
Physics of Atomic Nuclei, Vol. 66, No. 7, 2003, pp. 1211–1218. Translated from Yadernaya Fizika, Vol. 66, No. 7, 2003, pp. 1251–1258.
Original Russian Text Copyright c© 2003 by Gangrsky, Zhemenik, Maslova, Mishinsky, Penionzhkevich, Szöllös.
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Abstract—The yields of Kr (A = 87–93) and Xe (A = 138–143) primary fission fragments produced in
232Th, 238U, and 244Pu photofission upon the scission of a target nucleus and neutron emission were
measured in an experiment with bremsstrahlung from electrons accelerated to 25 MeV by a microtron,
and the results of these measurements are presented. The experimental procedure used involved the
transportation of fragments that escaped from the target by a gas flow through a capillary and the
condensation of Kr and Xe inert gases in a cryostat at liquid-nitrogen temperature. The fragments of all
other elements were retained with a filter at the capillary inlet. The isotopes of Kr and Xe were identified
by the γ spectra of their daughter products. The mass-number distributions of the independent yields
of Kr and Xe isotopes are obtained and compared with similar data on fission induced by thermal and
fast neutrons; the shifts of the fragment charges with respect to the undistorted charge distribution are
determined. Prospects for using photofission fragments in studying the structure of highly neutron-rich
nuclei are discussed. c© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The distributions of product fragments with re-
spect to their mass numbersA and charge numbersZ
are among the main properties of the nuclear-fission
process. The shape of these distributions is controlled
by the dynamics of the fission process from the saddle
to the scission point. This intricate process depends
on a number of factors, including the relief of the
energy surface, the configurations of nuclear shapes
at the instant of scission, and the nuclear viscosity
of collective motion. Therefore, measurements of the
isotopic and isobaric distributions of fragments (that
is, those in A at given Z and those in Z at given A,
respectively) provide important data on the dynamics
of the fission process. The distributions of fragments
produced after fissile-nucleus scission and the emis-
sion of neutrons (primary fragments) are the most
informative of them.
However, measurement of such distributions in-

volves some difficulties. Each of the techniques used
has its limitations and can be applied efficiently only
to a certain range of fission fragments. Therefore, iso-
topic and isobaric distributions of primary fragments
have received adequate study only for the fission of the
Th, U, and Pu isotopes that is induced by low-energy
neutrons and for the spontaneous fission of 252Cf.
Data on these distributions are compiled in [1, 2].

*e-mail: gangr@cv.jinr.ru
1063-7788/03/6607-1211$24.00 c©
At the same time, a wider range of experimental
data and new theoretical approaches to describing
them are required for obtaining deeper insight into
the dynamics of the fission process. Measurement of
the isotopic and isobaric distributions of fragments
originating from reactions induced by γ rays is one
of the promising lines of investigation in this region
of nuclear fission since such reactions possess some
special features:
(1) The interaction of γ radiation with nuclei is

purely electromagnetic, and its properties are well
known; therefore, an adequate calculation of this in-
teraction can be performed without resort to addi-
tional model concepts.
(2) In the energy range 10–16 MeV, the interac-

tion of photons with nuclei is of resonance origin (this
is the region of a giant dipole resonance); the energy of
this resonance corresponds to the frequency of proton
oscillations with respect to neutrons in a nucleus.
(3) The absence of the binding energy and of the

Coulomb barrier allows one to obtain fissile nuclei of
any (even extremely low) excitation energy immedi-
ately after photon absorption.
(4) Over a wide range of γ-ray energies, the

angular-momentum transfer to the irradiated nucleus
undergoes virtually no change—it is as low as 1� in
the dipole absorption of photons.
These features peculiar to reactions induced by γ

rays allow one to obtain new information about the
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Fig. 1. Layout of the experimental setup.

nuclear-fission process. For example, experiments
that studied the photofission of nuclei furnished a
wide set of data on the structure of the fission barrier
and the shape of the potential surface [3]. The above
features of γ-ray interaction with nuclei are expected
to manifest themselves in the process of fission-
fragment formation as well. This can be illustrated
by the results presented in [4], according to which the
γ-ray-energy dependence of the yield of fragments
(115Cd, 117Cd) from symmetric fission has a rather
unusual character, with a maximum at 6 MeV and a
kink at 5.3 MeV.
However, data on the isotopic and especially

isobaric distributions of photofission fragments (first
of all, on their independent yields) are considerably
scarcer than data on reactions induced by neutrons
and charged particles. We can mention only the
results of the experiments performed in Ghent (Bel-
gium) for a limited set of nuclei [5–8].
The objective of this study is to measure the in-

dependent yields of fragments (these are the isotopes
of Kr and Xe inert gases) produced directly in 232Th,

Table 1. Properties of the targets used

Target 232Th 238U 244Pu

Material Metal U3O8 PuO2

Content
(%)

100 99.85 96

Admixtures (%) – 0.15 (235U) 4 (240Pu + 242Pu)

Thickness
(mg/cm2)

25 3 0.3

Dimensions (mm) ∅15 ∅20 and 30 10 × 10

Substrate – Al Ti
P

238U, and 244Pu fission induced by γ rays of energy
corresponding to a giant dipole resonance and to
compare these yields with similar data obtained in
neutron-induced fission. The measurements of the
cumulative yields of these isotopes in 238U photofis-
sion are reported in [9]; preliminary results on the
independent yields of Xe fragments in 232Th and 238U
fission are given in [10].

EXPERIMENTAL PROCEDURE

The extraction of Kr and Xe isotopes from the bulk
of photofission fragments is based on the use of their
special chemical properties, which differ significantly
from the properties of other elements and which re-
veal themselves in a number of phenomena, includ-
ing the adsorption of their atoms on a filter and the
walls of the capillary through which the fragments are
transported from the irradiated target to radioactive-
radiation detectors. The point is that Kr and Xe inert
gases are efficiently adsorbed only at liquid-nitrogen
temperature (−195.8◦C), while all other fragments
are adsorbed even at room temperature. It is precisely
this property that is employed in our experimental
setup, which comprises a reaction chamber, a cryo-
stat, and Teflon capillaries for a gas flow. The layout
of the setup is displayed in Fig. 1, and a more detailed
description of it is given elsewhere [11].
The irradiated targets were placed in the reaction

chamber, which had the shape of a cylinder 30 mm in
height, its inner diameter being 40 mm. The cylinder
walls had a thickness of 1.5 mm. The inlet and out-
let holes for a buffer gas were located symmetrically
opposite each other along a diameter of the reaction
chamber. One or two targets placed at the end faces of
the cylinder were used in the experiments. The prop-
erties of the targets are presented in Table 1 (these are
the chemical composition, admixtures, dimensions,
layer thickness, and the substrates).
An inert gas was supplied from a gas-container to

the reaction chamber through a polyethylene capillary
4 mm in diameter. The gas pressure in the chamber
was adjusted by a container valve and measured with
a manometer at the chamber inlet. Chemically pure
He, Ar, and N2 at a pressure of 1 to 2 atm were used
as buffer gases. The choice of inert gas and pressure
in the chamber was determined by the conditions of
the experiment (the efficiency of fragment collection,
the rate of their transportation, the levels of the γ-
radiation background caused by the activation of the
inert gas owing to microtron bremsstrahlung).
The fission fragments were transported, together

with the buffer gas, from the reaction chamber to the
cryostat through a Teflon capillary of length 10 m
and inner diameter 2 mm by means of evacuation
with a pump. A fibrous filter placed at the capillary
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Fig. 2. Examples of the chains of β decays of the fission fragments that include Kr and Xe isotopes. The isotopes for which we
measured γ spectra are given in boldface type.
inlet efficiently adsorbed all fission fragments, with the
exception of Kr and Xe.
A spirally twisted copper tube placed in a Dewar

vessel containing liquid nitrogen was used as a cryo-
stat. The total length of the tube was 3 m, its inner
diameter was 2 mm, and its walls had a thickness
of 0.5 mm. This design of the cryostat enabled us to
maintain the temperature at a level close to −200◦C
and, hence, to ensure the condensation of Kr and Xe
(their temperatures of condensation are −157◦C and
−112◦C, respectively). In this way, it was possible to
separate Kr and Xe isotopes efficiently and quickly
from the bulk of fission fragments, which remained on
the filter and the capillary walls. A comparison of the
spectra of γ radiation from fragments in the target, at
the filter, and in the cryostat revealed that more than
90% of fragments not associated with the β decay
chains involving Kr and Xe were retained by the filter
and that more than 50% of Kr or Xe fragments were
stopped in the cryostat.
The time it takes to transport Kr and Xe fragments

from the reaction chamber to the cryostat was de-
termined in dedicated tests that involved measuring
the pressure drop in the chamber for the case where
the valve was closed while the pump was operating.
This time, which comprised the time of fragment dif-
fusion to the outlet hole and the time of transportation
through the capillary, ranged between 0.5 and 1.0 s,
its specific value being dependent on the type of gas
and its pressure [11]. It was the time period that
determined the lower limit on the half-lives of the
fragments under study (about 0.3 s). If the half-lives
of the fragments that were the forerunners of Kr and
Xe were greater than the time of their diffusion to
the outlet chamber hole (0.1–0.2 s), they were also
adsorbed on the filter, making no contribution to the
yield of the Kr and Xe fragments transported to the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
cryostat. Therefore, only Kr and Xe fragments that
were produced directly at the instant of the scission
of a fissile nucleus reached the cryostat, and their
yields can be considered to be independent. Frag-
ments of other elements could appear in the cryostat
only after the β decay of Kr and Xe isotopes, and
their yields must also correspond to the independent
yields of the inert gases. It was the yields of precisely
these nuclides that were measured in the experiment,
because they had longer half-lives and more easily
observed γ lines. Short-lived fragments (forerunners
of Kr and Xe) that decayed in the reaction chamber
had low independent yields and did not distort the
Kr and Xe yields. Figure 2 shows examples of β-
decay chains involving the Kr and Xe isotopes; the
nuclides that were used to determine the yields in
question are given in boldface type. The properties
of the radioactive decay of these nuclides (half-lives
T1/2, energies Eγ , intensities Iγ of measured γ lines)
are listed in Table 2 [12]. The present approach to
measuring independent yields enabled us to improve
the accuracy of measurements and to observe frag-
ments whose yields are as low as 10−3 of the number
of fission events.

EXPERIMENTAL RESULTS

The experiments measuring the independent
yields of Kr and Xe fragments were performed in
a bremsstrahlung-photon beam from the MT-25
microtron of the Flerov Laboratory for Nuclear Re-
actions at the Joint Institute for Nuclear Research
(JINR, Dubna). The description of this microtron and
its basic properties were presented in [13]. The energy
of accelerated electrons was 25 MeV (which deter-
mined the endpoint energy of the bremsstrahlung-
photon spectrum); the beam current was 15 µA. A
3
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Table 2. Properties of the radioactive decay of the nuclides explored in our experiments

Primary
fragment T1/2

Daughter
isotope T1/2 Eγ , keV Iγ , %

89Kr 3.2 min 89Rb 15 min 1032 58

1248 43
91Kr 9 s 91Sr 9.5 h 750 23.6

1024 33.4
92Kr 2 s 92Sr 2.7 h 1384 90.1

92Y 934 13.9
93Kr 1 s 93Y 10.5 h 267 7.32
138Xe 14 min 138Cs 32 min 1436 76.3

2218 15.2
139Xe 40 s 139Ba 83 min 166 23.6
140Xe 14 s 140Ba 12.8 d 537 24.4

140La 40 h 1596 95.4
141Xe 1.8 s 141Ba 18 min 190 46

141La 4 h 1355 1.64
142Xe 1.2 s 142La 93 min 641 47.4

2398 13.3
143Xe 0.8 s 143Ce 33 h 293 42.8
water-cooled tungsten disk 4 mm thick was used as
a converter. Behind the converter, there was a 20-
mm-thick aluminum shield preventing electrons from
entering the reaction chamber. The electron beam had
the shape of an ellipse whose horizontal and vertical
axes were 7 and 6 mm, respectively.
Typical periods of target irradiation were 30 min.

After a time interval of 5 min, the copper spiral was
removed from the Dewar vessel and brought to the
γ-radiation spectrometer located in a room that was
protected from microtron radiation; the β decay of Kr
and Xe isotopes occurred within this period.
The areas of the γ lines associated with the nu-

clides of the daughter products of the β decay of the Kr
and Xe isotopes were obtained from the γ-radiation
spectra measured with this detector. These γ-line
areas and the yields of the corresponding isotopes are
related by the equation

Y (A) =
S (1 + α)Nf (t)
tIγε1ε2ε3η

, (1)

where S is the γ-line area after background subtrac-
tion; t is the time of measurements; ε1, ε2, and ε3
are the efficiencies of, respectively, the transportation
of Kr and Xe fragments along the capillary, their ad-
sorption in the cryostat, and the detection of their γ
P

radiation; Iγ is the relative intensity of a γ line in the
decay of the measured nuclide; α is the coefficient of
the internal conversion of γ radiation; f(t) is the time
factor that takes into account the decay of Xe and Kr
nuclei in the course of their transportation to the cryo-
stat and the accumulation and decay of the measured
nuclides; N is the number of decaying nuclei in the
layer from which fission fragments escape; and η is
the intensity of γ rays in the bremsstrahlung spec-
trum that induce the nuclear-fission process being
considered. This method was used to measure, for the
first time, the independent yields of four Kr isotopes
(A = 89–93) and six Xe isotopes (A = 138–143) in
232Th, 238U, and 244Pu photofission.

Since the Kr and Xe isotopes being studied were
obtained within a single exposure and since the pro-
cedure of subsequent measurements was identical for
all of them, the relative yields of these isotopes can
be obtained from the measured γ-line areas by using
the aforementioned parameters Iγ , α, ε3, and f(t)
without recourse to the parameters ε1 and ε2, which
are not known to a sufficient precision. The yields
obtained by this method and normalized with respect
to the 91Kr and 139Xe isotopes are given in Table 3.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Table 3. Independent yields of Kr and Xe fragments

Fragment
232Th(γ, f ) 238U(γ, f ) 244Pu(γ, f )

Yrel Yfr Yrel Yfr Yrel Yfr
89Kr 0.15(2) 0.10(2) 0.29(1) 0.18(2)
91Kr 1.00 0.62(5) 1.00 0.60(5)
92Kr 0.95(1) 0.59(5) 0.80(2) 0.46(4)
93Kr 0.25(1) 0.15(2) 0.25(2) 0.15(2)

137Xe 0.27(3) 0.16(2)∗
138Xe 0.85(1) 0.53(4) 0.65(3) 0.38(4) 0.84(4) 0.47(4)
139Xe 1.00 0.63(5) 1.00 0.59(5) 1.00 0.56(5)
140Xe 0.85(7) 0.53(5) 0.94(7) 0.56(5) 1.03(8) 0.57(5)
141Xe 0.19(1) 0.12(1) 0.53(3) 0.31(3) 0.73(4) 0.41(4)
142Xe 0.09(1) 0.06(1) 0.26(2) 0.16(2) 0.46(4) 0.26(3)
143Xe 0.08(2) 0.05(1) 0.24(4) 0.14(2)

Note: The value labeled with an asterisk was borrowed from [6].
The absolute values of the independent yields of
91Kr and 139Xe isotopes can be deduced by employ-
ing the known data on their yields in the reactions
induced by γ rays [6–8, 14] and by fission-spectrum
and 14.7-MeV neutrons [2] (the isotopic distributions
are similar for these reactions, and the yields are close
in magnitude [15]). On the basis of an analysis of
these data, the independent 91Kr and 139Xe yields
divided by the sums of the yields of allA = 91 and 139
isobars (fractional yields), respectively, were assigned
values that are given in Table 3, and these values were
used to determine the fractional independent yields
for the rest of the measured Kr and Xe isotopes with
allowance for the variation in the total yields of frag-
ments with a specific mass number and the emission
of delayed neutrons from the fragments (these results
are also presented in Table 3). The above yields di-
vided by the total number of fission events are shown
in Fig. 3 versus the mass number.

Owing to the fact that the bremsstrahlung spec-
trum is continuous, these yields are associated with a
particular range of excitation energies. This range can
be obtained from the experimentally measured exci-
tation function for the reaction 238U(γ, f ) [16] (the
excitation functions for the remaining fissile nuclei
were assumed to be similar to that) and from the
bremsstrahlung spectrum calculated for the specific
conditions of the present experiment [17]. The mean
excitation energy appears to be 12.5 MeV, and the
half-width of the distribution is about 5 MeV.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
DISCUSSION OF THE RESULTS

The curves in Fig. 3 have a typical shape charac-
terized by a maximum at a specific value of A and a
smooth decrease to the right and to the left of it. Such
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Table 4. Parameters of the isotopic distribution of Kr and Xe fragments

Reaction N − Z

N

Kr Xe References

Ā σ Ā σ

232Th(γ, f ) 0.366 91.3(2) 1.1(1) 138.9(2) 1.2(1) This study
238U(γ, f ) 0.370 91.1(2) 1.3(1) 139.4(2) 1.5(1) This study

138.9(3) [5]
244Pu(γ, f ) 0.373 139.7(2) 1.8(2) This study
235U(γ, f ) 0.357 89.4(3) 1.3(1) 137.4(4) 1.4(1) [5]
233U(n, f ) 0.352 89.3(1) 1.5(1) 137.8(1) 1.5(1) [1]
235U(n, f ) 0.364 90.1(1) 1.5(1) 138.4(1) 1.6(1) [1]
238U(n, f ) 0.379 91.5(1) 1.6(1) 139.5(1) 1.8(2) [1]

Table 5. Shifts of charges of Kr and Xe fragments with respect to the undistorted charge distribution

Reaction Z0/A0
Z Ā ν ∆Z

Kr Xe Kr Xe Kr Xe Kr Xe
232Th(γ, f ) 0.388 36 54 91.3(2) 138.9(2) 1.0 0.8 −0.19(8) +0.20(8)
238U(γ, f ) 0.387 36 54 91.1(2) 139.4(2) 1.0 0.8 −0.36(9) +0.25(8)
244Pu(γ, f ) 0.385 54 139.7(2) 0.8 +0.13(6)
curves can be described by a Gaussian distribution,

Y (A) = K exp

[
−
(
A− Ā

)2
2σ2

]
, (2)

where K is the normalization factor, Ā is the mean
mass number, and σ is the standard deviation.

The experimental values of the yields were ap-
proximated by such distributions, which are shown in
Fig. 3, the fitted values of their parameters being given
in Table 4 (the Ā value for 238U is in agreement with
that obtained in [7]). The corresponding parameters
for 235U and 233U fission induced by thermal neutrons
and for 238U fission induced by 14.7-MeV neutrons
[2] are also presented for the sake of comparison. A
comparison of these parameters leads to the following
conclusions:

(i) The mean mass number for Kr and Xe frag-
ments exhibits a slow growth with increasing Z and
A of the fissile nucleus and is close to the Ā value
in 238U fission induced by 14.7-MeV neutrons, but
it is noticeably greater than that in 235U and 233U
fission induced by thermal neutrons. This suggests
the growth of Ā with increasing neutron excess in the
fissile nucleus [this excess can be characterized by the
ratio (N −Z)/N , whose values are quoted in Table 4].
PH
(ii) The standard deviation of the distribution
shows a sizable growth with increasing charge num-
ber of the fissile nucleus (by way of example, we
indicate that, in going over from 232Th to 244Pu, it in-
creases by a factor of 1.5). This implies a considerable
distinction between the yields of the most neutron-
rich fragments. For example, the yield of 143Xe in
244Pu photofission is an order of magnitude higher
than that for 232Th, and this difference grows fast with
increasing number of neutrons in the fragment.

(iii) Deviation of the experimental values of the
yields from the Gaussian distribution, as well as their
odd–even differences, is small and does not go beyond
the uncertainties of the measurement.
In 232Th photofission, the Kr and Xe fragments

are conjugate—that is, they are produced in a single
fission event. In comparing the sum of their mean
mass numbers [Ā(Xe) = 138.9, Ā(Kr) = 91.3] with
the mass number of the fissile nucleus (Ā = 232),
one can assess the number of neutrons emitted from
these fragments. It appears to be ν = 1.8(2). If it is
considered that the fractional yields of 91Kr and 139Xe
are, respectively, 0.62(5) and 0.63(5) (see Table 3),
this value is in satisfactory agreement with the known
values of the number of fission neutrons from the frag-
ments with a specific mass number and their depen-
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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dence on the excitation energy [15, 18]. It follows from
these data that the ratio of the numbers of neutrons
from a light and the complementary heavy fragment is
1.3 in the fragment-mass-number range under study
and that it varies only slightly in the excitation-energy
range being considered. This corresponds to the value
of ν = 1.0 for Kr isotopes and to the value of ν = 0.8
for Xe isotopes.
By using the above values of ν, we can assess

the shift of the fragment charge with respect to the
undistorted charge distribution, which corresponds to
the ratio Z0/A0 of the charge number of the fissile
nucleus to its mass number. The expression for the
charge shift in the fragment of charge number Z has
the form

∆Z =
Z0

A0

(
Ā+ ν

)
− Z. (3)

The∆Z values obtained by this method for the mean
mass numbers of Kr and Xe fragments in 232Th, 238U,
and 244Pu photofission are presented in Table 5. They
appear to be close to the corresponding ∆Z values in
the neutron-induced fission of heavy nuclei [1, 19].
A wide variety of models have been used to de-

scribe the isotopic and isobaric distributions of fis-
sion fragments. In recent years, the diffusion model
[20, 21] has become widely accepted. Within this
model, the breakup of a fissile nucleus is a quasiequi-
librium process with respect to the charge mode, so
that the statistical approach can be used to describe
the charge distribution. In this case, the collective
motion of nucleons, which manifests itself as dipole
isovector vibrations, will be the main mechanism of
formation of the isobaric charge distribution of frag-
ments. However, the single-particle motion of nu-
cleons can also make a nonvanishing contribution.
The characteristic time of both kinds of motion (about
10−22 s) is much shorter than the time it takes for
the nucleus to descend from the saddle to the scission
point (about 3 × 10−20 s). The criterion of potential-
energy minimum is used to determine the fragment
charge. The deformation dependence of the potential
energy was calculated on the basis of the liquid-drop
model with allowance for shell corrections. For the
fission of nuclei in the Th–Pu region, the calculations
of the isobaric charge distributions within this model
showed that the shift of the charge with respect to the
undistorted charge distribution is 0.2–0.4 [22]. These
values of ∆Z are consistent with the experimental
data obtained in our study of photofission, as well as
with those from other studies of the fission process
induced by various particles.
The results of our experiments reveal that the iso-

topic distributions of fragments originating from the
photofission of heavy nuclei are similar to the corre-
sponding distributions obtained in neutron-induced
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
fission. It is obvious that photon-absorption-induced
dipole vibrations of the electric charge of nuclei are
damped completely by the instant of fragment for-
mation. Probably, some other of the aforementioned
features of γ-radiation interaction with nuclei can
affect fragment formation at lower excitation energies
(in the vicinity of the fission barrier or below it).
The results of this study give sufficient grounds

to conclude that photofission of nuclei is an effi-
cient means for obtaining the most neutron-rich nu-
clides. A high yield of such nuclides is caused by
a low excitation energy of nascent fission fragments
(and, consequently, by a small number of neutrons
emitted from them), by a high penetration capacity
of bremsstrahlung radiation (this makes it possible
to employ large amounts of fissile substance), and
by a rather large standard deviation of the isotopic
distribution of fission fragments. Therefore, photofis-
sion provides a promising method both for explor-
ing the nuclear structure of fission fragments and
for obtaining intense beams of accelerated neutron-
rich radioactive nuclei by using these fragments. In-
vestigation of reactions induced by such nuclei is of
great interest since they permit obtaining radically
new information about the properties of nuclei, which
is inaccessible with other methods. A large num-
ber of projects devoted to the acceleration of fission
fragments have been developed in recent years or
are being executed at present. These include DRIBs
project, which is being carried out at the Laboratory
for Nuclear Reactions at JINR. In DRIBs, fission
fragments are obtained by irradiating a thick uranium
target with bremsstrahlung from the microtron and
are accelerated at the 4-m isochronous cyclotron [23].
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Abstract—The angular distributions of fragments originating from the binary fission of odd and odd–odd
nuclei capable of undergoing spontaneous fission that are polarized by a strong magnetic field at ultralow
temperatures and from the low-energy photofission of even–even nuclei that is induced by dipole and
quadrupole photons are investigated. It is shown that the deviations of these angular distributions from
those that are obtained on the basis of the A. Bohr formula make it possible to estimate the maximum
relative orbital angular momentum of fission fragments, this estimate providing important information
about the relative orientation of the fragment spins. The angular distributions of fragments originating from
subthreshold fission are analyzed for the case of the 238U nucleus. A comparison of the resulting angular
distributions with their experimental counterparts leads to the conclusion that the maximum relative orbital
angular momentum of binary-fission fragments exceeds 20, the fragment spins having predominantly a
parallel orientation. The possibility is considered for performing an experiment aimed at measuring the
angular distributions of fragments of the spontaneous fission of polarized nuclei in order to determine
both the spins of such nuclei and the maximum values of the relative orbital angular momenta of fission
fragments. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of determining the relative orbital
angular momenta l and spins Ji (i = 1, 2) of fission
fragments is one of the key problems in the physics
of binary nuclear fission. The conservation of the total
angular momentum J of a fissile nucleus in the fission
process leads to the vector relation

J = l+ F; F = J1 + J2. (1)

It was shown in [1] that, because of the validity of
the adiabatic approximation in the asymptotic region
of a fissile system, where primary fission fragments
are already formed, their deformation parameters hav-
ing nonequilibrium values in this region, rotational
bands characterized by rather wide sets of values of
the fragment spins J1 and J2 are excited in these
fragments. In the course of a further evolution, pri-
mary fission fragments go over to excited states that
have equilibrium values of the deformation parame-
ters, but which retain the initial values of the spins
J1 and J2. At the next stage, these states of the
fragments undergo transitions, via the emission of,
first, prompt neutrons and, then, prompt photons, to
predominantly the ground states of final fragments
that are recorded in experiments. Upon the emission
of prompt neutrons, the spins of fission fragments
change values, from Ji to J0

i , J
0
i being the initial val-

ues of the fragment spins for the stage within which
1063-7788/03/6607-1219$24.00 c©
the fragments in question emit prompt photons. Upon
photon emission, the fragment spins assume values
of Jif that correspond to the states of final fragments.
We denote by Jin and Jiγ the total spins of, respec-
tively, prompt neutrons and prompt photons emitted
from the ith fragment. From the spin-conservation
law, it then follows that Ji = Jin + Jiγ + Jif . Experi-
ments devoted to measuring the multipole orders and
multiplicities of prompt photons emitted by fission
fragments revealed [2] that the mean values J̄iγ of
the total spins Jiγ carried away by photons can be
estimated (in � units) at J̄iγ ≈ 6–8.

In the case of predominantly antiparallel orien-
tation of fragment spins, which follows from the
mechanism proposed by Mikhailov and Quentin [3],
who considered the orientation pumping of fragment
spins, the mean value of the total spin of primary
fragments, F̄ , is close to zero. Therefore, the mean
value of the relative orbital angular momentum of
fragments is l̄ ≈ J , so that the values of l̄ are small for
typical values of the spin J of fissile nuclei undergoing
spontaneous or low-energy induced fission (these
values do not exceed a few units, being much less
than the mean spins J̄1 and J̄2).

This conclusion is at odds with another impor-
tant result that was obtained, within the quantum-
mechanical theory of binary nuclear fission [1], from
an analysis of the angular distributions of fragments
2003 MAIK “Nauka/Interperiodica”
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originating from the fission of polarized nuclei. These
distributions depend on the solid angle Ω = (θ, ϕ)
determining, in the laboratory frame, the direction of
the radius vector R of the relative motion of fission
fragments, R = R1 − R2, where R1 and R2 are the
coordinates of the centers of mass of, respectively, the
first and the second fragment. The A. Bohr formula
(see [4]) was successfully used in describing these
angular distributions for the binary fission of polarized
nuclei [4] and in describing the coefficient of P-even
and P-odd asymmetry in the angular distributions of
fission fragments [5–8]. It was shown in [1] that, for
this formula to be approximately valid, it is neces-
sary that fission fragments have coherently coupled
relative orbital angular momenta l lying in a rather
wide range 0 ≤ l ≤ lm; that is, the maximum possible
value lm of the relative orbital angular momentum
must be quite large. Therefore, the mean value l̄ is
also large; if l̄ is much greater than the spin J of a
fissile nucleus, formula (1) then leads to the relation
l̄ ≈ F̄ = |J1 + J2| > J̄1, J̄2, whence it follows that the
spins J̄1 and J̄2 are predominantly parallel to each
other, but this contradicts the results presented in [3].

The upper limit l0m on lm can be deduced from
the law of conservation of the fissile-nucleus spin
[see Eq. (1)]: l0m = J1m + J2m + J . In order to assess
the maximum values Jim of the fragment spins, we
will make make use of the relation Jim = (Jin)m +
(Jiγ)m + (Jif )m, which follows from the law of con-
servation of the fragment spin. If we assume that the
values of the maximum possible spin carried away by
photons [(Jiγ)m] differ by a few units from the mean
value J̄iγ obtained in [2] for this spin, consider that
the maximum value of the total spin carried away
by neutrons [(Jin)m] is about a few units, and use
values of about a few units for the fissile-nucleus spin
J and for the maximum spins (Jif )m of final fission
fragments, we can derive an estimate of the upper
limit l0m on lm: l0m ≈ 25. It follows that the possible
values of the relative orbital angular momenta l of
fission fragments are constrained by the condition
l ≤ lm < 25.

With the aid of the methods proposed in [9, 10],
a quantum-mechanical theory of the nuclear-fission
process was developed in [1] by introducing the con-
cepts of fission phases and the amplitudes of partial-
wave fission widths and by relying on the adiabatic
approximation in describing the asymptotic region of
a fissile system, the idea of A. Bohr [4] that transition
fission states formed at the saddle point of the defor-
mation potential of a fissile nucleus play a crucial role
in the fission process being taken into account in that
PH
theory. Concurrently, the concept of angular distribu-
tions of fission fragments in the internal coordinate
frame of a fissile nucleus was also introduced in [1].

The objective of the present study is to analyze,
within the approaches proposed in [1], the angu-
lar distributions of fragments originating from the
low-energy photofission of even–even nuclei into two
fragments that is induced by dipole and quadrupole
photons (the angular distributions for this case have
already been investigated experimentally) and the an-
gular distributions for the as-yet-unexplored case of
the binary fission of J > 1/2 odd and odd–odd nuclei
capable of undergoing spontaneous fission that are
polarized by a strong magnetic field at ultralow tem-
peratures, these analyses being aimed at deducing
information about the values of the relative orbital
angular momenta and spins of fission fragments.

2. ANGULAR DISTRIBUTIONS
OF FRAGMENTS ORIGINATING
FROM THE BINARY FISSION

OF POLARIZED NUCLEI

Since the nuclear-fission process induced by spe-
cific particle species (n, α, γ, ...) proceeds through the
formation of a compound nucleus [4] having a spin
J and a spin projection M onto the z axis in the
laboratory frame (this axis is chosen to be aligned
with the incident-beam axis), the differential cross
section for the emission of fragments from the binary
fission of nuclei can be represented in the form

σf (θ) ≡ dσf (Ω)
dΩ

(2)

=
∑
J

J∑
M=−J

σ (JM)
J∑

K=0

Γf (JK)
Γ (J)

T JMK (θ),

where σ (JM ) is the cross section for the formation
of a compound nucleus, Γf (JK) is the partial-wave
decay width of this nucleus with respect to the chan-
nel characterized by a specific value of the projection
K of the spin J of the axisymmetric compound nu-
cleus onto the z′ axis of the internal coordinate frame,
and Γ (J) is the total decay width of the compound
nucleus.

In the K channel, the angular distribution
T JMK (θ) of fission fragments that is normalized to
unity is usually calculated on the basis of the A. Bohr
formula [4]; that is,

T JMK (θ) =
2J + 1

8π
(3)

×
[∣∣DJ

MK (ω)
∣∣2 +

∣∣DJ
M,−K (ω)

∣∣2]
β=θ

,
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where DJ
MK (ω) is a generalized spherical harmonic

that depends on the Euler angles α, β, γ ≡ ω char-
acterizing the orientation of the axes of the internal
coordinate frame with respect to the axes of the labo-
ratory frame. In applying this formula, it is considered
that

∣∣DJ
MK (ω)

∣∣2 is independent of the angles α and
γ. Formula (3) is based on the qualitative physical as-
sumption [4] according to which fission fragments are
emitted only along or against the direction of the sym-
metry axis (z′ axis) of the fissile nucleus being con-
sidered. This means that, in the internal coordinate
frame, the angular distribution of fission fragments
has a delta-function-like character of the form δ(ξ′ ∓
1), where ξ′ = cos θ′, θ′ being the angle between the
vector R and the symmetry axis (z′ axis) of the fissile
nucleus. Taking into account the azimuthal symmetry
of the angular distribution of fission fragments, going
over from the argument θ′ to the argument ξ′ in the
spherical harmonic Yl0(θ′), redenoting the resulting
function by the symbol Yl0(ξ′) as before, and using
the completeness of the set of functions

√
2πYl0(ξ′)

in the space of ξ′ (−1 ≤ ξ′ ≤ 1), we can recast the
aforementioned delta functions into the form

δ(ξ′ ∓ 1) =
lm∑
l=0

2πYl0(ξ′)Yl0(±1) (4)

=
lm∑
l=0

√
(2l + 1)πYl0(ξ′)Pl(±1),

where Pl(ξ′) is a Legendre polynomial [Pl(+1) = 1,
Pl(−1) = (−1)l] and the quantity lm is considered in
the limit lm → ∞. Formula (4) reflects the quantum-
mechanical uncertainty relation between the operator
of the square of the orbital angular momentum of a
particle, l2, and the square of the angle θ′, which char-
acterizes the direction of the radius vector R of this
particle. From this relation, it follows that the angle
θ′ can be specified exactly only if the orbital angular
momentum l of the particle is absolutely uncertain
(0 ≤ l ≤ ∞).

Since only finite values of the spins J1 and J2 and
of the relative orbital angular momentum l of fission
fragments may appear in the nuclear-fission process,
formula (3) is only approximate. At the same time,
an analysis of the angular distributions of fragments
originating from the fission of polarized nuclei [4] and
an analysis of the coefficients of P-even and P-odd
asymmetries in the angular distributions of fission
fragments [5–8] on the basis of expression (3) re-
veal that this expression reflects actual properties of
the nuclear-fission process. This means that angular
distributions of fission fragments do not vanish only
at values of the angle θ′ that are close to 0 and π.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
Such a situation can be simulated mathematically [1]
by describing the distribution of θ′ by a formula of the
type in (4) under the condition that the quantity lm in
it takes finite, albeit rather large, values. In that case,
nonzero values of the angle θ′ lie within cones whose
axes correspond to the values of θ′ = 0 and θ′ = π and
whose opening angle at a cone apex is ∆θ′ ≈ 1/lm.

The investigation performed in [1] by using the
adiabatic approximation in the asymptotic region of
a fissile system showed that the generalization of the
A. Bohr formula (3) to this case can be represented as

T̄ JMK (θ) =
2J + 1
16π2

(5)

×
∫
dω
[∣∣DJ

MK (ω)
∣∣2 +

∣∣DJ
M,−K (ω)

∣∣2]F 2
lm(θ′),

where the function F 2
lm

(θ′) is a smeared delta function
of the form in (4) with an amplitude; that is,

Flm(θ′) (6)

= b(lm)

{
lm∑
l=0

Yl0(ξ′)Yl0(1)
[
1 + ππ1π2(−1)l

]}
.

In expression (6), the factor [1 + ππ1π2(−1)l], where
π, π1, and π2 are the parities of, respectively, the
parent nucleus, the first fission fragment, and the sec-
ond fission fragment, takes into account the parity-
conservation law, while the quantity b(lm) is deter-
mined from the condition requiring that the angular
distribution in (5) be normalized to unity. As a result,
we obtain

b(lm) =

{
lm∑
l=0

(2l + 1)
4π

[
1 + ππ1π2(−1)l

]2}−1/2

.

(7)

Formula (5) reduces to formula (3) for lm → ∞.
But at finite and rather small values of lm, the an-
gular distribution of fission fragments in (5) differs
significantly from the angular distribution of fission
fragments in (3).

With an eye to applying the above formulas to
a more general case, we will analyze the angular
distributions of fission fragments in (3) and (5) at
arbitrary values of J , M , and K. By employing the
definition of a complex-conjugate generalized spheri-
cal harmonic [4],

DJ∗
MK (ω) = (−1)M−K DJ

−M,−K (ω) , (8)

and the multiplication theorem forD functions,

DJ1
M1K1

(ω)DJ2
M2K2

(ω) (9)

=
J=J1+J2∑
J=|J1−J2|

CJM1+M2
J1J2M1M2

CJK1+K2
J1J2K1K2

DJ
M1+M2,K1+K2

(ω),
3
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we can recast the A. Bohr formula (3) for the angular
distribution of fission fragments into the form

T JMK (θ) =
∑
L

B0
JMKLPL (ξ), (10)

where

B0
JMKL =

(
1 + (−1)L

)
(11)

× 2J + 1
8π

CL0
JJM−MC

L0
JJK−K (−1)M+K

and L takes only even values in the range from 0
to 2J . We note that, by virtue of the properties of
Clebsch–Gordan coefficients, the quantityB0

JMKL is
equal to 1/4π at L = 0.

Let us now reduce the normalized (to unity) an-
gular distribution of fission fragments in (5) to the
form of an expansion in Legendre polynomials that is
analogous to the expansion in (10). We introduce the
notation

AJM,±K
(
ω,Ω′) ≡ DJ

M,±K (ω)Flm(θ′) (12)

and represent the angular distribution (5) as

T̄ JMK (Ω) =
2J + 1
16π2

(13)

×
∫
dω
[∣∣AJM,K

(
ω,Ω′)∣∣2 +

∣∣AJM,−K
(
ω,Ω′)∣∣2].

Making use of the Wigner transformation [4] for go-
ing over from the internal coordinate frame to the
laboratory frame,

Ylk(Ω′) =
∑
m

Dl∗
mk(ω)Ylm(Ω), (14)

we can recast the function Flm(θ′) (6) into the form

Flm(θ′) = b(lm) (15)

×
lm∑
l=0

∑
m

Dl∗
m0(ω)Ylm(Ω)Yl0(1)[1 + ππ1π2(−1)l].

Taking into account relation (15) and the represen-
tation of a complex-conjugate D function in the
form (8), we can rewrite expression (12) as

AJM,±K
(
ω,Ω′) = ÃJM,±K (ω,Ω) (16)

= b(lm)
lm∑
l=0

∑
m

j=J+l∑
j=|J−l|

CjM−m
JlM−mC

j±K
Jl±K0

×Dj
M−m,±K(ω)(−1)mYlm(Ω)Yl0(1)

× [1 + ππ1π2(−1)l].

Substituting expression (16) into (13) and perform-
ing integration with respect to the Euler angles with
P

allowance for the orthogonality property of D func-
tions [4], we obtain∫

dω|ÃJM,±K (ω,Ω) |2 = |b(lm)|2 (17)

×
lm∑
l=0

lm∑
l′=0

∑
jm

CjM−m
Jl′M−mC

j±K
Jl′±K0C

jM−m
JlM−m

× Cj±KJl±K0

8π2

2j + 1

√
2l + 1

4π

√
2l′ + 1

4π
Y ∗
l′m(Ω)

× Ylm(Ω)[1 + ππ1π2(−1)l][1 + ππ1π2(−1)l
′
].

By using the multiplication theorem for spherical
harmonics [4],

Ylm (Ω)Y ∗
l′m (Ω) =

(−1)m

4π
×
∑
L

√
(2l + 1) (2l′ + 1)CL0

ll′00C
L0
ll′m−mPL (ξ),

we can now recast expression (17) into the form∫
dω|ÃJM,±K (ω,Ω) |2 = |b(lm)|2 (18)

×
lm∑
l=0

lm∑
l′=0

∑
jmL

CjM−m
Jl′M−mC

j±K
Jl′±K0C

jM−m
JlM−mC

j±K
Jl±K0

× CL0
ll′00C

L0
ll′m−mPL (ξ)

(2l + 1) (2l′ + 1)
2 (2j + 1)

× [1 + ππ1π2(−1)l][1 + ππ1π2(−1)l
′
].

This formula can be significantly simplified by per-
forming summation over the projection m of the rel-
ative orbital angular momentum l with the aid of the
formula that makes it possible to evaluate sums of the
products of Clebsch–Gordan coefficients [11],∑

αβδ

CcγabαβC
eε
dbδβC

dδ
afαϕ

= (−1)b+c+d+f
√

(2c+ 1) (2d+ 1)

× Ceεcfγϕ


a b c

e f d


 ,

where


a b c

e f d


 is a Wigner 6j coefficient, and the

property of symmetry of Clebsch–Gordan coefficients
under the permutation of angular momenta,

CJMJ1J2M1M2
= (−1)J1−M1

√
2J + 1
2J2 + 1

CJ2M2
J1JM1−M

= (−1)J2+M2

√
2J + 1
2J1 + 1

CJ1M1
J2J−M2M

.
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Table 1. Values of the coefficients αJK , βJK , and γJK for the A. Bohr angular distribution (10) and for the angular
distribution (20) in the problem of the low-energy photofission of nuclei

lm α10 α11 α20 α21 α22 β10 β11 β20 β21 β22 γ20 γ21 γ22

∞ 0 0.75 0 1.25 0 0.75 −0.375 0 −0.625 0.625 0.9375 −0.625 0.15625

30 0.024 0.74 0.060 1.200 0.030 0.714 −0.357 −0.022 −0.580 0.592 0.854 −0.569 0.142

20 0.04 0.73 0.087 1.163 0.044 0.697 −0.349 −0.033 −0.560 0.576 0.815 −0.543 0.136

19 0.04 0.73 0.091 1.159 0.046 0.695 −0.348 −0.034 −0.557 0.574 0.809 −0.539 0.135

10 0.07 0.72 0.162 1.088 0.082 0.652 −0.326 −0.061 −0.503 0.533 0.709 −0.473 0.118

9 0.07 0.72 0.177 1.072 0.089 0.643 −0.322 −0.066 −0.492 0.525 0.688 −0.459 0.115

5 0.12 0.69 0.283 0.965 0.139 0.577 −0.289 −0.105 −0.411 0.463 0.538 −0.358 0.090

4 0.14 0.68 0.332 0.915 0.169 0.545 −0.272 −0.122 −0.372 0.434 0.468 −0.312 0.078
Expression (18) then assumes the form∫
dω|ÃJM,±K (ω,Ω) |2 = |b(lm)|2 (19)

×
lm∑
l=0

lm∑
l′=0

∑
jL

Cj±KJl′±K0C
j±K
Jl±K0C

L0
ll′00C

JM
JLM0

×


 l j J

J L l′


 (2l + 1) (2l′ + 1)

2

×
√

2L+ 1
2J + 1

(−1)j+J+L PL(ξ)

× [1 + ππ1π2(−1)l][1 + ππ1π2(−1)l
′
].

Since l and l
′
have the same parity, it follows from

the properties of the Clebsch–Gordan coefficient
CL0
ll′00 that L can assume only the even values of L =

0, 2, . . . , 2J . Upon the substitution of (19) into (13),
the angular distribution T̄ JMK (Ω) of fission frag-
ments, which is normalized to unity, can be reduced
to a form that is analogous to (10). Specifically, we
have

T̄ JMK(θ) =
∑
L

BJMKLPL(ξ), (20)

where

BJMKL =
2J + 1
16π2

|b(lm)|2
lm∑
l=0

lm∑
l′=0

∑
jL

CjKJl′K0 (21)

× CjKJlK0C
L0
ll′00C

JM
JLM0


 l j J

J L l′


 (2l + 1)
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× (2l′ + 1)

√
2L+ 1
2J + 1

(−1)j+J

× [1 + ππ1π2(−1)l][1 + ππ1π2(−1)l
′
].

At L = 0, the quantity BJMKL is equal to 1/4π.

3. ANGULAR DISTRIBUTIONS
OF FRAGMENTS ORIGINATING

FROM THE LOW-ENERGY PHOTOFISSION
OF NUCLEI

Let us consider the case of the low-energy photo-
fission of an even–even target nucleus in the ground
state, its total angular momentum being I = 0. In or-
der to describe the differential photofission cross sec-
tion as a function of the angle θ between the directions
of fission-fragment emission, which are defined with
respect to the axis of the incident-photon beam, one
can employ formula (2) atM = ±1, since the photon
helicity is ±1, and set the value of the compound-
nucleus spin to J = 1 in the case of dipole pho-
toabsorption and to J = 2 in the case of quadrupole
photoabsorption.

Since the angular distribution of fission fragments
that is specified by Eqs. (3) and (10) and the angular
distribution that is specified by Eqs. (5) and (20)
are invariant under the substitution of −M for M ,
formula (2) can be represented in the form

σf (θ) = a0 + b0 sin2 θ + c0 sin2 (2θ) , (22)

where the coefficients a0, b0, and c0 are defined as

a0 =
∑
JK

αJKP (JK); b0 =
∑
JK

βJKP (JK);

(23)
3
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Table 2.Values of the coefficientsG20, a, and b for the A. Bohr angular distribution (10) and the angular distribution (20)
in the problem of the low-energy fission of nuclei atG22 = 0 and G22 = 1

lm
G22 = 0 G22 = 1

a G20 a G20

∞ 0 0.73 ± 0.04 0 1.17 ± 0.07

30 0.096 ± 0.002 0.82 ± 0.04 0.098 ± 0.003 1.35 ± 0.08

20 0.15 ± 0.006 0.87 ± 0.05 0.15 ± 0.005 1.43 ± 0.08

10 0.29 ± 0.013 1.06 ± 0.06 0.29 ± 0.014 1.79 ± 0.11

Experiment [14] 0.09 ± 0.024 0.09 ± 0.024
c0 =
∑
JK

γJKP (JK),

with

P (JK) =
Γf (JK)

Γ (J)

+1∑
M=−1

σ (JM ), (24)

while the coefficients αJK , βJK , and γJK are super-
positions of the coefficients BJ1KL for L = 0, 1, 2.

It can be seen from Table 1 that, in the case of
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Fig. 1. Asymmetry W (θ) in the angular distribution
of fragments originating from 238U photofission induced
by bremsstrahlung photons whose endpoint energy is
5.2MeV, this asymmetry being definedwith respect to the
photon-beam axis. The curves depict theoretical results
for various values of the maximum relative orbital angular
momentum of fission fragments: (solid curve) lm = ∞
(A. Bohr formula), (dashed curve) lm = 20, and (solid
curve labeled with a diamond) lm = 10. Open circles
represent experimental data reported in [14].
PH
rather small values of lm, the coefficients αJK , βJK ,
and γJK change significantly upon going over from
the A. Bohr formula (10) to formula (20).

Our further analysis of low-energy photofission
will be performed for the fission of 238U nuclei that is
induced by bremsstrahlung from 5.2-MeV electrons
immediately below the fission threshold. We will in-
vestigate the quantity

W (θ) =
σf (θ)
σf (90◦)

, (25)

which characterizes the asymmetry in the angular
distribution of fission fragments with respect to the
photon-beam axis. FromEqs. (25) and (22), it follows
that the asymmetryW (θ) is given by expression (22),
where the coefficients a0, b0, and c0 must be replaced

by the coefficients a =
a0

a0 + b0
, b =

b0
a0 + b0

, and c =
c0

a0 + b0
, which satisfy the relation a+ b = 1.

The experimental values of the coefficients a and c
are aexpt = 0.04 ± 0.04 and cexpt = 1.02 ± 0.07 [12],
aexpt = 0.10 ± 0.035 and cexpt = 0.91 ± 0.08 [13],
aexpt = 0.09 ± 0.024 and cexpt = 0.907 ± 0.045 [14],
and aexpt = 0.08+0.06

−0.03 and cexpt = 0.97 ± 0.10 [15],
whence we can see that the values cexpt change
only slightly from measurements of one experimental
group to measurements of another group, but that
the values aexpt change more sharply, remaining,
however, much smaller than bexpt and cexpt. As can
be seen from Table 1, the coefficients αJK are positive
for all positive values of lm; therefore, the smallness of
the coefficient a may only be due to the smallness of
the quantities P (11) and P (21) appearing as factors
in front of the coefficients α11 and α21, which are large
in magnitude. Retaining, in (23), only theK = 0 and
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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K = 2 channels, we can then find for the coefficients
a, b, and c that

a =
α10 + α20G20 + α22G22

d
; (26)

b =
β10 + β20G20 + β22G22

d
;

c =
γ20G20 + γ22G22

d
;

d = (α10 + β10) + (α20 + β20)G20

+ (α22 + β22)G22,

where GJK = P (JK)/P (10).

Let us first consider the situation where, in accor-
dance with the concepts of low-energy photofission
that were developed in [4], only the Kπ = 0+ and
Kπ = 0− transition fission states play an important
role in subthreshold photofission. In this case, one
can eliminate theK = 2 channels in formulas (26) by
employing the value ofG22 = 0 for the coefficientG22,
whereupon the coefficients a, b, and c in (26) appear to
be dependent on only one unknown parameter, G20.
By using the experimental values of the coefficient c,
cexpt, we can determine the coefficient G20 for various
values of lm. With the aid of these values of G20, we
can calculate the coefficients a and b by formulas (26).
As can be seen from Table 2, where we present the
results obtained by processing data from [14] and
where the accuracy in determining the coefficient aexpt

was the highest, the values found for the coefficients
G20 grow with decreasing lm, from 0.73 ± 0.04 at
lm = ∞ to 1.06 ± 0.06 at lm = 10. Concurrently, the
coefficient a increases (the coefficient b decreases)
from a = 0 (b = 1) at lm = ∞ to a = 0.29 (b = 0.71)
at lm = 10. A comparison of the values obtained for
the coefficient a with its experimental counterpart,
aexpt = 0.09 ± 0.024, makes it possible to draw the
conclusion that an lm value that is consistent with
the experimental angular distribution of photofission
fragments at a level of two standard deviations must
lie in the range 20 < lm < 40. We note that the
inclusion of the K = 2 channel does not change the
above conclusions. Indeed, it can be seen fromTable 2
that, upon going over (for the coefficient G22) from
the value of G22 = 0 to the value of G22 = 1, the
coefficients G20 change sizably, but the coefficients a
and b remain virtually unchanged for all values of lm.

As can be seen from Fig. 1, where the val-
ues calculated at lm = 10, 20,∞ for the asymme-
try W (θ) (25) in the angular distribution of frag-
ments originating from 238U photofission induced
by bremsstrahlung photons whose spectrum has an
endpoint energy of 5.2 MeV, this asymmetry being
defined with respect to the photon-beam axis, are
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
displayed along with the analogous asymmetry ob-
tained experimentally in [14], theA. Bohr formula (10)
corresponding to lm = ∞ is unable to reproduce
the experimental asymmetry in the vicinity of the
angle θ = 0.

If we compare the interval 20 < lm < 40, which
was obtained for lm values, with the estimate l0m ≈ 25,
which was derived above for the upper limit on lm
values, we can arrive at the conclusion that the in-
terval of the possible values of lm can be significantly
constrained: 20 < lm < 25. Since the values obtained
for lm are much greater than the maximum values of
the fragment spins, (J1)m and (J2)m, it follows from
relation (1) that the fragment spins J1 and J2 are pre-
dominantly parallel to each other and are antiparallel
to the relative orbital angular momentum l of the frag-
ments. Since the relative orbital angular momentum
l is orthogonal to the direction of fragment emission
and since, at high values of lm, the emission of frag-
ments occurs in the direction approximately parallel
or antiparallel to the symmetry axis of the nucleus
undergoing fission, the fission-fragment spins J1 and
J2 are also orthogonal, to a high degree of precision,
to the symmetry axis of this nucleus. This conclusion
is confirmed by experimental results reported in [2].

4. ANGULAR DISTRIBUTIONS
OF FRAGMENTS ORIGINATING

FROM THE SPONTANEOUS FISSION
OF POLARIZED NUCLEI

Let us consider the binary fission of spontaneously
fissile odd or odd–odd nuclei whose total angular mo-
mentum J is greater than 1/2. By applying a strong
magnetic field at ultralow temperatures (T ≈ 1 mK),
the spin of the nucleus undergoing fission, J, can
be fully oriented along or against the direction of
the magnetic-induction vector B (which provides a
natural choice for the z axis in the laboratory frame),
depending on the sign of the gyromagnetic ratio for
this nucleus. In order to describe the angular distri-
butions of fission fragments for such nuclei, we can
use formula (3) or (5) at M = K = J , since, in the
ground state of a deformed axisymmetric nucleus, the
projection K of the spin J of this nucleus onto its
symmetry axis coincides with the spin itself:K = J .

We can now estimate the degree to which the
angular distributions T̄ JJJ (θ) (20) of fission fragments
originating from the spontaneous binary fission of
the ground states of polarized odd and odd–odd nu-
clei whose spin takes values in the region J > 1/2
and whose spin projections are M = K = J deviate
from the analogous angular distributions given by the
A. Bohr formula (10) at the same values ofK andM .

As can be seen from Figs. 2 and 3, the angular
distribution T̄ JJJ (θ) (20) and the angular distribution
3
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Fig. 2.Angular distributions T̄ J
JJ (θ) (J = 3/2, 1) of fragments originating from the fission of polarized nuclei for various values

of the maximum relative orbital angular momentum of fission fragments: (solid curve) lm = ∞ (A. Bohr formula), (dashed
curve) lm = 20, (solid curve labeled with a diamond) lm = 10, and (solid curve labeled with a circle) lm = 5.
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Fig. 3. Angular distributions T̄ J
JJ (θ) of fragments originating from the fission of polarized nuclei for various values of the

maximum relative orbital angular momentum of fission fragments: (solid curve) lm = ∞ (A. Bohr formula), (dashed curve)
lm = 20, (solid curve labeled with a diamond) lm = 10, and (solid curve labeled with a circle) lm = 5.
T JJJ (θ) (10) are both symmetric with respect to an
angle of θ = 90◦ and take maximum values at θ = 0◦
(180◦). With increasing spin J of the parent nucleus,
the ratios T JJJ (0◦)

/
T JJJ (90◦) and T̄ JJJ (0◦)

/
T̄ JJJ (90◦)

grow rather fast, which makes it possible to use the
angular distributions in (10) and (20) to determine
the value of the spin J . We note that the angular
distributions in (20) and (10) for polarized nuclei are
qualitatively different from the angular distributions of
protons emitted by polarized odd–odd nuclei capable
PH
of undergoing protonic decay [9], the latter having
maxima at an angle of θ = 90◦. The deviations of
the distributions in (20) from the A. Bohr distribu-
tions in (10) are the most pronounced at angles of
θ = 0◦(180◦) and 90◦, growing in magnitude with
increasing spin J of the parent nucleus and with
decreasing maximum value lm of the relative orbital
angular momentum of fission fragments. At rather
high values of lm, the angular distributions T̄ JJJ (θ)
of fission fragments in (20) change only slightly upon
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Table 3.Deviation from the A. Bohr angular distribution in the problem of the spontaneous fission of polarized nuclei

lm

T̄ (0◦) − T (0◦)
T (0◦)

, %
T̄ (90◦) − T (90◦)

T (90◦)
, %

T (90◦)
T (0◦)

, %

J = 1 J = 3/2 J = 2 J = 3 J = 1 J = 3/2 J = 2 J = 3 J = 1 J = 3/2 J = 2 J = 3

20 −2.33 −3.49 −4.36 −5.72 2.34 6.96 14.83 48.62 0.5 0.25 0.125 0.03

19 −2.45 −3.66 −4.57 −6.00 2.45 7.31 15.56 51.00 0.5 0.25 0.125 0.03

10 −4.35 −6.52 −8.15 −10.69 4.32 13.04 27.70 90.92 0.5 0.25 0.125 0.03

9 −4.77 −7.14 −8.90 −11.70 4.78 14.27 30.36 99.70 0.5 0.25 0.125 0.03

5 −7.70 −11.54 −14.41 −18.85 7.69 23.07 49.10 161 0.5 0.25 0.125 0.03

4 −9.10 −13.63 −17.02 −22.24 9.10 27.27 58.02 191 0.5 0.25 0.125 0.03
going over from even values of l to their odd neighbors
(that is, those that differ from their even counterparts
by unity), as is illustrated in Table 3 at angles of 0◦
and 90◦. Therefore, the angular distributions in (20),
as well as the A. Bohr angular distributions in (10),
are virtually independent of the parities of the parent
nucleus and fission fragments. It can be seen from
Table 3 that the relative deviations of the angular dis-
tributions in (20) from those in (10) at θ = 0◦ (180◦)
and 90◦ grow with decreasing lm, reaching 20% for
θ = 0◦(180◦) and 191% for θ = 90◦ at lm = 4 and
J = 3. The emergence of such large deviations of
the angular distributions in (20) from the angular
distributions in (10) at low values of lm indicates that
experiments aimed at studying the angular distribu-
tions of fragments originating from the spontaneous
fission of polarized nuclei would make it possible to
determine the lower limit on lm.

5. CONCLUSION

From the analysis of angular distributions of fis-
sion fragments that was performed here for the case
where parent nuclei are polarized, it was deduced that
the maximum relative orbital angular momentum of
fission fragments produced under such conditions is
rather high, lm > 20. It follows that the deviations
of the angular distributions of fission fragments from
that predicted by the A. Bohr formula (3) must be
quite modest, so that this formula appears to be ap-
plicable in many cases.

At the same time, the fact that values obtained for
the maximum relative orbital angular momentum lm
of fission fragments exceed 20 indicates that it is nec-
essary to consider a specific physical mechanism that,
at the stage of the scission of a fissile nucleus into
fission fragments and the stage of their subsequent
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
interaction via strongly nonspherical Coulomb and
nuclear potentials, ensures the emergence of such
high values of lm and, hence, of the total fission-
fragment spin F .

It would be of great interest to perform experi-
ments devoted to studying angular distributions of
fission fragments originating from the fission of odd
nuclei capable of undergoing spontaneous fission that
are polarized in a strong magnetic field at ultralow
temperatures. We note that similar experiments that
studied the angular distributions of alpha particles
emitted by nuclei undergoing alpha decay that were
polarized in strong magnetic fields at ultralow tem-
peratures were successfully performed in [16, 17].
Because of small branching fractions of the fission
process with respect to alpha decay or ε capture for
known odd and odd–odd spontaneously fissile nuclei,
it is necessary to overcome serious difficulties in order
to record angular distributions for such nuclei with a
high statistical accuracy. Nonetheless, such experi-
ments are quite promising from the point of view of
their theoretical treatment, since, in contrast to what
occurs in the case of induced fission, one transition
fission state characterized by only one value of K
manifests itself in such experiments.

It also seems important to continue investigating
the angular distributions of photofission fragments
for various nuclei and various endpoint energies of
incident photons.

In addition, it would be of interest to obtain an
experimental corroboration of the conclusion drawn
here that the spins of fragments originating from the
binary fission of nuclei are predominantly parallel.
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Abstract—A simple model is formulated that makes it possible to describe the configuration and defor-
mation splittings of a giant dipole resonance in light nonmagic nuclei. The gross structure of the cross
sections for photoabsorption on 12C, 24Mg, and 28Si nuclei is described on the basis of this model.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A giant dipole resonance in light nonmagic nuclei
has a number of special features: (i) a very large
width (up to 15 MeV in 23Na [1]), (ii) a manifest
intermediate structure that varies from one nucleus
to another strongly, and (iii) a rather complicated
gross structure. In order to explain these features, it
is sufficient to recall that, in contrast to what we have
in heavy nuclei, shell effects in light nuclei are much
stronger than collective effects; as a result, the os-
cillator strengths of single-particle dipole transitions
are not concentrated predominantly in one or two (if
the nucleus being considered is deformed) collective
states.
In the present study, we consider a number of

problems connected with describing the gross struc-
ture of a giant dipole resonance in light nonmagic
nuclei. This structure is formed, first, by the defor-
mation splitting of a giant dipole resonance; second,
by its configuration splitting, which is due to the fact
that, in light nuclei, the energies of single-particleE1
transitions between principal (oscillator) shells (from
a filled inner shell to the valence shell and from the
valence shell to an unfilled outer shell) strongly differ
from one another; and, finally, by the isospin splitting
of a giant dipole resonance.
Each of the above types of giant-resonance split-

ting has received quite an adequate study in the
literature. For example, a theoretical analysis of the
spectrum of various isospinE1 modes was performed
as far back as 1965–1968 in [2–5], where simple
theoretical estimates were obtained for the isospin
splitting of a giant dipole resonance. Ten years earlier,
Danos [6] and Okamoto [7] successfully explained
the deformation splitting of a giant dipole resonance
within a hydrodynamic model. The configuration
splitting of a giant resonance in light nonmagic nuclei
1063-7788/03/6607-1229$24.00 c©
was first considered in 1964 by Neudatchin and
Shevchenko [8] and was then investigated in detail
by the authors of [9–11]. Nonetheless, the problem
of theoretically describing the gross structure of a
giant resonance in light nonmagic nuclei has yet to
be solved conclusively.
In the present study, we make an attempt at de-

scribing the gross structure of a giant dipole reso-
nance within the semimicroscopic model of vibrations
that was proposed in [12]. For the sake of simplicity,
we take into account only the deformation and the
configuration splitting of a giant dipole resonance,
which are closely interrelated in light nonmagic nuclei
(see, for example, [13]). ForN �= Z nuclei, the isospin
splitting of a giant dipole resonance can addition-
ally be taken into account by using recipes proposed
in [2–5].

2. CONFIGURATION SPLITTING OF
SINGLE-PARTICLE E1 TRANSITIONS IN

LIGHT NUCLEI

As was indicated above, principal (oscillator)
shells in light nuclei are separated by unequal energy
gaps. This is illustrated in Fig. 1, which displays
data on the energies of the knockout of s-, p- and
d-wave protons from the first three oscillator shells
corresponding to the excitation of N = 0, 1, and 2
oscillator quanta [9].
There is a wide scatter of the experimental val-

ues of the energies EN l in the figure. This is due
not only to errors in the relevant measurements but
also to the effect of spin–orbit splitting of single-
particle levels (for l �= 0) and (in unfilled shells) the
effect of nucleon–nucleon correlations on these lev-
els. It can be seen from the figure that, for nuclei
heavier than oxygen, the spacing between the “0s”
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Energies of the knockout of s-, p-, and d-wave protons from the first three oscillator shells [9].
and “1p” curves remains virtually unchanged as the
charge number Z is increased. For nuclei lighter than
oxygen—that is, in the region where the 1p shell is not
closed—these curves somewhat approach each other,
which may be attributed to the effect of residual forces
(for example, pairing), which shift the energy E1p

upward. We are interested here in the mean spacing
between the 0s and 1p single-particle oscillator shells.
This quantity is not expected to depend on proton
pairing. In estimating the difference E0s − E1p over
the 4He → 16O segment, where the filling of the
1p shell occurs, it is therefore necessary to take into
account only data on odd-Z nuclei (see Fig. 1). After
this correction, the quantity E0s − E1p appears to be
approximately constant for any values of Z greater
than that for helium. This means that, for a first
approximation, the mean energy of single-particle
transitions from the filled 0s shell to the 1p shell is
PH
independent of the number of nucleons occurring in
this shell and in higher lying shells.
Analyzing experimental data on the energies E1p,

E2d, and E2s and considering that the 2s-wave pro-
tons shift the centroid of the 2d2s shell only slightly,
we can arrive at the conclusion, in a similar way, that
the mean energy of single-particle transitions from
the filled 1p shell to the 2d2s shell is also independent
of the number of protons occurring in states that lie
higher than the 1p shell.
In all probability, this property is common to all

closed shells. It implies a significant spatial separa-
tion of nucleons occurring in different principal shells
of a nucleus. Indeed, it is clear that, if nucleons be-
longing to outer shells are situated by and large far-
ther from the center of the nucleus being consid-
ered than nucleons belonging to inner shells, then
the energy of a nucleon transition from a filled inner
shell to the next higher lying shell will be determined
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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predominantly by the mean field generated by “inter-
nal” (core) nucleons. A spatial separation of shells
is directly corroborated by fluctuations of the radial
dependence of the nuclear density ρ(r) (see, for ex-
ample, [14]).
Let us now estimate the mean spacings between

the 0s, 1p, and 2d2s shells. This can be done by
two methods: either with the aid of experimental data
presented in Fig. 1 or with the aid of the formula [15]

�ω
(0)
core ≈ 41A−1/3

core MeV, (1)

where ω
(0)
core is the frequency parameter of the os-

cillator potential simulating the mean field that is
generated by Acore core nucleons (Acore = 4 for the
0s → 1p single-particle transition, and Acore = 16 for
the 1p → 2d2s transition).
Using the approximating curves in Fig. 1, we find,

in the first case, that the 1p shell is separated by
approximately 22.5 MeV from the 0s shell and by
approximately 18.5 MeV from the 2d2s shell. In the
second case, we instead obtain 25.8 and 16.3 MeV,
respectively. It can easily be seen that the discrep-
ancy between the two types of estimates does not
exceed the uncertainty in the approximating curves
“0s” and “1p.” Indeed, perfect agreement between the
estimates can be attained if we draw the first curve
somewhat higher and the second curve somewhat
lower (there are sufficient grounds for doing this).
We now have all the required data at our dis-

posal for estimating the configuration splitting of
single-particle dipole transitions. In a nonmagic
nucleus, two types of single-particle E1 transitions
are possible: type-1 transitions proceed from the
valence shell of the nucleus to an empty outer
shell, while type-2 transitions proceed from the last
filled inner shell to the valence shell. The nuclear
mean field in which valence nucleons move can be
approximately described in terms of the oscillator
potential corresponding to the oscillator-quantum
energy of �ω(0) ≈ 41A−1/3 MeV, where A is the
mass number of the nucleus. Therefore, the mean
energy of type-1 transitions is �ω

(0)
1 ≈ �ω(0). On

the other hand, the mean energy of type-2 transi-
tions can be calculated by formula (1), which yields

�ω
(0)
2 ≈ �ω

(0)
core ≈ 41A−1/3

core MeV.
Thus, the ratio of the mean energies for two types

of single-particle E1 transitions in nonmagic nuclei
can be approximated by the expression

�ω
(0)
2

�ω
(0)
1

≈
(

A

Acore

)1/3

. (2)

From this formula, it can be seen that the greater
the contribution of valence nucleons to the total mass
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of the nucleus, the greater the configuration splitting.
In light nonmagic nuclei, there can occur a situation
where a major part of nucleons reside in the valence
shell, while, in heavy nuclei, the greater part of the
nuclear mass is always concentrated in filled inner
shells. It therefore comes as no surprise that the con-
figuration splitting of a giant dipole resonance man-
ifests itself primarily in light nonmagic nuclei. (This
statement can be illustrated by considering the exam-
ple of the 12C and 159Tb nuclei, for which the above

ratio of the mean transition energies, �ω
(0)
2 /�ω

(0)
1 ,

takes values of about 1.44 and 1.06, respectively.)

3. DESCRIPTION OF THE MODEL USED

In this section, we will first present fundamentals
of the semimicroscopic model of dipole vibrations that
was proposed in [12] and then show how it can be
generalized to take into account the configuration and
the deformation splitting of a giant dipole resonance.

3.1. Semimicroscopic Model of Dipole Vibrations

Basic properties of a nuclear dipole resonance can
be explained in terms of the interplay of single-particle
nucleon excitations and the isovector dipole field that
is generated by these excitations and which, for vibra-
tions along the x axis, is given by

F =
A∑
i=1

(2tzx)i =
∑
α>β

〈α|2tzx|β〉a+
α aβ + h.c., (3)

where a+
λ and aλ are the operators of, respectively,

creation and absorption of a nucleon in a single-
particle state |λ〉 and tz = ±1/2 is the isospin variable
for a nucleon.
The application of the dipole operatorF to the shell

ground state of a nucleus (physical vacuum |0〉) gen-
erates a superposition of particle–hole (1p1h) states;
that is,

F |0〉 =
∑
α>β

〈α|2tzx|β〉a+
α aβ |0〉. (4)

In the case of heavy and medium-mass spheri-
cal nuclei, the state F |0〉 is approximately an eigen-
state of the single-particle Hamiltonian H0, the cor-
responding excitation energy being

�ω(0) ≈ 41A−1/3 MeV, (5)

since the energy scatter of single-particle E1 tran-
sitions is much less than �ω(0). The excitation F |0〉
is formed by a great number of single-particle exci-
tations. In view of this, the operator F can be repre-
sented in the form

F = f (0)c(0)+ + f (0)∗c(0), (6)
3
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where c(0)+ and c(0) are the operators of creation
and annihilation of a vibrational quantum of energy
�ω(0), these operators approximately satisfying com-
mutation rules for bosons, and f (0) is the probability
amplitude for the production of such a quantum by the
dipole field F .

The amplitude f (0) can be estimated with the aid
of the classical sum rule

�ω(0)|f (0)|2 =
�

2

2M
A, (7)

or it can be calculated directly by using the relation

|f (0)|2 = 〈0|F+F |0〉 =
∑
αβ

|〈α|2tzx|β〉|2, (8)

whereM is the nucleon mass and where summation
is performed over filled (β) and free (α) single-particle
levels.
Single-particle dipole vibrations cannot be con-

sidered as normal vibrations (eigenstates) of a nu-
cleon system about the equilibrium position, since
they effectively interact with one another via the exci-
tation of the isovector single-particle potential. This
circumstance can be taken into account by supple-
menting the single-particle HamiltonianH0 with that
for dipole–dipole forces κ, F 2/2, whereupon the vi-
brational Hamiltonian assumes the form

H = �ω(0)c(0)+c(0) +
1
2

κF 2. (9)

By using the semiempirical Weizsäcker mass for-
mula, the coupling constant for dipole–dipole inter-
action can be expressed [12] in terms of the symmetry
potential V as

κ =
V

4A〈x2〉 , (10)

where 〈x2〉 ≈ R2/5 ≈ (1.2A1/3)2/5 fm2 is the mean-
square value of the coordinate x of intranuclear nu-
cleons.
With the aid of the linear canonical transformation

c+ = Xc(0)+ − Y c(0) (X2 − Y 2 = 1), (11)

the Hamiltonian in (9) can be reduced to the diagonal
form

H = �ωc+c + const, (12)

where

�ω =
√

(�ω(0))2 + 2κ�ω(0)|f (0)|2 (13)

is the energy of a normal mode of dipole vibrations.
From (5), (7), (10), and (13), we find at V ≈

130MeV that
�ω ≈ 80A−1/3 MeV. (14)
PH
This estimate of the energy of dipole vibrations is in
good agreement with the experimental values of the
giant-dipole-resonance energy for heavy nuclei.
In the representation of normal vibrations (eigen-

states), the dipole-moment operator F has the form

F = fc+ + f∗c, (15)

where f is the probability amplitude for the excitation
of normal vibrations. This amplitude is related to the
amplitude f (0) by the equation

�ω|f |2 = �ω(0)|f (0)|2, (16)

from which it follows that the canonical transforma-
tion (11) has no effect on the oscillator strength of
dipole transitions.

3.2. Inclusion of the Configuration Splitting
of a Giant Dipole Resonance

If there is a configuration splitting of E1 transi-
tions, the dipole operator F must be broken down into
two terms,

F = F1 + F2, (17)

where the first term

F1 =
∑
α<β

(1)
〈α|2tzx|β〉a+

α aβ + h.c. (18)

exhausts single-particle transitions between the va-
lence and outer shells, while the second term

F2 =
∑
α<β

(2)
〈α|2tzx|β〉a+

α aβ + h.c. (19)

takes into account transitions from a filled inner shell
to the valence shell and the transitions inverse to
these.
Following the same line of reasoning as in Sub-

section 3.1, we introduce the operators of creation

(c(0)+1 , c(0)+2 ) and annihilation (c(0)1 , c(0)2 ) of single-
particle quanta whose energies are (in MeV)

�ω
(0)
1 ≈ 41A−1/3 and �ω

(0)
2 ≈ 41A−1/3

core (20)

(see Section 2); further, we employ the approximation

Fi = f
(0)
i c

(0)+
i + f

(0)∗
i c

(0)
i (i = 1, 2), (21)

where the probability amplitudes for the excitation of
single-particle vibrations are given by

|f (0)
i |2 =

∑
α<β

(i)
|〈α|2tzx|β〉|2 (i = 1, 2). (22)

The next step consists in representing the vibra-
tional nuclear Hamiltonian in the form

H = H1 + H2 + H12, (23)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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where

H1 = �ω
(0)
1 c

(0)+
1 c

(0)
1 +

1
2

κ1F
2
1 (24)

is the Hamiltonian that describes normal vibrations
for type-1 dipole transitions,

H2 = �ω
(0)
2 c

(0)+
2 c

(0)
2 +

1
2

κ2F
2
2 (25)

is the analogous Hamiltonian for type-2 dipole tran-
sitions, and

H12 = κ12F1F2 (26)

is the operator that takes into account the interaction
of dipole transitions of the two types.

In order to take into account the possible distinc-
tions for three types of 1p1h � 1p1h interactions—
1 � 1, 2 � 2, and 1 � 2—we have introduced three
different coupling constants for dipole–dipole forces
(κ1, κ2, and κ12). This can be justified by the follow-
ing considerations. According to the estimate in (10),
the coupling constant for dipole–dipole forces is pro-
portional to A−5/3. This mass dependence is obvi-
ously appropriate for the constant κ1 and, to some
extent, for the constant κ12, but the constant κ2 is
most likely to be proportional to A

−5/3
core , since outer

(valence) nucleons have but a slight effect on the
oscillator excitations of nucleons belonging to a filled
inner shell (see the analysis of data on quasielastic
nucleon knockout in Section 2). Moreover, the in-
teraction within the group of type-1 excitations is
expected to be additionally suppressed in relation to
the interaction within the group of type-2 excita-
tions, since the former occurs at the nuclear periphery,
where the mean density of nuclear matter is lower.
Further, it can also be assumed that the intergroup
interaction is weaker than the intragroup interaction
because the overlap integral is small for type-1 and
type-2 particle–hole states.

Taking the aforesaid into account, we represent
the coupling constants for dipole–dipole interaction
in the form

κ1 = K1A
−5/3, κ2 = K2A

−5/3
core , (27)

κ12 = K12A
−5/3,

where the factorsK1,K2, andK12 satisfy the relations

K12 � K1 � K2 ≈ 100MeV. (28)

We diagonalize the Hamiltonian in (23) in two
steps: first, we find the eigenstates of the Hamilto-
nians H1 and H2, whereupon we take into account
the interaction of these states. After the first step
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of the calculations, which reproduces the calcula-
tions described in Subsection 3.1, the Hamiltonian in
Eq. (23) reduces to the form

H =
2∑
i=1

�ωic
+
i ci + κ12F1F2 + const, (29)

where c+i and ci are the operators of, respectively, cre-
ation and annihilation of a quantum of eigenvibrations
generated by the HamiltonianHi;

�ωi =
√

(�ω(0)
i )2 + 2κi�ω

(0)
i |f (0)

i |2 (30)

is the energy of such a quantum;

Fi = fic
+
i + f∗

i ci (31)

is operator Fi in the representation of the eigenstates
of theHamiltonianHi; and fi is the probability ampli-
tude for the excitation of vibrations of the c+i |0〉 type,
this amplitude being related to the amplitude f (0)

i by
the equation

�ωi|fi|2 = �ω
(0)
i |f (0)

i |2. (32)

Let us estimate the ratio of the energies �ω2 and
�ω1. We assume that the fraction q of the valence
shell is not occupied and that its fraction (1 − q) is
accordingly filled. Using the dipole sum rule, we then
obtain

�ω
(0)
2 |f (0)

2 |2 ≈ �
2

2M
qAcore, (33)

�ω
(0)
1 |f (0)

1 |2 ≈ �
2

2M
(A− qAcore).

By using these estimates and relations (20), (27),
and (30), we obtain

�ω2

�ω1
≈
(

A

Acore

)1/3
√

1 + 0.0247qK2

1 + 0.0247(1 − qAcore/A)K1
.

(34)

The configuration splitting of a giant dipole res-
onance does not play a significant role either in the
case where the valence shell is nearly empty (q → 1)
or in the case where it is nearly filled (q → 0). But in
other cases, it can be seen from relations (28) that the
second factor on the right-hand side of (34) is close to
unity. Therefore, we assume that

�ω2

�ω1
≈ �ω

(0)
2

�ω
(0)
1

≈
(

A

Acore

)1/3

. (35)

In the representation specified by Eqs. (23)–(26),
the coupling constants κ1, κ2, and κ12 play the role
of free parameters of the model. Upon recasting the
Hamiltonian H into the form (29), it becomes possi-
ble to choose parameters in an alternative way: �ω1,
3
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�ω2, and K12 = κ12A
5/3. This parametrization has a

number of advantages: on one hand, the number of
independent variable parameters decreases by virtue
of the condition in (35); on the other hand, the region
where phenomenological dipole–dipole forces are ap-
plied, which are only used to describe a relatively weak
interaction of different configuration modes, shrinks.
The Hamiltonian in (29) can be diagonalized by

means of the linear canonical transformation

ĉ+i =
2∑
j=1

(Xijc
+
j − Yijcj), (36)

where the expansion coefficients Xij and Yij satisfy
the orthogonality conditions

2∑
j=1

(XijX
∗
kj − YijY

∗
kj) = δik, (37)

2∑
j=1

(XijYkj − YijXkj) = 0.

The eigenenergies of the HamiltonianH are given
by

�ω̂i =

(
�

2ω2
1 + �

2ω2
2

2
∓
(

(�2ω2
1 − �

2ω2
2)

2

4
(38)

+ 4κ
2
12�ω1|f1|2�ω2|f2|2

)1/2
)1/2

,

where i = 1, 2 and �ω̂1 ≤ �ω̂2.
The dipole operator F reduces to the form

F =
2∑
i=1

(f̂iĉ+i + f̂∗
i ĉi), (39)

where f̂i are the probability amplitudes for the excita-
tion of the normal vibrations ĉ+i |0〉. These amplitudes
can be found from the equation

�ω̂i|f̂i|2 = [�ω1|f1|2(�2ω̂2
i − �

2ω2
2) (40)

+ �ω2|f2|2(�2ω̂2
i − �

2ω2
1)

+ 4κ�ω1|f1|2�ω2|f2|2]/(2�
2ω̂2

i − �
2ω2

1 − �
2ω2

2)
(i = 1, 2).

Finally, the relations

|Xi1|2 − |Yi1|2 =
�

2ω̂2
i − �

2ω2
2

2�2ω̂2
i − �2ω2

1 − �2ω2
2

, (41)

|Xi2|2 − |Yi2|2 =
�

2ω̂2
i − �

2ω2
1

2�2ω̂2
i − �2ω2

1 − �2ω2
2

specify the contribution of type-1 and type-2 config-
urations to the dipole states ĉ+i |0〉 (i = 1, 2).
PH
3.3. Generalization to the Case of Deformed Nuclei

In a spherical nucleus, normal dipole vibrations in
three mutually orthogonal directions are degenerate
in energy. In view of this, we have only considered
above vibrations along the x axis. In a deformed
spheroidal nucleus, this degeneracy is partly removed.
In that case, it is necessary to distinguish between
vibrations along the symmetry axis of the nucleus
(z axis) and vibrations along an orthogonal direction
(say, along the x or the y axis). Each of these types
of vibrations is described in precisely the same way
as vibrations along the x axis of a spherical nucleus
(see Subsection 3.2). It is only necessary to employ,
in Eqs. (18), (19), and (22), the single-particle states
|α〉 and |β〉 of the deformed single-particle potential
and to take into account the effect of deformation
on the oscillator frequencies (20) of single-particle

excitations—that is, to multiply the quantities �ω
(0)
1

and �ω
(0)
2 by the factor

√
1 − 4δ′/3 (by δ′, we mean

here the deformation parameter that was introduced
in [15]) for longitudinal vibrations (vibrations along
the z axis) or by the factor

√
1 + 2δ′/3 for transverse

vibrations (vibrations along the x and y axes).
Relation (35) can now be recast into the form

�ω
||
2

�ω
||
1

≈ �ω⊥
2

�ω⊥
1

≈
(

A

Acore

)1/3

, (42)

where �ω
||
1 and �ω

||
2 are the energies of, respectively,

type-1 and type-2 intermediate normal vibrations for
the longitudinal mode of a giant dipole resonance,
while �ω⊥

1 and �ω⊥
2 are the analogous quantities for

its transverse mode [compare with the energies �ω1

and �ω2 of the Hamiltonian in (29)].
The equalities in (42) make it possible to reduce

the number of parameters varied in describing the
structure of a giant resonance in deformed nuclei to
three; for these, one can use, for example, the energies

�ω
||
1 and �ω⊥

1 and the constant K12.

4. APPLICATION TO LIGHT NONMAGIC
NUCLEI

The model considered above was used to describe
the gross structure of a giant dipole resonance in
the 12C, 24Mg, and 28Si nuclei. These are three self-
conjugate nonmagic nuclei, for which the effects of
both the configuration and the deformation splitting
of a giant dipole resonance are of importance.
We employed the following computational scheme.

First, the energies and oscillator strengths of normal
excitations for longitudinal and transverse dipole vi-
brations were calculated on the basis of the formalism
developed in Section 3. After that, the resulting dipole
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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resonances, whose number is equal to four with
allowance for the degeneracy of vibrations along the x
and y axes, were approximated by Lorentzian curves.
Below, we expound on the details of our computa-

tional procedure.

4.1. Choice of Single-Particle Potential

In order to calculate the single-particle states |α〉,
we employed the Nilsson spheroidal potential [16],
setting its parameters to

�ω(0)
z = 41A−1/3

√
1 − 4

3
δ′, (43)

�ω(0)
x = �ω(0)

y = 41A−1/3

√
1 +

2
3
δ′,

δ′ = δ/(1 +
2
3
δ),

where δ is the parameter of the quadrupole deforma-
tion of a nucleus,

δ =
3
4

Q0

Z〈r2〉 . (44)

Here, Q0 is the internal quadrupole moment and 〈r2〉
is the mean-square radius of the nuclear-charge dis-
tribution.
For the nuclei considered here, the parameter δ

was calculated theoretically by means of the proce-
dure described in [17]. This procedure leads to over-
estimated values of the parameter δ for light nuclei,
since it disregards the effect of nuclear-surface dif-
fuseness on 〈x2〉, 〈y2〉, and 〈z2〉. The value corrected
with allowance for this effect can be obtained by the
formula

δcorr ≈ δ
1 + 2π2η2 + 2

15
π4η4

1 + 10
3 π2η2 + 7

3π
4η4

, (45)

where η ≡ a/R0, with a ≈ 0.55 fm and R0 ≈
1.07A1/3 fm being, respectively, the diffuseness pa-
rameter of the nuclear surface and the distance
between the center of the nucleus and the point at
which its density decreases by a factor of 2.
For the 12C, 24Mg, and 28Si nuclei, the eventual

values of the parameter δ′ proved to be 0.13, 0.28, and
0.15, respectively.

4.2. Varying Model Parameters

We varied the following three parameters: �ω
||
1 ,

�ω⊥
1 , and K12 (see Subsection 3.3). First, the value

of the parameter K12 was fixed, whereupon the en-
ergies �ω

||
1 and �ω⊥

1 were varied in such a way as
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to reproduce, in the calculations, the positions of the

centroidsE||
dip andE

⊥
dip of dipole states for the longitu-

dinal and transverse modes of vibrations. After that, a
different value was chosen for the parameter K12, and
the procedure was repeated.

The energies E
||
dip and E⊥

dip were calculated with
the aid of the relations

Edip =
2E⊥

dip + E
||
dip

3
, (46)

E⊥
dip

E
||
dip

=

√
〈z2〉
〈x2〉 =

√
1 + 2δ′/3
1 − 4δ′/3

.

The giant-resonance energy Edip, which appears
in these relations, was estimated by the formula [18]

Edip ≈ 86A−1/3

√
1 + π2η2

1 + 10π2η2/3 + 7π4η4/3
[MeV],

(47)

where the quantity η was defined in (45).
The best agreement with experimental data for

the nuclei considered here was obtained at K12 ≈
25 MeV. As might have been expected, this value,
which characterizes the strength of interaction of dif-
ferent dipole configurations, is rather small in relation
to a value of about 100 MeV, which follows from the
estimate in (10). In order to assess the sensitivity of
calculations to the choice of value for the constant
K12, we have performed calculations for the 28Si nu-
cleus, employing various values of this constant. The
results are given in Fig. 2.

The intermediate energies �ω
||
1 and �ω⊥

1 do not
have an independent physical meaning. Nonetheless,
it is interesting to note that, in varying the relevant
model parameters, they are grouped around values
that follow from formulas of the type in (30) if, in
estimating the coupling constant for dipole–dipole
forces [see Eq. (10)], use is made of a symmetry
potential V that faithfully reproduces the position
of the giant dipole resonance [compare the results
in (14) and (47)]. The root-mean-square distinctions
between the two types of estimates of the energies
�ω

||
1 and �ω⊥

1 are less than 1 MeV. This confirms that
the approximations made in the model are physically
justified.

4.3. Approximation of Resonance Widths

Our calculations revealed (see Figs. 3–5) that
type-1 and type-2 dipole configurations are weakly
mixed in light nonmagic nuclei. On the other hand,
the damping of vibrations in light nuclei is governed
3
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Fig. 2. Results of our calculations for the 28Si nucleus at
various values of the parameter K12. Points correspond
to the experimental values of the photoabsorption cross
section from [19], while the dashed, the solid, and the
dotted curve represent the results of the calculations with
K12 = 40, 25, and 10 MeV, respectively.

by different mechanisms for vibrations of different
types: these are predominantly the emission of an
excited particle from a nucleus for type-1 vibrations
and the spreading of a collective mode over a large
number of noncollective nuclear states interacting
with this mode for type-2 vibrations. It follows that,
depending on the type of dominant configurations, the
normal excitation ĉ+i |0〉 (i = 1–4) of a light nucleus
may be assigned either the emission width Γ↑(�ω̂i) or
the spreading width Γ↓(�ω̂i).
For 16 � A � 240 nuclei, the total width of a giant

dipole resonance can be approximated by the for-
mula [18]

Γ(E) ≈ 0.0293
1 + π2η2

[
1 − 3η

1 + (π2/3)η2

1 + π2η2

]
E2, (48)

where, by η, we imply the same quantity as in
Eqs. (45) and (47).
As is well known, the approximate relation Γ ≈

Γ↑ + Γ↓ holds. We introduce the notation ν ≡ Γ↑/Γ.
We then find that Γ↑(E) ≈ νΓ(E) and Γ↓(E) ≈ (1 −
ν)Γ(E), where Γ(E) is given by expression (48).
In the present study, the dipole-resonance widths

were estimated by using the values of ν = 0.6, 0.4,
and 0.3 for 12C, 24Mg, and 28Si, respectively. In se-
lecting these values, we have taken into account the
experimental trend toward a decrease in the contribu-
tion to Γ(E) from the emission width with increasing
mass number A.

5. DISCUSSION OF THE RESULTS
The basic results of our calculations are given in

Figs. 3–5.
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Fig. 3. Structure of the giant dipole resonance in the 12C
nucleus according to the calculations (a) with and (b)
without allowance for the configuration splitting of the
giant dipole resonance. Points represent the experimental
values of the photoabsorption cross section from [20]. The
description of the curves and histograms presented in this
figure and in Figs. 4 and 5 below is given in the main body
of the text.

Each of these figures consists of two panels (a, b).
In the panels carrying the label a, the experimental
values of the photoabsorption cross section (points)
are contrasted against the results of the calcula-
tion based on the model described above (curves and
histograms). The panels labeled with b display the
results of the calculation that was performed under
the assumption that a giant dipole resonance is split
only into deformation modes whose energies are de-
termined by relations (46) and (47). The thick solid
curves represent the theoretical values of the pho-
toabsorption cross section. In each case, two thin
solid curves show the contributions to this cross sec-
tion that come from, respectively, longitudinal and
transverse dipole vibrations. Two dashed curves rep-
resent the configuration splitting of the giant dipole
resonance. The histograms depict the distributions of
the oscillator strengths of dipole states (in arbitrary
units), the narrow and broad rectangles correspond-
ing to, respectively, longitudinal and transverse dipole
modes. The open (closed) part of a rectangle repre-
sents the contribution to a given state from type-1
(type-2) configurations.
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Fig. 4. Structure of the giant dipole resonance in the
24Mg nucleus according to the calculations (a) with and
(b) without allowance for the configuration splitting of the
giant dipole resonance. Points represent the experimental
values of the photoabsorption cross section from [21].

Figures 3–5 clearly demonstrate that the configu-
ration splitting of a giant dipole resonance plays a very
important role in the formation of its gross structure
in light nonmagic nuclei. Indeed, experimental data
for any of the nuclei considered here cannot be ade-
quately reproduced without taking this phenomenon
into account (compare panels a and b). The effect of
the configuration splitting of a giant dipole resonance
is especially pronounced in nuclei characterized by a
small deformation (12C, 28Si). However, it can easily
be singled out in the structure of the cross section for
photoabsorption on the strongly deformed nucleus of
24Mg as well (see Fig. 4).

At the same time, the formation of the gross struc-
ture of a giant dipole resonance is also greatly af-
fected by the deformation splitting of a giant dipole
resonance (even in weakly deformed nuclei). This be-
comes obvious in comparing the rectangles of the his-
tograms with the special features of the experimental
photoabsorption cross sections.

In the literature, the high-energy tails of the cross
sections for photoabsorption on nonmagic 1p- and
2d2s-shell nuclei (see the notation in Section 2) are
usually associated with single-particle excitations
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Fig. 5. Structure of the giant dipole resonance in the 28Si
nucleus according to the calculations (a) with and (b)
without allowance for the configuration splitting of the
giant dipole resonance. Points represent the experimental
values of the photoabsorption cross section from [19].

from an inner filled shell [10]. The present calculation
basically confirms this point of view, but with one
important qualification: the main contribution to the
high-energy region of a giant dipole resonance is
formed by a collectivemode that emerges from single-
particle excitations under the effect of residual forces
rather than by individual type-2 1p1h configurations.
Indeed, the residual interaction shifts this state (see
extreme right rectangles in Figs. 3–5) by aproxi-
mately 8 MeV upward with respect to the energy
position of type-2 single-particle transitions.
From the histograms presented in Figs. 3–5, it

can be seen that type-1 and type-2 dipole configura-
tions interact with each other rather weakly. This im-
plies that normal vibrational modes are formed owing
primarily to interactions of configurations belonging
to the same type.
Finally, it should be noted that the main strength

of dipole transitions from an inner shell to the valence
shell (that is, of type-2 transitions) is associated with
the transverse mode of dipole vibrations.

6. CONCLUSIONS
Themodel developed in the present study has been

used to clarify the global features of the photoabsorp-
3
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tion cross section in the mass range 10 < A < 40,
which is one of the most complicated for a theoretical
description. The calculations performed on the basis
of this model have enabled us to draw the following
conclusions:
(i) In describing the gross structure of a giant

dipole resonance in light nonmagic nuclei, it is nec-
essary to take simultaneously into account the con-
figuration and the deformation splitting of a giant
resonance.
(ii) The configuration splitting of a giant dipole

resonance arises because of a considerable difference
of the mean energies of single-particle E1 transitions
between a filled inner shell and the valence shell, on
one hand, and the mean energies of such transitions
between the valence shell and an empty outer shell,
on the other hand. Nonetheless, the configuration
maxima of a giant dipole resonance have a collective
rather than a single-particle nature.
However, the proposed model is applicable not

only to light nuclei. It can easily be understood that
the representation of the vibrational Hamiltonian in
the form (29) featuring the free parameters �ω1, �ω2,
and K12 = κ12A

5/3 is of a rather universal character
and can be used in describing the gross structure of a
giant dipole resonance both in light and in medium-
mass and heavy nuclei. From Fig. 1, it can be seen
that the curves representing the energies of nucleon
knockout from different principal shells become par-
allel to one another as the mass number A grows.
This suggests that, at large values of A, outer nucle-
ons have but a slight effect on the energies of dipole
transitions from inner shells. Therefore, relation (35)
can also be extended to the region of medium-mass
and heavy nuclei. In a forthcoming publication, we
will present our theoretical results that will confirm
the possibility of applying the model developed here
to describing the gross structure of a giant dipole res-
onance over a very broad mass region—as a matter of
fact, a region covering all cases where the concept of
nucleon motion in a mean nuclear field is meaningful
(A � 10).
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et al., Fiz. Élem. Chastits At. Yadra 31, 1343 (2000).

12. A. Bohr and B. Mottelson,Nuclear Structure, Vol. 2:
Nuclear Deformations (W. A. Benjamin, New York;
Amsterdam, 1975; Mir, Moscow, 1977).

13. W. H. Bassichis and F. Scheck, Phys. Rev. 145, 771
(1966).

14. V. M. Kolomiets et al., Fiz. Élem. Chastits At. Yadra
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Charge-Exchange (p, n)(p, n)(p, n) Reaction on 484848Ca as a Means for Determining
the Isospin Structure of the Mean Nuclear Spin–Orbit Field
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Abstract—The isotopic structure found previously in spin–orbit splitting by studying the spectra of heavy
nuclei close to doubly magic ones is tested in polarization effects that arise in charge-exchange (p, n)
reactions between the isobaric states of A = 48 nuclei. c© 2003 MAIK “Nauka/Interperiodica”.
On the basis of an analysis of available exper-
imental data for nuclei close to the doubly magic
nuclides of 208Pb and 132Sn, it was shown in [1], by
invoking various theoretical approaches, that neutron
spin–orbit splitting in N > Z nuclei is stronger, for
identical orbitals, than the corresponding splitting for
protons. It was found in [1], among other things, that
various theoretical models lead to a stronger splitting
for neutrons than for protons in the case of the 1d and
1p orbitals in 48Ca, where experimental data on the
energies of the corresponding single-particle levels
are incomplete (in particular, because of their strong
fragmentation). Also, it was revealed in [1] that, in
terms of a phenomenological nuclear mean-field po-
tential, the experimental values of “true” energies as
determined for single-particle levels in nuclei with
allowance for configuration mixing (averaged over
the values of single-particle spectroscopic factors—
see [2]), including spin–orbit splitting, can be well
described by the potential

Û (r, σ̂, τ3) = V0

(
1 +

1
2
β
N − Z

A
τ3

)
f(r) (1)

+ Vls

(
1 +

1
2
βls

N − Z

A
τ3

)
1
r

df

dr
l̂ · ŝ+

1 + τ3
2

UCoul,

f(r) =
[
1 + exp

(
r −R

a

)]−1

, R = r0A
1/3,

where V0 = −51.5 MeV; r0 = 1.27 fm; Vls =
33.2 MeV fm2; a ≈ 0.6 fm; β = 1.39; βls ∼ −0.6; and
τ3 = −1 for neutrons, and τ3 = +1 for protons.

Introducing the quantities t3 = −τ3/2 and T3 =
(N − Z)/2 and making, as in [3], the substitution
T3 · t3 → T̂ · t̂, where T̂ and t̂ are the isospin vector
operators for the core and a nucleon, respectively,
we obtain the nuclear component of the potential (1)

*e-mail: visakov@thd.pnpi.spb.ru
1063-7788/03/6607-1239$24.00 c©
in an isotopic-invariant form (Lane potential) that
is appropriate for describing the processes that are
both diagonal and nondiagonal in t3 [single-particle
spectra and elastic scattering in the first case and
(p, n) reactions leading to the excitation of isoanalog
states in the second case]:

Û = V0

(
1 − 2β

T̂ · t̂
A

)
f(r) (2)

+ Vls

(
1 − 2βls

T̂ · t̂
A

)
1
r

df

dr
l̂ · ŝ.

The spin–orbit term in the potential leads to polar-
ization phenomena in scattering. From (2), it can be
seen that, whereas polarization in elastic scattering
is determined by a combination of parameters in the
form

Vls

(
1 − βls

N − Z

A
t3

)
≈ Vls,

similar effects in charge-exchange reactions involv-
ing the excitation of isoanalog states depend on βlsVls
and are therefore controlled by the isovector param-
eter βls of the mean spin–orbit field, because the
parameter Vls is well known. Thus, all of the conclu-
sions drawn in [1] on βls and based on the description
of nuclear spectra can be verified by using the data
on quasielastic (p, n) scattering. The corresponding
information about polarization effects observed for
nuclei in the vicinity of 48Ca can be found in [4], where
the reaction 48Ca(p, n)48Sc leading to the excitation
of the 0+ isoanalog state at 6.67 MeV was investi-
gated with polarized protons, but the theoretical anal-
ysis was performed there in terms of a microscopic
approach to describing the nuclear structure and in
terms of nucleon–nucleon amplitudes for describing
the scattering process (distorted-wave impulse ap-
proximation). Below, we perform our analysis within
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Experimental data on the analyzing power from
[4] (points) and results of various calculations (curves).
Curve 1 corresponds to the microscopic calculation in the
distorted-wave impulse approximation from [4]. Curves
2–5 were calculated in this study with (2) α = 1 (vol-
ume absorption), Vls = 33.2 MeV fm2, and βls = −0.6;
(3) α = 0 (surface absorption), Vls = 33.2 MeV fm2,
and βls = −0.6; (4) α = 0, βls = −0.6, and an energy-
dependent parameter Vls; and (5) α = 0.5, all other pa-
rameters being set to the same values as those for curves
2 and 3.

the Lane model, relying on the mean-field parameters
determined in [1]; in addition, we employ the Born
approximation to describe the scattering process. In
describing (p, n) reactions, Gosset et al. [5] also con-
sidered polarization effects in the Born approxima-
tion.

It is well known that, in the Born approximation,
there are no polarization effects caused by a spin–
orbit potential [6, 7] if use is made of a real-valued
central potential. Therefore, an imaginary part (ab-
sorption) must be introduced in the optical potential
in order to describe such effects. The energy depen-
dence must also be taken into account in the real
and imaginary parts of the potential, since the inci-
dent energy was quite high (E = 134 MeV) in [4].
In [8, 9], V0 was parametrized as follows: V0 = V ′

0(1−
0.0058E), where V ′

0 = −52 MeV, which is very close
to the value of −51.5 MeV obtained in [1]. In this
case, the form proposed in [8] for the corresponding
absorptive term in the optical potential is iWV f(r),
where WV (MeV) = −3.3(1 + 0.03E). Surface ab-
sorption is usually taken into account via the term
iWS(df/dr). For low momentum transfers (small an-
gles), the two versions of absorption must provide an
identical description of the scattering process. In the
PH
case of a� R, this leads to WS ≈ −(R/3)WV . For
the absorptive term, we therefore use the expression

iWV

[
α− (1 − α)

R

3
d

dr

]
f(r), (3)

where 0 ≤ α ≤ 1. This results in polarization effects
that are independent of α for small scattering an-
gles, but which are strongly dependent on α for high
momentum transfers. Thus, the scattering process,
along with polarization phenomena, is described here
in terms of the optical potential in the form (2), where

Vo → −51.5(1 − 0.0058E) (4)

− i3.3 · (1 + 0.03E)
[
α− (1 − α)

R

3
d

dr

]
,

identical energy dependences being assumed for the
isoscalar and isovector components of the central
nuclear potential.

The results of the present calculations for the an-
alyzing power A in the (p, n) reaction occurring on
48Ca and leading to the excitation of an isoanalog
state,

Atheor =
dσ↑↑/dω − dσ↑↓/dω

dσ↑↑/dω + dσ↑↓/dω
, |A| ≤ 1, (5)

are displayed in the figure, along with experimental
data and the results of the microscopic calculations
from [4]. The quantities σ↑↑ and σ↑↓ are the reaction
cross sections for the cases where the proton polar-
ization vector ε is, respectively, parallel and antipar-
allel to the vector [ki × kf ]. It can be seen that, in
the case of surface absorption (α = 0), our calcula-
tions in which we use the corresponding spin–orbit
parameters from [1] agree well with experimental data
up to large values of the scattering angle. At the same
time, the description of the analyzing power becomes
unsatisfactory upon introducing, in the spin–orbit
parameter Vls, an energy dependence similar to that
for the central potential.

For the reaction 48Ca(p, n) 48Sc∗(IAS) on unpo-
larized protons, where the abbreviation IAS stands
for an isoanalog state, our calculations with α = 0
yield a value of about 7.7 mb/sr for the differential
cross section at zero angle, this cross section being
a very slowly increasing function of the parameter
α. The cross section decreases sharply with increas-
ing scattering angle and exhibits some structure at
Θc.m. ≈ 20◦. The above value can be compared with
the experimental result obtained in [10] for the differ-
ential cross section at zero angle (about 7 mb/sr) and
with the theoretical result obtained in [10] on the basis
of microscopic calculations (about 7.5 mb/sr).

The following conclusions can be drawn from the
above results:
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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(i) Experimental data on the isotopic structure
of spin–orbit splitting in nuclei are compatible with
data on polarization effects in quasielastic (p, n)
scattering. The mean-field parameters determined
in [1], which made it possible to reproduce proton
and neutron spin–orbit splitting in nuclei near 132Sn
and 208Pb—in particular, the parameter βls—also
faithfully reproduce experimental data for quasielastic
(p, n) scattering on 48Ca.

(ii) A good description of the analyzing power
at high energies of incident protons with the val-
ues taken for spin–orbit parameters from low-energy
spectroscopy is compatible with the assumption that
these parameters of the optical model are weakly de-
pendent on energy .

(iii) A satisfactory description of the cross section
for the relevant (p, n) reaction involving the excitation
of an isoanalog state indicates that the energy de-
pendence of the isovector terms in the central nuclear
potential was parametrized correctly.

(iv) The present results unambiguously corrobo-
rate the presence of a significant surface component
[(1 − α) � 0.5] in the imaginary part of the optical
potential.

In conclusion, we note that, although spin–orbit
interaction makes a relatively small contribution to
the total mean-field potential for nuclear single-
particle levels, it is of paramount importance for
the formation of the nuclear shell structure. For
example, the density of single-particle levels is high in
superheavy nuclei; therefore, their small shifts due to
refining the isospin dependence of the spin–orbit field
can be decisive in determining shell corrections that
control the stability of such nuclei. A correct inclusion
of the isotopic dependence of spin–orbit splitting can
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
also considerably affect the predictions for nucleon
drip lines in nuclei characterized by an extremely high
neutron excess or an extremely high neutron deficit.
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Abstract—Multiple emission of intermediate-mass fragments (IMF) in the collisions of protons (up to
8.1 GeV), 4He (4 and 14.6 GeV), and 12C (22.4 GeV) on Au has been studied with the 4π setup
FASA. In all the cases, thermal multifragmentation of the hot and diluted target spectator takes place.
The fragment multiplicity and charge distributions are well described by the combined model including
the modified intranuclear cascade followed by the statistical multibody decay of the hot system. IMF–
IMF-correlation study supports this picture, giving a very short time scale of the process (≤70 fm/c).
This decay process can be interpreted as the first-order nuclear “liquid–fog” phase transition inside the
spinodal region. The evolution of the mechanism of thermal multifragmentation with increasing projectile
mass was investigated. The onset of the radial collective flow was observed for heavier projectiles. The
analysis reveals information on the fragment space distribution inside the breakup volume: heavier IMFs
are formed predominantly in the interior of the fragmenting nucleus possibly due to the density gradient.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Study of the decay properties of the hot nuclei is
one of the most challenging topics of modern nu-
clear physics. The excitation energy of the hot nuclei
(500–700 MeV) is comparable with the total binding
energy. They disintegrate via a new multibody decay
mode—thermal multifragmentation. This process is
characterized by the copious emission of intermediate
mass fragments that are heavier than alpha particles
but lighter than fission fragments (IMF, 2 < Z ≤ 20).
Such multibody disintegration is not exotic but the
main decay channel of a very hot nuclear system.

The development of this field has been strongly
stimulated by an idea that this process is related to
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the nuclear liquid–gas phase transition. One of the
first nuclear models, suggested by N. Bohr, C. von
Weizsäcker, and Ya.I. Frenkel 65 years ago, is the
liquid-drop model, which has been successfully used
up to now. The liquid–gas phase transition in nuclear
matter was predicted much later [1–3] on the basis of
the similarity between van der Waals and nucleon–
nucleon interactions. In both cases, the attraction
between particles is replaced by repulsion at a small
interaction range. As a result, the equations of state
are similar for such different systems. This is well
seen in the phase diagram (Fig. 1) taken from [2].
The figure shows the isotherms for pressure as a
function of volume calculated for the van der Waals
system and the Fermi gas of nucleons interacting
through Skyrme forces. The scales are the same for
both cases due to the use of dimensionless variables:
pressure, volume, and temperature are given as ratios
to the critical values Pc, Vc = 1/ρc (ρc is the critical
density), and Tc. The very steep part of the isotherms
(on the left) corresponds to the liquid phase. The gas
phase is illustrated by the right parts of the isotherms,
where pressure changes smoothly with increasing
volume. A point of particular interest is the part of the
diagram below the hatched line, where the isotherms
correspond to negative compressibility. The density
here is significantly reduced as compared to the liq-
uid phase. This is a spinodal region characterized
by the phase instability. One can imagine that a hot
2003 MAIK “Nauka/Interperiodica”
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nucleus expands due to thermal pressure and enters
the metastable region. Due to density fluctuations, a
homogeneous system converts into the mixed-phase
state, consisting of droplets (IMFs) surrounded by
nuclear gas (nucleons and light composite particles).
In fact, the final state of this transition is a nuclear
fog [3].

The neutrons fly away with energies correspond-
ing to the system temperature (5–7 MeV), while the
charged particles are additionally accelerated in the
Coulomb field of the system. Disintegration time is
determined by the time scale of the thermodynamic
fluctuations and is expected to be very short. This
is a scenario of nuclear multifragmentation as the
spinodal decomposition, considered in a number of
theoretical and experimental papers (see, for example,
[4–10] and review papers [11, 12]). This picture was
proved experimentally with a significant contribution
from the FASA collaboration; a short review of the
results obtained is presented below.

As for the critical temperature for the liquid–gas
phase transition Tc (at which the surface tension van-
ishes), its value is not known definitely . There are
many theoretical calculations of Tc for finite nuclei. In
[1, 2], the calculation is done using a Skyrme effective
interaction and thermal Hartree–Fock theory. The
values of Tc were found to be 18.1 MeV [1] and in
the range 8.1–20.5 MeV [2] depending on the chosen
Skyrme interaction parameters. There are not yet
reliable experimental data for Tc, despite the claims
made in a number of papers. The latest of them is [13],
where it is stated that Tc = 6.7 ± 0.2MeV. We return
to the discussion of this point in Section 6.

2. HOW TO PRODUCE
AND STUDY HOT NUCLEI

An effective way to produce hot nuclei is collisions
of heavy ions with energies up to hundreds ofMeV per
nucleon. Around a dozen sophisticated experimental
devices were created to study nuclear multifragmen-
tation with heavy-ion beams. But in this case, heat-
ing of nuclei is accompanied by compression, strong
rotation, and shape distortion, which may essentially
influence the decay properties of hot nuclei.

Investigation of dynamic effects caused by excita-
tion of collective (or “mechanical”) degrees of free-
dom is interesting in itself, but there is a great prob-
lem of disentangling all these effects to get informa-
tion on the thermodynamic properties of a hot nuclear
system. One gains simplicity and the picture becomes
clearer when light relativistic projectiles (first of all,
protons, antiprotons, pions) are used. In contrast to
heavy-ion collisions, fragments are emitted only by
the source—the slowly moving target spectator. Its
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2
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excitation energy is almost entirely thermal. Light rel-
ativistic projectiles therefore provide a unique possi-
bility of investigating “thermal multifragmentation,”
which was realized in the FASA project.
To study multifragmentation with the beams of

the Dubna synchrophasotron, a 4π setup FASA was
created [14]. The device consists of two main parts:
(i) Five dE–E telescopes (at θ = 24◦, 68◦, 87◦,

112◦, and 156◦ with the beam direction), which serve
as triggers for the readout of the system allowing the
measurement of the fragment charge and energy dis-
tributions. Ionization chambers and Si(Au) detectors
are used as dE and E counters, respectively.
(ii) A fragment multiplicity detector (FMD) in-

cluding 64 CsI(Tl) counters (with a scintillator thick-
ness averaging 35 mg/cm2), which cover 89% of 4π.
The FMD gives the number of IMFs in the event and
their angular distribution.
A self-supporting Au target 1.0 mg/cm2 thick is

located at the center of the FASA vacuum chamber
(∼1 m in diameter).
The following beams were used: protons at en-

ergies of 2.16, 3.6, and 8.1 GeV [15]; 4He at 4 and
14.6 GeV; and 12C at 22.4 GeV [16]. The mean beam
intensity was around 7 × 108 p/spill for protons and
helium and 1 × 108 p/spill for carbon projectiles (spill
length 300 ms, spill period 10 s).
In recent years, FASA has been significantly up-

graded, and a new counter array consisting of 25
dE–E telescopes was developed. At present, the total
number of detectors in FASA is 129, supplied with
193 electronic channels.
003
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3. EVIDENCE FOR THERMALIZATION
OF THE TARGET SPECTATOR AT BREAKUP

Let us consider a very important point of thermal-
ization of the system at breakup. To check whether
this state is close to thermal equilibrium, plots were
composed for the fragment yields in terms of the
longitudinal versus transverse velocity components.
They look similar for all collisions investigated. Fig-
ure 2 shows such plots for 4He + Au and 12C + Au
interactions [16]. The symbols correspond to the con-
stant invariant cross sections taken for emitted car-
bon fragments. The lines connecting the experimental
points form circles demonstrating isotropic emission
in the frame of the moving source. This indicates that
the fragment emission proceeds from a thermalized
state. The center positions of circles determine the
source velocities, which are found to be in the range
P

of (0.01–0.02) c. The IMF angular distribution in the
laboratory system exhibits a forward peak caused by
the source motion.

Another finding in favor of the thermal equilib-
rium is that the fragment kinetic energy spectra look
like Maxwellian ones with the maximum around the
Coulomb barrier followed by an exponential tail. All
these observations can be considered as good moti-
vation for using statistical approaches to describe the
data. It was done in our studies rather successfully.
Some details of the model used are given in the next
section, but here for illustration we present in Fig. 3
the fragment multiplicity distributions for different
collisions in comparison with the model calculations.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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4. DENSITY OF THE SYSTEM AT BREAKUP

What is the size of a fragmenting target spectator?
Is it true that a very hot nucleus expands due to
the thermal pressure to get into the phase instability
(spinodal) region? To answer this question, we mea-
sured [17] the distribution of the relative velocities
for coincident fragments at large correlation angles.
The fragment kinetic energy is determined in the
main by the acceleration in the Coulomb field of the
fragmenting nucleus. Therefore, the fragment velocity
is sensitive to the configuration of the system at the
moment of breakup. In the upper part of Fig. 4, two
variants of fragment emission are shown: evaporation
from the surface of the nucleus with normal density
(right) and the volume decay of the expanded system
(left).

The measured distribution is shifted to lower ve-
locities relative to the calculated one for the surface
emission; this observation is in favor of the volume
fragment emission. After quantitative analysis of the
data by means of a combined model (see below), it
was concluded that the fragment emission occurs
from the expanded system with a mean density that
is 3 to 4 times smaller than normal [18, 19]. The
same conclusion is drawn from considerations of the
fragment kinetic energy spectra [15]. Thus, one can
say that thermal multifragmentation is indeed the
spinodal decomposition process. This conclusion is
supported by measuring the time scale of fragment
emission, which is very fast (see the next section).

Now, let us consider the combined model. The
reaction mechanism for light relativistic projectiles
is usually divided into two steps. The first one is a
fast energy deposition stage, during which energetic
light particles are emitted and the nuclear remnant
is excited. The fast stage is usually described by
the intranuclear cascade model (INC). We use the
version of the INC from [20] to get the distribu-
tion of the nuclear remnants in charge, mass, and
excitation energy. The second stage is described by
the statistical multifragmentationmodel (SMM) [21].
Within the SMM, the probability of different decay
channels of the excited remnant is proportional to
their statistical weight. The breakup volume deter-
mining the Coulomb energy of the system is taken to
be Vb = (1 + k)A/ρ0, where A is the mass number
of the decaying nucleus, ρ0 is the normal nuclear
density, and k is the model parameter. Thus, ther-
mal expansion before the breakup is assumed. The
breakup density is ρb = ρ0/(1 + k). It is found that
this traditional approach fails to describe the observed
IMF multiplicities, whose mean values saturate at
2.2 ± 0.2. The expansion stage is inserted between
the two parts of the calculation. In fact, the excitation
energies and the residual masses are finely tuned to
get agreement with the measured IMF multiplicities;
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
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i.e., the values for the residual (after INC) masses and
their excitation energies are scaled on an event-by-
event basis (for details, see [15, 16]). The final stage
of the combined model INC + Expansion + SMM
is the multibody Coulomb trajectory calculations for
all charged particles in the exit channel (again on an
event-by-event basis). As a result, the fragment ener-
gies and momenta are obtained and can be compared
with the experimental data.

5. THERMAL
MULTIFRAGMENTATION—A NEW DECAY

MODE OF HOT NUCLEI

The time scale of IMF emission is a crucial char-
acteristic for understanding the mechanism of this
decay process: whether it is a “slow” successive and
independent evaporation of IMFs or a new (multi-
body) decay mode with “simultaneous” ejection of
the fragments governed by the total accessible phase
space. “Simultaneous” means that all the fragments
are liberated during a time which is smaller than
the characteristic Coulomb time τc ≈ 10−21 s [22],
which is themean time of fragment acceleration in the
Coulomb field of the system. In that case, emission of
the fragments is not independent; they interact with
each other via the Coulomb forces during the acceler-
ation. Thus, measurement of the IMF emission time
τem (the mean time separation between two consecu-
tive fragment emissions) is a direct way to answer the
question as to the nature of the multifragmentation
phenomenon.
3
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There are two procedures to measure the emission
time: analysis of the IMF–IMF correlation function
with respect to the relative velocity and the relative
angle. We used the second method. Figure 5 shows
the IMF–IMF relative angle correlation for the frag-
mentation target spectator in 4He (14.6 GeV) + Au
collisions [18]. The correlation function exhibits a
minimum at θrel = 0 arising from the Coulomb re-
pulsion between the coincident fragments. The mag-
nitude of this effect drastically depends on the time
scale of emission, since the longer the time distance
between the fragments, the larger their space sep-
aration and the weaker the Coulomb repulsion. The
multibody Coulomb trajectory calculations fit the da-
ta on the assumption that the mean emission time is
τem ≤ 70 fm/c (2.3 × 10−22 s). This value is signifi-
cantly smaller than the characteristic Coulomb time
τc. The trivial mechanism of IMF emission (indepen-
dent evaporation) is definitely excluded.

A similar result is obtained in our recent paper [23],
devoted to the time scale measurement for multifrag-
ment emission in p+ Au collisions at 8.1 GeV. The
model dependence of the results was carefully inves-
tigated. Figure 6 shows the experimental correlation
function and the calculated ones for two values of the
breakup volumes: Vb = 4V0 and Vb = 8V0. The mean
emission time is found to be τem = 50± 10 fm/c. One
should notice that this value is in fact the mean time
of fragment formation under breakup conditions. The
total duration time of the reaction is larger. It includes
the thermalization time (10–20 fm/c) and the mean
expansion time before the disintegration of the hot
PH
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nucleus, which is around 70 fm/c according to model
estimation [15, 24].

6. EVOLUTION OF THE REACTION
MECHANISM WITH INCREASING

PROJECTILE MASS

It is shown in a number of papers that the mul-
tifragment emission in the central collisions of very
heavy ions is not described by the statistical models.
Initial compression of the system is tremendous and
the collective part of the excitation energy is so large
that the partition of the system into fragments is likely
to be a very fast dynamic process [25]. In that case,
the fragment kinetic energy is largely determined by
the decompressional collective flow. It is interesting to
follow the evolution of the multifragmentation mech-
anism (as the projectile mass increases) from pure
thermal to that influenced by the dynamic effects.

6.1. Fragment Charge Distribution

We performed a comparative study of multifrag-
mentation induced in a gold target by relativistic
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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protons and helium and carbon ions [16, 26]. It was
already demonstrated that, in all cases, one dealt
with disintegration of a thermally equilibrated system
(Fig. 2), and IMF multiplicity distributions were well
reproduced by the statistical model (Fig. 3). It was
also found that charge distributions of fragments were
similar for all the collisions studied, and they are
very well described by the combined model INC +
Expansion + SMM ( Fig. 7).

The general trend of the IMF charge distribu-
tions is also well reproduced by a power law Y (Z) ∼
Z−τ . In earlier papers on multifragmentation [3, 27–
29], such a power-law dependence for the fragment
charge yield was interpreted as an indication of the
proximity of the decaying state to the critical point
for the liquid–gas phase transition in nuclear matter.
This was stimulated by the application of the classical
Fisher drop model [30], which predicted a pure power
law droplet-size distribution with τ = 2–3 at the crit-
ical point. According to this model, the τ parameter
has a minimal value at the critical temperature. So,
in the spirit of the Fisher model, the data in the inset
of Fig. 7 should be considered as an indication of the
“critical behavior” of the system at beam energies of
5–10 GeV. But this is not the case. The power law is
well explained at temperatures far below the critical
point. As is seen in Fig. 7, the pure thermodynamical
SMM predicts that the IMF charge distribution is
close to a power law at freeze-out temperatures of 5–
6 MeV, while the critical temperature is assumed to
be Tc = 18 MeV. The statistical model also predicts
the parabolic dependence of the exponent τ on the
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
excitation energy (E∗) with the minimal value around
2.0 at E∗/A = 3–5MeV [31].
In [32], the value of the critical temperature is

estimated from the data on the fission probabilities. In
this paper, the temperature dependence of the liquid-
drop fission barrier is calculated as in [1]. The crit-
ical temperature Tc (at which the surface tension
vanishes) is taken as a parameter. It is found that
the barrier height is very sensitive to the ratio T/Tc.
Experimental data [33] and calculations are compared
for highly excited 188Os. It is concluded that Tc is defi-
nitely higher than 10MeV. The results of recent paper
[13] are in conflict with that conclusion. The fragment
mass distributions obtained by the ISIS collaboration
were analyzed in the framework of the Fisher model
with the Coulomb energy taken into account. The ex-
tracted critical temperature Tc = 6.7 ± 0.2 MeV. We
believe that this result should be treated with caution,
keeping inmind the shortcomings of the Fisher model
in application to the hot nuclear system [34].7)

6.2. Fragment Kinetic Energy Spectra

The fragment kinetic energy spectra change with
increasing projectile mass. The spectral shapes show
an increase in the number of high-energy fragments

7)Note added in proof: In our recent article [Karnaukhov et al.,
Phys. Rev. C 67, 011601(R) (2003)], the critical temperature
was found to be Tc = 20 ± 3MeV. This was done by analyz-
ing the charge distribution of fragments within the statistical
multifragmentationmodel.
3
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for heavier projectiles. This observation is sum-
marized in Fig. 8 (upper panel), which shows the
mean kinetic energies per nucleon as a function of
P

the fragment charge. The figure reveals enhance-
ment in the kinetic energies for the light fragments
(Z < 10) emitted in 4He (14.6 GeV) + Au and
12C(22.4 GeV) + Au collisions as compared to the
p(8.1GeV)+Au case. The calculated values (curves)
are obtained with the combined model INC+ expan-
sion + SMM. The measured energies are close to
the calculated ones for p+ Au collisions in the range
of fragment charges between 4 and 9. However, the
experimental values for heavier projectiles exceed the
theoretical ones, which are similar for all three cases.
What is the cause of that?
The kinetic energy of fragments is determined by

four terms: thermal motion, Coulomb repulsion, ro-
tation, and collective expansion energies, E = Eth +
ECoul + Erot + Eflow. The Coulomb term is signifi-
cantly larger than the thermal one, as was shown in
[18, 23]. The contribution of the collective rotational
energy is negligible even for C + Au collisions [16,
26]. We suggest that the observed energy enhance-
ment is caused by the expansion flow in the system,
which is assumed to be radial as the velocity plot
(Fig. 2) does not show any significant deviation from
circular symmetry. Note that the contribution of the
collective flow for p(8.1 GeV) + Au collisions is in-
conspicuous. As was estimated in [15], the mean flow
velocity for that case is less than 0.02c. We believe
that the observed flow for heavier projectiles is driven
by the thermal pressure, which is expected to be larger
than that for the proton beam.
An estimate of the fragment flow energies may

be obtained as a difference between the measured
IMF energies and those calculated without taking
into account any flow in the system. This difference for
12C+Au collisions is shown in Fig. 8 (middle panel).
In an attempt to describe the data, we modified the

SMMcode in the INC+Expansion+SMMconcept
by including a radial velocity boost for each particle
at freeze-out. In other words, the radial expansion
velocity was superimposed on the thermal motion in
the calculation of themultibodyCoulomb trajectories.
Self-similar radial expansion is assumed when the lo-
cal flow velocity is linearly dependent on the distance
of the particle from the center of mass. The expansion
velocity of particle Z located at radius RZ is given by
the following expression:

vflow(Z) = v0
flowRZ/Rsys, (1)

where v0
flow is the radial velocity on the surface of

the system. Note that, in this case, the density dis-
tribution changes in dynamic evolution in a self-
similar way, being a function of the scaled radius
RZ/Rsys.The use of the linear profile of the radial
velocity is motivated by the hydrodynamic model cal-
culations for an expanding hot nuclear system (see,
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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for example, [35]). The value of v0
flow was adjusted to

describe the mean kinetic energy measured for the
carbon fragment.

Figure 9 shows the comparison of the measured
and calculated energy spectra (for 12C + Au colli-
sions) assuming v0

flow = 0.1c. The agreement is good.
The calculation without a flow deviates strongly.
There is a longstanding problem of a qualitative dif-
ference between the chemical or thermal equilibrium
temperature and the “kinetic” or so called “slope
temperature.” A recent discussion of that point can
be found in [36]. The mean equilibrium temperature
obtained in our calculations is 6.2 MeV. At the same
time, the slope temperature found from the spectrum
shape is Ts = 14.5 MeV for the “no-flow” case (see
dashed curve in inset). This is the mutual result of
the thermal motion, Coulomb repulsion during the
volume disintegration, and the secondary decay of the
excited fragments. Introducing a rather modest radial
flow results in an increase in the slope temperature up
to Ts = 24MeV.

Let us return to Fig. 8 (middle). The model-
calculated flow energy is given as the difference of the
calculated fragment energies obtained for v0

flow = 0.1c
and v0

flow = 0. The data deviate significantly from the
calculated values for Li and Be. This may be caused
in part by the contribution of particle emission during
the early stage of expansion from a hotter and denser
system. This explanation is supported by the fact
that the extra energy of Li fragments with respect
to the calculated value is clearly seen in Fig. 8 (top)
even for the proton-induced fragmentation, where no
significant flow is expected.

As to fragments heavier than carbon, the calcu-
lated curve in Fig. 8 (middle) is above the data and
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only goes down slightly with increasing fragment
charge. This trend of the calculations is to be ex-
pected. The mean fragment flow energy is propor-
tional to 〈R2

Z〉. This value varies only slightly with
the fragment charge in the SMM code due to the
assumed equal probability for fragments of a given
charge to be formed at any point of the available
breakup volume. This assumption is a consequence
of the model simplification that considers the system
as a uniform one with ρ(r) = const for r ≤ Rsys. The
data in Fig. 8 indicate that this is not the case. In fact,
the dense interior of the expanded nucleus may favor
the appearance of larger IMFs if fragments are formed
via the density fluctuations. This observation is also
in accordance with the analysis of the mean IMF
energies performed in [15] for proton-induced frag-
mentation. It is also seen in Fig. 8 (top) that, for p +
Au collisions, the measured energies are below the
theoretical curve for fragments heavier than Ne. This
may be explained by the preferential location of the
heavier fragments in the interior region of the freeze-
out volume, where the Coulomb field is reduced.

The experimentally deduced mean flow velocities
of IMFs for 12C+Au collisions are presented in Fig. 8
(lower panel). The values for Li and Be are considered
as upper limits because of the possible contribution
of the preequilibrium emission. The corresponding
values of 〈RZ/Rsys〉, obtained under the assumption
of the linear radial profile for the expansion velocity,
can be read on the right-hand scale of the figure.
The dashed curve shows the mean radial coordinates
of the fragments according to the SMM code. The
3
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calculated values of 〈RZ/Rsys〉 decrease only slightly
with Z in contrast to the data.

The total expansion energy can be estimated by
integrating the nucleon flow energy over the available
volume at freeze-out. For a uniform system, one gets

Etot
flow = (3/10)AmN (v0

flow)2(1 − r0/Rsys)5, (2)

where mN and r0 are the nucleon mass and radius.
For 12C + Au collisions, it gives Etot

flow
∼= 115 MeV,

corresponding to the flow velocity on the surface equal
to 0.1c.

Similar results are obtained for 4He(14.6 GeV) +
Au collisions. The excitation energies of the frag-
menting systems studied are largely thermal ones;
therefore, we deal with thermal multifragmentation. It
is reflected in Fig. 10, where the mean total excitation
energy per nucleon E∗

MF/AMF is shown as a function
of the incident energy. The closed symbols corre-
spond to the thermal part of the excitation energy
obtained via analysis of the data on fragment mul-
tiplicity and charge distributions with the combined
model of the process. Open symbols include the flow
energy. Thermal energies for these cases are 4 times
larger than collective ones. The onset of the collective
flow driven by the thermal pressure takes place at
the excitation energy around 4 MeV/nucleon, which
is in good agreement with the results of [37]. The
mean fragmenting masses are equal to 158, 103,
and 86 for proton (8.1 GeV), 4He (14.6 GeV), and
12C(22.4 GeV) collisions with Au, respectively. Note
that selection of the events with the IMF multiplicity
M ≥ 2 (for the correlation measurements) results in
an increase in the mean excitation energy by 0.5–
0.7 MeV/nucleon [23].

7. CONCLUSION

In this work, we study the mechanism of mul-
tifragment emission in collisions of relativistic pro-
tons, 4He, and 12C with an Au target. The data ob-
tained support the interpretation of this phenomenon
as “thermal multifragmentation,” which is a statis-
tical breakup process of a diluted and hot system
with the density 3–4 times smaller than the normal
one. Thermal multifragmentation is a new multibody
decay mode of an extremely excited nucleus with
a very short lifetime. It was found via IMF–IMF
relative angle correlations that the fragment mean
emission time τem ≤ 70 fm/c. This decay process can
be interpreted as the first-order nuclear “liquid–fog”
phase transition inside the spinodal region (spinodal
decomposition).

The evolution of the thermal multifragmentation
mechanism with increasing projectile mass was in-
vestigated. The onset of radial collective flow was
P

observed for heavier projectiles. It is believed to be
driven by the thermal pressure. The mean total flow
energy at the moment of breakup is estimated to be
around 115 MeV for both 4He (14.6 GeV) and 12C
(22.4 GeV) beams, while the mean thermal excitation
is around 400 MeV.
The flow energy of fragments decreases as their

charge increases. The analysis of the data reveals
interesting information on the fragment space dis-
tribution inside the breakup volume: heavier IMFs
are formed predominantly in the interior of the frag-
menting nucleus possibly due to the density gradient.
This conclusion is in contrast to the predictions of the
SMM.
This study of multifragmentation using a range of

projectiles demonstrates a transition from pure “ther-
mal decay” (for p + Au collisions) to disintegration
“decorated” by the onset of a collective flow (for heav-
ier projectiles). Nevertheless, the decay mechanism
should be considered as thermal multifragmentation.
The partition of the system is governed by the nuclear
heating, and IMF charge distributions in all the cases
considered are well described by the statistical model
neglecting any flow.
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Abstract—Results are presented that were obtained from an analysis of arrival directions for cosmic rays
of energy in the range E0 ≈ 1016.9–17.2 eV that were recorded by the Yakutsk array between 1974 and 2001
at zenith angles of θ ≤ 45◦. It is shown that a considerable part of them form clusters that have small-scale
cellular structure. In all probability, these showers are generated by neutral particles of an extragalactic
origin. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

More than 40 years ago, a group from Moscow
State University (MSU) discovered a knee in the
spectra of the extensive air showers (EAS) at an
energy of E0 ≈ 3 × 1015 eV [1]. Revealing its nature
would greatly contribute to solving the problem of the
origin of cosmic rays having extremely high energies,
up to about 1020 eV. Many experiments have so far
been performed to study this phenomenon, but there
is still no an unambiguous understanding of it.

It is widely believed that, at energies in the range
3 × 1015 < E0 ≤ 1017 eV, the composition of primary
cosmic radiation (PCR) is noticeably enriched in
heavy nuclei (see, for example, [2, 3]) and that, in the
range 1017 < E0 ≤ 1018 eV, there is a fast increase
in the fraction of protons [4]. The fraction of heavy
nuclei is maximal at E0 ≈ 1017 eV. These results
are explained within the diffusion model [5], which
also correctly predicts the shape of the PCR energy
spectrum in the region of the aforementioned knee.

However, this explanation is questionable, be-
cause conclusions from EAS data are rather ambigu-
ous and even inconsistent. Moreover, there are no
direct measurements of the composition of extremely
high-energy PCR. As was reported in [6–12], the
arrival directions of E0 ≥ 4 × 1017 eV PCR exhibit
numerous groups of showers in narrow solid angles.
The distribution of these groups over the celestial
sphere has a small-scale ordered structure that can-
not be attributed to stochastic statistical processes.
In my opinion, this structure can be associated with
the distribution of extragalactic pointlike sources of

*e-mail: a.v.glushkov@ikfia.ysn.ru
1063-7788/03/6607-1252$24.00 c©
PCR that generate neutral particles. Recently, this
hypothesis was additionally confirmed in [13, 14] at
energies of E0 ≈ (1.3–4) × 1017 eV. Several new
experimental results supporting this opinion are given
below.

2. FEATURES UNDER INVESTIGATION

In the present article, we consider showers of en-
ergy in the rangeE0 ≈ (0.8–1.6)× 1017 eV that were
detected by the Yakutsk EAS array from 1974 to 2001
at zenith angles of θ ≤ 45◦. We select only those
showers from the entire data sample whose arrival
directions were found on the basis of data from four
or more stations and whose axes traversed the central
circle of the array with a radius not greater than
1000m. These events give small errors in determining
basic EAS parameters (direction and coordinates of
the axis, E0, etc.). The primary-particle energy E0

was determined from the relations

E0 = (4.8 ± 1.6) × 1017(ρs,600(0◦))1.0±0.02 [eV], (1)

ρs,600(0◦) = ρs,600(θ) (2)

× exp((secθ − 1) × 1020/λρ) [m−2],

λρ = (450 ± 44) (3)

+(32 ± 15) log(ρs,600(0◦)) [g/cm2],

where ρs,600(θ) is the charged-particle density mea-
sured by ground-based scintillation detectors at a
distance of R = 600 m from the shower axis.

By using this method, we selected 14 318 showers.
Figure 1 shows the chart of their arrival directions on
the developed celestial sphere in galactic coordinates.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Individual arrival directions of 14 318 showers
with E0 ≈ (0.8–1.6) × 1017 eV and θ ≤ 45◦ in galactic
coordinates.

Equal areas in this chart correspond to sky regions
of equal area. The coordinates of the North Pole of
the Galaxy in right ascension are α1950 = 192.3◦ and
δ1950 = 27.4◦.

In Fig. 1, one can see a small-scale anisotropy and
numerous compact groups and chains. Let us con-
sider some special features of these data. The distri-
bution of showers presented in Fig. 1 with respect to
arrival directions is displayed in Fig. 2 in terms of the
galactic latitude of their arrival (with a step of ∆bG =
1.5◦). Figure 2a shows the observed (Nexpt) and ex-
pected (Nran) distributions, while Fig. 2b presents the
deviation of the number of observed events from the
number of expected ones in units of the standard devi-
ation σ =

√
Nran; nσ = (Nexpt −Nran)/σ. The values

Nran were determined from aMonte Carlo simulation.
At first glance, the experimental data in Fig. 2 are

quite consistent with an isotropic PCR flux. How-
ever, we would like to call the attention of the reader
to the shaded area in the latitude range from 4.5◦
to 0◦, where there is a pronounced dip of |527 −
608|/

√
608 ≈ 3.3σ. A similar dip, which is, however,

more statistically significant (≈ 9.2σ), was obtained
at energies of E0 ≈ (1.3–4) × 1017 eV in [13, 14].
In the present article, this dip is explained by the
absorption of extragalactic PCR. This issue will be
discussed in what follows.

In order to get a clearer idea of the structure of
the data in Fig. 1, we broke down the whole sample
of 14 318 showers into three energy ranges: E0 =
1016.9–17.0, 1017.0–17.1, and 1017.1–17.2 eV. In each of
these, we took six independent samples that con-
tained approximately 800 events each, but which dif-
fered from one another only in that their axes traversed
different annular regions within the central circle of
the array, all other conditions being the same. The
presence of local shower groups over the celestial
sphere was checked individually for each of the 18
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
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Fig. 2. The distribution of 14 318 showers with E0 ≈
(0.8–1.6) × 1017 eV and θ ≤ 45◦ with respect to arrival
directions in terms of the galactic latitude of their arrival:
(a) observed (Nexpt) and expected (Nran) distributions
for an isotropic flux and (b) deviation of the number of
observed events from the number of expected ones, nσ =

(Nexpt − Nran)/
√

Nran. The shaded area corresponds to a
3.3σ dip.

(= 3 × 6) samples by using the same method as in
[10–14]. For each shower, we determined all “neigh-
bors” spaced in arrival direction by an angular dis-
tance of d ≤ 3◦. If a circle contained n ≥ 3 showers,
their coordinates were averaged and these averaged
coordinates were used in the following as new points,
referred to as nodes.

For each of the three energy ranges individually,
we further analyzed nodes in any of the six samples for
intersections of multiplicity not less than two (under
the condition that their centers are within an angular
distance of d ≤ 3◦). If such nodes were found, the
arrival-direction coordinates of all showers belong-
ing to them were averaged, and this new large node
(referred to as a cluster) was used in the ensuing
analysis.

3. SMALL-SCALE ANISOTROPY OF PCR

The superimposed chart of the positions of nodes
for six samples of showers of energy in the range
E0 = 1017.0–17.1 eV is shown in Fig. 3 in terms
of supergalactic coordinates (the coordinates of the
North Pole of the Supergalaxy are α = 286.2◦ and
δ = 14.1◦). The longitude of the Supergalaxy was
reckoned in the counterclockwise direction from the
vector pointing to the anticenter. For the purpose
of convenience, the equatorial coordinates are also
shown in this chart.
3
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Fig. 3. Superimposed chart of the positions of nodes
for six independent samples of 2439 showers with E0 =
1017.0–17.1 eV and θ ≤ 45◦ in supergalactic coordinates.

One can see that this sample of 2439 showers (in
all, there are 4861 showers in theE0 = 1017.0–17.1 eV
group) forms chains, which in turn form a cellular
structure. A similar pattern is observed at other val-
ues of the PCR energy. The positions of the clusters
having different energies coincide in the majority of
cases. This can be seen from Fig. 4, which displays
the chart of clusters from three groups corresponding
to E0 = 1016.9–17.0, 1017.0–17.1, and 1017.1–17.2 eV.
This chart is a superposition of three original charts
(one of these is shown in Fig. 3) obtained by the
same methods. Here, the phenomenon in question
becomes more pronounced, but the general structure
of the distribution of clusters over the sky area under
consideration remains unchanged.

A fragment of Fig. 4 is shown in Fig. 5. Points
correspond to clusters where the number of showers,
n, in one of these three groups in energy is not less
than 10; crosses represent n ≥ 10 clusters common
to any two groups of these three; and closed circles
correspond to n ≥ 10 clusters common to all three
groups in energy E0. It can clearly be seen that the
majority of clusters condense into chains separated
by voids of characteristic angular dimension 5◦–10◦.
According to aMonte Carlo simulation, the probabil-
ity of such a result is less than 10−5.

Observations reveal that the Universe contains
large black holes of dimension 100–130 Mpc sepa-
rated by relatively thin (20–30 Mpc) layers, and the
theory confirms this. About 60 to 80% of galaxies are
concentrated in these layers. These galaxies have a
tendency to gather in extended and flattened super-
clusters. The Supergalaxy (of diameter 50 to 60Mpc)
considered here is one of such superclusters. In all
probability, many of the superclusters are adjacent to
one another, forming a unique cellular structure of the
Universe [15–18]. There is the opinion that it may
be a structure of the three-dimensional-chessboard
PH
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Fig. 4. Superimposed chart of the positions of clusters
containing two or more nodes from three groups of show-
ers withE0 = 1016.9–17.0, 1017.0–17.1, and 1017.1–17.2 eV
in terms of the supergalactic coordinates. The rectangle
singles out the fragment presented in Fig. 5.

type [19] or even something like a giant quasicrystal
[20], with the bulk of matter being concentrated in its
nodes.

One of the hypotheses concerning the formation
of the cellular structure of the Universe was widely
developed within the adiabatic theory of Zeldovich
[21], where some stages of concentration of mat-
ter are represented in the evolution chain of the ex-
panding Universe as bright surfaces–bright curves–
bright drops sequence.

One cannot rule out the possibility that the nodes
and clusters found above have some bearing on
the cellular structure of the Universe. We will now
estimate a typical size of the voids in Figs. 3–5;
this is of interest since such voids may additionally
characterize the small-scale anisotropy of ultrahigh-
energy PCR. For this purpose, we analyze the dis-
tributions of angles between the nodes by using the
E0 = 1017.0–17.1 eV data in Fig. 3 as an example.
Let us consider any two (of six independent) samples
containing equal numbers of events (370) and find
the minimal angular distances dmin between the
nodes from sample 1 with respect to the nodes from
sample 2. To improve the statistical accuracy, we
use all 15 pairs of such independent combinations.
The eventual distribution (Jexpt) is constructed as
the sum of these distributions. In order to find the
expected distribution for an isotropic flux (Jran), we
perform a such procedure once more (beginning from
the selection of nodes), as was done in deriving the
data presented in Fig. 3. The random directions are
evaluated on the basis of real showers by replacing
their measured right ascension by that determined
from a Monte Carlo simulation in the angular range
between 0◦ and 360◦.

The angular correlation functions kσ = (Jexpt −
Jran)/σ(σ =

√
Jran) for 2220 (= 370× 6) events con-
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Fig. 5. Fragment singled out by the rectangle in Fig. 4 and (points) original data from Fig. 4 and (+ and •) clusters common
to, respectively, any two and all three groups in energy (lSG is the longitude of shower arrival from the Supergalactic disk).
sidered above are shown in Fig. 6. The closed circles
in Fig. 6a correspond to showers from the nodes in
Fig. 3, while those in Fig. 6b correspond to other
showers not belonging to these nodes. It can be seen
that, in Fig. 6a, there is a deficit of events (of about
three standard deviations) for dmin ≤ 2.5◦, but that,
for dmin ≈ 5◦–10◦, there is a stable and statistically
significant excess of events at a level of (4–5.5)σ.
The correlation function kσ in Fig. 6b exhibits an
absolutely different behavior.

At first glance, this result is very strange. The
presence of a dip in Fig. 6a instead of a peak at dmin ≤
2.5◦ is especially surprising. However, a further sim-
ulation revealed that such a pattern is quite possible
if the data have a structure ordered in some specific
way rather than a random one. For a rough model, we
considered a rectangular network in equatorial coor-
dinates that has a cell size of 5◦. For the directions
of initial events, we took the quantities obtained by
smearing the celestial coordinates of the nodes of this
network according to a normal law with a standard
deviation of 2.5◦. If we treat these simulated events
[by using the same method as for the data in Figs. 3
and 6 (closed circles)], we arrive at the distribution
represented by open circles in Fig. 6a.

One can see that this distribution is similar to the
actual distribution even in many of its details. If we
reduce the smearing of the network nodes to 0.5◦–1◦,
then distinct peaks at angles of dmin ≤ 2◦, 5◦, and 10◦
will appear. Distributions similar to those presented in
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
 

0 5 10 15 20

 

d

 

min

 

, deg

–2

0

2

–4

0

4

8
(
 
J
 

expt

 
 – 

 
J

 

ran

 
)/

 
σ

 

(

 

a

 

)

(

 

b

 

)

Fig. 6. Angular correlation functions for the E0 =
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Fig. 6 are observed for other PCR energies considered
in the present study.
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Fig. 7. Chart of the distributions in galactic coordinates:
(a) 74 quasars with redshifts of z ≤ 0.3 [22] and (b) nodes
of PCR with E0 = 1016.9–17.2 eV and θ ≤ 45◦ from the
data of Yakutsk EAS array.

4. QUASARS AS A POSSIBLE SOURCES
OF PCR

The above results give grounds to assume that
the ultrahigh-energy cosmic rays forming nodes are
in all probability of an extragalactic origin. It was
shown in [8, 13, 14] that quasars might be one of
their sources, since there is a similarity in the spatial
distribution of PCR and quasars over the celestial
sphere. We consider the correlation between them.
In terms of the galactic coordinates, Fig. 7a shows
the chart of 74 quasars with redshifts of z ≤ 0.3 from
the catalog [22] with declinations of δ ≥ 30◦. Since,
in the catalog [22], there are virtually no data on the
equatorial region of the Galaxy (|bG| ≤ 30◦) because
of strong light absorption, all quasars and PCR nodes
(Fig. 7b) from this area of the sky were eliminated
from the ensuing analysis.

In Fig. 8, we present the angular correlation
functions kσ = (Jexpt − Jran)/σ, which are similar to
those in Fig. 6. The measured distributions (Jexpt)
and the distributions expected for random variables
(Jran) were evaluated as the sum of 18 (= 3 × 6)
original distributions of minimal angular distances
dmin between the nodes (from 123 to 206) of the above
groups of showers and 74 quasars. Figures 8a and 8b
display the results for, respectively, showers from the
nodes and showers not belonging to the nodes.
P
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Fig. 8. Angular correlation between the nodes of E0 =
1016.9–17.2 eV PCR and quasars from the samples in
Fig. 7: (a) showers in the nodes and (b) showers outside
the nodes.

Figure 8a exhibits a statistically significant peak
(5.5σ) at dmin ≤ 1◦, but there is no peak in Fig. 8b.
This suggests that primary particles forming nodes
and clusters might have been generated by quasars.
The peak in Fig. 8a at dmin ≈ 5◦ can be related to the
analogous peak in Fig. 6b; that is, it can be considered
as an additional piece of evidence for the ordered
character of the large-scale cellular structure of the
Universe.

5. ESTIMATES OF THE PCR COMPOSITION

Most likely, primary particles entering into the
clusters are neutral; otherwise, their motion in the
galactic magnetic fields would destroy any correlation
in direction with their production sources, and they
could not reveal the structure that we see in Figs. 1
and 3–6.

Let us return once again to the distribution in
Fig. 2. Figure 9 displays this distribution for 7104
showers entering into the clusters (Fig. 9a) and for
the other 7214 showers, which do not belong to the
clusters (Fig. 9b). There are substantial distinctions
between these samples. First, the measured distri-
bution (histogram) in Fig. 9a differs substantially,
in terms of the χ2 criterion, from that which is ex-
pected for random events (smooth curve). Indeed, one
has χ2 = 161 for k = 80 degrees of freedom, which
corresponds to a probability of P < 10−5 for a ran-
dom result. Second, there is a statistically significant
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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deficit of events in the range from 4.5◦ to 0◦ (shaded
area): |259 − 350|/

√
350 ≈ 4.8σ. On the other hand,

the distribution in Fig. 9b has an absolutely different
shape featuring no dip of the above type. It leads to the
value of χ2 = 93 at k = 90 and suggests an isotropic
flux of cosmic rays.

The result presented in Fig. 9 can be considered as
a further piece of evidence that the PCR fraction in-
side the clusters is of an extragalactic origin. It seems
that the Galaxy only absorbs this radiation, and it
does this more strongly in the disk. The mean shift of
the dip from the plane of the Galaxy is about−2.1◦. In
all probability, this shift is due to the fact that the Sun
is not strictly situated in the symmetry plane of the
disk, but it is slightly shifted to the Northern Hemi-
sphere with respect to the plane of the Galaxy. If this
is so, the PCR flux coming from southern latitudes at
small angles with respect to disk must undergo much
stronger absorption in relation to the analogous flux
coming at the same angles from northern latitudes.
This assumption is consistent with the distribution
of neutral hydrogen in the disk of the Galaxy, where,
according to data from [23], there is a −1.4◦ shift of
the plane of the highest hydrogen concentration in
relation to the commonly used position.

Let us assume that the dip in Fig. 9a is associated
with a relatively stronger absorption of extragalactic
PCR within the disk of the Galaxy in relation to that
at higher latitudes. In this case, we can roughly esti-
mate the absorption range of unknown extragalactic
particles (for the sake of brevity, we refer to them asA
particles) on the basis of the relation

N = N0exp(−〈l〉/λA), (4)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
where N0 ≈ 350, N ≈ 259 (see Fig. 9), and 〈l〉 is
the average thickness (in g/cm−2) of the disk of the
Galaxy in our observation sector. From (4), we then
obtain

λA ≈ 3.3〈l〉.

In order to find the quantity 〈l〉, we assume that
neutral hydrogen plays the most important role in the
attenuation of PCR, because the dust contribution
is very small (about 1%) [23]. It can be seen from
Fig. 1 that, within the disk of the Galaxy, PCR arrives
from the sector ∆lG ≈ 60◦–180◦. Over this sector,
the path r from an observer to the outer boundary of
the Galaxy changes from about 10 to 5 kpc (〈r〉 ≈
8 kpc). According to data from [23], the average hy-
drogen concentration in the latitude band |bG| ≤ 10◦

decreases from ρ ≈ 0.5 cm−3 (at the distance of R =
10 kpc from the center of the Galaxy) to ρ ≈ 0.1 cm−3

at R = 15 kpc (〈ρ〉 ≈ 0.25 cm−3). On this basis, we
obtain

〈l〉 ≈ 〈r〉〈ρ〉mp ≈ 10−2 g cm−2,

where mp = 1.67 × 10−24 g is the proton mass. Fi-
nally, we arrive at

λA ≈ 3.3 × 10−2 g cm−2.

The value derived for the path of mysterious A
particles appeared to be about 1000 times shorter
than that for the nuclear interactions ofE0 ∼ 1017 eV
protons. Nevertheless, these particles can arrive with-
out losses almost from the horizon of the observed
Universe. Considering that the age of the expanding
3
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Universe is t ≈ 13 × 109 years and that the average
matter density is ρ0 ≈ 10−30 g cm−3, we obtain

l0 = ρ0ct ≈ 1.23 × 10−2 g cm−2,

where c is the speed of light. Using Eq. (4), we find
that the attenuation factor is exp(−〈l0〉/λA) ≈ 0.7.

In the Earth’s atmosphere,A particles begin to in-
teract at an altitude hA above sea level. This quantity
can be found from the barometric equation

λA = p0 exp(−hA/h0), (5)

where p0 = 1020 g cm−2 is the air pressure at sea
level and h0 = 6.85 km. It follows that hA ≈ 71 km.

These particles initiate the development of EAS
much earlier than particles belonging to the ordinary
composition of cosmic rays. If we take, by way of
example, protons of energy E0 ∼ 1017 eV, their mean
path in the Earth’s atmosphere to the first event of nu-
clear interaction is about 50 g cm−2. The analogous
path of iron nuclei is shorter by a factor of about 2 to 3.

It is likely that, after the first interaction, these
mysterious A particles disappear, giving way, in the
development of EAS, to the ordinary cascade of
secondary particles. Otherwise, showers initiated by
these mysterious particles would be substantially dif-
ferent from ordinary ones and could easily be detected.
Because of so short a range of A particles before the
first nuclear interaction, showers initiated by them
must lead to a very fast development of EAS, with
a higher maximum of a cascade curve in relation to
that for primary protons. In view of this, showers from
A particles could be misidentified as showers from
iron nuclei, especially as the majority of the methods
for determining the composition of PCR are indirect:
they are based on a comparison of the observed
features of EAS with the results of calculations that
rely on model assumptions concerning the develop-
ment of EAS for one presumed composition of PCR
or another. Therefore, one cannot rule out here the
situation where the appearance of any new primary
particles having a very short range is interpreted in
terms of a noticeable increase in the fraction of heavy
nuclei.

According to data from the Yakutsk EAS ar-
ray [24], the global flux of PCR of energy E0 ≈
1017 eV does not exhibit any statistically significant
anisotropy. From these data, it follows that the result
obtained for the amplitude of the first harmonic in
right ascension by the conventional method of har-
monic analysis is (0.45 ± 0.55)%. However, special
attention should be given to the phase of the first
harmonic, ϕ1 = 192◦ ± 70◦. Albeit involving a large
uncertainty associated with the isotropy of PCR, it
provides an indication of the center of the Super-
galaxy.
P

The results presented in this article and in [24]
could be explained if one assumes that PCR consists
of two components. One is likely to contain charged
particles, which are strongly mixed by the magnetic
field of the Galaxy, while the other, which produces
clusters, most probably features neutral particles of
extragalactic origin.

6. CONCLUSION
The data presented above indicate that some

fraction of cosmic rays of energy E0 ≈ 1017 eV are
grouped into numerous nodes and clusters within
solid angles with d ≤ 3◦. They form a cellular struc-
ture (see Fig. 3–5) having a characteristic angular
scale of about 5◦–10◦ (Fig. 6). This structure has a
correlation with quasars characterized by a redshift of
z ≤ 0.3 (Fig. 8) and a negative correlation with the
disk of the Galaxy (see Fig. 9). It can be conjectured
that the nodes and clusters are an indication of some
extragalactic pointlike sources of PCR and that these
sources are associated with the large-scale structure
of the Universe.

Primary particles forming the clusters are most
likely neutral. Otherwise, they could not correlate in
direction with their sources because of the motion
in the magnetic fields of the Galaxy and exhibit the
cellular structure of the matter distribution in the
Universe.

In all probability, these particles have a very short
range with respect to nuclear interaction (λA ≈ 3.3×
10−2 g cm−2) and initiate an earlier development
of EAS in relation to what occurs in the case of
the usual composition of PCR. Their fraction in the
whole flux of cosmic rays at E0 ≈ 1017 eV is about
7104/14 318 ≈ 0.5. This is severalfold greater than
that in the adjacent energy range E0 = (1.3–4) ×
1017 eV [13, 14].

So fast an increase in the fraction of neutral parti-
cles at E0 ≈ 1017 eV could be erroneously attributed
to an increase in the content of heavy particles in
PCR. We cannot rule out the possibility that such
hypothetical unknown particles manifest themselves
for E0 < 1017 eV as well. Further investigations are
required for clarifying this point.

Showers that do not enter into the composition of
the nodes and clusters are distributed almost isotrop-
ically over the celestial sphere. This PCR fraction is
likely to consist of charged particles (protons and
nuclei of various chemical elements) propagating
through the Galaxy via diffusion. One of the intense
sources occurs in the vicinity of the center of the
Galaxy [25–27]. It is very difficult to observe other
sources of charged particles at present, because their
positions are strongly “smeared” by themagnetic field
of the Galaxy.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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ELEMENTARY PARTICLES AND FIELDS
Theory
Contributions of Scalar Leptoquarks to the Cross Sections
for the Production of Quark–Antiquark Pairs in Electron–Positron
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Abstract—The contributions of scalar-leptoquark doublets to the cross sections σQQ̃′ for the production
of quark–antiquark pairs in electron–positron annihilation are calculated within the minimal model based
on the four-color symmetry of quarks and leptons. These contributions are analyzed versus the scalar-
leptoquark masses and the mixing parameters of the model at colliding-particle energies in the range
250–1000 GeV. It is shown that the contributions in question are of greatest importance for processes
leading to t-quark production. In particular, it is found that, with allowance for the contribution of the
scalar leptoquark of charge 5/3 and mass in the range 250–500 GeV, the cross section σtt̃ calculated at

a mixing-parameter value of kt ∼ 1 may be severalfold larger than the corresponding cross section σ
(SM)

tt̃
within the Standard Model. The possibility of setting constraints on the scalar-leptoquark masses and on
the mixing parameters by measuring such contributions at future electron–positron colliders is indicated.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Searches for possible versions of new physics be-
yond the Standard Model form one of the lines of
investigations into elementary-particle physics. Such
versions include that which is based on a four-color
symmetry of quarks and leptons [1] that belongs to the
Pati–Salam type. This symmetry predicts vector lep-
toquarks of mass about the scale of breakdown of this
symmetry; it also admits the existence of scalar lepto-
quarks [2–4] and of some other particles. If mass gen-
eration and the splitting of quark and lepton masses
are due to the Higgs mechanism [5–7], the four-color
symmetry of quarks and leptons predicts, in addition
to vector leptoquarks, the existence of the doublets
of scalar leptoquarks and the doublets of scalar glu-
ons. In the approach being considered, these par-
ticles are responsible for the splitting of quark and
lepton masses via the Higgs mechanism and appear
to be some kind of partner of the standard Higgs
doublet. Estimates of the masses of these particles—
in particular, estimates obtained from the parameters
S, T , and U of radiative corrections [8–10]—reveal
that, in contrast to vector leptoquarks, these parti-
cles may be relatively light (of mass about 1 TeV or
below) and, hence, lead to various manifestations of
four-color symmetry at relatively low energies (about

*e-mail: povarov@univ.uniyar.ac.ru
**e-mail: asmirnov@univ.uniyar.ac.ru
1063-7788/03/6607-1260$24.00 c©
1 TeV or below). We note that, because of their Higgs
origin, the doublets of scalar leptoquarks and scalar
gluons interact with fermions in a particular way:
their fermionic coupling constants are proportional to
the ratios of fermion masses to the Standard Model
expectation value. It follows that, within the approach
being considered, the characteristic values of these
constants for specific processes are known (apart
from mixing parameters), which makes it possible
to obtain quantitative estimates for the contribution
of these particles to processes involving quarks and
leptons.

Within the minimal model involving the four-color
symmetry of quarks and leptons [5–7], we calcu-
late, in the present study, the contributions from the
doublets of scalar leptoquarks to the production of
quark–antiquark pairs in electron–positron annihi-
lation, e+e− → QiaQ̃ja; also, we give a quantita-
tive analysis of these contributions, contrasting them
against the corresponding StandardModel cross sec-
tions at energies of about 1 TeV and below.

2. SCALAR-LEPTOQUARK INTERACTION
WITH CHARGED LEPTONS

IN THE MINIMAL MODEL INVOLVING
QUARK–LEPTON SYMMETRY

We use here the minimal model involving quark–
lepton symmetry [5, 6]. It is based on the SUV (4) ×
2003 MAIK “Nauka/Interperiodica”
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SUL(2) × UR(1) group and is constructed by mini-
mally extending the Standard Model in such a way
as to include the four-color symmetry of quarks
and leptons. In this model, the left-handed (L) and
right-handed (R) quarks, QL,R

iaα = ψL,Riaα , and leptons,
lL,Ria = ψL,Ria4 —here, a = 1, 2 are the SUL(2) indices,
while α = 1, 2, 3 are the SUc(3) color indices—form
the fundamental quartets ψL,RiaA , A = 1, 2, 3, 4, of the
SUV (4) group in each generation of number i =
1, 2, 3 . . .. With allowance for the possible mixing
of fermions, the basis quark and lepton fields Q′L,R

iaα

and l′L,Ria , which form the basis quartets ψ′L,R
iaA of

the SUV (4) group, can in general be represented as
superpositions of the corresponding mass eigenstates
QL,R
iaα and lL,Ria of physical quarks and gluons; that is,

Q′L,R
iaα =

∑
j

(
AL,RQa

)
ij
QL,R
jaα , (1)

l′
L,R
ia =

∑
j

(
AL,Rla

)
ij
lL,Rja ,

where AL,RQa
and AL,Rla are unitary matrices that diag-

onalize the matrices of quarks and leptons, respec-
tively.

Transformations of the basis fields in (1) under the
SUV (4) group have a vectorial character; that is,

ψ′L,R
iaA → ψ′′L,R

iaA =
∑
B

UABψ
′L,R
iaB ,

where U is the 4 × 4 matrix of gauge SUV (4) trans-
formations, which is common to the left- and right-
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
handed fields. With respect to the SUL(2) × UR(1)
group, left-handed fermions are doublets of zero hy-
percharge, while right-handed fermions are singlets
of hypercharge YR = ±1 for up (a = 1) and down
(a = 2) fermions, respectively.

In the gauge sector, this model predicts the exis-
tence of a charged color triplet of vector leptoquarks
V ±
α and of an extra neutral Z ′ boson.

In general, the scalar sector of the model contains
four multiplets Φ(1), Φ(2), Φ(3), and Φ(4) transform-
ing according to the (4,1,1), (1,2,1), (15,2,1), and
(15,1,0) representations of the SUV (4) × SUL(2) ×
UR(1) group and having vacuum expectation values
η1, η2, η3, and η4, respectively. ThemultipletsΦ(1) and

Φ(4) involve the scalar leptoquarks S
(1)
α and S

(4)
α of

electric charge 2/3, which are singlets of the SUL(2)
group, while the multiplet Φ(3) contains two color
SUL(2) doublets of scalar leptoquarks,

S(±)
aα =


 S

(±)
1α

S
(±)
2α


 . (2)

The up components of these doublets, S
(±)
1α , have

electric charges of 5/3 and 1/3, while their down

components S
(±)
2α have electric charges of ±2/3, re-

spectively. From an analysis of the scalar sector of
the model, it follows (see, for example, [9]) that, in

general, the scalar leptoquarks S
(+)
2α ,

∗
S

(−)
2α , S(1)

α , and

S
(4)
α of electric charge 2/3 are superpositions of the

Goldstone mode
S0 =


−η1

2
S(1) +

√
2
3


η3

S
(+)
2 +

*
S

(−)
2√

2
+ η4S

(4)




/√

η1
2

4
+

2
3
(η3

2 + η4
2) (3)
and three physical scalar leptoquarks S1, S2, and S3,
which are orthogonal to it; that is,

S
(+)
2 =

3∑
k=0

C
(+)
k Sk,

*
S

(−)
2 =

3∑
k=0

C
(−)
k Sk, (4)

S(1) =
3∑
k=0

C
(1)
k Sk, S(4) =

3∑
k=0

C
(4)
k Sk,

where C
(±)
k , C

(1)
k , and C

(4)
k are complex numbers

forming a 4 × 4 unitary matrix that describes the
mixing of the scalar leptoquarks of electric charge

2/3. The elements C(±)
0 ,C(1)

0 , and C
(4)
0 of this matrix,

which correspond to the Goldstone mode, are equal
to the coefficients of the fields S
(+)
2 ,

*
S

(−)
2 , S(1), and

S(4) in Eq. (3), while its remaining elements must
only satisfy constraints imposed by the unitarity of
this matrix.

In the unitary gauge, two triplets of the up lep-

toquarks S
(+)
1α and S

(−)
1α of electric charge 5/3 and

1/3 and, in the general case of arbitrary mixing,
three scalar leptoquarks Skα (k = 1, 2, 3) of electric
charge 2/3 appear as physical fields upon the elimi-
nation of Goldstone modes.

In a general form, the interactions of scalar dou-
blets with fermions in the minimal model involv-
ing quark–lepton symmetry are presented in [7].
In order to perform calculations for processes like
3
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e(p1)

γ, Z

e(p1) e(p1)

e–(–p2) e–(–p2)

e–(–p2)

dj(–q2)uj(–q2)

ui
– (q1) d

–
i(q1)

Sk(p1 – q1)S(+)
1 (p1 – q1)

Qja(–q2)

Q
–

ia(–q1)

(a)

(b) (c)

Fig. 1. Diagrams describing the production of quark–
antiquark pairs in electron–positron annihilation with al-
lowance for scalar leptoquarks, e+e− → QiaQ̃ja.

e+e− → QiaQ̃ja, we need the interactions of the
scalar-leptoquark doublets (2) with charged leptons
lj2 = (e, µ, τ) and with up [Qi1 ≡ ui = (u, c, t)] and
down [Qi2 ≡ di = (d, s, b)] quarks (i = 1, 2, 3 are the
indices of generations). These interactions can be
represented as

L
Q1l2S

(+)
1

= Q̄i1α

[
(gS)ij + (gP )ijγ5

]
lj2S

(+)
1α + h.c.,

(5)

LQ2l2Sk
= Q̄i2α

[
(gSk )ij + (gPk )ijγ5

]
lj2Skα + h.c.

(6)

(hereafter, a tilde symbol above a fermion denotes its
antiparticle, while an overbar denotes the Dirac con-
jugation of its wave function). In the minimal model
featuring quark–lepton symmetry, the matrices that
are formed by the scalar and pseudoscalar coupling
constants and which are involved in Eqs. (5) and (6)
are given by

(gS,P )ij =
√

3/2
[
∓ (CQM2K

R
2 )ij (7)

+ (
+
M1K

L
1 Cl)ij

]
/(2η sin β),

(gS,Pk )ij =
√

3/2
[
∓ (M2K

R
2 )ijC

(+)
k (8)

− (
+
M2K

L
2 )ijC

(−)
k

]
/(
√

2η sin β),

where Ma = MQa −KL
aMla

+
KR
a , with (MQa)ij =

mQiaδij and (Mla)ij = mliaδij being the diagonal
mass matrices of the up (a = 1) and down (a =
2) quarks and leptons; KL,R

a = (AL,RQa
)+AL,Rla are

unitary mixing matrices that are due to the pos-
sible distinctions between the quarks and lepton
P

mixing matrices AL,RQa
and AL,Rla in Eqs. (1); CQ =

(ALQ1
)+ALQ2

is the Cabibbo–Kobayashi–Maskawa
matrix, which is known to be due to the distinction
between the mixing matrices ALQ1

and ALQ2
in (1) for

up and down left-handed quarks; Cl = (ALl1)
+ALl2 is

the matrix that is analogous to the preceding one in
the lepton sector and which is due to the possible
distinction between the mixing matrices ALl1 and ALl2
in (1) for up and down left-handed leptons; β is the
angle of mixing of two color-singlet scalar doublets
available in the model, their expectation values being
η2 and η3 (tan β = η3/η2); and η =

√
η2

2 + η3
2 =

(
√

2GF)−1/2 ≈ 246 GeV is the Standard Model ex-
pectation value.We note that, in general, there are five
nonidentity matrices,KL,R

a , a = 1, 2, and Cl, and this
leads to [6] an additional mixing of quarks and leptons
in their interaction with vector leptoquarks and to the
additional mixing of leptons in their interaction with
W bosons.

3. CROSS SECTIONS FOR THE PROCESS
e+e− → QiaQ̃ja OF THE PRODUCTION
OF QUARK–ANTIQUARK PAIRS
WITH ALLOWANCE FOR SCALAR

LEPTOQUARKS

The production of a quark–antiquark pair in
electron–positron annihilation with allowance for the
scalar leptoquarks (2) and (4) is described by the dia-
grams in Fig. 1. The diagram in Fig. 1a corresponds
to the contribution of a photon and a Z boson in the
Standard Model to the process under consideration
(the standard Higgs bosonmay also contribute within
the Standard Model, but we disregard this contri-
bution here since the constant of its coupling to the
electron is small, me/η ∼ 10−6), while the diagrams
in Figs. 1b and 1c describe the contributions to the
production of up and down quarks from the scalar

leptoquarks S(+)
1 and Sk (k = 1, 2, 3), respectively.

3.1. Cross Section for the Process e+e− → uiũj

The cross section for the process e+e− → uiũj of
the production of up quarks is described by the sum of
the diagrams in Fig. 1a and 1b and can be represented
in the form

σ(e+e− → uiũj) ≡ σuiũj (9)

= δij


σ

(SM)
uiũi

+
∑
n=1,2

σ
XnS

(+)
1

uiũi


+ σ

S
(+)
1
uiũj

,

HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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where σ
(SM)
uiũi

is the cross section for this process in

the Standard Model; σ
XnS

(+)
1

uiũi
is the contribution that

is due to the interference between the contributions of
the Xn boson, Xn = (γ, Z), n = 1, 2, and the scalar

leptoquark S
(+)
1 ; and σ

S
(+)
1
uiũj

is the scalar-leptoquark

(S(+)
1 ) contribution associated with the diagram in

Fig. 1b.

In the Standard Model, the cross section σ
(SM)
uiũi

has the form

σ
(SM)
uiũi

=
4πα2

s
v(s,mui ,mũi)

{(
1 +

2m2
ui

s

)
(10)

×
[
Q2
ui

+
s2

(s−m2
Z)2

(
(vZe )2 + (aZe )2

)
(vZui

)2

− 2Quis

s−m2
Z

vZe v
Z
ui

]
+ v2(s,mui ,mũi)

s2

(s−m2
Z)2

×
(

(vZe )2 + (aZe )2
)

(aZui
)2
}
,

where

v(s,m3,m4) =

√
1 − 2(m2

3 + m2
4)

s
+

(m2
3 −m2

4)2

s2
;

(11)

vZfa
=

(τ3)aa − 4Qfas
2
W

4sWcW
, aZfa

=
(τ3)aa
4sWcW

are the vector and axial-vector fermionic coupling
constants of the Z boson in the Standard Model;
sW = sin θW and cW = cos θW, θW being the Wein-
berg angle; τ3 is the third Pauli matrix; and Qfa is
the fermion electric charge expressed in units of the
proton charge.

For the interference term σ
XnS

(+)
1

uiũi
, our calculations

yield

σ
XnS

(+)
1

uiũi
= − Ncα

2(s−m2
Xn

)

∑
±

∑
m=1,2

g
(m)
i (12)

× V
(m)Xn

ui± f±(s,m
S

(+)
1

,mui),

where

g
(1)
i ≡ |(gS)i1|2 + |(gP )i1|2, (13)

g
(2)
i ≡ (gS)i1(gP )∗i1 + (gP )i1(gS)∗i1,

V
(1)Xn

Qia± = vXn
Qia

vXn
e ± aXn

Qia
aXn
e , (14)

V
(2)Xn

Qia± = ±aXn
Qia

vXn
e + vXn

Qia
aXn
e ,
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mγ = 0, vγfa
= Qfa , and aγfa

= 0. The functions
f±(s,m,m3) appearing in (12) are given by

f+(s,m,m3) =
m2

3

s
ln

(
w+(s,m,m3,m3)
w−(s,m,m3,m3)

)
, (15)

f−(s,m,m3) =
2m2 − 2m2

3 − s

s

v(s,m3,m3)
2

(16)

+
(m2 −m2

3)
2

s2
ln

(
w+(s,m,m3,m3)
w−(s,m,m3,m3)

)
,

where
w±(s,m,m3,m4) = ±sv(s,m3,m4)

+ m2
3 + m2

4 − s− 2m2.

Similarly, the calculation of the contributions

σ
S

(+)
1
uiũj

yields

σ
S

(+)
1
uiũj

=
Ncg

(1)
i (g(1)

j )∗

16πs
f5/3(s,mS

(+)
1

,mui ,mũj ), (17)

where

f5/3(s,m,m3,m4) =
2m2 −m2

3 −m2
4

s
(18)

× ln

(
w+(s,m,m3,m4)
w−(s,m,m3,m4)

)

+
2m4 + 2m2

3m
2
4 − (2m2

3 + 2m2
4 − s)m2

m4 + m2
3m

2
4 − (m2

3 + m2
4 − s)m2

× v(s,m3,m4).

Formulas (9), (10), (12), and (17) determine the cross
section for the process e+e− → uiũj of the produc-
tion of up quarks in electron–positron annihilation
with allowance for the contributions of the scalar lep-

toquark S
(+)
1 . Upon taking into account Eq. (7), the

constants that describe electron coupling to quarks of
the ith generation and which appear in (13) take the
form

(gS,P )i1 =
√

3/2
3∑

i′=1

[
∓ (CQ)ii′ (19)

×
(
mdi′ (K

R
2 )i′1 − (KL

2 )i′1me

)

+
(

(
+
KR

1 )ii′mνi′ −mui(K
L
1 )ii′

)
(Cl)i′1

]
/(2η sin β),

where me is the electron mass, while mui , mdi
, and

mνi are the masses of, respectively, the up quark, the
down quark, and the neutrino of the ith generation.

In the particular case where there is no additional
mixing in the fermion sector—that is, KL = KR =
3
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Cl = I—the coupling constants in (19) can be sim-
plified to become

(gS,P )i1 =
√

3/2 [∓(CQ)i1(md −me) (20)

+ δi1(mνe −mu)] /(2η sinβ).

It should be noted that, in the limit of mass-
less quarks, the functions in (11) and (15) reduce to
v(s, 0, 0) = 1 and f+(s,m, 0) = 0, respectively, while
the functions in (16) and (18) take a much simpler
form,

f−(s,m, 0) ≡ f1(x) = x− 1/2 + x2 ln
x

1 + x
, (21)

f5/3(s,m, 0, 0) ≡ f2(x) = 2x ln
x

1 + x
+

1 + 2x
1 + x

,

(22)

where x = m2/s.

3.2. Cross Section for the Process e+e− → did̃j

The process e+e− → did̃j of the production of
down quarks with allowance for scalar leptoquarks is
described by the sum of the diagrams in Figs. 1a and
1c. Similarly to (9), the cross section for this process
can be represented in the form

σ(e+e− → did̃j) ≡ σdid̃j
(23)
PH
= δij

(
σ

(SM)

did̃i
+
∑
n=1,2

3∑
k=1

σXnSk

did̃i

)
+ σS

did̃j
.

The Standard Model cross section σ
(SM)

did̃i
and the

interference terms σXnSk

did̃i
appearing in (23) can be

obtained from formulas (10) and (12) by means of

the substitutions ui → di, S
(+)
1 → Sk, and g

(m)
i →

(g(m)
i )kk. For the contribution σS

did̃j
from the diagram

in Fig. 1c, the calculations yield

σS
did̃j

=
Nc

16πs

3∑
k,l=1

(g(1)
i )kl(g

(1)
j )∗kl (24)

× f2/3(s,mSk
,mSl

;mdi
,md̃j

),

where

(g(1)
i )kl = (gSk )i1(gSl )∗i1 + (gPk )i1(gPl )∗i1, (25)

(g(2)
i )kl = (gSk )i1(gPl )∗i1 + (gPk )i1(gSl )∗i1,
f2/3(s,m1,m2;m3,m4) =
m4

1 + m4
2 + 2m2

3m
2
4 − 2(m2

3 + m2
4)(m

2
1 + m2

2)
2s(m2

1 −m2
2)

(26)

× ln

(
w+(s,m1,m3,m4)w−(s,m2,m3,m4)
w−(s,m1,m3,m4)w+(s,m2,m3,m4)

)
+ v(s,m3,m4) +

m2
1 + m2

2 −m2
3 −m2

4

2s

× ln

(
(w+(s,m2,m3,m4) −m2

1 + m2
2)

2 − (m2
1 −m2

2)
2

(w−(s,m2,m3,m4) −m2
1 + m2

2)2 − (m2
1 −m2

2)2

)
.

With allowance for formula (8), the constants de-
scribing scalar-leptoquark (Sk) coupling to the elec-
tron and the down quark and appearing in (25) as-
sume the form

(gS,Pk )i1 =
√

3/2 (27)

×
[
∓(mdi

(KR
2 )i1 −me(KL

2 )i1)C
(+)
k

− (mdi
(KL

2 )i1 −me(KR
2 )i1)C

(−)
k

]
/(
√

2η sin β).

In the particular case where there is no additional
mixing in the fermion sector—that is, KL = KR =
I—the nonvanishing (at i = 1) constant appearing in
(27) has the form

(gS,Pk )11 =
√

3/2(md −me) (28)
×
[
∓ C

(+)
k − C

(−)
k

]
/(
√

2η sin β).

At equal masses of the scalar leptoquarks, the
function in (26) coincides with that in (18),
f2/3(s,m,m;m3,m4) = f5/3(s,m,m3,m4), while,
in the limit of massless quarks, it takes the form

f2/3(s,mSk
,mSl

; 0, 0) ≡ f3(xk, xl) (29)

=
xl

xl − xk

(
1 + xl ln

xl
1 + xl

)

− xk
xl − xk

(
1 + xk ln

xk
1 + xk

)
,

where xk = m2
Sk
/s. At equal masses of the scalar
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Fig. 2. Cross section for the process e+e− → tt̃ as a
function of the energy

√
s at the scalar-leptoquark mass

of m
S

(+)
1

= 300 GeV for the mixing-parameter values of

kt = (1) 0 (Standard Model), (2) 0.5, and (3) 1.0.

leptoquarks, the function in (29) coincides with the
function f2(xk) appearing in (22).

4. ANALYSIS
OF THE SCALAR-LEPTOQUARK
CONTRIBUTIONS TO THE CROSS

SECTIONS FOR e+e− → QiaQ̃ja PROCESSES
The constants in (19) and (27), which describe

scalar-leptoquark coupling to the quarks and the
electron and which lead to the processes being
considered, are determined by the ratios of the quark,
electron, and neutrino masses to the Standard Model
vacuum expectation value; the Cabibbo–Kobayashi–
Maskawa matrix CQ; arbitrary unitary matrices KL

a ,
KR
a , and Cl describing additional fermion mixing;

and the mixing angle β in the scalar sector. We note
that, in the absence of additional fermion mixing
[see formulas (20) and (28)], the above coupling
constants prove to be on the order of the ratio of
the masses of the first-generation quarks to the
Standard Model vacuum expectation value—that is,
on the order of mu/η ∼ md/η ∼ 10−5; in this case,
the contributions of scalar leptoquarks to the process
being studied are negligible. We note that the latest
data on neutrino oscillations seem to suggest [11]
that the lepton-mixing matrix Cl is nondiagonal—
that is, an additional fermion mixing is possible, in
particular, in the lepton sector. In the presence of
an arbitrary fermion mixing, the coupling constants
in (19) and (27) will be determined predominantly by
the masses of the heavy t, c, and b quarks and by the
mixing parameters.

4.1. Cross Sections for the Processes
e+e− → tt̃, tc̃, cc̃ of the Production of Heavy Up

Quarks
Retaining, in (19), the contributions of the c and

t quarks [the possible contribution of the b quark is
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
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a function of the energy
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m

S
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1
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The dotted curve represents the corresponding result in
the Standard Model.

suppressed by the additional element (CQ)i3 of the
Cabibbo–Kobayashi–Maskawa matrix], we find that
the coupling constants for processes involving c and t
quarks have the form

(gS,P )i1 ≈ −1
2

√
3
2
mui

η

√
kui , (30)

where, by kui [i = 2, 3, ui = (c, t)] we have denoted
the effective mixing parameter for the c or the t quark,

kui =
|KL

1 Cl|2i1
sin2 β

. (31)

From (30), we obtain the coupling constants

(gS,P )21 ≈ −0.3 × 10−2
√

kc, (32)

(gS,P )31 ≈ −0.43
√

kt

for the c and the t quark, respectively. One can see
that, in the case of identical assumptions on the mix-
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ing parameters, the coupling constants (g(S,P ))31 for
scalar-leptoquark interaction with the electron and
the t quark appear to be dominant.

Taking into account expression (30) and using
relations (9), (10), (12), and (17), we obtain the cross
section for the production of a tt̃ pair in the form

σtt̃ = σ
(SM)

tt̃
+
∑
n

σ
XnS

(+)
1

tt̃
+ σ

S
(+)
1

tt̃
, (33)

σ
XnS

(+)
1

tt̃
=

−3Nc

8

(
mt

η

)2

kt
α

(s−m2
Xn

)
(34)

×
∑
±

∑
m=1,2

V
(m)Xn

t± f±(s,m
S

(+)
1

,mt),

σ
S

(+)
1

tt̃
=

9Nc

256π
(
mt

η
)4k2

t

1
s
f5/3(s,mS

(+)
1

,mt,mt),

(35)

where the constants V (m)Xn

t± for the t quark are given
by Eqs. (14), while the functions f±(s,m

S
(+)
1

,mt)

and f5/3(s,mS
(+)
1

,mt,mt) are defined by Eqs. (15),

(16), and (18).
The cross sections given by Eqs. (33)–(35) as

a function of the energy
√
s are determined by two

parameters, the scalar-leptoquark mass m
S

(+)
1

and

the mixing parameter kt. According to the estima-
tions of the scalar-leptoquark masses on the basis of
currently available data on the parameters S, T , and
U of radiative corrections [12], the scalar leptoquarks
can be relatively light [10] (lighter than 1 TeV),
a lower experimental limit on the mass of scalar
leptoquarks from data on their direct production being
about 250 GeV [12]. From Eqs. (31) and (32), it
can be seen that, without disturbing the smallness of
the perturbation-theory parameter (gS,P )231/4π, the
mixing parameter kt can vary from zero to values of
about unity or even somewhat greater. In the ensuing
analysis, we restrict ourselves to values of the scalar-
leptoquark masses in the range 250–1000 GeV
and values of the mixing parameter kt in the range
0.0–1.0.

Figure 2 shows the cross section σtt̃ as a func-
tion of the energy

√
s at m

S
(+)
1

= 300 GeV for kt =

0.0–1.0. For kt ≤ 0.5, the destructive-interference
term is operative, which, in particular, leads, at en-
ergies of

√
s ≤ 500 GeV, to a reduction of the cross

section below that in the Standard Model, σ(SM)

tt̃
; at

energies of
√
s ≥ 500GeV, however, the cross section

σtt̃ already exceeds σ
(SM)

tt̃
considerably. At kt > 0.5,

the purely leptoquark contribution σS
tt̃

is dominant
P

over the entire range of
√
s, and this leads to a sig-

nificant excess of σtt̃ over σ
(SM)

tt̃
(by a factor greater

than five at kt = 1.0 and
√
s ∼ 600 GeV).

In Fig. 3, the cross section σtt̃ as a function of
the energy

√
s is displayed at kt = 1 for m

S
(+)
1

=

250–1000 GeV. From this figure, it can be seen that,
if the scalar-leptoquark mass takes values in the
range m

S
(+)
1

∼ 250–500 GeV, the cross section σtt̃

(at kt = 1) can be severalfold larger than the cross

section σ
(SM)

tt̃
, the characteristic value of the cross

section σtt̃ being a few picobarns. We note that mea-
surement of the cross section σtt̃ at electron–positron
colliders of the TESLA type [13] could efficiently set
constraints on the scalar-leptoquark mass and on the
mixing parameter of the model.

Using Eqs. (9) and (17) and taking into account
the coupling constants in (30), we can obtain the
cross section for the process e+e− → tc̃ in the form

σ(e+e− → tc̃) ≡ σtc̃ =
9Nc

256π

(
mc

η

)2

×
(
mt

η

)2

kckt
1
s
f5/3(s,mS

(+)
1

,mt,mc).

In Fig. 4, the cross section σtc̃ as a function of√
s is shown at kckt = 1 form

S
(+)
1

= 250–1000 GeV.

As can be seen from this figure, the cross section
in question takes values of about 10−4 pb, which is
much smaller, in particular, than the currently avail-
able upper limit from LEP II data [14]: σtc̃ < 0.55 pb.
We recall that this process cannot proceed in the
Standard Model.

An analysis reveals that the cross section for the
process e+e− → cc̃ differs only slightly from the pre-
dictions of the Standard Model. By way of example,
we indicate that, at kc ∼ 1 andm

S
(+)
1

= 250 GeV, the

scalar-leptoquark contribution is about 10−6 pb in
the range

√
s =180–500 GeV. We also note that the

scalar-leptoquark contribution to processes leading
to the production of tũ, cũ, and uũ pairs involving
a light u quark is negligible (10−8 pb) because of
the smallness of the constants of scalar-leptoquark
coupling to the electron and the u quark.

4.2. Cross Section for the Production of a bb̃ Pair
in the Process e+e− → bb̃

Disregarding the electron mass against the mas-
ses of down quarks and using Eq. (27), we approxi-
mately obtain

(gS,Pk )i1 ≈
√

3/2mdi
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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×
[
∓ (KR

2 )i1C
(+)
k − (KL

2 )i1C
(−)
k

]
/(
√

2η sin β).

The coupling constants in (25), which appear in the
cross section for the production of down quarks, can
be represented in the form

(g(m)
i )kl ≈

3
2

(
mdi

η

)2

(k(m)
di

)kl,

where

(k(m)
di

)kl =
(
δm|(KR

2 )i1|2C(+)
k

*
C

(+)
l (36)

+ |(KL
2 )i1|2C(−)

k

*
C

(−)
l

)
/ sin2 β

is the effective mixing parameter for the production of
down quarks di with δm = ±1 atm = 1, 2.

Additionally disregarding the b-quark mass
against

√
s (

√
s >> mb), we can represent the cross

section (23) for the production of a bb̃ pair in the form

σ(e+e− → bb̃) ≡ σbb̃ = σ
(SM)

bb̃
+ σXS

bb̃
+ σS

bb̃
, (37)

where

σXS
bb̃

= −3Ncα

4

(
mb

η

)2

(38)

×
∑
n=1,2

∑
m=1,2

3∑
k=1

V
(m)Xn

b−
(s −m2

Xn
)
(k(m)
b )kkf1(xk),

σS
bb̃

=
9Nc

64π

(
mb

η

)4 1
s

3∑
k,l=1

|(k(1)
b )kl|2f3(xk, xl).

(39)

Here, V (m)Xn

b− is given by (14); the functions f1(xk)
and f3(xk, xl) are specified by Eqs. (21) and (29),
respectively; and xk = m2

Sk
/s. A numerical analysis

reveals that the contributions (38) and (39) of scalar
leptoquarks to the cross section (37) are small. To

illustrate this statement, we set |(k(m)
b )kl| ∼ 1 and

mSk
∼ 500GeV by way of example and find from (37)

that σbb̃ ∼ 4 pb at
√
s = 180 GeV in this case, the

contribution of scalar leptoquarks, which is given by
Eqs. (38) and (39), being about 10−5 pb. This is much
smaller than known experimental errors, for exam-
ple, in the experimental value of σbb̃ = 4.6 ± 0.6 ±
0.3 pb, which was obtained by the OPAL Collabora-
tion at

√
s = 183 GeV [15]. At

√
s = 250–1000 GeV,

|(k(m)
b )kl| ∼ 1, and mSk

∼ 500 GeV, the contribu-
tion of scalar leptoquarks, which is given Eqs. (38)
and (39), remains small (about 10−5–10−6 pb).
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Thus, our analysis has revealed that the contri-
bution of scalar leptoquarks to the cross sections for
the processes considered here can be significant. In
particular, this is so for the cross sections σtt̃ and σtc̃
for processes involving the production of a t quark—
as can be seen fromFigs. 2 and 3, the cross section σtt̃
for the production of a tt̃ pair due to the contribution

of the scalar leptoquark S
(+)
1 can be severalfold as

large as the corresponding cross section σ
(SM)

tt̃
in the

Standard Model. Measurement of such cross sec-
tions will become possible at facilities of the TESLA
type [13], and this would yield stringent constraints
on the scalar-leptoquark masses and mixing param-
eters.

5. CONCLUSION

On the basis of the minimal model featuring the
four-color symmetry of quarks and leptons, we have
calculated the contribution of the scalar-leptoquark
doublets to the cross section σQiaQ̃ja

for processes

of the e+e− → QiaQ̃ja type. We have analyzed these
cross sections versus the scalar-leptoquark masses
and fermion-mixing parameters. This analysis has
been performed for energies of a colliding electron–
positron pair in the range

√
s = 250–1000 GeV.

It has been shown that, owing to special features
of the interaction of the scalar-leptoquark doublets
with fermions (because of the Higgs origin of these
doublets, the respective coupling constants are pro-
portional to the ratios of the fermion masses to the
Standard Model expectation value), these contribu-
tions are the most significant for processes leading to
the production of a heavy t quark. By way of exam-
ple, we indicate that, at the scalar-leptoquark mass
in the range m

S
(+)
1

∼ 250–500 GeV and a mixing-

parameter value of kt ∼ 1.0, the cross section σtt̃ for
the production of a tt̃ pair in the energy range

√
s =

400–1000 GeV may be severalfold larger than the

corresponding Standard Model cross section σ
(SM)

tt̃
.

Measurement of the cross section σtt̃ at electron–
positron colliders of the TESLA type could set limits
on the scalar-leptoquark mass and on the mixing
parameter.

For the cross section σtc̃, which vanishes at the
tree level in the Standard Model, we have obtained
the estimate σtc̃ ∼ 10−4 pb atm

S
(+)
1

∼ 250–500GeV

and kckt ∼ 1.0.
It has been shown that the scalar-leptoquark

contributions to the cross sections σcc̃ and σbb̃ are
small—in the mass and mixing-parameter region
considered here, they are below 10−5 pb.
3
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Our results—in particular, estimates of the cross
section σtt̃—may be of interest for projects of the
TESLA type that are being presently discussed in the
literature.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Wavelet Analysis of Data in Particle Physics: Vector Mesons
in e+e−e+e−e+e− Annihilation*
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Abstract—The advantages that wavelet analysis (WA) provides for resolving the structures in experimen-
tal data are demonstrated. Due to good scaling properties of the wavelets, one can consider data with
various resolutions, which allows the resonances to be separated from the background and from each other.
The WA is much less sensitive to noise than any other analysis and allows the role of statistical errors
to be substantially reduced. The WA is applied to the e+e− annihilation into hadron states with quantum
numbers of ρ and ω mesons, and to p-wave ππ scattering. Distinguishing the resonance structures from
an experimental noise and the background allows us to make more reliable conclusions about the ρ′ and ω′

states. The WA yields a useful set of starting conditions for analysis of ω′ states with the multiresonance
Breit–Wigner method preserving unitarity in the case of overlapping resonances.We also apply the WA for
the ratio Re+e− . c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

We consider the use of wavelet transforms to re-
duce the presence of statistical noise in experimental
data and argue that the subsequent smoothed forms
allow the extraction of physical parameters which
would otherwise be obscured. The method is com-
monly used in image and signal processing and is
potentially quite interesting in the context of experi-
mental particle physics.

The data on e+e− annihilation in different hadron
states in the energy range from ρ-meson mass to
about 2 GeV indicate a behavior related to several
resonances associated with states with quantum
numbers of ρ and ω mesons. The properties of these
states and even their number are not well defined.
Major difficulties in understanding the situation with
them are large statistical errors in the data and
overlapping of these states decaying into several final
channels. Correspondingly, the major goal of this
paper is to resolve structures in the existing data
relevant to this study and then to find parameters of
the excitations related to these structures using an
appropriate method. Such a method has to preserve
unitarity even when the resonances ri and rj with the
same quantum numbers overlap, i.e., |Eri −Erj | ∼
Γri + Γrj .

The experimental data on e+e− annihilation in ππ,
π+π−π+π−, π+π−π0π0, ωπ0, ηπ+π−, π+π−π0, and

∗This article was submitted by the authors in English.
**e-mail: henner@psu.ru
1063-7788/03/6607-1269$24.00 c©
ωππ channels are described, as well as p-wave ππ
scattering.
The two isovector ρ′(1450) and ρ′(1700) states

were found many years ago. There are also some
indications of the state with mass about 2.1–2.2 GeV.
Another possible ρ′ state has a mass in the range
1.1–1.3 GeV. The situation is probably similar to the
isoscalar ω′ states.
Parameters of all these resonances are not well

established, which makes the nature of these states
not clear. They are considered as two-quark states—
radial and orbital excitations of the ρ and ω mesons—
or as a mixture of two-quark, four quark, and hybrid
states. The situation is really complicated and the
poor accuracy of experimental data opens a possibil-
ity of drawing very different conclusions about these
states. Therefore, an appropriate analysis of data,
which allows one to extract all the important struc-
tures that can be of different scales, is useful before
any model based on some physical assumptions is
applied.
Section 2 features a brief discussion of the wave-

lets, their properties, and applicability to the purposes
of resolving the resonance-like structures observed
in high-energy and nuclear physics. In Section 3,
the wavelet analysis (WA) of e+e− annihilation in
different final hadron channels and of p-wave ππ scat-
tering is presented. Then, in Section 4, these wavelet-
analyzed data are used as an input to study ω′ states
with the Breit–Wigner method that preserves uni-
tarity for overlapping multichannel resonances. The
application of the WA to “smear” the ratio Re+e− is
presented in the Conclusion.
2003 MAIK “Nauka/Interperiodica”
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2. WAVELETS AND STRUCTURE
RECOGNITION

Our main goal is to detect essential structures in
data sets in a wide range of scales using the most
suitable tool for such purposes. A convenient method
for such analysis is a wavelet transformation (WT),
which is known to be an efficient multiscale technique
(for example, see the books of Holschneider [1] or
Torresani [2]). It is often said that the WA works like
a “microscope” discriminating different scales—both
the characteristic scales and the positions of any local
structures are obtained independently of the general
structure of the data.

Before giving a very brief introduction to wavelets,
we would like to say that we are not the only ones
performing a type of “optimization” of the data in ele-
mentary particle physics. Let us point out an analogy
between this work and the works on optimization of
the ratio Re+e− in QCD [3–5]. The data on Re+e−

have a wide range of structures and large statistical
errors, making a direct comparison with QCD im-
possible. However, a meaningful comparison can be
done if some kind of smearing procedure is used. The
smeared ratio

R̄e+e−(s,∆) =
∆
π

smax∫
0

Re+e−(s′)
(s′ − s)2 + ∆2

ds′ (1)

was introduced [3] (s = E2, and ∆ is a smearing
parameter) to even out any rapid variations inRe+e− .

The difference between the described procedure
and the analysis needed to obtain resonance parame-
ters is that, contrary to the smearing, we need to re-
solve the structures and, what is most important, we
want to detect structures corresponding to different
scales (global and local). The WA seems to be a very
good tool for that. We will return in the conclusion
to the discussion of the ratio Re+e− to point out that
the WA provides a very reasonable and simple way to
smear this ratio.

Most of the applications of WA to physics are
related to spectral analysis and turbulence, where
scaling is its inherent feature. Over the past few years,
WA has been getting more popular in different areas
of physics and many applications have been described
in reviews [6–8]. In high-energy nucleus–nucleus in-
teractions, it was successfully applied for studying the
angular distributions of secondary particles [9, 10]—
more references related to the processes of multiple
production can be found in [7, 8]. In particle physics,
the WA was recently used for evaluations of a back-
ground in the π−p → ηπ0 reaction [11].
PH
The continuous WT of a function f(t) represent-
ing the data is defined as

w(a, t) = C
−1/2
ψ a−1/2

+∞∫
−∞

ψ∗
(

t′ − t

a

)
f(t′)dt′, (2)

where

Cψ =

+∞∫
−∞

|ω−1||ψ̂(ω)|2dω (3)

is a constant defined through the Fourier transforma-
tion of ψ(t):

ψ̂(ω) =

+∞∫
−∞

ψ(t)e−iωtdt. (4)

Similar to most of the references, we call an argu-
ment t as “time,” even though in our actual problem
it is an energy variable. The decomposition (2) is
performed by convolution of the function f(t) with
a biparametric family of self-similar functions gen-
erated by dilatation and translation of the analyzing
function ψ(t):

ψa,b(t) = ψ

(
t− b

a

)
, (5)

where a scale parameter a characterizes the dilatation
and b characterizes the translation in time or space.
Wavelet function ψ(t) is a sort of “window function”
with a nonconstant window width: high-frequency
wavelets are narrow (due to the factor 1/a), while
low-frequency wavelets are much broader. Very im-
portant for WA is the choice of the proper analyzing
wavelet, which depends on the goal of the study. The
functionψ(t) should bewell localized in both time and
Fourier spaces and must obey the admissibility con-
dition,

∫ +∞
−∞ ψ(t)dt = 0. This condition implies that ψ

is an oscillatory (but with limited support) function
and, if the integrals (3) and (4) converge, provides the
existence of the inverse transformation:

f(t) = C
−1/2
ψ

+∞∫
−∞

+∞∫
0

ψ

(
t− t′

a

)
w(a, t′)

dt′da

a5/2
. (6)

The WT is usually used for two kinds of problems:
time-frequency analysis and time-scale analysis. In
the first case, one studies, for example, some quasi-
periodic signals/data with time-dependent spectral
properties. For these purposes, the wavelets with
good spectral resolution (having enough oscillations)
are required. The complex Morlet wavelet is com-
monly used for such purposes:

ψ(t) = e−t
2/2eiω0t, (7)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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where the proper frequency ω0 defines its spectral
resolution. The admissibility condition is satisfied ex-
actly for the imaginary part of (7); for its real part,∫ +∞
−∞ e−t

2/2 cos(ω0t)dt = e−ω0
2/2 and, if we take ω0

to be large enough, we can consider this average to be
zero. A conventional choice is ω0 = 2π—in this case,
a signal with the period T gives a stripe on a wavelet
plane w(a, t) just at the level a = T−1.
For another kind of problem, the goal is to rec-

ognize the local features of data and to find the
parameters of dominating structures (location and
scale/width). For these purposes, wavelets with a
good localization in physical space with a small
number of oscillations are used. One of the most
popular wavelets of this type is called “Mexican Hat”
(MH),

ψ(t) = (1 − t2)e−t
2/2. (8)

We end this short introduction to wavelets with
two examples similar to real data in physics of res-
onances. They will give the reasons why the WA is
so suitable for this situation and help to understand
the figures that will be presented whenwe analyze real
data.
The first example is the model signal composed of

several Gaussians with different widths and intensi-
ties:

f(t) = e−5(t−1)2 + 2e−(t−6)2/20 + 3e−10(t−10)2 (9)

+ e−(t−14)2/10 + e−(t−18)2 .

Then it was discretized with a 0.1 step on the inter-
val 0 < t < 20 (f(t) ≈ 0 outside this interval) and a
random high-frequency noise was added at each point
to make it similar to the real experimental data which
will be analyzed in the next section. These simulated
data are shown at the bottom of Fig. 1. In the left-
hand part of this figure, above the simulated data,
the Fourier reconstructions of the signal are given
for different numbers of the Fourier harmonics. Keep-
ing 20 harmonics is enough to localize all maxima
except for the one at t = 14, which is not resolved
due to the noise that still exists in a smoother form
in the restored signal. Moreover, many false maxima
appear for the reason that the nonperiodic signal is
decomposed into a sum of periodic ones. When the
number of harmonics is decreased, the restored signal
becomes smoother, but the localization of maxima
changes significantly. The widths and amplitudes of
all maxima (which are crucial for finding the reso-
nance parameters) have essentially changed. When
the number of harmonics changes from n = 100 to
n = 5, a high and narrow peak (t = 10) becomes two
times lower and wider, and low and wide peaks (t = 6
and t = 14) become two times narrower and about
1.5 times higher. Thus, the Fourier reconstruction of
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
nonperiodic noisy data is not suitable for our goals:
when the number of harmonics is small enough to
eliminate the noise, the restored signal does not re-
produce many important features of the original data.
It means that further theoretical analysis based on the
Fourier-reconstructed data (for instance, to obtain
the resonance masses and partial widths) would give
wrong results, no matter what physical model is used
for this analysis.

The situation is quite different when theWA is ap-
plied. A very helpful representation of the WT, which
allows one to see the features of the signal, gives
the “time–frequency” plane. This is a multiresolution
spectrogram that shows the frequency (scale) con-
tents of the signal as a function of time. Each pixel
on the spectrogram represents w(a, t) for a certain a
(scale) and t (time). Figure 1 (top) shows the wavelet
transformation w(a, t) performed by the MH. The
sequences of dark and light spots indicate variations
at corresponding scales. The location of a spot on the
vertical axis (scale axis, a) corresponds to the width
of the extremum. The intensity of dark spots shows
the amplitudes of maxima. The highest maximum at
t = 10 corresponds to the darkest spot that is located
at the smallest value of a ≈ 0.2 corresponding to this
narrowest maximum. The spot at t ≈ 1 is located at
larger a ≈ 0.35 and is not so dark [lower and wider
maximum in (9)]. The dark region at the top of the
figure demonstrates that, in the large-scale region,
the whole signal is nothing but a wide maximum.
The reconstructed signal is stable under small per-
turbations, which enables one to distinguish between
useful large-scale stains (low frequencies in Fourier
space) and contributions of the small-scale features
usually generated by noise. The noise is located at
the bottom of the wavelet plane (small-scale regions,
or high frequencies). In order to separate the signal
from the background noise, the wavelet reconstruc-
tion is performed for scales (scale parameter values)
greater than a certain scale anoise, which we will
call the boundary scale. Reconstructions for different
boundary scales are shown in Fig. 1 (bottom, right-
hand side). On the upper two graphs, the noise is
practically damped, and even then the localization of
all the maxima and their widths remains intact except
for the width of the narrowest one at t = 10. The latter
happens because the width of this peak is close to
the width of noiselike fluctuations and this part of
the signal is altered with noise filtering. The actual
experimental data that we analyze below do not have
very narrow peaks, and we included such a peak in
the model signal (9) in order to be able to discuss
more general cases. Thus, Fig. 1 illustrates that the
WA is a substantially better description of the data at
large enough values a than the Fourier description is
3
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Fig. 1. (Top) Wavelet plane. (Bottom) Model signal based on Eq. (9) and its Fourier reconstruction for different n (n is the
number of harmonics) (left side); wavelet reconstruction with MH wavelet for different values of the boundary scale (right
side).
at small numbers n—both these cases correspond to
damped noise.
Another signal, similar to physics-of-resonances

data, is generated by discretizing a combination of
several Lorentz-like peaks,

f(t) =
8

(t − 2)2 + 4
+

1
(t − 5)2 + 1

(10)

+
48

(t− 10)2 + 16
+

1
4(t − 15)2 + 1

.

The peaks have very different widths, and some
PH
of them substantially overlap. The signal was dis-
cretized with a step of 0.1 on the interval 0 < t < 20
and a random high-frequency noise was added at
each point (in the bottom of Fig. 2, we use a solid
curve for the analyzed signal). Two different con-
tinuations for f(t) below t = 0 were used to see
the effect of the boundary conditions: f(t) = 0 and
f(t) = f(0). (Since f(20) ≈ 0, a natural continua-
tion above t = 20 is f(t) = 0.) Figure 2 gives the
wavelet plane for the MH and the wavelet recon-
struction of this signal. It is seen that the results of
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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the WA of the signal (10) + noise are similar to those
obtained for the signal based on (9). Rigorously, the
continuous Gaussian-shape MH wavelet may not be
completely adequate for the problem of searching for
Breit–Wigner resonances, but for practical purposes,
as our examples demonstrate, it works well for both
Gaussian- and Lorentz-like signals. It is important
that the contributions of different bands to WT are
reasonably separated along the vertical axis. That
is why the reconstruction is stable under small
variations of anoise, which enables one to distinguish
between the informative low-frequency bands and
contributions of higher frequencies usually generated
by noise.
Here, to choose a boundary scale, anoise, that sep-

arates noiselike high-frequency components of data,
we hold to a pragmatic line of reasoning: the best
option of anoise is the smallest one which will smooth
out any rapid variations in data and enable us to re-
produce stable results for low frequencies (resonances
area). A similar pragmatic strategy was applied in [3,
4] to choose the parameter ∆ that had to be large
enough for a comparison of the smeared R̄e+e− with
QCD models, but not too large in order to keep some
fine details of the data.
The reconstructed data are obtained using the in-

verse transformation (6)

fr(t) = 〈f〉 + C
−1/2
ψ

amax∫
anoise

tmax∫
tmin

ψa,t(t′)w(a, t′)
dt′da

a5/2
.

(11)

The 〈f〉must be added to the reconstructed signal to
restore the mean value of the original signal (recall
that the mean value of the WT is zero because an
average value of any wavelet is zero). Formula (11) in
the limit anoise → 0, amax → ∞, tmin → −∞, tmax →
+∞ is equivalent to the exact relation (6), but in
practice a limited number of experimental points on
the restricted energy interval leads to a limited do-
main in the integral (11). To fill in the gaps between
experimental points, we use a linear interpolation. In
practice, different interpolations lead to a small dif-
ference in the restored signal (which produces a very
small difference on a lower part of the wavelet plane
corresponding to noise). To show that, in the case of
rather rare coverage on the energy scale in the data in
Fig. 8 (below), we use two interpolations: linear and
quadratic spline.
One of the big advantages of the WA is that the

sensitivity of the restored signal to any physically
reasonable continuation of the data outside the in-
terval (tmin, tmax), where the data are known, is very
low. Simply speaking, the Gaussian-like shape of
wavelets makes the integration insensitive to any
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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continuations outside of a few half-width intervals
from the Gaussian center. We directly checked for
several processes studied below that the WA proce-
dure is very stable from this point of view—the WA is
not sensitive to the behavior of the analyzed function
beyond the region of reconstruction (region of the
actual data).

3. WAVELET ANALYSIS OF DATA

The experimental data relevant to ρ′ and ω′ states
in e+e− annihilation and ππ scattering are available
from a variety of sources and are shown in Figs. 3–
10. The wavelet transformation images obtained with
the MH wavelet are shown on the upper panels of
Figs. 4–10. The WT localizes the structures in a
fashion that allows us to estimate the masses of the
resonances and their widths. Thus, the wavelet im-
ages themselves provide us with some useful infor-
mation before the reconstruction of the data and their
physical analysis is made. The straight horizontal
lines correspond to the boundary scale anoise which
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Fig. 3. Experimental data for the phase shift (a) and
inelasticity (b) of the p-wave ππ scattering [12, 13] and
their reconstruction.

cuts off the small scale structures. The curves in the
figures are the reconstructed data obtained using the
inverse transformation (11).
The cutoff value anoise in the figures below cor-

responds to the smallest structure included in the
reconstructed data. The width of such a structure can
be estimated with the width of the MH wavelet at
its half-height, Γ ≈ 1.5a. It is reasonable to assume
that a resonance structure to be reliably resolved
should include at least three experimental points. In
the data we analyze, the distance between the experi-
mental points is 0.01 GeV or larger, and the smallest
structures we are looking for have Γmin not less than
0.03 GeV. This value 0.03 GeV corresponds to the
value anoise = 0.02GeV, which we use in this section.
The data on ππ scattering do not contain much in-

formation about ρ′ mesons. The dips at 1.6–1.7 GeV
in Fig. 3 are clearly seen; that is why in order to
save space we do not present the wavelet planes.
The reconstruction of ππ-scattering data is stable
under variation of the boundary scale (the curves are
plotted for anoise = 0.02 GeV), which means that the
experimental noise can be very reliably separated—
here and elsewhere, this can be considered as one of
the criteria of quality of the experiment.
Figure 4 shows that, on the wavelet plane of

e+e− → ππ, along with the obvious ρ-meson con-
PH
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Fig. 4. Cross section of e+e− → ππ. (Top) Wavelet
plane. (Bottom) Experimental data [14–16] and recon-
struction.

tribution (large spot near 0.8 GeV), there are maxima
around 1.03, 1.4, 1.65–1.85, and 2.2 GeV (lnσ was
used for WA because of a logarithmic scale for σ in
Fig. 4). The first one is the least stable to variation of
value of anoise.

For e+e− → π+π+π−π− (Fig. 5), the most obvi-
ous maxima are located at about 1.45 and 1.7 GeV
with widths about 0.1 and 0.05 GeV, respectively. At
greater values of a, these two maxima appear as one
wide maximum around 1.55 GeV and width about
0.2 GeV. The situation we are describing recalls a for-
mer ρ′(1600) that was later resolved into two states.
For energy above the 1.7-GeV maximum, several
small maxima unstable to anoise variation are seen.

For e+e− → π+π−π0π0 with subtracted contri-
bution from ωπ0 (Fig. 6), two obvious maxima are
seen around 1.55 and 1.7 GeV with widths about
0.08 and 0.1 GeV. Two other maxima are seen to
occur around 1.3 and 2.0 GeV. All these structures
are stable for variation of the cutoff scale: a reduction
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Fig. 5.Cross section of e+e− → 2π+2π−. (Top)Wavelet
plane. (Bottom) Experimental data [17, 18] and recon-
struction.

of anoise by a factor of almost two does not change the
locations of the peaks and their shapes.

For e+e− → ωπ0 (Fig. 7), a wide structure is lo-
cated at about 1.25 GeV. A decrease in the cutoff
scale causes splitting of that major maximum—two
maxima occur at 1.05 and 1.45 GeV. Three more
smaller structures can be recognized between these
two. There are also two structures at about 1.85 and
2.0 GeV. The scale values corresponding to these
structures are close to reliable values of anoise. It can
be observed that, except for the 1.25- and 1.45-GeV
states, no dominating scales can be attributed to
other states.

The e+e− → ηπ+π− data (Fig. 8) are rather poor
and the only visible structure is a wide peak around
1.55 GeV. Here, to fill in rather big gaps between
the experimental points, we use linear and quadratic
spline interpolations. They lead to a small difference in
the restored signal and to a tiny difference on a lower
part of the wavelet plane corresponding to noise (on
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
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the wavelet plane, we present the plot corresponding
to a linear interpolation).

Thus, the WA indicates the ρ′ states with masses
1.05–1.25, 1.4, 1.6–1.85, and 2.0–2.2 GeV and
widths of about 0.1 GeV, which makes sense to be
included in further analysis that should be based
on some physical models. The first and the last
states are sensitive to high-frequency noise, which
makes them questionable. A discussion above on the
stability of those states under noise contribution can
help evaluate the reliability of the results of further
analyses. Note that the 1.01–1.25 GeV state has a
long and complicated history; one of the last pieces of
evidence was presented by the LASS group [25], but
it still needs confirmation.1)

1)The likely existence of ρ′(1200) with total width of about
0.2 GeV, the main decay mode into the ωπ0 channel and
smaller fractions into 2π and 4π states, was recently pre-
sented by Crystal Barrel [26].
3



1276 BELOZEROVA et al.

 

1.1

 
a

 

1.5 1.7

10

 

–1

 

16

12

8

4

0

–4

–8

 

10

 

–2

 

0.9 1.9 2.1

10

 

0

 

M

 

(

 

ωπ

 

0

 

), GeV

4

0.9 1.3

 

σ

 

, nb

 

M

 

(

 

ωπ

 

0

 

), GeV
1.5 1.7 1.9 2.1

0

8

12

16

1.3

1.1

Fig. 7. Cross section of e+e− → ωπ0. (Top) Wavelet
plane. (Bottom) Experimental data from [17, 19] and re-
construction.

For the process e+e− → π+π−π0 (Fig. 9), a wide
ω′ structure dominates at about 1.25 GeV. It decays
into three “horns”without characteristic scales as the
cutoff scale decreases. There is also a relatively stable
state at about 1.65 GeV with a rather well resolved
characteristic scale position a.

The wavelet plane in Fig. 10 for e+e− → ωππ
indicates a wide ω′ state at about 1.68 GeV and a
weaker state at around 1.8 GeV—both of these are
rather well resolved in a.
As we noted above, the argument in favor of de-

veloping a further more comprehensive analysis is

Table 1. Parameters of two ω′ mesons (in GeV)

Meson Mass Width

ω′
1 1.15 ± 0.033 0.197± 0.051

ω′
2 1.69 ± 0.014 0.297± 0.028
P
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constructions for different interpolations between exper-
imental points: solid curve for linear interpolation and
dashed curve for quadratic spline interpolation.

the fact that even data with good statistics do not
directly provide masses and widths of the resonances.
Due to overlapping, the observed positions of maxima
can differ substantially from the physical resonance
masses, and partial and total widths can differ signifi-
cantly from preliminary estimations. The WA in this
case yields a useful set of starting conditions for a
more accurate analysis. For the sake of clarity in the
following section, and because the main goal of this
paper is the WA, we do such an analysis for the ω′

states only (it involves a smaller number of states and
channels than those related to the ρ′ states).

4. BREIT–WIGNER ANALYSIS OF ω′ STATES
USING THE WAVELET-ANALYZED DATA

The interference of the resonances with the same
decay channels is the key aspect of any analysis and
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Table 2. Branching ratios of two ω′ mesons (in %) and phases of ω′
2 (relative to ω

′
1, in deg)

Channel Bω′
1

Bω′
2

ϕω′
2

e+e− (1.7 ± 0.4) × 10−5 (1.4 ± 0.6) × 10−4 0.16 ± 1.9

ρπ 86.2 ± 53.6 13.9 ± 11.1 0.07 ± 13.3

ωππ 13.8 ± 53.6 86.1 ± 11.1 0.14 ± 2.1
interpretation. In the Breit–Wigner (BW) approach,
this interference is often taken into account by rel-
ative phases in BW terms that are treated as free
parameters, the most often just 0 or π. The results of
analysis critically depend on the choice of the phase
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set. Whether or not these phases are included, such a
sum of BW terms is depleted of unitarity, which is the
basic point in the BW description.
There are several unitarity-preserving approaches,

such as an often usedK-matrix method. Contrary to
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this approach, the BW method directly provides the
physical parameters of the resonances, their masses,
widths, and branching fractions.

Let us briefly formulate the unitarity-preserving
BWmethod (details and connection to different meth-
ods are described in [27, 28]). Let the scattering am-
plitudes be written as

fij(s) =
N∑
r=1

mrΓrgrigrj
s−m2

r + imrΓr
(12)

=
N∑
r=1

ei(ϕri+ϕrj)
mrΓr|gri||grj |

s−m2
r + imrΓr

,

where the phases ϕri are not free independent param-
eters and should be determined in such a way that

Table 3. Parameters of three ω′ mesons (in GeV)

Meson Mass Width

ω′
1 1.204 ± 0.014 0.250 ± 0.048

ω′
2 1.550 ± 0.019 0.212 ± 0.077

ω′
3 1.700 ± 0.021 0.300 ± 0.039
P

preserves unitarity (note that the number of free pa-
rameters is smaller than or equal to that in a “naive”
BW or K-matrix approach). As is often used for
the vector states, here we use the approximation of
energy-independent widths.
Index i = 1 corresponds to the initial state e+e−

(or to the virtual photon), index j = 2, 3 corresponds
to the final states π+π−π0 and ωππ (which are the
two main channels of the ω′-state decay [29]), and in-
dex r enumerates theω′ resonances. Here, we use da-
ta, some of which are rather recent [22–24], that lead
to ω′ states with masses rather different from those
cited most often (at about 1.45 and 1.6 GeV) [29].
The ω′ masses reported from the SND detector [24]
are 1.25, 1.40, and 1.77 GeV. In the previous work of
the same team [22], the PDG [29] resonance ω′(1420)
was not observed and the ω′(1200) state was reported
as a replacement for ω′(1420). Interestingly, the 1.2-
GeV state is clearly observed on the wavelet plane in
Fig. 9, and the important aspect is that ω′(1420) is
rather sensitive to the anoise value.
A comparison of the reconstructed data and ex-

pression (12) is seen in Figs. 9 and 10. For two
ω′, there are eight free parameters; for three ω′,
the number of free parameters is 12. The three-ω′

fit better describes the region 1.4–1.5 GeV for the
cross section of e+e− → π+π−π0, but the overall
description for the two processes is about the same
for both cases with χ2/nD ≈ 1.3. Starting from the
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Table 4. Branching ratios of three ω′ mesons (in %) and phases of ω′
2 and ω

′
3 (relative to ω

′
1, in deg)

Channel Bω′
1

Bω′
2

ϕω′
2

Bω′
3

ϕω′
3

e+e− (1.9 ± 1) × 10−5 (1.1 ± 0.5)× 10−5 −24.4 ± 9.3 (1.3 ± 1) × 10−4 −16.1 ± 2.5

ρπ 83.2 ± 35.1 81.6 ± 11.8 −34.5 ± 5.9 15.7 ± 10.5 −10.8 ± 6.4

ωππ 16.8 ± 35.1 18.4 ± 11.8 −28.4 ± 10.9 84.3 ± 10.5 −21.5 ± 6.6
WA masses (and widths), we allow big deviations
of about 150 MeV from these positions in either
direction. The masses, widths, branching ratios,
and relative phases of ω′ states are presented in
Tables 1–4.

5. CONCLUSION

Numerous applications of wavelets to data analy-
sis in different fields of mathematics and physics have
proved themselves to be a powerful tool for studying
the fractal signals and data. This technique can be
successfully applied to some problems of nuclear and
high-energy physics where wavelet analysis will work
as a tool for studying the energy scaling of the pro-
cess.
When studying the data containing the informa-

tion on ρ′ and ω′ states, we performed the WA of
the data in order to single out their contribution. Due
to good scaling properties of the wavelets, one can
consider experimental data with various resolutions,
which allows us to separate the resonances from
noise and from each other. Such a local analysis (and
the corresponding reconstruction) is very significant
when it is necessary to distinguish between several
resonances in experimental data with large errors, as
in the case of ρ′ and ω′ mesons. The WA is much
less sensitive to the noise than any other analysis
and allows us to reduce the role of statistical errors
substantially.
In the case of one isolated resonance (or several

resonances that are very distant from each other), the
wavelet image of data gives practically direct infor-
mation about the mass and total width of each reso-
nance. When resonances overlap, their physical pa-
rameters are found by applying the BW approach that
preserves unitarity of the amplitudes for such cases.
Fitting the data with suppressed noise gives more
reliable results for resonance parameters. The WA of
the data we use indicates the ρ′ states with masses
of 1.05–1.25, 1.4, 1.6–1.85, and 2.0–2.2 GeV and
the ω′ states at about 1.2, 1.6, and maybe at 1.4 and
1.8 GeV. The Review of Particle Physics [29] contains
the references to the experimental and theoretical
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
works related to the ρ′ and ω′ states with the masses
close to all the ones listed above. The parameters of
these states are knownwith a large uncertainty due to
the poor accuracy, troubles in analyzing overlapping
states, and conflicting experimental data. The e+e−

annihilation into hadrons gives the most direct obser-
vation of the vector states. Other processes (such as τ
decays) also give very important information, but with
substantially greater uncertainty in the parameters of
resonances.
The WA shows that some experimental data are

statistically inadequate in the sense that they do not
allow the noise contribution to be separated. The
method gives the criteria for distinguishing between
“stable” and “unstable” data—the latter do not re-
produce the same essential structures when a con-
tribution of the experimental noise changes slightly.
Technically, it means that the structure (resonance) is
questionable if it is sensitive to the noise-cutoff value.
Interestingly, this criterion supports ρ′ at about 1.45
and 1.65–1.70 GeV, in accord with the assessment
in the current PDG [29] compilation. (We cannot
directly compare the parameters of ω′ states that we
obtained with those in [29], because the data on ω′ we
analyze [22, 24] are not included in [29] review yet.)
The only conclusion that we can draw with help of
the WA about other states (like ρ′(1200)) is that their
existence is consistent with the experimental data,
but improvement of the cross-section measurement
accuracy is needed.
Let us note one more thing related to fluctuations.

While small-scale structures located at the bottom
of wavelet plane correspond to experimental noise,
the structures in the intermediate part of the wavelet
plane can be of a different nature. Dark spots (re-
lated to the large amplitude of the wavelet coeffi-
cient w(a,E)), resolved in frequency, occur where the
structure of the signal is similar to the wavelet shape
and size at this location (a,E). Thus, such spots are
most likely associated with resonances. There might
also be dark “horns” (usually less intense than in
the previous case) reaching high frequencies from
the area of low or intermediate frequencies, and not
having a relatively well resolved maximum intensity
3
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(looking like a kneecap). Such horns should also be
checked for association with resonances (using some
physical models), but most likely they are related to
noise fluctuations of large amplitude (when one or
a few experimental points substantially jump up or
down with respect to their neighbors).
To conclude this paper, let us return to the ra-

tio Re+e− to demonstrate another application of the
wavelet technique to high-energy physics. To even
out any rapid variations in Re+e− , we remove high-
frequency noise with WT, which provides the smear-
ing alternative to the procedure (1). The wavelet ap-
proach corresponds remarkably to this goal because
of its multiscale nature.
The restored data in Fig. 11 keep all the main

features ofRe+e− with statistical errors and threshold
singularities damped, which makes a direct compari-
son with the corresponding QCD-smeared quantity
possible. The restored data are stable under rather
large variations of the cutoff scale, which reflects the
quality of theRe+e− data.
We restore the Re+e− on the same interval as

in [3, 4], from about 1.4 to 7.5 GeV. It is interesting
to compare how the resonances and E < 1.4 GeV
and E > 7.5 GeV regions have been treated in [3,
4] and in our approach. Using the approach of [3],
it was necessary to exclude the sharp resonances,
ψ,ψ′, etc., from the data to calculate the integral (1).
Moreover, it was necessary to exclude a rather wide
ρ peak that substantially contributes to (1). A term
was then added to account for the contribution from
smax to ∞, assuming that Re+e− remains constant
above smax ≈ 60GeV2. The initial idea of smearing [3]
supposes a global constant value of ∆ in (1) (in [3],
a value ∆ = 3 GeV2 was used), but it turned out [4]
that, for different energy regions, it would be bet-
ter to use different ∆—in our context, we can note
that use of an energy-dependent ∆ in (1) in some
sense reflects the necessity to use different scales.
The WA allows us to not remove the resonances by
hand—the sharp resonances get just a part of the
high-frequency noise background and the ρ-meson
contribution in the smeared Re+e− can be evaluated.
Above 1.5 GeV, for a big cutoff value anoise, it just
gives some small vertical shift for the restored curve—
the dotted curve on Fig. 11 is obtained by including
all experimental points above the 2mπ threshold, and
the dashed curve is obtained when the data from
the threshold are continued to the first experimental
point in the figure at about 1.4 GeV using a linear
approximation (thus excluding the ρ peak). When the
cutoff value increases, the difference between these
two curves becomes very small—corresponding re-
constructed data for the value anoise = 0.6 GeV are
indicated by the dashed-dotted curve. The data from
an energy interval well beyond 8 GeV (we use the
PH
data from [29] up to 60 GeV) contribute a negligible
amount below 8 GeV in the restored data. As seen
in Fig. 11, our WA-smeared ratio Re+e− corresponds
very well to the theoretical prediction for the QCD-
smeared ratio.
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Abstract—The helicity components σ1/2 and σ3/2 of the cross section for double charged-pion production
by real photons on a nucleon are calculated within a phenomenological approach developed previously. A
high sensitivity of the σ1/2–σ3/2 asymmetry to the contribution of nucleon resonances having strongly
different electromagnetic helicity amplitudes A1/2 and A3/2 is demonstrated. This feature is of importance
for seeking “missing” baryon states. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Experiments with polarized electron (photon)

beams and polarized proton targets made it possible
to determine the cross sections σ1/2 and σ3/2 corre-
sponding to the total proton and photon helicities of
1/2 and 3/2 in the initial states both for the inclusive
channel and for various exclusive channels [1–6].
Interest in studying the helicity components σ1/2 and
σ3/2 is motivated by the following factors.

On the basis of the most general theoretical prin-
ciples, Gerasimov [7] and Drell and Hern [8] (GDH in
the following) predicted the value of the integral

IGDH =
∫

(σ1/2 − σ3/2)
dν

ν
, (1)

where σ1/2 and σ3/2 are the total photoabsorption
cross sections for the case in which the total photon–
proton helicity is 1/2 and 3/2, respectively, while ν is
the photon energy. It follows from [7, 8] that the GDH
integral must take the value of−204 µb at the photon
point. The experimental results reported in [1, 2] were
compared with the predictions made in [7, 8]. The
definition of IGDH can be extended to the case of
virtual-photon absorption, IGDH = IGDH(Q2), where
Q2 is the sign-reversed square of the virtual-photon
4-momentum. The investigation of the Q2 depen-
dence of IGDH in [4] revealed that, forQ2 > 1.0GeV2,

1)Institute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia.

2)Istituto Nazionale di Fisica Nucleare, Sezione di Genova,
Genova, Italy.

3)Faculty of Physics, Moscow State University, Vorob’evy
gory, Moscow, 119899 Russia.
1063-7788/03/6607-1282$24.00 c©
its behavior obeys the 1/Q2 law. This behavior follows
from the calculations within perturbative QCD in the
regionQ2 > 5GeV2, but experimental data are in ac-
cord with the asymptotic behavior of photon–proton
interaction at lower values ofQ2 down to 1 GeV2.

The integral IGDH grows fast from the photon
point to Q2 ≈ 1–2 GeV2, and its absolute value de-
creases approximately by an order of magnitude at
Q2 = 1.0 GeV2. Under the assumption of photon
interaction with proton partons, the difference σ1/2 −
σ3/2 is determined by the difference of the probabilities
of finding a parton with spin orientation along and
against the photon-spin direction. Thus, the integral
IGDH is related to the contribution of the parton spin
to the total proton spin. According to the analyses
performed in [9, 10], the contribution of the parton
spin to the total nucleon spin in the asymptotic region
(Q2 > 1.0 GeV2) does not exceed 30%; at the photon
point (Q2 = 0 GeV2), the main contribution to the
nucleon spin comes from constituent quarks.

Thus, the variation in the quantity Q2 over the
interval from 0 to 1.0 GeV2 leads to a significant
variation in the helicity amplitudes of photon–proton
interaction and in the contribution of the quark spin
to the total proton spin. In order to understand mech-
anisms behind such strong changes in the spin struc-
ture of the photon–proton interaction, it is necessary
to analyze contributions of various exclusive channels
to the cross-section difference σ1/2 − σ3/2.

A detailed description of the Q2 andW (W is the
total energy in the c.m. frame) dependences of the
cross sections σ1/2 and σ3/2 and of the GDH integral
2003 MAIK “Nauka/Interperiodica”
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in total-photoabsorption and single-pion-production
reactions was given in [11]. AtW > 1.6GeV, double-
pion-production reactions begin to contribute to the
cross section for the total-photoabsorption reaction
on a proton significantly; atW > 1.9 GeV, their con-
tribution becomes dominant. Therefore, it is inter-
esting to investigate the helicity components of the
cross section for double pion production by photons
on a proton. In [12–14], a model was developed for
describing double pion production on a proton by
virtual and real photons at W < 4.0 GeV and Q2,
−t < 5.0 GeV2, where t is the square of the difference
of the initial- and final-proton 4-momenta. In this
kinematical region, the model proposed in [12–14]
describes well the entire body of available data on the
cross sections for double charged-pion production by
real and virtual pions. This approach was used to
analyze the first data of the CLAS Collaboration on
the double production of charged pions by photons on
a proton in the energy region corresponding to the ex-
citation of nucleon resonances (E-93-006 experiment
at JLAB; spokespersons V.D. Burkert and M. Ri-
pani) [15, 16]. In the present study, we calculate the
helicity components σ1/2 and σ3/2 of the cross section
for double charged-pion production by real photons at
W < 2.0 GeV, relying on the approach developed in
[12–14]. We determine the model parameters from a
fit to all available data on the cross sections for double
charged-pion production by photons in the energy
region of nucleon-resonance excitation.

2. DESCRIPTION OF THE CROSS
SECTIONS FOR DOUBLE CHARGED-PION
PRODUCTION ON PROTONS AND THEIR

HELICITY COMPONENTS

Quasi-two-particle mechanisms involving the
production and subsequent decay of ∆ and ρ res-
onances in the intermediate state (see Fig. 1) are
known to make the main contribution to the reaction
of double charged-pion production on a proton target.
The amplitude of each mechanism in Fig. 1 was
calculated in the Breit–Wigner approximation as the
product of the relevant two-particle amplitude, the
amplitudes for the decay of unstable intermediate
particles into stable final-state particles, and the
corresponding Breit–Wigner propagators [13, 14].
We describe all other processes that contribute to
the double-pion-production reaction in the phase-
space approximation; that is, their total amplitude
is approximated by a quantity C(W,Q2) that is
independent of the final-state kinematical variables
and which is a free model parameter to be determined
from an analysis of experimental data. The amplitudes
for the quasi-two-particle mechanisms in Fig. 2 are
described by a superposition of the excitations of
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
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Fig. 1. Mechanisms of the production of π+π− pairs by
photons on a proton.

nucleon resonances in photon–proton interaction in
the input channel (Figs. 2a, 2f) and nonresonance
mechanisms (Figs. 2b–2e and 2g).

In calculating the resonance components in the
amplitudes for the quasi-two-particle reactions
(Fig. 2), we took into account all well-known nu-
cleon resonances having masses below 2.0 GeV and
significant widths with respect to decays through the
π∆ and ρp channels [12, 13].

The resonance amplitudes were calculated in the
Breit–Wigner approximation. The details of the cal-
culations can be found in [12]. The electromagnetic
amplitudes corresponding to the γpR vertex were cal-
culated on the basis of data on the helicity amplitudes
A1/2 andA3/2 from [17]. Here, a nucleon resonance is
denoted by R. For these amplitudes, one can also use
the results obtained within any quark model.

Having calculated the cross section for double
charged-pion production within the model proposed
in [12–14] with the model amplitudes A1/2 and A3/2

estimated on the basis of a quark model, we can
compare the results with experimental data and, in
this way, confirm that the model description of the
electromagnetic form factors for nucleon resonances
is adequate. On the other hand, we can treat the
electromagnetic form factors as free parameters of
the model and extract their values from a fit of the
calculated cross sections to experimental data. We
determined the amplitudes of the strong nucleon-
resonance decays corresponding to the Rpρ (Rπ∆)
vertex from the results obtained in [18] by analyzing
the cross sections for πN → ππN reactions.

We described nonresonance processes in the
quasi-two-particle reaction γp→ ρp in the diffraction
approximation [13, 14]. The common factor in the
nonresonance amplitude is a free parameter that is
3
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independent of W and which must be determined
from experimental data.

We described the nonresonance amplitude for
the channel γp→ π∆ by the set of gauge-invariant
Born amplitudes corresponding to the diagrams in
Figs. 2b–2e. Off-shell pion formation in the mech-
anism represented by the diagram in Fig. 2c was
taken into account by introducing the πN∆ vertex
function determined from data on NN scattering
and the pion electromagnetic form factor [12]. The
product of the strong and electromagnetic vertices
for the diagram involving the exchange of a ∆ isobar
(Fig. 2e), as well as the t and Q2 dependence of
the contact term (Fig. 2b), was determined from the
condition requiring that the sum of Born terms be
gauge-invariant [12]. The possibility of the exchange
of variousmesons with pion quantum numbers via the
mechanism in Fig. 2c—this possibility is of particular
importance atW > 1.7 GeV—is effectively described
by means of the substitution of the pion Regge tra-
jectory for the one-pion propagator, as was proposed
in [19]. To restore the gauge invariance of Born
terms, we follow the procedure used in [19]. All Born
amplitudes corresponding to one-pion exchange are
multiplied by the common factor(

t−m2
π

)
Rπ(t), (2)
P

whereRπ(t) is the Regge propagator proposed in [19]
for the pion trajectory, t is the Mandelstam vari-
able corresponding to the amplitude in Fig. 2c, and
mπ is the pion mass. The multiplication of the one-
pion-exchange amplitude (Fig. 2c) by the factor in
(2) corresponds to the substitution of the Reggeized
propagator Rπ(t) for the one-pion propagator in this
amplitude. Since the gauge-invariant sum of Born
amplitudes involving one-pion exchange is multiplied
by a common factor, the gauge invariance of the sum
is preserved upon the substitution of the Reggeized
propagator Rπ(t) for the one-pion-exchange propa-
gator.

The use of the Reggeized gauge-invariant Born
amplitudes made it possible to obtain a satisfactory
description of experimental data from [20] on the
angular distributions of π− mesons in the quasi-
two-particle channel γp→ π∆ (see Fig. 3). There-
by, problems concerning the description of the π−-
meson angular distribution in the reaction γp → π∆,
which were discussed in [12], have been successfully
solved; at the present stage, the Born terms in the
channel γp→ π∆ are gauge-invariant in our model.

Coupling to open inelastic channels in the initial
and final states is of importance in describing the
nonresonance Born amplitudes for the reaction γp→
π∆. In [12], a dedicated approach was developed ac-
cording to which this coupling is effectively taken into
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Fig. 3. Angular distribution of π− mesons in the reaction γp → π−∆++ according to our calculations with Reggeized Born
terms (see main body of the text), along with experimental data from [20]. The angle between the γ and π− momenta in the
c.m. frame is plotted along the abscissa.
account as the absorption of projectile particles in the
initial state and the absorption of emitted particles in
the final state. The absorption factors are determined
from data on πN scattering.

The helicity differential-cross-section compo-
nents dσ1/2 and dσ3/2 are defined as

dσ1/2(3/2) =
1
2
4πα

1
4KLMN

(3)

×
∑

λγλpλp′

∣∣〈ππλp′ |T |λγλp〉∣∣2 dτ,
|λγ + λp| = 1/2(3/2),

where 〈ππλp′ |T |λγλp〉 are the helicity amplitudes for
the reaction of double charged-pion production at
the incident-photon helicity of λγ , the target-proton
helicity of λp, and the final-state-proton helicity of
λp′ .

The quantity KL is the equivalent-photon wave
vector

KL =
W 2 −M2

N

2MN
, (4)

whereMN is the nucleon mass and α = 1/137 is the
fine-structure constant.
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The element dτ of the final-state three-particle
phase space is

dτ =
1

32W 2

1
(2π)5

dSπ+pdSπ+π−dΩdα, (5)

where Sπ+p and Sπ+π− are the squares of the invariant
masses of, respectively, the π+p and the π+π− system
in the final state; Ω is the solid angle of proton (or
π−-meson) emission; and α is the angle between the
plane spanned by the photon and proton (or photon
and π−-meson) 3-momenta and the plane spanned
by the π+- and π−-meson (or π+-meson and proton)
3-momenta.

In calculating the helicity components dσ1/2(3/2),
the terms characterized by the total helicities λγ +
λp are included in the sum in (3) according to the
lower line in (3) and the conventions in [21]. The
sum dσ1/2 + dσ3/2 is related to the total unpolarized
cross section as follows:

dσ1/2 + dσ3/2 = 2dσ. (6)

The amplitudes parameterized in the phase-space
approximation,C(W,Q2), are shared between the he-
licity components of 1/2 and 3/2 under the assump-
tion of their equal contributions to all helicity states.
3
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Fig. 4. Experimental data from [20] on the W depen-
dence of the integrated cross sections for the reaction
γp → π+π−p (•) and contributions of the quasi-two-
particle channels γp → π−∆++ (�) and γp → ρp (�),
along with the results of the calculations based on the
model described in the main body of the text.

Upon including, in the model developed in [12–
14], the calculations of the polarization components
dσ1/2(3/2) of the cross sections, the values of the
electromagnetic form factors for nucleon resonances
can be extracted from a simultaneous fit to unpo-
larized differential cross sections dσ and their he-
licity components dσ1/2(3/2). Such an extension of
the range of fitted data may significantly improve the
accuracy with which one extracts the electromagnetic
form factors for nucleon resonances. In addition, a
calculation of the helicity components dσ1/2(3/2) with
the amplitudes A1/2 and A3/2 from various quark
models and a comparison of the results obtained in
this way with experimental data extend considerably
the possibilities for validating the description of the
structure of nucleon resonances as objects formed by
interacting quarks and gluons.

The approach developed in the present study can
also provide information about the contributions of
resonance and nonresonance mechanisms and vari-
ous two-quasi-particle channels to the cross-section
components dσ1/2(3/2). This information is of great
value for obtaining deeper insight into the spin struc-
ture of nucleons and into the dynamics of processes
that are responsible for the evolution of the helicity
structure of photon–proton interaction.
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3. RESULTS OF THE CALCULATIONS
FOR THE HELICITY COMPONENTS

OF THE CROSS SECTIONS FOR DOUBLE
CHARGED-PION PRODUCTION

BY PHOTONS

Within the approach described above, we have
calculated the W dependences of the helicity cross-
section components σ1/2 and σ3/2 for the exclusive
channel of double charged-pion production by pho-
tons. The electromagnetic form factorsA1/2 andA3/2

for nucleon resonances were taken in accordance with
data presented by the Particle Data Group [17]. The
amplitudes of strong resonance decays were extracted
from [18] by using the method described in [12]. The
following parameters of the model were taken to be
free: the amplitude of the three-particle phase space,
C(W,Q2); the effective coupling constant for the π
Regge trajectory; and the multiplicative factor of the
diffractive nonresonance amplitude for ρ-meson pro-
duction. The free parameters were determined from a
fit to data of the ABBHM Collaboration [20] on the
W dependences of the integrated cross sections for
double charged-pion photoproduction.

The integrated cross sections that were calculated
for double charged-pion photoproduction on the basis
of our model with the parameter values corresponding
to the best fit are displayed in Fig. 4 along with experi-
mental data from [20]. The calculations are seen to re-
produce these data well. In order to test our model, we
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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calculated the integrated cross sections for the quasi-
two-particle reactions γp→ π−∆++ and γp→ ρp,
employing the parameters determined from a fit to
the total cross section (solid curve in Fig. 4). TheW
dependences of the integrated cross sections for these
reactions (dashed and dash-dotted curves in Fig. 4)
are contrasted against experimental data from [20].
It can be seen that these theoretical results faithfully
reproduce the data from [20] on the W dependences
of the integrated cross sections for these quasi-two-
particle channels.

The calculated helicity components σ1/2 and σ3/2

and their difference for the integrated cross sections
are shown in Fig. 5 versus W . The lower panel in
Fig. 5 displays the contributions of the resonance
mechanisms (dashed curve) and nonresonance pro-
cesses (dotted curve) to the difference σ1/2 − σ3/2.

A feature peculiar to the difference σ1/2 − σ3/2

is the formation of a dip at W = 1.50 GeV. Such
a structure was observed in the MAMI experimen-
tal data [3] on the difference σ1/2 − σ3/2 in double
charged-pion production. The predicted structure
is in qualitative agreement with the data from [3].
The W dependence for nonresonance processes is
smooth, while the W dependence for the excita-
tion of nucleon resonances features a structure at
W = 1.51 GeV (Fig. 5b). The structure in the W
dependence of the difference σ1/2 − σ3/2 results from
the contribution of the D13(1520) state, which is
characterized by significantly different values of the
electromagnetic helicity amplitudes A1/2 and A3/2

(−0.024 and 0.166 GeV−1/2, respectively). So great
a distinction between these helicity amplitudes leads
to strongly different values of the helicity components
of the resonance part of the cross section; this in turn
leads to a dip in the W dependence of the difference
of the helicity total-cross-section components σ1/2

and σ3/2 at a W value close to the mass of the
D13(1520) resonance. Thus, measurement of the
helicity components of the cross section for double
pion photoproduction is sensitive to the existence
of resonances characterized by significantly different
values of the electromagnetic form factors A1/2 and
A3/2 and can be used as an effective tool in searches
for such states. In particular, measurements of the
helicity components of the cross section will play an
important role in seeking “missing” baryon states
having significantly different electromagnetic form
factors.

From the theoretical results presented in Fig. 5b,
it follows that, in the energy region corresponding to
the excitation of nucleon resonances, there is a strong
interference between resonance and nonresonance
amplitudes. Measurement of the helicity components
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
of the cross section can aid in determining the rela-
tive phase of resonance and nonresonance amplitudes
from experimental data, and this is of importance
because it is difficult to do this theoretically.

4. CONCLUSION

On the basis of the model developed in [12–14]
for describing double charged-pion photoproduction
on a proton, we have predicted here the W depen-
dence of the helicity cross-section components σ1/2

and σ3/2 and of their difference. The results exhibit
a rather high sensitivity of the difference σ1/2 − σ3/2

to the excitation of resonance states characterized
by significantly different values of the electromag-
netic form factors A1/2 and A3/2. The excitation of
such resonances leads to the formation of resonance
structures in the W dependence of the difference of
the helicity cross-section components σ1/2 and σ3/2.
Thus, measurement of the helicity components of the
cross section for double charged-pion photoproduc-
tion will play an important role in the investigation
of nucleon resonances having significantly different
values ofA1/2 andA3/2—in particular, in searches for
“missing” baryon states that possess such properties.

Our approach makes it possible to extract the
electromagnetic form factors for nucleon resonances
from a global fit to data on the differential cross sec-
tions for double charged-pion photoproduction and
their helicity components. The development of the
model from [12–14] in the course of the present in-
vestigation, along with the extension of the range of
data subjected to analysis, significantly enhances its
potential for determining the electromagnetic form
factors for nucleon resonances and improves the re-
liability of the results obtained in this way.
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Theory
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Abstract—The emergence of transverse polarization of the lepton in the decay processes B0 → D−l+νl

and B+ → D̄0l+νl for l = τ , µ is studied on the basis of the Standard Model in the leading approximation
of heavy-quark effective theory. It is shown that a nonzero transverse polarization appears owing to
electromagnetic final-state interactions at the one-loop level. Diagrams involving D and D∗ mesons in
the intermediate state and making a nonzero contribution to the transverse polarization of the outgoing
lepton are considered. If only these mesons are taken into account in evaluating the mean values of the
τ-lepton polarization in the decays B0 → D−τ+ντ and B+ → D̄0τ+ντ , the results are 2.60 × 10−3 and
−1.59× 10−3, respectively. The corresponding values of the transverse muon polarization averaged over
the Dalitz plot are 2.97 × 10−4 and −6.79× 10−4. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Although the Standard Model has correctly pre-
dicted the results of many experiments, the mecha-
nism ofCP violation has yet to be established conclu-
sively. In the Standard Model, CP violation is due to
the complex-valuedness of the Cabibbo–Kobayashi–
Maskawa matrix; however, there are many models
that offer different mechanisms of CP violation. The
Weinberg model involving three doublets of Higgs
bosons [1] provides an example of a model where CP
violation occurs in the Higgs sector. Investigation
of CP-odd phenomena may contribute to obtaining
deeper insight into the mechanism of CP violation
and, hence, to clarifying some basic questions of
elementary-particle physics.

As an example of physical quantities sensitive to
CP violation, we can consider the transverse polar-
ization of leptons and T -odd correlations in weak
decays. The transverse polarization of themuon in the
decays K+ → µ+νπ0 andK+ → µ+νγ has been the
subject of many theoretical and experimental investi-
gations. In some extensions of the Standard Model, it
appears even at the tree level [2, 3]. In the Standard
Model, the transverse polarization of an outgoing
lepton is small because it vanishes in the tree approx-
imation. A nonvanishing (CP-conserving) contribu-
tion to this quantity is due to final-state interaction.
The transverse polarization of the muon in the decay
K+ → µ+νγ arises at the one-loop level and varies
in the range (0.0–1.1)× 10−3 over the Dalitz plot. Its
average over the kinematical domain Eγ ≥ 20 MeV
1063-7788/03/6607-1289$24.00 c©
amounts to 4.76 × 10−4 [2]. The transverse polariza-
tion of the muon in the decay K+ → µ+νπ0 is as
small as about 10−6 in the Standard Model [4, 5];
therefore, it is advisable to seek effects of new physics
in this decay. The current experimental value obtained
in the KEK-E246 experiment [6] for the transverse
polarization of the muon in this process is

PT = −0.0042 + 0.0049(stat.) + 0.0009(syst.). (1)

This result does not give sufficient grounds to state
that the transverse polarization of the muon in the
process being discussed is due to new physics. How-
ever, the accuracy of the experiments will be improved
in the near future, and this looks quite promising for
studying CP violation.

The T -odd correlation in the decay K+ →
π0µ+νγ (it is defined in terms of the distribution
of the decay width with respect to the T -odd kine-
matical variable pπ · [pµ × q]) is also small within
the Standard Model [7]. The reason is identical to
that in the case of the transverse polarization of the
outgoing lepton in Kl2γ decays. It is expected that
this T -odd correlation will be measured in the OKA
experiment [8] on the basis of some 7 × 105 events.

The transverse polarization of the outgoing lepton
can be measured not only in the decays ofK mesons,
but also in the decays of B mesons. The latter de-
cays are particularly sensitive to the CP-violating
interactions of Higgs particles with fermions. Obvi-
ously, the transverse lepton polarization induced by
the interactions of Higgs particles in the decay K →
2003 MAIK “Nauka/Interperiodica”
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πµν is (mbmτ )/(msmµ) ∼ 800 times less than the
analogous polarization in the decay B → D(D∗)τντ .

In [9–11], effects associated with the emergence
of a CP-violating component in the transverse polar-
ization of the lepton in the decay B → D(D∗)lν were
considered within various extensions of the Standard
Model. If CP violation occurs in the Higgs sector,
the transverse polarization of the τ lepton can take
values in the region PT < 1 [9, 10]; the corresponding
constraint in the leptoquark model is PT < 0.26 [11].
Thus, the magnitude of transverse polarization is
expected to be quite large in some extensions of the
Standard Model. In order to perform an exhaustive
investigation of this issue, it is necessary, in our
opinion, to begin by computing, within the Stan-
dard Model, the transverse polarization of outgoing
leptons in the above decay processes. The present
study is devoted to analyzing the CP-conserving
component of the transverse polarization of the lepton
in the decays B0 → D−l+νl and B+ → D̄0l+νl,
where l = τ, µ.

For the sake of simplicity, our calculations are
performed on the basis of heavy-quark effective theory
(HQET) in the leading order of the expansion in pow-
ers of 1/mQ.We show that the transverse polarization
does not vanish only if the phases of the form factors
that appear in the expression for the amplitude are
different. It is electromagnetic final-state interaction
that gives rise to a nonvanishing phase even in the
one-loop approximation, and this in turn leads to a
nonzero value of the transverse polarization. Also, we
take into account the contribution of only the (D,D∗)
doublet in our calculations.

The ensuing exposition is organized as follows.
Expressions describing the form factors for the pro-
cesses under study are given in Section 2. The pro-
cedure for computing the transverse polarization in
question is outlined in Section 3. The results of nu-
merical computations are presented and discussed in
Section 4.

2. FORM FACTORS FOR THE PROCESS
UNDER STUDY

In calculating the transverse polarization of the
outgoing lepton (that is, the polarization component
orthogonal to the decay plane), we will need some
form factors; the most general expressions for them
have the form
〈D(k)|V µ|B(p)〉 = f+(pµ + kµ) + f−(pµ − kµ), (2)

〈D(k)|Aµ|B(p)〉 = 0,

〈D∗(k, ε)|V µ|B(p)〉 = −iveµναβε∗νkαpβ,
〈D∗(k, ε)|Aµ|B(p)〉 = a1(ε∗)µ + a2(ε∗p)pµ

+ a3(ε∗p)kµ,
P

where the quantities V µ = b̄γµc andAµ = b̄γµγ5c are
associated with B-meson decays. The form factor
〈D(k)|Aµ|B(p)〉 is equal to zero because an axial
vector cannot be generated by the two momentum
vectors that we have at our disposal. The definition
of the Levi-Civita tensor appearing in the expression
for the transition current 〈D∗(k, ε)|V µ|B(p)〉 is such
that e0123 = 1.

We calculate the transverse polarization in the
leading order of HQET—that is, under the assump-
tion thatmb,mc → ∞. In this approximation, all form
factors can be expressed in terms of the Isgur–Wise
function ξ(ω) [12, 13]; accordingly, expressions (2)
can be recast into the form

〈D(k)|V µ|B(p)〉 =
ξ(ω)√
mDmB

(mDp
µ +mBk

µ), (3)

〈D(k)|Aµ|B(p)〉 = 0,

〈D∗(k, ε)|V µ|B(p)〉 = −i ξ(ω)
√
mDmB

eµναβε∗νkαpβ,

〈D∗(k, ε)|Aµ|B(p)〉 =
ξ(ω)√
mDmB

× ((mBmD + pk)ε∗µ − (ε∗p)kµ),

where ω = (pk)/(mDmB).
In addition to the matrix elements given above, we

will need the matrix elements of the vector current
describing the D–D and D∗–D transitions. Within
HQET, the form factors that appear in the expressions
for thesematrix elements are expressed in terms of the
Isgur–Wise function as

〈D(p′)|c̄γµc|D(k)〉 = ξ(ω′)(p′µ + kµ), (4)

〈D(p′)|c̄γµc|D∗(k, ε)〉 = −iξ(ω
′)

mD
eµναβενp

′
αkβ,

where ω′ = (kp′)/(mDmB). In formulas (3) and (4),
we disregard the difference of the D- and D∗-meson
masses because, in the leading order of HQET, this
difference does not contribute to the quantities in
question.

For the function ξ, we use the standard parametri-
zation

ξ(ω) = 1 − ρ2(ω − 1). (5)

In the numerical computations, we employ the value
of ρ2 = 0.94, which was obtained in [14] on the basis
of the potential quark model and which is in agree-
ment with experimental data from [13]. The ultimate
result cannot change significantly upon replacing it
by another value because the kinematical domain of
the decay is rather narrow. The parameter ω for the
decay B → Dτντω varies from 1 to (m2

B +m2
D −

m2
τ )/(2mBmD) = 1.43, whereas that for the decay

B → Dµνµ varies from 1 to 1.59.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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In the calculations, we also use the matrix ele-
ments 〈D|Jµem|D∗〉 and 〈D|Jµem|D〉, where Jµem is the
electromagnetic current, which can be represented as
the sum of the “heavy” and “light” components,

Jµem = Jµh + Jµl . (6)

The matrix elements of the “heavy” component of
the electromagnetic current can be expressed in terms
of the transition amplitudes (4) as

〈D(p′)|Jµh |D(k)〉 = −qcξ(ω′)(p′µ + kµ), (7)

〈D(p′)|Jµh |D
∗(k, ε)〉 = iqc

ξ(ω′)
mD

eµναβενp
′
αkβ,

where qc is the c-quark charge. The matrix elements
of Jµl can be represented in the form

〈D(p′)|Jµl |D(k)〉 = qlf
1
l (q

2)(p′µ + kµ), (8)

〈D(p′)|Jµl |D
∗(k, ε)〉 = iqlβf

2
l (q

2)eµναβενp′αkβ,

where ql is the charge of the light quark in the meson
and f1

l (q
2) and f2

l (q
2) are the form factors describ-

ing the q2 dependence of the matrix elements, these
form factors being normalized in such a way that

f
(1,2)
l (0) = 1. The constant β obtained in [15] is equal
to 1.9 GeV−1. The q2 dependence of the form factors
f il (q

2), i = 1, 2, that is used in our computations was
obtained under the assumption that the contribution
of the ω and ρ resonances is dominant [16]. Disre-
garding the difference of the ω- and ρ-meson masses,
we reduce the expressions for f il to the form

f il = fl(q2) =
1

1 − q2

m2
ρ

, i = 1, 2, (9)

wheremρ is the ρ-meson mass.

3. TRANSVERSE POLARIZATION
OF THE LEPTON

The amplitude of the decays B → D(D∗)l+νl has
the form

M =
GF√

2
V ∗
cb〈D|V µ −Aµ|B〉ū(pν)(1 + γ5)γµv(pl),

(10)

where GF is the Fermi constant and V ∗
cb is the rele-

vant element of the Cabibbo–Kobayashi–Maskawa
matrix. The transition currents 〈D|V µ −Aµ|B〉 are
given in the preceding section. For the ensuing calcu-
lations, it is convenient to parametrize the amplitude
for the process B → Dl+νl as follows:

M =
GF√

2
V ∗
cbū(pν)(1 + γ5)(С1p̂+ C2)v(pl). (11)
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It should be noted that expression (11) offers the
most general form of the amplitude for the process
under study for the case where only a left-handed
neutrino is involved. Substituting the matrix ele-
ments (3) of the transition currents into (10), we
obtain expressions for C1 and C2 in the leading order
of HQET,

C1 =
ξ(ω)

√
mBmD

(mD +mB), (12)

C2 =
ξ(ω)√
mBmD

(mBml).

In the B-meson rest frame, the partial width with
respect to the decay B → Dl+νl has the form

dΓ =
∑

|M |2
2mB

(2π)4δ(p − pD − pl − pνl
) (13)

× d3pD
(2π)3 · 2ED

d3pl
(2π)3 · 2El

d3pνl

(2π)3 · 2Eνl

,

where summation is performed over the spin states of
the muon and photon involved.

We now introduce a unit vector directed along
the spin of the lepton in its rest frame, s, and unit
vectors along the longitudinal, normal, and transverse
polarizations of the lepton, ei (i = L, N, T ). In terms
of these vectors, the expression for the square of the
matrix element for a transition to a state characterized
by a specific polarization of the lepton has the form

|M |2 = ρ0[1 + (PLeL + PNeN + PTeT ) · s], (14)

where ρ0 is the probability density averaged over spin
states in the Dalitz plot. The unit vectors ei are ex-
pressed in terms of the momenta of final particles as

eL =
pl
|pl|

, eN =
pl × (pD × pl)
|pl × (pD × pl)|

, (15)

eT =
pD × pl
|pD × pl|

.

For this definition of the vectors ei,PT ,PL, and PN
stand for, respectively, the transverse, longitudinal,
and normal components of the lepton polarization.

The probability density ρ0 is given by

ρ0 = G2
F|Vcb|2(4|C1|2(ppν)(ppl) + 2|C2|2(pνpl)

(16)

− 2|C1|2(pνpl)m2
B − 4mlRe(C2C

∗
1 )(ppν)).

The expression for the transverse polarization can
then be represented in the form

PT =
ρT
ρ0
, (17)

where ρT is given by

ρT = 4G2
F|Vcb|2mBIm(C1C

∗
2 )|pD × pl|. (18)
3
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Fig. 1. Feynman diagrams describing the contribution
to the transverse polarization of the muon in the decay
B0 → D−lνl in the one-loop approximation of the Stan-
dard Model.

From formula (18), it can be seen that the trans-
verse polarization of the muon is nonzero only if the
phases of the form factors C1 and C2 are different.
In the tree approximation of the Standard Model, the
transverse polarization of the muon vanishes because
the above form factors are real-valued there. A non-
vanishing transverse polarization results from final-
state interaction. The relevant phase difference can
be calculated on the basis of the unitarity condition,
as was done in [17] for the decay K0 → πµν. The
diagrams contributing to the transverse polarization
of the muon are shown in Fig. 1. Here, we take into
account the contribution to the transverse polariza-
tion of the muon only from D and D∗ mesons. The
contribution of the diagrams in Fig. 1 has the form

ImM =
GF√

2
V ∗
cb

α

2π
(19)

×
∫

dρ

k2
γ

ū(pν)(1 + γ5)γσ(k̂l −ml)γλv(pl)

×
∑

n=D,D∗

〈D|Jλem|n〉〈n|V σ −Aσ|B〉,

where kl is the lepton momentum, kD is the mo-
mentum of the D (or D∗) meson in the intermediate
state, k2

γ = (kD − pD)2 is the square of the momen-
tum transfer, and dρ is an element of the two-body
phase space. The expressions for the matrix elements
of the transition currents 〈D|Jλem|n〉 and 〈n|V σ −
Aσ|B〉 are given in Section 2.

It should be noted that theD-meson contribution
in (19) involves an infrared divergence, but it does not
contribute to the polarization. The soft-photon con-
tribution factorizes completely; therefore, it does not
give rise to a nonvanishing phase, which is necessary
for the emergence of a nonzero transverse polariza-
tion. For this reason, we do not take the divergent
terms into consideration [17]. TheD∗-meson contri-
bution in (19) does not involve an infrared divergence
because, in this case, the lower bound on the momen-
tum transfer is given by the expression

(−k2
γ)min = (m2

D∗ −m2
D)

ml

ml +mD
, (20)
P

which is equal to 500 or 160 MeV for a τ lepton or
a muon, respectively. These values indicate that the
difference of the D- and D∗-meson masses must be
taken into account in performing integration over the
phase space.

It is obvious that the quantity under study re-
ceives contributions from the excited states of the D
meson as well. We assume that such contributions
have only a small effect on the results because the
Isgur–Wise function describing a transition to an
excited state of the D meson is smaller than the
function defined in (5). For example, the Isgur–Wise
function for the B-meson transition to the (0+, 1+)
doublet, τ1/2(ω), was evaluated in [18] by using QCD
sum rules. The value of τ1/2(1) obtained there is
0.24. It is obvious that the light-quark contribution
is proportional to τ1/2(1), whereas the heavy-quark
contribution is proportional to the square of τ1/2(1).
Moreover, the diagrams involving a heavyDmeson in
the intermediate statemake a nonvanishing contribu-
tion to the transverse polarization only in the domain
bounded by the condition (pl + pD)2 ≥ (mD +ml)2.
For the D∗ meson, this condition leads to only an
insignificant decrease in the physical domain (mD∗ −
mD ∼ 0.15 GeV), whereas, for the (0+, 1+) doublet,
it reduces the physical domain substantially, because
the mass difference in this case ranges up to about
0.5 GeV. Therefore, the contribution to the average
polarization in the latter case is considerably smaller
than that in the former case.

The details of the procedure for computing the
average polarization are presented in the Appen-
dices. The integrals used in the computations by
formula (19) are listed in Appendix 1, while the
ultimate result is given in Appendix 2.

4. RESULTS AND DISCUSSION

Before proceeding to discuss the results, we intro-
duce the notation

ED =
mB

2
x, El =

mB

2
y. (21)

All the results will be formulated in terms of this
notation.

Three-dimensional plots over the kinematical
domain (x, y) for the transverse polarization of the
lepton in the reactions B0 → D−τντ , B0 → D−µνµ,
B+ → D̄0τντ , andB+ → D̄0µνµ are given in Figs. 2,
3, 4, and 5, respectively. The corresponding isolines
are depicted in Figs. 6–9. The average values of the
transverse polarization are as follows:

PT = 2.60 × 10−3, B0 → D−τντ ,

PT = 2.97 × 10−4, B0 → D−µνµ,
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003



TRANSVERSE POLARIZATION OF THE LEPTON 1293

 

0
0.002
0.004
0.006

 

P

 

T

 

0.8

0.9

1.0

 

x

 

0.8

0.7

0.9

 

y

Fig. 2. Transverse polarization of the τ lepton in the decay
B0 → D−τντ on a three-dimensional plot.
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Fig. 3. Transverse polarization of the muon in the decay
B0 → D−µνµ on a three-dimensional plot.
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Fig. 4. Transverse polarization of the τ lepton in the decay
B+ → D̄0τντ on a three-dimensional plot.

PT = −1.59 × 10−3, B+ → D̄0τντ ,

PT = −6.79 × 10−4, B+ → D̄0µνµ.

As was mentioned above, the transverse polar-
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Fig. 5. Transverse polarization of the muon in the decay
B+ → D̄0µνµ on a three-dimensional plot.
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Fig. 6. Isolines for the transverse polarization of the τ

lepton in the decay B0 → D−τντ .
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Fig. 7. Isolines for the transverse polarization of themuon
in the decay B0 → D−µνµ.

ization of the lepton can be represented as the sum
of the “heavy” and the “light” component. The form
factors for photon–heavy-quark and photon–light-
quark interactions depend on the scale parameter that
varies from about mρ to about mD over the range
3
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Fig. 8. Isolines for the transverse polarization of the τ
lepton in the decay B+ → D̄0τντ .

of variation of the momentum transfers kγ . For this
reason, the contribution of the diagrams involving a
neutral D̄0 meson to the transverse polarization of
the lepton in the decay B+ → D̄0lν is evanescently
small at low momentum transfers (k2

γ 
 m2
ρ) and

is nonzero over the bulk of the kinematical domain,
where k2

γ � m2
ρ. However, the contributions of the

light and heavy quarks partly cancel each other owing
to the fact that the D̄0 meson is neutral. As a con-
sequence, the contribution of the diagram involving
a D∗ meson in the intermediate state is greater than
the analogous contribution involving aD meson. The
distinction between these contributions accounts for
the fact that the sign of the average polarization in
the decayB+ → D̄0lνl is opposite to that in the decay
B0 → D−lνl.

In conclusion, we note that the average values of
the transverse polarization in the Standard Model are
considerably smaller than the corresponding average
values in various extensions of this model [9–11].
The results obtained in [9–11] give sufficient grounds
to conclude that B-meson decays may provide an
efficient tool for seeking effects of new physics.
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APPENDIX 1
To perform integrations in formula (19), we use the

following notation:

Pµ = pµl + pµD,
P
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Fig. 9. Isolines for the transverse polarization of themuon
in the decay B+ → D̄0µνµ.

lµ = pµD − (PpD)
(P 2)

Pµ,

PkD =
1
2
(P 2 +m2

D∗ −m2
l ),

l2 = m2
D − (PpD)2

P 2
,

l21 = m2
D∗ − (PkD)2

P 2
,

η2 = m2
D +m2

D∗ − 2
(PkD)(PpD)

P 2
.

In this notation, the integrals under consideration can
be written as

J1 =
∫

dρ

k2
γ

fl(k2
γ)

=
π

4
1√

−l2P 2

(
ln

∣∣∣∣∣−η
2 − 2

√
l21l

2

−η2 + 2
√
l21l

2

∣∣∣∣∣
− ln

∣∣∣∣∣−η
2 − 2

√
l21l

2 +m2
ρ

−η2 + 2
√
l21l

2 +m2
ρ

∣∣∣∣∣
)
,

J2 =
∫
dρfl(k2

γ) = −π
4

m2
ρ√

−l2P 2

×
(

ln

∣∣∣∣∣−η
2 − 2

√
l21l

2 +m2
ρ

−η2 + 2
√
l21l

2 +m2
ρ

∣∣∣∣∣
)
,

J3 =
∫
dρ = π

√
−l21P 2

P 2
,

∫
kαD
k2
γ

fl(k2
γ)dρ = a1P

α + b1l
α,

a1 =
PkD
P 2

J1,
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b1 =
η2

2l2
J1 −

1
2l2

J2.

∫
kαDfl(k

2
γ)dρ = A1P

α +B1l
α,

A1 =
PkD
P 2

J2,

B1 =
η2

2l2
J2 −

m2
ρ

2l2
(J2 − J3).

∫
kαDk

β
D

k2
γ

fl(k2
γ)dρ = a2g

αβ + b2
PαP β

P 2

+ c2(lαP β + lβPα) + d2
lαlβ

l2
,

a2 =
l21
2
J1 −

η2

4
b1 +

B1

4
,

b2 =
(PkD)2

P 2
J1 − a2,

c2 =
PkD
P 2

b1,

d2 =
η2

2
b1 −

B1

2
− a2.

∫
kαDk

β
Dfl(k

2
γ)dρ = A2g

αβ +B2
PαP β

P 2

+ C2(lαP β + lβPα) +D2
lαlβ

l2
,

A2 =
l21
2
J2 −

η2

4
B1 +

m2
ρB1

4
,

B2 =
(PkD)2

P 2
J2 −A2,

C2 =
PkD
P 2

B1,

D2 =
η2

2
B1 −

m2
ρB1

2
−A2.

∫
kαDk

β
Dk

γ
D

k2
γ

dρ = a3(gαβP γ + gαγP
β + gβγP

α)

+ b3(gαβ lγ + gαγ l
β + gβγ l

α)

+ c3(lαP βP γ + lβPαP γ + lγPαP β)

+ d3(lαlβP γ + lβlγPα + lγ lαP β)

+ e3l
αlβlγ + f3P

αP βP γ ,

a3 =
PkD
P 2

a2,

b3 =
1

2l2
(η2a2 −A2),
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c3 =
1

2l2P 2
(η2b2 −B2),

d3 =
PkD
P 2l2

d2,

e3 =
1

2(l2)2
(η2d2 −D2) −

2
l2
b3,

f3 =
PkD
(P 2)2

(b2 − 2a2).

∫
kαDk

β
Dk

γ
Ddρ = A3(gαβP γ + gαγP

β + gβγP
α)

+B3(gαβ lγ + gαγ l
β + gβγ l

α)

+ C3(lαP βP γ + lβPαP γ + lγPαP β)

+D3(lαlβP γ + lβlγPα + lγ lαP β)

+ E3l
αlβ lγ + F3P

αP βP γ ,

A3 =
PkD
P 2

A2,

B3 =
1

2l2
(η2A2 −m2

ρA2 +
1
3
m2
ρl

2
1J3),

C3 =
1

2l2P 2

(
η2B2 −m2

ρ

(
B2 −

(PkD)2

P 2
J3

+
l21
3
J3

))
,

D3 =
PkD
P 2l2

D2,

E3 =
1

2(l2)2
(η2D2 −m2

ρD2) −
2
l2
B3,

F3 =
PkD
(P 2)2

(B2 − 2A2).

APPENDIX 2

Let us first consider the contribution of the D
meson to the transverse polarization of the lepton. We
represent the expression for the quantity Im(C1C

∗
2 ),

which appears in formula (18), as the sum of the
“heavy” and the “light” component,

Im(C1C
∗
2 ) =

α

2π
ξ(ω)

ml

mBmD

×
(
ql

(
(1 + ρ2)Cl −

ρ2

mBmD
C ′
l

)

−qc
(

(1 + ρ2)Ch −
ρ2

mBmD
C ′
h

))
,

where ξ(ω) is the Isgur–Wise function; ρ2 is the slope
of this function; and ql and qc are the charges of the
3
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light and the c quark, respectively. The coefficients Cl
and C ′

l appearing in the last formula are given by

Cl = 2b1
PpD
P 2

(m2
Bm

2
l −M2P 2),

C ′
l = a2(2P 2(m2

B −m2
D)

+ 4(Pp)MmD − 2m2
Bm

2
l )

+ 2b2
(Pp)
P 2

(P 2M2 −m2
Bm

2
l )

2
P 2

c2

× (m2
Bm

2
l −M2P 2)(−(lp)P 2 + (Pp)(PpD))

+
2(PpD)(lp)

P 2l2
d2(m2

Bm
2
l −M2P 2),

whereM = mB +mD. The expressions for the coef-
ficients b1, a2, b2, c2, and d2 for the D∗ meson (pro-
vided that mD∗ �= mD) are given in Appendix 1. In
order to derive these coefficients for theD meson, the
D∗-meson mass must everywhere be replaced by the
D-meson mass, whereupon the integral J1 becomes
divergent; however, this integral does not contribute
to the transverse polarization because the transverse
polarization does not involve divergences. For this
reason, it can be safely set to zero in all formulas. In
order to obtain the coefficients Ch and C ′

h, we must
expand the coefficients Cl and C ′

l in powers of 1/m2
ρ

up to linear terms and set 1/m2
ρ to ρ

2/(2m2
D).

We do not present here the resulting formulas for
the D∗-meson contribution to the transverse polar-
ization since they are rather cumbersome.
P
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Abstract—Familon emission from a dense magnetized plasma in the processes e− → e−φ and e− → µ−φ
is investigated. The contribution of these processes to the energy losses of a supernova remnant is
calculated. It is shown that, at a late stage of the cooling of a supernova remnant, the energy loss of a
plasma via familon emission may become commensurate with the loss via neutrino emission. It is found
that, because of asymmetry of familon emission in the process e− → µ−φ, there arises a force acting on the
plasma. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the past decades, there has been permanent
interest in studying electroweak-interaction models
that involve an extended Higgs sector. Special at-
tention has been given to light and strictly massless
particles playing the role of pseudo-Goldstone and
Goldstone bosons, including axions, arions, familons,
and Majorons [1]. The possible existence of such par-
ticles has many important implications both for the
theoretical aspects of particle physics and for astro-
physical applications.

At the present time, the Standard Model due to
Weinberg, Salam, and Glashow is the most conve-
nient theory that describes the physics of electroweak
interactions. Despite its impressive successes in
describing experimental data, some problems have
remained, however, unsolved within this model.
These include those concerning the existence of a
few fermion generations and the mass difference
between particles belonging different generations.
These problems could possibly be solved by intro-
ducing an additional horizontal symmetry between
fermion generations [2, 3]. A spontaneous breakdown
of this symmetry may lead to the observed hierarchy
in the fermion-mass spectrum, a Goldstone boson,
referred to, in this case, as a familon, concurrently
arising in the theory (see, for example, [4]).

In general, familon coupling to fermions is of a
nondiagonal character and can be described in terms
of the Lagrangian [5]

L =
cij
F
(Ψ̄iγα(gv + gaγ5)Ψj)∂αΦ+ h.c., (1)

*e-mail: mikheev@uniyar.ac.ru
1063-7788/03/6607-1297$24.00 c©
where cij is a model-dependent dimensionless factor
on the order of unity; F is the scale of horizontal-
symmetry breaking; Φ and Ψi are, respectively, the
familon and the fermion wave function; the subscripts
i and j indicate fermion flavors; and g2

a + g2
v = 1.

In the particular case of interaction diagonal in
flavors (i = j), the conservation of the vector current
makes it possible to recast the Lagrangian in (1) into
the form

L =
ci
F
(barΨiγαγ5Ψi)∂αΦ. (2)

The existing astrophysical estimates are close to
those that are based on laboratory experiments, both
yielding F > (1.1–3.1) × 109 GeV [6].

Since the familon is a particle whose interaction
with matter is weak, it may penetrate deep into a sub-
stance, whence it follows that various processes in-
volving its emission may provide an additional mech-
anism through which stars and other astrophysical
objects lose energy. Moreover, the possible asym-
metry of familon emission may generate a reactive
force that in turn could clarify the problem of pulsar
velocities.

In studying quantum processes under astrophys-
ical conditions, it is necessary to take into account
the effect of an active external medium, and not
only may this be a plasma, but also a strong mag-
netic field is capable of playing such a role. By
strong, one usually means a magnetic field whose
strength considerably exceeds the critical value of
Be = m2

e/e = 4.41 × 1013 G.1) According to the
concepts adopted at present, fields of strength in

1)Here, use is made of a natural system of units where c = � =
1, and e > 0 is an elementary charge.
2003 MAIK “Nauka/Interperiodica”



1298 MIKHEEV, NARYNSKAYA
the range B ∼ 1015–1017 G could be generated in
astrophysical cataclysms, such a supernova explosion
or the merger of neutron stars [7].

An external magnetic field playing, along with a
plasma, the role of an active medium has a pro-
nounced effect of the properties of particles and on
their interactions. Owing to a change in the disper-
sion relation, channels forbidden in a vacuum may
open in this case—for example, the splitting of a
photon into two photons, γ → γγ [8], and photon
decay into an electron–positron pair, γ → e−e+ [9],
become possible. Further, we would like to emphasize
that, in the presence of an external magnetic field,
the interaction specified by Eq. (1) may lead to the
synchrotron radiation of a familon, e− → e−φ, and
the “decay” of an electron, e− → µ−φ [10].

It is important to note that an external magnetic
field also induces a new effective familon–photon in-
teraction of the form

Lφγ = gφγF̃
αβ(∂βAα)Φ, (3)

where Aµ is the 4-potential of a quantized electro-
magnetic field, Fαβ is the strength tensor of the ex-
ternal magnetic field, F̃αβ = (1/2)εαβρσFρσ is its dual
counterpart, and gφγ is the effective coupling constant
for familon–photon interaction in the external mag-
netic field. Familon � photon transitions generate a
new channel of synchrotron familon radiation from

an electron through an intermediate plasmon, e−
γ∗→

e−φ.

In the present study, we examine familon radiation
from a dense magnetized plasma through the pro-
cesses e− → e−φ and e− → µ−φ, which are forbid-
den in a vacuum by the law of energy–momentum
conservation, but which become possible in an ex-
ternal magnetic field owing to a nontrivial particle
kinematics.

We consider the physical situation in which the
typical energy of plasma electrons is a dominant pa-
rameter of the problem; that is,

µ2, T 2 � eB � m2
e. (4)

Such conditions could be realized, for example,
in the core of a supernova, where, according to
present-day concepts, the plasma chemical poten-
tial is µ ∼ 500me, while the plasma temperature is
T ∼ 60me [1]. In this case, even very strong magnetic
fields, those of strength B ∼ 1017 G, satisfy the
condition in (4); therefore, they can be considered
as relatively weak. In this case, plasma electrons
occupy a large number of Landau levels. In order to
demonstrate that this is indeed so, we will estimate
the maximum number of populated Landau levels.
PH
Considering that the energy of an ultrarelativistic
electron in a magnetic field in the N th level is

E �
√
p2
z + 2eBN,

where pz is the projection of the electron momentum
onto the magnetic-field direction, we obtain

Nmax � E2

2eB
∼ µ2

2eB
� 1.

Under the physical conditions specified by (4),
in which case a large number of Landau levels is
excited, investigation of quantum processes effec-
tively reduces to calculations in a constant crossed
field (B ⊥ E, |B| = |E|), the technique of such cal-
culations being well known [11, 12]. This is be-
cause an arbitrary relatively weak and slowly varying
external electromagnetic field is close, in the rest
frame of an ultarelativistic electron, to a crossed
field. As a matter of fact, the result in the leading
approximation then depends on only one dynamical
invariant, [e2(pFFp)]1/2, where pµ is the particle 4-
momentum [here and below, it is assumed that the
tensor indices of 4-vectors and tensors appearing
within parentheses are consecutively contracted—
for example: (pFFp) = pαFαβFβγpγ ]. We would like
to note that calculations in a crossed field possess a
high degree of generality and are of interest in and
of themselves, since they appear to be a relativistic
limit of the corresponding calculation in an arbitrary
relatively weak electromagnetic field.

Under the conditions specified in (4), which are
considered here, plasma electrons are ultrarelativistic
particles. In the ensuing calculations, we will there-
fore disregard the electron mass in all cases where this
does not lead to confusion.

For the processes being considered, the differential
probability per unit time is given by

dW =
|S|2
T dnf ′(1− f ′

e−)dnφ, (5)

where S is the S-matrix element for the relevant
process; T is the total interaction time; and dnf ′ and
dnφ are, respectively, the number of states of a final
fermion in a crossed field2) and the number of familon
states,

dnf ′ =
2d3p′

(2π)3
V, dnφ =

d3k

(2π)3
V. (6)

Here, V = LxLyLz is a normalization volume; k is
the familon-momentum vector; p′ is the vector of the

2)It will be shown below that, in a relatively weak magnetic
field, in which case electrons occupy a large number of Lan-
dau levels, the number of states is approximately described
by the same formula.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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momentum that fixes the state of the final fermion in
a crossed field; and f ′

e− is the final-fermion distribu-
tion with allowance for the presence of a plasma, the
invariant form of this distribution being

f ′
e− =

1
e((p′u)−µ)/T + 1

,

where uα is the medium-velocity 4-vector, which, in
the plasma rest frame has the form uα = (1,0).

It is worthy of note that it is the mean energy
and momentum losses of a magnetized plasma via
familon emission rather than the probabilities of the
processes that are of greatest practical interest for
possible astrophysical applications. It is convenient to
begin by calculating the mean energy and momentum
losses of one plasma electron, which are determined
by the 4-vector

Qµ = −E(dE
dt

,
dp
dt

), (7)

where E and p are, respectively, the energy of this
electron and its 3-momentum vector. The zeroth
component Q0 is associated with the mean energy
lost by one plasma electron per unit time, while the
spatial components Q are associated with the mo-
mentum loss of the electron per unit time. Therefore,
the spatial components determine the force acting on
the plasma electron from the emitted familon.

The components of 4-vector (7), which specifies
the losses, can be calculated by the formula

Qµ =
∫

qµEdW, (8)

where qµ = (ω,k) is the familon 4-momentum.

In order to estimate the volume density of energy
lost by a plasma per unit time via familon emission
(familon luminosity), ε̇, and the volume density of
force acting on the plasma from the emitted familon,
F , it is necessary to sum the energy and momentum
losses of one plasma electron over all states of primary
electrons; that is,

(ε̇,F) =
∑
N

∫
dne−fe−

(Q0,Q)
V E

, (9)

where fe− is the distribution of primary electrons.

In the plasma rest frame, where the electromag-
netic field reduces to a purely magnetic field [B =
(0, 0, B) in the gaugeAµ = (0, 0, Bx, 0)], the number
of electron states is

dne− =
dpydpz
(2π)2

LyLz (10)
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Fig. 1. Diagrams describing familon emission by an elec-
tron in a magnetized plasma.

Considering that integration with respect to py
determines the degeneracy multiplicity s of an energy
eigenstate according to the relation

s = 2
∫

Lydpy
2π

=
eBLxLy

π

and going over from summation over N to integration
with respect to the transverse momentum p⊥, we
obtain the total number of primary-electron states in
the form ∑

N

∫
dne− �

∫
2d3p

(2π)3
V. (11)

Thus, we can see that, in a relatively weak field,
the number of electron states is given by the same
formula as in a crossed field [see (6)]. With allowance
for Eq. (11), the definition in (9) can be recast into the
form

(ε̇,F) =
∫

2d3p

(2π)3
fe−

(Q0,Q)
E

. (12)

In the present study, we further calculate the en-
ergy and momentum losses of a magnetized plasma
via familon emission. The ensuing exposition is or-
ganized as follows. In Section 2, we examine two
channels of the synchrotron radiation of familons from
electrons in a magnetized plasma. In Section 3, we
consider the “decay” process e− → µ−φ for the case
where both electrons and muons occupy a great num-
ber of Landau levels. In Section 4, we present nu-
merical estimates of the results that we obtained.
In particular, we estimate the contributions of the
processes in question to the energy loss of the core of
a supernova and the asymmetry of familon emission
in the process e− → µ−φ.

2. SYNCHROTRON RADIATION
OF A FAMILON BY PLASMA ELECTRONS

2.1. Process e− → e−φ in a Model Involving a Direct
Familon–Fermion Coupling

In this section, we examine familon emission by
plasma electrons due to a direct familon–fermion
3



1300 MIKHEEV, NARYNSKAYA
coupling. This proceeds via the process e− → e−φ
(see Fig. 1a). The S-matrix element for this process
can be obtained from the Lagrangian in (2) by directly
substituting solutions to the Dirac equation into it;
that is,

S(e−→e−φ) =
−ce

F
√
2ωV

(13)

×
∫

d4xψ̄e(p′, x)qµγµγ5ψe(p, x)eiqx,

where ψe stands for solutions to the Dirac equation
in a constant crossed field [12]; qα = (ω,k) is the
familon 4-momentum; and pα = (p0,p) and p′α =
(p′0,p

′) are constant 4-vectors that characterize the
states of, respectively, the primary and the final elec-
tron in a crossed field and which become coincident
with the particle momentum upon switching the field.

By means of the procedure for performing calcula-
tions in a crossed field, the result for the probability (5)
of the process e− → e−φ can be expressed in terms
of a single integral with respect to the dynamical
parameter χq; that is,

W(e−→e−φ) =
c2em

4
e

2π2F 2p0
(14)

×
χ∫

0

dχq

(χ− χq)1/3
(
χq
χ
)4/3(−Φ′(z))(1 − f ′

e−),

where f ′
e− is the distribution of the final electron and

Φ(z) is the Airy function defined as

Φ(z) =

∞∫
0

dx cos(zx+
x3

3
), (15)

Φ′(z) =
dΦ(z)
dz

.

We have also used the following notation:

z = (
χq

χ(χ− χq)
)2/3, χ2

q =
e2(qFFq)

m6
e

, (16)

χ2 =
e2(pFFp)

m6
e

.

It should be noted that, apart from a change in the
notation, expression (14) reproduces the result pre-
sented in Eq. (6) of [13] for the probability of the syn-
chrotron radiation of axions in a weak magnetic field
(that is, a field whose induction satisfies the condition
B 
 Be). In order to prove this statement, it is nec-
essary to make the substitution gae → 2mece/F in
Eq. (6) of [13]. In view of this, we immediately present
the eventual expression for the familon luminosity due
P

to the process e− → e−φ induced by a direct familon–
electron coupling. We have

ε̇(e−→e−φ) �
cφc

2
em

2
e

π4F 2
(
eB

µ
)2/3T 13/3, (17)

where

cφ =
14
81
(
3
4
)1/6Γ3(

1
3
)ζ(

13
3
) � 3.38.

We note that our result in (17) is valid under the
conditions in (4), which are more lenient than the
condition B 
 Be, which is necessary for the validity
of the result in [13].

2.2. Process e− → e−φ in a Model without Direct
Familon–Fermion Coupling

In an external magnetic field, not only may a
familon interact with an electron at the tree level,
but it may also feature an induced interaction via
an intermediate photon. As a result, the channel of
familon emission from plasma electrons through a

virtual plasmon as an intermediate state, e−
γ∗→ e−φ

(see diagram in Fig. 1b), opens up in an active
external medium (field + plasma).

The amplitude for this process can be obtained
from the Lagrangian

L = gφγF̃
αβ(∂βAα)Φ + e(Ψ̄eAµγµΨe), (18)

where gφγ is the effective familon–photon coupling
constant in a magnetized plasma. In general, this
coupling involves a contribution induced by the ex-
ternal magnetic field and a contribution caused by
the presence of an electron–positron plasma. Direct
calculations (see Appendix) reveal that, under the
physical conditions specified in (4), which correspond
to the core of a supernova, the plasma contribution
to gφγ is much smaller than the field contribution and
can be discarded. In this case, the coupling constant
gφγ proves to be independent of the familon (photon)
momentum and has a simple form; that is,

gφγ =
2αce
πF

, (19)

where α = e2/4π is the fine-structure constant.
Although the process of familon emission through

a virtual plasmon arises in a higher order of pertur-
bation theory, its amplitude may appear to be on the
same order of magnitude as the tree amplitude, espe-
cially in the case of a longitudinal plasmon. This is be-
cause the familon and longitudinal-plasmon disper-
sion curves intersect at some familon energy ω = ω0

(see Fig. 2), with the result that the process of familon
emission by plasma electrons has a resonance char-
acter. Concurrently, it turns out that, in the case
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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of ultrarelativistic plasma, the contribution from a
transverse plasmon is negligible.

By using the Lagrangian in (18) and taking into
account relation (19), we can represent the S-matrix
element for the process under study in the form

S
(e−

γ∗→e−φ)
=

2αece
πF

√
2ωV

(qF̃GL)µJµ, (20)

where Jµ =
∫
d4xψ̄e(p′, x)γµψe(p, x)eiqx and GLαβ

is the longitudinal-plasmon propagator, the rest of
the notation being identical to that in Eq. (13). In
a relatively weak external electromagnetic field, the
longitudinal-plasmon propagator can be represented
in the form

GLαβ � lαlβ
q2 −ΠL

, (21)

lα =

√
q2

(uq)2 − q2
(uα −

(uq)
q2

qα),

where qµ is the virtual-plasmon 4-momentum, while
lα and ΠL are, respectively, the eigenvector and the
eigenvalue of the polarization operator that corre-
spond to the longitudinal plasmon.

The main contribution to the probability of the

process e−
γ∗→ e−φ comes from the vicinity of the res-

onance, where q2 = 0; throughout the ensuing calcu-
lations, we will therefore set q2 = 0, unless this leads
to confusion. Also, that part of lα which is propor-
tional to qα does not contribute to the amplitude by
virtue of gauge invariance and the asymmetry of the
tensor F̃αβ . Without loss of generality, the propagator
in (21) can therefore be represented in the form

GLαβ � uαuβ
(uq)2

q2

q2 −ΠL
. (22)

In general, ΠL is a complex-valued function,

ΠL = ReΠL + iImΠL. (23)

In a weak field, the real part of ΠL is virtually
coincident with its value in a nonmagnetized plasma
and can be represented in the form [14]

ReΠL = q2F (c)
k2

, c =
|k|
ω
, (24)

where

F (c) � 4α
π

∞∫
0

dpp

E

(
E

c
ln
(
E + pc

E − pc

)
− p

−E2p(1− c2)
E2 − c2p2

)
(fe− + fe+).
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Fig. 2. Dispersion curves for (solid line) a longitudi-
nal plasmon, ω2 = ω2

L(k), and (dashed line) a familon,
ω2 = k2.

Here, E and p are, respectively, the energy and the
momentum of plasma electrons (positrons) and fe+
is the distribution of plasma positrons, which is ob-
tained from the distribution fe− of electrons by means
of the substitution µ → −µ.

In order to find the resonance position, which
is determined by the point of intersection of the
longitudinal-plasmon and familon dispersion curves,
ω � ω0, it is necessary to find a simultaneous solu-
tion to the dispersion equations for the longitudinal
plasmon,

k2 = F (c), (25)

and the familon,

k2 = ω2. (26)

As a result, we obtain the familon energy at which the
dispersion curves intersect:

ω2
0 = F (1). (27)

At the point c = 1, the function F (c) can be re-
duced to the form

F (1) � −2α
π

(28)

×
∞∫

me

dEE

(
E ln

(
E + p

E − p

)
− 2p

)
d

dE
(fe− + fe+).

It should be emphasized that formula (28) is univer-
sal—it is valid both for a cold (µ � T ) and for a hot
(µ 
 T ) plasma. Upon the expansion of the function
F (c)/k2 in a power series in the vicinity of the reso-
nance, the expression for the real part of ΠL can be
recast into the form

ReΠL � q2ω
2

ω2
0

. (29)

As to the imaginary part, it can undergo a signifi-
cant change even under the effect of a relatively weak
3
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field, since a magnetic field opens new channels of
photon decay and new channels of photon absorption
by plasma electrons and positrons, γ ↔ e−e+ and
e± ↔ e±γ, these channels being forbidden in a non-
magnetized plasma. According to the unitarity con-
dition, the imaginary part of ΠL and the total width
with respect to longitudinal-plasmon “annihilation,”
ΓL(ω), are related by the equation

ZLImΠL = −ωΓL(ω), (30)

where ZL is the renormalization factor for the plas-
mon wave function.

With allowance for relations (29) and (30), the
longitudinal-plasmon propagator (22) in the vicinity
of the resonance can be represented in the form

GLαβ � uαuβ
(ω2

0 − ω2 + iγω2
0)
, (31)

γ =
ω0ΓL(ω0)
q2ZL

.

Substituting the explicit form (31) of the propa-
gator into expression (20) for the relevant S-matrix
element, we obtain

S
(e−

γ∗→e−φ)
=

2αece
πF

√
2ω0V

(qF̃u)(uJ)
(ω2 − ω2

0 + iγω2
0)
. (32)

From expression (32), it can clearly be seen that,
at an emitted-familon energy close to ω0, the process
of familon emission by plasma electrons has a distinct
resonance character.

The probability of the process e−
γ∗→ e−φ is calcu-

lated directly by formula (5) with the aid of expres-
sion (32) for the S-matrix element. After straight-
forward, albeit rather cumbersome, calculations, the
result can be represented in the form

W
(e−

γ∗→e−φ)
� 4c2eα3ω2

0

π3F 2p0
(33)

×
χ∫

0

dχq
χ2
q

(χ− χq)(qF̃u)2

[(ω2 − ω2
0)2 + γ2ω4

0]
Φ1(z)(1 − f ′

e−),

where

Φ1(z) =

∞∫
z

Φ(x)dx,

with the argument z being given by (16). Under the
conditions in (4), which are considered in the present
study, the dynamical parameter χ for electrons is
much greater than unity. The main contribution to the
relevant integral with respect to the variable χq then
comes from the region where z 
 1. In this case, it is
P

sufficient to know the value of the function Φ1(z) at
the origin.

It is convenient to perform a further integration in
the rest frame of the plasma, where the electromag-
netic field reduces to a purely magnetic one and where
the dynamical parameters take the form

χ =
eBE

m3
e

sin θ, χq =
eBω

m3
e

sin θ′. (34)

Here, θ′ is the angle between the familon 3-momen-
tum k and the magnetic-field direction and the effec-
tive angle θ is defined by the relation

sin θ =
p⊥√

p2
⊥ + p2

z

. (35)

An analysis reveals that, in a relatively weak mag-
netic field (eB 
 µω), we have

sin θ � sin θ′, (36)

which means that, under the conditions being con-

sidered, the kinematics of the process e−
γ∗→ e−φ is

collinear.
In expression (33), we further go over to the rest

frame of the plasma with allowance for (34) and (36)
and substitute the result into definition (8). In this

way, we obtain, for the process e−
γ∗→ e−φ, the zeroth

component of the loss 4-vector in the form

Q0

(e−
γ∗→e−φ)

� c2eα
2ω3

0(eB)
2

3π3F 2
cos2 θ (37)

×
E∫

0

(E − ω)dω
(ω2 − ω2

0)2 + γ2ω4
0

(1− f ′
e−),

where it has been considered that Φ1(z) � Φ1(0) =
π/3.

The resonance factor in expression (37) can be
approximated by a delta function,

1
(ω2 − ω2

0)2 + γ2ω4
0

� π

2ω3
0γ

δ(ω − ω0), (38)

and this makes it possible to perform integration with
respect to the familon energy quite easily.

In order to calculate the dimensionless factor γ, it
is necessary to know the total longitudinal-plasmon-
annihilation width ΓL, which is defined as the differ-
ence of the widths with respect to the absorption and
the creation of a longitudinal plasmon in an electron–
positron plasma and which can be represented in the
form [15]

ΓL = ΓLabs − ΓLcr = (1− e−ω/T )ΓLabs. (39)
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An analysis reveals that the main contribution to
ΓLabs comes from the process e−γL → e−, where a
longitudinal plasmon is absorbed by plasma elec-
trons. The S-matrix element for this process can be
obtained from the electromagnetic-interaction La-
grangian by directly substituting into it solutions to
the Dirac equation in a crossed field. In the lowest
order of perturbation theory, the result has the form

S = ie

∫
d4xψ̄e(p′, x)Aµγµψe(p, x). (40)

The plasmon-absorption width is determined in a
standard way; that is,

ΓLabs =
∑
s,s′

∫ |S|2
T

d3p

(2π)3
V fe−

d3p′

(2π)3
V (1− f ′

e−).

(41)

Omitting the details of integration over the phase
spaces of the particles involved, we only present the
result obtained by evaluating expression (41):

ΓLabs �
2α
3
µ2

ω3

q2ZL

1− e−ω/T
. (42)

With allowance for (39) and (42), the dimensionless
parameter γ reduces to the form

γ =
2α
3
µ2

ω2
0

. (43)

Substituting (37) into (12) and performing integra-
tion with respect to the primary-electron momentum
and with respect to the familon energy with allowance
for Eq. (38), we obtain the following expression for the

familon luminosity due to the process e−
γ∗→ e−φ:

ε̇
(e−

γ∗→e−φ)
� αc2e(eB)

2

12π4F 2

ω3
0

(eω0/T − 1)
. (44)

We note that the result in (44) is valid not only in a
degenerate plasma but also in the general case. Only
the energy ω0 at which the familon and longitudinal-
plasmon dispersion curves intersect depends on spe-
cific physical conditions. In the case of a degenerate
ultrarelativistic plasma, we find from (27) with al-
lowance for (28) that

ω2
0 � 4α

π
µ2(ln

2µ
me

− 1).

In the case of a hot plasma, ω2
0 is given by

ω2
0 � 4πα

3
T 2(ln

4T
me

+
1
2
− γE +

ζ ′(2)
ζ(2)

),

where γE is the Euler constant (γE � 0.577) and
ζ ′(2)/ζ(2) � −0.570.
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Fig. 3. Diagram describing familon emission in the pro-
cess e− → µ−φ in an external field.

From the calculations, it follows that, under the
conditions considered here, the effect of the interfer-
ence between the contributions from the above two
channels of the synchrotron radiation of familons is
nonexistent.

3. TRANSITION e− → µ−φ

In this section, we consider the electron-decay
process e− → µ−φ as a possible additional source of
the familon emissivity of a magnetized plasma (see
Fig. 3). This process was previously studied by Averin
et al. [10] in the limit of strong magnetic fields whose
induction satisfies the condition eB � µ2 −m2

µ, in
which case muons are produced only in the first Lan-
dau level. Among other things, those authors showed
that, under the conditions that they considered, the
familon emissivity is competitive with the neutrino
emissivity caused by the magnetic bremsstahlung of
neutrino pairs from electrons. It should be noted,
however, that the magnetic bremsstrahlung of neu-
trinos does not saturate the actual emissivity of a
supernova remnant or a nascent neutron star. As a
matter of fact, the actual emissivity of these astro-
physical objects is determined by modified URCA
processes [16].

Here, we consider the limit of relatively weak mag-
netic fields, which corresponds to a situation that is
inverse to that in [10] and which could occur, for ex-
ample, in the core of a supernova, where µ2 −m2

µ �
eB and where muons, as well as electrons, therefore
populate a large number of Landau levels.

The general form of the S-matrix element for the
process e− → µ−φ can be obtained from the La-
grangian in (1) by directly substituting into it solu-
tions to the Dirac equation in a crossed field; that is,

S(e−→µ−φ) =
−cµe√
2ωV F

×
∫

d4xψ̄µ(p′, x)qµγµ(gv + gaγ5)ψe(p, x)eiqx,

where qα = (ω,k) is the familon 4-momentum, while
pα = (p0,p) and pα

′
= (p′0,p

′) are constant vectors
3
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that characterize the states of, respectively, the elec-
tron and the muon in a crossed field.

The probability of the process is determined ac-
cording to Eq. (5), where a muon appears as the
final fermion. In the relevant calculations, we will
disregard the electron mass and the statistical factor
of muons, assuming that the concentration of ther-
malized muons is low in the core of a supernova. The
results of the calculations can be reduced to the form

W(e−→µ−φ) =
c2µem

4
µ

8π3F 2p0
(45)

×
+∞∫

−∞

dτ

χ∫
0

χ2
qdχq

rχ2(χ− χq)
[Φ2(y)r2(τ2 + χ2/χ2

q)

+ Φ
′2(y)− 4gagvΦ(y)Φ′(y)rτ ],

where the Airy function Φ(y) was defined in (15), its
argument being

y = r2

(
τ2 +

χ

χq

)
,

and where we have also introduced the following con-
ventional notation [12]:

τ =
e(pF̃ q)
χqm4

µ

, r =
(

χq
2χ(χ− χq)

)1/3

. (46)

We recall that expression (45) was obtained in the
ultrarelativistic limit, where the electron mass can be
disregarded.

In contrast to what we had in (16), the dynamical
parameters χ and χq are now naturally defined in
terms of the muon mass; that is,

χ2
q =

e2(qFFq)
m6
µ

, χ2 =
e2(pFFp)

m6
µ

.

The last term in the bracketed expression on the
right-hand side of (45) describes the interference be-
tween the vector and the axial-vector coupling con-
stant entering into the Lagrangian in (1); although
this term does not contribute to the total probability
of the decay process in question, it leads to the asym-
metry of familon emission in the process e− → µ−φ.

Upon integration with respect to the variable τ , we
obtain

W(e−→µ−φ) =
c2µem

4
µ

16π2F 2p0

χ∫
0

dχq
χ

(47)

×
(
Φ1(z)−

2χqΦ′(z)
(χ− χq)z

)
,

z =
(

χ

χq(χ− χq)2

)1/3

> 0. (48)
PH
In a relatively weak external electromagnetic field,
the dynamical parameter for electrons satisfies the
condition χ 
 1, while, for the argument of the Airy
function, we have z � 1. Performing integration with
respect to the variable χq with allowance for the
known asymptotic behavior of the functions Φ′(z)
and Φ1(z) at large values of the argument [12], we
eventually obtain

W(e−→µ−φ) =
c2µem

4
µχ

36
√
3πF 2p0

e−
√

3/χ. (49)

We would like to emphasize that the exponential
smallness of the probability in (49) is characteristic
of all processes that are forbidden in a vacuum, but
which are allowed in a relatively weak field. However,
the calculations reveal that, despite an exponential
suppression, the decay probability W(e−→µ−φ) proves
to be on the same order of magnitude as the probabil-
ities of the two channels of the synchrotron radiation
of a familon from plasma electrons. This is because of
the fact that, by virtue of (4), the last two probabili-
ties also involve a small parameter that is associated
either with the fine-structure constant α (33) or with
the electron mass me (14) and which is the smallest
parameter in the problem being considered.

According to our analysis, the main contribu-
tion to the integral with respect to the variable τ
in expression (45) comes from the region around
τ2 ∼ 1/r3 
 1; in the rest frame of the plasma and at
relatively weak fields (eB 
 ωmµ), this is equivalent
to the collinearity condition. In order to make sure of
this, it is sufficient to employ the explicit expressions
for τ and r in the rest frame. We then have

cos θ − cos θ′ ∼
(

eB

ωmµ

)1/2

sin θ(sin θ′)1/2 
 1.

(50)

This makes it possible to go over, in expres-
sion (47), to the rest frame of the plasma prior to
performing integration with respect to the variable
χq and to recast this expression into the form

W(e−→µ−φ) =
c2µem

4
µ

16π2F 2E2
(51)

×
E∫

0

(Φ1(z)−
2ωΦ′(z)
(E − ω)z

)dω,

where the argument z of the Airy function becomes

z =

(
E

ω(E − ω)2
m6
µ

(eB sin θ)2

)1/3

.

Substituting expression (51) into the definition in (12)
with allowance for (8) and performing integration
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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with respect to the familon energy and with respect to
the primary-electron momenta, we obtain the familon
luminosity due to the process e− → µ−φ. The result
of these calculations can be expressed in terms of a
single integral as

ε̇(e−→µ−φ) �
c2µe

√
2m4

µµ
3

216π5/2F 2

I(y)
y3/2

, (52)

I(y) =

∞∫
0

x7/2 e−y/xdx

eµ(x−1)/T + 1
, y =

√
3
m3
µ

eBµ
,

where the variable x is related to the primary-electron
energy by the equation x = E/µ.

The integral I(y) in (52) can easily be calculated
in two limiting cases.

First, there is the case of a cold plasma (T →
0), where the distribution of primary electrons can
be approximated by a Heaviside step function, f �
Θ(µ− E). This leads to

ε̇(e−→µ−φ) �
c2µe

√
2m4

µµ
3

216π5/2F 2

e−y

y5/2
, (53)

Second, there is the case of a relatively “warm”
relativistic plasma: T > µ/y, but T 
 µ; in this case,
where the main contribution comes from electrons of
energy E > µ, the result is

ε̇(e−→µ−φ) �
c2µem

4
µµ

3

216π2F 2

√
2y(

T

µ
)5/2e−y(2−1/t)/t,

(54)

t =

√
yT

µ
.

Since t > 1, the density of losses, ε̇, increases signif-
icantly in this case.

4. ASTROPHYSICAL APPLICATIONS

In this section, we present quantitative estimates
of our results, choosing, for a scale of horizontal-
symmetry breaking, the upper bound on the relevant
constraints, F � 3.1 × 109 GeV.

The volume density of the energy loss of the
plasma by familon radiation can be represented as
the sum of the contributions from two processes:

ε̇φ = ε̇(e−→e−φ) + ε̇(e−→µ−φ).

We further estimate the energy loss per unit
volume of the plasma by familon radiation under
the conditions prevalent in the core of a supernova
(µ = 250 MeV, T = 35 MeV), setting the magnetic
field to B = 1017 G. The results of these numerical
calculations are given in Fig. 4, which shows that,
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Fig. 4. Familon luminosity of a degenerate plasma
(µ � T ) as a function of temperature: (solid curve) con-
tribution of the synchrotron radiation of a familon through

a virtual plasmon (e−
γ∗
→ e−φ), (dashed curve) contribu-

tion of the synchrotron radiation of a familon due to direct
coupling (e− → e−φ), and (dash-dotted curve) contribu-
tion of the transition e− → µ−φ.

under such conditions, the contributions from the two
processes in question are commensurate.

A comparison of the familon luminosity with the
known neutrino luminosity under the same condi-
tions, ε̇ν ∼ 1034 erg/(cm3 s) [1], reveals that, at the
initial stage of cooling, when the plasma temperature
is T ∼ 35MeV, the processes being considered do not
have a significant effect on the dynamics of cooling.

It is interesting to note, however, that, at a later
stage of cooling, when the plasma temperature de-
creases to values of about a few MeV units, the
contribution of the process e− → µ−φwith respect to
the contribution of the synchrotron-radiation process
e− → e−φ becomes dominant. In this case, the en-
ergy loss of the plasma by familon radiation is given
by

ε̇(e−→µ−φ) � 3.4× 1025 erg
cm3 s

and can be commensurate with the loss by neutrino
radiation at the same stage, ε̇ν ∼ 1026 erg/(cm3 s) [1].

The asymmetry of familon emission is yet another
interesting feature of radiation processes. This asym-
metry can be defined as

A =
(
0, 0,

F3

ε̇

)
, (55)

where it is considered that the asymmetry does not
vanish only in the magnetic-field direction (which is
coincident with the direction of the z axis) and where
F3 is the force acting on the plasma from the familon
along the magnetic field. This force can be calculated
by formula (12).

Direct calculations reveal that only the transi-
tion e− → µ−φ contributes to the asymmetry given
by (55), which proved to be independent of either the
3



1306 MIKHEEV, NARYNSKAYA

 

40

2

 
V
 
, km/s
 

B

 

, 10

 

16

 

 G
6 10

80

120

Fig. 5. Velocity of a supernova remnant with a mass on
the order of the Sun’s mass versus the magnetic-field
induction.

chemical potential of the plasma or its temperature
and which has the simple form

A � gagv
3

eV

m2
µ

. (56)

We note that the emergence of the asymmetry
in (56) is due to the interference between the vector
and the axial-vector coupling constant entering into
the Lagrangian in (1).

Owing to this asymmetry, the total momentum
carried away by a familon is nonzero, which in turn
leads to a “push” velocity V of a supernova remnant.
This velocity can be estimated as

V =
εA

M
, (57)

where ε =
∫
dtε̇ is the total energy loss of the plasma

by familon radiation in the process e− → µ−φ and M
is the mass of the supernova remnant.

Figure 5 shows a numerical estimate of the ve-
locity of a supernova remnant versus the magnetic-
field induction. It can be seen that, even in strong
magnetic fields (B ∼ 1017 G), the velocity of a super-
nova remnant with a mass on the order of the Sun’s
mass does not exceed 130 km/s. Thus, we conclude
that, while being of interest in and of itself, the effect
of the asymmetry of familon emission in the process
e− → µ−φ unfortunately cannot clarify the problem
of pulsar velocities.

5. CONCLUSION

We have considered familon emission from a
magnetized plasma in the electron-“decay” process
e− → µ−φ and in the process of synchrotron radi-
ation of a familon by plasma electrons, e− → e−φ.
New transitions of the familon � photon type, which
generate an additional channel of the synchrotron
radiation of a familon by an electron through a virtual

plasmon as an intermediate state, e−
γ∗→ e−φ, become

possible in an external magnetic field. In the case
where a virtual plasmon is longitudinal, the process
P

e−
γ∗→ e−φ has been shown to be of a resonance

character at a certain value of the emitted-familon
energy.

As a possible astrophysical application, the vol-
ume density of the energy loss of a plasma by familon
radiation has been calculated under the conditions
of the core of a supernova. The estimates obtained
in this way indicate that, under realistic conditions
prevalent in the core of a supernova at the initial stage
of cooling, the contributions to the energy loss of the
plasma from the two processes being considered are
on the same order of magnitude, but that they are
insufficient for significantly affecting the dynamics of
supernova cooling.

At the same time, the contribution to the energy
loss from the transition e− → µ−φ at a later stage
of cooling considerably exceeds the contribution from
the synchrotron radiation of a familon and becomes
commensurate with the energy loss by neutrino ra-
diation under the same conditions. It follows that, at
the stage of cooling, the role of processes involving
familons may become significant against the back-
ground of neutrino processes when the plasma tem-
perature decreases to a value of T ∼ 1 MeV.

It has also been found that, in the case of familon
emission by plasma electrons in the process e− →
µ−φ, there occurs an interesting interference effect
that leads to the asymmetry of the familon momentum
with respect to the direction of the magnetic field of
a supernova remnant. In magnetic fields of induction
B ∼ 1017 G, this generates a push velocity of the
supernova remnant on the order of 100 km/s.

Our results may be of use in performing a detailed
investigation into, for example, astrophysical phe-
nomena that accompany the creation of a magnetized
neutron star (pulsar) upon supernova explosion and
in describing the dynamics of its cooling.
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APPENDIX

In general, the familon → photon conversion in a
magnetized plasma is affected both by the magnetic
field and by the plasma itself.

The one-loop external-field-induced contribution
to the amplitude for the familon → photon transition,
M field
φ→γ , is described by the diagram in Fig. 6, where

double lines denote that the effect of the external field
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003



ENERGY AND MOMENTUM LOSSES 1307
         
φ(q) γ(q)

x y

f

f

Fig. 6. Diagram describing the familon → photon tran-
sition in an external magnetic field through a fermionic
loop.

has been taken into account in the propagators for
virtual charged fermions f .

The plasma contribution M
plasma
φ→γ comes from

Compton-like processes of familon-to-photon tran-
sitions occurring on plasma electrons and positrons
(see Fig. 7).

The expression for the amplitudeM field
φ→γ can be de-

rived, for example, from the results presented in [17],
where the one-loop contributions to the generalized
amplitude for the transition j → f f̄ → j′ in an exter-
nal electromagnetic field were calculated for arbitrary
combinations of the scalar, pseudoscalar, vector, and
pseudovector coupling of the currents j and j′ to
fermions. Performing, in Eq. (3.9) of [17], the substi-
tutions jAµ → (icf/F )qµ and jV µ → −efεµ and set-
ting q2 = 0, one can obtain the transition amplitude
in the form

M field
φ→γ =

i(qF̃ ε∗)
2π2F

∑
f

cfe
2
fJ, (A.1)

where ef is the charge of a virtual fermion in the
loop; qµ is the familon (photon) 4-momentum; εµ
is the photon polarization 4-vector; F̃αβ is the dual
counterpart of the strength tensor of the external
electromagnetic field; and J is a field form factor that,
in general, depends both on the field and on the 4-
momentum qµ.

Under physical conditions corresponding to a
magnetized plasma in the core of a supernova (B 

1018 G, µ � 250 MeV), the limit of a relatively weak
external magnetic field is realized, in which case many
Landau levels are excited [see (4)]. The form factor J
then proves to be dependent only on the combination
(qFFq) and has the form

J(χf ) =

1∫
0

ηf(η)dt, (A.2)

f(η) = i

∞∫
0

dz exp
[
−i
(
ηz +

1
3
z3

)]
,
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η =
[

4
χf (1− t2)

]2/3

,

where f(η) is the Hardy–Stokes function and χ2
f =

e2f (qFFq)/m
6
f is the dynamical parameter of the rel-

evant virtual fermion f .
The asymptotic behavior of the integral J in (A.2)

at small and large values of the dynamical parameter
χf is as follows:

J � 1 +O(χ2
f ), χf 
 1, (A.3)

J � O(χ−2/3
f ), χf � 1.

Considering that the familon–photon interaction
is free from the Adler anomaly, we can recast expres-
sion (A.1) into a form from which it is clearly seen
that the amplitude for the familon→ photon transition
does not involve a term that is linear in the field; that
is,

M field
φ→γ =

i(qF̃ ε∗)
2π2F

∑
f

cfe
2
f [J − 1]. (A.4)

By virtue of the asymptotic expressions in (A.3),
only relatively light fermions, those for which χf � 1,
contribute to the transition amplitude (A.4). In view of
the fermion-mass hierarchy, a virtual electron makes
a dominant contribution under the conditions being
considered:

M field
φ→γ �

2iαce
πF

(ε∗F̃ q). (A.5)

Comparing expression (A.5) with the Lagrangian
in (3), we find that the external-electromagnetic-
field-induced contribution to the effective familon–
photon coupling constant gφγ can be represented in
the form

gfield
φγ =

2αce
πF

. (A.6)

We note that, in contrast to axion–photon interac-
tion, the effective coupling gfield

φγ features no vacuum
term, because, as was indicated above, the familon
does not involve the vacuum anomalies Φ(GG̃) and
Φ(FF̃ ) (G and F are, respectively, the gluonic and
3
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electromagnetic field tensors), so that its interaction
with photons becomes possible only in an external
electromagnetic field.

Let us now consider the plasma contribution to
the amplitude for the familon → photon transition
corresponding to the diagrams in Fig. 7.

The S-matrix element for the process φ → γ oc-
P

curring on plasma electrons can be obtained from the
Lagrangian

L =
−2imece

F
(Ψ̄eγ5Ψe)Φ + e(Ψ̄eγαΨe)Aα (A.7)

and, with allowance for coherent scattering on all
plasma electrons, is given by
S(e−) =
2iemece

F

∫ ∫ ∫
d4xd4y[Φ(q, x)S(y, x)γ5ψe(p, x)ψ̄e(p, y)γαAα(q′, y) (A.8)

+Φ(q, y)ψ̄e(p, y)γ5S(y, x)γβAβ(q′, x)ψe(p, x)]dne−fe−,
where Aµ is the 4-potential of a quantized electro-
magnetic field, Φ is the familon wave function, ψe
stands for solutions to the Dirac equation, S(y, x) is
the electron propagator in an external magnetic field
(see, for example, [18]), dne− is an element of the
phase space of a plasma electron, and fe− is its distri-
bution. The S-matrix element for the familon → pho-
ton transition occurring on positrons, S(e+), is ob-
tained from expression (A.8) by means of the substi-
tution p → −p in the solutions to the Dirac equation
and the substitution µ → −µ in the distributions of
the primary electron.

Upon integration with respect to the coordinates
x and y and over the phase space of electrons and
positrons, the four-dimensional delta function δ4(q −
q′) can be singled out in the relevant S-matrix ele-
ment. Owing to this, the standard invariant amplitude
for the familon → photon transition in a relatively
weak magnetic field can be written in the form

M
plasma
φ→γ =

2iαce
πF

(ε∗F̃ q) (A.9)

×
∞∫
0

dv(z1f(z1)− z2f
∗(z2))(fe− + fe+),

where f(z) is the Hardy–Stokes function, its argu-
ment being

z1,2 = (χqv(1∓ v))−2/3.

The plasma contribution to the coupling constant
gφγ from the amplitude in (A.9) has the form

g
plasma
φγ =

2αce
πF

(A.10)

×
∞∫
0

dv(z1f(z1)− z2f
∗(z2))(fe− + fe+).
H

Under the conditions of a degenerate ultrarela-
tivistic plasma, the dynamical parameter χq is much
greater than unity, in which case the integral with
respect to the variable v can easily be calculated. As
a result, the coupling constant can be represented in
the form

g
plasma
φγ =

αce31/3

π2F
Γ
(
1
3

)4 1

χ
2/3
q

. (A.11)

Comparing expression (A.11) with the field con-
tribution given by (A.6), one can see that, under
the physical conditions being considered, the plasma
contribution to the coupling constant gφγ is relatively
small and can be discarded.
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684 (1980) [JETP Lett. 32, 671 (1980)].
3. Z. G. Berezhiani and Dzh. L. Chkareuli, Pis’ma Zh.
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Fiz. 84, 1961 (1983) [Sov. Phys. JETP 57, 1142
(1983)].

5. J. L. Feng et al., Phys. Rev. D 57, 5875 (1998).
6. D. E. Groom et al. (Particle Data Group), Eur. Phys.

J. C 15, 1 (2000).
7. G. S. Bisnovatyi-Kogan, Astron. Astrophys. Trans. 3,

287 (1993).
8. S. L. Adler, Ann. Phys. (N.Y.) 67, 599 (1971).
9. N. P. Klepikov, Zh. Éksp. Teor. Fiz. 26, 19 (1954).

10. A. V. Averin, A. V. Borisov, and A. I. Studenikin, Yad.
Fiz. 50, 1058 (1989) [Sov. J. Nucl. Phys. 50, 660
(1989)].

11. A. I. Nikishov and V. I. Ritus, Zh. Éksp. Teor. Fiz. 46,
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Abstract—The inclusive spectra of hadrons are measured with the aid of the SKAT propane–freon bubble
chamber irradiated with a beam of 3- to 30-GeV neutrinos from the Serpukhov accelerator. The resulting
data indicate that the intranuclear absorption of leading quark-fragmentation products is enhanced as the
energy transfer to the quark involved decreases or as the quark-energy fraction z acquired by the product
hadron increases. An analysis of the data on the basis of the color-string model reveals that the cross
section for the intranuclear absorption of positively charged hadrons that are characterized by z values
in the range between 0.7 and 0.9 is close to the inelastic cross section for pion–nucleon interaction.
c© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Deep-inelastic lepton–nucleon scattering is ac-
companied by the formation of a color string between
the knock-on quark and the nucleon residue. In scat-
tering on a peripheral intranuclear nucleon, the frag-
mentation of such a string is analogous to its frag-
mentation in the case of a hydrogen or a deuterium
target. In the case of scattering on a nonperiph-
eral nucleon, the fragmentation process is affected to
some extent by a nuclear medium.

According to some theoretical predictions (see, for
example, [1–5]), the mean spacetime gap lh required
for the formation of a hadron having a mass mh and
an energy Eh is determined by the Lorentz factor
(lh ∼ Eh/mh). In a number of other models, it is
assumed that lh is proportional to the Lorentz factor
of the parent quark lh ∼ ν/m∗

q , where ν is the en-
ergy transfer to the quark involved, the virtual-quark
massm∗

q being dependent on the momentum transfer
squared Q2 [6] or being determined by the kinematics
of hadron “emission” from the quark [7].

From a more detailed treatment of the hadron-
formation process on the basis of the Lund fragmen-
tation model [8], as well as on the basis of models
that take into account quark moderation either owing
to the tension of a color string [9] or owing to gluon

1)Joint Institute for Nuclear Research, Dubna, Moscow
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2)Yerevan Physics Institute, ul. Brat’ev Alikhanian 2, Yerevan,
375036 Armenia.
*e-mail: ivanilov@mx.ihep.su
1063-7788/03/6607-1310$24.00 c©
emission [10, 11], it follows that lh depends on the
quark-energy fraction transferred to the hadron, z =
Eh/ν, this dependence being such that, with decreas-
ing z, the length of formation of the most energetic
fragmentation products decreases, which entails an
increase in the probability of their absorption in a
nuclear medium.

A comparison of the inclusive spectra of hadrons
that are produced on nuclei and the analogous spectra
for the production process on a deuteron [12–16]
corroborates the predicted weakening of nuclear-
absorption effects with increasing ν and their en-
hancement for z → 1. These data were obtained
at comparatively high energies (up to 400 GeV);
at the same time, data at intermediate energies
(ν < 10GeV) are rather scanty. For the sake of com-
pleteness, it would be of interest to perform detailed
investigations in this energy region as well, where the
nuclear-medium effect on the fragmentation process
is expected to be more pronounced.

Of special interest is a comparison of the spectra
of hadrons from different samples of events of lepton
scattering on the same nucleus—namely, samples
that feature no explicit indication of secondary nuclear
interactions and samples where there are such indi-
cations (in the following, samples of quasinucleonic
and cascade events, respectively). In this comparison,
manifestations of nuclear effects are expected to be
more distinct in cascade events. Such a comparison
was performed for νNe interactions at comparatively
high values of the hadron-system energy W (up to
about 25 GeV) [17].
2003 MAIK “Nauka/Interperiodica”
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The objective of the present study is to explore
nuclear-absorption effects in neutron–nucleus inter-
actions at intermediate energies, ν = 2-15 GeV and
W = 2–5 GeV. The ensuing exposition is organized
as follows. The experimental procedure used is de-
scribed in Section 1. An account of our methods for
selecting interactions of the cascade and quasinucle-
onic types is given in Section 2. In Section 3, the
spectra of hadrons from cascade events are compared
with those for quasinucleonic events. A quantitative
estimate of intranuclear-interaction effects is pre-
sented in Section 4. In Section 5, data obtained in
our experiment are compared with the predictions of
the color-string model. The basic results of this study
and conclusions drawn from them are summarized in
the Conclusion.

1. EXPERIMENTAL PROCEDURE

Our experiment employed the SKAT bubble
chamber [18] irradiared with a wideband neutrino
beam from the Serpukhov accelerator at a primary-
proton energy of 70 GeV. The chamber was filled
with a mixture containing 87% (in volume) propane
(C3H8) and 13% freon (CF3Br), the percentage of
nuclei in this mixture being H : C : F : Br = 67.9 :
26.8 : 4.0 : 1.3. The density of admixtures was
0.55 g/cm3; the radiation length was X0 = 50 cm;
and the nuclear-interaction range was 149 cm. The
total volume of the chamber was 6.5 m3, its effective
volume used being 1.73 m3. A uniform magnetic field
of strength 20 kG was maintained in the chamber.
We selected charged-current-interaction events

at negative-muon momenta satisfying the condition
pµ > 0.5 GeV/c. A muon was identified as a neg-
ative particle that possessed the highest transverse
momentum among particles that did not suffer a sec-
ondary interaction in the chamber. Other negative
particles were assumed to be π− mesons. Protons
of momentum below 0.6 GeV/с and some protons
of momentum in the range 0.6 < p < 0.85 GeV/с
were identified by ionization stopping in the chamber.
In determining the energy transfer to the hadronic
system, nonidentified positively charged particles of
momentum satisfying the condition p < 0.85 GeV/с
were assigned the proton or the pion mass in ac-
cordance with the preliminarily estimated branching
fraction. All positively charged particles whose mo-
menta took values in the region p > 0.85GeV/сwere
assumed to be π+ mesons. In order to improve the
accuracy in reconstructing the energy transfer to the
quark, ν, and the neutrino energy Eν , we selected
events in which errors in measuring the momenta of
all charged secondaries and photons were less than
27% and 100%, respectively. Each selected event was
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
assigned a weight that took into account losses of
events. The mean weight of the sample used in the
present study was 1.43.
For the quantity ν, the eventual value that takes

into account undetected neutrons and photons was
determined on the basis of the measured value of νvis
by using the relation ν = a+ bνvis, where the coeffi-
cients a = 0.15± 0.24GeV and b = 1.07± 0.05were
found bymeans of the procedure applied in [19]. Close
values of a and b were obtained from a Monte Car-
lo simulation of neutrino interactions in the cham-
ber [20].
For a further analysis, we selected 2223 events

where 3 < Eν < 30 GeV, W > 2 GeV, the square
of the momentum transfer lies in the region Q2 >
1 (GeV/с)2, and y = ν/Eν < 0.95.

2. SELECTION OF QUASINUCLEONIC,
CASCADE, AND DEUTERON EVENTS

The selection of quasinucleonic and cascade
events according to the procedure described in de-
tail in [21] was performed by using a number of
topological and kinematical criteria. The subsample
BN of quasinucleon interactions included events
exhibiting no indication of a secondary interaction
in the target nucleus: the total charge of secondary
hadrons was required to be q = +1 (for the subsample
Bn of interactions with a neutron) or q = +2 (for
the subsample Bp of interactions with a proton),
while the number of recorded baryons (these included
identified protons and Λ hyperons, along with neu-
trons that suffered a secondary interaction in the
chamber) was forbidden to exceed unity, baryons
flying in the backward directions being required to
be absent among them. Moreover, a constraint from
above was imposed on the effective target mass Mt,
Mt < 1.2 GeV/c2, this mass being defined as Mt =∑

(Ei − pi||), where summation is performed over
the energies Ei of secondary particles and over the
longitudinal components pi|| of their momenta. Events
that did not satisfy the above criteria were included in
the subsample BS of cascade events. As a result, the
numbers of events in the subsamples Bp, Bn, and
BS proved to be 480, 555, and 1188, respectively, the
numbers of the corresponding weighted events being
685, 751, and 1731.
With allowance for the content of protons and

neutrons in the target nuclei, the ratio of the cross
sections for νn and νp interactions that corresponds
to the above relationships between the numbers
of events is r = σ(νn → µ−X)/σ(νp → µ−X) =
1.83 ± 0.11, which is close to the well-known value
of r ≈ 2 [22]. It was also verified [21] that the W
dependences (in the range 2 ≤ W ≤ 5 GeV) of
3
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Mean features of deep-inelastic neutrino scattering for the total sample of events and for the subsamplesBp,Bn, andBS

Sample 〈Eν〉, GeV 〈ν〉, GeV 〈W 2〉, GeV2 〈Q2〉, GeV2 〈x〉

Total 10.8 ± 0.1 6.5 ± 0.1 9.5 ± 0.1 3.6 ± 0.1 0.30 ± 0.001

Bp 11.0 ± 0.3 6.6 ± 0.2 9.8 ± 0.3 3.5 ± 0.1 0.29 ± 0.001

Bn 10.9 ± 0.2 6.5 ± 0.2 9.3 ± 0.3 3.9 ± 0.1 0.33 ± 0.001

BS 10.7 ± 0.2 6.5 ± 0.1 9.5 ± 0.2 3.5 ± 0.1 0.29 ± 0.001
the mean multiplicities of positively and negatively
charged hadrons in the subsamples Bp and Bn
are in satisfactory agreement with data from [23]
on νp and νn interactions, this agreement being
observed both at negative and at positive values of the
Feynman variable. In addition, the inclusive spectra
of hadrons were compared with available data for a
hydrogen (deuterium) target in the region 2 ≤ W ≤
5 GeV. Here, we obtained satisfactory agreement
between the inclusive spectra of π− mesons in νp
interactions [24] and those in the subsample Bp
and between the inclusive spectra of hadrons in νD
interactions [25] and those in the combined subsam-
ple BD of quasideuteron events. The subsample of
quasideuteron events contained the subsample Bn
and 60% of the subsampleBp (this fraction effectively
corresponds to νD interactions), the remaining 40%
of the subsample Bp corresponding to interactions
with hydrogen of the propane–freon mixture.

The satisfactory agreement of the above mul-
tiplicities and inclusive features of quasinucleonic
subsamples with data for a proton (deuterium) tar-
get [22–25] gives sufficient grounds to conclude
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Fig. 1. Ratio of the pseudorapidity (y∗) distributions
of charged hadrons in the subsamples BS and BN for
two regions of the invariant energy W : (closed circles)
2 < W < 3GeV and (open circles) 3 < W < 5GeV.
P

that the subsamples Bp and Bn may contain only
an insignificant admixture of events where there
occurred a secondary intranuclear interaction.
Some averaged kinematical features of the total

sample and of the subsamples of events are listed in
the table.

3. COMPARISON OF THE INCLUSIVE
SPECTRA OF HADRONS

IN THE SUBSAMPLES OF CASCADE
AND QUASINUCLEONIC EVENTS

The ratio Ry∗(BS/BN ) of the pseudorapidity (y∗)
distributions of charged particles in the c.m. frame of
the hadronic system in the subsamples BS and BN
is shown in Fig. 1 for two intervals of the invariant
energy, 2 < W < 3 GeV and 3 < W < 5 GeV. It can
be seen that the spectrum of hadrons in the subsam-
ple BS is shifted toward negative values of y∗, this
being due to secondary intranuclear collisions and the
hadron energy losses accompanying these collisions.
In the target-fragmentation region (y∗ < −1), the
ratio Ry∗(BS/BN ) is about a few units. But in the
region of quark fragmentation, the yield of hadrons
is suppressed in the subsample BS , this suppres-
sion being especially pronounced at low W—for the
fastest particles (y∗ > 1.8), we have Ry∗(BS/BN ) =
0.44 ± 0.13, which is compatible with the results pre-
sented in [17], where a value of 0.6 ± 0.1 at W =
2–7 GeV was obtained for the ratio of the yields of
y∗ > 2 charged hadrons in the cascade and quas-
inucleonic subsamples of νNe interactions. We also
note that, with increasing W , effects associated with
the absorption of fast quark-fragmentation products
become weaker, disappearing almost completely, ac-
cording to data from [17], in the regionW > 7GeV.
For the subsamples BS and BN , the distributions

ρ(z) = (1/Ntot)dN/dz with respect to the variable
z are displayed in Fig. 2 separately for positively
charged hadrons (identified protons are not included
in these distributions) and for π− mesons. It can
be seen from this figure that, because of energy
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Fig. 2. Distributions of (circles) positively charged
hadrons and (triangles) π− mesons with respect to the
variable z in the subsamples (open symbols) BS and
(closed symbols)BN .

losses in a nuclear medium, the spectra of hadrons
in the subsample BS are shifted toward small values
of z. According to the data in Fig. 3, which illus-
trates the ν dependence of the ratio Rz(BS/BN ) =
ρchBS

(z)/ρchBN
(z) of the analogous charged-hadron

distributions integrated over three ranges of the
variable z—z < 0.2, 0.2 < z < 0.4, and z > 0.4—
this shift, which manifests itself in the enhancement
of the yield of hadrons characterized by low values
of the variable z (z < 0.2) and in the suppression of
the yield of hadrons at high values of this variable
(z > 0.4), is especially pronounced at low values of
the energy ν. From the results presented in Figs. 2
and 3, it follows that, in studying nuclear-absorption
effects, one can hardly extract valuable information
from data at z < 0.4, since these effects do not lead
to the suppression of the yield of hadrons, at least in
the region of comparatively low values of the energy
ν, ν < 7 GeV. Data for leading hadrons (z > 0.4) are
more informative in this respect, because these data
reveal that their yield is suppressed over the entire
region of ν values being considered. These data also
indicate that the suppression in question tends to
become less pronounced with increasing ν.

Below, the nuclear-medium effect on the yield of
leading hadrons, for which z > 0.4, will be considered
versus kinematical variables (or their combinations)
that presumably determine the hadron-formation
length lh. It is expected that the experimentally
measured ratio Rη(BS/BN ) of the yields of hadrons
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
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will be a monotonically growing function of the kine-
matical variable η ∼ lh. Otherwise, the theoretical
prediction that there is a linear relation between η
and lh would be at odds with experimental data on
the leptonic production of hadrons. The data in Fig. 4
make it possible to test various theoretical predictions
qualitatively.
From the data in Fig. 4a, it follows that, in con-

trast to the input assumption that the length lh of
formation of a leading hadron is linearly related to
Ech/mπ, the degree of suppression of its yield and,
hence, the path that it travels in a nuclear medium
after formation undergo virtually no changes over
a broad region of these variables. For the variable
ν/m∗

q , which is the Lorentz factor of the quark whose
effective mass is determined by the kinematics of
the decay u → π+d or d̄ → π+ū of the knock-on
virtual quark—m∗

q = p∗T
√
z(1 − z), where p∗T is the

π+-meson-momentum component orthogonal to the
intermediate-boson momentum—a similar conclu-
sion can be drawn from the data in Fig. 4b. Thus,
our data on the neutrino-induced production of lead-
ing hadrons on nuclei do not support the conjecture
that nuclear-absorption effects become weaker with
increasing Eh or z.
A qualitatively different functional dependence

of the length of leading-hadron formation on kine-
matical variables follows from models that consider
the spacetime evolution of the color string that is
formed between the knock-on quark and the nucleon
residue [8–11]. As the string is stretched, the quark
is moderated, its energy ν being expended into gluon
emission; the production of quark–antiquark pairs;
and, eventually, multiparticle hadron production. Ac-
cording to [9–11], the more extended the spacetime
gap preceding the formation of a leading hadron, the
smaller the fraction z of the energy ν that it can
possess. At rather large z, this gap (or the hadron-
formation length) is given by lh ∼ ν(1 − z). For
3
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subsamplesBA and BD versus the variable z.

z → 1, a similar dependence was obtained within the
Lund string model [8]: lh ∼ νz[−1 + ln(z−2)/(1 −
z2)]. In either case, lh decreases monotonically with
increasing z (over the region z > 0.3 in the second
case); therefore, the suppression of the hadron yield
becomes more pronounced.

The dependence of the ratio R+
η (BS/BN ) on

these variables in Figs. 4c and 4d is in qualitative
agreement with this prediction. As was shown in [16],
theoretical predictions based on the dependence
lh ∼ ν(1 − z) agree satisfactorily with data on the
electroproduction of z > 0.2 hadrons on a nitrogen
nucleus in the energy range 7 < ν < 24 GeV, which,
on average, lies noticeably higher than the energy
PH
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Fig. 6. Ratio Rch
z (BA/BD) for z > 0.2 charged hadrons

at the mean energy of 〈ν〉 = 11.5 GeV versus the mass
numberA of the target nucleus: (closed circles) data from
our present study and (open circles) data from [13, 15, 16].
The description of the straight line is given in the main
body of the text.

range 2 < ν < 15 GeV, which was studied in our
experiment described here.

4. RATIO OF THE INCLUSIVE SPECTRA
OF HADRONS IN THE SUBSAMPLES
OF NUCLEAR AND QUASIDEUTERON

EVENTS

In order to obtain quantitative estimates and to
perform a comparison with the results of other experi-
mental studies, it is necessary to represent data in the
form of the ratio of the inclusive spectra in question
for neutrino interactions with nuclei of the propane–
freon mixture to those for neutrino interactions with
deuterons. The subsample BA of nuclear interactions
can be obtained by eliminating the contribution that
comes from events of interaction with hydrogen and
which, in our experiment, is about 40% of the number
of events in the subsample Bp. Thus, the subsample
BA can be symbolically represented as BA = BS +
Bn + 0.6Bp = BS +BD.

The ratio of the inclusive spectra in the subsam-
ples BA and BD, for example, with respect to the
variable z is given by

Rz(BA/BD) = ρA(z)/ρD(z)

=
N tot
n + 0.6N tot

p

N tot
S +N tot

n + 0.6N tot
p

×
[
1 +

∆Nh
S (z)

∆Nh
n (z) + 0.6∆Nh

p (z)

]
,

where N tot
S , N

tot
n , and N

tot
p are the total numbers of

weighted events in the subsamples BS , Bn, and Bp,
respectively, while ∆Nh

S (z), ∆Nh
n (z), and ∆Nh

p (z)
are the numbers of hadrons having a given value of
z in the corresponding subsamples.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Fig. 7. Ratio of the yields of charged hadrons in the
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and in the interactions of electrons with nitrogen nuclei
and deuterons [16] (open circles; 7 < ν < 24 GeV) ver-
sus z.

The ratio Rz(BA/BD) as a function of z is shown
in Fig. 5 individually for positive hadrons (in which
case no account is taken of identified protons) and
π− mesons. From these data, it follows that the sup-
pression of the yield of π− mesons become signifi-
cant for z > 0.4; for positive hadrons (primarily, π+

mesons), this occurs for z > 0.6, the corresponding
ratio becoming as low as Rz(BA/BD) = 0.65 ± 0.05
for z > 0.8.
The yields of z > 0.2 charged hadrons from nu-

clear targets with respect to the corresponding yield
from a deuterium target were measured in e64Cu and
e14N interactions in [13, 16], as well as in ν(ν̄)Ne
interactions in [15] at 〈ν〉 ≈ 11.5 GeV, which, in our
experiment, corresponds to the region ν > 7.5GeV.
The value of Rchz>0.2(BA/BD) = 0.92 ± 0.04,

which was obtained in the present study and which
corresponds to the mean mass number Ā = 28 of
the target nucleus, is given in Fig. 6, along with
data from [13, 15, 16]. Also presented in this figure
is the result obtained by approximating the data
in question by an exponential form (Aα), the fitted
value of the exponent being α = −0.043 ± 0.027. So
weak a dependence on A may be caused by a partial
compensation of the possible suppression of the yield
of 0.2 < z < 0.4 hadrons because of the energy losses
of hadrons initially possessing higher values of z.
Owing to this, the integrated yield of hadrons that
are characterized by values in the region z > 0.2 is
suppressed only slightly (approximately by 10%) even
for A = 64 nuclei.
A clear illustration of this effect is provided by

Fig. 7, which displays our data (Ā = 28) on the
ratio Rchz (BA/BD) at energies in the range 2 < ν <
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
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15 GeV, along with data obtained at higher energies
of 7 < ν < 24 GeV for nitrogen nuclei (A = 14) [16].
Although stronger intranuclear-absorption effects
are expected here, values that the ratio Rchz (BA/BD)
takes in the region 0.2 < z < 0.4 are greater in the
first than in the second case. The energy and the A
dependence of the suppression of the hadron yield
begin to manifest themselves in the region z > 0.6,
becoming much more pronounced for the most en-
ergetic hadrons, which are characterized by values in
the region z > 0.8.
The ν dependence of the ratio Rchz (BA/BD) for

leading charged hadrons with z > 0.5 is illustrated
in Fig. 8, which shows our data for 2 < ν < 4 GeV
(〈ν〉 = 3.3 GeV) and ν > 4 GeV (〈ν〉 = 7.7 GeV),
along with data on e14N interactions in the region
ν > 8 GeV [16]. According to these data, the ef-
fect observed in [16] that the intranuclear absorption
of leading hadrons becomes more pronounced with
increasing ν tends to persist up to a value of ν ≈
3GeV, at whichRchz>0.5(BA/BD) becomes as large as
0.84 ± 0.05.

5. COMPARISON OF EXPERIMENTAL DATA
WITH PREDICTIONS

OF THE COLOR-STRING MODEL
Below, we present the results obtained by com-

paring the ratio Rz(BA/BD) measured for posi-
tively charged leading hadrons (which include, with
a high probability, the quark knocked out by the
incident lepton) with the predictions of the color-
string model [9–11]. According to this model, the
stretching of a color string between the nucleon
residue and the knock-on quark leads to a linear
decrease in the energy of this quark, νq, with increas-
ing string length l: νq = ν − κl, where the string-
tension coefficient κ characterizes the quark energy
3
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loss per unit length. In the approximation where the
emission of gluons from the quark is disregarded,
we have κ ≈ 1 GeV/fm [26, 27], while, upon the
inclusion of this emission, the effective value of κ
is given by [10] κ = 8αs(Q2)Q2/9π ≈ 1.8 GeV/fm
at 〈Q2〉 = 3.6 (GeV/c)2 and αs = 0.35 [28]. If the
production of a leading qq̄ pair (predominantly, a ud̄
pair in the present case) proceeds through the rupture
of the string at l = lh, then its energy—that is, the
energy of the leading final hadron (predominantly, a
π+ meson in our case)—isEh ≈ νq = ν − κlh, where
lh = ν(1 − z)/κ.
Immediately after the formation of a qq̄ pair, its

mean transverse dimension may be smaller than the
pion radius, in which case the color quark charge is
partly screened; as a result, the interaction of this
qq̄ pair in a nucleus is characterized by an effective
cross section that is smaller than the cross section
for inelastic pion–nucleon interaction, σinπN ≈ 20mb.
From theoretical predictions obtained in [10, 11], it
follows that, with increasing ν, the effective cross
section σh averaged along the trajectory of the qq̄ pair
in a nucleus decreases, becoming much smaller than
σinπN for ν � 5 GeV. But at energies in the region
ν ≤ 5 GeV, the color-screening effect is expected to
be insignificant. If the incident neutrino interacted
with a nucleon whose transverse and longitudinal
coordinates with respect to the center of the nucleus
are b and ξ, respectively, and if the production of the
leading ud̄ pair occurred at the point (b, ξ+ lh), where
lh = ν(1 − z)/κ, then the suppression of the yield of
a π+ meson carrying the fraction z of the initial quark
energy is given by

SAz (b, ξ) = exp


−σh

∞∫
ξ+lh

ρA (b, ξ′) dξ′


,

where ρA(r) is the nuclear-matter density, for which,
in the calculations, we used the Woods–Saxon
parametrization

ρA(r) =
ρ0

1 + exp
(
|r| − rA

a

)
with the parameter values extracted from data on eA
scattering [29]: rA = 1.16A1/3 − 1.35A−1/3 (fm) and
a = 0.54 fm. The parameter ρ0 is determined from
the normalization condition and is equal to 0.193,
0.186, and 0.163 fm−3 for the C, F, and Br nuclei,
respectively.
For each nucleus of the propane–freon mixture

and for each interval of the kinematical variable z =
Eh/ν, the expression for SAz (b, ξ) was averaged over
the coordinates (b, ξ), as well as over the quantity
PH
ν(1 − z), which is a combination of our kinematical
variables; averaging over this quantity was performed
by using its experimental distribution in the subsam-
ple BD. The mean values 〈RAz 〉 calculated in this way
were averaged over target nuclei, and the resulting
theoretical value 〈Rz〉 was compared with the experi-
mentally measured ratioRz(BA/BD).
The calculations were performed at two values of

the parameter κ, 1.0 and 1.8 GeV/fm. The parameter
σh was fitted in such a way as to obtain the best de-
scription of data in the region of large z, z = 0.7–0.9.
The region z < 0.7 was not included in the fitting
procedure because a partial compensation of the sup-
pression of the hadron yield due to the secondary in-
teractions of more energetic particles was disregarded
in the calculations.
Our fit resulted in the value of σh = 19+6

−4.5 mb
at κ = 1 GeV/fm and the value of σh = 15.5+4.6

−3.8 mb
at κ = 1.8 GeV/fm. In Fig. 9, the curves calcu-
lated at these parameter values are contrasted against
experimental data. For 0.7 < z < 0.9, good agree-
ment is observed both for the entire energy range
ν = 2–15 GeV (〈ν〉 = 6.5 GeV) and for the ranges
of low and intermediate energies—that is, the range
ν = 2–5 GeV (〈ν〉 = 3.8 GeV) and the range ν =
5–15 GeV (〈ν〉 = 8.7 GeV), respectively. It should
be emphasized that a somewhat smaller suppression
of the yield of the fastest hadrons for ν > 5 GeV
(Fig. 9c) in relation to the region ν < 5GeV (Fig. 9b)
is explained by an increase in the mean formation
length with increasing ν, lh ∼ ν(1 − z), rather than
by a decrease in the effective cross section σh. For the
same reason, the interaction of the fastest hadrons in
the nucleus for ν > 5 GeV occurs with a lower prob-
ability, so that such hadrons make a relatively smaller
contribution to the region z < 0.7. In all probability,
this is the reason why the description of data in the
region 0.4 < z < 0.7 is satisfactory for ν > 5 GeV
and κ = 1GeV/fm (Fig. 9c).
The description at κ = 1.8 GeV/fm is somewhat

poorer, which may suggest that, in the region of inter-
mediate energies, which are considered in the present
study, the mechanism of gluon emission does not play
a significant role in the leptonic production of quarks,
so that the estimate obtained for the cross section
σh at κ = 1 GeV/fm is preferable. Nonetheless, we
have taken into account the possible uncertainty in
the parameter κ, κ = 1.4 ± 0.4 GeV/fm, and, as a
consequence, in the cross section σh, σh = 18.1 ±
6.4 mb, where the quoted errors include statistical
uncertainties as well. Within the errors, σh does not
differ from σinπN , whence we can conclude that the
leading qq̄ pair acquires the properties of the nascent
hadron with a relatively short spacetime interval that
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Fig. 9. Comparison of data on the ratio R+
z (BA/BD) for positively charged hadrons (points) along with the predictions

of the color-string model (the solid and dashed curves calculated, respectively, at σh = 19 mb and κ = 1 GeV/fm and at
σh = 15.5 mb and κ = 1.8GeV/fm) for (a) 2 < ν < 15GeV, (b) 2 < ν < 5GeV, and (c) 5 < ν < 15GeV.
is commensurate with internucleon distances in a
nucleus.

CONCLUSION

New experimental data on the neutrino-induced
production of hadrons on nuclei have been obtained
in the intermediate-energy region specified by the
inequalities 2 < W < 5 GeV and 2 < ν < 15 GeV.
The procedure applied in this study makes it pos-
sible to select the subsample of quasinucleonic
(quasideuteron) events whose features are in accord
with data obtained for a hydrogen (deuterium) target,
as well as the subsample of cascade events exhibiting
an indication of a secondary interaction in the target
nucleus.
A comparison of the inclusive spectra of hadrons in

these subsamples indicates that the yield of the fastest
fragmentation products is suppressed, this suppres-
sion becomingmore pronounced asW or ν decreases.
It has been shown that the degree to which the yield
of leading hadrons characterized by z values in the
region z > 0.4 is suppressed (and, hence, their forma-
tion length) is not directly related to their energy, but
it depends, in accordance with the predictions of the
color-string model, on the quantity ν(1 − z), which
is a combination of kinematical variables. With the
aim of performing a comparison with the predictions
of this model, as well as with other experimental data,
the results of our measurements were represented in
a form that is equivalent to the ratio Rz(BA/BD) of
inclusive spectra with respect to the variable z in νA
and νD interactions. It has been shown that, for the
fastest hadrons with z = 0.7–0.9, the effective cross
section of σh ≈ 18 ± 6 mb for their absorption in a
nuclear medium corresponds to the extracted value of
Rz(BA/BD), this value of the effective cross section
being close to the known cross section for inelastic
pion–nucleon interaction. This result suggests that
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
the prehadronic qq̄ state acquires the properties of
the nascent pion within a spacetime interval that
is commensurate with internucleonic distances in a
nucleus. We have also obtained a piece of evidence
in favor of the statement that gluon emission from a
knock-on quark does not play a significant role in the
evolution of the color string at moderately low values
of 〈Q2〉 ≈ 3.6 (GeV/с)2 and 〈ν〉 ≈ 6.5 GeV, which
were considered in the present study.
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Abstract—The correlation between the asymptotic normalization constant for the deuteron, AS , and the
neutron–proton scattering length for the triplet case, at, is investigated. It is found that 99.7% of the
asymptotic constant AS is determined by the scattering length at. It is shown that the linear correlation
between the quantities A−2

S and 1/at provides a good test of correctness of various models of nucleon–
nucleon interaction. It is revealed that, for the normalization constant AS and for the root-mean-square
deuteron radius rd, the results obtained with the experimental value recommended at present for the triplet
scattering length at are exaggerated with respect to their experimental counterparts. By using the latest
experimental data obtained for phase shifts by the group headed by Arndt, it proved to be possible to derive,
for the low-energy parameters of scattering (at, rt, Pt) and for the properties of the deuteron (AS , rd),
results that comply well with experimental data. c© 2003 MAIK “Nauka/Interperiodica”.
1. Basic features of the deuteron—such as the
binding energy εd; the electric quadrupole moment
Q; the root-mean-square radius rd; the asymptotic
normalization constants for the S and the D wave,
AS and AD; and the corresponding mixing parame-
ter η = AD/AS—play a significant role in construct-
ing realistic models of nucleon–nucleon interaction
and are important physical characteristics of nuclear
forces. Of equally great importance are low-energy
parameters of neutron–proton scattering in the triplet
state. These include the scattering length at; the ef-
fective range rt; and the shape parameters v2, v3, v4,
. . . appearing in the effective-range expansion

k cot δt(k) = − 1
at

+
1
2
rtk

2 + v2k
4 + v3k

6 (1)

+ v4k
8 + . . . ,

where δt(k) is the triplet neutron–proton phase shift
proper corresponding to the 3S1 state. For this reason,
much attention has been given to these quantities
both in theoretical and in experimental studies [1–
17]. At the present time, the experimental value of
the deuteron binding energy εd is known to a high
precision [9]:

εd = 2.22458900 MeV. (2)

The value of the asymptotic constant for S–D mix-
ing, η, was also determined to a fairly high precision,

*e-mail: pet@gluk.org
1063-7788/03/6607-1319$24.00 c©
both theoretically and experimentally (see [4, 7, 15–
17]). The majority of the theoretical estimates of this
quantity are in perfect agreement with its experimen-
tal value of η = 0.0272 [15]. At the same time, the
values of some features of the deuteron, such as the
asymptotic normalization constant AS and the root-
mean-square radius rd, were the subject of contro-
versy. For example, the value obtained for AS directly
from experimental data by analyzing elastic proton–
deuteron scattering [18],

AS = 0.8781 fm−1/2, (3)

is at odds with the theoretical estimates derived for
this quantity for many realistic potentials [19–26], as
well as with those found from an analysis of phase
shifts [17, 27] and on the basis of the effective-
range expansion [4, 8]. Values of the asymptotic
constant AS that are discussed in the literature
vary within a rather broad range—from 0.7592 to
0.9863 fm−1/2 [28, 29].

In a number of studies, the result reported by
Ericson in [5], AS = 0.8802 fm−1/2, is used for an
“experimental” value. It should be noted, however,
that this value was obtained from an analysis of the
linear relationship between the asymptotic constant
AS and the root-mean-square radius rd rather than
from experimental data directly. This linear correla-
tion between AS and rd was established empirically
for various models of nucleon–nucleon interaction [5,
30]. The procedure that Ericson used to obtain the
above value of AS = 0.8802 fm−1/2 on the basis of
2003 MAIK “Nauka/Interperiodica”
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this relationship involved averaging the values of the
root-mean-square radius rd that were found exper-
imentally in [10, 11]. In view of this, the use of Er-
icson’s result for an experimental value is not quite
correct. The value that is presented in (3) and which
was derived in [18] on the basis of a direct method
for determining this normalization constant from an
analysis of data on elastic proton–deuteron scattering
is more justified.

Other values sometimes used for the experi-
mental asymptotic normalization constant include
AS = 0.8846, 0.8848, and 0.8883 fm−1/2 (see [4], [30,
31], and [8], respectively). In just the same way as
Ericson’s result, they can hardly be treated, however,
as correct experimental values, since they were found
in the effective-range approximation with allowance
for some corrections associated with the form of inter-
action; moreover, the low-energy triplet parameters
of neutron–proton scattering that were employed in
doing this were not determined from experimental
data unambiguously. By way of example, we indicate
that, in [1–3, 12–14, 32], values between 5.377 fm [1]
and 5.424 fm [32] are given for experimental values of
the triplet scattering length at, but the asymptotic
normalization constant AS greatly depends on at.
As will be shown below, 99.7% of the normalization
constant AS is determined by the triplet scattering
length at.

In the following, the value in (3) from [18] will
be used for the experimental value of the normaliza-
tion constant AS . It is close to the value of AS =
0.8771 fm−1/2, which corresponds to the vertex-
constant value of G2

d = 0.427 fm for the d→ n+ p
vertex function and which was obtained earlier in [33].
As we have already indicated, the authors of [18, 33]
employed a direct method for determining the con-
stants AS and G2

d that relies on extrapolating the ex-
perimental cross sections for elastic proton–deuteron
scattering to the exchange-singularity point.

In just the same way as the constant AS , the root-
mean-square radius rd of the deuteron is determined,
to a great extent, by the triplet scattering length at.
A linear correlation between the quantities rd and
at was established empirically in [6, 30]. To a high
precision, this relationship can be approximated as
follows:

rd = 0.4at − 0.1985 (fm). (4)

At present, the following experimental values are used
in the literature for the root-mean-square radius of
the deuteron:

rd = 1.9635 fm [10] (B), (5a)

rd = 1.9560 fm [11] (S), (5b)

rd = 1.950 fm [30] (K). (5c)
PH
According to Eq. (4), the following values of the scat-
tering length at correspond to the values of the radius
rd in (5):

at = 5.4050 fm (B), (6a)

at = 5.3863 fm (S), (6b)

at = 5.3713 fm (K). (6c)

On the other hand, the values of the triplet scat-
tering length that were calculated for many realistic
nucleon–nucleon potentials [19–21, 24, 25] are close
to the experimental value [32]

at = 5.424 fm, (7)

which is recommended at present, but which, in ac-
cordance with Eq. (4), leads to a root-mean-square
radius exaggerated in relation to the experimental
values in (5a)–(5c); that is,

rd = 1.9711 fm. (8)

Thus, we can see that, frequently, values obtained and
used in various studies for the features of the deuteron
and for the triplet low-energy parameters of neutron–
proton scattering are contradictory and deviate from
experimental results.

2. In accordance with [8], the asymptotic normal-
ization constant AS for the deuteron can be repre-
sented in the form

A2
S =

2α
1 − αρd

, (9)

where α is the deuteron wave number defined by the
relation εd = �

2α2/mN and ρd ≡ ρ(−εd,−εd) is the
deuteron effective radius corresponding to S-wave
interaction. The definition and properties of the ra-
dius ρd and of the function ρ(E1, E2) are discussed
in detail elsewhere [1]. The quantity ρd appears in
the expansion of the function k cot δt(k) at the point
k2 = −α2—that is, at the energy value equal to the
deuteron binding energy. The expansion at the point
k2 = −α2 is similar to the expansion in (1), which
is performed at the origin, involving the ordinary ef-
fective range rt ≡ ρ(0, 0) of scattering theory—that
is, the effective range at zero energy. It can easily be
found that the quantities ρd and rt are expanded in
powers of the parameter α2 as

ρd = ρm − 2v2α2 + 4v3α4 − 6v4α6 + . . . , (10)

rt = ρm + 2v2α2 − 2v3α4 + 2v4α6 − . . . , (11)

where ρm ≡ ρ(0,−εd) is the so-called mixed effective
range [1], for which the following relation holds:

ρm =
2
α

(
1 − 1

αat

)
. (12)

The shape parameters vn in expansions (1), (10), and
(11) are dimensional quantities. Instead of them, one
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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often introduces the dimensionless shape parameters
Pt, Qt, . . . related to the parameters vn by the equa-
tions

v2 = −Ptr3t , v3 = Qtr
5
t , . . . . (13)

From the expansions in (10) and (11), it follows that
the quantities rt, ρd, and ρm are related as

ρd + rt = 2ρm + 2v3α4 − 4v4α6 + . . . , (14)

ρd + 2rt = 3ρm + 2v2α2 − 2v4α6 + . . . . (15)

The asymptotic normalization constant AS for the
deuteron is directly expressed in terms of the residue
of the S matrix S(k) at the pole k = iα corresponding
to a bound state of the two-nucleon system; that is,

A2
S = i Res

k=iα
S(k). (16)

Along with the constant AS , other physical quanti-
ties, such as the nuclear vertex constant Gd and the
dimensionless asymptotic normalization constantCd,
are frequently used in the literature [28, 29]. These
two quantities are directly related to the constant AS
by the equations

G2
d = πň2A2

S , (17)

C2
d = A2

S/2α, (18)

where ň = 2ňN , with ňN ≡ �/mN c being the Comp-
ton wavelength of the nucleon.

In the approximationwhere there is no dependence
on the form of interaction (v2 = v3 = . . . = 0),

k cot δt(k) = − 1
at

+
1
2
rtk

2, (19)

the quantities rt, ρd, and ρm are equal to each other,
as follows from Eqs. (10) and (11):

rt = ρd = ρm. (20)

In this approximation, the use of relations (12) and
(20) makes it possible to recast Eq. (9) into the more
convenient form

C−2
d = −1 + 2

Rd
at
, (21)

where the quantity

Rd ≡ 1/α, (22)

which characterizes the spatial dimensions of the
deuteron, is referred to as the deuteron radius [2]. By
using the value in (2) for the deuteron binding energy,
one can easily obtain the following numerical value for
the deuteron radius:

Rd = 4.317688 fm. (23)

In the approximation where there is no dependence
on the form of interaction, the low-energy param-
eters of neutron–proton scattering—we mean here
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
the scattering length at and the effective range rt—
are expressed in terms of bound-state parameters
(deuteron radiusRd and dimensionless normalization
constant Cd) as

at =
2Rd

1 + C−2
d

, (24)

rt = Rd(1 − C−2
d ). (25)

With the aid of parameters that characterize the
bound state of the neutron–proton system (deute-
ron), the behavior of the phase shift at low energies
can be predicted in the effective-range approxima-
tion (19) with allowance for expressions (24) and (25).

3.Aswas indicated above, a great number of stud-
ies have been devoted to exploring and calculating the
asymptotic normalization constant AS . The values of
the constant AS (and of the quantities εd and at)
for some realistic potentials [19–25, 27, 34–36] are
quoted in Table 1, along with the values of AS that
were found from the analysis of phase shifts in [17,
27] and on the basis of the effective-range expansion
in [4, 8]. Also given in the same table are the values
of the constant AS that were calculated in the present
study by formulas (18) and (21), which correspond to
the approximation where there is no dependence on
the form of interaction. In addition, Table 1 presents
the absolute (∆) and the relative (δ) error in the
calculation ofAS in this approximation.

It can be seen from Table 1 that, for the majority
of the models, the relative error in the AS value cal-
culated in the effective-range approximation does not
exceed 0.3%, while the absolute error is not greater
than 0.003 fm−1/2, as a rule. This is not so only
for some early models of the Bonn potential (lines
15–17 in Table 1), in which case the relative error
in the approximate value of the constant AS is 2 to
3%. For the same potentials, the relative error in the
approximate values of the root-mean-square radius
rd of the deuteron that were obtained by formula (4)
is also overly large. For example, the relative error in
rd is 2.52% for the HM-2 potential and 1.49% for the
Bonn F potential. At the same time, this error is small
for more correct models of the Bonn potential, Bonn R
and BonnQ (0.081 and 0.137%, respectively). For the
Paris potential, the error in question is 0.035%.

Thus, we can see from Table 1 that the values
of the normalization asymptotic constant AS for
realistic potentials are strongly correlated with the
values of the triplet neutron–proton scattering length
at. The same is also true for the values of AS
that were found from the analysis of phase shifts
(lines 18, 19) and on the basis of the effective-
range expansion in [4] (line 20). As to the value of
AS = 0.8883 fm−1/2 (line 21), which was calculated
in [8] on the basis of the effective-range expansion,
3
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Table 1. Asymptotic normalization constant AS for the deuteron within various models of nucleon–nucleon interaction

no. References εd, MeV at, fm
AS , fm−1/2

∆, fm−1/2 δ, %
precise value effective-range

approximation

1 RHC [34] 2.22464 5.397 0.88034 0.87867 0.00167 0.216

2 RSC [34] 2.2246 5.390 0.87758 0.87711 0.00047 0.054

3 Paris [19] 2.2249 5.427 0.8869 0.88528 0.00162 0.183

4 Moscow [35] 2.2246 5.413 0.8814 0.88211 0.00071 0.080

5 Nijm I [21, 27] 2.224575 5.418 0.8841 0.88272 0.00138 0.156

6 Nijm II [21, 27] 2.224575 5.420 0.8845 0.88316 0.00134 0.152

7 Reid 93 [21, 27] 2.224575 5.422 0.8853 0.88360 0.00170 0.193

8 Argonne v18 [25] 2.224575 5.419 0.8850 0.88341 0.00159 0.180

9 GK-4 [36] 2.226 5.364 0.87462 0.87201 0.00261 0.299

10 GK-8 [36] 2.226 5.413 0.88434 0.88262 0.00172 0.194

11 GK-7 [36] 2.226 5.477 0.89776 0.89678 0.00098 0.109

12 HM-1 [22, 23] 2.224 5.50 0.901 0.90119 0.00019 0.021

13 Bonn R [20] 2.2246 5.423 0.8860 0.88430 0.00170 0.193

14 Bonn Q [20] 2.2246 5.424 0.8862 0.88452 0.00168 0.190

15 Bonn F [20] 2.2246 5.427 0.9046 0.88517 0.01942 2.195

16 HM-2 [22, 23] 2.2246 5.45 0.919 0.89024 0.02876 3.230

17 M [24] 2.22469 5.424 0.9043 0.8845 0.01975 2.233

18 SCSS [17] 2.224575 5.4193 0.8838 0.88300 0.00079 0.089

19 STS [27] 2.224575 5.4194 0.8845 0.88303 0.00147 0.166

20 ER-C [4] 2.224575 5.424 0.8846 0.88451 0.00009 0.011

21 KMMA [8] 2.224644 5.412 0.8883 0.88191 0.00639 0.725
it is strongly overestimated in relation to the value
of AS = 0.88191 fm−1/2, which was found in the
present study in the approximation where there is
no dependence on the form of interaction. In that
case, the relative error in the approximate value
was 0.725%. An incorrect choice of the shape pa-
rameter Pt in [8] is the reason for this discrepancy—
namely, the following data from [37] on the low-
energy parameters of scattering were used in [8]
to calculate the constant AS : at = 5.412 fm and
rt = 1.733 fm; however, the value of Pt = −0.0188,
chosen there for the shape parameter, corresponded
to the Paris potential, for which the scattering length
and the effective range take values (at = 5.427 fm,
rt = 1.766 fm) that considerably exceed those that
were employed in [8].

Considering that the deuteron binding energy has
been determined to a high degree of precision and is
PH
taken to have approximately the same value in all of
the calculations, one can conclude on the basis of the
results in Table 1 that 99.7% of the asymptotic nor-
malization constant AS is determined by the triplet
scattering length at. The inverse also holds: knowing
the values of the constant AS , one can determine
the triplet scattering length at to a high degree of
precision.

Taking the aforesaid into consideration, we will
investigate the asymptotic constant AS as a function
of the triplet scattering length at. It is convenient
to perform this investigation for the dimensionless
quantity C−2

d , which, in the approximation where
there is no dependence on the form of interaction, is
a linear function of the quantity Rd/at [see Eq. (21)].
The Rd/at dependence of C−2

d is shown in the fig-
ure. The straight line represents the results of the
calculation based on the approximate formula (21),
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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while the points in the figure correspond to εd, at, and
AS values computed by various authors and quoted
in Table 1. As can be seen from the figure, there
is a linear relationship between the quantities C−2

d
and Rd/at. Points corresponding to their values lie
in a close proximity of the straight line specified by
Eq. (21). As was mentioned above, this is not so only
for points corresponding to early models of the Bonn
potential and the point corresponding to the values
of the quantities in question from [8]. Points that
represent values of C−2

d and Rd/at for more correct
versions of the Bonn potential model (Bonn R, Bonn
Q) lie near the straight line specified by Eq. (21)
(points 13, 14).

Thus, it follows from Table 1 and from the figure
that the asymptotic normalization constant AS and
the triplet scattering length at are well correlated
quantities, so that any of these can be determined to a
high degree of precision if the other is known. For the
experimental value presented in (3) for the constant
AS , the corresponding value of the scattering length
at can easily be determined in the effective-range
approximation by formulas (18) and (21). The result
is

at = 5.395 fm. (26)

At the same time, the currently recommended exper-
imental value of the triplet scattering length in (7)
leads, in the effective-range approximation, to the
asymptotic-normalization-constant value

AS = 0.88451 fm−1/2, (27)
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which is well above the experimental value of this
quantity in (3). As was indicated above, the exper-
imental scattering-length value in (7) also leads to
the exaggerated value in (8) for the root-mean-square
radius rd of the deuteron.

Thus, it can be concluded from the above anal-
ysis that the currently recommended experimental
value of the triplet neutron–proton scattering length
in (7) does not comply with the experimental values
of the asymptotic normalization constant AS for
the deuteron and its root-mean-square radius rd
in (3) and (5a)–(5c), respectively. Therefore, it is of
paramount importance to determine, for the features
of the deuteron and for the parameters of low-energy
neutron–proton scattering in the triplet case, such
values that would be consistent with one another,
on one hand, and which would be compatible with
experimental data on the other hand.

4. Fixing the features εd, AS , and rd of the
deuteron, we will study the behavior of the S-wave
phase shift at low energies in the approximation that
takes into account the shape parameter Pt in the
effective-range expansion; that is,

k cot δt(k) = − 1
at

+
1
2
rtk

2 − Ptr
3
t k

4. (28)

For the scattering length at, use is made here of the
values in (6a)–(6c), which correspond to the values
of the root-mean-square radius rd of the deuteron
in (5a)–(5c), while, in accordance with (10), (13),
3
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Table 2. Parameters of effective-range theory that were calculated on the basis of the experimental values of εd, AS , and
rd, as well as those found from the analysis of the experimental phase shifts for neutron–proton scattering

Version at, fm rt, fm Pt ρm, fm ρd, fm

B 5.4050 1.75047 −0.02312 1.73716 1.72385

S 5.3863 1.70257 0.02010 1.71321 1.72385

K 5.3713 1.66391 0.06064 1.69388 1.72385

ER 5.395 1.72385 0 1.72385 1.72385

PWA 5.4030 1.7495 −0.02592 1.73461 1.7197

Table 3. Triplet phase shift calculated for neutron–proton scattering in the shape-parameter approximation (28) with the
parameter values from Table 2 as a function of the laboratory energy Elab

Elab, MeV
Phase shift δt, deg

experimental data [38] PWA B S K ER

0.1 169.32 169.315 169.311 169.349 169.380 169.331

0.5 156.63 156.645 156.637 156.728 156.802 156.686

1.0 147.83 147.823 147.812 147.954 148.068 147.889

2.0 136.56 136.548 136.536 136.770 136.958 136.664

5.0 118.23 118.236 118.228 118.750 119.168 118.516

10.0 102.55 102.598 102.612 103.672 104.521 103.200

20.0 85.84 86.049 86.127 88.385 90.211 87.379

30.0 75.61 76.043 76.195 79.702 82.592 78.131

40.0 68.11 68.822 69.046 73.796 77.806 71.652

45.0 64.96 65.843 66.103 71.462 76.050 69.032

50.0 62.11 63.171 63.466 96.424 74.602 66.709

100.0 42.34 45.705 46.265 57.612 69.487 52.131
and (14), the effective range rt and the shape param-
eter Pt are given by

rt = 2ρm − ρd, (29)

Pt =
ρd − ρm
2r3t α2

, (30)

where the effective radius ρd of the deuteron and the
mixed effective range ρm are determined fromEqs. (9)
and (12), respectively. The parameters at, rt, Pt, ρm,
and ρd calculated in this approximation on the basis
of the experimental values of the deuteron binding en-
ergy εd in (2), the asymptotic normalization constant
AS in (3), and the root-mean-square radius rd of the
deuteron in (5a)–(5c) are given in Table 2 (versions
B, S, K), along with the values calculated for these
parameters in the effective-range approximation (ER)
on the basis of the experimental values of εd and AS ,
as well as values found in the present study from the
PH
latest partial-wave analysis (PWA) reported by Arndt
et al. [38] for the case of nucleon–nucleon scattering,
which, as can be seen from this table, are in very good
agreement with the corresponding values for version
B, where the features of the deuteron were set to
εd = 2.22458900 MeV [9], AS = 0.8781 fm−1/2 [18],
and rd = 1.9635 fm [10].

The quantity δρ defined as the difference of the
effective radius ρd of the deuteron and the mixed
effective range ρm,

δρ = ρd − ρm, (31)

is often discussed in the literature. According to the
estimates obtained by Noyes in [3] on the basis of dis-
persion relations, this difference arises owing to one-
pion exchange and is positive, its magnitude being
0.016 fm. For many potential models, the difference
δρ is also positive; as was established in [5, 6, 31], it
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Table 4. Difference ∆ of the experimental value of the phase shift and its theoretical value calculated in the shape-
parameter approximation (28) with the parameter values from Table 2

Elab, MeV
∆, deg

PWA B S K ER

0.1 0.005 0.009 −0.029 −0.060 −0.011

0.5 −0.015 −0.007 −0.098 −0.172 −0.056

1.0 0.007 0.018 −0.124 −0.238 −0.059

2.0 0.012 0.024 −0.210 −0.398 −0.104

5.0 −0.006 0.002 −0.520 −0.938 −0.286

10.0 −0.048 −0.062 −1.122 −1.971 −0.650

20.0 −0.209 −0.287 −2.545 −4.371 −1.539

30.0 −0.433 −0.585 −4.092 −6.982 −2.521

40.0 −0.712 −0.936 −5.686 −9.696 −3.542

45.0 −0.883 −1.143 −6.502 −11.090 −4.072

50.0 −1.061 −1.356 −7.314 −12.492 −4.599

100.0 −3.365 −3.925 −15.272 −27.147 −9.791
correlates well with the triplet scattering length at. In
our case, this difference is given by

δρ = 2Ptr3tα
2; (32)

for the parameter values used in the S and K versions
from Table 2, it is positive, taking the values of 0.011
and 0.030 fm, respectively. For the cases of B and
PWA in Table 2, the difference δρ is negative, its val-
ues being−0.013 and−0.015 fm. For this reason, the
problem of the sign and magnitude of the difference of
the effective radius ρd of the deuteron and the mixed
effective range ρm calls for a further investigation.

For the low-energy parameters given in Table 2,
we have calculated the triplet phase shift δt(k). The
results are displayed in Table 3, along with the latest
experimental data of Arndt et al. [38] on the triplet
phase shift. Table 4 presents the energy dependence
of the difference

∆ = δexpt − δtheor (33)

of the experimental value of the phase shift and its
theoretical counterparts calculated by formula (28)
and quoted in Table 3. As can be seen from Tables 3
and 4, all sets of low-energy parameters at, rt, and
Pt from Table 2 describe well experimental data up to
an energy value of 5 MeV (the absolute error being
less than 1◦). Nonetheless, the distinction between
the sets of low-energy parameters in describing ex-
perimental data becomes noticeable at an energy as
low as 1 MeV, and we can see that preference should
be given to the parameter sets employed in the B and
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
PWA versions. These sets provide a nearly precision
description (with a relative error of about 0.005%) of
experimental phase shifts up to an energy value of
5 MeV. Thus, the accuracy of existing experimental
data that is available at present is quite sufficient for
removing ambiguities that arise in determining the
scattering length at and the effective range rt [1] and
which are associated with the form of the potential. In
view of this, the problem of deducing the scattering
length, the effective range, and parameters of higher
order (shape parameters) in expansion (1) directly
from experimental data is pressing. It should be noted
that the B and PWA sets describe well, in contrast to
other parameter sets, experimental phase shifts up to
an energy value of 50 MeV. For the B and PWA sets,
the absolute error is about 0.5◦ atElab = 30MeV and
about 1◦ at Elab = 50 MeV. From Table 4, it can be
seen that, for other parameter sets, the absolute error
is much greater.

Thus, neutron–proton scattering in the triplet
state can be described rather well within the B set up
to an energy value of 50MeV, the experimental values
used in this description for the features of the deuteron
being that in (2) for the binding energy, that in (3)
for the asymptotic normalization constant, and that
in (5a) for root-mean-square radius. On the other
hand, parameters that characterize the neutron–
proton bound state (deuteron) can be determined
from experimental data on neutron–proton scatter-
ing. By using the values

at = 5.4030 fm, rt = 1.7495 fm, (34)
3
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Pt = −0.0259,

which we found here for the low-energy parameters of
scattering from an analysis of the latest data on phase
shifts [38], we will now determine the asymptotic nor-
malization constant AS for the deuteron and its root-
mean-square radius rd. In accordance with Eqs. (4),
(9), (10), (12), and (13), we obtain

AS = 0.8774 fm−1/2, (35)

rd = 1.9627 fm. (36)

As might have been expected, these results are in
very good agreement with the experimental values of
AS = 0.8781 fm−1/2 [18] and rd = 1.9635 fm [10].

5. To summarize, we will formulate our basic re-
sults and conclusions. We have investigated the cor-
relation between the asymptotic normalization con-
stant for the deuteron, AS , and the triplet neutron–
proton scattering length at. It has been established
that 99.7% of the asymptotic constant AS is deter-
mined by the triplet scattering length at. It has been
shown that, in the effective-range approximation, the
linear correlation between the quantities 2α/A2

S and
Rd/at provides a good test of correctness of various
potential models and methods that are used in study-
ing nucleon–nucleon interaction.

It has been found that evaluating the asymptotic
normalization constant for the deuteron and its root-
mean-square radius with the currently recommended
triplet-scattering-length value of at = 5.424 fm [32]
leads to results, AS � 0.8845 fm−1/2 and rd =
1.9711 fm, that are exaggerated in relation to the
corresponding experimental values in (3) and (5a)–
(5c).

By using the experimental values of εd =
2.22458900 MeV [9], AS = 0.8781 fm−1/2 [18], and
rd = 1.9635 fm [10] for, respectively, the binding
energy of the deuteron, its asymptotic normaliza-
tion constant, and its root-mean-square radius, we
have obtained the following results for the low-
energy parameters of scattering: at = 5.4050 fm,
rt = 1.7505 fm, and Pt = −0.0231. It turned out
that, with these parameter values, the respective
experimental phase shift is faithfully reproduced up
to an energy value of 50 MeV. The absolute error in
the phase shift at this energy value is about 1◦. As the
energy decreases, the absolute error becomes smaller,
taking the value of 0.06◦ at an energy of 10 MeV. If
the root-mean-square radius of the deuteron is set to
the experimental value of rd = 1.9560 fm from [11] or
the experimental value of rd = 1.950 fm from [30], the
corresponding low-energy parameters of scattering
lead to a much poorer description of the experimental
phase shift in the shape-parameter approximation.
P

Even at an energy of 10 MeV, the absolute error
exceeds 1◦ in this case.

The values found for the low-energy parameters
of scattering with the aid of the latest experimen-
tal results reported by Arndt et al. [38] for the
phase shifts are at = 5.4030 fm, rt = 1.7495 fm, and
Pt = −0.0259. They are in good agreement with the
parameter values of at = 5.4050 fm, rt = 1.7505 fm,
and Pt = −0.0231, which were obtained on the basis
of the experimental values of the features of the
deuteron. Both sets of these parameters make it
possible to describe well, in the shape-parameter
approximation, the experimental phase shift up to an
energy of 50 MeV, this indicating that the parameter
Qt and parameters of higher order in the effective-
range expansion are small.

On the basis of the parameter values of at =
5.4030 fm, rt = 1.7495 fm, and Pt = −0.0259, which
correspond to the experimental phase shifts ob-
tained by Arndt et al. [38], we have found the
asymptotic normalization constant for the deuteron,
AS = 0.8774 fm−1/2, and its root-mean-square ra-
dius, rd = 1.9627 fm, these results being in ex-
cellent agreement with the experimental values of
AS = 0.8781 fm−1/2 [18] and rd = 1.9635 fm [10].

In summary, we arrive at the basic conclusion that
the latest experimental results of Arndt et al. [38] for
the phase shift comply very well with the experimental
values of parameters that characterize the deuteron—
specifically, with the binding energy in (2), the asymp-
totic normalization constant determined in [18] and
given in (3), and the root-mean-square radius of the
deuteron as obtained in [10] and presented in (5а).
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Abstract—The behavior of nucleon structure functions in the resonance region is explored. For form
factors that describe resonance production, expressions are obtained that are dependent on the photon
virtuality Q2, which have a correct threshold behavior, and which take into account available experimental
data on resonance decay. Resonance contributions to nucleon structure functions are calculated. The
resulting expressions are used to investigate quark–hadron duality in electron–nucleon scattering by
taking the example of the structure function F2. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

To obtain deeper insights into the structure of
hadrons and their interactions in terms of quark and
gluon degrees of freedom is the most important the-
oretical problem in nuclear and elementary-particle
physics.

Quark and gluon degrees of freedom provide a
convenient basis for constructing QCD as a gauge-
invariant theory of strong interaction. Hadronic de-
grees of freedom form a different basis. Since no
physical observable can be dependent on the choice of
basis, the description of processes in terms of quark–
gluon degrees of freedom is expected to be equivalent
to the corresponding description in terms of hadronic
degrees of freedom.

The choice of degrees of freedom for describing
hadronic processes depends on specific kinemat-
ical conditions. By way of example, we indicate
that, in lepton–nucleon scattering, the resonance-
production region is usually described in terms of
hadronic degrees of freedom, while the region of deep-
inelastic scattering is naturally described by using
quark–gluon degrees of freedom. In the first region,
a virtual photon that the lepton and the nucleon
involved in lepton–nucleon scattering exchange in-
teracts with the nucleon as a discrete unit, changing
the orientation of the spins of relevant quarks and,
hence, their angular momentum, whereby resonance
production occurs. In the second region, a virtual
photon undergoes scattering immediately on the
quarks involved, causing the production of a large

†Deceased.
1)Bogolyubov Institute for Theoretical Physics, National
Academy of Sciences of Ukraine,Metrologicheskayaul. 14b,
Kiev, 03143 Ukraine.
1063-7788/03/6607-1328$24.00 c©
number of hadrons. Despite the distinction of mecha-
nisms responsible for the interaction in the resonance
and in the deep-inelastic region, it turns out that
relevant amplitudes (or structure functions) behave
similarly in these regions, and it is possible to describe
them in terms of only quark or only hadronic degrees
of freedom, irrespective of the kinematical region.
The equivalence of quark and hadronic description
is referred to as quark–hadron duality.

Formally, quark–hadron duality is exact; however,
the fact that, in practice, we must truncate the ex-
pansion of any Fock state leads to different mani-
festations of this duality under different kinematical
conditions and in different reactions.

We recall that the historically first concept of dual-
ity related resonances at low energies to Regge poles
at high energies. Finite-energy sum rules that were
independently introduced in [1–3] provided an exact
mathematical formulation of the duality concept.

The Veneziano amplitude was the first example
where hadron–Reggeon duality was fulfilled. A dual
amplitude featuring Mandelstam analyticity [4, 5],
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Fig. 1. Production of nucleon resonances in the lowest
order in the electromagnetic-coupling constant.
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NUCLEON STRUCTURE FUNCTIONS 1329
where one can introduce nonlinear complex Regge
trajectories with correct thresholds, provides yet an-
other example of this kind.

A manifestation of quark–hadron duality was first
noticed by Bloom and Gilman [6] in analyzing data on
nucleon structure functions in the region of nucleon-
resonance excitation from experiments that studied
electron–nucleon scattering. It turned out that, on
average, the resonance curve for the structure func-
tion F2(x′, Q2) reproduces the scaling curve. In other
words, the area under the resonance curve is equal
to the area under the scaling curve. This is the so-
called global duality. It was mentioned that, to some
specific accuracy, a local duality holds. It means that
all the aforesaid holds for averaging not only within
the entire resonance region but also in the vicinity of
an individual resonance.

The duality provided additional possibilities for
studying the nucleon structure on the basis of data on
the properties of nucleon resonances. For example,
corrections to the scaling behavior of the structure
function F2—such corrections were calculated within
QCD and have beenmeasured over the past decade—
can be extracted from resonance data [7].

Presently, it is of interest to describe duality
theoretically—in particular, to construct nucleon
structure functions in the resonance region (threshold
energies and low values of the photon virtuality).
For this, it is necessary to know the dependence of
the form factors for resonance-production processes
γ∗N → R on the photon virtualityQ2.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
Experimental data obtained recently in the Jeffer-
son Laboratory [8, 9] provide a strong motivation for
performing such investigations.

2. FORM FACTORS

In the lowest order in the electromagnetic coupling
constant, the process of lepton–hadron scattering
proceeds via the exchange of a virtual photon having
a virtuality Q2 = −q2 (q is the photon 4-momentum)
and an energy (in the nucleon rest frame) ν = (pq)/m
(p is the nucleon 4-momentum, andm is the nucleon
mass). In the case under consideration, Q2 also plays
the role of the square of the momentum transfer from
the lepton to the nucleon involved.

The mechanism of virtual-photon interaction with
a nucleon depends on the momentum transfer to the
nucleon,Q2, and on the photon energy. At high values
of Q2 and ν, there occur the noncoherent scattering
of the virtual photon by the quarks of the nucleon
and the production of a large number of hadrons. At
Q2 ∼ 1 GeV2 and moderate values of the energy ν,
the excitation of internal spin states of the nucleon
occurs, which leads to resonance production (see
Fig. 1).

Let us introduce basic conventions and define the
quantities that will be used below. We denote by p, q,
and P , respectively, the nucleon, the photon, and the
resonance 4-momenta. In the resonance rest frame,
they are given by
p =

(
M2 +m2 +Q2

2M
, 0, 0, −

√
(M2 −m2 −Q2)2 + 4M2Q2

2M

)
, (1)

q =

(
M2 −m2 −Q2

2M
, 0, 0,

√
(M2 −m2 −Q2)2 + 4M2Q2

2M

)
, (2)

P = (M, 0, 0, 0), (3)
where p2 = m2, P 2 = M2, and M is the resonance
mass.

The γ∗N → R vertex of virtual-photon absorption
by a nucleon is described by three independent form
factors G±,0(Q2) (or by two form factors if the res-
onance is equal to 1/2, in which case G−(Q2) ≡ 0),
which, apart from a factor, coincide (in the resonance
rest frame) with the helicity amplitudes for the transi-
tion γ∗N → R, these amplituces having the form

Gλγ =
1

2m
〈R,λR = λN − λγ |J(0)|N,λN 〉, (4)

where λR, λN , and λγ are the helicities of the reso-
nance, the nucleon, and the photon, respectively, λγ
taking the values of−1, 0,+1, and J(0) is the current
operator.

The nucleon structure functions can be expressed
in terms of form factors (4) [10] as

F1(x,Q2) = m2δ(W 2 −M2) (5)

×
[
|G+(Q2)|2 + |G−(Q2)|2

]
,

(
1 +

ν2

Q2

)
F2(x,Q2) = mνδ(W 2 −M2) (6)

×
[
|G+(Q2)|2 + 2|G0(Q2)|2 + |G−(Q2)|2

]
,

3
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(
1 +

Q2

ν2

)
g1(x,Q2) = m2δ(W 2 −M2) (7)

×
[
|G+(Q2)|2 − |G−(Q2)|2

+ (−1)J−1/2η
Q
√

2
ν
G∗

0(Q
2)G+(Q2)

]
,

(
1 +

Q2

ν2

)
g2(x,Q2) = −m2δ(W 2 −M2) (8)

×
[
|G+(Q2)|2 − |G−(Q2)|2

− (−1)J−1/2η
ν
√

2
Q
G∗

0(Q
2)G+(Q2)

]
,

where J and η are the resonance spin and the
resonance parity, respectively; W 2 = (p+ q)2 is the
square of the total energy of the photon–nucleon
system in the c.m. frame; and x is the Bjorken
variable. We recall that the structure functions F1
and F2 are related to the quantitiesW1 andW2 by the
equations F1(x,Q2) = mW1(ν,Q2) and F2(x,Q2) =
νW2(ν,Q2).

Formulas (5)–(8) control the contribution of one
infinitely narrow resonance to the nucleon structure
functions. For a resonance of width Γ, it is neces-
sary to replace, in these formulas, the delta function
δ(W 2 −M2) by

1
π

MΓ
(W 2 −M2)2 +M2Γ2

. (9)

In principle, this expression is not the only approx-
imation of the resonance shape. However, a specific
form of the resonance contribution is immaterial at
this stage. It should be noted, however, that expres-
sion (9) originates from the resonance propagator.

The idea of the approach used in the present study
is to take into account the contributions of all reso-
nances for which there are data in the literature [11].
If we denote by FR1,2 and g

R
1,2, the contributions of the

resonance R to, respectively, the spin-independent
and the spin-dependent structure function, the reso-
nance contributions to the structure functions can be
represented as sums

F1,2 =
∑
R

FR1,2; g1,2 =
∑
R

gR1,2. (10)

In order to calculate the resonance contribution to
the structure functions, it is necessary to construct
the form factors for resonance production as functions
of the photon virtuality Q2. We note that the Q2
PH
dependence of the form factors of known resonances
has not yet received adequate experimental study: the
tables given in [11] only display their values atQ2 = 0.

There are two types of γ∗N → R transitions in
parity: normal transitions,

1/2+ → 3/2−, 5/2+, 7/2−, . . . , (11)

and anomalous transitions,

1/2+ → 1/2−, 3/2+, 5/2−, . . . . (12)

For the form factors G±,0(Q2) corresponding to
the above transitions, we know (i) their threshold be-
havior for |q| → 0 [12], (ii) their asymptotic behavior
at highQ2, and (iii) their values atQ2 = 0 [11].

It was shown in [12] that, if a γ∗N → R transition
is normal in parity [see (11)], the form factors for the
production of a spin-J resonance have the following
threshold behavior:

G±(Q2) ∼ |q|J−3/2, (13)

G0(Q2) ∼ q0
|q| |q|

J−1/2. (14)

For transitions that are anomalous in parity [see (12)],
we have

G±(Q2) ∼ |q|J−1/2, (15)

G0(Q2) ∼ q0
|q| |q|

J+1/2. (16)

Transitions of the 1/2+ → 1/2+ type stand out as
a particular case. Specifically, they are controlled only
by two form factors, G+ and G0—the form factor G−
corresponds to the helicity of a spin-3/2 resonance
and, therefore, vanishes for a spin-1/2 resonance. For
1/2+ → 1/2+, their threshold behavior is as follows:

G+(Q2) ∼ |q|, (17)

G0(Q2) ∼ q0
|q| |q|

2. (18)

The form factors for 1/2+ → 1/2− transitions are
given by expressions (15) and (16) at J = 1/2; that
is,

G+(Q2) ∼ const, (19)

G0(Q2) ∼ q0
|q| |q|. (20)

The high-Q2 behavior of the form factors is deter-
mined by quark-counting rules [13, 14], according to
which

G+(Q2) ∼ Q−3, G0(Q2) ∼ Q−4, (21)

G−(Q2) ∼ Q−5.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Thus, the expressions representing the form fac-
tors and possessing all of the aforementioned proper-
ties can be written as∣∣G±(Q2)

∣∣2 = |G±(0)|2 (22)

×
(

|q|
|q|Q=0

Q′2
0

Q2 +Q′2
0

)2J−3(
Q2

0

Q2 +Q2
0

)m±

,

∣∣G0(Q2)
∣∣2 = C2

(
Q2

Q2 +Q′′2
0

)2a
q20
|q|2 (23)

×
(

|q|
|q|Q=0

Q′2
0

Q2 +Q′2
0

)2J−1(
Q2

0

Q2 +Q2
0

)m0

in the case of normal transitions and as∣∣G±(Q2)
∣∣2 = |G±(0)|2 (24)

×
(

|q|
|q|Q=0

Q′2
0

Q2 +Q′2
0

)2J−1(
Q2

0

Q2 +Q2
0

)m±

,

∣∣G0(Q2)
∣∣2 = C2

(
Q2

Q2 +Q′′2
0

)2a
q20
|q|2 (25)

×
(

|q|
|q|Q=0

Q′2
0

Q2 +Q′2
0

)2J+1(
Q2

0

Q2 +Q2
0

)m0

in the case of anomalous transitions, where

|q| =

√
(M2 −m2 −Q2)2 + 4M2Q2

2M
, (26)

|q|Q=0 =
M2 −m2

2M
,

m+ = 3,m− = 5, andm0 = 4.

The form factors for 1/2+ → 1/2+ transitions can
be written in the form∣∣G+(Q2)

∣∣2 = |G+(0)|2 (27)

×
(

|q|
|q|Q=0

Q′2
0

Q2 +Q′2
0

)2(
Q2

0

Q2 +Q2
0

)m+

,

∣∣G0(Q2)
∣∣2 = C2

(
Q2

Q2 +Q′′2
0

)2a
q20
|q|2 (28)

×
(

|q|
|q|Q=0

Q′2
0

Q2 +Q′2
0

)4(
Q2

0

Q2 +Q2
0

)m0

.

In expressions (22)–(25), the quantities Q2
0, Q

′2
0,

Q′′2
0, and a are free parameters that can be deter-

mined from a fit to experimental data. The coefficient
C can be found if there are experimental data on
the ratio of the longitudinal and transverse cross
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
sections for virtual-photon absorption, R(Q2) =
σL(Q2)/σT (Q2), since the following relation holds:

R(Q2) =
2
∑
R

∣∣G0(Q2)
∣∣2

∑
R

(|G+(Q2)|2 + |G−(Q2)|2)
. (29)

By the way, expression (29), together with expres-
sions (22)–(25), makes it possible to determine the
behavior of R, and this may be helpful in analyzing
experimental data.

The values of the form factors at Q2 = 0 and the
helicity photoproduction amplitudes A1/2 and A3/2

presented in [11] are related by the equation [10]

|G+,−(0)| = e−1

√
M2 −m2

m
|A1/2,3/2|, (30)

where e =
√

4π/137 is the electron charge. We note
that, atQ2 = 0, the longitudinal form factor vanishes,
G0(0) = 0.

Substituting into (10) relations (5)–(8) written for
each specific resonance, taking into account transi-
tion parities, and using the corresponding expressions
for the form factors, we find that, in the resonance
region, the structure functions have the form

F1(x,Q2) =
∑
R

m2

π
(31)

× MΓ
(m2 +Q2(1/x − 1) −M2)2 +M2Γ2

×
(

|q|
|q|Q=0

Q′2
0

Q2 +Q′2
0

)n+
[
|G+(0)|2

×
(

Q2
0

Q2 +Q2
0

)m+

+ |G−(0)|2
(

Q2
0

Q2 +Q2
0

)m−
]
,

F2(x,Q2) =
∑
R

2m2x

1 + 4m2x2/Q2

1
π

(32)

× MΓ
(m2 +Q2(1/x − 1) −M2)2 +M2Γ2

×
[(

|q|
|q|Q=0

Q′2
0

Q2 +Q′2
0

)n+(
|G+(0)|2

×
(

Q2
0

Q2 +Q2
0

)m+

+ |G−(0)|2
(

Q2
0

Q2 +Q2
0

)m−)

+ 2C2

(
Q2

Q2 +Q′′2
0

)2a
q20
|q|2

(
|q|

|q|Q=0

Q′2
0

Q2 +Q′2
0

)n0

×
(

Q2
0

Q2 +Q2
0

)m0
]
,

3
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g1(x,Q2) =
∑
R

1
1 + 4m2x2/Q2

m2

π
(33)

× MΓ
(m2 +Q2(1/x − 1) −M2)2 +M2Γ2

×
[(

|q|
|q|Q=0

Q′2
0

Q2 +Q′2
0

)n+(
|G+(0)|2

×
(

Q2
0

Q2 +Q2
0

)m+

− |G−(0)|2
(

Q2
0

Q2 +Q2
0

)m−)

+ (−1)J−1/2η
2
√

2mx
Q

C

(
Q2

Q2 +Q′′2
0

)a
|G+(0)|

× |q0|
|q|

(
|q|

|q|Q=0

Q′2
0

Q2 +Q′2
0

)(n0+n+)/2

×
(

Q2
0

Q2 +Q2
0

)(m0+m+)/2
]
,

g2(x,Q2) = −
∑
R

1
1 + 4m2x2/Q2

m2

π
(34)

× MΓ
(m2 +Q2(1/x − 1) −M2)2 +M2Γ2

×
[(

|q|
|q|Q=0

Q′2
0

Q2 +Q′2
0

)n+(
|G+(0)|2

×
(

Q2
0

Q2 +Q2
0

)m+

− |G−(0)|2
(

Q2
0

Q2 +Q2
0

)m−)

− (−1)J−1/2η
Q√
2mx

C

(
Q2

Q2 +Q′′2
0

)a
|G+(0)|

× |q0|
|q|

(
|q|

|q|Q=0

Q′2
0

Q2 +Q′2
0

)(n0+n+)/2

×
(

Q2
0

Q2 +Q2
0

)(m0+m+)/2
]
,

where n+ = 2J − 3 and n0 = 2J − 1 for normal tran-
sitions, n+ = 2J − 1 and n0 = 2J + 1 for anomalous
transitions, and summation is performed over reso-
nances. We took into account the contributions of the
following resonances: N(1440), N(1520), N(1535),
N(1650), N(1675), N(1680), N(1700), N(1710),
N(1720), N(1990), ∆(1232), ∆(1550), ∆(1600),
∆(1620), ∆(1700), ∆(1900), ∆(1905), ∆(1910),
∆(1920), ∆(1930), and ∆(1950).

The resulting formulas determine the resonance
contribution to the nucleon structure functions. It
is obvious that the production of resonances in
electron–nucleon scattering is not the only pro-
cess contributing to the structure functions. The
PH
production of mesons and other hadrons forms a
nonresonance background, which must also be taken
into account.

The contribution of the nonresonance background
can be parametrized as [9]

Fnr2 (x,Q2) =
Q2

4π2α

1 − x
1 + 4m2x2/Q2

(35)

× (1 +R(x,Q2))
N∑
n=1

Cn(Q2) [W −Wth]
n−1/2,

whereN = 3,Cn are adjustable coefficients, andWthr
is the threshold energy.

3. DUALITY

Thus, we have obtained expressions that describe
the nucleon structure functions in the resonance re-
gion and which depend on the Bjorken variable and
the photon virtuality.

Following [6], we will consider how expressions
(31)–(34) for the structure functions—these expres-
sions involve resonance terms, which are strongly
dependent on Q2 owing to the form factors—reduce,
in the high-Q2 limit, to scaling expressions, which are
weakly dependent onQ2.

Let us go over to the variable x′ = Q2/(Q2 +W 2),
which is related to x by the equation

x′ =
xQ2

Q2 + xm2
. (36)

Let us consider the case of infinitely narrow
resonances—that is, Γ → 0. In this case, the struc-
ture function will be different from zero only for those
values of x′ at which W 2 = M2—that is, for x′ =
Q2/(M2 +Q2). It can be seen that, with increasing
Q2, the resonance is shifted to a region around x′ ∼ 1.
As is suggested by experimental data, the resonance
then drifts along the scaling curve, whose form can
be obtained from the expressions for the structure
functions in the resonance region by means of the
substitutionQ2 = M2x′/(1 − x′).

In the case of finite-width resonances, the equality
W 2 = M2 is approximate, which leads to corrections
to the scaling behavior that are proportional to the
ratio Γ/M .

In this study, we will consider only the structure
function F2. In what is concerned with the structure
functions g1, it should be noted that, in contrast to F2,
it is sensitive to the longitudinal form factor and to the
relative values ofG+ andG−—in (33), they appear in
the form of the difference.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Fig. 2. Resonance contribution to the structure functionF2(ξ, Q
2) in the resonance region.
Let us go over to the variable x′ in (32). At high
Q2, we then obtain

F2(x′) =
∑
R

2m2x′

πMΓ
(37)

×
[
|G+(0)|2

(
Q2

0

M2

)m+
(

1 − x′
x′

)m+

+ |G−(0)|2
(
Q2

0

M2

)m−(1 − x′
x′

)m−

+ 2C2

(
Q2

0

M2

)m0
(

1 − x′
x′

)m0
]
.

From (37), it follows that, in the limit x′ → 1, the
structure function under study behaves as F2(x′) ∼
(1 − x′)m+ .

In the resonance region, use is often made of the
Nachtman variable ξ = 2x/(1 +

√
1 + 4m2x2/Q2)

(the variable x = Q2/2mν is not convenient in an-
alyzing structure functions in the resonance region,
since all resonances are closely spaced in the region
x ∼ 1). Considering that 0 < x < 1, one can find that
0 < ξ < (Q/m)(

√
1 +Q2/4m2 −Q/2m).

Figure 2 shows the resonance component of the
structure function F2 as a function of the Nachtman
variable ξ at various values of Q2. The solid curve
corresponds to the function F2(ξ) that was presented
SICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
in [8] and which was obtained from a fit to available
data on deep-inelastic scattering.

It can be seen that a dominant contribution to the
structure function comes from the ∆(1232) isobar.
The resonance background is relatively small in this
region, in contrast to what occurs in regions that
correspond to more massive resonances. It can also
be seen that, in response to variations in Q2, the
∆(1232) peak exactly follows the scaling curve, in
accord with the duality concept.

In order to perform a comparison with experimen-
tal data, it is necessary to parametrize the contribu-
tion of the nonresonance background. At this stage,
however, this problem does not have an unambiguous
solution.

The inclusion of the nonresonance background
must lead to the growth of the structure function
in the region of higher lying resonances to such an
extent that it would follow the scaling curve (as Q2 is
varied) over a wide region of ξ.

4. CONCLUSION

The finding of Bloom and Gilman that the nucleon
structure function F2 averaged over a rather wide
range of the scaling variable takes identical values
in the resonance region and in the region of deep-
inelastic scattering confirmed the existence of quark–
hadron duality—that is, the possibility of describing
3
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processes in terms of only hadronic or only quark
degrees of freedom.

In practice, this implies that investigation of
nucleon resonances—for example, in terms of form
factors—would provide additional information about
the properties of nucleons in the deep-inelastic re-
gion.

Expressions that were obtained in the present
study for the form factors describing the production
of nucleon resonances and which take into account a
correct threshold behavior and experimental data on
resonance decays can form a basis for studying the
properties of nucleons in terms of hadronic degrees of
freedom.

Expressions obtained here for the structure func-
tions make it possible to demonstrate qualitatively
the manifestation of duality by using the structure
function F2 as an example.

In the future, we plan to study the structure func-
tion g1, which receives a significant contribution from
the longitudinal form factor. A numerical test of the
model upon the appearance of new experimental data
would also be of interest.
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Abstract—The fermion production arising due to time variation of effective mass has been considered.
The diagonal polarization states have been found to be the definite helicity states. The strength of the
production process and specific fermion–antifermion correlations have been calculated. The production
of the fermion–antifermion pairs and the relative two-particle correlations appeared to be large for a
sharp and significant change in the mass depending also on fermion occupancy in the initial state.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that, in quantum chromodynam-
ics, the chiral invariance is spontaneously broken at
low energies and the fermion masses (say, nucleon
or constituent quark mass) arise essentially due to
chiral-symmetry breaking. In the course of phase
transition at high fermion density or at high temper-
ature, the approximate chiral invariance is restored
and the light (u, d, s) quark masses become small
(ensuring small explicit violation of the symmetry). In
practice, the change in the fermion masses is treated
(semi)classically (for example, see [1]). However, it
appears that, if the change in the mass is fast enough,
then the quantum fermion field changes in a specific
way producing correlated fermion–antifermion pairs.

Similar effects were considered earlier for bosons
(mesons [2–5] and photons [6]) with application to
heavy-ion collisions [6, 7]. Below, we consider the
fermions in a spatially homogeneous large volume.
Application of this effect to heavy-ion collisions will
be given elsewhere.

Decomposition of the free fermion field is taken in
the form

ψ(x) =
∫

d3k

(2π)3/2
eik·x (1)

×
2∑

ν=1

[
uν(k)bν(k)e−iEt + vν(−k)d†ν(−k)eiEt

]
,

where E = (k2 + m2)1/2;m is the fermion mass; and
bν , b

†
ν and dν , d

†
ν are annihilation and creation oper-

ators of particles and antiparticles, obeying standard

∗This article was submitted by the author in English.
**e-mail: andreev@lpi.ac.ru
1063-7788/03/6607-1335$24.00 c©
anticommutation relations

[bν(k1), b†µ(k2)]+ = δµνδ(k1 − k2), (2)

[dν(k1), d†µ(k2)]+ = δµνδ(k1 − k2).

Bispinors uν(k) and vµ(k) are orthonormal,

u†
ν(k)uµ(k) = v†ν(k)vµ(k) = δµν , (3)

and bispinors uν(k) and vµ(−k) having opposite mo-
menta are orthogonal,

u†
ν(k)vµ(−k) = v†ν(k)uµ(−k) = 0. (4)

For bispinors uν(k) and vµ(k) related to the Dirac
equation(

iγ0 ∂

∂t
− γnkn −m

)
ψ(k, t) = 0, (5)

n = 1, 2, 3,

we take the standard representation

uν(k) =
1
N

Uν(k) =
1
N

(m + γk)
(sν

0

)
, (6)

vν(k) =
1
N

Vν(k) =
1
N

(m− γk)
(

0
sν

)

with two-component unit spinors (s1)ρ = δ1ρ,
(s2)ρ = δ2ρ and normalization factor

N ≡ N(E,m) = (2E(E + m))1/2 . (7)

2. STEPWISE VARIATION
OF THE FERMION MASS

Let the mass m in (5) depend on time, m = m(t).
We consider in this section the stepwise variation of
the mass. This simple case reveals the main features
2003 MAIK “Nauka/Interperiodica”
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of the phenomenon. We suggest that at time t = 0 the
mass changes instantly from mi to mf . According
to Dirac Eq. (5), the time derivative of the field ψ
has a jump discontinuity at t = 0. Therefore, the field
ψ(k, t) is continuous at the point t = 0,

ψi(k,−δt) = ψf (k,+δt), δt → 0. (8)

In view of continuity of the field ψ, we have

ui,ν(k)bi,ν(k) + vi,ν(−k)d†i,ν(−k) (9)

= uf,ν(k)bf,ν(k) + vf,ν(−k)d†f,ν(−k)

(sum over ν). Multiplying both sides of (9) by u†
f,µ(k)

and then by v†f,µ(−k) and using (3) and (4), we get the
transformation of the annihilation and creation oper-
ators expressing final-state operators through initial-
state operators:

bf,ν(k) = αν(k)bi,ν(k) + βν(k)d̃†i,ν(−k), (10)

d†f,ν(−k) = −βν(k)b̃i,ν(k) + αν(k)di,ν(−k)

with coefficients

αν(k) =
(Ef + mf )(Ei + mi) + k2

NiNf
, (11)

βν(k) = ∓k(Ef + mf − Ei −mi)
NiNf

for ν = 1, 2, respectively, where Ni and Nf are nor-
malization factors of the spinors uν , vν in the initial
and final states given by (7). In (10), the combinations
of the polarization states of b1, b2 operators arise:

b̃1(k) = n3b1(k) + (n1 − in2)b2(k), (12)

b̃2(k) = −(n1 + in2)b1(k) + n3b2(k)

(and also the same combinations d̃†ν(−k) of the
d†ν(−k) operators), where ni = ki/k are projections
of the unit vector n directed along the momentum
k. The transformation (12) is the unitary SU(2)
transformation, and the operators b̃ν(k), b̃†ν(k) (as
well as d̃ν(k), d̃†ν(k)) satisfy canonical commutation
relations. Their time evolution is given by (10) and it
reads

b̃f,ν(k) = αν(k)b̃i,ν(k) + βν(k)d†i,ν(−k), (13)

d̃†f,ν(−k) = −βν(k)bi,ν(k) + αν(k)d̃†i,ν(−k).

The closed transformations of the time evolution con-
nect the pairs bν(k), d̃†ν(−k) and b̃ν(k), d†ν(−k) for
every ν, but they mix the initial polarizations, as fol-
lows from (10), (12), and (13).
P

It appears useful to introduce the normalized linear
combinations of bν , b̃ν and d†ν , d̃

†
ν operators as follows:

b́ν(k) =
1√

2(1 + n3)
(bν(k) + b̃ν(k)), (14)

d́†ν(−k) =
1√

2(1 + n3)
(d†ν(−k) + d̃†ν(−k)),

so that, in accordance with (12) and (14),

b́µ(k) = wµν(n)bν(k), (15)

d́†µ(−k) = wµν(n)d†ν(−k)

with

w =
1√

2(1 + n3)


 1 + n3 n1 − in2

−n1 − in2 1 + n3


 (16)

=


 cos(θ/2) sin(θ/2)e−iφ

− sin(θ/2)eiφ cos(θ/2)


 ,

where θ and φ are spherical angles of the momentum
k. The rotation matrix w is the SU(2) matrix, and
the operators b́ν(k), d́ν(k) obey correct commutation
relations; satisfy the orthogonality conditions (3) and
(4); and (contrary to input operators bν(k), dν(k)) un-
dergo a simple evolution transformation, which does
not mix polarizations of the new operators b́ν , d́ν ,

b́f,ν(k) = αν(k)b́i,ν(k) + βν(k)d́†i,ν(−k), (17)

d́†f,ν(−k) = −βν(k)b́i,ν(k) + αν(k)d́†i,ν(−k),

for every ν. As can be seen from (11), the coefficients
αν(k) and βν(k) in (17) satisfy the condition

|αν(k)|2 + |βν(k)|2 = 1, (18)

so that the time evolution is described by the unitary
Bogolyubov transformation [8] as it must be to pre-
serve the anticommutation relations of the creation
and annihilation operators in the course of the time
evolution.

Therefore, it is useful to rewrite the fermion field
decomposition (1) in terms of the new operators
b́ν(k), d́†ν(−k) and corresponding bispinors úν(k),
v́ν(−k) so that

uν(k)bν(k) = úν(k)b́ν(k), (19)

vν(−k)d†ν(−k) = v́ν(−k)d́†ν(−k)

(sums over ν) with new bispinors

úµ(k) = w−1
νµuν(k) = w∗

µνuν(k), (20)

v́µ(−k) = w−1
νµ vν(−k) = w∗

µνvν(−k),
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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where w∗ is the matrix with complex-conjugated el-
ements [that is, it differs from (16) by the sign of the
azimuthal angle φ in (16)]. In explicit form,

úν(k) =
1√
N


(E + m)ξν

±kξν


 , (21)

v́ν(−k) =
1√
N


 ∓kξν

(E + m)ξν


 , ν = 1, 2,

with spinors

ξ1 =


 cos(θ/2)

sin(θ/2)eiφ


 , ξ2 =


− sin(θ/2)e−iφ

cos(θ/2)



(22)

dependent on direction of the momentum k. It can be
seen that the spinors ξν (and thus the bispinors úν(k),
v́ν(−k)) have definite helicities,

1
2
σiniξν = ±1

2
ξν , ν = 1, 2 (23)

(σi are the Pauli matrices), which are conserved in the
course of time evolution in view of (17).

Therefore, the Bogolyubov transformation (17)
connects creation and annihilation operators that
have opposite directions of momentum k and equal
helicities (opposite spin projections). Let us note
that, for a stepwise transition, the Bogolyubov co-
efficients (11) are real-valued. The coefficient βν(k)
changes its sign if we change the sign of the momen-
tum (k → −k), or change ν(1 ↔ 2), or interchange
the initial and final states (f ↔ i).

In general, the coefficients αν(k) and βν(k) of the
SU(2) transformation (17) can be represented in the
form

α(k) = cos r(k)eiϕα , β(k) = sin r(k)eiϕβ , (24)

where

r(k) = tan−1 |β/α| (25)

is the main evolution parameter and the phases ϕα
and ϕβ do not play an important role and will not be
considered here. For a stepwise transition, the phases
are absent.

Using (11), we get

α2(k) =
1
2

+
k2 + mimf

2EiEf
, (26)

β2(k) =
1
2
− k2 + mimf

2EiEf
.
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As one can see from (26), the evolution parameter
r(k) is equal to zero at k = 0; it is maximal at

k2 = k2
m = mimf +

m2
im

2
f

(mi −mf )2
; (27)

and it falls slowly at large k,

r(k) ≈ |mi −mf |
2k

. (28)

At the point of the maximum, the parameter r de-
pends only on the ratio mf/mi and it is not small if
the mass ratio is small (or large), say, mi � mf . In
this case,

tan rmax = |β/α|max ≈ 1 − 2
√

mf/mi (29)

for k2 ≈ mimf .

If one takes the fermion masses mi and mf to be
the constituent quark mass (∼350 MeV) and the
current quark mass (∼5 MeV), then tan rmax ≈ 0.76
at k ≈ 42 MeV.

In reality, the change in the fermion mass has finite
time duration τ and the stepwise approximation is
valid only if the momentum is much less than the
inverse time duration, kτ � 1. The effect of finite time
duration will be discussed in the next section.

3. SMOOTH TRANSITION

Let us consider the smooth variation of the fermion
mass m(t). In this case, the coefficients α(k) and
β(k) of the Bogolyubov transformation can be ex-
pressed through solutions of Dirac Eq. (5) [9]. To
solve this equation, it is helpful to use its squared
form, representing the Dirac ψ function in (5) in the
form

ψ(k, t) =
(
iγ0 d

dt
− γnkn + m(t)

)
χ(k, t). (30)

Then Eq. (5) takes the form(
d2

dt2
− iγ0dm

dt
+ k2 + m2(t)

)
χ(k, t) = 0, (31)

which splits into two complex-conjugated equations
for two upper and two lower components of χ. The
bispinor χ can be written in the form

χν(k, t) =
(sν

0

)
ϕ(k, t) +

(
0
sν

)
ϕ(k, t), (32)

ν = 1, 2,

where sν are unit two-component spinors [see (6)].
As a result, we have the second-order equation for
scalar function ϕ(k, t),(

d2

dt2
− i

dm

dt
+ k2 + m2(t)

)
ϕ(k, t) = 0, (33)
3
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which is nothing but an oscillator equation with
complex-valued variable frequency (energy).

Let us first consider the stepwise variation of the
mass to establish the correspondence of the above
approach with results of Section 2. In the region of
constant mass, Eq. (33) is satisfied by arbitrary su-
perposition of exponential functions exp(±iEt). Let
us have in the initial state the function ϕ(k, t) in the
form of a single wave:

ϕ(t) = e−iEit, t < 0. (34)

For t > 0, the general solution of (33) has the form

ϕ(t) = c+e−iEf t + c−eiEf t, t > 0. (35)

Choosing one of the upper spinors sν (say, s1) in (32)
and substituting (32), (34), and (35) into (31), we get
the corresponding (not normalized) expressions for
the Dirac field ψ(k, t) at t < 0 and at t > 0. Then the
continuity condition (8) reads

U1(k,mi, Ei) = c+1 U1(k,mf , Ef ) (36)

+ c−1 U1(k,mf ,−Ef ),

where bispinors U1 are not normalized [see (6)], and
we find the coefficients c+1 and c−1 :

c+1 =
Ef + Ei −mf + mi

2Ef
, (37)

c−1 =
Ef − Ei + mf −mi

2Ef
.

Note that bispinors on the right hand side of (36) are
orthogonal. Using normalized bispinors uν instead of
those in (36), we get

u1(k,mi, Ei) = α1(k)u1(k,mf , Ef ) (38)

+ β1(k)u1(k,mf ,−Ef )

with

α1(k) =
N(Ef ,mf )
N(Ei,mi)

c+1 , (39)

β1(k) =
N(−Ef ,mf )
N(Ei,mi)

c−1 ,

whereN(E,m) is given by (7). The coefficients α1(k)
and β1(k) coincide with Bogolyubov coefficients (11).
Therefore, the solution of the classical Dirac equation
can describe the evolution of the normalized fermion
field [9],

ψ(k, t) = u1(k,mi, Ei)e−iEit, t < 0, (40)

ψ(k, t) = α1(k)u1(k,mf , Ef )e−iEf t

+ β1(k)u1(k,mf ,−Ef )eiEf t, t > 0,

showing the appearance of the negative-energy
wave (creation of antiparticles) with the correct
P

Bogolyubov coefficient. The choice of another unit
spinor in (40) gives a similar result. The momentum
k in (40) may have arbitrary direction. If we take the
k direction along the third (spin-quantization) axis,
then bispinors u1 in (40) have definite helicity h = 1/2
that is conserved in the course of transition. Note that
the sign of the coefficient βν is not determined by the
above procedure because the momentum k in βν(k)
[see (11)] appears as the square root of E2

f −m2
f

in (39). Considering below the smooth variation of the
mass, we will use the squared Dirac equation to get
the explicit expressions for Bogolyubov coefficients
αν and βν . So we will keep in mind the sign assign-
ment arising in (11) for stepwise transition.

Considering the smooth variation of the mass
m(t), we use the reference model with

m(t) =
mf + mi

2
+
(
mf −mi

2

)
tanh(2t/τ), (41)

which has an exact solution and contains the impor-
tant parameter τ giving the characteristic time of the
mass variation.

Substituting (41) into (33), we get the equation(
d2

dt2
+ k2 + e + f tanh(2t/τ) (42)

+ g tanh2(2t/τ)
)
ϕ(t) = 0

with

e =
(mf + mi)2

4
− i(mf −mi)

τ
, (43)

f =
m2
f −m2

i

2
,

g =
(mf −mi)2

4
+

i(mf −mi)
τ

.

Up to numerical coefficients e, f , and g, (42) co-
incides with the equation for charged particles in
the electric field Eel = 1/cosh2(2t/τ). The solution
of (42) can be expressed through hypergeometric
function F (see [9]):

ϕ(z) = (−z)−iµ(1 − z)iλF (α, β, γ|z), (44)

z = −e4t/τ ,

with parameters of the hypergeometric function given
by

α = −iµ + iν + iλ, (45)
β = −iµ− iν + iλ, γ = 1 − 2iµ.

The parameters µ, ν, and λ are expressed through
initial parameters of the problem as follows:

µ = ±Eiτ/4, ν = ±Efτ/4, (46)
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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λ = (mf −mi)/4.

We choose the upper signs of µ and ν in (46). Then,
in the initial state (t → −∞, z → 0), we get from (44)
the incoming wave of the form (34):

ϕ(t) = e−iEit, t → −∞. (47)

To find the asymptotic behavior of ϕ(t) at t → ∞, one
can use the relation [10]

F (α, β, γ|z) (48)

=
Γ(γ)Γ(β − α)
Γ(β)Γ(γ − α)

F (α,α + 1 − γ, α + 1 − β|z−1)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
+ {α ↔ β}.

Then, one gets the final state (t → ∞, z−1 → 0) of the
form (35):

ϕ(t) = c+(τ)e−iEf t + c−(τ)eiEf t, (49)

t → ∞,

with
c±(τ) =
Γ(∓iEfτ/2)Γ(1 − iEiτ/2)

Γ (iτ(−Ei ∓ Ef + mf −mi)/4) Γ (1 + iτ(−Ei ∓ Ef −mf + mi)/4)
. (50)

The coefficients α and β of the Bogolyubov transformation (17) are given by (39), where we can use the
normalization factors (7) because these factors are related to asymptotic states and so they do not depend on
the sharpness of the transition. Using Γ-function properties

Γ(z)Γ(1 − z) =
π

sin(πz)
, |Γ(ix)|2 =

π

sinh(πx)
, (51)

we get from (39) and (50) after some transformations{
|α(k, τ)|2
|β(k, τ)|2

}
=

sinh (πτ(±Ef + Ei −mf + mi)/4) sinh (πτ(Ef ±Ei ±mf ∓mi)/4)
sinh (πτEf/2) sinh (πτEi/2)

, (52)
where upper signs correspond to α and lower signs
correspond to β. The Bogolyubov coefficients in (52)
satisfy the crucial unitarity condition (18). In the limit
of stepwise transition, they correspond to (11), as one
can check by straightforward calculation.

As can be seen from (52), the coefficient β(k, τ) →
0 at k → 0 and it falls for large k:

|β(k, τ)| ≈ r(k, τ) ≈ sinh (πτ |mi −mf |/4)
sinh (πτk/2)

, (53)

k � mi,mf .

In the region mf � k � mi, where the coefficient
β(k) and the evolution parameter r(k) are maximal
for stepwise transition, we get

|β(k, τ)|2 ≈ 1
2
− 1

2

(
mf

k
+

k

mi
h(πmiτ/2)

)
(54)

with

h(x) =
1
2
(1 + x coth x), h(x) ≥ 1, (55)

where mi � mf and kτ � 1 were taken in ac-
cordance with typical parameters: mi ∼ 350 MeV,
mf ∼ 5 MeV, and k ∼ 40 MeV in Section 2 and
with typical time duration τ ∼ 1 fm. As a result, the
maximum of β(k, τ) and r(k, τ) is reduced for finite τ ,

|βmax(k, τ)|2 ≈ 1
2
−
√

h(πmiτ/2)mf/mi, (56)

and shifted to smaller momentum,

km ≈
√

mimf/h(πmiτ/2), (57)

due to the h factor. At large k � τ−1, the evolution
effect is exponentially small, |β| ∼ exp(−πkτ/2) for
smooth transition.

4. CREATION OF FERMIONS AND THEIR
CORRELATIONS

Using Bogolyubov transformation (17), one can
find the final-state fermion momentum distributions
and the final-state fermion correlations. We confine
ourselves to the symmetric case where the fermions
with opposite momenta are produced in an equivalent
way (say, central collisions of identical nuclei). For
simplicity, the Bogolyubov coefficients will be taken
to be real-valued and k = |k| dependent. We also
consider the simple model—fast simultaneous tran-
sition of a large homogeneous system at rest. The
movement of the system can be taken into account
by shifting each moving element to its rest frame and
integrating over proper times and spacetime rapidities
3
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of the elements of the system as was done for photon
production [6] in heavy-ion collisions.

The final-state momentum distribution of the
fermions (single-particle inclusive cross sections) is
given by (below, we use notation bν , dν for operators
having definite helicity ν = ±1/2)

Nf,ν(k) =
1
σ

dσν
d3k

= 〈b†f,ν(k)bf,ν(k)〉, (58)

where brackets mean averaging over initial state. Us-
ing (17), we get

Nf,ν(k) = |α(k)|2〈b†i,ν(k)bi,ν(k)〉 (59)

− |β(k)|2〈d†i,ν(−k)di,ν(−k)〉 + |β(k)|2 V

(2π)3

and a similar expression for antifermions (with inter-
change b ↔ d). The last term on the right-hand side
of (59) reflects the result of the vacuum rearrange-
ment (the initial vacuum of fermions having mass mi

is not the ground state of bf , df operators). The factor
V/(2π)3 replaces δ3(0) in the real case of large but
finite volume V (see [2]).

It is convenient to introduce the level population
function nν(k):

Nν(k) =
V

(2π)3
nν(k). (60)

Then, (59) and the corresponding equation for an-
tiparticles take the simple form (independently for
every helicity)

nf,ν(k) = |α(k)|2ni,ν(k) + |β(k)|2 (1 − n̄i,ν(−k)) ,
(61)

n̄f,ν(k) = |α(k)|2n̄i,ν(k) + |β(k)|2 (1 − ni,ν(−k)) ,
(62)

where the notation n̄ is used for antifermions. In gen-
eral, one has to consider simultaneously the fermions
and antifermions with momenta ±k to get the full
picture of the particle creation. For example, if there
are no particles in the initial state, then we have
|β(k)|2 particles of each kind in the final state. If there
is one particle having momentum k and helicity ν in
the initial state, then we have

nf,ν(k) = 1, n̄f,ν(−k) = 0, (63)

and |β|2 particles in the rest of the states. If there
is a fermion–antifermion (singlet) pair having zero
momentum in the initial state, that is, ni,ν(k) = 1,
n̄i,ν(−k) = 1, then we get

nf,ν(k) = n̄f,ν(−k) = |α(k)|2, (64)

nf,ν(−k) = n̄f,ν(k) = |β(k)|2
P

for the final state. Therefore, in zero-momentum
states that are initially completely occupied (both
with fermions and antifermions), the occupation
number decreases, contrary to initially empty states,
where the occupation number increases. For thermal
equilibrium, n(k) is the Fermi distribution, depending
on temperature and chemical potential, and both
effects are present.

The transition effect is better seen in two-particle
correlations. Two-particle inclusive cross sections are
given by

1
σ

d2σ++
µν

d3k1d3k2
(65)

= 〈b†f,ν(k2)b
†
f,µ(k1)bf,µ(k1)bf,ν(k2)〉

= 〈b†f,ν(k2)bf,ν(k2)〉〈b†f,µ(k1)bf,µ(k1)〉

− δµν〈b†f,ν(k2)bf,µ(k1)〉〈b†f,µ(k1)bf,ν(k2)〉
for two fermions with helicities µ, ν (correlation of
identical fermions) and

1
σ

d2σ+−
µν

d3k1d3k2
(66)

= 〈b†f,ν(k2)d
†
f,µ(k1)df,µ(k1)bf,ν(k2)〉

= 〈b†f,ν(k2)bf,ν(k2)〉〈d†f,µ(k1)df,µ(k1)〉

+ δµν〈b†f,ν(k2)d
†
f,µ(k1)〉〈df,µ(k1)bf,ν(k2)〉

for an fermion–antifermion pair. The last term on
the right-hand side of (66) is essential only in the
presence of the time evolution of the fermion field.
Here, for simplicity, we do not take into account the
dynamical correlations arising due to Coulomb and
strong interactions of the fermions.

Considering correlations in finite volume V , we
can use the modified creation and annihilation op-
erators [2, 7] that are nonzero only in the volume V
and satisfy modified anticommutation relations of the
form[

bµ(k1), b†ν(k2)
]
+

= δµν
V

(2π)3
G(k1 − k2), (67)

G(0) = 1,

where G(k) is the normalized form factor of the
fermion source (normalized Fourier transform of the
source density). The corresponding correlator of the
modified creation and annihilation operators has the
form

〈b†µ(k1), bν(k2)〉 (68)

≈ δµν
V

(2π)3
n((k1 + k2)/2)G(k1 − k2).

The right-hand side of (67) and (68) represents the
smeared δ function having a width of the order of the
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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inverse size of the source, which is much less than the
width of the momentum distribution n(k).

Using Bogolyubov transformation (17), substitut-
ing (68) for arising fermion correlators of initial-state
operators, and taking into account the small width of
the form factor G(k), one can express the final-state
correlators through Bogolyubov coefficients α, β and
the form factor G:

〈b†f,ν(k2)bf,ν(k1)〉〈b†f,ν(k1)bf,ν(k2)〉 (69)

=
V 2

(2π)6
(
|α(k)|2ni,ν(k) + |β(k)|2(1 − n̄i,ν(k))

)2
× |G(k1 − k2)|2,

〈b†f,ν(k2)d
†
f,ν(k1)〉〈df,ν(k1)bf,ν(k2)〉 =

V 2

(2π)6
(70)
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× |α(k)β(k)(1 − ni,ν(k) − n̄i,ν(k))G(k1 + k2)|2,

where smooth functions α(k) and β(k) can be evalu-
ated at any of momenta k1,k2 ≈ ±k and we suggest
that the process is k ↔ −k symmetric. Taking the
sum over helicities ν, we finally obtain the relative
(divided by the product of single-particle distribu-
tions) correlation functions that are measured in ex-
periment:

C++(k1,k2) = 1 − 1
2
|G(k1 − k2)|2, (71)

C+−(k1,k2) = 1 +
1
2
R2(k)|G(k1 + k2)|2, (72)

with
R2(k) =
|α(k)β(k)(1 − ni(k) − n̄i(k))|2

[|α(k)|2ni(k) + |β(k)|2(1 − n̄i(k))] [|α(k)|2n̄i(k) + |β(k)|2(1 − ni(k))]
, (73)
where we suggest that the helicities ±1/2 are equally
represented in the initial state.

Equation (71) represents the identical-particle
correlation in its simplest (no-interaction) form. The
minus sign is a distinctive feature of the fermions and
the factor 1/2 arises due to the sum over polarizations
(only two of four final polarization states contain
identical particles).

Equation (72) describes the time evolution effect
that depends on evolution parameter r (or β, α).
For the vacuum initial state, the relative correlation
function is big, being equal to α2/2β2 > 1/2. It is
especially big for small β, but in this case the pair
production itself is weak [see (61), (62)]. In the case
of cold dense matter, the correlation function is big for
empty (high-momentum) initial states. In the case of
hot quark–gluon plasma in the initial state, one has to
take into account the presence of an effective thermal
quark mass that is much bigger than the original
quark mass (mi ∼ gT for light quarks, where g is the
QCD coupling constant and T is the temperature).

5. CONCLUSION

Calculation of the evolution effect for fermions
shows that opposite-side fermion–antifermion corre-
lations can be large. They can serve as a sign of chiral
phase transition in quantum chromodynamics.
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Abstract—For a0(1450), considered as the qq 13P0 state, “experimental” tensor splitting, cexp = −150±
40 MeV, appears to be in contradiction with the conventional theory of fine structure. There is no such
discrepancy if a0(980) belongs to the qq 13PJ multiplet. The hadronic shift of a0(980) is shown to be
greatly dependent on the value of strong coupling in spin-dependent interaction. c© 2003 MAIK “Nau-
ka/Interperiodica”.
1. TWO POSSIBLE CANDIDATES
FOR THE GROUND 3P0 STATE

At present, a few low-lying P-wave light mesons,
in both isovector and isoscalar channels, were exper-
imentally observed [1, 2]. However, theoretical iden-
tification of these states faces serious difficulties, first
of all, because the 3P0 member of the lowest 3PJ mul-
tiplet has still not been identified in an unambiguous
way. Here, we shall discuss only a simpler isovector
multiplet, where mixing with other channels can be
neglected.

As is well known, a0(980) couples strongly to
ηπ and KK channel, and therefore this state was
suggested to be interpreted as a multiquark meson [3]
or KK molecule [4]. Then, under such assumptions,
the qq 13P0 state is to be identified with the a0(1450)
meson [5]. There also exist many arguments in favor
of considering the a0(980) as the ground qq 3P0 state,
which, however, has a large KK component in its
wave function [6].

We shall discuss here both possibilities, perform-
ing a fine structure (FS) analysis of the lowest qq 3PJ
multiplet. It is evident that an identification of the
members of this multiplet should be in accord with
values and sign of FS parameters. We shall show
here that, in two cases depending on whether a0(980)
or a0(1450) is the qq 13P0 state, a drastic differ-
ence in value and even sign of tensor splitting takes
place. In particular, if a0(1450) is identified as the
qq 13P0 state, then the large magnitude and negative
sign of tensor splitting appears to be in contradiction
with conventional QCD theory of the FS. Also, in
this case, the center of gravity of the 13PJ multiplet
Mcog has a large value and large shift with respect

∗This article was submitted by the author in English.
1063-7788/03/6607-1342$24.00 c©
to the mass of the b1(1235) meson (see the dis-
cussion in [7]). In the other case, if a0(980) is the
13P0 state, FS splittings and Mcog appear to be in
agreement with the theoretical picture, and the value
of the hadronic shift is strongly correlated with the
strong coupling in spin-dependent interaction. For
large αs(one-loop) = 0.53, the hadronic shift appears
to be equal to zero and the masses of the a0, a1, a2

mesons just coincide with their experimental values.
For αs(two-loop) = 0.43, the hadronic shift about
100 MeV is obtained.

2. FINE-STRUCTURE SPLITTINGS

For any n3PJ multiplet, the FS parameters—
spin–orbit (SO) splitting a(nP ) and tensor split-
ting c(nP )—can be expressed through the masses
MJ (J = 0, 1, 2) of the members of the multiplet in
the standard way [8]:

a =
5
12
M2 −

1
4
M1 −

1
6
M0, (1)

c =
5
6
M1 −

5
18
M2 −

5
9
M0, (2)

where the experimental values of M1 and M2 for the
a1 and a2 mesons are well known [1],

M1 = 1230 ± 40 MeV, (3)

M2 = 1318 ± 0.6 MeV,

while the 13P0 state will be identified either with
a0(1450) with the mass M0A [1],

case A: M0A = 1452 ± 8 MeV, (4)

or with a0(980) having the mass M0B [1],

case B: M0B = 984.8 ± 1.4 MeV. (5)
2003 MAIK “Nauka/Interperiodica”
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Then, from Eqs. (1)–(4) in case A, the following
“experimental” values of SO and tensor splittings can
be extracted:

aA(exp.) = −0.3 ± 11.6 MeV, (6)

cA(exp.) = −148 ± 38 MeV; (7)

i.e, SO splitting is compatible with zero or even a
small negative value, while tensor splitting (7) is al-
ways negative and has large magnitude:

−186 ≤ cA(exp.) ≤ −110 MeV. (8)

Note that large experimental error in cA(exp.) (7)
comes from the error in the a1(1260) mass (3).

In case B, if a0(980) is the ground qq 3P0 state,
the situation is complicated by strong coupling of
the qq channel with other hadronic channels, ηπ and
KK, and for our analysis it is convenient to introduce
the mass M̃0 of the 13P0 state in the one-channel
approximation. Then,

M0B(exp.) = 985 MeV = M̃0 − ∆had, (9)

where the hadronic shift ∆had is an unknown value,
while the mass M̃0 can be calculated in different
theoretical approaches, e.g., in the paper [9] of God-
frey and Isgur, M̃0(GI) = 1090 MeV, which corre-
sponds to ∆had(GI) = 105 MeV. In the QCD string
approach, our calculations give close number for the
choice of αs(FS) = 0.42.

It is of interest to note that, if a0(980) is the qq 13P0

state, then both SO and tensor splittings are positive
and the situation looks like that in charmonium. For
the χc(1P ) mesons aexp(cc) and cexp(cc) are both
positive with tensor splitting being 13% larger than
the SO one [10]:

aexp(cc) = 34.6 ± 0.2 MeV, (10)

cexp(cc) = 39.1 ± 0.6 MeV.

3. THEORY OF THE P-WAVE FINE
STRUCTURE

Spin-dependent interaction in light nnmesons for
the L-wave multiplets with L �= 0 can be considered
as a perturbation since FS splittings are experimen-
tally small in relation to the meson masses. It is also
assumed that the short-range one-gluon exchange
(OGE) gives the dominant contribution to perturba-
tive potentials, in particular, to SO potential V P

SO(r)
and tensor potential V P

T (r) [11]. As a result, the ma-
trix elements (m.e.) aP = 〈V P

SO〉 and cP = 〈V P
T 〉 in

light mesons are defined as the first-order terms in
αs. Note that the wave function for a given state of
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a light meson is calculated here by using the spinless
Salpeter equation,

aP (nP ) = a
(1)
P =

2ᾱs
m2
n

〈r−3〉nP , (11)

cP (nP ) = c
(1)
P =

2
3
a

(1)
P =

4
3
ᾱs
m2
n

〈r−3〉nP .

These expressions contain the constituent mass mn

of a light quark, which was supposed to be fixed
and just the same for all states with different quan-
tum numbers nL; mn

∼= 300–350 MeV is usually
taken [11]; the strong coupling αs is denoted as ᾱs
since the renormalization scale in αs is still not de-
fined and also to distinguish between αst in the static
potential and αs in spin-dependent interaction. Here,
〈. . . 〉nP denotes the m.e. over the wave function of the
nP state.

More detailed analysis of spin-dependent po-
tentials for light mesons, both perturbative and
nonperturbative (NP), was done in [12], where the
Feynman–Schwinger–Fock (FSF) representation of
the light-meson Green’s function was used. Keep-
ing only bilocal correlators of the fields, the spin-
dependent potentials were expressed through these
correlators (see Appendix) which define perturbative
SO and tensor splittings

a
(1)
P (nL) =

2ᾱs
µ2(nL)

〈r−3〉nL, (12)

c
(1)
P (nL) =

2
3
a

(1)
P (nL),

and NP contributions are

aNP(nL) = − σ

2µ2(nL)
〈r−1〉nL, (13)

cNP(nL) is compatible with zero.

It is important to stress that, in the FSF represen-
tation, the expansion in inverse quark masses as in
heavy quarkonia is not used, and the constituent
mass µ(nL) in Eqs. (12), (13) is defined by the
average over the kinetic energy term of the string
Hamiltonian [13, 14]. This “constituent,” or dynam-
ical, mass µ(nL) for a light quark with current mass
m = 0 appears to be

µ(nL) = 〈
√
p2〉nL =

1
2
σ〈r〉nL (14)

for linear potential and can be expressed only through
string tension σ and the universal number.

In contrast to the constant mass mn in Eqs. (11),
the mass µ(nL) depends on the quantum numbers n
and L of a given state and increases with growing n
and L.
3
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In light mesons, which have large radii linear static
potential σr dominates for all states with the excep-
tion of the 1S and 1P states, where the Coulomb term
turns out to be important [14].

The choice of the string tension σ and coupling
αst in the static potential can be fixed from the slope
and the intercept of leading Regge L trajectory which
is defined for spin-averaged masses Mcog(L) for the
multiplets 1L. As shown in [14], the experimental
values of Mcog(L) put strong restrictions on σ and
also on strong couplingαst: σ = 0.185± 0.005 GeV2,
αst � 0.40. Here, we present our calculations for the
linear σr potential with σ = 0.18 GeV2 and also for
the linear plus Coulomb potential with

αst = 0.42, σ = 0.18 GeV2, (15)

and take into account that the experimental Regge
L trajectory [14] gives

Mcog(1P ) = 1260 ± 10 MeV. (16)

The linear potential with σ = 0.18 GeV2 fits very well
all orbital excitations with L ≥ 2, and for this poten-
tial, the m.e. can be taken from [14],

µ0(1P ) = 448 MeV, 〈r−1〉1P = 0.236 GeV, (17)

〈r−3〉1P = 0.0264 GeV3,

and the calculated constituent mass for the 1S state,

µ(1S) = 335 MeV, (18)

coincides with the conventional value mn ≈
300–350 MeV, usually used in potential models. For
the 1P state, the calculated m.e. for the Cornell
potential are

µ(1P ) = 486 MeV, 〈r−1〉1P = 0.260 MeV, (19)

〈r3〉1P = 0.0394 GeV3;

i.e., in this case, 〈r−3〉1P turns out to be 50% larger
than for the linear potential.

Nonperturbative contributions to SO and tensor
potentials can be correctly defined in a bilocal ap-
proximation (see Appendix) when the Thomas term
dominates in NP SO splitting,

aNP(nP ) = − σ

2µ2(nP )
〈r−1〉nP , (20)

while NP tensor splitting cNP(1P ) for light mesons
(as well as for heavy mesons) is compatible with zero,

0 ≤ cNP(1P ) < 5 MeV, (21)

and therefore can be neglected in our later analysis.
This result follows from the fact, established in lattice
QCD, that vacuum correlator D1, which defines cNP,
is small [15, 16].
P

Thus, the NP contribution is present only in SO
splitting, so that total SO splitting is

a = aP + aNP =
2ᾱs

µ2(1P )
〈r−3〉1P (22)

− σ

2µ2(1P )
〈r−1〉1P .

Due to the negative Thomas precession term, a can-
cellation of perturbative and NP terms in a(total)
takes place and, in principle, a(total) could be small
or a negative number.

In contrast to that, NP tensor splitting is small and
positive, so that total tensor splitting appears to be
always positive,

c = cP =
4 ᾱs

3µ2(1P )
〈r−3〉1P . (23)

Note that, in the χc mesons, the correction of order ᾱ2
s

to cP was found to be also positive and small [10].

4. REMARKS ABOUT STRONG
COUPLING αs

In heavy quarkonia, strong coupling αs(µren) at
the renormalization scale µren can explicitly be ex-
tracted from experimental values of FS splittings due
to a rather simple, renorm-invariant relation between
αs(µren) and the combination η = (3/2)c− a [10, 15].
In light mesons, one-loop perturbative corrections
(α2
s order) are yet to be calculated and OGE con-

tributions (12) with a fitting ᾱs are assumed to be
dominant.

However, at present, we know some useful fea-
tures of αs:

(i) The strong coupling freezes at large distances,
and therefore ᾱs in OGE terms have to be less than,
or equal to, the critical value αcr [17, 9].

(ii) The critical value αcr was calculated in back-
ground field theory [17], and the value obtained for
αcr(r) appears to be in good agreement with lattice
measurement of the static potential in the quenched

approximation [18]. For QCD constant Λ(0)
QCD =

385 ± 30 MeV, defined in lattice calculations [19], the
calculated αcr [17] is

αcr(one-loop) = 0.59; (24)

αcr(two-loop) = 0.43+0.05
−0.04 (nf = 0),

where in the quenched approximation the number of
flavors nf = 0.

(iii) The characteristic size of FS interaction in the
P waves, RFS, can be defined as

RFS = [〈r−3〉1P ]−1/3 ∼= 0.60 fm. (25)
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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From the study of αs(r) in coordinate space [17], it
was observed that, at distances r ∼ 0.6 fm, strong
coupling αs(r) is already close to the critical value
(24), being only about 10% less. Therefore, one can
expect that ᾱs in OGE splittings (22), (23) has to be
equal to

ᾱs(RFS) = 0.41 ± 0.02. (26)

(iv) The size RFS (25) coincides remarkably with
the radius of the 1P cc and also of the 2P bb state,
which both are about 0.60 fm. For them, the strong
coupling extracted from experiment is

αexp(cc, 1P ) = 0.38 ± 0.03(exp.); (27)

i.e., this number is very close to that in Eq. (26). To
check the sensitivity of FS splitting to the choice of
ᾱs, here in our calculations we shall take

ᾱs(two-loop) = 0.43, (28)

ᾱs(one-loop) = 0.53 ∼= 0.9αcr.

5. a0(1450) IS THE qq 13P0 STATE

We start with the NP contribution to SO splitting
aNP, and for σ = 0.18 GeV2 (µ(1P ) = 448 MeV),

aNP = −106 MeV. (29)

It can be shown that aNP is weakly dependent on the
choice of parameters of static interaction varying in
the range 99–106 MeV.

From Eq. (6), aA(exp.) is compatible with zero,
and from Eq. (22), this condition can be reached only
if aP = |aNP|. Therefore, we have

aP = 106 MeV and ᾱs(fit) = 0.40. (30)

Note that this ᾱs is in agreement with expected
value (26). Correspondingly, from (23) in theory
tensor splitting cP = (2/3)aP is positive,

cP = c = 71 MeV. (31)

This positive sign of c(1P ) obtained within a conven-
tional theoretical approach appears to be in contra-
diction with the “experimental” number (7): cA(exp.) =
−148 ± 38 MeV.

The second discrepancy is that spin-averaged
mass considered in case A,

Mcog = 1303 MeV, (32)

is larger than the experimental value (16) following
from the linear Regge L trajectory for spin-averaged
masses [14].
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6. a0(980) IS THE qq 13P0 STATE

Here, the mass M̃0(3P0) will be calculated in the
one-channel approximation,

M̃0 = Mcog(13PJ ) − 2a− c, (33)

with Mcog(13PJ ) = 1260 ± 10 MeV from the exper-
imental Regge trajectory. We give below FS split-
tings a(1P ) and c(1P ) for two values of strong cou-
pling (24).

For αs = 0.43, when radiative corrections of order
α2
s were supposed to be small, 〈r−3〉1P =

0.0394 GeV3, one obtains (aP = 143 MeV, aNP =
−99 MeV)

a = 44 MeV, c = 96 MeV (34)

and, from the definition (33),

M̃0(αs = 0.43) = 1076 ± 10 MeV, (35)

and the corresponding hadronic shift of the a0 meson,
according to the definition (9), is

∆had(αs = 0.43) = 91 ± 10 MeV. (36)

If radiative corrections are not suppressed, then it
would be more consistent to take in OGE terms the
strong coupling in the one-loop approximation [17],

ᾱs(one-loop) ∼= 0.9αcr(one-loop) = 0.53. (37)

Then, FS splittings appear to be in good agreement
with the experimental numbers,

a(theory) = 78 MeV, c(theory) = 118 MeV,
(38)

aexp(∆had = 0) = 77.5 ± 10 MeV,

cexp(∆had = 0) = 112 ± 34 MeV,

which correspond to the hadronic shift equal to zero,
and

M̃0 = 986 ± 10 MeV (39)

coincides with the mass of a0(985). Thus, the hadro-
nic shift turns out to be very sensitive to the choice
of strong coupling and, for αs = 0.53, is compatible
with zero,

∆had(ᾱs = 0.53) ∼= 3 ± 10 MeV. (40)

It is essential that, in [9], as well as in Eq. (37), a
relatively large value of one-loop coupling was used.
It assumes that α2

s corrections to FS splitting are
not small, being about 20–30%. To understand which
choice of ᾱs is preferable, one needs to study many
other P-wave multiplets. In any case, one can con-
clude that the predicted value of the hadronic shift is
correlated with the choice of strong coupling in SO
and tensor potentials.

For FS splittings (38), the masses of the a1 and
a2 mesons are equal to 1242 and 1325 MeV, i.e., very
close to their experimental values.
003
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7. HYPERFINE SHIFT AS A TOOL
TO IDENTIFY THE MEMBERS

OF THE 3PJ MULTIPLET

Hyperfine (HF) splitting of the P-wave multiplet
which comes from spin–spin interaction, ∆HF(1P ),
is defined as

∆HF(1P ) = Mcog(1PJ ) −M(1P1), (41)

where Mcog is not sensitive to the taken value of M̃0

since it enters Mcog with small weight equal to 1/9.
In (41), M(1P1) is the mass of b1(1235).

Then, if the a0(1450) belongs to the lowest qq 3PJ
multiplet, Mcog = 1303 MeV and

∆HF(1P ) = 73 ± 3(exp.) MeV, case A. (42)

Identifying a0(980) as the qq ground 3P0 state, one
obtains Mcog = 1252 MeV and

∆HF(1P ) = 28 ± 6(theory) ± 3(exp.) MeV, case B,
(43)

i.e. substantially smaller. One can compare these
numbers with theoretical predictions from [7], where
the perturbative contribution to the HF shift was
shown to be small and negative, while the NP term
is positive and not small,

∆HF(theory) = 30 ± 10 MeV. (44)

In ∆HF(theory) (44), the theoretical error comes from
uncertainty in our knowledge of gluonic correlation
length Tg in lattice calculations: Tg = 0.2 fm in
quenched QCD and Tg = 0.3 fm in full QCD [16].
From comparison of (44) and (43), one can see
that theoretical number (44) appears to be in good
agreement with experimental number (43) if a0(980)
is the qq 13P0 and this statement does not depend on
a value of hadronic shift ∆had.

On the contrary, if a0(1450) is considered to be the
qq 13P0 state, then “experimental” value (42) is two
times larger than ∆HF(theory).

8. CONCLUSIONS

Experimental data on FS splittings in light mesons
appear to be a useful tool to identify the members of
the 3PJ multiplet. Our study of the FS has shown
that a0(1450) cannot be a candidate for the ground
3P0 state for several reasons:

(i) The “experimental” value of tensor splitting
turns out to be negative (with large magnitude),
c(exp.) = −148 ± 38) MeV, in contradiction with the
conventional theory.

(ii) Also for such interpretation, spin-averaged
mass Mcog = 1303 MeV would be too large and
P

would lie above the linear Regge trajectory for spin-
averaged masses.

(iii) The hyperfine shift of b1(1235) with respect to
Mcog would be two times larger than the predicted
number in [7].

There are no such discrepancies if a0(980) is the
qq 13P0 state. In this case, the mass M̃0(3P0) can
be calculated in the one-channel approximation, and
from the difference M̃0(3P0) −M0(a0(980)) = ∆had,
the hadronic shift is found to be very sensitive to the
chosen value of strong coupling ᾱs.

If radiative corrections of order α2
s are small, as

in charmonium, and ᾱs ∼= 0.40 is used, then ∆had
is large, ∆had = 100 ± 10 MeV. If for ᾱs the value
ᾱs(one-loop) = 0.53 is taken, the hadronic shift ap-
pears to be equal to zero.
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APPENDIX

Spin-Dependent Potentials in Light Mesons

In [12, 20, 21], all NP spin-dependent potentials in
light mesons, V̂LS = L · SVLS , tensor potential V̂T =
Ŝ12 VT , and HF potential V̂HF = S1 ·S2VHF, were ob-
tained being expressed through bilocal vacuum corre-
lation functions (v.c.f.) D(x) and D1(x):

V NP
LS (r) = − 1

µ2
0r

∞∫
0

dν

r∫
0

dλ

(
1 − 4λ

r

)
(A.1)

×D(
√
λ2 + ν2) +

3
2µ2

0

∞∫
0

dνDNP
1 (
√
r2 + ν2),

V NP
T (r) = − 2r2

3µ2
0

∞∫
0

dν
∂

∂r2
DNP

1 (
√
r2 + ν2), (A.2)

V NP
HF (r) =

2
µ2

0

∞∫
0

dν

[
D(
√
r2 + ν2) (A.3)

+DNP
1 (
√
r2 + ν2) +

2r2

3
DNP

1 (
√
r2 + ν2)

∂r2

]
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(µ0 is the average kinetic energy for a given state).
Here, v.c.f. D and D1 are defined through the gauge-
invariant bilocal vacuum correlators over fields
strengths Fµν :

g2

Nc
〈Fµν(x)φ(x, y)Fλσ(y)φ(y, x)〉 (A.4)

= (δµλδνσ − δµσδνλ)D(x− y) +
1
2

× ∂µ
{
[(hλδνσ − hσδνλ) + permutation]D1(x− y)

}
,

where hµ = xµ − yµ and the standard factor

φ(x, y) = P exp

x∫
y

Aµ(z)dzµ (A.5)

provides the gauge invariance of the correlators (A.4).
It was shown in [22] that, in the bilocal approxi-
mation, there is no perturbative contribution to v.c.f.
D(x), while the correlator D1 contains both pertur-
bative and NP contributions:

D1 = DP
1 +DNP

1 (A.6)

with

DP
1 (x) =

16
3π

αs
x4
. (A.7)

We give some comments on how the average energy,
or the constituent mass, µ2

0, appears in the denomi-
nators in Eqs. (A.1)–(A.3). To derive the expressions
(A.1)–(A.3), the meson Green’s functionGM (x, y) is
studied in the FSF representation (which is gauge-
invariant), where spin terms enter GM (x, y) through
the exponential factors

exp
(
g

s∫
0

dτσ(1)
µν Fµν

)
exp

(
− g

s̄∫
0

dτ̄σ(2)
µν Fµν

)
.

(A.8)

Here, σ(i)
µν = (γµγν − γνγµ)/4, i = 1, 2 refer to the

quarks (antiquarks), Fµν is the field strength, and s
(s̄) is the proper time of the quark (antiquark). The
proper time τ (τ̄) plays the role of ordering parameter
along the quark (antiquark) trajectory z(τ) (z̄µ(τ)).

To obtain the Hamiltonian and potentials from the
meson Green’s function, it is necessary to go over
from the proper time to the actual time t of the quark,
thus defining the new quanity µ(t):

2µ(t) =
dt

dτ
, 2µ̄(t̄) =

dt

dτ̄
. (A.9)

Then, in (A.8), the integrals can be rewritten as

Jq =

s∫
0

dτσ(i)
µνFµν =

T∫
0

dt

2µ(t)
σ(1)
µν Fµν(z(t)),

(A.10)
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and correspondingly the integral

J̄q =

T∫
0

dt

2µ̄(t)
σ(2)
µν Fµν (A.11)

is defined for the antiquark. In the bilocal approxima-
tion after averaging, the exponents (A.8) will contain
the bilocal correlators, or the cumulants. To obtain
spin-dependent potentials, the important approxima-
tion is that the spin factors (A.8) are considered as
a perturbation and therefore µ(t) and µ̄(t) in (A.10),
(A.11) can be changed by corresponding values µ0

and µ̄0 (µ0 = µ̄0) calculated for the unperturbed
Hamiltonian HR which is defined for a meson with
a spinless quark and antiquark. It is inportant that,
to derive spin-dependent potentials in light mesons
in the FSF representation, the expansion in inverse
powers of the quark mass was not used.

The derivation of the meson relativistic Hamilto-
nian HR and the definition of the constituent mass

µ0 = 〈
√
p2 +m2〉nL, (A.12)

are discussed in detail in [12–13].
The v.c.f. D and D1 were calculated in lattice

QCD [16], where it was shown that DNP
1 is small

when compared to D(x) and even compatible with
zero in full QCD. Therefore, in the potentials (A.1)–
(A.3), the terms containing DNP

1 can be omitted, in
particular, the NP contribution to tensor splitting,

cNP = 〈VT 〉 is compatible with zero. (A.13)

The perturbative contribution to SO and tensor po-
tentials that are defined by v.c.f. (A.7) just corre-
sponds to OGE terms (12) in Section 3.

Lattice measurements have also shown that v.c.f.
D can be parametrized with good accuracy as an
exponential at distances x � 0.2 fm, i.e.,

D(x) = d exp

(
− x

Tg

)
. (A.14)

Then, from (A.1) and (A.9),

V NP
LS (r) = − σ

µ2
0rπ

r/Tg∫
0

dttK1(t) (A.15)

+
4σ
πµ2

0

[
2Tg
r2

− 1
Tg
K2

(
r

Tg

)]
,

where the string tension,

σ = 2

∞∫
0

dν

∞∫
0

dλ D(
√
λ2 + ν2), (A.16)
3
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for the exponential form of D(x) is

σ = πdT 2
g . (A.17)

From expression (A.15), it can easily be shown that
the nonperturbative potential

V NP
LS (r � Tg) → − σ

2µ2r
, (A.18)

i.e., it coincides with the Thomas precession term if
Tg is supposed to be small. We shall not take into
account here the positive correction to the Thomas
potential coming from second term in (A.15) since
there exist two other contributions: from the inter-
ference of perturbative and NP terms [23] and from
the Coulomb term with correct strong coupling in
background fields αB(r), which imitates the linear
σ∗r potential at r � 0.3 fm [17, 18].
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Abstract—The interaction of light quarks with an instanton liquid is considered at nonzero density of
quark/baryon matter in a phase where the diquark condensate is nonzero. It is shown that the inclusion
of the relevant perturbation of the instanton liquid leads to an increase in the quark chemical potential µc.
This in turn induces a considerable growth of the threshold quark-matter density at which one expects the
emergence of color superconductivity. c© 2003 MAIK “Nauka/Interperiodica”.
The possible existence of strongly interacting
matter in the phase of quark–gluon plasma has
remained one of the most fundamental and intriguing
predictions of QCD nearly since the time of its
advent. At a phenomenological level, this phase is
treated as a state where quarks and gluons at finite
values of temperature (T ) and (or) the quark/baryon
chemical potential (µ) can propagate rather freely
over significant (naturally, with respect to the hadron
scale) distances. Even the simplest qualitative esti-
mates of physical features of this phase appeared to
be so plausible that this made it possible to begin
experimental searches for quark–gluon plasma in
collisions of relativistic heavy ions. Although the first
investigations yielded, in a sense, quite promising
results, a new generation of experiments is required
for drawing compelling conclusions. This in turn
urgently calls for a serious quantitative analysis of
the QCD phase diagram.

It seems that lattice QCD would make it possible
to solve this problem on the basis of the first prin-
ciples of the theory; however, a solution within this
framework has so far been obtained (at a level that is
rather far from reliability) mainly in the vicinity of the
temperature axis of the µT plane. Nevertheless, the
lattice approximation revealed that, in all probability,
the phase structure of QCD is quite rich [1]. In partic-
ular, we firmly know at present that, if the temperature
falls below some critical value, the chiral symme-
try of the original Lagrangian is broken, whereupon
quarks are bound by confinement forces. Moreover,
lattice calculations indicate that these phenomena

1)Bogolyubov Institute for Theoretical Physics, National
Academy of Sciences of Ukraine,Metrologicheskayaul. 14b,
03143 Kiev, Ukraine.
1063-7788/03/6607-1349$24.00 c©
occur as the result of the corresponding phase tran-
sitions whose critical temperatures are virtually coin-
cident. This observation shows that, most likely, the
two phenomena in question are closely related, which
may heuristically play an important role in obtaining
deeper insight into the confinement mechanism.

The behavior of strongly interacting matter at fi-
nite quark/baryon densities has received much less
study. From the theoretical point of view, the reason
for this is that QCD runs into known serious difficul-
ties in introducing fermions in the lattice model and
especially in performing a generalization to nonzero
quark/baryon densities. As to a phenomenological
aspect, available experimental data proved to be of
a low information value for developing the theory
along these lines. It is obvious that, both at present
and in the future, an increase in the energy of col-
liding heavy ions would result in the production of
strongly interacting matter that occurs ever closer
to the temperature axis of the µT plane. In view of
this circumstance, a phenomenological development
of investigations along the µ axis would predomi-
nantly rely on astrophysical observations of compact
stars. In recent years, it has been revealed that the
effect of diquark pairing in the 3̄ color channel ow-
ing to instanton-induced interaction may prove to
be significantly stronger than attraction that is in-
duced by one-gluon exchange and which was con-
sidered previously and may lead, in particular, at high
quark/baryon densities, to the phase of color super-
conductivity; in general, the pattern that arises in
the µT plane upon taking this into account is by no
means trivial [2].

The present article reports on a continuation of
our previous study [3], where, on the basis of the
method proposed in [4], we examined, in the phase of
2003 MAIK “Nauka/Interperiodica”
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broken chiral symmetry, the effect of quarks on the in-
stanton liquid at nonzero chemical potentials. These
effects are rather weak and can manifest themselves
in the second order of the expansion in the effective
coupling constant. Nevertheless, we found that, at
a qualitative level, allowance for quark interaction
with the instanton liquid can lead to an increase in
the threshold quark-matter density at which one can
expect the emergence of color superconductivity. It
is well known that, if there is no perturbation of the
instanton liquid, this density appears to be paradoxi-
cally low (nq ∼ 0.062 fm−3), so that the diquark phase
should be formed even in ordinary nuclei (nnucl �
0.45 fm−3—the quark-matter density is taken to be
three times greater than the nuclear-matter density)
[5, 6]. In this study, we will obtain a quantitative esti-
mate for the critical value of the quark/baryon chem-
ical potential µc. For this purpose, we will analyze
the corresponding set of Gor’kov equations for a color
superconductor. In doing this, we rely on an “exact”
Lagrangian for four-quark interaction generated by
(anti)instantons without resorting to extensively used
simplifications of the original Lagrangian that are
associated with isolating the channel where attraction
is the strongest. We believe that this is dictated by the
very formulation of the problem, where the instanton-
liquid-perturbation effects being discussed may prove
to be of the same order of smallness as effects induced
by terms that are usually omitted.

We recall that, in the instanton-liquid model [7],
the generating functional Z is represented as the
product of a gluon and a quark component; that is,

Z = Zg · Zψ.
The first factor provides information about the gluon
condensate, while the fermion factor Zψ serves for
describing quarks in an instanton medium [5, 7].
Hereafter, we everywhere use the notation borrowed
from [3], where we introduced dimensionless variables
(dictated by the form of the interquark-interaction
kernel)—for example, wemake the substitutions µ →
µρ̄/2 and kiρ̄/2 → ki, i = 1, . . . , 4, for the chemical
potential and for the momenta, respectively, with ρ̄
being the mean size of pseudoparticles. With the aid
of an auxiliary integration with respect to the parame-
ter λ, the quark determinant Zψ can be reduced to the
form [here, we consider the SU(3) group for quarks of
two flavors, Nf = 2]

Zψ �
∫

dλ

∫
Dψ†Dψ exp

{
nV4

(
ln

nρ̄4

λN
− 1
)}

× exp



∫

dk

π4

2∑
f=1

ψ†
f (k) · 2(−k̂ − iµ̂)ψf (k) + V


 ,

(1)
P

V = 2λ(ψ†L
1 L1ψ

L
1 )(ψ†L

2 L2ψ
L
2 )

+ 2λ(ψ†R
1 R1ψ

R
1 )(ψ†R

2 R2ψ
R
2 ),

where ψTf = (ψRf , ψ
L
f ), f = 1, 2, are the quark fields

composed from spinors of specific helicity, ψL,Rf =

P±ψf with P± =
1 ± γ5

2
; n is the instanton-liquid

density; V4 is the 4-volume of the system; µν =
(0, µ); and N is a renormalization factor, which, for
the sake of definiteness, we set here to unity, but
which can in principle be considered as a free pa-
rameter of the model. For models where the packing-
fraction parameter nρ̄4 is fixed, this factor is im-
material, while, if this parameter is variable, there
appears a weak logarithmic dependence on N . The
factors of 2 in expression (1) appear upon going over
to dimensionless variables. The term V representing
the four-fermion quark interaction can be directly
expressed in terms of the helicity components; for
example, we have

(ψ†L
f Lfψ

L
f ) =

∫
dpfdqf

π8
ψ†L
fαf if

(pf )

× L
βf jf
αf if

(pf , qf ;µ)ψLβf jf
f (qf ).

For the right-handed fields, it is necessary to make

the substitution L → R. The kernels L
βf jf
αf if

are de-
fined in terms of zero modes (solutions to the Dirac
equation with the chemical potential µ) by means of
the functions hi, i = 1, . . . , 4, which are given by

h4(k4, k;µ) =
π

4k
{(k − µ− ik4)[(2k4 + iµ)f−

1

+ i(k − µ− ik4)f−
2 ]

+ (k + µ + ik4)[(2k4 + iµ)f+
1 − i(k + µ + ik4)f+

2 ]},

hi(k4, k;µ) =
πki
4k2

{
(2k − µ)(k − µ− ik4)f−

1

+ (2k + µ)(k + µ + ik4)f+
1

+
[
2(k − µ)(k − µ− ik4)

− 1
k
(µ + ik4)[k2

4 + (k − µ)2]
]
f−
2

+
[
2(k + µ)(k + µ + ik4)

+
1
k
(µ + ik4)[k2

4 + (k + µ)2]
]
f+
2

}
, i = 1, 2, 3.

Here, k = |k| if we consider the spatial compo-
nents of the 4-vector kν and

f±
1 =

I1(z±)K0(z±) − I0(z±)K1(z±)
z±

,
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f±
2 =

I1(z±)K1(z±)
z2
±

, z± =
ρ̄

2

√
k2
4 + (k ± µ)2,

where Ii and Ki(i = 0, 1) are modified Bessel func-
tions. In passing, we introduce the scalar function
h(k4, k;µ) associated with the three-dimensional

component: hi(k4, k;µ) = h(k4, k;µ)
ki
k
, i = 1, 2, 3

(we will not present the arguments of the functions
hi explicitly unless this leads to confusion). We then
have

Lβjαi (p, q;µ) = Sik(p;µ)εklUα
l U

†σ
β εσnS+

nj(q;−µ).

Here, S(p;µ) = (p + iµ)−h+(p;µ) and S+(p;−µ) =
∗
h−(p;−µ)(p + iµ)+, with the conjugate function be-

ing given by
∗
hµ (p;−µ) = hµ(p;µ), while ε is an anti-

symmetric matrix, ε12 = −ε21 = 1. In these formulas,
p± and similar symbols are used for 4-vectors asso-
ciated with the matrices σ±

ν , where σ±
ν = (±iσσσ, 1), σσσ

being the 3-vector of the Pauli matrices, p± = pνσ±
ν ,

while U is the matrix of rotations in color space. For
the right-handed components, we have the analogous
relations

(ψ†R
f Rfψ

R
f ) =

∫
dpfdqf

π8
ψ†R
fαf if

(pf )

×R
βf jf
αf if

(pf , qf ;µ)ψRβf jf
f (qf )

with the kernel

Rβj
αi (p, q;µ) = T ik(p;µ)εklUα

l U
†σ
β εσnT+

nj(q;−µ),

where T (p;µ) = (p+ iµ)+h−(p;µ) and T+(p;−µ) =
∗
h+(p;−µ)(p + iµ)−. Since the vector function h(p)
is associated only with the vector p, the components
of the matrices (p + iµ)± and h∓(p;µ) can be inter-
changed. As a result, it can easily be shown that the
following identities hold:

T (p;µ) = S+(p;−µ), T+(p;−µ) = S(p;µ).

Further, we will omit the dependence of the matrices
T and T+ on µ since the chemical potential appears
in the matrix T only with a plus sign and in the matrix
T+ only with a minus sign. In addition, we present
two useful identities

σ2T
T (p)σ2 = T+(p), σ2T

+T (p)σ2 = T (p).

where T T is the transposed matrix.

For the expectation values

〈ψL,R1αi (p)ψ
L,R
2βj (q)〉 = ε12εαβπ

4δ(p + q)FL,R
ij (p),

〈ψLfαi(p)ψ
†R
gβj(q)〉 = δfgδαβπ

4δ(p − q)GLR
ij (p),
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
which are of interest in the case of a diquark conden-
sate, the use of the expression that follows from (1)
for the effective action makes it possible to obtain a
set of Gor’kov equations that is similar to the set of
equations obtained in [6]. The result is[

G+
0 (p)

]−1
FL(p) − ΣR(p)GLRT (−p) = 0, (2)[

G+
0 (p)

]−1
GLR(p) − ΣR(p)F+RT (p) = 1,[

G−
0 (p)

]−1
FR(p) − ΣL(p)GRLT (−p) = 0,[

G−
0 (p)

]−1
GRL(p) − ΣL(p)F+LT (p) = 1,

where
[
G±

0 (p)
]−1 = −2(p + iµ)± refers to a free

Green’s function, ΣR(p) = ∆RT (p)εT T (−p),
ΣL(p) = ∆LT+(p)εT+T (−p), and ∆L,R is a gap.
The form of the Σ matrices is determined by the
structure of the kernels of the equations that arise
upon averaging over color orientations (it should
be recalled that we consider an ensemble that is
stochastic in color). The set of Eqs. (2) can be closed
by supplementing it with the gap equation

ε∆R =
2λ

Nc(Nc − 1)

∫
dq

π4
[T+(q)FR(q)T+T (−q)

− T+(−q)FRT (q)T+T (q)],

ε∆L =
2λ

Nc(Nc − 1)

∫
dq

π4
[T (q)FL(q)T T (−q)

− T (−q)FLT (q)T T (q)].

It can easily be seen that the right-hand sides of
these equations involve the difference of a matrix and
its transposed counterpart; therefore, the right-hand
sides are automatically proportional to ε.

A similar set of equations is valid for the conjugate
matrices; that is,

F+LT (p)
[
G−

0 (p)
]−1 −GRLT (−p)Σ+R(p) = 0, (3)

GRL(p)
[
G−

0 (p)
]−1 − FR(p)Σ+R(p) = 1,

F+RT (p)
[
G+

0 (p)
]−1 −GLRT (−p)Σ+L(p) = 0,

GLR(p)
[
G+

0 (p)
]−1 − FL(p)Σ+L(p) = 1.

The relevant closing gap equation has the form

ε∆+R =
2λ

Nc(Nc − 1)

∫
dq

π4
[T T (−q)F+RT (q)T (q)

− T T (q)F+R(q)T (−q)],

ε∆+L =
2λ

Nc(Nc − 1)

×
∫

dq

π4
[T+T (−q)F+LT (q)T+(q)

− T+T (q)F+L(q)T+(−q)],
3
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where Σ+R(p) = ∆+RT+T (−p)εT+(p), Σ+L(p) =
∆+LT T (−p)εT (p), and ∆+L,+R are the correspond-
ing gaps. We note that, in this study, we will re-
strict ourselves to the case of a diquark condensate;
however, it is well known that, in the vicinity of the
phase transition at µc ∼ 300MeV, there exists a small
intermediate region where the mixed phase of non-
vanishing chiral and diquark condensates occurs [6],
realizing the regime of a transition to the state of color
superconductivity. In order to describe this phase, we
must extend the set of equations by supplementing it
with the additional expectation values

〈ψL,Rfαi (p)ψ
†L,R
gβj (q)〉 = δfgδαβπ

4δ(p − q)GLL,RR
ij (p).

From the sets of Eqs. (2) and (3), we obtain

GLR(p) = G+
0 (p) + G+

0 (p)ΣR(p)F+RT (p),

F+RT (p) = GLRT (−p)Σ+L(p)G+
0 (p).

Let us introduce auxiliary matrices C+L(p) =
∆+LT+(−p)T (p) and CR(p) = ∆RT (p)T+(−p).
With the aid of them, the Σ matrices can be recast
into the form

Σ+L(p) = εC+L(p), ΣR(p) = CR(p)ε.

By using identities that relate the T matrices, we can
show that the following equalities hold:

εC+LT (−p)εT = C+L(p),

εCRT (−p)εT = CR(p).

For the Green’s function, we have

GLR(p) = G+
0 (p) + G+

0 (p)CR(p)ε

×GLRT (−p)εC+L(p)G+
0 (p).

By using the properties ofC matrices and considering
that the free Green’s functions satisfy the identities

σ2G
±T
0 (p)σ2 = G∓

0 (p),

we obtain a closed equation for determining the func-
tion GLR:

εGLR(−p)εT = G−
0 (−p) + G−

0 (−p)

× C+L(p)GLR(p)CR(p)G−
0 (−p).

The fact that the vector function h(p) is associated
with the vector p leads to a useful property—all of
the matrices G±

0 , C
+L, and CR commute with one

another. Seeking a solution for the Green’s function
GLR in the form of an iterative series, one can see that
it also commutes with these matrices. We can now
easily derive a final equation for the Green’s function
in the form

GLR(p) = [1 + H(p)]G+
0 (p) + H2(p)GLR(p)
PH
or

[1 −H(p)]GLR(p) = G+
0 (p),

where H(p) = G+
0 (p)CR(p)G−

0 (−p)C+L(p).
The form of thematricesH(p) is such that the sum

H(p) + H(−p) = α(p)

and product

H(p)H(−p) = β(p)

are proportional to identity matrices [by definition,
we see that α(−p) = α(p); similarly, the relation
β(−p) = β(p) also holds]. Denoting the functions
hν(p) of sign-reversed argument by gν = hν(−p), we
can write the functions α(p) and β(p) in the compact
form

α(p) = 4∆R∆+L

× [−4A(p)(hg) + 2(p2 + µ2)(h2)(g2)],

where

A(p) = (p2 + µ2)(hg) − 2iµp(g4h− h4g).

In these expressions, we have used a natural definition
of the scalar product in the form (hg) =

∑4
i=1 higi

and similar definitions for the squares of these func-
tions, (h2) and (g2). In the last term appearing in the
expression forA(p), we have employed the aforemen-
tioned notation for the scalar function associated with
the three-dimensional component h. For the function
β, we can in turn obtain

β(p) = 16
(
∆R
)2 (

∆+L
)2 (

p2 + µ2
)2 (h2)2(g2)2.

Since the functions α and β are associated with
identity matrices, the solution for the Green’s func-
tion can be represented in the form

GLR(p) =
G+

0 (p)[1 −H(−p)]
1 − α(p) + β(p)

.

In this case, the gap equation can be rewritten as

∆L =
2λ

Nc(Nc − 1)

∫
dp

π4

α(p) − 2β(p)
∆+L(1 − α(p) + β(p))

.

(4)

We are interested in a solution of the form ∆R =
∆+L = ∆L = ∆+R = ∆ for λ < 0. This solution is
dictated by the symmetry properties of the kernel of
the four-quark interaction. We recall that, in the ker-
nel, the factor for each sort of quarks is traditionally
written with the factor of i [7, 8]. This explains the
choice of the sign of λ. It should be noted, however,
that, in principle, there exists an alternative—∆R =
∆+L = −∆L = −∆+R for λ > 0—if we redеfine the
kernels. An analysis shows that the denominator on
the right-hand side of Eq. (4) is always positive;
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Fig. 1. Diagram of the tadpole approximation (see main
body of the text): (solid lines) fermion fields and (dashed
line) scalar field.

hence, it is guaranteed that this equation has a so-
lution at sufficiently large λ.

The state of quark matter at a specific value of
the chemical potential is determined by the saddle
point of the functional in (1). We consider this func-
tional, retaining the first nonvanishing contribution
and restricting ourselves to the right (figure-of-eight)
diagram (see, for example, [5]), whose contribution I
has the form

I = 2(Nc − 1)
∫

dp

π4

α(p) − 2β(p)
1 − α(p) + β(p)

.

In our case, this contribution to the generating func-
tional (Zψ ∼ eW ) reduces to

W = −nρ̄4 lnλ + λ〈Y 〉, 〈Y 〉 � I.

In the simplest case of a constant instanton-liquid
density, the saddle-point equation can be written in
the form

nρ̄4 − λ〈Y 〉 = 0.

Comparing this equation with the gap equation in (4),
one can notice an interesting property: the saddle-
point equation leads to the condition according to
which the gap as a function of µ is constant. This
property provides a useful test for numerical calcula-
tions.

It was shown in [4, 9] that the reaction of quarks
to the instanton liquid can be described within per-
turbation theory in terms of small variations of the
instanton-liquid parameters, δn and δρ, in the vicinity
of their equilibrium values n and ρ̄. The variation
of the parameters is included in the theory if use
is made of deformable field configurations (crumpled
instantons)—in our case, instantons of dimension ρ
as a function of x and z: ρ → ρ(x, z)—and if the
variation of zero modes in the quark determinant is
taken into account in the interaction vertices upon
the substitution ρ̄ → ρ̄ + δρ. It appears that, for long-
wave perturbations, such as π mesons, the deforma-
tion field describes scalar colorless excitations of the
instanton liquid with mass gap M on the order of a
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
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Fig. 2. Saddle-point value λ (to the one-loop approxima-
tion, it is proportional to the free energy of the system)
as a function of the chemical potential µ at Nc = 3 and
Nf = 2. The solid curves were obtained for the phase
where chiral symmetry is broken (the lower curve was
calculated with allowance for perturbations of the instan-
ton liquid). The dashed curves correspond to the phase of
color superconductivity (left curve) for the case where the
tadpole contribution is disregarded and (right curve) for
the case where the interaction of the instanton liquid is
included.

few hundred MeV, M2 = ν/κ, where κ is the kinetic
coefficient that is calculated within the semiclassi-
cal approach and ν = (b− 4)/2 with b = (11Nc −
2Nf )/3,Nc andNf being the numbers of quark colors
and flavors, respectively. For this kinetic coefficient,
our estimations yield κ ∼ cβ [9], where β = 8π2/g2 is
the instanton action and c ∼ 1.5–6, the specific value
of the factor c being dependent on the ansatz adopted
for the saturating configuration.

Eventually, we find that, in addition to the four-
leg diagrams [see the term V in (1)], there appear
diagrams featuring a scalar field connected through a
vertex where differentiation with respect to ρ occurs
and where it is necessary to take into account the
variation of the functions describing zero modes,

hi → hi +
∂hi
∂ρ

δρ, i = 1, . . . , 4. (5)

Owing to the presence of a condensate (in our case,
this is a diquark condensate), we can significantly
simplify the Lagrangian under consideration if we
retain only the main contributions, which stem from
the tadpole-type diagrams. The leading contribution
actually comes from the term V and from the term
associated with two four-leg diagrams connected by
the scalar field whose propagator is 1/M2, one of
these diagrams being closed into a figure-of-eight
3
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Fig. 3.Quark density determined from the intersection of
the upper curve in Fig. 2 (for the chiral condensate) with
the curve representing the diquark condensate (without
including perturbations of the instanton liquid) in the
same figure. The solid and the dashed curve show the
result for the stable and metastable phases, respectively.

(see Fig. 1); because of a condensate, it is considered
with fully paired lines.

Analyzing the modified Lagrangian, we can eas-
ily see that the form of the set of Gor’kov equa-
tions remains unchanged except that, instead of Σ,
we must everywhere use the corrected expression
Σ + δΣ, where the correction δΣ is constructed from
the modified functions (5). Further, one can see that
the result for the Green’s function also remains un-
changed. By Σ in final expressions, one should imply
the corrected functions. In particular, the form of the
gap equation does not change since, in the kernel,
there arises once again the familiar combination of a
matrix and its transposed counterpart, this combina-
tion being constructed from the matrix functions T
and T+ differentiated with respect to ρ (and consid-
ered, for example, in terms of finite differences) and
being associated with an identity matrix. Finally, it
turns out that, in the gap equation, we must make the
substitutions

α(p) → α(p) + δα(p),

β(p) → β(p) + δβ(p),

where

δα(p) = J
∂α

∂ρ
,

δβ(p) = J
∂β

∂ρ
,

with J describing the contribution of a diagram be-
longing to the figure-of-eight type and having, for the
PH
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Fig. 4.Quark density determined from the intersection of
the lower curve in Fig. 2 (for the chiral condensate, the
diquark condensate being taken without allowing for the
tadpole contribution) and the curve representing the di-
quark condensate (without allowing for the perturbations
of the instanton liquid) in the same figure. The solid and
the dashed curve depict the results for, respectively, the
stable and the metastable phase.

external line, the scalar-field propagator,

J =
2λ

Nc(Nc − 1)
1

nρ̄4κ

1
4M2

I.

It should be emphasized that, with allowance for the
explicit form ofM , the dependence on the kinetic term
κ is effectively canceled, so that its exact value is
immaterial in the approximation being considered. By
differentiating the figure-of-eight diagram, we obtain

∂I

∂ρ
= 2(Nc − 1)

∫
dp

π4

{
1 − β(p)

(1 − α(p) + β(p))2
δα(p)

+
α(p) − 2

(1 − α(p) + β(p))2
δβ(p)

}
.

We must also take into account the modification of
the generating functional. It should be recalled that
this functional is calculated to the first nonvanishing
contribution,

W = −nρ̄4

(
ln

nρ̄4

λ
− 1
)

+ λ〈Y 〉.

With allowance for a variation of the instanton-liquid
density, the saddle point is now determined from the
equation

nρ̄4 − λ(nρ̄4)′ ln
nρ̄4

|λ| − λ〈Y 〉 = 0.

As to the instanton-liquid density, it is given by [4]

nρ̄4 =
ν

2βξ2
(6)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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+


( ν

2βξ2

)2

+

(
δI
δρ

)′

βξ2

Γ(ν + 1/2)
2
√
νΓ(ν)




1/2

,

where the prime denotes differentiation with respect

to λ, the constant ξ2 =
27
4

Nc

N2
c − 1

π2 characterizes

interaction in the stochastic ensemble of pseudopar-
ticles, and the mean size of pseudoparticles is defined

as ρ̄Λ = exp
{
− 2Nc

2ν − 1

}
.

The derivative of the figure-of-eight diagram with
respect to λ is given by the expression(

δI

δρ

)′

= 4(Nc − 1)
∆

′

∆

×
∫

dp

π4

{
1 + α− 6β + αβ + β2

(1 − α + β)3
δα

+
−4 + 7α + 4β − αβ − α2

(1 − α + β)3
δβ

}
.

Finally, the derivative ∆
′
is determined from the rela-

tion

Nc(Nc − 1)
2λ2

=
2∆

′

∆3

∫
dp

π4

2β − 2β2 + 2αβ − α2

(1 − α + β)2
.

The calculations were performed to the one-loop
approximation, where the saddle-point parameter λ
is proportional to the free energy of the system. In
Fig. 2, this parameter is represented by the dashed
curves (the left curve was obtained without taking
into account quark interaction with the instanton
liquid). In the same figure, the solid curves represent
similar results, but for the phase where chiral sym-
metry is broken (see [3]). It should be noted that the
saddle-point parameter λ1 from [3] and that which is
used in the present study are related by the equation

λ2
1 = − λnρ̄4

2(Nc − 1)Nc
. The intersection of the curves

determines the point of the transition to the supercon-
ducting phase. It was mentioned above that, in fact,
there exists a narrow intermediate zone of a mixed
phase where a nonvanishing chiral and a nonvanish-
ing diquark condensate coexist, so that the transition
is not very sharp. But refinements following from this
are not very important for our consideration. First of
all, we note that the phase-transition point obtained
without allowance for the tadpole contribution (the
point at which the upper solid curve intersects the
left-hand dashed curve) lies farther than the value of
µc � 300 MeV, which was found previously in [5, 6].
However, the conclusion that the phase-transition is
shifted toward greater values of µ owing to the use
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Fig. 5. Instanton-liquid density at Nc = 3 and Nf = 2
for two regimes. The solid curve and two dashed curves
represent the results of the calculations with, respec-
tively, the chiral and the diquark condensate. The lower
dashed curve was obtained by estimating the instanton-
liquid density without self-consistently taking into ac-
count quark interaction with the instanton liquid (one
finds the diquark condensate and then determines the
instanton-liquid density on the basis of it), while the
upper curve is discussed in the main body of the text.

of the “exact” Lagrangian would be premature. We
recall that the value of µc � 300 MeV is obtained if
use is made of an approximate Lagrangian where the
channel characterized by the strongest attraction is
selected. The point is that the instanton-liquid pa-
rameters obtained within different approaches differ
somewhat from one another, but optimal agreement
with phenomenological results known from analy-
ses of the QCD vacuum can be reached by adjust-
ing the model parameters—for example, by changing
the scale Λ. In this sense, the shift of the phase-
transition point is probably within the accuracy that
the instanton-liquid model can ensure.

The situation becomes more certain if we take
into account the disturbance of the instanton liquid
by quarks. In this case, the phase-transition point
is shifted noticeably toward greater values of µc (the
point at which the lower solid curve intersects the
left-hand dashed curve). The quark-matter density
for the former version (“exact” Lagrangian) and for
the version discussed immediately above versus the
chemical potential is given in Figs. 3 and 4, whence it
can be seen that the threshold densities at which the
emergence of the phase involving color superconduc-
tivity is expected may significantly exceed the den-
sity of normal nuclear matter. In all probability, these
results suggest that, in principle, additional weak
(against the background of the instanton interaction)
interactions of light quarks can significantly change
3
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the estimate of the threshold nuclear-matter density
at which diquark condensation occurs.

But if we also take into account the interaction
of quarks in the phase involving a nonvanishing di-
quark condensate with the instanton liquid (right-
hand dashed curve), the intersection point is shifted to
unjustifiably large values of µ—that is, to the region
where the simple instanton-liquid model can hardly
be used to describe the QCD vacuum. The restric-
tion from the side of large values of the chemical
potential is due to the fact that, at some value of µ,
interquark distances become so small that Coulomb
(perturbative) fields become commensurate with in-
stanton fields, with the result that a superposition of
(anti)instantons ceases to be an appropriate configu-
ration that saturates the relevant path integral. From
our results, we can therefore draw only the conserva-
tive conclusion that the curves describing the chiral
and diquark condensates move apart upon taking
into account the perturbation of the instanton liquid
by quarks. The chiral curve moves downward, while
the diquark curve drifts toward larger values of µ,
simultaneously displacing the phase-transition point.
In order to obtain more accurate numerical data, it
is necessary to improve the instanton-liquid model in
such a way that the contribution of perturbative fields
could be taken into account more reliably.

Figure 5 shows the instanton-liquid density as a
function of µ with allowance for quark interaction
with the instanton liquid in the phase where chiral
symmetry is broken (solid curve) and in the phase of
color superconductivity (dashed curves). The lower
curve gives an estimate obtained for the instanton-
liquid density without self-consistently taking into
account quark interaction with the instanton liquid
(one first finds the diquark condensate and then de-
termines the instanton-liquid density on the basis of
it). It is interesting to note that quarks may affect the
instanton liquid differently. For quarks in the phase
of broken chiral symmetry, the density remains virtu-
ally constant, while, for quarks in the phase of color
superconductivity, the instanton-liquid density de-
creases sharply (a nonsmooth behavior of the curves
is due here to the disregard of the mixed phase, which
must describe a smooth transition to the aforemen-
tioned regimes, where only the quark or only the
diquark condensate does not vanish). In the first case,
the corresponding analog of the tadpole contribution
δI/(δρ)

′
in (6) is strictly positive; therefore, the inclu-

sion of instanton-liquid interaction with quarks in this
phase may only lead to an increase in the instanton-
liquid density (gluon condensate). However, this in-
crease appears to be insignificant, merely reflecting
the sensitivity of the model to variations in the dy-
namical quark mass [3]. In the phase of a nonvan-
ishing diquark condensate, the tadpole contribution is
P

alternating, which, as can be seen from Fig. 5, leads
to a sharp change in the character of the chemical-
potential dependence of the instanton-liquid density,
causing a significant reduction of the gluon conden-
sate. Yet, this effect was previously indicated in [10].
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Abstract—The unitarity conditions for superstring amplitudes of boson interaction are used to calculate
the Green’s function for Ramond states—that is, for 10-spinor states and Ramond bosons. It is shown
that, from the unitarity conditions, it follows, among other things, that local quantities specifying the
sought amplitudes satisfy some integral relations. The amplitude for the transition of two massless Neveu–
Schwarz bosons into a system of two massless Ramond states is obtained in an arbitrary order in
the number of loops. For this amplitude, the aforementioned integral relations are verified in the tree
approximation. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Within Ramond–Neveu–Schwarz superstring
theory [1], it is rather difficult to calculate the interac-
tion amplitudes for Ramond states (ten-dimensional
spinors and Ramond bosons) [1–3]. In order to
calculate such amplitudes for an arbitrary number of
loops, it is proposed in this study to use the unitarity
conditions for the amplitudes of the interaction of
Neveu–Schwarz boson states. These amplitudes
were obtained in [4–6] for a closed oriented string to
any order of the coupling constant. In this study, we
derive the amplitude for the transition of two massless
bosons from the gravitational multiplet to the system
of two massless Ramond states. Here, local quantities
that determine the amplitude in question for an
arbitrary number of loops (n− 1) are expressed in
terms of local quantities that determine the n-loop
amplitude for the scattering of massless bosons in the
region where one of the handles degenerates. In the
future, we hope to generalize the proposed method for
calculating more general amplitudes.

The problem of calculating multiloop superstring
amplitudes was discussed by a number of authors [7–
14]. In the scheme proposed in [10], supersymmetry is
lost, since multiloop superstring amplitudes depend
on the choice of basis for gravitino zero modes [11,
12]. Yet, Hoker and Phong [15] recently proposed
a procedure for eliminating this dependence. Any-
way, the approaches considered in [10, 13] require an
intricate modular parametrization, and this compli-
cates their application to specific calculations. There
is no such drawback in the supercovariant calculation
[4–9], which employs a parametrization in terms of
supergroups that are superconformal extensions of
1063-7788/03/6607-1357$24.00 c©
the Schottky groups. Such a parametrization is espe-
cially convenient for investigating the unitarity con-
ditions since it arises in a natural way in matching [8]
tree amplitudes.

Although only the contributions from the Neveu–
Schwarz sector were known explicitly within this
supercovariant approach for a long time [7–9], all
contributions to boson-emission amplitudes for an
arbitrary number of loops, including the contribution
from the Ramond sector, have been calculated by now
[4–6]. The required amplitudes are given in the form
of finite-dimensional integrals of explicit functions
with respect to the parameters of the super Schottky
groups [7, 8, 16, 17] and the coordinates of interac-
tion vertices in the complex (1|1) supermanifold [18].
The relevant integrand is the sum over the superspin
structures defined in terms of the super Schottky
groups. For all spin structures, including the Ramond
sector, the super Schottky groups were obtained in [4,
5, 17]. A supergroup transformation depends on three
Riemann and two Grassmann (odd) complex-valued
parameters [18, 19]. At nonzero odd parameters, this
transformation mixes boson and fermions, whence it
follows that a supermanifold of genus n > 1 is not
split in accordance with [20]. Therefore, superspin
structures differ from ordinary spin structures [21],
where boson fields are single-valued on Riemann
surfaces and where fermion fields can acquire, upon
rounds about noncontractible cycles, only a sign fac-
tor. Functions that characterize a transition to the
split description of supermanifolds are singular [22],
and a superstring is not invariant under this trans-
formation. It is for this reason that supersymmetry is
lost in the approach [10] that implies the split descrip-
tion of supermanifolds. A more detailed comparison
2003 MAIK “Nauka/Interperiodica”
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of the supercovariant approach with the approaches
proposed in [10, 15] is planned to be given in a forth-
coming publication.

The contribution to the amplitude of each super-
spin structure is given by the product of an integra-
tion measure and the vacuum expectation value of
the product of vertices. The integration measures for
even superspin structures1) were calculated explicitly
by solving equations that were obtained in [4] on
the basis of the condition requiring that multiloop
amplitudes not depend on the choice of gauge of
the zweibein and gravitino fields. For odd superspin
structures, the partition functions were calculated by
factorizing appropriate even structures [6]. The vac-
uum expectation values of the product of vertices are
expressed in terms of the vacuum correlation func-
tions for matter superfields; in turn, these correla-
tion functions are expressed in terms of holomorphic
Green’s functions and quantities related to them (pe-
riod matrix and holomorphic superscalar functions
having periods). For a handle of the Ramond type,
a nonidentity transformation corresponds to a round
about anA cycle. At nonzero Grassmann moduli, this
transformation is not split, and neither is the trans-
formation corresponding to a round about a B cycle.
In this case, holomorphic Green’s functions cannot
be represented in the form of a series of the Poincaré
type. A method for calculating such Green’s functions
and quantities related to them was proposed in [23,
24]. All of the functions being discussed, including
those in the Ramond sector, were calculated in [4–6].

It will be shown in Section 4 below that bo-
son amplitudes satisfy the unitarity conditions upon
cutting boson loops. The unitarity condition upon
cutting fermion loops can be used to calculate the
interaction amplitudes for states of the Ramond type.
For this purpose, the discontinuity in energy (more
precisely, in the corresponding bilinear 10-invariant)
in the Neveu–Schwarz boson-interaction amplitude
must be represented in the form of a trace associ-
ated with a fermion loop. Since Ramond states are
described by Majorana–Weyl spinors [1], there are
in the interaction amplitudes for Ramond states, no
10-spinor structures featuring an even number of
Dirac 10-matrices sandwiched between spinor states.
Therefore, the number of 10-spinor structures that
can be involved in the amplitude is in general less
than the number of conditions that can be locally
satisfied by representing the aforementioned discon-
tinuity in the energy variable as the trace associated
with a fermion loop. Thus, the unitarity conditions
require fulfillment of specific integral relations for local
quantities determining the amplitude in question. In

1)A superspin structure is even (odd) if the spin structure
corresponding to it is even (odd).
P

this study, we obtain such relations for the aforemen-
tioned four-leg diagram, which involves two massless
bosons and two massless Ramond particles. So far,
we have verified these relations only for this four-
leg diagram in the tree approximation. The relations
that arise for loop amplitudes require a dedicated in-
vestigation. It should be noted that only some gen-
eral properties of integration measures and of vac-
uum correlation functions upon the degeneration of
handles are of importance in deriving the unitarity
conditions for boson amplitudes—the details of the
expressions obtained in [4–6] are immaterial.

This article is organized as follows. In Section 2,
we present an original expression for the amplitudes
describing boson emission and some formulas that
will be used below. In Section 3, we derive the two-
particle unitarity condition for the amplitude being
considered. In Section 4, we discuss the unitarity
condition for a boson loop. In Section 5, we discuss
the amplitude describing the transition of two bosons
to two Ramond particles in an arbitrary order in the
coupling constant. In Appendix А, we present, for the
sake of convenience, explicit expressions for integra-
tion measures and for vacuum correlation functions.
Some details of the calculations are given in Appen-
dix B.

2. EXPRESSIONS FOR AMPLITUDES

As was indicated in the Introduction, the super-
string n-loop amplitude can be expressed in terms of
an integral of the sum over superspin structures de-
fined on a complex (1|1) supermanifold [18] in terms
of super Schottky groups [4, 5, 17] of genus n. This
supergroup is specified by the set of transformations
Γa,s(l1s) and Γb,s(l2s) corresponding to rounds about
As and Bs cycles on a Riemann surface of genus
n, where s = 1, 2, . . . , n. In general, each transfor-
mation depends on three even and two odd (Grass-
mann) parameters. Each pair including Γa,s(l1s) and
Γb,s(l2s) is a superconformal extension of the Schot-

tky transformations Γ(0)
a,s(l1s) and Γ(0)

b,s (l2s), which are
given by (below, z is a local coordinate on the super-
manifold and ϑ is its superpartner)

Γ(0)
b,s (l2s) =

{
z → asz + bs

csz + ds
, ϑ→ −(−1)2l2sϑ

csz + ds

}
,

(1)

Γ(0)
a,s(l1s) = {z → z, ϑ→ (−1)2l1sϑ},

where l1s and l2s are the characteristics of the theta
function that are attributed to a particular handle s.
They can only take values of 0 and 1/2—more specif-
ically, l1s = 0 for a boson loop and l1s = 1/2 for a
fermion loop. In the last case, l2s = 0 and l2s = 1/2
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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define a loop of, respectively, even and odd spin struc-
ture. Further, we have asds − bscs = 1 with

as =
us − ksvs√
ks(us − vs)

, ds =
ksus − vs√
ks(us − vs)

, (2)

cs =
1− ks

ks(us − vs)
,

where ks is the Schottky dilatation parameter and us
and vs are fixed points of the transformation. With-
out loss of generality, we can assume that |ks| < 1
and | arg ks| ≤ π. Expressions (2) can be supersym-
metrized in different ways, but in this case, the 1/2-
form space will not in general have a basis [25]. There
will then arise difficulties in constructing vacuum
correlation functions for scalar superfields, with the
result that such a supersymmetrization will be inap-
propriate for describing superstrings. In order to con-
struct [4, 26] the required extension of formulas (1),
it is necessary to consider that, at n = 1, superstring-
interaction amplitudes are obtained by means of sum-
mation over ordinary spin structures. In calculating
the pole contribution to the amplitude, in which case
a given handle is separated from the others, the odd
parameters of this handle therefore cease to be mod-
uli. For each number s, all odd modular parameters in
Γa,s(l1s) and Γb,s(l2s) must then reduce to zero by the
same transformation Γ̃s. Therefore, we have

Γa,s(l1s) = Γ̃−1
s Γ(0)

a,s(l1s)Γ̃s, (3)

Γb,s(l2s) = Γ̃−1
s Γ(0)

b,s (l2s)Γ̃s,

where Γ(0)
a,s(l1s) and Γ(0)

b,s (l2s) are transformations of

the type in (1), while Γ̃s is the (z → zs, ϑ→ ϑs)
transformation, which depends on the odd parameters
µs and νs:

Γ̃s = {z = zs + ϑsεs(zs), (4)

ϑ = ϑs(1 + 1/2εs(zs)ε′s(zs)) + εs(zs)},
where

ε′s = ∂zεs(z) and εs(z) =
µs(z − vs)− νs(z − us)

us − vs
.

It follows from (1) and (4) that, under the transfor-
mations in (3), the points (us|µs) and (vs|νs) on the
complex (1|1) supermanifold remain unchanged. At
l1s = 1/2, the transformation Γa,s(l1s = 1/2) differs
from the identity transformation, but Γ2

a,s = 1. This
means that superfields develop a square-root cut on
the complex plane of z. Each transformation in (3)

converts the circle C(+)
s into the circle C(−)

s , where

C(−)
s = {z : |cszs + ds| = 1}, (5)

C(+)
s = {z : | − cszs + as| = 1},
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
zs being related to z by transformation (4). Under
the transformations Γa,s = {t→ tas} and Γb,s = {t→
tbs}, the supersymmetric p tensors F̂p(t) change as

F̂p(tas) = F̂
(s)
p (t)QpΓa,s

(t), F̂p(tbs) = F̂p(t)Q
p
Γb,s

(t),
(6)

where the function F̂ (s)
p (t) is obtained from F̂p(t) by

means of a round about the circle C(−)
s or C(+)

s . By
QΓa,s(t) andQΓb,s

(t), we denote those factors that the
spinorial derivative D(t) acquires upon applying the
transformations Γa,s(l1s) and Γb,s(l2s), respectively.
For an arbitrary superconformal transformation Γ =
{t→ tΓ}, the factorQΓ(t) is defined as follows:

D(tΓ) = QΓ(t)D(t), D(t) = θ∂z + ∂θ. (7)

Thus, (3|2) complex parameters (ks, us, vs) and
(µs, νs) correspond to each handle. Then-loop super-
string amplitude is given by an integral with respect
to these parameters and their complex conjugate
counterparts and with respect to the coordinates
tj = (zj |ϑj) of interaction vertices on the relevant
supermanifold. Any (3|2) complex variables {N0} are
then fixed owing to SL(2) symmetry, and this leads
to emergence of an additional factor |H({N0})|2 in
the integrand. This factor was calculated in [4]. In the
following, we fix two local variables u and v, together
with their Grassmann partners, which are chosen to
be zero, and the third local variable z4. In this case,
we have

|H({N0})|2 = |(z4 − u)(z4 − v)|2. (8)

In the amplitude for the interaction ofm bosons, each
term of the sum over superspin structures is the prod-

uct of the integration measure Z(n)
L,L′({q, q}) and the

vacuum expectation value

F
(n)
m ({tj , tj}, {pj , ε(j)}, {q, q};L,L′) of the product

of all interaction vertices (from j = 1 to j = m) with
the coordinates tj = (zj |ϑj) on the supermanifold.2)

We denote by {q} the set of parameters of the super
Schottky groups and by pj and ε(j) the momentum of
the jth boson and its polarization tensor, respectively.
By L and L′, we denote the superspin structures
of, respectively, holomorphic and antiholomorphic
fields. According to (1) and (3), superspin structures
are specified, in just the same way as ordinary spin
structures [21], by the characteristics l1s and l2s of the
theta function that are attributed to a given handle s.

Thus, the n-loop amplitude A(n)
m ({pj , ε(j)}) for the

interaction ofm bosons has the form

A(n)
m ({pj , ε(j)}) =

g2n+2

2nn!
(9)

2)Hereafter, an overbar denotes complex conjugation.
3
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×
∫

|H({N0})|2
∑
L,L′

Z
(n)
L,L′({q, q̄})

× F (n)
m ({tj , tj}, {pj , ε(j)}, {q, q̄};L,L′)(dqdq̄dtdt̄)′,

where (dqdq̄dtdt̄)′ stands for the product of the dif-
ferentials of all coordinates of interaction vertices and
modular parameters, with the exception of those (3|2)
that are fixed owing to SL(2) symmetry. Further, g
is the coupling constant and the rest of the notation
was given above. Since we will discuss the four-leg
diagram featuring massless bosons, only even super-
spin structures (including those that involve an even
number of fermion loops of odd spin structures) are
present in expression (9). The factor of 1/2n takes
into account symmetry under the permutation of the
fixed points Us = (us|µs) and Vs = (vs|νs) for a given
handle, while the factor of 1/n! reflects symmetry
under the permutation of handles. For any boson vari-
able x, we define dxdx = d(Rex)d(Imx)/(4π). For
any Grassmann variable η, we define

∫
dηη = 1. The

string tension will be taken to be 1/π. Our normal-
ization conditions correspond to the normalization
conditions in [1]. The vertex describing the emission
of a massless boson (in our normalization) character-
ized by a 10-momentum p = {pM} and polarization
10-vectors ζ = {ζM} and ζ ′ = {ζ ′M} for, respectively,
left- and right-handed fields (M = 0, . . . , 9) has the
form [2]

V (t, t; p; ζ) (10)

= 4[ζD(t)X(t, t)][ζ ′D(t)X(t, t)] exp[ipX(t, t)],

where, for the two 10-vectors a and b, the quan-
tity ab = aM bM denotes their scalar product, the
mostly plus metric being predominantly used here.
ByXN (t, t̄), we imply the scalar superfield of a string.
Further, pζ = pζ ′ = 0 and p2 = 0; the spinorial
derivative D(t) was defined in (7). In this case,

the quantity F (n)
m ({tj , tj}, {pj , ε(j)}, {q, q̄};L,L′) ≡

F
(n)
m ({tj , tj}, {pj , ε(j)}) appearing in (9) is expressed

[1] in terms of the vacuum correlation function
X̂L,L′(tj , tj; tl, tl; {q}) ≡ X̂(j, l) for scalar superfields
in the form of an integral with respect to auxiliary
Grassmann parameters {ηj , ηj} associated with each
boson; that is,

F (n)
m ({tj , tj}, {pj , ε(j)}) =

∫
(dηdη̄) (11)

× exp

[
−1
2

∑
j,l

(κ̂j + ipj)(κ̂l + ipl)X̂(j, l)

]
,

where the operator κ̂j is defined as the sum κ̂j =
κj + κ′j of the two operators; here, κj = 2ηjζ(j)D(tj)
PH
and, accordingly, κ′j = 2ηjζ ′(j)D(tj). In these formu-

las, ζ(j) and ζ ′(j) describe the polarization of the jth

boson, so that ζ(j)Mζ ′(j)N = ε(j)MN . All of the momenta
are considered to be entering the diagram.

A vacuum correlation function is expressed in
terms of the holomorphic Green’s function

R
(n)
L (t, t′; {q}) and the superscalar functions

J
(n)
s (t; {q};L), where s = 1, . . . , n; that is,

4X̂L,L′(t, t; t′, t′; {q, q̄}) = R(n)
L (t, t′; {q}) (12)

+R(n)
L′ (t, t′; {q}) + I(n)

LL′(t, t; t′, t
′; {q, q̄}),

I
(n)
LL′(t, t; t′, t

′; {q, q̄}) = [J (n)
s (t; {q};L) (13)

+ J (n)
s (t; {q};L′)][Ω(n)

L,L′({q, q})]−1
sr

× [J (n)
r (t′; {q};L) + J (n)

r (t′; {q};L′)],

where the matrix Ω(n)
L,L′({q, q}) is expressed in terms

of the period matrix ω(n)({q}, L) as

Ω(n)
L,L′({q, q}) = 2πi[ω(n)({q}, L′)− ω(n)({q}, L)].

(14)

Because of boson–fermion mixing, the period matrix
ω(n)({q}, L) depends [4, 8] on the superspin structure
L. The Green’s function is normalized by the condi-
tion

R
(n)
L (t, t′; {q}) = ln(z − z′ − ϑϑ′) + R̃(n)

L (t, t′; {q}),
(15)

where R̃(n)
L (t, t′; {q}) is not singular at z = z′. As

usual, the function R(n)
L (t, t′; {q}) at coinciding ar-

guments t = t′ is taken to be R̃(n)
L (t, t; {q}). The cor-

relation function in (12) at coinciding arguments is
calculated in the same way. When the coordinates
change as t→ tbs and t→ tas under the transforma-
tions of the super Schottky group that correspond
to the rounds about, respectively, the Bs and the
As cycle, the holomorphic Green’s functions being
discussed satisfy the relations

R
(n)
L (tbs, t

′; {q}) = R(n)
L (t, t′; {q}) + J (n)

s (t′; {q};L),
(16)

R
(n)
L (tas , t

′; {q}) = R(n)(s)
L (t, t′; {q}),

where R(n)(s)
L (t, t′; {q}) is the function obtained from

R
(n)
L (t, t′; {q}) by means of a round about the Schot-

tky circle (5) corresponding to the As cycle [it should
be noted that, according to formulas (1) and (3), the
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Green’s function for a Ramond handle has a square-
root branch point]. Further, we have

J (n)
r (tbs; {q};L) = J (n)

r (t; {q};L) + 2πiωsr({q}, L),
(17)

J (n)
r (tas ; {q};L) = J (n)(s)

r (t; {q};L) + 2πiδrs,

where J (n)(s)
r is obtained by means of a round of J (n)

r

about theAs cycle [from (3), it follows that, because of

boson–fermion mixing, J (n)
r at nonzero Grassmann

moduli has a branch point associated with a round
about the Schottky circle for a Ramond handle]. The
problem of constructing the required functions will
be solved if we construct functions that satisfy the
conditions in (16) and (17). In the Neveu–Schwarz
sector and for a bosonic string [7–9, 27, 28], these
functions can be specified in the form of Poincaré-
type series. In particular, the relevant expressions
for a bosonic string are given in [4] (Appendix B).
In the Neveu–Schwarz sector, the expressions for
a superstring can be obtained from the expressions
for a bosonic string by substituting the superinterval
8(t1, t2) = (z1 − z2 − ϑ1ϑ2) for the interval (z1 − z2).
In this case [R(n)

L (t, t′) ≡ R(n)
L (t, t′; {q})], we have

D(t′)R(n)
L (t, t′) =

∑
Γ

(ϑ − ϑ′Γ)D(t′)ϑ′Γ
8(t, t′Γ)

, (18)

J (n)
r (t; {q};L) =

∑
Γ

′
ln
8(t, U (r)

Γ )

8(t, V (r)
Γ )

,

2πiωsr({q}, L) = δrs ln ks

+
∑
Γ

′′
ln
8(U (s), U

(r)
Γ )8(V (s), V

(r)
Γ )

8(U (s), V
(r)
Γ )8(V (s), U

(r)
Γ )

,

where, as before, U (s) = (us|µs) and V (s) = (vs|νs)
and tΓ = (zΓ, ϑΓ) is the result of applying the trans-
formation Γ to t = (z|ϑ). In the first formula in (18),
summation is performed over all group products Γ of
the transformations Γb,s(l2s) of the super Schottky
group [see (3)]. In the second formula, the sum does
not include those Γ that contain powers of the trans-
formation Γb,r(l2r) on the right. In the third formula,
those Γ that involve powers of the transformation
Γb,s(l2s) on the left are additionally excluded from the
sum. At s = r, the sum does not involve the term
corresponding to the identity transformation either.
In the Ramond sector, the Green’s functions can-
not be written in the form of Poincaré-type series at
nonzero Grassmann moduli, since, according to (3),
the transformation corresponding to a round about
the circles in (5) is not split in this case. In any case,
they can nevertheless be specified in the form of series
where each term of the series can be represented in the
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form of an integral where known functions of genus 1
appear as integrands (Appendix A).

The integration measures in (9) are calculated
from the equations derived in [4, 9] from the require-
ment that the relevant amplitude be independent of
the choice of the zweibein and the field of the two-
dimensional gravitino. Owing to the separation of
holomorphic and antiholomorphic fields [29], the in-
tegration measure in (9) has the form [4]

Z
(n)
L,L′({q, q}) = (8π)5n[det Ω(n)

L,L′({q, q})]−5 (19)

× Z(n)
L ({q})Z(n)

L′ ({q}),

where the matrix Ω(n)
L,L′({q, q}) is given by (14) and

Z
(n)
L ({q}) is a holomorphic function of the variables

{q} that can be written as

Z
(n)
L ({q}) = Z̃(n)({q}, L) (20)

×
n∏
s=1

Z(1)(ks; l1s, l2s)

k
(3−2l1s)/2
s (us − vs − µsνs)

.

Here, l1s, l2s takes the values of 0 or 1/2, as was
indicated above; the function Z̃(n)({q}, L) is given in
Appendix А; and, for Z(1)(k; l1), we have

Z(1)(k; l1, l2) = (−1)2l1+2l2162l1 (21)

×
∞∏
p=1

[1 + (−1)2l2kpk(2l1−1)/2]8

[1− kp]8 .

The domain of integration in (9) will be discussed
in a future publication. We only note now that the
integral with respect to the vertex coordinates in (9)
is calculated over the fundamental domain [4, 5] of
the super Schottky group—for this domain, one can
choose the domain that is external with respect to the
circles specified in (5). The domain of integration with
respect to the modular parameters is predominantly
determined by modular symmetry. Here, the dilata-
tion parameters |kj | → 1 can be eliminated from the
region being considered. There then appear unitarity
discontinuities of the amplitudes [1] if some or all
dilatation parameters tend to zero, kj → 0.

3. TWO-PARTICLE UNITARITY CONDITION

Two-particle discontinuities arise upon integra-
tion over the region where the only one dilatation
parameter tends to zero, k → 0. In this case, it is
convenient to fix in (9) a local coordinate of one of the
interaction vertices—for example, z4—and both lim-
iting points U = (u|µ) and V = (v|ν) of that trans-
formation in (3) for which k → 0. We set µ = ν = 0.
The factor |H({N0})|2 in (9) is then given by (8).
3
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For the sake of definiteness, we will calculate the
discontinuities in the invariant quantity s = −(p1 +
p2)2 = −(p3 + p4)2. They emerge upon integration
over the region where z1 and z2 tend to u or to v,
remaining beyond the Schottky circles. The region
where z2 tends to v makes the same contribution to
the integral as the region where z2 → u. Therefore,
we assume that z2 → u and then double the result
obtained in this way. In addition, we must multiply
the result by n since each of the n handles can play
the role of the degenerate handle being considered.

If z2 → u, then z1 → u or z1 → v. The second case
reduces to the first by the corresponding Schottky
transformation of the coordinate z1, whereupon z1
appears to be within a circle containing the point u.
Therefore, we assume that z1 → u and z2 → u, but
z1 can be either beyond or within the Schottky circle,
while z2 lies beyond this Schottky circle. According
to (2) and (5), we then have

|z2 − u| ≥
√
k|u− v|. (22)

For the sake of simplicity, we will calculate that part of
the discontinuity which is given by the product of the
PH
tree and the (n− 1)-loop amplitude. It is determined
by a configuration where the limiting points of the re-
maining basis transformations of the Schottky group
are not close to u. We discuss only massless states.

In the limit k → 0, the singularity of the integra-
tion measures in (19) emerges owing to the factor
1/k(3−2l1)/2 in (20). The leading singularity of the
1/k3/2 form for a handle of the Neveu–Schwarz type
(in this case, l1 = 0; see Section 2) cancels in the sum
of two terms corresponding to l2 = 0 and l2 = 1/2.
Indeed, expression (9) is an even function of

√
k.

Therefore, the leading singularity appears to be of the
1/|k|2 type, the coefficient of 1/|k|2 being logarithmi-
cally dependent on |k| through the period matrix (see
Appendix А). Terms of higher order in powers of k do
not contribute to the sought discontinuity, which is
caused by massless particles. To the required accu-
racy, we represent the contribution W of the region
under discussion to the integral in (9) as an integral
of the sum of expressions factorized in the initial and
final states with respect to the momentum p̃1 flowing
along the loop in question; that is,
W =
∫

2d10p̃1
p̃21p̃

2
2

∑
λ,λ′

Â(0)({p, ε}(i), p̃1;λ, λ
′)Â(n−1)(λ, λ

′; p̃1, {p, ε}(f)), (23)
where p̃1 + p̃2 = P = p1 + p2 = −(p3 + p4) and the
summation is taken over the polarizations λ, λ′ of
intermediate states of holomorphic (λ) and antiholo-
morphic (λ′) fields. In each term, the first factor de-
pends on the momenta and polarizations of parti-
cles in the initial [{p, ε}(i) = (p1, p2, ε(1), ε(2))] and
the intermediate state, while the second factor de-
pends on the parameters of the intermediate and fi-
nal [{p, ε}(f) = (p3, p4, ε(3), ε(4))] states. These fac-
tors were calculated at p̃21 = p̃22 = 0. The sought uni-
tary discontinuity, which emerges from the vanish-
ing of the denominator (p̃21p̃

2
2) can easily be calcu-

lated. From a comparison with the unitarity condi-
tion, it follows that, under the normalization con-
dition adopted in this study, Â(0)({p, ε}(i), p̃1;λ, λ′)

and Â(n−1)(λ, λ′; p̃1, {p, ε}(f)) are, respectively, the
tree and the (n− 1)-loop amplitude. In this case,
the corresponding unitarity condition is satisfied for
a boson loop and the sought interaction amplitudes
for Ramond states are calculated from the unitarity
condition for a fermion loop. In order to derive for-
mula (23) itself, the vacuum expectation value in (9)
is represented in the form of the integral (11) with
respect to (dηdη̄), whereupon, in the limit k → 0,
each term Ŵ in the integrand in (9) is written to the
required accuracy in the form of a Gaussian integral
with respect to the momentum flowing in the loop:

Ŵ =
∫
d10p̃1 exp[G̃0 + G̃1p̃

2
1 + B̃1p̃1] (24)

× exp[G1p̃
2
1 +G12p̃1p̃2 +G2p̃

2
2 +B1p̃1

+B2p̃2 +G0]OL̃({p}, {ζ}, p̃1, {t}, {q})
×OL̃′({p}, {ζ ′}, p̃1, {t}, {q})

× Ẑ(n−1)

L̃,L̃′ ({q, q̄})|(z4 − u)(z4 − v)|2.

Below we demonstrate that, upon performing the
above integrations in (9), expression (24) reduces
to the sought form (23). In (24), all 10-vectors
are assumed to be Euclidean. The quantities in
the integrand depend on the type of the degenerate
loop being considered. The coefficients G̃0, G̃1, and
B̃1 depend on the initial state, as well as on y =
ln |k| and on (u, ū). The coefficients in the exponent
of the second exponential function depend on the
final state and on modular parameters (with the
exception of the dilatation parameters k = 0). They
also depend on the spin structures (L̃, L̃′) formed
by all handles, apart from the degenerate one. The
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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expression |(z4 − u)(z4 − v)|2 in (24) is the factor
|H({N0})|2 in (9) as specified by formula (8). The
sets of the momenta, polarizations, and coordinates
of the vertices describing boson emission in the
initial and final states are denoted by {p}, {ζ},
{ζ ′}, and {t, t̄}. The factorsOL̃({p}, {ζ}, p̃1, {t}, {q})
and OL̃′({p}, {ζ ′}, p̃1, {t}, {q}) emerged from the
expansion of holomorphic and antiholomorphic func-
tions in (19) and (11) in the small parameters k,
(z1 − u), and (z2 − u). Owing to the nonholomorphic
factor in (19) and the last term in (12), the factor
OL̃({p}, {ζ}, p̃1, {t}, {q}) at n > 1 depends on {t̄},
{q̄}, and L′ as well, while the factor
OL̃′({p}, {ζ ′}, p̃1, {t}, {q}) depends on {t}, {q̄}, and
L. These factors can depend polynomially on p̃1.
Each of the factors is the sum of expressions that
are factorized with respect to the initial and the

final state. The factor Ẑ(n−1)

L̃,L̃′ ({q, q̄}) is caused by

the partition function. The explicit form of all of the
quantities being discussed will be obtained in the
sections that follow. In deriving expression (24), we
use the following formulas for the determinant of the
n-dimensional matrix Ω and for the quadratic form
JΩ−1J of n quantities Js (where s = 1, . . . , n):

JΩ−1J = [J1(1− Ω1j1Ω̃
−1
j1l1

)Jl1 ]
2 (25)

× [Ω11 −Ω1jΩ̃−1
jl Ωl1]

−1 + JjΩ̃−1
jl Jl,

detΩ = det{Ωjl}[Ω11 −Ω1j1Ω̃
−1
j1l1

Ωl11].

Here, we imply summation over dummy indices, these
running through the values from 2 to n. In addition,
we have used the notation Ω̃ = {Ωjl}. The coefficients
of JpJs (including p, s = 1) in (25) are nothing but
the corresponding elements Ω−1

ps expressed in terms
of the elements of the matrix Ω. The second formula
in (25) follows from the equality ln detΩ = tr lnΩ if
we calculate tr lnΩ in terms of Ω11, Ω1j1 , Ω̃−1

j1l1
, and

Ωl11.
If, instead of z1, we introduce the variable z =

(z1 − u)/(z2 − u), the entire dependence on z2 and y
in (24) is factored out in the form
|z2 − u|−2 exp[x(p̃22 − p̃21)/4 + yp̃21/4], where x =
ln |z2 − u|. Here, −∞ < y < 0 and, according to (22),
y/2 < x < 0. Hence, the integral of expression (24)
with respect to z2 and y is 4/[p̃21(p̃

2
1 + p̃

2
2)]. Since the

product OL̃({p}, {ζ}, p̃1, {t}, {q}) ×
OL̃′({p}, {ζ ′}, p̃1, {t}, {q}) in (24) is symmetric un-
der the substitution p̃1 � p̃2, the result can be re-
placed by 2(p̃21p̃

2
2)

−1. In the resulting integral, we
can additionally shift the contour of integration in the
tenth component of the vector p̃1 to the imaginary ax-
is. As a result, we arrive at the required formula (23).
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Concurrently, the tree amplitude arises in the form of
an integral where the coordinates (0|0) and (∞|0) of
the particles in the intermediate state (with momenta
p̃1 and p̃2, respectively) and the local coordinate z2 are
fixed. In the integral for the (n− 1)-loop amplitude,
the coordinates (v|0) and (u|0) of the particles having
the momenta p̃1 and p̃2, respectively, and the local
coordinate z4 are fixed.

4. UNITARITY FOR A BOSON LOOP
First, we discuss the unitarity condition for a

boson loop. In the case of k → 0, we then have

J
(n)
1 (t; {q};L) ≡ J1(t). In addition, the elements
ω(n)({q}, L)11 ≡ ω11 and ω(n)({q}, L)1l ≡ ω1l of the
period matrix can be expressed in terms of the holo-

morphic Green’s functionR(n−1)

L̃
(t, t′; {q}) ≡ R(t, t′)

and the scalar functions J (n−1)
1 (t; {q}; L̃) ≡ Jl(t) on

the supermanifold of genus (n− 1) formed by the
remaining handles as

2πiω11 = ln k +R(U,U) +R(V, V ) (26)

−R(U, V )−R(V,U),
2πiω1l = Jl(U)− Jl(V ),
J1(t) = R(t, U)−R(t, V ),

where U = (u|0) and V = (v|0). Formula (26) di-
rectly follows from (18) for k → 0. We examine a loop
that is bosonic both for holomorphic and for anti-
holomorphic fields—that is, l1 = l′1 = 0. By taking
into account (26), we then find that the coefficients
determining the exponential functions in (24) are

B1 = −i
4∑
j=3

(κ̂j + ipj)X̂(tj , t̄j;V, V̄ ), (27)

B2 = −i
4∑
j=3

(κ̂j + ipj)X̂(tj , t̄j;U, Ū ),

G0 = −1
2

4∑
j,l=3

(κ̂j + ipj)(κ̂l + ipl)X̂(t3, t̄3; t4, t̄4),

G12 = X̂(U, Ū ;V, V̄ ),

G1 = X̂(V, V̄ ;V, V̄ ) + ln |u− v|,
G2 = X̂(U, Ū ;U, Ū),

G̃0 = −(κ̂1 + ip1)(κ̂2 + ip2)
1
2
ln |z1 − z2 − ϑ1ϑ2|,

G̃1 =
1
4
ln |k|, B̃1 = i

2∑
j=1

(κ̂j + ipj)
1
2
ln |zj − u|,

where U = (u|0) and V = (v|0); the operators κ̂j
have the same form as in (11); and X̂(t, t̄; t′, t̄′) is
3
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the correlation function (12) on the supermanifold of
genus (n − 1) formed by all handles, with the excep-
tion of the degenerate handle being considered. The
quantity G̃0, as well as each term in the expression
for B̃1, is a correlation function defined on a surface of
genus 0 and calculated for the corresponding points.
The nonexponential factors in (24) are independent of
p̃1 and p̃2. In calculating them in the expansion in k,
one must retain, in view of the estimates |z1 − u| ∼
|z2 − u| ∼

√
|k| and ϑ1 ∼ ϑ2 ∼ |k|1/4, terms that are

not less than unity. In order to verify the validity of
expressions (27), we must substitute them into (24)
and calculate the resulting integral. In performing a
comparison with the amplitude in (9), use is made of
formulas (25), where the subscript “1” is associated
with the degenerate handle.

By way of example, we will consider a one-loop
amplitude (n = 1). The vacuum correlation function
X̂(t, t̄; t′, t̄′) in (27) is then equal to (ln |z1 − z2 −
ϑ1ϑ2|)/2, while the factor Ẑ(n−1)

L̃,L̃′ ({q, q̄}) in (24)

reduces to unity. We note in addition that the product
OL̃({p}, {ζ}, p̃1, {t}, {q})OL̃′ ({p}, {ζ ′}, p̃1, {t}, {q})
is written in the form O(b)({ζ})O(b)({ζ ′}), the holo-
morphic function O(b)({ζ}) here being the sum over

the polarization 10-vectors ζ̃1 and ζ̃2 of bosons whose
momenta are p̃1 and p̃2; that is,

O(b) =
∑
ζ̃1,ζ̃2

[
−ζ̃1ζ̃2 +

2∑
j=1

ζ̃1
(κj + ipj)ϑj
2(zj − u)

(28)

×
2∑
l=1

ζ̃2
1
2
(κl + ipl)ϑl

][
− ζ̃1ζ̃2
u− v

+
4∑
r=3

ζ̃1
(κr + ipr)ϑr
2(zr − v)

4∑
s=3

ζ̃2
(κs + ips)ϑs
2(zs − u)

]
− 2
u− v ,

where κ is the holomorphic part of the operator κ̂
[see the comments immediately after formula (11)].
In formula (28), summation is performed over all ten
independent polarizations of each boson. The term
−2/(u − v) emerged because of the appearance of
8/(u− v) instead of 10/(u− v) from the expansion of
expression (21) in powers of k. This term is the contri-
bution from the loop of Faddeev–Popov ghosts, and
it cancels the contribution of unphysical polarizations
upon integration with respect to t1, t2, and t3 = t (the
proof of this natural cancellation of unphysical polar-
izations will be given elsewhere). Upon integration
with respect to y, there then arises expression (23),
where summation is performed only over physical
polarizations.
PH
For n-loop amplitudes, the function

Ẑ
(n−1)

L̃,L̃′ ({q, q̄}) in (24) is equal to the partition func-

tion on the supermanifold of genus (n− 1) that is
formed by all handles, with the exception of the
degenerate being under considered. For an arbitrary
n, the right-hand part of the integral in (24) can
be written, in just the same way as for n = 1, in
the form of the sum over physical polarizations of
bosons in the intermediate state; upon integration
with respect to y, t1, t2, t3 = t, and ϑ4, there then
arises expression (23). By applying a similar method,
we can perform a complete verification of the unitarity
of boson loops, at least for massless states (such a
verification will be given elsewhere).

5. RAMOND INTERMEDIATE STATES

Let us now consider the two-particle unitarity
condition for a loop involving Ramond states in the
holomorphic sector (l1 = 1/2). For k → 0, the holo-
morphic Green’s function then remains singular at
the points u and v. Thus, this function, along with
the other quantities in (12), differs from the corre-
sponding functions of genus (n− 1). For example,
the holomorphic Green’s function R(0)(t1, t2) on a
sphere as obtained upon going over to the above limit
in the corresponding function of genus 1 (both at
l2 = 0 and at 2l2 = 1) has the form

R(0)(t, t
′) = ln(z − z′)− ϑϑ′

2(z − z′) (29)

×
[√

(z − u)(z′ − v)
(z − v)(z′ − u) +

√
(z − v)(z′ − u)
(z − u)(z′ − v)

]
.

Formula (29) immediately follows from expressions
(A.2) and (A.7) for the Green’s functions (see Ap-
pendix А). Green’s functions of higher genus also
have a singularity of this type, as follows from (A.2)
for the case where all Grassmann moduli are equal
to zero. Of course, this singularity occurs in the case
of nonzero Grassmann moduli as well (see Appendix
B). It follows that, if z → u and if z′ lies at a fi-
nite distance from the point u, the Green’s function
R

(n)
L (t, t′; {q}) ≡ R(t, t′) has the form

R(t, t′) = R(0)(t, t
′) +R(r)(U, t

′)− ϑφ̂(t′)
2
√

(z − u)
,

(30)

whereR(0)(t, t′) is given by formula (29), the function

R(r)(U, t′) is regular for z → u, and φ̂(t′) is a factor in

the singular part. The function φ̂(t′) is not singular
for z′ → u since the Green’s function is symmetric
(apart from the emergence of the term ±πi) under the
permutation of arguments. We recall that U = (u|0).
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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In the limit z → v, the Green’s function has a similar
form. The singularities being discussed are associated
with the fermion part of the Green’s function, but,
in the presence of Grassmann modular parameters
corresponding to nondegenerate handles, they also
arise in its bosonic part and, hence, in the scalar func-

tions J (n)
s (t; {q};L). The explicit form of the functions

R(r)(U, t′) and φ̂(t′) in (30) can be obtained (see Ap-
pendix B) from formulas presented in Appendix А, but
this is immaterial for the ensuing analysis. If z, z′ →
u, then

R(t, t′) = R(0)(t, t
′) +R(rr)(U,U) (31)

− ϑφ̂(U)
2
√

(z − u)
− ϑ′φ̂(U)

2
√

(z′ − u)
,

where R(rr)(U,U) is that part of R(r)(U, t′) which is

regular for z′ → u. The quantity φ̂(U) is proportional
to the Grassmann modular parameters correspond-
ing to nondegenerate handles. If one argument of
the function R(t, t′) tends to U = (u|µ = 0) or to
V = (v|ν = 0) (or both of its arguments tend to these
quantities), the Green’s function has no singularity
of the above type since ϑ = 0 in this case. Therefore,
relations (26) are valid in the case of a fermion loop
as well (see Appendix B). In accordance with for-
mula (29) in the limit z, z′ → u and formula (12), the
quantity G̃0 in (24) is given by

G̃0 = −(κ̂1 + ip1)(κ̂2 + ip2)

[
1
2
ln |z1 − z2| (32)

− ϑ1ϑ2

8(z1 − z2)

(√
z1 − u
z2 − u

+
√
z2 − u
z1 − u

)]
.

In the case of a fermion loop and antiholomorphic
fields (that is, l′1 = 1/2), the bracketed expression
in (32) also involves the term that is complex con-
jugate to the last term in this bracketed expres-
sion. The remaining coefficients in the exponents
appearing in (24) are given by formulas (27), where
the correlation function X̂(t, t̄; t′, t̄′) is defined as
the limit of the vacuum correlation function (12)
for k → 0. According to the formulas obtained for
the Green’s functions, we can write the correlation
function X̂(t, t̄; t′, t̄′) in (27) as

X̂(t, t̄; t′, t̄′) = X̂(r)(U, Ū ; t
′, t̄′)− ϑϕ(t′)

2
√

(z − u)
(33)

for z → u and as

X̂(t, t̄; t′, t̄′) = X̂rr(U, Ū ;U, Ū ) (34)

− ϑϕ(U)
2
√

(z − u)
− ϑ′ϕ(U)

2
√

(z′ − u)
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in the limit z → u and z′ → u. Here, the function
ϕ(t) is not singular at z = u. In addition, the quantity
ϕ(U) is proportional to the Grassmann modular pa-
rameters that correspond to nondegenerate handles.
If l′1 = 1/2, the two terms in (34) that are singular
in the limit z → u must be supplemented with the
terms that are complex conjugate to them. We note
that, because of the presence of the Grassmann pa-
rameters, the function ϕ(t) depends not only on t but
also on t̄. In this case, the singularity being studied
does indeed appear in scalar functions and, hence,
in the last term on the right-hand side of (12). The
validity of these expressions for the coefficients in (24)
is verified by a direct calculation of the integral in (24)
upon substituting in it expressions (27) and (32) and
expressions that are given below for nonexponential
factors.

In particular, the function Ẑ(n−1)

L̃,L̃′ ({q, q̄}) in (24)

has the form (19) where Z(n)
L ({q}) must be re-

placed by the expression kZ(n)
L ({q})/16 at k = 03)

and where the period matrix ω(n)({q}, L) in for-

mula (14) for Ω(n)
L,L′({q, q}) is replaced by the period

matrix ω̃(n−1)({q}, L̃) whose elements are equal
to the elements [ω(n)({q}, L)]jl at j, l = 2, . . . , n
of the period matrix at k = 0. As in formula (25),
the subscripts j, l = 2, . . . , n number nondegenerate
handles. If, in addition, l′1 = 1/2, a similar replace-

ment must be made for the quantities Z(n)
L′ ({q}) and

ω(n)({q}, L′). If l′1 = 0, then the quantities Z(n)
L′ ({q})

and ω(n)({q}, L′) are replaced by the corresponding
values calculated on the supermanifold of genus
(n − 1) that is formed by all handles, with the excep-
tion of the degenerate handle being studied. We note
that all of the functions being discussed can be explic-
itly obtained (see Appendix B) from formulas given
in Appendix А. Finally, we note that, for the fermion
loop under study, the factorOL̃({p}, {ζ}, p̃1, {t}, {q})
in (24) has the form

OL̃({p}, {ζ}, p̃1, {t}, {q}) (35)

= exp
[ 2∑
j=1

2ηjζ(j) + ipjϑj
8
√
zj − u

Ψ̂
]
,

where the Grassmann quantities ηj are identical to
those in (11) and the 10-vector Ψ̂ depends on the

3)In this expression, the factor of 1/16 is due to the fact that,
at 2l1 = 1, the factor of 16 in (21) at 2l1 = 1 arises from the
trace of the products of Dirac 10-matrices in the fermion loop
[see the text after formula (38) below].
3
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parameters of the final state and on p̃1; that is,

Ψ̂ =
4∑
j=3

[2ηjζ(j)D(tj) + ipjϑj ]ϕ(tj) (36)

+ ip̃1ϕ(V ) + ip̃2ϕ(U).

Here, the spinorial derivative D(t) and the function
ϕ(t) were defined in (7) and (33), respectively. In just
the same way as ϕ(U), the quantity ϕ(V ) is propor-
tional to the Grassmann modular parameters corre-
sponding to nondegenerate handles. At l′1 = 1/2, the
expression for the factor OL̃′({p}, {ζ ′}, p̃1, {t}, {q})
in (24) has a similar form. At l′1 = 0, this factor is
calculated by a method similar to that used for a boson
loop. As has already been indicated, the expressions
obtained above are verified according to the scheme
where their substitution into (24) is followed by a
calculation of the emerging integral with respect to
p̃1 and a comparison of the result with expression (9).
The sought n-loop amplitude Ã(n) for the transition
to Ramond states has the form

Ã(n) = ψ̄(p̃2)(T̃
(n)
3 + T̃ (n)

1 )ψ(p̃1), (37)

where ψ(p) is a Majorana—Weyl 10-spinor satisfying
the condition Γ11ψ(p) = ψ(p) and the Dirac equation
(ΓMpM)ψ(p) = 0. Here, ΓM is a Dirac matrix, and
Γ11 is the product of all ten matrices. The quantity

T̃
(n)
1 in (37) involves one Dirac matrix, while T̃ (n)

3
contains the antisymmetrized product of three matri-
ces. Therefore, OL̃({p}, {ζ}, p̃1, {t}, {q}) must have
the form

OL̃({p}, {ζ}, p̃1, {t}, {q}) (38)

= tr[(T (0)
3 + T (0)

1 )(Γp̃1)(T
(n−1)
3 + T (n−1)

1 )(Γp̃2)]
+ . . . ,

where the ellipsis stands for the contribution that
vanishes in (9) upon taking the relevant integrals and
performing summation over spin structures. In (38),

T
(n)
1 involves one Dirac matrix, while T (n)

3 contains
the antisymmetrization product of three Dirac ma-
trices. Since the 10-spinors in (37) obey the Weyl
condition, the trace of the identity matrix is equal
to 16 in (38).

The expression for OL̃({p}, {ζ}, p̃1, {t}, {q}) in
(35) is a fourth-order polynomial in the exponent,
which is the sum of the products of Grassmann
variables. Odd powers of this polynomial vanish upon
integration with respect to Grassmann variables.
Even powers must be represented in the form (38),
whereby one defines the integrand in the expressions
for the amplitudes Ã(0) and Ã(n−1). Concurrently, it
is convenient to recast (36) into the form

Ψ̂ = Ψ− iPΦ+ ip̃[ϕ(V )− ϕ(U)], (39)
PH
where P = p1 + p2 = p̃1 + p̃2, p̃ = (̃p1 − p̃2)/2,

Φ =
1
2
[ϕ(t3) + ϕ(t4)− ϕ(U)− ϕ(V )], (40)

Ψ = 2η3ζ(3)D(t3)ϕ(t3) + 2η4ζ(4)D(t4)ϕ(t4) (41)

+ i(p3 − p4)
1
2
[ϕ(t3)− ϕ(t4)].

The function ϕ(t) was defined in (33). In this case,
expression (35) takes the form

OL̃({p}, {ζ}, p̃1, {t}, {q}) (42)

= exp

[
2∑
r=1

4ηrζ(r) + i(p1 − p2)(ϑ1 − ϑ2)
16
√
zr − u

Ψ

−
2∑
j=1

2iηj(Pζ(j)) + (p1p2)(ϑ1 + ϑ2)
8
√
zj − u

Φ

+ i
2∑
j=1

ϑ1 + ϑ2

16
√
zj − u

(PΨ)

+
2∑
s=1

4ηs(ζ(s)p̃) + i(p1 − p2)p̃(ϑ1 − ϑ2)
16
√
zs − u

× [ϕ(V )− ϕ(U)]
]
.

The tree amplitude can be calculated by considering
the case of n = 1, where there are no Grassmann
modular parameters. Representing, in this case, the
factor OL̃({p}, {ζ}, p̃1, {t}, {q}) appearing in (24) in
the form (38), we arrive at

4
√
2T (0)

1 = −
(
Γ[(ζ3ζ4)

1
2
(p3 − p4) (43)

− (ζ4p3)ζ3 + (ζ3p4)ζ4]
)
η3ϑ3η4ϑ4

2(z3 − z4)

×
[

v − u
(z3 − u)(z4 − v)

+
v − u

(z3 − v)(z4 − u)

]

+
[(ζ3(p̃3 − p̃4))ζ4 + (ζ4(p̃3 − p̃4))ζ3](v − u)2

4(z3 − u)(z3 − v)(z4 − u)(z4 − v)
,

4
√
2T (0)

3

=
[(Γζ3)(Γζ4)(Γ(p3 − p4))]aη3ϑ3η4ϑ4(v − u)2

4(z3 − u)(z3 − v)(z4 − u)(z4 − v)
,

where [. . . ]a symbolizes an antisymmetrized (with a
factor of 1/6) expression. In (43), we have discarded
terms that vanish upon integration with respect to
Grassmann variables. We recall that v and u are the
coordinates of vertices describing the emission of a
fermion with a momentum p̃1 and p̃2, respectively.
For the amplitude involving bosons whose momenta
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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are p1 and p2, the corresponding expressions arise
as the limit u→ ∞ of formulas (43), whereupon
one must make the change of variable v → u and
the substitutions 3 → 1 and 4 → 2 for the indices.
The successive substitutions of formula (43) into
the expression on the right-hand side of (38) and
of the resulting expression into (24) lead (apart from
normalization) to the amplitude obtained in [2]. In de-
riving (43), we integrated by parts those terms in (24)
that are proportional to η1η2p1p2/[(z1 − u)(z1 − z2)]
and η1η2p1p2/[(z2 − u)(z1 − z2)]. The first and the
second term were integrated with respect to z2 and
z1, respectively. By using expression (32) for G̃0,
we eventually find that the first and the second
term reduce to −η1η2p2p̃1/[(z1 − u)(z2 − u)] and
η1η2p1p̃1/[(z1 − u)(z2 − u)], respectively. In some
cases, the product of the last factor in the first term
on the right-hand side of the first equation in (43) and
1/(z3 − z4) can be written as

2(v − u)
(z4 − u)(z4 − v)(z3 − z4)

(44)

− (v − u)
(z3 − u)(z4 − u)(z4 − v)

− (v − u)
(z3 − v)(z4 − v)(z4 − u)

,

or as the expression obtained from (44) by means of
the substitutions z3 � z4 and v � u. When expres-
sion (44) was multiplied by η3η4p3p4, the first term in
(44) was integrated by parts with respect to z3. As
a result, the contribution of this term proved to be
proportional to the expression

− 2η3η4(v − u)
(z4 − u)(z4 − v)

[
p3p̃1
z3 − v

+
p3p̃2
z3 − u

]
. (45)

From (29), it follows that, in the case of n = 1, which
is being considered at present, the function ϕ(t)
in (42) has the form

ϕ(t) = −ϑ
√

u− v
(z − u)(z − v) . (46)
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For an arbitrary n (including n = 0), the structure

T
(n−1)
3 in (38) is obtained owing to the terms that

are proportional to ∼ΨM1ΨM2ΨM3Φ. These terms
arise upon expanding the exponential function in (42)
in a series as the result of the multiplication of
the third power of the sum over r in (42) by the
term proportional to Φ. Here, ΨM is the component
of the 10-vector Ψ. These ΦΨM1ΨM2ΨM3 terms
are also proportional to (p̃1p̃2). They correspond
to the (p̃1p̃2) terms in (38), which originate from

tr[T (0)
3 (Γp̃1)T

(n−1)
3 (Γp̃2)]. Here, the quantity T (n−1)

3
is calculated unambiguously and is given by

T
(n−1)
3 =

i

48
(ΓΨ)(ΓΨ)(ΓΨ)Φ. (47)

Since the products of the Dirac matrices are anti-

symmetrized in T (n−1)
3 and T (0)

3 , there are no terms

in tr[T (0)
3 (Γp̃1)T

(n−1)
3 (Γp̃2)] that are proportional to

the scalar products of those vectors that are both

contained in T (0)
3 or T (n−1)

3 . For the same reason, the
trace being studied does not involve terms in which
each of the vectors p̃1 and p̃2 in (38) is scalarly mul-
tiplied by the vectors that are both included either in

T
(0)
3 or in T (n−1)

3 . Only those terms in the expansion
of the exponential function in (42) that involve the
square of the sum over r can generate nonzero terms

in the trace being studied. If the quantity T (n−1)
3 is

given by (47), the part of the trace that is quadratic in
the components of the 10-vector (p̃1 + p̃2) stems from
the term where the square of the above sum over r
is multiplied by the product of the sum proportional
to PΨ and the sum proportional to Φ. The remaining
terms of this trace are quadratic in the components of
the 10-vector (p̃1 − p̃2). They cannot be obtained by
expanding the exponential function in (42) since the
remaining terms of this expansion do not involve the
quantities proportional to ΨΨΨΦ. For the required
contribution to the unitarity condition for the boson
amplitude to arise in spite of this, it is necessary that
〈
ΨMΨN

[
1− 1

16
[ϕ(V )− ϕ(U)]

(
P 2Φ+ i(PΨ)

)]
− i
4
ΨMΨN (Ψp̃)Φ

〉
= 0, (48)
where 〈. . .〉 denotes integration of the expression
obtained by multiplying that in (48) [for details, see
formula (50) above and the text after it] by the factors
remaining in (24) [all of the quantities there are fac-
tors, with the exception of OL̃({p}, {ζ}, p̃1, {t}, {q})]
and by summing the result over the superspin struc-
tures (L̃, L̃′). The integral is calculated with re-
spect to variables that determine the amplitude
Ã(n−1). Relation (48) follows from a comparison of
the corresponding contributions in the expansion
of the exponential function (42) with the quantity

tr[T (0)
3 (Γp̃1)T

(n−1)
3 (Γp̃2)], where, for T (0)

3 and T (n−1)
3 ,

we use the expressions obtained above [see formu-
las (43) and (47)]. Three independent conditions for
3
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the coefficients of ζ(3)M ζ(4)N , ζ(3)M p̃N (ζ(4)p3), and
ζ(4)M p̃N (ζ(3)p4), where, as before, p̃ = (p̃1 − p̃2)/2,
follow from formula (48) if we take into account the

identity of bosons. In order to calculate T (n−1)
1 in (38),

we consider the term tr[T (0)
3 (Γp̃1)T

(n−1)
1 (Γp̃2)]. Iso-

lating this term from the terms appearing in the
expansion of the exponential function in (42), we
obtain

T
(n−1)
1 = −i(ΓΨ)Φ +

i

8
(ΓΨ)(PΨ)[ϕ(V )− ϕ(U)]Φ,

(49)

where the notation is identical to that in (42). With
allowance for (49) and (48), the remaining terms in
the expansion of the exponential function in (42) that
are linear in Ψ yield all the remaining terms in (38),
with the exception of the term proportional to the

product of tr[(Γp̃)T (0)
1 ] and tr[(Γp̃)T (n−1)

1 ], where p̃ =
(p̃1 − p̃2)/2 as before. This term cannot be obtained
from the unit term in the expansion of expression (35)
because it does not involve Ψ. For the required con-
tribution to the unitarity condition for the boson am-
plitude to arise in spite of this, it is necessary that〈

16 + tr
[
1
2
(ΓT (n−1)

1 )(Γp̃)
]
+
√
2[ϕ(V ) (50)

− ϕ(U)][P 2Φ+ (ΨP )]
〉
= 0,

where, as in (48), 〈. . . 〉 denotes integration of the
expression obtained by multiplying that in (48) by all
factors following from (24) and summing the result
over the superspin structures (L̃, L̃′). The rest of the
notation is identical to that in (42).

Thus, the (n − 1)-loop amplitude Ã(n−1) de-
scribing the transition of two massless Ramond
states having the momenta p̃1 and p̃2 to two mass-
less bosons whose momenta and polarizations are
(p3, ζ(3)) and (p4, ζ(4)) is given by

A(n−1) =
2g2n

2n(n− 1)!

∫
|(z4 − u)(z4 − v)|2 (51)

×
∑
L̃,L̃′

Ẑ
(n−1)

L̃,L̃′ ({q, q̄})F̃ (n−1)

L̃,L̃′ OL̃OL̃′(dqdq̄dtdt̄)′,

where g is the coupling constant, as in (9), and sum-
mation is performed over superspin structures on a
supermanifold of genus (n− 1). We note that, in
contrast to the boson amplitudes for massless-boson
scattering, the sum in question involves the contri-
bution of odd superspin structures that is induced
by the contribution to the unitarity condition from
the l2 = 1/2 fermion loop. The quantities in (51) are
expressed in terms of the corresponding quantities for
P

the n-loop amplitude (9). In addition, Ẑ(n−1)

L̃,L̃′ ({q, q̄})

is calculated in terms of Z(n)
L,L′({q, q̄}), as was ex-

plained after formula (34). It should be noted that

Ẑ
(n−1)

L̃,L̃′ ({q, q̄}) depends, in particular, on the coordi-

nates v and u of the vertices describing the emission

of Ramond states. Further, F̃ (n−1)

L̃,L̃′ is calculated in

terms of the function F̂ (n−1)

L̃,L̃′ (η1, η2, η̄1, η̄2), which is

given by the expression obtained by integrating the
integrand in formula (11) with respect to (η3, η̄3) and
(η4, η̄4). In this expression, the vacuum correlation
functions (12) on a supermanifold of genus n must
be replaced by the functions X̂(t, t̄; t′, t̄′), which are
the corresponding vacuum correlation functions (12)
of genus n that are calculated for k → 0 [see the
explanation in the text after formula (27); see also
formula (33) and Appendix B]. In the resulting ex-
pression, we must additionally make the substitu-
tions (z1|ϑ1) → (v|0), (z2|ϑ2) → (u|0), p1 → p̃1, and
p2 → p̃2. If states characterized by the momenta p̃1
and p̃2 are Ramond bosons, then we have

OL̃ = ψ̄(p̃2)(T
(n−1)
3 + T (n−1)

1 )ψ(p̃1), (52)

where ψ(p) is a Majorana–Weyl 10-spinor and
other quantities are given by formulas (47) and
(49). The quantity OL̃′ is calculated in a similar

way. Here, the function F̃ (n−1)

L̃,L̃′ in (51) is equal to

F̂
(n−1)

L̃,L̃′ (η1, η2, η̄1, η̄2) at η1 = η2 = 0 and η̄1 = η̄2 =
0; that is,

F̃
(n−1)

L̃,L̃′ = F̂ (n−1)

L̃,L̃′ (0, 0, 0, 0). (53)

We recall that the function F̂ (n−1)

L̃,L̃′ (η1, η2, η̄1, η̄2) is

defined in the text given between formulas (51) and
(52). If the particles that we consider and which have
the momenta p̃1 and p̃2 are Ramond fermions, either
the holomorphic or the antiholomorphic part of the
above two-particle state is described by a bosonic
wave function. If it is the holomorphic part of the wave
function that corresponds to it, then OL̃ = 1 and

F̃
(n−1)

L̃,L̃′ =
∫
dη1dη2F̂

(n−1)

L̃,L̃′ (η1, η2, 0, 0). (54)

In addition, the quantity OL̃′ is calculated according
to (52). If the antiholomorphic part of the Ramond
state under discussion corresponds to bosons, the
factors in question are calculated in a similar way.
In (37), the coordinates of the interaction vertices
corresponding to Ramond particles are fixed along
with the local coordinate of the vertex describing the
emission of one of the bosons. Here, the Grassmann
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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partners of the local coordinates of the vertices cor-
responding to the Ramond particles are set to zero.
Since the integrand in (51) possesses SL(2) symme-
try, any (3|2) variables could be fixed in the integral
in (51); however, we will not discuss this subject in
the present article.

One can verify that, if the conditions in (48) and
(50) are satisfied, the amplitude in (51) vanishes in the
case of longitudinal-boson emission, as is prescribed
by gauge invariance (we plan to discuss this issue in
detail elsewhere). The aforementioned conditions (48)
and (50) and the analogous conditions arising in the
case of l′1 = 1/2 can be obtained by replacing, in (51),
the factor OL̃ (or the factor OL̃′ or both these factors if
l1 = l′1 = 1/2) by the expressions within the angular
brackets 〈. . . 〉 in (48) and (50) (or by their complex
conjugate counterparts). At present, we have proven
the validity of the relations being discussed only for
the tree amplitudes in (51). In this case, the first
factor under the sum sign in (51) is equal to unity;
the remaining quantities are calculated in terms of
correlation functions on a sphere and in terms of ex-
pressions (32) and (46). In doing this, it is convenient
to consider the limit u→ ∞ or v → ∞; this is suffi-
cient since the expressions being discussed possess
L(2) symmetry. In this case (for u→ ∞), expres-
sions that involve η3η4p3p4/[(z4 − v)(z3 − z4)] are
integrated by parts in just the same way as was done
for the expressions considered after formula (43). This
verification can also be performed for arbitrary u and
v. In this case, it is convenient to use formula (44) and
integration by parts leading to (45). The problem of
verifying the relations in question for loop amplitudes
requires a further investigation.
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APPENDIX A

Here, we present expressions for holomorphic
Green’s functions and quantities related to them
(in particular for the Ramond sector), as well as
for the holomorphic function Z̃(n)({q}, L) in (20) [it
determines the integration measure (19)]. At zero
Grassmann parameters, the sought holomorphic
Green’s functions R(0)(t, t′;L) have the form

R(0)(t, t
′;L) = Rb(z, z′)− ϑϑ′Rf (z, z′;L), (A.1)
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whereRb(z, z′) andRf (z, z′;L) are the Green’s func-
tions for boson and fermion fields, respectively. For
even spin structures, the fermion Green’s functions
can be written, for example, as [4]

Rf (z, z′;L) = exp
{
1
2
[Rb(z, z) +Rb(z′, z′)] (A.2)

−Rb(z, z′)
}
Θ[l1, l2](J |ω(0))
Θ[l1, l2](0|ω(0))

,

where Rb(z, z) for z′ = z is defined as the limit
Rb(z, z′)− ln(z − z′) for z → z′, Θ is a theta func-
tion, and J stands for the set of scalar functions
(Js(z)− Js(z′))/2πi that are its arguments. Here,
the quantities Rb(z, z), Js(z), and ω(0) are given by
formulas (18) at zero values of the parameters µ and
ν. For a surface of arbitrary genus n, in particular, we
have

∂z′Rb(z, z′) =
∑
g

[z − g(z′)]−1(cz′ + d)−2, (A.3)

where summation is performed over all elements of
the Schottky group. Formula (A.2) can also be recast
into the form of Poincaré series, but we do not dwell
on this point here. At nonzero Grassmann moduli,
the Green’s functions in the Ramond sector cannot
be directly expressed in terms of theta functions or
written in the form of Poincaré-type series (see In-
troduction and Section 2). In any case, they can nev-
ertheless be specified in the form of series where each
term of a series is represented as the integral of an
expression constructed from functions of genus 1 that
are associated with each of the handles. Each such
function R(1)

s (t, t) was calculated for the parameters
(ks, us, vs) and (µs, νs) of a given handle and its spin
structure ls = (l1s, l2s). By virtue of relations (3), this
function has the form

R(1)
s (t, t′) (A.4)

= R(1)
(b)s(zs, z

′
s)− ϑsϑ′sR

(1)
(f)s(zs, z

′
s; l1s, l2s)

+ ε′sϑ
′
sΥs(∞, z′s) + ε′sϑsΥs(zs,∞),

Υs(z, z′) = (z − z′)R(1)
f (z, z′; l1s, l2s),

where zs and ϑs are given by (4) and R(1)
(b)s(z, z

′) and

R
(1)
(f)s(z, z

′; l1s, l2s) are the relevant boson and fermion
functions. The terms proportional to Υs were added in

order to ensure a decrease inK(1)
s (t, t′) for z → ∞ or

z′ → ∞. Here, the functionK(1)
s (t, t′) has the form

K(1)
s (t, t′) = D(t′)R(1)

s (t, t′). (A.5)

For the case of n = 1, the boson function is given by

formula (A.3). The scalar function J (1)
s (t) of genus 1
3
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is given by

J (1)
s (t) = ln

zs − us
zs − vs

, (A.6)

where, for zs, we employ expressions (4). For even
spin structures, the fermion function

R
(1)
(f)s(z, z

′; l1s, l2s) has the form (A.2), where L =
(l1s, l2s), while, for odd spin structures, we use the
function

R
(1)
(f)s(z, z

′; 1/2, 1/2) (A.7)

=
∂z{Θ[1/2, 1/2](J (1)

(0)s |ω
(1)
s )}

Θ[1/2, 1/2](J (1)
(0)s |ω

(1)
s )

√√√√√∂z′J (1)
(0)s(z

′)

∂zJ
(1)
(0)s(z)

,

where J (1)
(0)s(z) is given by (A.6) at zs = z. In this case,

we have
R(1)
s (tb, t′) = R(1)

s (t, t′) + J (1)
s (t′)− ϕs(t)ϕs(t′),

(A.8)

where tb corresponds to a round about the Bs cycle;

the scalar function J (1)
s (t′) has the form (A.6); and the

spinor zero mode ϕs(t) is

ϕs(t) =
ϑs(us − vs)1/2

[(zs − us)(zs − vs)]1/2
+ ε′s(us − vs)1/2;

(A.9)

and (zs|ϑs) is defined according to (4). The last term
in (A.9) ensures a decrease of ϕs(t) in the limit
z → ∞.

In order to construct the required Green’s func-
tion, we define (see [4]) the matrix operator K̂(1) =
{K̂sr}, where K̂(1)

sr is an integral operator equal to
zero for s = r. For s �= r, the kernel of the operator is

K̃
(1)
s (t, t′)dt′. Here, the function K̃(1)

s (t, t′) is related

to R̃(1)
s (t, t′) via (A.5); that is,

K(1)
s (t, t′) =

ϑ− ϑ′
z − z′ + K̃

(1)
s (t, t′), (A.10)

K̃(1)
s (t, t′) = D(t′)R̃(1)

s (t, t′).

Following [4], we define the kernel along with the
differential dt′ = dz′dϑ′/2πi. The operator under dis-
cussion integrates the above function multiplied by

K̃
(1)
s (t, t′) with respect to t′ along the contour Cr,

which circumvents the limiting points of the Schot-
tky supertransformation associated with the rth han-
dle. This contour also circumvents the cuts that are
present for handles of the Ramond type. The required
expression for the Green’s function has the form

R
(n)
L (t, t′; {q}) = ln(z − z′ − ϑϑ′) +

∑
s

R̃(1)
s (t, t′)

(A.11)
PH
+
∑
r,s

∫
Cs

[(1− K̂(1))−1K̂(1)]rs(t, t1)dt1R̃(1)
r (t1, t′)

− 1
2

∑
m,m′

Φm(t;L; {q})V̂ −1
mm′Φm′(t′;L; {q}),

where [(1− K̂(1))−1K̂(1)]rs(t, t1)dt1 is the kernel of
the operator

(1− K̂(1))−1K̂(1) = K̂(1) + K̂(1)K̂(1) + . . . ,
(A.12)

and the sum over m,m′ is taken only over odd spin
structures of genus 1. Here, V̂mm′ are defined only for
thosem,m′ that number these odd spin structures. In
this case, we have

Φm(t;L; {q}) = ϕm(t) (A.13)

+
∑
p

∫
Cm

[(1− K̂(1))−1K̂(1)]pm(t, t′)dt′ϕm(t′),

where ϕm(t) is given by (A.9) and4)

V̂mm′ = −1
2

∑
p �=m

∫
Cp

D(t)ϕm(t)dt (A.14)

×
∫
Cm′

[(1− K̂(1))−1K̂(1)]pm′(t, t′)dt′ϕm′(t′)

− 1
2
(1− δmm′)

∫
Cm′

D(t)ϕm(t)dtϕm′(t),

with δmm′ being the Kronecker delta. In the Neveu–
Schwarz sector, where the function defined in (A.5)
has no cuts, the integrals in (A.11) can easily be
calculated. In this case, we can obtain a series for
R

(n)
L (t, t′; {q}) by using the Poincaré series (18) at
n = 1 for the Green’s functions. In general, the proof
of (A.11) reduces to verifying that expression (A.11)
satisfies the conditions in (16). In order to test rela-
tions (16) for the transformations associated with the
rth handle, we rewrite (A.11) as

R
(n)
L (t, t′; {q}) = R(1)

r (t, t′) (A.15)

+
∑
s �=r

∫
Cs

K(1)
r (t, t1)dt1R̂(t1, t′),

where R(1)
r (t, t′) and K(1)

r (t, t1) are the total Green’s
functions of genus 1 with allowance for the singular
terms in (15) and (A.10). Calculating the contribution
to (A.15) from the pole term in (A.10), we do indeed

4)The matrix V̂mm′ differs slightly from the corresponding
matrix in [4].
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003



APPLICATION OF THE UNITARITY CONDITIONS 1371
arrive at (A.11). Simultaneously, we calculate the
quantity R̂(t1, t′; {q}; s). For a handle of an odd spin
structure, we obtain [4]

ϕr(t′) +
∑
s �=r

∫
Cs

ϕr(t1)dt1R̂(t1, t′; {q}; s) = 0.

(A.16)

For expression (A.15), relations (16) for the transfor-
mations associated with the rth handle obviously hold
[upon taking into account relations (A.7) and (A.16)
for the handle of odd spin structure]. Simultaneously,

the scalar function J (n)
r (t; {q};L) corresponding to

the rth handle is determined in the form

J (n)
r (t; {q};L) = J (1)

r (t) (A.17)

+
∑
s �=r

∫
Cs

D(t1)J (1)
r (t1)dt1R̃(1)

s (t1, t)

+
∑
p �=r

∑
s

∫
Cp

D(t1)J (1)
r (t1)dt1

×
∫
Cs

[(1 − K̂(1))−1K̂(1)]ps(t1, t2)dt2R̃(1)
s (t2, t)

− 1
2

∑
m,m′

Φ(r)
m (L; {q})V̂ −1

mm′Φm′(t;L; {q}),

where J (1)
s (t) is given by (A.6) and

Φ(r)
m (L; {q}) = (1− δmr) (A.18)

×
∫
Cm

D(t1)J (1)
r (t1)dt1ϕm(t1)

+
∑
p �=r

∫
Cp

D(t1)J (1)
r (t1)dt1

×
∫
Cm

[(1 − K̂(1))−1K̂(1)]pm(t1, t2)dt2ϕm(t2).

The period matrix is calculated [4] on the basis of
equalities (17) for the functions in (A.17). The ma-

trix element ω(n)
rs ({q};L) of the period matrix then

assumes the form

2πiω(n)
rs ({q};L) = δrs ln kr + (1− δrs) (A.19)

×
∫
Cs

D(t)J (1)
r (t)dtJ (1)

s (t)

+
∑
p

∫
Cp

D(t)J (1)
r (t)dt
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×
∫
Cs

[(1− K̂(1))−1K̂(1)]pr(t, t′)dt′J (1)
s (t′)

− 1
2

∑
m,m′

Φ(r)
m (L; {q})V̂ −1

mm′Φ
(s)
m′ (L; {q}),

where the quantities appearing in this expression are
given by (A.18) and (A.6).

As was indicated in Section 2, the integration
measures in (9) are calculated on the basis of the
equations derived in [4, 9] by requiring that the am-
plitude be independent of the choice of the zweibein
and the field of the two-dimensional gravitino. For the
integration measures in question, we thereby obtain
formulas (19)–(21), where the function Z̃(n)({q}, L)
in (20) can be written in the form

ln Z̃(n)({q}, L) = −5tr ln(I − K̂(1)) (A.20)

+ 5 ln det V̂ + tr ln(I − Ĝ(1))− ln det Û ,

where I is the identity operator and K̂(1) is the
same operator as in (A.11). The matrix V̂ is defined
in (A.14). The matrix operator Ĝ(1) is calculated in

terms of the Green’s function G(1)
s (t, t′) of genus 1

for ghosts (see below) in just the same way as the

quantity K̂(1) is calculated in terms of K(1)
s (t, t′).

Thus, we obtain Ĝ(1) = {Ĝ(1)
sr }, where the integral

operator Ĝ(1)
sr vanishes at s = r. For s �= r, its kernel

Ĝ
(1)
sr is equal to the regular part G̃(1)

ls
(t, t′; s)dt′ of the

ghost correlation function G(1)
s (t, t′); that is,

G(1)
s (t, t′) =

ϑ− ϑ′
z − z′ − G̃

(1)
ls

(t, t′; s). (A.21)

As in the case of the matrix in (A.14), the matrix
elements Ûmn are defined only for those m,m′ that
number odd spin structures of genus 1. They are

calculated in terms of the (3/2) zero modes χ(1)
m (t)

and the (−1/2) zero modes φ(1)
m (t) of genus 1. As a

result, we obtain

Ûmm′ = −1
2

∑
p �=m

∫
Cp

χ(1)
m (t)dt (A.22)

×
∫
Cm′

[(1 − Ĝ)−1Ĝ]pm′(t, t′)dt′φ(1)
m′ (t′)

− 1
2
(1− δmm′)

∫
Cm′

χ(1)
m (t)dtφ(1)

m′ (t).
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Here, the zero modes are given by

χ(1)
m (t) = − (um − vm)2

[(zm − um)(zm − vm)Q2
m(t)]3/2

,

(A.23)

φ(1)
m (t) =

ϑmQ
2
m(t)

√
(zm − um)(zm − vm)
(um − vm)

,

where variables (zm|ϑm) are defined in (4) at s = m,
while the quantity Qm defined in (7) corresponds to
the aforementioned transformation (4) at s = m. As

for scalar fields, the function G(1)
s (t, t) is expressed

in terms of the boson function G(1)
(b)s(z, z

′) and the

fermion functionG(1)
(f)s(z, z

′; l1s, l2s) as [4]

G(1)
s (t, t′) = Q2

s(t)[G
(1)
(b)s(zs, z

′
s)ϑ

′
s (A.24)

+ ϑsG
(1)
(f)s(zs, z

′
s; l1s, l2s)− ε′sΥ̃s(∞, z′s)]Q−3

s (t′),

Υ̃s(z, z′) = (z − z′)G(1)
(f)s(z, z

′; l1s, l2s),

where zs and ϑs are defined in (4) and the terms

proportional to Υ̃s ensure a decrease in G(1)
ls

(t, t′) for
z → ∞ or z′ → ∞. The boson part of the Green’s
functions in (A.24) has the form [4]

G
(1)
(b)(z, z

′) = −
∑
n

1
(z − gn(z′))(cnz′ + dn)4

,

(A.25)

where we omit the subscript s for the sake of brevity.
Summation is performed here over the group prod-
ucts of the corresponding Schottky transformation

g(z). The fermion Green’s function G(1)
f (z, z′; l1, l2)

for even spin structures (we again omit the subscript
s for the sake of brevity) has the form

G
(1)
f (z, z′; l1, l2) (A.26)

=
(z − u)(z − v)
(z′ − u)(z′ − v)R

(1)
f (z, z′; l1, l2)

− (z − v)W1(z′; l1, l2) +W2(z′; l1, l2)
(z′ − u)(z′ − v) ,

where the last term is calculated in terms of the
asymptotic expression forR(1)

f (z, z′; l1, l2) in the limit
z → ∞:

R
(1)
f (z, z′; l1, l2) →

W1(z; l1, l2)
z − u +

W2(z; l1, l2)
(z − u)2 .

(A.27)

It can easily be verified that G(1)
f (z, z′; l1, l2) de-

creases for z → ∞ for z′ → ∞. In addition, we have

(cz + d)G(1)
f (g(z), z′; l1, l2) (A.28)
PH
= G(1)
f (z, z′; l1, l2) +

1−
√
k√

k
pµ(z)χµ(z′; l1, l2)

− (1−
√
k)pν(z)χν(z′; l1, l2),

where (cz + d) corresponds to the transformation
g(z) being considered; pµ(z) and pν(z) have the form

pµ(z) =
2(z − v)
u− v , pν(z) = −2(z − u)

u− v ; (A.29)

and z′-dependent functions are

χµ(z; l1, l2) = −(u− v)W1(z; l1, l2) +W2(z; l1, l2)
2(z − u)(z − v) ,

(A.30)

χν(z; l1, l2) = − W2(z; l1, l2)
2(z − u)(z − v) .

For an odd spin structure, where there are no Green’s
functions possessing the property specified by
Eq. (A.28) because of the (−1/2) zero mode, we
define the Green’s function by the formula

G
(1)
f (z, z′; 1/2, 1/2) = G(1)

(σ=1)(z, z
′) (A.31)

− 2
(√

z − u
z − v − 1

)
χν(z′; 1/2, 1/2),

χν(z; 1/2, 1/2) = − 1
2
√

(z − u)(z − v)

×
∑
n

1
(cnz′ + dn)2

,

where G(1)
(σ)(z, z

′) has the form

G
(1)
(σ)(z, z

′) =
[
(z − u)(z′ − v)
(z − v)(z′ − u)

]l1σ
(A.32)

×
∑
n

k−l1σn(−1)(2l2−1)n

(z − gn(z′))(cnz + dn)3
.

Here, summation is performed over all powers of the
transformation g(z). We also note that, for even spin
structures, we have

G
(1)
f (z, z′; l1, l2) = G

(1)
(σ=1)(z, z

′) (A.33)

+ [pµ(z)χµ(z′; l1, l2)− pν(z)χν(z′; l1, l2)]

− 1
2

√
z − u
z − v [pµ(z)(3χµ(z

′; l1, l2) + χν(z′; l1, l2))

− pν(z)(χµ(z′; l1, l2)− χν(z′; l1, l2))],
where the notation is specified by formulas (A.29) and
(A.30). The distinction between formula (A.20) and
the corresponding expression in [4] is due to the fact

that, in [4], the function G(1)
(σ=1)(z, z

′) is used instead

of G(1)
f (z, z′; l1, l2). In order to obtain the formula
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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given in [4] from formula (A.20), we must first use
expressions (A.33) and (A.31) to calculate Ĝ(1) in
(A.20) and then invoke the formula

tr ln[A+A1A2] (A.34)

= tr lnA+ tr ln[1 +A−1A1A2]

= tr lnA+ (−1)P tr ln[1 +A2A
−1A1],

which is valid for any of the operators A1, A2, and A,
provided that detA �= 0. Here, P = 1 if both A1 and
A2 obey Fermi statistics; otherwise, P = 0.

APPENDIX B

In order to obtain the first relation in (26), we
calculate (A.19) for ω11 in the limit k → 0 by sub-
stituting there formula (A.6) for the scalar function

J
(1)
1 (t) at µ = ν = 0. The contour of integration with

respect to z circumvents nondegenerate handles, but
it can be transformed into a contour circumventing
the points z = u and z = v. Thus, the integral with
respect to z is given by the sum of the residues at
these points. The integral with respect to z′ reduces

to an integral along the cut of the logarithm in J (1)
1 (t)

and can easily be calculated because its integrand is
the superderivative (7) of a local function. The inte-
grals with respect to z1 and z2 in expression (A.18)

for Φ(r)
m (L; {q}) can be calculated in a similar way.

Considering that, in the limit k → 0, only the function

J
(1)
1 (t) in the integrands in (A.18) and (A.19) is sin-

gular at z = u and z = v and using expression (A.11),
we can obtain the required relation. In order to de-
rive the second relation in (26), we again substitute

expression (A.6) for J (1)
1 (t) into formula (A.19) for

ω1l and calculate the integral with respect to t in the
same way as in deriving the first relation in (26). In
the limit k → 0, the integral in (A.19) with respect to
t is equal to the sum of the residues of the integrand
at the points z = u and z = v. Finally, the relation
for J1 in (26) can be obtained by substituting ex-

pression (A.6) for J (1)
1 (t) into the integral in (A.17)

for J (n)
r (t; {q};L) and by subsequently calculating

the integral in the limit k → 0. The contour of in-
tegration with respect to t1 in this integral circum-
vents nondegenerate handles. In just the same way
as in the preceding cases, the integral is equal to the
sum of the residues at the points z = u and z = v.
With allowance for formula (A.11), there arises the
required relation. In order to obtain formula (30), we
use expression (A.11). For z → u, the regular part
in (30) is given by the contribution of the pole that
is situated at z1 = z = u and which is induced by
the logarithmic term in (29). In a similar way, one
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can prove formula (31) and derive formulas for scalar
functions. Taking into account (12), we thereby arrive
at expressions (33) and (34). Following the same
method and using formulas (19)–(21) and (A.20), we

can calculate the function Ẑ(n−1)

L̃,L̃′ ({q, q̄}) in (24).
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Abstract—The effect of the unitary mixing of scalar and vector fields is considered in the ξ gauge. For
this effect to emerge, it is necessary that the vector current not be conserved; in the ξ gauge, there arise
additional complications because of the presence of an unphysical scalar field. Solutions to the Dyson–
Schwinger equations are obtained, and the renormalization of complete propagators is investigated. The
use of the Ward identity, which relates a few different Green’s functions, is a key point in performing this
renormalization. It is shown that the dependence on the gauge parameter ξ disappears in the renormalized
matrix element. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The mixing of scalar and vector fields (S–V mix-
ing) arises at a loop level if there exists an off-diagonal
loop that relates a scalar and a vector propagator to
each other. For this, it is necessary that the relevant
vector current not be conserved.

A similar effect was noticed long ago [1, 2] in
studying the Standard Model in the ξ gauge, where
there arose the mixing of gauge-boson fields and an
unphysical field—that is, the so-called Higgs ghost,
whose propagator has a pole at the point p2 = ξM2.1)

However, a physical scalar field may also partici-
pate in mixing. By way of example, we indicate that,
in [3], this effect was examined in the π–a1 system
and that, in [4], the S–V mixing between gauge
bosons and Higgs particles was explored in various
extended electroweak models. However, no attention
was given in [4] either to the renormalization problem,
which is nontrivial in the case being considered, or
to the problem of gauge dependence. We note that,
in the ξ gauge, S–V mixing leads to an interesting
effect that was discovered in [5]: upon taking into
account Ward identities, the dressing procedure leads
to a transition to a different type of singularity for
some propagators—namely, a simple pole of a bare
propagator at the point p2 = ξM2 transforms into a
second-order pole of the corresponding total propa-
gator. In view of this, there naturally arises the ques-
tion of whether the Standard Model is renormalizable
in principle in this gauge [5].

In the present study, we examine the unitary mix-
ing of a physical scalar field and a vector field in the

*e-mail: kaloshin@physdep.isu.runnet.ru
1)Different terms are used for this field. In what follows, we will

refer to it merely as a ghost, nourishing the hope that this will
not lead to a terminological confusion.
1063-7788/03/6607-1375$24.00 c©
ξ gauge, pursuing our analysis to the stage of deriv-
ing a renormalized matrix element and investigating
the dependence on ξ. We consider both the case of
boson loops and the case of fermion loops because
either case has its own special features. In particular,
our consideration is applicable to electroweak models
involving an extended Higgs sector.2)

In the ξ gauge, the Lagrangian is supplemented
with the gauge-fixing term

Lgf = − 1
2ξ

(∂µAµ)2. (1)

In taking into account loop contributions, there arises
the mixing of three bare propagators (see Fig. 1): the
scalar-particle propagator, the vector-field propaga-
tor in the ξ gauge, and the ghost propagator.

It is convenient to break down the vector propa-
gator into the transverse and the longitudinal compo-
nent; that is,

πµν22 = T µν
1

p2 −M2
+ Lµν

ξ

ξM2 − p2
, (2)

T µν = −gµν +
pµpν

p2
, Lµν =

pµpν

p2
.

We recall that only the longitudinal vector-propa-
gator component not associated with the spin of J =
1 can be mixed with a scalar field. For this effect to
emerge, it is necessary that the vector current with

2)Loop transitions between massive gauge fields and Higgs
scalars may arise only if the theory being considered features
charged or pseudoscalar Higgs particles. It should also be
recalled that, upon a spontaneous breakdown of symmetry,
currents remain conserved, but that currents with which vec-
tor fields interact are not Noether currents; therefore, there
is no contradiction between spontaneous symmetry breaking
and the occurrence of scalar–vector transitions.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Scalar-particle, vector-particle, and ghost propagators.
which this vector field interacts not be conserved.
In the longitudinal component of the vector-particle
propagator, there appeared an unphysical pole at the
point p2 = ξM2, but it was noticed long ago (see, for
example, [6]) that the sign of this pole is opposite with
respect to the scalar-meson contribution. In order
to cancel this pole at the tree level, it is therefore
sufficient to introduce an unphysical scalar field of
mass ξM2. As a result, there arises, at a loop level, the
mixing of the aforementioned three propagators; in
addition, there appear total off-diagonal propagators,
which were absent at the tree level. Upon dressing,
there therefore arise the problem of renormalizing
coupled propagators and the problem of the gauge-
parameter (in)dependence of the relevant S matrix.

2. SET OF DYSON–SCHWINGER EQUATION

In the case of mixing, propagators and loops
become matrices; as a result, the set of Dyson–
Schwinger equations takes the form3)

Π11 = π11 − Π11J11π11 − Πµ
12J

µ
21π11 − Π13J31π11,

(3)

Πµ
12 = −Π11J

ν
12π

νµ
22 − Πγ

12J
γν
22 π

νµ
22 − Π13J

ν
32π

νµ
22 ,

Π13 = −Π11J13π33 − Πµ
12J

µ
23π33 − Π13J33π33,

Πµ
21 = −Πµ

21J11π11 − Πµγ
22 J

γ
21π11 − Πµ

23J31π11,

Πµν
22 = πµν22 − Πµ

21J
γ
12π

γν
22 − Πµγ

22 J
γρ
22 π

ρν
22 − Πµ

23J
γ
32π

γν
22 ,

Πµ
23 = −Πµ

21J13π33 − Πµγ
22 J

γ
23π33 − Πµ

23J33π33,

Π31 = −Π31J11π11 − Πµ
32J

µ
21π11 − Π33J31π11,

Πµ
32 = −Π31J

ν
12π

νµ
22 − Πγ

32J
γν
22 π

νµ
22 − Π33J

ν
32π

νµ
22 ,

Π33 = π33 − Π31J13π33 − Πµ
32J

µ
23π33 − Π33J33π33,

where πij are bare propagators, Πij are total prop-
agators, and Jij are single-particle-irreducible loop

3)In relation to the analysis of the unitary gauge in [3], we
redefined here the off-diagonal scalar–vector propagators
as iΠ12 → Π12 and iΠ21 → Π21 in order to obtain a more
symmetric form of the equations in question. In addition, we
do not assume that off-diadonal transitions possess some
specific symmetry or asymmetry properties—the form of
symmetry relations is dictated by the form of interaction,
so that these relations may be different in different cases.
We also note that a change in the form of the equations
corresponds to redefining the loops involved.
P

contributions. In these equations, we will break down
each quantity carrying two indices into a transverse
and a longitudinal component; that is,

Πµν
22 = T µνΠT

22(p
2) + LµνΠL

22(p
2), (4)

πµν22 = T µνπT22(p
2) + LµνπL22(p

2),

Jµν22 = T µνJT22(p
2) + LµνJL22(p

2),

where

T µν = −gµν +
pµpν

p2
, Lµν =

pµpν

p2
.

In the quantities carrying one index, we go over to
scalar functions according to the relations

Πµ
12(p) = pµΠ12(p2), Πµ

21(p) = pµΠ21(p2), (5)

Jµ12(p) = pµJ12(p2), Jµ21(p) = pµJ21(p2),

Πµ
23(p) = pµΠ23(p2), Πµ

32(p) = pµΠ32(p2),

Jµ23(p) = pµJ23(p2), Jµ32(p) = pµJ32(p2).

The equation for the transverse component is sep-
arated from the set of equations in question. As a
result, it assumes the same form as in the absence of
scalar–vector mixing; that is,

ΠT
22 = πT22 − ΠT

22J
T
22π

T
22. (6)

A solution to this equation can be written in the form

ΠT
22 =

1
p2 −M2 + JT22

. (7)

As to the longitudinal components, the following
set of equations arises for them in the ξ gauge:4)

Π11 = π11 − Π11J11π11

−p2Π12J21π11 − Π13J31π11, (8)

Π12 = −Π11J12π22 − Π12J22π22 − Π13J32π22,

Π21 = −Π21J11π11 − Π22J21π11 − Π23J31π11,

Π22 = π22 − p2Π21J12π22

−Π22J22π22 − p2Π23J32π22,

Π13 = −Π11J13π33 − p2Π12J23π33 − Π13J33π33,

Π31 = −Π31J11π11 − p2Π32J21π11 − Π33J31π11,

4)Below, we use longitudinal components, suppressing the
superscript L, unless otherwise stated.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Π23 = −Π21J13π33 − Π22J23π33 − Π23J33π33,

Π32 = −Π31J12π22 − Π32J22π22 − Π33J32π22,

Π33 = π33 − Π31J13π33 − p2Π32J23π33

−Π33J33π33.

A solution to this set of equations has the form

Π11 =
1
D

[
(π−1

22 + J22)(π−1
33 + J33) − sJ23J32

]
,

Π12 = − 1
D

[
J12(π−1

33 + J33) − J13J32,
]
, (9)

Π21 = − 1
D

[
J21(π−1

33 + J33) − J23J31

]
,

Π22 =
1
D

[
(π−1

11 + J11)(π−1
33 + J33) − J31J13

]
,

Π13 = − 1
D

[
J13(π−1

22 + J22) − sJ12J23

]
,

Π31 = − 1
D

[
J31(π−1

22 + J22) − sJ32J21

]
,

Π23 = − 1
D

[
J23(π−1

11 + J11) − J21J13

]
,

Π32 = − 1
D

[
J32(π−1

11 + J11) − J31J12

]
,

Π33 =
1
D

[
(π−1

11 + J11)(π−1
22 + J22) − sJ21J12

]
,

where s = p2 and

D(s) = (π−1
11 + J11)(π−1

22 + J22)(π−1
33 + J33) (10)

− (π−1
11 + J11)sJ32J23 − (π−1

22 + J22)J31J13
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
− (π−1
33 + J33)sJ21J12 + sJ12J23J31 + sJ32J21J13.

We note that the transverse and the longitudinal com-
ponent of the vector-particle propagator are not com-
pletely independent. For the relevant matrix element
to be free from a 1/p2 pole, fulfillment of the condition
JT22(0) + JL22(0) = 0 is necessary.

3. BOSON LOOPS: π–a1 SYSTEM

We will examine the model identical to that which
was studied in the unitary gauge in [3]—specifically,
we consider the π–a1 system dressed by a πσ inter-
mediate state.5)

The Feynman rules for this model are illustrated in
Fig. 2.

For unphysical poles to be canceled in the matrix
element at the tree level, it is necessary that

gGπσ =
gaπσ
M

. (11)

We now present results obtained by calculating
the relevant self-energy parts at the one-loop level.
We note that, upon specifying the Feynman rules,
loops must be determined consistently with Dyson–
Schwinger equations. With respect to the unitary
gauge, there appear new contributions that relate the
ghost propagator to other particles. Loops are calcu-
lated by means of a procedure in which the application
of a unitary cut is followed by the restoration of an
integral over the discontinuity; that is,
J11(p2) = −i g2
σππ

∫
d4l

(2π)4
1

(l2 − µ2)((l − p)2 −m2)
, (12)

Jµ12(p) = − ga1πσ gσππ

∫
d4l

(2π)4
(2l − p)µ

(l2 − µ2)((l − p)2 −m2)
,

J13(p2) = −igππσga1πσ
M

∫
d4l

(2π)4
(p · (2l − p))

(l2 − µ2)((l − p)2 −m2)
,

Jµν22 (p) = −i g2
a1πσ

∫
d4l

(2π)4
(2l − p)µ(2l − p)ν

(l2 − µ2)((l − p)2 −m2)
,

Jµ23(p) =
g2
a1πσ

M

∫
d4l

(2π)4
(2l − p)µ(p · (2l − p))

(l2 − µ2)((l − p)2 −m2)
,

J33(p2) = −i
g2
a1πσ

M2

∫
d4l

(2π)4
(p · (2l − p))(p · (2l − p))
(l2 − µ2)((l − p)2 −m2)

,

where m = mσ and µ = mπ.
The Feynman rules lead to the following symmetry

relations for off-diagonal loops:

Jµ21 = −Jµ12, (13)

Jµ32 = −Jµ23,
J31 = J13.

In just the same way as in the case of the unitary

5)We recall that π–a1 transitions at the tree level arise in chiral
models [7, 8]; therefore, their emergence at a loop level is
quite natural.
3
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Fig. 2. Vertices for the π–a1 model.
gauge in [3], all loops are expressed in terms of one
function H(p2), apart from subtraction polynomi-
als to be determined in the renormalization process.
Specifically, we have

H(p2) =
1
π

∫
ds

s(s− p2)

(
λ(s,m2, µ2)

s2

)1/2

, (14)

J11(s) = g2
1 [P11 + sH(s)], (15)

J12(s) = −ig1g2[P12 +H(s)],

J13(s) =
g1g2
M

[P13 + sH(s)],

J22(s) = g2
2 [P22 +H(s)], J23(s) = i

g2
2

M
[P23 +H(s)],

J33(s) =
g2
2

M2
[P33 + sH(s)],

where Pij are polynomials in s with real-valued coef-
ficients. We have also introduced the following nota-
tion: g1 = gσππ/

√
16π, g2 = (µ2 −m2)ga1πσ/

√
16π,

and λ(a, b, c) = (a− b− c)2 − 4bc.
For total propagators, the πσ → πσ matrix ele-

ment has the form
1

16π
MJ=0 = −g2

1Π11 − 2ig1g2Π12 − 2
g1g2
M

Π13

+ 2i
g2
2

M
Π23 −

g2
2

s
Π22 −

g2
2

M2
Π33. (16)

Renormalization of the pion pole. We will per-
form renormalization by means of on-shell subtrac-
tions. Needless to say, the procedure is somewhat
modified with allowance for the mixing of the prop-
agators. The most economical formulation of the re-
quirements on pion-pole renormalization is as fol-
lows:

(i) The function D(s) must possess a simple zero
at the point s = µ2 for any values of the coupling
constants g1 and g2, which are assumed to be inde-
pendent.
PH
(ii) The total pion propagator Π11 must have a pole
with a residue equal to unity, in just the way as the
bare pion propagator π11 does have such a pole. This
means the sum of all loop insertions into the external
pion line is equal to zero.

These requirements lead to conditions on loops at
the point s = µ2—that is, on subtraction polynomi-
als:

J11(µ2) = J ′
11(µ

2) = 0, (17)

J12(µ2) = 0, J13(µ2) = 0.

Renormalization of ξξξ. Since the mass of a vector
particle is renormalized in the transverse part of the
vector-particle propagator, the quantity M can be
treated as a mass that has already been renormalized.
Therefore, the renormalization of the unphysical pole
at the point s = ξM2 is the renormalization of the
gauge parameter ξ.

We will try to follow a line of reasoning similar
to that in the case of the pion pole and formulate
the following requirements on the renormalization in
question:6)

(i) The function D(s) must possess a second-
order pole at the point s = ξM2 for any values of the
coupling constants.

(ii) At this point, the total propagators Π22 and Π33

must have a simple pole.

By using the explicit form of the relevant solutions,
we find that this leads to the conditions

J22(ξM2) = J33(ξM2) = J12(ξM2) (18)

= J13(ξM2) = J23(ξM2) = 0.

6)These requirements are minimal, implying that the charac-
ter of the singularity remains unchanged upon dressing the
bare propagators. Since a ghost appears only in the form
of propagators—and not in the form of external legs—we
impose no conditions on the residues of the propagators.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003



UNITARY SCALAR–VECTOR MIXING 1379
It can easily be seen that, among total propaga-
tors, only Π23, apart from Π22 and Π33, can have
a pole at the point s = ξM2. In order to trace the
unphysical pole in the matrix element, it is therefore
sufficient to consider only these contributions:

1
16π

M̂J=0 = −g
2
2

p2
Π22(p2) (19)

− g2
2

M2
Π33(p2) + 2i

g2
2

M
Π23(p2).

Substituting solutions to the Dyson–Schwinger
equations and using conditions (18), we find that,
for an unphysical pole to be absent from the matrix
element, it is necessary that the function Y (s),

Y (s) = M2J33(s) + sJ22(s) + 2iMsJ23(s), (20)

have a second-order zero at the point ξM2. This
imposes constraints on the subtraction polynomials
since, from (15), it can be seen that the loop function
H(s) cancels in (20).

We recall that the absence of a 1/p2 pole relates
JT22 to JL22:

JT22(0) + JL22(0) = 0. (21)
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
With allowance for (18), the polynomial in the loop
JL22 must have the form

P22 = E

(
1 − s

ξM2

)
− s

ξM2
H(ξM2), (22)

where E is a constant that is determined in the trans-
verse part of the loop J22. We can now write renor-
malized loops that satisfy the condition in (20):

J22 = g2
2

[
E

(
1 − s

ξM2

)
(23)

− s

ξM2
H(ξM2) +H(s)

]
,

J23 = i
g2
2

M

[
H(ξM2) −H(s)

]
,

J33 =
g2
2

M2

×
[
−ξM2H(ξM2)−EξM2

(
1− s

ξM2

)
+sH(s)

]
.

The remaining loops, which are not involved in the
function Y (s) (20), are given by
J11 = g2
1

[
−sH(µ2) − µ2H ′(µ2)(s − µ2) + sH(s)

]
, (24)

J12 = −ig1g2
[
ξM2H(µ2) − µ2H(ξM2)

µ2 − ξM2
+ s

H(ξM2) −H(µ2)
µ2 − ξM2

+H(s)
]
,

J13 =
g1g2
M

[
µ2ξM2H(ξM2) −H(µ2)

µ2 − ξM2
− ξM2H(ξM2) − µ2H(µ2)

µ2 − ξM2
− sH(s)

]
.

Having determined the subtraction polynomials in
loops, we can now calculate the matrix element (16).
Upon the substitution of total propagators, we arrive
at a cumbersome expression in which there remains
a dependence on the gauge parameter ξ. This means
that an unphysical pole cannot be renormalized by a
method similar to that applied to the physical pole, so
that it is necessary to seek some other ways.

Ward identity. The use of a Ward identity that
relates a few different total propagators is a key point
in renormalizing ξ. This identity was derived in [5] by
means of the Bechi–Rouet–Stora–Tyutin (BRST)
transformation in a somewhat simpler situation where
there is no a physical scalar. To test this derivation, we
will obtain the Ward identity by a different method.

The Feynman rules presented above correspond to
the Lagrangian7)

L = −1
4
(∂µAν − ∂νAµ)2 +

1
2
M2AµA

µ (25)

7)We do not explicitly write isotopic indices here because they
are trivial in the model being considered.
− 1
2ξ

(∂A)2 +
1
2
(∂µϕ)2 − 1

2
ξM2ϕ2

+AµJ
µ +

1
M
∂µϕJ

µ,

where ϕ is the ghost field and Jµ is a vector current
whose explicit form is immaterial here. We have pre-
sented here only terms involving the vector field and
the ghost field. The equations of motion have the form

(∂α∂α +M2)Aµ −
(

1 − 1
ξ

)
∂µ(∂A) = −Jµ, (26)

(∂α∂α + ξM2)ϕ = − 1
M

(∂J). (27)

From these two equations, it follows that

(∂α∂α + ξM2)((∂A) − ξMϕ) = 0, (28)

which means that the combination (∂A) − ξMϕ,
which appeared in (28), is a noninteracting field. If
one examines the vacuum expectation value of the
time-ordered product of these fields, such a Green’s
3
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Fig. 3. Vertices for the W±–H± model.
function must not change upon switching on the
interaction. Calculating it for the respective bare
quantities, we find that the result vanishes:

〈0|T{((∂A(x)) − ξMϕ(x))((∂A(y)) (29)

− ξMϕ(y))}|0〉 = 0.

We note that, in order to go over in this expression
to the propagators, it is necessary to differentiate
the time-ordered product of vector fields accurately.
The point is that this operation generates additional
terms that are proportional to single-time commuta-
tors of interacting fields. It is well known, however,
that single-time commutation relations for interact-
ing fields commute with those for the corresponding
free fields (see, for example, [9]). Upon performing the
required calculations, we arrive at

∂

∂xµ

∂

∂yν
〈0|T{Aµ(x)Aν(y)}|0〉 (30)

= 〈0|T{∂A(x)∂A(y)}|0〉 − iξδ4(x− y).

As a result, we find that, in the momentum represen-
tation, the required Ward identity in terms of the total
propagators assumes the form8)

sΠL
22(s) − 2isξMΠ23(s) + ξ2M2Π33(s) + ξ = 0.

(31)

Substituting the explicit form (9) of the total prop-
agators into the Ward identity (31) and equating to
zero the coefficients of the identical powers of the
coupling constants g1 and g2, we obtain the following
set of relations:

M2J33 + sJ22 + 2isMJ23 = 0, (32)

J22J33 + s(J23)2 = 0,

8)We note that, in the literature, there is no consensus on the
exact form of this relation. By way of example, we indicate
that, in [10], it is written without the term ξ, although the
corollaries from it coincide with our Eqs. (33).
P

2isMJ12J13 −M2J2
13 + s2J2

12 = 0,

−J22J
2
13 + sJ33J

2
12 + 2sJ12J13J23 = 0.

Solving these equations, we arrive at simple relations
between the loops:

J33 =
s

M2
J22, (33)

J23 =
i

M
J22, J13 = i

s

M
J12.

We note that, in (32), there appeared the same func-
tion Y (s) (20), which ensures the absence of unphys-
ical poles in the matrix element.

Let us now calculate the total propagators by
using relations (32), which follow from the Ward
identity. It immediately turns out that, in the function
D(s), the dependence on the gauge parameter factors
out:9)

D(s) = −(s− ξM2)2

ξM2
D̂(s), (34)

where there appeared the function

D̂(s) = (π−1
11 + J11)(M2 + J22) + s(J12)2, (35)

which plays the role of the determinant in the unitary
gauge [3].

The total propagators assume a rather simple
form; that is,

Π11 =
M2 + J22

D̂
, (36)

Π12 =
ξM2J12

(s− ξM2)D̂
Π13 = −i MsJ12

(s− ξM2)D̂
,

9)Upon dressing the propagator, the pole lying above the
threshold usually goes to the complex plane. In the presence
of the Ward identity, however, the pole remains here on the
real axis.
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Π23 = i
ξM

[
(π−1

11 + J11)J22 + s(J2
12)
]

(s− ξM2)2D̂
,

Π22

= −ξ (π−1
11 +J11)(M2(s−ξM2)+sJ22)+s2(J12)2

(s−ξM2)2D̂
,

Π33

= M2 (π−1
11 + J11)((s − ξM2) − ξJ22) − ξs(J12)2

(s− ξM2)2D̂
.

Substituting the total propagators into the matrix
element πσ → πσ (16), we obtain

1
16π

MJ=0 = −g2
1

M2 + J22

D̂
(37)

+ 2ig1g2
J12

D̂
− g2

2

π−1
11 + J11

D̂
.

The dependence on the gauge parameter ξ disap-
peared, and this expression coincides with the matrix
element in the unitary gauge [3] if one imposes no
conditions on the loop J11, J12, and J22 at the point
s = ξM2.

Finally, we note that, if the terms in the matrix
element (16) are arranged as

1
16π

MJ=0 = −g2
1Π11 − 2ig1g2

(
Π12 −

i

M
Π13

)

− g2
2

(
1
s
Π22 +

1
M2

Π33 −
2i
M

Π23

)
, (38)

one can easily notice that, not only is the entire sum
independent of the gauge parameter ξ, but also each
of the above three terms individually possesses this
property.

4. FERMION LOOPS: MIXING OF GAUGE
BOSONS AND HIGGS PARTICLES

IN EXTENDED MODELS

We recall that the unitary mixing of gauge bosons
with Higgs particles is possible only in extended elec-
troweak models since either pseudoscalar or charged
Higgs particles are required for this. We will not spec-
ify the choice of model—it is sufficient to fix the form
of vertices. For the sake of simplicity, we assume that
only one physical scalar participates in mixing.

W±–H±W±–H±W±–H± mixing. The interaction vertices are
displayed in Fig. 3.10)

10)The longitudinal component of the W± field is mixed with
the field of the charged Higgs particle. As will be seen from
Eq. (41), which is given below, off-diagonal transitions van-
ish for the neutral Higgs field (m1 = m2).
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The expressions for the loops are given by

J11(p2) = −ig2
1

∫
d4l

(2π)4
(39)

× tr
{

1
l̂ − p̂−m2

1
l̂ −m1

}
,

Jµ12(p) = −ig1g2
∫

d4l

(2π)4

× tr
{

1

l̂ − p̂−m2

γµ(1 + γ5)
1

l̂ −m1

}
,

J13(p2) =
g1g2
M

∫
d4l

(2π)4

× tr
{

1

l̂ − p̂−m2

p̂(1 + γ5)
1

l̂ −m1

}
,

Jµν22 (p) = −ig2
2

∫
d4l

(2π)4

× tr
{
γµ(1 + γ5)

1

l̂ − p̂−m2

γν(1 + γ5)
1

l̂ −m1

}
,

Jµ23(p) =
g2
2

M

∫
d4l

(2π)4

× tr
{
γµ(1 + γ5)

1

l̂ − p̂−m2

p̂(1 + γ5)
1

l̂ −m1

}
,

J33(p) = − g2
2

M2

∫
d4l

(2π)4

× tr
{
p̂(1 + γ5)

1

l̂ − p̂−m2

p̂(1 + γ5)
1

l̂ −m1

}
.

The symmetry properties differ somewhat from those
of boson loops; that is,

Jµ21(p) = Jµ12(p), (40)

J31(p) = −J13(p), Jµ32(p) = −Jµ23(p).
In the case of fermion loops, all longitudinal loops

are expressed in terms of two functions H1(p2) and
H2(p2), apart from subtraction polynomials. Specifi-
cally, we have

H1(p2) =
1
π

∫
(m1 +m2)2 − s

s(s− p2)
3
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×
(
λ(s,m2

1,m
2
2)

s2

)1/2

ds,

H2(p2) =
p2

π

∫
(m1 −m2)2 − s(m2

1 +m2
2)

s2(s − p2)

×
(
λ(s,m2

1,m
2
2)

s2

)1/2

ds,

J11 = f2
1 [P11 +sH1(s)] , J12 = f1f2 [P12 +H1(s)] ,

(41)

J13 = i
f1f2

M
[P13 +sH1(s)] , J22 = f̂2

2 [P22 +H2(s)] ,

J23 = i
f̂2
2

M
[P23 +H2(s)] , J33 =

f̂2
2

M2
[P33 + sH2(s)] ,

where Pij are polynomials in swith real-valued coeffi-
cients. We have also used the following notation: f1 =
g1/

√
8π, f2 = (m1 −m2)g2/

√
8π, f̂2 = g2/

√
4π.

Examining relations (33), which follow from the
Ward identity, we can easily see that the Ward identity
imposes constraints only on the subtraction polyno-
mials, the loop integrals H1 and H2 identically sat-
isfying Eqs. (33). Upon imposing the conditions in
Eqs. (33), we arrive at a very simple dependence of
the propagators on ξ in the form (36). It only remains
to trace the ξ dependence in the matrix element.

The f1(q1)f2(q2) → f1(k1)f2(k2) matrix element
has the form

MJ=0 = −g2
1Π11 v(q2)u(q1) · u(k1)v(k2) (42)

− g1g2

(
Π12 −

i

M
Π13

)
v(q2)u(q1) · u(k1)

× p̂(1 + γ5)v(k2) − g1g2

(
Π21 +

i

M
Π31

)
v(q2)

× p̂(1 + γ5)u(q1) · u(k1)v(k2)

− g2
2

(
1
s
Π22 +

1
M2

Π33 −
i

M
Π23 +

i

M
Π32

)
v(q2)

× p̂(1 + γ5)u(q1) · u(k1)p̂(1 + γ5)v(k2).

This expression can be simplified by using the equa-
tions of motion for spinors; however, it can be seen
even at this stage that different spinor matrix ele-
ments appear with factors that are independent of ξ
[see Eq. (38)]. Thus, the dependence on the gauge
parameter disappeared.

Mixing in the system formed by the pseu-
doscalar Higgs boson and the Z0 gauge boson.
The vertex of Higgs boson interaction with fermions
is shown in Fig. 4.

The form of the f1(q1)f2(q2) → f1(k1)f2(k2) ma-
trix element changed slightly to become

MJ=0 = −g2
1Π11v(q2)γ5u(q1) · u(k1)γ5v(k2) (43)
P

− g1g2

(
Π12 −

i

M
Π13

)
v(q2)γ5u(q1) · u(k1)

× p̂(1 + γ5)v(k2) − g1g2

(
Π21 +

i

M
Π31

)
v(q2)

× p̂(1 + γ5)u(q1) · u(k1)γ5v(k2)

− g2
2

(
1
s
Π22 +

1
M2

Π33 −
i

M
Π23 +

i

M
Π32

)
v(q2)

× p̂(1 + γ5)u(q1) · u(k1)p̂(1 + γ5)v(k2).

In relation to the case of the scalar Higgs bosons,
some of the loops changed:

J11(p2) = −ig2
1

∫
d4l

(2π)4
(44)

× tr
{
γ5 1

l̂ − p̂−m2

γ5 1

l̂ −m1

}
,

Jµ12(p) = −ig1g2
∫

d4l

(2π)4

× tr
{
γ5 1

l̂ − p̂−m2

γµ(1 + γ5)
1

l̂ −m1

}
,

J13(p2) =
g1g2
M

∫
d4l

(2π)4

× tr
{
γ5 1

l̂ − p̂−m2

p̂(1 + γ5)
1

l̂ −m1

}
,

Jµ21(p) = Jµ12(p), J31(p2) = −J13(p2). (45)

In relation to the mixing of charged fields, the only
change is that the function H1(p2) took a different
form; that is,

H1(p2) =
1
π

∫
(m1 −m2)2 − s

s(s− p2)

×
(
λ(s,m2

1,m
2
2)

s2

)1/2

ds,

J11 = f2
1 [P11 + sH1(s)] , J12 = f1f2 [P12 +H1(s)] ,

J13 = i
f1f2

M
[P13 + sH1(s)] ,

where f2 = (m1 +m2)g2/
√

8π.
The renormalized matrix element for the transition

f1(q1)f2(q2) → f1(k1)f2(k2) assumes the form

MJ=0 = −g2
1

(M2 + J22)
D̂

v(q2) (46)

× γ5u(q1) · u(k1)γ5v(k2) + 2g1g2
J12

D̂

× (v(q2)γ5u(q1) · u(k1)p̂(1 + γ5)v(k2)
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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+ v(q2)p̂(1 + γ5)u(q1) · u(k1)γ5v(k2))

− g2
2

(π−1
11 + J11)
D̂

v(q2)p̂(1 + γ5)

× u(q1) · u(k1)p̂(1 + γ5)v(k2).

There are no other changes—in particular, the
renormalized matrix element remains independent
of ξ.

5. DISCUSSION

Thus, we have examined, at the loop level, the ef-
fect of scalar–vector mixing in the ξ gauge and found
that, if one employs a Ward identity, the renormalized
matrix element becomes independent of the gauge
parameter. A complete disappearance of the depen-
dence on ξ is quite surprising, since we have studied
only that part of Dyson–Schwinger equations which
have bearing on the dressing of propagators. There
are therefore reasons to conjecture that relations (33)
are of a more general character.

A change in the character of the singularity upon
dressing is an ineresting phenomenon, which was
previously found in [5] for a simpler situation. Specifi-
cally, a simple pole 1/(p2 − ξM2) in bare propagators
transforms, upon dressing, into the second-order pole
of total propagators. There is always such a possibility
in the mixing of two bare propagators corresponding
to equal masses, but it is realized only if loops satisfy
some specific relations that are dictated by the Ward
identity.

Hung Cheng and S.P. Li [5] calculated bosonic
loop contributions and found that the position of the
second-order unphysical pole is ultraviolet-divergent
with allowance for the Ward identity. In this connec-
tion, it was argued that, in the ξ gauge, the Standard
Model is unrenormalizable in principle.11) As was
shown above, however, the Ward identity leads to
11)The authors of [5] studied the mixing of the longitudinal part
of W and a ghost in the Standard Model. This is a particular
case of our consideration in the absence of a physical scalar.
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fulfillment of relations (33) for the loops. If these rela-
tions are satisfied, the position of second-order poles
is ultraviolet stable [see Eqs. (36)]. It can therefore be
conjectured that, in the course of the calculations per-
formed in [5], loops did not satisfy the Ward identity
for some reason or another, although this identity was
used there in a general form.

After our study, there arises the impression that
the use of the ξ gauge is not very convenient in
extended Higgs models. Nonetheless, this gauge (or
particular cases of ξ) is extensively used in studying
electroweak models. In particular, one can test the
correctness of calculations by varying ξ and tracing
the respective variation of the matrix element.

As to physical implications of unitary scalar–
vector mixing in electroweak models, this issue
deserves a dedicated investigation.
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Abstract—It is shown that, in the theory of interacting Yang–Mills fields and a Higgs field, there is a
topological degeneracy of Bogomol’nyi–Prasad–Sommerfield (BPS) monopoles and that there arises, in
this case, a chromoelectric monopole characterized by a new topological variable that describes transitions
between topological states of the monopole in Minkowski space (in just the same way as an instanton
describes such transitions in Euclidean space). The limit of an infinitely large mass of the Higgs field at
a finite density of the Bogomol’nyi–Prasad–Sommerfield monopole is considered as a model of the stable
vacuum in pure Yang–Mills theory. It is shown that, in QCD, such a monopole vacuum may lead to a
growing potential, a topological confinement, and an additional mass of the η0 meson. The relationship
between the result obtained here for the generating functional of perturbation theory and the Faddeev–
Popov integral is discussed. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION AND FORMULATION
OF THE PROBLEM

The problem of choosing, in a non-Abelian theory,
a physical vacuum and variables that adequately re-
flect the topological properties of themanifold of initial
data for non-Abelian fields [1–3] in Minkowski space
is still considered to be one of the most important
problems in these realms. There are reasons to believe
that solving this problem will contribute to obtaining,
within QCD, deeper insights into the nature of con-
finement, hadronization, and a spontaneous break-
down of scale invariance in the infrared region.

The present study is devoted to employing mono-
pole solutions [4] to the equations of a non-Abelian
theory to construct a model of a topologically in-
variant vacuum of Yang–Mills theory in Minkowski
space. The respective Lagrangian of the theory has
the form

L = −1
4
Ga
µνG

µν
a , (1)

where

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcA

b
µA

c
ν . (2)

From the mathematical point of view, the main prob-
lem in the theory of gauge fields is to find general
solutions to the equations of the theory,

Dab
µ G

µν
b = 0 (Dab

µ = δab∂µ + gεacbA
c
µ), (3)
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JudischeGemeinde zu Rostock,Wilhelm-Külz Platz, 18055
Rostock, Germany.
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1063-7788/03/6607-1384$24.00 c©
and to construct, in order to describe processes in
terms of probability amplitudes normalized per time
and spatial-volume units, a generating functional for
the S matrix in the class of functions such that the
energy density is finite [5–7]. In QED, such functions
have an O(1/r1+m) behavior at spatial infinity. They
are referred to as monopoles if m = 0 and as multi-
poles ifm > 0.

Solving differential equations in theoretical phy-
sics presumes specifying initial data. Such initial data
are measured by a set of physical instruments with
which one associates a reference frame. In the present
study, we will consider reference frames that are de-

termined by the timelike unit vector l(0)µ = (1, 0, 0, 0)
and various Lorentz transformations of it, l(1)µ .

There are two types of groups of transformations of
the differential equations of a gauge theory. These are
relativistic transformations, which change initial data
(that is, reference frame), and gauge transformations,

Âuµ(t, x) := u(t, x)
(
Âµ + ∂µ

)
u−1(t, x), (4)

Âµ = g
τa

2i
Aaµ,

which are associated with the gauge of physical fields
and which do not affect the readings of an instrument.

The set of Eqs. (3) is referred to as a relativistically
covariant set of equations if the total manifold of its
solutions for each specific reference frame coincides
with its counterpart for any other reference frame
(see [7–12]).

In each reference frame, the set of all equations is
broken down into the equations of motion Dab

µ G
µi
b =
2003 MAIK “Nauka/Interperiodica”
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0 (i = 1, 2, 3)—to solve these equations, it is nec-
essary to measure initial data—and the constraint
equations Dab

µ G
µ0
b = 0, which relate initial data for

the spatial components of the fields involved to initial
data for their time components. The time component
of a field is singled out since it has no canonical
momenta. In view of this, Dirac [13] and, after him,
other authors of the first classic studies devoted to
quantizing gauge theories (see [14, 15]) eliminated
the time component by a gauge transformation. In our
case, such a transformation,

ÂD
k = v(x)T exp




t∫
t0

dt̄Â0(t̄, x)




(
Âk + ∂k

)
(5)

×


v(x)T exp




t∫
t0

dt̄Â0(t̄, x)






−1

(here, the symbol Т denotes time ordering of the
matrices under the exponential sign), specifies a non-
Abelian analog of Dirac’s variables, apart from arbi-
trary time-independent matrices v(x), which are con-
sidered as initial data at the instant t0 for solving the
equation U(Â0 + ∂0)U−1 = 0. At the level of Dirac’s
variables, Lorentz transformations of original fields
become nonlinear, while the group of gauge trans-
formations reduces to a group of time-independent
transformations that specify the degeneracy of ini-
tial data for physical fields (including the classical
vacuum A0 = Ai = 0, which is defined as the zero-
energy state). By gauge fixing, one means, in this
case, presetting initial data in perturbation theory as
the transversality condition [9–12].

In a non-Abelian theory, the set of time-indepen-
dent gauge transformations is a set of three-dimen-
sional paths in the space of the SUc(2) group that are
broken down into topological manifolds characterized
by integers (exponents of mapping):

N [n] = − 1
24π2

∫
d3x εijk (6)

× tr
[
v(n)∂iv

(n)−1
v(n)∂jv

(n)−1
v(n)∂kv

(n)−1
]
= n.

The exponent of mapping indicates how many times
the three-dimensional path v(x) goes about SUс(2)
as the coordinate xi runs over the entire three-
dimensional space where this coordinate is specified.
The condition in (6) means that the entire set of
three-dimensional paths has the homotopic group

π(3)(SUc(2)) = Z and that all fields v(n)∂iv
(n)−1

are
defined in the class of functions for which the integral
in (6) is finite. This is the class of monopole func-
tions [1, 2]. Naturally, the fields AD

i (t, x) themselves
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
must also belong to this class of monopole functions
and have an O(1/r1+m),m > 0 asymptotic behavior.

Thus, our objective is to quantize non-Abelian
fields in the class of monopole functions that involves
a topological degeneracy. Such a quantization pre-
sumes the choice of Dirac’s variables in which this
degeneracy occurs. The first Hamiltonian quantiza-
tion of non-Abelian gauge theories in terms of Dirac’s
variables without allowing for their topological de-
generacy was due to Schwinger [10], who proved the
relativistic covariance of the transverse gauge at the
level of commutation relations for the generators of
the algebra of the Poincaré group that were con-
structed in the above class of functions. This Hamil-
tonian quantization of non-Abelian fields was repro-
duced by Faddeev [16], who employed the method of a
path integral Zl(0) explicitly dependent on a reference
frame. In [17], it was shown that the relativistic trans-
formation at the level of fundamental operator quan-
tization according to Schwinger [10] corresponds to
the relativistic transformation l(0) → l(1) of the time
axis on which the path integral Zl(0) depends. The
dependence of this integral on a reference frame is
called an implicit relativistic covariance.2)

That the path integral Zl(0) is independent of a ref-
erence frame for on-shell amplitudes of elementary-
particle scattering was first discovered by Feyn-
man [21] and was proven by Faddeev [16] as a
validation of the heuristic Faddeev–Popov path inte-
gral [22]. This integral was proposed as a generating
functional of unitary perturbation theory for any
gauges, including those that are independent of a
reference frame. Schwinger noticed that gauges that
are independent of a reference framemay be physically
inadequate to fundamental operator quantization;
that is, they may distort the spectrum of the original
system.3)

In the present study, we verify Schwinger’s state-
ment in a non-Abelian theory, answering the question
concerning the spectrum of a theory quantized in the
class of monopole functions that involves a topolog-
ical degeneracy of initial data and the question con-
cerning the relationship between fundamental quan-
tization and the heuristic Faddeev–Popov integral in
a gauge that is independent of a reference frame.

The ensuing exposition is organized as follows.
Section 2 is devoted to describing the topological
degeneracy of knownmonopole solutions and to con-
sidering zero modes of the constraint equation. In
Section 3, we examine the limiting transition to pure

2)The choice of the time axis for such an integral is discussed
elsewhere [18–20].

3)“We reject all Lorentz gauge formulations as unsuited to the
role of providing the fundamental operator quantization” [10].
3
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Yang–Mills theory having a monopole vacuum. In
Section 4, we analyze the U (1) problem. In the Con-
clusion, we discuss the connection with the Faddeev–
Popov integral.

2. TOPOLOGICAL DEGENERACY OF
BOGOMOL’NYI–PRASAD–SOMMERFIELD

MONOPOLE

Let us consider the well-known example of in-
teracting Yang–Mills fields and a scalar Higgs field
for the case where there is a spontaneous breakdown
of symmetry. This situation is described by the La-
grangian density [4]

L = −1
4
Ga
µνG

µν
a (7)

+
1
2
(Dµϕ

a) (Dµϕa)−
λ

4

(
m2

λ
− ϕ2

)2

,

where

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcA

b
µA

c
ν

is the strength tensor of our non-Abelian field and
ϕa, a = 1, 2, 3, is a scalar field forming a triplet of
the adjoint representation of the SU (2) group. The
potential energy depends on the square of the vector
ϕa, while the covariant derivative of the field has the
form

Dµϕ
a = ∂µϕ

a + gεabcA
b
µϕ

c. (8)

The Lagrangian density (7) possesses a manifest
gauge invariance under transformations of the SU (2)
group.

The classical vacuum is defined as the asymptotic
solution

r = |x| → ∞, E → minE,

providing the minimum of the field energy E.
For m2 ≥ 0 and λ ≥ 0, the vacuum loses the

SU (2) symmetry of the Lagrangian; that is,

r = |x| → ∞, ϕa → na
m√
λ
,

with na being an arbitrary unit vector (|n| = 1) in
isotopic space. Choosing a specific vacuum reduces
to choosing a specific direction of the vector n, and
this violates the symmetry of the SU (2) group. This
phenomenon is referred to as a spontaneous break-
down of symmetry.

In the Standard Model, a non-Abelian vector field
develops a mass in precisely this way. Usually, quan-
tum field theory is then constructed as a perturbation
theory over this vacuum,

ϕa = na
m√
λ
, (9)
PH
in the class of functions such that the energy density
is finite.

In addition to the trivial vacuum in (9), there are
monopole solutions in the system described by the
Lagrangian density in (7). These are solutions having
an O(1/r) type of behavior at spatial infinity:

r → ∞; ϕa − na
m√
λ
= O(1/r), Aai = O(1/r).

(10)

The Bogomol’nyi–Prasad–Sommerfield (BPS) so-
lution [4]

ϕa =
xa

gr
fBPS0 (r), fBPS0 (r) =

[
1

ε tanh(r/ε)
− 1
r

]
,

(11)

Aai (t, x) ≡ ΦaBPSi (x) = εiak
xk

gr2
fBPS1 (r), (12)

fBPS1 =
[
1− r

ε sinh(r/ε)

]
,

which was obtained in the limit

λ → 0, m → 0;
1
ε
≡ gm√

λ
�= 0, (13)

is a monopole solution satisfying the Yang–Mills
equations, having a finite minimum energy, and vi-
olating SU (2) symmetry. In the limit specified in (13),
the Bogomol’nyi–Prasad–Sommerfield solution has
a finite minimum energy that is proportional to∫

d3x[Ba
i B

a
i ] = 4π

gm

g2
√
λ
=

4π
g2ε

, (14)

where Ba
i is the magnetic induction,

Ba
i (Φ

cBPS
k ) = εijk

(
∂jΦaBPSk +

g

2
εabcΦbBPSj ΦcBPSk

)
.

That this energy value corresponds to a minimum is
ensured by the requirement that the magnetic field in
question be of a potential character; that is,

Ba
i (Φ

cBPS
k ) = Dab

i (ΦcBPSk )ϕb, (15)

where the covariant derivative is specified by Eq. (8).
It is precisely this condition (which ensures, as was
indicated immediately above, the potential character
of the magnetic field)—it is referred to as the Bo-
gomol’nyi equation—that will play an important role
in our construction of the stable vacuum of a non-
Abelian theory (see below).

We will now show that the equation of potentiality
means a topological degeneracy of fields under the
time-independent gauge transformations

Â
(n)
i (t0, x) = v(n)(x)

[
Â

(0)
i (t0, x) + ∂i

]
v(n)(x)

−1
.

(16)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003



MONOPOLE VACUUM 1387
Dynamical fields can be represented in the form of
the sum of the Bogomol’nyi–Prasad–Sommerfield
monopole ΦBPS

i (x) and perturbations Ā(0)
i :

Â
(0)
i (t, x) = Φ̂BPS

i (x) + ˆ̄A(0)
i (t, x). (17)

Perturbations are considered as weak multipole
fields [23]:

Āi(t, x)|asymp = O

(
1

r1+l

)
(l > 1). (18)

In the lowest order of perturbation theory, the equa-
tion for the time component,[

D2(A)
]ac

Ac0 = [Dac
i (A)∂0A

c
i ], (19)

in Dirac’s variables ADc
0 = 0 assumes the form

∂tA
a||[Ac(0)i (t, x)] = 0, (20)

Aa||[Ac(0)i ] ≡ [Dac
i (ΦBPS)Ac(0)i ],

and implies that the time derivative of the longitudinal
fields Aa|| vanishes. This equation can be solved if we
have initial data at our disposal.We assume that there
are no longitudinal fields at the initial instant of time;
that is,

Aa||(t = t0) ≡ [Dac
i (ΦBPS)Ac(0)i ] = 0. (21)

We refer to this condition as the covariant Coulomb
gauge. There arises the question of the degree of
arbitrariness in Dirac’s variables associated with this
gauge, since it should be recalled that they are defined
apart from time-independent gauge transformations.

In order to answer this question, we make the
transformations

Â
(n)
i = v(n)(Â(0)

i + ∂i)v(n)−1
, v(n) = exp[nΦ0(x)],

(22)

and require that, upon the transformations in (22), the
fields in (17),

Â
(n)
i (t, x) = Φ̂(n)BPS

i (x) + ˆ̄A(n)
i (t, x),

satisfy the same covariant Coulomb gauge:

Dab
i (Φ(n)BPS

k )Āb(n)
i = 0. (23)

From the last condition of gauge conservation, we
then obtain the so-called Gribov equation [24] for the
phases of gauge transformations:

[D2
i (Φ

BPS
k )]abΦb0 = 0. (24)

TheGribov Eq. (24) coincides with the Bogomol’nyi–
Prasad–Sommerfield equation for the scalar field,
the latter following from condition (15), which en-
sures the potential character of the magnetic field
of the Bogomol’nyi–Prasad–Sommerfield monopole.
Therefore, the Gribov Eq. (24) has a nontrivial
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 20
solution in the form of the Bogomol’nyi–Prasad–
Sommerfield monopole (11):

Φ̂0 = −iπ τ
axa

r

[
1

tanh(r/ε)
− ε

r

]
. (25)

Thus, we have shown that the Bogomol’nyi–Prasad–
Sommerfield monopole and transverse gauge physi-
cal fields have Gribov’s replicas in the form of topo-
logical degeneracy (22).

It should be recalled that a topological degeneracy
is associated primarily with a classical vacuum of
zero energy, where this degeneracy is characterized
by the Pontryagin index or by the Chern–Simons
functional [1] (which we consider in a finite spacetime
of volume V within the time interval tin < t < tout)

ν[A] =
g2

16π2

tout∫
tin

dt

∫
V

d3xGa
µνG̃

aµν (26)

= X[AD
out]−X[AD

in],

where

X[A] = − 1
8π2

∫
V

d3xεijktr
[
Âi∂jÂk −

2
3
ÂiÂjÂk

]
,

(27)

which is a topological functional of gauge fields that
reduces to an integer for a purely gauge field charac-
terized by the degree of mapping in (6).

The functional in (27) generates the quantum
wave function

Ψins[A] = exp

{
± 8π2

g2
X[A]

}
(28)

as an exact solution to the Schrödinger equation [2,
25]

ĤΨins[A] = 0, Ĥ =
1
2

∫
d3x[Ê2 + B̂2], (29)

Ê =
δ

iδA
,

at zero energy, H = 0. In just the same way as
the oscillator wave function at zero energy, [p̂2 +
q2]Ψ[q] = 0, this wave function is nonnormalizable,
which means that the corresponding eigenenergy
H = 0 belongs to unphysical values in the spectrum.
This fact may suggest that the instanton corre-
sponding to transitions between vacua character-
ized by unphysical zero values of energy is itself
an unphysical solution. Moreover, it is assumed in
the wave function (28) that the topological motion
X[A] is a functional of local degrees of freedom
that are denoted by A. In this case, the operators
of local gauge transformation T̂X[A] = X[A] + 1 do
03



1388 LANTSMAN, PERVUSHIN
not commute with the Hamiltonian Ĥ . One of the
simplest ways to remove all of these flaws, including
the nonnormalizability of the wave function

Ψins[A] = exp{iPXX[A]} (30)

and the unphysical values of the energy and the mo-
mentum PX of the topological motion,

H = 0, PX = ±i8π
2

g2
, (31)

consists in separating the topological motion from the
local variables via the introduction of an independent
topological degree of freedom N(t) by means of a
gauge transformation [25, 26]:

Â
(N)
i = exp[N(t)Φ̂0(x)][Â

(0)
i (32)

+ ∂i] exp[−N(t)Φ̂0(x)].

By means of a direct calculation, it can be proven [27]
that, for the vacuum of Bogomol’nyi–Prasad–Som-

merfield monopoles Φ(n)
i , this degree of freedom is

completely separated from the local degrees of free-
dom that are specified in the class of multipole func-
tions:

X[A(N)
i ] = X[A(0)

i ] +N(t). (33)

In this case, the instanton wave function (30) ac-
quires a new independent degree of freedom,

Ψins[AN ] = exp{iPNX[AN ]} (34)

= exp
{
iPN (X[A(0)

i ] +N)
}
,

and describes the topological motion of this degree
of freedom at physical values of the momentum PN .
An independent topological motion arises as the in-
evitable consequence of a general solution to the
equation DµG

µ0 = 0 for the time component of the
field [25, 26]. This equation has the form

[Dk(A)]
ab [Dk(A)]

bcAc0 = Dac
i (A)∂0A

c
i , (35)

with the initial data being those that correspond to the
Bogomol’nyi–Prasad–Sommerfield monopole:

∂0A
c
i = 0, Ai(t, x) = ΦBPS

i (x). (36)

According to the theory of differential equations, a
general solution to a nonhomogeneous equation can
be represented as the sum

Aa0 = Za + Ãa0, (37)

where Ãa0 is a particular solution to the nonhomoge-
neous equation being considered and Za is a solution
to the corresponding homogeneous equation

(D2(A))abZb = 0. (38)
PH
Apart from the factor Ṅ(t), which plays the role of a
new variable (that is, a zero mode), the topological-
degeneracy phase Φ0(x) is the required solution Za

to the homogeneous equation in the lowest order of
perturbation theory:

Ẑ(t, x) = Ṅ(t)Φ̂0(x). (39)

The solution to the homogeneous equation describes
an electric monopole,

Ga
i0(Z) = Dab

i (ΦBPS)Zb = Ṅ(t)Dab
i (ΦBPS)Φb0, (40)

which cannot be completely eliminated from the ac-
tion functional of the theory or from the Pontryagin
index by going over to Dirac’s variables with the aid of
the gauge transformation (32). As was shown in [27],
the Pontryagin index

ν[A] =
g2

16π2

tout∫
tin

dt

∫
V

d3xGa
µνG̃

aµν (41)

= N(tout)−N(tin)

depends only on the difference of the final and initial
values of the topological degree of freedom.

In the lowest order of perturtion theory in the
coupling constant, the action functional of the the-
ory being considered contains, in addition to the
Bogomol’nyi–Prasad–Sommerfield monopole, an
electric monopole and describes the dynamics of the
new topological variable N(t) in the form of a free
rotor; that is,

WZ [N,ΦBPS] =

tout∫
tin

dt

∫
V

d3x
1
2

(42)

×
{
[Gb

i0(Z)]2 − [Bb
i (Φ

bBPS
k )]2

}

=
∫

dt
1
2

{
IṄ2 − 4π

g2ε

}
,

where

I =
∫
V

d3x(Dac
i (Φk)Φc0)

2 =
4π
g2

(2π)2ε (43)

is the angular momentum of the rotor and ε =√
λ/gm is the size of the Bogomol’nyi–Prasad–

Sommerfield monopole in terms of the canonical
momentum PN = ṄI:

H =
2π
g2ε

[
P 2
N

(
g2

8π2

)2

+ 1

]
. (44)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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Upon introducing new Dirac’s variables with the
aid of the transformation in (32), the topological de-
generacy of all fields reduces, for such Dirac’s vari-
ables, to the degeneracy of only one topological vari-
able N(t) with respect to a change in this variable
by integers (N → N + n, n = ±1,±2, ...). The wave
function for the topological motion in Minkowski
space has the form of the free-rotor wave function

Ψmon[N ] = exp {iPNN} , (45)

with the momentum spectrum being determined from
the condition Ψmon[N + 1] = eiθΨmon[N ]. The result
is

PN = ṄI = 2πk + θ, (46)

where k is the number of a Brillouin zone and θ
is the angle that specifies the spectrum of physical
values of the Hamiltonian in (44). This Hamilto-
nian has zero eigenvalue (H = 0) for the unphysical
momentum values of PN = ±i8π2/g2, at which the
instanton wave function (34) coincides with the wave
function (45) for the monopole vacuum under the as-
sumption that the topological degree of freedom is de-
termined by a functional of local variables exclusively.
Thus, the basic distinction between the monopole
vacuum and the instanton vacuum is that, in the first
case, there arises an independent Goldstone mode
associated with the spontaneous breakdown of sym-
metry of physical states under the transformations of
the π(3)(SU(2)) = Z homotopy group.

Equation (46) and condition (15), which ensures
the potential character of the magnetic field, deter-
mine the spectrum of the electric-field strength:

Gb
i0 = Ṅ [Di(Φ(0))A0]b = αs

(
θ

2π
+ k

)
Bb
i (Φ

(0)).

(47)

Expression (47) is an analog of the spectrum of the
electric-field strength, G10 = e(θ/(2π) + k), in two-
dimensional electrodynamics [28–30] characterized
by the same topology of degeneracy of initial data:

π(1)(U(1)) = π(3)(SU(2)) = Z.

The vanishing of the topological momentum does not
imply that the degeneracy of physical states disap-
pears. Physical implications of such a degeneraсy will
be considered in the next section.

3. YANG–MILLS THEORY FEATURING
TOPOLOGICAL DEGENERACY

OF PHYSICAL STATES

It is well known that perturbation theory con-
structed for non-Abelian fields by analogy with
QCD [10, 16] is infrared-unstable [31, 32]. A con-
ventional vacuum of perturbation theory, А = 0, is
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 7 200
not a stable state. As a rule, uniform ([31]) or singular
fields including instantons ([1]), the equation for
which involves delta-function-like singularities in
Euclidean space, are used for nonzero vacuum fields.
If one explains physical effects by a uniform (or by
an instanton) vacuum, it is also necessary to explain
the emergence of capacitors at spatial infinity that
generate uniform fields (or the origin of sources of
delta-function-like singularities).

Bogomol’nyi–Prasad–Sommerfield monopoles
provide a unique possibility for introducing, in the
class of regular functions associated with topologi-
cally nontrivial gauge transformations, vacuum fields
in such a way that the equations of Yang–Mills theory
[Eqs. (1) in our case] do not develop any additional
sources.

In order to introduce such a monopole vacuum,
we include the interaction of gauge fields with a
Higgs field in space of finite volume V =

∫
d3x.

The scalar-field condensate forms a Bogomol’nyi–
Prasad–Sommerfield monopole characterized by a
finite mass of the scalar field:

1
ε
=

m√
λ
≡ V 〈〈B2〉〉 g

2

4π
. (48)

If we go over to the infinite-volume limit V → ∞
under the condition that 〈〈B2〉〉 is finite, the scalar
field acquires an infinitely large mass and disappears
from the spectrum of physical excitations, while
the regular solution representing a Bogomol’nyi–
Prasad–Sommerfield monopole smoothly transforms
into a Wu–Yang monopole [33]; this means that the
equations of the theory do not develop, at the origin
of coordinates, a singularity inherent in the Wu–
Yang monopole and that the energy density does not
go to infinity. In this limit, the finite energy density
of the Bogomol’nyi–Prasad–Sommerfield monopole
has the form ∫

d3x[Ba
i ]

2 ≡ V 〈〈B2〉〉, (49)

where 〈〈B2〉〉 is the quantity that one has for the order
parameter of the physical vacuum of the gauge field
upon the the elimination of the scalar field.

We recall that the Wu–Yang monopole [33] is
an exact solution to the classical equations of pure
Yang–Mills theory, Eqs. (3), everywhere, with the
exception of a small vicinity of the origin of coordi-
nates. It is precisely in this small region around the
origin of coordinates that the Wu–Yang monopole is
regularized by the scalar-field mass, and this region
disappears in the infinite-volume limit V → ∞ [see
Eq. (49)]. It should be noted here that, in quantum
field theory, a transition to the limit V → ∞ is per-
formed upon calculating physical observables, such
3



1390 LANTSMAN, PERVUSHIN
as scattering cross sections and decay probabilities,
that are normalized per unit time and per unit vol-
ume. Therefore, all special features of the above the-
ory involving a Bogomol’nyi–Prasad–Sommerfield
monopole, which include a topological degeneracy of
initial data and an electric monopole, survive at any
finite value of the volume.

On the other hand, there are, in the Yang–Mills
theory specified by the Lagrangian density (1), direct
indications that the scale symmetry of the vacuum is
broken by solutions belonging to the type of a Wu–
Yang monopole [33]. In particular, the topological
classification of classical solutions to pure Yang–
Mills theory specifies the class of solutions that pos-
sess zero topological index (n = 0),

X[A = Φ(0)] = 0,
δX[A]
δAci

∣∣∣∣
A=Φ(0)

�= 0, (50)

and which have the form

Φ̂(0)
i = −iτ

a

2
εiak

xk

r2
f(r), (51)

where there is only one unknown function, f(r). An
equation for this function can be obtained by substi-
tuting expression (51) into the classical Eq. (3):

Dab
k (Φ(0)

i )Gkj
b (Φ(0)

i ) = 0 ⇒ d2f

dr2
+
f(f2 − 1)

r2
= 0.

(52)

In the region r �= 0, there exist the following three
solutions to this equation:

fPT1 = 0, fWY
1 = ±1 . (53)

The first, trivial, solution fPT1 = 0 corresponds to or-
dinary unstable perturbation theory involving
“asymptotic freedom” [31, 32]. The two nontrivial
solutions fWY

1 = ±1 represent Wu–Yang monopoles,
which, in the model being considered, emerge from
Bogomol’nyi–Prasad–Sommerfield monopoles in
the infinite-volume model without their singularities,
along with the Goldstone model accompanying the
breakdown of scale invariance.

Thus, the monopole vacuum characterized by a
topological degeneracy of all physical states has the
following features distinguishing it from the topo-
logically degenerate instanton vacuum: Minkowski
space; a topological Goldstone mode associated with
scale-symmetry breaking that generates a nonzero
order parameter 〈〈B2〉〉 �= 0; and a clear physical ori-
gin of scale-symmetry breaking, which is due to the
condensate of a scalar Higgs field and which survives
upon the elimination of the scalar field.

Physical implications of the theory being consid-
ered, which involves a monopole vacuum, are con-
trolled by the generating functional for unitary per-
turbation theory in the covariant Coulomb gauge.
P

Reproducing the calculations performed in [16] (see
also [17]), one can obtain, as the generating func-
tional for such a perturbation theory, a Feynman path
integral in a reference frame with a specified time axis,
lµ = (1, 0, 0, 0); that is,

Z∗[l, J∗] =
∫ ∫ ∏

t

dN(t)
∫ 3∏

c=1

[d2A∗cd2E∗c]

(54)

× exp{iW ∗[N,A∗, E∗] + i

∫
d4xJ∗A∗},

where A∗ are Dirac’s variables (32); E∗ are their
canonically conjugate momenta; J∗ are their sources;
and W ∗[N,A∗, E∗] is the original action functional
taken on the manifold spanned by solutions of the
constraint equation

δW

δA0
= 0 ⇒ Dcd

i (A)Gd
0i = 0 (55)

for the non-Abelian electric-field strength Gd
0i rep-

resented in the form of the sum of the transverse
momentum E∗ and the longitudinal component:

Gd
0i = E∗d

i +Ddb
i (Φ)σb

(
Dcd
i (ΦN(WY))E∗d

i = 0
)
.

(56)

If one assumes that, in perturbation theory, indepen-

dent Dirac’s variables A∗d
i = ΦdN(WY)

i + Ā∗d
i given

by (32) satisfy the gauge conditions

Dcd
i (ΦN(WY))A∗d

i = 0, (57)

which were considered above, then the constraint
Eq. (55) reduces to an equation for the function σb;
that is,

Dcd
i (A∗)Ddb

i (ΦN(WY ))σb = jc0, (58)

where the quantity on the right-hand side is the cur-
rent of independent non-Abelian variables,

ja0 = gεabc[A∗b
i − ΦbN(WY)

i ]E∗c
i . (59)

One can solve Eq. (58), which involves a zero mode
(described above), by means of perturbation theory,
employing a Green’s function of the Coulomb type. In
the lowest order of perturbation theory, this Green’s
function Cbc(x, y) in the field of the usual Wu–Yang
monopole ΦWY is determined by the equation

[D2(ΦWY)]ab(x)Cbc(x, y) = δacδ3(x − y). (60)

A solution to this equation specifies, in the Hamil-
tonian, an instantaneous interaction of non-Abelian
currents,

−1
2

∫
V0

d3xd3yjb0(x)C
bc(x, y)jc0(y), (61)
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as an analog of the Coulomb interaction of the cur-
rents in QED. A solution to Eq. (60) in the presence
of a Wu–Yang monopole, where

[D2(ΦWY)]ab(x) = δab∆

− nanb + δab

r2
+ 2

(na
r
∂b −

nb
r
∂a

)
,

na(x) = xa/r, r = |x|, was obtained in [27] by means
of an expansion of Cab in terms of a complete set of
orthogonal vectors; that is,

Cab(x, y) = [na(x)nb(y)V0(z)

+
∑
α=1,2

eaα(x)e
b
α(y)V1(z)], z = |x − y|,

where V0(z) and V1(z) are potentials. Substituting
this expansion into Eq. (60), one can derive an equa-
tion for the potentials. The result is

d2

dz2
Vn +

2
z

d

dz
Vn −

n

z2
Vn = 0, n = 0, 1.

Solving this equation, we obtain the potentials

Vn(|x − y|) = dn|x − y|ln1 + cn|x − y|ln2 , n = 0, 1,
(62)

where dn and cn are constants, while ln1 and ln2 are the
roots of the equation (ln)2 + ln = n; that is,

ln1 = −1 +
√
1 + 4n
2

, ln2 =
−1 +

√
1 + 4n

2
. (63)

At n = 0, we have l01 = −(1 +
√
1)/2 = −1 and l02 =

(−1 +
√
1)/2 = 0, so that there arises the Coulomb

potential

V0(|x − y|) = −(1/4π)|x − y|−1 + c0; (64)

at n = 1, l11 = −(1 +
√
5)/2 ≈ −1.618 and l12 =

(−1 +
√
5)/2 ≈ 0.618, in which case one arrives at

a growing potential for the golden-section equation
(l1)2 + l1 = 1:

V1(|x − y|) = −d1|x − y|−1.618 + c1|x − y|0.618.
(65)

As was shown in [34–36], the instantaneous inter-
action of color currents through a growing potential
rearranges perturbation-theory series and leads to the
constituent mass of the gluon field in Feynman dia-
grams; this changes the asymptotic-freedom formula
at low momentum transfers, so that the coupling
constant αQCD(q2 ∼ 0) becomes finite. The growing
potentials of the instantaneous interactions of color
currents [34–36] also lead to a spontaneous break-
down of chiral invariance for quarks.
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Growing potentials do not remove poles of Green’s
functions in perturbation theory for amplitudes of pro-
cesses not involving color degrees of freedom. Pertur-
bation theory is formulated in terms of fields that are
characterized by zero topological quantum numbers
and which can be called partons:

Â∗(N |A(0)) = UN [Â(0) + ∂]U−1
N .

By virtue of gauge invariance, the phase factors of
topological degeneracy, UN = exp{N(t)Φ̂0(x)}, dis-
appear. However, these factors survive at the sources
of physical fields in the generating functional (54).
A theory featuring a topological degeneracy of initial
data, where the sources of physical fields involve the
Gribov factors

tr[Ĵiv(n) ˆ̄A(0)
i v(n)−1

],

differs from a theory that is free from degeneracy

and which involves the sources tr[Ĵi ˆ̄A
(0)
i ]. In a theory

featuring degeneracy of initial data, it is necessary
to average amplitudes over degeneracy parameters.
Such averaging may lead to the disappearance of a
number of physical states.

In [26, 37], it was shown that amplitudes for the
production of physical color particles may vanish
because of the destructive interference between the
phase factors of topological degeneracy. In this case,
the probability-conservation law for the S-matrix
elements 〈i|S = I + iT |j〉 in the form∑

f

〈i|T |f〉〈f |T ∗|j〉 = 2Im〈i|T |j〉

is saturated exclusively by the production of color-
singlet states (hadrons) f = h. By virtue of the
probability-conservation law, the sum over all hadro-
nic channels becomes equal to the doubled imaginary
part of the color-singlet amplitude (2Im〈i|T |j〉). In
turn, the dependence on the factors of topological
degeneracy disappears completely in the color-singlet
amplitude. Owing to gauge invariance, the Hamil-
tonian of the theory, H[A(n)] = H[A(0)], depends
only on the fields of the zero topological sector,
A(0), which play the role of Feynman’s partons. In
the high-energy parton region, where the imaginary
part of the color-singlet amplitude, Im〈i|T |j〉, can
be calculated on the basis of perturbation theory,
quark–hadron duality, which is used to measure
directly parton quantum numbers coinciding with the
quantum numbers of physical color particles, arises
from the probability-conservation law.

4. ESTIMATING THE QUANTITY 〈〈B2〉〉
WITHIN QCD

Let us estimate the quantity 〈〈B2〉〉 within QCD.
In the monopole vacuum of QCD, the antisymmetric
3
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Gell-Mannmatrices λ2, λ5, and λ7 play the role of the
matrices τ1, τ2, and τ3. The simultaneous interaction
of color quark currents through a growing potential
leads to the spectrum of mesons—in particular, to
the pseudoscalar η0 meson. Its anomalous interaction
with gluons is described in terms of the Veneziano
effective action [38]

Weff =
∫

dt

{
1
2

(
η̇2
0 −M2

0 η0
2
)
V +C0η0Ẋ [A(N)]

}
(66)

in the rest frame of this meson. Here, V is the volume
of space, C0 = (Nf/Fπ)

√
2/π is the coupling con-

stant for the anomalous interaction of the meson with
the topological functional X[A(N)] = X[A] +N , Fπ
is the weak-pion-decay constant, and Nf = 3 is the
number of flavors. A calculation of a similar action
functional for QCD and for QED(3+1), where the
topological functional describes the decay of para-
positronium into two photons, is presented in [12].
In all probability, expression (66) for the effective
anomalous interaction of a pseudoscalar state with
gauge fields is common to all gauge theories. For
electrodynamics in two-dimensional spacetime, one
can obtain the same effective action [29, 30], where it
leads to the mass of the Schwinger bound state.

In QCD(3+1), the extra mass of a bound pseu-
doscalar state,

�m2
η = C2

0/IQCDV ,

can be determined, upon adding the action functional
that is specified by Eqs. (42) and (43) and which
controls the topological dynamics of zero modes,

WQCD =
1
2

∫
dt

∫
V

d3xG2
0i =

∫
dt
Ṅ2IQCD

2(
IQCD =

(
2π

αQCD

)2 1
V 〈〈B2〉〉

)
,

to the anomalous Veneziano action, by diagonalizing
the total Lagrangian

L =

[
Ṅ2IQCD

2
+ C0η0Ṅ

]

=

[
(Ṅ + C0η0/IQCD)2IQCD

2
− C2

0

2IQCD
η2
0

]
.

In QED(1+1), the analogous formula describes the
mass of the Schwinger state [29, 30], whereas, in
QCD(3+1), we obtain the extra mass of the η0 meson:

Leff =
1
2
[η̇2

0 − η2
0(t)(m

2
0 +�m2

η)]V, (67)
PH
�mη
2 =

C2
η

IQCDV
=

N2
f

F 2
π

α2
QCD〈〈B2〉〉

2π2
. (68)

This result makes it possible to assess the strength
of the vacuum chromomagnetic field in QCD(3+1),
〈〈B2〉〉α2

QCD = 2π2F 2
π�mη

2/N2
f = 0.06 GeV4, by

using the estimate αQCD(q2 ∼ 0) ∼ 0.24 [34, 39].
Upon the calculation, we can remove infrared reg-
ularization by going over to the limit V → ∞.

CONCLUSION

The monopole-vacuum model considered here
demonstrates that the quantization of a non-Abelian
theory featuring a topological degeneracy of the initial
data for all physical states in a specific reference
frame describes a destructive interference of degen-
eracy phase factors, which leads to quark–hadron
duality; a Goldstone mode that is associated with
a spontaneous breakdown of scale invariance and
which leads to an extra mass of the η0 meson; and
a growing potential that controls the interaction of
currents and which is thought to be responsible
for a spontaneous breakdown of chiral invariance.
These hidden features of non-Abelian fields manifest
themselves upon switching on and off gauge-field
interaction with a Higgs field, which acquires an
infinitely large mass in the the infinite-volume limit.
There arises the question of the extent to which such
a fantastic possibility may be realized in nature.

The generating functional found in the form of a
Feynman path integral with respect to Dirac’s vari-
ables can be recast [16] into the form of a Faddeev–
Popov integral [22] by means of the change of vari-
ables

Â∗
i (N |A) = UNU

D[A]
[
Âi + ∂i

]
(UNUD[A])−1,

where

UD[A] = exp
{

1
D2(ΦWY)

Dk(ΦWY)Âk
}

(69)

is Dirac’s “dressing” of non-Abelian fields. Upon this
change of variables, the Feynman integral reduces to
the Faddeev–Popov integral

Z∗[l, J∗] =
∫ ∏

t

dN(t)
∫ ∫ 3∏

c=1

d4Acδ(f(A))

(70)

× detMFP exp {iW [A] + i

∫
d4xJ∗A∗(N |A)}

in an arbitrary gauge of the physical variables, f(A) =
0; here, the Faddeev–Popov determinant is deter-
mined in terms of the linear response of this gauge to a
gauge transformation, f(eΩ(A+ ∂)e−Ω) =MFPΩ+
YSICS OF ATOMIC NUCLEI Vol. 66 No. 7 2003
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O(Ω2), while W is the original action functional in
the theory being considered. At the same time, there
remains the Dirac gauge of the sources in (69). As
a relic of the fundamental quantization, the Dirac
phase factors in the integral in (70) “remember” the
entire body of information about the reference frame;
monopoles; the growing potential of instantaneous
interaction; and other initial data, including their
topological degeneracy and confinement. As was pre-
dicted by Schwinger [10], all these effects disappear,
leaving no trace, if these Dirac factors are removed
by means of the substitution A∗(N |A) → A [16],
which is made with the only purpose of removing the
dependence of the path integral on a reference frame
and initial data. On getting rid of this dependence,
we obtain, instead of hadronization and confinement
in Dirac’s quantization, only the amplitudes for
the scattering of free partons in the “relativistic”
Faddeev–Popov integral, which do not exist as physi-
cal observables inDirac’s scheme of quantization that
is dependent on initial data.

The same metamorphosis occurs in QED as well:
going over from the Dirac gauge of sources to the
Lorentz gauge in order to remove the dependence on a
reference frame and initial data, we replace perturba-
tion theory emerging upon fundamental quantization
and featuring two singularities in the photon propa-
gators (a single-time singularity and that at the light
cone) by perturbation theory in the Lorentz gauge; the
latter involves only one singularity in the propagators
(that at the light cone), but by no means can it de-
scribe single-time Coulomb atoms, containing only
Wick–Cutkosky bound states whose spectrum is not
observed in nature [40].
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Chastits At. Yadra 34 (2003) (in press).

13. P. A.M. Dirac, Proc. R. Soc. London, Ser. A 114, 243
(1927); Can. J. Phys. 33, 650 (1955).

14. W. Heisenberg and W. Pauli, Z. Phys. 56, 1 (1929);
59, 166 (1930).

15. E. Fermi, Rev. Mod. Phys. 4, 87 (1932).
16. L. D. Faddeev, Teor. Mat. Fiz. 1, 3 (1969).
17. Nguyen Suan Han and V. N. Pervushin, Mod. Phys.

Lett. A 2, 367 (1987).
18. N. P. Ilieva, Nguyen Suan Han, and V. N. Pervushin,

Yad. Fiz. 45, 1169 (1987) [Sov. J. Nucl. Phys. 45, 725
(1987)].

19. Yu. L. Kalinovskiı̆ et al., Yad. Fiz. 49, 1709 (1989)
[Sov. J. Nucl. Phys. 49, 1059 (1989)].

20. V. N. Pervushin, Nucl. Phys. B (Proc. Suppl.) 15, 197
(1990).

21. R. Feynman, Phys. Rev. 76, 769 (1949).
22. L. Faddeev and V. Popov, Phys. Lett. B 25B, 29

(1967).
23. R. Akhoury, J.-H. Jun, and A. S. Goldhaber, Phys.

Rev. D 21, 454 (1980).
24. V. N. Gribov, Nucl. Phys. B 139, 1 (1978).
25. V. N. Pervushin, Teor. Mat. Fiz. 45, 394 (1980)

[Theor. Math. Phys. 45, 1100 (1981)].
26. V. N. Pervushin, Riv. Nuovo Cimento 8 (10), 1 (1985).
27. D. Blaschke, V. Pervushin, and G. Röpke, in Pro-
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