-
romagnetic spin ordering in a manganite film and sup-
presses spatial misorientation of spins on the
manganese ions. This accounts for the observed
decrease in ρ of films in a magnetic field and for the
high-temperature shift of the maximum in the ρ(T, H)
curve with respect to the corresponding maximum
observed at H = 0.

Data on the temperature dependence of the mag-
netic susceptibility of epitaxial LSMO films [12] sug-
gest that, at T < 0.5 TCurie, ferromagnetic domains
occupy most of the manganite film volume. There are
very few theoretical papers in the literature dealing with
electron transport in manganites [13]. According to the
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      200
available theoretical models [14, 15], the relaxation of
electrons in 3d ferromagnetic metals is due to their
interaction with phonons and spin waves and electron–
electron interaction. When electron–electron and elec-
tron–magnon scattering dominate, the electrical resis-
tivity of ferromagnetic metals should depend quadrati-
cally on temperature. The electrical resistivity of man-
ganite films for T ! TCurie was found in [16, 17] to scale
as ρ ~ Tn, where n = 2–2.5. The main mechanisms gov-
erning carrier relaxation were assumed in [16, 17] to be
the electron–electron, electron–phonon, and electron–
magnon interactions.

0

200

400
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50 nm

Fig. 3. AFM image of the free surface of a (120-nm)
LSMO/LSATO film. The small-angle grain boundaries in
the manganite film are decorated by characteristic depres-
sions on its free surface.
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resistivity ρ and (3) magnetoresistance MR of a (120-nm)
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(2, 3) 4 T. The Curie temperature for bulk LSMO crystals
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the (ρ – ρ0) vs. T2.3 dependence obtained on the same film
at µ0H equal to (1) 0 and (2) 4 T; ρ0 ≡ ρ(H = 0, T = 4.2 K) =

1.1 × 10–4 Ω cm.
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The inset to Fig. 4 shows the electrical resistivity of
a (120-nm) LSMO/LSATO film plotted versus T2.3. For
T < 250 K, the temperature dependence of the electrical
resistivity of our manganite films is fitted well by the
relation

(1)

where

The coefficient ρ1 was quoted in [16, 17] to decrease
almost linearly with increasing H.

The ρ(H) relations measured at T ! TCurie offer
information on the contribution of electron–magnon
interaction to carrier relaxation in manganite films. The
ρ(H) curves obtained on (120-nm) LSMO/LSATO
films at various temperatures in the range 4.2–250 K are
shown in Fig. 5. For T < 100 K, the electrical resistivity
of a manganite film obeys the relation

(2)

where the coefficient γ is practically independent of H
and of the measuring current passed through the sam-
ple. At T > 100 K, spacers of phases with a lower Curie
temperature may contribute heavily to the electrical
resistivity of LSMO films. Such spacers, as a rule, form
at grain boundaries as a result of distortions in stoichi-
ometry and nonuniform strains. As follows from the
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Fig. 5. Ratio ρ/ρ(H = 0) for a (120-nm) LSMO/LSATO film
plotted vs µ0H for various temperatures. The inset shows
the temperature dependence of parameter γ; the dotted line
is the γ(T) dependence given by Eq. (3).
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data from Fig. 5, the negative slope of the ρ(H, 250 K)
graph for µ0H < 2 T is larger in magnitude than the
slope of this curve for µ0H > 3 T. A magnetic field
favors the transformation of nonferromagnetic to fer-
romagnetic spacers and reduces the spin misorienta-
tion of manganese ions at grain boundaries. There-
fore, the slope of the ρ(H, 250 K) curve for µ0H > 3 T
is more strongly affected by the magnetic-field-
induced change in the ferromagnetic phase parameters
than the slope for µ0H < 2 T. The values of the coeffi-
cient γ for (120-nm) LSMO/LSATO films at different
temperatures were calculated using the relation γ =
ρ(H = 0)−1dρ/d(µ0H), where dρ/d(µ0H) was determined
at µ0H = 4–5 T. Incidentally, for T < 250 K, the values
of dρ/d(µ0H) for (120-nm) LSMO/LSATO films
exceed manifold those for films of 3d ferromagnetic
metals. At T ≈ 150 K, the derivative dρ/d(µ0H) for the
manganite films under study was about 2 µ0Ω cm T–1,
which is about three orders of magnitude larger than
that for iron [15]. As follows from the data displayed in
the inset to Fig. 5, the coefficient γ for (120-nm)
LSMO/LSATO films increases noticeably with temper-
ature. The variation in γ with temperature fitted well to
the relation

(3)

where γ0 = 3.8 × 10–3, γ1 = –3.4 × 10–6, and γ2 = 1.2 ×
10–7. The γ(T) curve for Eq. (3) is drawn in the inset to
Fig. 5 (dotted line). In the range 4.2–250 K, the contri-
bution of the second term on the right-hand side of
Eq. (3) does not exceed 10%.

In [18], the parameter γ was used to derive informa-
tion on the contribution of electron–magnon scattering
to the electrical resistivity of thin Fe, Co, and Ni films
and on the effect of a magnetic field on spin-wave
damping for T/TCurie < 0.6. The pattern of the tempera-
ture dependence of the parameter γ for films of ferro-
magnetic metals compares well to the data displayed in
the inset to Fig. 5. However, as the temperature
decreases to T < 0.1TCurie, the parameter γ of (120-nm)
LSMO/LSATO films remains practically constant
rather than tending to zero, as is the case with thin films
of ferromagnetic metals [18]. This may be due to the
fact that the magnetic fields employed in the studies of
films of ferromagnetic metals were about an order of
magnitude higher than those in our work. At tempera-
tures close to 0.1TCurie, magnetic fields of a few tens of
teslas efficiently freeze electron–magnon scattering in
ferromagnetic metals [15].

Electron–magnon scattering in 3d ferromagnetic
metals is accompanied by electron spin rotation
through 180° [15, 18]. In perovskite-like manganites,
this rotation of spins requires a substantially larger
energy than in the above metals. The conduction band
in manganites is split into two subbands, each corre-
sponding to electrons with a certain spin orientation (up
or down) [19]. Because the Hund energy in the manga-

γ γ0 γ1T γ2T
2
,+ +=
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nites La1 – x(Sr,Ca)xMnO3 is substantially higher than
the subband width, the subbands are separated by a gap
of about 1 eV [20]. The Fermi level lies in the lower
subband; therefore, the electrons in the manganites,
unlike those in 3d ferromagnetic metals, are almost
completely polarized. The specific features of electron–
magnon scattering in manganite films require further
theoretical and experimental refinement.

La1 – x(Sr,Ca)xMnO3 heteroepitaxial films are char-
acterized by a pronounced anisotropy in the magnetore-
sistance, magnetization, etc. The spontaneous magneti-
zation vector in a La1 – x(Sr,Ca)xMnO3 film strained
mechanically by a substrate is perpendicular to the sub-
strate plane under biaxial compression and is parallel to
this plane in the case of biaxial tension. The films dealt
with in this paper were acted upon by weak in-plane
compressive stresses. Due to the effect of a demagnetiz-
ing field [21], the spontaneous magnetization vector in
the (120-nm) LSMO/LSATO films should be parallel to
the substrate plane and to the [100] LSATO direction
[22] (in [23], the predominant direction of spontaneous
magnetization is indicated to be [110]). At temperatures
below 100 K, the ρ(H) relations reveal hysteresis and
an additional relative minimum at small values of µ0H
(see inset to Fig. 6). This is a manifestation of an anisot-
ropy in the electronic and magnetic properties of our
manganite films. The anisotropy in the magnetic
parameters noticeably affects the magnetoresistance of
strained magnetic films even in a comparatively weak
magnetic field (µ0H < 0.5 T) [24].

The maximum magnitude of the negative magnetore-
sistance, MR = [ρ(µ0H = 4 T) – ρ(µ0H = 0)]/ρ(µ0H = 0) =
–0.27, was observed in the (120-nm) LSMO/LSATO
films at TM ≈ 360 K (Fig. 4).

In [12], the maximum magnitude of the MR(T) of
LSMO films exposed to oxygen at a high temperature
was observed at practically the same temperature. The
sharp drop of MR in magnitude with increasing temper-
ature for T > TM indicates that the dispersion in TCurie of
grains making up the LSMO film is slight. The decrease
in the magnitude of MR with decreasing temperature
observed to occur for 250 K < T < TM is caused prima-
rily by the decreased concentration of nonferromag-
netic phase inclusions in the bulk of a manganite film
and the decreased relative spatial spin misorientation in
ferromagnetic domains. Figure 6 displays the MR(H)
dependence measured on a (120-nm) LSMO/LSATO
film at a temperature 10 K below TM. This dependence
is reproduced practically without hysteresis under a
repeated sweep of µ0H from –5 to +5 T and back. The
absolute values of the derivative d(MR)/dH decrease
with increasing H, but the dependence of the magne-
toresistance on the strength of the magnetic field does
not become linear even at µ0H ≈ 5 T.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      200
4. CONCLUSIONS

To sum up, the temperature dependences of the elec-
trical resistivity of (120-nm) LSMO films (which are
only weakly strained by the substrate and are predomi-
nantly oriented both in azimuth and relative to the film
normal) measured in a magnetic field (with µ0H up to
5 T) and without it agree well with the corresponding
data available for bulk crystals. The negative magne-
toresistance has been found to reach a maximum mag-
nitude at temperatures about 15 K below TCurie for sto-
ichiometric bulk samples. At low temperatures (T <
100 K), the decrease in ρ of manganite films observed
to occur in a magnetic field originates to a considerable
extent from the decreased intensity of electron–magnon
interaction due to spin wave damping.
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Abstract—The first thin La1 – xAgyMnO3 epitaxial films (y ≤ x) were grown on SrTiO3 (110) substrates with
silver present in the ionized state (Ag+) only. The Curie temperatures TC of the compositions with x = y = 0.05,

x = y = 0.1, and x = 0.3 and y = 0.27 crystallizing in the hexagonal structure  lie above or close to room
temperature. The temperature dependences of electrical resistivity ρ and of magnetoresistance |∆ρ/ρ| = |(ρH –
ρH = 0)/ρH = 0 | pass through maxima near TC, with the magnetoresistance being negative and reaching colossal
values of ~7–20% in a magnetic field H = 8.2 kOe not only at TC but also at room temperature. The magnetic
moment per formula unit as derived from the saturation magnetization at T = 5 K is substantially smaller than
expected for complete ferromagnetic ordering. The magnetization in fields of up to 6 kOe depends on the actual
sample cooling conditions, and the hysteresis loop of a field-cooled sample is displaced along the H axis by ∆H.
The above properties can be accounted for by the fact that the films are in a two-phase magnetic (ferromagnetic–
antiferromagnetic) state induced by strong s–d exchange. The maximum value of ∆H was used to calculate the
energy of exchange coupling between the ferromagnetic and antiferromagnetic parts of a sample. © 2005 Ple-
iades Publishing, Inc.
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1. INTRODUCTION

The interest in the manganites Re1 – xAxMnO3 (Re
stands here for a rare-earth ion, and A, for a dopant ion)
should be assigned to the colossal magnetoresistance
(CMR) which some of them exhibit at room tempera-
ture. Unfortunately, the magnitude of the CMR
observed in the vicinity of the Curie point TC decreases
rapidly with increasing TC in manganites doped with
divalent ions of Ca, Sr, and Pb. Doping LaMnO3 with
univalent ions of Na has revealed, however, that the
magnetoresistance also remains colossal at room tem-
perature in compositions whose TC approaches 300 K
[1–4]. The question naturally arises as to whether this
effect would be observed in manganites doped by other
univalent ions, in particular, by silver. The possibility of
doping La1 – xMnO3 + δ ceramics with silver, where Ag+

ions substitute for the lanthanum vacancies, was dem-
onstrated in [5–7]. CMR has been found to exist in
these ceramics at room temperature [8]. However, dop-
ing the crystal structure of perovskite manganites with
silver was questioned in [9], where doping with silver
was found to be similar to the introduction of lantha-
num vacancies into La1 – xMnO3 + δ. Indeed, the evi-
dence presented thus far for doping manganites with
silver has been only indirect, such as, for instance, the
absence of metallic silver among the reaction products
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[8, 10]. However, it should be noted that silver is a
highly mobile component.

We forward here compelling evidence for possible
silver doping of La1 – xMnO3 + δ. It is well known that
thin films of such materials would have considerable
application potential. We fabricated thin epitaxial
La1 − xAgyMnO3 films (y ≤ x) on SrTiO3 (110) sub-
strates, some of which exhibit room-temperature CMR.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUES

Because of the volatile compounds of silver having
low thermal stability, the following two-stage tech-
nique of synthesis was proposed: (1) preparation of thin
lanthanum-deficient La1 – xMnO3 films (through
MOCVD) at rates v (O2) = v (Ar) = 7 l/h, a pressure
Ptot = 10 mbar, and T = 830°C and (2) saturation of
films with silver by annealing lanthanum-deficient
compositions in silver vapor in an oxygen environment
(at a total pressure of 1 or 20 atm). The changes in film
structure were monitored by x-ray diffraction. The
chemical composition of the films was established by
x-ray microprobe analysis. LaMnO3 films do not
absorb silver at saturation. Silver can be absorbed at
positive values of x only. X-ray photoelectron spectros-
copy revealed that the silver in the films is only in the
© 2005 Pleiades Publishing, Inc.
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ionized state (metallic silver is not observed).
La0.95Ag0.05MnO3, La0.9Ag0.1MnO3, and
La0.7Ag0.27MnO3 films were found to have the hexago-

nal structure .R3c
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Fig. 1. Temperature dependence of the electrical resistivity
ρ of thin La1 – xAgyMnO3 films (y ≤ x).
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Fig. 2. Temperature dependence of the magnetoresistance
∆ρ/ρ of thin La1 – xAgyMnO3 films (y ≤ x).
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We studied the magnetization σ, electrical resistiv-
ity ρ, and magnetoresistance ∆ρ/ρ = (ρH – ρH = 0)/ρH = 0
of the thin epitaxial films indicated above. The magne-
tization was studied with a SQUID magnetometer in
the temperature range 5 ≤ T ≤ 350 K in magnetic fields
of up to 50 kOe. The values of ρ and ∆ρ/ρ were mea-
sured by the standard four-probe method. The electrical
resistivity and magnetoresistance were investigated at
temperatures ranging from 77 to 350 K. The magne-
toresistance was measured in the film plane, with the
current through the film being parallel to the applied
magnetic field H, which did not exceed 8.2 kOe.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 1 displays in graphical form the temperature
dependence of the electrical resistivity ρ(T) of the films
studied by us. The ρ(T) curves are seen to exhibit max-
ima. The temperatures of these maxima, Tρmax, and the
values of ρ at the maxima are listed in the table. Figure 2
shows {∆ρ/ρ}(T) curves for La1 – xAgyMnO3 films (x >
y). The magnetoresistance is negative, and its absolute
value reaches a maximum at a temperature T =
T(∆ρ/ρ)max, which is slightly less than TC (see table). Inci-
dentally, Tρmax is slightly higher than T(∆ρ/ρ)max, a feature
typical of magnetic semiconductors [11]. At the maxi-
mum, |∆ρ/ρ| reaches a colossal value of 25% for a com-
position with y = x = 0.05, 12% for y = x = 0.1, and 8%
in La0.7Ag0.27MnO3 at H = 8.2 kOe. Note that the room-
temperature magnetoresistance of the last two films is
high. As seen from Fig. 2, it is ~7% at H = 8.2 kOe.
Obviously enough, in compositions intermediate
between that with y = x = 0.1 and La0.7Ag0.27MnO3, one
should expect even higher room-temperature values of
∆ρ/ρ, approaching |∆ρ/ρ|max in the extreme composi-
tions. In contrast to La1 – xAxMnO3 systems (A = Sr2+,
Ca2+; x ≤ 0.3) and traditional magnetic semiconductors
(doped europium monochalcogenides and chalco-
genide spinels), in which |∆ρ/ρ|max decreases rapidly as
the doping level increases, in La1 – xAgyMnO3 films (y ≤
x) it varies very little with increasing y. For instance, in
going from y = 0.05 to y = 0.1, |∆ρ/ρ|max decreases
2.1 times and then, as one goes from the compound
Magnetic, electrical, and galvanomagnetic characteristics of thin La1 – xAgyMnO3 films (y ≤ x) grown on SrTiO3 (110) substrates

Composition TC, K , K , K ρmax,
10–2 Ω cm

(∆ρ/ρ)max, % µexp, µB µth, µB

y = x = 0.05 296 (100 Oe) 275 252 5.8 25 2.67 3.9

323 (6 kOe)

y = x = 0.1 308 (100 Oe) 297 289 8 12 2.2 3.8

316 (6 kOe)

x = 0.3, y = 0.27 325 (100 Oe) 350 315 5.5 8 1.34 3.46

333 (6 kOe)

Tρmax
T ∆ρ/ρ( )max
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with y = 0.1 to La0.7Ag0.27MnO3, this quantity decreases
1.2 times; i.e., the decrease slows down. Significantly,
the magnetoresistance isotherms do not saturate in the
region of TC up to the highest fields tried, H = 8.2 kOe,
and are smooth; so one could expect even higher values
of magnetoresistance in stronger fields.

The above properties may be due to the samples
being in a two-phase magnetic (ferromagnetic–antifer-
romagnetic) state initiated by strong s–d exchange [12].
It is known that La1 – xMnO3 may be considered an anti-
ferromagnet LaMnO3 with La vacancies acting as dou-
bly charged defects. Adding Ag to La1 – xMnO3 in an
amount y compensates y vacancies and thereby creates
y singly charged acceptors, the net result being that
La1 – xAgyMnO3 (y ≤ x) becomes a doped antiferromag-
netic (AFM) semiconductor containing y singly
charged Ag+ acceptor ions and x – y doubly charged
acceptors, more specifically, La vacancies. Because ρ
in the films studied is ~10–3–10–1 Ω cm and the conduc-
tion has metallic character below TC, it may be conjec-
tured that these films are in a conducting two-phase
magnetic state (TPMS), where insulating AFM
microregions are embedded in a ferromagnetic (FM)
matrix. The conducting TPMS is characterized by a
sharp growth of ρ in the region of TC. Here, one can
conceive of two mechanisms by which impurity-
induced magnetic interaction can affect the resistivity,
namely, the scattering of carriers (which reduces their
mobility) and the formation of a carrier band tail made
up of localized states. In the vicinity of TC, the mobility
of carriers decreases sharply and they become partially
localized in the band tail, which accounts for the maxi-
mum in the ρ(T) curve near TC. The applied magnetic
field delocalizes carriers out of the band tail and
increases their mobility, thereby giving rise to CMR.

The existence of a TPMS in the films under study is
also argued for by the specific features of their mag-
netic properties. Figure 3 displays a hysteresis loop of
a La0.9Ag0.1MnO3 sample obtained at T = 5 K with the
highest magnetic field of 50 kOe. Saturation of the
magnetization is seen to be reached at 4 kOe, with the
coercive force being 70 Oe. A similar pattern is also
observed in the two other films studied. The magnetic
moments per formula unit as calculated from the satura-
tion magnetization at T = 5 K (µexp) are listed in the table
for all films. As is evident from the table, the values of
µexp are substantially smaller than those expected under
complete FM ordering (µth). This may be attributed to
the presence of an FM–AFM TPMS in the sample.

Inspection of Fig. 4 reveals that the magnetization
measured at T < TC depends on the sample cooling con-
ditions chosen; namely, the value of σ of a sample
cooled in a magnetic field from 350 to 5 K (FC sample)
is higher than the magnetization measured under heat-
ing of a sample preliminarily cooled to 5 K in a zero
field (ZFC sample). The magnetizations of FC and ZFC
samples remain different up to 6 kOe. FC samples
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
reveal a shift of the hysteresis loops along the H axis at
H < 300 Oe (Fig. 5), with the shift being largest, ∆H =
16 Oe, for the La0.7Ag0.27MnO3 composition at H =
100 Oe. The shift of hysteresis loops of the FC films
along the H axis show unambiguously the presence of
a TPMS. Although this property is likewise observed in
spin glasses, it can be accounted for only by the exist-
ence in them of FM and AFM regions and exchange
interaction between them, a point first made by Kouvel
[13]. In [14], using the magnitude of this shift ∆H, we
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Fig. 3. Hysteresis loop of a thin La0.9Ag0.1MnO3 film
obtained at 5 K. The inset shows, in an expanded scale, a
part of this loop measured in the field range from –1 to
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estimated the exchange integral J describing one
Mn−O–Mn bond through the FM/AFM interface for a
number of manganite compositions in an insulating
FM–AFM TPMS. It was found that |J | ~ 10–6 eV, which
is two orders of magnitude smaller than the negative
exchange integral between FM layers in LaMnO3, |J1 | =
5.8 × 10–4 eV, a figure extracted from neutron scattering
experiments [15]. This implies that the presence of a
layer with canted spins at the abovementioned interface
is very unlikely. In a sample residing in a TPMS, the
carriers are concentrated in the FM phase and are
absent in the AFM phase. Therefore, the TPMS topol-
ogy is dictated by Coulomb forces and the surface inter-
face energy. Judging from the magnitude of spontane-
ous magnetization at 5 K, the FM phase is comparable
in volume to the AFM phase in the La1 – xAgyMnO3
films (y ≤ x) grown on SrTiO3 substrates. As already
pointed out, it is conceivable that our films are in a con-
ducting TPMS, with the FM phase being actually jump-
ers between AFM insulating spheres. It should be noted
that, in the films in a conducting TPMS and in the man-
ganite samples studied in [14] and residing in an insu-
lating TPMS, the exchange anisotropy constants Ku

between the FM and AFM phases are of the same order
of magnitude. Therefore, it may be suggested that the
FM/AFM interface surface areas are likewise of the
same order of magnitude in these two cases; so the con-
clusions reached in [14] can be readily extended to
La1 − xAgyMnO3 films (y ≤ x) and the presence of a
canted spin layer at the above interface is hardly likely.
Using the magnetic field in which the hysteresis loop
with the maximum shift of 100 Oe was measured, we
estimated the exchange coupling energy between the
FM and AFM parts of a sample to be ~104 erg/cm3.

The existence of a TPMS in the films under study is
also argued for by the diffuse pattern of the transition
from the FM to a paramagnetic state. It may be appro-
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Fig. 5. Hysteresis loop of a thin field-cooled
La0.7Ag0.27MnO3 film measured at 5 K.
PH
priate to note here that the Curie temperature is a fairly
conventional quantity for samples in a TPMS and is
defined as the temperature at which the FM state in the
FM part of a sample breaks down. At present, the exact
scenario by which thermal breakdown of the TPMS
occurs remains unclear; it is not clear whether the first
to break down is the AFM phase at TN and that only
after this is the FM phase destroyed (at a higher temper-
ature) or quite the reverse may be true. Nagaev [12]
pointed out that TN and TC are close in magnitude for a
sample in a TPMS. The films studied by us here did not
reveal a maximum for T > TC in the σ(T) curves up to
the highest fields used (50 kOe), which indicates the
absence of an AFM phase above TC. The Curie temper-
atures of all the films studied, which were determined
by extrapolating the steepest part of the σ(T) curve to its
intersection with the temperature axis, are listed in the
table. They are seen to lie in the room-temperature
region or higher. It is known that a correct method for
measuring TC should not involve the application of an
external magnetic field to a sample, because the field
broadens and suppresses the phase transition. The
Curie temperature in the films treated in the present
study depends strongly on the field at which it is mea-
sured. As seen from the table, the value of TC increases
strongly with H in all the films studied. For instance, TC
of the La0.95Ag0.05MnO3 film as determined in a field of
100 Oe is 296 K, while in 6 kOe it is 323 K, i.e., higher
by 27 K. In uniform impurity-free ferromagnets (for
example, in Gd and CdCr2Se4), the increase in TC in the
same H interval is only a few kelvins [16]. By contrast,
in Eu0.7Sr0.3MnO3, a compound in which an insulating
TPMS was observed to exist, it was altogether impossi-
ble to determine TC by the above technique, because it
grew from 30 K at H = 0.5 kOe to 150 K at H = 45 kOe
[17]. This increase in TC should be attributed to a mag-
netic-field-induced increase in the FM phase volume in
a sample residing in a TPMS. The strong dependence of
TC on the magnetic field in which it was measured in
La1 – xAgyMnO3 films (y ≤ x) obviously argues for the
existence of the TPMS in them.
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Abstract—Optical properties of the orthorhombic thulium orthoferrite TmFeO3 were studied in the spectral
range from 0.64 to 5.4 eV. In the weak absorption region, below 2.2 eV, the energies of localized optical tran-
sitions in the Tm3+ and Fe3+ ions were determined. The dispersion relations of the real and imaginary parts of
the principal refractive indices along three crystallographic axes were found. In the region of strong absorption,
above 2.2 eV, the energies of six charge-transfer transitions were determined. The experimental data fit well to

the concept of charge-transfer transitions in the  octahedral complexes providing a dominant contribu-
tion to the optical properties of the orthoferrites. Optical birefringence and its temperature dependence were
measured for the three principal directions of light propagation, and the anisotropic magnetic contribution to
birefringence in the region of spin-orientational transitions was isolated. © 2005 Pleiades Publishing, Inc.

FeO6
9–
1. INTRODUCTION

The strongly correlated compounds of 3d transition
metals have been attracting intense interest for several
decades, and the results of studies of them have been
described in numerous monographs and reviews. The
ions of transition metals in these compounds com-
pletely or partially govern their magnetic, optical, and
other properties, which should primarily be assigned to
strong electron correlations and tight coupling between
the spin, charge, and orbital degrees of freedom in the
compounds of the 3d metals. As a remarkable manifes-
tation of these correlations one could recall here the
high-temperature superconductivity in copper oxide
compounds [1], the colossal magnetoresistance in rare-
earth manganites [2], etc. The character of the elec-
tronic states and the nature of the fundamental absorp-
tion edge in dielectric compounds of transition metals
are quite frequently described by contradictory theo-
ries, and experimental studies have produced in some
cases ambiguous results. To cite an example, the feature
seen as an unusually strong and narrow absorption band
near 1.6 eV in the spectrum of LuMnO3 was assigned
in [3] to a symmetry-allowed local d–d transition in the
Mn3+ ion, whereas in [4] this band in the spectra of an
analogous hexagonal manganite (YMnO3) and other
compounds was attributed to a charge-transfer transi-
tion from oxygen O2– to manganese Mn3+. As another
illustration, we may mention the optical properties of
numerous oxides of the trivalent ion Fe3+, which is
octahedrally coordinated to oxygen with approximately
1063-7834/05/4712- $26.00 ©2292
equal iron–oxygen distances. In transparent FeBO3 and
GdFe3(BO3)4 [5]; in moderately transparent ferrite gar-
nets (like Y3Fe5O12) [6], orthoferrites (like YFeO3), and
iron gallate GaFeO3 [7, 8]; and in the hematite α-Fe2O3,
which is completely opaque in the visible range [9], the
position of the fundamental absorption edge depends
substantially on the crystal structure, chemical compo-
sition, and, apparently, the number of iron ions per unit
cell. This dependence gives rise to strong variations in
the intensity of forbidden d–d transitions, allowed
charge-transfer transitions, and hence, the optical prop-
erties of the materials.

Typical representatives of transition-metal oxide
compounds are the rare-earth orthoferrites RFeO3,
where R stands for ions of rare-earth elements, from La
to Lu [10–12]. These compounds have the widespread
and well-known perovskite structure, which, due to its
comparative simplicity, allows ab initio and other non-
empirical calculations of the energy spectrum, elec-
tronic structure, and exchange interactions of the

 complexes [13, 14]. By contrast to ideal perovs-
kites, the oxygen environment of the R3+ cation in rare-
earth orthoferrites is strongly distorted. The octahedral
environment of the Fe3+ ion is likewise distorted, which
gives rise to splitting of the eg and t2g states of the tran-
sition ion [13]. Such phenomena as magnetic and opti-
cal anisotropy are accounted for by the noncubic distor-
tions of the ideal perovskite structure or, on the micro-
scopic scale, by local crystal-field distortions in the

FeO6
9–
 2005 Pleiades Publishing, Inc.
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 complexes. Another aspect of particular signifi-
cance is the extremely large magnetooptical Faraday
effect in orthoferrites observed in the visible and near
infrared spectral ranges, where these materials exhibit a
comparatively high transparency [15].

To the best of our knowledge, the literature lacks
comprehensive studies of the optical absorption, refrac-
tive indices, and optical anisotropy of orthoferrites.
Such studies have acquired particular significance in
connection with the recent experiments [16] on the
effect of a short laser pulse on thulium orthoferrite,
which brings about an ultrafast change in magnetiza-
tion on a characteristic time scale of a few picoseconds.
We report here on a study of the optical properties of
TmFeO3. We investigated the absorption spectra in the
energy range 0.64–2.2 eV, determined the dispersion of
the real and imaginary parts of the complex refractive
index along three crystallographic axes in the range
0.64–5.4 eV (using spectroscopic ellipsometry), and
studied optical birefringence and its temperature
dependence at specific wavelengths. We believe that the
results obtained provide a sound basis for future pur-
poseful experiments on the spin dynamics of oxide
magnets.

2. OPTICAL PROPERTIES

The symmetry of RFeO3 orthoferrite crystals is

described by the orthorhombic space group –Pbmn
[10, 11], and their unit cell contains four formula units.
The magnetic structure of the orthoferrites makes them
noncollinear antiferromagnets [11, 17, 18]. The state in
which they usually reside at high temperatures is char-
acterized by the antiferromagnetism vector G = (M1 –
M2 + M3 – M4)/4 directed along the x axis and by the
weak ferromagnetic moment F = (M1 + M2 + M3 +
M4)/4 aligned with the z axis, where M1, M2, M3, and
M4 are the magnetic moments of the four iron-ion sub-
lattices. As the temperature is lowered, certain orthofer-
rites, including the thulium orthoferrite, undergo spin
reorientation in which the system transfers to a state
with the vector F directed along the x axis.

The TmFeO3 single crystals used in our experiments
were grown by the floating-zone method under optical
heating [19]. The crystals were oriented by x-ray dif-
fractometry. Since orthoferrites are optically biaxial
crystals, the samples were prepared in the form of
platelets polished down to a thickness of 80–100 µm,
with the surface normal oriented perpendicular to the x,
y, or z crystallographic axes to within a few degrees, as
well as of platelets with the normal approximately
aligned with the optical axis lying in the yz plane.

Figure 1 shows the spectral response of absorbance
of the thulium orthoferrite TmFeO3 measured with a
Cary 2300 spectrophotometer in the range extending
from 0.62 to 2.2 eV. The spectral characteristic was

FeO6
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obtained with light propagating along the z axis at a
temperature of 15 K. Absorption in this spectral range
derives from transitions in iron ions in the crystal field
and transitions to the excited states of the thulium mul-
tiplet. An ion of trivalent iron contains five 3d electrons,
which reside in a high-spin state and occupy the only
spin sextet and orbital singlet 6S lying below the other
terms [20]. Optical crystal-field d–d transitions should
occur from the 6A1g ground state to spin quartets and
doublets and, hence, are spin and parity forbidden.
These transitions produce only a relatively weak
absorption due to a partial lifting of the forbiddenness
by noncubic crystal-field distortions, lattice vibrations,
spin–orbital coupling, and other perturbations. The first
excited state of a free iron ion is the 4G term, which is
split by the octahedral crystal field into 4T1g, 4T2g, 4Eg,
and 4A1g levels. The transitions ending at the 4T1g and
4T2g levels lie below those involving charge transfer and
are therefore observed as broad absorption bands cen-
tered at about 1.22 and 1.72 eV [7, 21]. These transi-
tions do not, however, manifest themselves in any way
in the dispersion of the refractive index (Fig. 2). The
transition to the 4Eg and 4A1g level is located near the
charge-transfer transitions. It has a fairly high intensity
and, therefore, is seen in the refractive-index spectra.

The narrow split absorption lines peaking at 0.73,
1.01, 1.55, 1.8, and 1.87 eV derive from transitions on
the thulium sublattice from the 3H6 ground state to the
3H4, 3H5, 3F4, 3F3, and 3F2 excited states, respectively
[22, 23]. Note the clearly pronounced transitions in thu-
lium to the 3F4 multiplet sublevels, which lie in the
range covered by the titanium–sapphire laser and can
be employed to pump the rare-earth ion magnetic sys-
tem when studying the ultrafast magnetization dynam-
ics. As the temperature increases, the absorption lines
of thulium ions broaden considerably to finally merge
into absorption bands in the temperature region of ori-
entational phase transitions [23].
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The room-temperature complex refractive index of
thulium orthoferrite was studied by reflection spectro-
scopic ellipsometry using a computerized ellipsometer
equipped with a rotating analyzer. Since this material is
strongly anisotropic, the general inverse problem is
anything but trivial [24]. The real and imaginary parts
of the complex refractive index N = n – ik were deter-
mined by approximately solving the ellipsometric
equation for optically biaxial crystals [25]. The error of
this method (revealed as an overestimated value of k) is
largest in the region of weak absorption, 0.62–2.2 eV.
This error stems from the simplifications accepted in
the model used, which, in particular, disregards the
roughness of the surface layer and the presence in it of
defects and surface strains generated by mechanical
treatment. Nevertheless, this model provides a qualita-
tively correct picture of the behavior of the complex
refractive index. Combined ellipsometric measure-
ments in reflection and transmission offer the possibil-
ity of obtaining quantitative estimates with a reasonable
accuracy. In particular, knowing the three principal val-
ues of the absolute refractive index, one can readily
determine the directions of the optical axes in a crystal
and their dispersion.

Figures 2 and 3 illustrate measurements of the real
and imaginary parts of the principal refractive indices
of TmFeO3 along the three crystallographic axes. The
main features of these spectra can be described in terms
of crystal-field theory, according to which the ground-

state electronic configuration of the  complexes
(the main optical centers in orthoferrites) contains sev-
eral filled oxygen 2p valence orbitals and half-filled
iron t2g and eg 3d orbitals. The part of the spectrum
above 3.0 eV, as is evident from Fig. 3, exhibits stronger
absorption and should be attributed to allowed electric-
dipole transitions. The parity and spin selection rules
allow six electric-dipole charge-transfer transitions
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index calculated for three crystallographic axes from ellip-
sometric measurements in reflection. The inset shows the
dispersion relation of the birefringence derived from ellip-
sometric measurements in the transmission mode.
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PHY
6A1g  6T1u related to one-electron transitions from
the t2u(π), t1u(π), and t1u(σ) levels to the t2g and eg levels
[13], whose energies lie above 3 eV.

Calculations were carried out in the cubic crystal-
field approximation. However, the number of observed
transitions, as will be seen further on, is in excess of the
theoretical predictions, and this provides compelling
experimental evidence for the important part played by
noncubic distortions in the formation of the electronic
structure of orthoferrites and, as a consequence, of the
anisotropy of their magnetic, optical, and magnetoopti-
cal properties. The data summarized in Figs. 2 and 3
permit one to determine the transition parameters, cal-
culate the spectrum of the complex dielectric function
ε = ε1 – iε2 = (n – ik)2, and decompose it into single
oscillators using the relation

(1)

where ε0 is a real addition independent of photon
energy; εb is a complex coefficient accounting for the
sum effect of oscillators located considerably higher
energywise than the range of energies E covered here;
Ej are the oscillator resonance energies; and fj and γj are
parameters describing the strength of the oscillators
and their damping, respectively. Proper treatment of the
experimental data revealed seven oscillators, one of
which corresponds to a localized transition to the 4Eg

and 4A1g levels at an energy E1 = 2.67 eV and the others

to six charge-transfer transitions in the  com-
plexes having resonance energies in the range from
2.96 to 5.56 eV. The oscillator parameters found for all
diagonal components of the permittivity tensor are
listed in the table.
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Oscillator parameters of the permittivity tensor components found from experimental data using Eq. (1)

j
εxx εyy εzz

Ej, eV γj, eV fj Ej, eV γj, eV fj Ej, eV γj, eV fj

1 2.67(1) 0.18(3) 0.13(3) 2.665(5) 0.26(3) 0.33(6) 2.668(5) 0.18(3) 0.15(3)

2 2.97(1) 0.32(4) 0.8(2) 2.961(9) 0.37(4) 1.3(3) 2.993(9) 0.42(3) 1.9(2)

3 3.19(1) 0.41(2) 1.9(2) 3.19(1) 0.43(2) 2.2(3) 3.20(1) 0.33(3) 0.8(2)

4 3.828(5) 0.39(2) 3.6(6) 3.812(3) 0.35(1) 2.7(2) 3.827(3) 0.32(1) 1.8(2)

5 4.13(1) 0.69(9) 6(1) 4.17(1) 0.70(9) 5(1) 4.146(8) 0.61(7) 4(1)

6 4.70(3) 1.12(8) 8.3(9) 4.61(5) 1.34(7) 13(2) 4.61(2) 1.17(5) 14(1)

7 5.50(2) 0.29(5) 1.4(3) 5.47(3) 0.08(3) 0.26(9) 5.56(3) 0.51(8) 2.0(4)

ε0 ε1, b ε2, b ε0 ε1, b ε2, b ε0 ε1, b ε2, b

3.78(2) 0.047(5) 0.253(5) 3.81(4) 0.006(6) 0.262(7) 3.54(3) 0.052(5) 0.225(5)
Equation (1) for the imaginary part of the permittiv-
ity is actually a decomposition into Lorentzian func-
tions. This decomposition of an experimental spectrum
for the εzz component of the permittivity tensor is pre-
sented graphically in Fig. 4. We readily see that exper-
imental data fit well to calculations based on the
decomposition parameters found. In Fig. 5, the energies

of transitions in the  complexes obtained in this
study are compared with the values quoted in [8] and a
theoretical analysis reported in [13]. Note that, in con-
trast to [8], the ellipsometric method in combination
with the data treatment approach described above
yielded more accurate parameters of charge-transfer
transitions split by a noncubic crystal field.

3. DISPERSION AND TEMPERATURE 
DEPENDENCE OF BIREFRINGENCE

Rare-earth orthoferrites are optically biaxial crystals
possessing inherent birefringence. Therefore, the polar-
ization state of light of wavelength λ propagating
through these crystals changes. In the energy range
0.64–2.1 eV, these materials are relatively transparent,
thus permitting one to derive the dispersion relation for
birefringence from ellipsometric measurements during
transmission. We measured the phase difference
between the s and p polarizations of light transmitted
through a sample for each wavelength in the case where
light is incident normal to the sample and is linearly
polarized at 45° to the crystallographic axes. Next, we
determined the total number of full turns made by the
measured phase difference with varying wavelength
and, subsequently, the total phase angle σ through
which the wave polarization vector was rotated in the
wave transmitted through a plate of thickness d. The
difference between the refractive indices ∆n (birefrin-
gence) for each wavelength was found from the relation

(2)

FeO6
9–

σ 2πd∆n
λ

-----------------.=
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The birefringence dispersion relations are shown
graphically in the inset to Fig. 2. The optical anisotropy
of orthoferrites is determined primarily by the contribu-
tion of electric dipole charge-transfer transitions in the

 octahedral complexes [13]. In the range 0.64–
2.1 eV, the birefringence depends on the photon energy
only weakly and grows as one approaches the region of
strong absorption lying above 2.2 eV. Ellipsometric
measurements performed using the transmission mode
with an error of ±5 × 10–4 yielded the following values
of birefringence at a wavelength of 800 nm (1.55 eV):

(3)

The birefringence measured at 1550 nm (0.8 eV) was
found to be

(4)

These values are in good agreement with the theoretical
estimate ∆nxy = 0.0389 quoted in [10] but differ from
the experimental values ∆nxy = 0.0312 and ∆nxz =

FeO6
9–

∆nxy 0.0405, ∆nxz 0.026, ∆nyz 0.067.= = =

∆nxy = 0.0382, ∆nxz = 0.0246, ∆nyz = 0.0615.

1

2

D
ie

le
ct

ri
c 

fu
nc

tio
n 

εzz 2

Photon energy E, eV

2

3

4

3 4 6 7

TmFeO3
T = 295 K

0

ε2 experiment

5 8

1

2

3

4 5

6

7

1

εb

ε2,j fit
Σ
j

 ε2,j fit

Fig. 4. Decomposition of an experimental spectrum of the
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0.0205 given in [26], which should possibly be attrib-
uted to imperfections in the birefringence measurement
technique employed in [26].
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As the temperature is lowered, spontaneous spin
reorientation occurs in TmFeO3 as a result of variation
of the magnetic anisotropy. In this process, the ferro-
magnetic moment F turns continuously from its posi-
tion along the z axis at a temperature T2 to the position
along the x axis at a temperature T1. These points are the
temperatures of second-order phase transitions (Γ4 
Γ24  Γ2) [11] in which anomalies in the physical
properties are observed.

The temperature dependence of birefringence was
studied with a sample placed between crossed polariz-
ers. The phase shift R of the incident radiation polarized
linearly at 45° to the crystallographic axes was varied
with the use of an acoustic modulator operating at a fre-
quency f. The photodetector signal had harmonic com-
ponents at frequencies f and 2f with amplitudes
J1(R0)sinθ and J2(R0)cosθ, respectively, where Ji(R0) is
a Bessel function, R0 is the phase shift modulation
amplitude, and θ is the phase difference between s- and
p- polarized light beams. The temperature dependence
of birefringence was found using Eq. (2) from the total
phase angle σ obtained for a given wavelength in room-
temperature ellipsometric measurements and the tem-
perature-dependent phase difference θ, which was
derived from the relation

(5)

where V1f and V2f are signal amplitudes measured at fre-
quencies f and 2f, respectively.

The temperature dependence of linear birefringence
is plotted in Fig. 6 and is seen to exhibit two second-
order orientational phase transitions at temperatures of
83 and 93 K. According to the Landau theory [11, 27],
the possible spin configurations can be found by mini-
mizing (with respect to the vectors F and G) the ther-
modynamic potential

(6)

where Φ0 is the part of the energy that is independent of
spin orientation; K1 and K2 are the first and second
anisotropy constants, respectively; and Θ is the angle
made by the antiferromagnetism vector G and the x axis
of an orthorhombic crystal. A spin reorientation accom-
panies two second-order phase transitions of the type
Γ4(GxFz)  Γ24  Γ2(GzFx), during which the mag-
netic moment is rotated in the xz plane of the crystal.
Besides the equilibrium states with the vector F ori-
ented along the z axis (at T > T2) or the x axis (at T < T1),
the system passes (in the interval T1 < T < T2) through a
state in which the vector F is canted at an angle Θ to the
z axis

(7)

The change in birefringence due to spin-orienta-
tional transitions originates both from the temperature

θtan
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dependence of the crystallographic contribution to bire-
fringence, which also includes an isotropic magnetic
contribution, and from a change in the anisotropic mag-
netic contribution [28]. The isotropic magnetic contri-
bution can be derived from the temperature-induced
variation of the absolute refractive indices. We studied
here only the variation of birefringence with tempera-
ture, which permits one to determine only the anisotro-
pic magnetic contribution. Using the change in the
diagonal components of the permittivity tensor

(8)

we can find the magnitude of birefringence in the Γ2
and Γ4 phases:

(9)

(10)

Here, the first term describes the crystallographic con-
tribution to birefringence and the second term is the
anisotropic magnetic contribution. The latter contribu-
tion is nonzero if βyyxx – βzzxx – βyyzz + βzzzz ≠ 0, which
can only occur in noncubic crystals. As follows from
Fig. 6, the anisotropic magnetic contribution to bire-

fringence reaches a maximum for  ≈ 5 × 10–4 and

a minimum for  ≈ 1 × 10–4. It is this contribution
that was used to monitor the ultrafast spin dynamics in
the region of orientational phase transitions induced by
100-fs laser pulses [16].

4. CONCLUSIONS

The main results obtained in our study of the optical
properties of thulium orthoferrite can be summed up as
follows.

(1) In the transparency window below 2.2 eV, opti-
cal d–d transitions in the Fe3+ iron ion from the 6A1g

ground state to the 4T1g and 4T2g excited levels are
observed as broad absorption bands peaking at about
1.22 and 1.72 eV, respectively. The transitions occur-
ring in the thulium sublattice from the ground state 3H6

to the 3H4, 3H5, 3F4, 3F3, and 3F2 excited states manifest
themselves as narrow split absorption lines with mean
energies of 0.73, 1.01, 1.55, 1.8, and 1.87 eV, respec-
tively.

(2) In the region of strong absorption, one observes
a localized transition from the 6A1g state to the 4Eg and
4A1g states with an energy of 2.67 eV and six charge-

transfer transitions in the  complexes having res-
onance energies in the interval from 2.96 to 5.56 eV.
The number of observed transitions is larger than that
predicted from calculations, which is compelling
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experimental evidence for the importance of noncubic
distortions in the formation of the electronic structure
of orthoferrites and, as a consequence, of the anisotropy
in the magnetic, optical, and magnetooptical properties.

(3) In the spectral range 0.64–2.1 eV, optical bire-
fringence depends on photon energy only weakly and
grows as one approaches the strong absorption region
above 2.2 eV. As the temperature is lowered, birefrin-
gence passes through two anomalies at the orienta-
tional-transition temperatures T1 and T2. The change in
birefringence due to the spin-orientational transitions
should be assigned to the temperature dependence of
the crystallographic contribution to birefringence
(which also includes the isotropic magnetic contribu-
tion) and to that of the anisotropic magnetic contribu-
tion. The temperature dependence of birefringence
reveals that the anisotropic magnetic contribution to

birefringence is maximum for  ≈ 5 × 10–4 and is

minimum for  ≈ 1 × 10–4. The variation of this
contribution can be used to monitor the ultrafast spin
dynamics in the region of orientational phase transi-
tions induced by 100-fs laser pulses.
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Abstract—Long-time polarization relaxation in the temperature range where PBSN-6 single crystals reside in
the relaxor state was studied. An analysis of the time dependence of the permittivity ε'(t) performed at measur-
ing frequencies from 1 Hz to 1 kHz in weak electric fields E0 showed that the relaxation (or freezing) times
derived by extrapolating relations of the type ε'(t) ~  and ε'(t) ~ exp{–[ln(t/t0)]β} range from 108 to
1011 min and depend substantially on the bias voltage applied to the sample. A study of the pattern of the dielec-
tric response in moderate and strong infralow-frequency fields revealed that, after a sample was maintained
under a bias lower than the coercive force, it no longer exhibited the additional anomalies in the amplitude
dependences of the effective loss tangent  that were observed in a thermally recuperated sample.
© 2005 Pleiades Publishing, Inc.

t/t0( )log

taneff E0( )
† 1. INTRODUCTION

It is known that barium-doped lead scandium nio-
bate (PBSN) single crystals exhibit relaxor properties
[1]. A characteristic property of relaxors is a variation
with time at a constant temperature of some electro-
physical parameters, for instance, of the permittivity ε'
and dielectric losses ε" [2–5]. A study of temporal vari-
ations ε'(t) and ε''(t) in a PMN single crystal performed
in the low-temperature region has revealed breakdown
of a monotonic (log) decay of ε'(t) and ε''(t) after a cer-
tain time td [5]. The time td has been found to depend on
the bias electric field E= applied to the sample; namely,
the larger E=, the shorter the time of observation of a
sharp drop (step) in the ε'(t) and ε''(t) curves. This phe-
nomenon was ascribed in [5] to a kinetic phase transi-
tion from the relaxor to ferroelectric phase, which
becomes possible in a sample biased by an electric
field E=.

A similar pattern of dielectric response in the low-
and high-frequency ranges has likewise been observed
in lead scandium niobate doped with 6 at % Ba (PBSN-
6) [6]. However, the studies of the ε'(t) variation on
biased samples, both of PMN and of PBSN-6, included
the so-called initial time interval; in other words, the
variation in the dielectric response was recorded imme-
diately after the application of a bias field E= to a sam-
ple which had been preliminarily cooled from T > Tm

(Tm is the temperature of the maximum in permittivity
ε'(t)) to the temperature of interest Ti < Tm. It has been
demonstrated [7], however, in the particular example of

† Deceased.
1063-7834/05/4712- $26.00 ©2299
the SBN-75 relaxor, that the effect of the time of pre-
liminary aging (before application of a field) of a given
relaxor at a chosen temperature on the pattern of ε'(t)
and ε''(t) decay can be substantial and that the shorter
the aging time, the more sensitive the sample to a field
E= (and vice versa). In this case, the situation resembles
that observed with a spin glass (glass has been reported
to become progressively “harder” to a magnetic field
with aging [8]). Thus, the processes occurring in a
relaxor at the moment of field application (immediately
after sample cooling) are difficult to use in interpreting
various physical phenomena that take place in such
objects.

These considerations motivated the present study of
relaxation in PBSN-6 over times substantially in excess
of the time of sample cooling to the temperature of
interest and subsequent application of a bias or strong
ac fields, an approach which assumed the possibility of
identifying the dominant polarization relaxation mech-
anisms throughout the temperature range where the dif-
fuse phase transition occurs in the given system.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

PBSN single crystals were grown by mass crystalli-
zation. The growth technique used and the x-ray dif-
fraction data for these crystals can be found in [9, 10].
We report here on a study of the dielectric properties in
the range 0.1–1000 Hz performed both by the bridge
method in ultraweak measuring fields (E0 = 0.8 V/cm)
at various dc voltages (E= = 0–1000 V/cm) and oscillo-
 2005 Pleiades Publishing, Inc.
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graphically on a modified Sawyer–Tower circuit within
a broad range of ac field amplitudes E0 (from weak to
strong, i.e., above the coercive field, E0 > Ec). Before
each experiment, a sample was annealed at a tempera-
ture T > Tm for 30 min. After this, the sample was
cooled down to the given temperature Ti. The rate of
temperature variation did not exceed 1°C/min.
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Fig. 1. Variation of the permittivity ε'(t/t0) of a PBSN-6 sin-
gle crystal with time measured at various field frequencies
in a bias field E= equal to (a) 0, (b) 500, and (c) 1000 V/cm.
Sample aging temperature Ti = 30°C.

Table 1.  Polarization relaxation (freezing) times in a PBSN-6
single crystal measured at different bias field values at a con-
stant temperature Ti = 30°C

E=, V/cm τ, min

0 1 × 1011

500 1 × 109

1000 1 × 108
PH
3. EXPERIMENTAL RESULTS
AND DISCUSSION

Figure 1 shows the variation of permittivity
ε'[ ] (t0 = 1 min) with time measured at field
frequencies of 1, 10, 100, and 1000 Hz for a period of
5000 min over which the sample was aged at Ti = 30°C.
Figure 1a presents graphs obtained before the bias E=
was applied, and Figs. 1b and 1c, graphs obtained after
the application of two different biases E=. The straight
lines were drawn by approximating experimental data
with a log relation,

(1)

where A and B are fitting parameters.

Inspection of the ε'[ ] curves does not
reveal any qualitative change in the pattern of the rela-
tion throughout the measurement time covered, either
before or after the application of a bias; there is no
sharp decrease in the values of ε' (a step) over this time
interval. However, estimation of the relaxation time
(polarization freezing time) τ from the crossing of the
extrapolated ε'[ ] relations suggests that the
application of a bias and its increase bring about a grad-
ual decrease in τ (Table 1). Even at E= = 1000 V/cm, the
relaxation time τ is very long, which is consistent with
the idea that the physical reason for the relaxor state in
materials with diffuse phase transitions is the coexist-
ence of the ferroelectric and glass states [11, 12].

Another point to note is that, if we separate the
infralow- and high-frequency relaxation time intervals,
where the 1- to 10-Hz (infralow) and 100- to 1000-Hz
(high frequency) straight lines intersect, respectively,
then the difference between the relaxation times τ1–10 Hz
and τ100–1000 Hz turns out to be noticeable. Table 2 lists
the difference between the exponents in τ1–10 Hz = 1 ×
10n1 and τ100–1000 Hz = 1 × 10n2 for different values of the
bias field across a PBSN-6 sample.

As is evident from Table 2, the difference ∆n = n1 –
n2 decreases with increasing E= by several units. It is
conceivable that, under certain conditions, the differ-
ence ∆n characterizes the relaxation time distribution
for relaxing objects of different types. In this case, the
application of a bias to a sample (in our case, E= < Ec)
“switches off” part of the relaxing objects that contrib-
ute to ε*. We may further assume that, in PBSN-6,

t/t0( )log

ε' t( ) A B t/t0( ),log–=

t/t0( )log

t/t0( )log

Table 2.  Exponent difference ∆n obtained at different values
of the bias field applied to a PBSN-6 sample at a temperature
Ti = 30°C

E=, V/cm ∆n

0 4.4

500 2.67

1000 0.95
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where the relaxor state can change spontaneously to the
ferroelectric state, relaxing objects are switched off at
E= < Ec not only due to the orienting action of the bias
on individual polar nanoregions but also due to the bias-
induced partial merging of polar nanoregions (clusters),
with the subsequent formation of a domain structure in
the material. This assumption is in good agreement
with the data in Fig. 2 corresponding to the case where
the aging temperature Ti is chosen close to the temper-
ature of the so-called spontaneous phase transition
(Tsph) from the relaxor to ferroelectric state in PBSN-6.

In contrast to the cases demonstrated in Fig. 1,
where the time dependence of ε'(t) is approximated by
a logarithmic function, the permittivity decay at Ti =
7°C in Fig. 2 is fitted better with a function

(2)

where β < 1 and t @ t0 (t0 = 1 min).
The application of a bias to a sample at Ti = 7°C

brings about a substantial decrease in the frequency dis-
persion of ε* (as compared to the action of a biasing
field of the same magnitude at Ti = 30°C; see Fig. 1).

The most probable explanation for the change in the
pattern of the time asymptotic of the permittivity
observed to occur as the aging temperature approaches
Tsph is that, as a sample is cooled from T > Tm to T ≈ Tsph,
the system changes its phase state from relaxor to glass-
like; i.e., close to Tsph, we witness the manifestation of
an interaction among polar nanoregions. This may give
rise, on the one hand, to glasslike freezing, and on the
other, to the formation of structures of the fractal-clus-
ter type (microelectrets) [13, 14] or tweeds [15], as is
the case with martensitic phase transformations [16].

Similar variations in the type of time dependences
have been observed [17] in PLZT-8/35/65 relaxor
ceramics as the sample aging temperature approached a
characteristic relaxor temperature Td (the temperature
of macroscopic sample depolarization). In the case of
PBSN-6, the application of relatively weak external
fields at T ≈ Tsph accelerates apparently to a consider-
able extent the formation of such a mesoscopic struc-
ture, which subsequently transforms to a domain struc-
ture of the ferroelectric phase of the material.

The effect of preliminary aging of a relaxor under a
bias at a temperature close to Tsph on polarization and
repolarization in a PBSN-6 single crystal can be seen in
Fig. 3. Figure 3 presents the amplitude dependences of
the effective loss tangent taneffδ(E0) as derived from
polarization switching loops for a thermally recuper-
ated PBSN-6 sample and a PBSN-6 sample aged at Ti =
7°C (Ti ≈ Tsph) in a field E= = 500 V/cm. We readily see
that, as the measuring frequency decreases in the range
of moderate field amplitudes (E0 ~ 1500–1600 V/cm),
the recuperated sample exhibits an anomaly in the form
of a break in the taneffδ(E0) relation. No such anomaly
is seen in the aged sample.

ε' t( ) t/t0( )ln[ ] β
–{ } ,exp∼
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
Note that, in our earlier study of this material [18],
the temperature dependences of taneffδ(T) as measured
at various field amplitudes E0 revealed an anomaly in
this parameter in the form of an additional maximum in
taneffδ(T) near T ≈ 10°C, but only for fields E0 ≥
1650 V/cm. This behavior suggests that this value of
the ac field amplitude is critical for PBSN-6; above this
value, a ferroelectric state could be induced at temper-
atures corresponding to the relaxor state of the material.
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Fig. 2. Time dependences of ε'(t/t0) for a PBSN-6 single
crystal measured for different field frequencies in a bias
field E= equal to (a, c) 0 and (b, d) 500 V/cm. Sample aging
temperature Ti = 7°C.
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The fact that the aged sample did not exhibit any effects
in the amplitude dependences of taneffδ(E0) at such
fields suggests that the prolonged action of a bias field
on a sample stimulated a phase transition from the
relaxor to ferroelectric state in a sizable part of the sam-
ple volume, after which the polarization switching pro-
cesses occurred primarily via domain wall motion
mechanisms.

One should, however, also bear in mind that the
properties of ferroelectric and related materials that
have been subjected to prolonged aging are strongly
influenced by defects (due to pinning and depinning of
domain walls and phase boundaries) [19, 20]. The pin-
ning of domain or phase boundaries is indicated by a
decrease in taneffδ(E0) in a well-aged sample as com-
pared to a recuperated sample for field amplitudes not
in excess of 3000 V/cm (Fig. 3). For E > 3000 V/cm, the
values of taneffδ(E0) for an aged and a recuperated sam-
ple practically coincide, which may indicate the com-
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Fig. 3. Amplitude dependences of the effective loss tangent
taneffδ(E0) as derived from polarization switching loops for
(1) a PBSN-6 sample preliminarily aged at Ti = 7°C (T ≈
Tsph) in a bias field E= = 500 V/cm and (2) a thermally recu-
perated PBSN-6 sample.
PH
plete breakaway of domain walls and phase boundaries
from defects in these fields and involvement of the
entire volume of the sample in the polarization and
repolarization processes under the given experimental
conditions.

4. CONCLUSIONS

(1) An analysis of the time dependences of ε'(t) per-
formed over a broad interval of measuring frequencies
suggests that the relaxation (freezing) times in the
region of the diffuse phase transition in a PBSN-6 sin-
gle crystal lie in the range from 108 to 1011 min and
depend substantially on the magnitude of the bias field
applied to the crystal.

(2) The changes in the pattern of long-time relax-
ation in PBSN-6 observed to occur as the aging temper-
ature Ti approaches the temperature Tsph of the so-called
spontaneous (with no external field applied) phase tran-
sition to the ferroelectric state are most probably due to
the material passing through the following phase states:
superparaelectric for Ti > Tm, relaxor for Ti ≈ Tm, and
glasslike for Tsph < Ti < Tm.

(3) The existence of an additional anomaly (in addi-
tion to that occurring at Tm) in the temperature depen-
dences of the polarization characteristics at tempera-
tures below Tm observed before the application of a bias
to the sample and the absence of this anomaly after
application of the bias suggest that aging a sample
under a bias even below the coercive field brings about
a gradual disappearance of the relaxor phase and the
formation of the ferroelectric phase in the temperature
range from Tsph to Tm.
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Abstract—The temperature dependence of the heat capacity of two compositions in the solid solution system
BaTi1 – xZrxO3 (x = 0.25, 0.35) was measured using adiabatic calorimetry. In the T–x phase diagram, these com-
pounds occupy positions near the crossover from conventional ferroelectric behavior to the relaxor state. Both
compounds reveal diffuse heat capacity anomalies: two anomalies in the temperature ranges 250–350 and 150–
200 K at x = 0.35 and one anomaly within the range ~150–320 K at x = 0.25. The results obtained are discussed
together with structural and dielectric measurements. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Relaxor ferroelectrics have been attracting research
interest for a long time due to their remarkable dielec-
tric and piezoelectric properties and the application
potential they demonstrate in various areas of tech-
nology.

Dielectric, structural, spectroscopic, and other stud-
ies have established that the main relaxor features orig-
inate from the compositional and structural inhomoge-
neities of these materials and the presence of interact-
ing polar nanodomains in a nonpolar matrix. The
possible mechanisms responsible for these nonunifor-
mities and for the formation of polar nanodomains have
been debated intensely in the literature and are appar-
ently different in different relaxor ferroelectric groups
[1–3].

Most of the relaxors are mixed lead-containing per-
ovskites. However, reports have recently appeared on
the discovery of several groups of compounds which
feature relaxor properties and are derivatives of BaTiO3
with substituted isovalent or heterovalent cations [4–6].
The intense research interest in barium compounds
stems to a considerable extent from their being more
environmentally friendly.

Conventional relaxor ferroelectrics, which are simi-
lar to classical relaxors such as PbMg1/3Nb2/3O3 (PMN)
or Na1/2Bi1/2TiO3 (NBT), possess three distinctive fea-
tures: the presence in their composition of positionally
disordered Pb2+ or Bi3+ ions, which occupy position A
of the perovskite lattice because of their electronic
structure; heterovalent disorder (at any rate, in one
position, A or B); and, unlike solid solutions, the ten-
dency to form a chemical compound with a fixed com-
position.
1063-7834/05/4712- $26.00 2304
The solid solution system BaTi1 – xZrxO3 with
Ti4+  Zr4+ ion substitution in position B exhibits
none of these features, which makes its relaxor behav-
ior all the more remarkable [7–9]. Moreover, a contin-
uous variation from typically ferroelectric to relaxor
behavior is a unique characteristic of lead-free solid
solutions.

Mixed compounds with Zr concentrations x < 0.1–
0.12 exhibit permittivity anomalies corresponding to
three phase transitions, as is the case with the original
BaTiO3. As the zirconium concentration increases, the
temperature of the transition from the cubic to tetrago-
nal phase decreases, while the temperatures of the other
two transitions between distorted phases increase. In
the range 0.12 < x < 0.25, there occurs only one fairly
strong permittivity anomaly, which corresponds to a
direct transition from the cubic to rhombohedral phase
and exhibits a weakly pronounced frequency disper-
sion. For x > 0.25, these compounds reveal only one
broad peak in ε(T) with a maximum at Tm. Note that the
values of the maximum permittivity and Tm depend
markedly on the measuring field frequency, as should
be expected in relaxors. The phase diagram of com-
pounds with slight additions of Ca2+ has a narrow
region of concentrations x within which, in addition to
the maximum in ε(T) at Tm, a classical transition to the
ferroelectric state is observed at T3 < Tm [7, 10]. The
Tm(x) and TVF(x) (the Vogel–Fulcher temperature) lines
in the relaxor region join smoothly with the Tc(x) line
for compositions that exhibit conventional ferroelectric
behavior. The reasons for this relation and the mecha-
nisms governing the relaxor behavior in barium-con-
taining relaxors are discussed in [6].
© 2005 Pleiades Publishing, Inc.
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Studies of barium-containing relaxors have placed
major emphasis on the behavior of the dielectric prop-
erties of these materials near Tm. The interval about the
Burns temperature Td where polar nanodomains form
and the mechanisms governing the formation of these
domains have not been considered up to now.

The present study was aimed at establishing the
main features in the behavior of the heat capacity of
BaTi1 – xZrxO3 solid solutions with zirconium concen-
trations close to the crossover from the ferroelectric to
relaxor state. The calorimetric method makes it possi-
ble to reveal anomalies in the heat capacity of any ori-
gin associated with changes in both the electrical and
elastic subsystems and determine the energy character-
istics of these changes. The temperature range covered
by our studies extends over all characteristic tempera-
tures of relaxors, namely, Td, Tm, and Tc (the tempera-
ture of transition to the ferroelectric state), thus opening
up the possibility of refining the T(x) diagram.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The BaTi1 – xZrxO3 samples with x = 0.25 and 0.35
chosen for the study belong to different regions of the
phase diagram and undergo transitions to the conven-
tional ferroelectric and the relaxor state, respectively.

BaTi1 – xZrxO3 solid solutions were obtained in pow-
der form by solid-phase synthesis in an oxygen envi-
ronment from oxides in the reaction BaCO3 + (1 –
x)TiO2 + xZrO2  Ba(Ti1 – xZrx)O3 + CO2 at tempera-
tures of 1100–1200°C.

Ceramic samples ~10 mm in diameter and 4- to
7-mm thick were likewise synthesized in a dry oxygen
atmosphere at 1250–1400°C from oxides without any
sintering additives in 4 h. The grain size was about 1–
2 µm, and the density reached 90–95% of the calcu-
lated value. X-ray diffraction analysis confirmed that
the samples were single-phase and that the compounds
had cubic structure Pm3m [11, 12].

The heat capacity studies in the range 100–370 K
were carried out by adiabatic calorimetry, a method
providing high accuracy in absolute measurements.
The sample mass was 2.7 g for x = 0.35 and 4.9 g for
x = 0.25. Measurements were made using the tradi-
tional method of discrete heating (∆T = 1.5–2.5 K) and
in automated regime of continuous heating at a temper-
ature variation rate dT/dt ≈ (0.2–0.3) K/min [13]. The
accuracy of total heat capacity measurements depends
on the heating regime chosen and is 0.1–0.5%.

3. EXPERIMENTAL RESULTS

Figure 1a presents the results of the heat capacity
measurements of BaTi0.65Zr0.35O3. It has been reported
that the permittivity of this compound exhibits one fre-
quency-dependent anomaly near 200 K [6]. The Cp(T)
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
curve did not reveal any clearly pronounced anomalies
characteristic of traditional phase transitions. In the
temperature ranges 250–350 and 150–200 K, however,
one observes broad diffuse features in the heat capacity,
which stand out distinctly in the temperature depen-
dence of the excess heat capacity (Fig. 1b).

The lattice (CL) and anomalous (∆Cp) contributions
to the specific heat of our compounds were separated
using a simple model in which the lattice heat capacity
is described by a combination of the Debye and Ein-
stein functions. In the temperature region of interest,
the heat capacity is only weakly sensitive to fine fea-
tures in the lattice vibration spectrum, which justifies,
in our opinion, the approximation of the lattice contri-
bution in the above way. The anharmonic contributions
and the difference between Cp and CV were neglected
because this difference, as a rule, is small as a result of
the smallness of the thermal expansion coefficients of
the compounds under study [14].

Reverting now to Fig. 1b, we note that the high-tem-
perature anomaly is located near the temperature where
the permittivity curve starts to deviate from the Curie–
Weiss law [6], i.e., near the Burns temperature Td. The
temperature of the low-temperature anomaly is close to
that of the maximum in permittivity Tm.

BaTi0.75Zr0.25O3 undergoes a conventional phase
transition to the ferroelectric phase [6, 11]. The small
dispersion in permittivity was assigned to inhomogene-
ities of the samples. Compositionally, the compound is
close to the point of crossover from the conventional to
relaxor behavior. The temperature dependence of the

60

100 150

C
p,

 J
/m

ol
 K

T, K

70

200

1.5

100 200

∆C
p,

 J
/m

ol
 K

T, K

2.0

350

250 300 350
50

80

90

100

110

120

1.0
0.5

0
–0.5

150 250 300

(a)

(b)

Fig. 1. (a) Temperature dependence of the specific heat of
BaTi0.65Zr0.35O3; the solid line is the lattice specific heat.
(b) Anomalous specific-heat component.
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specific heat plotted in Fig. 2a reveals a broad region of
anomalous behavior of Cp(T) extending from ~150 to
~320 K.

We believe that the fairly large scatter of experimen-
tal points observed for BaTi0.75Zr0.25O3 (Fig. 2b) is inti-
mately connected with the specific features of this com-
pound, namely, its being close to the practically vertical
boundary separating the relaxor phase from the ferro-
electric phase in the T–x diagram [6]. The Cp(T) curves
in the anomalous region were obtained in several series
of measurements. In each series, the sample was cooled
to nitrogen temperature and then heated at a high rate
(~1–2 K/min) to the starting temperature in the series.
This could bring about a lack of reproducibility in the
results because of the attainment of equilibrium in the
sample being a slow process. The main difficulty expe-
rienced in separating the lattice and anomalous contri-
butions is associated with the fact that the regions of the
normal behavior of Cp(T) below 150 K and above
320 K are very narrow, and it is this factor that accounts
for the lower reliability of ∆Cp(T) determination.

The anomalous component of the specific heat
∆Cp = Cp – CL, shown in Figs. 1b and 2b, is only
2 J/mol K, or ~2% of the lattice specific heat CL.

The entropy changes related to the anomalous
behavior of the specific heat and defined as ∆S =

 are shown graphically in Fig. 3. The

small values ∆S0.25 ≈ 0.8 J/mol K and ∆S0.35 ≈ 0.5 J/mol K
imply that the processes involved are not of the order–
disorder type, regardless of what reasonable fraction of
the polar phase they are identified with. This is no sur-
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Fig. 2. (a) Temperature dependence of the specific heat of
BaTi0.75Zr0.25O3; the solid line is the lattice specific heat.
(b) Anomalous component of the specific heat.
PH
prise, because in barium compounds, unlike in com-
pounds containing lead, the Ba2+ cation does not con-
tribute noticeably either to the polarization or to the
transition entropy.

4. DISCUSSION AND CONCLUSIONS

In order to gain insight into the origin of the broad
anomalies in the temperature dependence of the spe-
cific heat, we consider the specific features in the struc-
ture of these materials and the corresponding models of
the phenomena involved.

In a solid-solution system, according to the Vegard
law, the unit cell parameter of the mixed compound var-
ies linearly with increasing concentration of the second
component. This involves a change in the interaction
parameters in the lattice and, accordingly, changes in
the temperatures and sequences of the phase transi-
tions.

This is exactly what occurs in the BaTiO3–BaZrO3
system at low zirconium concentrations. The unit cell
parameter varies in a linear manner [15], the intermedi-
ate tetragonal and orthorhombic phases gradually van-
ish, and the temperature of transition from the cubic
phase decreases.

Starting, however, with zirconium concentrations
x > 0.2–0.3, the temperature and frequency depen-
dences of the permittivity change. The anomaly
becomes strongly diffuse, and its temperature Tm is
heavily dependent on the measuring frequency. Note
that the macroscopic spontaneous polarization does not
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Fig. 3. Temperature dependence of the change in entropy of
the BaTi1 – xZrxO3 compounds with x equal to (1) 0.25 and
(2) 0.35.
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appear below Tm in this case. This behavior is typical of
relaxors.

This transition coincides in concentration with the
appearance of additional reflections in the x-ray diffrac-
tion patterns and a change in the pattern of the concen-
tration dependence of the cell parameter [15], which
apparently indicates a multiphase state of the samples
and a breakup of the solid solutions. In this concentra-
tion range, the samples may be assumed to consist of
nanoregions with different zirconium concentrations.
The long-range order characteristic of the low-temper-
ature phase of pure barium titanate and solid solutions
with x < 0.2 breaks down. Regions rich in Ti4+ become
polar below the Burns temperature Td, whereas regions
with a high Zr4+ content remain paraelectric, like pure
BaZrO3, so that finally only polar nanodomains are left
in the samples.

Thus, for x ≥ 0.25, the situation in BaTi1 – xZrxO3
becomes similar in a certain sense to that observed ear-
lier in PbMg1/3Nb2/3O3, where compositional inhomo-
geneities were reliably detected on the nanoscopic level
and where regions with local Mg/Nb = 1 stoichiometry
were observed [16].

The measured temperature dependence of the spe-
cific heat of BaTi0.65Zr0.35O3 is likewise similar to Cp(T)
of lead magnesium niobate, where anomalies in the
specific heat have been observed near the maximum in
permittivity at Tm [17, 18] and at the temperature Td of
formation of polar nanodomains [18].

A model of relaxors for the temperature range T <
Td, namely, the spherical random bond–random field
model (SRBRF), was proposed in [2]. This model con-
siders a system of randomly interacting reorienting
nanoclusters in the presence of random electric fields.
Both random interactions (bonds) and random electric
fields are assumed to have a Gaussian distribution. With
no external field applied (E = 0), the system allows two
sets of solutions. One of them, where the mean cluster
polarization 〈P〉  = 0 and the rms polarization 〈P2〉  ≠ 0,
corresponds to a phase with no long-range order (spher-
ical glass, SG). The other solution, with 〈P〉  ≠ 0 and
〈P2〉  ≠ 0, can be identified with a long-range-order
phase, i.e., the ferroelectric (FE) phase.

If the mean interaction strength J0 is less than a crit-
ical value, no long-range order sets in and the system
remains in the SG state down to 0 K but the permittivity
and the heat capacity pass through a maximum at a tem-
perature Tm. If J0 is larger than the critical value, long-
range order may appear as a result of a phase transition
into an inhomogeneous ferroelectric phase at Tc < Tm.

In BaTi0.65Zr0.35O3, the interaction parameter J0 is
apparently less than the critical value and the ferroelec-
tric transition with the formation of a macroscopic
order parameter (polarization) does not occur. Accord-
ingly, no classical heat capacity anomalies appear.
However, the existence of the parameter 〈P2〉  ≠ 0 and its
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
variation with temperature give rise to an additional
contribution to the free energy and heat capacity. The
temperature dependence of the heat capacity was calcu-
lated numerically in [17] for various parameter values
of the model proposed in [2]. It was found that, even in
the absence of the ferroelectric transition, the heat
capacity passes through a broad anomaly peaking at Tm.

In Ba0.92Ca0.08Ti0.76Zr0.24O3, J0 exceeds the critical
value and this compound reveals, besides anomalies in
the permittivity and heat capacity at Tm ≈ 270 K, the
long-range order and the phase transition to a nonuni-
form ferroelectric phase at T3 = 210 K [7, 14].

Unfortunately, the anomalous heat capacity compo-
nents, as already mentioned, are fairly small, with the
associated uncertainties reaching as high as 20–30%,
which precluded any attempt at quantitative treatment.

Thus, the temperatures of the heat capacity anoma-
lies observed in our study may be identified, in our
opinion, with Td, Tm, or TVF.

The data obtained suggest that the temperature versus
composition phase diagram [6] should be complemented
by one more line, namely, Td(x). Figure 4 sums up the
results reported in [6], the results obtained in this study
for BaTi1 – xZrxO3 with x = 0.25 and 0.35, and the charac-
teristic temperatures for Ba0.92Ca0.08Ti0.76Zr0.24O3 [14].

An increase in zirconium concentration above a cer-
tain critical level xf–r ≈ 0.25–0.27 [6] initiates, in our
opinion, the formation of compositionally nonuniform
nanoregions, part of which, that with a lower Zr con-
tent, transfers to the polar state at the Burns temperature
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Fig. 4. Phase diagram of the BaTi1 – xZrxO3 system.
(1) Dielectric measurements [6, 12], (2) calorimetric stud-
ies of Ba0.92Ca0.08Ti0.76Zr0.24O3 [14], and (3) present
study.
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Td. The value of Td depends both on the actual compo-
sition of a nanoregion and on its size; so we have here
a range of Burns temperatures. This suggestion is cor-
roborated by the results obtained in a study of BaTiO3
thin films and nanopowders [19]. Interaction among
polar nanoregions gives rise to the appearance of max-
ima in the permittivity and heat capacity at Tm, followed
by a ferroelectric transition at T3. As the zirconium con-
centration is increased further, the interaction among
the polar nanoregions decreases and the transition to a
phase with macroscopic polarization does not occur.
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Abstract—A model Hamiltonian for B cation ordering (Sc–Nb(Ta)) in PbSc1/2Nb1/2O3 and PbSc1/2Ta1/2O3
solid solutions is constructed. The parameters of the model Hamiltonian are determined from the ab initio cal-
culation within the ionic crystal model with allowance made for the deformability and the dipole and quadru-
pole polarizabilities of the ions. The temperatures of the phase transition due to the ordering of the B cations
are calculated by the Monte Carlo method in the mean-field and cluster approximations. The phase transition
temperatures calculated by the Monte Carlo method (1920 K for PbSc1/2Ta1/2O3 and 1810 K for
PbSc1/2Nb1/2O3) are consistent with the experimental data (1770 and 1450 K, respectively). The thermody-
namic properties of the cation ordering are investigated using the Monte Carlo method. © 2005 Pleiades Pub-
lishing, Inc.
1. Solid solutions of  oxides with a per-
ovskite structure have been continuing to attract the
attention of researchers for several decades. The physi-
cal properties of these compounds have been investi-
gated experimentally and theoretically. The

 solid solutions are of great interest from
both the applied and scientific standpoints owing to
their unusual electrical and mechanical properties [1–
3], as well as to the interesting phenomena revealed in
these compounds that have not been observed earlier in
oxides with a perovskite structure [4, 5]. Among the

large number of  solid solutions, it is pos-
sible to distinguish an important class of so-called het-
erovalent alloys, i.e., solid solutions with B' and B'' ele-
ments belonging to different groups of the periodic
table.

The solid solutions PbSc1/2Ta1/2O3 (PST) and
PbSc1/2Nb1/2O3 (PSN), which belong to this class of
compounds, have been intensively studied both experi-
mentally and theoretically [6–10]. In particular, these
compounds undergo phase transitions due to the order-
ing of B' and B'' cations; in this case, the degree of
ordering depends on the cooling rate [6]. In turn, the
physical properties of these solid solutions (for exam-
ple, the ferroelectric phase transition and its attendant
anomalies observed in the electrical and mechanical
properties) substantially depend on the degree of order-
ing of the B cations [1, 5].

The phase transitions associated with the Sc3+–
Nb5+(Ta5+) ordering have been investigated theoreti-
cally by a number of researchers [7–10]. Bellaiche and
Vanderbilt [7] studied an electrostatic model of atomic
ordering with allowance made only for the Coulomb

ABx' B1 x–'' O3

ABx' B1 x–'' O3

ABx' B1 x–'' O3
1063-7834/05/4712- $26.00 2309
interactions of excess (as compared to the average
charge q = +4) charges ∆q = ±1 localized at sites of a
simple cubic lattice. The authors of [7] established that,
within the model under consideration, the structure
with Sc3+–Nb5+(Ta5+) ordering along the [111] spatial
diagonal of the perovskite cell is energetically most
favorable, which corresponds to the experimentally
observed type of ordering. A somewhat changed elec-
trostatic model that accounts for the probability of B
cations jumping over the sites of the crystal lattice was
investigated by Gao et al. [8] using the Monte Carlo
method with the interaction constant serving as an
adjustable parameter.

Burton and Cohen [9] considered B cation ordering
in the PbSc1/2Ta1/2O3 compound within the cluster
approximation. In this case, the interaction constants
involved in the model Hamiltonian describing the cat-
ion ordering were obtained from the ab initio calcula-
tion of the energy of the crystal within the so-called
potential-induced breathing (PIB) model, i.e., within
the model of an ionic crystal with a spherical deform-
ability of the ions. However, it is known that, in oxide
compounds, the dipole and quadrupole distortions of
the electron density have a substantial effect on the
static and dynamic properties.

In this work, we investigated the phase transitions
occurring in the PbSc1/2Nb1/2O3 and PbSc1/2Ta1/2O3
solid solutions due to the ordering of scandium and nio-
bium (tantalum) ions. For this purpose, we performed
ab initio calculations within the ionic crystal model tak-
ing into account the dipole and quadrupole polarizabil-
ities and the deformability of the ions. Then, we intro-
duced a model Hamiltonian describing a phase transi-
tion of the order–disorder type in the system of a binary
© 2005 Pleiades Publishing, Inc.
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alloy (B'/B''). The parameters of the model Hamiltonian
accounting for the interactions within three coordina-
tion shells were determined by calculating the total
energy of the crystal in different ordered phases. The
temperatures of the phase transitions were calculated
using the Monte Carlo method in the mean-field and
cluster approximations with the obtained parameters of
the model Hamiltonian.

2. The phase transitions occurring in AB'B''O3 solid
solutions due to the ordering of B cations will be
described using a model Hamiltonian accounting for
only those degrees of freedom that are associated with
the positional disorder of scandium and niobium (tanta-
lum) atoms located at sites of the crystal lattice (the

position b in the space group ). In this case, the
problem of B cation ordering in the AB'B''O3 solid solu-
tion is equivalent to the problem of ordering in a binary
alloy. Hence, we can use a model based on the assump-
tion that the atoms involved in the solid solution are
located at sites of a rigid crystal lattice [11]. Therefore,
the configuration energy of the solid solution can be
represented as the sum of all pair atomic interaction
potentials. Within this model, the Hamiltonian of the
system can be written in the form

(1)

where vB'B', vB''B'', and vB'B'' are the pair interaction
potentials of the B' atoms, the B'' atoms, and the B' and
B'' atoms, respectively, which are located at lattice sites
described by the vectors rk and rj; and µB' and µB'' are the
chemical potentials of the B' and B'' cations, respec-

tively. The quantities  and  are random functions
determined as follows: if the jth site is occupied by the

B' atom, we have  = 1 and  = 0; and, if the jth site

is occupied by the B'' atom, we have  = 0 and  =

1. The quantities  and  are related by the expres-

sion  +  = 1.

Taking into account this relationship, expression (1)
can be rewritten in the following form [11]:

(2)
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is the effective interaction constant,

is the chemical potential of the system, and H0 is the
energy independent of the arrangement of the B' and B''
ions (this energy can be taken as the origin).

For the binary alloy considered in our case, in which
the concentration of both components is equal to 1/2,
relationship (2) can be written in the equivalent form

through the Pauli matrices  = ±1:

(3)

The effective interaction constants can be obtained
from the ab initio calculation of the total energy of the
crystal within the Gordon–Kim model taking into
account the dipole and quadrupole polarizabilities of
the ions [12, 13]. The expression for the total energy
has the form

(4)

where

(5)

(6)

(7)
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(8)

Here, Es is the energy of interaction of the spherically
symmetric ions; Ep, Eq, and Epq are the energies of inter-
action of the dipole and quadrupole moments; Eself =

 is the self-energy energy of the ions;  =

 is the long-range part of the interactions,

which is calculated by the Ewald method; (Vi ,
Vj , |Ri – Rj |) is the short-range part of the interactions;

and  are the dipole (quadrupole) moments of
the ions, which are calculated from the minimum con-
dition of the total energy of the crystal [13].

In order to determine the energy of the crystal in the
disordered phase, we use the virtual crystal approxima-
tion. In this approximation, the short-range part of the
pair interactions of the virtual ion 〈B〉  with other ions (i)
has the form

(9)

The contribution of the virtual ion to the self-energy
energy is given by the formula

(10)

The dipole and quadrupole polarizabilities of the
virtual ion B are defined as

(11)

In the calculation of the long-range Coulomb contri-
butions, the charge of the virtual ion B is determined as
follows:

(12)

3. Using the model Hamiltonian, we restrict our
consideration to the special case of interactions within
three coordination shells. In order to obtain the effec-
tive interaction constants, we calculate the energies of
several structures with different degrees of ordering of
the B' and B'' ions. We consider only ordered structures
with a perovskite cell volume enlarged by a factor of 8
(Fig. 1). The first column in Table 1 presents the config-
uration motif of the ordered structures with the notation
taken from the paper by Burton and Cohen [9], who
carried out a similar calculation for the PbSc1/2Ta1/2O3
solid solution. The second column in this table lists the
lattice parameters of the ordered structures. The calcu-
lated energies Ei per formula unit ABO3 are given in

Eq
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columns 3 and 4 for the PSN and PST solid solutions,
respectively:

(13)

Here, Etotal is the total energy of the crystal, Eself is the
self-energy energy of the ions [see relationship (4)],
and E0 is the energy independent of the arrangement of
the B' and B'' ions, which is equal to –161.455721 eV
for the PSN solid solution and –157.692153 eV for the
PST solid solution.

In column 5 in Table 1, the energies of the ordered
structures are expressed through the effective interac-
tion constants involved in expression (3). It should be
noted that, since the model Hamiltonian accounts only
for the degrees of freedom associated with the posi-
tional disorder of the B' and B'' ions, the effective inter-
action constants are calculated in terms of the energies
of the unrelaxed structures.

The calculated effective interaction constants are
presented in Table 2. It can be seen from this table that
the effective interaction constants J1, J2, and J3 have the
same sign and correspond to the attraction of the scan-
dium and niobium (tantalum) ions in the first, second,
and third coordination shells. Therefore, we are dealing
here with competition between antiferromagnetic inter-
actions. It is known that, in this case, the mean-field
approximation leads to substantially incorrect numeri-
cal values of the phase transition temperature. Actually,
in the mean-field approximation, the phase transition
temperature is given by the expression

(14)

The calculated values of the phase transition tem-

perature  are listed in Table 3. As can be seen from

this table, the calculated temperatures  exceed the
experimental values by a factor of more than 3. Such a
large difference between the calculated and experimen-
tally obtained temperatures of the phase transition is
associated with the fact that, in the system with compet-

Ei Etotal Eself– E0.–=

Tc
mf 6J1 12J2– 8J3+

kB

----------------------------------------.=

Tc
mf

Tc
mf

2 3

41

6 7

85

Fig. 1. Perovskite cell enlarged by a factor of 8 (only the B
cations are shown).
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Table 1.  Energies of ordered structures of the PbSc1/2Ta1/2O3 and PbSc1/2Nb1/2O3 solid solutions

Configuration
{I J K L}

{M N O P}
(B' = +1, B'' = –1)

Lattice
parameters

Calculated energies, Ei, eV Energies expressed 
through the effective 

interaction constants JiPSN (a0 = 3.95 Å) PST (a0 = 4.01 Å)

1 2 3 4 5

{–1 1 –1 1}
{1 –1 1 –1}
(B'B'' along the [111] direction)

a = b = c = 2a0 –0.399357 –0.448150 –6J1 + 12J2 – 8J3

{–1 1 –1 –1}
{1 1 1 –1}

a = b = c = 2a0 –0.193832 –0.292024 –8J3

{1 1 1 1}
{–1 –1 –1 –1}
(B'B'' along the [100] direction)

a = b = a0,
c = 2a0

–0.125324 –0.239982 2J1 – 4J2 – 8J3

{1 –1 1 –1}
{1 –1 1 –1}
(B'B'' along the [110] direction)

a = b = ,
c = a0

–0.349156 –0.378210 –2J14J2 + 8J3

{–1 –1 –1 1}
{1 1 1 –1}

a = b = c = 2a0 –0.305748 –0.361138 –2J1

{1 –1 –1 –1}
{1 1 1 –1}

a = b = c = 2a0 –0.237239 –0.309096 –4J2

{1 1 1 1}
{1 1 1 1}+
{–1 –1 –1 –1}
{–1 –1 –1 –1}

a = b = a0,
c = 4a0

0.848736 1.031372 4J1 + 4J2

2a0
ing interactions, an important role is played by the
short-range correlations, which are ignored in the
mean-field approximation. It is known that these corre-
lations can be taken into account in another version of
the self-consistent field approximation, the so-called
cluster approximation [14, 15].

4. The algorithm employed in the cluster field
method was described in detail by Vaks et al. [14, 15].
We will use this method for calculating the tempera-
tures of the phase transition in the PSN and PST solid
solutions. In the cluster field method, the crystal lattice
whose sites are occupied by ordering atoms is separated
into clusters containing some number of “spins” and
the relationships between the cluster fields are estab-
lished.

In our case, we deal with antiferromagnetic interac-
tions. Therefore, we can separate the crystal lattice into
two sublattices, namely, the A and B sublattices, in such
a way that, in the ordered state with the lowest energy,
the scandium ions will occupy sites of the A sublattice

Table 2.  Calculated effective interaction constants

Crystal
Effective interaction constants, eV

J1 J2 J3

PSN 0.152874 0.0593099 0.024229

PST 0.180569 0.077274 0.036503
PH
(  = +1, spins 1, 3, 5, 7 in Fig. 1), whereas the nio-
bium ions will be located at sites of the B sublattice

(  = –1, spins 2, 4, 6, 8 in Fig. 1). For the interactions
occurring within three coordination shells, there exist
six cluster fields, namely, φ1, φ2, φ3, ψ1, ψ2, and ψ3

(where φ and ψ are the cluster fields acting on the spins
of the A and B sublattices, respectively).

In order to obtain relationships between the cluster
fields, we separate the crystal lattice into six clusters
(see Fig. 1): an eight-particle cluster containing spins
1–8; two seven-particle clusters, namely, the 7a cluster
containing spins 1–7 and the 7b cluster containing spins
1–6, 8; a six-particle cluster containing spins 1–6; and
two five-particle clusters, namely, the 5a cluster con-
taining spins 1–5 and the 5b cluster containing spins 1–
4, 6. As a result, the free energy can be written in the
form

(15)

where β = , Zi = Sp{exp(–βHi)} are the correspond-

ing cluster partition functions, and Hi is the cluster

σA
z

σB
z

βD
11
4
------ Z8ln

5
2
--- Z7aln–

5
2
--- Z7bln–=

– 3 Z6ln 3 Z5aln 3 Z5b,ln+ +

1
kT
------
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Hamiltonian. For brevity, we present explicit expres-
sions only for the cluster Hamiltonian Hi; that is,

(16)

(17)

(18)

(19)

The expressions for H7b and H5b can be obtained from
relationships (17) and (19) with the changes φi  ψi,
σ1  σ2, σ3  σ4, σ5  σ6, and σ7  σ8.

The cluster fields φi and ψi can be found from the
variational condition

(20)

which, in this case, leads to a system of six equations.
The temperature of the phase transition due to the B

cation ordering can be calculated from expression (20).

H8 J1 σ1 σ2 σ4 σ6+ +( ) σ3 σ2 σ4 σ8+ +( )+(=

+ σ5 σ2 σ6 σ8+ +( ) σ7 σ4 σ6 σ8+ +( )+ )

+ J2 σ1σ3 σ1σ5 σ1σ7 σ2σ8 σ2σ4 σ2σ6+ + + + +(

+ σ3σ5 σ3σ7 σ4σ6 σ4σ8 σ5σ7 σ6σ8+ + + + + )

+ J3 σ1σ8 σ2σ7 σ4σ5 σ3σ6+ + +( )

+ 3φ1 9φ2 7φ3+ +( ) σ1 σ3 σ5 σ7+ + +( )

+ 3ψ1 9ψ2 7ψ3+ +( ) σ2 σ4 σ6 σ8+ + +( ),

H7a J1 σ1 σ2 σ4 σ6+ +( ) σ3 σ2 σ4+( )+(=

+ σ5 σ2 σ6+( ) σ7 σ4 σ6+( )+ )

+ J2 σ1σ3 σ1σ5 σ1σ7 σ2σ4 σ2σ6+ + + +(

+ σ3σ5 σ3σ7 σ4σ6 σ5σ7+ + + )

+ J3 σ2σ7 σ4σ5 σ3σ6+ +( ) σ1 3φ1 9φ2 8φ3+ +( )+

+ σ3 σ5 σ7+ +( ) 4φ1 9φ2 7φ3+ +( )

+ σ2 σ4 σ6+ +( ) 3ψ1 10ψ2 7ψ3+ +( ),

H6 J1 σ1 σ2 σ4 σ6+ +( ) σ3 σ2 σ4+( )+(=

+ σ5 σ2 σ6+( ) )

+ J2 σ1 σ3 σ5+( ) σ2σ4 σ2σ6 σ3σ5 σ4σ6 )+ + + +(

+ J3 σ4σ5 σ3σ6+( ) σ1 3φ1 10φ2 8φ3+ +( )+

+ σ3 σ5+( ) 4φ1 10φ2 7φ3+ +( )

+ σ2 3ψ1 10ψ2 8ψ3+ +( )

+ σ4 σ6+( ) 4ψ1 10ψ2 7ψ3+ +( ),

H5a J1 σ1 σ2 σ4+( ) σ3 σ2 σ4+( ) σ5σ2+ +( )=

+ J2 σ1 σ3 σ5+( ) σ2σ4 σ3σ5+ +( )

+ J3σ4σ5 σ1 σ3+( ) 4φ1 10φ2 8φ3+ +( )+

+ σ5 5φ1 10φ2 7φ3+ +( ) σ2 3ψ1 11ψ2 8ψ3+ +( )+

+ σ4 4ψ1 11ψ2 7ψ3+ +( ).

     
                    

∂F/∂φ1 ∂F/∂ψi 0,= =
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For this purpose, expression (20) is expanded in powers
of φi and ψi up to linear terms and the determinant com-
posed of the coefficients of the cluster fields φi

 

 and 

 

ψ

 

i

 

 is
taken equal to zero.

Using the effective interaction constants 

 

J

 

1

 

, 

 

J

 

2

 

, and

 

J

 

3

 

 presented in Table 2, we can determine the tempera-
ture of the phase transition (Table 3). As can be seen
from Table 3, the obtained temperatures of the phase
transition are substantially less than the phase transition

temperature  calculated in the mean-field approxi-
mation. It should be noted that, within a simple Ising
model, in which competing interactions are disre-
garded, the phase transition temperatures calculated
using the cluster field method do not differ greatly from
those obtained in the mean-field approximation [15].

Thus, the partial inclusion of the short-range corre-
lations associated with the competition of the interac-
tions leads to a considerable decrease in the critical
temperatures (as compared to those obtained in the
mean-field approximation) of the phase transitions due
to the cation ordering in the 

 

PSN

 

 and 

 

PST

 

 solid solu-

tions. However, the phase transition temperatures 
obtained in the framework of the cluster field method
are appreciably higher than the experimental values.

 

5.

 

 For a more complete inclusion of the correlation
effects in the description of the phase transition caused
by the 

 

B

 

 cation ordering, we used the numerical Monte
Carlo method, which has been successfully applied in
the investigation of the phase transitions in different
systems, including those observed in ordering alloys
[16, 17].

We examined crystal lattices 12 

 

×

 

 12 

 

×

 

 12, 18 

 

×

 

 18 

 

×

 

18, and 30 

 

×

 

 30 

 

×

 

 30 in size with periodic boundary
conditions. The first 10 000 steps for each temperature
were rejected and disregarded in the averaging. The
average values of the energies, order parameters, and
heat capacities were calculated in two stages. After 50
steps, we determined the group averages and, then, car-
ried out the averaging over 500 groups.

The temperature dependences of the heat capacity
and those of the short-range order parameter and long-
range order parameter for the PbSc

 

1/2

 

Nb

 

1/2

 

O

 

3

 

 and
PbSc

 

1/2

 

Ta

 

1/2

 

O

 

3

 

 solid solutions with a 30 

 

×

 

 30 

 

×

 

 30 lat-

Tc
mf

Tc
cl

 

Table 3.

 

  Calculated and experimental temperatures of the
phase transition due to the 

 

B

 

 cation ordering (in degrees
Kelvin)

Crystal

 

PSN

 

4630 2250 1810 1480

 

PST

 

5200 2400 1920 1770

 

Note: mf is the mean-field approximation, cl is the cluster approx-
imation, mc is the Monte Carlo method, and exp is the
experimental data [6].

Tc
mf Tc

cl Tc
mc Tc

exp
05



2314 ZINENKO, SOFRONOVA

                  
tice are shown in Figs. 2 and 3, respectively. It should
be noted that the size of the lattice does not affect the
temperature of the phase transition or the temperature
dependences of the order parameters. As the size of the
lattice increases, the peak of the heat capacity becomes
sharper. The calculated temperatures of the phase tran-
sitions are listed in Table 3. These temperatures are in
agreement with the experimental data.

6. Thus, the temperatures of the phase transitions
associated with the cation ordering in the
PbSc1/2Nb1/2O3 and PbSc1/2Ta1/2O3 solid solutions were
calculated using the model Hamiltonian within the

0.2

0
1600

T, K
1800 2000 2200

0.4

0.6

0.8

1.0

2400

Fig. 3. Temperature dependences of the long-range order
parameter for the PSN (solid line) and PST (dashed line)
solid solutions and the short-range order parameter for the
PSN (triangles) and PST (circles) solid solutions.

1

0
1600

C
/R

T, K
1800 2000 2200

2

3

4

5

6

2400

Fig. 2. Temperature dependences of the excess heat capac-
ity due to the ordering of the B cations in the PSN (squares)
and PST (circles) solid solutions.
PH
                        

ionic crystal model accounting for the dipole and qua-
drupole distortions of the electron density and the
deformability of the ions. It was established that the
effective interactions between ordering cations exhibit
a competitive nature. The temperatures of the phase
transition due to the cation ordering, which were calcu-
lated in the framework of the cluster approximation and
the Monte Carlo method, are in reasonable agreement
with the experimental values.
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Abstract—The thermodynamic functions for cerium in the vicinity of the isomorphous γ–α phase transforma-
tion are calculated from the results of adiabatic experiments. The experimental data are approximated within a
modified model of a binary solution. This model is fitted to the experimental results. The behavior of the ther-
modynamic functions in the ranges of temperatures and pressures covering the γ–α phase transformation is
actually characteristic of a critical point of the liquid–vapor type. The critical exponent for the density is found
to be β = 0.46. The other exponents are virtually identical to those obtained in the framework of the classical
models describing the thermodynamic functions in the vicinity of the critical point. © 2005 Pleiades Publish-
ing, Inc.
1. INTRODUCTION

The abnormal behavior of a cerium volume under
compression was noted earlier by Bridgmam [1]. Sub-
sequently, Lawson and Ting Yuang Tang [2] established
using x-ray diffraction analysis that the crystal structure
of the high-pressure cerium phase has a face-centered
cubic lattice; i.e., this phase is structurally identical to
the low-temperature modification α-Ce under normal
atmospheric pressure. A few years later, Likhter et al.
[3] found that the volume effect of the phase transfor-
mation decreases with increasing temperature. Ponya-
tovskiœ [4] revealed that an increase in the temperature
leads to a decrease in the thermal effect of the phase
transformation to the point of disappearance at T > 550
K. The author of [4] analyzed the above data in combi-
nation with the behavior of the volume effect and
assumed that a critical point of the liquid–vapor type
should lie in the phase diagram on a line corresponding
to the γ–α phase transformation. It is believed that the
first-order transformation of the γ phase into the α
phase of cerium is the electronic transition between the
valence 4f states and the conduction band. The specific
features of the isomorphous γ–α phase transformation,
including a minimum in the melting line, have long
attracted considerable research attention (see, for
example, [5]).

The results of measuring the change in the tempera-
ture of cerium due to the adiabatic variation in the pres-
sure in the ranges of temperatures and pressures cover-
ing the γ–α phase transformation of cerium were
reported earlier in [6]. Under the condition S = const at
a small value of ∆P, these results allow one to determine
the derivative (∂T/∂P)S from the following expression:

JS
∂T
∂P
------ 

 
S

≡ lim
∆T
∆P
------- 

 
S ∆P 0→,

.=
1063-7834/05/4712- $26.00 2315
With knowledge of the quantity JS(T, P) as a func-
tion of the temperature and pressure, we can directly
calculate not only the family of isentropes but also,
under known boundary conditions [for example, S(T,
0)], the function S(T, P) and, consequently, the temper-
ature and pressure dependences of the heat capacity CP

and the thermal expansion (∂V/∂T)P [7]. In the case of
cerium, the occurrence of a first-order phase transition
requires that the boundary conditions be also specified
along the transformation line because the entropy
undergoes a jump. Similar estimates were made in [6].
It was found that the obtained family of isentropes is
actually characteristic of the critical point. However,
the assumptions used to specify the boundary condi-
tions along the transformation line, as well as the neces-
sity of knowing the derivative (∂T/∂P)S at each point in
the pressure and temperature ranges under consider-
ation (which implies interpolation), made calculations
of the thermodynamic functions impossible.

In this work, prior to calculating the thermodynamic
function for cerium from the results of the adiabatic
experiments, we determined the Gibbs potential
G(T, P) for the system under consideration. The crite-
rion for choosing the potential, specifically, the func-
tion JS(T, P), which follows from this potential, must be
in satisfactory agreement with the experimental data.
Within this approach, the studied system can be com-
pletely described using the function JS(Ti , Pi) obtained
from the adiabatic experiments and the following five
parameters: the entropy, the volume, and the bulk mod-
ulus under normal pressure, i.e., S(298, 0), V(298, 0),
and KT(298, 0), respectively; the volume jump at room
temperature ∆Vtr(298); and the bulk modulus KT(298,
P) at a pressure P away from the γ  α phase trans-
formation.

                           
© 2005 Pleiades Publishing, Inc.
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According to Aptekar’ and Ponyatovskiœ [8], who
used the mean-field model [9], cerium can be consid-
ered a binary regular pseudosolution (Ce3+–Ce4+). In
this case, the thermodynamic potential can be written in
the form

(1)

Here, G1(T, P) and G2(T, P) are the Gibbs potentials for
the pure components, x is the phase concentration, and
U is a quantity determining the energy of mixing.

Under the assumption that the differences between
the internal energies (E1 – E2), entropies (S1 – S2), and
volumes (V1 – V2) of the pure components are constant
and independent of the temperature and pressure and
that the quantity U is also constant and independent of
the concentration, Aptekar’ and Ponyatovskiœ [8]
offered a satisfactory description for the specific fea-
tures of the thermodynamic functions. Based on the
obtained P–T dependence of the concentration and,
hence, the P–T dependences of the heat capacity Cp,
thermal expansion β, and compressibility χ, those
authors demonstrated that the behavior of these quanti-
ties is actually characteristic of the critical point. How-
ever, this model is quantitatively inconsistent with a
number of experimental data, including the later results
of adiabatic experiments [6], which, in my opinion,
most thoroughly describe the thermodynamic functions
(obtained by one method) in the vicinity of the phase

G T P x, ,( ) 1 x–( )G1 T P,( ) xG2 T P,( )+=

+ RT x xln 1 x–( ) 1 x–( )ln+[ ] x 1 x–( )U .+

Table 1.  Data available in the literature on the properties of
cerium

S(298, 0) = 57.78 J/(mol K) [10]

V(298, 0) = 20.68 cm3/mol [10]

KT(298, 0) = 19.1 GPa [11]

KT(298, 3.0) = 35.5 GPa [11]

∆Vtr(298) = 2.688 cm3/mol [12]

K' (γ phase) = K' (α phase) = 4* [13]

*  According to Frantsevich et al. [13], the derivative of the bulk
modulus with respect to the pressure for simple substances lies
in the range 3–5.

Table 2.  Parameters obtained for pure phases of cerium in
the standard state

Phase V,
cm3/mol Θ, K γ(1) K0, GPa G0,

J/mol

γ phase 20.75 120 0.751 21.34 0

α phase 17.36 201 1.155 24.17 2216
PH
       

transformation under investigation. This is not surpris-
ing even if the Strässler–Kittel model were to be used,
because the ranges of temperatures and pressures stud-
ied in [6] are sufficiently wide. Therefore, one of the
reasons for this discrepancy can be associated with the
fact that the above differences between the thermody-
namic functions for the pure phases cannot, under any
circumstances, be considered to be constant.

2. CALCULATION OF THE THERMODYNAMIC 
FUNCTIONS

Let us assume that expression (1) with some modi-
fications is an appropriate trial function for describing
the thermodynamic potential of the system under inves-
tigation. In our calculations, we also use a potential of
form (1) for an analytical description of the function
JS(Ti , Pi) obtained from the adiabatic experiments.
However, in our case, unlike the approach employed in
[8], the P–T dependences of the properties are taken
into account for each phase and the quantity U is a func-
tion of the temperature and concentration, i.e., U =
U(T, x). (Note that the dependences of the properties on
the pressure P, which are quite natural in the model of
a solution, are not related to the case under consider-
ation, because these dependences would lead to a curve
Tc(P) of critical points, which has no physical meaning;
hence, these dependences are omitted.) Therefore, the
above problem is reduced to the problem of determin-
ing both the parameters of the equations of state for
pure phases and the form of the function U(T, x). The
criterion is the minimization of the root-mean-square
deviation of the experimental and calculated values
JS(Ti , Pi). In this statement of the problem, the model of
a binary solution is fitted to the results of the experi-
ment. However, since the function U(T, x) can be cho-
sen arbitrarily, the statement that the calculation is car-
ried out within the model of regular solutions is incor-
rect.

The equations of state for each of the phases are
determined under the following conditions:

(i) the pressure dependence of the isothermal bulk
modulus at room temperature (T0) is represented by the
linear expansion (the Murnaghan equation)

(ii) the temperature dependence of the heat capacity
CV is described by the Debye function; and

(iii) the Grüneisen parameter is proportional to the
volume

This means that each of the pure phases can be
described by the following six parameters: the volume

KT V
∂P
∂V
------- 

 
T

– K0 K 'P;+= =

γ v( ) γ 1( )v , v
V T P,( )
V T0 0,( )
--------------------.= =
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V(298, 0), the Debye temperature θ(1), the Grüneisen
parameter γ(1), the isothermal bulk modulus K0, the
constant K', and the standard Gibbs potential G(298, 0).

As a function U(T, x), we used the four-parameter
relationship

(2)

where t = T/298.
The above form of the function U(T, x) was obtained

as follows. A set of experimental values JS(Ti , Pi) was
divided into several groups belonging to different tem-
perature ranges. For each temperature range, the quan-
tity U was represented as a function of the concentra-
tion only: U = b0 + b1(x – 0.5)2. The quantity U given in
the form of an asymmetric second-degree polynomial
did not allow us to achieve satisfactory agreement with
experiment. The minimization performed at these inter-
mediate stages made it possible to determine the tem-
perature dependence of the coefficients b0 and b1.

In this representation, the Gibbs potential includes
15 parameters (the Gibbs potential of one of the phases
in the standard state is taken to be equal to zero). The
use of the experimental data presented in Table 1 and
the values obtained for the direct and reverse phase
transitions at room temperature, which were estimated
from the results of the adiabatic experiments (Pγ → α =
0.77 GPa, Pα → γ = 0.57 GPa), made it possible to
decrease the number of parameters from 15 to 6. In the
case of the minimization, the calculated value JS(Ti , Pi)
was determined according to the expression

(3)

The equilibrium concentration (two solutions in the
hysteresis region) was determined from the equation

3. RESULTS

The parameters obtained for the equation of state for
pure components are presented in Table 2. The param-
eters of the function U(T, x) are as follows: a0 =
13.5 kJ/mol, a1 = –0.632, a2 = 0.117, and a3 = 0.39. Fig-
ure 1 shows the function JS(T, P) describing the func-
tions JS(Ti , Pi) obtained from experimental data in [6].
The root-mean-square deviation of the calculated and
experimental values JS(Ti , Pi) was less than 8%. The
number of points was ~400; the ranges of pressures and
temperatures were 0–2.8 GPa and 280–650 K, respec-
tively; and the error in the measurement of the quantity
(∂T/∂P)S was approximately equal to 3%.

U T x,( ) a0 1
a1

t
-----

a2

t2
-----

a3

t
----- x 0.5–( )2

+ + + ,=

∂T
∂P
------ 

 
S

∂2
G

∂P∂T
-------------- 

 
T

∂2
G

∂T
2

--------- 
 

P

1–

.=

∂G T P x, ,( )
∂x

----------------------------- 
 

T P,
0.=
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The phase diagram of cerium in the region of the
γ  α phase transformation is depicted in Fig. 2.
This phase diagram was calculated using the Gibbs
potential (1) with the energy of mixing determined by
function (2). Figures 3–9 present the results of the cal-
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 Volume jump as a function of the temperature along
the transformation line. The solid line represents the values
of 

 

∆V calculated for the equality between the Gibbs poten-
tials of two phases (G1 = G2). Beecroft and Swenson [14]
measured the displacement of a piston upon heating of a
high-pressure cell filled with the sample. Kutsar [15] mea-
sured the linear size of the sample by varying the tempera-
ture and pressure (hydrostatics). In my earlier work [6], the
corresponding data were obtained using thermobaric analy-
sis (hydrostatics).
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Fig. 6. Heat capacity Cp at room temperature. The experi-
mental data on the heat capacity are obtained using the
pulse method [16], i.e., Joule heating of a wire sample, and
the measurement of the temperature from the electrical
resistance as a function of the temperature.
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culation of thermodynamic functions, namely, the vol-
ume, the bulk modulus, the heat capacity, and the com-
pressibility. The calculated bulk modulus and com-
pressibility (Figs. 4, 5) are in satisfactory agreement
with the experimental data [11, 12, 15].

Figure 4 shows the calculated dependence of the
volume jump along the phase coexistence line in com-
parison with the data available in the literature. Correct
estimation of the volume jump from the experimental
data is complicated by the fact that the compressibility
of cerium substantially increases as the line of stability
loss is approached. Moreover, the phase transformation
itself is “smeared” under variations in the temperature
or pressure due to the fact that the coefficient of filling
of the high-pressure cell, of course, differs from zero.
As a consequence, the pressure in the high-pressure cell
is a function of the density of the sample. This circum-
stance can apparently explain the spread of the experi-
mental data in these ranges of temperatures and pres-
sures. Buras and Niimura [17] estimated the critical
jump in the density from neutron diffraction data and
determined the critical exponent for the density to be
equal to β = 0.36 at the following coordinates of the
critical point: Tc = 519 K and Pc ≈ 1.5 GPa. According
to Kutsar [15], these coordinates are as follows: Tc =
480 K and Pc = 1.45 GPa.

In our case, the critical exponent for the density
jump was found to be β = 0.36 at the coordinates of the
critical point Tc = 491 K and Pc = 1.47 GPa. The critical
volume was determined to be Vc = 18.13 cm3/mol. The
exponent for the heat capacity CV along the critical iso-
chore was δ = 0 (Fig. 7). The overestimated values of
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the heat capacity CV as compared to the Dulong–Petit
value were obtained as a result of variations in the
phase concentration along the isochore. The critical
exponent α for the heat capacity Cp and the critical
exponent γ for the compressibility χ along the critical
isobar (Pc) were found to be equal: α = γ = –(0.95–1.0).
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4. CONCLUSIONS

It can be seen from the figures presented in this
paper that the thermodynamic quantities obtained from
the modified trial function of form (1) or (2) are in sat-
isfactory agreement with the experimental values in the
ranges of temperatures and pressures under consider-
ation. As should be expected, the critical exponents
thus calculated do not differ significantly from those
obtained within the classical models describing the
thermodynamic functions in the vicinity of the critical
point, because, as was mentioned previously, the trial
function is defined in the mean-field model. It can also
be seen from relationship (2) and Table 2 that the func-
tion U(T, x), which determines the energy of mixing in
the model used for a solution, increases with increasing
temperature in the range from 280 to 650 K for all con-
centrations (0 < x < 1). Substantiation of the form of the
function obtained and the physical meaning of the
parameters involved is beyond the scope of the present
paper.
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Abstract—The dynamics of change in the spectral characteristics of the emission from a laser heterostructure
due to an alternating strain induced by a surface acoustic wave is investigated. The spectral distributions of the
laser radiation intensities are analyzed with the aim of elucidating the mechanisms responsible for the interac-
tions occurring in the laser heterostructure. A model is proposed for describing the experimental data, and their
theoretical analysis is performed. It is demonstrated that the acoustoelectronic interaction is dominant under the
action of surface waves. The deviation of the observed frequency modulation of radiation is determined from a
comparison of the theoretical calculations with experimental data. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

It is known that, in semiconductors, the elastic strain
(owing to the deformation potential) can lead to a
change both in the properties of the electronic sub-
system, specifically in the band gap [1, 2], and in the
permittivity [3, 4]. It can be expected that the change in
the band gap under deformation will manifest itself in
laser heterostructures, which should result in a change
in the lasing conditions and spectral characteristics of
radiation, in particular, in the lasing frequency. The
change in the refractive index of the laser cavity under
deformation should also affect the spectral characteris-
tics of radiation. In our earlier work [5], we experimen-
tally revealed the frequency modulation of heterolaser
radiation due to an alternating strain induced by a bulk
ultrasonic wave. This paper reports on the first results
of investigations into the mechanism of the strain effect
exerted by surface ultrasonic waves on the radiation
characteristics of InGaAsP/InP laser heterostructures.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

In order to investigate the acoustoelectronic and
acousto-optic interactions in heterolasers under the
action of surface waves, we developed a technique for
fabricating heterostructures on LiNbO3 (YZ cut) dielec-
tric piezoelectric substrates serving as an acoustic line
for Rayleigh surface acoustic waves. The geometry of
the interaction with the surface wave differs from that
with the bulk wave [5]. The case in point is the ratio
between the acoustic wavelength and the thickness of
the active region that provides the appropriate time
parameters for the action of the alternating strain on the
active region of the structure. For the bulk acoustic
1063-7834/05/4712- $26.00 2321
wave, the wave propagation across the active region of
the heterostructure satisfies the required relationship
a ! Λ, where a is the thickness of the active region in
the heterostructure (a . 200 Å) and Λ is the acoustic
wavelength (Λ ≈ 400 µm). As a result, the electronic
and optical parameters of the structure can be treated as
parameters varying in time with the period of the alter-
nating strain, which, in our case, is induced by the bulk
ultrasonic wave. For the surface acoustic wave, the
wave propagation occurs in the plane of the active
layer; i.e., the role of the parameter a is played by the
active layer width, which is equal to the width d of the
contact strip (the electrical contact used for supplying
the operating current). In order for the above condition
to be satisfied, we prepared a structure with a strip
width d = 6 µm. This structure was fabricated on the
substrate (Fig. 1). The surface wave (frequency,
10 MHz) excited by interdigital transducers (Fig. 1)

UÓ
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8

Fig. 1. Scheme for excitation of surface acoustic waves:
(1) high-frequency pulse, (2) interdigital transducers,
(3) surface acoustic wave, (4) thin metal film, (5) laser
diode, (6) laser beam, (7) piezoelectric substrate, and
(8) electric contacts.
© 2005 Pleiades Publishing, Inc.
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propagated in the LiMnO3 piezoelectric substrate in the
Z direction. The duration and delay of the acoustic
pulse could be varied in order to provide different con-
ditions for a complete or partial overlap with a pulse of
the operating heterolaser current. We examined
InGaAsP/InP laser heterostructures (optical cavity
length, 750 µm) operating at room temperature in a
pulsed mode with a pulse duration of up to 3 µs at a
wavelength of 1.48 µm. The threshold current Ith was
equal to 30–35 mA, and the operating current Iop was
varied from the threshold current to triple the threshold
current [Iop = (1–3)Ith]. The half-width of the emission
line was 0.1–0.2 nm. The radiation was measured
according to the following three schemes: (1) direct
measurements; (2) measurements after passing radia-
tion through a Fabry–Perot etalon, whose dynamic dis-
persion range was equal to 18.25 Å; and (3) measure-
ments of the emission spectrum on an MDR23 spec-
trometer modified for recording pulsed radiation.

3. RESULTS AND DISCUSSION
The experimental data obtained with the Fabry–

Perot etalon demonstrated that the dynamics of change
in the spectral characteristics of radiation (in real time)
under the action of surface acoustic waves is qualita-
tively similar to that observed for bulk acoustic waves
[5]. The excitation of the acoustic wave (when the
acoustic pulse coincides in time with the operating cur-
rent pulse) leads to an almost 100% modulation of the
radiation pulse with a frequency equal to the frequency
of the ultrasonic wave. An increase in the ultrasonic fre-
quency results in a corresponding decrease in the mod-
ulation period of the laser pulse. A decrease in the delay
of the current pulse leads to a partial overlap of these
pulses and is accompanied by a partial modulation of
the laser pulse. It is quite evident that the observed
modulation results from a change in the transmission of
the Fabry–Perot etalon due to the frequency modulation
of laser radiation passing through this etalon. The max-
imum range of frequency tuning per half-period of the
acoustic wave can be estimated using the technique
proposed in [5]. The modulation amplitude thus esti-
mated is as large as 4–4.5 Å (at an acoustic power of 1–
2 W), which is close to the estimates obtained for bulk
waves.

Unlike the experiments with bulk waves, the exper-
iments with the surface acoustic waves allowed us to
observe the change in the modulation phase (by 180°)
of the transmission of the etalon with an increase in the
operating current up to values providing transmission
over the entire dispersion range of the etalon and,
hence, the changeover from a direct dependence of the
transmission of the etalon on the wavelength to an
inverse dependence (and vice versa). This confirms
once again that our interpretation of the frequency
modulation of radiation under the action of acoustic
waves is correct and counts in favor of a more stable
emission from the laser heterostructures. Therefore,
PH
these samples were used for investigating the mecha-
nism responsible for the action of elastic waves on laser
heterostructures with the observed changes in the spec-
tral characteristics of generated radiation. Recall that
this action can predominantly occur through two mech-
anisms.

(1) The acousto-optic interaction leads to a change
in the permittivity δε and, hence, in the refractive index
∆n. This change is determined by the ultrasonic strain
Sj [3] and the corresponding component pij of the pho-
toelastic coefficient; that is,

(1)

where εi = (εmεn)1/2, i = mn, and j = lk (m, n, l, k = 1, 2,
3). The modulation of the refractive index results in a
change in the resonance frequencies ∆λk of the optical
cavity of the heterostructure,

(2)

where k is the number of the resonant mode.
(2) The acoustoelectronic interaction is attended by

a change in the band gap of the active region of the het-

erostructure (Eg =  + ∆Eg). This change is deter-
mined by the ultrasonic strain and the deformation
potential constant Λj [1]; that is,

(3)

The change in the band gap should lead to a change
in both the quantum efficiency of the laser heterostruc-
ture and the frequency of the maximum amplification,

(4)

where F is the frequency modulation amplitude (devia-
tion), which can be calculated using relationship (3)

from the formula F =  (this requires knowledge
of the deformation potential constant and the strain
amplitude of the elastic wave) or from the experimental
data on the change in the spectrum under deformation.

Knowledge of the role and relative contributions of
these mechanisms is of fundamental and practical sig-
nificance. The latter circumstance has stimulated the
search for structures in which the effective contribu-
tions are made by both interaction mechanisms, so that
the combined effect on the electronic and optical prop-
erties should be represented by their sum. This can
ensure the most efficient control over the spectral char-
acteristics of heterostructures.

Let us now analyze one of the possible mechanisms
of the observed frequency modulation. When this mod-
ulation is associated with the band gap modulation Eg

induced by the strain S(t) ~ sinΩt, i.e., Eg ~ sinΩt, the
appearance of the frequency-modulated component
should be accompanied by modulation of the quantum
efficiency and, hence, the gain due to the modulation of
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the concentration of excited electrons. Since the modu-
lation depth ∆Eg is small (of the order of ~10–3), this
effect should be observed in the immediate vicinity of
the lasing threshold; i.e., the relationship (Iop – Ith)/Ith ! 1
must be satisfied. It is necessary that the heterostructure
be highly homogeneous over the entire length of the
laser cavity. Our measurements of the radiation inten-
sity near the threshold by using direct recording of fast
processes with a fast-response (τd ≤ 5 ns) receiving pho-
todiode, a relatively broadband amplifier (bandwidth,
up to 400 MHz), and an oscilloscope (bandwidth,
100 MHz) revealed amplitude modulation of the gener-
ated radiation with a period equal to the period of the
acoustic wave. The intensity of the amplitude-modu-
lated component amounts to approximately 10% of the
radiation intensity near the threshold. As the operating
current increases, the intensity of this component
remains virtually unchanged and its percentage
decreases to 10–1–10–2%, as could be expected. As a
consequence, with an increase in the operating current
(away from the lasing threshold), this component
becomes insignificant as compared to the lasing inten-
sity. Therefore, the revealed component of the ampli-
tude modulation proves conclusively the effect of the
alternating strain on the electronic subsystem of the
active region in the heterolaser, on the one hand, and
indicates a high quality of the fabricated structures, on
the other hand. These findings suggest that the acousto-
electronic interaction makes a considerable contribu-
tion. However, all these observations are necessary but
insufficient to make the inference that the contribution
of the acoustoelectronic interaction dominates over the
contribution of the acousto-optic interaction. In our
opinion, these contributions can be separated only
using spectrometric data.

In order to elucidate the above mechanisms, we per-
formed a spectral analysis of radiation with the use of
the MDR23 spectrometer modified for recording fast
processes. Unlike the dynamic spectral analysis carried
out in real time with the Fabry–Perot etalon, the investi-
gation into the spectral distribution of the laser radiation
is a static variant of the spectral analysis. This variant
provides a means for determining a fine structure of the
emission spectrum and is a convenient method for solv-
ing the posed problem associated with revealing differ-
ent interaction mechanisms. Let us briefly consider how
the ultrasonic waves can affect the spectrum in the case
of different interaction mechanisms.

As is known, the time-averaged spectrum, i.e., one
or several lines depending on the lasing regime (single-
mode, multimode), is recorded at the exit of the spec-
trometer. The linewidth is determined by the Q factor,
the line separation depends on the length of the optical
cavity of the structure, and the intensity and the number
of lines are governed by the frequency and width of the
amplification line of the active layer.

In the case where the acousto-optic interaction is
dominant, the excitation of the acoustic wave should
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      20
lead to oscillations of the emission line with respect to
the equilibrium position at the rate of change in the
ultrasonic strain. Upon time averaging of the spectrum,
this should result in a decrease in the intensity of the
line at the center and in line broadening. For the acous-
toelectronic interaction, a similar effect should be
observed for the amplification line. In this case, the
intensities of the emission lines should be redistributed:
the intensity of the principal central line should
decrease, and the intensities of the side lines should
increase.

Figure 2 (curve 1) depicts the experimental spectral
distributions of the radiation intensities for the hetero-
structure under investigation, in which the variable is
the deviation ∆λ of the radiation wavelength from the
wavelength λ0 corresponding to the maximum intensity:
∆λ = λ – λ0 (λ0 = 1.48 µm). The excitation of the acoustic
wave leads to the aforementioned redistribution of the
intensities of the emission lines without noticeable line
broadening (Fig. 2, curve 3).

Now, we analyze the results obtained. Since the
amplification line of the laser heterostructure is asym-
metric owing to its origin, this line can be described by
a Gaussian distribution with two maxima,

(5)

where I0 is the constant background intensity, ∆λm1, m2 =
λm1, m2 – λ0, λm1, m2 are the wavelengths of the maxima,
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Fig. 2. Spectral distributions of the intensities of the hetero-
laser emission in the (1) presence and (3) absence of elastic
waves. (2) Spectral distribution obtained by theoretical fit-
ting with expression (5). (a–d) Theoretical spectral distribu-
tions constructed with due regard for the influence of the
surface acoustic wave according to expression (7) at ampli-
tudes of radiation wavelength tuning ∆λs = (a) 4.0, (b) 4.5,
(c) 5.0, and (d) 5.5 Å.
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and w1 and w2 are the widths of the corresponding dis-
tributions. For the spectral distribution obtained in the
absence of the acoustic action, the results of fitting
according to relationship (5) are represented by curve 2
for Fig. 2 with the following parameters: I0 = 0.1,
A1 = 12, w1 = 5 Å, ∆λm1 = –0.5 Å, A2 = 2.4, w2 = 6.5 Å,
and ∆λm2 = –6.7 Å.

Since 2πF/  = |∆λs/λ0 |, the influence of sound
can be taken into account through the change in the
position of the emission maximum along the wave-
length axis with the period equal to the period of the
acoustic wave. This means that, in the presence of the
acoustic wave, the change in the spectral distribution
function with time can be represented in the form

(6)

The relationship describing the averaged spectrum
with due regard for the influence of the elastic wave can
be obtained by averaging expression (6) over the period
of the ultrasonic wave; that is,

(7)

The results of numerical integration according to
relationship (7) with the integrand determined by
expression (6) for different values of ∆λs are repre-
sented by curves a–d in Fig. 2. It can be seen from this
figure that the best agreement between the experimental
and calculated data is observed at ∆λs = 4.5 Å. Then,

from the formula F = (c∆λs)/  (where c is the velocity
of light), we calculate the frequency deviation F =
60 GHz, which agrees well with the above result
obtained from the dynamic spectral analysis. There-
fore, the analysis of the experimental spectral data dem-
onstrates that the excitation of the acoustic wave in the
heterostructures under investigation leads predomi-
nantly to modulation of their band gap. In turn, this
results in modulation of the lasing frequency due to the
temporal oscillations of the amplification line. All these
facts indicate that the acoustoelectronic interaction is
dominant under the given conditions.

4. CONCLUSIONS

The results obtained in this study can be summa-
rized as follows.
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PH
A technique providing efficient excitation of surface
acoustic waves in laser heterostructures was developed
and implemented. Ultrasonic waves at a frequency of
10 MHz were excited in InGaAsP/InP heterostructures.

Dynamic and static spectral analyses of the emis-
sion from the heterostructures under investigation were
performed in the presence of Rayleigh surface acoustic
waves.

The results obtained from the dynamic analysis are
qualitatively and quantitatively similar to those for bulk
acoustic waves.

The static spectral analysis demonstrated that the
excitation of the surface acoustic wave in the studied
heterostructures leads predominantly to their band gap
modulation, which, in turn, results in modulation of the
lasing frequency due to the temporal oscillations of the
amplification line. A theoretical model was proposed
for describing the effect of the alternating strain on the
spectral distribution of the radiation intensity. A com-
parison of the experimental data with the results of the
theoretical calculations made it possible to determine
the frequency deviation F = 60 GHz, which is in good
agreement with the estimates obtained from the
dynamic spectral analysis. From analyzing all the
results obtained in this study, the conclusion was drawn
that the acoustoelectronic interaction is dominant under
the given conditions.
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Abstract—The signal-to-noise ratio for magnetic stochastic resonance in a superparamagnetic particle with
cubic anisotropy is shown to be strongly dependent on the Larmor precession damping α. This phenomenon is
due to the coupling of the relaxation and precession modes and can be used for measuring α. The dependence
of the signal-to-noise ratio on α is characteristic of particles with nonaxial anisotropy; so the effect is absent in
uniaxial particles. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Investigation of the superparamagnetism of single-
domain nanoparticles is increasingly important for
magnetic recording applications, since this phenome-
non has become the main factor laying the physical
limit to reducing the dimensions of a carrier of a bit of
information [1]. Indeed, thermal fluctuations at room
temperature are negligible only for macroscopic mag-
netic particles. In microscopic particles, thermal fluctu-
ations cause the magnetization to become unstable [2].
One manifestation of such instability in single-domain
nanoparticles is stochastic resonance. This phenome-
non is due to the coupling of fluctuations and determin-
istic processes in a noisy system and is widely known
in different branches of physics (such as optics, the
mechanics of solids, the physics of superconductors,
superparamagnetism, and surface physics), radio engi-
neering (optimal rectification and signal detection),
chemistry, and biology. Comprehensive reviews of sto-
chastic resonance can be found in [3–5].

Usually, stochastic resonance is modeled by a
strongly damped oscillator with a bistable potential in
contact with a heat bath. The oscillator is driven by an
oscillating external force whose frequency Ω is usually
quite low and whose amplitude is insufficient, in itself,
to force the system from one stable state into another.
However, if the oscillator is in contact with a heat bath,
such a transition becomes possible as a result of the
combined influence of the driving force and noise. It
has been found that the dependence of the signal-to-
1063-7834/05/4712- $26.002325
noise ratio on the noise intensity for such a system is
bell-shaped, which is characteristic of stochastic reso-
nance. Thus, noise can facilitate transitions between the
stable and/or metastable states of an oscillator. Stochas-
tic resonance can be defined as a noise-induced
increase in the signal-to-noise ratio or in the spectral
power gain [6].

A single-domain nanoparticle (&10 nm in size) is a
physical system in which the conditions of stochastic
resonance in magnetization (magnetic stochastic reso-
nance) are satisfied. In the micromagnetics approxima-
tion, the particle magnetization M precesses under the
influence of an external field and the anisotropy field.
The combined action of thermal fluctuations (super-
paramagnetism) and a weak oscillating magnetic field
H with a frequency Ω can cause transitions of the mag-
netization M between local equilibrium positions. At
present, magnetic stochastic resonance is well-studied
for bistable systems (particles with uniaxial anisot-
ropy). The free energy V of a uniaxial particle in a
spherical coordinate frame (with polar angle ϑ  and azi-
muthal angle ϕ) is given by

(1)

where β = v /kT, k is the Boltzmann constant, T is the
temperature, v  is the particle volume, Ξ = βKu is the
dimensionless barrier height, and Ku is the anisotropy
constant. The magnetization of a uniaxial particle has
two equivalent metastable states, at ϑ  = 0 and ϑ  = π.

βV ϑ( ) Ξ ϑ ,sin
2

=

 © 2005 Pleiades Publishing, Inc.
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Magnetic stochastic resonance in uniaxial particles was
studied, for example, in [7–13].

Stochastic resonance in single-domain particles in
the absence of axial symmetry of the magnetic anisot-
ropy potential has not been studied previously. In the
present paper, we consider the stochastic resonance of
superparamagnetic particles with cubic anisotropy. The
free energy of a crystal with a cubic-anisotropy poten-
tial in the spherical coordinate frame is given by [14]

(2)

where σ = βKc/4 is a dimensionless parameter charac-
terizing the barrier height and Kc is the anisotropy con-
stant.

If Kc > 0 (which is the case, for example, for iron),
the potential V has six minima (potential wells), eight
maxima, and twelve saddle points (Fig. 1). If Kc < 0
(which is the case, for example, for nickel), the saddle
points retain their positions but the maxima and minima
exchange places.

We assume that the magnitude of magnetization M
is of the single-domain particle is constant. Therefore,
we limit our consideration to the rotation of the unit
vector e = M/MS, which identifies the direction of M
(here, MS is the saturation magnetization).

In macroscopic magnetodynamics, the precession
of the magnetization M of a particle in the absence of
fluctuations (at zero temperature) is described by the
Landau–Lifshitz–Gilbert equation [2]

(3)

where Heff = – , γ is the gyromagnetic ratio, and

the dimensionless coefficient α characterizes damping
of the Larmor precession. As follows from Eq. (3), in
the case of the cubic anisotropy described by Eq. (2),
the projection of the moment of the friction force –

βV ϑ ϕ,( ) σ ϑ 2ϕsin
2

sin
4

2ϑsin
2

+( ),=

ė e γHeff α ė–( )×[ ] ,=

1
MS

-------∂V
∂e
-------

α ė

Fig. 1. Cubic-anisotropy potential with Kc > 0.
PH
on the precessing vector e oscillates and, therefore,
strongly modulates the angular velocity of e. As a
result, the damping parameter α strongly affects the
magnetodynamic properties of the particle. Obviously,
the additional relaxation mode related to the precession
is intrinsic to all systems in which the potentials have
no axial symmetry.

In particular, a similar effect [15] arises when a
uniaxial particle with an anisotropic potential described
by Eq. (1) is subjected to a magnetic field directed at an
angle to the symmetry axis.

2. BASIC EQUATIONS

Magnetic stochastic resonance in a weak field can
be described based on the linear response approxima-
tion as follows. The Fourier transforms of the particle
magnetization Mω and of an external ac field Hω are
related by the complex magnetic susceptibility χ(ω) =
χ'(ω) – iχ''(ω):

(4)

The spectral density (Ω) of forced magnetic oscil-
lations in an oscillating magnetic field H(t) = HcosΩt
(the signal) is given by

where we made use of the fact that χ*(ω) = χ(–ω).
Thus, the signal spectral density at the excitation fre-
quency is

(5)

The spectral density of thermal fluctuations of the mag-

netic moment (Ω) (noise) can be calculated using
the fluctuation dissipation theorem [16]:

(6)

The sum of the signal and noise components (Ω) +

(Ω) is equal to the total spectral density ΦM(Ω).
From Eqs. (5) and (6), we obtain the signal-to-noise
ratio (SNR) [17]:

(7)

Mω χ ω( )Hω.=

ΦM
s( )

ΦM
s( ) Ω( )

=  
1
2
--- H χ ω( )( )2 δ ω Ω+( ) δ ω Ω–( )+[ ] ω,d

Ω ∆Ω–

Ω ∆Ω+

∫∆Ω 0→
lim

ΦM
s( ) 1

2
---H

2 χ Ω( ) 2
.=

ΦM
n( )

ΦM
n( ) Ω( ) χ'' Ω( )

πβΩ
---------------.=

ΦM
s( )

ΦM
n( )

SNR
ΦM

s( )

ΦM
n( )----------

πΩH
2
v χ Ω( ) 2

2kTχ'' Ω( )
--------------------------------------,= =
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This ratio involves only the linear ac susceptibility of
the particle. For cubic crystals, Eq. (7) can be written as

(8)

where the dimensionless factor RΩ is given by

(9)

Here, ωK = 2γKc/MS is a characteristic Larmor preces-
sion frequency in the anisotropy field and τ0 = βMS/2γ.

In Eq. (9), χ0 = /3 is the static susceptibility per
particle volume; we took into account that 〈cos2ϑ〉 0 =
1/3, which is valid for a cubic magnetic anisotropy
potential (the subscript 0 indicates that the statistical
average is taken at the equilibrium state).

In the linear response approximation, the ac suscep-
tibility can be expressed as [18]

(10)

where C(t) is the equilibrium correlation function of the
projection of the magnetization M (or e) onto the direc-
tion of the external field, which is defined by

(11)

In the adiabatic limit (Ω  0), we have

(12)

where τc is a correlation time defined as the area under
the C(t) curve,

(13)

In the high-temperature limit (σ  0), we have

  (14)

where τN is the diffusion time of the magnetization vec-
tor in the absence of an external field [18]. Substituting
Eq. (12) into Eq. (9), we get

(15)

Note that Eq. (15) can be derived using a simple expo-

nential law M||(t) = M||(0)  to approximate the mag-
netization relaxation. In this case, the susceptibility is
given by χ(Ω)/χ0 = (1 + iΩτc)–1. Accordingly, the sig-

SNR
2πωK

3
--------------

MSH
Kc

------------ 
 

2

RΩ,=

RΩ
Ωτ0 σ

χ0
---------------- χ Ω( ) 2

χ'' Ω( )
------------------.=

βMS
2

χ Ω( )
χ0

------------- 1 iΩ C t( )e
iΩt–

t,d

0

∞

∫–=

C t( )
ϑ t( ) ϑ 0( )coscos〈 〉 0

ϑ 0( )cos
2〈 〉 0

------------------------------------------------.=

χ Ω( )
χ0

------------- 1 iΩ C t( ) td

0

∞

∫–≈ 1 iΩτc,–=

τc C t( ) t.d

0

∞

∫=

τc τN τ0 α α 1–
+( ),=

R0

σ τ0

τc σ α,( )
--------------------.=

e
t /τc–
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nal-to-noise ratio is given by Eq. (8) in combination
with Eq. (15) and becomes independent of Ω .

As shown in [9, 10], in the case where the potential
V is axially symmetric, the damping α is simply related
to the magnetic signal-to-noise ratio. Namely, in the
uniaxial case, the damping α is merely a scale for the
relaxation time: τ ∝  1/α. It is tempting to extend this
conclusion to particles with cubic anisotropy. However,
this extension would be incorrect. Our results clearly
show that, in the case of cubic anisotropy, the scaling
τ ∝  1/α occurs only for α * 1 (intermediate or high
damping). However, the most interesting magnetic
materials from both the experimental and theoretical
points of view have damping in the range 0.01–0.1,
where the dependence of the signal-to-noise ratio on α
is highly nonmonotonic.

3. CALCULATIONAL METHOD

The complex susceptibility χ(Ω) and the correlation
time τc (and, consequently, the signal-to-noise ratio) of
a superparamagnetic particle can be exactly calculated
using the matrix continued fraction method [18]. In
order to do this, Eq. (3) is first transformed into the Lan-
gevin equation (describing the effect of thermal fluctu-
ations) by adding a random white-noise Gaussian field
[2, 18, 19]. Next, the Fokker–Planck equation is written
for the orientation distribution function of the particle
magnetization W(e, t). This equation has the form
[2, 18]

(16)

where — and ∆ are the angular parts of the gradient and
Laplace operators, respectively. A solution to the Fok-
ker–Planck equation (16) is sought in the form of an
expansion in spherical harmonics Yl, m(ϑ , ϕ) [20, 21].
As a result, the problem reduces to solving an infinite
set of recurring differential equations for the correlation
functions clm(t)〈cosϑ(0)Yl, m[ϑ(t), ϕ(t)]〉0. The solution
we look for is the function c10(t), which is related to C(t)
from Eqs. (11)–(13) by the simple relation C(t) =
c10(t)/c10(0). The original set of equations can be writ-
ten in a matrix form as [20, 21]

(17)

Here, dlml 'm' are the matrix elements of the Fokker-
Planck operator LFP involved in Eq. (16). Equations (17)
for an arbitrary free-energy function V(ϑ , ϕ) were

∂
∂t
-----W LFPW=

=  
1

2τN

--------- β α 1– e —V —W×( ) — W—V( )⋅+⋅[ ] ∆ W+{ } ,

d
dt
-----clm t( ) dlml 'm'cl 'm' t( ).

l 'm'

∑=
05
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derived in [22]. Equations (17) can be transformed into
a recurring trinomial matrix equation,

(18)

where Cn(t) is a column vector composed of the corre-

lation functions clm(t), with C0 = 0, and , , and

τN
d
dt
-----Cn t( ) Q̂n 1–

–
Cn 1– t( )=

+ Q̂nCn t( ) Q̂n 1+
+

Cn 1+ t( )+

n 1≥( ),

Q̂n 1–
–

Q̂n
PH
 are matrices whose elements are determined by
dlml 'm'. The exact solution to Eqs. (18) for the Laplace
transform of the vector C1(t) is given by [20]

(19)

where the matrix continued fraction (s) is defined by

Q̂n 1+
+

C̃1 s( ) = τN∆1 C1 0( ) Q̂k 1–
+ ∆̂k

k 2=

n

∏ Cn 0( )
n 2=

∞

∑+
 
 
 

,

∆̂n
∆̂n s( ) Î

τNsÎ Q̂n– Qn
+ Î

τNsÎ Qn 1+– Qn 1+
+ Î

τNsÎ Q̂n 2+– …–
-----------------------------------------Q̂n 2+

–
–

------------------------------------------------------------------------------------------------------Q̂n 1+
–

–

--------------------------------------------------------------------------------------------------------------------------------------------------------.=
Here,  is the unity matrix and the fraction bar denotes
multiplication by the inverse matrix. A detailed deriva-
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Fig. 2. Signal-to-noise ratio calculated as a function of damp-
ing α for various values of 1/σ. The solid lines are calculated
using the matrix continued fraction method [Eqs. (15), (19)],
symbols correspond to approximate expression (20), and
the dashed lines correspond to approximate expression (21)
for IHD. The values of 1/σ are (a) (1) 0.250, (2) 0.125, and
(3) 0.083 and (b) the values of 1/|σ| are (1) 0.083, (2) 0.040,
and (3) 0.025.
tion of solution (19) for cubic crystals can be found in

[20, 21]. With (s) obtained from Eq. (19), we can

calculate the correlation time τc = (0) = (0)/c10(0)

and the ac susceptibility χ(Ω)/χ0 = 1 – (iΩ)/c10(0)
[20, 21]. These results, combined with Eqs. (9) and
(15), permit us to estimate the signal-to-noise ratio in
the adiabatic approximation and to study its frequency
dependence.

4. CALCULATIONAL RESULTS

The signal-to-noise ratio calculated as a function of
α and |σ|–1 in the adiabatic approximation (Ω  0) is
presented in Figs. 2 and 3. Note that, for fixed values of
the volume and anisotropy constant of a particle, the
quantity |σ|–1 can be considered a dimensionless tem-
perature. The frequency dependences of the SNR are
presented in Figs. 4 and 5. As follows from these fig-
ures, the main feature of magnetic stochastic resonance
in particles with cubic anisotropy is the dependence of
the SNR on the damping α even at Ω  0, contrary to
the seemingly obvious conclusion that the magnetiza-
tion precession should manifest itself only in the high-
frequency spectral range, ΩτN @ 1. As already men-
tioned, it is the SNR(α) dependence that makes sto-
chastic resonance in particles with cubic anisotropy
fundamentally different from that in particles with an
axially symmetric magnetic-anisotropy potential. The
reason behind this dependence is a more complicated
energy landscape. Indeed, in the case of axially sym-
metric potential (1), there is a uniform equatorial poten-
tial barrier separating two minima situated at the poles
of the energy surface; saddle points are absent at this
surface. In the case of cubic anisotropy, the shape of the
energy surface is more complicated: there are several
maxima and minima and multiple saddle points (Fig.1).
Therefore, the trajectories of the particle magnetization

C̃1

C̃ c̃10

iΩc̃10
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on the surface are tortuous and the longitudinal relax-
ation and precession of the magnetization are closely
coupled. As a result, a new phenomenon arises: the sig-
nal-to-noise ratio becomes strongly dependent on the
rate of spin–lattice relaxation, i.e., on the Larmor pre-
cession damping rate. In particular, it turns out that
there is a temperature-dependent value of α at which
the SNR reaches a maximum.

As shown above, it is possible to calculate the SNR
exactly by using the matrix continued fraction method.
However, in order to make a qualitative analysis, it is
convenient to have approximate but simple analytical
expressions. These can be obtained in the low-temper-
ature limit (σ @ 1), where the correlation time τc can be
estimated using the Kramers theory [23]. This theory
calculates the escape rate of a Brownian particle from a
potential well. It was generalized for superparamag-
netic particles in [19, 24–26]. For cubic crystals,
approximate asymptotic expressions for τc, which are
valid for very low damping (VLD, α ! 1) and for inter-
mediate-to-high damping (IHD, α > 0.1), were
obtained in [24] and [2, 19, 25], respectively. In addi-
tion, a universal expression for τc, which is applicable
in the entire range of damping parameter values, was
obtained in [27] using the escape rate calculation tech-
nique developed by Melnikov and Meshkov [28].

1
2

3

Kc > 01

10–1

10–2

10–3

10–4

10–1 1

R0

1

2
3

Kc < 0

1

10–1

10–2

10–3

10–1 1
1/|σ|

R0

Fig. 3. Signal-to-noise ratio calculated as a function of 1/σ
for various values of damping α. The solid lines are calcu-
lated using the matrix continued fraction method, and the
dashed lines correspond to approximate expression (20).
The values of damping α are (1) 1.0, (2) 0.1, and (3) 0.01.
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Using the results from [27], the following asymptotic
expression can be written for R0 for the case of σ @ 1:

(20)

where RIHD is the value of R0 in the IHD region

(21)

and the exponential factor matches the VLD and IHD
regions. Equation (20) provides a simple and suffi-
ciently precise description of stochastic resonance in
single-domain particles with cubic anisotropy in the
case of a high potential barrier (the low-temperature
limit). The corresponding curves are shown in Figs. 2
and 3. It can be seen that, at any temperature, there is a
certain value αmax at which the SNR reaches a maxi-

R0 RIHD
1
π
--- 1 e
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3π 1 α 2
+( )

----------------------------- 9α 2
8+ α–( ), Kc 0,<









∼

α = 0.1 Kc > 0
106

104

102

1

10–2

10–1 100 101

Kc < 0104

10–2

10–1 100 101

1

2

3

4

4

3

2

1

1/|σ|

102

1

RΩ

Fig. 4. Signal-to-noise ratio calculated as a function of 1/σ
using the matrix continued fraction method for α = 0.1 and
various values of the normalized frequency ΩτN: (1) 10, (2)
1, (3) 0.1, and (4) 0.01.
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mum Rmax ≈ RIHD |α → 0. Analytical expressions (20) and
(21) give simple estimates for Rmax. It follows from
Eq. (21) that Rmax ~ 8σ2e–σ/π for Kc > 0 and Rmax ~
8σ2e−σ/3/3π for Kc < 0.

Stochastic resonance can be employed to find the
damping factor in nanoparticles with cubic anisotropy
in the low-frequency range ΩτN ! 1 (it should be
remembered that we considered stochastic resonance in
the adiabatic limit). As is known [29], the values of the
damping factor α for real crystals are derived from
experimental studies of low-frequency spectra of linear
and nonlinear susceptibilities [30, 31], ferromagnetic
resonance [32], etc., since virtually insurmountable dif-
ficulties are encountered in microscopic calculations of
this parameter. The values of α obtained in this way are
affected by a number of factors, including the measure-
ment frequency and the sample dimensions. Indeed, the
spin-wave spectrum in nanoparticles is substantially
discrete, with the interlevel spacing ∆ω being on the
order of ~8nπ2A/v 2/3, where A ~ 10–6 erg/Oe is the inho-
mogeneous-exchange constant and n is the number of a
level [29]. For a typical particle volume v  ~ 10–18 cm3,
we get ∆ω/2π * n × 10 MHz (instead of a continuous
spectrum for macroscopic samples). The stochastic-
resonance technique enables one to estimate damping
from energy data (the spectral density) rather than from
phase–amplitude measurements. When comparing cal-
culated and measured values of the SNR, the only free
parameter is α; thus, its value can be determined.

In addition, this technique makes it possible to find
the temperature dependence of α. The α(T) dependence
can be used to distinguish different magnetization
relaxation mechanisms. Therefore, it can be useful, for
example, when dealing with macroscopic quantum tun-
neling [33]. From the point of view of application,

σ = –25
1

2

3105
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103
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10

1

0 20 40 60 80 100
ΩτN

R
Ω

Fig. 5. Signal-to-noise ratio calculated as a function of the
normalized frequency ΩτN using the matrix continued frac-
tion method for 1/σ = –0.04 and various values of α:
(1) 0.01, (2) 0.1, and (3) 1.
PH
knowledge of the α(T) dependence is important for
developing so-called thermal magnetic recording.
Thus, the problem in question is not only interesting for
basic research but also has important practical applica-
tions.

In all previous calculations, it was assumed that the
particles in an ensemble are identical. However, this
assumption rarely holds in experiments. In order to take
into account the dependence of the SNR on the particle-
volume distribution, the SNR should be averaged over
the corresponding distribution function f(v ). As an
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Fig. 6. Signal-to-noise ratio calculated for (1) identical par-
ticles [from Eq. (20)] and (2, 3) for a gamma distribution in
particle volume (v0Kc/4kT = 8). The distribution parameter
b is (2) 0.5 and (3) 2.0.
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Fig. 7. Signal-to-noise ratio calculated as a function of
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uniaxial anisotropy with (1–3) Ξ = 4 and (1'–3') Ξ = 0 for
various values of 1/σ: (1, 1') 0.250, (2, 2') 0.125, and (3, 3')
0.083.
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example, Fig. 6 shows the calculated SNR for the fre-
quently employed gamma distribution [30]

where v 0 is a typical volume and b is a parameter that
defines the shape of the distribution and can be deter-
mined by fitting to an experimental histogram f(v ). As
seen in Fig. 6, the distribution of the particle volumes
significantly affects the SNR and can cause it both to
decrease (for example, for b = 0.5, which corresponds
to a distribution with a maximum at v /v 0 < 1) and to
increase (for b = 2, which corresponds to a distribution
with a maximum at v /v 0 > 1).

The technique developed here for calculating the
SNR can be generalized to other types of anisotropy. As
an example, Figs. 7 and 8 present calculations of the
SNR for a potential that is the sum of a cubic potential
(Kc > 0) and axial potential (1) for various values of Ξ
(in this case, the denominator in the right-hand side of
Eq. (15) contains an extra factor 3〈cos2ϑ〉 0). The height
of the potential barrier is characterized in this case by
the parameter σ + Ξ. This parameter is responsible, for
the most part, for the decrease in the SNR with an
increase in Ξ. This important case will be considered in
detail in a later paper. Note that all the results obtained

f v( )dv
v /v 0( )b

v 0Γ b 1+( )
--------------------------- v /v 0–( )dv ,exp=

Kc < 0

1

2

3

10–1 1 10 102
10–5

10–3

10–1

10

R0

Kc > 0

1

2

3

10–1 1 10 102
10–5

10–3

10–1

1/|σ|

Fig. 8. Signal-to-noise ratio calculated as a function of 1/σ
for α = 0.1, ΩτN = 0, and various values of Ξ: (1) 0, (2) 4,
and (3) 8.
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in this study are valid for systems without memory (i.e.,
with white noise). However, as demonstrated in [24],
these results will also be applicable to systems with
long-term memory if an effective damping parameter is
used.
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Abstract—Polymer–C60 fullerene composite coatings are studied using thermal desorption mass spectrometry.
It is found that thermal desorption spectra of C60 fullerene molecules can exhibit several resolved peaks (at a
specified heating rate) corresponding to thermal desorption states. The relative intensity of the thermal desorp-
tion peaks depends on the procedure used for preparing the composite coatings, in particular, on the time of
sedimentation of the polymer–fullerene suspension. The occurrence of different stages in thermally stimulated
desorption of C60 fullerene molecules is explained by the fact that the fullerene molecules can exist in several
phase states characterized by different densities and degrees of ordering in the polymer matrix. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

Experimental verification of the natural assumption
that the macroscopic properties of polymer–fullerene
composite systems should depend on the structural
state of the fullerene molecules has necessitated inves-
tigation into the mechanisms of formation of the
fullerene structure and the temperature behavior of
fullerenes in polymer matrices [1–6]. From general
considerations, it follows that fullerene molecules
being in different structural states in the polymer matrix
should exhibit different thermal behaviors.

Experimental investigations have revealed that, in
fullerite samples, C60 molecules can exist in dispersed,
amorphous, and crystalline states [7–10]. Moreover, it
has been found that fullerene molecules in polymer
matrices can also occur in similar structural states [11–
16]. However, the distribution of fullerene molecules
over structural states and the thermal properties of the
fullerene molecules in these states are still not clearly
understood [17]. In the present work, these problems
were investigated using thermal desorption mass spec-
trometry. In our earlier papers [11–16], we demon-
strated that thermal desorption mass spectrometry is an
efficient tool for measuring a discrete spectrum of ther-
mal desorption states of fullerene molecules even at an
extremely low fullerene concentration in a polymer
matrix. Two polymers with radically different thermal
properties were chosen as the matrices. One of these
polymers, namely, polyimide, belongs to rigid-chain
1063-7834/05/4712- $26.00 2333
polymers with a high glass transition temperature Tg ~
320°C [3]. The other polymer, namely, poly(dimethylsi-
loxane) (PDMS), belongs to flexible-chain polymers
with a low glass transition temperature Tg ~ –127°C [18].

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Polymer–fullerene composites were prepared from
a C60 fullerite with a purity of higher than 98%
(Fullerene Technologies Co., St. Petersburg, Russia). A
polyimide–fullerene composite was prepared using a
polyimide prepolymer, i.e., polyamic acid (PAA),
which was synthesized from 3,3',4,4'-oxydiphthalic
anhydride (ODPA), p-phenylenediamine (PPD), and
2,5-bis(4-aminophenyl)pyrimidine (APP). The compo-
nents of the ODPA–PPD–APP copolyimide were taken
in the molar ratio 100 : 50 : 50. Suspensions of the C60
fullerene in PAA were prepared by introducing a C60
fullerene solution in o-dichlorobenzene into a PAA
solution in dimethylacetamide (the polymer content
was approximately equal to 12 wt %), followed by care-
ful stirring of the prepared mixture for a few hours. The
synthesis of PAA was described in detail in our previ-
ous paper [16]. The calculated weight of the C60
fullerene in the initial PAA solution amounted to 2% of
the weight of the PAA synthesized. After prolonged
sedimentation of the suspension, the formation of a
sediment at the bottom of the vessel was observed visu-
© 2005 Pleiades Publishing, Inc.
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ally. After sedimentation of the PAA–C60 fullerene sus-
pension for a specified time, the PAA–fullerene solu-
tion was poured onto a tantalum substrate (heater) with
the aim of forming a composite coating. Moreover,
composite coatings were prepared from a sediment
formed upon separation of the suspension.

The PAA–C60 fullerene composite coatings were
dried at room temperature in air for 1 h. Then, the coat-
ings were subjected to curing through thermal imidiza-
tion of PAA. For this purpose, the coatings were heated
in a vacuum chamber of the mass spectrometer to a
temperature of ~280°C at a rate of ~ 3 K min–1. The
thickness of the coatings formed on the substrate was
approximately 2 µm.

Suspensions of the C60 fullerene in PDMS were pre-
pared by introducing the C60 fullerene into a solution of
PDMS (DC-200; Fluka Chemika; viscosity, 67 Pa s) in
toluene (the polymer content was approximately equal
to 10 wt %), followed by careful stirring of the prepared
mixture. The calculated weight of the C60 fullerene in
the samples amounted to 10 wt % of the weight of
PDMS. The suspension was violet in color, which is
characteristic of toluene solutions of the C60 fullerene.
Coatings were applied to the substrate after sedimenta-
tion of the suspension within different time intervals.
After prolonged sedimentation of the suspension, the
formation of a sediment at the bottom of the vessel was
observed visually. The thickness of the coatings formed
on the substrate was approximately 2 µm.

The processes of thermally stimulated desorption
were investigated on an MX-1320 magnetic mass spec-
trometer (energy of ionizing electrons, 70 eV) equipped
with a device for controlled heating of the samples. An
oxidized tantalum ribbon (thickness, 200 µm) used as a
heater was heated under an electric current at a constant
rate of 7 K s–1. The temperature was measured by a
chromel–alumel thermocouple welded to the opposite
side of the substrate. The pressure in the chamber of the
mass spectrometer prior to the experiment was main-
tained at 10–5 Pa.

The absolute sensitivity of the instrument to C60
fullerene flow was determined from experiments with a
known amount of the fullerene deposited from the tol-
uene solution on the surface of a preliminarily prepared
polyimide coating on a metal substrate. The number of
fullerene molecules desorbed from the polymer coating
was determined using the measured absolute sensitivity
of the instrument. The actual volume concentration

 of fullerene molecules in the coating was calcu-
lated as the ratio between the number of fullerene mol-
ecules desorbed from the coating (which was deter-
mined by integrating the dependence /dt) and the
calculated volume of the coating. The volume of the
coating was determined from the known area of the
coating surface and the calculated coating thickness.

nC60

dNC60
PH
In our experiments on thermally stimulated desorp-
tion, we measured the intensity of the principal line of
the mass spectrum of the C60 fullerene (m/z = 720)
simultaneously with the total ion current. The intensity
of the total ion current is directly proportional to the
rate of release of all volatile products from the studied
sample and, consequently, to the rate of mass loss for
this sample over the entire temperature range under
investigation.

The wide-angle x-ray diffraction experiments with
polyimide-based samples were carried out using syn-
chrotron radiation at a wavelength λ = 0.15 nm for a
sample–detector distance of 180 cm (A2 Polymer
Beamline, Hasylab, Hamburg, Germany) [19]. The
x-ray diffraction patterns of PDMS-based samples
were recorded on a Rigaku Geigerflex-D/max-RC pow-
der diffractometer using CuKα radiation (λ = 0.15 nm).
In these experiments, the electric current in the x-ray
tube was equal to 8 mA and the voltage across the x-ray
tube was 40 kV. Taking into account that PDMS is a liq-
uid, the PDMS and PDMS–C60 fullerene samples were
placed between the substrate and a thin cover glass. This
provided a uniform thickness of the studied sample.

3. RESULTS AND DISCUSSION

The temperature dependences of the rate of ther-
mally stimulated desorption of C60 fullerene molecules
from polyimide–C60 composite coatings upon heating
are depicted in Fig. 1. In the case of composite coatings
prepared from the PAA–C60 fullerene suspension after
prolonged sedimentation, the thermally stimulated des-
orption of C60 fullerene molecules (Fig. 1a, curve 1),
according to the results obtained in our earlier study
[15], occurs in two stages at characteristic temperatures
in the range 300–550°C, with the highest rate at a tem-

perature  ~ 450°C (the full width at half-maximum
δ of the peak is approximately equal to 150°C), and in
the range 500–600°C, with the highest rate at a temper-

ature  ~ 580°C (δ ~ 40°C). The high-temperature
portion (550–700°C) in the temperature dependence of
the total ion current (Fig. 1a, curve 2) corresponds to
thermal destruction of the polyimide. Therefore, the
polymer is retained on the substrate at temperatures

higher than . It should be noted that the low-tem-
perature portion in the temperature dependence of the
total ion current corresponds to desorption of the resid-
ual solvent and the product of the possible additional
imidization (water) from the composite coating.

The specific features of the desorption of C60
fullerene molecules are determined by the fullerene
concentration in the coating. For coatings prepared
from the sediment of the suspension after sedimenta-
tion within different time intervals (Fig. 1b, curves 3,
4), the thermally stimulated desorption of C60 fullerene
molecules occurs in two stages in the temperature
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Fig. 1. Temperature dependences of the rate of C60 fullerene desorption from polyimide–C60 composite coatings prepared from (a)
(1) the PAA–C60 suspension (the weight ratio of the components in the suspension is approximately equal to 100 : 2) after sedimen-

tation for more than 30 days (  ~ 1019 cm–3) and (b) sediments of the PAA–C60 suspension after sedimentation for (3) several

hours (  ~ 5 × 1019 cm–3) and (4) more than 30 days (  ~ 1020 cm–3). Curves 2 (panel a) and 5 (panel b) represent the tem-

perature dependences of the total ion current.
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ranges 500–700°C (  ~ 600°C, δ ~ 100°C) and

650–830°C (  ~ 760°C, δ ~ 90°C). It is worth not-
ing that, in this case, the desorption rate is one order of
magnitude higher than the desorption rate obtained for
the coating whose behavior is described by curve 1 in
Fig. 1a. Taking into account that the weights of the
coatings in all experiments are comparable to each
other in magnitude, this finding indicates that the actual
concentration of fullerene molecules in the coating pre-
pared from the solution over the sediment is less than
the calculated concentration. This difference is
explained by the process of sedimentation. It should
also be noted that the thermal desorption peak observed

at the temperature  is absent in curves 3 and 4
(Fig. 1b). The disappearance of the resolved peak at the
temperature  with an increase in the fullerene con-
centration in the polymer matrix is a subject for further
experimental investigation. It seems likely that an
increase in the concentration of C60 fullerene molecules
in the polyimide matrix should predominantly lead to
an increase in the density of the structural states respon-
sible for the high-temperature peaks of thermally stim-
ulated desorption. A comparison of curves 3 and 4 in
Fig. 1b shows that an increase in the time of sedimen-
tation of the suspension brings about an increase in the

T2
max

T3
max

T1
max

T1
max
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intensity of the thermal desorption peak at the temper-
ature  for the sample prepared from the sediment
of the suspension. Consequently, the concentration of
C60 fullerene molecules in the course of sedimentation
considerably increases in the sediment and decreases in
the solution over the sediment. The wide-angle x-ray
diffraction patterns of the samples prepared from the
sediment formed after prolonged sedimentation of the
polyimide–C60 fullerene suspension exhibit reflections
of crystalline C60 fullerene in the polymer matrix
(Fig. 2, curve 3). This suggests that an increase in the
actual concentration of the C60 fullerene in the coating
leads to an increase in the number of C60 fullerene mol-
ecules occurring in the crystalline state in the polymer
matrix at the temperature of the experiment (at room
temperature in our case). More detailed analysis of the
evolution of the x-ray diffraction patterns measured for
polymer–fullerene samples during heating calls for fur-
ther experimental investigation.

The x-ray diffraction pattern of the sample prepared
from the PAA–C60 fullerene suspension after prolonged
sedimentation is shown by curve 2 in Fig. 2. It can be
seen that this pattern does not contain lines correspond-
ing to pure fullerite (Fig. 2, curve 1). This gives grounds
to believe that fullerene regions from which C60 mole-

T3
max
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Fig. 2. Wide-angle x-ray diffraction patterns recorded at room temperature: (1) the C60 fullerite, (2) composite films prepared from
the PAA–C60 suspension, and (3) composite films prepared from the sediment of the PAA–C60 suspension after prolonged sedi-
mentation.
cules are desorbed at temperatures  and  (the
thermal desorption spectrum of this sample is depicted
by curve 1 in Fig. 1a) are in a more dispersed state in
the polymer matrix as compared to the regions from
which C60 fullerene molecules are desorbed at the tem-

perature .

Figure 3 shows the thermal desorption spectra of the
samples obtained from the PDMS–C60 fullerene sus-
pension immediately after preparation (curve 1) and
after prolonged sedimentation (curve 2). It can be seen
from Fig. 3 that, like the thermal desorption spectra of
the polyimide–C60 fullerene composite samples, the
thermal desorption spectra of the PDMS–C60 fullerene
composite coatings contain a low-temperature peak at ~
450°C and a high-temperature peak at ~ 660°C. Note
that the low-temperature peak (δ ~ 250°C) is consider-
ably broader than the high-temperature peak (δ ~
150°C). The high-temperature peak disappears in the
course of sedimentation (compare curves 1 and 2 in
Fig. 3). The large width δ of the low-temperature peak
for the PDMS–C60 fullerene composite coatings sug-
gests that this peak can be associated with several
stages of the thermally stimulated desorption of C60

fullerene molecules characterized by desorption peaks
with a smaller value of δ. The approximation of the
envelope of the low-temperature peak by two narrower
peaks with δ ~ 100°C at temperatures  and  is
shown by dotted lines in Fig. 3. It should be noted that,
at higher fullerene concentrations in the PDMS matrix
(i.e., at short times of sedimentation of the suspension),
these peaks are less resolved. As a consequence, the
low-temperature peak appears to be sharper, but its
width δ remains large (Fig. 3, curve 1). It is worth not-
ing that the low-temperature desorption states are pre-
dominantly formed in the PDMS matrix, even though
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the actual concentration of C60 fullerene molecules in
the PDMS matrix (  ~ 5 × 1019 cm–3; curve 2 in Fig.
3) is higher than the concentration of fullerene mole-
cules in the polyimide matrix (  ~ 1019 cm–3; curve
1 in Fig. 1a). Therefore, the results obtained indicate
that an increase in the concentration of C60 fullerene
molecules leads to an increase in the density of the
structural states responsible for the high-temperature
peaks of thermally stimulated desorption and that this
effect is more pronounced in the polyimide matrix as
compared to the PDMS matrix.

The x-ray diffraction pattern of the sample prepared
from the PDMS–C60 fullerene suspension at a fullerene
content of 1 wt % is shown by curve 2 in Fig. 4. The x-
ray diffraction pattern of the coating prepared from
pure PDMS is depicted by curve 1 in Fig. 4. These dif-
fraction patterns have specific features, namely, a char-
acteristic slope of the peak associated with the primary
beam and an amorphous halo. It can be seen from Fig. 4
that the x-ray diffraction pattern of the PDMS–C60
fullerene sample exhibits a shoulder (indicated by the
arrow in Fig. 4) in the slope of the peak of the primary
beam at angles close to 2θ = 10.81° for the most intense
(111) reflection from the face-centered cubic lattice of
the C60 fullerene crystals. This suggests that fullerene
clusters are formed in the PDMS matrix being in the
liquid state at the temperatures used in the x-ray diffrac-
tion experiment. Note that the formation of C60
fullerene clusters was also revealed by x-ray diffraction
in the polymer matrices being in the glassy state at the
temperature of the measurement [12, 19, 22].

The position of the asymmetric amorphous halo
observed in the x-ray diffraction patterns of the PDMS
samples remains almost unchanged upon introduction
of the C60 fullerene. This suggests that the C60 fullerene
does not substantially affect the intermolecular dis-

nC60

nC60
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Fig. 3. Temperature dependences of the rate of C60 fullerene desorption from the PDMS–C60 composite coatings obtained from (1) the

as-prepared suspension (the weight ratio of the components in the suspension is approximately equal to 100 : 10;  ~ 1020 cm–3)

and (2) the suspension after sedimentation for more than 24 h (  ~ 5 × 1019 cm–3). Dotted lines indicate the results of the approx-
imation of the low-temperature peak by two narrower desorption peaks. Curve 3 represents the temperature dependence of the total ion
current.

nC60

nC60
tances in the polymer matrix. The mean intermolecular
distances Xm determined from the formula 2Xmsinθ =
Kλ (K = 1.2–1.3) [20] are equal to 0.44–0.48 nm; i.e.,
they fall in the range characteristic of polymers. A
slight decrease in the halo width for the fullerene-con-
taining sample can be caused by two factors: (i) an
increase in the size of coherent scattering regions and
(ii) a decrease in the spread of intermolecular distances
[21]. Both factors indicate a higher degree of ordering
of macromolecules in the polymer matrix. This can
manifest itself in an increase in the matrix density. Note
that similar changes in the shape of the amorphous halo
have been observed for other polymer matrices [12, 19]
and low-molecular aromatic solvents [23].

The x-ray diffraction data confirm that, in a polymer
matrix, C60 fullerene molecules occur in a dispersed
state even at room temperature, i.e., prior to the thermal
desorption experiment. It should be emphasized once
again that the evolution of the x-ray diffraction patterns
of polymer–fullerene samples during heating, as well
as with a change in the initial fullerene concentration
and in the procedure used for preparing the sample,
calls for detailed experimental investigation.

Analysis of the mass spectrum of the gaseous phase
formed upon heating of the coatings revealed that, at
PHYSICS OF THE SOLID STATE      Vol. 47      No. 12      200
the temperature , the intensity ratio I720 : I721 : I722

of the lines attributed to the  molecular ion (m/z =
720, 721, 722) is almost identical to the intensity ratio
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Fig. 4. Wide-angle x-ray diffraction patterns recorded at
room temperature: (1) the PDMS coating and (2) the com-
posite film prepared from the PDMS–C60 suspension at a
C60 fullerene content of approximately 1 wt %.
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(100 : 64 : 24) of the corresponding lines in the mass
spectrum measured upon sublimation of the fullerite
(Fig. 5). This gives grounds to argue that chemically
unbound fullerene molecules contained in the sediment
hypothetically are in the crystalline state.

The occurrence of diferent stages in thermally stim-
ulated desorption of C60 fullerene molecules can be
explained by the fact that fullerene molecules can exist
in different phase states in the polymer matrix. These
states are characterized by different energy barriers to
desorption ui. The structural organization of C60

fullerene molecules in the polymer matrix can be repre-
sented as an instantaneous “image” of the coexisting
gaseous, liquid, and ordered solid phases (Fig. 6). The
relative intensity and shape of thermal desorption peaks
can depend on the fullerene concentration in the matrix,
the matrix properties (thermal stability, reactivity), the
procedure used for preparing the composite (conditions
of annealing and quenching), and other factors. The
phase state with a higher energy barrier to desorption ui

corresponds to a lower desorption probability, which is
proportional to the quantity exp(–ui/RT), and, conse-

quently, to a higher temperature  of the ith desorp-
tion stage.

Ti
max
PH
According to the wide-angle x-ray diffraction
experiments (Fig. 2), the initial polyimide–C60

fullerene samples characterized by the most intense

thermal desorption peak at the temperature  con-
tain the crystalline phase of the fullerene. Hence, there
are grounds to believe that the thermal desorption stage

at the temperature  is associated with the desorp-
tion of C60 fullerene molecules from crystalline
regions. It is significant that, in the experiments under
consideration, the temperature range corresponding to

the desorption stage at the temperature  coincides
with the temperature range of thermal decomposition
of the initial polymer (i.e., with the high-temperature
portion in the temperature dependence of the total ion
current). Consequently, in the experiments on ther-
mally stimulated desorption, C60 fullerene molecules
contained in crystalline regions of the polymer matrix
are desorbed from the coating upon thermal decompo-
sition of the polymer. This circumstance should be
taken into account in analyzing the thermally stimu-
lated desorption of fullerene molecules from matrices
formed by polymers with a lower thermal stability (see,
for example, [11–13]).
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Fullerene molecules in a less ordered state (C60
fullerene molecules in clusters, individual C60 fullerene
molecules) are most likely desorbed from the sample at
lower temperatures (i.e., at temperatures  and

). We note once again that these temperatures are
lower than the temperatures of thermal decomposition
of the polymer matrices under investigation. The frac-
tion of C60 fullerene molecules involved in the C60–C60
interaction in the amorphous and molecularly dispersed
states of the fullerene in the polymer matrix is smaller
than that in the crystalline state of the fullerene in the
matrix. This can result in a decrease in the energy bar-
rier to desorption of C60 fullerene molecules from the
polymer matrix, because the C60–macromolecule inter-
action is relatively weak. In the case of the polyimide
matrix, C60 fullerene molecules are incorporated into
the reactive material with respect to the C60 fullerene.
Actually, PAA macromolecules contain terminal amine
groups that exhibit electron–donor properties and can
interact with fullerene molecules to form strong chem-
ical bonds of the C60–N type. Therefore, the possibility
of dissociating C60–macromolecule chemical bonds

(for example, at the temperature ) in the course of
thermally stimulated desorption must not be ruled out.
The formation of these bonds is indirectly confirmed by
the fact that the IR spectra of the PAA–C60 fullerene
sediment and the polyimide–C60 fullerene composite
coatings [3] contain absorption bands at frequencies of
617 and 668 cm–1. Although these bands are forbidden
for C60 fullerene molecules, they indicate that the afore-
mentioned bonds are formed in the matrix.

The stage of thermally stimulated desorption at the
temperature  can be attributed to the desorption of
fullerene molecules that are in the most dispersed state
in the polymer matrix. This state corresponds to the
lowest volume concentration of fullerene molecules.
Therefore, in this state, the fraction of C60 fullerene
molecules involved in the C60–C60 interaction is consid-
erably smaller than the fraction of C60 fullerene mole-
cules participating in the C60–macromolecule interac-
tion. Let us assume that individual C60 fullerene mole-
cules diffuse toward the surface of the polyimide–C60
fullerene composite coating [15]. Under this assump-
tion, the experimental data obtained at the desorption
stage corresponding to the temperature  can be
parameterized using the solution to the equation of the
second diffusion law. As a result, we obtain a reason-
able value of the activation energy for diffusion of indi-
vidual C60 fullerene molecules (~90 kJ/mol). This sug-
gests that fullerene molecules in a dispersed state are
desorbed at the temperature . The activation ener-
gies for desorption of fullerene molecules at tempera-
tures  and  are roughly estimated at ~180 and
~270 kJ/mol, respectively.
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A comparison of the thermal desorption spectra
shown in Figs. 1 and 3 (the sample volumes and
fullerene concentrations in the samples are comparable
to each other) demonstrates that, in the PDMS–C60

composite coatings, unlike the polyimide–C60 coatings,
the number of C60 fullerene molecules desorbed from

the sample at temperatures  and  is consider-
ably larger than the number of C60 fullerene molecules

desorbed from the sample at the temperature .
Therefore, the content of dispersed fullerene molecules
in the PDMS matrix is considerably higher than that in
the polyimide matrix. This is explained by the higher
flexibility of PDMS chains and by the larger free vol-
ume in the PDMS polymer as compared to those of the
polyimide at the temperatures of desorption of
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max
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T1
max, u1

(b)

T2
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(a)(T1
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Fig. 6. (a) Schematic diagram illustrating three structural
states of C60 fullerene molecules: (1) C60 molecules in a
dispersed state, (2) C60 molecules in clusters, and (3) C60
molecules in crystallites. (b) Schematic thermal desorption
spectrum corresponding to these three structural states char-

acterized by the thermal peaks , , and  and

the energy barriers to desorption u1, u2, and u3 . The relative
intensity of the desorption peaks is determined by the con-
centration of fullerene molecules in the relevant structural
state.
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max

T2
max

T3
max
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fullerene molecules from the PDMS matrix, because
the polyimide at these temperatures is in the glassy
state.

4. CONCLUSIONS

Thus, polyimide–C60 and PDMS–C60 composite
coatings were investigated using thermal desorption
mass spectrometry. It was revealed that thermally stim-
ulated desorption of C60 fullerene molecules from a
rigid-chain polyimide matrix is similar to thermally
stimulated desorption of fullerene molecules from a
flexible-chain PDMS polymer matrix. This indicates
that fullerene molecules can exist in dispersed, amor-
phous, and crystalline states in polymer matrices with
radically different thermal properties. The distribution
of fullerene molecules over the structural states can be
governed by the nature of the matrix and the procedure
used for preparing the composite coatings.
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