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Abstract—The effect of structural vacancies in the silver sublattice on the band structure and on the nature of
interatomic interactions in the ternary oxide Ag5Pb2O6 is discussed in terms of the results of self-consistent full-
potential linearized muffin-tin orbital (LMTO) calculations. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Djurek et al. [1] studied the conducting properties of
Ag–Pb–C–O polycrystalline ceramics and assumed
that a new high-temperature superconductor can be
revealed in this system. More comprehensive investiga-
tions have demonstrated that the electrical characteris-
tics of the samples studied in [1] are predominantly
determined by the ternary oxide Ag5Pb2O6, the so-
called Bystrom–Evers phase described earlier in [2].
This oxide is characterized by extended homogeneity
regions for the silver and oxygen sublattices. The nom-
inal compositions of the samples synthesized by
Iwasaki et al. [3] correspond to compounds of the gen-
eral formula Ag5 – xPb2O6 – y (0.25 ≤ x ≤ 0.5; y ~ 0.13),
which possess metallic conductivity, negative Seebeck
coefficients, and weak diamagnetism. In a recent work
[4], it was found that annealed samples of the Bystrom–
Evers compound Ag5Pb2O6 exhibit a colossal (anisotro-
pic) electrical conductivity (>109 Ω–1 cm–1) in the tem-
perature range 210–525 K. This effect is associated
with the formation of ordered (along the c axis) chan-
nels of silver vacancies.

The qualitative interpretation of the electrical prop-
erties of the Ag5Pb2O6 compound is based on the
semiempirical calculation performed by Brennan and
Burdett [5]. According to this calculation, the energy at
the Fermi level EF coincides with the local peak of the
density of Ags states and the extended Ag states, which
form both chains and layers in the structure of the
Ag5Pb2O6 compound (see below), are assumed to make
a dominant contribution to the conductivity effects. It is
also assumed that, upon electron doping, the Ag5Pb2O6
oxide can undergo a transition to the semiconducting
state.

In this paper, we report the results of ab initio band
structure calculations for the ternary oxide Ag5Pb2O6
and discuss the possible effect exerted by vacancies in
1063-7834/05/4704- $26.00 ©0599
the silver sublattice on the electronic properties of this
compound.

2. OBJECTS OF INVESTIGATION 
AND CALCULATION TECHNIQUE

The structure of the ternary oxide Ag5Pb2O6 (space
group P–31m) with the unit cell parameters a =
0.5932 nm and c = 0.6411 nm [6] consists of alternating
networks of silver atoms (Ag2), the so-called (3,6,3,6)
Kagome lattices, and molecular layers, which, in turn,
are formed by PbO6 trigonal prisms and chain motifs of
silver atoms (Ag1). The Ag2 and Ag1 atoms are twofold-
and threefold-coordinated by oxygen atoms, respec-
tively (Fig. 1). The Ag5Pb2O6 oxide was modeled by a

13-atom cell [ Pb2O6)]. The nonstoichiomet-
ric oxide (with defects in the Ag sublattice) of the for-
mal composition Ag4Pb2O6 was modeled by a 12-atom
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Fig. 1. Crystal structure of the Ag5Pb2O6 ternary oxide [4].

The nonequivalent silver positions Ag1 and Ag2 are shown.
 2005 Pleiades Publishing, Inc.
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cell [Ag1h( Pb2O6)], where h is a vacancy in the

Ag1 position. The band structure calculations were car-
ried out using the scalar relativistic self-consistent full-
potential linearized muffin-tin orbital (LMTO) method
[7] in the framework of the generalized gradient
approximation with inclusion of the exchange–correla-
tion effects [8].
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Fig. 2. Energy bands of the Ag5Pb2O6 ternary oxide.
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3. RESULTS AND DISCUSSION

Figures 2 and 3 show the dispersion curves E(k) and
the total and partial densities of states for the stoichio-
metric (Ag5Pb2O6) and nonstoichiometric (Ag4Pb2O6)
oxides. The valence band of the Ag5Pb2O6 compound
has a total width of 9.42 eV (without regard for the low-
energy quasi-core O2s bands located ~ 15 eV below the
Fermi level EF) and consists of two groups of energy
bands located in the ranges –(9.6–8.0) and –(6.7–1.0) eV.
These groups are separated by an indirect (A–M transi-
tion) band gap of ~1.3 eV. The lower group includes
two bands of O2p–Pb6s states, whereas the upper group
includes a compact group of bands of the mixed
Ag4d−O2p–Pb5d, 6p type. The near-Fermi bands of
the O2p–Pb6s antibonding states are characterized by a
considerable dispersion E(k) and form a density-of-
states plateau. Earlier [5], it was assumed that the Ag s
states play a decisive role in the conductivity effects.
However, according to our calculations, their contribu-
tion to the near-Fermi bands is negligible and the occu-
pied Ag5s states are substantially admixed to the group
of energy bands of the Ag4d–O2p–Pb5d, 6p type
(Figs. 2, 3). The dominant contribution (~70%) to the
total density of states at the Fermi level [N(EF) = 1.298
states/(eV formula units)] is made by the O2p and Pb6s
states (see table).

Depending on the type of atomic (twofold- or three-
fold-coordinated) position, the energy distributions of
30
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Fig. 3. Total and partial densities of states of (a) the stoichiometric Ag5Pb2O6 oxide and (b) the nonstoichiometric Ag5 – xPb2O6

oxide containing 50% Ag1 vacancies. Dashed lines in the upper part show the number of electrons n in the cell.

B B

AA

CC'
YSICS OF THE SOLID STATE      Vol. 47      No. 4      2005



EFFECT OF LATTICE VACANCIES ON THE BAND STRUCTURE 601
Total and partial densities of states at the Fermi level N(EF) [states/(eV formula units)] and at the peaks A and B for the sto-
ichiometric Ag5Pb2O6 and nonstoichiometric Ag4Pb2O6 (with defects in the silver sublattice) oxides

Oxide Spectral
region*

Total densi-
ties of states

Partial densities of states

Ag15s
Ag25s

Ag15p
Ag25p

Ag14d
Ag24d Pb6s Pb6p Pb5d O2s O2p

Ag5Pb2O6 N(EF) 1.298 0.040 0.023 0.078 0.201 0.009 0.004 0.086 0.675

0.024 0.009 0.109

Peak A 8.150 0.018 0.032 0.775 0.024 0.025 0.048 0.046 3.037

0.284 0.012 3.806

Peak B 17.129 0.056 0.216 5.878 0.079 0.089 0.135 0.110 6.839

0.268 0.060 3.230

Ag4Pb2O6 N(EF) 3.547 0.010 0.006 0.156 0.030 0.010 0.024 0.037 1.255

0.127 0.005 1.676

Peak A 8.863 0.012 0.016 0.429 0.028 0.028 0.048 0.052 3.077

0.358 0.016 4.317

Peak B 18.684 0.008 0.146 4.210 0.039 0.076 0.198 0.093 8.257

0.238 0.051 3.448

* Peaks A and B are shown in Fig. 3.
the Ag1 and Ag2 atoms differ significantly. In particular,
the center of the energy band of the Ag2d states is
located ~ 1.2 eV deeper than that in the case of the Ag1

atoms (Fig. 3). Moreover, noticeable density-of-states
peaks are observed in the vicinity of the upper and
lower edges of the Ag24d band (peaks C and C ' in
Fig. 3). The above peaks indicate hybrid interactions of
these states with the surrounding oxygen atoms. As a
consequence, the Agd bands, which are nearest to the
Fermi level EF (peak A of the total density of states for
the oxide in Fig. 3), are predominantly formed by the
states of the twofold-coordinated Ag2 atoms compris-
ing the Kagome lattices, whereas the states of the three-
fold-coordinated Ag1 atoms make a significant contri-
bution to the peak B (which is next in energy to the peak
A) (see table). This feature can be explained in terms of
the difference between the interatomic interactions of
these centers with their nearest environment. The inter-
atomic interactions depend on both the coordination
number of the atoms and the Ag–O distances, which are
equal to 0.2122 and 0.2286 nm for atoms in the (Ag2)
network and in the (Ag1) layer, respectively [6].

The map of the charge density ρ is shown in Fig. 4.
It can be seen from this figure that the Ag2–O bond is
stronger than the Ag1–O bond. The silver–oxygen and
lead–oxygen bonds are the strongest bonds in the
oxide. By contrast, the silver–silver bonds, which,
according to the assumption made in [5], should play a
dominant role in the oxide, are very weak. The overlap
of the contours of the charge density ρ for individual
atoms Ag2–Ag2 (in the network) is insignificant. For
centers of different types (Ag1–Ag2), the corresponding
overlap is entirely absent.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
The introduction of vacancies into the Ag1 positions
only slightly affects the density-of-states distribution in
the stoichiometric Ag5Pb2O6 oxide (see Fig. 3, table).
The main effect exerted by vacancies is reduced to the
depletion of the O2p–Pb6s antibonding bands. The
Fermi level shifts to lower energies and coincides with
the low-energy wing of the peak A. The system of inter-
atomic interactions in the oxide also remains virtually
unperturbed. Judging from the distributions of the
charge density ρ (Fig. 4), no new bonds are formed in
the nonstoichiometric oxide of the formal composition
Ag4Pb2O6 (except for the insignificant overlap of the
contours of the charge density ρ along the Ag1–Ag2

directions). The degree of localization of the charge
density in the region of vacancies is relatively small.
According to our estimates, the charge of the empty
muffin-tin (MT) sphere does not exceed 0.3 e. The fun-
damental changes in the electronic properties of the
nonstoichiometric (defect-containing) oxide are associ-
ated with the enhancement of its “metallization” due to
a sharp increase (by a factor of ~ 2.7) in the density of
states at the Fermi level N(EF), as well as with the radi-
cal change in the structure of the near-Fermi bands con-
taining comparable (in magnitude) contributions from
the Ag24d (47%) and O2p (35%) states.

To the best of our knowledge, there are no reliable
experimental data on the change in the properties of the
ternary oxide in the homogeneity region (except for the
dependences of the lattice parameters on the silver con-
tent in Ag5 – xPb2O6 – y samples [3]). Reasoning from the
results obtained, we believe that, in the oxide under
investigation, the nonstoichiometric effects are most
pronounced for the properties governed by the system
5
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of delocalized (near-Fermi) electrons. Moreover, the
calculations performed demonstrate that the lattice
defects in the stoichiometric Ag5Pb2O6 oxide, unlike
some oxides of Group III–VI transition metals with a
partially filled d shell, do not contribute to the forma-
tion of new vacancy states in the electronic spectrum.
Consequently, the effect of vacancies on the electronic
spectrum of the ternary oxide can be reduced to a
change in the degree of occupation of the energy bands
due to a variation in the electron concentration (ec) in
the system. Therefore, to a first approximation, this
effect can be described within the rigid-band model. In
this case, for example, the low-temperature electronic
heat capacity coefficient, which is estimated in the
framework of the free-electron model as γ =

(π2/3)N(EF) , varies in the homogeneity region in a
nonmonotonic manner. More precisely, this coefficient
decreases to a minimum at an electron concentration
ec ~ 108.15 e in the cell and increases abruptly with
further deviation of the oxide composition from stoichi-
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Fig. 4. Charge density maps in the cross-sectional plane of
(a) the stoichiometric Ag5Pb2O6 oxide and (b) the nonsto-

ichiometric Ag5 – xPb2O6 oxide containing 50% Ag1 vacan-
cies and (c) the charge density map in the cross-sectional
plane of the PbO6 prism in the structure of the Ag5Pb2O6
oxide. Contours of the charge density distribution ∆ρ are
drawn at intervals of 0.075 e/Å3.
PH
ometry (Fig. 5). As is seen from Fig. 5, the estimates
obtained for both the magnitude and the general behav-
ior of γ as a function of ec on the basis of the rigorous
band calculations performed for the stoichiometric and
defect-containing oxides appear to be close to each
other. It can be assumed that these estimates will also be
valid for the ternary oxide with a “double” imperfection
(in the silver and oxygen sublattices), as is the case in
Ag5 – xPb2O6 – y samples [3].

4. CONCLUSIONS

Thus, the calculations performed allowed us to
establish the main features in the structure of the energy
spectrum of the ternary oxide Ag5Pb2O6 and, for the
first time, to investigate the effect of vacancies on the
band structure of this compound. It was found that the
interatomic interactions in the ternary oxide (which was
described earlier in [5, 6] as an ionic metal) have a
covalent component due to the hybridization of the
(Ag,Pb)–O states. For the stoichiometric oxide, the
states forming the O2p–Pb6s antibonding bands play a
key role in the conductivity effects. The presence of sil-
ver vacancies in the structure brings about both an
increase in the magnitude and a change in the composi-
tion of the density of states at the Fermi level N(EF). As
a result, the contributions from the O2p states and 4d
states, as well as from the silver atoms, which form
Kagome lattices (of the Ag2 type), become dominant. It
should also be noted that, in contrast to the results of the
semiempirical calculation performed in [5], our data
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Fig. 5. Estimates of the low-temperature electronic heat
capacity coefficient γ as a function of the electron concen-
tration ec in the homogeneity region of the Bystrom–Evers
phase according to the calculated data for the stoichiometric
Ag5Pb2O6 oxide (dashed line) and the nonstoichiometric

oxide (with defects in the Ag1 sublattice) of the nominal
composition Ag4Pb2O6 (solid line). The zero value corre-
sponds to the electron concentration ec in the cell of the sto-
ichiometric oxide.
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indicate that neither electron nor hole doping will lead
to a crossover of the system from the metal-like state to
the semiconducting state.
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Abstract—An interpolation formula is proposed for the density-of-states function of charge carriers in the
impurity band of a lightly doped semiconductor. This formula involves two parameters and holds for an arbi-
trary energy. These parameters—the energy at the Fermi level and the parameter characterizing the width of the
peaks in the density-of-states function—are determined from the conditions of normalization and electrical
neutrality. © 2005 Pleiades Publishing, Inc.
The existence of a Coulomb gap in the density of
states of charge carriers near the Fermi level in lightly
doped semiconductors in both two-dimensional and
three-dimensional systems has been proved in numer-
ous theoretical studies and directly (or indirectly) con-
firmed by experimental data (see, for example, [1–8]
and references therein).

In particular, Efros and Shklovskii [3] demonstrated
that, owing to the long-range Coulomb potential, the
density of states g(ε) near the Fermi level µ in three-
dimensional systems goes to zero according to the uni-
versal law

(1)

where nD is the concentration of majority donor impu-
rities, εD = e2/κRD is the energy of the Coulomb interac-
tion at the average donor impurity separation RD =

, and κ is the permittivity of the sample.

Analytical treatment of the density-of-states func-
tion g(ε) over a wide range of variations in the energy ε
involves a complicated many-electron problem that
cannot be reduced to a single-electron problem (see, for
example, [4]). Consequently, the structure of the impu-
rity band in semiconductors, as a rule, has been investi-
gated using numerical simulation (see review [5]).

In their review [5], Shklovskii and Efros presented
the results of investigations of the impurity band and
the plots of the density-of-states function g(ε) obtained
using numerical simulation at different degrees of com-
pensation K = nA/nD (where nA is the concentration of
compensating impurities, for example, acceptor impu-
rities in an electron semiconductor).

According to the results reported in [1–3, 5, 6], it
can be stated that numerical investigations of the struc-

g ε( ) 3
π
---κ 3

a
6

----- ε µ–( )2 4nD ε µ–( )2

εD
3

----------------------------,= =

4πnD/3( )
1
3
---–
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ture of the impurity band have revealed and proved the
following features of the density of states.

(i) The density of states always exhibits two peaks.
The high-energy peak is assigned to the ionized donor
states, whereas the low-energy peak is attributed to the
occupied donor states.

(ii) The Coulomb gap is located between these peaks,
and the density-of-states function g(ε) near the Fermi
level tends to zero according to the universal law (1).

(iii) In the limiting cases of weak (K  0) and
strong (K  1) compensations, the width of the Cou-
lomb gap tends to zero.

Due to the lack of a rigorous theory regarding the
structure of the impurity band in semiconductor mate-
rials, the physical properties determined by the struc-
ture of this band have often been investigated using dif-
ferent numerical methods (see, for example, [9]). Anal-
ysis of the available experimental data has been
performed for the most part in the framework of three
approaches.

Within the first approach, the density-of-states func-
tions are determined for the cases of ultimately weak
and strong compensations (see, for example, [4, 10]).
The second approach is based on relationship (1),
which holds in the vicinity of the Fermi level (see, for
example, [5]). In the third approach (away from the
Fermi level), depending on the conditions of the prob-
lem, one function or another can be chosen that is sat-
isfied in a narrow interval (see, for example, [11, 12]).

Therefore, in order to analyze the experimental data
under these conditions, it is expedient to use a formula
that will adequately reproduce the aforementioned
properties of the density-of-states function g(ε) over a
wide range of variations in the energy ε.

In this paper, a similar interpolation formula is pro-
posed for the density-of-states function g(ε).
 2005 Pleiades Publishing, Inc.
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Numerical values of parameters c (the Fermi energy expressed in units of εD), a (characterizing the width of the secondary
maxima), and ∆0 (characterizing the width of the Coulomb gap) for different degrees of compensation

K 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c 0.258 0.184 0.119 0.058 0 –0.058 –0.119 –0.184 –0.258
a 0.285 0.36 0.402 0.423 0.43 0.423 0.402 0.36 0.285
∆0 1.099 1.214 1.273 1.303 1.312 1.303 1.273 1.214 1.099
It is easy to verify that a function of the type

(2)

with the adjustable parameters µ and γ satisfies all the
requirements given in items (i)–(iii) (see below). In this
case, the parameter µ is the energy at the Fermi level
and the parameter γ characterizes the widths of the
peaks mentioned in item (i).

In order to determine the adjustable parameters, it is
necessary to use the normalization condition

 = nD and the condition of electrical neutral-

ity, which, at absolute zero temperature, has the form

 = nA.

Taking into account these conditions and relation-
ship (2) for the dimensionless parameters c = µ/εD

(where c is the Fermi energy expressed in units of εD)

and a = , we obtain the system of transcendental

equations

(3)

where erfc(x) is an error function.
Numerical solutions to the systems of transcenden-

tal equations for different degrees of compensation are
presented in the table.

It can be seen from the table that, in the range K <
0.5, the Fermi energy satisfies the inequality µ > 0 (the
energy is reckoned from the energy level of the isolated
donor state ED). In this range, the parameter µ mono-
tonically decreases with an increase in the parameter K
and becomes zero (µ = 0) at K = 0.5. In the range 1 >
K > 0.5, the parameter µ is negative in sign (µ < 0) and
again monotonically decreases as the parameter K
increases.

Let us assume that the width of the Coulomb gap is
the energy separation between the peaks. Hence, it fol-
lows from relationship (2) that the width of the Cou-
lomb gap expressed in units of εD is determined by the
formula

g ε( )
4nD ε µ–( )2

εD
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4c
a
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According to the numerical estimates given in the table,
the width of the Coulomb gap ∆0 has a maximum at
K = 0.5 and decreases in the limiting cases of weak
(K  0) and strong (K  1) compensations. More-
over, taking into account the fact that, at the limiting
compensations, the height of one of the peaks tends to
zero, we can argue that, under these conditions, the
Coulomb gap can be ignored.

All the above results fully coincide with the data
obtained by numerical simulation in [4, 5]. Therefore,
these results can be used in analyzing experimental data
on the kinetic and optical properties of the aforemen-
tioned systems.
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Abstract—Crystalline textured and columnar structures, as well as needlelike ZnTe single crystals, were grown
from the vapor phase and in a tellurium melt under deviation of the growth conditions from equilibrium. Low-
temperature photoluminescence and x-ray structural studies showed the samples thus grown to exhibit high
structural perfection, a uniform impurity distribution, and weak interaction between impurities and defects of
the crystal structure. Polariton scattering from neutral donors was detected in structures having a noticeable
residual concentration of donors in the substituted state. It is shown that the spectrum of samples grown under
nonequilibrium conditions exhibits transitions that are not typical of equilibrium crystals. Measurements of the
luminescence spectra as a function of temperature, excitation level, and annealing conditions made it possible
to draw tentative conclusions about the nature of these transitions. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

ZnTe is a material that holds considerable promise
for modern optoelectronics. However, its device poten-
tial is limited because of the so-called problem of self-
compensation, which prevents the development of an
n-type material even under moderate doping. More than
one model has thus far been proposed for self-compen-
sation [1–4]. These models are based, as a rule, on the
interaction of a native lattice defect with a donor impu-
rity, culminating in the formation of complexes of a
nontrivial nature during the crystal growth. In the first
stage, the formation of such a complex consists natu-
rally in the creation of a spaced donor–compensating-
defect pair, which subsequently transforms into a com-
plex due to diffusion (as the internal equilibrium is
established in the long time taken by the growth of the
crystal and its cooling down to room temperature). The
models proposed for the compensation suggest that, at
high enough growth rates, the diffusion of the compo-
nents making up the complex becomes inefficient. In
this case, the donor and the compensating defect will
remain predominantly in a separated state. The realiza-
tion of nonequilibrium conditions conducive to such
effects is also of interest from another respect. As
shown in [5–7], if a crystal is grown from the vapor
phase, a sufficiently high supersaturation may give rise
to a change in morphology, e.g., to a change of the
growth planes, which may result, in turn, in a crossover
to another mechanism of impurity incorporation into
the lattice and a change in the type of “leading” struc-
tural lattice defect. Thus, investigation of ZnTe
obtained in nonequilibrium conditions could prove use-
ful both for shedding light on the mechanism of self-
compensation and from the standpoint of developing
1063-7834/05/4704- $26.00 0606
technologies for the production of materials exhibiting
novel properties.

We report here on a low-temperature photolumines-
cence (PL) study of undoped ZnTe crystals obtained by
free crystallization from the vapor phase and liquid tel-
lurium through the vapor–liquid–crystal mechanism
[8] under growth conditions deviating from equilib-
rium. Furthermore, the effect of various annealing con-
ditions on the PL spectra of the polycrystals thus
obtained was also investigated. This culminated in the
detection of a number of remarkable features character-
istic of nonequilibrium growth conditions.

The paper is organized as follows. Section 2
describes the technology of crystal growth and the
experimental techniques used. Section 3 presents a gen-
eral analysis of PL spectra of series Z6V and Z6L. Sec-
tion 4 discusses the results obtained and the effects
associated with the influence of the donor impurity and
outlines the results of a study of a doubly charged
acceptor in Z6L.

2. TECHNOLOGY AND EXPERIMENTAL 
TECHNIQUES

Undoped ZnTe crystallites of different shape and
orientation were grown in liquid tellurium at a temper-
ature of ~700°C through the vapor–liquid–crystal
mechanism (series Z6L). A continuous zinc vapor flow
from a cell, which was maintained at ~720°C (PZn ~
80 Torr), was admitted to a cylindrical quartz cell with
liquid tellurium 150 g in mass held at ~700°C (PTe ~
30–35 Torr). Both cells were mounted in a quartz reac-
tor, with the growth proceeding in dynamic vacuum.
The starting components used in this process were pre-
© 2005 Pleiades Publishing, Inc.
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liminarily purified by vacuum distillation. The crystal-
lite growth procedure took about 50–60 min until no
components remained. We believe that the changes
observed in the structure of growing ZnTe (the free-
growth direction and growth rate of crystallites) are
associated with the supersaturation varying as the tellu-
rium volume phase is expended in the course of ZnTe
formation, as well as with violation of the liquid-phase
stability initiated by concentration and temperature
fluctuations immediately before the crystallization
front. Because the cross-sectional thickness of the tel-
lurium melt in the cell of the above design represents a
segment with a maximum height of up to 5 mm, the for-
mation of the ZnTe structure in different cross sections
has specific features.

Figure 1 shows photographs of fragments of the
ZnTe structure taken from different parts of the seg-
ment. Preliminary studies of the growth direction (by
using x-ray diffraction) and luminescent properties of
ZnTe were carried out on the fragment presented in
Fig. 1a. The diffractogram exhibits reflections of one
series ([111], [222], [333]) from ZnTe and a weak [003]
reflection due to Te. This suggests that the central part
of the segment consists only of [111] fibers, which may
slightly deflect from the normal to the growth surface
toward the Zn flow. The presence of a small amount of
Te with the basal plane oriented parallel to the film sur-
face and the absence of other reflections indicate
directed penetration of tellurium over the ZnTe grain
boundaries. Our attempt to accurately determine the
epitaxial relation between ZnTe and Te did not meet
with success because of the low tellurium concentra-
tion. In the same process, needlelike ZnTe crystals
(Z6V series), produced from the vapor phase in the
chemical reaction between the components, grew on
the end wall of the tellurium cell.

PL spectra were measured in He vapor in the tem-
perature interval from 5 to 45 K. Optical pumping was
provided by an argon laser with excitation lines at
5145 Å (2.41 eV) and 4880 Å (2.54 eV). The excitation
spot was ~100 µm in size. The spectra were analyzed
with a DFS-24 double monochromator with a resolu-
tion of at least 0.1 meV. The PM tube output was pro-
cessed in the photon counting mode.

3. RESULTS OF THE EXPERIMENT

3.1. Photoluminescence of Samples Grown
from the Vapor Phase (Z6V Series)

Figure 2a presents for illustration a PL spectrum of
a crystal from the Z6V series. Samples of this series
have a high PL quantum yield, and their PL spectra
demonstrate extremely high reproducibility for differ-
ent crystallites.

We will now dwell briefly on the notation of the
transitions observed in the spectrum. The transitions
can be conveniently divided into intrinsic radiation,
radiation associated with substitutional impurities,
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
radiation originating from complex defects, and LO-
phonon replicas of the luminescence lines. The com-
plex structure observed in the free-exciton region can
be accounted for in terms of the polariton concept tak-
ing into account valence band degeneracy. It is known
that, in this case, the spectrum derives from radiation
produced by the lower (LP), upper (UP), and middle
(MP) polariton branches [9]. The splitting observed in
the radiation deriving from the lower polariton branch
is due to a neutral donor.

The radiation deriving from isolated substitutional
impurities in samples of the Z6V series is due to band–
impurity (e–A) transitions, donor–acceptor (DA) pairs,
and exciton–impurity complexes. The strongest PL line
in Z6V samples (A0X) is produced in an optical transi-
tion in which the localized hole left after annihilation of
an exciton that was bound to a neutral acceptor remains
in the ground state. The two-hole (TH) transitions seen
at longer wavelengths occur in processes in which the
localized hole left after exciton annihilation is in one of
the excited states. Such states are denoted in what fol-
lows by |F〉A, where F identifies an excited hole state
and A stands for a substitutional impurity (for example,
3SA Li). The excited states are classified in accordance
with a theoretical paper [10]. The exciton localized on
a neutral donor can be treated in a similar manner;

(a)

(b)

Fig. 1. Photographs (a) of a Z6L texture along the [111]
growth direction, which terminates in outgrowths of smaller
crystallites, and (b) of a Z6L structure with a morphological
transition associated with a change in supersaturation at the
crystallization front.
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Fig. 2. PL spectra of samples of (a) Z6V and (b) Z6L series.
namely, there is a ground-state line D0X and a series of
two-electron (TE) transitions, whose notation is similar
to that employed for two-hole transitions, with the only
difference being that |F〉  is understood now to be an
excited electron state.

The Z6V PL spectrum clearly reveals two main
acceptors in the substitutional state, Li and Cu. The A0X
line, however, has a doublet structure, whose strongest
peak (~2.3749 eV) coincides in position, to within
experimental error, with the A0X lines for Li and Cu.
The second, weaker peak (~2.3740 eV) coincides in
position with the A0X for Ag and the so-called k accep-
tor [11]. Other indications of the presence of Ag and the
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Fig. 3. PL spectra of (1) Z6V and (2) Z6L samples in the
oxygen region.
P

k acceptor (the corresponding TH or DA transitions)
were not detected.

The presence of a donor impurity (tentatively iden-
tified with ClTe) in the substitutional state is suggested
by the D0X (2.3779 eV) and D0X* (2.3785 eV) lines
[12] and the TE and DA transitions. The noticeable
concentration of the donor in the substitutional state
and the fairly good quality of the crystal lattice permit-
ted detection of a number of remarkable features
caused by polariton interaction with a neutral donor.
These features are discussed in Subsection 4.1.

The weak transition (IC) at around 2.3619 eV corre-
sponds to the ground-state line of the exciton localized
at a doubly charged acceptor [13]. Observation of this
transition is typical of crystals grown in conditions
deviating from equilibrium. In the long-wavelength
part of the Z6V spectrum (Fig. 3), there is radiation
associated with the isoelectronic impurity OTe and the
K0 complex, which includes a Zn vacancy [14]
(Fig. 2a). Note also that the Z6V spectra have no lines
characteristic of ZnTe that are associated with extended
defects. The only exception is possibly a weak Y3 line,
which is discussed in detail in Subsection 3.2.

3.2. Photoluminescence of Samples Grown
in Liquid Te through the Vapor–Liquid–Crystal 

Mechanism (Z6L Series)

Spectra of these polycrystals exhibit variations in
the integrated PL intensity through the height of the
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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structure, as well as slight changes in the relative inten-
sity of some lines. Note that the PL intensity at the edge
of the spectra of Z6L crystals is, on the average, one-
fourth of that of the Z6V crystals.

Figure 2b presents a spectrum of a Z6L polycrystal.
Of major interest in this case is the appearance of a non-
standard structure in the region of the A0X and D0X
lines. The two long-wavelength components (~2.3740
and ~2.3750 eV) are the A0X lines for Ag and a band of
spectrally unresolved A0X lines for Cu and Li. The pres-
ence of these impurities is corroborated by the detec-
tion of the corresponding DA transitions and, in addi-
tion, of the TH transitions for Li. The two short-wave-
length components (~2.3779 and ~2.3785 eV), just as
in the Z6V spectra, are actually the D0X and D0X* lines.
The presence of a neutral donor is also supported by the
appearance of a weak TE transition and a dip in the
polariton luminescence spectrum (in some places,
when the D0X line is weak, the dip transforms into a
structural feature), which derives from the polariton
scattering on a neutral donor.

Of major interest is the fairly strong narrow line at
~2.3760 eV. We assigned it to a transition correspond-
ing to recombination of an exciton localized on a
charged donor. The specific features of the PL spectra
and arguments for this interpretation are considered in
detail in Subsection 4.2.

The strong line (IC) in the region of 2.3619 eV, the
two broad bands W1 and W2, and a series of long-wave-
length satellites A2–A5 originate from recombination of
an exciton bound to a doubly charged acceptor, which
is typical of nonequilibrium growth processes occur-
ring at an excess of Te.

Note that, in contrast to Z6V, the spectra of Z6L crys-
tals contain broad bands Y1 and Y2. The corresponding
transitions were shown in [15–17] to be associated with
extended defects, such as dislocations. The Y1 and Y2
bands in these samples may originate from grain
boundaries (which are absent in Z6V single crystals).
Let us consider the Y3 line (~2.126 eV) in more detail;
this line was observed by us, although in a less pro-
nounced form, in other nonequilibrium crystals and
was not detected in crystals obtained in quasi-equilib-
rium conditions. The intensity of the PL associated with
this transition reveals a tendency toward rapid decay
with time (the PL intensity drops by a few times in a
few minutes). This process is reversible, with the signal
recovering rapidly after the excitation is removed. This
line also exhibits fairly rapid quenching as the temper-
ature increases (there is practically no signal at T ~ 30
K). In crystals grown under deviation from equilibrium,
this line is practically insensitive to vacuum annealings
and low-temperature heating (at ~400°C) in a zinc
atmosphere; this line disappears completely, however,
in Z6L crystals annealed in Zn vapor at T = 820°C. We
believe that the Y3 line is associated with the formation
of a compound of another phase (primarily on the nat-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
ural growth surface, which accounts for the high quan-
tum yield of this band in Z6L samples); further studies
would, however, be needed to ascertain the nature of
this transition. Note that the Y1, Y2, and Y3 lines have a
zero Huang–Rhys factor, which is not characteristic of
states produced by point defects.

4. DISCUSSION OF THE RESULTS

4.1. Scattering of a Slow Polariton 
from a Neutral Donor

As already mentioned, nonequilibrium growth of a
crystal from the vapor phase (Z6V series) permits one
to reach a noticeable residual concentration of neutral
donors in the substituted state. This feature, combined
with the high structural perfection of the crystal lattice,
made it possible to observe interaction of the so-called
slow exciton-like polaritons with neutral donors. Such
effects have been seen in the luminescence of undoped
GaAs epitaxial films containing different residual con-
centrations of donors [18]. The situation with GaAs is
known to be analogous to that with ZnTe in that the val-
ues of EEX are similar: ED ! EA, mhh/me ~ 5, and REX ~
RD @ RA, where EA and RA are the binding energy and
localization length of the hole at an acceptor, respec-
tively; ED and RD are the binding energy and localiza-
tion length of the electron at a donor; and REX is the
Bohr radius of the exciton. Thus, the mechanisms of
elastic scattering of excitons from neutral impurities
proposed in [18] may be similar in character in ZnTe
and GaAs. As shown for GaAs, the elastic scattering
cross section of a slow exciton (kinetic energy,
~0.1 meV) from a donor exceeds that on an acceptor by
more than an order of magnitude. If the donor concen-
tration is high enough, the diffusion length of a slow
exciton-like polariton decreases strongly and a dip
appears in the intrinsic PL spectrum near the exciton
band bottom.

Figure 4 displays fragments of PL spectra of differ-
ent ZnTe crystals in the polaritonic emission region.
Crystals with a low donor concentration (curve 1)
reveal a triplet structure of radiation associated with
three polariton branches [9]. The intrinsic radiation of a
Z6V crystal excited by 2.54-eV photons (curve 2) also
consists of three polaritonic branches, but with a dip in
the region of the lower branch emission. This structure
of intrinsic PL cannot be related to a manifestation of
additional features in the dispersion curves of Z6V,
because the dip also appears in the emission from non-
thermalized polaritons. Curve 3 plots the radiation
spectrum of a fine-grained structure excited by 2.41-eV
photons, which is above the exciton band bottom by
about the LO phonon energy. Also, we estimated the
crystallite size (a few micrometers) to be comparable to
the diffusion length corresponding to polariton ther-
malization due to acoustic phonons. Thus, the popula-
tions of polariton states are not thermalized in this case,
and this becomes manifest in the polaritonic PL.
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Note that the feature observed in the structureless
line is not seen in the LO replica of polaritonic radia-
tion. This implies that the dip is absent in the real pop-
ulation of polariton states inside the crystal. This obser-
vation supports the elastic character of polariton scat-
tering. The small mean free path of slow polaritons due
to such scattering reduces their diffusion length and
increases their localization probability inside the crys-
tal. The strong correlation of the dip with the concentra-
tion of the neutral donor impurity (the latter is derived
in a straightforward manner from the line intensities of
the D0X and TE transitions) in all the crystals studied
and the absence of such effects for any other lattice
irregularity (acceptor impurities, complex defects, etc.)
suggest that this scattering takes place, as in the GaAs
case, from neutral donors.

The above spectra can be used to estimate the polari-
ton scattering cross section from a donor near the min-
imum of the group velocity of the polariton. It is known
that the radiation from spaced donor–acceptor pairs (in
our case, the zero-phonon lines at ~2.243 eV for Cu and
at ~2.322 eV for Li) offers the possibility of estimating
the impurity concentration [19]. The results given in
[19] permit an upper estimate of the neutral donor con-
centration of ~2 × 1016 cm–3. In terms of our model, a
dip will appear in the PL spectrum if the polariton mean
free path LP near the minimum of its group velocity is
comparable to the absorption depth of the pump light
(4880 Å) or less. Thus, for a lower estimate of the cross
section σ, we obtain

4.2. Exciton Localized on a Charged Donor

The strong D+X line observed in the Z6L crystal near
~2.3760 eV may be of potential interest for establishing
the presence of a donor impurity. Near this energy posi-
tion are known to be the h–D transition (the hole from
the valence band annihilates with a donor-bound elec-
tron) and the transition associated with the excited state
of the exciton localized on the copper atom, A0X*Cu
[11]. In our case, however, this assignment comes into
conflict with some features of this line (a small half-
width, ~0.3 meV, and a high intensity) and its tempera-
ture dependence (Fig. 5). The intensity of the excited-
state line A0X*Cu as compared to the intensity of
A0XCu should grow exponentially with increasing tem-
perature [11]. This line is discussed in [20], which
reports on a study of Cl-doped epitaxial films grown on
ZnTe substrates. In the case of Z6L, apparently, this line
can also be related to ClTe on account of Cl atoms being
present in the starting components; furthermore, chlo-
rine was shown in [21] to enter the lattice more effi-
ciently in the presence of excess tellurium. The specific
relation of this impurity with the tellurium sublattice is

LP 1/nσ 0.3 µm,∼ ∼

σ 1/nLP 1.6 10
12–

 cm
2× πREX

2
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also supported by the effect of annealing on the above
transition. Figure 6a displays spectra of Z6L crystals in
the corresponding spectral region before annealing,
after annealing at T = 820°C in Zn vapor for 72 h, and
after vacuum annealing at 500°C for ~5 h. We can see
that annealing in Zn vapor has almost no influence on
this transition, whereas short annealing in vacuum
brings about the disappearance of the line under study
while not noticeably influencing the spectrum of the
sample with the impurity present on the zinc sublattice
(A0X, TH transition).

It is known that ClTe in ZnTe is a shallow donor [22].
The temperature dependence of the above transition
illustrated in Fig. 5 suggests that the corresponding
center should be a bound exciton. For this reason, this
transition was tentatively interpreted in [21] as
D0X[Cl]. We assign this transition to D+X[Cl] (exciton
localized on a charged donor). In contrast to excitons
localized on charged acceptors, the donor-localized
exciton should be stable in ZnTe, because ν = mhh/me ~
5, which is in excess of the available theoretical esti-
mates of ν at which the corresponding complex
becomes unstable. Furthermore, the D+X line has been
reliably detected in the related compound CdTe [23].
The following observations may be considered indirect
evidence supporting this hypothesis.

(1) There is an absence of any new satellites belong-
ing to this center, for instance, of TE transitions related
to the line under consideration.

(2) The dependence of the intensity of this line on
pump power (Fig. 6b). The intensities of the A0X and
D0X lines decay faster with decreasing pump power
than does the D+X intensity, because the donors and
shallow acceptors (Li) are primarily in the charged state
in the absence of excitation and the exciton–impurity
complex, unlike the complex associated with D+X,
forms in two stages.

(3) The fact that the D+X line does not influence the
polariton luminescence is, as already mentioned, not
characteristic of shallow donors in the neutral state.

One of the problems arising in the assignment of
this line is the involvement of a deep compensating
acceptor level. This level may be related to a doubly
charged acceptor (see Subsection 4.3), which, like D+X,
manifests itself strongly in Z6L.

4.3. Doubly Charged Acceptor

The PL spectrum of practically all our samples pre-
pared under substantial deviation from equilibrium
contains a more or less pronounced series of transitions
originating from a doubly charged acceptor [13]. The
strong line IC at 2.3619 eV, which is seen in both the PL
and absorption spectra, derives from annihilation of the
exciton bound to such an acceptor. Annihilation of the
holes localized at acceptors leaves them in the ground
state and is accompanied, as a rule, by two fairly broad
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
satellites, W1 and W2. It was shown in [13] that the n = 1
state of a system splits in J into two sublevels with J = 0
(Γ1) and J = 2, with the latter being crystal-field-split
into the Γ3 and Γ5 states (Γi are irreducible representa-
tions of the point group of the crystal). Thus, the triplet
structure given by IC, W1, and W2 is due to the presence
of three sublevels in the final state of the system, the
lowest of them being Γ3. In the long-wavelength region
of the spectrum, there is also a series of satellites (A2–A5),
which allows interpretation in terms of the two-hole
transition concept. This series allows one to estimate
the acceptor ground-state energy as E = 180 ± 2 meV.

The above center was observed to produce PL after
prolonged annealing (~5 days) of undoped samples in
Zn vapor at T = 750–950°C [24]. Also, the acceptor
state with EA ~ 180 meV (revealed in electrical mea-
surements of annealed samples) affected the Fermi
level in some cases.

Let us sum up the main properties of the doubly
charged acceptor as applied to the samples under study.
First, we note that this transition is never present in
crystals grown from the vapor phase at close-to-equi-
librium conditions. The IC band of varying intensity
almost always appears when the growth conditions
deviate from equilibrium; this band becomes quite
strong under nonequilibrium growth in the presence of
excess tellurium (exactly what is observed in Z6L sam-
ples). All of the annealings conducted here (in Zn vapor
for 72 h at T = 820°C or for 48 h at T = 400°C; in
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dynamic vacuum for 5 h at 500°C) brought about a dis-
appearance of the IC band from the spectrum.

Short annealing in vacuum brought about, in addi-
tion, the formation of a binary complex (Fig. 7) includ-
ing the VZn vacancy [14]; the second component of this
complex is most probably ClTe. The formation of this
vacancy may be traced to zinc depletion of the ZnTe
surface layer occurring in dynamic vacuum. In review
[25], the IC band was also related to isolated VZn vacan-
cies. This concept suggests another mechanism of the
formation of the above complex involving the diffusion
of ClTe and VZn, which were originally present in the
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annealing in Zn vapor at T = 820°C for 72 h. (b) PL spec-
trum in the region of Z lines.
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crystal (in the case of the charged vacancy state ,
Coulomb interaction should favor this mechanism of
complex formation). In view of the large vacancy diffu-
sion coefficients, this model offers a straightforward
explanation of the effect of low-temperature (~400°C)
annealing in Zn.

As already mentioned, the IC line was observed after
prolonged annealing in Zn vapor at temperatures T ~
750–950°C [24]. While Z6L samples annealed in Zn
vapor for 72 h at T = 820°C do not exhibit the IC line, a
shorter wavelength band Ω peaking at ~2.365 eV
(Fig. 8a) appears in the spectrum. This controversy in
the interpretation of VZn could be associated with the
fact that, due to the fairly strong compensation resulting
from the noticeable concentration of ClTe, the doubly
charged acceptor in annealed Z6L crystals may reside
primarily in the charged state (by capturing one elec-
tron). In the case where the doubly charged acceptor is
in the neutral state, the process of emission can be
divided into two stages, namely, capture of a nonequi-
librium hole followed by localization of the exciton.
Relaxation among the Γ1, Γ3, and Γ5 states (responsible
for the IC, W1, and W2 emission) in a one-step process is
J forbidden, so the corresponding relaxation times
should be fairly long. Thus, in this case, it may be con-
jectured that the IC, W1, and W2 bands are emitted in the
absence of thermalization (i.e., without dominant pop-
ulation of Γ3) among the Γ1, Γ3, and Γ5 sublevels in an
annealed crystal. As the temperature increases to 30 K
(where kT ~ 2.5 meV is comparable to the splitting
between Γ1, Γ3, and Γ5 and, hence, the population of Γ3
likewise should not dominate), long-wavelength com-
ponents are indeed observed in the spectra of unan-
nealed Z6L samples, one of which coincides with the Ω
band, provided the temperature-induced shift is taken
into account. Another interesting feature associated
with the Ω band is its correlation with a number of
long-wavelength lines (Z), which also appear in the PL
spectrum after prolonged annealing in Zn vapor
(Fig. 8b). These lines may also derive from the doubly
charged acceptor, for instance, from the DA or e–A
transitions in a deep charged center. Further studies
would be needed to ascertain the nature of the Z and Ω
lines.

5. CONCLUSIONS

Textured and columnar structures and needlelike
single crystals have been obtained in a single process
based on a modification of nonequilibrium low-temper-
ature synthesis of crystalline ZnTe in a liquid layer of
tellurium and from the vapor phase. The high lumines-
cence quantum yield, the small spectral width of the
exciton–impurity complex lines (~0.3 meV), and the
observation of TH transitions and strong exciton-
polariton emission indicate a high structural perfection
of these samples.

VZn
–
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The samples prepared in the nonequilibrium growth
regime are characterized by a close-to-uniform distri-
bution of impurity atoms (donors and acceptors) over
the crystal lattice and weak interaction between impu-
rities and lattice defects, which is signaled by the
absence of bands typical of such a process in the spec-
trum.

The PL spectrum of Z6V samples is the most
instructive in this sense. This spectrum consists essen-
tially of an intense polariton band; clearly resolved D0X
and A0X lines; TH, TE, and e–A transitions; separated
DA pairs; and phonon replicas of the above lumines-
cence lines. The appearance of the strong D0X line in
the spectrum and observation of the TE and DA transi-
tions imply a noticeable concentration of neutral
donors, which accounts for the specific feature in the
polariton spectrum deriving from polariton scattering
on neutral donors.

The PL spectrum of ZnTe samples obtained in the
same process by chemical synthesis from liquid tellu-
rium is largely similar to that of Z6V. However, the
enhanced Te content and the existence of grain bound-
aries give rise to the appearance of a nonstandard
bound-exciton line located at 2.3762 eV in the PL spec-
trum, a noticeably increased intensity of the structured
line belonging to the exciton localized at a doubly
charged acceptor, weak Y1 and Y2 lines, and the obser-
vation of a previously unreported intense line Y3 exhib-
iting a nonstandard dependence on excitation duration.

The measured dependences of the luminescence
spectra on the temperature and pumping level, as well
as on the different annealing conditions for Z6L sam-
ples, have made it possible to identify the 2.3762-eV
line as being due to the exciton localized at a charged
donor, D+X [Cl] and to consider the zinc vacancy VZn a
doubly charged acceptor accounting for the formation
of the exciton–impurity complex IC.
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Abstract—The band structure of III–V semiconductors near the Γ point is studied with full account of the spin–
orbit interaction, which results not only in band splitting but also in spin–orbit mixing of wave functions of dif-
ferent spatial symmetry. In view of the last circumstance, a new version of the k · p method of perturbation the-
ory is developed and strict symmetry relations are derived for the first time in which sums containing optical
matrix elements and energy denominators are related to intrinsic electron characteristics (masses, g factors).
These relations (sum rules) appear to be informative in analyzing the spatial symmetry of electronic states near
the Γ point and are useful for quantitative estimation of the most important optical matrix elements. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

Recently, there has been a growing interest in study-
ing spin-dependent phenomena in semiconductors. A
new direction has appeared in electronics called spin-
tronics. In spintronics, the electron spin, in addition to
its charge, is an active element for storing and transmit-
ting information [1]. Spintronics is believed to be pro-
spective for the development of new scientific fields,
such as quantum computing and quantum information
transmission [2, 3]. However, when speaking about the
electron spin in semiconductors, one usually implies its
magnetic moment, which is actually formed not only
by the spin but also, to a large degree, by interatomic
orbital motion inside the wave packet that is associated
with the quasiparticle; this has been shown by Herring
[4]. In the effective-mass method, an electron is repre-
sented as a wave packet, and it is the structure of the
wave packet that forms the intrinsic characteristics of
the quasiparticle (mass, g factor).

It is known [5] that, in III–V semiconductors, the
currents in an electron wave packet are induced by
spin–orbit interaction. Therefore, a more detailed study
of spin–orbit interaction in semiconductors and of its
role in forming the intrinsic electron structure is of
importance.

Usually, when calculating the effective masses and
g factors of charge carriers, the Kane band model [6] is
used, in which the spin–orbit interaction is taken into
account only when calculating band splitting of orbital
states at the Γ point. However, it is known [7] that spin–
orbit interaction also allows for mixing of wave func-
tions of different spatial symmetries. The last circum-
stance is usually disregarded because the mixing is
assumed to be negligible. Nevertheless, there are situa-
tions where mixing plays a crucial role [8–10].
1063-7834/05/4704- $26.00 0614
In this study, we consider the intrinsic structure of
particles with full inclusion of the spin–orbit interac-
tion at the Γ point. Based on the results of [10], where
general selection rules are obtained for the generalized
momentum operator p at the center of the Brillouin
zone, we develop a new version of the k · p method, in
which the spin–orbit interaction is taken into account
correctly in zeroth approximation and only the operator
k · p is treated as a perturbation. This approach allowed
us to obtain, for the first time, strict symmetry relations
between, on the one hand, the electron effective masses
and g factors for all energy bands and, on the other
hand, dimensionless sums of terms associated with
optical transitions to energy bands with different sym-
metries of the Td group. The terms in these sums coin-
cide, up to a constant factor, with the corresponding
oscillator strengths. It appeared that the number of such
sums in each band coincides with the number of char-
acteristics of the electron intrinsic structure. This fact
allowed us to invert the relations and express the sums
in terms of masses and g factors. The expressions
obtained for the sums are called the sum rules for the
reduced matrix elements of the generalized momentum
operator. The theoretical novelty of these rules induced
us to bring them into the title of this article. These sum
rules appear to be informative in analyzing the spatial
symmetry of electronic states at the Γ point and allow
one to make quantitative estimations of the optical
matrix elements.

In this study, using known masses and g factors, we
analyze the spatial symmetry of the Γ6 conduction
bands and the Γ7 and Γ8 valence bands and compare the
experimental values of the optical matrix element
between the Γ6 and Γ8 bands with the theoretical values
obtained from the sum rules for a number of III–V com-
© 2005 Pleiades Publishing, Inc.
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pounds. The experimental value of the optical matrix
element is found to agree well with the known band
parameters and g factors for all materials considered.
We also indicate the compounds (InSb, GaSb) in which
the spin–orbit mixing can be strong. Experimental data
are given to corroborate this statement.

2. WAVE FUNCTIONS

Disregarding the spin, the electron states at the Γ
point in III–V compounds are described by wave func-
tions |Γα〉  that transform according to the representa-
tions Γα (α = 1, 2, 3, 4, 5) [7]. With allowance for spin,
the electron energy levels correspond to the Γn spinor
representations (n = 6, 7, 8) and their wave functions
form from the |Γα〉  coordinate functions and the spin

functions  and  [7, 11].

Generally, the electron wave functions in the Γn

band can be written as

(1)

where M specifies the degenerate states and |Γn(Γα); M)〉
are the wave functions that transform according to the
Γn representation and are constructed from coordinate
functions |Γα〉 . Summation in Eq. (1) is performed over
all representations Γα involved in the Γn state. The
phase factors of the |Γn(Γα); M)〉  functions are chosen

so that the mixing coefficients  are real. Functions

of the form of Eq. (1) are assumed to be normalized to
unity; i.e., the coefficients  satisfy the condition

(2)

In general, the |Γn; M〉  functions in all Γ6, Γ7, and Γ8

bands can be represented in the form

(3)

(4)

1
0 

  0
1 

 

Γn; M| 〉 CΓnΓα
Γn Γα( ); M| 〉 ,

Γα

∑=

CΓnΓα

CΓnΓα

CΓnΓα

2

Γα

∑ 1.=

Γ6; M| 〉  = CΓ6Γ1
Γ6 Γ1( ); M| 〉

Γ1

∑ CΓ6Γ5
Γ6 Γ5( ); M| 〉 ,

Γ5

∑+

M
1
2
---,±=

Γ7; M| 〉  = CΓ7Γ2
Γ7 Γ2( ); M| 〉

Γ2

∑ CΓ7Γ4
Γ7 Γ4( ); M| 〉 ,

Γ4

∑+

M
1
2
---,±=
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(5)

The coordinate system in Eqs. (3)–(5) is assumed to be
associated with the [100], [010], and [001] directions.
The quantization z axis is directed along [001]. The
explicit form of the |Γn(Γα); M〉  spin–orbit harmonics is
given in [10].

3. SELECTION RULES

In this section, we write out the selection rules for
the k · p operator, where k is the quasimomentum and
p is the generalized momentum operator

(6)

In Eq. (6), p is the momentum operator, s are the Pauli
matrices, V is a periodic potential, m is the free electron
mass, c is the velocity of light, and " is the Planck con-
stant. Matrix elements of the k · p operator are calcu-
lated between all states at the Γ point. Selection rules
are formulated in terms of the Clebsch–Gordan coeffi-
cients and the reduced matrix elements.

In [10], wave functions (3)–(5) were used to calcu-
late the matrix elements

(7)

for the Γ6  Γ8 transitions,

(8)

for the Γ6  Γ7 transitions, and

(9)
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In Eqs. (7)–(9), kα (α = –1, 0, 1) are the circular

components of the vector k [12];  are Cleb-

sch–Gordan coefficients; and , , and 
are the real reduced matrix elements.

The selection rules for Γ8  Γ8' transitions are
written as [10]

(10)

Here, Is and IA are hermitian and antihermitian 4 × 4
matrices, which can be expressed in terms of the matri-
ces Jx, Jy, and Jz of the angular momentum J = 3/2 as

(11)

(12)

where
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In Eqs. (11) and (12), the symbol {…} denotes an
anticommutator: {

 

A

 

, 

 

B

 

} = 

 

AB

 

 + 

 

BA

 

. The quantities

 and  in Eq. (10) are real reduced matrix
elements satisfying the conditions

(14)

All reduced matrix elements in Eqs. (7)–(10) can be
expressed in terms of the mixing coefficients and are
explicitly written out in [10].

4. EXPRESSIONS FOR THE EFFECTIVE MASSES 
IN A NEW VERSION OF THE k · p METHOD

The above selection rules make it possible to formu-
late a new version of the k · p method in which the
spin–orbit interaction is taken into account exactly in
zeroth approximation and only the operator k · p is con-
sidered a perturbation. In this version, exact symmetry
expressions can be derived for the effective masses at
the Γ point in all bands. Let us consider the electron
kinetic energy in quadratic approximation in k. The
spectrum of charge carriers in the degenerate Γn bands
(n = 6, 7, 8) can be found in terms of the standard
approach of perturbation theory [13] by diagonalizing
the effective kinetic-energy Hamiltonian Heff, kin whose
matrix elements are defined as [11, 13]

(15)

(16)

In Eq. (15),  is the energy eigenvalue in the Γn band
and M'' specifies the degenerate states in the Γm band.
Summation in Eq. (15) is performed over all states
other than Γn.

First, we consider the electron spectrum in the Γ6
band. Using selection rules (7) and (8), we obtain

(17)

where δMM ' is the Kronecker delta and  is the elec-
tron effective mass in the Γ6 band, which is given by

(18)
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The difference between the effective mass and the free
electron mass is due to the interaction of the Γ6 band
with all Γ7 and Γ8 bands.

Analogous calculations can be performed for the Γ7
band using selection rules (8) and (9). The result is

(20)

where  is the electron effective mass in the Γ7 band,
which is determined by

(21)

(22)

The quantities defined by Eqs. (22) characterize the
interaction of the Γ7 band with all Γ6 and Γ8 bands and
determine the effective mass .

In contrast to the Γ6 and Γ7 bands, the energy spec-
trum in the Γ8 band is anisotropic and Heff, kin contains
not only quadratic but also linear terms in k:

(23)

First, we find the matrix . This matrix describes
the part of the spectrum in the Γ8 band that is quadratic
in k. Using Eq. (15) and selection rules (7), (9), and
(10), we arrive at the conclusion that this part of the
spectrum is due to the interaction of the Γ8 band with all
Γ6, Γ7, and other Γ8 bands and involves the sums

(24)
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the matrix  can be written as

(27)

Here, I is the unit 4 × 4 matrix; and the matrices Jx, Jy,
and Jz are given by Eqs. (13). Expression (27) coincides
exactly with the Luttinger Hamiltonian [14]; therefore,
the quantities γ1, γ2, and γ3 are the Luttinger parameters.
We omitted the subscript Γ8 at the parameters γ1, γ2, and
γ3 in (26) for ease of reading. Clearly, each Γ8 band has
its own set of Luttinger parameters. Relations (26)
reveal the origin of the spectrum in the Γ8 band.

In practice, a spherical model is frequently used for
the valence band by putting γ2 = γ3. From Eq. (26), we
see that this assumption corresponds to disregarding the
interaction of the Γ8 band with the Γ7 and Γ8' bands.
Below, it will be shown that this assumption is reason-
able for many III–V compounds, since the Luttinger
parameters are mainly due to the interaction with the Γ6
bands.

The linear term in k in  in Eq. (23) comes
from the term in Eq. (15) that is linear in Vk and is due
to the absence of an inversion center. For symmetry rea-
sons [11, 15], the former term can be written as

(28)

It follows from selection rules (10) that the parameter ck

[15] can be expressed in terms of the coefficient 
[10] as

(29)

For III–V compounds, Eqs. (18), (21), (26), and (29)
provide a complete set of characteristics of the electron
energy spectrum near the Γ point in the quadratic
approximation in k.

5. g FACTORS OF ELECTRONS

The new version of the k · p method allows us to
derive exact symmetry expressions for the g factors of
electrons in all energy bands. According to the effec-
tive-mass method [11], the Zeeman term  in the
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effective Hamiltonian describing the interaction of an
electron in the Γn band with a magnetic field can be
written in the matrix form as [11]

(30)

Here, the subscripts α, β, and γ denote the Cartesian
projections of the vectors; Hγ is the magnetic field; εαβγ
is the unit antisymmetric tensor of order 3; M" specifies
the degenerate states of the Γm band; µ0 is the Bohr
magneton; g0 is the free-electron g factor; and σγ are the
Pauli matrices.

In the Γ6 band, an electron is described by a two-
component spinor. Using the method of invariants [11],
we can write Hamiltonian (30) in the form

(31)

Here,  is the effective g factor of an electron in the
Γ6 band.

Using Eqs. (30) and (31) and selection rules (7) and
(8) and taking into account that g0 = 2, we can obtain
the following expression for the effective g factor of an
electron in the Γ6 band:

(32)

(33)

The quantities  and  in Eq. (32) are given by
Eqs. (19). In Eq. (32), the first term is associated with
the average electron spin in the Γ6 state and the other
terms are related to the intrinsic orbital angular momen-
tum of an electron. When deriving Eq. (32), we used
normalization condition (2).

Analogous calculations can be performed for the Γ7
band using selection rules (8) and (9). In this way, the
effective g factor of an electron in the Γ7 band can be
found to be

(34)

(35)

HΓn
'( )MM '

1
2
---µ0 Hγ g0 Γn; M〈 |σγ Γn; M '| 〉 ∫

γ
∑=

–
i2
m
----- ' Γn; M〈 |πα Γm; M ''| 〉 Γ m; M ''〈 |πβ Γn; M '| 〉

EΓn
EΓm

–
---------------------------------------------------------------------------------------------εαβγ

Γm M '',

∑ .

HΓ6
'( )MM '

1
2
---gΓ6

µ0 s H⋅( )MM ' .=

gΓ6

gΓ6
2 1

4
3
---α 2

– 
  4

3
---AΓ6

–
4
3
---BΓ6

,+=

α 2
CΓ6Γ5

( )2
.

Γ5

∑=

AΓ6
BΓ6

gΓ7
2 1

3
---–

4
3
---β2

+ 
  4

3
---BΓ7

4
3
---CΓ7

,–+=

β2
CΓ7Γ2

( )2
.

Γ2

∑=
P

Here, the quantities  and  are given by Eqs. (22).
The appearance of sum (35) in Eq. (34) is related to
normalization condition (2).

In the Γ8 band, the electrons are described by four-

component wave functions and the Zeeman term 
in Eq. (30) is a 4 × 4 matrix. According to Luttinger
[14], this matrix can be expressed in terms of the J = 3/2
angular momentum matrices (13) as

(36)

In Eq. (36), the dimensionless Luttinger parameters κ
and q characterize the intrinsic magnetic moment of an
electron in the Γ8 band.

Using Eqs. (30) and (36) and selection rules (7), (9),
and (10), the parameters κ and q can be found to be

(37)

(38)

(39)

When deriving Eqs. (37) and (38), we used the relation

(40)

which follows from normalization condition (2) for the
wave functions.

Expressions (32), (34), (37), and (38) provide com-
plete information on electron g factors near the Γ point
in III–V compound crystals. They are exact symmetry
relations correctly taking into account the spin–orbit
interaction.
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express observable physical quantities through sums
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is convenient to invert the above relations and to
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express the sums in terms of the observable quantities.
The inverse relations have the form

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

7. CONCLUSIONS

Sum rules (41)–(49) for matrix elements allow one
to obtain useful information on III–V semiconductors.
In particular, from these sum rules, one can draw con-
clusions on the space symmetry of electronic states
near the Γ point and quantitatively estimate certain
optical matrix elements.

In this section, we draw conclusions about the spa-
tial symmetry of the conduction and valence bands and
estimate the optical matrix element for transitions
between the conduction and the valence bands. In what
follows, we use the band diagram shown in the figure.

Table 1 lists the band parameters, effective masses,
and g factors for the Γ6 conduction band and the Γ8 and
Γ7 valence bands of a number of III–V compounds. The
data listed in Table 1 are taken from [15–17].

For the same compounds, Table 2 gives the quanti-
ties , , , and  calculated from Eqs. (41),
(45), (42), and (43), respectively, and from the data in
Table 1. With these quantities, one can estimate the

matrix elements  and  (which are respon-
sible for the Γ8  Γ6 and Γ7  Γ6 optical transi-
tions) without any assumptions on the spatial symmetry
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of the wave functions at the Γ point. This conclusion
follows from the fact that the parameters α2 in Eq. (33),
β2 in Eq. (35), and s2 and t2 in Eqs. (39) (characterizing
the mixing of the wave functions) do not exceed unity
and, therefore, one can assume, to a good accuracy, that
the numerical values listed in Table 2 refer directly to
the quantities , , , and , whose absolute
values are much greater than unity. Furthermore, by
analyzing Eqs. (19), (22), and (24), which give these
quantities in the form of sums, and taking into account
that the quantities  and  are close in value to

 and , respectively, we can conclude that the
contributions to these sums are mainly due to the inter-
actions between the nearest neighbor bands Γ6 and Γ8
and between the nearest neighbor bands Γ6 and Γ7.
Therefore, in order to estimate the matrix elements

 and , it is reasonable to use the relations

(50)

(51)

Table 2 gives the values of the matrix elements

 and  (in atomic units) calculated

using formulas (50) and (51) and the data from Tables 1

and 2. The values of the matrix elements 

obtained from magneto-optical experiments are listed
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Three-band model of III–V semiconductors near the Γ
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is the spin–orbit splitting.
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Table 2.  Sums of the reduced matrix elements and the main matrix elements for III–V semiconductors

Sums and matrix
elements

Compound

InSb InAs InP GaSb GaAs

48.54 23.7 5.88 14.41 7.57

8.56 11.1 5.49 6.09 5.74

–10.17 –12.28 –5.27 –6.60 –5.95

–56.39 –26.44 –5.92 –15.15 –7.86

 (a.u.) 0.675 0.623 0.557 0.666 0.658

(0.694) (0.618) (0.560) (0.691) (0.660)

 (a.u.) 0.600 0.588 0.552 0.559 0.663
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Table 1.  Band parameters and g factors in III–V semiconductors

Parameter
Compound

InSb InAs InP GaSb GaAs

E0 (eV) 0.235 0.42 1.424 0.813 1.519

∆0 (eV) 0.803 0.38 0.108 0.76 0.340

0.014 0.025 0.08 0.0412 0.067

–0.1 –0.089 –0.121 –0.15 –0.15

–51.3 –14.8 1.48 –9.1 –0.44

–10 –13.0 –1.95 –6.2 –4.9

κ 17 7.86 1.47 3.5 1.72

q 0.39 0.04 0.02 0.13 0.04

γ1 40.1 19.67 5.05 13.2 6.85

γ2 18.1 8.37 1.6 4.4 2.10

γ3 19.2 9.29 1.73 5.7 2.90

mΓ6

m
--------

mΓ7

m
--------

gΓ6

gΓ7
in Table 2 in parentheses. These values are taken from
the review paper by Hermann and Weisbuch published
in [18]. In this review, one can also find references to
the original papers. The closeness of the calculated and
experimental values indicates that the matrix element

 agrees well with the band parameters and g fac-
tors.

From the data in Table 2, one can draw conclusions
about the spatial symmetry of the conduction and the
valence bands. We see that, in three out of five materi-

als, the matrix elements  and  are close in
value. Once the spin–orbit mixing is disregarded, the

equality  =  = –i 〈s |px |x〉  is satisfied [10];
therefore, one may assume that, in these compounds,

A
Γ6Γ8

A
Γ6Γ8 B

Γ6Γ7

A
Γ6Γ8 A

Γ6Γ7
PH
the wave functions in the Γ6 and Γ8 bands are mainly
functions of the s and p types, respectively, as is
assumed in the Kane model [6]. The small difference
between these matrix elements suggests that mixing
effects in the Γ6, Γ7, and Γ8 bands are small, i.e., that α2,
β2, s2, t2 ! 1.

In the InSb and GaSb compounds, there is a certain
difference between the matrix elements. We may
assume that, in these materials, the mixing effects are
stronger. This conclusion is supported by the experi-
ment reported in [16], in which strong absorption due
to “forbidden” Γ7  Γ8 transitions was observed in p-
GaSb (α ≅  2 × 103 cm–1, where α is the absorption fac-
tor). It is known that the Γ7  Γ8 transitions at k = 0 are
possible only in the presence of mixing (see, e.g., [8]).
YSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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Abstract—X-ray diffraction is used to study the structure of a metallic-phase film that forms during controlled
polishing of homogeneous polycrystalline semiconducting Sm1 + xS samples. Structural changes that appear in
the semiconducting phase under these conditions were studied. The x dependence of the thickness of the metal-
lic layer forming on the sample surface is analyzed to explain the effect of excess samarium ions on the trans-
formation parameters. The cause of the stabilization of the metallic modification of SmS after polishing is ter-
minated is explained using estimates based on the measured sizes of coherent domains in samples of different
compositions. The appearance and stabilization of the metallic phase are related to a decrease in and subsequent
conservation of the coherent-domain size, respectively. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

One of the unique properties of samarium sulfide
(SmS) is its ability to be transformed from a semicon-
ductor into a metallic state through mechanical polish-
ing of the sample surface [1]. The semiconductor–
metal phase transformation occurs in the surface layer
of the sample, and the metallic phase can exist for an
infinitely long time. The formation of the metallic
phase is related to the pressure of abrasive particles put
on the sample surface; this pressure results in a com-
plex strained state in the bulk of the sample and in com-
pression of the SmS surface layer [2]. As a result, the
effect reduces to the well-known reversible (isomor-
phous to NaCl–NaCl) semiconductor–metal phase
transformation that occurs in uniformly compressed
SmS under a pressure of ~6.5 kbar [3] and that is caused
by the transition of samarium ions from the divalent to
trivalent state. The mechanism of stabilization of the
metallic phase at the surface of the semiconducting
phase is less well understood. For single-crystal SmS,
the stabilization is related to a network of misfit dislo-
cations that forms at the semiconductor–metallic phase
interface due to the difference in their lattice parameters
(a = 5.97 and 5.7 Å, respectively) and stabilizes the
strained state of the metallic film [4, 5]. However, this
model does not tie in well with the long-time (many-
year) and high-temperature (up to 400°C) stability of
the SmS metallic phase, which was observed in both
single-crystal and polycrystalline samples.

According to [6], thin polycrystalline SmS films
contain excess samarium ions with respect to the sto-
ichiometric composition and these ions are in the triva-
lent state. The fact that they are trivalent follows from
an analysis of the results of [6]. Figure 1 shows the
amount of excess samarium ions (curve 1) and the
1063-7834/05/4704- $26.000622
amount of Sm3+ ions (curve 2) (reduced to the total
amount of samarium ions in a film) as a function of the
film lattice parameter. If we take into account that,
according to [6], part of the Sm3+ ions belongs to
samarium oxysulfide (whose fraction in a film is ~4%)
rather than to SmS, then the true amount of Sm3+ ions
in SmS can be given by curve 3. Curves 3 and 1 are seen
to agree well, which indicates that all excess samarium
ions in SmS are trivalent. It is believed that the addi-
tional Sm3+ ions should affect the parameters of the
phase transformation upon mechanical polishing.

5.955.97 5.93 5.91 5.89 5.87 5.85
a, Å

0

0.04

0.08

0.12

0.16

0.20
α0(Sm3+/Sm), β0(Smexc/Sm)

1

2

3

Fig. 1. Characteristics of thin polycrystalline SmS films as
a function of the lattice parameter: (1) fraction of excess
samarium ions in a SmS film [6], (2) Sm3+ ion fraction of
the total amount of samarium ions without regard for
oxysulfide impurity in a film [6], and (3) Sm3+ ion fraction
of the total amount of samarium ions with allowance for the
presence of ~4% oxysulfide impurity in SmS.
 © 2005 Pleiades Publishing, Inc.
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Thus, the mechanism of the stabilization of the SmS
metallic phase has not been convincingly explained.
Moreover, the effect of the excess samarium ions on the
parameters of the phase transformation upon polishing
has not been studied. In this work, in order to solve
these problems, we examine the structure of SmS poly-
crystals in the region of homogeneity of this semicon-
ductor compound using x-ray diffraction. These prob-
lems are also of practical interest, since partial transi-
tion of SmS into its metallic phase during polishing is
used to control the electrical resistance of polycrystal-
line thin-film resistive-strain sensors [7].

2. EXPERIMENTAL

We prepared nine polycrystalline samples of samar-
ium monosulfide, with their compositions falling in the
region of homogeneity (Sm1 + xS, with x = 0–0.17). The
samples were (4–9) × 3 × 20 mm in size. The method
used for their preparation was described in [8]. The
samples were synthesized in three stages. In the first
stage, SmS was synthesized from simple elements
(samarium and sulfur) in quartz ampoules and then bri-
quetted. In the second stage, the samples were sub-
jected to homogenizing annealing at 1000–1200°C. In
the third stage, they were subjected to high-temperature
annealing at T = 1600–1700°C.

To form the metallic phase, the samples were pol-
ished with diamond pastes under the same conditions.
They were first polished with coarse diamond pastes
and then gently polished with a micron-sized paste (to
an equal degree); the treatment time was 30 min.

X-ray diffraction data were obtained with a DRON-
2 apparatus using CuKα radiation. The sample lattice
parameters were measured before polishing by extrap-
olating the data on reflections lying in the angular range
θ = 30°–75°. After polishing, it is difficult to determine
the lattice parameter of the semiconducting phase in
samples with high values of x in the angular range θ =
30°–75°, since the intensities of the reflections of this
phase are low as compared to those of the metallic
phase. Therefore, in this x range, the values of a of the
semiconducting and metallic phases were determined
by averaging the values calculated from reflections
lying in the angular range θ = 15°–75°.

From the difference in the lattice parameters of the
semiconducting and metallic phases with the same
crystal structure, we calculated the relative amount of
the forming metallic phase with respect to the total
amount of SmS by measuring the reflection peak
heights. For this purpose, we used the (111), (200), and
(220) reflections of the semiconducting phase and their
counterpart reflections of the metallic phase. The calcu-
lated amounts of the metallic phase were averaged.

The crystallite size (i.e., the size of coherent-scatter-
ing domains) was determined approximately by assum-
ing that the broadening of the reflection peaks is due to
the small size of coherent-scattering domains. As a
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
standard, we used a Ge powder, and we chose y =
1/(1 + γx2) as an approximating function. For calcula-
tion, we used the Scherrer formula

Here, D is the effective coherent-scattering domain
size, λ is the x-ray radiation wavelength, θ0 is the Bragg
angle (chosen for calculations), and ∆'(2θ) is the half-
width at half-maximum (HWHM), which was deter-

mined from the formula ∆' = , where  is
the measured HWHM of the (111) reflection of SmS
and  is the measured HWHM of the (200) reflection
of the standard. The conditions for recording the x-ray
diffraction patterns of samples and the standard were
identical. As an example, Fig. 2 shows x-ray diffraction
patterns of a polycrystalline Sm1.08S sample before
(Fig. 2a) and after polishing (Fig. 2b).

3. RESULTS AND DISCUSSION

Figure 3 shows the concentration dependences of
the SmS lattice parameter in the region of homogeneity
in the semiconducting phase (curve 1) and in the metal-
lic phase produced by polishing (curve 2). A sharp
decrease in a is observed in the semiconducting phase
at x > 1.06. Figure 4 shows the experimental concentra-
tion dependence of the relationship between the reflec-
tion intensities of CuKα radiation for the metallic phase
(Im) and the semiconducting phase (Is) after polishing.
At x > 1.06, the relative reflection intensity of the metal-
lic phase, S = Im/(Im + Is), begins to increase sharply.
The table gives the measured coherent-scattering
domain sizes in polycrystals in the initial state (D0) and
after polishing (Ds for the semiconducting phase and
Dm for the metallic phase). It can be seen that, in all
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Fig. 2. X-ray diffraction patterns of a polycrystalline
Sm1.08S sample (a) before and (b) after polishing (M stands
for the metal phase, S stands for the semiconducting phase).
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samples after polishing, the coherent-scattering domain
sizes decrease and these sizes for the semiconducting
state are always larger than those for the metallic state
(D0 > Ds > Dm for all compositions).

The experimental results given in Fig. 3 make it pos-
sible to calculate the thicknesses of the metallic layers
that form at the surface of SmS semiconducting sam-
ples with different compositions during polishing. To
calculate the relative intensity of x-ray diffraction
reflections for Sm1 + xS polycrystalline samples, we
used conventional relations for the x-ray diffraction
intensities in the Debye–Scherrer method with inclu-
sion of absorption, which depends on the sample shape,
the absorption coefficient, and the Bragg angle θ [9].
We assume that the crystallite orientation distribution is
isotropic and that each crystallite is sufficiently small.
In this case, extinction can be neglected and the energy
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Fig. 3. Concentration dependence of the lattice parameter of
homogeneous polycrystalline Sm1 + xS in (1) the semicon-
ducting phase and (2) the metallic phase produced by pol-
ishing.

 
X-ray coherent-scattering domain sizes in the semiconduct-
ing (before and after polishing) and metallic phases of
Sm1 + xS samples

x D0, Å Ds, Å Dm, Å

0 550 350 190

0.02 750 320 151

0.04 700 370 190

0.06 570 360 184

0.07 600 375 182

0.08 550 370 215

0.10 – 400 176

0.17 500 300 190
P

scattered by a small volume dV per unit time in the
direction of a ring with indices (hkl) is given by

(1)

where I is the power scattered per unit length of the dif-
fraction line at a distance r from the sample, I0 is the
intensity of the primary beam per unit area of its cross
section, θ is the Bragg angle (λ = 2dhklsinθ), Fhkl is the
structure factor of the (hkl) plane, n is the multiplicity
factor of the (hkl) plane, Vc is the unit cell volume, and
W is the Debye–Waller temperature factor. To take into
account the absorption of x-ray radiation, we assume
that, at a depth x, the intensity of the primary beam
decreases to I0exp(–µρx), where µ and ρ are the mass
absorption factor and the density of a sample, respec-
tively. We also take into account that the semiconduc-
tor–metal phase transformation in SmS is isostructural
and that the measurements were performed at the same
temperature. Then, for the case of a thin h-thick metal-
lic SmS film located on the semiconducting-phase sur-
face, Eq. (1) gives the following expression for the rel-
ative intensity of the reflection x-ray diffraction from
the metallic and semiconducting phases:

(2)
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Fig. 4. Concentration dependence of the relative x-ray dif-
fraction intensity for the reflections of the metallic (Im) and
semiconducting (Is) phases after controlled polishing.
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are the reflection intensities for the metallic and semi-
conducting phases, respectively, with allowance for

absorption; Φ(θ) =  is an
angular factor; and a is the lattice parameter. The results
of calculations from Eq. (2) are shown in Fig. 5. Direct
measurements of the thickness of the metallic layer
forming on the surface of a thin-film SmS sample of
stoichiometric composition during polishing agree rea-
sonably well with Fig. 5a.1 

The jumplike increase in the thickness of the metal-
lic layer with increasing x (Fig. 5b) can be explained
using a concentration model of the semiconductor–
metal phase transformation in SmS. According to this
model, the transformation occurs when a critical value
of the electron concentration in the conduction band
(ncr ~ 1020 cm–3) is reached. At this concentration, first
the Coulomb potential of impurity (defect) samarium
ions and then the Coulomb potential of the ions located
on the lattice sites are completely screened. In the
region of homogeneity of SmS, these impurity ions are
excess samarium ions with respect to the stoichiometric
composition. In [10], it was shown that, in the region of
homogeneity, there is a certain value of x above which
all impurity samarium ions are ionized to the trivalent
state (Sm2+  Sm3+ + ). For the polycrystalline
samples considered here, this value is x ~ 0.06, which
is consistent with the behavior of the lattice parameter
in the homogeneity region for the samples in the semi-
conductor state (Fig. 3). As shown in [11], the transition
from the semiconducting Sm2+S phase to the metallic
Sm3+S phase is accompanied by a change in the lattice
parameter, which is proportional to the change in the
valence of samarium ions. Thus, by knowing the lattice
parameters of Sm2+S (an = 5.97 Å), Sm3+S (an + 1 =
5.62 Å), and the compound with an intermediate
samarium valence (an + ε), we can find the addition to
the valence of +2 (in our case, n = 2) for a samarium ion
from the formula ε = (an – an + ε)/(an – an + 1). According
to the data in Fig. 2, this addition is ε ~ 0.02, which can
correspond to a jumplike complete or partial transition
into the trivalent state of the excess (impurity) samar-
ium ions (whose concentration is two orders of magni-
tude lower than that of the host ions located on the lat-
tice sites [10]). When a sample is polished, ncr is
reached in the surface layer that transforms into the
metallic phase. According to [2], ncr is reached when
the relative decrease in volume of SmS under the pol-
ishing-induced pressure, ∆ = εxx + εyy + εzz reaches the
value corresponding to ncr. Upon compression, the con-
centration of conduction electrons in SmS increases, so

1 With a MII-4 microinterferometer, we measured the thicknesses
of a SmS film before and after chemical etching of the metallic
layer formed on its surface. The thickness of the metallic layer
determined as the difference of these two thicknesses was found
to be ~0.1 µm.
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ncr = n0 + n∆, where n∆ is the compression-induced addi-
tion to the electron concentration. Since ∆ decreases
monotonically with distance from the sample surface
[2], a jumplike increase in n0 with increasing x leads to
a jumplike increase in the thickness of the metallic
layer; it is this behavior that is seen in Fig. 5b.

The data given in the table allow us to understand
the cause of the stabilization of the metallic SmS mod-
ification after the termination of polishing. When a
polycrystal is polished, many defects form in its surface
layer, which results in a decrease in the sizes of coher-
ent-scattering domains (single-crystal domains with an
ordered arrangement of ion sites).2 The formation of
defects is related to the change in the volume of SmS
due to the phase transformation (~14%). The bound-
aries of single-crystal domains are defect-containing
SmS layers whose thickness is generally accepted to be
equal to about one lattice parameter. Using this fact and
the values of Ds, Dm, and D0, we can estimate the vol-
ume fraction V of the defect-containing material in each
specific case from the formula

(3)

The minimum value of V for the metallic phase (Dm =
215 Å, see table) can be calculated to be 0.15. The max-
imum value of V for the semiconducting phase (Ds =
300 Å) is 0.115. Thus, in homogeneous polycrystalline
Sm1 + xS samples, the fraction of defect samarium ions

2 It should be noted that the coherent-scattering domain sizes do
not coincide with the crystallite sizes in a polycrystal but rather
are much smaller. According to our data, the coherent-scattering
domain sizes do not exceed 2500 Å even in the most perfect sin-
gle-crystal SmS samples.
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Fig. 5. (a) Dependence of the relative diffraction intensity
on the thickness of the metallic film calculated from Eq. (2)
and (b) the concentration dependence of the thickness of a
metallic film (produced by polishing of Sm1 + xS), calcu-
lated from the data on the relative intensity of x-ray reflec-
tions (CuKα radiation).
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is always higher than 0.15 in the metallic phase and is
always lower than 0.12 in the semiconducting phase.

It is known [12] that, in Sm1 – xLnxS substitutional
solid solutions of samarium monosulfide with mono-
sulfides of trivalent elements (Ln = Cd, Y), hysteresis
takes place as an applied hydrostatic pressure is
removed. The hysteresis consists in the fact that, when
the concentration of these elements is higher than a cer-
tain critical value lying in the range 0.12 < x < 0.15, the
samples retain their metallic state after the pressure is
removed and again become semiconductors only after
heating. A similar situation is likely to take place in our
case. The only difference is that the role of the foreign
trivalent ions is played by the samarium ions in the
“defect” (trivalent) state. Their critical concentration
V = 0.12–0.15 is in good agreement with the critical
value of x for Gd and Y. After the polishing is termi-
nated, i.e., once the action of pressure is removed, D
becomes small and the sample accumulates an amount
of Sm3+ ions for which the number of electrons in the
conduction band exceeds ncr; therefore, the sample is in
the metallic phase. This phase can exist for an infinitely
long time until the amount of defect samarium ions is
decreased by any means (e.g., by annealing). This con-
clusion is corroborated experimentally. The surface of
a SmS sample was transformed into the metallic state
through polishing and had the following parameters:
S = 13%, Ds = 350 Å (V = 0.10), and Dm = 200 Å (V =
0.16). After vacuum annealing at T = 500°C, the metal-
lic phase disappeared (S < 1%), which was accompa-
nied by an increase in the coherent-scattering domain
size to D = 530 Å. This value corresponds to V = 0.07,
which is sufficiently small (below the critical value V =
0.12) for the transformation into the semiconducting
state to occur. A decrease in the relative amount of
defects is seen to result in transformation of the metallic
SmS phase into the semiconducting phase.

4. CONCLUSIONS

We have studied the structures of the semiconduct-
ing and metallic modifications of polycrystalline
samarium sulfide in the region of its homogeneity
(Sm1 + xS with x = 0–0.17) and revealed the following
features.

(1) The metallic phase forms upon polishing
because of an increase in the amount of defects in the
surface layer, which manifests itself in a decrease in the
x-ray coherent-scattering domain size. The excess
samarium ions (with respect to the stoichiometric com-
position) decrease the critical values of the external
influences for the transformation into the metallic
P

phase because these ions transfer to the trivalent state at
x ≥ 0.06.

(2) The metallic modification is retained on the sur-
face of a semiconductor sample because the coherent-
scattering domain size remains sufficiently small (less
than the critical value of ≤200 Å) after polishing has
terminated; mechanical residual stresses do not play an
important role in this stabilization.
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Abstract—Polarized luminescence and transient optical absorption (TOA) induced by pulsed electron irradia-
tion in beryllium oxide crystals were studied. Exponential stages with decay times τ = 6.5 ms were observed to
exist in luminescence bands at 4.0, 5.0, and 6.7 eV, which coincide in spectral composition and polarization
characteristics with the luminescence of self-trapped excitons (STEs) of two types. The formation efficiency of
centers with a 6.5-ms decay time is comparable to that of triplet STEs. The general characteristics of the kinetics
and the decay times of the TOA of these centers do not depend on electron fluence and are governed by the
monomolecular recombination process. The spectra of TOA centers with a decay time of 6.5 ms were found to
be similar to those of V-type hole centers and STE hole components. The mechanism by which recombination
of closely spaced, spatially correlated Frenkel pairs, Be+ and V– centers, brings about an exponential component
with a 6.5-ms decay time in the luminescence of STEs of two types in BeO is discussed. © 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

Earlier luminescence studies revealed the existence
of two different types of self-trapped excitons (STEs) in
beryllium oxide [1, 2]. The two STE types originate
from bonds of two types in the BeO wurtzite lattice,
namely, Be–Oaxial and Be–Ononaxial bonds, which are ori-
ented parallel and at an angle of 109° to the optical C
axis of the crystal, respectively. The luminescence,
decay times, and polarization parameters permitted
assignment of the bands at 6.7 and 4.0 eV to the triplet
and singlet “axial” STEs (referred to subsequently as
STE I). The luminescence at 4.9 eV was attributed to
triplet “nonaxial” STEs (STE II in what follows).

The structure of triplet STEs of both types in BeO
has been subsequently studied using time-resolved
pulsed absorption spectroscopy with nanosecond-range
electron beam excitation [1, 3]. A band at 1.7 eV, asso-
ciated with optical transitions in the electronic exciton
component, has been detected in the transient optical
absorption (TOA) spectrum of STE I and STE II. The
data from [3] permitted the conclusion that the elec-
tronic components of both triplet STE types have a sim-
ilar structure. Recent studies of STEs in BeO conducted
using optically detected magnetic resonance [4]
revealed that the electronic component of the STEs is
partially localized at the s states of beryllium. An anal-
ysis of the STE TOA spectrum at energies E > 2 eV
revealed transitions in the hole core, whose structure is
different in STE I and STE II. The TOA decay kinetics
studied in the region of the STE-I hole component
exhibits, in addition to the stage governed by the STE-I
1063-7834/05/4704- $26.00 0627
lifetime, an exponential stage with a relaxation time
τ = 6.5 ms. This component was attributed to the for-
mation and decay of self-trapped holes [5]. The same
exponential component with τ = 6.5 ms was revealed in
the decay kinetics of luminescence in the 4.0-eV region
[6] and was assigned to radiative transitions from the
STE-II triplet state split by the low-symmetry crystal
field. Thus, the controversial data obtained in [5, 6] on
the centers associated with the 6.5-ms component did
not establish their nature reliably.

The present study deals with a search for the decay
component with τ = 6.5 ms in the STE luminescence.
An analysis of luminescence and TOA data establishes
the main characteristics of luminescence excitation of
the two STE types related to the formation and recom-
bination of closely spaced, spatially correlated cation
Frenkel pairs of BeO defects.

2. EXPERIMENTAL TECHNIQUES

The studies were carried out on nominally pure BeO
crystals grown, using the Czochralski–Kyropoulos
technique, from a beryllium oxide solution in a sodium
tungstate melt [7]. The content of the characteristic
impurities Li, B, Mg, Al, and Zn did not exceed
10 ppm. Optical measurements in the range 1.0–6.0 eV
were carried out at temperatures of 80–300 K using
pulsed absorption and luminescence spectroscopy with
nanosecond-range time resolution [8]. Luminescence
was excited using a GIN-600 pulsed electron accelera-
tor with beam parameters Ee = 0.25 MeV, W = 0.02–
0.50 J/cm2, and tpulse = 10–8 s. Additional studies of opti-
© 2005 Pleiades Publishing, Inc.
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Spectral response, decay kinetics, and polarization of STE luminescence in BeO

STE type Luminescence peak position Em, eV Decay time τ, s Degree of polarization P

Singlet STE I 4.0 2 × 10–9 +0.67

Triplet STE I 6.7 340 × 10–6 –0.75

Triplet STE II 4.9 36 × 10–6 –0.60
cal absorption spectra in polarized light and of polar-
ized luminescence were conducted with a Rochon
prism. The degree of polarization of luminescence was
determined as

where I|| and I⊥  are the luminescence intensities with the
electric vector parallel and perpendicular to the C axis
of the BeO crystal, respectively.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Our study of the luminescence decay kinetics in the
range 3.0–6.0 eV revealed, in addition to the compo-
nents deriving from radiative relaxation of the two
types of STEs (see table), an exponential stage with a
decay time τ = 6.5 ms. Figure 1 displays a cathodolu-
minescence (CL) spectrum of BeO induced by an elec-
tron beam pulse at 80 K and measured with a time delay
td = 15 ms to exclude the effect of the STE lumines-
cence, which is a few orders of magnitude stronger. As
seen from the deconvolution into Gaussian constitu-
ents, the CL spectrum of the component with τ = 6.5 ms
consists of three bands. The band at 4.0 eV, for which
the degree of polarization is P = +0.64 ± 0.03, coincides
with the luminescence of singlet STE I in terms of its
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Fig. 1. Luminescence spectrum obtained at 80 K with a gate
delay of 15 ms after termination of an electron beam pulse.
P

spectral and polarization characteristics (see table). In
the spectral region E > 5.5 eV, one observes a steep
growth in the luminescence intensity. As is evident
from Fig. 1, the spectral behavior of the “slow” lumi-
nescence stage in this region fits well with that of the
long-wavelength decay of the 6.7-eV band of triplet
STE I. Also, the degree of polarization (–0.70 ± 0.05)
of the luminescence with a relaxation time of 6.5 ms at
6.0 eV is practically identical to that of triplet STE I
(see table). It should be pointed out that, using Gaussian
extrapolation to the region of the maximum of the
6.7-eV band, the luminescence intensity of the slow
component is found to be two orders of magnitude
greater than the luminescence intensity at 4.0 eV.

In addition to the luminescence bands at 4.0 and
6.7 eV attributed to the singlet and triplet STE I, the
spectrum of the CL component with τ = 6.5 ms contains
a band peaking at 5.0 eV. The degree of polarization at
about 4.7 eV was found to be P = –0.30 ± 0.10. This fig-
ure differs slightly from the luminescence polarization
of triplet STE II (see table) because of the contribution
due to the positively polarized luminescence at 4.0 eV
in this region. The spectral and polarization character-
istics of the 5.0-eV luminescence band with a decay
time of 6.5 ms suggest that it is related to the lumines-
cence of triplet STE II.

The above conclusions are supported by the temper-
ature dependences of the relaxation times and of the ini-
tial luminescence band intensity of the component with
τ = 6.5 ms (Fig. 2). We see that the main features in the
behavior of these dependences coincide; indeed, for
T > 100 K, one observes a shortening of the decay time
paralleled by an increase in the initial intensity with the
same activation energy Ea = 120 ± 10 meV. This tem-
perature dependence suggests that the component with
τ = 6.5 ms provides a constant contribution to the inte-
grated intensity of the luminescence bands at 4.0, 5.0,
and 6.7 eV. Thus, our luminescence studies of BeO
crystals revealed the existence of centers whose
destruction with a 6.5-ms time constant gives rise to the
formation of luminescence states of both types of
STEs.

To probe the nature of these centers, we carried out
a comprehensive study of the decay kinetics and spectra
of the TOA induced by an electron pulse at 80 K. In the
3.6-eV region, the decay of optical absorption can be
described by a sum of three exponential components
with decay times τ1 = 340 µs, τ2 = 6.5 ms, and τ3 =
450 ms (Fig. 3). This indicates the existence of three
different centers of nonsteady absorption, among which
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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triplet STE I is the first to undergo radiative relaxation
with a decay time of 340 µs. An investigation of the
temperature dependence of the decay times and initial
optical density of the component with τ2 = 6.5 ms
showed that, at T > 100 K, the lifetime of the centers
responsible for this component shortens with the same
activation energy Ea = 120 ± 10 meV with which the
relaxation of the STE-I and STE-II luminescence com-
ponent with τ2 = 6.5 ms is accelerated (Fig. 2). Note
that the initial optical absorption amplitude of these
centers is temperature-independent. The efficiency of
creation of the centers responsible for the τ2 = 6.5-ms
component, as estimated from the initial optical absorp-
tion density, turned out comparable (70–80% of the ini-
tial optical density of the component with τ1 = 340 µs)
to that of triplet STE I.

To comprehensively analyze the relaxation pro-
cesses, we investigated the dependence of the decay
kinetics and of the initial TOA optical density on the
electron beam fluence. The results obtained reveal the
following features of centers of metastable optical
absorption.

(1) The electron pulse–induced optical absorption
density of STE I and of centers with a characteristic
decay time of 6.5 ms increases in proportion to the elec-
tron fluence (Fig. 3). This observation indicates the
intrinsic nature of the absorption centers.

(2) The amplitude of the optical absorption density
of centers with a characteristic lifetime of 450 ms tends
to a constant value with increasing electron fluence
(Fig. 3). This suggests that these centers are lattice
defects or impurities.

(3) Increasing the electron fluence has no effect on
the exponential pattern of the kinetics or the decay time
of the component with τ = 6.5 ms. This feature of the
kinetic behavior should be attributed to the monomo-
lecular character of recombination in genetic pairs [9].
As an illustration, we may recall the recombination
brought about by Coulomb or elastic interaction of
charged or neutral defects. Such relaxation processes
are known to occur, in particular, with spatially corre-
lated anion Frenkel pairs in alkali halide crystals (α–I
and F–H centers) [10].

A specific feature of the hexagonal (wurtzite) struc-
ture of BeO is the close-packed arrangement of oxygen
ions, in which one-half of the tetrahedral voids is occu-
pied by beryllium ions, while the other half of the tetra-
hedral voids (rt = 0.34 Å) and all octahedral voids (roct =
0.55 Å) form interstitial space [11]. Comparing the
effective ionic radii of O2– (1.36 Å) and Be2+ (0.34 Å)
suggests that the most probable process for BeO would
be the formation of close-spaced cation Frenkel pair
defects (CFPD). In an attempt to find support for this
hypothesis, we studied TOA spectra obtained at 80 K
with different time delays after termination of the elec-
tron pulse (Fig. 4). As follows from a comparison of
induced-absorption spectra, centers with a relaxation
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
time of 6.5 ms do not produce a band at 1.7 eV, which
is due to optical transitions in the STE electronic com-
ponent. Because the electronic component is actually
an electron localized at the s states of beryllium [4], this
observation may be due to the Be+ ion being displaced
from a lattice site into an interstice. At E > 2 eV, the
TOA spectrum of centers with a 6.5-ms decay time lies
in the region of optical transitions in the STE hole core
in BeO. Furthermore, the absorption spectrum of these
centers correlates well with that of the V– and VB stable
hole centers, which are a hole trapped by an oxygen ion
(O– center) near an isolated cation vacancy or near a
cation vacancy associated with a Be2+ ion, acting here
as a charge compensator (Fig. 4).
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Fig. 3. (a) Relaxation kinetics of transient optical absorp-
tion at 3.6 eV induced by an electron beam pulse in BeO
crystals at 80 K. Dashed curves are deconvolution of the
kinetics curve into exponential functions. (b) Optical-den-
sity amplitudes of optical absorption decay kinetics compo-
nents plotted versus electron fluence.
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Based on all of the above observations, we put for-
ward the following mechanism for the formation of
centers whose recombination is accompanied by the
luminescence of both STE types in BeO with a decay
time of 6.5 ms.

(1) In the first stage, an electron beam initiates the
formation of excitons and their relaxation to the self-
trapped state, which is accompanied by localization of
the electron at the s states of a beryllium ion in the form
of a Be+ center and localization of the hole at the p
states of an oxygen ion in the form of an O– center.

(2) Fast vibrational relaxation of the electronic STE
subsystem to the lowest luminescing state imparts an
energy to the Be+ ion that is high enough to displace the
ion to an interstitial site with the formation of a
charged, spatially correlated CFPD, namely, a Be+ cen-
ter and a V– center.

(3) Coulomb interaction stimulates recombination
of close-spaced CFPDs, which occurs with a relaxation
time of 6.5 ms at 80 K. This brings about lattice recov-
ery and the formation of excited states of STEs of both
types in BeO. Radiative relaxation from these states
manifests itself as an exponential component with
monomolecular decay kinetics in the luminescence
bands of the STE-I singlet and triplet at 4.0 and 6.7 eV,
as well as in the luminescence band at 5.0 eV of the
STE-II triplet. An increase in temperature gives rise to
an increase in the recombination rate of close-spaced
CFPDs characterized by an activation energy of
120 meV, but the contribution of this mechanism to the
integrated luminescence intensity of both STE types in
BeO remains constant.
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Fig. 4. (1–3) TOA spectra measured (1) at the end of elec-
tron irradiation and (2, 3) with a gate delay of 5 ms. (4, 5)
Spectra of steady-state optical absorption of hole VB centers
measured for polarized light with (1, 3, 5) E ⊥  C and (2, 4)
E || C.
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The possibility of spatial separation of the CFPD
components in BeO remains an open problem. The
kinetics of electron beam pulse–induced absorption
contains a stage with a decay time τ3 = 450 ms (Fig. 3).
The above characteristics of the centers responsible for
this stage suggests their relation to defects. We believe
that these metastable defects could be spatially sepa-
rated components of cation Frenkel pairs (Be+ and V–

centers) forming in the dissociation, as it were, of spa-
tially correlated CFPDs. Indeed, the TOA spectrum of
the stage characterized by a 450-ms decay time is sim-
ilar to the absorption spectrum of stable V-type hole
color centers. The long relaxation times of these centers
are signatures of the localization and migration of inter-
stitials (Be+ ions) separated by a considerable distance
from the V centers. For T > 120 K, these processes
undergo thermally stimulated acceleration with an acti-
vation energy of 190 ± 10 meV, which brings about a
decrease in the decay time of the τ = 450-ms compo-
nent in the recombination of spatially separated Be+–V–

Frenkel pairs. The activation energy (190 meV) of ther-
mally stimulated recombination of spatially separated
CFPDs is higher than that of spatially correlated
CFPDs (120 meV).

The activation energy of 190 meV is close to the
average activation energy of ~200 meV in the region of
the peak of thermally stimulated luminescence (TSL) at
100 K, which is characteristic of all BeO crystals [12].
The spectral composition of the TSL peak at 100 K
(which contains STE luminescence bands at 4.9 and
6.7 eV) may be governed by the recombination of spa-
tially separated CFPD components.
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Abstract—The temperature dependence of the permittivity ε of PbWO4 crystals is studied in the range T =
290–550 K at a frequency of 1 kHz. The ε(T) dependences measured on heating and cooling are different. On
heating, groups of narrow maxima at 290–330 K and 330–400 K are observed in the ε(T) curves. The first group
of peaks is dominant. High-temperature polarization produces an additional broad peak in the ε(T) curve at
400 K. A linear ε(T) dependence is observed in the range 400–470 K. Above 470 K, the variation in ε(T) closely
follows an exponential law. Restoring relaxation of ε in the range 25–30 at 290 K after high-temperature sample
heating proceeds exponentially in a few stages. The features of ε(T) curves are determined by the dipole polar-
ization and the hopping mechanism of charge exchange between complex dipole associates. Such structural
defects may be pairs of doubly charged lead and oxygen vacancies (diplons). These defects also form a basis
for more complicated defect complexes with localized holes (or electrons) at the corresponding vacancies.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Scheelite-structure crystals of lead tungstate
PbWO4 (PWO) have been intensively studied in view
of their use as effective self-activated scintillation
materials with short afterglow times [1]. The lumines-
cent properties of PWO and its time characteristics
depend on structural defects. However, points of view
on the nature of these defects vary. The electrical and
dielectric properties of this compound have not been
studied sufficiently, despite the fact that they are infor-
mative in revealing point defects and monitoring the
changes in the state of these defects during heat treat-
ment.

We have performed a series of studies on the electri-
cal properties of PWO crystals in an external ac electric
field and on thermally stimulated polarization–depolar-
ization currents in the temperature range 290–600 K
[2–4]. The permittivity and dielectric loss of doped
PWO crystals were considered in [5–11] in order to
establish the features of impurity defect formation.

The first of those studies [5] deals with some dielec-
tric characteristics of lead molybdate and tungstate at
temperatures above 540 K. In [6–10], the methods of
dielectric response in the frequency range 10–106 Hz
were used to clarify the laws of incorporation of Nb, Y,
La, Gd, and F atoms into the PWO matrix at tempera-
tures of 413–673 K. When interpreting the results, it
was assumed that impurity ion–lead vacancy dipole
complexes formed. Complicated vacancy dipole com-
plexes in PWO crystals were considered in [11] using
the frequency dependence of the dielectric loss. The
temperature dependence of the dielectric characteris-
1063-7834/05/4704- $26.00 0632
tics of CuWO4 was measured after various heat treat-
ments in [12]. The permittivity and dielectric loss of
some polycrystalline tungstates at a frequency of 1 kHz
are given in [13].

In this study, we consider the experimental temper-
ature and isothermal dependences of the permittivity ε
in order to obtain information on the dielectric proper-
ties of PWO crystals in the range 290–550 K; isother-
mal variations in the permittivity were measured on
samples relaxing to the quasi-equilibrium state.

2. EXPERIMENTAL

Undoped PWO crystals obtained using the Czo-
chralski technique were studied. Samples in the form of
plane-parallel plates 10 × 10 × 0.4 mm in size were cut
normally to the growth axis [001]. Aquadag electrodes
were deposited onto the polished and cleaned surfaces
of samples. A quartz temperature-controlled measuring
cell was used in the experiments (with an accuracy of
temperature control of better than ±1 K). The values of
ε were calculated assuming that the edge effects were
small and using the well-known relation for a flat
capacitor [14],

(1)

where C is the measured capacitance of the sample;
d and S are its thickness and area, respectively; and ε0
is the permittivity of free space. The capacitance of a
sample was recorded using a CLR E7-13 measuring
unit (operating frequency, 1 kHz). The root-mean-
square value of the voltage drop on a measured object
did not exceed 0.2 V. To obtain correct results, the

ε Cd/ε0S,=
© 2005 Pleiades Publishing, Inc.
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capacitance of the connecting system was taken into
account. All other experimental details were the same as
those described earlier in [15]. The temperature was mea-
sured with a standard chromel–alumel thermocouple.

Measurements were performed in the regime of lin-
ear heating or cooling at a rate of 0.1 K/s in the range
290–550 K. Relaxation of a sample to the quasi-equi-
librium state at room temperature after high-tempera-
ture heating was controlled by measuring the sample
capacitance in certain time intervals t. In order to study
the effect of preliminary excitation in an external dc
electric field, we applied a dc voltage (up to 50 V) to a
crystal over a time tp = 5–15 min at different fixed tem-
peratures Tp. Using the standard Origin software pack-
age, we processed the experimental data and decom-
posed the complex-structure maxima of the measured
curves into Gaussians.

3. RESULTS

Figures 1a–1d show the temperature dependences of
the permittivity of PWO crystals for different maxi-
mum sample heating temperatures Th in each experi-
ment. Curves are plotted both for heating and for cool-
ing with one or several successive heating–cooling
cycles. The temperature Th was chosen in accordance
with earlier studies on thermally stimulated currents for
the same samples [2–4]. Using the thermal-depolariza-
tion method, under certain conditions, we observed
series of maxima of depolarization currents in the tem-
perature ranges 290–350 K (range A), 350–380 K (B),
and 400–600 K (C). We assumed that these maxima are
related to dipole polarization (ranges A, B) or to space
charges produced by equilibrium carriers in a sample
(range C) [2–4].

In Fig. 1, we see that, in ranges A and B, polarization
effects strongly affect the ε(T) curves. In the range 400–
520 K, a conventional shape of the ε(T) curves is
observed (curve 1 in Fig. 1d). A nonlinear increase in ε
at high temperatures is caused by an exponential
increase in conductivity with activation energies of
0.7–0.9 eV [2–4] in the corresponding temperature
intervals. In the range 290–400 K, the ε(T) curves mea-
sured in the heating mode exhibit closely spaced com-
plicated maxima grouped in two rather narrow temper-
ature regions (290–330, 330–400 K) (curve 3 in Fig. 1a;
curves 1 in Figs. 1c, 1d).

The ε(T) curves measured on heating and cooling
differ in shape. Thermal hysteresis appears for Th ≥
400 K, where the values of ε measured on heating are
higher than those on cooling. In the cooling mode, no
maxima are observed in the ε(T) curve. In repeated
experiments, the ε(T) curves measured on heating
remain nonlinear irrespective of Th or of the duration of
exposure of a sample to normal conditions prior to mea-
surements. At Th ≥ 400 K (Figs. 1a, 1b), the values of ε
measured on cooling are greater than on heating for the
same temperatures.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
At room temperature, the values of ε usually lie in
the interval 25–30. These values agree with the data
obtained for PWO in [7, 16]. For quasi-equilibrium val-
ues of ε to be established after high-temperature heat-
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Fig. 1. Temperature dependences of the permittivity of
PbWO4 crystals on (1) heating and (2) cooling for different
maximum measurement temperatures Th in one heating–
cooling cycle. (3) Heating of the sample after the first mea-
surement cycle represented by curves 1 and 2. Th values:
(a) 325, (b) 335, (c) 405, and (d) 515 K. Measurements in
each cycle in (a–d) were performed after keeping the sam-
ple under normal conditions for longer than 24 h.
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ing, a sample must be kept for about 24 h under normal
conditions. The initial conductivity of the crystal is
recovered in the same time period [4].

When measured on heating in the range 400–470 K,
the function ε(T) is linear and can be approximated by

(2)

On cooling in the range 470–320 K, ε also depends lin-
early on T:

(3)

For temperatures T > 470 K, the experimental ε(T)
curve deviates from a linear dependence. This deviation
was observed practically in all materials (see, e.g., [12,
13, 16, 17]). The authors of [12] fitted the high-temper-
ature segment of the ε(T) curve with an exponential
function. In [17], the nonlinear segment of the ε curve
was described by a quadratic law. In our case, in the
range 470–550 K, the best agreement between the
experimental ε(T) curve measured on heating and the
calculated curve was obtained using an exponential
function of the form

(4)

where k is the Boltzmann constant. When measured on
cooling, the preexponential factor in Eq. (4) was equal
to ~28.70. Thus, in the lnC–T–1 coordinates, we can fit
the experimental C(T) curve for T > 470 K with one or
two straight lines (Fig. 2), whose slopes determine the
activation energies ∆H. The activation energy is found
to be ~0.014 eV in the case of heating for T > 400 K,
~0.033 eV for cooling in the region T > 500 K, and
~0.011 eV for cooling in the region T < 500 K.
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Fig. 2. Dependence of the capacitance on the inverse tem-
perature in the case of (1) heating of a polarized PbWO4
sample (Tp = 500 K, tp = 5 min) and (2) heating and
(3) cooling of a nonpolarized sample.
P

The results of studies of the effect of an external dc
electric field on the ε(T) dependence in PWO are shown
in Fig. 3 (curves 1, 2). For comparison, Fig. 3 also
shows data for a nonpolarized sample (curves 3, 4). As
the field was switched off at 290 K, fast relaxation pro-
cesses were observed corresponding to C decreasing
with time. The C(T) function was measured after the
end of the fast relaxation. The experiments show that,
in the range 290–430 K, several maxima are observed
in the ε(T) curve in the case of polarized samples (peaks
I–V at 305, 314, 332, 362, and 400 K, respectively;
curves 1, 2 in Fig. 3). Maxima I–III near 320 K form a
dominant, rather narrow peak. During the first measure-
ment in the heating mode, this peak was found to be a
few times higher than the corresponding peak in the
case of a nonpolarized sample. The intensities of peaks
I–IV decrease after several heating–cooling cycles and
free relaxation of the sample under normal conditions
over 4–5 days. A sample polarized at Tp = 300 K and
not heated retains high values of ε = 150–200 at room
temperature for a long time. In the lnC–T–1 coordi-
nates, the increase in the capacitance of polarized sam-
ples at T > 400 K can be fitted by two straight lines with
a kink at T = 450 K (curve 1 in Fig. 2). The activation
energies are also low: 0.008 eV in the range 400 < T <
450 K and 0.027 eV at T > 450 K.

A broad low maximum V on the ε(T) dependence
(curve 2 in inset to Fig. 3) is observed only for samples
polarized at Tp = 400–500 K. The intensities of peaks I–
III in this case are low. For nonpolarized samples at T ≥
420 K, ε slowly increases with T. The polarization of a
sample leads to a faster increase in ε in the range 400–
550 K as compared to that for a nonpolarized sample
(see inset to Fig. 3).

After one or two cycles of heating to T > 400 K and
subsequent cooling to room temperature, a nonpolar-
ized sample returns to the quasi-equilibrium state with
the initial value of ε. The kinetics of relaxation of the
sample to the initial state is shown in Fig. 4. The results
of measurements are plotted in the ln[∆C/(C∞ – C)] ver-
sus t coordinates, where ∆C = C∞ – C0 is the difference
between the quasi-stationary value of the capacitance at
t  ∞ and the initial capacitance C0. At t = 0, the
capacitance of the sample is C = C0. To describe the
time dependence of the capacitance, we used the rela-
tion

Here, τ is the time constant in the model of a homoge-
neous electrically neutral insulator with deep energy
levels [18]. In the case of several exponential relaxation
processes, a few linear segments are observed in the
ln[∆C/(C∞ – C)] = f(t) curve, and the slopes of these
segments determine the corresponding values of τ. It is
seen in Fig. 4 (curve 1) that the C(t) curve in the
ln[∆C/(C∞ – C)] versus t coordinates contains at least
two linear segments (I, II) with a small transition region

C C0 ∆C 1 e
t /τ–

–( ).+=
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Fig. 3. Temperature dependences of the permittivity of (1) an initially polarized PbWO4 crystal (Tp = 300 K, tp = 10 min) and (2) the
same sample during subsequent heating (Tp = 500 K, tp = 5 min). (3, 4) Measurements for a nonpolarized sample during two suc-
cessive heating cycles, respectively. The dotted line shows elementary components (I–IV) obtained by decomposing curve 1 into
Gaussians. Points correspond to the experiment, and the solid line is the sum of components I–IV. The inset shows the ε(T) depen-
dence near high-temperature shoulder V.
between them. At the final stage of the relaxation, pro-
cesses with large values of τ are observed (Fig. 4). As
t  24 h, quasi-equilibrium is established and the
C(t) curve becomes a straight line parallel to the t axis.
The time constants for the first and second components
of the kinetics of relaxation of C at the initial stage
(curve 1 in Fig. 4) are τ1 = 4.3 h and τ2 = 6.8 h.

Repeated heating–cooling cycles produce irrevers-
ible changes in the sample that are equivalent to its
annealing at elevated temperatures; namely, the values
of ε at 290 K decrease and, on the whole, the duration
of the relaxation process in the sample shortens. The
fast component is eliminated. After repeated heating–
cooling cycles, only one linear segment dominates in
the plot of relaxation recovery of C(T) (curves 2, 3 in
Fig. 4). The time constants corresponding to curves 2
and 3 in Fig. 4 are ~6.9 and ~24.5 h, respectively.

4. DISCUSSION

The results of the measurements show that, after
cooling at a rate of ~0.1 K/s from an elevated tempera-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
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550 K, and (3) after many repeated heating–cooling cycles
for the same sample.
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ture (T > 500 K) to room temperature, the PWO sam-
ples under study can stay in a nonequilibrium state for
a long time. This feature of the crystals is the cause of
hysteresis phenomena (Fig. 1), which are known to be
explained by the difference in the evolution of electri-
cally active defects during heating and cooling [19].
For example, the dissociation energy of complicated
neutral defect complexes can differ from their energy of
association. Therefore, even at low cooling rates, the
crystal has no time to reach quasi-equilibrium (the ini-
tial state of the defects), since the initial concentrations
of defect complexes are not recovered instantaneously
and the return of the sample to the equilibrium state
requires long relaxation at room temperature. These
processes occur in the case of a predominance of Schot-
tky defects [19, 20]. In PWO, which is a typical system
with deviation from stoichiometry, the defects are usu-

ally doubly charged lead vacancies  and oxygen

vacancies . Energy minimization and electrostatic

interaction between  and  lead to the formation
of neutral associates of such vacancies (bivacancies, or
diplons). These associates serve as a basis for the for-
mation of more complicated dipole defect complexes
with localized electrons (holes) at oxygen (lead) vacan-

cies. The localization of holes (p) on  vacancies and

the capture of electrons (e) by  vacancies weaken
the electrostatic interaction between the components of
diplons and can result in bond breaking. Therefore,
defect centers can arise whose formation can be simply
represented by the processes

(5)

At the measurement temperatures, the existence of

electrically neutral associates  + 2p and  + 2e
are improbable from the energy point of view. The rela-
tions between the concentrations of vacancy pairs
(diplons), isolated vacancies, charged centers of type

(6), and (  + ) associates with a zero effective
charge are dictated by the electrical neutrality condition
and the completeness of the corresponding quasi-chem-
ical reactions. We assume that the concentration of
uncontrollable impurities is negligible.

The above schemes of dominant disordering in
PWO crystals can also be used to consistently consider
the electrical conductivity and thermal depolarization
currents [2–4]. These defect models were also substan-
tiated by PWO studies using other methods, in particu-
lar, with optical measurements [21, 22], ESR [23], and
using theoretical calculations [24].

The change in the charge state of defect associates
with a variation in the crystal temperature in the pres-
ence of an applied field is accompanied by hopping of
holes (electrons) from one defect site to another. This
process is equivalent to a change in the orientational
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state and/or dipole moment of the associate and pro-
vides an additional contribution to the ε(T) dependence
due to dipole polarization. In solids, polarization and
other dipole effects in hopping transport over defect lat-
tice sites are quite common [25]. For example, these
processes determine certain dielectric properties of the
complex oxides studied in [12, 26]. A significant
increase in ε with temperature and maxima in the ε(T)
curve related to these phenomena have been observed
in semiconductor materials [27, 28]. Localization of
nonequilibrium charge carriers on vacancy dipole asso-
ciates in gadolinium gallium garnet single crystals [29]
leads to photoinduced reorientation of these dipoles
under illumination by nonpolarized light at Tp = 80 K
and to dipole polarization (peaks observed in thermal
depolarization currents at ~320 K and ~450 K).

The discussed hopping mechanism of recharging of
centers can be induced by ionizing radiation [22, 23]
and probably causes thermal luminescence, which was
experimentally studied, for example, in [21, 23]. We
note that the number of maxima of thermal lumines-
cence and their temperature positions, half-widths, and
relative intensities are close to the respective parame-
ters of the maxima of thermal depolarization currents
(in the region 290–470 K) [2–4]) and of the maxima in
ε(T) curves studied in this work.

5. CONCLUSIONS

Thus, in the temperature interval 290–550 K, there
are three regions (290–380 K, 400–470 K, 470–550 K)
over which the changes in ε (or C) of PWO crystals are
determined by different components that dominate the
temperature and/or isothermal evolution of ionic and
electronic processes. The weak ε(T) dependence for
PWO crystals observed in the range 400–470 K follows
linear laws (2) and (3) on heating and cooling, respec-
tively, and indicates mainly electronic polarization with
characteristic times in the range 10–15–10–13 s. This type
of ε(T) dependence is observed against a background of
a small contribution to ε related to a weak growth of the
crystal conductivity. A substantial increase in the elec-
trical conductivity of PWO was observed only at T >
470 K [2–4]. The difference between the ε(T) curves
measured on heating and cooling is minimum in the
range 400–470 K (Figs. 1–3).

The experiments show that, in the range 290–380 K,
the temperature variation in ε(T) is strongly affected by
the relaxation polarization related to the hopping dis-
placement of charge carriers and possible reorientation
and association–dissociation of dipole defect com-
plexes in the PWO crystal lattice. At T > 470 K, as the
conductivity increases, the increase in ε follows an
approximately exponential law with low activation
energies (~0.010–0.033 eV).

We may assume that the high values of ε of PWO
crystals at room temperature are substantially deter-
mined by intrinsic electrically active structural defects
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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(vacancies and vacancy associates). Thermal excitation
of the crystal induces hopping exchange of charges
between the structural defects, which produces an
increase in ε at T < 400 K. Likewise, the temperature
dependence of the permittivity is affected by thermal
polarization and annealing at elevated temperatures
(T > 500 K). By heating samples in air, we can influ-
ence the long-time relaxation of PWO crystals at room
temperature that takes place after high-temperature
treatment; namely, we can reduce the relaxation time of
the process of restoration of the quasi-equilibrium val-
ues of ε. Heating of PWO crystals to elevated tempera-
tures stimulates dissociation of dipole clusters of point
defects and increases the concentration of free vacan-
cies. The vacancies migrate to dislocations or other
imperfections of the crystal structure and are fixed
there. Therefore, these vacancies cease to participate in
active processes, which causes irreversible changes in
the samples.
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Abstract—An acoustic technique was applied to study aging of the  martensitic phase in a number of cop-
per-based shape memory alloys (Cu–Zn–Al, Cu–Al–Ni, Cu–Al–Be) characterized by various degrees of mar-
tensitic-phase stabilization. The nonlinear anelasticity of the martensitic phase was studied in wide ranges of
temperature (7–300 K) and vibrational strain amplitude (2 × 10–7–2 × 10–4) at vibrational-loading frequencies
of ~100 kHz. It was shown that aging effects of the martensitic phase can have homogeneous and heterogeneous
components. The homogeneous component is associated with a change in the degree of atomic order in the
crystal volume. The basic heterogeneous mechanisms of martensitic-phase aging are associated with the for-
mation of atmospheres of point defects and local changes (which are greater than those in the crystal volume)
in the degree of atomic order in the vicinity of partial dislocations and the boundaries between martensite vari-
ants. It is concluded that various stabilization properties of the alloys at hand result not only from the different
diffusion properties of quenching point defects but also from the different influence of these defects on the
degree of atomic order and the different features of their interaction with partial dislocations and intervariant
boundaries. © 2005 Pleiades Publishing, Inc.

β1'
1. INTRODUCTION

In general, the parameters of shape memory alloys
(in particular, the phase transformation temperatures)
have to be stable in order for them to be used in appli-
cation. However, martensitic-phase aging in copper-
based shape memory alloys results in the so-called mar-
tensitic-phase stabilization, which manifests itself in an
increase in the temperature of the reverse martensitic
transformation. There can occur low-temperature stabi-
lization of the homogeneous martensitic phase and
high-temperature martensite decomposition into a het-
erogeneous mixture of phases [1–4]. It is believed that
martensitic-phase stabilization occurs through several
mechanisms simultaneously [2, 4–7]. In general, the
following basic mechanisms are considered: (i) a
change in the atomic long-range (and/or short-range)
order [1–9], (ii) pinning of boundaries of martensite
variants [2, 4–6, 8], and (iii) changes in the martensite
defect structure (stacking faults) [2, 5, 7, 8, 10]. How-
ever, the relative role of each mechanism of martensi-
tic-phase stabilization remains uncertain to a large
degree.

Acoustic techniques, in particular, those based on
internal friction (IF), are a very sensitive tool for study-
ing structural defects in solids. We can distinguish two
essential aspects of the stabilization phenomenon that
facilitate efficient application of acoustic techniques for
studying the evolution of the martensitic-phase micro-
structure during aging. First, an important role in stabi-
lization is played by diffusion, which is significantly
1063-7834/05/4704- $26.00 0638
enhanced at high concentrations of quenching vacan-
cies. IF-based techniques allow detailed studies of the
diffusion of point defects and their interaction with
other defects (see, e.g., [11]).The effects associated
with diffusion mobility of point defects (which pin lin-
ear or planar defects in the martensitic phase) can be
studied using IF measurements over a wide temperature
range, where point defects change state from immobile
to highly mobile. Second, the proposed mechanisms for
martensite stabilization presuppose different spatial
distributions of active zones, i.e., regions subject to
changes during aging. Changes in the degree of atomic
order occur throughout the entire crystal volume,
whereas the active zones of pinning of boundaries and
changes in the martensite defect structure are located
near intervariant boundaries and partial dislocations
(which limit stacking faults). Thus, in terms of active-
zone localization in the crystal volume, stabilization
mechanisms can be classified as homogeneous or het-
erogeneous. Measurements of nonlinear IF in a wide
range of inelastic strains (amplitudes of vibrational dis-
placements of linear/planar defects) allow the study of
both homogeneous and heterogeneous stabilization
components.

In this work, the acoustic technique is applied to
study the heterogeneous and homogeneous structural
changes due to aging of the  martensitic phase in a
number of copper-based shape memory alloys (Cu–
Zn–Al, Cu–Al–Ni, Cu–Al–Be) characterized by vari-
ous degrees of martensitic-phase stabilization. The

β1'
© 2005 Pleiades Publishing, Inc.
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results obtained for samples subjected to aging in the
martensitic phase are compared with data on samples
aged in the high-temperature β phase. Aging in the
high-temperature β phase makes it possible to anneal
excess quenching vacancies and thereby suppress stabi-
lization of the martensitic phase in alloys prone to sta-
bilization. As indicators of structural changes, we used
amplitude-dependent IF (ADIF) δh and the amplitude-
dependent Young modulus defect (∆E/E)h, which are
caused by nonlinear vibrational motion of linear and
planar defects in the martensitic phase.

2. EXPERIMENTAL TECHNIQUE

We studied single crystals of Cu–26.4 wt % Zn–
3.8 wt % Al, Cu–13.2 wt % Al–4.0 wt % Ni, and Cu–
10.5 wt % Al–0.5 wt % Be alloys in the  martensitic
phase (the temperature Ms of the onset of martensitic
transformation is 308, 360, and 372 K, respectively).
Samples were homogenized for 1800 s at 1073 K (Cu–
Zn–Al), 900 s at 1173 K (Cu–Al–Ni), and 900 s at
1123 K (Cu–Al–Be) and then quenched, followed by
aging in the martensitic or high-temperature β phase.
Aging in the martensitic phase was carried out at room
temperature. The Cu–Al–Ni alloy samples were
quenched in water at room temperature, after which
they were subjected to long-term aging in the martensi-
tic phase or were annealed for 14 400 s in an oil bath at
473 K. The Cu–Zn–Al alloy samples were quenched in
ice water and then subjected to aging in the martensitic
phase or placed in boiling water immediately after
quenching, where they were annealed for 5400 s at
373 K (upquenching). The Cu–Al–Be alloy samples
were subjected to direct quenching in water at room
temperature followed by aging of the martensitic phase
or to step quenching (quenching in oil at 438 K with
subsequent annealing for 2700 s followed by room-
temperature quenching in water).

An ultrasonic resonant technique and a computer-
controlled system based on a compound piezoelectric
oscillator [12] were used to excite longitudinal vibra-
tions in rod-shaped samples and to measure the temper-
ature and amplitude dependences of the IF and the
dynamic Young modulus at ultrasonic frequencies of
~100 kHz. Measurements were carried out under ther-
mal cycling at a rate of ~0.03 K/s in the temperature
range 7–300 K. The temperature dependences were
measured simultaneously for two values of the vibra-
tional strain amplitude, which were within the ampli-
tude-independent and amplitude-dependent ranges,
respectively, of the amplitude dependences of the IF
and dynamic Young modulus. These measurements
made it possible to construct the ADIF temperature
spectrum as the difference between two measured IF
spectra. In the same thermal cycle, it was possible to
measure (at any temperature) the dependences of the IF
and dynamic Young modulus on the vibrational strain
amplitude in the range 2 × 10–7–2 × 10–4. The amplitude

β1'
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dependences were measured for increasing and subse-
quent decreasing vibration amplitudes.

3. EXPERIMENTAL RESULTS

Figure 1 shows the ADIF temperature spectra (mea-
sured in the cooling–heating thermal cycle) for samples
of three alloys under study subjected to aging in the
martensitic state. In the thermal cycle (both upon heat-
ing and cooling) shown in Fig. 1a for the Cu–Al–Ni
alloy, the amplitude dependence of IF was measured.
For the other alloys, we show thermal cycles in which
the amplitude dependence of IF upon cooling was not

Cooling
Heating

(a)
0.04

0.02

0

(b)
0.004

0.002

0

(c)
0.0006

0.0003

0 100 200 300
T, K

δh

δh

δh

Fig. 1. Temperature dependences of the amplitude-depen-
dent component of the vibration decrement of (a) Cu–Al–
Ni, (b) Cu–Zn–Al, and (c) Cu–Al–Be alloy samples sub-
jected (after quenching) to aging in the martensite state for
(a) 1 year, (b) 7.5 days, and (c) 48 days. The amplitude-
dependent decrement of vibrations is measured upon cool-
ing and subsequent heating for different vibrational strain
amplitudes: (a) 3 × 10–5, (b) 5 × 10–5, and (c) 2 × 10–5. Ver-
tical dashed arrows in panels (b, c) at low temperatures indi-
cate the value of the increase in the amplitude-dependent
internal friction when the amplitude dependence of internal
friction is measured for vibrational strain amplitudes of up
to 2 × 10–4.
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measured and high-amplitude acoustic excitation of
samples at low temperature (~10 K) caused an increase
in the ADIF value during measurements of the ampli-
tude dependence of IF. The reason for this increase is
that the largest vibrational strain amplitude exceeded
the value stabilized when measuring the ADIF temper-
ature spectrum upon cooling. This effect is indicated in
Figs. 1b and 1c by vertical arrows. We note that high-
amplitude excitation of the Cu–Zn–Al alloy at low tem-
peratures changed the ADIF value but did not change
the temperature dependence of ADIF. A slightly differ-
ent behavior was observed for the Cu–Al–Be alloy,
where high-amplitude excitation at low temperatures
resulted not only in an increase in the ADIF value but
also in a change in the character of the temperature
dependence of ADIF measured upon subsequent heat-
ing. The ADIF of the Cu–Al–Be alloy decreased rap-
idly upon heating beginning from temperatures of
~15 K, which demonstrates the low-temperature recov-
ery stage after high-amplitude excitation (this stage is
absent in the Cu–Zn–Al and Cu–Al–Ni alloys). The
temperature dependences of ADIF of Cu–Zn–Al and

6 days
48 days

4.5 days
7.5 days
14.5 days
1.5 days

(a)

(b)

0.004

0.002

0 50 100 150 200 250 300

0.002

0.004

0 50 100 150 200

δh

δh

Fig. 2. Influence of aging duration in the martensite state on
the temperature dependences of the amplitude-dependent
component of the vibration decrement of (a) Cu–Zn–Al and
(b) Cu–Al–Be alloy samples measured upon heating. The
amplitude-dependent decrement of vibrations is measured
for vibrational strain amplitudes of (a) 5 × 10–5 and (b) 2 ×
10–5. Arrows indicate the value of the change in the ampli-
tude-dependent internal friction when the amplitude depen-
dence of internal friction is measured for vibrational strain
amplitudes of up to 2 × 10–4.
PH
Cu–Al–Ni alloys exhibit identical features: the ather-
mal behavior at low temperatures switches to a negative
temperature dependence (a decrease in ADIF with an
increase in the temperature, dδh(T)/dT < 0) at tempera-
tures above 70 K. We note that, despite the qualitative
similarity of the observed temperature dependences,
the ADIF levels differ significantly. As shown below,
this difference is caused by aging of the Cu–Zn–Al and
Cu–Al–Be alloys in the martensitic phase.

The influence of the duration of aging in the marten-
sitic state on the temperature dependences of ADIF for
the Cu–Zn–Al and Cu–Al–Be alloys is shown in
Figs. 2a and 2b, respectively. We can see that aging in
the martensitic state results in ADIF suppression over a
wide temperature range. Each measurement of the
amplitude dependence of IF during thermal cycling has
an effect on the ADIF value in the temperature range
where a negative temperature dependence of ADIF is
observed. This effect is indicated by arrows in Fig. 2.
We note that, in the low-temperature range of athermal
ADIF behavior, only the first measurement of the
amplitude dependence of IF has an effect on the ADIF
values.

Figure 3 shows the amplitude dependences of IF at
various temperatures measured upon heating (simulta-
neously with the ADIF temperature spectra shown
above) for Cu–Al–Ni (Fig. 1a), Cu–Zn–Al (Fig. 2a,
4.5 days of aging), and Cu–Al–Be alloys (Fig. 2b,
6 days of aging). We can see that the amplitude depe
dences of IF measured for increasing and then decreas-
ing vibration amplitudes are identical at low tempera-
tures in the range of athermal ADIF behavior. At tem-
peratures corresponding to a negative temperature
dependence of ADIF, hysteresis of IF as a function of
vibration amplitude is observed (i.e., a difference
between the amplitude dependences of IF measured for
increasing and decreasing vibration amplitude is
observed). This hysteresis increases with temperature.

Figure 4 shows the amplitude dependences of IF
measured at low temperatures (in the range of athermal
ADIF behavior) for alloys subjected to heat treatments
under various conditions. These results are obtained for
subsequent rather than the first measurement cycle;
therefore, the influence of high-amplitude excitation on
the ADIF value (IF amplitude hysteresis) is absent. We
note that the amplitude-independent background of IF
is not detected in the entire range of vibration ampli-
tudes covered at low temperatures and that the total
measured decrement is almost identical to its ampli-
tude-dependent component:δ ≅ δ h. It is of particular
interest to compare the data for samples subjected to
aging in the martensitic phase and the data for samples
aged in the high-temperature β phase. All the depen-
dences can be subdivided into two groups. The Cu–Al–
Ni alloy (independent of heat treatment) and Cu–Zn–Al
and Cu–Al–Be alloys aged in the high-temperature β
phase comprise a group of materials with a high low-
temperature ADIF level, which is almost independent
YSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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of the material type (curves 1, 2, 6, 9 in Fig. 4). The
other group includes the Cu–Zn–Al and Cu–Al–Be
alloys subjected to aging in the martensitic phase at low
temperatures, which are characterized by a much lower
value of the ADIF and by a dependence on the duration
of aging in the martensitic phase (curves 3–5 for Cu–
Zn–Al and curves 7, 8 for Cu–Al–Be). All the depen-
dences can be fitted fairly well by power-law functions,

δh ∝  , with the exponent n being almost independent
of the alloy type and heat treatment and lying in the
range 0.45–0.55. Thus, aging of Cu–Zn–Al and Cu–
Al–Be alloys in the martensitic phase results in signifi-
cant (approximately proportional to the duration of
aging) suppression of low-temperature ADIF in the
entire vibration amplitude range under study.

εm
n

Fig. 3. Dependences of the vibration decrement on the
vibrational strain amplitude measured at various tempera-
tures upon heating for (a) Cu–Al–Ni, (b) Cu–Zn–Al, and (c)
Cu–Al–Be alloy samples subjected (after quenching) to
aging in the martensite state for (a) 1 year, (b) 4.5 days, and
(c) 6 days. Arrows indicate the direction of variation in the
vibration amplitude during measurements.
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The behavior of the amplitude-dependent compo-
nent of the IF of Cu–Al–Ni and Cu–Zn–Al alloys aged
in the martensitic state upon heating at 140–300 K is
shown in Fig. 5. For the Cu–Zn–Al alloy (Fig. 5b), a
single stage of the amplitude dependence of IF is
observed, with the slope in the log–log coordinates
being almost independent of temperature. The influ-
ence of temperature manifests itself in continuous pro-
portional suppression of ADIF of the Cu–Zn–Al alloy
in the entire vibration amplitude range under study. The
decrease in the ADIF of the Cu–Al–Ni alloy with an
increase in temperature is more complicated; this
decrease first takes place at low vibration amplitudes
and then gradually extends to the high-amplitude range
(Fig. 5a). Here, three stages are observed in the ampli-
tude dependence of IF: a moderate increase in IF at low
vibration amplitudes, a sharp increase at intermediate
amplitudes, and switching to a weak amplitude depen-
dence at high vibration amplitudes. It is noteworthy
that, after the formation of the low-amplitude stage of
the amplitude dependence of IF, the ADIF value at this
stage remains unchanged as the temperature increases

Fig. 4. Dependences of the vibration decrement on the
vibrational strain amplitude measured at low temperatures
for Cu–Al–Ni, Cu–Zn–Al, and Cu–Al–Be alloy samples
subjected to various heat treatments. The data are obtained
from repeated measurements, for which the dependences
measured for increasing and subsequent decreasing vibra-
tion amplitudes are identical. The dependences are fitted by
power-law functions. (1) Cu–Al–Ni, 1 year of aging in the

 phase, T = 7 K; (2) Cu–Al–Ni aged in the β phase,

T = 7 K; (3) Cu–Zn–Al, 4.5 days of aging in the  phase,

T = 33 K; (4) Cu–Zn–Al, 7.5 days of aging in the  phase,

T = 10 K; (5) Cu–Zn–Al, 14.5 days of aging in the  phase,

T = 14 K; (6) Cu–Zn–Al aged in the β phase, T = 8 K;
(7) Cu–Al–Be, 6 days of aging in the  phase, T = 9 K;

(8) Cu–Al–Be, 48 days of aging in the  phase, T = 10 K;

and (9) Cu–Al–Be aged in the β phase, T = 9 K.
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further; only the range of the low-amplitude stage
extends to higher vibrational strain amplitudes.

4. RESULTS AND DISCUSSION

The nonlinear anelasticity of the  martensitic
phase can be caused by partial dislocations bounding
stacking faults in the basal plane and by the boundaries
of martensite variants. Since the conclusions on the
mechanisms of martensitic phase aging drawn in this
paper (see below) are related to both types of structural
defects, there is no need to determine more exactly the
type of defects responsible for the nonlinear anelastic-
ity. We only note that there is some evidence in favor of
the dislocation mechanism of anelasticity [13–15].

The alloys under study have various stabilization
properties. The Cu–Al–Ni alloy is not prone to room-
temperature martensite stabilization [16], whereas mar-
tensitic-phase aging in Cu–Zn–Al and Cu–Al–Be
alloys causes pronounced stabilization after direct
quenching of the alloys into martensite [1, 2, 4–9, 15,
17], which can be suppressed using special heat treat-
ments with annealing in the high-temperature β phase.
The cause of this difference is still a subject of study. It
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Fig. 5. Amplitude-dependent component of the vibration
decrement measured at various temperatures upon heating
from ~10 K for (a) Cu–Al–Ni and (b) Cu–Zn–Al alloy sam-
ples subjected (after quenching) to aging in the martensitic
state for (a) 1 year and (b) 7.5 days. The amplitude depen-
dences of internal friction are measured for increasing
vibration amplitudes.
P

is believed that this difference arises as a result of dif-
ferent intensities of diffusion processes [16], in partic-
ular, different diffusion mobilities of quenching vacan-
cies [8, 18]. The authors of [19] also believe that differ-
ent stabilization properties are caused by different
concentrations of quenching vacancies. The results
from acoustic studies allow comparison of diffusion
properties of point defects in the alloys under study.

4.1. The Temperature Range of Mobility of Quenching 
Point Defects in the Martensitic Phase

A distinguishing feature of the ADIF behavior in all
the alloys under study, which characterizes the temper-
ature range of point defect mobility, is the existence of
a range with a negative temperature dependence of
ADIF. This behavior was also observed previously [15,

,
,
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Fig. 6. (a) Amplitude-dependent components of the vibra-
tion decrement (open symbols) and the Young modulus
defect (closed symbols) and (b) their ratio r = δh/(∆E/E)h
measured at ~10 K for Cu–Zn–Al alloy samples subjected
(after quenching) to aging in (1) the β phase and (2) marten-
sitic phase for 14.5 days. The amplitude dependences are
measured for increasing vibration amplitudes. The depen-
dences of the vibration decrement and the Young modulus
defect are fitted by power-law functions. Dash-dotted and
dashed lines in panel (b) indicate the ratios r calculated
using these power-law functions and the relations from the
breakaway and friction models, respectively.
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20–23] and can be explained as follows. Thermal
cycling of polyvariant samples of copper alloys in the

 martensitic phase results in the generation of signif-
icant thermal stresses due to an anisotropic thermal
expansion of martensite variants. Therefore, the tem-
perature dependence of ADIF in the martensitic phase
is controlled by the competition of microplastic defor-
mation and dynamic strain aging. The negative temper-
ature dependence of ADIF (Figs. 1, 2) is observed in the
temperature range in which quenching point defects
diffuse to partial dislocations and the boundaries
between variants, thereby decreasing their mobility
more strongly, the higher the temperature [15, 21–23].
The diffusion mobility of point defects also causes the
time dependence of IF, which gives rise to hysteresis of
IF as a function of vibration amplitude in the tempera-
ture range where dδh(T)/dT < 0, when measuring the
amplitude dependence of IF (Fig. 3). A local perturba-
tion of atmospheres of mobile point defects caused by
measuring the amplitude dependence of IF also results
in a change in the ADIF value, which manifests itself in
the ADIF temperature dependences at a fixed amplitude
(Fig. 2). At low temperatures, when quenching point
defects are immobile, the ADIF of the martensitic 
phase exhibits athermal behavior (Fig. 1), which we
observed previously [15, 21]. It is important that the
temperature ranges of the athermal behavior and of the
negative temperature dependence of ADIF are identical
in the Cu–Zn–Al and Cu–Al–Ni alloys (Figs. 1a, 1b).
Hence, the temperature range of diffusion mobility of
quenching point defects in these alloys is the same,
despite their different stabilization properties. Thus, the
data obtained indicate the absence of a unique relation
between the diffusion mobility of quenching point
defects and martensite stabilization. In the Cu–Al–Be
alloy, the diffusion mobility of point defects is detected
at significantly lower temperatures (Figs. 1–3) than that
in the Cu–Zn–Al and Cu–Al–Ni alloys. The low-tem-
perature diffusion mobility of point defects in the Cu–
Al–Be alloy will be considered in a later paper.

4.2. Homogeneous Processes 
of Martensitic-Phase Aging

As noted above, the negative temperature depen-
dence of ADIF indicates unpinning of partial disloca-
tions and intervariant boundaries from point defect
atmospheres under thermal stresses. At low tempera-
tures (in the range of athermal ADIF behavior), point
defects are immobile. Under these conditions, measure-
ments of the amplitude dependence of IF allow one to
study the influence of homogeneous processes of aging
of the martensitic phase on the mobility of partial dis-
locations and intervariant boundaries. To this end, it is
necessary to ensure that linear or planar defects, whose
motion causes ADIF at low temperatures, are indeed
not pinned by point defect atmospheres.

β1'
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First, this fact is indicated by the behavior of the IF
amplitude hysteresis at low temperatures. The first-
cycle measurement of the amplitude dependence of IF
at low temperatures is accompanied by amplitude hys-
teresis of IF, since superposition of thermal and strong
vibrational stresses results in additional unpinning of
partial dislocations and intervariant boundaries from
point defect atmospheres [15]. Repeated measurements
in the same range of vibration amplitudes are com-
pletely reproducible (Fig. 4), which indicates defect
structure stability at low temperatures.

Second, information on the motion of carriers of the
amplitude-dependent anelasticity can be obtained by
simultaneously studying the ADIF and the Young mod-
ulus defect and determining the ratio of the amplitude-
dependent decrement and the Young modulus defect,
r = δh/(∆E/E)h. This quantity takes on various values in
various models of the amplitude-dependent anelastic-
ity. It is believed that the anelasticity can be described
by the model of nonlocal friction if point defects are
immobile and are not segregated at dislocations and by
the model of dislocation breakaway from a single row
of pinning points in the case of dislocation pinning by
point defects [11]. Figure 6a shows simultaneously
measured amplitude-dependent components of the IF
and Young modulus defect for Cu–Zn–Al alloy samples
in the stabilized state and after annealing in the β phase,
which suppresses stabilization. As mentioned above,
the martensitic-phase anelasticity at low temperatures
remains, for the most part, amplitude-dependent at the
lowest amplitudes covered. This fact complicates direct
determination of the amplitude-independent Young
modulus. When constructing the amplitude dependence
of the Young modulus defect shown in Fig. 6, the values
of the amplitude-independent modulus were chosen
such that, in the low amplitude region, the Young mod-
ulus defect exhibits a power-law dependence similar to
the amplitude dependence of the decrement. In the
basic models of the dislocation amplitude-dependent
anelasticity, the quantity r is independent of the vibra-
tion amplitude in the case of power-law amplitude
dependences of the IF and Young modulus defect and is
determined only by the exponent n; more specifically,
r = 4n/(n + 2) [24–26] for the friction model and r =
n/(n + 2) [26] for the breakaway model. (We note that
acoustic measurements make it possible to find the val-
ues of the “actual” elastic modulus for which the rela-
tions between r and n are more complex than the rela-
tions indicated above for the “secant” elastic modulus.
However, at small n, those relations yield almost the
same values of r [26].) Figure 6b shows the experimen-
tal amplitude dependences of r and the values of r cal-
culated for the power-law functions fitting the experi-
mental amplitude dependences of the IF and Young
modulus defect for stabilized and non-stabilized states
of the Cu–Zn–Al alloy. As in theoretical models, the
experimental values of r remain basically unchanged
over a wide range of vibration amplitudes. We can see
that the experimental value of r agrees well with the
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value calculated in the friction model but disagrees with
the value calculated in the breakaway model, irrespec-
tive of the alloy state. Thus, despite the significant dif-
ference between ADIF levels in stabilized and nonsta-
bilized alloys, the amplitude dependences of the IF and
Young modulus defect measured at low temperatures
are consistent with the friction model, i.e., are caused
by motion of linear or planar defects through elastic
fields of point defects, which are uniformly distributed
over the crystal volume. Hence, the carriers of the
amplitude-dependent anelasticity break away from
point defect atmospheres in both the stabilized and non-
stabilized alloy at low temperatures.

Figure 4 shows that the low-temperature ADIF is
high and is almost independent of the material type
when the martensitic phase stabilization is suppressed
(curves 1, 2, 6, 9 in Fig. 4). Aging of the martensitic
phase in alloys subjected to martensite stabilization
results in suppression of the low-temperature ADIF,
which is stronger, the longer the duration of aging
(curves 3–5 for Cu–Zn–Al and curves 7, 8 for Cu–Al–
Be in Fig. 4). In this case, the power-law shape of the
amplitude dependences of IF remains almost
unchanged; i.e., aging causes proportional suppression
of ADIF over a wide range of vibration amplitudes (dis-
placements of linear or planar defects). This fact sug-
gests that the process resulting in suppression of the
low-temperature ADIF is homogeneous over the crystal
volume. This homogeneous process can be a change in
the degree of atomic long-range and/or short-range
order. Various mechanisms of changes in the short-
range atomic order, which increases the stress required
to change the orientation of martensite variants, are
considered in the literature [3, 4, 27, 28]. It seems that
the detected homogeneous suppression of low-temper-
ature ADIF during aging of the martensitic phase is
caused by one of these mechanisms. We note that
homogeneous suppression of the mobility of inelastic-
deformation carriers is not observed in the Cu–Al–Ni
alloy, in contrast to the Cu–Zn–Al and Cu–Al–Be
alloys. This fact allows us to conclude that a homoge-
neous change in the degree of atomic order due to
room-temperature aging does not take place in the Cu–
Al–Ni alloy.

4.3. Heterogeneous Aging of the Martensitic Phase

The transition of partial dislocations and intervari-
ant boundaries from the unpinned state (at temperatures
below 70 K) to a pinned state upon heating makes it
possible to study heterogeneous structural changes
associated with the interaction of these defects with
mobile point defects. The data shown in Fig. 5 demon-
strate a significant difference in the mechanisms of for-
mation of pinning atmospheres of point defects
between the Cu–Zn–Al and Cu–Al–Ni alloys.

The three-stage amplitude dependence of IF that
takes place upon heating in the Cu–Al–Ni alloy
P

(Fig. 5a) has also been observed for the  martensitic
phase of various copper-based alloys [15, 22, 23, 29]
and was explained as follows. The low-amplitude stage
of the gradual IF increase arises as a result of partial-
dislocation motion inside extended atmospheres of
point defects. As the vibration amplitude increases fur-
ther, partial dislocations break through the atmospheres
and their vibrations outside the atmospheres result in a
stage of a sharp increase in IF, which is followed by a
stage of a weak amplitude dependence of IF at high
vibration amplitudes. An analysis carried out in [15]
allowed the conclusion that the ADIF level at the low-
amplitude stage is controlled by the point defect con-
centration in atmospheres at a constant density of carri-
ers of inelastic deformation: the higher the atmosphere
density, the lower the ADIF level at a constant ampli-
tude. The fact that ADIF remains unchanged in the low-
amplitude stage in the Cu–Al–Ni alloy (after the forma-
tion of this stage upon heating) suggests that atmo-
spheres with a saturated concentration of point defects
arise in this alloy [22]. Further aging entails only an
increase of the atmospheres in size (the shift of the sec-
ond and third stages of the amplitude dependence of IF
to higher vibration amplitudes).

The one-stage amplitude dependence of IF observed
in the Cu–Zn–Al alloy (Fig. 5b) is indicative of partial
dislocation motion inside extended atmospheres of
point defects without breaking beyond the atmospheres
(see [15] for more details). A continuous decrease in the
partial dislocation mobility with increasing tempera-
ture at the stage of motion inside atmospheres indicates
a continuous increase in the concentration of point
defects in the atmospheres. It can be assumed that this
process is also associated with the degree of atomic
order near partial dislocations changing more greatly
than does the homogeneous degree of atomic order in
the crystal volume [15]. The causes of this greater
change in the degree of atomic order can be the higher
concentration of mobile quenching defects in atmo-
spheres and faster diffusion near partial dislocations
and intervariant boundaries [29]. Thus, heterogeneous
processes of the martensitic-phase aging can include
the formation of point defect atmospheres and a local
change (greater than that in the crystal volume) in the
degree of atomic order near partial dislocations and
intervariant boundaries.

Density saturation of point defect atmospheres in
the Cu–Al–Ni alloy can be explained if it is assumed
that atmospheres are formed not by quenching vacan-
cies but rather by point defect complexes (including
quenching vacancies) that repel each other [22]. In this
case, coagulation and annihilation of vacancies due to
their interaction with partial dislocations and intervari-
ant boundaries do not occur and vacancies are retained
in the atmospheres. This assumption makes it possible
to explain the stability of quenching vacancies in the
martensitic phase of the Cu–Al–Ni alloy and the differ-
ence in behavior between the Cu–Al–Ni and Cu–Zn–Al

β1'
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alloys observed in measurements of the resistivity and
positron annihilation [18].

5. CONCLUSIONS
(1) The processes that accompany the aging of the

martensitic phase can be analyzed in terms of their
localization in the crystal volume. The homogeneous
aging component is caused by a change in the atomic
order in the crystal volume. Heterogeneous aging pro-
cesses are associated with linear and planar defects in
the martensitic phases and can include both pinning of
these defects by mobile point defects and a local change
(greater than the homogeneous change) in the atomic
order near linear or planar defects.

(2) The difference in the stabilization properties of
the alloys in question results not only from the different
diffusion properties of quenching point defects but also
from the different influence of these defects on the
degree of atomic order and from their different interac-
tions with partial dislocations and the boundaries
between martensite variants.
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Abstract—The influence of transverse perturbations on the motion of an edge dislocation is studied using the
averaged Lagrangian of the Ritz–Whitham type. The dislocation is described by the Frenkel–Kontorova model
with inclusion of elastic anharmonicity and lattice discreteness (acoustic dispersion). The quadratic anharmo-
nicity and acoustic dispersion are shown to promote self-focusing of the dislocation and microcrack formation.
Under certain conditions, cubic anharmonicity can stabilize transverse compression of the dislocation, which
can bring about the development of “crowdion droplets.” © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The motion of the edge dislocation core in a crystal
is described reasonably well by the one-dimensional
Frenkel–Kontorova model [1]. However, the one-
dimensional model fails as the transverse boundary of
the dislocation core is approached and the front of the
dislocation is distorted. In motion, the dislocation core
can undergo dynamic transformations; for example, its
transverse edges can be bended forward in the propaga-
tion direction, which leads to self-focusing of the dislo-
cation and the development of a crack. If the transverse
edges are bended backward, the internal stresses in the
dislocation gradually loosen and the dislocation finally
dissolves and disappears in the bulk. On the contrary,
the self-focusing increases the internal stresses and
decreases the characteristic dimensions of the disloca-
tion. Consequently, the lattice discreteness and anhar-
monic vibrations should be taken into account. Appro-
priate considerations were made in [2, 3] with a number
of simplifying assumptions. The main approximation
used was that the cubic anharmonicity and lattice dis-
creteness (acoustic dispersion) are linked to each other
by a certain relation. This restriction made it possible to
obtain an analytical expression for the dislocation field
[2] and reduce the problem to integrable equations [3].
By including cubic anharmonicity and acoustic disper-
sion, the authors of [2] came to the conclusion that the
supersonic motion of dislocations is possible. It turned
out that it is much more difficult to develop a theory
with inclusion of quadratic anharmonicity than with
inclusion of cubic anharmonicity [2]. Meanwhile, in
most cases, quadratic acoustic nonlinearity dominates
in crystals and is the main reason behind the thermal
expansion.

The goal of this paper is to study the effects of trans-
verse perturbations on the edge dislocation motion in
1063-7834/05/4704- $26.00 0646
the case where elastic anharmonicity of the second and
third orders and acoustic dispersion are important.

2. MODEL

Let us consider propagation of a crowdion-like edge
dislocation in a cubic crystal along the z axis chosen in
the direction of one of the fourfold symmetry axes. The
transverse dynamics is taken into account in the parax-
ial approximation [4], which corresponds to distortion
of the dislocation front that is not too strong. This
approximation greatly simplifies computations and, at
the same time, describes reasonably well the well-
known results from the wave theory, among them self-
focusing [5]. The acoustic dispersion is also assumed to
be small and is taken into account in the first order. The
contributions of the transverse dynamics, acoustic dis-
persion, and elastic anharmonicity are considered to be
of the same order. Summarizing, we write the Hamilto-
nian of the plastic deformation displacement field in the
crystal:

(1)

where the Hamiltonian density is

(2)

Here, ρ is the momentum density corresponding to the
displacement u of lattice sites along the z axis; λ11, λ111,
and λ1111 are the adiabatic elastic moduli of the second,
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third and forth orders, respectively; h is the lattice con-
stant; m is the mass of atoms that are displaced in the
crystal during plastic deformation; n is the atomic con-
centration; and U0 is the Frenkel–Kontorova barrier
formed by the “substrate,” which is considered to be
fixed. The fourth and fifth terms in Hamiltonian (2)
describe the transverse perturbations and acoustic dis-
persion, respectively, and the sixth and seventh corre-
spond to the quadratic and cubic anharmonicity, respec-
tively. The first three terms correspond to the one-
dimensional Frenkel–Kontorova model.

Hamilton’s equations for the displacement field
have the form

(3)

Combining Eqs. (1)–(3) gives the equation

(4)

where

Γ = –(3/2)(1 + λ111/3λ11) is the Grüneisen constant, and

v 0 =  is the speed of sound in linear theory.

In Eq. (4), the terms involving the constants a, b, b2,
and b3 are associated with the Frenkel–Kontorova
potential, acoustic dispersion, and quadratic and cubic
anharmonicity, respectively.

We employ the paraxial approximation ∂2θ/∂z2 @
∆⊥ θ; therefore, in the right-hand side of Eq. (4), all
terms other than sinθ are small as compared to the
terms in the left-hand side and we can solve Eq. (4)
using the convergence method. In the zero approxima-
tion, we have θ = θ(z – v 0t), which describes a disloca-
tion propagating along the z direction. Now, we intro-
duce a “slow time” τ = δt and consider it to be a small
correction, δ ! 1. Then, the solution takes the form θ =
θ(ζ, τ), where ζ = z – v 0t. Neglecting terms of the order
of ~δ2, we get
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Substituting these relations into Eq. (4) and return-
ing to the variable t, we obtain

(5)

where

The equation obtained was studied in [3] for the spe-
cial case of the Kosevich–Kovalev constraints β2 = 0
and β3 = 3β/2 in the absence of transverse perturbations
(∆⊥ θ = 0). It was proven that this equation is integrable
under the above conditions, and its multisoliton solu-
tion was found.

3. INCLUSION OF TRANSVERSE 
PERTURBATIONS IN THE GEOMETRIC 

APPROXIMATION

We perform further analysis of Eq. (5) using the vari-
ational method of the averaged Lagrangian [6–8]. The
Lagrangian corresponding to Eq. (5) can be written as

(6)

Let us chose a trial function in the form of a crowdion
considered in [2, 3]:

(7)

In the one-dimensional case, we have ρ = 1/l = const
and Φ = (v  – v 0)t, where v  is the dislocation velocity,
which is dependent on the dislocation length l. Taking
into account inhomogeneities in the paraxial approxi-
mation, we conclude that ρ = ρ(t, r⊥ ) and Φ = Φ(t, r⊥ )
are slow and fast functions of their parameters, respec-
tively.

Substituting Eq. (7) into Eq. (6) and integrating over
the fast variable ζ, we get the averaged Lagrangian

(8)

Varying Λ with respect to ρ and Φ, we obtain the Euler–
Lagrange equations

(9)
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(10)

where ϕ = –v 0Φ, V⊥  = —⊥ ϕ,

(11)

(12)

In the one-coordinate case (—⊥  = 0), the set of equa-
tions (9) and (10) in combination with Eq. (11) can be
easily integrated. In this case, the velocity of a one-
dimensional crowdion can be found to be

(13)

Under the Kosevich–Kovalev constraints (b2 = 0,
b3 = 3b/2), the velocity v  is given by

which coincides with the result obtained in [3] to within
the notation for the factors a and b. This fact is an
important argument in favor of the averaged-
Lagrangian approach adopted in this paper.

The right-hand side of Eq. (10) contains derivatives
of the slow variable ρ with respect to the transverse
coordinates. To draw an analogy with optics [4, 9], we
can say that F(t, r⊥ ) describes the wave properties of the
dislocation and includes diffraction of the dislocation
on its own inhomogeneities. At the initial stage of dis-
tortion of the dislocation front, the wave properties can
be neglected and the consideration can be limited to the
eikonal (geometric) approximation, which corresponds
to F = 0. In this case, the set of equations (9) and (10)
coincides with the equations of potential flow of an

∂ϕ
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V⊥
2

2
------- Pd

ρ
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4
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  1
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v v 0 1 al
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2
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  ,=

E0

t = t1

t = 0

t = t2 > t1

Fig. 1. Bending of the transverse fronts of an edge disloca-
tion during defocusing.
P

ideal liquid (the continuity equation and the Cauchy
integral for non-steady-state flow, respectively). Here,
ϕ acts as the velocity potential V⊥  and P and ρ are ana-
logs of the pressure and density, respectively. Equa-
tion (11) plays the part of the thermodynamic equation
for the isoentropic liquid flow (the adiabatic equation).
In this case, the condition of stable liquid flow
described by Eqs. (9)–(11)

(14)

corresponds to the stability condition of the solution to
Eq. (7) relative to self-focusing [10–12]. In our case,
this condition means that the dislocation will spread
over the crystal, thereby preventing the formation of
cracks because local stresses will diminish. Combined
with Eq. (11), inequality (14) takes the form

(15)

This condition has a clear physical meaning. Indeed,
using the relation l = 1/ρ and Eq. (13), Eq. (15) can be
shown to coincide with the condition dv /dρ > 0. From the
definition of θ, it follows that ∂θ/∂ζ ~ ∂u/∂z ~ ε, where ε is
the local relative deformation. Using Eq. (7), we get

Thus, ρ ~ εm, where εm is the maximum value of ε.
The quantity εm is maximum in the center of the dis-

location cross section. If the velocity v  grows with
increasing εm (i.e., dv /dρ > 0), then the dislocation
front is bent such that its central part propagates faster
than the peripheral sections (Fig. 1), which leads to
defocusing of the dislocation. Otherwise, the disloca-
tion becomes unstable with respect to self-focusing.

It follows from Eq. (15) that the stability of a crow-
dion with respect to self-focusing depends on several
competing effects. The Frenkel–Kontorova crystal
potential U0 causes defocusing. The quadratic anhar-
monicity (which is the main factor governing the ther-
mal expansion) and acoustic dispersion promote the
self-focusing. The cubic anharmonicity can play on
either side: it impedes the self-focusing if λ1111 >

8Γλ 11/3 ≡ 8Γnm /3 and facilitates it otherwise.

4. DIFFRACTION EFFECTS
Let F ≠ 0 in Eq. (10), which means that we take into

account diffraction of the crowdion on the crystal inho-
mogeneities created by the crowdion itself. In this case,
we will employ the methods of optics and general wave
theory [4, 5]. We assume that the dislocation field is
axisymmetric. Following [4, 5], we write ρ in the self-
similar form

(16)

dP/dρ 0>
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where R0 and R(t) are the initial and current transverse
radii of the crowdion. We expand ρ into a power series
in r and keep only the zero- and first-order terms limit-
ing ourselves to the paraxial approximation (r2/R2 ! 1)
[4, 5]:

(17)

Substituting Eqs. (16) and (17) into Eq. (9), we get

(18)

Substituting Eqs. (16) and (17) into Eq. (10) and
equating the coefficients of the zero and first powers of
r/R, we obtain the following set of equations:

(19)

(20)

Substituting Eq. (18) into Eq. (20), we get the differen-
tial equation for the dislocation radius,

(21)

which coincides in form with the equation of motion of
a Newtonian particle of unit mass in a potential field
given by

(22)

The first and second terms in the square brackets in
Eq. (22) correspond to the cubic and quadratic lattice
anharmonicity, respectively, and the third term
describes the influence of the periodic crystal potential
of the substrate in the Frenkel–Kontorova model.

It is clear that the effects of these terms precisely
match the influences of the corresponding physical
phenomena on the crowdion transverse dynamics, as
considered in the previous section in the geometric
approximation.
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Ṙ̇
∂U
∂R
-------,–=

U R( )
v 0

2

2
------ 4

3
---b3 b– 

  ρ0
2 R0

4

R
4

------ π
3
---b2ρ0

R0
2

R
2

------–=

–
a

ρ0
2

----- R
4

R0
4

------ 5π2

3
-------- R

2

ρ0
2
R0

4
------------+ .
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
The diffraction is taken into account by the last term
in the square brackets in Eq. (22), which formally coin-
cides with the potential energy of a harmonic oscillator
with the single difference that R > 0 in our case. Note
that, in the geometric approximation (R0, R  ∞), the
diffraction term in Eq. (22) vanishes, unlike the other
terms. This term is favorable for self-focusing of the
crowdion, i.e., for the attraction of its portions to the
regions of maximum local deformation. This happens
because the diffraction effects correspond to elastic
deformation in the cross-sectional planes of the crowd-
ion. The plastic deformation acting in these directions
expands the crowdion to free atom vacancies (Fig. 2),
whereas the elastic strain, as usual, confronts the plastic
deformation and restores the crystal symmetry.

It is convenient to trace the crowdion dynamics dur-
ing its propagation using an analogy with the equation
of motion. If R  0, the dislocation is self-focusing
and this will finally lead to the formation of a crack in
the crystal. If R  ∞, the dislocation spreads over the
crystal and finally disappears. Qualitative conclusions

about R(t) can be made by studying U( ) in the form
of Eq. (22).

Let us consider the important special case of the
classical Frenkel–Kontorova model by setting b = b2 =
b3 = 0 in Eq. (22).

The U(R) dependence calculated for this case
(Fig. 3) shows that the dislocation either collapses (if
R0 < Rc) or spreads if R0 > Rc, where

(23)

Here, ls = 1/  is the size of the static Frenkel–Kontor-
ova dislocation and l0 = 1/ρ0. In this case, v  is close to

v 0 and we can write v  = v 0  ≡ v 0  ≅

v 0(1 – l2/ ), which coincides with Eq. (13) if b = b2 =
b3 = 0.

The quadratic anharmonicity and acoustic disper-
sion shift Rc to higher values. Moreover, U(R)  –∞
if R  0 (Fig. 4). Therefore, these factors promote
self-focusing, i.e., increase the probability of formation
of microcracks. The influence of the cubic anharmonic-

Ṙ

Rc
5
6
---πls 2.9ls.≈=

a

1 al
2

– 1 l
2
/ls

2
–

2ls
2

p e e p

Fig. 2. Competing influences of (e) elastic and (p) plastic
deformations on the transverse structure of an edge disloca-
tion.
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ity is opposite. If b3 < 3b/4, this anharmonicity is unable
to prevent cracks. However, if b3 > 3b/4, the cubic non-
linearity can avert self-focusing. In this case, there are
two possibilities: either the dislocation spreads away or
its radius oscillates around an equilibrium value Rm

(Fig. 4). The latter can be interpreted as a propagation
of a crowdion droplet.

Let us study the requirements for this mode in detail.
We start from Eq. (22) for the “potential energy.” The
extremum condition ∂U/  = 0 can be written as

(24)

where qm = (Rm/R0)2, D = , B2 = , and

B3 = (4b3/3 – b)  > 0.

∂R R Rm=

Q qm( ) qm
4

Dqm
3

– B2qm– B3+ 0,= =

Rc
2
/R0

2 πb2ls
2
/6l0

3

ls
2
/l0

4

Rc R0

U(R)

Fig. 3. U(R) according to the Frenkel–Kontorova model.

Rc0 RRm

U(R)

1
2

Fig. 4. U(R) in the presence of quadratic and cubic anhar-
monicity (1) for the case of b3 > 3b/4, where the formation
of crowdion droplets is possible, and (2) for the case of b3 <
3b/4.
P

For a crowdion droplet to form, the extremum has to be

a minimum of U; i.e., the condition ∂2U/  > 0
has to be satisfied. Taking into account Eq. (24), this
condition can be written as

(25)

Note that a droplet forms under several opposing
influences. One of them is cubic anharmonicity, whose
contribution is given by the last terms in Eqs. (24) and
(25). The others are diffraction and quadratic anharmo-
nicity, the second and third terms in Eq. (24), respec-
tively.

Let us calculate the propagation velocity of a crow-
dion droplet. Note that ζ – Φ = z – v 0t – Φ = z – (v 0 +

)t. Hence, the velocity relative to the laboratory ref-

erence frame is given by v  = v 0(1 – / ). Using
Eqs. (19) and (24), we obtain

(26)

It follows from Eqs. (25) and (26) that the crowdion
droplet can propagate at supersonic speed if there is no
quadratic anharmonicity.

In general, Eqs. (24) and (25) are quite cumbersome
and too complex to be analyzed. Therefore, we limit
ourselves to studying several important limiting cases
illustrating the main features.

Let us assume that the diffraction contribution is
small. Setting D = 0 in Eqs. (24) and (25), we can find
the initial parameters of the dislocation required for the
creation of a droplet. The polynomial Q(qm) has real
roots if its coefficients satisfy certain conditions. In
analyzing Eq. (24), we conclude that qm = (B2/4)1/3 cor-
responds to a minimum of Q(qm) and to an inflection
point of the potential energy. In order for Eq. (24) to
have at least two roots, one of which is a minimum of
U(R), the inequality Q((B2/4)1/3) < 0 has to be satisfied.
Hence, the parameters of the medium have to be subject
to the condition

in order for the formation of crowdion droplets to be
possible. The range of possible dimensions of a droplet
can be found from Eqs. (24) and (25) to be

Let us study now the case where the quadratic
anharmonicity is small and the diffraction is substan-
tial. Setting B2 = 0 in Eqs. (24) and (25) and proceeding
as above, we obtain the condition for the droplet forma-
tion:
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In this case, the droplet dimensions lie in the range

and the crowdion droplet moves at supersonic speed.
Let us study the possible realization of a crowdion

droplet in crystals. For this purpose, we use the Morse
potential [13]

where ξ ≡ uj + 1 – uj is the site relative displacement,
r0 is the parameter describing the scope of the potential,
and W0 is its magnitude.

In the vicinity of the minimum, the potential can be
expanded as

Through comparison with Eq. (2), we get λ111/λ11 =

−3h/2r0 and λ1111/λ11 = 7h2/6 . The values of the elastic
moduli of the second and third order are well-known, so
we can estimate the fourth-order constant λ1111.

We take as an example NaCl crystals. For this com-
pound, h = 5.63 Å, λ11 = 49 GPa [14], and λ111 = –8.5 ×
102 GPa [15]. Hence, b2 = 3.7 Å, b3 = 48.3 Å2, and b =
2.6 Å2. The condition b3 > 4b/3 (Fig. 4) is satisfied.
Assuming the dislocation parameters to be l0 ~ 10h and
ls ~ 100h, we get B2 = 3.5 and B3 = 2. For R0 = 0.5Rc =
145h, from Eqs. (24) and (25) we obtain Rm = 0.68R0 =
99h. The cross section of such a dislocation starts to
collapse, and later, in the course of propagation, it will
oscillate near the equilibrium size Rm. The peak value
of the plastic strain inside the crowdion droplet is εm ≅
h/πl0 = 0.03. The droplet velocity practically coincides
with the speed of sound, exceeding it by just a few hun-
dredths of one percent.

5. CONCLUSIONS
In contrast to studies employing one-dimensional

models of atomic chains, the influence of transverse
perturbations on the motion of edge dislocations has
been considered in the present paper with inclusion of
elastic anharmonicity of the second and third orders
and the acoustic dispersion. The effects of each of these
factors on the dislocation dynamics have been found.

The stability of an edge dislocation of the crowdion
type with respect to self-focusing depends on several
competing contributions. The Frenkel–Kontorova crys-
tal potential causes defocusing. However, the quadratic
anharmonicity (which is the main factor governing the
thermal expansion) and acoustic dispersion promote
self-focusing. The cubic anharmonicity plays a dual
role: if the cubic nonlinearity exceeds the acoustic dis-
persion, it can impede the self-focusing; otherwise, it
facilitates the focusing effect.
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There is a range of parameters where the dislocation
radius oscillates around an equilibrium value. In this
case, we have a crowdion droplet, which can propagate
at supersonic speed. For the formation of a crowdion
droplet, it is important to have several competing con-
tributions. In our case, these are the cubic anharmonic-
ity exceeding the acoustic dispersion (which corre-
sponds to b3 > 3b/4) providing a defocusing effect on
the one hand and the quadratic anharmonicity and dif-
fraction promoting self-focusing on the other hand.

A trial solution to Eq. (7) has been chosen to coin-
cide with the single-soliton solution of the Frenkel–
Kontorova model in the absence of elastic anharmonic-
ity. As was shown in [16], the quadratic anharmonicity
in the one-dimensional case can give rise to fundamen-
tally new dislocation-type solutions that cannot be
reduced to the Frenkel–Kontorova soliton. We believe it
will be of interest to study the influence of transverse
perturbations on such dislocations.
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Abstract—This paper reports on the experimental results of measuring the time elapsed between the loading
and the fracture of ferroelectric ceramic specimens under the action of a static electric field and mechanical
stresses that differ in magnitude. The dependence of the durability of the specimens on the applied stress is
determined for electric fields in the range from 0 to 5 MV/m. It is shown that, in the time range 1–103 s, the
durability of the ferroelectric ceramic material substantially increases in weak electric fields (the hardening
effect) and significantly decreases in strong electric fields. The results obtained can be explained in terms of the
fact that the load and the electric field affect the same defects (fracture nuclei) in the ferroelectric ceramics.
© 2005 Pleiades Publishing, Inc.
† 1. INTRODUCTION

In solving problems regarding the strength of ferro-
electric ceramic materials, an important question arises
as to how an external electric field affects the develop-
ment of their fracture. There are virtually no experi-
mental works concerned with the fracture kinetics of
ferroelectric ceramic materials in the presence of an
electric field. The fracture of these materials under the
action of an electric field was investigated earlier in [1–
4]. The nature of mechanical stresses generated by the
inverse piezoelectric effect in the BaTiO3 piezoelectric
ceramic material was theoretically considered by
Bondarenko et al. [5, 6]. However, those authors
assumed that the fracture is critical; i.e., it occurs only
when the electric field reaches a critical value. The pur-
pose of the present work was to investigate the regular-
ities of the fracture of ferroelectric ceramic materials
for various combinations of electric fields and mechan-
ical stresses and to compare the obtained kinetic param-
eters of the fracture.

2. SPECIMENS AND EXPERIMENTAL 
TECHNIQUE

The experiments were performed with ferroelectric
ceramics of the PZT type (PZT-19) based on lead zir-
conate titanate Pb(Zr,Ti)O3. Specimens were prepared
in the form of disks with a diameter 2c = 20 mm and a
thickness h = 0.7 mm and had attached electrodes. The
mean grain size in the specimens was equal to 4 µm,
and the porosity varied in the range 17–20%. The volt-

† Deceased.
1063-7834/05/4704- $26.00 ©0652
age measurements were carried out in an ethylsiloxane
liquid. A dc voltage was applied to the electrodes until
the specimen was fractured. Mechanical loading was
accomplished using axisymmetrical bending. The
diameters of the supporting and loading rings were cho-
sen to be 2b = 13 mm and 2a = 7 mm, respectively. The
load was applied in steps ∆P = 1.5 N, which corre-
sponded to ∆σ = 1.7 MPa. During loading, the speci-
men was held at a constant load for a time ∆t = 900 s.
The maximum tensile stresses were calculated accord-
ing to the formula for the bending of round plates with
an undistorted neutral plane [7]:

(1)

Here, Q is the load and ν is the Poisson ratio of the
piezoelectric ceramic material. The durability τ was
taken as the time elapsed between the last loading and
the fracture of the specimen.

In our experiments, the electric field E was equal to
0, 1, 2, 3, 4, and 5 MV/m.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

The experiments demonstrated that the fracture of
the ferroelectric ceramic specimens under the action of
mechanical stresses has a kinetic character. The frac-
ture was observed at various constant mechanical
stresses applied over different periods of time. In this
case, the spread of times elapsed between the loading
and the fracture of the specimens was very large: for a
chosen testing time ∆t, the specimen under the load
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Results of the statistical processing of the obtained data on the fracture kinetics of ferroelectric ceramic materials in an electric field

σ, MPa

7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 35

E, MV/m 4 4 4 4 1 4 1 4 1 1 1 1 1 1

n↓ 0 1 7 20 0 33 0 41 3 8 15 27 32 37

ni 0 5 12 12 0 7 2 0 5 7 12 5 4 0

n↑ 41 35 22 9 37 0 35 0 29 22 10 5 1 0

ni/n 0 0.12 0.29 0.29 0 0.17 0.05 0 0.14 0.19 0.32 0.14 0.11 0

n↓ /n 0 0.02 0.20 0.51 0 0.83 0 1 0.08 0.22 0.41 0.73 0.86 0.97

Note: n↓  is the number of specimens fractured under stepwise loading up to the stress σ, ni is the number of specimens fractured in the
time range from τmin to τmax, and n↑  is the number of specimens not fractured under loading at the stress σ.
could be both fractured at the instant of loading and not
fractured. Figures 1a and 1b present the results of mea-
suring the durability of ferroelectric ceramic specimens
under different stresses for electric fields of 1 and
4 MV/m.

Earlier [8], we showed that the time elapsed
between the loading and the fracture of the specimen
under stepwise loading (i.e., the durability of the spec-
imen) can be described by the expression

(2)

Here, Veff is the effective activation volume, U0 is the
activation energy of fracture, T is the measurement tem-
perature, k is the Boltzmann constant, and τ0 is a con-
stant. At a constant temperature, expression (2) takes
the form τ = Ae–Bσ, where A characterizes the activation
energy and B determines the effective activation vol-
ume of fracture. In [8], we also developed a procedure
for calculating the parameters A and B from the average
mechanical strength  and the fracture probability W at
a constant stress σ in a specified time range from τmin
to τmax:

(3)

In our experiment, the fracture probability W was taken
as the ratio of the number of specimens (ni) fractured at
a given stress σi in the time range from τmin to τmax to the
total number of tested specimens (n). The average
mechanical strength was determined from the integral
curve of the mechanical strength distribution, which
involves the data obtained for the specimens fractured
at all previous stages and at the instant of last loading,
i.e., before the onset of loading at the given stress (their
number is denoted as n↓ ).

The table summarizes the results of the statistical
processing of the data presented in Figs 1. The proba-

τ τ 0

U0 V effσ–
kT

------------------------.exp=

σ
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--------log

σ τmax/τminlog

W σd

∞–

∞

∫
---------------------------------, B

A/τminlog
σ

-----------------------.= =
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bility function W(σ) and the strength distribution func-
tion from which the quantity  was determined for
electric fields of 1 and 4 MV/m are shown in Fig. 2.
These data and the corresponding results obtained for
other electric fields were used to calculate the coeffi-
cients A and B (Fig. 3) from expression (3). As can be

σ
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(b)

1
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100

1000

τ,
 s

10 12 14 16 18
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10

100
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Fig. 1. Time τ elapsed between the loading and the fracture
of the specimens under simultaneous action of a static elec-
tric field with strengths of (a) 1 and (b) 4 MV/m and a step-
wise increasing mechanical load as a function of the stress σ.
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seen from Fig. 3, the dependences of logA and  on the
electric field have a similar behavior and, as a first
approximation, the coefficient B can be assumed to be
constant. The decrease in the average mechanical
strength  with an increase in the electric field E
according to a nearly linear law with a slope of
6.4 N/Vm is observed only at E ≥ 3 MV/m. In weaker
electric fields E, the average mechanical strength first
slightly increases and then again becomes close to the
mechanical strength in the absence of an electric field.
A similar result was obtained earlier in [8]. However, in
[8], this inference holds only for the mechanical
strength corresponding to τ = 1 s. In the present work,
we can extend this inference to times (or loading rates)
up to 103 s. The mean value of B = 1.3 MPa–1 allows us
to determine the effective activation volume Veff = 12 ×
10–27 m–3, which is in close agreement with the results
published in our recent paper [9].

A comparison of the results obtained in this work
with the data reported in [8, 9] allows the conclusion
that, upon fracture of the specimens under the action of
an electric field and mechanical loading, the time
effects manifest themselves in a similar manner. This
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Fig. 2. Dependences of the fracture probability W in the
time range 1–103 s on the stress σ and the integral curve of
the mechanical strength distribution for electric fields E =
(a) 1 and (b) 4 MV/m.
P

confirms the assumption made earlier in [8] that the
observed processes are affected by the same structural
defects.

Thus, the results of our experiments indicate that the
mechanical fracture of ferroelectric ceramic specimens
in an electric field has a kinetic character. In this case,
the fracture probability in a specified time range [i.e.,
the quantity proportional to the effective activation vol-
ume Veff, as follows from expression (3)] does not
depend on the electric field. An insignificant hardening
in weak electric fields is observed in the time range 1–
103 s. Most likely, this hardening can be associated with
the relaxation processes proceeding in the structure of
the ferroelectric ceramics. By assuming that the preex-
ponential factor τ0 in expression (2) is equal to 10–13 s
in the studied ranges of E and σ, we can estimate the
activation energy of fracture. For E ≤ 3 MV/m, the acti-
vation energy of fracture is almost constant and is equal
to 2.3 eV. For E ≥ 3 MV/m, the activation energy
decreases with an increase in the electric field. The
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Fig. 3. Dependences of (a) the average strength  and the
parameters (b) A and (c) B on the electric field E.
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large spread in the values of the mechanical strength
and the durability for several ferroelectric ceramic
specimens is caused by both the structural inhomoge-
neity and the large number of defects of different
nature. In [8], we thoroughly investigated the mechani-
cal strength distribution for a similar ferroelectric
ceramic material. In particular, it was shown that the
Weibull strength distribution exhibits a kink. This sug-
gests that there exist two types of defects. The results
obtained in this study on the fracture kinetics in a static
electric field have demonstrated that the initial defects
are fracture nuclei (at least, for times up to 103 s) and
that the average mechanical strength and durability are
related by expression (2).
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Abstract—Copper is used as an example to analyze the effect of radiation on the stress–strain curves and defor-
mation stability of radiation-hardened metals. The analysis is based on an equation that describes the evolution
of the dislocation density with deformation in a plastically deformed material. Deformation instability in the
initial stage of the stress–strain curve is caused by strong deformation localization at the microscopic level as
a result of the transformation of immobile radiation defects (vacancy and interstitial loops) into mobile dislo-
cations. The channeling of a large number of dislocations along slip planes causes the appearance of a yield
drop and a yield plateau in the stress–strain curves. The critical conditions for their appearance, as well as the
theoretical irradiation-dose dependences of the yield-plateau length and the uniform strain to necking, are
found. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Neutron irradiation of metals at doses higher than
1017 cm–2 at temperatures T < 0.3Tm, where Tm is the
melting temperature, is accompanied by a number of
specific features. The main features are the formation of
clusters of radiation defects (vacancy or interstitial
loops and stacking-fault tetrahedra) with a density of
1016–1018 cm–3, which cause a sharp increase in the crit-
ical shear stress and the appearance of a yield drop and
a yield plateau in the stress–strain curve of an irradiated
metal, and a strong decrease in the uniform strain to
necking. The latter two circumstances indicate a low
resistance of plastic deformation of a radiation-hard-
ened metal to deformation localization and fracture. At
high radiation doses (higher than 1023 cm–2, or 1 dpa),
the metal completely loses its plasticity; in other words,
it becomes brittle. All these phenomena occur in both
pure fcc and bcc metals and structural austenitic and
ferritic alloys used in nuclear engineering [1].

Structural studies of metals plastically deformed
after irradiation, performed using optical and electron-
microscopic methods, have revealed that deformation
localization during radiation-induced hardening takes
place not only at the macroscopic level but also at the
meso- and microscopic levels. At the mesoscopic level,
this phenomenon manifests itself in the appearance of
nonuniform deformation and its propagation as the
Lüders front along the gage portion of a tensile speci-
men [2]. At the microscopic level, this phenomenon
manifests itself in dislocation channeling. The latter
effect signifies the formation of radiation defect–free
“channels” 0.1- to 0.5-µm wide along slip planes in an
irradiated metal during plastic deformation as a result
of dislocation motion on these planes and the “sweep-
1063-7834/05/4704- $26.00 0656
ing” of defects [3, 4]. Materials with such channels can
carry large local plastic shears of about 1–10, whereas
the macroscopic strain of a sample under these condi-
tions is only several percent. Large local shears indicate
that many dislocations pass through the channels. The
related steps on a crystal surface can reach a few
microns [3], which can be dangerous for a polycrystal-
line material if the grain boundaries become brittle as a
result of irradiation.

The mechanism of formation of the defectless chan-
nels and dislocation channeling was theoretically con-
sidered in [5, 6] using a kinetic equation for the density
of dislocations that form as a result of the transforma-
tion of radiation-induced prismatic Frank loops and
stacking-fault tetrahedra into glide dislocations fol-
lowed by annihilation of the screw segments of the dis-
locations, which causes the disappearance of both loops
and dislocations in the channels. In this work, these
results are used to analyze the factors that have an effect
on the instability of plastic deformation in irradiated fcc
metals in the initial stage of their deformation (the
appearance of a yield drop and a yield plateau) and on
the uniform deformation up to deformation localization
in the form of necking.

Like in [7, 8], our analysis of the effect of structural
factors (radiation defects in the form of point-defect
clusters) on the parameters of the stress–strain curve of
an irradiated metal is based on the equation for the evo-
lution of the mean dislocation density with strain. To
illustrate and verify the theoretical results obtained, we
use the data reported on plastic deformation and the
defect structure of radiation-hardened copper [1, 9–12].
In Sections 2 and 3, we generalize and analyze the
experimental and theoretical results regarding the vari-
ations in the radiation-defect density and the critical
© 2005 Pleiades Publishing, Inc.
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shear stress in copper with irradiation dose. Sections 4
and 5 give a theoretical consideration of the effect of
radiation defects on the stability of plastic deformation
and on the parameters and shape of the stress–strain
curve of neutron-irradiated copper.

2. DEFECT DENSITY
AND THE CRITICAL SHEAR STRESS

As an example, Fig. 1 shows stress–strain curves of
polycrystalline copper after neutron irradiation to vari-
ous doses [1, 9]. The yield strength (for a single crystal,
the critical shear stress τi) is seen to increase strongly
with irradiation dose. It has been reliably established
that, in the case where dislocations interact with radia-
tion defects with a volume density N and a transverse
size d, the critical shear stress is given by [1, 10, 12]

(1)

where µ is the shear modulus, b is the Burgers vector,
and αi is a coefficient determining the interaction of a
dislocation with a defect (this coefficient depends on
the temperature T and strain rate  if dislocations over-
come defects via thermal activation). In Eq. (1), the
quantities that can be dependent on the irradiation dose
are the mean defect size d and the volume density of
defects N [10, 11]. As was shown in [11], the mean
defect size in copper changes only weakly with the irra-
diation dose, whereas the dislocation loop density
increases by a few orders of magnitude and reaches sat-
uration at irradiation doses D > 10–2 dpa. The depen-
dence of N on the irradiation dose for copper is
described by the formula [11]

(2)

where Nm = 7 × 1017 cm–3 and D0 = 1.25 × 10–2 dpa. If
the irradiation dose is characterized by a fluence φ, i.e.,
the number of neutrons per unit area of an irradiated
object, rather than by displacements per atom (dpa),
then, taking into account that, in the case of N ! Nm, the
defect density in copper increases as N ~ φ2/3 [5, 10], we
obtain the following dependence of the volume defect
density on the fluence φ, which is alternative to Eq. (2):

(3)

Substituting Eqs. (2) and (3) into Eq. (1), we obtain the
following dependence of the critical shear stress on the
irradiation dose measured in the corresponding units:

(4a)

τ i α i T ε̇,( )µb dN( )1/2
,=

ε̇

N Nm 1 D
D0
------– 

 exp– ,=

N Nm 1
φ
φ0
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  2/3

– 
 exp– .=

τ i τ im 1 D
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 exp–
1/2
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(4b)

The dependence of the yield strength on the irradia-
tion dose described by Eq. (4a) is valid for a wide range
of austenitic steels [13]. At φ ! φ0, it follows from
Eq. (4b) that τi ~ φ1/3. Dependences of this type were
observed in copper in [14–16]. In Fig. 2, the experimen-
tal dependence of the yield strength of polycrystalline
copper σi = mτi on the irradiation dose (shown in Fig. 1)
is given in the logσi versus logφ coordinates (points).
The solid curve in Fig. 2 is plotted according to Eq. (4b)
at σim = mτim = 370 MPa and φ0 = 5 × 1020 cm–2 (m is
the Taylor factor). The dotted line in Fig. 2 corresponds
to the dependence σi ~ φ1/3.

The thermal-activation analysis of the interaction of
dislocations with radiation defects performed in [14,
17] indicates that the coefficient αi that specifies the
interaction of a dislocation with a defect varies with
temperature T and strain rate  as

(5)

where α0i is the athermal component of this interaction,
αi0 is the thermal component at T = 0, q = 2/3 [14] or
1/2 [17], H0 is the full potential barrier that is overcome

τ i τ im 1
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 exp–
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Fig. 1. Stress–strain curves of polycrystalline copper irradi-
ated by neutrons to different doses φ [1, 9].
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by a dislocation,  is the preexponential factor in the
expression for the plastic strain rate, and k is the Boltz-
mann constant. According to experimental data [17], in
neutron-irradiated copper, we have α0i = 0.05, αi0 = 1,
Ti ≈ 103 K, and q = 1/2. In this case, from Eq. (5) at
293 K, we obtain αi = 0.26, which is close to the exper-
imental value given in [12].

3. STRAIN DEPENDENCE
OF THE RADIATION-DEFECT DENSITY

The formation of defectless channels at the initial
stage of deformation of an irradiated metal and the high
local shear strains due to these channels indicate the
channeling of a large number of dislocations along the
corresponding slip planes. Indeed, if we assume that all
radiation defects in the form of prismatic Frank loops or
stacking-fault tetrahedra transform into mobile disloca-
tions as a result of interaction and reaction with glide
dislocations, then the initial density of these defects in
the material is ρi0 = πdN. For example, for copper at d =
2 nm and N = 1016–1018 cm–3 [11], we obtain ρi0 ≈ 6 ×
(109–1011) cm–2. This dislocation density is characteris-
tic of large plastic strains and late (third, fourth, etc.)
stages of the stress–strain curve, where the processes of
dynamic recovery and annihilation of screw disloca-
tions develop in a dislocation ensemble at temperatures
T < 0.3Tm.

ε̇0

1020 10221018

φ, cm–2

10

102

103

σi, MPa

Cu, 293 K

Fig. 2. Dependence of the yield strength of copper on the
irradiation dose (see Fig. 1). The solid line illustrates
Eq. (4b), and the dotted line is plotted according to the
dependence σi ~ φ1/3.
PH
The transformation of prismatic loops into mobile
dislocations and the formation of defectless channels
occur nonuniformly throughout the crystal. According
to [5, 6], these processes are described by the following
kinetic equation for the density of radiation-induced
dislocations ρi:

(6)

Here, ρi = ρi(x, y, t) is the density of mobile dislocations
in the crystal (in a grain of a polycrystal) at the instant
t; ux is the dislocation velocity along the x axis in a slip
plane; Dy > 0 is the diffusion coefficient of dislocations
along the y axis, which is transverse to the plane of dis-
location motion with allowance for the inversion of the
sign of the dislocation flux due to strain hardening [18];
n = n(ρi0) is the volume density of the dislocation
sources that appear as a result of the transformation of
Frank loops and stacking-fault tetrahedra into glide dis-
locations; βim is the coefficient of immobilization of
dislocations at obstacles not associated with deforma-
tion; λm is the mean free path of dislocations between
these obstacles; ha is the characteristic annihilation dis-
tance of the screw segments of dislocation loops; and
u is the average dislocation velocity in the crystal.

Equation (6) describes both the dislocation annihila-
tion front motion along an individual channel [6] and
the formation of new channels as the Lüders front
moves in the crystal in the direction transverse to the
plane of dislocation motion. In the case of a polycrys-
talline sample, the y axis, along which the Lüders front
moves, coincides with the sample axis. In this case, the
diffusion coefficient Dy of dislocations has the meaning
of the diffusion coefficient averaged over all grains.
Unfortunately, Eq. (6) cannot be solved in the general
case. In [5], we could only find the solution to this equa-
tion in the steady-state case, where the motion of the
Lüders front ceased and a system of defectless channels
with a width ∆Λ and a spacing Λ between them formed.

Obviously, the disappearance of part of the radiation
defects as a result of the formation of channels with a
high local plastic shear in them should cause a decrease
in the flow stress and the occurrence of a yield drop.
When the Lüders front moves in a sample, this disap-
pearance should result in a yield plateau in the stress–
strain curve of an irradiated material, which is observed
experimentally (Fig. 1). To demonstrate this behavior
theoretically, we consider the solution to Eq. (6) in the
uniform approximation. To this end, we drop the sec-
ond and third terms in the left-hand side of Eq. (6) and
take into account that ∂ρi/∂t = (∂ρi/∂γi) , where  =
bρiu is the local plastic strain rate in a channel. As a
result, we obtain the following equation for the radia-

∂ρi

∂t
------- ux

∂ρi

∂x
------- Dy

∂2ρi

∂y
2

----------+ +

=  nu 1 βim–( ) u
λm

------ρi hauρi
2
.–+

γ̇i γ̇i
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tion-induced dislocation density ρi as a function of
strain:

(7a)

where km = 1/bλm and ka = ha/b is the dislocation
annihilation coefficient. The estimates made in [5]
show that, in pure metals, the second term in the right-
hand side of Eq. (7a) can be neglected as compared to
the other two.1 In this case, we obtain

(7b)

By integrating this equation under the initial condition
ρi(0) = ρi0, we find the dependence of the radiation-dis-
location density on the local strain γi,

(8)

where ηi = n/bka . The volume density of the dislo-

cation sources is equal to n = , where li =  is
the average length of the dislocation segments that form
Frank–Read dislocation sources and δ0 < 1 is the rela-
tive fraction of effective sources. Thus, we find that ηi =

δ0/bka .

Taking into account Eq. (3), we obtain the following
dependence of the parameter ηi on the irradiation dose:

(9)

For copper at δ0 = 1.4 × 10–2 [5], T = 293 K, ka = 3.5
[18], and the values of d, Nm, and φ0 given above, we
have ηim = 0.24. Thus, it follows from Eq. (9) that ηi =
ηim < 1 at high irradiation doses and ηi ~ φ–1/3 > 1 at low
irradiation doses (φ ! φ0). Figure 3 shows the variation
in the radiation-dislocation density ρi with the local
strain γi with respect to the initial value of ρi0 plotted
according to Eq. (8) at different values of the parameter
ηi. It can be seen that the dislocation density increases
with the local strain at low doses, where ηi > 1 (curve 1),
and decreases at high doses, where ηi < 1 (curve 2). In
the latter case, dislocation annihilation dominates over
dislocation generation from dislocation sources. At ηi =
1, these two processes are balanced and the dislocation
density remains unchanged (Fig. 3, dashed line). The
criterion ηi < 1 for the dominance of dislocation anni-
hilation over dislocation generation from dislocation

1 This term, however, has a substantial effect on the formation of
defectless channels in alloys with a sufficiently high volume frac-
tion of precipitates or other disperse particles. This problem
requires separate discussion.
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sources coincides with the criterion for the appearance of
defectless channels in irradiated metals [5].

Since the density of radiation-induced defects in the
form of prismatic Frank loops and the radiation-
induced dislocation density are connected by the rela-
tion ρi = πdN, we substitute this relation into Eq. (7b)
and obtain the following kinetic equation for the radia-
tion-defect density:

(10)

The solution N(γi , φ) to Eq. (10) is similar to Eq. (8) and
describes the density of the initial radiation defects in
an irradiated material as a function of plastic strain. An
equation for the radiation-defect density of the same
type as Eq. (10) for the particular case of n = 0 was ana-
lyzed earlier in [19].

4. YIELD DROP AND YIELD PLATEAU

It follows from Eqs. (1), (8), and (9) that a decrease
in the radiation-defect density due to the formation of
defectless channels causes the flow stress to decrease
according to the expression

(11)

where  = π–1/2αi, since ρi = πdN. By making allow-
ance for the fact that the strain of the material upon the

N
dN
dγi
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2

Fig. 3. Dependence of the relative change in the radiation-
induced dislocation density on the local strain γi plotted
according to Eq. (8) at ka = 5 and for various values of the
parameter ηi: (1) 2, (2) 0.2, and (dotted line) 1.



660 MALYGIN
formation of channels is ε = fiγi/m (where fi = ∆Λ/Λ is
the relative fraction of the material occupied by the
channels), we can obtain the following dependence of
the stress σi = mτi on the plastic strain and irradiation
dose for a polycrystalline material:

(12a)

(12b)

In the absence of radiation defects and other struc-
tural defects, the kinetic equation for the dislocation
density ρd under conditions of multiple slip has the
form [18, 20]

(13)

where kf is a coefficient that specifies the intensity of
dislocation multiplication at forest dislocations. By
integrating Eq. (13) and taking into account that the
flow stress in this case is determined by the relation

σd = mαµb , we obtain the strain-hardening curve
for an unirradiated material:

(14)
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Fig. 4. Stress–strain curves calculated from Eq. (15) for
copper irradiated by neutrons to different doses φ.
P

where σ3 is the flow stress at the end of the third stage
of the stress–strain curve (the stage of dynamic recov-
ery), ρ3 is the dislocation density at the end of this
stage, and α is the dislocation interaction constant for
multiple slip. Thus, with allowance for Eqs. (12) for the
stress, which specifies the radiation-induced hardening
of the material, the full flow stress of the material is

(15)

Equation (15) implies linear summation of the stresses
upon radiation hardening and strain hardening of the
material. Quadratic summation of these stresses is also
possible. However, an analysis shows that, in our case,
linear summation fits experiment better.

Figure 4 shows the strain-hardening curves of cop-
per irradiated at various neutron doses and calculated
from Eqs. (12)–(15). The doses given in Fig. 4 are the
same as those in Fig. 1. When calculating the stress σi,
we assumed that fi = 0.1 [5], ka = 3.4, and m = 3. In cal-
culating the stress σd, we assumed that α = 0.5, bkf =
1.1 × 10–2, b = 0.256 nm, and µ = 48.5 GPa. The values
of the other parameters were given above. Although we
failed to achieve complete quantitative agreement
between the strain-hardening curves shown in Figs. 1
and 4, there is, in general, reasonable agreement
between theory and experiment. As can be seen from
Fig. 4, a yield drop appears in strain-hardening curves 3–
5, just as in the corresponding curves in Fig. 1, at irra-
diation doses higher than 1019 cm–2; this drop is caused
by the appearance of a large number of mobile disloca-
tions during channel formation. Since new channels
form as a result of the motion of the Lüders front, the
yield drop in the σ–ε curves in Fig. 1 is followed by a
yield plateau and the corresponding stress (the lower
yield stress σL).

To find the length of the yield plateau (the Lüders
strain εL) and the stress σL, we use the equal-area rule.
As an example, let us consider the dashed line in Fig. 5,
which corresponds to curve 5 in Fig. 4. The letters b and
c designate the points of intersection of straight line ac
with the σ(ε) curve at the level of the lower yield
strength. The equal-area rule means equality of the
areas between this curve and straight line ac above and
below it. This rule can be written as

(16a)

or, after certain manipulations,

(16b)

where εb and εc are the strains corresponding to points
b and c in Fig. 5. Another condition for the determina-

σ ε φ,( ) σi ε φ,( ) σd ε( ).+=

σ ε φ,( ) σL φ( )–[ ] εd

0

εb

∫ – σ ε φ,( ) σL φ( )–[ ] εd

εb

εc

∫=

σ ε φ,( ) εd

0

εc

∫ σLεc,=
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tion of the strains εb and εc is also the condition speci-
fying both the lower yield strength

(17)

and the Lüders strain εL(φ) = εc(φ). The set of equa-
tions (16) and (17) for the strains εb and εc was solved
numerically for each value of the irradiation dose φ.
Figure 6 shows the dependence of the strain εL on the
irradiation dose obtained by solving these equations
and the experimental εL(φ) dependence for copper
derived from the data in Fig. 1. A yield plateau is seen
to form at irradiation doses above 1019 cm–2, where the
effect of dislocation channeling appears in the material.

5. UNIFORM STRAIN

One more phenomenon related to irradiation is the
strong decrease in the uniform strain εu when a radia-
tion-hardened material is under tension. The uniform
straining lasts until the appearance of plastic instability
in the form of a “neck,” which results in fracture of a
material via plastic shearing (Fig. 1). The appearance of
this instability is determined by the well-known Con-
sidére criterion dσ/dε ≤ σ. According to this criterion,
deformation loses its stability when the strain-harden-
ing coefficient dσ/dε becomes lower than the flow
stress σ. It is obvious from Eq. (15) that the higher the
stress of radiation-induced hardening σi(φ), the lower
the strain εu at which this criterion begins to be satis-
fied. Equations (12)–(15) allow us to obtain the theoret-
ical dependences of the uniform strain εu and the corre-
sponding flow stress σu (ultimate tensile strength) on
the stress σi(φ) and, hence, on the irradiation dose.

It is seen in Fig. 1 that deformation loses its stability
in the irradiated copper at strains exceeding the Lüders
strain (εu > εL). At these strains, it follows from
Eq. (12a) that the stress of radiation hardening is

σi(φ) = σi0(φ). This stress is strain-independent
and, hence, does not contribute to the left-hand side of
the Considére condition. After substituting Eq. (15)
into this condition and taking into account Eq. (14), we
find that

(18a)

(18b)

where ξ is a certain correction factor. Figure 7 illus-
trates the theoretical dependence of the strain εu on the
irradiation dose (curve 1) obtained according to
Eq. (18a) at ξ = 2. The experimental points (circles) in

σL φ( ) σ εb φ,( ) σ εc φ,( ),= =

η i
1/4

εu
2

mka

---------
1

1
2
---mka+

1 ξ
σi φ( )

σ3
-------------+

--------------------------,ln=

σu

1
2
---mka

1
1
2
---mka+

---------------------- σi φ( ) σ3+( ),=
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Fig. 7 demonstrate the variation in the uniform strain in
copper irradiated to different doses (Fig. 1). The irradi-
ation to a dose of 2.3 × 1021 cm–2 is seen to decrease the
uniform strain to necking by a factor of more than 2.

0 4 8
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300
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400

σ, MPa

a b c

Fig. 5. Schematic diagram for the determination of the
Lüders strain and the lower yield strength (see text).
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Fig. 6. Dependence of the yield-plateau length εL in copper
on the irradiation dose φ constructed according to Eqs. (16)
and (17). Experimental points correspond to the data in Fig. 1.
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This decrease will be even more pronounced if the
beginning of necking is taken to be the first decrease in
the stress in curve 7 in Fig. 1 immediately after the end
of the yield plateau. The corresponding strain (4%) is
also shown in Fig. 7. For comparison, Fig. 7 also shows
the dependence of the Lüders strain on the irradiation
dose (Fig. 6). It is seen that, at high doses, εu and εL

approach each other, which indicates a significant loss
and the absence of a plasticity margin in the radiation-
hardened metal. A similar result was obtained in [21]
for neutron-irradiated nickel. Since the appearance of a
yield plateau and the Lüders strain is related to the for-
mation of defectless channels, the authors of [21] con-
sidered this strain to be the critical strain required for
the appearance of these channels at a given irradiation
dose. It should be noted that, at high irradiation doses,
the theoretical εu(φ) dependence for copper (Fig. 7,
curve 1) deviates strongly from the experimental
dependence at a dose of 2.3 × 1021 cm–2 if the strain εu

is taken to be the Lüders strain. This discrepancy is
likely caused by the fact that, at high irradiation doses,
the law of quadratic summation of the radiation harden-
ing and the strain hardening fits experiment better than
does the linear law.

In conclusion, we would like to note that the
approach to analyzing the effect of radiation on defor-
mation stability and the plasticity of radiation-hardened
materials that is based on the dislocation kinetics equa-

1016 1018 1020 1022

φ, cm–2
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20

40
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10

εL, εu, %

1
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εu
εL

Fig. 7. Dependences of the uniform strain εu and the Lüders
strain εL in copper on the irradiation dose corresponding to
the data from Fig. 1. Theoretical curves: (1) calculated from
Eq. (18a) and (2) obtained by solving Eqs. (16) and (17).
P

tions makes it possible, first, to adequately describe the
character and specific features of the strain-hardening
curves of these materials and, second, to find a quanti-
tative relationship between these features and the irra-
diation dose.
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Abstract—The effect of preliminary strain hardening of VT1-0 titanium and a Ti–6 wt % Al–4 wt % V alloy
on their mechanical properties under quasi-static and high-rate (>105 s–1) loading is studied. Preliminary hard-
ening is accomplished using equal-channel angular pressing (which results in a significant decrease in the grain
size and a twofold increase in the quasi-static yield strength) and shock waves. High-rate deformation is
attained via shock-wave loading of samples. The experimental results show that structural defects weaken the
dependence of the yield strength on the strain rate. The difference in the rate dependences can be so high that
the effect of these defects on the flow stress can change sign when going from quasi-static to high-rate loading.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The physical mechanisms of plastic deformation of
crystalline bodies are known to be based on dislocation
motion. Dislocation motion is hindered by different
types of structural inhomogeneities (dislocation pile-
ups, grain boundaries, inclusions, etc.). The relative
contributions of different-level defects to the hardening
of a material can be revealed experimentally by varying
the strain rate. The point is that the flow stress of crys-
talline solids increases with the loading rate. At a suffi-
ciently high strain rate, the operating stresses become
so high that dislocations can overcome some obstacles
that are insurmountable under conditions of low-rate
deformation.

In other words, not all of the structural factors that
exert a hardening effect at low strain rates can be effec-
tive under conditions of high-rate deformation. In this
work, we compare the effects exerted on the quasi-
static-deformation resistance of titanium and a titanium
alloy by defects that appear during preliminary severe
plastic deformation or during a shock-wave compres-
sion.

The mechanical properties of materials at a strain
rate above 104 s–1 are studied upon shock-wave loading
of samples. The use of shock waves makes it possible
to effectively investigate the properties of materials at
extremely high strain rates under controlled conditions
of loading. Shock waves are known to harden a material
1063-7834/05/4704- $26.00 ©0663
due to intense dislocation multiplication [1], which
occurs even at low total strains. Severe deformation
causes grain refinement, which results in an increase in
the yield strength (Hall–Petch effect). These two meth-
ods of mechanical treatment are effective for increasing
the quasi-static strength of metals and alloys. However,
their effects on the strength properties under high-rate
deformation have not been studied yet.

2. EXPERIMENTAL

Shock-wave experiments were performed on sam-
ples 2–6 mm thick, in which plane compression waves
were excited by impact with a flyer plate. Flyer plates
made of aluminum, titanium, or copper 0.4–2.0 mm
thick were launched at velocities of 0.1–1.25 km/s with
explosive devices [2] and light-gas gun-barrel devices
[3]. In the experiments, we recorded the velocity pro-
files of the free back surfaces of the samples with
VISAR laser Doppler interferometric velocimeters [4].
The frequency bandwidth of the signal path was no less
than 0–350 MHz. The output signals of the velocime-
ters were recorded with digital oscilloscopes, and the
time intervals between measurement points were 0.4 or
2.0 ns.

Samples were made of commercial-purity (type-1)
titanium containing the following impurities (wt %):
0.15 O; 0.10 Fe; 0.018 Cr; 0.015 Ni; 0.026 C; less than
0.02 Al; and less than 0.01 Cu, Zr, V, and Mn. The sam-
 2005 Pleiades Publishing, Inc.
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Fig. 1. Stress–strain diagrams of (a) the coarse-grained and
(b) submicrocrystalline titanium in the longitudinal (solid
lines) and transverse directions (dashed lines) with respect
to the ECAP axis plotted at 20, 300, and 350°C. The strain
rate is 3 × 10–5 s–1.

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4

t, µs

ufs, km/s

20°C

10–15 µm

1.0

0.8
0.3 µm

Fig. 2. Free surface velocity history of a 2.23-mm-thick
VT1-0 titanium plate and 2.02-mm-thick submicrocrystal-
line titanium at room temperature. Impact with an alumi-
num plate 0.4-mm thick at a velocity of 1250 ± 50 m/s.
P

ples were cut off from a 4.98-mm-thick sheet. We also
studied rod-shaped samples made from VT1-0 titanium
containing 0.12 O, 0.18 Fe, 0.10 Si, 0.07 C, 0.010 H,
and 0.04 N or from a Ti–6 wt % Al–4 wt % V alloy
(hereafter, the Ti–6Al–4V alloy) containing 5.62 Al,
4.1 V, 0.2 O, 0.05 N, 0.08 C, 0.05 Fe, and 0.013 H. The
density and longitudinal and transverse (normal to the
loading direction) velocities of sound for the type-1
titanium were measured to be ρ = 4.53 g/cm3, cl =
6.195 km/s, and cs = 3.26 km/s, respectively; the corre-
sponding values for the Ti–6Al–4V alloy were ρ =
4.41 g/cm3, cl = 6.153 km/s, and cs = 3.149 km/s. The
VT1-0 titanium was tested in two states: in the initial
state with a grain size of 10–15 µm and in a submicro-
crystalline state. The grain size was decreased to a sub-
micron level via severe plastic deformation by equal-
channel angular pressing (ECAP); more specifically, a
billet was repeatedly extruded through two channels
having the same cross section and intersecting at an
angle of 90° in an instrument designed specially for this
purpose [5]. The grain size in the VT1-0 titanium sub-
jected to ECAP was 0.3 µm, and grains as large as 1 µm
were also present. However, large grains were divided
predominantly into 0.3-µm fragments having low-
angle boundaries with misorientations less than 5°.
After ECAP, the longitudinal sound velocity remained
virtually unchanged (5.87 ± 0.05 km/s).

Figure 1 shows diagrams of low-rate deformation of
the coarse-grained and submicrocrystalline titanium at
various temperatures. Severe plastic deformation is
seen to increase the strength of the material by more
than twofold. The high yield strength is retained upon
heating to 300°C; a further increase in the temperature
leads to recrystallization and a loss of the hardening
effect of ECAP.

We compared the behaviors of the sheet titanium
and the Ti–6Al–4V alloy in their initial state after the
action of a shock wave slightly above the dynamic elas-
tic limit. The shock-wave hardening of the materials
was determined by measuring their hardness.

3. EXPERIMENTAL RESULTS

Figures 2 and 3 show the free surface velocity his-
tory ufs(t) of the VT1-0 titanium with a fine- or coarse-
grained structure at room temperature and elevated
temperatures. The wave profiles clearly exhibit splitting
of the shock wave into an elastic precursor and a plastic
compression wave. The velocity jump at the precursor
front is proportional to the dynamic yield strength of
the material [2]. After the circulation of the shock wave,
a rarefaction wave forms in the flyer plate and propa-
gates into the sample after the shock wave. When the
rarefaction wave reaches the sample surface, the sur-
face velocity decreases. As a result of the reflection of
the compression pulse from the free surface of the sam-
ple, tensile stresses are generated inside the sample.
The fracture of the material (spall fracture) is accompa-
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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nied by the disappearance of tension resistance and
results in a compression wave, which reaches the sur-
face in the form of a so-called spall pulse and again
increases the surface velocity.

The longitudinal stress at the elastic-precursor front
(the dynamic elastic limit) is

where ufse is the velocity jump of the free surface in the
precursor, ρ0 is the initial material density, and cl is the
longitudinal sound velocity in the material. Compres-
sion stresses are taken to be positive. Unexpectedly, for
the submicrocrystalline titanium at room temperature,
the value of σxe behind the elastic-precursor front was
found to be 1.4 GPa, which is somewhat lower than that
for the initial material (σxe = 1.6 GPa).

For one-dimensional deformation, the elastic limit
is connected with the conventional yield strength σY by
the relation [2]

where cb =  is the bulk sound velocity and K is the
bulk modulus of elasticity. The value of cb = 4.78 km/s
for the titanium and the alloy was determined from their
shock compressibilities measured with allowance for
the possible effect of texture on the sound velocities.
The values of the dynamic yield strength at room tem-
perature thus found were σY = 0.81 GPa for the VT1-0
titanium in the initial state and 0.71 GPa for the tita-
nium subjected to ECAP. Thus, as the strain rate
increases, the effect of the grain size on the yield
strength of titanium decreases such that the hardening
effect of severe plastic deformation virtually disap-
pears. In our experiments, the average rate of shock-
wave deformation (which was estimated as the degree
of compression divided by the compression time) was
calculated to be ~4 × 105–106 s–1.

With allowance for the temperature dependences of
the elastic moduli (and, therefore, the sound velocities)
[6], the stress at the precursor front is found to be
1.77 GPa for the VT1-0 titanium in the initial state at
600°C and 1.15 GPa for the submicrocrystalline tita-
nium at 300°C. It is seen that the surface velocity at the
elastic-precursor front for the VT1-0 titanium in the ini-
tial state increases upon heating. However, in our case,
this effect is a consequence of the decreased shear mod-
ulus: the dynamic yield strength decreases with
increasing temperature (0.76 GPa for the initial mate-
rial at 600°C and 0.59 GPa for the submicrocrystalline
titanium at 300°C). Thus, at a strain rate of above 105 s–1,
the softening effect of temperature on the flow stress
greatly depends on the structure of the material.

The spall strength σ* of a material is determined
from the decrease in the velocity ∆ufs from its maxi-

σxe 0.5ufseρ0cl,=

σY
3
2
---σxe 1 cb

2
/cl

2
–( ),=

K /ρ
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mum value to the value ahead of a spall-pulse front
using the formula [2, 7]

where δ is the correction for the distortion of the veloc-
ity profile caused by the difference between the velocity
cl of the spall-pulse front propagating in the tensioned
material and the velocity cb of the plastic portion of the
incident unloading wave in front of this pulse [7, 8].
The spall strength of the titanium at room temperature
increases insignificantly with decreasing grain size,
namely, from 4.05 GPa in the initial state to 4.25 GPa
after ECAP. The dynamic breaking strength of the
material is likely to depend mainly on the presence of
impurities in the material rather than on its granular
structure.

Apart from information on the yield strength, the
wave profiles also give information on the σ(ε) depen-
dence during compression and, hence, on the strain
hardening of the material. The stress–strain diagram
was plotted using the measured profile of an elastoplas-
tic compression wave in terms of the simple centered-
wave approximation [2]. For such a wave, which is
described by a fan of straight-line characteristics, the
increments in the longitudinal stress (dσ) and in the
strain (dεx = –dV/V0) are connected by the relation

where aσ is the phase velocity of the portion of the wave
with a compression stress σ in the Lagrangian coordi-
nates. For one-dimensional deformation, the maximum
shear stress τ in a shock wave is determined by the dif-

σ*
1
2
---ρ0cb ∆ufs δ+( ),=

dσ ρ0aσ
2
dεx,=

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4

t, µs

ufs, km/s

10–15 µm, 600°C

1.0

0.8

0.3–0.5 µm, 300°C

Fig. 3. Free surface velocity history of 2.02-mm-thick VT1-
0 titanium plates in the initial and submicrocrystalline states
at elevated temperatures.
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ference between the longitudinal stress σ and the pres-
sure p:

For a simple centered wave, the phase velocity aσ is
defined as

τ 3
4
--- σ p–( ).=

aσ
h

h/cl t σ( )+
--------------------------,–=

1.0

0.5

0 2 4 6
ε, %

σx, 2τ, GPa

10–15 µm
2.0

1.5
~0.3 µm

2τ ~106 s–1

σx 10–3 s–1

Fig. 4. Stress–strain diagrams for the VT1-0 titanium calcu-
lated from the measured free surface velocity history shown
in Fig. 2 and measured using a standard procedure during
quasi-static deformation.
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imental data for sheet titanium samples of different thick-
nesses. Loading by impact with a 1.97-mm-thick titanium
plate at a velocity of 550 m/s and with a 2-mm-thick copper
plate at velocities of 191 and 132 m/s. The numerals on the
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where h is the distance between the impact surface (the
pole of the fan of centered wave characteristics) and the
section in the sample in which the σ(t) profile is ana-
lyzed and t is the time counted off from the instant of
the elastic-precursor front. In our case, instead of the
σ(t) profile, we analyzed the free-surface velocity pro-
file ufs(t) using the empirical law of velocity doubling

A more detailed analysis with inclusion of the interac-
tion between the incident and reflected waves near the
sample surface gives the following expression for aσ:

The simple-wave approximation is inaccurate. The
sources of error in it are related to the relaxation of
deviator stresses, the assumption that the mass velocity
and the free-surface velocity are interrelated, errors in
the volume-compressibility data, and the specific fea-
tures of the reflection of elastoplastic waves from the
sample surface.

In Fig. 4, the calculated stress–strain diagrams of the
VT1-0 titanium in the initial and submicrocrystalline
states for shock compression are compared with the
corresponding quasi-static stress–strain diagrams. The
comparison shows that, although the grain refinement
results in a small decrease in the dynamic yield
strength, the strain hardening of the submicrocrystal-
line titanium is higher than that of the initial titanium.
At a plastic strain of higher than 0.6%, the flow stress
of the former material is higher than that of the initial
titanium.

Figure 5 shows the velocity profiles of the free sur-
face of sheet (type-1) titanium samples at various
impact velocities. The dependence of the precursor
amplitude on the distance traveled and on the shock-
wave intensity, as well as the increase in the plastic-
wave steepness with increasing maximum compression
stress, is the consequence of the dependence of the flow
stress on the strain rate. At low impact velocities, the
wave profiles contain irregular oscillations, which indi-
cate that the process of plastic deformation is substan-
tially inhomogeneous. As shown in [3], the shock com-
pression of this material is accompanied by intense
twinning. We may assume that the stress oscillations
are related to the development of individual twins, as is
the case during low-rate deformation. As the shock-
compression pressure increases, the wave profiles
become more regular. According to the measurements,
the compression stress σxe at the elastic-precursor front
in the sheet titanium reaches as high as 1.8–2.1 GPa,
which corresponds to a yield strength σy = 1.13–
1.30 GPa.

Figure 6 shows the experimental results for the sam-
ples preliminarily subjected to shock waves. The hard-
ness of the sheet titanium subjected to single shock
loading is slightly higher in the central part of the sam-

ufs t( ) 2up t( ), dσ t( ) ρaσdup t( ).= =

aσ cl

2h clt σ( )–
2h clt σ( )+
---------------------------.=
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ple (it increases from 2.05 ± 0.05 GPa in the initial state
to 2.20 ± 0.05 GPa after loading). Upon repeated load-
ing, however, σxe decreases more than twofold. The dif-
ference in sign between the effects of a shock wave on
the resistance to quasi-static and high-rate deformation
suggests that the main mechanisms of high-rate defor-
mation and fracture and, correspondingly, the structural
factors that determine the yield strength and the ulti-
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Fig. 6. Effect of preliminary exposure to a shock wave on
the compression-wave profile in a 4.9-mm-thick sheet tita-
nium sample: (1) the free surface velocity history for the ini-
tial material loaded by a 2-mm-thick copper plate at a veloc-
ity of 132 m/s, (2) the free surface velocity history for
repeated shock loading at a velocity of 141.5 m/s, and (3)
experimental results for the sample subjected to triple expo-
sure to a shock wave at an impact velocity of 134 m/s.
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Fig. 7. Stress–strain diagrams for sheet titanium calculated
in the simple-wave approximation from the measured
velocity profiles of the free surface shown by curves 1 and
2 in Fig. 6.
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mate strength of the material need not be coincident
with those in the case of low-rate deformation.

Figure 7 shows the shock-wave stress–strain curves
calculated from the experimental data for the sheet tita-
nium in the initial state and after exposure to a shock
wave at an average compression rate of (3–6) × 104 s–1.
The shock wave is seen to change the initial segment of
the stress–strain curve. The decrease in the elastic limit
is related to the appearance of intense strain hardening.

Figure 8 shows the free surface velocity history of
the Ti–6Al–4V alloy samples at various impact veloci-
ties. The compression stress behind the elastic-precur-
sor front is 2.65 GPa and varies only slightly with the
sample thickness and the maximum pressure of shock
compression. Unlike titanium, the alloy exhibits no
signs of inhomogeneous plastic deformation in the
wave profiles.

Figure 9 shows the experimental results for the Ti–
6Al–4V alloy samples preliminarily subjected to a
shock wave. After the experiment represented by curve
1b, the hardness of the material in the central part of the
sample increased from ~3.05 GPa (in the initial mate-
rial) to ~3.20–3.25 GPa. Nevertheless, just as in the pre-
vious case, the stress behind the front of the elastic
compression wave decreased from 2.65 to 1.95 GPa,
which corresponds to a decrease in the yield strength
from 1.45 to 1.05 GPa. Virtually the same stress behind
the precursor front was obtained in the experiment rep-
resented by curve 2a, although, during the preliminary
shock action, the compression stress exceeded the
dynamic elastic limit only insignificantly.

Figure 10 shows the stress–strain diagrams for the
alloy in the initial state and after exposure to a shock
wave calculated from the experimental data obtained at
a low-velocity shock. It is seen that, just as in the exper-
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Fig. 8. Free surface velocity history of the Ti–6Al–4V alloy.
Loading by impact with a 2-mm-thick titanium plate at
velocities of 206 and 538 m/s (sample thickness, 6 mm) and
with a 2-mm-thick copper plate at a velocity of 223 m/s
(sample thickness, 4 mm).
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iments with titanium, the decrease in the elastic limit of
the alloy is related to the increased strain hardening. As
a result, the flow stresses in the shock-compressed state
in these two experiments are found to be virtually iden-
tical.

4. DISCUSSION OF THE RESULTS

The results of this experimental study unambigu-
ously demonstrate an anomalous effect of hardening
mechanical treatment on the resistance to high-rate
deformation and fracture. Phenomenologically, the
decrease in the dynamic elastic limit after exposure to a
shock wave could be interpreted as a manifestation of
the Bauschinger effect. According to this effect, a cer-
tain fraction of plastic deformation is reversible and
does not contribute to the strain hardening [9]. This
interpretation is supported by the fact that, despite the
significantly decreased elastic limit, preliminary expo-
sure to a shock wave does not affect the flow stress in
the shock-compressed state of the titanium and tita-
nium alloy. The manifestation of the Bauschinger effect
is also indicated by numerous results obtained in
recording full stress pulses [2]. These pulses show that
the process of deformation during unloading after
shock-induced compression deviates from an elasto-
plastic process toward low deviator stresses and that
plastic deformation often begins immediately behind
the unloading-wave front without a finite elastic region.
The authors of [10] found that, when metals and alloys
were loaded by two sequential shock-compression
pulses, an elastic precursor with a finite amplitude was
not detected in the second shock wave. However, the
Bauschinger effect cannot explain why the mechanical
treatment that increases the resistance to low-rate
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Fig. 9. Effect of preliminary exposure to a shock wave on
the compression-wave profile in the Ti–6Al–4V alloy. Pro-
files 1a and 1b are plotted for the initial material, and pro-
files 2a and 2b correspond to repeated loading.
PH
deformation can cause the reverse effect at high strain
rates.

The experimental data obtained indicate that struc-
tural defects weaken the dependence of the yield
strength on the strain rate. The change in the rate depen-
dence can be so high that the effect of these defects on
the flow stress can change sign when going from quasi-
static to high-rate loading. The effect of high stresses is
likely to change the relative contributions from thermal
fluctuations, structural microdefects, grain boundaries,
inclusions, and other inhomogeneities to the processes
of plastic flow.

To interpret the experimental results obtained, we
have to take into account that applied shear stresses
induce not only dislocation motion but also dislocation
generation and multiplication. Dislocations are gener-
ated near stress concentrators in the form of distur-
bances in long-range order. On the one hand, structural
defects are hardening factors, but on the other, they are
sources of plastic-deformation carriers (dislocations).
In other words, the same defects can both increase the
deformation resistance under quasi-static conditions
and be sources of plastic-deformation carriers (disloca-
tions) at high strain rates and high stresses, thus
decreasing the resistance to plastic deformation.

It seems instructive to formalize the experimental
results by classifying defects in terms of the stresses
required to overcome them. Depending on the operat-
ing stress, one part of the defects is involved in the pro-
cess of plastic deformation while the other part hinders
deformation. In the course of plastic deformation, the
parameters of the defect spectrum change. This
approach is thought to provide more a detailed descrip-
tion of the properties of a material and to be more infor-
mative for studies at high strain rates.
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Fig. 10. Stress–strain diagrams for the Ti–6Al–4V alloy cal-
culated in the simple-wave approximation from the mea-
sured free surface velocity history shown by curves 1b and
2b in Fig. 9.
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Abstract—The effect of deformation by rolling or quenching from temperatures close to the glass transition
temperature on the damping constant and the shear modulus of preliminarily annealed bulk samples of a
Zr52.5Ti5Cu17.9Ni14.6Al10 metallic glass was studied. These treatments are found to result in recovery of the
“irreversible” contributions to the damping constant and the shear modulus, and the deformation treatment is
shown to lead to an increase in the amplitude-dependent internal friction. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Metallic glasses are in a nonequilibrium structural
state; therefore, irreversible changes in their structure
(so-called irreversible structural relaxation) can occur
and substantially influence their physical properties.
The processes of irreversible structural relaxation that
take place at temperatures below the glass transition
temperature Tg are still less well understood. However,
study of these processes can yield important informa-
tion on the character and nature of energy excitations in
glasses above the glass transition temperature.

In [1–3], by using low-frequency internal friction,
we studied the temperature and time dependences of
the irreversible structural relaxation of a bulk
Zr52.5Ti5Cu17.9Ni14.6Al10 metallic glass. It was found
that irreversible changes in the shear modulus and
acoustic damping due to structural relaxation begin
approximately 100 K below the glass transition temper-
ature and terminate mainly at about Tg. Based on an
analysis of the temperature, time, and frequency depen-
dences of the damping constant and the shear modulus,
we proposed a phenomenological model for these pro-
cesses; this model implies the presence of relaxation
centers that are like elastic dipoles with an asymmetric
double-well energy potential. It was assumed that irre-
versible changes in the damping constant and the shear
modulus are related to the relaxation of the nonequilib-
rium high-energy states of these centers, which are
“frozen” due to quenching of the glass. We estimated
the activation-energy spectrum of irreversible relax-
ation. The characteristic energies in this spectrum for
the alloy in question (~2 eV) were found to be only
slightly lower (by 0.2–0.3 eV) than the activation ener-
gies for reversible relaxation (whose parameters are
reproduced during thermal cycling), which occurs at
1063-7834/05/4704- $26.00 0670
temperatures above the glass transition temperature [1,
2]. Therefore, we assumed that the reversible and irre-
versible portions of the relaxation spectrum are related
to the same centers and that the process of reversible
structural relaxation is caused by thermally activated
transitions between their high- and low-energy states.
In this case, at temperatures above Tg, the high-energy
states of the relaxation centers should again be filled;
when the alloy is rapidly quenched from these temper-
atures, one should expect partial recovery of the “irre-
versible” contributions to the damping constant and the
shear modulus. One of the purposes of this work was to
verify this assumption.

If we assume that, during irreversible relaxation, the
centers that are involved in this process fail only incom-
pletely and pass to their low-energy state, then the irre-
versible relaxation can be recovered by a high-energy
action at room temperature. One type of such an action
is plastic deformation. Since the stresses at which bulk
metallic glasses begin to deform are rather high, one
can expect mechanical activation of the high-energy
states of the centers in question during this action.
Therefore, another purpose of this work was to check
the possibility of recovering irreversible structural
relaxation through deformation treatment.

2. EXPERIMENTAL

As in [1–3], the logarithmic decrement and the shear
modulus were measured with an inverse torsional pen-
dulum; the measurement frequency was 10–20 Hz. All
measurements were performed on bulk samples of a
Zr52.5Ti5Cu17.9Ni14.6Al10 metallic glass. The starting
alloy was melted using vacuum induction melting
under levitation conditions; then, in order to obtain a
© 2005 Pleiades Publishing, Inc.
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metallic glass, the melt was quenched by pressing it out
onto an evacuated copper mold held at room tempera-
ture. The quenching rate in the vicinity of the glass tran-
sition temperature was about 102 K/s [1–4]. The char-
acteristic dimensions of the samples (with a ~2-mm2

cross section and a length of 25- to 40-mm) and the
method used to prepare them (spark cutting followed
by mechanical polishing) were identical to those used
in [1–3]. The structural (amorphous) state of the sam-
ples was controlled by x-ray diffraction. The glass tran-
sition temperature and the crystallization temperature
(for a heating rate of 2 K/min) were approximately 650
and 700 K, respectively.

All the samples on which the effect of heat or defor-
mation treatment was studied were preliminarily
annealed to eliminate irreversible changes in the damp-
ing constant and the shear modulus in them. To this end,
they were heated to 650–660 K according to a proce-
dure described in [1, 2] and the damping constant and
the shear modulus were measured during heating and
cooling at a rate of 2 K/min. After this treatment, the
irreversible change in the shear modulus in the samples
under study (its increment at room temperature) was 7–
15%. During repeated thermal cycling (up to 650–
680 K), we failed to detect any irreversible changes in
the damping constant and the shear modulus. Then, the
samples were subjected to heat or deformation treat-
ment.

The heat treatment (quenching) of the samples was
conducted as follows: the samples were placed in a bath
with molten tin for 5 min (the melt temperature was
660–690 K) and then water-quenched. The deformation
treatment of the samples was performed via rolling at
room temperature to a strain of 4–25%. After the sam-
ples were subjected to the heat or deformation treat-
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Fig. 1. Temperature dependences of the relative change in
the shear modulus of a bulk Zr52.5Ti5Cu17.9Ni14.6Al10
metallic glass quenched from 690 K, obtained in cycles of
heating and cooling at a rate of 2 K/min. The inset shows the
temperature dependence of the irreversible contribution to
the shear modulus.
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ment, the temperature dependences of the damping
constant and the shear modulus G were measured
repeatedly. The rate of temperature variation was about
2 K/min.

3. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependences of the
shear modulus measured in heating and cooling cycles
for a sample after heat treatment (quenching). The
shear modulus is seen to change irreversibly. The tem-
perature dependence of the irreversible contribution is
shown in the inset to Fig. 1; its character is identical to
that observed in as-quenched (from the melt) Zr–Cu–
Ni–Al–Ti samples [1, 2]. Like in [1, 2], an irreversible
contribution to the damping constant is detected at tem-
peratures above 500 K. In these experiments, the tem-
perature from which quenching was performed had
only an insignificant effect on the recovered irreversible
contribution to the shear modulus. The observed varia-
tions (from 7% for quenching from 660 K to approxi-
mately 8.5% for 690 K) are too small for this effect to
be discussed. To this end, additional experiments are
required to obtain much more statistical data over a
wider range of temperatures from which quenching is
performed.

In the samples subjected to heat treatment, the
damping constant and the shear modulus are found to
depend on the strain amplitude ε (Fig. 2); the ampli-
tude-dependent contribution is approximately the same
as that in as-quenched samples [3]. Annealing at tem-
peratures above 600 K somewhat weakens the ampli-
tude dependences but cannot eliminate them com-
pletely.

Deformation treatment also causes irreversible
changes in the damping constant and shear modulus
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Fig. 2. Amplitude-dependent contributions to (1, 2) the
shear modulus and (3, 4) the damping constant of a Zr–Cu–
Ni–Al–Ti alloy measured at room temperature after (1, 3)
quenching from 690 K followed by (2, 4) heating to 670 K.
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(Fig. 3). However, the effect in this case is much lower
than that induced by heat treatment (a ~2.5% change in
the modulus at a 4% strain and a ~4.5% change upon
rolling to a 25% strain). The amplitude dependences in
deformed samples were found to be almost one order of
magnitude stronger than those of heat-treated and as-
quenched samples (Fig. 4). Annealing of deformed
samples at high temperatures results in a more pro-
nounced relative decrease in the amplitude-dependent
contributions (Fig. 3) but also does not eliminate them
completely. The deformation treatment induces two
additional internal-friction peaks at about 300 and
500 K (Fig. 5). As a result of heating to ~670 K, the
high-temperature peak is completely removed and the
low-temperature peak decreases significantly but does
not disappear. We did not study the characteristics of
these peaks in more detail. However, it should be noted
that deformation-induced peaks similar to the peak at
300 K have been observed earlier in conventional
metallic glasses (see, e.g., [5]). In many parameters,
such peaks resemble Hasiguti peaks in crystals; there-
fore, it seems natural to relate the former peaks to
defects that are analogous to dislocations in crystals.
However, since the existence of dislocations in amor-
phous materials is still disputable, the question regard-
ing the mechanism of the appearance of these peaks
remains open. The same is true of the variations in the
damping constant and shear modulus with strain ampli-
tude. Obviously, these variations are of a deformational
nature and such amplitude-dependent friction in crys-
talline materials is usually related to dislocations (e.g.,
to the breakaway of dislocations from pinning points
[6, 7]).

It should be noted that amplitude-dependent (hyster-
etic) internal friction can be described in terms of the
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Fig. 3. Temperature dependences of the relative change in
the shear modulus of a Zr52.5Ti5Cu17.9Ni14.6Al10 alloy
deformed by rolling to 15%, obtained in cycles of heating
and cooling at a rate of 2 K/min. The inset shows the tem-
perature dependence of the irreversible contribution to the
shear modulus.
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model of relaxation centers with a double-well energy
potential. At ωτ @ 1 (where ω is the circular frequency,

τ = τ0exp(E/T),  is the characteristic attempt fre-
quency, and E is the activation energy for transition
from one energy minimum to the other) and low strain
amplitudes, the relaxation contributions to the damping
constant and shear modulus are small. As the strain
amplitude increases to ε0 ≈ E/GV at 0 K or ε ≈

ε0  = ε0[1 – (1 – T/Elnωτ)m] at a

finite temperature (here, V is the activation volume and
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Fig. 4. Amplitude-dependent contributions to (1, 2) the
shear modulus and (3, 4) the damping constant of a Zr–Cu–
Ni–Al–Ti alloy measured at room temperature after
(1, 3) 4% deformation by rolling followed by (2, 4) heating
to 660 K.
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Fig. 5. Temperature dependences of the damping constant
(measured at a frequency of 15 Hz) of a Zr–Cu–Ni–Al–Ti
alloy deformed by rolling to 25%, obtained in heating and
cooling cycles.
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m is a numerical coefficient dependent barrier shape), a
relaxation center switches from one energy minimum
to the other during load cycling. This switching results
in additional hysteretic internal friction. However, in
any case, such centers cannot consist of a small number
of atoms. As follows from the above formulas for the
strain amplitude at which amplitude-dependent internal
friction appears, the value of VGε should be higher than
T. From this condition, we can easily find that the
amplitude dependences will become observable at the
strain amplitudes realized experimentally if the activa-
tion volume of such a relaxation center is at least a few
cubic nanometers. Therefore, the only possible candi-
dates for such relaxation centers are likely to be clus-
ters. Note that this estimate of the activation volume is
consistent with the dislocation model of amplitude-
dependent internal friction.

4. CONCLUSIONS

Our experiments have shown that special-purpose
heat or deformation treatment can, at least partly,
recover the irreversible contributions to the internal
friction and to the shear modulus of a bulk metallic
glass; that is, so-called irreversible structural relaxation
is reversible under certain conditions. This finding can
be of fundamental importance in understanding the
structural evolution of amorphous materials under
external influences. Moreover, this finding makes it
possible to study irreversible structural relaxation (and
its relation to reversible structural processes) in more
detail, since there are methods for repeatedly recover-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
ing this relaxation in the same samples in a sufficiently
controlled manner.
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ŝ



  

Physics of the Solid State, Vol. 47, No. 4, 2005, pp. 674–677. Translated from Fizika Tverdogo Tela, Vol. 47, No. 4, 2005, pp. 650–653.
Original Russian Text Copyright © 2005 by Guseva, Zatsepin, Vazhenin, Schmidt, Gavrilov, Cholakh.

                        

MAGNETISM 
AND FERROELECTRICITY

                             
Magnetic Resonance of Metallic Nanoparticles
in Vitreous Silicon Dioxide Implanted with Iron Ions

V. B. Guseva*, A. F. Zatsepin*, V. A. Vazhenin**, B. Schmidt***, 
N. V. Gavrilov****, and S. O. Cholakh*

* Ural State Technical University, ul. Mira 19, Yekaterinburg, 620002 Russia
e-mail: valentina.guseva@usu.ru

** Research Institute of Physics and Applied Mathematics, Ural State University, 
pr. Lenina 51, Yekaterinburg, 620083 Russia

*** Research Center Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, D-01314 Germany
**** Institute of Electrophysics, Ural Division, Russian Academy of Sciences,

ul. Komsomol’skaya 34, Yekaterinburg, 620216 Russia
Received June 15, 2004

Abstract—Silica glasses exposed to steady-state and pulsed irradiation with Fe+ ions are studied using mag-
netic resonance. The irradiation doses used in experiments are equal to 1 × 1015, 1 × 1016, and 1 × 1017 cm–2. It
is found that, under both steady-state and pulsed irradiation conditions, glass samples exposed at a dose of 1 ×
1017 cm–2 exhibit a broadband orientation-dependent signal. The shape of inclusions is evaluated under the
assumption that the observed spectrum is caused by the ferromagnetic resonance induced in a new phase of
metallic iron. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

At present, one of the most promising trends in
solid-state physics is the design of nanoobjects and
research into their structures and properties. Nanomate-
rials play an important role in many fields of modern
science and engineering (physics, chemistry, materials
science, medicine, biology, etc.). The main advantages
of nanotechnologies are associated primarily with the
fact that radically new functional properties can be
imparted to materials by varying the sizes and shape of
nanostructures. However, considerable progress in the
design of nanostructures can be achieved only with a
clear understanding of the factors responsible for the
physicochemical properties of nanomaterials and the
fundamental principles underlying the methods used
for their preparation.

Isolated nanostructures have often been prepared
according to techniques based on either chemical syn-
thesis or layer-by-layer growth. Moreover, the possibil-
ity exists of producing nanoobjects in surface layers of
the already prepared material. This can be accom-
plished through implantation of accelerated ions into
the material.

Upon irradiation of optical oxide glasses with a
beam of accelerated metal ions under specific condi-
tions, colloidal metallic particles whose size can reach
a few nanometers and which provide nonlinear effects
in transmission of light are formed in a surface layer of
the irradiated material [1–6]. Dielectric glasses
implanted with paramagnetic ions have been used as
magnetic materials [7, 8].
1063-7834/05/4704- $26.00 0674
The purpose of this work was to investigate how
exposure of silica glasses to irradiation with magnetic
ions under various conditions and at different doses
affects the glass structure. Furthermore, we analyzed
the potentialities of magnetic resonance as a tool for
detecting the possible aggregates of implanted particles
and evaluating their shape. The magnetic measure-
ments of silica glass samples were performed using fer-
romagnetic resonance (FMR) and electron paramag-
netic resonance (EPR).

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

For our experiments, samples of type I silica glasses
in the form of polished disks 10 mm in diameter with a
surface of optical quality were exposed to irradiation
with Fe+ ions. The fluences (i.e., the integrated fluxes of
accelerated ions under irradiation) were equal to 1 ×
1015, 1 × 1016, and 1 × 1017 cm–2.

Pulsed irradiation of the samples was accomplished
with an ion source developed at the Institute of Electro-
physics (Ural Division, Russian Academy of Sciences,
Yekaterinburg, Russia) with a design similar to that
described in [9]. The irradiation conditions were as fol-
lows: ion energy, E = 30 keV; pulse width, 400 µs; and
beam current density, 2–7 mA/cm2. In the course of
irradiation, the temperature of the sample surface did
not exceed 400 K.

Steady-state irradiation was performed using a
DANFYSIC high-current implanter operating at a volt-
© 2005 Pleiades Publishing, Inc.
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age of 200 V at the Research Center Rossendorf (Insti-
tute of Ion Beam Physics and Materials Research, Dres-
den, Germany). The implantation was carried out with
a natural iron isotope and 57Fe ions (the isotope content
in the beam was no less than 90%). The ion energy was
equal to 100 keV, the beam current density was 8–
10 mA/cm2, and the temperature of the sample surface
during implantation did not exceed 350 K.

The FMR spectra were measured, for the most part,
on a setup that consisted of a modified RÉ1301 spec-
trometer operating in the 3-cm band with high-fre-
quency magnetic-field modulation and providing mea-
surements in magnetic fields up to 7.5 kG; devices used
for varying, stabilizing, and measuring the temperature;
and a system intended for computer recording of the
spectra.

3. RESULTS AND DISCUSSION

For the samples exposed to pulsed irradiation, the
magnetic resonance spectrum was observed at room
and low temperatures only in the case of the maximum
irradiation dose (1 × 1017 cm–2). It turned out that the
amorphous material exhibits an unexpected depen-
dence of the position of the magnetic resonance signal
on the angle θ between the magnetic field vector H and
the normal n to the sample surface (Fig. 1). At a tem-
perature of 133 K, the signal measured in the magnetic
field H || n is shifted to the high-field range (Fig. 2). We
failed to measure a signal in the magnetic field H ⊥  n,
because the possible resonance signal was masked by a
broadband spurious signal from the resonator.

The magnetic resonance measurements of the sam-
ples exposed to steady-state irradiation also revealed a
broadband signal at a dose of 1 × 1017 cm–2. The depen-
dence of the position of this signal on the direction of
the magnetic field (Fig. 3) appeared to be more pro-
nounced than that in the above case. The observed sig-
nals were slightly asymmetric in shape.

It should be noted that neither FMR nor EPR signals
were revealed for the samples irradiated at lower doses.
The absence of an FMR spectrum for the samples
exposed to ion irradiation at low doses can be explained
by the decrease in the size and number of ferromagnetic
grains. At the same time, the EPR spectrum of clusters
or individual paramagnetic iron ions can be not observ-
able because of both the very low concentration of
these centers and the orientational averaging of the
spectra of individual ions in the amorphous material.

In order to explain the orientation dependence of the
resonance signal from the samples irradiated with Fe+

ions at the maximum dose, we initially assumed that
there is a preferred direction (strictly connected with
the sample surface) of the principal axes of the para-
magnetic centers generated upon ion implantation.
However, this assumption did not provide a satisfactory
explanation of the anomalously large width of the
observed signal, which, in addition, changes only
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Fig. 1. FMR spectra of the silica glass implanted with Fe+

ions (energy, 30 keV; fluence, 1 × 1017 cm–2) for different
angles θ between the normal to the sample surface and the
magnetic field vector H. T = 297 K.
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Fig. 2. FMR spectra of the silica glass implanted with Fe+

ions (energy, 30 keV; fluence, 1 × 1017 cm–2) for different
angles θ between the normal to the sample surface and the
magnetic field vector H. T = 133 K.
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Fig. 3. Dependence of the position of the FMR signal on the
angle θ between the normal to the sample surface and the
magnetic field vector H for the silica glass implanted with
Fe+ ions (energy, 100 keV; fluence, 1 × 1017 cm–2).
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Evaluation of the shape of ferromagnetic inclusions from the results of measurements performed in this work

E, keV νres, 
MHz T, K Direction of the 

magnetic field H, Oe , Oe ∆N l/l⊥ , nm dmax, nm

295 H || n 4046 600 0.49 0.91

30 9380 H ⊥  n 2994 600 0.27 0.95 27 57

133 H || n 4700 650 0.67 0.88

H || n 6850 800 2.13 0.68 68 200

100 9400 295 H ⊥  n 1890 1000 2.11 0.67

  * ∆Hpp is the peak-to-peak derivative width of the signal caused by the absorption of the ac electromagnetic field.
** Rp is the projective range (the mean projection of the ion trajectory onto the normal to the irradiated surface) calculated with the TRIM

software package. For steady-state irradiation at an energy of 100 keV, the sputtering of a SiO2 surface layer approximately 15 nm
thick is taken into account.

∆Hpp* Rp**
slightly with a variation in the direction of the magnetic
field. Comparison with the results obtained in [1, 8, 10]
counts in favor of another mechanism. The broadband
orientation-dependent signal measured for the silica
glass implanted with iron ions can be caused by the fer-
romagnetic resonance induced in the iron microphase
formed upon implantation (as is the case with silicate
glasses [8]). Therefore, the change observed in the posi-
tion of the resonance signal with a decrease in the tem-
perature can be associated with the temperature depen-
dence of the saturation magnetization.

As was shown in [11], the ferromagnetic resonance
frequency for an ellipsoidal sample subjected to a mag-
netic field H aligned parallel to the axis of revolution of
the ellipsoid (H || n) can be written in the form

(1)

Here, MS is the saturation magnetization; ∆N = N|| – N⊥
is the difference between the demagnetizing form fac-
tors, which are oriented parallel and perpendicular to
the axis of revolution; β is the Bohr magneton; " is the
Planck constant; and γ = gβ/" is the gyromagnetic ratio.
In the magnetic field directed perpendicular to the axis
of revolution of the ellipsoid (H ⊥  n), the relationship
for the ferromagnetic resonance frequency takes the
form

(2)

The table presents the estimates obtained from rela-
tionships (1) and (2) under the assumption that the sat-
uration magnetization MS for individual iron inclusions
is equal to 1700 Oe [8] and that the g factor is 2.084 ±
0.004 (the averaged value for polycrystalline α-Fe [12,
13]). Knowing the values of ∆N, we can estimate the
semiaxial ratio of the ellipsoid of revolution l/l⊥  (this
ratio and the quantity ∆N/4π are related by the Osborn
formula [11]) and determine the maximum diameter
dmax of the inclusions of the metallic phase with due
regard for the projective range Rp. For low tempera-
tures, the quantity ∆N was determined from the satura-
tion magnetization MS, which, in turn, was estimated

ωres 2πνres γ H ∆NMS–( ).= =

ωres 2πνres γ H
2 ∆NMSH+( ).= =
P

from the dependence MS(T) obtained earlier by Gengal-
gen and Hoffman [14].

It can be seen from the table that metallic inclusions
formed upon steady-state irradiation have a more dis-
torted spherical shape than those formed upon pulsed
irradiation. This difference can be associated with the
difference between the degrees of local melting of the
glass under the conditions of steady-state and pulsed
irradiation.

Bukharev et al. [8] established that, for α-Fe precip-
itates with a semiaxial ratio of 0.44, the changeover
from the parallel orientation to the perpendicular orien-
tation of the magnetic field (with respect to the normal
to the sample surface) leads to a severalfold increase in
the width of the FMR signal. In our case, the widths of
the resonance signals from the sample irradiated with
iron ions at an energy of 30 keV and characterized by a
semiaxial ratio close to unity turned out to be virtually
identical for both directions of the magnetic field,
whereas the width of the resonance signal from the
sample exposed to steady-state irradiation somewhat
increased upon changing over from the parallel orienta-
tion to the perpendicular orientation.

According to Griscom et al. [13], the range covered
by the FMR spectrum of spherically symmetric inclu-
sions of the α-Fe phase, in which the crystallographic
axes are randomly oriented with respect to the nonmag-
netic matrix, can be determined from the relationship
5/3Ha = 5/3 × 2K1/MS, where K1 is the first constant of
crystalline magnetic anisotropy and Ha is the magnetic-
anisotropy field. By assuming that the width of the
FMR signal from the sample exposed to pulsed irradia-
tion (with a nearly spherical precipitates) is governed
by the spatial spread in the orientations of the crystallo-
graphic axes, the constant K1 is determined to be 540 ×
103 erg/cm3 (Ha ≈ 103 Oe), which is close to the values
obtained in [13, 14].

As can be seen from the results presented in the
table, the maximum sizes of the metallic particles
implanted at energies of 30 and 100 keV do not exceed
57 and 200 nm, respectively. The number of implanted
metallic particles per unit area can be estimated from
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the known density and molar mass of iron. As a result,
we find that, for an irradiation dose of 1 × 1017 cm–2, the
number of implanted metallic particles per square cen-
timeter is of the order of unity. However, it is evident
that the implanted metallic particles are characterized
by a size distribution. Therefore, we can assume that,
for the greater part, implanted particles are inclusions
with a characteristic size of the order of 10 nm. The
change in the magnetization and the corresponding
spread in the saturation magnetizations due to the pres-
ence of small-sized particles in the material can be
responsible for the additional broadening of the mag-
netic resonance signal.

4. CONCLUSIONS

Thus, silica glasses irradiated with Fe+ ions at doses
of 1 × 1015, 1 × 1016, and 1 × 1017 cm–2 were studied
using magnetic resonance. It was found that glass sam-
ples irradiated at a dose of 1 × 1017 cm–2 contain the fer-
romagnetic iron phase. The above analysis of the angu-
lar dependence of the resonance signal demonstrated
that metallic inclusions are isolated and have a nearly
spherical shape. The threshold dose (1 × 1017 Fe+ ions
per square centimeter) required to observe ferromag-
netic resonance does not depend on the irradiation con-
ditions. However, the irradiation conditions themselves
substantially affect the shape of metallic inclusions.
The implantation of silica glasses with iron ions at low
doses (≤2 × 1016 cm–2) does not lead to the formation of
paramagnetic centers in detectable amounts.
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Abstract—The incommensurate magnetic state of copper metaborate CuB2O4 is studied in the temperature
range 2 < T < 12 K. Competition between frustrated and non-frustrated antisymmetric exchange interactions is
shown to cause the magnetic structure vector to reverse at T = 10 K. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Recent intensive studies on the magnetic structure
of CuB2O4 have revealed several different types of
magnetic ordering, with phase transitions between
them occurring under variation of either the tempera-
ture or magnetic field [1–5]. The variety of magnetic
structures is due to the fact that, in copper metaborate,
there are two distinct subsystems of magnetic Cu2+ ions
in which the ions occupy different crystallographic
positions and interact differently both within a sub-
system and between them. The exchange interaction
between the copper ions occupying the 4b sites with S4

symmetry forms a three-dimensional magnetic sub-
system A with a Néel temperature TN1 = 20 K, below
which the average magnetic moment at A sites grows
rapidly and reaches 0.94µB at T = 2 K. The magnetic
moments of subsystem B in the 8d sites with C2 sym-
metry reach only 0.54µB at the above temperature. The
low magnitude of the magnetic moment at T  0 K
indicates quasi-low-dimensionality [6, 7] and/or a frus-
trated nature [8] of the main exchange interactions.
Analysis of the exchange interactions in subsystem B
has shown that there are two distinct competing AFM
interactions between nearest and next-to-nearest neigh-
bors and that these interactions create zigzag ladder
chains along the tetragonal axis (a quasi one-dimen-
sional magnetic structure) [9]. The existence of quasi-
one-dimensional fluctuations caused by short-range
correlations in CuB2O4 is also supported by strong dif-
fuse neutron scattering observed both above and below
the Néel temperature [3]. Therefore, the main distinc-
tion between the magnetic subsystems is the difference
in the magnetic dimensionality of the main interactions
within the subsystems. Analysis of the spin excitation
spectra of each subsystem with inclusion of these inter-
actions leads to the conclusion that the interactions
between the subsystems have little effect on the
dynamic properties of copper metaborate at T = 12 K
1063-7834/05/4704- $26.00 0678
[9, 10]. The reason for the interactions between the two
subsystems being weak is the geometry of the intersub-
system exchange bonds. All paths of the indirect
exchange interactions link an ion of one subsystem to
two ions of another subsystem that belong to different
antiferromagnetic (AFM) sublattices. This leads to
fully frustrated exchange interaction between the sub-
systems when there is an AFM ordering within them.
Ladder chains interact in a similar fashion, so the sub-
system B becomes quasi-low-dimensional. An incom-
mensurate magnetic structure is observed in CuB2O4
below Ts ≈ 10 K with the wave vector directed along the
tetragonal axis [3, 4]. The magnitude of the wave vector
grows steadily with decreasing temperature and
reaches 0.15 relative lattice units (rlu) at T = 2 K.
According to a phenomenological analysis of the tran-
sition into the incommensurate phase, the Lifshitz
invariant plays an important part in its formation [3, 4,
11]. From the field dependence and resonance proper-
ties of CuB2O4, it follows that a long-period incommen-
surate magnetic structure also exists in the high-tem-
perature phase in the range 10 < T < 20 K [4, 5]. In this
paper, we analyze the magnetic structure of copper
metaborate using a simple-helix model in the range
2 K < T < 12 K in order to determine the microscopic
mechanism and type of transition between these two
phases.

2. CRYSTAL STRUCTURE AND EXCHANGE 
INTERACTIONS

The crystal structure of CuB2O4 (Fig. 1) has been
studied in detail in several papers [3, 4, 12]. The
exchange interactions are due to hybrid s–p orbitals of
tetrahedrons formed by oxygen atoms around boron
atoms (the indirect superexchange chains Cu–O–B–O–
Cu). Aside from the AFM exchange interactions within
each subsystem, which were considered in [9, 10], we
take into account the following: (i) the AFM exchange
© 2005 Pleiades Publishing, Inc.
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interaction between the subsystems (Fig. 1, solid lines),
(ii) the exchange interaction between the ladders of
subsystem B (dashed lines), and (iii) antisymmetric
exchange interactions both between the subsystems and
within them. In case (i), the AFM exchange interaction

between the subsystems  is realized along three dif-
ferent paths connecting Cu2+ ions separated by ∆z = c/8,
3c/8, and 5c/8 along the tetragonal c axis. The exchange
interaction between neighbors that are the most closely
spaced along z and are remote in the ab plane is realized
via the single Cu–O–B–O–Cu chain shown by single
solid lines in Fig. 1. Two other exchange interactions
are realized via the “one-and-a-half” chain shown by
double solid lines in Fig. 1. The latter chain is displayed
separately in Fig. 1. In case (iii), the exchange interac-
tion between the ladder chains of subsystem B is real-
ized via similar one-and-a-half chains and the local
environment of interacting Cu2+ ions roughly com-
prises the mutually orthogonal squares formed by oxy-
gen ions, similar to the case of the exchange between
the subsystems. All exchange interactions of types (i)
and (ii) are fully frustrated when the magnetic moments
within the subsystems have AFM ordering. Symmetry
analysis of the structure of CuB2O4 [11] shows that two
distinct types of antisymmetric exchange interaction
are possible in case (ii) [13, 14]. One type causes the
magnetic moments of the AFM sublattices to be tilted
and results in a weak ferromagnetic moment. This type
of interaction occurs between the nearest neighbors in
subsystem A (Da). The other type of antisymmetric
exchange interaction results in a turn in the interacting
moments, which leads to the appearance of a helical
structure. This type of interaction can occur between
the subsystems (Dab) and between the nearest and next-
to -nearest neighbors within the ladders (Db1, Db2). The
Db2 interaction only results in inessential renormaliza-
tion of the analogous exchange interaction Db1, so it is
ignored below. Therefore, the exchange Hamiltonian in
CuB2O4 can be written as

(1)

The first term in Eq. (1) describes easy-plane anisot-
ropy in subsystem A [10]. Since all interactions occur
between the magnetic moments positioned in various
tetragonal planes (∆z ≠ 0), the interacting spins are
numbered along the tetragonal axis.

Jab
m
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PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
3. LOCAL EXCHANGE FIELDS

If the transition of an antiferromagnet to an ordered
phase is not accompanied by doubling of the elastic
neutron scattering reflections, the number of possible
orientations of magnetic moments of the antiferromag-
net coincides with the number of magnetic ions in its
unit cell. The unit cell of CuB2O4 has six magnetic ions:
two ions in subsystem A and four ions in subsystem B.
In order to describe a simple helix, we need to introduce
the angle 2δ corresponding to the rotation of magnetic
moments in passing from one unit cell to the next along
the direction of the incommensurability vector. Since
the Hamiltonian is invariant under rotation of the crys-
tal in the tetragonal plane, the origin for the angles in
the plane can be chosen arbitrarily. Consequently, we
need six variables to describe the simple helix structure
in CuB2O4. Among them, five angular variables for one
unit cell can be found from the condition that the com-
ponents of the total average field that are normal to the
equilibrium orientation of each of the moments must be
zero. The sixth variable, the helix angle, can be found
by minimizing the total free energy of the unit cell with
respect to this variable. A simplified diagram of the
exchange interactions is shown in Fig. 2.

We choose a local coordinate frame for each of the
moments such that its Z axis is along the tetragonal
axis. The direction of the projection of the equilibrium
moment Si onto the tetragonal xy plane is chosen to be
another coordinate axis, Xi. Now, we express the
Hamiltonian in terms of the orientation angles of the
local coordinate axes. For each pair of interacting spins,
we get

Si
x
S j

x
Si

y
S j

y
+ SxiSxj SyiSyj+( ) α i α j–( )cos=

+ SxiSyj SyiSxj–( ) α i α j–( ),sin

Fig. 1. CuB2O4 crystal structure (projection onto the tetrag-

onal plane). The intersubsystem exchange interaction 

is shown to the right.

Jab
2 3,

a

a Cu(A) Cu(B) B O

Cu(B)

Cu(A)
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In the local reference frame, we have 〈Syi 〉 ≡ 0. In the

mean-field approximation, coefficients  of the trans-
verse components Syi must vanish after summing the
contributions from nonzero components of the average
spins 〈Sxi 〉  over interactions included in Eq. (1) [15]:
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S j

y
 – Si

y
S j

x
SxiSxj SyiSyj+( ) α i α j–( )sin–=
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Fig. 2. Simplified diagram of the exchange interactions.
Vertical lines represent the Ja exchange interaction in sub-
system A with the coordination number za = 4 (the central
line) and the Jb1 exchange interaction in four ladders pass-
ing through all unit cells of the crystal (coordination num-

ber zb = 2). Slanting lines represent the  exchange inter-

action between the subsystems and half of the Jb3 exchange
interactions between ladders (dashed lines). Dash-dotted

lines represent the Jb2 exchange interaction. The 

exchange interactions are not shown. Arrows in the chart
represent the directions of magnetic moments projected
onto the tetragonal plane. Each arrow corresponds to a layer
of moments (z = const) changing its orientation along the
tetragonal (z) axis, which coincides with the vertical axis of
the chart. An arbitrary spin of subsystem A α0 = 0 is chosen
as a reference for the angles (the central spin in the chart).
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where γ = α – π is the angle of deviation of the magnetic
moments of subsystem A from the AFM orientation
within each unit cell. Here and henceforth, Sax, bx denote
the average x components of the spins of the subsystem.
Therefore, all angles in the basic unit cell are expressed
in terms of δ. The mean fields acting on the x compo-
nents of the spins of each subsystem are given by

(2)

because of the condition imposed on γ:

Thus, in the mean-field approximation, the intersub-
system interaction in the simple-helix model results in
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an additional longitudinal field acting on spins of sub-
system A (the second term in Eq. (2)) and, furthermore,
the decrease in the intrasubsystem exchange field is
compensated for by a tilt of the magnetic moments in
subsystem B (β1 – β3 ≠ π ≠ β2 – β4). The subsystems
remain quasi-independent, because the additional
effective fields within each subsystem do not depend
directly on the magnetization of the other subsystem.

4. FREE ENERGY

In the mean-field approximation, the minimum of
the free energy

can be easily found by fixing the magnitude of the aver-
age spin at sites of each subsystem and varying the total
energy with respect to the helix pitch. Possible influ-
ence of the pitch variation on the spin magnitude is dis-
regarded. This simplification is equivalent to the
approximation of the fixed magnitude of the order
parameter, which is widely used for phenomenological
analysis of incommensurate structures [16]. In the tem-
perature range of interest, the magnetic moments of
subsystem A are oriented approximately in the tetrago-
nal plane; their magnitude varies between 0.86µB and
0.94µB and will be assumed to be constant and equal to
0.9µB. The magnitude of the magnetic moments of sub-
system B varies from 0.2µB at T = 12 K to 0.54µB at
T = 2 K. In order to describe its variation with temper-
ature between these limits, we consider subsystem B as
a set of two-level single-site spin S = 1/2 states. The
corresponding wave functions for the ground and
excited states are given by

for each spin subjected to the mean field of all other

spins. Here,  are the probability amplitudes of the
ground and excited states of the spin Si with “+” and
“−” projection to the local axis, respectively, and

 are the corresponding normalized wave func-
tions of the states of all other N – 1 spins. The average
values of the spin at a site in each of the states are

  

and differ from the values for the free ion S = ±1/2. The
temperature dependence of the spin can be found to be

F kBT Sp βH–( )exp{ }ln–=
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,+=
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Ψ0 e N 1–, ,
+ –,

S0 Sb T(= 0 ) 1
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----------------------------------------------------------------------------------------------,=
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where ∆E is the level splitting in the mean field. From
the condition limSb (T  ∞) = 0, we get S0 = –Se and
the energy is ∆E/2 = S0hb. Finally, we arrive at the well-
known expression for a two-level system in the mean
field hb:

For an experimentally observed long-period helix [4],
the difference in the temperature dependence between
the mean field hb and the average spin due to the helical
in-plane rotation of the moments (the term in parenthe-
ses in the second of equations (2) depends on δ) is small
and can be neglected. Thus, the temperature depen-
dence of the average magnetization at sites in sub-
system B can be described with sufficient accuracy in
terms of the temperature of the onset of macroscopic
magnetization in subsystem B [15]:

(3)

(4)

For the magnetization values cited above, we get  =
0.54µB and TN2 = 12.6 K.

The angle the magnetic moments of the subsystem
B make with the tetragonal axis increases from a small
value to Θ0 ≈ π/2.7 as the temperature decreases to T =
2 K [3]. We do not consider the mechanism behind this
change in direction because, in this paper, we disregard
anisotropy of subsystem B for the sake of simplicity.
The variation in the orientation of the moments in sys-
tem B with temperature is described by a power law,

(5)

with n = 1 (linear dependence) or n = 0.5 (which corre-
sponds to the variation in the order parameter for the
second-order orientation phase transition in a three-
dimensional system [17]). In both cases, the tempera-
ture of the onset of reorientation, according to experi-
ment [3], is close to TN2: T* = 12.4 K (n = 1) and 12.3 K
(n = 0.5). This simple approximation gives only a qual-
itative description of k(T) for intermediate tempera-
tures.

Varying the free energy with respect to the helix
pitch in one unit cell of the crystal reduces to varying
the longitudinal mean fields

Sb S0

S0hb

kBT
----------.tanh=

mb mb
0 mbT N2

mb
0
T

---------------,tanh=

kBT N2 S0
2

Jb1 Jb2–( ).=

mb
0

Θ Θ0 1 T /T*–( )n
=

δF1 2Saxδhax 4Sbδhb.+=
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The component hbz is invariant relative to helical rota-
tion of the moments in the tetragonal plane:

(6)

Within our approximations, the part of the free energy
that changes with the helix pitch depends only on the x
components of spins of the subsystems and its variation
with temperature is determined by the temperature
dependence of the x component of subsystem B.

Using Eqs. (2) for the fields and Eqs. (3) and (5) for
the temperature dependences of the magnitude and
direction of the magnetic moment, we numerically
minimize the part of the free energy that depends on the
helix angle,

(7)

and obtain the temperature dependence of the simple-
helix vector k(T).

5. RESULTS AND DISCUSSION

The best agreement between the calculated temper-
ature dependence of the incommensurate structure vec-
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------------------------- Θδhbx,sin= = =
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Fig. 3. Temperature dependence of the incommensurability
vector k(T). Dots are experimental data [4] and the solid line
is the mean-field approximation in the simple-helix model
with a linear temperature dependence of the moment direc-
tion in subsystem B: Θ = Θ0(1 – T/T*). Parameter values:
Jb1 = 234 K, Jb2 = 59.4 K, Jab = 67.5 K, Db1 =21.1 K, Dab =
5.6 K, Da = 1.1 K, and Jb3 = 0 K.
PH
tor and elastic neutron scattering data is obtained for
n = 1 and

(Fig. 3). The Jb3 interaction between ladders has almost
no effect on k(T), so it was assumed to be zero in calcu-
lations. The main feature of the temperature depen-
dence of the helix vector is the reversal of the vector
sign at Ts ≈ 10 K; i.e., the left-handed helix is replaced
by a right-handed one. This transition can be either con-
tinuous or discontinuous, depending on the relationship
between the next-to-nearest neighbor exchange interac-
tion in subsystem B (which is responsible for the poten-
tial with two minima as a function of δ) and the
Dzyaloshinskiœ interaction. The exchange constant of
subsystem A in the Hamiltonian was assumed to be
equal to Ja = 45 K, a value obtained from analyzing the
spin-wave spectrum and the Néel temperature TN1 [10].
The magnitudes of exchange interactions in subsystem
B were varied in a wide range subject to Eq. (7). For the
ratio of the next-to-nearest and nearest neighbor
exchange interactions, we obtained Jb2/Jb1 = 0.25,
which is close to the value of 0.26 obtained in [9]. How-
ever, the magnitudes of each of the interactions are
almost one order of magnitude greater than the results
from [9], because the linear theory of spin waves
employed in [9] does not take into account the decrease
in the saturation value of the moment due to quasi-low-
dimensionality of the system. Consequently, the
exchange interactions that were derived through com-
parison with the spin excitation energy given by inelas-
tic neutron scattering measurements are underesti-
mated. The saturation value of the site moment of S =
1/2 chains in the mean field of interchain interaction is
related to the ratio of the intrachain interaction and the
Néel temperature [6, 7]. This relation shows how much
the Néel temperature of a quasi-one-dimensional sys-
tem differs from the Néel temperature of the corre-
sponding three-dimensional system. In our case, it is
convenient to compare subsystems A and B, for which
we obtain

This value is in good quantitative agreement with the

theoretical result from [6] for  = 0.54µB [7]. The
maximum value of the incommensurability vector k =
0.15 rlu at T = 2 K is determined by the combined effect
of the next-to-nearest-neighbor AFM exchange interac-
tion Jb2 and the Dzyaloshinskiœ nearest neighbor inter-
action Db1 in subsystem B. As the temperature
increases, the contribution from subsystem B to the free

energy decreases as  [10] and the incommensura-
bility vector reverses at the point where the interactions
Db1 and Dab are balanced. Although these antisymmet-
ric exchange interactions are of the same sign, the con-

2Jab
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tributions from them are different because the former
interaction couples the moments of different AFM sub-
lattices, while the latter couples the moments of a sub-
system to the moments of both sublattices of the other
subsystem, i.e., with the weak ferromagnetic moment.
The ratios of these interactions to the corresponding
AFM exchange interactions are similar, 0.9 × 10–1 and
0.8 × 10–1. The sign of the Dzyaloshinskiœ exchange
interaction between spins of subsystem A is unknown.
If Da < 0, this interaction promotes the k < 0 phase and
the agreement with the experimental data is achieved at
a lower value of Dab.

Note that, near the temperature where k changes
sign, the simple-helix model is inadequate and cannot
describe a longitudinal modulation of magnetization
[11] or a complex magnetic structure of the soliton-lat-
tice type. The existence of such a structure is indicated
by the satellite peaks observed in neutron scattering
near Ts [2]. Clearly, the approximation of the magneti-
zation by the Brillouin function, Eq. (6), is well-
founded only for T < 12 K, where the magnetization of
subsystem B is mainly determined by the intrasub-
system exchange interactions Jb1 and Jb2. At T > 12 K,
the intersubsystem exchange interaction plays an
important part and the magnetization of subsystem B
does not vanish until the long-range order disappears in
subsystem A at TN1 = 20 K. For small values of mb, there
is a solution for the unit cell angles that gives a longitu-
dinal field differing from Eq. (2). Therefore, the struc-
ture vector found by us, k(T = 12 K) ~ 0.02 rlu, is only
an upper bound estimation. However, the growth of the
wave vector in magnitude with the temperature increas-
ing from Ts is indirectly supported by the temperature–
field phase diagram [4, 5]. The fact that the field
destroying the incommensurate structure increases
with temperature indicates that k at H = 0 also
increases.

6. CONCLUSIONS

We can draw two main conclusions from the results
obtained in this paper. (1) The magnitudes of exchange
interactions, the temperature of the onset of macro-
scopic magnetization, and the saturation moment of
subsystem B correspond to the quasi-one-dimensional
type of interactions in this subsystem. (2) The competi-
tion between the frustrated and nonfrustrated antisym-
metric exchange interactions causes the magnetic struc-
ture vector to reverse sign at Ts ≈ 10 K.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
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Abstract—The magnetic and magnetooptical properties of 50- to 200-nm-thick Ni films, both as-deposited and
annealed at Tann = 300, 400, or 500°C, were studied. Volume and near-surface hysteresis loops were measured
with a vibrating-sample magnetometer (VSM) and with the use of the transverse Kerr effect (TKE). The anneal-
ing temperature was found to exert a strong effect on the magnetic characteristics of the samples under study.
It was established, in particular, that the coercivity HC of Ni films increases and the remanent magnetization
decreases with increasing annealing temperature. The observed dependences of the magnetic properties of the
films on film thickness and annealing temperature are explained as being due to microstructural characteristics
of the samples. It was found that, while TKE spectra obtained in the incident-photon energy region from 1.5 to
6 eV have the same shape for all the Ni films studied, the magnitude of the TKE decreases with increasing Tann.
This experimental observation is accounted for by the decreased saturation magnetization of the annealed films.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent years, there has been an increasing interest
in the investigation of low-dimensional magnetic sys-
tems, one or two dimensions of which lie in the micro-
or nanometer range. Thin magnetic films (TMFs) with
a thickness considerably smaller than the other two
dimensions are only one illustration of solid-state low-
dimensional systems. TMFs exhibit unique magnetic,
magnetooptical, kinetic, and dynamic properties, which
accounts for their broad application. TMFs are used, in
particular, as miniature components in modern micro-
electronic devices [1–3] and magnetic storage cells [4–
6], as interference filters, as reflecting and antireflection
coatings [7, 8], etc.

Considerable progress was achieved in the 1990s in
the technology of TMF fabrication, which spurred stud-
ies on TMFs to a considerable extent. Some of the
results obtained have already stimulated the solution of
a number of problems in the physics of thin magnetic
films. In particular, a deeper understanding of the effect
of the interface between a magnetic film and the sub-
strate on the kinetic, magnetic, and magnetooptical
properties has been gained. The influence of morphol-
ogy, the size, and crystallographic orientation of grains
in the nonmagnetic layer deposited between a magnetic
film and a substrate on the magnetic properties of thin-
film magnetic systems has been studied in considerable
detail (see, e.g., [9]). A wealth of experimental data
have been obtained on the effect of the microstructure
and thickness of nonmagnetic layers (Zr, Ta, Al, Mo, Pt,
Pd) on the magnetic characteristics of Fe and Co films
1063-7834/05/4704- $26.00 0684
that vary in thickness over a broad range (from 2 to
200 nm) [10–13]. By contrast, the magnetic character-
istics of Ni films have been investigated less extensively
(see, e.g., [14–17]), while the effect of annealing on
their magnetic and magnetooptical properties has not
been considered at all.

In this paper, we report the results of a study of the
magnetic and magnetooptical properties of Ni films in
the original state and after annealing at a temperature of
300, 400, or 500°C.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

Several series of Ni films were fabricated by magne-
tron sputtering in an USU-4 ultrahigh vacuum setup.
Films were deposited on glass substrates at a base pres-
sure of 10–8 Torr in the operating chamber. An in-plane
magnetic field Hsub = 70 Oe was applied in the process
of film deposition. The films were deposited on room-
temperature substrates. Ultrahigh vacuum was attained
with a magnetic discharge pump after heating of the
operating vacuum chamber at 200°C for 8 h. The oper-
ating inert gas was xenon. The inert gas pressure was
about 10–3 Torr. The film thickness in each series was
varied from 50 to 200 nm. To prevent oxidation, the
films were coated by a 10-nm-thick carbon layer. Ni
films with the above thicknesses were annealed at Tann =
300, 400, or 500°C for 1 h in vacuum.

The microstructure of the samples for study was
characterized using x-ray diffraction. The volume mag-
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Hysteresis loops obtained with a vibrating-sample magnetometer (VSM) and the magnetooptical transverse Kerr effect
(MOKE) for an as-deposited 200-nm-thick Ni film in a magnetic field applied in directions D1 and D2, parallel and perpendicular,
respectively, to the field Hsub applied parallel to the substrate in the process of film deposition.
netic characteristics of the nickel films were measured
with a vibrating-sample magnetometer. Information on
the near-surface magnetic characteristics of the sam-
ples was obtained using a magnetooptical magnetome-
ter, which is described in detail in [18]. The magnetoop-
tical Kerr effect (MOKE) is known to be sensitive to the
magnetization of a near-surface layer with a thickness
equal to the light penetration depth tpen. This thickness
is derived from the relation tpen = λ/4πk, where λ is the
incident light wavelength and k is the absorption coef-
ficient of the medium. Available experimental informa-
tion [13] suggests that tpen for metallic ferromagnets
does not exceed 10–30 nm within the incident-photon
energy range 0.5 < "ω < 5 eV. In our case, tpen was of
the order of 15 nm. Near-surface hysteresis loops were
found by measuring the value of the transverse Kerr
effect (TKE) δ = (I – I0)/I0, where I and I0 are the inten-
sities of light reflected from the magnetized and demag-
netized samples, respectively. Actually, the ratio
δ(H)/δS ∝  M(H)/MS was measured (δS is the value of
TKE at M = MS, where MS is the saturation magnetiza-
tion) under cyclic variation of the external magnetic
field (from +H to –H and from –H to +H), which was
applied parallel to the sample surface and perpendicular
to the plane of incidence of light. The spectral response
of TKE was measured in the range of incident-photon
energies 1.5 eV < "ω < 6.0 eV. The angle of incidence
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
of light on the sample was 65°. All measurements were
performed at room temperature.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Volume and near-surface hysteresis loops for all Ni
films to be studied were measured with a vibrating-
sample and magnetooptical magnetometer. The mea-
surements were performed for the case where an exter-
nal in-plane magnetic field H was directed either paral-
lel or perpendicular (these two directions will be
referred to as D1 and D2, respectively) to the direction
in which a magnetic field was applied during the film
deposition.

It was found that both surface and volume hysteresis
loops of as-deposited nickel films and of films annealed
at 300°C are close to rectangular in shape when mea-
sured in a field applied along the direction D1 and are
inclined when measured in a field applied along the
direction D2. No such difference in the magnetic prop-
erties was observed for films annealed at 400 and
500°C. Figures 1 and 2 illustrate the case with hystere-
sis loops obtained for an as-deposited nickel film and a
film annealed at Tann = 400°C (the film thicknesses are
200 nm). The near-surface and volume values of the
coercivity HC and of the reduced remanent magnetiza-
tion MR/MS of Ni films are plotted in Figs. 3 and 4 as a
function of film thickness.
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Fig. 2. Same as in Fig. 1 but for a 200-nm-thick Ni film annealed at Tann = 400°C.
The difference in the shape of the hysteresis loops
observed for as-deposited nickel films and films
annealed at 300°C demonstrates the presence of in-
plane magnetic anisotropy, which is presently believed
(see, e.g., [19]) to be induced by the application of a
magnetic field Hsub in the process of film deposition. It
is known [19] that, for thin single-domain magnetic
films with the easy magnetization axis (EMA) lying in
the film plane, square hysteresis loops are observed in a
field parallel to the EMA, whereas in a perpendicular
field hysteresis is absent and the coercivity and rema-
nent magnetization are zero. Bitter-pattern microscopy
established the Ni films under study to be multidomain
type. As a result, for as-deposited nickel films and films
annealed at 300°C, hysteresis loops in a field along the
direction D1 (parallel to Hsub) are close to rectangular in
shape (the reduced remanent magnetization is

/MS ~ 0.94–0.97, /MS ~ 0.9), while in the
case where the field is applied along the direction D2

the loops are inclined and have a nonzero coercivity. An
analysis of the dependences of the near-surface and vol-
ume coercivity HC and of the reduced remanent magne-
tization MR/MS on the Ni film thickness revealed that,
for all the films under study, the coercivity increases
with the Ni film thickness tNi. When measured in a field
applied along the direction D1, the reduced remanent
magnetization of the as-deposited films and films
annealed at 300°C is practically independent of tNi. For
a series of Ni samples annealed at 400 and 500°C, both

MR
sur

MR
vol
P

the near-surface and volume reduced remanent magne-
tizations decrease with increasing film thickness and

the volume values /MS measured along the direc-
tions D1 and D2 are the same, while the surface values
are different. Thus, annealing of nickel films at Tann =
400 and 500°C makes them isotropic and magnetically
harder. Finally, Figs. 3 and 4 suggest that the near-sur-
face and volume values of HC and MR/MS are different

for all samples, with  >  and /MS >

/MS. These relations between the near-surface and
volume values of HC and MR/MS are known [19] to be
characteristic of 50- to 200-nm-thick magnetic films.
By analogy with available data [19], this observation
may be attributed to the domain structures of the near-
surface layer and of the film volume being different.

Microstructural studies of Ni films can be used to
explain the observed increase in coercivity HC with an
increase in the thickness tNi and in the annealing tem-
perature. It is currently known that the behavior of thin
films with the application of a magnetic field depends
primarily on the size of the crystallites making up the
film and on their crystallographic orientation. It was
found that all the films studied have a polycrystalline
structure with crystallites comparable in size to the film
thickness. X-ray diffraction patterns obtained for our
films revealed only {111} lines, which shows the grains
to be predominantly (111) oriented parallel to the sam-
ple surface. It was also observed that the {111} line
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Fig. 3. Near-surface and volume coercivity HC plotted as a function of film thickness for as-deposited and annealed Ni films.
intensity increases with annealing temperature (see
table), which should be assigned [20] to the sample tex-
ture becoming more pronounced.

It was shown in [20] that, in more strongly (111)-
textured samples (with other conditions, for example,
the thickness and composition, being equal), the coer-
civity increases. Furthermore, in accordance with the
data from [12, 13], the coercivity HC increases as the
thickness of the magnetic films increases, which was
attributed to the growth in grain size in the film volume.
We did indeed observe such a correlation between the
magnetic and microstructural properties of Ni films.

The increase in the near-surface values  and,

hence, in the volume values  with an increase in
the annealing temperature can also be accounted for by
the increased surface roughness of the annealed sam-
ples, which is supported by our atomic-force micro-
scope data. For example, the average roughness of an
as-deposited film and films annealed at 300, 400, and
500°C (film thickness 70 nm) is 0.45, 0.53, 0.68, and
0.72 nm, respectively, and the maximum roughness is
0.65, 1.00, 1.07, and 1.12 nm, respectively.

Figure 5 displays the dependence of TKE on the
incident-photon energy "ω measured for our nickel
films at H > HS, where HS is the saturation field for the
sample under study. We readily see that the δ("ω)
curves are similar in shape for all the films under inves-
tigation; for films of the same series, the magnitude of

HC
sur

HC
vol
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the TKE does not depend on the sample thickness,
which (considering the above description of the magne-
tooptical techniques used) is due to the fact that the
thickness of our films is tNi > tpen. The maximum value
of TKE, δmax, is observed at around "ω = 3.7 eV for all
samples. The values of δmax are 4.6 × 10–3, 3.9 × 10–3,
3.6 × 10–3, and 3.2 × 10–3 for as-deposited nickel films
and films annealed at 300, 400, and 500°C, respec-
tively. The value of TKE is seen to decrease with
increasing annealing temperature. The following expla-
nation can be given for this observation. According to
the measurements made with the vibrating-sample
magnetometer, the saturation magnetization MS of
nickel films annealed at 300, 400, and 500°C decreases
by a factor of approximately 1.2, 1.3, and 1.4, respec-
tively, as compared to MS of the as-deposited films. The
ratio of the maximum values of TKE, δmax, for the

{111} line intensity observed with as-deposited and annealed
films

tNi, nm
Tann, °C

0 300 400 500

50 48 152 2130 3040

70 180 2280 2400 3488

100 260 3600 3680 3980

200 1808 3760 4800 5640
5
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Fig. 4. Near-surface and volume remanence plotted as a function of film thickness for as-deposited and annealed Ni films.
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Fig. 5. Dependences of TKE on the incident-photon energy obtained for as-deposited and annealed Ni films.
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annealed and as-deposited films is practically the
same. It is known that the magnetooptical effects scale
linearly, in a first approximation, with magnetization (δ
∝  M). Thus, it may be conjectured that the decrease in
TKE in annealed samples is caused by the decrease in
MS.

4. CONCLUSIONS

We have studied the effect of annealing temperature
on the magnetic and magnetooptical properties of 50-
to 200-nm-thick Ni films. We observed a noticeable
increase in coercivity in the films with increasing
annealing temperature. The observed variations in the
magnetic properties with the film thickness and anneal-
ing temperature correlate well with the microstructural
changes in the samples. The magnitude of the TKE has
been found to decrease with increasing annealing tem-
perature. This change in the TKE was shown to be due
to the decrease in the saturation magnetization MS in
annealed films. The experimental data obtained can be
applied to advantage in the development of multilayer
systems for spintronic devices.
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Abstract—Temperature-induced phase transitions in a uniaxial ferromagnetic system of spins S = 1 with com-
peting one-particle and two-particle anisotropies are studied. It is shown that, in the case where easy-plane sin-
gle-ion anisotropy dominates over easy-axis two-particle anisotropy, the transition from the paramagnetic state
to a ferromagnetic state with magnetization perpendicular to the anisotropy axis is a second-order displacive
magnetic phase transition. In the opposite case, where two-particle anisotropy dominates over single-particle
anisotropy, the transition to a ferromagnetic state with magnetization perpendicular to the anisotropy axis is also
continuous but of the order–disorder type. In a system with competing second-order one- and two-particle
anisotropies, the orientational first-order phase transition can occur to a state with the magnetization directed
along or perpendicular to the anisotropy axis. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Orientational magnetic phase transitions (PTs) can
be induced by an external magnetic field or tempera-
ture. An example is the Morin transition in hematite α-
Fe2O3, during which, as the temperature lowers, the
Fe3+ spins switch from the orientation along the easy
axis (the symmetry axis of the uniaxial crystal) to the
orientation in the easy plane perpendicular to this axis
(which becomes the hard axis) [1, 2]. It is this type of
orientational PT that is discussed in this paper. Phe-
nomenologically, this transition is explained by the fact
that, at a certain temperature TM (the Morin tempera-
ture), the anisotropy constant changes sign.

The mechanism of an orientational PT will be dif-
ferent if the anisotropy is a sum of anisotropies having
different order and constants that differ in sign. Taking
into account the fact that the temperature dependences
of the anisotropy constants are different [3], we find
that there is one temperature range over which the
anisotropy of one order dominates over the anisotropy
of the other order and a second temperature range over
which the reverse is true.

This phenomenological approach ignores the fact
that there are different types and mechanisms of forma-
tion of anisotropy. In monograph [4], two fundamen-
tally different types of anisotropy are discussed in
detail: the spin–spin interaction anisotropy and single-
particle (single-ion) anisotropy (SIA) due to the com-
bined effect of the crystal field exerted on the magnetic
ions and the spin–orbit coupling. The thermodynamic
average of the product of spin-operator projections of
1063-7834/05/4704- $26.00 0690
two neighbor ions and the thermodynamic average of
the product of spin-operator projections of the same
order but taken for one ion vary differently with tem-
perature [4]. Therefore, it may be suggested that an ori-
entational PT can occur even in a model that includes
only second-order anisotropic interactions but properly
takes into account the difference between the single-ion
and interionic-interaction anisotropies. We note that,
phenomenologically, this change in the orientation of
magnetization is analogous to that caused by a change
in the sign of the anisotropy constant.

Competing anisotropies are also of importance for
another reason. It was shown in [5] that, in a uniaxial
ferromagnet with easy-axis SIA, the transition from the
paramagnetic (singlet) state to a ferromagnetic (FM)
state is a displacive magnetic PT. The main distinction
of this transition from conventional order–disorder PTs
is that the magnetization occurs due to the nondegener-
ate ionic states being polarized spontaneously at the PT
point.

Note that easy-plane magnets with an integer spin
and SIA are typically Van Vleck systems [6]; the ionic
states in them have no spin projection in the easy plane,
with the consequence that magnetic ordering with mag-
netization in this plane can occur only due to admixture
(polarization) of the ground state of the ions. In the case
where, in addition to easy-plane SIA, there is interi-
onic-interaction anisotropy competing with the easy-
plane SIA and dominating over it, the transition from
the paramagnetic to FM phase will be an order–disor-
der phase transition, with the magnetization directed
along the easy axis. This transition is possible because
© 2005 Pleiades Publishing, Inc.
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the ionic-spin projection onto the easy axis has its max-
imum value rather than being zero.

Therefore, depending on the relationship between
the constants of competing easy-plane SIA and easy-
axis interionic anisotropy, the PT from the paramag-
netic to a FM state can be either an order–disorder or
displacive magnetic PT. In addition, an orientational PT
can occur in the FM phase (the temperature of this tran-
sition will be designated as TEA–EP).

It should be noted that the effect of competing sin-
gle-ion and interionic-interaction anisotropies on the
magnetization has been considered in the literature, but
only in the Ising model [7, 8]. In this model (without
isotropic exchange) with competing easy-plane SIA
and easy-axis interionic anisotropy, magnetic ordering
with spins lying in the easy plane cannot occur. How-
ever, the application of this model to the problems con-
sidered in [7, 8] is well justified.

If SIA is weak, its effect can be treated [9] using the
semiclassical approximation, in which the average of
the SIA operator is replaced by the corresponding com-
bination of the spin averages. In this approximation,
however, competition between anisotropies reduces to
competition between the anisotropy constants; there-
fore, there will be no difference between the effects of
single-ion and interionic anisotropies in terms of their
temperature dependence. To the best of our knowledge,
the above-mentioned problems involving competition
between anisotropies have not been considered in the
literature, although Hamiltonians with two types of
anisotropy (which are experimentally observed in cer-
tain magnets) are frequently used.

In what follows, we consider a simple model of tem-
perature-induced orientational PTs in an initially easy-
axis ferromagnet with spins S = 1. This model includes
isotropic exchange interactions and two competing
(single-ion and interionic) second-order anisotropies.

2. THE MODEL HAMILTONIAN 
AND ITS GROUND STATE

The model Hamiltonian of an anisotropic ferromag-
net is taken in the form

(1)

where n and m label the positions of the spins and the
Z axis is taken to be along the easy axis. In Eq. (1), the
first term describes anisotropic exchange and the sec-
ond and third terms allow for interionic and single-ion
anisotropies, respectively. The SIA is assumed to be of
the easy-plane type, and the interionic anisotropy, of
the easy-axis type; therefore, both anisotropy constants
in Eq. (1) are positive (∆J > 0, D > 0).

We analyze the ground state of Hamiltonian (1) in
the mean-field approximation using the variational

H
J
2
--- SnSm

n m,
∑–

∆J
2

------ Sn
Z
Sm

Z
D Sn

Z( )
2
,

n

∑+
n m,
∑–=
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principle. Ignoring interspin fluctuations, we write the
ground-state energy per magnetic ion Egr in the form

(2)

where s is the average ionic spin in the ground state, z is
the number of nearest neighbors (the pairwise interac-
tion constants are proportional to this number, so the
constants J and ∆J are assumed to include this number),
and QZZ is the quantum-mechanical average of the
square of the Z projection of the spin operator (a com-
ponent of the quadrupole spin moment [10–12]).

For each spin, we introduce a local coordinate sys-
tem (ξ, η, ζ), where the ζ axis is taken along the direc-
tion of the average spin and the ξ axis lies in the Zζ
plane. In this coordinate frame, as shown in [13], the
wave function of the spin ground state has the form

(3)

where |±1〉  and |0〉  are the eigenfunctions of the operator

 (in the bra-and-ket notation). Using Eq. (3), the
average values of the spin and the components of the
quadrupole moment can be calculated to be

(4)

where the subscript “0” denotes the average for a spin
with wave function (3).

With Eqs. (4), energy (2) can be written as

(5)

where θ is the angle between the spins and the crystal-
lographic Z axis (or between the ζ and Z axes). Note
that the wave functions that are defined in the crystallo-
graphic rather than the local coordinate system involve
parameters associated with rotation of the eigenvectors
|±1〉n and |0〉n in Hilbert space, which leads to a compli-
cated relation between the observed and sought (varia-
tional) parameters.

In our approach, the orientation of the spins in dif-
ferent phases (depending on the values of the parame-
ters of the Hamiltonian) at T = 0 can be found by mini-
mizing energy (5) with respect to φ and θ, which gives
the equations

(6)

(7)

Let us analyze the solutions to this set of equations.
One solution is sinθ = 0 and sin2φ = 0. In this case, the
average spins are directed along the Z axis and have a

Egr
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maximum value of s0 = S = 1. In this state, energy (2) is
given by

(8)

The other solution is cosθ = 0 and sin2φ = –D/2J,
which corresponds to the case where the spins are per-
pendicular to the Z axis and their value is s0 =

 [9–13] (this value is less than the limit-
ing value S = 1). The energy of this state is independent
of ∆J and differs substantially from Eq. (8):

(9)

There is also a third solution, cos2φ = 0. The aver-
age spins in this state are minimum, s0 = 0. This is a Van
Vleck singlet (paramagnetic) state with a zero magne-
tization [6]. In [10–12], this phase is called the quadru-
pole spin state, because the difference Qξξ – Qηη ≠ 0 is
nonzero in this state and is a limiting value. In [14], this
phase is called the nematic spin state. In our opinion,
the name “Van Vleck singlet magnet” is preferable. The
values of the parameters of Hamiltonian (1) for which
the singlet state arises are not determined in this paper.

It can be seen from Eq. (8) that, in the case where the
magnetization in the ground state is parallel to the Z
axis, the energy is a linear combination of the model
parameters and corresponds to the semiclassical
approximation. In the case where the magnetization
vector in the ground state lies in the easy plane, the
energy does not correspond to the semiclassical
approximation, because the average spin is less than its
limiting value. In this case, the energy is given by
Eq. (9) and contains two terms with D. These terms in

 are opposite in sign, and one of them is a qua-
dratic function of the SIA constant. At T = 0, the actual
magnetic structure corresponds to the minimum value
of the energy given by Eqs. (8) and (9). In the case of
T ≠ 0, the equilibrium states are determined by the free
energy and the behavior of the system can be more
complicated.

3. THE FREE ENERGY OF A UNIAXIAL 
FERROMAGNET

In order to find the thermodynamically equilibrium
states of Hamiltonian (1) at T ≠ 0, we have to take into
account the populations of all single-ion states. At T =
0, we chose the quantization axis to be along the direc-
tion of the average spin in the ground state of ions.
Now, it is convenient to take the quantization axis to be
along the magnetization vector of the ferromagnet. In
this case, according to [13], the wave function of the
ground state of the uniaxial ferromagnet is given by

Egr
EA( ) 1

2
--- J ∆J+( )– D.+=

1 D/2J( )2
–

Egr
EP( ) 1

2
--- J– D+( ) D

2

8J
------.–=

Egr
EP( )
PH
Eq. (3) and the wave functions of excited single-ion
states are

(10)

Using Eqs. (3) and (10), we can calculate the expecta-
tion values in the single-ion states denoted by super-
scripts 0, 1, and 2: the partial values of the spin projec-
tion onto the quantization axis are s(0) = –s(2) = cos2φ
and s(1) = 0; the partial averages of the operator (Sζ)2 are
1, 0, and 1, respectively; and the averages of the opera-
tor (Sξ)2 are (1 + sin2φ)/2, 1, and (1 – sin2φ)/2, respec-
tively.

The thermodynamic average of the spin (the magni-
tude of the average magnetization m) and the average

 can be found to be

(11)

(12)

Here, ∆p = (p(0) – p(2))/2 and p = (p(0) + p(2))/2, where p(0)

and p(2) are the probabilities of an ion being in states
(10) with a nonzero projection of the spin onto the
quantization axis.

By definition, the free energy is F = E – TSen, where
E is the internal energy and Sen is the entropy, which is
configurational if intersite fluctuations are neglected.

The internal energy per particle of the system with
Hamiltonian (1) can be written as

(13)

and the entropy is given by

(14)

where p( j) are the probabilities of an ion being in
states (10), which satisfy the obvious condition

 = 1.

Using the notation introduced in Eqs. (11) and (12),
the entropy can be written as

(15)

and the free energy of the system with Hamiltonian (1)
takes the form

(16)

Thermodynamically equilibrium states can be found
by minimizing the free energy (16). The variational
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parameters are the angle φ, which defines the value of
the polarization of the single-ion states; the angle θ,
which defines the direction of the average magnetiza-
tion; and p and ∆p, which determine the populations of
the polarized states. By equating the derivatives of
expression (16) with respect to these parameters to
zero, we obtain the equations of state

(17)

(18)

(19)

(20)

Thus, in contrast to the results obtained in [4, 7, 8],
Eq. (16) for the free energy and equations of state (17)
and (18) make it possible to determine the polarization
of the ionic states in singlet magnets.

4. PHASE TRANSITIONS AT T ≠ 0

At finite temperatures, as well as at T = 0, the state
with the magnetization directed along the Z axis corre-
sponds to the solution sinθ = 0 and sin2φ = 0 and the
parameters ∆p and p are determined from the equations

(21)

(22)

In this case, the spin polarization in the single-ion states
is maximum and the spin projections have their extreme
values ±1. The magnetization vector is directed along
the easy axis, and its magnitude is determined only by
the difference between the populations of the energy
levels, m = 2∆p. Therefore, during the PT from the
paramagnetic phase to a FM state with the magnetiza-
tion directed along the easy axis, a spontaneously aris-
ing exchange field causes only a change in the popula-
tions of the single-ion levels. This PT is of the order–
disorder type.

In the paramagnetic phase, the population of the
lowest singlet state (with a zero average spin projection
onto the quantization axis) is higher than the popula-
tions of the single-ion states with the extreme values of
the average spin projection. At the PT point, the doublet

∂F
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splits spontaneously, whereas the energy of the singlet

state remains unchanged; near , the singlet state
remains the ground state of the ions. Only as one goes

away from  does a crossing of single-ion states
occur.

In the easy-plane FM state, we have cosθ = 0 and
sin2φ = –D/4J∆p and the parameters p and ∆p satisfy
the equations

(23)

(24)

In this phase, the average spin projection is s = cos2φ =

 (which is not the maximum possible
value). As the temperature increases, ∆p decreases and,
therefore, the polarization of the single-ion states
decreases. The PT to a paramagnetic state occurs at a

temperature T =  at which the polarization is zero

in all single-ion states, i.e., s( ) = 0. Note that now
the quantization axis lies in the easy plane and, in con-
trast to the case of an easy-axis ferromagnet, the spin
projection onto the quantization axis perpendicular to
the crystal axis is considered.

Thus, the formation of the easy-plane FM phase is
associated with an exchange field that arises in the
plane perpendicular to the crystal axis and polarizes the
single-ion states. Therefore, the PT from the paramag-
netic to an easy-plane FM state is a displacive magnetic
PT [5]. In this case, only the lowest ionic energy level
is polarized and, hence, no crossing of the single-ion
levels occurs in the easy-plane ferromagnet.

The polarization causes a change in the magnetiza-
tion. In the easy-plane FM phase, the magnetization is

m = , where ∆p satisfies Eqs. (23)
and (24).

The temperature  of the transition from the
paramagnetic to the easy-axis FM phase can be found
from the transcendent equation

(25)

and the temperature  of the transition from the para-
magnetic to the easy-plane FM phase is given by [4]

(26)

The transition from the paramagnetic to the easy-

axis FM state occurs if  > . Otherwise, the
system undergoes a transition from the paramagnetic to
the easy-plane FM state. However, in the case where
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 > , the easy-axis phase may become unsta-
ble as T  0.

Indeed, in the case of weak anisotropies, D/J ! 1
and ∆J/J ! 1, the critical temperatures are given by

(27)

(28)

It follows that  >  if ∆J > .

However, according to Eqs. (8) and (9) for the energies
of the ground state, the easy-axis FM phase is stable at
larger values of the interionic anisotropy constant, ∆J >

. Therefore, for values of the interionic

anisotropy constant lying in the range

(29)

the critical temperature for the transition to the easy-
axis FM phase is higher than that for the transition to
the easy-plane FM phase but the latter phase is more
stable at T = 0. It follows that, if the anisotropy con-
stants satisfy inequalities (29), then, at a certain finite
temperature TEA–EP, the orientational PT will occur from
the easy-axis FM phase to the easy-plane FM phase.
Since it is very difficult to calculate this temperature
analytically, we determine TEA–EP for certain fixed (not
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Fig. 1. Dependences of the critical temperatures  and

 for the transitions from the paramagnetic to the

easy-plane and easy-axis FM phases, respectively, on the
ratio between the single-ion anisotropy and exchange con-
stants, D/J.

TC
EP( )

TC
EA( )
P

small) values of the anisotropy constants in what fol-
lows.

Figure 1 shows the dependences of  and 
on the SIA constant. It can be seen that the temperature

 (solid line) is almost constant in the region of
D/J ≈ 0.8. This behavior can be explained as follows.
For an isotropic ferromagnet, we have TC = 2J/3. With
inclusion of SIA with D > 0, as can be seen from

Eq. (28), the temperature  first increases insignif-

icantly (up to  ~ 0.728J) with increasing D up to

D/J ≈ 0.8. As the quantity D/J increases further, 
begins to decrease slowly and then, as D/2J  2, the

temperature  falls off sharply to zero. This behavior
is due to the logarithmic dependence of expression (26).

In Fig. 1,  is plotted near the maximum in a small
range of D/J values, so it remains almost unchanged.

The temperature  of the transition to the easy-
axis FM phase is shown by the dashed line in Fig. 1 for
the interionic anisotropy constant ∆J/J = 0.9. Up to

D/J ≈ 0.85, we have  > , and then the ine-
quality is reversed.

Figure 2 shows the energy of the ground state (at
T = 0) as a function of the SIA constant for the easy-
plane FM phase (solid line) and the easy-axis FM phase
(dashed line) for ∆J = 0.9J. It can be seen that, at D/J <
0.75, the energy of the latter phase is lower than the
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Fig. 2. Dependence of the ground-state energy Egr/J of a
ferromagnet on the ratio between the single-ion anisotropy
and exchange constants, D/J, for the case where the magne-
tization vector either lies in the easy plane (solid line) or is
directed along the easy axis (dashed line).
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energy of the former phase; in the range 0.75 < D/J <
0.85, the easy-axis FM phase becomes unstable.

The temperature TEA–EP can be determined by equat-
ing the free energies of these phases. The temperature
dependences of the free energies can be found by sub-
stituting the solutions to Eqs. (21)–(24) into Eq. (16)
and are shown in Fig. 3 in the region in which their plots
intersect. The model parameters are taken to be ∆J =
0.9J and D = 0.8J. The plots for the easy-axis FM phase
(dashed line) and the easy-plane FM phase (solid line)
in Fig. 3 cross at the point corresponding to TEA–EP ≈
0.54J. At T < TEA–EP, the easy-axis FM phase with the
magnetization directed along the Z axis has a higher
free energy. At T > TEA–EP, on the contrary, the free
energy of the easy-axis FM phase is lower than that of
the easy-plane FM phase. Thus, for the model parame-
ters indicated above, the order–disorder PT of the sec-
ond order from the paramagnetic to the easy-axis FM

phase occurs at the point  = 0.825J and the orien-
tational PT from the easy-axis to easy-plane FM phase
occurs at TEA–EP = 0.54J. This orientational PT is of the
order–disorder type.

In the example considered above, the temperature of

the orientational PT TEA–EP is much less than .
Therefore, although the direction of the magnetization
vector is switched, its magnitude varies insignificantly.
Figure 4 shows the temperature dependence of the
magnetization in both FM phases calculated for the
same parameters as those in Fig. 3. The temperature
dependence for the high-temperature easy-axis phase
(with the magnetization directed along the Z axis) is
shown by the dashed curve, and the temperature depen-
dence for the easy-plane phase (arising after the orien-
tational PT) is shown by the dotted curve. It can be seen
from Fig. 4 that the change in the magnitude of the
magnetization caused by the PT is very small. Obvi-
ously, this is due to the fact that the change in the free

TC
EA( )

TC
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Fig. 3. Dependences of the free energy F/J on temperature
T/J for the easy-axis and easy-plane FM phases.
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energy of these phases near TEA–EP is also small (a few
percent).

5. CONCLUSIONS

It has been shown that, in a magnetic system with
competing easy-plane single-ion anisotropy and easy-
axis interionic interaction anisotropy, two types of PTs
to the ordered FM state can occur. A magnetic order–
disorder PT occurs in the case where easy-axis anisot-
ropy dominates over single-ion anisotropy. In this case,
the single-ion spin states have the extreme values of the
spin projection onto the direction of the spontaneous
magnetization, which coincides with the anisotropy
axis. If single-ion anisotropy dominates over interionic
anisotropy, the spontaneous magnetization vector lies
in the easy plane. In this direction in the paramagnetic
state, the single-ion spin states are unpolarized (the spin
projections of all ionic states are zero); spontaneous
magnetization will arise if the single-ion states become
polarized at the PT point. This PT to the FM phase with
the magnetization perpendicular to the anisotropy axis
is a displacive magnetic PT.

It has also been shown that, in a ferromagnet with
competing interionic-interaction and single-ion
anisotropies, a first-order orientational PT from the
easy-axis to the easy-plane FM phase can occur with a
variation in temperature. In this case, both anisotropies
are second-order and the anisotropy constants are tem-
perature-independent. The anisotropies cancel each
other at the PT point, because the temperature depen-
dences of their contributions to the free energy are dif-
ferent. Phenomenologically, this orientational PT in a
uniaxial ferromagnet is due to the second-order anisot-
ropy constant changing sign at a certain temperature
and is closely analogous to the Morin transition. How-
ever, it should be noted that, in the case of two compet-
ing anisotropies, the easy-axis FM phase forms through
conventional ordering, whereas in the easy-plane phase
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0.3

0

Z

m m

Z

(EA)

(EP)
TEA–EP

TC
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Fig. 4. Temperature dependence of the magnetization m(T)
near the orientational phase transition point.
5



696 KALITA, LOKTEV
quantum processes of polarization of the single-ion
states occur.

ACKNOWLEDGMENTS

The authors are grateful to S.M. Ryabchenko and
those who participated in the seminar organized by him
for discussions and helpful remarks.

This study was supported in part by the Ministry of
Education and Science of Ukraine, grant no. F7/514-
2001.

REFERENCES

1. V. I. Ozhogin, Zh. Éksp. Teor. Fiz. 54 (1), 96 (1968)
[Sov. Phys. JETP 27, 54 (1968)].

2. V. I. Ozhogin, Zh. Éksp. Teor. Fiz. 55 (5), 1735 (1968)
[Sov. Phys. JETP 28, 915 (1969)].

3. K. P. Belov, M. A. Belyanchikova, R. Z. Levitin, and
S. A. Nikitin, Rare-Earth Ferro- and Antiferromagnets
(Nauka, Moscow, 1965) [in Russian].

4. A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and
A. I. Popov, Rare-Earth Ions in Magnetically Ordered
Crystals (Nauka, Moscow, 1985) [in Russian].
P

5. V. M. Kalita and V. M. Loktev, Fiz. Tverd. Tela
(St. Petersburg) 45 (8), 1450 (2003) [Phys. Solid State
45, 1523 (2003)].

6. J. H. van Vleck, Theory of Electric and Magnetic Sus-
ceptibilities (Oxford Univ. Press, Oxford, 1932).

7. H. W. Capiel, Physica (Amsterdam) 32 (5), 966 (1966);
Physica (Amsterdam) 33 (2), 295 (1967).

8. M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A
4, 1071 (1971).

9. V. S. Ostrovskii and E. Petrov, Phys. Status Solidi B 71,
369 (1975).

10. F. P. Onufrieva, Zh. Éksp. Teor. Fiz. 89 (12), 2270 (1985)
[Sov. Phys. JETP 62, 1311 (1985)].

11. Yu. N. Mitsaœ, A. N. Maœorova, and Yu. A. Fridman, Fiz.
Tverd. Tela (St. Petersburg) 34 (1), 66 (1992) [Sov. Phys.
Solid State 34, 34 (1992)].

12. V. V. Val’kov and G. N. Matsuleva, Preprint No. 645F, IF
SO AN SSSR (Inst. of Physics, Siberian Division, USSR
Academy of Sciences, Novosibirsk, 1987).

13. V. M. Loktev and V. S. Ostrovskiœ, Fiz. Nizk. Temp. 20
(10), 983 (1994) [Low Temp. Phys. 20, 775 (1994)].

14. A. F. Andreev and I. A. Grishchuk, Zh. Éksp. Teor. Fiz.
87 (8), 467 (1984) [Sov. Phys. JETP 60, 267 (1984)].

Translated by Yu. Epifanov
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005



  

Physics of the Solid State, Vol. 47, No. 4, 2005, pp. 697–702. Translated from Fizika Tverdogo Tela, Vol. 47, No. 4, 2005, pp. 673–678.
Original Russian Text Copyright © 2005 by Zakharov, Kukushkin, Osipov.

                                                                                        

MAGNETISM
AND FERROELECTRICITY

               
Theory of Switching of Multiaxial Ferroelectrics 
(the Main Stages)

M. A. Zakharov*, S. A. Kukushkin,** and A. V. Osipov**
*Novgorod State University, ul. Sankt-Peterburgskaya 41, Novgorod, 173003 Russia
**Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, 

Vasil’evskiœ Ostrov, Bol’shoœ pr. 61, St. Petersburg, 199178 Russia
e-mail: ksa@phase.ipme.ru

Received May 17, 2004

Abstract—The kinetics of switching of multiaxial ferroelectric crystals with 180° and 90° domains under con-
ditions of normal and layer-by-layer domain growth is studied using the multidimensional theory of first-order
phase transitions. The main stages of the process of switching of a multiaxial ferroelectric are considered under
the assumption that repolarized cylinder-shaped domains grow three-dimensionally. A closed set of equations
describing the kinetics of switching is derived with allowance for a change in repolarization in the course of the
phase transition. Equations for the time-dependent switching current are derived. The main characteristics of
switching are compared qualitatively with the experimental data on barium titanate. © 2005 Pleiades Publish-
ing, Inc.
1. INTRODUCTION

In this work, we continue the theoretical study made
in [1] on the switching of multiaxial ferroelectric crys-
tals. As indicated in [2, 3], the switching of ferroelec-
trics and related materials can be conventionally
divided into three characteristic stages, as can any other
first-order phase transition. The initial stage of switch-
ing of multiaxial ferroelectrics was analyzed in [1]. In
this paper, we consider the main stages of switching of
these ferroelectrics. It should be noted that the theory
developed below is characterized by the following three
important features. First, this theory is equally applica-
ble to the formation of 180° and 90° domains. Second,
we consider the general case of the three-dimensional
growth of repolarized domains having two degrees of
freedom, which is made possible by using the multidi-
mensional kinetic theory [4–6]. Finally, our theory
takes into account various mechanisms of domain
growth, in particular, the normal and layer-by-layer
mechanisms.

The paper is organized as follows. In Section 2, we
consider the stage of large-scale switching of a multiax-
ial ferroelectric and derive the corresponding set of
kinetic equations. Section 3 deals with the switching
current in ferroelectric crystals. Section 4 is devoted to
a comparison of theory with experimental data on bar-
ium titanate, which is a well-studied multiaxial ferro-
electric.

2. KINETICS OF LARGE-SCALE SWITCHING

The kinetics of switching of multiaxial ferroelec-
trics under the condition of three-dimensional growth
1063-7834/05/4704- $26.00 ©0697
of repolarized domains is described by the two-dimen-
sional kinetic equation [1]

 (1)

where f(n, α, t) is the two-dimensional nonequilibrium
distribution function of repolarized domains over the
number of unit cells and shapes of domains; n is the
number of unit cells in a cylindrical domain with height
H and base radius R; α = H/R is the characteristic ratio
of the linear dimensions of a domain; Vn = dn/dt  and
Vα = dα/dt  are growth velocities of domains in the
space of the sizes and shapes of domains, respectively;
and Dn and Dα are the coefficients of diffusion of repo-
larization nuclei in the space of the sizes and shapes of
domains, respectively.

Following [1], it can be shown that the two-dimen-
sional distribution function f(n, α, t) can be written in
the form

 

where αc = 2 is the critical value of the characteristic
ratio α, kB is the Boltzmann constant, and T is the tem-
perature. The constant B is given by B = 2πσ3ω2/3|∆f |2,
where σ is the surface tension of a domain wall, ω is the
unit cell volume, and ∆f is the difference between the
free energies per unit cell of the medium and of a repo-
larization nucleus. The normalization factor C is cho-
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sen such that the distribution function ϕ(n, t) is normal-
ized to the number of domains per unit volume N(t) of

the crystal; i.e., (n, t)dn = N(t).

In this case, the two-dimensional kinetic equation (1)
reduces to the Zel’dovich one-dimensional equation for
the function ϕ(n, t),

 (2)

with the initial and boundary conditions

  1, 

  0, 

where ϕeq(n) is the known equilibrium distribution
function.

Equation (2) is the continuity equation in the space
of domain sizes; the corresponding flux J(n, t) is the
sum of two components, namely, the “hydrodynamic”
flux Vnϕ(n, t) and the “fluctuation” flux Dn∂ϕ(n, t)/∂n.
The former component corresponds to the change in the
distribution function of repolarized domains due to
their growth at a rate Vn, and the latter component
describes the fluctuation change in the domain sizes.

It should be noted that, at the stage of large-scale
switching, the equation of evolution (2) can be simpli-
fied, because the hydrodynamic component of the flux
is dominant at this stage [2]. Therefore, we neglect the
fluctuation flux and rewrite Eq. (2) in the form

 (3)

The repolarization of the crystal varies due to the
formation of a large number of repolarization nuclei,
which influence the internal electric field of the parent
medium. However, the total number of unit cells, which
are carriers of elementary polarization (dipole moment)
p, is conserved. Therefore, following [2], kinetic equa-
tion (3) should be supplemented by the balance equa-
tion

 (4)

where P10 is the equilibrium polarization, J(E0)(p/P10)
is the source of repolarization produced by an electric
field E0, ξ(t) is the relative repolarization [1], and

(p/P10) (n, t)dn is the rate of transformation of

polarization into the new phase.
Kinetic equation (3) and balance equation (4) con-

stitute a closed set of equations describing the stage of
large-scale switching of a multiaxial ferroelectric

ϕ
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p
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0
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∫+=

Vnϕ0

∞∫
P

where most of the repolarization nuclei reach the criti-
cal size.

To solve the Fokker–Planck equation (3), we need to
find the growth velocity Vn in the space of domain sizes,
which depends substantially on the domain growth
mechanism. For the sake of definiteness, we assume
that the low-symmetry phase of the ferroelectric under
study belongs to the tetragonal point group 4mm. This
symmetry is typical of the pyroelectric phases of cer-
tain multiaxial ferroelectrics, e.g., barium titanate. It is
also assumed that spontaneous polarization arises along
the z axis in the absence of an external electric field.
Using the method developed in [1, 2] for calculating the
growth rate of nuclei in the space of their sizes, we find

 (5)

where t0 is a time constant dependent on the specific
mechanism of domain growth.

In particular, for the growth of 180° domains, we
have

 (6)

where superscripts “1” and “2” refer to the normal and
layer-by-layer mechanisms of domain growth, respec-
tively; ε0 is the permittivity of free space; kB is the Bolt-
zmann constant; T is the temperature; χzz is the zz com-
ponent of the dielectric susceptibility tensor; β0 is a
kinetic coefficient; and σst and βst0 are the surface ten-
sion and kinetic coefficient related to a step, respec-
tively.

For the growth of 90° domains, the time constant t0
is given by

 (7)

It should be stressed that Eq. (5) for the growth velocity
in the space of domain sizes is derived, following [1],
under the assumption of three-dimensional growth of
cylindrical nuclei having two degrees of freedom. The
specific features of the domain growth mechanism are
determined by the constant t0.

Let us introduce the dimensionless nucleus radius
ρ = n1/3 and pass over from the distribution function of
domains over the number of unit cells in them ϕ(n, t) to
the distribution function of domains over dimensionless
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radii g(ρ, t). With this function, kinetic equation (3)
takes the form

 (8)

According to [2], we can neglect the derivative dξ/dt in
balance equation (4) at the stage of large-scale switch-
ing. In this case, we obtain

 (9)

where ξ0 is the repolarization of the ferroelectric at the
initial instant of time and τ is a parameter dependent on
the operative mechanism of domain growth and the
type of repolarized domains. In particular,

 (10)

for 180° domains and

 (11)

for 90° domains. Here,  = Nv νexp(–V0/kBT) is a
kinetic coefficient, V0 is the height of the energy barrier
to switching of the unit-cell dipole moment p in the
absence of an external field, Nv is the number of unit
cells per unit volume of the crystal, ν is the vibration
frequency of atoms in a unit cell, and βst0 is the analo-
gous kinetic coefficient for a step in the case where the
layer-by-layer mechanism of domain growth domi-
nates.

Following [2], the set of equations (8) and (9) is sup-
plemented by initial and boundary conditions of the
form g(ρ, 0) = 0 (for ρ > ρc) and g(0, t) = I(ξ(t))t0/ξ(t),
where I(ξ(t)) is the repolarization flux.

This set of equations can be solved analytically. A
method for solving these equations as applied to uniax-
ial ferroelectrics is proposed in [2]. The formulas
derived in [2] (not presented here) can be used to calcu-
late all main kinetic characteristics of the process of
switching of multiaxial ferroelectric crystals at the
stage of large-scale switching with inclusion of various
mechanisms of domain growth and different types of
repolarized domains (corresponding to appropriately
chosen parameters t0 and τ).

The final stage of switching of ferroelectric crystals
in an external field (as well as of other first-order phase
transitions) is the Ostwald ripening, also known as coa-
lescence. In this stage, coarse nuclei grow by merging
with fine nuclei. This thermodynamically favorable
process causes the total area of interphase boundaries to
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decrease, and the average size of repolarized domains
increases with time. The interaction between repolar-
ized domains is characterized by a self-consistent field
produced by the entire ensemble of domains. As a result
of the Ostwald ripening, the relative repolarization of
the crystal decreases to zero; the initially metastable
system reaches complete thermodynamic equilibrium,
at which the ferroelectric is a single domain with polar-
ization directed along the external electric field.

The kinetics of switching of ferroelectric crystals at
the stage of the Ostwald ripening was studied in detail
in [2, 3] with allowance for the normal and layer-by-
layer mechanisms of domain growth. It was shown in
those papers that the basic kinetic equations describing
first-order phase transitions at the stage of the Ostwald
ripening are similar in structure and, therefore, have
similar solutions. For this reason, we do not write out
the explicit expressions for the distribution function of
nuclei over sizes, the average nucleus size, the nucleus
density, the relative repolarization at the stage of the
Ostwald ripening, or other kinetic characteristics of
switching, which can be found in the papers mentioned
above.

3. SWITCHING CURRENT
The time dependence of the switching current den-

sity in a multiaxial ferroelectric crystal is defined as [7]

 (12)

where Q is the fraction of the crystal that has not yet
been repolarized and P10 is the initial value of the spon-
taneous polarization of the ferroelectric.

In the initial stage of switching, the system is not
influenced by new-phase nuclei and its thermodynamic
parameters remain virtually unchanged. The relative
volume of the crystal involved in the phase transition is
very small, and the rate of its change is almost zero.
Therefore, there is no polarization current in the initial
stage of switching. This current arises only at the sec-
ond stage of the phase transformation, where large-
scale switching occurs. To calculate the polarization
current, let us consider kinetic equations (1)–(9).

We introduce the fraction of the repolarized volume
of the crystal Z = 1 – Q and, following [2], rewrite bal-
ance equation (4) in the form

 (13)

where ξ0 is the relative repolarization at the initial
instant of time and τ is a time constant that is dependent
on the operative mechanism of domain growth and the
type of repolarized domains and is given by Eqs. (10)
and (11).

All the main characteristics of switching can be
found by solving kinetic equation (3) in combination
with balance equation (13). For this purpose, we

J 2P10
dQ
dt
-------,–=

dξ
dt
------

ξ0

τ
----- ξ

τ
--–

ξ0 ξ–( )
1 Z–( )

------------------dZ
dt
------,–=
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express Z in terms of ρ and t using the relations ρ = n1/3

and ϕ(n, t)dn = g(ρ, t)dρ. By differentiating Z with
respect to time and using Eqs. (5) and (8) and the
boundary condition g(ρ, t)|ρ → ∞ = 0, we obtain

 (14)

where N is the number of domains. From Eq. (14), it
follows that

 (15)

where I(ξ) is the flux of nuclei.

Using Eq. (12), we find that the polarization current
satisfies the equation

 (16)

Thus, Eq. (16) in combination with balance equa-
tion (13) makes it possible to calculate the polarization
current as a function of time and external field.

From Eqs. (12), (13), and (16), we obtain

 (17)

From Eq. (17), subject to the condition that the
polarization current, its time derivatives, and the repo-
larization be zero at the initial instant of time, we can
find the time dependence of the relative repolarization.

The dependence of the nucleus flux on the relative
repolarization is found in [1] and can be written in the
form

 (18)

where

 

 

Here, Nv is the number of unit cells per unit volume of
the crystal, which can be estimated as Nv ~ 1/ω, and
superscripts “1” and “2” refer to the normal and layer-
by-layer mechanisms of domain growth, respectively.
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PH
The parameter α depends on the type of nuclei. In
particular,

 

for 180° domains and

 

for 90° domains, where χc and χa are the dielectric sus-
ceptibilities of the ferroelectric along the c and a axes,
respectively.

Equations (3) and (13)–(18), subject to appropriate
initial and boundary conditions, constitute a closed set.
By solving these equations, we can find the main
kinetic characteristics of switching of a multiaxial fer-
roelectric crystal, namely, the switching current den-
sity, relative repolarization, nucleus flux, etc.

4. DISCUSSION OF THE RESULTS 
AND COMPARISON WITH EXPERIMENT

Now, we make estimates using the theoretical depen-
dences obtained above and the experimental data on bar-
ium titanate, a classical multiaxial ferroelectric. Accord-
ing to [8–10], the Curie temperature of barium titanate is
TC ~ 393 K; the equilibrium spontaneous polarization at
T ~ 373 K is Px10 ~ 1.2 × 10–1 C m–2; the dielectric sus-
ceptibilities along and perpendicular to the polar axis
are χc ~ 60 and χa ~ 300, respectively; the molar mass
is M ~ 0.233 kg mol–1; and the density is ρ ~ 6.02 ×
103 kg m–3. The unit cell volume of crystal barium titan-
ate can be estimated as ω ~ M/ρNA = 0.64 × 10–28 m3

(where NA is the Avogadro constant); therefore, Nv ~
ω–1 = 1.6 × 1028 m–3. The kinetic coefficient β0 depends
on the activation energy for atomic displacements in the
ferroelectric and, according to [2], can be estimated as
β0 ~ 1031 m–2 s–1.

As indicated in [1], there is a wide scatter in the
experimental, as well as theoretical, estimates of the sur-
face tension of a domain wall. According to [11–15], the
surface tension σ of a domain wall in barium titanate lies
within the range from ~0.1 × 10–3 to ~10 × 10–3 J m–2.
Due to this wide scatter in the experimental data on sur-
face tension, we can make only qualitative estimates.

We assume the surface tension of a domain wall to
be σ ~ 0.7 × 10–3 J m–2, which is intermediate between
the calculated values of Miller and Weinreich and esti-
mates made by Zhirnov. In the case of the layer-by-
layer mechanism of domain growth, we also need to
know the surface tension of a step. For this reason, we
restrict our consideration to the normal mechanism of
domain growth. For the formation of 180° domains, we
have t0 ~ 10–12 s, τ ~ 10–7 s, and α ~ 5.7 × 10–4. Figure 1
shows the time dependences of the relative repolariza-
tion ξ(t), nucleation rate I(t), repolarized-domain den-

α 2πσ3

kBT
------------

ε0χcω
pP10

-------------- 
 

2

,=

α 8πσ3

kBT
------------

ε0χaω
pP10

--------------- 
 

2
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Fig. 1. Time dependences of (a) the relative repolarization ξ(t), (b) nucleation rate I(t), (c) repolarized-domain density N(t), (d) frac-
tion of the repolarized volume of the crystal Z(t), and (e) switching of the current density J(t) at various values of the external field
E: (1) 2, (2) 4, (3) 6, (4) 8, and (5) 10 MV m–1. The area of the sample is S ~ 10–9 m2.
sity N(t), fraction of the repolarized volume Z(t), and
switching current density J(t) at various values of the
external field found by solving Eqs. (13)–(18). The cor-
responding switching times ts are shown in Fig. 2 as a
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
function of external field. It should be noted that the
plots of the switching current are so-called “affine”
curves and agree qualitatively with the experimental
time dependence of switching of currents in ferroelec-
5
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trics [8, 9, 16]. Furthermore, it can be seen from Fig. 2
that the switching times are consistent with the experi-
mental data of Stadler [17].

In closing, we note that application of the theory
developed here is hampered by the fact that calculations
of the constants I0, t0, τ, and α involve parameters (such
as the surface tension of a domain wall and kinetic coef-
ficients) that are not well determined. It is more reason-
able to solve the inverse problem; namely, by compar-
ing the theoretical dependences of the switching cur-
rent with experimental data, one can estimate the
parameters of ferroelectrics that cannot be determined
directly from experimental measurements. It should
also be stressed that the theory developed here is appli-
cable solely to weakly metastable systems; otherwise,
one has to use approximations of the Ginzburg–Landau
type rather than the classical Fokker–Planck equations.
The case of strongly metastable uniaxial ferroelectrics
was considered in [2].
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Abstract—The structural characteristics and dielectric properties (ε', ) of Li0.12Na0.88TayNb1 − yO3 solid
solutions (y ≥ 0.7) synthesized under high or normal pressure (HP and NP ceramics, respectively) were studied.
It was established that these solid solutions have an orthorhombic perovskite structure (space group Pnma) in
the paraelectric state. The temperature and frequency dependences of the dielectric properties of the solid solu-
tions are described in terms of microinhomogeneity of a system containing ferroelectric clusters with an
enhanced Nb content as compared to that in the matrix. The characteristics of the cluster system depend on the
method by which the ceramics were prepared. The HP ceramic is more homogeneous on the microscale. The
permittivity ε' was found to undergo thermal hysteresis in the region from 200 to 400 K, the parameters of which
strongly differ for the HP and NP ceramics. The temperature of the maximum ε' obtained in cooling runs for
the NP and HP ceramics is 50–60 and 110 K lower, respectively, than that on the heating branch. The hysteresis
may originate from interaction of the antipolar mode condensing under cooling with nonpolar ordered distor-
tions, which drives the system to the state of global minimum. When the system residing in this state is heated,
this mode undergoes decondensation at a higher temperature. © 2005 Pleiades Publishing, Inc.

δtan
1. INTRODUCTION

Solid-solution systems of sodium and lithium nio-
bate tantalates occupy a special place in the family of
perovskite-type complex oxides. They undergo temper-
ature- and concentration-driven phase transitions,
including ferro- and antiferroelectric transformations.
These transitions are accompanied by a change in the
pattern of ordered lattice distortions associated with
specific crystallochemical features of the starting com-
pounds and interatomic bond stresses caused by misfits
between the size of the cations and the volume of the
polyhedra they occupy. A system worth mentioning in
this family is the quasi-binary series of
Li0.12Na0.88TayNb1 − yO3 solid solutions [1], one of
whose extreme compositions (Li0.12Na0.88NbO3) is
located within the morphotropic region of coexistence
of two phases with orthorhombic and rhombohedral
structures [2, 3] and the other extreme composition,
based on sodium tantalate, reveals anomalous dielectric
properties with signs of a quantum paraelectric at low
temperatures [4]. In this series of solid solutions, mor-
photropic regions with specific physical properties and
a transition to the state with superionic conduction have
been observed [1]. The characteristics of the morpho-
tropic regions, the crystal structure of individual
phases, their regions of existence, and their physical
properties depend on the extent of microscopic inho-
1063-7834/05/4704- $26.00 0703
mogeneity and cation ordering, as well as on stoichi-
ometry, which is indicated by the structural and physi-
cal parameters being sensitive to the conditions of sam-
ple preparation and heat treatment. This makes it
necessary to prepare and study solid solutions of this
system with different, and, above all, with the highest
possible, homogeneity on the microscale. It appears
that the best way to reach this goal lies in carrying out
the synthesis at high pressures and temperatures, i.e.,
under conditions conducive to attaining a higher degree
of compositional order and microscopic homogeneity.
Moreover, this type of synthesis provides a better pres-
ervation of sample composition, because the process is
run in a closed volume.

Our goal in this work was to study the structural
characteristics and dielectric properties of
Li0.12Na0.88TayNb1 − yO3 solid solutions (LNTN) (y ≥ 0.7)
prepared in the form of ceramics at high pressure and
temperature and to compare them with the properties of
ceramics of the same composition but synthesized
using standard technology at normal pressure.

2. EXPERIMENTAL TECHNIQUES

Ceramics of LNTN solid solutions were prepared in
two stages. In the first stage, an oxide–carbonate pow-
der mixture of the starting reagents (OSCh-grade nio-
© 2005 Pleiades Publishing, Inc.
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bium and tantalum oxides and sodium and lithium car-
bonates) were pressed into pellets, which were subse-
quently calcined at a temperature of 1100 to 1150 K.
The calcined mixture was ground to a powder, which
served as a starting batch for the second stage of solid-
solution preparation. Samples of high-pressure LNTN
ceramics were processed at 6 GPa and temperatures
ranging from 1600 to 1800 K for three to five minutes
and cooled subsequently under applied pressure. The
ceramics prepared at high pressure were in the form of
compacted pellets.

Normal-pressure samples were prepared from the
above batch by sintering at 1400 K.

X-ray diffraction measurements of LNTN ceramics
were performed in a diffracted beam of CuKα radiation
on DRON-3 and Rigaku D/Max-B computerized dif-
fractometers. The diffraction spectra were scanned in
the angular range 20° ≤ 2Θ ≤ 90° in steps of 0.02° with
an exposure time of up to 10 s at each point. The spectra
were treated with the full-profile technique using the
FullProf 2000 computer code.

The permittivity ε' and the loss tangent were
measured with an E7-12 and an E7-14 immitance meter
on capacitor samples with silver electrodes at frequen-
cies of 0.1, 1, and 10 kHz and 1 MHz and temperatures
varied at a rate of 2 K/min in the range 77–600 K. The
samples were preliminarily calcined in air at 700 K.
Dielectric measurements for studying the thermal hys-
teresis of ε' and  were performed in a nitrogen envi-
ronment in a cyclic mode including heating from room
temperature to 500 K followed by cooling to 77 K and
subsequent heating to 600 K. The measurement cycles
were repeated several times. In another series, measure-
ments were also conducted in the cyclic mode includ-
ing heating to 500 K followed by quenching in liquid
nitrogen and then heating to 600 K. The quenching was
performed both without a dc electric field applied
(ZFQ) and in a field (FQ) of up to 22 kV/cm. We also
studied the evolution in time of the permittivity at tem-
peratures in the region of the maximum, .

3. EXPERIMENTAL DATA

An analysis of the x-ray diffraction spectra of
LNTN solid solutions was performed in the approxima-
tion of a reduced pseudocubic perovskite lattice and
revealed, irrespective of the technique by which they
were prepared, weak superstructural reflections of the

δtan

δtan

εm'

Table 1.  Lattice parameters of Li0.12Na0.88TayNb1 – yO3
solid solutions

Composition, y a × 10, nm b × 10, nm c × 10, nm

0.7 5.489 7.759 5.497

0.8 5.487 7.762 5.496

0.9 5.489 7.766 5.497
P

type (h + 1/2, k + 1/2, 0), (h + 1/2, k + 1/2, l + 1/2), and
(h + 1/2, k + 1/2, l). This result suggests that the solid
solutions under study have a regularly distorted crystal
structure. A full-profile analysis of the diffraction spec-
tra showed that ordered lattice distortions observed at
temperatures above the phase transition to the antiferro-
electric state are related to oxygen tetrahedron tilting of
the [a–b+a–] type [5, 6], which results in an orthorhom-
bic structure (space group Pnma (no. 62)).

The orthorhombic cell parameters (Table 1) are
related to the parameters of the reduced cubic cell (ap)

as a . , b = 2ap, and c . . The relative
ordered displacements of the oxygen ions depend only
weakly on composition.

The low intensity of the superstructural reflections
and its weak variation with temperature in the range
77–700 K covered here prevented us from determining
the actual type of antipolar ordered displacements of
the Ta(Nb) cations.

The dielectric response of the LNTN solid solutions
was found to have a complex pattern. The high- and
normal-pressure ceramics reveal thermal hysteresis of
the real part of the permittivity ε'(T). The ε'(T) relations
measured on the cooling and heating branches within
the same 500- to 77- to 600-K cycle behave differently
(Figs. 1, 2). We readily see maxima of the permittivity
( ) in the cooling and heating branches. The cooling

branch has one maximum  at a temperature  for
all solid-solution compositions. The pattern obtained in
heating runs is, in general, more complex and depen-
dent on composition. For the y = 0.9 and 0.8 composi-
tions, this branch has one maximum  at a tempera-

ture , while for the y = 0.7 composition the high-
pressure ceramic (Fig. 2) exhibits, in addition to the
main maximum at , a second maximum at ,
which lies near the maximum obtained in cooling runs
( ). Note that the heating curve obtained for the y =
0.7 normal-pressure ceramic also reveals a weakly pro-
nounced maximum in the region of the temperatures
corresponding to the maxima  ( , ) in the
cooling–heating runs of the high-pressure ceramic
(Fig. 2). The temperature of the maximum  obtained

in cooling runs ( ) is lower than that of the main

maximum on the heating branch ( ), irrespective of
the composition of the ceramic and the method of its
preparation. The values of the permittivity ε' on the
cooling branches obtained in the region of the thermal
hysteresis are higher than those measured in the heating
runs. The magnitude of ε' on the cooling and heating
branches decreases with increasing field frequency. The
extent of this decrease depends on the actual composi-
tion and type of ceramic involved. The temperature

2ap 2ap

εm'

εm' Tmc'

εm'

Tmh1'

Tmh1' Tmh2'

Tmc'

εm' Tmh2' Tmc'

εm'

Tmc'

Tmh1'
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positions of the maxima in permittivity ( , ) vary
only weakly with the field frequency.

The characteristics of the behavior of ε' of the high-
pressure ceramic with temperature measured both in
the hysteresis region and beyond it differ substantially
from those of the ceramic prepared under normal pres-
sure (Tables 1, 2). The temperature position of the max-
imum  of the high-pressure ceramic on the cooling

branch ( ) is shifted toward lower temperatures as

compared to  for the normal-pressure ceramic. The

difference in the position of the main maximum  on

the heating branch ( ) between the two types of
ceramics is comparatively small. The width of the ther-
mal hysteresis of ε' for the high-pressure ceramic is
about 110 K for all compositions, while for the normal-
pressure ceramic this width is 50 to 60 K. The values of
ε' on the branches of the hysteresis and beyond it for the
high-pressure ceramic are substantially larger than the

Tmh1' Tmc'

εm'

Tmc'

Tmc'

εm'

Tmh1'

tanδ
0.3

0.2

0.1

0
0.02

0

1 2 3 4

a

b

43

1
2

~~

tanδ
0.02

0

0.01

a

431 2ε'

100

300

240

180

120
200 300 400

b
4321

T, K

Fig. 1. Temperature dependence of ε' and  of (a) high-
pressure and (b) normal-pressure LNTN ceramics with
y = 0.9 (the cooling and heating branches are specified by
arrows) measured at various field frequencies: (1) 102,
(2) 103, (3) 104, and (4) 106 Hz.
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respective values for the normal-pressure ceramic, and
this difference increases with the Nb concentration in
the system. Note that, at temperatures below the hyster-
esis region, the pattern of the variation in permittivity
with temperature depends on the ceramic type. For y =
0.9 and 0.8, ε' increases with decreasing temperature
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Fig. 2. Temperature dependence of ε' and  of (a) high-
pressure and (b) normal-pressure LNTN ceramics with
y = 0.7 (the cooling and heating branches are specified by
arrows) measured at various field frequencies: (1) 102,
(2) 103, (3) 104, and (4) 106 Hz.

δtan

Table 2.  Characteristics of the thermal hysteresis of ε' of
high-pressure (HP) and normal-pressure (NP)
Li0.12Na0.88TayNb1 – yO3 ceramics

y
0.7 0.8 0.9

HP NP HP NP HP NP

, K 250 320 280 350 280 320

, K 360 380 390 400 390 380

 (1kHz) 1290 490 570 320 285 220

 (1MHz) 840 320 400 245 230 175

Tmc'

Tmh'

εmc'

εmh'
5
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for both types of ceramic and this growth is steeper for
the high-pressure ceramic. For the y = 0.7 composition,
the ε'(T) curves saturate in the low-temperature
domain.

At high frequencies, the permittivity measured in
the cooling and heating runs at temperatures 20 to 30 K
above  and , respectively, falls off in accor-
dance with the Curie–Weiss law. At low frequencies
and high temperatures, ε' increases because of the con-
tributions due to the microinhomogeneity of the system
and hopping ion transport.

While the ε' behavior retains its pattern in repeated
cycles on both branches, its magnitude exhibits a cer-
tain tendency to decrease. The high- and normal-pres-
sure ceramics reveal a qualitatively different tempera-
ture dependence of  on both the cooling and heat-
ing runs (Figs. 1, 2). The normal-pressure ceramic
exhibits a sharp maximum, , on the cooling

branches at a temperature . Its position is practi-
cally independent of the field frequency, but the magni-
tude of  decays rapidly with increasing fre-

quency. The measured in a heating run varies
slowly with temperature. Its low-frequency value is
approximately one order of magnitude smaller than that
measured under cooling.
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δtan
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Fig. 3. Relative decrease in ln[(ε'(t) – )/( (0) – )]
with time for a high-pressure LNTN ceramic (y = 0.7) mea-
sured in a cooling run at a field frequency of 106 Hz and at
a temperature of (1) 210 and (2) 282 K.

εh' εc' εh'
PH
The magnitude of  of the high-pressure
ceramic varies with temperature similarly under cool-
ing and heating. In the region of the thermal hysteresis
of ε', the (T) relation exhibits a maximum. The
main feature of the (T) dependence is a large fre-
quency dispersion of the temperature of the maximum
in . It can be seen from Figs. 1 and 2 that, as the
field frequency increases from 102 to 106 Hz, the maxi-
mum  shifts about 170 K toward higher temper-
atures for all the ceramic compositions studied.

In connection with the existence of the thermal hys-
teresis of ε' and of the relaxation-type dielectric proper-
ties of the LNTN ceramic, a question may arise con-
cerning the stability of the system on the upper branch
of the thermal hysteresis. To answer this, the variation
in ε' with time was studied at different temperatures,
from 500 to 77 K, in the region of the maximum on the
cooling branch. The studies were conducted in the fol-
lowing manner. After heating to 500 K, a sample was
cooled at a rate of 2 K/min to the preset temperature in
the region of the maximum permittivity (Figs. 1, 2).
Next, the variation in ε' with the duration t of exposure
to a preset temperature was measured. These measure-
ments showed that ε' decreases with increasing time t.
The rate of this decrease depends on temperature and
field frequency (Fig. 3). It was found that the observed
ε'(t) relation has an exponential character and can be fit-
ted by the expression

 (1)

where (0) is the initial permittivity on the cooling

branch at a given temperature,  is the value of permit-
tivity corresponding to the heating branch of hysteresis
at the same temperature, and τf is the characteristic time
for the system to transfer to the steady state under the
given conditions. It was found that τf decreases strongly
as the temperature of the system decreases. For
instance, for the y = 0.7 high-pressure ceramic studied
at a field frequency of 102 Hz, we have τf . 2.1 × 104 s
at T = 282 K and τf . 3.0 × 103 s at T = 210 K. As the
frequency increases to 106 Hz, τf increases by about
1.6–2.1 times, depending on the temperature. The
higher the temperature, the larger the frequency disper-
sion of τf. For the normal-pressure ceramic, τf is one
order of magnitude larger. Because of the large magni-
tude of τf, the transfer of the system to a steady state, to
which the lower branch of the thermal hysteresis of ε'
corresponds, is very slow.

Measurements of the dielectric characteristics on
quenched samples showed that the temperature depen-
dences of ε' measured in heating from 77 K after
quenching have two maxima (Fig. 4) at the tempera-
tures  and , respectively (  < ). The tem-

perature  is practically the same for ceramics of

δtan

δtan
δtan
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δtan( )m
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both types and is approximately equal to or slightly
lower than the temperature  corresponding to 
measured in cooling for the unquenched high-pressure
ceramic (Figs. 1, 2). The position of the high-tempera-
ture maximum ( ) coincides with that of  on the
heating branch of the unquenched high- and normal-
pressure ceramic, . In the subsequent measure-
ment cycle, 600–77–600 K, the nature of the tempera-
ture dependence of ε' for both types of ceramic is recov-
ered; i.e., it becomes the same as before quenching.

The existence of two maxima in the temperature
dependence of ε' for quenched samples indicates that,
in the course of heating, the quenched LNTN ceramic
undergoes two phase transitions associated with a
change in the character of dipole ordering. The temper-
ature dependences of ε' and  of quenched high-
and normal-pressure ceramics exhibit common features
in the region of the temperature  (Fig. 4). While the

temperature  at which the maxima  and 
are observed is practically independent of field fre-
quency for both types of ceramic, the values of  and

 undergo strong dispersion; more specifically,
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Fig. 4. Temperature dependence of ε' and  (heating
branch) for y = 0.8 LNTN ceramics from (a, aq) high-pres-
sure and (b, bq) normal-pressure synthesis (aq and bq corre-
spond to zero-field quenching) measured at various fre-
quencies: (1) 102, (2) 103, (3) 104, and (4) 106 Hz.

δtan
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their values decrease strongly with increasing fre-
quency. The effect of quenching on the values of ε' and

 in the region of  for the normal-pressure
ceramic is far larger than that for the ceramic prepared
under high pressure. The maximum ε'(T) obtained in
this region for the quenched high-pressure ceramic is
more diffuse, and the degree of broadening increases
with the Nb content in the system.

The behavior of ε' and  in the region of the sec-
ond maximum in ε' (in the vicinity of ) for
quenched samples of both types of ceramic remains
practically the same as that for the unquenched ones.

Quenching of samples in dc electric fields of up to
22 kV/cm (FQ) in liquid nitrogen affects the tempera-
ture dependence of the dielectric response in the heat-
ing runs in a different way than does zero-field quench-
ing (ZFQ) (Figs. 4, 5). However, the behavior of ε' and

 in the temperature region of the second maximum
( ) remains practically unaffected under quenching
both in the FQ and ZFQ conditions. This implies that
the quenching-induced change in the state of the dipole
system becomes annealed (relaxes) at temperatures
lower than .
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measured at various frequencies: (1) 102, (2) 103, (3) 104,
and (4) 106 Hz.
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4. DISCUSSION OF THE RESULTS

An analysis of the above experimental data showed
that they can be adequately described if it is assumed
that the solid solutions are compositionally inhomoge-
neous on the microscale, primarily in Ta and Nb. The
microscopically inhomogeneous distribution of these
cations over the octahedral lattice sites is due to their
having practically equal ionic radii and differing in
terms of the magnitude and character of the anisotropy
in the covalent component of their bonding to the
anions [7]. It may be conjectured that the crystalline
matrix of the LNTN solid solutions contains clusters
with a Nb-cation concentration higher than that in the
matrix. The matrix behaves like a quantum paraelectric,
which is indicated by the continuous growth or satura-
tion of ε' in the temperature region below the tempera-
tures of the thermal hysteresis (Figs. 1, 2). As the aver-
age concentration of cations in the system increases, so
does their fraction in the matrix, which gives rise to an
increase in ε'. Below a certain temperature, the dipole
system of clusters transfers to an ordered state. This
ordering may be assumed to be antipolar in the temper-
ature region under study, as is the case with NaNbO3.

The matrix and the clusters in the paraelectric state
form an ordered distorted lattice of orthorhombic
symmetry (space group Pnma, no. 62). The ordered
distortions involve [a–b+a–] tilting of the oxygen octa-
hedra. The cluster lattice symmetry lowers under
dipole ordering.

The character of the dielectric response of such an
inhomogeneous system is governed by the dimensions
and concentration of the clusters depending on the
actual conditions of preparation of the LNTN solid
solutions. High pressures and temperatures favor a
higher homogeneity of the system on the microscale.
As a result, the concentration of the clusters and their
size decrease, while the fraction of the Nb cations in the
matrix increases, which manifests itself in an increase
in permittivity. Because of the low cluster concentra-
tion in a high-pressure ceramic, the clusters are weakly
bonded to one another. Their contribution to the dielec-
tric response is practically independent, so the spec-
trum of relaxation times for such a dipole cluster sys-
tem is narrow. This conclusion is supported by the
observation that the frequency dependence of the tem-
perature of the maximum in the loss tangent ( ) for a
high-pressure ceramic (Figs. 1, 2) satisfies the relation

 (2)

which follows from the Debye relation for  of a
system of independent dipoles combined with the
Arrhenius expression for the relaxation time (τ =
τ0exp(∆E/kT)):

 (3)
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The notation used here is standard. The activation
energy ∆E is about 0.4 eV and depends only weakly on
the actual composition of the LNTN system, and τ0 is
about 10–11 s.

The effect of the matrix on the dielectric response
of clusters can manifest itself in the magnitudes of ∆E
and τ0.

The observed behavior of  in a normal-pres-
sure ceramic with frequency and temperature (cooling
branch) is evidence of a strongly broadened relaxation
time spectrum characteristic of the dipole system of
clusters, which is accounted for by their increased con-
centration and size and, hence, by the increased cluster
interaction.

The thermal hysteresis of ε' observed in the LNTN
solid-solution system may be caused by the following
processes.

As the temperature is brought below a certain level,
the antipolar mode in the cluster system undergoes soft-
ening and condensation. This process is initiated by the
presence of cooperative nonpolar distortions associated
with oxygen octahedron tilting in the crystal lattice of
the system. In the course of this process, the antipolar
mode interacts with the system of nonpolar cooperative
distortions. This may bring about a change not only in
the magnitude of the nonpolar cooperative distortions
but also in their type. The outcome of this change is the
formation of a distortion system with which the cluster
crystal lattice reaches the state of a global minimum of
the atomic interaction potential. If the antipolar mode
condensed without this change in the magnitude and
type of nonpolar distortions, the cluster crystal lattice
would transfer to a local minimum that is shallower
than the global minimum. Hence, the condensation and
decondensation of the antipolar mode occur in different
energy states of the cluster crystal lattice and this is
what accounts for the thermal hysteresis of ε'.

It should be noted that the interaction of the antipo-
lar mode with nonpolar cooperative distortions is
dependent on the solid-solution composition. For y =
0.7, the proportion of clusters is small and thermal hys-
teresis of ε' is absent.

The kinetics of the phase transition to the state of a
global minimum follows a complex pattern governed
by nonpolar-mode condensation and variations in the
magnitude and type of nonpolar cooperative distortions
in the clusters, as well as by the interaction of these dis-
tortions with the matrix. Equation (1) for ε'(t), which
follows from a consideration of experimental data,
enables one to estimate the main features of the kinetics
of this phase transition. Since the volume of clusters is
only a small fraction of that of the system, we can
assume, as an approximation, that the relative decrease
in permittivity with time, | (0) – (t)|/ | (0) – |, is
related to the relative fraction v t of the original phase

δtan

εc' εc' εc' εh'
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transformed into the new phase. In this case, it follows
from Eq. (1) that

 (4)

According to the theory of crystallization kinetics [8],
the fact that the power of t in Eq. (4) is equal to unity
means that nuclei of the new phase do not grow and are
zero-dimensional (clusters). This result may be consid-
ered more evidence supporting the existence of clusters
in the system under study. The values of τf and the pat-
tern of its variation with temperature imply that the
work required for a new phase nucleus to form is large
and decreases as the temperature decreases. The value
of τf for the normal-pressure ceramic is far larger than
that for the high-pressure ceramic. This means that
clusters in the former ceramic are larger than those in
the latter.

Since the transition to the new phase occurs fairly
slowly, quenching in liquid nitrogen fixes the system in
a paraelectric state above the thermal hysteresis of ε'. At
low temperatures, this state is metastable, and heating
to a certain temperature drives the system to the stable
state of a global minimum.

v t 1 t/τ f–( ).exp–=
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Abstract—The effect of the electric discharge–enhanced thermal crystallization of the polymer phase on the
structure and pyroelectric properties of a polymer–pyroelectric composite is considered. It is shown that the
changes in the polymer-phase structure during the electric discharge–enhanced thermal crystallization cause the
number of charge carriers localized at the interface due to electrothermal polarization and the pyroelectric coef-
ficient of the polymer–ceramics composite to increase noticeably. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The mechanism of the pyroelectric effect in poly-
mer–pyroelectric-ceramic composites was proposed by
us in [1, 2]. This mechanism is associated with the pres-
ence of localized states in the quasigap of the polymer
phase, stabilization of charges in these states during
electrothermal polarization, and the orientation of
pyroelectric-phase domains in the field of these charges
with the formation of a charge–oriented-domain quasi-
neutral system. It has been established, as a result of
comprehensive studies of the polarization and relax-
ation phenomena, that the magnitude of the pyroelec-
tric response in polymer–pyroelectric-ceramic compos-
ites is determined by the changed effective dipole
moment of the quasi-neutral system formed during
electrothermal polarization and consisting of oriented
domains in pyroelectric particles and the charges stabi-
lized in the polymer matrix on the interphase boundary
[1–3]. Therefore, the ability of the polymer phase to
stabilize charge carriers injected into the composite
during electrothermal polarization is very important for
generating pyroelectricity in the composite. Indeed, if
charge carriers are localized on the traps in the polymer,
the strong local field produced by them acts on the
pyroelectric particles and causes domain orientation.
Clearly, electric charges will be accumulated in com-
posites if both pyroelectric and polymer phases have a
great number of localized energy levels that act as
charge traps [4–6]. It should be noted, however, that the
processes related to the localization of injected charge
carriers in composites are mainly determined by heter-
ogeneity of the physical and chemical structures of the
polymer phase, even though electronic, ionic, and
polarization processes in one phase (polymer) have a
significant effect on the analogous processes in the
other phase (pyroelectric ceramics) [3]. Indeed, when
an injected carrier is captured in the polymer during
electrothermal polarization, its potential energy
1063-7834/05/4704- $26.00 0710
decreases and the carrier is localized and locked in one
of the lowest energy states at the interphase boundary.
The size of the carrier localization region is determined
by the dimensions of the region in which the potential
energy is changed.

The objective of the present work was to examine
the effect of polymer phase heterogeneity, which is
controlled by the electric discharge–enhanced plasma-
assisted crystallization of the composite under variable-
temperature conditions, on the pyroelectric properties
of the composites.

2. EXPERIMENTAL

We propose a new technological method for varying
the structural heterogeneity of polymers and their com-
posites. The method is based on the air-discharge
plasma-assisted crystallization (electric discharge–
enhanced thermal crystallization), which begins at the
melting point. We also studied the effect of the electric
discharge–enhanced thermal crystallization on the
pyroelectric properties of polymer composites.

The electric discharge–enhanced thermal crystalli-
zation was carried out as follows. After briefly com-
pressing the composite at the melting point, the upper
die was removed from the surface of the specimen and
a special discharge cell was attached to the die. The dis-
charge cell enabled one to activate electric discharges
of different intensity in air. An electric discharge was
generated in a 4-mm-thick air gap between the teflon
plate of the cell and a composite specimen; therefore, a
partial discharge was induced [7, 8]. A 15-kV sinusoi-
dal electric voltage (50 Hz) was applied to the cell.
Using the partial discharge for the electric discharge–
enhanced thermal crystallization made it possible to
treat the composite surface uniformly without causing
noticeable mechanical damage.
© 2005 Pleiades Publishing, Inc.
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Beginning from the melting point of the polymer
phase of the composite, the temperature of the electric
charge–enhanced plasma-assisted crystallization was
changed stepwise (by 10 K over 0.5 h) at the first stage
of cooling and then at a rate of 0.25–2 K/min down to
the polarization temperature (~373 K) or room temper-
ature. The changes in the structure were studied using
the infrared spectra of the polymer phase of a compos-
ite. The following polymers were used as a polymer
phase: high-density polyethylene (HDPE), polypropy-
lene (PP), and polyvinylidene fluoride (PVDF). As the
pyroelectric phase, we used the following pyroelectric
ceramics with rhombohedral or tetragonal structure and
different Curie temperatures TC and pyroelectric coeffi-
cients γ: PKR-7M (TC = 448 K, γ = 5.6 × 10–4 C/m2 K),
PKR-3M (TC = 533 K, γ = 5 × 10–4 C/m2 K), and PKR-
57 (TC = 463 K, γ = 6 × 10–4 C/m2 K).

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 shows the simultaneously recorded spatial
(electron-optic converted image) and time (oscillo-
gram) diagrams of the electric-discharge evolution in
the air gap between the teflon plate and a composite. As
is seen from Fig. 1, the electric discharge in the air gap
between the composite and the dielectric is accompa-
nied by separate series of discrete microdischarges.
Each voltage pulse on the oscillogram (oscillogram 4 in
Fig. 1) corresponds to one series of microdischarges.
Each series, in turn, consists of a number of microdis-
charges generated in different regions of the sample
surface. This character of the evolution of partial dis-
charges (microdischarges) enables one to treat the com-
posite surface uniformly and thus carry out effective
crystallization of a composite under conditions of a dis-
charge plasma in air with electronegative components.

Figure 2 shows the changes in the optical density of
the bands corresponding to C–O–C, C=O, and OH that
appeared in the infrared spectrum of the polymer
matrix of the HDPE + PKR-57 composite during its
crystallization under the simultaneous action of tem-
perature, electric discharge, and discharge radiation.
The results obtained by us show that the structure of the
polymer matrix undergoes substantial changes in the
course of electric-discharge crystallization. Indeed, the
appearance of C–O–C, C=O, and OH groups in the
infrared spectrum indicates changes in the chemical
structure of the macromolecules, an enhancement of
intermolecular interactions due to the polarity of these
groups, and the formation of C–O–C bridges between
macromolecules. Clearly, these chemical changes are
accompanied by changes in the crystallization condi-
tions and, therefore, in the physical structure of the
polymer phase of the composite.

Figure 3 shows the temperature dependence of the
pyroelectric current for several successive heating and
cooling cycles of the PP + 50 vol % PKR-57 composite.
Curve 1 corresponds to the first heating–cooling cycle
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
and represents the nonreproducible part of the pyro-
electric current. Curves 2–4 correspond to the reproduc-
ible part of the pyroelectric current. The heating (cool-
ing) rate of the given pyroelectric element is 6 K/min.
The pyroelectric current reverses direction under
switching from heating to cooling, but its value remains
the same as on heating; in other words, the heating–
cooling cycle is characterized by a symmetric tempera-
ture-dependence plot of the reproducible part of the
pyroelectric current.

Figure 4 shows the dependence of the pyroelectric
coefficient of the PVDF + PKR-57 composite on the
volume fraction Φ of the pyroelectric-ceramic phase. It
can be seen that, under the same crystallization condi-
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Fig. 1. Simultaneously recorded (a) electrical and (b) opti-
cal patterns of the discharge evolution in the air gap
between dielectrics. In the oscillogram: (1) gate pulses of
the electron-optic converter, (2) voltage change in the test
cell, (3) calibrating voltage (T = 200 µs), and (4) voltage
pulses corresponding to separate series of microdischarges.
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Fig. 2. Variations in the optical density of the bands that arise
in the infrared spectrum of the polymer phase of the HDPE +
50 vol % PKR-57 composite during electric discharge–
enhanced thermal crystallization. The cooling rate is
2 K/min, Up = 11.8 kV, and ∆W = 1.4 × 10–6 J; (1) 3380 cm–1,
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tions, γ increases faster than linearly with Φ. However,
the pyroelectric coefficient of electrothermally crystal-
lized composites is much higher than γ of thermally
crystallized pyroelectric elements, all other polariza-
tion conditions (Ep, Tp) and the temperature of measure-
ments T being equal.
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Fig. 3. Dependence of the pyroelectric current on the mea-
suring temperature for the PP + 50 vol % PKR-57 compos-
ite. Ep = 8 MV/m, Tp = 373 K, and tp = 1 h; (1) the nonre-
producible part of pyroelectric current and (2–4) the repro-
ducible pyroelectric current.

20 40 600

1.6

3.2

4.8

6.4

8.0
2

1

γ, 10–4 C/(m2 K)

Volume fraction Φ, %

Fig. 4. Dependence of the pyroelectric coefficient γ on the
volume fraction of the pyroelectric phase Φ in the PVDF +
50 vol % PKR-57 composite. Tp = 373 K, Ep = 4 MV/m,
tp = 1 h, and T = 358 K; (1) after thermal crystallization and
(2) after electric discharge–enhanced thermal crystalliza-
tion.
P

We also studied the pyroelectric characteristics of a
PVDF-based composite filled with particles of a PKR-
3M pyroelectric ceramic, which has rhombohedral
structure and a relatively high Curie temperature. The
pyroelectric ceramics PKR-3M, as well as PKR-57, is
characterized by a high pyroelectric coefficient, which,
in combination with the low dielectric constant, ensures
the high quality factor of this pyroelectric detector,
Mr = γ/ε = 1.4 × 10–6 C/m2K [9]. The fact that its pyro-
electric coefficient is high at room temperature (Fig. 5)
makes this composite promising for pyroelectric ele-
ments. It can be seen in Fig. 5 that the electric dis-
charge–enhanced thermal crystallization of
PVDF + PKR-3M composites results in a significant
increase in their pyroelectric coefficients throughout
the entire range of measurement temperatures T,
including room temperature. Furthermore, the electric
discharge–enhanced thermal crystallization signifi-
cantly shifts the temperature of the onset of an abrupt
increase in the value of the pyroelectric coefficient and,
therefore, of the pyroelectric current. This experimental
result shows that the electric charge–enhanced thermal
crystallization increases the interphase interactions,
which restrict the mobility of macromolecules of the
polymer phase, and causes relaxation of charges on the
polymer–pyroelectric-ceramic interface. The measured
pyroelectric properties of other composites that were
produced using electric discharge–enhanced plasma-
assisted crystallization are shown in the Table.

It is of great interest to consider the kinetics of
charge (electron) accumulation at the various stages of
crystallization under discharge conditions. Figure 6a
shows the space charge generated in an HDPE + PKR-
57 composite as a function of the duration of electric
discharge–enhanced thermal crystallization. The
charge value was found from the depolarization current
spectra immediately after electric discharge–enhanced
thermal crystallization. The low values of the charge
arising at the initial stage of crystallization can be due
to electron traps being destroyed under the action of
temperature, discharge, and voltage pulses generated
during each series of microdischarges and also due to
electrons being captured by free radicals of the polymer
phase [10, 11]. It should be noted that, in ac electric
fields, a fraction of the injected charges reappears at the
electrode when the polarity is changed. The charges
localized in deeper traps can enhance the electric-field
intensity in the polymer composite at each air-gap
breakdown during the electric discharge–enhanced
thermal crystallization. The electron bombardment and
the strong local field also initiate the formation of radi-
cals [8, 10].

The results obtained allow us to suggest the follow-
ing mechanism for changing the pyroelectric properties
of composites during electric discharge–enhanced ther-
mal crystallization. We believe that, in the course of
electrical loading of the composite–gaseous medium–
composite system, partial discharges occur and condi-
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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Pyroelectric coefficients of different composites after thermal crystallization and after electric discharge–enhanced thermal
crystallization

Composites Φ, % vol. T, K

Polarization conditions γ, 10–4 C/m2K

Ep, MV/m Tp, K after thermal 
crystallization

after electric discharge–
enhanced thermal crystallization

PVDF + PKR-7M 50 353 6 373 1.1 4.8

HDPE + PKR-7M 50 353 6 393 0.55 2.7

HDPE + PKR-57 50 353 6 373 0.82 4.2
tions are created for rather complex physicochemical
processes in the bulk of the polymer phase caused by
electron–ion bombardment, radiation, local heating of
the contact between the microdischarge channel and the
polymer (Fig. 1b), and active gas-discharge products
(O3, O, OH, NO). Together, these components of a par-
tial discharge predetermine the specific features of the
formation, transformation, and accumulation of free
radicals, which account for all structural and energy
changes in the polymer phase of the composite. It
should be noted that the structural rearrangements that
accompany the transition of the polymer from the fluid
state to a highly elastic and finally to a glassy state in
the course of the crystallization result in an abrupt
change in the amplitude of the rotational segmental
motion. Furthermore, under the action of temperature
and an electric discharge–induced plasma, these rear-
rangements of the structure and the changes in the
amplitude of the rotational segmental motion will be
significantly different due to electronic, ionic, destruc-
tive, and oxidizing processes. For this reason, the con-
ditions of injection, generation, and transfer of charge
carriers and their interactions with the macromolecules
are changed in the course of electric discharge–
enhanced crystallization. Under the action of electron–
ion bombardment and discharge radiation, free radicals
will form during crystallization, especially in the tem-
perature ranges corresponding to the fluid and highly
elastic states.

The current understanding of the mechanism of
free-radical formation in polymer dielectrics exposed
to an intense electric field and electric discharge
remains incomplete. The most probable mechanism
consistent with the partial discharge conditions is the
mechanism based on discharge radiation ionization of
macromolecules followed by decomposition of the
molecular cation (M+) into a free radical ( ) and a cat-

ion fragment ( ) [10]:

M  M+ + e; M+   + . 

In ionized macromolecules, the chemical bonds are
excited. Therefore, they break relatively easily, and oxi-
dizing processes begin [10], resulting in the appearance
of new local energy levels in the quasigap of the poly-
mer and, therefore, in the formation of additional car-

R1

.

R2

.

R1

.
R2

+
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rier traps, which is experimentally confirmed by the
results shown in Fig. 6. The effective accumulation of
carriers at the polymer–pyroelectric-ceramic interfaces
and the strong orientational domain polarization of the
pyroelectric phase (curves 3, 4 in Fig. 6b) significantly
increase the pyroelectric coefficient (curves 1, 2 in
Fig. 6b) of the composites produced through electric
discharge–enhanced plasma-assisted crystallization.

The results obtained by us show that the method of
electric discharge–enhanced thermal crystallization
should be promising for the development of highly effi-
cient active composites. However, these interesting
results currently cannot be exhaustively explained,
because these studies are at the initial stage. It may be
said that the pyroelectric properties of polymer–pyro-
electric-ceramic composites produced through electric
discharge–enhanced plasma-assisted crystallization are
significantly improved and that the concentration of
charge carriers accumulated in them during electrother-
mal polarization increases.
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Fig. 5. Dependence of the pyroelectric coefficient γ on the
measuring temperature T for the PVDF + 50 vol % PKR-
3M composite. Tp = 373 K and tp = 1 h; (1) after thermal
crystallization (Ep = 1.5 MV/m) and (2, 3) after electric dis-
charge–enhanced thermal crystallization at Ep = 1.5 and
3 MV/m, respectively.



714 KERIMOV et al.
6

4

2

0
20 30 40 50 60 70 80

t, min

1 2 3 4 5

12.6

10.8

9.0

7.2

5.4

3.6

1.8

0 0

2

4

6

8

10

1

2

2

1

3

4

(b)

(a)

Ep, MV/m

γ,
 1

0–
4  C

/(
m

2  K
)

Q
p,

 1
0–

5  C

Q
, 1

0–
9  C

Fig. 6. (a) Dependence of the stabilized charge Q on the
cooling duration in the course of electric discharge–
enhanced thermal crystallization of the HDPE + 40 vol %
PKR-57 composite. The cooling rate is 1.5 K/min; the treat-
ment voltage U is (1) 16 and (2) 18 kV. (b) Dependence of
(1, 2) the pyroelectric coefficient γ and (3, 4) the charge Qp
accumulated during polarization on the electric-field inten-
sity Ep of the PVDF + PKR-3M composite. Tp = 373 K, tp =
1 h, and T = 373 K; (1, 3) after thermal crystallization and
(2, 4) after electric discharge–enhanced thermal crystalliza-
tion.
P

The results obtained enable us to make the impor-
tant conclusion that, in order to design highly efficient
pyroelectric composites based on polymers and pyro-
electric ceramics, it is necessary to increase the density
of localized states in the quasigap of the polymer phase
and at the interphase boundary, which can be achieved
using electric discharge–enhanced thermal crystalliza-
tion of the polymer phase of composites.
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Abstract—Freshwater ice in a cavity was studied under heating to 0°C followed by cooling at a frequency of
6.3 GHz. Splitting of a resonant transmission line at 60–70 MHz was detected. This effect may be associated
with the existence of two vibrational modes in ice, with the coupling between them increasing near 0°C. In such
a medium, two waves with identical polarizations and similar wavenumbers can exist. This assumption was
confirmed experimentally by measuring the 13-GHz radiation transmission through a natural freshwater ice
cover. These measurements detected signal oscillations caused by the interference of two waves, with alterna-
tion of maxima and minima with a period of 4.6 m, which corresponds to a beat frequency of ~37 MHz. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

As was shown in [1], resonant transmission curves
of a microwave cavity filled with H2O and D2O ice
exhibit differences in their shape. The curves were
extended to high frequencies for H2O ice and to low fre-
quencies for D2O ice. The effect was most pronounced
for temperatures near the water–ice phase transition. It
was assumed that this effect is associated with the dif-
ference between the quantum statistics for protons and
deuterons.

This paper aims to study the electromagnetic prop-
erties of freshwater H2O ice near the phase transition
temperature. To do this, we continued measurements of
the microwave transmission near a frequency of 6 GHz
using a cavity filled with ice, as well as studied micro-
wave propagation at a frequency of 13 GHz through an
ice bulk at distances of 40–100 m.

2. EXPERIMENTAL

The setup for measuring the ice parameters in a rect-
angular cavity is similar to that described in [1] and is
based on a conventional meter of frequency character-
istics (e.g., R2 series). A cavity completely filled with
ice was placed into a discontinuity of a waveguide
transmission line. An H101-type half-wave rectangular
duralumin cavity was used. The cavity was connected
with a waveguide channel using diaphragms with slots in
the magnetic-field plane. The cavity cross section and
length were 8 × 17 and 20 mm, respectively. The cavity
was completely filled with ice produced from distilled
water. Water was frozen in the cavity at a temperature of
–15°C, after which the sample was exposed to this same
temperature for one day. The lowest resonant frequency
was in the frequency range 6.3–6.4 GHz, depending on
1063-7834/05/4704- $26.00 0715
temperature, the specific features of sample prepara-
tion, and the diaphragms used. The signal frequency in
the setup was measured using an external frequency
meter with a measurement accuracy of ±1 MHz. The
high-frequency channel was placed in a cold room at a
temperature of –25°C. The temperature of the cavity
containing a sample was maintained by special electric
heaters and was measured with an accuracy of ±0.1°C
using a thermistor inserted into the cavity body.

The electromagnetic properties of ice control the
specific features of the electromagnetic wave propaga-
tion in it. Therefore, it is preferable to study the electro-
magnetic characteristics using methods for out-of-
doors measurements on large samples. In this case,
finer effects, e.g., gyrotropy of ice, can be detected, in
contrast to laboratory measurements, where small sam-
ples are studied. For the sake of comparison, character-
istics of microwaves transmitted through an ice bulk at
distances up to 100 m were also measured. To this end,
experiments with a freshwater ice cover were carried
out. A schematic representation of these experiments is
given in Fig. 1.

A transmitter based on a Gunn diode (1) and a
superheterodyne radiometric receiver (2) were posi-
tioned at a depth of ~0.5 m in the ice cover (3). The dis-
tance between them was varied by moving the transmit-
ter to within 100 to 40 m of them. To this end, ice blocks
were cut out and removed. Emitted microwaves were
vertically polarized, and both vertically and horizon-
tally polarized waves were received. Experiments were
performed on a lake with an ice mineralization of
5 mg/kg, which corresponds to the salt concentration of
singly distilled water. Measurements were carried out
at various ice temperatures under diurnal temperature
variations when the temperature approached 0°C. The
© 2005 Pleiades Publishing, Inc.
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microwave frequency was 13 GHz. The half-widths of
directional patterns of the horn antennas used were
0.1 rad. The thickness of the ice cover during measure-
ments was 1.3–1.4 m.

1 2

l 3

d

Fig. 1. Schematic diagram of experiments with radio-wave
transmission of an ice cover for determining its electromag-
netic characteristics: (1) transmitter, (2) receiver, and (3) ice
cover; l is the distance between the transmitter and receiver
microwave antennas and d is the ice thickness.

f1 f2 f

–15

–10
∆G, dB

Fig. 2. Transmission line of the cavity containing ice after
heating from –25°C to 0°C over approximately 4 h followed
by 20-min cooling to –11.5°C; f1 and f2 are transmission
maxima at frequencies of 6323 and 6387 MHz, respectively,
and ∆G is the signal level measured from the initial reso-
nance amplitude.
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Fig. 3. Run of cavity resonance frequencies fr upon heating
(f0 corresponds to the single-humped transmission curve) to
a temperature close to 0°C, at which the signal disappeared,
followed by 20-min cooling to –11.5°C (f1 and f2 corre-
spond to transmission maxima of the two-humped curve).
The direction of the change in temperature in time is indi-
cated by arrows.
P

3. EXPERIMENTAL RESULTS

In laboratory measurements, the cavity resonance
frequency was determined and the changes in the
amplitude, resonant curve width, and its shape were
measured. The sample under study was slowly heated
from –25°C at a rate of ~6 K/h. Initially, a single-
humped resonant curve of signal transmission was
observed. The curve was slightly asymmetric; it was
extended to high frequencies. The FWHM of the reso-
nant curve was 18 MHz and increased as the medium
was heated with a simultaneous decrease in the reso-
nance amplitude. Since the temperature measured by
the sensor in the cavity body and the ice temperature
near the phase transition point can slightly differ, the
measurements were carried out as follows. Preliminary
measurements upon slow heating showed that the cav-
ity amplitude decreased by 10 dB as the sensor temper-
ature reached –0.5°C. To reach a temperature of –0.1 to
0°C, the cavity was heated until total disappearance of
the microwave signal, which can be detected using the
setup, i.e., to –30 dB. Immediately after the signal dis-
appeared, heating was stopped to avoid sample thaw-
ing. The measurement was continued when the signal
became much higher than the noise level in the setup.

In this case, an interesting feature was detected: on
reaching 0°C and subsequent cooling, two humps arose
in the measured resonant curve (Fig. 2). Their distin-
guishing feature was that the heights of the two peaks
differed by 3 dB. A less distinct peak was observed in
the high-frequency region. The frequency shift of their
maxima from the initial value was also asymmetric.
The low- and high-frequency peaks were shifted by ~7
and 50 MHz, respectively. However, the two-humped
feature did not disappear upon ice cooling but was
retained to –11°C, as was the high absorption in the
medium. The amplitude of the maximum resonant
curve was 10 dB lower than that of the initial single-
humped resonant curve. The detected hysteresis in the
transmission curve shape is demonstrated in Fig. 3,
which shows the dependences of the resonant frequen-
cies upon heating to 0°C (one resonant frequency) and
cooling from 0°C (two resonant frequencies). The
experimentally observed frequency difference of the
two peaks was 60–70 MHz.

Measurements were then terminated, and the cavity
containing ice was placed in a cold room, where it was
exposed to a temperature of –15°C for three weeks.
After that, it turned out that the initial properties of the
ice were restored and that a single-humped resonant
characteristic was observed.

Experiments with extended objects, i.e., radio trans-
mission of an ice cover, were carried out in March 2004
on Lake Arakhleœ on the Yablonovyœ Ridge (Trans-
baikalia). At this time, the ice temperature approached
0°C. The ice cover state was monitored using ten tem-
perature and electric sensors, which determined the
moisture and the temperature over the cover thickness.
The first Stokes parameter S1 of polarized microwaves
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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was determined experimentally. This parameter charac-
terizes the total radiation power passed through the dis-
tance between the receiving and transmitting antennas:
S1 = PH + PV, where PV and PH are the powers of signals
with horizontal and vertical polarizations, respectively.

Figure 4 shows the measured dependence of the
parameter S1 on the transmitter–receiver distance. The
ice temperature at the midplane of the ice cover was –
1°C. The distance was varied by cutting out and remov-
ing ice in steps of 1 m. The duration of the experiment
was 8 h.

As follows from Fig. 4, radiation damping in ice (at
a rate of ~1 dB/m) and alternation of maxima and min-
ima with a period of 4.6 m over the entire distance
under study were observed. Damping with distance is
caused by an increase in the beam path in the medium
and by beam energy scattering over a larger area. How-
ever, the alternation of radiation minima and maxima
observed for the two linear polarizations indicates that
the field exhibits interference.

The interference can be caused by a partial reflec-
tion of microwave power from interfaces. The reflected
beams may be given as a set of imaginary sources
arranged in the emitter plane. An analysis of the beam
path from imaginary sources shows that, for the given
arrangement of the devices, the expected distance
between interference minima exceeds that observed at
a distance of 40–50 m by approximately three times.
Moreover, this length increases monotonically with the
emitter–receiver distance, which results in the interfer-
ence disappearing. These considerations relate to a sin-
gle reflection of beams, i.e., to the case of two imagi-
nary sources. For a larger number of sources, the inter-
ference effect weakens and disappears at l @ d, since
the sources are antiphase; i.e., the reflectances from
ice–air and ice–water interfaces are opposite in sign.
For this reason, the interference effects associated with
wave reflection from the interfaces are insignificant in
this experiment.

The possible propagation of microwaves over lateral
waves along the ice–air interface was also studied
experimentally. When an emitter was placed beyond
the ice, the signal at its surface disappeared almost
completely. The absence of lateral waves is explained,
first, by their significant damping with distance and,
second, by the use of directed antennas when the major
energy fraction propagates within the total internal
reflection angle.

4. DISCUSSION

The anomalies in the transmission spectrum of the
cavity containing ice near the ice–water phase transi-
tion point can be explained by the small amount of liq-
uid water inclusions in the medium. This should result
in a certain increase in the real (ε') and imaginary (ε'')
parts of the relative permittivity, since these values for
liquid water are  = 63 and  = 37 [2] (as calculatedε1' ε1''
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
from the Debye formula) at a frequency of 6 GHz at
0°C. These values significantly exceed those for fresh-
water ice, –  = 3.19 and  = 4.1 × 10–3 [3].

The effective permittivity εm of a mixture can be
determined using formulas for heterogeneous mixtures,
e.g., the Brown formula (see [4])

 (1)

where ε1, ε2, w1, and w2 are the permittivities and vol-
ume fractions of the components.

An increase in ε' should lower the resonant fre-
quency of the cavity when its length is fixed, since the
radiation wavelength λ1 in the rectangular waveguide
containing a medium decreases:

 (2)

where λ0 is the wavelength in free space and a is the
width of the wide wall of the waveguide. Assuming that
the lower frequency resonant peak corresponds to a
new resonant frequency decreased due to liquid inclu-
sions, the corresponding small increment ∆ε', proceed-
ing from formula (2), can be determined using the rela-
tion

 (3)

where ∆f = f0 – f1 and ∆ε' =  – . For the data given,
we obtain ∆ε' = 1.7 × 10–3. Using formula (1) to calcu-
late w1, we obtain w1 ≈ ∆ε'/  ≈ 2 × 10–5.
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Fig. 4. Dependence of the logarithmic first Stokes parame-
ter of 13-GHz microwaves on the distance between the
receiver and transmitter in ice. The Stokes parameter is
measured in relative units.
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If we assume that the increment ∆ε'' ~ w1, then we
obtain ∆ε'' ~ 6 × 10–4. The resonant curve width ∆fr can
be determined from the relation

 

Considering that the increment ∆ε'' dictates the reso-
nance curve broadening, the data obtained for ∆ε'' and w1
yield ∆fr ~ 1 MHz. Near 0°C, ∆fr increases from 18 MHz
(at –24°C) to ~30 MHz. Thus, the calculated frequency
shift and resonant curve broadening do not agree with
the case where there is liquid in the medium. Further-
more, the concept of effective permittivity cannot
explain the splitting of the cavity transmission line.
Hence, the observed effects are not associated with liq-
uid water in the cavity.

As is known, the two-humped feature of the reso-
nant curves is observed in a system of two identical
coupled oscillators [5]. Therefore, it can be assumed
that the observed splitting of the lowest resonant mode
of the half-wave cavity (Fig. 1) is explained by the
existence of two vibrational modes of water molecules
in the medium. These states are most likely related to
proton states, since the proton (according to data from
structural studies) can occupy two positions along the
hydrogen bond line, as well as vibrate along this line
and transversely to it [6]. However, these states in water
and ice seem to differ significantly. Therefore, it is con-
ceivable that molecules of the medium near the phase
transition point can be in two states, one corresponding
to a low-temperature water phase, i.e., purely crystal-
line ice, and the other to a somewhat disordered state
with a glass structure. This vitreous water state is
formed during rapid cooling [6]. Some authors believe
that the solid–liquid transition passes through a pre-
melting phase [7]. In the case of ice, the premelting
phase could arise when a medium absorbs a certain
energy at 0°C, which is still insufficient to form liquid
water. Upon further cooling, this state can be retained
for some time, which results in a small temperature
hysteresis of the electromagnetic properties of the
medium.

Purely phenomenologically, the result shown in
Fig. 1 can be interpreted as the water having two refrac-
tive indices near 0°C. A question arises as to whether this
behavior is associated with the properties of the medium
or is somehow caused by its location in the waveguide
cavity. For example, an inhomogeneous medium in a
waveguide can have negative dispersion [8].

As a rule, polycrystalline ice in electromagnetic
studies is assumed to be a homogeneous medium. Nev-
ertheless, it consists of isolated single crystals with
macroscopic sizes characteristic in every case. Ice
thawing begins over boundaries of ice crystals. As a
result, a 3D network of conducting water films is
formed in space; although strongly distorted it is close
to periodic. If such a medium has two refractive indi-

ε1''

∆ f r

f
---------

εm''

εm'
-----.=
PH
ces, extraordinary birefringence arises, which relates to
waves with orthogonal polarizations. Two values of the
refractive index correspond to waves with a single
polarization. This means that interference of two
waves, causing maxima and minima of field ampli-
tudes, can be observed in a medium when monochro-
matic radiation propagates at a temperature close to
0°C in ice having a certain thermal history.

The formation of a “new wave” was predicted for
media with spatial dispersion when the interaction of
waves with inhomogeneities, whose sizes are compara-
ble to the wavelength near absorption lines, is substan-
tial [9]. In particular, near quadrupole lines at weak
absorption, the difference between the refractive indi-
ces of the new and ordinary waves will give rise to
rather slow oscillations in the intensity with sample
thickness [9].

A direct experiment with measurement of the first
Stokes parameter of radiation passed through ice
detected radiation power oscillations with distance. As
follows from Fig. 4, alternation of maxima and minima
of the signal power with a period of 4.6 m was observed
against a background of a gradual increase in damping.
The distortion of the curve in Fig. 4 can be explained by
the features of the experiment, i.e., by the duration of
the experiment (8 h), during which time the parameters
varied due to the temperature variation of the medium.

The results obtained can be used to determine the
difference ∆k between wavenumbers and the corre-
sponding beat frequency. For two waves with similar
wavenumbers and identical polarizations, we can write
the sum of their fields (disregarding damping and
assuming the amplitudes and phases of individual
waves to be equal) as

 (4)

Considering the real part of sum (4), we can determine
∆k by alternating the interference minima. They are
reached at ∆kx = nπ (n = 1, 3, 5, …). From this we
obtain ∆k = 2π/∆x, where ∆x is the distance between
two measured interference minima of radiation. For the
beat frequency f *, taking into account the change in the
wavelength in the medium, we can write

 

where c is the electromagnetic wave velocity in vac-
uum. From the values measured for ∆x, the beat fre-
quency is ~37 MHz. This value is close to the frequency
difference in the cavity transmission spectrum found in
laboratory measurements (Fig. 1).

We note that the previously observed distortion of
the resonant line slopes in the cavity transmission spec-
trum [1] can also be related to the existence of two
vibrational modes with close frequencies and different
amplitudes. Due to a small frequency shift, these states
were not resolved at a low Q factor of the cavity used.

A1 A2+ A0 i ωt kx–( ){ } 1 i∆kxexp+[ ] .exp=

f *
c

∆x ε2'
----------------,=
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However, as 0°C is approached, these modes for ice
become observable due to strengthening of the cou-
pling between orthogonal vibrational modes and an
increase in the frequency difference.

Anomalies in the electromagnetic characteristics of
ice were also previously observed by other authors. For
example, during radar determination of glacier thick-
ness in Antarctica, signal disappearance was observed
in some regions when constructing thickness profiles
[10]. This effect can be explained by the interference of
two waves with the same polarization.

5. CONCLUSIONS

Anomalies in the electromagnetic properties of
freshwater ice can be explained by the existence of two
vibrational modes in the medium, whose coupling
increases near 0°C. These anomalies manifest them-
selves in the formation of two waves with the same
polarization and similar wavenumbers in measure-
ments in waveguide systems and extended objects.

The formation of additional waves with similar
wavenumbers can be explained by the influence of spa-
tial dispersion on microwaves. The nature of spatial dis-
persion in ice can be related to the polycrystalline struc-
ture of ice, in which crystals are separated by water
films. This problem calls for separate study.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
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Abstract—The heat capacity of NH4LiSO4, RbLiSO4, and Csx(NH4)1 − xLiSO4 crystals and its behavior over
a broad temperature range including the phase transition regions were studied. The entropy changes corre-
sponding to structural transformations in these crystals were found not to be characteristic of straightforward
ordering of structural blocks. The results obtained are discussed in terms of phenomenological theory and
model concepts. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The numerous compounds with the general chemi-
cal formula AA'CX4 (A, A', and C are cations, and X is
an anion) form a representative family of crystals pos-
sessing a β-K2SO4-type structure (space group G1 =

–Pmcn, z = 4) over a certain temperature interval.
The praphase of this structure is the hexagonal α-

K2SO4 structure (space group G0 = –P63/mmc, z =
2), which can exist only if the tetrahedral ionic groups
CX4 are disordered in orientation [1]. However, the hex-
agonal phase has not been observed experimentally in
all crystals with the β-K2SO4 structure. The α  β
phase transition has been reliably established to occur
in several oxygen-containing compounds with identical
A and A' cations, for instance, in K2SO4, K2SeO4, and
K2CrO4 [1]. However, in many crystals with A ≠ A',
either phase transitions to the hexagonal phase with
space group P63/mmc have not been observed up to the
melting point or the space group of the hexagonal phase
has not been established unambiguously. Considered,
however, from the standpoint of model concepts, the
praphase G0 may also exist in crystals of this type [2].

As the temperature is lowered, the stable crystal
modification β-K2SO4 frequently transforms into a fer-
roelectric, ferroelastic, or incommensurate phase in sin-
gle or successive reversible phase transitions. The
diversity of distorted phases depends, to a considerable
extent, on chemical pressure, which can be varied
through proper isovalent substitutions of cations and
anions in the β-K2SO4 structure. This is convincingly
illustrated by the crystal series ALiSO4, whose symme-
try within a certain temperature interval is orthorhom-
bic with space group Pmcn [1]. In these compounds, the
SO4 tetrahedral groups are linked together by the LiO4
tetrahedra to form a network. Depending on the size of
the A cation, phase transitions to the ferroelastic phase
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with space group G2 = ( )–P1121/n and z = 4 occur
under cooling either directly (CsLiSO4–CLS) or via a
series of intermediate structural forms including the
incommensurate phase I: Pmcn  I  P21/c11 
P11n  P1121/n (RbLiSO4–RLS). In NH4LiSO4
(NLS), the ferroelastic monoclinic phase P1121/n is not
observed down to liquid-helium temperatures and the
phase transition from Pmcn is accompanied by the
onset of a ferroelectric state (space group P21cn, z = 4)
in the region of ~160 K. This transition is followed by
a transition to the ferroelastic phase P21/c11 (z = 8).
Recent studies of the Csx(NH4)1 − xLiSO4 (CNLS) have
revealed that the P1121/n  P21cn phase transition
occurs only in compounds corresponding to the narrow
concentration region x = 0.3–0.5 [3].

The TlLiSO4 crystal (TLS) has also been reported
fairly recently to have an orthorhombic phase (Pmcn) at
room temperature, which transfers, in a series of struc-
tural transformations under cooling, to a monoclinic
phase with a still unknown space group [4–6]. When
heated above 531 K, TLS transfers to a hexagonal
phase; however, its space group, P63 (z = 24), does not
fit with the α-K2SO4 structure.

As for the KLiSO4 compound (KLS), it has been
found to exist in a hexagonal and an orthorhombic
phase, but their space groups have not yet been estab-
lished unambiguously [1].

Some experimental data obtained, in particular, in
structural studies suggest that the G0(P63/mmc) 
G1(Pmcn)  G2 phase transitions in AA'CX4 and
A2CX4 compounds are driven by ordering of the CX4
tetrahedral ionic groups [1, 2, 7]. The fact that ordering
of the NH4 tetrahedra does not contribute noticeably to
the mechanism of phase transitions in ammonium-con-
taining crystals is supported convincingly by studies of
ND4LiSO4 [8]. Data obtained in structural studies of
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HEAT CAPACITY AND PHASE TRANSITIONS 721
ALiSO4 crystals, however, are not always convincing
enough to warrant unambiguous conclusions regarding
the mechanism of the transitions involved. It would
seem at first glance that arguments for the ordering of
tetrahedra carry more weight and that the order–disor-
der model is preferable [9–11]. However, a comparative
analysis of the structure of a number of crystals [12] has
shown that the extent of ionic disorder depends on the
relative cation size.

It is known that, as a fundamental thermodynamic
property, the entropy of a phase transition ∆S makes it
possible to describe the mechanism of structural distor-
tions and that its magnitude depends not to a small
degree on the anharmonicity of critical-ion vibrations
[13]. In the limiting cases, i.e., for a weakly anharmonic
(displacive phase transformations) and a strongly
anharmonic potential (order–disorder transitions), the
values of ∆S differ greatly; they are ~0.1R and ≥0.7R
(Rln2), respectively.

Although many of the physical properties of ALiSO4
crystals have been studied in considerable detail [1], the
thermophysical aspects of phase transitions have not
been probed adequately, in particular, using calorime-
try. Reliable data on the entropy change associated with
a second-order transition from the orthorhombic phase
Pmcn have been obtained for CLS only [14]. It has been
found that ∆S ≈ 0.2R is much closer to the value char-
acteristic of displacive transitions. Calculations made
with the model of stage-by-stage ordering of tetrahedra
as a result of P63/mmc  Pmcn  P1121/n struc-
tural distortions [2] revealed that correlations in vibra-
tions of critical ions can cause a substantial decrease in
transition entropy. In this case, ∆S for CLS is ~0.3R for
each of the two phase transitions.

The present communication reports on heat capacity
measurements for the NLS, RLS, and CNLS crystals
performed within a broad temperature interval includ-
ing the regions of structural transformations. The mea-
surements were carried out with the aim of broadening
our understanding of possible values of the entropy and
mechanisms of phase transitions in ALiSO4 crystals.

2. EXPERIMENTAL TECHNIQUES

CNLS (x = 0.95), NLS, and RLS crystals were
grown from aqueous solutions by slow evaporation at
310 K. The identification and characterization of the
samples were performed in three steps. Room-temper-
ature x-ray diffraction studies allowed us to verify the
absence of starting components as impurities and of
foreign phases. The optical homogeneity of the samples
was established using a polarization microscope. In the
last stage of characterization, a DSM-2M differential
scanning microcalorimeter was employed to perform
calorimetric studies in the temperature range 120–520 K.
Samples were in both crystal and powder form. The
phase transition temperatures of the samples under
study were found to coincide satisfactorily with avail-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
able data obtained earlier by other techniques [1]. The
same calorimetric method was used in more thorough
thermophysical measurements carried out in the region
of high-temperature phase transitions in NLS and RLS.
The rate of temperature variation in both heating and
cooling runs was 8 K/min in all experiments, and the
sample mass varied in the range 0.10–0.15 g. A more
detailed description of experimental factors regarding
the determination of the phase transition enthalpy and
entropy can be found in [15].

Although the high-temperature phase transition in
NLS was studied by us earlier using differential scan-
ning calorimetry (DSC) [15, 16], we repeated these
experiments in this work on a large number of powder
and single-crystal samples prepared under different
crystallization conditions. These statistical data permit-
ted us, first, to unambiguously determine the number of
phase transitions in NLS and, second, to obtain more
reliable information concerning the behavior of the heat
capacity.

Below 373 K, the behavior of the heat capacity of
NLS and CNLS crystals was investigated with adiabatic
calorimetry. The samples were plane plates with masses
of 1.288 g (NLS) and 1.585 g (CNLS). The measure-
ments were conducted in a fixture similar to that
employed in [17] for heat capacity measurements on
uniaxial ferroelectrics. The heat capacity of the fixture
was determined in a separate experiment. The heat
capacity of samples was measured in discrete (∆T = 1.0–
2.5 K) and continuous (dT/dt = 0.16–0.50 K min–1) heat-
ing modes. In the immediate proximity of the low-tem-
perature transition in NLS, quasi-static thermograms
were obtained with a heating rate of 3 × 10–2 K min–1.

3. EXPERIMENTAL RESULTS

3.1. NLS

Figure 1 presents experimental data on the specific
heat Cp(T) of an NLS crystal obtained within a broad
temperature range with an adiabatic (110–373 K) and a
differential scanning (350–520 K) calorimeter in con-
tinuous and discrete heating modes. DSC does not pro-
vide sufficient accuracy in determining the absolute
values of heat capacity. Therefore, the data obtained
using this method were referred to adiabatic calorime-
ter measurements in the range 355–373 K.

Two heat capacity anomalies associated with a
sequence of phase transitions between the paraelectric
(Pmcn), ferroelectric (P21cn), and ferroelastic
(P21/c11) phases were detected.

The thermodynamic parameters of the high-tempera-
ture phase transition studied on a large series of samples
proved reproducible to within acceptable limits. The
location of the heat capacity maximum T1 = 460.5 K var-
ied from one sample to another within 1.5 K. To deter-
mine the magnitude of the excess specific heat ∆Cp and
the temperature interval of its existence in the P21cn
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Fig. 1. Specific heat of NLS over a broad temperature interval. The dashed line is the lattice specific heat. The top inset shows a
thermogram obtained in the heating mode near T2. The lower inset shows the excess specific heat in the vicinity of T2.
and P21/c11 phases, the regular component, i.e., lattice
specific heat (shown in Fig. 1 by a dashed line) was
found. We used the combined Debye–Einstein function
Clatt(T) = A1D(ΘD/T) + A2E(ΘE/T) to fit the experimen-
tal data obtained far from the phase transition points
(114–203 and 308–373 K). The average deviation of
the experimental points from the smoothed curve was
approximately ±0.5%. This procedure revealed that an
excess specific heat is present within a broad tempera-
ture interval both above and below T1 (Fig. 1). These
findings correlate with earlier data on the behavior of
thermal expansion and birefringence [3, 18]. In this
case, the increased change in the enthalpy due to the
Pmcn  P21cn transition obtained in the present
measurements, ∆H1 = 1300 ± 150 J mol–1, as compared
to the value of 1170 ± 200 J mol–1 derived from heat
capacity measurements performed on NLS within a
narrower temperature interval [15], appears natural. It
should also be pointed out that none of the NLS sam-
ples studied by us revealed a splitting of the heat capac-
ity anomaly at T1 into two peaks, which was observed
in [19] and assigned to the existence of a sequence of
phase transitions within a range 2–3-K wide.

The position of the heat capacity peak maximum
T2 = 287.7 K, accepted in the first stage as the temper-
ature of the second transition, agrees satisfactorily with
the values reported, for instance, in [1]. No other heat
capacity peaks were found between T1 and T2 and
P

below T2 within the scatter of experimental points.
Thus, our high-precision measurements performed
using the very sensitive calorimetric method also argue
convincingly against the existence of additional anom-
alies in the NLS heat capacity allegedly associated with
phase transitions occurring in the temperature range
330–350 K [20], near 250 K [21], and at 225 K [22].

Studies of NLS using quasi-static thermography in
the immediate vicinity of the phase transformation at
T2 are illustrated in the upper inset to Fig. 1. The pat-
tern of the thermogram suggests heat absorption at the
transition. The phase transition temperature (T2 =
287.6 ± 0.1 K) was refined, and the enthalpy jump
(latent heat) was determined, δH2 = 310 ± 15 J mol–1.

Isolation of the lattice component revealed that the
excess specific heat of NLS below T2, which is not con-
nected in any way with the absorption of latent heat,
though small (∆Cp ≈ 0.025Clatt near T2), does neverthe-
less exist within a fairly broad temperature interval
(40-K wide) near T2 (see lower inset to Fig. 1). With
inclusion of ∆Cp(T), the total enthalpy change associ-
ated with the P21/c11  P21cn phase transition and

defined as ∆H2 =  + δH2 was found to be

385 ± 35 J mol–1.
Repeated measurements of Cp(T) in the vicinity of

the low-temperature phase transition performed in the
continuous heating mode at different rates (dT/dt =

∆Cp Td∫
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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0.28–0.47 K min–1) revealed the influence of thermal
cycling on the magnitude and position of the excess
heat capacity peak maximum at T2 (Fig. 2). The largest
value of (∆Cp)max was measured in the first experiment,
which is characteristic of clearly pronounced first-order
phase transitions. Subsequent deviations of the magni-
tude of (∆Cp)max observed to occur from one experi-
ment to another may be assigned, in particular, to deg-
radation of the thermal contact between parts of the
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Fig. 2. Excess specific heat of NLS near T2 measured in suc-
cessive heating cycles. Numerals 1–4 label successive
experiments.
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crystal, which may form as a result of sample cracking
caused by a noticeable jump in volume. However, the
changes in transition enthalpy from one experiment to
another turned out considerably smaller than the deter-
mination error. Under these conditions, the temperature
of the maximum (∆Cp)max varied within 0.6 K. In view
of a certain lack of reproducibility of the experimental
data as a function of the sample heating rate, we should
accept for the transition temperature the value obtained
in the conditions closest to equilibrium, more specifi-
cally, that obtained in the quasi-static thermographic
measurements.

3.2. CNLS

The behavior of the specific heat of CNLS with tem-
perature was studied using adiabatic calorimetry and is
displayed graphically in Fig. 3a. Also shown for com-
parison are earlier data on CLS obtained and reported
in [14] (with the participation of one of the present
authors). As expected, partial substitution of ammo-
nium for cesium does affect the thermodynamic param-
eters, both far from and near the phase transition. The
temperature of the heat capacity maximum, considered
as the temperature of the Pmcn  P1121/n phase
transition, rose in the solid solution by 5 K to become
T0 = 207.2 ± 0.7 K. The regular specific heat deter-
mined using same approximating function as used ear-
lier for NLS is shown in Fig. 3a by dashed lines. This
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Fig. 3. Temperature dependence of (a) the specific heat and (b) excess specific heat of (1) CNLS and (2) CLS [14]. The dashed line
is the lattice specific heat.
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quantity turned out to be higher for the solid solution
throughout the temperature interval studied. As for the
excess specific heat, its behavior for CNLS changed
markedly (Fig. 3b). The narrow ∆Cp(T) peak observed
in CLS flattens out and becomes substantially smaller
in magnitude at T0. Note also that the regular specific
heat was described in [14] by a polynomial. Both in
CLS and CNLS, the Pmcn  P1121/n phase transi-
tion is a second-order transformation; therefore, the
change in enthalpy was determined by integrating the
∆Cp(T) function. No noticeable effect was observed of
the way in which Clatt(T) was represented on the
enthalpy of the Pmcn  P1121/n phase transition in
CLS (∆HCLS = 335 ± 25 J mol–1); indeed, the difference
is within the accuracy of determining ∆H. In the case of
CNLS, the enthalpy of the transition increased, as com-
pared to CLS, to reach ∆HCNLS = 460 ± 50 J mol–1.

3.3. RLS

Since the phase transitions in RLS occur at temper-
atures above 370 K, the heat capacity of this crystal was
studied using the DSC method only. Figure 4 plots the
temperature dependence of the anomalous specific
heat. Three heat capacity peaks can be clearly discerned,
with the maxima lying at T1 = 475 K, T3 = 460 K, and
T4 = 439 K. As for the anomaly at T2, it merges with the
heat capacity peak at T1. This is, however, not of any
importance here, because we are interested primarily in
changes in the thermodynamic parameters associated
with the symmetry change Pmcn  P1121/n. This
distortion of the structure is a result of four successive
phase transitions occurring in RLS and of the direct
transformation to CLS. Therefore, our analysis of the
∆Cp(T) dependence for RLS was not aimed at answer-
ing questions regarding with the separation of the con-
tributions from each of the successive Pmcn  I 
P21c11  P11n transitions to the enthalpy change
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Fig. 4. Temperature dependence of the excess specific heat
for RLS.
P

∆H1–3 = Σ(∆H1 + ∆H2 + ∆H3) = 1030 ± 150 J mol–1. As
for the P11n  P1121/n transformation, the corre-
sponding enthalpy change was small, ∆H4 ≈ 70 J mol–1.
Thus, the total enthalpy change connected with the
structural transition from Pmcn to P1121/n in RLS is
1100 J mol–1.

4. DISCUSSION OF THE RESULTS

The experimental results obtained in this work make
it possible to determine and analyze the thermody-
namic characteristics associated with the phase transi-
tions in ALiSO4 crystals, in particular, the magnitude
and behavior of the anomalous specific heat ∆Cp and
entropy ∆S, as well as to establish the applicability of
some thermodynamic relations connecting the thermo-
physical properties and other properties. The total
entropy changes in the case of first-order phase transi-
tions are defined by the sum of two contributions, ∆S =

δS + . The first term is due to the abrupt

change in the transition parameter at the transformation
point and is calculated from the latent heat, δS = δH/Ti.
For second-order transformations, the quantity ∆S is
naturally identified with the second term only.

The thermodynamic description of the phase transi-
tion sequence in the NLS crystal is outlined in [23]. The
free energy F was presented as a function of the transi-
tion parameters ξ and η corresponding to librations of
the tetrahedral groups and macroscopic polarization Ps:

 (1)

Because both transitions in NLS are first-order trans-
formations, the following relations were suggested in
[23]: α = αT(T – T1), A = AT(T – T2), T1 > T2, β < 0, and
B1 < 0. The condition of the minimum ∂∆F/∂P = 0
implied that ξ = –(a/ε)Ps, in which case the free energy
can be written as a function of two variables, ∆F(P, η):

 (2)

Because only the coefficients α and A are temperature-
dependent, the total entropy change associated with the
phase transition sequence Pmcn  P21cn 
P21/c12 will be

 (3)
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In accordance with [23], the conditions of stability of
the NLS phases can be written as

 (4)

Hence, the entropy change at the Pmcn  P21cn
phase transition can be identified with the first term on
the right-hand side of Eq. (3). The corresponding rela-
tion connecting the jump in entropy δS1 with the jump
in polarization δP at the transformation point T1 can be
cast as

 (5)

A specific feature of the DSC technique employed by
us in high-temperature studies, in particular, on NLS,
consists in that it does not permit separation of the con-
tributions to enthalpy (and entropy) associated with the
jump in the order parameter at a first-order phase tran-
sition point and the gradual approach of the order
parameter to the saturation level. In other words, DSC
data cannot always provide a reliable conclusion con-
cerning the nature of a transition. The studies reported
in [16, 24] did not reveal any clearly pronounced jumps
in the birefringence ∆n or polarization Ps at T1. How-
ever, a study [18] carried out with the participation of
one of the present authors showed that the pattern of the
strain behavior and of the quasi-static thermogram
argue persuasively for the presence of jumps in volume
and enthalpy at the Pmcn  P21cn transition point. It
seems appropriate to quote a conclusion made in [25]
on the determination of the order of a transition in con-
troversial cases, which we believe to be correct: “…the
observation of latent heat (a jump in a transition
parameter) in at least one of a set of samples indicates
the transformation in a given substance to be a first-
order transition.” Thus, according to experimental evi-
dence [18], the transition occurring in NLS at T1 can be
unambiguously assigned to first-order transformations.
At the same time, it is known that the polarization [24],
birefringence [16], and thermal expansion coefficients
[18] of NLS undergo a change within a broad tempera-
ture interval between T1 and T2. These facts imply that
the parameter of the transition increases gradually with
decreasing temperature. Because the entropy change,
according to Eq. (3), scales as the square of the transi-
tion parameter, there should also be excess specific heat
in a broad temperature interval below T1. Experimental
data convincingly demonstrate that the Pmcn 
P21cn phase transition is fairly close to the tricritical
point. This conclusion follows from the relative magni-
tude of the jump in enthalpy and its total change,
δH1/∆H1 = 0.2, which turned out to be substantially
smaller than 1. It seems appropriate at this point to
recall the studies of the anomalous part of birefringence
in NLS below T1 [16], which led to a similar conclusion

Pmcn: Ps ξ η i 0; α 0 a 0 A 0,>,>,>= = =

P21cn: Ps 0; ξ 0; η1≠ ≠ η2 0,= =

P21/c11: Ps 0; ξ 0; η1
2 η2

2 η2
.= = = =

δS1 αT a/ε( )2δPs
2
.=
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concerning the position of the transition with respect to
the tricritical point.

In view of the above, the calorimetric data presented
in [19], where the excess specific heat was found to
exist in NLS only within a narrow temperature region
∆T ≈ 5 K near T1, cannot be considered reliable. In this
case, most likely, the part of the anomalous heat capac-
ity associated only with the absorption of latent heat
was detected. Indeed, integrating the ∆Cp(T) function
yielded ∆H1 = 2.9 J g–1 [19], which is close to the
enthalpy jump δH1 = 2.2 ± 0.9 J g–1 determined and
reported by us in [18].

Taking the value of δH1 and the Curie–Weiss con-
stant C = 5.6 K [24], we can use Eq. (5) to estimate the
polarization jump at T1 assuming the relation α1(a/ε)2 =
(2π/C)T1 [26] to be valid. The calculated value δPs ≈
0.1 µC cm–2 correlates satisfactorily with the figure
0.05–0.10 µC cm–2 corresponding to the fastest varia-
tion of polarization near T1 [24]. The reliability of the
experimental values is also corroborated by the results
of fitting the changes in the enthalpy δH1 and the rela-
tive volume δV1/V = 4 × 10–4 [18], as well as of the
parameter characterizing the response of the crystal to
pressure, dT1/dp = 0.6 K GPa–1 [1], to the Clapeyron–
Clausius relation dT1/dp = T1δV1/(VδH1). The calcu-
lated enthalpy jump δH1 = 1.5 J g–1 agrees with the
experimental value to within attainable accuracy [18].

The above data also make it possible to determine the
electric field–induced temperature shift of the Pmcn 
P21cn phase transition with the use of the “electrical”
Clapeyron–Clausius relation dT1/dE = –(δPy/δH1)T1
[26]. Unfortunately, we are not aware of any experi-
mental study of the T1(E) dependence. A comparison of
the calculated data (for T1) with experimental data (for
T2) suggests, however, that the high-temperature phase
transition (for which we have dT1/dE = 1 × 10–7 K m V−1)
is more stable against an electric field than the
P21cn  P21/c12 transformation (dT2 /dE = 20 ×
10−7 K m V–1 [27]).

X-ray diffraction measurements performed on NLS
show the SO4 tetrahedra in the ferroelastic phase of NLS
to be completely ordered. Thus, the P21cn  P21/c11
structural transformation is actually a transition between
ordered phases, so the corresponding change in the
entropy should be substantially smaller than Rln2. How-
ever, since both space groups are subgroups of the Pmcn
phase, they are not connected with each other through a
group–subgroup relation; therefore, this structural trans-
formation occurs between two irreducible representa-
tions and should be a clearly pronounced first-order tran-
sition [1]. The experimental data obtained by us agree
with the structure transformation model. The total
entropy change ∆S2 = 1.33 ± 0.04 J mol–1 K–1 (0.16 R)
did turn out to be small and characteristic of displacive
transformations. As for the relation connecting the
5
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enthalpy change at the transition point with its total
change, δH2/∆H2 = 0.81, it argues for the P21cn 
P21/c11 transition (unlike the transition at T1) being
fairly far from the tricritical point.

In accordance with [28], the excess specific heat
below T2 should satisfy, as follows from Eq. (1), the
relation

 (6)

Here, in accordance with Eq. (4), B = (4B1 + B2) and
A' = AT(T2 – Tc). As seen from Fig. 5a, the excess spe-
cific heat squared is indeed a linear function of temper-
ature over a fairly broad interval (15-K wide) near T2.
This fact allowed us to derive expressions relating the

coefficients of the potential in Eq. (1)  = 1.7 ×

10−2 J mol–1 K–2 and  = 1.2 × 10–2 J2 mol–2 K–3 and
the quantity T2 – Tc = B2/4ATC = 10 K. The degree of
proximity of the first-order (B < 0) transition to the tri-
critical point was established using the expression [28]
N = (B2/(3ATCTC))1/2 = –0.22.

∆Cp

T
---------- 

 
2– 2 B

2
3A 'C–

AT
2

--------------------------------
 
 
 

2

12C

AT
3

---------- T2 T–( ).+=

AT
2
/B

AT
3
/C

5 4 3 2 1 0
(T0 – T), K

1

2

(b)

(a)
25000

20000

15000

10000

5000

0
14 10 6 2 0

(T2 – T), K

140

100

60

20

0

(∆
C

p
/T

)–
2 , J

–
2  m

ol
2  K

4

(∆
C

p
/T

)–
2 , J

–
2  m

ol
2  K

4

Fig. 5. Temperature dependence of the square of the
inverse excess specific heat of (a) NLS and (b) (1) CNLS
and (2) CLS.
P

In accordance with Eqs. (3) and (4), the entropy
change δS2 is connected with the abrupt appearance of

a new transition parameter,  + , at T2. The corre-
sponding jump in volume, δV2/V = –4.6 × 10–4, is cal-
culated from the Clapeyron–Clausius equation using
the data on the effect of hydrostatic pressure, dT2/dp =
–26 K/GPa [1]. Thus, at the phase transitions Pmcn 
P21cn (δV1/V = –4.0 × 10–4) and P21cn  P21/c11,
the unit cell volume of NLS undergoes changes in vol-
ume which are similar in magnitude and opposite in
sign.

Studies of the elasticity and optical properties
showed the Pmcn  P1121/n transition in CLS to be
satisfactorily described in terms of the Landau phenom-
enological theory [29]. We carried out a similar analy-
sis for the temperature dependence of the heat capacity
of this crystal. The behavior of the square of the inverse
excess specific heat of CLS near T0 turned out to be in
agreement with Eq. (6) (Fig. 5b). As seen from Fig. 5b,
this relation is not met for CNLS. The reason for these
discrepancies is most probably associated with the fact
that, although CNLS was characterized as a crystalline
compound, the ammonium ion could play the part of an
impurity that makes the phase transition diffuse and
distorts the real behavior of the excess specific heat.

As for the entropies of the phase transitions in CLS
(∆SCLS = 1.66 ± 0.13 J mol–1 K–1) and CNLS (∆SCNLS =
2.24 ± 0.23 J mol–1 K–1), the difference between them is
seen to be larger than the experimental error of their
determination. One of the reasons for the increase in ∆S
may be associated with the fact that the transition in the
solid solution approaches the tricritical point lying on
the T(x) line [3], which governs the stability of the
Pmcn phase.

As already pointed out, the assignment of heat
effects in RLS to particular phase transitions is compli-
cated by their being close in temperature. However, the
structure of RLS contains, within certain temperature
intervals, ferroelastic phases P21/c11 and P1121/n,
which also occur in NLS and CLS, respectively. While
the entropy changes due to the same P21/c11 mono-
clinic distortion are relatively small, the total value for
NLS (∆S1 + ∆S2 = 4.24 ± 0.42 J mol–1 K–1) is substan-
tially larger than that for RLS (∆S1 + ∆S2 + ∆S3 = 2.08 ±
0.20 J mol–1 K–1). Also, the difference between the
entropies greatly exceeds the error of their determina-
tion. However, the entropy changes due to the forma-
tion of the P1121/n monoclinic phase in CLS (1.66 ±
0.16 J mol–1 K–1) and RLS ∆S1 + ∆S2 + ∆S3 + ∆S4 =
2.25 ± 0.22 J mol–1 K–1) are closer in magnitude.

The mechanisms of the phase transitions occurring
in crystals with an α-K2SO4 or β-K2SO4 structure have
been considered in several experimental and theoretical
studies [1, 2, 7]. In many cases, the researchers were
inclined to believe that the SO4 tetrahedra, which are

η1
2 η2

2

HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005



HEAT CAPACITY AND PHASE TRANSITIONS 727
disordered over four positions in the α-K2SO4 phase
and over two positions in the β-K2SO4 phase, become
ordered after phase transitions and occupy only one
position in different distorted phases of symmetry
lower than Pmcn; in other words, transitions from the α
and β phases should be of the order–disorder type.
Straightforward model concepts suggest that the
sequence of these transitions should be accompanied
by changes in the entropy of R(ln2 + ln2).

However, available experimental data do not always
agree with the expected large value of ∆S. As estab-
lished reliably by repeated measurements [1], only for
K2SO4 undergoing a single transition G0  G1
(Pmcn) is ∆S indeed equal to Rln4. The situation is dif-
ferent for K2SeO4, where the same phase transition
involves one-half the above entropy change, ∆S = Rln2
[2], and is apparently accompanied by partial ordering
of the tetrahedra. As the temperature decreases further,
however, this crystal undergoes three successive phase
transitions [1], for which the changes in entropy are
very small (<0.1 R) and argue rather for the mechanism
of slight atomic displacement than for ordering in the
case where the symmetry is lower than Pmcn. This sug-
gestion is also substantiated by the observation of a soft
mode in the β phase of this crystal [1].

As already mentioned, the α phase does not form in
ALiSO4 up to the melting or decomposition tempera-
ture. The entropy changes due to the phase transitions
from the Pmcn orthorhombic phase in the crystals stud-
ied in [4, 14] and the present work are summed up in the
table. The main point to mention is that, except for TLS,
all the entropy changes ∆S determined by various meth-
ods are substantially smaller than the expected value
Rln2 ≈ 0.7R, if we assume that the SO4 tetrahedra
occupy two equivalent positions in the Pmcn phase.

It would be instructive to point out that the kind of
phase transition that occurs and its proximity to the tri-
critical point for different ALiSO4 compounds turned
out to be different. The Pmcn structure suffers distor-
tions as a result of a second-order transformation in
CLS and CNLS and of a first-order transition in the
other crystals. Note also that, according to [4], the total
entropy change of Rln2 occurs in TLS in a narrow
region near T0; therefore, the distance of the transition
from the tricritical point is quite large (at least as com-
pared to NLS).

It is known [13] that second-order transitions may
give rise to strong correlations, which appear in the ini-
tial phase long before the transition temperature is
reached. The analysis of CLS in [9] was based on the
structural model of disordered tetrahedra, because inclu-
sion of the anisotropy of thermal vibrations resulted in an
improvement of the magnitude of the R factor. Monte
Carlo studies of the order–disorder model (four-state
model [1]) were applied in [2] to P63/mmc 
Pmcn  P1121/n successive phase transitions in CLS
under the assumption that the crystal has a hexagonal
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
phase, which has not been observed experimentally. It
was established that the presence of strong short-range
tetrahedron correlations (caused by competitive inter-
actions among the tetrahedra) in the disordered hexag-
onal and the partially ordered orthorhombic phases
results in a decrease in the transition entropy by a factor
of more than 2 with respect to Rln2. This conclusion is
in satisfactory agreement with the experimental value
of the entropy change for CLS (see table).

The above reasoning no longer seems convincing
when one invokes data obtained by other researchers
who analyzed competing models of the structure of
ALiSO4 crystals. It was found in [11], for instance, that
for RLS the model that considers anharmonic vibra-
tions of the tetrahedra is the most appropriate. Prefer-
ence was given, however, to the model assuming their
disorder over two positions, in accordance with the
observation of two maxima in the electron density dis-
tribution for oxygen atoms. However, the data reported
in [12], where, as we believe, the structure was most
carefully analyzed, seems more substantiative. Evi-
dence for the vibrations of SO4 tetrahedra in the Pmcn
phase of NLS, RLS, and RCLS being characterized by
different degrees of anharmonicity was presented.
Electron density maps for NLS indicate that the oxygen
atom does indeed have two equilibrium positions cou-
pled by tilting of the SO4 group. After the transition to
the G2 phase, the oxygen atom orders in one of these
positions. The rubidium analog reveals the same situa-
tion, although less clearly pronounced. However, small
additions of cesium (~9 mol %) radically change the
electron density distribution around the oxygen atom in
the RCLS structure [12] and the double-peak pattern
corresponding to two oxygen positions disappears. The
structural data obtained were used to calculate the
parameters of the two-minimum potential confining the
vibrations of a regular rigid tetrahedron. It turned out
that the height of the potential barrier 1.2kBT1 permits
assignment of the transition from the Pmcn phase to
“pure” order–disorder transformations only in NLS. In
the ferroelectric phase, the potential becomes asym-
metric, with the stable tetrahedron configuration corre-
sponding to one of the disordered phase configurations.
The barrier height in RLS is only 0.75kBT1, which indi-
cates a considerable decrease in tetrahedron vibration
anharmonicity as a result of the tetrahedral cation being

Thermodynamic parameters of the phase transition (PT)
from the Pmcn phase in ALiSO4 crystals

Crystal T1, K ∆S1/R PT order Reference

NLS 461 0.35 I This work

RLS 475 0.25 I "

CNLS 207 0.27 II "

CLS 202 0.20 II [14]

TLS 288 0.69 I [4]
5
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replaced by a spherical one. The most remarkable
observation is that, as the Rb ion is partially replaced by
the larger Cs in the RCLS compound (Rb0.9Cs0.1LiSO4),
the potential barrier decreases in height by nearly four
times (<0.2kBT1). This convincingly shows that the
vibrations of critical ions in each of the crystals are
anharmonic to different degrees, which should natu-
rally manifest itself in the entropy of a phase transition.
As seen from the table, the variation in ∆S from one sam-
ple to another correlates with this hypothesis; indeed, the
transition entropy decreases with increasing cation size.
Thus, the increase in the cation ionic radius in the

ALiSO4 series [(  (1.43 Å)  Rb+ (1.48 Å) 
Cs+ (1.65 Å))] is apparently capable of suppressing dis-
ordering of the SO4 tetrahedra.
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Abstract—A theoretical phase diagram of the [N(CH3)4]2CuCl4 crystal with a new commensurate phase char-
acterized by a dimensionless wavenumber q = 2/5 is constructed on a plane specified by two coefficients of the
thermodynamic potential. This diagram is used as the basis for the construction of a theoretical pressure–tem-
perature (P−T) phase diagram. The theoretical P−T phase diagram thus obtained is compared with the experi-
mental P−T phase diagram. © 2005 Pleiades Publishing, Inc.
1. THERMODYNAMIC POTENTIALS

The experimental pressure–temperature (P−T)
phase diagram for an [N(CH3)4]2CuCl4 (TMA–CuCl)
crystal (TMA is tetramethylammonium) was measured
using x-ray scattering at temperatures T = 22–160°C
and pressures P = 0.25–0.95 GPa and presented in the
work by Asahi and Izutsu [1]. This diagram differs from
the phase diagrams obtained earlier [2–4] in that it con-
tains the commensurate phase C2/5 with a dimension-
less wavenumber q2/5 = 2/5. The purpose of this study is
to construct a theoretical P−T phase diagram with the
commensurate phase C2/5 on the basis of the phenome-
nological approach developed in [5, 6] (see also [7, 8]).
We will not describe again the theoretical approach and
will begin with writing the thermodynamic potentials
for the initial phase C (Pmcn symmetry), the incom-
mensurate phase IC, and the commensurate phase Cm/l,
where m/l specifies the value of the corresponding
wavenumber q = qm/l = m/l (C0/1 is the phase with wave-
number q = 0):

 (1)

The thermodynamic potential of the initial phase is
equal to zero (ΦC = 0). Despite the fact that, in relation-
ships (1), we have the coefficient β > 0, it is necessary
to take into account the invariant with the coefficient γ
(γ > ), because, away from the C–IC phase transi-
tion, the expression for the thermodynamic potential
Φ1/3 at the coefficient γ = 0 becomes inapplicable. It is
evident that the invariant with the coefficient γ must be
taken into account in all the potentials.

The dependence of the coefficient of elasticity α(q)
for the soft optical branch of the normal oscillation

ΦIC α b( )ρ2 βρ4 γρ6
,+ +=

Φm/l α qm/l( )ρ2 βρ4 γρ6 α l'ρ
2l

2lϕ ,cos–+ +=

Φ0/l αζ 2
2/3( )βζ4

2/5( )γ ζ6
.+ +=

α3'
1063-7834/05/4704- $26.00 ©0729
spectrum of the crystal on the dimensionless wavenum-
ber (kz = qc*) can be described by the expression

 (2)

This expression can be rewritten in the form

 (3)

where a and b are the coordinates of the minimum in
the soft branch [described by expression (2)] at an arbi-
trary point of the Brillouin zone.

By varying the parameter ϕ in relationship (1) for
the thermodynamic potential Φm/l, we obtain two solu-
tions: (i) sinlϕ = 0, which is stable for  > 0, and

(ii) coslϕ = 0, which is stable for  < 0. For both solu-
tions, the thermodynamic potential Φm/l takes the form

 (4)

It is convenient to change over to the dimensionless
variables φ and R and the parameters A, D0, Dl, B, Ql,
QL, D, Aγ, A3, and Al (where Q is a number):
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As a result, the thermodynamic potentials ΦIC and
Φ0/1 defined by relationships (1) and the potential Φm/l
described by expression (4) take the following form:

 (6)

By varying the dimensionless parameter R in
expressions (6) for the thermodynamic potentials, we
obtain

 

 

 

 

 

 (7)

 

 

 

 

 

In the above expression for the thermodynamic
potential φm/l, the second term is assumed to be small as
compared to the first term (the condition of weak
anisotropy is satisfied). The expansion into a series is
carried out with respect to this small term.

2. BOUNDARIES BETWEEN THE PHASES

By equating the thermodynamic potentials
described by relationships (7) to each other, we obtain
the expressions for the boundaries between the phases.
Let us write the expressions for the C–IC and C–C0/1
phase boundaries, which have the simple form

 (8)

The expressions for the IC–Cm/l and Cm/l–Cm'/l ' (l > 3)
phase boundaries derived from relationships (7) under
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the condition Dl ! A (and Dl ' ! A), which holds good,
have the following form:

 (9)

It would make no sense to present here the expres-
sions for the other phase boundaries, because this
would lead to multiple rewriting of the thermodynamic
potentials (7) equated to each other (only the common
factors 63 would cancel out everywhere). It should be
noted that three phase boundaries, namely, C–IC, C–C0/1
[see relationships (8)], and IC–C0/1, meet at a common
point (the LT point [5]). As should be expected, three
other phase boundaries, namely, IC–C1/3, IC–C0/1, and
C1/3–C0/1, also meet at a common point.

3. THERMODYNAMIC POTENTIALS 
AND THE PHASE BOUNDARIES 

FOR SMALL PARAMETERS A

In the case where the parameters A in formulas (5)

are small enough to satisfy the condition  ! 1,
expressions (7) for the thermodynamic potentials can
be simplified as follows:

 (10)

where the second terms in the square brackets are small
as compared to unity.

By equating the thermodynamic potentials deter-
mined by relationships (10) to each other, we obtain the
following expressions for the boundaries between the
corresponding phases:
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One can try to simplify these expressions further by

using the initial condition  ! 1. However, in this
case, it is necessary to ensure that the three phase
boundaries described by expressions (11) would meet
at a common point, as before. We will not carry out
these simplifications here, the more so as all the equa-
tions (11) are quadratic in the parameter A and, conse-
quently, can be readily solved.

The phase boundaries IC–Cm/l described by relation-
ships (9) can be given in the form

 (12)

4. PHASE DIAGRAMS

According to relationships (3), the quantities D0 and
Dl involved in expressions (5) can be given in terms of
the parameter B2 as follows:

 (13)

By specifying the values of B2, we determine the quan-
tities D0 and Dl from expressions (13) and the parame-
ter A from relationships (7)–(9) or from formulas (11)
and (12). This allows us to construct the phase bound-
aries on the D0–A plane.

For the parameter B2 = (2/3) , the minimum in the
soft branch at an arbitrary point of the Brillouin zone
disappears. Simultaneously, the quantities a and b (A
and B) lose their meaning. Therefore, the phase dia-
gram on the D0–A plane has meaning only when the

condition D0 ≥ –(2 /3)3 is satisfied [see relationship
(13)].

Figure 1 shows the experimental P−T phase diagram
obtained during cooling in [1]. The theoretical phase
diagram on the D0–A plane, which was constructed
according to relationships (7), (11), and (12), is pre-
sented in Fig. 2. This diagram was constructed using
the following parameters:

 (14)

In Fig. 2, the phase boundaries constructed according to
formulas (11) and (12) are indicated by thin lines and
the phase boundaries constructed from expressions (7)–
(9) are depicted by solid lines. Some boundaries (IC–
0/1, IC–3/8, IC–2/5) on the scale of Fig. 2 are indistin-
guishable. Other boundaries (IC–1/3 and, especially,
1/3–0/1) differ significantly, and this difference
increases with an increase in the parameter A. It should
be noted that the C2/5–C1/3 phase boundary substantially
deviates from the IC–C1/3 phase boundary (in contrast
to the C3/8–C1/3 and IC–C1/3 phase boundaries). In order
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to emphasize this deviation, the IC–C1/3 phase bound-
ary is depicted by a dotted line.

The P−T phase diagram was constructed from the
D0–A phase diagram under the assumption that the
coefficients D0 and A are linearly dependent on the tem-
perature T and pressure P. In this case, the axes P and T
in Fig. 2 are straight lines. Their position and orienta-
tion are shown in Fig. 2.

Figure 3 presents the theoretical P–T phase diagram.
The phase diagrams shown in Figs. 1 and 3 are similar
to each other in the region near the C–IC phase transi-
tion. However, in the region close to the IC–C1/3 phase
transition in Fig. 1 (as in the phase diagrams presented
in [2–4]), there exists a noticeable nonlinearity. This
nonlinearity is absent in Fig. 3. Possibly, this is associ-
ated with the fact that the single-harmonic approxima-
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Fig. 1 Experimental P−T phase diagram obtained during
cooling in [1]. Dotted lines indicate the phase diagrams
given in [2–4].
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Fig. 2. Theoretical phase diagram on the D0–A plane. The
axes P and T are also shown.
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tion was used for the IC phase. The approximations and
assumptions used to construct the theoretical phase dia-
grams are presented in [5].

T

P

C

IC

IC

IC

C3/8

C1/3

C2/5

Fig. 3. Theoretical phase diagram obtained from the phase
diagram on the D0–A plane (Fig. 2).
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Abstract—A time-resolved cathodo- and photoluminescence study of nanostructural modifications of Al2O3
(powders and ceramics) excited by heavy-current electron beams, as well as by pulsed synchrotron radiation,
is reported. It was found that Al2O3 nanopowders probed before and after Fe+ ion irradiation have the same
phase composition (the γ-phase/δ-phase ratio is equal to 1), an average grain size equal to ~17 nm, and practi-
cally the same set of broad cathodoluminescence (CL) bands peaking at 2.4, 3.2, and 3.8 eV. It was established
that Al2O3 nanopowders exhibit fast photoluminescence (PL) (a band at 3.2 eV), whose decay kinetics is
described by two exponential stages (τ1 = 0.5 ns, τ2 = 5.5 ns). Three bands, at 5.24, 6.13, and 7.44 eV, were
isolated in the excitation spectrum of the fast PL. Two alternate models of PL centers were considered, accord-
ing to which the 3.2-eV luminescence either originates from radiative relaxation of the P– centers (anion–cation
vacancy pairs) or is due to the formation of surface analogs of the F+ center ( -type centers). In addition to
the fast luminescence, nano-Al2O3 was found to produce slow luminescence in the form of a broad band peak-
ing at 3.5 eV. The excitation spectrum of the 3.5-eV luminescence obtained at T = 13 K exhibits two doublet
bands with maxima at 7.8 and 8.3 eV. An analysis of the luminescent properties of nanostructural and single-
crystal Al2O3 suggests that the slow luminescence of nanopowders at 3.5 eV is due to radiative annihilation of
excitons localized near structural defects. © 2005 Pleiades Publishing, Inc.

FS
+

1. INTRODUCTION

We are witnessing intense progress in the physics of
nanosized systems, which was initiated by the discov-
ery of novel physical effects and unusual properties of
materials residing in a nanostructural state. One of the
areas that offer promise for controlling the properties of
nanomaterials and deal with developing the basis of
nanotechnology is the investigation of optical phenom-
ena in nanostructures.

Optical properties of crystalline dielectrics are
known to be determined to a considerable extent by
defects produced by radiation, as well as by chemical
treatment performed in reducing or oxidizing condi-
tions at elevated temperatures. Leucosapphire
(α-Al2O3) crystals are among the best studied in this
respect. Data on the luminescence and EPR spectra
have provided a basis for reliable identification of the
nature of some intrinsic defects. However, the question
of the influence of size effects and the specific features
of the processes that occur on the surface and in the
bulk of the material as the aluminum oxide crosses over
from the crystalline to a nanostructural state remains
open.

This communication reports on a study of the opti-
cal properties and defects of nanostructural Al2O3 using
luminescence spectroscopy with nanosecond-range
time resolution.
1063-7834/05/4704- $26.00 0733
2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

The nanostructural Al2O3 powder samples for study
were prepared by electrically exploding a metallic alumi-
num wire in air, with subsequent sedimentation of the
resulting oxide powder in water [1]. A comparative study
of the luminescence spectra was carried out on the start-
ing nanopowders and on nano-Al2O3 powder samples
irradiated by iron ions from a MEVVA pulsed ion source
(tpulse = 0.4 ms, f = 25 Hz, E = 30 keV, j = 3 mA/cm2), as
well as on Al2O3 ceramic samples prepared by mag-
netic pulse compaction [2].

X-ray diffraction patterns of the samples were
obtained with CuKα radiation on a DRON-4 diffracto-
meter equipped with a graphite monochromator. Inter-
pretation of the x-ray diffractograms and an analysis of
the phase composition were performed with the Pow-
derCell program using the ASTM database. The aver-
age grain size was estimated from the integrated width
of the (118) reflection of the δ-Al2O3 phase using the
Scherer method. Cathodoluminescence (CL) measure-
ments in the range 2.0–4.5 eV were carried out at 295 K
on a pulsed luminescence spectroscopy setup with a
nanosecond-range time resolution. The excitation was
provided by a GIN-600 pulsed electron accelerator with
the following beam parameters: Ee = 0.25 MeV, tpulse =
10–8 s, and W = 20–250 mJ/cm2. The spectrometer setup
© 2005 Pleiades Publishing, Inc.
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included an MDR-3 grating monochromator, an FÉU-
97 PM tube, and an S8-12 broad-band storage oscillo-
graph.

Photoluminescence (PL) and PL excitation spectra
were measured at 295 and 13 K on a pulsed synchrotron
radiation (SR) beam at the SUPERLUMI station
(HASYLAB laboratory, DESY, Hamburg) [3]. Excita-
tion in the range 5–21 eV was effected with a 2-m
Al-grating vacuum monochromator. The PL excitation
spectra were normalized against an equal number of
photons incident on a sample. PL spectra in the region
2–6 eV were analyzed with a 0.3-m ARC Spectra Pro-
308i monochromator and an R 6358P PM tube. The PL
and PL excitation spectra were obtained in the time-
integrated luminescence mode, as well as in gated time
windows (∆t wide) delayed by δt from the beginning of
an exciting SR pulse. Based on the decay kinetics, the
parameters δt and ∆t were set at 1.9 and 14 ns for the
fast PL component and at 47 and 115 ns for the slow PL
component, respectively. The PL decay kinetics param-
eters were determined by deconvolution.

3. RESULTS AND DISCUSSION

An x-ray diffraction analysis of the starting nonirra-
diated nanosized Al2O3 powder showed the sample to
consist of a mixture of aluminum oxide and hydroxide.
The hydroxide was a mixture of the bayerite and gibb-
site phases and made up about 30% of the total sample
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Fig. 1. Cathodoluminescence spectra of Al2O3 measured
(1, 2, 4) at 295 K at the end of the electron beam pulse and
(3) with a 100-ns delay. (a) (2, 3) Starting and (1) Fe+-irra-
diated nanopowders and (b) (4) nanoceramics.
PH
composition. The oxide component was, in turn, a mix-
ture of the γ- and δ-Al2O3 modifications. The x-ray dif-
fraction spots of the γ phase (defected spinel) almost
completely overlap the reflections of the tetrahedral δ
phase and can be unfolded by computer modeling. The
analysis showed these phases to be in a 1 : 1 ratio.

The x-ray diffractograms of the samples bombarded
by iron ions (Φ = 1017 cm–2) differ from those of the
starting nanostructural Al2O3 by the absence of the alu-
minum hydroxide lines. The ratio between the amounts
of γ and δ phases remains unchanged. Note also that the
diffractograms contain no traces of the high-tempera-
ture θ and α phases of Al2O3. The average grain size in
both the starting and Fe+-irradiated samples was found
to be the same, 17 nm.

Excitation of nanostructural Al2O3 powders at 295 K
by a pulsed accelerated electron beam generates CL
over a broad spectral region (Fig. 1a). An analysis of the
CL spectral response of starting samples revealed that
the experimental curves could be well fitted by a set of
Gaussian-shaped bands with maxima at 2.4, 3.2, and
3.8 eV. The samples bombarded by Fe+ ions produce a
set of the same bands as do the nonirradiated ones. This
implies that the presence of aluminum hydroxide does
not have a noticeable effect on the luminescence of
nanostructural Al2O3. However, the samples irradiated
by ions exhibit a weak increase in the intensity of the
2.4-eV band and a decrease in intensity in the region of
the 3.2- and 3.8-eV bands.

The CL spectra of Al2O3 nanoceramics (Fig. 1b) dif-
fer from the CL spectra of nanopowders by a noticeable
narrowing and simultaneous growth in intensity of the
bands at 2.4, 3.2, and 3.8 eV. In contrast to nanopow-
ders, an additional luminescence band peaking at
4.3 eV appears in the CL spectrum of nanoceramics.
The pulsed magnetic-field compaction used to prepare
Al2O3 nanoceramics differs from the standard ceramic
technology by the lower processing temperature
(<600°C). Additional heat treatment at T = 1100°C
accounts for the formation of other high-temperature
Al2O3 modifications in addition to the γ and δ phases.
The observed differences in the optical properties of the
nanoceramic, as contrasted with the unchanging main
band set in the CL spectrum, can be assigned to an
increase in the average grain size up to 100–150 nm.

Considering now the nature of the CL band at
2.4 eV, we can point out that a spectrally similar band
was observed in neutron-irradiated α-Al2O3 crystals
[4]. The model proposed in [4] assigns the formation of
the 2.4-eV band to pairs of anion vacancies with elec-
trons trapped in them (F-type aggregate centers). The
origin of the structural defects in the starting Al2O3 nan-
opowders may be associated with the conditions of
their formation being thermodynamically nonequilib-
YSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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rium. The slight increase in the CL intensity at 2.4 eV
observed under ion beam treatment of the starting sam-
ples demonstrates an additional radiation-induced pro-
duction of centers of the above type.

CL spectra of the starting and ion-irradiated nano-
structural Al2O3 powders are dominated by the 3.2-eV
band with a FWHM of ≈ 1.0 eV (Fig. 1). Preliminary
measurements of the CL kinetics showed the 3.2-eV
luminescence to undergo fast decay. To determine the
nature of this band, time-resolved PL spectra obtained
at different exciting photon energies were studied
(Fig. 2). As seen from Fig. 2, the band at 3.2 eV is
observed only in the “fast” PL time window. The decay
kinetics of the 3.2-eV PL in a nanostructural Al2O3
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Fig. 2. Time-resolved photoluminescence spectra of Al2O3
nanopowders measured at T = 13 K under excitation by pho-
tons of energy (a) 5.9, (b) 7.75, and (c) 11.3 eV. (1) Fast time
window and (2) slow time window.
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powder observed at T = 13 K under excitation by pho-
tons with an energy of 5.2 to 6.2 eV can be fitted by two
exponential functions with time constants τ1 = 0.5 ns
and τ2 ≈ 5.5 ns (Fig. 3). The excitation spectrum of the
fast PL component (Fig. 4) exhibits three strong bands
peaking at 5.24, 6.13, and 7.44 eV in the transmission
window of crystalline α-Al2O3. The efficiency of exci-
tation for E > 8.5 eV near the long-wavelength funda-
mental absorption edge and of creation of separated
electron–hole pairs is low.

The data on the three-band structure of the 3.2-eV
PL excitation spectrum are in good agreement with the
spectral response of the 3.0-eV luminescence in α-
Al2O3 single crystals subjected to high-temperature
treatment and quenching in air [5]. The nature of this
luminescence was assigned in [5] to the formation of P–

centers (anion–cation vacancy pairs).

The model of these centers assumes optical transi-
tions to proceed through charge transfer from the oxy-
gen ion to the anion vacancy. This assumption was not
in conflict with the decay time of the 3.0-eV lumines-
cence, which was found to be τ = 50 µs at T = 300 K.
The considerable decrease in the lifetime of P– center
excited states observed to occur in nanostructural Al2O3

is a manifestation of the size effect. The slight short-
wavelength shift (~0.2 eV) of the luminescence band
and the fast radiative decay of P– centers in nanostruc-
tural Al2O3 may be governed by the states of these cen-
ters changing in interaction with localized surface
states.

An alternate model of centers exhibiting fast lumi-
nescence at 3.2 eV in Al2O3 nanopowders is also worth
mentioning. In view of the substantial contribution that
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Fig. 3. 3.1-eV photoluminescence decay kinetics of an
Al2O3 nanopowder measured at an excitation energy of
(1) 11.3 and (2) 6 eV. T = 13 K.
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size effects make to the properties of nanoparticles, the
possible formation of vacancy-type surface lumines-
cence-active defects in nanosized materials should not
be disregarded. A comparison of the spectral responses
of bulk and surface oxygen-deficient centers in SiO2 [6]
revealed a short-wavelength shift of the excitation band
maxima of surface defects. A comparative analysis of
the spectral response and kinetics of F+-center lumines-
cence excitation in α-Al2O3 crystals [7] and of excita-
tion spectra of the 3.2-eV fast luminescence in nano-
structural Al2O3 likewise reveals a short-wavelength
shift of the three-band structure. This fact suggests the
possibility that surface analogs of the F+ center (the so-

called  centers) can form in nano-Al2O3. Naturally,
this hypothesis requires that further studies be made,
for instance, with the use of a surface-sensitive method
of photostimulated electron emission [8].

In addition to the fast component, a slow component
with τ > 200 ns is observed in the PL decay kinetics of
nano-Al2O3 (Fig. 3). This component manifests itself in
the PL spectrum (Fig. 2) as a broad band peaking at
3.5 eV with an FWHM ≈ 1.5 eV. Measurements of
pulsed CL showed that the decay kinetics of the lumi-
nescence in the 3.5-eV region can be given in the time
range from 0.1 to 10 µs by a sum of two exponential
functions with time constants of 0.5 and 4.5 µs. As fol-
lows from Fig. 4, the 3.5-eV PL excitation spectrum at
T = 13 K contains two intense doublet-structured bands
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Fig. 4. Photoluminescence excitation spectra of Al2O3 nan-
opowders measured at T = 13 K. (1) Slow component at
3.5 eV and (2) fast component at 3.2 eV. The inset shows the
spectra of (3) P–-center absorption and (4) F+-center lumi-
nescence excitation in α-Al2O3 single crystals [5, 7].
P

with maxima at 7.8 and 8.3 eV. The weak efficiency of
the 3.5-eV PL excitation in the transmission region of
Al2O3 crystals for E < 7.0 eV can also be mentioned.
Note the considerable difference in excitation effi-
ciency between the slow luminescence at 3.5 eV and
fast luminescence at 3.2 eV in the region of E > 9.5 eV,
which is characteristic of the formation of free elec-
tron–hole pairs. The excitation spectrum of the 3.5-eV
luminescence has a pattern typical of the creation of
electronic excitations localized near impurity or native
defects. A study of anion-defected α-Al2O3 crystals
reported in [9] showed that the excitation spectra of
F-center luminescence (E = 3.0 eV) contains, in addi-
tion to the band at 6.0 eV associated with intracenter
transitions, an excitation band at 8.8 eV, which lies at
the long-wavelength fundamental absorption edge. At
low temperatures, this band transforms into a doublet
with maxima at 8.52 and 9.02 eV. The data from [9]
allow one to assign this band to excitons bound to
F-type centers.

An analysis of the above results suggests that the
slow 3.5-eV luminescence of Al2O3 nanopowders orig-
inates from radiative annihilation of excitons localized
near structural defects. The splitting (0.5 eV) in the
doublet excitation lines of bound excitons in crystalline
and nano-Al2O3 is the same. In the latter case, however,
the doublet excitation structure of bound excitons is
shifted to longer wavelengths. This shift may be caused
by the fact that, in the γ and δ phases of Al2O3 nanopar-
ticles, the electronic energy structure changes notice-
ably in comparison with that in the crystalline α-Al2O3

modification. Similar relations were observed earlier in
x-ray emission spectra of nanostructural Al2O3 [10].
Furthermore, LDA band structure calculations carried
out in [10] revealed a shift of the partial valence-band
density of states in nano-Al2O3 as compared to that of
α-Al2O3.
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Abstract—The transmission coefficient of films of Co51.5Al19.5O29, Co50.2Ti9.1O40.7, Co52.3Si12.2O35.5, and
(Co0.4Fe0.6)48(MgF)52 ferromagnetic metal–insulator magnetic nanocomposites exhibiting tunneling magne-
toresistance and the magnetorefractive effect for electromagnetic waves was studied in the frequency range 30–
50 GHz. The transmission coefficient of the first two compositions varies strongly under an applied magnetic
field, and its variation exhibits a linear correlation with the field dependence of magnetoresistance. For the other
two compositions, the transmission coefficient does not depend on magnetic field. The data obtained are inter-
preted in terms of the concept of microwave spin-dependent tunneling. © 2005 Pleiades Publishing, Inc.
The high-frequency properties of metallic multilay-
ers with giant magnetoresistance have been studied
over a fairly broad frequency range (see [1–6] and ref-
erences therein). Magnetization of multilayers gives
rise not only to a substantial reduction in resistivity but
also to a change in the permittivity. As a consequence,
the impedance and optical properties of multilayers
become dependent on magnetic field. In the optical
range, this phenomenon was termed the magnetorefrac-
tive effect [6], and in the radio-frequency and micro-
wave ranges, high-frequency magnetoresistance or
magnetoimpedance [1–5]. Similar effects are also
expected to occur in systems with a considerable mag-
netoresistance of any type, including systems with tun-
neling magnetoresistance (TMR). Ferromagnetic
metal–insulator nanocomposites with a metal content
near the value corresponding to the percolation thresh-
old, as well as magnetic trilayer and multilayer systems
with tunneling barriers, belong to TMR systems. Inves-
tigation of the microwave properties of these systems
will make it possible to determine the mechanisms of
spin-dependent tunneling, establish the frequency dis-
persion of conductivity, check the recent concept of
magnetocapacitance [7], determine the possible opera-
tional range of spintronic devices based on TMR sys-
tems (for example, spin filters, magnetic storage
devices, magnetic sensors), and suggest new possible
areas of their application [6]. Recent studies of the
magnetorefractive effect (MRE) in reflection per-
formed in nanocomposites in the near IR region [6, 8,
9] have confirmed the existence of spin-dependent tun-
neling up to optical frequencies. The present paper
reports on an experimental study of the transmission of
1063-7834/05/4704- $26.00 ©0738
millimeter-range electromagnetic waves (30–50 GHz)
through films of ferromagnetic metal–insulator mag-
netic nanocomposites possessing TMR.

As subjects for the study, we chose films of nano-
composites of various compositions with metal con-
tents in the immediate vicinity of the percolation
threshold. The techniques employed in the preparation
and structural characterization of the samples are
described in [8, 9]. The composition, film thickness d,
residual electrical resistivity ρ (H = 0), TMR parameter

 = , and MRE parameter in

reflection ζ =  =  measured in

a field H = ±1.5 kOe, as well as the relative changes in

the transmission coefficient  = 

in the same field H = ±1.5 kOe at 44 GHz, are listed in
the table. Because the reflectance R at optical frequen-
cies and the MRE depend strongly on the light fre-
quency ν, the table specifies, for each composition, the
maximum values of the MRE at the corresponding fre-
quency, which were taken from [8–10]. Also presented
are the values of TMR in a field of ±10 kOe; for sim-
plicity, we neglect a certain difference between the val-
ues of the corresponding parameters in a zero external
magnetic field and in the state with zero magnetization
(which occurs in a field equal to the coercive force). All
measurements were conducted at room temperature
with an in-plane field.

The microwave transmission coefficient D of nano-
composites in the range 30–50 GHz and its relative

∆ρ/ρ ρ H  = 0( ) ρ H( )–
ρ H  = 0( )

-----------------------------------------

∆R/R
R H  = 0( ) R H( )–

R H  = 0( )
------------------------------------------

∆D
D

-------- D H  = 0( ) D H( )–
D H  = 0( )

--------------------------------------------
 2005 Pleiades Publishing, Inc.
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Parameters of the films under study

No. Sample composition,
vol % d, µm

∆ρ/ρ, %
∆D/D, % ρ, µΩ cm ζ = ∆R/R, %

(ν, cm–1)
H = ±10 kOe H = ±1.5 kOe

1 Co51.5Al19.5O29 1.91 9.2 5.08 2.28 2.9 × 105 –0.9 (1100)

2 Co50.2Ti9.1O40.7 2.02 5.8 2.42 1.6 6.1 × 106 –0.7 (1030)

3 Co52.3Si12.2O35.5 1.67 4.1 2.99 Not detected 4.5 × 108 +0.7 (1300)

4 (Co0.4Fe0.6)48(MgF)52 1 13 1.32 " ~109 –1.3 (1000)
change under magnetization, , which can be
called the magnetoimpedance parameter in transmis-
sion, were measured using the open-resonator tech-
nique described in detail in [5]. It should be stressed
that, in contrast to the optical reflectance or transmit-
tance, the transmission coefficient relates to the ratio of
the wave amplitudes rather than the ratio of the intensi-
ties. We also studied ferromagnetic resonance (FMR) in
our samples in fields of up to 20 kOe. We note that, in
the frequency range 30–50 GHz, the FMR is observed
to exist only above 8 kOe, i.e., in fields considerably
stronger than those in the case of  measurements.

∆D/D

∆D/D
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
The measured values of ∆D/D suggest several con-
clusions. First, the Co51.5Al19.5O29 and Co50.2Ti9.1O40.7

nanocomposites exhibit considerable changes in the
transmission coefficient under magnetization, with the
magnetoimpedance parameter ∆D/D being of the order
of the TMR. A comparison of the field dependences of
∆D/D and TMR (see Fig. 1) argues convincingly for the
observed effect being (as should be expected) a fre-
quency analog of the TMR. Because no FMR is observed
in our samples in the frequency range 30–50 GHz in
fields of up to 1.5 kOe, one can also conclude that this
effect is not related to the dependence of magnetic per-
Fig. 1. (a) Magnetoimpedance at 44 GHz and (b) magnetoresistance of the Co50.2Ti9.1O40.7 and Co51.5Al19.5O29 nanocomposites.
2Hm is the distance between the maxima in magnetoimpedance and magnetoresistance.
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meability on magnetic field. Second, the magne-
toimpedance ∆D/D for these two compositions is only
weakly frequency-dependent (unlike the MRE). This
feature correlates with the magnetoimpedance mea-
surements carried out on metallic multilayers [4] and
corroborates the interference nature of the strong
dependence of the MRE on the frequency of light [8].
Third, the magnetoimpedance parameter for these sam-
ples turns out to be larger than the MRE. Finally, no
magnetoimpedance was detected in samples with the
compositions Co52.3Si12.2O35.5 and
(Co0.4Fe0.6)48(MgF)52, which exhibit appreciable MRE
and TMR; this result, at first glance, is at odds with the
concept of the magnetoimpedance being a frequency
analog of the TMR.

Let us show that these features of magnetoimped-
ance do find explanation within a simple model. In cal-
culating the impedance, we have to take into account
that, near the percolation threshold (x ≈ xc), the electri-
cal resistivity of nanocomposites exceeds the resistivity
of conventional metals by 7 to 10 orders of magnitude
and increases strongly (by a few orders of magnitude)
when crossing over from metallic conduction (x ≥ xc) to
tunneling and hopping transport (x ≤ xc).

As in [4], we neglect the difference between the
wave impedance of the insulating substrate and that of

free space Z = . Under these conditions, the
transmission coefficient of the air–film–air trilayer sys-
tem can be written as

 (1)

where Z2 =  is the impedance of the nanocom-
posite and k2 = iω( )1/2 is the wavenumber. For
microwave frequencies and far from the FMR region,
we can assume the magnetic permeability of the nano-
composite to be  = µ0 and, in the expression for the
complex permittivity

 (2)

the second term is of the order of or less than the first
for the high-resistivity systems under study here (see
table). Considering the limiting case where 
is a small parameter, we obtain from Eq. (1)

 (3)

 (4)

µ0/ε0( )1/2

D
2Z2Z

2Z2Z k2dcosh Z2
2

Z
2

+( ) k2dsinh+
----------------------------------------------------------------------------------,=

µ̃/ε̃( )1/2

ε̃2µ̃2

µ̃2

ε̃2 ε2 i
σ ω( )

ω
------------–=

σ ω( )/ωε2

D i
ω
c
----d–

ω
c
----d

σ ω( )
2ωε2
------------–exp=

≈ i
ω
c
----d– 1

ω
c
----d

σ ω( )
2ωε2
------------– 

  ,exp

∆D
D

-------- D H( ) D H  = 0( )–
D H  = 0( )

--------------------------------------------
1
2
---d

c
--- 1

ε2ρ
--------∆ρ

ρ
-------,= =
PH
where we neglected the possible dependence of the
conductivity on frequency and set σ(ω, H) = 1/ρ(H). It
should be pointed out that the above approximations
are too rough to be used in a quantitative description,
because the parameter σ(ω)/ωε2 is not small for the first
two compositions in the table. We also cannot disregard
the frequency dependence of the conductivity (see dis-
cussion of the possible frequency dependence of the
conductivity of magnetic composites in [6]). Neverthe-
less, Eq. (4) offers an interpretation for the observed
relations. As follows from Eq. (4), the magnetoimped-
ance parameter ∆D/D and the TMR are linearly corre-
lated. Furthermore, the magnetoimpedance is inversely
proportional to the sample resistivity ρ. For the last two
samples in the table, which are located on the insulating
side of the percolation transition, the resistivity exceeds
that of the first two samples by about four orders of
magnitude. Therefore, the parameter ∆D/D for the
former samples is negligible, despite the fact that the val-
ues of MRE and TMR for them are higher. Equation (4)
also shows that the parameter ∆D/D is of the same sign
as the TMR and is not larger than the TMR. All these
conclusions fit the results displayed in the figure and in
the table. The frequency dependence of the conductiv-
ity and of the magnetoimpedance parameter of mag-
netic nanocomposites over a broader frequency range,
as well as the problem of quantitative description of the
experiment, will be treated in a future publication.

We can conclude that the giant magnetoimpedance
of nanocomposites at 30–50 GHz is a consequence of
microwave spin-dependent tunneling and is observed
only in compositions on the metallic side of the perco-
lation transition.
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Abstract—Computer simulation of the dynamics of layered AlN/GaN superlattices is performed to elucidate
the microscopic nature of the vibrational states corresponding to the strongest bands in the Raman spectra.
Experimental Raman spectra are shown to consist of two groups of lines, one of which exhibits a two-mode
behavior and the other shows a one-mode behavior as the relative layer thicknesses are varied. The results of
computer simulation and calculations within the dielectric-continuum approximation suggest that the behavior
of the observed vibrational modes is dictated by the degree of their localization and that the interlayer coupling
is due to long-range dipole–dipole interactions. It is shown that the delocalized modes, which exhibit one-mode
behavior, can be used as a sensitive probe of the structure and composition of superlattices. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

For the past ten years, there has been a growing
interest in the application of semiconductors based on
nitrides of Group-III elements (Al, Ga, In) to develop
various optoelectronic devices operating over a wide
spectral range from the infrared to ultraviolet region.
Multilayered periodic structures are of great impor-
tance in these devices [1]. In order to optimize the tech-
nology for fabricating perfect superlattices (SLs),
methods need to be found to control the structure and
quality of grown samples. Experimental data [2, 3]
strongly suggest that Raman scattering spectroscopy is
appropriate for nondestructive examination with a high
space resolving power.

Experiments performed on nitride SLs have
revealed that the Raman spectral lines differ in terms of
their sensitivity to details of the SL structure [4–6].
Indeed, the Raman spectra of SLs contain not only
bands that are close in position to those characterizing
the bulk materials (and their intensity is proportional to
the concentration of the corresponding bulk SL compo-
nent) but also bands that are absent in the Raman spec-
tra of the bulk SL components. The latter bands cannot
be interpreted as being due to frequency shifts caused
by strains, which always arise in the materials making
up an SL. The frequencies of these new Raman lines
depend crucially on the composition and structure of
the SL and, therefore, can be considered to be indica-
tors of the SL structure.

The microscopic nature of the vibration states asso-
ciated with these Raman lines is not clearly understood.
Theoretical studies of vibrational states of SLs are con-
1063-7834/05/4704- $26.00 ©0742
cerned primarily with the frequencies and shapes of
phonon modes and, as a rule, do not consider their abil-
ity to contribute to optical spectra and, in particular, the
intensity of the corresponding Raman lines, which
makes applying their results in the analysis of actual
Raman spectra difficult. The few papers available in the
literature that deal with theoretical analysis of the
Raman line intensities are either restricted to SLs with
a very small period [7] or employ the oversimplified
and unrealistic linear-chain model [8]. Therefore, it is
of importance to perform computer simulations of the
Raman spectra of SLs with a period comparable to the
periods of actual SLs. There is good reason to believe
that simulation will give reliable results if it is based on
model interatomic interactions that adequately describe
the dynamic properties of the bulk pure compounds,
AlN and GaN, making up an SL [9]. In this paper, we
present the results of such simulations and interpret
them in terms of the macroscopic dielectric continuum
model. The results are compared with experimental
data.

2. MODEL AND COMPUTATIONAL PROCEDURE

In this study, we do not consider the influence
exerted on the vibrational spectrum of SLs by strains
due to a mismatch between the SL layers. We assume
that the lattice parameters of AlN and GaN are equal
and use average values of the parameters of the wurtzite
structure a = 3.15 Å, c = 5 Å, and z = 0.88. The SL is
assumed to be an infinite crystal. The periodically
repeated motif of the SL consists of m elementary lay-
ers of GaN (medium 1) and n elementary layers of AlN
 2005 Pleiades Publishing, Inc.
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(medium 2). The interfaces between the SL layers are
perpendicular to the hexagonal axis of the bulk wurtzite
structure (the z axis). The thickness of an elementary
layer along the z axis covers one unit cell of the wurtzite
structure; i.e., an elementary layer consists of two
atomic layers of a metal and two nitrogen atomic lay-
ers. The spatial period of the SL is taken to be n + m =
20, and the relative thickness of AlN and GaN layers
(i.e., the ratio n/m) is varied. Therefore, the SL unit cell
consists of 80 atoms.

The potential function is based on the model poten-
tials of the perfect AlN and GaN crystals [9] and
includes the Coulomb interaction between rigid (non-
polarizable) ions. The cationic charges are Z(Al) =
1.27e and Z(Ga) = 1.14e. The charge of each nitrogen
ion is dictated by the electrical-neutrality condition,
depending on its environment, and is calculated from
the formula

 

where N(Al) and N(Ga) are the numbers of the nearest
neighbor cations of the indicated species, which satisfy
the condition N(Al) + N(Ga) = 4. The short-range repul-
sion is described in terms of the Born–Kármán model

with parameters A =  and B =  (where E is the

energy and R is the bond length), whose values are
taken to be (in newtons per meter) [9]

A(Al–N) = 265, B(Al–N) = –22, 

A(Ga–N) = 230, B(Ga–N) = –17, 

A(Al–Al) = A(Ga–Ga) = 20, A(N–N) = 10.

The Raman line intensity is calculated in the polariz-
able-bond model [10]. In this model, the polarizability
of a polyatomic system is assumed to be the sum of the
contributions from individual valence bonds and the
polarizability of each bond is described by a tensor with
two independent components α1 (along the bond) and
α2 (across the bond), whose values are assumed to be
dependent on the bond length. The Raman line intensity
is described in terms of three parameters:

 

The parameter γ3 determines the anisotropy of the static
bond polarizability. Its value influences primarily the
intensities of bands in the low-frequency part of the
Raman spectrum, where the bands are associated with
atomic motions due to bond stretching rather than bond
bending. The parameters γ1 and γ2 are the derivatives of
the polarizability with respect to bond length and deter-
mine the intensities of the Raman bands corresponding
to high-frequency modes, whose eigenvectors involve

Z N( ) 1
4
--- N Al( )Z Al( ) N Ga( )Z Ga( )+[ ] ,–=

∂2
E

∂R
2

--------- 1
R
---∂E

∂R
------

γ1

dα1

dR
---------, γ2

dα2

dR
---------, γ3 α1 α2.–= = =
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variations in the bond lengths. The numerical values of
the parameters γ are adjusted to obtain the best fit to the
relative intensities of the Raman lines for bulk AlN and
GaN crystals. The Ga-ion polarizability is noticeably
higher than that of Al ions, which is reflected in the
value of ε∞ (its value for GaN related to that for AlN is
nearly one-third larger than unity). For this reason, we
used different values for the polarizability parameters
of the Al–N and Ga–N bonds, more specifically, γ(Ga–
N)/γ(Al–N) = 1.5.

Since the objective of this paper is to interpret the
Raman spectra, we considered only vibrational states at
the center of the Brillouin zone. The Coulomb contribu-
tion to the dynamical matrix is calculated using the
Ewald method. Calculations are carried out in the long-
wavelength approximation q  0. The spectrum of
transverse (TO) vibrations is calculated first by diago-
nalizing the dynamical matrix without the singular term
due to the macroscopic field. The spectrum of longitu-
dinal (LO) vibrations is calculated by diagonalizing the
“longitudinal” dynamical matrix, which is obtained
from the “transverse” matrix by adding the term associ-
ated with the long-range dipole–dipole interaction:

 

where ωi is the frequency, Vc is the unit cell volume, q is
the wave vector, and xi and xj are the derivatives of the
dipole moment vector with respect to the amplitudes of
the corresponding LO modes. The representations (A,
E) according to which the vibration modes transform
under symmetry operations are determined by the form
of the vibrations. The modes in which the atoms move
along the z axis (perpendicular to the interfaces
between the SL layers) transform according to the A
representation, whereas the doubly degenerate modes
in which the atoms move in the xy plane transform
according to the E representation. By substituting the
wave vector directed either along the z axis or perpen-
dicular to this axis into the longitudinal dynamical
matrix, we calculated the spectra of A(LO) and E(LO)
vibrations. In this way, we found all four independent
modes at the center of the Brillouin zone: A(TO),
A(LO), E(TO), and E(LO).

As shown in [11], the point symmetry of
(GaN)m(AlN)n superlattices depends on the number of
monolayers in the SL unit cell (m + n) and corresponds

to the  space group if m + n is an even number and

to  if m + n is an odd number. In this paper, we dis-
cuss the calculations performed for the former case,
and the experimental data obtained are also consistent
with the C3v symmetry. This lowered symmetry can be
associated with the fact that, due to the difference in
polarizability between the materials making up the SL
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Fig. 1. Calculated (a) E(TO) and (b) A(LO) Raman spectra of (AlN)n/(GaN)m superlattices at various values of the ratio n/m (given
on the right of the spectra).
and to strains, the wurtzite structure allows the appear-
ance of a spontaneous electric field directed along the z
axis, which lowers the symmetry of the SL to C3v. The
same symmetry is possessed by solid solution–based
(GaN)m(GaxAl1 – xN)n superlattices, whose spectra are
also discussed in this paper.

As the symmetry is lowered from C6v to C3v, the
irreducible representations are mixed: A1 ⊕  B1 ⇒  A and
E1 ⊕  E2 ⇒  E. We note that, strictly speaking, the sepa-
ration of the degenerate E modes into E1 and E2 modes
in SLs is incorrect. However, we can use this separation
when analyzing the Raman scattering intensity tensor
of SLs. For example, the doubly degenerate modes for
which the xz of yz components of the Raman tensor are
maximum are conventionally assigned to the E1 repre-
sentation and the modes for which the xy component of
the Raman tensor is maximum are assigned to the E2
representation. Furthermore, the modes that are
assigned to the E1 and E2 representations differ in terms
of the derivative of the dipole moment. However, we
did not use the a priori assignment of modes to repre-
sentations in our calculations; the relative contributions
from different modes to Raman spectra with a certain
symmetry are determined by the Raman tensor.
P

3. THE RESULTS OF COMPUTER SIMULATION

3.1. Vibration Frequencies

Our calculations revealed that the bands in the
Raman spectrum of the SL can be separated into two
groups according to their behavior. In one group, the
bands exhibit a two-mode behavior. Their frequencies
are close to the frequencies of the analogous modes in
bulk crystals and depend on the SL structure only
weakly; the intensities of these modes vary in propor-
tion to the relative thickness of the corresponding SL
basic layer, i.e., the percentage of GaN or AlN. Such
behavior is exhibited by the polar E(TO) and A(LO)
modes, as well as the nonpolar E modes originating from
the E2 modes in the bulk SL constituents. Figure 1a
shows the calculated Raman spectra for the E(TO)
mode at various thicknesses of the AlN (n) and GaN (m)
layers. It can be seen that, at any ratio between the
basic-layer thicknesses, even for very thin layers (down
to two monolayers), the Raman spectrum of the E(TO)
mode has two bands whose frequencies are close to the
frequencies of the E(TO) vibration modes in bulk AlN
and GaN. An analogous behavior is exhibited by the
lines of the A(LO) mode (Fig. 1b). The group of bands
that have a two-mode character also includes the non-
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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polar E modes originating from the E2 modes of the
corresponding bulk crystals. Figure 2 shows the depen-
dence of the frequencies of two low-frequency bands of
E2 modes on the relative layer thickness. It can be seen
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Fig. 2. Calculated frequencies of low-frequency E2(low)
vibrations of (AlN)n/(GaN)m superlattices as a function of
the relative AlN layer thickness x = n/(n + m).
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that these bands are close in position to the respective
bands in the Raman spectra of the bulk SL constituents
even for very thin layers, with a relative thickness as
small as 30% of the SL period.

A qualitatively different behavior is exhibited by the
E(LO) and A(TO) modes (Fig. 3). For each of these
modes, the Raman spectra have a dominant band whose
intensity varies only weakly with the SL layer thickness
and whose frequency varies monotonically between the
frequencies of the corresponding modes in the bulk SL
constituents. The deviation of the frequencies of these
dominant bands from the frequency ω(GaN) or ω(AlN)
is approximately proportional to the percentage of the
corresponding SL constituent. An analogous one-mode
behavior is exhibited by certain modes in the Raman
spectra of solid solutions.

Our calculations predict that, in addition to the dom-
inant band in the range between the frequencies of the
E(LO) mode of GaN and the E(LO) mode of AlN, the
Raman spectrum of the E(LO) modes also has a group
of weaker bands in the range between the frequencies
of the E(TO) mode of GaN and the E(TO) mode of AlN
(Fig. 3a). The calculated Raman spectrum of the A(TO)
modes has an analogous pattern (Fig. 3b); namely, there
is a group of weak bands whose frequencies lie between
the frequencies of the A1(LO) mode of GaN and the
A1(LO) mode of AlN.
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Fig. 3. Calculated (a) E(LO) and (b) A(TO) Raman spectra of (AlN)n/(GaN)m superlattices at various values of the ratio n/m (given
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We denote the dominant modes in these representa-
tions by E(LO)+ and A(TO)+ and the weak modes by
E(LO)– and A(TO)–. This notation reflects the inphase
and antiphase displacements of atoms in adjacent lay-
ers, as will be seen from the analysis of the eigenvec-
tors. It should be noted that the frequency deviation of
this group of bands in the frequency range of transverse
vibrations varies in inverse proportion to the percentage
of the corresponding SL constituent. For example, for
thick AlN layers, the frequency of the E(LO)– band is
close to that of the E(TO) mode of GaN.

The dependence of the calculated frequencies of the
polar optical modes on the relative basic-layer thick-
ness for GaN/AlN SLs is shown in Fig. 4.

3.2. The Shape of Vibrations

The fundamental advantage of computer simula-
tions of Raman spectra is that this method makes it pos-
sible not only to predict and explain the observed spec-
tral curves but also to obtain a microscopic pattern of
the atomic displacements for individual vibration
modes. An analysis of the calculated eigenvectors
revealed that, in the Raman spectrum of an SL, the lines
exhibiting two-mode behavior correspond to modes
localized within one of the SL basic layers. Figure 5
shows the atomic displacements in the A(LO) and
E(LO) vibration modes for various values of the ratio
between the SL layer thicknesses. The patterns
arranged one above another in Figs. 5a and 5b corre-
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Fig. 4. Calculated frequencies of polar vibrations of
(AlN)n/(GaN)m superlattices as a function of the relative AlN
layer thickness x = n/(n + m). The frequencies of only the
dominant components E(LO)+ and A(TO)+ are shown for the
E(LO) and A(TO) modes propagating in the SL layers.
PH
spond to different SLs. The top patterns correspond to
SLs with thin AlN layers (n/m = 18/2). The patterns in
the middle part of Figs. 5a and 5b correspond to SLs
with layers of equal thickness (n/m = 10/10), and the
bottom patterns show the atomic displacements in SLs
with thin GaN layers (n/m = 2/18). The left-hand and
right-hand parts of Fig. 5a show the eigenvectors of
modes that are close in frequency to the A(LO) mode
in GaN (see Fig. 1b) and to the A(LO) mode in AlN
(Fig. 1b), respectively. These patterns of atomic dis-
placements clearly indicate that one of the modes is
localized within the GaN layer and the other is local-
ized within the AlN layer for any ratio between the SL
layer thicknesses. This character of atomic displace-
ments also explains the fact that the intensities of these
vibration modes vary in proportion to the relative thick-
ness of the corresponding SL basic layer. Calculations
show that the E(TO) modes exhibit similar behavior.
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The pattern of atomic displacements in the E(LO)
and A(TO) vibration modes is qualitatively different.
The calculated eigenvectors of the E(LO)+ and E(LO)–

modes (Fig. 5b) clearly indicate that these modes are
delocalized over the entire SL at any value of the ratio
between the SL layer thicknesses. The eigenvectors of
the E(LO)+ and E(LO)– modes are equal to the sum and
difference, respectively, of the eigenvectors of the indi-
vidual layers. This specific form of the latter mode
explains the low intensity of the E(LO)– mode in the
infrared and Raman spectra; due to the antiphase
atomic displacements, the contributions from adjacent
layers to both the derivative of the dipole moment and
the derivative of the polarizability are opposite in sign.

By analyzing the shape of the E(LO)+ and E(LO)–

vibration modes shown in Fig. 5b, we can draw the fol-
lowing conclusions concerning the behavior of their
frequencies. It is easily understood that the frequency
of the E(LO)+ mode lies between the frequencies of the
corresponding modes of the bulk SL constituents.
Indeed, in this mode, the atomic displacements in each
layer (shown in the left-hand part of Fig. 5b) are similar
in character to those in the bulk SL constituents and the
parameters of the potential that determine the vibration
frequency (the short-range force constant, the effective
charge) vary continuously between their values in the
bulk SL constituents as the SL structure varies from
AlN (at n = 0) to GaN (at m = 0).

It is more difficult to explain the mode frequency
varying in inverse proportion to the relative SL layer
thickness observed for the E(LO)– mode. The shape of
this vibration mode is shown in the right-hand part of
Fig. 5b. It can be seen that the atomic displacements in
adjacent SL layers are antiphase and that only the dis-
placements of nitrogen atoms are large due to their rel-
atively small mass. Note that the amplitudes of the
atomic displacements in different basic layers vary in
inverse proportion to the layer thickness, because the
position of the center of gravity must remain
unchanged. This relation between the vibration ampli-
tudes in different layers is the reason why the frequency
of this mode is determined primarily by the vibrations
of the atoms in the thin layer. However, this simple con-
sideration provides no explanation for the fact that the
frequency of this LO mode lies in the frequency range
of TO vibrations.

3.3. Angular Dispersion

From the results of calculations presented above, it
follows that the A(TO) and E(LO) vibration modes
exhibit one-mode behavior and are delocalized over the
entire SL and that the A(LO) and E(TO) modes exhibit
two-mode behavior and are localized within one of the
basic layers. The A(LO) and E(TO) modes correspond
to wave vectors q || z, and the A(TO) and E(LO) modes
are observed at q ⊥  z. Therefore, as the angle θ =

 varies from 0 to π/2, the former groupqz/ q( )arccos
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of modes transforms into the latter group and vice
versa. At θ = 0, the entire spectrum is a superposition of
the spectra shown in Figs. 1a and 1b. As the angle θ
increases to π/2, these spectra transform into those
shown in Figs. 3a and 3b. The θ dependence of the fre-
quencies of all polar modes in the calculated Raman
spectrum of an SL with equally thin layers is shown by
dots in Fig. 6.

In the course of this transformation of modes,
according to our calculations, vibrations change in
character from vibrations localized within one basic
layer to vibrations delocalized over the entire SL.
Therefore, in the range 0 < θ < π/2, the Raman-active
phonon modes have an intermediate character of local-
ization. The change in the shape of vibrations is accom-
panied by a change in the intensity of the Raman bands.
Indeed, at θ = 0, the ratio between the Raman line inten-
sities calculated for an SL with equally thin layers (m =
n) is approximately 1 : 2 and corresponds to the ratio of
the polarizabilities of the Al–N and Ga–N bonds (Fig. 1),
whereas at θ = π/2 the intensities differ more signifi-
cantly (Fig. 3). As the direction of the wave vector var-
ies from θ = 0 to π/2, the A(TO)– and E(LO)– bands dis-
appear.

Computer simulations make it possible to study the
behavior of the Raman spectrum of SLs with various
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tric-continuum model (solid lines). Squares are experimen-
tal values determined from Raman spectra. The frequency
regions of quasi-confinement (QC) and interface (IF) modes
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layer thicknesses, but they do not reveal the reason why
the E(TO) and A(LO) modes are localized within one
basic layer and why the E(LO) and A(TO) modes are
delocalized. It is surprising that, due to the behavior of
the A(TO)– and E(LO)– modes, in the Raman spectrum
of an SL, there appear bands with frequencies corre-
sponding to the LO-mode bands of the bulk SL constit-
uents in the TO-mode frequency range and vice versa.
In the model used by us, the coupling between vibra-
tions in adjacent layers is due to Coulomb forces.
Therefore, there is reason to believe that the specific
features of the dipole vibration spectrum are associated
with dipole–dipole interactions. Macroscopic consider-
ation of the propagation of polarization waves in a lay-
ered elastic medium may give some insight into this sit-
uation. The next section is devoted to this issue.

4. DIELECTRIC-CONTINUUM MODEL

Within the dielectric continuum approximation, the
microscopic details of the crystal structure are ignored
and an SL is considered a uniform elastic medium with
a certain permittivity. The complete solution to this
problem for GaN/AlN-type structures, in which the dis-
persion dependences of the permittivities of both mate-
rials overlap, is given in [12]. One of the first applica-
tions of this model to describe polar vibrations in SLs
was made in [13] using the formulas derived earlier in
[14] for radio waves propagating in a thin-layer
medium. Polar vibrations of a dielectric elastic contin-
uum were considered in an infinite system consisting of
plane-parallel layers with thicknesses d1 and d2 and
dielectric constants ε1 and ε2, which are arranged peri-
odically along the direction (z axis) perpendicular to the
interfaces between the layers. By solving the equation
of elastic vibrations in combination with Maxwell’s
equations and taking a volume average, the following
expressions were derived in [14] for the effective
dielectric constant:

 (1)

 (2)

where d = d1 + d2.
The rigorous derivation of Eqs. (1) and (2) carried

out in [14] involves complicated mathematical manipu-
lation. However, in the limiting case of long wave-
lengths, the result can be interpreted in the following
way. Let us consider the states with a uniform polariza-
tion in each layer. It is these states that correspond to
atomic displacements along the eigenvectors of zone-
center phonons whose lines in optical-vibration spectra
are the strongest. The electric field in the basic layers is
described by vectors E1 and E2 and electric inductions
D1 = ε1E1 and D2 = ε2E2.

In the case where the electric field is parallel to the
interface between the layers (the xy plane), the equation
curlE = 0 leads to the condition of the tangential com-

εx y, d
1–

d1ε1 d2ε2+( ),=

εz dε1ε2 d1ε2 d2ε1+( ) 1–
,=
P

ponent of the electric field being continuous at the inter-
faces:

 

Therefore, the average electric induction is given by

 

from which we immediately obtain Eq. (1).
In the case where the electric field is parallel to the

z axis, the equation divD = 0 leads to the condition that
the electric induction be continuous at the interfaces:

 

Therefore, the average electric field is

 

from which we immediately obtain Eq. (2).
Equations (1) and (2) correspond to the case of long-

wavelength vibrations with a polarization perpendicu-
lar to the z axis and parallel to this axis, respectively,
i.e., to E-type and A-type vibrations, respectively. The
roots of the equation ε(ω) = 0 correspond to LO modes,
and the frequencies at which ε(ω) becomes infinitely
large correspond to TO modes.

From Eq. (2) for the dielectric constant εz(ω) of the
SL, it follows that the zeros of εz(ω) are zeros of the
dielectric constant of either of the two basic layers; i.e.,
εz(ω) = 0 if ε1(ω) = 0 or ε2(ω) = 0. Therefore, the fre-
quencies of A(LO) vibrations of the SL coincide with
the frequencies of A(LO) vibrations of the bulk SL con-
stituent materials. The same is also true for E(TO)
vibrations. From Eq. (1) for the dielectric constant
εx, y(ω) of the SL, it follows that the poles of εx, y(ω)
coincide with the poles of the dielectric constant of
either of the two basic layers; i.e., εx, y(ω) = ∞ if ε1(ω) =
∞ or ε2(ω) = ∞. Therefore, the frequencies of E(TO)
vibrations of the SL coincide with the frequencies of
E(TO) vibrations of the bulk SL constituents.

Thus, Eqs. (1) and (2), which describe polarization
waves propagating in a layered medium, confirm our
conclusion that SLs support long-wavelength polar
optical vibrations at frequencies coinciding with those
of the A(LO) and E(TO) vibration modes in the pure SL
constituents.

The solutions to equations εx, y(ω) = 0 and εz(ω) = ∞
differ in character. They correspond to the A(TO) and
E(LO) modes propagating along the SL layers. For the
E(LO) vibration modes, it follows from Eq. (1) that

 (3)

and for the A(TO) modes Eq. (2) immediately gives

E1 x, E2 x, E.= =

D
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 (4)

The ε(ω) dependence for each SL constituent material
is given by

 (5)

where the components εx, y(ω) are determined by the E
modes and the component εz(ω) is determined by the A
modes. Using these relations and solving Eqs. (3) and
(4) for ω, we can express the frequencies of the A(TO)
and E(LO) modes in the SL in terms of the parameters
of the vibration spectra of the bulk SL constituents and
the layer thicknesses. However, instead of deriving
cumbersome expressions, we consider the dependence
of the solutions on the ratio d1/d2 in a qualitative man-
ner. It will be recalled that, for crystals of GaN
(medium 1) and AlN (medium 2), the frequencies of the
A and E vibration modes satisfy the inequalities

TO1 < TO2 < LO1 < LO2. 

Using Eq. (5), we calculate the ratio between the dielec-
tric constants of the bulk SL constituents as a function
of frequency, f(ω) = ε1(ω)/ε2(ω). This function is plot-
ted in Fig. 7. It can be seen that f(ω) is negative in the
ranges TO1 < ω < TO2 and LO1 < ω < LO2. Over each
of these ranges, f(ω) varies monotonically from 0 to
−∞; therefore, each of Eqs. (3) and (4) has a unique
solution in these ranges at any value of d1/d2. In each
pair of these solutions, there is a normal member,
A(TO)+ or E(LO)+, whose frequency lies in the range
between the corresponding frequencies in the bulk SL
constituents

A(TO1) < A(TO)+ < A(TO2), 

E(LO1) < E(LO)+ < E(LO2), 

and an anomalous member, A(TO)– or E(LO)–, whose
frequency satisfies the inequalities

A(LO1) < A(TO)– < A(LO2), 

E(TO1) < E(LO)– < E(TO2). 

From the curve plotted in Fig. 7, we can qualitatively
determine the dependence of the frequencies of the nor-
mal and anomalous modes on the ratio between the SL
layer thicknesses. Let us consider, e.g., the E(LO)
modes whose frequencies are defined by Eq. (3). The
normal root of this equation lying within the (LO1,
LO2) range tends to LO1 and LO2 as d2  0 d1 
0, respectively; i.e., the frequency of this mode varies in
proportion to the percentage of the corresponding SL
constituent. The anomalous root of this equation lying
within the (TO1, TO2) range approaches TO1 and TO2
as d1  0 and d2  0, respectively; i.e., the fre-
quency of this mode varies in inverse proportion to the
percentage of the corresponding SL constituent. Anal-

εz ω( ) ∞
ε1 ω( )
ε2 ω( )
--------------⇒

d1

d2
-----.–= =

ε ω( ) ε∞
ω2 ωLO

2
–

ω2 ωTO
2

–
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ogous conclusions can be drawn concerning the A(LO)+

and A(LO)– modes.

Using Eqs. (1), (2), and (5), we can find the zeros
and poles of the function ε(ω) for an arbitrary direction
of the wave vector and thus investigate the angular dis-
persion of the normal vibration modes of the SL. The
results of these calculations for an SL with equally thin
layers (m/n = 1) are shown in Fig. 6 (solid lines) and are
seen to agree well with the results of computer simula-
tion (shown by dots in Fig. 6).

On the whole, the dielectric continuum model con-
firms the conclusions drawn from computer simula-
tions. Furthermore, there is close agreement between
the numerical values obtained using these two methods
even for SLs with very thin layers. However, computer
simulation enables one to study the Raman band inten-
sities and explain the observed phenomena on a micro-
scopic level.

5. EXPERIMENTAL RESULTS

The Raman spectra of SLs fabricated from hexago-
nal gallium and aluminum nitrides (GaN, AlN) have not
been adequately studied experimentally [4, 15–17].
The reason for this is above all the technological prob-
lems associated with producing these heterostructures.
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We studied the Raman spectra of GaN/AlN superlat-
tices grown on Al2O3 (0001) substrates using vapor-
phase epitaxy from organometallic compounds (with
periods d = 30, 40, 100 nm) and of GaN/AlxGa1 – xN
superlattices with x = 0.28 and periods d from 320 to
5 nm [18].

Figure 8 shows the Raman spectra of a GaN/AlN SL
with a period d = 20 + 20 nm in the region of high-fre-
quency optical vibrations. These spectra confirm the
prediction from model calculations that the Raman
spectrum of SLs has a group of lines at frequencies
close to the phonon frequencies in unstrained bulk GaN
and AlN crystals. This group includes the lines that cor-
respond to E2 phonons and polar A(LO) and E(TO)
vibration modes propagating perpendicular to the SL
layers. This result agrees with the model calculations
according to which the SL supports vibrations localized
within one basic layer. The observed shifts of lines from
their positions in unstrained bulk crystals are certainly
due to elastic stresses that arose during the SL growth.
This interpretation has already been given in the litera-
ture [4]. However, only the fact that these vibrations are
localized (as was revealed by our calculations) can be
considered a theoretical substantiation of this interpre-
tation and this makes it possible to reliably estimate the
sign and magnitude of the strains in the SL layers from
the observed frequency shifts. For example, it can be
seen from Fig. 8 that the shifts in the position of the
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P

lines corresponding to the localized E1(TO) vibration
modes in the AlN and GaN layers differ in sign, which
indicates that the strains in these layers are also oppo-
site in sign. Using the data on phonon deformation
potentials in GaN [19] and AlN [20], we determined the
magnitude of stresses in the SL layers. These stresses are
found to be –3.7 and 5.6 GPa in GaN and AlN, respec-
tively, for GaN/AlN SLs with a period of 20/20 nm and
–4.5 and 8.7 GPa in GaN and AlN, respectively, for SLs
with a period of 15/15 nm.

The experimental data also indicate that the Raman
spectrum of an SL is not a superposition of the Raman
spectra of the bulk SL constituents; indeed, there is also
a group of lines at frequencies that differ significantly
from the frequencies of the Raman bands observed in
bulk GaN and AlN crystals. The experiment shows that
these lines correspond to A1(TO) phonons and, under
certain conditions, E1(LO) phonons. Note that these
phonons propagate along the SL layers and, according
to calculations, are delocalized vibrations involving all
SL layers. Indeed, the Raman spectrum corresponding
to A(TO) phonons (Fig. 8a) contains a 570-cm–1 line,
which lies between the A1(TO) line of GaN and the
A1(TO) line of AlN. It is natural to assign this strong
line to the normal A(TO)+ mode, whose frequency is
565 cm–1 according to computer simulation and
570 cm–1 in the dielectric-continuum model. Experi-
mental values of the A(TO)+ mode frequency measured
in different SLs are given in the inset to Fig. 8a and are
compared with the theoretical dependence of this fre-
quency A(TO)+ on the relative SL layer thickness. The
line corresponding to the A(TO)– mode is not observed
in the spectrum in Fig. 8a. The frequency of this mode
is predicted to be 845 cm–1 according to computer sim-
ulation and 840 cm–1 in the dielectric-continuum
model. It is likely that this mode is not visible because
its intensity is very low (in complete agreement with
theory).

Theory predicts that a similar situation will be
observed in the Raman spectrum corresponding to lon-
gitudinal E1 vibrations. Experimentally, however, a
Raman spectrum of E1(LO) modes recorded for a
GaN/AlN SL with d = 20 + 20 nm exhibits two strong
lines (rather than one) at frequencies close to the
E1(LO) mode frequencies in bulk GaN and AlN
(Fig. 8c). This discordance between theory and experi-
ment may be explained by the fact that the calculations
are carried out for an SL with a period equal to 20 lat-
tice parameters, i.e., approximately 10 nm, whereas the
experimental spectra are recorded for SLs with periods
of 30, 40, and 100 nm. The delocalization effects are
not likely to arise in this case, because the interaction
between widely spaced layers via the longitudinal elec-
tric field is weak due to the large difference between the
natural frequencies of longitudinal LO vibrations in
bulk GaN and AlN crystals. For this reason, we also
studied GaN/AlxGa1 − xN superlattices with x = 0.28
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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Fig. 9. Raman spectra for (a) the A1(TO) and (b) E1(LO) phonon modes propagating along the layers of GaN/Al0.28Ga0.72N SLs
with various periods d. The SL layer thicknesses dGaN/dAlGaN are (1) 1500/1500, (2) 320/320, (3) 160/160, (4) 80/80, (5) 40/40,
(6) 20/20, (7) 10/10, (8) 5/5, and (9) 2.5/2.5 nm. The mode frequencies in bulk crystals are indicated by vertical dashed lines: S1 for
GaN and S2 for Al0.28Ga0.72N.
and periods ranging from 320 to 5 nm, in which the dif-
ference in bulk phonon frequencies between GaN and
an AlxGa1 − xN solid solution is less than that between
GaN and pure AlN (70 instead of 172 cm–1). The exper-
imental data obtained are shown in Fig. 9. It can be seen
that, as the period of GaN/AlxGa1 − xN superlattices
decreases, the longitudinal E1 phonon mode becomes
progressively more delocalized. Indeed, for the
GaN/AlxGa1 − xN SL with x = 0.28 and d = 160 nm, the
Raman spectrum is similar to that of the GaN/AlN SL
with d = 40 nm. However, the Raman spectra of
GaN/AlxGa1 − xN SLs with a period less than 40 nm
(curve 6 in Fig. 9b) agree well with the microscopically
calculated spectrum. The spectra have only one line,
which corresponds to the delocalized normal E(LO)+

mode and is positioned in the frequency range between
the lines of the longitudinal E1(LO) modes of different
basic layers. The anomalous E(LO)– mode is not
observed, which is likely due to the peculiar shape of
this mode (predicted from theory) having antiphase
atomic displacements in different basic layers. The
Raman spectrum corresponding to A1(TO) vibrations
exhibits a similar behavior (Fig. 9a).
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6. DISCUSSION OF THE RESULTS

In our model of the potential functions of AlN and
GaN crystals, the short- and long-range interactions are
separated. The short-range forces are restricted to the
valence tetrahedra and are characterized by the force
constants for the nearest and next-to-nearest neighbor
atoms. The long-range forces are described within the
rigid-ion approximation. Despite its simplicity, this
model reproduces the spectrum of all phonon states and
agrees well with the results of nonempirical quantum-
mechanical calculations [21, 22].

Our study shows that application of this microscopic
model in simulating the dynamics of the AlN/GaN
superlattice (and, in particular, the Raman spectrum)
makes it possible to describe and interpret the main
experimentally observed features. The specific feature
of the vibration spectra of the SLs under study that is of
most interest for both theory and practical application is
the presence of strong lines in the Raman spectrum at
frequencies lying between the frequencies of the corre-
sponding modes in bulk AlN and GaN.

The good agreement between numerical solutions
of the problem on atomic-lattice vibrations and solu-
tions to the macroscopic equations that describe vibra-
5
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tions of an elastic continuum suggests that the long-
range dipole–dipole interactions are of primary impor-
tance. Interestingly, the macroscopic description is
valid even for SLs with very thin layers (down to four
atomic monolayers). The solutions considered in this
paper correspond to vibrations of almost uniformly
polarized layers. Of course, the entire phonon spectrum
of an SL contains many other vibration modes that orig-
inate from phonons at different points of the Brillouin
zone in the bulk SL constituents and are similar in char-
acter to standing waves in separate layers. However, it is
the abovementioned quasi-uniform vibrations originat-
ing from zone-center phonons in the bulk SL constitu-
ents that correspond to the strongest lines in the experi-
mental optical-vibration and Raman spectra of SLs.

In the Raman spectra of SLs, there are two groups of
modes that exhibit different dependences on the relative
SL layer thicknesses. One group includes the A1(LO)
and E1(TO) modes, whose frequencies coincide with
those in the bulk SL constituents, and the other group
includes the A1(TO) and E1(LO) modes, whose fre-
quencies differ significantly from the frequencies of the
respective modes in the bulk SL constituents. The
results of computer simulations make it possible to
explain the different behavior of these modes in terms
of the degree of their localization.

In terms of the dielectric-continuum model, the
modes of these two groups are referred to as confine-
ment and interface modes, respectively [23]. These
names originate from the solution of the problem of
propagation of elastic waves in two semi-infinite media
with a plane interface between them.

Among the possible solutions to this problem, there
are modes whose wave vector is directed along the z
axis (perpendicular to the interface) and has real values
in both media. Certain combinations of these modes
describe standing waves that are confined to one of the
media (confinement modes). Of the SL vibration modes
considered by us, the A(LO) and E(TO) modes with a
wave vector directed along the z axis are confinement
modes. It can be seen in Fig. 5a that these modes decay
rapidly in the adjacent layer and that their penetration
depth is two to three elementary layers. The localiza-
tion (confinement) of vibrations within separate layers
is due to two factors: sufficiently short–range forces
and screening of the long-range dipole–dipole forces
by the interface charges induced by atomic displace-
ments.

The interface modes correspond to solutions for
which the x and y components of the wave vector are
real and the z component has complex values in both
media. These solutions describe waves that propagate
along the interface, with the atomic-displacement
amplitude decaying exponentially with distance from
the interface. Therefore, an interface mode is localized
near the interface. Note that, in periodic layer struc-
tures, the term “interface mode” is applicable only to
waves for which the decay length is much less than the
P

spatial period of the structure. Otherwise, the amplitude
of atomic displacements decreases only slightly
through the thickness of a layer and the notion of inter-
face modes as vibrations localized near the SL inter-
faces loses its meaning. In this case, the solutions in
which the vibration amplitude decreases only slightly
with distance from an interface into both layers corre-
spond not to vibrations localized near the interface but
rather to vibrations that involve all atoms of all SL lay-
ers, i.e., to completely delocalized vibrations. Among
the SL vibration modes considered by us, the A(TO)
and E(LO) modes with a wave vector directed along the
x or y axis are delocalized. The interaction between SL
layers occurs mainly via the long-range dipole–dipole
forces, as indicated by the high accuracy of the results
obtained using the macroscopic approximation. Due to
this dipole–dipole interaction, the A(TO)+ and A(TO)–

modes (with inphase and antiphase atomic displace-
ments in adjacent layers, respectively) differ greatly in
frequency and the frequency of the latter mode falls
within the range of the LO-mode frequencies.

The frequencies of the delocalized modes (or inter-
face modes, according to established terminology) in
GaN/AlN SLs lie within the band gaps of the vibration
spectra of the bulk SL constituents, as can be seen in
Fig. 6, which shows the angular dependence of the fre-
quencies of these modes in an SL with equally thin lay-
ers and the angular dispersion of the polar vibration
modes of bulk AlN and GaN crystals. The frequency
bands of the TO and LO modes of pure AlN and GaN
crystals are labeled QC. At q || z (θ = 0, the left-hand
extreme of Fig. 6), all polar modes of the SL are con-
finement modes, i.e., are localized within separate lay-
ers. At q ⊥  z (θ = π/2, the right-hand extreme of Fig. 6),
these modes transform into interface modes delocalized
over the entire SL. Therefore, over the range 0 < θ <
π/2, the localization of the polar optical phonon modes
is intermediate in character. Such modes are referred to
as quasi-confinement modes [12]. In the case of two
semi-infinite dielectric media, these modes correspond
to standing waves with a real-valued wave vector in one
medium and a complex-valued wave vector in the other.
Therefore, these waves are localized in the former
medium and penetrate into the latter, decaying expo-
nentially with distance from the interface.

7. CONCLUSIONS

It has been shown that, as the relative layer thickness
of GaN/AlN and GaN/AlxGa1 − xN superlattices varies,
the Raman lines exhibit a one-mode or two-mode
behavior. The one-mode behavior is exhibited by the
A(TO) and E(LO) modes; their intensity varies only
slightly, and their frequency varies monotonically
between the frequencies of the corresponding modes in
the bulk SL constituent materials. The two-mode
behavior is exhibited by the A(LO) and E(TO) modes
and the nonpolar E modes originating from the E2
modes of the bulk SL constituents; their frequency
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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almost coincides with the frequency of the analogous
mode in the corresponding bulk SL constituent, and
their intensity varies in proportion to the percentage of
the corresponding SL constituent.

Computer simulations of the lattice dynamics have
made it possible to explain this behavior of the optical
SL vibration modes in terms of the degree of their
localization. The Raman lines that exhibit two-mode
behavior originate from vibrations localized in certain
SL layers, whereas the Raman lines that exhibit one-
mode behavior are associated with vibrations delocal-
ized over the entire SL. The vibration frequencies cal-
culated using the dielectric-continuum model (elastic
polarizable medium) agree well with the results of
computer simulations. This fact indicates conclusively
that the specific features of the optical vibration modes
of SLs are due to the long-range dipole–dipole interac-
tions. These interactions couple vibrations of separate
SL layers in the delocalized A(TO) and E(LO) modes.
Due to screening of the internal electric field by surface
charges at the interfaces, the A(LO) and E(TO) modes
are localized in certain layers, i.e., behave as confine-
ment modes.

The frequencies of delocalized SL vibrations
depend crucially on the relative thickness of the SL lay-
ers. The delocalized mode in which the atoms of adja-
cent layers move in phase produces a very strong
Raman line. Due to these properties, Raman spectros-
copy is considered an efficient and fairly accurate
method for quantitatively characterizing the structure
and composition of SLs.
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Abstract—The local structure of the chemical bond of iron ions implanted into SiO2 glasses (implantation
energy, 100 keV; fluence, 1 × 1016 cm–2) is investigated using x-ray emission and absorption spectroscopy. The
Fe L x-ray emission and absorption spectra are analyzed by comparing them with the corresponding spectra of
reference samples. It is established that iron nanoparticles implanted into the SiO2 vitreous matrix are in an oxi-
dized state. The assumption is made that the most probable mechanism of transformation of iron nanoparticles
into an oxidized state during implantation involves the breaking of Si–O–Si bonds with the formation of Si–Si
and Fe–O bonds. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Nanoclusters of 3d transition metals (iron, nickel,
cobalt) dispersed into dielectric matrices are character-
ized by large values of the magnetic moment, coercive
force, and shift in the hysteresis loop and exhibit a great
variety of interesting magneto-optical properties [1].
This makes it possible to use these materials as optical
switches, shutters or waveguides [2], enhanced mag-
netic refrigerants, and high-density magnetic recording
media [3, 4]. Amorphous silicon dioxide SiO2, which is
the most important dielectric material in modern elec-
tronics, has been widely used as a matrix for dispersion
of metal nanoparticles. At present, ion implantation is a
powerful tool for introducing metal nanoparticles into
dielectric matrices owing to the simplicity and accuracy
of the control of the nanocomposite microstructure, the
quantitative analysis of implanted ions and their distri-
bution over the depth of the matrix and particle size, the
distribution of implanted ions in a nanocluster, etc.
Moreover, ion implantation is entirely compatible with
modern technology for producing silicon semiconduc-
tors and can be accomplished with an almost arbitrary
metallic dopant. In this work, the local configurations
of the chemical bonds of iron ions implanted into SiO2

glasses were investigated using soft x-ray emission and
absorption spectroscopy.
1063-7834/05/4704- $26.00 0754
2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Silicon dioxide SiO2 was irradiated by iron ions at a
dose of 1616 ions/cm2 with the use of 56Fe+ (which is
close to the natural mixture of isotopes, sample a) and
57Fe+ (isotope 57, sample b). Prior to ion implantation,
glass samples 10 mm in diameter and 0.8 mm in thick-
ness were subjected to wet chemical cleaning in a solu-
tion of H2O2 : H2SO4 = 1 : 1 at a temperature of 120°C,
after which the samples were washed with deionized
water and dried. The implantation of 57Fe ions was
accomplished on a DANFYSIK high-current implanter
operating at a voltage of 200 kV at the Research Center
Rossendorf, Institute of Ion Beam Physics and Materi-
als Research, Germany. The samples were mounted on
a target holder and affixed to it with an adhesive carbon
tape. The implantation was performed with separated
(according to mass) charged 57Fe ions along the normal
to the surface of the sample at room temperature. The
residual pressure in the ion implantation chamber
reached 10–6 Torr. The samples were irradiated at flu-
ences ranging from 1 × 1014 to 1 × 1016 cm–2 and at a
current density of 0.1–0.2 µA/cm–2. In each event of
implantation, the energy E of iron ions was equal to
100 keV, which corresponded to their path in silicon
dioxide Rp = 83 nm (the maximum in the Gaussian dis-
tribution) for doses up to 1 × 1016 cm–2. For the greatest
© 2005 Pleiades Publishing, Inc.
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dose of ion implantation, which is equal to 1 × 1017 cm−2,
the maximum in the 57Fe distribution is located at a
lesser depth (68 nm) due to an increase in the degree of
sputtering (at approximately 15 nm for SiO2). The max-
imum atomic fraction of 57Fe in SiO2 amounted to 20%
for a dose of 1 × 1016 cm–2. The relative content of 57Fe
isotope in the implanted glass samples was approxi-
mately equal to 90% (the remaining 10% were
accounted for by other iron isotopes). The implantation
of 56Fe+ ions was accomplished on a high-voltage
implanter operating at a voltage of 500 kV at the
Research Center Rossendorf, Institute of Ion Beam
Physics and Materials Research, Germany. In this case,
the conditions used for preparing the samples and for
their implantation were similar to those described
above. Since the ionic current provided by the second
implanter was weaker, the mass separation used was
smaller. As a result, the isotope composition of the
implanted samples involved isotopes 55, 56, and 57
with the maximum concentration of 56Fe.

The x-ray emission and absorption spectra were mea-
sured on a BL27SU Spring-8 beam line (Japan) with a
soft x-ray fluorescence spectrometer. The well-focused
ion beam (less than 10 µm in the transverse direction)
made it possible to use a slitless spectrometer, which
improved the throughput of the instrument and the detec-
tion efficiency. The slitless spectrometer with a spherical
varied-line-spacing (VLS) grating and a back-illumi-
nated (BI) charged-coupled device (CCD) detector [5]
provided an energy resolution E/∆E = 1000.

3. RESULTS AND DISCUSSION

Our analysis of the Fe 2p x-ray absorption spectra is
based on the data obtained by van der Laan and Kirk-
man [6] and de Groot [7], who carried out systematic
investigations and interpreted the calculated 2p absorp-
tion spectra of 3d transition metal compounds. The 2p
x-ray absorption spectra are allowed by the dipolar
selection rules and correspond to electronic transitions
from the 2p core level to the 3d vacant states, i.e., to the
transition from the ground state with electronic config-
uration 2p63dn to the excited state with electronic con-
figuration 2p53dn + 1. Since the Coulomb interaction
between a hole at the 2p core level and 3d electrons is
significant, the 2p x-ray absorption spectra are deter-
mined by the local electronic structure and provide
information on the oxidation state and the symmetry of
3d transition metal ions in a particular compound. The
2p3/2 and 2p1/2 spectral components are well resolved by
virtue of the core-hole spin–orbit interaction and have a
multiplet structure because the broadening due to the
core-hole lifetime is very small. As was shown in [6, 7],
there is a clearly pronounced difference between the
calculated 2p spectra for the ground states of different
iron ions (Fe2+ and Fe3+), which can be used to identify
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      200
the chemical state of iron ions implanted into SiO2

glasses. Figure 1 presents the experimental Fe 2p x-ray
absorption spectra of iron-implanted SiO2. The inten-
sity of these spectra is normalized to the low-energy
peak A, which is located at an energy of ~707.8 eV. We
could measure the Fe 2p x-ray absorption spectra only
for the samples irradiated at a maximum dose (D = 1 ×
1016 cm–2). The 2p x-ray absorption spectra consist of
low-energy 2p3/2 (L3) and high-energy 2p1/2 (L2) compo-
nents separated by approximately 13 eV. The relative
intensity of the peak B located at an energy of ~709.3 eV
in the x-ray absorption spectra for all samples of iron-
implanted SiO2 is very close to that of divalent iron (the
spectrum is characterized by a higher intensity of the
peak A); however, it differs substantially from the rela-
tive intensity of the peak B attributed to trivalent iron. It
should be noted that the 2p x-ray absorption spectra
cannot be described in terms of the one-particle density
of states, because the electronic correlations in atoms
with a partially filled 3d shell are very significant [6].
As a rule, the solid-state effects are introduced into
atomic-like calculations of the 2p absorption spectra
through the inclusion of a crystal field that accounts for
the local symmetry of the metal atom and the matrix
elements of different hybridizations of the 3d orbitals
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Fig. 1. Fe 2p x-ray absorption (TFY) spectra of iron-
implanted SiO2 glasses. The spectra of the reference sam-
ples are shown for comparison.
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with the surrounding ligands [6]. It is found that, within
the single-configuration approach, the experimental L
x-ray absorption spectra of 3d metals in different com-
pounds can be reproduced fairly well. According to the
experimental x-ray absorption spectra of trivalent and
divalent iron atoms (Fig. 1), the double-peak structure
of the Fe 2p absorption spectra is assigned to the final
state with electronic configuration d5 (Fe3+) and the sin-
gle-peak structure of these spectra is attributed to the
final state with electronic configuration d6 (Fe2+),
which roughly reflects the multiplet structure. There-
fore, the above results allow the conclusion that dis-
persed iron nanoparticles interact with SiO2 and can
oxidize to the Fe2+ state. It was also established that the
chemical state of iron atoms in iron-implanted silicon
dioxide is not sensitive to the substitution for an iron
isotope.

The Fe Lα and Fe Lβ nonresonant x-ray emission
spectra of SiO2 : Fe (Fig. 2) can be analyzed in a similar
manner. As in the case with the Fe 2p x-ray absorption
spectra, we could measure only the samples irradiated
at the dose D = 1 × 1016 cm–2. The Fe Lα and Fe Lβ
x-ray emission spectra are associated with the elec-
tronic transitions Fe 3d4s  2p3/2, 1/2 and provide
probing the Fe 3d4s occupied states. It can be seen from
Fig. 2 that the intensity ratio Lβ/Lα is very small for the
pure metal and differs from the value of 0.5 expected
for the statistical mean occupancy of the inner levels
with j = 3/2 and 1/2 due to the Coster–Kronig nonradi-
ative transition L2L3M4, 5 [8]. It is known that the inten-
sity ratio Lβ/Lα increases upon changing over from
pure 3d metals to their oxides, because the probability
of the Coster–Kronig nonradiative transition L2L3M4, 5

occurring in 3d metal oxides is considerably lower than
that in pure metals [9]. The intensity ratio Lβ/Lα in the
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Fig. 2. Comparison of Fe Lα and Fe Lβ x-ray emission (Fe
Lα, Lβ XES) spectra of iron-implanted SiO2 glasses with
the spectra of the pure iron metal and FeO oxide.

Lα
P

spectra of the SiO2 : Fe samples under investigation is
larger than that in the spectra of metallic iron and FeSi2

and is almost identical to that in the spectrum of FeO.
From the aforesaid, we can make the inference that,
after the implantation, iron atoms in SiO2 : Fe are in a
valence state of 2+. This inference is in complete agree-
ment with the results of measuring the Fe 2p x-ray
absorption spectra (Fig. 1).

The results obtained can be interpreted as follows. It
is known that nanocrystalline metal particles are thermo-
dynamically metastable and chemically active. Iron
nanoparticles are pyrophoric and can be readily oxidized
[10]. According to our investigations, iron ions transform
into an oxidized state with the subsequent formation of
clusters during implantation of the SiO2 glass. It is
assumed that the ion implantation brings about the
breaking of Si–O–Si bonds, the formation of Si–Si
bonds, and the subsequent capture of oxygen atoms by
iron atoms with the formation of FeO oxide in the form
of small-sized clusters. A similar behavior is observed in
the case of SiO2 implanted by cobalt atoms [11].

4. CONCLUSION

The local structure of the chemical bond in amor-
phous silicon dioxide after iron ion implantation was
studied using x-ray emission and absorption spectros-
copy. It was revealed that the ion implantation is
accompanied by the formation of iron nanoparticles in
an oxidized state due to the breaking of Si–O–Si bonds
and the formation of Si–Si and Fe–O bonds. In this
case, the iron atoms have a valence of 2+. It was dem-
onstrated that the valence state of iron atoms in
implanted amorphous silicon dioxide is not sensitive to
substitution for an iron isotope.
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Abstract—Interatomic interaction potentials constructed in the framework of the embedded-atom method are
used to study the structural, diffusional, and vibrational properties of ordered Cu(001)–c(2 × 2)–Pd surface and
subsurface alloys. The equilibrium structures obtained for these alloys are in good agreement with experimental
data and the results of other calculations. The calculated diffusional characteristics are consistent with the
experimental kinetics and evolution of the surface alloys and attest to the stability of the subsurface alloy. The
activation energy for planar diffusion of palladium in the initial stage of the alloy formation agrees with the
value measured using scanning tunneling microscopy. The calculated surface phonon frequencies agree well
with the experimental values obtained using electron-energy-loss spectroscopy. The results show that the Cu–
Pd bond is strong and that the bond between surface copper atoms weakens. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The formation of surface alloys at the initial stages
of epitaxial growth has been attracting considerable
interest [1]. One of the most extensively studied sys-
tems is Pd/Cu(001), since this system is characterized
by high surface catalytic activity [2–15]. Experimental
studies of the Pd/Cu(001) structure by low-energy elec-
tron diffraction (LEED) have shown that palladium
atoms deposited at room temperature are incorporated
in the surface layer of copper and that an ordered
Cu(001)–c(2 × 2)–Pd surface alloy forms at a covering
of 0.5 monolayer (ML) [3, 5]. The formation of a sur-
face alloy in this system was also experimentally con-
firmed by photoemission [3], LEED [6], and Ruther-
ford back scattering data [4]. The fact that the surface
alloy is preferred over the ordered c(2 × 2) coating was
also confirmed by a number of computations using ab
initio [7] and semiempirical [6, 8] methods. To reveal
the formation kinetics of the surface alloy, the authors
of [16] applied scanning tunneling microscopy (STM)
to study the diffusion mechanisms of the surface-alloy
formation. They analyzed two mechanisms: (1) the for-
mation of a copper adatom and the migration of incor-
porated Pd in the newly formed copper vacancy (as in
the case of a Cu/Co monolayer on Ru(001) [17]) and
(2) lateral diffusion of Pd atoms via surface vacancies
(as in the case of Mn and In on Cu(001) [18, 19]). It was
found that the second mechanism is realized in this sys-
tem, which was also supported by Monte Carlo calcu-
lations [16]. Moreover, it has also been found that pal-
1063-7834/05/4704- $26.00 0758
ladium diffuses into the subsurface layer and tends to
form a c(2 × 2) ordered alloy [5, 13, 20]. For example,
LEED was used in [20] to determine the migration
energy of palladium into the second layer. To study the
stability of the Cu(001)–c(2 × 2)–Pd surface alloy, the
authors of [21] used electron-energy-loss spectroscopy
(EELS) to measure surface vibrational modes in the

 direction. At room temperature, the only surface

state was found to exist at the  point and was identi-
fied as a mixed state of copper and palladium. However,
upon annealing, a high-frequency peak appeared and
became dominant. This state was interpreted as the ver-
tical-vibration mode in surface copper islands. Apart
from the experimental determination of vibrational fre-

quencies, a phonon spectrum in the  direction was
calculated in that work using the effective-medium the-
ory. Sklyadneva et al. [22], using the embedded-atom
method (EAM) and a potential for the alloy proposed in
[23], performed calculations along all the symmetric
directions of the two-dimensional Brillouin zone. The
calculations showed that, in addition to the mixed state,
states localized at adatoms and the surface atoms of the
substrate are present at the  point.

It should be noted that the surface diffusion and sta-
bility of this system have been studied for specific
cases, though complete understanding and description
of these problems would require complementary stud-
ies. In this work, we calculated the atomic structures of
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X
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X

© 2005 Pleiades Publishing, Inc.
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surface and subsurface alloys and the diffusional char-
acteristics of the system at all stages of alloy formation,
namely, from the initial deposition of palladium to the
formation of a subsurface structure. To support the ade-
quacy of the potentials used for diffusion calculations,
we calculated the vibrational properties of surface and
subsurface Cu(001)–c(2 × 2)–Pd alloys with allowance
for the symmetry of the crystal.

2. CALCULATION PROCEDURE

For calculation, we use the embedded-atom method
proposed in [23] with a potential energy in the form

 (1)

In Eq. (1), the first term is the pair interaction potential,
where rij is the distance between atoms i and j, and the
second term describes many-particle effects. The
embedding function Fi is specified at a site ri and is con-
trolled by the electron density, which is equal to the
sum of the electron densities of all other atoms located

at sites rj; the values of  are obtained by solving the
problem for a free atom in the local density–functional
approximation. The potential applied in this work
includes interatomic interactions up to the fifth coordi-
nation shell. The parameters of the method were fitted
to experimental data on the equilibrium volume,
vacancy-formation energy, bulk modulus of elasticity,
and elastic constants for pure palladium and copper.
The pair potential has the form of a screened Coulomb
potential. To describe the interatomic interaction of dif-
ferent elements, this potential is chosen in the form [24]

 (2)

where ϕA and ϕB are the pair potentials of copper and
palladium, respectively. These potentials describe well
both the diffusional and vibrational properties of the
surface.

The equilibrium surface geometry is found by
molecular-dynamics simulation. The vacancy-forma-
tion energy Ef is defined as

 (3)

where EN, EN – 1, and E1 are the energy of the vacancy-
free system, the energy of the system with a vacancy,
and the energy per atom in the bulk, respectively. The
migration energy Em is defined as

 (4)

where Esp and E0 are the energies of the system with a
migrating atom at the saddle point and at the initial
point of a migration path, respectively. The diffusion
activation energy Q is calculated as the sum of the for-

E 1/2 ϕ rij( )
ij

∑ Fi ρ j
a

rij( )
j i≠
∑ .

i

∑+=

ρ j
a

ϕAB r( ) 1
2
---

ρB r( )
ρA r( )
-------------ϕA r( )

ρA r( )
ρB r( )
-------------ϕB r( )+ ,=

E f EN 1– EN– E1,–=

Em Esp E0,–=
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mation and migration energies. The vibrational spectra
along the symmetric directions of the two-dimensional
Brillouin zone are calculated for a relaxed 31-layer
Cu(001)–c(2 × 2)–Pd film, with palladium atoms being
present in both the surface and subsurface layers.

3. ATOMIC STRUCTURE

To obtain an equilibrium structure, we performed
molecular-dynamics simulation of surface relaxation. It
is found that, due to relaxation of the Cu(001) surface,
the change in the interplanar spacings between the first
and second layers ∆d12 is –0.027 Å (the minus sign
means a decrease in the interplanar spacings as com-
pared to the ideal structure) and the change in the spacing
between the second and third layers is ∆d23 = –0.005 Å.
In deeper layers, the interplanar spacings correspond to
the bulk value, which agrees well with the well-known
experimental data [6]. The equilibrium structure of the
Cu(001)–c(2 × 2)–Pd surface alloy is shown in Fig. 1a.
As a result of relaxation, surface copper atoms are
shifted to the bulk, as in the case of the pure surface,
whereas palladium atoms undergo outward relaxation.
The change in the interplanar spacings between the
copper atoms of the first and second atomic layers ∆d12

is –0.05 Å. Moreover, a splitting δ1 = 0.09 Å appears
between Cu and Pd atoms in the first layer. The calcu-
lations agree with the experimentally determined struc-
ture of the surface alloy. For example, the displace-

δ 4

δ 2

d 3
4

d 2
3

d 1
2

d 1
2

δ 1

(a)

(b)

Cu
Pd

Fig. 1. Atomic structure of (a) a surface and (b) a subsurface
Cu(001)–c(2 × 2)–Pd alloy.
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ments of palladium atoms with respect to the copper
substrate were determined by LEED to be 0.02–0.03 Å,
with the interplanar spacing Cu12 being close to its bulk
value [3]. However, the splittings δ1 between Pd and Cu
atoms in the first layer were experimentally determined
in [6] using medium-energy electron diffraction and
found to be 0.04–0.08 Å. The relaxation ∆d12 = –0.05 Å
and the splitting δ1 = 0.12 Å determined with the EAM
in [6] virtually coincide with our values (we note that
the value of δ1 found in this work is closer to the exper-
imental results).

A more complex geometry is observed for the struc-
ture of the subsurface alloy (Fig. 1b). The changes in the
relaxed interplanar spacings are calculated to be ∆d12 =
0.022 Å, ∆d23 = 0.035 Å, and ∆d34 = –0.022 Å. The split-
tings in the second and fourth layers are calculated to be
δ2 = 0.02 Å and δ4 = 0.001 Å. These results are in satis-
factory agreement with the LEED data from [20].

Energy of copper-vacancy formation Ef, migration energy of
palladium atoms Em, and diffusion activation energy Q for sin-
gle palladium on Cu(001), as well as for surface (Pd : 1) and
subsurface (Pd : 2) Cu(001)–c(2 × 2)–Pd alloys. Superscripts
indicate the numbers of atomic layers, and I and II designate
different mechanisms for the formation of surface vacancies
(see text)

Single Pd/Cu(001)

Q11 Q12

0.61 0.50 1.11 1.42 0.085 1.50

0.474* 0.466* 0.94*

0.88* 
(expt.)

Cu(001)–c(2 × 2)–Pd : 1

Q11 Q12

0.69 0.64 1.33 1.50 0.36 1.86

1.13** 
(expt.)

Cu(001)–c(2 × 2)–Pd : 2

(I) (II)

0.66 1.39 2.05 2.67 1.22 (I) 4.06
(II) 2.61

Q22 Q23

1.46 1.01 2.47 1.38 1.07 2.45

  * Data from [16].
** Data from [20].

E f
1 Em

11
E f

2 Em
12

E f
1 Em

11 E f
2 Em

12

E f
1 Em

21 Q21 E f
1 E f

21 QI,  II
21

E f
2 Em

22 E f
3 Em

23
PH
4. DIFFUSION ACTIVATION ENERGY

As a model for the initial stage of the formation of a
two-dimensional ordered Cu(001)–c(2 × 2)–Pd surface
alloy, we considered the diffusion of a single palladium
adatom on the Cu(001) surface. First, we calculated the
migration energy of the adatom on the Cu(001) surface;
it was found to be 0.62 eV, which is comparable to the
migration energy of Pd on the Pd(001) surface
(0.63 eV) [25]. In this work, we considered the
vacancy-mediated diffusion, since this mechanism is
preferable in the system under study [16]. The calcu-
lated formation energy of a surface vacancy on Cu(001)
(0.58 eV) agrees well with the experimental value (0.59
eV) [26]. The calculation shows that the migration of
adsorbed Pd to the surface copper vacancy occurs with-
out activation (Em < 0), which is observed experimen-
tally [16].

Next, we considered the migration of an incorpo-
rated Pd atom into the nearest copper surface vacancy.

As is seen from the table, the migration energy  cal-
culated by us is consistent with the ab initio value cal-
culated using the VASP code [16]. In our case, the for-
mation energy of a copper vacancy in the site nearest to
the palladium atom is slightly higher than the corre-
sponding value for the pure surface, whereas the
vacancy-formation energy obtained in [16] is 0.474 eV.
As a result, the agreement between the activation

energy Q11 =  +  calculated in this work and the
experimental value is worse than that for the ab initio
calculation. We also analyzed the diffusion of the sur-
face palladium into the second atomic layer. To this
end, we calculated the formation energy of a copper
vacancy in the second layer at the site nearest to the sur-
face palladium atom. The calculated energy is higher
than the vacancy-formation energy in the second
atomic layer in Cu(001) (1.38 eV) [27], which is due to
the different atomic environments, i.e., to the effect of
palladium. Although the migration barrier to the diffu-
sion of palladium to the vacancy site in the second layer
is very low, the activation energy for this process Q12 is
significantly higher than the diffusion activation energy
in the first layer. This fact indicates the predominance
of surface diffusion at the initial stage of the alloy for-
mation.

To study diffusion in the ordered surface alloy, we
considered both the diffusion of Pd within the surface
layer (i.e., disordering of the surface alloy) and the dif-
fusion of Pd atoms to the second layer. The data listed
in the table show that the activation energy Q11 exceeds
the corresponding value for single a palladium atom.
This fact indicates that the diffusion activation energy
increases with coverage. The formation of a copper
vacancy in the second layer and the migration of palla-
dium into this vacant site also require higher energies
than in the case of a single palladium layer. Accord-
ingly, the activation energy for diffusion to the subsur-
face layer Q12 exceeds the activation energy for diffu-

Em
11

E f
1

Em
11
YSICS OF THE SOLID STATE      Vol. 47      No. 4      2005



PHYSICS OF

DIFFUSIONAL AND VIBRATIONAL PROPERTIES 761
Fig. 2. Phonon spectrum of a Cu(001)–c(2 × 2)–Pd surface alloy. Points show surface states.
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sion to the second layer in the case where a single pal-
ladium atom is present in the surface layer. This energy
ratio should explain the penetration of Pd into the sub-
surface layer prior to the formation of a continuous
ordered structure on the surface, which is corroborated
experimentally [5, 13, 21]. The activation barrier to the
migration of Pd from the first to the second layer was
estimated in [20] to be 1.13 eV, which exceeds the acti-
vation energy for planar surface diffusion measured in
[16]. The activation energy calculated in our work ade-
quately describes the tendency toward the formation of
a subsurface alloy.

When considering possible diffusion paths for the
migration of the palladium of the subsurface alloy, we
calculated both the activation energy for diffusion in the
alloy layer and the diffusion barriers to the migration of
palladium to the first and second layers. The vacancy-

formation energy in the third layer  exceeds the
energy of formation of a vacancy on the third layer of
the pure Cu(001) surface (1.33 eV) [27]. The migration

energy  is also high, which gives a high activation
barrier Q23 to the diffusion of Pd into the third layer. As
is seen from the table, the activation energy for diffu-
sion in the alloy layer Q22 is also fairly high, which indi-
cates that disordering of the c(2 × 2) subsurface struc-
ture is unfavorable. To determine the activation energy
for palladium diffusion to the surface layer, we also
analyzed two possibilities for the formation of a copper
vacancy in the surface layer (labeled I and II in the

E f
3

Em
23
 THE SOLID STATE      Vol. 47      No. 4      200
                    
table), namely, through the migration of Cu atoms into
a vacancy in the second layer or the formation of a sur-
face adatom. In the first case, the vacancy-formation
energy is the sum of the energy of formation of a copper

vacancy on the second layer  and the energy of
migration of a Cu atom from the first layer into this
vacant site. In the second case, the vacancy-formation
energy is, in essence, the formation energy of an ada-
tom–vacancy pair. For the second case, we also consid-
ered two variants of the “hollow” position of the ada-
tom formed (over a Pd atom and over a Cu atom). The
energy of migration of surface copper into the vacant

site in the second layer  is calculated to be 1.21 eV,
which gives a formation energy of 2.67 eV for the first
case. Our calculation shows that the formation energy
of an adatom–vacancy pair varies with the adatom posi-
tion only in the third decimal place: 1.225 eV for the
position over Pd and 1.224 eV for the position over Cu
(one value to the second decimal place is given in the
table). The energy of migration of palladium from the
alloy into the surface alloy is 1.39 eV. As a result, the
activation energy for Pd diffusion from the subsurface

layer to the surface for the second ( ) and, espe-

cially, for the first ( ) variant of the formation of a
surface vacancy is very high, which indicates that the
subsurface alloy is stable.

E f
2

Em
12

QII
21

QI
21

                 
5
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Fig. 3. Phonon spectrum of a Cu(001)–c(2 × 2)–Pd subsurface alloy.
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5. VIBRATIONAL PROPERTIES 

OF THE Cu(001)–C(2 × 2)–Pd SURFACE 
AND SUBSURFACE ALLOYS

Figure 2 shows the calculated dispersion curves for
the Cu(001)–c(2 × 2)–Pd surface alloy. According to
experimental studies [21, 28–30], one surface mode
(11.79 meV) was detected at the  point; its energy lies
in the energy range corresponding to the energies of the
Rayleigh modes of pure copper and palladium surfaces
(13.4 and 11.17 meV, respectively). As is seen from
Fig. 2, our calculation reveals three surface states at the

 point below the bottom of the projections of the bulk
states. The lower mode with an energy of 6.82 meV
involves a simultaneous displacement of Pd and Cu
atoms in the surface plane. An analysis of this state
indicates that predominant localization (67%) occurs at
Pd atoms and that this state corresponds to the analo-
gous state of a pure Pd(001) surface with an energy of
5.9 meV, which was determined experimentally [30].
Apart from this mode, two surface states are observed
at the  point. The second and third states (with ener-
gies of 10.96 and 12.53 meV) are typical Rayleigh
modes of Pd and Cu, and their energies agree well with
the experimental values [28, 29]. The state with an
energy of 13.44 meV and transverse atomic displace-
ments is located at the boundary of the projection of the
bulk states and is completely localized in the second
substrate layer. The band gap contains a surface state
with xy polarization, which is localized at both Cu and

X

X

X

P

                       
Pd atoms. It should be noted that, in contrast to the
experimental result and our calculations, the authors of
[22] found two surface modes at the  point, which
were characterized by simultaneous displacements of
copper and palladium atoms. At the  point, there are
two states, which are completely localized at Pd atoms
and have energies of 10.34 and 12.9 meV, respectively.
These states correspond to the Rayleigh mode and the

 

y

 

-polarized mode of the pure palladium surface. We
detected no states localized at Cu substrate atoms at this
point. At the center of the Brillouin zone (the  point)
of the Cu(001)–

 

c

 

(2 

 

×

 

 2)–Pd surface, there are 

 

z

 

-polar-
ized states. These states appear due to the formation of
a new two-dimensional Brillouin zone with a periodic-
ity of 

 

c

 

(2 

 

×

 

 2) and are reflected from the  point,
which belongs to the Brillouin zone of the pure surface.
An analysis of the force constants shows that, in the
case of the Cu(001)–

 

c

 

(2 

 

×

 

 2)–Pd surface, the Pd

 

1

 

–Cu

 

1

 

and Pd

 

1

 

–Cu

 

2

 

 interactions increase by 60 and 40%,
respectively, as compared to those in the bulk. How-
ever, the Cu1–Cu2 and Pd1–Pd1 interactions weaken by
8 and 25%, respectively, as compared to those on the
pure surface (numerals 1 and 2 number the atomic lay-
ers beginning from the surface layer). This behavior
results in the dominating role of vertically polarized
vibrations, which is clearly revealed in the phonon
spectrum analysis. Moreover, this change in the force
constants (in the presence of Pd atoms on the Cu(001)
surface) and the significant difference in the atomic

X

M

Γ

M
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masses can explain the absence of surface states local-
ized at copper atoms at the  point and the weak man-

ifestation of the Rayleigh mode of copper at the 
point. For this change in the force constants, the pene-
tration of palladium atoms into the substrate becomes
energetically favorable. Figure 3 shows the calculated
dispersion curves for the Cu(001)–c(2 × 2)–Pd subsur-
face alloy. Unlike the case of a surface alloy, a set of
surface modes is found here at the  point below the
bottom of the projections of the bulk states. These
modes are predominantly localized at the surface cop-
per atoms Cu1, which are displaced in the surface plane
in mutually perpendicular directions. The next two
states are localized at the palladium atoms located in
the second atomic layer. The mode with an energy of
9.43 meV and horizontal transverse shifts of palladium
atoms corresponds completely to the mode localized in
the second (from the surface) Pd(001) atomic layer, and
its energy agrees well with the experimental value
(9.47 meV) [28]. At the very bottom of the projections
of the bulk states, a mode is found at an energy of
12.1 meV, which can be related to the experimentally
determined Rayleigh mode (11.17 meV) of the Pd(001)
surface [29]. Unlike the surface alloy, the band gap in
this case contains two states, which are predominantly
localized at substrate atoms with longitudinal polariza-
tion and a small addition of displacements of surface-
layer Cu1 atoms in the z direction. The force constants
calculated for this case show that the Cu1– Cu1 interac-
tion weakens by 8% as compared to that for the pure
Cu(001) surface and that the interlayer Cu1– Cu2 inter-
action increases by 20% as compared to that in the bulk.
The Pd2–Cu2 interaction inside the layer is similar to
that in the surface alloy and increases by 60%. The
interlayer interactions between Pd2 and substrate atoms
Cu1 and Cu3 increase by 30–50% as compared to their
bulk values.

6. CONCLUSIONS

We have studied the structures, diffusion activation
energies, and phonon spectra of ordered Cu(001)–c(2 ×
2)–Pd surface and subsurface alloys. On the whole, the
equilibrium atomic structures of the alloys calculated
using the molecular-dynamics method adequately
describe the experimentally observed structures.

The analysis of the calculated diffusional character-
istics is consistent with the experimentally established
evolution of the surface alloy: in the initial stage of dep-
osition, palladium penetrates into copper vacancies on
the surface without an activation barrier; under these
conditions, palladium diffusion along the surface is
predominant, which results in the formation of a sur-
face alloy. Before the completion of the c(2 × 2) top
layer alloy, Pd atoms begin to diffuse into the second
layer. As a result, all palladium penetrates into the
underlayer. Thus, there appears a two-dimensional sub-
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X

X
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surface alloy covered by a monolayer of copper. In the
course of the formation of the Cu(001)–c(2 × 2)–Pd
alloy in the second layer and after the formation of this
layer, there are significant activation barriers to palla-
dium diffusion from the second layer to the first and
third layers.

The analysis of the phonon spectra and of the
changes in the force constants for the surface and sub-
surface alloys shows that a very strong Cu1–Pd1 inter-
atomic interaction appears when palladium is adsorbed
on the copper surface. Simultaneously, the interactions
of the pure components of the alloy become weaker.
The surface phonon modes of Cu(001)–c(2 × 2)–Pd are
strongly hybridized with the dominating component of
palladium atoms or are completely determined by pal-
ladium atoms. In the subsurface alloy, the maximum
density of surface modes corresponds to longitudinal
vibrations of the atoms of the substrate surface layer
under strong intralayer Cu2–Pd2 interaction.
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Abstract—The temperature dependence of the real part of the permittivity of a 4-n-pentyl-4-cyanobiphenyl liquid
crystal was studied within a broad frequency range of 30–5000 MHz and in the temperature interval 20–60°C in
the vicinity of the nematic–isotropic-liquid phase transition. It was established that the dispersion of the longitu-
dinal component of the permittivity can be fitted well by a sum of two Debye terms with strongly differing relax-
ation times. The temperature and frequency dependence of the shorter relaxation time was determined for which
the best fit between calculations and experiment was achieved. © 2005 Pleiades Publishing, Inc.
As is well known, the frequency dispersion and
anisotropy of the permittivity of nematic liquid crystals
(LCs) is described by the Debye equations, from which
one extracts, in particular, the relaxation times associ-
ated with molecular rotation about the short and long
axes. This description, however, agrees well with
experiment only up to the frequencies at which the ori-
entational region of dispersion ends. At higher frequen-
cies, the dielectric spectra of LCs quite frequently
exhibit an additional extended interval of dispersion
that is connected with various intramolecular motions
of alkyl fragments and seen against the background of
librations of molecules about the equilibrium position.
Particularly strong dispersion at frequencies above the
orientational spectral region has been observed for the
perpendicular component of permittivity, (ω), in
LCs of the n-CB series [1–5]. It was shown in [1–5] that
the high-frequency part of the permittivity spectrum
can be fitted fairly well with a Debye equation in which
a continuous distribution of relaxation times within a
certain interval is assumed.

The observed frequency dependence of the parallel
component of permittivity, (ω), in the same LC series
implies the existence of two separated dispersion
regions each of which can be approximated by a Debye
equation with its own relaxation time. The resulting
dielectric spectrum of the LC can be fitted well by a
sum of two Debye terms with different relaxation times
and different relative weighted contributions. The two
observed regions of dispersion are usually assigned to
rotation of molecules about the short axis and about the
long axis (low- and high-frequency relaxation, respec-
tively). Both in the nematic and in the isotropic phase,
the behavior of the low-frequency relaxation time τ1

ε⊥'

ε||'
1063-7834/05/4704- $26.00 0765
with temperature has been studied sufficiently well and
is described by an exponential relation,

 (1)

where τ0 is the time corresponding to the inverse of the
libration frequency, ∆H is the activation enthalpy, R is
the gas constant, and T is the absolute temperature.
For the nematic phase of the 5CB LC, we have ∆H =
66.3–66.7 kJ/mol, and for the isotropic phase, ∆H =
33.2 kJ/mol [5, 6].

As for the temperature dependence of the high-fre-
quency relaxation time τ2(t), determining its character
from dielectric spectra in the nematic and isotropic
phases is problematic. The problems can be traced in
large measure to the difficulties entailed in obtaining
dielectric spectra in the microwave frequency range at
an accuracy high enough to permit their subsequent
approximation. The only thing known presently is that
the τ2(t) relation is substantially weaker than τ1(t).

The present study deals with the behavior of the
5CB LC in the parallel-ordered nematic phase, as well
as in the isotropic state, within a broad range of fre-
quencies and temperatures. The resonance technique
employed in our study to measure ε'(ω) made it possi-
ble to accurately determine the temperature and fre-
quency dependences of the permittivity, which were
subsequently used to derive the behavior of the relax-
ation time τ2 with temperature. To do this, the tempera-
ture dependences of ε'(ω) were measured in the range
20–60°C at several fixed frequencies in the range 30–
5000 MHz. This was followed by numerical approxi-
mation of each of these dependences, which permitted
us not only to determine the contribution of high-fre-
quency dispersion to the general dielectric spectrum of
the LC but also to establish the temperature and fre-
quency dependences of the τ2 relaxation time.

τ1 τ0 ∆H/RT–( ),exp=
© 2005 Pleiades Publishing, Inc.
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High-sensitivity resonance-type microstrip sensors,
tuned to fixed frequencies in the above range, were fab-
ricated. The LC was sandwiched between two metallic
electrodes of a sensor in a ~100-µm-wide gap. Some
design features of the sensors and the measurement
technique employed are described in [7]. The absolute
accuracy in determining ε'(t, ω) was not worse than
±0.02 throughout the frequency and temperature ranges
covered. The sensors with LC samples were mounted in
a thermostat, with the temperature varied within the
range 20–60°C; in each measurement, the temperature
was fixed to an accuracy of better than ±0.3°C. The
director was oriented with respect to the direction of
microwave electric field polarization by means of a dc
magnetic field of 3 kOe.

The temperature dependences of the real part of per-
mittivity ε'(t), measured at fixed frequencies, was
numerically fitted, as in [4, 5], using the relation (1)

 (2)

where ω = 2πf; n(t) is the optical refractive index; (t)
is the static permittivity; τ1(t) and τ2(t) are the low- and
high-frequency Debye relaxation times, respectively;
and g1(t) and g2(t) are the respective weighting factors
satisfying the condition g1 + g2 = 1. The temperature
dependences of n(t), (t), and τ1(t) for the 5CB LC are
well known; they were taken from [8, 9]. The ε'(t) depen-
dence was calculated in the following way. When fitting
ε'(t) in the low-frequency domain (~30–40 MHz), where
(ωτ2)2 ! 1, Eq. (1) was used to find the weighting coef-
ficient g2(t), which governs the static contribution of

ε' t ω,( ) n
2

t( )–

=  
ε0' t( ) n

2
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1 ω2τ1
2
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3

Fig. 1. Dispersion of the parallel permittivity of the 5CB LC
at 30°C and its fitting (solid line) with a sum of two Debye
terms differing in relaxation time. (1, 2) Debye approxima-
tions with one, long or short, relaxation time, respectively,
and (3) the n2 level.
P

the high-frequency permittivity to the resulting spec-
trum. After this, the values of τ2(t) were adjusted
numerically in the high-frequency dispersion region to
obtain the best fit of the calculation to experiment at all
frequencies. The value of the optical permittivity ε∞ =
n2 was determined at the beginning of the experiment at
the highest possible sensor frequency (5 GHz) for the
nematic (n = 1.69) and isotropic (n = 1.59) phases.

To illustrate the validity of this approach in our cal-
culations, we first consider the frequency behavior of
the real part of permittivity ε'(f) of the 5CB LC mea-
sured at a fixed sample temperature t = 30°C (points in
Fig. 1). The solid line is a fit of the dispersion using
Eq. (2). Dashed line 1 in Fig. 1 is a numerical fit of the
dielectric spectrum for g1 = 1 and g2 = 0. This line is
seen to fit well to experiment only in the low-frequency
region of dispersion. Dashed line 2 corresponds to fit-
ting with g1 = 0 and g2 = 0.08; this graph, by contrast,
agrees fairly well with the experimental data only in the
high-frequency region of dispersion. Finally, curve 3
corresponds to n2 = 1.69. The following parameters
were used to fit the spectrum of the LC under study at
t = 30°C:  = 16.4, n = 1.69, τ1 = 24 ns, τ2  = 0.7 ns,
g1 = 0.92, and g2 = 0.08. We readily see that the pro-
posed fit reflects the existence of two relaxation pro-
cesses in the crystal and is fairly close to the experimen-
tal data throughout the frequency range covered.

It is important to note that the frequency range was
extended to 5000 MHz in measurements of the temper-
ature dependence of the LC dielectric characteristics
because of the substantial increase in the relaxation rate
that was observed to occur in ε'(f) spectra with an
increase in temperature. The well-known decrease in
the permittivity of LCs with an increase in frequency,
which gives rise to an increased relative error of ε' mea-
surement, precludes reaching the desired accuracy in
fitting the dielectric spectra, which are usually taken at
fixed temperatures. As a result, this approach makes it
difficult to determine τ2(t), and this is why we resorted
instead to measuring the temperature dependences of
the permittivity of LC samples at fixed frequencies.

Figure 2 displays, by way of illustration, three mea-
sured ε'(t) dependences and their numerical fits for fre-
quencies of 40, 260, and 5000 MHz. The solid lines plot
a temperature dependence obtained using Eq. (2), and
dashed lines 1 and 2 indicate the contributions to the
observed dependence from the first and second terms in
Eq. (2), respectively.

First, we consider the ε'(t) dependence at different
frequencies. For 40 MHz, the temperature dependence
of ε' is governed primarily by the first term in Eq. (2)
and reflects, accordingly, the temperature dependence
of τ1(t). The second, high-frequency region of ε' disper-
sion is distant enough (Fig. 1) to permit us to disregard
the term (ωτ2)2 ! 1 in Eq. (2). As a result, using the
numerical technique, it is easy to obtain the g2(t) rela-
tion, which, when substituted into Eq. (2), provides the

ε0'
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best fit to the experimental data. As the region of high-
frequency dispersion is approached with increasing fre-
quency (for instance, for the ε'(t) relation measured at a
frequency of 260 MHz), we see that the temperature
dependence of ε'(t) is governed primarily by the second
term in Eq. (2), while the contribution from the first
term becomes noticeable only at temperatures t > 40°C.
Using the g2(t) relation thus obtained, we numerically
adjust the temperature dependence of the relaxation
time τ2(t), which is plotted specifically for this case in
Fig. 3. Interestingly, in both the nematic and the isotro-
pic phase, the relaxation time is practically tempera-
ture-independent. This implies that high-frequency
relaxation does not involve the overcoming of potential
barriers by a molecule but rather is caused by the rota-
tion of molecules or their fragments through small
angles near the equilibrium position. However, the
effect of liquid-crystal ordering of molecules on the
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Fig. 2. Temperature dependences of the difference between
the permittivity and the square of the refractive index mea-
sured at three frequencies. The solid line is a fit to a sum of
two Debye terms differing in relaxation time. (1, 2) Debye
approximation with one, long or short, relaxation time,
respectively.
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relaxation time τ2(t) is seen to be fairly large in the
region of the transition from the nematic to an isotropic
state.

When fitting the ε'(T) relations with Eq. (2) at higher
frequencies, it was established that the relaxation time
τ2  not only depends on temperature but is also a func-
tion of frequency, τ2(t, ω). For instance, at 5000 MHz,
where the ε'(t) dependence is determined fully by the
second term in Eq. (2) (Fig. 2), the relaxation time is
found to be shorter by nearly an order of magnitude
than that for frequencies below 1000 MHz. Figure 4
presents the above result in a more instructive form by
displaying the high-frequency relaxation time over
broad ranges of temperatures and frequencies for the
LC under study.

The fact that τ2  depends on frequency indicates that
high-frequency relaxation of the 5CB LC should be
described by a dispersion relation with a spectrum of
relaxation times lying within a certain interval. In this
case, in fitting the high-frequency dispersion and the
temperature dependence of ε'(t) numerically, one can
represent the last term in Eq. (2) in the form of the fol-
lowing simple empirical relation, which was proposed
by Gavril’yak and Negami and is essentially a general-
ization of the Debye equation:

 (3)

In this expression, the coefficients α and β are numeri-
cal parameters characterizing a continuous relaxation-
time distribution and τ is a time constant, which can be
identified with an effective relaxation time. For α = 0
and β = 1, the right-hand part of Eq. (3) is equivalent to
the Debye equation with one relaxation time. For β = 1
and α ≠ 0, the right-hand part of Eq. (3) corresponds to
the Cole–Cole model with a symmetric relaxation time
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Fig. 3. Temperature dependence of the second (high-
frequency) relaxation time measured at a frequency f =
260 MHz.
5
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distribution, and for α = 0 and β ≠ 1, to the Cole–David-
son model with an asymmetric distribution of relax-
ation times. In the latter case, by isolating the real part
of Eq. (3), one can write the following equality describ-
ing the Cole–Davidson model:

 (4)

where  = ωτ. We used this expression to fit the
experimental data numerically and determined the
parameter β (characterizing the extent to which the
dielectric spectrum deviates from the Debye law) and the
experimental temperature dependence of τ2(t). The
parameter β turned out to be ~0.5–0.7 for the nematic
and isotropic LC phases. As already mentioned, the fact
that β is not equal to unity is due to the asymmetric relax-
ation time distribution, which, in turn, should possibly be
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Fig. 4. Dependence of the second relaxation time on fre-
quency and temperature.
P

attributed to the contribution from various intramolecu-
lar motions, for example, vibrations of mobile alkyl
groups of molecules, to the high-frequency permittivity
of the LC under study. These motions are known to
become particularly strongly manifest in the transverse
component of the permittivity.
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Abstract—The thermal conductivity of an opal + epoxy-resin nanocomposite under 100% filling of first-order
opal voids by epoxy resin was measured in the range 5–100 K. For T < T0 (T0 is the temperature at which the
thermal conductivity of epoxy resin becomes equal to that of amorphous SiO2 opal spheres, with inclusion of
their porosity associated with second- and third-order voids), the thermal conductivity of the opal + epoxy-resin
nanocomposite undergoes a sharp decrease, which is qualitatively accounted for by the appearance of Kapitsa
heat resistance at the contacts between the amorphous opal spheres and epoxy resin. © 2005 Pleiades Publish-
ing, Inc.

l

This communication reports on the concluding
stage in our studies of the thermal conductivity of opal
+ epoxy-resin nanocomposites [1, 2].

Let us recall the main features of the unusual crystal
structure of opal [3, 4], which knowledge will be
needed to analyze the results obtained.

The crystal structure of opal is made up of close-
packed spheres of amorphous SiO2. The opals used in
our experiment had spheres ~2000–2500 Å in diameter
(first-order spheres). Each of these spheres is an array
of close-packed spheres of a smaller size, ~300–400 Å
(second-order spheres), which, in turn, are formed of
close-packed spherical particles ~100 Å in size (third-
order spheres).

An array of close-packed spheres has octahedral and
tetrahedral voids interconnected by horn-shaped chan-
nels. Depending on the actual order number of the
amorphous SiO2 spheres, these voids can likewise be
subdivided into voids of first, second, and third order.
The total theoretical porosity of opal is 59%.

Actually, the porosity of the opal single crystals
grown by us added up to ~46% (because of partial sin-
tering of the second- and third-order spheres) [5]. The
relative volume of the first-order voids was ~26%. The
amorphous SiO2 spheres and first-order voids of the
opal form face-centered cubic lattices, whose parame-
ters for the opal used by us were ~3000–4000 Å. The
first-order voids of the opal can be filled by metals,
semiconductors, or insulators using various methods
(chemical methods, pressure injection from a melt, or
impregnation of a sample with a filler material) to form
(in the case of 100% filling of first-order voids) regular
three-dimensional nanocomposites, which can be con-
sidered a system made up of two nested regular lattices
1063-7834/05/4704- $26.00 0769
(an opal and a filler lattice) with giant parameters and
giant “atomic” masses.

It was shown in [6] that, within the temperature
interval 5–300 K, the thermal conductivity κ of single
crystals of synthetic opals is governed primarily by the
quality of contacts between the amorphous SiO2
spheres (i.e., by contact heat resistance between these
spheres). The more perfect the crystal structure of the
opal (up to the limit where the contacts between all
spheres are strictly identical and approach point con-
tacts), the lower its thermal conductivity.

Assuming the structure described above of an opal-
based nanocomposite, the heat flux through it will
propagate over two parallel channels, one of which is
the spheres of amorphous SiO2 making up the opal and
the other is “chains” of the filler material: filled tetrahe-
dral (octahedral) void–filled horn-shaped channel–
filled tetrahedral (octahedral) void–filled horn-shaped
channel, and so on.

The following three variants are conceivable:
(1) κ(filler) @ κ(opal matrix), (2) κ(filler) ! κ(opal
matrix), and (3) κ(filler) ≈ κ(opal matrix).

The first variant is typical of opal + HgSe [6] and
opal + NaCl [7] nanocomposites, in which the heat flux
propagates predominantly over chains of the filler
material. At low temperatures (5–20 K), the heat con-
ductivities of HgSe and NaCl contained in first-order
opal voids are determined by boundary scattering of
phonons in the bottlenecks of horn-shaped channels
(~100 Å in diameter) interconnecting the filled octahe-
dral (tetrahedral) opal voids. In this particular case, the
phonon mean free path l is much larger than the bottle-
neck size.
© 2005 Pleiades Publishing, Inc.
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At high temperatures (up to 300 K), l becomes
smaller than the dimensions of the horn-shaped chan-
nels. The thermal conductivity of a filler material in this
case is lower than that of the corresponding bulk crystal-
line material because of the presence of specific defects
(vacancy clusters and breaks in the filler lattice, surface
defects, defects originating from strains in the filler
matrix, etc.), which are absent in the bulk materials.

The second variant applies to opal + epoxy-resin
nanocomposites for T > 100 K [2]. In this case, the heat
flux generated to measure the thermal conductivity of a
nanocomposite propagates primarily over the matrix
(amorphous SiO2 spheres), so the thermal conductivity
of the nanocomposite is close to that of the opal matrix.

The third variant is assumed to take place in an opal
+ epoxy-resin nanocomposite for T < 100 K. This is the
subject of the present work.
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Fig. 1. (a) Thermal conductivities of (1) fused quartz [9],
(2) amorphous SiO2 spheres calculated with allowance for
their porosity due to second- and third-order voids, and
(3) an opal + 100% epoxy-resin nanocomposite. (b) Ther-
mal conductivities of (4) epoxy resin [2], (1) fused quartz,
and (2) amorphous opal SiO2 spheres (κ0). (c) Structure of an
opal + epoxy-resin nanocomposite (schematic): (1) amor-
phous opal SiO2 spheres with thermal conductivity κ0 and
(2) epoxy resin; Q indicates the direction of heat flux in the
nanocomposite.
P

An opal + epoxy-resin nanocomposite based on sin-
gle-crystal opal was prepared using the technique
described in [1, 2]. This nanocomposite had 100% fill-
ing of first-order voids by epoxy resin (opal + 100%
epoxy resin).

The thermal conductivity of the nanocomposite was
studied in the temperature interval 5–300 K on a setup
similar to that employed in [8]. The thermal conductiv-
ity measured in our experiment is that of the crystal lat-
tice.

The data reported in [2] suggest that the thermal
conductivity of epoxy resin should be close to that of
fused quartz at temperatures below 100 K.

Epoxy resin injected into first-order voids of the
opal is in contact with the amorphous SiO2 spheres,
which have a porosity of 20% in our case due to opal
second- and third-order voids.

Figure 1a displays the thermal conductivity of amor-
phous quartz [9] and of amorphous opal SiO2 spheres
(κ0) corrected for the above porosity. The calculation
was conducted using the relation of Litovskiœ [10]:

 (1)

where p is the porosity, taken to be 0.2.
Figure 1a also shows experimental results obtained

for the thermal conductivity of the opal + 100% epoxy-
resin nanocomposite (κcomp), and Fig. 1b shows our
data for the thermal conductivity of the epoxy resin
(κepox) taken from [2] and, for comparison, the results
on the thermal conductivity of fused quartz and amor-
phous opal SiO2 spheres.

As seen from Fig. 1b, the thermal conductivity of
epoxy resin at T < 30 K approaches that of amorphous
opal SiO2 spheres (κ0).

In these conditions, one would expect κcomp to
increase with decreasing temperature for T < 30 K and
finally become equal to the thermal conductivity of the
amorphous opal SiO2 spheres.

However, experiment revealed a different pattern. At
T ≈ T0, the thermal conductivity of the nanocomposite
exhibits not an increase but rather a fairly sharp
decrease in the thermal conductivity of the nanocom-
posite (Fig. 1a).1 

The question arises as to what mechanism of
phonon scattering in the composite is responsible for
this behavior of κcomp(T).

If κ0 ≈ κepox, the heat flux Q will be distributed uni-
formly over the nanocomposite sample (Fig. 1c) and
cross the boundaries between the epoxy resin and
amorphous opal SiO2 spheres. At low temperatures, the
behavior of the thermal conductivity of the composite

1 The temperature dependence of the thermal conductivity of the
opal single crystal used as a matrix for the opal + epoxy-resin
nanocomposite has no breaks (including in the temperature
region near 30 K).

κ0 κSiO2
1 p–( ) 1 p– ,=
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may be significantly influenced by the Kapitsa heat
resistance rK [11–13], which arises at the interface
between two media in a nanocomposite due to acoustic
mismatch.

According to theory [11–13], rK ~ T–3 and is propor-
tional to the ratio of the acoustic impedances of these
media, ρ (  is the average velocity of sound, ρ is the
density of the material).

The larger the ratio of the matrix to filler imped-
ances, the larger the value of rK.

The ratio of the impedance of amorphous quartz to
that of epoxy resin is 4.28 [14–16]. This is a fairly large
value. The ratio of the impedance of amorphous quartz
to that of NaCl, for instance, is only 1.449 [15–17].

Rather than scaling as T–3, our experimental temper-
ature dependence of rK is substantially weaker, r ~ T–1.9.
The same relation for r(T) was obtained in [13] by ana-
lyzing the data on the epoxy resin + copper composite
in terms of the model of Kapitsa heat resistance.

Thus, in our case, the experimental results obtained
for the opal + epoxy-resin nanocomposite also agree
only qualitatively with the model of Kapitsa heat resis-
tance.
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Abstract—The formation of defects in carbon nanotubes under irradiation with argon ions is investigated. The
π plasmons generated in single-walled and multiwalled carbon nanotubes are examined using electron energy-
loss spectroscopy. In the course of experiments, the supramolecular structure of nanotubes is stepwise modified
by an argon ion beam (the maximum irradiation dose is 360 µC/cm2). The content of argon ions implanted into
a nanotube structure is controlled using Auger electron spectroscopy. The effect of ion irradiation on the π-plas-
mon energy Eπ and on the half-width at half-maximum δE of the π-plasmon spectrum is determined experimen-
tally. An expression relating the above quantities and the concentration of implanted argon is derived. It is
shown that the formation of defects under ion irradiation is a discontinuous process occurring in a stepwise
manner. A qualitative phenomenological interpretation is proposed for the experimentally revealed decrease in
the π-plasmon energy Eπ and for its attendant broadening of the π-plasmon spectrum. The assumption is made
that the microscopic mechanism of the observed phenomena is associated with the narrowing of the energy π
subbands in the electric field of charged defects generated by ions. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Carbon nanotubes synthesized in the early 1990s are
promising materials for use in nanoelectronics [1].
Nanotubes and their fragments have a symmetric cylin-
drical structure that, in principle, makes it possible to
fabricate functional nonlinear nanoelectronic elements,
such as diodes and transistors [2]. However, the techno-
logical nanoscale manipulations required for the forma-
tion of a specially modified supramolecular structure in
nanotubes [3] are fairly complicated and necessitate the
use of expensive equipment [4]. Ion bombardment is a
relatively simple method that provides a means not only
for successfully modifying the geometric structure of
nanotubes but also for purposefully changing their
physical properties [5].

Ion bombardment has a twofold effect on the struc-
ture of carbon nanotubes; namely, it brings about the
formation of point and extended defects and the inter-
calation of ions into the intratubular and intertubular
spaces.

Technologically, noble-gas ions with mean energies
ranging from 0.5 to 10.0 keV are found to be most suit-
able for the above purposes. The use of these ions
makes it possible not only to exert a destructive effect
on the walls of carbon nanotubes (i.e., to produce point
defects and to deform nanotubes) but also, under spe-
cific conditions, to weld the adjacent nanotubes due to
the formation of strong covalent bonds between the
knocked-on carbon atoms and the nanotube walls [6].
1063-7834/05/4704- $26.00 0772
In the present work, we proposed using π plasmons
(collective longitudinal oscillations of π electrons of
carbon atoms) as an efficient tool for analyzing the spe-
cific features of the nanoscopic processes occurring
under ion irradiation of carbon nanotubes.

Even the first investigations of the plasma oscilla-
tions in nanotubes revealed that the location and the
half-width at half-maximum of the plasmon peak in the
spectra of the nanotubes depend on their diameter and
the number of walls [7].

The lifetime of a quasi-one-dimensional plasmon in
a finite cylindrical carbon system is determined by the
length, the diameter, and the degree of perfection of this
system. It is these characteristics that must be known
exactly when performing ion irradiation of carbon nan-
otubes. In carbon nanotubes, π plasmons generated by
interband transitions of π electrons have an energy
ranging from 5.0 to 6.5 eV [7–12]. This range of π-plas-
mon energies is relatively wide, because, apart from the
experimental conditions (excitation energy, experimen-
tal geometry), the properties of the carbon nanotubes
themselves affect the plasmon spectrum.

In this work, the changes in the π-plasmon energy
and in the half-width at half-maximum of the plasmon
spectrum were used to analyze the initial stages of the
destruction of single-walled and multiwalled nanotubes
in the course of their stepwise irradiation with argon
ions at an energy of 1 keV. The experiments were per-
formed using reflection electron energy-loss spectros-
copy (the mean energy was 1 keV).
© 2005 Pleiades Publishing, Inc.
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Section 2 of this paper describes the preparation of
samples and the experimental technique. Section 3 pre-
sents the main experimental results. In Section 4, these
results are discussed.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The electron energy-loss spectra were measured
with samples of single-walled and multiwalled carbon
nanotubes applied to a ceramic substrate. A condensate
was rubbed into the substrate until a 50-µm-thick film
uniform in consistency and color was obtained. In order
to prevent charging of the sample, the condensate was
uniformly applied over the entire surface of the sub-
strate. This ensured proper contact between the conden-
sate and the metal parts of the sample holder. The
absence of charging was confirmed by the fact that the
position of the Auger line (which changed in the course
of the experiments) was independent of the electric cur-
rent of primary electrons or the time required to mea-
sure the electron energy-loss spectrum.

Multiwalled nanotubes were produced through car-
bon arc plasma deposition [13]. The mean diameter of
these nanotubes was approximately equal to 10 nm, and
their length was of the order of 10 µm. Single-walled
nanotubes were prepared by electric-arc synthesis [14,
15]. Their diameter varied from 1.2 to 1.6 nm, and the
length fell in the range 1–10 µm.

The surface composition of the studied samples
was determined using Auger electron spectroscopy
immediately prior to the experiment. The surface of
the initial samples contained 98.0 at. % C and from
1.0 to 1.7 at. % O. The multiwalled nanotubes also con-
tained nitrogen and sulfur in small amounts (0.7 at. %).

Irradiation of the samples with Ar+ ions (energy,
1 keV; current density j = 0.75 µC/cm2 s) and measure-
ments of the electron energy-loss spectra (beam energy,
1 keV; half-width at half-maximum, 0.5 eV) were per-
formed in an ultrahigh-vacuum chamber (10–9 Torr)
after heating and holding of the samples at a specified
temperature for ≈70 h.

The electron energy-loss spectra were recorded at the
Ioffe Physicotechnical Institute (Russian Academy of
Sciences, St. Petersburg, Russia). The experiments were
carried out using reflection electron energy-loss spec-
troscopy on a multichannel electron spectrometer
equipped with a conical energy analyzer (the experimen-
tal details were described, for example, in [16]) for mul-
tiwalled nanotubes and on a Perkin-Elmer PHI-5500
electron spectrometer for single-walled nanotubes. The
reflection electron energy-loss spectra were measured in
specular geometry: the angle of incidence of the electron
beam on the surface was 45°–50°, and the aperture of the
energy analyzer was approximately equal to 12°. When
the transmission energy of the analyzer was 10–30 eV,
the absolute energy resolution for inelastically scattered
electrons was equal to 0.1–0.2 eV.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
The differential Auger electron spectra were mea-
sured at a constant absolute energy resolution of 0.6 eV
after each stage of irradiation in order to determine the
concentration of argon deposited on the surface. In the
measurements of the Auger electron spectra, the energy
of primary electrons was equal to 2.5 keV. The argon
concentration was estimated from the standard relation-
ship

 (1)

where IC and IAr are the linear intensities of the C and
Ar Auger lines, respectively, and SC and SAr are the rel-
ative Auger excitation cross sections of the C and Ar
KLL lines, respectively.

Irradiation of the samples with argon ions was per-
formed in a stepwise manner at short time intervals t.
The total irradiation dose was determined from the
expression Q = jt.

The determination of the position Eπ and the half-
width at half-maximum δE of the plasmon peak is illus-
trated in the inset to Fig. 1. Initially, the background of
inelastically scattered electrons (the dashed line in the
inset to Fig. 1) was subtracted, and then the quantities
Eπ and δE were determined.

3. EXPERIMENTAL RESULTS

This section reports on the experimental data on the
influence of argon ion irradiation on the properties of π
plasmons in single-walled and multiwalled carbon nan-
otubes according to electron energy-loss spectroscopy.

The experimental electron energy-loss spectra in the
energy loss range 0–12 eV are shown in Fig. 1. It can
be seen from this figure that an increase in the irradia-
tion dose Q leads to a shift in the position Eπ of the plas-
mon peak toward the low-energy range by 0.9 eV for
single-walled nanotubes and by 1.2 eV for multiwalled
nanotubes. This shift is accompanied by a broadening
of the π-plasmon spectrum.

The dependence of the π-plasmon energy Eπ on the
ion irradiation dose Q for single-walled nanotubes is
depicted in Fig. 2.

Figure 2 illustrates the character of the decrease in
the π-plasmon energy with an increase in the irradiation
dose Q: the π-plasmon energy Eπ decreases most dras-
tically in the initial stage of irradiation when the dose Q
is not very high (i.e., when it is less than 100 µC/cm2).
In the inset to Fig. 2, the same experimental data are
presented on a log–log scale. The magnitude of the
slope of the experimental straight line on the log–log
scale is determined to be η = 0.95. Therefore, by setting
the slope close to –1, we can make the inference that the
dependence of the π-plasmon energy on the irradiation
dose Q can be empirically represented by the simple
hyperbolic function

 (2)
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Fig. 1. Experimental electron energy-loss spectra of (a) single-walled and (b) multiwalled carbon nanotubes: (1) the initial spectrum
and the spectra of the samples exposed to argon ion irradiation at doses Q = (2) 9, (3) 27, (4) 36, (5) 72, (6) 144, (7) 216, and
(8) 360 µC/cm2. The inset illustrates the determination of the π-plasmon energy Eπ and the half-width at half-maximum δE of the
π-plasmon peak.
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As was noted above, the decrease in the π-plasmon
energy is accompanied by the broadening of the plas-
mon spectrum. The half-width at half-maximum of the
plasmon spectrum increases only slightly (from 2.7 to
3.4 eV). This increase amounts approximately to 25%
of the initial half-width at half-maximum. However,
this change in the half-width at half-maximum exceeds
the experimental error. The broadening of the plasmon
peak is nonlinear with respect to the irradiation dose;
namely, the π-plasmon peak is considerably more
broadened in the initial stage of ion irradiation at low
doses Q.

The experimental results obtained for multiwalled
nanotubes are presented in Fig. 3 (see also our previous
paper [16]). The experiments performed for multi-
walled nanotubes revealed that, with an increase in the
irradiation dose, the π-plasmon energy Eπ also
decreases in the initial stage of ion irradiation. The
empirical dependence of the plasmon energy on the ion
irradiation dose for multiwalled nanotubes appears to
be more complex. The difference in the character of the
decrease in the plasmon energy Eπ with an increase in
the irradiation dose Q is most likely associated with the
difference in the absorption of argon ions by inner car-
P

bon walls in the multiwalled nanotubes. It can be seen
from Fig. 3b that, as in the case of the single-walled
nanotubes, the decrease in the plasmon energy Eπ is
accompanied by the broadening of the plasmon peak. It
is worth noting that this broadening is also most pro-
nounced in the initial stage of ion irradiation.

The chemical composition of the surface of the mul-
tiwalled and single-walled carbon nanotubes under
investigation was determined by Auger electron spec-
troscopy in the course of ion irradiation. It is revealed
that an increase in the ion irradiation dose Q leads to an
increase in the concentration of argon deposited on the
surface of the carbon nanotube samples. As can be seen
from the experimental data presented in Fig. 4, the con-
centration of argon deposited on the nanotube surface
correlates with the irradiation dose. At a relatively low
dose (i.e., when it is less than 100 µC/cm2), argon is
adsorbed at a rather high rate. As the irradiation dose
increases, the process is retarded and the argon concen-
tration tends to saturation. In Fig. 4, the range of rela-
tively low doses at which argon is adsorbed at a high
rate is conventionally separated from the range of high
doses by a vertical dashed line.
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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4. DISCUSSION

4.1. Irradiation of the samples with argon ions at
mean energies favors the generation of vacancy defects
(which, in turn, bring about the transformation of two
hexagons into pentagon–heptagon pairs [17] in walls of
carbon nanotubes) and the formation of clusters com-
posed of knocked-on carbon atoms inside the nano-
tubes and in the intertubular space [6]. Of course, this is
accompanied by the intercalation of argon atoms into
the intratubular and intertubular spaces. Consequently,
there occur inelastic nanotube deformations that mani-
fest themselves in bending of the nanotubes, a change
in their diameter, etc. These deformations are schemat-
ically shown in Fig. 5. Probably, argon atoms are
attached to defect sites. In this case, their concentration
at the surface approximately corresponds to the concen-
tration of defects generated under ion irradiation. If the
interatomic distances in nanotube walls differ only
slightly from those in a graphene sheet (0.142 nm), the
concentration of carbon atoms at the surface of carbon
nanotubes is equal to 4 × 1015 cm–2. When the argon
concentration amounts to 4–5% of the carbon concen-
tration (see the data presented in Fig. 4), it is easy to
verify that the surface concentration of argon atoms is
approximately equal to 2 × 1014 cm–2. The mean inter-
defect distance estimated from this maximum concen-
tration of argon atoms in the case of a uniform distribu-
tion of defects is approximately equal to 10–15 inter-
atomic distances, i.e., 1.5–2.0 nm. In Fig. 5, this
distance is designated as l. Note that the distance l is
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Fig. 2. Dependence of the π-plasmon energy Eπ on the dose
of irradiation with argon ions for single-walled carbon nan-
otubes. The inset shows the same dependence on a log–log
scale.
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considerably shorter than the de Broglie wavelength of
π plasmons L0 ≈ 200 nm.

As follows from the experimental data, the modifi-
cation of both multiwalled and single-walled nanotubes
by an argon ion beam is retarded at an argon concentra-
tion of 1014 cm–2. The irradiation dose corresponding to
saturation is marked by the vertical dashed line in Fig. 4
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Fig. 3. Dependences of (a) the π-plasmon energy Eπ and
(b) the half-width at half-maximum δE of the π-plasmon
peak on the dose of irradiation with argon ions for multi-
walled carbon nanotubes.
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walled and (2) single-walled carbon nanotubes.
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and is approximately equal to 100–150 µC/cm2. Let us
assume that the argon ions are singly charged. Hence,
the total number of singly charged argon ions that pass
through the surface of the compact sample at the afore-
mentioned dose is equal to (5–7) × 1014 ions/cm2. Com-
parison of this number of ions with the number of
formed defects shows that, on the average, only one out
of every 20–25 argon ions efficiently interacts with the
surface.

L0

l

Fig. 5. Schematic drawing of a deformed single-walled car-
bon nanotube.
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Fig. 6. Dependences of the π-plasmon energy on the recip-
rocal of the irradiation dose Q–1 for (a) single-walled and
(b) multiwalled carbon nanotubes.
PH
4.2. The approximation of the experimental depen-
dence of the π-plasmon energy Eπ on the irradiation
dose Q by hyperbolic function (2) suggests that the
plasmon energy Eπ should depend linearly on the
reciprocal of the irradiation dose Q–1. The experimen-
tal data (closed symbols) in the Q–1–Eπ coordinates
are presented in Fig. 6. It turns out that the linear
dependence of the plasmon energy Eπ on the recipro-
cal of the irradiation dose exhibits a kink at Q–1 ≈
0.035–0.04 cm2/µC. This corresponds to the irradia-
tion dose Q = 25–30 µC/cm2. The solid lines in Fig. 6
are described by the following empirical relationships:
for single-walled nanotubes,

 (3a)

 (3b)

for multiwalled nanotubes,

 (4a)

 (4b)

The ratios between the slopes of two linear portions
are estimated as follows: α2/α1 ≈ 30 [relationships (3a),
(3b)] for single-walled nanotubes and β2/β1 ≈ 6 [rela-
tionships (4a), (4b)] for multiwalled nanotubes. This
implies that, in the initial stage of ion irradiation, the
defect formation is hindered and occurs at a low rate.
Only when the concentration of defects reaches a criti-
cal value is this process accelerated by more than one
order of magnitude for single-walled nanotubes and by
a factor of approximately six for multiwalled nano-
tubes.

The specific features of this phenomenon call for
further comprehensive experimental investigation at
different energies of bombarding ions. However, the
slow formation of defects in initial portions 1 of the
dependences Eπ(Q–1) (Fig. 6) can be qualitatively
explained by the recombination of knocked-on atoms
and vacancies [18]. Fast channeling of a knocked-on
carbon atom along the nanotube leads to a rather easy
recombination with any of the already existing vacan-
cies.

The slow accumulation of deformations and the
appearance of contractions in deformed regions (see the
schematic drawing of a deformed single-walled carbon
nanotube in Fig. 5) are accompanied by the accelera-
tion of the formation and growth of carbon clusters in
the intratubular and intertubular spaces. This leads to
the acceleration of the defect formation, which mani-
fests itself in an increase in the slope of portions 2 in the
dependences Eπ(Q–1) (Fig. 6). Possibly, the revealed
features of the defect formation in the nanotubes are
indirectly confirmed by the ratio β1/α1 ≈ 8 [see relation-
ships (3a), (3b), (4a), (4b)]. This ratio indicates that,
even in the initial stage, the defect formation in the mul-

Eπ eV( ) 5.66 eV α1/Q, Q 30 µC/cm
2
,<+=

Eπ eV( ) 5.25 eV α2/Q, Q 30 µC/cm
2
;>+=

Eπ eV( ) 5.6 eV β1/Q, Q 30 µC/cm
2
,<+=

Eπ eV( ) 5 eV β2/Q, Q 30 µC/cm
2
.>+=
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tiwalled nanotubes occurs at a substantially higher rate
due to the presence of inner carbon walls that prevent
fast channeling of knocked-on carbon atoms.

4.3. From the microscopic standpoint, the decrease
in the π-plasmon energy can be explained by assuming
that this decrease is associated with the deformation
(narrowing) of the energy π subbands. In our opinion,
the deformation of the subbands is due to the accumu-
lation of the aforementioned defects. All defects
(vacancies, clusters of carbon or argon atoms) can
exhibit donor–acceptor properties; i.e., the presence of
defects in nanotubes encourages the accumulation of a
positive or negative charge at the sites where these
defects are located. As was estimated above, the dis-
tance between defects at sufficiently high irradiation
doses is relatively short and is equal to 10–15 inter-
atomic distances. The electric field of charged defects
in the vicinity of their location brings about a shift of
the energy levels of π electrons in the valence and con-
duction bands. This is a manifestation of the nonrigidity
of the energy bands in carbon nanotubes. The revealed
decrease in the π-plasmon energy by 0.8–1.2 eV can be
explained by the fact that the band gaps in nanotubes
irradiated with argon ions become narrower by approx-
imately the same value. Therefore, the deformation of
either of these two bands (the valence band or the con-
duction band) in the case of their “mirror reflection”
can be equal to half the above values, i.e., 0.4–0.6 eV.

5. CONCLUSIONS

Thus, we investigated the destruction of carbon nan-
otubes under exposure to a beam of argon ions with an
energy of 1 keV. The results obtained have demonstrated
that the amorphization of a carbon system in the course
of ion bombardment is characterized by a number of spe-
cific features. It is found that both single-walled and mul-
tiwalled carbon nanotubes undergo stepwise destruction.
This process occurs at a low rate in the initial stage of ion
irradiation (at irradiation doses of less than 30 µC/cm2),
is then somewhat accelerated, and tends to saturation at
rather high doses (100–150 µC/cm2). Of course, solving
the problem under consideration calls for special investi-
gation for other energies and properties of bombarding
ions. However, the main result obtained in this work is
obvious and can be formulated as follows: π plasmons
can serve as a sufficiently subtle tool for studying pro-
cesses occurring in carbon nanotubes irradiated with fast
ions, especially in the early stages when other methods
can provide a very small amount of information.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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Abstract—The results of computer simulation of the dynamics of fullerene C20 at different temperatures are
presented. It is shown that, although it is metastable, this isomer is very stable with respect to the transition to
a lower energy configuration and retains its chemical structure under heating to very high temperatures, T ≈
3000 K. Its decay activation energy is found to be Ea ≈ 7 eV. Possible decay channels are studied, and the height
of the minimum potential barrier to decay is determined to be U = 5.0 eV. The results obtained make it possible
to understand the reasons for the anomalous stability of fullerene C20 under normal conditions. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

After the discovery of fullerene C60 [1], the interest
in carbon clusters has sharply increased, due both to
their unusual physical and chemical properties and to
their prospects for practical applications [2]. In spite of
numerous experimental and theoretical studies, the
mechanisms of carbon cluster formation and some of
their properties are still not entirely clear.

The smallest of the experimentally observed “three-
dimensional” carbon clusters is the C20 cluster [3],
which is one of the fullerenes with a spherelike struc-
ture having carbon atoms located at their “surface” at
the vertices of pentagons or hexagons. In fullerene C20,
there are only pentagons. A C20 cluster can exist both in
the form of a fullerene (a cage) and in the form of a
bowl, ring, chain, etc. (Fig. 1). The problem of relative
stability of these isomers remains to be fully resolved.
Experimental data are still incomplete and inconsistent,
and theoretical calculations performed using various
methods give appreciably different results [4–11].
Partly, this is due to the difficulty in finding the correla-
tion contribution to the total energy of the cluster and
also to the fact that the differences in the isomer ener-
gies are comparable to the errors of calculation in the
methods used.

Nevertheless, most authors who use the most exact
modern computing algorithms agree that, of all C20 iso-
mers, the bowl has the minimum energy, whereas the
cage is a metastable configuration [8, 11]. At the same
time, there is no question that, experimentally [3], both
C20 bowls and C20 cages have been synthesized [12,
13]. Thus, there is a problem as to why fullerene C20
retains an energetically unfavorable chemical structure
under real experimental conditions and does not pass to
the lower energy configuration.

In this study, the energy and structural characteris-
tics of some C20 isomers are calculated using the tight-
1063-7834/05/4704- $26.00 0778
binding method with a “transferable” potential of
interatomic interaction. The dynamics of fullerene C20

is studied in detail at different temperatures. It is
shown that, though this three-dimensional isomer is
metastable, its lifetime under normal conditions is
very long because of a high potential barrier separat-
ing the metastable state from the lower energy atomic
configuration.

(a)

(b)

Fig. 1. Isomers of a C20 cluster. (a) Fullerene (cage) and
(b) bowl.
© 2005 Pleiades Publishing, Inc.
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2. METHODS OF CALCULATION

To calculate the energies of different configurations
of the C20 fullerene, we used the tight-binding method
with a transferable interatomic potential suggested for
carbon compounds in [14]. This method differs favor-
ably from the majority of empirical approaches and
allows one to more correctly determine the contribution
of the electronic subsystem to the total energy. Thus,
four valence electrons of each carbon atom are taken
into account and the interatomic potential is actually an
N-particle potential, where N is the number of atoms in
the system. Though the tight-binding method is not as
exact as the ab initio methods, it adequately describes
both small carbon clusters and macroscopic forms of
carbon [7, 14] and, in addition, strongly simplifies cal-
culations even for rather large clusters. In particular, in
using the Monte Carlo method, this method makes it
possible to collect statistics sufficient for estimating the
decay activation energy and the lifetime of the metasta-
ble state. Earlier, this method was applied in computer
simulation of a metastable C8 cluster [15–18].

To find equilibrium and metastable configurations
of a C20 cluster, we used the method of structural relax-
ation. First, an initial configuration of atoms was cho-
sen, which then relaxed to a state corresponding to a
global or local energy minimum under the action of
intracluster interactions only. At each time step of the
relaxation, the velocities of all atoms were decreased by
1–10%, which is equivalent physically to cooling of the
system. The time step was t0 = 2.72 × 10–16 s, which was
approximately equal to one percent of the vibration
period for a C2 dimer.

To determine the decay activation energy of the
metastable configuration, we used the method of
molecular dynamics with a transferable tight-binding
potential (tight-binding molecular dynamics, TBMD
[7]) and a time step t0. Calculations were performed at
a fixed total energy, which corresponds to the case of a
heat-insulating system. The temperature T of the cluster
was determined from the formula [15]

 (1)

where kB is the Boltzmann constant and 〈Ekin〉  is the ion
kinetic energy per atom averaged over several vibration
periods.

When calculating the forces Fi acting on the atoms
(i is the atom number), we assumed the electron tem-
perature Tel to be equal to T and used the formula

 (2)

which is a generalization of the Hellmann–Feynman
formula to finite temperatures [19, 20]. Here, U is the
classical component of the total energy taking into

3
2
---kBT Ekin〈 〉 ,=

Fi 2 ψn〈 |—i Ĥ ψn| 〉 f εn( ) —iU ,–
n

∑–=
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account the repulsion of atoms at close distances;  is
the electron Hamiltonian in the tight-binding approxi-
mation [14]; |ψn〉  and εn are the eigenstates and eigenen-

ergies of , respectively (n = 1–80); and f(εn) is the
Fermi–Dirac distribution function. The chemical
potential was determined at each step of molecular-
dynamics simulation from the condition that the total
number of valence electrons was constant, Nel = 80. To
find the effect of the heating of the electron subsystem
on the cluster dynamics, we also performed calcula-
tions at Tel = 0.

The height of the potential barrier preventing the
transition of the system from the metastable configura-
tion to a state with a lower energy was calculated by the
same method that we used previously in [16]. In this
method, calculation reduces to finding the saddle points
of the potential energy of the system considered as a
function of the coordinates of all atoms. These saddle
points correspond to unstable equilibrium positions of
atoms in the cluster and possess the property that infin-
itesimal deviations from the equilibrium positions
result either in relaxation of the system to the initial
state or in a transition to a new configuration. To find
saddle points, the cluster is deformed continuously in
the 3N-dimensional space of atomic coordinates along
the direction of the vibration mode with a minimum fre-
quency so that the cluster energy monotonically
increases with deformation, while at the same time hav-
ing local minima in all others directions (orthogonal to
the one chosen) [16].

3. RESULTS

We calculated the structural and energy characteris-
tics of four C20 isomers: a cage, a bowl (Fig. 1), a ring,
and a chain. For each isomer, the binding energy Eb was
calculated from the formula

 (3)

where E(C20) is the energy of a C20 cluster and E(C1) is
the energy of an isolated carbon atom. The configura-
tion with a maximum energy Eb is stable (equilibrium),
since its total energy is minimum. The configurations
with smaller (but positive) values of Eb are metastable;
they correspond to local minima of the total energy in
the space of atomic coordinates.

We obtained the following values of the binding
energy Eb per atom: 6.08, 6.14, 5.95, and 5.90 eV/atom
for a cage, a bowl, a ring, and a chain, respectively
(Table 1). Our results indicate that the C20 cage is meta-
stable, which is in agreement with Monte Carlo calcu-
lations [8, 11]. The bond lengths between the nearest
neighbors in the C20 fullerene are listed in Table 2; these
results are in good agreement with the results obtained
by other authors.

Ĥ

Ĥ

Eb 20E C1( ) E C20( ),–=
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Heating can transform a metastable isomer to
another configuration. The characteristic time of such
transformation (the lifetime τ) depends on temperature
and the height of the energy barrier separating these
configurations. Following from general arguments
[15], we can see that the cluster decay probability W per
unit time is given by the statistics formula

 (4)

where the factor W0 has dimensions of inverse time (s–1)
and Ea is the activation energy for cluster decay. This
energy is close to the height of the minimum energy
barrier separating the metastable state from the equilib-
rium state or from another metastable state but can dif-
fer from it due to the presence of several different decay
paths. The cluster lifetime can be defined as [15]

 (5)

where τ0 = 1/W0 is of the order of the characteristic
cluster vibration period (~10–13 s). It is convenient to
pass over from the cluster lifetime to the critical num-
ber of steps of molecular-dynamics simulation Nc cor-
responding to cluster decay:

 (6)

where N0 = τ0/t0.

W W0 Ea/kBT–( ),exp=

τ 1/W τ0 Ea/kBT( ),exp= =

Nc N0 Ea/kBT( ),exp=

Table 1.  Binding energies Eb (eV/atom) for some isomers of
C20 clusters calculated using different methods: tight-binding
method (TB), Hartree–Fock method (HF), density functional
method in the local density approximation (LDA), density
functional method with allowance for gradient corrections
(GCA), and Tersoff–Brenner empirical method (Tersoff)

C20 
isomer

Method of calculation

TB
[6]

HF
[8]

LDA
[8]

GCA
[9]

Tersoff
[21]

present
study

Cage 6.08 4.01 7.95 6.36 6.36 6.08

Bowl – 4.15 7.87 – 6.19 6.14

Ring 6.01 4.23 7.77 6.45 6.11 5.95

Chain 6.05 – – 6.35 – 5.90

Table 2.  Bond lengths in the C20 fullerene calculated using
different methods: Hartree–Fock method (HF), method of
modified neglect of differential overlap (MNDO), and Ter-
soff–Brenner empirical method (Tersoff)

Method of
calculation

Bond length, Å

minimum maximum

HF [4] 1.42 1.47

MNDO [5] 1.41 1.52

Tersoff [21] 1.44 1.53

Present study 1.44 1.52
PH
We performed molecular-dynamics simulation of
the “life” of the C20 fullerene at different initial temper-
atures T of the ionic subsystem; in this way, we directly
determined the quantity Nc as a function of T. Different
values of T corresponded to different sets of initial
velocities of the cluster atoms Vi0, which were chosen
randomly each time (but subjected to the condition

 = 0).

The results obtained are shown in Fig. 2. Since the
nature of the decay of a metastable state is probabilistic,
the quantity Nc at a given temperature T is not deter-
mined uniquely. Nevertheless, it is seen from Fig. 2
that, in first approximation, the results of simulation are
described by Eq. (6), according to which the depen-
dence of ln(Nc) on 1/T is linear. The slope of this line is
the activation energy for the cluster decay and is found
to be Ea = 8 ± 1 eV at the temperature of the electronic
subsystem Tel = T and Ea = 7 ± 1 eV at Tel = 0.

Figure 3 shows the results of calculating the “poten-
tial landscape” for a C20 cluster in the vicinity of the
metastable cage configuration (point 1 in Fig. 3). Sad-
dle point 2 is the nearest to the cage state and corre-
sponds to a configuration in which two C–C bonds begin
to break and two adjoining octagons form (Fig. 4). The
energy of this configuration is 4 eV higher than that of
a cage. Analysis of the data of molecular-dynamics
simulation shows that, though this configuration actu-
ally appears from time to time during thermal vibra-
tions, the cluster does not decay. The reason for this
behavior is that the energy of the metastable state at
point 3, which is the nearest to saddle point 2 (Fig. 3),
is only 0.1 eV lower than the energy at the saddle point
(visually, atomic configurations 2 and 3 are practically
the same; each of them has two octagons). Therefore,
after arriving at a new metastable state, the system does
not stay there but, due to the thermal motion of atoms,
returns (again via saddle point 2) to the vicinity of the
initial metastable state at point 1.

Metastable saddle point 4, next to metastable state 3
(Fig. 3), corresponds to a configuration in which two C–
C bonds are broken and the breaking of the third bond
begins, resulting in the formation of a cluster of three
adjoining octagons on the “lateral surface” (Fig. 5). The
energy of this configuration is 4.8 eV higher than that of
a cage. Metastable state 5, which is the nearest to saddle
point 4, also has three octagons (and three broken C–C
bonds). Molecular-dynamics simulation shows that, after
passing to metastable state 5, the system can either return
to the vicinity of metastable state 1 via saddle points 4
and 2 or pass to metastable state 7 via saddle point 6
(Fig. 3). In atomic configuration 6, three C–C bonds are
broken and the breaking of another bond begins; because
of this, four octagons form on the lateral surface of the
cluster (Fig. 6). In metastable configuration 7, there are
also four octagons. As a rule, the system does not return
from this configuration to the original state 1 (we
observed such a return only once). Thus, the difference

Vi0i∑
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between the energies of configurations 6 and 1 is the
height U = 5.0 eV of the minimum potential barrier pre-
venting the cage decay.

Having passed over this barrier and appeared in meta-
stable state 7, the system, in the overwhelming majority
of cases, very rapidly passes via saddle point 8 to meta-
stable state 9 (Fig. 3), where it resides for a time corre-
sponding to 103–104 steps of molecular-dynamics sim-
ulation. Configuration 9 has the form of a star and is
shown in Fig. 7. In this symmetric configuration, there
are five octagons on the lateral surface of the cluster.

(a)

(b)

2824 32 36
8

10

12

14

16
ln

(N
c)

2624 28 30 32 34 36
1/T 10–5 K–1

8

10

12

14

16

ln
(N

c)

Fig. 2. Logarithm of the critical number of steps of molec-
ular-dynamics simulation Nc for the onset of the decay of
the C20 fullerene as a function of the temperature T of the
ionic subsystem for electron temperature (a) Tel = T and
(b) Tel = 0. Circles are the results of calculation, and the
solid line is a linear least squares fit.
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The decay of the star leads to the formation of different
quasi-two-dimensional or quasi-one-dimensional con-
figurations (Fig. 8) and occurs through transitions via
different saddle points (only one of them is shown in
Fig. 3). No transition occurs to the equilibrium bowl
configuration.

4. DISCUSSION

It should be noted that the problem of the choice of
the temperature of the electron subsystem Tel in simu-
lating the dynamics of an electron–ion system is not at
all trivial. It is shown in [19] that the use of Eq. (2) in
integrating the classical equations of motion for ions
corresponds to the conservation of the so-called Mer-
min free energy [22] Ω = E – TelS, where E is the total
internal energy of the system and S is the electronic
entropy. Generally, the quantity Tel does not necessarily
coincide with the average ionic temperature T [19].
Calculations of the dynamics of different fullerenes at
high temperatures performed in [20] showed, in partic-
ular, that the stability of the cluster at Tel = T appears to
be somewhat lower than at Tel = 0 but that there are no
basic qualitative distinctions between these two cases.

–123

–122

–121

–120

–119

–118

–117

–116

E
, e

V

1

2

3

4

5

6

7

8

9

10

U

Fig. 3. Dependence of the total energy E of a C20 cluster
on “the generalized coordinate” in the 3N-dimensional
space of atomic coordinates {Ri} in the vicinity of the
metastable cage configuration (schematic). The energies
are measured from the energy of an isolated carbon atom.
The numerals correspond to the following configurations:
(1) fullerene (cage), E = –121.56 eV (Fig. 1a); (2) saddle
point, E = −117.62 eV (Fig. 4); (3) metastable state, E =
−117.73 eV; (4) saddle point, E = –116.79 eV (Fig. 5);
(5) metastable state, E = –117.13 eV; (6) saddle point
determining the height of the minimum potential barrier
(U = 5.0 eV) to the decay of the cage, E = –116.61 eV
(Fig. 6); (7) metastable state, E = –117.12 eV; (8) saddle
point, E = –116.94 eV; (9) metastable star state, E =
−118.23 eV (Fig. 7); and (10) equilibrium bowl configura-
tion, E = –122.71 eV (Fig. 1b).
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According to [20], the fragmentation temperature Tfr of
fullerene C20, defined as the temperature above which
the metastable configuration decays, is Tfr ≈ 3600 and
4000 K at Tel = T and 0, respectively.

According to our data, the activation energy Ea for
the decay of fullerene C20 is the same at Tel = T and Tel =
0 to within the limits of error (see Section 3), although
the average value of Ea at Tel = T is somewhat greater
than that at Tel = 0. Thus, the cluster dynamics weakly
depends on the temperature of the electronic sub-
system. Partly, this is due to a rather large gap (0.4 eV)
between the energies of the lower empty and the upper
filled molecular orbital (HOMO–LUMO gap). Here,
we should emphasize that the “physical time” during

Fig. 4. Atomic configuration corresponding to saddle point 2
in Fig. 3.

Fig. 6. Atomic configuration corresponding to saddle point 6
in Fig. 3. This configuration determines the height of the
minimum potential barrier (U = 5.0 eV) to the decay of the
cage.
P

which we controlled the dynamics of the C20 cluster for
each set of initial velocities (i.e., at each initial temper-
ature) exceeded 1.5 ns, which is two orders of magni-
tude greater than the corresponding time (about 10 ps)
in [20, 23], where simulations of the thermal stability of
fullerenes were performed. Due to this, we could find
the temperature dependence of Nc (i.e., the cluster life-
time) over a fairly large temperature range and estimate
the activation energy Ea. Obviously, the lifetime of a
metastable state is dependent on temperature. There-
fore, it makes no sense to determine (as in [20]) “the
temperature of cluster fragmentation” regardless of the
time in which this fragmentation occurs.

Using the calculated energy Ea, the lifetime of a C20
cage at room temperature, τ(300 K), is found from

Fig. 5. Atomic configuration corresponding to saddle point 4
in Fig. 3.

Fig. 7. Star atomic configuration corresponding to metasta-
ble state 9 in Fig. 3.
HYSICS OF THE SOLID STATE      Vol. 47      No. 4      2005
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Eq. (5) to be very large (practically, infinite). This result
allows us to understand the reason for the success of
experiments [3] on the synthesis of metastable C20
fullerenes. We note that the height of the minimum
potential barrier to the decay of a C20 cage (U = 5.0 eV)
is somewhat lower than the decay activation energy
Ea = (6–9) eV determined directly from the molecular-
dynamics simulation data. This is partly due to the fact
that the cluster can decay in different ways by passing
through potential barriers of different heights, includ-
ing those that are higher than the lowest barrier.

In [24], calculations of the temperature dependence
of the relative root-mean-square fluctuation of bond
lengths δ led to the conclusion that the C20 cluster melts
at a temperature Tm ≈ 1900 K. According to our calcu-
lations, δ monotonically increases with temperature
without exhibiting any features at T < 3000 K. More-
over, an abrupt cooling of the cluster at any instant prior
to its decay results either in its transition to one of the
intermediate metastable states (states 3, 5 in Fig. 3) or
in its return to the original metastable state (state 1).
Thus, the problem of melting of the C20 fullerene at a
certain temperature Tm requires further study.

Let us now discuss in more detail the character of
transition of the C20 fullerene to other states. Above all,
we note that we never observed a transition to the equi-
librium bowl configuration with a lower total energy
(higher binding energy). As a rule, the decay of the C20
fullerene begins with a transition to the metastable star
configuration via a sequence of several saddle points and
intermediate short-lived metastable states (Fig. 3). For a
star (Fig. 7), the binding energy Eb = 5.91 eV/atom is
lower than that for a cage. A transition from the cage to
the star is accompanied by a decrease in the cluster tem-
perature by 500–800 K. Over the course of time, the
star passes to different (as a rule, quasi-two-dimen-

Fig. 8. One of the atomic configurations that can form after
the decay of the star.
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sional or quasi-one-dimensional) configurations with a
lower binding energy and the cluster temperature
decreases from 3000–4000 to 1000–1500 K. These
configurations are very different in structure from both
the cage and the bowl (one of such configurations is
shown in Fig. 8). Thus, the ability of carbon structures
to form numerous intermediate metastable (but fairly
stable) states prevents the transition of the metastable
cage to the stable bowl configuration.

5. CONCLUSIONS

The main result of this study is that the metastable
C20 fullerene (cage) was demonstrated to have very
high thermal stability with respect to transition to an
equilibrium state with a lower total energy. The reason
for this stability is the high potential barrier, which pre-
vents the decay of the C20 cage and the corresponding
high decay activation energy. For this reason, the life-
time of the C20 cage is very long even at room temper-
ature. Therefore, once created at a certain stage of syn-
thesis, a C20 cage retains its chemical structure.

Although all this applies to an isolated C20 cage, by
analogy to a C60 cluster, we may hope that a C20
fullerene-based cluster material (fullerite) exists. In any
case, the preliminary data are rather encouraging [21, 25,
26]. Final solution of this problem requires further exper-
imental and theoretical studies, one stimulus for which is
the conjecture that the C20 fullerite (if synthesized) could
be a high-temperature superconductor [27].
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Abstract—The molecular mass of the fullerene Cnc (where the subscript nc is the number of carbon atoms in
a molecule of the fullerene Cnc) is found to be correlated with characteristics of face-centered cubic fullerites,
such as the sublimation energy, the distance between the centers of the nearest neighbor molecules, the Grü-
neisen parameter, and the bulk modulus at zero pressure and zero temperature. The correlation dependences
revealed are used to determine the parameters of the Mie–Lennard-Jones pair potential for the interfullerene
interaction in face-centered cubic fullerites. The parameters of the pair potential obtained are evaluated by cal-
culating the properties of fullerites. The results of these calculations demonstrate that the Cnc fullerite crystals
at nc ≤ 15–20 are unstable. The parameters of the triple and critical points of the fullerites are estimated, and
the evolution of the parameters of the pair potential and properties of the fullerites with a variation in the
fullerene molecular mass is investigated. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Fullerite crystals are composed of spherical carbon
molecules Cnc, namely, fullerenes with various molecu-
lar masses (nc = 24–96, where nc is the number of car-
bon atoms in a molecule of the fullerene Cnc). The most
widespread and, hence, most extensively studied
fullerene is the buckminsterfullerene C60, which con-
sists of 20 hexagons and 12 pentagons forming a trun-
cated icosahedron [1–7]. However, even for the C60

fullerene, there is no agreement between researchers
regarding the parameters of the pair potential for the
interfullerene interaction. The point is that the experi-
mental data used for estimating the parameters of the pair
potential for the C60 face-centered cubic fullerite (molec-
ular mass m60 = 720.66 amu) are extremely contradic-
tory. For example, the Debye temperature varies from
Θmin = 37 K to Θmax = 180 K [2, 3], the Grüneisen param-
eter ranges from γmin = 1.40 to γmax = 9.15 [4], the subli-
mation energy lies in the range L00 = 161–189 kJ/mol [5],
and the isothermal bulk modulus B0 under atmospheric
pressure and at room temperature falls in the range
between 10.3 [3] and 18.1 GPa [7]. The data available
in the literature on the properties of higher and lower
fullerenes are even more contradictory because of the
difficulties encountered in performing the experiments.
In this respect, the purpose of the present work was to
reveal and analyze a correlation between the parameters
of the potential for the pair interaction of Cnc fullerenes
and their molecular mass in the range 20 ≤ nc ≤ 120. The
results obtained were used to investigate the evolution
of the properties of the face-centered cubic fullerites
with a variation in the molecular mass of the Cnc

fullerene.
1063-7834/05/4704- $26.000785
2. DETERMINATION OF THE PARAMETERS 
OF THE INTERFULLERENE POTENTIAL

The intermolecular pair interaction of Cnc fullerenes
can be described by the Mie–Lennard-Jones potential
[8–11]

 (1)

Here, D is the depth of the potential well, r0 is the coor-
dinate of the minimum of the potential well, b is the
stiffness parameter of the potential, and a is the param-
eter characterizing the long-range interaction.

All four parameters of potential (1) can be self-con-
sistently determined using different methods described
in [8, 9]. Zubov et al. [11] demonstrated that fullerites
are classical van der Waals crystals for which the de
Buhr parameter ΛB is very small. In particular, the de
Buhr parameter for the C60 molecule is 20 times smaller
than that for xenon: ΛB(C60) ≅  0.003 ! ΛB(Xe) ≅  0.06.
Therefore, the energy of zero-point vibrations of the
fullerite lattice can be ignored. Moreover, the nearest
neighbor interaction approximation for fullerites holds
with a high accuracy because of the large size of the
fullerene molecule and the short-range van der Waals
character of the chemical bonding. As a consequence,
the parameters of the pair potential for fullerites can be
determined from the relationships [9]

 (2)

Here, c is the distance between the centers of the near-
est neighbor molecules in the fullerite lattice; NA is the
Avogadro number; kn and ky are the coordination num-

ϕ r( ) D/ b a–( )[ ] a r0/r( )b
b r0/r( )a

–[ ] .=

r0 c00, D L00/ NAkn/2( ),= =

b 6γ00 2, a– 3πr0
3( )B00/ kyknDb( ).= =
 © 2005 Pleiades Publishing, Inc.
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Table 1.  Physical parameters (taken from different works) used to construct relationships (3) for Cnc fullerites with a cubic
lattice [1 cal = 4.1868 J, 1 kJ/mol = 120.27323 K, 1 cal/mol = 0.43393 × 10–4 eV = 6.9524 × 10–24 J, 1 amu = (103NA)–1 =
1.6606 × 10–27 kg, NA = 6.0221 × 1023 mol–1]

Cnc mnc, amu L00, kJ/mol r0 or c00, 10–10 m γ00 [12] B00, GPa [12]

 (simple cubic) 288.26 5.545 [14]

 (face-centered cubic) 432.40 121 [13] 8.4 [12, 13]

C60 (face-centered cubic) 720.66 175 [5] 10.02 [15], 10.04 [12, 13] 8.4 16.2

C70 (face-centered cubic) 840.77 10.47 [16], 10.53 [17],
10.588 [17], 10.61 [1, 15]

C76 (face-centered cubic) 912.84 10.943 [18], 10.946 [12, 13] 9.2 17.1

C84 (face-centered cubic) 1008.92 11.24 [15], 11.357 [12, 13] 9.6 17.5

 (face-centered cubic) 1153.06 238 [13] 11.9 [12, 13]

* Fullerites not yet synthesized but whose preparation is predicted [13, 14].

C24*

C36*

C96*
ber and the packing coefficient of the crystal structure,
respectively; and the subscript 00 indicates that the
quantity is determined at zero pressure and zero tem-
perature.

Table 1 presents the data available in the literature
[5, 12–18] on the sublimation energy L00, the distance
between the centers of the nearest neighbor molecules
r0 (or c00), the Grüneisen parameter γ00, and the isother-
mal bulk modulus B00 for different fullerites with a
cubic structure. Analysis of the above data demon-
strated that all these parameters increase with an
increase in the number nc of carbon atoms in a mole-

12

10

8

6

4
0 20 40 60 80 100

nc

r0, 10–10 m

C24

C36

C60

C70

C76
C84

C96

Fig. 1. Dependence of the distance r0 between the centers of
the nearest neighbor molecules Cnc in fullerites (T = 0 K,
P = 0) on the number nc of carbon atoms in a molecule of
the fullerene Cnc. The solid line represents the approxima-
tion of the data presented in Table 1 by the polynomial r0 =
–3.23603 + 0.5174nc – 0.00682nc2 + 3.21409 × 10–5nc3

(with the correlation coefficient Rcorr = 0.9902).
PH
cule of the fullerene Cnc (Fig. 1) and can be described
by the relationships

 

 

 (3)

 

 

where Rcorr is the correlation coefficient of the polyno-
mial relationship. Figure 1 shows the most complex
dependence r0(nc). The other expressions exactly
describe the data presented in Table 1.

By using expressions (3), we obtain the following
polynomial relationships between the parameters of
potential (1) and the number nc:

(4)

where kB is the Boltzmann constant.

The parameters thus calculated are listed in Table 2.

L00 kJ/mol[ ] 22 3.05nc 0.00833nc
2
,–+=

Rcorr 1,=

r0 10
10–

 m[ ] 3.23603– 0.5174nc 0.00682nc
2

–+=

+ 3.21409 10
5–
nc

3
,×

Rcorr 0.9902,=

γ00 5.4 0.005nc, Rcorr+ 1,= =

B00 GPa[ ] 11.6375 0.09167nc+=

– 2.60417 10
4–
nc

2
,×

Rcorr 1,=

D/kB K[ ] 441 61.1388nc 0.167nc
2
,–+=

b 30.4 0.03nc,+=

a = 76.817 r0 10
10–

 m[ ]( )
3
B00 GPa[ ] / b D/kB( ) K[ ]{ } ,
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Table 2.  Physical parameters at T = 0 K and P = 0 and the parameters of the potential for Cnc fullerites with a cubic lattice
according to calculations from relationships (3) and (4)

Cnc
L00,

kJ/mol (3) γ00 (3) B00,
GPa (3)

D/kB,
K (4) r0, Å (3) b (4) a (4)  (5) Θ00,

K (6)

C24 (simple cubic) 90.4 6.6 13.7 1812.16 5.698 37.6 2.86 15.49 43.01

C36 (face-centered cubic) 121 7.2 14.6 2425.60 8.051 41.2 5.86 17.69 63.34

C60 (face-centered cubic) 175 8.4 16.2 3508.21 10.198 48.4 7.77 20.73 58.75

C70 (face-centered cubic) 195 8.9 16.8 3902.53 10.588 51.4 7.63 21.68 55.98

C76 (face-centered cubic) 206 9.2 17.1 4123.08 10.803 53.2 7.55 22.25 54.56

C84 (face-centered cubic) 219 9.6 17.5 4398.46 11.154 55.6 7.63 23.08 53.19

C96 (face-centered cubic) 238 10.2 18.1 4771.45 12.018 59.2 8.51 24.57 52.61

Note: The parameters that exactly coincide with those used for constructing polynomials (3) (see Table 1) are marked with bold type.

B00'
3. EVALUATION OF THE PARAMETERS 
OF THE PAIR POTENTIAL FOR FULLERITES

Before proceeding further, we note that the parame-
ters of the pair potential obtained for the C60 fullerite
are in good agreement with those used by Yakub [10],
who calculated the thermodynamic properties of the
C60 face-centered cubic fullerite on the basis of poten-
tial (1) with parameters r0 = 10.04 × 10–10 m, D/kB =
3218.4 K, b = 43, and a = 9. These parameters were
determined by approximating the Girifalko potential
[4] with the Mie–Lennard-Jones potential (1). The
potential determined in [10] was subsequently used by
Zubov et al. [11] and worked well in calculating the
properties of the C60 face-centered cubic fullerite.

The potential depth determined for the C60 fullerite
is well within the range of bonding energies, which was
estimated experimentally or theoretically for two buck-
minsterfullerene molecules by various authors (see the
review in [19]); that is,

2785 K = 0.24 eV ≤ D/kB(C60) ≤ 0.4 eV = 4641.6 K. 

The following experimentally measurable quantities
were calculated with the use of the parameters obtained
for the pair potential (Table 2):

(1) The derivative of the bulk modulus at T = 0 K
and P = 0 was calculated from the formula [8, 9]

 (5)

(2) The Debye temperature at T = 0 K and P = 0 (i.e., at
c = r0) was determined from the expression [20]

 (6)

Here, we introduced the following designations:

 

 

where " is the Planck constant and mnc = m(C1)nc =
12.011nc [amu] is the mass of the Cnc molecule.

B00' dBT 0= P( )/dP[ ] P 0= 2 a b+( )/3.+= =

Θ00 Awξn –1 1 8D/kBAwξn
2( )+[ ]

1/2
+{ } .=

Aw KR 5knab b 1+( )/144 b a–( )[ ] r0/c( )b 2+
,=

KR "
2
/kBr0

2
mnc, ξn 9/kn,= =
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(3) The longitudinal velocity of sound at T = 0 K and
P = 0 was determined from the relationship [21]

 (7)

where µ is the Poisson ratio and V00 =  is the
molar volume at P = 0 and T = 0 K.

(4) The thermal expansion coefficient at T @ Θ and
P = 0 was calculated from the formula [22]

 (8)

under the assumption that the product BV only weakly
changes with a variation in the temperature at P = 0 [23].

(5) The enthalpy of formation of a monovacancy
was determined from the expression [24, 25]

 (9)

It should be noted that the case in point is the energy
required to transfer the fullerene molecule as a whole
spherical object from the site of the face-centered cubic
lattice to the surface. The function fy accounts for the
role played by the zero-point vibrations in the activa-
tion process and is related to the temperature by the
expressions

 

It is easily seen that, at T/Θ00 > 1.5 (the classical range
in which the role of zero-point vibrations can be disre-
garded), the function fy can be approximated as fy ≅  1.
However, at T/Θ00 < 0.3 (when the contribution from
the quantum effects becomes dominant), the function fy

is described by the linear relationship fy ≅  8T/3Θ00.

ω0l 3B00V00 1 µ–( )/NAmnc 1 µ+( )[ ] 1/2
=

=  knabD 1 µ–( )/6mnc 1 µ+( )[ ] 1/2
,

πNAr0
3
/6ky

α p T  @ Θ( ) γCv /BV( )T ∞= 3kBNAγ0/B00V00≅=

=  54γ0kB/knabD,

Ev mnc/kn( ) f y 3ckBΘ00/8"( )2
.=

f y 2/y( ) 1 y–( )exp–[ ] / 1 y–( )exp+[ ] ,=

y 3Θ00/4T .=
5



788 MAGOMEDOV
Table 3.  Physical parameters calculated using the potential with the parameters represented by polynomials (3) and (4) and
in Table 2 for Cnc fullerites with a cubic lattice [kn = 12, ky = 0.7405, ξn = 9/kn = 0.75, αs = (π/6ky)

2/3 = 0.7937 for the face-
centered cubic lattice; kn = 6, ky = π/6 = 0.5236, ξn = 1.5, αs = 1 for the simple cubic lattice]

Cnc
ω0l,

m/s (7)*
ω0t,

m/s (7)**
αp(T @ Θ),

10–6, K–1 (8)
Ev, eV 
(9)***

Ed, eV 
(10)***

σ(100)0,
mJ/m2 (11)

σ(111)0, mJ/m2

(11)****

C24 (simple cubic) 1738 929 304.1 0.72–0.72 1.01–1.01 38.52

C36 (face-centered cubic) 3482 1860 55.2 2.33–2.34 5.19–5.22 65.08 53.36

C60 (face-centered cubic) 4050 2165 28.6 5.36–5.39 11.95–12.00 58.67 50.81

C70 (face-centered cubic) 4037 2158 26.1 6.13–6.15 13.65–13.70 60.55 52.44

C76 (face-centered cubic) 4031 2155 25.0 6.58–6.60 14.66–14.71 61.45 53.22

C84 (face-centered cubic) 4069 2175 23.0 7.37–7.39 16.41–16.49 61.50 53.26

C96 (face-centered cubic) 4321 2310 19.1 9.56–9.59 21.31–21.38 57.46 49.76

      * The longitudinal velocity of sound ω0l was calculated using the Poisson ratio taken from [6] (µ = 0.3 for the C60 fullerite) at T = 0 K
and P = 0 under the assumption that this parameter is identical for all fullerites (as is the case with noble-gas crystals [28, p. 368]).

    ** The calculation was performed according to the formula ωt = ωl[(1 – 2µ)/2(1 – µ)]1/2 [29, p. 125]; i.e., ωt = ωl/1.8708 at µ = 0.3.
  *** The first value was calculated at T = 200 K, and the second value corresponds to the high-temperature limit T @ Θ when fy = 1 [see

relationship (8)].
**** The specific surface energy σ(111) was determined from the specific surface energy σ(100) according to the formula σ(111) =

(31/2/2)σ(100) [30], which is valid for the face-centered cubic structure.
(6) The activation enthalpy of self-diffusion was cal-
culated from the expression [24, 25]

 (10)

Here, we are dealing with the migration of the fullerene
molecule as an undeformable spherical object. In order
to elucidate how the functions Ev (T) and Ed(T) depend
on the temperature, they were calculated at T = 200 K
and T @ Θ00 (when fy = 1).

(7) The specific surface energy of the (100) face at
T = 0 K and P = 0 (i.e., at c = r0) was calculated from
the formula [26]

 (11)

The Debye temperature, which was determined with
the use of the pair potential obtained in this work, coin-
cides with recent experimental data: Θ00 (C60 face-cen-
tered cubic fullerite) = 55 K [3, 27]. The velocities of
sound at T = 0 K and P = 0 (Table 3) agree well with the
experimental data for the C60 face-centered cubic ful-
lerite [6]: the longitudinal velocity of sound varies from
ω0l = 4130 m/s (for the 〈111〉  direction) to ω0t =
3550 m/s (for the 〈100〉  direction) and 1920 m/s (for the
〈111〉  direction). The high-temperature value of the
thermal expansion coefficient (Table 3) is in good agree-
ment with the theoretical estimates made for the C60
face-centered cubic fullerite [10, 12]: αp(T = 1000 K) =
(2–4) × 10–5 K–1. It should be noted that, according to the
data obtained in [12], as in the present work (Table 3),

Ed 3/8ky
2/3( )mnc f y 3ckBΘ00/4π"( )2

.=

σ 100( )0 1/c
2α s( )=

× knD/12( ) 3kBΘ00
2

/32 Θ00 Awξn+( )[ ]–{ } ,

α s π/6ky( )2/3
.=
P

the thermal expansion coefficient αp(T @ Θ) decreases
with an increase in the number nc of carbon atoms in
the C60 fullerene molecule from 60 to 84. The derivative
of the bulk modulus with respect to pressure is in close
agreement with the theoretical estimates of this
parameter [31]: (C60 face-centered cubic fullerite) =
16.5–18.5. Thus, the comparison of the results of our
calculations with the data available in the literature con-
firms the correctness of the method used for determin-
ing the parameters of potential (1).

4. DISCUSSION AND PREDICTIONS

The above analysis of the obtained dependences and
the parameters listed in Tables 2 and 3 allows us to
make the following inferences and predictions.

(1) The quantities L00, γ00, B00, D, r0, b, and 
increase monotonically with an increase in the number
nc of carbon atoms in the Cnc fullerene molecule from
15 to 120, i.e., with an increase in the molecular mass
of the fullerene from m15 = 180.165 amu to m120 =
1441.320 amu [see relationships (3), (4); Fig. 1].

(2) The long-range interaction parameter a in the
range 40 ≤ nc ≤ 90 varies only slightly: a = 7–8 (Fig. 2).
This suggests the van der Waals character of the inter-
action [8, 28]. However, for numbers nc ≤ 29, we obtain
a ≤ 4. This indicates a possible crossover to covalent
bonding in the molecules [9]. The same conclusion was
drawn in [14] for the C24 fullerite. As can be seen from
Fig. 2, the condition a ≤ 1 is satisfied for numbers nc ≤
17. This suggests that the system is unstable.

(3) The velocities of sound (ω0l , ω0t) at T = 0 K and
P = 0 for 50 ≤ nc ≤ 90 are nearly constant and fall in the

B00'

B00'
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ranges 3890 m/s ≤ ω0l  ≤ 4120 m/s (Fig. 3) and
2130 m/s ≤ ω0t ≤ 2200 m/s. Consequently, in this range
of numbers nc, an increase in the elastic modulus is
compensated for by an increase in the density ρ =
mnc/V00 [see expression (7)]. However, for numbers
nc < 35, the velocity of sound drastically decreases
with a decrease in the value of nc. This suggests an
anomalous decrease in the elastic modulus.

(4) The specific surface energy of the Cnc face-cen-
tered cubic fullerites at T = 0 K and P = 0 for molecular
masses in the range 37 ≤ nc ≤ 97 varies in the narrow

9

7

5

3

1
10 30 50 70 90 110

nc

Potential parameter

Fig. 2. Dependence of the long-range interaction parameter
in the interfullerene potential (1) for the face-centered cubic
fullerites on the number of carbon atoms in the Cnc fullerene.
Calculations were performed using polynomials (3) and (4).
The long-range interaction parameters for fullerene masses
in the range 40 ≤ nc ≤ 90 lie in the narrow range 7 ≤ a ≤ 8.

130

110

90

70

50

10 30 50 70 90 110
nc

Surface energy, mJ/m2

Fig. 4. Dependence of the specific surface energy (T = 0 K,
P = 0) of the face-centered cubic fullerites on the number of
carbon atoms in the Cnc fullerene. Calculations were per-
formed according to formula (11) with the use of polynomi-
als (3) and (4). The specific surface energies for fullerene
masses in the range 37 ≤ nc ≤ 97 lie in the range 56 ≤
σ(100)0 ≤ 63 mJ/m2.
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ranges 56 ≤ σ(100)0 ≤ 63 mJ/m2 (Fig. 4) and 49 ≤
σ(111)0 ≤ 55 mJ/m2. However, for numbers nc ≤ 30, the
specific surface energy sharply increases with a
decrease in the value of nc.

(5) The Debye temperature at T = 0 K and P = 0 for
20 ≤ nc ≤ 110 varies in a wavelike manner (Fig. 5) from
Θ00(C36) = 63.34 K (maximum) to Θ00(C93) = 52.57 K
(minimum).

(6) The thermal expansion coefficient at T @ Θ and
P = 0 for 45 ≤ nc ≤ 95 lies in the range 3.6 × 10–5 ≥
αp(T @ Θ) ≥ 2.0 × 10–5 K–1 (Fig. 6). However, for nc <

4500

4000

3500

2500

2000

10 30 50 70 90 110
nc

ω0l

3000

Fig. 3. Dependence of the longitudinal velocity of sound
ω0l  (T = 0 K, P = 0) in the face-centered cubic fullerites on
the number of carbon atoms in the Cnc fullerene. Calcula-
tions were performed according to formula (7) with the use
of polynomials (3) and (4). The velocities of sound for
fullerene masses in the range 50 ≤ nc ≤ 90 lie in the narrow
range 3980 ≤ ω0l  ≤ 4120 m/s.

64

62

60

54

52

10 30 50 70 90 110
nc

Θ00, K

56

58

Fig. 5. Dependence of the Debye temperature Θ00  of the
face-centered cubic fullerites on the number of carbon
atoms in the Cnc fullerene. Calculations were performed
according to formula (6) with the use of polynomials (3)
and (4). The Debye temperature is maximum [Θ00 (C36) =
63.34 K] for nc = 36 and minimum [Θ00 (C93) = 52.57 K]
for nc = 93.
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20, the thermal expansion coefficient α(T @ Θ) sub-
stantially increases with a decrease in the molecular
mass. This indicates that the system is unstable.

(7) The energy of the formation of a monovacancy
Ev, the self-diffusion energy Ed, and the migration
energy Em = Ed – Ev for the Cnc fullerene in the face-
centered cubic fullerite increase almost linearly with an
increase in the number nc (up to nc ≤ 100). However,
these energies drastically increase for numbers nc ≥ 110
(Fig. 7). The results of calculations demonstrate that the
face-centered cubic fullerites have a highly stable lat-
tice for nc > 40, because the energy of the formation of
a monovacancy and the self-diffusion energy of the
fullerene molecule (as a whole, undeformable spherical
object) in the face-centered cubic fullerite appear to be
higher (due to the larger mass and size of the molecule)
than those of carbon atoms in a diamond. For nc ≤ 20,
the anomalously small activation parameters indicate
that the system is unstable.

(8) Since the depth of the potential well increases
monotonically with an increase in the number nc, it
should be expected that the melting temperature Tm and
the temperatures of polymorphic transitions at atmo-
spheric pressure for the face-centered cubic fullerites
will increase monotonically with an increase in the
molecular mass of the fullerene. The same inference
can be made with due regard for the phenomenological
relationships Tm = const(g)(D/kB) [19, 30], αp(T @
Θ)Tm = const(a) [22], Ev /kBTm = const(v ) [32], and
Ed/kBTm = const(d) [33], where the numerical values of
the constants are different in each relationship.

10–3

20 40 60 80 100
nc

αp(T@Θ), K–1

120

10–4

10–5

Fig. 6. Dependence of the thermal expansion coefficient αp
(T @ Θ, P = 0) of the face-centered cubic fullerites on the
number of carbon atoms in the Cnc fullerene. Calculations
were performed according to formula (8) with the use of
polynomials (3) and (4). The thermal expansion coefficients
for fullerene masses in the range 45 ≤ nc ≤ 95 lie in the
range 3.6 × 10–5 ≥ αp(T @ Θ) ≥ 2.0 × 10–5 K–1.
P

(9) The latent heats of first-order phase transitions at
atmospheric pressure, as a rule, are proportional to the
sublimation energies of the crystals [8, 30]. Therefore,
we can expect that the molar enthalpy of polymorphic
phase transitions and the latent heat of melting of the
Cnc fullerites should increase with an increase in the
number nc.

(10) The large value of the derivative of the bulk
modulus  for the fullerites indicates that, under a
high pressure, there can arise an ultrahard state [34], in
which the bulk modulus of the fullerite B0P = B00 +

P  becomes larger than the bulk modulus of the dia-
mond (443 GPa [9, 34]). The pressure above which this
state can be observed for the C60 face-centered cubic
fullerite is easily estimated from the data presented in
Table 2: P = [B0P(C-diam) – B00(C60)]/ (C60) =
(443 – 16.2)/20.73 = 21.34 GPa. This pressure is in
excellent agreement with the estimates made by Blank
et al. [34]; namely, the linear extrapolation of the P–T
phase lines obtained in [34] to the temperature T = 0 K
gives P ≈ 21–23 GPa. Moreover, as follows from the
data presented in Table 3, an increase in the number nc
should be accompanied by a decrease in the pressure
corresponding to the ultrahard state. However, the
experimental data reported in [35] demonstrate that, at
high pressures and temperatures (P ≥ 8–12 GPa, T ≥
400 K), hollow molecules C60 undergo irreversible
destruction with the formation of ordered or disordered
phases based either on atomic carbon or on covalently
bonded structures composed of fragments of the

B00'

B00'

B00'

30

20 40 60 80 100
nc

Ev(T@Θ), eV

120

15

5

25

20

10

10

0

Fig. 7. Dependence of the energy of vacancy formation Ev
(T @ Θ, P = 0) in the face-centered cubic fullerites on the
number of carbon atoms in the Cnc fullerene. Calculations
were performed according to formula (9) with the use of
polynomials (3) and (4). The energy of vacancy formation
increases almost linearly for nc ≤ 100 and increases sharply
for nc > 110.
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destroyed fullerites, such as (C60)2 dimers or one-, two-,
or three-dimensional polymers. Therefore, an increase
in the number nc leads not only to a decrease in the
pressure necessary for the transition to the ultrahard
state but also to a decrease in the pressure at which hol-
low fullerene molecules Cnc undergo destruction.

(11) As a rule, the temperature, the molar volume,
and the pressure at phase transition points (triple, criti-
cal, polymorphic phase transition points) are propor-
tional to the parameters of the intermolecular interac-

tion potential [8, 19, 30, 36]: Tf ~ D/kB, Vf ~ , and Pf ~

D/ . Consequently, it should be expected that the tem-
perature Tf and the molar volume Vf will increase and
the pressure Pf with decrease with an increase in the
molecular mass of fullerenes. In this case, it is assumed
that the solid, liquid, and gaseous phases of fullerenes
are formed by undeformable spherical monomolecules;
i.e., Cnc fullerene molecules at these temperatures and
pressures are not destroyed and their interaction poten-
tial remains unchanged.

(12) The data presented in Figs. 1–3, 6, and 7 indi-
cate that Cnc fullerite crystals are unstable for nc ≤ 15–
20. This is consistent with the conclusions drawn by
V. Pokropivny and A. Pokropivny [14] on the basis of
the geometric simulation of fullerites. Furthermore, this
is in agreement with the results obtained by Cai et al.
[37], who used the complex Brenner potential in the cal-
culation of the energy parameters of different structures
that can be formed by nc carbon molecules. In [37], it
was found that the most stable structures are linear car-
bon clusters for numbers nc ≤ 4, two-dimensional carbon
monorings in the range 5 ≤ nc ≤ 17, and fullerene-like
clusters for numbers nc ≥ 18. Note that high-symmetry
stable fullerenes in the range 18 ≤ nc ≤ 71 are observed
only for nc = 20, 24, 28, 36, 50, 60, and 70.

5. ESTIMATION OF THE PARAMETERS 
OF THE TRIPLE AND CRITICAL POINTS 

BY THE SCALING METHOD

The parameters of the potential obtained in this
work can be used to estimate roughly the parameters of
the triple and critical points of the liquid–vapor phase
transition. This estimation can be performed by the
scaling procedure [19, 30, 36], according to which the
parameters of potential (1) are used as the “natural
units” (or scaling parameters), namely, the natural unit
of length r0 and the natural unit of energy D. Then, the
natural units of molar volume, mass density, tempera-
ture, pressure, and surface tension can be written in the

form Vsc = NA , ρsc = m/ , Tsc = D/kB, Psc = D/ , and

σsc = D/ , respectively. For compounds of a particular
class, different properties are universally expressed
through the natural units characterizing the material.
For example, the parameters of the critical point for

r0
3

r0
3

r0
3

r0
3

r0
3

r0
3
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noble gases can be represented in natural units in the
following form:

 (12a)

 (12b)

 (12c)

As a result, we have NAkBTcr /(PcrVcr) =  = 3.4 ± 0.1
or Zcr = 0.294 ± 0.09 [30]. The boiling temperature at
atmospheric pressure is given by the relationship TB =
(0.61 ± 0.020)Tsc [19, 30]; that is, the temperatures TB
and Tcr are related by the expression TB = (0.5865 ±
0.02)Tcr.

The parameters of the triple point for noble gases in
natural units can be written as follows [30]:

 (13a)

 (13b)

 (13c)

[i.e., NAkBTtr /(PtrVsol) = 410 ± 50;

 (13d)

(i.e., ∆Vtr /Vsol = 0.158);

 (13e)

where ∆Hm is the latent heat (enthalpy) of melting (i.e.,
∆Sm/kB = ∆Hm/kBTtr = 1.68 ± 0.03);

 (13f)

where (dP/dT)m is the slope of the melting line;

 (13g)

where σliq is the surface tension of the liquid phase.
In [19], the properties of C60 fullerenes were evalu-

ated by the scaling method under the assumption that
fullerenes, like noble gases, belong to the class of sys-
tems formed by spherically symmetric close-packed
particles with a short-range interaction. Without calcu-
lating the exponents of the potential, the depth and the
coordinate of the minimum of the potential were deter-
mined to be D/kB = 257 ± 13 meV = 2982.23 ± 150.85 K
and r0 = 10.06 × 10–10 m, respectively [19]. On the basis
of these parameters and relationships (12), Bez-
men’nitsyn et al. [19] estimated the parameters of the
critical point for the C60 fullerene gas, the melting tem-
perature at atmospheric pressure (Table 4) and the
Debye temperature for the C60 face-centered cubic ful-
lerite, as is the case with noble gases. Note that the

expression (D/ )1/2 was used as the natural unit of
frequency. As a result, the formula Θ ≈

Tcr 1.040 0.020±( )T sc 19 30,[ ] ,=

Pcr 0.130 0.006±( )Psc 30[ ] ,=

0.131 0.001±( )Psc 19[ ] ,

V cr 2.380 0.008±( )V sc 30[ ] .=

Zcr
1–

T tr 0.579 0.007±( )T sc;=

Ptr 0.19 0.2±( ) 10
3–× Psc;=

V sol 0.76 0.01±( )V sc,=

V liq 0.88 0.02±( )V sc,=

∆Hm 0.98 0.02±( )D,=

dP/dT( )m 14.105 0.02±( )kB/r0
3
,=

σliq 0.94 0.02±( )σsc,=

r0
2
m60
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Table 4.  Temperatures, pressures, molar volumes, and mass densities at the triple and critical points for Cnc fullerites with a
face-centered cubic lattice according to calculations from relationships (12) and (13) with the parameters of the potential [rep-
resented by polynomials (3), (4) and in Table 2]

Cnc

Triple point [relationships (13)] Critical point [relationships (12)]

Ttr,
K

Ptr,
atm

Vtr (sol),
cm3/mol

Vtr (liq), 
cm3/mol

ρtr (sol). 
g/cm3

ρtr (liq). 
g/cm3

∆Hm, 
kJ/mol

(dP/dT)m,
atm/K

σliq, 
mJ/m2 Tcr, K Pcr, atm Vcr,

cm3/mol
ρcr,

g/cm3

C24 1885 173.56 265.09 1.087

C36 1404 1.203 238.9 276.6 1.810 1.563 19.56 3.68 48.56 2523 82.33 748.0 0.578

C60 2031 0.856 485.5 562.1 1.484 1.282 28.29 1.81 43.78 3649 58.59 1520.3 0.474

(1730) (3100) (53.6) (1441.3) (0.5)

C70 2260 0.851 543.3 629.1 1.547 1.336 31.47 1.62 45.16 4059 58.23 1701.4 0.494

C76 2387 0.847 577.0 668.2 1.582 1.366 33.25 1.52 45.85 4288 57.93 1807.1 0.505

C84 2547 0.821 635.1 735.3 1.589 1.372 35.47 1.39 45.89 4574 56.15 1988.8 0.507

C96 2763 0.712 794.3 919.7 1.452 1.254 38.48 1.11 42.88 4962 48.70 2487.5 0.464

Note: The volume and density at the triple point were calculated from relationships (13) for the solid (sol) and liquid (liq) phases. The
latent heat (enthalpy) ∆Hm, the slope of the melting line (dP/dT)m, and the surface tension of the liquid phase σliq at the triple point
were determined from relationships (13). The estimates taken from [19] for the C60 fullerite are given in parentheses. Since the C24
fullerite has a simple cubic crystal lattice [14], the parameters of the triple point for this compound were not determined.
27("/kB)(D/ )1/2 was derived for noble-gas crys-
tals. The Debye temperature for the buckminsterfuller-
ite was estimated as Θ(C60) ≈ 40 K, which is close to the
Debye temperature obtained in our work (Table 2).

The parameters of the triple point (for the face-cen-
tered cubic fullerites) and the critical point (for the
monomolecular gas of spherical particles) of
fullerenes were calculated by the scaling method with
formulas (12) and (13). These parameters are given in

r0
2
m60

100

20 40 60 80 100
nc

Critical pressure, atm

120

40

20

80

60

Fig. 8. Dependence of the pressure at the critical point on
the number of carbon atoms in the Cnc fullerene. Calcula-
tions were performed according to formulas (12) with the
use of polynomials (3) and (4). The critical pressure for
fullerene masses in the range 50 ≤ nc ≤ 85 lies in the range
55.77atm ≤ Pcr ≤ 61.65 atm.
P

Table 4. The results obtained can be summarized as fol-
lows.

(1) The dependences of the pressure and the mass
density at the triple and critical points on the molecu-
lar mass (i.e., on nc) exhibit a nonlinear behavior
(Figs. 8, 9).

(2) The dependence of the surface tension at the tri-
ple point on the molecular mass nc for the liquid phase
is similar to that of the specific surface energy for the
face-centered cubic fullerite crystal (Fig. 4).

0.8

20 40 60 80 100
nc

Critical density, g/cm3

120

0.3

0.2

0.7

0.5

0.6

0.4

Fig. 9. Dependence of the critical density on the number
of carbon atoms in the Cnc fullerene. Calculations were
performed according to formulas (12) with the use of
polynomials (3) and (4). The critical density for fullerene
masses in the range 40 ≤ nc ≤ 96 lies in the range
0.464 g/cm3 ≤ ρcr ≤ 0.526 g/cm3.
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(3) The temperature and the molar volume at the
triple and critical points and the latent heat of melting
increase monotonically with an increase in the num-
ber nc.

(4) The pressures Ptr and Pcr and the slopes of all the
lines corresponding to the phase transitions in the P–T
diagram (i.e., the values of dPf /dTf) decrease with an
increase in the number of carbon atoms in the fullerene
molecule. As a consequence, an increase in the number
nc leads to the evolution of the P–T diagram, as is sche-
matically shown in Fig. 10.

(5) It is easy to see from Fig. 10 that isobaric heating
of a mixture of microcrystals formed by higher and
lower face-centered cubic fullerites should lead to the
“burning out” (i.e., melting, sublimation) primarily of
lower fullerites. Upon isobaric cooling of a gas (or liq-
uid) mixture of higher and lower fullerene molecules,
face-centered cubic fullerites of higher fullerenes will
be formed initially.

Note that all the aforementioned numerical esti-
mates hold true for monomolecular phases of spherical
particles whose interaction is similar to the interaction
of noble-gas atoms. However, when using the scaling
relations, it should be remembered that an increase in
the molecular mass of the fullerene results in an
increase in the nonsphericity of molecules [1]. There-
fore, within the scaling approach, it is necessary to take
into account the “acentricity factor” of molecules (see
[36, Chapter 2]). This factor is usually determined from
the relationship

 (14)

where Zcr = PcrVcr(NAkBTcr). Even for noble gases, the
acentricity factor is not necessarily equal to zero: Wa =
0 (Ne), –0.004 (Ar), –0.002 (Kr), and +0.002 (Xe) [36].
Relationships (12) and (13) become more complicated
with allowance made for the acentricity factor. For
example, the critical temperature is defined by the
expression

 (15)

Unfortunately, reliable data on the quantity Zcr for
fullerenes are not available in the literature. In this
respect, the use of expression (15) requires the develop-
ment of a technique for calculating the acentricity fac-
tor Wa from the parameters of fullerene ellipsoids.
Since the acentricity factors Wa for fullerenes were not
known, the parameters of the critical and triple points
were estimated from relationships (12) and (13).

It should also be noted that the interfullerene inter-
action (which is intimately related to the interaction of
carbon atoms) differs from the interaction between
atoms of the noble-gas group. This can be judged from
the fact that the rigidity parameter of potential (1) for
the fullerenes increases with an increase in the molecu-
lar mass (Table 2): b = 36.4(C20) – 66.4(C120). This
behavior is characteristic of elements belonging to the

Wa 0.291 Zcr–( )/0.08,=

Tcr 1.263 D/kB( )/ 1 0.214Wa+( ).=
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carbon group [9]. However, the rigidity parameter for
noble gases decreases with an increase in the atomic
mass: b = 20(Ne)–15(Xe) [38]. This is typical of ele-
ments with a filled electron shell (the thicker the elec-
tron shell of neutral atoms, the softer the shell). There-
fore, it should be expected that the numerical coeffi-
cients in relationships (12) and (13) for the fullerenes
will be different, as is the case with the scaling relations
for molecular systems [30] or metals [39]. In this
respect, the obtained estimates should be treated as a
first approximation for investigating the evolution of
the phase diagram for fullerenes with a variation in the
molecular mass.
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ERRATA
The scales in Figures 2 and 3 on pp. 557 and 558 should read nm instead of mm.

Erratum: “Martensitic Transformation and Electrical 
Properties of a Ni2.14Mn0.81Fe0.05Ga Alloy
in Its Different Structural States”
[Phys. Solid State 47, 556 (2005)]
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