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Abstract—Analytical expressions for a temperature jump and electric potential difference that arise when cur-
rent passes through a grain boundary are derived. The electron flow (current) through the boundary and the cur-
rent-induced heat flux are assumed to be given. The kinetic equation in the τ approximation for electrons and
the Maxwell equation for an electric field are used. The dependence of the temperature jump and potential dif-
ference factors on the chemical potential is studied. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Thermoelectric phenomena at the metal–metal
interface have been the subject of extensive research for
a long time [1, 2]. Classical thermoelectric phenomena,
such as Peltier and Thomson effects, are finding wide
application. In addition, they are of scientific interest.
Note that classical thermoelectric phenomena arise
when the surfaces of different metals are in contact.

However, there also exist thermoelectric phenomena
arising when identical metals come into contact. Exam-
ples are temperature and potential jumps that occur
when current or a heat flux passes through the metal–
metal interface. These jumps are observed at the con-
tact of both different and identical metals. The latter
case, where the interface is, in essence, a grain bound-
ary in a polycrystalline metal, is considered in this
work.

Most metals are polycrystals; therefore, the estima-
tion of the temperature and/or potential jumps when
current crosses a grain boundary is of great signifi-
cance.

We assume that the current is directed normally to
the interface and the current value and corresponding
heat flux are given. The electron behavior will be
described in terms of the kinetic equation in the τ
approximation; the behavior of the electric field, in
terms of the Maxwell equation. Modifying our
approach developed in [3, 4], we will find an exact solu-
tion to this set of equations, as well as the values of the
temperature and potential jumps as linear functions of
the current and heat flux. The coefficients of these two
parameters are chemical-potential-dependent func-
tions.

Let the Fermi surface for a metal considered be
spherical and the electric field be directed normally to a
grain boundary selected. The electric field is assumed
to be low enough, so that the linear approximation is
valid [1, 2].
1063-7842/04/4911- $26.00 © 21391
Let us direct the x axis normally to the surface and
place the origin on the boundary. It is assumed that a
heat flux passes in the metal along the x axis. Then, at
distances much greater than electron mean free path λ,
the heat flux can be represented by constant tempera-
ture gradient GT = dT/dx (the metal is assumed to be
isotropic). The temperature gradient is assumed to be
flat: the relative temperature drop over length λ is much
smaller than unity.

The layer of thickness λ that is adjacent to the
boundary will be referred to as the Knudsen layer, as is
customary in kinetic considerations. Outside the Knud-
sen layer, the temperature profile has the form T = T0+ +
GTx for x > 0 and T = T0– + GTx for x < 0. The value of
∆T = T0– – T0+ will be called the temperature jump.
Because of the linear statement of the problem, ∆T =
CTλGT, where CT independent coefficient CT will be
called the temperature jump coefficient. Sometimes, it
is more convenient to handle dimensionless tempera-
ture jump εT = ∆T/Ts, where Ts is the temperature of the
surface. Then, εT = CTλgT, where gT = GT/Ts is the rela-
tive temperature gradient.

Similarly, when the electric field is normal to the
surface, the profile of potential U in the metal has the
form U = U0+ – E0x for x > 0 and U = U0– – E0x for x < 0.
Here, E0 is the electric field strength away from the
boundary. Near the boundary, the field becomes vari-
able and, accordingly, the profile becomes nonlinear.
The value of ∆U = U0– – U0+ will be called the potential
jump. In this case, too, we have ∆U = CUλGT, where
coefficient CU is the potential jump coefficient, because
of the linear statement of the problem.

In metals, heat transfer usually generates an electric
field. Therefore, the problem of temperature distribu-
tion near a metal surface is often solved in parallel with
the problem of electric field in the Knudsen layer,
which is associated with thermal processes.

The aim of our work is (i) to calculate the tempera-
ture jump in metals using an analytical solution to the
004 MAIK “Nauka/Interperiodica”
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kinetic equation for electrons, (ii) find the electric
potential difference near the surface, and (iii) construct
the electric field profile.

We consider the case when the electron gas is arbi-
trarily degenerate. Therefore, the results obtained in
this work apply to a wide temperature range and a vari-
ety of materials (including semimetals).

KINETIC EQUATION AND PROBLEM 
DEFINITION

For electrons in metals, the kinetic equation in the τ
approximation [1, 2] is frequently used:

(1)

Here, f is the electron distribution function, e0 is the
electron charge, p is the electron momentum, E is the
electric field, v is the electron velocity, τ is the electron

relaxation time, and  is the Fermi distribution func-
tion. If the temperature is finite, Eq. (1) must involve
Fermi distribution function  with some effective
temperature T∗  and effective chemical potential µ∗  as
the equilibrium electron distribution function instead of

, which corresponds to the zero temperature. Then,
Eq. (1) takes the form

(2)

Here,  =  is

the Fermi distribution function (Fermian), k is the Bolt-
zmann constant, and m is the electron effective mass
(for details, see [3]).

In most metals, the electron subsystem makes a
major contribution to heat transfer [5]. We will consider
just this case and ignore the phonon contribution to this
process. Also, we assume that the mass velocity of the
electron gas is much lower than the electron velocity
and that characteristic temperature differences over
length λ are much smaller than the electron gas temper-
ature. These assumptions allow us to linearize the prob-
lem.

Let us introduce the designations

as well as dimensionless time t∗  = t/λ and coor-

dinate r∗  = r/λ, and put  = λgT. Now, we linearize

Eq. (2). Applying the particle and energy conservation

∂f
∂t
----- v ∇⋅( ) f e0E

∂f
∂p
------⋅+ +

1
τ
--- f F

0 f–( ).=

f F
0

f F*

f F
0

∂f
∂t
----- v ∇⋅( ) f e0E

∂f
∂p
------⋅+ +

v
λ
---- f F* f–( ).=

f F* f F µ* T*,( ) = mv 2

2kT*
------------- µ*

kT*
---------– 

 exp 1+
1–

c βsv, βs
m

2kT s
-----------, α

µs

kT s
--------,= = =

ε*
mv 2

2kT*
-------------

µ*
kT*
---------,–=

T s/βs

gT
*

laws, we arrive at the equation [3] (the asterisks by the
variables and gradient will hereafter be omitted)

(3)

Here, function ϕ is related to distribution function f via

the relationship f =  + gϕ, where  = fF(µs, Ts);

Suppose that the reflection of the electrons from the
boundary is perfectly diffuse. Then, the set of equations
that describe the problem consists of Eq. (3) and the
equation for the electric field. In dimensionless form,
they are written as

(4)

(5)

∂ϕ
∂t
------ cϕ t r c, ,( ) c e⋅ r( )–=

=  
c

2π
------ k c c',( )ϕ t r c', ,( ) Ω α( ).d∫

f F
s f F

s

k c c',( ) 1
g1

2 α( )
∆ α( )
-------------- c2 g3 α( )

g1 α( )
--------------– 

  c'2
g3 α( )
g1 α( )
--------------– 

  ,+=

g c( ) g c α,( ) c2 α–( )exp

1 c2 α–( )exp+[ ] 2
---------------------------------------------,= =

dΩ α( ) g c' α,( )
g1 α( )

------------------d3c',=

g3 α( ) = 2 g c α,( )c5 cd

0

∞

∫  = 4 c 1 α c2–( )exp+[ ] cln ,d

0

∞

∫

g1 α( ) 2 g c α,( )c3 cd

0

∞

∫ 1 α( )exp+( ),ln= =

g5 α( ) 2 g c α,( )c7 cd

0

∞

∫=

=  12 c3 1 α c2–( )exp+[ ]ln c,d

0

∞

∫

∆ α( ) g1 α( )g5 α( ) g3
2 α( ), e r( )–

e0λ
kT s
--------E r( ).= =

µ∂ϕ
∂x
------ ϕ x µ c, ,( ) µe x( )–+

=  
1

g1 α( )
-------------- k c c',( )ϕ x µ' c', ,( )g c'( )c'3 µ'd c',d

0

∞

∫
1–

1

∫

e' x( ) a0
2 ϕ x µ c, ,( )g c( )c2 µ c,dd

0

∞

∫
1–

1

∫=

a0
2 e0

2m2λ2

π2ε0"
3 βs

-------------------------, µ
cx

c
----,= =
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where ε0 is the dielectric constant.
The boundary conditions and the conditions inside

the metal for x > 0 are as follows:

Accordingly, for x < 0, we have

Here,

We took advantage of the fact that (T0+ – Ts)/Ts =
−(T0– – Ts)/Ts owing to the symmetry of the problem.

BALANCE OF ELECTRON FLOWS 
ON THE SURFACE

Let

be the electron flow that strikes the grain boundary
from the left-hand half-space,

be the electron flow crossing the boundary from left to
right, and

be the electron flow striking the boundary from the
right-hand half-space.

ϕ +0 µ c, ,( ) ϕ0 µ c,( )≡ A0, 0 µ 1,< <=

ϕ x µ c, ,( ) ϕas
+ x µ c, ,( ) o 1( ), x +∞,+=

e ∞( ) eas.=

ϕ 0– µ c, ,( ) A0, 1– µ 0,< <–=

ϕ x µ c, ,( ) ϕas
– x µ c, ,( ) o 1( ), x –∞,+=

e ∞–( ) eas.=

ϕas
+ x µ c, ,( ) easµ εT

+ gT x µ–( )+[ ] c2 g2 α( )
s α( )
--------------– 

  ,+=

εT
+ T0+ T s–

T s
-------------------,=

ϕas
– x µ c, ,( ) easµ ε– T

+ gT x µ–( )+[ ] c2 g2 α( )
s α( )
--------------– 

  ,+=

g2 α( ) = 2 g c α,( )c2 cd

0

∞

∫ 3
2
--- 1 α c2–( )exp+[ ]ln c,d

0

∞

∫=

g0 α( ) 2 g c α,( )c2 cd

0

∞

∫ α c2–( )exp

1 α c2–( )exp+
--------------------------------------

0

∞

∫ dc.= =

N0 ϕ 0 µ c, ,( )g c( ) µc( )d3c

cx 0>
∫=

N1 A0g c( ) µc( )d3c

cx 0>
∫ π

2
---g1 α( )A0= =

N2 ϕ 0 µ c, ,( )g c( ) µc( )d3c

cx 0<
∫=
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The flow balance equation has the form

where p is the probability of electron scattering in a for-
ward direction. Also, heat flux Q0 equals heat flux Q2
(Q0 = Q2).

In view of this equality, N1 = 2(p – 1/2)N2. Hence,

or

For isotropic scattering (p = 0.5), A0 = 0. The expres-
sion for A0 can be represented as

Then, it follows that

The integral term in this equality is the integral elec-
tron flow. This quantity is constant by virtue of the elec-
tron (charge) conservation law. Therefore, we replace
function ϕ(0, µ, c) by ϕas(0, µ, c) is the asymptotic
value) and, calculating

obtain

where

N1 pN0 1 p–( )N2,–=

A0
4 p 2–( )
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-------------------- ϕ 0 µ c, ,( )g c( )µcd3c
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0

∞

∫d
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0

∫=

A0
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0

∞

∫d
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1

∫=
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0

∞

∫d

0

1

∫ .
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g1 α( )
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0

∞

∫
1–

0

∫=

A0
4 p 2–
pg1 α( )
----------------- eesµ εT gTµ–( ) c2 g2 α( )

g0 α( )
--------------– 

 +

0

∞

∫
1–

1

∫=

× g c( )µc3dµdc,

A0
4 p 2–

3 p
--------------- eas h0 α( )gT+( ),=

h0 α( )
∆0 α( )

g0 α( )g1 α( )
----------------------------,=

∆0 α( ) g2 α( )g1 α( ) g3 α( )g0 α( ).–=
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ANALYTICAL SOLUTION 
OF THE PROBLEM

The kinetic equation and the structure of the bound-
ary conditions allow us to consider the half-space x > 0
alone (the case x < 0 is treated in a similar way). Taking
into account the structure of function ϕas, we seek func-
tion ϕ in the form

Eventually, we arrive at the following subproblems.
For function h1(x, µ):

For function h2(x, µ):

For the electric field, we get

Consider the subproblem for h2(x, µ), which is the
problem of temperature jump. This problem was solved
in [3]. The temperature jump is found from the formula

(6)

The value of the temperature jump is the same on
both sides of the grain boundary: ∆T– = T0– – Ts = –∆T+.
Therefore, the total temperature jump at the boundary
is twice as large as the partial jump. Hence,

(7)

ϕ x µ c, ,( ) h1 x µ,( ) c2 g2 α( )
g0 α( )
--------------– 

  h2 x µ,( ).+=

µ
∂h1

∂x
-------- h1 x µ,( )+

1
2
--- h1 x µ',( ) µ'd

1–

1

∫ µe x( ),+=

h1 0 µ,( ) A0, 0 µ 1,< <=

h1 x µ,( ) easµ o 1( ), x +∞, 1– µ 0;< <+=

µ
∂h2

∂x
-------- h2 x µ,( )+

1
2
--- h2 x µ',( ) µ',d

1–

1

∫=

h2 0 µ,( ) 0, 0 µ 1,< <=

h2 x µ,( ) εT
+ GT x µ–( ) o 1( ),+ +=

x +∞, 1– µ 0< < .

e' x( ) a21
2
--- h1 x µ,( ) µ, e ∞( )d

1–

1

∫ eas,= =

a a0 g0 α( ).=

∆T+ T0+ T s– V1GT ,= =

V1
1
π
--- ζ τ( ) τd

0

1

∫– 0.71045,= =

ζ τ( ) –
π
2
--- 2

πτ
------

1
π
--- 1 τ–

1 τ+
-----------ln+ 

  .arctan–=

∆T ∆T– ∆T+– 2V1GT .–= =
According to [3, 4], functions h1(x, µ) and e(x) are
sought in the form of expansions:

(8)

(9)

Here, A1 is an unknown constant, n(η) is an unknown
function,

Px–1 stands for the principal value of the integral of x–1,
δ(x) is the Dirac function, and

is the Case dispersion function [6].
Substituting expansions (8) and (9) into the corre-

sponding boundary conditions yields

(10)

and

(11)

Solving Eq. (10), we find

(12)

h1 x µ,( ) easµ A1 ax–( )exp+=

+ x
η
---– 

  F η µ,( )n η( )exp η ,d

0

1

∫

e x( ) eas aA1 ax–( )exp–
a2

2
----- x

η
---– 

  n η( )exp η .d

0

1

∫–=

F η µ,( )

=  
a2

2
-----η 1 a2η2–

η
-------------------- η

2
---P

1
η µ–
------------- λ η( )δ η µ–( )+ ,+

λ z( ) 1
z
2
--- τd

τ z–
----------,

1–

1

∫+=

A0 eesµ A1 A2+ +=

+
1
2
--- 1 a2η2–( )n η( ) ηd

η µ–
------------------ 1 a2µ2–( )λ µ( )

µ
-----------+

0

1

∫ 0,=

0 µ 1, A2< < a2

2
----- ηn η( ) ηd

0

1

∫=

eas e 0( )– aA1–
a2

2
----- n η( ) ηd

0

1

∫– 0.=

A1 A0 A2– easV1,–=

1 a2η2–( )n η( ) = 
eas

πi
------ 1

X+ η( )
------------- 1

X– η( )
-------------–  = 

2eas

π
--------- ζ η( )sin

X η( )
------------------,–

aA1 –e 0( ) a
2
---eas

ζ 1/a( )cos
X 1/a( )

------------------------- 1
X 1/a–( )
--------------------– ,+=

A2 eas V1
ζ 1/a( )cos

2X 1/a( )
------------------------- 1

2X 1/a–( )
------------------------+ + ,–=
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where

Substituting the found values of A0, A1, and A2 into
(12), we find the electric field at the grain boundary:

(13)

POTENTIAL AND TEMPERATURE JUMPS, 
CURRENT, AND HEAT FLUX

By definition, the potential jump is found by the for-
mula

or, according to (12),

(14)

In terms of the distribution function, current density
j is expressed

Passing to the dimensionless variables and substitut-
ing ϕas for ϕ, we have (e0 < 0)

(15)

The quantity

equals the electric conductivity of the metal.

The heat flux in the metal is calculated through
function f by the formula

X z( ) 1
z
--- V z( ), V z( )exp

1
π
--- ζ τ( ) τd

τ z–
----------------.

0

1

∫= =

e 0( ) –
a 4 p 2–( )

3 p
----------------------- eas h0 α( )gT+( )

aeas

X 1/a–( )
--------------------.–=

∆U e x( ) eas–[ ] xd

∞–

∞

∫ 2 e x( ) eas–[ ] xd

0

∞

∫= =

=  2A1– a2 ηn η( ) ηd

0

1

∫– 2 A1 A2+( )–=

∆U 2 A0 V1eas–( )–=

=  eas
8 p 4–

3 p
--------------- 2V1– 

  8 p 4–
3 p

---------------h0 α( )gT .––

j 2e0
m

2π"
---------- 

 
3

v xϕ x v t, ,( )d3v .∫=

j
1
δj

---- g1 α( )eas h0 α( )g1 α( )gT+[ ] ,–=

δj

24π2
"

3T s
2
k2

e0m5
-----------------------------– 0.>=

σ
e0λ

kT sδj

-------------g1 α( )– 0>=

Q 2
mv 2

2
----------v x f

d3 p

2π"( )3
-----------------.∫=
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Now, passing to the dimensionless variables and

using the relationship f =  + ϕg, we get

(16)

where

and the quantity

is the thermal conductivity of the metal.
Let us express the temperature and potential jumps

through the current and heat flux. From (15) and (16),
we find

Now, we find the temperature jump (in dimensional
form) and potential jump from Eqs. (7) and (14) in view
of (17) and (18):

For the potential jump in dimensional form, we have

where x = λx' is the dimensional coordinate and x' is the
dimensionless coordinate.

Since

the dimensional potential jump takes the form

Let us introduce dimensionless kinetic coefficients

f F
s

Q = 
1
δQ

----- g3 α( )eas g3 α( )h1 α( )gT+[ ] , δQ = 
π2

"
3

mk3T s
3

---------------,

h1 α( ) = 
∆1 α( )

g3 α( )g0 α( )
--------------------------,

∆1 α( ) = g2 α( )g3 α( ) g0 α( )g5 α( )–

χ λ
T sδQ

-----------
D1 α( )
g0 α( )
---------------– 0>=

gT
1

∆ α( )
------------ jδig3 α( ) QδQg1 α( )+[ ] ,–=

eas
1

g0 α( )∆ α( )
--------------------------- jδi∆1 α( ) QδQ∆0 α( )+[ ] .=

∆T
2V1T s

∆ α( )
--------------- jδjg3 α( ) QδQg1 α( )+[ ] ,=

∆U  = jδj
8 p 4–

3pg1 α( )
------------------ 2V1

∆1 α( )
g0 α( )∆ α( )
------------------------+ QδQ

2V1∆0 α( )
g0 α( )∆ α( )
------------------------.+

∆U 2 E x( ) Eas–( ) x,d

0

∞

∫=

E x( )
kT s

e0λ
--------e x( ),=

∆U
kT sδj

λe0
------------- 8 p 4–

3 pg1 α( )
--------------------- 2V1

∆1 α( )
g0 α( )∆ α( )
---------------------------+ j=

+
kT sδQ

λe0
--------------

2V1∆0 α( )
g0 α( )∆ α( )
---------------------------Q.
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(Figs. 1–4)

In terms of the electric conductivity and thermal
conductivity of the metal (see above), the temperature
and potential jumps can be expressed in dimensional
form as follows:

(17)

CT
j α( ) 2V1

g1 α( )g3 α( )
∆ α( )

----------------------------,–=

CT
Q α( ) 2V1

g1 α( )∆1 α( )
g0 α( )∆ α( )
-----------------------------,–=

CU
j α p,( ) 8 p 4–

3 p
--------------- 2V1

g1 α( )∆1 α( )
g0 α( )∆ α( )
-----------------------------+ ,–=

CU
Q α( ) 2V1

∆0 α( )∆1 α( )
g0

2 α( )∆ α( )
-----------------------------.–=

∆T
e0λ
σk
--------CT

j α( ) j
λ
κ
---CT

Q α( )Q,+=

–3

–2V1

–2

Cj
T

α
0 2 4 6–4

–2

–1

0

2.07
0

Cj
U

α2 6 10–2

2.16

2.22

2.10

2.13

2.19

2.25

4 8

p = 0.49

p = 0.50

p = 0.51

Fig. 1.

Fig. 3.
(18)

Thus, the heat flux (Q) causes a temperature jump
along with a potential jump, while the current causes a
potential jump along with a temperature jump; that is,
cross effects take place.

Of the coefficients involved in formula (17), coeffi-

cient  alone depends on probability p of electron
scattering in a forward direction.

Note in conclusion that quantity ρs = /σ may be
viewed as the grain boundary electrical resistivity (the

resistance per unit area). Similarly, quantity λ /κ
may be viewed as the grain boundary specific thermal
resistance. The value of ρs indefinitely grows as proba-
bility p of forward electron scattering tends to zero,
since the grain boundary becomes nontransparent to
electrons in this case.

∆U
1
σ
---CU

j α p,( ) j
k

e0κ
--------CU

Q α( )Q.–=

CU
j

CU
j

CQ
T

2.12
0

CQ
T

α5 10 15–5

2.16

2.19

2.21

2.13

2.14

2.15

2.17

2.18

2.20

–0.4

0 2

CQ
U α

–0.6

–0.8

–1.0

–1.2

–0.2

–2 4 6 8 10 12

–1.5V1

Fig. 2.

Fig. 4.
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LIMITING CASES
Let us find the asymptotics of the kinetic coeffi-

cients at α  +∞ (degenerate plasma) and α  –∞
(conventional plasma). For the first case, we take
advantage of formula (58.1) from [7, p. 191]:

Based on this formula, we have for α  +∞

Hence, at α  +∞,

Consequently, the asymptotics of the kinetic coeffi-
cients at α  +∞ (degenerate plasma) is as follows:

For the case of classical gas at α  –∞, we have

f x( ) xd
x α–( )exp 1+

------------------------------------

0

∞

∫ f x( ) xd

0

a

∫ π2

6
----- f ' α( )+=

+
7π2

360
--------- f ''' α( ) …, α  @ 1.+

g0 α( ) α1/2 π2

24
------α 3/2–– …, g1 α( )+ α … ,+= =

g2 α( ) = α3/2 π2

8
-----α 1/2– …, g3 α( )+ +  = α2 π2

3
----- …,+ +

g4 α( ) = α5/2 5π2

8
--------α1/2 …, g5 α( )+ +  = α3 π2α … .+ +

∆0 α( ) π2

6
-----α1/2– …, ∆1 α( )+ –
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These formulas give the following asymptotics for
classical plasma (α  –∞):

Figures 1–4 plot , , , and  versus α.

Coefficients  and  are seen to reach a maximum

at α ≈ 4. Coefficient  strongly depends on probabil-
ity p of forward electron scattering, as follows from
Fig. 3.
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Abstract—By means of the multichannel Hartree–Fock–Dirac method, the parameters β and α2 of the angular
distribution of Auger electrons and the parameter β2 of their spin polarization are calculated for sodium, kryp-
ton, xenon, barium, mercury, and excited argon. Relevant Coulomb matrix elements are determined by using
orthogonal multielectron initial- and final-state wave functions for intermediate-type coupling in a relativistic
approximation. Exchange interaction is taken into account in all calculations. A comparison of the results of
calculations performed in the frozen-core approximation and those obtained with orthogonal initial- and final-
state wave functions reveals that the relaxation of core orbital processes has only a slight effect on the anisot-
ropy parameters of the angular distribution. The resulting values of the parameters β, α2, and β2 are compared
with the results of different calculations. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigation of the angular distributions and spin
polarization of Auger electrons furnishes information
about the dynamics of Auger decay. Basic theoretical
results on the subject that were based on the application
of the multichannel multiconfiguration Fock–Dirac
method were obtained in [1–5] for atoms containing
closed shells. Calculations of the anisotropy parameters
of angular distributions for atoms involving open shells
are less comprehensive. In view of the aforesaid, we
have calculated the parameters α2 and β2 for Kr and Xe
(closed shells) and Na, Ba, and Hg atoms (open shells),
as well as the parameter β for Ar*(2p53s23p64s). It is
well known that calculations of the angular distribu-
tions and spin polarizations of Auger electrons are
based on the two-step model of Auger decay [6]. There
are a number of articles expounding on the general the-
ory of Auger decay (see, for example, [5]). The usual
expression for the angular distribution of Auger elec-
trons can be represented in the form

(1)

where d  is the Auger process probability inte-

grated over the directions of Auger electron trajecto-
ries, A20 is the population of magnetic sublevels of a
singly charged ion, α2 is the anisotropy parameter of
the angular distribution of Auger electrons, P2 is a Leg-

dW
A

+
A

2+→

dΩ
------------------------

dW
A

+
A

2+→
Σ

4π
------------------------ 1 α2A20P2 θ( )cos( )+[ ] ,=

W
A

+
A

2+→
Σ

1063-7842/04/4911- $26.00 © 21398
endre polynomial of second degree, and θ is the angle
between the direction of Auger electron emission and
the polarization of the radiation.

In the case where the atom involved is excited from
the state of total angular momentum J0 = 0 by a linearly
polarized radiation, the coefficient β can be factorized
as

(2)

where A20 = – .

For the anisotropy of the angular distribution of
Auger electrons and the anisotropy of their spin polar-
ization, we have employed the expressions [4, 5]

(3)

where

(4)

β α2A20,=

2

α2
A 200( )
A 000( )
------------------, β2

1

3
-------

JA 211( )
A 000( )

-----------------------,–= =

A KkQ( ) 1
4πp
--------- 2K 1+( ) 2k 1+( )=

× i l' l–( )e
i σl σl'–( )

1–( )
J J1 j Q l'+ + + +

j j',
∑

l l',
∑

× 2l 1+( ) 2l' 1+( ) 2 j 1+( ) 2 j' 1+( )
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Here, J1 is the total angular momentum of the initial
state of the ion A+; J is the total angular momentum of
the final state of the ion A2+; and j and l are, respec-
tively, the total angular momentum and the orbital
angular momentum of a partial wave of an Auger elec-
tron.

The multiconfiguration Fock–Dirac method was
used in all calculations of multielectron wave functions
for the singly charged ion appearing in the initial state
and for the doubly charged ion appearing in the final
state. The Auger electron wave function was calculated
on the basis of a full relativistic method involving
orthogonalization with respect to core orbitals.
Exchange interaction was taken into account. A similar
method of calculations was described in [7].

CALCULATION OF MATRIX ELEMENTS

In determining the transition amplitudes for Auger
processes proceeding from an initial state that involves
one hole in an inner shell to a final state that has two
holes in inner shells, the initial- and the final-state wave
function are calculated separately; therefore, they are
not orthogonal to each other. This approximation is
referred to as a relaxation-free approximation; in this
case, core orbitals are frozen in Auger decay. In the
present study, we calculate the parameters α2 and β2
(i) in the relaxation-free approximation and (ii) with
allowance for relaxation, in which case the initial-state
wave function is orthogonal to its final-state counter-
part.

For an N-electron subsystem, the multielectron ini-
tial- or final-state wave function Ψ can be represented
in the form of a linear combination of Slater determi-
nants detα constructed from single-electron wave func-
tions φi(x) [φf(x)]; that is,

(5)

For an Auger process, where total energy E of the
atom involved is conserved throughout the Auger decay
process, the amplitude of the transition from the initial
state |A〉 to the final state |B〉  is given by

(6)

× J J1 j

K j' J1 
 
 

Cl0 l'0,
X0 CK Q– kQ,

X0

1
2
--- 1

2
---  

j' j K

l' l X 
 
 
 
 
 
 

X

∑

× J εj,( )J1 V J1〈 〉 J ε j',( )J1 V J1〈 〉 .

Ψ Cαdetα .
α
∑=

A Ĥ eÎ– B〈 〉 Cα
A*Cβ

B α HAB ESAB– β〈 〉 ,
αβ
∑=
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where HAB is the matrix of the total Hamiltonian  in
the basis of Slater determinants and SAB is the orthogo-
nality matrix.

The matrix elements of matrix SAB are the matrix
elements of the identity operator that is sandwiched
between two Slater determinants, 〈detα|detβ〉 . The
matrix SAB is different from the identity matrix because
of the nonorthogonality of the single-electron initial-
and final-state wave functions. As was shown in [8],
matrix SAB can be represented in the form

(7)

where Dαβ = det|〈 | 〉| is the determinant of the

matrix of the overlap integrals  = |〈 | 〉| for two

sets of orbitals { }α and { }β for two Slater deter-
minants labeled with α and β, respectively.

Further, we represent the Hamiltonian matrix for
our atomic system in the form of a combination of the
single- and two-particle density matrices for the transi-
tion between the states described by the Slater determi-

Ĥ

Ŝ( )αβ detα detβ〈 〉 Dαα Dββ( ) 1/2– Dαβ,= =

φi
A φj

B

Si j,
αβ φi

A φj
B

φi
A φj

B

Table 1.  Anisotropy parameters α2 and β2 of the angular dis-
tribution and spin polarization, respectively, for L3M1M4, 5

Auger transitions in Kr, Xe, Ba, and Hg (  and  are
the anisotropy parameters calculated in the frozen-core

approximation, while  and  are their counterparts
calculated with allowance for relaxation in the course of
Auger decay)

Ele-
ment

Final-
state term α2 [9]

Kr 1D2 0.218 –0.081 0.034 –0.026 0.033
3D1 –0.034 –0.337 –0.147 –0.279 –0.156
3D2 0.278 0.191 –0.153 0.243 –0.160
3D3 0.331 0.612 0.147 0.570 0.141

Xe 1D2 0.228 –0.234 0.077 –0.191 0.080
3D1 0.101 –0.422 –0.139 –0.391 –0.147
3D2 0.342 0.584 –0.193 0.638 –0.201
3D3 0.161 0.606 0.147 0.580 0.144

Ba 1D2 0.235 –0.211 0.076 –0.211 0.076
3D1 0.147 –0.380 –0.152 –0.380 –0.152
3D2 0.328 0.716 –0.186 0.716 –0.186
3D3 0.134 0.553 0.140 0.553 0.140

Hg 1D2 0.334
3D2 0.025 0.073 0.393 0.073
3D1 0.801 –0.80 –0.240 0.034 –0.250
3D2 0.068 0.406 0.015 0.402 0.017
3D3 –0.162 0.133 0.057 0.112 0.053

α2
–( ) β2

–( )

α2
+( ) β2

+( )

α2
–( ) β2

–( ) α2
+( ) β2

+( )
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Table 2.  Anisotropy parameter α2 of the angular distribution for KLL Auger transitions in Na atoms

Term

Auger transition

3P1
3P2

1P1
3P1

3P2
1P1

3P1
3P2

1P1

α2 [10]

0.706 –0.837 –1.411 –0.108 –0.837 –1.411 0.707 –0.837 –1.411

~0.00 0.673 0.705 0.006 0.673 0.706 –0.003 0.672 0.705

–0.665 –0.837 0.705 –0.677 –0.837 0.707 –0.660 –0.837 0.705

–0.141 –0.170 –0.141 –0.141 –0.170 –0.141 –0.146 –0.111 –0.142

0.138 0.673 –0.141 0.144 0.673 0.141 0.139 0.672 –0.141

–1.414 –0.837 –1.413 0.707 –0.837 –1.412 0.706 –0.837 –1.411

–0.701 –0.837 0.701 –0.635 –0.837 0.702 –0.363 –0.837 0.705

0.281 0.811 0.621 0.325 0.811 0.601 0.330 0.817 0.622

–0.076 0.797 –0.061 –0.064 0.833 –0.041 –0.054 0.855 –0.019

–0.141 –0.035 –0.141 0.141 –0.088 –0.141 0.139 0.672 –0.141

–1.149 –0.837 –0.351 –1.115 –0.837 –0.319 –1.115 –0.837 –0.351

0.652 –0.513 0.273 0.656 –0.504 0.441 0.644 –0.457 0.443

–0.141 0.820 –0.141 –0.141 0.826 –0.141 –0.141 0.826 –0.142

0.684 –0.837 0.698 0.683 –0.837 0.700 0.682 –0.846 0.700

0.145 0.800 0.260 0.143 0.805 0.183 0.121 0.807 0.313

–0.141 0.202 –0.141 –0.141 0.194 –0.141 –0.139 0.145 –0.142

0.239 ~0.00 –0.239 ~0.00 0.707 –0.241 ~0.00

0.706 –0.834 0.707 0.706 –0.834 0.705 0.705 –0.833 0.706

~0.00 –0.841 ~0.00 –0.690 –0.836 –0.693 –0.688 –0.836 –0.694

α2
–( ) α2

+( )

2s2 p5 S
2

1
2
---

2s2 p5 P
2

3
2
---

2s2 p5 P
2

1
2
---

2s2 p5 D
2

5
2
---

2s2 p5 D
2

3
2
---

2s2 p5 S
2

1
2
---

2s2 p5 P
2

1
2
---

2s2 p5 P
2

3
2
---

2s2 p5 D
2

3
2
---

2s2 p5 D
2

5
2
---

2s2 p5 P
4

1
2
---

2s2 p5 P
4

3
2
---

2s2 p5 P
4

5
2
---

2s2 p5 D
4

1
2
---

2s2 p5 D
4

3
2
---

2s2 p5 D
4

5
2
---

2s2 p5 D
4

7
2
---

2s2 p5 S
4

1
2
---

2s22 p4 P
2

1
2
---
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Table 2.  (Contd.)

Term

Auger transition

3P1
3P2

1P1
3P1

3P2
1P1

3P1
3P2

1P1

α2 [10]

~0.00 ~0.00 ~0.00 0.511 0.010 –0.693 0.501 0.010 –0.694

–0.702 –0.837 –0.707 –0.703 –0.837 –0.708 –0.704 –0.837 –0.708

0.517 ~0.00 –0.707 0.528 0.001 –0.708 0.518 ~0.00 –0.708

–0.144 0.589 0.705 –0.139 0.597 0.706 –0.146 0.598 0.705

–0.573 ~0.00 0.699 –0.578 ~0.00 0.702 –0.571 ~0.00 0.700

–0.202 –0.240 –0.202 –0.202 –0.239 –0.202 –0.202 –0.239 –0.202

0.196 0.598 –0.202 0.204 0.598 –0.202 0.197 0.598 –0.202

–0.635 –0.836 –0.689 –0.690 –0.836 –0.693 –0.689 –0.836 –0.694

0.501 0.005 –0.691 0.511 0.010 –0.693 0.501 0.010 –0.693

α2
–( ) α2

+( )

2s22 p4 P
2

3
2
---

2s22 p4 P
2

1
2
---

2s22 p4 P
2

3
2
---

2s22 p4 D
2

5
2
---

2s22 p4 D
2

3
2
---

2s22 p4 F
2

7
2
---

2s22 p4 F
2

5
2
---

2s22 p4 P
2

1
2
---

2s22 p4 P
2

3
2
---
nants labeled with α and β. The single-particle density
matrix has the form

(8)

The two-particle density matrix is expressed in
terms of the single-particle density matrix and is given
by

(9)

where

ρ1
α β, x x',( ) Dαα Dββ( ) 1/2–=

× Dαβ S 1–( )i j,
α β, φi

A x( )φj
B* x'( ).

i j,

N

∑

ρ2
α β, x1 x2 x1' x2', ,( ) Dαα Dββ( ) 1/2–=

× Di j k l, , ,
αβ φi

A x1( )φj
A* x1'( )φk

B x2( )φl
B* x2'( ),

j l≠

N

∑
i k≠

N

∑

Di j k l, , ,
αβ Dαβεi k, ε j l,=

× S 1–( )i j,
α β,

S 1–( )k l,
α β,

S 1–( )i l,
α β,

S 1–( )k j,
α β,

–[ ] ,
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The Hamiltonian  can be represented as the
sum

(10)

where use is made of the expressions for the single- and
the two-electron components of the Hamiltonian matrix
that is constructed on the basis of nonorthogonal Slater
determinants [8]; that is,

(11)

(12)

εi k,
1 i k<

1 i k.>–



=

ĤA B,

ĤA B, ĥi v̂ i j, ,
i j≠

N

∑+
i

∑=

α ĥi

i

∑ β  = Dαα Dββ( ) 1/2– Dαβ S 1–( )i j, α β i v̂ j〈 〉 ,,
i j≠

N

∑

α v̂ i j,

i j≠
∑ β Dαα Dββ( ) 1/2–=

× Di j k l, , ,
αβ i j v̂ k l,,〈 〉 .

j l≠

N

∑
i k≠

N

∑
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Table 3.  Anisotropy parameter β of the angular distribution for L2, 3M1M2, 3 Auger transitions in Ar* according to the calcu-
lation in the intermediate-coupling (I) approximation with or without allowance for relaxation [+β(I) and –β(I), respectively]

3s3p54s
Term

+β(I) –β(I) β
Experiment [13]

β
Theory [13] Ee, eV Ee, eV

Experiment [13]
Ee, eV

Theory [13]

–0.609 –0.701 0.11 –0.052 188.4 197.2 198.1

–0.191 –0.195 0.09 –0.152 194.0 194.0 194.3

0.063 0.071 –0.02 –0.032 196.4 197.7 198.7

–0.062 –0.077 0.06 –0.003 188.4 196.1 196.5

–0.321 –0.344 0.05 –0.031 195.6 199.3 200.2

0.072 0.077 0.00 –0.032 196.4 199.8 200.9

P4s2P3
2
---

1

P4s2P3
2
---

3

P4s4P3
2
---

3

P4s2P1
2
---

1

P4s2P1
2
---

3

P4s4P1
2
---

3

RESULTS OF THE CALCULATIONS

For the L3M1M4.5 Auger transitions in Ar, Xe, Ba,
and Hg, the anisotropy parameters α2 and β2 of the
angular distributions and spin polarizations, respec-
tively, are given in Table 1. For the convenience of a
comparison with experimental data, the calculations
were performed for an intermediate type of coupling in
the LSJ representation. In that case, the results of our
calculations for the anisotropy parameters of the angu-
lar distributions and spin polarization are at odds with
the results presented in [9]. The reason for this discrep-
ancy is not quite clear. One possible reason may be
associated with the calculation of the phase shifts for
continuum wave functions. In Table 2, the results of the
calculations for the coefficient α2 are given for the KLL
Auger transitions in Na. These results are in good
agreement with those reported in [10]; nonetheless, the
reasons behind the discrepancies between the values of
the parameter β2 for Auger transitions in Ar, Xe, Ba,
and Hg remain unclear.

It was shown in [11] that, for atoms featuring filled
shells, the relaxation of core orbitals has only a modest
effect on the parameters α2 and β2 if the vacancies in
initial-state ions are deep. Our results cited in Tables 1
and 2 lead to an analogous conclusion for atoms featur-
ing open shells, and this justifies the use of the frozen-
core approximation in calculating various parameters
that characterize Auger decay.
For the process

(13)

Table 3 gives the results of our calculations for the
parameter β and for the Auger transition energies.

The results of these calculations are partly in accord
with the theoretical and experimental results quoted in
[13]. Many authors (see, for example, [4, 11, 12]) indi-
cated that there are discrepancies between the theoreti-
cal and experimental results for the anisotropy parame-
ters of the angular distributions for Auger transitions;
however, a discussion of the reasons for the discrepan-
cies between theoretical results would be premature.
The numerical values of these parameters are highly
sensitive to the choice of computational method; there-
fore, further investigations are required for revealing
discrepancies between the results of different calcula-
tions.

CONCLUSIONS

The results obtained by calculating the parameters
α2 and β2 for LMM Auger transitions in Ar*, Kr, Xe,
Ba, and Hg atoms and KLL Auger transitions in Na
atoms have been presented in this article. Exchange
effects and the coupling between different channels of
an Auger transition have been taken into account. It has
been shown that the relaxation of core orbitals has but

Ar* 2 p53s23 p64s J0, 0=( )

Ar*+ 2 p53s3 p54s P2 ; P4,( ) e –( ) lj( ).+
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a slight effect on the results of the calculations for the
parameters α2 and β2.
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Abstract—The influence of a finite rate of leveling of the gas pressure inside a charged bubble in an ideal
incompressible liquid on the bubble volume and surface oscillations is studied in a linear approximation with
respect to the surface oscillation amplitude. It is shown that the bubble shape is governed by superposition of
spherical harmonics with amplitudes strongly depending on their frequencies, as well as on the physical prop-
erties of the gas inside the bubble and the ambient liquid. © 2004 MAIK “Nauka/Interperiodica”.
(1) Investigation of the oscillations and stability of
charged vapor–gas bubbles in a dielectric liquid
affected by external electric fields is of interest in con-
nection with numerous technical and technological
applications (see, for example, [1]). In this context,
such bubbles have been extensively studied both exper-
imentally [1–3] and theoretically [4–14]. Theoretical
investigations of the oscillations of bubbles formed in a
dielectric liquid as a result of electric [4] or laser [5]
breakdown, uncharged bubbles in external electric
[5−8] and magnetic [9] fields, and charged bubbles
[10, 11] were mainly carried out for the radial oscilla-
tions of spherical bubbles. Recently [12], we have stud-
ied disintegration of a spheroidal charged bubble
extended along the external electric field.

However, insufficient attention until now has been
devoted to the surface oscillations of the bubble shape,
although these very oscillations determine the mecha-
nisms of development of the Rayleigh–Taylor instabil-
ity of the surface of a collapsing bubble and the forma-
tion of a cumulative liquid jet causing cavitation ero-
sion [2, 3, 13]. Besides, these oscillations give grounds
for posing a problem concerning the translational insta-
bility of an oscillating bubble [14, 15], and they deter-
mine the mechanism of disintegration of a charged bub-
ble [12, 16]. In [16], we studied both radial and surface
oscillations of a charged bubble in a dielectric liquid in
the approximation of the infinitely high sound speed in
the gas inside the bubble (that is, in the approximation
of the infinitely high rate of the gas pressure in the
course of bubble oscillations). It should be noted that
this approximation is used in the great majority of
investigations of the bubble oscillations; among the
papers mentioned above, only in [9] was a finite rate of
leveling of the gas pressure inside a bubble taken into
account. At the same time, there are many situations
1063-7842/04/4911- $26.00 © 21404
where the finite sound speed in a gas may noticeably
influence the laws of bubble oscillations.

The present investigation is devoted to studying vol-
ume and surface oscillations of a charged bubble with
allowance for the gas motion inside it.

(2) Consider a spherical bubble with equilibrium
radius r0 formed in an ideal incompressible unbounded
liquid with density ρ(e) and dielectric permitivity εd at

constant pressure  and in the absence of the gravity
field. Let the bubble bear uncompensated surface
charge Q and contain an ideal gas at pressure P0g vary-
ing together with the volume according to the adiabatic
law with an adiabatic exponent γ, and let σ denote the
surface tension coefficient at the liquid–gas interface.

Under the action of the total pressure at the inter-
face, the bubble is capable of oscillating in the vicinity
of its equilibrium states so that

where

and r is the current bubble radius.
When P(r) > 0, the bubble expands; if P(r) < 0, it

contracts; and when P(r) = 0, the bubble is in equilib-
rium. Figure 1 presents the function P(r) as presented
in dimensionless variables such that r0 = σ = ρ(e) = 1. As
can be seen from this figure, the equation P(r) = 0 may
have various numbers of roots: one, two, or none [11].
In particular, a single root takes place under the condi-

P∞
e( )

P r( ) σ
r0
----

r0

σ
----P0g

r0

r
---- 

 
3γ W

2
-----

r0

r
---- 

 
4 2r0

r
-------– P∞

e( )–+
 
 
 

,=

W
Q2

4πεdr0
3σ

--------------------≡
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tion that  = –  ≤ 0, that is, when the pres-

sure of the ambient liquid is positive (  ≥ 0). Two

roots take place when  = −  > 0 and the

minimum total pressure is negative (Pmin ≡ minP(r) < 0)
and low in magnitude. To be more exact, equation
P(r) = 0 has two roots when the pressure of the ambient

liquid is slightly below zero (  < 0) and relationships
P(rmin) < 0 and ∂rP(rmin) = 0 are valid (symbol ∂r

denotes a derivative with respect to variable r). This
state physically corresponds to a liquid in the state of
undeveloped cavitation. Equation P(r) = 0 has no roots
under the condition that P(rmin) > 0 (provided that
P(rmin) > 0 and ∂rP(rmin) = 0). This state physically cor-
responds to developed cavitation.

Let us consider the surface oscillations of a bubble
occurring in one of the equilibrium states correspond-
ing to the condition P(r0) = 0. We denote the electric
field potential in the vicinity of the bubble by φ, and the
flow velocity fields in the gas and liquid by U(i)(r, t) and
U(e)(r, t), respectively. Let the gas pressure in the bubble

be , the gas density be , and the sound speed be
c0. We assume that the gas inside the bubble and the
ambient liquid are barotropic and obey the equations of
state

(1)

(2)

where ρ(i)(r, t) and P(i)(r, t) are the distribution fields of
the gas density and pressure inside the bubble.

We assume the bubble shape to be axisymmetric
both at the initial and the subsequent time instants. The
equation of the oscillating interface at any time instant
t is written in the form

(3)

The initial deformation of the bubble surface shape
[R(t) + ξ(ϑ , t)]t = 0 we assume to be such that the follow-
ing relationships are fulfilled:

(4)

where ε is the amplitude of the initial perturbation (ε !
R); Pm(µ) is the Legengre polynomial of the mth order;
Ω is the set of indices of the initially excited modes of
the surface oscillations; and hm are dimensionless con-
stants of the same order of smallness, which take into
account the partial contribution of the mth mode to the

P r( )
r +∞→
lim P∞

e( )

P∞
e( )

P r( )
r +∞→
lim P∞

e( )

P∞
e( )

P0
i( ) ρ0

i( )

ρ i( ) ρ i( ) P i( )( )≡ ρ0
i( ) P i( )

P0
i( )--------

 
 
  1/γ

;=

ρ e( ) const,=

F r ϑ t, ,( ) r r0– R t( )– ζ ϑ t,( )– 0.= =

t 0: R εh0P0 µ( ); ξ ε hmPm µ( );
m Ω∈
∑= = =

µ ϑ( ),cos=
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formation of the initial bubble surface shape such that
h0 +  = O(1).

The mathematical formulation of the problem of
calculation of the bubble oscillations in a liquid
includes, besides relations (1)–(4), the following equa-
tions and conditions:

—the Euler equations for the gas and continuity
equations for the gas and liquid

—the initial conditions for the flow velocity fields

—the Laplace equation for the electrostatic field
potential

(where ∆ is the Laplacian);
—the boundedness conditions

—the kinematic and dynamic boundary conditions

hmm Ω∈∑

∂tU
i( ) U i( ) —⋅( )U i( )+

1

ρ i( )-------—P i( ),–=

∂tU
e( ) U e( ) —⋅( )U e( )+

1

ρ e( )--------—P e( ),–=

dρ i( )

dt
----------- ρ i( )— U i( )⋅+ 0; dρ e( )

dt
----------- ρ e( )— U e( )⋅+ 0;= =

t 0: U i( ) 0, U e( ) 0;= = =

∆φ 0=

r 0: U i( ) 0,

r +∞: U e( ) 0, —φ 0;

r r0 R t( ) ξ ϑ t,( ): 
dF
dt
-------+ + 0,= =

–1

50
–2

10 15
r

0

1

2
P

1
2

3

Fig. 1. Dependence of the dimensionless total pressure P at
the bubble surface on the dimensionless bubble radius R for

P0g = 2, W = 2, γ = 4/3, and  = 0.1 (1), 0.2 (2), and

0.9 (3).

P∞
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—the condition of invariability of the total charge

—and the condition of constancy of the electric
potential at the bubble surface

In the expressions written above, Pq and Pσ are the
electric field pressure and capillary pressure, respec-
tively; n is the unit vector normal to the bubble surface;
φS is the electric potential of the bubble surface; and ∂t

denotes a partial derivative with respect to variable t.

(3) In the following, the gas and liquid flows are
assumed to be potential, with the corresponding veloc-
ity potentials ψ(i) and ψ(e). Substituting U(e) = —ψ(e) into
the Euler equation and the continuity equation for the
ambient medium and into the initial condition, and tak-
ing into account the equation of state of liquid (2), we
obtain the pressure distribution in the liquid and the
Laplace equation for the velocity field potential ψ(e),

Substituting U(i) = —ψ(i) into the Euler equation for
the gas flow inside the bubble and integrating over the
bubble volume, we obtain the Cauchy integral

(5)

where Π(i) is a function satisfying the relation

(6)

Substituting expression U(i) = —ψ(i) into the continu-
ity equation for the gas flow and taking into account (6)
and relation c2 = dP(i)/dρ(i), where c is the sound speed,
we obtain the equation

(7)

Expressing function Π(i) from (5) and substituting it
into (7), we obtain the nonlinear equation for finding

P i( ) Pq+ P e( ) Pσ;+=

n —φ⋅ Sd

S

∫ 4πQ,–=

S r ϑ ϕ r = r0 R t( ) ξ ϑ ; t( );+ +, ,{=

0 ϑ π; 0 ϕ 2π≤ ≤≤ ≤ } ;

r r0 R t( ) ξ ϑ t,( ): φ+ + φS t( ).= =

P e( ) P∞
e( ) ρ e( ) ∂tψ

e( ) 1
2
--- —ψ e( )( )2

+ 
  ; ∆ψ e( )– 0.= =

∂tψ
i( ) 1

2
--- —ψ i( )( )2 Π i( )+ + 0,=

dΠ i( ) 1

ρ i( )-------dP i( ).=

1

c2
----dΠ i( )

dt
------------ ∆ψ i( )+ 0.=
the gas velocity field potential

(8)

with the initial condition

(9)

Note that nonlinear wave equation (8) contains par-
tial derivatives of the second order of the gas velocity
potential with respect to time, so that single initial con-
dition (9) is insufficient for finding the solution. There-
fore, Eq. (8) will be supplemented by the physically
evident condition

(10)

Integrating (6) over the bubble volume subject to the
equation of state (1) of the gas, we find the expression
for Π(i)

(11)

Substituting (11) into (5), taking into account

Eq. (1), and using the relation  = γ / , we find
the gas pressure distribution and sound speed in the
bubble

The solution of the nonlinear set of equations con-
sidered is sought by linearization in the form of expan-
sions in small parameter ε

(12)

(4) Having substituted expansions (12) into the
problem formulated above, let us separate a problem of
the zeroth order of smallness in ε:

∆ψ i( ) 1

c2
----∂t t, ψ i( )–

2

c2
---- —ψ i( )( ) —∂tψ

i( )( )–

–
1

2c2
-------- —ψ i( )( ) — —ψ i( )( )2( ) 0=

t 0: ψ i( ) 0.= =

∂tψ
i( ) 0.=

Π i( ) γ
γ 1–
----------- P i( )

ρ i( )--------
P0

i( )

ρ0
i( )--------–

 
 
 

.=

c0
2 P0

i( ) ρ0
i( )

P i( ) P0
i( ) 1

γ 1–

c0
2
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2
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 
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c2 c0
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2
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φ r ϑ t, ,( ) εφ r ϑ t, ,( ) O ε2( );+=

ψ i( ) r ϑ t, ,( ) εψ i( ) 1( ) r ϑ t, ,( ) O ε2( );+=
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∆φ 0( ) 0; r +∞: —φ 0( ) 0;=

r r0: P i( ) Pq+ P e( ) Pσ;+= =
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Solving this set, we find

(13)

Relations (13) determine the magnitude of equilib-
rium bubble radius r0.

(5) Separating the terms including the small param-
eter in the first power, we obtain a problem of the first
order of smallness in the form

(14)

Since set of equations (14) is linear, we will find its
solution using the Fourier transform F+ with respect to
time, that is, by passing from functions φ(1)(r, ϑ , t),
ψ(e)(1)(r, ϑ , t), ψ(i)(1)(r, ϑ , t), R1(t), and ξ(1)(ϑ , t) to their
Fourier transforms [17]

Then, set (14) takes the form

(15)

r0
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(16)

(17)

(18)

(19)

(20)

(21)

(22)

To find the solution of set (15)–(22), we expand the
Fourier transform of the deviation of the bubble surface
from the equilibrium shape in terms of the Legendre
polynomials

Then, the solution of Eqs. (15) and (16) subject to
boundedness conditions (17), (18) and conditions (21),
(22) can be written in the following form:

(23)

where ,  are constants and jn(Sr/c0) are
spherical Bessel functions of the first kind.
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Substituting expressions (23) into Eqs. (19) and
(20), and taking into account the mutual orthogonality
of the Legendre polynomials, we obtain

(24)

(25)

Set of equations (24) describes radial oscillations of
the bubble surface, and set (25) describes the lateral
oscillations.

From set (24) subject to the relation ∂χjn(χ) =

njn(χ)/χ – jn + 1(χ), we find expressions for ,

, and :

(26)
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Fig. 2. Dependence of the dimensionless function D0(S) on
dimensionless frequency S for c0 = 50, W = 1, P0g = 1,

 = 1, γ = 4/3.P∞
e( )
(27)

From set (25), we find , , and  for
any n ≥ 2

(28)

(29)

From expressions (26)–(29) and Fig. 2, showing the
plot of dependence Dn(S), it can be seen that they have
the infinite but countable number of singular points S =
±Sn, k, n ∈  ({0} ∪ Ω ), k = 0, ±1, ±2, …, satisfying con-
dition Dn(S) = 0 and located on either real or imaginary
axes. Subscript n numbers the modes of the surface
oscillations, and subscript k the modes of the radial
bubble oscillations corresponding to distinct roots of
the equation Dn(S) = 0. In expressions (26), (27), singu-
lar points S = ±Sn, k are simple poles, except for point
S = 0, which is a pole of the second order. Besides, all
the Fourier transforms tend to zero at S  ∞. In con-
nection with the above considerations, the inverse Fou-
rier transform has the following form [17]:

where τ is a positive real number. This formula can be
transformed into an integral along a contour enclosing
the whole complex plane below the straight line ImS =
τ. Applying the theorem of residues to this contour inte-
gral, we can rewrite the formula of inversion as

(30)
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Using relation (30) and recurrent formulas for the
spherical Bessel functions ∂χjn(χ) = njn(χ)/χ – jn + 1(χ)
and ∂χjn(χ) = jn – 1(χ) – (n + 1)jn(χ)/χ, we find, from (26)
and (28),

(31)

(32)

where S0, k is the root of the equation D0(S) = 0 and Sn, k
is the root of the equation Dn(S) = 0.

Substituting expressions (31) and (32) into Eq. (3),
we obtain an equation of the bubble generatrix:
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∂SDn S( ) = 
c0

r0
----

ρ0
i( )

ρ e( )-------- n 1+( )2 n n 1+( ) n n 1–( )
ωn

2

S2
------–+

 
 
 





–
r0

c0
---- S2 ωn

2
–( )





jn χ( )
ρ0

i( )

ρ e( )-------- n 1+( )S 2
ωn

2

S
------+

 
 
 

jn 1+ χ( ),–

r r0 εh0M0 t( ) ε hnMn t( )Pn µ( ),
n Ω∈
∑+ +=

M0 t( ) A0 0( ) A0 S0 k,( ) S0 k, t( ),cos
k 1=

+∞

∑+=

Mn t( ) An Sn k,( ) Sn k, t( ).cos
k 1=

+∞

∑=
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From Eq. (33), it is seen that, inasmuch as in the
general case A0(S0, k) ≠ 1 and An(Sn, k) ≠ 1, finiteness of
the sound speed in the gas influences both the ampli-
tudes of the radial and surface modes of oscillations and
the shape of the oscillating bubble.

Substituting constants , , , and

 defined by expressions (27) and (29) into
expressions (23) and employing formula of inversion
(30), we find expressions for the potentials of the gas
and liquid fields:

(34)

(6) Inasmuch as a bubble in a liquid obeys the rela-
tion Sr0/c0 = χ ! 1, this situation is worthy of separate
consideration. In this case, the following relations are
valid for the spherical Bessel functions:

(35)

C0
i( ) 1( ) C0

e( ) 1( ) Cn
i( ) 1( )

Cn
e( ) 1( )

ψ i( ) 1( ) r ϑ t, ,( ) εC0
i( ) 0( )h0t=

+ ε h0C0
i( )

S0 k,( ) j0

S0 k,

c0
--------r 

  S0 k, t( )sin
k 1=

+∞

∑

+ ε hnCn
i( ) Sn k,( ) jn

Sn k,

c0
--------r 

  Sn k, t( )Pn µ( );sin
k 1=

+∞

∑
n Ω∈
∑

ψ e( ) 1( ) r ϑ t, ,( ) ε h0

C0
e( ) S0 k,( )

r
---------------------- S0 k, t( )sin

k 1=

+∞

∑=

+ ε hn

Cn
e( ) Sn k,( )
rn 1+

---------------------- Sn k, t( )Pn µ( );sin
k 1=

+∞

∑
n Ω∈
∑

C0
i( ) 0( ) 3

c0
2

r0
----α0 3

ρ0
i( )

ρ e( )--------
c0

r0
---- 

 
2

α0–

1–

;=

C0
i( ) S( ) 2

c0

S∂SD0 S( )
-----------------------α0;=

Cn
i( ) S( ) 2

c0

S∂SDn S( )
-----------------------ωn

2;–=

C0
e( ) S( ) 2r0

2α0

j1 χ( )
∂SD0 S( )
--------------------;=

Cn
e( ) S( ) 2

r0
n 2+

n 1+( )
-----------------

ωn
2

∂SDn S( )
--------------------

nc0

Sr0
-------- jn χ( ) jn 1+ χ( )– 

  .=

j0 χ( ) 1 χ2

6
-----– O χ3( ); j1 χ( )+ χ

3
--- O χ3( );+= =

jn χ( ) = χn

2n 1+( )!!
------------------------ O χn 2+( ); jn 1+ χ( )+  = O χn 1+( ).
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Substituting relations (35) into the expressions for
D0(S) and Dn(S), we can rewrite these expressions as

(36)

It is seen that each of Eqs. (36) has a single root for
the frequency squared corresponding to k = 1:

(37)

Note that, in formula (37), the expression for 
differs only by the denominator from the square of the
frequency of radial oscillations of the bubble calculated
with neglect of the inertial gas properties in the bubble.

In particular, substituting formally 2ρ(e) for (2ρ(e) +

) in the denominator of the expression for  and

taking into account that  = γ / , we obtain the
well-known expression for the square of frequency of
the radial oscillations of a charged bubble in the
absence of gas motions inside it [10, 18]:

It can be also seen that the expression for 
exactly coincides with that for the frequency of capil-
lary oscillations of a charged drop immersed in an
ambient medium [10, 18].

Substituting expressions (35), (36) into (26)–(29)
and taking into account relations (23), (30), and (37),
we readily find expressions for the bubble surface shape
and the potentials of the gas and liquid velocity fields in
the asymptotic situation considered:

D0 S( ) S S0 1,
2

S2–( ) 2
ρ0

i( )

ρ e( )--------+
 
 
  r0

6c0
--------= O χ3( );+

Dn S( ) 1
2n 1+( )!!

------------------------ S
c0
----r0 

  n 1– ρ0
i( )

ρ e( )-------- n 1+( ) n+
 
 
 

=

× S2 Sn 1,
2–( ) O χn 1+( ).+

S0 1,
2 6ρ0

i( )c0
2 2ρ e( )r0

2α0–

2ρ e( ) ρ0
i( )+( )r0

2
--------------------------------------------;=

Sn 1,
2 nρ e( )ωn

2

ρ0
i( ) n 1+( ) ρ e( )n+

-------------------------------------------.=

S0 1,
2

ρ0
i( ) S0 1,

2

c0
2 P0

i( ) ρ0
i( )

ω0
2 3γP0

i( )

ρ e( )r0
2

--------------
2σ

ρ e( )r0
3

------------- 1 W–( ).–=

Sn 1,
2

r r0 εh0 3
ρ0

e( )

ρ e( )--------
c0

r0
---- 

 
2

α0–
 
 
 

1–

+=

× 3
ρ0

e( )

ρ e( )-------
c0

r0
---- 

 
2

α0 S0 1, t( )cos–
 
 
 

ε hn Sn 1, t( )Pn µ( );cos
n Ω∈
∑+

ψ i( ) 1( ) r ϑ t, ,( ) ε
6ρ e( )α0c0

2
h0

2ρ e( ) ρ0
i( )+( )r0S0 1,

2
--------------------------------------------=
(38)

If h0 = 0 in expressions (38), we obtain the well-
known expressions describing the surface oscillations
of a charged drop in an ambient medium [10, 18]. When
h0 ≠ 0, expressions (38) approximately describe bubble
oscillations at the basic (lowest) frequency.

(7) For convenience of numerical analysis of the
solution obtained, let us pass to dimensionless variables
by setting ρ(e) = σ = r0 = 1. Then all physical quantities
of the problem are expressed in terms of their charac-
teristic scales. Namely, for the scales of length, density,
time, frequency, and velocity we respectively have

According to the experimental data, the radius of a
bubble in a liquid ranges from r0 = 10–1 to 10–7 cm. The
surface tensions and densities of many liquids are
slightly different from σ = 50 dyn/cm and ρ(e) =
1 g/cm3, respectively. For such values of the physical
quantities, the characteristic time scale varies in the
range from 5 × 10–12 to 5 × 10–12 s; the frequency scale,
from 2 × 102 to 2 × 1011 s–1; the velocity scale, from 2 ×
101 to 2 × 104 cm/s; and the pressure scale, from 5 × 102

to 5 × 108 dyn/cm2.

The free parameters of the problem are P0g, , W,
c0, γ, ε, Ω , and hn, where n ∈  (Ω ∪  {0}). The equilib-
rium gas pressure in the bubble is defined by expression

 = P0g , and the gas density is  = γ / .

In the course of numerical analysis of the aboveso-
lution describing oscillations of a charged bubble in a
liquid, it was established that equations Dn(S) = 0,
where n ∈  (Ω ∪  {0}), have an infinite number of solu-
tions S = ±Sn, k, k = 0, ±1, ±2, … which define the fre-
quency (the growth rate) of the bubble surface oscilla-
tions.

× t
S0 1, t( )sin

S0 1,
-----------------------–

S0 1, r2

6c0
2

------------- S0 1, t( )sin+
 
 
 

– ε 1
n
--- r

r0
---- 

  n

r0Sn 1, hn Sn 1, t( )Pn µ( );sin
n Ω∈
∑

ψ e( ) 1( ) ε
2r0α0ρ

e( )h0

2ρ e( ) ρ0
i( )+( )S0 1,

---------------------------------------
r0

r
---- S0 1, t( )sin–=

+ ε 1
n 1+
------------

r0

r
---- 

 
n 1+

r0Sn 1, Sn 1, t( )Pn µ( ).sin
n Ω∈
∑

r0, ρ e( ), 
ρ e( )r0

3

σ
-------------, σ

ρ e( )r0
3

-------------, σ
ρ e( )r0

-------------, 
σ
r0
----.

P∞
e( )

P0
i( ) r0

3γ– ρ0
i( ) P0

i( ) c0
2
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For example, when a bubble in a liquid has a single
equilibrium state (i.e., Eq. (13) has a single solution),
all solutions of the equation D0(S) = 0 determining the
radial bubble oscillations are real and determine the fre-
quencies of radial bubble oscillations, which are
strongly dependent on sound speed c0 (Fig. 3), liquid

pressure , gas pressure P0g in the bubble, and
parameter W. Increasing P0g and W results in decreasing

the frequencies, while increasing  and c0 causes an
increase in the frequencies. Note that the relations
S0, k = S0, k(c0), where S0, k is the frequency of the kth
harmonic of the radial oscillations, have the form of sat-

uration curves. For example, at  = 1, P0g = 0.9, W = 1,
and γ = 4/3, the lowest harmonic of the radial oscilla-
tions (k = 1) ceases to depend on c0 already at c0 > 10
and represents a straight line, and the sum of the ampli-
tudes of deviations of the bubble radius from the equi-
librium magnitude A0(0) + A0(S0, 1) becomes equal to
unity, which corresponds to the limiting case of the
incompressible gas. Such a form of the dependence
S0, k = S0, k(c0) is explained by the fact that, as sound

speed c0 increases, gas density  = γ /  in the
bubble rises. Note also that, at any physically admissi-
ble values of the parameters of the problem, the ampli-
tudes of deviations of the bubble radius from the equi-
librium magnitude A0(S) vary in such a way that the
sum A0(0) + A0(S0, 1) is slightly different from unity, and
the amplitudes of higher harmonics of the radial oscil-
lations always remain at least by an order of magnitude
smaller than unity and strongly depend on sound speed
c0 (the amplitudes decrease when this speed increases,
see Fig. 3b).

The equations Dn(S) = 0, determining the surface
bubble oscillations, have not only real solutions but also
imaginary ones in the above-mentioned ranges of the
physical parameters. The real solutions determine the
frequencies of the surface oscillations, which (being the
radial oscillations) depend on the sound speed c0, the

liquid pressure , the gas pressure P0g in the bubble,
and the parameter W. As the sound speed c0 increases,
the frequencies of the surface oscillations grow and
tend to their limiting values corresponding to the limit-
ing case of the incompressible gas. When this takes
place, as in the case of radial oscillations, the lowest
harmonic (k = 1) of oscillations first reaches its limiting

magnitude. For example, at n = 2,  = 1, P0g = 0.4,
W = 1, and γ = 4/3, the lowest harmonic S2, 1 of the sur-
face oscillations ceases to depend on c0 even at c0 ≥ 10
and amplitude A2(S2, 1) of deviation of the bubble sur-
face from spherical shape for this harmonic asymptoti-
cally tends to unity. Harmonics with higher numbers

P∞
e( )

P∞
e( )

P∞
e( )

ρ0
i( ) P0

i( ) c0
2

P∞
e( )

P∞
e( )
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S2, k (k ≥ 2) continue to grow as c0 increases, while
amplitudes A2(S2, k) of deviation of the bubble surface
from a spherical shape for these harmonics rapidly tend
to zero.

The dependences of the frequencies of the surface

oscillations on parameters , P0g, and W are different
for the lowest harmonic (k = 1) and harmonics with the
numbers k ≥ 2. For example, the frequencies with num-
bers k ≥ 2 (Fig. 4) decrease with increasing P0g and W
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Fig. 3. Plots of (a) the dimensionless frequencies S0, k of
radial oscillations of the bubble surface and (b) the ampli-
tude of modes A0(S0, k) vs. dimensionless sound speed c0

for P0g = 0.05,  = 0.05, W = 0.05, γ = 4/3: (1) A0(0);
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and increase with increasing . The lowest fre-
quency of the surface oscillations may vanish and
become purely imaginary, determining the instability
growth rate (this may take place when parameters W or

 increase and also with decreasing P0g). In this case,

the further increase of W or , as well as decrease of
P0g, leads to an increase in the growth rate of the insta-
bility of the bubble surface (Fig. 4).
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Fig. 4. Plots of the dimensionless (a) real Re(S2, k) and
(b) imaginary Im(S2, k) components of the solution of equa-
tion D2(S) = 0 determining the frequencies and growth rates
of the surface oscillations of a bubble vs. dimensionless gas

pressure P0g for W = 1,  = 1, c0 = 5, γ = 4/3.P∞
e( )
The bubble becomes unstable with respect to small

perturbations of its shape under condition  ≤ 0. This
condition for the most unstable second (n = 2) mode of
the surface oscillations indicates that the instability
arises when the electric pressure exceeds the Laplace
one, and the gas pressure inside the bubble is leveled
with the liquid pressure. This conclusion is physically
clear: if the gas pressure in the bubble is higher than the
liquid pressure, then the bubble surface perturbation is
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ous magnitudes of the dimensionless sound speed: (thick
solid line) c0 = 1; (thin solid line) c0 = 5.
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smoothed out by the high gas pressure. If the liquid
pressure exceeds the gas pressure in the bubble, then
any perturbation of the bubble shape is enhanced by the
higher liquid pressure, which results in the loss of sta-
bility of the bubble shape. The criterion of the loss of
stability of the bubble shape can be obtained from con-

ditions  ≤ 0 and P(r) = 0, which give W ≥

4 .

In the region of physical parameters where the bub-
ble may have two equilibrium states (i.e., Eq. (13) has
two solutions) the frequencies of the radial and surface
(lateral) oscillations that are determined from the solu-
tions of equations Dn(S) = 0 (n ∈  (Ω ∪  {0}) for the
equilibrium state corresponding to the least bubble
radius behave in the same way as in the case when the
bubble has a single equilibrium state. If the bubble is in
the equilibrium state corresponding to the largest
radius, then equation D0(S) = 0 always has an imagi-
nary solution determining the growth of instability of
the bubble radius The magnitude of this growth rate
changes insignificantly with varying gas pressure P0g,
parameter W, and sound speed c0, and significantly

increases with decreasing liquid pressure . When
this takes place, the amplitude A0(S0, 1) of deviation of
the bubble radius from its equilibrium value for this
growth rate always remains comparable with unity and

increases when  decreases. The real solutions of
equation D0(S) = 0 corresponding to the frequencies of
the radial oscillations strongly depend on the liquid

pressure  and the sound velocity c0 and grow with

increasing c0 and decreasing , while variations of
the gas pressure P0g and the parameter W do not lead to
appreciable changes of these solutions. The amplitudes
of deviation of the bubble radius from equilibrium
A0(S0, k) corresponding to harmonics with k ≥ 2 are less
than unity at least by four orders.

Note that, in the given region of the parameters, the
equation Dn(S) = 0 (n ≥ 2) always has real solutions cor-
responding to the frequencies of the bubble surface
oscillations. These solutions are practically indepen-
dent of the gas pressure P0g in the bubble and of the
parameter W, and also considerably increase with

decreasing liquid pressure  and increasing sound
speed c0 (except for the basic harmonic, which is inde-
pendent of the sound speed). At the same time, the
amplitude A2(S2, 1) of deviation of the bubble surface
from spherical shape corresponding to the basic har-

ω2
2

P0g/P∞
e( )γ
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P∞
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monic always remains comparable with unity, while the
amplitudes A2(S2, k) (k ≥ 2) of higher harmonics are
smaller than unity at least by two orders of magnitude.

CONCLUSIONS

Summarizing the above results, we note that making
allowance for the finiteness of the rate of leveling of the
gas pressure in a bubble occurring in any of the equilib-
rium states is necessary only in cases when the sound
speed in the gas is a small quantity (when the gas den-
sity in the bubble is high). It is only in this case that the
amplitudes of high harmonics of the radial and surface
oscillations become significant and may appreciably
change the bubble shape. The maximum values of the
amplitudes of the radial and surface oscillations in
expression (33) lower with decreasing the sound speed
(Fig. 5). This circumstance influences the surface shape
of an oscillating bubble. In the case when the sound
speed in a bubble is high (at a low gas density), making
allowance for the influence of the higher harmonics of
both radial and surface oscillations is unnecessary and
expression (38), adequately describing the bubble
oscillation at the lowest oscillation frequency, can be
used. From the above considerations, it is evident that
expression (33) should be employed for the analysis of
stability of a collapsing bubble in which the gas pres-
sure at the final stage is very high. Expression (38) can
be used for the analysis of motion of a bubble executing
small oscillations in the vicinity of one of the equilib-
rium states.
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Abstract—The reasons for the erroneous writing of the substance conservation law at the moving fluid–fluid
interface, which is commonly encountered in related publications, are analyzed. A mathematical statement of
this law that is valid for any curved surface that has a nonzero curvature in its equilibrium state is derived in
terms of vector analysis. The new writing is independent of the coordinates and can be used for analysis of
relaxation phenomena associated with nonlinear wave motions. © 2004 MAIK “Nauka/Interperiodica”.
(1) The effect of surfactants and charge relaxation
phenomena on wave motions at the fluid–fluid interface
and on the stability of this interface is the subject of
much investigation in modern electrohydrodynamics
and physical chemistry. The problem of interface (or
free surface) motion with allowance for relaxation can
be rigorously stated only for a viscous fluid. The fact is
that, in this case alone, the contribution of the relax-
ation motion of the fluid to the boundary condition for
the stress tensor tangential component can be compen-
sate for by viscous stresses. At the interface between (or
on the free surface of) perfect fluids, the tangential
stresses remain uncompensated [1–3]; hence, the prob-
lem is impossible to state correctly.

Since the relaxation effects can be taken into
account only for viscous fluids, the scope of problems
concerning the wave motion of a fluid where the relax-
ation effect is considered in the linear (in wave ampli-
tude) approximation is limited. This is because, until
recently, nonlinear periodic waves on the fluid surface
have been considered within the framework of the per-
fect fluid model. The methods of solving such problems
have been developed only in the last few years [4–6].
The problems of nonlinear oscillation of droplets and
jets of a viscous fluid, which are intimately related to
the charge relaxation effect and the effect of surfac-
tants, have not yet rigorously resolved. As a result, the
problems allowing for both effects have been solved to
date only in the linear (in wave or oscillation ampli-
tude) approximation.

The rigorous statement of the substance (charge or
surfactant) conservation law at the fluid–fluid interface
was given in [1–3], where an approximation linear in
deviation of the virtual interface from the equilibrium
planar surface was used. Unfortunately, this statement
was incorrectly generalized for curvilinear surfaces,
with the result that the term proportional to the mean
curvature of the undisturbed interface (which equals
1063-7842/04/4911- $26.00 © 21415
zero for a planar surface) was lacking. Therefore, a
large body of publications concerning relaxation prob-
lems on curvilinear surfaces with a nonzero curvature
of the undisturbed (equilibrium) surface and using the
incorrect statement of this law cited erroneous results
(see, e.g., [7–17]). In only a few of them, this term was
included in the linear-in amplitude approximation,
although no comments on its origin were made
[18−20]. Since this error is often encountered in the lit-
erature, the rigorous derivation of the substance conser-
vation law in the form adequate to the solution of non-
linear problems, such as interaction between relaxation
and capillary waves (shape oscillation), seems to be
topical. This is the aim of the present work.

(2) Assume that two viscous incompressible immis-
cible fluids are separated by interface S. The fluid flow
velocity field W(r, t), which may be associated, for
example, with capillary wave motion at interface S, var-
ies in a continuous manner, so that at any time and at
any point on interface S it can be represented in the
form

where n and t are the unit vectors of the normal and
tangent to interface S at a given point.

We also assume that the fluids have finite thermal
conductivities and that an electric charge and surfac-
tants are distributed over interface S in such a way that
the capillary wave motion will cause the charge and
surfactants to relax. To state the problem of capillary
wave motion in a mathematical form, it is necessary to
write the laws of charge and surfactant conservation at
the interface. In other words, it is necessary to write
these conservation laws in differential form for any
point on interface S.

To simplify the considerations that follow, we note
that the error that is involved in the writing of the sub-
stance conservation law [7–17] and is to be eliminated

W r t,( ) u r t,( )n U r t,( )t,+=
004 MAIK “Nauka/Interperiodica”
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in this work is by no means related to the presence or
absence of diffusion terms. Therefore, we will discuss
diffusionless writing of the law to simplify the mathe-
matics. The diffusion components appearing in the
complete law of conservation are well known [1, 3] and
can be added at the final stage of the derivation.

The primary goal of this work is to show that the dif-
fusionless form of the substance conservation law as
applied to moving curvilinear fluid–fluid interface S is
given by

(1)

Here, Γ is the surface concentration of the substance
(charge or surfactants) and divS is the surface diver-
gence operator.

In [1–3], the conservation law is written in coordi-
nate form and an approximation linear in the amplitude
of the velocity field is used. This field is assumed to be
associated with capillary wave motion of infinitely
small amplitude (hence, the field is also assumed to be
small). Then, in terms of vector analysis, Eq. (1) is
recast as

(2)

It was noted [2] that form (2) of the substance con-
servation law applies only to the planar surface of a
fluid. In which form the law should be written when the
surface is curvilinear remains unclear.

The model problem of determining the rate of
change of the substance concentration on the surface of
an expanding bubble is a simple and vivid example of
why form (2) of the law is inapplicable to a curvilinear
(disturbed) surface having a nonzero mean curvature in
its equilibrium (undisturbed) state. Let, at initial time
instant t, the charge density or surfactant concentration
on the surface of a bubble of radius R be Γ. The bubble
expands with constant radial velocity u ≡ dR/dt. Then,
the charge density (surfactant concentration), which is
defined as the amount of charge (surfactant weight)
divided by the surface area of the bubble (i.e., Γ =
M/(4πR2), varies with rate dΓ/dt = –2(dR/dt)M/(4πR3) =
–2uΓ/R. It is easy to check that formula (2) gives the
absurd result: dΓ/dt = 0, while the result of formula (1)
is correct: dΓ/dt = –2uΓ/R.

This example illustrates that formula (2) is invalid if
the problem involves the mechanism of changing the
surface geometry (some of its parts are extended or
contracted). Term Γudiv(n), by which formula (1) dif-
fers from formula (2), is responsible for the variation of
the surface concentration due to local extensions or
contractions. These distortions take place at the inter-
face when it moves or deforms.

In the above example, the spherical interface moves
owing to a change in the volume of the bubble. A wrong
impression may arise that, when studying small oscilla-

∂Γ
∂t
------ Γudiv n( ) divS ΓUt( )+ + 0.=

∂Γ
∂t
------ divS ΓUt( )+ 0.=
tions of incompressible droplets or jets, one may get by
with the conservation law in form (2) (as in the case of
small-amplitude waves on the planar surface of a fluid
[1–3]), since the volume bounded by the surface does
not change. It is this error that was made in [7–17].
Actually, the curvature of the surface in its equilibrium
state, rather than the constancy of the volume, is the
crucial factor. Below, we will show that the conserva-
tion law should be written in form (1) even if the oscil-
lation amplitude of the droplets and jets is small. Our
consideration will follow the scheme with which the
formula for the surface tension force pressure under the
fluid free surface distorted by virtual deformation was
derived [2].

(3) We will start from two rules of vector analysis
and differential geometry, which will be used further in
derivation of the substance conservation law in
form (1).

The first one is the well-known formula for calculat-
ing the total time derivative of an integral taken over
finite deformable volume V(t) that moves together with
the fluid and is bounded by surface ω [21, §120; 22,
Chap. 2, Sect. 4]:

(3)

Here, r is the radius vector of a point in space in the
inertial reference system, W(r, t) is the velocity field in
the fluid, (W · N) is the algebraic projection of velocity
field W onto normal N outer to closed surface ω(t)
bounding material volume V(t), and C(r, t) is the
parameter that characterizes some physical property of
a small moving fluid particle. Parameter C(r, t) may be,
for example, the local impurity concentration, temper-
ature, energy, etc. The meaning of V(t) on the right and
left of formula (3) is different. On the left, V(t) means
the material volume moving together with the fluid.
The flux of field W(r, t) through its boundary, which is
constituted by fluid particles, is absent, since the
boundary moves together with the particles. On the
right, V(t) is viewed as a stationary volume through
which the fluid flows. At time instant t under consider-
ation, the geometric boundaries of both volumes coin-
cide, forming surface ω(t). Designation ω(t) corre-
sponds to the stationary surface that coincides (at time
instant t) with the material surface, which moves
together with fluid particles located on the surface
bounding material volume V(t).

The second rule is the rule of transformation of
slightly deformed surface S into new (virtual) nearby
surface S1. This is done by displacing each point A ∈  S

d
dt
----- C r t,( ) Vd∫

V t( )
∫∫ ∂C r t,( )

∂t
------------------- Vd∫

V t( )
∫∫=

+ C r t,( )
ω t( )
∫ W r t,( )⋅ ωd∫

≡ ∂C r t,( )
td

------------------- Vd∫
V t( )
∫∫ C r t,( ) W N⋅( ) ω.d

ω t( )
∫∫+
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along the normal issuing out of this point (Fig. 1) by
distance h = h(A) (that is, h depends on the position of
point A). In our case, S is a separated (finite) part of the
interface.

Let the radius vector of point A on surface S be
expressed through parameters α and β, which are the
curvilinear coordinates of the point, as r = r(α, β).
Then, the normal to surface S at point A can be
expressed through the same parameters: n = n(α, β). In
this case, the radius vector r1 of a point on surface S1,
which is constructed by displacing each point on sur-
face S by distance h along the normal, may be consid-
ered dependent on the same parameters α and β: r1 =
r + h · n, where h = h(α, β) is the function of the curvi-
linear coordinates of point A ∈  S.

The difference δS between surface S and S1 is given
by the well-known relationship (see, e.g., 21, §139)

(4)

Here, the normal to surface S is designated by n instead
of N, as in the consideration of the former rule, to make
a distinction between normal N to surface ω and normal
n to surface S.

In [21], rule (4) was written in terms of the mean
curvature of surface H, which was calculated at point
A ∈  S (Fig. 1). In our case, (4) takes into account the
relationship 2H = –div(n), which obviously follows
from the well-known Rodrigo theorem of partial deriv-
atives of a normal unit vector along principle curvatures
of a surface [23].

From (4), it follows that the smaller h, the more
accurate the approximate relationship between elemen-
tary surface areas dS and dS1:

(5)

(4) Let us derive the substance conservation law on
moving curved surface S that is a part of the interface
between two media when surface diffusion is absent.
For simplicity, we will speak of a surfactant that is dis-
tributed over fluid–fluid interface S with surface con-
centration Γ = Γ(A, t), where A ∈  S (all the consider-
ations that follow are also valid if Γ is the surface
charge density).

Assume that function Γ = Γ(A, t) has all partial
derivatives with respect to all the arguments and that
interface S is simple closed curve L (Fig. 2) that is suf-
ficiently smooth for the formulas of vector analysis to
be applied. We also assume that the continuity condi-
tion for hydrodynamic velocity field W(r, t) is met at
the interface.

(i) Surfactant film as the ultimate state of a surfac-
tant layer whose thickness tends to zero. Surface S with
the distributed surfactant will be considered as the ulti-
mate state of a surfactant layer with finite thickness h.
This layer is obtained as follows. Surface S1 is con-
structed by displacing all points of initial surface S

δS S1 S– ndiv n( )
S

∫∫ dS o h( ).+⋅= =

dS1 1 h div n( )⋅+( )dS.≈
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(Fig. 2) by distance h along the normal (for simplicity,
distance h is assumed to be constant, i.e., independent
of the curvilinear coordinates of point A ∈  S). The layer
bounded by S and S1 will be called the h layer and des-
ignated as h. The value of h is taken to be sufficiently
small, so that formulas (4) and (5) can be applied. Con-
tour L1, which bounds surface S1, is formed by displac-
ing the points of contour L by distance h along the nor-
mal (Fig. 2). The lateral area of the h layer will be des-
ignated as Σ.

Generally, the volume concentration Ch in the h
layer depends on the position of point A* ∈  Πh inside
the h layer. This position, in turn, is totally specified by
the position of point A ∈  S and length ξ of segment AA*,
which is normal to S (Fig. 2). Also, let Ch be a function
of time t. The model of filling the h layer with a sub-
stance of volume concentration Ch = Ch(A, ξ, t) (A ∈  S;
0 ≤ ξ ≤ h) is as follows: it is required that, at h  0, a
family of functions Ch = Ch(A, ξ, t) converge uniformly
with respect to the position of point A and times t > 0:

(6)

Condition (6) imparts a property to the h layer that
is crucial for further discussion: the surfactant-filled h
layer shrinks, tending to surface S, at h  0, and the

hCh A ξ t, ,( ) Γ A t,( ); h 0, A S, t∈ 0>( ).

r1

h(A)

r

A S

S1

A1

n(α, β)

Fig. 1. Part of interface S and virtual surface S1.

h

m

L

S

L1
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k
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ξ

Fig. 2. Schematic of the h layer.
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surfactant concentration on this surface will be
described by the surface function Γ = Γ(A, t), where
A ∈  S.

Indeed, the thinner the h layer, the more accurately
the expression Ch(A)dVA = hCh(A)dSA describes the
amount of the substance in volume dVA = dSAh, which
rests on elementary area dSA ∈  S containing point A
(Fig. 3). However, according to (6), the amount of the
substance tends to Γ(A)dSA at h  0, i.e., to the
amount of the surfactant that is uniformly distributed
over elementary area dSA.

Uniform convergence in (6) provides the correct-
ness of the passages to the limit that are used below.

(ii) Law of conservation of amount of surfactant on
surface S in integral form. Let the h layer move together
with the fluid. Then, the fluid flow and, accordingly, the
surfactant transfer across the boundary of this layer,
ω ≡ S ∪  Σ ∪  S1, are absent. If the amount of the surfac-
tant in the h layer is M, the surfactant conservation con-
dition in it can be written, in view of (3), in the form

where 

The above definition of vector N means that it is the
outer normal to the h layer volume, which is bounded

dM
dt

--------
d
dt
----- Ch Vd∫

V t( )
∫∫ 

 
  ∂Ch

∂t
--------- Vd∫

V t( )
∫∫≡=

+ Ch W N⋅( ) ωd∫
S ∪ Σ ∪ S1

∫ 0,=

N

n– on S

m on S1

q on Σ.





=

h

S1

S

A

dVA

dSA

Fig. 3. Elementary volume inside the h layer.
by surfaces S, S1, and Σ. Let the unit vectors of normals
n, m, and q to surfaces S = S(t), S1 = S1(t), and Σ = Σ(t)
be directed as shown in Fig. 2. Then, the substance con-
servation condition in the h layer may be recast as

(7)

It is easy to find the limiting form of expression (7)
at h  0. To this end, we make use of the integral the-
orem of mean, relationship (6), and expression (5) for
the parenthesized terms in (7). The passage to the limit
for the terms appearing in (7) is described in detail in
the appendix. Eventually, (7) is transformed into the
integral form of the substance conservation law on sur-
face S:

(8)

This law for the surfactant is fulfilled on any finite
surface S bounded by contour L, provided that this sur-
face is a part of the moving fluid–fluid interface at a
time t. In (8), k is the unit vector that is tangent to sur-
face S at point Λ ∈  L. This unit vector is perpendicular
to contour L at point Λ, which is coincident with the
extremity of unit vector q. In turn, q is the unit vector
of the outer normal to the lateral surface of the h layer
at h  0 (Fig. 4).

Relationship (8), which is the integral form of the
law of conservation of amount of substance on the mov-
ing fluid–fluid interface, is of independent interest for
physicochemical hydrodynamics.

(iii) Law of conservation of amount of surfactant on
surface S in differential form. Dividing both sides of (8)
by S yields an expression that is valid for any part of the
moving fluid–fluid interface. Therefore, it will remain
valid if surface S is shrunk to point A ∈  S. In this case,
using the integral theorem of mean, we can recast the
first and last terms on the left of (8) as

(9)

(10)

Here, point A0 is a point on surface S (A0 ∈  S) that is
specified for each of the integrals based on the theorem
of mean. The position of point A0 on surface S is of no
concern, since A0  A when contour L shrinks to

∂Ch

∂t
--------- Vd∫

V t( )
∫∫ Ch W q⋅( ) Σd∫

Σ t( )
∫+

+ Ch W m⋅( ) Sd∫
S1 t( )
∫ Ch W n⋅( ) Sd

S t( )
∫∫–

 
 
 

0.=

∂Γ
∂t
------ Sd∫

S t( )
∫ Γ W k⋅( )dL

L t( )
∫° Γudiv n( ) Sd∫

S t( )
∫+ +  = 0.

1
S
--- ∂Γ

∂t
------ Sd ∂Γ

∂t
------

A0 S∈
 
  1

S
--- S ∂Γ

∂t
------

A

;d

S t( )
∫∫

S t( )
∫∫

1
S
--- Γudiv n( ) S Γudiv n( )( ) A0 S∈( )d

S t( )
∫∫

× 1
S
--- S Γudiv n( )( ) A.d

S t( )
∫∫
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point A. Dividing the medium term on the left of (8) by
S yields (in the limit when S shrinks to point A) an
expression for surface divergence at point A:

(11)

Recall that k is the normal unit vector to contour L(t)
and the integral on the left of (11) is the net flux of the
vector field (ΓU)t through boundary L(t). Note also that
relationship (11) takes into account that n · k ≡ 0.

Let us replace the terms on the left of (8) by their
limiting formulas (9)–(11) and, taking advantage of the
fact that point A ∈  S was chosen arbitrarily, omit the
indication that the calculations are performed at point
A. Eventually, we arrive at the substance conservation
law at the moving fluid–fluid interface in differential
form (1), which was to be proved.

(5) Consider the planar surface of a fluid that occu-
pies (entirely or partially) the half-space z < 0 in the
coordinate system 0xyz with the 0z axis directed oppo-
site to the gravitational force. If waves start propagating
on this surface in the 0x direction, the tangent and nor-
mal unit vectors on the disturbed (offset from its equi-
librium position) surface z = ξ(x, t) have the form

Here, ex and ez are the unit vectors along the Cartesian
axes. If, for simplicity, the motion of the fluid is
assumed to be independent of the coordinate y, U =
wex + vez and condition (1) in coordinate form can be
written as

(12)

Here, D stands for diffusion terms previously omitted.
This form of the conservation law was used in [19]. In
the approximation linear in wave amplitude, we, with
regard to (12), come to the expression used in [1, 2]:

(6) Let us discuss the error in the writing of the sub-
stance conservation law on the surface of droplets and

1
S
--- Γ W k⋅( )dL

L t( )
∫°

=  
1
S
--- ΓU t k⋅( )dL divS Γu( )t( ) A

L t( )
∫° .

n
∂xξ

1 ∂xξ( )2
+

----------------------------ex–
1

1 ∂xξ( )2+
----------------------------ez;+=

t 1

1 ∂xξ( )2
+

----------------------------ex

∂xξ

1 ∂xξ( )2+
----------------------------ez.+=

z ξ : 
∂Γ
∂t
------=

+
1

1 ∂xξ( )2+
------------------------ ∂x Γw( ) ∂xξ Γ∂ zw ∂x v Γ( )+( )+(

+ ∂xξ( )2Γ∂ zv ) D+ 0.=

z 0: 
∂
∂t
----- ∂x Γw( ) D+ + 0.= =
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jets slightly oscillating about their equilibrium shape
(for the droplets, the equilibrium shape is a sphere of
radius R; for the jets, a cylindrical surface of radius R).
In the approximation of small oscillation amplitude, the
medium term in (1) is a quantity of the first order of
smallness and is given by

for a droplet of radius R and

for a jet of radius R.

Here, Γ(0) is the equilibrium concentration of the sub-
stance (charge or surfactant) on the undisturbed spher-
ical or cylindrical surface and u(1) is the radial velocity
of the fluid in the first approximation in oscillation
amplitude.

For waves on the planar surface, the medium term in
(1) calculated in the linear-in-amplitude approximation
vanishes because of the zero curvature of the equilib-
rium planar surface.

CONCLUSIONS

Our derivation of the substance conservation law at
the moving fluid–fluid interface indicates that it is nec-
essary to take into account the term that is proportional
to the mean curvature of the interface. This term is often
erroneously disregarded when relaxation motions at the
curvilinear interface are calculated in an approximation
linear in deviation of the surface from its equilibrium
shape. In the higher order calculations, this term should
be included not only for the curvilinear interface but
also for the planar surface.

In this work, the substance conservation law at the
moving fluid–fluid interface was used in the coordi-

Γudiv n( ) 2
R
---Γ 0( )u 1( ),≈

Γudiv n( ) 1
R
---Γ 0( )u 1( )≈

m

S1

L1

èdξ

σ(ξ)
Ω(ξ)

S
L

dΩ(ξ)

dσ(ξ)

dV
q

k
Λ

dΣ
dξ

ξ

Fig. 4. Partition of the h layer into elementary volumes dVA
and of its lateral surface Σ into elementary areas dΣ.

n

.
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nateless form (it was derived in terms of vector analy-
sis). This form of writing is appropriate for the state-
ment and solution of the problems that are concerned
with the influence of charge or surfactant relaxation on
the evolution of the fluid–fluid interface. Moreover, this
form does not depend on the equilibrium shape of the
surface in external force fields and on the degree of its
deformation during motion. This circumstance is of
special importance for researchers engaged in the con-
struction of nonlinear models of periodic wave motion
on the charged surfactant-covered interface between
two viscous fluids of finite electrical conductivity.

APPENDIX

Passage to the Limit of an Infinitely Thin h Layer in 
Relationship (7) for the Substance Conservation Law

(1) The first term on the left of (7). Let the h layer be
cut by surface σ = σ(ξ) that is constructed by displacing
all points of surface S by a distance 0 ≤ ξ ≤ h along the
normal to S. For ξ = 0, we have σ(0) ≡ S ≡ S(t); for ξ =
h, σ(h) ≡ S1(t). For the layer Πdξ, which has thickness
dξ much smaller than h and rests on σ(ξ), an elemen-
tary volume has the form dV = dξdσ(ξ) (Fig. 4). Such
elementary volumes occupy volume V layerwise, and
the integral sum constructed for the first integral on the
left of (7) turns into a repeated integral in the limit
dV  0:

According to the integral theorem of mean, there
exists ξ = ξ* ∈  [0, h] such that

Here, we used the fact that h is assumed to be constant.
In the limit h  0, ξ*  0 and σ(ξ*)  S(t); also,
relationship (6) is fulfilled. Therefore, this limit is easy
to find:

(2) The second term on the left of (7). Let the h layer
be cut by surfaces σ(ξ) introduced previously (Fig. 4)
and Ω = Ω(ξ) be the contour that is obtained when the
lateral surface Σ of the h layer meets surface σ(ξ). It is
obvious that Ω(0) = L and Ω(h) = L1 (Fig. 4). On the lat-
eral surface of the Πdξ layer (see above), we separate an
elementary area dΣ = dξdΩ(ξ) (Fig. 4). The lateral sur-
faces of the Πdξ layer, which consist of such elementary

∂Ch

∂t
--------- Vd∫

V t( )
∫∫ ξ

∂Ch

∂t
--------- σ ξ( ).d∫

σ ξ( )
∫d

0

h

∫=

∂Ch

∂t
--------- Vd∫

V t( )
∫∫ h

∂Ch

∂t
--------- σ ξ*( )d∫

σ ξ*( )
∫=

=  
∂ hCh( )

∂t
----------------- σ ξ*( ).d∫

σ ξ*( )
∫

h 0: 
∂Ch

∂t
--------- Vd∫

V t( )
∫∫ ∂Γ

∂t
------ S.d

S t( )
∫∫
areas, produce bands occupying the entire lateral sur-
face Σ of volume V. Eventually, the lateral surface Σ of
the h layer turns out to be partitioned into elementary
areas. With this partition, the integral sum for the sec-
ond integral on the left of (7) turns to a repeated integral
in the limit dΣ  0:

According to the integral theorem of mean, there
exists ξ = ξ* ∈  [0, h] such that

In the limit h  0, ξ*  0 and Ω(ξ*)  L(t);
also, relationship (6) is fulfilled and we may pass to the
limit q  k, where k is the unit vector that is tangent
to surface S and perpendicular to at point Λ ∈  L consid-
ered (Fig. 4). Therefore, this limit is easy to find:

(3) In view of (5), the parenthesized terms on the left
of (7) can be recast as

Surfactant concentration Ch at inner point A* of the
h layer (Fig. 2) depends on the position of point A ∈  S
and length ξ of segment AA*, which is normal to S:

Ch = Ch(A, ξ, t). In the above expression,  ≡ Ch(A, 0, t)

and  ≡ Ch(A, h, t).

On the right of this expression, the first and last inte-
grals tend to infinity at h  0. To estimate the rate
with which these integrals tend to infinity, let us con-
sider the asymptotic behavior of volume surfactant con-
centration Ch at h  0 (see (6)). For condition (6) to
be met, it is necessary that

Ch W q⋅( ) Σd

S t( )
∫∫ ξ Ch W q⋅( )

Ω ξ( )
∫°d

 
 
 

Ω ξ( ).d

0

h

∫=

Ch W q⋅( ) Σd

S t( )
∫∫ ξ Ch W q⋅( )

Ω ξ( )
∫°d Ω ξ( )d

0

h

∫=

=  h Ch W q⋅( )dΩ ξ( )
Ω ξ*( )
∫° hCh W q⋅( )dΩ ξ( ).

Ω ξ*( )
∫°=

h 0: Ch W q⋅( ) Σ Γ W k⋅( )
L t( )
∫°d L.d

S t( )
∫∫

Ch W m⋅( ) S1d∫
S1 t( )
∫ Ch W n⋅( ) Sd∫

S t( )
∫–

 
 
 

h 0→
lim

=  Ch
+ W m⋅( ) Sd∫

S t( )
∫




h 0→
lim

+ hCh
+W m⋅ div n( ) Sd∫

S t( )
∫ Ch

0 W n⋅( ) Sd∫
S t( )
∫–





.

Ch
0

Ch
+

Ch A ξ t, ,( ) Γ A t,( )
h

----------------- ∞ h 0( ).∼
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On the other hand, since ξ in this asymptotic expres-
sion is taken arbitrarily, we get the following asymp-
totic formulas:

In addition, the continuity of field velocity U
implies that (W · m)  (W · n) at h  0. As a result,
the first and last integrals cancel each other at h  0,
so that we may write the limiting relationship in the
form

The limit on the left can be found from condition

(6), which is met, specifically, for  ≡ Ch(A, 0, t).
Also, one should take into account that (W · m) 
(W · n) = U at h  0. Eventually, we get
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Abstract—The profile of a periodic capillary–gravitational wave propagating over the surfactant-covered sur-
face of a fluid is found in the second-order approximation in initial deformation amplitude. It is shown that the
surfactant film appreciably affects the intensity of nonlinear interaction between harmonics constituting the
nonlinear wave. © 2004 MAIK “Nauka/Interperiodica”.
The authors have recently published a number of
articles devoted to the asymptotic behavior of nonlinear
capillary–gravitational waves over the surface of a
finite-viscosity charged fluid [1–4]. The apparatus
developed in those articles makes it possible to rigor-
ously take into account viscosity in the problems of
nonlinear wave motion. As a result, there has appeared
the possibility of studying relaxation phenomena asso-
ciated with nonlinear wave motion. In other words,
there appeared the possibility of adequately consider-
ing the balance of viscous and relaxation stresses on the
free surface of the fluid in nonlinear problems. In this
work, we study the effect of a surfactant film on the
intensity of interaction between harmonics constituting
a nonlinear periodic wave propagating over the surfac-
tant-covered charged surface of the fluid.

The effect of surfactants on wave propagation over
the fluid surface is the subject matter of classical
mechanics of fluid and physical chemistry [5]. This
issue is of both scientific and applied interest [6–11]. To
date, all the related investigations have been carried out
in the approximation of infinitely small wave amplitude
and have been devoted primarily to the determination
of the surfactant concentration that effectively sup-
presses capillary–gravitational waves. The existence of
such an optimal concentration has been proved experi-
mentally (see, e.g., [6] and Refs. therein) and predicted
theoretically in terms of various models [6, 7, 9, 11].
Yet, sound physical explanations of this effect are still
lacking, and this issue is addressed now and then
[9, 11]. In this work, we break with this tradition with
the aim of revealing the surfactant effects that are unre-
lated to the decay of capillary wave motion.

1. PROBLEM DEFINITION

Let a viscous incompressible perfectly conducting
fluid of density ρ and kinematic viscosity ν occupy the
half-space z < 0 in the coordinate system Oxyz with the
1063-7842/04/4911- $26.00 © 21422
Oz axis directed oppositely to the gravitational force.
An electric charge with surface density κ0 and a surfac-
tant with surface concentration Γ0 are uniformly dis-
tributed over the free surface of the fluid. Let D be the
free diffusion coefficient of the surfactant. We assume
that a periodic wave of wavelength λ starts traveling
over the free surface in the positive Ox direction at zero
time (t = 0). Our goal is to find the profile of the wave
at t > 0.

The periodic profile of the wave can be uniquely
restored from the amplitudes of harmonics appearing in
the expansion into the Fourier series over spatial period
λ. Let the amplitude η of the fundamental harmonic be
known. Below, we will use wavenumber k = 2π/λ
instead of the wavelength. For simplicity, the motion of
the fluid is assumed to be independent of coordinate y.

As the wave propagates, the distribution of the sur-
factant over the free surface changes continuously and
its concentration becomes a function of time and hori-
zontal coordinate: Γ = Γ(t, x). Local changes in the sur-
factant concentration cause local changes in surface
tension coefficient γ. As for the dependence γ = γ(Γ), we
assume that the surface phase of the surfactant and the
fluid are in local thermodynamic equilibrium. This
means that a local change in the surfactant concentra-
tion instantly causes a change in the surface tension
coefficient according to the isotherm γ = γ(Γ) that is
deemed to be known.

Mathematically, the problem of determining the
wave profile is stated as follows:

∂tU U —⋅( )U+
1
ρ
---—p– ν∆U g;+ +=

U uex v ez;+=

— U⋅ 0; ∆Φ 0;= =

z ξ : ∂tξ u∂xξ+ v ;= =
004 MAIK “Nauka/Interperiodica”
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Here, ex and ez are the unit vectors along the axes, n and
t are the unit vectors of the outer normal and tangent to
the free surface z = ξ ≡ ξ(t, x, z) disturbed by the wave
motion (analytical expressions for n and t are given in
the Appendix), and ∆ is the Laplacian. The boundary
conditions for the problem will be set in the course of
solution so as to obtain an expression for the wave pro-
file that is as simple as possible and suitable for quali-
tative analysis (the routine procedure in solving the
problems of nonlinear periodic waves [1–4, 12, 13]).

In the rigorous statement, the input data are η, k, ρ,
g, ν, κ0, Γ0, D, and the isotherm γ = γ(Γ). The unknown
functions are ξ = ξ(t, x, z), the profile of the free surface;
u = u(t, x, z) and v  = v(t, x, z), the horizontal and vertical
components of velocity field U in the fluid; p = p(t, x,
z), the pressure distribution in the liquid; Γ = Γ(t, x), the
surface concentration of the surfactant; and Φ = Φ(t, x,
z), the electric field potential above the fluid.

2. CONSTRUCTION OF ASYMPTOTIC 
SOLUTION

According to the technique used earlier to solve the
problem of nonlinear waves in viscous fluid in the
absence of surfactant [3, 4], a solution is sought in the
form

p 2ρν n n —⋅( )U( )– —Φ( )2

8π
----------------+

γ∂xxξ

1 ∂xξ( )2+( )3/2
----------------------------------;–=

ρν t n —⋅( )U( ) n τ —⋅( )U( )+[ ]–

=  
∂xγ

1 ∂xξ( )2+
---------------------------- 0; Φ 0;= =

∂1Γ
1

1 ∂xξ( )2+
------------------------ ∂x Γu( ) ∂xξ Γ∂ zu ∂x Γv( )+( )+[+

+ ∂xξ( )2Γ∂ zv ] D
∂xxΓ

1 ∂xξ( )2+
------------------------

∂xξ∂ xxξ∂ xΓ

1 ∂xξ( )2+( )2
-------------------------------–

 
 
 

– 0;=

z ∞– : u 0; v 0;

z ∞; —Φ E0ez; E0 4πκ0.=

ξ
u

v

p

Φ
Γ 

 
 
 
 
 
 
 
 

0

0

0

ρgz–
E0

2

8π
------–

E0z

Γ0
 
 
 
 
 
 
 
 
 
 
  ξ1

u1

v 1

p1

Φ1

Γ1 
 
 
 
 
 
 
 
 
  ξ2

u2

v 2

p2

Φ2

Γ2 
 
 
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 
 
 

O ξ1
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O u1
3( )

O v 1
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O p1
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O Φ1
3( )

O Γ1
3( ) 
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;+ + +=
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Here, the quantities with subscript 1 refer to the linear
(in amplitude) approximation and those with subscript
2 are second-order corrections.

The complete statement of the problem includes
surface tension coefficient γ = γ(Γ) and its partial deriv-
atives with respect to x. From the power series

where subscript 0 implies that the function is calculated
on the undisturbed (planar) surface of the fluid, we
have, at Γ = Γ0,

accurate to the second order of smallness, where χ ≡
(∂Γγ)0 and β ≡ (∂γγγ)0.

Using these approximate relationships, as well as
the asymptotic expressions for ξ, u, v, p, Φ, and Γ, one
can easily pose the first- and second-order problems by
the technique used in [3, 4]. The complete mathemati-
cal statement of the first- and second-order problems
has the form

ξ2

u2

v 2

p2

Φ2

Γ2 
 
 
 
 
 
 
 
 
 

O ξ1
2( )

O u1
2( )

O v 1
2( )

O p1
2( )

O Φ1
2( )

O Γ1
2( ) 

 
 
 
 
 
 
 
 
 
 
 

;=

ξ1 η f t( ) kx ωt–( ); f 0( )cos 1.= =
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+ Γ1 Γ2 …+ +( )2 ∂ΓΓ γ( )0 …;+

∂xγ ∂Γγ( ) ∂xΓ( )=

=  ∂Γγ( )0 Γ1 Γ2 …+ +( ) ∂ΓΓ γ( )0 …+ +( ) ∂xΓ( ),

γ∂xxξ γ0∂xxξ1 γ0∂xxξ2 χΓ 1∂xxξ1;+ +≈

∂xγ χ∂xΓ1 χ∂xΓ2 βΓ1∂xΓ1+ +≈

∂1Um
1
ρ
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For m = 1 and 2, we are dealing with the first- and
second-order problems. For the former, V1 = 0 and fn1 =
0 (n = 1–5). For the latter, V2 and fn2 = 0 (n = 1–5) are
expressed via solutions to the first-order problem by the
formulas given in the appendix.

3. SOLUTION OF THE PROBLEM 
IN THE SECOND-ORDER APPROXIMATION 

IN PERIODIC TRAVELING WAVE AMPLITUDE

By solving the first- and second-order problems in
succession [3, 4], it is easy to find an expression for the
profile of a periodic travelling capillary–gravitational
wave in second-order approximation in amplitude η:

(1)

Here, S is the complex frequency that is calculated in
the first-order problem, while parameters M0 and M1 are
calculated in the course of solution of the second-order
problem (see Appendix). Owing to a large array of
input data and intermediate variables, it is possible to
construct the functional dependence of S, M0, and M1
on the input data of the problem. Let us construct
numerical parameters

(2)

using function γ = γ(Γ).
Parameter0, having the meaning of the surface ten-

sion coefficient on the equilibrium (planar) free surface
of the fluid, can be used to convert parameter κ0 to
dimensionless Tonks–Frenkel parameter [8, 14]

(3)

Now, we will show that parameters S = S(ρ, g, ν, k,
W, D, Π0, Π1), M0 = M0(ρ, g, ν, k, W, D, Π0, Π1), and
M1 = M1(ρ, g, ν, k, W, D, Π0, Π1, Π2) can be directly
expressed through parameters ρ, g, ν, k, W, D, Π0, Π1,
and Π2. Note that only M1 depends on Π2.

The complex frequency is calculated by the formula

(4)

where

a is the capillary constant, and dimensional complex
parameter α is that root of the dimensionless dispersion

ξ η θ rt( )expcos=

+ 2η2 Re ζ( ) 2θ( )cos Im ζ( ) 2θ( )sin–[ ] 2rt( );exp

θ = ωt kx; ω–  = Im S( ); r = Re S( ); ζ  = 
M1

M0
-------.

Π0 γ Γ0( ); Π1 Γ0
dγ
dΓ
------- 

 
Γ Γ 0=

;= =

Π2 Γ0
2 d2γ

dΓ 2
--------- 

 
Γ Γ 0=

,=

W 4πκ0
2/ ρgΠ0.=

S ω0α ρ g ν k W D Π0 Π1, , , , , , ,( );=

ω0
2 kg 1 ak( )2 akW–+( ); a

Π0

ρg
------= =
relation corresponding to the capillary–gravitational
wave (the dispersion relation and the way of choosing
the appropriate root are given in the appendix). Param-
eter ω0, which is intermediate in the calculations, repre-
sents the frequency of gravitational–capillary waves
that have an infinitely small amplitude and wavenum-
ber k on the surface of a perfect fluid with constant sur-
face tension coefficient Π0.

The set of parameters µ, ρ, g, ν, k, W, D, Π0, Π1, and
Π2, which specify the profile of the nonlinear wave by
formula (1), has two important properties. First, it lacks
the isotherm. Instead of function γ = γ(Γ), three numer-
ical parameters, namely, Π0, Π1, and Π2, are used,
which have the dimension of the surface tension coeffi-
cient and characterize the local properties of the iso-
therm near the equilibrium state of the free surface.
Such a replacement has become possible because we
used the power series of the surface tension coefficient
in the vicinity of the equilibrium state of the free sur-
face. As was noted above, Π0 has the meaning of a sur-
face tension coefficient on the planar (equilibrium) sur-
face that is covered by a surfactant film with surface
concentration Γ0. Parameter Π1 equals the surfactant
concentration times the slope of the isotherm at point
Γ = Γ0. It is called the film elasticity. For conventional
(not inactive) surfactants, Π1 < 0. This parameter
defines the force per unit length acting between two lin-
ear elements on the surface that have different surfac-
tant concentrations. This force arises when the surfac-
tant is nonuniformly distributed over the film and is
directed along its surface. Parameter Π2 depends on the
curvature of the isotherm at point Γ = Γ0.

Second, the new set involves parameter W, which
characterizes the stability of the uniformly charged pla-
nar surface of the fluid against self-charge [14]. From
the solution to the first-order problem [8, 10], it follows
that

(5)

if 

since complex frequency S in (4) takes the form S =
±iω0 in going to a perfect fluid in the absence of the sur-
factant (ν, D, Π1)  0. In this case, electric forces at
the ridges of the waves with wavenumber k dominate
over Laplace forces even in the first order of smallness.
The surface becomes unstable against however small
periodic wave perturbations for which relationship (5)
is fulfilled; in other words, the charged surface of the
fluid becomes unstable against self-charge [8, 10, 14].
From (5), it readily follows that all wavenumbers k > 0
are stable if 0 ≤ W < 2. At W = 2, there appears wave-
number k∗  = 1/a lying at the boundary of instability in
the sense that any however small increase of W above
W = 2 makes the wave perturbation with k = k∗  unsta-

Re S( ) r 0, Im S( )> ω 0,= = =

ω0
2 0,  or  W 1

ak
------ ak,+><
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ble. At W > 2, there exists an interval of unstable wave-
numbers that includes k∗  and extends with increasing W.

If r > 0 and t  ∞ in expression (1), the ratio of the
correction proportional to η2 to the fundamental term
proportional to η takes the form ∞ × η. This means that
asymptotic expression (1) becomes nonuniform at large
time intervals. Moreover, with condition (5) satisfied,
the wave motion of the free surface ceases, since ω = 0.

With regard to the aforesaid, we will study the pro-
file of the wave under the assumption that the condition

(6)

is met.
In this case, parameter r has the meaning of the

damping decrement of the wave in the first order of
smallness and the correction-to-fundamental term ratio
in expression (1) for the wave profile tends to zero in
the limit η  0 for any t > 0.

It is noteworthy that expression (1) for the profile
can be alternatively written as

(7)

Parameters ζ, r, and θ are the same as in (1).
Below, we will pass to the dimensionless variables

where ρ = g = γ = 1 and the remaining quantities are
expressed in terms of their characteristic scales:

4. INTRINSIC NONLINEAR INTERACTION 
OF WAVES IN THE ABSENCE OF SURFACTANT

In [1–4], expression (1) for the profile of a periodic
nonlinear traveling capillary–gravitational wave was
studied in the simplest case, i.e., in the absence of a sur-
factant film on the free surface. It was shown that the
nonlinear behavior of the wave shows up most vividly
when

(8)

where k∗  is the dimensionless wavenumber.

W
1

ak
------ ak: r⇒+<  = Re S( ) 0, Im S( )<  = ω 0≠

ξ η θ rt( )expcos η2A 2θ φ+( ) 2rt( );expcos+=

A 2 Re ζ( )2 Im ζ( )2+ ;=

φ

Im ζ( )
Re ζ( )
-------------- 

  ,       if Re ζ( ) 0;>arctan

π
2
---,                             if Re ζ( ) 0;=

Im ζ( )
Re ζ( )
-------------- 

 arctan π, if Re ζ( ) 0.<+










=

k*
1
a
---; η* a; ζ*

1
a
---;= = =

Πn* γ ν*; ga3; D* ga3.= = =

k* 1/ 2,=
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This follows from the resonance-like dependence
A = A(k) (Fig. 1). The height of the resonance peak
characterizes the intensity of nonlinear interaction
between the wave with wavenumber k (the fundamental
wave term in (1), which is proportional to η; in the dis-
cussion which follows, it will be called the k wave) and
the wave with wavenumber 2k (the correction propor-
tional to η2 or the 2k wave). The phase velocities of the
waves are the same. A change in k has no effect on the
amplitude η of the fundamental wave term but notice-
ably affect factor A (see (7)), which specifies the ampli-
tude of the 2k wave. Thus, wavenumber k, which the
wavelength of the fundamental wave depends on,
affects the amplitude of the second-order correction. It
seems as though the k wave and 2k wave interact with
each other. In the publications concerned with the prob-
lems of nonlinear waves (see, e.g., [15]), such an inter-
action is called the intrinsic nonlinear interaction of
waves. It is important that amplitude factor A in for-
mula (7) serves as a measure of the interaction intensity.

The wave with wavenumber 2k is not an indepen-
dent wave. Generally, its frequency and wavenumber
do not satisfy the dispersion relation, unlike the funda-
mental (k) wave in (1). It satisfies the dispersion rela-
tion only at k = k∗ . The phase velocity and amplitude of
the 2k wave are completely defined by the k wave; in
other words, the 2k wave is generated by the k wave and
does not represent an independent wave motion.

The peak value of amplitude A and, hence, the inten-
sity of nonlinear interaction depend on the viscosity of
the fluid and surface charge. It was shown [1] that A
monotonically grows with decreasing viscosity and
goes to infinity in the limit of perfect fluid. This situa-
tion corresponds to the degenerate case of three-mode
nonlinear resonance interaction between capillary and
gravitational waves [12, 13]. If the viscosity is other
than zero, the resonance peak height is finite [1–4].

0 0.5 1.0 k

4

8

A
1 2

Fig. 1. Dimensionless second-order amplitude correction A
to the wave profile vs. wavenumber k for W = 0 and Π1 =
(1) 0 and (2) –0.4.
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Fig. 2. Dimensionless second-order amplitude correction A to the wave profile vs. wavenumber k and surface charge density param-
eter W for different values of coefficient Π1, which characterizes the elasticity of the surfactant film.
In the general case, a nonlinear periodic capillary–
gravitational wave includes, along with the fundamen-
tal k wave and 2k correction, an infinite set of 3k, 4k, 5k,
etc., harmonics, which may interact with each other. We
restrict our analysis to the simplest case of interaction.

It was noted [2] that the interaction intensity is a
complex function of the surface charge density, the
square of which is proportional to parameter W. It is
known [3, 4] that, in the line

(9)

lying in the plane (k, W), the amplitude of the second-
order term in (1) has a minimum tending to zero as the
viscosity decreases. This means that, with such values
of k and W, the wave motion of a perfect fluid does not
contain the 2k wave; that is, the mechanism of excita-
tion of this wave and, hence, the mechanism of action
on it, fail in this situation. Then, solution (1) includes
only the k wave, and that part of the solution responsi-
ble for the 2k wave (with the amplitude depending only
on the properties of the fundamental wave) vanishes.
On the other hand [3], there always exists an indepen-
dent 2k wave of amplitude unrelated to the fundamental
k wave. This 2k wave is a solution to the homogeneous
part of the second-order problem and propagates with
its own phase velocity, which coincides with the veloc-

W k k 1–+( )/2,=
ity of the k wave only at k = k∗ . The frequency and
wavenumber of this independent 2k wave satisfy the
dispersion relation. In (1) and (7), the term responsible
for the independent 2k wave (unrelated to the funda-
mental term) is omitted, since only that part of the solu-
tion responsible for nonlinear interaction is of interest in
the context of our study. When k and W satisfy (9), the
amplitude of the independent 2k wave may be set arbi-
trarily even if the amplitude of the k wave is zero and the
waves with wavenumbers k and 2k propagate indepen-
dently. If k and W satisfy (9) in the case of a viscous fluid,
the intensity of nonlinear interaction is very weak.

Figure 2 shows the dependences A = A(k, W) for dif-
ferent values of parameter Π1. Line 1 in Fig. 1 corre-
sponds to the case when the plane W = const cuts the
surface at Π1 = 0. In Fig. 2, a resonance ridge above the
straight line k = k∗  that lies in the parameter plane
(k, W) is distinctly seen at Π1 = 0. The ridge has a
noticeable dip. The position of the dip (k = k∗  ≈ 0.70,

W = 0.5(k∗  + ) ≈ 1.06 is the point of intersection of
the straight line k = k∗  and curve (9) on the plane (k, W).
From Fig. 2, it is evident that, if a family of curves sim-
ilar to line 1 in Fig. 1 is constructed for different W, the
height of the resonance ridge on them will vary non-

k*
1–
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Fig. 3. Dimensionless second-order amplitude correction A to the wave profile vs. wavenumber k and dimensionless coefficient Π1,
which characterizes the elasticity of the surfactant film, for different values of surface charge density parameter W.
monotonically with increasing W. For W increasing
from zero to 1.06, it decreases nearly to zero, since the
position of the ridge in coordinates (k, W) approaches
curve (9) of minimal nonlinear interaction. As W grows
further, the ridge moves away from curve (9) and the
resonance peak increases, reflecting an increase in the
intensity of nonlinear interaction [3].

5. EFFECT OF SURFACTANT 
ON THE INTENSITY OF INTRINSIC NONLINEAR 

INTERACTION

To study the effect of a surfactant film on the inten-
sity of nonlinear interaction, we will first clear up the
dependence of amplitude factor A on various parame-
ters.

The family of surfaces in Fig. 2 shows the depen-
dence A = A(k, W) at different values of film elasticity
Π1 (it is known [16] that surfactants on the surface of a
liquid film diminish its surface tension, so that Π1 < 0
in this case. Therefore, the illustrative calculations were
performed for negative Π1.). As follows from Fig. 2, the
dependence A = A(k, W) changes in a complex manner
as the absolute value of Π1, |Π1|, increases. For a fixed
value of dimensionless viscosity ν = 0.01, the increase
in |Π1| to ≈0.15 drastically reduces the interaction inten-
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
sity at small surface charge densities (W < 1). The res-
onance ridge in this dependence constructed for |Π1| ≈
0.15 is hardly visible. A further increase in |Π1|
enhances the interaction intensity. For |Π1| ≈ 0.4, we get
nearly the same interaction pattern as for |Π1| = 0. A
closer look at these dependences shows that the elastic-
ity of the surfactant film has an effect not only on the
interaction intensity but also on the resonance wave-
number in (7). After the surfactant elasticity passes the
value |Π1| ≈ 0.15, a further rise in |Π1| brings about a
resonance ridge that originates (at W = 0) above the
point with k = k∗  ≈ 0.8 rather than with k = k∗  ≈ 0.7.
This is seen most distinctly in Fig. 1, where the depen-
dences A = A(k) are shown for Π1 = 0 (curve 1) and Π1 =
–0.4 (curve 2). The values of the other parameters are
the same as in Fig. 2. The shift of the resonance wave-
number depends on the viscosity and parameter W. For
ν = 0.05, Π1 = –0.4, and W = 0, the resonance value of
k is close to unity but the height of the resonance peak
falls to unity, which is much lower than the heights of
the peaks depicted in Fig. 1. An increase in W returns
the resonance value of the wavenumber to k∗  but now
at W ≈ 1. As W grows further, the position of the reso-
nance ridge over the parameter plane (k, W) remains
unchanged.
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Figure 3 shows a family of curves A = A(k, –Π1) for
different W. As in Fig. 2, cutting of the surface shown in
Fig. 3 by the plane Π1 = 0 gives line 1 in Fig. 1. Here,
the second variable in the argument plane is –Π1 instead
of W as in Fig. 2. In going from the family of curves in
Fig. 2 to that depicted in Fig. 3, parameters W and Π1

exchange places. However, the curves in Figs. 2 and 3
qualitatively behave in a similar way. At W = 0, when
only the elasticity of the film affects the intensity of
nonlinear interaction between the waves, the resonance
ridge is distinctly seen above the straight line k = k∗
lying in the parameter plane (k, –Π1). The ridge has a
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–è1
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0.3

0.1
0

8

0

A

Fig. 4. Dependence A = A(–Π1, W) for k = 1/  and Π2 =
D = 0.
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Fig. 5. Dependence A = A(–Π1) for k = 1/  and Π2 = D =
0. W = (1) 1, (2) 1.2, and (3) 0.8.

2

deep at –Π1 ≈ 0.18. Here, this is the value of the film
elasticity at which the interaction intensity is minimal.
The increase in W from zero to unity markedly
decreases the height of the resonance ridge throughout
its length, and its contours in Fig. 3 are smeared espe-
cially at small –Π1. For W > 1, the ridge becomes
sharply defined again. In all the curves shown in Fig. 3,
the line of the resonance bridge originates above the
point k = k∗ . Then, the line of the ridge runs over the
straight line k = k∗  lying in the plane (k, –Π1) until the
ridge reaches a minimum. Thereafter, the ridge deviates
slightly toward higher wavenumbers, k > k∗ . This devi-
ation is generally insignificant. It becomes appreciable
only for W > 1 and increases with increasing viscosity ν.

Our analysis shows that, like surface charge density
W, film elasticity Π1 substantially influences the inten-
sity of nonlinear interaction especially at near-reso-
nance k. To illustrate this, we plotted A against W and
−Π1 for k = k∗  (Fig. 4). From Fig. 4, it follows that the
dependence A = A(–Π1, W) at k = k∗  is very compli-
cated. Moreover, the position of the folds and local
extrema on this surface varies strongly with the viscos-
ity. Perhaps the most interesting feature of this surface
is that the least values of A are observed above the
straight line W = 1, in the vicinity of which the interac-
tion is minimal. However, these least values are other
than zero and considerably depend on the elasticity of
the surfactant film. Figure 5 demonstrates the curves
that are obtained when the surface shown in Fig. 4 is cut
by the planes W = 0.8, W = 1.0, and W = 1.2. For the
closely spaced values of W, the difference in the effect
of the surfactant on the intensity of nonlinear interac-
tion is fairly pronounced. This means that, in the exper-
iments, the effect of surfactants on the shape of nonlin-
ear waves with wavenumber k ≈ k∗  is expected to be
very sensitive to the surface charge.

CONCLUSIONS

A surfactant film considerably influences the pro-
files of nonlinear periodic capillary–gravitational
waves with near-resonance wavenumbers (the doubled
square of the resonance value equals unity divided by
the capillary constant squared). The dependence of the
intensity of nonlinear interaction between the harmon-
ics constituting a nonlinear capillary–gravitational
wave on the film elasticity is of nonmonotonic charac-
ter. There exists a value of the elasticity that minimizes
the interaction intensity. This value considerably
depends on the viscosity of the fluid. The presence of a
surfactant film increases the resonance wavenumber at
which the interaction between the waves is the highest.
The effect of a surfactant film on the intensity of non-
linear interaction depends on the surface charge in a
complicated manner.
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
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APPENDIX

Auxiliary Quantities and Relationships

(1) The unit vectors tangent and normal to the dis-
turbed free surface are given by

(2) The right-hand sides of the expressions that are
involved in the mathematical statement of the problem
in the second order of smallness are

n
∂xξ

1 ∂xξ( )2+
----------------------------ex–

1

1 ∂xξ( )2+
----------------------------ez;+=

t 1

1 ∂xξ( )2+
----------------------------ex

∂xξ

1 ∂xξ( )2+
----------------------------ez.+=
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(3) Coefficients Mj have the form

V2
1
2
---— U1

2( )– U1 — U1×( )× ;+=

f 12 ξ1∂zv 1 u1∂xξ1;–=

f 22 2ρνξ1∂zzv 1 ξ1∂z p1–
—Φ1( )2

8π
------------------

E0

4π
------ξ1∂zzΦ1+–=

– χ Γ 1∂xxξ1 2∂xξ1∂xΓ1+( );

f 32 = ρν 4∂zv 1∂xξ1 ξ1∂z ∂zu1 ∂xv 1+( ) βΓ1∂xΓ1–+( );

f 42 ξ1∂zΦ1;–=

f 52 ∂x u1Γ1( )– Γ0 ξ1∂xzu1
χ

ρν
------∂xΓ1∂xξ1+ 

  .–=
M j det

0 k– ik 0 R1 j

kE0

2π
--------- ρ S 4νk2+( )– 2ρνik 2 2k2 S

ν
---+ 

  0 R2 j

0 4iρνk2 ρν 4k2 S
ν
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0 2k2Π1– ikΠ1 2 2k2 S
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R10 2S; R20 ρg 4γk2+( ); R30– 0;= = =

R40 E0; R50– 0;= =

R11
1
2
---k=

× bk 1 ic k2 q2–( )
3k q+( ) 2S ν k q–( ) 3k q+( )+( )

------------------------------------------------------------------------------– icq– 
  ;

R21
1
4
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2
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 ;
and i is the imaginary unit.

(4) The dimensionless dispersion relation has the
form

R51
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4
---kΠ1

dkΠ1

ρν
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=

+ bk 2d k
2ic k q–( ) k q+( )2
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d
ω0

2 q k–( ) qS2+
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q k2 S
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F α β δ Λ, , ,( ) α β4+=
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where 

In general, this relation has two pairs of complex
conjugate roots. Without loss in generality, the roots
with negative imaginary parts may be omitted. This
means that we select the roots responsible for the waves
propagating in the positive direction of the Ox axis.
Among the two other roots, one corresponds to a capil-
lary–gravitational wave and the other to a wave associ-
ated with the presence of a surfactant film.

Let the two roots with positive imaginary parts be
found for given β = β∗ , Λ = Λ∗ , and δ = δ∗ . We put β =
β∗ , Λ = 0, and δ = δ∗  in the dimensional dispersion rela-
tion and will seek its root with a positive imaginary
part. Then, by continuously varying Λ from zero to Λ =
Λ∗ , we will trace how the root found varies (this proce-
dure is carried out numerically). For Λ = Λ∗ , this root
will become equal to one of those found initially and
will be taken as corresponding to the capillary–gravita-
tional wave.
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Abstract—The open systems, which contain a huge number of electrons supplied from outside along with the
energy, are described by a functional that takes into account the Lagrangians of all particles and is called the
integral Lagrangian. A nonextremal principle is formulated that postulates that the value of this functional
decreases as the system approaches the steady state. The principle is extended to the systems occurring near
thermodynamic equilibrium (where it is virtually equivalent to the principle of minimum energy dissipation),
as well as to the nonlinear systems, including those in which the motion of particles is described by equations
of classical mechanics. The applicability of the principle is demonstrated by the examples of a vacuum diode,
magnetron diode, and Gunn diode. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Self-organization of systems containing a large
number of elements starts from the appearance of stable
links between elements. To this end, the elements
should “feel” each other and mutually react, for exam-
ple, on the existing fields. The electron systems are very
attractive objects for investigations of the mechanisms
of self-organization because of the long-range action of
the Coulomb forces through which the electrons and
the related structures interact with each other. The
strong field domains in a Gunn diode [1, 2], the solitary
electronic waves in a magnetron diode [3–6], the regu-
lar space charge oscillations in Penning cells [7], and
the traveling waves in a plasma [8] are the manifesta-
tions of the collective behavior of charged particles
self-organized into stable macroscopic structures called
autowaves [9] under the action of applied constant elec-
tric and magnetic fields.

The self-organized electronic objects occur, as a
rule, at high voltage gradients for which the principle of
local equilibrium is not obeyed. In order to analyze the
processes in vacuum devices, equations of electron
motion are used that contain no dissipative terms in an
explicit form. The particle energy in these devices is
dissipated at the system boundaries, that is, at the sur-
face of bombarded electrodes. The above properties
radically distinguish electronic devices (especially vac-
uum ones) from dissipative systems, which are consid-
ered usually in nonequilibrium thermodynamics and
synergetics [10–15]. The study of the mechanisms of
particles’ self-organization in such essentially nonequi-
librium electronic systems requires a new approach,
which is developed in this paper.
1063-7842/04/4911- $26.00 © 21431
1. THE PRINCIPLE OF INTEGRAL LAGRANGIAN 
MINIMIZATION

Systems without electron drag. Let us consider an
open system representing an electron vacuum device to
the cathode and anode of which a constant voltage is
applied from an external source. The cathode supplies
matter (electrons) to the system. Accelerated by the
external field, the particles travel to the anode acquiring
energy from outside, (i.e., from the power supply).
There are so many electrons that the strength of the self-
consistent electric field they generate is comparable
with the applied field strength. The establishment of the
steady state, which proceeds with participation of the
self-consistent fields, will be called the self-organiza-
tion of particles. The motion of each electron will be
described by the following equation:

where m is the mass of the particle,  is the compo-
nent of acceleration, Fji is the component of a regular
force acting on the particular electron at a given
moment of time (j is the number of a particle), and δFji

is the fluctuation force that takes into account individ-
ual interactions of the given electron with other parti-
cles.

The force Fj contains a potential force related to the
existence of the self-consistent electric field, which is
calculated using Poisson’s equation. Thus, the cooper-
ative, that is, integral action on the electron of all charge
particles occurring in the volume V of the device, is
taken into account. The random force δFj, which is
small and only weakly affects the electron motion, is
ignored in vacuum electronics [16]. The particles avoid
collisions due to the long-range forces of mutual repul-
sion. A prominent example is offered by the motion of
two opposite electron flows in a reflex klystron. For this

mẋ̇ ji F ji δF ji,+=

ẋ̇ ji
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reason, a statistical description of the electron pro-
cesses is based on the Vlasov equation, whereas at
higher fields, the particles’ motion equations are usu-
ally written in terms of the Lagrangean variables [16].

In a self-organizing system consisting of a large
number of particles, the individual interactions cannot
be ignored completely, since just these interactions play
a leading role in the establishment of short-range corre-
lations and in the formation of a microstructure of the
collective formations [13]. However, since the role of
short-range interactions (due to inequality |δFj| ! |Fj|)
is correcting, rather than organizing, the electron trajec-
tories, which should be corrected, are described with-
out allowance for the random forces. This means that,
in the course of particle self-organization at the first
stages, we can use the following simplified equations:

(1)

The forces of individual interactions δFj should be
taken into account at the latest stages of the establish-
ment of the steady state (this will be demonstrated
below in the case of a magnetron diode). Thus, the
behavior of an electronic device is described by a sys-
tem of equations including Eq. (1) of particle motion,
Poisson’s equation, and the continuity equation.

Owing to the limited size of the device and the con-
stant voltage Ua > 0 applied to the anode, the motion of
electrons (at least of a considerable part of them),
although described by time-reversible equations (1), is
in fact irreversible: a jth electron emitted from the cath-
ode at the moment t1j, leaves the device forever after a
lapse of time τj = t2j – t1j, where t2j is the time of electron
impact on the anode.

Near the steady regime, the self-consistent field can
be considered as quasi-static and the number of parti-
cles N(t) counted at any instant of time t ∈  〈τ〉  as con-
stant in the coordinate system moving synchronously
with the autowave. Here, 〈τ〉  = /N is the average
particle lifetime in the device. The velocity vector of
each electron and the value of the potential energy Wpj

at each point of its path are single-valued functions of
the coordinates of this point. Under these conditions,
the Lagrangian for each particle Lj(xij, ) =

m  – Wpj does not depend explicitly on time.
Let us sum the Lagrangians of all particles occurring in
the volume V of the device and introduce the functional

(2)

which will be called below the integral Lagrangian of
the system. Here, n(t) is the particle number density in
the elemental volume dV and L(t) is the sum of
Lagrangians of all particles occurring in this volume.
The values n(t), L(t), and N(t) are taken at the same

mẋ̇ ji F ji.=

τ jj∑

ẋij

0.5
i∑ ẋij

2

Λ t( ) L j t( )/N t( )
j

∑ L t( )n t( ) V / n t( ) V ,d

V

∫d

V

∫= =
instant of time t ∈  〈τ〉 . In the steady regime, N(t) and
Λ(t) take the stationary values N and Λ, respectively.

The experience gained in work with electronic
devices suggests that, after a perturbation, the system
always comes to the same steady state and does this
regularly, rather than accidentally. Therefore, this spe-
cific steady state is energetically preferred to the other
states. The energy parameters of the system are charac-
terized by the functional Λ. Let us consider qualita-
tively the dependence of this quantity on the number N
of particles.

At a given anode voltage Ua > 0 and near-vacuum
(low pressure) conditions, the potentials in the inter-
electrode space and the corresponding particle veloci-
ties reach the highest values, for which the Lagrangian
Λ approaches its upper limit. As the number of elec-
trons increases, the value of Λ can only decrease, that
is, in real processes we have ∂Λ/∂N < 0. Indeed, an
increase in the number N of particles possessing a neg-
ative charge is accompanied by their accumulation in a
low-potential region, where the particle velocities are
small and the residence time is long. Therefore, it
would be reasonable to assume that, when the number
of electrons N increases, the system always reorganizes
in such a way that the integral Lagrangian reaches its
minimal (as a rule, nonextremal) value

(3)

In this expression, wk = Wk/N = ndV/ dV

and wp = Wp/N = ndV/ dV take into account

all forms of the kinetic and potential energy in the sys-
tem; WkV and WpV are the kinetic energy of the particles
and the potential energy of the system, respectively, in
the volume element dV. The steady-state regime is
established when, at given flows of energy and matter
which connect the system with the environment, a fur-
ther decrease of Lagrangian Λ becomes impossible.
The evolution of the excited state is described by the
expression

(4)

where the sign of equality is fulfilled as soon as value
(3) is reached.

In the moving coordinate system, the time-indepen-
dent integral Hamiltonian H = const, representing the
conservation of energy in the device space, is also a
function of the steady state. In simple systems, the
Hamiltonian H = (wk + wp) contains the same functions
wk and wp as those entering into the Lagrangian Λ. In
such systems, to within insignificant constant values,
condition (3) takes the form

(5)

The obtained result discloses the teleological mean-
ing of the nonextremal principle of the integral
Lagrangian minimization (reduction): the system of

Λmin wk wp–( )min.=

WkVV∫ n
V∫

WpVV∫ n
V∫

dΛ t( )/dt 0,≤

Λmin wk( )min wp–( )min.= =
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material particles always tends to a steady state with
minimum potential energy. Since the work A = –wp
should be performed in order to form the system of par-
ticles, an alternative formulation is also valid: for the
given boundary conditions, a structure is realized,
which requires minimum work to be spent for its for-
mation.

Lagrangian Λ is a scalar. The minimum of the scalar
value does not depend on the choice of the coordinate
system [17]; therefore, the coordinates xij of the indi-
vidual Lagrangians Lj(xij, ) can be considered as the
generalized coordinates.

Systems with strong electron drag. Let us consider
another limiting case, when the electron travels in the
field E(x) in a space containing a large number of neu-
tral atoms. Assuming that the scattering event is very
short as compared to the average time τc between colli-
sions, we can write the equation for the vector u of
average velocity [18] as

where e is the electron charge and ν is the effective fre-
quency of collisions.Integrating this equation, we
obtain the value ud = eE/mν for the average velocity,
which is defined as a drift velocity of the particle [18].

Qualitatively the electron motion can be explained
as follows [18]. Immediately after every effective colli-
sion, the electron moves in a random direction; there-
fore, the vector of average velocity is u = 0. Up to the
next collision, the electron moving in the field gains a
directional velocity ud and its kinetic energy increases

by the value eEud/ν = m  = –eUd, where Ud =

− (x)dx is the potential difference across the elec-

tron mean free path d in the direction parallel to the
electric field vector. Upon the next collision, this new
portion of energy is dissipated as well, increasing the
electron temperature in the system. Between collisions,
the electron moves in the accelerating field and its aver-

aged Lagrangian has the form L = m  – eUξ +

0.5m . Here, 0.5m  is the energy of chaotic

motion and m  = –eUξ is the mean energy gained by
the particle on the passage through the potential differ-

ence Uξ = – (x)dx, where 0 ≤ ξ ≤ d. The inclusion of

all N particles present in the system leads to the
Lagrangian

Expressing the kinetic energy of the directional

electron motion as m〈 〉  = αm , where the constant
α < 1, and assuming that the mean chaos energy

0.5m〈 〉  is stationary, we obtain (to within insignifi-

ẋij

mu̇ eE muν ,–=

ud
2

E
0

d∫

uξ
2

uch
2 uch

2

uξ
2

E
0

ξ∫

Λ 2m uξ
2〈 〉 0.5m uch

2〈 〉 .+=

uξ
2 ud

2

uch
2

TECHNICAL PHYSICS      Vol. 49      No. 11      2004
cant constant values)

(6)

This formula has a simple physical meaning: with-
out distant interaction with a neutral particle, the elec-
tron cannot avoid collision with this particle. Under
such conditions, minimization of the Lagrangian is pos-
sible only through a decrease in the drift velocity. Equa-
tion (6) is also applicable as the first approximation to
solid-state devices in a weak field, where the primary
mechanism of energy dissipation is the scattering of
carriers on acoustic phonons. In this case, m is the
effective mass of charge carriers.

The essentially heuristic principle of Lagrangian
minimization needs verification. Since Λ in the steady
regime reaches a steady rather than extremal value, the
usual variational methods are inapplicable and experi-
mental data should be invoked. To this end, we will turn
to well-known electronic devices whose theory per-
fectly fits to the experiment, namely, the vacuum diode
(VD), magnetron diode (MD), and Gunn diode (GD).
We will check the accuracy of realization of the princi-
ple of Λ minimization in various steady states, simulta-
neously taking into account the possible mechanisms of
the self-organization of particles. The VD is interesting
as a system in which all possible states occur on the
thermodynamic branch. The VD approaches to thermo-
dynamically equilibrium state when this brunch origi-
nates through a decrease in the emission and the anodic
voltage Ua = 0. The MD is also of interest because its
steady states are separated from the thermodynamic
brunch by the point of instability. The GD is interesting
as a system whose states can occur both on the thermo-
dynamic branch and beyond, similarly to the case of an
MD. Moreover, unlike the VD and MD, a GD is a solid-
state rather than vacuum device.

2. VACUUM DIODE

Lagrangian. Let us introduce the cylindrical sys-
tem of coordinates (r, ϕ, z) and consider a VD in which
the distance between the anode and cathode is small as
compared to the longitudinal size l of the diode along the
z axis. The Lagrangian for an individual electron leaving
the cathode with thermal velocity ut has the form

(7)

where U(r) is the potential at the point where the parti-
cle is situated.

The kinetic energy

(8)

acquired by the electron under the influence of the
potential determines the radial velocity (r). In the case
of strong and uniform emission, azimuthally symmetric
electron cloud is formed, which is characterized by a
steady distribution of the particle concentration n(r)

Λmin m ud
2( )min.=

L 0.5mṙ2 eU r( )– 0.5mut
2,+=

0.5mṙ2 r( ) eU r( )–=

ṙ
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and the corresponding space charge potential Usc(r) ≤ 0.
Let us represent the potential U(r) in the diode as

(9)

where

is the potential distribution in vacuum.
Substituting (9) into (7) and summing Lagrangians

of all N electrons occurring in the VD volume V =

πl(  – ), we obtain (after normalization to N)

(10)

In this expression, wN = WN/N, where WN =

−2πl (r)Uv(r)rdr > 0 is the energy supplied to the

system from outside. According to the mean value the-
orem, wN = –eβUa, where 0 < β < 1. The value wsc =

Wsc/N, where Wsc = 2πle (r)Usc(r)rdr > 0, is the

potential energy of the space charge. The term wkr =

Wkr/N, where Wkr = πlm (r) rdr, is the kinetic

energy of electrons moving relative to the steady space
charge. The term kTc takes into account the electron
thermal energy: Tc is the cathode temperature and k is
the Boltzmann constant. We will ignore the thermal
energy for the anode voltage obeying the condition
Ua @ –kTc/e.

Steady state. In view of (8), Lagrangian (10) can be
reduced to form (5): Λmin = 2(wkr)min = 2(wN – wsc)min.
Thus, we obtain the steady state condition

(11)

It follows from Eqs. (8), (9), and (11) that the value
wkr will be the smaller the higher the fraction of parti-
cles (of their total number N) localized in the region of
small values of velocity (r), which is determined by
the potential U(r), is. Thus, all states of a VD are char-
acterized by the tendency of particles to reach the rest
state at the bottom of the potential well near the cath-

U r( ) Uv r( ) Usc r( ),+=

Uv r( ) Ua

r/rcln
ra/rcln

---------------- 0≥=

ra
2 rc

2

Λ wkr wN wsc–( ) kTc.+ +=

n
rc

ra∫

n
rc

ra∫

n
rc

ra∫ ṙ2

wkr( )min wN wsc–( )min.=

ṙ

(a) (b)

rc rb

ra

Fig. 1. Trajectories of (a) an individual electron in vacuum
and (b) electrons in Brillouin’s “bushing.”
ode. Here, their concentration causes the most pro-
nounced decrease of wN – wsc. Considering the structure
of the expressions wN = WN/N, wsc = Wsc/N, and wkr =
Wkr/N, one can see that, as the number of particles N
increases especially rapidly (in a first approximation in
proportion to N), wsc increases, whereas wN and wkr
depend weakly on N. Therefore, the minimum of
Lagrangian (10) is reached as the following condition is
fulfilled:

(12)

3. MAGNETRON DIODE

Lagrangian. Let us place an MD into a homoge-
neous magnetic field B directed along the z axis. As B
increases starting from zero, the electron distribution in
the MD will be azimuthally uniform unless a critical
value of the magnetic field Bcr is reached, at which the
electron returns to the cathode after nearly touching the
anode. The value B = Bcr corresponds to a bifurcation
point. We will be interested in the regimes with the val-
ues B > Bcr for which the apex of the trajectory of an
electron starting from the cathode into vacuum is closer
to the cathode than to the anode (Fig. 1a).

On the basis of the additive properties of Λ, we can
make preliminary conclusions on the behavior of the
system of particles through consideration of the
Lagrange function for an individual electron emitted
from the cathode with zero initial velocity,

(13)

Here, ω = –eB/m is the cyclotron frequency and (r) =

ω/2(1 – /r2) is the azimuthal velocity of the particle
(for an azimuthally-symmetrical field distribution
(∂U/∂ϕ = 0); this velocity is independent of the poten-
tial U(r) [19]). With regard to Hamiltonian H =

m/2(  + r2  + ) + eU = 0, the Lagrangian takes the

form L = –2eU – m/4r2ω2(1 – /r2), from which it fol-
lows that the L value decreases as r increases. There-
fore, in the course of self-organization, the electrons
will tend to reach the maximum value of r = ra. Indeed,
the experiment [4] showed that, starting from very
small emission currents (five to six orders of magnitude
lower than the nominal ones), stable electron structures
(called solitary waves) are formed in an MD [6, 20], in
which a regular motion around the cathode is character-
ized by stable oscillations and current flow to the
anode.

Let us consider a regime with a single wave (Fig. 2),
which propagates around the cathode at a constant
angular velocity Ω ! ω. In the coordinate system
(r, ψ = ϕ – Ωt, z) rotating together with the wave,

wsc wsc( )max.=

L m/2 ṙ2 r2ϕ̇2
ż2+ +( ) eU– m/2r2ωϕ̇.–=

ϕ̇
rc

2

ṙ2 ϕ̇2
ż2

rk
2
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Lagrange function (13) takes the form [20]

where the terms in the square brackets represent various
forms of the potential energy, including those related to
the velocity-dependent forces. Summing the
Lagrangians of all N electrons that occurred in the vol-

ume V =  = drdψdz and normalizing

the sum to the total number of particles, we obtain the
functional

(14)

Here, the term wkr = (  + r2  + )dV in the

right-hand side of this equation represents the averaged
kinetic energy of the relative motion of particles; the

energies wΩ = r2Ω(Ω – ω)dV and wψ =

r2 (2Ω – ω)dV are related to the generalized

potentials determining the velocity-dependent forces;
and n = n(r, ψ, z) is the particle number density. The
physical meaning of the rest terms is the same as in
Eq. (10).

Self-organization. Comparing Eqs. (14) and (3),
we obtain wk = wkr, –wp = wN – wsc + wΩ + wψ. Since
both wkr > 0 and –wp > 0, the steady-state condition
takes the form

(15)

Among the energies entering into this equation, the
value of wsc increases especially rapidly with the num-
ber of particles N. Therefore, in an MD, as well as in a
VD, the minimum of Λ is reached as wsc = (wsc)max. This
condition is fulfilled by the hypothesis of Brillouin
[19], according to which the space charge will be accu-
mulated near the cathode as the emission increases and
the potential U(r) = Uv(r) + Usc(r) will be reduced
unless the kinetic energy wkr reaches its minimum
value. In this case, an electron “bushing” is formed
around the cathode, where particles moving along the
circular trajectories (Fig. 1b) can stay for a long time.
Computer simulations [21, 22] and experiment [4]
(indirectly) give an indication of the layered (i.e.,
ordered) motion of the particles. The transition to such
motion [23] under the action of collision forces δFj

minimizes the effect of these forces. The electron-elec-
tron collisions changing the particle momenta [18]
would result in an increase of the size of electron “bush-
ing” and, accordingly, in a decrease in the wsc value,
that is, in an increase of Λ, which is in conflict with the
requirement that ∂Λ/∂N < 0. During the layered motion,
the particles do not collide and, hence, their concentra-

L 0.5m ṙ2 r2ψ̇2
ż2+ +( )=

– eU 0.5mr2Ω Ω ω–( )– 0.5mr2ψ̇ 2Ω ω–( )–[ ] ,

Vd
V∫ r

l/2–

l/2∫0

2π∫rc

ra∫

Λ wkr wN wsc– wΩ wψ+ +( ).+=

m
2N
------- n

V∫ ṙ2 ψ̇2
ż2

m
2N
------- n

V∫
m

2N
------- n

V∫ ψ̇

Λmin wkr( )min wN wsc– wΩ wψ+ +( )min.+=
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tion and energy wsc can reach the maximum values,
whereas the Lagrangian can reach extremely low val-
ues.

However, as was indicated above, the electrons in
the MD should reach the anode, which is not evident
from Brillouin’s solution. It was established later [21,
16] that the electron “bushing” is unstable and the
development of instability results in the appearance of
solitary waves. Figure 2 shows the MD cross section in
the low-emission mode [6], which is sufficient for the
formation of only one wave. The appearance of this
wave does not violate the condition of the wsc maximum
in the rest part of the “bushing.” However, the electron
number density in the wave is extremely high as well.
The structure of solitary waves determined [6] based on
this assumption showed that the dynamic parameters of
these waves are in a good agreement with the results of
measurements.

Evolution. The electrons emitted from the frontal
part of the wave (Fig. 2) enter its azimuthal field and
take a part of the wave energy that goes on the bom-
bardment of the cathode. In formula (14), this energy
enters into the term wkr. The cathode temperature
increases as a result of bombardment [24] and, hence,
the wave controls in this way the cathode emission and
its own development. Experiment [4] and theory [6]
showed that the number of both waves and electrons in
these waves are increased with the growing emission.
Since, as N increases, wsc changes faster than any other
term in (14) (thus determining the variation of the
Lagrangian as a whole), evolution principle (4) for a
system capable of controlling the amount of supplied
matter can be expressed in another (equivalent) way (in

rc
rb

ra

B

Ω

Fig. 2. Space charge structure in an MD at low electron
emission in a rotating coordinate system. The lengths and
directions of arrows characterize particle velocities. The
dashed line denotes the separatrix, on which the velocities
of electrons are equal to zero; B is the trajectory of the elec-
tron bombarding the cathode.



1436 USYCHENKO
the normalized and nonnormalized forms, respec-
tively):

(16)

If no measures are provided in the MD to limit the
cathode bombardment, then the continuous growth of
the number of emitted electrons is accompanied by the
increase on the potential energy Wsc of the waves,
which will eventually result in their decay [6]. The MD
passes to the chaotic state [4, 6, 25].

4. GUNN DIODE

In deriving formula (6), we assumed implicitly that
the potential difference over the electron mean free path
is known. This value can be readily determined, pro-
vided that we know the voltage–velocity characteristic
of electrons and the voltage applied to a GD. However,
we will use another way that unravels more comprehen-
sively the synergetic content of the phenomena under
consideration.

The formation of a high-field domain in a GD is
related to the instability [2, 26] stemming from the tran-
sition of electrons accelerated by the external field from
the bottom to upper valley, whereby a region with neg-
ative steepness appears in the dependence of electron
drift velocity ud(E) on the electric field (see Fig. 3 [27]).
If the intervalley transition did not take place, that is,
the energy dissipation characteristics were the same as
in the low field, then the drift velocity of the particles
would continue to depend linearly on the field E, as is
shown by the dash-and-dot line in Fig. 3. The total

dwsc/dt 0, dW sc/dt 0.≥ ≥

1

2 4 6 8
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u d
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Fig. 3. Electron velocity in a GD as a function of the applied
electric field.
energy WN acquired by N electrons within a time τc
between two collisions with the lattice would be equal
to the mean drift kinetic energy:

(17)

Here, l and s are the length of diode and its cross-sec-
tion area, respectively; n0 and µ1 are the low-field elec-
tron concentration and mobility, respectively; Ea = Ua/l
is the absolute value of the average field in the diode; Ua
is the anode voltage; and τa = l/uda is the drift time of
particles; τc = –(m1µ1)/e. The rest of the designations
follow from Fig. 3. Considering that, on transition to
the upper valley, a portion of the electron energy is
spent for the domain formation without dissipation in
the lattice and assuming the domain voltage to be Ud =
l(Ea – Er), we will find the potential energy of the
domain to be

(18)

The domain travels over the diode at the velocity
udr < uda. The total value of the drift kinetic energy of all
particles in the diode is

(19)

This analysis of the domain mode in a GD is differ-
ent from that described in the literature [2, 26] and thus
should be verified. To this end, we compare the energy

Wsc and the energy 0.5Cd  stored in the equivalent
capacity Cd of the domain and determine the domain
capacity:

Calculations using this formula, as well as formulas
from [2, 26] and those obtained from other physical
prerequisites, gave the values of Cd differing less than
by a factor of 1.5. Such a correspondence can be con-
sidered as quite satisfactory.

Self-organization. The number N of electrons in a
GD is constant, and the domain formation is only pos-
sible if these electrons are redistributed over the diode.
Let us introduce the quantity N1, which is the number
of electrons in the domain. The kinetic energy

of the collective structure (domain), as well as its total
energy,

are dissipated neither during the drift nor in the course
of domain “loss,” since, as soon as one domain disap-
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pears at the anode, another energetically equivalent
domain is generated at the cathode [2]. Equation (17)
takes the form

(20)

where

(21)

is the drift energy of those N – N1 electrons that occur
outside the domain. Just this energy transforms into the
thermal energy, as the electrons are scattered in the lat-
tice. This energy also determines the value of functional
(6), for which we obtain the following expression, on
the basis of (5) and (20):

(22)

The value of  decreases as the number of parti-
cles N1 in the domain increases, that is, as wsc grows.
Thus, in a GD, as well as in a VD and MD, the mini-
mum of Λ is reached when wsc = (wsc)max.

5. COMPARISON WITH THE PRINCIPLES 
OF NONEQUILIBRIUM THERMODYNAMICS

In the case of a small deviation from the thermody-
namic equilibrium, when the Onsager reciprocity rela-
tions are valid, the steady states of the open system
obeying the local equilibrium conditions [10, 11] are
characterized by the extremal principle of minimal
entropy production. Gyarmati [28] reduced this princi-
ple to the more general variational principle of the ther-
modynamics of irreversible processes, namely, to the
principle of minimum energy dissipation, which, in
turn, was empirically generalized by Moiseev [29]. The
practical regimes of the systems under consideration
are far from thermodynamic equilibrium. Therefore, in
order to compare the principle of minimization of the
Lagrangian Λ with the principle of minimum energy
dissipation, we will treat the latter principle in the
wording extended by Moiseev [29], according to whom
“if a set of states conforming to the laws of conserva-
tion and relationships imposed onto the system is
admissible, rather than a single state, then a state will be
realized that corresponds to a minimum energy dissipa-
tion.” We assume that this state is determined by the fol-
lowing condition:

(23)

where wdis = Wdis/N is the dissipation energy, which was
not found previously, since it does not enter explicitly
into the Lagrangian.

In order to solve the problem, we will turn to the
energy balance equations for each system and deter-
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mine an energy related to the term wdis and, hence,
entering into the integral Lagrangian. The control
parameter is the number of particles N.

Vacuum diode. The Hamiltonian for one electron
leaving the cathode with the thermal velocity ut has the
form

Summing the Hamiltonians of all N electrons occur-
ring in the VD volume and taking into account relation
(9), we obtain the energy balance equation

All values in this equation are determined in (10).
Let the intensity of electron emission be such that each
electron reaches the anode. N particles occurring in the
interelectrode space and traveling to the cathode pos-
sess the total kinetic energy Wkr and carry the current Ia,
thus dissipating the power UaIa on the anode. During
their life time 〈τ〉  = (ra – rc)/〈 〉 , where 〈 〉  is the aver-
age particle velocity, N electrons will dissipate the
energy

(24)

Since Wa and Wkr are two forms of the kinetic energy
of the same electrons, we can introduce the relationship

(25)

where θ = 〈 〉 /  ≤ 1 and  is the electron velocity at
the moment of impact on the anode. The coefficient θ
characterizes inhomogeneity of the spatial distribution
of the kinetic energy of the particles. The above equa-
tions yield

(26)

Thus, the dissipated energy wdis = wa in the
Lagrangian of a VD is taken into account implicitly by
the term wkr. Let us find the quantitative relationships
between wkr and wdis = wa in various regimes. In order
to simplify the calculations, we will consider a quasi-
flat VD, in which (ra – rc)/rc ! 1.

Close to the thermodynamic equilibrium, the state
of the VD is characterized by low emission (Wsc ≅  0)
and by the value Ua ! –KTc/e. The electrons mainly
possess velocity ut, and it follows from (25), (26) that

θ = 〈 〉 /  = 1, wkr = wdis = kTc. We can see from these
relations that, near the thermodynamic equilibrium, the
principle of Lagrangian minimization and the principle
of minimal dissipation of energy give the same results.

Let us follow the evolution of the steady state with
increasing the number N of particles in the strongly
nonequilibrium regimes determined by the values Ua =

H 0.5mṙ2 eU+ 0.5mut
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const @ –kTc/e. For a regime with limited emission,
when each electron reaches the anode, it is easy to

obtain 〈 〉  = 0.5 , θ = 0.5 and (wkr)min = 0.5(wdis)min,
(pkr)min = 0.5(pdis)min. As the electron emission increases
infinitely, a near-cathode potential minimum arises
[30, 31]. The majority of electrons unable to overcome
this region return to the cathode. In this case, wsc
increases, wkr decreases (according to (11)), the anode
current tends to saturation, and θ = wkr/wa monotoni-
cally decreases. Thus, in the entire thermodynamic
branch, the principle of minimum energy dissipation
and the principle of minimization of Lagrangian Λ
involve proportional values, (pdis)min ∝  (pkr)min, but
since (pkr)min ≤ (pdis)min, the principle of Lagrangian
minimization poses more rigid constraints on the sys-
tem. The principle of Λ minimization is more informa-
tive, since it not only explains the reasons for the
decrease of wkr and pkr caused by the space charge
increase, but also points to the diode area where the
space charge is accumulated.

Magnetron diode. In the coordinate system rotat-
ing with the angular velocity Ω of the wave, the Hamil-
tonian of a single electron leaving the cathode with zero
velocity has the form [20] (we neglect the thermal
energy of the particles)

(27)

Summing the Hamiltonians of all particles in the
MD volume, we obtain the equation of the integral
energy balance,

(28)

The terms Wks1 = 0.5m (r2 – )ωΩdV and

Wks2 = –0.5m r2Ω2dV in the right-hand side reflect

the work performed by the collective structure (wave)
to overcome back electromotive and centrifugal forces.
Being kinetic in form, these energies are related to the
generalized potentials by which the velocity-dependent
forces are expressed. The physical meaning of other
terms was determined above.

Using Hamiltonian (27) we can determine the
energy dissipated on the anode during the lifetime 〈τ〉  =
–eN/Ia by all N electrons occurring in the MD volume:

(29)

Here , ra , and  are the particle velocity compo-
nents at the moment of impact on the anode;

(30)
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is the coefficient [6] reflecting the fact that the energy
Wks1 + Wks2 of the collective forms of motion is not dis-
sipated. Similarly to the case of a VD, the energy of the
relative particle motion Wkr can be expressed in terms
of the energy dissipated on the anode as

Here, the coefficient

characterizes the inhomogeneity of the distribution of
the kinetic energy of the relative particle motion and the
angular brackets denote the averaging over all elec-
trons. Thus, the dissipated energy wdis = wa is implicitly
contained in Lagrangian (15) in the term wkr. The
requirement of a minimum of the value wdis = wa

imposed by the principle of minimum energy dissipa-
tion coincides with the condition of wkr minimization in
formula (15). However, since wkr < wa, the principle of
Lagrangian minimization imposes more rigid con-
straints.

Gunn diode. The energy in a GD is dissipated only
by N – N1 electrons occurring outside the domain. The
energy of these particles during their drift time τr = l/ur

is determined by the relationship

(31)

The particle velocity distribution is close to the
Maxwell distribution; therefore, θ ≅  1 and practically
the entire energy Wkr converts into the thermal energy
Wa. In the normalized form, the outlined effect reduces
to the relations

(32)

where

is the coefficient taking into account (similar to the case
of an MD, see (29)) that the energy Wsc + Wks of the
domain is not dissipated.

Thus, the energy losses in the GD, as well as in the

VD and MD, is taken into account by the energy  ∝
wa = wdis of particles traveling relative to a collective

structure (domain). Since wa ∝   ∝  , then the prin-
ciple of minimum energy dissipation and the principle
of minimization of Lagrangian Λ as applied to a GD
give essentially the same result. However, the principle
of Λ minimization is more informative, since formula
(22) explains the mechanism of reduction of the drift
velocity.

Wkr θζeNUa– θWa θWdis.= = =

θ ṙ2 r2ψ̇2
ż2+ +〈 〉

ṙa
2 ra

2ψ̇a
2

ża
2+ +〈 〉

-------------------------------------- 1<=

Wkr Wkr
↓ τ r

τc

---- eNUa 1
N1

N
------– 

  Er

Ea

-----.–= =

wkr wa wdis ζeUa,–= = =

ζ 1
N1

N
------– 

  Er

Ea

-----=

wkr
↓

wkr
↓ ud

2
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In a weak field, a GD is a resistor in which θ ≅  1,
ζ = 1, and the entire energy –eUa acquired from the
power supply by each particle during drift converts into
heat. The weak-field mode is explained essentially sim-
ilarly by the principle of minimum energy dissipation
and the principle of Lagrangian minimization.

Thus, the analysis of various systems showed that,
near thermodynamic equilibrium, the principle of
Lagrangian minimization is practically equivalent to
the principle of minimum energy dissipation. As soon
as the degree of nonequilibrium increases, the principle
of Λ minimization becomes more informative because
the integral Lagrangian takes into account all forms of
the system energy, rather than only one.

In the general form, the law of conservation of
energy in the system takes the form

(33)

where wΣ = wsc +  is the energy of the collective
form.

Let us write formula (33) in a different way, in par-
ticular, as wkr = wN – wΣ. Now, the right-hand side con-
tains those forms of the energy which are not dissi-
pated, but conserved due to the energy wkr of particles
that take part in the irreversible process of the matter
exchange with the environment. The requirement of
decrease of the energy wkr, which follows from the prin-
ciple of Lagrangian Λ minimization, means that a struc-
ture will be formed whose existence requires the energy
wkr.

CONCLUDING REMARKS

Analysis of particular systems showed that the ther-
modynamic principles of minimum energy dissipation
and minimum entropy production qualitatively cor-
rectly account for the role of dissipation in the forma-
tion of steady states of the systems in which the princi-
ple of local equilibrium is not obeyed. This is explained
by the fact that the energy wΣ of the collective structure
is not dissipated. Only the energy wkr of the particles
traveling relative to the structure, which exists in all
open systems and is basic in the systems whose states
occur on the thermodynamic branch, converts into heat.
In the general case, the requirement of minimization of
the energy wkr imposes more rigid constraints on the
self-organizing system than does the requirement of the
minimum of wdis.

As the number of particles in the system increases,
the potential energy Wsc of the structure grows most
rapidly. If there are no restrictions on the number of
particles coming from outside, the evolution of the sys-
tem can be described by inequalities (16): dwsc/dt ≥ 0,
dWsc/dt ≥ 0. The trend to increase in Wsc may be called
the principle of natural evolution of open systems. The
action of this principle may explain, for example, the

wN wΣ wkr,+=

wksii∑
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
concentration of matter in stars and galaxies, as well as
the large variety of animate beings, which went the way
in their development from prokaryotes to multicellular
organisms of much greater size.

The principle of Lagrangian minimization claims
that, among all potential systems which can be formed
in an open system fed from the outside by energy and
matter flows, nature will realize the structure character-
ized by a minimum value of the integral Lagrangian.
The rejection of other possible structures and selection
of only one structure satisfying the principle indicated,
results in symmetry violation in nature and leads to the
notions of “optimum” structure formation and its pur-
poseful evolution.
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Abstract—The problem of temperature jump that is induced by a heat flux toward a metal surface is solved
with regard to electron energy accommodation on the surface. The temperature profile is constructed for differ-
ent ratios of the electron mean free path to the Debye length. © 2004 MAIK “Nauka/Interperiodica”.
The temperature distribution near a metal surface is
a key issue in the problems of metal–environment heat
exchange at low temperatures. This issue is also of
great importance for small-size metallic objects (the
case typical of microelectronics), where processes tak-
ing place at the surface have a fundamental effect on the
temperature distribution.

Consider a planar metal–environment interface and
assume that a heat flux in the metal is directed toward
(or opposite to) the surface. Let the Cartesian coordi-
nate system be centered on the surface and its x axis be
directed into the metal normally to the surface. Then, at
distances from the surface that are much greater than
electron mean free path l, the heat flux can be repre-
sented by constant temperature gradient GT = dT/dx
(the metal is assumed to be isotropic). The temperature
gradient is assumed to be flat in the sense that the rela-
tive temperature drop over length l is much smaller than
unity.

The layer of thickness λ that is adjacent to the inter-
face will be referred to as the Knudsen layer, as is cus-
tomary in kinetic considerations. Outside the Knudsen
layer, the temperature profile has the form T = T0 + GTx
for x > 0 and T = T0 + GTx for x < 0. The value of ∆T =
T0 – Ts (where Ts is the surface temperature) will be
called the temperature jump. If the gradient is flat, the
temperature jump is proportional to it:

(1)

Coefficient CT, which is independent of GT, is called
the temperature jump coefficient. It is found by solving
the kinetic equation in the Knudsen layer [1]. Usually,
researchers deal with dimensionless temperature jump
εT = CTlgT, where gT = GT/Ts.

Note that the temperature jump significantly
depends on the type of interaction between electrons
and metal the surface. Taking account of this fact
requires that the boundary conditions be modified so
that they include the electron energy accommodation at

∆T CTlGT .=
1063-7842/04/4911- $26.00 © 21441
the interface. To this end, an appropriate accommoda-
tion coefficient should be introduced.

We consider the general case of the arbitrary degen-
eration of the electron gas. Therefore, the results
obtained are valid in a wide temperature range.

Consider a metal for which the Fermi surface is
spherical. For electrons in metals, a kinetic equation in
the τ approximation [1–3] is frequently used:

(2)

Here, f is the electron distribution function, e0 is the
electron charge, p is the electron momentum, E is the
electric field, v is the electron velocity, τ is the electron

relaxation time, and  is the Fermi distribution func-
tion. If electron scattering by impurities prevails, it is
reasonable to assume that the electron free path is con-
stant [4]. In this case, the relaxation time can be
expressed as τ = l/w. Here, l is the electron free path and
w = |v – u|, where u is the mean electron velocity. Note
that, in metals, the inequality u ! v  is valid in all phys-
ically feasible conditions. Therefore, we hereafter will
use v  instead of w.

Note also that, generally, the kinetic equation for
phonons, along with that for electrons, should be taken
into consideration when the temperature is finite.

Let phonon distribution function fph satisfy the
kinetic equation [1, 4]

(3)

where C is the phonon velocity and J( fph, f ) is the col-
lision integral including electron–phonon, electron–
impurity, and phonon–phonon scattering. For a finite
temperature, the Fermi distribution function with some
effective temperature T∗  and effective chemical poten-
tial µ∗  must appear in Eq. (2) as the equilibrium elec-

∂f
∂t
----- v ∇⋅( ) f e0E

∂f
∂p
------⋅+

1
τ
--- f F

0 f–( ).= =

f F
0

∂ f ph

∂t
---------- C ∇⋅( ) f ph+ J f ph f,( ),=
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tron distribution function instead of , which corre-
sponds to the zero temperature. It is noteworthy that
these effective temperature and chemical potential gen-
erally differ from the locally equilibrium values of the
temperature, Teq, and chemical potential, µeq.

Then, the kinetic equation for electrons takes the
form

(4)

Here,  = fF(µ∗ , T∗ ) = 

 is the Fermi distribution function (Fer-

mian), k is the Boltzmann constant, and m is the elec-
tron effective mass.

The electron conservation law leads to the following
equation as a consequence of Eq. (4):

(5)

where dΩF = (2s + 1)(2π")–3dp, " is the Planck con-
stant, and s is the electron spin. Integration is carried
out over the entire velocity space. In most metals, the
electron subsystem makes a major contribution to heat
transfer [4]. We will consider just this case and ignore
the phonon contribution to this process.

In the steady-state case, kinetic equation (4) for
electrons is recast as

(6)

where Qe is the heat flux due to electrons.
In the steady-state case, where heat sources are

absent, total heat flux Q is constant; that is, ∇ ⋅ Q = 0.
If the phonon contribution to the heat transfer process
in a metal can be neglected, we also assume, in accor-
dance with (6), that ∇ ⋅ Qe = 0. Then, from Eq. (5), we
get

(7)

Relationships (5) and (7) specify parameters T∗  and
µ∗  appearing in kinetic equation (4).

In the approximation discussed thus far, Eq. (4) for
electrons and Eq. (3) for phonons turn out to be inde-
pendent. In this case, a number of fine effects are
missed. To take them into account, it is necessary to
employ the more adequate τ approximation that is con-
sidered in this work.

Let us assume that characteristic temperature drops
over length l are small compared with the electron gas
temperature. Then, the problem can be linearized. The

f F
0

∂f
∂t
----- v ∇⋅( ) f e0E

∂f
∂p
------⋅+ +

v
l
---- f F* f–( ).=

f F* f F µ* T*,( ) mv 2

2kT*
------------- –

exp=

µ*
kT*
---------

 1+
1–

v f ΩFd∫ v f F* ΩF,d∫=

∇ Q⋅ e
v
l
---- v

m
2
----v 2 f F* ΩFd∫ v

m
2
----v 2 f ΩFd∫– 

  ,=

v
m
2
----v 2 f ΩFd∫ v

m
2
----v 2 f F* ΩF.d∫=
distribution function will be sought in the form f =  +

ϕ(t, r, v)g. Here,  = fF(µs, Ts), ϕ is a new unknown
function, µs is the chemical potential of the electrons

scattered by the surface, g = ∂ /∂εs, εs = (mv 2/2 –
µs)/kTs, and Ts is the surface temperature.

Let us introduce the designations

In terms of these designations,

Now, we pass to the dimensionless variables to lin-
earize local Fermian . Note that

Since T∗  = Ts + δTs and α∗  = α + δα∗ , we come to

hence,

where δε∗  = ε∗  – εs and εs = c2 – α.

Consequently,

or

Let us introduce dimensionless quantities e =

(e0l/kTs)E, t∗  = t /l, and r∗  = r/l (hereafter, the
asterisks will be omitted). In terms of the dimensional
variables, Eq. (4) takes the form

(8)

The parameters of this equation, δα∗  and δT∗ , are
found from the conservation laws (relationships (5) and

f F
s

f F
s

f F
s

c m
2kT s
-----------v, α

µs

kT s
--------, ε*

mv 2

2kT*
-------------

µ*
kT*
---------.–= = =

f F* ε*( ) = 
1
ε*( )exp 1+

-----------------------------, f F
s c α,( ) = 

1

c2 α–( )exp 1+
--------------------------------------,

g g c α,( ) c2 α–( )exp

c2 α–( )exp 1+[ ] 2
---------------------------------------------.= =

f F*

ε* = 
T s

T*
------ m

2kT s
-----------v 2 µ*

kT s
--------–  = 

T s

T*
------ c2 α*–( ), α* = 

µ*
kT s
--------.

ε* c2 α–
δT*
T s

---------- c2 α–( )– δα*,–=

δε* –δα* c2 α–( )δT*
T s

----------,–=

f F* f F
s ∂ f F*

∂ε*
--------- 

 
ε
*

εs=
δε*+=

f F* f F
s g c α,( ) δα* c2 α–( )δT*

T s
----------+ .+=

2kT s/m

∂ϕ
∂t
------ c ∇⋅( )ϕ c e⋅–+ c δα* c2 α–( )δT*

T s
---------- ϕ–+ .=
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(7)), which are now written as

From this system, we find

(9)

Here,

Let us represent Eq. (8) in the conventional form:

(10)

where

Let the half-space x > 0 be filled with a metal and
plane xy be coincident with the metal boundary. We
assume that a heat flux present in the metal is directed
normally to the surface. Then, the heat-flux-induced
electric field will also be directed normally to the sur-
face, so that all the parameters of the problem will
depend only on coordinate x.

The set of equations that describe the problem con-
sists of Eq. (10) for electrons and the equation for the
electric field. In dimensionless form, these equations
look like

δα* c2 α–( )δT*
T s

---------- ϕ–+ cngd3c∫ 0; n 1 3.,= =

δT*
T s

----------
r1 α( )

2π∆ α( )
------------------- ϕcgd3c

l α( )
2π∆ α( )
------------------- ϕc3gd3c,∫+∫–=

δα* αδT*
T s

----------–
r3 α( )

2π∆ α( )
------------------- ϕcgd3c∫=

–
r1 α( )

2π∆ α( )
------------------- ϕc3gd3c.∫

r1 α( ) 4 c 1 α c2–( )exp+[ ]ln c,d

0

∞

∫=

l α( ) 1 α( )exp+( ),ln=

r3 α( ) 12 c3 1 α c2–( )exp+[ ]ln c,d

0

∞

∫=

∆ α( ) l α( )r3 α( ) r1
2 α( ).–=

∂ϕ
∂t
------ cϕ t r c, ,( ) ce r( )–+

=  
c

2π
------ k c c',( )ϕ t r c', ,( ) Ω α( ),d∫

k c c',( ) 1
l2 α( )
∆ α( )
------------ c2 r1 α( )

l α( )
-------------– 

  c'2
r1 α( )
l α( )
-------------– 

  ,+=

dΩ α( ) g c' α,( )c'
l α( )

----------------------d3c'.=

µ∂ϕ
∂x
------ ϕ x µ c, ,( ) µe x( )–+
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(11)

where ε0 is the dielectric constant.

It should be emphasized that to state boundary con-
ditions for electrons on a metal surface is a challenge
[4]. The specular–diffuse Maxwell equation is fre-
quently used. However, it is impossible to relate all
scattering characteristics of electrons to a single param-
eter that shows to which extent the scattering is specu-
lar. Even if the scattering is perfectly diffuse, there is
the possibility that the electron energy will remain
unchanged. For electron scattering on the surface, heat
transfer can be described by means of additional coef-
ficient qe that takes into account energy accommoda-
tion. Consider perfectly diffuse electron scattering on
the surface. In this case, the distribution function of the
electrons reflected by the surface coincides with the

Fermi equilibrium distribution  = exp[(εe) + 1]–1,
where εe = (mv 2/2 – µe)/kTe. In general, parameters Te
and µe differ from surface parameters Ts and µs. They
coincide only if accommodation coefficient qe equal
unity.

In the linear approximation, distribution function

 can be represented as

where δαe = (µe – µs)/kTs and δTe = Te – Ts.

We find that the boundary conditions including the
accommodation character of electron scattering on the
surface [3] and the conditions inside the metal have the
form

(12)

=  
1

l α( )
---------- k c c',( )ϕ x µ' c', ,( )g c'( )c'3 µ' c',dd

0

∞

∫
1–

1

∫

e' x( ) a0
2 ϕ x µ c, ,( )g c( )c2 µd c,d

0

∞

∫
1–

1

∫=

µ
cx

c
----, a0

2 e0
2m2l2

π2ε0"
3

----------------
2kT s

m
-----------,= =

f F
e

f F
e

f F
e f F

s g c α,( ) δαe c2 α–( )
δTe

T s
--------+ ,+=

ϕ 0 µ c, ,( ) ϕ0 µ c,( )≡ A0 c2 r3 α( )/r1 α( )–( )B0,+=

0 µ 1,< <

ϕ x µ c, ,( ) ϕas x µ c, ,( ) o 1( ),+=

x +∞, 1– µ 0,< <

e 0( ) 0, e x( ) eas o 1( ), x +∞.+= =
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Here,

It is assumed that the energy flux Er of the electrons
reflected from the surface is related to the energy flux Ei
of the electrons incident on the surface as

(13)

Here,

Es is the electron energy flux from the wall that corre-
sponds to the thermodynamic equilibrium between the
wall and electrons (Te = Ts), and

with the proviso that ϕs(µ, c) = As for 0 < µ < 1. Quan-
tity As is determined from the condition

This condition can be written in terms of the elec-
tron flows; that is, Ns = Ni, where Ns is the electron flux
from the wall that corresponds to the thermodynamic

ϕas εT c2 r0 α( )
s α( )
-------------– 

 =

+ gT x µ–( ) c2 r0 α( )
s α( )
-------------– 

  h0 α( )gTµ,–

eas gTh0 α( ), ∆0 α( )– r0 α( )l α( ) s α( )r1 α( ),–= =

h0 α( )
∆0 α( )

s α( )l α( )
----------------------

r0 α( )
s α( )
-------------

r1 α( )
l α( )
-------------,–= =

B0

Te T s–
T s

----------------,=

r0 α( ) 2
3
--- 1 α c2–( )exp+[ ]ln c,d

0

∞

∫=

s α( ) α c2–( )exp

1 α c2–( )exp+
-------------------------------------- c.d

0

∞

∫=

qe Ei Er–( ) Ei Es–( ) 1– .=

Ei ϕ
0

∞

∫ 0 µ c, ,( )c5µg c( ) µd c,d

1–

0

∫–=

Er ϕ µ c,( )c5µg c( ) µd c,d

0

∞

∫
0

1

∫=

Es ϕ s µ c,( )c5µg c( ) µd c,d

0

∞

∫
0

1

∫=

ϕ s µ c,( )c3µg c( ) µd cd

0

∞

∫
0

1

∫

=  ϕ 0 µ c, ,( )c3µg c( ) µd c.d

0

∞

∫
1–

0

∫–
equilibrium between the wall and electrons and Ni is the
electron flow toward the wall.

Parameter qe, varying between zero and unity, is
called the energy accommodation coefficient. It is an
empirical quantity. Its value depends on the type of
interaction between electrons, surface phonons, and the
material adjacent to the metal. At low temperatures and
in the case where the metal is in contact with an allow-
able substance (gas), qe may be considerably smaller
than unity, since heat exchange between the electrons
and other components is difficult under these condi-
tions. Thus, taking into account energy accommodation
in describing heat exchange processes at the interface is
of great significance.

Along with the energy accommodation condition on
the surface, one more condition, namely, the no-perco-
lation condition, must be met. Mathematically, this
means that total electron flow N0 across the interface is
zero:

or, which is the same, N0 = Nr – Ni = 0, where

is the flow of the electrons reflected from the wall.

Similarly, total electron energy flux E0 can be repre-
sented as E0 = Er – Ei. Then, the electron energy accom-
modation condition can be recast as qe(Ei – Es) + E0 =
0, where the total energy flux

is the same for all x > 0 by virtue of the energy conser-
vation law. The value of E0 is determined through the
asymptotic distribution function at the wall:

It is easy to check that Es = r1(α)As/4 and Er =
r1(α)A0/4; therefore,
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Then, from the electron energy accommodation
condition, we find that

(14)

From the relationships for the electron flows, Ns = Ni
and Nr = Ni, it follows that Ns = Nr; hence,

(15)

From (14) and (15), we find quantity B0:

Thus, we have found constant B0 for the first bound-
ary condition in (12). The second constant, A0, is not
specified beforehand: it is determined from a solution
to the problem.

Function ϕas describes the thermal conductivity of
the electron gas inside the metal. The heat conduction
process generates electric field eas (the thermoelectric
effect described, e.g., in [1]). The condition e(0) = 0
stems from the assumption that an electric field outside
the metal is absent.

It should be stressed that functions ϕas and eas are
solutions to set (11).

According to the structure of function ϕas, we seek
function ϕ in the form

(16)

and arrive at the set of equations

(17)

(18)

(19)

In view of (16), boundary conditions (12) have the
form

(20)

A0 As
4
3
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µ
∂h1
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-------- h1 x µ,( )+ h1 x( ) µe x( ),+=

µ
∂h2
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h j x( ) 1
2
--- h j x µ,( ) µ; jd
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1

∫ 1 2,,= =

e' x( ) a2h1 x( ), a2 a0
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l1 α( )
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s α( )r1 α( )
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r1 α( )
-------------,–= =
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(21)

(22)

We draw the reader’s attention to the fact that the
general problem stated by (11) and (12) is split into two
subproblems that are interrelated only through the
boundary conditions. The first subproblem, (18) and
(21), is associated with a temperature jump in a metal;
the second one stated by (17), (19), (20), and (21) is
related to the behavior of an electric field near the sur-
face in the presence of temperature gradient gT normal
to the surface.

Consider first the subproblem stated by (18) and
(21). According to [5], a solution to this subproblem is
looked for in the form of the expansion in eigensolu-
tions:

(23)

In expansion (23), the unknowns are temperature
jump εT and function m(η).

Omitting the solution of the problem (the solution
method is given elsewhere [5, 6]), we give the expres-
sions for these unknowns:

(24)

where

Formula (24) specifies the desired temperature jump
in the metal. Comparing formulas (1) and (24), we
determine the temperature jump coefficient:

This coefficient does not depend on the electron gas
degeneracy. It follows from this formula that the tem-
perature jump grows with decreasing accommodation
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coefficient. For qe = 1, this formula yields the well-
known expression for temperature jump that was
derived in [6].

The temperature profile in the metal will be con-
structed in accordance with (9). From expansion (16),
we get

Substituting these equalities into (9) yields

1
2π
------ ϕgcd3c∫ l α( )h1

∆0 α( )
s α( )

--------------h2,–=

1
2π
------ ϕgc3d3c∫ r1 α( )h1

∆1 α( )
s α( )

--------------h2.–=

δT* x( )
T s

------------------ h2
1
2
--- h2 x µ,( ) µd

0

1

∫≡=

=  εT gT x
1
2
--- x

η
---– 

  m η( )exp η ,d

0

1

∫+ +

0.4
0 0.2

δT*(x)/TggT

x
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1.6

1.8

2.0

Temperature profiles.
or

On the wall (x = 0), this expression simplifies to

The figure demonstrates the temperature profiles in
the half-space x > 0 that are constructed based on the
analytical solution found. The dashed lines show the
asymptotic profiles extrapolated to the boundary of the
metal; the solid lines, the actual temperature profiles.
The upper curves correspond to the accommodation
coefficient qe = 0.75; the lower ones, to qe = 1. It is seen
that the temperature profile shifts upward as the accom-
modation coefficient decreases.
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Abstract—The problems of a pulsed strength of continuum media are considered in terms of the structural–
time approach that is based on the concept of the incubation fracture time. This approach makes it possible to
describe phenomena that arise under high-velocity external effects. A limiting condition that determines the
instant of rupture or breakdown is proposed on the basis of the structural–time approach. A way to interpret and
to determine the incubation time is proposed. A phenomenological model of an electric breakdown of solid
dielectrics is formulated. Examples are considered where the structural–time approach is applied to problems
of spall fracture, crack initiation, and a pulsed breakdown of dielectrics. A procedure for describing the time
dependence of the electric strength (volt–second characteristic) is described in detail. The results of the calcu-
lations are found to be in good agreement with experimental data. © 2004 MAIK “Nauka/Interperiodica”.
Investigation of dynamic fracture of solids and insu-
lators under the high-rate (pulsed) effect of the ambient
medium under various conditions is of great interest
from the point of view of continuum physics and
mechanics. The results of such investigations are used
in creating and operating various devices in machine
building and power engineering.

Experiments to study dynamic fracture reveal a
number of effects that show a drastic distinction
between a fast dynamic rupture (breakdown) of materi-
als and a similar process under quasistatic conditions.
For example, the dependence of limiting characteristics
on history and on the way in which the load is applied
is one of the main problems in exploring dynamic frac-
ture. This effect manifests itself in almost all of situa-
tions of fast fracture. By way of example, we indicate
that, in the case of the fracture of a defect-free contin-
uum, one defines the limiting characteristic as the min-
imum amplitude of a stress pulse that leads to the rup-
ture of the material being considered. For the intensity
of a local force field, this characteristic provides a limit
above which there occurs fracture. Attempts at deter-
mining, for a local field, a critical intensity that would
correspond to specific rates of loading lead to ambigu-
ous results. The dependence on the way in which an
external force is applied manifests itself as a change in
the limiting values in response to a change in a number
of factors, including the duration of its action, its ampli-
tude, and the rate of its growth. In the case of a quasis-
tatic external force, the critical value is a constant pecu-
liar to a given material, while, in the case of dynamic
fracture, the values determined experimentally for crit-
ical characteristics are highly unstable, with the result
that their behavior proves to be unpredictable.
1063-7842/04/4911- $26.00 © 21447
The above features in the behavior of materials (as
well as some other special features of their behavior)
that are subjected to pulsed external forces appear to be
common to apparently different physical processes
such as the dynamic fracture of solids and electric
breakdown in solid insulators. In the present study, we
consider examples that illustrate dynamic effects in
these physical processes. A universal interpretation of
the fracture of solids and of electric breakdown in insu-
lators is proposed within a structural–time approach
[1, 2] that is based on the concept of incubation time.

The absence of an adequate limiting condition that
would pinpoint the instant of fracture or breakdown is
the main reason behind the difficulties encountered in
simulating the aforementioned effects of mechanical
and electric strength. This problem can be solved on the
basis of macroscopic structural fracture mechanics and
the concept of the incubation fracture time, which takes
into account kinetic processes leading to the formation
of macroscopic discontinuities [1, 2]. The above
dynamic effects become significant when one goes over
from slowly varying external forces to those whose
periods are commensurate with the scale that is speci-
fied by the incubation fracture time. The nature of the
incubation time is associated with preparatory relax-
ation processes involving the development of micro-
scopic defects in the structure of a material.

The incubation-fracture-time criterion proposed in
[1, 2] makes it possible to calculate effects that are
associated with unstable behavior of dynamic strength
characteristics and are observed in experiments study-
ing the fracture of solids. In a generalized form, this cri-
004 MAIK “Nauka/Interperiodica”
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terion can be represented as

(1)

where F(t) is the intensity of the local force field that
causes the fracture of a medium, Fc is the static limit of
the local force field, and τ is an incubation time that is
related to the dynamics of the relaxation process pre-
paring the rupture; the fracture time is determined by
the instant at which the condition in (1) reduces to a
strict equality, the parameter α characterizing the sensi-
tivity to the level of the strength of the force field that
causes fracture.

For the example of the mechanical fracture of a
material, we will now consider one possible way to
interpret and to determine the parameter τ. We assume
that a standard sample from this material is stretched
and that it is ruptured into two parts at a stress P arising
at some time instant taken for zero, t = 0; that is, F(t) =

1
τ
--- F t '( )

Fc

------------ 
  α

t'd

t τ–

t

∫ 1,≤
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Fig. 1. Time dependences of (a) the spall strength of alumi-
num [3, 4] (t∗  is the fracture time) and (b) the dynamic frac-
ture viscosity for crack initiation in Hormalite-100 [5] (t∗  is
the fracture time, and K1q is the critical intensity coeffi-
cient).
PH(t), where H(t) is a Heaviside step function. In the
case of a quasibrittle fracture, there occurs the removal
of the load, with the result that, at the locus of the rup-
ture, the local stress decreases rapidly (but not
instantly) from P to zero. Concurrently, the correspond-
ing load-removing wave is generated in the sample, and
its propagation can be recorded by standard (for exam-
ple, interferometric) methods. The evolution of the
stress at the locus of rupture can be schematically rep-
resented as σ(t) = P – Pf(t), where the function f(t)
changes from zero to unity within a time interval T. The
case of f(t) = H(t) corresponds to the classical theory of
strength; that is, rupture is instantaneous within the
classical approach (T = 0). But, in fact, the rupture of a
material (sample) is a process that is extended in time,
the function f(t) describing the kinetics of a transition
from a state that is thought to be defect-free [f(0) = 0]
to a state in which the sample is fully destroyed at the
point in question [f(T) = 1].

Applying fracture criterion (1) to this situation, we
obtain T = τ at P = Fc; that is, the incubation time intro-
duced above is the time period to fracture occurring as
soon as the stress in the material reaches the static ten-
sile strength. In experiments studying the static fracture
of samples, this period can be measured by various
methods. For example, this can be done by measuring
the time of pressure growth at the front of the load-
removing wave recorded with the aid of the interfero-
metric method by using the velocity profile of points at
the surface of the sample.

Further, we consider examples of how the criterion
in (1) is realized in various problems of physics and
mechanics.

(1) The experimental time dependence of the
strength in the case of spall fracture of solids (see
Fig. 1) provides an example that illustrates the intricate
behavior of the strength of solids [3]. This dependence
of the fracture time t∗  on the threshold amplitude of a
pulse P∗  at various values of its duration demonstrates
that the dynamic strength is not a constant characteriz-
ing a material, but that it also depends on the fracture
time. The classical critical-stress criterion σ(t) ≤ σc,
where σc is the dynamic strength, describes well quasi-
static fracture at large times that is caused by long wave
pulses σ(t) = Pf(t), where P is the amplitude of a pulse
and f(t) is its time-profile function. In the case of short
pulses, however, there arises a weak threshold-ampli-
tude dependence of the fracture time, this dependence
featuring an asymptote. This phenomenon is referred to
as the effect of the dynamical branch in the time depen-
dence of the strength [3].

The dynamic-branch phenomenon has not yet been
explained either within classical theories of the strength
or within time criteria known so far.

The total time dependence of the strength can be
obtained on the basis of incubation-time criterion (1),
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
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which, in our case of spall fracture, assumes the form

(2)

where σ(t ') is the time dependence of the stress at the
locus of rupture.

Our calculation was performed for triangle pulses,
which were used in the experiment reported in [3], and
for the aluminum parameters of τ = 0.75 µs and σc =
103 MPa. The time dependence obtained in [4] for the
strength of aluminum [3] according to the criterion in
(2) is represented by the solid curve in Fig. 1a.

(2) Let us consider the case where an elastic plate
containing a crack is loaded symmetrically on the two
sides of the crack with a uniform pressure, which
increases linearly within the time t0, whereupon it is
maintained at a constant level of P; that is, the compo-
nents of the stress tensor at the edges of the crack are
specified in the form

where H(t) is a Heaviside step function.
The corresponding experiment was implemented in

[5–7]. By changing the rate of the application of the
pressure within the interval t0 of its growth, the authors
of those studies could obtain different values of the
fracture time t∗  and measure the starting values of the
intensity coefficient (dynamic fracture viscosity) KIq =
KI(t∗ ) that correspond to the start of growth of the
crack. One result obtained in [5] for a Homalite-100
glasslike polymer is shown in Fig. 1b. The experiment
exhibits the growth of the threshold intensity coeffi-
cient as the fracture time decreases; that is, as one
increases the rate of the application of a load. Concur-
rently, the resulting velocity dependences of the
dynamic fracture viscosity are highly unstable and can
change sizably in response to variations in the duration
of the stage within which the load grows, in the shape
of the time profile of a loading pulse, in the geometry of
the samples used, and in the way in which the load is
applied. For example, the results obtained in [6, 7]
show velocity (time) dependences of KIq, which are
markedly different for the same materials, and reveal
that the dynamic fracture viscosity may depend non-
monotonically on the time of crack initiation under the
effect of a shock wave.

Experimental results show that the dynamic fracture
viscosity is not a characteristic of a material and that the
introduction of the threshold-intensity-coefficient crite-
rion KI(t) ≤ KIq in the theory and, accordingly, of the
quantity KIq as a matter parameter that determines
dynamic fracture (by analogy with the static parameter
KIc) is not correct.

The behavior of the dynamic fracture viscosity can
be explained and calculated on the basis of incubation-

σ t'( ) t'd

t τ–

t

∫ σcτ ,≤

σy P tH t( ) t t0–( )H t t0–( )–[ ] /t0, σxy 0,= =
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time criterion (1), which, in the case being considered,
assumes the form [2]

(3)

The results of the calculation performed in [2] for
experimental data reported in [5] are represented by the
solid curve in Fig. 1b. The parameters used in that cal-

culation were set to KIc = 0.48 MPa  and τ = 9 µs.

(3) A pulsed electric breakdown of solid dielectrics
provides yet another example of phenomena where one
can observe the effects described above. By way of
example, we indicate that, in the case where the time
within which the applied voltage is operative is small,
the breakdown voltage usually increases as this time is
decreased. In alkali halide crystals, the breakdown
channel caused by an electric field applied for about
10 ns arises at a voltage several times as great as the
quasistatic breakdown voltage (that is, a voltage
applied within a period not shorter than 1 µs [8]). This
effect was observed in the breakdown of a number of
materials. As an illustration, the dependence of the
breakdown electric field E* for an ammonium perchlo-
rate single crystal on the duration t0 of the leading edge
of a pulse is shown in Fig. 2 according to [9]. This
dependence, which also characterizes the dependence
of the electric strength on the rate of growth of the volt-
age in the sample being studied, can be referred to as
the time dependence of the electric strength, being
analogous to that which is observed in the above case
of the dynamic fracture of materials (see Fig. 1). In the
experiments described in [9, 10], thin plates from
ammonium perchlorate single crystals were placed in a
pulsed electric field. The electric breakdown of samples

1
τ
--- KI t'( ) t'd

t τ–

t

∫ KIc.≤

m

1.0
E*, 106 V/cm

8
t0, µs

0.5

0 642 10

2

1

Fig. 2. Calculated dependence (solid curve) of the electric
strength E* of ammonium perchlorate on the duration of the
leading edge of a pulse for various values of the distance
between the electrodes: (1) 0.03 and (2) 0.01 cm.
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led to their burning, which resulted in the formation of
a through channel. The experimental data in Fig. 2
(points) correspond to two distances between the elec-
trodes used, 0.01 and 0.03 cm. One can see that, for t0 ≤
1.5 µs, the electric strength of the material increases

700

E*, V/cm

t0, µs

(a)
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0 1.00.5 1.5
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1600

E*, kV/cm
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1400

1200

0 21 4

1800

2000

1000

1

2

3

(b)

Fig. 3. (a) Calculated dependence (solid curves) of the elec-
tric strength E* of porcelain on the duration of the leading
edge of a pulse in a field close to a uniform one (distilled
water was taken for a medium) for various values of the dis-
tance between the electrodes: (1) 1.8 and (2) 1 mm. The dis-
played experimental data were borrowed from [10]. (b) Cal-
culated dependence (solid curves) of the electric strength
E* of rock salt on the duration of the leading edge of a pulse
in a uniform field for various values of the distance between
the electrodes: (1) 0.3 and (2) 0.15 mm. The displayed
experimental data were borrowed from [8].

Parameter values used in calculating the time dependence of
a pulsed breakdown

Material τ, µs

Rock salt 0.025

Porcelain 0.02

Ammonium perchlorate 0.33
with decreasing duration of the leading edge of a volt-
age pulse (with increasing rate of growth of the voltage
in the sample). For t0 ≥ 1.5 µs, the breakdown voltage
becomes virtually independent of t0.

In the case being considered, the electric-break-
down criterion corresponding to the structural–time
approach [1, 2] can be represented in the form

(4)

where Ec is the static electric strength of a material (it
may be dependent on the distance between the elec-
trodes) and τ is the incubation time of the electric
breakdown of a material (it is determined by the kinet-
ics of electron multiplication in the electric discharge).

We assume, for a first approximation, that the break-
down occurs at the leading edge of the voltage pulse
and that the voltage in the sample used grows linearly.
The electric field is uniform. The incident voltage pulse
then has the form

Since the electric field is uniform, we have

(5)

where U* is the amplitude of the pulse, t0 is the duration
of its leading edge, d is the distance between the elec-
trodes, and H(t) is a Heaviside step function.

Substituting (5) into (4) and considering that the
breakdown occurs at the leading edge of the pulse, we
find that, for t0 ≤ τ, condition (4) assumes the form

and that, for t0 ≥ τ, the condition is

where E* = U*/d.

Since the breakdown time is determined by the
instant at which the condition in (4) reduces to a strict
equality, we obtain the following dependences of the
electric strength on the duration of the leading edge of

1
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∫
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the pulse:

(6)

For some materials, the time dependences of the
electric strength are shown in Figs. 2 and 3 (solid
curves) according to a calculation based on (6). The
parameter values used in this calculation are given in
the table. In the displayed dependences, the instant at
which the breakdown field begins increasing is com-
pletely determined by τ. In [9], it is indicated that this
time is virtually independent of the distance between
the electrodes. This also follows from the results that
were obtained from our calculations and which are rep-
resented by the solid curves in Figs. 2 and 3. In the
cases considered above, the incubation time can there-
fore be considered as a characteristic of a material.

Thus, it has been shown that experimental data on a
pulsed breakdown are well described within our struc-
tural–time approach. The above examples of various
physical processes indicate that it is of paramount
importance to study incubation processes that prepare
abrupt structural changes (fracture and phase transi-
tions) in continuum media subjected to the effect of
intense pulsed forces. The results presented here dem-
onstrate that the structural–time approach, which
makes it possible to describe adequately both the
dynamical fracture of solids and the pulsed breakdown
of solid dielectrics, is quite universal.
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1 τ
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Abstract—A phenomenological model of the viscoelasticity of highly oriented polymer systems is developed
based on the results of studying the relaxation of such systems (mainly, fibers of polyethylene terephthalate, polya-
mide-6, polyvinyl alcohol, and other polymers) in the loaded state. The effect of an applied load on their relaxation
spectra agrees qualitatively with the deformation behavior of crystal-like bandles that are present in amorphous
intercrystalline layers of the fibrillar supramolecular structure. © 2004 MAIK “Nauka/Interperiodica”.
The behavior of highly oriented polymer fibers
under the action of an applied load is important for var-
ious engineering fields where such fibers or fiber-based
composite materials are used. In this work, we study the
mechanical properties of highly oriented fibers of
polyamide-6, polyvinyl alcohol, polyethylene tereph-
thalate, and some other polymers. Based on the experi-
mental study of some processes characteristic of the
engineering applications of polymer fibers (creep,
uniaxial tension at various rates in the range of small
strains, strain relaxation during complete or partial
unloading in the range of nondestructive mechanical
stresses, etc.), we proposed a phenomenological model
for the viscoelasticity of these fibers [1–5]; it is
described by the equation

(1)

where σt and εt are the stress and strain at the time t; t is
the duration of deformation; θ is the current time in the
range from zero to t; s = t – θ is the period correspond-
ing to the transition from the final strain εt to its current
value of εθ = εt – s (Fig. 1); Eεs is the relaxation modulus
depending on time and (as a parameter) strain; and
∂Eεs/∂(lns) is the derivative of the relaxation modulus
with respect to time, which can be interpreted as the
relaxation-time distribution of relaxing particles to a
first approximation [3].

For one of the simplest experiments (the determina-
tion of relaxation at ε = const), the relaxation modulus
can be calculated by Eq. (1):

(2)

σt E0εt εt s– ∂Eεs/∂ sln( )( ) sln( ),d

–∞

tln

∫+=
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where E0 is the initial quasi-elastic value of the modu-
lus, E∞ is the quasi-equilibrium value of the modulus,
and ϕεt is the normalized function of the time t that
depends on the parameter ε and varies from zero at t ! τ
to unity at t @ τ (where τ is the real relaxation time).

The experiment showed that, for the approximation
of relaxation, it is convenient to use the probability inte-
gral

(3)

as ϕεt. Here,

(4)

ϕεt 2π( ) 0.5– 0.5z2–( )exp z,d

∞–

Vεt

∫=

Vεt anε
1– t/τεln=

ε
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εθ

0 θ θt

ts~ s 0

Fig. 1. Schematic diagram for integration when stresses are
calculated by Eq. (1).
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is the argument–functional that contains a constant anε
and the average statistical relaxation time τε, which
depends on the strain as a parameter.

The above formulas indicate that, in its normalized
form, the relaxation kernel under integral (1) is the
Gaussian distribution

(5)

which can be interpreted, in a first approximation, as
the normalized normal distribution of relaxing particles
over the intrinsic relaxation times [13].

With allowance made for the relaxation (1), the rela-
tion between the stress and strain varying with time can
also be written in the form [3]

(6)

under the condition

(7)

where Dσt = εσt/σ is the compliance during simple creep
εσt at σ = const.

The compliance measured is approximated simi-
larly to the relaxation modulus by Eqs. (2)–(5). In this
case, an analog of the average statistical relaxation time
is the average statistical delay time (delay with respect
to the quasi-equilibrium state) [3].

A typical example of the family of the time depen-
dences of the relaxation modulus for polyfilament
fibers of polyethylene terephthalate is shown in Fig. 2,
and the corresponding strain dependence of the average
statistical relaxation time and the stress dependence of
the average statistical delay time are shown in Fig. 3.
The descending character of these dependences means
that, as the strain increases, both the relaxation and
delay spectra shift to shorter times. This shift is a kind
of nonlinearity of the viscoelastic properties that is
caused by the activating effect of an applied mechanical
stress on the relaxation [1, 2]. This shift can also be
interpreted as the manifestation of a peculiar strain–
time or force–time analogy [1–3]. Dependences that are
similar to those shown in Figs. 2 and 3 are observed for
highly oriented films and monofibers of polyethylene
terephthalate and monofibers and polyfilament fibers of
polyamide-6, polyvinyl alcohol, and polyacrylonitrile.
It should be noted that, from the structural standpoint,
polyacrylonitrile is not a typical amorphous–crystalline
polymer: its ordered regions are characterized by order-
ing only across the axes of macromolecules (hexagonal
packing of randomly rotating molecular cylinders [6]).
However, the results of studying mechanical relaxation
suggest that the supramolecular structure of highly ori-
ented polyacrylonitrile fibers is similar to the structure
of amorphous–crystalline polymers; that is, more and

∂ϕεs/∂ sln( ) 2π( ) 0.5– anε
1– 0.5Vεs

2
–( ),exp=

εt E0
1– σt σt s– ∂Dσs/∂ sln( )( ) sln( )d

∞–

tln

∫+=

E0
1– Eεt Eε; t s– ∂Dσs/∂ sln( )( ) sln( )d

∞–

tln

∫+ 1,=
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less ordered regions alternate with each other along the
fiber axis.

To reveal the most likely microscopic mechanism of
the effect of an applied stress on the relaxation spectra,
it is necessary to analyze the concepts of the supramo-
lecular structure of highly oriented polymers. The
intensity of the measured macroscopic relaxation of an
applied stress is specified by the number of segment-
molecular rearrangements that occur mainly in amor-
phous intercrystalline layers. If the number and volume
of these interlayers were unchanged, no substantial
deviations from linear viscoelasticity would be
observed. In other words, Fig. 3 would show a horizon-
tal straight line, i.e., a constant relaxation spectrum.
The observed variation in the spectrum with strain
(Fig. 3) is most likely due to the reversible increase in
the weight fraction of the molecules that are in the
amorphous state; these molecules have shorter relax-
ation times as compared to the molecules located in
more ordered regions—crystallites and crystal-like
bandles.

The concepts of crystal-like bandles in amorphous
interlayers in amorphous–crystalline polymers (Fig. 4)
were developed earlier [7–9]. In [7], the molecular-
weight distribution of the products of etching of poly-
ethylene films with fuming nitric acid was determined.
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Fig. 2. Time dependences of the relaxation modulus of
polyfilament fibers of polyethylene terephthalate at relative
strain ε = (1) 0.75, (2) 1.0, (3) 1.25, (4) 1.5, (5) 1.75, (6) 2.0,
(7) 2.5, (8) 3.0, and (9) 3.5%; t1 = 1 min.
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The acid destroyed macromolecules only in amorphous
regions and in the places of packing of macromolecules
at crystallite boundaries. The molecular-weight distri-
bution was found to be bimodal: one distribution peak
corresponded to the crystallite size along the chain and
the other corresponded to the same size plus the length
of the long period. Based on this finding, it was con-
cluded that there exist dense crystal-like bandles in the
amorphous regions, which are stable to the destroying
action of the acid.

Tuœchiev et al. [8] studied the effect of iodine sorp-
tion by fibers of polyvinyl alcohol and concluded that
(i) molecular bandles with a high density (close to the
crystal density) exist in amorphous regions and
(ii) iodine cannot penetrate these bandles. In [9], a con-
clusion about the presence of high-density regions in
amorphous interlayers was drawn from the changes in
the intensities of highly oriented films of various poly-
mers.
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Fig. 3. Dependences of (a) the average statistical delay time
on stress and (b) the average statistical relaxation time on
strain for polyfilament fibers of polyethylene terephthalate
at various temperatures: (1) 20, (2) 40, (3) 60, and (4) 80°C.
Schultz [10] noted that the absolute value of the
integrated intensity of small-angle X-ray scattering
from oriented fibers made of polyethylene terephthalate
is significantly smaller than that predicted by a two-
phase model for fibrils having long periods. In princi-
ple, this fact can be explained by the presence of inter-
fibrila layers or defects in crystallites; however, in the
context of the concepts developed in this work, this fact
can also be explained by the presence of crystal-like
bandles. As applied to polyethylene-terephthalate
fibers, these concepts were confirmed in a number of
works. For example, using NMR and the methods of
small- and wide-angle X-ray diffraction, Biangardi and
Zachmann [10] showed that, apart from a mobile amor-
phous component, polyethylene terephthalate fibers
also contain a rigid, low-mobility amorphous compo-
nent that consists of straightened highly oriented chain
segments. In another work in the selection of articles
[10], the amorphous halo in wide-angle X-ray diffrac-
tion patterns taken from polyethylene-terephthalate
fibers was shown to correspond to a superposition of
randomly and highly oriented components. Moreover,
analyzing such data, the authors concluded that a third
phase (“oriented mesophase”) exists in these fibers. All
these results agree with the concepts of crystal-like
bandles.

Under a load or upon heating, the bandles decom-
pose reversibly and the weight fraction of macromole-
cule segments in amorphous interlayers increases.
Thus, the variation in the relaxation spectrum as a kind
of the nonlinearity of viscoelastic properties of a highly
oriented polymer can be explained by the reversible
decomposition of the bandles located in amorphous
interlayers. On the whole, this interpretation of nonlin-
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Fig. 4. Model of the supramolecular structure of highly ori-
ented amorphous–crystalline polymers: (1) regions of fold-
ing macromolecules, which become destroyed when treated
by fuming nitric acid [7]; (2) macromolecules in crystal-
lites; (3) region of a dense crystal-like bandle in an amor-
phous interlayer; and (4) loose amorphous interlayers. The
values of the long periods, crystallite sizes, and amorphous-
interlayer sizes for low-density polyethylene data are taken
from [7].
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early inherited viscoelasticity is consistent with the
results of other studies of the mechanical behavior of
highly oriented fibers made of amorphous–crystalline
polymers, specifically, recovery deformation processes
that occur after complete or partial unloading [4] and
after high-rate tension [5]. In addition, the specific role
of the bandles described above is at least consistent
with the deformation behavior of oriented amorphous–
crystalline polymers, namely, the observed delay of
recovery deformation processes with respect to the pro-
cesses predicted by Eq. (1) [4], the dependence of the
measured elastic modulus on the strain rate [5], and the
possibility of taking into account the relaxation contri-
butions at high strain rates [5].

The leading role of the bandle decomposition is also
confirmed by the estimation of the potential barriers for
macromolecular mobility, which controls the processes
of creep and relaxation. The estimations were per-
formed using the Arrhenius–Boltzmann formula

(8)Uσ RT τσ/τ0 or Uεln RT τε/τ0,ln= =
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Fig. 5. Dependences of (a) the creep activation energy on
stress and (b) the stress-relaxation activation energy on
strain for polyfilament fibers of polyethylene terephthalate
at various temperatures: (1) 20, (2) 40, (3) 60, and (4) 80°C.
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where τ0 is the average statistical delay time determined
from a family of the compliance curves measured under
conditions of creep [3], τε is the average statistical
relaxation time determined from a family of the time
dependences of the relaxation modulus [3], τ0 is a con-
stant, T is the Kelvin temperature, and R is the universal
gas constant.

As can be seen from Fig. 5, the stress and strain
dependences of the potential barriers calculated by
Eq. (8) can be considered linear:

(9)

where Eτ = 0.5(E0 + E∞) is the average relaxation mod-
ulus.

At τ0 = 10–13 s, we have the following numerical val-
ues of the energy constants: U0 = 100 kJ/mol and γ ≈
0.4 nm3. These values correspond to the segment
mobility on the molecular scale of a structure, which
does not contradict the assumed presence of crystal-like
bandles in intercrystallite amorphous layers.

Let us estimate the size of elementary carriers of
relaxation processes. The long periods in highly ori-
ented amorphous–crystalline polymers with soft chains
usually range from 10 to 20 nm, reaching 30–50 nm
rather rarely at sufficiently high treatment tempera-
tures. Figure 6 shows the most typical relations
between the large-period size and the longitudinal sizes
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Fig. 6. Relations between the long period L and (a) the lon-
gitudinal crystallite size Lc and (b) the longitudinal amor-
phous-zone size La for (1) polyethylene terephthalate,
(2) polyamide-6, and (3) polyethylene [11].
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of crystallites and amorphous regions for three poly-
mers [11]; the length of amorphous interlayers in poly-
ethylene terephthalate fibers varies from 5 to 8 nm. For
quantitative estimations, we take their average value
(6.5 nm). Then, the cross sectional area of the carrier is
~0.4/6.5 ≈ 0.06 nm2, and it is ~0.25 nm across, which
agrees in order of magnitude with the intermolecular
distances in the crystal lattice and amorphous interlay-
ers. Thus, the elementary carrier of the relaxation pro-
cesses is likely to be a 5–8 nm segment of a macromol-
ecule, which seems reasonable from the physical view-
point. The number of monomeric units that are
cooperatively involved in the relaxation processes
depends on the length of the projection of a unit onto
the texture axis. In particular, for polyethylene tereph-
thalate, this length (lattice parameter c) is ~1.075 nm
[12]. Then, a segment mobile element contains five to
seven monomeric units.

We now analyze the activation energy obtained. One
monomeric unit of polyethylene terephthalate has
24 atoms along the chain of a macromolecule (with
allowance for the fact that each benzene ring has 6
atoms). Usually, the energy of intermolecular van der
Waals interaction is 0.1–1 kJ/mol [13]. Then, no less
than 100 atomic contacts (or no less than 4–5 mono-
meric units) take part simultaneously in the relaxation
motion, which agrees satisfactorily with the size of the
cooperative element estimated from the activation vol-
ume γ.

The estimates of the kinetic characteristics agree
with the assumption that the reversible decomposition
of the crystal-like bandles plays a leading role in the
micromechanism of the observed effect of macrodefor-
mation on the relaxation spectra.
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Abstract—A one-dimensional macroscopic model is used to analyze the plastic deformation of materials with-
out coating and with a plastic hardening coating or a plastic nonhardening coating at friction. The calculations
show that mechanical vibrations can be excited in a tribological system and that their frequency decreases
sharply when going from elastic to plastic deformation. One of the causes of the development of plastic defor-
mation in the surface layer and in the sublayer of the material under a hard coating is found to be a decrease in
the elastic properties of the material because of frictional heating. An intense plastic shear in the material under
the hard coating can cause its failure due to incompatible strains of the coating and the base. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Friction is a widely occurring physicomechanical
process that takes place when surfaces are in contact.
For example, it occurs when we try to keep our balance
on a slippery road, to repair our old car using wonder-
working additives for lubricants, to choose the material
for parts of a designed mechanism, and so on. Most
processes that are caused by the interaction and motion
of system elements obey fundamental laws, which can
be used to predict the behavior of the system; however,
friction induces an uncertainty that depends on many
factors connected by relations that can be determined
only experimentally. To take into account all the rela-
tions characterizing the behavior of friction pairs, one
has to use the achievements of surface physics, the
mechanics of contact phenomena, strength physics,
plasticity physics, mechanochemistry, electrochemis-
try, and many other sciences. Not all the explicit and
implicit factors can be taken into account. Therefore,
the most realistic approach to understanding the pro-
cesses of friction and wear is based on studying various
aspects of this phenomenon when basic parameters that
determine the state of a certain tribological pair can be
separated.

From the physical standpoint, the most important
problem is the problem of degradation of the surface
layer of a material; its solution should be based on
understanding the leading role of plastic deformation at
friction and the related factors (mainly dynamic pro-
cesses). The dynamic character of friction manifests
itself in macroscopic mechanical vibrations that appear
in a friction system upon sliding. It was found in [1]
that one of the causes of the formation of a deformed
near-surface layer at friction is mechanical and thermal
1063-7842/04/4911- $26.00 © 21457
excitations that propagate deep into the medium and are
caused by the transition of a friction system into a self-
vibrating state with a large amplitude of mechanical
vibrations. In this case, temperature oscillations occur
at the friction surface and in a subsurface layer; as a
result, thermal cyclic creep and phase and structural
transformations may develop in the material.

Interest in dynamic processes has increased in the
past few years, and they are extensively studied both
experimentally and theoretically. The purpose is to
study the causes of vibrations in a tribological system,
the conditions of stability of various vibration modes,
and the critical values of parameters and their combina-
tions that change the system into a specific friction
mode.

During contact interaction, especially in the case of
dry friction, quasi-periodic or periodic changes in the
velocity of the relative motion of the surfaces are
observed experimentally. On the macroscale, this
behavior manifests itself in the form of relaxation or
quasi-harmonic friction self-sustained vibrations.
There are several approaches to explaining the causes
of vibrations in a friction system. In all of them, the
development of vibrations is related to changes in the
friction coefficient in frictional interaction. In one of
the approaches [2], the occurrence of vibrations is
explained by the descending nonlinear dependence of
the friction coefficient on the sliding velocity. In
another model [3], the friction force is considered
velocity-independent and self-sustained friction vibra-
tions are assumed to be developed because of a positive
difference between the static friction force and the
kinetic friction force. In the third approach [4], both a
positive difference between the static and kinetic fric-
tion forces and a change in the friction force with
004 MAIK “Nauka/Interperiodica”
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changing velocity are taken into account. It is shown
experimentally that rheological phenomena in the con-
tact region play a significant role in the appearance of
friction self-sustained vibrations [5]. In particular, the
appearance of friction self-sustained vibrations is
related to temperature-induced changes in the friction
characteristics [6]. This model assumes that, in the
stage of relative sliding in a vibration cycle, the heating
of friction surfaces results in a decrease in the friction
coefficient and that, at the stage of relative rest, the sur-
faces cool down and the friction coefficient increases.
Indeed, a decrease in the friction coefficient with
increasing temperature is observed experimentally.

The dynamic character of friction manifests itself in
not only the macro- but also the microscale. On the
microscale, a change in the friction force is caused by
stick-slip motion. In this case, the relative motion of the
two surfaces is discontinuous and consists of sequential
stick–slip cycles [7]. The mechanism of this oscillatory
motion of surfaces in friction has not yet been under-
stood; however, most researchers believe that it is also
related to the dependence of the friction coefficient on
the sliding velocity [8].

MODEL OF A TRIBOLOGICAL CONTACT

In this work, we analyze the dynamic behavior of a
tribological contact, which specifies the viscoelastic
deformation of the surface layers at friction, using a
one-dimensional macroscopic model. The strain of the
subsurface layers and the propagation of strain into the
bulk of a material are determined with allowance for
changes in its properties due to the strain hardening and
frictional heating.

From the macroscopic standpoint, the structure and
properties of the material formed within a contact spot
are virtually uniform in the direction parallel to the fric-
tion surface and vary only with the distance from this
surface. Therefore, to study shear strain in the surface
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Fig. 1. System being simulated.
layer in the simplest case, we can restrict ourselves to
one-dimensional approximation. The model to be
developed is macroscopic not from the standpoint of a
spatial scale: this model does not take into account the
structure and deformation mechanism of the medium
under study and deals only with its macroscopic char-
acteristics.

Frictional interaction was taken into account within
a contact spot, which is represented as a surface
microasperity consisting of a number of layers having
different physicomechanical properties in the general
case (Fig. 1). The response of the system to an external
action is determined by the properties of the layers
forming the microasperity and the laws of interaction
between them. This approach allows us to describe and
to arbitrarily specify a property gradient in the microas-
perity and to design this microasperity from several
materials with different properties. The layers are
assumed to be absolutely rigid and to have the same
length L (along the surface) and thickness h1. Compres-
sion induced by a contact (normal) pressure Pcont is not
taken into account explicitly in the model. The normal
stress is assumed to be constant over the whole height
of the microasperity and equal to the contact pressure.
We take into account the normal stress when calculat-
ing the plasticity criterion.

A shear that can be induced by a friction force in the
microasperity is realized in the model by shifting the
layers with respect to each other parallel to the friction
surface. The elementary shear carrier is a pair of layers.
Each layer is assumed to interact only with the two
nearest neighbors. To find the shear stress operating in
a pair of layers, we use a viscoelastic response function,
which is similar to the function used in [9]. It has the
following parameters: elastic and “plastic” moduli, the
maximum elastic strain, and an equilibrium shear. The
parameters of the response function are varied with the
deformation history and the temperature using a special
procedure.

The material of each layer is characterized by a den-
sity ρ, specific heat c, thermal conductivity λ, shear
modulus G, plastic shear modulus Gpl, and yield
strength upon uniaxial tension Y. Moreover, each layer
has a shift x and a translational velocity V, which are
found by integrating a set of classical equations of
motion for the whole system of the layers expressed in
terms of stresses (1)–(3) with boundary condition (4):

(1)

(2)

(3)

ρ1h
dVn

1

dt
--------- τn

fr τn
1 2, ,+=

ρih
dVn

i

dt
--------- τn

i i 1–, τn
i i 1+, ,+=

dxn
i

dt
-------- Vn

i ,=
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(4)

where i is the number of a layer (i = 1, 2, …, k –1; index
1 is referred to the upper layer; and k is the number of

layers),  = Pµn is the friction force-induced shear
stress at the surface, and µn is the friction coefficient at
the nth time step.

Equation (1) is written for the upper layer of the
microasperity. The upper layer slides on a counterbody
that moves at a constant velocity Vc. Boundary condi-
tion (4) is the condition of fixation of the lower layer on
the substrate.

At the beginning of calculation, the properties of a
pair of layers are taken to be the average properties of
its elements. During simulation, the mechanical proper-
ties of the pair vary with temperature.

To find the temperature field in the microasperity,
we solve a one-dimensional heat problem that is similar
to that in [10]. The choice of boundary conditions
strongly affects the solution of the heat problem and,
hence, the behavior of the friction system. As a rule, we
use the condition of ideal thermal insulation to calcu-
late the temperature field in the microasperity using the
one-dimensional approximation and to represent the
region to be simulated in the form of a thin rod for the
microasperity side that is opposite to the contact sur-
face. In our case, the penetration depth of thermal per-
turbation exceeds the microasperity height because of
long simulation times and taking into account the cyclic
character of frictional interaction. Therefore, the
boundary condition of ideal thermal insulation is
invalid for the base of the microasperity. One of the
methods to solve the problem is to use the boundary
condition in the form

where Tbulk(hsmp, t) is the average temperature at a depth
z = hsmp.

We find Tbulk(hsmp, t) from the solution of the prob-
lem of frictional heating of the sample for a larger depth
with a larger spatial grid step, disregarding the discrete
character of heat release at the surface during friction.
To calculate this temperature, the intensity of heat
release at the contact surface was determined from the
nominal rather than contact pressure. Thus, the temper-
ature of the microasperity base is related to the average
temperature of the sample at a distance hsmp from the
surface, which increases monotonically during friction.
This is schematically shown in Fig. 2. The application
of the above boundary condition restricts heating in the
microasperity, which corresponds to intense heat
removal to the neighboring unheated regions near the
contact spot.

To calculate the viscoelastic strain, we use the defor-
mation criterion of plasticity. The material in a pair of
neighboring layers is thought to undergo viscoelastic

dxk
i

dt
-------- 0,=

τn
fr

T hsmp t,( ) Tbulk hsmp t,( ),=
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deformation when the strain at the nth time step
exceeds the maximum elastic strain for the current tem-

perature in this pair; i.e., when  > ( ),

where  is the temperature in the pair of layers i

and i + 1. The value of ( ) depends on the
temperature and the deformation history of the pair of
layers.

Before simulation, we calculated the reference val-
ues of the maximum elastic strain for each pair of layers

over the entire temperature range (T i, i + 1).

Although the model is one-dimensional, we found
plasticity conditions using the Mises criterion for plane
strain (after Taybor [11]). The application of this crite-
rion is grounded on the fact that two stresses (normal
and shear) are present in the microasperity. With this
criterion, we can take into account the contribution of
the normal stress in terms of the one-dimensional for-
mulation of the problem. Based on the above consider-
ations, we determine the maximum elastic strain

(T i, i + 1) at a given temperature from the expres-
sion

(5)

The value of (T i, i + 1) is used in the response
function to calculate the dynamic behavior of the sys-
tem when the material in a pair of layers has not under-
gone plastic shear until a given time. The response
function relates the shear strain to the shear stress for a
pair of layers and can describe the viscoelastic strain for
both hardening and nonhardening materials. The

γn
i i 1+, γnel

i i 1+, Tn
i i 1+,

Tn
i i 1+,

γnel
i i 1+, Tn

i i 1+,

γ0el
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γ0el
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γ0el
i i 1+, Ti i 1+,( )

Y Ti i 1+,( )( )2
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3Gi i 1+, Ti i 1+,( )
--------------------------------------------------.=
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m
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z

T(hsmp, t) = Tbulk(hsmp, t)
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h s

m
p

T(t)

Tbulk(t) = T0

Fig. 2. Schematic diagram and the boundary conditions for
solving the heat problem.
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parameters of the response-function may vary as a
result of heating and due to plastic strain of the mate-
rial.

CALCULATION OF THE INTERACTION 
OF A SINGLE MICROASPERITY 

DURING FRICTION

The microasperity consists of 150 1-µm-thick lay-
ers. When the microasperity has a coating, the corre-
sponding number of its upper layers of thickness hcoat
have properties other than those of the base material.
The material of a hard coating is taken to be ideally
elastic with a shear modulus that is twice as large as the
shear modulus of the base material. The material of a
plastic coating has a yield strength that is half that of the
base material. Other properties of the coatings are iden-
tical to the properties of the base material, which are
chosen to be similar to the properties of 12Kh18N10T
austenitic steel.

Our purpose was to analyze the model material
rather than simulate the evolution of a certain material
at friction. Therefore, for simplicity, we assumed that
the mechanical properties decrease linearly with
increasing temperature. We also assumed that, at a tem-
perature of 1300°C (which is close to the melting tem-
perature), the shear modulus, the plastic shear modulus,
and the yield strength are 10% of their values at 20°C.

An elementary event of interaction of the microas-
perity is simulated at counterbody sliding velocity Vc =
1 m/s, coefficient of sliding friction µ = 0.5, contact
pressure Pcont = 162 MPa, nominal pressure P =
7.5 MPa, and initial temperature T0 = 20°C.

Before simulation, the sample is shifted from an ini-
tial state to an equilibrium position; that is, the layers
are displaced with respect to each other so that the elas-
tic shear stress balances the friction force-induced
stress. This provides a zero velocity at the initial instant

0.2

0.1

0

–0.1

0 40 80 120
b × 106, m

(V/Vc) × 103

1

2

Fig. 3. Ratio of the layer velocity V in the sample to the
counterbody velocity Vc (b is the distance from the friction
surface): (1) before the beginning of plastic deformation
and (2) at a plastic strain of ≈0.6% at the surface.
and the absence of plastic deformation at the interface
with the rigid base during the calculation. In so doing,
we excluded the effect of fixation of the lower part of
the sample on the simulation results.

The time of interaction of the microasperity with the
counterbody tcont is determined from the relation
between the contact spot size L in the sliding direction
and the counterbody velocity Vc: tcont = L/Vc. Thus,
when simulating, the contact spot size is specified by
the duration of the interaction of the microasperity with
the counterbody.

We calculated the following systems: an uncoated
material, a material with a hard coating, a material with
a plastic strain-hardening coating, and a material with a
plastic nonhardening coating.

The simulation shows that, at the initial instant, the
sample is elastically deformed under the action of the
friction force; further sliding results in heat release at
the friction surface and heating of the microasperity.
This heating is accompanied by a decrease in the elastic
properties (softening) of the surface-layer material.
However, for a short contact time, the increase in the
temperature is insignificant, and the degree of softening
is insufficient for plastic deformation. Curve 1 in Fig. 3
shows the velocity field of the system at a certain time
when the strain is still elastic. Plastic deformation is
absent in this simulation stage, since the increase in the
temperature does not cause substantial changes in the
mechanical properties of the material. At this instant,
the system exhibits quasi-periodic vibrations at a fre-
quency of several megahertz. The vibrations result from
different mechanical properties of the surface layers
due to the temperature gradient. Moreover, the initial
displacement of the sample, which balances the friction
force, affects the vibrations.

Increasing the temperature to a certain critical value
at which the friction-induced tangential stresses reach
the yield stress causes the plastic shear of the surface
layers. As the sample is heated, plastic deformation
involves new surface layers. The dynamic response of
the system is interesting in this case. Plastic deforma-
tion generates vibrations in the system whose fre-
quency is about an order of magnitude lower than the
frequency observed upon elastic deformation (Fig. 3,
curve 2). These vibrations are unstable because the
plastic shear in the surface layer occurs stepwise rather
than continuously. Every new plastic-deformation
event causes generation of an elastic shear wave in the
underlying material, which propagates deep into the
bulk at a velocity corresponding to that of the trans-
verse sound wave. Then, the elastic shear wave formed
continues to move along the microasperity, reflecting
periodically from the rigid base and the surface. The
interference of all the waves induced by plastic shears
gives the pattern shown in Fig. 3 (curve 2). The vibra-
tion frequency turns out to be approximately equal to
the tribosystem eigenfrequency.
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
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Vibrations of this type were experimentally
observed as the vibrations of a friction unit or as repet-
itive sound signals. The study of acoustic emission
indicates that a decrease in the acoustic-radiation fre-
quency is also related to the beginning of plastic defor-
mation. It should be noted that, in a real tribological
conjugation, the frequencies of such vibrations are sev-
eral orders of magnitude lower than the calculated ones,
since the sizes of real tribosystems are several orders of
magnitude larger than those of the system simulated.

Another manifestation of an increase in the temper-
ature of the surface layers is the nonlinear depth depen-
dence of the yield strength of the material. It can be
tracked in our calculations using the current value of
the maximum elastic strain γel, which is proportional to
the yield strength. Figure 4 shows the change in the
ratio of the current maximum elastic strain to its initial
value with increasing the distance from the surface.
This behavior of γel is controlled by strain hardening of
the material during plastic deformation. On the one
hand, heated and plastically deformed layers become
softened, and, on the other hand, the overlying layers
become hardened. The minimum ratio γel/γ0 el is speci-
fied by the viscoelastic properties of the material and
the limiting temperature above which the friction force
induces plastic deformation in the surface layers. To
decrease the simulation time, we chose the initial tem-
perature and normal pressure such that plastic deforma-
tion started at a very small increase in the temperature
in the calculation. Therefore, the minimum is low. Fig-
ure 5 shows the shear of a relatively thick copper layer
on a sample (block) as a result of a sharp increase in the
load at friction.1 One of us observed a similar effect of
a metal shear on the brake block of a railway car: it was
covered with metal layers removed from a railway
wheel as a result of emergency braking. This phenom-
enon and the shear shown in Fig. 5 can be explained
using the curves of Fig. 4. In the steady-state friction
mode, the shear rate decreases gradually to zero with
the depth due to a plastic flow. A sharp increase in the
load on the friction surface (e.g., emergency braking)
causes an increase in the stresses in the underlying lay-
ers, and they exceed the yield stress, which decreases
upon heating during the previous friction. In this case,
the velocity of all the surface layers can increase step-
wise so that the softest layers shift with respect to the
base material at a certain depth.

SIMULATION OF FRICTION IN COATED 
MATERIALS

The plastic deformation caused by a decrease in the
mechanical properties of the material can lead to failure
of hard wear-resistant coatings. The results of friction
tests of samples with coatings produced by nitrogen
ion-beam treatment are given in [12]. Layers 3–6 µm
thick did not give a substantial increase in the wear

1 This photograph is presented courtesy of S.Yu. Tarasov.
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resistance of the steel surface under the conditions of
dry-friction contact interaction. During the tests, the
modified layer failed in the first meters of the sliding
distance and the wear intensity reached the level of the
unimplanted steel. Thicker hard coatings have a higher
wear resistance.

Our calculations indicate that plastic deformation,
which is mainly caused by the softening of the base
material because of frictional heating, develops under a
hard layer. If the time of frictional interaction in the
contact spot exceeds the certain critical time it takes for
the base material to be softened, an intense plastic shear
occurs in the sublayer under the coating. This shear
may result in the failure of the coating because of defor-
mation incompatibility between the hard layer and the
base material. If the coating thickness provides a signif-
icant decrease in the temperature and stress in the sub-
layer so that they do not cause a plastic flow of the base
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Fig. 4. Ratio of the current maximum elastic strain γel to its
initial value in the sample γ0 el at different times: (1) 1.6 ×
10–5, (2) 1 × 10–4, and (3) 2 × 10–4 s.

Fig. 5. Shear of the surface layers in copper induced by a
sharp increase in the normal (contact) load at friction.
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material, the coating does not fail. Otherwise, the plas-
tic deformation under the hard coating would be incom-
patible with the elastic deformation of the coating,
which causes cracking in the latter.

The friction simulation of a coating made of an ide-
ally plastic material indicates that a plastic shear occurs
only in the upper pair of elements irrespective of the
coating thickness (Fig. 6). Until the beginning of plastic
flow (Fig, 6, curve 1), the temperature in the upper layer
increases. As the temperature increases, the coating
material becomes softened; when the flow stress
becomes lower than the shear stress caused by the fric-
tion force, the upper layer is entrained by the counter-
body and plastic shear develops. In time, the plastic
shear becomes very high (Fig. 6, curves 2, 3). After the
beginning of the plastic flow, the velocity of the upper
layer is not constant. It oscillates with a certain ampli-
tude about an average value, which is ≈70% of the
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Fig. 6. Dependence of the shear plastic strain γ on the dis-
tance b from the friction surface in a sample with a 20-µm-
thick nonhardening plastic coating at different times:
(1) 1.6 × 10–5, (2) 2.5 × 10–5, and (3) 5 × 10–5 s.

0.25

0 10 20 30 40

0.20

0.15

0.10

0.05

0
1

2

3

b × 106, m

γ, %

Fig. 7. Dependence of the shear plastic strain γ on the dis-
tance b from the friction surface in a steel sample with a
20-µm-thick hardening plastic coating at different times:
(1) 1.6 × 10–5, (2) 5 × 10–5, and (3) 1.5 × 10–4 s.
counterbody velocity. Correspondingly, the velocity of
sliding between the microasperity and counterbody is
significantly lower than its initial value. Therefore, the
heat release at the surface decreases several times and
the surface temperature decreases. It should be noted
that the plastic shear does not terminate after the tem-
perature decreases below the value at which softening
of the coating begins. This behavior is related to the
dynamic character of loading that occurs after the
beginning of the plastic flow (see above). Figure 7
shows plastic-deformation curves at various times for a
hardening plastic coating. The curves are similar to the
behavior of the uncoated plastic material described in
the previous section. Plastic deformation begins on the
surface, and the whole coating becomes plastic in the
course of time. The less plastic base remains elastic.
The temperature in the sample increases monotoni-
cally.

CONCLUSIONS

(1) A comparison of the simulation results with
experiment shows that, despite its simplicity, the model
proposed can correctly describe the behavior of gradi-
ent materials during frictional interaction. It can
describe the character of dynamic excitations that
develop as a result of the interaction of contacting sur-
faces in the contact spots and are accompanied by high-
frequency vibrations. As follows from the model calcu-
lations, one of the possible causes of the vibrations,
which manifest themselves in real friction pairs in the
form of macrovibrations and sound, can be a plastic
shear of the surface layer in the contact spots.

(2) One of the main results is the fact that the ther-
mal conditions in the surface layer are a key factor that
determines the behavior of a tribosystem. Changes in
the tribosystem parameters, such as the mechanical
properties of the material, loading conditions, and the
contact geometry, affect the plastic deformation of the
surface layer both directly and indirectly because of a
change in the thermal conditions in the contact zone.
The same thermal processes are substantially responsi-
ble for the failure of hard coatings, since an incompati-
ble deformation develops in the hard layer and the base
material as a result of the softening of the base material
due to frictional heating. This deformation leads to fail-
ure of the coating.

(3) The friction simulation of a material with a plas-
tic coating shows that hardening and nonhardening
coatings behave differently. In the case of a hardening
material, plastic deformation develops throughout the
coating. In the case of a nonhardening coating, plastic
deformation is localized in a thin surface layer and
reaches very high values (1000% or more) during the
contact. After the beginning of intense plastic deforma-
tion in the plastic layer, the friction-surface temperature
decreases substantially. Thus, the plastic nonhardening
layer serves as a solid lubricant and decreases strongly
frictional heating.
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
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Abstract—A model of equivalent reflectors proposed for crystal-like structure makes it possible to obtain the
dispersion characteristic in explicit form. The similarity of the dispersion characteristics of waveguides and
crystal-like structures is demonstrated. A fundamental solution is proposed for improving the selectivity of such
structures. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Artificial periodic structures similar to natural crys-
tals have become objects of extensive study in recent
years. These structures form the basis for various new
(primarily nanoelectronic) integrated signal processing
devices. Among such crystal-like structures (CSs), con-
siderable advances have been made in the field of semi-
conducting superlattices (SLs) for electrons as de Bro-
glie waves, photonic crystals (PtCs) for electromag-
netic waves, and phonon crystals (PnCs) for elastic
waves. In the frequency bands formed in crystals and
CSs due to constructive interference of reflected waves
(forbidden energy bands for electrons and forbidden
gaps for photons and phonons), waves cannot propa-
gate. Such a frequency filtration makes it possible to
control the transmission of waves in CSs, which
extends the potential of signal processing methods.

Simulation of crystals and CSs is reduced to solving
the wave equation with periodic boundary conditions
mainly using the matrix method [1] and finite-differ-
ence time-demain analysis [2]. The relatively simple
models proposed recently [3, 4] are based on analysis
of the Airy formulas for the coefficients of reflection
and transmission of the optical layer and on the analogy
between the dispersion relation for a PtC and a
pseudoquantum particle, respectively, make it possible
to establish important features in the spectral character-
istics of PtCs.

In this study, we propose a general model of equiv-
alent reflectors for CSs, which provides quite accurate
(and even explicit) expressions for dispersion charac-
teristics and permits a visual analysis and optimization
of constructive solutions for CSs. This model serves as
the basis of a method for improving the CS selectivity.

Principal features of CSs are manifested in one-
dimensional structures. Let us consider the dispersion
characteristics of such CSs.
1063-7842/04/4911- $26.00 © 21464
DISPERSION CHARACTERISTICS OF CS: 
MODEL OF EQUIVALENT REFLECTORS

The dispersion characteristics of PtCs and PnCs
formed by layers with alternating refractive indices and
with alternating acoustic properties, respectively, for
the normal incidence of a wave have the form [1, 5, 6]

(1)

where K is the Bloch wave number; Λ is the period of
the structure; a and b are the thicknesses of the layers;
k1, 2 are the wave numbers corresponding to the layers;
and χ = k1/k2 = n1/n2 (n1, 2 are the refractive indices of
the layer) for PtCs and χ = c1k1/c2k2 (c1, 2 are the elastic
moduli of the layers) for PnCs.

It should be noted that the dispersion characteristic
for PnCs in recent publications [3, 7] contains an error
due to the neglect of the elastic moduli.

The dispersion characteristic of a SL formed by
alternating potential barriers and wells in the case of
electron tunneling is defined as [8]

(2)

where k1 = /", E < V; k2 = /", m is
the effective electron mass, V is the height of potential
barriers, E is the electron energy, " = h/2π, h is the
Planck constant; a is the barrier width, b is the well
width, and χ = k1/k2.

For different effective electron masses in the region
of a barrier and a well (m1 and m2, respectively), we
have χ = k1m2/k2m1 in view of the difference in the
boundary conditions for these regions [9].

If we use the general expression for k1, k1 =

/", k1 is imaginary for E < V and formula
(2) follows from Eq. (1) after the substitution of imagi-

KΛcos k1a k2bcoscos
1 χ2+

2χ
-------------- k1a k2b,sinsin–=

KΛcos k1a k2bcoscosh
1 χ2–

2χ
-------------- k1a k2b,sinsinh–=

2m V E–( ) 2mE

2m E V–( )
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nary k1. Thus, Eq. (1) establishes the implicit depen-
dence of the dispersion characteristic for all CSs con-
sidered here.

We will prove that quantity χ is equal to the direct or
inverse ratio of impedances Z1 and Z2 of the layers. For

optical waves, we have χ = n1/n2 = Z2/Z1 = . For elas-
tic waves, Z = vρ, where v is the velocity and ρ is the

density of the medium. Since v  = , we have χ =
c1v 2/c2v 1 = Z1/Z2 = rZ. For electron waves [10, 11], Z =

±2 , where the plus and minus signs cor-
respond to the positive and negative directions of wave
propagation. For E < V, the impedance is imaginary,
which corresponds to electron tunneling in a bounded
medium (potential barrier); for E > V, the impedance is
real, which corresponds to passage of electrons above
the barrier. Since Z = ±2"k/m, for electron waves we
have χ = Z1/Z2 = rZ.

Thus, the first cofactor in the second term on the
right-hand side of Eq. (1), as well as the coefficient of
reflection from the interface between the layers with
impedances Z1 and Z2, is determined by the ratio rZ of
impedances.

We transform Eq. (1) for real-valued k1 and Z1 by
adding the term sink1asink2b to the right-hand side of
Eq. (1) and subtracting it,

(3)

where D = n1a + n2b, k = ω/c; for optical waves, n1, 2 are
the refractive indices of the layers and c is the velocity
of light in vacuum; for elastic and electron waves,
quantities n1, 2 are analogous to refractive indices n1, 2 =
c/v 1, 2, c = (v 1 + v 2)/2.

Disregarding the second term on the right-hand side
of Eq. (3) and the periodicity of function cosx, we have
KΛ = kD. In this case, the dispersion characteristic
defined by expression ω = cK/〈n〉 , where 〈n〉  = (n1a +
n2b)/(a + b) is the averaged refractive index, corre-
sponds to the case when reflections within the structure
are disregarded. Thus, the second term on the right-
hand side of Eq. (3) is associated with the effect of
reflections.

In contrast to optical and electron waves, for elastic
waves it is possible that v 1 ≠ v 2 and rZ = 1 in some cases
(if v 1/v 2 = ρ2/ρ1). Reflections and, accordingly, the sec-
ond term in Eq. (3) are absent, and a band diagram is
not formed.

Let us see how this term is connected with the coef-
ficients of reflection from the layers (see the inset to
Fig. 1). The arrows denote the sources of reflection at
the boundaries of the layers; r = |rZ – 1|/(rZ + 1) is the
modulus of the coefficient of reflection from the layer
boundary. The direction of the arrows corresponds to
rZ > 1. We halve the sources and sum the halves, reduc-

rZ
1–

c/ρ

2 E V–( )/m

KΛcos kDcos
rZ 1–( )2

2rZ

-------------------- k1a k2b,sinsin–=
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ing then to the centers of the layers (sources r1, 2 in
Fig. 1): r1 = 0.5rexp(ik1a) – 0.5rexp(–ik1a) = irsink1a
and r2 = –irsink2b. The product of the reflection coeffi-
cients is r1r2 = r2sink1asink2b. Taking this into account,
we obtain

(4)

where P = 4r1r2/(1 – r2).

In the vicinity of the boundaries of forbidden gaps,
we have KΛ ≈ mπ, where m = 1, 2, … is the number of
the forbidden gap. We transform Eq. (4) as follows:

In the allowed bands, we have (kD – mπ)2 + (–1)mP ≥
0 and

(5)

Since KΛ = mπ + ix and (kD – mπ)2 + (–1)mP < 0 in
forbidden gaps, we have

(6)

Dependences (5) and (6) correctly approximate
Eq. (1) not only in the vicinity of the forbidden gap
boundaries, but also in the entire range of K values. For
example, for rZ = 2.7 (which corresponds to n1 = 1.5 and
n2 = 4 for PtCs) and k2b/k1a = 3 (alternation of layers
with optical thickness 3λ0/8 and λ0/8, where λ0 is the
wavelength at the mean frequency of the first forbidden

KΛcos kD P/2,–cos=

KΛ mπ–( )cos kD mπ–( )cos 1–( )mP/2–=

≈ 1 (kD– mπ)2/2– 1–( )mP/2–

≈ kD mπ–( )2 1–( )mP+ .cos

kD mπ–( )2 KΛ mπ–( )2 1–( )mP.–≈

x – kD mπ–( )2 1–( )mP– .≈

0.30

0.25
3π

E, eV

K

0.35

1

2

3

4

r1r
r r2

r

Z2 Z2 Z1Z1

Λ

Fig. 1. Dispersion characteristics of a SL. Curves 1, 2 and
3, 4 represent the real and imaginary parts of K in accor-
dance with relations (1), (5) and (1), (6). The real part of K
is expressed in units of 1/Λ and the imaginary part, in arbi-
trary units.
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gap), the plots for dispersion characteristics calculated
by formulas (1) and (5), (6) coincide.

Figure 1 shows the dispersion characteristics of a
SL. The SL is formed by AlxGa1 – xAs and GaAs layers
with a thickness equal to 30 GaAs lattice constants in
the [100] direction (equal to 2.82665 Å [12]); V =
0.25 eV; m1 = (0.0665 + 0.0835x)m0 [13]; m2 =
0.0665m0, where m0 is the electron rest mass; V and x
are connected via the relation V = 0.7731x [14]. The
approximation is also quite admissible at the beginning
of the dependence, where Z1 ≈ 0 and r ≈ 1. The maximal
relative error in dependences 2 and 4 is less than 2%.

DISPERSION CHARACTERISTICS 
WITH EXPLICIT DEPENDENCE

The maximal width of forbidden gaps corresponds
to quarter-wave layers k1a = k2b. In this case, P =
4r2sin2k1a/(1 – r2) ≈ 4r2. As a result of simplification of
relations (5) and (6), the dispersion characteristics for
PtCs and PnCs become explicit. For allowed bands, we
have

(7)

(8)

where m = 1, 3, … (forbidden gaps with even m are
absent); the minus sign corresponds to the first allowed
band and high-frequency halves of the next allowed
bands, while the plus sign corresponds to their low-fre-
quency halves. The value of m in a high-frequency half
of the allowed band increases by two as compared to its

kD mπ–( )2 KΛ mπ–( )2 4r2,+≈

ω c
D
---- mπ KΛ mπ–( )2 4r2++−[ ] ,≈

π/2

π

ω

K

1

2

3

4

π

Fig. 2. Dispersion characteristics of a CS. Curves 1, 2 and
3, 4 represent the real and imaginary parts of K in accor-
dance with relations (1), (8) and (1), (9); rZ = 2.7 (quarter-
wave layers). Quantity ω is expressed in units of c/Λ; the
real part of K is expressed in units of 1/Λ and the imaginary
part, in arbitrary units.
value in the low-frequency half. In forbidden gaps, we
have

(9)

The dispersion characteristics of a CS shown in
Fig. 2 illustrate good agreement between Eqs. (8), (9)
and (1).

It should be noted that dependence (7) corresponds
to the dispersion characteristic of a waveguide, k2 =

K2 + , where K is the longitudinal wave number in
the waveguide, Km is the cutoff wave number, and m is
the number of the waveguide mode. Such a correspon-
dence is due to the universal nature of the physical phe-
nomena determining the characteristics of periodic
structures and waveguides, i.e., multibeam interference
of reflected waves. The interference is constructive near
forbidden gap boundaries and in the forbidden gaps
themselves of the CS as well as in the vicinity of the
cutoff frequencies of the waveguide. The latter frequen-
cies correspond to the high-frequency boundaries of the
forbidden gap. Common features of the spectral charac-
teristics for waveguides and CSs may serve as the basis
for application of model concepts and structural fea-
tures of CSs similar to those used for waveguide struc-
tures.

IMPROVEMENT OF CS SELECTIVITY IN ODD 
OR EVEN ALLOWED BANDS

In the formation of PtC structures, use is made of the
solutions developed for multilayer optical filters. One
of such designs is based on periodic repetition of three-
layer sections with alternating refractive indices of the
layers, a quarter-wave inner layer, and outer layers with
an optical thickness of λ0/8 (λ0/8 layer) [15]. As a
result, a structure with quarter-wave inner layers and
λ0/8 outer layers is formed. Such a structure can also be
used for other CSs.

Let us suppose that rZ > 1 as before. A CS with λ0/8
outer layers has an elevated selectivity in odd allowed
bands as compared to a CS with quarter-wave outer lay-
ers if the impedance of the external medium is Z0 < Z1
or Z0 > Z2 (e.g., Z0 = Z1, 2), while the impedance of the
outer layers Zb = Z1, 2, respectively, and in the even lay-
ers if Z0 > Z1 or Z0 < Z2, and Zb = Z1, 2 , respectively.
Here, we take into account the combination of allowed
bands due to the absence of forbidden gaps with even
m. The proposed model makes it possible to visualize
and optimize such an improvement of selectivity.

The inset to Fig. 3 shows a fragment of a CS with
λ0/8 outer layers. We divide the quarter-wave layer hav-
ing impedance Z1 and closest to the outer layer into
halves by an imaginary boundary. We place antiphase
mutually compensating sources of reflection with an
amplitude equal to r on this boundary and sum the
sources locates at the boundaries of the outer layer,

ω c
D
---- mπ 4r2 x2–±( ).≈

Km
2
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reducing them to the center r1 = i2rsin(πF/4) of this
layer, where F = f /f0 is the normalized frequency and f0
is the mean frequency of the first forbidden gap. Sum-
ming similar sources located at the boundaries of the
left half of the quarter-wave layer with impedance Z1
and reducing them to the axial line of this half, we also
obtain a source with amplitude r1. As a result of sum-
mation of two sources with amplitudes r1 and their
reduction to the middle of the layer with impedance Z2,
we obtain an equivalent reflector of period rΛ =
2r1cos(3πF/4). The sources of reflection located at the
boundaries of the first half of a quarter-wave layer with
impedance Z1 and the left half of the next quarter-wave
layer with impedance Z1 also form an equivalent reflec-
tor of period with an amplitude equal to rΛ. The fre-
quency dependence of the equivalent reflector of period
is defined by the expression  = |rΛ|/4r =
|sin(πF/4)cos(3πF/4)|. The second cofactor ensures the
main decrease in the sidelobe level of the frequency
dependence of the low-frequency reflection coefficient
for a CS in a range of variation of F from 0 to 2 with
rejection at frequency Fr = 2/3 if the forbidden gap
width ∆F ≤ Fr . For ∆F > Fr , the rejection point is dis-
placed to the range of frequencies F < Fr . In a wider
frequency range, the selectivity in odd allowed bands
increases.

Figure 3 shows the frequency dependences of the
reflection coefficient of a CS with λ0/8 outer layers and
an equivalent reflector of period. It can be seen that the
decrease in the sidelobe level of dependence 1 is deter-
mined by dependence 2. To reduce the ascent of the far
(from the forbidden band) low-frequency sidelobes of
dependence 1, we must optimize the amplitudes of the
reflectors at the CS boundaries by slightly increasing Z0
for the first version and by reducing it for the second

version. For  = Z0/Z2 = 1.11 in the first version and

 = 1.57 in the second version, the near and far low-
frequency sidelobes level out and the level of the far
sidelobe decreases from 0.27 to 0.17.

In the case when Z0 > Z1 and (Z0 – Z1)/(Z0 + Z1) = r
(first version) or Z0 < Z2 and (Z2 – Z0)/(Z2 + Z0) = r (sec-
ond version), and Zb = Z1, 2, respectively, the source of
reflection located on the CS boundary coincides in
amplitude and phase with the source of reflection
located at the boundary between the extreme and adja-
cent layers. In this case, the amplitudes of the extreme
equivalent CS reflector and the equivalent reflector of
period are r1 = rcos(πF/4) and rΛ = 2r1sin(3πF/4),
respectively, where the minus and plus signs corre-
spond to the above-mentioned versions. The frequency
dependence of the equivalent reflector of period is
defined by formula  = |cos(πF/4)sin(3πF/4)|. Such a
CS has an elevated selectivity at high frequencies in the
range of F from 0 to 2 with rejection at frequency Fr =

r̂Λ

Ẑ0

Ẑ0

2+− i+−

r̂Λ
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4/3; in a wider range, the selectivity is high in even
allowed bands.

ELEVATION OF CS SELECTIVITY 
IN ALL ALLOWED BANDS

The model of equivalent reflectors makes it possible
to propose a basic solution ensuring elevated selectivity
in all allowed bands.

Let us consider peculiarities of multibeam interfer-
ence for the entire CS (see the inset to Fig. 1). We sum
the sources located at the boundaries of quarter-wave
layers for the CS period rΛ = i2rsin(πF/2). Summing
sources with r1 and r2, we obtain  = –2rsin2(πF/2).
In allowed bands, interference is destructive and the
pulsation level of the characteristics of CS reflection
and transmission is determined by the frequency depen-
dences of equivalent reflectors of period  = |rΛ|/2r =

|sin(πF/2)| and  = | |/2r = sin2(πF/2). In the second
case, the pulsation level is noticeably lower. The real-
ization of the second version of interference for the
entire CS requires that the amplitudes of reflectors at its
boundaries be halved by choosing the impedances
Z01, 02 of the surrounding medium from the condition
Z01, 02 = Z1, 2(Z1, 2 + 3Z2, 1)/(3Z1, 2 + Z2, 1), where Z1, 2 is
the impedance of the layer bordering the medium.

Figure 4 illustrates the elevation of the efficiency of
transmission of waves in allowed bands (as compared
to the traditional solution) with the help of the compen-
sation proposed above.

The model proposed here visually illustrates the key
role of mutual compensation of reflections in the for-

rΛ'

r̂Λ

r̂Λ' rΛ'

0.5

0 1.0

R, rΛ
1.0

1

2

r1
r r

r1

r

Z2Z0 Z1 Z1

r
r

<

F

Fig. 3. Frequency dependences of the reflection coefficient
R of a CS with λ0/8 outer layers (1) and of an equivalent

reflector of period  (2). The number of layers N = 11, rZ =

1.74, Z0 = Z2, Zb = Z1 (first version) or Z0 = Z1, Zb = Z2 (sec-
ond version).

r̂Λ
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mation of the allowed band. The method of additional
compensation of reflections based on this model makes
it possible to noticeably improve the CS sensitivity,
which is of utmost importance for high-efficiency CS-
based devices.
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Abstract—The current induced by the passage of an external point charge through a plane vacuum capacitor
in an RCL circuit free of current (voltage) sources is calculated. The case is also analyzed when an internal point
charge is emitted by one of the capacitor plates, moves to the other plate, and is absorbed by it. A technique is
proposed to measure the internal charge and its velocity component perpendicular to the capacitor plates in a
passive RCL circuit. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The Ramo–Shockley relation states that external
point charge Q moving perpendicularly to the plates of
a vacuum capacitor with speed v  induces a rectangular
pulse of current IRS = Qv /b (where b is the distance
between the capacitor plates) in a zero-inductance and
zero-resistance circuit that closes the capacitor [1–3].
Current IRS exists in the circuit only during the time 0 ≤
t ≤ b/v, when the charge moves between the capacitor
plates; tc = b/v  is the transit time of charge Q. The
Ramo–Shockley relation was generalized directly from
the Maxwellian electrodynamics to the case in which
the quasi-electrostatic approximation is invalid [4].

In [5], the Ramo–Shockley relation was generalized
to a series RC circuit. However, in addition to capaci-
tance and resistance, a real circuit has an inductance.
Also, it is necessary to distinguish between the passage
of an external charge through the capacitor and the tran-
sition of an internal charge from one plate of the capac-
itor to the other, for example, as a result of exoelectron
emission [6, 7] (arrival of a charge to the second plate
of the capacitor can be recorded from the reverse pho-
toemission [8, 9]). The passage of an external charge
through the capacitor in RC and RL circuits connected
in parallel was considered in [10]. However, the input
resistance of the circuit was disregarded in the final
expressions.

The purpose of this study is to generalize the Ramo–
Shockley relation to the series RCL circuit containing
no current (voltage) sources for two cases: (i) external
charge Q moves through the plane capacitor and
(ii) internal charge Q is emitted by one plate of the
uncharged capacitor, moves to the other plate, and is
absorbed by it.

Consider a circuit consisting of capacitor C, resistor
R, and inductor L connected in series (Fig. 1). The
velocity v  of charge Q between the capacitor plates is
assumed to be constant. The lag of the induced electro-
magnetic field and its effect on the charge motion are
1063-7842/04/4911- $26.00 © 21469
neglected (see, e.g., [11]). The time origin (t = 0) is cho-
sen to be the moment when the charge flies through the
inner surface of the first capacitor plate it crosses. The
current and voltage are considered for 0 ≤ t ≤ tc, when
the external or internal charge moves between the
plates, and for t > tc, when the current is the discharge
current in the RCL circuit.

EXTERNAL CHARGE

As the external charge moves (0 ≤ t ≤ tc) between the
plates of capacitor C of a series RCL circuit (Fig. 1), the
following balance of currents holds:

(1)

where I1 = I is the current in the circuit, Qv /b = IRS is
the plate-to-plate charge transport current, v  is the
charge’s velocity component perpendicular to the
plates, V is the electric potential difference between the
plates induced by the moving external charge, and Id =
–CdV/dt is the displacement current [12].

Potential difference V across the capacitor due to
current I1 excited in the RCL circuit is a sum of the

I I1
Qv
b

-------- Id+ Qv
b

-------- C
dV
dt
-------,–= = =

R

LQC Id

I

Fig. 1. Motion of a point charge Q between the plates of a
vacuum plane capacitor in a passive RCL circuit: I is the
current in the RL circuit and Id is the displacement current
in the capacitor.
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potential differences across the resistor and inductor:

(2)

Substituting (2) into (1), we obtain the equation for
the current (refer, e.g., to [13, 14]):

which, in terms of the designations

becomes

(3)

The general solution to Eq. (3) is a sum of the gen-
eral solution I0 to this equation with the zero right-hand
part and any particular solution to this equation. As the
particular solution to (3), we can take the constant cur-
rent IRS = Qv /b.

When ξ ≠ 1, the solution to the homogeneous equa-
tion corresponding to (3) has the form

(4)

where A1 and A2 are the integration constants.

Then, the general solution to Eq. (3) is

(5)

where constants A1 and A2 are determined by the initial
conditions

(6)

which mean that, at the initial instant (t = 0), the electric
current is zero and V|t = 0 = 0 (see formula (2)).

Equality (5) with (6) takes the form

(7)

V I1R L
dI1

dt
-------.+=

LC
d2I1

dt2
---------- CR

dI1

dt
------- I1+ +

Qv
b

--------;=

ω0
1

LC
------------, ξ R

2
--- C

L
----, IRS

Qv
b

--------,= = =

d2I1

dt2
---------- 2ξω0

dI1

dt
------- ω0

2I1+ + ω0
2IRS.=

I0 A1 –ξω0t ω0t ξ2 1–+( )exp=

+ A2 –ξω0t ω0t ξ2 1––( ),exp

I1 I0 IRS+ A1 –ξω0t ω0t ξ2 1–+( )exp= =

+ A2 –ξω0t ω0t ξ2 1––( )exp IRS,+

I1 t 0= 0, dI1

dt
-------

t 0=

0,= =

I1 IRS 1 ω0t ξ2 1–( )---cosh–




=

+
ξ

ξ2 1–
------------------ ω0t ξ2 1–( )sinh ξω0t–( )exp





.

To obtain the result at ξ = 1, we pass to the limit
ξ  1 in (7) to get

(8)

When L  0, the circuit’s eigenfrequency ω0 and
the parameter ξ tend to infinity with ξ/ω0  RC/2.
Then, formula (7) reduces to the known relation [5]

(9)

where 0 ≤ t ≤ tc.

After the external charge passes through the capaci-
tor (for t > b/v  = tc), current I1 = I in the circuit is
described by Eq. (3) with Q = 0:

(10)

under the conditions of current continuity (at t = tc):

(11)

At ξ = 1, the solution to Eq. (10) under conditions
(11) has the simplest form

(12)

where constant B1 = IRS(1 – ω0tc)exp(ω0tc) and B2 =
IRS[exp(ω0tc) – 1].

The time dependence of current I = I1 at ξ = 1 when
the external charge Q moves through the capacitor and
after that is shown in Fig. 2a.

INTERNAL CHARGE

When internal charge Q emitted by one plate of the
uncharged capacitor in the RCL circuit moves to the
other plate (0 ≤ t ≤ tc) and is absorbed by the latter, the
current in the circuit can be represented as the sum I =
I1 + I2, where I1 is the current induced when the charge
moves between the plates and I2 is the capacitor dis-
charge current. As in the case of the external charge
moving through the capacitor, the current I1 is given by
formulas (7) and (8) for ξ ≠ 1 and ξ = 1, respectively.
After emitting the charge Q, the capacitor becomes
charged and starts discharging the discharge current I2,
which satisfies the equation (compare to (10))

(13)

where 2ξ = RCω0.

The solution to Eq. (13) at I2|t = 0 = 0 and
L(dI2/dt)|t = 0 = Q/C is given by the formula (refer, e.g.,

I1 I0 IRS+ IRS 1 1 ω0t+( ) ω0t–( )exp–[ ] .= =

I1 IRS 1 t
RC
--------– 

 exp– ,=

d2I1

dt2
---------- 2ξω0

dI1

dt
------- ω0

2I1+ + 0=

I1 tc 0– I1 tc 0+ , V tc 0– V tc 0+ or= =

dI1/dt( )tc 0– dI1/dt( )tc 0+ .=

I1 B1 B2t+( ) ω0t–( ),exp=

d2I2

dt2
---------- 2ξω0

dI2

dt
------- ω0

2I2+ + 0,=
TECHNICAL PHYSICS      Vol. 49      No. 11      2004



RAMO–SHOCKLEY RELATION 1471
to [13])

(14)

The total current in the circuit is the sum of (7) and
(14):

(15)

At ξ = 1, the discharge current obtained from (14) is

(16)

and the total current is the sum of (8) and (16):

(17)

When L  0, i.e., for a series RC circuit, formula
(15) yields for 0 ≤ t ≤ b/v  = tc:

(18)

Comparison of formulas (18) and (9) shows that the
current in the RC circuit induced by the passage of the
internal charge from one capacitor plate to another,
other conditions being the same, is higher than the cur-
rent induced by the passage of the external charge
through the capacitor.

After internal charge Q emitted by one capacitor
plate passes through the capacitor (t > b/v  = tc) and is
absorbed by the other plate, the current in the circuit
satisfies Eq. (10) under the conditions for the time t = tc
(compare to (11)),

or, taking into account (2),

(19)

i.e., the current is a continuous but nonsmooth, function
of time.

Solutions to (10) for t > tc have the form of (4) and
(12), where, however, the coefficients A1, A2, B1, and B2
are found from conditions (19). The simplest case is
that of ξ = 1. At R2C = 4L and t > tc, the current induced
in the RCL circuit by the passage of charge Q emitted
by one capacitor plate and absorbed by the other plate

I2

Qω0

ξ2 1–
------------------ ω0t ξ2 1–( ) ξω0t–( ).expsinh=

I I1 I2+ IRS IRS ω0t ξ2 1–( )------cosh–= =

+
ξ ω0tc–

ξ2 1–
------------------- ω0t ξ2 1–( )sinh ξω0t–( ).exp

I2 Qω0
2t ω0t–( ),exp=

I I1 I2+=

=  IRS IRS 1 1 ω0tc–( )ω0t+[ ] ω0t–( ).exp–

I
IRS

RC
-------- RC tc+( ) RC tc–( )

tc

RC
--------– 

 exp–=

×
tc t–
RC

----------- 
  .exp

I tc 0– I tc 0+ , V tc 0– Q/C+ V tc 0+ ,= =

I tc 0–  = I tc 0+ , dI/dt( )tc 0– Qω0
2+  = dI/dt( )tc 0+ ,
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is described by formula (12), where the coefficients B1
and B2 are calculated with (19) as

The time dependence of the current I = I1 + I2 in the
RCL circuit during the passage of the internal charge
between the capacitor plates and after that at ξ = 1 is
shown in Fig. 2b.

DISCUSSION

Comparison of formulas (7) with (15) and (8) with
(17) shows that the external charge Q, moving through
the capacitor, and the internal charge Q, emitted by one
capacitor plate and absorbed by the other plate, induce
different currents in the RCL circuit. This is because,
when the internal charge is emitted, the capacitor
becomes charged, which produces the discharge cur-
rent I2. The lower the capacitance C of the capacitor,
the higher this current. The total current in the series
RCL circuit at the initial instant (t = 0) is zero, because

B2 ω0 IRS Qω0+[ ] ω0tc( )exp{=

– IRS 1 3ω0tc 2ω0
2tc

2–+[ ] } ,

B1 IRS ω0tc( )exp IRS 1 ω0tc ω0
2tc

2–+[ ]– B2tc.–=

1.0

0.5

I/IRS

5

4

3

2

1

0 0.5 1.0 1.5 t/tc

tm/tc

(b)

(a)

Fig. 2. Current I (normalized by IRS = Qv /b) in the RCL cir-
cuit vs. time (normalized by tc = b/v) at RC = 4L/R (ξ = 1)
for (a) the external charge Q passing through the capacitor
with the velocity component perpendicular to its plates, v,
and (b) the charge Q with the same velocity component v
emitted by one capacitor plate and absorbed by the other

plate after the time tc; tm/tc = (tc/  – 1)–1.LC



1472 POKLONSKI et al.
the circuit contains an inertial element—the inductor L.
Note that, in a series RC circuit for the case of internal
charge Q, the current abruptly changes from 0 to I =
Q/RC at the time when the charge is emitted (at t = 0).

Let us show that taking into account the inertial
properties of the RCL circuit makes it possible to mea-
sure the velocity component v  of the internal charge Q
(emitted by one plate and moving toward the other
plate) perpendicular to the capacitor plates. The sim-
plest situation is at ξ = 1, when the time dependence of
the current I in the RCL circuit is described by formula
(17) and the potential difference (voltage) across the
inductor L is given by the expression

(20)

According to (20), the voltage VL vanishes at the
time tm = tc/(tcω0 – 1) (at t = tm, the current I in the RCL
circuit reaches its maximum value Im). If 0 < tm < b/v  =
tc (i.e., the transit time tc = b/v  of charge Q between the
capacitor plates is long enough for the current in the
RCL circuit to reach its maximum value Im), the
charge’s velocity, according to (20), is

(21)

where the time tm is measured experimentally from the
condition VL(tm) = 0.

If the total current I in the circuit (or the voltage
UR = IR across the resistor R) is measured simulta-
neously, the internal charge moving between the capac-
itor plates can also be found from (17):

(22)

where Im = UR(tm)/R.

Note that the time tm, when the voltage across the
inductor vanishes, VL(tm) = 0, depends only on the
velocity component v  of the internal charge Q perpen-
dicular to the capacitor plates and is independent of the
charge.

Boundary conditions (19) assume that the charge
emitted by one plate is absorbed by the other plate, after
which the current in the circuit increases again (due to
the capacitor discharge current I2) and maximizes once
more. To calculate v  and Q from formulas (21) and
(22), one should use the first maximum of the current
(formulas using the second maximum are more com-
plex).

Formulas that give the charge and its velocity at ξ >
1 can be derived in a similar way; however, these for-
mulas are more complex than (21) and (22). When ξ <
1, it is difficult to measure v  and Q, because the current
in this case is oscillatory and can have several extrema
even in the time interval from 0 to tc.

V L L
dI
dt
----- LIRSω0

2 1 ω0tc–( )t tc+[ ] ω0t–( ).exp= =

v b
1
tm
---- ω0– 

  b
1
tm
---- 1

LC
------------– 

  ,= =

Q
Imtm

1 ω0tm 1 2ω0tm–( ) ω0tm–( )exp 1–[ ]+
---------------------------------------------------------------------------------------------,=
The condition ξ = 1 (RC = 4L/R) is equivalent to the
situation in which the resistance of a circuit consisting
of parallel-connected RC and RL circuits, that have
resistors with equal resistances R/2, is purely active and
equals R/2 at any frequency (see, e.g., [15, 16]). This
circumstance can be used to choose parameters of the
series RCL circuit.

Note that formula (21) is only valid for an internal
charge (emitted by one of the capacitor plates). For an
external charge, the current I1 in the RCL circuit is
described by formula (8) and has no extrema for 0 ≤ t ≤
b/v.

Thus, expressions for the current I induced in the
RCL circuit containing no current (voltage) sources by
the external charge Q passing through the capacitor or
by an internal charge Q, emitted by one capacitor plate
and absorbed by the other plate, are obtained. A method
for measuring the charge-velocity component v  per-
pendicular to the capacitor plates and the internal
charge Q in the source-free circuit is proposed.
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Abstract—It is demonstrated that two-wavelength holographic interferometry with a small lateral shift in a
grating interferometer makes it possible to study the dispersion characteristics of transparent objects using
probe beams with arbitrary wavelengths. Interference patterns reconstructed represent fringes on the recon-
structed image of the object, which characterize the value of the derivative of the difference between the refrac-
tive indices of the medium under study at the probe wavelengths along the direction of the shift. The results of
experiments employing the method proposed are presented. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Dispersion two-wavelength holographic interferom-
etry is widely used for the purposes of plasma diagnos-
tics, where it makes possible determining the electron
concentration in the absence of corrections related to
the refraction of heavy particles [1–7]. Detection of
two-wavelength holograms under nonlinear conditions
also makes possible the reconstruction of interfero-
grams in cases when the interference pattern depends
on the difference n1(x, y, z) – n2(x, y, z) between the
refractive indices at wavelengths λ1 and λ2 of the probe
beams [1, 2]. The measurements of interference pat-
terns corresponding to the lines of constant difference
between the refractive indices using the method pro-
posed was realized for integer ratios of wavelengths (in
particular, for λ2/λ1 = 2). This was related to the depen-
dence of the coefficient of the sensitivity of measure-
ments on the diffraction order in the nonlinear holo-
gram. In contrast to two-beam interferometry based on
the comparison of a probe wave front with the front of
a reference wave, the method of interferometry using
small lateral shift makes it possible to measure interfer-
ograms with the sensitivity of measurements depending
on the relative shift ∆s of the interfering wave fronts
[8]. Lateral-shift interferometry is a promising diagnos-
tic tool for the systems in which it is difficult to form a
reference wave.

Recently, shift interferometry has been widely used
in the measurements of small distortions of wave fronts
[9, 10]. The application of holographic principles
makes it possible to significantly increase the efficiency
of lateral-shift interferometry [7, 11–14]. Based on var-
ious methods for detecting and optical processing of
holographic lateral-shift interferograms, which are
widely used in holographic interferometry of phase
objects, it is possible to develop methods for studying
fast processes in transparent objects with a wide varia-
1063-7842/04/4911- $26.00 © 1473
tion in the coefficient of the sensitivity of measure-
ments [15, 16].

This paper demonstrates the possibility of studying
the dispersion characteristics of transparent media at
arbitrary wavelengths by means of interferometry with
small lateral shift using a grating interferometer.

RECORDING TWO-WAVELENGTH 
HOLOGRAPHIC LATERAL-SHIFT 

INTERFEROGRAMS

Figure 1a shows the optical scheme of a two-wave-
length setup for studying the dispersion characteristics
of transparent media. The principal component of the
setup is a grating interferometer [17] capable of record-
ing holographic lateral-shift interferograms.

Light beams generated by lasers 1 and 2 are
coaligned using beamsplitter 3 and directed to the shift
interferometer equipped with a grating. Two beams
expanded and collimated using a telescope consisting
of lenses 4 and 5 are incident on object 6 under study.
The variations ϕ1(x, y) and ϕ2(x, y) in the phases of light
beams passing through transparent object 6 can be rep-
resented as

(1)

where subscripts 1 and 2 correspond to the first and sec-
ond beams with wavelengths λ1 and λ2, respectively;
n1(x, y, z) and n2(x, y, z) are the refractive indices of
object 6 at wavelengths λ1 and λ2, respectively; and l is
the thickness of object 6 along the direction of probing.
Cartesian coordinates xyz are chosen in such a way that
the probe beam is parallel to the z axis.

ϕ1 2, x y,( ) 2π
λ1 2,
--------- n1 2, x y z, ,( ) z,d

0

l

∫=
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Each light beam is split into two coherent beams
using grating 8 placed in the vicinity of the back focal
plane of objective 7 in front of aperture 9. We assume
that the grooves of grating 8 are perpendicular to the y
axis. Figure 1 shows aperture 9 and the diffraction spec-
trum of light beams with wavelengths λ1 and λ2. Dif-
fraction maxima are situated on a straight line parallel
to the y axis. The central maximum corresponds to the
zero order diffraction of beams with wavelengths λ1

and λ2. Note that the zero-order diffraction maxima of
two beams coincide, while the diffraction maxima of
+1 and –1 orders are spatially separated so that the
greater the wavelength, the greater the displacement
along the y axis (we assume that λ1 < λ2). The configu-
ration of the aperture (Fig. 1b) makes it possible to sep-

(a)

1

2

3
4

5 6 7 8 9 10
11

z

y

(b)

y

x

(c)

λ1λ2

λ1
λ2

z

∆s
1

∆s
2

Fig. 1. (a) Optical scheme of the setup for studying the dis-
persion characteristics of transparent media, (b) configura-
tion of aperture and diffraction spectrum of light beams
with wavelengths λ1 and λ2, and (c) the scheme of beam
overlapping in the detection plane of two-wavelength holo-
graphic lateral-shift interferogram.

y

arate the beams diffracted to the order of a certain sign
(e.g., –1 order). Thus, two pairs of beams with wave-
lengths λ1 and λ2 are separated from other beams by
aperture 9 and collimated with objective 10. In plane 11,
we observe two lateral-shift interference patterns corre-
sponding to the two wavelengths. Figu-re 1c illustrates
the superposition of light beams at the detection
plane 11 giving rise to two-wavelength holographic lat-
eral-shift interferogram. The lateral shifts ∆s1 and ∆s2
of the interference patterns formed by the light beams
with wavelengths λ1 and λ2 are directed along the y axis
and differ from each other owing to the dispersion of
grating 8. At small shifts satisfying condition ∆s1, 2 ! L
(L is the transverse size of object 6 under study), the
intensity distribution in the holographic lateral-shift
interferograms is represented as

(2)

where T is the period of fringes in holographic interfer-
ograms depending on the angles between the interfer-
ing coherent beams. This period can be controlled by
changing the period of diffraction grating 8 and its posi-
tion relative to the back focal plane of objective 7
[18, 19].

Note that the periods of fringes in the holographic
interferograms obtained using beams with different
wavelengths are equal, owing to the features of the lat-
eral-shift interferometer with diffraction grating [19].

Thus, a pair of holographic lateral-shift interfero-
grams (2) is detected at plane 11. Owing to the differ-
ence between wavelengths λ1 and λ2, these interfero-
grams are incoherently superimposed on a film, which
gives rise to a two-wavelength holographic lateral-shift
interferogram. When the film is exposed under linear
conditions (the contrast ratio of photoemulsion is γ = –2)
and chemically processed, the amplitude transmittance
of the two-wavelength holographic lateral-shift inter-
ferogram is represented as

(3)

where

(4)

The amplitude transmittance of a two-wavelength
holographic interferogram given by expression (3) is
similar to the transmittance of a double-exposure holo-
gram.

RECONSTRUCTION OF CONTOUR LINES

A method of reconstruction of the interference pat-
tern from the two-wavelength holographic lateral-shift

I1 2, x y,( ) 1 2πy
T

--------- ∆s1 2,
∂ϕ1 2, x y,( )

∂y
--------------------------+ ,cos+∼

τ x y,( ) I1 x y,( )∼ I2 x y,( )+ 2∼

+ 2πy
T

--------- Φ1 x y,( )+cos 2πy
T

--------- Φ2 x y,( )+ ,cos+

Φ1 2, x y,( ) ∆s1 2,
∂ϕ1 2, x y,( )

∂y
--------------------------.=
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interferogram (3) is basically the same as the method
used for reconstructing interference patterns from dou-
ble-exposure holograms. When hologram (3) is illumi-
nated with a collimated light beam, two waves propa-
gate in the first diffraction order. These waves are dif-
fracted by the fringes of holographic structures
corresponding to the holographic lateral-shift interfero-
grams formed by the beams with wavelengths λ1 and
λ2. In accordance with expression (3), the phases of
these waves are Φ1(x, y) and Φ2(x, y). A conventional
method to increase the visibility of the reconstructed
contour lines involves filtering of the spatial frequen-
cies (an opening in the aperture separates light beams
diffracted in the first order). In this case, it follows from
expression (3) that the intensity distribution in the inter-
ference pattern can be written as

(5)

For light interference fringes, the following condi-
tion is satisfied:

(6)

Taking into account expressions (1) and (4), we can
represent expression (6) as

(7)

This expression becomes even more convenient
when the coefficients characterizing the sensitivity of
measurements are equal:

(8)

One of the remarkable features of the lateral-shift
interferometer with diffraction grating placed in the
focal plane or in the vicinity of focus consists in that the
ratio of the shift of interfering beams to the wavelength
of light source remains constant: ∆s/λ = const [19].

Thus, condition (8) is always satisfied for the case
under consideration. With allowance for this condition,
we can represent the condition for the formation of light
interference fringes as

(9)

Expression (9) describes the interference fringes in
the reconstructed image of the object under study. Each
interference fringe corresponds to a zone of the trans-
parent object under study where the product of the
derivative of the difference between the refractive indi-
ces and the thickness of the object is constant. The
interference pattern depends on the dispersion charac-
teristics of the object under study.

I2 x y,( ) 1 Φ1 x y,( ) Φ2 x y,( )–[ ] .cos+∼

Φ1 x y,( ) Φ2 x y,( )–  = 2πN , where N  = 0 1 2 …., , ,

∆s1

λ1
-------- ∂

∂y
----- n1 x y z, ,( ) zd

0

l

∫
∆s2

λ2
-------- ∂

∂y
----- n2 x y z, ,( ) zd

0

l

∫–  = N.

∆s1

λ1
--------

∆s2

λ2
-------- C.= =

∂
∂y
----- n1 x y z, ,( ) n2 x y z, ,( )–[ ] zd

0

l

∫ 
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C
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EXPERIMENTAL TESTS

In order to verify the proposed method, we used an
experimental setup corresponding to the scheme
depicted in Fig. 1a. Lasers 1 and 2 were an argon laser
with the wavelength λ1 = 488.0 nm and an LGN-215
helium–neon laser with the wavelength λ2 = 632.8 nm,
respectively. To equalize the exposures at two wave-
lengths in the course of recording of two-wavelength
holographic lateral-shift interferogram, we rotated a
polarizer at the exit of the argon laser. Grating 8
(Fig. 1a) was a phase diffraction grating with a period
of about 60 µm recorded on an FG-690 film using a
holographic method with subsequent bleaching.

The object under study was a glass plate. The sur-
face of this plate was not flat as a result of thermal pro-
cessing. Figure 2a shows the lateral-shift interferogram
(∆s = 1.0 mm) of the plate under study obtained using
the radiation of the helium–neon laser (λ2 = 632.8 nm)
upon tuning to an infinitely wide fringe. Figure 2b dem-
onstrates the interference pattern reconstructed from
the two-wavelength holographic lateral-shift interfero-
gram of the same glass plate.

When the two-wavelength holographic lateral-shift
interferogram was recorded on FG-690 film, the rela-
tive shifts of the beams with wavelengths of λ1 =
488.0 nm and λ2 = 632.8 nm were ∆s1 = 0.8 mm and
∆s2 = 1.0 mm, respectively. In the interferogram shown
in Fig. 2b, the interference fringes correspond to the
zones of the glass plate under study where the product
of the derivative of the difference between the refractive
indices at wavelengths of 488.0 and 632.8 nm along the
direction of the shift and the thickness of glass is con-
stant. The interferogram characterizes the surface relief
of the glass plate, and its sensitivity depends on the dis-
persion characteristics of glass.

(b)(a)

Fig. 2. (a) Lateral-shift interferogram (∆s = 1.0 mm) of a
glass plate obtained using the radiation of helium–neon
laser (λ2 = 632.8 nm) upon tuning to an infinitely wide
fringe and (b) interference pattern reconstructed from the
two-wavelength holographic lateral-shift interferogram of
the same glass plate recorded using the probe beams with
wavelengths of λ1 = 488.0 nm and λ2 = 632.8 nm.
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CONCLUSIONS

The proposed method will be effective in the study
of the dispersion characteristics of plasma objects. Any
pulsed light source with wavelengths suitable for
plasma probing can serve as a source of the probe
beam.
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Abstract—Generation of wide-band directional electromagnetic radiation arising when the pulsed X radiation
front strikes the photocathode of a planar diode at an angle is analyzed. The results of numerical simulation are
compared with the experimental data obtained with the Iskra-5 setup, which is used for generation of a laser
plasma as an X-ray source. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The existence of faster-than-light velocities and
faster-than-light sources (FTLSs) of electromagnetic
radiation has been known for a long time. Generally
speaking, these sources move with a velocity exceeding
the phase velocity of light: v ph > c//n, where n is the
refractive index of the medium. It is a matter of com-
mon knowledge that such sources exist in media with
n > 1. However, their existence in a vacuum is much
less known [1]. Of course, the case in point is the
motion not of a point particle but of some effective
charge distribution (macroscopic charge) with a veloc-
ity higher than the velocity of light in a vacuum. Such a
distribution may be achieved using slower-than-light
motions of real charges [1, 2]. Theoretical analysis of
the radiation from FTLSs may be performed using the
apparatus of the conventional field theory [3].

The object of our study is FTLSs that arise due to
electrons emitted from the vacuum–medium interface
where the emission front propagates with a velocity
exceeding velocity of light c. A simple source of this
kind is formed when a flat metal surface is irradiated by
a ribbon beam of ionizing radiation (Fig. 1a) [4–6]. In
this case, the phase velocity of the emission front is

(1)

where θ is the angle of incidence of the radiation.

The radiation due to the emission current propagat-
ing with constant velocity v ph > c along the screen by
no means boils down to the Vavilov–Cherenkov effect
[1], although the resulting electromagnetic wave leaves
the interface at an angle θw = c/v ph), which is
typical of Vavilov–Cherenkov radiation and equals the
angle of incidence. At distance R far away from the
source, the amplitude of the resulting electromagnetic

v ph c/ θ( ),sin=

(arcsin
1063-7842/04/4911- $26.00 © 21477
wave is proportional to the second-order time derivative
of the dipole moment surface density, which varies as
the kinetic energy ε of the electrons knocked out and
surface area S of the radiator [4, 5]:

(2)

Formula (2) implies that the intensity and total
energy of the electromagnetic radiation grow with the
energy of the electrons emitted. Estimates [5, 6] show
that the energy and intensity of the radiation are of prac-
tical interest if the electrons emitted have an energy
above 10 keV. In the laboratory conditions, a faster-
than-light current pulse with a high electron energy can
be produced if the process of electron generation is sep-
arated from the formation of the faster-than-light pulse.
In this case, optical or ionizing radiation (IR) that may
cause the electron emission is used only for generating
electrons with an energy as low as possible, while the
final energy on the order of 100 keV is gained when the
electrons are accelerated in an external electric field. A
simple design of an FTLS includes a planar accelerat-
ing diode with a grid anode that is exposed to an
inclined beam of ionizing radiation [5–7]. The IR front
incident on the photocathode generates a faster-than-
light current pulse of the electrons emitted. Then, the
electrons are accelerated in the electrode gap, pass
through the grid anode, and generate another faster-
than-light current pulse above the anode (but this pulse
comprises fast electrons!). It should be noted, however,
that the generation and acceleration processes alter the
space–time electron distribution, so that the time
dependence of the current at the anode and cathode will

Ew Hw Ṗ̇S

c2R
---------∼ ∼ , Ṗ̇ d2P

dt2
--------- ε,∼=

P r t,( ) V' r r'–( )ρ r' t,( ).d∫=
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be different. Thus, a dipole layer radiating in phase is
formed above the grid anode.

The design considered offers a number of attractive
properties that are a direct consequence of the fact that
phasing of electrons is accomplished by the faster-than-
light pump pulse moving over the surface [5–7]. These
properties are as follows: (i) the radiation is coherent
and directional; that is, radiated energy Q is propor-
tional to emitting surface area S; (ii) the videopulse
radiated is short: its duration is roughly expressed as

where

L is the electrode-to-electrode spacing, and me is the
electron mass; (iii) the process is highly efficient: theo-

T0
L
c
--- γ 1+( )/ γ 1–( ),≈

γ 1
ε

mec
2

-----------,+=
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Fig. 1. Basic scheme of EMR generation by an FTLS. (a) 1,
ribbon X-ray beam; 2, region of faster-than-light radiation;
3, directional electromagnetic wave front; 4, anode;
5, waveguide electromagnetic wave; and 6, metallic cath-
ode. (b) 1, region of faster-than-light radiation; 2, point
source of X rays; 3, spherical front of X radiation; 4, direc-
tion of EMR propagation; 5, anode; 6, metallic cathode; and
7, X-ray source image.
retically, the radiated energy constitutes a fraction

 of the total electrostatic energy stored
in the capacitor; and (iv) the efficiency of the emission
increases in inverse proportion to the wavelength λ of
the resulting radiation. The last-named property is
unique: most microwave generators exhibit the oppo-
site tendency.

Varying the parameters of the radiator (diode), as
well as using carious sources of optical radiation and
various power supplies for the diode, one can design a
variety of devices generating a microwave pulse.

The feature of such a diode-type FTLS is the gener-
ation of two electromagnetic waves (hereafter referred
to as directional and waveguide), which interact with
the electrons emitted, thereby defining the anode cur-
rent and parameters of the electron dipole moment
above the anode. The directional wave propagates in
the free half-space over the anode in the direction that
is “specular” relative to the direction of the incident IR
(z > 0, Fig. 1a). The parameters of this wave depend on
the rate of change of the parameters of the dipole layer
made up by the electrons accelerated in the diode (i.e.,

on  and ; see (2)). It may be assumed that this wave
insignificantly affects the current near the cathode
because of the screening effect of the metallic grid
anode. The faster-than-light current pulse due to the
electron motion in the electrode gap also excites an
electromagnetic wave that propagates in the planar
waveguide formed by the cathode and anode. The field
of this waveguide electromagnetic wave adds up with
the field of the space charge of the electrons emitted,
effectively reducing the accelerating field in the diode
and, thus, decreasing the ultimate current density at the
anode below the limiting stationary current density. It
was shown analytically [7] that the parameters of the
elementary FTLS depend on the rate of rise of the elec-
tron emission current from the cathode and on the
parameters of the diode (the voltage across and the
width of the accelerating gap).

In the experiments on EMR generation with an
FTLS that were carried in the All-Russia Institute of
Technical Physics (ARITP) [8], the emission of elec-
trons was initiated by a short X-ray pulse from a point
laser plasma source. The pulse fell at an angle to the
cathode of a planar diode. The experiments were aimed
at (i) designing FTLSs, (ii) studying their characteris-
tics, and (iii) comparing the experimental data with the
theory.

In this work, we report the results of mathematical
simulation of EMR generation that was made in a state-
ment closely approximating the experimental condi-
tions used in the ARITP and compare the analytical and
experimental data.

γ 1–( )/ γ 1+( )

Ṗ Ṗ̇
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EXPERIMENTAL

The experimental scheme was selected based on the
data obtained in [5, 6], where faster-than-light current
pulses and directional EMR were generated using an
accelerating diode with a transparent anode. The elec-
tron emission was initiated by an obliquely incident rib-
bon beam of IR.

Unfortunately, the experimental equipment cur-
rently available is incapable of forming a ribbon beam
of duration and intensity sufficient for generating an
emission current pulse propagating with a constant
faster-than-light velocity (see (1)) along the photocath-
ode. A spherical front of IR from a point source is much
easier to obtain, and this shape was used in the experi-
ments [8]. In those experiments, the electron emission
was initiated by soft X rays leaving the plasma pro-
duced by focusing the subnanosecond radiation (wave-
length λ = 1.315 µm) from the Iskra-5 setup [9] onto a
gold target. The focal spot was ≈1 mm in diameter. This
suggests that the IR source is point and the front of the
IR is spherical.

Use of a point source to irradiate a conducting plate
is an essential point that differentiates the experiments
described from those in [5–7]. Unlike a flat-front FTLS,
which generates a current pulse with a velocity that is
constant throughout the emitting surface, the use of the
spherical front causes the angle of incidence of the radi-
ation to vary (increase) and the faster-than-light veloc-
ity of the emission current along the photocathode to
decrease. Since the direction of emission of the electro-
magnetic wave depends on the faster-than-light veloc-
ity value (and this velocity, in turn, is related to the
angle of incidence of the X rays), we obtain a divergent
EMR beam (instead of a ribbon beam for the case of the
flat X-ray front, Fig. 1a). The parameters of this diver-
gent beam depend on the mutual arrangement of the
point X-ray source and plate irradiated, as is schemati-
cally (without regard to diffraction divergence) shown
in Fig. 1b.

The essence of our experiments is shown in Fig. 1b.
We used a 3-m-long echo-free vacuum chamber of
diameter 2 m with the microwave-absorbing inner sur-
face. The chamber enclosed an electromagnetic radia-
tor to be tested (a plane capacitor with a transparent
plate (anode)), an X-ray source, X-ray detectors, accel-
erated-electron current detectors, and EMR detectors.

The diode represented a plane capacitor with a pol-
ished aluminum cathode measuring 60 × 850 mm and
an anode (nickel grid with a mesh size of 2 mm). The
anode transmitted about 80% of incident light. The
source was mounted at a height of 34 cm above the pho-
tocathode and was 40 cm distant from its nearest end.
The gap between the electrodes was within 20 mm. The
grid was under an accelerating potential ϕ0 ≈ 80 kV.

To protect the inner surface of the chamber and the
bodies of the electromagnetic field detectors against the
direct action of X rays, the source was sheathed in a
metallic screen with holes through which the incident
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
radiation was directed toward the cathode and X-ray
detectors.

The local values of accelerated-electron current
density at the outer surface of the anode were measured
with three Faraday cups FC1, FC2, and FC3. By means
of inductive magnetic-field detectors, we measured the
amplitude–time parameters and took the directivity dia-
gram of the EMR. The inductive detector was a frame
antenna in the form of a wire turn 10 mm in diameter
placed on a metallic plate. The magnetic detectors
(MD1–MD3) were aligned with a line parallel to the cyl-
inder generatrix near the microwave-absorbing coating.
MD3 was placed in the area where the characteristic
radiation of the FTLS was expected to be the highest
intensity, MD1 was placed outside the area of radiation,
and MD2 was in between (Fig. 1b). The distance from
MD3, MD2, and MD1 to the center of the capacitor was
200, 120, and 120 cm, respectively.

The output signals from the EMR detectors and the
electron currents were measured using high-speed
oscillographic recorders with bandwidths of 5 and
7.5 GHz. The transient time in the recording channels
was no more than 100 ps. The accuracy of finding the
time parameters was 50 ps or higher. The relative error
of measuring the current amplitudes was less than 20%.
The field amplitudes were measured accurate to 25%.
The error of the relative measurements did not exceed
10%.

EXPERIMENTAL RESULTS

In the experiments [8], laser energy E delivered to
the target was varied between 0.3 and 0.8 kJ; pulse
duration τ0.5 , between 0.3 and 0.5 ns; and irradiation
fluence Q, between 1014 and 1015 W/cm2. The duration
of X-ray pulses for photons of energy ε ~ 0.45 keV was
about 0.7 ns at a pulse rise time of ~0.3 ns. For the same
rise time, the duration of a pulse of “complete” plasma
radiation was between 2 and 3 ns. The effective temper-
ature of the X-ray source spectrum was about 50 eV.

As follows from the readings of the X-ray detectors,
the X-ray intensity at the near and far (relative to the
source) ends of the cathode differed by a factor of five
to six.

The high fluence of X-rays makes it possible to gen-
erate an emission pulse of current density Jca varying
from several tens to several hundreds of A/cm2 at the
cathode end nearest to the X-ray source with pulse rise
time Trc of about 0.3 ns. With such a high rate of elec-
tron emission, the time it takes for the capacitor to be
discharged completely at an initial voltage of 80 kV and
a electron current density of 100 A/cm2 is

(3)

This indicates the formation of an FTLS at the front
of the pump pulse. Under these conditions, the param-
eter responsible for its properties is not the amplitude

Tm ϕ0T rc/2πLJca 0.2 ns.≈ ≈
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value of the emission current at the cathode (or the
maximal fluence of X-rays), which was measured fairly
accurately in the experiments, but the rise time of the
electron emission current (or the rise time of the X-ray
pulse), which is much more difficult to measure.

From the measurements of the amplitude and rise
time of the anode current, as well as of the electromag-
netic field amplitudes, we can draw the following con-
clusions.

(1) The faster-than-light current pulse and EMR are
generated under the saturation conditions: the parame-
ters of the current pulse at the anode and the parameters
of the electromagnetic wave emitted (amplitude and
rise time) are virtually independent of the amplitude of
the emission current at the cathode (or of the X-ray flu-
ence).

(2) The measured values of the anode current are
lower than the ultimate value of the stationary current:
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Fig. 2. Schemes of capacitor irradiation in the FTLS simu-
lation (2D geometry). (a) 1, electrons; 2, cylindrical X-ray
beam; 3, anode; and 4, cathode. (b) 1, ribbon X-ray beam;
2, emitted electrons; 3, anode; 4, accelerating electric field;
and 5, cathode.
J0 = /9πL2  . 13.2 A/cm2. This is consistent
with the idea that the electron current in FTLSs is
dynamically limited by the field of the EMR generated
[7].

(3) As follows from the readings of the magnetic
detectors placed in different areas of the chamber, the
characteristic radiation of the FTLS is directional and
basically corresponds to the scheme shown in Fig. 1b.

SIMULATION OF FASTER-THAN-LIGHT 
SOURCE PARAMETERS

Since the EMR generation, the formation of the
dipole layer, and the motion of electrons in the elec-
trode gap are intimately related processes, they should
be considered in combination. The basic means for the-
oretical investigation of such systems is numerical sim-
ulation based on the self-consistent solution of the
Maxwell and Vlasov equations

(4)

(5)

Here, fe is the electron distribution function; e is the
electron charge; p and v are the momentum and veloc-
ity of an electron, respectively; Ew and Hw are the
strengths of the electric and magnetic fields, respec-
tively, that are generated by the electrons emitted; and
E0 is the electric field strength in the accelerating diode.

The simulation was carried out in two stages. At the
early stage, the EMC2D two-dimensional program [10]
was used. In terms of this program, the Vlasov equation
is solved by the particle-in-mesh method [11]; the Max-
well equations, by the finite-difference method based
on the cross scheme [12]. With this scheme, the forma-

tion of a faster-than-light current pulse, { , },
and the generation of the EMR, {Ex, Ez, Hy}, were self-
consistently simulated in the Cartesian system. The
system geometry used in the simulation is shown in
Fig. 2. Two irradiation schemes were employed. In the
first case, the capacitor, which was assumed to be infi-
nitely long in the 0y direction, was irradiated by a cylin-
drical X-ray beam (Fig. 2a). Here, the space–time dis-

tribution of the electric current, { , }, and the

derivative ∂ (t, x)/∂t of the dipole moment along the
0x axis (along the larger side of the anode) were deter-
mined and the electromagnetic fields at the detectors
were calculated. In the second scheme, the capacitor,
which was assumed to be infinitely long in the 0x direc-
tion, was irradiated by a ribbon X-ray beam (Fig. 2b).
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Here, the space–time distribution of the electric current,

{ , }, and the derivative ∂ (t, y)/∂t of the
dipole moment along the 0y axis (along the smaller side
of the anode) were determined.

At the second stage (3D geometry of simulation),
the electromagnetic fields at the detectors were simu-
lated for the radiator with the actual position and
dimensions of the diode. The simulation was based on
the GEMC 3D program, which makes it possible to
solve Maxwell equations (5) by the finite-difference
method [12] in the Cartesian system for the six electro-
magnetic field components Ex, Ey, Ez, Hx, Hy, and Hz

given the current found at the first stage. Since the com-
plete space–time distribution of the electric current
found with the EMC2D program is difficult to specify,
we used the dipole approximation

(6)

Here,  is the electron current surface density

obtained by the 3D simulation; (t, α, z) and (t,
α, z) are the electron current density and the derivative
of the dipole moment density, respectively, that were
obtained by the 2D simulation; and K2D is the coeffi-
cient taking into account the fact that the derivative

(t, x) of the dipole moment density changes in
going from the infinite (along the 0y direction) to finite
plate.

In our case, dipole approximation (6) is valid, since
we are interested in the early stage of generation, when
the size ∆z ~ L of the radiating layer is smaller than, or
comparable to, the wavelength λ ~ 2πc/v 0L (v 0 & 0.5c)
of the resulting radiation.

In the calculations, the initial and boundary condi-
tions were set as follows. (1) For a given geometry and
voltage of the accelerating diode, the initial values of
the electric field were calculated by the finite-element
method with the MATHLAB package [13] and then
converted to those obtained with the EMC2D finite-dif-
ference grid; (2) the initial values of the magnetic field
were taken to be equal to zero; (3) escape conditions for
the particles and electromagnetic waves at the bound-
ary of the domain of simulation were set; and (4) an
electron emission source was set on the cathode of the
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accelerating diode with allowance for X radiation atten-
uation and a time delay associated with a finite propa-
gation velocity of the IR spherical front along the cath-
ode:

(7)

where p0 is the mean momentum of the electrons emit-
ted, Jc(t) is the time-varying emission current, and {xs,
zs) are the coordinates of the X-ray source.

A feature of FTLS simulation is that not only the
time dependence of the emission current but also its
derivative dJc(t)/dt (the rise time of the current at the
cathode) should be specified with a reasonable accu-
racy. It is this derivative that defines the parameters of
the resulting radiation under the saturation conditions
[7]. In the experiments [8], the emission current was so
high that direct measurement of the time parameters of
the current pulses was impossible in the linear operat-
ing mode of the detectors. Specifically, this is also true
for the rise time of the signal, (t), for 0 < t < 2 ns,
which makes experimental data interpretation uncer-
tain.

In view of the aforesaid, it becomes clear that, for
function Jc(t) to be adequately set using experimental
data, it must be more accurately defined for short time
intervals. This can be done in a number of ways, for
example, by averaging all available experimental
dependences. Alternatively, of these dependences, one
can choose a function with a certain value of (t 
0) based on the calculated data for the X radiation at the
exit from a laser plasma source. Irrespective of the
approach to selecting Jc(t), this function must be in
fairly good agreement with the available experimental
data for the parameters of the anode current. The agree-
ment may be checked if it is taken into account that the
rise time of the electron emission current density is in
one-to-one correspondence with the amplitude and rise
time of the anode current density. When checking, we
used anode current amplitudes measured by a Faraday
cup FC1.

Figures 3 and 4 show the density and rise time (at a
level of 0.1–0.9 of the peak value) of the anode current
that were calculated at FC1 (roughly 20.5 mm away
from the near edge of the anode) versus the emission
current amplitude at the anode for various time depen-
dences of the emission current (these dependences
were recorded in a number of experiments). As the
emission current increases, the anode current does not
decrease and the rise time shortens.

f t z 0 t p, ,=,( )
Jc t x/v ph x( )–( )

4π x xs–( )2 zs
2+( )

------------------------------------------=

× η t x/v ph x( )–( ) 2

πp0

------------- pz
2/ p0

2–( ),exp

Jc'

Jc'



1482 LAZAREV et al.
Let us use the data on the anode current amplitude
and rise time for selecting Jc(t). Figure 5 demonstrates
the anode current density versus rise time dependences
obtained by the simulation and in the experiments. At
first glance, a slight uncertainty in the emission current
pulse shape causes noticeable uncertainties in the
anode current amplitude (up to 1 A/cm2) and rise time
(to 0.1 ns). However, it may be said that the first, sec-
ond, and averaged shapes of the emission current pulse
agree with the anode current measurements within the
accuracy of anode current measurement. Subsequently,
when simulating the emission current at the cathode,
we used the first shape of the emission current pulse.
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Fig. 3. Anode current rise time vs. emission current ampli-
tude at the cathode for various emission current pulse
shapes: 1, averaged shape of Jc(t); 2, first shape of Jc(t); 3,
second shape of Jc(t); and 4, third shape of Jc(t).
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Fig. 3; (5–7) experiments 2409, 1804, and 1304, respec-
tively.
EXPERIMENTAL DATA VERSUS RESULTS 
OF SIMULATION

The parameters of the faster-than-light current pulse
(waveform and amplitude variation along the cathode),
which propagates over the anode, to the greatest extent
define the space–time distribution of the resulting
EMR. Figures 6 and 7 show the experimental and ana-
lytical distributions of the anode current density and
rise time along the radiator. The experimental data and
the results of calculation are seen to be in good agree-
ment. It should also be noted that the emission current
amplitude at the cathode varies in the interval 30–
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Fig. 4. Anode current amplitude vs. emission current ampli-
tude at the cathode for various emission current pulse
shapes. 1–4 are the same as in Fig. 3.
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Fig. 6. Spatial distribution of the anode current amplitude
along the cathode for various emission current amplitudes
at the cathode.
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300 A/cm2, which also agrees with the experiment. The
anode current rapidly drops with distance to the source,
with the rise time remaining almost unchanged (Fig. 7)
but the pulse shape varying noticeably (Figs. 8, 9). It
was shown [7] that this effect is related to the dynamic
limitation of the anode current by the field of the
waveguide mode, which is generated by a faster-than-
light current pulse due to the electrons accelerated in
the electrode gap. The net field from the waveguide
electromagnetic wave and space charge builds up much
faster and is of much greater importance than the space
charge field alone. The net field cuts time Tm, in which
electrons are injected from the cathode and then reach
the cathode, and also dynamically decreases the accel-
erating field in the electrode gap.
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Fig. 7. Spatial distribution of the anode current rise time
along the cathode for various emission current amplitudes
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Fig. 9. Time dependences of the accelerated electron cur-
rent over the anode at the point of FC1 location (the far end
of the capacitor).
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As a result, the anode current and amplitudes of the
derivatives of the dipole moments also decrease. Since
the FTLS at the X radiation front forms under the satu-
ration conditions, the irradiation nonuniformity due to
a decrease in the X ray fluence has no time to show up
against the background of the effect of current limita-
tion by the waveguide mode and, hence, insignificantly
influences the generation of the faster-than-light cur-
rent pulse and EMR.

These effects are distinctly seen in Figs. 8 and 9,
which plot the time dependences of the anode current
that are measured at different points along the 0x axis
and obtained analytically (by FTLS simulation). It
should be noted that, since the time resolution of the
measuring channel is comparable to the microwave
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Fig. 8. Time dependences of the accelerated electron cur-
rent over the anode at the point of FC1 location (the edge of
the capacitor that is nearest to the X radiation source).
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component of the current pulse, the experimental sig-
nals may be smoother than those obtained by the calcu-
lation.

The simulation shows that, for the given intensities
of the X radiation from the laser plasma source, the
anode current rapidly tends to an asymptotic value (in
terms of the emission current at the cathode) and its
peak value at the point of FC1 location is bound to be
no more than 6.5 A/cm2. This statement was confirmed
experimentally, since an anode current density higher
than 5 A/cm2 was observed in none of the experiments.

One of our main goals was to record the EMR from
the FTLS and confirm that it is directional and short.
The magnetic fields were recorded in the far-field zone
of the radiator, where the field amplitudes depend pri-
marily on the second-order derivative of the dipole
moment. This derivative is proportional to the electron

energy and initial voltage across the capacitor:  ~ ε ~
ϕ0. Since there is an uncertainty both in the pulse shape
and in the emission current amplitude at the cathode
(because of the experimental error involved in the
experimental values of the anode current and its rise
time; see Figs. 3, 4), one can indicate only the interval
into which the values measured may fall when simulat-
ing the magnetic field at the points where detectors
MD2 and MD3 are located. Figure 10 shows the distri-
bution of the maximal magnetic field along the 0x axis
that was simulated for those coordinates x and y corre-
sponding to the positions of the magnetic detectors. The
results of simulation are in good agreement with the
measured data both in magnitude and in pulse shape
(Fig. 11). In the wave zone of the radiator, the resulting
EMP represents a videopulse of duration less than 2 ns
(this duration depends on the characteristic discharge
time of the capacitor). With the rise times coincident,
the analytical and calculated pulses somewhat differ in
FWHM (by 0.1–0.2 ns). This discrepancy is most prob-
ably related to the fact that, in the 3D simulation of the

Ṗ̇
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Fig. 11. Experimental and calculated time dependences of
the magnetic field at the point of MD3 location.
electromagnetic fields, the electron currents were spec-
ified by the time functions obtained by the self-consis-
tent simulation in the 2D geometry, which ignores the
finite length of the capacitor in the 0y direction. The
calculation of the current distribution in the direction
transverse to the direction of the faster-than-light cur-
rent (Fig. 2b) indicates that not only does the anode cur-
rent amplitude rise by 20–30%, but also the pulse
becomes slightly (by 10–15%) longer.

CONCLUSIONS

We performed mathematical simulation of the EMR
generation by a faster-than-light emission current
source, which was implemented with the Iskra-5 setup
in the ARITP [8]. The simulation shows that the char-
acteristic EMR is directional and lasts for a short time.
Also, the resulting EMR induces the dynamic limita-
tion of the anode current density.

In the calculation, we determined the anode current
values that are ultimate in such a system. The space–
time distribution of the emitting dipole layer was
obtained. It is shown that the anode current amplitude
and the dipole moment density rapidly decay along the
capacitor and tend to their asymptotic values as the
length of the emitting area increases. This is associated
with the current limitation effect and also with the influ-
ence of the resulting EMR on the electron motion in the
accelerating gap.

Generally, we may ascertain that the physicomathe-
matical model of an FTLS gives a good fit to the exper-
imental space–time distribution of the anode current
and electromagnetic fields. Hence, the concepts this
model relies upon [1, 4–7] are valid.
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Abstract—The nonlinear generation of a difference frequency mode in an injection quantum-well semicon-
ductor laser is considered. A laser based on the InGaAs/GaAs/InGaP heterostructure is proposed, which gener-
ates two modes in the 1-µm range and the difference mode in a corrugated waveguide in the range from 10 to
20 µm. It is shown that the power of the difference mode produced by a laser with a 100-µm-wide waveguide
in the mid-IR range at room temperature can be as high as a few microwatts if the power of the short-wave
modes is 10 W. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Although small-size terahertz and multiterahertz
sources of radiation are presently in great demand in
various applications, only few types of such sources
have been developed. Semiconductor lasers of tradi-
tional design are only capable of lasing in the near-
infrared (IR) and visible ranges, because nonradiative
Auger recombination plays a significant role in narrow-
gap semiconductors. Presently, the most significant
advances are observed in the development of quantum
cascade lasers [1, 2]. However, the extremely complex
band structure of cascade lasers and stringent require-
ments imposed on their parameters hinder their wide
use. Far-IR semiconductor lasers based on p-type ger-
manium [3, 4] operate only at cryogenic temperatures.
An alternative approach to the development of mid- and
far-IR lasers operating at room temperature is to use
nonlinear effects. Previously, to produce a difference
mode in a laser that outputs two short-wave modes, it
was proposed to use electron nonlinearity in a quantum
well containing three levels [5] or nonlinear properties
of semiconductor materials in the active region [6, 7].

The main difficulty in achieving efficient nonlinear
generation consists in the necessity to meet the phase-
matching condition, because, due to the normal disper-
sion of the refractive index, the phase velocity of the
wave of nonlinear polarization, as a rule, proves to be
lower than the phase velocity of the difference mode. It
was shown in [6] that the phase-matching condition
could be met when the fundamental short-wave mode at
a frequency ω1 and a side mode at a frequency ω2 > ω1
are used. In this case, high-frequency modes at about
1-µm with a power of 10 W produce a 100-µW differ-
ence mode at a wavelength of about 10 µm and an
absorption coefficient of about 10 cm–1.
1063-7842/04/4911- $26.00 © 21486
A disadvantage of the design proposed in [6] is a
small overlap coefficient for the wave of nonlinear
polarization at the difference frequency and the
waveguide mode excited. This coefficient is small for
two reasons. First, the nonlinear polarization at the dif-
ference frequency is proportional to a product of almost
orthogonal modes, which changes the polarization sign
in the direction perpendicular to the structure layers on
the scale of the width of the wave-guiding layer for
high-frequency modes. Second, the scale of the spatial
variation of the difference mode in this direction is
mush larger than the scale of variation of the polariza-
tion wave. In addition, the parameters of the dielectric
waveguide proposed in [6] are very sensitive to the
geometry of the structure; hence, even small errors in
the layer thicknesses may decrease the laser power by
several orders of magnitude, which makes this design
very difficult to implement.

An alternative approach to providing phase match-
ing by using a plasma waveguide to slow the difference
harmonic was proposed in [7]. However, as calculation
showed, this structure operates satisfactorily only for
the difference mode is in the far-IR range (where the
semiconductor permittivity exhibits anomalous disper-
sion) and is hardly applicable to the mid-IR range.

In this study, we propose a new technique to ensure
the phase matching, based on using modes of a corru-
gated waveguide, which has long been used to slow
electromagnetic waves in microwave electronics [8].

The advantages of this technique are as follows.
First, it offers a comparatively easy way to control the
phase velocity at the difference frequency by changing
the corrugation period and depth. The second advan-
tage of the proposed technique is that it uses two high-
frequency fundamental modes at frequencies ω1 and ω2
to excite the low-frequency difference mode; therefore,
004 MAIK “Nauka/Interperiodica”
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the overlap coefficient for the difference frequency is
not small (the high-frequency modes are not orthogo-
nal). Our calculations showed that, when the phase-
matching condition is met and the powers of the high-
frequency modes are 10 W at about 1 µm, the power of
the difference mode may be about several microwatts in
the wavelength range from 10 to 20 µm for a laser with
a 100-µm-wide waveguide.

CALCULATION OF THE POWER 
OF THE DIFFERENCE MODE 

IN THE CORRUGATED WAVEGUIDE

Consider the structure in Fig. 1. Here, h is the corru-
gation depth, D is the corrugation period, and L is the
length of the region occupied by the semiconductor and
surrounded by metal from its three sides. If the semi-
conductor laser structure is grown on the (001) plane
and the high-frequency modes are TE-polarized and
propagate in the [110] direction, the nonlinear polariza-
tion in GaAs is perpendicular to the layer plane and
excites the TM mode at the difference frequency [6].

We will calculate the characteristics of the corru-
gated waveguide at the difference frequency by the
mode-matching technique [8], which divides the corru-
gated waveguide into two regions: the space of resona-
tors (z > 0) and the interaction space (z < 0). The Hy

magnetic field component of the TM wave can be
approximated in the interaction space by a superposi-
tion of spatial harmonics Hym(z); in the resonators, by a
superposition of partial fields Hyq(z), which are stand-
ing waves in the propagation direction of the wave
amplified, i.e., they do not contribute to the energy
transfer:

(1)

(2)

where km = kx + 2πm/D; –∞ < m < ∞; and fq(x) are the
resonator’s eigenfunctions (0 ≤ q < ∞), whose phase
advance per corrugation period D equals the phase
advance of the wave outside the resonators.

We used the single-wave approximation, which
takes into account only one spatial harmonic and one
wave type (m = 0 and q = 0) in the resonator. The elec-
tromagnetic field in the continuous metal part of the
waveguide z > h was matched to the field in the adjacent
semiconductor material. Below, we omit the indices m
and q of the y component of the magnetic field. The
above approximation is valid when the wavelength in
the corrugated waveguide is longer than the corrugation
period [8]:

(3)

Hy x z,( ) Hym z( ) ikm iωt–( ), z 0,<exp
m ∞–=

+∞

∑=

Hy x z,( ) Hyq z( ) f q x( ) iωt–( ), z 0,>exp
q 0=

∞

∑=

2πDn/λ 0.6π,<
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where n is the refractive index of the medium and λ is
the wavelength in free space, because, under this condi-
tion, the amplitude of the zeroth harmonic is signifi-
cantly larger than those of other harmonics.

The magnetic field intensity Hy(z) of the generated
wave in the region z < 0 is determined from the follow-
ing equation:

(4)

Here, the z axis is parallel to the [001] crystallographic
direction (Fig. 1) and ε(2) is the nonlinear susceptibility.
To find Hy(z) in the region z > 0, we take kx in Eq. (4)
equal to the corresponding projection of the wave vec-
tor of the standing waves in the semiconductor parts of
the periodic structure, kx0, which is calculated from the

relation  +  = εsω2/c2, where εs is the permittivity
of the semiconductor and the projection kz0 is deter-
mined as an eigenvalue of the equation

(5)

for 0 < z < h under the boundary condition fq(x) =
exp(ikxD)fq(x + D).

The boundary conditions at z = 0 are the continuity
of Hy(z) and of

The dependences of the electric field amplitudes A1
and A2 of the higher-frequency modes on coordinates
and the difference kx = k2 – k1 of the modes' propagation

ε z ω,( ) d
dz
----- 1

ε z ω,( )
-----------------

dHy

dz
---------- ε z ω,( )ω

2

c2
------ kx

2– 
  Hy+

=  –2ε 2( )kxω
c

---------A1* z( )A2 z( ).

kx0
2 kz0

2

ε x ω,( ) d
dx
------ 1

ε x ω,( )
-----------------

d f q

dx
-------- ε x ω,( )ω

2

c2
------ kzq

2– 
  f q+  = 0

1
ε x ω,( )
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∂Hy z( )
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-----------------.
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Fig. 1. Structure proposed to generate the difference fre-
quency (layer numbers correspond to those used in table).
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constants are calculated by solving the wave equation
with the corresponding profile of the refractive index.

The electric field component Ez of the difference
mode and its power are determined from the equalities

(6)

(7)

where Ly is the width of the contact strip of the laser
diode.

The solution to the above system is a slow wave,
which exponentially decays with distance away from
the corrugated surface in proportion to the slowing fac-
tor (Fig. 2).

Ez
1

ε z ω,( )
-----------------

ckx

ω
-------Hy 2ε 2( )A1* z( )A2 z( )+ 

  ,–=

P
cLy

2π
-------- Re HyEz*( ) z,d

∞–

0

∫–=
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Fig. 2. Profiles of the magnitude of the magnetic field of the
difference mode (the dashed line is the amplitude of the
high-frequency modes in arbitrary units), the corrugated
surface (right), and the real and imaginary parts of the
refractive index at a wavelength of 12.7 µm (layer numbers
correspond to those used in table).

Heterostructure parameters

Layer
no. Material

Layer 
thick-

ness, µm

Doping
Mobi-
lity,

cm2/V stype concentra-
tion, cm–3

1 GaAs – n 2 × 1018 3024

2 InGaP 0.6 n 4 × 1016 1947

3 GaAs, 2 KYa 0.6 n 4 × 1016 5796

4 InGaP 0.6 p 1 × 1017 40

5 GaAs 0.5 p 1 × 1017 279

6 Au 1 – – –
The parameters of the heterostructure proposed here
to produce the difference frequency in the
InGaAs/GaAs/InGaP system are listed in the table. To
produce short-wave modes at two different frequencies,
the active region contains two InGaAs quantum wells
(QWs) of different depth in the GaAs layer (layer 3 in
table). For the short-wave radiation, the waveguide is
formed by sandwiching a layer of narrow-gap GaAs
between emitter layers of wide-gap InGaP with a lower
refractive index. In our calculations, we used the fol-
lowing expressions for the refractive index of the short-
wave modes [9, 10]:

(8)

The effective refractive index of the difference-
polarization wave n = (k2x – k1x)/(ω2 – ω1) is determined
by the design of the high-frequency part of the laser and
is actually independent of the design of the corrugated
waveguide, because the high-frequency modes almost
do not penetrate beyond the bounding InGaP layers
(Fig. 2).

To calculate correctly the refractive index at the dif-
ference frequency, the contributions of free carriers and
optical photons to the permittivity must be taken into
account. The simplest way to consider the contribution
of the free-carrier plasma and optical photons to the
permittivity is to use expression (26) from [11], which
is applicable to both n-type and p-type semiconductors:

(9)

where ε0 and ε∞ are the low-frequency and high-fre-
quency permittivities of an undoped semiconductor,
respectively; ωTO is the frequency of the transverse
optical photon; Γ is the coefficient of the phonon-

induced wave attenuation; γ = q/m*µ;  =
2πnq2/m*ε∞ is the squared plasma frequency; n and m*
are the concentration and effective mass of charge car-
riers, respectively; and µ is the carrier mobility.

The values of Γ and ωTO were taken from review
[11], and γ was calculated from the dependence of the
mobility on dopant concentration reported in [9]. The
frequency dependence of the attenuation coefficient
obtained from (9) is in good agreement with the exper-
imentally observed dependencies [11], except for the
multiphonon effects, whose contribution to the attenu-
ation is small.

Our calculations of the permittivity of InGaP in the
mid- and far-IR ranges assumed that half of the TO
phonons in the solid solution are due to the InP sublat-
tice and half are due to the GaP sublattice, i.e., we
neglected the change in the interatomic distances in the
solid solution as compared with the binary semicon-

nCaAs "ω( ) 7.1 3.78

1 0.18 "ω( )2–
----------------------------------+ ,=

nInGaP "ω( ) nCaAs "ω( ) 0.279.–=

ε ω( ) ε∞
ωTO

2 ε0 ε∞–( )

ωTO
2 ω2– iΓω–

-------------------------------------
ωp

2ε∞

ω2 iγω+
---------------------,–+=

ωp
2
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ductors InP and GaP. The total permittivity was calcu-
lated as a half-sum of the permittivities of InP and GaP.
It should be noted that, to reduce loss in the structure,
we used a lighter doping than usual.

The power calculated as a function of the difference-
mode wavelength is shown in Fig. 3. In these calcula-
tions, the maximum wavelength of the high-frequency
modes was fixed and the difference-mode wavelength
was changed by changing the wavelength of the other
high-frequency mode. The function has a maximum,
which corresponds to the phase matching between the
waveguide and polarization modes at the difference fre-
quency. In addition, it can be seen from Fig. 4 that the
power peak shifts to longer wavelengths with increas-
ing the corrugation depth and reaches a maximum
value at corrugation depth h ~ 0.5 µm.

Although the nonlinear polarization is produced
using only fundamental modes, the power of the prop-
agating wave appears to be lower than in [6] by an order
of magnitude. The reason is that the coefficient of
absorption by free carriers in the metal is significant,
since the field amplified exponentially decays with dis-
tance away from the corrugated metal surface and is
mostly concentrated in the metal resonators of the cor-
rugated waveguide, where they form a standing wave
(Fig. 2). The energy of the standing wave exceeds the
energy of the propagating wave by a factor of almost
five.

Due to the high absorption coefficient, the depen-
dence of the power of the wave in the corrugated
waveguide versus the energy of its quantum has a rather
wide maximum. In particular, in the vicinity of
≈10 meV, the estimated wave power drops by only an
order of magnitude. This means that the generated
power is not very sensitive to the parameters of the sys-
tem in a rather wide frequency range.

Thus, the injection laser of the design proposed in
this paper makes it possible to obtain lasing power of

2.5

0
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, µ

m

λ, µm
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Fig. 3. Power of the difference mode vs. its wavelength in
the structure with the following parameters: h = 0.5 µm, D =
0.8 µm, L = 0.7 µm, ε(2) =1.7 × 10–8 cm/V, and Ly = 100 µm.
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about several microwatts in the mid-IR range at room
temperature. The nonlinear polarization is produced
using only fundamental short-wave modes in the range
of 1 µm. The phase matching is obtained by slowing the
long-wavelength IR radiation in the corrugated
waveguide.

One of the advantages of the design proposed is its
low sensitivity to the spread of the process parameters,
because phase matching is obtained by properly choos-
ing the corrugation depth for the difference frequency,
which may be determined before applying a corruga-
tion waveguide to the heterostructure. In addition, the
optimal corrugation depth may be found empirically
using one heterostructure sample.
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Abstract—The problem of using a photoplasma to directly convert the energy of light into electric energy is
investigated theoretically. It is shown that the photo-emf is generated due to the ambipolar potential difference
caused by the nonuniform ionization of alkali metal vapor by optical radiation. The current–voltage character-
istic is calculated and the efficiency is estimated of a plasma photoconverter with plane electrodes. © 2004
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The most efficient method for reducing the cost of
photoelectric energy is to use intense optical radiation
[1]. Besides the use of semiconductor photoelectric
converters, new technologies for the direct conversion
of intense optical radiation into electric current are now
being actively investigated. A scheme for converting
intense CO2-laser radiation (with an intensity of a few
kW/cm2) into electric energy by using a thermoemis-
sion converter was developed in [2]. An alkali metal
thermal-to-electric converter (AMTEC) facility is pro-
posed to convert solar radiation [3]. The AMTEC oper-
ation is based on the separation of charges by a mem-
brane that transmits sodium ions well but does not
transmit electrons.

The use of a low-temperature plasma for direct opti-
cal-to-electric energy conversion has not yet been ade-
quately studied. In [4], a method of magnetohydrody-
namic (MHD) conversion of solar energy into electric
current by using isothermal alkali metal plasma was
proposed. Another method for the direct conversion of
the kinetic energy of charged plasma particles into elec-
tric current is to use the ambipolar potential difference.
This method was discussed in connection with the
problem of enhancing the fuel efficiency in nuclear
fusion reactors [5].

The first experimental studies on the use of the
ambipolar potential difference in an alkali metal photo-
plasma to directly convert intense optical radiation into
electric current were performed in [6, 7]. Plasma for-
mation in alkali metal vapor is a well-studied phenom-
enon [8]. The efficiency of this process increases by
several orders of magnitude when the wavelength of the
incident radiation corresponds to the absorption line of
the alkali atoms. In the early experiments on photoplas-
mas, it was shown that the efficiency of optical ioniza-
tion can approach unity [9]. An interesting result of
1063-7842/04/4911- $26.00 © 21491
[6, 7] was that, in those experiments, the photo-emf was
as high as 3–4 V, which was almost one order of mag-
nitude higher than that for semiconductor converters.
Such a high photo-emf is a consequence of the high
electron temperature in photoplasma [10].

In the present paper, a theoretical model is devel-
oped that describes the photo-emf effect in plasma
under the action of intense optical radiation. We con-
sider a configuration with plane electrodes, which is the
simplest from the standpoint of describing the ambipo-
lar field in plasma.

CALCULATION OF THE CURRENT–VOLTAGE 
CHARACTERISTIC OF THE CONVERTER

We consider the following simplified mathematical
model of the photo-emf effect in plasma under the
action of intense optical radiation: Let the plasma be
located between two plane electrodes A and B separated
by a distance L. We assume that optical excitation
occurs in a narrow layer, within which the excited
atoms are mainly concentrated. The excitation region is
located at a distance x0 from one of the electrodes. In
our analysis, we will ignore the edge effects and will
consider the problem in a one-dimensional approxima-
tion. It is well known that the dominant ionization
mechanism in photoplasma is the electron-impact ion-
ization of resonantly excited atoms [8]. Hence, the ion-
ization source can be represented in the form of a delta
function Qδ(x – x0), where Q is the ionization rate. In
the absence of volume recombination, the diffusion
equation for the plasma density n has the form

(1)Da
d2n

dx2
-------- Qδ x x0–( ).=
004 MAIK “Nauka/Interperiodica”
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Here, Da is the coefficient of ambipolar diffusion. In the
case of equilibrium electron and ion energy distribu-
tions, we have Da = Di(1 + Te/Ti), where Di is the ion dif-
fusion coefficient and Te and Ti are the electron and ion
temperatures, respectively. The solution to Eq. (1) with
zero boundary conditions n(0) = n(L) = 0 has the form
(see Fig. 1, curve 1)

(2a)

(2b)

The plasma density at the point x0 is equal to n0 =
Q(L – x0)x0/DaL. Equation (1) becomes invalid at a dis-
tance of x0 ≈ λi from the electrode surface, where λi is
the ion mean free path. The potential drops ϕA and ϕB

across the electrode sheaths partially cut off the elec-
tron diffusive fluxes toward the electrodes. Kirchhoff’s
laws for the electric circuit with unit-area electrodes
have the form

(3)

Here, I(ε) is the current in the external circuit; ε is the
interelectrode voltage; jA and jB are the electron current
densities at electrodes A and B, respectively; and iA and
iB are the current densities of positive ions. If the circuit
closing electrodes A and B consists only of a resistance
R, then we have I = ε/R. The ambipolar potential drop φ
across the quasineutral plasma is determined by the
expression [11]

(4)
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Fig. 1. Spatial distributions of the (1) plasma density and
(2) electric potential in the open-circuit regime and (3) the
electrode potential drops in the short-circuit regime at
x0/L = 0.1, λi/L = 0.02, Ti/Te = 0.1.
Hence, we find that φA = Teln(x0/λi) for λi ≤ x ≤ x0 and
φB = Teln((L – x0)/λi) for x0 ≤ x ≤ L – λi.

The ion current density is determined by the ambi-
polar flow velocity i = –Dadn/dx. Hence, we find that
iA = –Dan0/x0 and iB = Dan0/(L – x0). The electron cur-
rent density at the electrode can be find under the
assumption that the electrode sheath is collisionless,
since the electron mean free path usually far exceeds λi.
When the electron energy distribution is Maxwellian,
the electron current density is expressed through the
well-known Langmuir formula

(5)

where nb is the plasma at the sheath boundary and  =
(8kTe/πm)1/2 is the thermal electron velocity.

The solution to set of equations (3) yields the cur-
rent–voltage characteristic of the photo-emf source:

(6)

Let us examine the limiting cases of expression (6).
In the open-circuit regime (I(ε) = 0), the electrode

potential drops are equal to one another,  =  ≈

Teln , and the electron and ion fluxes to the
electrodes are also equal. In this case, the photo-emf Φ
is determined by the ambipolar potential difference

(7)

It follows from formula (7) that the emf vanishes
when the electrodes are positioned symmetrically about
the ionization region (x0 = L/2). Curve 2 in Fig. 1 shows
the potential distribution and the electrode potential
drops in the open-circuit regime for a lithium vapor
plasma.

When the current flows through the external circuit,
the potential drop near the electrode that is closest to

the ionization source increases in comparison to 
and a greater ion flux arrives at this electrode from the
plasma. An additional electron flux arrives at this elec-
trode through the external circuit. The potential of the
electrode located farther from the ionization source
decreases, and more electrons than ions arrive at this
electrode from the plasma. Thus, the electrode potential
drops play the role of a peculiar kind of valves control-
ling the electron fluxes to the electrode. The ambipolar
potential difference in our model remains unchanged.
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In the short-circuit regime (ε = 0), the current I0 is
determined by the expression

(8)

The electrode potential props in this case are shown
in Fig. 1 by squares 3.

Figure 2 shows the calculated current–voltage char-
acteristic ε(I) and the power W = εI released in the
external circuit for two different positions of the ioniza-
tion regions with respect to the electrodes. It can be
seen from the figure that the photo-emf in the open-cir-
cuit regime, the short-circuit current, and the power
released in the load increase as the ionization region
approaches one of the electrodes. Note that, in Fig. 2,
the photo-emf is normalized to Te, and the current is
normalized to the ionization rate in the plasma. To
determine Te, it is necessary to consider equations
describing the plasma state.

MODEL OF A PHOTOPLASMA 
IN THE DIFFUSION REGIME

Let us estimate Te from equations for photoplasma.
The relative population of the resonantly excited states
is characterized by the effective temperature

where ∆E01 (1.53 ≤ ∆E01 ≤ 2.1 eV) is the energy differ-
ence between the resonant levels of alkali atoms, N1 and
N0 are the populations of alkali atoms in the excited and
ground states, and g0 and g* are the statistical weights
of the corresponding levels.

The main source of electron heating in photoplasma
is superelastic collisions with resonantly excited atoms.
Far from the optical saturation of the resonance transi-
tion (T* ≤ ∆E01), the frequency of electron-impact exci-
tation from the ground state ν01(Te) is much higher than
the frequency of ionization from the resonance state,
ν1i(Te) ! ν01(Te). This is a direct consequence of the
relations between the cross sections and the energy
thresholds for the above processes: ∆E01 < ∆E1i, where
∆E1i is the energy of ionization from the ground state.
As a result, the electron energy fraction spent on the
ionization of atoms is less than 1% of the energy spent
on the excitation of atoms from the ground state. The
electron energy lost in inelastic processes (at Te >

I0 Q
L 2x0–

2L
-----------------.=

T* ∆E01 N1g0/N0g*( )ln[ ] 1– ,–=
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
0.15 eV) is larger than the energy lost in elastic elec-
tron–atom collisions:

where δ = 2m/M is the coefficient of energy transfer in
elastic collisions of electrons with atoms, νea(Te) is the
frequency of elastic collisions, and Tg is the gas temper-
ature [12].

The governing role of the processes of the resonant
excitation and deexcitation in the electron energy bal-
ance equation is the reason why Te ≈ T*. This is con-
firmed by numerical calculations of the energy distribu-
tion function in photoplasma [13].

The electron density ne and the population of alkali
atoms in the excited state N1 are determined from the
corresponding balance equations. In evaluating the
maximum possible conversion efficiency, we ignore the
recombination of electrons and ions in the plasma in
comparison to their diffusive losses. Because of the
trapping of the resonance radiation, the effective life-
time of the resonance level substantially exceeds its
natural lifetime. Let us consider the conditions under
which the rate of the electron-impact deexcitation of
the resonantly excited states exceeds the radiative
decay rate. Under the above assumptions, the balance
equations take the form

∆E01ν01 Te( ) δνea Te( ) Te Tg–( ),>

1
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Fig. 2. (1, 2) The emf and (3, 4) output power of a photo-
converter as functions of the electric current at different
positions of the ionization source: x0/L = (1, 3) 0.1 and
(2, 4) 0.01.
(9)
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where J [J/(cm3 s)] is the rate of the external optical
excitation of the resonant levels (in units of J/(cm3 s))
and τad(Te) = x0(L – x0)/Da is the characteristic time of
ambipolar-diffusion.

The first of the above equations allows us to deter-
mine Te, assuming that Te = T*. Here, as in the Shottky
theory, the electron temperature is determined by the
ionization balance condition. The difference from con-
ditions in an electric discharge is that the ionization
from the ground atomic state is replaced with the ion-
ization from the resonantly excited state. Using the
Seaton formula [14] for k1i(Te) and expressing Di in
terms of the resonance charge-exchange cross section
σres [15] and Tg, we derive the following equation for
determining Te:

(10)

where α is a factor depending on the system of units
used in formula (10).

It follows from this expression that, for the same
external parameters N0, x0, and L, the Te value is higher
in the photoplasma of light alkali metals, because these
metals have the higher ionization energies E0 and E1i

and the lower values of M and σres. The solution to
Eq. (10) has a singularity at x0 ~ λi. At x0 < λi, Eq. (10)
has no solutions, which is a consequence of the zero
boundary conditions used in solving Eq. (1).

The second of Eqs. (9) allows us to determine n0.
Assuming that Te = T*, we obtain

(11)
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α
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2σres
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Fig. 3. Conversion efficiency for different alkali metals as a
function of the vapor density for L = 1 cm and x0/L = 0.1.
It follows from this formula that the degree of ion-
ization increases as the radiative-excitation power and
the distance of the ionization region from the electrode
surface increase.

CONVERSION EFFICIENCY 
FOR THE ABSORBED RADIATION ENERGY

The dependence of the output power on the current
through the load (Fig. 2) shows that the optimal current
is nearly equal to one-half of the short-circuit current.
This current determines the lower estimates for the
maximum possible power (Popt = 0.5Imaxε(0.5Imax)) and
the conversion efficiency η:

(12)

The calculated conversion efficiencies for the plas-
mas of alkali metals as functions of their vapor densi-
ties are shown in Fig. 3. When calculating Te from
Eq. (10), it was assumed that the density of alkali atoms
N0(Tg) corresponded to the saturation vapor pressure
[16]. It can seen that, under identical external condi-
tions, the maximum efficiency is achieved in lithium
vapor because of the maximum values of Te in it.

The maximum possible efficiency of a photocon-
verter with plane electrodes (x0 ! L) can be estimated
by the formula

(13)

It follows from this formula that, to increase the
conversion efficiency, the electron temperature should
be fairly high.

CONCLUSIONS

In this paper, an analytical model of a photocon-
verter with plane electrodes has been developed. It is
shown that the photo-emf effect in plasma is caused by
the generation of an ambipolar field when the elec-
trodes are positioned asymmetrically about the region
of gas excitation by an external radiation source. The
electric current in the external circuit is determined by
the diffusion of the positive ions (i.e., as in semiconduc-
tors, by the diffusion of the minority current carriers).
An increase in the electron temperature leads to an
increase in both the photo-emf and the conversion effi-
ciency.
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Abstract—Amorphous silver, copper, gold, and iron films with a thickness of 6–60 nm have been grown on a
polymer substrate by the method of vacuum deposition. The dependences of the specific conductivity and the
microwave reflection coefficient on the film thickness are obtained and a relation between these values is estab-
lished. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A great number of papers are devoted to investiga-
tions of the conductivity and electrodynamic properties
of thin (10- to 100-nm-thick) metal films, in particular,
to the reflection, transmission, and absorption of elec-
tromagnetic waves in such films [1, 2]. These investiga-
tions have been mostly carried out under the assump-
tion that the size of inhomogeneities in the films is
much smaller than the wavelength but much greater
than the skin depth, which implies that the wave field
distribution inside the film is inhomogeneous. For a
film thickness of 10–100 nm, this assumption is valid
only in the range of rather high frequencies in the visi-
ble and infrared ranges [1–13]. Less attention has been
paid to the electrodynamic properties in the centimetric
range, for which the skin depth is much greater than the
film thickness. However, this very range is of interest
from the standpoint of using metal films in various data
processing devices, where the metal films are promis-
ing candidates to replace expensive ferrite films
[14, 15].

The present work was devoted to investigation of the
conductivity and the reflection of centimetric electro-
magnetic waves as functions of the thickness of a thin
metal film of silver, copper, gold, and iron in the amor-
phous state. We have also established a relationship
between these functions.

1. CHARACTERIZATION OF SAMPLES

We have studied the amprophous films of silver,
copper, gold, and iron obtained by thermal deposition
in vacuum onto the surface of a dielectric polymer sub-
strate at room temperature. The vacuum was about
10−5 Torr and the metal deposition rate was ~10 nm/s.
Such a high rate was necessary to obtain pure metal
films with a small content of impurities in a rough vac-
uum. These deposition rates are often used to fabricate
thin-film materials in industry. The film thickness was
varied from 6 to 60 nm.
1063-7842/04/4911- $26.00 © 21496
The X-ray diffraction analysis of the films showed
that diffraction peaks typical of the crystalline state
were entirely absent; hence, the films were X-ray amor-
phous. A polymeric X-ray film with a thickness of
0.5 mm was used as a substrate for depositing metal
films used in the measurements of conductivity and
reflection coefficient.

2. EXPERIMENTAL EQUIPMENT 
AND TECHNIQUES

2.1. Determination of the film thickness and con-
ductivity. A crystalline calibrator assembled on the
base of a quartz resonator was used to control film
thickness during the deposition. The evaporating mate-
rial was simultaneously deposited on the substrate and
facets of the quartz crystal linked to the high-frequency
oscillatory circuit of a generator. The procedure of film
thickness measurements was described in [16].

The conductivity measurements were performed
using an experimental setup schematically depicted in
Fig. 1,which consisted of dc power supply B5-43, dig-
ital wavemeter Ch3-57, digital ohmmeter Shch-34, and
piezoquartz transducer (calibrator) placed in the vac-
uum chamber at the same level as the substrate. Thick
silver layers were deposited at the ends of each polymer
substrate, which were connected to the measuring
equipment. The resistance was measured after each
deposition cycle.

During the deposition, all the experimental data
(deposition time, piezoquartz transducer frequency, and
resistance) were recorded into computer memory (writ-
ing speed was about 200–250 experimental points per
minute). In some experiments, a thin metallic grid was
placed between the evaporating material and substrate
so as to decrease the deposition rate, thus increasing the
amount of the measured data. The film thickness was
determined from the frequency shift of the quartz reso-
nator, while, taking into account the thickness, area,
and resistance, it was possible to determine the conduc-
tivity.
004 MAIK “Nauka/Interperiodica”
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2.2. Determination of the reflection coefficient.
The coefficient of reflection of a microwave signal from
metal films was measured at normal incidence. The
measurements were carried out in a frequency range of
8–12 GHz. The sample film was placed in a rectangular
waveguide with a cross-section of 10 × 24 mm and ori-
ented perpendicular to its longitudinal axis so as to
cover all the waveguide cross-section. A matched load
was placed behind the film, at the opposite end of the
waveguide (Fig. 2). The waveguide was connected to a
panoramic device measuring the complex transfer con-
stants. The device comprised a swept-frequency gener-
ator (SFG-61), a voltage standing-wave indicator with
an attenuation module (YaSR-67), and a waveguide set
of reflectometers. In order to increase the sensitivity,
the microwave signal was modulated in amplitude with
a frequency of 100 kHz. The initial signal from the
microwave generator was divided and fed into two
channels. One of these signals was used as a reference
signal and entered the indicator immediately after
being detected, while the other signal was fed to the
waveguide containing the investigated sample. The
reflected wave excited an electromotive force (emf) in
the receiver. The response signal was detected and fed
to the indicator. In both cases, detection was carried out
in such a way that the output signal was proportional to
the microwave field strength. Owing to this connection,
it was possible to compare the amplitudes of the wave
field strength of the incident and reflected signals in the
indicator. The reflection coefficient R was determined
as the ratio of these signals,

where K is the standing-wave ratio (determined directly
on the indicator scale) and Einc and Erefl are the ampli-
tudes of the incident and reflected waves, respectively.

3. MAIN EXPERIMENTAL RESULTS 
AND DISCUSSION

3.1. Electric Conductivity

The experimental data on the specific conductivity σ
as a function of the film thickness are shown in Fig. 3
for various metal films measured at room temperature
in a vacuum of 10–5 Torr (for iron films, the values of
specific conductivity are multiplied by a factor of five).
These experimental data are well approximated by the
Boltzmann function (Fig. 3). As follows from Fig. 3,
the dependence of conductivity on the thickness is
weak for all films with a thickness of up to 5–7 nm. For
the films with such thicknesses, a cluster-island struc-
ture is typical [10, 11, 17], which is characterized by a
high resistivity along the film. Moreover, objects with
such small thicknesses are characterized by a small
density of free electrons and a short free path limited by
the film surface, clusters, and islands on the film sur-

R
K 1–
K 1+
-------------

Erefl

Einc
---------,= =
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face. All these factors lead to a low value of the longi-
tudinal (lateral) conductivity of the films.

As the film thickness increases, the film conductiv-
ity exhibits a sharp dependence on the film thickness (in
the range of 7–15 nm for gold films, 6–20 nm for cop-
per films, and 5–40 nm for silver films). For iron films,

1 2 3 4

5
6 7

Fig. 1. Schematic diagram of the experimental used for the
measurements of the conductivity and thickness of the
films: (1) power supply; (2) piezoquartz transducer; (3) sub-
strate; (4) ohmmeter; (5) wavemeter; (6) vacuum chamber;
and (7) metal source.

1 2 3
4

5

6

7

55

7

12

10

11

5

5I II

Fig. 2. Schematic diagram of the experimental setup for the
measurements of the standing-wave ratio: (I)—swept-fre-
quency generator (SFG); (II) indicator; (1) doorknob trans-
former; (2) directional detector of incident wave; (3) direc-
tional detector of reflected wave; (4) matched load;
(5) interface cable; (6) sample; (7) ARM outputs of indica-
tor and SFG; (8) incident wave jack; (9) reflected wave jack;
(10) SFG output; (11) socket connector of SFG; and
(12) socket connector of indicator.
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Fig. 3. Plots of the specific conductivity versus film thick-
ness for the films of various metals: (1) silver; (2) copper;
(3) gold; and (4) iron.
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this dependence is not as pronounced and the conduc-
tivity increases with the film thickness in the range
from 5 to 60 nm and above. With further increase in the
film thickness, the dependence σ(d) becomes less pro-
nounced and the specific conductivity of the films is
close to maximum. It should be noted that the character
of conductivity growth for silver, copper, and gold films
in the indicated range of thicknesses is almost identical,
and the conductivity of all these films in the saturation
region is close to the corresponding bulk values. In par-
ticular, this value is about 2 × 107 Ω–1 m–1 for silver
films, 1.1 × 107 Ω–1 m–1 for copper films, 8 × 106 Ω–1 m–1

for gold films, and about 1 × 106 Ω–1 m–1 for iron films.
The mechanism of conductivity in thin amorphous
metal films was recently considered elsewhere [16].

It should be noted that the results of conductivity
measurements are different from those recently
reported in [16]. This difference is associated with the
substrates, on which the metal films were deposited.
Unlike a textolite substrate used for the conductivity
measurements reported in [16], the polymeric X-ray
film had a much smoother surface with smaller surface
roughnesses, which was revealed by atomic force
microscopy measurements. Hence, the layer thickness
on the polymeric X-ray film substrate is greater than
that on the textolite surface for the same amount of
deposited metal (the values of σ(d) for a textolite sub-
strate were reported in [16]).

3.2. Microwave Reflection

3.2.1. Experimental results and discussion. Fig-
ure 4 shows the experimental dependences of the reflec-
tion coefficient of a 10 GHz microwave signal as a
function of the film thickness for silver, copper, gold,
and iron films. It is seen from these experimental data
that the R(d) curves well correlate with the analogous
dependences of the conductivity σ(d) (Fig. 3). At a film
thickness of about 5–7 nm, the reflection coefficient is

0 20 40 d, nm

0.25

0.50

0.75

R

1

2

3

4
s

h

e

d 4
3

1

Fig. 4. Theoretical (solid lines) and experimental (points)
dependences of the reflection coefficient on the film thick-
ness: (1) silver; (2) copper; (3) gold; and (4) iron.

2

much smaller than unity. This fact indicates that a
reflecting layer capable of coherently reflecting micro-
waves is not formed in very thin amorphous films. Such
thin layers are also characterized by low values of the
conductivity. As the film thickness increases above 5–
7 nm, the reflection coefficient R exhibits a sharp
increase for all the films. This is related to the formation
of a reflecting layer and to an increase in the film con-
ductivity in this range. Notice that, beginning with a
thickness of ~15 nm, the reflectance of silver, copper,
and gold films is saturated on a level of R  1. The
same film thickness corresponds to saturation of con-
ductivity for gold films (Fig. 3, curve 3). Hence, a con-
ductivity of about 8 × 106 Ω–1 m–1 is sufficient for such
a film to almost fully reflect the microwave radiation.
Further increase in the conductivity of silver and copper
films at a given film thickness (Fig. 3, curves 1, 2) does
not lead to appreciable changes in the reflection coeffi-
cient, which is associated with the development of
other effects (for example, absorption) compensating
an increase in the conductivity.

For iron films, the reflectance is virtually not satu-
rated with the thickness increasing up to 60 nm. This
can be explained by the fact that the conductivity of
iron films is <8 × 106 Ω–1 m–1 even for d ≈ 60 nm
(Fig. 3, curve 4) and, hence, such films cannot reflect
microwaves completely, which is confirmed by Fig. 4.
Therefore, for the total reflection, it is necessary that a
conductivity of about 107 Ω–1 m–1 in metal films be
reached at very small film thicknesses (d ≈ 10 nm).

3.2.2. The influence of a medium on the reflecting
properties of the films. When a metal film is exposed
to air, the reflection coefficient gradually decreases
with time. This fact is, apparently, caused by oxidation
of the film surface [1, 3, 5]. Thus, the measurement of
the microwave reflection coefficient of thin films makes
it possible to estimate oxide layer thickness. However,
in our case, the time variation of the reflection coeffi-
cient can reflect the influence of other factors. In order
to exclude this effect, subsequent measurements were
carried out for the films kept in air until a stationary
state was attained.

For silver and copper films, the fastest drop in the
reflection coefficient was observed within a few sec-
onds of exposure to air, after which the drop slowed
down and the reflection coefficient reached an almost
stationary value. For iron films, this drop could be
observed for several hours, that is, the oxidation pro-
cesses proceeded slower than in other films. For gold
films, the exposure to air did not significantly change
the reflection coefficient.

As can be seen from Fig. 4, the reflection coefficient
at small thicknesses (below 10 nm), for example, for
silver films, is lower at some points than that for gold
films. This fact can be explained by the fact that the for-
mation of an oxide layer on silver films decreases the
effective conductivity and, hence, the reflectance of
these films. The conductivity of gold films remains
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
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almost constant. Hence, at these thicknesses, the mea-
sured reflection coefficient for gold films can be some-
what higher than that for silver or copper films (Fig. 4).

3.2.3. Comparison of the experimental and theo-
retical results. Interpretation of the results on micro-
wave reflection from thin films requires using a correct
theoretical model capable of associating the measured
electrodynamic parameters with material properties. In
the investigated frequency range (~10 GHz) the electro-
magnetic wavelength (~3 cm) is five to seven orders of
magnitude greater than the film thickness (6–60 nm).
The skin depth in the same range of frequencies at a
conductivity of 107 Ω–1 m–1 typical of a bulk metal is
500 nm, which is about one order of magnitude greater
than the film thickness. For thin films, especially those
in the amorphous state characterized by a lower con-
ductivity, the ratio of the skin depth to the film thick-
ness is even much greater and it can be assumed that the
electromagnetic wave field penetrates through the
whole film thickness. In such a case, the problem of
wave reflection is usually solved by the classical meth-
ods [11, 18]. However, the calculations can be signifi-
cantly simplified by using the averaging method. This
method was first applied for calculations of a
waveguide with ferrite filling [19], in which the depen-
dence of the wave field on the coordinate perpendicular
to the layer was assumed to be linear. This method was
further developed for various layers [20–22]; detailed
analysis of the applicability of the averaging method in
different cases in comparison with the exact solution
was given in review [22].

Now, we will apply the averaging method to the
problem of wave reflection from a thin metal film at
normal incidence. Let the space and time dependence
of the incident wave field have the form exp[i(ωt – kz)],
where z is the coordinate along the normal to a film sur-
face. As follows from [22], the coefficient of wave
reflection from a metal film with the thickness d and the
conductivity σ can be expressed as

(1)

where

µ0 is the permeability of vacuum and η0 is the imped-
ance of free space.

For a frequency of 10 GHz, a film thickness of
15 nm, and a conductivity of 107 Ω–1 m–1 we obtain
|α| ~ 10–7 and β ~ 100 (i.e., the value of α can be
ignored in comparison with β). In this case, to within
the sign, we obtain the reflection coefficient in the form

(2)

R
α β–
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-----------------------------------,=

α
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  1–
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where σ is a function of the layer thickness described
by the expression

(3)

Here, A1 and A2 are some material constants, d0 is the
initial point corresponding to the minimum layer thick-
ness, and dx is some interval corresponding to a refer-
ence step.

Formula (2) gives the reflection coefficient with
respect to the wave field intensity, which is measured in
experiments. The reflection coefficient with respect to
power is equal to the square of this expression. The
reflection coefficient determined by Eq. (2) coincides
with that obtained by the classical method [9] (to within
the notations and the systems of units), which means
that application of the averaging method in the case
under consideration is justified.

Figure 4 (solid curve) shows the theoretical curve of
R(d) calculated by Eq. (2) with regard to the experimen-
tal data for σ(d) approximated by Boltzmann depen-
dence (3). It is seen that the curve is a good fit to the
experimental data.

Some differences between theoretical and experi-
mental dependences R(d) can be associated with the
substrate heterogeneity affecting the surface relief of
thin films and with unknown variable oxide layer thick-
ness. For bulk samples, the oxide layer thickness can
reach 10 nm. In our experiments, the conductivity was
measured in vacuum, while the reflection coefficient
was determined in the air. This fact may also cause
some changes in the film conductivity during the mea-
surements.

4. CONCLUSIONS
Amorphous films of silver, copper, gold, and iron

with a thickness of 6–60 nm were grown by thermal
deposition onto a polymer substrate under moderate
vacuum at room temperature. The interval of film thick-
nesses was found in which the specific conductivity
exhibits a sharp dependence on the film thickness. The
dependences of the microwave reflection coefficient
R(d) on the film thickness correlates with the behavior
of conductivity σ(d). Saturation of the reflectance of
silver, copper, and gold films (R  1) was observed
at a thickness of about 15 nm, when a reflecting layer
was already formed and the film conductivity was high
enough for almost total reflection of microwave radia-
tion. For iron films, saturation of the reflectance was not
observed in the range of film thicknesses studied. Using
the averaging method, we obtained a formula for the
reflection coefficient as a function of the film thickness,
which well describes the experimental data on the
reflection of microwave radiation. If several values of
the reflection coefficient in the range of increase and
saturation of R(d) are known, the dependence of the

σ
A1 A2–

1
d x0–

dx
-------------- 

 exp+

-------------------------------------- A2.+=
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conductivity on the film thickness can be obtained and
the type of the film can be determined.
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Abstract—The dependence of the resistivity of a paraffin–conductor macrosystem on the conducting phase
concentration has been experimentally studied. A model of conduction in systems with different contact resis-
tances in terms of the percolation theory is suggested, and an indirect characteristic of contact resistance is
introduced. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Present-day percolation theory [1, 2] provides a
detailed description of charge transfer in conductor–
insulator systems for various ratios of the conductivi-
ties of components. However, the real systems that are
most often encountered in practice also include a third
component—an oxide film on the conductor surface.
Possessing a high resistance, this component can dras-
tically change the situation (graphite and the powders
of noble metals including gold, platinum, etc. are
exceptions). Thus, when speaking of the percolation
theory, one should take into consideration not only the
“black” and “white” regions [2], but also the “gray”
ones (representing oxides on the metal surfaces), which
means the transition to a three-component system. The
contact resistance Rc has been theoretically studied
[3, 4] as a function of various parameters of the conduc-
tor particles (the maximum height of protrusions, the
Young modulus, etc.) and of the contact pressure. The
possible mechanisms of charge transfer between parti-
cles of the conducting phase and the possible fracture of
the oxide film in polymer composites because of
shrinkage of the binding material were also considered
[3], but only in application to polymer composites.
Investigation of the systems of other types, for exam-
ple, the molecular crystal–conductor system, may
reveal new features, which would enable one to rise to
a higher level of generality in the problem under con-
sideration. Despite a large number of papers devoted to
percolation theory [1–3], questions concerning the
value of the percolation threshold in different systems
and its dependence on the contact resistance between
the conductor particles generally remain open.

In this context, we have studied the dependence of
the percolation threshold xc on the contact resistance,
the dependence of the bulk resistivity ρ of a macrosys-
tem on the volume fraction x of the conducting phase,
and the possibility of estimating the contact resistance
in experiment.
1063-7842/04/4911- $26.00 © 21501
EXPERIMENTAL

As an example of a disordered macrosystem, we
will consider the paraffin–conductor system. Recently
[5], it was demonstrated that the most technologically
convenient insulators are low-melting paraffin and cer-
esin, which have comparatively high resistivity, can be
easily shaped, and are chemically passive with respect
to most metals [6]. As conductors, particles of graphite,
iron, and aluminum were used. Guided by the above
reasoning and favoring simplicity of the fabrication of
samples, we chose thermographite (representing a col-
loid-graphite dry substance S-1 with a basic particle
size of 4 × 10–6 m), a solid oil paraffin P1, pure-grade
iron powder with a basic particle size of 6 × 10–6 m, and
pure-grade aluminum powder with a basic particle size
of 10 × 10–6 m after sifting.

The resistance of the oxide shells surrounding the
iron and aluminum grains was estimated from the fol-
lowing considerations. It is known that the oxide film
on an iron surface has the chemical composition
Fe2O3 · nH2O [6, 7] and can vary in resistance. In this
study, the value of ρ for the iron oxide was experimen-
tally determined for pure-grade powdered Fe2O3,
which was stored under the same conditions as the iron.
These measurements yielded the value ρ = 1 × 105 Ω m,
which was assumed to be equal to the resistivity of the
shell on an iron particle. In air, aluminum forms a thin
but fairly dense, stable, and high-ohmic film, which finds
wide application in technology [8]. The value ρ = 1 ×
109.5 Ω m experimentally determined for reagent-grade
powdered aluminum oxide was used as the resistivity of
the oxide shell on aluminum grains.

The resistivity of paraffin (matrix material) [5] was
ρ = 1 × 1010.5 Ω m. For minimizing the contact resis-
tance, the use of graphite as the conducting phase [5] is
advantageous in comparison to metals. Carbon oxides
are gases and, whatever the origin of graphite, one may
disregard the formation of oxide film on these particles.
004 MAIK “Nauka/Interperiodica”
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Furthermore, carbon is chemically passive with respect
to most insulators in a wide temperature range [6].

The composite samples had the shape of parallelepi-
peds with dimensions (10 × 10 × 15) × 10–3 m. The
technology of melt preparation was as follows. Param-
eters such as the melt temperature, the rate and the time
of stirring, etc., were chosen so that the final specimens
with the same concentration of conducting phase would
exhibit maximal (3–5%) spread in the electric parame-
ters: resistance, capacitance, and quality factor. Special
attention was paid to ensure the absence of air bubbles,
separation from electrodes, and other defects. Prior to
the preparation of melt, the iron powder was demagne-
tized. The electrodes were made of electrolytic copper.
The electrodes were poured with liquid mixture of the
components and occurred inside the specimen, except
for a small contact area. No less than five specimens
with the same concentration of the conducting phase
were prepared for each concentration of the conducting
phase. The bulk resistivity was measured using the con-
ventional two-electrode scheme.

RESULTS AND DISCUSSION

Thus, we have three macrosystems involving con-
ductors covered by oxide films with resistivities
increasing in the following order: paraffin–carbon with
ρ ≈ 0, paraffin–iron with ρ ≈ 1 × 105 Ω m, and paraffin–
aluminum with ρ ≈ 1 × 109.5 Ω m. Obviously, the con-
tact resistance between particles depends on many fac-
tors [3], including the matrix shrinkage or, more strictly
speaking, the shrinkage stress [4].
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Plots of the bulk resistivity vs. volume concentration of the
conducting phase for (1) paraffin–graphite, (2) paraffin–
iron, and (3) paraffin–aluminum macrosystems.
Let us estimate the shrinkage for paraffin. Assuming
β ≈ 3α and α = 130 × 10–6 K–1 [9] (where β and α are
the volumetric and linear expansion coefficients of par-
affin, respectively), using the expression

and taking ∆T ≈ Tmelt – Texp ≈ 65 K, we estimate the
shrinkage as

This value of shrinkage is lower than the typical
quantities for contactols [4]. Therefore, taking into
account the high plasticity of paraffin [8, 9], one may
assume that the shrinkage stresses in macrosystems
with paraffin are small and the contact resistances form
a series that is similar to the series of resistivities of the
conductor grain shells.

The figure shows the curves of  = f(x) for the
three systems studied: paraffin–carbon, paraffin–iron,
and paraffin–aluminum. All curves decrease monotoni-
cally. The most pronounced bending is observed for the
paraffin–carbon system. The percolation threshold xc

was determined as the point of intersection of straight
lines AB and BC, which approximate the steep and low-
resistance portions of the curve, respectively. For the
paraffin–carbon system, this method yields xc = 0.16,
which correlates with the data [4] and agrees well with
the theory [1, 2]. The character of the logρ = f(x) curve
for the paraffin–iron composition is different, specifi-
cally, the plot actually consists of three portions: DE is
a high-resistance portion (with x ranging from 0 to
0.175), where the resistance is almost independent of
the conducting phase concentration and is determined
by the resistivity of the matrix; EF is the portion of
maximal change in ρ (0.175 ≤ x < 0.38), where the
composite resistivity is already not strongly dependent
on the resistivity of the matrix but is not yet determined
by that of the conductor; and FK is the portion of min-
imal resistance, where the dependence logρ = f(x) is
weakly pronounced since ρ is governed by the resistiv-
ity of the conductor (0.38 ≤ x < 1). For aluminum (see
figure), the percolation threshold is even more smeared
in the range 0.45 ≤ x < 0.775. Concerning the appear-
ance of the plots, it seems reasonable that the percola-
tion threshold of real systems should be understood as
an interval rather than a point. Such an interval presents
a range along x axis where the resistance typical of a
high-ohmic matrix gives place to that typical of a con-
ductor.

Let us now approximate the dependences in the
ranges of the most dramatic change in the resistivity for
all three compositions under consideration. For the par-
affin–iron system, the most abrupt change in the con-
ductivity corresponds to the EF branch (0.175 ≤ x <

β 1
∆T
-------∆V

V0
-------,=

∆V
V0
------- ∆Tβ 2.5%.≈=

ρlog
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0.38) and can be approximated by

(1)

(2)

where γ = –37.1 is the slope of the  = f(x) curve
(∆  = 7.98 and ∆x = 0.215).

For comparison, the most abrupt portion of the
curve for graphite is described by the function ρ =
1012 × 10–87.5x, so that γ = –87.5 [4]. For the paraffin–
aluminum system, the region LM can be described as

(3)

(4)

and γ = –3 (∆  = 1 and ∆x = 0.325).
In what follows, we consider the special features of

the logρ = f(x) curves and introduce the value that can
be used as an indirect characteristic of the contact resis-
tance. As was noted in [3], the data on Rc in real systems
are missing from the literature on the subject, which is
explained by the serious difficulties encountered in the
experimental determination of Rc. In the classical form
[1, 2], the percolation theory can be applied only to the
paraffin–graphite system, since this theory implies that
the mechanical touch of particles provides a reliable
electrical contact. As was noted above, the situation in
real systems is more complicated. Let us consider the
percolation model for the paraffin–iron system, that is,
in the case when ρ of the matrix is higher than that of
the shell. When two conductor particles (iron–iron) in
this (or any other similar) system come in touch, their
contact resistance may change considerably, since the
oxide shell of an iron grain is nonuniform over the sur-
face area and, as a consequence, the contact resistance
of particles upon touching can be different. In a disor-
dered system, a random spread in the barrier height
must strongly affect the situation. The point is that the
conductivity of such a system as a whole is defined by
barriers with a height that is close to the percolation
threshold [3], that is, by the highest barriers. At xc ≥ x,
the percolation threshold corresponds to the resistance
of the most extended regions of the matrix (paraffin) in
the forming conducting chain; while, at x ≥ xc, when the
metal chain has already formed, it is the maximal con-
tact resistance in the iron–iron chains through the
oxide. Such barriers are far apart from each other and
are connected by low-resistance regions; therefore,
they experience an appreciable drop of voltage across
them. As a result, the nonohmic character of conduction
should be more pronounced in a random system than in
an ordered one [3], where the potential barriers between
the conductor particles are equal. The deviation of the
bending point from the value 0.15 [1] can be reasonably
explained by assuming that an excess concentration of
iron is spent for the formation of branches parallel to
the percolation barriers. In view of the stochastic char-
acter of the connection between particles, these

ρlog 15.4 37.1x,–=

ρ 1015.4 10 37.1x–× ,=

ρlog
ρlog

ρlog 10.5 3x,–=

ρ 1010.5 10 3x–× ,=

ρlog
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branches may have a lower barrier height and a lower
resistance. Thus, the “bypass channels” formed in the
range 0.175 ≤ x < 0.38 eliminate high percolation bar-
riers in the conducting chains. The higher the percola-
tion thresholds and the greater their number, the less
pronounced the percolation transition is, that is, the
smaller the difference ∆ρ between the final values of
resistivity and the wider the range ∆x within which this
change occurs. The ratio of the resistivity difference ∆ρ
to the concentration change ∆x just corresponds to the
slope γ = ∆ /∆x of the  = f(x) curve. Since our
conduction model (supported by experimental results)
predicts a clear decrease in the value of ∆  and
an  increase in ∆x with increasing Rc, one may infer
that Rc = f(γ) and the value of γ can be used to charac-
terize Rc.

It should be noted that, according to [3], there are
various percolation thresholds in the polymer film–alu-
minum composites obtained using different technolog-
ical processes, such as powder technology, polymeriza-
tion filling, mixing of components in the polymer melt
(rolling). Taking into consideration significant differ-
ences in the coefficients of linear thermal expansion of
graphite (7 × 10–6 K–1), iron (11.3 × 10–6 K–1), alumi-
num (22.58 × 10–6 K–1), and paraffin (130 × 10–6 K–1)
[9], we may suggest that shrinkage in the polymer–con-
ductor system may result in much higher contact pres-
sures [3, 8], which may destroy even a rather strong
oxide shell of aluminum grains. High contact pressures
may be related to the mechanical characteristics of
polymers upon solidification, which are significantly
different from those of paraffin. This is in line with the
assumptions made at the beginning of this study.

CONCLUSIONS

(1) The dependence of the resistivity of the paraffin–
conductor system on the conducting phase concentra-
tion has been experimentally studied, and it is shown
that, for the oxide shells of particular conductors
(graphite, iron, and aluminum with ρ ≈ 0, 1 × 105, and
1 × 109.5 Ω m, respectively), the  = f(x) curves vary
in shape from an abrupt step for the paraffin–graphite
composite to smeared transition for the paraffin–alumi-
num composite.

(2) Based on the experimental data obtained, a
model of conduction in insulator–conductor systems
with various contact resistances of the conducting
phase was formulated in terms of the percolation the-
ory. It is suggested that the contact resistance Rc can be
indirectly characterized by the ratio of the final differ-
ence of the resistivity ∆  to the concentration range
∆x, that is, by the value γ = ∆ /∆x, which can be
determined as the slope of the  = f(x) curve in the
percolation interval.

ρlog ρlog

ρlog

ρlog

ρlog
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Abstract—The specific contrast of scanning electron microscope (SEM) images of ferroelectric domains
observed in the pyrocurrent (pyroprobe) mode is analyzed. Calculations taking into account both the non-
uniform heating of domains and the heat diffusion via the domain walls and the crystal boundaries are per-
formed. It is established that the heat diffusion smears the domain images of small domains. Along with the
probe diameter, the scan rate is shown to be an important factor determining the character of the SEM image
contrast. A decrease in the scan rate may appreciably lower the resolution even in case of a fairly thin probe.
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The electron beam of a scanning electron micro-
scope (SEM) is not merely a passive probe (indicator)
of the geometric or potential profile of the sample sur-
face under investigation, but produces ionizing, elec-
tric, and thermal action on the sample. The SEM imag-
ing of ferroelectric domains in a special electron-beam
induced polarization current (EBPC) mode was
described in [1, 2]. In this mode, a video signal is
formed by the polarization currents of electrons
injected into the surface layers of a sample at high
accelerating voltages. In [1], the local character of the
electric action produced by the injected charge and the
related resolution of this method were analyzed. The
observed “shadow” effect is a typical piece of evidence
of the domain response to the thermal action of the
probe (pyroresponse). However, the diffusion of heat
should considerably expand the heat-affected region
and, thus, smear the domain images of small domains.

Previously, a focused electron beam probe was used
as a local heat source for SEM imaging due to the pyro-
electric effect [3, 4]. The pyroeffect that resulted from
the action of a scanning thermal probe on a ferroelectric
crystal was calculated by Latham [4], who considered
the propagation of heat from a resting point probe in a
plane-parallel plate of finite thickness and determined
the pyroelectric potential induced in the plate in the
open-circuit regime. The pyroelectric signal from a
probe scanning over a domain structure was calculated
as a superposition of signals from various parts of the
probe on domains with opposite signs. This approach
implied the local action of each part of the probe on the
corresponding domain without allowance for the heat
diffusion into adjacent domains.

The SEM image of a domain structure observed in
the EBPC mode [1] is governed by a number of factors,
1063-7842/04/4911- $26.00 © 1505
both of electrical and thermal nature. The aim of this
study is to separate and analyze the factors limiting the
resolution of SEM imaging of ferroelectric domain
structure in the pyroprobe mode.

STATEMENT OF THE PROBLEM 
AND THE METHOD OF SOLUTION

A local change in the polarization P of a plane short-
circuit homogeneous plate with the thickness d0 gives rise
to the polarization current in the external circuit [5]:

(1)

where γ = ∂P/∂T is the pyrocoefficient, T is the temper-
ature, and V is the sample volume.

The pulsed pyroresponse of a point domain with a
pyrocoefficient in the form of the delta function is
determined by the local rate of change in its tempera-
ture (that is, by the longitudinal component of the tem-
perature gradient) and by the velocity of the probe:

(2)

In our calculations, we relate the system of coordi-
nates to a point source moving along the x axis and
describe the stationary temperature field of this source
in an infinite medium by the following equation [6]:

(3)

where R and x' are cylindrical coordinates in the system
related to the probe, v  is the probe velocity, k is the ther-
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mal conductivity, a2 is the thermal diffusion factor, and
W is the power of the probe.

This field differs from the stationary field of a point
charge by the exponential factor, which produces com-
pression of the leading edge of the isotherms (x' > 0).

(a)

(b)

(c)

20 400–20

0

Fig. 1. The formation of a video signal from a point domain:
(a) temperature profile of a moving point source; (b) profile
of the longitudinal temperature gradient; and (c) calculated
image of a point domain for the probe radius Rp = 4 (norm.
units) and velocity v  = 0.25 (norm. units).
The exponent parameter r0 = a2/v  is defined by the
dimensionless Péclet parameter in terms of the heat
conduction theory.

The boundary conditions for the thermal field allow
the problem in a half-space to be considered in the infi-
nite space with a doubled source power.

A pyrosignal formed by a point pyrodomain with x0
coordinate reflects the derivative of the thermal field at
the point x' (in the probe-related coordinate system) at
a time moment given by the conventional expression t =
(x0 – x')/v. This corresponds to the point on the screen
with the coordinate

(4)

where v s is the velocity of the beam motion over the
screen and m = v s/v  is the SEM image magnification
factor.

As follows from (4), the longitudinal gradient of the
thermal field is reflected on the screen with the inver-
sion of coordinates.

Figure 1 shows the surface profile of (a) temperature
and (b) its derivative with respect to coordinate x, which
defines the SEM video signal from a point pyrodomain
in a neutral matrix. Figure 1c presents the calculated
image of a point domain produced by the motion of a
finite-size probe. The dashed circle indicates the posi-
tion of probe at the moment of crossing the domain (the
origin of coordinates is placed at the point where the
domain resides). The domain image appears as two
peaks with opposite contrast.

In the case of a pyroactive matrix with a pyricoeffi-
cient of the opposite sign, the result will differ in the
double amplitude and a constant equal to the pyrore-
sponse of the matrix.

Due to the exponential temperature drop in front of
the moving probe, the isotherms become additionally
compressed at r > r0 and, thus, the first peak is local-
ized. The temperature gradient is maximum near the
boundaries of the heat-evolving region; hence, the dis-
tance between the two peaks depends on the diameter
of the heat probe (2Rp).

Behind the scanning probe, the temperature drops
along the path according to the law ~x–1, the tempera-
ture gradient being proportional to ~x–2. Therefore, the
signal in the tail decreases by one order of magnitude
over a distance of about 3Rp. The compression of the
leading front is effective only at sufficiently high veloc-
ities, which correspond to r0 ≈ Rp; therefore, an increase
in the scan rate will compress the first peak but the
probe radius will still remain the decisive factor limit-
ing the image size.

In SEM imaging, the size of the heat source, Rp,
actually corresponds to the depth of electron penetra-
tion into the sample rather than to the diameter of the
electron probe [7]. For triglycine sulfate (TGS) crystals

xs v st m x0 x'–( ),= =
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and an electronbeam energy of 15 keV, this value was
estimated at 3 µm [1].

For an extended domain, superposition of signals
from its different parts takes place. In particular, for a
linear domain extended along the x axis (x > 0), the
integration leads to the reconstruction of the tempera-
ture profile (Fig. 1a), so that the signal repeats the pro-
file of the temperature rather than that of the tempera-
ture gradient.

In order to obtain the signal from a cylindrical
domain with the radius rd, the temperature gradient
should also be integrated in the transverse direction.
Figure 2 shows the profiles of a pyrosignal for the cen-
tral line of cylindrical domains with various radii. As
the probe approaches the domain edge, the step is
smeared and the trailing edge of the signal drops, the
latter effect decreasing with increasing domain radius.

Within the above-described approach to the calcula-
tion of pyroresponse, the point domain acts as a probe
that “scans” over the thermal field in accordance with
formula (4) in the direction opposite to that of the
sweep. The calculation for a finite-size domain implies
the superposition of signals from all points of the
domain. This gives a qualitative insight into the basic
principles of the image formation in the pyrocurrent
mode.

Another approach to the calculation of video signal
is based on the use of a nonstationary heat conduction
equation [6]. Substituting an expression for ∂T/∂t from
the nonstationary heat conduction equation [6] into
Eq. (1) and using the Ostrogradsky theorem enables
one to split the pyrosignal into two components [8]:

(5)

where ρ is the density of medium, c is the specific heat,
w is the volume density of the source power, and S is the
boundary of the region V.

Here, the first integral describes the pyrocurrent
induced by the heat source in an unbounded medium.
For a point source (w = δ(rp)), where rp is the radius-
vector of the probe position) this term will exactly
repeat the pyrocoefficient profile γ(r). The diffusion of
heat through the boundaries of a finite-size domain,
which is described by the second integral, leads to a
noticeable distortion of the initial (ideal) videosignal.

In our calculations, the values of x, t, and v  were
normalized with the help of the Fourier and Péclet cri-
teria in accordance with the heat conduction theory; the
physical parameters of the crystal and probe were nor-
malized to the unit pyrocurrent value. In terms of the
normalized variables, the compression factor r0 relates
to the velocity of motion as r0 = 1/v.

The calculation of the pyrocurrent using formula (5)
for the thermal field of a moving source (2) and a plane
infinite boundary perpendicular to the direction of the

I
γ

ρcd0
----------- w Vd

V

∫ a2γ
d0

-------- gradT( )ndS,

S

∫°+=
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probe motion (x = 0) yields an exponential function
characterized by the Péclet parameter r0 and decreasing
toward the beginning of sweep x < 0 (Fig. 3):

(6)

The concept of splitting the pyrosignal into two
components allows a drop of the signal at the edge of a
cylindrical domain (Fig. 2) to be interpreted as the leak-
age of heat through its side surfaces. The signal decay
time is governed by the domain radius via the Fourier

number t =  (in normalized variables); and the corre-

I x( ) 1 x( )sgn–( ) x 1 x( )sgn–( )
2r0

---------------------------------exp x( ).sgn+=

rd
2

20 40–20 0
x

3

2

1

1
I

Fig. 2. Video signal profile from a cylindrical domain calcu-
lated for the probe radius Rp = 4 (norm. units); the domain
radius rd = 10 (1), 20 (2), and 80 (3); and scan rate v  = 0.25
(norm. unites).

20–20 0
x

2

1
I

1

–1

Fig. 3. Pyroresponse from a plane infinite boundary perpen-
dicular to the direction of heat probe motion calculated for
the velocities (1) v1 = 0.25 and (2) v2 = 0.5 (norm. units).
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sponding length is equal to

(7)

The drop of the signal grows at the domain edges.
This also leads to a considerable distortion of the con-
trast of narrow extended domains.

RESULTS AND DISCUSSION
As follows from Eq. (6), the width of the transient

region in the perpendicular wall image equals the com-
pression factor r0; therefore, for imaging a step without
distortion, it is necessary to increase the scanning rate
(Fig. 3). However, at r0 < Rp, the image width is limited
by the probe size, rather than by the compression factor,
and further increase in the velocity is inexpedient. Note
that, for a TGS crystal (a2 = 3 × 10–7 m2 s–1) and the scan
rate typical of SEM probe (scan time, 10 ms; scan path-
length, 1 mm), the compression parameter is r0 = 3 ×
10–6 m, which is close to the size of the heat source.
According to formula (7), an increase in the probe
velocity also reduces the drop of signal in the narrow
extended domains.

The application of this model to periodic domain
structures with alternating transverse stripes of width h
indicates that the contrast remains noticeable for the
domain sizes h ≥ 1.5Rp. With a decrease in the scan rate
(and the corresponding increase in r0), we also obtain
the reduction and the following vanishing of the con-
trast. However, the contrast remains distinguishable
even at a scan rate corresponding to r0 ≈ 10h, though the
compression of the heat front within the domain width
in this case appears to be quite insignificant.

l v t rd
2/r0.= =
CONCLUSIONS

The diffusion character of heat propagation imposes
a serious limitation on the resolution of SEM imaging
in the pyroprobe mode. The images of small domains
are noticeably distorted. The contrast of extended
domains with small transverse size decreases along the
direction of the probe motion. Along with the probe
size, the scan rate has also a pronounced effect on
smearing the image of the transverse walls, though the
latter effect is not as profound in a periodic domain
structure.
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Abstract—The surface contribution to the thermodynamic potential for bulk and nanodimensional particles of
ion crystals is estimated with the help of the electron statistical theory of ion crystal lattice. A number of size
effects associated with the excess surface energy of ultradisperse particles are considered. In particular, the pos-
sibility of stability loss in the crystal lattice upon the transition of the surface energy to the range of negative
values under a high pressure is predicted. © 2004 MAIK “Nauka/Interperiodica”.
Considerable advances in nanotechnologies [1, 2]
have stimulated the development of appropriate ana-
lytic models for describing thermophysical properties
of nanodimensional objects. The number of practical
applications of the physics of nanodimensional systems
is increasing and includes the application of ultradis-
perse catalysts of chemical reactions [3], description of
nanocluster structures in the theory of contact melting
[4], and obtaining of semiconducting heterostructures
with quantum wires and quantum dots [5, 6]. The latter
trend is associated with the study of a new class of
materials constituted by macroscopic ensembles of
small particles with a size ranging from 1 to 100 nm.
The basic physical properties of such systems differ
substantially from the properties of materials in the
conventional bulk state and are unique in some cases.
Most characteristics of nanoobjects are determined by
the properties of individual small particles in the
ensemble. In spite of considerable advances in the field
of nanotechnologies, most available theoretical models
are based on the assumption that the basic dynamic,
thermodynamic, and mechanical characteristics of
nanoobjects coincide with their values obtained in mac-
roscopic experiments. However, for structures consist-
ing of a few atomic layers, the contradiction between
the obvious discreteness of the object and the continual
nature of the method for its description in unavoidable.

When the particle size becomes commensurate with
the characteristic correlation scale of a physical phe-
nomenon, various size effects are observed in the sys-
tems of such particles. Nanodimensional objects also
exhibit most clearly all features of surface states, since
the fraction of surface atoms in such system may be on
the order of 10%. In addition, a developed surface
affects the lattice and electron subsystems of particles,
substantially modifying the spectra of various elemen-
tary excitations, which are sensitive to a change in the
1063-7842/04/4911- $26.00 © 21509
symmetry and in the boundary conditions. Obviously,
we can expect that the share of the surface energy in the
total thermodynamic potential of a nanosystem sharply
increases.

This communication is aimed at estimation of the
surface contribution to the thermodynamic potential of
a system for bulk and ultradisperse particles in ionic
crystals with a structure of the sodium chloride (NaCl)
type and at analysis of specific size effects that are asso-
ciated, in our opinion, with relatively excessive surface
energy of nanoparticles as compared to bulk objects.
All calculations are made in the framework of the elec-
tron-statistical theory of the ion crystal lattice [7–9].

It is well known that the surface energy in equilib-
rium is a strictly positive quantity [10]. With increasing
external pressure, the surface energy decreases [10,
11]; it is quite possible that, at a certain pressure p = pcr,
the surface energy vanishes and acquires negative val-
ues upon a further increase in pressure. Such a state of
substance is naturally unstable and may lead to break-
down of the sample with the formation of particles of
various degrees of dispersion.

The formalism of the electron density functional
method [7, 8, 12] makes it possible to calculate the val-
ues of pressure at which the surface energy vanishes.
The calculations were made for ion crystals with a lat-
tice structure of the NaCl type.

We write the thermodynamic potential of a crystal
under pressure in the form

(1)

G NkUk akR( )
k 1=

7

∑=

– V
∂

∂V
------- NkUk akR( )

k 1=

7

∑ αµ

R
------– 4πr2kσ,+
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where αµ is the Madelung constant, R is the nearest-
neighbor distance, V = 2R3 is the unit cell volume in the
B1 phase, U(R) is the pair interaction potential, ak =
Rk/R0 is the ratio of the radius of the kth coordination
sphere to the radius of the first coordination sphere,
Nk is the coordination number, σ is the surface energy,
and k is a numerical coefficient taking into account the
deviation of the crystal shape from a sphere.

In accordance with the Gibbs distribution, the
excess surface energy density σ(hkl) at absolute zero is
given by

(2)

where σ(hkl) is the surface energy density of the (hkl)

face,  is the energy of a particle in the jth layer
associated with the ith type of ion-ion interaction

forces,  is the same for the bulk of the crystal, and
nj(hkl) is the number of particles in the jth plane per unit
area.

Let us consider in greater detail the approximation
used here. One of the merits of the Gibbs approach is
the rigorous choice of the dividing plane, which is very
important since the value of the surface energy density
σ(hkl) depends on the position of the interface in the
crystal, as the density of particles is different at differ-
ent planes. This fact was noted in [13]. Our further anal-
ysis of the surface energy will be based on the method
developed in [14]. The essence of this method is that the
crystal is divided into 2D meshes and summation in the
expression for the surface energy density is carried out
over the aggregate of such meshes.

In the zeroth approximation used here, approximate
expression (2) assumes the form

(3)

σ hkl( ) W j
i( ) W∞

i( )–( )n j hkl( ),
j 0=

∞

∑
i

∑=

W j
i( )

W∞
i( )

σ hkl( ) n0 hkl( ) W0
i( ) W∞

i( )–( ).
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Dependence of the pressure corresponding to the B1–B2
phase transition in sodium halides on the crystal size: NaF
(1), NaCl (2), and NaBr (3).
Let us consider a 2D mesh in an infinitely large
solid. Obviously, for an undistorted crystal, we have

(4)

where  is the energy of a particle on the mesh,
which is associated with the ith type of the forces of
interaction of this particle with all remaining particles

in the given plane and  is the energy of the same
particle, which is determined by the interaction with all
particles in all planes lying above or below the given
plane.

Thus, the energy of a particle at the surface plane of
an undistorted crystal is given by

(5)

Eliminating  from Eqs. (4) and (5), we obtain

(6)

We introduce the notation

for the ratio of the sums over the infinitely large 2D
mesh and over an infinitely large lattice for the ith type
of the ion-ion interaction forces. In this case, expres-
sion (6) assumes the form

(7)

In particular, for Coulomb forces, β is the ratio of
the Madelung constants for a 2D mesh and for a 3D lat-
tice. For the remaining forces, quantity β is the ratio of
rapidly converging series that can be easily summed.

The calculation of the specific contribution of sur-
face energy to thermodynamic potential (1) of the crys-
tal leads to the following results: the surface energy for
a bulk sample amounts to about 6% of the total energy;
this value is equal to 24% for a small spherical crystal-
line particle of radius 100 Å and 68% for a particle of
radius 50 Å (these data correspond to a sodium chloride
crystal). Thus, the relative surface contribution to the
thermodynamic potential sharply increases with
decreasing particle size.

Having constructed thermodynamic potential (1),
we can derive the required equation of state p =
−(dG/dV), which makes it possible to determine the dis-
tance between the particles for which the surface
energy vanishes. Calculations performed for alkali-
halide crystals give values of 1.17–1.21 for r0/rcr . Using
the experimental results obtained in [15], we can easily
obtain the value of pressure at which the surface energy
vanishes from the pressure dependence of the lattice
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constant. The results of calculations for some alkali-
halide crystals are given in table.

Analysis of the data compiled in the table shows that
the energy of alkali-halide crystals becomes negative at
pressures ranging from 30 to 230 kbar. The size effect
of polymorphous B1–B2 transformation and metalliza-
tion of insulators predicted by us for small-size crystals
[7, 8] can also be classified as a size effect of the above
type. A detailed description of this effect is given in [7];
the essence of the effect lies in an increase in the pres-
sure of phase transformation upon a decrease in the
crystal size. The figure shows the dependences of the
pressure corresponding to polymorphic transformation
on the particle size for sodium halides, which demon-
strate a substantial increase in the phase transition pres-
sure for nanodimensional crystals.

Summing up, it should be noted that the role of the
surface energy for nanodimensional systems is much
more significant than for bulk objects whose properties
are mainly determined by the bulk contributions to the
thermodynamic potential. The surface contribution for
nanoparticles is comparable to the bulk contribution to
the energy of the system, which determines the unique
properties of such objects (in particular, the size effects
described here). In our opinion, the most interesting is
the possibility for existence of a state of the system with
a negative surface energy. Such a state of matter is
deliberately unstable. However, it remains unclear
whether or not a sample with a negative surface energy
will experience breakdown and what the breakdown
mechanism is. The answer to this question can be
obtained only after experimental investigations.

Values of critical pressure for some alkali-halide compounds

Crystal r0/rcr pcr, kbar

LiF 1.21 230

NaF 1.19 190

NaCl 1.18 130

NaBr 1.17 40

KCl 1.16 32

KBr 1.16 32
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
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Abstract—The exact solution of the problem of ion transport current in an electrolyte in the presence of a con-
jugate flow of solvent is obtained in the framework of the one-dimensional Gurevich-Kharkats diffusion-migra-
tion model; the conditions for the existence of the solution are analyzed. © 2004 MAIK “Nauka/Interperiod-
ica”.
The problem of ion transport in an electrolyte in the
presence of a conjugate solvent flow was analyzed in
[1]. The problem was solved using the following one-
dimensional diffusion-migration model:

(1)

(2)

(3)

where C1 and C2 are the anion and cation concentration,
x is the coordinate, ψ is the electric potential, v  is the
constant velocity of the solvent flow, D1 and D2 are the
diffusion coefficient for cations and anions, j is the cur-
rent density, and Fa is the Faraday number.

The solution to the problem under the assumption
that the solvent flow velocity is directly proportional to
the current density (v  = αj) in normalized form for C =
C1 = C2 is given by

(4)

where the following notation has been introduced:  =

C/C0, J = j/j0, β = (αj0L/2)(  + ), j0 = FaD1C0/L,
and ξ = x/L, L being the characteristic length of the
problem (e.g., the thickness of the Nernst diffusion
layer) and C0, the value of concentration C at ξ = 1.

If we assume that the current of an electrochemical
reaction is proportional to the ion concentration for ξ = 0

(i.e., J = k (0), where k > 0), we arrive at the following
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transcendental equation for J:

(5)

This equation was derived in [1] and was subse-
quently analyzed only qualitatively. However, this
equation has an exact solution, which can be written in
the form

(6)

where W(x) is the so-called Lambert W function, which
is the inverse function of y = xexpx.

This function has been introduced in the apparatus
of mathematical physics quite recently [2]. Examples
of solutions of various problems in mathematical phys-
ics with the help of this function are given in [3–5].

The validity of the solutions obtained here can be
verified by substituting it into Eq. (5).

By way of an example, we consider the curves J(β)
for various values of k (see figure); considerable com-
putational expenditures would be required to obtain
these curves without a knowledge of solution (6).

Let us briefly analyze solution (6). It can easily be
seen that the value β = –1/2 is the vertical asymptote of
dependence J(β) for any k. In the absence of a solvent
flow (β = 0), the value of current, viz., the ordinate of
the points of intersection of the curves with the vertical
axis, has the form

(7)

it is equal to unity for k = 2 and two for k  ∞. The
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limiting current can be evaluated as the limit

(8)

It was mentioned in [1] that dependence J(β) is dou-
ble-valued for small values of k. Analysis of its stability
shows that only the lower branch of the curve, which
corresponds to the smaller value of the current, can be
realized in actual practice. Consequently, it would be
interesting to derive the equation for the curve, which is
the locus of points of conjugation of the lower and
upper branches of the plots for different values of k
(equation of the extremal curve). In fact, the extremal
curve and limiting current curve (8) define the bound-

J lim
1
β
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k
2
--- 2β 1+( ) k
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 exp k
2
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β
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3

I
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Jlim5
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123
4

Dependence J(β) for various values of k: 10 (1), 5 (2), 2 (3),
1 (4), 1/2 (5), 1/5 (6), and 1/10 (7); bold curves correspond
to Jlim(β) and Jextr(β).
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aries of possible regimes of the model [1]. We can
derive the equation for the extremal curve if we recol-
lect that the Lambert function W(x) also has two
branches, the coordinates of the conjugation point
being (–1/e, –1). Then we obtain the following equation
for the extremal curve in parametric form in k:

(9)

Expressing k from the first relation in (9) and substi-
tuting it into the second relation, we arrive at the
explicit dependence Jextr(βextr):

(10)

The curve for the limiting current and extremal
curve are also shown in the figure.

Thus, we have obtained the exact solution to the
problem of the ion transport current in an electrolyte in
the presence of a conjugate solvent flow in the frame-
work of the one-dimensional Gurevich-Kharkats diffu-
sion-migration model [1] and have analyzed the bound-
aries of the existence of the solution.
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Abstract—The problem of transmission of an optical pulse through an interface between linear and resonance
media is addressed. Parameters of the transmitted and reflected waves versus the parameters of the incident
wave are obtained. The amplitude and speed of the transmitted wave for an incident wave in the form of a soli-
ton are calculated. © 2004 MAIK “Nauka/Interperiodica”.
1. As is well known, the parameters of waves
reflected from and transmitted through an interface
between two media can be calculated in the general
form only when the media are linear. If one of the
media is nonlinear or both of them are, it is necessary
to consider each particular case individually (refer, e.g.,
to [1]).

The main difficulty in solving this problem in the
general form is that functional forms of the waves in the
two media are different and that the dependence of the
polarization of a medium on the field is rather complex.
As a result, the boundary conditions do not yield simple
relationships for the wave parameters. However, if the
equation that describes the evolution of a wave in a non-
linear medium can be integrated by the inverse scatter-
ing transform method (ISTM), an opportunity arises to
overcome these difficulties. In particular, the problem
of pulse transmission through a resonance film that sep-
arates two linear media was solved in [2] based on the
ISTM by introducing an additional fictive field with
subsequent reduction of the equations to an integrable
form. The problem in which both media are nonlinear
was addressed in [3, 4], where the transition radiation
of a soliton was calculated under the assumption that
the media have similar parameters. In [5], it was pro-
posed to analyze the wave boundary dynamics using
the linear approach. Indeed, since distances in the
boundary layer are small, it may be considered that the
nonlinear effects have no time to develop and wave
parameters can be calculated within the linear approxi-
mation.

In this study, we consider a pulse incident from a lin-
ear medium on the planar interface with a resonance
medium consisting of two-level atoms. It is known [6]
that such a medium can be described by a system of
equations integrable by the ISTM. A relationship for
the parameters of the electromagnetic waves is
obtained under the assumption that their envelopes are
smooth. Since the polarization of the medium depends
1063-7842/04/4911- $26.00 © 21514
on the field in a complex manner, a functional equation
arises instead of a simple algebraic equation. To calcu-
late the parameters of the transmitted and reflected
waves at the interface, a self-consistent procedure is
proposed, which involves relationships of the inverse
transform method.

2. For simplicity, we will consider the normal inci-
dence of a linearly polarized wave on the interface. Let
the yOz plane of the coordinate system coincide with
the interface, the z axis be parallel to the wave electric
vector E = (0, E, 0), and the x axis be directed toward
the resonance medium. Then, the magnetic field will be
directed along the z axis: H = (0, 0, H).

Under these assumptions, the Maxwell’s equations
yield the following boundary conditions for the electric
and magnetic field components in the first and second
media:

(1)

where  is the surface polarization at the boundary of
the resonance medium and c is the velocity of light in
free space.

Let us represent the waves in the linear and reso-
nance media and the polarization of the nonlinear
medium as follows:

(2)

E1 x 0=( ) E2 x 0=( ),=

H1 x 0=( ) H2 x 0=( )–
4π
c

------
∂P̃0

∂t
---------,=

P̃0

E1
1
2
--- E0 x t,( ) i k1x ωt–( )[ ]exp[=

+ Er x t,( ) i k1x ωt+( )–[ ]exp c.c.+ ] ,

E2
1
2
--- Et x t,( ) i k2x ωt–( )[ ]exp c.c.+[ ] ,=

P̃0
1
2
--- P0 x t,( ) i k2x ωt–( )[ ]exp c.c.+[ ] .=
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Here, E0, Er, Et, and P0 are the smooth envelopes of the
incident, reflected, and transmitted waves and the
polarization, respectively; ω is frequency; and k1 and k2
are the wave numbers in the linear and resonance
media, respectively. Excluding the magnetic field from
Eqs. (1), we obtain the following expressions for the
smooth envelopes of the fields and the polarization:

(3)

If the resonance medium consists of two-level
atoms, the polarization can be written as [6]

(4)

where n0 is the surface concentration, p0 is the dipole
moment of atoms, the angle brackets mean averaging
over the Doppler broadening, λ is a product of the
amplitudes of the wave functions φ1 and φ2 of the
ground and excited atomic states, respectively:

(5)

where the asterisk means complex conjugate and φ1 and
φ2 are to be found from the equations

(6)

Here, η = ∆ω/eΩ , ∆ω is the frequency detuning due to
the Doppler effect, Ω2 = 2πn0p0ω/", ε = (p0/"Ω)Et(ξ, τ),

ξ = Ω (x/c), τ = Ω(t – x/c), and  is the linear
part of the permittivity of the resonance medium. The
wave in the resonance medium satisfies the equation

(7)

Equations (6) and (7) constitute a closed system,
which describes the evolution of the electric field ε in
the resonance medium. As was noted above, one can
apply the ISTM [6] to these equations and solve the
Cauchy problem, the initial condition for which is
determined by Eqs. (3). Let us exclude the reflected
wave from Eqs. (3) to express the transmitted wave in
terms of the incident wave and polarization:

(8)

Here, ε0 = (p0/"Ω)E0, γ = 2 /(  + ) and σ =

2p0Ω/(  + )c. It is seen from Eq. (8) that, as was
noted above, the transmitted wave depends not only on
the incident wave but also on polarization, which, in
turn, depends on Et in a complex manner (see Eqs. (5),
(6)). Further, we proceed as follows: calculate 〈λ〉  from

E0 Er+ Et,=

k1 E0 Er–( ) k2Et– 4iπω2

c2
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the zeroth-approximation functions φ0 according to (5),
substitute 〈λ〉  into (8) to refine the value of ε(0, τ), and
use the refined value to find the function φ in the first
approximation. Next, we iterate this self-consistent
procedure to successively refine ε.

Accordingly, we substitute (8) into (6):

(9)

where ε0 = γ(p0/"Ω)E0 and δε = –σ(p0/"Ω)〈λ〉 .

We will not solve (9) directly. Instead, regarding φ
as a functional of E and calculating δE as a variation of
the potential, we find a change in φ as a variation. Then,
the complete solution will have the form

(10)

Here, φ is the column vector φ = (φ1, φ2)T, the super-
script T means transposition, and φ0 is the solution at
δε = 0. As φ, we take the function with the asymptotic
behavior

(11)

The variational derivatives can be found by varying
Eqs. (6) (see, e.g., [7]):

(12)

where  is the Jost coefficient, which is used in the
inverse transform method, and θ(τ) is the step function

The function ψ is another solution to (8), which is
determined by the asymptotic behavior

(13)

Substituting (12) into (10) yields the following
expression for φ:

(14)
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Here,

(15)

Now, we can calculate 〈λ〉 and, consequently, the
parameters of the transmitted and reflected waves.
Equations (3), (5), (8), and (14) solve this problem in
the general form. As an example, consider the case
when the incident pulse is a soliton:

(16)

The solution to system of equations (6) at δε = 0 is

Calculating 〈λ〉 and substituting it into (8), we
obtain the expression for the transmitted wave

(17)

Here,

(18)

It can be seen that, after passing through the inter-
face, the pulse acquires a phase shift and its shape
changes. As the pulse described by (17) moves further,
it may produce a single-soliton or a multisoliton pulse.
Assuming that the condition for the formation of a sin-
gle-soliton pulse is satisfied, let us calculate its param-
eters. To this end, within the ISTM, it is necessary to
solve the Zakharov–Shabat eigenvalue problem, which
has the same form as (6) with η replaced by the spectral
parameter k:

(19)

The complex value of k determines the speed and
amplitude of the pulse produced. As we did previously
when solving system (9), we calculate the change in k
as a variation, which gives the change in the parameters
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of the soliton as a result of its transmission through the
interface. We obtain the following expressions for the
differences in the amplitudes and speeds of the incident
and transmitted solitons:

(20)

It can be seen that, after passing through the inter-
face, the soliton amplitude increases. Note that, if the
Doppler broadening is an even function, the expres-
sions for the amplitude and speed are simplified:

(21)

Thus, in this study, expressions for the profile and
parameters of the transmitted and reflected waves are
derived for a wave passing from a linear to a resonance
medium. The profile and parameters of the transmitted
wave are calculated for an incident pulse in the form of
a soliton. Only this case is considered for brevity; other
cases should not present any difficulties.
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Abstract—Computer simulation is used to demonstrate the possibility of transverse size oscillations in a
domain with a high concentration of free electrons under the action of a light pulse on a nonlinearly absorb-
ing semiconductor. The results of computer simulation are confirmed analytically by testing the system
stability. © 2004 MAIK “Nauka/Interperiodica”.
The action of a laser pulse on a semiconductor
induces optical bistability (OB) in the dependence of
the absorption coefficient on the free charge carrier
concentration. Under certain conditions, OB can be
accompanied by the development of self-oscillations of
free electron concentration, which are induced by an
increase in the beam intensity [1], beam focusing to the
bulk of the medium [2], diffraction effects [3], and the
effect of self-induced electric field [4] on a high-
absorption domain. Obviously, oscillations of the
absorption coefficient of a semiconductor may lead to
loss of information recorded in an OB element. Conse-
quently, it is important to study this regime for practical
applications. It should be emphasized that, in our opin-
ion, the latter mechanism of excitation of oscillations
due to the effect of light-induced electric field is most
interesting, since it takes place for short pulses, which
are predominantly used to elevate the speed of switch-
ing from a state of an OB element.

It should be noted that the oscillations of a high-
absorption domain detected in [4] and obtained for a
stronger dependence of the absorption coefficient on
the concentration of free electrons generated from a
donor level (see below) were characterized by a change
of the region of transparency and strong absorption in
the illuminated part of the beam and were observed
upon a change in the electron mobility in a certain
range of its values and in a small interval of the param-
eter characterizing the maximal concentration of free
electrons. Here, we describe a new scenario of oscilla-
tions of the width of a domain with a high concentration
of free electrons. This scenario is characterized, first, by
manifestations of oscillations for zero electron mobility
as well, which is equivalent to an increase in the dura-
tion of the acting pulse (the electric field becomes uni-
form). Second, oscillations of the width of a domain
with a high concentration of free charge carriers occur
upon a slow decrease in the free electron concentration
1063-7842/04/4911- $26.00 © 201517
in the vicinity of the light beam center. Third, several
regions of high gradients of free electron concentration
(regions of a large space charge) exist in the unillumi-
nated region of the medium.

It is well known [5] that, in the approximation of an
optically thin layer, the process of interaction of a short
laser pulse with a semiconductor can be described by
the system of dimensionless differential equations

(1)

with the initial boundary conditions

(2)

Functions G and R describing the generation of elec-
trons from the donor level and radiative recombination
of free charges in the semiconductor will be defined as
follows:

(3)

In system of equations (1)–(3), the following nota-
tion is introduced: x is the dimensionless transverse
coordinate normalized to the radius of the incident opti-
cal beam; t is the time measured in units of relaxation
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Fig. 1. Concentration distributions of free electrons and ionized donors observed for the interaction of a light beam with a semicon-
ductor for values of parameters D = 10–5, γ = 103, µ = 0, n0 = 0.01, ψ = 2.553, ξ = 5, and q0 = 1 at time instants t = 450 (a), 550 (b),
1500 (c, d), 1250 (e, f) and 3750 (g, h) (dashed curves) and 500 (a), 600 (b), 2250 (c, d), 5000 (e, f), and 4000 (g, h) (solid curve).
The bold curves correspond to the initial distribution of the input intensity of optical radiation.

N

N

n

n

Nn

x

time; and n(x, t) and N(x, t) are the concentrations of
free electrons in the conduction band of the semicon-
ductor and of ionized donors, normalized to their max-
imal possible values under the given conditions. Func-
tion ϕ(x, t) is the dimensionless electric field potential,
µ characterizes the electron mobility, and D is the dif-
fusion coefficient for electrons. Parameter γ depends, in
particular, on the maximal possible concentration of
free charge carriers; n0 is the equilibrium value of con-
centration of electrons and ionized donors; and τp is the
recombination time for free charge carriers. Function
q(x)q(t) describes the intensity profile and the temporal
shape of an optical pulse with a maximal value of q0. In
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numerical experiments, a semiconductor was subjected
to the action of a Gaussian beam with the maximal
intensity

(4)

rapidly attaining its steady-state value.
The light energy absorption coefficient δ(N, n) can

be approximated by the function

(5)

which is close to one of the experimental dependences.
Note that for certain values of parameters (e.g., D =
10−5, γ = 103, n0 = 0.01, µ = 0, ψ = 2.553, and ξ = 3), an
explosive increase in the concentration of free charges
(and ionized donors) takes place upon an increase in the
input intensity of optical radiation from q0 = 0.15 to 0.2.
This demonstrates the existence of OB in the optical
radiation-semiconductor system. However, for a given
intensity of the input pulse, inverse switching of free
electron concentration to its lower level occurs after a
certain time.

Apart from the formation of switching waves, an
increase in parameter ξ leads to self-oscillations of the
width of the band with a high concentration of free
electrons and ionized donors (Fig. 1). At certain
instants, the free electron concentration distribution
profile is twice as large as the illuminated region width,
while at other instants it coincides with the beam radius
(Figs.1c and 1d). The concentration of free electrons on
the beam axis first attains its maximal value and then
begins to decrease monotonically, while its value at the
lateral faces of the crystal increases monotonically. In
the vicinity of the beam center, the free electron con-
centration at certain instants either attains a local max-
imum on the beam axis, or a local minimum (Figs. 1e
and 1g). The profile of concentration n at certain
instants is close to the hyper-Gaussian distribution.
However, at other instants, the distribution of the free
electron concentration in the range 0.2 ≤ x ≤ 0.8
acquires several local extrema located symmetrically
relative to the beam axis (Figs. 1c, 1e, and 1g). The dif-
ference in the values of n at these points may be as large
as 0.5.

Analogous oscillations of the width of the high-con-
centration region take place for the concentration of
ionized donors. However, variations of the value of
function N at the beam axis and at the crystal boundary
are small and the difference between the values of func-
tion N at the points of local maxima and minima are
much smaller than the corresponding difference for
function n (Figs. 1d, 1f, and 1h).

We must separately consider the physical mecha-
nism of realization of self-oscillations of the width of
the high-concentration region. This mechanism
involves a periodic variation of the absorption coeffi-
cient (in our case) in the vicinity of the boundary of the
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illuminated region. After high-concentration domains
attain their minimal width (this corresponds to solid
curves in Fig. 1), the absorption coefficient increases at
the domain walls (x ≈ 0.3, 0.7 at earlier instants and x ≈
0.4, 0.6 at later instants). This leads to generation of
free charges in the vicinity of outer domain walls. Due
to electron diffusion, the absorption coefficient also
gradually increases in the range with an even lower
intensity of optical radiation (x ≤ 0.3 and x ≥ 0.7). In
this region, the absorption coefficient also increases and
free charges are generated in spite of the low intensity
of optical radiation. Further, on the one hand, the
decrease in the number density of free charge carriers
occurs at a higher rate as compared to the rate of gener-
ation of free electrons due to the increase in the recom-
bination rate; as a consequence, the concentration of
free charges decreases in this region. On the other hand,
a part of free electrons is displaced to the crystal bound-
ary due to diffusion. Since the concentration of ionized
donors is low in this region, the recombination rate for
free charge carriers is also low. This explains the slow
increase in the free electron concentration near the
crystal boundary.

The electron mobility µ substantially influences the
form of the interaction due to the presence of narrow
regions of space charge (see Figs. 1a, 2a). For example,
an increase in the mobility first smoothens the distribu-
tion of free electron concentration and reduces the
amplitude of self-oscillations of the transverse size of
the region of high electron concentration. With a further
increase in µ, the distribution of function n assumes the
form of a monotonic curve; self-oscillations vanish, and
the semiconductor-light beam system approaches its
steady-state distribution quite rapidly. For example, for
parameters D = 10–5, γ = 103, µ = 10, n0 = 0.1, ψ =
2.553, ξ = 3, and q0 = 1, this time is on the order of
100 dimensionless units. By way of an example, we
consider Fig. 2, in which the free electron concentration
distributions are shown for µ = 1 and 10. It is clearly
seen that the distribution of free electron concentration
becomes smooth and close to the hyper-Gaussian distri-
bution for large values of µ, while oscillations in the
free electron concentration distribution are observed
for small values of µ.

To verify the results of computer simulation, the sta-
bility of the solution to the initial problem was tested
analytically in the vicinity of the steady-state distribu-
tion, where oscillations of the width of the high-con-
centration region are observed. A characteristic equa-
tion was constructed for a linearized system of rela-
tively small perturbations of the functions in the
vicinity of the virtually uniform axial distribution of
concentrations. In accordance with the Hurwitz theo-
rem [6], the necessary and sufficient conditions for sta-
bility of the concentration distribution for small pertur-
bations are positive values of all principal diagonal
minors of the Hurwitz matrix written for the coeffi-
cients of the characteristic equation of the system.
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Fig. 2. Concentration distributions of free electrons observed for the interaction of a light beam with a semiconductor for values of
parameters D = 10–5, γ = 103, n0 = 0.1, ψ = 2.553, ξ = 3, q0 = 1, and µ = 1 (solid curves) and µ = 10 (dashed curves) at time instants
t = 10 (a), 30 (b), 85 (c), and 100 (d).
These conditions were monitored for the above com-
puter calculations. Analysis of the conditions proved
that, for the concentration distributions shown in
Figs. 1 and 2, stability was not observed near the beam
axis. If, however, oscillations of the high-concentration
region were absent in computer calculations, analytic
expression also confirmed the stability of the given sys-
tem. Thus, we can state that oscillating modes of varia-
tion of the concentration are inherent in the interaction
between the light beam and the semiconductor studied
here under the conditions of OB and light-induced elec-
tric field.
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Abstract—An experimental technique for studying the injection of dust jets into the plasma of a glow discharge
in air is developed. The velocity and flight time of a dust jet are measured under different initial conditions. It
is shown that the propagation of dust grains in plasma is accompanied by self-contraction instability along and
across the discharge, which leads to dust agglomerization and clusterization. © 2004 MAIK “Nauka/Interperi-
odica”.
In dusty-plasma experiments, an important point is
how the condensed-phase (dust) grains get into the
plasma volume. First, dust grains can arise from the gas
phase due to plasmochemical reactions [1] and conden-
sation in a decaying plasma [2], or they can occur in the
plasma because of the erosion of electrodes [3] and
insulators [4]. Second, dust grains can be injected into
plasma using special devices.

We analyzed various methods for injecting dust
grains into plasma and the corresponding types of
injectors, such as a mechanically shaken meshy dust
container placed at the top of the chamber [5, 6]; the
vibrating membrane of a loud speaker, which was set at
the bottom of the chamber and threw the grains upward
[7]; and a paddle-wheel dispenser rotating inside the
chamber around a horizontal axis and lifting the grains
up [8, 9].

We experimentally tested the first two methods. It
was found that the above methods and devices did not
provide the sufficient locality and accuracy of injection
because of a significant scatter in the initial coordinates
and velocities of the dust grains entering the plasma.

For this reason, we proposed a concept of a precise
needle-type injector of dust grains, designed it, and
experimentally verified its high performance. Using
this injector, experiments with a 10-cm flight base were
performed on the downward injection of dust grains
into a discharge plasma. The grains, which were 60 ±
5 µm in size, fell freely across the discharge channel. It
was found that the grains were efficiently scattered by
collective plasma oscillations [10]. Using the needle
injector, we also succeeded in orienting elongated dust
grains with a diameter of 100 µm and length of 3 mm
[11].

It was expected that the use of smaller dust grains
would allow one to reveal new effects that did not man-
ifest themselves in experiments with heavy grains. It
turned out, however, that the vertical injection of grains
through a needle under the action of gravitational force
1063-7842/04/4911- $26.00 © 21521
was somewhat problematic: grains with a size of less
than 40 µm significantly stuck to one another and
choked up the needle channel. Therefore, we somewhat
modified the experimental scheme (see Fig. 1) in order
to inject small-size grains using the already developed
needle injector. The experiment setup was modified as
follows: A medical syringe in which the part of a needle
with a bevel cut was cut off perpendicularly to the nee-
dle axis was used as a dust injector. The injector was set
horizontally in such a manner that the needle went
through a small hole in the cathode and the needle end
was positioned flush with the cathode surface facing the
discharge gap. The dust grains were injected along the
horizontal axis of a dc glow discharge. Inside the
syringe, there was a gas-discharge spark gap controlled
by a BING-5 generator [12] of high-voltage pulses with

1 2 3 4 5 6 7 8 9 10

11 12 13 14 A 15 16

A

Fig. 1. Schematic of the experimental device: (1) connect-
ing bus, (2) positive electrode connected to the output of the
BING-5 generator, (3) rack, (4) dust injector, (5) needle,
(6) view window, (7) photodetector, (8) cathode, (9) target,
(10) anode, (11) insulator, (12) electrode, (13) dust grains,
(14) needle channel, (15) laser, and (16) dust jet.
004 MAIK “Nauka/Interperiodica”
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Fig. 2. Waveforms of the shadow pulses in air at a pressure
of P = 750 Torr in the absence of a discharge (here and in
the subsequent figures, the arrows show the instant of trig-
gering a nanosecond spark discharge).
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Fig. 3. Waveforms of the shadow pulses in air at a pressure
of P = 1 Torr in the absence of a discharge.
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Fig. 4. Waveforms of the shadow pulses in air a pressure of
P = 1 Torr in the presence of a glow discharge with a dis-
charge current of I = 0.1 A (the electron density is ne = 2.6 ×
106 cm–3, and the electron temperature is Te = 5 eV).
an amplitude of 10 kV and a rise time of 5 ns. After trig-
gering a pulsed spark discharge inside the syringe, the
arising shock wave kicked out the grains from the nee-
dle channel. A similar technique for injecting solitary
grains into plasma was described in [13]. The above
spark source of shock waves was tested in [14] at pres-
sures of ~1 Torr and lower.

We developed a technology for filling the needle
channel with approximately equal numbers (about 104)
of dust grains. In brief, the needle was plunged to a def-
inite depth into a grain container. Using a special ram-
rod with a diameter nearly the same as the needle chan-
nel diameter, a portion of the grains was then pushed
from the needle end to the needle base.

The loaded injector was placed into a gas-discharge
chamber with a 450-mm-long interelectrode gap and a
100 × 100 mm cross-sectional area of the chamber and
electrodes. The chamber was then prepared for igniting
a glow discharge. The parameters of the discharge
plasma were determined using the probe technique.
After the needed steady-state regime of a discharge was
established, the dust grains were injected. In our exper-
iments, we used dielectric (silicon carbide) grains 20 ±
5 µm in size and a 50-mm-long needle with a channel
diameter of 200 µm. The length of the dust portion in
the needle channel was 7 mm. The working gas was air
at a pressure of 1 Torr.

The first series of experiments was aimed at measur-
ing the velocity of dust jets. For this purpose, we used
two cw red-light (λ = 680 nm) semiconductor lasers
with an output power of 3 mW. The 3-mm-diameter
laser beams traversed the expected path of the dust jet
at distances of 5 and 15 mm from the needle end. On the
opposite side from this path, there were two FD-256
photodetectors whose signals were fed to the inputs of
a Tectronics TDS-3052B two-channel digital oscillo-
scope. In the absence of a dust jet, the oscilloscope dis-
played base lines. In the presence of a jet traversed by
the laser beams, the photodetectors were shaded for a
short time and the oscilloscope displayed pulsed sig-
nals (called below shadow pulses). A similar technique
for detecting dust grains in plasma with the use of a sin-
gle laser beam was implemented in [3].

Figure 2 presents typical waveforms of the shadow
pulses in the case of injection into atmospheric-pres-
sure air in the absence of a discharge. The estimated
velocity of the dust jet front is 10 ± 1.5 m/s (hereinafter,
the results are averaged over a series of ten pulses). In
the case of injection into air at a pressure of 1 Torr, the
estimated velocity of the dust jet front is 0.15 ±
0.02 m/s (Fig. 3). Such a great difference in the jet
velocities at different pressures is quite understandable.
Indeed, the intensity of the shock wave produced by the
spark discharge decreases significantly with decreasing
gas pressure. In both cases, however, the jet length was
~1 cm, being approximately the same over the entire
flight base of the measurements. This length is a bit
larger than the length of the initial portion of dust grains
in the loaded needle channel.
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
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Fig. 5. Imprints of dust jets propagating in the plasma of a glow discharge in air at a pressure of P = 1 Torr and different discharge
currents: I = (a) 0, (b) 0.05, (c) 0.1, (d) 0.15, and (e) 0.25 µA.
Figure 4 presents typical waveforms of the shadow
pulses in the case of injection into the plasma of a glow
discharge with a current of 0.1 A (the corresponding
electron density and electron temperature measured by
the probe technique are ne = 2.6 × 106 cm–3 and Te =
5 eV). It turned out that the velocity of the dust jet front
TECHNICAL PHYSICS      Vol. 49      No. 11      2004
in the plasma was 0.5 ± 0.08 m/s, which was signifi-
cantly higher than that in a nonionized gas at the same
pressure. A comparison of the waveforms in Figs. 4 and
5 show that the duration of the shadow pulses is approx-
imately the same in both cases. This indicates that the
dust jet in plasma undergoes acceleration as a whole
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over a certain fraction of its path, rather than spreading
out in the longitudinal direction. Estimates show that
the charged dust grains can be accelerated by the elec-
tric field in the cathode sheath. Note that the waveforms
in Fig. 4 are more irregular. This fact points to the onset
of instability in the jet in the direction of its propaga-
tion, which leads to the dust agglomerization and clus-
terization. Presumably, this is the self-contraction insta-
bility described in [15, 16] and related to the intergrain
attraction, which was earlier revealed by us in [17]. It
follows from the average duration of the microspikes in
Fig. 4 that the longitudinal size of the dust agglomer-
ates is a few tenths of a millimeter or less.

The second series of experiments was devoted to
studying the transverse structure of a dust jet. To this
end, a 37 × 37-mm target was placed at a distance of
35 mm (i.e., at a distance longer than the jet longitudi-
nal size) from the needle end. The target was a thin film
with a glue layer facing the jet (we used conventional
Rusi Star scotch tape). After taking an imprint, the film
with captured grains was tightly (without folds) pasted
on a Star Frost slide and then marked, after which it
became possible to store it for a long time to be pro-
cessed later. Figure 5a shows a typical imprint of a dust
jet propagating in nonionized air at a pressure of 1 Torr.
The image of the imprint was obtained by processing
with an optical scanner with a 1200 dpi resolution. The
shape of the imprint is nearly a circle with an azimuth-
ally-uniform distribution of dust grains; the dust con-
centration slightly decreases from the center to the
periphery.

The imprints of a dust jet propagating in a glow-dis-
charge plasma at a pressure of 1 Torr and different dis-
charge currents are shown in Figs. 5b–5e. It can be seen
that the imprint size of the dust jet in plasma is some-
what larger than that in nonionized air (Fig. 5a); how-
ever, the imprint shape is still close to a circle. An
increase in the size of the imprints in plasma as com-
pared to that in a nonionized gas at the same pressure
seems to be related to an additional scattering of dust
grains by plasma oscillations.

An analysis of the imprints (Fig. 5) shows that the
processes of the dust agglomerization and clusteriza-
tion also take place across the jet. The characteristic
transverse size of these dust agglomerates is from a few
hundredths to a few tenths of a millimeter. Therefore,
the agglomerates contain from a few tens to a few hun-
dreds of dust grains.

The observed dust agglomerization and clusteriza-
tion in plasma is a direct experimental evidence of
attraction between likely charged grains. Such attrac-
tion was earlier observed only in one- and two-dimen-
sional simulations [17]. Previously, the dust agglomer-
ization and clusterization was observed only for
nanometer grains (e.g., for silicon grains growing from
the gas phase in an argon–silicon plasma [18]). To the
best of our knowledge, the clusterization of grains with
a size larger than 10 µm in plasma has been observed by
us for the first time.

Thus, in this study, a technique for studying the
injection of dust jets into the plasma of a dc glow dis-
charge has been developed, the velocity of the dust jet
front in plasma has been measured (it happens to be
somewhat higher than that of a jet in a nonionized gas),
and the longitudinal and transverse agglomerization
and clusterization of dust grains in plasma (which is
direct experimental evidence of attraction between
likely charged grains) have been observed.
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Abstract—The effect of compressibility on the stability of plasma jets with boundaries (tangential discontinu-
ity surfaces) of different configurations is studied. It is shown that, depending on the relationship between the
MHD parameters of the jet and the surrounding medium, the compressibility may have a stabilizing or a desta-
bilizing effect. It is also shown that, under certain conditions, the compressibility effect depends on the pertur-
bation wavelength. © 2004 MAIK “Nauka/Interperiodica”.
(1) In the MHD approximation, the natural oscilla-
tions of a perfectly conducting plasma jet are described
by the dispersion relation [1–3]

(1)

where

(2)

(3)

The form of function G(δ, ξ) depends on the geom-
etry of the jet boundary, which is a tangential disconti-
nuity surface:

(4)

Here,
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(8)

and I0, I1, K0, and K1 are modified Bessel functions.
The rest of the notation is as follows:

where V is the jet velocity with respect to an immobile

plasma medium, VAi = Hi/  is the Alfvén speed,
ρi is the density, Ci is the speed of sound, C is a constant
having the dimensionality of velocity, d is the thickness
or the diameter of the jet, Up = ω/k is the phase velocity,
and λ is the wavelength of the perturbation specified in
the form of a plane wave.

Dispersion relation (1) was derived under the
assumption that the vectors V, k, and Hi point along the
z axis, which is the symmetry axis of the cylindrical jet.
The plane jet is assumed to be symmetric about the
x = 0 plane, in which case we will be interested in the
half-space x ≥ 0. Hence, the perturbations are given by
the following formulas:

(9)

(10)

where the subscripts i = 1 and 2 refer to the regions
inside and outside the jet, respectively. It is also
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 for a cylindrical jet,
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assumed that the waves emitted by the jet into the sur-
rounding space are surface waves; this corresponds to

 > 0.

(2) In the case of an incompressible jet, i.e., when
Ci = ∞ (i = 1, 2) and εi(ξ) = 0, dispersion relation (1)
becomes a quadratic equation in ξ. The requirement
that the discriminant be nonnegative yields the follow-
ing condition for the stability of the jet [3, 4]:

(11)

In condition (11), the equality sign corresponds to

the square of the critical velocity, , above which the
instability develops at a given perturbation wavelength.
The function G(δ), which is determined from formulas
(4) with m1 = m2 = 1, is plotted in Fig. 1. We can see
that, for a plane jet, this function increases monotoni-
cally from 0 to 1 whereas for a cylindrical jet, it
decreases monotonically from ∞ to 1. Consequently,
the geometry of the jet is important from the standpoint
of its stability only in the case of long-wavelength per-
turbations such that δ < 1.

In [4], condition (11) was analyzed in order to deter-
mine the minimum value of the critical velocity acr
below which the jet is stable for any δ values. The
results of this analysis are illustrated in Fig. 2, which

m2
2

a
2 νG δ( ) 1+[ ] ν G δ( )b1

2 b2
2+[ ]

νG δ( )
--------------------------------------------------------------------.≤

acr
2

1

1 2 3 4 5 60

1

2

G

δ

Fig. 1. Plots of the function G(δ) for (1) a plane jet and (2) a
cylindrical jet.

a2
cr
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(b1 + b2)2 + νb2
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(b1 + b2)2
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Fig. 2. Dependence of  on G(δ) for an incompressible

plasma jet: G(δ) < 1 for a plane jet, and G(δ) > 1 for a cylin-
drical jet.

acr
2

ββ
implies that, in the case at hand, the effect of the jet
geometry is determined by the parameter

(12)

In the range G(δ) ≤ 1, corresponding to a plane jet,
the following regular features can be revealed. If β > 1,
then, as G(δ) increases from 0 to 1 (i.e., as δ increases

from 0 to ∞), the squared critical velocity  decreases
monotonically from ∞ to its minimum value at the point
G(δ) = 1:

(13)

If β < 1, then the squared critical velocity  is a
nonmonotonic function of G(δ) and its minimum value
is reached at the extreme point G(δ) = β and is equal to

(14)

The situation with a cylindrical jet, corresponding to
the range G(δ) ≥ 1, is opposite to that with a plane jet.
Hence, for β > 1, a plane jet is more stable than a cylin-
drical jet, and vice versa for β < 1.

(3) Now, we consider the same problem but take into
account a low compressibility such that µi @ 1 and µi >

bi. In this case, we have |εi(ξ)| ! 1, i.e.,  > 0 (i =
1, 2); therefore, the right-hand side of dispersion rela-
tion (1) is negative. This indicates that the necessary
condition for the stability of the jet, i.e., the condition
for the roots of dispersion relation (1) to be real, can be
satisfied only when N1(ξ) and N2(ξ) have opposite
signs. Under the conditions of a low compressibility
such that µi > bi, expressions (5) and (6) imply that the

inequality  > 0 is satisfied when Ni(ξ) and Di(ξ) have

the same signs (here, Di is the denominator of ), i.e.,
when they are both positive or both negative, which
corresponds to the propagation of a transverse Alfvén
wave or a longitudinal magnetosonic wave, respec-
tively. Hence, the jet is stable when the hydrodynamic
waves propagating inside and outside it are different in
nature; moreover, a transverse Alfvén wave is gener-
ated on the side of the tangential discontinuity where
the Alfvén speed is higher, and a longitudinal magneto-
sonic wave is generated on the side where the Alfvén
speed is lower [5].

We assume that G(δ, ξ) is a slowly varying function
of ξ and write dispersion relation (1) in the form

(15)

where ξ0 is the root of dispersion relation (1) in the case
of an incompressible jet, when the discriminant of the
relation is zero at the critical jet velocity.
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We expand the function G(δ, ξ0) in powers of the

small parameters  = εi(ξ0) and retain terms up to the
first order to obtain

(16)

where

(17)

It can be shown that all the coefficients by  are
positive; hence, we have

(18)

Comparing expressions (2) and (3) with expressions
(7) and (8), we easily find that, for µi > bi, the quantities

 and  = Ni(ξ0) have the same signs.

Under the conditions of a low compressibility, dis-
persion relation (15) yields the following expression for
the critical velocity:

(19)

Since the right-hand side of expression (19) for-
mally coincides with that of condition (11), we can ana-
lyze this expression in the above manner to obtain an
analogous result. The only difference is that the
extreme point, which is defined by the formula

(20)
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Fig. 3. Dependence of  on G(δ) for a plane compressible

jet at β > 1.
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will be somewhat shifted to the right or to the left,
depending on the sign of ε. Accordingly, we will arrive

at another value of  at the point G(δ) = 1:

(21)

Let us now consider the difference between the
squared critical velocities given by expression (19) and
condition (11):

(22)

It is clear that the effect of compressibility on the
stability of a plasma jet is governed by the sign of this

difference: when ∆  > 0, the compressibility stabi-

lizes the jet, and, when ∆  < 0, the effect is destabi-
lizing. Let us analyze expression (22) with allowance
for the results obtained in [4, 5].

Since the case in which β > 1 and G(δ) ≤ 1 is most
optimal for the stability of a plane jet, the difference in
the square brackets is negative. On the other hand, the

inequality β = (ρ2 /ρ1 )1/2 > 1 can be satisfied at
the expense of a jump in the magnetic field (H2 > H1,
ρ2 ≤ ρ1) or in the density (H2 ≤ H1, ρ2 < ρ1). In the first
case, we have VA2 > VA1 and, as was mentioned above,

 > 0 (  > 0) and  < 0 (  < 0). In this case, rela-

tionships (18) yield ε > 0 and ∆  < 0, which indicates
that the compressibility destabilizes the jet; moreover,
the waves generated inside and outside a stable jet area
were a magnetosonic wave and an Alfvén wave, respec-
tively. In the second case, we have VA2 < VA1 and, con-

sequently,  < 0 (  < 0),  > 0 (  > 0), ε < 0, and

∆  > 0. This indicates that the compressibility stabi-
lizes the jet; in this case, the waves generated inside and
outside the jet are an Alfvén wave and a magnetosonic
wave, respectively.
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The optimal conditions for the stability of a cylindri-
cal jet are β < 1 and G(δ) ≥ 1; accordingly, the differ-
ence in the square brackets of expression (22) is posi-

tive, i.e., the sign of ∆  is determined by the sign of
ε. By analogy with the previous case, we can show that,
if H2 < H1 and ρ2 ≥ ρ1, then we have VA1 > VA2 and

∆  < 0 by virtue of ε < 0. This indicates that the com-
pressibility has a destabilizing effect; moreover, the
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2

Fig. 5. Dependence of  on G(δ) for a compressible plane

jet at β < 1.
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Fig. 6. Dependence of  on G(δ) for a compressible

cylindrical jet at β > 1.
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waves generated inside and outside the jet are an Alfvén
wave and a magnetosonic wave, respectively. The
results of this analysis are illustrated schematically in
Figs. 3 and 4.

It is also of interest to consider conditions that are
nonoptimal for the jet stability, namely, the condition
β < 1 for a plane jet and the condition β > 1 for a cylin-
drical jet. The results of the corresponding analysis of
expression (22) are demonstrated in Figs. 5 and 6. It can
be seen that, under these conditions, the effect of com-
pressibility on the jet stability depends not only on the
relationship between the MHD parameters of the jet
and the surrounding medium but also on the perturba-
tion wavelength.

Finally, we can draw the following general conclu-
sions. For a plasma jet of a certain (plane or cylindrical)
geometry, the compressibility (which undoubtedly
destabilizes the tangential discontinuity in the classical
sense) can play a destabilizing or a stabilizing role,
depending on the jet-flow conditions and the perturba-
tion wavelength. In addition, the plasma jet operates as
a generator of MHD waves, whose nature is also deter-
mined by the jet-flow conditions.
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Abstract—The basic electrical and optical properties of films made of propolis, which is a natural, biologically
active, organic compound, are studied. Photoluminescence is found to exist at room temperature with a maxi-
mum at 434 nm. The conduction activation energy in the temperature range 283–300 K is 2.9 eV and correlates
with the optical band gap. © 2004 MAIK “Nauka/Interperiodica”.
The application of different-type organic semicon-
ducting materials in electronics is widening continu-
ously [1, 2]. This circumstance stimulates studies of the
physical properties of both synthesized and biological
(skin, green leaves, albumen, etc.) materials and their
possible application as components of optoelectronic
devices [3–5]. It was shown in [6–8] that semiconduc-
tor (p-InSe, n-Si)–propolis hybrid photosensitive struc-
tures, where the natural organic material behaves as an
p-type semiconductor, can be fabricated.

Propolis (bee glue), which is extensively used in
pharmacology, perfumery, and cosmetology, is a prod-
uct of the life of honeybees and is a very complex mix-
ture of organic materials; generally, it consists of tarry
matter (50–55%), wax (up to 30%), and ethereal oils
and balsams (about 10%). Moreover, propolis (hereaf-
ter, P) contains organic acids, antibiotics, a number of
vitamins and microelements (Al, V, Fe, Ca, Si, Mn, and
Sr), and some natural enzymes (e.g., carotene) [9]. The
methods of medical treatment with P and its chemical
composition were analyzed in numerous works (e.g.,
see [10]). Every new study of the chemical composition
still reveals new components of this compound. When
studying the physical properties of P, researchers
mainly determine its density, the temperature ranges of
its aggregation states, and so on.

In this work, we determined for the first time the
basic electrical and optical parameters of films made of
this natural, biologically active, organic compound. We
recorded its transmission spectrum in the wavelength
range λ = 350–600 nm and its photoluminescence spec-
trum, determined the electrical conductivity at room
temperature, and found the temperature dependence of
the conductivity.

To prepare films of uniform thickness, a drop of a
10% alcohol solution of P was applied onto a sapphire
substrate fixed on a centrifuge; it rotated until the alco-
hol completely evaporated (no longer than 1 min). The
thickness of the P films was 15–30 µm. As a solvent, we
1063-7842/04/4911- $26.00 © 21529
used 96% ethyl alcohol. The conductivity of the films
was measured by the standard two-probe technique
[11]. Silver was used for electrical contacts.

Figure 1 shows the optical properties of the P films.
As can be seen, the P films are transparent in the wave-
length range from 410 to 600 nm (T ≈ 90% at film
thickness d ≈ 20 µm) (Fig. 1, curve 1); the long-wave-
length tail of the optical absorption edge in P is strongly
diffused; and the absorption coefficient α changes by
an order of magnitude (from 103 to 102 cm–1) in the
wavelength range from 380 to 410 nm (Fig. 1, curve 2),
which corresponds to photon energies of 3.26–3.02 eV.

Luminescence of P is observed when it is excited by
light with a wavelength of 337 nm. The photolumines-
cence spectrum is shown in Fig. 1 (curve 3). The max-
imum in the spectral dependence corresponds to
434 nm (2.857 eV). Noticeable inflection points on
either side of the maximum indicate the presence of
several types of luminescence centers in P, which is
characteristic of both semiconductors having different
impurities and complex molecular mixtures [12].
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Fig. 1. (1) Transmission spectrum, (2) optical absorption
coefficient, and (3) photoluminescence spectrum of the pro-
polis films at T = 288 K.
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Figure 2 shows the temperature dependence of the
conductivity σ(T) of P. As can be seen, the conductivity
has a constant activation energy (≈2.9 eV) in the tem-
perature range 283–300 K. As the temperature
increases further, the growth in the conductivity decel-
erates significantly, which can be caused by a number
of factors. First, the deceleration of the increase in the
conductivity with increasing temperature is characteris-
tic of materials with a high content of impurities and
can be related to a decrease in the potential barrier
heights [13]. Second, this behavior of σ(T) is typical of
noncrystalline semiconductors when all charge carriers
have passed from localized centers to the valence or
conduction band under the action of temperature [14].
Finally, if we assume that the P films are somewhat
ordered at T < 300 K (by analogy with inorganic semi-
conductors, which have a long-range order), an
increase in temperature results in disordering of the P
structure and the formation of localized states in the
energy structure of this material (at 30°C, the wax
entering into the P composition begins to soften). Of
course, each assumption requires additional studies.

Thus, the results of the first studies of the conductiv-
ity and optical properties of propolis indicate that this
natural, biologically active material is a semiconductor
with an optical band gap of ≈3 eV, which can be used to
design optoelectronic devices of different types. More-
over, P films have some advantages over other artifi-
cially synthesized commercial organic materials that
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1000/T, K–1
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Fig. 2. Temperature dependence of the conductivity of the
propolis films.
are used as components in electronic devices [15]. Spe-
cifically, these films have a substantially lower resistiv-
ity (by four to five orders of magnitude) and a wider
optical band gap. Another advantage of P over its ana-
logs studied in the literature (skin, green leaves, albu-
men, etc.) [4, 5] and some organic semiconductors is its
high environmental resistance [9].
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Abstract—It is shown that the adsorption, solubility, and diffusion coefficient of water molecules in metal-
oxide cuprate YBa2Cu3O7 – δ are nonmonotonic functions of the oxygen content. The behavior of these quanti-
ties is determined by the superposition of two processes: the change in the charge state of atoms in intermediate
layers and the electron density distribution between cuprate and intermediate layers upon filling of O1 positions
by oxygen. © 2004 MAIK “Nauka/Interperiodica”.
It is well known that water molecules are absorbed
by the crystal lattice of metal-oxide cuprates
YBa2Cu3O7 – δ [1]. If adsorption takes place at room
temperature and under saturated vapor pressure, a layer
of physically bound water is formed; H2O molecules
from this layer are implanted into the lattice, where
they form four localized states at interstices of the BaO
and Cu1O intermediate layers. The filling of these
states increases with time [2]. It can be expected that
binding of molecules at the surface and their diffusion
to the bulk of the crystal depend on the charge states of
atoms in the lattice, which determine the energy barri-
ers of chemisorption and diffusion of molecules. Since
the charge states of atoms are determined by the oxygen
content in the system [3], water absorption may be a
function of the number of oxygen atoms in the lattice.

Here, we analyze the dependence of the absorption
of water molecules on the content of O1 atoms in the
system YBa2Cu3O7 – δ. We studied disperse samples of
YBa2Cu3O7 – δ with an oxygen content varying in the
range 0 ≤ δ < 1. Particles had the shape of flakes
~20 µm in diameter and ~10 µm in thickness. Adsorp-
tion took place at room temperature in an atmosphere of
saturated vapor (a vapor pressure of 18.7 Torr) on sam-
ples preliminarily annealed in a vacuum of ~10−3 Torr
at T < 150°C. We used doubly distilled water as an
adsorbate. Adsorption was measured with the help of a
McBain balance. The specific surface was determined
on the GKh-1 setup from nitrogen desorption.

Figure 1 illustrates the adsorption kinetics of water
molecules in YBa2Cu3O7 – δ samples upon a variation of
δ in the interval 0 ≤ δ < 1. After the formation of a layer
of physically bound water at the surface of particles, the
adsorption coefficient a smoothly increases with time t
during t ≤ 90 min and exhibits a tendency to saturation
at t > 2000 min. The slow increase in the adsorption
coefficient is determined by the implantation and diffu-
sion of H2O molecules in the crystal lattice. A peculiar
feature of adsorption upon an increase in δ is a non-
1063-7842/04/4911- $26.00 © 21531
monotonic variation of a in the interval 0.1 ≤ δ ≤ 0.4
and its sharp increase for δ > 0.4, which is clearly man-
ifested in the behavior of limiting adsorption and solu-
bility (Fig. 2a). The dependences a∞(δ) and N0(δ) are
characterized by a nonmonotonic decrease in a∞ and N0
with increasing δ in the interval 0.1 ≤ δ ≤ 0.35 with a
minimum at δ ≅ 0.25, a sharp increase for δ > 0.35, and
a slight increase for δ > 0.45.

The behavior of the effective diffusion coefficient
De of water molecules, derived from the expression [4]

(1)

where V is the volume and S1 = ρVs is the area of the
outer surface of particles (ρ is the density and s is the
specific surface), depending on the oxygen content is
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Fig. 1. Kinetics of adsorption of water molecules in
YBa2Cu3O7 – δ with δ = 0 (1), 0.2 (2), 0.24 (3), and 0.44 (4).
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similar to the behavior of function N0(δ) (Fig. 2b). In
determining De, we assumed that particles of the sam-
ples are of the same size and that the rate of transition
of an H2O molecule from the free to the bound state at
the surface of the particles is much higher than the dif-
fusion rate in the crystal lattice.

It should be noted that the specific surface increases
nonmonotonically in the interval of the nonmonotonic
decrease in a∞, N0, and De (Fig. 2c). In addition, the
region of nonmonotonic variation of U and De for 0.1 <
δ ≤ 0.6 coincides with the interval in which the super-
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Fig. 2. Dependences of the limiting absorption and solubil-
ity (a), the effective diffusion coefficient of water (b), the
specific surface (c), and the superconducting transition tem-
perature (borrowed from [5]) (d) on the oxygen content in
YBa2Cu3O7 – δ.
conducting transition temperature Tc changes stepwise,
while the range of δ > 0.6, where the values of U and De
change insignificantly, corresponds to the interval of
oxygen content in which superconductivity is not
observed (Fig. 2d) [5].

Thus, the solubility and the diffusion coefficient of
water in YBa2Cu3O7 – δ are nonmonotonic functions of
the number of O1 atoms in intermediate layers. Since
the solubility is proportional to the number of vacancies
in the lattice and the binding energy of water atoms
with the atomic surroundings,

(2)

(where ε0 is the permittivity,  is the charge state of

cuprate atoms of sort α, and  is the electrostatic
potential produced by jth atoms of βth molecules of
water at an ith atom), a decrease in N0 upon a smooth
increase in the number of O1 vacancies in the lattice
with increasing δ indicates that H2O molecules do not
fill O1 vacancies and the behavior of N0 can be attrib-
uted to the nonmonotonic variation of U and the charge
state of atoms in the lattice. As the number of O1 atoms
grows (δ  0), the binding energy decreases first
insignificantly for δ > 0.6 and then sharply in the inter-
val 0.25 ≤ δ ≤ 0.6, after which it smoothly increases for
0.1 ≤ δ ≤ 0.25 and virtually does not change for δ < 0.1.

In addition, the diffusion coefficient in a multicom-
ponent system is given by [6]

(3)

where u, γ, and N are the mobility, the activity, and the
number of H2O molecules. The mobility is connected
with diffusion rate v  and chemical potential µ by the
expression

(4)

consequently, the behavior of D(δ) = Dea∞/c0 (c0 is the
concentration of molecules at the particle surface) is
also determined by the nonmonotonic variation of
∂µ/∂x upon a smooth decrease in δ. On the other hand,
D = D0exp(–E/kT), where k is the Boltzmann constant
and the activation energy E ~ U [6]; in this case, the
behavior of D(δ) for δ  0 is determined by the non-
monotonic decrease in E(δ). It is important that the
behavior of U, E, and ∂µ/∂x for δ  0 can be associ-
ated with nonmonotonic variation of the charge state of
lattice atoms.

The increase in the number of O1 atoms in
YBa2Cu3O7 – δ for δ  0 changes the charge state of
the atoms constituting the intermediate layers. The
charge state of Ba and Cu1 decreases from 2.08 and
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1.46 to 1.45 and 0.81, respectively; the charge of the O4
atom decreases from –2.08 to –0.67, and the number of
O1 atoms with a charge of –1.76 increases [4]. In addi-
tion, the lattice parameter c decreases, but the apex
atom O4 moves away from Cu1 and approaches Cu2
[7]. In this case, holes are redistributed between the

 and  orbitals of the Cu2 atom when holes are

localized at , and the electron density becomes

extended along the c axis [4]. Therefore, the nonmono-
tonic behavior of U, E, and ∂µ/∂x is probably deter-
mined by two processes that affect the value of ∂µ/∂x,
viz., a smooth decrease in the charge state of Ba, Cu1,
and O4 upon an increase in the number of O1 atoms,
leading to a decrease in U and E, and a redistribution of
the electron density in Cu2 orbitals upon a convergence
with the O4 atom in the interval 0.1 ≤ δ ≤ 0.25, which

might result in an increase in  and, accordingly, in
the values of U and E.

It should be noted that the electron density redistri-
bution matches the increase in Tc in the interval 0.1 ≤
δ ≤ 0.25 for δ  0, since it leads to an increase in the
number of holes, p, in cuprate layers and in the conduc-
tion band formed by the orbitals px(py) of Cu2

and O2 (O3) atoms and in temperature Tc(p) = Tcm[1 –
82.6(p – 0.16)2], where Tcm is the maximal supercon-
ducting transition temperature in YBa2Cu3O7 – δ [8].
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Thus, the nonmonotonic absorption of water mole-
cules in YBa2Cu3O7 – δ is due to changes in the charge
state of the atoms constituting intermediate layers and
the electron density distribution between cuprate and
intermediate layers upon a variation of the oxygen con-
tent.

REFERENCES

1. L. L. Makarshin, D. V. Andreev, and V. N. Paramonov,
Usp. Khim. 69, 307 (2000).

2. B. M. Gorelov, D. V. Morozovskaya, V. M. Pashkov, and
V. A. Sidorchuk, Zh. Tekh. Fiz. 70 (9), 50 (2000) [Tech.
Phys. 45, 1147 (2000)].

3. V. E. Gusanov, Fiz. Nizk. Temp. 21, 805 (1995).
4. D. P. Timofeev, Kinetics of Adsorption (Izd. Akad. Nauk

SSSR, Moscow, 1962) [in Russian].
5. Chemistry of High-Temperature Superconductors, Ed.

by D. L. Nelson, M. S. Whittingham, and T. F. George
(Am. Chem. Soc., Washington, 1987; Mir, Moscow,
1988).

6. B. I. Boltaks, Diffusion in Semiconductors (Fizmatgiz,
Moscow, 1961; Academic, New York, 1963).

7. R. C. Baetzold, Phys. Rev. B 42 (1A), 56 (1990).
8. G. V. M. Williams, J. L. Tallon, R. Michalak, and

R. Dupree, Phys. Rev. B 54, 6909 (1996).

Translated by N. Wadhwa



  

Technical Physics, Vol. 49, No. 11, 2004, pp. 1534–1535. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 74, No. 11, 2004, pp. 141–142.
Original Russian Text Copyright © 2004 by Agaev, Sozaev, Yablochkina.

                                                                                     

BRIEF
COMMUNICATIONS

                      
Effect of a SrF2 Insulating Film on the Luminescent Properties 
of n-InP

V. V. Agaev, V. A. Sozaev, and G. I. Yablochkina
North-Caucasian Institute of Mining and Metallurgy (State Technological University), 

Vladikavkaz, 362021 Russia

e-mail: skgtu@skgtu.ua
Received March 30, 2004

Abstract—It is shown that SrF2 can be used as an effective protective coating for indium phosphide films, since
it decreases the surface recombination rate of the films due to lattice matching between SrF2 and InP. As a result,
the external quantum yield of radiative recombination increases. © 2004 MAIK “Nauka/Interperiodica”.
The recording and numerical estimation of the
intensity of UV radiation have recently became a key
issue in view of ecological monitoring and wide appli-
cation of UV sources in science, engineering, medicine,
and industry. These factors require the diversification of
photodetector-based functional measuring instruments
[1, 2].

Along with GaP-, Si-, Ge, and InGaAsP-based pho-
todetectors [3], photodetectors with the upper layer
made of n-InP are promising for the UV region. In such
photodetectors, the p–n junction should be located as
close as possible to the surface; in this case, however,
surface recombination may substantially affect the pho-
todetector efficiency.

Because of the high internal quantum yield (90%)
and a low surface recombination rate in n-InP, the role
of the effects of multiple passage and reradiation,
which are important for optoelectronic devices,
becomes more significant [4]. These effects provide
effective excitation transfer in n-InP [5].

The surface recombination rate in n-InP is only 2 ×
104 cm/s (for comparison, this rate in n-GaAs is 3 ×
105 cm/s [6]), which makes it possible to design a high-
sensitivity UV photodetector. However, the open sur-
face of n-InP is unstable in time [7]. The InP surface
can be stabilized with protective coatings. There are
many insulating coatings, such as native oxide In(PO4)2
and oxides of other compounds (Al2O3, SiO2, etc.), that
can be used to protect n-InP. Interest in fluoride-based
films has quickened in the past few years [8, 9]; for InP,
such films are made of SrF2.

A SrF2 film ensures transparency in the near-UV
region and increases the surface recombination rate,
since the lattice parameter of SrF2 is close to that of InP.
A SrF2 film forms a heterojunction at the interface with
InP, which not only effectively protects the surface but
also reduces the surface recombination in InP (which is
1063-7842/04/4911- $26.00 © 21534
evidenced by the increase in the external quantum yield
of radiative recombination).

The epitaxial InP films were produced by liquid-
phase epitaxy [4]. The epitaxial-layer thickness was
2−3 µm, and the concentration of uncontrolled impuri-
ties was n = 5 × 1017 cm–3, as determined from metal–
insulator breakdown.

Each as-grown film was divided into three parts.
One part was not treated (the reference part), and the
two others were coated with SrF2, CaF2, or SiO + SiO2
insulating films.

The insulating films were fabricated by vacuum
deposition; their thickness was varied from 0.4 to 1 µm.

To study the photoluminescence properties, we used
a setup similar to that described in [4]. A continuous
1-W Ar laser with wavelength λ = 0.514 µm was used
as an excitation source.

The spectral dependences of all three parts of the
epitaxial film are shown in the figure. To estimate the
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Luminescence spectra of n-InP with and without a insulat-
ing film: (1) the mirror surface of the epitaxial n-InP film,
(2) the mirror surface of the epitaxial film coated by a SiO +
SiO2 insulating film, and (3) the mirror surface of the epi-
taxial film coated by a SrF2 insulating film.
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external quantum yield, the spectra of all the samples
were compared with the spectrum of a calibrated het-
erostructure. The external quantum yield of the radia-
tive recombination in the InP epitaxial films was esti-
mated under the same experimental geometry and at a
constant quantum sensitivity of the photodetector.

The external quantum luminescent efficiency was
ηe = 2.2% for the pure (uncoated) sample, ηe = 4% for
the film with the SiO + SiO2 coating, and ηe = 6.1% for
the film coated with SrF2.

To compare the experimental data with theory, we
calculated the external quantum yield of luminescence
for the uncoated and coated InP epitaxial films. We
assumed that the internal quantum yield of lumines-
cence is 100% in a narrow excited region and zero in
the unexcited region, the reradiation effects are absent,
the sample has a mirror surface, and the output emis-
sion is limited by the effects of total internal reflection:

Our calculations show that the external quantum
yield is ηe = 2.6% for the uncoated n-InP epitaxial films
and does not exceed 4.5% for the samples coated with
the insulating films (n0 = 1.43). These calculations
agree well with the results obtained for some n-InP
films with the SiO + SiO2 coating. An increase in the
external quantum yield of the films with the SrF2 coat-
ing by a factor of more than three as compared to the
uncoated films is thought to be caused by a decrease in
the interface recombination rate, since SrF2 has a cubic
lattice with a parameter of 5.79 Å, which virtually coin-
cides with the InP lattice parameter. This fact results in
a significant decrease in the nonradiative recombina-

ηe

2n0
3

n n0 n+( )2
------------------------.=
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tion at the InP–SrF2 interface and, hence, in an increase
in the reradiation, which is evidenced by increasing the
line halfwidth and a substantial increase in the external
quantum yield (this value exceeds the data calculated
using simple theoretical assumptions).

Thus, SrF2 insulating films can serve as effective
protective coatings for InP epitaxial films.
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