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Our earlier results regarding the absence of Birch anisotropy in cosmological models with
rotation were obtained under the assumption that a bundle of rays forming the image of a source
is nonrotating. This appears to be at variance with the rotation of space. The detailed

analysis in the present paper of the behavior of rays propagating from a source to an observer
shows that the congruence of the rays is, in fact, nonrotating. The doubts expressed by

some authors in reference to our conclusions that the Birch effect is not attributable to
cosmological rotation are thereby put to rest. 1©98 American Institute of Physics.
[S1063-776(198)00109-7

1. INTRODUCTION be a consequence of general-relativistic effects accompany-
ing the propagation of radiation.

A debate as to whether it is possible to attribute the  The conclusions in Ref. 3 were challenged in Ref. 5. The
Birch effect to cosmological rotation has been continued insubject of the discursion was the properties of a bundle of
the literature for a fairly long time. We recall that Birch rays forming the image of a source. In Ref. 3 it was called a
claimed on the basis of his own observations of a large set ofrepresentative” bundle, and it was assumed that it is non-
radio galaxies that there is dipole anisotropy of the positionrotating. Objections were raised specifically against this as-
angleA (the angle between the dominant polarization of thesumption in Ref. 5, where it was stated that a bundle of
radiation and the direction of maximum elongation of theisotropic geodesics producing an image in a rotating universe
radio galaxy in the form Axcosf, where @ is the angle must also be rotating. In this paper we examine the proper-
between the direction of the ray and the anisotropy axis. Heies of a representative bundle of rays in greater detail than in
also theorized that this anisotropy could be attributed to cosRef. 3 and show that it has the properties ascribed to it in
mological rotation. Ref. 3. The criticism expressed by Koratkind Obukhovis

It was shown in Ref. 2 that rotation of the polarization thereby put to rest.
vector (relative to a local coordinate basis sdbes, in fact,
take place in a rotating cosmological model and that the
rotation law is similar to the one proposed by Birch. How- 2. EQUATIONS OF RAYS IN A REPRESENTATIVE BUNDLE

ever, no allowance was made for the possible variation of the  For simplicity, the further calculations are performed for
direction of maximum elongation of the source. Such rota4 stationary Gdel-type cosmological model described by the
tion occurs because of deformation of the bundle of raysnetric
forming the image of the source as the rays propagate in
curvedgspace. Tr?erefore, the results in Ref. ;digl ngt gnswer ds’=dt*—dx*—ka’(x) dy*~dZ—2\p a(x) dy dt
the question of what happens to the anglén rotating uni- @
verses. W&recently investigated the character of the varia-This metric differs from the constant scale factor used in
tion of the position angle\ in a cosmological model with Refs. 3 and 5, which was set equal to unity. In the méttjc
global Galel rotation. It was discovered that this rotation a(x)=e™*, andk, p, andm are constants.
cannot induce the Birch type of anisotropy wit» cosé Let us consider a system of rays propagating from a
and that anisotropy with «sir’é should be expected. It was sourceABCD to an observe© (see Fig. 1 It is assumed
concluded in Ref. 3 on this basis that the Birch effect, if itthat photons of a definite frequenay reach pointO at the
exists at all, cannot be caused by rotation of the universe. same moment in timet;, being emitted from points

It was shown in Ref. 4 that the anisotropy of space inA,B,C, ... of the source at different moments in time, de-
anisotropic cosmological models leads to the appearance giending on the coordinates of the points. If the position of a
visible anisotropy in the orientations of distant galaxies. Thisphoton on an isotropic geodesic is characterized by the affine
effect was calculated in first order from the curvature for theparameters, the value ofs for all photons arriving at the
most general case of Petrov type-| spaces. At the same tim8me t; at point O can be set equal tg;>0. The initial
it was concluded in Ref. 4 that Birch’'s observations cannowalues ofs for the photons emerging from poinés B, etc.
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It is not difficult to obtain the following expressions for the
co- and countervariant components of the wave vector from
the equationk/. k”=0 and the equalitk k*=0:

9(a,d2,93)
ko=0o, k1= _QOT:
o Ky=—00d2, Kz=—0o03, (4)
o G0k [, Gp) . aog
Ko=——|1+——|, ki=—12,
k+p ak a
Qo a2 ®
2_ _ 22 3—
_a(k+p) \/E+ al’ k QOQ3-
FIG. 1. Behavior of a bundle of rays forming the image of a source in
cosmological models with rotation. Here
2Vpga g |
9(a,qz,03)=| a° m—qg) + “kip  k+p

at different timegwhich correspond to their arrival at point
O at ty) will naturally be different and will depend on the : ' i
coordinates of these points. (5) and with the conditiong'(s;) =0 andt(s;)=t;, we ob-

We take into account that the observer receives the imt@in
age of the projectio®AB’C’'D’ of the source onto a plane Jp s ds

) . . Qo p d2

perpendicular to the line of vision, rather than the source t=t1+m S—§;+ K a(s.02.93) |’
itself. In this plane we assign the valse=s, to the affine sp SR> 23
parameters. In flat space a definite value &f —s, would fs g(a,92,93) ds

Integrating the equationdx”/ds=k*(x%,q,) with k* from

correspond to a definite distance from the observer. Then the X=0o s (6)
segment of the spherical wave surface which is tangent to the
source at poinA would correspond ts=s;. Because of the Yo
great distance to the source, this segment of the wave surface y=:+—
would be indistinguishable from the flat surface depicted in
Fig. 1. Motion along an isotropic geodesic is accompanied by the

We can do virtually the same thing in curved space: theyariation of x(s) and, therefore, ofa(x(s))=expMmxs)).
projection of the source consists of a set of spatial points olThe equation form(s) has the form
isotropic geodesics characterized by the same value of the

. e a da

affine parameter, which is equal, say, to the valusyf) mqoszf ——— . ap=expmx), @)
for a photon emerging from poim, to which we assign the a, 9(2,02,03)
vfalue So(A)=0. We_note that.in view of the smalll dimen- and its solution has the form
sions of the source in comparison to the cosmological curva-
ture, the relation between the geometry of the source and the( ) d2V1-q3
image of it derived from the conditios=s,(A)=0 will be  a(S,42,03)= ——— 2
practically the same as in flat spa@es is shown in Fig. 11 ktp(k/(k+p)—ds)

Let My(x5) be an arbitrary point on the projection of the K
source. We have X cosh @+ Mmaps m_qg

o_ 1_ 2_ 3_
Xo=to, Xg=Xo, Xo=Yo. Xp=Zo.

s a

sds sds
—Jﬁf —+qu —|, z=0ogs(s—sy).
s; @ a2

S1

k+p

) ) Vpa,
A ray belonging to the representative bundle emerges from - —k—(k+ Vo2 ®
point Mo(tg,X0,Y0,Zo) and reaches pointO(t;,x;=0, P)as
y1=0,2,=0), andsis the affine parameter on the ray. It is Here ¢ is related toa,=expmx,) by the expression
assumed for all the rays of the representative bundle that —
s=s,=0 at points on the projection of the source and Tk a, K —q§)+ \/qu = coshgg. 9)
s=s, at pointO. aV1—03 k+p k+p
Space(1) has four Killing vectors Sincea(s;)=e™=1 for s=s,, we have
1
(=08, ==08t-yoh, (5=05, (4=084. (2 dz2v1-0as
" L s Wk p) -
+ +p)—
Therefore, the equations of the isotropic geodesics have four p(kl(k+p)—as
first integrals, which we denote for convenience as k \/B 0
_ X cosh o+ Mgps; k——q§ - (10
(kul6)=0o, (kKu{f)=0o0i, =123 3) tp k—=(k+p)a3
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Using(10), we can eliminatepg in (8) and expresa in terms IXE IXE
of only s, q,, andqs: k1=kaE=kak“:0(sinceE:k“), (12
a=(1+B)coshy—\(1+B)Z—AZsinhy—B, (12) R a2 x 2y 27
where kp= G Oa_qz+ 1E+k2&—qz+k3&—qz.
_ \/qu _ k+_p \/1_—qu To calculatedx®/ox’* we use formulag6). Then,
(k+p)[K/(k+p)—a3]’ P ’

at guQoVp (11 da dovp (s ds

—= — —ds— —
k aq k+p 2 9q k+plJs a(s)’
y=mao \/m—qi(sl—s). 2 saT °

ot \pgd, (11 da
a3 k+p Js a2 dqs

3. CONGRUENCE PROPERTIES OF THE RAYS OF A

REPRESENTATIVE BUNDLE IX 1 9a IX 1 oJa

In order to obtain the field of isotropic vectoks,, for 49, madd,’ dg3 madqs’
which the rotation tensow,,=(k, ,—kK, ,)/2 characteriz- (13
ing the rotation of a bundle of rays is calculatedg,, and fslds qo\/— s1l da
g3 must be expressed in termsxafy, andz using Eqs.(6) aqz Ck+ p k+pJs aZ aqz
and then substituted int@). In light of everything, the lack
of this procedure was the reason for the erroneous conclusion 2000, (11 da
drawn in Ref. 5. In any case, the expression given in Ref. 5 k+p Js a3 (9012 S,
for the rotation parameteap is obtained, if only the explicit
dependence on the coordinates is taken into account in for- 5y doVp (11 da 2009, (11 da 9
mulas(4) andg, andqs are regarded as constarfits Ref. 5 == — 7 —4as S,

Jd k+ 29 k+ 239

the constants|, and q; were replaced by the angles of ap- Ge PJs a® s PJs a” s
proach# and ¢ of the rays at the point of observatijon 9z 9z

The position of a point on an isotropic geodesic is com- E =0, W =(o(S—S1).

2 3

pletely defined by assigning the parametgss qs, s, and
t;. In this caset; specifies the temporal sequence of waveUsing (13) and (4), we obtain
fronts reaching poin® and is an analog of the phage The
parameterg, remains equal to a constafat least in the .
stationary case; incidentally, in the nonstationary case therléz_k+ p
is no such constant parameétand does not play any role in

the expressions describing the congruence of the wave vec- q§q2J31 ds 2qoq2 s11 da g oJa

; ; + — —ds— — —,
tors. If gg is assumed to be absolutely constant, it can be set k+p a2 k+p Js a3 dq, ma2 992

{ sids s1l da

equal to unity, which we shall do in the following. This

corresponds to the fact that we are considering a physical \/EQSQZ s;1 da Jp (sl oa (14
situation in which photons of one frequency are emitted fronk§=ka - ﬁ—ds— asas| — ol = a—ds
each point on the projection of the source. However, there is P Js a® s PJs a® od3

a possibility which can lead to rotating congruence. More 2 s 1 9a Ja
specifically, whemyg, being an integral of motion, i.e., being 92 = s|— i —CIOQe,(S sy).
independent 0§, is a function of two other constangs and k+ PJs 613 ‘9‘313 993
Js: do=0o(92,93). In this case the frequency of the emitted |, . -
photons is different for different points of the source. WeIt is not difficult to show that
shall not consider such a physical situation in this paper. . dky kg
In principle,s, g,, andgs must be expressed in terms of 217 g ~Ke1= o =0. (15

X, Yy, andz using(6) and then substituted int@). The con-

gruence ofk,,(x®) is thus obtained, and the rotation tensor This can be proved by direct differentiation of expressions
, must be calculated for it. However, we shall proceed(14). However, it can also be demonstrated in a different

d|fferently Instead of the componenks, in the (t,x,y,z) ~ manner. In factk;=k,dx*/dg, can be regarded as an in-

system of coordinates, we shall work with the componentyariant. Then, usng/r?s and D/dq, to denote covariant

kj, in a new system of the coordinates derivatives along andq,, we obtain

X'0=t1, X'1=S, X12=q2, X’3=C13. ) 5'k2 D IXH ‘ V,;X,u D [ gx*
We have 21755~ g5\ Hag,)  m 5_(42+ “gs\ aq,

K=Ky o Kyt i, 21Dy k=0

0= Ka, Koz, o= o, Mg, T2 3g, 7
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Here we have only utilized the fact thij, is an isotropic ky,=k;=0. (18)

geodesic vectork,. k"=0, k k*=0). _ . .
Similarly, it can be shown thaky, ;= dks/ds=0. Thus, The_refore, in thet; ,s,q,,03) system of cqordlngtes the iso-

k, andk}, are constant along rays and are equal, say, to theffopic congruence of the wave vectors investigated has the

values at the poins=s, (point O). At this point all the O
integrals in the expressions fé&, and k3 vanish, and we k! =(00,0,0,0, (19
have
and the rotation tensor for this congruence equals zero.
K| _ 9(1,02,93) ﬁ It can be concluded from the foregoing that if the fre-
2ls=s, m Il guencyq, of the light is an absolute integral, which is iden-
! tical for all rays, the bundle of rays forming the image is
, 9(1,02,93) da nonrotating in the cosmological model with rotation de-
Kals=s,= — m 99al (160 scribed by the metri€l). A similar result should be expected
ST for all metrics with global rotation.
On the basis of Eq.11) we can obtain
4. CONCLUSION
q a_a e vk+pg(a,q;,9;) We have shown that the “representative” bundle of rays
2 a4, \/(k+ p)(1—q§) —( \/5— q,)? forming an image of a source considered in Ref. 3 is, in fact,
nonrotating. Thus, the main conclusion in Ref. 3 that the
o 9(a,92,03) Birch effect cannot be attributed to cosmological rotation
0(1,0,,93) "’ within the general theory of relativity holds. The question of
(17 the possibility of attributing the observed Birch anisotropy to
da B . . L . S
— = —(coshy—1) cosmological rotation in a theory of gravitation with twisting
dq; J0s requires a separate treatment. Finally, we note that despite
_ the advances regarding inflationary scenarios of the evolu-
_ (1+B)(9B/dq3) — A(9A/903) tion of the early universe, within which the rotation of the
J(1+B)?—A2 early universes is strongly damped, it would be useful for
. . astrophysicists to continue the efforts to find manifestations
xsinhy+[(1+B)sinhy of rotation of the universe in the modern epoch and its pos-
oy sible global anisotropy.
—VJ(1+B)?—A? coshy/] -~
s *)E-mail: info@mail.psu.ru
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We show that the singular behavior of Rindler solutions near horizon testifies to the currents of
particles from a region arbitrarily close to the horizon. Besides, the Rindler solutions in

right Rindler sector of Minkowski space can be represented as a superposition of only positive-
or only negative-frequency plane waves; these states require infinite energy for their

creation and possess infinite charge in a finite space interval, containing the horizon. The positive-
or negative-frequency representations of Rindler solutions analytically continued to the

whole Minkowski space make up a complete set of states in this space, which have, however,
the aforementioned singularities. These positimegative-frequency states are

characterized by positivenegative total charge, the charge of the same sign in ridsift)

Rindler sector and by quantum number But in other Lorentz invariant sectors they do not
possess positivenegative-definite charge density and have negatipesitive) charge in

left (right) Rindler sector. Therefore these states describe both the pdsitiparticle and pairs,

the mean number of which is given by Planck functiorkofThese peculiarities make the

Rindler set of solutions nonequivalent to the plane wave set and the inference on the existence of
thermal currents for a Rindler observer moving in empty Minkowski space is unfounded.

© 1998 American Institute of Physids$$1063-776(98)00209-1

As is known, it is impossible to create a constant uni-and may be written dowhas a superposition of positive
form gravitational field with acceleratiomin a space length (p°>0) or negative p°<0) frequency plane waves with
of the order ofa™?1, or the coordinate system in Minkowski different rapidity §:

space, imitating such a fieldSo, in the Rindler coordinate 1 i
system due to hardness requirement the acceleration is g, (7)exp —ixv)= = ex;{ I—)
versely proportional to the space coordinattz) =z 1, and 2 2

becomes infinite at a distanee * from the plane with ac- o
celerationa (event horizon It is clear that such a system is Xf
unrealizable by moving bodies up to horizon. At the same

time there are statements in literature that the wave equatiog®’= +m, coshé, p3=m, sinh 6. 2)
solutions with the Rindler system symmetry testify to ap- . i f . f variables. = t=z with b h
pearance of currents of particles with thermal spectrum fo}t IS an ana ytic unctlon or varia exsi—t_z_ wit ranc

an observe at rest in the Rindler system, i.e., uniformly acPONts atx.=0. This solution can be analytically continued
celerated in Lorentz system where no particles are présent. to the Who!e M'nkOVgSk' spg(.:ef fror(w)”n sen;1|axes<_0, Xt
Moreover, it is stated that this phenomenon imitates black>0 to semiaxex_>0, x, <0; for p*>0 the continuation
hole evaporatioA-* On the other hand, according to the in- is performed through the lower and f9P<O through the
teresting paper by BelinsRithe already formed black hole upper half-planfes of ?Omp,'e“& ’ Accordlr;]g to thg_lower orh
should not create particles. The same is expected if the anafPpPer ways o contlnua_tlon ("J\r’)e get E_? p‘?s'“_"?' or the
ogy with QED is warrantefi:both virtual or real pair com- negative-frequency solution®, " or &, cqnmdmg n
ponents are attracted by black hole and no particles shouf@ndler sectoR and differing in other sectors:

do exdi(p®z—p°)Fik6],

appear far away. R: ®'F =K (exp—int'), w=ax,
Rindler solution(the solution of Klein—Gordon equation
in Rindler wedgg decreasing forf—, is given by the ) (+)_ _TKY o
Bessel function of the second kirfi¥icDonald function, Fio @ =exp + 2 Ki(xinexp—iwz’),
r=m =2,
KIK(g)eXFX_IKU—i_IpLXL)I N TK
P: <I>(KEexr{17)KiK(IiT)exp(—iwz’),
t z
v=at’=tanh*12, (=m, z'=m, 22—t ) az’=tanh‘1¥,

1063-7761/98/87(9)/5/$15.00 421 © 1998 American Institute of Physics
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L: & =exp ¥ m)K; (O)exp —iot’). 3) Th

So, the solutionsb(*) are characterized by frequency
sign and by real parameter(the latter instead of plane wave
momentun.

Solutions® (™) may be obtained fron®(*) by complex
conjugation and changing the sign of

BI= )" ()

If instead of ®() one considers ¢(*)=exp
(+7xl2)® ) then these solutiong™) will be “similarly
normalized” in whole Minkowski space by values differing
only in sign. The solutiong!™) corresponds to positive
charge located mainly iR or L for « greater or less than 0
and¢(™) corresponds to negative charge located mainly in 1 f

FIG. 1.

x_y dX_
P e 24K (i 7))

x_, X—

or R for the samex. >
For ®(*) we have the following current density compo-

nentsj.=j%=j%: 1 fhz dx,

2k, t3 ), 5 @ T 2dKinf]
R: J==%3" Ki(4),
_ 72
— 7k =27e” "™ In —. (8)
Fioju=——[mF 2K (in)]?], m
* It is seen that the hyperbolic parts of the currents cancel
e Tk each other and the linear parts are equal, and yield the result
P: j.= _ [— 7% 2&|K; (—i7)|?], presented in(8). The former is evident beforehand as the
contour can be deformed to the arc of hyperbetar, be-
o2k, tween the chosen points on it, while the latter follows from
Lo J.=~e o Ki(£)- ®) (7 and the relation

9

In sectorsR and L the current flows along hyperbolae with X2 _X+2 _[T2 ?
constant and in sector$ andP both along the hyperbolae X_1 Xyq \7)
with constantr and along the rays outgoing frofm F) and

ingoing to(in P) the origin of coordinates: If one fixes the coordinates, ;,x,, of the hyperbola arc

ends and the parametey tends to zero, then the considered
arc of hyperbola can be made as close to the segment

. R h 2
R ja=ia’="— 212 KFe(£) €apx?, (6) (X4+1,X4+2) Of x,-axis one wishes. Yet the current through
i this arc of hyperbola remains constant according8io (9);
Fioja=iatia the same is true for its components along andx_-axes.
e~ T Similarly the current through the contour lying in seci®r
J'O'(n_ > X with ends on hyperbolay=¢, at points &,q,x",) and
—Z (X42,x_;) is equal to the current through the broken line
2 e T formed by segments of straight lines =x’, and x,
joYP=— 2=z [Kili 7)|2€ 4 pXP, (7)  =x,, crossing on the hyperbola= Z,= /= x" ,X_ 5
€,p IS the antisymmetric tensoegs= — e30=1. 1 JX” dx, J : d_ 2kK2 (£)=
The linear and hyperbolic current densities are orthogo2 x_q
nal: (10
J'Liynj hype— (. It is equal to zero as iR the current flows only along hy-

) . . . ) perbolae and the chosen contour can be deformed to the arc
Singular behavior of current densitysat =0 is evident. ¢ hyperbolaZ=¢,. So the arcs of hyperbolae= 7, and ¢

Due to current density conservation the current =¢,, lying in F andR and having the projection( 1,X. »)
1 _ . onx, -axis, forrq, {;— press themselves to the projection
=3 L(J +adx_—j_dxy) from both sides but the current flowing through the both arcs

remains constant and equal (@®). If the ends of contours in
through a contouc€ lying in F and having ends on the hy- F andR are placed not on hyperbolae, but on straight lines
perbola =7, at the points X,1,X_,) and ;,,X_1) is x_=x_,>0 andx_=x",<0 at the points with coordinates
equal to the current through a broken line formed by segx.q,x,5, then the current through these contours will be
ments of the straight lines, =x,, andx_=x_, crossing given by the second and the first integrald8& and (10) as
on the hyperbolar= 7,=m, Vx_,Xx,, (see Fig. L these contours can be deformed to the corresponding seg-
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ments of straight lines. Choosing’_,=—x_, (what is to the regionz,(t)<z<« and related to unit area of plane
equivalent to{,=7;) it is possible to show that the total z,. For {—< this charge exponentially decreases,
current crossing both segments, when they approach each _

other(i.e., for 7; ,—0, but 7,/7;=cons}, differs from zero R (O~He %, (-, (15)
and oscillates with increasing frequency: 2f

and for{—0 it increases logarithmically:

B T,  dr ]
e ™ in 7_—+2KJ 7|KiK(IT)|2 R _ | 2 . 1
1 T JKK(g)_SinhWK nz'f'Rdl//(l—lK))'f'Z
m df 2 2w . ( 7'2)
-2 — KA~ ——— In —=
"L ¢ KidlO= emegyy SN < In 2 xsin| B+ 2« Ing +oe|, 0. (16)
T172 Here (x) is logarithmic derivative ofl’-function, andg
X + —=
COS(B win = ) @D 5 argr(1-ix)).

. So, the charge in any finite volume becomes arbitrarily
— 201 __ 2
whereS=arg™(1~ix)), 717,=M} VX 1X, X1 —0. large when this volume approaches the horizet|t|.

So the current through the closed contour., going t_hrough Using equationg13), (14) and asymptotic expressions
the ends of the segment (3,x..;) on thex.-axis and lying ¢, the McDonald functions, it is easy to show that for

in F andR, due to singular behavior of current density at the;& «' andZ—0
X . -axis depends on the way of calculating the integrals near

the singularity. Calculations of principal values of integralsfoc d_X K K . \/ KK’

by means of “hyperbolic” or “linear” approaches give re- J, x ~ix 0K (0= sinh(7k)sinh( ")
spectively finite(8) or indefinite(11) values.

2Kk’

Note, that the charge and the energy of the staten 1 : ,
.. 2~ . . X - sin (k—«')
any finite volume containing horizon are infinite due to sin- K—
gularities of charge density’ and energy density°° on the ) ) 1
horizon. win =— BB :
Let us consider the scalar or “inner” product of two 4 2 K+ K
positive-frequency solution) in Rindler sectoR: . 2 B+p
JR ,=f dzK_; ()€ i 3, K (e @', (12)
KK It ! to (17)
Replacing the integration variableby the variablez, it s~ Where the omitted terms go to zero for- 0.
not difficult to see that the integrand is total differential of ~ USing the representation
function sin(Nx)
lim =1(X), (18
4 % oo, myt N—oo
-R (0= expi(k—«k')sinht —
wt (4) K=k’ (k=) 4 let us rewrite the right-hand side ¢£7) in the form
XK i (OK[ (D =KL (OK (D], (13) ™ \/ ki’ o ,
2kkK’ sinh(7k)sinh(7k') {0l =x") =+ K)}-

which exponentially decays at the upper lirfidr {—o) and (19)
oscillates with infinitely increasing frequency at the lower

limit (for {—0). So, the integral®,, which is equal to the Then ,

.. . R L.

I|m|t of the functlonJKK,(Q for {—0 dges not §X|st in or- lim JSK’@): _ S(k—x"). (20)
dinary sense. Let us consider the functﬂ:ﬁ;,(g) instead of 70 sinh(7«)

it, i.e., the integral12) in which the low limitz=t| is sub- .y
The scalar product of the same two solutid8sin sec-
stituted byz,(t) = Jt?+ (£/m,)?, where( is the parameter tor F produ utiqBsi

of hyperbola which intersects the straight line of constaatt
the pointz,(t). For this function there is also another repre-J" , =g~ (<"«
sentation:

t H ’ > H r,!
xf dzK_; (—inee?i §,K o (ine @7 (21
—t

t
Jf,(/(f):exr{i(x— k')sinh ™t mTl

is considered as a limit for—0 of functionJiK,(r), which
[ dx differs from the integral(21) in that the limits of integration
X(k+ K )L 5 K=K e (X). (14 =%t are substituted by limitg; At) =+ V2= (7/m,)?,
where 7 is the parameter of limiting hyperbola which inter-
For the special case=«' the functionJ® (¢) is real,  sects the straight line of constarat the pointz, ,. It can be
positive and represents the charge of the qthtepertaining  shown that
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B 2exg—(72)(k+k')]

F _
JKK,(T)— Kk—K'
. _,m;t . ,
X sin (k— «')cosh * - K i (—17K;{,,
X({1)+KL, (—iDK;(i7)] (22
_ZeXF[—(’IT/Z)(K'i'K')]

k—k'

XSiF{(K—K')COSh_l mTLtK m—i(k’—k'?)

» dx ) ]
xf ?K_i,((—lx)KiK,Ux) . (23
For k= k' the function
m;t
JF (1)=2me " cosh'? TL (24)

It gives the charge in regioR between planeg=2z, andz
=2z, per unit area of one of the planes. As seen fr@#)

this charge is positive, increases logarithmically in time and

also as the limits of integration approach the horizons.
For k# k' and 7—0 it follows from (22) and(18)

lim J3F (r)=27% "™8(k—«'). (25)

—0

Equations(22)—(25) also hold for sectoP, if one subjects
them to complex conjugation and notes that axéh an even

function/

A. I. Nikishov and V. I. Ritus

conjugation, changing the signs efand ' and changing
the overall sign, and for “similarly normalized” solutions
¢ they differ from those obtained fab(*) by multipliers
exgd =(7/2)(k+ k') ].

All given formulas hold both for positive and negatixe
Changing sign ofk is equivalent to reflectiog— — z:

dCN2)= ¢ (-2). (30)

In other words, the sign of is not connected with the sign
of total charge, but is connected with its spatial distribution.
Note the important relation

S= s 3y

which is satisfied also by function () .

Two solutions¢{" and ¢!, with different frequency
signs are orthogonal in Minkowski space, moreover, they are
orthogonal inR+L, F andP separately.

The energy density of the stade{™) in sectorR is

2042 2 2052 2
m¢ (t“+z°) ) Kk“(z°+1%)
Too=—z—z— IK |2+Eftf)f K[>+ m?[K]?,
(32
whereK =K, (¢), {=m, Z?—t?, and in sectoF it is

K*(Z2+12)

m? (t?+ 2%)

Too:em‘ t2_72 K’ [? K2

+m?|K|2—

27Kzt ]
, (33

Finally, scalar products of two positive-frequency solu-WhereK=K;,(i7), 7=m, Jt*—2°. Comparison with charge

tions (3) in sectorsL andR are related by the expression

I (O=—exp(—m(x+x))ITE (). (26)

Hence in the region- o <z< —z,(t) of sectorL the charge

is negative, makes up the exp?wk) part of the charge in
symmetrical region of sectd® and increases logarithmically
for {—0, i.e., as the limiting plane approaches the horizon:

In E+Re(¢//(1—i;<))

¢

th(§)~— T exXp—2mk) [

sinh( k)

1l
ZSIH

At the same time fok# «' and/—0

B+2kIn g)] (27)

% exp(—2mk)

. L _
im J,.(£)= sinh 7«

(=0
Summing(20), (25), and(28) yields

lim [3% (0 +3 (D+35,.(0) =472 ™8(k— k'),
{,7—0

S(k—«k'), (28

(29

which may be considered as the orthogonality and normal-
ization condition of two positive-frequency solutions in the

whole space.
For negative-frequency solutiods ) the integrals], .,

may be obtained fromil2)—(16), and(20)—(29) by complex

densityj® shows thafT, diverges forz— *t stronger then
j° both inR and inF.

The infinite charge and infinite energy in finite volume
containing the horizon testify to nonequivalence of the set of
Rindler solutions to usual complete sets of wave equation
solutions® That the horizons act as sources of particle and
antiparticle pairs is confirmed also by changing of charge
density sign at crossing horizon. Finally, the positive-
frequency solutiong!™) possesses in sectotsand R the
chargesfo) and Q(F:) of opposite signs and the total posi-
tive chargeQ(™). These charges are connected by the rela-
tion

QI(_+): _e72ﬂ'KQ(R+): _ % (eZﬂ'K_ 1)71Q(+),

Q(+)>0. (34)
Similar connection between the charges in secto® and
total charge for negative-frequency state™) is

1
qu_): _e—27TKQ§__): _ E (627TK_ 1)_1Q(_),

Q-)<o. (35)

Any ratio of the charges of opposite signs may be taken in
Minkowski space as a measure of intensity of pair produc-
tion in this space.
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The general feature of the staié5™) and their arbitrary  accelerated in sectd® of Minkowski space, i.e., at rest in
superpositior(36) is that their total charge is equally divided Rindler systemthe 82 turns out to be the measure of pair
between the sectoR+L andF (or P). production intensity, and looks like a thermal Bose spectrum

The fact that the staté'")(¢{ ™), being a superposition with temperaturea/27 and frequency =ax.
of positive (negative-frequency plane waves, not every- In our opinion, if the exotic stateﬁff) is created, then
where possess the positiyeegativeé charge density, is an- two observers, one at rest in Minkowski system and the other
other manifestation of nonequivalence ¢f,f)-system to in Rindler's one, can measure and receive information about
plane wave system. the charge®( ) andQ(%) in sectorsR andP. The difference
As the functionsp(=) differ in each of the secto® and  of these charges divided I§'5) for each of the observers is
L only by constant factor, it is always possible to find suchgiven by the expression
superpositions:

$i=adl BT, G=Be adl,

which g are identically zero iL.- andR-sectors correspond-
ingly and b have only positive and only negative charges
and their densities in other sectors. For this it is necessar

@  Qy-Qw 1

+) T Q2mk_ 1"
Q§<P e7TK l

(42)

that

1
a) ,8=—ae_”", b) ﬁzzaz—lzm, k>0.
(37)

Therefore it is possible to consider the stats and ¢,

%‘he same formula holds also for the chargesRirand P
sectors of the complex conjugated state"* =4, as
they differ from considered ones only by the sign. Therefore
both observers deal with the same field state in Minkowski
space, creation of which needs sources of unlimited inten-
sity.

According to Ref. 9, for the quantization of free field in

k>0, as describing the positively and negatively chargedRindler space it is necessary to satisfy the boundary condi-

particles, i.e., the particle and antiparticle.
Then in representations
P =adi- B, b == Bt ady,

k>0,
(39

inverse to(36), the squares of the coefficiendsand 8 must

tion on the Rindler manifold bounda/ =0 with arbitrary

t’, which corresponds to the poiat=t=0 in Minkowski
space. So, these authors conclude that the quantization of
free fields is quite different in Rindler and Minkowski spaces
and their analysis can give no ground for any conclusions
about the behavior of uniformly accelerated detector.

be interpreted as mean numbers of particles and antiparticles Thjs work was supported in part by the Russian Fund for
in the states") with total charget 1, and as mean numbers Fyndamental ResearéBrants No. 96-02-17314a and 96-15-

of antiparticles and particles in the stae ) with total
charge—1. Relation(34) shows that in sectdr there is only
half (i.e., 8%/2) of all antiparticles of the state)\"). The
other half is in sectoF or P. Similarly, half of all particles of
the statep ) are in sectoR while the other half is in sector
F or P.

96463.

*)E-mail: ritus@Ipi.ac.ru

It is interesting to note that the positivity of charge den-

sity j° for the states? in F andP sectors [z]<|t|),

w

j0= t 13 2 39
J _t2_22 | | ZSin}'(’ITK) | iK(T)l ' ( )

mathematically is the consequence of inequality
T |Ji(D]?<1, «k,7=0 (40
sinh(mk) ''% o '

for Bessel functionJ;(7), which was not found in math-
ematical literature.
The charge density for the stadé:) in the same sectors

0

T =22 K (i) 41
I=a— ||—Z7| i(i7)] (41)

has both signs.
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The temperature dependence of the loss factor for ultracold neutrons owing to heating at thermal
energies on the surface of a beryllium sample is studied. The probability of heating

ultracold neutrons is anomalously high throughout the entire measured temperature interval, but
especially at low temperatures. €998 American Institute of Physics.
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1. INTRODUCTION hydrogen contained in the surface layer of the trap material.
Hydrogen actually was observed through nuclear reacfions.
The condition of complete reflection of neutrons from In order to obtain the experimentally observed loss probabil-
matter at arbitrary angles of incidence imposes an uppeity, however, the required concentration of hydrogen would
bound on their energy at a level of 10eV determined by have to have been too high. It was showiat high-
the magnitude of the nuclear potential of the material. Thes@emperature heating of a Be sampleTat 1000 K could be
neutrons are referred to as ultracold, and are capable of beinged to reduce the loss factor from (2—3)x10 3 to
retained in hermetic vessels for a long tiffe. 2Xx10™* (5 was measured & =300 K), while the gas de-
The theoretical description of the reflection of ultracold sorbed from the Be surface was predominantly hydrogen and
neutrons is based on solving the Salinger equation for a water.
plane wave interacting with a so-called optical potential. In Deep cooling of a trap with a sputtered Be coating that
terms of this theory, the probability of loss of a neutron has initially been outgassed #p=10"4 (T=300 K) leads to
during reflection is determined by the loss factora reduction iny to 3x1075.° It should be noted that this
n=ImU/ReU, where U is the optical potential, which value of the loss factor was attained By: 77 K and did not
should be complex when absorption occurs in the materialvary as the temperature was reduced to 6.5 K.
The difficulty of confining ultracold neutrons in traps is di- Interesting results were obtained during some experi-
rectly related to the fact that experimental values of the lossnents at Gatchifato study the retention of ultracold neu-
factor » are one or two orders of magnitude greater thantrons in Be traps. The main conclusion of these measure-
theoretical estimates obtained assuming that the standardents was that, regardless of the technique for coating the
neutron—matter interaction cross sections are valid for ultratrap (sputtering or entirely of Beand the extent to which it
cold neutrons. For example, the theoretical loss factor owingnas been initially outgassedpE6x107° to 2x10 4 at
to inelastic scattering for Be ig=5x10"% at T=300 K,  T=300 K), when the trap temperature was reduced to 13 K,
and that owing to radiative capture &30 7, while experi-  the loss factors reached<3L0~®, although as before the ex-
ment yieldsy=(2—4)x 104, perimental result was two orders of magnitude greater than
A significant advance in solving this problem occurted the theoretical estimate.
when it was shown that about 75% of the neutrons leave a The possible heating of ultracold neutrons on a beryl-
trap as a result of inelastic scattering with heating at thermdium foil surface as the reason for their loss during confine-
energies. It seemed most reasonable to explain this result ment has been studied beférét was shown that, at room
terms of the hypothesis that ultracold neutrons are heated demperature, the heating of ultracold neutrons determines

1063-7761/98/87(9)/7/$15.00 426 © 1998 American Institute of Physics
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their loss during confinement. At liquid nitrogen tempera-6x10 2 Torr. The pure volume was cooled by pumping
tures, however, the probability of heating ultracold neutrondiquid nitrogen through an outside cailand heated by elec-
on a beryllium foil turned out to be substantially lower than trical heaters8 wrapped around the outside of all its parts.
3% 10 %, the probability of loss during confinement. The samples were outgassed by heatingl to650 K

A detailed analysis of the other possible channels fowith repeated purges of helium gédelium scrubbinyg After
loss of ultracold neutrons from the trap, such as superwea&ompletion of outgassing &=650 K the heated vacuum
heating or contamination of the surface by substances witkalve on the pure volume was closed and kept closed
high capture cross sections, did not yield a reason for théhroughout subsequent measurements in order to ensure
limitation of the losses at a level ofX310™°. These losses vacuum integrity. The temperature was monitored by ther-

have been characterized as anomalous. mocouples, of which two were located inside the contain-
ment vessel near the sample, while the remaining four were
2. STATEMENT OF THE PROBLEM located at various points outside the containment vessel.

The thermal insulatio® on the pure volume was made
h rati £ ult Id ¢ it di it of ashestos and aluminum foil. Forty-eight vertically
€ penetration ot ultracold heutrons into-a medium. 11 ah.,, yiaq cylindrical counters, each 20 mm in diameter and

ultracold neutron pe_netrates into _berylhum, it WI!| be heated,300 mm long, evenly surrounded the containment vessel and
fpr the most _pa_rt, since the heating cross section for berylformed the principal element of the device, i.e., the heated
lium (abov_e liquid mtrqgen temperatyrexceeds the capture neutron countet 1. Since the characteristics of the individual
cross section. For stainless stee_l, on the other hand, Captu(E)eﬂindrical counters differ somewhat, they were selected and
will predominate. Thus, by studying the heating of ultracold

grouped in eight sections. The anodes of the counters in a

nefut.ro'ns on an Intact befy”'”m foil anq on a sta_lnless stee, ection were joined, and each section of the counter had its
foil, it is possible to perceive the large difference in the heat- wn preamplifier

ing probabilities if the anomalous loss process is determine Filter chamber 1da cylindrical cavity 4 cm thick, filled

by penetration to a depth exceeding the sputtering depth %ith BF; enriched to 1094°B) was positioned in front of the

~3000 A, heated neutron counté&d. This device measured the average

One additional purpose of the experiment was 10 Ve”fyenergy of heated neutrons. The velocity of heated neutrons

]Ehe rclatsultslsf Re{. 8 1e., tg mTI‘.':lsure thfe heating p:ﬁbib'“t%ould be derived from the dependence of the filter transmis-
or ultraco’d neutrons on berylium surtaces near the teMgqn on BR pressure. A 1.5-mm-thick Cu plat was at-

perature of liquid nitrogen. tached to the cooling/heating system to stabilize the tempera-

ture of counterll when the containment vessel was heated
3. EXPERIMENTAL SETUP or cooled.

In this paper we study the inelastic scatteriigating The heated neutron counter was surrounded by a shield
of ultracold neutrons at sample surfaces made of berylliuml3 made of borated sheet resin 10-15 mm thick. The lower
We used two types of Be samp|es_ The first was prepared ugyart of this shield, which was attached flrmly to the heated
hot rolling of pressed, powdered, distilled 99.59%-pure befarts of the device, was made of 1-mm sheet cadmium.
rylium. The major impurities were Fe0.216%, Cu
(0.096%, Cr (0.036%, Ni (0.029%, and Mn (0.025%.
After etching in an HNQ@ solution and washing in distilled
water, a Be ribbon of thickness 0.1 mm and width 5 cm was  The presence of even a small number of neutrons with
crumpled and placed in a special basket made of the sanenergies exceeding the cutoff energy of Be in the spectrum
kind of ribbon. The second sample was prepared by magnef the ultracold neutrons presents a serious problem. Neu-
tron sputtering onto a corrugated substrate of stainless ste&bns with energies exceeding the barrier energy will produce
0.1 mm thick and 5 cm wide. The layer of sputtered beryl-a spurious reading when they penetrate the sample.
lium was at least 3000 A thick. The magnetron target was  The experimental setup included a preliminary contain-
made of Be of the same purity as in the first case. The totainent vessell4 because of the need for reliable suppression
area of each sample was £m of ultracold neutrons with energies exceeding the Be cutoff.

The measurements were made at the high-flux reactor dfhis cylinder 2 m high and 0.6 m in diameter, was made of
the ILL in Grenoble, Francé&he PF2 instrumedtthe setup polished stainless steel. A polyethylene neutron absdrber
is sketched in Fig. 1. The test samples were positioned insideuspended on a shaft makes it possible to remove neutrons
containment vessél, made of 1.5-mme-thick polished stain- from the vessel volume that have enough energy to rise
less steel and covered with a 3000-A-thick layer of sputteredhigher than the absorber in the gravitational field. For the
Be. Containment vess@lwas surrounded bHe countersto  chosen absorber height of 1.8 m, a ultracold neutron spec-
detect heated neutrons. trum with an upper bound of 185 neV is produced.

A gas of ultracold neutrons fills containment ves2gia Neutrons were transported from the ultracold neutron
valve 5, which has a 10Qsm-thick aluminum separation source along a neutron duct made of stainless steel with an
membranel at its inlet. Containment vess2lin conjunction  aluminum separator foil. The intensity of ultracold neutrons
with valve5, forms a so-called clean volume with a separatein the preliminary containment vessbd was monitored us-
pumping systen® that includes a heated vacuum valve anding two 3He monitor counters. Countet9, with a 2 cn?
an oil-free(Dry Scroll Pump, which provides a vacuum of aluminum input window mounted above the bottom of vessel

The purpose of this work was to study the possibility of

4. EXPERIMENTAL TECHNIQUE
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L 20 / FIG. 1. Setup at the ILL reactor in Grenoble for

" studying the heating of ultracold neutrofthick ar-
21 . '

A ' l ‘ _LA row) at beryllium surfaces1) Be target foil;(2) con-

L —p O tainment vessel for ultracold neutron&) neutron

counter chambefd), (21) Al separator foils{5), (20)
valves; (6) pumpout valve;(7) cooling system;(8)
heating system(9) thermal insulation(10) BF; filter
chamber;(11) heated neutron countef12) copper
thermal platej(13) detector neutron shield14) pre-
liminary containment vessel15) polyethylene ab-
sorber;(16), (19) ultracold neutron monitor detectors;
(17) bent neutron duct(18) 56-um-thick beryllium
foil.

14, measured the flux of ultracold neutrons with energiedi.e., at the 110 s point in the time evolution of Fig, the
exceeding the cutoff energy of aluminum. One of the outletdraction of neutrons with energies above the barrier energy is
of vessel14 was covered with a 5@m-thick Be foil.  less than 10°. Thus, working with neutrons detected after
Counter 16, with a 50 cnd aluminum inlet window, was the 110th second of the cycle time evolution diagram com-
located at the end of a neutron ddatbent at an angle of 90 pletely guarantees the lack of any contribution from neutrons
°. This configuration made it possible to measure the flux ofvith energies exceeding the barrier energy.
ultracold neutrons penetrating through the beryllium foil and  As a rule, the total count of heated neutrons between 110
avoid the inevitable background of residual ultracold neu-and 210 s was used in the subsequent analysis. The total
trons heated at the foil surface. Temporal variations in thecount of heated neutrons in the interval between 0 and 100 s
detected neutron intensities during a single measuremeis roughly five times greater, but about 0.7% of the neutrons
cycle are shown in Fig. 2. The time trace begins at the timavith energies exceeding the barrier energy penetrate into the
inlet valve 20 is opened. The filling of the containment ves- volume from the beryllium foil. An analysis of the data
sels with neutrons continues for 100 s, whereupon valve 28howed that the ratio of the total counts is constant to high
is closed. The total cycle time is 310 s. accuracy over the full temperature range studied. Thus, the
The ratio of the detection intensities from the beryllium results obtained for 0—100 s are identical to those for 110—
and aluminum monitor counters over the first 100 s of the210 s, but their statistical accuracy is more than twice that of
cycle can be used to estimate the fraction of ultracold neuthe latter. In the following analysis we shall, in several cases,
trons with energies exceeding the Be cutoff. Given the ratiaise the statistically more accurate data, since the lack of
of the areas of the inlet windows of the monitor counters,spurious effects in these data was reliably demonstrated ex-
this fraction is 0.7%. Further analysis shows that the numbeperimentally.
of neutrons with energies exceeding the barrier energy falls The resulting total count curves for the neutrons heated
off over a few seconds to negligible levels with a time con-on the sample surface were cross-calibrated in units of the
stant of 0.7 s. Ten seconds after closure of the gate valvdimensionless parametey, the loss factor. As a so-called
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FIG. 2. Detected neutron intensity as a function of time during
a single measurement cyclél) ultracold neutron monitor
counter with aluminum foi(19 in Fig. 3; (2) ultracold neutron
monitor counter(16 in Fig. 1); (3) heated neutron countét 1

in Fig. 1).
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calibration source of heated neutrons we used high puritgéters Ny, 7;, and 7 can be determined by fitting the

gaseous'He, which is inert and does not capture Neutrons experimentally measureN,p.{ Pre) CUrVe to the theoretical
The inelastic interaction ofHe atoms with ultracold neu- curve (1).

trons conforms to a simple theory. For practical calculations,  The heated neutron count rate is plotted as a function of
we used the parametepf)y., with an experimental value 4pe pressure in Fig. 3. The smooth curve corresponds to Eq.
of 467+ 33 mbars.’ (1). The values of the fit parameters are shown in the caption

The technique for calibrating usitfgfle is as follows: the to Fig. 3. Puttingppe=0 in Eq. (1) and separating out the
count rate of heated ultracold neutrons is proportional to thg¢yss factor 7, we obtain an expression for the cross-

heating probability and the density of neutrons in the congjipration ofN...and 7:
tainment vessel: p
N , ~ Nypsc1 1 -
T ie ™ =7 _ .
NUDSC: ( TJp]éc+ Tﬁel) 72 1 exﬁ{ - pHe eff s NO ’y 1 NupSCTf /NO
1+ Tf( Tupsc+ THe) (pT) He
2

where the first factor is the heating probability and the sec-
ond describes the dependence of the density of ultracold neu-
trons in the containment vessel on the total loss factor and
the size of the inlet aperture. The third factor accounts for the
loss of ultracold neutrons in the section of the neutron duct
preceding the containment vessel, whe{g.= 7ie¥, The
=Pue/ (PT)Hes 7ie IS the loss factor owing to heating of
ultracold neutronsy is the product of the spectral loss func-
tion and the collision frequency of ultracold neutrons in the
containment vessel averaged over the spectrum, or the so-
called effective collision frequencyp,. is the pressure of

“He, 7 is the geometric filling time of the containment ves- ol L N
sel, 7o is the time to transport ultracold neutrons between 0 100 200 300 300
the foil 4 and the inlet of the containment ves8ehndN, is Py, » Mbar

t_he_ product Of the density of ultracold neutrons in the_ Pre€-g 6. 3. Count rate of heated neutrons as a function of'the pressure in
liminary containment vessel, the heated neutron detection €fne containment vessel for ultracold neutroNg=30175(2920) neutrons;
ficiency, and the effective solid angle. The unknown param-r,;=0.0145(0.0018) s'; 7;=8.76(1.4) s;7eq=0.28(0.07) s.



430 JETP 87 (3), September 1998 Varlamov et al.

FIG. 4. Temperature dependence of the ultracold neutron
10 loss factor owing to heating at the surface of Be samples.
Open circles: rolled beryllium foil; filled circles: beryllium-
coated stainless steel foil; smooth curve: theoretical depen-
dence of the ultracold neutron loss factor according to Eq.
4).

250 300
T.K

0 50 100 150 200

The mean effective collision frequency of ultracold ~ are (1.720.2)x107° and (2.6:0.2)<10°°. The uncer-
neutrons in the containment vessel is a computational paranti@inty in these results depends on the accuracy of the calibra-
eter which in the present caseys- 120+ 8. The uncertainty tion technique.
in this calculation is due to imperfect knowledge of the upper ~ Temperature dependences were measured during cooling
bound on the spectrum of ultracold neutrons in the trap. and warming of the samples. We show temperature-averaged

To properly calibrate the loss factor on a beryllium foil variations, which make it possible to eliminate so-called tem-
of neutrons heated in helium gas, one must know the finaperature hysteresis, a dynamic effect. In Fig. 4 only the sta-
energy of the neutrons heated on the foil and in the heliumtistical measurement errors are shown in the experimental
inasmuch as the detector efficiency can depend on energy. tamperature variation of the partial loss factgg ; the total
the present experiment this circumstance was studied byeasurement errors are given in the text.
measuring the transmission of heated neutrons through a fil-  As will be shown below, the measured heating probabil-
ter with varying*°BF; pressuré? It was found that the de- ity cannot be explained by inelastic scattering on beryllium.
pendence on th¥BF; pressure is essentially identical in the When invoking the hypothesis of heating of ultracold neu-
two cases, so there is no need to correct for the energy dérons on hydrogen contained in the surface layer, it is impor-
pendence of the detector when calibrating. Note, howevetant to understand the relationship between the probabilities
that no conclusion can be drawn regarding the energy of thgf capture and heating.
neutrons heated on the bery”ium, because there iS enough To assess the re'ative Contribution Of Capture on hydro_
materia! between the containment vessel and the detectors &n to the total loss factor, we use the data of Bondarenko
thermalize the neutrons. et al,** who determined experimentally the ratio of the in-

elastic scattering cross section to the cross section for ab-
sorption on hydrogen dissolved in the surface layer of a Be
5. RESULTS sample atT=300 K: ¢!/c7=20.6-0.5. We estimate the
1 a

e

The experimentally obtained heated neutron count rate!9ss factor owing to capture for our samples to ig=1.5
NypscWere cross-calibrated with values of the dimensionless< 10 %/20.6=0.7x10"°. Then the total loss factor at room
loss factory in accordance with Eq2). Figure 4 shows the temperature will be (1.460.18)<10™* and (1.54-0.15)
temperature variation of the partial ultracold neutron lossX 10~ for the sputtered and rolled samples, respectively,
factor 7, owing to heating on the surface of rolled beryllium and at T=90 K it is (2.4-0.2)x10 ° and (3.3:0.2)
foil (hollow pointg and on a sputtered Be surfa¢solid X 107°, These results are in good agreement with measure-
points. The loss factor owing to heating of ultracold neu- ments of the total loss in a sputtered beryllium trap of stain-
trons at room temperature ig;,, (300 K)=(1.39+0.18) less steéland in a trap made entirely of berylliufnyhere
X104 and (1.470.15)x 10" %, respectively, for the sput- the total loss factors wereg (77 K)=3x10 ° and 7 (300
tered and rolled samples, while Bt=90 K these quantities K)=1x10 4. A comparison of the loss factors @it=90 K
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shows that inelastic scattering is the main process limitinghe hydrogen concentratiory,. In the present case, the re-
the confinement time of ultracold neutrons in traps with aguired hydrogen concentration is 96%, sr10'’ hydrogen
beryllium coating, even at liquid nitrogen temperatures. atoms per crhin a 100-A-thick surface layer.
The existence of so much hydrogen in the surface layer
6. DEBYE MODEL CALCULATIONS OF INELASTIC seems unlikely. No direct measurements of the amount of
SCATTERING surface hydrogen were made. However, data obtained by a
nuclear reaction technigtieon a number of other materials
In an experiment on the transmission of very cold(Cu, Ni, Pb, A) suggest that the hydrogen concentration in
(10-15 m/$ neutrons through beryllium samplést was  the surface layer is (24)x 10 cm™2. This is much lower
shown that the temperature variation of the inelastic scattethan the concentration required to explain our measured loss
ing cross section on beryllium is fairly well described by afactors for the Be samples.
Debye model in the incoherent approximation. However, a  Since the loss facton;. is proportional to the product of
calculation of the loss probability during reflection of ultra- the hydrogen concentration and the inelastic scattering cross
cold neutrons from beryllium owing to thermal fluctuations section, there can in principle be two possible explanations
of the crystal lattice yields a value much lower than the ex-for such a large loss factor. Indeed, the first is that the con-
perimentally observed one, so it becomes necessary to irentration of hydrogen in the surface layer is close to 100%.
voke the hypothesis of scattering on hydrogen dissolved irThis must be tested by direct measurements, which will be
the beryllium, for which the scattering cross section is muchconducted in the near future. The second is that the hydrogen
larger. concentration is low, but the cross section for inelastic scat-
According to Blokhintsev and Plakidfithe flux of neu-  tering on hydrogen is enhanced. A possible mechanism for
trons heated on physically sorbéc., weakly bound to the such an enhancement has been discussed by Serebrov and
surface hydrogen should have a weak fractional-exponenRomanenkd® *¥who have shown that the total cross section
dependence on the temperature. The quite sharp temperatueg ultracold neutrons interacting with impurities in a me-
variation in the loss factor suggests that the observed heatinjum can be greatly enhanced when the neutrons have sub-
of ultracold neutrons is due to hydrogen strongly bound tdbarrier energies relative to the optical potential of the me-
the surface. An attempt to describe the dependence of inelagium.
tic scattering on hydrogen atoms rigidly bound to the crystal  Note that the temperature dependence of the heating of
lattice of beryllium in terms of a Debye model appears logi-ultracold neutrons given by the Debye model is satisfactory
cal; the stiffness of the bond between hydrogen and berylenly at high temperatures. Near 100 K the calculated and
lium suggests that the hydrogen atom will undergo oscilla-experimental cross sections differ by a factor of two or more
tions at frequencies characteristic of beryllium. Then, for the(see Fig. 4
Debye approximation of the single-phonon inelastic scatter- The difference in heating probability between the all-
ing cross section we can obtafn beryllium and sputtered foils is not significant, and is at most
3E2dE 30—-40%. Thus, if ultracold neutrons do penetrate a material,
the penetration falls off quite rapidly with depth.
|e(E0) UOM J \/E\ F{ EM) 3, EIT_ 3 ; ; i
0 63(efT-1) A comparative experiment to study the heating of ultra-

where00=80 b is the cross section for incoherent Scatterlngcold neutrons on all-beryllium foils and on beryllium-coated

on a bound hydrogen aton, and E are the respective stainless steel foils would make it possible to estimate the
0

energies(in Kelvins) of the incident and inelastically scat- probability of minor heating of ultracold neutrons, if such a

tered neutronsM =1 is the relative mass of the hydrogen process exists. For minor heating of ultracold neutrons, for

atom, andé and e are the parameters of the Debye model. example up to 10 m/s, a neutron will penetrate the foil ma-
’ tFnaI It will be heated to thermal energies in an all-

The smooth curve in Fig. 4 is the theoretical dependence ob li foil. but tured bervlli ted stainl
the loss factor given by E@3). The theoretical cross section erylium foil, but captured in a beryllium-coated stainless
steel foil. The lack of any difference in the count rate of

for inelastic scattering on hydrogen calculated using B§. . . . ) )
and reduced to the tﬁermalyvelc?city of a neutron isg4.fb a eated neutrondo within 10% in experiments with the dif-
erent foils makes it possible to place an upper bound of

T=2300 K. For comparison, the cross section calculated fro 105 lisi th bability of minor heati
the experimental data of Ref. 11 dg,(300 K)=6.8+0.2 b. per coflision on the probabllily of minor heafing.

Since the contribution of the cross section for inelastic
scattering on hydrogen to the loss factgg is determined by

the concentration of hydrogen in the surface layer, 7. CONCLUSIONS
cHo,e(T)+ 0' (T CHUi'l(T) We have experimentally studied the behavior of the par-
7ie(T) = (4 tial loss factor for ultracold neutrons heated by interaction

2\begh 2\DCg; with Be sample surfaces.

wherecy is the concentration of hydrogen atoms normalized 1. Our results suggest that inelastic scattering on hydro-
to the concentration of Be atoms,is the wavelength of the gen is the dominant factor in the loss of ultracold neutrons
ultracold neutrons, antjCoh is the coherent scattering length when they are confined in beryllium trafsr in traps with a

on Be. Fitting the experimental values gf,(T) to a theo- beryllium coating, even at liquid nitrogen temperatures.
retical dependence of the for(d) enables us to determine Thus, the process responsible for anomalous losses at tem-
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A relativistic version of the quasiclassical imaginary-time formalism is developed. It permits
calculation of the tunneling probability of relativistic particles through potential barriers, including
barriers lacking spherical symmetry. Application of the imaginary-time formalism to

concrete problems calls for finding subbarrier trajectories which are solutions of the classical
equations of motion, but with an imaginary tint@nd thus cannot be realized in classical
mechanics The ionization probability of as level, whose binding energy can be of the order of
the rest energy, under the action of electric and magnetic fields of different configuration is
calculated using the imaginary-time formalism. Besides the exponential factor, the Coulomb and
pre-exponential factors in the ionization probability are calculated. The Hamiltonian

approach to the tunneling of relativistic particles is described briefly. Scrutiny of the ionization
of heavy atoms by an electric field provides an additional argument against the existence

of the “Unruh effect.” © 1998 American Institute of Physid$$1063-776(98)00409-0

1. The imaginary-time formalism was propos$édin tial binding an electron to an atomic core is assumed to be
connection with the calculation of the probability of the mul- short-rangg Section 4 is devoted to the special case of
tiphoton ionization of atoms by the field of a strong light crossed fields, i.ef£L.7 and £= 7. In these examples we
wave. Subbarrier trajectories which satisfy the classicabiescribe the procedure for determining the extremum subbar-
equations of motion, but have an imaginary “time; are  rier trajectory, which specifies the most probable tunneling
introduced to describe the tunneling process. The imaginargath of a particle and thus the exponential factor in the ion-
part of the action function calculated along such a “classi-ization probability. Consideration of a bundle of subbarrier
cal” trajectory determines the tunneling probability of a par- yrajectories close to the extremum one also permits finding
ticle in quantum mechanics?® the pre-exponential factor. Section 6 describes the method

The imaginary-time formalism has recently been used tGqy taking into accountwithin the imaginary-time formal-
investigate the influence of a magnetic field on the ionizatior]sm) the Coulomb interaction between an escaping electron

. -6 . . . .

of atoms and ion§.® as well as on Lorentzian |0n|zat_|8n_, and the atomic core. The introduction of a Coulomb correc-
which occurs yvhen atoms mo_ve In a_constant magnetic flelqion enables us to consider the case of the ionization of neu-
In these studies the subbarrier motion of the electron Wag | atoms and positive ions, which is of practical impor-

considered to be nonrelativistic, as is the case for valenc

electrons in all atoms from hydrogen to uranium. However,of the imaginary-time formalism are discussed in Sec. 7. The

in the case of ionization of thK shell in heavy atoms, the o . S
T o . Hamiltonian approach to the tunneling of relativistic par-
relativistic effects become significant, and systematic allow-,

ance for then(in the quasiclassical approximatiorequires ticles is described briefly in Sec. 8. In Sec. 9 we use the

generalization of the imaginary-time formalism to the rela-somt'%n of the ionization problem to discuss the Unruh
tivistic case, which can also be useful in a number of ques?ffeCt’ and .we offer some rgmarks to supplement the argu-
tions in relativistic nuclear physics and quantum chromody MeNts previously advanced in Ref. 9 that the response of a
namics. uniformly accelerated detector is not universal, but depends
We shall demonstrate the possibility of such a generali®n its s_tructure. T_he concluding section, Se_c. 10, enumerates
zation in the specific problem of the ionization of a boundthe main conclusions of the work, and details of the calcula-
state, whose binding enerdgs, = mc2— E, is comparable to tions and some cumbersome formulas are presented in Ap-
the rest energync?, and find the leadingexponential factor ~ pendices A—C.
in the ionization probability. We shall also consider the al-  In the followingZ=c=1, but in the final formulas we
lowance for the Coulomb interaction in the tunneling procesgestore the dimensions of the quantities appearing in them.
and the calculation of the pre-exponential factor. Some of the results of this work were announced in Ref. 10.
This paper is organized in the following manner. Sec- 2. We start out from the ionization of amlevel bound
tions 2-5 consider the cases of pure electric fields and paby short-range forces under the action of an electric ft€ld
allel and mutually perpendicular fields and.7Z (the poten- In this case the subbarrier trajectories have the form

fance. The barrier width and the conditions for applicability

1063-7761/98/87(9)/12/$15.00 433 © 1998 American Institute of Physics
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W= im® (1+q2)arccosE—O—e V1-€e5+q?

_ C2e” 1r2 0

0 0 0 1+q

a b o] Ho

= —[P(ey) +g?arccosey,+0O(q*)],
FIG. 1. Variation of the imaginary timeduring subbarrier motion:)aen- 266[ (€0t 0 (@]

ergy of the leveE,>0; b) 0>E;> —m; ¢) E,= —m (level on the boundary
of the lower continuum The asterisk marks the branching point of the where ®(e)=arccose—e\1— €. We note that®(— )

function \p(t) 2+ m2. =7—®(€) and
D(e)
. r 25/2 3 3\
i 3/2 _
X= :;,(arcsinfo—arcsinr), y=0, ?(1_6) 1- Z)(l_e)“L eyl
T 1
M =4 §_2€+§63+..., e—0, >
zZ= —(,(\/1—7'2—\/1—7'02). D
e’ 5/2
. ) ) 7T——(1+6)3/2+ e, e——1.
In addition, p,(t)=p, =const, andp,(t)=eZt=—iMr. \ 3 J
Herer=ie#t/M [ris a real quantity, which is related to the (5")

intrinsic time s by the expressiors=—i(m/e#)arcsin7],
M=mZ+pZ, the z axis is parallel to, and p, is the Integrating(4) and (5) over the transverse momentum, we
transverse momentum of the particle. The initial tigeof ~ find the probability(per unit timg of the ionization of thes
subbarrier motion is determined from the boundaryl€velin an electric field:
conditiong ZIF,, Fo
. | mexp[—?(b(fo)], (6)
r(t))=0, ———==E;, Imr(0)=Imr(0)=0

1—12(ty) where A, is the asymptotic(as r—«) coefficient of the
(2)  wave function of the bound state in the absence of the exter-
nal field £ [compare with Eg.(9) in Ref. 4, and F,
[in the gauge wherep(0t)=0 and A(0t)=0 and in the =m?c% et is the critical, or Schwinger, field, which is char-
approximation of a zero radius for the forces binding theacteristic of quantum electrodynamics:?

o m 2
W( Z, EO): W|AK|

level], whence In the nonrelativistic limit €;— 1) this formula trans-
_ forms into the known expressibit*for the ionization prob-
im o A = o h
_ 7 7 _ ability of negative ions (H, Na, etc). Wheney=—1, i.e.,
=—\J1— €2+ = _ ;
t=gzVl~-€tas d p./m @ for a level which has sunken to the boundary of the lower

continuum [the critical charge of the nucleuZg(1s;,,)
Here Eg=me, is the energy of the bound state-l<e;, =173 (Refs. 15—18], the exponential factor if6) becomes
<1, and the valuegy= =1 correspond to the boundaries of equal to exp 7. /%) and coincides with the correspond-
the upper and lower continualhe probability of the tunnel-  jng factor in Schwinger’s formufa for the probability of the

ing of an electron along trajectoil) equals production of electron-positron pairs from a vacuum in a
const 5 constant electric field.
dw(p,)= . exp{ _ %Im W( DL)] d?p, (4) 3 _If Fhe f|el_ds(§ and.7Z are parallel', the trajef:tory o.f a
m relativistic particle has the form of a spiral of variable pitch.

The subbarrier trajectory is obtained from known formtilas

whereW is the reduced action: using the analytical continuation with respecttto

0
M
W= Jt (L+Eo) dt=(p-Nt-o, z= e—((—,,(\/l—rz— Vi-15),
0 &4
__ —_ 2 ) — ' i ) .
L=-myl-v?+e(A-v)—ep (4 p=x+iy=PL (=10 _g-ivo)

e
(t=0 is the time when the particle emerges from under the @)

barriep. When the level deepens, the poigt moves in a

complex plane, traveling around the branch pdaint as is et ; _ [Zi7
shown in Fig. 1. Taking this into account, we can write M d) M=ymtHpr
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TABLE |. Accuracy of the approximatio29).

€ p=05 0.75 1.0 o

0.1 0.116 0.021 1.2¢3) -0.014
0.2 0.467 0.087 5.3¢3) -0.058
0.25 0.729 0.137 8.5(3) ~0.092
0.50 2.80 0.580 0.040 —0.404
0.75 5.69 1.36 0.102 -1.01
1.0 8.76 2.49 0.206 —-2.04
1.2 11.1 3.63 0.326 -3.27

Note. The values of the errob (in percent are given[see Eq.(B4)]; €,
=E,/mc, p=#1%, anda(b)=a- 10P.

(the fields# and. 7 are parallel to the axis). The quantities
t and¥ in the subbarrier motion are imaginary, andk real.
For a scalafspin-freg particle the actior§ equals

t 1 . .
S(t)=j (—m\/1—02+ Ze7(xy—yx)+esz| dt

2 2 2
. 1 .
= 4egsmh 20— E,Wr 2e,,%smﬁ+ const,
e e’
o= s, =—s5, (8)
m m

wheres is the intrinsic time of the particléwhich is purely
imaginary. We ultimately obtail

m’ AT p?
|mW(pL):@,Cb(Eo)+Sln —arccosey |5 —+ ...

9

[when.7#=0, this formula transforms int@)]. Integrating
(4) and(9) overp, , we obtain

W(&,.7) o T
W(Z.0) = sinho’ O'I?arCCOSEO. (10

For nonrelativistic bound stateg,=1-—a?k?/2—1 (a
=e?/fc=1/137, andk~1; see Table | in Ref. 6 and
arccosey=ak+ (ax)324+ ... . Therefore, o=ax71&
coincides with the parameterintroduced in Ref. 4, and Eq.

(10) yields the correct expression for the pre-exponential fac-
tor Py(y) = y/sinhy in the case of the ionization of a nega-

tive ion>% In the other limit, e,=—1, we have o

= 7.7/l ¢, and EQ.(10) is consistent with the first term of the
Schwinger expansidhfor the imaginary part of the effective
Lagrange function in scalar electrodynamics:

Wo(&,.7)

a EH wF ¢
11

T 2msinm ) SR T T2

[under the conditioh #, 77<F,, the ensuing terms of this
expansion are exponentially small compared with)].
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ie

5 €apur f Fefurs’ ds

:%f {(s-.F8)—(v-9)(v-.FH)+ (vX9)- &£} dt (12)

to the action function, whose contributigast varies along
the loop in Fig. 1¢ is calculated using the Bargmann—
Michel-Telegdi equatioris for the four-spins” in an exter-
nal field. We can ultimately obtafha formula like(11) for
wg(#,.77), in which the pre-exponen tial factor (sinfi 2,
whereo = 7.7/ £, should be replaced by 2 cathin the case
of electrons $=1/2 g=2) and by (sink) 1+2cotho in
the case of vector bosons=€1) with a gyromagnetic ratio
g=2, i.e., in the case where the theory is renormaled.

In the special case of constant uniform fieldsand .7,
we can take into account alexponentially small correc-
tions to(11) by introducing subbarrier trajectories that cor-
respond to then-fold wandering of the particle between the
lower and upper contini®. Thus, the quasiclassical
imaginary-time formalism enables us to obtain not only the
leading term(11) in the probability of pair production, but
also to exactly restore the entire series for2 Im £ pre-
viously calculated (in a more complicated way by
Schwinget? for scalar and spinor particles and by Vanyashin
and Terent'e?” for vector bosons. This coincidence between
the results, however, is accidental and is similar to the coin-
cidence between the exact and quasiclassical spectra of the
Schralinger equation for several simple potentials: a har-
monic oscillator, a Coulomb potential, the Morse potential
U(x)=Ugq(e”>—2e %), etc.

To complete this section, we note the difference between
(6) and (11). In the case of an electric field angy=—1
(=0, the level on the boundary of the lower contingum
these formulas, while completely coinciding with respect to
the exponential factor specified by the value ofSmalong
the extremum |p, =0) trajectory, differ with respect to the
dependence of the pre-exponential factor on electric field:
according(6), P(£)x#, while for (11) P(£)=£2. This is
not surprising, sincé6) and (11) refer to different physical
processes and have different dimensions: the probakilify
refers to the invariant four-volume of the vacuMi=1 and
has the dimensions* (or cm 3-s71), and(6) refers to an
individual atom and has the dimensions's
4. Crossed fields.We go over to more complicated
cases, in which the extremum trajectory is not just one-
dimensional. Let%1 .77, the gauge

A=(—7#y,0,0), ¢=—%y (13
corresponds to the fact that tlyeaxis is directed along the
field & and thez axis is directed alongZZ. For crossed fields
(&= é/) the classical trajectories are assigned in parametric
form:

X= oo (N2=1)g+ 1)\Zq3 +C
2e”] 3 L

The imaginary-time formalism enables us to obtain a

formula like (9) for fermions as well: we need only add the

spin expression

m

1
= —\qg? -
y 2e2§’)\q +C,, z e?f')\qu+c3’
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1 — _ _ 2 e _.
t= Ze( ()\2+ 1)q+ 7\2q3 L m(€0 \/1 v )"‘eo((l X)y
h /mi N=m/(\pZ+ m2—p,) m_ 2
W ereq:py mis a parameter, anfl=m P +m — Px = \/—2 ) 2
1+¢° §&+2-u

is the (dimensionlessintegral of motion, which is related to
the integral indicated in Ref. 18=E;,—p, by the expres- and we find(to within exponential accuragyhe ionization
sion \=ma 1. In subbarrier motion the “time”t and the probability in crossed fields:

momentum componermt, are purely imaginary:
ponefm, are purely imaginary W(&=7,€0) = expl—2 ImW)

t:—ﬂf, g=ix"tu (14)
e’ =exp( 2 3% ; (17)
(— 79<7<0). Using the boundary condition®), we find 1+¢
the integration constant§€; and determine the extremum |n the nonrelativistic limit
subbarrier trajectory:
7
1 im = —ak| 1+ == a’k’+ )
X= 5o (N2— Du-3 ud =m(u§—u2)u, ¢ J3 72
(15 and
m 1
Y= ey (Uo~U?), 220, =g aut-(\ P+ Du W“exp[_i kiaZKZ)’ e<l, (18)
3e 24
whence wheree = #1k3#, and £,= a°F. The correction of order
m u o? slightly increases the ionization probability compared
ro(t)=Vx*+y*+z°= e N (Ug—u?)\/1- 9 with the corresponding nonrelativistic formufaThe factor
i 2383 (1+ &%) in the exponential function iAl7) increases
2\ monotonically with increasing depth of the levgbr ex-
Vi-v?= T (15)  ample, it equals/3 and 9/2 where,=0 and— 1), causing a
A +1-u sharp drop in the probability.
where up=u(— 7o), the valuer=— 7, corresponds to the To conclude this section, we offer several comments.
beginning of subbarrier motion, and=u=0 corresponds to 1) As we know, the probability of the production of pairs

the time when the particle emerges from under the barrier. Iffom & vacuum vanishes in crossed fields. This follows both
subbarrier motion the velocity componant is real, andv, ~ from the exact expression for It (Refs. 11 and 1pand
(along the electric fieldis purely imaginary. The boundary from the following simple argument. When we go over to

conditions(2) are satisfied, if reference frame&, which moves with the velocity in the
1 direction perpendicular té& and.7, the intensities of the

(N2=1)ug— =u3=0, A+(1—Ud)\ 1=2¢. crossed fields decrease by a factor\ﬁb{rV)/(c—V) and
3 can be made extremely small ¥s-c. Pairs, of course, are

Hence it follows thatg, 75, and\ are uniquely determined not generated in an extremely weak electric field.

i _ In our case the probability is nonzero: according to
th f th tatg;= 1+ &27p= '
by the energy of the bound sta £°70= 3¢, and (17) w x exp(—9F,/2%) when ;= —1. This difference is

1 attributed to the fact that there is a preferential reference
_ _ 2 . . . ”
E=\-1= \/1_ > €o(Vegt8—ep). (180 frameK, (in which the atom is at restand the transition
_ _ from K, to the Lorentz frameéK qualitatively alters the for-
Here we have introduced the parameged< &< /3, which  mulation of the problem(unlike the vacuum, which is

is convenient for the further treatment. Lorentz-invariant
Equations (14—(16) completely determine the extre- ) As is seen fron(18), the relativistic subbarrier trajec-
mum trajectory. We note thatis proportional to the intrin-  tory led to a result which differs only slightly from the result
sic times of the particle: of the nonrelativistic theory, iE,~m (or k~1). Neverthe-
¢ im less, the motion of charged particles in crossed fields is al-
P . 9 . . . G
S=J Ji—vZdt= —u, ways relativistict® since the drift velocityv 4= c#1.77—c.
ec This apparent paradox is explained by recalling that the elec-
which, like t, is imaginary on the subbarrier portion of the tron accelerates to a velocity of the order of the velocity of
trajectory. In particular, at the initial tinffewe have light soon after it emerges from under the barrier:
2/3 1/3
L S0 _ im [ 3¢ &~k1 i) &*kz L)
0 \/1+—§2 oL 1+§2. mcC TO mc TO
—4/3
Going over to integration overin (4') and using the gauge v_ 1—k (i) tso0
3 T ] 1]
(13), we have c 0
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where To=md/e#Z is the time during which the electron
achieves a velocity ~c, and thek; are coefficients of order
unity. On the other hand, the characteristic tunneling time
T,=mex/h; therefore To/T,=(ax) >1.

3) Unlike the one-dimensional quasiclassical approxima-
tion, here the point of emergence from under the barrier is
not a stopping point of the particl@ven for the extremum
trajectory. For example, at=0 from (15) we obtain

& &
0)=c , O)=mc———, 19
the escape velocity being directed perpendicularlystand 0 ' 1 , 2 €

.
5. Let #L.7, but let the ratiop= #/.7% deviate from FIG. 2. Plotsbofﬁl(fo,zrz), Whicf; det?rmir}ei ths_ %)fponential fa?t%r ir|1 thT
H . . H H H H nization pr 1 nction ndin ner V/
unity. Such a field configuration appears, in particular, in the'ec:): (‘?; o E‘:)f’m‘:" o<ti(b<)é.a$hi 3afffe°s oobis/' ang ereray O nte:r o
rest frame of or an atom or ion moving in a constant magves.
netic field[so-called Lorentzian ionizatiofsee, for example
Refs. 7 and 2§ in this casep<1]. which specifies the parameteg=7y(€q,p). In the gauge
The classical trajectories can be obtained using the Lor¢13) we have the Lagrangian
entz transformation from a reference frame in which only .
one of the fields, 7 or £, is present®?’ For example, when L=—myl-v?+eZ(1-p x)y.
&<, the extremum subbarrier trajectory has the form From (4’) and (20) we find (to within exponentia| accuraa;y
the ionization probability:

. m ap / 0 . 1

X=lew (1—p2)3/2\ ™" sinhr sinhr |, woexp{—FqZ " ®(€&,p)}, (24)
where
m ap 70 [ 2\ 2
y e.%/‘l_pZ(COShTO coshr)sthO, z=0, (20) . p 7o €) _ P70 - (1-p% € (25
Vi1-p? Vi-p? 1—p?7y cothrg

(=i a 2 inh 20 [when p=1, i.e., in the case of crossed fields, it is more

wct=I (1- p2)32 TP Sinhrg ST ) ToS TS convenient to use Eqg17) and (16) from the preceding

sectior].
wherew.=e.7Z/m is the cyclotron or Larmor frequency, and Equations(23)—(25) solve the problem posed. Let us
a=(Jp?+m?—pp,)/m is the integral of motiod. The  discuss some limiting cases and results of numerical calcu-
equations for determining the constaatand 7, follow from lations.

(2 a) As can be seen from Fig. 2, the values®fe,p)
5 5 increase with both increasing depth of the level and increas-
ta”hToz p-a coshr _a—(1-p ) €0 ing strength of the magnetic fielght a fixed value of?).
To a—(1-p?)ey 0 pyaZ+pZ—1 This fact is easily explained within the imaginary-time for-

(21)  malism: when.7Z=0, the extremum trajectory is one-
dimensionaland is directed along), and as7” increases, it

(here O<p<1, anda>y1-p). In this case the intrinsic is “twisted,” and the barrier width increasesee Sec. 7

time of the particle equals below).
. i a - > b) In the nonrelativistic limite;— 1 it is convenient to
S=J V1-v?dt=— 1—p2(,—0> T. go over to atomic units:
0 we 1—p? sinhrg
22 metk? &
( ) I'=hw= 2 | K|2?
In the initial moment of subbarrier motion 2h “a
) 2k3%,
<t \/1_132(70/3”“‘70)2 Xexp{ — =37 L[99~ a®k*gy(7)+O(ah] |,
0~ 0 y &
1-p?

(26)

wherey=w./w=ax.771 %, T is the width of the levelw is
the ionization probability,,= a®F,=5.14<10° Vicm is
the electric field intensityx=+E,/l [see also Eq(B1)],
_ =\1-p? ey, (23 Ey is the binding energy of the levely is the ionization
J1-p*(7o/sinhrg)? potential of the hydrogen atom,

so that|sg|>|to|, as in the preceding case. The syst)
can be reduced to a single equation:

1— p?7ycothrg
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relations using the analytical continuationy1— p?
—iyp°—1, 7—ir. In this case the “time”t and the intrin-
sic times in subbarrier motion remain purely imaginary.

6. The Coulomb correction. We have hitherto ne-
glected the Coulomb interaction between the escaping elec-
tron and the atomic core; therefore, the equations obtained
g (H)x100 above refer to the case of the ionization of negative itike
1 H™, Na’, etc). To take into account the Coulomb interac-

. tion, we use perturbation theory within the imaginary-time
5 10 157 formalisnf-?® and a procedure for matching the asymptotic
expansions, introducing the matching pointsuch that(r)
<r,<b, where(r) is the mean radius of the bound state and
b is the barrier width(under the conditions for applicability
of the quasiclassical approximation, the choice of such a
pointr, is always possible; see the next sectidProceeding

oL

FIG. 3. Plots ofg(y) andg,(7y) from (26). The scale along the vertical axis
has been magnified 100 times fgy.

37 =y 1 okt 1 in analogy to Refs. 4 and 5, we obtain the Coulomb fagor
g(y)= 2y 1- —yz = F kzl Ck7o in the ionization probability:
0
B _ : 2 —-12
¢=3-27 k1)1 @7 t
= = = ; — _ — 212 o
(c,=1, c,=—2/15, c3=2/105, etc., theB,, are Bernoulli whereu=my/1 €2, n=Za- eo(1— €d) is the relativis-
numbersg, o= 7o(7y) is determined from the equation tic analog of the Sommerfeld paramete[,:[ré(tl)]l’2 is
the matching pointrq(t) is the extremum subbarrier trajec-
I : ' . : :
tanhry= 0 (29) tory, t is the imaginary time, and is the charge of the

atomic core, so that at large distances from the atam,
<r=bh, the electron moves in the potenti(r)=—Zal/r
+0(r~?) (in a free atom, i.e., wher&=.77=0). We note

1+ \/TS— 72 '
and the expression fay,(y) is fairly cumbersome and has
been transferred to Appendix A. The inequaligs(y)  thatz=1, 2, and 0 in the cases of the ionization of a neutral

<g(7) always holds. For examplegg(0)=1, and9:(0)  45m, a singly charged positive ion, and a singly charged
=3/40. Asy increases, i.e., as the magnetic field mcreaseq,'egative ion.

the relative value of the relativistic correction only decreases Let us examine some special cases. The extremum tra-

(Fig. 3. jectory for an electric field?” can be obtained fronil) by

©) If p>a=1/137, i.e., if the electric field is not very getingn =0 and is one-dimensional. An analytical calcula-
small, theny<<1, and the expressiaf26) can be simplified: tion of the integral in(31) gives

& 2K3?§41+ azkz/ 72 9;(2)
W —exp — —— T~ =&
Za 32 |7 3022 4 , . . . :
(the details of the calculations are discussed in Appendglix C

This simple approximation has surprisingly good accuracyrhe Coulomb correction increases the ionization probability

even for deep levelgout, of course, not wheey~—1). For  significantly. For example, in the nonrelativistic case
example, whereg=0 (i.e., for a level whose binding energy

equalsmc® ande,=1) the difference between the exponent ~ Q=(2k3%,/£)*#/*>1. (33
in (29) and the exact functiod®(0,p) from (24) amounts to

(29 Q=[2(1- €2)%¥%F o/ #]?" exp(2Z a arccose,) (32

2% in the case of a pure electric field and only 0.2% forA.Ith(.)ugh the magnitude of ITS correcnon decrease; as the
: . binding energy of the leveE,=m(1— ¢;) increases, it re-
crossed fieldgfor further details, see Table |, as well as . ianif 6= o5 wh
Appendix B. malr:; significant. For exampl&=exp(mZa)~25 whenE,
d) The limit p— 0 corresponds to removal of the electric —me.

field: Multiplying the expressiong6) and (32), we find the

ionization probabilityw (we stress that in the present case,

FoZ 1 5 For Fer i.e., when only an electric field is present, both the exponen-
woc exp —| (1 €)? = +t5(1-€)5,+0 Pzﬁ) tial expression and the Coulomb and pre-exponential factors
- ) o (30) are calculated; therefore, the formula feis asymptotically

exact in the weak-field limjt In particular, if e;~1, using
(#<.7#<Fg). The proportionality w o« EXp(—COHStféZ) the expansions
shows that the ionization probability is extremely small in L 3
this case. _ 2 2 _ 2 2

e) Whenp— 1, an uncertainty appears (20)—(25). Re- €=1-5a%, 'U“_maK( lmgat .. )
moving it, we arrive at Eq(17) for crossed fields.

f) We assumed above tha1l. The equations for the

3
_ 2 2.2
case of#> .7 can easily be obtained from the preceding g 770(1 g X MR )
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(mo=2/k), with allowance for corrections of order®> we
have

) me* k2 NE: 1-2m9 2
W(@/160)_ Zﬁz |AK| (E) eXF{_ﬁ

X[l_CYZKZ(Co'i‘ClS |n8+028)+ ]], (34)

where

3 9
Co:%: Clzg 70,

e=41Kk30,<1.

+ —
7o 16’

=—|3 9| 2
Cr=— —gn

In analogy to(29) it can be expected that the applicability

region of this “semirelativistic” formula extends up &,
~mc.

In the case of crossed fields the integral(®1) can be
expressed in quadraturgsee (15) and Appendix , en-

abling us to obtain the Coulomb correction in closed form:

3 212 27
—25 (8-¢) Fcr ex;{ 6Za arcsini), (35
B+ 2 V3

where ¢é=£(ep) was defined in(16). Wheney— 1, this ex-
pression transforms int@3), and wheney=0, we obtain
Q=exp(3.&a)~45. In both case$32) and(35), the Cou-
lomb factorQ>1 wheney=0.

Finally, for the subbarrier trajector§21) we obtain

ap?

0o o [, o coshry—coshr) 2
TR S T T
sinhr  7\?]*? 36
sinh 7y 7-_0 (36)

In this case the integral if81) is no longer taken analyti-

cally. As is shown in Appendix C, it can be brought into the
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In the more general cag@0), we have

p2€07'0 tani‘( 70/2)

d(eo,p)= (39

1—p?7rycothrg ’
where 7 is determined from Eqg21) or (23). The barrier
width increases with the magnetic field; therefore, in this
problem the perturbative formul@1l) is applicable for all
values ofy (in contrast to multiphoton ionizatioft> whereb
decreases proportionally to ! for y>1). In addition, in the
rangep=1, where the electric field dominates, the depen-
dence orp= #/.7 is insignificant:

1
1+ 1—8(1—60)+ ..., €—1,

d(€,p=1) 40

d(ep,p=%) | 3-27%2=1.061, =0,
1.125, e=—1

If E,~m, the mean radius of the bound stae)
~XcV1—€5, and b/{r)~F./#>1, ensuring applicability
of the imaginary-time formalism.

If a Coulomb interaction takes place, the estimate given
above for(r) ceases to be valid whe— — 1. However, in
this case, too, the bound state on the boundary of the lower
continuum remains localized, an@)~x.. Thus, for the

ground Is,, level in the Coulomb field/(r)=—Za/lr we
have®~18

B (1+0.3§2)(g2—3/4)}( 1
I 77 I

where {=Z.,a, and Z, is the critical nuclear charge, at
which the ground-state level of the electron spectrum sinks
to the boundary of the lower continuurd {=169-173 and
{?=1.52—1.59, depending on whether the nucleus is bare or
the outer electronic shells are filled

For nonrelativistic bound statesy=1— a?x%/2—1, d

(r) (41)

regularized form(C9), which does not contain an arbitrary —(4x)2/2<1, and the barrier width equals

matching point, and thereafter it is not difficult to find the

Coulomb correctiorQ numerically.
The examples considered show that form@a) is fully

effective for calculations. We note that it is similar to the

corresponding formula of the nonrelativistic thegsge Egs.

(6)—(8) in Ref. 4]. This is because the Coulomb interaction
SV(r)=—Zalr is the temporal component of the four-

potentialA,, and appears in the Lagrangian’ {4recisely as
in the nonrelativistic case.

7. Barrier width and condition for applicability of the
imaginary-time formalism. The tunneling probability is
relative to the barrier width. Settingt=0 in Egs.(1), (15),
and(20), we find

m Fer

b=_~d(e0.p)=—Fd(co.p) e, 37
wherex . =#/mc. For a pure electric field=1- ¢y, and for
crossed fields

3¢2

d=——"=
2{1+¢°

g(\/eg+8—360), p=1 (39

1,7
b(#)=5Kk?ag,

2 & aBz(ma)711

(42)
where ag is the Bohr radius. For neutral atorgs)~ « 2
(x~1/n, wheren is the principal quantum numbemnd for
negative iongr)~ « 1. Ultimately, b/(r)~e >1.

8. Hamiltonian approach. There is a possibility for a
somewhat different approach to the tunneling of relativistic
particles, which we shall illustrate in the example of crossed
fields with #=.77. The integrals of motiorfin the gauge
(13)] are

Py, P,

and H=m?+ (P, +e#y)?+ P;+ P;

_egy:Eo, (43)

whereH is the HamiltonianE, is the initial energy of the
level, P is the generalized momentuiior the extremum
trajectory P,=0), and P;=Ej—m?—P;—2e#(E;—P,)y.
Thus, the tunneling problem has been reduced to a one-
dimensional problem; therefore, to within exponential accu-
racy
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Yo > 2m?
W o ex —ZJ \/—Pydy =exp ——J], (44
0 et
whereyy is the turning point and
(q2+1 )3/2
J=—" 45
3la— &l &

The minimization ofJ(q,ey) with respect tag is equivalent

to isolating the extremum trajectory from the entire bundle of

subbarrier trajectories. There are two minimum points
1

qi=£—1(3601\/e(2)+8),

of whichqg, corresponds to ionization of the electronic level:

3¢ é=V(0:—€) *—1
1+’ v ’
in complete agreement witf16) and (17).

To calculate the pre-exponential factBrwe write the
asymptote of the unperturbed wave function of gHevel in
the form

J(q+.€0)= (46)

Moexp(—pur)
Po(N=AN3 ——
Aclp [ expipr) o
- 23/2775/2 p2_’_/»42 d P I’>R, (47)

whereu=m\/1— €2, Ris the action radius of the forcéthe
potential binding thes level is assumed to be short-range
and we ignore the spin of the particle. Near thexis (the
direction of the electric fieldwe represent), in the form

o~ — fdzpi H—Ipyly+ip, -p) (48)
0~ 3 | T XA PylYTIPL P,

(2m*2 ) \Ip,] ’
which is convenient for matching with the quasiclassical so-
lution of the Klein—Gordon equation in an external field, if
p, is the integral of motion[here y~r>p, |py|~,u(1
+ pilz,u andp andp, are two-dimensional vectors in the
xz plang. Continuing(48) through the turning poiny, and
calculating the particle fluxes gt— oo, we obtain

2(p?+P7)%
\/_f NN Rk 1=
whereP, =(P,,P,),
dy
Ji(Py) =
1Py 0 Vu?+PZ-2e4(Ey—Py)y

NP
eZ(Eq—Py)
andEy— P,>0. Expanding here with respect Rf and ap-

(48)
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FIG. 4. Dependence of the pre-exponential fadawn the binding energy
of the level:1 — in the case of only an electric fiel@,— for crossed fields.

P(eo,p=1)=(£VE¥+3) % (50

The dependences of the pre-exponential faBtan the en-
ergy €, in these two cases have similar forfsgee Fig. 4. In

the nonrelativistic limitP(eq,p)=21/ax+ ... for anyp

>0.

The Hamiltonian approach can be applied to fields of
more complex configuration, but this question is beyond the
scope of the present paper.

9. Comments on the Unruh effectlt was claimed more
than 20 years ago that from the standpoint of an observer
moving along a straight line with a constant intrinsic accel-
erationg (as a consequence of a force of nongravitational
origin on him), an ordinary vacuum state in Minkowski
space is a mixed state and can be described by a thermal

density matrix with the effective Fulling—Unruh
temperaturg?®3°
T=hgl2mcC. (51

This claim has been termed the Unruh effect in the literature
(see Refs. 31-33 and the references cited therd#irhas
become folklore that this effect is due to the fact that in the
rest frame of a Rindle{i.e., uniformly acceleratingobserver
the metri¢

ds’=p?do?—dp?—dy’—dz?, —x<og<wo, 0<p<oxm

(52

has a horizon. Therefore, some of the information available
to an inertial observe[relative to which the Minkowski
vacuum is definedis not accessible to a Rindler observer.
This results in the appearance of a mixed state.

Recently, however, argumefitsrere advanced against
the existence of the Unruh effect. Their essential point is as
follows. A free quantum(scalaj field ¢ in Rindler space
should vanish not only whep— o, but also whenp—0,

i.e., it should satisfy the boundary conditiqn(p,a)|p:0
=0 (which corresponds to an impermeable walpatO, i.e.,
on the boundary of the Rindler manifgldThis means that
the problems of quantizinge in Rindler and Minkowski
spaces are totally differefsee Eqs(18)—(20) in Ref. 9.

A Boltzmann distributionp,, « exp(—E,/T) among the
energy levels of a uniformly accelerated detector would be

plying the saddle-point method, we arrive at a formula likean observable manifestation of the Unruh effect. Let us ex-
(6) for w, in which the exponential function should be re- amine the ionization of a heavy atom in a constant uniform
placed by(17), and 1/ arccos, in the pre-exponential factor electric field# from this standpoint. In this case the intrinsic
should be replaced by accelerationg of the detector(i.e., an atom or ion in the
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present cagds constant, since the longitudinal component of TABLE II. Successive stages in the ionization procéfs £=0.027,

the electric field remains unchanged after Lorentz transfor

mations:

Z-17Z _ m?e®
g_T Zago= gO_ ﬁ4m

=4.93x 10?*cm-s 2.
(53

Here, as abovéSec. §, Z denotes the charge of the “atomic
core” obtained from the atontion) when one electron is
removed, A=M/m,, and m=m,, m,, and M are the

p

~10° Vicm).
Atom or ion

u u* Uzt Fe Fe Fe
I, eV 6.194 11.9 20 0.398 7.900 16.19
K 0.674 0.935 1.2 0.171 0.762 1.091
Z, 1 2 3 0 1 2
i), s 7.4(—16) 55(-12) 13 24(16) 6.5(-14) 1.8-4)
3 0 7.6(-5) 3.67) —1.4(—-8) —1.4(-8) 1.14)
Al,, cm 0 6.2-6) o 51(-14) 4.32) o0

masses of the electron, the proton, and the atom. For tf

temperaturé51) we obtain

Lzt s
A 45, O
where Z,=m?e’/%#%=5.14x10° Vicm and T,
=m?e*/?m,=1.72<10"° eV (for example, when'=,
and A~200, the temperaturé~10 "eV~10"3 K).
By virtue of the principle of detailed equilibrium the

(54)

ionization probability of an atom in a thermal bath at the

temperaturég54) equals

Note.The lifetimesr,= 7\’ were calculated using formuld3) from Ref. 6,

and the ionization potentialg were taken from Ref. 35.

c
t=ty+ g—(sinho—sinh On), 6>06y,
N

where 8= In(u++1+u?) is the velocity, andy andty are,
respectively, the total path and tinffor a static observer
until the time ofN-fold ionization?

2 N N-1 o
K c
w(h o ex;{ - . (55) Iy=2, Al,= >, —(coshf.,—coshé,),
2T k=1 k=0 Ok
On the other hand, according to quantum mechanics the ion- N-1

ization probability of an atomic level §5

Oz, —2K3 = —k—K3 56
%) oC =
w(& k) o« ex 37 ex T/ (56)

whereE,= «?/2 is the binding energy of the level akds an
extremely small coefficient

k= — ———=2%x109, (57)

A comparison of(55) and (56) reveals that(56) is not a

c
ty= >, —(sinh6, ,—sinhdy),
k=0 Ok

(58)

N
vy=ctanhfy, sy=2 7k,
k=0

L 1
o= 0ot ¢ > 9i7j,
=0

Al is the path traversed by tlk¢h ion andé, corresponds to

universal Boltzmann distribution, since even the dependencd® initial velocity of the atom. Using the quasiclassical for-

on « (i.e., on the energy of the leyah these two formulas is
functionally different.

Let us consider a mental experiment. As we kridw,
under the effect of a constant acceleratgpa classical par-
ticle moves along the trajectory

c? c
X=Xq+ E(\/1+ u?—\1+u3), t=ty+ a(u—uo),

cu
Ny

(t is the laboratory time, and is the intrinsic timg. As a
consequence of ionization the atofion) alters its charge
(Z—2Z+1) at the timess=sg, s, S, ... , Wheresy= 7,
S1—So=T1, Sp—S1= 1, etc., =1 (#, k), and its in-
trinsic acceleratiomg, varies accordingly. The motion of an
atom following N-fold ionization is assigned by the equa-
tions

c
s= a(arcsinm— arcsinhug)

2
c
x=Iy+ g—(coshe— coshéy),
N

mula for the ionization probability in an electric field, we
obtain (to within accuracy to constants of order unity

vz 3,
OkTk GNZ-1) 2\ (267,
< ~4x10 A7 exp —5 | (59

where n,=Z,/k is the Sommerfeld parameter for the sub-
barrier motion of an electron. _

Table Il lists estimates of the lifetimg,= 1" in the
accompanying reference frame and the pathg for two
characteristic cases, in which there is a neutral uranium atom
or a negative iron ion at=0 (we assume tha#,=0, i.e.,
that the atom is initially at restWe note that Fe and Fe
move against the field (therefore, the first twag, have
negative signs while the positive Fé ion is at first slowed
by the electric field and is only subsequently accelerated
along #. It is seen from Table Il that the values of the¢
increase as the extent of ionization increases, leddieg the
exponential function i59)] to a sharp increase in the life-
time 7. The pathsAl, increase even more rapidly, since,
apart from the increase in lifetime, the relativistic slowing of
time also affects them:
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c gt example was considered above. The possibility of applying
s~—In—, Al ~expby (600 the imaginary-time formalism to relativistic systems consist-

g ¢ >
~___ ing of particles with commensurate masses],(qqg, etc)
for 6,>1. Therefore, only a small extent of ionization is yemains open.

achievable in an assigned field. For example, for the doubly  \ye thank the participants in the theoretical seminars of
charged uranium ion & and £=0.027, the pathAl,  the Institute of Theoretical and Experimental Physics and the
~exp(1.8<10) cm (), which, of course, means only that \oscow Engineering-Physics Institute for some interesting
this ion always remains stablé the field £ cited). . discussions, S. G. Pozdnakov for his assistance in the nu-
On the other hand, the Unruh effect giveS)=1m"  nerica| calculations, and M. N. Markina for her assistance in
for the lifetime, which amounts te-exp(3x1C°) s in # composing this article The work was performed with partial

=0.027, for the neutral uranium atom and equally large spport from the Russian Fund for Fundamental Research
values in other casésThus, the “thermal” ionization time (Grants Nos. 95-02-05417 and No. 98-02-17)007

of the atom(detectoy is immeasurably greater than the time
for its destruction by the electric field. The Unruh effect
refers to detectors of any nature; therefore, the mental exper®PPENDIX A:
ment is at variance with its counter experiment.

The functi ing in(26 |
We have hitherto considered the nonrelativistic case, e functiong, appearing in26) equals

Ep,<<m. Without going into the fairly fine question of the 37y s*—3s%— (53— 652+ 65) y?— (s—2)y*
qguantum-field description of relativistic bound states, we 91(7)2; ?— (5—2)4? '
note that if formula(6) is used forE,=m(1—ey)~m, in- Y 4 (A1)

stead of(56) we obtain _ _ _
where s=1—(7o/sinhm)?, and 7o=7o(y) is determined

. E ing i i
wi) o exp[ _ ?bf(Eb)], 61) from Eq. (28). Taking into account the expansions
1 1
_- 2~ 4

where f(Ep)=(m/2aM)d(e)/(1— ;). Unruh's claim  S=370 1870" - -+
would correspond td(E)=1, which clearly does not hold.

It is noteworthy that Nikishov and Ritd&showed that if _ Eyz 1— iyz_ 8 v y—0 (A2)
elemental particles are considered as detectors, the energy 3 45 2835 ) '

spectrum of their radiation, generally speaking, does not cor- 2 _on
respond to a universal Unruh law. A heavy atom, to whichS~ +~ 4708 ot =l-exd - (4 D]
the quasiclassical treatment is applicable, satisfies the physi- x (1+2y724+974+ .. .), y—0, (A3)
cal requirements imposed on a detector to a considerably ) )
greater extent. As is seen from the foregoing, the electrid/€ arrive at the following asymptotes:
field accelerating the atom destroys the detector itself, which 1 11
was intended to detect the thermal radiation in the accompa- 9(¥)=1+ @VZJF ﬁ)y‘“r -
nying reference frame.

10. Conclusion.A generalization of the imaginary-time 5
formalism to the relativistic case has been developed. A cal- 9(MN=z91" 3757+ |, 70 (A4)
culation of subbarrier trajectories satisfying the classical
equations of motionwhich, however, have an imaginary
time t and are thus impossible in classical physierables
us to use the well developed machinery of analytical me- 3
chanics and to find both the exponerltlal flenC'tIOI’l' and the g,(y)= E(1_7,*2_27;4+ ). (A5)
Coulomb and pre-exponential factors in the ionization prob-

ability of a level with an arbitrary binding energy {0E,  In both cases;(y)<g(y). This inequality is also confirmed

<2mc?®) under the action of electric and magnetic fields.py a numerical calculatiofsee Fig. 3 and holds for ally.
The equations obtained cover, as limiting cases, both the

theory of the ionization of nonrelativistic bound systefat
oms and ionsand the case oE,=2mc? (a level on the APPENDIXB:

boundary of the lower continuunz=Z2.,), where this prob- Let us discuss the question of the applicability region of

ability is comparable in value to the probability of the pro- o approximatior(29). Defining the parameter on the ba-
duction of electron-positron pairs from a vacuum in an ex-sjs of the relatiodd €0=Eo/m=1—a?«?/2, we have

ternal field. We note that the imaginary-time formalism was

previously employed in the problem of the instability of a k=& 'V2(1—¢€), a=€*/fic=1/137. (B1)

vacuum and the production of pairs in a strong field in quan-pe exponential factor if29) can be rewritten in a form

tum electrodynamic&! as well as in the case of non-Abelian similar to (24):

gauge theory’ '
A system of two particles with strongly differing masses

(an electron in the field of a heavy nucleus can serve as an

3 -2, -4
g(y)=§y(1+27 +y L),

Ferm
W( &, 7) o eXP[ - 7crq>(60,P)] , (B2)
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where

32 4

b= 3 €p

3 4
1—% 1_9_'02 €p |, 6b=1—60. (B3)

This simple approximation has a high accuracy even in the

case of fairly deep levels; see Table I, in whiéhis the
relative error of(B3):

5=58(ey,p)=(P—D)/D. (B4)

A comparison of formulag29) and (30) shows that the
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In the relativistic limit(34) follows from (6) and(32). If
€0=0, theny=0 andQ=exp@Za)=21.1 for Z=137 [the
values ofZ andQ for E(1s,,5) =0 increase somewhat further
when the finite dimensions of the nucleus are taken into
account”g].

b) For crossed fields the Coulomb integ(all) can also
be expressed in elementary functions:

f de 1 nSin(€00+<P)
0aZ-sirfe SiN2¢y siN(o—¢)’

(CH

power of £ varies asp—0; therefore, the approximation Whereu=23 sing, a=ug/3=¢/1/3, andgy=arcsina.

(29) is inapplicable when7z> . If p=#1.77=0.5, the ap-

Taking into account that at the beginning of subbarrier

plicability region of formula(29), which was obtained in the motion

nonrelativistic ¢=<1) limit, “extends” up to energies,
~—0.5m¢, i.e., up tok~200 (see Table)l Of course, for-

mula (29) ceases to be applicable when the level approaches

_VBmes-¢g)
r= es \/1+—§:2 (@0 @l) RO

©1— @9, (COH)

the boundary of the lower continuum; in this case the errogq the value of the integréCs), we arrive at(35).

already amounts to tens of percent. For example0.123
and —0.188 forp=1 ande, respectivelyywheneg=—1).

¢) In the case of mutually perpendicular fields, it follows
from (36) that

map 7 1 2
ro=(r —T)—\/l— 2(——cothr )
APPENDIX C: O Va1 p2)2 P\ % 0
Here we consider the calculation of the Coulomb correc- + ..., T4
tion (31).

a In writing the extremum [§, =0) trajectory in the
case of an electric field in the form

m
et

we use the value of the integral

z=—(C0Sp—CO0Sey), 0<e<g@y=arccos,, (Cl)

¢ cosede
J(%‘Po):f =0

0 COSp—COS@y

+cotegIn (C2

sin (@o+ ¢)/2]}
sin (eo—¢)/2])
When ¢— ¢,

J(@,p0)=—aln(gg—¢)+agta(eo—@)+ ...,
(C3)

wherea= cot gy, ag= ¢g+ Coteg IN(2singy), . . . . Also tak-
ing into account thaty=Za cot ¢y,

z(t)=iVi-€e2 ey Ht—to)+ ...
m .
= o7 (Pom@)singet ..., =,

uzy=(Fel ©) (90— @1)SiMPeo+ .. .,
we find
0 dt

77In(,u¢zl)+i2aft m

I:cr (‘PO_ ‘Pl)sma‘PO
7 si(eo—gpl2)] Y

= 77[ potangg+In

Assuming here thap;— ¢q [in this case the matching point

z,=2(t;) drops out of the resultwe arrive at formulg32).

(we assume thgi<1). UsingJ, to denote the singular part
of the integral in(31), we have

JS=Zaf
1

dr,

T—To

1— p?rq cothrg

A= : (C7
pTo\1—p?— (7 " —cothrg)?

Here 7y is defined by Eq(25), from which we find

1
Veo2—1

1— p?7y cothry
- i 7 e ™
p[27ycothmg—1—(7g/sinhry)“— p=7g]
(CY

Hence n=ZaA and J;=— nin(7,—19)+0O(1). The term
In[ur /(71— 7)1, which has a finite limit forr;— 7y, ulti-
mately appears i31). After some manipulations we obtain
the regularized expression for the Coulomb correction:

S B 1 L)lg
Q=exp 27 In| —— o +fo @(T)—TO_T T
(C9
1 . coshr . coshry—coshr) 2
QD(T)_E P70 Sinhr, (1=p% sinhr,
sinhr 7|22 c10
~sinhry 7o ' (€10

in which the pole singularities are mutually canceled, and it
is not difficult to find the integral numerically. This example
shows that exclusion of the matching point in (31) is
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The photoionization and stabilization of a Rydberg atom in a strong laser field are investigated
theoretically. The role of Raman-type transitions between neighboring Rydberg levels via

the continuum(A transitiong and via lower-energy resonant Rydberg levalst{ansitions is
analyzed. The conditions under which this phenomenon can be observed experimentally

are determined. The characteristics of stabilization du¥-tgpe transitions are described.

© 1998 American Institute of Physids$1063-776098)00509-3

1. INTRODUCTION expressions for matrix elements calculated in the semiclassi-
cal (WKB) approximatiorf 2 Section 2 is devoted to the

One of the most interesting and widely discussed phep,5thematical formulation of the problem and the approxima-

nomena involving the interaction of atoms with a strong laset;;ns used in the solution process. Section 3 presents a very

field is stabilization of atoms, i.e., an increase in their Stab"'simple three-level model that can be solved analytically, and

ity against photoionization as the laser field strength inynqer certain conditions makes it possible to investigate
creases. In Refs. 1 and(and in a large number of subse-

X : Lo qualitatively the relation between and the role of bathand
quent workg two considerably different stabilization

' ; > X . V-type transitions in interference stabilization. The three-
mechanisms were proposed and described: adiabatic or higRse| model becomes incorrect for large detunings. The sim-

frequency staé)ilizatio]n_ and interference stabilization of 5 gt generalization of the three-level model to the nonreso-
Rydberg atoms.According to the theory of interference sta- \jnt case is the four-level model studied in Sec. 4. Section 5
bilization, when a Rydberg atom interacts with the field of presents the results of a numerical analysis of the problem

light wave, efficient coherent redistribution of the popula- 4 incorporates up to 22 levels, which makes it possible to
tions of the atomic level&, close to the initially populated 5jigate conclusions based on the analytic solutions, and to
level E,,; occurs as a result of-type Raman transitionsia  axe quantitative estimates of the experimentally measur-
the continuum The resulting coherent superposition of aple parameters. The concluding section briefly summarizes
Rydberg states is found to be stable against photoionizatiofhe status of the problem and reviews the conditions under
as a result of which transitions from various Rydberg statesvhich stabilization of a Rydberg atom in a laser field by

into the continuum interfere and quench one another, impedy_type Raman transitions might be observed experimentally.
ing ionization of the atom. The experimental observation of

interference stabilization of Rydberg atoms and coherent re-

distribution of the populations of Rydberg levels is described

in Refs. 3 and 4, respectively. 2. STATEMENT OF THE PROBLEM AND GENERAL

In principle, besides\ -type transitions, coherent repopu- EQUATIONS

lation of Rydberg levels can also result frofatype Raman We consider the interaction of an atom with the classical

transitions through lower-lying resonant atomic levels, if thefig|q of a light wave whose electric field strength in the di-
latter exist(see Fig. 1 In Ref. 4 it was concluded that pole approximation is

transitions do not play a role in the redistribution of the
populations of Rydberg levels, which is unlikely to be true in  &(t)=gq(t)cog wt), (1)

general. . . ——
It should be noted that in Refs. 5—7, redistribution of theWherew is the frequency and(t) is the time-dependent

populations of the Rydberg levels was investigated theoretif-Ield strength(envelopg of a pulse;eq(t)—0 ast— .

cally, taking account of botiA- andV-type transition chan- EQO:;O :;e gig}izl(jczghgbgsgerspus:;g _WORL’ Igtnter;e aéom

nels. However, the importance of tiechannel and the con- ) y . 9YEn,

ditions under which this channel is dominant were not found™ ~ /215, where no>1 (we employ units #=c=1

and were not fully investigated, specifically because of théhroughout. Let » be greater than the electron binding en-

lack of a clearly understood relationship between shand €9y in the statepn;, w>|Ey [, i.e., a one-photon transition

V transition matrix elements. is possible from this state to the continuum. Raman transi-
In the present paper, interference stabilization oftions of the A type are transitions via the continuutfor

Rydberg atoms is investigated theoretically, taking accoungxample g, — continuum- ¢,), which are accompanied by

of both A andV transition channels, using the well-known virtual absorption and emission of a photerand excitation

1063-7761/98/87(9)/9/$15.00 445 © 1998 American Institute of Physics
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The Schrdinger equation for the complete function
WP (t) of the atom in a field can be reduced to an equation for
Vuoundt) Or to an equivalent system of equations for the
probability amplitudesa,(t) and a,.(t) by a procedure
known as adiabatic elimination of the continudtt?In this
approach theA transitions between nearby Rydberg levels
(for example E,, andE ) are described by the tensBy, ,, of
ionization widths

Com=27VoeVemle=g, 40, 4

where E is the energy of an electron in an intermediate
state of the continuunV/, ,=(¢,| —d- £0/2| ¢y,) are the tran-
sition matrix elements, and is the dipole moment of the
Y atom.
- On this basis, and taking account of bathandV tran-

f sitions, we write the equations for the probability amplitudes
a,(t) anda, (t) in the rotating-wave approximatiofreso-
nance approximatidf'? in the form

iy (t)=(Ep + @)an (1) + 2 Vo nan(t), (5)

FIG. 1. Overall transition scheme taking account of bathand V ian(t)=Enan(t)+2 Vn,n'an'(t)_
population—redistribution channels. n’

As noted above, the transition matrix elemevits, have
very simple and convenient analytic expressions obtained in

. . . . —10.
of Rydberg levelsE, close to the initially populated level the semiclassicaWKB) approximatiofi™®
Eny- Since in generdk, # Eny such transitions can be effec-

€0 €0
tive only in a sufficiently strong field. Vo~ ChaE Vg™ 3, 573 (6)
Let the structure of the atomic spectrum be such that
together with A-type transitions(via the continuum effi- For largen andn’, the dependence of the matrix ele-

cient resonantor almost resonantransitions between states mentsV, ,» andV, ¢ onn andn’ becomes quite slow and
¢, and Rydberg statesp,, with smaller values of the prin- can be approximately neglected, settimgng andn’~ng,
cipal guantum numbem( <ngy) and energy k. <E, ) are  whereng is the principal quantum number of the Ie\l.-‘e,l

also possible. We call Raman transitions between thesgrom the serie€,,/) closest to resonance with the Ie\Eﬂ

groups of stategfor example,¢n — ¢n'— ¢n) V-type tran- , the level corresponding to minimum detuning of the
sitions (see Fig. 1 resonance

The wave functionV (t) of an atom in the fiel&(t) (1)
can be expanded in a basis of free-atom wave functions. The o=E, st o= En, @)

projection of ¥(t) on the bound states of the atom,
W ooundt), can be represented as a superposition of the fundn the approximatiom~n, andn’~n, we find from Egs.

tions ¢, and ¢,/ , (4) and(6)
2
€0
Voound ) =2 an(Dent > an (Ve @ Fom=T'=const-oa 1o,
n n’
8
where a,(t) and a,(t) are the probability amplitudes for €9 ®

finding the atom in the level&, and E,,, respectively. nn~ (g =const-

Since the atom undergoes ionization, the norm¥gf, .{t)
is not conserved, and determines the probability of ionizatiowhere(lg is the analog of the Rabi frequency in a two-level

(n0n6)3/2w5/3’

by the pulse: systen:®
The ionization widthI" and the Rabi frequencfr (8)
Wi = 1= (W hound )W pound 1)) |e—o» - 3 are the basic parameters that characterize the system under

By stabilization of the atom we mean a situation such thagtudy. Additional but also important parameters of the sys-
when the field exceeds a certain threshold, the ionizatioem are the detuning (7) of resonance between the levels
probability w; becomes a decreasing function of the peakEn, a1dE,, and the spacings andA’ between neighbor-
field strength of the pulse;gmax, OF it becomes equal to a ing Rydberg levels near the energie€,, andE,,/, respec-
constant less than 1. tively,
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s/

A
4 & 5 ¢

FIG. 3. Relations between the parameters of the problem in various ranges
of the field strength. The characteristic fields are shown.

r
£) whereby are constants satisfying the algebraic equations
2
¢ f E) (Eo-+ )b+ Qg(by +b;) = ybo,
T T
QR QRb0+ El_|§ b1_|§b2:’yb1, (12)

T T
QRbO_ | Ebl"‘ E2_| E b2: 'ybz

IEO) . . 5
The constant is the complex quasienergy of the syst&h®

FIG. 2. Transition scheme for a three-level model. and its values are given by the eigenvalues of the matrix of
coefficients on the left-hand side of Eq42). Since Egs.

(12) are a set of homogeneous equations, the existence cri-

1 terion for a solution is that the determinant of the system

A=En 41— En~—3, A'=Ey.—Ey~—73. (9)  vanish. This is the characteristic equation of the system,

No 0 0 N which in the present case can be written in the form

r
3. THREE-LEVEL MODEL AND THE ROLE OF THE MAIN 03(2x—8)=(x=8)| x(x-A)+i 5 (2x-4)|, (13
PARAMETERS CHARACTERIZING THE INTERACTION

OF AN ATOM WITH A FIELD where x is the quasienergy relative tB; x=y—E;, A

The simplest physical model for the system under study=E2—E1, and6=Eq+w—E;. _ .
is a model in which only two Rydberg levels; andE, in Figure 3 showd)g andT" as functions of the amplitude
the seriedE,} (for example,Eno and Eno+1) and one level €o- The range of flglds in wh|ch a deviation from perturba-
EO(En(’)) from a lower-lying seriedE,} are taken into ac- tion theory occurs is the region whefk; or I' exceeds the

t(Fia. 2. Th in advant  thi del is its si splitting A between the level&; andE, (horizontal line in
c?u_n ( '?]'. r)] i main & V%T age Ob S mol elis IIS Sim- Fig. 3. Let £, and e, be solutions of the equatiorf3y(¢)
plicity, which makes it possible to obtain analytic solutions _ y 54 I'(e)=A, respectively. The third characteristic

that most clearly shovv_ which o_f the parameters intrqduced alalue of the field strength, noted in Fig. 3, is given by the
the end of the preceding section govern the behavior of thgolution of the equatiolf (&) = Qr(s), i.e., this is the field

system in various field ranges. . at which the Rabi frequency and the ionization width become
In the three-level model the systei®) consists of three equal. Using Eqs(6)—(9), we find the explicit form of the

equations: characteristic fieldg,, €,, ande; in the semiclassical ap-
18o(t)=(Eg+ w)ag(t) + Qglas(t)+as(t)], proximation to be
r No ¥ 5/3 5/3 no| ** 5/3
ial(t):QRaO(t)+Elal(t)_iE[al(t)+a2(t)]y (10 81:(n_o) O 83:(n_6> w’ (19
r These values correspond to the following values \of
iaz(t):QRao(t)+E2a2(t)_iE[a1(t)+az(t)]- =gl

3/2

1\ 32
i ion i i . n
In a model where the interaction is turned on and off instan v :( 0) V=1, V3=< 0 (15)

taneously(i.e., a model with rectangular pulgeshe pulse Ng ng
envelope is constant while the pulse is on, just kkg and

I'. In this case the systefd0) is a set of linear differential
equations with constant coefficients, which has solutions o
the form

These values are arranged in increasing order, and each dif-
Fers from the preceding one by a factany(ny)®2 This
actor can become fairly large, and therefore the paints

€5, and g3 can correspond to considerably different field
a,(t)=by exp(—iyt), (11 ranges. For example, under the experimental conditions of
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Ref. 4, the quantum numberg, and ny were 26 and 5, pending on the field strength,, the width|Im(x,(go))| of the
which yields (1o/ng)%?~12. The corresponding characteris- |evel has a maximum aty~s,, and fore,>¢, it decreases,
tic fields are suggesting narrowing of the level and stabilization of the
e1=TX10P, £,=8x10F, s,=9x107 Vicm. (16 atom:°Thus, in the general casb*A/2 (but 5~A), in the
_ _ three-level system under studyig. 2), as the field increases,
These fleld_s clearly differ from one anothgr egch by arpne of the three quasienergy levelg X first undergoes the
order of magnitude. Here we focus on the situation correygyga) jonization broadening, and then it undergoes narrow-
sponding to a large value oh§/ng)>? In so doing, we also  ing, which starts at anomalously low fieléas compared to a
analyze the development of the ionization dynamics whercheme withoul/ transitions.
the rationy/ng becomes of order 1. For large detunings the solutions of E(L3) can be
As follows from the foregoing estimates and from Fig. 3, found, in principle, by representing them as expansions in
if (no/ng)>?is large, then there exists a very wide range ofpowers of 16. However, we do not present the solutions
fieldseq, £1<gq<e3, to which perturbation theory is inap- here, since the applicability of such an expansion in itself

plicable (0g>A), and the Rabi frequencr is then much  seems formally justified only for very large detunings,
greater than the ionization width. Under these conditions,

V-type resonant transitions can play a decisive role in stabi-
lizing an atom. Taking account of resonant coupling with the
lower-lying level E, has the effect that the “threshold of . . ) i
nonlinearity,” i.e., the field at which deviations from pertur- € detunings exceeding the spacing between th_e neighbor-
bation theory &,) first appear, is much lower than when N9 Rydberg level€E,,, . Here the four-level model is better
there is no such couplingn which case the field,, i.e., the  Suited. _ S _
root of the equatiod’(¢)=A, is the threshold field for sta- The solution of the photoionization problem is not com-
bilization). plete when the quasienergies have been found.. In prmgple, it
We now analyze Eq(13) to determine the complex IS N€cessary to solve the initial value problem, i.e., to find the

quasienergies of the system. We consider first the case #9t@l electron wave functiof¥’(t) in a field or, at least, the
which the detunings is half the spacingA between the Projection Wyont) of this wave function on the bound
Rydberg levelsg=A/2. It is easy to see that E¢L3) can states. When the interaction is turned on and off instanta-
then be solved analytically, and the roots of Etf) take the  N€ously, this problem can be solved by the method of
form quasienergies and quasienergy states. In this method, the
function W,,n{t) is represented as a superposition of

2

QR 1 ’
=—5=A", (18

81>+
r ng

A AT i i
XFE, X3,4:§—i Eiﬁ’ quasienergy functions
AT T Whound 1) = 2 Cy expl—ind) (19
B= \/ZQ%ﬁL 5 —(5 (17)

where they, are quasienergy functions corresponding to
The first of these equations shows that the lewglis  quasienergieg, and are obtained by solving equations like

stable (Imk;(e0))=0), and its position does not depend on (12), while the expansion coefficient§, are determined

the field (Ref(so))=A/2=const). As for the root, {s,),  from the initial conditions.’

the functions|Im(x, i(£0))| increase monotonically right up For a three-level systelffrig. 2), an exact analytic solu-

to field strengthteg=~2¢3, for whichI'=2Q0z andB=0. The tion of the initial value problem can be found when the de-

monotonic growth of the functionsm(x, i£o))| means that tuning & is half the spacing between levels andE,, &

the quasienergy levels, ; do not narrow anywhere in the =A/2. Omitting the cumbersome calculations, we present

range of fields &<ey<2e5. This behavior of the quasien- the result:

ergy levels is in striking contrast to the behavior of the

2
guasienergy levels in the absence\btransitions, i.e., for Wi(1) = 1= (P pound )|V pound ) ) = Okt (A12)°
Qr=0: when onlyA transitions are taken into account, the ' boun boun 20%+(A/2)?
guasienergy levels start to narrow at field strenggh-¢,, r 02
which is the reason foA-type interference stabilization. X[1—exp —Tt)]+ == — R
Therefore, the scheme considered h@ig. 2) differs quali- 2B 203+ (A/2)?

tatively from the one that takes account of oflfransitions:

in such a scheme, fof=A/2, the level widths do not de-
crease(right up to eg~2¢3) and there is no field-induced
stabilization of the atom, but nevertheless one quasienergy

_ 2 Q3+ (A12)?
XGXK—F'[)SIH(ZIBU— ﬁz W

: ) \ x exp(—I't)sir(Bt), 2
level (x,) arises that is stable at any field strength between 0 exp—TYsim(BY 20
andes. whereg is defined by Eq(17).
The “absolute” stability of the levek, is a result of the According to Eq.(20), the atom is ionized in a timg

special choice of the detuning For §~A but 6#A/2, the ~1/". However, even in the asymptotic limit>t;, there
level x, acquires a width that is small compared with theexists a finite, nonzero, residual probability of finding the
ionization widthT", and is proportional to §—A/2)2. De-  atom in the discrete levels,q:
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Q2R However, if much weaker fields are of interesg~e,, the
Wres= 502 T A2 (21)  stabilization criterionI't>1 will impose a very stringent
205+ (A/2)

lower bound on the pulse duratian

SinceQrxeg, in weak fields (Jg<<A/2) the residual prob- 3
ability wed £0) of (21) is an increasing function of the field t>(ng/ng) T - (25
strengthey. ForQ g>A/2 the ionization probabilityv,.{ &)
saturates at 1/2.

We emphasize that this limit is typical only of a three-
level model. In a model with a large number of levels, the
limiting residual probabilityw,.{eq) for large 5 will be

Just how stringen¢25) actually is can be assessed, for
example, with parameter values corresponding to the experi-
mental conditions of Ref. 4T ~3 ps, ng=26, ny=5, and
(ng/ng)3~10%. Then (25 holds if t>50 ps. It should be
different, but will nevertheless be finite, so that the ionizationno'[(Ed that accordlng to the. numerical calculations performed

- . S below (Sec. 4, the inequality(25) softens somewhat when
probability will never reach 1. In Sec. 4, we examine in morethe number of levels in the model svstem is larae. Neverthe-
detail the effect that the number of levels included in the o Y5 ge.
less, stabilization due t¥-type transitions can again be ob-

22?:/)/3'3 has on the results by solving the problem numenéen/ed in comparatively weak fieldso~¢,, only if the

Note that the finiteness of the residual probabilitiye pulse duratiort is sufficiently long and exceeds at least sev-
o ; L iua’ probe . eral Kepler periods. In this respect, stabilization due to
probability that the atom is not ionized in the limit of arbi- 5 . . A
trarily long laser pulse duratioris closely related to the in- V-type transitions differs radically from stabilization due to
; O : A-type transitions, which is most pronounced &tTy .
clusion of V transitions: when there is n¥ channel, the

asymptotic residual probability vanishes. This result follows,We Ir:(\)lrsshgrse&tjr?; ?253’; g’\gvtr:grr]e Ii%éhljafi?drlfw)g "ntﬁoitt E%.satis-
specifically, from Eq.(21), where the lack of & channel g Inequality may

corresponds t&)x=0, and thereforav,.=0. fied. For example, at a frequeney close to the electron

It follows from Eg. (20) that V stabilization requires a binding energy in the 'eYeEnq’ w=1/2n5, and as follows
laser pulse of substantial duration. Indeed, if the pulse durdfom energy conservation i\ and V transitions, n,
tion t is so short thal't<1 andgt<1, then the right-hand ~No/V2. Hence, generally speaking, it also makes sense to
side of Eq.(20) can be expanded in a Taylor series in theStudy the cas@o~ng. It is easy to see that in such a situa-
timet, acquiring in the linear approximation a form identical tion all three characteristic fields, , e,, andes given by

to the result of perturbation theoffermi’'s golden rulg®: Eq. (14) and by the diagram in Fig. 3 are similar to one
anothere,~¢e,~e3. This means that fong~nj, the exis-
wi(t)=TI"t. (22 tence region folV stabilizations;<e,<e5 degenerates es-

Obviously Eq.(22) does not describe any sort of stabiliza- sentially to a point, and the only feasible stabilization mecha-

tion, since according to Eq22) wiocsg, i.e., the ionization nism is that due to\-type transitions.

o . : . Thus, the existence of a nontrivial range of parameters in
probability increases monotonically as the field strength in- . e I
creases which stabilization of the atom by-type transitions can

In the intermediate range of pulse duration, 1<t ?hcr((:al;(;ﬁquc;?jetgat ;hgu;;ii ?:rftngaffi;;r:|£elﬁ gxnciﬁg the
<I'"1, the first term on the right-hand side of E&0) can i y 9 ) Nol*
easily be shown to make the main contribution to the ionizather hand, in order for resonances with low-lying Rydberg

tion probabilityw; (t). Assuming thal't<1, the exponential €V€lS 0 come into playyw must not be too highw<|Eg|,
exp(—Tt) can be expanded in series, which yields where E, is the ground-state energy of the atom. On the
whole, the constraints on the frequency of the laser field that

. 02+ (A2)? It - ensure the existence of stabilization of an atom\btype
wi(t)~ 2021 (A2 (23 transitions can be written
This expression likewise in no way describes stabilization, as  |En | <@ <|Eg|. (26)

the corresponding ionization probability;(e,) is again a
monotonically increasing function of the field strength
Finally, only when the pulse durationis greater than
the ionization time of the atom I/ I't>1, does the ioniza- As noted in the preceding section, the three-level model
tion probabilityw;(e,) saturate and reach the level considered above becomes inapplicable at large detunings,
Wi=1—w (24) 6=A" (18). A natural and very simple generalization of the
: res: three-level model is a model with four levelg,, =E;,
where the residual probability of finding the atom in theE, ,,=E, and, for examplef,, ;=E;, andE, =E, (see
discrete levelswe is given by Eq.(21). According to our  gig 4 0 0
definition, saturation of the functiow;(e,) at a level less For a four-level model, the set of equatiof assumes
than 1 can be interpreted as stabilization of the atom. Foje form
pulse durations of the order of the classical Kepler period,
t~Tyx, the resulting stabilization criteriofit~1 holds for ia; ()=(Ey +w)ag (t)+Qg[a(t) +ay(t)],
field strengthsy~¢,, i.e., under the same conditions as for
interference stabilization due td-type Raman transitions. ia,(t)=(Ey +w)ay (1) +Qg[a (t)+ay(t)],

4. FOUR-LEVEL MODEL OF AN ATOM
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FIG. 4. Transition scheme for a four-level model.

ia(t)=Qglar (t)+az ()]

r
+Esai(t)—i 5lan(t) +ay(t)],

i,(1) = Qlay (1) +az(1)] @7)

r
+Eq,() —i S [ay(t) +ax(v)],

wherel” and () are given, as before, by Eg®).
The characteristic equation of the systg@7) is a
fourth-order equation that generalizes Etp):

(X=8)(x—S8+A")| x(x—A)+i g(Zx—A)

=Q2(2x—A)[2(x—8)+A"], (28

wherex is, as before, the quasienergy measured fiom
x=vy—E;, and g, A, andA’ are given by Eq(7) and(9).

To analyze large detuning§=A’ analytically on the
basis of simple equations, we examine the simplest case,
which §=A'/2. AssumingA’ to be a large parameter of the
problem A’>A), we note that fors=A'/2 the right-hand
side of Eq.(28) does not contaih’. Therefore, in the zeroth
approximation in 1A’, the solutions of Eq(28) are identical

N. P. Poluéktov and M. V. Fedorov

0.27

0.17

0.05}

-1.5 -1.0 -0.5 0 log V
v v

FIG. 5. lonization probability as a function of the field for various nhumbers
of levels in the seriegE,}: 3,5,...,21. The laser pulse is rectangular. The
calculations were carried out with=8Ty , 6=0, and f1,/ng)*?=10.

The solutions(29) are completely independent of the Rabi
frequencyQ . This means that in zeroth order inAl/ with
6=A"/2, interactions of the leveB, , with the levelsE;, »
are suppressed by virtue of interference. Therefore, the solu-
tions (29) are the quasienergies that would be obtained for a
system of two levelskE, andE,, coupled to the continuum
(X34, and two lower-lying level€;, andE,, that are nei-
ther coupled to one another, nor to the upper levels, nor to
the continuum X, ).

In this regard, it is understandable that the solutivgs
of (29) describe narrowing of one of the levels fbr>A
(eg>¢5), corresponding to interference stabilization of the
atom byA-type transitiong. The requirement that the correc-
tions to the solutiorf29) introduced by a nonvanishing right-
hand side 0f28) be small leads to the condition

|8 <QRg, (30

which holds up to fieldg,~ e5. ThereforeA-type stabiliza-
tion occurs when the detuningis of the order of half the
spacingA’ between the lower-lying levels.

This result cannot be obtained in models containing only
one level in the series of leve{&,} (see Fig. 1, since it is
a consequence of the partial mutual quenching of the contri-
butions from various levels of the seriés the case at hand,
the levelsE;, andE,,). The range of detunings over which
V transitions cancel one another to a substantial degree is
fiairly wide, and is comparable tA’. Thus, it is possible to
formulate constraints on the magnitude of the detuning under
which stabilization of one or another type arises: near reso-
nance, when

to the solutions of the same equation with a vanishing right- |3/ <A’, (31

hand side:

N| B

r
0=8, xP=6-a, xU=7-iz

T

V stabilization occurs in fields,>¢, that are weak com-
pared with the fieldg,~ ¢, typical of A stabilization in the
absence of a/-transition channel. In turnA stabilization
arises far from resonance, withs|~A'/2, in fields gq
>g,. These two types of stabilization transform into one
another as the detuningjvaries over a scale-A’.
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w; a 1 W
0.5f 0.8t
0.4f 2 FIG. 6. lonization probability calculated on the
: 0.6f basis of a three-level model as a function of the
0.3} field for a laser pulse turned on in two different
0.4 ways—gradually(1) and instantaneousl{?). a)
0.2 narrow pulses t(=Tg); b) significantly longer
o.1f 0.2} pulses {=5Ty). Other parameters:5=A/2,
0 0 (ng/ng)%?=10.
2 ~15 -1 05 0 05 lgvVv -2 -15 -1 05 0 05 logVv
/ v, 2 % % v
5. NUMERICAL RESULTS effect, though it is less pronounced than when the interaction

For all their attractiveness and simplicity, the rnodelsof the atom with the field is turned on instantaneously.

studied above cannot claim to yield a satisfactory quantita: . The dependence qf the solutions on I_ase_r pulse duration
tive description of the spectra and ionization dynamics of d> |IIustr§ted by n.umerlcal results plotted |'n Figs. 7a and 7b.
Rydberg atom. To better approximate reality, we examined 1€S€ figures differ from one another in the number of
more complicated multilevel models, solving the photoion-&0Mic levels taken into account: three close levels
ization problem numerically. The numerical solution also(EngEng+1:En,-1)+0nelevelE, (Fig. 7a as opposed
made it possible to analyze the dependence of the results dgine levelsk,+one IeveIEn(r) (Fig. 7b. One can see from

other previously employed approximations, such as, for exthe figure that the rise in ionization probability with increas-

ample, an approximation in which the interaction is tumeding field strength, i.e., stabilization of the atom, ceases in

on instantaneously, and others. fields that weaken as the pulse duration increases. However,
Above all, the existence of stabilization of an atom duéihe more levels the model contains, the less sensitive the

to V-type transitions was checked against complicated mulzoqits are to pulse duration. Thus, the conditi@B) ob-

tilevel models, which must be used to produce a quantitative,ineq in 5 three-level model relaxes somewhat in models
dgscrlptlon_of the photc.)|or.1|za.t|on of a rggl Rydberg atom'comprising more levels. Nevertheless, even in such multi-
Flgure_ 5 displays the |c_)n|zat|on probab|llty CUIVES COITE- |4 g modelsV-type transitions can only stabilize an atom if
sponding to a systemancal_ly _and symmetrically increasing, pulse is at least several Kepler periods long.

number of levels near the initially populated Ie\Eﬂo (we Note that the numerical results obtained using models

study exact resonancé=0). It is assumed that these levels with small and large numbers of levels differ appreciably

are equally spaced and possess _equal trans_ition matrix eIﬁ'bm one another. Nevertheless, all qualitative assertions
ments(see Eq(8)). As one can easily see, adding new IeVe'S’made on the basis of the simplest models with a small num-

only strengthens the stabilization effect ber of levels still apply to more complicated models. We

We also compared results obtained with two laser ﬁeldsShall therefore not take up the question here of how many

one turned on gradually and the other instantaneo(iSty. . .
9 y sy levels should be taken into account in types of models stud-

6). The results for pulses with identical peak field strength.ed in order to obtain a correct quantitative description of the
and energy per pulse were compared for the two turn-ofh d b

modes. Gradual turn-on was modeled by an envelope of thlé)nization (_)f a real Rydbe_rg atom. Itis poss_iblt_a that such a
form f(t) =siré(t/7). It was found that for narrow pulses, the problem will actually require not only quantitative but also

numerical results for instantaneous and gradual turn-on argualitf’:\tive mo.dification of the C(.)mputational'mo.del's. This
similar (Fig. 6a. For longer pulses it is cleaFig. 6b) that question requires further analysis, and despite its indisput-

the two ionization probability curves, for both gradual and@Ple relevance, lies outside the scope of the present paper.
instantaneous switching, are identical over the range of ap- Figure 8 shows the '0”'23“93” probability as a function
plicability of perturbation theory, but beyond this range they©f detuningd for variousV=e&/w°". The numerical scheme
diverge. Significantly, gradual switching does not introducecomprises three levels,; and fifteen level&, . The result-
any qualitative changes and does not destroy the stabilizatidng curves confirm completely the assertion of the preceding

w; w;

0.30 0.10} b

0.25¢ 0.08¢ 3//2/1 FIG. 7. lonization probability as a function of

0.20¢ 0.06t field strength for a laser pulse turned on in-

0.15F ’ stantaneously. Pulse duration=T,/2 (1),

0.10 0.04¢ 2Tk (2), 8Tk (3). Other parameterss=0,

0.05 0.02¢ (ng/ny)®?=10. The computational scheme
0 contains 3+1 (a) and 9+1 (b) levels.
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FIG. 8. lonization probability as a function of detuning for various
laser field strength&/=0.1(1), 0.3(2), 1 (3), 3(4)). The number of
levels is 15 in the seriefE,} and 3 in the serie$E, }. The laser
pulse is rectangular. Pulse parameteérs3Ty , (no/n6)3’2= 10.

-4’ -AT2 0 A2 A’

section that the dependence of the solutions on the detunirdue toV transitions. For example, in Ref. 4, no changes were
appears on a scale A’. V-type stabilization, characterized observed in the redistribution of the populations of the Ryd-
by strong suppression of ionization, starting with relativelyberg levels as the field frequeneywas varied. The detuning
weak fieldsV~V,, occurs when there is strong resonanté varied over a range of the order of AOwhereA is the
coupling (6=0,xA'). In contrast,A-type stabilization oc- spacing between neighboring Rydberg levels of the group
curs in the interresonance regfofs~ + A'/2), showing up  {E,} (see Fig. 1 However, on the scale of the spacifg

only in much stronger fieldg=V,~ 1. Indeed, in the region between neighboring levels of the gro{is,} this range of

5~ =*=A'/2, the curvew;(d) in Fig. 8 forV=3 lies below the variation of § is very small—less than 0Al. On the other
curvew;(5) for V=1, indicating stabilization of the atom in hand, in accordance with the results obtained above, large

fieldsV>1. changes in the mechanism of ionization and stabilization of
an atom and in the pattern of the distribution of the popula-
6. CONCLUSIONS tion of the atomic levels can be observed for detunihg

varying over a range of the order af'. Moreover, in the

We have undertaken a systematic theoretical description
4 b experiment of Ref. 4, the laser pulse duration was less than

of the photoionization of a Rydberg atom in a strong laser one Kepler period, which, according to B@S), is insuffi

field, taking account of botk\- and V-type Raman transi-
. : X I . ient for stabilization of an atom by-type Raman transi-
tions, and investigated the conditions and mechanisms Iea(g—

ing to stabilization of the atom under such conditions. We ons.

. . Thus, on the whole, it must be acknowledged that to date
have shown that-type resonant transitions determine a new A >
) o .. stabilization of an atom by-type Raman transitions has not
type of interference stabilization of Rydberg atoms that dif- . . .
o " .. been observed experimentally. At the same time, the condi-
fers from stabilization due td-type transitions. The princi-

pal feature ofV stabilization is that it can set in at very tions necessary for such an experiment are easily realizable.

moderate field strengtheg~,), much weaker than fon In our opinion, it would deflmt'elly pe of interest to perform
o , . such an experimenY/-type stabilization can be observed, for
stabilization. For example, fong/nj~5, the laser field

. o : . .example, under the following conditionsy=25, n{=5, w
strength at which deviations from perturbation theory first ~8x10%s L t>15ps, ande=1CP Vicm, which corre-
appear is two orders of magnitude lower than the field onds to intensitiek= 16° W/cIT?.
strength at which nonlinear effects would be observed in th&P

absence o¥ transitions. We thank the participants of the scientific seminar led by
As shown above, the prerequisites féitype stabiliza- N. B. Delone(IOFAN) for valuable remarks during a discus-

tion are given by Eq925), (26), and(31): the pulse duration  sjon of this problem.

must be long enougli25); the field frequencyw must be This work was supported by the Russian Fund for Fun-

much greater than the binding eneii@, | of an electron in  gamental ReseardiGrant No. 9602-1764%nd the U.S. Ci-

the Rydberg level, but much less than the binding energyilian Research and Development Foundati¢@RDF)

|Eg| in the ground staté26); and the detuning of the reso-  (Grant No. RP1-24%

nance must be much less than the spacing between neighbor-

ing Rydberg levels in the serids,, (with energyE, ~E, Mo “E-mail: fedorov@theor.msk.iu
—w) (31). As shown above, the constraint on the pulse du-
ration (25) is most stringent in the very simple three-level
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The first experiments measuring the density of a compressed deuterium and tritium mixture in
microtargets of indirect irradiatiofx-ray targets were performed at the Iskra-5 facility.

The density was determined according to the broadening of the lines of hydrogen- and helium-
like argon added to the DT gas as a diagnostics material. A series of three experiments

was performed with x-ray targets in which the central capsule filled with & BTmixture over

a range of shell thicknesses. In two of the experiments, argon emission spectra were

recorded and the density of the compressed gas was determined. For a microtarget approximately
280 um in diameter with a wall approximately Zm thick, an analysis of the experimental

results yielded an estimated density in the compressed gad @fcn?. Gas-dynamic calculations
using the SNDA(spectral nonequilibrium diffusion with absorptioprogram show that

argon emission takes place just after reaching maximum temperature, but much sooner than
maximum compression. The results of a calculation for an experiment with low relative Ar
concentration are in overall agreement with the experimental data. Additional investigations
are needed to interpret experiments at a relatively high concentratiod998 American Institute

of Physics[S1063-776198)00609-X

1. INTRODUCTION experiments in which the line spectra of He- and H-like Ar-
ions were recorded are reported below.
Determining the density of compressed deuterium—
tritium (DT) fuel is one of the most difficult problems of 2. EXPERIMENTAL LAYOUT AND PRINCIPAL RESULTS
laser-induced thermonuclear fusion. Information about DT-

. . The target consists of a thin-wall spherical copper shell
fuel parameters can be obtained by analyzing the character- . . .
whose inner surface is coated with a gold layef um

istics of the x-rays and thermonuclear particles emerginqhick_ Shells with a diameter of 2 mm and with apertures 0.6
from the volume occupied by the compressed and heated fu%m in diameter for introducing laser radiation were used in

Fsee, for exa.mp_le, Ref)1An _effectivg methoq of determin- .. experiments. A glass capsule 280-308 in diameter

ing the density is based on introducing medium- and tigh- was positioned at the center.

additives into the DT fuel, with spectroscopy of the resulting The glass capsule was filled with a mixture of Ar
ionic lines of the diagnostics material. In practice, preferencetwl atm) and DT(10—20 atm. The capsule was filled with

is given to inert gase$\e, Ar, Xe).z_‘5The density of the DT 4r40n through an opening made in the capsule using a
mixture is monitored on the basis of measurements of thgerigdic-pulse laser. After the opening was sealed, the cap-
width of the emission lines of H- and He-like ions. sule was filled with the DT mixture by diffusidh.

Calculations shoWthat temperatures of the ionic com- The amount of argon in the capsule was checked either
ponent of DTT;=2-3 keV (Ref. 7) and electron tempera- yja mass spectrometry or x-ray fluorescence, based on exci-
tures Te=1-1.5 keV have been obtained in experimentstation of the x-ray lines of Ar by tritiunB-radiation.
performed at the Iskra-5 facility using:280 um diameter After the capsules were filled and checked for the pres-
glass targets with walls 3—zm thick positioned inside a ence of argon and DT gas, they were coated with an addi-
spherical gold box 2 mm in diameter. At such temperaturesjional layer of SiQ to make up the required wall
a substantial number of Ar ions are in hydrogen- and heliumthickness:°
like states. Thus, we are able, using the Iskra-5 facility, to  The Iskra-5 diagnostics system is described in detail in
determine the density of compressed DT gas on the basis ¢fefs. 7 and 11.

Ar ion spectroscopy. The principal experimental results are presented in Table

For the measurements, a spectrometer that detects lineln all experiments, the radiation-to-background contrast in
radiation in the range=3—4 A with resolution\/AN=10°  both energy and power was at leasf.1Gchlieren images
and a technology for filling shells with a mixture of DT and showed that the target sustained no damage before the arrival
Ar were developed. The results of the first successful Iskra-Bf a monopulse.

1063-7761/98/87(9)/7/$15.00 454 © 1998 American Institute of Physics
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TABLE I.

Experiment  ¢gp, ARgp, Por, E., Tos, Ty Tons N, Tor,
No. um um atm J ns ns ns 10° keV
1 296 4 11 6700 0.41 0.450.15 0.66:0.2 0.8 -
2 300 6.7 20 7400 0.34 0.580.15 0.52:0.12 2.5 2.3
3 272 10 9 7300 0.36 - - 0.07 -

Notation: J,, ARgy—diameter and thickness, respectively, of a glass microspRggre-pressure of the DT

gas;E, , os—energy and duration of the laser pulse introduced into the interaction chamberdelay of the

onset of x-ray generation from the compressed core relative to the onset of x-ray generation at the converter
wall; 7,,—delay of neutron generation onset relative to x-ray generation onset at the convertey-wédkal

neutron yield;Ty—DT fuel temperature determined by the time-of-flight method.

Images of the target obtained with a camera obscur&tark broadening of the hydrogen- and helium-like Ar lines.
with ~25 um spatial resolution behind various filters are The measurement scheme is presented in Fig. 2.
presented in Fig. 1. The line of sight of the camera obscurais  The spectrograph parameters are as follows:
off-axis relative to the aperture for the laser radiation, so that  range 1.1 A(from 2.6-2.9 A to 3.7-4.0 A, depending on

the image of the microtarget lies near the edge of that apek e placement of the spectrograph in the chamber
ture. It is evident from the figure that in experiment No. 1 the spectral resolution(with a 50 um core ~0.003 A

compressed region Is circular, with a bell-shaped brightnesE%:,) eV), determined entirely by the size of the compressed

distribution(in experiments without the Ar additive the com- core:

pressed region is annujaiThe size of the compressed region Lo . .

is <55—-60um. In experiment No. 3, the obscurogram con- spatla-llresplutlonw 70 pm;

sists of a brightly luminescing region surrounded by a darker magnification 4; o )

aureole; the size of the region is at mes80 um. The di- target—photographic film distance 10 cm.

ameter of the aureole is 50—@m, just as in experiments Figure 3 displays spectrophotograms and reconstructed

Nos. 1 and 2. x-ray intensities for experiment No. 1. The spectrum appears
We used a spectrograph based on a flat Si crystal forpproximately the same in experiment No. 2. The number of

spatially-resolved detection of x-ray line radiation to mea-the array element obtained by digitizing the image is plotted

sure the density of the compressed core according to then thex axis in the spectrogram. One element in this array

FIG. 1. Obscurograms of the central capsule in experi-
ments No. 1(a, b and No. 3(c, d. The images were
obtained with the following filters: a and c—2@m
lavsan, b and g—1Qum polyparaxymelene2.1 um
Cd.




456 JETP 87 (3), September 1998 Bel'kov et al.

1. In twa” of the three experiments, lines of the 2—1,
3-1, and in part the 4-1 transitions in hydrogen- and
helium-like Ar ions with linewidth up to~20 eV, which is
6 much greater than the resolution of the spectrograph
(=3 eV), were detected at a high confidence level.
2. The structures of the line spectrum in experiments No.
1 and 2 are similar to one another. The linewidths of the 3—-1
transitions, which were of principal interest for density diag-
nostics, are also essentially the same.
3. Ar line radiation was not detected in experiment No.
3, where the glass shell was Lin thick. The image of the
luminescing compressed “core” in the obscurogram in this
experiment is much smaller than in the first two experiments.
We first analyze experiment No. 2 in some detail. The
corresponds to 30um on the photographic film, i.e., Heg, He,, andL lines are clearly seen in the spectrum of
~0.00158 A. this experiment. The two-peak structure at the position of the
The lines detected are marked in the spectrograms. Their, line can be interpreted in two ways. First, it can be inter-
wavelengths[in A] are: He, [3.949, L, [3.727, Heg preted as a singlez line with a central intensity dip typical
[3.366, He, [~3.20], L4 [3.155, He; [~3.13] L, [2.987. of 3—1 transitions, and widtk-30 eV. The second and more
Satellites are observed about the Had He lines. likely interpretation is that the structure consists df aline
A preliminary analysis of the spectrograms showed thawith a width~11 eV and a Hgline. The ratio of the. ; to
1) the ratio of thel ; to He; line intensity is approximately Heg line intensity is approximately 0.8. A preliminary esti-
0.8 in both experiments;)2he width of the Hg line at half ~ mate of the density can be made using the Inglis—Teller for-
intensity in both experiments is20 mA (=22 eV); 3 the  mula logn,=23.26-7.5 logn+4.5 logZ, where n is the
width of the Lz line is ~13.5 mA (=17 eV) and~9 mA number of the last line that can be resolved in the series and
(=11 eV) for the first and second experiments, respectivelyZ is the charge of the nucley this caseZ=17 for H-like
andZ=16 for He-like iong. Settingn=4 andZ=16, we
obtainn,=2.75x 1073 cm 3 (p~1 glcn?).
A more accurate estimate of the electron density can be
We now summarize the principal experimental results. obtained by analyzing the lineshapes—specifically, the line-

FIG. 2. Diagram of Ar x-ray line radiation measuremeritsTarget;2) Si
crystal;3) UFSH-S photographic film4) entrance filtefBe 20—40um); 5)
filter for shielding from scattered and fluorescence x rays and [igh2
um); 6) spectrograph cas®@) filter for shielding the film from hard radiation
(Pd 3 mm); 8) diaphragms for shielding from scattered radiation.

3. DISCUSSION
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FIG. 3. Spectrophotogram and reconstructed intensity of x rays from the target in experiment 1.
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widths. Both ions and electrons contribute to broadening of AE, eV
the Ar lines. As is often the case, under the conditions that ]
we analyzed, it is the ions, whose effect is quasistatic, that 18k
make the main contributiotf.
In the quasistatic regime, the ions are assumed to be 16}
immobile. Line broadening is due to the Stark shift of the
levels induced by the electric field of the ions surrounding n
the emitting ion. Linewidths in an ideal plasma can be esti-
mated using the relatiof 12k
5.55n°—1)ea,
AE Zn Fo). @ o7 o1 o5 i 7

wheren is the principal guantum number of the Ievab is FIG. 4. Dependence of the ArXVILL ; linewidth on the percentage content
the radius of the Bohr orbit, and,, =18 is the charge of the of DT in the mixture AsDT (n,=2x 10?3 cm 3, T,=T,=1keV): 1) Data
argon nucleus. In the present case, both ions of hydrogeifpm Ref. 12;2) estimate from Eq(1).
isotopes Z=1) and argon ions contribute to the fietg s, .
In the presence of two types of perturbing particles, the
characteristic Holtsmark fiel&y) is The estimates reproduce two important circumstances
32 312 \2/3_ 32 23 also found in Ref. 15. In the first, a 10% addition of Arto DT
Fors) = (Fopr) + Foan) "= 2.6e(ny + Z3Ma) gas produces almost the same broadening as pure Ar. In the
=2.6en?3(a+BZ3??" (2)  second, in a nonideal plasma the sign of the inequality be-
tween the Ar linewidths due to the action of the argon ions
themselves and the deuterium and tritium ions with
=const remains unchangeE,,>AEp.
We also checked the approach based on Egsand(3)

Here a=ny/ng, B=np/ng, andng, ny, andn,, are the
electron, hydrogen ion, and argon densities. The quantities
and B can be expressed in termsmf andn,, . Introducing

Ny Nar by calculating the width of thé 4 line for extremely low Ar
p= Nt Na’ q=1-p= Nt Na’ concentrations in DT at various valuesrgf, and compared
_ the results with data from Ref. 4. The results of the detailed
we obtain calculations agree with the simple estimate, f@rranging
D q from 1073 cm 3 to 1074 cm 3.

a= B= ST7.a Using Egs.(1) and(3), the behavior of th& ; linewidth
PT<ad P+ 2ad (and also the Hglinewidth) can be calculated with a high
The relation(1) is valid if the number of particles in the degree of confidence at an Ar concentratipn0.025. Thus,
Debye sphere is largdyp=1C. In a nonideal plasma, the n,=2.5x10F cm™3 corresponds to a linewidthAE
presence of screening and correlation of charged particles17 eV.
effectively reduces the mean active field. Extending the re- Estimates of the contribution of other broadening
sult of Ref. 13 to a multicomponent plasma yields a correcmechanisms, such as Doppler, impact, and so on, show that
tion associated with the departure from ideal behavior: they play a minor role compared to quasistatic broadening by
Fo=Fos)(1-0 7N’1/3) ions; they contribute 2—3 eV at most.
nonid™ T 0(2) D Estimates of the optical depth of the lines of-3 tran-
21, 23 32213 sitions show that for our conditions these lines can be treated
=N~ 3 -2.6eng (a+ BZ)7, (3 as optically thin to a first approximation.
We now proceed to an analysis of experiment No. 1.
wherer, is the mean separation between partichés,is the  comparing the spectra in experiments No. 1 and 2 shows
total number of particles in the Debye sphere, apds the  that they are very similar. This seems strange, as in all like-

Debye radius, given by lihood, the density in the second experiment should be
1 Mec2 higher than in the first. Indeed, the initial densities of the
— =4mrg—— ng(1+ a+ BZ3). DT+Ar mixture in these experiments apé®~4.2 mg/cni
r T .
D and p(®~6.2 mg/cni. The degree of compressigassum-
Herer,=2.8x10 13 cm is the classical radius of the elec- ing that compression is governed primarily by gas dynamics,
tron. while radiation and electronic heat conduction play a small

To check the relatioril) with F from Eq. (3), we com-  role) is governed by the ratiM/m, whereM andm are the
pared it with calculations from Ref. 14, where the shape oimass of the shell and gas. The ratio of these quantities in the
the ArLg line was calculated fom,=2x10Pcm3 T,  two experiments was-0.88, while the ratio of the densities
=1keV, and various values gf by the Baranger—Mozer of the compressed gas should %@.6 (when heat conduc-
method. Figure 4 compares the calculatiénsf the line-  tion and the transition to the ablation regime are taken into
width AE and the widths estimated using K@), with Fq s, account, this number should become even smallére L
replaced byF g from Eq. (3). The calculations agree well linewidths should therefore have differed by at least a factor
with the simple estimate. of 1.37.
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FIG. 5. Density dependence of the Hand L, linewidths with various ~ FIG. 6. Computed ion temperature distribution as a function of the mass
initial DT pressures ({5, = 1 atm): 1—ppr=10 atm, 2—Pp;= 20 atm(in- coordinate in gas at the moment of generation of half of the neutron yield:

strumental line broadening 3 eV is taken into account Experiment 12) experiment 23) experiment 3m, is the total gas mass in
the corresponding calculation.

It was shown abovdsee Fig. 4 that the linewidth at
fixed electron density, increases with the relative Ar con-
centration in the mixture. Ag increases from 0.02&xperi-
ment No. 2 to q=0.044 (experiment No. }, the linewidth
increases by approximately 30%. If the fact that the densit
of the DT+Ar mixture at fixedn, varies as a function of
according to

mental value. Comparing the energy balance for the DT gas
at the moment of maximum compression shows that in the
alculations the principal energy losses from the compressed,
ot gas are mediated by argon x-ray emission.
Figure 6 shows the computed distribution of ion tem-
perature as a function of normalized mass coordinate of the
_ Ne Agra+An ) gas at the moment of maximum neutron production rate. We
p NA( prat Aaf see from the figure that the temperature distribution in the
is also taken into accourthereN, is Avogadro’s number, gasAs h|ghly nonur;:form. istic for d - densi
and Apt and A, are the atomic weights of the gas compo-. th n m:potrtatnt (r:l ar:aCte”St;.C or gte.rmwt])mgl gasS. ens:?]/
nentg, then we find that for the second experiment the denff N msfan at which argon :nelem|s§|oE €gins. since the
sity should be~0.8 g/cn? (see Fig. 5. : inetics of gas |_on|zat|on is calcu a‘Fegl in the S_NDA program
in the average-ion approximation, it is impossible to make a
direct, accurate calculation of the temporal form of the emis-
sion of the corresponding lines, since we know only the av-
erage populations of the ionic levels in the various charge
For a more complete interpretation of the experimentaktates of argon. However, if it is assumed that the density
results, calculations were performed using the onedistributions in the excited states of hydrogen- and helium-
dimensional gas-dynamic program SND#pectral nonequi- like argon are close to equilibriu??\,we can reconstruct the
librium diffusion with absorption® The calculations were concentration of excited states in terms of the average popu-
performed for parameters of the target and the laser pulsations, using the binomial distribution
introduced into the converter box that correspond to experi-
ment. The equation of state and transport coefficients of ce=1I1 CN';fN';(l_f )gn*NE
DT+Ar were calculated using the average-ion model. The koL Mg, 'n n '
numerical results are presented in Table II.
We see from Table Il that the computed neutron yieldwheren is the principal quantum number of the level, 111
for experiments 1 and 2 is two to four times the yield mea-are the occupation numbers of levefor a prescribed state
sured in the corresponding experiment. For experiment 3, thef the ion k, g, is the statistical weight of a levelgf
computed neutron yield is essentially identical to the experi=2n?), f,=P,/g,, P, is the average population of leve|

4. COMPARISON OF EXPERIMENTAL DATA WITH GAS-
DYNAMIC CALCULATIONS

the and
TABLE II. e g,
Experiment Ry, Epr, E,, Ee, Ruin, N, 9 Np!(gn—Np)!
No. um J J J um Sy, S 6 10° ) ] o
are binomial coefficients.
L la7 10 55 31 31 479 67 107 38 For a calculation of the emission of the hydrogen- and
2 1469 13 86 07119 173 175 463 5.6 helium-like argon ions of interest,, L4, L., He,, He
3 1336 6.6 4.4 058 9.36 153 269 2904 0.062 9 ar bgy Ly, M&, TS,

and He—the occupation numbers of the corresponding
Notation: Ejr—energy introduced into the DT gas during the compressionstates are
process up to the moment of maximum compression of the central capsule;

E,, Ec—energy losses of the DT gas due to radiation and electronic heat

conduction up to the same moment in tinky;, R,,;—initial and minimum NL“=
interior radii of the glass shell. n :

1, n=2, L 1, n=3,
N-8=
0, n#2, n 0, n#3,
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I, dN/dt P g/cm3 TABLE Ill.

1.0f 4~ 13 Experiment N, T;, AE(Heg), AE(Lp), Drnins Tyns Tyy

08 ST e No. 10° keV eV eV ly/llge mm ns ns
........ 2 1 08 - 22 17 0.8 60 0.66 0.45

0.6 1 38 - ~10 7 0.2 70 035 04

2 25 23 22 11 0.8 55 0.52 0.58
0.4 N 2 56 2.6 ~20 13 052 50 0.57 0.6
0.2f
d 10

0 a N "

1.50 155 160 165 170 17514 ns _ . _
tron temperature, and luminosity of the and He; lines for

FIG. 7. Computed time dependence for the conditions of experimeht 2: the conditions of experiment 2

Neutron generation ratéN/dt; 2, 3) emission intensities of the,, Heg ] p " . .

argon lines#) average gas density. The maximiup, L, L., He,, Heg, For experiment 2, the maximum luminosity of the He

and He, line intensities are in the ratio 8.2:21315:4.4:1.9. line corresponds to a density1.1 g/cni, which agrees with

the estimate based on the linewidth, presented earlier in this

section. The maximum luminosity of the; line corresponds

to a density=~0.7 g/cnt, which is also close to the estimate

NL,/:[J" n=4, Hea:{l’ n=12, ~0.6 g/cni. The indicated ranges correspond to electron
n 0, n#4, n 0, n#1,2, temperature§ .~1 keV. The computed ratio of the; and
Heg line intensities is 0.52, and the experimental value is
1, n=1,3, 1, n=14, ~0.8. The diameter of the line emission region in the calcu-
N:e [ NHeY:{ lation is approximately 5Qum, and the experimental esti-
0, n¥13, " 0, n#1l4. ’

mate obtained with the camera obscura~i®5 um. The

The concentrations of the excited states of the argon a{;omputed (;m;]esyn anql Tyy |n|exp;er|ment 2 are 0.57 SS and
oms calculated in this manner were used to calculate thg‘6 ns, and the experimental values are 0.52 ns and 0.58 ns.

temporal shape of the argon lines. In so doing, the absorption 1€ con;puted and experlmgntal values of (tjh_e vaglous
of the lines as they pass both through the compressed gas afj@rameters for experiments 1 and 2 are compared in Table Ill
w—experiment, bottom row—calculation

through the glass shell was taken into account. Figure 0P rr? b lculati d : f
shows the computed results for the temporal characteristics T_e agreement between calculation and experiment for
of the radiating mixture of DT and Ar in experiment 2. For experiment 2 is very good. For experiment 1, the discrepancy

experiments 1 and 3, the behavior looks approximately thds greater. o i i
same. Moreover, as one can see from the figures, in all cal- The main difference between the experiments is that the

culations the various lines are emitted at virtually the saméEI_at'Ve Ar concentration is higher in the f|rs_t expenm_en_t.
instant in time(to within + 25 ps). The duration of emission This suggests that the model o_f the_rmodynz_imlc and radiation
is also essentially the same. The lines are emitted essentialffePerties of EF_Ar plasrga with high relative Ar concen-
immediately after the peak of the neutron production rated atlorrw]_s ”_“‘Stl € Improve d b , in which th
(approximately 25-50 ps later, i.e., somewhat later than the | S IS also suggested by experiment 3, in which the

time at which the gas temperature reaches its maximurﬁelat've Ar concentration is approximately the same as in the

valug, and much earlier than the time of maximum compres-f'rSt experiment. Here it is obse_rved that the computed_ and
sion. experimental neutron yields are in agreement, and the size of

Figure 8 shows the spatial profiles of the density, elec-the emlttmg region {,“30 pm) obtamed. from the 0950“,“"
gram is correlated with the computed size. The luminosity of
the lines obtained in the optical transparency approximation
is comparable to the luminosities in experiments 1 and 2, but
p, glem® T,, keV no line radiation is observed in the experiment. Additional

16} investigations are required to understand the reason for the
f discrepancy.

1.4

1.2

Lof 5. CONCLUSIONS

0.8} , . . o

1. The first successful series of experiments with indi-

o6r ] rectly illuminated targets, in which Ar was added to DT gas

04 ae™ . for diagnostic purposes, has been conducted at the Iskra-5
0 5 10 15 200 r,um experimental station. We detected the emission-line spec-

i i trum of hydrogen- and helium-like Ar ions—specifically,
FIG. 8. Computed spatial profiles of the electron temperatoueve 1), lines Corresponding to the transitions=2l. 3—1. and pos-

luminosities of the lines ; (curve2) and He, (curve3), and density of the . .
DT-+Ar mixture (curve4) at the moment of maximum argon line emission sibly 4—1. The density of the compressed gas at the mo-

for the conditions of experiment 2. ment of maximum line emission was estimated from the
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width of the H% (3—1) lines: ppr4a=~0.8 g/crﬁ for ex- modynamic equilibrium is established as a result of collision processes.
periment 1 angpr.a~1.1 glcnt for experiment 2.

2. The experiments were analyzed with the aid of spheri-
cally symmetric calculations using the radiative gas dynam-'N. G. Basov, Yu. A. Zakharov, A. A. Rupasov, G. V. Sklizkov, and A. S.
ics program SNDA. It was shown that for experiment 2, in Shikanov, Diagnostics of Dense Plasn{én Russian, Nauka, Moscow

. . : o . (1989.
which the partlal Ar concentration wap= 2.44%, hlghly 2S. A. Bel'kov, A. V. Bessarab, G. G. Kochemasewal, Izv. Akad. Nauk

satisfactory agreement is observed with all measured characsssr, Ser. Fis1, 1263(1987.
teristics: neutron yield, ion temperature, time intervals be-°B. Yakobi, R. Epstein, F. J. Marshadt al, Rev. Sci. Instrum66, 728

gary- (1995.
tween the laser pUIse and the pUIse(.j n.eUtron ar.]d X 4C. J. Keane, B. A. Hammel, D. R. Kangt al, Phys. Fluids B5, 3328
erated by the capsule with DAr) emission, the sizes of the (193

compressed and heated regions, and densities of the comH. Nishimura, T. Kiso, H. Shiradat al, Phys. Plasmag, 1 (1995.
pressed and heated BAr gas. In experiments 1 and 3, 6sS. A. Bel’kov and G. V. Dolgoleva, VANT, Ser. Matematicheskoe Mod-

; [ -3 ; ; elirovanie Fizicheskikh Protsessov, No. 1, 8992.
W.here the Ar Concentrathn & . 5%, behavior appremfelbly "F. M. Abzaev, V. |. Annenkov, V. G. Besuglost al, JETP Lett.58, 28
different from the calculations is observed. To determine the (1993

reasons for such behavior and to formulate a more detailedA. v. veselov, V. S. Drozhin, V. M. Izgorodiet al, Fusion Technol28,
interpretation of the resulting spectral structure, additional 1838(1995.

; : ; ; PR Yu. V. Andramanova, A. V. Veselov, V. S. Drozhgt al. in Report to
(numerical) theoretical and experimental investigations are MicrospheresMicrocapsules and ICE Targets Technology Specialists

needed. Time-resolved measurements of the argon line specworkshop Moscow, Russid1997.
trum would be especially important here. 0yu. V. Andramanova, A. A. Aushev, N. L. Zolotukhiret al.in Report to
MicrospheresMicrocapsules and ICE Targets Technology Specialists
This work was carried out at the Iskra-5 laser thermo- Workshop Moscow, Russia, 1997.

11 L
nuclear facility (registration number 01-50with financial F. M. Abzaev, A. V. Bessarab, G. A. Kirilloet al, VANT, Ser. Mate-
y( 9 5 maticheskoe Modelirovanie Fizicheskikh Protsessov, No. 41682.

support from the State Committee of the Russian Federation) | gopeman, L. A. Vainshtein, and E. A. YukoExcitation of Atoms
on Science and Technology, and from the Russian Fund for and Broadening of Spectral LingSpringer-Verlag, Berli(1981) [Russ.
Fundamental Resear¢@rant No. 96-01-00046 original, Nauka, Moscow1979)]. . . _ .
13G. Bekefi, C. Deutsche, and B. Yakobifflasma in Laser$in Russiar,
o _ - Energoatomizdat, Moscowi982.
E-mail: belkov@otd13.vniief.ru 14B. Held, C. Deutsch, and M. M. Gombert, Phys. Rev2@ 3134(1983.

PE-mail: kochemasov@otd13.vniief.ru 15R. J. Tighe and C. F. Hooper, Phys. Rev1B, 1173(1977.
Ywith shells~4 um and 7um thick.

2This is not that bad an assumption at high gas densities, when local theffranslated by M. E. Alferieff



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 3 SEPTEMBER 1998

Magnetic field generated in a plasma by a short, circularly polarized laser pulse
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We study the generation of a quasistatic magnetic field by a short, circularly polarized laser

pulse in a tenuous cold uniform plasma. It is shown that two physical mechanisms are responsible
for the generation of the various components of the magnetic field. One mechanism is due

to the ponderomotive forces and governs the generation of the azimuthal component of the
magnetic field. The other is similar to the inverse Faraday efté€) in a nonuniform

plasma and gives rise to axial and radial components of the magnetic field. At moderate radiative
intensities, all magnetic field components are proportional to the squared intensity. The

spatial structure of the magnetic field depends strongly on the pulse shape and the plasma density.
© 1998 American Institute of Physid$1063-776(198)00709-4

1. INTRODUCTION that quasistatic transverse currents and magnetic fields arise
only in the fourth-order approximation ia. There are two

In the last few years, substantial progress has been madgpes of currents and magnetic fields. Qiagimuthal mag-
in the generation of subpicosecond laser pulses with energiggetic field, axial and radial current componerissgenerated
of tens of Joules and radiative intensity'3010%° W/cm?. by a laser pulse irrespective of the polarization of the pulse
Such pulses propagating in plasma excite plasma oscillaand exists not only inside the pulse but also in the wake field
tions, in whose electric field electrons can be accelerated tregion behind i€ The other(azimuthal current, axial and
high energiegsee review in Ref. )1 Together with a quasi- radial magnetic field componentss generated only by a
static electric field that results from charge separation in theircularly polarized laser puls¢FE). Such a magnetic field
plasma, a laser pulse generates quasistatic transverse curreigtéocalized in a longitudinal direction inside the pulse. The
and magnetic fields. This question has begun to attract atter@bsolute values of all three components of the magnetic field
tion recently, especially for circularly polarized laser pulses,depend on both the pulse size and the plasma density. The
where an inverse Faraday effétfE) is possible. In Ref. 2it IFE can appear only for sufficiently long or short pulses
was found on the basis of perturbation theory with respect t@ropagating in a relatively dense plasma. We discuss these
the parametea=vg/c<1 (vg andc are the average veloc- questions here for a pulse with a concrete shape.
ity of an electron in the laser radiation field and the speed of
light) that in a cold uniform nondissipative plasma the IFE
arises in the quadratic apprOX|ma_1t|c.Jn. Howgver, in Ref. 3 n;z' BASIC RELATIONS
was shown under the same restrictions as in Ref. 2 that irre-
spective of its polarization, a laser pulse generates a quasi- To study the propagation of a short laser pulse in plasma
static magnetic field only in fourth order in the parameter we employ Maxwell’s equations for the electicand mag-
In Refs. 4 and 5 the axial magnetic field generated in plasmaetic B fields, together with the system of relativistic hydro-
by a laser pulse on account of the IFE was studied withoutlynamic equations for a cold electron flgke, for example,
using perturbation theory in the parameger Ref. 2:

However, these results are mutually inconsistent. Ac-

cording to Ref. 4, in the limita<1 the magnetic field is o, g=_ 172 2.1)
proportional toa?, which corresponds to the result of Ref. 2. cat’
According to Ref. 5, fom<1 the magnetic field is propor- 19E 4
tional toa®, which agrees with Ref. 3. The error that led the ¢y == — + -~ env, (2.2)
authors of Refs. 2 and 4 to overestimation of the IFE con- c Jt
siderably is pointed out in Ref. 5. However, both in Refs. 2 Lo _
and 4 and in Ref. 5 only the magnetic field associated with div E=4me(n—no), 23
the IFE is discussed, while other physical mechanisms which  gjy B=0, (2.9
under certain conditions lead to generation of a stronger
magnetic field also exist. p _ e

In the present paper, using perturbation theory in the E+(v-V)p—eE+ EVX B, 29
parameterl, we systematically study all components of the

ic fi i i an

magnetic field that a short, circularly polarized laser pulse 2 divinv) =0, 2.6

generates in a cold uniform nondissipative plasma. We show gt

1063-7761/98/87(9)/7/$15.00 461 © 1998 American Institute of Physics
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wheren, v, andp are the density, velocity, and momentum According to the Helmholtz theorefnthe vectorg, can be
of the electrons, ang=mvy, wherey=\1+(p/mc)?isthe  split into two parts qlzq'1+ q}), such that dig"=0 and
relativistic factor. The plasma ions are assumed to be immoeurl q'1=0. For the transverse paqj, Eq. (2.12 has the
bile and singly charged, and their density is assumed to bform

uniform and equal tog.

2 Atr
From Egs.(2.5 and(2.1) there follows an equation for 9701 — 2V2g"+ w2g =0 21
Q=curl p+(e/c)B, called the generalized vorticity, at? Gt @pda =" 213
aQ For the irrotational(potentia) partq'l, Eqg. (2.12 assumes
W:CU” vX Q. (2.7 the form
According to Eq.(2.7) the flux of generalized vorticity #qy

2.0 _
through an arbitrary surface bounded by a contour moving  gt2 T pdy=0. (214

together with the fluid is constafgee, for example, Ref.)6 » )
Therefore the quantitf at a given point vanishes provided SPecifically, Eqs(2.13 and (2.14 describe transverse and

that it was vanished at the same point before the laser puld@ngitudinal waves, which in a linear approximation propa-
arrived there. and therefore gate in a uniform medium independently of one another.

A laser pulse propagating in a nonmagnetized plasma
must be treated in the linear approximation as a transverse
electromagnetic wave with a slowly varying amplitude.
Thereforeq, is a solenoidal vector, so that diy=0. To
simplify the notation, in what follows we drop the symbol tr.

c
B=— s curl p. (2.9

Substituting(2.8) into Eq. (2.5 we find for the electric field

intensity Since divg; =0, in the second approximation€ 2) we
eE 1 ap find from Eq.(2.11)
— = +——. .
mc EV’}/ mc dt (2 9) (92q2 c aqi
_ o — +¢? curl curl g+ wi0,= — 5V —. (2.19
According to Eq.(2.3), the electron density is gt 2 at
n-n, ¢ Jp p\2 Since an irrotational vector stands on the right-hand side of
o ;zV = m—C+CV 1+ mel | (2.10  Eq. (2.19, the solution of this equation satisfies the condi-
0 P tion curl g,=0. According to Eq.(2.8), this means that the
Wherewp=x/47rn0e2/m is the electron plasma frequency ex- magnetic fieldB, vanishes in the second approximation
pressed in terms of the ion density. (B2=0). _ S
Taking the time derivative of Eq2.9) and making use Thus, in a uniform, cold nondissipative plasma, a sole-
of (2.2), (2.9, and (2.10, we find an equation containing noidal electromagnetic field does not generate any magnetic
only the dimensionless electron momentgm p/mc:7 field in the second approximati&nThis result is at variance
, with the results of Refs. 2 and 4, where a quadratic inverse
a wpd d Faraday effect was obtained for circularly polarized laser
iz T curlcurlg+ e —CrVyl+g pulses. The reason that the authors of Refs. 2 and 4 were led

to incorrect results is indicated in Ref. 5 and consists in the
cq _dq 5 5 fact that the condition diq.lzo_ was ignored_. .
BN div —-+cViVl+qT). (2.11 A second-order quasistatic magnetic field is generated
when factors that are of no consequence for short laser pulses
In what follows, we are interested in the weak- propagating in a tenuous plasma are taken into acco@oft
nonlinearity approximation, where the velocity of the elec-lisions and thermal motion of electrons, plasma nonunifor-
trons is small compared to the velocity of light. This restric-mity, irrotational high frequency fiejd Concerning this
tion is equivalent to the conditiojg|<1 and enables us to point, see, for example, the review articles Refs. 9 and 10.

seek a power-series solution of Eg.11): When the condition curtj,= 0 is taken into account, Eq.
" (2.5 becomes
Q=218”qn, A C oo -
sz tep|d=—5 5 Var. (2.19

wheree is a small parameter. Expanding the expressions in ) o ]
Eq. (2.11 in powers ofe and collecting terms with like N the third approximationr{=3) we find from Eq.(2.11)

powers of the small parameter, we obtain a coupled set o[;z

equations forg,, . T;+cz curl curl g3+ w;‘;qg,
In the first approximationr{=1) we have, according to
Eq. (2.1, d 1 99,
o =—CV —(G10p) + 0| 5 (wp—C*VA)gf—cV —= ),
1 2 2 —
e +c¢* curl curlg; + w,q; =0. (2.12 (2.17
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whereV? is the Laplacian operator. Equati¢®17) makes it c _ag(r,t)
possible to investigate the generation of the third harmonic ~ da(r,t)=— EZV ot (2.29
(for short laser pulses this question has been discussed, for P
example, in Refs. 1)1 as well as quadratic corrections in the where
dispersion relation for laser radiation. ¢
. Returning to the issue of ggnerqting a magne.tic field, it ¢:pr dt’ Sir{wp(t—t’)]qf(t’,r). (2.27)
is necessary to find the quantity djy, the equation for -
which, according to Eq(2.17), has the form Substituting(2.26) into Eqgs.(2.24) and(2.25), we find
A 1 902 1 [
2 H _ 2 2v2\ 2
P"'wp div q3—q1V<§(wp—C \% )Q1_CV 7) 0r,=— Z—wg P‘FQ)E_CZVZ) @b, (228)
J 2
A U2, d 0
C&tV (A1-G2). (218 (W‘ng)gs:_cﬁ(%'vgz)
There is no great difficulty in writing an equation foy. 92 )
However, we confine ourselves here only to an equation for +| c?V2— W—wp)(%'%)- (2.29
curl g4, since this quantitysee Eq(2.8)) is proportional to
the fourth-order magnetic fieldB= —(mc*/e)curl q,): The current(2.20 can be written, using Eq92.26 and
(2.28), in the forn?
ﬁ?—cZVZBnL wZB=4mc curl(j\"+j?) (2.19 c _dp\ 1 [
at P ' ' $(1) 7 24, 2_c2y2
Ja ecrb(ggv at) 27){) &t2+wp cV )cp.
where we have dropped the subscript 4 in the magnetic field (2.30

(B,=B) and we have written the fourth-order current as a
sum of two terms. The first current term specifies the curreng. quASISTATIONARY NONLINEAR SOLENOIDAL

in the direction ofgy: CURRENT
. mc (1 d For the quantit t), which characteri I
(1 _ T2 2vnq2 v, q yq.(r,t), which characterizes a laser
14 qz(z (0p=cVI)a Cat v q2>. 2.29 pulse in the linear approximation, we use the expression
The direction of the currer]lﬁ1 is specified by : au(rt) = E[a(r,t)exrx—iwt+ikz)+c.c.], (3.
(2)_ _ mc 2_ 2p2 J o
Ja7= = 7ot (@p=CV)(Ar-G2) —C 7 V-3 where it is assumed that the pulse propagates along the

(2.21) axis, w andk are the frequency and wave number, which

according to Eq(2.13 satisfy the dispersion relatiok?c?
Bearing in mind the general expression for the current den= 2,2 and a is the complex amplitudgenvelopg,

sity which is assumed to be slowly varying in both tifen a
n/n scale 27/ w) and spacdon a scale z/k).
j=env=ecnyq _0, (2.22 To a first approximation in the spatial and time deriva-
Y tives, an equation for the envelopdollows from Eq.(2.13):
and introducing the notatiog=n/nyy, we rewrite the Ja Ja
fourth-order current one more time: E+vga=0, (3.2
ja=ecny(d292+0193), 223 \where vg=c?k/w is the group velocity of the pulse. The

whereg, andgs specify the perturbations of the ratio of the solution of Eq.(3.2) is an arbitrar_y func_tion qf the varia_ble
electron density to the relativistic facterin the second and ¢~ ~Ztvgt, representing an axial variable in a coordinate

third approximations, fram(_a_comoving \_thh 'Fhe pulse, and the yariable whigh
specifies the position in a plane perpendicular toztaxis.
1 J 1 5, o In other words, Eq(3.2) describes the propagation of a pulse
9o=7 [C7 divax— 5 (@, —C7VI)ay |, (2.4 of constant shape.
P In reality, both the shape and energy of the pulse vary,
1 a . 2 oo both on account of linear effects such as diffraction and dis-
g3:w_§ ¢—r divaz—(wp=cV) (a1 a2) |- (225 persion, for which the second spatial and temporal deriva-

tives of the slowly varying amplituda are responsible, and
The expressiong2.20, (2.24, and (2.25 can in general nonlinear effects. If the laser pulse is short compared with
form be put into a form that is more convenient for analysis.the distance over which the shape and energy of the pulse
Since there are no perturbations at a given point in thevary (the so-called quasistatic approximafipnthen the
plasma prior to the arrival of a laser pulse thetes(—«), variation can be neglected when studying the nonlinear ef-
we write the solution of Eq(2.16) in the form fect of the pulse on the plasma. For this reason, to calculate
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the magnetic field we assume that the characteristics of a 1—2\2 t
pulse, such as its width, duration, and energy, are given #2=—,— pr dt’ sinfwp(t—t")][aj(r,t’)
(constant-pulse approximatipn o

Using Eq.(3.1), we find Xexp(—2iwt'+2ikz)+c.cl. 3.7

, 1 1 _ _ The integrand in Eq(3.7) contains the product of a rapidly
Q1:§|a|2+ Z[az exp(—2iwt+2ikz) +c.c], (3.3 varying function expf2iwt’) and slowly varying functions.
Integrating by parts, the functio#h, can be represented as a
where the first term varies slowly in both space and timegSeries in powers ofo~*. The first two terms of the series
while the second term characterizes the second harmonic #fve the form
the laser radiation.

: L L . . 1-\2 02 i ﬁag

Since we have in mind laser radiation that is both circu-  ¢,= _g - ag— .

larly and linearly polarized, we expreasn the form 16 o w dt
a(r,t)=ao(r,t)(ecting)+ea,, 3.9 Xexp(—Ziwt+2ikz)+c.c.] . (3.9

whereeg, , , are unit vectors in a plane perpendicular to the
direction of propagation of the puls&y) and in the direc-
tion of the propagation axiszj, a, is the scalar complex
amplitude in the X,y) plane, anda, is the axial component
of the envelope, which by virtue of diy;=0 can be ex-
pressed in terms ddj:

It is simplest to find the quasistationary part of the cur-
rent(2.30, which can arise from terms quadraticdy, and
in linearly polarized radiation from terms quadraticég. In
Ref. 3 it is shown that the contribution of the second har-
monics to the quasistationary current isa)p(/w)2 times
smaller than that of the zeroth harmonics. Neglecting such
small terms, the quasistationary part of the cur(@r0) is®

enyc? [ _ dey

(i5)= ™ ( Ty
The quantityA equals O for linearly polarized radiation and P
=1 for circularly polarized radiatiorithe sign specifies the where the brackets indicate that the current varies slowly
rotation direction of the polarization vecjor with time over the intervatb 1.
Substituting(3.4) into Eq. (3.3), we take account of the For a linearly polarized laser pulse, the quasistationary
fact that|a,|<|ao|. As a result, neglecting small terms pro- part of the current2.21) was studied in Ref. 3, where it is
portional to the squared ratio of the wavelength of the  shown to be @,/w)? times smaller than the curre(g.9). In

1
a,= m

ga, . oa
2N
ax Ny

C2
|- —2V2¢o), (3.9
@p

laser radiation to the transverse pulse size we obtain the case of circular polarization, as will be shown below, the
1 1 slowly varying part of the curren®.21) is much larger.
q§=§(1+)\2)|a0|2+ Z(l_)\z) As follows from Eqgs.(3.5 and(3.7), in the case of cir-

cular polarization the second harmonics of the quantiies
andg, vanish, and Eq(2.29 assumes the form

X[a3 exp(— 2i wt+2ikz) +c.cl. (3.5
2
It follows from (3.5) that there is no second harmonic for %erg 3= —c%(qugzo)
circularly polarized laser radiatiofin reality, it is small, of
the order of §4/r.)?). N
We note that the radiative intensity is proportional to +{cV _W_wp)(ql'q20)1 (3.10

(9?), where the brackets denote averaging over time. We
introduce the quantity where g, and g, are the zeroth harmonics of the corre-

sponding quantities.
1 ) ) Neglecting the derivatives of these quantities and taking
| = §(1+>\ )| ag|?, account of(2.13, Eq. (3.10 assumes the form
to characterize the dimensionless intensity. Obviously, for
fixed amplitudd a,| the intensity for linearly polarized radia-
tion is half that for circularly polarized radiation.

According to the definitior(2.27 and Eq.(3.5), ¢ can

be written in the form

‘92+ 2| 9= —c(Vgyp) 1 (3.11
G2 @ 03 c(Vgzo ot .

Bearing in mind thatv> w,, we neglect the second term on
the left-hand side of Eq3.11) and write it in the form

d93
b= o+ by, Zt €l V9. (3.12
where Actually, Eq.(3.12 reflects the fact that the high-frequency
third-order perturbations of the electron densitg)( result
bo=w jt dt’ siMwg(t—t)]1(r,t') (3.6) from the high-frequency motion of electrons with velocity
P) o P m €g; in a nonuniform plasma. In addition, the nonuniformity
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of the plasma is produced by the laser pulse and depend® comparison to the other components, the curi@n®)
guadratically on the radiation amplitudg.). contains an extra small factas,/2», and fails to vanish

Solving Eq.(3.12), we find for the quasistatic part of the only in the vicinity of the pulse, where the functiofig( 7)
second term in EQ(2.23, corresponding to the current andf,(p) are also nonvanishing.

(2.2, The axial and radial current componeidis4) and (4.5
2 s determine the azimuthal magnetic field of the laser pulse, the
(9= 1€NoC E_ C_2V2¢0 a*xal. (313 equation for which, according to E¢R.19, can be reduced
8w 2 o to the form
Obviously, the curren{3.13 is nonzero only for a circularly ) - ”
polarized wave, whera* X a# 0. V- 2 1| 5,=167 o(ps1), 4.7
where
4. QUASISTATIC MAGNETIC FIELD OF A CIRCULARLY ZA=eBlmcw,,

POLARIZED LASER PULSE ) )
__[de|°df; » d?¢ d 5
Consider an axisymmetric laser pulse, for which the” = dy E[(l_vp)fZ]_‘Pd_,f f2$[(1_vp)f2]'
guantityl depends only on the variablés-ct—z andr. For 4.9

definiteness, we assume that The azimuthal current4.6) is responsible for the gen-

I =1of1(&)T5(r), (4.1  eration of the axial and radial magnetic field components,

. . , , .. which are governed by equations similar(th7). We write
wherel characterizes the maximum dimensionless radlatlve[he solutions of the equations for all three magnetic field

!ntens[ty, wh'lle Fhe functlonsﬁl.andfz specify the varlathn components, satisfying the boundary conditions
in the intensity in the longitudinal and transverse directions,

respectively. In the accordance with the definitidrt), (3.6) ) B ) o _000)
then takes the form Ap—=2)=0, .7,(0)=7,(0)= ap =0,
do=2F5(r)oe(£), (4.2 in the form
where 7 —|2[(d¢)26( ) ( dz@)e( )] 4.9
kp ; - e~ lo dzy 1\p <Pd772 20P) [ .
(&)=~ f_ d¢’ sinky(§—¢")1f1(&), 4.3 q
Hy=15 4 (F10)G3(p), (4.10
in which k,=w,/c is the characteristic wave number. We Y
note that(4.3) is nonvamshlng_not only in the V|9|n|ty of the By=12f10G,4(p), 4.11
laser pulse, but also behind it, where it describes the wake
field.*? where

For circularly polarized radiation, all three components G — MoS20)G
of the solenoidal quasistationary current are present. Two of 3(P) (@/20)Ga(p),
them, specified by Ed3.9), are unrelated to the polarization ° df, )
of the radiation, and usin4.2) they can be represented in Gl(P)=|1(P)fp dx xKy(x) 5= [(1= Vi) 2]
the form

df
62 K pd I _2 1_V2f , 4‘1
<Jz>=—ecrbﬁ—f,§")f2<p>¢<n>[<1—v§>f2<p>]|g, +is(o) | "ax 00 GETA- T, (412
(4.4 . . 2
Pe(n) of Gz(p>=ll<p)f dx XKy (x)f2(x) 5o [(1= V)]
j P
(in=ecm—7 a—;cp(n)[(l—ﬁ)fz]lz, 4.5

p d
. _v2
where the indices 4 and 1 in the current have been dropped +K1(p)fo dx Xl () f2(X) axL (17 Vi fal,

and the dimensionless longitudinal and transverse coordi-
natesn=Kk,¢ and p=k,r have been introducedZﬁ is the
transverse part of the Laplacian. o, £ d d

Making the same changes in notation and coordinates, Ga(p)=—A5— [ |o(P)f dx Ko(®) 5% [szd—x
we transform the azimuthal angl®.13), using Eqs(4.1) and P
(4.2), to the form

(4.13

X[(1-VI)f,]

P d
+Ko(p)J dx 1o(X) 55
; Yp 2 J 2 0

<J¢>=ecrb%|o>\f1(n)@(n)fz(p)%[(l—Vp)fz]-
(4.6 X

d
xfzd—x[u—vafz]H, (4.14
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l.O-N‘\\ a
\\
\.
0.81 \ . . . .
\ FIG. 1. Dimensionless azimuthal current density
0.6- \\ versus the transverse coordingiéa) and longitu-
. N\ dinal coordinates (b) for a wide (@?=0.2) and
‘\\ long (k. =0.2) pulse. The dashed line shows the
0.4r Y shape of the laser pulse in the corresponding direc-
Y tion.
0.21 >

andly, andKg, are modified Bessel functions of the first maxima of the various components of the magnetic field, it
and second kind, respectively. follows from Eqs.(4.18—(4.20 that that the effects due to

To obtain actual expressions for the components of thehe circular polarization of the radiation become dominant
magnetic field, it is necessary to know the explicit form of only for sufficiently long pulses, such thaf<(wp/w)a.
the functionsf,(#%) and f,(p). Just as in Ref. 3, we take We note that the azimuthal curre.6) is responsible
them in the form for the generation of the radial and axial components of the

magnetic field. For a sufficiently wide and long laser pulse,

(4.15 such as the one considered here, whose shape is given by

2| T _ 2 2
fu(m)=sif| |, falp)=exp(—a?p?), .
(4.15), this current has the form

where 0< <L, L is the pulse length in units df,*, o2 w11 KL
=2(kor) 2 andr is the effective pulse width. —(j )| Necrylga? Z_p zsin“(T p exp—2a?p?).
The expressions for the functiortd(p) can be repre- @ 4.21)

sented in a relatively simple form in two limiting cases:

>1 (short puls¢ anda<1 (wide puls@. We consider below Figure 1 shows the dimensionless azimuthal curt4r&l) as
a wide pulse, for which a function of the longitudinal and transverse coordinages

o~ ) s 2 andp for «?=0.2 andk, =0.2. The current reaches its maxi-
G1=Gy=—2a%p exp(—2a"p"), mum value atyy= 7/« andpy=1/2a.
Figure 2 shows, for the same parametefsand«, , the

w

Gszkﬁzazp exp(—2ap?), (4.16  flux lines of the magnetic field generated by the current
(4.21), which according to Eq94.18 and (4.19 are given

o) b

G42)\ﬁ4a2(1—2a2p2)exq—2a2p2). Y
K

The dependence of the magnetic field component on the p* exp(—2a’p?)sirt % =C (4.22

p g p

longitudinal coordinatey is given by(4.3), which according

wher is an arbitrar nstant that ran from
to Eq. (4.15 assumes the form ere C is an arbitrary constant that ranges from 0 to

(2a%e) 1. The direction of the flux lines is determined by
the rotation sense of the polarization vector.
We note that forp=0, (4.20 is identical to the expres-

1
2(k{=1) _ ote th A 0 _
. . sion obtained in Ref. 5, if in the latter the limiay|<1 is
where k| =2x/L. We confine our attention to long pulses tgken.

(k2<1), for which ()= (1/2)f (7).

Thus, in the vicinity of a circularly polarized laser pulse
whose width and length are greater th@dw,, the compo-
nents of the quasistatic magnetic field are

¢(n)= Kt Sin2(77/2)—sin2(%”, 4.17

5. CONCLUSIONS

In summary, when a short, circularly polarized laser
pulse propagates in a cold, uniform, nondissipative plasma,

H,=—215akEp exp—2a2p?)sirP(k m), (418
@ . . o KLT]
/)’p—lo)\EaZKLp exﬂ_zazpz)sm(KL’?)smz(T)' i
(4.19
p12 PP 20 5 22 _ o2 2vaird| K7 K_
Sp=1gh—~a?(1=2a’p?)expl 2ap)SIn( 5 ) . /;%
.20 ~—

As follows from Eqs.(4.18—(4.20), the azimuthal and radial 0 Lr Lon

component; of the magnetic field vanish on the pul.se axig|G. 2. Flux lines of the magnetic field resulting from the circular polariza-
(p=0), while the axial component does not. Comparing thetion of the radiation forz?=0.2 andx, =0.2.
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tribution of the electrons and therefore the nonuniformity of
the plasma were produced by the ponderomotive forces. The
radial density gradient itself was therefore proportional to the
squared amplitude of the laser radiation, and the slow azi-
muthal current was proportional to the fourth power of the
amplitude.

As noted in Ref. 3, the azimuthal magnetic field that
emerges not only inside the pulse but also in the wake field
region can influence the focusing of electrons accelerated in
the wake wave. However, the IFE can appear only inside the
laser pulse, where excitation of the wake wave occurs. It
stands to reason that féag|~1 the electron cyclotron fre-
quency will become comparable to the plasma frequency,
and this will be reflected in the excitation of a wake wave.
However, this question lies beyond the scope of the approxi-
FIG. 3. Generation of a quasistationary azimuthal current by circularly poAmation |ay| <1 considered here.
larized radiation in a radially nonuniform plasma. For |a0|>1, numerical results can be used as a guide_

Such results are presented in Ref. 3 for the axial magnetic
field component. It is shown there that ftag|=2, a?=5
two mechanisms give rise to a quasistatic magnetic fiaéd X107%, and L=10 the maximum dimensionless magnetic
noted in Ref. 1R One is not associated with the polarization field eB,/mcw, is 0.1. For plasma with electron density
of the radiation, and is governed by ponderomotive forces10'® cm™® (w,=5.64<10s™), these parameters corre-
This mechanism generates an azimuthal magnetic fieldspond to a focal spot radius 3@m, pulse duration 175 fs,
which emerges not only within the pulse but also in the wakeand pulse energy about 5 J. The maximum magnetic Bgld
field region behind it The second mechanism is associatedreaches 350 kG. In order for the other magnetic field com-
with the circular polarization of the radiation. It is respon- ponentsB, andB, induced by the inverse Faraday effect to
sible for the generation of an azimuthal quasistationary curbecome comparable B,, the duration of the laser pulse
rent, and both axial and radial magnetic field components. Ifnust be increased to 1.4 ps, and accordingly the pulse energy
this case, it can be interpreted as the inverse Faraday effedfiust be increased to 42 J. These parameters are all attainable

Figure 3 illustrates the physical mechanism that givegVith existing technology.
rise to an azimuthal quasistatic current in a radially nonuni-
form plasma. The solid curve is a curve of constant eIectrorE:u
density in the absence of the pulse. The small dashed circles
represent the trajectories of electrons in the field of a circu-
larly polarized wave propagating transverse to the gradientE-mail: gorbun@sci.lebedev.ru
of the nonuniformity(perpendicular to the plane of the fig-
ure). The dots show the instantaneous positions and the artt. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Trans. Plasm&8&ci.
rows the velocities of the electrons. The dashed curve con—2\2/5§((ulg§‘3c-henkov V. 1. Demin, and V. T. Tikhonchuk, Zhkp. Teor
nectmg_the eIectron_s is a curve of constant elect_ron_densny ate;, 165)/118 (19943 [jE;rP78, 62 (19945]. ' ' ' '
a certain moment in time. If the plasma density increases|. M. Gorbunov, P. Mora, and T. M. Antonsen, Jr., Phys. Rev. L#f.
with increasing radius, the electron density in the hatched42495(1996); Phys. Plasmag(12), 4358(1997.
regions with a plus or minus sign is either less than or greaterz’l-ggg- Bychenkov and V. T. Tikhonchuk, Laser Part. Beafilg 52
_thgn the density in the absen_ce of the radiation. Fro_m Fig. 35y | Berezhiani, S. M. Mahajan, and N. L. Shatashvili, Phys. ReB5E
it is then clear that a clockwise component of the instanta- 995 (1997.
neous electron velocity is present in the low-density region,°N. I;- KOphinl,:_l- A. Ki_bell’\,/| and N.lV- RozeTheoretical Hydromechanics
a_nd a cou_nterclockW|se component in the hlgh-densn_y re.”E}r.]L ;Z?':lzﬁr’]iagin;itdgllz.b.Ohjﬁ?xidgzi?bhys. Let¥8 338(1990.
gion. The instantaneous azimuthal electron current, which iy g ochin, vector Calculus and Elements of Tensor CalcyinsRus-
given by the product of the rapidly varying velocity and the siari, ONTI GTTN, Moscow(1934.
rapidly varying perturbation of the electron density, has thegl-1 Xg Sokolov, Usp. Fiz. Naukl61, 175(199) [Sov. Phys. Usp34, 925
same sign everywhere aI.ong _the circle. This ,means that thl%g(u. l\]ﬂAIiev, V. Yu. Bychenkov, M. S. Javonovic, and A. A. Frolov, J.
current has a constant, time-independent azimuthal compo-pjasma Physss, 167 (1992.
nent. 11p. Sprangle, E. Esarey, and A. Ting, Phys. Rev. 1641.2011(1990; J.

In the example considered, the initial plasma electron M. Raxand N. J. Fisch, Phys. Rev. Led®, 772(1992; W. B. Mori, C.
density unperturbed by the pulse was assumed to be nonuni-Eé;E%fgl?TgE\ngr 'at?gﬁg;';%%Jg%”&g;fgiﬁﬁ’(63‘93;’Eb_
form. For this reason, the quasistationary current given by sprangle, G. Zeng, and z. Xu, Phys. Plasra8631(1995.
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to the squared amplitude of the high-frequency radiation,,[Sov- Phys. JETRG, 290 (1987].
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We give a theoretical description of the mechanisms underlying the generation of harmonics of
plasma-warming radiation, which depend on the polarization of the latter. We show that

there is a striking anomaly in the polarization of the harmonics in the presence of a low degree
of circular polarization of the pump, and that harmonic generation efficiency increases.
Variations in the polarization of the pump accompanying inverse bremsstrahlung absorption are
discussed. ©1998 American Institute of Physid$§1063-776(98)00809-9

1. Interest in the generation of higher-order harmonics ofA consistent description could previously only be obtained
laser radiation has increased appreciably in connection withy taking account of the thermal moti8iihis produced an
the transition to femtosecond pulses, which has made #ffect of the order of the logarithm of the ratio of the large
easier to obtain strong laser fieli$.Such generation opens amplitude of the velocity of the oscillations of an electron to
up the possibility of producing compact sources of hard coits thermal velocity. This way of taking account of the ther-

herent ultraviolet and x-ray emissiéf.In this regard, inter- Mal motion and analysis of its competition with the polariza-

est in the generation of higher-order harmonics in plasmation of the radiation made it possible to construct in the

predicted in 1964 in Ref. ésee also Refs. 739is natural, present paper a systematic theory of the increase in the har-

This phenomenon is due to the bremsstrahlung of electrong,10nIC generation eff|C|en_cy and to desc_rlbe the polarlzatlon
S . properties of the harmonics. In connection with the impor-
coherently oscillating in a coherent plasma-warming electro;

S . . tance of the influence of the polarization of the warming
magnetic field, in the process of scattering of electrans by th?“adiation, a theory of the nonlinear variation of its polariza-
Coulomb field of the ions.

. N tion as a result of inverse bremsstrahlung absorption is given.
In the present paper, we discuss conditions produced by 5 e study plasma in the field of elliptically polarized
the polarization of the warming radiation, under which, first, ragiationE=(E, ,E,,0), where

harmonic generation is more efficient than discussed hereto-
fore, and second, new and unique phenomena arise. The es- Ex=&E coswt—¢y), E,=—€/E sinwt—g¢,).
sence of these phenomena lies in the fact that the coherent 2.9
current generating the harmonics in accordance with thélereE is the real electric field amplitude, thes, (a=x,y)
standard bremsstrahlung I&f\is proportional to the velocity ~characterize the polarization of the plasma-warming radia-
vector and inversely proportional to the cubed modulus ofion (2.1), 2+ e§:1, and for simplicity it is assumed that
the velocity. For circular polarization, the modulus of the &,=€,=0. The polarization tensbl of such radiation has
velocity of the electron oscillations does not depend on timethe form
Therefore, harmonic generation is suppressed. For ellipti- .
cally polarized warming pump radiation, unique mechanisms R — I+e  a-ig
) ! RN ap ; 2 i
arise. If the degree of circular polarization is low, then at a 168y € §1+i& 1-&
certain moment in time the modulus of the velocity of the g opyiously means that the corresponding Stokes param-
electron oscillations will be very small. At approximately the giarg are¢;=0, &,=—2e,e,, and ;= ei—ef,. For what
same moment the projection of the electron velocity on thgg|iows, it is helpful to use the degree of circular polarization
direction of approximately linear polarization will be small. A= ¢, as well as the degree of maximum linear polarization
Conversely, the perpendicular prgjectlon of the velocity iISp2=| = \/ggz Ji—aZ 1t
not so small. The phenomenon, discussed below, of anoma- |n the electric field(2.1) an electron oscillates with ve-
lous polarization of harmonics in a plane almost perpendicutocity Ug= (Ugx,Ugy,0), where
lar to the polarization plane of the pump is connected with .
this. The anomalous increase, discussed below, of the halEx™ ~Ve€x SIN(wt= @),  Ugy=—ve€y COLwl—@y).

e? iege,| 1

T2

). (2.2

monic generation efficiency is also connected with this. The 23
mechanisms found are similar to the polarization dependenddere
of the static conductivity of plasma in a powerful radiation ve=(|e[E/mo) 2.4

field.1° We note that for exact plane polarization of the pump
the modulus of the velocity, just like the velocity vector of characterizes the amplitude of the velocity oscillations, end
the oscillations itself, vanishes at the same moment in timeandm are the electron charge and mass. We say that the field

1063-7761/98/87(9)/10/$15.00 468 © 1998 American Institute of Physics
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is weak when the velocity2.3) is small compared with the zeroth approximation the right-hand side of E8.9). The

thermal velocityv =/ xgT/m of the electrons. Conversely, zeroth-approximation equation

we shall say that the radiation field is strong if pr o pr
0 0

vESUT. (2.5 TmE w0 (210

We assume that the frequency of the plasma-warmindas the solution
r_ac_jiation is much higher than_the effective electron—ion col- fo(v,t)=F(v—Ug(t)). .11
lision frequency. For a weak field the latter frequency can be _
expressed in the conventional manrieompare, for ex- We assume below thak(u)=fy(u), where fy(u) is a

ample, Ref. 12 which yields Maxwellian distribution with temperatur€. The following
expression for the electric current density in the zeroth-
427 Ze*n A 2.6 approximation follows from Eq(2.11):
Vei=™ 2323 - : )
Sy jo=eneUg(t). (2.12
Here We multiply the kinetic equation
) ) do6f e dof
=2 (efm/eny), o e B o = Jeet el fo(vi)] (2.13

for the correction to the electron distribution function by the
electron charge and velocity vecterand integrate over ve-
locity space. Then, sincédvsf=0, we obtain for the per-
|’_ turbation 6j of the electric-current density

where the summation extends over all types of i@nss the
ion chargen, andn; are the electron and ion number den-
sities, andA is the Coulomb logarithm. In the opposite
strong-field limit we have for the effective electron—ion co

lision frequenc§—81° 35 47Ze*n A ev
DT [ S Rvww). 214
. 8mv2 Ze*n A 5 m v
vE)= mzvg 27 The right-hand side of Eq2.14) is due to electron—ion col-

lisions. The electron—electron collision integral does not
This collision frequency is much lower than the frequencycontribute because the collisions conserve momentum. The
(2.6) on account of the inequalit{2.5). We emphasize that remainder of the present paper is given over to analysis of
in the casg2.7) the Coulomb logarithm by no means coin- the consequences of E(.14.
cides with the corresponding expression in the weak-field 3 To describe the generation of the harmonics of the
limit (see below. plasma-warming radiation(2.14 must be represented as a

In contrast to Ref. 6, we employ the simplified approachrourier series expansion. To do so, we apply first the relation
of Ref. 8. Following the latter, we use the Fokker—Planck—

Landau form of the collision integral to describe electron— v _ _J dq 4wiq .
ion collisions: v3 (2m)® @° expig-v). @D
27ZeMA 9 [v28,—vve of Using a Maxwellian distribution forF(u) this formula
Jeilf]= 2 . ( 3 E) (2.8 makes it possible to represent £8.14) in the form
r S
_ o , 38 Ze'n A iq 1,, .
wheref (V) is the electron distribution function. In E¢2.8), T en, | dq — expg — 7 vt +iq-ug(t)|.
small terms of the order of the ratio of the electron and ion q

masses are neglected. In using this approach below, we must (3.2

introduce the dependence of the Coulomb logarithm on théJsing spherical coordinates=(q, 6, ¢) in g-space we have

electric field heuristically. At the same time, an indisputable _ . .

positive aspect of this approach is the comparative simplicity 0 & dVE SN OLO sift=gxt ¢)

and obviousness of the results obtained. + 6, sinfwt—e,—¢)], (3.3

The interaction of the radiation with plasma in the dipole .

approximation corresponds to neglect of the spatial depenv—vhere 5i=(1/2)(exigy). In accordgnce W'th Ref.. 13

dence of the field and the distribution function. Accordingly, (p. 987, Eq. 8.511)3 this form makes it possible to write

the Boltzmann equation can be written in the form e

explig-ug)= > J(qued, sin 6)J(qued_ sin 6)

of e of kif=—o
+ — E(1)- E:Jeeh}ei[f]. (2.9

gt m xexpli(k+ 1) (ot—e)+i(lI—K)g}, (3.4

HereJ.. is the electron—electron collision integral, the actualwhere thel,(z) are Bessel functions. Hence it is obvious that
form of which will not be required. Eq. (3.2 can be expressed in the form of a Fourier series.

The assumption that the frequency of the plasmaThe required transformations can be found in Appendix 1.
warming radiation is high makes it possible to neglect in theThe result is
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a(ij * We now discuss certain general consequences of Egs.
E (2+1) eXE cog (21 +1)(wt—¢y)], (3.5 (3.5 and(3.6). We note that fol =0 we can write the dis-
- sipative conductivity tensor determined by the relation

38y iV =gVE ;. 3.1
Jy 2 o<2'+1> (—eyE)sif (21 +1)(wt—¢,)], (3.6 Ja"=%ap=p (3.12
We haveo{))=0{?=0, and

5 ) .
E,l) v v e’n v v
(2041) _ wieV(E, 2 YEL_ 2 UE (1)_ El_ 2 B
Txx 477(2|+1)w2' -A|<p ) ZUT) A|+1(p ) ZUT)_’ ZV(EO) AO P ) 2 vT Al P ZUT )
3.7) (3.13
2 - . e2n
E.l) v v VE
(21+1) _ wieV(E, 2 “E 2 “E (1)— v EO[A( , )+A 2, —) .
Yy T Im2+ Do _A'<” ' 20, +A'+1(" ’ 2UT)_' N = 7 "EO Aol 2 5 A % 5 ;
(3.9 (319

Here w .= J4me?n,/m is the electron Langmuir frequency. Aside from the nonlinear dependence of such a conductivity
Accordirﬁg to Eq.(A?l.B) the functionsA,(p2,N) are given tensor on the intensity of the plasma-warming radiation, the
by ' ' nonlinear dependence on the polarization is also important.

This latter dependence is manifested in the anisotropy of the

2 (N2 dissipative conductivity tensor.
A(p*N)= N fo dzyz e 4(p%2). (3.9 We now dwell on the intensity of the generated harmon-
™ ics (I>0). We assume that
The latter formula, as we shall see below, is very convenient o.=kz, (3.19

for the required analysis. _
We must now discuss the collision frequene¢E,l),  and accordingly,
which for k2= @2— wfe_ (3.16

(2l+ o> (310  Neglecting dissipation, from Maxwell's equations we have

can depend on the number of the harmonic on account of thfo" the field of the harmonicgcompare Ref. B
Coulomb logarithm. The Coulomb logarithm in the Landau E.l
- . . N . . E@+1) E v(E,l) Al o2 Ve
logarithmic approximation is determined by the ratio of the X =€ A [ E
sin(21+1)(wt—k2)],

maximum and minimum impact parametersA
=In(r max/Tmin), Which bound the region where the contribu- Vg
tion of collisions is considerablésee Ref. 12 The maxi- AI+1(P " 20 )
mum impact parameter is determined by the ratio of the elec-
tron velocity to the characteristic frequency. For a weak low- (3.17
frequency field this is the ratio of the thermal velocity to the (21 + 1) v(E,l) vE
Langmuir frequency, equal to the Debye screening radius of E(y2'+1)= -k —— [A| p?, —)

’ 44(1+1)o 2u7

cog (21 +1)(wt—k2)].

the Coulomb field. For a weak field, but such high frequen-
cies thatw>w ., as was established in Refs. 14-16, the VE
ratio of the thermal velocity to the frequency arises for the +AI+1<P ' 2_)
maximum impact parameter. In our strong-field limit it is

natural to assume that,,=[ve/(2l+1)w]. The minimum (3.18
impact parameter is determined by the larger of the two valForming the ratio of the time-averaged squared electric vec-
UEST mina=(Z€/mué)—the classical limiting impact param- tor given by (3.17) and (3.18 to the mean squared electric
eter, bounding the region of small momentum transfer, angield vector of the pumg2.1) (E)Z—E2/2, we obtain

I mingu="/Mug—the quantum lower limit on the impact pa-

rameters of Landau’s logarithmic approximation. Hérés <2|+1>_W_ V2(E,1) ( L ve )
Planck’s constant. Thus, in light ¢8.10, we have 7 - (E)2 ~ 16 2(1+1)%0? [ 20.)"
mvé (3.19
A=in fio(21+1)° where
ze mo Ze? By(p?,N) =AF(p?,N) + A%, 1(p*,N)
vE>7 or A=lIn 7w (21+1)’ UE<T- —202A,(p2N)A, . 1(p2N). (3.20

(319 The expression3.19 characterizes the harmonic generation
The decrease in the Coulomb logarithm at large harmoniefficiency. It must be emphasized that the right-hand side of
numbers can be one of the reasons for the cutoff of the seridsg. (3.19 depends on the square of the plasma derisidn-
(3.5 and(3.6). pare Ref. 8 The dependence of the intensity of the radiated
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harmonics on the polarization and intensity of the pump ischaracterize the polarization of the harmonits Q). Above
determined by3.20), which we study below. all, we note thag® *1=0. This means that the harmonics,

We now present an expression for the Stokes paramjust like the pump, are completely elliptically polarized. Fur-
eters, which are given by Egé3.17 and(3.18 and which  thermore, we have

Al(p?vel2v7) — AP, 1(p? vEl207)
2

@141)_ p(21+1) _
& A £ Bi(p* vel2vT) ’ (3.2
g2 E[AY(p? vel2v7) + AL 1(p? 0 el207) ] 2A1(p% v el20 1) A4 1(p 0 el 207) (3.22
3 Bl(pszE/ZUT) ’ '
|
where A®®*1) is the degree of circular polarization of har- |A|<1, 4.3

monic number (2+1). The specific analysis given below

will demonstrate the uniqueness of the mechanisms dey_vhen the_ polarization is almost planar. In the lintk.3)
scribed by these general expressions. asymptotic formulas must be used for the Legendre func-

4. In this section we examine the asymptotic propertieslif)ns' The corresponding expressions can be found in Appen-
of the relations obtained in the preceding section, where thgIX S. 6 he third h il in the limi
inequality (2.4) holds so well that it can be assumed that We turn first to the third harmonic €1) in the limit
vel/vt—. Neglecting the thermal motion completely, we (4.3). Using Eq.(A3.4) we can write

can use the asymptotic result E&1.10). This corresponds / " 3 64 14
to the fact that A2y A2y = {In — _J’ 4.4
1 (p9)—A(p) 51" A3 (4.9
(3/2—1) 1 5
2 V= A(32, 2y _ [ 2
ART ) =AT R  TaPPr ) Pl’z(lAl)’ @ A AR = . 4.9

function. Equation(4.1) corresponds to coefficients in the

Fourier series expansion of the solutions of the Laplace By(p? ) =8/m*A% (4.6
equation(Refs. 10 and 17, §33; Ref. 18, E€B.10). The e thereby have for the efficiency of third-harmonic genera-
Legendre functions can be expressed in terms of the comgn

plete elliptic integralsE(k) and K(k). The corresponding 5

expressions, obtained on the basis of Refs. 18 and 19, can be _(3)_ 1 »(ED @.7)
found in Appendix 2. They are helpful for describing the 8mA?  w? '
properties of harmonics with low numbers. For example, t

characterize the intensity of the third harmonic the corr
sponding expressio(8.20 can be represented in the form

OThe presence of the square of the low degree of circular
e'polarization in the denominator in E¢4.7) attests to the
important phenomenon whereby generation intensifies when
A(1+ p?) the polarization of the warming pump deviates by a small
Bi(p%®)= 5573 [[16— 31p*+15p8]E? amount from planar polarization.
7 (1=p") We now consider the polarization of the third harmonic.

202 In accordance with Eq93.21) and (3.22 and the expres-

x( \/sz +(1-p?)2(16—7pHK? sions(4.4) and(4.5), we obtain
7

2p? AR =¥ =3A|In —— |, 4.8

x( 1fp2 —2(16—9p*+3p8)(1—p?)E & |Al 3 “8
1

X \/ 2 K \/ 20 (4.2) 5(33):_(1_5[5(23)]2)%_1' 49

1+ p? 1+p2/ | '

Since£$® is small, Eq.(4.9) indicates that the polarization of
For a low degree of circular polarizatioh of the warming the harmonic, just like that of the polarization of the warm-
radiation(or, equivalently, for a large difference of the maxi- ing radiation, is almost planar. However, the overall minus
mum degree of linear polarizatigsf from 1) the number of  sign in Eq.(4.9) means that if the pump is polarized almost
the generated harmonics is small. This can be easily sealong thex axis, then the harmonic is polarized in a perpen-
from Eq. (A3.12) of Appendix 3. Conversely, the number of dicular direction, i.e., almost along theaxis. This remark-
harmonics generated in the plasma becomes large for a smailble property contrasts sharply with the result obtained in the
degree of circular polarization of the warming radiation theory of harmonic generation by plane-polarized radiation,
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where the harmonics were found to be polarized in the po-  52E 1 5?E 47 9jY

larization plane of the pumpAnother important property of Zo 2T E (5.2
the harmonic polarization is given by E@.8), according to

which the degree of circular polarization of the third har-taking account of Eqs(3.15 and (3.16 and assumingg,,
monic is logarithmically (IhA|) greater than the degree of andE to be slowly varying functions of the coordinatewe

circular polarization of the pump. obtain the following truncated equations for them:
We now examine the properties of the high harmonics.
Above all, we note that for the high harmonics E§.20 1 d_E: _ wa(a(l)eero(l)ez)
reduces ta4.6). Therefore we have for the generation effi- E dz ke M XXX Ty Ry
ciency of all harmonics, under the conditi¢h3), in a cold >
plasma we"(B0) 3 2 2@, 2
=T ke Ao (PP AT ()], (5.3
2
v<(E,l)
(21+1) _
27221+ 1)202A2 (4.10 d? 270, 4 .
—=——(1- )(0( ) _ ot ))
dz kC2 P XX yy
The general formula for the degree of circular polariza- )
tion of the harmonics under the conditi¢f.3) is oiV(E,0) 2
= (L= pHAF2T, (5.4
ARFD=A{ (21+1)]In i—w 3 -C 1ot ;
|A| 2 21+ 3" Making use of Eqs(A2.3), (5.3 assumes the form
(4.11

: (5.5

Clearly the logarithmic (1) i in the circul | L dE wLe (€0 K 2"
early the logarithmic increase in the circular polar- o, — 152
ization is a general property. For high harmonits,1, it E dz 7k w1t p 1

follows from Eq.(4.11) that which corresponds to the law, established in Ref. 10, that the

absorption of the strong polarized radiation in plasma de-
. (4.12 pends nonlinearly on the polarization of the radiation. When
the condition(4.3) is satisfied, it follows from Eq(5.5) that

Hence, the circular polarization of the harmonics increases as 1 dE 2 EO 8 1
their order increases. Note that the right-hand side of Eq. — - =_ _ wie(E0) n—= (5.6)
(4.12 remains small compared to 1. The latter assertion is E dz wkZmv2 Al UEA)

associated above all with the fact that the asymptotic repre- ] o ]
sentation(A3.4) is applicable only if where {(E,A) is the characteristic absorption length. Ne-

glecting the relatively weak logarithmic dependences, we
A?%1%2<1. (4.13  have for the law expressing the decrease of the field

APV =AllIn 55 —2C

4
A?|?

The smallness of the left-hand side of the inequdliyl3) is E3(z)=E3(0)—32/{(E(0),A(0)). (5.7
a consequence of the anomalous increase in the generation

efficiency of high harmonics compared with the case of pla-  duation (5.4 describes the change in the degree of
nar polarization(compare Refs. 6 and)8 maximum linear polarizatioh = p~ of the warming radiation

When the inequality(4.13 is not satisfied, the coeffi- &S it is absorbed Wfli?!g)prcz)pagating into the plasma Q).
cientsA{¥?(p?) are given by the asymptotic representation | '€ POsitiveness oh;"=(p?) corresponds to the fact that
(A3.13), according to which it can be asserted that if thelncreases in the process. This property corresponds to the
dependence of the Coulomb logarithm lodoes not lead to

dependence of the polarization of the warming radiation on
cutoff of the harmonic serie§3.5 and (3.6), then in the

its intensity. This dependence is characterized by the follow-
cold-plasma approximation we are considering, such a cutoff'd nonlinear equation:

arises sharplyexponentially at |~ |A| 1. do? 52
5. Having established the important role of the polariza-g  __ m(1—p*) WA(E/Z)(PZ)[ K( LZ

tion of the plasma-warming radiation, we now draw attention 1+p

to the nonlinear change, following from our analysis, in this (5.8

polarization accompanying absorption of the radiation. To dorhe solution of this equation is especially simple in the case

so, we consider the fundamental harmonic, whose currenty.3), when Eq.(5.8) reduces approximately to

density j(Y) can be written, according to Eq$2.11) and

-1

(3.12, dE 64 (AZ
—=In—d| =]|. (5.9
S Es 4E T AZ7\ 64
ot A e TapT (5.) Hence follows the law expressing the decrease of the degree

of circular polarization of the plasma-warming radiation in
where a&lﬁ) is given by EQs.(3.13 and (3.14). Since the the presence of inverse bremsstrahlung absorption of this ra-
electric field vector of the pump satisfies diation:
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A%(2) | 64 1 _A¥0) | 64 1 1 | E(0) A2 )= 2%2 (1 L A2N?2
& " Tes |M"ao i e (PLN)=" a2 |1 —
5.1
(510 1(, 1\[1_[A’N?| 1 4
The physical reason for this phenomenon is the anisotropy of + > 1= 2125 7o)~ 5'” A2
the dissipative conductivity tensdi3.13 and (3.14), for
which in the casd4.3) we have for a cold plasma 3 1) |
+yl 1+ | +C—=|— 5. (6.5
2n, 0112 2 2] 2
1)
Uix)—_zmw V(Ev0)7 In W‘l ' This equation completely describes the effect of the thermal
motion of the particles under our conditions of a strong
e’n, 52 warming field (2.4) on all anomalous polarization phenom-
(M= E,0) —2 5.1 i i imi
Ty T me? v(E, )wAZ' (51D ena discussed above. Here we examine the limit of a very
low degree of circular polarization
It is obvious that they component of the field is absorbed
A<UT/UE, (66)

relatively more efficiently than th& component. This is
what leads to the increase in the maximum degree of lineaghere the transition to the previously studied case of plane-
polarization. polarized radiation can be examined. Under the conditions
6. Having established in the cold-plasma model a num<6.6), Eq. (6.5 assumes the form

ber of striking nonlinear polarization properties, we must 3 (2

now analyze the role of the thermal motion of the particles. 5 (pz VE|_ 2_ [U_E_ 1 ( 2_ 1)
This will make it possible to eliminate the seeming inconsis- W r2vg) T o |80F 4 4
tency, facilitate the transition to the case of planar polariza-

2

tion of the pump, and determine the magnitude of the corre- «|n U_E_le |+ § —C+1 _'_
sponding anomalies. To this end, we turn to E8.9 for 2v% 2 2’
Ai(p? N), whereN=v¢/2v1>1 according to Eq(2.4). 6.7

Equation(3.9) can be rewritten in the form ] o
which does not depend on the polarization. Hence we have

A(p?N)=AP?(p?) — sa,(A%N), (6.1)  for the high harmonicsl& 1)
where Al 2 Ve 2w 12
WP 20r)” 7 802 4

I Ve C+1
nom2-CF
2097

fsal(A2,|\1)=i fwdz\/Ze’ZI,(\/l—Azz). (6.2
Jr Iz

X

+0o( 1)] . (6.9
For a strong plasma-warming field, by virtue of the condition

(2.4), the asymptotic expansion of the functibgp?z) (Ref. ~ This equation shows, specifically, that for ve /v the har-
13, Eq. 8.451.5can be used in the integrand in E.2). monics series cuts offUnder such conditions, we obtain for

The result is the high harmonics
2 2 4
292 (1 A?N2 2 VE\_2 (1o}, YE__ 2 VE
5&|(A2,N):7[A78X4— > ) Bi| p%, 27 2 1< In 2|ZU_|2_ C| +A 160?— :
6.9
1 1) [(A2N? : , . ,
- 122 E, , 6.3y  Accordingly, we obtain for the degree of circular polariza-
4 4 2 tion of the high harmonics
whereE;(2) is the exponential integrdRef. 19, Eq. 5.1.1 -~ A(vé/Zv%)I[In(vE/ZI 2()%)_(;]
Here, small terms-12A%y2/v2 in this asymptotic expansion AP = (6.10

have been dropped. (AvE/av3)2+17[In(vE/21%v%)— C]?

SinceE (2)~z ! exp(—2) for z>1, it is obvious that The degree of circular polarization of the harmonics may not
the quantity(6.3) is exponentially small when be small. However, in the plane polarization limnk€0) the
expression(6.10 vanishes. EquatiofB.6) likewise vanishes,

2p2__ 2
N2A2=(Avg/2v7)2> 1. (64 \while according to the law
This inequality determines the region of applicability of the V(E,1) 02 2 A4
cold-plasma model. P2 = Ny —C| +—ogt  (6.1D)
8I°mw 2% 16%7

It is obvious that under the conditid@.4) the inequality
(6.4) can break down only if the degree of circular polariza-as A—0 the generation efficiency of the high harmonics
tion is small, whenA{*?(p?) has the form(A3.4). This tends to the formula corresponding to the case of a plane-
means that in the region where it is important to take accourpolarized pumg:®
of the thermal motion Eq(6.1) can be represented in the 7. The striking polarization effects characterizing the
form generation of harmonics in plasma substantially increase the



474 JETP 87 (3), September 1998 V. P. Silin

efficiency of such a process. Indeed, an estimate using Eq. Ué

(6.10 at the limit of applicability of this expression, justified 2" 7.3x10 3gA2.

by Eq. (6.5), with (A%v2/8v2)~1 yields according to Eq.

(6.9 the following estimate of the efficiena8.19 of high-  In accordance with Eq6.11), the generation efficiency of

harmonic generation: the higher harmonics, which depends on the harmonic hum-
ber, is given for a plane-polarized pump by
VB Ve (7. 2(E) 2 Z%n2 (A2 2
T 27%0? 81%2 ' v Ve| _ ~10% Ne (A Ve
T 772w2 | 5X10 )\4q3 10 In vt .

Th'.s exBressmn IS greater than th?‘ efficierioyLD (in th? Here and below, is the electron number density in units of
limit A=0) of harmonic generation by plane-polarized 1020 em-3

plasma-warming radiation on account of the fact that the The law(7.1), which depends on the harmonic number,

condition of the high-harmonic generation efficiency in the presence of
02 02 2 a low degree of circular polarization is characterized by the
Eos>lln—ap-C (7.2 parameter
21%p% 21%p% '
holds f tially all harmonics. Aside from this polari ﬁvz(E)vé ax107 2Ne (A i
olds for essentially all harmonics. Aside from this polariza- = —— | =] .
ially i i is polariz Zme)i? 22T | 10

tion increase in the intensity of the harmonics emitted during
coherent oscillation of electrons in a laser radiation field, itis ~ The theoretical results in this paper should make it pos-
necessary to call attention to the anomaly in the polarizatiosible to formulate detailed experiments studying the phenom-
of the harmonics. Indeed, the Stokes paraméfer *) of the  enon of coherent bremsstrahlung generation of harmonics in
harmonics with small but finite degree of circular polariza-plasma. Comparing our plasma model with the atomic model
tion of the pump field turned out to be different in sign, of harmonic generation from Ref. 21 shows that the proper-
according to Eqg4.9) and(4.12, from the Stokes parameter ties that we have established should also appear in nonion-
&3 of the warming radiation. This means that in this case thézed gases if the radiation intensity is sufficiently high.
harmonics are polarized, to a high degree of accuracy, per- This work was performed under state support of the
pendicular to the polarization plane of the pump. In the tranfeading scientific school@roject 96-15-96750 support by
sitional region, as the degree of circular polarization of thethe Russian Fund for Fundamental ResedRioject 96-02-
pump decrease#®'*1) increases, reaching 1, according to 17002, and as part of the Joint Russian—Italian project
Eqg. (6.11), when “New Coherent Sources of Ultrashort Pulses,” prepared in

5 accordance with law No. 212/92 of the Italian government.

Vg
Al—=I
| |4v-|2-

2
n—UE
22
2l Ut

I C

and then decreases to zero for: 0. Accordingly, the Stokes APPENDIX 1
aramete? "1 changes from a value close tol, passes - . . .

Fhrough zli?o and ingreases up tel correspondFi)ng for Substituting the Fourier expansid8.4) into Eg. (3.2

L T 2 ives

A=0 to polarization of the harmonic in the polarization 9

plane of the pump. We have pointed out the properties of they (j, wfe “ v(E,)

nonlinear phenomenon whereby the polarization of thea—[ ]_

warming radiation changes as a result of inverse bremsstrah-

41 (=0 w

lung, having in mind the importance of the pump polariza- v% _

tion for the effects discussed. Mfﬂ( 04,6- ﬁ) sif(21+1)(wt—¢,)],
We present several formulas in a form convenient for X 2E

making estimates. These formulas, in the first place, make it Mf_)( 5. ,6_ U_Tz) cog (21 +1)(wt— )],

possible to see the condition of applicability of the results 2vg

obtained and, in the second place, indicate the efficiency of (AL1.2)

the conversion of pump radiation into high harmonics. First, _ .
to demonstrate the obviousness of the fact that the conditiofhere wie=v4men./m is the electron Langmuir fre-

(2.5) is satisfied, we write quency, and
2 2 1 o T
VE _ ar M(t)ab'azz—f dx xf de
E-3.7><1037. 1 ( ) a o .
2 2
Here and belovg is the flux density of the pump radiation in ><exp( _ X [Ji+1(ax)Ji(bx)
units of 13° W/cn?, \ is the pump wavelength in microns, sir? 9/t !
andT is the electron temperature in electron volts. To see the
P +J,,1(bx)J,(ax)]. (A1.2)

possibility of using the nonrelativistic approximation we
present the relation Using Eq. 3.363.1 of Ref. 18. 329, it can be shown that
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m a®x?
Jo de ex;{—m)=rr[1—<b(ax)], (AL1.3)

where <I)(z)=(2/\/?)fédte*t2 is the error function. This
makes it possible to represent E&1.2) in the form

*)(a,b;a? er dx e X7
0

=1
X[J1+1(ax)di(bx)
iJ|+1(bX)J|(aX)]. (A14)

Using the recurrence relations

d I
Ji+1(2)=~ dz Q2+ 23(2)
for the Bessel functiongRef. 13, Eq. 8.472)2 this expres-
sion can be reduced to the well-known integral

d

a oJa

I 9
M(i)(a,b;a2)= 5—%)
—f de dx xJ,(ax)J|(bx)e*X272.

T Ja 0

(A1.5)
Indeed, according to Eq. 6.333.2 of Ref. (3732, we have

J?dx xq(ax)J,(bx)e*XZTzz

27
" a’+b?\ [ab
&0 T2 ) 22)
(A1.6)

wherel,(z) is a modified Bessel function. Using now the
recurrence relatiofRef. 13, Eq. 8.486

|()

(z)-z

=—=2zl44(2),

Eqg. (A1.5) can be put into the form
(axb)2

2
\/; f()(l/&z )dz\/E

X exp(—2[a%+b?]2)[1,(4ab2)
T1,,,(4ab2)].

M) (a,b;a?) =

(AL.7)

In the cold-plasma limita@?—0, this relation assumes the
form

. (a=b)2 (= dzyz
M|(_)(a,b,0): \/; 0 (4ab)3/2
[a2+Db?]z

o -

Using now Eq. 6.624.5 of Ref. 1(. 727

)[||(Z)I||+1(Z)]-

(AL1.9)

2ab
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=T(v+1—pu)(Z?

tz )
—— 1, ()t*dt

z

— 1)1+ i2pi(z), (A1.9)

whereP?%(z) is a Legendre function, we obtain

(axb)I'(3/2=1)

a’+b?
|2(a2_ b2)|3/2F(3/2) P1/2

aZ_ bZ‘ .
(A1.10)

M{*)(a,b;0)=

The latter equation makes it possible, specifically, to write an
expression for the following improper integral:

f:dx X315 2(@031(5X) = 3y 1(bX) 3y (aX)]

a’+b?
a2_b2

_ (axb)I'(3/2—1)
- |a2_b2|3/21"(3/2) PZI./2

(A1.11)

APPENDIX 2

We present here several expressions for the coefficients
in the Fourier expansio(.1), which can be written in terms
of complete elliptic integrals. We use, first, Eq. 8.13.5 of

Ref. 19(p. 159
2(z2-1)"
1)1’2E( \/%ﬁ) (A2.1)

and, second, Eq. 3.6.1.4 of Ref. {8 149

2 2
PyA2)=—(z+ V2"~

m

P'V“(z):(zz—l)m’z% P.(2). (A2.2)

These relations lead to the following expressions for the co-
efficients(4.2):

A (p?) = e,
p
/ _ 2
A2 (p?) = [E(k) p[E(k)—K(k)]],
2 T+ p? 1-p*
A (p?) == p’i [ E(k)+4~7
1
X E(k)_l'f'—sz(k)“' (A2.3)
2 J1+p? (1-p")(1+p)
AP(pt)= T [E(k)—%
X[(27k*— 128>+ 128 K (k)
+(—3k4+64k2—128)E(k)]],
where

(A2.4)

_ -2 " and 1 |<2——21_’J2
1+p and = 1+p°°
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APPENDIX 3 F( 1 3 1 1 1 ) 3(1—|A|) ( 1 )
— 5.5 5 T oAl = O\ 2a2]-
The asymptotic expansion, required for our analysis, of 2°2 2 2|Al 8I|A| IAAS 8
the Legendre function@'v(z) for half-integerv and large (A3.8)
arguments can be found in Hobson’s bodk Retaining the ~ Since, further, according to Ref. 2p. 87)
required higher terms of the asymptotic expansion and mak- T(3/2+1) 3
ing convenient transformations, we can write T — . )
g N ﬁ(1+8l+ , (A3.9)
1 2l 1 1 ;
Pl ()= = (27 1/2[1_ T ( 2_ _) we obtain
1/2( ) \/;F(S/Z_l)( ) (22)2 (22)2 4
(32, 2 2‘/I— 3
x| ~2In(22)+2¢{ 1+ 5| +2C~1|,  (A3.D) 7| Al
. . . | 1+]A|
whereC=0.577. .. is Euler's constant. This asymptotic ex- Xexp — Eln -JA| (A3.10
pression makes it possible to use the following approxima-
tion for the Fourier coefficiend,(p?,»): This asymptotic formula can also be used for degrees of
232 (1 1 1 circular polarization that are not small. Assuming now that
JNCLTO Pepuiy i | |A|<1, it follows from Eq.(A3.10) that
! T |A? 2 4 i
241
2 3 1 AP (p?)=———exp —I|A]). A3.11
X —|nm+¢/|+§)+c—§}—l)). e V| A3 PC-11AD ( :

(A3.2) Finally, we present an interpolation formula describing
‘ the leading terms of the asymptotic expansions of Egs.
This expression is also applicable to low harmonic numbers(A3.2) and(A3.11) for large harmonic numbers:

On the other hand, for high harmonick(1), for which 2302
(1+3/2)~Inl+1/, we have, up to and including terms ARR(p2)= K.(1|A]), (A3.12)
linear inl, | A
/ 232 (1 |2 2 1 whereK(z) is a modified Bessel function.
(312)¢ 2y = —__ =0 — —
AZ(p9) - [KZ+ 5 In ATl +C 5 +0(1)].
(A3.3)

OFrails <l .
The asymptotic expansiofA3.1) is inapplicable for E-mail: siin@sci.Ipi.ac.ru
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We derive the existence conditions for relativistic shock waves propagating in a perfectly
conducting fluid with a general equation of state that guarantees that the stationary wave has a
continuous profile in the presence of weak viscosity. To this end we study the one-
dimensional solutions of the magnetohydrodynamic equations with a relativistic viscosity tensor.
We allow for anomalous regions of thermodynamic variables and do not use the well-

known condition for the convexity of Poisson adiabats. The results lead to relationships among
the velocities of magnetoacoustic, Alfveand shock waves in front of and behind the
discontinuity that prove to be more stringent than the corollaries of the evolution conditions. In
the nonrelativistic case and in parallel and perpendicular shock waves, any difference

between the two conditions disappears. 1898 American Institute of Physics.
[S1063-776(198)00909-3

1. INTRODUCTION limit of continuous solutiongsee, e.g., Ref. )4 Here the
admissibility condition for a shock transition from a state 0

The physical criteria determining the admissibility of of the medium in front of the shock front to a state 1 behind
discontinuities in the solutions of hydrodynamic equationsthe front is obtained as the existence condition for a viscous
play an important role in the theory of shock waves. Thisprofile of the shock wave, stationary viscous flow whose
role is especially prominent in the complicated equations oparameters change continuously from state 0 to state 1.
state of superdense matter used, for instance, in relativistic In the present paper, to obtain this condition we intro-
astrophysics. Qualitatively, the derivation of these criteria induce into the equations of relativistic MHD a relativistic
relativistic hydrodynamics is no different from the derivation viscosity tensdr and then pass to the zero-viscosity limit.
of such criteria in the nonrelativistic theory. However, our We found that it is possible to examine the general equation
results illustrate the specific features of the relativistic treatof state without limiting ourselves to the requirement that the
ment that emerge when one allows for the additional degreeBoisson adiabats be convex, a requirement that plays an im-
of freedom related to a magnetic field. It turns out that inportant role in shock wave theory as one of the Bethe—Weyl
magnetohydrodynamicéMHD) the derivation of the two conditions for a normal mediuthClassical hydrodynamics
fundamental existence criteria for shock waves, the evolutiostate8 that if the convexity condition is violated, the entropy
condition and the structure condition, i.e., the existence of &riterion does not eliminate all nonphysical solutions and,
continuous profile in the shock wave in the presence of artherefore, is not sufficient for selecting the admissible solu-
bitrarily weak viscosity, differ in the relativistic case, al- tions. The results of shock-wave studies in relativistic
though they coincide in the nonrelativistic case. MHD>®® also rely on the convexity property, which in the

It is well known that the conservation laws that relaterelativistic range has the form dfp/9X?)s>0, where
thermodynamic quantities on the two sides of the shock fronK= (¢ +p)V?, p is the pressures is the entropy density,
are insufficient to define unambiguously a physically admis-V is the specific voluméper baryon, andS is the specific
sible shock transition. This forces one to introduce additionaéntropy.
criteria that ensure the uniqueness of the solutions of the The convexity property is not a thermodynamic
hydrodynamic equations near the discontinuity. Among theseequirement, and it can break down in complicated equa-
additional criteria is the most general evolution condition fortions of state. In the past this fact has drawn much attention
shock waves. In classical MHD, the evolution criterion to the study of relativistic shock waves propagating in media
leads to relationships between the velocities of magnetoawith anomalous properties in connection with hydrodynamic
coustic and Alfve waves, and the velocity of the shock models of a quark-to-hadron phase transitisee, e.g., Refs.
wave with respect to the medium in front of and behind the7—12 and the literature cited thergiThe general admissi-
discontinuity?>® which bounds the domain of existence of bility criteria for relativistic shock waves with a viscous pro-
various types of shock wave. file were obtained by Bugaest al1''2 One result of this

It is interesting to compare the evolution conditions withwork was a constraint on the shock wave velocifiehat
other constraints on the parameters of a shock wave thabincides with the conclusions drawn from the evolution
emerge in the weak-viscosity method. Introduction of viscos<onditions(just as in nonrelativistic hydrodynamigs
ity is one of the most effective and physically justifiable In the present paper we generalize the results of Bugaev
tools that make it possible to define discontinuous flow as thet al!*? to the case of MHD for a fluid with perfect

1063-7761/98/87(9)/6/$15.00 478 © 1998 American Institute of Physics
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conductivity>® The existence condition for a viscous profile Tuw= (U, ,+U, ,—U, U, ,~U,uU, ,)

in a relativistic shock wave makes it possible to formulate ' ' ' ’

the admissibility criterion for such a wave in terms of in- 2 \ou“®

equalities that contain the equation of state. This leads to +<§_ 577)

restrictions on the shock wave velocities, which in our case

differ from the corollaries of the evolution conditions. This is the relativistic viscosity tensdrWe then consider Eq$3)

difference disappears, however, in the nonrelativistic limit. and(4) together with Eq(7) under the assumption that there
exists a solution that tends to a limit gs~0 and{—0 and
describes discontinuous flow of an ideal fluid.

%(QW—UMUV) ®

2. BASIC RELATIONSHIPS

The equations of motion of an ideal relativistic fluid with 3 Ex|ISTENCE CONDITIONS FOR A SHOCK TRANSITION
infinite conductivity and unit permeability in a magnetic field

are derivable from the conservation laws for the magnetohy- ~ Strictly speaking, a thorough study of such phenomena

drodynamic energy—momentum tersdr presupposes a detailed analysis of the physical processes at
the shock front that takes into account the extent of the shock
THY=(p* + &% )ulu’— p* g’ — ih”h”, (1) front. Hovyev_er,' when studying superdense matter, 'Fhe re-
A searcher is limited to phenomenological models, which do

not allow for a description of the microstructure of the shock
wave. Hence it would be interesting to analyze the various
methods of regularizing discontinuous flow and to compare
the different requirements that limit the class of admissible
relativistic shock waves. Such studies have been done in

. 1. ., . ) 2 classical MHD (see, e.g., Ref. 13 and the literature cited
pT=p+ @|h| » ET =S 8_7.,|h| . [h[*==h*h,>0. therein. The conclusions drawn in these studies show that,
) generally speaking, the criteria for the existence of shock

We assume that the pressyrés related to the energy den- \aves depend on the way in which the discontinuity is

sity & and the baryonic number density(or the density of  smeared. For instance, Kulikovskand Lyubimov? found

any other conserved chaigea a sufficiently smooth equa- that in the presence of magnetic viscosity, only evolutionary
tion of statep=p(e,n). _ shock waves possess a continuous profile for any relation-
Energy—momentum conservation must be supplementeghi petween the dissipation coefficients. A different intro-

by baryonic charge conservation and the Maxwell equationsyyction of dissipation effects presupposes allowance for fi-

Continuous fluid flow is described by the equations of mo-ite electrical or thermal conductivity. The method of

whereu” is the 4-velocity of the fluidg””=g,,=diag(1,
—1,-1,-1),h#*=— (1/2)e’“"57FaBu7 is the magnetic field,
e*f7% is the Levi-Civita symbolF ,; is the electromagnetic
field tensor, and

tion smearing via the tensdB), which is used in this paper, has
3,TH=0, (2) been chosen because o_f its simplicity and the pqssibility of
comparing the results with those of a nonmagnetic case.
d,(nu*)=0, (3 Below we consider shock waves that are obtained irre-

P spective of the way in which the limit of)—0 and{—0 is
du(urh”—u"h#)=0. (4) attained. This makes it possible to limit ourselves to the case

If there is a discontinuity in the flow, the conservation lawsWhere,=0, and one viscosity coefficiedt# 0 is sufficient
relate the hydrodynamic and electrodynamic properties ofPr the shock wave to have a continuous profile and to block

the two sides of the shock wave: the evolution conditions.
) A stationary shock wave propagating in the spacelike
Dad T#1,]1=0, ®)  directionl « can be locally represented in an appropriate ref-
Dydnu#l,]1=0, Dyf(u*h*—h#u")l,]=0, 6) erence frame by a stationary viscous flow that depends only

on one variablex=x*I ,. We select a system of coordinates
wherel , is the normal to the discontinuity’s hypersurface, such that{l ,}={0,1,0,¢ and x=x1. Then, asx— —, all
| J#=—1, andDo(F)=F;,—Fg, with Fq andF, the values viscous-flow parameters tend to constant values, to which we
of the quantityF in front of and behind the discontinuity. For attach the index “0,” corresponding to the state in front of
a given state of the medium in front of the shock front, Eqsthe shock wave; ag—«, they tend to values to which we
(5) and (6) determine the curve of the shock transitions, orattach the index “1,” corresponding to the state behind the
the Hugoniot—Taub—Lichnerowicz shock adiab&tHow-  shock wave. Accordinglyy>0.
ever, not all such transitions are admissible. Equations(7), (3), and(4) yield the following constants

To analyze the admissible shock waves that satisfy Eqof the motion:
(5) and (6), we “smear” the discontinuity by introducing

1v lv__
viscosity effects, i.e., we replace E@) with T+ 777=const, ©

[?#(T;LV_F T[LV)ZO, (7) Ulhv—h]'UVEHVZCOI']St, (10)

where nul=j=const. (11)
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Since™”—0 asx— =, Egs.(5) and(6) are valid for where we have introduced the notation
the corresponding asymptotic valuesTf”, n, andh* ob-
tained from the continuous solutions of the syst@n-(11).
Reasoning by analogy with classical hydrodynarfiiase

find that the existence conditions for the solutions of this
boundary value problem can be interpreted as the admissibil-

ity conditions for the corresponding shock transition

~ 1
P(N)={1+(UH? 74 Tig)+ 7 —(H ) *~ Tigu,ut

1 - o o
—g(ul) H(HU,)?=H*H .},

U0y »N{6)No,Po—Uf1y,hf3y,n1,p;1, and these states must Ty g
) ~n_ (0w -2 a2 a
satisfy Eqs(5) and(6) for a shock wave. e(n)=———— —(uh) " H{(H",)?—HH }.
Next, without loss of generality, we can put=0 and u 87

h3=0; the componenta® andh! are normal to the surface

x=const parallel to the shock front, and and h? are the

tangential components. We are still free to select the refe

ence frame, so we choose one in whijfg)=0.
Equation(10) yields

1
h#=—[H*—u*H"u,]. (12
u
Multiplying (9) by u, and allowing for the fact that*”u,,
=0, we find that

e*ul=Tu,, (13)

which can be used to expressaaindh* in terms ofu® andu?.

Eliminating the single derivativeu'/dx from (9) at 7
=0 for u=1,2, we arrive at a relationship that link$ and
u2. Combining this with(12) and(13), we obtain

(H2u?—HO) (H?u®— H%u?) = 47u(T{gu?— TG uO).

This leads to a relationship between the components of th

three-dimensional velocity;; =u/u® andv,=u?/u:

A(Uz_a)(vz—b)

S (14
where
0142 2 12
B H"H H B 1 Too)
- 10 » ) - 1 - )
47T o) HO T(lg)

which is linear inv4 and quadratic iv,. Here we are inter-
ested in the connected part of the cuftd), which contains
the pointv,=0. At u=1 Eq. (9) yields

du' 1
A1+ =TT, (15

The requirement that the right-hand side of Eky) have
a constant sign inside the intervahy,n;) (the right-hand
'Side vanishes at the endpoints of the intenalsures the
existence of a continuous solution whose asymptotic behav-
ior is n(x) —ny asx— —c andn(x)—n,; asx—o. If, for
instance,n;>ngy and the right-hand side of Eq1l7) is a
positive, continuously differentiable function ofe (n4,ny),
a solution with such properties does indeed exist. But if the
right-hand side of Eq(17) changes sign at a certain point
betweem, andn4, there can be no such solution. One must
make sure that there is no transition through a branch point
of the functionv,(ul), where the solution can cease to be
differentiable. This point corresponds to the extremupn
=v} of the inverse function(v,). To prove this we need
only write Eq.(17) in the form

dul dl)z

d_vzdx

which n=n(v,) by virtue of (11) and(14), and the right-
and side is a single-valued function ®f, and study it in
the neighborhood of this point, wherdu'/dv,~C(v,
—v3), C#0. Assuming, reductio ad absurdum that
v,o(x*)=v3 at a pointx*, we can easily see that the solution
can be continued through this point only if the sign of the
right-hand side of Eq(17) also changes at the same point.
But even if this coincidence occurs, it will not be preserved
under small variations of the equation of state in the neigh-
borhood of the poinfe(v3),p(v3)}. Such variations would
change the position of the root of the right-hand side of Eq.
(17) but not the position of the point} , which depends on
the equation of state only at points 0 andske Eq.(14)).
Hence this case must be ruled out, and we must assume that
u! andu? vary monotonically along the solutions.

Thus, we have arrived at the admissibility criterion for a

stationary shock transition,

(e(n),n)—p(n),

Since velocities can be expressed in terms of the density

n (see Eq(11)),

1
Uy n
o)lo
ul_()

—, (16)

(no—ny)(p(e(n),n)—p(n))=0, (18

for all n betweemg andn,, where it is assumed that E@d.4)
has in this interval a unique regular solution with respect to
v,. Here we cannot rule out the possibility that the curpes

the problem reduces to a study of a first-order ordinary dif-andp touch (at the Chapman—Jouguet poinwhich is al-

ferential equation inn(x) or u*(x). Equations(12)—(16)
fully determine the structure of the shock transition.

Using Eqs.(12)—(14) and(16), we can rewrite Eq(15)
in the form

noug d

n - ~
(=3 g =P =pEm), )

lowed in the weak-viscosity limit, when the left-hand side of
Eqg. (18) can vanish at a point between, andn; but does

not change sign. This criterion is considered a necessary one.
It is not, however, a sufficient criterion, e.g., for an equation
of state that leads to multivalued shock adiabats: from clas-
sical hydrodynamics we know that here there can be more
than one discontinuous solution even if the existence condi-
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tions for a viscous profile of the shock wave are met, andvhere

removing this ambiguity requires imposing additional condi-

tions of a nonhydrodynamic natut&!® R* = (p+ &) (ub)2[ 1+ (ub)?] i(hl)z
The same criterion can be formulated in terms of the 4m

Hugoniot—Taub—Lichnerowicz shock adiabatsee Appen-

. . ) ) contains components of velocity and magnetic field that are
dix A), with the two forms being equivalent. P y g

normal to the planex=const, and has the same form in in-
ertial reference frames moving parallel to that plane. Since
the sign ofdul/dv, does not change in such motioR*
determines this sign in an arbitrary reference frame of this

Below we will need one more relationship that is satis-type. And sincedu'/dv, also retains its sign along a solu-
fied identically along the solutions of Eq&)—(11). This  tion, the sign oiRE*O) in front of the shock front is the same as
relationship can be obtained if we allow for the explicit form that of Rf;, behind the shock front. Here we must use the fact
of the energy—momentum tensdp: thath? andh? retain their signgsee belowalong an admis-

. . AR
T}§)H°—T(18>H2=(T12+ 12 HO_ (T104 10)42 sible path. Note that in the nonrelativistic limiR* and R

coincide.
~ dut We thus obtain a relationship similar (&9),
- N2Hhe p_ n2_- "
Vv1+(u)“h [R Z(ub) dx
Here R=(p* +&*)(u)?— (hY)?/4x, and h? is the trans-

verse component of the magnetic field in the reference fram
in which u?=0:

4. COROLLARIES OF CRITERION (18)

. (19

1

12 42 10 4o, ,1nl

pt+e— , (21

Which states that the sign of the longitudinal comporteht
of the magnetic field is preserved.

~2_h2(1+(u1)2)—u1u2h1 e h2—p,h? .Novxé we analyze formule(142 in a refer%nce frame in
h*= WO\I+ (uh)? —u e which up,=0. We assume thdt,,#0 andhiy,# 0. (Note

that the cases of perpendiculdr,=0) and parallel I(1(20)
Since we are interested in a continuous solution in the inter=0) shock waves are much simpié.In such a reference

val (—o,»), from (19) it follows thath? does not change frame the expressions for the constant$14) are

sign (or h2=0 in front of and behind the shock wave his Gt e RN 1
implies that in relativistic MHD there can be no turningonor A=~ 4 “0Q70© = _ =
turning off of shock wavescf. Ref. 5. Recall that the tan- u?o) h(lo)

gential magnetic field in front of a shock wave that is sud-
denly turned on is zero, and behind it the field is nonzero;
such shock waves are admissible in classical MHDe fact

that there can be no relativistic turning on or turning off of a ind Eas(19) and(20 i hat th
shock wave has also been analyzed in detail using another Usmg as{(19) and(20), one can easily see t ?“ € case
method wherec is betweera andb corresponds to a negativeand

Sincedu/dx—0 asx— = and the right-hand side of describes a slow shock wave; here the branch of the depen-

Eq. (19) at these limits is proportional 8, Eq. (19) implies dence(14) containing the initial pointy,=0 is monotonic.

that in a nontrivial cas® does not change sign either. The But if ¢ is outside the mte_rvaﬂa,bj, thgn R>0, with the
result that the shock wave is fast; in this case the branch has

(hzo))Z -1

( 1,0
4

Uio)U(o)

1 2
c=-— h(o)h<0)[4w PotepTt

relationship
an extremum.
)2 (h)? Now we establish a relationship between the velocity of
(Un)"= A (p* + &%) a shock wave and the velocities of magnetoacoustic waves in

] . front of and behind the discontinuity. We expa(iB) at 0
determines the component of the 4-velocity of Alfwwaves  ang 1. Allowing for (12)~(14) and (16), we see that direct
propagating along theaxis, i.e., the sign oR is the same as  g|cylations in the neighborhood of 0 yield
that of the differenceu*)?2— (u3)?, which, consequently, is

conserved in the transition through the shock wave. Accord- ~ d(p—p) L1 (Po+&0)? 1
ingly, if R>0, the equations describe in the weak-viscosity P~P= dut (u _“<0>): TD(WO))
limit a fast shock wave, while iR<0, they describe a slow ul=uly ©
shock wave. 11
An additional condition imposed on velocities follows X (U= U)),
from the result thatu*/dv, must not change sign along an \yhere
admissible path. Using Eq(14), we calculate this quantity
in front of the shock frontX— —) in a reference frame in N Q(ud)
which ufo,=0: D(u :W’
dut 47u°
doslo nRET| (20 Q(§)=§4(1—CZ)—§2(CZ+ Wik )+ i
2l(0) (0 s S 4m(p+e)] 4m(pte)’
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with cgz(&p/o?s)s the speed of sound; all quantities were the case of a zero magnetic field with the results of Bugaev
calculated in the neighborhood of 0. et al,'*2where a similar condition proves sufficient for the
Note thatQ(&)=0 coincides with the equation for the realization of a continuous profile of a shock and its evolu-
normal components of the 4-velocityof fast and slow magnetion. When the magnetic field is taken into account, the re-
toacoustic wavest; and & (see Refs. 5 and)pwhich are  lationships(24) for slow shock waves coincide with the well-
the roots of the function known restrictions on shock-wave velocitiedwhich can be
. 2\ .2 . a2 derived from the evolution conditions, while the inequalities
QUO=(1=C)(E" = £)(67 = &9)- (23) for fast shock waves are more stringent.
If we now use the conditioil8) in the neighborhood of 0, Note that condition(18) must be met over the entire
we obtainD(§)|§=u(10 >0. interval [ng,n;] and not only at the endpoints; if only for
Similar reasoning for the final point dwith allowance this reason it is more stringent that the evolution conditions.

for appropriate notation; no; andé, are calculated at this HO‘_’VGVGV’_"’_‘ a normal “0”09”dUCti”9 mediL(m nonmag-
poini) yields D(£)|,,. <0. We see that if, for instance, in netic relativistic hydrodynamig¢swhere the Poisson adiabats
a and hence the shock adiabats do not change the sign of con-

vexity, the principal constraint is on the velocities of the
shock and acoustic waves. Here, the result is the same,
An additional lower bound on the velocity of fast shock whether we start with _the e_volqun co_ndzltlon_s or with the
waves with respect to the medium is obtained if we note tha?ssu_mpt_lon that there is a vIScous profi€?as n the non-
R* has the same sign at 0 and 1. We denote the compone t%|atIVIStIC casé.But when we consider the continuous struc-
) . .' e of a shock wave in relativistic MHD, a new character-
of the 4-velocity at whiclR* vanishes by L Lk o .
istic velocity v appears, and limits the velocity of fast
. \/1 (h%)2 shock waves with respect to the medium behind the shock
Up= 5( \/1+ m—l) . front. In the nonrela’Eivistic limit, this parameter coincides
with the ordinary Alfven velocity, and so do the admissible
Allowing for the relationship between, anduy (see Ap- intervals of shock-wave velocities. Thus, the more stringent
pendix B, we arrive at a relationship for the parameters inconstraint on velocities is a reflection of the relativistic na-
front of the shock front&f;,> (uf;))?>(UA1))?=(Uaw)®  ture of the process; however, this constraint is lifted for per-
Examining the feasible alternatives with these inequali-pendicular and parallel relativistic shock waves.
ties in mind, we obtain relationships for the following three- In conclusion we reiterate that here we have used a spe-
dimensional velocities in front of and behind the shock front:cial model for smearing the discontinuity by introducing
the shock-wave velocity vs,, the fast and slow weak viscosity. This is not the only possibility, and we be-
magnetoacoustic-wave velocities and vy, the Alfven-  Jieve it would be interesting to examine other methods of
wave velocityv 5, andv} , which are all related to the com- regularization, in particular, those that allow for other dissi-
ponents of the 4-velocitiesg,, &, &g, Ua, anduy in the  pation effects.
usual manner. For fast shock waves the characteristic veloci-
ties obey

the initial state ({,))2> &0, in the final statewith allow-
ance for the fact thaR does not change sigrwe obtain

2 2
&= (U(l))2> (Uaq1))?

APPENDIX A: ANOTHER FORM OF THE EXISTENCE

Ush0)> 010>V k(0> U A0) > Vst (22)  CONDITIONS FOR A SHOCK TRANSITION

in front of and For a given initial stateu(o), hioy, Vo, Po, WhereV
. =1/n is the specific volume, the shock adialpg{(V) (see
Uf(1)= Ush(1)~ VA1)~ VAL~ Usi(1) (23)  Refs. 5 and Bdetermines the possible shock transitions via
behind the shock front. For slow shock waves we have, rethe conditions(5) and (6). The py, vs. V dependence might
spectively, not be single-valued. By their very definition, the curves

p(z(V),V), p(V), and py(V) have common intersection
' o ~ points only: if at a pointV* we have p(e(V*),V*)
Here allowance for the monotonic variation of velpcmes ina_%n*), then(see the right-hand sides @5) and(17)) that
fast shock wave leads to the emergence of a forbidden regiopt» _ t1v

= , i.e., the pointV* belongs to the shock adiabat
[UA(l)vvt\(l)]- Such a region is a hallmark of relativistic ag;j) p(E((O\)/*) V*):pp (V*). If ther?a is a viscous profile
MHD: in the classical limit s(1y~v 1y, and the region dis- ' H ' ’

then by virtue of(15), these curves intersect only at the ini-
appears. We also note that for a parallel shock waye y 19 y

% . . o - tial and final points and have no common points in between
=vpy ; for a perpendicular shock wave both velocities Van'Sh'(with the possible exception of points of tangency

Let us examine the relative position of these curves. By

UA0)~Ush0)~Ucl(0) s Usl(1)~> Ush1) - (24

5. DISCUSSION H we denote the function that defines a shock adiabat:
—\n2\/2 2\ /2 2 2
The necessary conditioi18) for the existence of a con- H=wV=wyV5— (WV*+woVg) (P~ Po)
tinuous viscous profile of a shock wave in relativistic MHD 1
also guarantees the growth of entropy, since it originates in +§(wV2—w0V§)(¢— %0)?=0,

the equations with viscosity. This criterion and its alternate
form in terms of shock adiabatsee Appendix Aagree in  where
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y?=ha+[h|2(1-ud).

At the initial point of the adiabat,
dH B 279To 9S
Ip Vo dp

=e+D,

>0, 7=wV?

V=V,

V=V,

which means thaH is positive above the initial point and

negative below. Now we calculate the value ldfon the
curve p(e(V),V),

i.e., H(p(s(V),V),V) in the neighbor-
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Comparing the expressions f&®* and R, we find that
(up)?<(u})? Clearly, for a parallel shock wave we have

ua=uUx . For a perpendicular shock wave both velocities
vanish.
In the nonrelativistic limitp* +&* ~p+¢, so that
(h)?
u*)Z 2
( A 4 (p+ ) ( A)

and condition(23) coincides in this limit with the evolution

hood of the initial point. Some tedious but straightforwardconditions in classical MHD.

calculations yield
H(p(s(V),V),V)

_no[ GV b))

TV, dv av /,

Bearing in mind that the sign ab(z(V),V)—p(V) in the
neighborhood of the initial point determines the signiAft),
we find that

(V1= Vo) (p(V)=P(V))=0

(A1)

(A2)

Substitutingu’x into the explicit expression fd@(&), we
obtain

m%%mpﬂﬁﬁﬂyk%>wn”

(hh%cg  p*+e*

47T(p+8): p+ (UX)2]<0.

[(ua)?—

Since ¢ and &2 are the roots of the quadratic trinomial
Q(£), we thereby obtaiFZ<(u,)2<£?.

in the neighborhood of the initial point. This condition, when »)g_mail: zhdan@aoku.freenet kiev.ua
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On the basis of statistical analysis, we derive expressions for the dynamic susceptibility,
magnetization relaxation times, and the effective rheological characteristics of a moderately
concentrated homogeneous ferrocolloid consisting of identical spherical ferroparticles
suspended in a Newtonian liquid. The magnetic moment of a particle is assumed constant and
rigidly “frozen” into the body of the particle. We also estimate how the magnetodipole

and hydrodynamic interactions of the particles influence the effective dynamic properties of the
ferrocolloid. © 1998 American Institute of Physids$51063-776(98)01009-9

1. INTRODUCTION picture of the behavior and properties of these systems.
This paper is a theoretical study of the dynamic suscep-
One of the central goals of the physics of magnetic lig-tibility and the rheological characteristics of a moderately
uids (ferrocolloids is to establish the relationship that exists concentrated ferrocolloid consisting of identical spherical
between the macroscopic dynamic characteristics describingarticles with their magnetic moments being constant in
the properties of the colloid in the continuum approximationmagnitude and “frozen” into their bodies. We ignore the
and the parameters characterizing it on the microscopic levepossibility of formation of drop, chain, and other heteroag-
such as the size, shape, properties, and concentration of tgeegates. The problem of the conditions for the emergence of
particles and the properties of the liquid carrier medium. De-such aggregates requires a special study.
spite a large body of dai@ee, e.g., Refs. 1}6a theory that Attempts to calculate the dynamic response functions for
adequately describes the macroscopic dynamic properties dense homogeneous ferrocolloids were made by TsEbers
magnetic liquids has yet to be developed. This leads to and Kasherski’® However, they took the magnetodipole in-
situation in which the results of many experiments are interteraction of the particles into account by employing Weiss'’s
preted by the researchers differently. theory of a self-consistent field. Such a model suggests that
The existing consistent theoretical models of the dy-the interaction of the particles effectively manifests itself
namic properties of magnetic liquids deal primarily with ex- only after the ferrocolloid has gone into the ferromagnetic
tremely dilute systems, in which interparticle interactionsphase. However, there are no experimental indications that
can be completely ignoretsee, e.g., Refs. 739However, ferromagnetism is present in magnetic liquids or, to that mat-
in various ferrocolloids such interactions play an importantter, in other similar polar systems. Hence one should be care-
and sometimes crucial, role: they lead not only to correlaful when using the results of Refs. 19 and 20.
tions between particles but also to the emergence of In Ref. 21 a consistent thermodynamic perturbation
drop°~*2chain®*~'°and other heteroaggregates capable otheory (a variant of the second virial coefficient approxima-
radically altering the effective characteristics of the colloid.tion) was used to account for the magnetic interaction of
The effect of chain aggregates on the macroscopic propertigsarticles in the analysis of the kinetics of alternating magne-
of magnetic liquids was studied theoretically in Refs. 16—18tization of moderately concentrated homogeneous ferrocol-
The analysis of the macroscopic properties of magnetic ligloids. Byevich and Ivand? and Pshenichnikd¥ demon-
uids is complicated by the fact that the ferrocolloids com-strated that the theory could be used to describe the
monly used in experiments and applications are polydisequilibrium properties of magnetic liquids. In Ref. 21 the
perse. Since particles belonging to different fractions aremagnetization relaxation equation was derived from the
involved in different mechanisms of magnetic moment relax-~okker—Planck equation for the many-particle distribution
ation (Brownian, Nel, etc) and the contributions of the dif- function of the positions and orientations of the particles.
ferent fractions to the overall response are not additive ifThe effective-field methddwas employed to reduce this
systems with interaction, the results of experiments that essquation.(The high accuracy of this method as applied to
tablish the properties of polydisperse magnetic liquids carlilute ferrocolloids has been demonstrated in the numerical
hardly be expected to be interpreted correctly, even qualitaexperiments of Tsebefé) However, in Ref. 21 the dynamics
tively. of magnetization variations was analyzed only for weakly
Under such circumstances it is advisable to study monornonequilibrium systems, which means that we still do not
disperse systems, both theoretically and experimentally, sknow the nature of the response of magnetic liquids to rap-
that we can separately analyze the effect of each factor owlly varying fields and the rheological properties of such
the macroscopic properties of dense magnetic liquids. Wéquids.
believe that only this line of research will provide a coherent  In the present paper we study the dynamic response of a

1063-7761/98/87(9)/10/$15.00 484 © 1998 American Institute of Physics
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moderately concentrated ferrocolloid that is arbitrarily farjth particles. Summation il) is over particle numbers. In
from equilibrium, and the rheological characteristics of suchsolving Eq.(1) we take into account the condition that the
a system. Methodologically, the work is close to Ref. 21, ancparticles do not overlag;; =|r;—r;|=2a.
we also correct the errors discovered in that paper. Even the reduced Fokker—Planck equatibnhcannot be
solved exactly. Here, as in Ref. 21, we use the effective-field
approximation', a variant of the trial-function method. Ac-
cording to Ref. 7, the solution of E¢l) must be sought in
the form of an equilibrium function with respect to an effec-
Consider a ferrocolloid occupying a voluriveand con-  tive potential energye, which differs fromU in Eq. (1) in
Sisting of N identical 3pherica| partides of radius. The that instead of the true magnetic figtdit contains an effec-
absolute valuen of the magnetic momenn of a particle is  tive field He, which must be found. Thus, we postulate the
constant: the moment is “frozen” into the body of the par- Validity of the equation
ticle (the magnetic anisotropy energy is higiWe denote the

2. MATHEMATICAL MODEL AND BASIC EQUATIONS

unit vector directed along the magnetic moment of itie j &j . E '
particle bye=m;/m and the radius vector of this particle Z l [( T liUe | Py +Ei Vi T Vile| Py
by r;.
To calculate the macroscopic characteristics of the sys- +D, > f?PN+D S v2p=0 @)
tem, we must determine theN-particle distribution e g i ’
Pn(€r, .- 8Nsf1s - - - oFy), Which can be found by solving

the appropriate Fokker—Planck equation, in which we must 1 mH,

allow for the magnetic and hydrodynamic interactions of the Ue=—T Z e 6+ 2 2« Wij,  @e= T -

particles with each other. The fact that this equation contains .

tgrms_ corres_ponding to.nonpotential hydrodynamic !qterpar- Subtracting(2) from (1), we get

ticle interactions complicates the mathematics significantly.

To simplify analysis and obtain results in a tangible form Py . [(D, -

that can be analyzed from the standpoint of physics, instead e —Z Ii-H?Ii[éwe,]wLQ) PN}, 3

of explicitly writing the appropriate terms in the Fokker— !

Planck we effectively allow for the hydrodynamic effect by

using renormalized particle diffusion coefficients in that . . : L

equation. These coefficients already allow for the hydrody- Up tp this point all the transformz?mons were exact: sim-

namic interparticle interactions. Such a model of an effectivé:’Iy put, instead Of the unknown functlcfm we introduced a

medium has been repeatedly employed with success in tHEW unknownae, linked to Py by the Gibbs formula

theory of the macroscopic properties of suspensions and U

composite materials. Py=2"1 exp{ — _e) ,
If we adopt a system of coordinates in which the average T

velocity u of the colloid as a whole is zero, the Fokker—

where a= a,— a.

i i i U
Planck equation reduced in this manner has the form Z=J exp( _ ?e dey - - deydry - - dry. @
[ Fiv-al (Frole
CA_S [ ZTu-alpy+2 v [=vulP
at Z YL T N Z T N The crucial assumption of the method developed in Ref.

7 is that the effective fieltH, is independent of the vectoes
+D, 2, [i2pN+ D, > VZPy, andr; and that its components can be found from the equa-
i i tion for the first moment o&;. Obviously, after this assump-
1 tion is made, Eq(3) ceases to be equivalent to Ed) and
IA:qxi, Vi:i, U=—T E a6+ = 2 W, the fun_ction Py that this new eguation_ yie_lds is only an
08 i i 2 {7 approximation to the true function satisfying E(L). As
noted earlier, Tsebe?sand Pokrovsk?® showed that this

_ m_H _ l approximation is extremely accurate when applied to dilute
a= ., Q=curlu, . e
T 2 ferrocolloids. Note that similar ideas have been successfully
) used in analyzing the dynamic properties of polar liquid
(&) —3(e-ri;)(g-ri)) ? crystal system&®?’
wij=m 5 : (1) As is common in statistical physics, interparticle interac-

. tions do not make it possible to exactly calculate the average
HereT is the absolute temperature in energy uritsandD;  values of quantities vigd). From now on we assume that the
are the effective coefficients of rotational and translationaconcentration of the colloid is low or moderate and use the
diffusion of the particles calculated with allowance for the second virial coefficient approximation. As noted earlier, the
hydrodynamic and steric interactions of the particldsis  fact that this approximation produces adequate results in de-
the total potential energy of the particle system, andis  scribing the properties of many real ferrocolloids has been
the energy of the dipole—dipole interactions of ilile and demonstrated in Refs. 22 and 23.
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First, we will find it convenient ifPy is averaged over m . .
the particle coordinates. Introducing the Mayer function — —r=—Dr 912 |i([5a'Q]DN)>—<elﬂzi IipN>v
fij=exp(—w; /T)—1 and averaging4) over all ther,, we

Obtain <>:<>1N1 M:<ele>1 (8)
B R where u is the average value of the vecter of a particle.
pN_f PN 1;[ dri=Z""ex ae'z e,) Obviously, the colloid’s magnetization is
N p
i>j K
Expanding(5) in a power series iffi; , keeping only the Using (6) and (7), we easily find that
first two terms, and performing standard transformations, we N—-1 dGg
get n=pehe,  pe=Let vV Yda’ (10)
e
1
= 1-p(N—1)Ge+ = i | 6 H
P (1;[ qsk)( p(N=1)Get G 2 Q (6) LemLap, o=t
e
p= Ev, o= fwa3, o= o(6)= explae-€) ’ In the thermodynamic limit,
\% 3 Z;
Lo+ dG. (12)
sinh a Me=te™ Py -
zlzf expa,-e) d3e=41r = dae
e If we employ the fact that the angular momentum opera-
tor |; is antihermitian and use the approximati@ for py,
Qij:f fidrij, rj=ri—rj, we get
rij>2a
1 & 2 li([de-g] >>= =(&¢
Ge:Z<‘P1‘P2Q12>12= 14 i & 1PN (pn)=(&e1)1
” e
. v 1)
<"'>il...in= "'klldek, iv=1,...N. V] 1/1
—-2G , 12
Here and in what followsp is the volume concentration of (&0l 12
the particles. whereé=e; X (dax ) andb=1/v (¢2Q12)>-
When calculating the integral in the expression @y, In the thermodynamic limit,

we must bear in mind that the result depends on the shape of R

the infinite volume over which the integration is done. <e1 2 |i([§a~e|]pN)>=<§(p1>1+p[<§b(pl>l

Proper selection of this volume was done by Byevich and :

Ivanqv.22 Unfortunately, the complicated form of the Mayer —2Gu(£p1)1]- (13)
function makes an analytic calculation &f;; impossible. _ _ N ~ )
Here, as in Ref. 22, we limit ourselves to an analysis of a  Allowing for the antihermitian nature df and using(6)
system in whichw;; is small in comparison to the thermal and(10), we easily find that

energy of the system. Note that this assumption means that .
there are no heteroaggregates in the ferrocolloid. <elﬂ E IipN> =(e; X Qpy)=(e;pn) X Q
Expanding the Mayer function in a power seriesaip, !
keeping only linear terms, and using the method of Ref. 22 to =~ Qxhg. (14)

calculate the integral i;; , we obtain . )
If we now combing(6), (7), and(13) and perform simple

1 . .
Q =8we-g, GXI=4yL2(x), L(x)=cothx— - transformations, we obtain

2 <e12 fi<[5a-a]pN>> =Acda—Be(he-Sa)he, (15
G=G(a), Ge=G(as), 7= 3 (7)
8a’T Ac=A(ae), Be=B(a),
The parametery characterizes the ratio of the dipole— L(x) L(x)

dipole interaction of two closely located particles to the ther-  A(x)=1———+8py (L%(x)—C(x)),
mal energy of the system. X
Averaging(3) over the radius vectors of the particles, we B(x)=C(x) +24py(L?(x)— C(x)),
arrive at an equation that is identical to E®), with Py
replaced by, . Multiplying the resulting equation bg; and L(x)

averaging over ale , we obtain C(x)=1-3——

X

VEE
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Allowing for (14) and (15), we can write Egs(8) and Let
(10) as Hy=Ho coswt, H,=H,=0. (22)
&_/: = —D,[A.8a—By(hy-Sa)h.]+ uQx h,, We write the magnetization, defined (8), in the form
dG, M(t)= >, Mi(nw)cosnwt+ >, M,(nw)sinnt,
p=pehe,  pe= Le"’PW: n=0 =t
¢ 1
Sa=a,—a, a,=agh,. (16) Mi(nw)== JTM(t)cosnwtdt,
We have arrived at a system of equations for the vectors 1 o
p and a,. For subsequent calculations it is convenient to My(Nw)= = J' M(t)sinnwtdt, T=—. (23
write this system in the form of a single equation with re- TJr w
spect toa,. To this end we employ the fact that= pch, Now we define the rea}., and imaginary”, parts of the
and write magnetic susceptibility in the following manner:
dp . - due Mi(w) Ma(w)
E:Jeaehe"'/iehe’ Je:dae 17 Xo= Hy Xo= Hy (24)
(as usual, the dot indicates a time derivative For Hy small and the dependence Mfon H linear, the
Allowing for (7) and(16), in the linear approximation in  definitions(24) coincide with the ordinary definitions for the
py we ge components of the complex-valued dynamic susceptibility.
t f th I lued d i ibili
dL dL.\2 4L The system of equationd9) and (20) was solved nu-
Jo= dae +8py ( dae +L, ze) . (18 merically with respect tax, andh, for
€ © dap 0Q=0, da=ah,—a,
Plugging(17) into the first equation if{16) and writing
mH,
the scalar product of the result and the vedtpr we get a=(agCcoswt,0,0), = (25)
&e:&(Be_Ae)he'5a' (19 The result was then plugged into the second and third rela-
Je tionships in(16), which together with(9) yielded M (t). Af-

If we now plug(19) into (17) and the result int¢16), we  ter numerical Fourier transformations were carried out, the

arrive at the equation Fourier transforms ofz were calculated,
. A ~ My(w) ~ My(w)
he=—DrM—e(ﬁa—(he-ﬁa)he)JrQXhe, lhe/=1. p(w)=———=, pa(w)=———,

(20 and so were the quantities
Equations(19) and (20) form a system of equations for e o)
finding a. andh,, which can easily be reduced to a single K'(w)= , K'(w)= , (26)
equation: o %o

which correspond to the nonlinear response of a particle at
the external field frequency.
Equations(19) and (20) contain the effective rotational
diffusion coefficientD, . In the approximation of two hydro-
TOX a,. (21) dynamically interacting particlesimilar to the second virial
Finding e, from (21) or (19) and(20) and plugging the coefficient approximationthis diffusion coefficient was es-
result into(10) and(11) or into the second and third relations timated by Perez-Madrid and Pubi:
in (16), we arrive at an expression for the average vegior T
If we then plug the expression fgr into (9), we obtain the Dr:DO< 1=%r Sy
nonequilibrium magnetization of the ferrocolloid. As-0, ) ) ) .O. o .
Eq. (21) becomes the equation for the effective field derivedWhere 7o is the viscosity coefficient of the liquid carrier
in Ref. 7. Note that in deriving21) we corrected the errors medium, andD, is the rotational diffusion coefficient for a

that were made in deriving a similar expression in Ref. 21.Single particle. Note that the value of, used in Ref. 21,
chosen intuitively, differs somewhat from the value given by

(27), which we use below.
The results of calculating’ and«” are depicted in Figs.
1-3. Figure 1 shows that at low frequencies the real part
Equation(21) is nonlinear and, generally speaking, canof the specific susceptibility increases with the parameter
be solved only numerically. In this section we study the re-of the magnetodipole interaction of the particles, while at
sponse of a ferrocolloid that macroscopically is at re@t (  high frequencies it decreases. This agrees with the well-
=0) to a linearly polarized oscillating magnetic field. known fact that the magnetodipole interparticle interaction

de, A.—B A @, da
dte:_Dr %(aeob‘a)aﬁ— M—eae( 5a—e—ae)

(27)

3. DYNAMIC SUSCEPTIBILITY
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0.17

FIG. 1. Plots ofx’ (a) and «” (b) vs. the di-
mensionless frequenay’ = w/D, of an alter-
nating magnetic field aty=3 and p=0.15.
Curves1 correspond toy=0, curves2 to y
=1.5, and curve8 to y=2.5.

0.101
0.10

0.03 0.03

enhances the dc susceptibility of magnetic liguisise, e.g., and we found that the corresponding susceptibilities were
Ref. 23. At the same time, at high frequencies collective  smaller by several orders of magnitude than the susceptibili-
effects hinder the rotation of particles, which resultsdih  ties k' and «” at the signal frequency.

decreasing with increasing. The same physical reasons

lead to an increase ik” and to a shift of its maximum to the 4. RELAXATION TIMES

left along the frequency axis asincreases.

Figure 2 shows that as the volume concentrajom-
creases, the parametef at low frequencies also increases,
which again agrees with the well-known properties of dc
susce_ptlblhty_. At ‘r‘ugh fretiuenues;;’ decreases W'th. """ small. In the approximation linear ifia(t), instead of(16)
creasingp, since “braking” effects of the magnetodipole we have
interaction of the particles begin to manifest themselves and
the decrease of the effective rotational mobilily/T of the m
particles comes into play. A comparison of Figs. 1 and 2 ot = ~DilAda—B(h-seh],
reveals that hydrodynamic interparticle interactions have a
stronger effect on the dynamic susceptibiligspecially on
its imaginary pantthan dipole—dipole interactions.

Figure 3 shows that an increase in the magnetic field

Analytic treatment of(16) is possible only for weakly
nonequilibrium processes, in whigi(t) differs only slightly
from its equilibrium value corresponding to the current mag-
netic field H(t). Formally this means thaga(t) in (16) is

p=pat da)=po(a)+ % Sa+

J—%)(h-&a)h,

strength reduces, on the whole, bathand«” and shifts the po=poh, po=L(a)+p dG(a) i

maximum in«” to the left along the frequency axis. This is d

understandable since an increase in field strength without

limit cannot lead to a similar increase in magnetization—it A=A(«), B=B(a), J=J(a), h=— (28

reaches a plateau and becomes saturated; the characteristic H
time of response of the system to variations in field strengtiwhere u, is the equilibrium value of the vectgu corre-
decrease in the process. sponding taH(t). In deriving the first relationship it28) we

Our approach can be used to calculate response funagain assumed that macroscopically the colloid is at rest
tions at frequencies that are integral multiples of the fre{{)=0). The second relationship {28) is the expansion of
guencyw of the external field. Such calculations were done,u(a+ da) in a Taylor series and is independent(df

0.17}, 0.171

FIG. 2. Plots ofx’ (a) and x” (b) vs. the di-
mensionless frequenay’ = w/D of an alter-
nating magnetic field aty=3 and y=1.5.
Curvesl correspond tgp=0.05, curves2 to
p=0.15, and curve8 to p=0.25.

0.10 0.10

0.03+ 0.03H
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We introduce a local system of coordinates whpseis
is directed alongH. This means that we can wrii@8) as

follows:
d:U’x,y du,
T:_DrA‘sa’x,ya W:—Dr(A—B)(SaZ,
dayy

Mxy= Mo a Hz= potJ Sa;.

Eliminating the components @« and using9), we arrive at

the magnetization relaxation equations

dM,, 1 M dM, 1 MM
dt 7, %Y dt ?H( 2~ Mo).
with My=mngu, the equilibrium magnetization in the field
H, and
A-B\ ! 1+8py(W+LYW 1)
7=|\Di—5—| =79 2
J 1+8py(C—L?)
aA\ 7t 1+8pyW
n=<Dr—) =10, P (a-L),
Mo a—L+8py(L2-C)
a dL 1 L

nf

b
FIG. 3. Plots ofx’ (@) and «” (b) vs. the
dimensionless frequenay’ = w/D of an al-
ternating magnetic field aty=1.5 and p
=0.15. Curvesl correspond toay=0.01,
curves2 to ¢y=2.5, and curve$ to ay=5.
30 w

The parameters; and 7, are the times it takes the com-
ponents of magnetizations parallel and perpendicular to the
field to relax to their equilibrium values, anth and 7o,
are the values of these times at=0. The results of
calculatingr and 7, are depicted in Figs. 4-8. A combina-
tion of the following factors determines the above depen-
dence:

1. An increase in the strength of the magnetodipole in-
teraction of the particleéboth p and y increasg leads to an
increase inwy and hence to an increase in the strength with
which the particles are coupled to the field and a decrease in
the relaxation times.

2. The magnetodipole interaction of the particles makes
the configuration of their moments more stable, which hin-
ders particle rotation in the field and hence enhances
Thus, the magnetic interaction of the particles affectis
two ways, and the predominant behavior of depends
on the conditions. In Ref. 21 it was shown that at large
values ofa, an increase iry leads to a decrease in while
at small values ofy, an increase iry leads to an increase in
T.

3. The hydrodynamic interaction of the particles, which
becomes stronger gsincreases, leads to an increaserin

4. As the magnetic field strength grows, the strength
with which the particle moment is coupled to the field in-
creases, which leads to a decrease.in

FIG. 4. Plots of7, (a) and 7 (b) vs. the con-
stant external magnetic fieldr at p=0.15.
Curves 1 correspond toy=0, curves2 to y
=1, and curves to y=1.5.
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1.25T
b i
1.00[
0.751 FIG. 5. Plots ofr, (a) and 7 (b) vs. the volume
concentratiorp at y=1.5. Curvesl correspond to
0.50F ap=1, curves2 to ay=3, and curves to a,=10.
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5. EFFECTIVE COLLOID VISCOSITY A 1 1
o =5(M{H;—MH;)= snaT(uih;— uh;),
When there is a magnetic field, the average hydrody- N 2( v iHi) 2 (il = pihi)

namic stress tenser in a ferrocolloid becomes asymmetric. N
We write this tensor as ih,j=X,¥,Z;, n= v (34
o=+ d", (32

Thus, to calculate the components of', we must
where the superscrip8andA designate the symmetric and find the components of the nonequilibrium magnetization
antisymmetric parts of. The literature devoted to calcula- M and plug them into(34). To this end we go back to
tions of o° in dense suspensions of neutral spheres is vastig), assuming that the flow and external field are steady-
The most rigorous result in the approximation linear in thestate.

gradient of the average velocity was obtained by Batchelor |n the approximation linear i) and 5o, Egs.(19) and

and Greef? in the approximation of two interacting par- (20) yield a system of time-independent equations,
ticles:

B—A
o =27Tjj, 7%= mo(1+2.5+7.60%), —5 (h-6@)=0, 39
1 (9Ui ﬂUJ .. A
i3l T T (33 Dy-,—(da—(h-6a)h) + Qxh=0.

where7° is the effective viscosity of a suspension of neutral From the first equation in35) it immediately follows
hard spheres. This result agrees well with the experimentqhath'aazo_ Using(28), we obtain

data if p<0.1; at higher concentrations it leads to underesti-
mated results.

Our goal in this section and in Sec. 6 is to calculate the
components of the antisymmetric parf* of the average Finding S from the second equation i85) and plug-
stress tensor in an approximation linear in the components of. .
the tensor of the ferrocolloid’'s average velocity gradient.glng the resuit intq36), we get
Here we examine steady flow and estimate the effective vis- 1 ud
cosity of the ferrocolloid. M= Mo~ D_r J(QX h). (37

The components of the antisymmetric part of the stress
tensor of a magnetic liquid can be written as folloggge,

Ho
M= pot o da. (36)

Plugging the components gi from (37) into (34), we

e.g., Refs. 25 and 30 find that

q I q 3

Liof 3 1.80f
0.825} ! 1.35] 2
i

0.550f 0.90t

0.275} 0.45}

0 0
o001 2 4 6 8 a 0001 2 4 6 8 a

FIG. 6. Plots of g vs. the constant external magnetic field at
p=0.1. Curvel corresponds toy=0, curve2 to y=1.5, and curve8 to y
=25.

FIG. 7. Plots of g vs. the constant external magnetic field at
y=1.5. Curvel corresponds t@=0.01, curve2 to p=0.1, and curve3 to

p=0.2.
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FIG. 8. Plots ofq;, (@) andq, (b) vs. the dimen-
0.96 0.961 sionless frequency’ = w/D, of an external pertur-
4 bation aty=1.5 andp=0.15. Curvesl correspond
0.64 0.641 3 to a=1, curves2 to a=3, curves3 to a=5, and
2 curves4 to «=10.
0.32 0.32+
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0.01 201 4001 601 801 o 001 201 401 601 801 o
2 ing suspension the two-point correlation function of the par-
A 0o Mo . . .. o
oij=3 D. Ta TijkmQm» ticles changes, which generates additional specific stré$ses.
' If the flow velocity gradient changes in time, the correlation
1/ du, duy function relaxes to it in the course of a finite time interval,
Tijkm="Nm( dih; = djhi), kazz Xy IX ) and this is the cause of macroscopic viscoelastic effects.
(39 Since these effects are due to correlations, in low and mod-
. . erately concentrated suspensions such effects are not large
which can be written ) ) :
and manifest themselves only in subtle experiments.
A AL A 3 Dy 45 In ferrocolloids, even extremely dilute ones, the vis-
7ij=27 SIPOQy;, 7= 5 D, A’ (39 coelastic nature of the relationship between the tene@rs
and ;; is determined by the finite rate of tuning of the
with 6 the angle between the vectdisand 2 J i
9 y average moments of separate particles to the steady-state val-

~ The quantityn”sir?g, which acts as the effective viscos- g5 corresponding to the fixé®; . Since interparticle inter-
ity coefficient for the antisymmetric part of the stress tensorgctions have a profound effect on the kinetics of this process

is sometimes called the rotational viscosity coefficient, with(see Secs. 3 and,4they should also have a profound effect
. A . - . 7
amplitude »". Figures 6 and 7 depicts the results of calcu-g, the viscoelastic behavior of magnetic liquids. In this

lating the dimensionless quantity section we study the nature of the relationship betwegn
i and ;; in a time-dependent flow in a constant magnetic
4={3/2) "oP (40 field.

In the approximation linear i) and d«, the time-

(370p/2 is the limit of the rotational viscosity coefficient of dependent equatiori49) and(20) can be written
a dilute ferrocolloid placed in an infinitely strong magnetic

field). The increase ilg with v in Fig. 6 can be explained by da,
the fact that the magnetodipole interaction of the particles ar —Dy
enhances their coupling to the external field, and hinders

A-B
—5—(h-seh

rotation in the field of a hydrodynamic vortex. As a result, aA

the perturbation introduced by the particles into the suspen- + E(‘Sa_(h"sa’)h) +a(2xh),

sion flux grows, which manifests itself in an increase in the

suspension’s viscosity. The increasegimith p in Fig. 7 is a,=a+ da, a=const. (41)

related to the magnetodipole and hydrodynamic interaction
of the particles. A comparison of Figs. 6 and 7 reveals that
hydrodynamic effects have a stronger influence on rotationgj
viscosity than dipole—dipole effects.

The total effective viscosity coefficient of a ferrocolloid A—B
is, of course, the sum of° and »”. Although the problem of jwda,=— Dr[—(hﬁaw)h
the effect of the magnetodipole interaction of the particles on J
»° remains unresolved, the results of some experimiets, aA
e.g., Refs. 31 and 33uggest that ify is not too large and no + —(da,—(h-da,)h) |+ a(Q2Xh), (42
heteroaggregates are formed in the magnetic liggidn the #o
first approximation can be estimated by formulas valid forwherew is the Fourier frequency, and the corresponding
SUSpensions of neutral spheres. For instance, for SySter‘%ﬁbscripts indicate that we are dealing with the amplitudes of
with a low concentration we can usg3). the harmonics of the physical quantities involved.

From (42) we find

After a Fourier transformation of41) with respect to
me is carried out, we get

6. VISCOELASTIC PROPERTIES

As is known, suspensions of neutral particles may ex- a g

hibit viscoelastic propertie§:>* The reason is that in a mov- o (@xh). (43)

“’:DraA—F,u,oiw
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In the first approximation in the small quantiti, in-  the general conclusion that even if no heteroaggregates are

stead of(36) we have formed in the ferrocolloid, the dipole—dipole interparticle
interaction has a substantial effect on the ferrocolloid’'s
M= Mo5(w)+@5%- (44) properties, but the effect of hydrodynamic interparticle
@ interaction is somewhat stronger. In principle, this result co-
Plugging(44) into (34), we obtain incides with the one obtained in experimetftdt must be
noted, however, that it is the magnetodipole interaction of
i = 27, TijkmQum= 27,SIF0 O, the particles that is responsible for the formation of drop,
chain, and other heteroaggregates in many real magnetic lig-
L 3 Dy M% 1—i™ “o uids. The emergence of such aggregates is capable of
No=5PNo= = ——, = (45) strongly affecting the macroscopic characteristics of
207D A 1t (0rh)? DraA ferrocolloids!6-18

The quantityr” acts as the characteristic relaxation time ~ Unfortunately, it is extremely difficult to compare our
for the antisymmetric part of the hydrodynamic stress tensoresults with those of well-known experiments, since such
We introduce the complex-valued dimensionless quanexperiments ordinarily use polydisperse ferrocolloids, and

tity particles belonging to different fractions in such colloids are
involved in different mechanisms of magnetic moment relax-

d.,=9.,+iq’, ation. We believe that developing an coherent picture of the
dynamic properties of magnetic liquids is possible only when
1 1 model single-fraction systems have been studied. The

!

Y%= 372 g RE s q,c:):3/2— Im 7%.  (46)  present paper analyzes such a system theoretically. Note that
(3/2) op (312) gop > ; .
_ , all the adopted approximations are either mathematically

~ The results of several calculations @f andqy, are de-  consistent (allowance for the dipole—dipole interaction
picted in Figs. 8-10. Clearly, the hydrodynamic interactionwithin the context of the second virial coefficient approxima-
of the p_artlcles has a more profound effegt on the wsco_elastlgon) or have been thoroughly checked in previous studies
properties of a homogeneous ferrocolloid than the dipole<the effective-medium method in reducing Ed) to (2) and
dipole interaction. the effective-field methddl.

7. DISCUSSION AND CONCLUSIONS
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The thermodynamics of high polymers in equilibrium with a low-molecular solvent with a large
correlation radiugsuper- and near-critical solvens studied. Special attention is devoted

to the analysis of typical phase diagrams describing the conditions of solubility of a polymer in
such a solvent. The nature of these diagrams is determined by the existence of long-range
multiparticle attraction between the monomers, which increases as the critical point of the solvent
is approached. At the critical point the contribution of this attraction to the free energy of

the system is nonanalytic with respect to the polymer concentration. It is shown that the nontrivial
dependences of the polymer—polymer and polymer—solvent coupling constants, which

appear in the phenomenological analysis, on the pressure and temperature of the solvent play an
important role in the quantitative analysis of the phase diagrams of the solubility of the

polymer. These dependences are found in explicit form under the assumption that in the absence
of intermonomer bonds the system can be described as a compressible two-component

lattice alloy. The partition function of the system under study is represented as a functional integral
over two coupled, strongly fluctuating fields, one of which, describing the fluctuations of the
polymer density, is the 0 component. By virtue of the specific nature of the problem, the effective
temperature corresponding to the 0-component of the field cannot be specified independently,

but can be determined by minimizing the total free energy of the systeml1993

American Institute of Physic§S1063-776(198)01109-3

1. INTRODUCTION Refs. 9-14. For solutions of polymers in critical solvents,
an analogy is therefore to be expected with a system of two

The behavior of polymers in super- and near-critical sol-coupled fluctuating fields described by differing effective
vents has been of great interest in recent years. On the onemperatures and coupling constatit¥® The development
hand, this interest is due to the myriad applications of suclf a theory of solutions of polymers in critical solvents might
solvents on industrial scales for the most diverse purposeshereby make it possible to derive new consequences from
extraction, chromatography, purification, dissolution, and sahe general fluctuation theory of phase transitions, and to test
on (see, for example, Ref.)1These applications are all them under laboratory and industrial conditions. The quanti-
based on the feasibility of closely regulating the solubility of tative microscopic description of the behavior of polymers in
polymers in supercritical liquids by combining the fast mass-critical and supercritical solvents and the analysis of some of
transfer processes that thend gasestypically display with  the characteristic features of such a description are the aims
the strong temperature and pressure dependence of the did-the present paper.
solution power typical of critical solvents. The direct rela- We proceed as follows. In Sec. 2 we review the basic
tionship of the latter factor to high susceptibility, and therebyresults of the theory of semidilute polymer solutions, and we
to the existence of anomalously large fluctuations typical ointroduce the concept of the effective free enefgy(p,u,T)
near-critical systems, has also focused the attention of theder polymers in critical solvents, wherg and T are the
reticians on the industrial properties of critical solvents.chemical potential of the solvent and the temperature of the
Thus, the characteristic features of the solubility of impuri-system, ang is the density of monomers. We also describe
ties near a critical point of a pure solvent have been analyzethe renormalization of the two-body interaction and the sec-
in Refs. 2 and 3 from the phenomenological standpoint, neend virial coefficient of the monomers as a result of screen-
glecting the microscopic structure of the impurities. ing by particles of the critical solveff-??

On the other hand, the behavior of polymers in critical In Sec. 3 the renormalization of the multiparticle inter-
solvents is also of special interest. Indeed, because of thection of the monomers is taken into account for the first
anomalously high susceptibility and large correlation radiugsime and an expression is obtained for the nonpolynomial
of polymer solutiongas compared with low-molecular sub- functionF.(p,u,T) of p, which is used to study a number of
stancel they exhibit a well-known analogy with an properties of the condensed polymer phase.
n-component magnetic material, as first pointed out by de  We analyze and discuss the characteristic features of the
Genne$® and des Cloizeadxor the casen=0, and by the phase diagrams for a simple model of a polymer solution in
present authdf for the continuous range>0 (see also a critical solvent in Sec. 4, where for this model we derive

1063-7761/98/87(9)/11/$15.00 494 © 1998 American Institute of Physics
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the explicit dependence of the polymer—polymer andThis term is also called the contribution of the “volume

polymer—solvent coupling constants on the temperafure interaction” of monomers and is written in the form

and pressurd. In the preceding sections these were intro-

duced only phenomenologically. F*({p(N}) =Fud{p(nNHT-T f dr p(r)in(p(r)/e)
Finally, we derive the basic equations of the theory of

the coil—globule transition for a polymer chain in a critical

solvent are derived in Sec. 5 by representing the partition =f dr f*(p(r)),

function as a functional integral over two coupled fields. The

analysis performed here leads to no additional results, but it i= ap'

does place the system of interest in the general context of the *(p) =TE —, (2.9

theory of phase transitiort§?® and makes it possible to = 1-1

study the system in the Landau approximation. We brieflyyhere thea, are the virial coefficients that appear in the

summarize our results in Sec. 6. expansion of the equation of state of a system of discon-
nected monomers in powers of the denéitg*

o

P..=Tp+P*(0)=T(o+a-p2+a.03+...). 2.
2. PHYSICS OF SEMIDILUTE SOLUTIONS OF POLYMERS IN bls P (p) (p 2P * ) ( 5)

SIMPLE AND CRITICAL SOLVENTS The second term in Eq23) is the free energy of a
system of noninteractiny-mers with distributioqp(r)}, and

it is ordinarily called the structural—entropy term. The first
equality in Eq.(2.4) follows from the fact that for a system
eof disconnected monomers this term is the entropy of an
ideal gas. The necessity of averaging over different scales in
order for the additive decompositi@@.3) of the free energy

of polymers to be valid and the idea of a system of discon-
nected monomers were first formulated by 1. M. Lifskitz
(see also Refs. 25 and 27

Neglecting fluctuation effects, Eq2.3) assumes the

Consider a system whose volurivecontainsn solvent
particles andM identical linear polymer chains, each of
which consists ofN monomers. The characteristic param-
eters of this system are the concentration of solvent particl
ps=n/V, chainsy=M/V, and monomerg=vN, the rms
radius of gyration of a chain as a whdRs~a+/N (a is the
average distance between neighboring monom@and
length), and the range, of the interaction potential between
monomers belonging to different chains. For

pra<i, (2.  simple forn?®
the collision probability between monomers belonging to dif-  F ., ({p(r)})=F*({p}) +VTv In(v/e), (2.6)
ferent chains is low. To describe their interaction, it is there- o ] o
fore sufficient to use the virial expansiofie? whence follows the virial equation of state of semidilute
If polymer solutions in the mean-field approximafién®®
vRE~pa’yN=1, (2.2 Poaty= "~ (9F/ V), 7= (Tp/N) +P* (p)
which always holds for sufficiently high degrees of polymer- =T((p/N)+azp®+agp®+...), 2.7

. . 3 . . .
Eztr:c;/no,t\lk{e:hcehnait:sesYrﬁlﬁlgi%uosflyeaSCl:]cﬁkgIrlljt\ilg)l::scgrnetaslgi d t\t/(‘_\J/here P*(p) (the energy contribution to the pressure, iden-
be semidiluté® and the dominant contribution to the inter- feal for polymers and disconnected monomeeshich also

action energy in them comes from collisions of monomersoPPears in Ed2.9), is given by

that belong to different polymer chains. Averaging of the P*(p)=p(af*lap)r—*(p,T). (2.9
contribution of these collisions when calculating the partition

function of such solutions is performed on low-molecular Thus, the equation of stat@.7) of a semidilute polymer
scales~r, and is therefore statistically independent of theSolution and the equation of stat2.5) of a system of dis-
averaging of the contribution of the conformational collec-connected monomers have identical virial coefficients, but
tion of chains that occurs on macromolecular scate®;.  the linear term of the equation of state for high-polymer sys-
In other words, the partition function of semidilute polymer tems N—) is negligible because of the anomalously low
solutions with a prescribetjenerally speaking, nonuniform translational entropy of large molecules. The behavior of
and nonequilibriumspatial distribution{p(r)} of their mono- ~ Polymer solutions therefore depends heavily on the sign of
mer densities factorizes into a product, while the free energ$ne second virial coefficierd, .

can be expanded in a sum of the corresponding contribu- Specifically, fora;<0 the range of low monomer den-
tions: sities bounded by the inequality

Fpoy({p(N}H=F*{p(N})+Fsl{p(r)}). (2.3 (9Ppoy/dp)r=T(28,+3a5p+...)p<<0, 2.9

The first term of Eq.(2.3) is therefore independent of the is unstable against condensation of the polymer into a phase
degree of polymerization of the chains and can be identifiegvhose densitypy can be determined by requiring that the
with the energy contribution of disconnected monomers tqosmotig pressure of the polymer vanish:

the free energy of the systeffow-molecular system whose

particles have the same interaction energy as the monamers P*(pg) =app;+agpy+...=0. (210
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The notation forp, derives from the fact that the solution of AF*({p(r)},T)

Eq.(2.10 also determines the density of a globule formed by T
a single infinitely long polymer chaif?:?® If in addition to
the inequality(2.8) we also have _Iopsnexp = (Fson{ps(N}.{p(r)}, T)IT)
g:|a2a4|/a§<1, (2.11) J dps(r)exp—Fso{ps(r)}, T/T) ’
then Eq.(2.10 yields Faal{ps(N}{p(N} T)=Fsa{ps(N}.T)
pg=—azlag (2.12 +FI{p(M}{ps(N},T).
for the density of the condensed phase. This quantity van- (217

ishes am,=0, and p_Iaysgthe role of the triple point in semi-  This renormalization grows in an obvious manner with
dilute polymer solutioné? (We have ignored a small correc- the susceptibility of the solvent. Indeed, let us expand
tion ~O(e) to the density of the condensed phase, anclh_ . . .

b - “1 - sodips(r)}{p(r)},T), which appears in Eq(2.17, in
vgmshmgly small correcthr)sO(N )t0. t_he dengty of 'the' powers of the density fluctuations of the solvent particles
dilute phase and the position of the critical point, which in (1) = po(r) — s, (pe is the mean density of the latieand
the theory of polymer solutions is usually called @oint) the ave?age msonosmer densify limiting the expansion to

Thus_, the sign of the second vma! co_efﬂment of the Y5 terms no higher than second ordergrand first order irp:
tem of disconnected monomers qualitatively determines the

behavior of semidilute polymer solutions. To investigate the  § M TV =F (Do TV +F* (5. T
dependence af, on the state of the solvent, we examine the o PP T =Foonps T) +F3 (.5, )
change in the free energy of the solvent when monomers _

with a distribution{p(r)} are added to it: +us(ps) T) | ¢(r)dV

AF({p(n}T)

Jops(rexp(—F({p(r)}.{ps(N} TT)
I éps(r)exp— Fsolv({Ps(r)}vT)/T) 7
(2.13

where the functional integral extends over all density distri-Here the operatoG ~* is the inverse of the integral operator
butions{p4(r)} of the solvent particlest s\ ({ps(r)},T) is

the free energy of the solvent in the absence of a polymer, éf:f dr'G(r—r")f(r’),

andF o ({p(r)},{ps(r)},T) is the free energy of the system

under study as a functional of both density distributions. Reynose kernel is the density—density correlation function of

peating the arguments used in the derivation of the expregsarticles of the pure solvent. Limiting attention here for sim-
sion (2.3), the free energy of the system can be representegjicity to a description of the properties of a critical solvent

T N _
+§fdv(l//Gil'/f+Uob2P¢2(r))
==TIn

+Tblﬁf P(r)dV. (2.18

in the form in the Landau approximation, we can represent the Fourier
FUp(}pD 1T =Fan{p(D} T +F2 ({p(1)},T) ]E(r)a:nmszgorm of this function in the standard Ornstein—Zernike
+Fsl{p(N}T), (2.14
where the termd&; ({p(r)}.{ps(r)},T), andFE({p(r)},T) G(q)=f dr G(r)expligr) = (vo(7ertd?q?) .
describe the respective contributions of monomer interac- (2.19
tions with solvent particles and one another. Substitutinq
(2.14) into Eq. (2.13, we obtain n (2.18 and (2.119) the _scaled~r0_and the pa_lrametelb_sl,
b,, andv = pyax (Pmax iS the maximum packing density of
AF=F%({p(N}L,T)+Fs({p(n)},T), (2.15  the solvent particlos which have dimensions of volume, are

o . ) .. phenomenological constants, while the parametef
where the contribution of the effective volume interaction IS_ (5usldpdrlveT vanishes at the critical point of the solvent.
given by Substituting(2.18) into Eq.(2.17), taking account of the

_ fact that the term in Eq(2.18 that is proportional to the

F* Ny T)=F} Ny, T)+AF* N1, ) | X : X
erl{p(NET=Fo({p(D}T) ({p(n1T) (2.16 chemical potentiak g of the solvent and linear igh vanishes
(since the number of solvent particles is conseyyadd cal-

i.e., the sum of the initial volume interactidfg ({p(r)},T)  culating the resulting Gaussian integral, we have
and the renormalizatioA F* ({p(r)},T) due to the change in 2 1
solvent free energy as a result of solvent particle redistribu- T d’q b1|Pq| lvo

tion in the field produced by the prescribed monomer distri- AF*({p(n},T)=~ 2 ] (27)° et bop+d3g?
bution {p(r)}: (2.20
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whence the final expression for the first nonvanishing term irwherev is the volume of a unit cell of the lattice gag(r)
the free energy of a semidilute polymer solution is, to termds the local value of the volume fraction of cells occupied by

~O(N™Y, solvent particlesd is a phenomenological scale, and the tem-
* 3 2 perature, free energy, and chemical potential are expressed in
Fer({p(n)}.T) :J d q3 (az_ E ng) |pq|2. units such that the temperature at the critical point equals 1.
T (2m) 2 Tetdoq In the mean-field approximation the pressure and chemi-

(2.2 cal potential as functions of and the average value @f
As we can see from Ed2.21), the redistribution of the have the form
solvent particles around the particles of the dissolved sub-

stance(screening introduced into the solvent always be- 5=UOP=—T In(1—¢)—2¢2,
haves like an attraction, whose strength and range increase as
T decreases, i.e., as the critical point is approached. This «=T In(¢/(1—¢))—44¢. 3.3

effect, a special case of which is the familiar Debye €kl

screening in the theory of electrolyt@was first studied in  The conditions*f/a¢?=0 determines the chemical potential
the theory of polymers by Edwards(see also Refs. 8, 14, #c=— 2, the volume fraction of the solven; = 0.5, and the
and 18—22 pressurevoP.=p.=In2—0.5 at the critical poin{the con-
g 3 3_ . _
Since in the present work we are interested primarily indition 9°f/d¢”=0 holds automatically ap.=0.5).
phase equilibrium, we neglect the existence of polymer den-  1he Gibbs free energy of the grand canonical ensemble,
sity fluctuations and we rewrite E€2.21) in the form convenient for studying phase equilibria, can be written near

* eff 2 _eff 5 4 the critical point as
Fer(p, T)=VTa; p%, a; =a,—(b1/2v0) 7 . (2.22)

Thus the conditiom§“<0, which ensures the instability of a Q(u,T,V)=—TIn j S(r)

semidilute polymer solution in critical solvents against for-

mation of a condensed phase, hadd®rtiori near the critical wf(dVivg) d(r)—F({&(r)},T)
point of the solvent. A coil—globule transition is therefore to XeX% T )
be expected here for a long single chain, while for a system

of many chains a condensed phase where the polymer con- =F(¢¢,T,V)—(Vul2vg) +Q(h,7,V),
centrationpy depends on proximity to the critical point of the (3.9
solvent can be expected to precipitate from the solution.

At first glance, pq is determined, in accordance with wherer=1—T"%, h=(u.— u)/Tu. and the function
(2.12), by the balance of the attraction due to t;gﬁnegative av
renormalized value of the second virial coeffici and
the repulsion due to the presence solid cores in the mono- Qe(h,7V)==Tln f 5‘1’(r)exp{f Vo
mers, which is described by the third virial coefficient
a;>0:

pg=—as"a;. (2.23
(A similar result was obtained in Ref. 30Since, however, describes the thermodynamics of the solvent near the critical
the above-noted long-range nature of the interaction of th€0INt- _ _ _
particles can lead to violation @R.1), it is not sufficient to To give the functional integrals in Eq&3.4) and(3.9) a
calculate only the first few terms of the virial expansion toMOre precise meaning, they can be defined by subtracting out
determine the properties of the condensed phase. We therre fluctuation contribution to the free energy of the lattice
fore carry out a more detailed analysis of the contributions ofas(in the limit T—oe):
the effective volume interaction to the free enefefik(p,T)
and the pressurB(p,T), which are related by2.8).

X| h¥

W2 +dA(VW)? Wt
2 E) } (33

Qc(h,7,V) |
-1 "

[V (r)exp [(dVivg)(hW — (7¥ 2+ d2(VE)?) 12— W4/12)
3. FREE ENERGY OF THE EFFECTIVE VOLUME X To¥ (N exp — JAV(W2T dA(V¥)2)120,)
INTERACTION OF MONOMERS IN A CRITICAL SOLVENT

(3.6)

~ Let us consider as the simplest microscopic model of arpjs representation, somewhat different from that obtained
critical solvent, where it is possible to express the vertices of, Ref. 23 on the basis of a differefisothermally isobaric
the phenomenological Ginzburg—Landau Hamiltonian inpotential, is valid so long as the values of the order param-
terms of the microscopic parameters of the solvent partlcleseterq,(r) =2¢(r)—1 that make the principal contribution to

a lattice gagliquid) whose free energy has the fotin the integralsg3.5) and(3.6) remain small compared to 1.
dv For simplicity, we confine our attention in the present
FZJ U—O(f(¢(r),T)+2Td2(V¢)2), (3.)  paper to the Landau approximatidnin which there is no

difference betweel3.5) and(3.6); the latter then lead to the
f($,T)=T(¢ In ¢+ (1—p)In(1— p))— 22, (3.2 simple result
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v - T T, V-V, (V-T2
Q=Psy=-_|T(n2-05+ - 2“°—TR(h,T)), AP=— (¥~ Wy)? et ( — o7}

(3.7 (3.19
where the functiorR(h,7) is the absolute minimum of the Whererg=4(r+V¥3), which has the same meaning as in the
function preceding section, is everywhere positiegcept at the criti-

4 ) cal poin). Substituting the limit¥ —W¥,=2b,p/7s (as
H(h, W)= q’_+ qu—— hy 3.8 p—0) into Eq.(3.15, we again arrive af2.22).
Y 12 2 ' ' At the critical point itselfh= 7= 7.4=0, the long-range

i h fth | h screening of the monomer-monomer interaction by solvent
Using Eq.(3.7), the pressure of the pure solvent near t eparticles results in the contributions to the free energy and

critical point can .be written conveniently in terms of the pressure which havsimilarly to the case of electrolyts a
reduced pressurH: nonanalytical form

voPsonv=T(pc+ID), (3.9 T

. ) ) AP(p,T,0,0)=— —W¥*

wherell can be written as a function of the chemical poten- 120,

tial and temperature: T ((3b,p/2)%3 b1p<b§/b3,
II=h-R(h,7). (3.10 1200 | (2b, /by, byp>b3b3.

Similarly, generalizing the arguments of the preceding sec- (3.19
tion that led to(2.18 and (2.22), it is easy to obtain the
Gibbs free energy of a polymer solution with prescribed val-
ues of the chemical potential of the solvent and the poly-

The contribution(3.16) decreases with decreasing poly-
mer density more slowly than the renormalized contribution
of two-body collisions(2.22) obtained above. This means

mer density: that as the critical point is approached, all terms of the virial
expansion become important, and in this sense even a very
CD(,u,T,p,V):V( *(p, T, o)+ Tvg* dilute solution can be considered to be concentratétbw-
ever, as before, the suf@.13 of all these terms corresponds
bip b,p to attraction, determining the existence condition and density
X|R{h+ == 7+ T) —h- pc) ) of the condensed phasglobular statgof polymers near the

critical point of the solvent.
(3.1 Indeed, the polymer density, in the condensed phase
whereb, andb, are coefficients in the expansion of the free cn be determined by requiring that the pressieJ) of
energy(2.18. An expression for the pressure of such a so-this phase equal the press(8e8) of the pure solvent, i.e., by

lution follows from Eq.(3.11): requiring that the osmotic pressure of the polymer vanish:
I P*+AP , [ ¥4pg)— Vo
:_(a_v) =Pgoyt P*+AP, (3.12 Vo T&UVoPgT|\ T 15
T.p
. * e o W(pg) — W
where the contribution®g,, andP* are given by(3.9) and tr— 2 h(W(py) -V, | =0.
(2.8), respectively, while the correction to the pressure due to 2 9
long-range screening by solvent particles of the interactions (3.19

between monomers is . » . I
Specifically, at the critical point itself, substitutin@.16

IAf into Eq.(3.17) yields
UOAPZp(—) —Af, (3.13 4319y
ﬁp T Ug \1,2
0D = \| — —
where $a=vorg 3a; 2
2
Af(p,T,h,7)/T=R(h+byp/2,7+b,pl4)—R(h,7). /;_0323:)1 ' bl<aw,,
a
Carrying out the differentiation in Eq3.13, we obtain A~ 2 2200 (3.18
vo 2b1 2
T (Wi-w*  w2-w? 3a, pZ  Pz7avo
AP=— +r —h(¥o-¥)|, (3.19 2 B2
Uo 12 2

Here, clearly, the equilibrium volume fractios, is com-
whereWV andWV, are the respective positions of the absolutepletely independent of;, contrary to the resul{2.23 in
minima, as given by Eq.3.8), of the functionsH(h Ref. 30. This is due to the fact that the repulsive component
+byp/2,7+Dbypld¥ ) andH(h,,W). of the two-body interactions of monomers, described by the

It is convenient to rewrite the correctiof3.14 as an valuea,>0 of the initial second virial coefficient, is in fact
expansion sufficient to balance the nonpolynomial attractic16) of
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the monomers at the critical point. However, it must be 2P4-
borne in mind that aspy increases, the quantitative contri- )
bution of three-body and higher-order collisions can again | 3
become critically important. Specifically, higher-order colli-
sions ensure thap,<1. The applicability of(3.18) is thus L6k 2
constrained by ’
Pg<l. (3.19 -
The requirement that the density vanish, 0.8k
pg(th)zou (32@ )
or equivalently that the effective second virial coefficient //
(2.22 vanish 00 (;5/ 0 -
2 ) . ; b
_ 1
Teff= T0— 23,0, B2) e 1 pT phase diagrams of the solubility of a polymer, neglecting the

dependence of the phenomenological constaptandb, on the pressure
determines the locus of critical points of the polymer solu-and temperature of the solvent. The contqur lines of the fun¢tdan yvith
tion in the PT plane. The second equality in E@.Zl) is 79=0.2, 0.5, _and 1.0 are sho_wn_ by the solid curﬂzez,‘ andS, respectively;

. | definition of the parameter that characterizes the the dashed line shows the liquid—gas phase transition for the pure solvent;
S|mp_ya_ ) p b the dot-dashed lines show the position of the critical point of the pure
relative interaction force between the monomers and solvenggvent.
compared with their repulsion of one another, in terms of the
microscopic parametels; andas,.

component system of disconnected monomers. It is natural to
use as the latter the following generalization of the free en-

ergy (3.2 of a one-component lattice gas:
4. PHASE DIAGRAMS OF POLYMER SOLUTIONS IN A

CRITICAL SOLVENT AND PT DEPENDENCE OF fos(Ps, . T)=T(P In ¢+ s In P+ (1— p— )
THE COUPLING CONSTANTS b, AND a, )
XIN(1—-¢—s)) —2(pst+0¢)°. (4.4

. - : Here we again take the temperature of the critical point of
sible partitions of thePT plane into one- and two-phase the pure solvent to be the unit of temperature, wiils a

regmns(wherg one pha;e |s.always the pur(_a_solvent thaseparameter that characterizes the attraction between dissolved
in the mean-field approximation can be specified by the NG onomers and solvent particléand one anothgrit is re-

tour lines of the function lated to the critical temperature of a pure system of mono-
Tert( P T)—T‘l(%) S (4.) mers
o Ipsl; d(l-¢) T O ' TO= 82, (4.5
where the volume fractiogh of the solvent is a single-valued An expression for the pressure of a polymer solution with an
function of P andT that can be derived from the first of Egs. infinite degree of polymerizatiofor, equivalently, globulgs
(3.9 for the thermodynamic equilibrium phase at given follows from Egs.(4.2—(4.4):
andT. As shown in Fig. 1, these lines are closed curves that - )
encircle the critical point, and the region bounded by the P=voP=—-T(N(1=¢s—¢)+ )~ 2(pst ¢9)",
latter, in which a condensed phase forms, growsgaé.e., 4.6
the interaction of the polymer with the critical solvem-  which in the absence of the solvenpd=0) assumes the

At first glance, it follows from Eq(3.2]) that all pos-

creases. form
However, these curves are not true phase transition lines, ~ 2,2
as the microscopic parametey itself depends o® andT. P=-T(n(1-¢)+¢)-25¢". 4.7

To take account of this dependence explicithlbeit phe- At temperaturesT>4462, the isothermP(¢) given by Eq.
nomenologically, we examine the polymer solution in the (4.7) is positive, and increases monotomically over the entire
limit N—co. In this limit, according to Eqs(2.4) and (2.6), range 6< <1, while forT<46 it decreases on the interval
its free energy takes the form 0<¢< ¢, and increases on the intervél<¢p<1 (d.=1
—T/456%), remaining negative for € ¢< ¢g. Here ¢g is a

— *
F=(VI0)1* (s, .T), (4.2 root of the equation
where ¢ and ¢4 are the respective volume fractions of the -~ _ 0,2
monomers and solvent, and P(dg)=—T(N(1=¢g)+ dg) —25°¢3=0 (4.8
and represents the volume fraction of the pure polymer for
(s, . T) =T 5,6, T)— b In(ple). (4.3 P pure poly

T<46? in the absence of external pressure. As shown in Fig.
Thus, in this limit the description of a polymer solution 2, ¢4 decreases monotonically with increasing temperature
reduces to choosing a free energy that corresponds to a twand vanishes aT =46 while the volume of a polymer
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the polymer phase parametrically, supplementing the equa-
tion of state(4.6) with equations for the volume fractions of
the components:

P=P(u)=—T(n((L—u)(1— ¢(u)))

+p(U)) —2(ps(U) + p(U) 5)?, (411
bs= ds(U)=U(1—p(u)), (4.12
TIn(u/(1—u))—4u—pu
. = p(u)= , 4.1
0 0.5 . 1.0 =) 4(6—u) 413

where as one can see from E4.12), the parameteu is just
FIG. 2. Monomer volume fraction phase diagrafsss. temperatur@) for ~ the reduced volume fraction of the solvent, i.e., the fraction

a system of disconnected monometsand a system consisting of the same ¢ |5 cations not occupied by monomers that are nevertheless
monomers of high polymein the limit of an infinite degree of polymeriza-

tion) (2). Asterisks mark the critical points. OCCUpIed by SOIVe_m parthes'.
Direct calculation easily yields

I o JPIT) _ ¢T (5-w? 1-¢

sample with an infinite degree of polymerization increases I = 16 1_4TU(1_U) T (4.19
continuously(the polymer swells until at T=44? it fills the
entire accessible volum@o matter how large The unfilled d2(PIT) 2as" (65— ¢2)?
part of the volume can be formally interpreted as a coexist- ppX: e 1_4T
ing phase with zero polymer concentratiomid). $=0 0

In other words, in the limitN—oc the temperature and (4(5— °)IT)?
volume fraction of the pure polymer at its critical point - (4.15

9 'Teff(P,T)

becomé

¢§0):0’ Tff)=452=4T(cl). 4.9 where 7.+(P,T) is given by(4.1). It follows from Eqgs.(4.14)

and(4.15 that for a negative right-hand side @f.15,

At finite N these values acquire correctionsO(N~?),
; ; (N9 (5-497 (45— gYIT)?

and accordingly the increase in volume as the polymer ap- 1_4 <0, (4.16
proaches its critical point is governed by the large parameter T Ter(P, T)

2. : o
N*% henceforth we neglect such refinements. the addition of a small amount of polymer to a pure solvent

If two-phase separation occurs in a solvent, then the sokyith chemical potentiak at temperaturd and pressurd®
vent volume fractiongs, in Eq. (4.6) is not an independent oqyces the pressure of the polymer phiéise corresponding
quantity in the polymer phase, but is instead determined bysotherm is shown in Fig. 3aln this case, the system is
the chemical potentigle of the solvent in the pure solvent always unstable against separation into two phases, one of
phase(which can be both liquid and vapahat coexists with  \yhich is pure solvent. The second phase contains both poly-
It mer and solvent, whose volume fractions can be determined

us(T, s, @) =T IN(Ps/(1— ps— ¢)) by substituting the functiom(T,x) given implicitly by the
o equation
—4(pst ¢0)=pus(T,¢5,0=p. (4.10

Here ¢2(P,T) and ¢4(P,T,¢) are the solvent volume frac- ~
tions in the coexisting phases, while the explicit dependenceto Egs.(4.12) and(4.13, whereP¢(u,T) is the pressure of
us(T,ds, @) given by the first equality in Eq4.10 follows  the pure solvent given by Egé3.3). Since the pure solvent
from Eqgs.(4.2—(4.4). It is convenient to give the pressure of volume fractionqsg in the condition(4.16) depends orP and

AP=P(u,T,u) =Py, T)=0 (4.17)

AP AP
0.075 0.075

FIG. 3. Typical curves of the reduced pressure
of the polymer phase vs. the volume fraction of
that phasefor definiteness$>0.5): g outside
the regionT, T, below the line(4.18); b) inside
the regionT,T,. The lines are numbered in or-
der of increasing pressure of the pure solvent.

-0.075 . 1 : 1 -0.075 1 . 1
0 0.2 04 0.6 0.8 0 01 02 03 04 0S5 ¢0.6
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P

3r P
1.005
0.995
0.985
0.975
2F 0965

FIG. 4. Reduced solubility diagramgressure
, . , P vs. temperaturdl) for a high polymer in a
0 0.5 1.0 15 0 0.5 1.0 1.5 low-molecular solvent in the limit of an infinite
T T degree of polymerization:)a5<0.5; b 0.5< 48
<6.79; 90 6>6.79. The liquid—vapor transition
of the pure solvent and solubility of the polymer
(4.18 are shown as dashed and solid lines, re-
spectively. Near a critical point of the pure sol-
vent(small rectangles in Figs. 4a and)4these
essentially merge, so that they can only be dis-
tinguished in the much more detailed view in
the insets.

/

-

T, it determines the boundary of the region of solubility of Summarizing the foregoing analysis, which can be di-
the polymer in thePT plane. This boundary can be repre- rectly extended to situations in which<0.5, we conclude
sented in the form that the density of the condensed polymer phagebules

T 452 vanishes on that line of the two indicated abdliguid—
) (4.19  vapor transition of the pure solvent ¢4.18) that corre-
1-246 sponds to the higher or lower pressiffer 6>0.5). How-

The shape of the curvet.18 depends on the value @ in ever, upon crossing line segments of the liquid—vapor
Eq.(4.4) and in subsequent expressions, which represents tHgansition of the pure solvent that lie belafor §<0.5) or

4¢P,T)=

relative cohesion energy of the polym@s compared with above (for
the solvent Specifically, at the ends of this line 0<0.5) the line(4.18), the density of a globule remains con-
$-0 P=0, T-45 s_tant but its pressure and tempe_rature derlvatlve§ are discon-
s— T TR tinuous(together with the derivatives of the chemical poten-
¢g: 1, P=ow, T=4(1-6)? (4.19 tial of the pure solvent We also note that fo6> §,=6.79

the regionT;T, vanishes, and the solubility diagram as-
As one can see from Fig. 4, fa¥<6.=6.79 it crosses the gsymes the form shown in Fig. 4c.
curve describing the liquid—vapor phase transition of the |y concluding this section we note that both the model
pure solvent at the poinf§; andT,, taking a detour above phase diagrams in Fig. 1 and the diagrams in Fig. 4 have a
the critical point of the latter fols>0.5, and below it for |oop around the critical point. The existence of this loop
6<0.5. In the first instance, all points on the lif&18 to  jndicates that the effective attraction of monomers in a criti-
the left of the critical pOint of the pure solvent Correspond tOCa| solvent p|ays a decisive role in the formation of the re-
the liquid phase(for these points, Eq(4.18 yields ¢  gion of the swelled undissolved polymer. Differences among
>0.5), and the part below the line of the phase transition obther details of the phase diagrams in Figs. 1 and 4 can be
the pure solvent corresponds to a metastable liquid phasgxplained by the existence of a stroR§ dependence of the
The condensed phase of the polymer is therefore also stablgeviously introduced phenomenological parameters. Indeed,
inside the region bounded by the segmen{s, of the lines  direct comparison of the right-hand side of Eg.15 with
(4.18 and the phase transition of the pure solvent, evergq. (2.22 yields
though the pressure increases monotonically with polymer
concentration(see Fig. 3l on account of the negative os-
motic pressureAP due to the metastability of the liquid 1 _(8-¢JP.T))?

phase of the pure solvent in the indicated region. 22(P,T)=vo 5_2 T '



502 JETP 87 (3), September 1998 I. Ya. Erukhimovich

5— (P, T) a
bl(P,T)=4vO—¢f|_ , X(T)=T—a27'2+ 2a§—73 .. (5.5
b2 16(5— ¢2(P,T))? The functiony(t) makes it possible to write the equation of
To= = . 4.2 state of a system of disconnected monomers in the paramet-
"“2au, T(T-4(6- 6JPT)) 420 state of a sy P
The similarity of the experimentally observed phase
y P y P PIT=x(7), p=rx(7). (5.6

diagrant and the diagrams in Fig. 4 underscores the impor-
tant role of factors taken into account by our analysis: long-  In the mean-field approximation the partition function of
range attraction of monomers which increases as the critical polymer chain is the saddle point value of the integral
point of the solvent is approached; a decrease in th€5.1), obtained aftef5.2)—(5.4) are substituted into this inte-
polymer—critical-solvent coupling constant; and an increasgral. The condense@lobula) state of the chain corresponds
in repulsion due to direct two-body collisions of monomersto the solution characterized by certain optimal values of the
as the volume fraction of the solvent increases. complex activityz, globule volumeV occupied by a chain of

N monomers, and the constant value of the fieldin this

volume (with the exception of the surface layeiThe corre-

5. TWO-FIELD MODEL OF A SOLUTION OF A POLYMER IN sponding equations for the extremum have the form

A CRITICAL SOLVENT roxlaT=NIV, x(70)=0%/2,

The analysis in the preceding sections was conducted in 2= 0 5y/dpa=27dx/ 7. (5.7
the Landaumean-field approximation. Although numerical ) )
calculations of phase diagrams outside this approximatior] @King account of Eqs(5.6) and the fact thalN/V is the
are not studied in the present paper, it would be useful her@verage density, of a globule, Eqs(5.7) can@bgg reduced to
to suggest a general technique that makes it possible to takBe classical equations for a “large globulé®
account of the fluctuation corrections in the general case. To P*(pg)=0, F(T,N)=—TInZ(N,T)=Nx,
do so, we recall that in the absence of a solv@nttaking
account of its structure explicitlythe partition function of a A=TIn zo=ppspg) =T In pg, V=N/pg. (5.9
polymer chain consisting di monomers and filling a vol-

UmeV can be represented in the fokr32 Equations(5.7) and(5.8) always have a trivial solution cor-

responding to a coiled state of the chain:

1 dz
2V TN = 5 $ 20T g 61 Pe=#0=0 1=0. 5.9
. _ The nontrivial thermodynamic equilibrium value pf can
where the integral is taken over a small contour around th@e easily found if it is small, whereupon only the first few

origin in the complesxz plane, while the thermodynamic po- nontrivial terms of the virial expansion of the function
tential of the grand canonical ensemble can be represented jeq be retained in the integi@.2):
the form

B 1 dz
Z(V,T,z)=de ZVTNI=50 ¢ et f dR
180()e(R)@(0)exp fdVx(m(o(r)) —L{e()}) Xfﬁso(r)so(R)qo(O)eXp(—H({qo(r)})/T)
x Toehexa—L{e(Nh) ' [oo(r)exp— JAV(CA(V )2+ ¢)/2) *
(5.2) 2 2 2
c (Vo) teo
2 1 H({<P(r)}):Tf dvrf
7(@(r))=2z¢%(r)/2, L({¢(r)})=j ®g “edVi2. (5.3
2\ 2 _ 2 2\ 3
Hered ! is the operator inverse of the integral operator +a, Z% a3T4az Z%) ] (5.10
QQDZJ g(r=r")e(rHdVv’, where we have used the expansigs}) and (5.5 and in-

troduced the parametef=a?/6 and the effective tempera-
where the nearest-neighbor correlation functign) is usu-  ture s=1-2z. If the inequality

ally given by its Fourier expansion in the form )
az>aj, (5.11

9k=f dV g(r)expiikr)=1+(ka)?/6+... (5.4 holds, as it usually does for real systems, thenaior 0 the
trivial solution of Egs.(5.8) remains the only one, while for

(the phenomenological paramet# represents the rms dis- a,<0 it becomes unstable and can be replaced by a stable

tance between neighboring monomers in a polymer ghain nontrivial solution describing the condensggobulay state
and x(7) is the generating function, familiar from the theory of the chain:

of simple liquids, of all connected Mayer diagrathfor the 5
corresponding system of disconnected monomers: pg=—azlaz, @u=2pg, N=appy/2<0. (5.12
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Thus, as first reported by de Genrfgshe triple point  where the functionaH ({¢(r)}) is given by(5.10 with the
a,=e=0 of the Landau Hamiltonian in Eq5.10 corre- substitutione =1-7.
sponds to the coil—globule transition point in the mean-field  The representation5.13 reduces the description of a
approximation. In the condensed state itself, i.e.,fer0,  solution of a polymer in a critical solvent to analysis of a
a,<0, the effective temperatuteis not an independent vari- system of two coupled fluctuating field&* with the afore-
able, but is instead determined by the conditith$) for the  mentioned specific additional condition that the effective
maximum of the functional integralb.2) and (5.8). (This  temperatures of the field ¢(r) describing the polymer is
specific feature of the theory of critical phenomena applieddictated by the conditions that maximize the total partition
to the physics of the condensed state of polymers, whicliunction (5.18. In the Landau approximation these condi-
follows from the derivation above, was first pointed out bytions are similar td5.7) and equivalent to Eq.3.17).
the present author in Ref.)8. Beyond this approximatiofin the scaling region when

To extend the above analysis to the case of a polymetalculating the fluctuation renormalizations of the free en-
solution in a critical solvent, we note that the partition func-ergy, the fieldsp(r) in the integralg5.2) and(5.13 must be
tion Z(V,T,z,us) of a solution of disconnected monomers in interpreted as r{—0)-component vector fields'* with a
the latter, where=exp(u/T) and i« and i are the chemical fixed temperatures, and the expression for the total free
potentials of the disconnected monomers and solvent, reenergy of the system should once again be minimized with
spectively, can be written, using the results obtained in Secsespect te: and the volume occupied by the condensed poly-

2 and 3, in the form mer phase. Although the corresponding analysis is beyond
dv the scope of the present paper, it makes sense to note that the
Z(V,T,Z,MS)ZJ' W(r)expf — [(In 2—-0.9 derivation in the preceding section of the explieil depen-
v

denceg4.20 for the phenomenological parametexrs, b,
and 7y of the field description under study opens up the

~ b,z
Jrh+)(o(2)+(h+ - ¥ possibility of explicitly calculating the lines of the
fluctuation-induced first-order swelled—dissolved polymer
1 . b,z 2t (T2 P4 phase transitiot3'®in a critical solvent.
2\t a V"1
6. CONCLUSIONS
x{f N(r)exp{—f dav i , .
I now summarize the basic results of the foregoing
\P2+d2 vy 23 -1 analySiS. - .
X—()” , (5.13 1. A long polymer chain located in a low-molecular sol-
2v vent near the critical point of the solvent always forms a

wherez=z exp(— a(T)/T) anda(T) is the change that would 9lobule, while a solution of many high-polymer chains forms

be introduced in the thermodynamic potential of the solvenf condensed phase. The monomer dengjtn such a phase
with ¢=0.5 when a single monomer is introduced into it. 1S determined by the balance between multiparticle attraction

Substituting(5.13 into (5.1) and (5.2), we obtain the among the monomers, which is associated with redistribution
final expression for the partition function of a solution of a ©f the solvent particles around them and increases as the
polymer in a critical solvent: critical point of the solvent is approached, and repulsion due

to hard-core effects in monomers undergoing two-body col-
exp{(V/vg)(In 2—0.5+h)} lisions (see Sec. 3 and E@3.18). Attempts to restrict this

Z(V, TN, pug) = = =019 !
aspect of the analysis to just an effective two-body
dz interactiorf® lead to much too high a value gf,.
X fﬁ Z(\V,T,Z,ps) == (5.1a 2. At the same time, the global nature of the phase dia-
z grams describing solubility conditions of a polymer in such a
dv b,z solvent is determined in many respects by the actual solvent
Z(V.T,Zaﬂs):f 5\If(r)6<p(r)exp{f o (h+ > pressure and temperature dependence of the coupling con-

stants describing the indicated attraction. As shown for a

(1) 1 b,z @?(r) ) simple model in Sec. 4, the important molecular parameter
X 2 )q'_ 2 <T+ 4 2 v that governs these dependences is the r&td the critical
A temperature of the system of disconnected monomers to that
+d2(V‘P)2} v H({QD(V)})] of the solvent. The solubility of the polymer can increase as
12 T the pressure increaseffor 6>0.5) or decreasegfor
6<0.5).
% f”(l’)&D(f)eXD{_f dv 3. There exists a mathematical isomorphism between
models of a high polymer in thermodynamic equilibrium
W24 d2(VW)2  c(Vo)2+¢?])) 2 with a critical solvent and a system of two strongly fluctuat-
X % + > H , ing fields (0-component field for the polymer and scalar for

the solvent with differing effective temperatures. One typi-
(5.133 cal feature of polymer systems is that the effective tempera-
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This paper examines the diffusion of impurity particles in a compressible turbulent medium and
compares it to diffusion in an incompressible medium. The turbulent diffusion coefficients

are calculated using exact formulas expressed in terms of the Green'’s function describing impurity
transport in an infinite homogeneous, isotropic, stationary turbulent medium. To obtain an
approximate expression for the Green’s function, numerical solutions of the nonlineaidibéat
interaction approximationequation(which in this paper are obtained for the first time for

the case of compressible turbuleh@e employed. Two types of turbulence are examined,
acoustic and a mixture of shock waves. These are described by different generalized

spectra. Finally, it is shown that compressibility significantly enhances the diffusion coefficient in
the case of acoustic turbulence and reduces it in the second cd€898cAmerican Institute

of Physics. © 1998 American Institute of Physids$S1063-776(98)01209-§

1. INTRODUCTION dium is compressible or incompressible. It is then natural to
The problem of transport of impurity particles and aalso use the DIA equation to calculate the turbulent diffusion

magnetic field in a turbulent medium is an important part Ofcoefﬂments in the general case of a compressible medium.

the theory of turbulenckThe case of incompressible turbu- MOr€OVer, it must be noted that the very problem of calcu-

lence is the most thoroughly investigated. Here the generé?t'ng Dy for the case of compressible turbulence is still

formulas for the turbulent diffusion coefficieris; were first ~Underdeveloped. Of the earlier work mention should be made
derived in the Lagrangian representation of velocitigst) ~ ©f Eschrich’s ??&?H in which the cas&,<1 is examined,
(see Refs. 2-4and only much later was the Euler represen-and of other'é. 7in which approximate calculations were
tation in terms of the velocities(r,t) developed. In calcu-  Used for the first time to establish the fact tliaf can be
lating D in the Euler representatiofwhich, practically negative in turbulence consisting of a chaotic mixture of
speaking, is the most importanthe first step was the use of Shock waves with fairly large values gj, namely,=2-3.
the solutions of the simplest nonlinear equation for the aver-  An interesting treatment of the problem of turbulent dif-
age Green’s functiofiG(1,2))=(G(ry,t;;r,,t,)), first pro- fusion, not limited to an incompressible medium, can be
posed by Kraichnghand then thoroughly developed by found in Refs. 17 and 18. The result of this work is surpris-
Robert¢ and Kraichnar?:® This equation is now known as ing: the formulas forD; are the same, irrespective of
the DIA (direct interaction approximatiorequation. Calcu- Whether the medium is incompressible or compressible, and
lations that use the numerical solutions of this equafici ~ do not explicitly contain correlators with div, the compres-
have revealed that DIA solutions allow the values of thesion index. The diffusion coefficient is found to depend only
turbulent diffusion coefficient to be found for the range of all on the turbulent energy spectrum. It is obvious that the for-
admissible values of the Strouhal numbég=ugpyTo, mula is incomplete: the same energy spectrum in incom-
where ug, po, and 7, are the characteristic values of the pressible and compressible media corresponds to entirely dif-
turbulent velocity, the wave numbefthe characteristic ferent motions and hence to different diffusion coefficients.
length Ry=1/p,), and the lifetime of turbulent pulsations. The term with diw is absent from the formulas of Ref. 17
The corrections to this theory due to the contribution of ir-because of a direct error in using the Klyatskin—
reducible fourth-order correlators, which are ignored in theTatarski method (note that this method is limited to the
DIA equation, amount to approximately 7 % for broad Kol- {p=<1 range.
mogorov spectra and to approximately 11 % for peak-shaped In Ref. 18, devoted to acoustic turbulence, the term with
spectra in the “frozen” turbulence limit§,—«). Being divu is absent because the molecular diffusion coefficient
negative, these corrections monotonically decrease to zero &&s ignored from the start, although the valueDof ob-
£,—0. Note that DIA solutions allovD; to be calculated tained in that paper is equal, in order of magnitudeDig.
even in the case of “multihumped” spectiaee Ref. 11,  Below it will be demonstrated that allowance for the term
where a simple estimate @f; is extremely difficult. with divu in the event of low absorption may change the
The derivation of the DIA equation, the first in a hierar- result threefold(of course the conclusion drawn in Ref. 18
chy of nonlinear equations for the average Green'shatD+ is small remains valid We also note that in the case
function® does not depend on whether the turbulent me-of acoustic turbulence turbulent diffusion not only due to

1063-7761/98/87(9)/8/$15.00 505 © 1998 American Institute of Physics



506 JETP 87 (3), September 1998 N. A. Silant'ev

wave absorption by the medium but also due to the presence . s

of chaotic irregularities in the phases, a fact not mentioned®spDpq =~ 7, dr=D(at) da. )

by Kazantseet al1® Generally speaking, these processes are a

different, but they lead to the same form of the velocityAS usual, summation is implied over repeated indices.

correlator. Probably, the chaotic irregularities in the phases Defining a random field of Lagrangian velocitiega, t)

are substantial even if wave absorption is low, which endetermines an ensemble of realizations of turbulent flows

hances the turbulent diffusion in such a medium. over which the solutiont2) must be averaged so that equa-
Formally exact equations, expressed in terms of the stotions for the average concentratiom(r,t)) can be obtained.

chastic Green’s function, for the turbulent diffusion coeffi- For fixedr andt the vectora=r—X(a,t) is a random quan-

cients valid for both incompressible and compressible medidity, and the problem reduces to averaging of the known

were derived in Ref. 5. They explicitly contain correlators of function ny(a) of the random argumerd with the random

the Green’s function with div and form a reliable basis for Weighting factor 1D(at). The transition to the diffusion

calculations of turbulent diffusion coefficients for a com- approximation presupposes thag(a) is smooth over the

pressible medium. Approximations are introduced only whergharacteristic lengtR,= (X“) and involves using a Taylor

a specific method of finding or approximating the exactéxpansion as a series K(at) (see Refs. 3 and)9As a

Green’s function is used. In the present work formulas forrésult, we arrive at an exact expression for the turbulent dif-

calculatingD+ that allow for all powers of the second- and fusion coefficient in the Lagrangian representation:

fourth-order correlgtors are derived, which ?s a direct conse- 1 [t v(at)-v(a,7)

guence of the nonlinearity of the DIA equation. For the sake DT:—f r<—>

of definiteness, diffusion of impurity particles in a turbulent 3Jo D(at)

medium is examined. where( - - -} denotes averaging over the ensemble of velocity
realizations. For an incompressible mediuf(&,t)=1),
Eq. (6) becomes the well-known expression derived by Tay-
2. BASIC EQUATIONS lor in 1921 (see Ref. 2
In the Euler representation, the expression Ebg(t)
The law of conservation of the number of impurity par- becomes
ticles leads to an equation for the impurity particle concen-

trationn(r,t): D+(ty)= %f d3Rfotldt2 [(ui(1)G(1,2ui(2))

6

17
(E—Dsz)n(htF—V-(U(f't)n(f,t)), oy —(R-u(1)G(1,2divu(2))]. (7)

whereD,, is the molecular diffusion coefficient, angr,t) Here and below we the following convenient notatié()

is the velocity field in the turbulent medium, whose statisti-=f(r1,t1), f(1=2)=f(ry—rz,ty=tp), dn=dr,dt,, R

cal ensemble is assumed homogeneous, isotropic, and staf1~ T2, 7=t1—t2, etc,, andG(1,2) is the Green's func-
tionary. The term on the right-hand side has the meaning dion of Eq. (1), whose formal expression in the Lagrangian
a source of particles, which appear in a volume element bgotation has the form

cause of the transpoftonvection of particles from regions D(at,) ty

with a higher particle concentration and because of compres- G(1,2 = D(at,) 5( fl—rz—f drv(a)
sion of the volume element itselfrecall that diw(r,t) 1 2
=AV/Vdt has the meaning of the relative variation of the Substituting this into E¢(7) and using4) and(5), we again

- ®

volume element of the medium per unit tine obtain Eq.(6). We see that the exact formulas @x in the
The solution of Eq(1) with a given Lagrangian velocity Lagrangian and Euler representations contain the correlators
field v(a,t) for D,=0 has the fornt? divu (or diw), which agrees with the qualitative treatment in

no(r—X(at)) n(at) the_ Introdgction. Below we use only the Euler formuig,
= ; (2)  which, unlike the Lagrangian representation, allows the ef-
D(at) D(at) fect of molecular diffusion to be treated, which is mandatory
wherer =(x;,X5,X3), anda is the radius vector of a liquid if we wish to examine acoustic turbulence.
particle at initial imet=0. The quantityn,(a) stands for the The exact linear integral equation for the stochastic
initial concentration of the impurity particles. The following Green’s functionG(1,2) of Eq.(1) has the form
relationships hold:

n(r,t)=

. o G(1,2)=Gm(1—2)—f d3G,(1-3)
r=a+X(at)=a+ Jodrv(a,t), —=u(r,t)=v(at), (3

at xV3u(3)G(3-2). 9)
X _ The molecular Green’s functiols,(1-2)=G(R,7) is
Dij(at)= Ja;’ D(at)=detD;;, given by the simple expression
. oD D H(7) p[ R?
= —di G (R, 7)= ——exp — , 10
D Jg' D dIVU(r,t)y (4) m( T) (47TDm'T)3/2 4Dm7' ( )
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whereH(7)=1 for >0 andH(7)=0 for 7<0 (the well-  Numerically it is convenient to solve the equation for the
known Heaviside unit function Inserting the iterates of this function g(R,7) that has been Fourier-transformed with re-
equation into(7) yields a power series in the paramegr  spect toR and Laplace-transformed with respectfowhich
=UgpoTo, an asymptotically divergent series, in which keep-we denote byg(p,s). The DIA equation transformed in this
ing only the first term is meaningful since the other terms arg@nanner becomes

either very largéacoustic turbulengeor simply diverggtur-

bulence with a broad Kolmogorov spectrurror more de- ~ " f” fl f“
. ,S)=4s+D +1d d d
tails see Ref. 12. 9(p.s) LN R N
The stochastic equatiofl) shows that the average par- o
ticle concentratiofn(r,t)) is related to the fluctuating par- y (1-p)P°Eindq,7) N up(up—0a)Ecomd d,7)
ticle concentration, and vice versa. Hence an attempt to write 4 2

a single closed equation solely for the average Green’s func- 1

tion (6(1,2)>=G(1—2) leads to a h|erarchy of non]mear ><g(|p—q|,r)exp(—57-)} , (15)
equationgsee Refs. 10 and 12 Equation(9) can be written

in a renormalized form by using, in particular, the average . )

Green'’s functiorG(1—2) (or, more precisely, the solution of WNereé x=p-a/pq is the cosine of the angle between the
some truncated equation in the hierarchy both the con-  vectorsp andg, andg(p, ) is the Fourier transform of the
stant term and the kernel. Substitution of the iterations of thigunction g(R,7) with respect toR. The sequence of itera-
renormalized equation int¢7) results in an asymptotically tions of this equation constitutes a rapidly converging con-
convergent series, which can be used to calculatdor all  tinued fraction.

values of the Strouhal number €Q¢,<x) (for details see

Refs. 10 and 1R The simplest equation in the hierarchy of

nonlinear equations is the DIA equation: 3. DIA EXPRESSIONS FOR THE DIFFUSION COEFFICIENTS
G(1—2)=Gm(1—2)+j dgf d4 G (1-3)V{® The DIA expressions for the turbulent diffusion coeffi-
cients can be obtained directly from Eq$1) and(15) if we
><G(3—4)V}4)Bij(3—4)G(4—2), (11)  introduce the diffusion approximation, or from the general

. ' . formula (7) with the exact Green’s functioB(1,2) replaced
where B;;(1-2)=(u;j(1)u;(2)) is the two-point velocity py jts DIA approximationG(1—2). As a result we get
correlator. Below we find it convenient to use the Fourier

transforms of this correlator and of the Green’s function 0) 1(~ o ~
F(R,7)=H(7ng(R,7), i.e., we write Dt :§j0 dpJO d7 4 [Eine(P, 7) + Ecomd P, 7)19(P, 7)
1 3 ) ~ J -
Bak(R,7) = 277 d*p exp(ip-R) Bak(p, 7), +Ecomp(p,7')p%g(p,r) : (16)
Bri(p, 7) = (80P — PP F (P, 7) + PrPW(Pp, 7) Here and in what follows we limit ourselves to calculating
i the stationary values d, assuming all along that the up-
+i€nkgPgD (P, 7). (120 per limit in the integrals with respect to timeis equal to

The above formula foB, (R, 7) is the most general expres- infinity. The term with the derivative of the Green’s function
sion for the two-point velocity correlator in the case of ho-describes the effect of the compressibility of the medium.
mogeneous, isotropic, and stationary turbuleficehe func-  This term is absent from the formulas in Refs. 17 and 18.
tion D describes the helicity of the turbulent motioin ( To allow for the corrections t@®+ determined by the
=(u(1)-curl u(2))#0), so that in a reflection-symmetric contribution of the irreducible fourth-order correlatdrs,
medium D vanishes. In an incompressible medium (div which are not present i16), we write the corresponding
=0), W=0. Note that helicity does not enter into the DIA formulas. We have

equation(11). Hence, in the absence of helicity in the me-

dium, this equation also describes the diffusion of the impu- D= D+ Dial+ Digmg+ Digj+ DR+ -,

rity's magnetic field. The generalized turbulent spectrum, The additional terms with the corresponding subscripts de-

p*W(p,7) note the contributions from the spectra of incompressible,
p*f(p,7)+ 5 | compressible, mixed, and helical motions. In calculating the
correction, we allowed for the explicit form of the second
(13 . . )
term of the hierarchy of nonlinear equations for the average
is the sum of the spectrum of incompressible motionsGreen’s function, a term similar in structure to the one used
(divu=0) and the spectrum of compressible, irrotationalin Ref. 13 (the paper is devoted to the study of magnetic-
(curl u=0) motions. We denote these spectra as follows: field diffusion). We have assumed that the velocity ensemble
4 aw is Gaussian, i.e., the odd-order correlators are assumed to be
Ein(p,7)= M Ecomd P, 7) = M (14) equal to zero, while the even-order correlators are assumed
inc\ M 2 ) comp\ M 2 : . . . .
T 2 to be expressed in terms of all possible pair correlators:

s L[
<U(r, )'U(r, T)>_ 772 0 p
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1 0 o0 1 ) o 4
1~ p*D(p,7)
D=5, [ “ap [ “aa au | an [ ar, £ .= TP
% wd 1— u?)E. (q, 71+ The DIA Green’s functiorg(p, 7) for p small(large dis-
fo 73 PAu(1=uT)Eind(q 71 72) tance and  large becomes the Green’s function of the dif-

N N 5 fusion equation with a diffusion coefficie=D{"+D,.
XEind(p, 2+ 73)9(0,71)9(P, 73)9(|p+al,72), (170 On the other hand, large-scale turbulent motions provide the
1 e " 1 " " leading contribution to the transport of impurity particles.
Dﬁl)zﬂ dpf dqf d’“f drlf dr, Hence a good way to estimaf2; is to replace the exact
0 0 -1 Jo 0 value of g(p,7) in (16) by its diffusion expressiorggy
% =exp(—Dgp?7) with an unknown diffusion coefficienDs.
X f drg (1— u?)En(Q, 71+ 75) Equation(16) then becomes a nonlinear equation for finding
° the self-consistent diffusion coefficiefds. Phythian and
XEn(py 7t 73)9(0,7)3(p, ) d(|p+dl,m), (18  Curtis? were probably the first to introduce this method.
. : 2(1)) of the spread of the mitial asint mparty.partile
R * * * (R -
Deomp= "5, dpjo dqf,ld“fo d“fo a7 source (RX(t))=—Y2g(p,t)p—o) has the form

o t
” R2t=6Dt+2fdfd t— 1)} Einc(p.7)9(p,
XJ' dT3lLEcomp(qa7'1+Tz)Ecomp(p,7'2+7'3) < ()> m 0 p 0 T(t—1) |nc(p T)g(p 7)
0

2, 42 277 ~ ~ Jg(p,7)
X{[2pa+(p™+ g% u+pau]g(d, 71)9(p,73) * Ecomd P,7)| 9(P, 1)+ P2 | (- (22)
xg(|p+al,m)+pa(a+pwr)[a’(q,71)9(p,73) For t> 7, this formula becomes the well-known diffusion
- - - ~ expressio{R?(t))=6(D,+ D{”)t. Equation(22) can serve
Xg(|p+al,72)+19(d,7)9’(p,73)9(|p+q|, 72) as a tool for checking whether the approximation for the
+(q+pw)p+9l~19(a, 7)9(p, 75) G’ Green’s functiorg(p, ) has been chosen correctly.
x(lp+al, 7)1}, (19 4 ACOUSTIC TL.JRBULENCE .
~, ~ By acoustic turbulence one usually means a medium
whereg’(p,7)=dg(p,7)/dp, and with randomly propagating acoustic waves. For example,
oW _ if‘”d f“’d fl q fwdT f“dT such turbulence is present in the solar corona. If the turbu-
mix 12J9 P 0 q 1 K P P lence is stationary, and it is this case that we will be studying
here, the impurity particles primarily perform periodic oscil-
” . latory movements together the main liquid or gas. No diffu-
X d E ,T1+71)E ,Tot o . .
fo 73 PEincl . 71+ 72) Ecomd . 72+ 75) sion is present here, provided that we ignore the weak mo-
o - - lecular diffusion. Three processes, in addition to molecular
X{2(qu+p)(1—wr)9(q,71)9(p,73)9(|p+al, 72) diffusion, serve as sources of diffusion. First, molecular dif-
+ 1— 4% ~, = o+ fusion is stronger if the particles perform oscillatory move-
Pau(1=n3g(a, )9 (P.73)9(|p+0l, 72) ments instead of being at rest. Second, the decrease in the
+plp+a"59(p, 72)9" (|p+al, 7)1} (20) amplitude of the acoustic wavéabsorption and the occur-

3 rence of the random irregularities in the phases caused, for

In Egs.(17)—(20)we can use the DIA solutiog(p,7) rather instance, by collisions with randomly moving obstacles, lead
than the solution of the second equation in the hierarchy ofo shifts in the oscillation centers, which violates the period-
nonlinear equations, since the differences between the twigity of motion of an impurity particle, whose behavior is
solutions(as related to the calculation Bf;) appear only in  similar to that of a drunkard from the well-known model of
the terms that allow for irreducible sixth-order correlators. random walk motion examined by Taylor in his famous

The above formulas show th@{Y>0 and D{¥<0. paper® However, the behavior of the particle is different: it
Here we assumed thg(p, ) is a monotonically decreasing Still oscillates most of the time, and particle hopping is a rare
function of both argumentéhis is actually the case in the event. Wave absorption due to viscoditys small and is
diffusion approximationand that the generalized spectra as-described by the absorption coefficient kp? (s™*), where
sume their maximum values at=0. It seems natural that P is the wave number, and coincides, in order of magni-
helicity enhances the turbulent diffusion coefficient: its prestude, with the molecular diffusion coefficieB,,. Probably,
ence means that there is additional regularity in turbulentiregularities in the phases occur more easily than true ab-
motions, which ensures that impurities are transported ovegorption of the wave’s energy, but they strongly depend on
greater distances. We recall that by the helicity spectrum wéhe way in which acoustic turbulence is realized. It is impor-

mean tant to note that functionally the phase irregularities provide
(u(r,t)-curl u(r t+7)>:f dp Eq(p,7) (21) the same contribution to the turbulent spectrum as true ab-
’ ’ 0 v sorption(see the Appendix
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Stationary homogeneous, isotropic acoustic turbulence isuggests that selectimg,(p, 7) as the starting approximation

described by the correlatdr was a correct step. Second, the use of a self-consistent pro-
~ cedure for calculatin leads to the formula
Bou(p. )= PaPk(p)cog w(p) rlexd — ¥(p) 7], (29 br

wherew(p)=cp is the wave frequency, with the velocity D=| D+ E MZK) 1 (27)

of the wave. Here and in what follows by we mean the 3 1-M?2

absolute value of the time difference= |t;—t,|. The spec-

trum E=Eqongp.7) corresponding ta23) has the form which at small Mach numbers yields the same resuli@@s

(it will be recalled thatD; is the total diffusion coefficient,
1 i.e., the sum of the molecular and turbulent diffusion coeffi-
Ecomd P, 7)== p*®(p)cog w(p) 7]exd —y(p)7]. (24  cienty. Note also that(26) can easily be derived from
2m (15) and (16) as the first terms in the asymptotic series in
SinceD+ is sure to be small, we assume, as in Ref. 18powers of 1/€p)? by using only the normalization property
that g(p,7) =exp(~D,p?7), but unlike Kazantsewtal,'®*  g(p,0)=1.
we will not setD+ to zero, since the values &f; are of the
same order as the molecular diffusion coefficiernt. Sub-

- . ~ ) 5. NONACOUSTIC TURBULENCE
stituting this value ofg(p,7) into the general formul&l6),

we get By nonacoustic turbulence one usually means a turbulent
medium with chaotic incompressible and/or compressible
D(TO):_f’”dp Ecom P.0) ¥(p)+Dyp? mqtipns of the liquid or gas withqut any indications qf peri—
3o omp. = (y+Dp?)2+c?p? odicity. Such turbulence can be interpreted as the limit op-
posite to acoustic turbulence. It is observed, for instance, in
2D P2 (y+Dyp?)%—c?p?] regions where stars are formed. Of course, there are also
- [(y+D.p?)2+ c2p?]2 (25) various intermediate cases. The specEg,{p,7) and

Einc(p, 7) in such turbulence may vary substantially. For the
We see that generally the second term in the braces, whickake of definiteness, we limit ourselves to spectra that decay
allows for the compressibility of the medium, is of the sameexponentially with the passage of time What we want to
order as the first term, which is the only term present in Refsdo is to see how different the turbulent diffusion coefficients
17 and 18. To make a more specific estimate we assume, ase in the limits of purely incompressible and purely com-
in Ref. 18, that the decay of the correlat®3) with the  pressiblgirrotationa) turbulent media formally described by
passage of time is determined by the true absorption of théhe same generalized spectra:

wave energyy(p)=p?, with k~D,, i.e., we ignore the

contribution of phase irregularities to absorption. We also Eine com;(p,T)ZE(D)eXF< _ l)_ (28)
allow for the fact that k+D,,)p/c~I/r<1, wherel is the ' 70

mean free path of the molecules. Equati@®) then yields  For our calculations we have chosen several typeS(gh:

D' =3M?(x+3Dp), (26) E(p)=u28(p— po), (29
whereM =ug/c is the Mach number. We see that ignoring u2\ 0.651 5%
molecular diffusion reduces the turbulent diffusion coeffi- E(p)= (p_o T (30)
0 +x

cient threefold and that the contribution of compensability

(more precisely, the second term (b)), equal to the term  The spectra(29) and (30) represent two limits: a peaked
2Dm in the parentheses, is substantial. In acoustic turbUSpectrum and a broad Spectrlﬁm Kolmogorov form in the
lence, compressibility enhances the turbulent diffusion coefiertial region. In the spectrun{30) and below,x= p/p,.

ficient, in contrast to the case of the purely random succesye also considered the following intermediate cases:

sion of compressions and dilations of the medium. Probably, 5

compressibility in this regular wave motion of the medium 8 U, 2
locally (within one wavelengthenhances the impurity con- E(p)= 37 p_OX exp(—x%), (3D
centration gradient, and molecular diffusion proceeds more
effectively. 128 u3 4
Here we have not mentioned the complicated problem of E(p)= 3 p—ox exp(—4x), (32
the accuracy of Eq$25) and(26), which can be fully solved
only by obtaining the exact solution of the DIA equatidrp) U% x4
and by calculating the correctidd9). Note that the solution E(p):5p—o (1+x)8° (33

of the DIA equation with a rapidly oscillating function in the _

kernel is a complicated mathematical problem. The fact thalThe Green’s functiong(p,7) were calculated by the DIA
these equations are fairly accurate is confirnfiede, indi-  equation(15) and the diffusion coefficient®{”, D{), and
rectly) by two facts. First, the substitution Ofn(p,7)  Diomp DY EQs.(16), (17), and(19), respectively. The results
=exp(—D,p?7) into the DIA equation(15) leads to a diffu- of calculations of the dimensionless turbulent diffusion coef-

sion solution, close in magnitude to the initial one, whichficient ST (DT=(u0/p0)5T) are depicted in Figs. 1-5.
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FIG. 1. The dimensionless turbulent diffusion coeffici@nt=(po/uo) Dt

for the case of turbulence with the delta-function energy specit2@n
Curvesl, 2, and3 represent, respectivelp{”, D{”+ D}, andDj for the

case of an incompressible medium. Curde$§, and6 represent the similar
quantities for the case of compressible turbulence with the same energy

spectrum. The coefficier®{®) (curve 4) becomes negative @%="UgPoTo D
>3. The inset depicts the initial sections of the curves drawn to a larger
scale. 05 1
2
Curvesl, 2, and 3 represent, respectively, the coefficients 04r 5 ___,_---—-—---5""""""
D, D{¥+D{Y andDj for the case of an incompressible [ P
medium. HereD{") yields a somewhat overestimated value 03[ /’/
of the turbulent diffusion coefficient, while the negative cor- - 5
rection D{) reduces it slightly. In the limit,—o, all the o2k //
curves tend to finite limit¢ corresponding to what is known s
as frozen turbulence, determined by long-lived vortices. The 2l G 6
monotonic rise of the turbulent diffusion coefficients corre- %I /7 N\ @ T
sponds to this increase in the lifetime of turbulent vortices.
Curvesd4, 5, and6 representing the case of compressible
(irrotationa) turbulence have quite a different shape. The | =
striking feature here is th@{®) assumes negative values for ook o \
£=3 for sharp spectra and faf,=5 for broad spectra. 1| = g Vs
Does this mean that there is negative diffusion, i.e., a flow of I S e 4
impurity particles into regions with a higher concentration? _g,+ 01f
The answer is no, for two reasons. The first is a formal: the ] -
next approximationD{),, is positive in the region where e
D! is negative, and the net result is positive. We also see O 0 o4 o8 . .
T ’
now that for¢,=1 the value oiDg,?np cannot be considered ! 2 3 4 5 6 %

. - = . . B
a correction, i.e., fogo=>1 th.e theory becqmes invalid. The FIG. 3. The dimensionless turbulent diffusion coefficiént= (py/uy) D+
S_econd reason has a physical ?Xplanat'on and at t.he SaRLthe case of turbulence with the energy spect(@i). The notation is the
time explains why the DIA equation does not “work” in the same as in Fig. 1.
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03 L pressions and dilations in the transport of impurities from
el 0 0.4 0.8 one point to another in comparison with convective motion
—t L1 in an incompressible medium. Note that the very occurrence
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of negative values dD+ in DIA solutions for a compressible

FIG. 4. The dimensionless turbulent diffusion coefficint=(p,/u;)D; ~ Medium is natural, since it is in such a medium that large-

for the case of turbulence with the energy spectf@@). The notation is the ~ Scale turbulent structures become promin"ént.

same as in Fig. 1. In reality the compressible and incompressible turbulent
movements coexist. The above general formulas allow the
diffusion coefficients to be calculated in such cases, too.

region £,=1. The point is that if we consider turbulence as More than that, in a mixed case the convergence of the

being a chaotic mixture of nonoscillating compressions angnethod of successive approximations in solving the DIA

dilations (our correlators describe just such motioit is  equation is better than in purely irrotational turbulence.

meaningless to examine cases Wit 1, since they are not

realized in nature. If long-lived vortices can exist in an in-

compressible mec_hur_n, ie., if cases wigh>1 ¢X|s_t inna- . ~o\eLUSION

ture, bulk nonoscillating compressions and dilations have a

lifetime 7, directly related to the compressidor dilation) We have derived general formulas for calculating the
ratio [AV|/V. To estimater, we use the well-known rela- turbulent diffusion coefficienD+ in a compressible medium,
tionship formulas that allow for the contributions of all powers of the
AV 2 o second- and fourth-order velocity correlators. We have also
(V—) =(div? u(r,t)>5f dp PPEcomd P)~Ugpg. found that the additional term, ignored by other researchers,
7o 0 that describes the correlation of diwvith the stochastic

(349 Green's function contributes substantially ;. For the

This leads to the desired expressigpa=(|AV/V|)/ugp, and  first time we have numerically solved the nonlinear DIA
hence &= Uuypemo=~(|AV/V|). The value of the average equation for a number of models of compressible turbulence
relative variation of volume determining the paramefgr and have shown that compressibility substantially reduces
depends on the specific physical conditions of compressioB in the case of nonacoustic turbulence in comparison to
and dilation of the gas. For instance, for adiabaticthe value ofD+ for incompressible turbulence with the same
processed we have|AV/V|<2y/(1+v), wherey is the  energy spectrum. On the other hand, for acoustic turbulence,
adiabatic exponenty(=constX p?) @. For a monatomic gas, due to compressibility, the value &f; is larger than that of
y="5/3 and|AV/V|<5/4. the molecular diffusion coefficier,,, the two remaining

Figures 1-5 shows that the compressibility in nonacouseomparable in order of magnitude, as established with a
tic turbulence significantly reduces the value of the turbulentower accuracy by other studié$We have found that the
diffusion coefficientD compared to the case of incompress-DIA equation is quite suitable for findinD; in compressible
ible turbulence, which has the same generalized spectrum imedia if one keeps to the physically admissible values of the
the £,=0.5 range. This explains the ineffectiveness of com-paramete,=ugpy7g. All the results of this paper are also
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fully applicable to the turbulent diffusion coefficients in the As a result,(A3) acquires the final form
case of magnetic-field diffusion in a medium without helic-

ity. 2

W(R,7)= >, @(pn,r)cos(pn-R—wnr)exp( - aT—OT) (A5)

APPENDIX 0

We perform a simple derivation of an expression for the . .
velocity correlator in the case of acoustic turbulence andf we pass from the sum to an '”‘egr‘?" with r_espect (o the
show that the decay of the correlator with the passage of timg'ave vectors, we arrive at an expression equivaleriz8
is due to the random irregularities in the phases. Bearing in
mind thatu;(r,t) =V, ¢(r,t), whereo(r,t) is the stochastic
potential, we can write the chaotic wave ensemble in the

form?® NN
*)E-mail: silant@inaoep.mx

o(r,t)= ; @n(Pn,t)cog p,-r — wpt+ agnt ay(t)],
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We study turbulent flow of a conducting liquid in a uniform external magnetic field. It is shown
that intense helicity generation is possible in the presence of a mean shear flow. It is noted
that even though the mean helicity of the initial flow can be zero, the presence of internal
topological structure of the flow, for example the presence of helicity of different signs at
different scales, is nevertheless necessary for helicity generatiorl998 American Institute of
Physics[S1063-776198)01309-2

1. INTRODUCTION spectra was performed, it is argued in this regard that reflec-

. _ tion symmetry is spontaneously broken in three-dimensional
Helicity (H=(v-VXv)) has a substantial effect on the {,-hulence.

stability and evolution of both laminar and turbulent flots. Investigations of MHD turbulence have a long history. It

Helical cascades, first introduced in Ref. 2 and analyzed ifs \yidely believed that turbulence becomes two-dimensional

Ref. 3 for various special cases, are closely related to helica|,qer the action of a magnetic field. Many experimental
turbulence. Two basic limiting casesave been identified— result§'® do not fit into the two-dimensional picture and can

parallel energy and helicity fluxes along the spectrum be explained only if three-dimensionality is taken into ac-

— —_— count. Such three-dimensional effects also include the ob-
2/3,—5/3 —1/3,—5/3
E(k)oce ™k H(k)oeme ™K, served helical spectfa® We note that attempts to give a

which correspond to a Kolmogorov cascade, and a he”cit);wo-dimensional interpretation of the results of laboratory

flux without an energy flux measurements and numerical simulation of MHD turbulence
are not the only possibilities. Spectra that can be explained as
E(k)oc;2/3k*7/3, H(k)oc;2/3k*4/3, a manifestation of a two-dimensional3 spectrum also cor-
- - respond, to the same degree of accuracy,to/&3 spectrum.
which is a purely helical cascade @nd » are the average The problem of helicity generation in MHD flows was
dissipation of energy and helicjty first examined in the context of turbulent dynamo theSrit.

For a long time, helical cascades were treated as purelyas shown at that time that helicity opposite in sign to the
theoretical curiosities irrelevant to existing experimentaloriginal helicity is generated, intensifying perturbations of
data. However, a substantial amount of baggage consistirife large-scale magnetic field. Somewhat later this effect was
of experimental laboratory and natural observations of theexplained from the standpoint of the conservation of the
— 713 spectrum over a wide range of spatial scales has nowagnetic helicity invariantH ,=(V~th-h). Helicity was
been accumulated. Such spectra are observed in laboratoggnerated only in fields withB-VxB)#0 (hereB is the
MHD flows,*~8 rotating liquids’ stratified turbulence behind large-scale magnetic fieldin laboratory MHD flows, mag-

a grid® boundary layers, direct measurements of atmo- netic helicity vanishes, as a rule. Nonetheless, a helical en-
spheric turbulence at various altitudds!2and the tropical ergy cascad&(k)<k " is observed over a wide range of
pre-typhoon atmosphef& We note that two scaling regions external magnetic field values. The present paper is devoted
often exist in both atmospheric and laboratory MHD turbu-to determining a possible mechanism of helicity generation
lence spectra:{5/3) and (- 7/3). in turbulent MHD flows.

The existence of a “helical” spectrum raises the prob-
lem of the origin of helicity. It is well known that helicity iS 5 STATEMENT OF THE PROBLEM
an invariant of the “pure” Euler equatiofwhich neglects ) ] )
the influence of stratification, background rotation, and other e examine turbulent MHD flow of an incompressible
factor9. Helicity generation in stellar and planetary atmo- fluid in a uniform magnetic fiel®° (.=1) and with a time-
spheres is probably basically due to the rotation of the plandfdependent mean component of the mean velddfty
and stratificatiort} 153 whereas the nature of the onset of V2
helicity in MDH flows is as yet unclear. The origin of the dv—vxeurl v+V o =—VP/p
helicity observed in laboratory flows is also not obvious. In
Ref. 17, where a qualitative analysis of the observed helical +curlHXH/4mp+ vAv, (1)

1063-7761/98/87(9)/5/$15.00 513 © 1998 American Institute of Physics
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div v=0, 2 A s t~ .

@ h(t)=e (ATF h(0)+f e (ATRI(t=9)(BO. v)u(s) ds,
dH+(v-V)H—(H-V)v=r,AH, €) 0 @®
div H=0. (4)

i where
In what follows, we work in the Alfva variables
A 0 <
H’=H/\/ﬁ, HeH’. Ah=curl[U"xh], Fh=curl[uXh].

In the absence of magnetic fields and neglecting kinemati§xamining the series expansion of the exponential operator
viscosity, hydrodynamic helicity is a conserved quantity: N the integrand in Eq8), it is easy to see thatAthe expansion
of the fluctuation part of the exponentighe F operatoy,
d(v-curlv)=0. (5) starting with the second teriiin powers of the velocity is
The magnetic field leads to the emergence of “sources”equivalent to taking the higher-order moments of the turbu-
in the helicity balance equation: lent velocity field into account. The expansion parameter is
the turbulent Strouhal numb&= u,,, 7., /N, Which is based

dx(v-curlv)=—2p(w- curlw) + M, on the main characteristics of the turbulent flow.

M = 2(wx curlh)-B°+2(hxw)curl B°+ 2Q° For small Strouhal numbers S&1), the term
VX (uxh) in the magnetic induction equatiofT) can be

~(curthxh)+2((w curlh)xhy. (6) dropped. This corresponds to so-called first-order scaling
Here theory (first-order smoothing approximation—FOgsAem-

0 0 ployed in the quasilinear theory of plasma and in dynamo
v=U"+u, (v)=U", theory?! In this case there are no restrictions on the magnetic
curlv=U%+w, (curlv)=Q0, Reynolds number Re Under ordinary conditions the Strou-

hal number is of order 1. But the basic physical effects can
H=B%+h, (h)=0. be “fished out” even for small Strouhal numbers. More

complicated approximations, which as a rule also include
elements of numerical simulation, merely renormalize the
specific numerical values of the turbulent transport coeffi-

sponding contribution of the mean velocity. We note that™ e _ ) - : .

(v-VXv) is the mean helicity of a flow only in homogeneous cients (diffusion, V|_sc05|ty, hellchy generation c_oeffncents,
and isotropic turbulence. In the general inhomogenous cas nd So o NegllectmgVX(u_x h) is allsdo corre(t:)t in another
(v-VXv) corresponds to an ensemble-averaged helicit miting case—low magnetic Reynolds numbers, Rel,

density. We consider the mean flow with zero helicity @nd arbitrary Strouhal numbefs. L
(U°- Q% =0. Then Henceforth we work in the two-scale approximation

In the present paper we study the limit of large Alive
velocities (B%>|U°|) and neglect in Eq(6) the corre-

(v-curlv)=(u-curlu). L>\, T>r1,

The first term in Eq(6) was first studied by Viashtén wherelL, T and\, 7 are characteristic space-time scales of
in Ref. 19. Only the anisotropy introduced into the correla-mean and fluctuating quantities. In this case we can take the
tions of the turbulent velocity field by a quasistationary mag-shear of the mean velocity to be constémniform) in the
netic field was taken into account. In a uniform magneticsmall-scale equations. The magnetic fibldn a flow with
field VxB®=0. In the theory of a nonlinear dynamo with constant shear can be determined in terms of the Green's
VxB%+0, this term is responsible for nonlinear saturation offunction, first obtained by K.-H. Riter?*
large-scale instability.

The cubic nonlinearity in Eq6) can be approximated in Gij(x.&t,7)=y;(t— ) G(x— &t—7]U°).
the spirit of the Orszag approximation as-aelaxing term. Here
Its influence reduces to redistribution of energy and helicity
over both scales and directioft® renormalization of turbu- au,
lent visocity and magnetic diffusion; see, for example, Ref.  ¥ij(t) =&+ v t,

20). In the present paper we examine in detail the first three !
terms on the right-hand side of E@). 1 \32 d. x x
-5, o
G(x,t|u%) = 4vpt

0, t<0.

Ayt

3. INDUCTION EQUATION IN A SHEAR FLOW

) o ) For short correlation times the terdy(t) has the forn(see
The fluctuation magnetic fielth excited by a turbulent pof 21)

velocity field is described by the induction equation
_ 0 —(RO. 1
dth—curl[(U+u)xh]=(B”-V)u+r,Ah. (7 dpq(t) = Spq— 5(
Neglecting magnetic viscosity, the solution of this equation
has the form and y;;~ g;; . In this case the solution of Eq?) is

U, U
e, Ma
IXq X
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The effect of a uniform magnetic field on the correlation
h(t):f G(x—&,1) h(¢,0) dé+ JJG(X— §t—1) characteristics of turbulence was analyzed in Refs. 18, 19,
21, and 23. The main effect is that a uniform magnetic field

X(B°-V)u(¢,7) dédr. (9 draws energy from turbulent pulsations and reradiates it in

For timesT> 7 the initial values of the fluctuation magnetic the form of Alfven waves propagating along the magnetic
field h can be neglected. field lines. The structure of the two-point correlation tensor

remains unchanged in Fourier space; the only change is that
the coefficients become dependent on the angle between the

4. CALCULATION OF TWO-POINT CORRELATIONS wave vector and the magnetic field. Note that the form of the
) ] correlation tensor obtained in Refs. 19 and 23 is valid in
Taking account of Eq(9), we obtain weak magnetic fields and can be obtained by an appropriate
Q%curlhx hy= 0, G.(B°- V,)(B°- V.)(w|, X u expansion of the more general expression obtained in Ref.
(curlh>h) = 00G,5(B°- V1) (8% Va)(wlyxuly X

We assume that turbulent pulsations of the velocity field
in the absence of an external magnetic field are homoge-
(wx curl h)- BO= Gy(wx (B V,)wl,) - BY. (11  neous and isotropic. Then the velocity correlation tensor in
Fourier space has the form

and

Here|,and|, correspond toX; ,t;) and (x,,t,) respectively.
The following two-point correlations must be determined: E(k,w)(

0%k w)= ——~
(BO- V1) (B0 V) (wly X ul,), (WX (BO-Vy)wl). (12) Qij(kw) =

wk?

In homogeneous isotropic turbulence only the term (13
(wx (B°-V1)wh) is nonvanishingsee Ref. 18 The effects  The mean energy and helicity of the turbulent flow are
of weak anisotropy due to a uniform magnetic field were also
studied in Ref. 22. The presence of a mean shear flow leads
to inhomogeneities and additional anisotropy of the correla-
tion properties of a turbulent velocity field. The principal
linear terms of the Reynolds stresses have a similar gradient
form in the various models of turbulent closure. Small dif-

ferences are present in the definition of the transport coeffi- -~ ) ) ] }
cients (K—I, K—e models and othefsNonlinear generaliza- Under conditions in which first-order smoothing theory

tions of Reynolds stresses make sense only for flows withFOSA is applicable, mir§, Re,)<1, the correlation ten-
solid boundariegrectangular and circular channels, gttn sor, taking account of the uniform external magnetic field,
the FOSA approximation the nonlinearity in the equation,nas the formsee Ref. 21
which governs the anisotropic properties of the turbulence,

kikj| . H(k,o)

— &k
k4 !

<u-u)=f E(k,0) dk d,

(u-curlu)zf H(k,w) dk dw. (14

can be neglected. O (K.w) = A (K, w) 19
Comparing the terms in the equation for the velocity, we e ,2vvpk?—20%+ (B k)?

see that the main parameter characterizing the degree of in- 1+(B (V2K + 02) (12K + 0?)

fluence of the magnetic field is the dimensionless combina- ¥m @Y @

tion (B%/U%,)S, whereB® (in Alfvén variable$ equals The field of turbulent pulsations can provisionally be

the AlfVén VE|0City in magnitude,UO is the characteristic Separated into homogenecﬁnﬁgg|ecting Shearuh and inho-
mean VeIOCity,Utur is the characteristic turbulent VeIOCity, mogeneou$taking shear into accouhunh components. The
andSis the Strouhal number. Henceforth we assume that jnhomogeneous component satisfies the linearized equation

B (0= vA)U"= — Vp" 4 curlhx BO

S>1. (124
U ot — (U0 V)ul— (M- V)L, (16
In particular, in the laboratory setup at the Center for o .
MHD Studies at Ben-Gurion University, the typical mag- whereh is given by (9). In the present case, to obtain the
netic fields were (3-4)x10° G, the velocity of mercury form of the inhomogeneous Reynolds stresses, one can ne-
flow along a cylindrical pipe 10 cm in diameter was 20 cm/s,dlect the effect of the mean velocity on the magnetic field
and the typical velocity of the turbulent pulsations was 1—2induced by turbulent pulsations. Then the equationftt
cm/s. Strouhal numbers greater thaw 503 are sufficient has the form
to satisfy the criterior{12a. The prerequisit&<1 for first- 0 w22 nh
order smoothing theory is satisfied for these values. (6—vA—(B"-V)"G)u
We note that this criterion is also satisfied in the solar = —Vp""— (U0 V)uh— (u-"V) L. (17)
plasmasphere.
Accordingly, the effect on two-point correlations of 1. Calculation of B®-V,)(B°- V,){w]|; X ul,). Multiply-
shear in the mean velocity can be treated as a linear correing the equation fomw(x,,t;) by u(x,,t,) and carrying out
tion to the underlying state determined by the magnetic fieldthe spatial averaging, we obtain
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(. — vA — (BO- V) 26) (i, X ul,)™ 2. Calculation of (wx (B®-V,)w],) . ‘Multiplying the
! equation forw(x,t) by w(x;,t;) and carrying out the spatial
=([curl[U°Xw]+[ux Q°]|; X ul,]), averaging, we obtain
E=Xp—Xy. (3= vA—(B®- V)2 G)(wxw|y)"™"
After a number of calculations we obtain =(curl(UXw+ux Q%) xwl,), &=x—x;. (23
(B%-V1)(B®- V,)(w|; X u|,)|"™ After a number of calculations we obtain
- h
:gBOBSBgsijkgjlmgtpr( 5tm5ks+ 5tk5ms) <WX (BO Vl)W|1> |In
A0
P aUg< &u5> 0 <(9wr &us> = 6% BB fim i) (exindmpr
X—1{ —2{w,—) +U% | — —=
oxt| oxt\ g, TP 9g, €, + (Spirt = SpiSrk) Smn)
0 2 0 2
duy du 0?2 au [&Up/ d°Un > aQr/ J°Uy >]
0 p 7Hs r 77s X W + u . 24
o 1< 9€, agv>+ ax3<upagv>]' (18 ax \ T 0grdE | ox | P ogd 24
H For the homogeneous component of the turbulent velocity
ere .
field we have
o (B%.k)2 |t .
(GP V)= —i o+ vk?+ — S| ik, 0). Mg= G} (wx (B%- V)wly) )|}
—ilw+ vk
For the homogeneous component of the turbulent veloc- =— E(BOZ)TO<W~ curlwy), (25
ity field we obtain
where
(B®-V1)(B®- Vo) (w1 xulp)|}
B & (< au; auk> < a%uy auk>] Tozf G(x,t)g(x,t) dx dt.
oMU\ 9Ematy 9n| \ IEmd& 0Eq] ]

) _ _ . This term is proportional to the turbulent superhelicity

After integrating over angles the homogenepus part Va”'She&v-VXw). In Ref. 19, it was treated only as a dissipative
For low Strouhal numbertshort correlation timésthe  term. However, since helicity is not a sign-definite quantity,
mean value theorem can be used to calculate the integralsircan be both dissipative and productive. Indeed, a mean
the spatial derivatives of th.e mean and turbulent velocitiesﬁe”dty of zero does not mean that the superhelicity is zero.
can be removed from thg integrand and set equal to thepositive and negative helicity density on different scales can
averagg(local) values. Taking the scalar product @ with be a source of both subsequent redistribution of helicity and

Eq. (19) we obtain generation of helicity. For large Reynolds numbers the mag-
MA:XI(QOZBOZ_(QO. B%)2+ Q°(BC- V)(Bx U%)) Eséichgﬁggation of helicity is much greater than the dissipa-
+ xo(02°-V)(B°-V)(B°. Q9 Multiplying Eq. (24) by B® and using the mean value

theorem, we obtain

+,(Q0-V)(B%- V)(B. U%) + £,(2B%*(Q0- AUO)
Mg=—g1(B°-V)(B% Q%+ x;(B°-V)(B°-U%. (26)

—(Q°-(B%- V)2U% —(Q°-V)(B°- V)(B®-U%). (19

Here

Here

1 1
2 2 el=—123(W-w)), xl==72(w-curlw)
Xo= 3 TaUW),  xa= 75 Ta(W-curlw) (20) R >
are proportional to the turbulent enstrophy and superhelicity,

1 2 .
81=3 To(W-W),  Ep= 1—57-3A<curlw- curlw) (21) respectively, and

2 __ _ _+\oBY o _
are proportional to the turbulent helicity, superhelicity, en- TB_I G(Xx=x1,t=11) G% (X=X =x*,t =)
strophy, and superenstrophy, respectively, and
Py P PrY, respectively X g(x*,t*) dx dx* dt, dt*.
Tf\zJ G(x—xl,t—tl)G(x—xz,t—tz)@BO Finally, the helicity balance equation takes the form
av-curlv)=Ma+M3+Mg—2p(w-curlw).

X(Xl—XZ—X*,tl—t*)g(X*,t*)
The new terms in Eqg20) and(26) in the helicity bal-
* *
X dxy dxp dx* dty dtp dt*. 22 ance equation are functions of the external magnetic field,
Here g(x*,t*) is the space-time dependence for the correthe sheafvorticity) of the mean velocity, and the correlation
sponding correlation function. functions of the turbulent velocity field. Helicity production
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is highly nonlinear. The dependence on the external mag- As we have already emphasized, the helicity growth rate
netic field is more complicated because of its influence ordepends on the correlation characteristics of the main state,
the coefficients and y. which in turn decrease with increasing magnetic field as
Hence, turbulent flow with nonuniform shear of the oc(1+aB°2+bBO4)’1. Accordingly, helicity generation
mean velocity and a uniform external magnetic field can gen

, ol goes as<(B%/(1+aB% +bB%) and clearly has critical val-
erate hydrodynamic helicity.

ues of the magnetic field with maximum rate of growth. The

magnitude of the critical magnetic field depends on the prin-

cipal average characteristics of the turbulent flow. Such be-
We have derived a balance equation for hydrodynamidavior has been observed in the experiments performed at

helicity in turbulent MHD flow. A direct analysis reveals that the Center for MHD StudiegBeersheba, IsraelAs the ex-

the shear of the mean velocity and the resulting anisotropy dernal magnetic field increases, the stably observed3

the correlation properties of the random velocity field arespectrum is replaced by a two-dimensiorad spectrum.
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that helical spectra have been observed in laboratory MHDhe laboratory data and for fruitful discussions. This work

flows only with a grid(honeycomb placed in the flow, re- Wwas supported in part by the Russian Fund for Fundamental

sulting in the emergence of abrupt spatial gradients of th&kesearch{Grant No. 96-02-19560

mean velocity. We note especially that under these circum-

stances, either a regular mean or turbulent velocity compoesg_ i ochkheti@mx.iki.rssi.ru

nent in the main flow should have interr{aidden topologi-

cal structure—specifically, nonvanishing superhelicity
<W-V><W> 1H. K. Moffat and A. Tsinober, Annu. Rev. Fluid MecB4, 281 (1992.

o . L 2. Brissaudet al, Phys. Fluidsl6, 1363(1973.

Superhelicity is responsible for the well-known dissipa- 35, 5. moiseev and O. G. Chkhetiani, Ztksp. Teor. Fiz110, 357 (1996
tive mechanism of helicity generation, first demonstrated in [JETP83, 192(1998].
Ref. 24. For large Reynolds numbers this effect can be the'l- Platnieks and S. F. Seluto, iniquid Metal Magnetohydrodynamics

. . .. J. Lielpeters and R. Moreaffds), Kluwer, Dordrecht(1989.
main mechanism for the emergence of he“CIty' Nonzero Su'SC. Henoch, M. Hoffert, H. Branover, and S. Sukoriansky, Prog. Astronaut.

perhelicity is a common property of systems with helicity aeronaut.149, 190(1993.

fluctuations. The helicity balance equation contains terms’H. Branover, A. Eidelman, M. Nagorny, and M. Kireev, Prog. Astronaut.
that are related to other similar topological characteristics.7Qer&g?“téln%2E64J(1gg4>ﬁn . Phys. FILI®9, 2140(1986

We stress tha_‘t_WG' are talking not _on,ly about th(:f' mean t.urbu”E.. C. Itgweire énd K. IQI I-glell‘avei?/il.?roc. Sécond Symp.I on Turbulence
lent superhelicityor some other similar quadratic combina-  and piffusion Colorado(1985, p. 172.

tion), but also about superhelicity of the mean flow. In other °T. Wei and W. W. Willmarth, J. Fluid Mect204, 57 (1989.

0
words, the presence of hidden topological properties o S. J. Caughey and S. G. Palmer, Q. J. R. Meteorol. 8@f.811(1979.
P . _topolog Prope th. I. Boer and T. G. Sheperd, J. Atmos. S, 164 (1983.
large- and small-scale helical motions under the action of ame, "¢ Gage and G. D. Nastrom, J. Atmos. StS, 729 (1986).

external magnetic field is the principal source leading to the3|. N. Kiepikov, I. V. Pokrovskaya, and E. A. Sharkov, Issled. Zemli iz
generation of mean hydrodynamic helicity. An external mag-lAKosmosa, No. 3, 181995.

[ ; i~ ; D. K. Lilly, J. Atmos. Sci.43, 126 (1986.
netic field S(_—:-rveshaﬁ t_he trigger for helé)cny gener?]tlon.” 1SR Hide, Geophys. Astrophys. Fluid DyA8, 69 (1989.
. In our view, he icity generation is based on the follow- 16 v kurganski, Fiz. Atm. Okean29, 464 (1993.
ing. We assume that in the absence of an external magnetita. Bershadskii, E. Kit, and A. Tsinober, Proc. R. Soc. London, Ser. A
field a balance of left- and right-handed regulaandom 441, 147(1993.

. - . . ’, 18 i
motions exists. In an external magnetic field, random Aifve R. Moreau and A. Alemany, iMHD Flows and Turbulence, Proc. of the
Beer-Sheeva Int. Seminét975, p. 51.

modes propagate, their spatial spectrum reflecting the spatials. |, vanshtan, zh. Esp. Teor. Fiz61, 612(1972 [Sov. Phys. JETB4,
structure of the unperturbed regular and random motions. 327 (1972]. ;
However' the frequency of the A|'fvewaves depends on 20g, Golbraikh, O. G. Chkhetiani, and S. S. Moiseev, ZksfE Teor. Fiz.

. . . . 114, 171(1998 [JETP87, 95(1998].
their scale, i.e., these modes now enter with CIIﬁer(’mtﬂF. Krause and K.-H. Riler, Magnetic Hydrodynamics of Mean Fields and

“weight,” which ultimately breaks the symmetry between pynamo TheoryRussian translatidn Mir, Moscow (1984).

the left- and right-handed helical motion. This effect is simi-?L. L. Vainshtén and S. I. Vanshtén, Geomagn. Aeronl3, 149 (1973.
lar to the mechanism of dissipative helicity generatfpn >’W. H. Matthaeus, Phys. Rev. 24, 2135(1981.

where the difference in dissipation at different scales like- > G- Andre and M. Lesieur, J. Fluid MedBl, 207(1977).

wise leads to breaking of the initial reflection symmetry.  Translated by M. E. Alferieff

5. CONCLUSIONS



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 87, NUMBER 3 SEPTEMBER 1998

The temperature jump and slow evaporation in molecular gases
A. V. Latyshev and A. A. Yushkanov

Moscow Pedagogical University, 107005 Moscow, Russia
(Submitted 7 August 1997
Zh. Eksp. Teor. Fiz114, 956—-971(September 1998

We set up model transport equations that describe the behavior of molédiat@mic and
polyatomig gases with a molecule collision rate proportional to the molecular velocity. In deriving
these equations we allow for the interfidtationa) degrees of freedom, while the vibrational
degrees of freedom are assumed “frozen.” We also set up an exact equation for the

problem of the temperature jump with allowance for slow evaporation from the liquid surface
into the saturated vapor atmosphere. Finally, we derive explicit formulas for calculating

the coefficients of the temperature jump and gas-density jump above a flat surface and do the
necessary numerical calculations. 198 American Institute of Physics.

[S1063-776198)01409-7

1. INTRODUCTION. DERIVATION OF THE BASIC that is based on the possibility of using the semiclassical
EQUATIONS AND STATEMENT OF THE PROBLEM approximation to describe the rotational degrees of freedom
at high temperature& similar but somewhat different ap-

The Smoluchowski problenithe problem of the tem- proach is developed in Refs. 14 and).15
perature jumphas been attracting much attention for along  |n Ref. 17 we discussed a model of a molecular diatomic
time (the history of this problem can be found in Refs. 1 andgas with a constant rate of molecular collisigftisis rate is
2). For a simple gas this problem has been solved by analytigssumed independent of the velocity of the molequlas-
methods involving the use of model equatib@asd by ap-  other interesting model is that with a constant mean free path
proximate and numerical methods for the Boltzmann transoef the molecules, which is close to the model of a gas of hard
port equatiorf~’ In addition to the Smoluchowski problem, sphere$!! The fact that the mean free path is constant
the behavior of a gas when there is slow evaporation from @neans that the collision rate is proportional to the velocity of
surface is also of intere&t!! the molecules.

The work we have just mentioned deals with a mon-  In the present paper we use a model Boltzmann transport
atomic gas. At the same time, it would be interesting to studyequation of the Bhatnagar—Gross—Kro@GK) type to de-
the behavior of a molecular gas in such processes near stribe molecular gasedgliatomic and polyatomjcin which
surface. As is known, transport processes in a molecular gake molecular collision rate is proportional to the molecular
are much more complicated than in a simple $faShis  velocity. On the basis of this model we set up analytic solu-
places more emphasis on the role of model collision integralsions for the Smoluchowski and slow evaporation problems.
in describing transport processes, since the elastic and inelas- The collision integral for a simple gas with a collision
tic cross sections that enter into the Boltzmann collision intate proportional to the speed of molecules has the 3otm
tegral have yet to be well enough studied to be used for a
detailed quantitative description of the processes. W

B o J[f] (feg— 1) @
The structure of model collision integrals can in prin- Ao

ciple erend on the.nature 9f the phenomena that play thﬁere)\o is the characteristic mean free path of the molecules,
most important role in the given problem. In what follows — |[v—uq(r)| is the speed of a gas molecule in a reference

we consider a temperature range in which the vibrationa, . . ) ) .

. . SR rame in which the gas at the given pomis at rest, i.e., has
degrees of freedom are effectively “frozen,” while the rota- . . S .
. . ._the mass-weighted mean velocity, which is zevois the
tional degrees of freedom can be described by a classical

approach. The temperature range in which these Cor]di,[ionfr%wolecular velocity of the gas in the laboratory reference

ame, anduy(r) is the mass-weighted mean velocity of the
are met extends from tens to thousands of kel¥ins. e .
. as at point in the laboratory reference frame. The function
There are many approaches to setting up model transpo

equations for molecular gasésee, e.g., Refs. 14-1Some  *¢ can be written

of these incorporate the discrete structure of the levels of the m |32 m

internal energy of molecules. Allowance for such a structure  feq™ neq( m) exp{ - W(V_ Ueq)2
is important at low temperatures, while at high temperatures .
the discrete level structure does not manifest itself and isvherem is the mass of a molecule, ardis Boltzmann'’s
superfluous, not to mention the fact that allowing for thisconstant.

structure is inconvenient for practical applications. In this ~ The quantitiesngg, Teq, andueq can be found from the
connection we will use an approach, proposed in Ref. 17¢ondition that the collision integrdll) conserve the number

1063-7761/98/87(9)/9/$15.00 518 © 1998 American Institute of Physics
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of molecules, the momentum, and the energy. These require- Now let us suppose that in the region under consider-

ments can be written in the form of an equation: ation the gas temperatuiiechanges slowly, i.e., the relative
variation of the temperature over the mean free gdati
f lefeqd3v=f wM; f d3v, (20  molecules of the gas is small:
whereM =1, mv, or mv?/2. I |VInT|<1. (5)
The collision integral for a diatomic gas can also be
written in a form similar to(1). Heref is given by Below we study the interaction of the gas and the surface
a2 of the condensed phase. We assume that in the reference
* = p* m J frame in which the condensed phase is at rest, the speed of
27kT* 2kT* the gasu is much less than the speed of sound, i.e.,
sz m m
*\2
Xexr{ w2k ) N 27 U<t ©

whereld is the total moment of |’nert|a qf a molecule, ands It can be showh? that the conditiong5) and (6) yield
the frequency of the molecule’s rotation.

The quantities*, T*, andu* can also be found from m
conservation laws that are generalizationg2)f \ /m u*<1.

@)

* 3 — 3
f WM.f* o d* do= f WMzw d*v do, ©) The condition(5) makes it possible to isolate a region of the

whereM,=1, mv, or mv2/2+ Jw?/2. volume occupied by the gas whose size is much larger than

For molecular gases whose molecules contain more thafi€ mean free path and in which the relative temperature

two atoms(below we call such gases polyatomithe func- ~ variations are small, i.e.,
tion f¢q can be written

312 / T_Tol ®)
,_ n*( m (J13235) " Ty '
27kT* | (2wkT*)%? , o
HereT, is the temperature of the gas at a certain point of that
m 12 lei'i‘\]zw%'f' J3w§ region'

xXexpg — *(V—U )E— ) If conditions (7) and (8) are met, the transport equation
2kT 2kT* : . ,
can be linearized. Here the absolute value of a molecule’s

whereJy, J,, andJ; are the principal moments of inertia of velocity, w, on the right-hand side of E¢l) can be replaced
a molecule, and ¢,,w;,,w3) is the vector of the angular in the linear approximation by. The distribution functiorf

velocity of rotation of a molecul&>!® can be writtenf="fy(1+ ¢), where
The quantitiesn*, T*, andu* can be found from con-
servation laws, which is this case can be written . m \% J mv?  Jo?
nO 27TkTO 2kTo &Xp 2kT0 B 2kTo
J wM,f* d3y d3w=J wM;f d®v d3w, (4)

for a diatomic gas, and
whereM;=1, mv, or mv?/2+ (J; w5+ w3+ J303)/2.
The concentratiom, velocity u, and temperaturd of . ( m )3/2(J13233)1/2
No

the gas are given by the relationsHip$

27kTo)  (2mkTp)%2
1
n=f fod do, u=ﬁ f fvd3 do, o mo? J1w§+\]2wg+\]3w§
&R~ 2kT, 2KT,

T 0 d% do

1 1
f[zm(v—u)2+—.]w2

2 for a polyatomic gas.

If the conditions(5), (7), and(8) are met, the functiow
is small, i.e.|¢|<1. Note that according to the definition of
To, there is a certain ambiguity in selecting this temperature.
In point of fact, instead oflf, and n, we can take other
1 1 1 paramfetersT(’, al;ld ng such that|T0—T6|<ma>§(r 0,To) and
T=— f f[_m(v_u)er_(leiJrszg |n0—p0|<(n0,n0). Here the entire Imea'nzatl.on 'procedur'e
3n 2 2 remains valid. Onlye changes, but the linearization condi-
tion (|¢|<1) remains valid.
d3v d?w The steady-state linearized Boltzmann transport equation
with a model collision integral in the BGK form for a mo-
for a polyatomic gas. lecular gas can be written

~5n

for a diatomic gas, and

1
n=f f d3y diw, uzﬁffvd?’v d®w,

+ \]3(1)5)
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ve vl[én ST mv? [Jw?] Uy . m
T S et T2 ey w=y VN Y
m Below we write the variables* and »* and the quantity
TR Y ®  y* without the asterisk. Then, if we combir8), (4) and

(9), we obtain

Here Sn=n* —ny, §T=T*—-T,, and ¢=o(r,v,w), with p 1 e e
=3 and[Jw?]=Jw? for a diatomic gas, and=7/2 and M_‘Pﬂp(x,#,g,w):f f f exp(— £ w' 2k
[Jw?]=J,03+ J,05+ Jzw3 for a polyatomic gas. IX -1Jo Jo

In the Smoluchowski and slow evaporation problems X ou £ o) e(xu £ o)
there is a flat boundar{interface separating the gas from Bosy @ s, @ )RR E LS
the condensed phase. At the surface there may be evapora- Xdu' d¢’ do’, (10
tion and condensation. Let us examine a region occupied b\X/here
the gas that is adjacent to the surface. The &izef this
region must be much larger than the mean free path of the
gas molecules, but at the same it must small enough for k(M,g;u’,g’):m
condition (8) to be met. The conditiori5) guarantees that m

3
Lropép' &ty

such a region exists. We assume that there is a heat flux ar—1
normal to the surface. Then far from the surfécetside the X| &2+ w?— ; )
Knudsen layer whose thickness is of order of the mean free

path in this region there exists a linear temperature gradient , .o 4r—1
perpendicular to the surfacé® We introduce a Cartesian X| &2 p 2= p ,

coordinate system with its origin at the surface and witlxits

axis perpendicular to the surface, so that the regtuaif- ~ With r=1 for a diatomic gas =2 for a polyatomic gas, and
spacgfilled by the gas corresponds to the positive part of the® is the absolute value of the angular velocity of rotation of
x axis. ThenT=Tq+Ax, |<x<L, whereA=(dT/dx),sis & Molecule in both cases.

the asymptotic value of the temperature gradient. We denote Far from the wall the functiorp has the form

the surface temperature By and the concentration of the 7r—2

saturated vapor at the surface temperaturenpy Then T, Cad X, &, 0)=ent+e1| E2+ 02— 5 )

—Ts and n,—ng are called the jumps in temperature and '

concentration, where in the second case it is assumed that K

evaporation or condensation takes place at a vanishing rate. + ( 2U— —— | ué+K(x—pu)
In the linear approximation these two jumps are propor- 3\m

tional to the temperature gradient. The temperature jump is 9r—2

equal to the difference between the gas temperature linearly X | E24 w?— o )

extrapolated to the surface, and the surface temperature it-
self. In other words, the temperature jump is the difference  Generally, the boundary condition problem for a mo-
between the “hydrodynamic’(without allowance for the lecular gas at the surface is extremely complic&feBielow
Knudsen layergas temperature and the surface temperatureve limit ourselves to the case in which the accommodation
Our goal is to calculate the relative values of the temperaturef the molecules by the surface is tot&lThen the boundary
and concentration jumps;=T./T,—1 ande,=n./ng—1,  condition at the surface takes the simple form
which in the linear approximation are proportional to the _
relative temperature gradient, i.eey=cK and e,=c,K, ¢(0p,8,0)=0, O<p<1, (1)
with K=A/Ts. while far from the wall — + ) we have

Far from the surface the gas can move toward or away
from the surface, which corresponds to condensation or PXp.6,0) = padXop, g 0) F0(1),  —1<p<0.
evaporation. We denote the evaporation or condensation rate
by U (note that it is perpendicular to the surfacén this
case, in the linear approximation the relative jumps in the
temperature and concentration of the gas are proportional & DIATOMIC GAS
U: e7=5/(2U) ande,=s,(2U).

The quantitieg;, c,, S;, ands, must be found by solv-
ing the transport equation.

The statement of the problem implies that the distribu
tion funption d_epends on only one.spatial varliabde,lt is 0= @ad X, & )+ hy(X, m) + Ehy(X, 1)
convenient to introduce the dimensionless variables

(12

We examine the boundary value probléb@)—(12) for a
diatomic gas, i.e., we put=1 in these equations. We ex-
_pand the functiorp in three orthogonal directions:

+(E+ w?=3)hz(x,u). (13

X* :i' £= / m v @t = /[‘]“’ ] o, Orthogonality is understood in the sense that the scalar prod-
)\0 ZkTO ZkTO uct
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to=2]" || ew-g-orfotin i

Xg(u,é0)dudédo (14

is zero. Plugging13) into (10), we obtain a set of transpor

equations:

ahy

M&_+h1 (1,hy)+4a(1,hy), (159
dhy

Mﬁx +hy=3u[2a(u’,hy)+(u',hy)+a(p’ h3)],

(15b)

ohs 2

MW"’hs:ga(l,hZ)"”(l,hs)- (159

The scalar productl4) becomes simpler if the inner inte-
grals can be calculated, and in relation to the set of equations

(15) it means the following:

1,
(Mk,hl)zzﬁlﬂ Yhy(x,u")du', k=0,1, 1=1,2,3.

Now we use the conservation law®). Conservation of
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1 4a O 0 0O
Ko=/0 0 0f, K,=[0 1 O0f,
0 0 1 0 0 O
t The boundary condition§ll) and (12) for Eq. (18) can be
written
h(Ou)=—h,{0,n), 0O<u<1, (19
0
h(ee,u)=| 0], —1<u<0, (20
0
where
enter/2—K(X—pu)/2
hadXom)=|  (2U—2K/3\m)p

en— 1le7/2— 13K (X— p)/2

lem (18)—(20) Separation of variables in E¢18) immedi-
ately yields the particular solutions

hn(X,M)=eXP< - %) O(n,u),

the number of particles and energy makes it possible to simwith ®(7,u) the eigenvector function of the characteristic

plify the set of equation$l5). These laws yield &,¢)=0
and (u(£2+ 0?),¢)=0. Substituting(13) into (15), we get

2
(u',hp)=—4a(u' hy), (u',hy)= —§Q(M'vh2)-

Then Eq.(15b) simplifies:
ah, )
Ma—x+h2:3cﬂ(l/~ h2), (16)

wherec=1—39#7/128.

Equationg15a and(15¢) imply that instead of the func-

tion hy it is more convenient to study the differentg
=h,;—6hs, for which we have

ohg ~
MW+h3:(1,h3) (17)

with the boundary conditions

h3(0,4)=0,

and, ax— o,

o<u<1,

11 13

E3(X,M)=sn—7 e K(x—u), —1<u<O.

We write the set of equationd5a), (16), and (17) in
vector form:

dh 11 , , ,
pohoun =5 [ KGua hoode'. (18
Hereh is a vector with element&componentsh,, h,, and
hs, while K(u,u')=Ko+3cuu'K; is the kernel of Eq.
(18), with

equation
(7= w)®(7,p)=37[Kono(7) +3cuKiny(n)], (21)
where
1
nk(ﬂ):fil/*l“kq)(nuu“) dM’ kzovl' (22)

We seek a solution of Eqs21) and (22) for 7e
(—1,1) in the space of the generalized functich§z, u)
=F(n,u)ng(7n) (see Ref. 2], where

1 1
F(m.p)= ZWK(MW)P—M+A(7J)5(7J m). (23
HerePx ! denotes the principal value of the integrabof®,
S(x) is the Dirac delta function, and (z) is the dispersion
matrix function

Alg)— 1 (1 du
(z)—E+§zf K(,uz)lu 7’

whereE is the identity matrix, orA (z) =\(2)K(z%) + Ko,
with

0 —-4a O
K,=| 0 1 0],
0 0 O
1 (1 dr
Ne(2)=1+1z1(2), t(z)=§ Jil r—z;

N\c(2) is Case’s dispersion functioisee Ref. 22
According to Ref. 22, the dispersion functiafz) is the
determinant of the dispersion matrix function:

A (z)=detA(2)=2\2(2) w(2), (24)

We now turn to the solution of the boundary value prob-
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wherew(z)=1+3cZ?\(2). whose boundary values above and below the cut ff@rto

Using the argument principle from the theory of analytic 1) are related by the Sochozki—Plemelj formulas:
functions?® we see thats(z) has two real zeros 7,, where N I ’
according to Ref. 2, pp. 358-3597,=1+¢, with N7 () =N ()= i K(p%) Alw),
e~10"8. Expanding\ (z) in a series in the neighborhood of . -
the point at infinityz= 0, we see that this point is a zero of N"(x)+N (M)=J
order 4. Hence the discrete spectrum of the characteristic
equation, being the set of zeros of the dispersion function\We can also write similar formulas for the dispersion matrix
consists of a point of order 4 and the two poirdtsy,. There  function:
are six discrete solutions of E(L8) corresponding to these , .

@8 corresponding AT ()= A~ (@) =mipK (),

zeros:
1 0 AT () + AT (1) =2A(p).

Using these formulas, we reduce E@7) to the vector
Riemann—Hilbert boundary value problem

L™ (w)INT () +Aoh,; (0,u) +had O]
=L (w)[N"(u)+Ach, (0u)+hadOu)],  O0<u<l,

LK A T o< <1
, MK Alm) = p<l.

hM(x,u)=| 0|, h@(x,u)=| 0],
0 1

hD(x, )= (x— )12 (x, ), =34,

h. (x )_EiﬂoK(iMﬂo)exi_ X
=T T g * 7

Plugginghno(x,,u) into Eq. (18), we find that the vector

with the matrix coefficient

n(7,) satisfies the homogeneous equation G(u)=[L" ()7L ()
0 =K(u?) (AT () TPAT (K™ (1?),
A(mo)n(me)=| 0], (250  whereL(2)=K(z?) A(z) K~*(z?). We now have the prob-
0 lem of factoring the coefficient&(u):
G(pw)=X"(w[X (w)]™% 0<u<i, (30)

with A(7)=0. The vector equatiori25) is equivalent to
three scalar equation, from which we find that where X(z) is an unknown matrix function analytic in the
complexz plane with a cut along the segmdift,1]. Equa-

Aanot(70) tion (30) is the homogeneous problem corresponding to the
n(no)=| —Nc(70) |. inhomogeneous probletf29). The method of Eq(30) was
0 developed by the present authors in Ref. 17; here we simply

) write the solution:
Let us show that the solution of the boundary value

problem(18)—(20) can be expressed as an expansion in the U(z) 4a(U(2)-V(z)) O
eigenvectorgsolutionsg, X(z)=| O V(2) 0
1 [{ x) 0 0 U(z)
h(x,u)=Agh, (X, +fex ——|F(n,u)A(n) dy,
(X, ) =Aoh, (X, 1) . - (7,1) A(n) dn In this matrix,
26
(29 U(z)=zexp—u(2)),
whereA, is an unknown constar{talled the discrete spec- . q
trum coefficien}, andA(#) is an unknown vector function _1 fl B T _ +
(called the continuous spectrum coefficlerithe expansion u(z) 7 Jo L6(7) =] T—2' O(r)=arg A (7),

(26) satisfies the conditio20) automatically. Using condi-

tion (19), we obtain a singular integral equation with aand
Cauchy kernel: V(z)=zexp(—v(z2)),
1 (1 dn 11 dr
> JO UK(MU)A(W)m‘*‘A(M)A(M)"‘AOhnO(O,M) v(2)=— fo[s(r)—ﬂ']:, e(r)=argw (1),
0 where 6(7) ande(7) stand for the continuous branches of

27) the arguments of the functions’ (7) and w ™ (7), specified

+ =0 <u<l.
Nad O, o Oswsl by the conditions#(0)=0 and&e(0)=0. We establish the

0 asymptotic behavior of the functiond(z) andV(z) in the
We introduce the auxiliary vector function neighborhood of the point at infinity:
1 (1 dzy U(z)=z-U;+o0(1), |z]—;
N@=3 Jo 7Kz Al =7 @8 V(2)=2-Vi+0(1), |z]—.
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Here b o
1
1 (1 1 (1 X bz | +| Caf . (33
U1=_;j0[0(7)—7r]d7, Vl:_;fo[S(T)_Tf]dT 27 o bs C3

are the Laurent coefficients af * in the expansions dfl (z) The expression§32) and (33) suggest that the pole at point
andV(z) in the neighborhood of the point at infinity. Inte- 7, can be removed by a single vector condition

gration by parts transforms the formula 19y into the well-

known formula(4.21) of Ref. 2, p. 334: 0

1
> Ao 70K (776) N(720) + X(770)B=| O,

U _1 Jl dr 0
Y2 Jo(1- AU+ (71127
) ) ) ) which is equivalent to three scalar conditions:
Hence the asymptotic behavior of the matXXz) in the

neighborhood of the point at infinity is given by U(m0)b1+4a(U(70) —V(70))bs=2aneAo,
Ul 4C¥(U1_V1) 0 1
\Y b,=—=Ag7ng, bs=0.
X(z)=zE—| 0 Vi 0 [+0(1), |z—. (70)b2= =3 Aoo. b3
0 0 Us We use these equations to set up the veBtor
We now return to the solution of the inhomogeneous prob- Ao
lem (29). Using (30), we transform(29) into the problem of 1 70Ao
determining the analytic vector functidd(z) from a zero B= 2 V(7o)
jump: 0
[X* ()] HINT () +Ah,, (0,u) +had O)] The pole az=% can be removed by the conditions
=[X" ()] IN" () +Agh,, (0.u) + had Ou)], L L 15
c;=5K, Cc=2U——=, cC3=—%
(31) 1 2 2 3\/; 3 2

where O<u<1. Allowing for the behavior of the vectors Next we equate the constant terms in the expansions of the
and matrices in the problef81) and their asymptotic behav- general solution and the auxiliary functidi(z) introduced

ior at the point at infinity, we find the general solution of this by (28). This yields a set of three equations:

problem:

1
entzser=b;—cU;—4a(U;—V,)Cy, (39
N(2)=~had 0,2) = Agh,,(0,2) + X(2)| 5=~ +C|, T2 R
— 7o
(32 k[ 2A,(7) d lA b,+c,V (35)
= =— —A.— c,Vs,
whereB and C are arbitrary vectors with elemerits andc; 2 Jo 7" e 270 T2
(i=1,2,3).
The solution(32) has simple poles at the pointg and e — E’S — U 36)
z=o. On the other hand, the vector functidi(z) intro- no2°T &L

duced earlier in28) is analytic at the pointyy, and at the

point z= o its first (uppe) and third(lower) elements vanish To calculate the integral it85), we take the functiom,(2)

and its second element has a finite limit. To remove thesgom Eq.(28),
singularities we pass to the solvability conditions and em- 3c (1 dn
ploy the fact that the solutiof82) has constant parameters. Ny(2)= ?ZJ 7°Ax( 1) oy
To this end we write the solutio(82) in the explicit form 0 K
Ny(2) e+ e7/2+K2/2 so that the general solutigi33) yields
Ny(z) |=—| (2U—2K/3\m)z N U L Az ( b,
zZ)=— -—|z-z—— z Cy .
N3(Z) Sn_llﬁT/2+l3KZ/2 2( ) 3\/; 2 No—Z ( ) Z— "o 2
1 A —4damng From the Sochozki—Plemelj formula fal,(z) and the
_-_0 above equalities we find that
2 770_2
> [ rmaman=5 [ v m-v-im)
> 7 n)un=s5_— n)— n
U(z) 4a(U(2)-V(z)) O 2 Jo ' T? 2mi Jo
+| 0 V(2) 0 b, )dn
X +Cy|—
0 0 U(z) 7= 1o U]
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To calculate this integral we use contour integration, 4 (1 (o (=
with a complicated contour that encloses the [dfl] and poteXpméw)=—= f J J exp—&—w ?)
the point at infinity. Omitting the proof, we simply write Va J-1Jo Jo

3¢ (1, XK(u, & 0iu" & o)
7 o”A“’)d” X (X' & o)
N Xdu' d¢' do' (37
" 27TI j AN (77)] with boundary conditions
b,\ 1 vt e(0,u,é,w)=0, 0O<u<l, (38
+(c2— )27“ [viem—v-m it o
b b £ )= ond Xo g, £, 0) +0(1),  —1<u<O0.
=n—z<V<no>—no+vl>+(cz—n—i)w(owvl) PR E0)= fadXopts &) 0L #= a9
Here

b
:n—z(V(ﬂo)—ﬂo—V(O))+C(V(0)+V1)-

1o ’ 3 1t 2 2 2 7
K(u,é,0,1" & @ )=l Spip’E+ o ot

Plugging this into(35) yields

’ ’ 7
b, 1 X| €2 w2 E)
%(V(ﬂo)—V(O)HCzV(O):—EAo,
is the kernel of Eq(37), and
from which we get oK
‘Pas(xyﬂyfaw)zsn+8T(§2+w2_3)+ 2U__ /‘Lg
_ _ 2K 3\
Ap=—2CV(mp)=—2 2U_? V(7).
" FK(x=p) (£+ 0?=4)
so that is the asymptotic part of the distribution function.
Next we expand the functiop in three orthogonal di-
- __ _ Z_K rections:
bl_ 4C¥77002— 461’7]0 2U .
3w ;
=hy(X,u)+ Ehy(X, 1) + 2+2——>h ,
Combining Eqs(34) and (36), we find that e=h0xu)+ehy(x p) | 4w 2 3o
T @ad X, u, €, 0).
er=KU; ==+ 2U- 37 (Us=Vi+ 1), Here orthogonality is understood in the sense that the scalar
product
uo1 4 (1 e
T2t (f.9)=—= f f f expl — £2- 0?) £0? (1,£,)
Ja J-1Jo Jo
or, with the notationB=—2a(U,—V+ 79)/3, we obtain % dudéd
er=2UB+K(U;—28/3J7) and e,=2U(118/2)+K 9(m.&,0) dpdgdo

(—U,—118/3\7). Making use of the results of numerical is zero. Plugging the decomposition efinto Eq. (37), we
calculations, U;=0.71045 and/;=0.98340), we have the obtain the transport equations
final formulas for the jumps in temperature and concentra-

inal J
ton: p +hi=(Lhy) +4a(1hy), (40
e7=2U(—0.16330+K(0.77187, o,
£,=2U(—0.89815+K(—0.37263. iy +he=3ul2a( h)+ (' h) +a(p’ hs)
(41)
ohs 4
3. POLYATOMIC GAS m— - ths=z a(lhy)+(1hs), (42)

Now we examine the boundary value probl€h)—(12) where, as beforey=3 \/7/16.
for a polyatomic gas, i.e., we put=2 in these equations. The set of equation§40)—(42) can be simplified if we

We obtain a boundary value problem that entails solving theake advantage of two conservation laws, for the number of

transport equation molecules and the energy:
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TABLE I.
Monatomic Diatomic Polyatomic
Problem Coefficient gas gas gas
Smoluchowski c 0.79954 0.77187 0.76269
problem Cn —0.39863 —0.37263 —0.37092
Slow evapora- St —0.23687 —0.16330 —0.13888
tion problem Sh —0.82905 —0.89815 —0.90272
Here B=—4a(U;—V1+ n9)/7, and 7, is the zero of the
exp( — &%~ w?) £’ ¢(X, .6, 0) du d dw=0 i = 2 in taki
@ 0" e(X,p, 6 0) @ function w(7)=1+3cz°\;(2). Again taking advantage of
numerical calculations\(;=0.97915 andJ,;=0.71045), we
and write the final formulas for calculating the jumps in tempera-

ture and concentration:
f exp — £ — ) E0?(£+ 0?)
=2U(—0.13888+K(0.76269,
Xue(X,u,éw)dudédo=0. e ( B+ K( 9
Plugging the decomposition of the functigninto these re- &,=2U(—0.90273+K(—0.37092.
lationships, we obtain two equations, from which we find "
that (u',h))=—4a(u',hy) and (u',hs3)

= —(4Ma(u',h,). Hence Eq(41) simplifies: The results for diatomic and polyatomic gases are listed

in Table I. In the same table we also list the results for a
dhy , monatomic gas taken from our earlier papr.
oy Fhe=3cu(u’.hy), Note that in the Smoluchowski problem of the tempera-
ture jump, which is the most important problem from the
standpoint of applications, the boundary condition is usually
written™? in the formT,— T,=C+lA. Herel has the sense of
a mean free path, and various authors give different defini-
dhg tions of this quantity. Here we use the definition that in a
Mﬁ+h3:(l=h3)- monatomic gas coincides with Cercignani’s definitfon:
. ) ] =Prxmm/2kT where y is the thermal diffusivity, and Pr
The resulting set of transport equations can be written i the Prandtl number. Then at ©£2/3 we have Cr

wherec=1—-1357/448. We make a linear substitution simi-
lar to the one in the diatomic cade;— 7h;—hj. As a result,
instead of(42) we have the equation

vector form: =1.99885 for a monatomic gaS;=1.86763 for a diatomic
oh 1 (1 gas, andC;=1.82963 for a polyatomic gas. Clearly, when a
moe Thxu) =5 fﬁlK(M,M')h(X,M,) du’, (43  monatomic gas is replaced by a diatomic gas, the jump in

temperature decreases by 6.6 %, and when a diatomic gas is
whereh is a column vector with elements;, h,, andh,, replaced by a polyatomic gas, it decreases by 2 %. This de-
while K(u,u") is the same matrix as in Sec. 2. The bound-crease in the rate of variation of the jump in temperature is
ary conditions now assume the form related to the fact that when we replace a monatomic gas by
a diatomic gas, the number of degrees of freedom of the
h =—h <u<l 44 ' _
(O adOp), 0<p<1, (44) molecule changes by 67 %rom 3 to 5, and when a di-
0 atomic gas is replaced by a polyatomic gas, the number of
degrees of freedom of the molecules changes by only 20 %
=0 -
h(e=, ) ' 1=<p=0, (49 (from 5 to 6.
0 In conclusion, we note that in the present paper we have
where for the first used a consistent analytic approach to solve the
fundamental Smoluchowski problem for molecular gases
enter/2—K(x—p)/2 with differing numbers of atoms in a molecule, and have also
had X, ) = (2U—2K/3\m ) _ solved the slow evaporation problem. The two problems
&~ 1361/2— 15K (X — p)/2 have been examined in the same setting.

Formally, the problent43)—(45) is the same as problem
(18)—(20). Hence we can simply write the expressions for
the jumps in temperature and concentration:

er=2UB+ K(U1—25/3\/7_-r), _ This work was made possible by a_grant from the Rus-
sian Fund for Fundamental Reseal&hojects 96-15-96904
en=2U(13B8/2)+K(—U,—13B/3 7). and 97-01-00333
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This paper is a field theoretic description of the critical dynamics of spin systems with frozen
nonmagnetic impurities. For three-dimensional systems the dynamical critical exponent

is found directly by employing the three-loop approximation with the R&beel summation
technique. The results are compared with those obtained by calculating the dynamical

exponent for homogeneous systems in the four-loop approximation, and with the values obtained
by computer simulation of the critical dynamics by Monte Carlo methods. Calculations of

the dynamical exponent for the two-dimensional Ising model in the four-loop approximation are
also presented. €998 American Institute of Physids$1063-776198)01509-1

As is known, only for Ising magnetic materials do phasewhere¢(x,t) is then-componentorder paramet&f(x) is the
transitions in homogeneous spin systems change when rapetential of the random impurity field,~T—Tq:(p), with
domly distributed frozen nonmagnetic impurities are intro-To. the system’s critical temperature determined in the
duced into such systemsThe e-expansion method makes it mean-field theoryg, is a positive constant, and is the
possible to calculate the values of the critical exponents fonumber of dimensions of the system. We assume that the
dilute magnetic materiafHowever, the asymptotic conver- impurity potential is specified by a Gaussian distribution:
gence of thes-expansionseries in this case is even slower
than for homogeneous system$he renormalization group Py=Ay exp{ — (850)71f d¥x V2(x)
approach to the description of slightly disordered spin sys-

tems, applied directly to three-dimensional systems byynere A, is a normalization constant, angj is a positive

4’5 . - - . .. i . i .
Mayer et al,™ has made it possible to obtain static critical constant proportional to the impurity concentration and the
exponents in the four-loop approximation. However, no cal-sqyare of the impurity potential.

culations of equal accuracy exist for the description of the * The gynamical behavior of the system in the relaxation

dynamics of disordered systems, the reason being that thggime near the critical temperature can be described by the

computational load is extremely large even in the Iowesli_(.mge\,in transport equation for the order param@ter:

perturbation-theory orders.
The present paper is a field theoretic description of the (9_40_ “a ﬁ+ oh 5
critical dynamics of slightly disordered three-dimensional ot 98¢ ARNUL @

spin systems in the three-loop approximation. The adopted ) . ) .
model is a classical spin system with the nonmagnetic impuVNereXo is the transport coefficienty(x,t) is the Gaussian

rity atoms frozen at the lattice sites. The system Hamiltoniaff@ndom force, which is a measure of the effect of the heat
is reservoir and is specified by the distribution function

1 P =A ;{—m\ *1fdd dt |t
HZE; JipiP;S S, 7=A,exg —(4\) x dt P (x,t)

) . . with normalization constark,, , andh(t) is an external field
where S is ann-component spin variable}; are the cou-  thermodynamically conjugate to the order parameter. The
pling constants of the translation-invariant short-range fe”otemporal correlation functio(x,t) of the order parameter
magnetic interaction, ang; is a random variable described ¢5n pe found by solving Eq2) for ¢[ 5,h,V], with H[ ¢, V]
by the distribution function given by (1), averaging the result over the Gaussian random

N o B _ force n via P, and over the random potenti®l(x) of the
PP =pa(pi=1)+(1-p)dlpi) impurity field via Py,, and isolating the part of the solution
with p=1-c (here c is the concentration of the thatis linearinh(0),ie.,
nonmagnetic  impurity  atomis Thermodynamically

. . ; . é
this model is equivalent to the O(n)-symmetric G(X!t):—'<¢’(Xat)>imp|h=0-
Ginzburg—Landau—Wilson model, which has the Hamil- oh(0)
tonian where
_ a1 2 2 21, 90 4 1
Hle.V]= | d% 5[IVel*+roe™+ V)&l + 7 ¢, (1) (@(X,1))imp=B D{mD{V}e(x,t) P, Py,

1063-7761/98/87(9)/7/$15.00 527 © 1998 American Institute of Physics



528 JETP 87 (3), September 1998 Prudnikov et al.

B= f D{7D{V}P,Py. / ﬁ i}
1 2 3 4
Significant difficulties are encountered when the stan-
dard renormalization group method is applied to this dy- .-~ . W® 6 """" @)
namical model. However, as shown by De Domirfidisr i ZNY i
inhomogeneous systems in the absence of disorder intrc \e/
duced by impurities, in describing the critical dynamics the 5 6-8 9 10

model based on the Langevin equation is equivalent to th

standard Lagrange systBmith the Lagrangian [___Z g @, ﬁ ‘

19¢ oH
= d -1.2 1io* 11;12 1314 15 16
L fd th()\o o tip*- ()\0 Ty 5¢>],

where we have introduced the auxiliary fialdf. Here the ﬁf\ a‘ ,7&> -
correlation functionG(x,t) of the order parameter for a ho- U <= : /7 @

mogeneous system is given by

17 18 19 20

G(X,t)=<¢(0,0)¢>(x,t)>

:QflJ» D D{¢* 0,0)- (X, t)exp(—L[ ¢, * , o - - S _&\‘_

{€}D{e"}¢(0,0)-@(x,t)exp(~ L[ ¢,¢"]) 22 32 %

where . I

0- [ Diglnetjexn- Liget . - 29 W
A generalization of the given field theoretic approach and the=ss™ 220N ) ..,.z::..\_n__
details of applying such an approach to the critical dynamic: et = R
of disordered spin systems with frozen point impurities anc 3 34 35
extended defects are discussed in the context of th -~ L TN T
g-expansion in a paper by one of the present authors. b = - e L

Instead of examining the correlation function proper, it 3¢ 37 38 39

IS convenient to StUdy Its vertex part, which in the context OfFIG 1. Diagrammatic representation of the contributions to the vertex func-

the Feynman diagram approach can be written in the thregg,, I'®(k,w)=G"1(k,w) in the three- Ioop approximation. The solid lines

loop approximation as follows: correspond taGo(k,w) = (ro+k?—iw/\y) "1, the solid lines with a circle
correspond toCy(K,w)=2\"1((ry+ k2)2+(w/)\0)2)’1, a four-leg vertex

i X corresponds t@,, and an impurity four-leg vertex—( corresponds to
(2)(k,w;roago,5o,)\o):ro+k2_)\—0_450[)1 8o8(w). P o P ’ - P
n+2 ’ 4(n+2) )
8 —5 9D+ —5— 3 009D 3—1655(D4+ Ds)

TV (k,@;r,g, 8\, ) =Z™T ™ (K, 0;:r 9,90, 50,\o) (4)

2, D

8 2
7 (n+2)(n+8) 3( ) 2(n+2) with the renormalized coupling constamgsand 6, tempera-

= 9 turer, and transport coefficient:
16(n+2) Go=n*"92,9, So=u*"9Z46,
X9050( z D-) T 0 g 0 S
ro:ﬂzzrr, )\071: /.LZZ)\)\il, (5)
39
X o ( 2 D, —646%( 2 D 3) vyhere the scallng.pararr.\etﬁrls introduced so tha:tz)the guan-
i=32 tities reduce to dimensionless form. In Ed), I''“’ corre-

sponds to the reciprocal correlation function of the order pa-
rameterG(k, ), andI'® corresponds to the four-leg vertex
nctionsT{Y and T’ for the coupling constantg and 5,
spectively; the-factors can be found from the requirement
that the renormalized vertex functions be regular, which is
expressed in the normalization conditions

The diagrams corresponding to tBg are depicted in Fig. 1.
The Feynman diagrams contairdimensional integrals with f
respect to momenta and are characterized near the critic?i
point by an ultraviolet divergence at high momektavith

pole singularities. To remove these poles one usually em
ploys a dimensional regularization scheme, which involves
introducing renormalized quantitié® We define the renor- Iar@(k)
malized order parameter gs=Z"Y?¢,. Then the renormal- Z————
ized vertex functions have the generalized form ok

4 _
=1, 2T —o= 1",
k2=0
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TABLE I. Values of the derivatives of the diagrams depicted in Fig)l’:(%+til/)\)|k:0,m:0'
D1/J —1.000 000 DIPAN —-0.032279 D}, J3 —0.666 667
DMAL —-0.130768 Dy J° 0.061515 D,y J3 0.584 625
D4/J? —0.666 667 D¢ J° 0.004 666 D,y J3 —0.092 766
DAL —2.000 000 D;/J® —0.333557 D4y J3 —0.074 202
Di/J? —1.000 000 D;dJ° 0.042 034 D4,/ 33 —0.194 407
Dyl J® —-0.104 778 D;dJ° —2.053 736 D4,/ 38 —2.053736
D433 —-0.032835 [DJAVAN —2.053736 D4y J3 —2.053736
Dy/J° —0.032835 D,/ 33 —1.142 275 D3/ J3 —1.000 000
D4/ J® —-0.519431 D,/ J° —0.396 553 D4gJ3 0.666 667
DiyJ3 —-0.519431 D3y J® —1.142 275 D4gJ3 0.666 667
D /33 —0.276 601 DJAN —0.396 553 D433 —2.053736
D; 38 —0.468 697 D J° —0.396 553 D4gJ3 —0.074 202
Di4J3 —0.032 279 Dy J° 0.226 932 D4y J3 0.000 000
ar'?(k, o) S . S .
TP —o=p*""%, Z—— =2t (® z=3 c¢gd, z,=> digd, ®
' A—iw) |2, 4 i=o if=o

This regularization of the vertex functions can be carried outvhere the unknown expansion coefficieats, b;; , c;;, and

in the three-loop approximation. To this end we write thed;; can be expressed in terms Af;, B;;, C;;, andD;; via
values of the vertex functions in the normalization conditionsthe normalization conditions.

as follows: The next step in the field theoretic approach amounts to
determining the scaling functiong8y(g,9), Bs(9,9),
¥:(9,9), v,(9,9), and y,(g,d) that specify the renormal-

3
(4) = RN
Iy |ki:0 gOiJE:O Aij9o %0’ ization group differential equation for the vertex functions:

3 J N J N J J PN Jd m
I¥lo=0= 8 3 Byad a0, W Paag T Pags Mg TIAGT g Ve
ij=0
; XTM(K, w;r,g,8,\,u)=0.
(2
a = 2 Cijgoi S, For the discussion of the dynamical behavior that follows we
K> K2—o =0 will need only the functiong8y and 35 and the dynamical
5 scaling functiony, determined by the following relation-
o o ships:
FTRPYINY = 2 Dyjgo' 80, ()
=i/, o, 1150 dlngZ dlngz
' 4—d+ B, 2+ Bs 2=0,
where the coefficients are sums of the corresponding dia- 99 96

grams or their derivatives at zero external momenta and fre-

: ) . , dln 6Z aln6Zg
quencies. For instance, the numerical values of the deriva- 4—d+ gy =

5 )
tives of the diagram¢Fig. 1), 7 70
dinz dinz
o= P N=Byg t By ©
e |, J

The explicit form of the functiong, and 8,5 in the four-loop

which comprise the coefficients;; and are obtained as a rgpresentation was obtained by Majesho introduced the
result of applying the calculation method adopted in Ref. 1lcoupling constants and u, related tog and & by v=(n

are listed in Table I, where +8)Jg/6 andu=—16J45. Next we specify the functiong
and vy, :

dq Sy (d d
JZJTN:?F E r 2—5 3 3
(q ) ’BUZU-ZO Bi(jv)vlu]’ ’BUZU-ZO ﬂi(jU)UIUJ!
is the one-loop integral witlsy=279%/(27)T (d/2); T'(x) b= hi=

is the gamma function. We write the expansiorygf &y, Z, 3 o
andz, in powers of the renormalization coupling constamts yxz__z yijo'ul; (10)
and s, =0
3 3 the values of the expansion coefficients for a three-
9029,2 aijgiéj’ 50:5‘2 bijgi5j' dimensional Isiljg modglr(=1) are listed in Tablg II. The
i7=0 ij=0 nature of the critical point for each value nfandd is fully
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TABLE II. Values of the coefficients in the expressions for the scaling M N K L -1
functions. [M,N/K,L]=2 D ao'ul| > D bppPud] .
o i=0j=0 p=0 4=0

(i.)) Bi(,uj) ﬂi(,vj) Vi

The resulting expansion foy, (v,u) in powers ofv andu in

E(l)'g; _11 31/2 70025 the three-loop approximation allows using approximants of
(0:1) 2/3 1 0 the form[1,1/1,1] and[2,2/1,1]. Application of the approxi-
(2,0) —95/216 —185/216 0.053 240 mants[ 1,1/1,7 corresponds to the description of the critical
(1,1) —50/81 —104/81 0.030 862 dynamics of disordered magnetic materials in the two-loop
(0.2) —92/729 —308/729 0.008 400 approximation’> and yields a dynamical exponerz2)
(30) 0.389 922 0.916 667 —004999% =2.169849. Using the approximart®,2/1,1] makes it pos-
(2,1) 0.857 363 2.132996 —0.152 964 . . - T
(1.2) 0.467 388 1.478 058 0,044 167 sible to obtain the exponeatin the form
(0,3) 0.090 448 0.351 069 —0.012 642
au B-1 ) )
z=2+ 74— 7 (Ut aguv + ay4v°)
. . . . 2B2—B+1 1
specified by the stable fixed point{,u*) for the coupling + ————(agu?v+ aguv?) — = | ayu+ = (ayu?
constants, which is fixed by the requirement that the func- B B B
tions B8 vanish, i.e., 1
B,(v* ,u*)=0, By(v*,u*)=0. + aguv + amv?) + E(a5u2v + aguv?) | JFo(1,18),
The order of the quantities* andu* is 4—d, so that the (13

€xpansion seres o andq for the scaling functions are where,Fy(1,1,8) is the confluent hypergeometric function,
asymptotically convergent fl= 3. and

These series are normally summed using the the Pade
Borel method> Numerical analysis of the equations for de- Y20  Y1.0Y30
termining the fixed points and of the stability conditons ~ %17 Y10:  *27 757 T3 T
shows that in contrast to the-expansion of Khmel'nitskf '
and Jayaprakash and Katfor d=3 there is no accidental _Y11 7Yo1Y03 _Yo.2
degeneracy of the fixed pointsat 1. Only two of the four R 3v02 =
fixed points are of interest here: the fixed point for homoge-
neous systemspf #0,u* =0), and the impurity fixed point Y21 Y11¥30_ Y20Y03

dg=—"—— H
(v*#0,u* #0), which specifies new critical properties of > 6 6v20 6702
disordered systems. The impurity fixed point is stable only if
n=1, while forn=2 the presence of disorder related to the o =212 Y11Y03 702¥30
presence of frozen-in impurities is unimportant for critical 6 6702 6720
behavior. The impurity fixed point for the three-dimensional
- . . S _ 730 Y03
Ising model in the three-loop approximation is givenddy B=pBu+tpBv, B1=-— 3y 2= "3
=2.256938 andi* = —0.728168. Y20 Yoz

By plugging the values of the coupling constants at the  Using the values of the coupling constants at the impu-
fixed point into the scaling functiory, (v,u) we can deter- rity fixed point,v* =2.256938 andi* = —0.728168, we ob-
mine the dynamical critical exponent which is the measure tain a dynamical exponent

of the critical retardation of relaxation processes, 3)
Zimp= 2.1653109. (14)

— * *
Z=2+y\(vT,uT). 1D The fact that the difference in the valueszgf,, calculated in

However, the expansion of, (v*,u*) in powers ofv* and the three- and two-loop approximations is small suggests that
u* atd=3 is asymptotically convergent at best, and sum-allowing for higher-order corrections can lead only to negli-
ming the series directly does not yield reasonable values. T8ible changes in this value. At the same time, the calcula-
sum the series one can employ the generalized Fdesl ~ tions in Ref. 13 using ar-expansion in the two-loop ap-
method, which amounts to applying the Borel transformatiorProximation yieldedz{?)=2.336, which justifies the use of

to the series the renormalization group procedure in describing the critical
behavior of dilute magnetic material for the case where
N d=3.
= viui= -t
7a(v,u) ,EJ: vijvd JO e Th(vt,undt, To establish the effect of impurities on dynamical criti-

cal behavior we must compare the valueg édr disordered
and homogeneous systems. As is knd\fluctuation correc-
tions to the mean-field value of the dynamical exponent
z®=2 emerge in homogeneous systems only in the two-
and using the PadeChisholm approximants loop approximation, while in disordered systems the dynami-

_ Yij i
DAY= 20 Gy XY™ (12)
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TABLE Ill. Values of the coefficients in the expressions for the vertex

= 9 0B 0w @ S

Coefficient d=3 d=2
: e w OSSO D
A, 1.222 2222 1.375 0699
As ~1.705 3479 ~2.305 4548 ﬁﬁz/ \9'/ %*_"16/ D
B, 0.005 4869 0.008 4916
B, —0.007 0112 —0.011 6591 m m
Bs 0.010 1430 0.017 9966 \e_/ N
C, 0.009 6865 0.015 2547 o7 2426 270
C, —0.012 6257 —0.021 3740
Cs 0.016 9420 0.035 2450 @ @ @
32-34 37-38

cal effects of scattering of magnetization fluctuations by im- @ @ @ @ @
purities show up by the first-order approximation.

The effectiveness of summation methods for asymptoti- 3940 42-44 46-48

Ca”y convergent series is Iargely determined by the numbel’—:IG 2. Four-loop diagrams contributing to the vertex funcid®(k, ).
of known terms in the series. Therefore, when the summation

methods are applied to the dynamical scaling function, the

accuracy of the three-loop approximation for the exporzent

of a disordered system can only correspond to the four-|ooﬂﬁserting the values of the coefficients listed in Table Il for
approximation fozin a homogeneous spin system. With this d=3 andn=1, we obtain

mind, we calculated_ the d_ynamica_tl critical exponent for ho- ¥,(v)=0.0083992—0.0000453+0.020423%.  (18)
mogeneous three-dimensional spin systems in the four-loop )

approximation. The expressions for the vertex functions infn accordance with Ref. 12,

(7) for homogeneous systems become much simpler, and i, )= — +y2—0.42249%3+0.351069 “— 0.3765275.

the four-loop approximation assume the form (19
r |ki:0=v0+Alvo+szo+A3vo, To calculate the values of the coupling constat at
the fixed point and the dynamical critical exponemtwe
or® 5 5 . used the PadeBorel summation method with the approxi-
K2 =1+Byvot+BavgtBsvo, mants[4/1] and[3/1], respectively. As a result, foil=3
k?=0 andn=1 we obtained
or@ _ (4)
i =1+ Cyv3+Cood+ Cavl, (15 0" =1.4299, Zpe=2.017,
k=0w=0 Comparison of the results revealed a significant difference

wherevy=(n+8)Jgy/6. The values of the coefficients at between the values of the dynamical exporefdr the ho-
n=1 are listed in Table Ill. The four-loop diagrams that mogeneous and disordered Ising models. This makes it pos-
producezx the coefficie; are shown in Fig. 2. Carrying sible to study the effect of impurities on the dynamical criti-
out the calculations, these diagrams split into 4@-fdld cal behavior in a real physical experiment and via Monte
integrals, whose numerical values are listed in Table IV. TaCarlo simulation.
describe the dynamical behavior we require only the func-  Let us compare our value of the dynamical expom%.ﬁt
tions B(v) and vy, (v): with computer simulations of the dynamical critical behavior
of a disordered Ising modéf°In Refs. 14 and 15, critical
dInZyv dIn ZA o . . )
magnetization relaxation was numerically simulated for a
system with dimensions of 4g&nd impurity concentrations
(18 g4<p=1. Janetall” combined the Monte Carlo method
The explicit form of the first function in the six-loop with the dynamical renormalization group method to deter-
approximation was obtained by Baket all?> By consis- mine the dynamical critical exponert The following val-
tently applying the above field theoretic approach, we weraies of the critical exponent were obtained for the homoge-
able to derive an expression for the dynamical scaling funcneous system and two slightly disordered systems with

Bw)=—(4—d)|————| , n(v)=B()

tion y,(v) in the four-loop approximation: =0.95 and 0.8:
vw(v)=—(4-d)v[2(B;—C4)+(3B,—3C,—4A;B; 2(1.0=1.97+0.08, z(0.95=2.19+0.07,
+4A,Cq)v+(4B3—4C3—9A,B,+9A,C, 2(0.8)=2.20+0.08,
+10A§51_10A§01_4A2|31+4A2C1 which are in good agreement with the numerical results.

. , Heuef® obtained the values afby analyzing the asymptotic
—8B;D;+6B1—2C7)v”]. (A7) properties of the dynamical autocorrelation function for a
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TABLE IV. Values of four-loop diagrams.

No. d=3 d=2 No.  d=3 d=2 No.  d=3 d=2

1 0104869 0165307 17 0001108 0004131 33 0002527  0.007 463
2 0004166 0009670 18  0.000923 0003307 34  0.014580  0.029449
3 0008180 0022921 19 0000932 0.003343 35 0039776 0.070254
4 0029674 0059714 20 0019410 0034609 36  0.002378  0.006421
5 0003264 0003943 21 0019189 0034135 37 0004691  0.012723
6 0015354 0010076 22 0004177 0011294 38 0003820  0.007 370
7 0014330 0028777 23 0001928 0004644 39 0011650 0.027311
8 0011627 0016314 24 0000706 0005891 40  0.005377  0.013297
9  -0002506 —0.006853 25 0003421 0010167 41  0.003981  0.007 464
10 0000823 0002744 26 0000862 0003535 42  0.003314  0.010303
11 0003444 0009238 27  0.000551 0002471 43  0.009470  0.023519
12 0003745 0010685 28 0.003898 0011209 44  0.003866 0.010905
13 -0004883 —0012280 29 0001077 0003405 45 0.023730  0.038420
14  -0004883 -0.012280 30 0003815 0011007 46  0.033485 0.062921
15 0007527 00171805 31 0007379 0012666 47  0.007121  0.021633
16 —0005471 -0014199 32 0004177 0009667 48  0.004760  0.011691

system that is in a state of equilibrium and exhibits strongperimental work in which the dynamical critical behavior of
magnetization fluctuations. For instance, it was found that slightly diluted Ising-like magnetic materials is studied.

2(1.0)= 2,095+ 0.008 _ The_ crltlca_l dynamlcs_ of a sllghtl_y dlsordered two-
dimensional Ising model in the relaxation regime does not
for the homogeneous system differ from the dynamics of the homogeneous mddeAn
2(0.95=2.16+0.01, 2(0.9)=2.232+0.004, anaIyS|s of the critical dynamics of the two-dimensional
Ising models shows that the valuesspan a broad range:
2(0.8)=2.38+0.01, 2.08<z=<2.24. For instancez=2.14+0.02 (Ref. 18, 2.13

+0.03 (Ref. 19, 2.076+0.005 (Ref. 20, 2.24+0.04 (Ref.
21), 2.24+0.07 (Ref. 22, and 2.16-0.04 (Ref. 23 in com-
2(0.6)=2.93+0.03 puter simulation;z=2.126 (Ref. 24 in the field theoretic
for a system withp=0.6. Believing that the fixed point of &PProach in the two-loop approximation with the interpola-
the critical behavior of a slightly disordered system, which ision Of the results of the % &- and 4-e-expansions; and

independent of the impurity concentration, is also such a 2-183=0.005(Ref. 23 in the same approach with interpo-

point for any impurity concentration, Hedérestimated the lation of the results of the hlg_h—temperature expansion.
asymptotic value of the dynamical exponento be 2.4 We calculated the dynamical exponerfor a homoge-
+0.1. The value of for a homogeneous system obtained byN€0US two-dimensional Ising model in the four-loop approxi-
Heuet® differs drastically from the results of the field theo- mation in the context of the fleld.theoret'lc approach. The
retic approach, while for a system with=0.95 the agree- corresponding values qf the coefficients in the expressions
ment is unexpectedly good. Our view on the universality 0f(15) for the_vertex functions and _the ngmerlcal values o_f the
the critical behavior of disordered systems has been eXf_our-loop diagrams for the two-dlmen5|_onal model are Il_sted
plained in Refs. 14 and 15, where we proposed separatin'é‘ Table_s Il and IV. As a result we arrived at the following
the universal critical behavior of slightly disordered systemgSxPressions for the scaling functions:
from that of highly disordered systems and hypothesized that
the critical exponents of three-dimensional disordered sys-
tems exhibit stepped universality. _ 2 3 4
The predictions of the theory concerning the effect of ~ A(v)=—v+v°~0.716174"+0.930766
impurities on the dynamical critical behavior of magnetic —1.5823885. (20)
materials (a higher value ofz,,(d=3) compared to the
value ofz,,{d=23)) can be corroborated by several experi- Summing by the PadeBorel method, we found the values of
mental methods: inelastic neutron scatteritise linewidth  the coupling constani* at the fixed point and of:
w,*|T—T|* at q=0 and w,xq* at T=T;), EPR and
NMR (the resonance linewidthA woc|T—T[(d=2F 727, v*=1.8836, z¥(d=2)=2.093.
where 7 is the Fisher exponentmeasurements of the dy-
namic susceptibility in an external high-frequency magnetidVe see that the exponenis at the lower edge of the range
field (y(w)*xw~ ""? at T=T,, wherey is the susceptibility mentioned earlier. The adopted procedure of calculating the
exponen), and ultrasound measuremefiise sound absorp- exponents is assumed to be the most accurate, so that we
tion coefficient a(w)x|T—T, ("2 w?g(w/|T—T,?)  expect the calculated values to be the benchmarks for com-
and the acoustic dispersion C%(w—C2(0)x|T puter simulations of homogeneous systems and to be used in
— T~ (!/|T—T¢*)). Unfortunately, we know of no ex- developing simulation methods for disordered systems.

for slightly disordered systems, and

v\ (v)=0.0270532—0.004184 3+ 0.0221304,
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It is shown thatd-symmetry superconductivity due to valence bond correlations is possible.
Valence bond correlations are compatible with antiferromagnetic spin order. In order to explictly
construct a homogeneous state with the valence bond structure in the two-dimensional

Hubbard model for an arbitrary doping, we have used the variational method based on unitary
local transformation. Attraction between holes in thehannel is due to modulation of

hopping by the site population in course of the valence bond formation, and corresponding
parameters have been calculated variationally. An important factor for the gap width is the increase
in the density of states on the Fermi level due to antiferromagnetic splitting of the band.

The gap width and its ratio to thé. are 2A=0.1t and 2A/kT.,=4.5-4 forU/t=8. The
correspondence between the theoretical phase diagram and experimental data is discussed.

The dependence df. on the dopingé=|n—1| and the Fermi surface shape are highly sensitive

to the weak interactiot’ leading to diagonal hoppings. In the caset'of 0 andp-doping,

the peak on the curve df.(5) occurs at the doping,,;, when the energy of the flattest part of

the lower Hubbard subband crosses the Fermi levkrat,0). In underdoped samples

with 6<J,;, the anisotropic pseudogap in the normal state corresponds to the energy difference
|E(7r,0)— u| between this part of the spectrum and the Fermi level.

© 1998 American Institute of Physids$1063-776(98)01609-§

1. INTRODUCTION

H=—t >, (cl,CmetH.C)+> Unyn,,. 1)
In recent years, a lot of useful information about electron (nm),o A
spectra of high-temperature superconduct@id SC) has
been obtained through high-resolution angle-resolved photdts adequacy to the electronic structure of the guitane
emission spectroscopy(ARPES,Lz neutron scattering and its basic parameters have been established with a fair
experiment$, and phase-sensitive measureméritShe lat-  degree of certainty'®

est results are concerned with the discovery of the “small” ~ The states of resonant valence bo(R¥B), which were
Fermi surfacéand anisotropic pseudogap in excitation specintroduced by Andersotf,*” implied that the system con-
tra of “underdoped” HTSC in the normal stafé€.The ap- figuration was compo;ed of si.nglet components of states
proach based on the energy band model, which is a naturiyfith two particles localized at sites connected by a valence

8-20 \,npinti -
language for describing these experiments, should necess h_mlj—i IE)&l:‘)ted vdarllatlohr)a:] functfnsb w%re colnstructe? for
ily take into account all types of correlations whose role ist e Hubbard model, which are the band analogues of states

expected to be significant, as indicated by analysis in théNIth a structure °§ periodic d'meTS and hgmogeneous states
A o . . . of valence bond€ In these solutions, unlike RVB, forma-
localized limitU —oo or numerical calculations in the model . . -
tion of singlet states leads to changes in the charge states of
of small clusters. .
: S N : sites connected by the bonds. Some features of such state
The aim of all theoretical investigations is to answer the

) : h hether th ._have also been investigated, such as their compatibility with
most Important questions, such as whether the attraCtIOQntiferromagnetism, the spectrum of hole-like excitations

among charge carriers and pairing mechanism are controlle&hd its impact on photoemission spectra, etc. The problem of

by correlations, and what is the role of antiferromagneticiye syperconducting ordering has not been addressed. Mean-
correlations and valence bond correlati8n¥ The idea that while, the method of unitary local transformatichi€® un-

the superconducting pairing is controlled by correlation wagjye nonunitary transformations, such as the Gutzwiller
put forth and developed by Zaitsé¥. ansatZ! allows one not only to construct a correlated func-
The aim of the present work is to investigate these question, but also to derive an explicit expression for the effective
tions using a variational approach and a representation of gamiltonian, and hence to check whether a superconducting
correlated state in an explicit form. We hope to elucidate theyrdering of thedy2_,2 symmetry is feasible. A lot of experi-
role of specific types of correlations, in particular, those ofments using various techniqd®shave indicated that this
the valence bond type. Our analysis is based on the classggmmetry really takes place in some cuprates
model of strongly correlated systems, namely, the HubbardYBa,Cu;0;_5, Bi,Sr,CaCyOg, 5). For this reason and
two-dimensional model: because the one-site repulsion suppresses-$enmetry or-

1063-7761/98/87(9)/12/$15.00 534 © 1998 American Institute of Physics
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dering but does not affed-symmetry correlations, we will
consider only the latter type of symmetry.

Ovchinnikov et al. 535

tonian in all orders ine. We can, however, find an exact
expression foH(a) in terms of Fermi operators to within

The attraction between holes is often associated witherms~ 2

correlated (or modulated hopping interactions, first de-
scribed by Hirsch? In contrast to this mod& and similar
interactions in the —J model!? in this paper the form and

amplitude of such interactions are determined using a varia-
tional method by solving an appropriate self-consistent

problem.

2. CONSTRUCTION OF A HOMOGENEOUS VALENCE
BOND STATE AND SELF-CONSISTENT SOLUTION OF
THE PROBLEM

A wave function¥ with valence bond correlations is
derived from the functio of the uncorrelated state using a
unitary transformation:

_E Zom-

(nm)

The local anti-Hermitian operatdZ,,,, acting on the bond
(nm) of neighboring sites is defined by the formula

_rnt t
an_ [gnm,agnm,—gunm,—ounm,o_ H-C-]

T=W(a)®, W(a)=expaZ), Z 2

1o
E_EEU‘J JnmoAnm,fzra (3)
jnma:CnoCma_C;laCna- Anm,fzr:nnfcr_nmﬂrv
Cn(ricm(r
gnm,o(unm,a): T (4)

Here g andu denote the even and odd combinations of or-
bitals of neighboring centers. The operaiyy, acts only on

singlet components with two particles at neighboring sites in

the full wave functiond. It includes various configurations
of singlet pairs of neighboring sites, similarly to the RVB
state® But in our model, unlike the RVB, the charges of
sites connected by a bond are chandedtimized. The

transformation(2) may be expected to be effective because,

a’2
H(a)~H+a[H,Z]+ 7[[H,Z],Z]

a2

=HO+ oHD + ?H(z), (6)
and derive a self-consistent solution of the new problem in
the mean-field approximation. Unlike the case of an isolated
dimer in a 2D lattice, each site is involved in four bonds.
Therefore, as will be shown below, the optimalin the
transformation remains small even for largét («=<0.22
for U/t<8), which enables us to use the expansiéh In
addition to the smallness ef, there is another circumstance
which justifies the use of the Hamiltonid6) which is sec-
ond order ina. Specifically, the optimalkx depends largely
on U/t and changes little with doping. This means that for
fixed @ Hamiltonian(6) can be treated as a rough approxi-
mation, or, if you will, as an empirical Hamiltonian for a
new model, which may provide better understanding of the
real situation. The full expression fét(«) is rather lengthy.

Let us analyze in greater detail the contributidf®) to
the effective Hamiltoniait6) which is of first order inx. It is
expressed in terms of fermion operators as

HY=[H,Z]=H{'+ T, @)
U
H(Ul):_§ 2 thme ﬁm,—u! ®
(nm),o
TW=t > [[AnmUAnm,_U+jnmajnm,_U]
(nm),o
+ 2 A(n,m,m;,o)
m; e (mm)
+ E A(m,n,ni,a)). (9)
n; e (nn;)

in the case of two sites with two holes localized on them, the

wave function¥ (nm) =exp(aZ,,)®, which is derived from
the uncorrelated functiorlf=|g}rglr> (for t<0), is an exact
singlet function of the system for optimala=
—0.5tan Y(U/4t).

Since the transformation in EQ) is unitary, the initial
Hubbard Hamiltonian in the basis of correlated statess
exactly equivalent to the transformed Hamiltonian

H(a)=W'(a)HW(a) (5)

in the basis of functionsb. The variational parameter in

In the last two three-site terms we hamg+#n and n;#m,
respectively. The operatojs,, andA ., are defined in Eq.
(4), and the operatorA andt, ., are defined by the expres-
sions

1 o
[tnmiaAmn]fo_l'Jnma-Jnmifo]a (10)

A(n,m,m;,o)=— 5

thme=(Cl Cmo+ H.C.). (12)

The term in Eq(6) which is second order is contains

W(«) is, in essence, an order parameter for the structure afontributions from two, three, and four sites. Its exact ex-

valence bonds. By analyzing the new probléf in the

mean-field approximation, one can investigate states with

correlations of this type for an arbitrary doping.

Unlike the periodic structures of valence bonds with iso-
lated dimers discussed abo¥ein the case of a homoge-
neous staté2) the local operatorZ,,,, do not commute each

pression is given in the AppendiEgs.(32)—(40)].

Let us investigate the most general class of uncorrelated
BCS states with anomalous averages ofdrymmetry and

a double magnetic unit cell in order to test the possibility of
the antiferromagnetic spin ordering adg._,2-type super-
conducting ordering. For a functiod of this general

other. Therefore we cannot determine the effective Hamilform and an effective Hamiltoniai5), the mean energy
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ﬁ(yi):<qf|-|qf>=<q)ﬁ<p> is calculated exactly. This is a contribution of the termaH® of first order in« to the
function of the following one-electron normal and anoma-e€ffective Hamiltonian[Egs. (7)—(9)]. The calculation indi-

lous averages with respect @:

it =1{ro.r1,r 2.r2.r 5.,r3,do,d z,do, Wy, Wy, W 5, Wa}i,

(12
where
1
I'|=§ Z <Cl()'cn+|,0'>’ (13)
_1 9 n/~t
d|—§ ; m(_l) <Cno'cn+|,0'>’ (14
1 g
lei ; HSIQH(I)Z(_|)2/)<CEUCE+I,U'>:Wrc : (15)

Let us take into account all symmetry types of the studied

cates that terms with anomalous averages are absent in
(aT®), This is quite natural because neither the transforma-
tion W(a) nor the superconducting ordering can lower the
energy of noninteracting particles. But the averaﬁgHE,”)

is a function of anomalous order parameters. Specifically,
expression8) for the operatoH E}) contains terms like

T T
Cn(rCmrr(nn,f(r—i_ nm,fo) - 2Cn(rcm(rnr'l,7(rnm,7(r . (19)

These terms describe versions of the correlated hopping in-
teraction modulated by the populations of the lattice sites.
The first term in Eq.(19) has the form of the interaction
suggested by Hirsctf. The term with anomalous averages of
this operator is zero,

<Cna'cma(nn,fo'+ an,U)> = 2W0W|(r?)fm\ ’

state, namely the translational symmetry, the invariance witlsince the stype superconductivity is forbidden wg
respect to reflection— —x or y— —vy, the equivalence be- :<C;TC31>ZO)' The occurrence of agsymmetry supercon-

tween the odd and even sublattices wlsen — o. Thus, the
parameters defined by Eq43)—(15) are real, in additiom ,
di, and|w| are functions offl| only; w,=0 atl,=*I;
d;=0 for oddl,+1, . According to Eq(15), only the sign in
front of w, depends on the direction &f Any 2n-fermion

operator averaged oveap is exactly expressed in terms of

the one-electron averages, d;, andw;.

ducting ordering {y# 0) in the desired staté would in-
crease the energy lyH= UW(Z) per lattice site. The contri-
bution of d-symmetry anomalous parameters is due to
operators like the second term in E@.9). This decisive
contribution is defined explicitly by Eq18). In reality, we
have used in our calculations the exact expres&ién-(47)

for the contribution of anomalous averages to the mean

In calculating the mean energy, we took only terms of tOenergy.

the second order in the anomalous averageby virtue of

the smallness of botfi, and superconducting gap in com-
parison with the total band width-t and the antiferromag-
netic gap~Ud,. As a result, the energy averaged over the
most general uncorrelated state taking into acount the doub

magnetic cell and anomalous averages ofdigymmetry is
expressed in terms of one-electron averad®s. The mean
energy per site is

H(y)) =22(r; ,di) +.725%w; ,r; ,dy), (16)
(r,dp)={U(r3—d3)—8tr} + a{—8r,U[ro(1—ry)

+d3+r2]+ 16t d3+2dod 5+ dod) 1}

1
n 5“2{%847(2)}' 17

7/5(:: E kIjWIWJ = — 8CYU|'1Wi+ azz |(|(2)WIWJ .
ij 1]

j
(18

Here we have shown explicitly only the terms of zeroth and

first orders ina. The expressions forz(?) and.7(®, which
are of second order i, and a full expression fopz S¢ are
given in Egs.(42), (44), and (45—(47) in Appendix. All

The presence of the term linear énin H indicates that

a minimum ofﬁ(a) corresponds to a nonzero value ®f
We can determine signs of some parameterd o0 in Eq.

Q.) using Egs(16)—(18):

tl’1>0, r1>0, ar1>0, CY>O, k112—80zr1U<0.

(20)

Thus, the requirement that the energy should be lowered as a
result of formation of valence bonds determines the sign of
the transformation parameter, which gives rise to the minus
sign in front of the main constark;; in the d-symmetry
superconducting ordering in E(L8), hence implies the pos-
sibility of d-symmetry superconductivity.

The one-determinant uncorrelated functidn which
minimizes the energ\H — uN is a product of one-particle
eigenfunctionsy/, , of the linearized Hamiltonian

oH
LZE

v Yy

n

<9V—yv>+ﬁ<yi>=§ Fhe+const.  (21)

Operatorsy; , which correspond to the averagegEgs.
(12—(15)] are given by

- 1
+
M= Cc, . C ,
| 2n| I,Eo' n,o~n+l,o

arguments irH are given in(12). One can easily check that
H is invariant with respect to each of replacements (

— 6 o—I,t——t), ordj——d,, or wy— —w, taken sepa- a,=i2 (_1)niCT Crs |
rately. The first of these corresponds to the electron—hole 2n 1= o] e
symmetry of the Hubbard model. 1
It is worthwhile to discuss in detail the origin of the N ; 2 2y % ot ot
W =— sign(l5—15)—[¢py ,Crns —,TH.C]. (22
terms with anomalous averages in H@8). Consider the '"an, ;r andlx y)|<f|[ ol e 1. (22
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Heren, is the number of all vectorsof lengthl=|l|, over
which the sum is performed.

As a result, the linearized Hamiltonig@1) in the mo-
mentum operator basis

blj={ck .Cf Couy Clys I=L...4 k=(mm)+k,
(23
is expressed as

4

HL:ZF ﬁk+C0nSt, ﬁk: E LIJbLka .
X i1

(24

Here we have sét=k-+ (1, 7), and the superscrift on the
summation sign indicates that the sum okes performed
inside the magnetic Brillouin zonf,+ k| <. The matrix
Li; is defined by the formula

Ek_,LL Ak Wk O
L Ay & u 0 W )
L w 0 —(ex— ) Ay (29
0 Wi Ay —(€g—m)
1« oH 1« oH
=5 2 7000, A= 2 Sraik),
1« oH
Wy=5 El w10 (26)

In the sums ovel for ¢, A, andW,, the subscript runs
through allr,, ord,, orw, of the full set(12) of one-electron
averages, which determirté. Equations(25) and (26) in-

clude the following notations:

1
gi(k) = o 2| cosk,l cosk, !y,

1
aqi(k)= n 2| sign(17—17)cosk,l cosk,l,, . (27)

Heren, is the number of all vectorkof lengthl=|l|, over
which the sum is performed in E¢27), and the functions
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1
dlzm P 91(K)[Ug2+ U+ Usggt Uy,
X

1 -
WI=5N Ek:': [a1(K) (U3t Usz) +0i(K)(Uzst Uy ],
(29

Ujj=2 SESufe(/ /KT,

and f(x) are Fermi distribution functiongg andq are de-
fined in Eq.(27).

The self-consistent procedure described above mini-
mizes the energy with respectda. Then minimization with
respect tax yields the desired variational correlated st@e
and the optimal effective Hamiltonia(6) in the basis on
uncorrelated states. Self-consistent calculations of two types,
which were matched to one another, were performed: the
complete calculation involving all normal and anomalous av-
erages, which yielded the superconducting gag(®J,4,T)
for states of valence bonds with both the antiferromagnetic
and superconducting orderingF + VB + SO), and the
calculation of the critical temperaturé.(U,5) based on
equations linear inv; using similar state¢AF + VB) with-
out anomalous averages. In the latter case, the critical tem-
perature of the superconducting transition was obtained us-
ing the standard equations of the perturbation theory in terms
of incipient anomalous order parameters:

Det|Dij_5ij|:0, Dij=8wi/¢9Wj|W|:0. (30)

The matrixD;; was calculated using Eq@t8) and(49) given
in Appendix.

An independent test of the procedice the basis for an
alternative iteration procedureis the relationship a=
—H®(y,)/H®)(y;) between the optimal parameter and
the averages of the contributions to the effective Hamiltonian
(6) with self-consistent values of,. The coincidence of all
physical parameters for equal levelsmpfandn-doping was
also checked. In the presence of antiferromagnetic ordering
(dp#0), the results of numerical diagonalization of matrix
(28) and the approximate solution f&; [Eq. (52) in Appen-

defined by Eq(27) have the following symmetry properties: dix] coincide. This means that states of only the lowgs-

gk =(—1)x"g(k), ak)=(—1)x"q (k).

The one-electron eigenfunctiong,, and spectrum

pen Hubbard subband participate to any great extent in su-
perconducting pairing in the case p{n)-doping.

#,(K) of the linearized Hamiltonian are calculated by diago-3. piISCUSSION OF RESULTS

nalizing the matrix(25):

xlﬁEj biSin 2 LiiSiA=Sia%ns (28)

The regionU/t<9 studied in the present work is limited
by the condition that the optimal parameter should be
small. The description of the CyOplane based on the
single-band Hubbard model suggests tHat~8.2*%°In this

for eachk within the magnetic Brillouin zone. Given the region, valence bond correlations actually lead to a lower
eigenfunctions and spectrum, we can complete the selfsystem energy and the homogeneous state of valence bonds
consistent procedure, i.e., calculate the desired avergges is lower than the similar state with a periodic dimer structure,

=(y;)¢ by the formulas

1o, .
"=2N ; [9i1(K)(U11+1=Usg)+ (k) (Uzot 1=Uggl,

and both these states are compatible with antiferromag-
netism.

The characteristic energy effect is shown by Fig. 1 for a
system withU/t=8. The points in this graph are results of
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<Hit prates is supported by various investigations, in particular,
0 by details of the one-band mappifigpf the Emery three-
band model, by empirical tight-binding modéfswhich re-

-0.21 produce the shapes of the Fermi surface and energy band
obtained from the ARPES data, and by calculations of levels
04 in finite clusters based on the-t'—J model and LDA
' calculations® The empirical valu&? of the diagonal hop-
ping parametet’/t~0.2 is larger than theoretical estimafes
-06 and is different for different HTSC ceramif&Note, how-
ever, that the empirical values were obtained by fitting the
—08 ARPES data to a single band without a splitting between the
upper and lower Hubbard subbands. Under the conditions of
_10 . ) antiferromagnetic splitting and flat bands, the sensitivity of
0 0.1 0.2 o 0.3 the Fermi surface shape and other characteristics tis

greater, so the actual values t8ft may be lower. Our cal-
. N . . culations, however, indicate that the interactidrhas little

FIG. 1. Average energies per lattice site for antiferromagnetic and paramag- . .
netic states with valence bond correlatidgttse solid curves AF+ VB and  €ffeCt on the doping corresponding to the boundary between

VB), and for similar uncorrelated Hartree—Fock stdsves AF and HF,  the antiferromagnetic and paramagnetic states.

respectively. The dashed curve AF DM corresponds to a periodic dimer One might think that the mean-field approximatign
structure of valence bonds. The squares plot the results of exact Hamiltonian . . . . ~
diagonalization for a %4 cluster? this case, applied to the effective Hamiltonildifa) ] cannot

describe antiferromagnetic correlations with a large but finite

correlation length. Meanwhile, the slave-boson technique
an exact diagonalization forx44 clusters® The main nega- yields two phases of spin ordering near the transition to the
tive contribution to the energy difference between the simplgparamagnetic state, one with a short-range and another with a
Hartree—Fock paramagnetic state and the Hubbard state Iang-range antiferromagnetic orderift?®and the boundary
the limit n—1 is due to the alternation of spin orientations. of the true paramagnetic state is very close to that shown in
The region of antiferromagnetic ordering on the diagramFig. 1. There are other independent arguments in favor of the
plotted in coordinates of interaction constant and doping idypothesis of a large area of antiferromagnetic spin ordering
shown in Fig. 2a. The critical doping.=|n.— 1| at which  in separate Cuplanes, in contrast to the narrow area of
the antiferromagnetic ordering disappearssis-0.26—0.3  bulk antiferromagnetism observed in experiméfits. The
for U/t=6-8. These values are lower than the result of thenost spectacular facts are the transformation of the Fermi
generalized Hartree—Fock method without valence bond corsurface to a small Fermi surface in the underdoped region of
relations, 5.~ 0.4—0.45, but they are higher than the critical Bi,Sr,CaCyOg_. ; detected by the ARPES techni§uand
doping 6.~0.05 at which antiferromagnetic ordering in observation of “shadow” pieces of the Fermi surface cen-
available HTSC crystals is destroyed. The vadiye-0.05 in  tered around the poirit(0,0) using the scanning version of
the diagram of Fig. 2a would corresponds to a very smalthe ARPES techniqu®. There are other arguments in favor

parametetJ/t<2. of a wide area of antiferromagnetic ordering in GuO
Several explanations of this discrepancy can be proplanes:! and they have been used as a basis for the most
posed. recent superconductivity theo?§.

The simplest hypothesis suggests that the region of anti- In the mean-field approximation, we can calculate nei-
ferromagnetic ordering is too large because the Hubbarther the radiu®k,e of the area in which the antiferromagnetic
model does not take into account those interactions thajuantization axis has a constant direction, nor the dynamics
break perfect nesting. Meanwhile, the presence of the hopmf fluctuations of this direction. But the energy parameters of
ping interactiont’ between non-nearest neighbors in cu-the procesqsee Fig. 1 lead us to a conclusion that this

in- 1y
037 0.3t
a _ b
0.2¢ PM \F ///" 0.2t n=ll
0.1+ e SC + AF 0 | S n=1
,/
0
0 2 4 6 8 0 2 4 6 8
un urn

FIG. 2. (a) Phase diagram for solutions with valence bond correlations in the“doping versus intetdétioplane. The solid curve corresponds to the critical

doping, at which antiferromagnetic ordering disappears. The dashed line is the boundary of the existence of an anisotropic superconducting gap calculated at
kT=0.002. The lower part of this line is shown schematicalshort dashesbecause of the small gap width and poor convergence Tieatb) Optimal
transformation parameter versusU/t for an undoped systenn& 1) and at a dopingn—1|=0.1 (solid and dashed lines, respectively
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FIG. 4. Logarithm of the critical temperatuile, versus doping. The solid

and dashed lines correspond to the antiferromagnetic and paramagnetic
states of valence bonds, respectively. Curves 1, 2, and 3 correspond to
r%/t:S, 6, and 4.

FIG. 3. The main constamt;; of the d-symmetry superconducting ordering
in the average of the effective Hamiltonidt@0), (11) versus doping for
antiferromagnetic and paramagnetic states of valence bondétat4, 6,
and 8. The dashed lines correspond to paramagnetic solutions in regio
where the antiferromagnetic states has a lower energy.

the logarithm logr.(n) as a function of the doping fdd/t

radius is much larger than the lattice constaRj{>a). =8 and 6. The entire domain of the superconducting state is
Therefore, from the standpoint of short-range valence bondwithin the antiferromagnetic ordering region, i.e., below the
correlations and attraction between holes due to formation dboundaryd(U/t) between the states AfF VB and PM +
valence bonds between neighboring sites, we cannot endors@ in Fig. 2a.
the hypothesis of the reality of “two-dimensional antiferro- At the same time, similar functions Idg(n) for para-
magnetism” in CuQ planes over a wide range of doping, magnetic states drop rapidly 83—0 even at low doping.
contrary to the assumption about the narrow region of bulkThe cause is that the density of one-electron states of the
antiferromagnetism in cuprates. corresponding effective linearized version of the problem is

Figure 2b shows characteristic values of the optimalhigh only in a narrow region about the Van-Hove singularity
transformation parameter. It depends largely otJ/t and at k=(0,= ), (= ,0). On the contrary, in antiferromag-
changes little withn. The curve ofa(U) indicates that the netic states the splitting of the initial band into two subbands
expansion6) can be used down to/t<8. leads to a considerable widening of the region with a high

Now let us proceed to the main task of this work, density of states near the point ), As a consequence, the
namely, the investigation of the feasibility afsymmetry  region of high critical temperatures also broadésse the
superconducting ordering. Given the fast drop of anomalouplateau on curves of Fig.)4
averagesw; with increasingl, even the sign and absolute There is a problem that cannot be solved in the mean-
value of factorky4 in the main contributior[kllwi] to the field approximation, namely, whether there is, in addition to
superconducting compone(it8) of the average energifl6)  the antiferromagnetic doubling of the unit cell, an alternative
are quite significant. Figure 3 shows the fadtgras a func- mechanism of splitting the initial band into upper and lower
tion of the doping for several values 0Of't for antiferromag- Hubbard subbands, which could widen flat parts of the spec-
netic or paramagnetic states of valence bonds. The data foarum near the Fermi level. Essentially, the same problem had
paramagnetic states, whose energy is considerably highdn be solved in discussing the difference between boundaries
are given only to demonstrate that the cause of attractioof the “two-dimensional” antiferromagnetic ordering in our
between holesk;;<<0) is not long-range antiferromagnetic calculations and the bulk antiferromagnetism in real cu-
correlations, but valence bond correlations. In particularprates.
ki,=0 for «=0. In paramagnetic states, the fadter is also Let us reconsider properties of the superconducting state
negative, and its absolute value is even larger. Nonethelesgijth the d,2_,2 symmetry due to valence bond correlations.
owing to the difference in the densities of states on the Fermirigure 5 shows the superconducting gay(Z) as a function
surface, only in the antiferromagnetic state is there a suffiof temperature for several model parameters. The rétio
ciently wide range of the doping in which the system has a=2A(0)/kT. ranges between 3.9 and 4.5 fdft=8 instead
wide superconducting gap and high critical temperafiye  of the BCS value 3.5. Our calculations §fare smaller than

The critical temperatur& (U, §) of the superconducting &=2A(0)/kT.~10-12 obtained using approximations like
transition is determined using E(B0) as a point at which self-consistent techniques of spectral functidn® or
anomalous averages occur superposed on the normal stateGreen’s functions® The ratioé measured in various experi-
AF + VB. The T, value coincides with temperature at which ments is highly anisotropic and depends onzieemponent
the superconducting gapAZT) and anomalous averages in of quasimomentum, whereas the value for #teplane of
the self-consistent calculations turn to zero. Figure 4 showsuprates varies in the range-5-72%3"
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24/t log(T, /f)
0.12 -15

0.08

0.04

3
100kTt ‘ 2o

FIG. 5. Superconducting gapAZT) versus temperature &t/t=8 (solid
curves andU/t=6 (dashed curvgsCurves 1, 2, and 3 correspond to dop-
ing values|n—1|=0.1, 0.15, and 0.2.

FIG. 6. Logarithm of the critical temperaturg, versus doping for the
extended Hubbard modéB1) at U/t=8,t'=0, and various values of pa-
rameterV characterizing interaction between particles at neighboring sites.
Solid curves 1, 2, 3, and 4 correspond\t&t=0, 0.1, 0.2, and 0.25. The
dashed line shows calculations fdrt=10, V/t=0.2, andt’ =0.

Thus, according to mean-field calculationsttfa), the  Hubbard model did not take into account interactions dis-
region of thed-symmetry superconductivity is within the re- rupting the perfect nesting. For example, we did not take
gion of the “two-dimensional” (or hidden antiferromag-  account of hopping interactiait between non-nearest neigh-
netic spin ordering determined in the same approximationpors (diagonal neighbojs We also neglected the similar
As was noted above, in our approach, this region projected t@oulomb interaction between particles at different sites. Our
real objects can become a region of long-range spin correlasttention is focused on thé interaction for several reasons.
tions, but not necessarily of a real long-range ordering. Thesirst, it does not disrupt the perfect nesting in underdoped
dashed line in Fig. 2a is the boundary of the superconductivsystems, but has a considerable effect on the Fermi surface
ity region in terms of the doping at temperatulel  shape owing to the very flat bands. Second, the value and
=0.002. Note that atJ/t=28 the maximum critical tempera- even the sign of’ depend on the composition of the material
ture iskT.=0.023. The corresponding gap width isA20)  because of the competition between two channels of such
=0.10%, which makes A(0)=53 meV andkT.=133 K  diagonal hoppings in the Cy(lane, namely, through direct
for t~0.5 eV (Ref. 14. interactiont,,, with oxygen orbits and through the process of

An unexpected result of our calculations is the largesecond order in the—d hybridization. Therefore compara-
width of the anisotropicd-symmetry superconducting gap tive analysis of the effect df in different cuprates can be of
extending down to very small values=|n—1|~0.03-0.04  great importancé®
for U/t=6-8. In the initial Hubbard model, the transition to In connection with the arguments given abo\/e, we have
the dielectric state witff;=0 asn—1 occurs only for very  performed self-consistent calculations of the phase diagram

small doping, when the chemical potential is slightly higherand several system characteristics with an extended effective
than the edge of the lower Hubbard subband ahe|n Hamiltonian:

—1| is determined by the tail of the distribution function. In
the regioné>0.05 the valueg . and 2A(0) are constant or He(@)=H(a,U,t)+V >, n,ny
even increase with decreasidg This contradicts the phase (nm)
diagram of real cupraté§,whereT () drops rapidly in the
range of doping smaller than the optimal parameéigy cor- +t' > > (¢l cmetH.C), (31)
responding to the maximum d; . (nm) o
This contradiction can be interpreted in various ways. i.e., we added to the initial effective Hamiltonigf) the
One can appeal to the arguments of Refs. 38 and 3%oulomb-like interactiorV between the nearest neighboring
They suggested the presence of states with nonzero anomezells and hopping interactiari between the nearest diagonal
lous averages and anisotropic gaps, but without supercorsites((nm)) with [n—m|= /2. For simplicity, we have in-
ducting properties owing to quantum fluctuations. This hy-cluded only terms of zeroth order i for these interactions
pothesis was put forth in attempts to reconcile the absence af our approximate estimates.
superconductivity and the presence of an anisotropic Figure 6 plotsT. as a function of the doping for
pseudogap in the normal state of underdoped samples. ¥=(0—0.25t. The Coulomb interaction between neighbor-
seems, however, more constructive to search for real inteing centers really destroys the superconducting ordering at
actions that suppress superconducting ordering at lodow doping and at the same time decreases the maximum
doping. critical temperaturel .. In particular, atv=0.2, U/t=8,
Suppose that we have come to this discrepancy as a rend |[n—1|=0.1, the critical temperature drops t®,
sult of using an ideal modél), more specifically, the initial =0.005%. Assumingt~0.5 eV1* we haveT .~ 30 K, which
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FIG. 7. Effect of parameter’ on the phase diagraffi() for the extended ~ FIG. 8. Band energ§ (k) — u measured with respect to the chemical po-
model (31) at U/t=8 andV/t=0.1. Curves 1, 2, and 3 correspondttét tential at two point of the magnetic Brillouin zone boundary, nariely

=0, 0.05, and 0.1, curves 4 and 5 to negative valueg’' 4f= —0.05 :(77,0) (SOIId CUrVe$ and k=(7r/2,7r/2) (dashed Iineﬁfor the model with
and —0.1. U/t=8, V/t=0.1, and varioud’. Curves 1, 2, and 3 correspond o't

=0, 0.05, 0.1, and phase curves 1, 2, and 3 in Fig. 7.

Figure 8 shows the band enerfy (k) — u with respect
to the chemical potential at two points=(7,0) andk
= (m/2,7/2) on the boundary of the magnetic Brillouin zone.
At t'=0 these energies are almost equal, so the “large”
Fermi surface centered di(0,0) and the corresponding

_ . . . . ‘“shadow” piece aboulf (7, 7) emerge as a result of doping.
4V) Is added to the main superconducting parameter, "€rort’ 0 the evolution of the Fermi surface with doping is

factor kq4 in front of wi in the expression for'the average radically different. Fort’>0 we have
energy. The destruction of the superconducting ordering at
low doping can be attributed to the weakening of the corre-  E(#/2,7/2)—E4(7,0)~4t'>0.
lation interaction constaid;;~ —8aUr ;+4V with decreas-

ing r,; when antiferromagnetic localization of holes takessurface emerges in the form of pockets about the point

place am—1. (
. . 7/2,7/2), whereas the part of the spectrum for (7,0),
Figure 7 demonstrates a strong effect of diagonal hop: : . .
ping interactiont’ on the shape off(6). This effect is where the density of states is the highest, are below the

. ; . Fermi level. Only at the optimal doping= 6, the spec-
clealilgri?irgv;/::r;:?fesg%n (D;)I?svliakréeﬁ’{e curve of experi trum crosses the Fermi level atr(0), after which the
¢ : . " “large” Fermi surface emerges. Given that parts of the mag-
mental data, namelyl. drops rapidly on both sides of the 9 ' su 9 v P 9

ontimal dobinds... Ast’ increases. the peak posii netic Brillouin zone boundary, i.e., the dielectric parts, are
P PINGopt- . ’ peak p G(’\QPI seen in the ARPES experiments as blurred Fermi boundaries,
shifts toward higher values without changing the maximu

. o . Mhe ARPES data can be interpreted at low doping in terms of
value T¢(dqp). This behavior is understandable if we takea generalized “large” Fermi boundary composed of the di-

::]L%t?;ﬁjoittbghaar: dfoig :1&0(1 gl)en;gi;gféék) tﬁ; tgiulgévg electric parts of the boundary and réabn-shadow in terms
+ k.| = of the magnetic Brillouin zone: 9 Y of intensity metallic parts of the “small” Fermi surface.
-y ' In this interpretation, the pseudogap detected in recent
E4(K) — E4(,0) = 4t’ (cosk,cosk, + 1). yeard® in the normal state of underdoped samples of
Bi,Sr,CaCyOg, 5 is nothing but the energyE,(,0)— u|
Note that, although the boundary of the Brillouin zone inneeded to eject electrons from paks-(w,0), where the
dielectric undoped materials is just a line of the minimumdensity of states is the highest. In underdoped samples, these
dielectric gap, it is seen in ARPES spectra as a blurred Fernftarts of the spectrum are below the Fermi level, hence they
boundary since the intensities of photoemission in the firs@re populated. In overdoped samplés; 5,,, these parts of
and extended Brillouin zones are different, notwithstandinghe spectrum are above the Fermi level and unpopulated.
the equal energies of bands after the antiferromagnetic dolMore accurate calculations and interpretation of photoemis-
bling of the unit crystal cell. sion spectra should become goals of a dedicated investiga-
It is remarkable that, in the case ©f>0 andp-doping,  tion.
the flattest part of the lower Hubbard subband crosses the Systems with the opposite sign of interactian<0,
Fermi surface at the optimal dopirigt the maximunir,): demonstrate a radically different behavior of the phase dia-
gramT.(48) (Fig. 7) and Fermi boundary. The region of the
Ey(m,00—u=0 at 6=y, n<l. d-symmetry superconductivity remain sufficiently wide with

is lower than the experimental dafd'®~100 K. The latter
value could be obtained fdd/t~10 andV/t=0.2 (see the
dashed curve in Fig.)6but with these parameters the trans-
formation parametetr~0.27 is not small. The decrease in
T. with V is understandable. A positive constankk(,

This means that for low doping< &, the “small” Fermi
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dy dy2_y2-symmetry superconducting ordering since the gap is
zero on linek,= +k, . Therefore the parametér at which
E;(k) — =0 at the poink=(#/2,7/2) is in no way related
to the maximum ofT . for t’ <0. The Fermi surface also has
a radically different shape fornegativé. At low doping 6
< 5*, the generalized Fermi boundary consists of the dielec-
tric parts of the magnetic Brillouin zone boundary ab&ut
~ (7/2,7w/2) and metallic parts of the “small” Fermi bound-
ary around points4,0). The results discussed in this paper
are concerned with the state with a definite structure of va-
lence bonds, in particular, with valence bonds between
neighboring sites, which leads to superconductivity with the
. ) dy2_,2 symmetry. Fort’>0 this model provides a reason-

0 0.1 0.2 0.3 able interpretation of the phase diagramg ) and aniso-

In -1 tropic pseudogap. Fot’ <0, however, the calculated and

FIG. 9. Alternating spin densitgl, as a function of doping fou/t=4, 6,8, ~ Mmeasured phase diagrams are different, although there is a
V=0, andt’ =0 (solid curve$. The dashed curve and points correspond to good reason to suppose that this case is realized in
U/t=8,V/t=0.1,t"/t=0.1 and—0.1. La,_,Sr,CuQ,. This is supported by the interpretation of in-
elastic neutron scattering fap—0.4%*! This discrepancy
raises the question of whether alternative structures of va-

the increase ift’| and shifts to the region of low doping. At .
. . o lence bonds and/or other symmetry types of superconducting
the same time, the maximum critical temperature decreases

with increasingt’|. This shift of the superconducting region pairing are possible.

and decrease in the maximBp} for t’ <0 demands an inter-

pretation. The simplest hypothesis is that the region of the. concLUSIONS

“two-dimensional” antiferromagnetism becomes more nar- ) )

row, consequently, the superconducting region shifts. This [N conclusion, note the following.

assumption, however, is not true: actually, the region of an- 1. The unitary transformation taking into account va-
tiferromagnetic ordering changes little Hsvaries between €nce bond correlations yields a model Hamiltonian in which
—0.1 and 0.1. This can be seen in Fig. 9, which shows rehoppings are modulated by site population, similarly to the

. 2 . . . . .
sults for the alternating spin densitl in the case of self- Hirsch modelz._ It is this modulation of hoppings which
consistent AF+ VB solutions. Therefore, let us turn again to leads to attractive interaction between holes indtehannel,

features of Hubbard subbands and Fermi boundaries. but, unlike the Hirsch modéf the interaction parameters are

Fort’' <0, the part of the spectrum in the lower Hubbard calculated by variational techniques. In contrast totthel
subband with the smallest slope;- (,0), does not cross model, which excludes double filling of sites, the resulting
the Fermi level, but only approaches (Fig. 10. The in- effective Hamiltonian can be processed in the mean-field ap-
crease in the SIOpeE (K, 8)/38]x— (o) With |t'| leads to a  Proximation. _ _
decrease in density of states ahd Figure 10 also demon- 2. The gain in the energy at low doping leads to doubling
strates that fot’ <0 and a certain doping* = &* (t') the of the unit cell owing to alternation of spin orientations, and
spectrum crosses the Fermi level at the péist(/2,m/2). also to formation of valance bonds between neighboring

But the region near this point does not contribute to thesites. The problems of the small difference between the cal-
culated energy and the results of simulations of small sys-

tems, and of the efficiency of other possible correlation types
E(ky—p not included in our model have remained unsolved.

0.3F

0.2t

0.1}

08 3. The mechanism of attraction between holes due to
modulation of hoppings by site population cannot be reduced

0.6 to exchange of antiferromagnetic fluctuations, which has
been discussed intens#yas a cause of this attraction. The

0.4 effective attraction constants have been calculated variation-
ally and found to be close for both antiferromagnetic and
paramagnetic states of valence bonds. At the same time, it

0.2 turned out that the density of states near the Fermi level is
high enough to produce substantial values of the supercon-

0.0 ducting gap and critical temperatuf@A (0)~4.5 andkT,
=<0.023 at U/t=8] only in the case of antiferromagnetic

~02 splitting of the initial energy band.
0 4. In the classical Hubbard modelH(U,t), the

dy2_y2-symmetry superconducting ordering occurs over a

FIG. 10. Same as in Fig. 8, but with<0: curves 1, 4, and 5 correspond to  Wide range qf doping e?(tending t_'0—>1 within t_he range of
t'/t=0, 0.05,—0.1, and phase curves 1, 4, and 5 in Fig. 7. “two-dimensional” or hidden antiferromagnetism. This fact
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is in contradiction with the phase diagram of real cuprates. 1 _
5. The calculations based on the generalized Hubbard ~M(n,m.m;)=Z[Cnsimmotom-ot CroBnm-oBnm-o
model have shown that the phase diagrBg(d) and Fermi

surface shape are very sensitive to the magnitude and sign of * CroBAmmolnm - ot CmeBnm-clmm-o
the hopping interactionn’ between the non-nearest neigh-
bors. The optimal dopings,y for t'>0 is the doping at + CrmoNmyotmm— ol (39

which the flattest part of the lower Hubbard subband crosses
the Fermi level fork~(,0). In this case, the anisotropic
pseudogap of the normal state in underdoped samples should
be associated with the energy differen@ =,0)— u| be- . . .
tween the lower subband &t- (7,0) and the Fermi level. *Colnm-olnn-o CroMnolmn o

The reported investigation has been possible thanks to
support from the Russian Fund for Fundamental Research * CmoBnnoton, o] 49

(projects 7-03-33727A and 96-15-9749Zhe authors are The operator§,m, , Apmy, andt,m, are defined by Eqg4)
indebted to V. Ya. Krivnov for helpful discussions and R. O. and (11).

1 .
N(n,m,n;)= Z[CniaJ nmfoAnnifzr_F Cniannatnmﬂr

Zaitsev for constructive and useful criticism. The averaging of expressiori83) and (36) per lattice
site yields
APPENDIX A: (HOY=[ 7D+ 7| y_o+ 2 KPwWiwj, (41)
1
With the effective Hamiltoniar(6) the operatoH () at -
o212 is T =40{2d3+3ri[(1-2r0)*— 4d3]+ (r,— 24,0)
HP=H{'+T?, (32) X[ro(1—rg)+d3+6r2]+[d,dy+8r2e,
+rV V_2 14 14 7 42
HE--uS, [R<n,m>+; on.mm) ¢, 2¢,bu0l} (42)
nm i
po=r5—di—ri, G=r{—d},  o=ror—dod,
+> Q(m,n,ni)]. (33 fo=rg+ds, fi=rf+d?, & =rr,—dd.
nj
(43

In the latter three-site terms, the sums are performed over -
m; e (mm), m#n, andn; € (nn), n;#m, and the operators ANy Of the symbolsA,={r,.d,,¢,.¢o,.f..1 by, &, bo.}
R andQ are defined by denotes

R(nvm):AanAnmL"—janjnmia (34 A,=2AztA;.

1 ) In this notation, we have
Q(n,m,mi)z—zz {tnmiaAnm,—aAmn],fa _
7 TP =—at{r [ —5Iro(1—ro)—93(d5+2r%)—18(r,

t t
+ +H.c. — =
(€0 CmoCm,—oCmy,~o+H-C) —2¢,) +5fv+6f 3+2(4d 5+ 4, 5+ P)

_tnmatmr‘q ,—U(nﬂ,—0+ nmiU_ 2r]n'_‘rnr‘nig)}’ + 6(;)24' Z(d_y)z_ 8d0d_1/] + (I’3+ 6r \s‘E)[ —To
(35 X (L—rg)—7d2—10r2]+ 61 5F,+3rsfs). (44
T@=—t > {[2¢]Vc!) +¢lPe, ,+cl 2 ]+ H.c), The contribution of anomalous order parameters to the
a(nn’) average energgl6) per lattice site calculated to second order
(36 in w, is
|
1 . —
Che=—7% ; | (Cavdnm o+ Cmom o). (37) H3C=[—8aUr,Jw}+a’[Sy+ Sy, (45
me(nm,

Sy=U{4W3[2ro(1—rq) +T,(1—2rg)+2dod,+ 4d%
c@= > {L(nm)+> M(n,mm)+> N(nm,n):.
mj

me (nm) n 39 — 2031+ 8w, W[ (1—2rg) ]+ 2W3[r,(1—2r()
2_
In the three-site terms the sums are performed awer +8r1—2dod, ]}, (46)
e{(mm), m;#n, andn; e {nn;), n;#m, and the operators in Sr=—2t{W?[—34r;— 18 5—3r3]+W[r,+8r g

Eq. (38) are given by
+3r 3]+ W e[ —6r 5]+ W3 —r3]+w,ws[4r,]

1
= — — — 2
L(nvm) Z[Cma'(l Znnﬂ)tnm*a'—i_cnUAnm*o']! +W1W3[2I‘1]}. (47)
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The matrixD; ;= dow;/dw; atw;=0 in Eq. (30) is cal-
culated using solutions AF- VB:

where k,; are coefficients of the quadratic forrhi SC
=k,;W—»w; with anomalous averag€d8), and elements
of matrix Bj; are expressed in terms of energieg,)(k) of

the upper and lower Hubbard bands with an antiferromag-

netic gap 4, between them:

F

ij:_N712 R(Ivaljvk)! Ij:{l’z’\/§’3}j’ (48)
X
R(L1" k)= (1_2f1 1_2f2> LI'#2, (49
oy aidi 2E, 2E, |’ ’ !
1-2f 1-2f,
R(2,2k)=q3| cog (—1+ )
(2,2k)=0q3 Y T2E, 2E,
) 1-f,—f1,
+Sm27k2m}

R(2),K) =R(I,2K) (1_2f1 1_2f2)
L] = 1 & = Ccos A )

a9z Yk 2E; 2F,
1£2.

Here f,(,) are the Fermi distribution functions for the band
energiegmeasured with respect to the chemical potential

E12(K) = (et )27 \(e— )24+ Ai—pn,  (50)

the parametery,, €., andA, are determined by the equa-
tion tany,= (e,— €x)/ Ay and Eq.(26), respectively. In the

Ovchinnikov et al.

¢, s, O 0
-s, ¢, O 0
Si)\(k): 0 C, —S,
0 0 s, ¢,
ij
ct 0 —-s; O
0 c, 0 -5
Xl's; 0 ¢ O (52
0 s, O (o
ix
Here
s,=Sing, C,=C0Sp, C;=C0Sh;, S=sing,
2A, _
tan 2¢= - tan20i=m, i=1,2,

1
W1(2):§[Wk+WR+ €os 2p(W,:—Wp) ].

The parameters,, Ay, Wy, andE; ) are determined by
Eqgs.(26) and (50).

*)E-mail: ovchin@glas.apc.org
DE-mail: movchin@center.chph.ras.ru
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The evolution of the longitudinal magnetization of nuclear spins in a cw high-frequency

magnetic field has been measured using a SQUID magnetometer at liquid-helium temperatures in
magnetic fieldH, of up to 57 Oe. The timd,, for thermal mixing of the Zeeman and

dipolar systems has been found to range between 0.05 a&rid4s. ForT,,>1 s the function

Tm(Hp) is exponential. The proton NMR spectra near the fundamental and twice the

Larmor frequency have been obtained. The shift in the resonance with respect to the Larmor
frequency is close to the theoretical prediction. 1©98 American Institute of Physics.
[S1063-776(198)01709-0

1. INTRODUCTION temperatures in weak magnetic fieldg<<55 Oe. The im-
pact of residual oxygerfgas dissolved in water from which
The state of a spin system in a solid can be characterizeide crystals were grownon the spin—lattice relaxation has
by a single temperature in a weak magnetic field comparablbeen investigated.
to the local field: In magnetic fields substantially greater The shape of the proton NMR line in ice has been ex-
than the local field, the spin system is usually characterizegerimentally studied by many researchers. These experi-
by the temperatures of the Zeeman reservoir and the dipolanents used both cw NMR measurements in which external
reservoir, the latter being related to the secular part of thenagnetic field was scanne¥'® and Fourier transforms of
dipole—dipole interaction. The time required for the systemdecaying nuclear induction signatst The experiments were
to relax to the “quasi-equilibrium” state with two tempera- performed with both polycrystalline samples and single crys-
tures is of order of the spin—spin relaxation tiffig (Ref. 1,  tals. A technique for calculatiniyl, in the conventional hex-
Ch. 4. In magnetic fields comparable to the local field, theagonal lattice with a configuration of disordered proton loca-
temperatures of these two subsystems equilibrate owing tions was suggestéd® In these experiments we have
the nonsecular part of the dipole—dipole interaction. Thisobtained the proton resonance line shape in ice by measuring
process is called thermal mixing or dipolar Zeeman crossghe rates of spin heating by hf magnetic field and compared
relaxation[Ref. 1(Ch. 6) and Ref. 2. When the mixing time  our results with published data. It is also of interest tthat the
is relatively shortT,,<10°T,, it is described by a Gaussian “forbidden” line at twice the NMR frequency, which was
function of the magnetic fieldT(Ho)~T,expHZM3),  observed in some materidis*in weak magnetic fields, was
whereM?3 is near the second momeht, of the resonance detected.
line (Ref. 1, Ch. 6. Measurements of longer timds, are
usually hampered by spln—_lattlce relgxat?bhn the.case of 5 EXPERIMENTAL
cross relaxation between different spin systems in a rotating
reference frameT, is usually an exponential function of the A diagram of the experimental chamber is given in Fig.
effective magnetic fieldRef. 4, Ch. ). Zobov and Lundid 1. The inside volume defined by an outside shell in the form
concluded that the exponential shape of the strong-fieldf a 7-mm tube fabricated from a Mylar film and epoxy
asymptotic form of the cross relaxation rate is a universatement is insulated from the copper cold conductor by a
feature of spin dynamics. The related issue of the exponerMylar ring. Two coils of niobium—titanium wire are wound
tial shape of NMR line edges was studied both theoreticallyon top of the Mylar tube and fastened with epoxy cement.
and experimentall§. Therefore it seemed interesting to test One of them is the SQUID reception coil, the other is a
the conclusions of Ref. 5 in the case of the dipolar Zeemameater designed to generate a temperature gradient during
cross relaxation in a system of spins of one type, namely, tarystal growth. Four copper wires of diameter 0.2 mm coated
measure the functiofi,,(Hy) over the widest possible time with lead—tin soldering alloy are cemented on top of these
interval. coils for heat-sinking from the inside volume of the device.
A suitable object of such an investigation is ice: the con-Similar wires are used for cooling a coil for excitation of
centration of nuclei with nonzero spin other than protons iSNMR, which is wound with the Nb—Ti wire on a Mylar core.
negligible, namely X 10" 2% of deuterium and %10 %% Two small pieces of Nb foil cemented to the lower part of
of 0. The long spin—lattice relaxation tifh&,=10 h mea- the outer surface of the device serve as a capacitive detector
sured in a strong magnetic fieltHf=7 kOe at T~150 K  (driven at 0.2 MHz of the crystallization onset. The tem-
holds out the possibility of measuring long cross relaxationperature in the cell is measured by a copper resistive ther-
times. In the present work,; was measured at liquid-helium mometer mounted on the cold-conductor. The cell is shielded

1063-7761/98/87(9)/7/$15.00 546 © 1998 American Institute of Physics
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In these experiments we have used linearly polarized hf field
perpendicular to the dc field. The valli, of the rotating
component of the hf magnetic field was calibrated using the
area of the obtained NMR line.

Before the device was cooled, the vacuum container had
been filled with the selected gas. When a small amount of
liquid nitrogen was poured into the nitrogen Dewar of the
device, the cell cooled down at a rate of 0.25—-0.4 °C/min. At
t=3°C a power of 0.2 W was fed to the heatthre power
was derived from the 10°C rise in the temperature of the heat
conductoy. The crystallization onset was detected using the
signal from the capacitor and briefly heating the cold con-
ductor, whose temperature just prior to this time ranged be-

4 tween —7°C and —12°C owing to the overcooling of the
[ﬂ) water. Att~—30°C the heater was turned off, the vacuum
5 H, jacket of the device was pumped off and filled with helium at

a pressure of about 10 Torr, which was used as the heat-
exchange gas in further cooling. Measurements were usually
performed at a fixed value dfl; in one experimental run.
The vacuum container was usually filled with the selected
gas at the end of the run @& 100 K.

The cooling rate while the ice crystal was growing in our
experiments was close to that chosen by Evtushenko,'’
who reported that their samples were composed of randomly
oriented single-crystal grains of hexagonal ice with a typical
size of about one millimeter. Pictures of the polycrystalline

ice structure obtained at a growth rate ©fl0 3 cm/s are
FIG. 1. Diagram of the experimental chambét) filling pipe; (2) outer  given in Hobbs’s booR®

shell of the cell;(3) heater;(4) reception coil of the SQUID magnetometer;

(5) coil generating hf field(6) detector of crystal growth ons€f) electro-

magnetic shield from copper and niobium foil and Mylar fili®) cold 3. SPIN-LATTICE RELAXATION

conductor;(9) heat-sinking wires(10) polyethylene trap.

In measurements of the spin—lattice relaxation time

we used the conventional technique of NMR saturation by a
by tubes welded from copper and niobium foils. A flexible resonant hf field with subsequent monitoring of the magne-
plastic tube is cemented to the upper lid of the cell, and abouization recovery after the hf field was turned off. An ex-
1.2 cnt of distilled water is fed through this tube via a Te- ample of the SQUID output versus time with two pulses of
flon capillary. The filling tube is connected to the vacuumthe resonant hf field is shown in Fig. 2a. The amplitude of
container(jacked via a trap designed to collect water drops the step generated by the hf pulse is proportional to the
and thus limit the quantity of vapor escaping from the cell. sample magnetizatiokl; before the pulse. Figure 2b shows

The magnetometer incorporating a high-frequencythe step amplitude as a function of the time interalthat

SQUID used to measure the longitudinal magnetic momenhas passed after the previous pulse. By approximating these
under cggditions of NMR excitation was described measurements using the formula
elsewhere> The dc magnetic fielH, is generated by a
short-circuited superconducting solenoid. The fidiglis de- Mz=Mo[1—exp(—AU/Ty)], @
termined accurately using measurements of NMRHe'®  one can determine the equilibrium magnetizatighy (in
performed with this solenoid and a similar experimental cell.relative units of the SQUID outpufind the longitudinal re-
The output signal from the SQUID is recorded by a com-laxation time. Under the conditions of our experiments, the
puter, which also switches on and off the hf magnetic field.spin—lattice relaxation time is controlled by oxygen which

SQUID output, arb. units

340 a M., arb. units b FIG. 2. (a) Trace of SQUID output with two pulses of
8*2 hf magnetic field at the resonant frequengjs=44.7
Oe, T=4.2 K,H;=26 mOe; the duration of each pulse
r is 4 s.(b) Amplitude of steps caused by hf pulses as a
3351 41 function of time interval between two pulses for two
types of residual gas in the cellX) air, Hy=44.7 Oe;
0l 3 * (X) nitrogen,H,=50.9 Oe. The solid curve shows the
330 N . ) N . fit of Eq. (1) to the experimental points.
0 5 10 0 10 20 30

t, min At, min
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probably is trapped in the crystal when water is frozen with M (1)

air dissolved in it. When the vacuum jacket was filled with Vo0 :CEexp(
air at a pressure of 1 atm, the tinfg at T=4.2 K ranged 2(0)

between 10 and 20 min in different experiments, but wa n

independent of the dc magnetic field in the range of 10 to 5§N
Oe whenT; was measured in one experiment. When the

o t
+(1-CP)ex ~a) 3

)
t s

F

the case of a strong magnetic field, when the condition
1> (1T (1+A2/D?) "1 holds,

jacket was filled with helium or nitrogen instead of alr, tg 20, A2
was considerably longer: estimatesTof using Eq.(1) and CE%CF— PRI
measurements dt<30 min yield in this cas@;=10 h. In ts @ D°+A
the temperature range of 1.3—4.2 K the tiffig increases 2\ 2
with decreasing temperature, approximately following the towtsﬂg wOA_+D %)
law T, T, S wD
The second terms in the right-hand sides of E@g.are
4. HEATING OF THE SPIN SYSTEM BY AN HF FIELD corrections to the values
The evolution of the longitudinal magnetization in an hf D2 o D2+ A2 w2+ D?

magnetic field with a frequency close to that of NMR can be  Cg s=Tm : 6)

T2 A2 o] 2 2
described by the Provotorov equatiofi®ef. 1, Ch. 4, and D+A% @0 D @
Ref. 19. In a magnetic field, comparable to the local field, \yhich determine the “weight” of the initial fast relaxation

the rate of temperature equilibration between the dipolar andiage and the time constant in the second, slow stag,of
Zeeman reservoirs in the laboratory reference frame shoulgecay in the limit of a strong hf field.

aIsp be tgken into ?‘CCC’_UEREf- 1(Ch. 6 and Ref. 2. If the Traces of the SQUID output as a function of time, which
spin—lattice relaxation is neglected, show how the longitudinal magnetization changes in an hf
. A field, are given in Fig. 3a. The signal due to the cell walls
a=—(Wi+W,)a+ w_OW1+W2 B, and coil holder was about 0.8%, and was probably caused

by protons in the Mylar and epoxy cement. The spin—lattice
B=D " 2(woAW; + wdW,)a—D " ?(A°W; + w3W,)8. (2)  relaxation time under the conditions of our experiments is
about 1-10 s. In order to get rid of this signal, we performed

Here a and 8 are the inverse temperatures of the Zeeman,q cycles of measurements at each frequency of the hf field.
and dipolar subsystems in the laboratory frame, and the I0Ns; the end of each cycle, we turned on the hf field at the

gitudiznalz magnetization satisfiéd ;< «. The parameteW,  regonant frequencys, to achieve full saturation of the
=my"Hig(w) determines the rate at whiakwo/A andB yclear spin system. The time before the second cycle of
are equalized by the hf fielthis process is usually treated 504t one minute was sufficient for the spins in the walls to
(Ref. 1, Ch. 4 as equilibration(mixing) of the Zeeman and yejax The recorded SQUID signals of the first and second
dipolar reservoirs in the reference frame rotating with the hfcycle were differenced numericallfFig. 3b. The resulting
field]; g(w).is the shape functiop of the resonance line, andy,yes were approximated using B8) on the time interval
A=wo—w is the hf field detuning from the resonant fre- it the hf field on. One can see in Fig. 3b that the weight of
quencyw,. In a weak magnetic fieldd, the resonant fre- ¢ jnitial stage,C2, and the time constant of the slower
quencywg is shifted from the Larmor frequencyHo be-  gia0019 are independent ¢, at higher hf field intensities.
cause of ‘the nonsecular part of the dipole—dipoleyyim gye account of the finite value of the h fiefdy andt2
interaction” In Eq. (2) D=yH| is the local frequency re- \ere calculated by Ed4) using measurements 6 andt?.
lated to the local field in the rotating frame, which is deter-rpege narameters as functions of the frequency are plotted in
mined b.y the secular .part of the. dipolar mtergctlon. TheFig. 4a, alongside the curves obtained by fitting ES). to
terms withW, on the right-hand side of Eq2) yield the  oyperimental data. The timB,, was obtained by extrapolat-
conventional Provotorov equations, which apply to the Casfg t. to the resonant frequency.
of _"1'1<;HL2 (Rgf. 1, Ch. 4. The parameter W, If the hf field is tuned to the resonance, the contribution
=T D/(wp+D?) describes the rate at which and 8 4 the secondslow) stage is zero, and the evolution of the
equilibrate in weak magnetic fields owing to the nonseculajongirydinal magnetization is described by the single time
part of the dipolar interaction. _ _ constantt®=1/W;, because the hf field pumps energy only
When an intense hf field, albeit smaller that{, is (5 the zeeman subsystem and does not affect the dipolar
turned on, the temp_eratures of th_e Zeemf’;\_n and _dlpolar_ Su%‘ubsystem. When an hf field at frequenaygdis applied, we
systems in the rotating frame rapidly equilibrate in the time, 55 measurem ,(t) described by one decreasing exponen-

0_N2 2, A2\1-1 ; : : ,
te=DWy(D7+A%)] ", then the inverse temperature (i) function. When the frequency is detuned from the
(which is unique in this reference frapends to zero at the | easured weight of the initial stage and time constaa

rate determined byV,. In this section, we consider the case ¢ the second stage under a strong hf fighig. 4b are

of an hf field which is strong in this sense. Equati@with  yascribed by equations similar to E€5), but with A re-
the initial condition«(0)=B(0) has a solution describing placed bywy— w/2:

the longitudinal magnetization as a sum of two decreasing
exponential functions when the hf field is on: Ce~DI D%+ (wo— w/2)?] 71,
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M, arb. units
SQUID output, arb. units 8
3401
1
6
338 b
42 db
4_
336
34 db !
r t
334 26 db
'l do
or t
332 ' : ) L ) i
0 40 80 120 160 0 100 200
t,s L's

FIG. 3. (&) Records of SQUID output in which the hf field is turned on in two successive cycles. The arrows mark moments when thel h&fldldnOe

(the output attenuator was set to 26)dB frequencyw/27 =180 kHz, hf resonant fieltl ;= 8.6 mOe at 193 kHz were turned on, and when the hf fields were

turned off. The record of curve 2 was started in 62 s after the end of the record of curve 1. The signal due to the walls can be seen after the hf field is switched
off. (b) Difference between curves 1 and 2 at various hf fi¢lttenuator settings are given at the cujv@se arrows mark times when the resonant hf field

was turned on. The shift of each curve with respect to the previous one along the ordinate axis is one unit.

ation rate. It seems thafO nuclei, whose quadrupole split-
ting is about 1.7 MHz in ic® and considerably higher than
the proton NMR frequencies in our experiments, are also
unimportant for the dipolar Zeeman mixing in the proton
spin system. The curve of ,(Hg) (Fig. 6 for T,,>1 s
(Hy>35 0@ can be approximated by the formula

ts~Tm[ D2+ (wo— w/2)2]D 2. (6)

The values ofD, which were fitting parameters for
curves ofCg andtg versus frequency, around the fundamen-
tal NMR line were found to be independenttdf within the
experimental uncertainty, and we obtainBdy=3.7+0.2
Oe. This value correspontitn (M,/3)*2, whereM, is the
second Van Vleck moment of the NMR line. Measurements
of wo,.which is also a fitting parameter, are plotted in Eig. 5'Tm=T* exp(Ho/H*), T*=6x10"%, H*=3.6 Oe.

The difference betweeng and the Larmor frequencyH, is )
in agreement with the formulavy— yH o 1/H(2).

The timeT ,, derived from measurements around the fun-
damental NMR line is plotted in Fig. 6. In all experiments These measured value ©f, was obtained in polycrys-
T, was within 0.Z,. The measurements df,, were inde- talline samples and, apparently, is a value averaged over dif-
pendent of the temperature and composition of the residudérent orientations of grains. Let us estimate the width of
gas. This indicates that the spin—lattice relaxation is not imtheir distribution assuming that* ocM%’2 and taking the data
portant for the mixing of the Zeeman and dipolar subsystemsoncerning the second-moment anisotrbpwithout the
under these conditions. In order to check whether deuteriunmaximum of M, for Hg aligned with the hexagonal axis,
whose nucleus has spin 1 and a quadrupole splitting in th&15*/M5""=1.2. ThenT,,=400 s is a value averaged over a
ice lattice of 0.2 MHZ? has an impact on this process, we distribution with Th®/TM"=5_ This estimate clearly shows
experimented with samples containing ten times as mucthat single crystals should be used in measurements of longer
deuterium as natural ice. We have not detected an effect dimes of thermal mixing between Zeeman and dipolar sub-
deuterium concentration on the dipolar Zeeman cross relaxsystems.

C,
CF_ a F. b
0.8[ 0.87
0.4} 0.4} FIG. 4. (a) Parameter<Cr and tg versus fre-
[ [ quency obtained using E¢) and curves calcu-
0 N , ) 0 . N . ) ) lated by Eq.(5) fitted to these data:(@) T
160 180 200 220 340 360 380 400 420 440 =42 K (@) T=1.3 K. Measurements were
a1 [, kHz Y 1 f, kHz performed atHy=44.7 Oe,H;=17 mOe.(b)
l/'S’_S 'S’.S Measurements ab about 2v, under the same
° conditions, but aH; =120 mOe. The curves are
0.04} 0.04} Fo) calculations by Eq(6) with D and T, derived
’ ’ from curves ofCr andtg versus frequency plot-
0.02} 0.021 ted in the left panel.
0 . : L 0 " . N . :
160 180 200 220 340 360 380 400 420 440
S, kHz f, kHz
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T.s (w, - YH)! 21
10° st
102} *
10! 3
100 -
i o)
10°'E (o] 1 N L s LI
lo) 100 150 200 250
YH /27, kHz
3.0 ' 40 ‘ 5.0 ‘ 60 FIG. 5. Resonance shift®) with respect to the Larmor frequency mea-
1'10, Oe sured in strong hf fields.@) Values of (y/27)M, derived from NMR line

shapes. The solid curve is calculated by Bj.
FIG. 6. Time for mixing of the Zeeman and dipolar subsystems at various
temperatures and residual gas compositionsy 4.2 K, helium; ©) 4.2 K,
air; (@) 1.3 K, air; (x) 4.2 K, nitrogen; (black triangles 0.15% DO separate the lines around the fundamental and twice the
ing, 1.3 K, air. Th ight line i Iculati . .
doping, 1.3 K, air. The straight ine s a calculation by &) NMR frequencyg(w)=g;+g,. Given the shape of the fun-

damental lineg,, we calculated the resonant frequency

5. NMR LINE SHAPE
In magnetic fieldsH,<30 Oe the time for the tempera- w(’:f wgldw/ f 9:dw,

tures of the Zeeman and dipolar subsystems to equilibrate E?s shift with respect to the Larmor frequencyM = o
Do 1= wo

T,<0.1 s, and the tempe_ratures (_)f these two reservoirs in yH,, and the second momefib units of s )

the laboratory frame remain equal in the presence of a weak

hf field. The heating of the spin system by a weak hf field is 2
. . ; 4 Y*M,= | w?g;dw 01dw— wg.
characterized by a single time constiht? For H,<30 Oe 2 1 1 0

El'hrlls time c_onstan_t dcan q pe trr?_uch sthorte_thh'Ety_gk 10 fnt}l]n. .Integration was performed only over frequencies 0.
IS case IS considered in this section. The ime oT e SPIN - 1o ohift of the NMR line with respect to the Larmor

heating by a weak hf field, in accordance with E2). is frequency is caused by the nonsecular part of the dipole—
1 w2+ D? dipole interaction. This shift can be ascriBed an increase
= > (8 in the effective field acting on the spin owing to local fields
7y Hig(0) o perpendicular tdH,. For a polycrystalline sample with ran-

provided thatr>T(1+A2/D?). Measurements of the spin dom orientation of graing‘powder”)*!

heating by an hf field were performed in two cycles in order 2 M,

to get rid of the signal due to the walls, as was described in M1:§ .

the previous section. The hf field values were chosen to have 0

7~10 s near the resonant frequency and twice the resonaiihe measured line shift is close to the calculation by @y.

frequency andr=100 s on the edges of these lines. In this(Fig. 5. Equation(9) also accounts for the resonant fre-

case, one can neglect the spin—lattice relaxation. Plots afuency shiftw,— yHq derived from measurements in strong

1/7x w?g(w) for Hy=29.6 Oe are given in Fig. 7a. Let us hf fields.

9

Iz st N 9. arb. units x
+ +
+ . a
0.10F . 6
* 5r FIG. 7. (a) Rate of spin system heating by
the hf field transformed to a single hf field
+ 41 value H;=18 mOe;H;=29.6 Oe, T=4.2
F + K. (b) Shape of the fundamental NMR line,
0.05t + 3t Ho=29.6 Oe, (+, X) measurements ob-
' tained in two different runs. The solid line
+ ) shows the convolution of the Pake doublet
+ with the Gaussian.
l -
i *: ++,
0 ..1¢+1 A .,T-Ld-l‘*tl‘g't;h
0 50 100 150 200 250 300 40 80 120 160 200

f. kHz £ kHz
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TABLE I. can be estimated, assuming a sine-wave shape of the curve of
potential energy versus angle, using the following relation-
J9.dw/f9;dw :
ship:
o Calculations Gol(2w0) -
7o vi=v exp(—2+2IU/#h), 11
Ho, Oe 27 , kHz M,, O¢ by Eq. (10) Measurements 9i(wo) t= 1 expl . ) (12)
18 93 3.0 0,043 0,039 0.057 whgre _v,:ziol Hz is the freqyengy of librational
296 126 346 0026 0021 0027 Oscillationsi™ andl is the moment of inertia of the molecule.
447 190 - 0.011 _ 0.012 The barrier heighty can be equated to the activation energy

in the temperature dependence of protdhsin undoped ice
measured by Kunen the region of thermally induced rota-
tions for t>—40°C: U=0.44 eV. The calculation by Eq.
(11) yields »,~10"* Hz. It seems that such low frequencies

. The measurements &, and relative !lne ”.“te”s'ty near o tunneling rotations are also unimportant for dipolar Zee-
twice the Larmor frequency are summarized in Table 1. Our

measurements d¥l, are close to the valubl,=33.8 Oé man cross relaxation.
obtained in samples of polycrystalline hexagonalfc@he
relative total intensity of the line about twice the frequency
calculated for a powder by Cheffgs We have measured the times for cross relaxation be-
tween the Zeeman and dipolar subsystems for protons in ice
in magnetic fields ranging between 30 and 57 Oe. The cross
relaxation timeT ,, as a function of a dc magnetic field in the
interval betwen 1 s and &« 10° s is adequately described by
The calculations of this intensity by EGL0) are given in  Eq. (7). This result supports the theoretical predictidhat
Table 1. Measurements of this intensity are in agreementhe functionT,(H,) should be exponential in the limit of
with calculations by Eq(10). Note that, within the experi- |argeT,, for the dipolar Zeeman cross relaxation in a system
mental uncertainty, the relative total intensity of this line of spins of one type.
near twice the Larmor frequency equals the ratio between the  Qur measurements of the second moment are close to
peaks ofg, and g;, which was determined experimentally the data by Ripmeestast al.!* The measured shift of the
also in a stronger magnetic fietd. fundamental NMR line position and the intensity of the line
The hf fieldH, was calibrated using the area under thenear twice the resonant frequency are in agreement with the-
curve of (rw?) ™! versus frequency for the fundamental gretical estimatedt22
NMR line using Eq.(8) and the normalization condition One of the authorgl.S.S) would like to thank V. A.
Jg1dw=1, which is valid to within=M,/H} (see Ref. 11  Atsarkin for discussions of this work. The work is part of the
The shape of the fundamental NMR liféig. 7b can be  Magnetometeproject supported by the Fundamental Metrol-

approximated(Ref. 23, Ch. VI) by a convolution of the ogy R&D Program sponsored by the government of Russia.
Pake doublet, which describes a spectrum of a powder con-

taining pairs of spins with a fixed internuclear distance, and ag._iai: solodov@kapitza.ras.ru

Gaussian eXp-(w—wg)?/(2b%)]. This approach is used in de- "Deceased.

scribing shapes of proton resonance lines in crystal hydrates,

where the effectivgwith due account of molecular vibra- M. Goldman,Spin Temperature and Nuclear Magnetic Resonance in Sol-
tions interproton distances in the water molecule is taken ids, Clarendon Press, Oxford970.
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In the transverse geometry we have detected birefringence that is linear in the magnegc field
and the light wave vectdc in the cubic magnetic semiconductors,CgVin, Te (0=x<0.52).

The effect was found to be large,1 (deg cm* T1), and highly anisotropic, in contrast

to the Faraday and Voigt effects. The phenomenon is represented by terms of;tyBgk; in

the permittivity tensok;; and can be described by two parametérgndg. Spectral

studies have shown that the normalized parameétéxsandg/x are independent of, i.e., the
effect can be related to the ¥ih ions. Below the edgé&, of the forbidden band, the

dispersion ofA is described by aKy—E)~*“*dependence, while the dispersiongifs nil.
Theoretical analysis has shown that the spectral curve& #ordg can be explained by the special
features of the dispersion laws for electrons and h(flestures related to the fact that there

is no inversion centgrand by the dependence of the parameters of the exchange interaction on the
electron wave vector. €1998 American Institute of Physid$$1063-776(98)01809-5

1. INTRODUCTION optical phenomena associated with magnetically induced
] ) spatial dispersion in nonmagnetic semiconductors at low
In the past decade the magnetic, optical, and magnetooRsmperatures. Among these is the effect of magnetic field

tic properties of magnetic semiconductors have been Und?ﬁversior}l,lz and the bleaching, by a transverse magnetic

intensive study. The interest in these crystals is due, in parﬂeld, of a crystal placed between crossed polarii%i'é.

t'CL."ar’ to the huge value_s of the_ magnetoopznc I:aradayThese phenomena were observed in CdS, CdSe, and GaAs in
Voigt, and Kerr effects, circular dichroism, €f¢ These : . ) . .
. the exciton absorption region. Up to now theoretical studies
phenomena have been studied by many researchers, but the*r . . . .
. . . . . Orf the microscopic mechanisms have been limited to allow-
microscopic nature in many cases remains open to d|scusr—] for terms in the exciton or polariton dispersion law that
sion. For instance, the interpretation of the contribution of "9 P P

band-to-band transitions to the Faraday effect meets with &€ linear ink and B (Refs. 13-1% It is known, however,

rious difficulties®® since the observed spectral curves differthat the action of an external magnetic field in magnetic

substantially from those predicted by the thebfy. semiconductors is substantially enhanced by sped ex-

The Faraday, Kerr, and other effects, which are linear iffhange interaction, which leads to anom?'OPS'yzh'gh values
the magnetic field3, can be described phenomenologically ©f the Faraday effedtiinear in the magnetic f'ew' and of
by an axial tensor of rank 3, which is allowed in crystals of e Voigt effect(quadratic in the magnetic f|elﬁ One can
all classes and in disordered media. However, many magiSsume that the size of thieB-effect in magnetic semicon-
netic semiconductors, such as,Cdvin,Te, crystallize into ductors is somewhere in the middle between the size of the
a noncentrally symmetric cubic structure of the zinc-blendegffect in dia- or paramagnetic materials, where it is small,
type (8m), and when a magnetic fielg is applied, the aqd that in magne_tlcally ordered crys'FaIs, Where_ it is deter-
phenomenon of magnetically induced spatial dispersion rehined by strong internal exchange f'e|f|é5 and is therefore
lated to the bilinear terms of thiee; = v, kB type in the sufficiently large to studyiln experlmerﬁ.%.‘. Below we also
permittivity tensore;; (k is the wave vector of the lights show that thekB-effgct is more sensitive to the electron
permitted. One example is nonreciprocal birefringeftbe ~ Structure of magnetic semiconductors than the Faraday ef-
kB-effect. One characteristic of any noncentrally symmetricfect, which suggests that by studying the dispersion of the
crystal is that the axial tensoy;y, is symmetric in the indi- kB-effect we can extract detailed information concerning the
cesi andj (Refs. 8-10. Since thekB-effect is a spatial band structure, especially the asymmetry of the bands.
dispersion effect linear iR, far from excitonic resonances it These and other ideas served as a basis for our present
has an additiona(in relation to the Faraday effecemall  research, in which we study, both theoretically and experi-
parametea/\, wherea is the interatomic distance, andis  mentally, optical phenomena associated with magnetically
the wavelength in the medium. induced spatial dispersion in the magnetic semiconductors

We know of only a few publications that report detecting Cd; _,Mn,Te. Since the experiments of lvchen&bal'® and

1063-7761/98/87(9)/10/$15.00 553 © 1998 American Institute of Physics
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Y [110]
B X [1.0] Rotation of crystal through 180° about axes
S —
k
Z I} [001] X Y 7

FIG. 1. Cross section of the indicatrix in the
laboratory system of coordinateXYZ for
k||[110] andB||[001] (a), and its variation under
180° rotations of the crystal about thé axis
(b), the Y axis (c), and theZ axis (d).

kil [110] kil {110] ki [110] kI [110]

a b c d

Gogolin et al,}* based on measurements of the intensity ofdinal geometry k||B), the Faraday effect is present, and in
the light that has traveled through crossed polarizers, cannokansverse geometnk( B), the Voigt effect. The contribu-
strictly speaking, conclusively prove that the observed phetion of magnetically induced spatial dispersidor the

nomenon is odd irk and B, in this work we pay special kB-effect to the permittivity tensor has the form
attention to substantiating a method that makes it possible to

obtain direct proof that this is indeed the case. In this method &} = ¥iji Bkki

the measured quantity is determined directly by the product _ _ _
kiB;, and a change in sign of either of the vectors changes AlByl—Bale) - 8(Bdy=Byla)  B(Bal—Byky)
the sign of the effect. We present the results of measuring the
field, angular, spectral, and concentration curves for birefrin- 9(Bkx—Bukz)  9(Byk,—Bzky)  A(Byk—Byky)
gence linear in the magnetic field and for the Voigt and Far- @
aday effects. The experimental data on kieffect are in-

terpreted by a theory that takes into account the specigyhere thex, y, andz axes correspond to the directigi€0],
features of the dispersion laws for the conduction anqp10], and[001] in the crystal. This contribution leads to
valence-band electrons, and the dependence of the exchangigefringence linear in the magnetic field, which occurs both

= g(Bxky_ Bykx) A( szz_ Bxkx) g( Bykz_ szy)

parameters on the electron wave vector. in the Faraday geometry and in the Voigt geometry. Obvi-
ously, in the Faraday geometry the linearly induced birefrin-
2. PHENOMENOLOGICAL APPROACH gence, being a higher-order effect, leads to a relatively small

The permittivity tensor for a dia- or paramagnetic crystal€lliptiCity compared to the Faraday rotation of the polariza-
in an external magnetic field, with allowance for terms up tion plane. In the Voigt geometry there is no Faraday effect,

to the second order iB andk, can be writtef2° and thekB-effect and the quadratic Voigt effect are of sec-
0 ond order and lead to birefringence that can be accurately
Agjj=sij + aij Bt Bijkit vij Bk separatedas shown beloyinto individual contributions by
+ 1Kk + i BB (1) using their differing symmetry properties and differing mag-

o o . o netic field dependence.
Wheresij is the permittivity tensor in zero magnetic field and Below we analyze the most important cases of variation

without spatial dispersion. Hergjj, viju, and wi are  of the optical indicatrix wher:; is taken into account.
polar tensors and;;, andy;; are axial tensors. In the trans-
parent region the tensar;;, describes the Faraday effect,
Bijk the optical activity,y;j the effect of magnetically in-
duced spatial dispersiofthe kB-effect, v;;, the Lorentz
birefringence, andk;;,, the quadratic Voigt effect. The com- The tensor} can be reduced to principal axes by a 45°
ponents of the tensoksj, , viji » anduij can be nonvan- rotation about the axis (X||k) and a 45° rotation about the
ishing in crystals with any symmetry, while the componentsx’ axis. The principal directions of the indicatrix ellipse are
of Bjj can only be nonvanishing in non-centrosymmetricoriented at 45° to the direction of the magnetic fi@ldFig.
crystals with optical activity. The tensof;,, is nonzero in  1g. The amount of birefringencan=gBkn, i.e., it de-
any non-centrosymmetric crystal. pends only on the parametgt Let us assume that in the

Let us examine the change in the optical properties of daboratory system of coordinatésY Z, k points in theX
crystal of the 8m class induced by a magnetic field. Optical direction andB in the Z direction. Using the transformation
activity is forbidden, so that changes in the optical propertieproperties ok} , we can show that a 180° rotation about the
are determined by the tensag , wij, andy;j The ten- X andY axes results in a 90° rotation of the principal direc-
sor a has only one componeng, has three components, tions of the indicatrix(Figs. 1b and 1 while a rotation
andy has two:A= y,,,y andg= y,,, (Ref. 19. In longitu-  about theZ axis does not alter these directiofi§g. 1d.

2.1. k||[110] and B||[001]
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Y1 [001]
B X[ Rotation of crystal through 180° about axes
=
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FIG. 2. Cross section of the indicatrix in the
[001] laboratory system of coordinateXYZ for
k|[[110] andB||[110] (@), and its variation un-
der 180° rotations of the crystal about tHexis
(b), the Y axis (c), and theZ axis (d).
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[110]
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a b c d
2.2. k[[110] and B||[[110] does not change @=1. ForQ+# =1, the rotation of the

indicatrix is nonlinear with respect to field rotations, and the

¥ _
The tensorefj can be reduced to principal axes by aellipticity depends on the direction &.

single 45° rotation about the axis. One of the principal

directions proves to be parallel to the magnetic fiBldand

the other is perpendicular tB (Fig. 239. The amount of 2.3. k|[111] and B.L[111]

birefringenceAn=(3A+ 2g)Bk/4n is determined by the pa- In this case the principal directions are oriented at an

rametersA andg. A rotation of the crystal about théandZ  angle of 45° when the magnetic fieBl is parallel to the

axes leads to a rotation of the principal directions of the[112] direction. WherB is parallel to[110], one of the prin-

indicatrix (Figs. 2b and 2j and a rotation about th¥é axis  cipal directions is parallel t8 and the other is perpendicular

does not change these directioff§ig. 20. Note that the to B. In both cased\n=(A+2g)kB//6n.

above changes in the orientation of the indicatrix are due to  The presence of symmetry elements can lead to a situa-

the linearity of the tensoAe} in k andB, and can be in- tion in which an effect is forbidden in certain geometries. For

voked as experimental proof that the effect is oddkinmhe instance, théB-effect is forbidden ifk is parallel to a four-

reversal of the sign of the effect upon reversal of the sign ofold symmetry axis, say of thgl0Q] type. If B lies in a

B proves that the effect is also odd reflection plane perpendicular to the crystal surface, the in-
A 90° rotation in the(110 plane from thg001] axis to  dicatrix axes will be oriented at an angle of 45° to the field.

the[110] axis forces the principal directions of the indica- If B is perpendicular to this plane, one of the principal direc-

trix to rotate by 45°. The dependence of the rotation aggle tions of the indicatrix will be parallel t&, and the other will

of the principal directions of the indicatrix on the directién be perpendicular t&.

of the magnetic field is given by In the presence of the quadratic Voigt effect, variations
cot 2= Q tang 3) of the optical indicatrix induced by the field are more com-

' plicated. Nevertheless, as we show in Sec. 3,kBeeffect

whereQ=(3A+2q)/4g; this is depicted in Fig. 3 for vari- and the Voigt effect can be separated.

ous values ofQ. At Q= =1 the principal directions of the

indicatrix rotate through half the deviation of the magnetic3 MEASUREMENT METHODOLOGY

field from the directiori001]. The ellipticity of the indicatrix . , ) .
The optical layout of the experimental setup is depicted

in Fig. 4. Light from the sourcéa helium—neon laser with

¢ A=0.633um or an ALO;:Ti laser withA=0.7—0.83.m)

135 ko) travels through a polarizer, through the sample in the gap of
1 @=-i0 /' ................ an electromagnet in whicB 1 k, a quarter-wave plate, a Far-
e A aday modulator, and an analyzer, anending up at a photodi-

_ J ode. Such a layout is commonly used to measure
45ef...===';9;‘§;;:::" cot2¢ = Qtan@ birefringence?® and the polarization of the light after the
‘\\ polarizer must be parallel to one of the axes of the quarter-
ol — L Q=10 wave plate and form an angle of 45° with the principal di-
\ G rections of the cross section of the indicatrix. The angle of
: \\ o1 rotation of the analyzer corresponding to extinction is deter-
-45 e 4‘5C 96“ "““1‘352 180’, mined by birefringence and is half the phase shift between
] linearly polarized normal waves.

_ L Two geometries were used in our experime& and
FIG. 3. Dependence of the azimuthal angleof the principal indicatrix

direction on the directiofangled) of the magnetic field for k|[110]. The ~ EB=45° (Figs. 4a and 4p In the E[|B geometry(Fig. 43,
values ofe and # are measured from tH©01] direction. the input polarizatiorE, is parallel toB and the principal
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Sample Synchronous
0< 8<360 detection circuit
FIG. 4. Experimental setup for measuring the
EIB EB = a5 kB-effect. The mutual orientations of the magnetic
(170 \ [170] field B, the input polarizatiorE, of the light, the
kIIB [110] 4 kiiB [110] 4 principal directionsD; andO, of the quarter-wave
0 7 plate, and the output polarizatidty of the light are
o ——\/' E, depicted in the Iov\ie\r half of the figure in the geom-
\\\\ 24/ - etriesE|B (a) and E B=45° (b).
\\\\\ /I
-B I/’ \\\\\\ ?B 0] VA
/’I \\\‘ﬁ
/ [001}
a b

directionsO; of the quarter-wave plate. In this case there isferent angles of incidence. The refractive indewas calcu-

no quadratic Voigt effect, since its principal directions arelated by the Fresnel formulas.

parallel and perpendicular 8, but birefringence induced by The parameters of Gd,Mn,Te single crystals =0,

the kB-effect is present. In thEB=45° geometry(Fig. 4y,  0.25, 0.35, 0.42, and 0.52) used in our experiments are listed

the input polarization and the axis of the quarter-wave platén Table I. Eg was calculated using the formulas given in

is oriented at 45° td3. In this case we have both the Voigt Ref. 1, with the values of the cell parameters taken from

effect and thekB-effect, in whose geometry the axes are Table I. The samples were cut in tiE00), (110, and(111)

parallel and perpendicular t8. What is measured in both planes and polished down to3x 0.7 mn? plates. The ori-

geometries is the rotatiom of the output polarizatiofc, of ~ entation of the samples was determined radiographically by

light that has traveled through the crystal sample and théhe Bragg reflection method. To check for crystal defects and

guarter-wave plate. the presence of twinning and aggregates, we studied the
The crystal could be rotated in the gap of the electro-Laue diffraction patterns in reflected light. Note that since

magnet about an axis in the directionkgfwith its azimuthal the kB-effect is anisotropic, the presence of twins or aggre-

angle varying in the €& #<<360° range. It could also be ro- gates can weaken the observed effect and distort the nature

tated 180° about an axis perpendiculaBtandk and about of the anisotropy(e.g., the effect can show up in forbidden

an axis parallel toB. The magnetic field could be varied geometriesK|[100])). Spontaneous birefringenaen of all

between—1.5T and+1.5T. The magnitude of the linear samples was at most roughly<3L0™ .

birefringence due to internal stresses in the crystal and Lor-

entz birefringence was determined in zero magnetic field

The sensitivity in measuring the rotation of the polarization

plane was 10 The measurements were carried out at  For samples of typ€110) with E||B geometry, the ob-

T=294 K. We found it important to eliminate the Faraday served birefringence was linear in the magnetic field. As a

effect and magnetic circular dichroism resulting from slightresult of azimuthal rotation of the crystal about tKeaxis,

misalignments of the magnetic field relativekpsince these which was parallel t&k, the slope of the lineas (B) curves

phenomena are also linear in the magnetic field and can sulvas found to vary substantially. Figure 5a depicts the func-

stantially exceed th&B-effect. To this end, in both geom- tion «(B) at various azimuthal angle# for a crystal with

etries we measured the field dependence (@) without the

guarter-wave plate. The fact that there was no rotation of the

polarization plane indicated th& andk were strictly per- ~TABLE I. Parameters of the Gd,Mn,Te samples.

4. EXPERIMENTAL RESULTS

pendicular. . X Cell parameter, A E4 (300 K), eV
We studied the spectral dependence of the Faraday effect
and the absorption spectra for all crystal samples. The dis2-2> 6.449(1) 1.86
. N ; . . 0.35 6.435 1.99
persion of the refractive index was investigated in the transg,, 6.423 208
parency region by measuring the rotation of the polarizatior 5, 6.409 221

plane of light reflected by the surface of the crystal for dif-
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x=0.42 withA =0.633xm. The angle dependence at/JB metry plane normal to the surface. A 180° rotation of the
under a rotation of the crystal about tieaxis is shown in  crystal about th&Z axischanges the sign @fa/dB, while a
Fig. 1a. A 180° rotation about thé¢ axis changes the sign of 180° rotation about th& axisdoes not.
the derivative, and th&a/JB (0) dependence can be de- For samples of th€l11) type, the angular dependence of
scribed by a combination of first- and third-order harmonicsthe slope of ther (B) curve, i.e., theda/dB (6) dependence,
cos and cos®. The effect disappears &{[110], when the  whose contribution is linear iB, is described in both geom-
magnetic field is perpendicular to the symmetry plane noretries,E|B and EB=45°, by the third harmonics.
mal to the sample’s surface. The slope of thgB) curve Note that the observed patterns, which are linear in the
changes sign when the crystal is rotated 180° aboutYthe magnetic field, cannot be linked to the Faraday effect or
axis, and does not change when the rotation is abouZthe magnetic circular dichroism, even in conjunction with spon-
axis. taneous linear birefringence. There are several facts that sug-
In theEB=45° geometry, thex(B) field dependence for gest this:
crystals of thg110) type are asymmetric with respect to the 1. The Faraday effect and magnetic circular dichroism in
valueB=0 and are described by the sum of the contributiona cubic crystal are isotropic. Indeed, it has been established
guadratic and linear in the magnetic field. Figure 5b depictsn experiments that in Gd ,Mn,Te crystals the size of the
the functiona(B) at different values of the azimuthal angle Faraday effect is independent of the directionkodvith re-
0 for a crystal sample witlk=0.42. In all crystal samples the spect to the crystallographic axes. Hence all possible spuri-
contribution quadratic in the magnetic field is, within experi- ous effects associated with a combination of the Faraday
mental error, independent of the direction®fwhich indi-  effect and spontaneous birefringence are described by the
cates that the Voigt effect is isotropic. This is certainly not aeven harmonics of the angeand do not change sign when
trivial result since cubic symmetry allows for an anisotropicthe crystal is rotated 180° about tiXeaxis.
Voigt effect. The contribution tax(B) that is linear in the 2. Rotations of the polarization plane due to the Faraday
magnetic field depends on the orientationBxf Figure 6b  effect, which are related to the fact thBtis not exactly
depicts the angular dependencedef/ /B. The effect disap- perpendicular tk, cannot lead to a rotation of the polariza-
pears when the magnetic field is perpendicular to the symtion plane after the light has traveled through the quarter-

Fa °
EB =45

2.0r

1.5r
- 1.0f
,!__ 0.5 FIG. 6. Rotational anisotropy of the
g v P kB-effectin Cd_,Mn,Te (x=0.42) in the
[5) Q 3 ° X o X X
2 ok270° = L { (‘\\\\\\\\\\\\\‘ 90° geometrieE|B (a) and EB=45° (b). Solid
© 0 y 75 . BN \\\\\\\\ curves correspond to calculated dependence.

- '5_ ¢ K

3 \ '
S ior

1.5¢

2.0



558 JETP 87 (3), September 1998
a

6 EIIB
sbocx= 0.25

« x= 0.33
4l v x=04 e

s x=052 6= 60
3-
2.
l.

(da/dB)x, deg cm™ T

— N W s N~
LA e e e e Aiade

1.0 08 06 04 02 O
E,-E, eV

—
[

FIG. 7. NormalizedkB-effect (Ja/9B)/x as a function oE;—E at extrema
of the angular dependence in the geometEgB (a) andEB=45° (b). The

inset depicts the concentration dependence a#/{B)/x for (E4—E)
=0.45eV.

wave plate. Such rotations lead to changes in ellipticity,
which do not show up in the adopted measuring methodo

ogy

aday effect, have an extremely small influence ondh@)
dependence in both geometries.

3. It has been established in experiments that rotations
the magnet through angles of about 1°, which lead to a Fa

Figures 7a and 7b depict the normaliz&®B-effect

(daldB)Ix as a function off,—E in both geometriesk||B
andEB=45°, whereE is the band gap ané is the phono

n

energy. The measurements were made at anglesrre-

sponding to the extrema of the angular dependence of thé¥/@B vs. (Eq—E) curves in Figs. 7a and 7b are depicted in
kB-effect (see Figs. 6a and BbThe inset in Fig. 7 depicts Fig- 8a. The spectral curves fé/x andg/x indicate that the

the concentration dependence of #B-effect, a(x), at Eg

—E=0.45eV, including data on undoped CdTe<0). The .
refractive indexn of Cd,_,Mn,Te in the transparent region =1.1eV to 11.8 at=,—E=0.1eV. The anisotropy of the
is close to 3, and was found to vary by 10 %in the spectrakB-effectincreases as the differeriég— E decreases, and as

range being investigate@ee Table ).

5. DISCUSSION

Our results clearly show that €d,Mn,Te crystals ex-
hibit a nonreciprocakB-effect, which is described by the cause they make it possible for the first time to compare the
tensory;j in (1). This is suggested by1) the linear depen-

TABLE Il. Refractive index of Cd_,Mn,Te crystals.

Krichevtsov et al.

dence ofa on the magnetic field2) the specific behavior of
the optical indicatrix when the crystal is rotated 180° about
an axis perpendicular to botB and k and about an axis
parallel toB; and (3) the azimuthal dependence af(B)
when the crystal is rotated about tKeaxis, which is parallel
to k (in particular, the change in the sign of the effect as
6— 0+ 180°). The behavior of the indicatrix under a rotation
of the crystal about th¥, Y, andZ axes is in full agreement
with the conclusions of the symmetry study in Sec. 2, and
proves that the effect is odd in

The angular dependence of th@&-effect was demon-
strated by two different approaches. The first, based on the
Jones matrix method, made it possible to calculate the angu-
lar and field curves forx(B) in the geometrie€E||B and
EB=45° in the(110 and(111) planes with allowance for
the Voigt effect and spontaneous birefringerae of about
5x 1075, The calculations showed that in this case, over the
range of field strengths used in the experiments, this depen-
dence on field and angle has no effect on contributions to
a(B) linear in the magnetic field. This provided an easy way
to separate the effects linear in the magnetic field from the
quadratic effects. The second approach, based on approxi-
mate expressions, made it possible to calculate the angular
and field curves forx(B) with allowance for spontaneous
birefringence and the Voigt effect for an arbitrary direction

jof k. In the (110 and (111 planes both approaches were

found to yield the same result. For an arbitrary directioR of

dheda(6)/9B dependence is described by first and third har-
jnonics in 6, whose amplitudes are determined Ayand g

and the direction cosines @t

We can calculate the dispersion of the parameteasd
g by using theda(E,—E)/dB dependence at the anglés
corresponding to the extrema of angular curvesAandg
in the geometrie&|B andEB=45°. The spectral curves for
the normalized parametefgx andg/x calculated from the

dispersion of the paramet€ describing the anisotropy of
the kB-effect is large:Q changes from 2.1 aEy;—E

we move away fronk, the kB-effect approaches the isotro-
pic caseQ=1.

Figure 8b depicts the spectral curves for the normalized
values of the Faraday effecFR/x) and the Voigt effect
(VB/x?). The curves in Figs. 8a and 8b are remarkable be-

value and dispersion of three different magnetooptic effects

E, eV
X 1.96 1.71 1.67 1.63 1.56 1.50
o* 3.05 3.00
0.25 3.22(2) 3.13(2) 3.11(2) 3.08(1) 3(@p
0.42 3.26(5) 3.05(2) 3.00(3) 2.99(2) 2.93(2)
0.52 2.97(2) 2.99(2) 2.85(5) 2.86(5)

*Note.Values ofn for CdTe from Ref. 30.
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_ 15 field B. The sign of thekB-effect can be determined only for
- an unambiguously fixed orientation of the unit cell in the
§.10— 1 laboratory system of coordinates. Note that this is a difficult
i task for both radiographic and neutron-diffraction methods.
9_ In principle, thekB-effect can be employed in orienting a
35 1 crystal if we use a standard sample.
I
< 6. THEORY
- 0 N The early theoretical work on theB-effectanalyzed the
o8t 1+ microscopic mechanisms involved in the excitdii¢ or
E T e intraband™??transitions, so that these results cannot be used
P of ] % to analyze our data. In accordance with the experimental
.z 4l 12 conditions E<Eg), here we theoretically analyze the
= - kB-effect that is the result of transitions from the valence
§ 2t Ng bandI'g to the conduction banilg.
= ) , oor? > Equation(1) shows that the tensoy;jy is the derivative
12 10 08 06 04 02 O of the permittivity tensoe;; (w,k,B) (Ref. 9 with respect to
EQ—E’ ev k| and Bk:
FIG. 8. Normalized paramete/x andg/x and the normalized values of 47h? J {Jisq rg+ k(k)J£q+k sq( —k)
the Faraday.effectF(R/x) and the Voigt effect \YB/x?) as functions of Yiikl = "= : — _
(Eg—E). Solid curves correspond to calculated dependence. E°V akl 9By r.s.q EFQ+|< ESq E

: 4

. Jtqrsq(K I rqi(— k)}
k,B—0

Erqx—EsqTE

across a group of crystals that have differing concentrations
x. The Voigt effect is approximately a thousand times largetwhereV is the crystal volume;=+1 ands==*1,*+3 label
than thek B-effect. Near the edge of the forbidden band in athe states of the bandg; andI'g, respectively, and(k) is
magnetic fieldB=1 T, thekB-effect and the Voigt effect are the Fourier transform of the current operator.

approximately of the same size, but as we move away from  1q calculate the tensoy we must take into account the
the edge, the Voigt effect decreases much faster than theyncentral nature of the crystal’'s symmetry and the external
kB-effect and atE,—E=0.3eV can be ignored. Eunsoon magnetic field. However, if we allow only for the second
et al® studied the behavior of the Voigt effect at low tem- factor, we can calculate the spectrum and wave functions of

pfefratures. As the tergpe?tllgrcla(Qer_:reases, the S|z|e of ;[]he Vogh electrons only numericalff. When we calculatey, the
z e(;:t'lncre‘le\ses, arr: at__ 294:2'5 approximately a hun- problem becomes even more complicated because in addi-
red times larger than at= : tion to the magnetic field we must take into account the

The dependence of the normalized paramefdssand 1, oniral symmetry of the crystal. Nevertheless, the most
g/x on E4—E for crystals with different manganese content. R LA
“fit” universal, i.e., x-independent, curve$ig. 83. Univer- important characteristic o, the frequency behavior of

sal curves are also a characteristic feature of the normalizeﬁ;}earEg' can be determined knowing only the dependence of

Faraday effecER/x and the normalized Voigt effedtB/x2 e electron energy and the matrix elements of the current
operator org near the center of the Brillouin band.

Fig. 8b). The existence of universal curves indicates that for . . .
(Fig. 8 We take into account only the first term (4), since the

a fixed difference E;—E the Faraday effect and the ) A ]
second term yields only a contribution to that is weakly

kB-effectare linear irx and the Voigt effect is quadratic i . e
The fact that thekB-effect is a linear function ok and the frequency-dependent and therefore is negligible near the ab-

fact thek B-effect in undoped CdTe is tens times smaller thanSCrPtion gdge. Fo.r the same reason we calculate only the
in crystals with manganese are indications that theMn most rapidly varying contributiongwith frequency to y
ions provide the leading contribution to th@-effect. nearEgy, which emerge in the process of differentiation with
The dispersion of the three magnetooptic effects in théespect td andBy . In particular, we ignore the dependence
different samples can be described by the functient(E, of the matrix elements of the current operator on the mag-
—E) ™", whered, t, andr are parameters. For the normalized netic field, i.e., in(4) only the energy denominator is differ-
componentA/x we have r=1.4, for the Faraday effect entiated with respect tB,. Here we use the dependence of
r=1.5, and for the Voigt effect=3.5. The off-diagonal the band energies, ., andEg onB in the limit whereB is
componentg/x depends very weakly on the frequendy ( small. Under such conditions the magnetic field leads to an-
=0). For A/x we haved=2.0x10"" um T ! and forg/x isotropic splitting of the bands of light holeth() and heavy
we haved=1.1x10"" um T %, while for the Faraday and holes fih) and to isotropic splitting of the conduction band

Voigt effects we havel=0. (0) (see Refs. 23 and 24
Note that the overall sign of thieB-effect is undefined AE;(q,B)=*b\4—3 co2 6, ®)

even if we know the type of plane from which the crystal has
been cut, the direction df, and the direction of the magnetic AEnn(g,B)=*=3b cosé, (6)
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AE.(q,B)==*3a, (7) ting of the valence band exhibits the same frequency depen-
dence as the corresponding contribution from the conduction
whered is the angle between the electron wave vegtand  band.
the average spin vector of Mh ions, or(S"). The con- The lack ofg-linear splitting of thel's band means that
stantsa andb are proportional t&" ((S'")|z) and describe we must take into account thglinear terns in the matrix
the exchange interaction of Mh ions and band electrorf8:  elements of the current operator (). For the band-to-band
transitions considered here, the electron velocity opergtor
a=—Noa(S™x, b=—NoB(S"x, (8  which enters into the current operatdi(k)=e(ve '

_ _ _ +e Tv)/2, has the form
whereN, is the number of unit cells per unit volume, aad

and B are the exchange integrals for the conduction and va- vi= \/§/ﬁ[PRi+iBSmean], (12)
lence bands.

As for differentiation with reSpeCt tk| s in addition to whereR is the po|ar vector Operator in thEF ,\IIF basisl
aIIowing_ for the dependence of the eIectror) energy in theSinm is a completely symmetric tensor, aﬁ’da;stare the
conduction bandEe g, we must aiso allow irt4) for the Kane parameters, witB representing the fact that theih
k-dependence of the matrix elements of the current opera\to&'roup has no center of inversion. An estimate of the contri-

i.e., we must differentiate with respect g not only the . > of th d he riaht-hand side of E
denominator but also the numerator. Let us consider thg’u'[Ion toy of the second term on the right-hand side of Eq.

problem in detail. (1) yields a frequency dependence of the componentg of
In crystals with a zinc-blende structure there is qo similar to the one obtained earlier. Note that since there is no
linear splitting of the conduction band; the effect of the non-linear splitting of the conduction band, we must allow for the
central symmetry of the crystal, which manifests itself onlyd-linear terms in the velocity operatét1).
when one allows for spin—orbit coupling, is described by ~ The fact thag=0 is obviously the result of ignoring the
terms starting with the one that is cubicqr?® Furthermore, ~ Weakly frequency-dependent terms(#). At the same time,
there is nog-linear splitting of the band in a magnetic field it agrees qualitatively with our experimental da_ta, according
either, i.e., the dispersion law for the conduction electrond® Whichg is weakly frequency-dependent and is small com-
does not contain a term bilinear mandB (see, e.g., Ref. Pared toA, especially neak,.

26). The derivativedE.(q)/dq, which appears if4) when .Note that tha.nks to the terifi0), the effective Hamil-
we differentiate the energy denominator with respeckto tonian of an exciton coupled to the valence band and the
has the form conduction band containg-linear terms and terms bilinear
in q andB. This leads to the same frequency dependence of
JE;q 1% A and g (~(E-E.) 2 in the excitonic part of the
Sq - 8of(q), 9  spectrumt*

The frequency dependende~(E,—E) *2 calculated
wheref is a quadratic function off, and &, is the inversion above proves to slower than that obtained in the experiment,
asymmetry parameter, responsible for the spin splitting oA~ (Eq—E) ™" A similar situation emerges in the interpre-
the conduction band. Integrating, we see that the contributiotation of Faraday-rotation experiments in,CgMn, Te (Ref.

t0 Yuxyy=A proportional to 5, varies nearEy as (g 4), where the dependence of the rotation angle observed near
—E)*ﬁ, while 7,,x,=g=0. Note that the valence electron Eq, ¢~(E;—E)~ %% proves to be much more rapid than
energy in(4) does not depend on the photon momentam that given by theoryg~ (E,— E) ~*? (Ref. 6), and observed
For this reason the derivativéEg,(q)/dq; does not appear in cubic nonmagnetic semiconductdeee, e.g., Ref.)7

when we differentiate with respect kp in (4). Nevertheless, Hugonnard-Bruyee et al* show that this discrepancy
the g-odd splitting of the valence band determines the ordebetween theory and experiment can be removed if one allows
of the singularity of the integrand if#) and has a profound for the dependence of the exchange integeatsnd 8 in (8)
effect on the corresponding contribution Jo This splitting O the wave vectof? The extent to which this factor influ-

of the Ty band can be described by terms lineamjirisee, ~€nces the magnetooptic effects depends on theqgizé the

e.g., Ref. 27 thanks to the term region near the center of the Brillouin zone, wherand 8

do not change substantially. If in the above estimates of the

4 ) tensory we allow for the dependence ef and 8 on q,
AHu:ﬁCo[qX{Jx(Jy—Jz)}+C-p-] (100 assuming as in Ref. 4 that
in the effective valence-band Hamiltoni@mereJ is the ma- qé

a,B~ (12

trix of the angular momentum operator in the bdsg c.p.
stands for cyclic permutation, and the braces indicate sym-
metrization). In estimating the contribution of the linear then over the range of photon energies specified by the fact
splitting of the valence band, we must allow only for the firstthat the parametet= mchEg/ﬁqu(l_ E/E4)~1 is of order
term in (9). Calculatingy in the same approximation as be- unity, with m_;'=m_*+m;,, the behavior of the function
fore, i.e., keeping only the most rapidly varying tertmsth ~ A(E) changes frornAw(Eg—E)*l’2 for k<1 to A~(E,
frequency, we find that the contribution of thg-linear split-  —E) %2 for x>1.

95+9?’
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Note that the contribution of light holes to the magne-kB-effect has a very large dispersion, with the anisotropy of
tooptic effects in Cgl.,Mn,Te can be ignorefi. For the effect decreasing as we move away from the band edge.

Cd, _,Mn,Te, the parametemchEg/ﬁzqg is roughly 50(see We have shown that the spectral curvesAabtained in
Ref. 4), which in our experiment corresponds#&-1. If we  our experiments can be interpreted if we simultaneously al-
adopt this assumption, we obtain the dependence low for direct band-to-band transitions between the heavy-

_ap hole band and the conduction band, the dependence of the
A~(Bg—E) "5+d(B), (13 current operator on the wave vector, and the dependence of
whered(E) is a slowly varying function of the photon en- the exchange parameters on the electron wave vector. The
ergy, which takes into account the contribution of the terngparameterg is zero in the adopted approximation and re-
dropped in(4). This dependence is in good agreement withquires other mechanisms for its interpretation. Since inher-
the result of our experiment. What is important is that theently thek B-effect is due to the non-centrosymmetric nature
dependence o and g3 on the wave vector alters the behav- of the crystal, it can be used to determine the parameter
ior of the parameteA over a broad range of energiEsnot  describing the linear dispersion of electrons in semiconduc-
too close toE,. This sets it apart from the influence of the tors.
electron—hole Coulomb interaction on dispersion effétts,
which in theE<E,4 range shows up only ne&, where the
energy deficitEg—E is comparable to the exciton binding
energyR=10 meV. We are grateful to G. K. Averkieva for providing single
Note that despite the fact that neBy the frequency crystals and to N. F. Kartenko for doing the radiographic
dependence of Faraday rotation coincides with that of theesearch. The present work was supported by the Russian
kB-effect, microscopically they are quite different. Our Foundation for Basic Research, the Fundamental Spectros-
analysis shows that the spectral behavior of kBeeffect is  copy Program, and Deutsche Forschungsgemeinschatft.
sensitive to the nature of the dispersion of the electron bands,
Wh|le_ Faraday rotation is only weakly dependent on the dls-*)E_ma”: krichev@star.shuv.pti.spb.su
persion law. DE-mail: pisarev@star.shuv.pti.spb.su
Since the magnitude of thkB-effect is linear in the PE-mail: gridnev@star.shuv.pti.spb.su
inversion asymmetry parameters, it can be used to determine
these p.aramgters._However, solving _this problem requi.resl K. Furdyna, J. Appl. Phy$4, R29 (1988,
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We analyze the stability against parametric excitation of space-charge waves of the space-charge
field induced in a semiconducting crystal by a traveling light grating. We show that when

the grating velocity is low, an important element of the analysis is the allowance for higher Fourier
harmonics of the field. By combining analytic and numerical methods we study the stability
against an increase in the amplitude of small three-dimensional perturbations of a general type. We
find that instability is possible only within a single range of light-pattern velocities and that

it leads to selective excitation of one-dimensional perturbations. Finally, we use the results of our
analysis to interpret experiments on the generation of spatial subharmonics in sillenite

crystals. ©1998 American Institute of Physid$$1063-776(98)01909-X]

1. INTRODUCTION photoelectrons and is their lifetimg and the high strength
i . E, of the applied field. The parametric-resonance conditions

The existence of lightly damped low-frequency space-) js satisfied by proper selection of the detuniig Since
charge waves in semiconductors was predicted about a qugf; 5 space-charge wave, = (k-E,) ~*, the conditiong2) are
ter of a century agh? However, at the time the prediction o only if Q=40 . ’
was not directly corroborated by experiments and was soon o parametric instability theory linear in the space-
forgotten. Real interest in space-charge waves emerged UBRarge wave amplitudes and the contrasof the light pat-
expectedly in connection with studies of photorefractive pheigrp has provided an explanation for a broad range of ob-

nomena in cubic crystals of the sillenite family;B00,  served laws of subharmonic generation and has made certain
where R=Si, Ge, and Te. Experiments revealetthat when predictionst?~*4Among such predictions is the possibility of
the crystal is exposed to a traveling intensity grating, longitudinal splitting of the fundamental subharmor¢2
I=lg[1+mcogK-r—Qt)], ) and the broadening of the spatial frequency spect(see
Refs. 15 and 16 and Figs. 1b and.IEhe foundations of the

?n%er cerltlalln corr]1d|t||on_€e.g., mdt(he Eresence of an external ,jinear theory of parametrically excited space-charge
ield parallel to the lattice vectdk) there emerges a space- 2 s \ere laid down in a recent papein some respects

charge field characterized not only by a period that coincide'lshe theory is similar to the well-known theory of excitation
with that of the external field, 2/K, but also by fractional of spin waves in ferromagnet8
spatial frequenciesK/2, K/3, andK/4, i.e., double, triple, Parallel to theoretical studies, experiments on the excita-

and quadruple periods. An alternative way to EeXClteion of space-charge waves in sillenite crystals have been

subh?rmomds 'Sﬁto e(t? r;)ply an altherr:_at;]n% EIeCt”fC f|e_Id atha conducted. An intriguing experimental result was the detec-
Z€ro Irequency ofs etween the light beams forming the o, ¢ yransverse splitting of the fundamental subharmonic

|rr1]terferer|1cehpatte]rcm). _The shjbharmdonlcs aLe dPeteEteld Wf'fth K/2 (see Fig. 1din the scheme with a traveling intensity
the usual photorefractive scheme: due to the Pockels effect, 41920 g,ch splitting is inconsistent with the linear

:jhe spage;jg?fargg f|eldf |nhduces a change Ln thr? refrfactl\(e : heory of parametric excitation of space-charge waves, which
. %X’ and di raction of t Z dplljmplvl\./a;]/ez y t elre raCtIVe'predicts a reduction in instability as the transvefwéh re-
index grating generates additional light beaffiig. 1). spect toK) component of the wave vectoks , increases.

An explanation .of subharmonic generation was given in Recently, Pedersen and Joharfs&hhave attempted to
Refs. 9-11. There it was shown that the decayjmgramet- explain the transverse splitting. They focused on the

ric) nonlinear process determined by the resonance Condffequency-offset rang@ <4y, and in describing the ini-

tions tial periodic state limited themselves, as beftf&! to an
Q=owy twg, K=kitk; (2)  approximation linear in the contrast of the light pattern.

) o o o . This approximation yields a one-dimensional harmonic dis-
can lead to instability in the initial periodic state against anipytion of the space-charge field,

increase in the amplitude of a space-charge wave with wave
vectorsk, , and natural frequencie@klz. The requirement

that the damping of the wave be Iight, which is needed to
overcome the parametric instability threshold, is guaranteed
by the large value of the produgtr (u is the mobility of the  with an amplitude

E=Exexdi(Kz—Qt)]+c.c.,

1063-7761/98/87(9)/7/$15.00 563 © 1998 American Institute of Physics
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/ is this increase that gives rise to a new instability region at
/ e=1.
4 L] [ ]
- 7 l * In actual fact,Ex(e) reaches a plateau when>0.25

b due to excitation of higher spatial harmonics, which reduce
the efficiency of the of the parametric process. Moreover,
higher-order parametric processes specified by the conditions
for synchronismsQ = w, + we _ With s=2,3, ..., greatly
affect the evolution of weak perturbations. In particular,
these nonlinear processes may be resonant. Thus, the physi-
cal situation in the offset rang@ <4 wy proves to be much
@ w+Q o . more complicated than the situation fof=4wy. At the
same time, the increase Ky (e) and the effective genera-
d tion of higher harmonics of the space-charge field: atl
leaves some hope that the theoretical results of Pedersen and
Johanseft'?? and their interpretation of the transverse split-
ting of the K/2 subharmonic are meaningful, at least quali-
FIG. 1. (a) Experimental setup used to generate subharmonics of a travelinmtively_
light patte?, antd ttr;]e patternst_of Iigh:hon the slireekr;hplaced 'tggin(d t?r? crystal  |n this paper we give a consistent analysis of the stability
e e e SOk 2 0 e, of the it periodic soluton for a space-charge field over
the full range of the most important frequency offsets. Our
analysis takes into account the higher Fourier harmonics in
the initial periodic state and allows for three-dimensional
Eo small perturbations of a general type. Such an approach is
— 1 (3 necessary not only for an explanation of transverse
e "~ 1+iQx splitting—it plays an important role in determining the accu-
wheres = wy /Q is a dimensionless parameter varied in theracy of the analytic linear theory of parametric excitatfbit
experiment, and) is the Q-factor of a space-charge wave built for Q=4wy, which forms the basis of the nonlinear
with a wave vectoK (Ref. 11). Under these assumptions, at theory of photorefractive subharmonits.
Q=wy (i.e., ate=w,/Q=1) andm=1, a new region of A purely analytic or numerical study of the instability in
instability against parametric excitation of space-chargdhe general case is extremely difficult. However, a combina-
waves was found, and it was shown that in this region thdion of analytic and numerical methods can make the prob-
most easily excited waves are those with nonzero transverdém much simpler. The main idea of our analysis is as fol-
components of the wave vectors. This made it possible téows. First we numerically solve the one-dimensional
interpret the results of experimental observations of théoroblem of findingN Fourier harmonics of the space-charge
transverse splitting of thi&/2 subharmonic. field, which to high accuracy may be taken as the initial
Clearly, the approximation employed by Pedersen andperiodic solution. Next we analytically find the characteristic
Johanseft'??(which is linear in the contrash) breaks down 2N-by-2N matrix that links the Fourier components of a
whene=1 andm=1. Indeed, in this casfEx|=E,Qx/2 three-dimensional perturbation. The elements of this matrix
>E,, which defies common sense because the total fielgontain the instability growth rat€, the Fourier harmonics
inside the crystalE,+E(z), proves to be alternating and Of the initial space-charge field, and the longitudinal and
much higher than the applied field. Actually, the contrast-transverse components of the wave vector of the perturba-
linear approximation is applicable as long [&|=<E,; at tion. The condition that the determinant of this matrix vanish
Q=w (i.e., in the linear-resonance cashis is equivalent Yields a characteristic equation of degred 2or I'. We
to the constraintnSQ}Zl< 1. At higher values ofn, which solve this equation numerically to find the branch of the
always play a significant role in experiments, higher Fouriersolution corresponding to the maximum valueldf=Re I
harmonics of the fieldE with the spatial frequenciesk2 ~ and to study the dependence of this maximum value and
3K, ... become important, while the amplitufig rapidly ~ the wave vector of the perturbation.
decreases due to the nonlinear coupling with these Before analyzing instability we examine the properties
harmonicst:?3At =1 andm=1 the number of significant Of the initial dynamical equation for the space-charge field
Fourier harmonics in the initial state can be estimated to b@otential. We conclude the paper by discussing the results
Q; in sillenite crystals this usually amounts to GReéfs.  and the conclusions that follow.
10 and 11
A comment on the results of Pedersen and Joh&hé&n
is in order. What the two researchers examinefat4wy 2. INITIAL RELATIONSHIPS
(i.e., ate>0.25) was a first-order nonresonant parametric
process. The increase in the minim@imKk) relative distance
to a parametric resonancew(— ok k= Q) min/ A=4e—1,
with increasinge was balanced by a rapid increase in the
amplitudeEk (&) due to the approach of linear resonance. It E=-Vo.

="

K72
B ——

a

N3

EK:

Our study(and, for that matter, the analysis of Refs. 21
and 22 is based on the scalar dynamical equation for the
potentiale defined by
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That equation, derived in Ref. 11, describes processes in- le,l " i T 7
volving photoexcitation of electrons from deep traps, the /
drift of electrons in the fieldy+ E, diffusion, and recombi- 08 /'
nation, and has the form 7
® 1 12 0.6
V2p,— — V2= = V20i+ 0V, + = Vi,
IS |0 IO //
o
AT ot T G (g V) + V(T2
=T e 99T T E, (69 Vo) Ey (VoeiVe),
4)
whereV? is the Laplacianmy=go/N; is the characteristic . A .
frequency,N, is the effective trap concentration, is the 02 04 06 . 08

spatially homogeneous part of the electron photoexcitation
r,ate (thls quam'_ty can ea_SII_y be eXpre,SSEd |.n terms of thé\/:vith the results obtained in an approximation that is linear in the contrast
light's absorption coefficient and intensityly), &9 (dashed ling

=mg, cosKz—Ot) is the spatially oscillating part of the

electron photoexcitation rate, is dc dielectric constant of

the crystal,lo;=u7Eq is the photoelectron drift lengthHy 3. PERIODIC SOLUTION

= VkgTu7/e is the diffusion lengthkg is Boltzmann’s con-

stant,T is the absolute temperaturg~= ejEy/4meN; is the

IG. 2. Comparison of the exact solution for the amplit{eié (solid curve

Equation(4) admits of the one-dimensional steady-state
. : -0 : solution ¢(©(Kz—Qt) with the periodicity of the light pat-
screening length, and the subscriptandt indicate deriva- tern (1). The corresponding space-charge field has only a

tlve_f,r;vn? retstpectt to the Ior:gnuld;?il cc()jorq&natef a&n()j (tjlme. z-component. To satisfactory accuracy this field can be rep-
€ first two terms on the left-hand side of H4) de- o qopieqg by a truncated Fourier series:

scribe nondissipative propagation of space-charge waves,
and the third, fourth, and fifth describe the damping of the _
waves. The terms on the right-hand side characterize the ex- E= Eoszzo ese'*, (6)
citation of space-charge waves and nonlinear interaction ef- s#0
fects. If we drop these terms and assume thaexp(k-r  where £&=Kz—Qt, ande is the sth dimensionless Fourier
—lot—ydt), we can easily find the natural frequen®x  narmonic of the field. By solving Eq4) numerically we
and the damping constanf of a wave with wave vectok  found a sefeg(z)} and proved that this set corresponds to a
(Ref. 11 unigue physical solution. The latter is done by comparing the
results obtained via reduction of E@) to an algebraic sys-
=——— tem of nonlinear equations for the amplitudes and via
€oEok, temporal evolution of the fielE= — ¢, to a stationary state.
The solid curve in Fig. 2 depicts tHe;| (¢) dependence
calculated form=1, Eo=7 kV/cm !, a lattice constant
2m/K=20um, and ur=6x10"7/Vem 1. The dashed
curve corresponds t@®) obtained in an approximation that is
We see thatw, and vy, are proportional td,, i.e., theQ- linear in the contragh for the same values of the parameters.
factor of the waveQ,=|w|/ v, is independent of the light We see that foe <0.3 the curves are essentially identical. At
intensity. The maximum value @, (as a function ok and  the same time, foe=0.6 the linear approximation yields
Eo) is Q™= meNu1/ey. In the numerical estimates and gross overestimates ¢&,|. In actuality, |e;(¢)| reaches a
calculations that follow, we assume tha=56 and N plateau whens=0.4. Interestingly, neae=0.4 the solid
=10%cm™3, while w7 is varied over the range (4—8) curve lies above the dashed curve, i.e., the allowance for
x 10" " cm?/V 1. The adopted values agree with the data orhigher harmonics leads to an increase in the fundamental
sillenites taken from Refs. 24 and 25 and yi€@®=6-8. amplitudeEy .
The values of Q, close to Q™ are reached atE, We also note the presence of hysteresis=a0.39. Such
=6—-7kvVem?, k,=0 (k, is the transverse component behavior and the fact that the maximum is shifted from
of the wave vectgr and the wave's period 2k, e=1 toe=0.4 are due to the positive nonlinear frequency
=~15-25um. Note that according t¢5) an increase irk,  shift for a space-charge wavél?> As the productur in-
always leads to an increase i and a decrease Q. creases, the hysteresis and the shift of the maximum become
If we ignore the terms that are nonlinear ¢gnand g, more prominent.
Eq. (4) becomes the expressi¢8) for the time-independent Figure 3 depicts the dependencel@fl on the numbes
amplitude of the space-charge field. Elementary estimatefor different values ofe and the previous values of the ex-
show that nonlinear terms are negligible whigy|<E,. perimental and material parameters. Clearly, the number of
Equation (3) shows that ife<0.25, the above inequality significant harmonics rapidly increasessasgaries from 0.35
holds up tom~1. to 0.4. Whene=<0.25, the higher harmonics are extremely
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logle,l wherek, = (ky,ky) is the transverse component of the wave
vector of the perturbation, antl is the instability growth
rate. Thus, we arrive at a homogeneous differential equation
for u(¢), with the coefficients of this equation containing
o), T, andk, .

The amplitudeu(¢) can be written

u=eix€ D uge's'é (7)

where « is the dimensionless longitudinal wave number,
which takes values in the rand®,1], and N<20 is the
number of Fourier harmonics in the initial state that we wish
to take into account. The expansif#) is similar to the rep-
resentation for the Bloch function of an electron in a one-

0 5 10 15 20 dimensional periodic potential. In fact, it signifies that by
4 taking into account the perturbation of the initial state we

FIG. 3. Dependence of the amplitufie,) on the numbess for different ~ allow for spatial frequencie&(—N+«x)xk,, ..., K(N
values ofe. The curves have been drawn for better perception. —1+k)*k,. The absolute values of the longitudinal

components of these vectors are les thidiK. When

xk=1/2, the perturbation is the fundamental subharmonic,
small. Figure 4 depicts the dependence of the total #8Jd ynsplit or transversely split depending on whether or
+E(§ for m=1 and several values of (the curves were ot the transverse projectiok, of the wave vector is
obtained by summing the Fourier seri€). At e=0.25the g0,

(1). The increase in the contribution of the higher harmonicsye finally reduce the differential equation fot£) to a linear
with ¢ is accompanied by an increase in the asymmetrynatrix equation fous:

of the field's profile and a shift of the maximum in the
positive direction. Note that wher is very large, the (Csbsy —Asg)Us =0. (8

total field approaches zero near the right endpoint of thq_|ere555, is the Kronecker delta, and the coefficieftsand
interval.

A,y are

4. CHARACTERISTIC EQUATION

Co=[(s+k)2+ ]| —i(stk)v—(st k)’ +e—ie(stk)

To study the stability of the periodic solution found ear-
lier we write the potential asp= ¢+ ™), where ¢ 1 KIZ
is a small perturbation that generally depends on the vari-  XKls+ jq-[v=i(s+&) ]+ —[(s+ K)?+ 67]

? R s 0 0

ables ¢, r; =(x,y), and t. Linearization of the original
dynamical equatio4) with respect tap(*) leads to a homo- .
geneous partial differential equation. It is significant is X[v=i(s+ ")]}’ ©
that the coefficients of this equation depend &iithrough
(&) but not onr, ort. Hence in this equation we can

m
put Ass’:_8_(5ss’+l+553’71)[(3""()(3,""()"—02]

2
eM=u(§expik, -r, +Tt)+c.c., +eo o{(s—8)(s+K)(S'+ k) + 02]+(S+ )

X[(s'+k)%+ 0%](s' + k+iv)},
(Ey+ E)IE
2.0

where v=T"/Q, and =k, |/K is the dimensionless trans-
verse wave number. Note that the2limensional wave vec-
tor C, comes from the left-hand side of Ef), while the
matrix Agy , comprising the numerically determined ampli-
tudese;_, comes from the right-hand side.

The system8) has a solution if

de(Cedey — Ase) =0, (10)

1.6
1.2t
0.8

0.4

which is the desired characteristic equation for the instability
growth rate. This equation has\2branches of solutions for

I' as a function ok, «, andé. Generally, these branches can
FIG. 4. Spatial profile of the electric field within a single period for several D€ found only numerically. An analytic solution of the char-
values ofe. acteristic equation is possible only fof=1. A simplifying




JETP 87 (3), September 1998 Sturman et al. 567
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FIG. 5. T () atk=1/2, =0, andm=1 for different values oN. FIG. 6. Ty (¢) at m=1, k=1/2, and9=0 for different values ofur.

Curves1, 2, and 3 correspond, respectively, tar=4X10"7 cné/V 1,
6x10 "cm?/V~1, and 8<10 7 cm/V L,
assumption of this kind is only justified whens0.25, and

leads to the well-known analytic results on parametric exci- ) . . .
tation of space-charge wav&s!! substantial decrease iRy or a substantial change iK

leads to suppression of instability. &,=7 kV/cm ! and
2w/K=20um instability  disappears if wu7r=<3
X 10 "cm?/V L,

We solved the characteristic equati@®) numerically. Note that each curve in Fig. 6 consists of two sections
For each numbe and each set of parameters wy /Q), «, corresponding to the different branches of the solution of the
and 6=|k, |/K, we sought the branch of solutions with the characteristic equation. The transition from one branch to the
maximum possible rate of exponential growth of perturba-other occurs in the vicinity ot =0.38. Actually, the right
tions, I {=[ReT ]ha i-€., the branch with the highest in- (stablg sections of the curves are in no way related to sub-
stability. What follows is the result of our analysis. harmonic generation. They describe the damping of pertur-

We start by investigating instability against generationbations with high spatial frequencies, which are only weakly
of the unsplit harmonid</2, i.e., instability against period coupled to the pump wave. However, these sections show
doubling. In this case we limit ourselves to the one-that ate=0.4 subharmonic perturbations have even smaller
dimensional casef=0) and putk=1/2. Figure 5 depicts negative values of’.
the 'y, (e) dependence at7=6x10""cm?/V~! and m We now examine the dependence of the instability
=1 for several values dfl. As expected, whea<0.25(i.e.,  growth rate on the longitudinal wave number Figure 7
O =4wy), reasonable results are achieved even in the cordepicts thd 5, () dependence at=0 for various values of
text of the analytic theoryN=1). Anincrease ilN, i.e.,the &. For £=0.224 the curves have a single maximum at
allowance for higher spatial harmonics, yields only negli-x=1/2, while for £<0.224 the curves have two maxima
gible corrections to the growth rate. symmetric with respect ta=1/2. Such bifurcation agrees

The situation changes dramatically wher 0.28. Here  with the analytic theory?"*! and suggests that there may be
the analytic model witiN=1 breaks down and the growth symmetric longitudinal splitting of the fundamental subhar-
rate '\ (¢) rapidly decreases as the numbet of spatial monicK/2 ase decreases.
harmonics taken into account grows. Significantly, when  Curvel in Fig. 8 represents the dependence of the dis-
£=0.37 andN=6, the growth ratd’|, becomes negative. tance between the maxima on the parametand was ob-
Thus, there is only one frequency offset raritfee range of tained numerically aN=20 andm= 1, while curve2 corre-
values ofg) in which excitation of an unsplit subharmonic
K/2 is possible. The statement of Pedersen and Johansen that
there is a second instability region at large valuez d$ a
consequence of the unjustified assumptions made in Refs. 21
and 22. Figure 5 clearly shows how the nonphysical region
disappears adl increases. Note that the model wikh=4
provides an extremely accurate description of the growth
rate’s behavior over the entire subharmonic instability re-
gion, 0.22<¢=<0.37.

Figure 6 depicts the dependenceld, (¢) atm=1, « 0
=1/2, and#=0 for different values ofur. Clearly, an in-
crease inu 7 facilitates instability but does not alter our con-

. . . - . . -0.04 . . . . . : .
clusion that there is only one instability region. Neither 0.1 03 0.5 0.7 0.9
do variations of the applied field, and the lattice constant K
27/K in the vicinity of the values 7 kv/cm' and 20um  fig, 7. 'y, as a function of the longitudinal wave numberat m=1,
considered earlier lead to new qualitative results. A¢=0, andur=6x10"7 cm?/V~* for different values of:.

5. STUDY OF STABILITY

0.08

0.04f
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FIG. 8. Thee-dependence of the longitudinal splitting obtained numerically

(curve 1) and analytically(curve 2). FIG. 10. T}, as a function of the transverse wave numigeat m=1,

k=1/2, andur=6x10"7 cnm?/V "1 for different values of.

sponds to the result obtained by the analytic thegfy;- 4¢. _ _ o o
The basic distinction lies in the shift of the bifurcation point decreases, the role of higher harmonics diminishes signifi-

from £=0.25 to£=0.224, due to the effect of higher har- cantly, the accuracy of the analytic theory grows accord-
monics. The difference between the analytic and numericdngly, and instability weakens.

values is within the uncertainty of the analytic theory. ~ Finally, let us study the dependenceldf on the dimen-
Since the maximum in thE’ (k) dependence does not sionless transverse wave numiger |k, |/K. This is impor-

generally correspond toc=1/2, it would be interesting tant if we want to interpret the transverse splitting of the
to calculate the maximurtin «) value of '’ as a function of ~ subharmonid/2. Figure 10 depicts thE;, (#) dependence
the external parametee. The T, (&) dependence atm=1 andx=1/2 for different values of. The laws that
is the most important characteristic of instability in the follow from the diagrams are very simple. Whén(6=0)
one-dimensional case. The solid curve in Fig. 9 represent§ positive(or even slightly negative an increase id leads
the '}, (¢) dependence in the importantrange. The to a decrease it"’, i.e., does not facilitate instability; the
dot on the curve corresponds to the appearance of longitudiate of decrease of '(6) grows with ¢ in the positive
nal splitting. The growth rate reaches its maximum value agrowth rate region. Wherg(e) is large, i.e., when the
£=0.265. The dashed curve represents fHe(e) depen- growth rate becomes negative, the decreasE’ify) sud-
dence atk=1/2 in the splitting region. Clearly, allowance denly becomes saturated. Ror0.385,T"' is essentially in-
for splitting substantially shifts the left instability limit to- dependent o). The constantstable sections of the curves
ward larger offsetgsmaller values ot). in Fig. 10 are unrelated to the parametric excitation of sub-

By comparing the results of our calculations with thoseharmonics. As the rightnegative sections of the curves in
of the analytic theory®!!we see that the latter yields quali- Fig. 6, these sections represent the damping of perturbations
tatively (or even semiquantitatively correct results for With high spatial frequencies, which are only weakly coupled
£=0.25. In thes=0.25 range, where the consistent analyticto the pump wave. The possibility &' increasing withd on
theory breaks down and instability may still be very high, the lower branches of the solution of the characteristic equa-
numerical results are important in and of themselves. Recalion (8) cannot be ruled out, but for these branchés<0.
that allowance for 20 spatial harmonics is not necessary ityariation of the longitudinal wave numberand of u 7 does
the instability region: evetN=4 is sufficient for the above not lead to an increase i’ (6).
results to be accurate. Note that as the percent modulation

6. DISCUSSION

I a9k We believe that there are two basic aspects of the present
0.3 work that may be of interest. First, we have developed a new
method for studying the stability of high-contrast photore-
fractive lattices in semiconducting crystals against three-
dimensional perturbations. The method is capable of provid-
f ing a solution for the problem when a purely analytic or
l/' numerical approach is fraught with difficulties. Undoubtedly,
/ it can be used to study the stability of photorefractive lattices
/ excited by an alternating external field. This case is impor-
] \ tant for applications of the photorefractive effétt®and the
sz ‘ 03 * 04 higher spatial harmonics are no less important than when
€ traveling grating techniques are employed.
FIG. 9. The solid curve represents the dependence of the maxifnuk) S_econd' it has become clear th_at Pe(_jerlsen and Johans-
en’s interpretation of transverse splittfdg?is incorrect. A

value of the growth rate oa at N=20 and#=0. The dashed curve corre- A - ) > TH
sponds tok=1/2. consistent linear theory of parametric excitation of space-

0.2

0.1
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We study the collective oscillations in two-band superconducting systems with all possible intra-
and interband interactions for arbitrary values of carrier densjtyincluding low carrier

densities, whernw~A. Allowance for processes of scattering of an interband Cooper pair into an
intraband pair leads to the emergence of a new excitonic mode in addition to the
Bogolyubov—Anderson acoustic mode and an excitonic mode of the Leggett type. The presence
of a new order parametéy,,, in addition toA;; andA,,, and the asymmetric cutoff of

integrals lead to the mixing of fluctuations of the phases and amplitudes of the order parameters
of different bands. This mixing and the dependence of the order parametélg r@sult

in a strong dependence of these two excitonic modes on the carrier ddgsit® 1998 American
Institute of Physicg.S1063-776(98)02009-3

1. INTRODUCTION titatively but also qualitatively from those for a single energy
band. For instancel; studies done on the basis of the two-
After the discovery of highF, superconducting com- band model with allowance for topological transiti6h&
pounds, many models for describing the broad spectrum adind on the basis of the three-band médptovide an expla-
magnetic and superconducting properties of such compoundgation from the stepped dependence of this quantity on oxy-
were proposed. Studies have been carried out within the cogen content in YBgCu;0,_ 5 observed in experiments.

text of the phonon mechanism of superconductivityas Another interesting phenomenon characteristic only of
well as the excitoni€, hole/ plasmor}® magnetic'® and  multiband superconductors is the emergence of collective os-
other mechanismésee the review in Ref. 11 cillations of the excitonic type due to fluctuations of the

In addition to this, the model with two bands overlap- phases of the order parameters of different bahds.
ping at the Fermi surface has been widely used to describeeggetf® was the first to detect this phenomenon. He found
the superconducting properties of higlp- superconduc- that in two-band superconductors with the ordinary phonon
tors*?13 The thermodynamic, electromagnetic, and transportnechanism of superconductivity there emerges, in addition
properties of two-band superconductors have been described a Bogolyubov—Anderson acoustic mode, a collective
in two monograph¥'*® and in the review in Ref. 16. This mode of the excitonic type.
model and its various generalizations to anisotropic systems Collective oscillations in the three-photon model with
with singular points in the momentum space, which lead tahe phonon mechanism of superconductivity have been stud-
topological electron transitions, makes it possible to describé&d by one of the present authors in Ref. 31. In contrast to
a large body of experimental data on higph-supercon- Leggett's two-band modéf two excitonic modes and one
ductorst’=24 acoustic mode were found to emerge. Collective oscillations

An important feature of the two-band model is the factin two-band low-dimensional superconductors have been
that the superconducting transition temperatiligeis inde-  studied in Ref. 32, with both the phonon and the nonphonon
pendent of the sign of the effective electron—electron intermechanisms investigated. These two-band systems also re-
actionsV;j; (i#j). The theory can be applied to the ordinary vealed the presence of an excitonic mode in addition to the
phonon mechanism of superconductivity and to a nonphonoBogolyubov—Anderson acoustic mode in quasi-one-
mechanism. More than that, it has been established that evelimensional and two-dimensional superconductors.
if there is repulsion between charge carriers, both Tow- A nonmagnetic impurity in two-band impurity
superconductivity(Ref. 14 and highT, superconductivity —superconductofa=>®does not lead to a decay of the collec-
(Refs. 25 and 26are possible, provided thatllvzz—V§2 tive modes, but it facilitates the increase in the collective
<Q0. oscillation frequency with impurity concentration.

Numerous calculationésee, e.g., Refs. 27 and )28or- Collective oscillations in a two-band system with local
roborate the results of multiband theory and show that sewpairs in a Bose-condensate state have been studied in Ref.
eral energy bands can indeed cross at the Fermi surface 86. A single excitonic mode, in addition to a Bogolyubov—
high-T. superconductors. For instance, in YBasO,_s  Anderson acoustic mode, was detected in the system. How-
(Ref. 28 the number of energy bands crossing at the Fermever, in contrast to Refs. 30—35, where it is assumed that the
surface increases with oxygen content. collective oscillations are due to fluctuations of the phases of

It is important to note that the overlap of energy bands athe order parameters of different bands, here these modes are
the Fermi surface leads to results that differ not only quandetermined by the mixing of fluctuations of the phases and

1063-7761/98/87(9)/11/$15.00 570 © 1998 American Institute of Physics
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amplitudes of the order parameters of different bands. systems with a high carrier densitywhich considers only

We also note that the multilayer model of high- intraband pairing and transitions of a Cooper pair as a whole
T.superconductivity 3 is equivalent to the multiband from one band to another.
model. For instance, in studies of collective oscillations in ~ We introduce the two-particle Green’s function describ-
bilayered superconductdfs*! a Leggett mode of the exci- ing a density—density correlation:
tonic type was also detected. This mode is induced by fluc- B + N
tuations of the phases of the order parameters of different K(xayB)=(Tiho(X) ¥a(X) () 5(Y))- 2
layers. o _ The operatory,(x) is defined as follows:

As is known, in highT superconductors the carrier den-
sity may be of any value, including small valuegA,T, e
and u<wp, wWhere u is the chemical potentiald is the %(X):% U8k, () =Un(¥)e™ % (3)
order parameter, andp is the Debye frequengyWhen the
carrier density is low £~A), in the two-band model we Where ¢ (x) is a Bloch function in thenth band, and
must allow for all possible electron pairinfsin contrast to ~ Unk(X) is the amplitude of that function.

Refs. 12 and 14, where only intraband pairings and transi-  Perturbation-theory reasonifigsuggests that for the su-
tions of a Cooper pair as a whole from one band into anotheperconducting state the two-particle Green's function
are taken into account. Here were must discard the diagon#i(Xayp) is defined by sixteen vertex functions, which can
approximation in band indices, since in this mddeh, be found by solving four independent systems of equations.
~A41,A5,. In such systems all observable physical quanti-WVe §tart with the system of equations for the four vertex
ties become strongly dependent on the carrier density. Thiélnctions

temperature dependence of the chemical potential exhibits a 4 - - - -

break afT =T, (Refs. 43 and 44 Finally, the overlap of the I«-, I'-——, I'-—=, I'+-. (4)
energy bands in such a model lowers the upper limit at wh|cla].he “
this break disappears by a factor of two to three
(~5- 6 me\},*? which facilitates detection of this phenom-
enon.

In this paper we examine the collective oscillations in a
two-band superconductgwith two inequivalent layers; see
Sec. 4 with allowance for an arbitrary carrier density, in-
cluding the case of low carrier densityt{~A). This two-
band system can be effectively described as a pseudo-thr 6,14

onsidered!
bgnd mOde.KW'th the prder pqrametenslz, A1, andaz) If we now replace the remaining vertex functioRi8(a
with an arbitrary carrier density. =17, D) with their values on the Fermi surface,

The paper is organized as follows. In Sec. 2 we write the
system Hamiltonian, the basic equations for the vertex func-
tions and the order parameters, and the equation for the col- F%1m2m3m4(k): mym,msm, PF+ —Pet 35 5P3:Pa ]
lective oscillation frequency. In Sec. 3 we study collective (5)
oscillations at low frequencieswf/4A2<1) andk=0. In
Sec. 4 we discuss the main conclusions. Appendices A—
deal with the fine aspects of the calculations.

plus” and “minus” correspond to situations in which
an arrow points away from a vertex and toward a vertex,
respectively.

We can show that the functiod®(y="_, ;7) inthe
nk{)-representation enter into the system of equati@®
(see Appendix A with a total momentum far removed in
value from the Fermi surface. This fact makes it possible to
eé;nore these terms iMA3) in the BCS approximation

pe arrive at the following system of equations:
A+ ~ ~ A A+ — A A A==
r+-(k)=-V+VAKI+-(k)+VB(k)I'--,

2. SYSTEM HAMILTONIAN AND BASIC EQUATIONS

-~ (—K)=VA(— k)T~ (—k)+VB(— )T+~ (k), (6)
The two-band system is described by the

Hamiltoniart?~4 where
1 ik Tipdk) Tidk)
H=2 [en(k) = plafame =y 2 2 Vi - )
nko mpemy g2 Fe=| (k) Topdk) T'opndK) |,
x (k,—k’,—k,k"al m kTamz k| @mg —k’ | 8myk' 1 (1) 121K Tipdk)  I'54K)
whereaﬁkg anda,, are the creation and annihilation opera- Vi Viee Vi
tors for annth-band electron with spir and a qausiwave V= Vos11 Vapss Vooin] . 7

vectork, andvgﬂ“ are the intra- and interband interaction
172 s L Vi1 Voo Vizio
constants. The expressi@l) is a generalization of the BCS—

Bogolyubov Hamiltonian to the two-band case. Account isHere the matrigeéx(k) andB(k) are built in the same way
taken here of all possible methods of electron pairing withinas the matrice¥ “(k), with
each band and of pairing of electrons belonging to different

bands. Ifm; =m, andm;=m,, the Hamiltonian(1) is equal _ l 2 G

to that of the Moskalenko modér* (applicable only to ~ M™2™s™ MMz

®

msmy

q+§G —q+§,
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The formulas for the quantities i&”~ and J* are given in
Appendix C.

Using(14) to calculate the ratios of vertex functio(eee

The definitions of the one-particle Green's functions Appendix D), we obtain a formula for the collective oscilla-

Gmlmz(k) and lemz(k)(kz(k,w)) are given in Appen
dix B.

Note that in two-band superconducting systems with low

carrier density ft~A) (see Refs. 42—4%bne must allow for
the mean-field renormalization of the chemical potential:

= pn=p+ Sy, ©)
where
SnZKZm (vannm_vmnmrxa:-nkTaka)- (10

Moreover, the fact that such systems possess an additional

order parameterd;,~A;,A,, gives rise to off-diagonal
one-particle Green’s function&,, F1,~ G141, andF,, (see
Ref. 42. A A

For the new vertex functionEP" andT'2,

Ph= 1 (k) + T~ (—K),

Fa=T (k)—T(~k), (11)
we have

[Ph= —/+UE TP 112,

R N (12

Fa=—-V+VITPh+VvET?,
where

. A(K)—A (k) B(k)+B,(—k

2 (k)= 1(K) 2|( )i 1(K) 2|( ),

(K =A k) —A (=K =[B(k)-B|(—Kk)]. (13)

Introducing the matrixJ, the inverse of the interaction
matrix V defined in(7), we can write

R

i 0-F

1

)

1

14

where 1is the 3x 3 identity matrix. Note that the vertex
functionsI"P" and "2 are divergent when the>66 determi-
nant of the system of equatiofi$4) vanishes:

(19

0-%
Here for an arbitrary matriA we have introduced the nota-

tion |A]=det/A].
If we now replace the “imaginary” Matsubara frequen-
ciesiw— w with the real frequenciew, we arrive at an

equation for the collective oscillation frequency,
U-¢&" -1~ RT  —wl”
A ~ . |= . . =0. (16)
-1t uU-¢& —wJ* R™

tion frequency:

U-¢" —wd”
,\ . . |=0, (17
—wdt 0-}
where
=0 0 I 0 o0
g=l 0 & 0, == 0 J 0],
0 0 & 0 0 J;
ngu o
& =t s 26
1111 1111
1ﬂ1+111 o
& =Enprt Eins i 265
2211 2211
I‘1+111 T o1
&3 =&t Eoont Elnis— t s (18
1211 1211

The quantitiesJ;” are constructed frondy, o m.m, in the

same way as the;" .

Equation(17) gives us the frequency of collective oscil-
lations for a two-band system with an arbitrary carrier den-
sity, including the case of low carrier densityg A and u
<wp) at arbitrary temperatures. Actually, this is an equation
for determining the collective oscillation frequency for an
ordinary three-band system with order paramefers A,
andA 1, and reduced carrier density € wp) 314247

In ordinary superconductorué wp), i*=0. Equation
(17) separates into two independent equations, which deter-
mine the collective oscillations caused by fluctuations of the
phases|R"|=0 (the poles of the vertex functioris®" de-
fined in Eq.(11)), and amplitudes,R~| =0 (the poles of the
vertex functiond™? defined in Eq(11)), of the order param-
eters of the different bands.

In superconductors with low carrier densifyt,aéo. In
this case the collective oscillations mix and cannot be sepa-
rated. This leads to results that differ from those for ordinary
superconductor&:3!

3. COLLECTIVE OSCILLATIONS

Reducing the rank of the determinant(iti7) from six to
three by using the theory of partitioned matri¢Bsye can
write Eq.(17) for the collective oscillation frequency in the
form

R7|IR"— w2 (R7)"1JT|=R"R —AZ, (19
where
AZ=w?Tr(3*'12*37'27)
—*TrRT TR T )+ w87, (20)
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HereJ*=def|J*||, Z* andT* are the matrices of the cofac-
tors of the elements of the matricRs andJ*, respectively,
and (Z7)j=(2%)y-

Equation(19) is symmetric with respect thk— —k and
w——w since R*(—k)=R*(k) and J*(—k)=—J"(K).
This fact leads to a situation in which only even powersof
andk are present in the series expansion of @§) in pow-
ers of small values of these quantities.

Let us examine Eq(19) for the collective oscillation
frequency in the case whete is small (@%/4A?<1) andk
=0 at T=0. To this end we expand E@l9) in a power

series in this small parameter, keep only terms up to qua-

dratic, and integrate with respect €. We obtain

& =04 0?6, (21)
where 6, are the components of the matrix
A .
A _ Q 112 22 +'A0_+, ’é: 02 '
12 03
61 ATIAL
o=\ 0; |, Q=| AL/A% (22
0 -1

Both ¢_—i* and a are defined in Appendix D, anﬁ’ is
defined in(30).
Consider the simple dispersion law

KZ+ K2+ K2

gi(k)=¢+ 2m

(23)
We replace the sum with respecthkowith the integral with
respect to energy and truncate the integra(@2), (30), and
(C4)—(C6) (see Appendix Cin accordance with the disper-
sion law (23), assuming that the carrier density is low (
<wp):

1 wp.
v > <I>(ei—m=2Nif_5' de P(e—S)

=2Nifj,Di ds d(s), (24)

WhereZDi is the phonon cutoff frequency in thi¢h band,

andN;=m;pg;/47? is the density of electronic states in the
ith band. Here

_ |ep,  ifep<p—i,
Di: L —
u—¢ fop>u—4¢,
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Here we do not write the explicit expressions for the
integrals 6;, J;", and & because of their complexity. In-
stead we note thak” +0 because the limits of integration in
(24) are asymmetric and ,#0, in contrast to the case of
ordinary superconductors, whelg =0. The presence of the
additional order parameter;, even when the limits of inte-
gration in(24) are symmetric results in a situation in which
J7#0.

At low frequenciesw (more precisely,w2/4Ai2< 1),
R™#0 and Eq.(19) can be written as

AZ

R*(9) —

(25)
Reasoning on the basis of the definiti@1) of &, we
can conclude that when the effective constants of intraband
interactions V111 andV,5,-) and interactions characterizing
the transitions of an interband pair into an interband pair
(V1219 are much larger than the constants of interactions
characterizing the transitions of an intraband pair into an
interband pair V112 andVs,,5) and into an intraband pair,

V1111, V2222, V1212 V1112, V2212, V1122, (26)

the equation for the collective oscillation frequency has the
form

R*(6)=0, (27)

where

R*(0)=Ri — 0?Tr(0'28) + 0*Tr(RS ©) — w0,

9, 0 O
~ — — a“ 33
6= 0 05 0 ) 0=det||0||, 0i=0i+f' (28)
— [
0 0 g

Here 'Z; and ® are the matrices of the cofactors of the

elements of the matrice®; and 6, respectively. When the
carrier density is low g~A and u<wp), the presence of
the additional order parametdr;,=A,,A5, and the asym-
metric cutoff in(24) lead not only to an explicit dependence
on the chemical potential via the functiod$ of (22) and
(D4) but also to the mixing of fluctuations of the phases and
amplitudes of the order parameters of different bands
(3*,AZ#0). With the approximatioi26), the effect of such
mixing reduces t@; being replaced by; (see Eqs(28)) (or
6—6+J37(R7)"1I"; see Eq(19)).

In addition to examining the system of equati¢hg) for
the vertex functiond P" andI'2, we consider the system of
equations for the order parameter of a two-band system with
low carrier density*

andS; is the mean-field renormalization term in the chemical

potential(see Eq(10)). The need to allow for this renormal-
ization stems from the fact th&, is of the same order of

magnitude as the phonon cutoff frequena_g,si and the
chemical potentia(see also Refs. 42—-44

2
Aii=j§=:1 Vi €04, (29)

where
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1 A
=12 e24 A2 — 62— A2 4272 | 1+ 22| +1
><E—l— Pl si-i-Ail—s%—Agz-i-ZAfz
Az 1 0 1 2 2 2
X 1+A_11 }—1 E—z, §2— a 82+A22—81
—AL+2A% 1+ |+l =
11 12 Ay, E,
1 5, .2 2 A2 2
i e5t+AS,—e7— A7 T2A7,
Aqq 1 0 1 )
X 1+A_22 }—1 E—Z, 53—2 a[(81—82)
2 1 1 2
(A1t A2 1+ 1)~ a[(81—82)
1

(At Azz)z]_l) (30

1

E,|"

Both E; andd are defined in Appendix B.
The compatibility condition for this system vyields the

equation

det|U—¢%|=0.

In view of this, Ry of (28) vanishes.
Allowing for Egs. (29) for the order parameters, calcu-
lating the traces of the matrices and the determinan(&n

(31

F. G. Kochorbé and M. E. Palistrant

The coefficientB;, can be obtained fronB,, by subscript
interchange 2212, while B,5 can be obtained frorg,, by
subscript interchange £112.

Equation(32) has a trivial solutionw=0. There are also
two nontrivial solutions, which can be found by solving the
equation

o a)z - - .
®?010,03— ———(016,B1p+ 0163B13+ 6,03B5)
detV|

2 A% _ A2
| o+ 0, —2+0,—|P,=0, 34)
deV| tT2A2 3A§) ! (

whose solutions are

_3132812%—?1?38134-?2?38234: VD

o’ ——— : (35)
2 detV|010203
where
D=[0,0,B15+ 010B13+ 0,65B,3]°— 4P, 6, 0,05
e 36
X| 014 0—+ 03— |
1 ZAi SA%

In the approximation{26), the two solutiong35) of Eq.

(34) are positive and real. This suggests that we are dealing
with two excitonic modesw, andw_ .

In addition to the conditions specified (86), we assume
that transitions of an intraband pair entirely into another band
are stronger than transitions into an interband p#&ff4>
>V4112,V2219 . Then the excitonic modes assume the form

and (28), and doing simple algebraic transformations, we

arrive at an equation for the collective oscillation frequency

(k=0):

4
- W _ _ _
@°®01003— ———(010,B15+ 0103B13+ 0,05B55)
detV|

2

— _AF A}
~ 61"’ 62_+03_2
detV| A A7

Here

Pl = (V1212V221l_ V2212V1211)
2

1
X (V0o NV 1211— Vo211V 1200+
(V222V 1211~ V211! 1222)A2A3
+(V121V 2211~ V221V 1219 (V1111V 1200~ V112V 1210)

Aq
X A, +(V1111V2215~ V111V 2219
Ay
X (Vo22M 1211~ V2211V1222)A_2 )
Ay
B1o= (Vo2o V1211~ V2211V1222)A_3

2
+(V111V1200— V1122V1211)A_3 . (33

_ 01Vao1 11/ Ayt 65V1100 55/ Ay

0102(V1111V2200— V112V 2211
W2 = Vo2oN 121811/ A 12+ V111V 1224 208 15
- V121203(V111V 2200~ V112V 2211)

0,02+ 0,A%+ 6577,
X

w2

+, (37)

— — 38
01051+ 0,45, 39
where
0i=(6+Qi65)g;,
IR, +Qi(I~ (R 13+
gi:1+( (R) )i+t Qi(d (RT)™J )3, (39

6 +Qib3
v contains terms proportional 4,1, and V,,4,, and the
definitions ofJ* andR™ are given in Appendix D.

From (37) it immediately follows that the collective
modew , is a generalized Leggett motidor the case of low
carrier density. The mode corresponds primarily to the inter-
ference of the scattering of an electron pair as a whole from
the first band to the second and the scattering of an interband
pair into an interband paitthe first term in(37)), with a
small contribution from the scattering of an interband pair
into an intraband pair. If we ignore the latter processes
(V111=V2,1,=0), we arrive at a collective Leggett mode
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for the case wher&,,,#0 (A1,#0). In the more general and excitoni¢ acquire a substantial dependence on the car-
case there are two collective modes, of (37) and w_ rier densityN,. Three factors contribute to this:

of (38). 1) the explicit dependence oN, of the functionsé; ,
These excitonic modes depend on the chemical potentigihich enter into the definition of the collective-oscillation
(or the carrier densitythrough the functiong; and the co-  frequencies (Egs. (35 and (37)) via the functionsgﬁ
efficientsB;; and P, of (33). +Q.07 of (39):
What is important is that the system of equati¢hé) for NG !
the vertex functions and the order paramei{@% must be
augmented by the law of conservation of the number o

charge carriers: 3) the strong dependence of the order parametersn

2 w0t N, (see Refs. 25 and 42

BV % [Gua(k,w)+ Gark,w)]e!® . (40 The first two factors are due to the presence of the addi-
tional order parametek;, and the asymmetric cutoff of the
integrals(24) in systems with low carrier densityu(~A and
w<wp). By analogy with the three-band modélthese

X k ; X ] facts weaken each other in such systems. In systems with
chemical potentiaj for a given carrier density, for the reduced carrier density\< x< wp) and in ordinary super-

ground state T=0). A characteristic feature of the ground conductors (> wp) the two factors balance each other and

state of a system with low carrier density is that the posmonWe haveEwNi/ZAﬁ (i=1.2). Thus, in systems with low

of the Fermi level changes substantially when the supercon- ~A) and reduced < ws) carrier densities, a similar
ducting gap is formed. The order parameters are of the san’:gé‘ “p ] .
ependence of the order parameters provides the leading

order of magnitude as the chemical potentiabA;;). This o ) S
leads to an anomalous temperature dependence of the Cherﬁ)_ntnbunon to the dependence of the collective-oscillation

cal potentialy (see Refs. 42—44and the emergence of a r_equencies on the carrier denshtly. Note that when dealing
break in theu vs. T curve atu=6 meV (Ref. 42. The value W'ti systems W'tg IOV_\;_ fe~A and ’:T“;D)_ a;nd reduc?dth
of the chemical potential exceeds the values obtained in thg“ wp) carrier densities, we must take Info account the

. . . . A4
single-band BCS mod&and the Hubbard mod¥iby a fac- mhealn-ﬂelc]i renormal;ahonfof;he chegnlcalfpo:]er‘lfld\ and
tor of three. On the other hand, the low carrier densjiy ( the law of conservation of the number of charge carriers,

~Ay;) leads not only to a shift of the generalized LeggettWhiCh lead to a peak in the dependence of the order param-

mode® (because ;,# 0) and the emergence of an additional etersl OrNIO' Thefse pea:}ks e21erge in the range of redui]:ned
excitonic modebecausa/y11p,Vap1s#0) but also to the ap-  SMal) values ofNo, whereA <u<wp . For instance, for a

pearance of a dependence in the acoustic mode and two ekeggett excitonic mo‘?'@+ of (37), these facts lead to the
citonic collective modes on the carrier density. emergence of peaks in the, vs. N, dependence and to a
strong dependence of the ratied /4AZ (i=11, 22, and 12

on the carrier densiti,.

When A;,=0, only one excitonic mode remains,, .
This mode acquires a strong dependence on the carrier den-

In this paper we have developed a unified approach tsity only via a similar dependence of the order parameters of
the study of collective oscillations in superconducting sys-different bands and their ratios.
tems with two energy bands that overlap at the Fermi surface Thus, an increase in the number of order parameters
at any(including low) carrier densitiesgg~A andu<wp).  from two to three (,,#0) in a two-band superconducting
Formally this system is equivalent to a three-band supercorsystem with low carrier density leads to the emergence of an
ducting system with order parametéys,, A,,, andA;,and  additional excitonic mode and to a strong dependence of the
reduced carrier densiti, given by Eq.(40). A two-band collective modes(acoustic and excitonjcon the carrier
superconducting system witlh~A (u<wp) produces a density.
Bogolyubov—Anderson collective mode corresponding to the  Note that in this paper we have studied collective oscil-
acoustic spectrum. This mode has been observed in singlé&tions in a two-band system by using the mean-field ap-
band superconductors and in two- and three-bangroximation(the ladder approximation for the vertex func-
superconductors:3? Two collective modes of the excitonic tions), whose applicability depends on the carrier density.
type also emerge. One is a modification of a Leggett nffode For high carrier densitiegthe radius of an electron pair is
shifted because of the presence of an additional order paramauch larger than the average interparticle distanite de-
eter,A,,. The reason why such a mode emerges lies in thecription is exact. For very low carrier densitighe radius
interference of the scattering of a Cooper pair as a wholef an electron pair is much smaller than the average interpar-
from the first energy band to the second and the scattering dicle distancg the approximation yields a qualitatively cor-
an interband pair into an interband pair. The second collecrect picture’® The caseu~A is intermediate and requires
tive is due to the scattering of an interband Cooper pair int@bandoning the mean-field approximation. The results ob-
an intraband pair, and vice versa. tained in the mean-field approximation for this case may be

Note that when the carrier density is low A and u considered a qualitative interpolation of between the above
<wp), the frequencies of collective oscillatiofacoustic  limits.

2) the mixing of fluctuations of the phases and ampli-

1‘tudes of the order parameters of different banﬁis&@# 0)
via the functionsg; of (39);

NOZ

The self-consistent system of equatidad), (17), (29),
and (40) determines the vertex functiorithe collective os-
cillation frequency, the order parameterd;;, and the

4. CONCLUSION
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It is important to note that the two-band system studied
in this paper is similar to a system with two inequivalent — Vi212= Va121= 5 (V1 Vo= 2Y),
layers. By diagonalizing the Hamiltonian of such a system
we can easily show that 1
L V1221:V2112:Z(V1+V2+ 2Y —4W). (42
Vllll:Z(V1+V2_4‘]+2Y+4W)’ HereV, andV, are the intralayer coupling constants arid
and W are the interlayer coupling constants. Systems with
1 two equivalent layers\(; = V,=V) have been studied earlier
Vopo==(Vi+ Vot 4J+2Y +4W), q YErs\y=Vs
4 in Ref. 50, 37, and 39.
1 Thus, the inequivalence of the layeig,(,,# 0) leads to
Vi12=7(V1+V,+43-2Y), the emergence of a new excitonic magde of (35) and(38).
4 The strong dependence of the collective-oscillation frequen-
1 cies on the carrier densify, is due to the presence of layer
V2211=Z(V1+V2—4J—2Y), (41 coupling constants, which yields a finite order parameter
A4,, and the asymmetry of the integration limits (2¢4).
and

V1117 V11217 Vo217 V2221= V211

VIRV ~(Vo—Vy) .
oorenrs Tlezze R2lzze 4 o The equation for the vertex functidn+ -has the form

APPENDIX A:

(A1)

+—

n2n4m3m4

The other three vertex functions can be constructed in a simi- k
lar manner without the first absolute term. The hatched part —Gppn,| AT 2 Fnan,

in Eq. (Al) corresponds to the vertex functld“n + in the
zeroth approximation.

Summing over the spin variables in the system of equa-
tions (A1) and passing to thek(-representation for the
vertex functionsT"® (nq---ny,my---my=1,2), we obtain

k k
X q+§1q_§!p31p4 +

k
I:nlnz( g+ E) Gn3n4

k o k k
_q+§ Fn2n4m3m4 _q_2 —q+t5 1p31p4

(P3tpPs=Kk)
. k k - k k
Fm1m2m3m4 p+ 5 —pts5 5P3:P4 lem2m3m4 p+ X —pt+3 5P3.P4
1 1 k
:_Vm1m2m3m4+E zq: n12n4 Vm1m2n1n3 :E ; n12n4 lemznzna{e‘nln2 q+§
k k i k :: k
% Gnan q+§ Gn3n4 _q+§ Fn2"4”“3”“4 XGn3n4 _q+§ Ny N3M3Mmy a+ 2’ —d
k k k k k\— k
Xiq+ —gq+3 1p3=p4 1n2 q+§ !p3!p4 nl 2 q+ n3n4 _q+§
k :: k k . k k k
XFnan,| =9+ 5| numgm,| 97 5:07 5:P3.Pa XL famgm,| A7 5247 5:P3.Pa| =Gy, | AT 5
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k ;: k k
XFngn, _q+§ nynNgmsm, q+ 547 5:P3:P4

_ k k
+Fn1n2 q+§ Gn3n4 _q+§

+- k k
nyngmem,| ~ A7 52701 5.P3.P4 (A2)
In the BCS approximation, for the vertex functidn$ of
Eqg. (11 we arrive at the system of equatio(® in matrix
form.

4+ —

APPENDIX B:

. : . ooy
For superconducting systems with low carrier density, *
the one- part|cle Green’s functions have the following formk,,= —1,,=s;,—h,

(z=iw):*?

1 _
Gll(k,z):m[(z"‘el)( —&)-A 2(2+82)]

GiaK,2)= — o [Agy(z+£5) — Aphz+87)],

D()
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CEf-&-AL C(~DiAphtea;
=g %=
€17 &2 Aqt+Ay
h AlZ 2d ’ C:A]‘ZT’
a12:a21:C+ M, b12: bZl:_(C+r2),
C1p=Cp1=C—T, d12:d21:_(C—|’2),
r—w S_—A E?_A§-2+A11A22_8182
' E; v 12 2E.d ,
Aja;i+AC
li=—ki=tio, —mi=n;=ty, tij:_%.
i
_kzj_:Sl"' h, —m12: n21:SZ+ h,

—Np=My=S;—h. (BS)
APPENDIX C:

Integratingéy . n.n,(k) andTy . (k) with respect to
Q (T=0), we obtain

Ay B Frm= At Bims Ernm= A= Biam,
Fll(k,Z)Z D( )(Z _§2+A12A ) Irnm Irnm Irnm Irnm Irnm Irnm
where
A _ _ ~
Flz(k,z)=—lez)[AnAzz—Afer(z+sl)(z+32)]. Alram(K)
(B1) :EE a, a,tanha, ¢ comtcie "(E vE)
The functionsG,,, G,1, F2,, andF,; can be obtained from 25 (Ef +E])%— w? 17
G111, Gio, Fq1, and Fy, by interchanging the subscripts:
1<—>i Here . aj byt amby, ~|—c,§dnm+ condi (EF+ED)
en=en—Mm—S,, 2—?+Aﬁn, (E{ +E;)?~w
D(Z)=(22—fi)(zz—fg)-FZAiz(slsz—ZZ) n blranm‘*’(inlnalrE_t?;rCnrr12+dnmclr (E2++EI)
+ —w
+(ApAy— A2 - AT, (B2) 2 !
and S, has been defined ifl0). The definitions(B1) and blrbnm+ bmnbir + iy Ayt Al (EX+E3)
(B2) lead to the following symmetry propertiek=<k,z): (E5 +E;)?— w? 2 2
Gun(K)=Gmi(K),  Fam(—K)=Fmi(k)=Fan(k). (B3 B (k)
To integrate the function and | ith
e UnCHON S, vnin, A1 Inyrnng W Lo [t Vi Kt e
respect to(), we write the normal and anomalous Green’s =_ E e (E{ +E])
functions in the form 2% (Ef+E)) o
G ajj . b; i Cij . dij _ | rmy, +|mnm|r+k|rnnm+k;mn|?(E++E_)
I (.U_E1+|5 w—E2+I5 O)+E1_|5 (l)+E2_|5, (E]_ +E2 )2_(1) 1 2
lij M kij Njj +)— +-
L= 4+ __+ 1+ i mibl o tme e +nik +nd ke _
i o E, 116 0-E,r10 wtE—i8 wtE,—id’ 4ram__mer " (B +E)
B (E; +E])*—w?
Fi=Fi, (B4)
o M} M MM+ MM+ My
where + FR—
(E; +E;)%—0?
a;=Pi1T i1, bii=—(pi2+di),
Ci=Pi1— i1, di=—(Pi2—0i2), X(E; +E3) (Cy
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The quantities on the right-hand side of EG.1) are func-
tions of p£k/2, i.e.,

+ k N k
Q =ay piz), Er=E Pi§>- (C2
Similarly, forT7 . (k) we have
llJ;nm:AI;nm+§I7rnm:leJ;nm’
ll;nm:FAI;nm_El;nm:le;nm!
where
Ajrnm(K)
_22 aIJFarTm_l_ar;nal;_(CIJ;CrTm_FCrTmCFr) Ef 4 E-
25 (Ef +E; )% 0? (Ei+Ey)
I aﬁbr:m+ar;nbl:_(Clir—dr:m_l_cr-:mdl_r) EX4LES
(Ef +E;)2— w? (Ei+Ez)
b;ar:m+br;nal:_(dl-*r—cr:m_l_drTmcl_r) EX4LES
(Ef +E])%— w? (E2+Eu)
n b;br:m+ br;nbl_r_(d;dr:m+d:mdl_r) (E++E7)
(Ef +E5)- w? 2o
Biram(k)
_22 II+r r?m+|r;n||7r_(kl+rkr7m+k:1rmkrr) EfLE-
25 (Ef +E;)2— 02 (Ei+E)
|I+rmr7m+Ir;nmlir_(krrnr:m_kkr?mnlir) + _
ETi e (E{ +E;)
1 2) T @
mlJ;Ir:m"—mr;nlﬂ_(nr;k;m+n;mkﬂ) + _
e (E5 +E;)
2 1) — @
n mltmr?m"_ m;nml?_(mr;m;m+ mr:rmml;)
(E5 +E;)?— w?
><(E2++E2)]. (C3

The quantities on the right-hand side of EG3) are func-
tions of px=k/2 (see(B2)).

Whenk=0, the expressiongC1) and (C3) for A* and
B* are much simpler:

Aﬁnm=z 2E1 aIranm'i'clrcnm Zblrbnm+dlrdnm
D 4E3— 02 AEZ— w?

a-Irbnm_" amnblr + Clrdnm+ Cnmdlr
(E1+Ep)?—ow?

+(E1+Eyp)
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mlrmnm+ N Npm

4E5— w?

IIrlnmdl'klrknm

4B~ 0?

EIJ;nm:Ep: 2E1 2

(et g ol
(C4

Similarly, for A~ andB~ we have

(CH)

Airnm= ©@Airnms  Biinm= ©Bjinm,

where

Qrdnm— CirCnm
Alrnm:z 2 2 +
p 4B~ w

blrbnm_ dlrdnm

AEZ— »?

+ alrbnm+ amnblr - (Clrdnm+ Cnmdlr)
(E1+Ey)2—w? '

My Mym= M N

4E5— ?

Ilrlnm_ I(Irknm
Birnm= +
Irnm zp | 4E§—w2

(C6)

+ |Irmnm+ I mnlMir — (klrnnm+ I(nmnlr)
(Es+Ep)?—? '

APPENDIX D:

From the system of equatio$4) we obtain an equation
for finding the ratios of the vertex Green'’s functions:

) (N
RN . S e O (DY)
—wlt+1] R™ r wJ,
where
1 R Ry Ri1 Rz Ry
E+= 0 Ry Ry, Efz Roi Ry Rps|,
0 Rs R Ra1 Rss R
Ri1 Jaz 2J53
IA?|+<R;1 , Jt= Jo 23],
Ryl 203 20
Ju  Ji 235 Ju
Q( Jag Ja2 2055, 3 =| Jss |,
2J1s 233 234, 2J15
T 110 I T
i+(F;211lrflll ; i_= Toid T |
T T | IPPP) IPPPY
1 0 O
i7={0 0 0 (D2)
0 0 O

To within terms of ordew? we have
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0
[r=| Ap/Ay | +oa, (D3)
AgplAqy
where
A
&=(E+)7l B0/ |,
203A1,/A 1,
2 Zn Iy
(R I=— Rea  ~Rasl,
I\ o —Rs; Ry
Ji1
§+— oAl Ay |,
2J15015/A 14
0=6"+A (R Hidut+ 3 (R) ™Y,
_ Ap—
22 Y- 12
X200t 2(37(R7) N ig—1J
Ay % (R )|3A11 ©
— Ay, Ay
0 011+ A 633+2A 013’
J_J-1:J11+A J33 2A11J13,
A
0, = O+ A_i: 9§3+2A1292+3'
Ay A
\]22—J22+ A_ZZJ;3+2A_22‘];3’
A 2
03 ‘912+A - 6,5+ A202+3'
\]_12: J12+ A—lz\]fs"‘ A_lZst. (D4)

In notation (D2)—(D4) we have used the “pseudoband”
representatiofi?

11-1, 22-2, 12-3. (D5)
For instance,
Ju=Jdi1n, Jaz=Jdi212s J1o=J1120t J1201,

— 0 _ 0
Rll_ u 1™ fllll' R12_ U 12— §1212'

Representing the ratios of the vertex functions as

we arrive at an expression far of Eq. (22):
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§33 Ay Agq|~
a=(ap— 20113)533 Raom— —Rsi—1 6>
A A
11 12 12
Ay A\~
4R21A + 2R23A 03 (D7)

In the apprOX|mat|on(26), for the ratios constructed
from thel'™ of Egs.(11) we have

I, Z Iy Z5
2z AL (D8)
I1].111 le Fllll le
Z;. Z. 1 y
3= It 0ge+ 220y, Jp = dpp o5 2-205,
11 11 12 12
_ 27 ZlZ _
J3 =Jdppt — 313 23+ (D9)
13 13
Similarly, for J;" of Egs.(18) we have
AZZ AIZ
J7 =+ It 2—30,
1 11 All 33 All 13
N Ay _Ap
‘JZ :J22+ A J33+2A J23,
A 22
X=duty J13A 3. (D10)

The quantitiest;” of (18) andB; of (28) are constructed in
the same manner & of (D9).
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Radiation breakdown in silicon slabs is observed and studied as revealed in anomalous behavior
of the dose characteristics of their radiation defects when the radiative intensity is varied.

A theory is constructed for reversible radiation breakdown due to the bistability which develops
in a gas of radiation vacancies when the gas can be regarded as quasi-two-dimensional. In
order to explain the exponential saturation of the dose characteristics as the irradiation intensity
is increased, scenarios are proposed in which different forms of the constituent radiation

defects develop. Some parameters of the bistable gas of primary vacancies are estimated, including
diffusion coefficients, dimensions of inhomogeneity regions, and the rate of movement of

the stratification line. On the whole, satisfactory agreement with experiment is obtained.
Discrepancies between the diffusion coefficient for neutral vacancies obtained here and

in the literature are attributed to the role of interband recombination accompanying radiation
defect formation during electron bombardment. 1©®98 American Institute of Physics.
[S1063-776(98)02109-X

1. INTRODUCTION a breakup of the spatial period of the modulation in the re-
sulting structures with the passage of time. Scenarios involv-
The problem of radiation defect formation, especially ining formation and immobilization of secondary radiation de-
silicon, is currently of high interest, both experimentally andfect structures are compared and substantiated.
theoretically*~® The well-known simplicity and high sym- The accord between theory and experiment on the shape
metry of the silicon crystal structure, the exhaustive studiesf the dose characteristidé(®) and the good agreement of
that have been made of the possible radiation defects in ibur estimates of the kinetic parameters of the system of pri-
and the development of industrial methods for wafer fabri-mary vacancies with earlier wotR suggest that radiation
cation have made silicon the most appropriate material fobreakdown of the wafers, induced by a two-dimensional or-
studying various models of defect formation. Silicon irradi- dering of certain secondary radiation defects, has been ob-
ated by fast electrons is also under study in radiation techserved. The saturation of the exposure characteristics is also
nology. accompanied by the formation of a sulfide film during
Because of the particular way radiation defects are proS-passivation of GéRef. 9 and GaAs during processing in
duced during irradiation, they customarily include V vacan-various sulfide solution®, and of a ferrous film on passi-
cies or W divacancies. The latter are also formed indepervated surfaces of these semiconductdrgarious geometric
dently. Thus, in describing the kinetics of primary radiationpatterns are then formed on the surfaces; they can be ob-
defects(interstitial atoms and vacancjest is of prime im-  served visually on metallic electrodes during
portance to include vacancies. electropolishing? Thus, the variety of reconstructed quasi-
In this paper we obtain the dependence of the concentrdwo-dimensional systems lends credence to the fundamental
tion N for various types of radiation defects on the irradia-nature of the saturation in the dose characteristics observed
tion dose® for various irradiation intensities, and an ex- here.
ponential saturation of the dose characteristics is observed. A
theory is constructed for the radiation breakdown of semi-
conductor surfaces and wafers that occurs when the inducegd \\neTics OF A BISTABLE SYSTEM OF VACANCIES
crystal lattice vacancies merge. It is shown that the dose
dependences found as a result of certain approximations are The first attempts®® to interpret the dependence of the
the same as the theoretical results obtained in a radiatioradiation defect concentration on electron irradiation inten-
breakdown picture. This breakdown mechanism is based osity and dose were based on the idea of uniform-rate qua-
the bistable kinetics of the nonequilibrium fluctuations whichsichemical lattice reactions with an exhaustible supply of
develop in the primary vacancies during irradiation. The subreagents. Neither the observed form of these dependences
sequent evolution of these fluctuations leads to bifurcationsjor the correlation between them were explained: the exis-
familiar from hydrodynamics, which can develop, for ex- tence of a dependend¥(l), of saturation inN(®) for cer-
ample, according to the scenario in which Landau turbulencéain radiation defects and their absence for other centers, and
develop$ As a result of the formation of secondary radia- the effect of radiation defects of shallow impurity-level type
tion defects, the bifurcation pattern is fixed, and this leads tmn these and several othicharacteristics.

1063-7761/98/87(9)/7/$15.00 581 © 1998 American Institute of Physics
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In this paper we show that these processes must be
treated as Belousov—Zhabotinskieactions; see, for ex-
ample, Sec. 10.3 of Ref. 15. They involve an extended cata-
lyst, with the crystal lattice itself acting in this capacity. In
this case, lattice inhomogeneities relax self-consistently ow-
ing to diffusion and convective field transpdrtWe shall
treat single V vacancies as transporters of the diffusion
fluxes, filling the same role as holes in the electron theory of
semiconductors.

An independent and closed diffusion—kinetic equation,
which combines the continuity condition and the diffusion
equation, can be formulated for the vacancy concentration

n(t): FIG. 1. A schematic plot of the sour€(n) (smooth curvgand sinkn/ 7,
(dashed lingterms of the diffusion kinetic equatiofl) as functions of the
on n concentratiom. The solutions of the stationary homogeneous equdgpn
a7t +div(nbF—DVn)=G(n)— . (1) are indicated on the horizontal axis.
\%

ﬂ[ nc nh n

where G(n) is the rate of vacancy generation, is their

lifetime, the field termj; =nbF in the vacancy flux is deter- The kinetics of the stratification that takes place fipr
mined by the elastic forcé and mobilityb,'® and the dif- <np<n, is described by the time-dependent diffusion—
fusion termj,=—DVn is determined byD, the diffusion  kinetic equatior(1). In the linear approximation we write the
coefficient. The direction of the vectdt is determined by  functionsG(n) andF(n) as expansions in the small fluctua-
the preferred direction that emerges within the crystal as &ons sn of the concentration:

result of irradiation. For examplé; can be directed along
the line of intersection of the plane of incidence of the beam F(n)=Cén, G(n)=|—+v
with the plane of the wafer surface. Strictly speaking, @4 Ty
alone is insufficient; a contribution 6 can arise during the \ypereC is a phenomenological coefficient determined by
breakup of component radiation defects, such as W divacaine projection, parallel to the wafer, of the external force
cies. In addition, the forcE can also depend on the concen- produced by the bombarding beam; the frequencgiven

on, 3)

tration of all radiation defects. b

However, for the high-intensity and high-energy electron
and proton beams that we us&ke Sec. 3 the main con- = ﬁ_ 1 4
tribution to G(n) is the external interaction, so that the con- a7y

tribution from the decay of constituent radiation defects ca
be neglected.

We also assume thd& depends only on the concentra-
tion n of primary vacancies. The uniform quasichemical lat-
tice reactions studied previousf}? obey the balance equa-
tion

r1:)Iays the role of a negative differential conductivity in the
linearized equatiofil); see Sec. 7.6 of Ref. J)5Taking thex

axis to be in the plane of incidence perpendicular to the
wafer surface and taking the Fourier transform, with respect
to positiony and time, of Eq(1) as linearized using Eq§3)

and (4), we obtain

G(n)=n/7y. 2 _ #?8n
[—i(w—kVp)+k?D—v]én=D pat

)
By taking the planar geometry of the test wafers into ac-
count, the limited depth to which the beam penetrates itHerek and w are the two-dimensional wave vector and fre-
some of the radiation experiments, and the known tendencyuency of the fluctuations, and the prodifgf=nCb serves

of vacancies to drift toward the surfateit is possible to  as a drift velocity. According to E(5), for a constant gra-
consider a quasi-two-dimensional model for solving Bg.  dient of the concentration of the primary radiation defects
In this case it turns out to be important that at high enoughinside the wafer, i.egdn/dx=const, a longitudinal wave
intensities and radiation doses there is a change in the chan- .

neling of the incident particles accompanied by a substantial on=A(t)expli(ky—wt)}f(x) ©)
number of large-angle scattering events on preexistingvith frequencyw=KkVp and dampingy=k?D — v develops
defects'® This is reflected by the fact that the generation ratethere. For the range of characterized by a sufficiently steep
G(n) becomes a nonlinear function of the concentration, andlope of theG(n) curve (Fig. 1), we haver>k?D, so that
as will be shown below, this leads to stratification of theEq. (6) describes an exponential rise in the amplitdde).

vacancy gas. In fact, it is clear from Fig. 1 that E&) can An averaged equation for the square of the absolute
have three solutions whe@(n) is nonlinear. Of the solu- value of the amplitudé\(t), which describes its saturation,
tions shown in Fig. 1, which correspond to the initral, can be obtained by the Landau methdfdwe restrict our-

metastablen,, and dense,, phases, only two are stable;  selves to a nondegenerate system. For these systems, the ac-
and n,,. This means that the system of vacancies can bgual stability boundary is determined by the unique form of
made bistable. the perturbations and the frequenayk) that yield zero
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damping,y=0. In this regard, it is possible to expand the Neglecting elastic forces, we consider stationary axisym-
time derivative offA|? in A, where for the reasons given in metric solutions of Eq(1) that are uniform inx, with the
Ref. 6 it is sufficient to retain only a few of the nearest termsconcentrationng(r) taken per unit, area and the nonlinear
that fail to vanish upon averaging. A natural average can bé&unction G(n) shown in Fig. 1(r is the radial coordinate in
taken over the timéand energyrequired to produce second- the plane of the wafer Transforming to cylindrical coordi-
ary radiation defects. Terms of odd order in the amplitAde nates in Eq(1) and integrating with respect towith weight
necessarily contain a periodic factor and drop out upon aveng/dr instead of taking the Fourier transform, we obtain
eraging. Even-order terms like the fourth correspond to terms 2

dno dr Nh

dr) ro fnl

like A2A*2=|A|* that do not drop out on averaging. Dfm

The time derivatives like(d|A|?/dt) are direct math- 0
ematical analogs of the “transition probabilities per unit o estimate of the thicknesar of the transition layer be-
time” that can be calculateq using perturbation theory baseqeen the competing, andn,, phases can be obtained from
on the time-dependent Scldioger equation of quantum Eq. (10):
mechanicg?® In this case, we are interested in the square of
the absolute valugA|? because the statistical weight of the \/D\h< \F
vacancy pairs formed per unit volume, which yiéM diva- V—h~Ars I

cancies as they merge, equals the number of COmbim‘tior\]ﬁhere the frequencies and diffusion coefficien{s Dy, and
Cﬁzn(n—l)/Z, which is quadratic im. Thus, the rate of q #s Dn

divacancy production v, D, refer to the dense and rarefied phases, respectively.
The principal contribution to the integral in E(LO) comes

G(n)—;v dn. (10

11

dNy 1 /d|AJ? from the transition layerR,— Ar<r<R;+Ar, whereR. is
at 2\ gt (7)  the critical nucleus radius. The scale lendrhis therefore
roughly

is given by an average derivative of this type. In principle, D (=/dn.\2
our expansion can begin with a constant term of zeroth order R.=— f (_0) dr, (12)
in A corresponding to a source of divacancies, owing to the J Jol dr

decay of other radiation defects. Divacancies, however, havighere the degree of supersaturation in the vacancyJyas,
a lower annealing temperature than the K-centers obtained
from them(C+O+W,; see Ref. L This means that this con- _ f”h
stant source of divacancies is insignificant, so it is sufficient

to limit ourselves to terms of second and fourth ordeAin
Expressing the Landau constdat in terms of the limiting
divacancy concentratioNyy,,, we obtain

n
G(n)—T—V

dn. (13

n

According to Eqs(12) and(13), in the two-dimensional case
R. can vary continuously over wide limits, depending on the
degree of supersaturatidn As a lower bound for the critical
dNyw Ny Ny nucleus size, we can take a valueXf that is independent
ot ( —) (8)  of I and that obeys Eq11). According to the experimental
data given below, this size is measured in fractions of a

where 7, is the characteristic time for the evolution of a micron.

 Now

divacancy structure. Solving E¢p) yields a dose character- Applying the procedure discussed above for integrating
istic of the form Eq. (1) to nonstationary, two-dimensional, axisymmetric so-
lutions, we find the nucleus rate of growtiR) of the dense
No = Now ) phase. We seek a wave solution of Ed):
wW— — .
1+eXL{(CDO q))/|T|] n:no(r_U(R)t). (14)

The only constant that arises as a result of the integratiorproceeding as in the derivation of Ed.2), we obtain from
denoted by ex@,/I7) in Eq. (9), along with the other pa- Eq. (1)
rametersr; andNgy, can be expressed in terms of the ex-
perimental parameters, given the scaling considerations of v(R)=v=(1-R:/R). (19
Sec. 4. Here the quantity

The stability loss regime characterized by plane symme- s 1.1
try corresponds to Poisedille floThe other regime, isotro- =] fm<%) dr} (16)
pic turbulence, occurs in hydrodynamics during Couette flow o\ dr

(in the space between two cylind®yslt is well known that . .
. A . . Hepresents the rate of displacement of an interphase wall of
in order to describe it, linear representations must be avoide

(Ref. 6, Sec. 30 and that the solution leading to zero damp- Small curvature for a given supersaturatibrDuring a phase

ing corresponds to purely imaginary(k) (Ref. 6, Sec. 2% transition, attainment of critical size by a nucleus is usually
g _p p_ y Imaginag C - “%  the longest stag®. Thus, the characteristic timg in Eq. (9),
so thaty=0 whenw=0. This stability loss regime arises in : : . .
L : which will be found below by comparing Eq9) with ex-
Eqg. (1) for a beam normally incident upon a high-symmetry eriment. is approximatel
surface of a silicon wafer, whereupét(n) of Eq. (3) van- P ’ PP y
ishes andC=0. 71~R: /v, . (17
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Depending on the angle of incidence of the irradiating N, cm™3 10" i0'®
beam, the secondary radiation defect structures obtained over '
time 7, inherit either a plane texture of filaments with
C+#0, or an axisymmetric texture of points of radiRgfrom
Eqg. (12) in the opposite case. The various techniques for
processing crystal surfacds*?also provide examples of the
practical realization of both possibilities.

3. EXPERIMENTAL RESULTS

We have studied radiation defect formation inx 2
% 0.2 mn? silicon wafers fabricated from KIE7.5 and KE-
1.0 silicon (with electron concentrations of 610 and
4x 10 cm™3, respectively and from KDB-10 silicon(with
a hole concentration of 1:310'° cm™3). Ohmic contacts
were made on opposite sides of the wafer surfaces by depos- 10 U
iting low-resistance ™ - or p* -layers by ion implantatioiof
phosphorus or boron, respectivetg a depth of 0.2—0.3m.
To recover the amorphous layer the samples were annealed L .
in a neutral medium. . b2 8 4 3 _166 )

The intensity of the RTELV accelerator with which the @10 = ,com
silicon wafers were bombarded with electrons can be varie@ic. 2. The dose curvas(®) reflecting the rate of accumulation of various
over wide limits. We used a rande=10"-104 cm 2571, radiation defects in KDB-10 silicon irradiated by 1-MeV electrons and 100-
dictated by the method for measuring the concentraton 1Y Pere, TS perte s ipeer e e e ey s
available to us. The NG-200U neutron generator WaSrom Eq.(9): 1, 3 (A, ©) — K-centers;2, 4 (O, @) — radiation defects
equipped with a special attachment for producing and accelyith #,= +0.37 eV;5 (#) — radiation defects obtained by proton irradia-
erating a proton beam. The protons penetrated the wafers ton (upper horizontal scaje6, 7 (CJ, W) — divacancies, 2, 6 (A, O, [)
a depthL ~ 1 um, while the electrons passed right through it, — intensity | =6x10%cm™s™ 3, 4,7 (0, @, W) — intensity | =1.2
The beams were normally incident upon {id.1) surface. x10% om s

The concentratioN was measured by a photocapaci-
tance method. The optimum for this method is cancellation ] ] ) . .
of half the original dopant. The lower limit of the concentra- _ FOr the divacancies, either a linear=pg] (KEF-7.5,
tion measurementtthe variation inl and ®) was directly ~With Zc=—0.4 €V) or a quadratioN=al? (KEF-1.0, with
related to the instrumental sensitivity, while the upper limit“c=—0-4 €V; KDB-10, with Z,=+0.29 eV} variation
was dictated by the large dark currents resulting from canN(l) is observed. The dose dependemtgb), as for the
cellation, which increases the resistance of the inner regioff-cénters at the lower intensity=6x 10" cm s, re-
of the wafer to the that of the reverse-biageéh junction in
the surface layer, which produces the capacitance. Additional
details of the experimental procedures and results are avail- N,, cm*®
able elsewher&2%22 T

Experimental dose plotsl(®) obtained by us for two
constant values of differing by a factor of two are shown
for several types of radiation defects as different points in
Figs. 2 and 3. All the dose characteristics share an almost
linear rise, which reflects a constant rate of defect formation,
dN/dt=1(dN/d®), at low doses. The essential differences
associated with the behavior of the dose characteristics at
high doses and variablemake it possible to separate radia-
tion defects into three groups.

K-centers, with#,,= +0.35 eV(C+O+W; see Ref. },
are characterized by a quadratic depend®nie= «12. The
corresponding dose curvésand3 in Fig. 2 have a linear rise
followed by a saturation region. The same sort of linear rise
followed by saturation in the dose curiX€®) was recorded
for radiation defects with?, = +0.37 eV (curves2 and 4), ,
as well as for radiation defects obtained by proton irradiatiorf /G- 3. Dose curvesl(®) reflecting the buildup of A-centers in K&7.5
(curve 5). The microscopic structure of the defects cqrre—i"f@?ﬁﬂ?{d;: § ?g) (10“;'9_\/ gllgit;%[‘fcﬁ_'znst?ﬂﬁfg l(n.sit_shgivslie
sponding to curves 2, 4, and 5 have yet to be fully explain€deoncentrationN, of A-centers as a function df for a constant dose>
This structure is discussed in Sec. 4. =7.2x10% cm 2,

2
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tains a nearly linear rise over the entire rangerve 6). where[V,0] is a divacancy—oxygen complex; @presents
However, there is a tendency toward saturation at the highanterstitial carbon, and the signs indicate charge states. The
intensityl =1.2x 10" cm™2s7 (curve 7). crystal lattice participates in reactidd8) as a catalyst be-

For A-centers (M-0), the defect concentratidd is in-  cause of the Debye correlation that builds up during the di-
dependent of intensity, i.eN(1) = const. Here the dose curve vacancy formation stagé.If, given this correlation, the en-
N(®P) retains an almost linear rise over the entire rang® of tire surface of the wafer is covered by ordered Debye
and for alll attainable in our experimentsee Fig. 3, curves spheres, then Eq18) leads to random filling of some of
1 and?2, and the inset Thus, there is a palpable relationship these spheres with K-centers. The resulting fluctuation ag-
between the dose characteristics of the radiation defects amtegations of K-centers then become mesoscopic nucleation
the intensity dependence &f: when N(I) is quadratic or centers. They accelerate the stratification of the vacancy gas
linear, the dose curve goes to saturation. into n; andn;, phases in accordance with Sec. 2.

Our measurements also suggest a more or less sharp de- The probability of such aggregations can be estimated
pendence of the defect formation probability on the type ofusing an Ising mode¥ It is considerably greater than the
shallow impurity levels. Thus, K-centers are observed onlyprobability of spontaneous formation of a critical nucléls.
in p-silicon, while A-centers are observed onlynrsilicon.  This process is sustained by localization of the aggregations
For divacancies im-type crystals, both linear and quadratic along dislocation lines, in accordance with electron micros-
N(I) curves are possible, while ip-type crystals only a copy data® The emerging nuclei of the dense phase vacan-
quadratic dependence is observed. More subtle differenceses, in turn, begin to sustain the formation of new K-centers
exist as welft within themselves, so that their formation in other places
becomes unlikely. This leads to the chaining of K-centers in
the direction of the radiation flux. Ultimately, stable linear
structures of K-centers, extending from one surface of the
wafer to the other, in effect cause it to undergo radiation
All these features of the experimenta| data can be exbreakdown, which becomes irreversible and can be regarded

plained in terms of the idea, described in Sec. 2, of an instadS a structural phase transition. Because the appearance of

bility of the solutions of Eq(1) that leads to bistability of the new K-centers outside the structure becomes essentially im-
system of primary radiation defects. Bifurcation causes fracPossible, the expansibnfor their rate of formation
the medium. The different stages of this process “freeze dNe New—N
out” as secondary radiation defects of the different genera- | —_K_ 0K K
characteristi¢9) extend only to the component radiation de- acteristic
fects in the first generation, i.e., the divacancies. The con-
()
l1—exp — ? s

formation. This time is required to build up enough kinetic 'K
energy for the appropriate instability to develop. This energywhich is confirmed experimentally by curvésand3 of Fig.
to is determined by details of the preparation of the quasidiation defect formation rate, including a zeroth-order term
two-dimensional unstable system, in this case by the dispefor a constant source owing to synthesis from other centers.

The maximum numbeX,, of divacancies is determined #,,= +0.37 e\j and the defects induced by proton bombard-
by the crystalline structure of silicon and is also independenment also belong to an older generation, after the divacan-
characteristics shown in Fig. 2, as well l[d¢l), can be in- level may turn out to be another component of a multiplet of
terpreted in terms of Eqg9) and (20), using the standard K-centers, while hydrogen dimers probably predominate
obtain7,=1.7 min and for curves, which was taken at half chains of radiation defects can be estimated from their aver-
the intensity,r, is accordingly longer. age two-dimensional concentrationn=NL, where

o homogeneity oR,~ 1/\n, which yields a lower limit on the

[V0]™+C =K, (18)  size of the two-dimensional nuclei of fractions of a micron,

4. DISCUSSION OF EXPERIMENTAL RESULTS

: (19

(20

tionation over time(i.e., as the dosé =1t increasepin the ~ |(dNk/d®) must be in terms of the number of remaining
spatial modulation period of the primary radiation defects infree sites in the already formed structuNgk— N, i.e.,
tions develop. o TiK
The conditions for applicability of the theoretical dose where the timer, corresponds to a K-center. The dose char-
stant of integration in Eq(9) can be expressed in terms of
the characteristic delay tintg=® /I for onset of divacancy Nic=Nok
goes into the phonon excitation that precedes the onset of tt& is a solution of Eq(19).
breakaway of atoms from lattice sites. In any event, the delay  Note that Eq.(19) results from the expansion of the ra-
sion of the phonon interaction. Thusg, can be regarded as The dose curve®, 4, and 5 constructed using Eq(20)
independent of the intensity of the external interaction. suggest that the corresponding radiation defe(isth
of I. Ultimately, the only one of the three constants in Eq.cies. Measurements ®f at different intensities show that
(9) that depends oh is the evolution timer, . All the dose they can be obtained from divacancies. Thig=0.37 eV
relation for the reciprocal time,‘1=§+ nl+ {12 and choos- among the defects produced by proton irradiaffon.
ing the constantg, », and . For example, for curv@ we A lower-bound on the distance along the wafer between
The elementary process of forming K-centers ultimatelyN~ 10 cm™3 (see Fig. 2 As an example, for proton bom-
reduces to a reaction of the fottn bardmentL~1 um. This implies a lower bound for the in-
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with R.~0.5 um. The rate of growth of the radiation defect- the formation of self-organized structures of the latter, as
enriched two-dimensional region is then of the ordengf — expressed by Eqs9) and (20), is a promising result. Thus,
=R./7,~0.1 um/min. Note that this rate is of the same in the future, radiation defect formation can likely become a
order for both proton and electron bombardment. test model for studying the principles of self-organization in
In order for two-dimensional structures of this type to discrete two-dimensional systems. This model can possibly
develop, the vacancies must be able to traverse the majdfe creation and use of mathematical lattice techniques for
transverse dimension of the problem, the distahce the ~ Solving the corresponding class of nonlinear kinetic equa-
wafer surface, within the timél7). The timer, obtained by  tions. _ _ _
integrating curves of Fig. 2, which coincides with E¢(17), Efforts in this area offer promise, as they are capable of
is of the order of one hour. Given this and the required esSupplementing, at the level of microscopic scale lengths, ex-
cape of the vacancies to the surface, for the diffusion coefisting work on self-organization of lateral structures in the
ficient we obtain the estimateD=L2/r,, whereupon Physics of superlattices.
D~10"12 cmés. This value is the same, to within the mea- On the other hand, the formation of self-organized defect
surement errors, as th®=1.2x10 *?cné/s previously Structures during proton, electron, and possibly neutron irra-
obtained for positively charged divacancies. This agreemendiation is an indication of the colossal radiation vulnerability
in the values oD found by different methods tends to con- Of planar semiconductor devices. gaSi, with the mediation
firm the existence of a structural phase transition in an atmotcapture¢ of mobile holes, divacancy formation predomi-
sphere of radiation defects. nates, forming a correlated extended “lattice getter.” This
On the other hand, the 1 MeV electrons we have used gstructure entrains the predominant oxygen and then, accord-
right through the wafer. In this case, thefor estimatingD ~ ing to Eq.(18), carbon.A-centers lose out in terms of their
must be the full width of the wafer, i.eL=0.2 mm. This rate of formation and are present in negligible amounts. In
value is several orders of magnitude greater than for protong)-Si, A-centers are formed and compete with the divacan-
while the timer,, on the other hand, is an order of magni- cies. The latter are chaotic; they do not have a Debye-
tude shorter. This leads to huge values-10 7 cn/s for ~ correlated structure. Thus, an extended getter does not exist,
the diffusion coefficient of the neutral vacancies obtained irand there are no K-centers, as they lose out to the A-centers.
this case. This strong predominance of diffusion processes in
electron-irradiated silicon compared to _pro';on-lrradlgted sili-1y Lee, J. W. Corbett, and K. L. Brower, Phys. Status Solidf14637
con appears to be due to a larger contribution from interband (1977.
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Charge states of atoms in the lattices of the high-temperature superconductors
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To determine the charges of atoms in the lattices of the compoupBs,Ua, ;Cu,0,,,4 and
Bi,Sr,Ca,-1Cu,0,,. 4 (N=1,2,3), the parameters of the electric field gradient tensor at

the copper sites of the indicated lattices were found by emissiossMuier spectroscopy on the
isotopes®’Cu(®Ni) and ®’Cu(®7zn), and a calculation of these parameters was performed

in the point-charge approximation. A comparison of the resulting values and the published data
on ®3Cu nuclear quadrupole resonance showed that agreement between the experimental

and computed values of the parameters obtains for models in which the holes resulting from a
reduction in the valence of some of the thalliuflmsmuth atoms are localized

predominantly at oxygen sites located in the same plane as the copper(&iote compounds
TI,Ba,CaCu0, and Bi gPhy sSHLCaCus O —at oxygen sites in the same plane as the

Cu(2) atoms. © 1998 American Institute of Physid$$1063-776(98)02209-4

1. INTRODUCTION quadrupole moment of the probe nucleus, is the principal
component of the tensor of the total electric field gradient at

The compounds }B&Ca,-1ChOzn14 (TIBACaCuQ  the probe, and is Planck’s constaitwas used to limit the
and BbSKCg,-1C;Ozn14 (BiSICaCuQ (n=1,2,3) have number of possible combinations of these charges.
high superconducting transition temperatufigs This ex- Moreover, a high defect rate is typical of TIBaCaCuO
plains the interest in the investigation of their properties. Aand BiSrCaCuO Compounds] even for materials with h|gh
pressing problem for the TIBaCaCuO and BiSrCaCuO latyalues ofT,. In consequence, the experimental results ob-
tices is to determine the charge states of the oxygen atomgijned for nominally identical compounds by different
which are responsible for superconductivity in these comgroups of investigators are not reproducible. For example,
pounds. obvious inconsistencies in the values of fii€u NQR fre-

For this reason, to us it seemed sensible to employ emisguencies are found for the compoundsBa,Ca,Cu;0;6*°
sion Mcssbauer spectroscopy 8fCu(®’Zn) to determine the gnd Bi, Pk 4S1,CaCls050.5"° The correlation indicated
charge state of the atoms in TIBaCaCuO and BiSrCaCuQpove makes it possible not only to advance reasons for the
compounds. The essence of the method, which we propos%crepancy in thé3Cu NQR data but also to assess the
in Ref. 1, consists in using &Zn** probe to measure the yalidity of the models proposed for the charge distribution.
parameters of the electric field gradient tensor produced aAn investigation of TIBaCaCuO and BiSrCaCuO com-
the copper sites by the lattice ions, calculating these paranpounds via®'Cu(®Ni) emission M®sbauer spectroscopy

eters in the point-charge approximation, and determining th@onfirms the conclusions drawn on the basis of the data ob-

effective charges of the atomic centers by comparing theained by this method offCu(®’zn).

experimental and computed values of the parameters of the

tgnsor of the grystal gradlent of the electric field. The effec—z_ EXPERIMENTAL PROCEDURE AND RESULTS

tive charges give a good picture of the valence states of the

ions at the lattice sites and substantial deviations from the The Massbauer sources were prepared by diffusion dop-

standard valence states. We have demonstrated the effectiviag of the compounds }Ba,CaCu;0; [T1(2223] (T,

ness of this method for typical high-temperature supercon=120K), Bi, Pk, ,Sr,CaCu30,q [Bi(2223] (T,~108K),

ductors(HTSC9—the compounds RB&u;0; (where Risa  Tl,Ba,CaCyOg [TI(2212] (T,~60K), Bi,Sr,CaCyOg

rare-earth metaf [Bi(2212] (T.~80K), TI,BaCuQ; [TI(220)] and
However, the number of available experimental paramBi,Sr,CuQ; [Bi(2201)] (for the latter twoT.<4.2 K) with

eters for TIBaCaCuO and BiSrCaCuO compounds is muchadioactive®’Cu and®’Cu isotopes using the procedure de-

smaller than the number of charges to be determined. Facribed in Ref. 10.

this reason, in the present work the correlation between the The Mdssbauer spectra §fCu(¢’zn) were measured at

quadrupole interaction constant§(Cu) and C(Zn) of 4.2 K with ®ZnS as the absorbefsurface density

83cuw?* centers f3Cu nuclear quadrupole resonan@®QR) 1000 mg/cm of 57Zn), while the 83Cu(®Ni) spectra were

and nuclear magnetic resonan@¢MR) datg and 7zn?* measured at 80 K with NggVg 14 as the absorbefsurface

centers $'Cu(®zn) emission Mssbauer spectroscopy data density 1500 mg/cfof nickel). The spectra of th&’Cu and

in copper metal oxideshereC=eQU,,/h, whereQ is the  5Cu sourcegin metallic copper with the indicated absorb-

1063-7761/98/87(9)/6/$15.00 588 © 1998 American Institute of Physics
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FIG. 1. Cu (¥7zn) (a) and %'Cu (°'Ni) (b)
Mossbauer spectra of the compound$2ZD1)
(1), TI(2212 (2), and T[2223 (3). The position
of the components of the quadrupole triplé&is
and multiplets(b) corresponding t6Zn?* (a)
and ®Ni?" centers at C{l) and Cy2) sites of
the compound TR223 and at the copper sites
of the compounds T2201) and T(2212 is
shown.

Count rate

ers had widths at half-height 2.7(4)m/s and 0.98) mm/s,  responding t&’Zn’" centers at copper sites of the(d212
respectively. Typical spectra of all TIBaCaCuO compoundsphase(its relative intensity is approximately 0,8are shown
are presented in Fig. 1. The spectra of the compounds BiSin Fig. 1a(curve3).
CaCuO have a similar structure. The results of the analysis Obviously, the5:Cu (6!Ni) spectra of the(2223 com-
of all spectra are summarized in Table I. pounds should also consist of a superposition of three mul-
Since the copper atoms in ti2201) and (2212 lattices tiplets. The®'Cu (®'Ni) spectra of the(2223 compounds
occupy a unique positioH; 3it was expected that thfCu  were analyzed taking this into account. Quadrupole multip-
(®INi) and ®’Cu (67Zn) Mossbauer spectra of these com- lets corresponding t&'Ni2* centers at C{i) and Cy2) sites
pounds would correspond to a unique state of thessdauer in the TI2223 lattice and a quadrupole multiplet corre-
probes®Ni?* and 87Zn?*. In actual fact, as one can see sponding t&®'Ni?>* centers at the copper sites of théZ012)
from Fig. 1(curvesl and?2), the®’Cu (6zn) and®Cu (°Ni)  phase are shown in Fig. 1burve3). The position of the line
spectra for both ceramics, (BR01) and Tk2212, are quad- of the latter multiplet was based on the spectrum of the
rupole multiplets corresponding to a single state of thg2212 compound, while the ratio of the areas under the
probes®’zn?* andNi?*. spectral curves was held 4t2:0.8. As one can see from the
More complicated spectra consisting of three quadrupol¢able, the components of the quadrupole multiplet§’@h
triplets were obtained for thé2223 compounds. As an ex- and®'Ni are broadened, compared with the natural widgk
ample, the®’Cu (57Zn) spectrum of the compound (2223  of the nuclear levels (.= 0.32 um/s for®zZn and 2"
is shown in Fig. 1dcurve 3. Since the copper atoms occupy =0.77 mm/s fo!Ni), and compared with the spectra of the
two crystallographically inequivalent positions in tt#223 67Cu and®'Cu sources in metallic copper. The broadening of
lattices'*1° one of the three quadrupole triplets in the spec-the®’Cu (67Zn) and®'Cu ('Ni) spectra, though not so great,
trum should correspond t5Zn?* centers at copper sites of has also been observed in other HTS$EShe broadening in
an additional phase. The parameters of the spectra of thislBaCaCuO and BiSrCaCuO compounds can probably be
phase are close to those of the spectrum of the compourekplained by the inhomogeneity of the experimental
TI(2212. Quadrupole triplets corresponding %" cen-  samples, which is also observed%Cu NQR spectra® of
ters at C@l) and Cy2) sites in the T(2223 lattice (their ~ these compounds. The broadening of fi&n spectra is
intensity ratio is close to 1)2and a quadrupole triplet cor- more pronounced due to the narrower spectral (foe®zn
substantial broadening is typical even for the absorption

spectrd’).
TABLE |. Parameters of*Cu (6™Ni) and ¢’Cu (¢7Zn) emission Mssbauer
spectra.
TIBaCaCuO BiSrCaCuO 3. EXPERIMENTAL RESULTS
Compound Site  C(Ni) C(zn) C(Ni) C(Zn)
3.1. Zn?* probe
(2201 Cu  —48(3) +13.3(3) —51(3) +12.4(3) . .
(2212 Cu  —43(3) +145(3) —46(3) +13.4(3) In the general case the measured quadrupole interaction
(2223 Cul) —30(4) +19.5(3) —35(3) +19.0(3) constantC is a sum of two terms

Cu2 —43(3) +14.3(3) —44(3) +13.8(3)

C=eQ(1-y)V,,/h+eQ(1—Ry)W,,/h, (1)

Note. GNi) and C(Zn)—quadrupole interaction constant;n MHz) for

6INi2* and 87zn?* probes, respectively; for all probes the asymmetry pa- L
rameter of the electric field gradient tenspr0.2; the widths of the com- whereV,, andW_, are the principal components of the ten-

ponents of the quadrupole multiplets were(8)gm/s for®zn and 1.185)  SOrs of the crystal and Yalence el?.CtriC field gradients, and
mm/s for®!Ni. andR, are the Sternheimer coefficients of the probe atom.
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The contribution of the valence electrons to the total  These values differ considerablpy a factor of 4—4.%
electric field gradient tensor can be neglected for the prob&om the experimental values @(Zn) at Cul) (C(Znl))
87Zn?*. Therefore and Cy2) (C(Zn2)) sites; see Table I. A similar situation is

also observed for other compounds. Such discrepancies can

C(Zn~eQ(1=y)V,,/h. 2) be due to erroneous values pfand Q, an incorrect choice

Thus, the experimental data obtained on the paramete model for the charge distribution, or a strong dependence
of the electric field gradient tensor using th&n®* probe  of the crystal structure of the samples on their past history.
can be correlated with calculations of these parameters basddie latter reason can probably be ruled out, since despite the
on an ionic model of the crystal latti¢goint charge mod@l ~ many structural investigations of TIBaCaCuO and BiSr-

The applicability of this model to copper metal oxides CaCuO compounds, all experimental data for specific com-
has frequently been discussed in the literature. Numerougounds agree satisfactorily with one anotheThe existing
attempts to compare the parameters of the electric field graeglible discrepancies in the structural parameters cannot be
dient tensor, calculated for oxygen and copper lattice sites ofixplained by the observed differences in the values of
the basis of the point-charge model, with the values of th€&(Zn).
parameters determined experimentally't® and®3Cu NQR To eliminate inaccurate values gfandQ (or more ac-
and NMR, must probably be deemed unsuccessfes, for ~ curately, their produgtfrom the analysis, instead of studying
example, the review in Ref.16In no case was satisfactory the magnitude of the quadrupole interaction constants for
agreement obtained between the computed and measuréf2223 and Bi(2223 compounds, the experimental ratio
values. This can be explained by the fact that the valenc®=C(Zn1)/C(Zn2) can becompared with the calculated
contribution to the electric field gradient &0~ and Vvalue ofs=V,,/V,,. Specifically, for T(2223 the values
83Cu?* probe nuclei is substantial. However, such agreemen®= 1.36(4) ands=1.15 were obtained. The large difference
is achieved using probes at whose nuclei the electric field@etweens and S shows that at the very least, the charge
gradient is produced predominantly by the lattice ionsdistribution was incorrectly modeled, i.e., the charges of the
for example, *9L.a®* and ¥B&" in La,_,BaCuQ, or ions at the lattice sites deviate from their standard values.
RBa,Cu;0;_,,'% as well as the®’zn?" probe, which we To simplify the problem we took advantage of the cor-
used earlier, at copper sites in a number of HT$&®n this  relation between the quadrupole interaction constaiiGu)
basis, the point-charge model can be expected to be suitabfptained by**Cu NQR andC(Zn) obtained by*’Cu (*’Zn)
for the TIBaCaCuO and BiSrCaCuO compounds that we in€mission Maesbauer spectroscopy for the same copper sites.
vestigated. As shown in Ref. 3, for a series of divalent copper metal

We calculated the tensors of the crystal electric fieldoxides the experimental data f@(Cu) andC(Zn) fall on
gradient at the copper sites of the TIBaCaCuO andhe curve
BiSr—CaCuO lattices based on the point-charge model. In so

doing, following the x-ray crystallographic and neutron- C(Cu)=197-11.3C(Zn), 3)

diffraction datat!~!°the lattices were represented as a super-

position of the following sublattices: whereC(Cu) andC(Zn) are given in MHz.
TI,Ba,Cu0(1),0(2),0(3),, The linear dependend@®) is a consequence of the fact
TI,Ba,CaCy0O(1),0(2),0(3),, that in the copper metal oxides that were investigated, the
TI,Ba,CaCu(1)Cu(2),0(1),0(2),0(3),0(4),, valence component of the electric field gradient fo” Cis
Bi,SrL,CuO(1),0(2),0(3),, the same, while the decrease @(Cu) with increasing
Bi,Sr,CaCy0(1),0(2),0(3),0(4),, C(Zn) suggests that the valence and crystal contributions to
(Biq ¢Phy.4) SKL,CaCuU(1)Cu(2),0(1),0(2),0(3), C(Cu) have opposite signs and thitl—Ry)W,/>|(1

-0(4),0(5),. — )V, for the 83Cu?* probe. The points for monovalent

The components of the electric field gradient tensorscopper (CyO, Cul) state in YBaCu;Og) were found not
were calculated as sums of products of fixed lattice sum#o lie on the straight ling3). This can be explained by the
with the charges of the sublatticés. loack of a valence contribution to the electric field gradient

For subsequent developments, it is significant that thet the nucleus for the Cuprobe. Thus, the&(Cu)—C(Zn)

0O(1) sites for T[2201), Bi(2207), and T(2212 compounds diagram makes it possible to select copper positions where
are located in the copper—oxygen plane, fof2Bil2 the the copper is not divalent: the deviation of tG€Cu) and
O(3) sites are located in the strontium—oxygen plane, forC(Zn) values from the straight lin€3) for a specific com-
TI(2223 the 2) sites are located in the @Q)—0O(2) plane, pound indicates that the copper valence in that compound is
and for B(2223 the 2) and Q3) sites are located in the other than+2.

Cu(2)-0(2,3) plane. Structural data from Refs. 11-15 were  As shown in Ref. 3, information about the charges of the
used in the calculations. lattice atoms can be obtained from 16¢Cu)—-V,, diagram,

If the valuesQ=0.17 b(Ref. 19 and y=—12.2(Ref.  whereV,, is the principal component of the crystal electric
18) are taken for thé’zn?" centers, then model A, corre- field gradient tensor at the copper sites, calculated in the
sponding to the standard valence states of atoms in thgoint-charge model for the specific copper compound, while
TI(2223 lattice (TE*, B&™, C&*, CU*, 0?7), yields C(Cu) is the quadrupole interaction constant determined for
eQ(1—y)V,;=78 MHz for Cul) sites andeQ(1—7y)V,, this compound by thé®*Cu NQR method. For divalent-
=68 MHz for the C\2) sites. copper metal oxides this dependence has the {6t 2b°
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C(Cu), MHz ing hole concentrations are 0(2), 0.101), 0.101), 0.152),
60 5B wsA 0.121), and 0.202) per oxygen site.
The hole distribution indicated here is not, strictly speak-
6;‘]3 B i ing, the only possible one. However, the substantial devia-
40r o -gz;A tions of the points from the straight ling4) in the
Q

C(Cu)-V,, diagram require that corrections to the standard

charges in model A be made for ions located in the nearest-
neighbor environment of the copper sites. The contributions
b made by the rest of the sublattices to the electric field gradi-
ent are at least an order of magnitude smaller than the con-
tributions of the designated oxygen sublattices, and an order
of magnitude larger deviations of the charges from the stan-

207

a0k ;’:‘; dard values would be required to reconcile the computed
' values ofV,, with Eq. (4). Such deviations are scarcely
i2 Tl6 20 06 08 10 physically meaningful. Thus, the foregoing hole distribution
C(Zn). MHz V.. elA in the oxygen sublattices is probably necessary in the model
adopted.
FIG. 2. 8 C(Cu)—C(Zn) diagram for divalent-copper compountslid Holes in the oxygen sublattices require introducing ac-

line). b) C(Cu)~V,, diagram for divalent-copper compoun@®lid straight  centor centers into the model in concentrations correspond-
line). The open squares show data for TIBaCaCa©:Cu in TI(2201);%° . . . .
2—Cu in TI2212:2 3—Cu(1) in TI(2223 4—Cu(2) in TI2223% The 1N to neutrality. For the reason discussed above, their
filled squares show data for BiSrCaCuB+—Cu in Bi(220);226—cCu in  charges have virtually no effect on the value\df, at the
Bi(2212;>"?°7—Cu(1) in Bi(2223;° 8—Cu(2) in Bi(2223.° The indices A copper sites. For TIBaCaCuO compounds, holes can result
and B denote the model used to calculdje(the calculation and the models from a transition of some of the thallium atoms to a monova-

themselves are described in the jexthe citations refer t&€(Cu) data for .. o
TIBaCaCuO and BiSrCaCuO compounds. The value€@Zn) for these lent state. This is supported, speC|f|caIIy, 289‘” NMR data

compounds were taken from Table I. for TI(2212 and T(2223.2* One can see from Fig. 2b that
satisfactory agreement with the linear dependeg@gés ob-
served for models B, which take account of the appearance
of holes at the oxygen sites, as well as a transition ¢1)20

of the thallium atoms in the compound®210 and (2223

C(Cu)=179-191.4V,, ) and 121)% in the compound TR212 to an monovalent
whereC(Cu) is given in MHz andV,, in e/A3. state.

Just as in Fig. 2a, in Fig. 2b the points for the monova-  Direct experimental data on the nature of the acceptors
lent copper compounds do not lie on the straight lige  do not exist for BiSrCaCuO compounds. The origin of holes
However, if the copper is divalent, i.e., the correspondingn their oxygen sublattices can be explained, for example, by
point lies on the straight lin€3) in the C(Cu)—C(Zn) dia- the defect rate in the material. Figure 2b shows agreement
gram, then a deviation from the straight lifd) in the  with the dependenc@) of models B, according to which the
C(Cu)-V,, diagram indicates that the ionic charge distribu-charge of holes at oxygen sites is balandezl make the
tion was incorrectly modeled in calculating,,. Such an discussion specificby a decrease in the charge of the bis-
analysis makes it possible to choose possible alternativenuth sublattice. For B2223 such a charge decrease does
charge distributions in the lattices. occur, due to the substitution of Pb for Bi.

The %3Cu NQR data for the compounds (Z201),%° For Tl(2223 and Bi2223 compounds, there exist other
TI(2212,2* TI(2223,* BIi(220),2 BIi(2212,>"* and experimentaf3Cu NQR datgin Ref. 5(Tl), and Refs. 5 and
Bi(22235, together with our®’Cu (67zn) emission Mss-  7-9(Bi)) that differ appreciably from the data in Refs. 4 and
bauer spectroscopy data, are presented irCf@u) —C(Zn) 6. We see from Fig. 3a that the data from Refs. 5 and 7-9
diagram(Fig. 23. One can see that all points satisfactorily leave the points for the GB) sites on the straight lin€3),
correspond to the relatio8), i.e., the copper is divalent in confirming the divalence of G8) in both cases, but lead to a
TIBaCaCuO and BiSrCaCuO compounds. considerable deviation of the CI) points from the straight

Itis clear from Fig. 2b, however, that the data from Refs.line (3). Such a deviation can be explained by a reduced
4-7 and 20-23 are inconsistent with the linear dependencealence contribution inC(Cu) due to the partial filling of
(4) in the C(Cu)—-V,, diagram ifV,, is calculated for model holes in the 8 shell of C{1). On the basis of Ref. 3, the
A, again confirming the shortcomings of this model. To rec-observed deviation from the straight lif® corresponds to a
oncile the data with the dependeng® for the TI(2201), Cu(1) charge of+1.8e in TI(2223 and betweent+ 1.85e
Bi(2201), and T(2212 compounds, lesser charges of theand +1.7e in Bi(2223. This could mean that2223
oxygen ions located in the Cu—O planes must be used, i.esamples with partially reduced copper in the(Quypositions
holes must be inserted into the corresponding sublattices. Fovere used in Refs. 5 and 7-9, and the degree of reduction
the Bi(2212 compound, the holes must be inserted into thedepended on uncontrolled material fabrication conditions.
O(3) sublattice. Finally, for the T2223 and Bi2223 com- One can see from Fig. 3b that when the models A and
pounds, the holes must be positioned at the oxygen ions Idhe data of Refs. 5 and 7-9 are used, thélCand Cy2)
cated in the same plane of the @uatoms. The correspond- points for both compounds deviate from the straight e
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FIG. 3. @ C(Cu-C(Zn) diagram for divalent-copper compoundsolid

line). b) C(Cu)-V,, diagram for divalent-copper compoundsolid line). FIG. 4. 8 C(Ni)—C(Zn) diagram for divalent-copper compoungslid
The open squared show data for C(L) and Cy2) in the compound |ine). b) C(Ni)-V,, diagrams for divalent-copper compoun@slid line).
TI(2223;® the filled symbols show data for €1) and C42) in the com-  The open squares show the data for TIBaCaClOCu in TI(2201); 2—Cu
pound B{2223: 2—Ref. 8;3—Ref. 7;4—Ref. 9;5—Ref. 5. The letters A in TI(2213, 3—Cu(1) in T1(2223; 4—Cu(2) in TI(2223. The filled squares
and C denote the models used to calculig (the calculation and the show the data for BiSrCaCuC—Cu in Bi(2201); 6—Cu in Bi(2212;
models themselves are described in the)teXhe citations refer to the  7—Cu(1) in Bi(2221); 8—Cu(2) in Bi(2223. The letters A and B designate
values ofC(Cu) for the compounds T2223 and Bi2223. The values of  the model to calculat¥/,, (the calculation and the models themselves are
C(Zn) for these compounds are taken from Table I. described in the text

The deviation of the Gld) points can be explained by the Cu(1) sites might be due to the difference in the technology
aforementioned deviation of the copper valence fro at  used to prepare th€223 samples, i.e., the charges of the
these sites. The deviation of the @upoints must be attrib-  TI, Bi Cu(1), O(2), and G3) atoms in thg2223 lattices can
uted to the appearance of holes at the oxygen sites, located lyg controlled.
the same plane as the QU atoms. To explain their pres-
ence, it is necessary to take account of the additional source_ , .,
of holes due to reduction of the Ci) charge. Specifically, if 3.2. TNIT probe
it is assumed that the €U charge in T(2232 is + 1.8e, To obtain additional information about the charge distri-
then the C(®) point falls on the straight liné4) with 0.11  bution in the lattices of copper metal oxides and to check the
holes in the @) sublattice and 6% monovalent thallium. accuracy of thé’Cu (6Zn) emission Mssbauer spectros-
Similarly, if it is assumed that the C1) charge in B{2232  copy data, data obtained by this method®@u (®'Ni) can
is +1.7e, then with due account of the divalence of the be used. Figure 4 displays ti&Cu)—C(Zn) diagram con-
lead, the presence of 0.16 holes at eact?®)Gand Q3)  structed from theS’Cu (®3Ni) and 8’Cu (67Zn) emission
site, which is necessary in order that the(Zupoint fall Mossbauer spectroscopy measurements of GiNi) and
on the straight ling4), does not require additional acceptor C(Zn) quadrupole interaction constants f6iNi?* and
centers. These models are marked with the letter C in Fig’Zn?" probes, respectively, at the copper sites of the
3b. same copper metal oxidé%.For ®INi?* the electric field
The models constructed for the charge distribution ingradient is produced both by the lattice ions and the valence
(2223 lattices describe th&Cu (67Zn) emission Mesbauer electrons of the probe itself. Since th&(Ni)—C(Zn)
spectroscopy data in conjunction with a variety’@uNQR  diagram in Fig. 4a is a straight line, according to the relation
data. The improved charge distribution models not only rec{1) this means that the valence contributionG¢Ni) is con-
oncile the measuref’Cu quadrupole interaction constants stant. Points for TIBaCaCuO and BiSrCaCuO compounds
with the computed crystal electric field gradients, they alscare also plotted in Fig. 4a, and one can see that good agree-
reconcile the values of ands (for TI(2223 compound,s ment obtains with the existing data for other copper metal
=1.34 for the B model and=1.38 for the C model; for a oxides.
Bi(2223 compound,s=1.41 for the B model and=1.43 Just as in theC(Cu)-V,, diagram, the validity of the
for the C model. The B and C models presuppose the prescharge-distribution models can be checked using the
ence of holes at oxygen sites in the(@u4-O plane, but they C(Ni)-V,, diagram (Fig. 4b (hereV,, are the computed
differ with respect to the degree of filling of the hole in the principal components of the tensor of the crystal gradient
3d shell of copper at the Q) sites. The choice between of the electric field for copper positions at whicB(Ni)
alternative models can be made only by eliminating the diswas measured® The C(Cu)-V,, diagram is a straight line.
crepancies in the experimenfdCu NQR data. It cannot be The deviation from this straight line migiht be due to an
ruled out that the difference in the values©fCu) for the incorrect calculation of the electric field gradient tensor
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because of an incorrect choice of atmoic charges. Figur&E-mail: seregin@tuexph.stu.neva.ru
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Using an approach based on the density functional, we show that the exchange-correlation
contribution to the system energy can be bigger than the sum of the kinetic energy and the Hartree
contribution due to redistribution of carriers over the quantum wells in doped composite
superlattices at low temperatures and moderate impurity densities. As a result, the ground state
of the system can correspond to an inhomogeneous electron distribution over the quantum

wells. Conditions when the homogeneous state is stable against small and finite density fluctuations
are determined, and a phase diagram is plotted. A nonlinear theory of the inhomogeneous

state is considered. @998 American Institute of Physids$1063-776(98)02309-9

1. INTRODUCTION applied to analyzing crystallization of simple liquids. In par-
ticular, a modified density functional the8nhas yielded
Direct measurements of the conductivity in the verticalthreshold values of,, in fair agreement with numerical cal-
direction in GaAs/GaAlAs superlattices uniformly doped culations.
with silicon have revealed some unexpected feattitegar- Experimental observation of Wigner crystallization is
ticular, structures without artificially introduced disorder butalso very difficult because conditions for this process are
with a relatively low doping level demonstrated at higherquite restrictive. It seems that no Wigner crystallization has
temperatures a transition from the quasi-metallic to activaever been detected in three dimensions. Only crystallization
tion conductivity with an activation energy comparable to orof two-dimensional electrons over a liquid helium surface
even higher then the minigap width. It was suggestbdt  was observed in experimerft&.
this anomaly, which could not be interpreted in terms of the  Quasi-two-dimensional systems offer new opportunities
standard theory, might be caused by effects of Coulomb infor spontaneous symmetry breaking owing to electron den-
teraction. sity distributions that vary in the vertical direction because of
It is well known that the role of the Coulomb interaction specific features of the electron spectrum size quantization
in structures of low dimensionalit§in particular, both the conditions™® Earlie® a mechanism giving rise to states with
exchange and correlation contribution to the total energy of ahhomogeneous carrier distributions among quantum wells in
system is especially important. It seems that these energiesuperlattices with a specially designed potential profile ow-
are responsible for the observed band gap reduction at highg to delocalization of carriers in the second size quantiza-
carrier densities in quantum wells. It has been nbthdt the  tion subband was discussed.
exchange-correlation effects can lead to distributions of the  The present study shows that, generally speaking, a spe-
electron density varying in the vertical direction, which may cially designed potential is unnecessary for generating inho-
be a cause of the observed anomalies in the conductivity ahogeneous electron distributions in doped compositional su-
doped superlattices. perlattices. They can be created by a different mechanism in
The fact that the ground state of a system may be inhothe presence of exchange-correlation interaction between
mogeneous when the interaction between electrons is impoguasi-two-dimensional electrons in quantum wells even if
tant (Wigner crystallizatiof) has been actively discussed in only the lowest subband of size quantization is important.
the literature. Accurate calculations of the Wigner crystalli-We will see that the conditions for creating an electronic
zation parameters, however, are difficult because the differsuperstructure are less restrictive in this case than the condi-
ence between the important energies to be compared tfons for Wigner crystallization, and they can be realized in
small; therefore calculations of the threshold electron densitgonventional doped superlattices.
differ considerably. For example in the three-dimensional
case numerical Monte Carlo calculations produced a Wigner
. X : : 2. PROBLEM STATEMENT
sphere with a radius measured in units of the Bohr
radius, ap=ch?’me?, equal to r¥=100+20 [r{® Here we study the possibility of spontaneous symmetry
=(477n83)/3)‘1/3/a0, ng?’) is the average electron density, breaking in a system of interacting electrons in doped com-
and ¢ is a permittivity of the materid) and for two- positional superlatticegote that this model can be applied
dimensional systems,= 26, wherer = (7v,) “Y%ay andv,  to modulation-doped superlattices, which are composed of
is the two-dimensional electron densit{.In recent years, periodic p—n junctions.
Wigner crystallization has been described using the density It is convenient to use an approach based on the density
functional approach® which was previously successfully functional theory. Let us consider electrons in a homoge-

1063-7761/98/87(9)/6/$15.00 594 © 1998 American Institute of Physics
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neously doped compositional superlattice characterized bthe well number. Since the function@) is known, the prob-
the Hamiltonian lem of the electron density is solved by minimizing this

functional.
H=T+Vget Veit+ Veonrt Vexts 1)

vvlhereT IS tlhe Kinetic energywopgrathdvee Is the Opfrator Of 3 ENERGY AS A FUNCTIONAL OF THE ELECTRON
electron—electron interactio hei IS the operator of interac- DENSITY IN A SUPERLATTICE

tion between electrons and positively charged iong, is
the operator describing interaction between electrons and Our goal is to study the possibility of spontaneous sym-
confining potential of the superlattice, which determines themetry breaking associated with different average electron
spatial profile of the conduction band edge, ahg; is the  densities in different quantum wells. Since, as will be shown
operator of interaction with an external electric field. below, conditions for the existence of such states are less
The theory of the density functional is based on therestrictive than the conditions for creating inhomogeneous
Hohenberg—Kohn theorem, which asserts that a thermodycontinuous distributions of the electron density, like that in a
namic potentialsuch as free energpf a system of interact- two-dimensional Wigner crystal, we limit our discussion to
ing particles can be expressed in terms of a universal fundhhomogeneous distributions of electrons with a constant
tional of one-particle density, which is independent of thedensity in each quantum well. In other words, we assume
external field and has a maximum corresponding to théhat the electron density distribution function is independent
ground state for an equilibrium density distributingr).1%!!  of the coordinate, i.e., the function is defined on a discrete
In what follows, we limit our discussion to the case of theset of points corresponding to different quantum wells in the
ground state af=0 and consider extremal points of the superlattice. For simplicity, we consider the case when the
total system energf[n]. In a general case, the expressionelectron density is concentrated in narrow layers intersecting
for energy,E[n], considered as a functional of the density, with the z-axis, which is aligned with the vertical direction,
can be written as follows: atz;=id, wherei is the quantum well number ardlis the
superlattice period. Hence the density can be expressed as
E[n]=T[n]+En[n]+E,[n]+Econ{ N]+Eedn], (2

n(r)=>, »é(z—z),

whereT[ n] is the kinetic energy of a system of noninteract-

ing electronsEy[ n] is the energy of interaction among elec- . . . o

trgns calculatgd in the clasi)i/cal Hartree approx?mation}"’hereVi is the tvvo—dlmepsmne_ll e'etho”_de’.‘s"y in thh
which also includes the energy of interaction with the posi—We”' S0 that_the threg-dlmensmnal distribution of thelglec—
tive background compensating for the average negative eledON dgnsﬂy is determined by the set of ele_ctron dgnsme;
tron charge,E.,,in] is the energy of interaction with the :{V.i} in all q“aﬂt“m We"S’. and the den3|_ty functional is
confining potential, andE,{ n] is the energy of interaction equivalent to'a simple fqnctlon of.many variablps}.

with external fields; the remaining part of the energy is de- Letus wr'lte EeXpressions for d.|ffer.ent compc.)nents. (.)f the
noted byE,[n] and is called the exchange-correlation con-EN€'@Y(2)- It is obvious that the kinetic energy is additive:
tribution (note that all the energies are measured per unit area )

of the superlattice The major difficulty of the density func- Tlv]= E. T(w), 3
tional theory is that the exact form of the functiora] ] n]

is unknown, and it is calculated using various approximaWhereT?)(1;) is the kinetic energy of the two-dimensional

tions, such as the local density approximation based on th@lectron gas in theth well. In the case when only the lowest

gradient expansion of the enertfyy? subband is important and tunneling through barriers is neg-
A remarkable feature of the system under investigatiodigible, we have
is that the potentiaV.,,s is not a small parameter, but is T(2)(Vi)=vi2/2p0, (4)

largely responsible for forming electron states in the super-

lattice. We consider the case of sufficiently narrow quantunyvhere po is the two-dimensional density of states in the
wells, when the populations of all subbands, except the lowduantum well. The Hartree enerdgy[ v] for narrow quan-
est one, is negligible, and the overlap between electron wavélm wells can be expressed in the form

functions of neighboring wells is small. In this case, the

tight-binding approximation applies, and the problem can be EH[V]=2 Vijv; V,-—E viNgV*, 5
formulated in terms of electron states localized in isolated " '

quantum wells. In this approximation, the componentwhereV;; is the potential of the Coulomb interaction be-
Econi N] is taken into account when the basis functions argween electrons of thieth andj-th wells,V* is the Coulomb
defined. Neglecting the overlap between electron wave fungaotential integrated over the entire volume, adg is the
tions of neighboring quantum wellghis condition will be  density of positively charged dopants. It is known that the
discussed in Sec.)pwe can consider the electron density aslast term on the right of Eq(5) exactly compensates the
a function of the discrete argument described as a set ofteraction with the background charge of negatively charged
points i corresponding to isolated quantum wells, and thecarriers. For simplicity, we use the “jellium” model, assum-
energy(2) as a functional defined on sii,i}, wherepisthe ing that the positive charge is uniformly spread over the
continuous radius-vector in the quantum well plane, aisd  space. In this case, the Hartree energy can be expressed as
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1 and settinge{?(»)=E{®)(v), we obtain a lower bound for
Enlv]=5 % Vij(vi = vo) (vj—vo), (58  the absolute value of the exchange-correlation energy. A
(%)) more accurate estimate €2 (v)=E®(v)+\EP(v),

where 0<\<1. A more accurate account of the correlation
energy leads to som@nsignificant forv3/“d<1) weakening
Vij= —(2we2/s)|zi—zj|, (6) of conditions for an electronic superstructure, so in our esti-
. " . mates we use the approximati&y’)(v)=E?(v).

g is the permittivity, andz; andz; are the coordinates of the Finally, in the presence of an external field the energy of

I-th andj—th.w.ells. Given the homogeneous d|str|but|9n of its interaction with electrons in this approximation has the
electrons within one well, the average electron density P& orm

unit areavy is related to the three-dimensional density of
dopants by the formulay=Nyd.

Let us analyze separately the exchange and correlation
contributions to the energk, [ v]. The exchange contribu-
tion E,[ v] is additive if the overlap between wave functions
of neighboring wells is negligible, i.e.,

where

Eodv]=2 V™, (11)

where Vi(eXt) is the energy of electron interaction with an
external field(which is assumed to depend only ah at
=17 .

2
ELv]=2 EX(n), (7
I 4. STABILITY OF THE HOMOGENOUS STATE AGAINST

dimensional electron gas in thih quantum well. We It is known that Wigner crystallization in a homoge-

have neous electron gas proceeds via a spin-polarized state corre-
Eﬁf)(vi): —Cx(ezls)v?’z, ®) sp_onijligg to Sto'ner ferro.n?agnetic ordering Qf eIecFron
spins?> An analysis of conditions for ferromagnetic ordering
where C,=0.81. In addition, corrections due to the finite of band electrons at low electron densities similar to that
quantum well width and finite temperattecan be easily performed by Shimizif can be based on the expressions for
included. the energy functional given above. Concentrations of elec-
The correlation contributiofE [ v] is due to a decrease trons with spins up and down can be expressedvas
in the spin-independent pair correlation function at small=(»/2)(1+x) and v, =(»/2)(1-x), where v is the two-
separations between electrons in the presence of Coulontimensional electron density in the layer axfi<1. Thus,
correlations(formation of a Coulomb hole around an elec- we can derive from Eq94) and (8) the energy difference
tron). It is clear that the correlation contributid®[ v] is also  between the polarized and nonpolarized states in a two-
additive if the Coulomb hole size is smaller than the separadimensional layer:

tion between quantum wells: 2 2 32
14 e v

— 2
AspE(x)—4p x“—Cy

0 2\/58

{(1+x)%2+ (1—x)%2-2}.

Edv]=2 EZ (), ©) (12)

dimensional electron gas with density. With due account ciently small » (Vr<2y2(3/2)C,e?po/e), the function

of ring diagrams folE{?)(v) at v<2a,?, we havé® AgE(x) has a local minimum g|=1; when
2 f<2ﬁ (V2—-1)C,e?pg 13
E@(v)= 3{ —1.29vad)*3+ 1.2 va3)¥? g e !

the differenced o E(1) is negative, i.e., the ground state cor-

1 responds to a fully spin-polarized electron gas in the layer.
—0.14va3)%*+0 )} (10) b G 0 Y

(vag)?in ) Finally, at \’»y<(32/2)C,e%p, /s the nonpolarized state is
veo unstable against small fluctuations in the spin polarization.
Note, however, that additivity fails when the Coulomb In the region of ferromagnetic ordering in isolated quan-
hole radius is larger than the separation between neighboririgm wells, a quasi-one-dimensional system similar to a one-
wells. If the Coulomb hole radius is much larger than thedimensional chain of one-electron atoms with a small over-
superlattice periodi.e., v, Y?>>d), the effect of the correla- lap between wave functions of nearest neighbors is
tion contribution on the redistribution of electrons amongconsidered. For homogeneous doping, if the finite overlap
quantum wells is negligible in comparison with that of the integral between the electron wave functions in nearest quan-
exchange interaction. Hence, choosing the expression for tHgm wells (interlayer exchangeis taken into account, the

exchange-correlation energy in the form spin-dependent interaction between electrons in the superlat-
tice should lead to ferromagnetic ordering of electron spins
E [V]=2 E@ (4, in neighboring quantum wells. Note the difference between
XCl - XC |
I

the superlattice and a chain of one-electron atoms, because
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the analogue of the Hubbard energy in the superlattice Iog(Nd/N;(dl))
change in the Coulomb energy when one additional electron
is introduced to a quantum wgl/anishes, so the Hubbard
gap also goes to zero.

Next we prove that the spin-ordered state with equal
electron densities in the layers is unstable agaimst
dependent variations of the electron density in a certain part
of the density range defined by E@.3). Consider the con-
ditions under which a transition from a spin-ordered state to
an inhomogeneous state with different electron densities in
different wells lowers energy. To this end, we study the ex-
pansion of the functiondE[ v] in terms of Sv;={v;— v¢} in
the absence of an external field{¢*=0) about the homo-
geneous state; = v, which always corresponds to an extre-
mum of E[ »]. With terms of up to the second order &v, FIG. 1. Domain of electronic superstructuieatched. Curves1-3 define

we have domains of ground states with periodd,23d, and 4, respectively. The
dotted linel’ is the boundary of the instability region for the homogeneous

1 3e? distribution of electrons over the quantum wells of a superlattice, and the
AE[ V]:E ——Cy——= 5yi2 curve 1” limits the domain of the metastable inhomogeneous state. The
i Po 4e \/V—O curve4 defines the region in which the spin-ordered state is the ground state.
1
+ z 2 VIJ 5Vi 5111 . (14)
i)
=0 Wik 1 e?d 3C,e? 8
i =—+ — .
Let us de_note by\! the total number of qugntum we.IIs in the po  esir(kdi2) 48\/1/—0
superlattice and introduce normal coordinates using the ex-
pansion It is clear that the functioiW(k) has a minimum ak=k,
1 =q/d, i.e., at the Brillouin zone boundary. If
svi=—= 2, [Qeexp(ikz)+Qfexp(—ikz)], (15
JN & 1 2me’d 3C,e?
_ — - <0, (19
where the sum is performed over all wave numberg\s- Po & 4e\v,
suming periodic boundary conditions @w;, the parameter _ o
k runs through the valuds= (277/Nd)n within the first Bril- @ uniform distribution of electrons over the quantum wells

louin zone: — w/d<k</d, so the integers belong to the becomes unstable, and the instability first appears for small
interval — N/2<n<N/2. By substituting Eq(15) in expan- harmonic variations in the electron density wkk ko, i.e.,
sion (14), we obtain for a wavelength double the superlattice period.

Condition (19) can be transformed to

1 1 3C.e° )
AE[v]=7 2 po ze TV Q2. (16) Ng<N%, (20)
Here where
2
V(=3 V(z)exp ~ikz), w e Al:(&) g
! d(d+d*)2 8w 27e%p,

and we have taken into account that the parametgfs
=V(z;—z;) depend only on the differences between coordi

natesz; —z;. FunctionsV(k) are periodic in the reciprocal ) e )
shown schematically in Fig. 1 by the dotted liné. IThe

one-dimensional lattice with perido=2/d. dash-dotted I 2 defi h on in which th
It follows from Eq. (16) that the homogeneous state of dash-dotted line 4 in Fig. 1 defines the region in which the
spin-ordered state is the ground state.

the system is stable against small fluctuations only if all fac-
y g y Thus, Eqgs(13) and(19) demonstrate that the transition

_The boundary of the region of instability of the spin-ordered
homogeneous state against small spatial fluctuations is

tors ; "
to the electronic superstructure at lower electron densities
1 3C,e? proceeds through a spin-ordered state. The reason is that the
W(k)=—-— +V(k) Coulomb interaction between charges in different layers de-
Po 48\/1/—0

scribed by the positive terrg,[ v] makes a transition to a
are positive. If at least one of them vanishes or becomestate with an inhomogeneous distribution of electrons over
negative at a certaik,, the system becomes unstable againsthe quantum wells more difficult. Moreover, when a spin-
a wave with wave numbel,. For the system under investi- ordered state is formed in a layer, the two-dimensional elec-
gation, the functionv(k) can be calculated explicitly. We tron density is half the density at which all electrons transfer
have to one of the two neighboring quantum wells.
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fA.OE: rel. units 1 i+ 2re2d - 3C,( \/5_ 1) g2 0

0.8 Po ° : eVro
or

06 Ng<NZ,, (23)

0-4 where

0.2 o A, e <3Cx)2

0 @ dd+an)? T T\ 8w

02 The region of the inhomogeneous state stable against small

fluctuations is bounded in Fig. 1 by dotted cui/e

0.4+ The energy of the inhomogeneous distribution becomes
FIG. 2. Energies of inhomogeneous states versuby, at different values lower than that of the homogeneous distribution when

of vo=N4d (the shapes of the curves are shown schematjcallye param- AE(u)|,-1<0. This condition can be expressed as
eter vy decreases when the number labeling the curves increases.

Ng<Ngs, (24
where
5. PROPERTIES OF THE ELECTRONIC SUPERSTRUCTURE . As (3— 2\/§)C)2(
One can investigate the inhomogeneous state of the sys- Nda_m' S—T.

tem by minimizing the functionak[ v] in the absence of an

X o o Equation(24) determines the range of the dopant density
external field under the additional condition

in which the ground state is spatially nonuniform, i.e., an
electronic superstructure with a period that is double the su-

> vi=NgL, perlattice constant exists. This regitihis hatched in Fig. 1

' is bounded by curvé. An important point is that conditions
wherelL is the system size in the vertical direction. It has (21), (23), and(24) are not identical. In the region
been shown in the previous section that, at the point where N* < Na< N*

T ; d1<~Ng<Ngz (25
stability is lost, the system becomes unstable against electron
density fluctuations with the period which is double the su-the homogeneous state is stable against small fluctuations,
perlattice constant. Therefore, let us first consider as an illusaut unstable against relatively large fluctuations. In the re-
tration the nonlinear theory of inhomogeneous states with gion
period twice as large as the superlattice period. Denote the
electron density in even and odd quantum wellsrgas=vq
+Avw, respectively. After introducing the parameter the inhomogeneous state is stable against small fluctuations,
=Avlvy, we can express the energy change per one supebut is metastable.
lattice period with respect to that in the homogeneous state Now let us address a more general case and suppose that

N3 <Ng<NJ,

as a periodic structure with a period thatsdold of the super-
1/1 27ed 2312 lattice constant is formed, such that all electrons from the
AE(U)==| —+ e vSuZ—CX 0 [(1+u)¥? well labeled by 6—1) go thesth well, sov;=sv, and v;
2\ po 2e =0 fori—2,...s. Then the change in the energy per one
+(1—u)32— o1, 21) superlattice period with respect to the homogeneous state can
be expressed as
It is obvious that the homogeneous solution 0 to equation e2d 21
dAE(u)/du=0 exists for allvg, but, if condition(19) holds, AE(s)= v8/21 (s—1)d* + d} vl2
it is unstable against small variations in the electron density. 2 3
Curves of AE(u) for variousv, are plotted in Fig. 2. One C
can see that, at small electron densitigs the energy has - —X(sl’z— 1)]. (26)
minima atu=Av/vy=*1, i.e., when the density distribu- 7

tion is such that all electrons go to evéadd quantum It is clear that forNy< NE,S), where

wells. The range of electron densities corresponding to an ©
inhomogeneous state stable against small fluctuations is de- N(S)={3+ 1_251/2}& A

termined by the condition d 7 d[(s—1)d* +(s?—1)d/3]?’

dAE(u) and A®=(s+1-2s"?)(C,/m)?, the ground state corre-

T du <0. (22) sponds to the period,;,d, wheres,,, is the value ofs cor-
responding to the minimum of enerd6). Thus, at low

It can be transformed to electron densities inhomogeneous states with periods larger

u=1
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than twice the superlattice constant can form. The regions ifimate p,=3x 10" eV 1cm 2, £=12.7, andd=9 nm, we
vv_hich the ground state periods ard @nd 4d are defined in  gpiain d*~4.7 nm andN%,~8.2x 10! cm 3 (this corre-
Fig. 1 by curvesg and 3. Note, hpwever, that such states sponds to an average two-dimensional density~7
haye Iowe_r stab|I|t3_/ than thq;e with the double s_up_erlattlcex 10°°cm™2). As was stated above, inclusion of the correla-
period _at intermediate densities because the gain in energyy, energy leads to an increase in cons@gt, hence in the
AE(s) is smaller at lowerwy. critical densityN};. This estimate indicates a possibility of
inhomogeneous electronic states under conditions which are
less restrictive than those for Wigner crystallizati@t the
Thus, in superlattices with sufficiently small periods atparameters given above,= 26 (see Ref. #corresponds to a
low densities of charge carriers, states with nonuniform carcritical ~ two-dimensional  density vo~3x10°cm™2  for
rier distributions over the quantum wells or electronic superWigner crystallizatioh On the other hand, it follows from
structures can exist. Note that the mechanism for spontan@ur estimate that formation of an electronic superstructure
ous symmetry breaking in the vertical direction is different(@nd, consequently, of a gap in the spectrum of electronic
from that of Wigner crystallization. Although the problem is €xcitationg could be expected in the range of dopant densi-
formally one-dimensional, multidimensional aspects are alséieés where anomalies in the superlattice vertical conductivity
important in this problem, because the resulting inhomogehave been detectéd.
neous distribution essentially depends on the exchange and | am indebted to A. G. Mironov for helpful discussions.
correlation interactions within quasi-two-dimensional quan- ~ The work was supported by the Russian Fund for Fun-
tum wells. The conditions for the spontaneous symmetrydamental ReseardiGrant 97-02-17334and INTAS (Grant
breaking in this case are less restrictive for the following94-4435.
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The change in the reflectivity of a metallic magnetic multilayer that exhibits giant
magnetoresistance for a monochromatic electromagnetic plane wave with polarization along

the magnetizationq polarization in response to a change from the antiferromagnetic magnetic
configuration of the multilayer to the ferromagnetic configuration is investigated. This
magneto-optical effect is treated in the effective-medium approximation, in which the dielectric
constant needed is found analytically with consideration of the interface roughness

scattering of electrons. It is shown in the example of an Fe/Cu multilayer that the effect amounts
to ~0.7%. The representation found for the complex conductivity is convenient in a

special case for investigating the magnetoresistive effect1988 American Institute of Physics.
[S1063-776098)02409-3

1. INTRODUCTION tivity for a wave polarized along the magnetizatiegolar-
ization). This change is, in fact, a new magneto-optical ef-

Since the discovery of giant magnetoresistance in metalfect, which is caused by the spin-dependent scattering of
lic magnetic multilayer films(multilayers, significant ad- electrons(see Ref. 15Y A method for obtaining a micro-
vances have been made in explaining its natut¢The  scopic description of the optical properties of a metallic
model most frequently used for it is associated with rough-multilayer in the approximation of an effective homogeneous
ness of the interfaces between the layers, on which the eleanisotropic medium will be demonstrated in the example of
trons comprising the macroscopic current are scattered dithe determination of the diagonal element of the dielec-
ferently, depending on which of the two possible orientationsyic tensors, which is needed to find the dependence of the
of the spin along a fixed direction of the magnetization in thenew intensity magneto-optical effect on the parameters of the
plane of the multilayer they have. An external magnetic fieldmultilayer.
H can change the configuration of the magnetization be-
tween neighboring magnetic layers separated by a layer of a
nonmagnetic metal from an antiparallel, or, as it may be, rrecTIVE MEDIUM AND REELECTIVITY
termed, antiferromagnetic, configuratiwhen H=0) to a
parallel, or ferromagnetic, configuration. As a result, the =~ When magneto-optical effects are considered in layered
symmetry in the scattering of electrons with different spinstructures, it is usually assumed that each layer is character-
orientations changes, and a pronounced magnetoresistive éted by its own dielectric tensor, which is the same as that of
fect consequently appears. It can exceed 50%, as, for efhe corresponding bulk medium. Then the characteristic ma-
ample, in the case of Co/Cu and Fe/Cr multilayers with alrix of each layer and the parameters of the reflected or trans-
specific combination of parameters characterizing the trangnitted wave of interest are found from Maxwell’'s equations
port properties of electrons in the multilayérhe theory and the boundary conditiot$°In metallic multilayers ex-
developed not so long ago on the basis of this ifléda a  hibiting giant magnetoresistance the electron mean free paths
major generalization of the Fuchs—Sondheimer theory foghould exceed the thicknesses of the individual layers. For
describing the size effect of a single metallic Idyeand  this reason, the use of the tensor of the corresponding bulk
yields results that are close to experiment. Other approaché@gedium for each layer becomes unacceptable.
to the problem based on the Kubo—Greenwood formula and However, a multilayer can be treated as a homogeneous
Chambers and Pipard’s method were considered, for exanisotropic mediu, for which the dielectric tensar must
ample, in Refs. 12 and 13 and the references cited thereibe determined. Moreover, such an effective medium can be
Apart from the giant magnetoresistance of the multilayersregarded as a semi-infinite medium filling the half-space
their optical properties, which vary in response to changes in>0 in order to demonstrate the occurrence of a magneto-
their magnetic configuration, i.e., the magneto-optical ef-optical effect consisting of a change in the reflectivityor
fects, can be of considerable interest. Sufficient attention haan s-wave in response to a change in the magnetic configu-
not heretofore been focused on their investigation. ration of the multilayer.

In this paper we shall examine the change in the reflec- It follows from the wave equation

1063-7761/98/87(9)/8/$15.00 600 © 1998 American Institute of Physics
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a b
x W FIG. 1. @ Antiferromagnetic superlattice con-
Slxy) ﬂE e Yy — W, oo figuration; B potential energy of electrons with
I | l ! '$ I | I ext I | ! l 3 r l spin up(solid line) and spin dowr{dashed ling
o l f I—a 5 0 ;?b . I ; I b4 Zab -a 0 b a+h Z W,=0; W is the Fermi energy.
V2E+ kS(1+i,u0c2w*1&)E=0 (2.1  functionf; of the electrons in eacfth layer must satisfy the

. . . Boltzmann equation, which, in the relaxation-time approxi-
that the element of the dielectric tensor needed to determmlg1ati0n has the form

Ris

Sx0= L+ ipgC0 ™ toyy, (2.2 (Z—ftjﬂL(Vj ’Vrfi)+e(Eexthpfi):_—j :
wherec is the speed of lighte is the frequency of the wave, Toi
Wo is the magnetic constant, and, is the conductivitya = Wherev; is the mean velocity of electrons characterized by
diagonal element of the tensér), which relates the longi- the relaxation timerg;, e=1.6x10"*° C is the charge of an
tudinal CurrenUX averaged over a period of the structure toelectron, ando is the Fermi—Dirac distribution function. If

the external wave field inducing it. If the value af,  the usual representation=fo+(v,t) is used, the devia-
=Ree,,+i Ime,, is known, the solution of the correspond- tion from Ohm’s law is neglected, allowance is made for the

ing boundary-value problem for E(.1) gives® fact thatf, depends only on the energy of the electrakis
) and thatV fo=v;df,/dW, it is assumed thag;=exp(—iwt
No COS@— /N?—nNgsirf ¢ +ikoxsing), and the relationv| 7jko<1 (the electron mean
R= No COSe + \/nz_n(z) Sir? o free path is much shorter than the wavelength of the Jight
taken into account, then E.2) is simplified:

; (3.2

, (2.3

where . .
A 1 cexpikgz) 4
i lﬂj:_eEoUXJ plikoz) dfg 3.3

0z le)zj ij oW

1
Ren, IMn="-\(Res )7+ (1M e.,0)” = Reoxs
Herev,; andv,; are the projections of the velocity onto
are the real and imaginary parts of the refractive index of thehex andz axes, and the parameter= 7q;(1—i a)TOj)_l can
effective mediumy is the angle of incidence, ant, is the  be called the frequency-dependent relaxation time. The func-
refractive index in the regiom<<0. It is henceforth assumed tion
thatng=1. Thus, the problem reduces to determining in )
F{ z ) Tjvyj eXpiKo2)
Cjexpg — - -
Tj|vzj| 1+|kOTjUZj

(2.2) with consideration of the features of the behavior of the Wi(2)= eEO&—fO
conduction electrons in the multilayer. J IW

which is a general solution of E¢3.3), can be separated into

twi tions:
3. DISTRIBUTION FUNCTION OF ELECTRONS AND 0 equations

CONDUCTIVITY ot z
. . o ¢ (z)=eBy— | Cf exp(——)—rjvxj . U5>0,
In the effective-medium approximation the valuesqf, oW 7i|v )l
must be found under the following obvious condition: the
. . : N . : _ afol z
multilayer (Fig. 13 is an infinite periodigalong thez axis) ¥; (Z):eEOTV C exp ——| —7jvxj|, <0,
structure(a one-dimensional magnetic superlatticEhe pe- J 7ilvz)| (3.4

riods of its antiferromagnetic and ferromagnetic configura-

tions consist of four and two layers, respectively, and areyith consideration of the approximatiof]*lﬂkovzj:7-6].1

specified by the mean coordinates of the rough interfﬁces._iw(l_zm,zjc—l)~Tj—l, which can be made in view of

The wave the condition|v,j| <vgj<c, wherev; is the Fermi velocity.
The function&,//j+ andy; have the same form as they would
have, if there were a uniform electric field along thaxis in
which is polarized along the magnetization in the layess ( the superlattice instead of a plane wa#ég. 1a. Therefore,
polarization, leads to the existence of a longitudinal currentthere should be periodicity in the electron distribution for
Jxj(2) in eachjth layer of the superlattice, and the value of sych symmetry, i.e., it is sufficient to determine only the
oxx in (2.2) is found from the condition functions 7 , ..., for the antiferromagnetic configura-
J= 0, Eo. (3.7  ton.

- . . _ The arbitrary constam@j+ andC; in (3.4) can be found
The conductivityoy, can be determined using the ki- ¢om the boundary conditiors:

netic theory, which is usually used to investigate the magne-

toresistive effect in multilayers§®2*=2°In this theory elec- Y1 (—a—b)=Pyop; (—a—b)+Quiyg (—a—b),
trons are regarded as classical particles having a coordinate

and a quasimomentum. The nonequilibrium distribution 1 (—a) =Py (—a)+ Qi (—a),

Eexi= Ep exd —iwt+ikg(x Sing+2zcose)],
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s (—a) =Py, (—a)+ Quathy (—a), sing;  myuy

Y5 (0)=Pgih3 (0)+ Qaath3 (0), sind, - mju; -

(3.7

For the possible total internal reflection of electrons, where

oy — +

¥3(0) = P23 (0) + Qa2 (0), their angle of incidence); exceeds a certain critical value,

Y3 () =Paqth3 (b) + Quatfy (b), the reflectivity R, =1, and the transmission coefficie@t
=0.

by (D)= Pyathy (D) +Qaatf3 (b), The boundary condition€3.5 become periodic, if

iy (a+b)=Pygp; (a+b)+Qsaifs (a+b), (3.5 P10=Pss, Qui=Qus, #g(—a—b)=4y,(a+b),

where F_’J:k is the transparency faptor, which is equal to the s (a+b)=y; (—a—b).

probability of the specular reflection of an electron from the

interface between layefisand k (Fig. 18, and Qjy is the  This gives(in the case of the antiferromagnetic configura-
transmission coefficient, which characterizes the passage tibn) a matrix equation fo€; , . ..,C; . The dimensionality
electrons through this interface. The roughness of each intepf the matrix (8<8), however, is halved, if the following
face is assumed to be a random functigg(x,y), but itis  relations for theP;, andQj, and the limiting values of the;
such that its average value in a plane is equal to zerowithin a period of the superlattice, which are obvious in view
(Zjk(x,y))=0. The roughness can be characterized by thef the symmetry, are used:

arametern= (3 x,y)), which will henceforth be as- + _

gumed to t?e idéri;(c(al )f%? all the interfaces. The explicit rep- yr(—a=b)=4¢y(=a), Pi1=Pi2, Qui=Qa,
resentations oPj and Qi in terms of » and the electron Y (—a—b)=yi(—a),

parameters are known as the generalized Ziman-Soffer

formulas?® g (—a)=yi(—a—h), ¢i(-a)=yi(-a—b),

2
ij:Rjkexr{—<2h—nmjvjcosaj } 13 (0)=y3 (b).
Thus, it is sufficient to have only four boundary conditions,

7 viz.,
ij=(1—Rjk)exr{—ﬁ(mjvjcosej—mkvkcosak)zl, ) ) )
1 (—a)=Ppppy (—a—b)+Quifp (—a),

(3.6 Y5 (—a)=Poyip; (—a)+Qup; (—a—b),

— _ + +
wherem; is the effective mass ang is the absolute value of 2 (0)=Pazihp (0)+ Qaatf3 (b),

the velocity. ooy + +
0)=P b)+ 0), 3.8
When electrons pass through an interface, which acts as Y5 (0)=Paai3 (b) + Qoa2 (0) 3.8

a potential barrier, the angleg; and 6, must satisfy the in order to determine the distribution functions needed. The

_ UjCOSHj_UkCOSGK 2
k1 v cosh+ vy cosb,

refraction law substitution of(3.4) into (3.8) leads to the equation
|
ool flireed 2] 0 cowed-E] 0]
exp — — exp — — exp — —
tf 12 gl 21 §
Q p( arb p( 2 P p( a 0
exp — exp — exp — —
12 &1 & 2 &
b
0 —Pos 1 — Qs eXF( - _)
&3
b
0 - Q23 0 1—- P32 EX[< - _)
I &3/

C, T10x1 (1= P12) = 790,0Q21
Cz+ ToUx2(1—=P2y) = 7101 Q12
% _ 3.9
(
(

C, ToUx2(1— Pag) — T3043Q32

+ — —
Cs 73U x3(1— Pag) = m5042Q23
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where¢;=7j|v,j|. A direct calculation of the inverse matrix

]

for (3.9) gives

a
C1_=D_1exp{§—l)(rlvx1

(1—P12)( 1- Pszexp( - ;)

Kubrakov et al. 603

k-t
)

2a
—eXF{ - 5_2) ((1=P1)Pyyt+ Q12Q21)( P2~ (P2aPs2 Cy= D_l[ - Tlvlelez?,exr( - %) ( 1—ex;{ - 521) )

b a
- stQaz)eXF{ ) ) - TQUX2Q21< 1- exp{ — —)
&3 &
b a
l_ P326X4 §3) 1+ P23EX% §2
b a
+ Q23Q329XF{ . 5_2) — 730,3Q21Q3

conf - 2| s-oef - 2|
c;=D-1[—Tlvle12exp( ;)(1 exp( ;1))

X| Paz— (P23P3o— Q23Q32)9XI{ &

1- P12eXF< - R) )((1_ st)( 1-Ps
&1

<o -2l
ex & —Q23Q3,€x &
b

| Poz— (P23P3r— Q23Q32)eXF{ - §_3> ) ( (1-Py)
< 1-pas| - 2] | -euenend ]|

12€X I3 Q12Q21€X &
<ol ¢ 1od |
ex 5—2 ex 5—3
fioned )

&R g )
o3 o)
2= & T1Ux1<12] £

X|{1-P r{ b
% €3

b
X1 (1= le)(l PlZGXF{ 5)) Q12Q21

b
X ex;{ - f_l ) +( P21—= (P12P21— Q12Q21)

xexp( ;))((1 st)(l Pszex"( éi))
-Quued ~ o -

)+Tzvx2

— 73053Q32

b

+ TZUX2|: ( 1- P3zeX

— 730x3Q32

&

Qe 1o - ] [1-7 %-b))
T2Ux2Q23 ex 5—2 126X 5_1
X 1+P21exp( g) fz

1P| 1-puen] g |-enf -
( 32) 12€X ) ex &

X((1=P3p)Pyst Q23Q32)< P21— (PP

o -2
S

2a b
- exl{ - _> ( P21—(P1oP21— leQzﬂeXl{ - _) )
& &1

b
X| Paz=(P23P3r— Q23Q32)9XF{ - 5—3) ) . (3.10

+ Q12021 exp( &

+ T3Ux3

The remaining constants are related to the constants already
found in the following manner:

+ _ 2a+b 3 . b
C{=C exp — g ) C;=C; ex &)

b o b
C, Czexp< 52) C4=C2exp(—§—2>.

After substituting(3.10 into (3.4), we obtain the distribution
functions.

If it is assumed that the Fermi surface is spherical, the
velocity

N U] @13

J

whereW; is the potential energy of the electrons in layer
The potential energy of the electrofiSig. 1b depends on

the orientation of their spih. Therefore, the distribution
functions also depend on spin. Then, the curtgninduced

by the wave can be regarded as the sum of the two currents
caused by electrons with spins whose orientations along the
magnetization can be called by convention (ip &nd down

(1), respectively, as is shown in Fig. 1b. The distribution
functions found can clearly be used to calculate each of these
two currents in all the layers of a superlattice within a period.
For this purpose, the known values of the potential energy of
electrons with an assigned spin orientation must be substi-
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tuted into (3.11. In spherical coordinates the velocity
=V;(W)(cosgsing;, singsing;, cos)). Then the defini-
tion of the current in layej has the forrfi*2°

e (x 2w
Lj(2)= Efo Pivj deO cose de

X

2 T
fo lprsinZdoejJrf/2¢j‘sin20jd0,},
(3.12

wherep; is the density of states. The curredts, Jy, Jys,
andJ,,=J,, are found from(3.12 with consideration of the
approximation dfy/dW= — §(W—W), where W is the

Y2=

Fermi energy. After averaging the current within a period,

we obtain the following necessary result:

Uxxzm[bffl7’1+230272+ bosysl, 3.13
where
_]_ ) 2 _ezmjojUf;j
(ML

is the bulk conductivity of théth layer” The Fermi velocity
vEj=V2(We—W,;)/m; must be substituted fos; in (3.6),

(3.7, and(3.10, which are needed to calculate the param-

eters

3 (w2 b )
’yl—l—%fo (1—8X4—m))[|15m91
1-Pyp)| 1-P b
(1-Py){ 1-Pgexp — I, cos0;

2a Py 1—P b
B "1, coss,) | " 2 2R 71 coso,

+Q23Q326XF{ ))((1_ P1)Poit lesz)}

X

15086,
. a
—I25|n62Q21 1-ex —m 1-Psy,

b
Xexr{ — I300503) 1+ P23ex;< -

b a
+Q23Q326X

l;cos6; 1,c0s6,

[P cosaz))

a
I, cosé,

—135iN03Q21Q3, ex;{ -

X

1 b D 'sirP 6 6,do
ex I, cosos sin® 6, cosé,dé,,

V3=

Kubrakov et al.
3 (w2 a )
1—5 o 1—ex —m I25|n¢92

(1—P21)<1—P12ex;<

X

- m) ) — Q1021

b .
Xex;{ - Ilcosal> ) —11sin6,Q1,

ool ] - -

1+ Py ex;{ - ) ) +Q23Q32

X

I3c0503))

X

I, coso,

+

a b
xexp| — - l,sing, (1—P
ex;< l,cos6, |;3c086, 28I 02( ( 23

b
1- PszeXF{ - m) ) —Q2Q3

b
% I R
exr{ I, cosds ) [3Sin63Q3,

b
x 1_8)%_ |3c0s03 )H(l_Plz

b
X — —_
exp( I cosal> 1+ PZlex;{

a b
+ Q12021 eXF{ )

I,cos#, |,cos6,

X

a
I, coso,

XD~ !sir? 6, cos6,d6b,,
3 (w2 b )
1—5 o 1—ex;<—m —|1SInt91Q12

a 1 b
% QazeX T T,c0s0,) | T ¥ T T cose;

) a
—I,sin 02Q23< 1—exp{ - Izcosaz)M(l_ Py

|

b a
xexp — ————| || 1+ Pyexgd — ———
© p( Ilcosel) 21€ F{ I, cosé, )
+ a b +l15siné@
Xp — - in
QaiQ12® l,cos, |;cosf; 35iNGs

X

b
(1- P32)( 1—P12exr< — —Ilcosal))

2a Pyl 1-P b
&P 1 cose,) | T2 128XR T cosd;

+Q120Q21 eXF{ -

|

))((1_P32)P23

I, cosé,

+Q3:Q23) (3.149

]Dlsin2 65 cosf3db;,

which take into account the interface roughness and the size
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effect, or, more specifically, the fact that the thicknesses of O ")/ Tru

the layers can be much smaller than the electron mean free 06l 3
pathl;=rjur. The angleg in (3.6) are related to the angle ' e %3 107s
over which the integration if3.14) is carried out by Eq.
(3.7), from which it follows that the angle of total internal 0.4 /' N
reflection of the electrons ) =
0.2t/ — -
_M(We=W,) i
9]- max— arcsl m, if Wk>Wj . 00 ca i 5 :I’; 2

It is important to note that since the spatial dispersion

could be neglected, the difference betwegn= o), + o, in

FIG. 2. Dependence of the magnetoresistive effectyofor a=b=10 A
(solid lines anda=b=20 A (dashed lines

(3.1) and the conductivity in the static case is related only to
7j(w). Therefore, the magnetoresistive effect of a magnetic

superlattice can be investigated usi{3313 as w—0.

For the antiferromagnetic configuration, we clearly have

ol=0ok., and the conductivityr,,, which is denoted by

O AF» |S

(3.19

1
UAF:m[balyl+ 2a0,y,+ b0'373:|1

where the parameters and y are calculated usin(.14) for
electrons with spin up or spin down.

4. MAGNETORESISTIVE EFFECT

The expressions obtained for the conductivibeg and
oy In the special case wheke=0 clearly enable us to see
how the magnetoresistive effect, which is characterized by
the quantity gry— oar)/orm, depends on the thicknesses
of the layers & andb), the interface roughness parameter
and the relaxation time.

As an example, we shall examine an Fe/Cu superlattice,
for which the potential-energy distribution of the electrons is
known (Fig. 1b:" Wx—W;=8.23, 8.54, and 5.73 eVj(

Reversal of the direction of the magnetization in the_, 5 3) The effective masses are assumed to be identical:

third layer of the superlattice periaéFig. 13 gives a ferro-
magnetic configuration, for whict8.13 remains valid, since
the potential energW; was assumed to be an arbitrary pa-
rameter during its derivation. In this ca¥é;=W, for elec-
trons with a certain spin orientation. Then, (8.14) v,
=vgq, My=my, and, according t43.7), 6;=0,. It follows
from (3.6) that P3,=P15, Py3=P5;, andQ3,=Q;,, and in
(3.13 o3=0, and y3=7v,. However, o}, #0.,. When

m;=4m,, wheremy is the rest mass of the electron. #f
=10 ¥s, then the Fermi velocities for electrons with spin
up (Fig. 1b are vg=8.51x10°, 8.67x1C°, and 7.1
X 10° m/s, and the corresponding mean free paths are much
greater than the thicknesses of the layers.

It follows from (3.14)—(3.16) that the conductivities ¢
and oy decrease with increasing and that the magnetore-
sistive effect increases to a certain maximum value and then

these relations are taken into account, the conductivity foEiecreaseéFig. 2. If all the relaxation timesy; are identical,

the ferromagnetic configuration has the form

1
UFM:mZ (boyyi+aoyys). (3.16

T

If the conductivities of the second and fourth layéfig. 13
within a period are set equal to zero, it follows fr@gB114)—
(3.16 that

b
UAF:UFM:m(UH’l"‘ T373).

The expressions foy, and y5 are similar to the expression
for the parameter

3l
2b

Jw/Z(l— P)[1—exp(—Db/l cosb)]
X 0 1—Pexp — b/l cosh)

which takes into account the size efféftr a layer of thick-
nessb) in the Fuchs—Sondheimer thedfyif all the layers
are identical ;=0, o;=0) and there is no roughness (
=0), it follows from (3.14—(3.16) that ocpr=opy=0.

y=1-

sin® 6 cos# dé,

the effect is not observed for ideal superlattice interfaces
(n=0). Differences between the relaxation times in the lay-
ers produce a relatively small effect whex=0. In particu-
lar, if 7,=3%x10" s, 7,=10 s, and3=5%x10 s,

for a=b=10 A the effect amounts to 3.2% when=0,
whereas it amounts to 37% in the case p£1A. The
greater is the relaxation time; , the stronger is the effect,
but it decreases as the thicknesses of the layers dedfgse
2). A similar numerical analysis for an Fe/Cr multilayer
gives a dependence of the effect grthat coincides exactly
with one of the results in Ref. 7.

5. NEW INTENSITY MAGNETO-OPTICAL EFFECT

As follows from(3.14) and(3.15), the dielectric constant
(2.2) of the effective medium for the antiferromagnetic su-
perlattice configuration has the form

erm ] 1 bw;23171 Zawﬁzn bw,23373
AF atbh|low(otin,) olotio, olwtieos)]
(5.
where
w0y =Dy /MOUEJ
w 6%
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Ren Imn
80K
a N b
15 > F . .
k 60 \\t AF FIG.'3. Regl(a) and magmary(b) parts pf the re-
ENCFM AF W4 fractive indices(for the antiferromagnetic and fer-
LOp™ N romagnetic superlattice configuratiores functions
N 40t of fiw; 70;=10"*%s, »p=2A, a=b=10 A (solid
SEOARS s lines) anda=b=20 A (dashed lines
FM Sz,
0 20 . "
0.2 C.4 0.6 0.8 02 0.4 0.6 0.8
haw, eV hw, eV

is the plasma frequency of laygrand a)TJ-=7'5jl. The pa- If there is no roughness, purely specular reflection of the
rametersy; in (5.1), as in(3.19, are defined for electrons electrons takes place, all the relaxation times are identical,
with the same spin orientation. In the case of the ferromagthe effect is not observed.

netic configuration, the dielectric constant is given by the  The dependence of the real and imaginary parts of the

expression refractive indices of an Fe/Cu superlattider the antiferro-
1 bw?, y awl,y magnetic and _ferrqmagnetic configuratipran the energy
ery=1— s p171 p272 | fiw is shown in Fig. 3. Plots of the dependence of the
atb 7 |w(wtin,) olotio,) magneto-optical effect ohw and the roughness parametger
(5.2 are shown in Fig. 4.
For a homogeneous nonmagnetic met§1|:(0, n= 0, Y The maximum of the magneto-optical effect for different
=1, and zvglzzwézzwg) both formulas transform into the Values of the parameters characterizing the multilayer is
familiar expression achieved at normal incidence. The magneto-optical effect is
) considered here in reference to the configuration which ex-
e=1— “p hibits the Kerr magneto-optical effect, which consists of a
w(wtio,)’ change in the intensity of the reflected wave upon magneti-

zation of the medium and is governed by off-diagonal ele-
ents of the magnetic permeability tensor. The off-diagonal
ements of the dielectric tensor do not make any contribu-
tion. As was demonstrated experimentally in Refs. 16 and
18, the Kerr magneto-optical effect has a value~af0°,
which is at least two orders of magnitude smaller than the
new magneto-optical effect in magnetic multilayers exhibit-
ing giant magnetoresistance. As the angle of incidence de-
creases, the Kerr effect decreases, and it vanishes at normal
incidence, while the angular dependence of the new
magneto-optical effect has the opposite character.

The parametery; in (5.1) and (5.2) are integrals, which
depend on all the parameters of the superlattice and contafﬁ
the frequencyw of the wave, the thicknesses of the magnetice
(b) and nonmagnetica) layers, the interface roughnesgs
the effective masses of the electrons;( m,, and ms),
their mean free pathd {, |,, andlj), the relaxation times
(71, 7, and 73), and the potential-energy distribution for
spin-up or spin-down electror(&ig. 1b.

The difference betwee; for the antiferromagnetic su-
perlattice configuration ang; for the ferromagnetic configu-
ration is the only reason why,e# egy . Thus, according to
(2.9, the reflectivities for a plane wave with polarization
along the magnetization of the multilay@ghe intensity of the
reflected wave will also differ. This can be called a
magneto-optical effect, which was apparently not previously = The change in the reflectivity of a metallic multilayer
considered. It is convenient to characterize this new effect byhat exhibits giant magnetoresistance for a monochromatic
the change in reflectivity Rey— Rag)/Reyq- The effect is  plane wave of light at normal incidence and with polarization
caused mainly by the interface roughness of the multilayeralong the magnetization in the plane in response to a change

6. CONCLUSION

(Rew™ Rar)/Rew (Rew™ Rar)/Rew
0.006f b
0.004r |
0.004 hw=07eV FIG. 4. Dependence of the magneto-optical
0 - effect onfiw (@) for 7o;=10""%s, p=2A,
0 0.4 and a=b=10A (solid line and a=b

=20 A (dashed ling and on 7 (b) for a

-0.004f =b=10 A andr;=10"**s.

0.2

[
w
IS

~0.008 -0.008
0.2 0.4 0.6 0.8 [¢] I .
hw. eV 7 A
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from the antiferromagnetic magnetic configuration of theState Nanostructures Progrdfroject No. 97-107land by
multilayer to the ferromagnetic configuration under the acthe Russian Fund for Fundamental Resedftants 96-02-
tion of an external field has been investigated. This reflectiv16520 and 96-02-18253

ity change is a new magneto-optical effect since the defini-

tion of a “magneto-optical effect” includes any change in

any characteristic of a wave in response to a change in the

magnetization of the medium from which the wave is re-<g.mail: kubrakov@orc.ru

flected. It has been shown in the example of an Fe/C(E-mail: Ronald.Atkinson@qub.ac.uk

multilayer that the effec(which is defined as the relative D1t differs from the known Kerr magneto-optical effects, including the in-

h in th flectivity of i-infinit di t tensity effects® in that the conventional effecisee, for example, Refs.
change In the retlectivity or a semi-intinite me iuamounts 16-18 are determined by the magneto-optical paramé€xéfor an opti-

to ~0.7%. cally isotropic mediumQ= ¢, /e, Wheree,, ande,, are, respectively,

Because the mean free path significantly exceeds thediagonal and off-diagonal elements of the dielectric tergorwhile the
thicknesses of the individual layers, the conventional ap- effect discussed in this paper does not depenQdit is manifested in the
proach, in which the dielectric tensor of each metal compris- zeroth order with respect Q). It can also be stated that the conventional
. th ' il . d to be k t b Kerr magneto-optical effects are a consequence of the magnetic gyrotropy
Ing the multlayer 1s assumed 1o be no_Wn' cannot be em- o medium, whereas the effect considered in this paper is not gyrotro-
ployed to study the effect. The possible, more correct pic, i.e., it is determined by the diagonal elementszofit also clearly
analysis performed in the present work involves the use of differs from the quadrati¢anisotropig magneto-optical effects manifested
the approximation of an effective medium, whose dielectric#‘hthe SeF‘JI”E order W'th_lflespéct@l \ This i st since

. . . H - - e spatla Ispersion wi e ignorea. IS IS ]UStI iable, since the wave-

ten_sor is determined Wlth consideration of the transport F)I’Op length of the electromagnetic wave significantly exceeds the thicknesses of
erties of the conduction electrons already in a magnetic SU-the individual layers.
perlattice, i.e., an infinite periodic medium consisting of al-?Here we shall disregard the effects azszsociated with the existence of surface
ternating magnetic and nonmagnetic metallic layers. Then, tomagnetic structures of the fan typé:
study the magneto-optical effect under consideration, it is— M
sufficient to assume that the medium is semi-infinite.

Since the Fermi velocity is much smaller than the veloc-
ity of light, in the present work it was possible to determine *M. N. Babich, J. M. Bruno, A. Feret al, Phys. Rev. Lett61, 2472
the complex conductivity of the effective mediutoorre- z(Glgg?n'asch P. Gimberg, F. Saurenbach, and W. Zinn, Phys. Re@oB
sponding to an assigned polarization of the waaecording 4828(1989. " ’ B '
to almost the same scheme which was previously used in thés. s. p. Parkin, Appl. Phys. Let1, 1358(1992.
theory of giant magnetoresistance. The important factors:S- Zhang and P. M. Levy, Phys. Rev.48, 11 048(199).
here are: 1the refraction law for electrons passing through 6;' '|:5 (ézﬁ's 22g 3* s;‘rrr‘]z’slpﬁs‘s’";:fgl’_ézg %%3((11%%%
an interface acting as a potenti_al barrier and the existe_nce OfR. Q. Hood and L. M. Falikov, Phys. Rev. £, 8287 (1992.
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The evolution of indirect exciton luminescence in AlAs/GaAs coupled quantum wells after
excitation by pulsed laser radiation has been studied in strong magnetic fBtdE2(T) at low
temperaturesT= 1.3 K), both in the normal regime and under conditions of anomalously

fast exciton transport, which is an indication of the onset of exciton superfluidity. The energy
relaxation rate of indirect excitons measured in the range of relaxation times between

several and several hundreds of nanoseconds is found to be controlled by the properties of the
exciton transport, specifically, this parameter increases with the coefficient of excitonic
diffusion. This behavior is qualitatively explained in terms of migration of excitons between
local minima of the random potential in the plane of the quantum well. 1998 American
Institute of Physicg.S1063-776(198)02509-9

Owing to their long lifetime, indirect excitons in coupled (Fig. 13. The electron state in AlAs is constructed from
quantum well{CQWS can cool down to temperatures close states of the X minima in the conduction band, which en-
to that of the crystal lattice. Therefore, condensation of exsures that the indirect excitons have long lifetimes. Carriers
citons similar to the Bose—Einstein condensation is possiblevere generated in the GaAs well by a semiconductor laser
at low lattice temperaturéslt has been shown in some the- (Aw=1.85 eV} operated in the pulsed mode. The laser pulse
oretical investigations that the critical conditions for excitonhad an approximately rectangular shape with a duration of 50
condensation can be greatly improved by applying a magns and rise and decay times of about 1 ns. The time resolu-
netic field perpendicular to the qguantum well plane, mainlytijon of the light detecting system was 0.3 ns.
because of the full quantization of the electron and hole en-  photoluminescence decay in magnetic fieds0, 4, 6,
ergy spectraand lifting of the spin degeneracy. In recent gnd 12 T al,=0 andT=1.3 K is illustrated by Fig. 2dahe
investigations of indirect excitons contained in AlAs/GaAs signal was detected in a spectral range with a width of 3 meV
CQWs, effects indicating condensation of excitons in strongentered at the photoluminescence line pedkese curves
magnetic fields have been detected, namely, an anomaloyse similar to those measured in previous experimefita
increase in the diffusion coefficiéland radiative decay réte _the indirect regime, the radiative lifetime of excitons is much

of excitons, which have been interpreted in terms of eXC"Ionger than the nonradiative time,,, and the total lifetime

tonic superfluidity and superluminescence of the excitonic__ 7.5 In narrow CQWsr.. is determined by the exciton

condense}te, together W'Fh anomalous!y large quc;tuauons ! ansport toward the centers of nonradiative recombin&tion.
the total intensity of exciton photoluminescence interprete

" . ) . ... Direct time-of-flight measurements of exciton transport in
as critical fluctuations in the region of the phase transmon[he AlAs/GaAs COWSs studiéd indicate that an increase

associated with instability of condensate domains. (decreasin 7 really corresponds to a decredgcreasgin
In the reported work, we have investigated the evolution ’ y P

of indirect exciton luminescence in AlAs/GaAs CQWs afterIndIrECt eX_C|ton d|ffu_5|o_n coefficient. e -
termination of a laser pulse in both the normal regime and Thus., In mggnenc f|eld$s7 T the diffusion coefficient

the regime of anomalously fast transport and high radiativén_or‘()tc’r"_Cally InCreases W'Fh the temperature a_md decreases
decay rate of excitons, i.e., in the regime of the suggesteyith the increasing delay time and magnetic fi¢kig. 2a
condensation of excitons. We have studied the energy rela@nd 29. This behavior can be well described in terms of
ation of indirect excitons in the time interval from several ©n€-exciton transport in random potentiéde random poten-

nanoseconds to several hundreds of nanoseconds and its & in narrow quantum wells is largely controlled by inter-
lation to exciton transport. face roughness (i) the increase in the diffusion coefficient

The nt—i—nt heterostructures with AlAs/GaAs With the temperature is due to thermal activation of excitons
CQWs tuned by a gate voltagé, are similar to those stud- from local potential minima(ii) the diffusion coefficient
ied in earlier experiments.® The i-layer consists of two drops with the increasing delay since more and more
quantum wells: an AlAs well with thickness 40 A and a strongly localized excitons dominate in the luminescence
GaAs well 30 A thick between Al,dGa, 5,As barriers. Inthe  spectra(those which have not had enough time to travel to
indirect regime ¥/,=0.5 V), electrons are confined in the centers of nonradiative recombination and recombine there
AlAs quantum well and holes in the GaAs quantum well (i ) the decrease in the diffusion coefficient with the increas-

1063-7761/98/87(9)/4/$15.00 608 © 1998 American Institute of Physics
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Relaxation
of photoexcited
excitons
FIG. 1. (a) Band diagram of AlAs/GaAs CQWs; the
solid (dashed line represents energies bf (X) ex-
trema in the Brillouin zone(b) Scheme of a photoge-
T nerated exciton energy relaxation in the presence of
ransport random potential in the CQW plane.
Recombination
of excitons
E
L___) b
X,y

ing field can be qualitatively explained by the increase in thehe temperature, magnetic field, and random potential. In the
magneto-exciton mass. general case of excitonic condensation in the presence of a
ForB<7 T andT=<5 K, we have detected anomalous random potential, domains of condensediperfluid exci-
increase in the diffusion coefficient with the increasing mag-tons alternate with normal regions in a random manner, and
netic field and a decrease in the diffusion coefficient with thethe boundaries between these regions are determined by the
increasing temperature at initial decay tinfegy. 2a and 2t potential relief. A superfluid domain may include several mi-
This behavior can not be explained in terms of one-excitorcrodomains connected by weak bonds, which should lead to
transport and is interpreted as the onset of exciton superfla coherence across the entire domi@iris an analogue of a
idity owing to their condensatioh.The fast decay of the network of the Josephson junctions in supercondugtors
exciton photoluminescence, which corresponds to fast exciMeasurements of the photoluminescence decay time yield
ton transport, is observed until the exciton density drops sewhe parameters of the exciton transport averaged over normal
eralfold; the subsequent decay is slow and corresponds t@nd superfluid regions in the laser excitation spot.
slow exciton transportFig. 28. The transition from the ini- Evolution of indirect exciton photoluminescence spectra
tially fast to the subsequent slower transport corresponds twith time and spectra integrated with respect to time at typi-
elimination of excitonic superfluidity when the exciton den- cal values of temperature and magnetic field are shown in
sity drops below the critical value, which is determined byFig. 3. In integrated spectra, one can see a line of lower

a C
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6 T,42K FIG. 2. (a,0 Decay and(b,d) photoluminescence
line positions of indirect excitons at;=0, B=0,
4,6, and 12 TT=1.3 and 4.2 K. The dashed ver-
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tical line shows the position of the 50-ns laser pulse
end. The positions of the luminescence liteed)
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nescence lines with the magnetic field and temperature are
related to variations in both the diffusion coefficient and ra-
diative decay rate of mobile excitons. For example, in fields
below 7 T the radiative decay rate of mobile excitons drops
with the increasing temperatuteyhereas the diffusion coef-
ficient grows(Fig. 29. Both these effects lead to a decrease
inl,/1, (Fig. 3c and 34 This effect of temperature indicates
that the distribution of excitons between localized and mo-
bile states is nonequilibrium. The effect would have an op-
posite sign if there were equilibrium between these states,
namely, the relative intensity of higher energy mobile exci-
tons would increase with temperature. The time of experi-
ment (about 1us), which is limited by the necessity of de-
tecting the decaying luminescence signal, is insufficient for
establishing equilibrium between the mobile and localized
indirect excitons.

As the delay time increases, one can see a shift of the
mobile exciton luminescence line, which reflects energy re-
laxation of excitongFig. 2b and 2d and Fig.)3In order to
determine the spectral position the line shape was approxi-
mated by a Gaussian. In magnetic fieRis 7 T, the energy
relaxation rate of mobile excitons gradually drops with the
delay; in addition, it decreases with the field and grows with
the temperature at all delay timéSig. 2b and 2§l In mag-
netic fieldsB=7 T the energy relaxation rate of mobile ex-
citons is considerably higher at smaller delays; in addition, it
increases with the magnetic field and drops with the tempera-
ture at small delays, whereas it decreases with the field and
rises with the temperature at longer deldlygy. 2b and 2y
Thus, the energy relaxation of mobile excitons is faster, the
' m higher the diffusion coefficient throughout the entire range of

i . : experimental parameters studi¢ahagnetic field, tempera-

1.73 1.71 1.73 ture, and delay

Energy, eV After photoexcitation, electron—hole pairs are rapidly
FIG. 3. Evolution of photoluminescence spectra of indirect excitons withbound in excitons and lose their kinetic energy by emitting
time. Spectra 1-8 were recorded in time intervals shown in Fig. 2b and 2dphonons. In this “fast” relaxation stagd, —X electron
The_ positions of the photoluminespence line of mobile excitons are marke‘ﬂransfer from GaAs to AlAs takes place and indirect excitons
by ticks. Spectra integrated over time are shown at the tops. The spectra are . .
normalized so that have almost the same peak intensities. are formed. The_ tlmes of _thgse proc_esses are ConSIderably
shorter than the lifetime of indirect excitons, and they are not
revealed in our measurements. The “slow” energy relax-
ation, which is observed in the range between several nano-
intensity on the low-energy side of the dominant IliRég. 3b  seconds and hundreds of nanosecofidg. 2b and 2g is
and 3d—f. The magnitudes of the shifts of these lines towardcontrolled by excitons migrating between local minima of
lower energy with the gate voltagé, indicate that both of the random potential in the plane of the CQWHg. 1b.
them are due to recombination of indirect excitons. The relaThis migration of excitons in the random potential is charac-
tive intensity of the low-energy line increases with the delayterized by a large spread of relaxation tinfeand the long
time (Fig. 3. Therefore, we associate this line with the re- lifetime of indirect excitons allows us to trace the transport
combination of strongly localized indirect excitons, whoseand energy relaxation of excitons in the range of long delay
nonradiative recombination rate is small owing to their lowertimes. The speed of exciton transport to deeper local minima
mobility (it is likely to be smaller than their radiative recom- increases with the their mobility, which leads to a faster en-
bination rate. The high-energy line is due to recombination ergy relaxation of excitons. The relationship between the en-
of indirect excitons with a higher mobilitteven though the ergy relaxation and exciton transport persists with the onset
localization radius of such excitons is finite, we dub themof exciton superfluidity, when superfluid domains of exci-
mobile for definitenegs These are the excitons which dem- tonic condensate are formed at some local minima.
onstrate the variations in the diffusion coefficient and radia-  The diffusion coefficient and radiative decay rate of in-
tive decay ratéwith the magnetic field and temperature dis- direct excitons are sensitive to the bath temperature down to
cussed above. 1 K, which indicates that excitons in local minima thermalize

The observed changes in the ratig/I, between the down to~1 K. The recombination line of indirect excitons
intensities of the mobile and strongly localized exciton lumi-of each local minimum cannot be much wider than the exci-
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We study the effective parameters of a three-component plane dielectric medium with a doubly
periodic arrangement of circular inclusions. The problem is solved in the one-dipole
approximation. The computational results are compared with a two-component Rayleigh model.
The general structure of the formulas for the effective parameters is discussed and the
reciprocity relations for a three-component matrix system are determined. Explicit expressions
are given for the dielectric permittivity when the concentration of circular inclusions is

low, and their domain of applicability is determined. Under certain polarization conditions, the
effective conductivity in a three-component medium is exactly equal to the dielectric

permittivity of the matrix. ©1998 American Institute of Physid$S1063-776098)02609-2

1. INTRODUCTION In his model, circular cylinders of one kind were arranged
doubly periodically at the centers of rectangular cells; in the
Of the many problems that arise during the study ofthree-dimensional analog of this system, spherical inclusions
physical transport processes in inhomogeneous media, detatere placed in cubic cells. For systems with this sort of
mining the macroscopiceffectivg) characteristics and pa- structure it is possible to formulate a boundary value prob-
rameters occupies a central place; it is simple to formulat¢em for a harmonic equation and completely calculate the
and is often invoked to account for various phenomena irfield in a single cell with a single isolated inclusion, taking
composite materials. In solving this problem, however, onahe effect of all surrounding inclusions into account. The
encounters serious mathematical difficulties that must benethod proposed by Rayleigh yields formulas for the effec-
overcome when calculating and averaging inhomogeneougve parameters of the system he examined to any required
physical fields. The situation is especially complicated wheraccuracy, and this is important for evaluating the various
calculating three-dimensional fields in multicomponent sys-approximations. Unfortunately, this method cannot be ap-
tems. two-dimensional systems are in a more favorable pglied directly to multicomponent systems. Calculating the
sition, especially two-component matrix media, which can befields in these systems involves the formulation of compli-
studied using the powerful mathematical machinery of comecated matching boundary value problems in multiply-
plex variable theory. A number of important results haveconnected regions, requiring new approaches for their
thus been obtained for two-component systems, includingolution.
the Keller—Mendelson theorem for the reciprocity The solution for two dielectric cylinders located in an
relations™? the Dykhne symmetry transforfnand exact so- external uniform electric field is invoked below to calculate
lutions of boundary value problems for several matrix systhe characteristics of a three-component matrix system. This
tems with a doubly periodic arrangement of regularly shapegroblem has an exact analytic solution under general as-
inclusions®~® sumptions about the radii of the cylinders, their respective
Multicomponent systems in which the main phase con{ocations in the external field, and the relationship between
tains, not one, but several forms of inclusions with differingthe dielectric permittivities of the matrix and the inclusion
physical properties and dimensions have yet to be studiemhaterial These results show that the mutual effect of the
adequately. Multiphase systems can have rather complicatédclusions in a multicomponent system can be taken into
structure, and their macroscopic characteristics are more daccount through dipole—dipole interactions. In the following
verse. The difference between the structures of twosections, we investigate an inhomogeneous medium with a
component and multicomponent systems is in some respechsw concentration of inclusions; the calculations can be sim-
similar to the difference between black-and-white and colomplified by restricting attention to the one-dipole approxima-
images of the textures of real multicolored materials. tion. In this case, of the infinite number of dipoles determin-
In this paper we determine the effective parameters of @ng the electric field of the interacting inclusions, only the
three-component dielectric medium. A matrix system with afirst dipoles located at the center of circular inclusions are
doubly periodic arrangement of two types of parallel cylin-taken into account. The accuracy of the calculations is then
ders is considered. In transverse cross section, the systemedsaluated in terms of the small parameters characterizing the
two-dimensional and can be subdivided arbitrarily intosystem and by comparison with calculations based on the
square cells, with periodically alternating circular inclusionsRayleigh formula under equivalent conditions.
of two different types and sizes at their centers. The expressions for the dielectric permittivity of the sys-
Periodic lattice models were introduced by Rayleigh totem under study can be generalized naturally to a quasista-
calculate the refractive index of highly nonuniform mefia. tionary electric field by introducing the complex dielectric
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permittivity. The physical interpretation of the results be-

comes more convincing in this case upon examination of
equivalent electrical circuits with periodically alternating

complex impedances.

The general properties of three-component systems are
similar in many respects to the properties inherent in two-
component systems. They also obey reciprocity relations,
which now take a form reflecting their dependence on two
additional phases. In addition, three-component dielectric
media can acquire characteristics that do not exist in two-
component materials.

Of the many possible ways of arranging circular inclu-
sions in the plane, an isotropic system with a square structure
is studied below. The method for calculating the fields used
here, however, is entirely applicable to systems with other
structures, such as hexagonal.

The solution is presented in terms of the dielectric per-
mittivity. In light of the well known analogies, these results
can also be used to examine the macroscopic characteristics
of other physical media.
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2. THE ELECTRIC FIELD IN THE SYSTEM

Let two types of circular dielectric cylinders with per- Given the above assumption of a low concentration of
mittivities e, and €5 and radiir; andr,, respectively, be inclusions, we can use an approximate expression for the
located in doubly periodic alternating order in an unboundectlectric field that accounts only for the first, principal dipoles
dielectric medium with permittivitye;. In transverse cross located at the inclusion centers. These dipoles have the larg-
section, the long unidirectional cylinders form a plane sys-est moments and are the main contributors to the electric
tem with circular inclusions located at the centers of squardield at low concentrations of the inclusionsri;, 73
cells with sides of length (Fig. 1). Systems of this type <I?). If a square cellabcd containing an inclusion with
serve as a convenient theoretical model for the macroscopiielectric constant, are radiusr; is singled out in Fig. 1,
characteristics of various multicomponent heterogeneouthen according to Eq$Al), in the approximation taken here,
structures, for example, periodic lattices, composite materithe electric field in the cell will be
als, thin films with topological structure, and so on. Above © o
a.II, syster?s wgth azlow concentrat'lon Qf heterogeneous inclu- E,(2)= Eo_Eo[ A12f5272+ E 2 [Alzfi
sions (rri,wr;<<I°) are of practical interest. In terms of
computation, they are simpler to study, but they do preserve
many of the basic properties inherent in three-component X(z—amn)‘2+A13r§(z— bmn)_z]] (1)

m=1 n=1

media.

To determine the effective dielectric constant of the sys-
tem under study, it is first necessary to calculate the fielé)
inside the inclusions and in the matrix medium. Because of — 4 5 72
the regular structure of the system, the field pattern repeats E2(2)=(1+A1,)) Eo— Eomzl nZzl [A1or1(z—amn)
doubly periodically; thus, it suffices to calculate the field in
one cell with two individual, dissimilar inclusions. Here it
must be borne in mind that the formation of an electric field +A13r§(z—bmn)2]J 2
in each inclusion depends on the presence of all other inclu-
sions in the system. This interdependence of the inclusion#side. HereEy(z) = E,—iEyy, (k=1,2) is the complex elec-
can be represented by the sum of the pairwise interaction dfic field function,z=x+iy is a complex variablefq= Egy
an individual inclusion with every other inclusion in the sys- —iEoy is the external uniform electric field, the bar oy
tem. To determine the electric field in the system, it is theredenotes the complex conjugate, is the relative dielectric
fore necessary to solve for the interaction of two dissimilarconstant,
dielectric cylinders in an external electric field. This is the e —&
key problem in calculating the field. The solution is knofvn, Ap= L P (—1sApsl) p=23, 3
and is given in the Appendix for reference. According to Eq. e1tep
(A1), the electric field is given by an infinite sum of linear a,,, are the coordinates of the dipoles in all inclusions of the
dipoles, whose moments and positions depend on the radii glame type with parametess andr, except the one located
the cylinders, the distance between them, their propertiesn the cell abcd centered at the origin, anld,,, are the
and the external electric field in the system. coordinates of the dipoles in all the inclusions of the other

utside the inclusion and
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type, with parameters; andr, (see Fig. L The coordinates
an,, andb,,, are also the coordinates of the centers of the |14 w
circular inclusions in the system. We have 4 /

amn=22ml, bp,=*=1(2m-1) 2
on thex axis,

ann=*2inl, b,,==xil(2n-1) in

™

on they axis, and
app=*2l(m+in), by,==l[2m+i(2n—1)],

anp=*2I(m—in), by,==*l[2m—-i(2n—1)],

N

amn==1[2M=1+i(2n—1)], bpy==I[2m—1+2in], 0 niz d-no b
amn=*I[2m—1—-i(2n—1)], by,==*I[2m—1-2in], FIG. 2.

m,n=1,2,... (4)

off the axes. (D)=e.oi(E). 5

If the electric field is to be determined in a cell with an
inclusion that has parametetg andr,, then the same Eqgs. The averages are taken over a region whose characteristic
(1) and (2) can be used with the replacements(z) dimensions are equal to or greater than those of the system.

—E3(2), Ay~ Aqs, 11y, andag,,—bn,. Here the co- For the medium with a periodic structure being consid-
ordinate origin has been shifted to the center of the inclusiored here, it is sufficient to calculate the average fields in a
in the newly selected cell. single square cell of sizk It is convenient, for example, to

Equations(1) and(2) yield a first approximation for the choose the unit ceDUWYV shown in Fig. 2. If the external
interaction of inclusions in the system. If there is no interac-electric field vector is directed along the axis, i.e., Eg

tion among them, then the double sums in Eds.and(2)  =Egy, then the segmen®V and UW coincide with equi-
must be dropped, and the electric field at the inclusions wilpotentials and the segmen®U and VW lie on lines of
then be uniform and, for each type force. This property of the celDUWYV makes it possible to

reduce the averaging procedure to a determination of the

Ex(2)=(1+A1)B0, Ea(2)=(1+A19E,, average fields by calculating the corresponding contour inte-
as appropriate for isolated cylinders in an external, uniforngrals on the segmenBU andOV:
field.

When the concentration of the additional phases in- (E >:£
creases, the mutual effect of inclusions becomes greater and o
the expressions for the electric field must account for the |
next dipoles, refining the interaction intensity of the inclu- +J E,3(x)dx
sions. The number of dipoles to be additionally included de- r
pends on the required accuracy. Fundamentally, this ap- e les (11 2
proach to refining the cglculatlons does not pose any (p)= I_l [_2 f Ex2(y)dy+f E,q(y)dy
problems, but the expressions for the electric field become €1Jo r
messier, and the computational load increases significantly. " e (1

Since the interaction among inclusions is proportional to +f E,(y)dy+ i f E.s(y)dy
the inverse square of their separation, in practical calcula- 12 €1 Jr,
tions the infinite sums in Eq$1) and(2) can be replaced by
finite, low-order sums. The interaction among widely sepa
rated inclusions can thereby be neglected.

r

ry 1/12 2
j E,o(X)dx+ J E, 1 (xX)dx+ f E,1(x)dx
0 ry 112

. (6)

In calculating the integrals of Eq$6), recall that the
‘electric fieldE,(2) in the matrix is given by different expres-
sions in regions abutting dissimilar cells; this was discussed
in Sec. 2.

Finally, after calculating the integrals of E¢) using

By definition, the effective dielectric constant relates theEgs.(1), (2), and(4), we obtain the following expression for
displacement and electric field vectors averaged over the reéhe effective dielectric constant of the three-component sys-
gion, i.e., tem under consideration:

3. EFFECTIVE DIELECTRIC CONSTANT

1= A1581/2— Ay585/2+ ATA + AT A+ A1A 1B, +By)
e E1 ) A 1,81/2+ A15yl2+ ALA + A2 A, + A A 5B, + By)

)
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2
k 2 Tk
’7Trk*, rk*—l_

(k=1,2 8
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1+2(2m-1)
1 202m—D)2+ 1602

J = —0.52562. (12)

In Eq. (10) the expression in parentheses is exactly equal

are the concentrations of the inclusions with dielectric coni0 7/2, so thatAg,=s;/2 andAy,=S,/2, as shown in Eq7).

stantse, and g5, respectively. The parametefg and B,

(k=1,2) are functions of the radii of the inclusions,
- re—2m
LT =P [

6m4 n=1m=1 —2m)7+4n2
ret2m

* (re+2m)?+4n?

—2m+1
(rk 2m+ 1)°+(2n—1)

ret2m-—1
+ 2 2
(ret2m—1)“+(2n—-1)

©

1
Bi= ngk[ zrﬁmzl ri—(2m-1)*

o o

+2 >

[ re—2m
n=1m=1 (rk_

2m)%+(2n—1)?

-2m+1
2m+1)%+4n?

regt2m N
(rk+2m)2+(2n 1?2 (r—

N rgt2m-—1
(re+2m—1)%2+4n?

} . 9

4. PROPERTIES OF THE EFFECTIVE DIELECTRIC
CONSTANT

The effective dielectric constant defined by E@) de-
pends on the concentratiosg ands, of the inclusiong(or,
equivalently, on the radii of the differing inclusions, and
r,) and on the parameters;, and A3, which characterize
the relationship between the dielectric constants of the ma-
trix and inclusions.

For weakly inhomogeneous media, in which the qua-
dratic termsAZ2, and A%, can be neglected, E¢7) takes the
especially simple form

1= (A AgsS))/2
Ceft ™ o1 1+ (A8 +A158,)/2°

(12

Equation(12) describes exactly the macroscopic characteris-
tics of a system with inclusions whose dielectric constants
differ little from that of the matrix. It also holds for systems
with very low concentrations of inclusions, i.es;,s,<1,
where the parameteid;, and A5 can then take arbitrary
values within their applicable domains;1<<A;,, A;<1

In Egs.(9) the radii of the inclusions can be written in rela- Equation(12) is, in fact, valid for media characterized by
tive units,r .« =r,/l, with the asterisks omitted for brevity. small values of the parameter combinatiofg,s,/2 and
Using Eqs(8), A andBy can be represented as functions of A ;55,/2.

the concentrations; ands, of the inclusions. In actual cal-

If the concentrations of the additional phases are equal

culations the infinite sums can be replaced by finite sums(s,;=s,=s), i.e., all inclusions have the same radius (
and sufficient accuracy for practical calculations is ensured=r,=r), then Eq.(12) takes the form

by including a relatively small number of terman(n
=10-100). The coefficients of the first-order parameters, _
A, andA 43 in Eq. (7) can be determined when calculating

the corresponding integrals in E@), which yields

Aok=TE(2+A+Byy), k=12, (10)
where
~ 1—4m
A11:4[2m21 1- 256m4+21 ,WEJ 1-am)Z+ 160

1+4m 1-2(2m—1)

T AT amzrien? T [1-2(2m-1) 2+ 4(2n—1)2

1+2(2m—1)
T 22m-1)1Z+4(2n-1)

2H =0.09644,

1
Bn=4[2m21 T-162m 1
+ 2

m=1n=1

1-4m
(1-4m)?+4(2n—1)°

1+4m 1-2(2m—1)

T amZra2n—12 T [1-2(2m—1)]2+ 16n2

1—5(Appt+ Agg) 2+ A(AZ,+ A2) + 2BA A 1
L 13S(At A2+ A(AZ+ AZ) +2BA A 15
(13

where A;=A,=A and B;=B,=B. If all inclusions also
have the same dielectric constaft,=e3, or Aj,=A;3),
then the expression for the effective dielectric constant sim-
plifies further to

1-A,5+2A%,(A+B)
el 1 A5+ 2A2(A+B)"

(14)

Equation(14) now defines the effective dielectric con-
stant of a two-component system that is the same as the
Rayleigh model, in which unidirectional circular cylinders
with identical characteristics form a doubly periodic lattice.
This agreement makes it possible to compare the present
results with the more accurate calculations obtained by by
Rayleigh in a different mannérand therefore to establish
the domain of applicability of Eq(14) and, indirectly, the
more general Eqg12) and (13).

For weakly inhomogeneous media, where the parameters
A, ands are very small A,,5,<<1), the effective dielec-
tric constant for the Rayleigh model in the first approxima-
tion is (in the notation of the present paper
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i

1.6 I’

| 5=025 /,/ $=03 //
. / 2 V4

1.2 = ]

1.0 1
0 0.25 0.5 0.75 A, 0 0.25 0.5 0.75 A,

FIG. 3. FIG. 4.

If one of the two types of inclusion, for example the
1— A8 second, is a metalez;—®, A;3=—1), then Eq.(13) be-
Eeff— €1 m (15 comes

i : - I +5/2+ A—A%(sI2+2B)+ AA?
This corresponds to Eq.14) in the linear approximation Eef= €1 L+s/2+A A;Z(S/Z 2B) AA;Z_
in Agy. © 1-s/2+ A+ A7,(s/2+2B) +AAS,

In the general case, if we restrict attention to the first  The |atter two cases can also be examined using the

three approximations, the expression for the effective dielecyeneral expressiof?) for &4 with unequal concentrations of
tric constant corresponding to the Rayleigh model can bgne inclusions.

written in the form
_ 1-Ag5—fi(Agp,5)
Celf— o1 1+A5—fj(Ag2,9)

(20

5. COMPOSITE MEDIUM WITH CHARACTERISTIC
(j=1,2,..), (16) PROPERTIES

_ o Of all the possible relationships among the geometric
where for the first approximation parameters and physical characteristics of a three-component
medium, it is necessary to distinguish the case in which the

f1=0, dielectric constant of the matrix has some average value be-
which leads to Eq(15), for the second approximation tween those of the inclusions.

‘( A2e? Let us first consider a system with equal concentrations

2=0.30813;5 17) of the additional phases, and therefore equal radii for all
for the second approximation, and to inclusions, i.e.s;=s;=s (r,=r,=r). Then, for

f, - Ap=—Ags, (21)

fa= 1 1 a0mz,e TOO13ALS (18 Eq.(13) implies that

for the third. Eeff=£1- (22)

A comparison of Eqs(14) and (16) (the latter for the Using Eq.(3), Eq. (21) can be rewritten in the form
case offy), obtained by two independent methods, shows

that they yield the same results for concentrations of the €1~ Vé2€s. (23
inclusionss<<0.4, for all values of the parametér;,, and Thus, if the dielectric constamtof the matrix equals the

for arbitrary concentrations of the inclusions<8<w/4 if  geometric mean of the constants of the two dissimilar inclu-

A4,<<0.5. This can be seen from Figs. 3—5 ff(A1) With  sjons, &, and 5, the effective dielectric constant of this
s=0.25, 0.5, and 0.75, respectively. In these figures the

dashed curves correspond to the Rayleigh model and were

plotted using Egs(16) and (18), while the smooth curves o

correspond to Eq(14) derived here. 1
A number of interesting special solutions can be derived 10 —

from the general equatiofild) for the effective dielectric 5 =075 /'

constant. 7 /
For example, let one of the additional phases—the sec-

ond, with permittivity e;—be eliminated from the system; 4 _ ;"

then, settingez=¢4 (A13=0), we have a two-component =

medium for which 1 e

1—Aq8/2+AAT, 0 025 05 075 A,

Eo=¢ . (19
P11+ A8+ AAT, FIG. 5.
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inhomogeneous medil_Jm will equal t_hat qf the mgtrix. Physi- &4 (€1,82)Eef w(e2.e1)=e187, 27

cally, this characteristic of the medium is explained by the

fact that the dielectric polarization vectors in the dissimilarwhere thex component is determined for a medium in which

inclusions are equal in magnitude and and opposite in dire¢he matrix and inclusions have the parametefsand e,

tion. Here the electric field in the composite material isrespectively, while they component corresponds to the pa-

highly nonuniform: the displacement vector is squeezed outameters of a medium in which the dielectric constant of the

of the inclusions whose permittivity is below; and drawn matrix is e, and that of the inclusions is,. Equation(27)

into the others, whose permittivity exceesls. establishes the most general property characterizing two-
If a system with these properties is interpreted in termsgcomponent, two-dimensional systems, independent of their

of equivalent electrical circuits witRLC components, then specific structure. At a practical level, it often makes it pos-

Eg. (23) means that the circuit has the characteristic resissible to simplify the analysis of systems by reducing the

tance volume of analytic and numerical calculations.
To prove Eq.(27), Keller considered a medium with
R=~LC. @4 Gircular cylindrical inclusions, which are parallel to one an-

It must be borne in mind that Eq&21)—(23) were de- other and form a doubly periodic rectangular lattice in their
rived for a system with equal concentrations of the additionafransverse cross section. This is the same system as that stud-
phases. However, systems in which the dissimilar cylindricaied by Rayleigh, and it can be shown that Eg&l5)—(18),
inclusions have different radii, and therefore unequal concenebtained by him for the effective dielectric constant, satisfy
trations of the two phases in the matrix, can be studied enEgs.(27).
tirely analogously. In this case, it is necessary to turn to the ~ Subsequently, Eq$27) were extended to more general
general formula(7) for the effective dielectric constant. structures for two-component inhomogeneous media.

Setting Dykhne found a symmetry relation for media of this type.
Ao —A 25 Developing Dykhne’s method, Balagurov showed that Egs.
1251 1352 (29 (27) are valid for arbitrary concentrations, shapes, and distri-

in Eqg. (7), we again obtair 4=¢4. In explicit form, Eq.(25) butions of the inclusions in a mediufriTo prove the reci-

becomes procity relations, Mendelson used tensor analysis and ob-

A X tained extremely general resuftsSchulgasser proposed a
81:35 (85— 83)+ \/75 (85— 83)2+ 8084, (26) persuasive !nterpretatlon of the reciprocity relations emplpy-
ing a combination of geometry, algebra, and mathematical

whereA = (s;—S,)/(S;+5,). analysis'® Note that in the papers cited above, as well as in

For equal concentrations of the additional phasesMany others, the.reciprocity re_lations are usually discussed
ie., s,=s,, Eq. (25) transforms to Eq(21), and Eq.(26) N terms of e!ectrlcal condgcpv@sometlmes thermal con-
to Eq. (23). d_uctywty, as in Rgf. 1P this is |n.fact of no _fundamental

In a system with unequal concentrations of the ph‘,jlsess,|gn|1‘|cance.and, in accordance with the famlllar analogy, the
the dielectric polarization vectors are also oppositely directedeSults obtained here are completely applicable to the study
in the dissimilar inclusions, but unlike the previous case, thé’f magnetic, diffusion, electric, and other processes in inho-
magnitudes of the dielectric polarization vectors in theMOYENEOUs systems.

phases are not equal—they depend on the transverse cross- The reciprocity relation takes a slightly different form
sectional area of the cylinders. In order for the condition/oF three-component systems. In accordance with the preced-

to be met, the polarization of the dielectric in the N9 investigation, it is convenient to write it in a form using
cylinders with smaller radii must be larger, anite versa e parametera;; andA,3, which arise naturally in solving
The quantitative relationships among the parameters of thi€ field problem(1) and(2) and are present in the averaged
medium are then established by E85). As before, the di- formulas. The main result can be formulated as a theorem: if
electric constant of the matrix,;, has a value intermediate & dielectric medium with permittivitye; contains parallel
between those of the inclusions, andss. But now, accord- dielectric cylindrical inclusions of two varieties with con-
ing to Eq.(26), &, also depends on the ratio of the concen-Stantse; and e3, and the inclusions are distributed with
trations of the additional phases. doubly periodic ordering and a step size equal to the side of

The approach proposed here to calculate the effectivine square cell, then the effective dielectric constant of this
parameters can be extended to matrix systems with mor@edium will satisfy

than three components, and therefore the conditions that de-

Eeff—€1

_ .2
termine the compensation of polarization phenomena in mul- Zef( 12,819 8e( 21,830 =21, (28)
ticomponent systems can be obtained. where, according to the definitioni3), Ajp=—Ap; (p
=2,3). If rectangular cells are considered, the system as a
6. RECIPROCITY RELATIONS whole will be anisotropic, and
Keller's theorem occupies an important place in the eeffxx(AlzaA13)8effyy(A211A31):8%- (29)

theory of two-dimensional, two-component matrix systéms.
This theory establishes a relationship among the components The concentrations of the inclusions can differ. As a
of the effective dielectric permittivity tensor: special case, Eq$28) and(29) yield the reciprocity relation
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for a two-component medium upon setting=e; (A3  periodic system and averaging the electric field in a unit cell

=0). In the form taken here, it can be written with two dissimilar inclusions. We have taken this approach
2 here.
Bef( A1) ee(A21) =1, (30 In the general case, the formula for the parameter has the
for an isotropic system, and structure
Seffxx(Alz)seffyy(Aﬂ):S% (3D
for an anisotropic system. Eofi=81 F(R12,413,51,57) , (35)
It can be shown that the reciprocity relation for two- F(A21,A431,81,52)

component systems in the forf80) is indeed satisfied by the
known exact solutions. This is the case, for example, in the, .00 \ve recall that .=
Rayleigh model15)—(18). It is also valid for a checkerboard a
system, for whicf®

—A, andAz;=— A3 (in accor-
dance with Eq(3)) andF(...) is afunction of its parameters.
This is an implicit expression for the dielectric constant;

1-Ap, it holds for arbitrary concentrations of inclusions from two

cer=Vere2=e1\ 75 (32 additional phases. _ _ _ N
For high concentrations of the inclusions, multidipole

It also corresponds to the exact solution for a doubly periodignteractions must be taken into account in solving the field
distribution in a matrix of rectangular inclusions with con- problem. In the special case of low concentrations, where we
centrations=0.25" In the special case of the square inclu- can limit ourselves to one-dipole interactions, an explicit
sions from Ref. 4, some simple calculations yi€ld terms  expression forF(A1,,A13,5;1,S,) has been obtained in the

of the dielectric constajt present paper (Egs. (7)—(11)). In Eq. (35),
5 A F(A5,A31,51,S,) determines the electric field averaged
Eoff= €1\ /2+—A12' (33)  over the length of the unit cell along theaxis, (E,), and
12

coincides with the direction of the external fidigy=E,, in
The reciprocity relation(31) is also applicable to one- the system. Thus, the functiosyF(A;;,A13,8;,S;) gives
dimensional structures and stratified media, for which, wherthe average value of the electric displacem@dy) in the
the concentrations of the phases are equal, cell. Here the average field&,) and(D,) are given by the
integrals(6).
=e,(1-Ay), Equations(35) yield the reciprocity relationg28) for
square cells, an(29) for rectangular cells.
1 € Clearly the reciprocity relation for a three-component
Eeffyy= 5 (e1tey)= 1T7AL (39 system is satisfied by stratified media with equal concentra-
12 tions of the phase®@ne-dimensional periodic structuyefor
The reciprocity relations for three-component media carwhich the effective parameters are given by formulas that
be proven by directly solving the field problem in the given generalize Eq(34):

28182
Eeff xx=
81+ €9

_ 3e18583 _3 (1-A1)(1—-Ayy)
e eyt ereat ooy L (1-Ap)(1+ A1)+ (1+A1) (1= A +(1-A) (1= A’
_Z (it et )_ﬂ(1+A12)(1_A13)+(1_A12)(1+A13)+(1+A12)(1+A13)
Beffyy™ 3 (17 827 83)7 3 (1+A)(1+A 9 :

(36)

The reciprocity relatiori29) has been written in the form structures with the aid of the computational technique used
of a general algebraic expression: it no longer has the simpleere. In particular, it is clear that Eq37) is satisfied by
physical appeal characteristic of the two-component casanulticomponent one-dimensional structures with formulas
The main advantage of writing the reciprocity relation in athat are generalizations of E(B6).
form containing the product of functions of the parameters
A, and A3, however, is that it admits of a natural gener-
alization to systems with an arbitrary number of components’- COMPLEX EFFECTIVE DIELECTRIC CONSTANT

~ Thus, if the matrix of a composite dielectric contaims In the quasistationary approximation with a wavelength
dissimilar inclusions, then the reciprocity relation takes theyat exceeds the characteristic dimensions of the system, all
form three components of the dielectric constant of a given me-

Eeft x( D12, 813, A1) eeftyy (D21, 451, Apy) =5 (37) dium can be regarded as complex:

The validity of Eq.(37) can be tested by examining periodic ;=& —ie] (j=1,2,3. (38
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An imaginary part of the complex dielectric constant signi-the permittivity of the matrix. For two-component systems
fies losses in the dielectric medium. these conditions cannot be realized, even in principle.
In this case the complex effective dielectric constant of
an inhomogeneous systemyy=¢.q—isk, iS given by Eq. APPENDIX
(7), in which scalar quantities must be replaced by complex

values of the dielectric consta(®8). Here we use the com- Here we give the exact analytic solution for two circular

plex parameters dielectric inclusions in a uniform external electric field; this
A PO is then used to study the given three-component system.

A= “r e (p=2,3. (39 Let two circular dielectric cylinders that are parallel to
e1tep one another and have radij andr, and dielectric constants

Losses in an inhomogeneous dielectric medium are i2 and e3, respectively, lie in an dielectric medium with
general due to displacement currents and conduction cupRermittivity ;. The axes of the cylinders are separated by a
rents; they depend in a complicated fashion on the relationdistancen (h>r;+r;). The external electric fiel&, is uni-
ships among the components of the system and on the fréorm and perpendicular to the axes of the cylinders, which lie
quency of the external electric field. along thex axis. The coordinate origin lies on the axis of the

In this case, in the original expressigh5) and Eqgs. cylinder with radius ;. Under these conditions, the solution

(13), (19), and(20) it is necessary to make the substitutions Of the problem is

Eefi—Eeif» £1— €1, andAy,— Ay, Then, for o 11 gy |2
1k
E1(2)=Eo— (X, —X2)2 2, {Ak[ Eo[—A ( )
k=1 13

App=—Ay, (40 Z—Zyk
. (2 el 2 2
Eeff=£1, (41 Agp \Z— 2z O\ z—zg Z— 24

with (A1)
81=\E083. (42)  outside the cylinders,

Equationg40)—(42) are generalizations of the corresponding _ 2

Egs. (21)—(23). Equations(24), (32), and(33) can also be E2(2)=(1+212)) Bo= (X1 7X7)

written in complex form. . —

If the inclusions have low dielectric losses, SORIN Ep [ g 2_E gax |2
tan &,,tan 8;<1 (8, and &3 are the dielectric loss angles in ] Ao\ Z— 2y 0l - — Zsk
the differing cylindery then using the approximate expan- . . .
sion of the root, Eq(42) can be written in the first cylinder, and

. i =

g1=1ebeh| 1— > (tan o +tan 3y) . Ea(2)= (1+A13)[ Eo— (X1 —X2)?

In low-loss media, the dielectric constant of the matrix is

- Eo g |? dac \°
obviously close toys 3. ngl [AK[A_B (Z_—Zlk) —EBo| = ”

8. CONCLUSION in the second.
HereE;(z)=E,;—IiE; (j=1,2,3) are the complex elec-
Three-component systems have heretofore not been aghe fie|q functions;z=x-+1y is the complex variables; and

gquatgly studied due to diﬁicu!ties in calculating the physicalx2 are symmetry points on the axis, with coordinates
fields in such systems. Techniques for boundary value prob-

lems in the theory of analytic functions can be invoked for —b N
two-dimensional systems with an ordered distribution of dis- <t~ °'1r X2
similar inclusions; this has been done here for a medium 1
with _cwcular |nc!u5|o_ns, w_here we took advantage of the —p__~ [h2+r§+r§— \/(h2+rf+r§)2—4rih2],
solution for a pair of inclusions. 2r5h

Thr_ee—component matrix systems share many of thf?he 9, (v=1,...4) are parameters given by
properties of two-component systems. They also obey reci-
procity relations expressible as a product of functions of the & _
parameters that determine the relative values of the dielectric  9*%~ 1—a2° 94~ ~ 93k
constants of the inclusions. In addition, polarization phenom-
ena are more varied in three-component systems. In some
cases, it has been shown that the dielectric polarization vec-
tors in dissimilar inclusions can have opposite directions and,
under certain conditions, they can cancel one another. The 5,—=—  g,=
effective dielectric constant of such a system will be equal to a

h—x, |2 1
h—X, _3_4

Xl) 1/2

X2

a]_:a4

xlh—rf)"’2

Xsh—r3
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the z,, are coordinates of the dipoles on thexis,

z _Xl_Xzagl
vk ™ 2
1-a;

A is a parameter given by
A:Alelg, _1$A$1,

the bar overE, denotes the complex conjugate.
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We study quantuniShubnikov—de Haas and de Haas—van Alphestillations and angular
oscillations of the reluctance in the organic quasi-two-dimensional metal {B@H,0), . We

show that the Fermi surface in this compound consists of a slightly corrugated cylinder

with its axis perpendicular to the conducting plane. The cross section of the cylinder in this plane
is a perfect circle of radiukg=3x 10" cm L. The effective carrier mass associated with

this cylinder ism* =(1.65—2.0)m, in the conducting plane, while the Dingle temperature is
Tp=3-4 K. © 1998 American Institute of Physids§1063-776098)02709-7

1. INTRODUCTION The first report on the synthesis, structure, and properties
of the metallic chloride of BO contained the chemical for-

guasi-two-dimensional organic metals. The major structura‘"_mla of this_ compouno!, (BO)CI(3D), a simple salf. Th_e
material in this compound, which forms the conducting |ay_5|mple salt is characterized by a 1:1 ratio of the BO cation to

ers, is the organic molecule BEBEDO-TTH the CI(H,O) anion, which corresponds to the transfer qf an
(bis(ethylenedioxy-tetrathiofulvaleng an analog of the well €léctron from each BO molecule to an anion and implies a
known ET molecule used as a basis for synthesizing thalf-filled metal band. This report was of great interest, since
overwhelming majority of quasi-two-dimensional organic before then no organic metals with a half-filled conduction
metals and superconductdrkinlike the ET molecule, in the band were known.

BO molecule the peripheral atoms of sulfur are replaced by ~ The next papérshowed that the chemical formula of the
oxygen atoms. Since overlap of the orbitals of these sulfuBO chloride was more properly written in the form of the
atoms is responsible for the high conductivity in a layercomplex salt (BO)CI(H,O)s. In this case, one electron ar-
made up of ET molecules, one might expect substantialives at an ion from every two BO molecules, and the con-
changes in the conducting properties on going to metalgluction band is then one-quarter full. A comparison of the-
based on BO. oretical calculations of the structure of BO chloride with the

The compound (BQ)XI,(H,0), belongs to the class of

1063-7761/98/87(9)/7/$15.00 621 © 1998 American Institute of Physics
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parameters of the quantum mechanical oscillations first obplane or perpendicular to it. A magnetic field was created

served in this compouridonfirms this level of filling of the  either by a superconducting solenoid with a maximum field

band. of 15T or by a resistive magnet with a field of up to 20T,
Data from an analysis of the composition and structureand the minimum temperature was 0.45K. In the reluctance

corresponding to the formula (B@JI(H,O); were later measurements the orientation of the sample was varied using

presented,along with some results from a study of the re- a two-axis gimbal mount, which made it possible to rotate

luctance of this complex that were consistent with the prothe sample in declination and in the azimuthal angle.

posed formula. The de Haas—van Alphen effect was studied in terms of
Nevertheless, the chemical composition of BO chloridethe dependence of the torque on the magnetic fieldre the

is still under discussion. A chemical formula of the form maximum magnetic field was 14T and the minimum tem-

(BO),Cly ,dH30)0 24 H,0), 44 has been proposédwhile  perature lay below 0.48 K.

fully retaining the structural motif proposed befdréThis

difference in the description of the chemical composition

does not, however, lead to a change in the degree of filling 0. RESULTS OF MEASUREMENTS

the band, since the excess negative charge on the &msen

sociated with the chlorinebeyond that implied by the for- The average conductivity of the test 135‘@1"93 at room
mula (BO),CI(H,0)s, is balanced by the positive charge on temperature in the conducting plane is@0~ cm". All the
the HO. samples are characterized by a metallic variation in the re-

In this paper we offer a more detailed investigation ofluctance as a function of temperature: as the temperature is

the Shubnikov—de Haas and de Haas—van Alphen oscilldeduced from room temperature to liquid nitrogen tempera-
tions and semiclassical angular oscillations in the reluctancdure, the reluctance decreases on average by a factor of a few
These studies provide a more detailed idea of the size arfd®Zen: .

shape of the Fermi surface in BO chloride, and make it pos-  Flgures 1 and 2 ShOV\{ the Shubmkov—de Haas .and de
sible to estimate the parameters of its electron system. Thigaas—van Alphen oscillations for a magnetic field directed
possible effect of the chemical composition of the anion or@/most perpendicular to the conducting plane. For this field

the behavior of these oscillations is not discussed here.  direction there is a single fundamental frequency for the
guantum oscillation$-y=4900 T (see insets to Figs. 1 and

2 EXPERIMENT 2). When the field deviates significantly from this direction,
) ) ) beats become appreciable in the fundamental frequésezy

Single crystal samples of (BEFI,(H,0), obtained in  rjgs 3 and & Analysis of the quantum oscillations and fast
two chemical groups under differing synthesis conditfons £y rier transforms reveal the complex nature of these beats,
were used in the experiments. Nevertheless, the samplggich result from the mixing of three oscillations with simi-
were shown to be identical by x-ray structural analysis. The,, frequencieginsets to Figs. 3 and)4at least for some
samples consisted of irregular slabs with average dimensiongiractions of the field.
of 1X1x0.1 mn?, _The plane of _the samples coincided V\_/lth The angular dependence of these frequencies for the de
the crystallographi@b plane, which contains the conductive ya55_van Alphen oscillations is shown in Fig. 5. There, for
layers. These layers alternate along the short dimension fach direction of the field, different symbols correspond to

the samples, which coincides with the axis. different frequencies. This curve fit well by the formula
The reluctance was measured by the standard four con-
tact method using a 330Hz alternating current. Here the F(0)= 4900[T] @

measurement currert could be directed either in thab cosf



JETP 87 (3), September 1998 Pesotskil et al. 623

0.958

FFT amplitude,
rel. units
B

FIG. 2. De Haas-van Alphen oscillation®=4.7°,

0.956F T=0.5K. The inset shows the FFT of these oscillations.

Magnetization, rel. units
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where# is the angle between the field and the normal to the=0° is nonphysical and is related to the method for observ-
conducting plane. Here, recording several frequencies ahg the de Haas—van Alphen oscillatich§he amplitude
each angle has essentially no effect on the curve, since thaulls at
difference between the frequencies is never greater than @ +=41° andd= +57° are probably related to the fact that
few percent and does not exceed the average scatter. Thibe decreasing spin factor in the Lifshitz—Kosevich formula
we can assume that E() yields the fundamental frequency vanishes in those directions, i.e.,
to high accuracy. _ _

Figure 6 illustrates the angular dependence of the ampli- Rs=codpmgu/2) =0, )
tude of the de Haas—van Alphen oscillations. As in the casahere p is the harmonic numberg is the g-factor,
of the angular variation of the frequency, the amplitudes coru=m*/mg, m* is the effective electron mass, ang is the
responding to oscillations at differing frequencies are indi-free electron mass.
cated by different symbols. Despite the complicated angular The effective carrier mass was estimated on the basis of
dependence of the amplitude of the oscillations at differenthe temperature dependence of the amplitude of the quantum
frequencies, the common zeroes in the amplitude abscillations. Here the decreasing temperature factor was
0=*+41 and £57° are evident. The amplitude null & taken to have the form

40
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= F, 00T FIG. 3. Shubnikov—de Haas oscillationsg=23°,
o 24k T=1.45K,| Lab. The inset shows the FFT of these oscil-
' lations.
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R apuT/H Figure 7 shows the angular variation in the reluctance
= sinh(apeT/H) for a constant field of 14.3 T. The maxima of the pronounced

angular oscillations are periodic in t&nin Fig. 8, the period

where a=2m’kgmy/efi=14.7 T/K, T is the temperature, of these oscillations is plotted in polar coordinates as a func-
and H is the magnetic field. The mass in the conductingtion of the azimuthal anglep in the conducting plane.
plane determined in this way for several of the samples had gjearly the period is essentially independent of the azimuthal
substantial scatter and lay within the intervaf =(1.65—  angle, and isA\~0.5.
2.0)my.

The Dingle temperature was determined from the field—4. DISCUSSION
induced variation in the amplitude of the quantum oscilla-
tions using a Dingle reducing factor of the form The crystal lattice parameters of BO chloride were first
given in Ref. 2 and confirmed in Refs. 4 and 5. The band

Rp=exp(—apuTp/H). structure of this material was calculated on the basis of these

The Dingle temperature lies in the ranfg=3-4K for ~ data and found to be in agreement with preliminary observa-
all samples measured. tions of quantum oscillatior$According to this calculation,

FIG. 5. Angular dependence of the frequency of de
Haas—van Alphen oscillationsT=0.5 K. The smooth
curve corresponds tB(6#)=4900/co® [T].
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the Fermi surfacéFig. 9 in (BO),Cl,(H,0), is a cylinder angle in BO chloride crystalg=ig. 8), so the cross section of
with its axis oriented in the* direction. The cross section of the cylinder can be represented as a perfect circle irathe
this cylinder in theab plane coincident with the plane of best plane. In this case, the Fermi momentimis related to the
conductivity is a perfect circle whose area is roughly halfperiod A of angular oscillations in the reluctance by the
that of the corresponding cross section of the Brillouin zonesimple formul4
For all the BO chloride crystals studied here, the fre-  ,_ _,
guency of the quantum oscillationskg~4900 T for a field e
H.1 ab, which corresponds to 50% of the area transected inhered is the distance between conducting planes. The es-
the first Brillouin zone, and agrees well with theoretical cal-timated cross sectiors= wkZ=3x10cm 2 is in good
culations. The angular dependence of the frequency of thessgreement with theoretical calculations and the quantum os-
oscillations is fit well by Eq(1) and corresponds to a cylin- cillation data. Thus, the quantum and semiclassical oscilla-
drical Fermi surface oriented alom. tions in the organic metal (BQEI,(H,0), correspond to a
The angular oscillations in the reluctance, with peaksweakly corrugated cylindrical Fermi surface with a perfectly
periodic in ta® (Fig. 7), are also related to the motion of circular cross section of radiuss3x10 cm ! in the ab
carriers over the cylindrical Fermi surface, and the cylinderplane.
must be weakly corrugated along its a%sThe period of The slight corrugation in the cylindrical sheet of the
oscillations in the reluctance is independent of azimuthaFermi surface must result in the existence of several similar

R, rel. units
1.6

FIG. 7. Angular dependence of the reluctan€e; 0.5 K,
H=14.3T,l Lab.

1.21
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being tangent to it, forming very small pockets at this site.

s R This can lead to the coexistence of a small orbit with the

. , main orbit, which corresponds to the fundamental frequency.
y”* We can then expect sum and difference frequencies to ap-
// Ay pear, including some near the fundamental. This latter sce-
* ‘? nario would seem to be the most plausible, but it is obviously
: r ‘,: very vulnerable at present and requires more convincing con-

L a=050 | firmation and additional study.

The condition(2) for the appearance of “spin nulls” at

FIG. 8. The period of angular oscillations in the reluctance as a function ofd~ * 41 and+57° is satisfied by the first harmonic, assum-

the azimuthal angle in polar coordinates. ing that the effective mass and angle of inclination are re-

lated by the characteristic formula for a cylindrical Fermi

surface, u(0) = u(0)/cod. Here the splitting factor isSg
=gu(0)/2~1.85. Given the spread in the estimate of the
ffective mass obtained from the temperature dependences of

extremal cross sectionsn the case of simple corrugation,
there should be twg and this may show up as beats in the
fundamental frequency. In the compound studied here, bea Re amplitude of the quantum oscillationsy=(1.65—

. L o M
are observed for field directions not coincident witljc 2.0)my, the g factor becomesy=1.85-2.23. Theg-factor

(Figs. 3 and 4 These beats, however, have a complex Shaloedetermined in this way usually includes corrections owing to

since thgy result from combmmg more than two oscnlgtlons any-particle interactions, which makes it different from the
at differing frequencies. We might assume a comphcate«fr1

corrugation with several differing extremal cross sections ee electrong-factor, go=2." The closeness of and g
9 g argues for the weakness of these interactions. In the test

but one would then scarcely expect the pronounced angular,

I . . amples, any assumptions regarding the influence of many-
oscillations in the rejuctance observed in the sample Crystal?)'article interactions would be incorrect because of the exces-
In addition, there is still no explanation for the lack of any

sive error in determining thg-factor due to the spread in the

beats whatsoever for a field with||c*. . ) . .
; : : value of the effective mass. More detailed experiments will
The beats might be related to crystal imperfections of th .
e required to make the latter more accurate.

samples, such as twinning, intergrowth, etc. This explana-

tion, however, can be rulgd out by direct x-ray analys_ls o_f thes_ CONCLUSION

test samples, which confirms that they are high-quality single

crystals. We have studied the behavior of the magnetic moment
The distorted form of the quantum oscillatiofiaclud-  and reluctance of a group of samples of the organic metal

ing beat$ might arise through magnetic interactibbut the ~ (BO),Cly(H,0),. Shubnikov-de Haas and de Haas—van

latter is only significant when the absolute amplitude of os-Alphen quantum oscillations and semiclassical angular oscil-

cillations in the magnetic momeptzM is comparable to the lations in the reluctance were observed. An analysis of these

periodH?/F of the oscillations. In the test samples, data indicate that the Fermi surface of this compound is a
_ 3 2 cylinder weakly corrugated along its axis, and is a perfect
peM=~2.5G=<200 G=H"/F, circle of radiuske=3x 10" cm ! perpendicular to the axis.

whereugM~2.5 G is the maximum attainable absolute am-These results agree with theoretical calculations. Compli-

plitude in the experiments with a 10T field, so magneticcated beats involving the fundamental frequency of the quan-

interaction can be neglected. tum oscillations were observed, but their nature is as yet
Finally, there is yet another possible reason for the beatainclear.

The calculated Fermi surface in Ref. 5 differs somewhat We thank L. P. Rozenberg for the x-ray structural data,

from that in Fig. 9. The cylindrical sheet intersects theand E. B. Yagubskiand R. P. Shibaeva for useful discus-

boundary of the Brillouin zone near the poiXt rather than  sions. This work was supported by the Russian Fund for
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