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Abstract—Analytical expressionsfor atemperature jump and electric potential difference that arise when cur-
rent passes through agrain boundary are derived. The electron flow (current) through the boundary and the cur-
rent-induced heat flux are assumed to be given. The kinetic equation in the T approximation for electrons and
the Maxwell equation for an electric field are used. The dependence of the temperature jump and potential dif-
ference factors on the chemical potential is studied. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Thermoelectric phenomena at the meta—metal
interface have been the subject of extensive research for
alongtime[1, 2]. Classical thermoelectric phenomena,
such as Peltier and Thomson effects, are finding wide
application. In addition, they are of scientific interest.
Note that classica thermoelectric phenomena arise
when the surfaces of different metals are in contact.

However, there al so exi st thermoel ectric phenomena
arising when identical metals comeinto contact. Exam-
ples are temperature and potential jumps that occur
when current or a heat flux passes through the metal—
metal interface. These jumps are observed at the con-
tact of both different and identical metals. The latter
case, where the interface is, in essence, a grain bound-
ary in a polycrystalline metal, is considered in this
work.

Most metals are polycrystals; therefore, the estima-
tion of the temperature and/or potential jumps when
current crosses a grain boundary is of great signifi-
cance.

We assume that the current is directed normally to
the interface and the current value and corresponding
heat flux are given. The electron behavior will be
described in terms of the kinetic equation in the T
approximation; the behavior of the eectric field, in
terms of the Maxwell equation. Modifying our
approach developed in[3, 4], wewill find an exact solu-
tion to this set of equations, aswell as the values of the
temperature and potential jumps as linear functions of
the current and heat flux. The coefficients of these two
parameters are chemical-potential-dependent func-
tions.

Let the Fermi surface for a metal considered be
spherical and the electric field be directed normally to a
grain boundary selected. The electric field is assumed
to be low enough, so that the linear approximation is
valid[1, 2].

Let us direct the x axis normally to the surface and
place the origin on the boundary. It is assumed that a
heat flux passes in the metal along the x axis. Then, at
distances much greater than electron mean free path A,
the heat flux can be represented by constant tempera-
ture gradient G; = dT/dx (the metal is assumed to be
isotropic). The temperature gradient is assumed to be
flat: the relative temperature drop over length A ismuch
smaller than unity.

The layer of thickness A that is adjacent to the
boundary will be referred to as the Knudsen layer, asis
customary in kinetic considerations. Outside the Knud-
sen layer, the temperature profile hastheform T =T, +
Gxforx>0and T =T, + Gxfor x<0. The value of
AT = Ty — T, will be called the temperature jump.
Because of the linear statement of the problem, AT =
CiAGy, where C; independent coefficient C; will be
called the temperature jump coefficient. Sometimes, it
is more convenient to handle dimensionless tempera
turejump & = AT/T,, where T is the temperature of the
surface. Then, ; = C;Agy, where gr = G{/Tistherela-
tive temperature gradient.

Similarly, when the éectric field is normal to the
surface, the profile of potential U in the metal has the
formU = Uy, —Egxforx>0andU = U, —Exforx<O0.
Here, E, is the electric field strength away from the
boundary. Near the boundary, the field becomes vari-
able and, accordingly, the profile becomes nonlinear.
Thevalue of AU = U, — U, will be called the potential
jump. In this case, too, we have AU = C ,AG;, where
coefficient C, isthe potentia jump coefficient, because
of the linear statement of the problem.

In metals, heat transfer usually generates an electric
field. Therefore, the problem of temperature distribu-
tion near ametal surfaceis often solved in parallel with
the problem of electric field in the Knudsen layer,
which is associated with thermal processes.

The aim of our work is (i) to calculate the tempera-
ture jJump in metals using an analytical solution to the
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kinetic equation for electrons, (ii) find the electric
potentia difference near the surface, and (iii) construct
the electric field profile.

We consider the case when the electron gasis arbi-
trarily degenerate. Therefore, the results obtained in
thiswork apply to awide temperature range and a vari-
ety of materials (including semimetals).

KINETIC EQUATION AND PROBLEM
DEFINITION

For electronsin metals, the kinetic equationinthe T
approximation [1, 2] is frequently used:

of f 1.0
a+(vD])f+eOED(‘;—IO_T(fF . @

Here, f is the electron distribution function, g, is the
electron charge, p is the electron momentum, E is the
electric field, v isthe electron velocity, T isthe electron

relaxation time, and f,‘l is the Fermi distribution func-
tion. If the temperature is finite, Eq. (1) must involve
Fermi distribution function f§ with some effective
temperature Tjand effective chemical potential pjas
the equilibrium electron distribution function instead of

f(F) , Which corresponds to the zero temperature. Then,
Eq. (1) takesthe form

of f_ Vv,
5¥+(v[|])f+eoEE§-|O—X(fp—f)- (2

2
Omv”™ e [ :
okT, kT,0" 1} 'S
the Fermi distribution function (Fermian), kis the Bolt-
zmann constant, and m is the electron effective mass
(for details, see[3]).

In most metals, the electron subsystem makes a
major contribution to heat transfer [5]. We will consider
just this case and ignore the phonon contribution to this
process. Also, we assume that the mass velocity of the
electron gas is much lower than the electron velocity
and that characteristic temperature differences over
length A are much smaller than the el ectron gastemper-
ature. These assumptionsallow usto linearize the prob-
lem.

Let usintroduce the designations

Here, f£ = fp(u*.T*>=[exp

m u
c= By BT g 0=
S S

mv’

2kT, KT,'

& —

aswell asdimensionlesstimet= ./T/Bst/A and coor-
dinate rp=r/A, and put g = Agr. Now, we linearize
Eq. (2). Applying the particle and energy conservation
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laws, we arrive at the equation [3] (the asterisks by the
variables and gradient will hereafter be omitted)

o0 _ _
3 - co(t,r,c)—cl&(r)

= 2£er(C’ c)(t, r,c)dQ(a).

Here, function ¢ isrelated to distribution function f via
therelationshipf= f; + g, where f7 = (g TJ);

©)

N =14 9@ 02 (@) gs(a)
6:®) = 1+ 3@ 8 ~g@It "o
9(0) = glc.a) = —C—0)

[1+exp(c®—a)]”

dQ(a) = g—éi’a‘;)dgcz

00 00

gs(0) = 2J'g(c, a)c’de = 4J'c|n[1 + exp(a —c?)] cd,
0 0

[

gu(a) = ZIg(c,a>c3dc = In(1+ exp(a)),
0

00

gs(a) = 2[g(c, a)c’de
I

00

= 12J’c3ln[1 + exp(a —c?)] dc,
0

2 0)\
M) = gy(e)gs(c) ~gi(@), e(r) = ZZE(r).

Suppose that the reflection of the electrons from the
boundary is perfectly diffuse. Then, the set of equations
that describe the problem consists of Eg. (3) and the
equation for the electric field. In dimensionless form,
they are written as

29

e 0061 ©) —pe(x)
1 3 @
- gl(cx):[{k(c’ c)o(x, W, c)g(c)c du'de,
1o
e(x) = & [6(x 1 O)g(c)c dude,
-10 (5)
2 e§m27\2 c,

T
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where g, is the dielectric constant.

The boundary conditions and the conditions inside
the metal for x > 0 are asfollows:

O(+0, l, ) =o(H ) = Ag, O<p<l,
¢(X1U,C) = ¢;(X,U,C)+0(l), X —» +o0,
e(o) = e,.

Accordingly, for x < 0, we have
(-0, 1, ) = -Ag, —1<p<0,
O(X 1, C) = das(X W, C) +0(1), X—» —00,
e(—o) = e.
Here,
03001, 0) = eqit+ [55 + grlx— ] - Z
g = TOT_‘T

(X, 1, C) = el + [—€7 + Gr(X— )] %2‘%5,

00

g,(0) = ZIg(c, a)c’de = gJ’In[1+ exp(a —c?)]dc,
0 0

[

=92 La)c?de = oo_f_x_p_(_o_‘___f:_zl_d _
go(0) {Q(C a)cdec Jo’l+exp(0(—c2) C

We took advantage of the fact that (T,, — T)/T, =
—(To. — TY/Ts owing to the symmetry of the problem.

BALANCE OF ELECTRON FLOWS
ON THE SURFACE

Let
No = [ (0, W, c)g(c)(uc)d’c

c>0

be the electron flow that strikes the grain boundary
from the left-hand half-space,

_ 3. _ T
N, = C[OAOQ(C)(UC)d ¢ = 50:(0)A

be the electron flow crossing the boundary from left to
right, and

N, = [ ¢(0 W, ©)g(c)(uc)d’c
c, <0

be the electron flow striking the boundary from the
right-hand half-space.
2004
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The flow balance equation has the form
N; = pNg—(1-p)N,,

where pisthe probability of electron scatteringin afor-
ward direction. Also, heat flux Q, equals heat flux Q,

(Qo=Qy).
Inview of thisequality, N; = 2(p — 1/2)N,. Hence,

o= 8272 [ g0 0)g(c)ped’e
or
8p—4.
Ao = <Py [Hau[o(0, 1 c)g(c)c’de.
-1 0

For isotropic scattering (p = 0.5), A; = 0. Theexpres-
sion for A can be represented as

_8p-4
g.(a)

Ao b‘ludujo‘cb(o, M, c)g(c)c’de

1 [

—AO{udu{g(c)CBdc}.

Then, it follows that

0 o
A = 89‘3(;;‘ [[6(0. 1. cJucg(c)de~(2p—1) A

-10

Theintegral termin thisequality istheintegral elec-
tron flow. Thisquantity isconstant by virtue of the elec-
tron (charge) conservation law. Therefore, we replace
function ¢(0, W, c) by ¢.(0, H, ¢) is the asymptotic
value) and, calculating

o=y go(a)!

1 o
4p-2 B 2 G(a)
gl(a):[{[eau + (ST gT“)B: :|
x g(c)uc’dudc,
obtain

Ao = HB=Z (e + o)),

where

Ag(a)

Mo(®) = 5@ 6 ()"

Dg(a) = gp(a)g;(a) —gs(a)go(a).
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ANALYTICAL SOLUTION
OF THE PROBLEM

The kinetic equation and the structure of the bound-
ary conditions allow usto consider the half-space x>0
alone (thecasex < Oistreated in asimilar way). Taking
into account the structure of function ¢, we seek func-
tion ¢ intheform

2 hu(x ).
Eventually, we arrive at the following subproblems.
For function hy(x, p):

1

(% 1 ©) = hy(x )+ %7~

oh, _1 -
Moy Fhp) = thl(x,u)du +pe(x),
-1
h;(O, ) = Ap, O<p<1l,
hi(X, 1) = egt +0(1), X — +oo, —1<p<O0;

For function hy(x, W):

1

oh, 1 N
Wy *ha(xp) = ﬂhz(x,u)du,

h2(01 p‘) = 0’ O<U<1,

ha(x H) = &7+ Gr(x—H) +0o(1),
-1<u<0.

For the electric field, we get
1

ﬂm=¥gmmmw,am=%,

a = a5./0o(0).

Consider the subproblem for hy(x, ), which is the
problem of temperature jump. This problem was solved
in [3]. Thetemperature jump isfound from the formula

AT T, = V,Gr,

X—>+00,

= TO+_
1

V, = —%JZ(T)dT = 0.71045,
0

= T 02 ,1,1-1m
(1) 5 arctan[hr+nln1+TD. (6)
The value of the temperature jump is the same on
both sides of thegrain boundary: AT- =T, —T,=-AT".
Therefore, the total temperature jump at the boundary
istwice aslarge as the partial jump. Hence,

AT = AT -AT' = —2V,G;. ©)
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According to [3, 4], functions h;(x, i) and e(x) are
sought in the form of expansions:
hy(X, 1) = exht + Ajexp(-ax)

1

8
+ [exp R (N, wn(n)n, ©
0

21
e(x) = e,—aA, exp(-ax) — %Iexp%—ﬁ%n(n)dn (9)
0

Here, A; is an unknown constant, n(n) is an unknown
function,

F(n,u)
S L lmantng 1 s

Pxt stands for the principal value of the integral of x7,
0(X) isthe Dirac function, and

1
_ g Zpdu
Az) = 1+2,rt—z’
-1
is the Case dispersion function [6].
Substituting expansions (8) and (9) into the corre-
sponding boundary conditions yields

A = e+t A A,
1
+1I(1—a2n2)”(”)d” +(1—a%u ))‘(“) - 0, (10)
20 n-—u

21

0<pu<l, A, = S nn(n)dn
0

and
21
eas—e(O)—aAl—%J’n(r])dn = 0. (12)
0
Solving Eg. (10), wefind
AL = Ag—Ay—exVy,
_ 1 1 2e5sinl(n)
@-aninm = = ===
Ml xwl o moXm
_e(0) + & [CosC(Va) 1
aA, = —e(0) * 78 [ X(1/a) X(—l/a)]’
_ cos{(1/a) 1
Ao = _eaﬁ[V“ 2X(1/a) +2X(—1/a)}’
TECHNICAL PHYSICS Vol.49 No. 11 2004



THERMOELECTRIC PHENOMENA AT GRAIN BOUNDARIES

where
1
V(z) = 2SI

0

Substituting the found values of Ay, A;, and A, into
(12), wefind the electric field at the grain boundary:

=2 e+ ho(a)an) -

X(2) = %expV(z),

_
e(0) = X( lla) (13)

POTENTIAL AND TEMPERATURE JUMPS,
CURRENT, AND HEAT FLUX

By definition, the potential jump isfound by thefor-
mula

AU = I[e(x)—eas]dx = 2J’[e(x)—ea§]dx
—o0 0

= —2A1—azjnn(n)dn = 2(A;+A,)
0

or, according to (12),
AU = =2(Ay—-V.ey)

B9=4 o588t ag, (14)

In terms of the distribution function, current density
j is expressed

3
j = 2eo%ﬁ5 va¢(x,v,t)d3v.

Passing to the dimensionless variables and substitut-
ing ¢ for ¢, we have (g, < 0)
. 1
I = 5 [gu(0)€x+ ho(a)gs ()],
|
32,2 (15)
5 - _241PH Tk -0,

J 5
gm

The quantity
___&A
o= kTS5jgl(O() >0
equals the electric conductivity of the metal.

The heat flux in the metal is calculated through
function f by the formula

Q‘J’———
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Now, passing to the dimensionless variables and
using the relationship f = f7 + ¢g, we get

Q= Layment @@, 8= 11 16
Q Ts

where

__Ay(a)

) G@e@
Ay(a) = gy(a)gs(a) — go(ar) gs(ar)
and the quantity
A Dl(a)
T 6Q 90(0()

isthe thermal conductivity of the metal.

Let us express the temperature and potential jumps
through the current and heat flux. From (15) and (16),
wefind

Or = A(a)[Jé i03(a) + Q0qg, ()],
_ 1
€ = it
Jo(a)A(a)
Now, we find the temperature jump (in dimensional

form) and potential jump from Egs. (7) and (14) inview
of (17) and (18):

[16iA:(a) + QdpA(a)] .

AT = ZTEE118,0,(e) + Q3ogi(a)],
_i5[8p-4 _Au(@) 2ViBo(®)
= 18 3 " Vg T Pog ey

For the potential jump in dimensional form, we have

o0

AU = ZI(E(X) —-E,)dx,
0

wherex = AX' isthedimensiona coordinate and X' isthe
dimensionless coordinate.

Since
_ kT,
E() = oxe0),

the dimensional potentia jump takes the form
AU = @[ 8p—4 A (a) }
A&y L3pgi(a)  “ go(a)A(a)
KT0q 2V, Aq(a) Q
Aey go(a)A(a) ™
Let us introduce dimensionless kinetic coefficients
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a,
2.25
2.22
2.19
2.16
2.13
2.10
2.07
Fig. 3
(Figs. 1-4)

' _ g;(a)gs(a)

Cr(a) = _zvlw,

Q _ g;(a)A(a)

S OIO)

j _ [8p—-4 ga(0)A(a)
Chla.p) = {552 r2vig ey |

Dg(a)A(a)

C(a) = -2V, 17

’ g3(a)A(ar)

In terms of the electric conductivity and thermal
conductivity of the metal (see above), the temperature
and potential jJumps can be expressed in dimensional
form asfollows:

_ €A

AT_&

Ch(a)] +2C(@)Q, (17)
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Fig. 4.

AU = SCh(a p)i-gkCi@Q. (19

Thus, the heat flux (Q) causes a temperature jump
along with a potential jump, while the current causes a
potential jump along with a temperature jump; that is,
cross effects take place.

Of the coefficients involved in formula (17), coeffi-

cient CL alone depends on probability p of electron
scattering in a forward direction.

Note in conclusion that quantity ps = CL /o may be
viewed as the grain boundary electrical resistivity (the
resistance per unit area). Similarly, quantity )\CS/K
may be viewed as the grain boundary specific thermal
resistance. The value of p, indefinitely grows as proba
bility p of forward electron scattering tends to zero,
since the grain boundary becomes nontransparent to
electronsin this case.

No. 11
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LIMITING CASES

Let us find the asymptotics of the kinetic coeffi-
cientsat 0 — +oo (degenerate plasma) and 0 —» —o
(conventional plasma). For the first case, we take

advantage of formula (58.1) from [7, p. 191]:

(x)dx ) W
Iexp(x 1 J g (e
0

7, _

360f (a) + o> 1.
Based on this formula, we have for o — +

T

go(a) = a” —2—40( 2y, ga) = o+,

™ 1 2 T

Go(o) =a** 4 ga ™ gg(a) =+

Hence, at 0 —— +oo,

LTI

Bo(0) = 0 " I o

A0) = §a2+

Consequently, the asymptotics of the kinetic coeffi-

cientsat o — +oo (degenerate plasma) is as follows:

- 6V
Ci(a) = ——La+..., CHa) =3v,+

g
2
clp, a)=3v1—8§;4+ @)=y
For the case of classical gasat a —» —o, we have
Tl
go() = iz_—expa, g:(a) = expa,
3JT
g.(a) = lexpa
_ _ 15
gs(a) = 2expa, gu(a) = EﬁTexpa,
gS(G) = 6expa1

TECHNICAL PHYSICS Vol. 499 No. 11 2004

., Os@)=a’+Tfa+....

1397

Aa = 2exp(2a), Ay(a) = —#exp(Za),

By(0) = —3./mexp(2a).

These formulas give the following asymptotics for
classical plasma (0 —= —0):

Ch(a) = =2V, +..., C¥(a) = 3V, +
i 8p—4
Ch(p.a) = 3V, - gp o
3

Co(a) = 5V, +

Figures 14 plot Ct, C¥, Cl,, and CJ versus a.
Coefficients C? and C!, are seen to reach a maximum

at a = 4. Coefficient CL strongly depends on probabil-
ity p of forward electron scattering, as follows from
Fig. 3.
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Abstract—BYy means of the multichannel Hartree—Fock—Dirac method, the parameters 3 and o, of the angular
distribution of Auger electrons and the parameter 3, of their spin polarization are calculated for sodium, kryp-
ton, xenon, barium, mercury, and excited argon. Relevant Coulomb matrix elements are determined by using
orthogonal multielectron initial- and final-state wave functions for intermediate-type coupling in arelativistic
approximation. Exchange interaction is taken into account in all calculations. A comparison of the results of
calculations performed in the frozen-core approximation and those obtained with orthogonal initial- and final-
state wave functions reveals that the relaxation of core orbital processes has only a slight effect on the anisot-
ropy parameters of the angular distribution. The resulting values of the parameters 3, a,, and [3, are compared
with the results of different calculations. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Investigation of the angular distributions and spin
polarization of Auger electrons furnishes information
about the dynamics of Auger decay. Basic theoretica
results on the subject that were based on the application
of the multichannel multiconfiguration Fock—Dirac
method were obtained in [1-5] for atoms containing
closed shells. Calculations of the anisotropy parameters
of angular distributions for atomsinvolving open shells
are less comprehensive. In view of the aforesaid, we
have calculated the parameters a, and 3, for Kr and Xe
(closed shells) and Na, Ba, and Hg atoms (open shells),
as well as the parameter B for Ar*(2p°3s?3p%4s). It is
well known that calculations of the angular distribu-
tions and spin polarizations of Auger electrons are
based on the two-step model of Auger decay [6]. There
are anumber of articles expounding on the general the-
ory of Auger decay (see, for example, [5]). The usua
expression for the angular distribution of Auger elec-
trons can be represented in the form

dW + 2+ dWZ* 2+
gd A" ZT;A [1+a,A%P,(cos(8))], (1)

where szA+ _ 2 istheAuger process probability inte-

grated over the directions of Auger electron trajecto-
ries, Ay is the population of magnetic sublevels of a
singly charged ion, a, is the anisotropy parameter of
the angular distribution of Auger electrons, P, isaleg-

endre polynomial of second degree, and 0 is the angle
between the direction of Auger electron emission and
the polarization of the radiation.

In the case where the atom involved is excited from
the state of total angular momentum J, = 0 by alinearly
polarized radiation, the coefficient 3 can be factorized
as

B = a,Ay, 2

where Ay, = —./2.

For the anisotropy of the angular distribution of
Auger electrons and the anisotropy of their spin polar-
ization, we have employed the expressions [4, 5]

where
A(KKQ) = 4—111pJ(2K FD)(2k+ 1)
y zi(l'—l)ei(o.—o.~)z(_1)J+J1+1+Q+|'
LT i)
x J(21 +1)(21'+1)(2j + 1)(2]' + 1) (4)
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CALCULATION OF THE ASYMMETRY PARAMETERS

NI
— — NI

X AN
I o

DJJlJ

CX0.,CXO
DK i 3,0 Z |0|o K-Q,kQ

X

DEH:IDEIEH:I

x (3, €)) [ VI 3,003, £]) 31 VI 3,0

Here, J; is the total angular momentum of the initial
state of theion A*; Jisthe total angular momentum of
the final state of the ion A>+; and j and | are, respec-
tively, the total angular momentum and the orbital
angular momentum of a partial wave of an Auger elec-
tron.

The multiconfiguration Fock-Dirac method was
used in all calculations of multielectron wave functions
for the singly charged ion appearing in the initial state
and for the doubly charged ion appearing in the fina
state. The Auger electron wave function was cal culated
on the basis of a full relativistic method involving
orthogonalization with respect to core orbitals.
Exchange interaction was taken into account. A similar
method of calculations was described in [7].

CALCULATION OF MATRIX ELEMENTS

In determining the transition amplitudes for Auger
processes proceeding from an initial state that involves
one hole in an inner shell to afinal state that has two
holesin inner shells, theinitial- and the final -state wave
function are calculated separately; therefore, they are
not orthogonal to each other. This approximation is
referred to as a relaxation-free approximation; in this
case, core orbitals are frozen in Auger decay. In the
present study, we calculate the parameters a, and [3,
() in the relaxation-free approximation and (ii) with
allowance for relaxation, in which case the initial-state
wave function is orthogonal to its final-state counter-
part.

For an N-electron subsystem, the multielectron ini-
tial- or final-state wave function W can be represented
in the form of a linear combination of Slater determi-
nants det, constructed from single-electron wave func-
tions q(X) [@:(X)]; that is,

W= Codet. (5)

For an Auger process, where total energy E of the
atom involved is conserved throughout the Auger decay
process, the amplitude of the transition from the initial
state [ACXo the final state |BCs given by

AlA-ellBI= Y o chrulH*-ES¥lBn (9
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Table 1. Anisotropy parametersa, and 3, of theangular dis-
tribution and spin polarization, respectively, for LsMiM, 5
Auger transitions in Kr, Xe, Ba, and Hg (0((2_) and B({) are
the anisotropy parameters calculated in the frozen-core
approximation, while a’” and BS” are their counterparts

calculated with allowance for relaxation in the course of
Auger decay)

nlileer:t st;g]?e;m a (9] | of | B | of | By
Kr D, | 0.218|-0.081| 0.034|-0.026| 0.033
%D, |-0.034|-0.337 |-0.147 |-0.279 |-0.156
’D, | 0.278| 0.191|-0.153| 0.243|-0.160
°D; | 0.331| 0.612| 0.147| 0.570| 0.141
Xe D, | 0.228|-0.234| 0.077|-0.191| 0.080
D, | 0.101|-0.422 |-0.139 |-0.391 |-0.147
°D, | 0.342| 0.584|-0.193| 0.638|-0.201
3D, 0.161| 0.606| 0.147| 0.580| 0.144
Ba D, | 0.235|-0.211| 0.076 |-0.211| 0.076
D, | 0.147|-0.380 |-0.152 |-0.380 |-0.152
°D, | 0.328| 0.716 |-0.186| 0.716 |-0.186
5D; | 0.134| 0553| 0.140| 0.553| 0.140
Hg D, | 0334
D, 0.025| 0.073| 0.393| 0.073
5D, | 0.801|-0.80 |-0.240| 0.034|-0.250
°D, | 0.068| 0.406| 0.015| 0.402| 0.017
%D; [-0.162| 0.133| 0.057| 0.112| 0.053

where HB is the matrix of the total Hamiltonian H in

the basis of Slater determinants and S*8 is the orthogo-
nality matrix.

The matrix elements of matrix S*® are the matrix
elements of the identity operator that is sandwiched
between two Slater determinants, [det,|detz[] The

matrix S8 is different from the identity matrix because
of the nonorthogonality of the single-electron initial-
and final-state wave functions. As was shown in [8],
matrix $*® can be represented in the form

(Sap = [Hety|detyd = (Do Dpp) D, (7)

where Dy = det|(@' @] [l is the determinant of the
matrix of the overlap integrals §' = |@(*|@; Jfor two
sets of orbitals { @'}, and { @; } ¢ for two Slater deter-
minants labeled with a and (3, respectively.

Further, we represent the Hamiltonian matrix for
our atomic system in the form of a combination of the
single- and two-particle density matrices for the transi-
tion between the states described by the Slater determi-
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Table 2. Anisotropy parameter o, of the angular distribution for KLL Auger transitions in Na atoms

Auger transition
Term P, %P, P, P, %P, Py P, P, Py
o, [10] ol al”

52
282p™S; 0.706 | —-0.837 | —1411 | -0.108 | —-0.837 | —1.411 0.707 | -0.837 | -1.411

2

52
2s2p™ Py ~0.00 0.673 0.705 0.006 0.673 0.706 | —0.003 0.672 0.705

2

52
282p™Py ~0.665 | —0.837 0.705 | —0.677 | —0.837 0.707 | —0.660 | —0.837 0.705

2

52
2s2p~ Dy —0.141 | -0170 | -0141 | -0141 | -0170 | -0.141 | -0.146 | —0.111 | —0.142

2

52
2s2p~ Dy 0.138 0673 | —0.141 0.144 0.673 0.141 0.139 0672 | -0.141

2

52
282p™S, -1.414 | -0.837 | -1413 0707 | -0.837 | -1.412 0706 | -0.837 | -1.411

2

52
282p™Py —0.701 | -0.837 0701 | —-0.635 | —0.837 0702 | —-0.363 | —0.837 0.705

2

52
252p~ Py 0.281 0.811 0.621 0.325 0.811 0.601 0.330 0.817 0.622

2

52
2s2p~ Dy —0.076 0797 | —0.061 | —0.064 0833 | -0.041 | —0054 | 0855 | —0.019

2

52
2s2p™ Dy —0.141 | -0.035 | -0.141 0141 | -0088 | -0.141 0.139 0672 | -0.141

2

54
2s2p” Py ~1149 | -0837 | -0351 | -1.115 | —0.837 | -0319 | -1.115 | -0.837 | -0.351

2

54
252p” Py 0652 | —0513 0.273 0.656 | —0.504 0.441 0.644 | —0.457 0.443

2

54
282p” Py ~0.141 0820 | -0141 | -0.141 0826 | -0141 | -0.141 0826 | -0.142

2

54
2s2p” D, 0684 | —0.837 0.698 0683 | -0.837 0.700 0682 | —0.846 0.700

2

252 54
s2p” Dy 0145 | 0.800 0.260 0.143 0805 | 0.183 0.121 0.807 0.313

2

54
2s2p” Dy ~0.141 0202 | -0141 | -0.141 0194 | -0.141 | -0.139 0.145 | -0.142

2

54
2s2p” Dy 0.239 ~000 | -0239 | ~0.00 0.707 | —0.241 | ~0.00

2

252 54
s2p”'S 0706 | —-0.834 | 0.707 0706 | —-0.834 | 0.705 0.705 | —-0.833 0.706

2

25°2p*P
S2p°Py | ~000 | -0841 | ~000 | -0690 | —0.836 | —0693 | —0.688 | —0.836 | —0.694

2

TECHNICAL PHYSICS Vol. 49 No. 11 2004
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Table 2. (Contd.)
Auger transition
Term 3P1 3P2 1P1 3P1 3P2 lPl 3P1 3P2 lpl
o, [10] a? al”
28%2p*%p
$2pP; | 000 | ~000 | ~0.00 0.511 0010 | -0.693 0.501 0010 | —0.694
2
28%2p*%p
s2p°Py | _0702 | -0.837 | -0.707 | -0.703 | -0.837 | -0.708 | -0.704 | -0.837 | —-0.708
2
28%2p*%p
s2p Py 0517 | ~000 | -0.707 0.528 0001 | -0.708 0518 | ~0.00 | —0.708
2
25°2p*D
$2p Ds | _0144 0.589 0.705 | —-0.139 0.597 0.706 | —0.146 0.598 0.705
2
25°2p*D
$2p D3 | _0573 | ~0.00 0699 | —0578 | ~0.00 0.702 | -0571 | ~0.00 0.700
2
2 42
282p"F; | _0202 | -0240 | -0202 | -0202 | -0239 | -0.202 | -0202 | -0.239 | -0.202
2
2 42
2872p k5 0.196 0598 | -0.202 0.204 0598 | -0.202 0.197 0598 | -0.202
2
28%2p*%p
$2p"Py | _0635 | -0.836 | -0.689 | -0.690 | -0.836 | -0.693 | —0.689 | —0.836 | —0.694
2
28%2p*%p
s2p Py 0.501 0.005 | —0.691 0.511 0010 | -0.693 0.501 0010 | -0.693
2
nants labeled with a and (3. The single-particle density m i<k
matrix hasthe form &k =10 _
1 i>k

PTP(X X) = (DyaDgp) ™

. 1,0, A B* , , (8)
xDuBz(S_ )i @ ()@ (X).
i

The two-particle density matrix is expressed in
terms of the single-particle density matrix and is given

by

P53 P(Xy, Xo| X1, X5) = (Dyq Dpg) ™
(9

~

xS S D@ ()@ (DA )A (%),

izkj#l
where

aB —
Dij 1 = Dgp&i k€

x[(SHF(SHr = (SH S,
TECHNICAL PHYSICS Vol. 49
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The Hamiltonian Ha s can be represented as the
sum

N
S v (10)
i#]
where useis made of the expressionsfor the single- and
the two-electron components of the Hamiltonian matrix
that is constructed on the basis of nonorthogonal Slater

determinants [8]; that is,

<0( >

|:|A,B = zﬁi"'
i

N
B> = (Doa D) "Dy (S7):.i, B HI7]]0

i ]
<a

N N
x ZZDS?M@, ilv|k, 100

izkj#l

(11)

i#]

B> = (Do Dgp) ™
(12)
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Table 3. Anisotropy parameter (3 of the angular distribution for L,, 3M;M, 3 Auger transitionsin Ar* according to the cal cu-
lation in the intermediate-coupling (1) approximation with or without allowance for relaxation [*B(1) and —B(1), respectively]

3s%p®4s + - B B E. eV E. eV
Term B B() Experiment [13] | Theory [13] Ee eV Experi?nent [13] Thegry [13]

1 2

P4s'P; | _0.609 -0.701 0.11 —0.052 188.4 197.2 198.1
2

3 2

P4s'Py -0.191 -0.195 0.09 -0.152 194.0 194.0 194.3
2

3

P4S4P§ 0.063 0.071 -0.02 -0.032 196.4 197.7 198.7
2

1 2

P4As'P, | —0.062 -0.077 0.06 —0.003 188.4 196.1 196.5
2

3,,2

P4s'P, -0.321 -0.344 0.05 -0.031 195.6 199.3 200.2
2

3 4

P4s'P, 0.072 0.077 0.00 -0.032 196.4 199.8 200.9
2

RESULTS OF THE CALCULATIONS For the process
For the L3M_1M4_5 Auger transitions in Ar, Xe, Ba, Ar* (2p53523p64s, J,=0)
and Hg, the anisotropy parameters a, and 3, of the (13)

angular distributions and spin polarizations, respec-
tively, are given in Table 1. For the convenience of a
comparison with experimental data, the calculations
were performed for an intermediate type of couplingin
the LSJ representation. In that case, the results of our
calculations for the anisotropy parameters of the angu-
lar distributions and spin polarization are at odds with
the results presented in [9]. The reason for this discrep-
ancy is not quite clear. One possible reason may be
associated with the calculation of the phase shifts for
continuum wave functions. In Table 2, the results of the
calculations for the coefficient a, are given for the KLL
Auger transitions in Na. These results are in good
agreement with those reported in [10]; nonetheless, the
reasons behind the discrepancies between the values of
the parameter 3, for Auger transitions in Ar, Xe, Ba,
and Hg remain unclear.

It was shown in [11] that, for atoms featuring filled
shells, the relaxation of core orbitals has only a modest
effect on the parameters a, and 3, if the vacanciesin
initial-state ions are deep. Our results cited in Tables 1
and 2 |lead to an anal ogous conclusion for atoms featur-
ing open shells, and this justifies the use of the frozen-
core approximation in calculating various parameters
that characterize Auger decay.

— Ar-*(2p°3s3p°4s, °P; ‘P) + €7(1)).

Table 3 gives the results of our calculations for the
parameter 3 and for the Auger transition energies.

Theresults of these calculations are partly in accord
with the theoretical and experimental results quoted in
[13]. Many authors (see, for example, [4, 11, 12]) indi-
cated that there are discrepancies between the theoreti-
cal and experimental results for the anisotropy parame-
ters of the angular distributions for Auger transitions;
however, a discussion of the reasons for the discrepan-
cies between theoretical results would be premature.
The numerical values of these parameters are highly
sensitive to the choice of computational method; there-
fore, further investigations are required for revealing
discrepancies between the results of different calcula-
tions.

CONCLUSIONS

The results obtained by calculating the parameters

a, and 3, for LMM Auger transitions in Ar*, Kr, Xe,
Ba, and Hg atoms and KLL Auger transitions in Na
atoms have been presented in this article. Exchange
effects and the coupling between different channels of
an Auger transition have been taken into account. It has
been shown that the relaxation of core orbitals has but
TECHNICAL PHYSICS  Vol. 49

No. 11 2004



a dlight effect on the results of the calculations for the
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parameters a, and [3,.

N -

dw

~N o u
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Abstract—The influence of a finite rate of leveling of the gas pressure inside a charged bubble in an ideal
incompressible liquid on the bubble volume and surface oscillations is studied in a linear approximation with
respect to the surface oscillation amplitude. It is shown that the bubble shape is governed by superposition of
spherical harmonics with amplitudes strongly depending on their frequencies, as well as on the physical prop-
erties of the gas inside the bubble and the ambient liquid. © 2004 MAIK “ Nauka/Interperiodica” .

(1) Investigation of the oscillations and stability of
charged vapor—gas bubbles in a dielectric liquid
affected by external electric fieldsis of interest in con-
nection with numerous technical and technological
applications (see, for example, [1]). In this context,
such bubbles have been extensively studied both exper-
imentally [1-3] and theoretically [4-14]. Theoretical
investigations of the oscillations of bubblesformed in a
dielectric liquid as a result of electric [4] or laser [5]
breakdown, uncharged bubbles in external electric
[5-8] and magnetic [9] fields, and charged bubbles
[10, 11] were mainly carried out for the radial oscilla-
tions of spherical bubbles. Recently [12], we have stud-
ied disintegration of a spheroidal charged bubble
extended along the external electric field.

However, insufficient attention until now has been
devoted to the surface oscillations of the bubble shape,
although these very oscillations determine the mecha-
nisms of development of the Rayleigh—Taylor instabil-
ity of the surface of acollapsing bubble and the forma-
tion of a cumulative liquid jet causing cavitation ero-
sion [2, 3, 13]. Besides, these oscillations give grounds
for posing aproblem concerning the trandational insta-
bility of an oscillating bubble [14, 15], and they deter-
mine the mechanism of disintegration of acharged bub-
ble[12, 16]. In[16], we studied both radial and surface
oscillations of acharged bubblein adielectric liquid in
the approximation of the infinitely high sound speed in
the gas inside the bubble (that is, in the approximation
of the infinitely high rate of the gas pressure in the
course of bubble oscillations). It should be noted that
this approximation is used in the great majority of
investigations of the bubble oscillations; among the
papers mentioned above, only in [9] was afinite rate of
leveling of the gas pressure inside a bubble taken into
account. At the same time, there are many situations

where the finite sound speed in a gas may noticeably
influence the laws of bubble oscillations.

The present investigation is devoted to studying vol-
ume and surface oscillations of a charged bubble with
allowance for the gas motion inside it.

(2) Consider a spherical bubble with equilibrium
radius r, formed in an ideal incompressible unbounded
liquid with density p® and dielectric permitivity €, at

constant pressure P and in the absence of the gravity
field. Let the bubble bear uncompensated surface
charge Q and contain an ideal gas at pressure Py, vary-
ing together with the volume according to the adiabatic
law with an adiabatic exponent y, and let o denote the
surface tension coefficient at the liquid—gas interface.

Under the action of the total pressure at the inter-
face, the bubbleis capable of oscillating in the vicinity
of its equilibrium states so that

_ oy d_®3y+\ﬂ/ﬂ_®4_§ﬂ)_ (e
PO = 5P * 200~ P
where
2
w=—2
4TEyr 0

and r isthe current bubble radius.

When P(r) > 0, the bubble expands; if P(r) < 0, it
contracts; and when P(r) = 0, the bubble is in equilib-
rium. Figure 1 presents the function P(r) as presented
indimensionlessvariablessuchthatro=o0=p®=1.As
can be seen from this figure, the equation P(r) = 0 may
have various numbers of roots: one, two, or none [11].
In particular, a single root takes place under the condi-

1063-7842/04/4911-1404$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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tionthat lim P(r) =—P® <0, that is, when the pres-

r - 4o
sure of the ambient liquid is positive (P = 0). Two
roots take place when lim P(r) = -P® >0 and the

r - +oo
minimum total pressureis negative (P, = minP(r) <0)
and low in magnitude. To be more exact, equation
P(r) = 0 has two roots when the pressure of the ambient

liquid is slightly below zero (P < 0) and relationships
P(rmin) < 0 and 0,P(r») = O are valid (symbol 0,
denotes a derivative with respect to variable r). This
state physicaly corresponds to a liquid in the state of
undevel oped cavitation. Equation P(r) = 0 has no roots
under the condition that P(r.;,) > O (provided that
P(r i) > 0and 9,P(r ) = 0). This state physically cor-
responds to developed cavitation.

Let us consider the surface oscillations of a bubble
occurring in one of the equilibrium states correspond-
ing to the condition P(r,) = 0. We denote the electric
field potential in the vicinity of the bubble by ¢, and the
flow velocity fieldsin the gas and liquid by U®(r, t) and
U®(r, t), respectively. Let the gas pressurein the bubble
be P}, the gas density be p{’ , and the sound speed be

Co. We assume that the gas inside the bubble and the
ambient liquid are barotropic and obey the equations of

state
i )/ o ,Cpi”
0=p0(P") = o' @
+

p® = congt, 2)

where p@)(r, t) and PO(r, t) are the distribution fields of
the gas density and pressure inside the bubble.

We assume the bubble shape to be axisymmetric
both at theinitial and the subsequent time instants. The
equation of the oscillating interface at any time instant
tiswritten in the form

F(r,9,t) = r—ro—R(t)-{(9,t) = 0. (3)

The initial deformation of the bubble surface shape
[R(t) + &(D, 1)]; - o we assume to be such that the follow-
ing relationships are fulfilled:

t = 0: R = ghyP,(L): = hmPm(H);
ehoPo(M); ¢ Smgg (W) @)
M = cos(d),

where € isthe amplitude of theinitial perturbation (g <
R); P.(1) isthe Legengre polynomial of the mth order;
Q isthe set of indices of the initially excited modes of
the surface oscillations; and h,, are dimensionless con-
stants of the same order of smallness, which take into
account the partial contribution of the mth mode to the

TECHNICAL PHYSICS  Vol. 49
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Fig. 1. Dependence of the dimensionless total pressure P at
the bubbl e surface on the dimensionless bubble radius R for

Pog =2 W=2y=43 and P =01 (1), 02 (2, and
09 (3).

formation of the initial bubble surface shape such that
hy + mehm =0(1).

The mathematical formulation of the problem of
calculation of the bubble oscillations in a liquid

includes, besides relations (1)—(4), the following equa-
tions and conditions:

—the Euler equations for the gas and continuity
equations for the gas and liquid
3,u" + (U WyU® = ——%VP(”,
Y

9,U® + (U@ W)U® = ——%VP@,
p

dst(i)*_p(i)V u® = o; dgie)+p(e)v w® = o

—theinitial conditions for the flow velocity fields
t=0:U"=0, U®=o;

—the Laplace equation for the electrostatic field
potential

Ap =0
(where A isthe Laplacian);
—the boundedness conditions

r—0:U" —0,
r —+cw: U® .0, Vo —0;
—the kinematic and dynamic boundary conditions

= 1o+ R +E(0,0: 5 = 0,
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PY+pP, = PO+ Pg;
—the condition of invariability of the total charge

J’n [V @dS = —4nQ,
S

S={rd,¢|r=ro+R)+E&D;1);
0<d<m; 0<¢ <21},

—and the condition of constancy of the electric
potential at the bubble surface

r=ro+R(t)+E&(9,1): @ = @gt).

In the expressions written above, P, and P, are the
electric field pressure and capillary pressure, respec-
tively; n isthe unit vector normal to the bubble surface;
(s is the electric potential of the bubble surface; and 9,
denotes a partial derivative with respect to variablet.

(3) In the following, the gas and liquid flows are
assumed to be potential, with the corresponding veloc-
ity potentials @ and ©@. Substituting U® = V© into
the Euler equation and the continuity equation for the
ambient medium and into the initial condition, and tak-
ing into account the equation of state of liquid (2), we
obtain the pressure distribution in the liquid and the
Laplace equation for the velocity field potential Y(®,

© _ pe _ e @, 1 g @\ (e _
P9 = PO —p“pu @+ S (VU s =o.

Substituting U® = Vi into the Euler equation for
the gas flow inside the bubble and integrating over the
bubble volume, we obtain the Cauchy integral

o+ 3(Vey +n® = o, )
where M® isafunction satisfying the relation

dn® = F—)%dP(”. ©6)

Substituting expression UM = V@ into the continu-
ity equation for the gas flow and taking into account (6)
and relation ¢2 = dP®/dp®, where ¢ is the sound speed,
we obtain the equation

1dn® 0 _

2 dt + At = 0. @)
Expressing function M® from (5) and substituting it

into (7), we abtain the nonlinear equation for finding

ZHAROV, GRIGOR’EV

the gas vel ocity field potential

8y - 50,0 - SV (Vo)

1 _ - (8)
—Z—Cz(vw“))(V(Vw“) ) =0
with theinitial condition
t=o0 " =o0. )

Note that nonlinear wave equation (8) contains par-
tial derivatives of the second order of the gas velocity
potential with respect to time, so that singleinitia con-
dition (9) isinsufficient for finding the solution. There-
fore, Eqg. (8) will be supplemented by the physically
evident condition

ou® = o. (10)

Integrating (6) over the bubble volume subject to the
equation of state (1) of the gas, we find the expression

for OO
_ M plig
0 _ _Y 0
n® = y_—J_Bb_(i)__D(i) . (11)
[p Po U

Substituting (11) into (5), taking into account

Eq. (1), and using the relation ¢ = yPY’ /p{’ , we find

the gas pressure distribution and sound speed in the
bubble

i i -1 i, 1 i yiv-1
P() — P(())%L_VCZ %tw()_'_é(vlp())% :

0
¢ = G-y~ +3(ve) g

The solution of the nonlinear set of equations con-
sidered is sought by linearization in the form of expan-
sionsin small parameter €

R(t) = eRP(t) + O(e%);
£(9,1) = e€(9,1) + O(e?);
o(r,9,t) = eq(r, 9,1) + O(e%); (12)
WO(r,9,1) = ep(r, 9,1) + O(e?);
PO, 9,t) = ep@P(r, 9,t) + O(?).
(4) Having substituted expansions (12) into the

problem formulated above, let us separate a problem of
the zeroth order of smallnessin €:

AQ? = 0; 1 —=+0: Vg —0;
r=ry PY+P, = PO+p;

TECHNICAL PHYSICS Vol. 49 No. 11 2004
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1

J’réar OVd(cos9) = —2Q; ¢? = ¢V(t).

Solving this set, we find

) 2
¢ = Q; o = Q. pi) 4 Q _20, PO (13)

S ]
r lo 8merg o

Relations (13) determine the magnitude of equilib-
rium bubble radiusr,,.

(5) Separating the terms including the small param-
eter in the first power, we obtain a problem of the first
order of smallnessin the form

l .
=0,y =0;

Co

t=0 g =0 au®® = o

A(p(l) - O, AllJ(e)(l) - 0’ Al.IJ(i)(l) _

RY = hoPo(k); €7 = S hoPu(h);

mOQ

r—0: lIJ(i)(l)—> O;
l]J(e)(l)—> 0; V(p(l) — 0
@& (1);

= 0RV+0.8";

f — +00:
r @+ (RY +£9)9 ¢ =

arw(i)(l) — arw(e)(l)

(')a lIJ(I)(l) 1€dar(p(0)(ar(p(l) + (R(l) + E(l))arr (O))
= _p®p, OO _Z_gR(l) _r%(z FA)ED;
0 0

J'(roa (1)+(R(1)+E(1))
(14)

x (1,0, +20.¢'”))d(cos9) = 0.

Since set of equations (14) islinear, we will find its
solution using the Fourier transform F, with respect to
time, that is, by passing from functions @3(r, 9, t),
PeD(r, 8, t), ONO(r, 9, t), RY(t), and ED(I, 1) to their
Fourier transforms [17]

+o00

F+(f)=Ifeis‘dt, f =Y

= (p s

_h

<
—
K
=
=

f = l.lJ(i)(l) f = R(l) f = E(l)-
Then, set (14) takes the form

AF,(¢M) = 0; AF, @OV = 0; (15)

TECHNICAL PHYSICS Vol. 499 No. 11 2004
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AF.(4O0) + SE4O0) = 0 (16)
Co
r —0: F, (V%) 0 (17)
r—+o0: F, (%) —0; VF.(¢'Y) —0; (18)

r=ro 8,F, (") =0, F.(pO%) = -isF,(RY)

. O (19)

_hOPO(u) _|SF+(E )_ Z hum(H)i

mOQ
ps iSF. (W) + 220,97 (9, F.(9")
+(F.(RY) + F+(E(1’))0” ) (20)
= p@isF. ) ~22F.(RY) - 92+ Ao F.(EY);
ro )

j(roarﬁ(cp“)) +(F.(RP) + F,(£%Y))

J (21)

x (1, @ +20,¢'”))d(cosd) = O;

F.(07) + (FL(RV) + F,(£))0,0” = F.(¢{). (22)

To find the solution of set (15)—(22), we expand the
Fourier transform of the deviation of the bubble surface
from the equilibrium shape in terms of the Legendre
polynomials

FARD) +FED) = A9+ S AP(9P().
n=1
Then, the solution of Egs. (15) and (16) subject to

boundedness conditions (17), (18) and conditions (21),
(22) can be written in the following form:

Foe?) = 5 Z A SEE e

On=1

Fud)) = -2A8)

F. (W) = zde’(”(S) P (W);
n=0

(23)

00

F0) = 5 el P,

n=0

where CV® ¢ gre constants and j(S/c,) are
spherical Bessel functions of the first kind.
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Substituting expressions (23) into Egs. (19) and
(20), and taking into account the mutual orthogonality
of the Legendre polynomials, we obtain

%:g)a)arojoas O - _C<e)<1)l iSAY _h,,

0 I'

i SCY )2 - Lisc® + 221 —w) AP = 0

|:| |10 ro ro

S n+1 .

ﬂ:(l)(l)a Jna D = Cglexl)-i- rn+2 = _|SAE11)_hn’
0

D

0T ScO0; 5,0_ p® scE® o5

0P’ g "® MI (29)

: :

E—%(n 1)((n+2)-W)AY =

0o

Set of equations (24) describesradial oscillations of
the bubble surface, and set (25) describes the lateral
oscillations.

From set (24) subject to the relation d,j,(x) =
N OO/X = jn+10X), we find expressions for Cg)(l’,
COW  and AD:

(1) pg) Co N
cOM (s ColoNo . (o) rgtiohy.
) =55, S =5 gh
Dy(S)
3x 10f A
TN
-3 x 10*- \/
~1000 500 0 500 1000
s

Fig. 2. Dependence of the dimensionless function Dy(S) on
dimensionless frequency Sfor cg = 50, W =1, Pog = 1,

Pl =1 y=4/3.

ZHAROV, GRIGOR’EV

(1)

Do(S) = °E(°e) o)~ (S + i) (27)
X = §Cr-09’ GO = (e) 3(1 W)

From set (25), we find ", 7 and A for
anyn=2

A9

iy’ 0 (28)
- D (S)EST (e)(n+1)+rDJn(x) (X

Co
SD.(S) "

Cl(,]i)(l)(S) — 2h .

n+2, 2
@ ro_"whhy e - .
S = D (5 n00 ~ I X0

(i) 2
DW(S) = %(nﬂ)&n%%@jn(x) (29)

(S =) jns1(X);

wﬁ—p(e) s(N—1)(n+1)((n+2)-W).

From expressions (26)—29) and Fig. 2, showing the
plot of dependence D,(9), it can be seen that they have
the infinite but countable number of singular points S=
S nO {0} X2 ), k=0, £1, £2, ..., satisfying con-
dition D,(S) = 0 and located on either real or imaginary
axes. Subscript n numbers the modes of the surface
oscillations, and subscript k the modes of the radial
bubble oscillations corresponding to distinct roots of
the equation D,(S) = 0. In expressions (26), (27), singu-
lar points S = £§,  are simple poles, except for point
S=0, which isapole of the second order. Besides, al
the Fourier transformstend to zero at S —— . In con-
nection with the above considerations, the inverse Fou-
rier transform has the following form [17]:

1+oo+iT "
ﬁf F.(S)e'3dS (t>0),

—0+iT

where T is a positive real number. This formula can be
transformed into an integral along a contour enclosing
the whole complex plane below the straight line ImS=
T. Applying the theorem of residuesto this contour inte-
gral, we can rewrite the formula of inversion as

f(t) =

f(t) = —i Z ReSF (e, (30)

TECHNICAL PHYSICS Vol. 49 No. 11 2004
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Using relation (30) and recurrent formulas for the From Eq. (33), it is seen that, inasmuch as in the
spherical Bessel functions d,jn(X) = Nin(X)/X —jn+1(X) general case Ay(S, ) # 1 and A (S, ) # 1, finiteness of
and 0,j,(X) =Jjn-1(X) — (n+ 1)j(x)/X, wefind, from (26)  the sound speed in the gas influences both the ampli-
and (28), tudes of theradial and surface modes of oscillationsand
the shape of the oscillating bubble.

+o00

RY(t) = hoAg(0) + > NoAo(S,1)C08(S.t); (31) Substituting constants C3'®, cP® | cV® | and

Cc®®  defined by expressions (27) and (29) into
expressions (23) and employing formula of inversion

£V 9) = Z Z aAL(S, k) €0S(S; k) Pa(H); (30), we find expressions for the potentials of the gas
nOQk=1 and liquid fields:
i i -1 i i
Ay(0) = PO CFeflaPo 8 1 W9, 9,1) = £CP(O)hot
0 p(e)QOD p(e)GOD of »

ve z iCH(5, oA sin(S, )

('). . 0
Ay(S) = ZOSD (S)% (e)Jo(X) Jl(XE;
A(S) = 2> ve 3y nels0n e, 0p.m)
3<D.(S) nOQk=1
() e - C(e)(sO D)
x%&%(nﬂ)ﬂ%jn(x)—jm(xﬁ; (32) (19,0 = £ ) R sn(Su)
olp O 0
o0 1 0 beT T h, Cr(S, d Sin(S, )Po():
0sDo(S) = L2225 ~ TS+ a)jo(X) 2 2 M )P,
Fop® w0 “ | L@
M) cio) = { p_g)ﬂidjz_ao} ;
- Ps- 200 PO
0
i o (I)(S) % IgO (S)ch’
0sDy(9 = [’r—%@)(n+l)2+n(n+1)_n(n_1)szjé sDo
(S = 2g gt
lo SZ 2 ] &(' sn
_C_( _wn)DJn(X) (e)(n+1)S+2_rt|Jn+1(X) J(X)
i . Cge)(s) 00(0 -
0sDo(S)’

where §,  istheroot of the equation Dy(S) =0 and §,
istheroot of the equation D,(S) = 0. (2 2 c

Subsituting expressions (31) and (32) into Eq. (3),  Cr (9 = 2053555 ”(S)%—"Jn(x) 100
we obtain an equation of the bubble generatrix: ST 0

_ (6) Inasmuch as a bubble in aliquid obeys the rela-
r=ro+ehgMo(t) +& 5 1 Ma(t)Pn(h), tion Sry/c, = X < 1, this situation is worthy of separate
nbQ consideration. In this case, the following relations are

valid for the spherical Bessel functions.

Mo(t) = Ao(0) + z Ao(Sp ) cos(Sput),  (33) 2
jo(X) = 1-%+00¢) js(x) = §+00¢);

- n (35)

Ma0) = 3 A1) e0S(S,.). 300 = G2y * O a0 = 0.

TECHNICAL PHYSICS Vol. 499 No. 11 2004
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Substituting relations (35) into the expressions for
Dy(S) and D,(S), we can rewrite these expressions as

d&—aﬁlsﬁm+ 2 +0(x%);

(e)DG

Dn(S) =

o' 1" O
(2n+1)||Eb &(n+1)+r% (36)

x (S-S ) +0(x"" ).

It is seen that each of Egs. (36) has asingle root for
the frequency sguared corresponding to k =

6p! (.) 2 _2 (e) 2
e
np(e)(oz (37)
ﬁ (I)
(n+1)+p n

Note that, in formula (37), the expression for i 1
differs only by the denominator from the sgquare of the
frequency of radial oscillations of the bubble calculated
with neglect of theinertia gas propertiesin the bubble.

In particular, substituting formally 2p® for (2p© +
py’) in the denominator of the expression for S ; and

taking into account that c; = yP{’/p{’, we obtain the
well-known expression for the square of frequency of
the radia oscillations of a charged bubble in the
absence of gas motionsinsideit [10, 18]:

2 3VP 20
0~ (& 2 (e).3
o

pop

It can be also seen that the expression for Sﬁyl

exactly coincides with that for the frequency of capil-
lary oscillations of a charged drop immersed in an
ambient medium [10, 18].

Substituting expressions (35), (36) into (26)—29)
and taking into account relations (23), (30), and (37),
we readily find expressionsfor the bubbl e surface shape
and the potentials of the gasand liquid vel ocity fieldsin
the asymptotic situation considered:

(1-W).

© ot
r= ro+shoEBp?e)g:a - o
3P0 e
(e)Ij' i — 0, CoS(S, 1tD] +€ Z h,cos(S, 1t) P.(1);

nd0Q
6F)(Q)O(o"-:gho

09,1 = e——
207+ o)1

ZHAROV, GRIGOR’EV

] 2
y Et— sin($1t) + S 12 sn(S, 10%
0 S -

6¢,

(39)

—ezlm £6Sh 10 SIN(Sh, 1) Pa(H);

nO0Q

2r,0op"“hy ro

pO® =
(2&“+ P01 "

sin($, 1t)

tey i : H‘% oSn,ﬂn(Sh,lt)Pn(u).

ndQ

If hy = 0 in expressions (38), we obtain the well-
known expressions describing the surface oscillations
of acharged drop in an ambient medium[10, 18]. When
hy # 0, expressions (38) approximately describe bubble
oscillations at the basic (lowest) frequency.

(7) For convenience of numerical analysis of the
solution obtained, | et us passto dimensionlessvariables
by setting p® = g =r, = 1. Then all physical quantities
of the problem are expressed in terms of their charac-
teristic scales. Namely, for the scales of length, density,
time, frequency, and velocity we respectively have

3
fo p© pro o g O
0y N RCPEIN ORI,
o P rg NP g fo

According to the experimental data, the radius of a
bubblein aliquid rangesfromr,=10"to 10" cm. The
surface tensions and densities of many liquids are
dightly different from o = 50 dyn/cm and p®© =
1 g/cm3, respectively. For such values of the physical
guantities, the characteristic time scale varies in the
range from 5 x 10%2to 5 x 102 5, the frequency scale,
from 2 x 10?to 2 x 10" s%; the velocity scale, from 2 x
10* to 2 x 10* cm/s; and the pressure scale, from 5 x 10?
to 5 x 10% dyn/cm?.

The free parameters of the problem are P, Pf,f) W
Co, ¥, €, Q, and h,, wheren O (Q O {0}). The equilib-
rium gas pressure in the bubbleis defined by expression

PS = Poyrs” , and the gas density is p§’ = yPy /c3.

In the course of numerical analysis of the aboveso-
lution describing oscillations of a charged bubble in a
liquid, it was established that equations D,(S) = 0,
wheren O (Q O {0}), have an infinite number of solu-
tionsS=+§, |, k=0, £1, £2, ... which define the fre-
guency (the growth rate) of the bubble surface oscilla-
tions.

TECHNICAL PHYSICS Vol. 49
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For example, when abubble in aliquid has asingle
equilibrium state (i.e., Eq. (13) has a single solution),
all solutions of the equation Dy(S) = 0 determining the
radial bubble oscillations arereal and determinethefre-
guencies of radial bubble oscillations, which are
strongly dependent on sound speed ¢, (Fig. 3), liquid

pressure P.;, gas pressure Py, in the bubble, and
parameter W. Increasing Py, and Wresultsin decreasing

the frequencies, while increasing P and ¢, causes an
increase in the frequencies. Note that the relations
S k= S, K(Co), Where §, i is the frequency of the kth
harmonic of theradial oscillations, havetheform of sat-
uration curves. For example, a P =1, Py, =09, W=1,
and y = 4/3, the lowest harmonic of the radial oscilla-
tions (k = 1) ceases to depend on ¢, aready at ¢, > 10
and represents a straight line, and the sum of the ampli-
tudes of deviations of the bubble radius from the equi-
librium magnitude Ay(0) + Ay(S, 1) becomes equal to
unity, which corresponds to the limiting case of the
incompressible gas. Such a form of the dependence
Sk = S,K(Co) is explained by the fact that, as sound
speed ¢, increases, gas density pf)') = yPg)/cg in the
bubble rises. Note also that, at any physically admissi-
ble values of the parameters of the problem, the ampli-
tudes of deviations of the bubble radius from the equi-
librium magnitude Ay(S) vary in such a way that the
sum Ay(0) + Ay(S, 1) isdlightly different from unity, and
the amplitudes of higher harmonics of the radial oscil-
lations always remain at least by an order of magnitude
smaller than unity and strongly depend on sound speed
Co (the amplitudes decrease when this speed increases,
see Fig. 3b).

The equations D,(S = 0, determining the surface
bubbl e oscillations, have not only real solutions but also
imaginary ones in the above-mentioned ranges of the
physical parameters. The real solutions determine the
frequencies of the surface oscillations, which (being the
radial oscillations) depend on the sound speed c,, the

(e)

liquid pressure P, , the gas pressure Py, in the bubble,

and the parameter W. As the sound speed ¢, increases,
the frequencies of the surface oscillations grow and
tend to their limiting values corresponding to the limit-
ing case of the incompressible gas. When this takes
place, as in the case of radial oscillations, the lowest
harmonic (k = 1) of oscillationsfirst reachesitslimiting

magnitude. For example, at n =2, P =1, Py, = 0.4,
W =1, andy = 4/3, the lowest harmonic S, ; of the sur-
face oscillations ceases to depend on ¢, even at ¢, = 10
and amplitude Ax(S;, ;) of deviation of the bubble sur-

face from spherical shape for this harmonic asymptoti-
cally tends to unity. Harmonics with higher numbers
TECHNICAL PHYSICS  Vol. 49
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14+ (a)
12+ 2

10

So.15 S0z X 1071 S 3 x 107!
\

0.14 3\‘ (b)

0.12F

0.10 /
. 1

0.08

0.06

0.04

0.02F ™o

Ao(o) X 10_1; AO(SU,]); AO(SO,Z) X 10, AO(SO,3) x 10

Fig. 3. Plots of (@) the dimensionless frequencies §, | of

radial oscillations of the bubble surface and (b) the ampli-
tude of modes Ay(Sy 1) vs. dimensionless sound speed ¢

for Pog = 0.05, P = 0.05, W= 0.05, y = 4/3: (1) Ay0);
(2 Ax(Sp, 1); () Ag(Sp, 2); and (4) Ay(S, 2)-

Sk (k = 2) continue to grow as ¢, increases, while
amplitudes A,(S, ) of deviation of the bubble surface
from a spherical shape for these harmonics rapidly tend
to zero.

The dependences of the frequencies of the surface

oscillations on parameters P, Pog: and Ware different
for the lowest harmonic (k = 1) and harmonics with the
numbers k = 2. For example, the frequencies with num-
bersk = 2 (Fig. 4) decrease with increasing Py, and W
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Re(Sll); Re(Szyz) X 101, Re(82’3) X 1071
U (@)

(b)

3.6

2.7

1.8F

0.9

1 1
0 0.05 0.10 0.15 0.20
Py

8

Fig. 4. Plots of the dimensionless (a) rea Re(S, ) and
() imaginary Im(S,, ) components of the solution of equa-
tion Dy(S) = 0 determining the frequencies and growth rates
of the surface oscillations of abubble vs. dimensionless gas

pressure Pog forw=1, ng) =1,¢c9=5y=4/3.

and increase with increasing Pf,f’. The lowest fre-

guency of the surface oscillations may vanish and
become purely imaginary, determining the instability
growth rate (this may take place when parameters W or

P increase and al so with decreasi ng Pyg). Inthiscase,
the further increase of W or Pf,f) , aswell as decrease of

Pog: leads to an increase in the growth rate of the insta-
bility of the bubble surface (Fig. 4).

M)
1.70 + (a)

1.56

1.42

1.28 }

S

0 1 2 3 4}
My(t)
1.0 b (b)
0.6
0.2 H
|1
-0.2
—06 B \// 6
_1'00 1 2 3 lt

t

Fig. 5. Variation of the amplitude coefficients of the
(a) radial My(t) and (b) surface M(t) oscillation modeswith
timet for Pog = 0.05, W=0, P =0.05, y =4/3, and vari-

ous magnitudes of the dimensionless sound speed: (thick
solid line) ¢y = 1; (thin solid line) ¢y = 5.

The bubble becomes unstable with respect to small

perturbations of its shape under condition o),f <0.This

condition for the most unstable second (n = 2) mode of
the surface oscillations indicates that the instability
arises when the electric pressure exceeds the Laplace
one, and the gas pressure inside the bubble is leveled
with the liquid pressure. This conclusion is physically
clear: if the gas pressurein the bubble is higher than the
liquid pressure, then the bubble surface perturbation is

TECHNICAL PHYSICS Vol. 49 No. 11 2004
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smoothed out by the high gas pressure. If the liquid
pressure exceeds the gas pressure in the bubble, then
any perturbation of the bubble shape is enhanced by the
higher liquid pressure, which results in the loss of sta-
bility of the bubble shape. The criterion of the loss of
stability of the bubble shape can be obtained from con-

ditions w; < 0 and P(r) = 0, which give W >

4y/Py /P .

In the region of physical parameters where the bub-
ble may have two equilibrium states (i.e., Eq. (13) has
two solutions) the frequencies of the radial and surface
(lateral) oscillations that are determined from the solu-
tions of equations D(S =0 (n O (Q O {0}) for the
equilibrium state corresponding to the least bubble
radius behave in the same way as in the case when the
bubble has asingle equilibrium state. If the bubbleisin
the equilibrium state corresponding to the largest
radius, then equation Dy(S) = 0 always has an imagi-
nary solution determining the growth of instability of
the bubble radius The magnitude of this growth rate
changes insignificantly with varying gas pressure Py,
parameter W, and sound speed c,, and significantly

increases with decreasing liquid pressure P . When
this takes place, the amplitude Ay(S,, ;) of deviation of

the bubble radius from its equilibrium value for this
growth rate always remains comparable with unity and

increases when P'® decreases. The real solutions of

equation Dy(S) = 0 corresponding to the frequencies of
the radial oscillations strongly depend on the liquid

pressure P and the sound veloci ty ¢, and grow with
increasing ¢, and decreasing P while variations of
the gas pressure Py, and the parameter W do not lead to
appreciable changes of these solutions. The amplitudes
of deviation of the bubble radius from equilibrium
Ay(S, k) corresponding to harmonics with k> 2 are less

than unity at least by four orders.

Note that, in the given region of the parameters, the
equation D,(S) =0 (n= 2) always hasreal solutions cor-
responding to the freguencies of the bubble surface
oscillations. These solutions are practically indepen-
dent of the gas pressure Py, in the bubble and of the
parameter W, and also considerably increase with
decreasing liquid pressure P and increasing sound
speed ¢, (except for the basic harmonic, which isinde-
pendent of the sound speed). At the same time, the
amplitude Ay(S, ;) of deviation of the bubble surface
from spherical shape corresponding to the basic har-
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monic always remains comparable with unity, whilethe
amplitudes Ax(S; ) (k= 2) of higher harmonics are
smaller than unity at least by two orders of magnitude.

CONCLUSIONS

Summarizing the above results, we note that making
allowancefor thefiniteness of therate of leveling of the
gas pressure in abubble occurring in any of the equilib-
rium states is necessary only in cases when the sound
speed in the gasis a small quantity (when the gas den-
sity inthe bubbleis high). It isonly in this case that the
amplitudes of high harmonics of the radial and surface
oscillations become significant and may appreciably
change the bubble shape. The maximum values of the
amplitudes of the radia and surface oscillations in
expression (33) lower with decreasing the sound speed
(Fig. 5). Thiscircumstance influences the surface shape
of an oscillating bubble. In the case when the sound
speed in abubbleis high (at alow gas density), making
allowance for the influence of the higher harmonics of
both radial and surface oscillations is unnecessary and
expression (38), adequately describing the bubble
oscillation at the lowest oscillation frequency, can be
used. From the above considerations, it is evident that
expression (33) should be employed for the analysis of
stability of a collapsing bubble in which the gas pres-
sure at the final stageis very high. Expression (38) can
be used for the analysis of motion of abubble executing
small oscillations in the vicinity of one of the equilib-
rium states.

ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research (project no. 03-01-00760) and
by aPresidential Grant (project no. MK 2946.2004.01).

REFERENCES

1. A.N. Zharov and S. O. Shiryaeva, Elektrokhim. Obrab.
Met., No. 6, 9 (1999).

2. F. Maclntyre, J. Geophys. Res. 77, 5211 (1972).

3. M. Khaleeg-ur-Raman and C. P. R. Saunders, Atmos.
Res. 26, 329 (1991).

4. F. Aitken, F. M. J. McCluskey, and A. Denat, J. Fluid
Mech. 327, 373 (1996).

5. M. E. Glinsky, D. S. Baily, A. R. London, et al., Phys.
Fluids 13, 20 (2001).

6. I.l.levlevandA. B. Isers, 1zv. Akad. Nauk SSSR, Mekh.
Zhidk. Gaza, No. 6, 101 (1982).

7. S. T. Zavtrak and E. V. Korobko, Zh. Tekh. Fiz. 61 (3),
177 (1991) [Sov. Phys. Tech. Phys. 36, 359 (1991)].

8. |. V. Pylaeva, O. A. Sinkevich, and P. V. Smirnov,
Teplofiz. Vys. Temp. 30, 367 (1992).



1414

9.

10.

11

12.

13.

14.

A. P. Vasil'ev, Zh. Tekh. Fiz. 73 (1), 35 (2003) [Tech.
Phys. 48, 31 (2003)].

A. I. Grigor'ev, A. N. Zharov, V. A. Koromyslov, and
S. O. Shiryaeva, lzv. Ross. Akad. Nauk, Mekh. Zhidk.
Gaza, No. 5, 205 (1998).

A. 1. Grigor'ev and A. N. Zharov, Zh. Tekh. Fiz. 70 (4),
8 (2000) [Tech. Phys. 45, 389 (2000)].

A. N. Zharov, O. S. Shiryaeva, and A. |. Grigor'ev, Zh.
Tekh. Fiz. 70 (6), 37 (2000) [Tech. Phys. 45, 704
(2000)].

I. N. Didenkulov, D. A. Selivanovskii, V. E. Semenov,
and I. V. Sokolov, l1zv. Vyssh. Uchebn. Zaved. Radiofiz.
42, 183 (1999).

Z.C. Feng and L. G. Led, J. Fluid Mech. 266, 209
(1994).

15.

16.

17.

18.

ZHAROV, GRIGOR’EV

S. O. Shiryaeva, A. |. Grigor'ev, V. A. Koromyslov, and
A. N. Zharov, Zh. Tekh. Fiz. 73 (9), 60 (2003) [Tech.
Phys. 48, 1141 (2003)].

A.N. Zharov and A. I. Grigor’ ev, Zh. Tekh. Fiz. 71 (11),
12 (2000) [Tech. Phys. 46, 1358 (2000)].

P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill, New York, 1953; Inostrannaya
Literatura, Moscow, 1958), Vol. 1.

A.l. Grigor'ev, S. O. Shiryaeva, and V. A. Koromyslov,
Zh. Tekh. Fiz. 68 (9), 1 (1998) [Tech. Phys. 43, 1011
(1998)].

Trandated by N. Mende

TECHNICAL PHYSICS Vol. 49 No. 11 2004



Technical Physics, Vol. 49, No. 11, 2004, pp. 1415-1421. Trandlated from Zhurnal Tekhnicheskor Fiziki, Vol. 74, No. 11, 2004, pp. 22—-28.

Original Russian Text Copyright © 2004 by Belonozhko, Grigor’ev.

GASES

AND LIQUIDS

On the Correct Writing of the Law of Conservation of Amount
of Substance at the Moving Fluid—Fluid Interface

D. F. Belonozhko and A. I. Grigor’ev
Demidov State University, Sovetskaya ul. 14, Yaroslavl, 150000 Russia
e-mail: grig@uniyar.ac.ru
Received April 6, 2004

Abstract—The reasons for the erroneous writing of the substance conservation law at the moving fluid—fluid
interface, which is commonly encountered in related publications, are analyzed. A mathematical statement of
this law that is valid for any curved surface that has a nonzero curvature in its equilibrium state is derived in
terms of vector analysis. The new writing is independent of the coordinates and can be used for analysis of
relaxation phenomena associated with nonlinear wave motions. © 2004 MAIK “ Nauka/lInterperiodica” .

(1) The effect of surfactants and charge relaxation
phenomenaon wave motions at the fluid—fluid interface
and on the stability of this interface is the subject of
much investigation in modern electrohydrodynamics
and physical chemistry. The problem of interface (or
free surface) motion with allowance for relaxation can
berigorously stated only for aviscousfluid. Thefactis
that, in this case alone, the contribution of the relax-
ation motion of the fluid to the boundary condition for
the stress tensor tangential component can be compen-
satefor by viscous stresses. At theinterface between (or
on the free surface of) perfect fluids, the tangentia
stresses remain uncompensated [1-3]; hence, the prob-
lem isimpossible to state correctly.

Since the relaxation effects can be taken into
account only for viscous fluids, the scope of problems
concerning the wave mation of afluid where the relax-
ation effect is considered in the linear (in wave ampli-
tude) approximation is limited. This is because, until
recently, nonlinear periodic waves on the fluid surface
have been considered within the framework of the per-
fect fluid model . The methods of solving such problems
have been developed only in the last few years [4-6].
The problems of nonlinear oscillation of droplets and
jets of a viscous fluid, which are intimately related to
the charge relaxation effect and the effect of surfac-
tants, have not yet rigorously resolved. As aresult, the
problems allowing for both effects have been solved to
date only in the linear (in wave or oscillation ampli-
tude) approximation.

The rigorous statement of the substance (charge or
surfactant) conservation law at the fluid—fluid interface
was given in [1-3], where an approximation linear in
deviation of the virtual interface from the equilibrium
planar surface was used. Unfortunately, this statement
was incorrectly generalized for curvilinear surfaces,
with the result that the term proportional to the mean
curvature of the undisturbed interface (which equals

zero for a planar surface) was lacking. Therefore, a
large body of publications concerning relaxation prob-
lems on curvilinear surfaces with a nonzero curvature
of the undisturbed (equilibrium) surface and using the
incorrect statement of this law cited erroneous results
(see, e.g., [7-17]). Inonly afew of them, this term was
included in the linear-in amplitude approximation,
although no comments on its origin were made
[18-20]. Sincethiserror is often encountered in the lit-
erature, the rigorous derivation of the substance conser-
vation law in the form adequate to the solution of non-
linear problems, such as interaction between relaxation
and capillary waves (shape oscillation), seems to be
topical. Thisisthe aim of the present work.

(2) Assume that two viscous incompressible immis-
cible fluids are separated by interface S The fluid flow
velocity field W(r, t), which may be associated, for
example, with capillary wave motion at interface S, var-
ies in a continuous manner, so that at any time and at
any point on interface S it can be represented in the
form

W(r,t) = u(r,t)n+U(r, t)r,

where n and t are the unit vectors of the normal and
tangent to interface Sat a given point.

We also assume that the fluids have finite thermal
conductivities and that an electric charge and surfac-
tants are distributed over interface Sin such away that
the capillary wave motion will cause the charge and
surfactants to relax. To state the problem of capillary
wave motion in a mathematical form, it is necessary to
write the laws of charge and surfactant conservation at
the interface. In other words, it is necessary to write
these conservation laws in differential form for any
point on interface S

To simplify the considerations that follow, we note
that the error that isinvolved in the writing of the sub-
stance conservation law [7—17] and is to be eliminated
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in this work is by no means related to the presence or
absence of diffusion terms. Therefore, we will discuss
diffusionless writing of the law to simplify the mathe-
matics. The diffusion components appearing in the
complete law of conservation arewell known[1, 3] and
can be added at the final stage of the derivation.

The primary goa of thiswork isto show that the dif-
fusionless form of the substance conservation law as
applied to moving curvilinear fluid—fluid interface Sis
given by

or
3t + [udiv(n) +divg(IF'Ut) = O. Q)
Here, I' is the surface concentration of the substance
(charge or surfactants) and divg is the surface diver-
gence operator.

In [1-3], the conservation law is written in coordi-
nate form and an approximation linear in the amplitude
of the velocity field isused. Thisfield is assumed to be
associated with capillary wave motion of infinitely
small amplitude (hence, the field is aso assumed to be
small). Then, in terms of vector analysis, Eq. (1) is
recast as

or
ot

It was noted [2] that form (2) of the substance con-
servation law applies only to the planar surface of a
fluid. Inwhich form the law should be written when the
surface is curvilinear remains unclear.

The model problem of determining the rate of
change of the substance concentration on the surface of
an expanding bubble is a simple and vivid example of
why form (2) of the law isinapplicable to acurvilinear
(disturbed) surface having a nonzero mean curvaturein
its equilibrium (undisturbed) state. Let, at initial time
instant t, the charge density or surfactant concentration
on the surface of abubble of radius RbeI". The bubble
expands with constant radial velocity u = dR/dt. Then,
the charge density (surfactant concentration), which is
defined as the amount of charge (surfactant weight)
divided by the surface area of the bubble (i.e, I' =
M/(411R?), varies with rate dI /dt = —2(dR/dt)M/(4TR®) =
—2ul/R. It is easy to check that formula (2) gives the
absurd result: dIr/dt = 0, while the result of formula (1)
iscorrect: dI/dt = —2ul'/R.

Thisexampleillustratesthat formula (2) isinvalid if
the problem involves the mechanism of changing the
surface geometry (some of its parts are extended or
contracted). Term "udiv(n), by which formula (1) dif-
fersfrom formula(2), isresponsible for the variation of
the surface concentration due to local extensions or
contractions. These distortions take place at the inter-
face when it moves or deforms.

In the above example, the spherical interface moves
owing to achangeinthe volume of the bubble. A wrong
impression may arise that, when studying small oscilla-

+divg(F'Ut) = 0. 2
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tions of incompressible droplets or jets, one may get by
with the conservation law in form (2) (asin the case of
small-amplitude waves on the planar surface of afluid
[1-3]), since the volume bounded by the surface does
not change. It is this error that was made in [7-17].
Actually, the curvature of the surface in its equilibrium
state, rather than the constancy of the volume, is the
crucial factor. Below, we will show that the conserva-
tion law should be written in form (1) even if the oscil-
lation amplitude of the droplets and jets is small. Our
consideration will follow the scheme with which the
formulafor the surface tension force pressure under the
fluid free surface distorted by virtual deformation was
derived [2].

(3) We will start from two rules of vector anaysis
and differential geometry, which will be used further in
derivation of the substance conservation law in
form (1).

Thefirst oneisthe well-known formulafor calcul at-
ing the total time derivative of an integral taken over
finite deformable volume V(t) that moves together with
the fluid and is bounded by surface w [21, §8120; 22,
Chap. 2, Sect. 4]:

dJJ’IC(r AV = ”I‘?C(r 0C(1, 1) gy

+ [ C(r. 0 OW(r, o 3)

w(t)

- "C(r 0C(L Y gy + [ [ C(r, t)(W IN)dow.
Jie ]

Here, r is the radius vector of a point in space in the
inertial reference system, W(r, t) isthe velocity field in
thefluid, (W - N) isthe algebraic projection of velocity
field W onto normal N outer to closed surface w(t)
bounding material volume V(t), and C(r, t) is the
parameter that characterizes some physical property of
asmall moving fluid particle. Parameter C(r, t) may be,
for example, the local impurity concentration, temper-
ature, energy, etc. The meaning of V(t) on theright and
left of formula (3) is different. On the left, V(t) means
the material volume moving together with the fluid.
The flux of field W(r, t) through its boundary, which is
congtituted by fluid particles, is absent, since the
boundary moves together with the particles. On the
right, V(t) is viewed as a stationary volume through
which the fluid flows. At time instant t under consider-
ation, the geometric boundaries of both volumes coin-
cide, forming surface w(t). Designation w(t) corre-
sponds to the stationary surface that coincides (at time
instant t) with the material surface, which moves
together with fluid particles located on the surface
bounding material volume V(t).

The second rule is the rule of transformation of
dightly deformed surface S into new (virtual) nearby
surface S;. Thisisdone by displacing each point A S
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along the normal issuing out of this point (Fig. 1) by
distance h = h(A) (that is, h depends on the position of
point A). In our case, Sis aseparated (finite) part of the
interface.

Let the radius vector of point A on surface S be
expressed through parameters o and 3, which are the
curvilinear coordinates of the point, as r = r(a, B).
Then, the norma to surface S at point A can be
expressed through the same parameters: n = n(a, ). In
this case, the radius vector r, of a point on surface S,
which is constructed by displacing each point on sur-
face S by distance h along the normal, may be consid-
ered dependent on the same parameters a and 3: r, =
r +h-n,whereh=h(a, ) isthe function of the curvi-
linear coordinates of point Al S.

The difference 0S between surface Sand S, is given
by the well-known relationship (see, e.g., 21, 8139)

8S=S,-S= Hndiv(n) [dS+ o(h). (4)
S

Here, the normal to surface Sis designated by n instead
of N, asin the consideration of the former rule, to make
adistinction between normal N to surface wand normal
n to surface S.

In [21], rule (4) was written in terms of the mean
curvature of surface H, which was calculated at point
A0 S(Fig. 1). In our case, (4) takes into account the
relationship 2H = —div(n), which obviously follows
from the well-known Rodrigo theorem of partial deriv-
atives of anormal unit vector along principle curvatures
of asurface[23].

From (4), it follows that the smaller h, the more
accurate the approximate rel ationship between elemen-
tary surface areas dSand dS;:

dS, = (1 + h [hiv(n))dS. (5)

(4) Let us derive the substance conservation law on
moving curved surface Sthat is a part of the interface
between two media when surface diffusion is absent.
For smplicity, we will speak of a surfactant that is dis-
tributed over fluid—fluid interface S with surface con-
centration ' = (A, t), where A O S (all the consider-
ations that follow are also valid if I is the surface
charge density).

Assume that function ' = (A, t) has al partial
derivatives with respect to al the arguments and that
interface Sis ssimple closed curve L (Fig. 2) that is suf-
ficiently smooth for the formulas of vector analysis to
be applied. We also assume that the continuity condi-
tion for hydrodynamic velocity field W(r, t) is met at
the interface.

(i) Surfactant film as the ultimate state of a surfac-
tant layer whose thickness tends to zero. Surface Swith
the distributed surfactant will be considered as the ulti-
mate state of a surfactant layer with finite thickness h.
This layer is obtained as follows. Surface S, is con-
structed by displacing al points of initial surface S
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Fig. 1. Part of interface Sand virtual surface S;.

Fig. 2. Schematic of the h layer.

(Fig. 2) by distance h along the normal (for simplicity,
distance h is assumed to be constant, i.e., independent
of the curvilinear coordinates of point A1 S). Thelayer
bounded by Sand S; will be called the h layer and des-
ignated as h. The value of h is taken to be sufficiently
small, so that formulas (4) and (5) can be applied. Con-
tour L,, which bounds surface S, isformed by displac-
ing the points of contour L by distance h along the nor-
mal (Fig. 2). Thelateral area of the h layer will be des-
ignated as Z.

Generaly, the volume concentration C,, in the h
layer depends on the position of point A* J IM,, inside
the h layer. This position, in turn, istotally specified by
the position of point A 0 Sand length & of segment AA*,
which isnormal to S(Fig. 2). Also, let C, be afunction
of time t. The model of filling the h layer with a sub-
stance of volume concentration C,, = C(A, &, 1) (AL S
O0<&<h)isasfollows: itisrequiredthat,at h — 0, a
family of functions C,, = C(A, &, t) converge uniformly
with respect to the position of point A and timest > O:

hCy(A, &,1) == T (A 1); (h—= 0, A0S, t>0).(6)

Condition (6) imparts a property to the h layer that
is crucia for further discussion: the surfactant-filled h
layer shrinks, tending to surface S, at h — 0, and the
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Fig. 3. Elementary volume inside the h layer.

surfactant concentration on this surface will be
described by the surface function ' = I'(A, t), where
AOS

Indeed, the thinner the h layer, the more accurately
the expression C,(A)dV, = hC,(A)dS, describes the
amount of the substance in volume dV, = dS,h, which
rests on elementary area dS, O S containing point A
(Fig. 3). However, according to (6), the amount of the
substance tends to N'(A)dS, a& h — 0, i.e, to the
amount of the surfactant that is uniformly distributed
over elementary area dS,.

Uniform convergence in (6) provides the correct-
ness of the passages to the limit that are used below.

(if) Law of conservation of amount of surfactant on
surface Sinintegral form. Let the h layer move together
with thefluid. Then, the fluid flow and, accordingly, the
surfactant transfer across the boundary of this layer,
w=SOz 08, areabsent. If theamount of the surfac-
tant in the h layer is M, the surfactant conservation con-
ditionin it can be written, in view of (3), intheform

M dtg J' ICthD J’ f J’aCth

+ [ [CW N)dw = 0,

SO S
where
E—n on S
N=m on S
O
M on 2.

The above definition of vector N meansthat it isthe
outer normal to the h layer volume, which is bounded
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by surfaces S, S;, and Z. Let the unit vectors of normals
n, m, and g to surfaces S= §t), S, = S(t), and Z = Z(t)
bedirected as shownin Fig. 2. Then, the substance con-
servation condition in the h layer may be recast as

[[ I"a—f“dw [ feuw mydz

V(1) Z(t)

()

O N

+ Cy(W IMm)dS—[ [ C(W [h)ds] = 0.

1 Jerw Emyas— [ G s

Si(t) S(t)

It is easy to find the limiting form of expression (7)
at h — 0. To thisend, we make use of theintegral the-
orem of mean, relationship (6), and expression (5) for
the parenthesized termsin (7). The passage to the limit
for the terms appearing in (7) is described in detail in
the appendix. Eventually, (7) is transformed into the

integral form of the substance conservation law on sur-
face S

or .
J’J’at ds+ f r(w k)dL + IIFudlv(n)dS 0.(8)
S(t) L(t) S(t)

This law for the surfactant is fulfilled on any finite
surface Sbounded by contour L, provided that this sur-
face is a part of the moving fluidfluid interface at a
timet. In (8), k isthe unit vector that is tangent to sur-
face Sat point A O L. This unit vector is perpendicular
to contour L at point A, which is coincident with the
extremity of unit vector g. In turn, g is the unit vector
of the outer normal to the lateral surface of the h layer
ath— 0(Fig. 4).

Relationship (8), which is the integral form of the
law of conservation of amount of substance on the mov-
ing fluid—fluid interface, is of independent interest for
physicochemical hydrodynamics.

(iii) Law of conservation of amount of surfactant on
surface Sin differential form. Dividing both sides of (8)
by Syields an expression that isvalid for any part of the
moving fluid—fluid interface. Therefore, it will remain
valid if surface Sis shrunk to point A 0 S. In this case,
using the integral theorem of mean, we can recast the
first and last terms on the left of (8) as

SJS'(tJ)' —dS at N DQS.[I dS —

é.r.r Fudiv(n)dS — ((Fudiv(n)) | os)
U (10)

1 ,
x SJ’J’ dS — (Cudiv(n))|a-
S(t)
Here, point A, is a point on surface S (A, O ) that is
specified for each of the integrals based on the theorem
of mean. The position of point A, on surface Sis of no
concern, since A, — A when contour L shrinks to

(9)
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point A. Dividing the medium term on the left of (8) by
Syields (in the limit when S shrinks to point A) an
expression for surface divergence at point A:

1
& f MW tkdL
L(t) (11)
- éf FU(t k)dL —= dive((Tu)t)| -

L(1)

Recall that k isthe normal unit vector to contour L(t)
and the integral on the left of (11) isthe net flux of the
vector field (' U)t through boundary L(t). Note also that
relationship (11) takesinto account that n - k = 0.

Let us replace the terms on the left of (8) by their
limiting formulas (9)—(11) and, taking advantage of the
fact that point A O S was chosen arbitrarily, omit the
indication that the calculations are performed at point
A. Eventually, we arrive at the substance conservation
law at the moving fluid—fluid interface in differential
form (1), which was to be proved.

(5) Consider the planar surface of afluid that occu-
pies (entirely or partially) the half-space z < 0 in the
coordinate system Oxyz with the 0z axis directed oppo-
siteto the gravitational force. If waves start propagating
on this surface in the Ox direction, the tangent and nor-
mal unit vectors on the disturbed (offset from its equi-
librium position) surface z = (X, t) have the form

= _ axz e, + 1 e,
J1+(0,8)°  J1+(0,8)
0,&

1
= e + e,.
J1+(0,8)°  J1+(8,8)°

Here, e, and e, are the unit vectors along the Cartesian
axes. If, for simplicity, the motion of the fluid is
assumed to be independent of the coordinate y, U =
we, + ve, and condition (1) in coordinate form can be
written as

n

T

or
z=E:5¥

4 ﬁaxz)z(ax(rw) o Eraw+avr)) (12)

+(0,8)°Ta,v)+D = 0.

Here, D stands for diffusion terms previously omitted.
This form of the conservation law was used in [19]. In
the approximation linear in wave amplitude, we, with
regard to (12), come to the expression used in [1, 2]:

z=0: 2+6X(I'W)+D = 0.
ot
(6) Let usdiscussthe error in the writing of the sub-
stance conservation law on the surface of droplets and
TECHNICAL PHYSICS  Vol. 49
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Fig. 4. Partition of the h layer into elementary volumes dV
and of itslateral surface Z into elementary areas dz.

jets dightly oscillating about their equilibrium shape
(for the droplets, the equilibrium shape is a sphere of
radius R; for the jets, acylindrical surface of radius R).
In the approximation of small oscillation amplitude, the
medium term in (1) is a quantity of the first order of
smallness and is given by

Fudiv(n) = gF(o)u(l),
R
for adroplet of radius R and
rudiv(n) = 21 Ou®

for ajet of radius R.

Here, '@ is the equilibrium concentration of the sub-
stance (charge or surfactant) on the undisturbed spher-
ical or cylindrical surface and u® isthe radial velocity
of the fluid in the first approximation in oscillation
amplitude.

For waves on the planar surface, the mediumtermin
(1) calculated in the linear-in-amplitude approximation
vanishes because of the zero curvature of the equilib-
rium planar surface.

CONCLUSIONS

Our derivation of the substance conservation law at
the moving fluid-fluid interface indicates that it is nec-
essary to take into account the term that is proportional
to the mean curvature of theinterface. Thistermisoften
erroneously disregarded when relaxation motions at the
curvilinear interface are calculated in an approximation
linear in deviation of the surface from its equilibrium
shape. In the higher order cal culations, thisterm should
be included not only for the curvilinear interface but
also for the planar surface.

In this work, the substance conservation law at the
moving fluid—fluid interface was used in the coordi-
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nateless form (it was derived in terms of vector analy-
sis). This form of writing is appropriate for the state-
ment and solution of the problems that are concerned
with the influence of charge or surfactant relaxation on
the evolution of the fluid—fluid interface. Moreover, this
form does not depend on the equilibrium shape of the
surface in external force fields and on the degree of its
deformation during motion. This circumstance is of
special importance for researchers engaged in the con-
struction of nonlinear models of periodic wave motion
on the charged surfactant-covered interface between
two viscous fluids of finite electrical conductivity.

APPENDIX

Passage to the Limit of an Infinitely Thin h Layer in
Relationship (7) for the Substance Conservation Law

(1) Thefirst term on theleft of (7). Let thehlayer be
cut by surface o = o(&) that is constructed by displacing
all points of surface Shy adistance 0 < & < h along the
normal to S. For & = 0, we have g(0) = S= t); for & =
h, a(h) = S(t). For the layer Mg, which has thickness
d¢ much smaller than h and rests on a(§), an elemen-
tary volume has the form dV = d€da(§) (Fig. 4). Such
elementary volumes occupy volume V layerwise, and
the integral sum constructed for the first integral on the
left of (7) turns into a repeated integral in the limit
d

— U

[ fra = o g e

V(t) 0 a(&)

According to the integral theorem of mean, there
exists& = &* [0, h] such that

JLI = ] [

V() o(&*)

J, Ia(hCh)
(&%)
Here, we used the fact that h is assumed to be constant.
Inthelimith—0,&* — Oand o(§*) — t); aso,
relationship (6) isfulfilled. Therefore, thislimit is easy

to find:
0C,,
h—0: dav — ——dS
el

(2) The second term on theleft of (7). Let theh layer
be cut by surfaces o(§) introduced previously (Fig. 4)
and Q = Q(&) be the contour that is obtained when the
lateral surface Z of the h layer meets surface o(€). It is
obviousthat Q(0) = L and Q(h) =L, (Fig. 4). Onthelat-
eral surface of the I layer (see above), we separate an

elementary aread = d€dQ(€) (Fig. 4). The lateral sur-
faces of the N layer, which consist of such elementary

do(&*).
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areas, produce bands occupying the entire lateral sur-
face = of volume V. Eventually, the lateral surface Z of
the h layer turns out to be partitioned into elementary
areas. With this partition, the integral sum for the sec-
ond integral ontheleft of (7) turnsto arepeated integral
inthelimitdz —» O:

h

[ [ Cw e = jgdz § cuw Eq)@do(z).
S(t) 0 Q(&)

According to the integral theorem of mean, there
exists& = &* [0 [0, h] such that

h

J’J’ C (W [)ds = Id& f Cn(W [9)dQ(¢)

S(t) 0 Q)

h f Ch(W [0)dQ(g) = f hC,(W [g)dQ(g).
Q&) Q(&*)

Inthelimith — 0, &* — 0 and Q(&*) — L(t);

also, relationship (6) isfulfilled and we may passto the

limit g — k, wherek isthe unit vector that is tangent

to surface Sand perpendicular to at point A [I L consid-

ered (Fig. 4). Therefore, thislimit is easy to find:

h—0:[ [ C,(W [)dZ —» § M(W [k)dL.
e 5

(3) Inview of (5), the parenthesized terms on the | eft
of (7) can berecast as

leODJ' [CoW Em)dS; — [ [Cy(W [n)dsj
) Si(t) S(t)

= I|m DJ’ ICh(W (m)dS

N O

+ ”hchw Chdiv(n)dS— ”cﬂ(w [h)dsO

O
S(t) S(t)

Surfactant concentration C,, at inner point A* of the
h layer (Fig. 2) depends on the position of point A S
and length & of segment AA*, which is norma to S
C,,=Cy(A &, 1). In the above expression, C; = C,(A, 0, t)
and C; =C(A h, t).

Ontheright of thisexpression, thefirst and last inte-
grals tend to infinity at h — 0. To estimate the rate
with which these integrals tend to infinity, let us con-
sider the asymptotic behavior of volume surfactant con-
centration C,, at h — 0 (see (6)). For condition (6) to
be met, it is necessary that

F(A t)

Ch(A & 1) 0=~ — » (h —0).

TECHNICAL PHYSICS Vol. 49 No. 11 2004



ON THE CORRECT WRITING OF THE LAW

On the other hand, since € in this asymptotic expres-
sion is taken arbitrarily, we get the following asymp-
totic formulas:

Cl = Cy(Ah,t) D (ﬁ )E

h —0: 00 G — C;.
O = (A1) O
h h O

In addition, the continuity of field velocity U
impliesthat (W - m) — (W -n) ath — 0. Asaresult,
the first and last integrals cancel each other at h — 0,
so that we may write the limiting relationship in the
form

ttlmODI JCHW Em)ds; — [ [Cy(W Eh)dS:]
s s(0)

I|m DI IhCh(W Em)dlv(n)dSJ
S(t)
The limit on the left can be found from condition
(6), which is met, specifically, for Cﬁ = C(A O, t).

Also, one should take into account that (W - m) —
(W -n)=U a h— 0. Eventually, we get

leODJ' JCHW Em)dS, — [ [Cy(W Eh)dSJ
BRY s

= [ frudiv(n)ds

(1)
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Abstract—The profile of a periodic capillary—gravitational wave propagating over the surfactant-covered sur-
face of afluid isfound in the second-order approximation in initial deformation amplitude. It is shown that the
surfactant film appreciably affects the intensity of nonlinear interaction between harmonics constituting the
nonlinear wave. © 2004 MAIK “ Nauka/Interperiodica” .

The authors have recently published a number of
articles devoted to the asymptotic behavior of nonlinear
capillary—gravitational waves over the surface of a
finite-viscosity charged fluid [1-4]. The apparatus
developed in those articles makes it possible to rigor-
ously take into account viscosity in the problems of
nonlinear wave mation. As aresult, there has appeared
the possibility of studying relaxation phenomena asso-
ciated with nonlinear wave motion. In other words,
there appeared the possibility of adequately consider-
ing the balance of viscous and relaxation stresses on the
free surface of the fluid in nonlinear problems. In this
work, we study the effect of a surfactant film on the
intensity of interaction between harmonics constituting
anonlinear periodic wave propagating over the surfac-
tant-covered charged surface of the fluid.

The effect of surfactants on wave propagation over
the fluid surface is the subject matter of classical
mechanics of fluid and physical chemistry [5]. This
issueisof both scientific and applied interest [6-11]. To
date, all the related investigations have been carried out
in the approximation of infinitely small wave amplitude
and have been devoted primarily to the determination
of the surfactant concentration that effectively sup-
presses capillary—gravitational waves. The existence of
such an optimal concentration has been proved experi-
mentally (see, e.g., [6] and Refs. therein) and predicted
theoretically in terms of various models [6, 7, 9, 11].
Yet, sound physical explanations of this effect are still
lacking, and this issue is addressed now and then
[9, 11]. In this work, we break with this tradition with
the aim of revealing the surfactant effectsthat are unre-
lated to the decay of capillary wave motion.

1. PROBLEM DEFINITION

Let a viscous incompressible perfectly conducting
fluid of density p and kinematic viscosity v occupy the
half-space z < 0 in the coordinate system Oxyz with the

Oz axis directed oppositely to the gravitational force.
An electric charge with surface density kK, and asurfac-
tant with surface concentration Iy are uniformly dis-
tributed over the free surface of the fluid. Let D be the
free diffusion coefficient of the surfactant. We assume
that a periodic wave of wavelength A starts traveling
over the free surface in the positive Ox direction at zero
time (t = 0). Our god isto find the profile of the wave
at>0.

The periodic profile of the wave can be uniquely
restored from the amplitudes of harmonics appearing in
the expansion into the Fourier series over spatial period
A. Let the amplitude n of the fundamental harmonic be
known. Below, we will use wavenumber k = 217A
instead of the wavelength. For simplicity, the motion of
the fluid is assumed to be independent of coordinatey.

As the wave propagates, the distribution of the sur-
factant over the free surface changes continuously and
its concentration becomes a function of time and hori-
zontal coordinate: I' = ' (t, X). Local changesin the sur-
factant concentration cause local changes in surface
tension coefficient y. Asfor the dependencey=y(I"), we
assume that the surface phase of the surfactant and the
fluid are in loca thermodynamic equilibrium. This
means that a local change in the surfactant concentra-
tion instantly causes a change in the surface tension
coefficient according to the isotherm y = y(I') that is
deemed to be known.

Mathematically, the problem of determining the
wave profile is stated as follows:

3,U+ (U VW)U = —%Vp+vAU+g;
U =ue +ve,

VU =0; Ad =0;
z=2¢&: 0,+uog = v;

1063-7842/04/4911-1422$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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(Vo)* _ Y 0x&
8 (1+(3,8))™

p—2pv(n(n V)U) +

—pv[(t(n IV)U) + (n(T LV)U)]
0xY

=—=0; ®=0;
N1+ (9,8)°
1
0, + ————[0,(Tu)+0,§(Fo,u+0,(rv))
e
O O
+(axa) ra V] _DD aXXr _ aXEaXXEaxzr - O,
O+ (0,8)° (1+(0:8))
Z—»—0.U—0; v _—0;
Z—>0; VO —Ese,; E,= 41K,

Here, ¢, and e, arethe unit vectors along the axes, n and
T are the unit vectors of the outer normal and tangent to
the free surface z= & = &(t, x, 2) disturbed by the wave
motion (analytical expressionsfor n and T are givenin
the Appendix), and A is the Laplacian. The boundary
conditions for the problem will be set in the course of
solution so as to obtain an expression for the wave pro-
file that is as simple as possible and suitable for quali-
tative analysis (the routine procedure in solving the
problems of nonlinear periodic waves [1-4, 12, 13]).

In the rigorous statement, the input data are n, k, p,
0,V, Ko, g, D, and theisotherm y = y(I"). The unknown
functionsare& = &(t, X, 2), the profile of the free surface;
u=u(t, x, 2) and v = v(t, X, 2), the horizontal and vertical
components of velocity field U in the fluid; p = p(t, X,
2), the pressuredistributionintheliquid; I = '(t, x), the
surface concentration of the surfactant; and ® = ®(t, x,
2), the electric field potentia above the fluid.

2. CONSTRUCTION OF ASYMPTQOTIC
SOLUTION

According to the technique used earlier to solve the
problem of nonlinear waves in viscous fluid in the
absence of surfactant [3, 4], a solution is sought in the
form

0 [0(£30
40 B 0 H g 0 O (El)
0 O 0 Bl Heo %b(ul)lj
0 0 o 08B 87F
oo _ O 0 &8, 6 Eb("l)m
00=0 E§j+D oto. gt ;
0 0 of of g
oo H of o C 3D

Mo 0O(r35)0
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1 = nf(t)cos(kx—wt); f(0) = 1.

Here, the quantities with subscript 1 refer to the linear
(in amplitude) approximation and those with subscript
2 are second-order corrections.

The complete statement of the problem includes
surface tension coefficient y = y(I') and its partial deriv-
atives with respect to x. From the power series

Y=Y = Yo+ (I +T+...)(0rY),
+ (M 4T+ ) (0rry)o+
0,y = (0ry)(04I)
= ((OrY)o+ (M1 + T2+ ..)(0rrY)o + ) (0,1),

where subscript 0 impliesthat the function is calcul ated
on the undisturbed (planar) surface of the fluid, we
have, at ' =T,

yaxxz = Voaxle + yoaxxEZ + Xrlaxxal;
0.y = X0, 1 + X0, +Br10,I;

accurate to the second order of smallness, where x =
(OrY)o and B = (0yyY)o-

Using these approximate relationships, as well as
the asymptotic expressionsfor &, u, v, p, ®, and I, one
can easily pose the first- and second-order problems by
the technique used in [3, 4]. The complete mathemati-
cal statement of the first- and second-order problems
has the form

01Um+%me—vAUm =V
v, =0; Ao, =0;
Z= E.: atEm_Vm =

fim

E
pm_2pvazvm_z.‘_(.)[azq)m+voaxx€m = f2m;
_pv(azum + axvm) + xaxrm = f3m;

a1rm + rOaxum

cl)m_EOEm: f4m;
_Daxxrm = f5m;
Z—»—0.U,—0; v, —0;

z—o:|VO,| —0.
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For m= 1 and 2, we are dedling with the first- and
second-order problems. For theformer,V, =0andf; =
0 (n = 1-5). For the latter, V, and f,, =0 (n = 1-5) are
expressed viasolutionsto the first-order problem by the
formulas given in the appendix.

3. SOLUTION OF THE PROBLEM
IN THE SECOND-ORDER APPROXIMATION
IN PERIODIC TRAVELING WAVE AMPLITUDE

By solving the first- and second-order problems in
succession [3, 4], it is easy to find an expression for the
profile of a periodic travelling capillary—gravitational
wave in second-order approximation in amplitude n:

& = ncosBexp(rt)
+ 2r]2[Re(Z)cos(29) —Im({)sin(20)] exp(2rt); (1)

M,
r=Re(S); M.
Here, Sisthe complex frequency that is calculated in
thefirst-order problem, while parameters M, and M, are
calculated in the course of solution of the second-order
problem (see Appendix). Owing to a large array of
input data and intermediate variables, it is possible to
construct the functional dependence of S, M,, and M;
on the input data of the problem. Let us construct
numerical parameters

B=wt—kx; w=IMm(S);

_ . g
I_IO - y(r0)7 I_Il - ro']err:r01
2
|_|2 = rg[ﬂ_zylj
Earﬂr:ro

using functiony = y(I').

Parameter,, having the meaning of the surface ten-
sion coefficient on the equilibrium (planar) free surface
of the fluid, can be used to convert parameter K, to
dimensionless Tonks—Frenkel parameter [8, 14]

W = 4T[K§/./pgﬂo. 3

Now, we will show that parameters S= Sp, g, v, k,

W Da I-Io, rll)v I\/IO = MO(p! ga Vv, k, W Dv I-Io, rll)! and

M; = M;(p, g, v, k, W, D, My, M4, M) can be directly

expressed through parameters p, g, v, k, W, D, My, M4,
and IM,. Note that only M; depends on IT..

The complex frequency is calculated by the formula

S: woa(plgivlk!WiDan’nl); (4)
where
wy = kg(1+ (ak)’—akw); a = J%

a is the capillary constant, and dimensional complex
parameter a isthat root of the dimensionless dispersion
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relation corresponding to the capillary—gravitational
wave (the dispersion relation and the way of choosing
the appropriate root are given in the appendix). Param-
eter wy,, whichisintermediate in the calculations, repre-
sents the frequency of gravitational—capillary waves
that have an infinitely small amplitude and wavenum-
ber k on the surface of a perfect fluid with constant sur-
face tension coefficient My,

The set of parametersy, p, 9, v, k, W, D, N, M,, and
IM,, which specify the profile of the nonlinear wave by
formula (1), hastwo important properties. First, it lacks
theisotherm. Instead of functiony = y(I"), three numer-
ica parameters, namely, My, M;, and M,, are used,
which have the dimension of the surface tension coeffi-
cient and characterize the local properties of the iso-
therm near the equilibrium state of the free surface.
Such a replacement has become possible because we
used the power series of the surface tension coefficient
in the vicinity of the equilibrium state of the free sur-
face. Aswas noted above, I, has the meaning of a sur-
face tension coefficient on the planar (equilibrium) sur-
face that is covered by a surfactant film with surface
concentration I'y. Parameter M, equals the surfactant
concentration times the slope of the isotherm at point
I =T,. Itiscalled the film elasticity. For conventional
(not inactive) surfactants, M, < 0. This parameter
definesthe force per unit length acting between two lin-
ear elements on the surface that have different surfac-
tant concentrations. This force arises when the surfac-
tant is nonuniformly distributed over the film and is
directed along its surface. Parameter I, depends on the
curvature of the isotherm at point I =T,

Second, the new set involves parameter W, which
characterizes the stability of the uniformly charged pla-
nar surface of the fluid against self-charge [14]. From
the solution to the first-order problem [8, 10], it follows
that

Re(S) =r>0, Im(S) = w =0, 5)

W2<0, or W> = +ak,
ak

since complex frequency Sin (4) takes the form S =
*iwy in going to aperfect fluid in the absence of the sur-
factant (v, D, M;) — 0. In this case, electric forces at
the ridges of the waves with wavenumber k dominate
over Laplace forces even in thefirst order of smallness.
The surface becomes unstable against however small
periodic wave perturbations for which relationship (5)
is fulfilled; in other words, the charged surface of the
fluid becomes unstable against self-charge [8, 10, 14].
From (5), it readily follows that all wavenumbersk >0
are stable if 0 < W< 2. At W = 2, there appears wave-
number k= 1/a lying at the boundary of instability in

the sense that any however small increase of W above
W = 2 makes the wave perturbation with k = kjunsta-
TECHNICAL PHYSICS Vol. 49
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ble. At W> 2, there exists an interval of unstable wave-
numbers that includes krjand extends with increasing W,

Ifr>0andt — oo inexpression (1), theratio of the
correction proportional to n? to the fundamental term
proportional to n takesthe form oo x 1. This means that
asymptotic expression (1) becomes nonuniform at large
time intervals. Moreover, with condition (5) satisfied,
the wave motion of the free surface ceases, since w=0.

With regard to the aforesaid, we will study the pro-
file of the wave under the assumption that the condition

1

W<§<+ak: Or=Re(S) <0, Im(S)=w#0 (6)

is met.

In this case, parameter r has the meaning of the
damping decrement of the wave in the first order of
smallness and the correction-to-fundamental term ratio
in expression (1) for the wave profile tends to zero in
thelimitn — Oforany t > 0.

It is noteworthy that expression (1) for the profile
can be alternatively written as

£ = ncosBexp(rt) + n°Acos(28 + @) exp(2rt);

A = 2JRe(2)? + Im(2)%

0 [Im(Z)D - .
Ear (Z)D’ if Re({)>0;
¢=§, it Re() =0; (7)

dAmQo, -
Darctan (Z)D +7, if

Parameters ¢, r, and 6 arethe same asin (1).

Below, we will pass to the dimensionless variables
where p = g = y = 1 and the remaining quantities are
expressed in terms of their characteristic scales.

Re(2) <0.

1 1
ke =20 n*=a Go=3
n* =vy; v+ = Jga’ D* = Jga’.

4. INTRINSIC NONLINEAR INTERACTION
OF WAVES IN THE ABSENCE OF SURFACTANT

In[1-4], expression (1) for the profile of a periodic
nonlinear traveling capillary—gravitationa wave was
studied inthe simplest case, i.e., in the absence of asur-
factant film on the free surface. It was shown that the
nonlinear behavior of the wave shows up most vividly
when

ke = 1/./2, €)

where kis the dimensionless wavenumber.

TECHNICAL PHYSICS Vol. 499 No. 11 2004
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Fig. 1. Dimensionless second-order amplitude correction A
to the wave profile vs. wavenumber k for W=0and N, =
(1) 0Oand (2) -0.4.

This follows from the resonance-like dependence
A= A() (Fig. 1). The height of the resonance peak
characterizes the intensity of nonlinear interaction
between the wave with wavenumber k (the fundamental
wavetermin (1), which is proportional to n; in the dis-
cussion which follows, it will be called the k wave) and
the wave with wavenumber 2k (the correction propor-
tional to n? or the 2k wave). The phase velocities of the
waves are the same. A change in k has no effect on the
amplitude n of the fundamental wave term but notice-
ably affect factor A (see (7)), which specifies the ampli-
tude of the 2k wave. Thus, wavenumber k, which the
wavelength of the fundamental wave depends on,
affects the amplitude of the second-order correction. It
seems as though the k wave and 2k wave interact with
each other. In the publications concerned with the prob-
lems of nonlinear waves (see, e.g., [15]), such an inter-
action is caled the intrinsic nonlinear interaction of
waves. It is important that amplitude factor A in for-
mula(7) servesasameasure of theinteraction intensity.

The wave with wavenumber 2k is not an indepen-
dent wave. Generdly, its frequency and wavenumber
do not satisfy the dispersion relation, unlike the funda-
mental (k) wave in (1). It satisfies the dispersion rela-
tion only at k = ki The phase velocity and amplitude of

the 2k wave are completely defined by the k wave; in
other words, the 2k wave is generated by the k wave and
does not represent an independent wave motion.

The peak value of amplitude A and, hence, theinten-
sity of nonlinear interaction depend on the viscosity of
the fluid and surface charge. It was shown [1] that A
monotonically grows with decreasing viscosity and
goes to infinity in the limit of perfect fluid. This situa-
tion corresponds to the degenerate case of three-mode
nonlinear resonance interaction between capillary and
gravitational waves [12, 13]. If the viscosity is other
than zero, the resonance peak height isfinite [1-4].
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Fig. 2. Dimensionless second-order amplitude correction A to the wave profile vs. wavenumber k and surface charge density param-
eter Wor different values of coefficient My, which characterizes the elasticity of the surfactant film.

In the genera case, a nonlinear periodic capillary—
gravitational wave includes, aong with the fundamen-
tal k wave and 2k correction, aninfinite set of 3k, 4k, 5Kk,
etc., harmonics, which may interact with each other. We
restrict our analysisto the simplest case of interaction.

It was noted [2] that the interaction intensity is a
complex function of the surface charge density, the
square of which is proportiona to parameter W. It is
known [3, 4] that, in theline

W = (k+k™h)/2, (9)

lying in the plane (k, W), the amplitude of the second-
order termin (1) has a minimum tending to zero as the
viscosity decreases. This means that, with such values
of k and W, the wave motion of a perfect fluid does not
contain the 2k wave; that is, the mechanism of excita-
tion of this wave and, hence, the mechanism of action
on it, fail in this situation. Then, solution (1) includes
only the k wave, and that part of the solution responsi-
blefor the 2k wave (with the amplitude depending only
on the properties of the fundamental wave) vanishes.
On the other hand [3], there always exists an indepen-
dent 2k wave of amplitude unrelated to the fundamental
k wave. This 2k wave is a solution to the homogeneous
part of the second-order problem and propagates with
its own phase vel ocity, which coincides with the veloc-

ity of the k wave only at k = k3 The frequency and

wavenumber of this independent 2k wave satisfy the
dispersion relation. In (1) and (7), the term responsible
for the independent 2k wave (unrelated to the funda-
mental term) is omitted, since only that part of the solu-
tion responsible for nonlinear interaction is of interest in
the context of our study. When k and W satisfy (9), the
amplitude of the independent 2k wave may be set arbi-
trarily even if the amplitude of the k wave is zero and the
waves with wavenumbers k and 2k propagate indepen-
dently. If k and W satisfy (9) in the case of aviscousfluid,
theintengity of nonlinear interaction is very wesk.

Figure 2 shows the dependences A = A(k, W) for dif-
ferent values of parameter ;. Line 1 in Fig. 1 corre-
sponds to the case when the plane W = const cuts the
surfaceat M, = 0. InFig. 2, aresonance ridge above the
straight line k = krythat lies in the parameter plane
(k, W) is distinctly seen at M, = 0. The ridge has a
noticeable dip. The position of the dip (k = k3= 0.70,

W = 0.5(krj+ ;') = 1.06 is the point of intersection of
the straight line k = kjand curve (9) on the plane (k, W).

From Fig. 2, itisevident that, if afamily of curvessim-
ilar tolinelin Fig. 1 isconstructed for different W, the
height of the resonance ridge on them will vary non-

TECHNICAL PHYSICS  Vol. 49
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Fig. 3. Dimensionless second-order amplitude correction A to the wave profile vs. wavenumber k and dimensionless coefficient 1,
which characterizes the elasticity of the surfactant film, for different values of surface charge density parameter W.

monotonically with increasing W. For W increasing
from zero to 1.06, it decreases nearly to zero, since the
position of the ridge in coordinates (k, W) approaches
curve (9) of minimal nonlinear interaction. AsW grows
further, the ridge moves away from curve (9) and the
resonance peak increases, reflecting an increase in the
intensity of nonlinear interaction [3].

5. EFFECT OF SURFACTANT
ONTHEINTENSITY OF INTRINSIC NONLINEAR
INTERACTION

To study the effect of a surfactant film on the inten-
sity of nonlinear interaction, we will first clear up the
dependence of amplitude factor A on various parame-
ters.

The family of surfaces in Fig. 2 shows the depen-
dence A = A(k, W) at different values of film elasticity
M, (it isknown [16] that surfactants on the surface of a
liquid film diminish its surface tension, so that N, <0
inthiscase. Therefore, theillustrative calculationswere
performed for negativell,.). AsfollowsfromFig. 2, the
dependence A = A(k, W) changes in a complex manner
as the absolute value of My, |IM,], increases. For a fixed
value of dimensionless viscosity v = 0.01, the increase
in|M,| to=0.15 drastically reducestheinteraction inten-

TECHNICAL PHYSICS  Vol. 49

No. 11 2004

sity at small surface charge densities (W < 1). The res-
onance ridge in this dependence constructed for || =
0.15 is hardly visible. A further increase in |1y
enhancestheinteraction intensity. For |1,| =0.4, we get
nearly the same interaction pattern as for |M,| = 0. A
closer look at these dependences shows that the el astic-
ity of the surfactant film has an effect not only on the
interaction intensity but also on the resonance wave-
number in (7). After the surfactant elasticity passes the
value |IN;| = 0.15, a further rise in || brings about a
resonance ridge that originates (at W = 0) above the
point with k = k= 0.8 rather than with k = k= 0.7.

Thisis seen most distinctly in Fig. 1, where the depen-
dencesA=A(k) areshownfor M; =0(curvel) and N, =
—0.4 (curve 2). The values of the other parameters are
the same asin Fig. 2. The shift of the resonance wave-
number depends on the viscosity and parameter W. For
v =0.05, N, =-0.4, and W = 0, the resonance value of
k is close to unity but the height of the resonance peak
falls to unity, which is much lower than the heights of
the peaks depicted in Fig. 1. An increase in W returns
the resonance value of the wavenumber to kjbut now
at W= 1. As W grows further, the position of the reso-
nance ridge over the parameter plane (k, W) remains
unchanged.
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Fig. 4. Dependence A = A(-T1,, W) for k= 1/./2 and M, =
D=0.

A

Fig. 5. Dependence A= A(-,) fork=1//2 andM,=D =
0.W=(1)1,(2) 1.2, and (3) 0.8.

Figure 3 shows afamily of curves A = A(k, —I1,) for
different W. Asin Fig. 2, cutting of the surface shownin
Fig. 3 by the plane M, = 0 givesline 1 in Fig. 1. Here,
the second variablein the argument planeis—1; instead
of Wasin Fig. 2. In going from the family of curvesin
Fig. 2 to that depicted in Fig. 3, parameters W and I,
exchange places. However, the curvesin Figs. 2 and 3
gualitatively behave in a similar way. At W = 0, when
only the elasticity of the film affects the intensity of
nonlinear interaction between the waves, the resonance
ridge is distinctly seen above the straight line k = kpj

lying in the parameter plane (k, —I1,). The ridge has a

BELONOZHKO, GRIGOR’EV

deep at -1, = 0.18. Here, thisis the value of the film
elasticity at which the interaction intensity is minimal.
The increase in W from zero to unity markedly
decreases the height of the resonance ridge throughout
its length, and its contours in Fig. 3 are smeared espe-
cialy at small —I1,. For W > 1, the ridge becomes
sharply defined again. In all the curves shown in Fig. 3,
the line of the resonance bridge originates above the
point k = ki3 Then, the line of the ridge runs over the

straight line k = kiglying in the plane (k, —I1;) until the
ridge reaches aminimum. Thereafter, theridge deviates
slightly toward higher wavenumbers, k> ki This devi-

ation is generally insignificant. It becomes appreciable
only for W> 1 and increases with increasing viscosity v.

Our analysis shows that, like surface charge density
W, film elasticity M, substantially influences the inten-
sity of nonlinear interaction especialy at near-reso-
nance k. To illustrate this, we plotted A against W and
-, for k=k(Fig. 4). From Fig. 4, it follows that the
dependence A = A(-T1;, W) at k = kpis very compli-
cated. Moreover, the position of the folds and local
extrema on this surface varies strongly with the viscos-
ity. Perhaps the most interesting feature of this surface
is that the least values of A are observed above the
straight line W = 1, in the vicinity of which the interac-
tion is minimal. However, these least values are other
than zero and considerably depend on the elasticity of
the surfactant film. Figure 5 demonstrates the curves
that are obtained when the surface shownin Fig. 4 iscut
by the planes W = 0.8, W= 1.0, and W = 1.2. For the
closely spaced values of W, the difference in the effect
of the surfactant on the intensity of nonlinear interac-
tion isfairly pronounced. Thismeansthat, in the exper-
iments, the effect of surfactants on the shape of nonlin-
ear waves with wavenumber k = krjis expected to be

very sensitive to the surface charge.

CONCLUSIONS

A surfactant film considerably influences the pro-
files of nonlinear periodic capillary—gravitational
waves with near-resonance wavenumbers (the doubled
square of the resonance value equals unity divided by
the capillary constant squared). The dependence of the
intensity of nonlinear interaction between the harmon-
ics constituting a nonlinear capillary—gravitational
wave on the film elagticity is of nonmonotonic charac-
ter. There exists avalue of the elasticity that minimizes
the interaction intensity. This value considerably
depends on the viscosity of the fluid. The presence of a
surfactant film increases the resonance wavenumber at
which the interaction between the waves is the highest.
The effect of a surfactant film on the intensity of non-
linear interaction depends on the surface charge in a
complicated manner.
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APPENDIX 1 2
V, = _EV(Ul) + Uy x (V xUy);
Auxiliary Quantities and Relationships

(1) The unit vectors tangent and normal to the dis- fi2 = £10,V1 —Ui0,&y;
turbed free surface are given by (Vo )2 E
9.5 1 fr = 2pVElasz1—Elazp1_8—T[l + 4__,?[Elazz¢)l
n=- A e + e,
[1+(0,8)? [1+(0,8)? =X([ 10,081 + 20,810, 1);
Y f3 = pv(40,v10,&; +&,0,(0,U; + 0,V 1) —PBI10,IM,);
T X

= 1 ex+ €. f42 = —Ela chl
Jir @8’ 1087 o

_ X O
(2) The right-hand sides of the expressions that are fs, = —0x(uily) - r0%1‘%“1 + Eaxrlaxag-
involved in the mathematical statement of the problem o
in the second order of smallness are (3) Coefficients M; have the form

E 0 —k ik 0 leé
KE,

Ko _ 2 - 2, 9] 0

0552 ~P(S+4vK’) 2pvik 252k + 0 R

0 S 0

—_ . 2 2 . .

M; = det% 0 4dipvk vaﬂk +\_,D —ikIl, Rs; E

B 1 0 0 0 RME

00 —okm,  ikn, 22+ E (s+2kD), Ry D

0 - 1 1Kl % NN ( )y 5i

where
: Ry, = 2k, [ icq(2d + q)
Rio = 25 Ry = —(pg+4Yk"); Rgp = 0; 4 pv
R = -Ey, Ry = 0 ~ 2ic(k—q)(k +g)° o
) k0 + ke BTy (=g (KT )
7, - wy+2vkgS .o i(w5+ S(S+2vk?)).
xbk%_ ic(k’-q°) _iccg; k(S+ 2vk(k—0))’ k(S+2vk(k—0)) '
(3k+q)(2S+v(k—q)(3k + q)) 2
. . __ @%(@-K+aS’
R, = ZkB)Sp"' 2pv(bk™—icq’) + I + 3dkI, (S+ Dkz)(S+ 2vk(q—k))’
_ 2pibck(k—)(2S+ v(5k* + 2kq + 4°)) 0 2 s _
(Bk+a)(2S+v(k—q)(3k+q)) [ a= K+5 Bo= 2dmWipgy,
=8 . . . .
= k=- and i isthe imaginary unit.
Ry ar aginary

(4) The dimensionless dispersion relation has the
Ry = -%%)v(cq(5k2+q2) rik(ebki—d?n,))  form

, PVbck(K® —q*) (5K + 2kq + ¢7) F(0,B.8,A) = o +p*
(8k+q)(2S+v(k—-0q)(3k+q))U [(Re(F(a,B,0,A)) >0,

TECHNICAL PHYSICS Vol. 499 No. 11 2004



1430

where
[3 = \-)_k_z N = ksrlzl; o = Ql—(—,
(V) pwy, Wy
F(a,B,8,A) = Ha+2p) + L+ (a+6)%
oa’+1 ADD
%B%" o(a +6)4B4:||:| )

In general, this relation has two pairs of complex
conjugate roots. Without loss in generality, the roots
with negative imaginary parts may be omitted. This
means that we sel ect the roots responsible for the waves
propagating in the positive direction of the Ox axis.
Among the two other roots, one corresponds to a capil-
lary—gravitational wave and the other to awave associ-
ated with the presence of a surfactant film.

Let the two roots with positive imaginary parts be
found for given =B A=A and 6= Weput 3 =
By A =0, and d=9pjinthedimensional dispersionrela-
tion and will seek its root with a positive imaginary
part. Then, by continuously varying A from zeroto A =
Ay wewill trace how the root found varies (this proce-
dure is carried out numerically). For A = A this root
will become equal to one of those found initially and

will be taken as corresponding to the capillary—gravita-
tional wave.
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Abstract—The open systems, which contain a huge number of electrons supplied from outside along with the
energy, are described by a functional that takes into account the Lagrangians of all particles and is called the
integral Lagrangian. A nonextremal principle is formulated that postulates that the value of this functional
decreases as the system approaches the steady state. The principle is extended to the systems occurring near
thermodynamic equilibrium (where it is virtually equivalent to the principle of minimum energy dissipation),
aswell asto the nonlinear systems, including those in which the motion of particlesis described by equations
of classical mechanics. The applicability of the principle is demonstrated by the examples of a vacuum diode,
magnetron diode, and Gunn diode. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Self-organization of systems containing a large
number of elements startsfrom the appearance of stable
links between elements. To this end, the elements
should “feel” each other and mutually react, for exam-
ple, onthe existing fields. The electron systemsare very
attractive objects for investigations of the mechanisms
of self-organization because of the long-range action of
the Coulomb forces through which the electrons and
the related structures interact with each other. The
strong field domainsin aGunn diode[1, 2], the solitary
el ectronic waves in a magnetron diode [3-6], the regu-
lar space charge oscillations in Penning cells [7], and
the traveling waves in a plasma [8] are the manifesta-
tions of the collective behavior of charged particles
self-organized into stable macroscopic structures called
autowaves[9] under the action of applied constant elec-
tric and magnetic fields.

The self-organized electronic objects occur, as a
rule, at high voltage gradientsfor which the principle of
local equilibrium is not obeyed. In order to analyze the
processes in vacuum devices, equations of electron
motion are used that contain no dissipative termsin an
explicit form. The particle energy in these devices is
dissipated at the system boundaries, that is, at the sur-
face of bombarded electrodes. The above properties
radically distinguish electronic devices (especially vac-
uum ones) from dissipative systems, which are consid-
ered usualy in nonequilibrium thermodynamics and
synergetics [10-15]. The study of the mechanisms of
particles’ self-organization in such essentially nonequi-
librium electronic systems requires a new approach,
which is developed in this paper.

1. THEPRINCIPLE OF INTEGRAL LAGRANGIAN
MINIMIZATION

Systemswithout electron drag. Let us consider an
open system representing an electron vacuum device to
the cathode and anode of which a constant voltage is
applied from an external source. The cathode supplies
matter (electrons) to the system. Accelerated by the
external field, the particlestravel to the anode acquiring
energy from outside, (i.e., from the power supply).
Thereare so many electronsthat the strength of the self-
consistent electric field they generate is comparable
with the applied field strength. The establishment of the
steady state, which proceeds with participation of the
self-consistent fields, will be called the self-organiza-
tion of particles. The motion of each electron will be
described by the following equation:

mXJ, = F“ + 6Fji’

where m is the mass of the particle, X;; is the compo-
nent of acceleration, F;; is the component of a regular
force acting on the particular electron at a given
moment of time (j is the number of a particle), and oF;;
is the fluctuation force that takes into account individ-

ual interactions of the given electron with other parti-
cles.

The force F; contains a potential force related to the
existence of the self-consistent electric field, which is
calculated using Poisson’s equation. Thus, the cooper-
ative, that is, integral action on the electron of all charge
particles occurring in the volume V of the device, is
taken into account. The random force dF;, which is
small and only weakly affects the electron motion, is
ignored in vacuum electronics[16]. The particles avoid
collisions due to the long-range forces of mutual repul-
sion. A prominent example is offered by the motion of
two opposite electron flowsin areflex klystron. For this
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reason, a statistical description of the electron pro-
cesses is based on the Vlasov equation, whereas at
higher fields, the particles motion equations are usu-
aly written in terms of the Lagrangean variables [16].

In a self-organizing system consisting of a large
number of particles, the individual interactions cannot
beignored completely, sincejust theseinteractions play
aleading rolein the establishment of short-range corre-
lations and in the formation of a microstructure of the
collective formations [13]. However, since the role of
short-range interactions (due to inequdity [oF;| < |F[)
iscorrecting, rather than organizing, the electron trajec-
tories, which should be corrected, are described with-
out allowance for the random forces. This means that,
in the course of particle self-organization at the first
stages, we can use the following simplified equations:

The forces of individual interactions dF; should be
taken into account at the latest stages of the establish-
ment of the steady state (this will be demonstrated
below in the case of a magnetron diode). Thus, the
behavior of an electronic device is described by a sys-
tem of equations including Eq. (1) of particle motion,
Poisson’s equation, and the continuity equation.

Owing to the limited size of the device and the con-
stant voltage U, > 0 applied to the anode, the motion of
electrons (at least of a considerable part of them),
athough described by time-reversible equations (1), is
in fact irreversible: ajth electron emitted from the cath-
ode at the moment t;;, leaves the device forever after a
lapse of timeT; =t —t;;, wheret,; isthetime of electron
impact on the anode.

Near the steady regime, the self-consistent field can
be considered as quasi-static and the number of parti-
cles N(t) counted at any instant of timet O @ECas con-
stant in the coordinate system moving synchronously

with the autowave. Here, @= le T;/Nisthe average
particle lifetime in the device. The velocity vector of
each electron and the value of the potential energy W,
at each point of its path are single-valued functions of
the coordinates of this point. Under these conditions,
the Lagrangian for each particle Lj(x;, Xj)=

;0.5 mxﬁ — W; does not depend explicitly on time.

Let us sum the Lagrangians of all particles occurringin
the volume V of the device and introduce the functional

A = 5 LN = IL(t)n(t)dV/In(t)dV, )
i Y, v

which will be called below the integral Lagrangian of
the system. Here, n(t) is the particle number density in
the elemental volume dV and L(t) is the sum of
Lagrangians of all particles occurring in this volume.
The values n(t), L(t), and N(t) are taken at the same

USYCHENKO

instant of time t O @0 In the steady regime, N(t) and
A\(t) take the stationary values N and A, respectively.

The experience gained in work with electronic
devices suggests that, after a perturbation, the system
always comes to the same steady state and does this
regularly, rather than accidentally. Therefore, this spe-
cific steady state is energetically preferred to the other
states. The energy parameters of the system are charac-
terized by the functional A. Let us consider qualita-
tively the dependence of this quantity on the number N
of particles.

At a given anode voltage U, > 0 and near-vacuum
(low pressure) conditions, the potentias in the inter-
electrode space and the corresponding particle veloci-
ties reach the highest values, for which the Lagrangian
N\ approaches its upper limit. As the number of elec-
trons increases, the value of A can only decrease, that
is, in real processes we have dA/ON < 0. Indeed, an
increase in the number N of particles possessing aneg-
ative charge is accompanied by their accumulation in a
low-potential region, where the particle velocities are
small and the residence time is long. Therefore, it
would be reasonable to assume that, when the number
of electrons N increases, the system always reorganizes
in such a way that the integral Lagrangian reaches its
minimal (as arule, nonextremal) value

/\min = (Wk_Wp)min' (3)
In this expression, wy, = W, /N = IkaV ndV/J’V ndv

and w, = Wy/N = [ W,y ndV/ [ ndV take into account

all forms of the kinetic and potential energy in the sys-
tem; W, and W, are the kinetic energy of the particles
and the potential energy of the system, respectively, in
the volume element dV. The steady-state regime is
established when, at given flows of energy and matter
which connect the system with the environment, a fur-
ther decrease of Lagrangian A becomes impossible.
The evolution of the excited state is described by the
expression

dA(t)/dt <0, (4)

where the sign of equality is fulfilled as soon as value
(3) isreached.

In the moving coordinate system, the time-indepen-
dent integral Hamiltonian H = congt, representing the
conservation of energy in the device space, is dso a
function of the steady state. In simple systems, the
Hamiltonian H = (w + Wj,) contains the same functions
w, and w, as those entering into the Lagrangian A. In
such systems, to within insignificant constant values,
condition (3) takes the form

Amin = (Widmin = (=Wp)min- ©)

The obtained result discloses the teleological mean-
ing of the nonextrema principle of the integral
Lagrangian minimization (reduction): the system of
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material particles always tends to a steady state with
minimum potential energy. Since the work A = —w,
should be performed in order to form the system of par-
ticles, an dternative formulation is also valid: for the
given boundary conditions, a structure is realized,
which requires minimum work to be spent for its for-
mation.

Lagrangian A isascaar. The minimum of the scalar
value does not depend on the choice of the coordinate
system [17]; therefore, the coordinates x;; of the indi-
vidual Lagrangians L;(x;, X;;) can be considered asthe
generalized coordinates.

Systemswith strong electron drag. L et usconsider
another limiting case, when the electron travels in the
field E(X) in a space containing a large number of neu-
tral atoms. Assuming that the scattering event is very
short as compared to the average time 1, between colli-
sions, we can write the equation for the vector u of
average velocity [18] as

mu = eE —muv,

where eisthe electron charge and v is the effective fre-
guency of collisions.Integrating this equation, we
obtain the value uy = eE/mv for the average velocity,
which is defined as a drift velocity of the particle [18].

Qualitatively the electron motion can be explained
asfollows[18]. Immediately after every effective colli-
sion, the electron moves in a random direction; there-
fore, the vector of average velocity isu = 0. Up to the
next collision, the electron moving in the field gains a
directional velocity uy and its kinetic energy increases
by the value eEuyv = mu§ = —eU,, where Uy =
-[,E (x)dx is the potential difference across the elec-

tron mean free path d in the direction parallel to the
electric field vector. Upon the next collision, this new
portion of energy is dissipated as well, increasing the
el ectron temperature in the system. Between collisions,
the electron movesin the accelerating field and its aver-

aged Lagrangian has the form L = mui — eU; +
0.5mu3, . Here, 0.5mu, is the energy of chaotic
motion and muf = —eU; isthe mean energy gained by
the particle on the passage through the potential differ-
enceUg =—[ E (X)dx, where0< € < d. Theinclusion of
all N particles present in the system leads to the
Lagrangian
A = 2mUui0+ 0.5ml3]

Expressing the kinetic energy of the directional

electron motion as mui; [J= amuj , where the constant
o < 1, and assuming that the mean chaos energy

O.SmHJEh Uis stationary, we obtain (to within insignifi-

TECHNICAL PHYSICS Vol. 499 No. 11 2004

1433

cant constant values)

/\min = m(ué)min- (6)

This formula has a smple physical meaning: with-
out distant interaction with a neutral particle, the elec-
tron cannot avoid collision with this particle. Under
such conditions, minimization of the Lagrangianispos-
sible only through adecreasein the drift velocity. Equa-
tion (6) is aso applicable as the first approximation to
solid-state devices in a wesk field, where the primary
mechanism of energy dissipation is the scattering of
carriers on acoustic phonons. In this case, m is the
effective mass of charge carriers.

The essentially heuristic principle of Lagrangian
minimization needs verification. Since A in the steady
regime reaches a steady rather than extremal value, the
usual variational methods are inapplicable and experi-
mental data should be invoked. To thisend, wewill turn
to well-known electronic devices whose theory per-
fectly fits to the experiment, namely, the vacuum diode
(VD), magnetron diode (MD), and Gunn diode (GD).
We will check the accuracy of realization of the princi-
ple of A minimization in various steady states, simulta-
neously taking into account the possible mechanisms of
the self-organization of particles. TheVD isinteresting
as a system in which all possible states occur on the
thermodynamic branch. TheV D approachesto thermo-
dynamically equilibrium state when this brunch origi-
nates through a decrease in the emission and the anodic
voltage U, = 0. The MD is also of interest because its
steady states are separated from the thermodynamic
brunch by the point of instability. The GD isinteresting
as a system whose states can occur both on the thermo-
dynamic branch and beyond, similarly to the case of an
MD. Moreover, unliketheVD and MD, aGD isasolid-
state rather than vacuum device.

2. VACUUM DIODE

Lagrangian. Let us introduce the cylindrical sys-
tem of coordinates (r, ¢, 2) and consider aVD inwhich
the distance between the anode and cathode is small as
compared to the longitudina sizel of the diode along the
z axis. The Lagrangian for an individua eectron leaving
the cathode with thermal velocity u, hasthe form

L = 0.5mi*—eU(r) + 0.5mu?, 7
where U(r) isthe potential at the point where the parti-
cleissituated.

The kinetic energy

0.5mi%(r) = —eU(r) (8)

acquired by the electron under the influence of the
potential determinestheradial velocity r (r). Inthecase
of strong and uniform emission, azimuthally symmetric
electron cloud is formed, which is characterized by a
steady distribution of the particle concentration n(r)
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and the corresponding space charge potential U(r) < 0.
Let us represent the potential U(r) in the diode as

U(r) = Uy(r) +Ug(r), )
where
Inr/r,
Uu(r) = UaInra/rc2

isthe potential distribution in vacuum.
Substituting (9) into (7) and summing Lagrangians
of al N electrons occurring in the VD volume V =

ni(r2 = r2), we obtain (after normalization to N)

A = Wi + (WN _Wsc) + ch- (10)

In this expression, wy = W/N, where W =
—ZmJ‘ran(r)Uv(r)rdr > 0 is the energy supplied to the

system from outside. According to the mean value the-
orem, wy = —€BU,, where 0 < 3 < 1. The value wg, =

W /N, where W, = 2rde[,*n(r)Ug(r)rdr > O, is the
potential energy of the space charge. The term w,, =
W, /N, where W, = Tdmj’r‘"‘n(r)r'zrdr, is the kinetic
energy of electrons moving relative to the steady space
charge. The term KT, takes into account the electron
thermal energy: T, is the cathode temperature and k is
the Boltzmann constant. We will ignore the thermal
energy for the anode voltage obeying the condition
U, > —KkTJe.

Steady state. Inview of (8), Lagrangian (10) can be
reduced to form (5): Amin = 2(Wir)min = 2(Wn — Wee)min-
Thus, we obtain the steady state condition

(Wkr)min = (WN_WSC)min' (11)

It follows from Egs. (8), (9), and (11) that the value
w,, wWill be the smaller the higher the fraction of parti-
cles (of their total number N) localized in the region of
small values of velocity f (r), which is determined by
the potential U(r), is. Thus, al states of aVD are char-

acterized by the tendency of particles to reach the rest
state at the bottom of the potential well near the cath-

() (b)

—117]

Fig. 1. Trajectories of (a) an individual electron in vacuum
and (b) electronsin Brillouin's “bushing.”

USYCHENKO

ode. Here, their concentration causes the most pro-
nounced decrease of wy —W,.. Considering the structure
of the expressions wy = Wy/N, wg, = W /N, and w,, =
W,,/N, one can see that, as the number of particles N
increases especially rapidly (in afirst approximationin
proportion to N), w. increases, whereas wy and w,,
depend weakly on N. Therefore, the minimum of
Lagrangian (10) isreached asthefollowing conditionis
fulfilled:

We = (W) max- (12)

3. MAGNETRON DIODE

Lagrangian. Let us place an MD into a homoge-
neous magnetic field B directed along the z axis. AsB
increases starting from zero, the electron distributionin
the MD will be azimuthally uniform unless a critical
value of the magnetic field B, is reached, at which the
electron returnsto the cathode after nearly touching the
anode. The value B = B, corresponds to a bifurcation
point. We will beinterested in the regimes with the val-
ues B > B, for which the apex of the trgjectory of an
electron starting from the cathode into vacuum is closer
to the cathode than to the anode (Fig. 1a).

On the basis of the additive properties of A, we can
make preliminary conclusions on the behavior of the
system of particles through consideration of the
Lagrange function for an individual electron emitted
from the cathode with zero initia velocity,

L = mi2(i°+r’p° +7) —eU —m/2r’wd.  (13)

Here, w = —eB/misthe cyclotron frequency and ¢ (r) =

w2(1- ri/rz) is the azimuthal velocity of the particle

(for an azimuthally-symmetrical field distribution
(0U/0¢ = 0); this velocity is independent of the poten-
tial U(r) [19]). With regard to Hamiltonian H =
m2(i* +r2¢° + 7°) + eU = 0, the L agrangian takesthe
form L = —2eU — mV4r2?(1 — r{ /r?), from which it fol-
lows that the L value decreases as r increases. There-
fore, in the course of self-organization, the electrons
will tend to reach the maximum value of r =r,. Indeed,
the experiment [4] showed that, starting from very
small emission currents (five to six orders of magnitude
lower than the nominal ones), stable electron structures
(called solitary waves) are formed inan MD [6, 20], in
which aregular motion around the cathode is character-

ized by stable oscillations and current flow to the
anode.

Let usconsider aregime with asinglewave (Fig. 2),
which propagates around the cathode at a constant
angular velocity Q < w. In the coordinate system
(r,=¢-Qt, 2 rotating together with the wave,
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Lagrange function (13) takes the form [20]
L = 05m(r+ r’g* + 2)
—[eU —0.5mr’Q(Q — w) —0.5mr’P(2Q — w)],

wherethetermsin the square brackets represent various
forms of the potential energy, including those related to
the velocity-dependent forces. Summing the
Lagrangians of all N electrons that occurred in the vol-

umeV = J’V av = Jr @ J‘f)" {_’Ifzr drdydz and normalizing

the sum to the total number of particles, we obtain the
functional

N = Wy + (Wy =W + Wg +W,,). (14)

Here, the term w, = Enl%lj’vn(r'2 +r2Q® + Z)dVinthe

right-hand side of this equation represents the averaged
kinetic energy of the relative motion of particles; the

energies Wy = %J’VanQ(Q - w)dV and w, =

_rp_ 2. _ .
2|\Lrvnr U (2Q — w)dV are related to the generalized

potentials determining the velocity-dependent forces,
and n = n(r, |, 2) is the particle number density. The
physical meaning of the rest terms is the same as in
Eg. (10).

Self-organization. Comparing Egs. (14) and (3),
we obtain Wy = W,, =W, = Wy — Wy, + Wg + W,,. Since
both w, > 0 and —w,, > O, the steady-state condition
takesthe form

Amin = (W) in T (Wy —Wge + Wo + W) (15)

Among the energies entering into this equation, the
value of w,. increases especially rapidly with the num-
ber of particles N. Therefore, inan MD, aswell asin a
VD, theminimum of A isreached aswy, = (W) max- TS
condition is fulfilled by the hypothesis of Brillouin
[19], according to which the space charge will be accu-
mulated near the cathode as the emission increases and
the potential U(r) = U,(r) + Ug(r) will be reduced
unless the kinetic energy w,, reaches its minimum
value. In this case, an electron “bushing” is formed
around the cathode, where particles moving aong the
circular trajectories (Fig. 1b) can stay for along time.
Computer simulations [21, 22] and experiment [4]
(indirectly) give an indication of the layered (i.e.,
ordered) motion of the particles. The transition to such
motion [23] under the action of collision forces dF;
minimizes the effect of these forces. The electron-elec-
tron collisions changing the particle momenta [18]
would result in anincrease of the size of electron “bush-
ing” and, accordingly, in a decrease in the wg, value,
that is, in an increase of A, which isin conflict with the
requirement that 0/\/ON < 0. During the layered motion,
the particles do not collide and, hence, their concentra-

min*
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Fig. 2. Space charge structure in an MD at low electron
emission in arotating coordinate system. The lengths and
directions of arrows characterize particle velocities. The
dashed line denotes the separatrix, on which the velocities
of electrons are equal to zero; B isthe trajectory of the elec-
tron bombarding the cathode.

tion and energy wg, can reach the maximum values,
whereas the Lagrangian can reach extremely low val-
ues.

However, as was indicated above, the electrons in
the MD should reach the anode, which is not evident
from Brillouin’s solution. It was established later [21,
16] that the electron “bushing” is unstable and the
development of instability results in the appearance of
solitary waves. Figure 2 showsthe MD cross section in
the low-emission mode [6], which is sufficient for the
formation of only one wave. The appearance of this
wave does not violate the condition of the wg, maximum
in the rest part of the “bushing.” However, the electron
number density in the wave is extremely high as well.
The structure of solitary waves determined [6] based on
this assumption showed that the dynamic parameters of
these waves are in agood agreement with the results of
measurements.

Evolution. The electrons emitted from the frontal
part of the wave (Fig. 2) enter its azimuthal field and
take a part of the wave energy that goes on the bom-
bardment of the cathode. In formula (14), this energy
enters into the term w,,. The cathode temperature
increases as a result of bombardment [24] and, hence,
the wave controlsin thisway the cathode emission and
its own development. Experiment [4] and theory [6]
showed that the number of both waves and electronsin
these waves are increased with the growing emission.
Since, as N increases, w, changes faster than any other
term in (14) (thus determining the variation of the
Lagrangian as a whole), evolution principle (4) for a
system capable of controlling the amount of supplied
matter can be expressed in another (equivalent) way (in
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the normalized and nonnormalized forms, respec-
tively):

dwg/dt =0, dW,/dt= 0. (16)

If no measures are provided in the MD to limit the
cathode bombardment, then the continuous growth of
the number of emitted electrons is accompanied by the
increase on the potential energy W, of the waves,
which will eventually result in their decay [6]. The MD
passes to the chaotic state [4, 6, 25].

4. GUNN DIODE

In deriving formula (6), we assumed implicitly that
the potential difference over the electron mean free path
is known. This value can be readily determined, pro-
vided that we know the voltage-velocity characteristic
of electrons and the voltage applied to a GD. However,
wewill use another way that unravels more comprehen-
sively the synergetic content of the phenomena under
consideration.

The formation of a high-field domain in a GD is
related to theinstability [2, 26] stemming from the tran-
sition of electrons accelerated by the external field from
the bottom to upper valley, whereby aregion with neg-
ative stegpness appears in the dependence of electron
drift velocity uy(E) ontheelectricfield (seeFig. 3[27]).
If the intervalley transition did not take place, that is,
the energy dissipation characteristics were the same as
in the low field, then the drift velocity of the particles
would continue to depend linearly on the field E, asis
shown by the dash-and-dot line in Fig. 3. The tota

Uga
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Q 3 B // |
5 / |
T /
= : |
X ,/ |
F2r / |
udr 1/ |
B B
- | |
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I I
| Er 1 1 11 E‘l
2 4 6 8
E,kV/cm

Fig. 3. Electron velocity inaGD asafunction of the applied
electric field.
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energy Wy acquired by N electrons within a time T,
between two collisions with the lattice would be equal
to the mean drift kinetic energy:

Wy = nesimyus, = nesImp’E: = —eNU,T./1,. (17)

Here, | and s are the length of diode and its cross-sec-
tion area, respectively; ny and i, are the low-field elec-
tron concentration and mobility, respectively; E, = U/
isthe absolute value of the averagefield inthediode; U,
is the anode voltage; and 1, = l/ug, is the drift time of
particles; 1, = (myl,)/e. The rest of the designations
follow from Fig. 3. Considering that, on transition to
the upper valley, a portion of the electron energy is
spent for the domain formation without dissipation in
the lattice and assuming the domain voltage to be U, =
I(E, — E;), we will find the potentia energy of the
domain to be

Wy = ngslmypi(E2—E7) = Wy (1-E/EY). (18)

The domain travels over the diode at the velocity
Uy < Ug,- Thetotal value of the drift kinetic energy of all
particlesin the diodeis

W, = Wy =W, = Nmu; = W E/EZ.  (19)

Thisanalysis of the domain mode in a GD is differ-
ent from that described in the literature [2, 26] and thus
should be verified. To this end, we compare the energy

W, and the energy 0.5C,U> stored in the equivalent
capacity Cy4 of the domain and determine the domain
capacity:

_ 2snomypi(E, + E))
I(Ea - Er)

Calculations using this formula, aswell asformulas
from [2, 26] and those obtained from other physical
prerequisites, gave the values of C, differing less than
by afactor of 1.5. Such a correspondence can be con-
sidered as quite satisfactory.

Self-organization. The number N of electronsin a
GD is constant, and the domain formation is only pos-
sibleif these electrons are redistributed over the diode.
Let us introduce the quantity N,, which is the number
of electronsin the domain. The kinetic energy

N,E?
Wi = Wy—=
NE;

of the collective structure (domain), as well asits total
energy,

Cq

], E'n Np
Ws = W, +W, = _eNUai{l_é%_ND}
a

are dissipated neither during the drift nor in the course
of domain “loss,” since, as soon as one domain disap-
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pears at the anode, another energetically equivalent
domain is generated at the cathode [2]. Equation (17)
takesthe form

WN = Wsc + Wks + Wlira (20)
where
i TE
Wkr = _eNUa 2(1_N1/N) (21)
aa

is the drift energy of those N — N, electrons that occur
outside the domain. Just this energy transformsinto the
thermal energy, as the electrons are scattered in the lat-
tice. Thisenergy also determinesthe value of functional
(6), for which we obtain the following expression, on
the basis of (5) and (20):

— 2 _ !
/\min - ml(udr)min - (Wkr)min

= (WN —Wg — Wks)min' (22)

The value of w,, decreases as the number of parti-

cles N; in the domain increases, that is, as wy, grows.
Thus, in aGD, aswell asin aVD and MD, the mini-
mum of A is reached when Wy, = (W) max-

5. COMPARISON WITH THE PRINCIPLES
OF NONEQUILIBRIUM THERMODYNAMICS

In the case of asmall deviation from the thermody-
namic equilibrium, when the Onsager reciprocity rela-
tions are valid, the steady states of the open system
obeying the local equilibrium conditions [10, 11] are
characterized by the extrema principle of minimal
entropy production. Gyarmati [28] reduced this princi-
pleto the more general variational principle of the ther-
modynamics of irreversible processes, namely, to the
principle of minimum energy dissipation, which, in
turn, was empirically generalized by Moiseev [29]. The
practical regimes of the systems under consideration
are far from thermodynamic equilibrium. Therefore, in
order to compare the principle of minimization of the
Lagrangian A with the principle of minimum energy
dissipation, we will treat the latter principle in the
wording extended by Moiseev [29], according to whom
“if aset of states conforming to the laws of conserva-
tion and relationships imposed onto the system is
admissible, rather than asingle state, then astatewill be
realized that corresponds to aminimum energy dissipa
tion.” We assumethat this state is determined by thefol-
lowing condition:

(Pais)min = (dWgg/dt) i, (23)

where w;s = Wy /N isthe dissipation energy, which was
not found previously, since it does not enter explicitly
into the Lagrangian.
In order to solve the problem, we will turn to the
energy balance equations for each system and deter-
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mine an energy related to the term wy, and, hence,
entering into the integral Lagrangian. The control
parameter is the number of particles N.

Vacuum diode. The Hamiltonian for one electron
leaving the cathode with the thermal velocity u, has the
form

H = 0.5mi°+eU = 0.5mu’.

Summing the Hamiltonians of al N electrons occur-
ring in the VD volume and taking into account relation
(9), we obtain the energy balance equation

Wy + NKT, = W +W,,.

All values in this equation are determined in (10).
Let theintensity of electron emission be such that each
electron reaches the anode. N particles occurring in the
interelectrode space and traveling to the cathode pos-
sessthetotal kinetic energy W,, and carry thecurrent |,
thus dissipating the power U,l, on the anode. During

their life time @0= (r, —r)/0f O where [f [is the aver-

age particle velocity, N electrons will dissipate the
energy

W, = Wy, = U,l,00= —eNU,. (24)

Since W, and W, aretwo forms of the kinetic energy

of the same electrons, we can introduce the relationship

W, = 8W,, (25

where 8 = F°[f2 < 1and , isthe electron velocity at

the moment of impact on the anode. The coefficient 6
characterizes inhomogeneity of the spatial distribution
of the kinetic energy of the particles. The above equa-
tionsyield

W,
Wkr = _eeNUa = eVva = eris1 Pr Dﬁklr:l: epdi51
(26)
Wa _ Wkr
Pss U0 = 5am
Thus, the dissipated energy wg, = w, in the

Lagrangian of aVD istaken into account implicitly by
the term w,. Let us find the quantitative relationships
between w, and w5 = W, in various regimes. In order
to simplify the calculations, we will consider a quasi-
flat VD, inwhich (r,—ro/r. < 1.

Close to the thermodynamic equilibrium, the state
of the VD is characterized by low emission (W, [10)
and by the value U, < —KTJ/e. The electrons mainly
possess velocity u,, and it follows from (25), (26) that

0 = 0’2 = 1, Wy, = Wy, = KT,.. We can see from these
relations that, near the thermodynamic equilibrium, the
principle of Lagrangian minimization and the principle
of minimal dissipation of energy give the same results.

Let us follow the evolution of the steady state with
increasing the number N of particles in the strongly
noneguilibrium regimes determined by the values U, =
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const > —KTJ/e. For a regime with limited emission,
when each electron reaches the anode, it is easy to
obtain [ [1= 0.5¢2, 6 = 0.5 and (Wi¢)min = 0.5(Weimirn
(P )min = 0.5(Pgis) min- AS the el ectron emission increases
infinitely, a near-cathode potential minimum arises
[30, 31]. The majority of electrons unable to overcome
this region return to the cathode. In this case, wg
increases, w,, decreases (according to (11)), the anode
current tends to saturation, and 6 = w,,/w, monotoni-
cally decreases. Thus, in the entire thermodynamic
branch, the principle of minimum energy dissipation
and the principle of minimization of Lagrangian A
involve proportional values, (Pgdmin U (Pur)mine UL
since (Pu)min < (Paidmin: the principle of Lagrangian
minimization poses more rigid constraints on the sys-
tem. The principle of A minimization is more informa-
tive, since it not only explains the reasons for the
decrease of wy, and p,, caused by the space charge
increase, but also points to the diode area where the
space charge is accumulated.

Magnetron diode. In the coordinate system rotat-
ing with the angular velocity Q of the wave, the Hamil-
tonian of asingle electron leaving the cathode with zero
velocity has the form [20] (we neglect the thermal
energy of the particles)

H = (7 + r'y*+ ) + Soar®
(27)

m m
_ErZQZ +eU = EriooQ.

Summing the Hamiltonians of all particles in the
MD volume, we obtain the equation of the integral
energy balance,

Wy = We + Wy + Wi + Wy (28)

The terms W = 0.5mJ’Vn(r2 - r2)wQdV and

W = —O.SmA’V nr2Q2dV in the right-hand side reflect

the work performed by the collective structure (wave)
to overcome back electromotive and centrifugal forces.
Being kinetic in form, these energies are related to the
generalized potentials by which the vel ocity-dependent
forces are expressed. The physical meaning of other
terms was determined above.

Using Hamiltonian (27) we can determine the
energy dissipated on the anode during the lifetime [@0=
—eN/I, by all N electrons occurring in the MD volume:

W, = 0.5m(r2+ Q2+ )N = —ZeNU,.  (29)

Heref,, r,y,, and z, arethe particle velocity compo-
nents at the moment of impact on the anode;

m

ZeUa(wQ(ri—ri)—erg), 0<Z<1 (30)

=1+

USYCHENKO

is the coefficient [6] reflecting the fact that the energy
W + W, Of the collective forms of motionisnot dis-
sipated. Similarly to the case of aVD, the energy of the
relative particle motion W, can be expressed in terms
of the energy dissipated on the anode as

W,, = -6{eNU, = BW, = BW,;.
Here, the coefficient
2 242 -2
_Oot+ry +zD<

0 =
.2 .
5+ raps + 220

1

characterizes the inhomogeneity of the distribution of
the kinetic energy of therelative particle motion and the
angular brackets denote the averaging over all elec-
trons. Thus, the dissipated energy Wy = W, isimplicitly
contained in Lagrangian (15) in the term w,,. The
requirement of a minimum of the value wy, = w,
imposed by the principle of minimum energy dissipa
tion coincides with the condition of w,, minimizationin
formula (15). However, since w;, < w,, the principle of
Lagrangian minimization imposes more rigid con-
straints.

Gunn diode. The energy in aGD is dissipated only
by N — N, electrons occurring outside the domain. The
energy of these particles during their drift timet, = I/u,
is determined by the relationship

NpE

NOE (31)

Tr
Wy = Wlir.—[; = _eNUa%L_
The particle velocity distribution is close to the
Maxwell distribution; therefore, 8 01 and practically
the entire energy W, converts into the thermal energy
W,. In the normalized form, the outlined effect reduces
to the relations

Wkr = Wa = Wdis = _ZeUav (32)
where
=0 No=
- NCE,

isthe coefficient taking into account (similar to the case
of an MD, see (29)) that the energy W + W, of the
domain is not dissipated.

Thus, the energy losses in the GD, aswell asin the

VD and MD, istaken into account by the energy w,, [
W, = Wy Of particles traveling relative to a collective

structure (domain). Sincew, 0 w,, [ uﬁ , then the prin-
ciple of minimum energy dissipation and the principle
of minimization of Lagrangian A as applied to a GD
give essentially the same result. However, the principle
of A minimization is more informative, since formula
(22) explains the mechanism of reduction of the drift
velocity.
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In aweak field, a GD is aresistor in which 6 01,
¢ =1, and the entire energy —eU, acquired from the
power supply by each particle during drift convertsinto
heat. The weak-field mode is explained essentially sim-
ilarly by the principle of minimum energy dissipation
and the principle of Lagrangian minimization.

Thus, the analysis of various systems showed that,
near thermodynamic equilibrium, the principle of
Lagrangian minimization is practicaly equivalent to
the principle of minimum energy dissipation. As soon
as the degree of nonequilibrium increases, the principle
of A minimization becomes more informative because
the integral Lagrangian takes into account all forms of
the system energy, rather than only one.

In the genera form, the law of conservation of
energy in the system takes the form

Wy = Ws + Wy, (33)

wherews = wg, + zi W,4 istheenergy of the collective
form.

Let us write formula (33) in adifferent way, in par-
ticular, as wi, = wy —Ws. Now, the right-hand side con-
tains those forms of the energy which are not dissi-
pated, but conserved due to the energy w,, of particles
that take part in the irreversible process of the matter
exchange with the environment. The requirement of
decrease of the energy w, which followsfrom the prin-
cipleof Lagrangian A minimization, meansthat a struc-
turewill beformed whose existence requiresthe energy
W

CONCLUDING REMARKS

Analysis of particular systems showed that the ther-
modynamic principles of minimum energy dissipation
and minimum entropy production qualitatively cor-
rectly account for the role of dissipation in the forma
tion of steady states of the systems in which the princi-
ple of local equilibriumisnot obeyed. Thisisexplained
by the fact that the energy ws of the collective structure
is not dissipated. Only the energy w,, of the particles
traveling relative to the structure, which exists in all
open systems and is basic in the systems whose states
occur on the thermodynamic branch, convertsinto heat.
In the general case, the requirement of minimization of
the energy w,, imposes more rigid constraints on the
self-organizing system than does the requirement of the
minimum of W

As the number of particles in the system increases,
the potential energy W,. of the structure grows most
rapidly. If there are no restrictions on the number of
particles coming from outside, the evolution of the sys-
tem can be described by inequalities (16): dwg/dt = O,
dwW,/dt = 0. The trend to increase in W,. may be called
the principle of natural evolution of open systems. The
action of this principle may explain, for example, the
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concentration of matter in stars and galaxies, aswell as
the large variety of animate beings, which went the way
in their development from prokaryotes to multicellular
organisms of much greater size.

The principle of Lagrangian minimization claims
that, among all potential systems which can be formed
in an open system fed from the outside by energy and
matter flows, nature will realize the structure character-
ized by a minimum value of the integral Lagrangian.
The rejection of other possible structures and selection
of only one structure satisfying the principle indicated,
results in symmetry violation in nature and leads to the
notions of “optimum” structure formation and its pur-
poseful evolution.
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Abstract—The problem of temperature jump that is induced by a heat flux toward a metal surface is solved
with regard to el ectron energy accommodation on the surface. The temperature profile is constructed for differ-
ent ratios of the electron mean free path to the Debye length. © 2004 MAIK “ Nauka/Interperiodica” .

The temperature distribution near ametal surfaceis
akey issue in the problems of metal—environment heat
exchange at low temperatures. This issue is also of
great importance for small-size metallic objects (the
case typical of microelectronics), where processes tak-
ing place at the surface have afundamental effect on the
temperature distribution.

Consider a planar metal—environment interface and
assume that a heat flux in the metal is directed toward
(or opposite to) the surface. Let the Cartesian coordi-
nate system be centered on the surface and its x axis be
directed into the metal normally to the surface. Then, at
distances from the surface that are much greater than
electron mean free path I, the heat flux can be repre-
sented by constant temperature gradient Gy = dT/dx
(the metal is assumed to be isotropic). The temperature
gradient is assumed to be flat in the sense that the rela-
tivetemperature drop over length | ismuch smaller than
unity.

Thelayer of thickness A that is adjacent to the inter-
face will be referred to as the Knudsen layer, asis cus-
tomary in kinetic considerations. Outside the Knudsen
layer, the temperature profile hastheform T = T, + Gyx
forx>0and T =T, + Gyxfor x<0. Thevalue of AT =
Ty — T (where T is the surface temperature) will be
called the temperature jump. If the gradient is flat, the
temperature jump is proportional to it:

AT = C4IGy. (1)

Coefficient Cy, which isindependent of Gy, iscalled
the temperature jump coefficient. It isfound by solving
the kinetic equation in the Knudsen layer [1]. Usually,
researchers deal with dimensionless temperature jump
&1 = C{lgy, where gy = G4/T,.

Note that the temperature jump significantly
depends on the type of interaction between electrons
and metal the surface. Taking account of this fact
requires that the boundary conditions be modified so
that they include the el ectron energy accommaodation at

the interface. To this end, an appropriate accommoda-
tion coefficient should be introduced.

We consider the general case of the arbitrary degen-
eration of the electron gas. Therefore, the results
obtained are valid in awide temperature range.

Consider a metal for which the Fermi surface is
spherical. For electrons in metals, akinetic equation in
the T approximation [1-3] is frequently used:

of _ f_ 1.0

X = (v +e0EEgF—) =Y-n. @
Here, f is the electron distribution function, g, is the
electron charge, p is the electron momentum, E is the
electric field, v isthe electron velocity, T isthe electron

relaxation time, and fﬁ is the Fermi distribution func-
tion. If electron scattering by impurities prevails, it is
reasonable to assume that the electron free path is con-
stant [4]. In this case, the relaxation time can be
expressed ast = |/w. Here, | isthe electron free path and
w = |v —u|, where u isthe mean electron velocity. Note
that, in metals, theinequality u < visvalidinal phys-
ically feasible conditions. Therefore, we hereafter will
use v instead of w.

Note also that, generally, the kinetic equation for
phonons, aong with that for electrons, should be taken
into consideration when the temperature is finite.

Let phonon distribution function fy, satisfy the
kinetic equation [1, 4]

9 fpn

ot

where C is the phonon velocity and J(f,,, f) is the col-
lision integral including electron—phonon, electron—
impurity, and phonon—phonon scattering. For a finite
temperature, the Fermi distribution function with some
effective temperature Tjand effective chemical poten-

tial pymust appear in Eq. (2) as the equilibrium elec-

+(C ) o = I(fm ), ©)
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tron distribution function instead of f‘é , which corre-
sponds to the zero temperature. It is noteworthy that
these effective temperature and chemical potential gen-
erally differ from the locally equilibrium values of the
temperature, Ty, and chemical potential, e

Then, the kinetic equation for electrons takes the
form

%+(v[l])f+eoE[%=lz(f’;—f). @)

2
* m
Here, f£ =fe(up TD = fe(ks, Ts) = [GXDE-Q—E—VF——

-1
He [y 1} is the Fermi distribution function (Fer-
kT, U

mian), k is the Boltzmann constant, and mis the elec-
tron effective mass.

The electron conservation law leadsto the following
equation as a consequence of Eq. (4):

J’vfdQF =J'vf§dQF, (5)

where dQp = (2s + 1)(214)3dp, # is the Planck con-
stant, and s is the electron spin. Integration is carried
out over the entire velocity space. In most metals, the
electron subsystem makes a major contribution to heat
transfer [4]. We will consider just this case and ignore
the phonon contribution to this process.

In the steady-state case, kinetic equation (4) for
electronsisrecast as

= YO, 2o — (v ™y % do.D
0m, = Ia'vzv frde-[vZv*fdog, (8

where Q. isthe heat flux due to electrons.

In the steady-state case, where heat sources are
absent, total heat flux Q is constant; that is, (11 Q = 0.
If the phonon contribution to the heat transfer process
in a metal can be neglected, we also assume, in accor-
dance with (6), that [TJ Q. = 0. Then, from Eq. (5), we
get

IvgvzfdQF = Iv?vszdQF. @)

Relationships (5) and (7) specify parameters Thjand
Happearing in Kinetic equation (4).

In the approximation discussed thus far, Eq. (4) for
electrons and Eqg. (3) for phonons turn out to be inde-
pendent. In this case, a number of fine effects are
missed. To take them into account, it is necessary to
employ the more adequate T approximation that is con-
sidered in thiswork.

Let us assume that characteristic temperature drops
over length | are small compared with the electron gas
temperature. Then, the problem can be linearized. The

LATYSHEV, YUSHKANOV

distribution function will be soughtintheformf= f? +
d(t, r, v)g. Here, T3 =f(ug T, ¢ isanew unknown
function, | is the chemical potential of the electrons

scattered by the surface, g = 8 f¢/0gg, & = (MV3/2 —
M)/KT,, and T, isthe surface temperature.

Let usintroduce the designations

_ [m _ M _mv o,
CT AT CTkTy BT kT, kT,
In terms of these designations,

N _ 1 s _ 1
e (&) = exp(ey) + 1’ Fe(c.0) exp(c’—a)+1’
g = gc,a) = —=PL€ =)

[exp(c’—a) +1]”

Now, we pass to the dimensionless variables to lin-
earize local Fermian f§ . Note that

_TS m 2 P _TS 2 _ My
8*_T*[2kTSV k)= T, (€T O T

Since Tp= T + dTsand = a + daj we come to

0T,

=*(c*~a) =30,

2
€, = C —a-—

hence,

oT,

- _ (2
o0g, = —00, —(c"—0) T,

where d¢= g—€g;and g, = ¢ —a.
Consequently,

f*
fr = r2a D0E0

[BS* Ds* = 856 &

or

£t = f§+g(c,a)[5a*+(c2—a)§TIi]

S
Let us introduce dimensionless quantities e =
(&l/KTYE, tp=1,/2kT/m/l, and r = r/l (hereafter, the

asterisks will be omitted). In terms of the dimensional
variables, Eq. (4) takesthe form

9, (cm)p—cle = c[aa* r(2ma)x —¢]
The parameters of this equation, dajand T are
found from the conservation laws (rel ationships (5) and

TECHNICAL PHYSICS Vol. 49 No. 11 2004
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(7)), which are now written as
j[50‘* +(02—G)§fTi—¢}C”gd3c =0, n=13.

From this system, we find

oT, ry(a)

_ 3 I(a) 3.3
T. _ZHA(G)I¢ng cr 2nA(a)I¢C gd'e,
60(*—0(6;—* = 2213(A(231)I¢ng3c (9)
r.(a)
~ TN a)I¢C gd’c.
Here,

[

r,(a) = 4J’c|n[1 + exp(a —c?)] dc,

[(a) = In(1+ exp(a)),

ry(a) = 12J'C3In[1 + exp(a —c?)] dc,

A(a) = I(a)rg(a) —ry(a).
Let us represent Eqg. (8) in the conventional form:

aq) +cd(t,r,c)—ce(r)

(10)
= zier(c, ) (t, r, c)dQ(a),
where
n_ g @02 (@)oo
6.0 = 1+ Fi¥ T b (@)
dQ(a) = g(f(a“))cd ¢,

Let the half-space x > 0 be filled with a metal and
plane xy be coincident with the metal boundary. We
assume that a heat flux present in the metal is directed
normally to the surface. Then, the heat-flux-induced
electric field will also be directed normally to the sur-
face, so that all the parameters of the problem will
depend only on coordinate x.

The set of equations that describe the problem con-
sists of Eq. (10) for electrons and the equation for the
electric field. In dimensionless form, these equations
look like

n28 4 g (x, 1, 0) ~ pe(x)
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1

_ 1 , o e
- I(a)J’J’k(C’C)q)(X,M,C)g(C)c du'dc’,

~10 (11)

1 o

€(x) = a ot c)g(c)c’dudc,

-10

P esm’1? [2kT,
c’ e h*N M

where g, is the diel ectric constant.

It should be emphasized that to state boundary con-
ditions for electrons on a metal surface is a challenge
[4]. The specular—diffuse Maxwell equation is fre-
guently used. However, it is impossible to relate al
scattering characteristics of electronsto asingle param-
eter that shows to which extent the scattering is specu-
lar. Even if the scattering is perfectly diffuse, there is
the possibility that the electron energy will remain
unchanged. For electron scattering on the surface, heat
transfer can be described by means of additional coef-
ficient g, that takes into account energy accommoda-
tion. Consider perfectly diffuse electron scattering on
the surface. In this case, the distribution function of the
electrons reflected by the surface coincides with the

Fermi equilibrium distribution f; = exp[(gs) + 1],
where g, = (mv%2 — p)/KT,. In general, parameters T,
and |, differ from surface parameters T and p. They
coincide only if accommodation coefficient g, equal
unity.

In the linear approximation, distribution function
f£ can be represented as

e s Te
(5 = fi+(c.)[Ba,+ (¢ -2,

where 8d, = (Mo — M)/KTand 8T, = T, — T,

We find that the boundary conditions including the
accommodation character of electron scattering on the
surface [3] and the conditionsinside the metal have the
form

(0, 1, €) = do(k, €) = Ag+(c” —r3(a)/ry(a))B,,

O<p<i,

O 1, ¢) = das(X 1, C) +0(1), (12)
X—=+00, —-1<u<0,
e(0) =0, e(x) = e +t0(1l), X— +oo.
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Here,

_ 2 Tola
¢es - STB: - SO(G))E

ro(0)g
s(a)d
Ag(a) = ro(a)l(a) —s(a)ry(a),

Ao(0) :ro(a)_rl(a)
s(a)l(a)  s(a) I(a)’
Te_Ts
—:FS——’

+or(x—p) R’ - —ho()grl,
as _gThO(a)a

ho(a) =

By =

ro(a) = %J'In[l + exp(a —c?)] dc,

. exp(a—c)
Il dc.

s(a)
+exp(a—-c )

It is assumed that the energy flux E, of the electrons
reflected from the surface isrel ated to the energy flux E
of the electronsincident on the surface as

e = (E—E)(E-E)™ (13)
Here,
0o
E = —[[o0.n, c)c’pg(c)dudc,
-10

E = m(u, c)c’ug(c)dudc,

E; is the electron energy flux from the wall that corre-
sponds to the thermodynamic equilibrium between the
wall and electrons (T, =Ty, and

1o

Es = {{%(w c)c’pg(c)dude,

with the proviso that ¢4(l, ¢) = A;for 0 < p < 1. Quan-
tity A is determined from the condition

1o

JT%(IL c)c’ug(c)dude
00

0 oo

= = [[6(0. 1 O)chg(c)dude.
-10
This condition can be written in terms of the eec-
tron flows; that is, N, = N;, where N is the el ectron flux
from the wall that corresponds to the thermodynamic
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equilibrium between thewall and electronsand N; isthe
electron flow toward the wall.

Parameter q., varying between zero and unity, is
called the energy accommodation coefficient. It is an
empirical quantity. Its value depends on the type of
interaction between electrons, surface phonons, and the
material adjacent to the metal. At low temperatures and
in the case where the metal isin contact with an allow-
able substance (gas), g. may be considerably smaller
than unity, since heat exchange between the electrons
and other components is difficult under these condi-
tions. Thus, taking into account energy accommodation
in describing heat exchange processes at theinterfaceis
of great significance.

Along with the energy accommodation condition on
the surface, one more condition, namely, the no-perco-
lation condition, must be met. Mathematicaly, this
means that total electron flow N, acrossthe interfaceis
zero:

1
0 = [[oC0 W, c)c’ug(c)dude = 0,
-10
or, whichisthe same, Ny = N, — N, = 0, where

1o

— 3
N, = {J;q;(o, M, c)c ug(c)dude

is the flow of the e ectrons reflected from the wall.

Similarly, total electron energy flux E, can be repre-
sented as E, = E, — E;. Then, the electron energy accom-
modation condition can be recast as g(E; — Ey) + E, =
0, where the total energy flux

1 o

Eo = [o(x W, c)c’pg(c)dude
-10
isthe samefor all x > 0 by virtue of the energy conser-

vation law. The value of E, is determined through the
asymptotic distribution function at the wall:

1o

E, = j {cbas(o 1, ¢)c*ug(c)dude = — —((a“—))gT

It is easy to check that E = ry(a)AJ4 and E, =
r,(a)Ay4; therefore,

1A(0()
31(a) gr

E—E, = E —E,—E,

1 1A(a)
- 4rl(a)(A0 S) BI(G)

1
Ei = E-E = Zrl(a)AO
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Then, from the electron energy accommodation
condition, we find that

_ 41 e A(a)
Po = At 370 Ta)ry(a)

From the relationshipsfor the electron flows, Ny = N;
and N, = N;, it follows that N = N,; hence,

A(a)

T 9 (14)

A = Ao ayr () (49
From (14) and (15), we find quantity By:
41_ e
0= 3 qq Or-
e

Thus, we have found constant B, for the first bound-
ary condition in (12). The second constant, A, is not
specified beforehand: it is determined from a solution
to the problem.

Function ¢, describes the thermal conductivity of
the electron gas inside the metal. The heat conduction
process generates electric field e, (the thermoelectric
effect described, e.g., in [1]). The condition e0) = 0
stems from the assumption that an electric field outside
the metal is absent.

It should be stressed that functions ¢, and e, are
solutions to set (11).

According to the structure of function ¢, we seek
function ¢ in the form

@, (x, )

00x ) = hulx ) + -2 (16)
and arrive at the set of equations
oh, _
“a_ +hy(x, 1) = hy(x) + pe(x), 17
u2% (1) = (),

11 (18)

hi(x) = zj'hj(x, wdy; j =12,
g(x) = a’hy(x), a° = as(a). (19)

In view of (16), boundary conditions (12) have the
form

h(0, 1) = Ag+ (0B O<p<I,
M@ rola) ()
(@) = Fn@ = @) n@)

Aq(a) = re(a)ry(a) —s(a)ry(a),

hy(x 1) = —ho(a)grpt +0(1),
-1<u<0,

(20)

X—»OO,
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ho(0, 1) = By, O<p<l,
ho(X, 1) = €r+gr(X—p) +0(1), X— 0, (21)
-1<u<0,
e(0) = 0, e(X) = ex+0(1), X— +o00. (22)

We draw the reader’s attention to the fact that the
general problem stated by (11) and (12) issplit into two
subproblems that are interrelated only through the
boundary conditions. The first subproblem, (18) and
(21), is associated with atemperature jump in a metal;
the second one stated by (17), (19), (20), and (21) is
related to the behavior of an electric field near the sur-
face in the presence of temperature gradient g normal
to the surface.

Consider first the subproblem stated by (18) and
(21). According to [5], a solution to this subproblemis
looked for in the form of the expansion in eigensolu-
tions:

ho(X, 1) = € +0r(X—H)
; (23)
+Iexp cD(n n)ym(n)dn.

In expansion (23), the unknowns are temperature
jump &; and function m(n).

Omitting the solution of the problem (the solution
method is given elsewhere [5, 6]), we give the expres-
sions for these unknowns:

3(1-
€ = ViGr+ By = %/14_—&-4—69?2%9“
1
- %JZ(u)du = 0.71045..., (24)
0
g1 1 2grsin(n)
nm(n) = m[x *n) X(n)} miX(n)
where
1°2(u)du

X@) = ;epV(d, V(@) = Z[4H

0

Z(u) = —’-ZT—arctanM.

Formula(24) specifiesthe desired temperature jump
in the metal. Comparing formulas (1) and (24), we
determine the temperature jJump coefficient:

3(1 - qe)
4q,

This coefficient does not depend on the electron gas
degeneracy. It follows from this formula that the tem-
perature jump grows with decreasing accommodation

Cr =V +
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ST(0)/T,gr
20F
1.8
1.6+
1.4
1.2
1.0¢
0.8 i
0.6
0.4 ! ! ! ! !

Temperature profiles.

coefficient. For g, = 1, this formula yields the well-
known expression for temperature jump that was
derived in [6].

The temperature profile in the metal will be con-
structed in accordance with (9). From expansion (16),
we get

1 _ Do(a) -
Z—rJq)gcdac— I(a)hy — C )hz,
%{J’q)chd?’c = ry(a)hy - 1(((;)

Substituting these equalitiesinto (9) yields

1

0T, (X) _ f =1
TS - h2 - 2Ih2(xl l-l)du
l
= 5T+9TX+2IeXp m(r])dr],

LATYSHEV, YUSHKANOV

or
OT,(X) _ O xgsing(n)dn
—E 2 = g+ gX+ ex .
T, T gTrJ Py na X(n) n
Onthewall (x = 0), this expression simplifiesto
OT,(X) _ 0 10
T, T 8T+gTD_V1+mD
- |:|1 4(1_qe)|]
TD/\/é Oe T g O

The figure demonstrates the temperature profilesin
the half-space x > 0 that are constructed based on the
analytical solution found. The dashed lines show the
asymptotic profiles extrapolated to the boundary of the
metal; the solid lines, the actual temperature profiles.
The upper curves correspond to the accommodation
coefficient g, = 0.75; the lower ones, to g, = 1. Itisseen
that the temperature profile shifts upward as the accom-
modation coefficient decreases.
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Abstract—The problems of a pulsed strength of continuum media are considered in terms of the structural—
time approach that is based on the concept of the incubation fracture time. This approach makes it possible to
describe phenomena that arise under high-velocity external effects. A limiting condition that determines the
instant of rupture or breakdown is proposed on the basis of the structural—time approach. A way to interpret and
to determine the incubation time is proposed. A phenomenological model of an electric breakdown of solid
dielectricsis formulated. Examples are considered where the structural—time approach is applied to problems
of spall fracture, crack initiation, and a pulsed breakdown of dielectrics. A procedure for describing the time
dependence of the electric strength (volt—second characteristic) is described in detail. The results of the calcu-
lations are found to be in good agreement with experimental data. © 2004 MAIK “ Nauka/Interperiodica” .

Investigation of dynamic fracture of solids and insu-
lators under the high-rate (pul sed) effect of the ambient
medium under various conditions is of great interest
from the point of view of continuum physics and
mechanics. The results of such investigations are used
in creating and operating various devices in machine
building and power engineering.

Experiments to study dynamic fracture revea a
number of effects that show a drastic distinction
between afast dynamic rupture (breakdown) of materi-
als and a similar process under quasistatic conditions.
For exampl e, the dependence of limiting characteristics
on history and on the way in which the load is applied
isone of the main problemsin exploring dynamic frac-
ture. This effect manifests itself in almost all of situa-
tions of fast fracture. By way of example, we indicate
that, in the case of the fracture of a defect-free contin-
uum, one defines the limiting characteristic as the min-
imum amplitude of a stress pulse that leads to the rup-
ture of the material being considered. For the intensity
of alocal forcefield, this characteristic providesalimit
above which there occurs fracture. Attempts at deter-
mining, for alocal field, a critical intensity that would
correspond to specific rates of loading lead to ambigu-
ous results. The dependence on the way in which an
external forceis applied manifestsitself asachangein
the limiting values in response to a change in a number
of factors, including the duration of itsaction, itsampli-
tude, and the rate of its growth. In the case of aquasis-
tatic external force, the critical valueisaconstant pecu-
liar to a given material, while, in the case of dynamic
fracture, the values determined experimentally for crit-
ical characteristics are highly unstable, with the result
that their behavior proves to be unpredictable.

The above features in the behavior of materials (as
well as some other special features of their behavior)
that are subjected to pulsed external forces appear to be
common to apparently different physical processes
such as the dynamic fracture of solids and electric
breakdown in solid insulators. In the present study, we
consider examples that illustrate dynamic effects in
these physical processes. A universal interpretation of
the fracture of solids and of electric breakdown in insu-
lators is proposed within a structural—time approach
[1, 2] that is based on the concept of incubation time.

The absence of an adequate limiting condition that
would pinpoint the instant of fracture or breakdown is
the main reason behind the difficulties encountered in
simulating the aforementioned effects of mechanical
and el ectric strength. This problem can be solved on the
basis of macroscopic structural fracture mechanics and
the concept of the incubation fracture time, which takes
into account Kinetic processes |eading to the formation
of macroscopic discontinuities [1, 2]. The above
dynamic effects become significant when one goes over
from slowly varying external forces to those whose
periods are commensurate with the scale that is speci-
fied by the incubation fracture time. The nature of the
incubation time is associated with preparatory relax-
ation processes involving the development of micro-
scopic defectsin the structure of a material.

The incubation-fracture-time criterion proposed in
[1, 2] makes it possible to calculate effects that are
associated with unstable behavior of dynamic strength
characteristics and are observed in experiments study-
ing the fracture of solids. In ageneralized form, thiscri-
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terion can be represented as

e PO g e, (1)

t-1

where F(t) is the intensity of the local force field that
causes the fracture of amedium, F.isthe static limit of
the local force field, and T is an incubation time that is
related to the dynamics of the relaxation process pre-
paring the rupture; the fracture time is determined by
the instant at which the condition in (1) reduces to a
strict equality, the parameter o characterizing the sensi-
tivity to the level of the strength of the force field that
causes fracture.

For the example of the mechanical fracture of a
material, we will now consider one possible way to
interpret and to determine the parameter 1. We assume
that a standard sample from this material is stretched
and that it isruptured into two partsat astress P arising
at some time instant taken for zero, t = 0; that is, F(t) =

Facture time, log(#+) [s]

6 (a)

%
4+ <>
>

2F b
>

L"“’—W—w—o—é—o—v—
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i (b)
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Fig. 1. Time dependences of (a) the spall strength of alumi-
num [3, 4] (tgisthe fracturetime) and (b) the dynamic frac-
ture viscosity for crack initiation in Hormalite-100 [5] (tjis
the fracture time, and Kyq is the critical intensity coeffi-
cient).
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PH(t), where H(t) is a Heaviside step function. In the
case of a quasibrittle fracture, there occurs the removal
of the load, with the result that, at the locus of the rup-
ture, the local stress decreases rapidly (but not
instantly) from P to zero. Concurrently, the correspond-
ing load-removing waveis generated in the sample, and
its propagation can be recorded by standard (for exam-
ple, interferometric) methods. The evolution of the
stress at the locus of rupture can be schematically rep-
resented as o(t) = P — Pf(t), where the function f(t)
changesfrom zero to unity within atimeinterval T. The
case of f(t) = H(t) correspondsto the classical theory of
strength; that is, rupture is instantaneous within the
classical approach (T = 0). But, in fact, the rupture of a
material (sample) is a process that is extended in time,
the function f(t) describing the kinetics of a transition
from a state that is thought to be defect-free [f(0) = O]
to a state in which the sample is fully destroyed at the
point in question [f(T) = 1].

Applying fracture criterion (1) to this situation, we
obtain T=T1 at P=F that is, theincubation timeintro-
duced above is the time period to fracture occurring as
soon as the stress in the material reaches the static ten-
sile strength. In experiments studying the static fracture
of samples, this period can be measured by various
methods. For example, this can be done by measuring
the time of pressure growth at the front of the load-
removing wave recorded with the aid of the interfero-
metric method by using the velocity profile of points at
the surface of the sample.

Further, we consider examples of how the criterion
in (1) is redlized in various problems of physics and
mechanics.

(1) The experimental time dependence of the
strength in the case of spall fracture of solids (see
Fig. 1) provides an example that illustrates the intricate
behavior of the strength of solids [3]. This dependence
of the fracture time tjon the threshold amplitude of a

pulse Pat various values of its duration demonstrates

that the dynamic strength is not a constant characteriz-
ing a material, but that it also depends on the fracture
time. The classical critical-stress criterion o(t) < g,
where g, isthe dynamic strength, describes well quasi-
static fracture at large timesthat is caused by long wave
pulses a(t) = Pf(t), where P is the amplitude of a pulse
and f(t) isits time-profile function. In the case of short
pulses, however, there arises a weak threshold-ampli-
tude dependence of the fracture time, this dependence
featuring an asymptote. This phenomenonisreferred to
asthe effect of the dynamical branch in the time depen-
dence of the strength [3].

The dynamic-branch phenomenon has not yet been
explained either within classical theories of the strength
or within time criteria known so far.

The total time dependence of the strength can be
obtained on the basis of incubation-time criterion (1),
TECHNICAL PHYSICS Vol. 49
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which, in our case of spall fracture, assumes the form
t
J’ o(t)dt'<s o1, 2
t—-1

where o(t") is the time dependence of the stress at the
locus of rupture.

Our calculation was performed for triangle pulses,
which were used in the experiment reported in [3], and
for the aluminum parameters of T = 0.75 us and o, =
103 MPa. The time dependence obtained in [4] for the
strength of aluminum [3] according to the criterion in
(2) isrepresented by the solid curvein Fig. 1la

(2) Let us consider the case where an eastic plate
containing a crack is loaded symmetrically on the two
sides of the crack with a uniform pressure, which
increases linearly within the time t,, whereupon it is
maintained at a constant level of P; that is, the compo-
nents of the stress tensor at the edges of the crack are
specified in the form

o, = P[tH(t) — (t—to) H(t —1tp)] /t,,

where H(t) is a Heaviside step function.

The corresponding experiment was implemented in
[5-7]. By changing the rate of the application of the
pressure within the interval t, of its growth, the authors
of those studies could obtain different values of the
fracture time tjand measure the starting values of the

intensity coefficient (dynamic fracture viscosity) K|, =
K\(tp) that correspond to the start of growth of the

crack. One result obtained in [5] for a Homalite-100
glasslike polymer is shown in Fig. 1b. The experiment
exhibits the growth of the threshold intensity coeffi-
cient as the fracture time decreases; that is, as one
increases the rate of the application of aload. Concur-
rently, the resulting velocity dependences of the
dynamic fracture viscosity are highly unstable and can
change sizably in response to variationsin the duration
of the stage within which the load grows, in the shape
of thetime profile of aloading pulse, inthe geometry of
the samples used, and in the way in which the load is
applied. For example, the results obtained in [6, 7]
show velocity (time) dependences of K, which are
markedly different for the same materials, and reveal
that the dynamic fracture viscosity may depend non-
monotonically on the time of crack initiation under the
effect of a shock wave.

Experimental results show that the dynamic fracture
viscosity isnot acharacteristic of amaterial and that the
introduction of the threshold-intensity-coefficient crite-
rion K(t) < Kq in the theory and, accordingly, of the
quantity K,, as a matter parameter that determines
dynamic fracture (by analogy with the static parameter
K,c) isnot correct.

The behavior of the dynamic fracture viscosity can
be explained and calculated on the basis of incubation-

O, = 0,
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time criterion (1), which, in the case being considered,
assumes the form [2]

1.
T [ KiK. 3)

The results of the calculation performed in [2] for
experimental datareportedin [5] are represented by the
solid curve in Fig. 1b. The parameters used in that cal-

culation were set to K, = 0.48 MPa./m and T = 9 s.

(3) A pulsed electric breakdown of solid dielectrics
provides yet another example of phenomenawhere one
can observe the effects described above. By way of
example, we indicate that, in the case where the time
within which the applied voltage is operative is small,
the breakdown voltage usually increases as thistime is
decreased. In alkali halide crystals, the breakdown
channel caused by an electric field applied for about
10 ns arises at a voltage several times as great as the
guasistatic breakdown voltage (that is, a voltage
applied within a period not shorter than 1 ps[8]). This
effect was observed in the breakdown of a number of
materials. As an illustration, the dependence of the
breakdown electric field E* for an ammonium perchlo-
rate single crystal on the duration t, of the leading edge
of a pulse is shown in Fig. 2 according to [9]. This
dependence, which also characterizes the dependence
of the electric strength on the rate of growth of the volt-
age in the sample being studied, can be referred to as
the time dependence of the electric strength, being
analogous to that which is observed in the above case
of the dynamic fracture of materials (see Fig. 1). In the
experiments described in [9, 10], thin plates from
ammonium perchlorate single crystalswere placedin a
pulsed electric field. The el ectric breakdown of samples

E*,10° V/cm
1.0-‘
o
o
o) o} q 2
0.5F
[
- 1
= n [
1 1 1 1 1
0 2 4 6 8 10
to, uS

Fig. 2. Calculated dependence (solid curve) of the electric
strength E* of ammonium perchlorate on the duration of the
leading edge of a pulse for various values of the distance
between the electrodes: (1) 0.03 and (2) 0.01 cm.
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Fig. 3. (a) Calculated dependence (solid curves) of the elec-
tric strength E* of porcelain on the duration of the leading
edge of apulse in afield close to a uniform one (distilled
water was taken for amedium) for various values of the dis-
tance between the electrodes: (1) 1.8 and (2) 1 mm. Thedis-
played experimental datawere borrowed from [10]. (b) Cal-
culated dependence (solid curves) of the eectric strength
E* of rock salt on the duration of the leading edge of apulse
inauniform field for various val ues of the distance between
the electrodes: (1) 0.3 and (2) 0.15 mm. The displayed
experimental data were borrowed from [8].

led to their burning, which resulted in the formation of
a through channdl. The experimental data in Fig. 2
(points) correspond to two distances between the elec-
trodes used, 0.01 and 0.03 cm. One can seethat, for t; <
1.5 us, the electric strength of the material increases

Parameter values used in calculating the time dependence of
apulsed breakdown

Material T, US
Rock salt 0.025
Porcelain 0.02
Ammonium perchlorate 0.33

PETROV, GLEBOVSKII

with decreasing duration of the leading edge of a volt-
age pulse (with increasing rate of growth of the voltage
in the sample). For t; = 1.5 ps, the breakdown voltage
becomes virtually independent of t,.

In the case being considered, the electric-break-
down criterion corresponding to the structural-time
approach [1, 2] can be represented in the form

10
L [ E()dr<E, (4)

T

where E; is the static electric strength of a material (it
may be dependent on the distance between the elec-
trodes) and T is the incubation time of the electric
breakdown of a material (it is determined by the kinet-
ics of eectron multiplication in the electric discharge).

We assume, for afirst approximation, that the break-
down occurs at the leading edge of the voltage pulse
and that the voltage in the sample used grows linearly.
Theedectricfield isuniform. The incident voltage pulse
then has the form

u() = UTof[tH(t)—(t—to>H(t—to)].
Since the €lectric field is uniform, we have
E(t) = %{tH(t)—(t—to)Ha—to)l, (5)

where U* isthe amplitude of the pulse, t, isthe duration
of its leading edge, d is the distance between the elec-
trodes, and H(t) is a Heaviside step function.

Substituting (5) into (4) and considering that the
breakdown occurs at the leading edge of the pulse, we
find that, for t, < T, condition (4) assumes the form

tO

E* ' qet

—_— <

. ltdt <E,
0

and that, for ty > 1, the condition is

to
E*
1 |<
—T J. t'dt' < E,

to—T
where E* = U*/d.

Since the breakdown time is determined by the
instant at which the condition in (4) reduces to a strict
equality, we obtain the following dependences of the
electric strength on the duration of the leading edge of

TECHNICAL PHYSICS  Vol. 49
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the pulse:
CEr = =, {21
1

0 1-5-

D 2t0

O
2E T

%E* = —, ty<T.
to

For some materials, the time dependences of the
electric strength are shown in Figs. 2 and 3 (solid
curves) according to a calculation based on (6). The
parameter values used in this calculation are given in
the table. In the displayed dependences, the instant at
which the breakdown field begins increasing is com-
pletely determined by 1. In [9], it isindicated that this
time is virtually independent of the distance between
the electrodes. This also follows from the results that
were abtained from our cal culations and which are rep-
resented by the solid curves in Figs. 2 and 3. In the
cases considered above, the incubation time can there-
fore be considered as a characteristic of amaterial.

Thus, it has been shown that experimental data on a
pulsed breakdown are well described within our struc-
tural-time approach. The above examples of various
physical processes indicate that it is of paramount
importance to study incubation processes that prepare
abrupt structural changes (fracture and phase transi-
tions) in continuum media subjected to the effect of
intense pulsed forces. The results presented here dem-
onstrate that the structural—time approach, which
makes it possible to describe adequately both the
dynamical fracture of solids and the pulsed breakdown
of solid dielectrics, is quite universal.
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Abstract—A phenomenological model of the viscoelasticity of highly oriented polymer systemsis devel oped
based on the results of studying the relaxation of such systems (mainly, fibers of polyethylene terephthaate, polya-
mide-6, polyvinyl acohol, and other polymers) in the loaded state. The effect of an applied load on their relaxation
spectraagrees quditatively with the deformation behavior of crystal-like bandles that are present in amorphous
intercrystalline layers of the fibrillar supramolecular structure. © 2004 MAIK “ Nauka/Interperiodica” .

The behavior of highly oriented polymer fibers
under the action of an applied load isimportant for var-
ious engineering fields where such fibers or fiber-based
composite materialsare used. Inthiswork, we study the
mechanical properties of highly oriented fibers of
polyamide-6, polyvinyl acohol, polyethylene tereph-
thalate, and some other polymers. Based on the experi-
mental study of some processes characteristic of the
engineering applications of polymer fibers (creep,
uniaxial tension at various rates in the range of small
strains, strain relaxation during complete or partia
unloading in the range of nondestructive mechanical
stresses, etc.), we proposed a phenomenol ogical model
for the viscoelasticity of these fibers [1-5]; it is
described by the equation

Int

0, = Egg + Ist_s(aEssla(Ins))d(Ins), Q)

where 0, and g, arethe stressand strain at thetimet; tis
the duration of deformation; 8 isthe current timein the
range from zero to t; s=t — B isthe period correspond-
ing to the transition from the final strain €, to its current
value of g5 =€, _¢ (Fig. 1); E.istherelaxation modulus
depending on time and (as a parameter) strain; and
0E.J/0(Ins) is the derivative of the relaxation modulus
with respect to time, which can be interpreted as the
relaxation-time distribution of relaxing particles to a
first approximation [3].

For one of the simplest experiments (the determina-
tion of relaxation at € = const), the relaxation modulus
can be calculated by Eq. (2):

E. = 0/e = Eg—(Eo—E.)be, (2

where E; isthe initial quasi-elastic value of the modu-
lus, E,, is the quasi-equilibrium value of the modulus,
and ¢, is the normalized function of the time t that
depends on the parameter € and variesfrom zeroatt < 1
to unity at t > 1 (where T isthe real relaxation time).

The experiment showed that, for the approximation
of relaxation, it is convenient to use the probability inte-
gra

Vet
0 = (27 i exp(-0.52°)dz, €
as¢.. Here,
V. = a.lnt/t, 4)
€
€,
&
0 0 t ©
— L L u
S t s 0

Fig. 1. Schematic diagram for integration when stresses are
calculated by Eq. (1).

1063-7842/04/4911-1452$26.00 © 2004 MAIK “Nauka/ Interperiodica’



ON ONE SUPRAMOLECULAR MECHANISM

is the argument—functional that contains a constant a,,
and the average dtatistical relaxation time 1., which
depends on the strain as a parameter.

The above formulas indicate that, in its normalized
form, the relaxation kernel under integral (1) is the
Gaussian distribution

00./d(Ins) = (2m) *°a exp(=0.5V7,), (5)

which can be interpreted, in a first approximation, as
the normalized normal distribution of relaxing particles
over theintrinsic relaxation times[13].

With alowance made for therelaxation (1), therela-
tion between the stress and strain varying with time can
also be written in the form [3]

Int

g = E510t+J'ot_s(aDosla(Ins))d(Ins) (6)

under the condition

Int

E51Egt+J'Es;t_s(aDos/a(mS))d(lnS) =1 O

where D, = £,/0 isthe compliance during simple creep
€4 a 0 = const.

The compliance measured is approximated simi-
larly to the relaxation modulus by Egs. (2)—(5). In this
case, an analog of the average statistical relaxation time
isthe average statistical delay time (delay with respect
to the quasi-equilibrium state) [3].

A typical example of the family of the time depen-
dences of the relaxation modulus for polyfilament
fibers of polyethylene terephthalate is shown in Fig. 2,
and the corresponding strain dependence of the average
statistical relaxation time and the stress dependence of
the average statistical delay time are shown in Fig. 3.
The descending character of these dependences means
that, as the strain increases, both the relaxation and
delay spectra shift to shorter times. This shift isakind
of nonlinearity of the viscoelastic properties that is
caused by the activating effect of an applied mechanical
stress on the relaxation [1, 2]. This shift can also be
interpreted as the manifestation of a peculiar strain—
time or force—time analogy [1-3]. Dependencesthat are
similar to those shown in Figs. 2 and 3 are observed for
highly oriented films and monofibers of polyethylene
terephthal ate and monofibers and polyfilament fibers of
polyamide-6, polyvinyl alcohol, and polyacrylonitrile.
It should be noted that, from the structural standpoint,
polyacrylonitrileis not atypica amorphous—crystalline
polymer: its ordered regions are characterized by order-
ing only across the axes of macromolecul es (hexagonal
packing of randomly rotating molecular cylinders[6]).
However, the results of studying mechanical relaxation
suggest that the supramolecular structure of highly ori-
ented polyacrylonitrile fibersis similar to the structure
of amorphous—crystalline polymers; that is, more and
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Fig. 2. Time dependences of the relaxation modulus of
polyfilament fibers of polyethylene terephthalate at relative
straine = (1) 0.75, (2) 1.0, (3) 1.25, (4) 1.5, (5) 1.75, (6) 2.0,
(7) 2.5, (8) 3.0, and (9) 3.5%; t; = 1 min.

less ordered regions alternate with each other along the
fiber axis.

To reveal the most likely microscopic mechanism of
the effect of an applied stress on the relaxation spectra,
it is necessary to analyze the concepts of the supramo-
lecular structure of highly oriented polymers. The
intensity of the measured macroscopic relaxation of an
applied stress is specified by the number of segment-
molecular rearrangements that occur mainly in amor-
phousintercrystalline layers. If the number and volume
of these interlayers were unchanged, no substantial
deviations from linear viscodasticity would be
observed. In other words, Fig. 3 would show a horizon-
tal straight line, i.e., a constant relaxation spectrum.
The observed variation in the spectrum with strain
(Fig. 3) ismost likely due to the reversible increase in
the weight fraction of the molecules that are in the
amorphous state; these molecules have shorter relax-
ation times as compared to the molecules located in
more ordered regions—crystallites and crystal-like
bandles.

The concepts of crystal-like bandles in amorphous
interlayers in amorphous—crystalline polymers (Fig. 4)
were developed earlier [7-9]. In [7], the molecular-
weight distribution of the products of etching of poly-
ethylene films with fuming nitric acid was determined.
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Fig. 3. Dependences of (a) the average statistical delay time
on stress and (b) the average statistical relaxation time on
strain for polyfilament fibers of polyethylene terephthalate
at various temperatures: (1) 20, (2) 40, (3) 60, and (4) 80°C.

The acid destroyed macromol ecules only in amorphous
regions and in the places of packing of macromolecules
at crystallite boundaries. The molecular-weight distri-
bution was found to be bimodal: one distribution peak
corresponded to the crystallite size along the chain and
the other corresponded to the same size plus the length
of the long period. Based on this finding, it was con-
cluded that there exist dense crystal-like bandlesin the
amorphous regions, which are stable to the destroying
action of the acid.

Tuichiev et al. [8] studied the effect of iodine sorp-
tion by fibers of polyvinyl alcohol and concluded that
(i) molecular bandles with a high density (close to the
crystal density) exist in amorphous regions and
(i) iodine cannot penetrate these bandles. In[9], acon-
clusion about the presence of high-density regions in
amorphous interlayers was drawn from the changes in
the intensities of highly oriented films of various poly-
mers.

STALEVICH, GINZBURG
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Fig. 4. Modéel of the supramolecular structure of highly ori-
ented amorphous—crystalline polymers: (1) regions of fold-
ing macromolecul es, which become destroyed when treated
by fuming nitric acid [7]; (2) macromolecules in crystal-
lites; (3) region of a dense crystal-like bandle in an amor-
phous interlayer; and (4) loose amorphous interlayers. The
values of thelong periods, crystallite sizes, and amorphous-
interlayer sizes for low-density polyethylene data are taken
from [7].

Schultz [10] noted that the absolute value of the
integrated intensity of small-angle X-ray scattering
from oriented fibers made of polyethyleneterephthal ate
is significantly smaller than that predicted by a two-
phase model for fibrils having long periods. In princi-
ple, this fact can be explained by the presence of inter-
fibrila layers or defects in crystallites; however, in the
context of the concepts developed in thiswork, thisfact
can also be explained by the presence of crystal-like
bandles. As applied to polyethylene-terephthalate
fibers, these concepts were confirmed in a number of
works. For example, using NMR and the methods of
small- and wide-angle X-ray diffraction, Biangardi and
Zachmann [10] showed that, apart from amobile amor-
phous component, polyethylene terephthalate fibers
also contain a rigid, low-mobility amorphous compo-
nent that consists of straightened highly oriented chain
segments. In another work in the selection of articles
[10], the amorphous halo in wide-angle X-ray diffrac-
tion patterns taken from polyethylene-terephthalate
fibers was shown to correspond to a superposition of
randomly and highly oriented components. Moreover,
analyzing such data, the authors concluded that a third
phase (“ oriented mesophase”) existsin these fibers. All
these results agree with the concepts of crystal-like
bandles.

Under a load or upon heating, the bandles decom-
pose reversibly and the weight fraction of macromole-
cule segments in amorphous interlayers increases.
Thus, the variation in the relaxation spectrum as akind
of the nonlinearity of viscoelastic properties of ahighly
oriented polymer can be explained by the reversible
decomposition of the bandles located in amorphous
interlayers. On the whole, thisinterpretation of nonlin-
2004
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Fig. 5. Dependences of (a) the creep activation energy on
stress and (b) the stress-relaxation activation energy on
strain for polyfilament fibers of polyethylene terephthalate
at various temperatures: (1) 20, (2) 40, (3) 60, and (4) 80°C.

early inherited viscoelasticity is consistent with the
results of other studies of the mechanical behavior of
highly oriented fibers made of amorphous-crystalline
polymers, specifically, recovery deformation processes
that occur after complete or partial unloading [4] and
after high-rate tension [5]. In addition, the specific role
of the bandles described above is at least consistent
with the deformation behavior of oriented amorphous—
crystalline polymers, namely, the observed delay of
recovery deformation processes with respect to the pro-
cesses predicted by Eq. (1) [4], the dependence of the
measured elastic modulus on the strain rate [5], and the
possibility of taking into account the relaxation contri-
butions at high strain rates [5].

The leading role of the bandle decompositionisalso
confirmed by the estimation of the potential barriersfor
macromolecular mobility, which controls the processes
of creep and relaxation. The estimations were per-
formed using the Arrhenius-Boltzmann formula

U, = RTInt,/ty, or U, = RTInt/1,, (8)
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Fig. 6. Relations between the long period L and (a) the lon-
gitudinal crystallite size L. and (b) the longitudinal amor-
phous-zone size L, for (1) polyethylene terephthalate,
(2) polyamide-6, and (3) polyethylene [11].

where 1, isthe average statistical delay time determined
from afamily of the compliance curves measured under
conditions of creep [3], T, is the average dtatistical
relaxation time determined from a family of the time
dependences of the relaxation modulus[3], 1, isacon-
stant, T isthe Kelvin temperature, and Risthe universal
gas constant.

As can be seen from Fig. 5, the stress and strain
dependences of the potential barriers calculated by
Eq. (8) can be considered linear:

Uo = UO—VO', Us = UO—VETS, (9)

where E; = 0.5(E, + E,,) is the average rel axation mod-
ulus.

At 1, =103 s, we have the following numerical val-
ues of the energy constants: U, = 100 kJ/mol and y =
0.4nm3. These values correspond to the segment
mobility on the molecular scale of a structure, which
does not contradict the assumed presence of crystal-like
bandlesin intercrystallite amorphous layers.

Let us estimate the size of elementary carriers of
relaxation processes. The long periods in highly ori-
ented amorphous—crystalline polymers with soft chains
usually range from 10 to 20 nm, reaching 30-50 nm
rather rarely at sufficiently high treatment tempera
tures. Figure 6 shows the most typical relations
between the large-period size and the longitudinal sizes
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of crystallites and amorphous regions for three poly-
mers[11]; the length of amorphous interlayersin poly-
ethylene terephthal ate fibers varies from 5 to 8 nm. For
guantitative estimations, we take their average value
(6.5 nm). Then, the cross sectional area of the carrier is
~0.4/6.5 = 0.06 nm?, and it is ~0.25 nm across, which
agrees in order of magnitude with the intermolecular
distances in the crystal lattice and amorphous interlay-
ers. Thus, the elementary carrier of the relaxation pro-
cessesislikely to be a5-8 nm segment of a macromol-
ecule, which seems reasonable from the physical view-
point. The number of monomeric units that are
cooperatively involved in the relaxation processes
depends on the length of the projection of a unit onto
the texture axis. In particular, for polyethylene tereph-
thalate, this length (lattice parameter ¢) is ~1.075 nm
[12]. Then, a segment mobile element contains five to
Seven monomeric units.

We now analyze the activation energy obtained. One
monomeric unit of polyethylene terephthalate has
24 atoms along the chain of a macromolecule (with
allowance for the fact that each benzene ring has 6
atoms). Usually, the energy of intermolecular van der
Waals interaction is 0.1-1 kJmol [13]. Then, no less
than 100 atomic contacts (or ho less than 4-5 mono-
meric units) take part simultaneously in the relaxation
motion, which agrees satisfactorily with the size of the
cooperative element estimated from the activation vol-
umey.

The estimates of the kinetic characteristics agree
with the assumption that the reversible decomposition
of the crystal-like bandles plays a leading role in the
micromechanism of the observed effect of macrodefor-
mation on the relaxation spectra.
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Abstract—A one-dimensional macroscopic model isused to analyze the plastic deformation of materialswith-
out coating and with a plastic hardening coating or a plastic nonhardening coating at friction. The calculations
show that mechanical vibrations can be excited in a tribological system and that their frequency decreases
sharply when going from elastic to plastic deformation. One of the causes of the development of plastic defor-
mation in the surface layer and in the sublayer of the material under a hard coating is found to be adecreasein
the elastic properties of the material because of frictional heating. An intense plastic shear in the material under
the hard coating can cause its failure due to incompatible strains of the coating and the base. © 2004 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

Friction is a widely occurring physicomechanical
process that takes place when surfaces are in contact.
For example, it occurs when wetry to keep our balance
on a dippery road, to repair our old car using wonder-
working additives for lubricants, to choose the material
for parts of a designed mechanism, and so on. Most
processes that are caused by the interaction and maotion
of system elements obey fundamental laws, which can
be used to predict the behavior of the system; however,
friction induces an uncertainty that depends on many
factors connected by relations that can be determined
only experimentally. To take into account all the rela-
tions characterizing the behavior of friction pairs, one
has to use the achievements of surface physics, the
mechanics of contact phenomena, strength physics,
plasticity physics, mechanochemistry, electrochemis-
try, and many other sciences. Not al the explicit and
implicit factors can be taken into account. Therefore,
the most realistic approach to understanding the pro-
cesses of friction and wear is based on studying various
aspects of this phenomenon when basic parameters that
determine the state of a certain tribological pair can be
separated.

From the physical standpoint, the most important
problem is the problem of degradation of the surface
layer of a material; its solution should be based on
understanding the leading role of plastic deformation at
friction and the related factors (mainly dynamic pro-
cesses). The dynamic character of friction manifests
itself in macroscopic mechanical vibrations that appear
in a friction system upon dliding. It was found in [1]
that one of the causes of the formation of a deformed
near-surface layer at friction is mechanical and thermal

excitationsthat propagate deep into the medium and are
caused by the transition of afriction system into a self-
vibrating state with a large amplitude of mechanical
vibrations. In this case, temperature oscillations occur
at the friction surface and in a subsurface layer; as a
result, thermal cyclic creep and phase and structural
transformations may develop in the material.

Interest in dynamic processes has increased in the
past few years, and they are extensively studied both
experimentally and theoretically. The purpose is to
study the causes of vibrationsin atribological system,
the conditions of stability of various vibration modes,
and the critical values of parameters and their combina-
tions that change the system into a specific friction
mode.

During contact interaction, especialy in the case of
dry friction, quasi-periodic or periodic changes in the
velocity of the relative motion of the surfaces are
observed experimentaly. On the macroscale, this
behavior manifests itself in the form of relaxation or
quasi-harmonic friction self-sustained vibrations.
There are severa approaches to explaining the causes
of vibrations in a friction system. In all of them, the
development of vibrations is related to changes in the
friction coefficient in frictional interaction. In one of
the approaches [2], the occurrence of vibrations is
explained by the descending nonlinear dependence of
the friction coefficient on the diding velocity. In
another model [3], the friction force is considered
velocity-independent and self-sustained friction vibra-
tions are assumed to be devel oped because of a positive
difference between the static friction force and the
kinetic friction force. In the third approach [4], both a
positive difference between the static and kinetic fric-
tion forces and a change in the friction force with

1063-7842/04/4911-1457$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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changing velocity are taken into account. It is shown
experimentally that rheological phenomenain the con-
tact region play a significant role in the appearance of
friction self-sustained vibrations [5]. In particular, the
appearance of friction self-sustained vibrations is
related to temperature-induced changes in the friction
characteristics [6]. This model assumes that, in the
stage of relative diding in avibration cycle, the heating
of friction surfaces results in a decrease in the friction
coefficient and that, at the stage of relative rest, the sur-
faces cool down and the friction coefficient increases.
Indeed, a decrease in the friction coefficient with
increasing temperature is observed experimentally.

The dynamic character of friction manifestsitself in
not only the macro- but also the microscale. On the
microscale, a change in the friction force is caused by
stick-slip motion. In this case, the relative mation of the
two surfacesis discontinuous and consists of sequential
stick—glip cycles[7]. The mechanism of this oscillatory
motion of surfaces in friction has not yet been under-
stood; however, most researchers believe that it is also
related to the dependence of the friction coefficient on
the dliding velocity [8].

MODEL OF A TRIBOLOGICAL CONTACT

In this work, we analyze the dynamic behavior of a
tribological contact, which specifies the viscoelastic
deformation of the surface layers at friction, using a
one-dimensional macroscopic model. The strain of the
subsurface layers and the propagation of strain into the
bulk of a material are determined with allowance for
changesin its properties dueto the strain hardening and
frictional heating.

From the macroscopic standpoint, the structure and
properties of the material formed within a contact spot
arevirtually uniformin the direction paralel to thefric-
tion surface and vary only with the distance from this
surface. Therefore, to study shear strain in the surface

Pcont

vt L1,

|
Basei % / z

L

Fig. 1. System being simulated.
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layer in the simplest case, we can restrict ourselves to
one-dimensional approximation. The model to be
developed is macroscopic not from the standpoint of a
spatial scale: this model does not take into account the
structure and deformation mechanism of the medium
under study and deals only with its macroscopic char-
acteristics.

Frictional interaction was taken into account within
a contact spot, which is represented as a surface
microasperity consisting of a number of layers having
different physicomechanical properties in the general
case (Fig. 1). The response of the system to an external
action is determined by the properties of the layers
forming the microasperity and the laws of interaction
between them. This approach allows us to describe and
to arbitrarily specify aproperty gradient in the microas-
perity and to design this microasperity from severa
materials with different properties. The layers are
assumed to be absolutely rigid and to have the same
length L (along the surface) and thickness h, . Compres-
sion induced by a contact (normal) pressure P, iS hot
taken into account explicitly in the model. The normal
stress is assumed to be constant over the whole height
of the microasperity and equal to the contact pressure.
We take into account the normal stress when calculat-
ing the plasticity criterion.

A shear that can be induced by afriction forcein the
microasperity is realized in the model by shifting the
layers with respect to each other parallel to the friction
surface. The elementary shear carrier isapair of layers.
Each layer is assumed to interact only with the two
nearest neighbors. To find the shear stress operating in
apair of layers, we use aviscoel astic response function,
which is similar to the function used in [9]. It has the
following parameters: elastic and “plastic” moduli, the
maximum elastic strain, and an equilibrium shear. The
parameters of the response function are varied with the
deformation history and the temperature using a special
procedure.

Thematerial of each layer ischaracterized by aden-
sity p, specific heat ¢, thermal conductivity A, shear
modulus G, plastic shear modulus G,, and yield
strength upon uniaxial tension Y. Moreover, each layer
has a shift x and a trandational velocity V, which are
found by integrating a set of classical equations of
motion for the whole system of the layers expressed in
terms of stresses (1)—(3) with boundary condition (4):

1
Pl = T, &
i Vln ii— ii+
P = T e @)
dXin i
G - Um (©)
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dxi _

wherei isthe number of alayer (i =1, 2, ..., k—1; index
1 isreferred to the upper layer; and k is the number of

layers), T: = Py, is the friction force-induced shear

stress at the surface, and 1, is the friction coefficient at
the nth time step.

Equation (1) is written for the upper layer of the
microasperity. The upper layer slides on a counterbody
that moves at a constant velocity V.. Boundary condi-
tion (4) isthe condition of fixation of the lower layer on
the substrate.

At the beginning of calculation, the properties of a
pair of layers are taken to be the average properties of
itselements. During simulation, the mechanical proper-
ties of the pair vary with temperature.

To find the temperature field in the microasperity,
we solve aone-dimensional heat problem that issimilar
to that in [10]. The choice of boundary conditions
strongly affects the solution of the heat problem and,
hence, the behavior of the friction system. Asarule, we
use the condition of ideal thermal insulation to calcu-
late the temperature field in the microasperity using the
one-dimensional approximation and to represent the
region to be ssimulated in the form of athin rod for the
microasperity side that is opposite to the contact sur-
face. In our case, the penetration depth of thermal per-
turbation exceeds the microasperity height because of
long simul ation times and taking into account the cyclic
character of frictiona interaction. Therefore, the
boundary condition of ideal thermal insulation is
invalid for the base of the microasperity. One of the
methods to solve the problem is to use the boundary
condition in the form

T(hsmp’ t) = Tbulk(hsmpv t)v

where Ty, (hgmp, 1) iSthe average temperature at adepth
Z= hgpp.

We find Ty (hgmp t) from the solution of the prob-
lem of frictional heating of the samplefor alarger depth
with alarger spatia grid step, disregarding the discrete
character of heat release at the surface during friction.
To calculate this temperature, the intensity of heat
release at the contact surface was determined from the
nominal rather than contact pressure. Thus, the temper-
ature of the microasperity baseisrelated to the average
temperature of the sample at a distance hgy,, from the
surface, which increases monotonically during friction.
Thisis schematically shown in Fig. 2. The application
of the above boundary condition restricts heating in the
microasperity, which corresponds to intense heat
removal to the neighboring unheated regions near the
contact spot.

To calculate the viscoel astic strain, we use the defor-
mation criterion of plasticity. The material in a pair of
neighboring layers is thought to undergo viscoelastic
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Fig. 2. Schematic diagram and the boundary conditions for
solving the heat problem.

deformation when the strain at the nth time step
exceeds the maximum elastic strain for the current tem-

i+l > yin,(;+l(-|-in,i+l),

perature in thispair; i.e., when y,
is the temperature in the pair of layersi

-
where T},'*

ii+1

and i + 1. The value of yi** (Th'*") depends on the
temperature and the deformation history of the pair of
layers.

Before simulation, we calculated the reference val-
ues of the maximum elastic strain for each pair of layers

over the entire temperature range ygq (T *1).

Although the model is one-dimensional, we found
plasticity conditions using the Mises criterion for plane
strain (after Taybor [11]). The application of this crite-
rion is grounded on the fact that two stresses (normal
and shear) are present in the microasperity. With this
criterion, we can take into account the contribution of
the normal stressin terms of the one-dimensional for-
mulation of the problem. Based on the above consider-
ations, we determine the maximum elastic strain

i,i+1

Yoa (T"1*1) at a given temperature from the expres-
sion

i,i+1(-|-i,i+l) _ A/(Y(ThI+ ) _Pcont. )

Yoe /\/éGi,i+1(Ti,i+1)
ii+1

The vaue of yge ~(T"'*1) is used in the response

function to calculate the dynamic behavior of the sys-
tem when the material in apair of layers has not under-
gone plastic shear until a given time. The response
function relates the shear strain to the shear stressfor a
pair of layersand can describetheviscoelastic strain for
both hardening and nonhardening materials. The
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parameters of the response-function may vary as a
result of heating and due to plastic strain of the mate-
rial.

CALCULATION OF THE INTERACTION
OF A SINGLE MICROASPERITY
DURING FRICTION

The microasperity consists of 150 1-um-thick lay-
ers. When the microasperity has a coating, the corre-
sponding number of its upper layers of thickness h .,
have properties other than those of the base material.
The material of a hard coating is taken to be ideally
elastic with ashear modulusthat istwice aslarge asthe
shear modulus of the base material. The materia of a
plastic coating has ayield strength that ishalf that of the
base material. Other properties of the coatings are iden-
tical to the properties of the base material, which are
chosen to be similar to the properties of 12Kh18N10T
austenitic steel.

Our purpose was to analyze the model materia
rather than simulate the evolution of a certain material
at friction. Therefore, for ssimplicity, we assumed that
the mechanical properties decrease linearly with
increasing temperature. We also assumed that, at atem-
perature of 1300°C (which is close to the melting tem-
perature), the shear modul us, the plastic shear modulus,
and the yield strength are 10% of their values at 20°C.

An elementary event of interaction of the microas-
perity is simulated at counterbody dliding velocity V. =
1 m/s, coefficient of diding friction u = 0.5, contact
pressure P, = 162 MPa, nominal pressure P =
7.5 MPa, and initial temperature T, = 20°C.

Before simulation, the sampleis shifted from anini-
tial state to an equilibrium position; that is, the layers
are displaced with respect to each other so that the elas-
tic shear stress balances the friction force-induced
stress. Thisprovides azero velocity at theinitial instant

(VIV,) % 10°

02
0.1
1
0
-0.11
0 40 80 120
bx10° m

Fig. 3. Ratio of the layer velocity V in the sample to the
counterbody velocity V, (b is the distance from the friction
surface): (1) before the beginning of plastic deformation
and (2) at aplastic strain of =0.6% at the surface.
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and the absence of plastic deformation at the interface
with the rigid base during the calculation. In so doing,
we excluded the effect of fixation of the lower part of
the sample on the simulation results.

Thetime of interaction of the microasperity with the
counterbody t.,. is determined from the relation
between the contact spot size L in the sliding direction
and the counterbody velocity V. t,; = L/V.. Thus,
when simulating, the contact spot size is specified by
the duration of the interaction of the microasperity with
the counterbody.

We calculated the following systems: an uncoated
material, amaterial with ahard coating, amaterial with
aplastic strain-hardening coating, and amaterial with a
plastic nonhardening coating.

The simulation shows that, at the initial instant, the
sample is elastically deformed under the action of the
friction force; further diding results in heat release at
the friction surface and heating of the microasperity.
Thisheating isaccompanied by adecreasein the elastic
properties (softening) of the surface-layer material.
However, for a short contact time, the increase in the
temperature isinsignificant, and the degree of softening
isinsufficient for plastic deformation. Curve 1lin Fig. 3
shows the velocity field of the system at a certain time
when the strain is still elastic. Plastic deformation is
absent in this simulation stage, sincetheincreasein the
temperature does not cause substantial changes in the
mechanical properties of the material. At this instant,
the system exhibits quasi-periodic vibrations at a fre-
guency of several megahertz. Thevibrationsresult from
different mechanical properties of the surface layers
due to the temperature gradient. Moreover, the initia
displacement of the sample, which balancesthefriction
force, affects the vibrations.

Increasing the temperature to a certain critical value
at which the friction-induced tangential stresses reach
the yield stress causes the plastic shear of the surface
layers. As the sample is heated, plastic deformation
involves new surface layers. The dynamic response of
the system is interesting in this case. Plastic deforma-
tion generates vibrations in the system whose fre-
guency is about an order of magnitude lower than the
frequency observed upon elastic deformation (Fig. 3,
curve 2). These vibrations are unstable because the
plastic shear in the surface layer occurs stepwise rather
than continuously. Every new plastic-deformation
event causes generation of an elastic shear wave in the
underlying material, which propagates deep into the
bulk at a velocity corresponding to that of the trans-
verse sound wave. Then, the elastic shear wave formed
continues to move along the microasperity, reflecting
periodically from the rigid base and the surface. The
interference of all the waves induced by plastic shears
gives the pattern shown in Fig. 3 (curve 2). The vibra-
tion frequency turns out to be approximately equal to
the tribosystem eigenfrequency.
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Vibrations of this type were experimentaly
observed as the vibrations of afriction unit or as repet-
itive sound signals. The study of acoustic emission
indicates that a decrease in the acoustic-radiation fre-
guency is also related to the beginning of plastic defor-
mation. It should be noted that, in a real tribological
conjugation, the frequencies of such vibrations are sev-
eral orders of magnitude lower than the cal culated ones,
sincethe sizes of real tribosystems are several orders of
magnitude larger than those of the system simulated.

Another manifestation of an increase in the temper-
ature of the surface layersisthe nonlinear depth depen-
dence of the yield strength of the material. It can be
tracked in our calculations using the current value of
the maximum elastic strain y, which is proportional to
the yield strength. Figure 4 shows the change in the
ratio of the current maximum elastic strain to itsinitial
value with increasing the distance from the surface.
Thisbehavior of y, is controlled by strain hardening of
the material during plastic deformation. On the one
hand, heated and plastically deformed layers become
softened, and, on the other hand, the overlying layers
become hardened. The minimum ratio Yu/Yy ¢ 1S SPeci-
fied by the viscoelastic properties of the material and
the limiting temperature above which the friction force
induces plastic deformation in the surface layers. To
decrease the simulation time, we chose the initial tem-
perature and normal pressure such that plastic deforma-
tion started at a very small increase in the temperature
in the calculation. Therefore, the minimum islow. Fig-
ure 5 shows the shear of arelatively thick copper layer
on asample (block) asaresult of asharp increasein the
load at friction.! One of us observed a similar effect of
ametal shear on the brake block of arailway car: it was
covered with metal layers removed from a railway
wheel as aresult of emergency braking. This phenom-
enon and the shear shown in Fig. 5 can be explained
using the curves of Fig. 4. In the steady-state friction
mode, the shear rate decreases gradually to zero with
the depth due to a plastic flow. A sharp increase in the
load on the friction surface (e.g., emergency braking)
causes an increase in the stresses in the underlying lay-
ers, and they exceed the yield stress, which decreases
upon heating during the previous friction. In this case,
the velocity of all the surface layers can increase step-
wise so that the softest layers shift with respect to the
base material at a certain depth.

SIMULATION OF FRICTION IN COATED
MATERIALS

The plastic deformation caused by a decreasein the
mechanical properties of the material can lead to failure
of hard wear-resistant coatings. The results of friction
tests of samples with coatings produced by nitrogen
ion-beam treatment are given in [12]. Layers 3-6 pm
thick did not give a substantial increase in the wear

L This photograph is presented courtesy of S.Yu. Tarasov.
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Fig. 4. Ratio of the current maximum elastic strain yq to its
initial value in the sample yy o at different times: (1) 1.6 x

107°,(2) 1x 104 and (3) 2 x 10 s.

Fig. 5. Shear of the surface layers in copper induced by a
sharp increase in the normal (contact) load at friction.

resistance of the steel surface under the conditions of
dry-friction contact interaction. During the tests, the
modified layer failed in the first meters of the sliding
distance and the wear intensity reached the level of the
unimplanted steel. Thicker hard coatings have a higher
wear resistance.

Our calculations indicate that plastic deformation,
which is mainly caused by the softening of the base
material because of frictional heating, develops under a
hard layer. If the time of frictional interaction in the
contact spot exceeds the certain critical timeit takesfor
the base material to be softened, an intense plastic shear
occurs in the sublayer under the coating. This shear
may result inthe failure of the coating because of defor-
mation incompatibility between the hard layer and the
base material. If the coating thickness provides asignif-
icant decrease in the temperature and stress in the sub-
layer so that they do not cause aplastic flow of the base
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Fig. 6. Dependence of the shear plastic strain y on the dis-
tance b from the friction surface in a sample with a 20-um-
thick nonhardening plastic coating at different times:

(1) 1.6x107°,(2) 25% 10, and (3) 5x 10 s.
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Fig. 7. Dependence of the shear plastic strain y on the dis-
tance b from the friction surface in a steel sample with a
20-um-thick hardening plastic coating at different times:

(1) 1.6x 107, (2) 5x 107>, and (3) L5 x 10™*s.

material, the coating does not fail. Otherwise, the plas-
tic deformation under the hard coating would beincom-
patible with the elastic deformation of the coating,
which causes cracking in the latter.

The friction simulation of a coating made of an ide-
ally plastic material indicatesthat a plastic shear occurs
only in the upper pair of elements irrespective of the
coating thickness (Fig. 6). Until the beginning of plastic
flow (Fig, 6, curve 1), thetemperaturein the upper layer
increases. As the temperature increases, the coating
material becomes softened; when the flow stress
becomes lower than the shear stress caused by the fric-
tion force, the upper layer is entrained by the counter-
body and plastic shear develops. In time, the plastic
shear becomes very high (Fig. 6, curves 2, 3). After the
beginning of the plastic flow, the velocity of the upper
layer is not constant. It oscillates with a certain ampli-
tude about an average value, which is =70% of the

RUBTSOV, KOLUBAEV

counterbody velocity. Correspondingly, the velocity of
dliding between the microasperity and counterbody is
significantly lower than itsinitial value. Therefore, the
heat release at the surface decreases several times and
the surface temperature decreases. It should be noted
that the plastic shear does not terminate after the tem-
perature decreases below the value at which softening
of the coating begins. This behavior is related to the
dynamic character of loading that occurs after the
beginning of the plastic flow (see above). Figure 7
shows plastic-deformation curves at varioustimesfor a
hardening plastic coating. The curves are similar to the
behavior of the uncoated plastic material described in
the previous section. Plastic deformation begins on the
surface, and the whole coating becomes plastic in the
course of time. The less plastic base remains elastic.
The temperature in the sample increases monotoni-
caly.

CONCLUSIONS

(1) A comparison of the simulation results with
experiment shows that, despiteits simplicity, the model
proposed can correctly describe the behavior of gradi-
ent materials during frictional interaction. It can
describe the character of dynamic excitations that
develop as aresult of the interaction of contacting sur-
facesin the contact spots and are accompanied by high-
frequency vibrations. Asfollows from the model calcu-
lations, one of the possible causes of the vibrations,
which manifest themselvesin real friction pairsin the
form of macrovibrations and sound, can be a plastic
shear of the surface layer in the contact spots.

(2) One of the main results is the fact that the ther-
mal conditions in the surface layer are akey factor that
determines the behavior of a tribosystem. Changes in
the tribosystem parameters, such as the mechanical
properties of the material, loading conditions, and the
contact geometry, affect the plastic deformation of the
surface layer both directly and indirectly because of a
change in the thermal conditions in the contact zone.
The same thermal processes are substantially responsi-
ble for the failure of hard coatings, since an incompati-
ble deformation devel opsin the hard layer and the base
material asaresult of the softening of the base material
dueto frictional heating. This deformation leadsto fail-
ure of the coating.

(3) Thefriction simulation of amaterial with aplas-
tic coating shows that hardening and nonhardening
coatings behave differently. In the case of a hardening
material, plastic deformation develops throughout the
coating. In the case of a nonhardening coating, plastic
deformation is localized in a thin surface layer and
reaches very high values (1000% or more) during the
contact. After the beginning of intense plastic deforma-
tioninthe plastic layer, the friction-surface temperature
decreases substantially. Thus, the plastic nonhardening
layer serves as a solid lubricant and decreases strongly
frictional heating.
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Abstract—A model of equivalent reflectors proposed for crystal-like structure makes it possible to obtain the
dispersion characteristic in explicit form. The similarity of the dispersion characteristics of waveguides and
crystal-like structuresis demonstrated. A fundamental solution is proposed for improving the selectivity of such

structures. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Artificial periodic structures similar to natural crys-
tals have become objects of extensive study in recent
years. These structures form the basis for various new
(primarily nanoelectronic) integrated signal processing
devices. Among such crystal-like structures (CSs), con-
siderable advances have been made in thefield of semi-
conducting superlattices (SLs) for electrons as de Bro-
glie waves, photonic crystals (PtCs) for electromag-
netic waves, and phonon crystals (PnCs) for elastic
waves. In the frequency bands formed in crystals and
CSs due to constructive interference of reflected waves
(forbidden energy bands for electrons and forbidden
gaps for photons and phonons), waves cannot propa-
gate. Such a frequency filtration makes it possible to
control the transmission of waves in CSs, which
extends the potential of signal processing methods.

Simulation of crystals and CSsisreduced to solving
the wave equation with periodic boundary conditions
mainly using the matrix method [1] and finite-differ-
ence time-demain analysis [2]. The relatively simple
models proposed recently [3, 4] are based on analysis
of the Airy formulas for the coefficients of reflection
and transmission of the optical layer and on the analogy
between the dispersion relation for a PIC and a
pseudoguantum particle, respectively, make it possible
to establish important featuresin the spectral character-
istics of PtCs.

In this study, we propose a general model of equiv-
alent reflectors for CSs, which provides quite accurate
(and even explicit) expressions for dispersion charac-
teristics and permits a visual analysis and optimization
of constructive solutions for CSs. This model serves as
the basis of amethod for improving the CS selectivity.

Principal features of CSs are manifested in one-
dimensional structures. Let us consider the dispersion
characteristics of such CSs.

DISPERSION CHARACTERISTICS OF CS:
MODEL OF EQUIVALENT REFLECTORS

The dispersion characteristics of PtCs and PnCs
formed by layerswith aternating refractive indices and
with alternating acoustic properties, respectively, for
the normal incidence of awave have theform[1, 5, 6]

+x2 . .

2XX sink,asink,b, (1)
where K is the Bloch wave number; A is the period of
the structure; a and b are the thicknesses of the layers;
k, , are the wave numbers corresponding to the layers,
and X = ky/k, = ny/n, (ny , are the refractive indices of
the layer) for PtCs and X = c,ky/ck; (¢, , arethe elastic
moduli of the layers) for PnCs.

It should be noted that the dispersion characteristic
for PnCsin recent publications [3, 7] contains an error
due to the neglect of the elastic moduli.

The dispersion characteristic of a SL formed by
aternating potential barriers and wells in the case of
electron tunneling is defined as [ 8]

2

1-x". .
ZXX sinhk;asink,b,

wherek; = /2m(V —E) /h, E<V; k, = J2mE /A, mis
the effective electron mass, V is the height of potential
barriers, E is the electron energy, # = h/21t, h is the
Planck constant; a is the barrier width, b is the well
width, and X = ki/K,.

For different effective electron masses in the region
of a barrier and a well (m, and m,, respectively), we
have x = kymy/k,m, in view of the difference in the
boundary conditions for these regions [9].

If we use the general expression for ki, k; =

J2m(E=V) /A, ks isimaginary for E <V and formula
(2) follows from Eq. (1) after the substitution of imagi-

coskKA = cosklacoskzb—1

cosKA\ = coshk,acosk,b —
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nary k;. Thus, Eqg. (1) establishes the implicit depen-
dence of the dispersion characteristic for all CSs con-
Sidered here.

We will provethat quantity x isequal to thedirect or
inverse ratio of impedances Z; and Z, of the layers. For

optical waves, wehave = ny/n, = Z,/Z, = r5". For elas-
tic waves, Z = vp, where v isthe velocity and p isthe

density of the medium. Since v = ./c/p, we have X =
CVolC,vy = Z4/Z, = 1. For electron waves [10, 11], Z =

+2.,/2(E—V)/m, where the plus and minus signs cor-
respond to the positive and negative directions of wave
propagation. For E <V, the impedance is imaginary,
which corresponds to electron tunneling in a bounded
medium (potential barrier); for E >V, theimpedanceis
real, which corresponds to passage of €lectrons above
the barrier. Since Z = +2#k/m, for electron waves we
havex =Z,/Z,=r,.

Thus, the first cofactor in the second term on the
right-hand side of Eqg. (1), as well as the coefficient of
reflection from the interface between the layers with
impedances Z; and Z,, is determined by the ratio r of
impedances.

We transform Eq. (1) for real-valued k; and Z; by
adding the term sink;asink,b to the right-hand side of
Eq. (1) and subtracting it,

(r;—1)°
2r,

where D = nja+ n,b, k= wyc; for optical waves, n, , are
the refractive indices of the layers and c is the velocity
of light in vacuum; for elastic and electron waves,
quantitiesn, , are analogous to refractiveindicesn, , =
ClVy 5 C= (Vv + V)2

Disregarding the second term on the right-hand side
of Eq. (3) and the periodicity of function cosx, we have
KA = kD. In this case, the dispersion characteristic
defined by expression w = cK/0mC] where [nC= (n;a +
n,b)/(a + b) is the averaged refractive index, corre-
sponds to the case when reflections within the structure
are disregarded. Thus, the second term on the right-
hand side of Eq. (3) is associated with the effect of
reflections.

In contrast to optical and electron waves, for elastic
wavesitispossiblethat v; # v, andr, = 1in some cases
(if vo/v, = pJIp,). Reflections and, accordingly, the sec-
ond term in Eq. (3) are absent, and a band diagram is
not formed.

L et us see how thisterm is connected with the coef-
ficients of reflection from the layers (see the inset to
Fig. 1). The arrows denote the sources of reflection at
the boundaries of the layers; r = |r, — 1|/(r, + 1) isthe
modulus of the coefficient of reflection from the layer
boundary. The direction of the arrows corresponds to
rz > 1. We halve the sources and sum the halves, reduc-

cosKA = coskD —

sink;asink,b,  (3)
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Fig. 1. Dispersion characteristics of a SL. Curves 1, 2 and
3, 4 represent the real and imaginary parts of K in accor-
dance with relations (1), (5) and (1), (6). Thereal part of K
is expressed in units of /A and the imaginary part, in arbi-
trary units.

ing then to the centers of the layers (sources ry , in
Fig. 1): r; = 0.5rexp(ik,a) — 0.5r exp(—ik,a) = irsink;a
and r, = —rsink,b. The product of the reflection coeffi-
cientsisr,r, = r’sink,asink,b. Taking thisinto account,
we obtain

cosKA = coskD —P/2, 4
where P = 4rr,/(1—r?).

In the vicinity of the boundaries of forbidden gaps,
we have KA = mit, wherem=1, 2, ... isthe number of
the forbidden gap. We transform Eq. (4) asfollows:

cos(KA —mm) = cos(kD —mm) — (-1)"P/2
=1— (kD —mm)/2—(-1)"P/2

= 00s+/(kD —mm)? + (=1)"P.

In the dlowed bands, we have (kD — mm)? + (-1)™P >
Oand

(kD —mm)® = (KA —mm)®— (-1)"P. (5)

Since KA = mmt+ ix and (kD —mm)? + (<1)"P < 0in
forbidden gaps, we have

X = J—(kD —mm)? — (<1)"P. (6)

Dependences (5) and (6) correctly approximate
Eqg. (1) not only in the vicinity of the forbidden gap
boundaries, but also in the entire range of K values. For
example, for r, = 2.7 (which correspondsto n, = 1.5 and
n, = 4 for PtCs) and k.b/k,a = 3 (alternation of layers
with optical thickness 3\y/8 and Ay/8, where A, is the
wavelength at the mean frequency of thefirst forbidden



1466

gap), the plots for dispersion characteristics calculated
by formulas (1) and (5), (6) coincide.

Figure 1 shows the dispersion characteristics of a
SL. The SL isformed by Al,Ga; _,As and GaAs layers
with a thickness equal to 30 GaAs lattice constants in
the [100] direction (equal to 2.82665 A [12]); V =
0.25eV; m; = (0.0665 + 0.0835x)m, [13]; m, =
0.0665my,, where my, is the electron rest mass; V and x
are connected via the relation V = 0.7731x [14]. The
approximation is also quite admissible at the beginning
of the dependence, whereZ; = 0andr = 1. Themaximal
relative error in dependences 2 and 4 is less than 2%.

DISPERSION CHARACTERISTICS
WITH EXPLICIT DEPENDENCE

The maximal width of forbidden gaps corresponds
to quarter-wave layers kja = k)b. In this case, P =
4r2sintk,al(1 —r?) = 4r2. Asaresult of simplification of
relations (5) and (6), the dispersion characteristics for
PtCs and PnCs become explicit. For alowed bands, we
have

(kD —mm)° = (KA —mm)° + 47, )

= SImmE V(KA —mm” + 4r], ®

where m = 1, 3, ... (forbidden gaps with even m are
absent); the minus sign corresponds to the first allowed
band and high-frequency halves of the next alowed
bands, while the plus sign corresponds to their low-fre-
guency halves. The value of min a high-frequency half
of the allowed band increases by two as compared to its

w
T

72

T K

Fig. 2. Dispersion characteristics of a CS. Curves 1, 2 and
3, 4 represent the real and imaginary parts of K in accor-
dance with relations (1), (8) and (1), (9); rz = 2.7 (Quarter-
wave layers). Quantity w is expressed in units of c/A; the
real part of K isexpressed in units of /A and the imaginary
part, in arbitrary units.

NELIN

value in the low-frequency half. In forbidden gaps, we

have
w= %(mni Jar? —x3). 9)

The dispersion characteristics of a CS shown in
Fig. 2 illustrate good agreement between Egs. (8), (9)
and (1).

It should be noted that dependence (7) corresponds
to the dispersion characteristic of a waveguide, k? =

K2+ KZ, where K is the longitudinal wave number in
the waveguide, K, is the cutoff wave number, and mis
the number of the waveguide mode. Such a correspon-
dence isdueto the universal nature of the physical phe-
nomena determining the characteristics of periodic
structures and waveguides, i.e., multibeam interference
of reflected waves. Theinterferenceis constructive near
forbidden gap boundaries and in the forbidden gaps
themselves of the CS as well as in the vicinity of the
cutoff frequencies of the waveguide. The latter frequen-
cies correspond to the high-frequency boundaries of the
forbidden gap. Common features of the spectral charac-
teristics for waveguides and CSs may serve asthe basis
for application of model concepts and structural fea-
tures of CSs similar to those used for waveguide struc-
tures.

IMPROVEMENT OF CS SELECTIVITY IN ODD
OR EVEN ALLOWED BANDS

In theformation of PtC structures, use is made of the
solutions developed for multilayer optical filters. One
of such designsis based on periodic repetition of three-
layer sections with alternating refractive indices of the
layers, aquarter-wave inner layer, and outer layerswith
an optical thickness of Ay/8 (A8 layer) [15]. As a
result, a structure with quarter-wave inner layers and
/8 outer layersisformed. Such astructure can also be
used for other CSs.

Let us supposethat r, > 1 as before. A CSwith A,/8
outer layers has an elevated selectivity in odd allowed
bands as compared to a CSwith quarter-wave outer lay-
ersif the impedance of the external mediumisZ, < Z;
or Zy > Z, (9., Zy = Z; ,), while the impedance of the
outer layers Z, = Z, ,, respectively, and in the even lay-
ersif Zy> Zy or Zy < Z,, and Z, = Z, ,, respectively.
Here, we take into account the combination of allowed
bands due to the absence of forbidden gaps with even
m. The proposed model makes it possible to visualize
and optimize such an improvement of selectivity.

The inset to Fig. 3 shows a fragment of a CS with
A/8 outer layers. We divide the quarter-wave layer hav-
ing impedance Z, and closest to the outer layer into
halves by an imaginary boundary. We place antiphase
mutually compensating sources of reflection with an
amplitude equal to r on this boundary and sum the
sources locates at the boundaries of the outer layer,

TECHNICAL PHYSICS Vol. 49
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reducing them to the center r, = i2rsin(ri/4) of this
layer, where F = f/f, isthe normalized frequency and f,
is the mean frequency of the first forbidden gap. Sum-
ming similar sources located at the boundaries of the
left half of the quarter-wave layer with impedance Z;
and reducing them to the axial line of this half, we also
obtain a source with amplitude r,. As aresult of sum-
mation of two sources with amplitudes r, and their
reduction to the middl e of the layer with impedance Z,,
we aobtain an equivalent reflector of period r, =
2r,cos(3r+/4). The sources of reflection located at the
boundaries of thefirst half of a quarter-wave layer with
impedance Z, and the left half of the next quarter-wave
layer with impedance Z, also form an equivalent reflec-
tor of period with an amplitude equal to r,. The fre-
guency dependence of the equival ent reflector of period
is defined by the expression T, = |r\l/4r =
|sin(Tt+/4)cos(3rt+/4)|. The second cofactor ensures the
main decrease in the sidelobe level of the frequency
dependence of the low-frequency reflection coefficient
for a CSin arange of variation of F from O to 2 with
rejection at frequency F, = 2/3 if the forbidden gap
width AF < F,. For AF > F,, the rejection point is dis-
placed to the range of frequencies F < F,. In a wider
frequency range, the selectivity in odd alowed bands
increases.

Figure 3 shows the frequency dependences of the
reflection coefficient of a CSwith A/8 outer layersand
an equivalent reflector of period. It can be seen that the
decrease in the sidelobe level of dependence 1 is deter-
mined by dependence 2. To reduce the ascent of the far
(from the forbidden band) low-frequency sidelobes of
dependence 1, we must optimize the amplitudes of the
reflectors at the CS boundaries by slightly increasing Z,
for the first version and by reducing it for the second

version. For Zo = Zy/Z, = 1.11 in the first version and

Zo = 1.57 in the second version, the near and far low-
frequency sidelobes level out and the level of the far
sidelobe decreases from 0.27 to 0.17.

In the case when Z, > Z; and (Zy— Z)/(Zy + Z)) =
(first version) or Z, < Z, and (Z, — Zp)/(Z, + Zy) = (Sec-
ond version), and Z, = Z, ,, respectively, the source of
reflection located on the CS boundary coincides in
amplitude and phase with the source of reflection
located at the boundary between the extreme and adja
cent layers. In this case, the amplitudes of the extreme
equivalent CS reflector and the equivalent reflector of
period are r; = F2rcos(1H/4) and r, = Fi 2r,Sn(31/4),
respectively, where the minus and plus signs corre-
spond to the above-mentioned versions. The frequency
dependence of the equivalent reflector of period is
defined by formula f, = |cos(Tt~/4)sin(3=/4)|. Such a
CShasan elevated selectivity at high frequenciesin the
range of F from O to 2 with rejection at frequency F, =
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Fig. 3. Frequency dependences of the reflection coefficient
R of a CS with Ag/8 outer layers (1) and of an equivalent

reflector of period f 4 (2). Thenumber of layersN=11,r; =
1.74,24=27,, Z,,= Z, (first version) or Zo =2, Z,,= Z5 (sec-
ond version).

4/3; in a wider range, the selectivity is high in even
allowed bands.

ELEVATION OF CS SELECTIVITY
IN ALL ALLOWED BANDS

The model of equivalent reflectors makesit possible
to propose abasic solution ensuring elevated sel ectivity
in all allowed bands.

Let us consider peculiarities of multibeam interfer-
ence for the entire CS (see the inset to Fig. 1). We sum
the sources located at the boundaries of quarter-wave
layers for the CS period r, = i2rsin(1=/2). Summing
sources with r, and r,, we obtain r) = —2rsin?(1iF/2).
In alowed bands, interference is destructive and the
pulsation level of the characteristics of CS reflection
and transmission is determined by the frequency depen-
dences of equivalent reflectors of period f, = |rAl/2r =
|sin(r=/2)| and ), = |rj J2r = sSin?(1tF/2). In the second
case, the pulsation level is noticeably lower. The real-
ization of the second version of interference for the
entire CSrequiresthat the amplitudes of reflectorsat its
boundaries be halved by choosing the impedances
Zy1 o2 Of the surrounding medium from the condition
Zoy 0o = 21,2y, 2 + 325, 1)/(32y, 5, + 25 1), where Zy 5 is
the impedance of the layer bordering the medium.

Figure 4 illustrates the elevation of the efficiency of
transmission of waves in allowed bands (as compared
to thetraditional solution) with the help of the compen-
sation proposed above.

The model proposed herevisually illustrates the key
role of mutual compensation of reflections in the for-
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Fig. 4. Dependence of the transmission coefficient T of a
CS: the solution proposed here (1) and traditional solution
(2) (the envelope of pulsationsis shown). N = 15, r; = 2.7,
Zo = 1.6, and Zo = 2.7, respectively, for dependences 1
and 2.

mation of the allowed band. The method of additional
compensation of reflections based on this model makes
it possible to noticeably improve the CS sensitivity,
which is of utmost importance for high-efficiency CS-
based devices.
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Abstract—The current induced by the passage of an external point charge through a plane vacuum capacitor
inan RCL circuit free of current (voltage) sourcesis calculated. The caseisalso analyzed when aninternal point
charge is emitted by one of the capacitor plates, moves to the other plate, and is absorbed by it. A techniqueis
proposed to measure the internal charge and its velocity component perpendicular to the capacitor platesin a
passive RCL circuit. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The Ramo—Shockley relation states that external
point charge Q moving perpendicularly to the plates of
avacuum capacitor with speed v induces a rectangular
pulse of current Izs = Qv/b (where b is the distance
between the capacitor plates) in a zero-inductance and
zero-resistance circuit that closes the capacitor [1-3].
Current Igg existsin the circuit only during thetime 0 <
t < b/v, when the charge moves between the capacitor
plates; t. = b/v is the transit time of charge Q. The
Ramo—Shockley relation was generalized directly from
the Maxwellian electrodynamics to the case in which
the quasi-€el ectrostatic approximation isinvalid [4].

In[5], the Ramo—Shockley relation was generalized
to a series RC circuit. However, in addition to capaci-
tance and resistance, a real circuit has an inductance.
Also, it isnecessary to distinguish between the passage
of an external charge through the capacitor and thetran-
sition of aninternal charge from one plate of the capac-
itor to the other, for example, as aresult of exoelectron
emission [6, 7] (arrival of a charge to the second plate
of the capacitor can be recorded from the reverse pho-
toemission [8, 9]). The passage of an external charge
through the capacitor in RC and RL circuits connected
in paralel was considered in [10]. However, the input
resistance of the circuit was disregarded in the final
expressions.

The purpose of thisstudy isto generalize the Ramo—
Shockley relation to the series RCL circuit containing
no current (voltage) sources for two cases: (i) external
charge Q moves through the plane capacitor and
(it) internal charge Q is emitted by one plate of the
uncharged capacitor, moves to the other plate, and is
absorbed by it.

Consider acircuit consisting of capacitor C, resistor
R, and inductor L connected in series (Fig. 1). The
velocity v of charge Q between the capacitor platesis
assumed to be constant. The lag of the induced el ectro-
magnetic field and its effect on the charge motion are

neglected (see, e.g.,[11]). Thetimeorigin (t = 0) ischo-
sen to be the moment when the charge flies through the
inner surface of the first capacitor plate it crosses. The
current and voltage are considered for 0 <t < t., when
the external or internal charge moves between the
plates, and for t > t,, when the current is the discharge
current in the RCL circuit.

EXTERNAL CHARGE

Astheexternal chargemoves(0<t<t,) betweenthe
plates of capacitor C of aseriesRCL circuit (Fig. 1), the
following balance of currents holds:

_ v _ Qv dv

e T e @
where |; = | is the current in the circuit, Qv/b = Iggis
the plate-to-plate charge transport current, v is the
charge’s velocity component perpendicular to the
plates, V isthe electric potential difference between the
plates induced by the moving external charge, and |4 =
—CdV/dt is the displacement current [12].

Potential difference V across the capacitor due to
current |, excited in the RCL circuit is a sum of the

R
—

!

I
c toly

gL

Fig. 1. Motion of a point charge Q between the plates of a
vacuum plane capacitor in a passive RCL circuit: | is the
current in the RL circuit and | is the displacement current

in the capacitor.
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potential differences across the resistor and inductor:

di,
= @

Substituting (2) into (1), we obtain the equation for
the current (refer, e.g., to [13, 14]):

V = [R+L—==

d?,
Le—7 + CR;

+cril, +1, = Qb!;

which, in terms of the designations

w:i E:B/\/@ | _V
0 /\/E’ 2'_, RS b1

becomes

d2I dl
+ 28w Wog
dt?

The general solution to Eq. (3) isasum of the gen-
eral solution |, to this equation with the zero right-hand
part and any particular solution to this equation. Asthe
particular solution to (3), we can take the constant cur-
rent Igs = Qv/b.

When & # 1, the solution to the homogeneous equa-
tion corresponding to (3) has the form

1+(,00| = wgle- (3)

lp = Ayexp(~Emot + 0ot/ — 1)

(4)
+ Ajexp(—Ewot — wotn/E* — 1),
where A, and A, are the integration constants.
Then, the general solution to Eq. (3) is
Iy = 1o+ lps = Aexp(=Ewgt + wota/&*— 1) (5)

+ A, exp(—€wot — (*)OWEZ —=1) + Igs,

where constants A, and A, are determined by theinitial
conditions

I1|t=o -

=0, (6)

t=0

dt

which mean that, at theinitial instant (t = 0), the electric
current is zero and V|, -, = 0 (see formula (2)).

Equality (5) with (6) takes the form

I, = |R5§a-[cosh(mon/§2—1)

(7)

§ 71 ) o
+A/EZ__15mh(coot H 1)}exp( Ewot)%

POKLONSKI et al.

To obtain the result at & = 1, we pass to the limit
&—1in(7)toget

I, = lg+1gs = Irg[1—(1+ wyt)exp(—wpt)]. (8)

When L — 0, the circuit’s eigenfrequency wy, and
the parameter ¢ tend to infinity with §/w, — RC/2.
Then, formula (7) reduces to the known relation [5]

I, = |RS[1 exp- Rd]} 9

where0<t<t..
After the external charge passes through the capaci-
tor (for t > b/v = t.), current 1, = | in the circuit is
described by Eqg. (3) withQ =0:

d’ Il

dt?
under the conditions of current continuity (at t = t.):
Illtc—o = VltC—O =

(dl/dt), _o = (dly/dt), ..

+ 28w o +030 1=0 (10)

|l|tc+0’ Vltc+0 or

(11)

At & = 1, the solution to Eq. (10) under conditions
(11) hasthe simplest form

I, = (By + Byt)exp(—wyt), (12)

where constant B; = Igg(1 — wyt)exp(uxt,) and B, =
Irg[EXP(0dtc) — 1.

The time dependence of current | = I, at § = 1 when
the external charge Q moves through the capacitor and

after that is shown in Fig. 2a.

INTERNAL CHARGE

When internal charge Q emitted by one plate of the
uncharged capacitor in the RCL circuit moves to the
other plate (O <t <t;) and is absorbed by the latter, the
current in the circuit can be represented asthe sum | =
[, + 15, where |, isthe current induced when the charge
moves between the plates and |, is the capacitor dis-
charge current. As in the case of the external charge
moving through the capacitor, the current |, is given by
formulas (7) and (8) for & # 1 and & = 1, respectively.
After emitting the charge Q, the capacitor becomes
charged and starts discharging the discharge current |,
which satisfies the equation (compare to (10))

d? |2 3

dl,
ZE od +(.L)o|2 - 0,
where 2¢ = RCuwy,.

The solution to Eqg. (13) at I}, = 0 and
L(dl/dt)|;- o = Q/C is given by the formula (refer, e.g.,
TECHNICAL PHYSICS Vol. 49
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to[13])

= Jzz_jlgnh(wotA/Ez—1)exp(—Eu)0t).

Thetotal current in the circuit is the sum of (7) and
(14):

I = |1+|2 = IRS—IR3|:CO§‘]((1)0t/\[€2_1)

(14

(15)
& —wotc 2
+ ————=sinh(wyt~/§ —1)}exp(—€oo t).

At & = 1, the discharge current obtained from (14) is

= Quytexp(—ot), (16)
and the total current isthe sum of (8) and (16):
[ =1,+1
N (17)

= lrs—Irs[ 1+ (1 —wyt.)wot] exp(—wot).

WhenL — 0O, i.e., for aseries RC circuit, formula
(15) yiddsforO<t<blv =t

| = [(RC+tc) (RC—t)exp-

e —1
X &XPORcT

Comparison of formulas (18) and (9) shows that the
current in the RC circuit induced by the passage of the
internal charge from one capacitor plate to another,
other conditions being the same, is higher than the cur-
rent induced by the passage of the externa charge
through the capacitor.

After internal charge Q emitted by one capacitor
plate passes through the capacitor (t > b/v =t.) and is
absorbed by the other plate, the current in the circuit
satisfies Eq. (10) under the conditionsfor thetimet =t,
(compare to (11)),

Rd]} 18)

Vot Q/C = Vi +or

i,—0 = i +or
or, taking into account (2),

oo = Hiwor (dI/dt) o+ Qup = (dI/dt), 1o, (19)

i.e., the current isacontinuous but nonsmooth, function
of time.

Solutions to (10) for t > t. have the form of (4) and
(12), where, however, the coefficients A, , A,, B;, and B,
are found from conditions (19). The simplest case is
that of £ = 1. At R*C = 4L and t > t,, the current induced
in the RCL circuit by the passage of charge Q emitted
by one capacitor plate and absorbed by the other plate
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Fig. 2. Current | (normalized by |gg = Qv/b) inthe RCL cir-
cuit vs. time (normalized by t. = b/v) at RC=4L/R (§ = 1)
for (@) the external charge Q passing through the capacitor
with the velocity component perpendicular to its plates, v,
and (b) the charge Q with the same velocity component v
emitted by one capacitor plate and absorbed by the other

plate after the time't,; tpyt. = (to/ /LC — 1)L,

is described by formula (12), where the coefficients B,
and B, are calculated with (19) as

B, = wo{[Irs + Quy] EXp(wt;)

—Irg[1 + 3wyt — ngti]} )

B: = lrs€Xp(Wote) —lrs[1 + wypt. — wgtg] —Byt..

The time dependence of the current | =1, + 1, inthe
RCL circuit during the passage of the internal charge
between the capacitor plates and after that at & = 1 is
shown in Fig. 2b.

DISCUSSION

Comparison of formulas (7) with (15) and (8) with
(17) shows that the external charge Q, moving through
the capacitor, and the internal charge Q, emitted by one
capacitor plate and absorbed by the other plate, induce
different currents in the RCL circuit. This is because,
when the interna charge is emitted, the capacitor
becomes charged, which produces the discharge cur-
rent I,. The lower the capacitance C of the capacitor,
the higher this current. The total current in the series
RCL circuit at the initial instant (t = 0) is zero, because
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the circuit contains an inertial element—the inductor L.
Note that, in a series RC circuit for the case of interna
charge Q, the current abruptly changes from Oto | =
Q/RC at the time when the charge is emitted (at t = 0).

Let us show that taking into account the inertial
properties of the RCL circuit makesit possible to mea-
sure the velocity component v of the internal charge Q
(emitted by one plate and moving toward the other
plate) perpendicular to the capacitor plates. The sim-
plest situation is at & = 1, when the time dependence of
the current | in the RCL circuit is described by formula
(17) and the potential difference (voltage) across the
inductor L is given by the expression

dl
V. =L ot

According to (20), the voltage V, vanishes at the
timet,, =tJ/(t.wy—1) (att =t,, thecurrent | in the RCL
circuit reachesits maximumvaluel ;). If 0<t, <b/v =
t. (i.e., thetransit timet, = b/v of charge Q between the
capacitor plates is long enough for the current in the
RCL circuit to reach its maximum value 1), the
charge’s velocity, according to (20), is

L1 rs00p[ (1 — wote)t + t] exp(-wit) (20)

_ Wil O_ .M 10
v = b= —l = b= - —=H
, "9 H,
wherethetimet,, is measured experimentally from the
condition V| (t,,) = 0.
If the total current | in the circuit (or the voltage
Ur = IR across the resistor R) is measured simulta

neously, theinternal charge moving between the capac-
itor plates can also be found from (17):

(21)

I mtm

Q=17 Wyt (1 — 2wpt ) [ exp(—wyt,,) — 1]
where |, = Ug(t,)/R.

Note that the time t,,, when the voltage across the
inductor vanishes, V| (t,) = 0, depends only on the
velocity component v of the internal charge Q perpen-
dicular to the capacitor plates and isindependent of the
charge.

Boundary conditions (19) assume that the charge
emitted by one plateisabsorbed by the other plate, after
which the current in the circuit increases again (due to
the capacitor discharge current I,) and maximizes once
more. To calculate v and Q from formulas (21) and
(22), one should use the first maximum of the current
(formulas using the second maximum are more com-
plex).

Formulas that give the charge and its velocity at & >
1 can be derived in a similar way; however, these for-
mulas are more complex than (21) and (22). When & <
1, itisdifficult to measure v and Q, because the current
in this case is oscillatory and can have several extrema
eveninthetimeinterval fromOtot..

(22)

POKLONSKI et al.

Thecondition & = 1 (RC = 4L/R) isequivalent to the
situation in which the resistance of a circuit consisting
of paralel-connected RC and RL circuits, that have
resistorswith equal resistances R/2, is purely active and
equals R/2 at any frequency (see, e.g., [15, 16]). This
circumstance can be used to choose parameters of the
series RCL circuit.

Note that formula (21) is only valid for an internal
charge (emitted by one of the capacitor plates). For an
external charge, the current I, in the RCL circuit is
described by formula (8) and has no extremafor 0<t <
blv.

Thus, expressions for the current | induced in the
RCL circuit containing no current (voltage) sources by
the external charge Q passing through the capacitor or
by an internal charge Q, emitted by one capacitor plate
and absorbed by the other plate, are obtained. A method
for measuring the charge-velocity component v per-
pendicular to the capacitor plates and the interna
charge Q in the source-free circuit is proposed.
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Abstract—It is demonstrated that two-wavelength holographic interferometry with a small lateral shift in a
grating interferometer makes it possible to study the dispersion characteristics of transparent objects using
probe beams with arbitrary wavelengths. Interference patterns reconstructed represent fringes on the recon-
structed image of the object, which characterize the value of the derivative of the difference between the refrac-
tive indices of the medium under study at the probe wavel engths along the direction of the shift. The results of
experiments employing the method proposed are presented. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Dispersion two-wavel ength holographic interferom-
etry iswidely used for the purposes of plasma diagnos-
tics, where it makes possible determining the electron
concentration in the absence of corrections related to
the refraction of heavy particles [1-7]. Detection of
two-wavel ength holograms under nonlinear conditions
also makes possible the reconstruction of interfero-
grams in cases when the interference pattern depends
on the difference ny(x, y, 2) — ny(X, Y, 2 between the
refractive indices at wavelengths A; and A, of the probe
beams [1, 2]. The measurements of interference pat-
terns corresponding to the lines of constant difference
between the refractive indices using the method pro-
posed was realized for integer ratios of wavelengths (in
particular, for A,/A; = 2). Thiswasrelated to the depen-
dence of the coefficient of the sensitivity of measure-
ments on the diffraction order in the nonlinear holo-
gram. In contrast to two-beam interferometry based on
the comparison of a probe wave front with the front of
a reference wave, the method of interferometry using
small lateral shift makesit possibleto measure interfer-
ogramswith the sensitivity of measurements depending
on the relative shift As of the interfering wave fronts
[8]. Lateral-shift interferometry isapromising diagnos-
tic tool for the systemsin which it is difficult to form a
reference wave.

Recently, shift interferometry has been widely used
in the measurements of small distortions of wave fronts
[9, 10]. The application of holographic principles
makesit possibleto significantly increase the efficiency
of lateral-shift interferometry [7, 11-14]. Based on var-
ious methods for detecting and optical processing of
holographic lateral-shift interferograms, which are
widely used in holographic interferometry of phase
objects, it is possible to develop methods for studying
fast processes in transparent objects with awide varia-

tion in the coefficient of the sensitivity of measure-
ments [15, 16].

This paper demonstrates the possibility of studying
the dispersion characteristics of transparent media at
arbitrary wavelengths by means of interferometry with
small lateral shift using a grating interferometer.

RECORDING TWO-WAVELENGTH
HOLOGRAPHIC LATERAL-SHIFT
INTERFEROGRAMS

Figure 1a shows the optical scheme of atwo-wave-
length setup for studying the dispersion characteristics
of transparent media. The principal component of the
setup isagrating interferometer [17] capable of record-
ing holographic lateral-shift interferograms.

Light beams generated by lasers 1 and 2 are
coaligned using beamsplitter 3 and directed to the shift
interferometer equipped with a grating. Two beams
expanded and collimated using a telescope consisting
of lenses 4 and 5 are incident on object 6 under study.
Thevariations ¢,(x, y) and ¢,(X, y) in the phases of light
beams passing through transparent object 6 can be rep-
resented as

d12(% y) = f—” [y, 2z (1)

where subscripts 1 and 2 correspond to thefirst and sec-
ond beams with wavelengths A, and A,, respectively;
n,(x, y, 2 and ny(X, y, 2) are the refractive indices of
object 6 at wavelengths A; and A,, respectively; and | is
the thickness of object 6 along the direction of probing.
Cartesian coordinates xyz are chosen in such away that
the probe beam is parallel to the z axis.

1063-7842/04/4911-1473$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. (a) Optical scheme of the setup for studying the dis-
persion characteristics of transparent media, (b) configura-
tion of aperture and diffraction spectrum of light beams
with wavelengths A; and A,, and (c) the scheme of beam
overlapping in the detection plane of two-wavelength holo-
graphic lateral-shift interferogram.

Each light beam is split into two coherent beams
using grating 8 placed in the vicinity of the back focal
plane of objective 7 in front of aperture 9. We assume
that the grooves of grating 8 are perpendicular to they
axis. Figure 1 shows aperture 9 and the diffraction spec-
trum of light beams with wavelengths A, and A,. Dif-
fraction maxima are situated on a straight line parallel
to the y axis. The central maximum corresponds to the
zero order diffraction of beams with wavelengths A,
and A,. Note that the zero-order diffraction maxima of
two beams coincide, while the diffraction maxima of
+1 and -1 orders are spatialy separated so that the
greater the wavelength, the greater the displacement
along they axis (we assume that A; < A,). The configu-
ration of the aperture (Fig. 1b) makesit possibleto sep-

LYALIKOV

arate the beams diffracted to the order of acertain sign
(e.g., =1 order). Thus, two pairs of beams with wave-
lengths A, and A, are separated from other beams by
aperture 9 and collimated with objective 10. In plane 11,
we observe two | ateral -shift interference patterns corre-
sponding to the two wavelengths. Figu-re 1c illustrates
the superposition of light beams at the detection
plane 11 giving rise to two-wavel ength holographic lat-
eral-shift interferogram. The lateral shifts As, and As,
of the interference patterns formed by the light beams
with wavelengths A, and A, are directed along they axis
and differ from each other owing to the dispersion of
grating 8. At small shifts satisfying conditionAs; , < L
(L is the transverse size of object 6 under study), the
intensity distribution in the holographic lateral-shift
interferogramsis represented as

00, »(X,Y)
@

where T isthe period of fringesin holographic interfer-
ograms depending on the angles between the interfer-
ing coherent beams. This period can be controlled by
changing the period of diffraction grating 8 and its posi-
tion relative to the back focal plane of objective 7
[18, 19].

Note that the periods of fringes in the holographic
interferograms obtained using beams with different
wavelengths are equal, owing to the features of the lat-
eral-shift interferometer with diffraction grating [19].

Thus, a pair of holographic lateral-shift interfero-
grams (2) is detected at plane 11. Owing to the differ-
ence between wavelengths A; and A,, these interfero-
grams are incoherently superimposed on a film, which
givesrise to atwo-wavelength holographic lateral -shift
interferogram. When the film is exposed under linear
conditions (the contrast ratio of photoemulsion isy = —2)
and chemically processed, the amplitude transmittance
of the two-wavelength holographic lateral-shift inter-
ferogram is represented as

(X, y) Ol(x y) + 1,(x y) 02

I .(x,y) 01+ cos[z%y +As, ,

+ cos[z%[y +® (X, y)} + cos[z%y + D,(X, y)] (3)
where
00, »(X,
Ouxy) = bs, ez @

The amplitude transmittance of a two-wavelength
holographic interferogram given by expression (3) is
similar to the transmittance of a double-exposure holo-
gram.

RECONSTRUCTION OF CONTOUR LINES

A method of reconstruction of the interference pat-
tern from the two-wavel ength holographic |ateral-shift
TECHNICAL PHYSICS Vol. 49
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interferogram (3) is basically the same as the method
used for reconstructing interference patterns from dou-
ble-exposure holograms. When hologram (3) isillumi-
nated with a collimated light beam, two waves propa-
gate in the first diffraction order. These waves are dif-
fracted by the fringes of holographic structures
corresponding to the holographic lateral-shift interfero-
grams formed by the beams with wavelengths A; and
A,. In accordance with expression (3), the phases of
these waves are ®,(X, y) and @,(x, y). A conventional
method to increase the visibility of the reconstructed
contour lines involves filtering of the spatial frequen-
cies (an opening in the aperture separates light beams
diffracted inthefirst order). Inthiscase, it followsfrom
expression (3) that theintensity distribution in theinter-
ference pattern can be written as

I2(x, y) 01+ cos[®,(X, y) = ®,(X, y)]. ()

For light interference fringes, the following condi-
tion is satisfied:

D (X y)—Dy(X Yy) =21nN,where N =0, 1, 2, .... (6)

Taking into account expressions (1) and (4), we can
represent expression (6) as

| |
As 0 59 -
n ay{{ n,(x,y, 2d } » ay[!nZ(X’ Y, z)dz} N.(7)

This expression becomes even more convenient
when the coefficients characterizing the sensitivity of
measurements are equal:

As, _As, _
N, C. (8)

One of the remarkable features of the lateral-shift
interferometer with diffraction grating placed in the
focal plane or inthevicinity of focus consistsin that the
ratio of the shift of interfering beams to the wavelength
of light source remains constant: AS/A = const [19].

Thus, condition (8) is always satisfied for the case
under consideration. With alowance for this condition,
we can represent the condition for the formation of light
interference fringes as

o4 O N
@Dof[nl(x, ¥, 2) =ny(x, Y, 2)] dzg =z O

Expression (9) describes the interference fringes in
the reconstructed image of the object under study. Each
interference fringe corresponds to a zone of the trans-
parent object under study where the product of the
derivative of the difference between the refractive indi-
ces and the thickness of the object is constant. The
interference pattern depends on the dispersion charac-
teristics of the object under study.
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Fig. 2. () Lateral-shift interferogram (As = 1.0 mm) of a
glass plate obtained using the radiation of helium—neon
laser (A, = 632.8 nm) upon tuning to an infinitely wide
fringe and (b) interference pattern reconstructed from the
two-wavelength holographic lateral-shift interferogram of
the same glass plate recorded using the probe beams with
wavelengths of A, = 488.0 nm and A, = 632.8 nm.

EXPERIMENTAL TESTS

In order to verify the proposed method, we used an
experimental  setup corresponding to the scheme
depicted in Fig. 1a. Lasers 1 and 2 were an argon laser
with the wavelength A; = 488.0 nm and an LGN-215
helium—neon laser with the wavelength A, = 632.8 nm,
respectively. To equalize the exposures at two wave-
lengths in the course of recording of two-wavelength
holographic latera-shift interferogram, we rotated a
polarizer at the exit of the argon laser. Grating 8
(Fig. 1a) was a phase diffraction grating with a period
of about 60 um recorded on an FG-690 film using a
hol ographic method with subsequent bleaching.

The object under study was a glass plate. The sur-
face of this plate was not flat as aresult of thermal pro-
cessing. Figure 2a shows the lateral-shift interferogram
(As = 1.0 mm) of the plate under study obtained using
the radiation of the helium—neon laser (A, = 632.8 nm)
upon tuning to an infinitely widefringe. Figure 2b dem-
onstrates the interference pattern reconstructed from
the two-wavel ength holographic lateral-shift interfero-
gram of the same glass plate.

When the two-wavelength holographic lateral -shift
interferogram was recorded on FG-690 film, the rela-
tive shifts of the beams with wavelengths of A, =
488.0 nm and A, = 632.8 nm were As; = 0.8 mm and
As, = 1.0 mm, respectively. In the interferogram shown
in Fig. 2b, the interference fringes correspond to the
zones of the glass plate under study where the product
of the derivative of the difference between therefractive
indices at wavelengths of 488.0 and 632.8 nm along the
direction of the shift and the thickness of glassis con-
stant. Theinterferogram characterizesthe surface relief
of the glass plate, and its sensitivity depends on the dis-
persion characteristics of glass.
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CONCLUSIONS

The proposed method will be effective in the study
of the dispersion characteristics of plasmaobjects. Any
pulsed light source with wavelengths suitable for
plasma probing can serve as a source of the probe
beam.
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Abstract—Generation of wide-band directional electromagnetic radiation arising when the pulsed X radiation
front strikes the photocathode of a planar diode at an angle is analyzed. The results of numerical smulation are
compared with the experimental data obtained with the Iskra-5 setup, which is used for generation of a laser
plasma as an X-ray source. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The existence of faster-than-light velocities and
faster-than-light sources (FTLSs) of electromagnetic
radiation has been known for a long time. Generally
speaking, these sources move with avelocity exceeding
the phase velocity of light: vy, > c//n, where n is the
refractive index of the medium. It is a matter of com-
mon knowledge that such sources exist in media with
n> 1. However, their existence in a vacuum is much
less known [1]. Of course, the case in point is the
motion not of a point particle but of some effective
charge distribution (macroscopic charge) with a veloc-
ity higher than the velocity of light in avacuum. Such a
distribution may be achieved using slower-than-light
motions of real charges [1, 2]. Theoretical analysis of
the radiation from FTLSs may be performed using the
apparatus of the conventional field theory [3].

The object of our study is FTLSs that arise due to
electrons emitted from the vacuum—medium interface
where the emission front propagates with a velocity
exceeding velocity of light c. A simple source of this
kind isformed when aflat metal surfaceisirradiated by
a ribbon beam of ionizing radiation (Fig. 1a) [4-6]. In
this case, the phase velacity of the emission front is

Vpn = c/€in(B), D

where 0 isthe angle of incidence of the radiation.

The radiation due to the emission current propagat-
ing with constant velocity v, > ¢ dong the screen by
no means boils down to the Vavilov—Cherenkov effect
[1], although the resulting el ectromagnetic wave |eaves
the interface at an angle ,, = arcsin(c/v,,), which is
typical of Vavilov—Cherenkov radiation and equals the
angle of incidence. At distance R far away from the
source, the amplitude of the resulting electromagnetic

waveisproportional to the second-order time derivative

of the dipole moment surface density, which varies as

the kinetic energy € of the electrons knocked out and
surface area S of the radiator [4, 5]:

E" OH"D ?,

C'R

d°P
dt’
P(r,t) = J'dV'(r—r')p(r‘, t).

P = e,

)

Formula (2) implies that the intensity and total
energy of the electromagnetic radiation grow with the
energy of the electrons emitted. Estimates [5, 6] show
that the energy and intensity of the radiation are of prac-
tical interest if the electrons emitted have an energy
above 10 keV. In the laboratory conditions, a faster-
than-light current pulse with a high electron energy can
be produced if the process of electron generation is sep-
arated from the formation of the faster-than-light pulse.
In this case, optical or ionizing radiation (IR) that may
cause the electron emission is used only for generating
electrons with an energy as low as possible, while the
final energy on the order of 100 keV isgained when the
electrons are accelerated in an externa electric field. A
simple design of an FTLS includes a planar accelerat-
ing diode with a grid anode that is exposed to an
inclined beam of ionizing radiation [5-7]. The IR front
incident on the photocathode generates a faster-than-
light current pulse of the electrons emitted. Then, the
electrons are accelerated in the electrode gap, pass
through the grid anode, and generate another faster-
than-light current pul se above the anode (but this pulse
comprises fast electrong!). It should be noted, however,
that the generation and accel eration processes ater the
space-time electron distribution, so that the time
dependence of the current at the anode and cathode will

1063-7842/04/4911-1477$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Basic scheme of EMR generation by an FTLS. (a) 1,
ribbon X-ray beam; 2, region of faster-than-light radiation;
3, directional electromagnetic wave front; 4, anode;
5, waveguide electromagnetic wave; and 6, metalic cath-
ode. (b) 1, region of faster-than-light radiation; 2, point
source of X rays; 3, spherical front of X radiation; 4, direc-
tion of EMR propagation; 5, anode; 6, metallic cathode; and
7, X-ray source image.

be different. Thus, a dipole layer radiating in phase is
formed above the grid anode.

The design considered offers a number of attractive
properties that are a direct consegquence of the fact that
phasing of electronsisaccomplished by the faster-than-
light pump pulse moving over the surface [5-7]. These
properties are as follows: (i) the radiation is coherent
and directional; that is, radiated energy Q is propor-
tional to emitting surface area S, (ii) the videopulse
radiated is short: its duration is roughly expressed as

To= Sy + DIy=1),

where

y = 1+L,

e

L is the electrode-to-electrode spacing, and m, is the
electron mass; (iii) the processis highly efficient: theo-

LAZAREV et al.

retically, the radiated energy constitutes a fraction

J(y=1)/(y + 1) of thetotal electrostatic energy stored
in the capacitor; and (iv) the efficiency of the emission
increases in inverse proportion to the wavelength A of
the resulting radiation. The last-named property is
unique: most microwave generators exhibit the oppo-
site tendency.

Varying the parameters of the radiator (diode), as
well as using carious sources of optical radiation and
various power supplies for the diode, one can design a
variety of devices generating a microwave pulse.

The feature of such a diode-type FTLSisthe gener-
ation of two electromagnetic waves (hereafter referred
to as directional and waveguide), which interact with
the electrons emitted, thereby defining the anode cur-
rent and parameters of the electron dipole moment
above the anode. The directional wave propagates in
the free half-space over the anode in the direction that
is“specular” relative to the direction of the incident IR
(z> 0, Fig. 1a). The parameters of this wave depend on
the rate of change of the parameters of the dipole layer
made up by the electrons accelerated in the diode (i.e.,

on P and P; see (2)). It may be assumed that this wave
insignificantly affects the current near the cathode
because of the screening effect of the metallic grid
anode. The faster-than-light current pulse due to the
electron motion in the electrode gap also excites an
electromagnetic wave that propagates in the planar
waveguide formed by the cathode and anode. The field
of this waveguide electromagnetic wave adds up with
the field of the space charge of the electrons emitted,
effectively reducing the accelerating field in the diode
and, thus, decreasing the ultimate current density at the
anode below the limiting stationary current density. It
was shown analyticaly [7] that the parameters of the
elementary FTL S depend on the rate of rise of the elec-
tron emission current from the cathode and on the
parameters of the diode (the voltage across and the
width of the accelerating gap).

In the experiments on EMR generation with an
FTLS that were carried in the All-Russia Institute of
Technical Physics (ARITP) [8], the emission of elec-
trons was initiated by a short X-ray pulse from a point
laser plasma source. The pulse fell at an angle to the
cathode of aplanar diode. The experiments were aimed
at (i) designing FTLSs, (ii) studying their characteris-
tics, and (iii) comparing the experimental data with the
theory.

In this work, we report the results of mathematical
simulation of EMR generation that was madein a state-
ment closely approximating the experimental condi-
tionsused inthe ARITP and compare the analytical and
experimental data.
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EXPERIMENTAL

The experimental scheme was selected based on the
data obtained in [5, 6], where faster-than-light current
pulses and directiona EMR were generated using an
accelerating diode with a transparent anode. The elec-
tron emission wasinitiated by an obliquely incident rib-
bon beam of IR.

Unfortunately, the experimental equipment cur-
rently available is incapable of forming a ribbon beam
of duration and intensity sufficient for generating an
emission current pulse propagating with a constant
faster-than-light velocity (see (1)) aong the photocath-
ode. A spherical front of IR from apoint sourceis much
easier to obtain, and this shape was used in the experi-
ments [8]. In those experiments, the electron emission
was initiated by soft X rays leaving the plasma pro-
duced by focusing the subnanosecond radiation (wave-
length A = 1.315 um) from the Iskra-5 setup [9] onto a
gold target. Thefocal spot was=1 mmin diameter. This
suggests that the IR source is point and the front of the
IR is spherical.

Use of a point sourceto irradiate a conducting plate
isan essential point that differentiates the experiments
described fromthosein [5-7]. Unlikeaflat-front FTLS,
which generates a current pulse with a velocity that is
constant throughout the emitting surface, the use of the
spherical front causesthe angle of incidence of the radi-
ation to vary (increase) and the faster-than-light veloc-
ity of the emission current along the photocathode to
decrease. Since the direction of emission of the electro-
magnetic wave depends on the faster-than-light veloc-
ity value (and this velocity, in turn, is related to the
angle of incidence of the X rays), we obtain a divergent
EMR beam (instead of aribbon beam for the case of the
flat X-ray front, Fig. 1a). The parameters of this diver-
gent beam depend on the mutual arrangement of the
point X-ray source and plate irradiated, as is schemati-
cally (without regard to diffraction divergence) shown
inFig. 1b.

The essence of our experimentsis shownin Fig. 1b.
We used a 3-m-long echo-free vacuum chamber of
diameter 2 m with the microwave-absorbing inner sur-
face. The chamber enclosed an electromagnetic radia-
tor to be tested (a plane capacitor with a transparent
plate (anode)), an X-ray source, X-ray detectors, accel-
erated-electron current detectors, and EMR detectors.

The diode represented a plane capacitor with a pol-
ished aluminum cathode measuring 60 x 850 mm and
an anode (nickel grid with a mesh size of 2 mm). The
anode transmitted about 80% of incident light. The
source was mounted at a height of 34 cm above the pho-
tocathode and was 40 cm distant from its nearest end.
The gap between the el ectrodes was within 20 mm. The
grid was under an accelerating potential ¢, = 80 kV.

To protect the inner surface of the chamber and the
bodies of the electromagnetic field detectors against the
direct action of X rays, the source was sheathed in a
metallic screen with holes through which the incident
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radiation was directed toward the cathode and X-ray
detectors.

The local values of accelerated-electron current
density at the outer surface of the anode were measured
with three Faraday cups FC,, FC,, and FC;. By means
of inductive magnetic-field detectors, we measured the
amplitude—time parameters and took the directivity dia-
gram of the EMR. The inductive detector was a frame
antenna in the form of awire turn 10 mm in diameter
placed on a metallic plate. The magnetic detectors
(MD,—MD,) were aligned with aline parallel to the cyl-
inder generatrix near the microwave-absorbing coating.
MD,; was placed in the area where the characteristic
radiation of the FTLS was expected to be the highest
intensity, MD, was placed outside the area of radiation,
and MD, was in between (Fig. 1b). The distance from
MD,, MD,, and MD; to the center of the capacitor was
200, 120, and 120 cm, respectively.

The output signals from the EMR detectors and the
electron currents were measured using high-speed
oscillographic recorders with bandwidths of 5 and
7.5 GHz. The transient time in the recording channels
was no more than 100 ps. The accuracy of finding the
time parameters was 50 ps or higher. The relative error
of measuring the current amplitudes was |ess than 20%.
The field amplitudes were measured accurate to 25%.
The error of the relative measurements did not exceed
10%.

EXPERIMENTAL RESULTS

In the experiments [8], laser energy E delivered to
the target was varied between 0.3 and 0.8 kJ; pulse
duration 1,5, between 0.3 and 0.5 ns; and irradiation
fluence Q, between 10™* and 10*> W/cm?. The duration
of X-ray pulsesfor photons of energy € ~ 0.45 keV was
about 0.7 nsat apulserisetime of ~0.3 ns. For the same
rise time, the duration of a pulse of “complete” plasma
radiation was between 2 and 3 ns. The effective temper-
ature of the X-ray source spectrum was about 50 eV.

Asfollowsfrom the readings of the X-ray detectors,
the X-ray intensity at the near and far (relative to the
source) ends of the cathode differed by afactor of five
to six.

The high fluence of X-rays makesit possibleto gen-
erate an emission pulse of current density J, varying
from several tens to several hundreds of A/cm? at the
cathode end nearest to the X-ray source with pulserise
time T, of about 0.3 ns. With such a high rate of elec-
tron emission, the time it takes for the capacitor to be
discharged completely at aninitial voltage of 80 kV and
aelectron current density of 100 A/cm? is

Tn= 00T /2NLI,=0.2 ns, A3)

Thisindicates the formation of an FTLS at the front
of the pump pulse. Under these conditions, the param-
eter responsible for its properties is not the amplitude
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value of the emission current at the cathode (or the
maximal fluence of X-rays), which was measured fairly
accurately in the experiments, but the rise time of the
electron emission current (or the rise time of the X-ray
pulse), which is much more difficult to measure.

From the measurements of the amplitude and rise
time of the anode current, as well as of the electromag-
netic field amplitudes, we can draw the following con-
clusions.

(1) The faster-than-light current pulse and EMR are
generated under the saturation conditions: the parame-
tersof the current pulse at the anode and the parameters
of the electromagnetic wave emitted (amplitude and
rise time) are virtually independent of the amplitude of
the emission current at the cathode (or of the X-ray flu-
ence).

(2) The measured values of the anode current are
lower than the ultimate value of the stationary current:

LAZAREV et al.

Jo= 03%/9m.2,/2e/m = 13.2 A/cm?. Thisis consistent

with the idea that the electron current in FTLSs is
dynamically limited by the field of the EMR generated

[7]

(3) As follows from the readings of the magnetic
detectors placed in different areas of the chamber, the
characteristic radiation of the FTLS is directional and
basically corresponds to the scheme shown in Fig. 1b.

SIMULATION OF FASTER-THAN-LIGHT
SOURCE PARAMETERS

Since the EMR generation, the formation of the
dipole layer, and the motion of electrons in the elec-
trode gap are intimately related processes, they should
be considered in combination. The basic meansfor the-
oretical investigation of such systemsisnumerical sim-
ulation based on the self-consistent solution of the
Maxwell and Vlasov equations

——+va eEE +E + [ Eaf =0; (4
0P
j(r,t) = —ejd pOrfe(r,p,t);
w (5
19H" 10E
curl (E") = __T’ curl(HY) = ? +C T

Here, f, is the electron distribution function; e is the
electron charge; p and v are the momentum and veloc-
ity of an electron, respectively; EY and HY are the
strengths of the electric and magnetic fields, respec-
tively, that are generated by the electrons emitted; and
E,istheéelectric field strength in the accel erating diode.

The simulation was carried out in two stages. At the
early stage, the EMC2D two-dimensional program [10]
was used. Interms of this program, theVlasov equation
issolved by the particle-in-mesh method [11]; the Max-
well equations, by the finite-difference method based
on the cross scheme [12]. With this scheme, the forma-

tion of a faster-than-light current pulse, { j2°, j°},
and the generation of the EMR, { E,, E,, H,}, were self-
consistently simulated in the Cartesian system. The
system geometry used in the simulation is shown in
Fig. 2. Two irradiation schemes were employed. In the
first case, the capacitor, which was assumed to be infi-
nitely long inthe Oy direction, wasirradiated by acylin-
drical X-ray beam (Fig. 2a). Here, the space-time dis-

tribution of the electric current, { j2°, j3°}, and the

derivative d P>° (t, X)/t of the dipole moment along the

Ox axis (along the larger side of the anode) were deter-
mined and the electromagnetic fields at the detectors
were calculated. In the second scheme, the capacitor,
which was assumed to beinfinitely long in the Ox direc-
tion, was irradiated by aribbon X-ray beam (Fig. 2b).
No. 11
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Here, the space-time distribution of the electric current,

{j3°, j2°}, and the derivative 9P’ (t, y)/dt of the

dipole moment along the Oy axis (along the smaller side
of the anode) were determined.

At the second stage (3D geometry of simulation),
the electromagnetic fields at the detectors were simu-
lated for the radiator with the actual position and
dimensions of the diode. The simulation was based on
the GEMC 3D program, which makes it possible to
solve Maxwell equations (5) by the finite-difference
method [12] in the Cartesian system for the six electro-
magnetic field components E,, E,, E,, H,, H,, and H,
given the current found at the first stage. Since the com-
plete space-time distribution of the electric current
found with the EMC2D program is difficult to specify,
we used the dipole approximation

2D
it xy) = Pt X)MKZD

P (t,y— Yo)
2D
PPt q) = 2Pz (t a) _ J’dz‘ 2t q,7), (6)
:2D _
0 =Xy Koz YY)

Py ()
Here, j.% is the electron current surface density

obtained by the 3D simulation; j2° (t, o, 2) and P>" (t,
a, 2) are the electron current density and the derivative
of the dipole moment density, respectively, that were
obtained by the 2D simulation; and K, is the coeffi-
cient taking into account the fact that the derivative

PiD(t, X) of the dipole moment density changes in
going from the infinite (along the Oy direction) to finite
plate.

In our case, dipole approximation (6) isvalid, since
we areinterested in the early stage of generation, when
the size Az~ L of the radiating layer is smaller than, or
comparableto, the wavelength A ~ 2me/v L (v, < 0.5¢)
of the resulting radiation.

In the calculations, the initial and boundary condi-
tions were set as follows. (1) For a given geometry and
voltage of the accelerating diode, the initial values of
the electric field were calculated by the finite-element
method with the MATHLAB package [13] and then
converted to those obtained with the EMC2D finite-dif-
ference grid; (2) theinitial values of the magnetic field
weretaken to be equal to zero; (3) escape conditionsfor
the particles and electromagnetic waves at the bound-
ary of the domain of simulation were set; and (4) an
electron emission source was set on the cathode of the
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accel erating diode with allowancefor X radiation atten-
uation and a time delay associated with afinite propa
gation velocity of the IR spherical front along the cath-
ode:

Jo(t=X/V (X))

f(t,z=0,t, CR
AT((x—X)" + %)

p) =
(7)

2
X N(t=X/V (X)) 7 exp(—p/ps),

Po

where p, is the mean momentum of the electrons emit-
ted, J.(t) is the time-varying emission current, and {x,,
z) are the coordinates of the X-ray source.

A feature of FTLS simulation is that not only the
time dependence of the emission current but also its
derivative dJ (t)/dt (the rise time of the current at the
cathode) should be specified with a reasonable accu-
racy. It is this derivative that defines the parameters of
the resulting radiation under the saturation conditions
[7]. Inthe experiments [8], the emission current was so
high that direct measurement of the time parameters of
the current pulses was impossible in the linear operat-
ing mode of the detectors. Specifically, thisis also true

for the rise time of the signa, J.(t), for 0 <t < 2ns,

which makes experimental data interpretation uncer-
tain.

In view of the aforesaid, it becomes clear that, for
function J(t) to be adequately set using experimental
data, it must be more accurately defined for short time
intervals. This can be done in a number of ways, for
example, by averaging all available experimental
dependences. Alternatively, of these dependences, one
can choose a function with a certain value of J; (t —

0) based on the calculated datafor the X radiation at the
exit from a laser plasma source. Irrespective of the
approach to selecting J.(t), this function must be in
fairly good agreement with the available experimental
datafor the parameters of the anode current. The agree-
ment may be checked if it istaken into account that the
rise time of the electron emission current density isin
one-to-one correspondence with the amplitude and rise
time of the anode current density. When checking, we
used anode current amplitudes measured by a Faraday
cup FC,.

Figures 3 and 4 show the density and risetime (at a
level of 0.1-0.9 of the peak value) of the anode current
that were calculated at FC; (roughly 20.5 mm away
from the near edge of the anode) versus the emission
current amplitude at the anode for various time depen-
dences of the emission current (these dependences
were recorded in a number of experiments). As the
emission current increases, the anode current does not
decrease and the rise time shortens.
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dependences obtained experimentally and calculated for
various emission current pulse shapes. (1-4) the same asin
Fig. 3; (5-7) experiments 2409, 1804, and 1304, respec-
tively.

Let us use the data on the anode current amplitude
and rise time for selecting J (t). Figure 5 demonstrates
the anode current density versus rise time dependences
obtained by the smulation and in the experiments. At
first glance, a dlight uncertainty in the emission current
pulse shape causes noticeable uncertainties in the
anode current amplitude (up to 1 A/cm?) and rise time
(to 0.1 ns). However, it may be said that the first, sec-
ond, and averaged shapes of the emission current pulse
agree with the anode current measurements within the
accuracy of anode current measurement. Subsequently,
when simulating the emission current at the cathode,
we used the first shape of the emission current pulse.
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Fig. 4. Anode current amplitude vs. emission current ampli-
tude at the cathode for various emission current pulse
shapes. 1-4 arethe same asin Fig. 3.
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Fig. 6. Spatial distribution of the anode current amplitude
aong the cathode for various emission current amplitudes
at the cathode.

EXPERIMENTAL DATA VERSUS RESULTS
OF SIMULATION

The parameters of the faster-than-light current pulse
(waveform and amplitude variation along the cathode),
which propagates over the anode, to the greatest extent
define the space-time distribution of the resulting
EMR. Figures 6 and 7 show the experimental and ana-
lytical distributions of the anode current density and
rise time along the radiator. The experimental data and
the results of calculation are seen to be in good agree-
ment. It should also be noted that the emission current
amplitude at the cathode varies in the interval 30—
2004
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Fig. 9. Time dependences of the accelerated electron cur-
rent over the anode at the point of FC, location (the far end
of the capacitor).

300 A/cm?, which also agrees with the experiment. The
anode current rapidly dropswith distance to the source,
with the rise time remaining almost unchanged (Fig. 7)
but the pulse shape varying noticeably (Figs. 8, 9). It
was shown [7] that this effect is related to the dynamic
limitation of the anode current by the field of the
waveguide mode, which is generated by a faster-than-
light current pulse due to the electrons accelerated in
the electrode gap. The net field from the waveguide
electromagnetic wave and space charge builds up much
faster and is of much greater importance than the space
charge field alone. The net field cuts time T,, in which
electrons are injected from the cathode and then reach
the cathode, and also dynamically decreases the accel-
erating field in the electrode gap.
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capacitor and passes through the points of magnetic detec-
tor location.

As aresult, the anode current and amplitudes of the
derivatives of the dipole moments also decrease. Since
the FTLS at the X radiation front forms under the satu-
ration conditions, the irradiation nonuniformity due to
adecreasein the X ray fluence has no time to show up
against the background of the effect of current limita-
tion by the waveguide mode and, hence, insignificantly
influences the generation of the faster-than-light cur-
rent pulse and EMR.

These effects are distinctly seen in Figs. 8 and 9,
which plot the time dependences of the anode current
that are measured at different points along the Ox axis
and obtained anayticaly (by FTLS simulation). It
should be noted that, since the time resolution of the
measuring channel is comparable to the microwave
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Fig. 11. Experimental and calculated time dependences of
the magnetic field at the point of MD3 location.

component of the current pulse, the experimental sig-
nals may be smoother than those obtained by the calcu-
lation.

The simulation shows that, for the given intensities
of the X radiation from the laser plasma source, the
anode current rapidly tends to an asymptotic value (in
terms of the emission current at the cathode) and its
peak value at the point of FC, location is bound to be
no more than 6.5 A/cm?. This statement was confirmed
experimentally, since an anode current density higher
than 5 A/cm? was observed in none of the experiments.

One of our main goals was to record the EMR from
the FTLS and confirm that it is directional and short.
The magnetic fields were recorded in the far-field zone
of the radiator, where the field amplitudes depend pri-
marily on the second-order derivative of the dipole
moment. This derivative is proportional to the electron

energy and initial voltage across the capacitor: P ~ ¢ ~
¢,. Sincethereisan uncertainty both in the pulse shape
and in the emission current amplitude at the cathode
(because of the experimental error involved in the
experimental values of the anode current and its rise
time; see Figs. 3, 4), one can indicate only the interval
into which the values measured may fall when simulat-
ing the magnetic field at the points where detectors
MD, and MD4 are located. Figure 10 shows the distri-
bution of the maximal magnetic field along the Ox axis
that was simulated for those coordinates x and y corre-
sponding to the positions of the magnetic detectors. The
results of simulation are in good agreement with the
measured data both in magnitude and in pulse shape
(Fig. 11). In the wave zone of the radiator, the resulting
EMP represents a videopul se of duration less than 2 ns
(this duration depends on the characteristic discharge
time of the capacitor). With the rise times coincident,
the analytical and calculated pulses somewhat differ in
FWHM (by 0.1-0.2 ns). Thisdiscrepancy is most prob-
ably related to the fact that, in the 3D simulation of the

LAZAREV et al.

electromagnetic fields, the electron currents were spec-
ified by the time functions obtained by the self-consis-
tent simulation in the 2D geometry, which ignores the
finite length of the capacitor in the Oy direction. The
calculation of the current distribution in the direction
transverse to the direction of the faster-than-light cur-
rent (Fig. 2b) indicatesthat not only doesthe anode cur-
rent amplitude rise by 20-30%, but also the pulse
becomes slightly (by 10-15%) longer.

CONCLUSIONS

We performed mathematical simulation of theEMR
generation by a faster-than-light emission current
source, which was implemented with the Iskra-5 setup
in the ARITP [8]. The simulation shows that the char-
acteristic EMR is directional and lasts for a short time.
Also, the resulting EMR induces the dynamic limita-
tion of the anode current density.

In the calculation, we determined the anode current
values that are ultimate in such a system. The space-
time distribution of the emitting dipole layer was
obtained. It is shown that the anode current amplitude
and the dipole moment density rapidly decay along the
capacitor and tend to their asymptotic values as the
length of the emitting areaincreases. Thisis associated
with the current limitation effect and al so with theinflu-
ence of theresulting EMR on the electron motionin the
accelerating gap.

Generally, we may ascertain that the physicomathe-
matical model of an FTLS gives agood fit to the exper-
imental space-time distribution of the anode current
and electromagnetic fields. Hence, the concepts this
model relies upon [1, 4-7] are valid.
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Abstract—The nonlinear generation of a difference frequency mode in an injection quantum-well semicon-
ductor laser is considered. A laser based on the InGaAgGaA g 1nGaP heterostructure is proposed, which gener-
ates two modes in the 1-um range and the difference mode in a corrugated waveguide in the range from 10 to
20 um. It is shown that the power of the difference mode produced by a laser with a 100-um-wide waveguide
in the mid-IR range at room temperature can be as high as a few microwatts if the power of the short-wave

modesis 10 W. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Although small-size terahertz and multiterahertz
sources of radiation are presently in great demand in
various applications, only few types of such sources
have been developed. Semiconductor lasers of tradi-
tional design are only capable of lasing in the near-
infrared (IR) and visible ranges, because nonradiative
Auger recombination playsasignificant rolein narrow-
gap semiconductors. Presently, the most significant
advances are observed in the development of quantum
cascade lasers [1, 2]. However, the extremely complex
band structure of cascade lasers and stringent require-
ments imposed on their parameters hinder their wide
use. Far-IR semiconductor lasers based on p-type ger-
manium [3, 4] operate only at cryogenic temperatures.
An aternative approach to the devel opment of mid- and
far-IR lasers operating at room temperature is to use
nonlinear effects. Previoudly, to produce a difference
mode in alaser that outputs two short-wave modes, it
was proposed to use el ectron nonlinearity in aquantum
well containing three levels [5] or nonlinear properties
of semiconductor materialsin the active region [6, 7].

The main difficulty in achieving efficient nonlinear
generation consists in the necessity to meet the phase-
matching condition, because, due to the normal disper-
sion of the refractive index, the phase velocity of the
wave of nonlinear polarization, as a rule, proves to be
lower than the phase vel ocity of the difference mode. It
was shown in [6] that the phase-matching condition
could be met when the fundamental short-wave mode at
afrequency w, and a side mode at afrequency w, > w,
are used. In this case, high-frequency modes at about
1-pm with a power of 10 W produce a 100-puW differ-
ence mode at a wavelength of about 10 pm and an
absorption coefficient of about 10 cm™.

A disadvantage of the design proposed in [6] is a
small overlap coefficient for the wave of nonlinear
polarization at the difference frequency and the
waveguide mode excited. This coefficient is small for
two reasons. First, the nonlinear polarization at the dif-
ferencefrequency is proportional to aproduct of almost
orthogonal modes, which changes the polarization sign
in the direction perpendicular to the structure layers on
the scale of the width of the wave-guiding layer for
high-frequency modes. Second, the scale of the spatial
variation of the difference mode in this direction is
mush larger than the scale of variation of the polariza-
tion wave. In addition, the parameters of the dielectric
waveguide proposed in [6] are very sensitive to the
geometry of the structure; hence, even small errorsin
the layer thicknesses may decrease the laser power by
several orders of magnitude, which makes this design
very difficult to implement.

An alternative approach to providing phase match-
ing by using a plasmawaveguide to slow the difference
harmonic was proposed in [7]. However, as calculation
showed, this structure operates satisfactorily only for
the difference mode is in the far-IR range (where the
semiconductor permittivity exhibits anomalous disper-
sion) and is hardly applicable to the mid-IR range.

In this study, we propose a hew technique to ensure
the phase matching, based on using modes of a corru-
gated waveguide, which has long been used to slow
electromagnetic waves in microwave electronics [8].

The advantages of this technique are as follows.
First, it offers a comparatively easy way to control the
phase velocity at the difference frequency by changing
the corrugation period and depth. The second advan-
tage of the proposed technique is that it uses two high-
frequency fundamental modes at frequencies w, and w,
to excite the low-frequency difference mode; therefore,
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the overlap coefficient for the difference frequency is
not small (the high-frequency modes are not orthogo-
nal). Our calculations showed that, when the phase-
matching condition is met and the powers of the high-
frequency modes are 10 W at about 1 um, the power of
the difference mode may be about several microwattsin
the wavelength range from 10 to 20 um for alaser with
a 100-pum-wide waveguide.

CALCULATION OF THE POWER
OF THE DIFFERENCE MODE
IN THE CORRUGATED WAVEGUIDE

Consider the structurein Fig. 1. Here, histhe corru-
gation depth, D is the corrugation period, and L is the
length of the region occupied by the semiconductor and
surrounded by metal from its three sides. If the semi-
conductor laser structure is grown on the (001) plane
and the high-frequency modes are TE-polarized and
propagatein the[110] direction, the nonlinear polariza:
tion in GaAs is perpendicular to the layer plane and
excites the TM mode at the difference frequency [6].

We will calculate the characteristics of the corru-
gated waveguide at the difference frequency by the
mode-matching technique [8], which divides the corru-
gated waveguide into two regions:. the space of resona-
tors (z > 0) and the interaction space (z < 0). The H,
magnetic field component of the TM wave can be
approximated in the interaction space by a superposi-
tion of spatial harmonics H,,(2); in the resonators, by a
superposition of partia fields H,,(2), which are stand-
ing waves in the propagation direction of the wave
amplified, i.e., they do not contribute to the energy
transfer:

+o00

Hy(x 2) = Z Hym(2)exp(iky,—iwt), z<0, (1)

m= —o0

Hy(x z) = Z Hy(2) fq(X)exp(—iwt), z>0, (2)
q=0

where ki, = k, + 21mm/D; —0 < m < o0; and f(x) are the

resonator’s eigenfunctions (0 < q < ), whose phase

advance per corrugation period D equals the phase
advance of the wave outside the resonators.

We used the single-wave approximation, which
takes into account only one spatial harmonic and one
wave type (m= 0 and g = 0) in the resonator. The elec-
tromagnetic field in the continuous metal part of the
waveguide z> h was matched to the field in the adjacent
semiconductor material. Below, we omit the indices m
and g of the y component of the magnetic field. The
above approximation is valid when the wavelength in
the corrugated waveguide islonger than the corrugation
period [8]:

2nDn/A < 0.6, (3)
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Fig. 1. Structure proposed to generate the difference fre-
quency (layer numbers correspond to those used in table).

where n is the refractive index of the medium and A is
the wavelength in free space, because, under this condi-
tion, the amplitude of the zeroth harmonic is signifi-
cantly larger than those of other harmonics.

The magnetic field intensity H,(2) of the generated
wave in theregion z < 0 is determined from the follow-
ing equation:

dr 1 dH, W 1]
w)dz[e(z, ) dz } *3$(z) 2~y

K
= —25‘2’%°A§(2)A2(z).

£(z,

(4)

Here, the zaxisis parallel to the [001] crystallographic
direction (Fig. 1) and €@ isthe nonlinear susceptibility.
To find Hy(2) in the region z > 0, we take k, in Eq. (4)
egual to the corresponding projection of the wave vec-
tor of the standing waves in the semiconductor parts of
the periodic structure, k., which is calculated from the

relation k>, + k2, = e?/c?, where g, isthe permittivity

of the semiconductor and the projection k,, is deter-
mined as an eigenvalue of the equation

1 dfq (A)Z 2|:| _
w e B F =0

for 0 < z < h under the boundary condition fy(x) =
exp(ikD)fy(x + D).

The boundary conditions at z = 0 are the continuity
of Hy(2) and of

e(x, co)%([

1 0H,(2)
e(x,w) dz °
The dependences of the electric field amplitudes A,

and A, of the higher-frequency modes on coordinates
and the difference k, = k, — k; of the modes' propagation
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Fig. 2. Profiles of the magnitude of the magnetic field of the
difference mode (the dashed line is the amplitude of the
high-frequency modes in arbitrary units), the corrugated
surface (right), and the real and imaginary parts of the
refractive index at awavelength of 12.7 um (layer numbers
correspond to those used in table).

constants are calculated by solving the wave equation

with the corresponding profile of the refractive index.
The eectric field component E, of the difference

mode and its power are determined from the equalities

o1k, .
E, = &(z, w)DTJHyJ’ ZS(Z)Al(Z)AZ(Z)%’ ©6)

0
_ oL, .
P = —[Re(H,E})dz, @)

—0o

where L, is the width of the contact strip of the laser
diode.

The solution to the above system is a slow wave,
which exponentially decays with distance away from
the corrugated surface in proportion to the slowing fac-
tor (Fig. 2).

Heterostructure parameters
Layer Materi Layer Doping Mobi-
no. erial thick- concentra I|2ty,
ness, um| type tion, cm-3 cme/V s
1 |GaAs - n 2x10%® | 3024
2 |InGaP 0.6 n | 4x10% | 1947
3 |GaAs,2KYa| 06 n | 4x10% | 5796
4 |InGaP 0.6 p | 1x10Y 40
5 |GaAs 0.5 p | 1x10Y 279
6 |Au 1 - - -

ALESHKIN et al.

The parameters of the heterostructure proposed here
to produce the difference frequency in the
INGaAgGaAs/InGaP system are listed in the table. To
produce short-wave modes at two different frequencies,
the active region contains two InGaAs quantum wells
(QWs) of different depth in the GaAs layer (layer 3in
table). For the short-wave radiation, the waveguide is
formed by sandwiching a layer of narrow-gap GaAs
between emitter layers of wide-gap InGaP with alower
refractive index. In our calculations, we used the fol-
lowing expressionsfor the refractive index of the short-
wave modes[9, 10]:

3.78
Neane(AW) = J7.1+—,
cons 1-0.18(Aw)’ ®)
anap(ﬁ(.L)) = nCaAs(h(A))_0279

The effective refractive index of the difference-
polarization wave n = (Ka, — ky,)/(0, — ;) is determined
by the design of the high-frequency part of thelaser and
is actually independent of the design of the corrugated
waveguide, because the high-frequency modes almost
do not penetrate beyond the bounding InGaP layers
(Fig. 2).

To calculate correctly the refractive index at the dif-
ference frequency, the contributions of free carriersand
optical photons to the permittivity must be taken into
account. The simplest way to consider the contribution
of the free-carrier plasma and optical photons to the
permittivity is to use expression (26) from [11], which
isapplicableto both n-type and p-type semiconductors:

2 2
WTo(€p—E€x) L WE,
2 . 2, !
wTo—ooz—lrw W +iyw

g(w) = g, +

(9)

where g, and ¢, are the low-frequency and high-fre-
guency permittivities of an undoped semiconductor,
respectively; wyq is the frequency of the transverse
optical photon; I is the coefficient of the phonon-
induced wave attenuation; y = g/m*y; oos =
2mng?/mi* €., is the squared plasma frequency; n and m*
are the concentration and effective mass of charge car-
riers, respectively; and [ is the carrier mobility.

The values of I and wy;o were taken from review
[11], and y was calculated from the dependence of the
mobility on dopant concentration reported in [9]. The
frequency dependence of the attenuation coefficient
obtained from (9) isin good agreement with the exper-
imentally observed dependencies [11], except for the

multiphonon effects, whose contribution to the attenu-
ationis small.

Our calculations of the permittivity of InGaP in the
mid- and far-IR ranges assumed that half of the TO
phonons in the solid solution are due to the InP sublat-
tice and half are due to the GaP sublattice, i.e., we
neglected the change in the interatomic distancesin the
solid solution as compared with the binary semicon-
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Fig. 3. Power of the difference mode vs. its wavelength in
the structure with the following parameters: h=0.5um, D =

0.8pm, L=0.7 um, €@ =1.7 x 10 cm/V, and L, = 100 pm.

ductors InP and GaP. The total permittivity was calcu-
lated as a half-sum of the permittivities of InP and GaP.
It should be noted that, to reduce loss in the structure,
we used a lighter doping than usual.

The power calculated asafunction of the difference-
mode wavelength is shown in Fig. 3. In these calcula-
tions, the maximum wavelength of the high-frequency
modes was fixed and the difference-mode wavelength
was changed by changing the wavelength of the other
high-frequency mode. The function has a maximum,
which corresponds to the phase matching between the
waveguide and polarization modes at the difference fre-
guency. In addition, it can be seen from Fig. 4 that the
power peak shifts to longer wavelengths with increas-
ing the corrugation depth and reaches a maximum
value at corrugation depth h ~ 0.5 pm.

Although the nonlinear polarization is produced
using only fundamental modes, the power of the prop-
agating wave appearsto belower thanin [6] by an order
of magnitude. The reason is that the coefficient of
absorption by free carriers in the meta is significant,
since the field amplified exponentially decays with dis-
tance away from the corrugated metal surface and is
mostly concentrated in the metal resonators of the cor-
rugated waveguide, where they form a standing wave
(Fig. 2). The energy of the standing wave exceeds the
energy of the propagating wave by a factor of almost
five.

Due to the high absorption coefficient, the depen-
dence of the power of the wave in the corrugated
waveguide versusthe energy of its quantum hasarather
wide maximum. In particular, in the vicinity of
=10 meV, the estimated wave power drops by only an
order of magnitude. This means that the generated
power isnot very sensitive to the parameters of the sys-
tem in arather wide frequency range.

Thus, the injection laser of the design proposed in
this paper makes it possible to obtain lasing power of
TECHNICAL PHYSICS  Vol. 49
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Fig. 4. Maximum power (solid line) and wavelength
(dashed line) of the difference mode vs. corrugation depth h
at all other parameters fixed (in accordance with table).

about several microwatts in the mid-IR range at room
temperature. The nonlinear polarization is produced
using only fundamental short-wave modes in the range
of 1 um. The phase matching is obtained by slowing the
long-wavelength IR radiation in the corrugated
waveguide.

One of the advantages of the design proposed isits
low sensitivity to the spread of the process parameters,
because phase matching is obtained by properly choos-
ing the corrugation depth for the difference frequency,
which may be determined before applying a corruga-
tion waveguide to the heterostructure. In addition, the
optimal corrugation depth may be found empirically
using one heterostructure sample.
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Abstract—The problem of using a photoplasma to directly convert the energy of light into electric energy is
investigated theoretically. It is shown that the photo-emf is generated due to the ambipolar potential difference
caused by the nonuniform ionization of alkali metal vapor by optical radiation. The current—voltage character-
istic is calculated and the efficiency is estimated of a plasma photoconverter with plane electrodes. © 2004

MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The most efficient method for reducing the cost of
photoelectric energy is to use intense optical radiation
[1]. Besides the use of semiconductor photoelectric
converters, new technologies for the direct conversion
of intense optical radiation into electric current are now
being actively investigated. A scheme for converting
intense CO,-laser radiation (with an intensity of a few

kW/cm?) into electric energy by using a thermoemis-
sion converter was developed in [2]. An akali metal
thermal -to-electric converter (AMTEC) facility is pro-
posed to convert solar radiation [3]. The AMTEC oper-
ation is based on the separation of charges by a mem-
brane that transmits sodium ions well but does not
transmit electrons.

The use of alow-temperature plasmafor direct opti-
cal-to-electric energy conversion has not yet been ade-
guately studied. In [4], a method of magnetohydrody-
namic (MHD) conversion of solar energy into electric
current by using isothermal alkali metal plasma was
proposed. Another method for the direct conversion of
the kinetic energy of charged plasma particlesinto elec-
tric current is to use the ambipolar potential difference.
This method was discussed in connection with the
problem of enhancing the fuel efficiency in nuclear
fusion reactors [5].

The first experimental studies on the use of the
ambipolar potential differencein an alkali metal photo-
plasmato directly convert intense optical radiation into
electric current were performed in [6, 7]. Plasma for-
mation in alkali metal vapor is awell-studied phenom-
enon [8]. The efficiency of this process increases by
several orders of magnitude when the wavel ength of the
incident radiation corresponds to the absorption line of
the alkali atoms. In the early experiments on photoplas-
mas, it was shown that the efficiency of optical ioniza-
tion can approach unity [9]. An interesting result of

[6, 7] wasthat, in those experiments, the photo-emf was
as high as 34V, which was almost one order of mag-
nitude higher than that for semiconductor converters.
Such a high photo-emf is a consequence of the high
electron temperature in photoplasma[10].

In the present paper, a theoretical model is devel-
oped that describes the photo-emf effect in plasma
under the action of intense optical radiation. We con-
sider a configuration with plane electrodes, which isthe
simplest from the standpoint of describing the ambipo-
lar field in plasma.

CALCULATION OF THE CURRENT-VOLTAGE
CHARACTERISTIC OF THE CONVERTER

We consider the following simplified mathematical
model of the photo-emf effect in plasma under the
action of intense optical radiation: Let the plasma be
located between two plane el ectrodes A and B separated
by a distance L. We assume that optical excitation
occurs in a narrow layer, within which the excited
atoms are mainly concentrated. The excitationregionis
located at a distance X, from one of the electrodes. In
our analysis, we will ignore the edge effects and will
consider the problem in a one-dimensional approxima-
tion. It is well known that the dominant ionization
mechanism in photoplasma is the electron-impact ion-
ization of resonantly excited atoms[8]. Hence, theion-
ization source can be represented in the form of adelta
function Qd(x — Xy), where Q is the ionization rate. In
the absence of volume recombination, the diffusion
equation for the plasma density n has the form

2
D%;’-J = QB(X—Xy). (1)

1063-7842/04/4911-1491$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Spatia distributions of the (1) plasma density and
(2) electric potentia in the open-circuit regime and (3) the
electrode potential drops in the short-circuit regime at
xyL = 0.1, \/L = 0.02, T/T,=0.1.

Here, D, isthe coefficient of ambipolar diffusion. Inthe
case of equilibrium electron and ion energy distribu-
tions, wehave D, = D;(1 + TJT,), where D; istheion dif-
fusion coefficient and T, and T; are the electron and ion
temperatures, respectively. The solution to Eq. (1) with
zero boundary conditions n(0) = n(L) = 0 has the form
(seeFig. 1, curve 1)

n(x) = %’x for 0< X< X, (29)

0

n(x) = (2b)

Ng
— < X<
L—XO(L x) for x,<x<L.

The plasma density at the point X, is equal to ny =
Q(L —xg)%o/D L. Equation (1) becomesinvalid at adis-
tance of x, = A; from the electrode surface, where A, is
the ion mean free path. The potentia drops ¢, and ¢z
across the electrode sheaths partially cut off the elec-
tron diffusive fluxes toward the electrodes. Kirchhoff’s
laws for the electric circuit with unit-area electrodes
have the form

1(€) = ian—ja = —ig+]s
€(1) = Qo+ OpA—Ps— 0.

Here, I(€) is the current in the external circuit; € is the
interel ectrode voltage; j, and jg are the electron current
densities at electrodes A and B, respectively; and i, and
ig arethe current densities of positiveions. If the circuit
closing electrodes A and B consists only of aresistance
R, thenwe havel = ¢/R. The ambipolar potential drop ¢
across the quasineutral plasma is determined by the
expression [11]

©)

_ 7 cldn
Q= TeJ'ndde. (@)

GORBUNOV, FLAMANT

Hence, wefind that @, = TJn(xy/A;) for A, < x< x,and
@ = TIn((L —xg)/A) for Xp < X< L — A

The ion current density is determined by the ambi-
polar flow velocity i = -D,dn/dx. Hence, we find that
ia=-Dany/X, and ig = D ny/(L — X%p). The electron cur-
rent density at the electrode can be find under the
assumption that the electrode sheath is collisionless,
since the electron mean free path usually far exceedsA,.
When the electron energy distribution is Maxwellian,
the electron current density is expressed through the
well-known Langmuir formula

. n,ev
i(ed) = 2 expl-220) (5)

where n, isthe plasma at the sheath boundary and v =
(8KT/Tm)¥2 is the thermal electron velocity.

The solution to set of equations (3) yields the cur-
rent—voltage characteristic of the photo-emf source:

D,n
a0+|

o | ©6)

Daho
L —X,

€ =T,.ln

Let us examine the limiting cases of expression (6).
In the open-circuit regime (I(€) = 0), the electrode

potential drops are equal to one another, 2 = ¢ =

TJdn, /MT,/mT,, and the electron and ion fluxes to the

electrodes are also equal. In this case, the photo-emf @
is determined by the ambipolar potentia difference

_ L —Xq
® = TIng O ©)

It follows from formula (7) that the emf vanishes
when the el ectrodes are positioned symmetrically about
theionization region (X, = L/2). Curve 2in Fig. 1 shows
the potential distribution and the electrode potential
drops in the open-circuit regime for a lithium vapor
plasma.

When the current flows through the external circuit,
the potential drop near the electrode that is closest to

the ionization source increases in comparison to ¢2\

and a greater ion flux arrives at this electrode from the
plasma. An additional electron flux arrives at this elec-
trode through the external circuit. The potential of the
electrode located farther from the ionization source
decreases, and more electrons than ions arrive at this
electrode from the plasma. Thus, the electrode potential
drops play therole of apeculiar kind of valves control-
ling the electron fluxes to the electrode. The ambipolar
potential difference in our model remains unchanged.
TECHNICAL PHYSICS Vol. 49
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In the short-circuit regime (¢ = 0), the current | is
determined by the expression

L-2
lp = Q——2. ®)

The electrode potential propsin this case are shown
in Fig. 1 by squares 3.

Figure 2 shows the calculated current—voltage char-
acteristic €(1) and the power W = ¢l released in the
external circuit for two different positions of theioniza-
tion regions with respect to the electrodes. It can be
seen from the figure that the photo-emf in the open-cir-
cuit regime, the short-circuit current, and the power
released in the load increase as the ionization region
approaches one of the electrodes. Note that, in Fig. 2,
the photo-emf is normalized to T, and the current is
normalized to the ionization rate in the plasma. To
determine T, it is necessary to consider equations
describing the plasma state.

MODEL OF A PHOTOPLASMA
IN THE DIFFUSION REGIME

Let us estimate T, from equations for photoplasma.
The relative population of the resonantly excited states
is characterized by the effective temperature

T* = —=AEy[In(N;9o/Nog*)] -

where AEy, (1.53 < AE; < 2.1 V) isthe energy differ-
ence between the resonant levels of alkali atoms, N, and
N, are the populations of alkali atomsin the excited and
ground states, and g, and g* are the statistical weights
of the corresponding levels.

The main source of electron heating in photoplasma
issuperelastic collisions with resonantly excited atoms.
Far from the optical saturation of the resonance transi-
tion (T* < AE,,), thefrequency of electron-impact exci-
tation from the ground state vy, (T) is much higher than
the frequency of ionization from the resonance state,
V4i(T) <€ vyu(Ty). This is a direct consequence of the
relations between the cross sections and the energy
thresholds for the above processes: AEy; < AE;;, where
AE;; is the energy of ionization from the ground state.
As a result, the electron energy fraction spent on the
ionization of atomsis less than 1% of the energy spent
on the excitation of atoms from the ground state. The
electron energy lost in inelastic processes (at T, >

ong _

ot
Ny _ _J

k1i (Te) neNl -

1493

g7,

W, arb. units
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Fig. 2. (1, 2) The emf and (3, 4) output power of a photo-
converter as functions of the electric current at different
positions of the ionization source: xg/L = (1, 3) 0.1 and
(2, 4) 0.01.

0.15 eV) is larger than the energy lost in elastic elec-
tron—atom collisions:

AEV01(Te) > 0Vea(Te)(Te—Ty),

where d = 2m/M is the coefficient of energy transfer in
elastic collisions of electrons with atoms, v(T,) isthe
frequency of elastic collisions, and Ty is the gastemper-
ature[12].

The governing role of the processes of the resonant
excitation and deexcitation in the electron energy bal-
ance equation is the reason why T, = T*. Thisis con-
firmed by numerical calculations of the energy distribu-
tion function in photoplasma[13].

The electron density n,and the population of alkali
atoms in the excited state N; are determined from the
corresponding balance equations. In evaluating the
maximum possi ble conversion efficiency, weignore the
recombination of electrons and ions in the plasma in
comparison to their diffusive losses. Because of the
trapping of the resonance radiation, the effective life-
time of the resonance level substantialy exceeds its
natural lifetime. Let us consider the conditions under
which the rate of the electron-impact deexcitation of
the resonantly excited states exceeds the radiative
decay rate. Under the above assumptions, the balance
equations take the form

Ne
Tad(Te)’

(9)

—— + Kor(Te)NeNy — K1o(T) NeNy — Ky (T NNy,

ot  AE,
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Fig. 3. Conversion efficiency for different alkali metalsasa
function of the vapor density for L = 1 cm and xg/L = 0.1.

where J [J(cm? s)] is the rate of the external optical
excitation of the resonant levels (in units of J(cm? s))
and 1,4(Ty) = Xo(L — %p)/D, is the characteristic time of
ambipolar-diffusion.

The first of the above equations allows us to deter-
mine T,, assuming that T, = T*. Here, as in the Shottky
theory, the electron temperature is determined by the
ionization balance condition. The difference from con-
ditions in an electric discharge is that the ionization
from the ground atomic state is replaced with the ion-
ization from the resonantly excited state. Using the
Seaton formula [14] for ky;(Ty) and expressing D; in
terms of the resonance charge-exchange cross section
Ores [15] and T, we derive the following equation for
determining Tg:

E..
Te= 9 m (10)
D /TT Noom xo(L— X)D
e T, °

where a is a factor depending on the system of units
used in formula (10).

It follows from this expression that, for the same
external parameters Ny, X,, and L, the T, value is higher
in the photoplasma of light alkali metals, because these
metals have the higher ionization energies E, and E;;
and the lower values of M and o, The solution to
Eq. (10) hasasingularity at X, ~ A;. At X, < A;, Eq. (10)
has no solutions, which is a consequence of the zero
boundary conditions used in solving Eqg. (1).

The second of Egs. (9) allows us to determine n,.
Assuming that T, = T*, we obtain
— ‘]Tad(Te)

o= TAE, (11)

GORBUNOV, FLAMANT

It follows from this formula that the degree of ion-
ization increases as the radiative-excitation power and
the distance of the ionization region from the electrode
surface increase.

CONVERSION EFFICIENCY
FOR THE ABSORBED RADIATION ENERGY

The dependence of the output power on the current
through the load (Fig. 2) showsthat the optimal current
is nearly egqual to one-half of the short-circuit current.
This current determines the lower estimates for the
maximum poss ble power (P = 0.511,,,€(0.51 15)) and
the conversion efficiency n:

r]:P_OPt:lL 2Xg e|E13L 2xqj
J 4 L AEy, HL+2x,

The calculated conversion efficiencies for the plas-
mas of alkali metals as functions of their vapor densi-
ties are shown in Fig. 3. When calculating T, from
Eqg. (10), it was assumed that the density of alkali atoms
No(T,) corresponded to the saturation vapor pressure
[16]. It can seen that, under identical external condi-
tions, the maximum efficiency is achieved in lithium
vapor because of the maximum values of T, in it.

The maximum possible efficiency of a photocon-
verter with plane electrodes (X, << L) can be estimated
by the formula

(12)

r'] = P_opt = 1' Te
J 4AEy,
It follows from this formula that, to increase the

conversion efficiency, the electron temperature should
be fairly high.

In3. (23

CONCLUSIONS

In this paper, an analytical model of a photocon-
verter with plane electrodes has been developed. It is
shown that the photo-emf effect in plasmais caused by
the generation of an ambipolar field when the elec-
trodes are positioned asymmetrically about the region
of gas excitation by an external radiation source. The
electric current in the external circuit is determined by
the diffusion of the positiveions(i.e., asin semiconduc-
tors, by the diffusion of the minority current carriers).
An increase in the electron temperature leads to an
increase in both the photo-emf and the conversion effi-
ciency.
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Abstract—Amorphous silver, copper, gold, and iron films with a thickness of 6-60 nm have been grown on a
polymer substrate by the method of vacuum deposition. The dependences of the specific conductivity and the
microwave reflection coefficient on the film thickness are obtained and arelation between these valuesis estab-

lished. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

A great number of papers are devoted to investiga-
tions of the conductivity and electrodynamic properties
of thin (10- to 100-nm-thick) metal films, in particular,
to the reflection, transmission, and absorption of elec-
tromagnetic wavesin such films|[1, 2]. These investiga-
tions have been mostly carried out under the assump-
tion that the size of inhomogeneities in the films is
much smaller than the wavelength but much greater
than the skin depth, which implies that the wave field
distribution inside the film is inhomogeneous. For a
film thickness of 10-100 nm, this assumption is valid
only in the range of rather high frequenciesin the visi-
ble and infrared ranges [1-13]. L ess attention has been
paid to the electrodynamic propertiesin the centimetric
range, for which the skin depth is much greater than the
film thickness. However, this very range is of interest
from the standpoint of using metal filmsin various data
processing devices, where the metal films are promis-
ing candidates to replace expensive ferrite films
[14, 15].

The present work was devoted to investigation of the
conductivity and the reflection of centimetric electro-
magnetic waves as functions of the thickness of athin
metal film of silver, copper, gold, and iron in the amor-
phous state. We have aso established a relationship
between these functions.

1. CHARACTERIZATION OF SAMPLES

We have studied the amprophous films of silver,
copper, gold, and iron obtained by thermal deposition
in vacuum onto the surface of adielectric polymer sub-
strate at room temperature. The vacuum was about
1075 Torr and the metal deposition rate was ~10 nm/s.
Such a high rate was necessary to obtain pure metal
filmswith asmall content of impuritiesin arough vac-
uum. These deposition rates are often used to fabricate
thin-film materials in industry. The film thickness was
varied from 6 to 60 nm.

The X-ray diffraction analysis of the films showed
that diffraction peaks typica of the crystalline state
were entirely absent; hence, the filmswere X-ray amor-
phous. A polymeric X-ray film with a thickness of
0.5 mm was used as a substrate for depositing metal
films used in the measurements of conductivity and
reflection coefficient.

2. EXPERIMENTAL EQUIPMENT
AND TECHNIQUES

2.1. Determination of thefilm thickness and con-
ductivity. A crystalline calibrator assembled on the
base of a quartz resonator was used to control film
thickness during the deposition. The evaporating mate-
rial was simultaneously deposited on the substrate and
facets of the quartz crystal linked to the high-frequency
oscillatory circuit of agenerator. The procedure of film
thickness measurements was described in [16].

The conductivity measurements were performed
using an experimental setup schematically depicted in
Fig. 1,which consisted of dc power supply B5-43, dig-
ital wavemeter Ch3-57, digital ohmmeter Shch-34, and
piezoquartz transducer (calibrator) placed in the vac-
uum chamber at the same level as the substrate. Thick
silver layerswere deposited at the ends of each polymer
substrate, which were connected to the measuring
equipment. The resistance was measured after each
deposition cycle.

During the deposition, all the experimental data
(deposition time, piezoquartz transducer frequency, and
resistance) were recorded into computer memory (writ-
ing speed was about 200-250 experimental points per
minute). In some experiments, a thin metallic grid was
placed between the evaporating material and substrate
so asto decrease the deposition rate, thusincreasing the
amount of the measured data. The film thickness was
determined from the frequency shift of the quartz reso-
nator, while, taking into account the thickness, area,
and resistance, it was possible to determine the conduc-
tivity.

1063-7842/04/4911-1496$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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2.2. Determination of the reflection coefficient.
The coefficient of reflection of amicrowave signal from
metal films was measured at normal incidence. The
measurements were carried out in afrequency range of
8-12 GHz. The sample film was placed in arectangular
waveguide with a cross-section of 10 x 24 mm and ori-
ented perpendicular to its longitudinal axis so as to
cover al the waveguide cross-section. A matched load
was placed behind the film, at the opposite end of the
waveguide (Fig. 2). The waveguide was connected to a
panoramic device measuring the complex transfer con-
stants. The device comprised a swept-frequency gener-
ator (SFG-61), a voltage standing-wave indicator with
an attenuation module (YaSR-67), and a waveguide set
of reflectometers. In order to increase the sensitivity,
the microwave signal was modulated in amplitude with
a frequency of 100 kHz. The initial signal from the
microwave generator was divided and fed into two
channels. One of these signals was used as a reference
signal and entered the indicator immediately after
being detected, while the other signal was fed to the
waveguide containing the investigated sample. The
reflected wave excited an electromative force (emf) in
the receiver. The response signal was detected and fed
to theindicator. In both cases, detection was carried out
in such away that the output signal was proportional to
the microwave field strength. Owing to this connection,
it was possible to compare the amplitudes of the wave
field strength of the incident and reflected signalsin the
indicator. The reflection coefficient R was determined
asthe ratio of these signals,

_ K=1 _ Eq

T K+1 Ep

R

where K isthe standing-wave ratio (determined directly
on the indicator scale) and E;,. and E,; are the ampli-
tudes of the incident and reflected waves, respectively.

3. MAIN EXPERIMENTAL RESULTS
AND DISCUSSION

3.1. Electric Conductivity

The experimental data on the specific conductivity o
as afunction of the film thickness are shown in Fig. 3
for various metal films measured at room temperature
in a vacuum of 107 Torr (for iron films, the values of
specific conductivity are multiplied by afactor of five).
These experimental data are well approximated by the
Boltzmann function (Fig. 3). As follows from Fig. 3,
the dependence of conductivity on the thickness is
weak for al filmswith athickness of up to 5-7 nm. For
the films with such thicknesses, a cluster-island struc-
tureistypical [10, 11, 17], which is characterized by a
high resistivity along the film. Moreover, objects with
such small thicknesses are characterized by a small
density of free electrons and ashort free path limited by
the film surface, clusters, and islands on the film sur-

TECHNICAL PHYSICS  Vol. 49

No. 11 2004

1497

Fig. 1. Schematic diagram of the experimental used for the
measurements of the conductivity and thickness of the
films: (1) power supply; (2) piezoquartz transducer; (3) sub-
strate; (4) ohmmeter; (5) wavemeter; (6) vacuum chamber;
and (7) metal source.
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Fig. 2. Schematic diagram of the experimental setup for the
measurements of the standing-wave ratio: (I)—swept-fre-
quency generator (SFG); (I1) indicator; (1) doorknob trans-
former; (2) directional detector of incident wave; (3) direc-
tional detector of reflected wave; (4) matched load;
(5) interface cable; (6) sample; (7) ARM outputs of indica-
tor and SFG; (8) incident wavejack; (9) reflected wavejack;
(10) SFG output; (11) socket connector of SFG; and
(12) socket connector of indicator.
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Fig. 3. Plots of the specific conductivity versus film thick-
ness for the films of various metals: (1) silver; (2) copper;
(3) gold; and (4) iron.

face. All these factors lead to alow value of the longi-
tudinal (lateral) conductivity of the films.

As the film thickness increases, the film conductiv-
ity exhibits asharp dependence on thefilm thickness (in
the range of 7-15 nm for gold films, 6-20 nm for cop-
per films, and 540 nm for silver films). For iron films,
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this dependence is not as pronounced and the conduc-
tivity increases with the film thickness in the range
from 5 to 60 nm and above. With further increasein the
film thickness, the dependence o(d) becomes less pro-
nounced and the specific conductivity of the films is
close to maximum. It should be noted that the character
of conductivity growth for silver, copper, and gold films
intheindicated range of thicknessesisamost identical,
and the conductivity of all these films in the saturation
region is close to the corresponding bulk values. In par-
ticular, this value is about 2 x 10”7 Q1 m? for silver
films, 1.1 x 10" Q1 m* for copper films, 8 x 10° Q~* mr?
for gold films, and about 1 x 10° Q-1 m for iron films.
The mechanism of conductivity in thin amorphous
metal filmswas recently considered elsewhere [16].

It should be noted that the results of conductivity
measurements are different from those recently
reported in [16]. This difference is associated with the
substrates, on which the metal films were deposited.
Unlike a textolite substrate used for the conductivity
measurements reported in [16], the polymeric X-ray
film had a much smoother surface with smaller surface
roughnesses, which was revealed by atomic force
microscopy measurements. Hence, the layer thickness
on the polymeric X-ray film substrate is greater than
that on the textolite surface for the same amount of
deposited meta (the values of o(d) for atextolite sub-
strate were reported in [16]).

3.2. Microwave Reflection

3.2.1. Experimental results and discussion. Fig-
ure 4 showsthe experimental dependences of thereflec-
tion coefficient of a 10 GHz microwave signa as a
function of the film thickness for silver, copper, gold,
and iron films. It is seen from these experimental data
that the R(d) curves well correlate with the analogous
dependences of the conductivity o(d) (Fig. 3). Atafilm
thickness of about 5-7 nm, the reflection coefficient is

R

0.75

0.50

0.25

Fig. 4. Theoretica (solid lines) and experimental (points)
dependences of the reflection coefficient on the film thick-
ness: (1) silver; (2) copper; (3) gold; and (4) iron.

ANTONETS et al.

much smaller than unity. This fact indicates that a
reflecting layer capable of coherently reflecting micro-
wavesis not formed in very thin amorphousfilms. Such
thin layers are also characterized by low values of the
conductivity. As the film thickness increases above 5—
7nm, the reflection coefficient R exhibits a sharp
increasefor al thefilms. Thisisrelated to theformation
of areflecting layer and to an increase in the film con-
ductivity in this range. Notice that, beginning with a
thickness of ~15 nm, the reflectance of silver, copper,
and gold films is saturated on alevel of R — 1. The
same film thickness corresponds to saturation of con-
ductivity for gold films (Fig. 3, curve 3). Hence, a con-
ductivity of about 8 x 10° Q! m is sufficient for such
afilm to amost fully reflect the microwave radiation.
Further increasein the conductivity of silver and copper
films at agiven film thickness (Fig. 3, curves 1, 2) does
not lead to appreciable changes in the reflection coeffi-
cient, which is associated with the development of
other effects (for example, absorption) compensating
an increase in the conductivity.

For iron films, the reflectance is virtually not satu-
rated with the thickness increasing up to 60 nm. This
can be explained by the fact that the conductivity of
iron films is <8 x 10° Q' m? even for d = 60 nm
(Fig. 3, curve 4) and, hence, such films cannot reflect
microwaves completely, which is confirmed by Fig. 4.
Therefore, for the total reflection, it is necessary that a
conductivity of about 10’ Q* m= in meta films be
reached at very small film thicknesses (d = 10 nm).

3.2.2. Theinfluence of amedium on thereflecting
properties of the films. When a metal film is exposed
to air, the reflection coefficient gradualy decreases
with time. Thisfact is, apparently, caused by oxidation
of the film surface [1, 3, 5]. Thus, the measurement of
the microwave reflection coefficient of thin films makes
it possible to estimate oxide layer thickness. However,
in our case, the time variation of the reflection coeffi-
cient can reflect the influence of other factors. In order
to exclude this effect, subsequent measurements were
carried out for the films kept in air until a stationary
state was attained.

For silver and copper films, the fastest drop in the
reflection coefficient was observed within a few sec-
onds of exposure to air, after which the drop slowed
down and the reflection coefficient reached an almost
stationary value. For iron films, this drop could be
observed for several hours, that is, the oxidation pro-
cesses proceeded slower than in other films. For gold
films, the exposure to air did not significantly change
the reflection coefficient.

As can be seen from Fig. 4, the reflection coefficient
at small thicknesses (below 10 nm), for example, for
silver films, is lower at some points than that for gold
films. Thisfact can be explained by the fact that the for-
mation of an oxide layer on silver films decreases the
effective conductivity and, hence, the reflectance of
these films. The conductivity of gold films remains
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almost constant. Hence, at these thicknesses, the mea-
sured reflection coefficient for gold films can be some-
what higher than that for silver or copper films (Fig. 4).

3.2.3. Comparison of the experimental and theo-
retical results. Interpretation of the results on micro-
wave reflection from thin films requires using a correct
theoretical model capable of associating the measured
electrodynamic parameters with material properties. In
theinvestigated frequency range (~10 GHz) the el ectro-
magnetic wavelength (~3 cm) is five to seven orders of
magnitude greater than the film thickness (660 nm).
The skin depth in the same range of frequencies at a
conductivity of 10° Q' m= typical of a bulk metd is
500 nm, which is about one order of magnitude greater
than the film thickness. For thin films, especially those
in the amorphous state characterized by a lower con-
ductivity, the ratio of the skin depth to the film thick-
nessiseven much greater and it can be assumed that the
electromagnetic wave field penetrates through the
whole film thickness. In such a case, the problem of
wave reflection is usually solved by the classical meth-
ods [11, 18]. However, the calculations can be signifi-
cantly simplified by using the averaging method. This
method was first applied for calculations of a
waveguide with ferrite filling [19], in which the depen-
dence of the wave field on the coordinate perpendicul ar
to the layer was assumed to be linear. This method was
further developed for various layers [20-22]; detailed
analysis of the applicability of the averaging method in
different cases in comparison with the exact solution
was given in review [22].

Now, we will apply the averaging method to the
problem of wave reflection from a thin metal film at
normal incidence. Let the space and time dependence
of the incident wave field have the form expl[i(wt — kz)],
where zisthe coordinate along the normal to afilm sur-
face. As follows from [22], the coefficient of wave
reflection from ametal film with the thickness d and the
conductivity o can be expressed as

_ a-B
" @ee o
where
iw,d _onyd
T, ¢ 2

Ho is the permeability of vacuum and n is the imped-
ance of free space.

For a frequency of 10 GHz, a film thickness of
15 nm, and a conductivity of 107 Q' m* we obtain
|a] ~10~ and B ~100 (i.e., the value of a can be
ignored in comparison with (). In this case, to within
the sign, we obtain the reflection coefficient in the form

_ 2 ot
R= %H_Unod] , @)
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where o is afunction of the layer thickness described
by the expression

A — A
1+ expﬂj_xdj

O dx O

Here, A; and A, are some material constants, d, is the
initial point corresponding to the minimum layer thick-
ness, and dx is some interval corresponding to a refer-
ence step.

Formula (2) gives the reflection coefficient with
respect to the wave field intensity, which ismeasured in
experiments. The reflection coefficient with respect to
power is equal to the square of this expression. The
reflection coefficient determined by Eq. (2) coincides
with that obtained by the classical method [9] (to within
the notations and the systems of units), which means
that application of the averaging method in the case
under consideration isjustified.

Figure 4 (solid curve) showsthe theoretical curve of
R(d) calculated by Eq. (2) with regard to the experimen-
tal data for o(d) approximated by Boltzmann depen-
dence (3). It is seen that the curve is a good fit to the
experimental data.

Some differences between theoretical and experi-
mental dependences R(d) can be associated with the
substrate heterogeneity affecting the surface relief of
thin films and with unknown variable oxide layer thick-
ness. For bulk samples, the oxide layer thickness can
reach 10 nm. In our experiments, the conductivity was
measured in vacuum, while the reflection coefficient
was determined in the air. This fact may also cause
some changes in the film conductivity during the mea-
surements.

o = + Az- (3)

4. CONCLUSIONS

Amorphous films of silver, copper, gold, and iron
with a thickness of 6-60 nm were grown by thermal
deposition onto a polymer substrate under moderate
vacuum at room temperature. Theinterval of film thick-
nesses was found in which the specific conductivity
exhibits a sharp dependence on the film thickness. The
dependences of the microwave reflection coefficient
R(d) on the film thickness correlates with the behavior
of conductivity o(d). Saturation of the reflectance of
silver, copper, and gold films (R — 1) was observed
at a thickness of about 15 nm, when a reflecting layer
was already formed and the film conductivity was high
enough for amost total reflection of microwave radia-
tion. For iron films, saturation of the reflectance was not
observed in therange of film thicknesses studied. Using
the averaging method, we obtained a formula for the
reflection coefficient as afunction of the film thickness,
which well describes the experimental data on the
reflection of microwave radiation. If several values of
the reflection coefficient in the range of increase and
saturation of R(d) are known, the dependence of the
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conductivity on the film thickness can be obtained and
the type of the film can be determined.

10. A. K. Sarychev, D. J. Bergman, and Y. Yagil, Phys. Rev.
B 51, 5366 (1995).
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Abstract—The dependence of the resistivity of a paraffin—conductor macrosystem on the conducting phase
concentration has been experimentally studied. A model of conduction in systems with different contact resis-
tances in terms of the percolation theory is suggested, and an indirect characteristic of contact resistance is

introduced. © 2004 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Present-day percolation theory [1, 2] provides a
detailed description of charge transfer in conductor—
insulator systems for various ratios of the conductivi-
ties of components. However, the real systems that are
most often encountered in practice also include a third
component—an oxide film on the conductor surface.
Possessing a high resistance, this component can dras-
tically change the situation (graphite and the powders
of noble metals including gold, platinum, etc. are
exceptions). Thus, when speaking of the percolation
theory, one should take into consideration not only the
“black” and “white” regions [2], but aso the “gray”
ones (representing oxides on the metal surfaces), which
means the transition to a three-component system. The
contact resistance R. has been theoretically studied
[3, 4] asafunction of various parameters of the conduc-
tor particles (the maximum height of protrusions, the
Young modulus, etc.) and of the contact pressure. The
possible mechanisms of charge transfer between parti-
clesof the conducting phase and the possi bl e fracture of
the oxide film in polymer composites because of
shrinkage of the binding material were also considered
[3], but only in application to polymer composites.
Investigation of the systems of other types, for exam-
ple, the molecular crystal—-conductor system, may
reveal new features, which would enable one to rise to
a higher level of generdlity in the problem under con-
sideration. Despite alarge number of papers devoted to
percolation theory [1-3], questions concerning the
value of the percolation threshold in different systems
and its dependence on the contact resistance between
the conductor particles generally remain open.

In this context, we have studied the dependence of
the percolation threshold x. on the contact resistance,
the dependence of the bulk resistivity p of a macrosys-
tem on the volume fraction x of the conducting phase,
and the possibility of estimating the contact resistance
in experiment.

EXPERIMENTAL

As an example of a disordered macrosystem, we
will consider the paraffin—conductor system. Recently
[5], it was demonstrated that the most technologically
convenient insulators are low-melting paraffin and cer-
esin, which have comparatively high resistivity, can be
easily shaped, and are chemically passive with respect
to most metals[6]. As conductors, particles of graphite,
iron, and aluminum were used. Guided by the above
reasoning and favoring simplicity of the fabrication of
samples, we chose thermographite (representing a col-
loid-graphite dry substance S-1 with a basic particle
size of 4 x 10 m), a solid oil paraffin P1, pure-grade
iron powder with abasic particlesize of 6 x 10°m, and
pure-grade aluminum powder with a basic particle size
of 10 x 10 m after sifting.

The resistance of the oxide shells surrounding the
iron and aluminum grains was estimated from the fol-
lowing considerations. It is known that the oxide film
on an iron surface has the chemical composition
Fe,O; - nH,O [6, 7] and can vary in resistance. In this
study, the value of p for the iron oxide was experimen-
tally determined for pure-grade powdered Fe,O,,
which was stored under the same conditions astheiron.
These measurementsyielded thevaluep =1 x 10°Q m,
which was assumed to be equal to the resistivity of the
shell on an iron particle. In air, aluminum forms a thin
but fairly dense, stable, and high-ohmic film, which finds
wide gpplication in technology [8]. The value p = 1 x
10°° Q m experimentally determined for reagent-grade
powdered aluminum oxide was used astheresistivity of
the oxide shell on aluminum grains.

The resistivity of paraffin (matrix material) [5] was
p =1 x 10%5 Q m. For minimizing the contact resis-
tance, the use of graphite asthe conducting phase[5] is
advantageous in comparison to metals. Carbon oxides
are gases and, whatever the origin of graphite, one may
disregard the formation of oxide film on these particles.

1063-7842/04/4911-1501$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Plots of the bulk resistivity vs. volume concentration of the
conducting phase for (1) paraffin—graphite, (2) paraffin—
iron, and (3) paraffin—aluminum macrosystems.

Furthermore, carbon is chemically passive with respect
to most insulators in a wide temperature range [6].

The composite samples had the shape of parallelepi-
peds with dimensions (10 x 10 x 15) x 102 m. The
technology of melt preparation was as follows. Param-
eters such asthe melt temperature, the rate and the time
of stirring, etc., were chosen so that the final specimens
with the same concentration of conducting phase would
exhibit maximal (3-5%) spread in the electric parame-
ters: resistance, capacitance, and quality factor. Special
attention was paid to ensure the absence of air bubbles,
separation from electrodes, and other defects. Prior to
the preparation of melt, the iron powder was demagne-
tized. The electrodes were made of electrolytic copper.
The electrodes were poured with liquid mixture of the
components and occurred inside the specimen, except
for a small contact area. No less than five specimens
with the same concentration of the conducting phase
were prepared for each concentration of the conducting
phase. The bulk resistivity was measured using the con-
ventional two-electrode scheme.

RESULTS AND DISCUSSION

Thus, we have three macrosystems involving con-
ductors covered by oxide films with resistivities
increasing in the following order: paraffin—carbon with
p =0, paraffin-iron with p =1 x 10° Q m, and paraffin—
aluminum with p = 1 x 10%5 Q m. Obviously, the con-
tact resistance between particles depends on many fac-
tors[3], including the matrix shrinkage or, more strictly
speaking, the shrinkage stress [4].

SOTSKOV

L et us estimate the shrinkage for paraffin. Assuming
B =30 and a =130 x 105 K [9] (where B and a are
the volumetric and linear expansion coefficients of par-
affin, respectively), using the expression

p= LAV
ATV,

and taking AT = Tq; — Teg = 65 K, we estimate the
shrinkage as

AV _ ATB=25%.
Vo

This value of shrinkage is lower than the typical
quantities for contactols [4]. Therefore, taking into
account the high plasticity of paraffin [8, 9], one may
assume that the shrinkage stresses in macrosystems
with paraffin are small and the contact resistancesform
aseriesthat issimilar to the series of resistivities of the
conductor grain shells.

The figure shows the curves of logp = f(x) for the
three systems studied: paraffin—carbon, paraffin—iron,
and paraffin—aluminum. All curves decrease monotoni-
cally. The most pronounced bending is observed for the
paraffin—carbon system. The percolation threshold x;
was determined as the point of intersection of straight
lines AB and BC, which approximate the steep and low-
resistance portions of the curve, respectively. For the
paraffin—carbon system, this method yields x, = 0.16,
which correlates with the data [4] and agrees well with
the theory [1, 2]. The character of the logp = f(X) curve
for the paraffin-iron composition is different, specifi-
cally, the plot actually consists of three portions: DE is
a high-resistance portion (with x ranging from O to
0.175), where the resistance is aimost independent of
the conducting phase concentration and is determined
by the resistivity of the matrix; EF is the portion of
maximal change in p (0.175 < x < 0.38), where the
composite resistivity is already not strongly dependent
on theresistivity of the matrix but isnot yet determined
by that of the conductor; and FK is the portion of min-
imal resistance, where the dependence logp = f(X) is
weakly pronounced since p is governed by the resistiv-
ity of the conductor (0.38 < x < 1). For aluminum (see
figure), the percolation threshold is even more smeared
in the range 0.45 < x < 0.775. Concerning the appear-
ance of the plots, it seems reasonable that the percola-
tion threshold of rea systems should be understood as
aninterval rather than apoint. Such an interval presents
arange along x axis where the resistance typical of a
high-ohmic matrix gives place to that typical of a con-
ductor.

Let us now approximate the dependences in the
ranges of the most dramatic changein the resistivity for
all three compositions under consideration. For the par-
affinHron system, the most abrupt change in the con-
ductivity corresponds to the EF branch (0.175 < x <
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0.38) and can be approximated by
logp = 15.4-37.1x, D

p= 1015.4 x 10—37.1X, (2)

where y = —37.1 is the slope of the logp = f(x) curve
(Alogp =7.98 and Ax = 0.215).

For comparison, the most abrupt portion of the
curve for graphite is described by the function p =
10%2 x 10787 so that y = —87.5 [4]. For the paraffin—
aluminum system, the region LM can be described as

logp = 10.5-3x, 3
p — 1010.5 x 10—3X’ (4)

andy=-3(Alogp =1and Ax = 0.325).

In what follows, we consider the special features of
the logp = f(X) curves and introduce the value that can
be used as an indirect characteristic of the contact resis-
tance. Aswasnoted in[3], thedataon R inreal systems
are missing from the literature on the subject, which is
explained by the serious difficulties encountered in the
experimental determination of R.. In the classical form
[1, 2], the percolation theory can be applied only to the
paraffin—graphite system, since this theory implies that
the mechanical touch of particles provides a reliable
electrical contact. As was noted above, the situation in
real systems is more complicated. Let us consider the
percolation model for the paraffin-ron system, that is,
in the case when p of the matrix is higher than that of
the shell. When two conductor particles (iron—iron) in
this (or any other similar) system come in touch, their
contact resistance may change considerably, since the
oxide shell of aniron grain is nonuniform over the sur-
face area and, as a consequence, the contact resistance
of particles upon touching can be different. In a disor-
dered system, a random spread in the barrier height
must strongly affect the situation. The point is that the
conductivity of such a system as awhole is defined by
barriers with a height that is close to the percolation
threshold [3], that is, by the highest barriers. At x. = x,
the percolation threshold corresponds to the resistance
of the most extended regions of the matrix (paraffin) in
the forming conducting chain; while, at x> x., when the
metal chain has already formed, it is the maximal con-
tact resistance in the iron-iron chains through the
oxide. Such barriers are far apart from each other and
are connected by low-resistance regions; therefore,
they experience an appreciable drop of voltage across
them. Asaresult, the nonohmic character of conduction
should be more pronounced in arandom system thanin
an ordered one [ 3], wherethe potential barriers between
the conductor particles are equal. The deviation of the
bending point from the value 0.15 [ 1] can be reasonably
explained by assuming that an excess concentration of
iron is spent for the formation of branches parallel to
the percolation barriers. In view of the stochastic char-
acter of the connection between particles, these
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branches may have a lower barrier height and a lower
resistance. Thus, the “bypass channels’ formed in the
range 0.175 < x < 0.38 eliminate high percolation bar-
riers in the conducting chains. The higher the percola-
tion thresholds and the greater their number, the less
pronounced the percolation transition is, that is, the
smaller the difference Ap between the final values of
resistivity and the wider the range Ax within which this
change occurs. Theratio of theresistivity difference Ap
to the concentration change Ax just corresponds to the
slopey = Alogp /Ax of the logp =f(X) curve. Since our
conduction model (supported by experimental results)
predicts a clear decrease in the value of Alogp and
an increase in Ax with increasing R,, one may infer
that R, = f(y) and the value of y can be used to charac-
terize R..

It should be noted that, according to [3], there are
various percolation thresholds in the polymer film—alu-
minum composites obtained using different technolog-
ical processes, such as powder technology, polymeriza-
tion filling, mixing of components in the polymer melt
(rolling). Taking into consideration significant differ-
ences in the coefficients of linear thermal expansion of
graphite (7 x 10% K1), iron (11.3 x 10° K1), alumi-
num (22.58 x 10 K1), and paraffin (130 x 10° K-%)
[9], we may suggest that shrinkage in the polymer—con-
ductor system may result in much higher contact pres-
sures [3, 8], which may destroy even a rather strong
oxide shell of aluminum grains. High contact pressures
may be related to the mechanical characteristics of
polymers upon solidification, which are significantly
different from those of paraffin. Thisisin line with the
assumptions made at the beginning of this study.

CONCLUSIONS

(1) The dependence of theresitivity of the paraffin—
conductor system on the conducting phase concentra-
tion has been experimentally studied, and it is shown
that, for the oxide shells of particular conductors
(graphite, iron, and aluminum with p =0, 1 x 10°, and
1 x10%5Q m, respectively), the logp =f(x) curvesvary
in shape from an abrupt step for the paraffin—graphite
composite to smeared transition for the paraffin—alumi-
num composite.

(2) Based on the experimental data obtained, a
model of conduction in insulator—conductor systems
with various contact resistances of the conducting
phase was formulated in terms of the percolation the-
ory. It is suggested that the contact resistance R, can be
indirectly characterized by the ratio of the final differ-
enceof theresistivity Alogp to the concentration range
Ax, that is, by the value y = Alogp /Ax, which can be

determined as the slope of the logp =f(x) curveinthe
percolation interval.
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Abstract—The specific contrast of scanning electron microscope (SEM) images of ferroelectric domains
observed in the pyrocurrent (pyroprobe) mode is analyzed. Calculations taking into account both the non-
uniform heating of domains and the heat diffusion viathe domain walls and the crystal boundaries are per-
formed. It is established that the heat diffusion smears the domain images of small domains. Along with the
probe diameter, the scan rate is shown to be an important factor determining the character of the SEM image
contrast. A decreasein the scan rate may appreciably |lower the resolution even in case of afairly thin probe.

© 2004 MAIK “ Nauka/lnterperiodica” .

INTRODUCTION

The electron beam of a scanning electron micro-
scope (SEM) is not merely a passive probe (indicator)
of the geometric or potential profile of the sample sur-
face under investigation, but produces ionizing, elec-
tric, and thermal action on the sample. The SEM imag-
ing of ferroelectric domainsin a special electron-beam
induced polarization current (EBPC) mode was
described in [1, 2]. In this mode, a video signd is
formed by the polarization currents of electrons
injected into the surface layers of a sample at high
accelerating voltages. In [1], the local character of the
electric action produced by the injected charge and the
related resolution of this method were analyzed. The
observed “shadow” effect isatypical piece of evidence
of the domain response to the thermal action of the
probe (pyroresponse). However, the diffusion of heat
should considerably expand the heat-affected region
and, thus, smear the domain images of small domains.

Previoudly, afocused electron beam probe was used
asalocal heat sourcefor SEM imaging dueto the pyro-
electric effect [3, 4]. The pyroeffect that resulted from
the action of ascanning thermal probe on aferroelectric
crystal was calculated by Latham [4], who considered
the propagation of heat from aresting point probein a
plane-parallel plate of finite thickness and determined
the pyroelectric potential induced in the plate in the
open-circuit regime. The pyroelectric signal from a
probe scanning over a domain structure was cal cul ated
as a superposition of signals from various parts of the
probe on domains with opposite signs. This approach
implied the local action of each part of the probe on the
corresponding domain without allowance for the heat
diffusion into adjacent domains.

The SEM image of a domain structure observed in
the EBPC mode[1] isgoverned by anumber of factors,

both of electrical and thermal nature. The aim of this
study is to separate and analyze the factors limiting the
resolution of SEM imaging of ferroelectric domain
structure in the pyroprobe mode.

STATEMENT OF THE PROBLEM
AND THE METHOD OF SOLUTION

A local changein the polarization P of aplane short-
circuit homogeneous plate with the thickness d, givesrise
to the polarization current in the externa circuit [5]:

_10Py = Y OT
I = dJath_ dJath’ &)
\% \%

wherey = dP/dT isthe pyrocoefficient, T is the temper-
ature, and V is the sample volume.

The pulsed pyroresponse of a point domain with a
pyrocoefficient in the form of the delta function is
determined by the local rate of change in its tempera-
ture (that is, by the longitudinal component of the tem-
perature gradient) and by the velocity of the probe:

oT oT
I(t) = Yor = Yax V- (2

In our calculations, we relate the system of coordi-
nates to a point source moving along the x axis and
describe the stationary temperature field of this source
in an infinite medium by the following equation [6]:

U X7+ RO
W exp3 VX X2 )D,(3)
Ak /x*+ RO 2a O

where Rand X' are cylindrical coordinatesin the system
related to the probe, v isthe probe velocity, kisthether-

T(X,R) =
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Fig. 1. Theformation of avideo signal from apoint domain:
(a) temperature profile of amoving point source; (b) profile
of the longitudinal temperature gradient; and (c) calculated
image of a point domain for the probe radius R, = 4 (norm.
units) and velocity v = 0.25 (norm. units).

mal conductivity, a? is the thermal diffusion factor, and
W is the power of the probe.

Thisfield differs from the stationary field of a point
charge by the exponential factor, which produces com-
pression of the leading edge of the isotherms (x' > 0).

SOGR, MASLOVSKAYA

The exponent parameter r, = a?/v is defined by the
dimensionless Péclet parameter in terms of the heat
conduction theory.

The boundary conditions for the thermal field allow
the problem in a half-space to be considered in the infi-
nite space with a doubled source power.

A pyrosignal formed by a point pyrodomain with x,
coordinate reflects the derivative of the thermal field at
the point X' (in the probe-related coordinate system) at
atime moment given by the conventional expressiont =
(%9 — X)/v. This corresponds to the point on the screen
with the coordinate

Xs = Vst = m(XO_X'), (4)

where v, is the velocity of the beam motion over the
screen and m = vJ/v is the SEM image magnification
factor.

Asfollowsfrom (4), the longitudinal gradient of the
thermal field is reflected on the screen with the inver-
sion of coordinates.

Figure 1 showsthe surface profile of (a) temperature
and (b) its derivative with respect to coordinate x, which
defines the SEM video signal from a point pyrodomain
in a neutral matrix. Figure 1c presents the calculated
image of a point domain produced by the motion of a
finite-size probe. The dashed circle indicates the posi-
tion of probe at the moment of crossing the domain (the
origin of coordinates is placed at the point where the
domain resides). The domain image appears as two
peaks with opposite contrast.

In the case of a pyroactive matrix with a pyricoeffi-
cient of the opposite sign, the result will differ in the
double amplitude and a constant equal to the pyrore-
sponse of the matrix.

Due to the exponential temperature drop in front of
the moving probe, the isotherms become additionally
compressed at r > ry and, thus, the first peak is local-
ized. The temperature gradient is maximum near the
boundaries of the hest-evolving region; hence, the dis-
tance between the two peaks depends on the diameter
of the heat probe (2R,).

Behind the scanning probe, the temperature drops
along the path according to the law ~x, the tempera-
ture gradient being proportional to ~x2. Therefore, the
signal in the tail decreases by one order of magnitude
over a distance of about 3R,. The compression of the
leading front is effective only at sufficiently high veloc-
ities, which correspond tor, = R;; therefore, anincrease
in the scan rate will compress the first peak but the
probe radius will still remain the decisive factor limit-
ing theimage size.

In SEM imaging, the size of the heat source, R,
actually corresponds to the depth of electron penetra-
tion into the sample rather than to the diameter of the
electron probe [7]. For triglycine sulfate (TGS) crystals
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and an electronbeam energy of 15 keV, this value was
estimated at 3 pm [1].

For an extended domain, superposition of signas
from its different parts takes place. In particular, for a
linear domain extended along the x axis (x > 0), the
integration leads to the reconstruction of the tempera-
ture profile (Fig. 1), so that the signal repeats the pro-
file of the temperature rather than that of the tempera-
ture gradient.

In order to obtain the signal from a cylindrical
domain with the radius rg, the temperature gradient
should also be integrated in the transverse direction.
Figure 2 shows the profiles of a pyrosignal for the cen-
tral line of cylindrical domains with various radii. As
the probe approaches the domain edge, the step is
smeared and the trailing edge of the signal drops, the
latter effect decreasing with increasing domain radius.

Within the above-described approach to the calcula-
tion of pyroresponse, the point domain acts as a probe
that “scans’ over the thermal field in accordance with
formula (4) in the direction opposite to that of the
sweep. The calculation for afinite-size domain implies
the superposition of signals from all points of the
domain. This gives a qualitative insight into the basic
principles of the image formation in the pyrocurrent
mode.

Another approach to the calculation of video signal
is based on the use of a nonstationary heat conduction
equation [6]. Substituting an expression for dT/ot from
the nonstationary heat conduction eguation [6] into
Eg. (1) and using the Ostrogradsky theorem enables
one to split the pyrosignal into two components [8]:

= L [V + ai/f(gradT)nols, (5)
pcd ) do ]

where p isthe density of medium, cisthe specific heat,
wisthevolume density of the source power, and Sisthe
boundary of the region V.

Here, the first integral describes the pyrocurrent
induced by the heat source in an unbounded medium.
For a point source (W = 9(r,)), where r, is the radius-
vector of the probe position) this term will exactly
repeat the pyrocoefficient profile y(r). The diffusion of
heat through the boundaries of a finite-size domain,
which is described by the second integral, leads to a
noticeabl e distortion of the initial (ideal) videosignal.

In our calculations, the values of x, t, and v were
normalized with the help of the Fourier and Péclet cri-
teriain accordance with the heat conduction theory; the
physical parameters of the crystal and probe were nor-
malized to the unit pyrocurrent value. In terms of the
normalized variables, the compression factor r, relates
to the velocity of motion asry = 1/v.

The calculation of the pyrocurrent using formula (5)
for the thermal field of a moving source (2) and aplane
infinite boundary perpendicular to the direction of the
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Fig. 2. Video signal profilefrom acylindrical domain calcu-
lated for the probe radius R, = 4 (norm. units); the domain
radiusry =10 (1), 20 (2), and 80 (3); and scan rate v = 0.25
(norm. unites).

Fig. 3. Pyroresponse from aplaneinfinite boundary perpen-
dicular to the direction of heat probe motion calculated for
the velocities (1) v4 = 0.25 and (2) v, = 0.5 (horm. units).

probe motion (x = 0) yields an exponential function
characterized by the Péclet parameter r, and decreasing
toward the beginning of sweep x < 0 (Fig. 3):

109 = (1-son()) exp| “ETCN] 4 ggn(x),
2r, (6)

The concept of splitting the pyrosignal into two
components alows a drop of the signal at the edge of a
cylindrical domain (Fig. 2) to beinterpreted asthe leak-
age of heat through its side surfaces. The signal decay
time is governed by the domain radius via the Fourier

number t = r3 (in normalized variables); and the corre-
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sponding length is equal to
vt = ri/r,. )

The drop of the signal grows at the domain edges.
This also leads to a considerable distortion of the con-
trast of narrow extended domains.

RESULTS AND DISCUSSION

As follows from Eq. (6), the width of the transient
region in the perpendicular wall image equals the com-
pression factor r; therefore, for imaging a step without
distortion, it is necessary to increase the scanning rate
(Fig. 3). However, at ry < R,, theimage width is limited
by the probe size, rather than by the compression factor,
and further increase in the velocity isinexpedient. Note
that, for aTGS crydta (a2 = 3 x 10~ m? s1) and the scan
ratetypical of SEM probe (scan time, 10 ms; scan path-
length, 1 mm), the compression parameter isry = 3 x
106 m, which is close to the size of the heat source.
According to formula (7), an increase in the probe
velocity also reduces the drop of signal in the narrow
extended domains.

The application of this model to periodic domain
structures with alternating transverse stripes of width h
indicates that the contrast remains noticeable for the
domainsizesh > 1.5R,. With adecreasein the scan rate
(and the corresponding increase in ry), we also obtain
the reduction and the following vanishing of the con-
trast. However, the contrast remains distinguishable
even at ascan rate corresponding to r, = 10h, though the
compression of the heat front within the domain width
in this case appears to be quite insignificant.

SOGR, MASLOVSKAYA

CONCLUSIONS

The diffusion character of heat propagation imposes
a serious limitation on the resolution of SEM imaging
in the pyroprobe mode. The images of small domains
are noticeably distorted. The contrast of extended
domains with small transverse size decreases along the
direction of the probe motion. Along with the probe
size, the scan rate has also a pronounced effect on
smearing the image of the transverse walls, though the
latter effect is not as profound in a periodic domain
structure.
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Abstract—The surface contribution to the thermodynamic potential for bulk and nanodimensional particles of
ion crystals is estimated with the help of the electron statistical theory of ion crystal lattice. A number of size
effects associated with the excess surface energy of ultradisperse particles are considered. In particular, the pos-
sibility of stability loss in the crystal lattice upon the transition of the surface energy to the range of negative
values under a high pressure is predicted. © 2004 MAIK “ Nauka/Interperiodica” .

Considerable advances in nanotechnologies [1, 2]
have stimulated the development of appropriate ana-
lytic models for describing thermophysical properties
of nanodimensional objects. The number of practical
applications of the physics of nanodimensional systems
is increasing and includes the application of ultradis-
perse catalysts of chemical reactions 3], description of
nanocluster structures in the theory of contact melting
[4], and obtaining of semiconducting heterostructures
with quantum wires and quantum dots[5, 6]. The latter
trend is associated with the study of a new class of
materials constituted by macroscopic ensembles of
small particles with a size ranging from 1 to 100 nm.
The basic physical properties of such systems differ
substantialy from the properties of materials in the
conventional bulk state and are unique in some cases.
Most characteristics of nanoobjects are determined by
the properties of individua small particles in the
ensemble. In spite of considerable advancesin the field
of nanotechnologies, most available theoretical models
are based on the assumption that the basic dynamic,
thermodynamic, and mechanical characteristics of
nanoobjects coincide with their values obtained in mac-
roscopic experiments. However, for structures consist-
ing of afew atomic layers, the contradiction between
the obvious discreteness of the object and the continual
nature of the method for its description in unavoidable.

When the particle size becomes commensurate with
the characteristic correlation scale of a physical phe-
nomenon, various size effects are observed in the sys-
tems of such particles. Nanodimensional objects also
exhibit most clearly al features of surface states, since
the fraction of surface atomsin such system may be on
the order of 10%. In addition, a developed surface
affects the lattice and electron subsystems of particles,
substantially modifying the spectra of various elemen-
tary excitations, which are sensitive to a change in the

symmetry and in the boundary conditions. Obviously,
we can expect that the share of the surface energy inthe
total thermodynamic potential of a nanosystem sharply
increases.

This communication is aimed at estimation of the
surface contribution to the thermodynamic potentia of
a system for bulk and ultradisperse particles in ionic
crystals with a structure of the sodium chloride (NaCl)
typeand at analysis of specific size effectsthat are asso-
ciated, in our opinion, with relatively excessive surface
energy of nanoparticles as compared to bulk objects.
All calculations are made in the framework of the elec-
tron-statistical theory of theion crystal lattice [7-9].

It is well known that the surface energy in equilib-
riumisastrictly positive quantity [10]. With increasing
external pressure, the surface energy decreases [10,
11]; itisquite possible that, at a certain pressure p = p.,
the surface energy vanishes and acquires negative val-
ues upon a further increase in pressure. Such a state of
substance is naturally unstable and may lead to break-
down of the sample with the formation of particles of
various degrees of dispersion.

The formalism of the electron density functional
method [7, 8, 12] makesit possible to calculate the val -
ues of pressure at which the surface energy vanishes.
The calculations were made for ion crystals with alat-
tice structure of the NaCl type.

We write the thermodynamic potential of a crystal
under pressure in the form

7
N U (axR)

k=1

G =

. D
0 o
—Vw[klekUk(akR)} - -R-“ + 41r°KO,
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where a,, is the Madelung constant, R is the nearest-
neighbor distance, V = 2R%isthe unit cell volumein the
B1 phase, U(R) is the pair interaction potential, a, =
RJ/R is the ratio of the radius of the kth coordination
sphere to the radius of the first coordination sphere,
N, is the coordination number, ¢ is the surface energy,
and kisanumerical coefficient taking into account the
deviation of the crystal shape from a sphere.

In accordance with the Gibbs distribution, the
excess surface energy density o(hkl) at absolute zero is
given by

o(hkl) = 5 z(wg‘)-vwoi))nj(hkl), )
i j=0

where a(hkl) is the surface energy density of the (hkl)

face, W}” is the energy of a particle in the jth layer

associated with the ith type of ion-ion interaction

forces, Wf,i) is the same for the bulk of the crystal, and

n,(hki) isthe number of particlesin thejth plane per unit
area.

Let us consider in greater detail the approximation
used here. One of the merits of the Gibbs approach is
the rigorous choice of the dividing plane, which is very
important since the value of the surface energy density
o(hkl) depends on the position of the interface in the
crystal, as the density of particlesis different at differ-
ent planes. Thisfact wasnoted in [13]. Our further anal-
ysis of the surface energy will be based on the method
developed in[14]. The essence of thismethod isthat the
crystal isdivided into 2D meshes and summation in the
expression for the surface energy density is carried out
over the aggregate of such meshes.

In the zeroth approximation used here, approximate
expression (2) assumes the form

o(hkl) = no(hkl)z(wg) WYy, ©)

Do, kbar
350 |

300 -
250 F
200 |-
150 2
100

50} 3

1 1 1 1 1 1 1 1
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r, A

Dependence of the pressure corresponding to the B1-B2
phase transition in sodium halides on the crystal size: NaF
(1), NaCl (2), and NaBr (3).

KARPENKO, TEMROKOV

Let us consider a 2D mesh in an infinitely large
solid. Obvioudly, for an undistorted crystal, we have

we = wd + 2w, (4)

where WY is the energy of a particle on the mesh,
which is associated with the ith type of the forces of
interaction of this particle with all remaining particles
in the given plane and VVf,'?2 is the energy of the same

particle, which is determined by the interaction with al
particles in all planes lying above or below the given
plane.

Thus, the energy of a particle at the surface plane of
an undistorted crystal is given by

Wo' = WS+ Wy, (5)

Eliminating W{), from Egs. (4) and (5), we obtain

a(hkl) = %no(hkl)Z(Wg)—Wﬂ)). (6)

We introduce the notation
wy _ AY

WO T AD

] 4
for the ratio of the sums over the infinitely large 2D
mesh and over an infinitely large lattice for theith type
of the ion-ion interaction forces. In this case, expres-
sion (6) assumes the form

B =

o(hkl) = %no(hkl)z(s“’—l)ww. @

In particular, for Coulomb forces, B is the ratio of
the Madelung constants for a2D mesh and for a3D lat-
tice. For the remaining forces, quantity (3 is the ratio of
rapidly converging series that can be easily summed.

The calculation of the specific contribution of sur-
face energy to thermodynamic potential (1) of the crys-
tal leadsto the following results: the surface energy for
abulk sample amounts to about 6% of the total energy;
thisvalueis equal to 24% for asmall spherical crystal-
line particle of radius 100 A and 68% for a particle of
radius 50 A (these data correspond to asodium chloride
crystal). Thus, the relative surface contribution to the
thermodynamic potential sharply increases with
decreasing particle size.

Having constructed thermodynamic potential (1),
we can derive the required equation of state p =
—(dG/dV), which makesit possible to determinethedis-
tance between the particles for which the surface
energy vanishes. Caculations performed for alkali-
halide crystalsgivevaluesof 1.17-1.21forry/r. Using
the experimental results obtained in [15], we can easily
obtain the value of pressure at which the surface energy
vanishes from the pressure dependence of the lattice
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Values of critical pressure for some alkali-halide compounds
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Crystal rofe Per Kbar
LiF 121 230
NaF 119 190
NaCl 118 130
NaBr 117 40
KCl 1.16 32
KBr 1.16 32
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Abstract—The exact solution of the problem of ion transport current in an electrolyte in the presence of a.con-
jugate flow of solvent is obtained in the framework of the one-dimensional Gurevich-Kharkats diffusion-migra-
tion model; the conditions for the existence of the solution are analyzed. © 2004 MAIK “ Nauka/Interperiod-

ica” .

The problem of ion transport in an electrolytein the
presence of a conjugate solvent flow was analyzed in
[1]. The problem was solved using the following one-
dimensional diffusion-migration model:

dCl dg v j
dx ~Crx ch FaD,’ &)
dC dgp v o _
dx Czd ch2 =0, 2
C, =Gy, (€©)

where C, and C, are the anion and cation concentration,
X is the coordinate, | is the electric potential, v is the
constant velocity of the solvent flow, D, and D, are the
diffusion coefficient for cations and anions, j isthe cur-
rent density, and Fais the Faraday number.

The solution to the problem under the assumption
that the solvent flow velocity is directly proportional to
the current density (v = aj) in normalized form for C =
C,=C,isgiven by

&) = A+ FepIBIE - 1) - @

B
where the following notation has been introduced: C=
CICo, I =ilio, B = (@joL/2)(Dy" + D), jo= FaD1ColL,
and & = /L, L being the characteristic length of the

problem (e.g., the thickness of the Nernst diffusion
layer) and C,, the value of concentration C at & = 1.

If we assume that the current of an electrochemical
reaction is proportiona to the ion concentration for & = 0

(i.e,J= kC (0), wherek > 0), wearrive at the following

transcendental equation for J:

J_ 1
¢ = 3pl(2B+ Dep(-4I)-1l. (5)

This equation was derived in [1] and was subse-
guently analyzed only qualitatively. However, this
equation has an exact solution, which can be written in
the form

101k K1 KD
= goWzeB e ®

where W(X) isthe so-called Lambert W function, which
isthe inverse function of y = xexpx.

This function has been introduced in the apparatus
of mathematical physics quite recently [2]. Examples
of solutions of various problems in mathematical phys-
icswith the help of thisfunction are given in [3-5].

The validity of the solutions obtained here can be
verified by substituting it into Eq. (5).

By way of an example, we consider the curves J(3)
for various values of k (see figure); considerable com-
putational expenditures would be required to obtain
these curves without a knowledge of solution (6).

Let us briefly analyze solution (6). It can easily be
seen that the value B = —1/2 isthe vertical asymptote of
dependence J(B) for any k. In the absence of a solvent
flow (B = 0), the value of current, viz., the ordinate of
the points of intersection of the curves with the vertical
axis, hasthe form

_ oH K e KO
J(0) = 2 1+W )
(0 = 20— |1+ EQexpzm}m ™

it is equal to unity for k = 2 and two for K —»= . The

1063-7842/04/4911-1512$26.00 © 2004 MAIK “Nauka/ Interperiodica’



EXACT VALUE OF CONJUGATE ION CURRENT

Dependence J(B) for various values of k: 10 (1), 5(2), 2 (3),
1(4), 12 (5), 1/5 (6), and 1/10 (7); bold curves correspond
to ‘]Iim(B) and Ja(tr(B)-

limiting current can be evaluated as the limit

Jiim = I|m

(8)
- l|n(213 +1)
: .

It was mentioned in [1] that dependence J(B) is dou-
ble-valued for small values of k. Analysis of its stability
shows that only the lower branch of the curve, which
corresponds to the smaller value of the current, can be
realized in actual practice. Consequently, it would be
interesting to derive the equation for the curve, whichis
the locus of points of conjugation of the lower and
upper branches of the plots for different values of k
(equation of the extremal curve). In fact, the extremal
curve and limiting current curve (8) define the bound-
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aries of possible regimes of the model [1]. We can
derive the equation for the extremal curve if we recol-
lect that the Lambert function W(X) aso has two
branches, the coordinates of the conjugation point
being (-1/e, —1). Then we obtain the following equation
for the extremal curvein parametric formin k:

= 2apd kO
ggextr_ 2|:1+kexp[|2 1E|i|!

0

O _ k(k+2) 9
DJP)(tr - 0 k D'

1l 18

i k+ 2expD 5 1D

Expressing k from thefirst relation in (9) and substi-
tuting it into the second relation, we arrive at the
explicit dependence Jo (Bex):

[ exp(— 1)D}
+
L+ Weop,, v 10

‘]extr -

gl (10

The curve for the limiting current and extremal
curve are also shown in the figure.

Thus, we have obtained the exact solution to the
problem of theion transport current in an electrolytein
the presence of a conjugate solvent flow in the frame-
work of the one-dimensional Gurevich-Kharkats diffu-
sion-migration model [1] and have analyzed the bound-
aries of the existence of the solution.
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Abstract—The problem of transmission of an optical pulse through an interface between linear and resonance
media is addressed. Parameters of the transmitted and reflected waves versus the parameters of the incident
wave are obtained. The amplitude and speed of the transmitted wave for an incident wave in the form of a soli-
ton are calculated. © 2004 MAIK “ Nauka/Interperiodica” .

1. As is well known, the parameters of waves
reflected from and transmitted through an interface
between two media can be calculated in the general
form only when the media are linear. If one of the
media is nonlinear or both of them are, it is necessary
to consider each particular caseindividually (refer, e.g.,
to [1]).

The main difficulty in solving this problem in the
general formisthat functional forms of the wavesinthe
two media are different and that the dependence of the
polarization of amedium on thefield israther complex.
Asaresult, the boundary conditionsdo not yield simple
relationships for the wave parameters. However, if the
equation that describesthe evolution of awavein anon-
linear medium can be integrated by the inverse scatter-
ing transform method (ISTM), an opportunity arisesto
overcome these difficulties. In particular, the problem
of pulsetransmission through aresonance film that sep-
arates two linear media was solved in [2] based on the
ISTM by introducing an additional fictive field with
subsequent reduction of the equations to an integrable
form. The problem in which both media are nonlinear
was addressed in [3, 4], where the transition radiation
of a soliton was calculated under the assumption that
the media have similar parameters. In [5], it was pro-
posed to analyze the wave boundary dynamics using
the linear approach. Indeed, since distances in the
boundary layer are small, it may be considered that the
nonlinear effects have no time to develop and wave
parameters can be calculated within the linear approxi-
mation.

Inthisstudy, we consider apulseincident fromalin-
ear medium on the planar interface with a resonance
medium consisting of two-level atoms. It is known [6]
that such a medium can be described by a system of
equations integrable by the ISTM. A reationship for
the parameters of the electromagnetic waves is
obtained under the assumption that their envelopes are
smooth. Since the polarization of the medium depends

on the field in acomplex manner, afunctional equation
arises instead of a simple algebraic equation. To calcu-
late the parameters of the transmitted and reflected
waves at the interface, a self-consistent procedure is
proposed, which involves relationships of the inverse
transform method.

2. For simplicity, we will consider the normal inci-
dence of alinearly polarized wave on the interface. Let
the yOz plane of the coordinate system coincide with
the interface, the z axis be paralel to the wave electric
vector E = (0, E, 0), and the x axis be directed toward
the resonance medium. Then, the magnetic field will be
directed along the zaxis: H = (0, 0, H).

Under these assumptions, the Maxwell’'s equations
yield the following boundary conditions for the electric
and magnetic field components in the first and second
media:

Ei(x=0) = Ex(x=0),

4mdPy @

Hi(x= 0) —Hy(x = 0) = T3,

where Py isthe surface polarization at the boundary of
the resonance medium and c is the velocity of light in
free space.

Let us represent the waves in the linear and reso-
nance media and the polarization of the nonlinear
medium as follows:

E, = 3[Eo(x Dexpli(kix -]
+ E,(x, t)exp[—i(kx + wt)] +c.c.],
E, = %[Et(x, Hexplikx—wt)] +cc], 2

Po = %[Po(x, t)exp[i(k,x — wt)] +c.cl.
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Here, Ey, E,, E;, and P, are the smoath envelopes of the
incident, reflected, and transmitted waves and the
polarization, respectively; wisfrequency; and k; and k,
are the wave numbers in the linear and resonance
media, respectively. Excluding the magnetic field from
Egs. (1), we obtain the following expressions for the
smooth envel opes of the fields and the polarization:

E,+E = E,

2 3
K (E,—E,) —k,E, = —4in%P0. @

If the resonance medium consists of two-level
atoms, the polarization can be written as[6]

Py = —ingpo LA (4)

where n, is the surface concentration, p, is the dipole
moment of atoms, the angle brackets mean averaging
over the Doppler broadening, A is a product of the
amplitudes of the wave functions ¢, and @, of the
ground and excited atomic states, respectively:

A= _2(p1(p§1 (5)

where the asterisk means complex conjugate and ¢, and
@, are to be found from the equations

0 . 1

2 ing, = 205,

o0t 2 ©)
aLpz_i = _1‘ c*

a,l_ r](pz - 2(p1 .

Here, n = Aw/eQ, Aw is the frequency detuning due to
the Doppler effect, Q2 = 2rmyp,w/'?, € = (PY/AQ)E(E, 1),
£ =Qel?(x/c), T=Qt— ey’ X/c), and €} isthe linear
part of the permittivity of the resonance medium. The
wave in the resonance medium satisfies the equation

0€ _

3% - A (7

Equations (6) and (7) constitute a closed system,

which describes the evolution of the electric field € in
the resonance medium. As was noted above, one can
apply the ISTM [6] to these equations and solve the
Cauchy problem, the initial condition for which is
determined by Egs. (3). Let us exclude the reflected
wave from Egs. (3) to express the transmitted wave in
terms of the incident wave and polarization:

€(0,1) = yg+oAd (8

Here, g, = (p/AQ)E, v = 2612 /(er” + e)?) and 0 =

2p,Q/(el? + ef?)c. It is seen from Eq. (8) that, as was
noted above, the transmitted wave depends not only on
the incident wave but aso on polarization, which, in
turn, depends on E; in a complex manner (see Egs. (5),
(6)). Further, we proceed as follows: calculate [Afrom
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the zeroth-approximation functions @, according to (5),
substitute [A0into (8) to refine the value of €(0, 1), and
use the refined value to find the function @ in the first
approximation. Next, we iterate this self-consistent
procedure to successively refine €.

Accordingly, we substitute (8) into (6):

oQ, 1
2 4ing, = 50u(e0+ B),
)
dg, 1o s,
ang_”](Pz = _E(Pl(so +0g*),

where g, = Y(py/hQ)Ey and o€ = —o(py/AQ) AN

We will not solve (9) directly. Instead, regarding ¢
asafunctional of E and calculating 8E as a variation of
the potential, wefind achangein @asavariation. Then,
the compl ete solution will have the form

00

- 0Qsc 1 0P 5«
Q= %+J’[6868+68*6s }d‘[.

—o0

(10)

Here, @ is the column vector @ = (¢, @,)", the super-
script T means transposition, and ¢, is the solution at
o€ = 0. As @, we take the function with the asymptotic
behavior

0
i i - 0¥0
im (1) exp(~int) o0 (11)
The variational derivatives can be found by varying

Egs. (6) (see, eg., [7]):

0@ _ B(t-T1") , . ~ ‘
5E - 25 (D)D) — e(T) (D],

dp _ O(t-T1) (12)
SE* Y @ () [W1(TYo(T) — @ (THW(T)],

where a is the Jost coefficient, which is used in the
inverse transform method, and 6(t) is the step function

e(r)—m for 1>0
- for 1<0.

The function ( is another solution to (8), which is
determined by the asymptotic behavior

do
g

Substituting (12) into (10) yields the following
expression for ¢

limy(t)exp(inT) = (13)

0= @+ 5z @li—Woll. (14)
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Here,

T

I, = —ZI [@u(T)P(T) [y @3 0+ @4 (T) Yo (T') [T @,
T (15)

I, = -2 j[cp%(r') Cip, @50+ Q3 (T') Cipf @] ot

Now, we can calculate A0 and, consequently, the
parameters of the transmitted and reflected waves.
Equations (3), (5), (8), and (14) solve this problem in
the general form. As an example, consider the case
when the incident pulseis a soliton:

£ = ‘ly@sech(zst). (16)

The solution to system of equations (6) at ¢ =0is
1 g iBsech(2Bt) [
N —iBt{n + 1Btanh(2pt)~

Cdlculating A0 and substituting it into (8), we
obtain the expression for the transmitted wave

oBA,
2

(pO:

£(0,t) = “Vﬁsech(zst)[l + 2 %anh(2Bt)

I R
4 4 8

0°BAA,

= sechz(ZBt)ﬂ.

GBAO

= “Ogech?(2pt) + (17)

+i[02A1 0B,

2
Here,

_ 1 _ n
Do = (5=, B = {51 18
’ <n2+BZ> <r1 +B> (49

It can be seen that, after passing through the inter-
face, the pulse acquires a phase shift and its shape
changes. As the pulse described by (17) moves further,
it may produce a single-soliton or a multisoliton pulse.
Assuming that the condition for the formation of a sin-
gle-soliton pulse is satisfied, let us calculate its param-
eters. To this end, within the ISTM, it is necessary to
solve the Zakharov—Shabat eigenvalue problem, which
has the sameform as (6) with n replaced by the spectral
parameter k:

=P tanh(2pt) —

0¢,
%14 ikpy = S0ae,
6(1)2 1 19)
—ik¢, = —§¢15*-

The complex value of k determines the speed and
amplitude of the pulse produced. As we did previously
when solving system (9), we calculate the change in k
asavariation, which givesthe change in the parameters

TADJIMURATOV

of the soliton as aresult of its transmission through the
interface. We abtain the following expressions for the
differencesin the amplitudes and speeds of theincident
and transmitted solitons:

48 _ 2p%c%D;
A-E ="~ 0
Y 3
2B%0°A, .\ 20°A; 16B°c°A;

3 A, 30,

It can be seen that, after passing through the inter-
face, the soliton amplitude increases. Note that, if the

Doppler broadening is an even function, the expres-
sions for the amplitude and speed are simplified:

+2B0*AY,
(20)
Av =

A% _ 2p%c°A;

y 3y '’ 1)
2p%0’A,
Av = ==,

Thus, in this study, expressions for the profile and
parameters of the transmitted and reflected waves are
derived for awave passing from alinear to aresonance
medium. The profile and parameters of the transmitted
wave are calculated for an incident pulse in the form of
asoliton. Only this caseis considered for brevity; other
cases should not present any difficulties.

ACKNOWLEDGMENTS

| am grateful to F.Kh. Abdullaev and E.N. Tsoi for
their stimulating discussions and useful comments.

This work was supported in part by the Uzbekistan
Academy of Sciences' Foundation for Basic Research,
project no. 15-02.

REFERENCES

1. B. B. Boiko and N. S. Petrov, Reflection of Light by
Amplifying and Nonlinear Media (Nauka i Tekhnika,
Minsk, 1988) [in Russian].

2. V.. Rupasov and V. . Yudson, Zh. Eksp. Teor. Fiz. 93,
494 (1987) [Sov. Phys. JETP 66, 282 (1987)].

3. F. Kh. Abdullaev and R. Dzhangiryan, Zh. Tekh. Fiz. 53,
2307 (1983) [Sov. Phys. Tech. Phys. 28, 1418 (1983)].

4. Y. S. Kivchar and B. A. Maomed, Rev. Mod. Phys. 61,
763 (1989).

5. F Kh. Abdullaev, S. A. Darmanyan, and P. Bussimer, in
Proceedings of the Workshop “ Optical Solitons,” Sin-
gapore, 1990, Ed. by F. Kh. Abdullaev (World Sci., Sin-
gapore, 1990), pp. 13-20.

6. G.L.Lamb, Jr., Elements of Soliton Theory (Wiley, New
York, 1980; Mir, Moscow, 1983).

7. V.l. Karpman and V. E. Maslov, Zh. Eksp. Teor. Fiz. 73,
537 (1978) [Sov. Phys. JETP 48, 252 (1978)].

Trandated by A. Khzmalyan

TECHNICAL PHYSICS Vol. 49 No. 11 2004



Technical Physics, Vol. 49, No. 11, 2004, pp. 1517-1520. Translated from Zhurnal Tekhnicheskor Fiziki, Vol. 74, No. 11, 2004, pp. 123-126.

Original Russian Text Copyright © 2004 by Loginova, Trofimov.

BRIEF

COMMUNICATIONS

On the Possibility of Transverse Size Oscillations
in a Domain with a High Free-Electron Concentration
under the Action of a Short Light Pulse on a Semiconductor

M. M. Loginovaand V. A. Trofimov
Moscow State University, Vorob'’ evy gory, Moscow, 119992 Russia
e-mail: vatro@cs.msu.su
Received December 24, 2003

Abstract—Computer simulation is used to demonstrate the possibility of transverse size oscillations in a
domain with ahigh concentration of free electrons under the action of alight pulse on anonlinearly absorb-
ing semiconductor. The results of computer simulation are confirmed analytically by testing the system

stability. © 2004 MAIK “ Nauka/lInterperiodica” .

The action of a laser pulse on a semiconductor
induces optical bistability (OB) in the dependence of
the absorption coefficient on the free charge carrier
concentration. Under certain conditions, OB can be
accompanied by the development of self-oscillations of
free electron concentration, which are induced by an
increase in the beam intensity [1], beam focusing to the
bulk of the medium [2], diffraction effects [3], and the
effect of self-induced electric field [4] on a high-
absorption domain. Obviously, oscillations of the
absorption coefficient of a semiconductor may lead to
loss of information recorded in an OB element. Conse-
guently, it isimportant to study thisregimefor practical
applications. It should be emphasized that, in our opin-
ion, the latter mechanism of excitation of oscillations
due to the effect of light-induced electric field is most
interesting, since it takes place for short pulses, which
are predominantly used to elevate the speed of switch-
ing from a state of an OB element.

It should be noted that the oscillations of a high-
absorption domain detected in [4] and obtained for a
stronger dependence of the absorption coefficient on
the concentration of free electrons generated from a
donor level (see below) were characterized by achange
of the region of transparency and strong absorption in
the illuminated part of the beam and were observed
upon a change in the electron mobility in a certain
range of itsvalues and in asmall interval of the param-
eter characterizing the maximal concentration of free
electrons. Here, we describe a new scenario of oscilla-
tions of thewidth of adomainwith ahigh concentration
of freeelectrons. Thisscenarioischaracterized, first, by
manifestations of oscillationsfor zero el ectron mobility
aswell, which is equivalent to an increase in the dura-
tion of the acting pulse (the electric field becomes uni-
form). Second, oscillations of the width of a domain
with a high concentration of free charge carriers occur
upon a slow decrease in the free electron concentration

in the vicinity of the light beam center. Third, several
regions of high gradients of free electron concentration
(regions of alarge space charge) exist in the unillumi-
nated region of the medium.

It iswell known [5] that, in the approximation of an
optically thin layer, the process of interaction of ashort
laser pulse with a semiconductor can be described by
the system of dimensionless differential equations

0%
—; = Y(n—N),
X

on_ pomn_ 007 _
E_Dax@x pnaXD+G(N,¢) R(n, N), Q)

0<x<L, =1, t>0,

ON _
3 G(¢, N) —R(n, N)

with the initial boundary conditions

09 =0, 90 =0
0X|x=0,L, OX|x=o,L, 2

Nli=o = Nl=o = No.

Functions G and R describing the generation of elec-
trons from the donor level and radiative recombination
of free charges in the semiconductor will be defined as
follows:

N— 2
rR="1"To (3
Tp

G = goa(x)q(t)d(N, n),

In system of equations (1)—(3), the following nota-
tion is introduced: x is the dimensionless transverse
coordinate normalized to the radius of the incident opti-
cal beam; t is the time measured in units of relaxation
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Fig. 1. Concentration distributions of free electrons and ionized donors observed for the interaction of alight beam with a semicon-

ductor for values of parametersD = 107, y = 10°, p = 0, ny = 0.01,

W =2553,& =5, andgp=1at timeinstantst = 450 (a), 550 (b),

1500 (c, d), 1250 (e, f) and 3750 (g, h) (dashed curves) and 500 (a), 600 (b), 2250 (c, d), 5000 (e, f), and 4000 (g, h) (solid curve).
The bold curves correspond to the initial distribution of the input intensity of optical radiation.

time; and n(x, t) and N(x, t) are the concentrations of
free electrons in the conduction band of the semicon-
ductor and of ionized donors, normalized to their max-
imal possible values under the given conditions. Func-
tion ¢(x, t) isthe dimensionless electric field potential,
M characterizes the electron mobility, and D is the dif-
fusion coefficient for electrons. Parameter y depends, in

particular, on the maximal possible concentration of
free charge carriers; n, is the equilibrium value of con-
centration of electrons and ionized donors; and 1, isthe
recombination time for free charge carriers. Function
g(x)q(t) describes the intensity profile and the temporal
shape of an optical pulsewith amaximal vaue of g,. In

TECHNICAL PHYSICS Vol. 49

No. 11 2004



ON THE POSSIBILITY OF TRANSVERSE SIZE

numerical experiments, a semiconductor was subjected
to the action of a Gaussian beam with the maximal
intensity

_DLO_]II/ZBZ
ax)at) =e * (1-€e'%) @)

rapidly attaining its steady-state value.
The light energy absorption coefficient d(N, n) can
be approximated by the function

3(N,n) = (1—N)e =", (5)

which is close to one of the experimental dependences.
Note that for certain values of parameters (e.g., D =
105, y=10%n,=0.01, u =0, P =2.553,and & = 3), an
explosive increase in the concentration of free charges
(and ionized donors) takes place upon an increasein the
input intensity of optical radiationfrom g, =0.15t00.2.
This demonstrates the existence of OB in the optical
radiation-semiconductor system. However, for a given
intensity of the input pulse, inverse switching of free
electron concentration to its lower level occurs after a
certain time.

Apart from the formation of switching waves, an
increase in parameter & leads to self-oscillations of the
width of the band with a high concentration of free
electrons and ionized donors (Fig. 1). At certain
instants, the free eectron concentration distribution
profileistwice aslarge astheilluminated region width,
while at other instantsit coincides with the beam radius
(Figs.1c and 1d). The concentration of free electronson
the beam axis first attains its maximal value and then
begins to decrease monotonically, while its value at the
lateral faces of the crystal increases monotonically. In
the vicinity of the beam center, the free electron con-
centration at certain instants either attains alocal max-
imum on the beam axis, or aloca minimum (Figs. le
and 1g). The profile of concentration n at certain
instants is close to the hyper-Gaussian distribution.
However, at other instants, the distribution of the free
electron concentration in the range 0.2 < x < 0.8
acquires several local extrema located symmetrically
relative to the beam axis (Figs. 1c, le, and 1g). The dif-
ferencein thevalues of n at these pointsmay beaslarge
as0.5.

Analogous oscillations of the width of the high-con-
centration region take place for the concentration of
ionized donors. However, variations of the value of
function N at the beam axis and at the crystal boundary
are small and the difference between the values of func-
tion N at the points of local maxima and minima are
much smaller than the corresponding difference for
function n (Figs. 1d, 1f, and 1h).

We must separately consider the physical mecha-
nism of realization of self-oscillations of the width of
the high-concentration region. This mechanism
involves a periodic variation of the absorption coeffi-
cient (in our case) in the vicinity of the boundary of the
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illuminated region. After high-concentration domains
attain their minimal width (this corresponds to solid
curvesin Fig. 1), the absorption coefficient increases at
the domain walls (x = 0.3, 0.7 at earlier instants and x =
0.4, 0.6 at later instants). This leads to generation of
free chargesin the vicinity of outer domain walls. Due
to electron diffusion, the absorption coefficient also
gradually increases in the range with an even lower
intensity of optical radiation (x < 0.3 and x = 0.7). In
thisregion, the absorption coefficient also increases and
free charges are generated in spite of the low intensity
of optical radiation. Further, on the one hand, the
decrease in the number density of free charge carriers
occurs at ahigher rate as compared to the rate of gener-
ation of free electrons due to the increase in the recom-
bination rate; as a consequence, the concentration of
free charges decreasesin thisregion. On the other hand,
apart of free electronsisdisplaced to the crystal bound-
ary due to diffusion. Since the concentration of ionized
donorsislow in this region, the recombination rate for
free charge carriersis also low. This explains the slow
increase in the free electron concentration near the
crystal boundary.

The electron mobility p substantially influences the
form of the interaction due to the presence of narrow
regions of space charge (see Figs. 1a, 2a). For example,
an increase in the mobility first smoothens the distribu-
tion of free electron concentration and reduces the
amplitude of self-oscillations of the transverse size of
theregion of high electron concentration. With afurther
increasein Y, the distribution of function n assumesthe
form of amonotonic curve; self-oscillations vanish, and
the semiconductor-light beam system approaches its
steady-state distribution quite rapidly. For example, for
parameters D = 105, y = 10%, u = 10, ny = 0.1, Y =
2.553, & = 3, and q, = 1, this time is on the order of
100 dimensionless units. By way of an example, we
consider Fig. 2, inwhich thefree electron concentration
distributions are shown for p = 1 and 10. It is clearly
seen that the distribution of free electron concentration
becomes smooth and close to the hyper-Gaussian distri-
bution for large values of p, while oscillations in the
free electron concentration distribution are observed
for small values of .

To verify theresults of computer simulation, the sta-
bility of the solution to the initial problem was tested
analytically in the vicinity of the steady-state distribu-
tion, where oscillations of the width of the high-con-
centration region are observed. A characteristic equa-
tion was constructed for a linearized system of rela-
tively small perturbations of the functions in the
vicinity of the virtually uniform axial distribution of
concentrations. In accordance with the Hurwitz theo-
rem [6], the necessary and sufficient conditions for sta-
bility of the concentration distribution for small pertur-
bations are positive values of al principal diagonal
minors of the Hurwitz matrix written for the coeffi-
cients of the characteristic equation of the system.
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Fig. 2. Concentration distributions of free electrons observed for the interaction of alight beam with a semiconductor for values of
parameters D = 107, y= 103, ng = 0.1, ¢ = 2.553, £ = 3, gy = 1, and u = 1 (solid curves) and p = 10 (dashed curves) at time instants

t =10 (a), 30 (b), 85 (c), and 100 (d).

These conditions were monitored for the above com-
puter calculations. Analysis of the conditions proved
that, for the concentration distributions shown in
Figs. 1 and 2, stability was not observed near the beam
axis. If, however, oscillations of the high-concentration
region were absent in computer calculations, analytic
expression also confirmed the stability of the given sys-
tem. Thus, we can state that oscillating modes of varia-
tion of the concentration are inherent in the interaction
between the light beam and the semiconductor studied
here under the conditions of OB and light-induced elec-
tric field.

ACKNOWLEDGMENTS

This study was partly financed by the Russian Foun-
dation for Basic Research (project no. 02-01-727).

REFERENCES

. H. Gibbs, Optical Bistability: Controlling Light with

Light (Academic, New York, 1985; Mir, Moscow, 1988).

. N. N. Rozanov, Optical Bistability and Hysteresis in

Distributed Nonlinear Systems (Nauka, Moscow, 1997)
[in Russian].

. O.A. Gunazeand V. A. Trofimov, Pis ma Zh. Tekh. Fiz.

23 (21), 6 (1997) [Tech. Phys. Lett. 23, 846 (1997)].

. O. S. Bondarenko and V. A. Trofimov, Pis' ma Zh. Tekh.

Fiz. 22 (19), 6 (1996) [Tech. Phys. Lett. 22, 779 (1996)].

. R. A. Smith, Semiconductors (Cambridge University

Press, Cambridge, 1959; Inostrannaya Literatura, Mos-
cow, 1961).

. L. Elsgolts, Differential Equations and the Calculus of

Variations (Nauka, Moscow, 1969; Pergamon, Oxford,
1961).

Translated by N. Wadhwa

TECHNICAL PHYSICS Vol. 49 No. 11 2004



Technical Physics, Vol. 49, No. 11, 2004, pp. 1521-1524. Translated from Zhurnal Tekhnicheskor Fiziki, Vol. 74, No. 11, 2004, pp. 127-131.

Original Russian Text Copyright © 2004 by Walykh, Dubinoy, L’ vov, Sadovoi, Selemir.

BRIEF

COMMUNICATIONS

Experiments on thelnjection of Dust Jetsinto Plasma

D. V. Vyalykh, A. E. Dubinov, I.L. L’vov, S. A. Sadovoi, and V. D. Selemir

All-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center,
Sarov, Nizhni Novgorod oblast, 607190 Russia
e-mail: dubinov@ntc.vniief.ru
Received February 18, 2004

Abstract—An experimental technique for studying theinjection of dust jetsinto the plasmaof aglow discharge
inair is developed. The velocity and flight time of a dust jet are measured under different initial conditions. It
is shown that the propagation of dust grainsin plasmais accompanied by self-contraction instability along and
across the discharge, which leads to dust agglomerization and clusterization. © 2004 MAIK “ Nauka/ | nterperi-

odica” .

In dusty-plasma experiments, an important point is
how the condensed-phase (dust) grains get into the
plasmavolume. First, dust grains can arise from the gas
phase due to plasmochemical reactions[1] and conden-
sation in adecaying plasma|[2], or they can occur in the
plasma because of the erosion of electrodes [3] and
insulators [4]. Second, dust grains can be injected into
plasma using special devices.

We analyzed various methods for injecting dust
grains into plasma and the corresponding types of
injectors, such as a mechanically shaken meshy dust
container placed at the top of the chamber [5, 6]; the
vibrating membrane of aloud speaker, which was set at
the bottom of the chamber and threw the grains upward
[7]; and a paddie-wheel dispenser rotating inside the
chamber around a horizontal axis and lifting the grains
up[8, 9].

We experimentally tested the first two methods. It
was found that the above methods and devices did not
provide the sufficient locality and accuracy of injection
because of asignificant scatter in theinitial coordinates
and velocities of the dust grains entering the plasma.

For this reason, we proposed a concept of a precise
needle-type injector of dust grains, designed it, and
experimentally verified its high performance. Using
thisinjector, experiments with a 10-cm flight base were
performed on the downward injection of dust grains
into a discharge plasma. The grains, which were 60 +
5 umin size, fell freely across the discharge channel. It
was found that the grains were efficiently scattered by
collective plasma oscillations [10]. Using the needle
injector, we also succeeded in orienting elongated dust
grains with a diameter of 100 um and length of 3 mm
[11].

It was expected that the use of smaller dust grains
would allow oneto reveal new effectsthat did not man-
ifest themselves in experiments with heavy grains. It
turned out, however, that the vertical injection of grains
through a needle under the action of gravitational force

was somewhat problematic: grains with a size of less
than 40 pym significantly stuck to one another and
choked up the needle channel. Therefore, we somewhat
modified the experimental scheme (see Fig. 1) in order
to inject small-size grains using the already developed
needle injector. The experiment setup was modified as
follows: A medical syringeinwhich the part of aneedle
with abevel cut was cut off perpendicularly to the nee-
dle axiswas used asadust injector. Theinjector was set
horizontally in such a manner that the needle went
through a small hole in the cathode and the needle end
was positioned flush with the cathode surface facing the
discharge gap. The dust grains were injected along the
horizontal axis of a dc glow discharge. Inside the
syringe, there was a gas-discharge spark gap controlled
by aBING-5 generator [12] of high-voltage pulseswith
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Fig. 1. Schematic of the experimental device: (1) connect-
ing bus, (2) positive electrode connected to the output of the
BING-5 generator, (3) rack, (4) dust injector, (5) needle,
(6) view window, (7) photodetector, (8) cathode, (9) target,
(10) anode, (11) insulator, (12) electrode, (13) dust grains,
(14) needle channel, (15) laser, and (16) dust jet.
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Fig. 2. Waveforms of the shadow pulsesin air at a pressure
of P =750 Torr in the absence of a discharge (here and in
the subsequent figures, the arrows show the instant of trig-
gering a nanosecond spark discharge).
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Fig. 3. Waveforms of the shadow pulsesin air at a pressure
of P =1 Torr in the absence of adischarge.
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Fig. 4. Waveforms of the shadow pulsesin air a pressure of
P =1 Torr in the presence of a glow discharge with a dis-
charge current of | = 0.1 A (the electron density isng = 2.6 x
10° cm™, and the electron temperature is T, = 5 V).

an amplitude of 10kV and arisetime of 5 ns. After trig-
gering a pulsed spark discharge inside the syringe, the
arising shock wave kicked out the grains from the nee-
dle channel. A similar technique for injecting solitary
grains into plasma was described in [13]. The above
spark source of shock waves wastested in [14] at pres-
sures of ~1 Torr and lower.

We developed a technology for filling the needle
channel with approximately equal numbers (about 10%)
of dust grains. In brief, the needle was plunged to a def-
inite depth into a grain container. Using a special ram-
rod with adiameter nearly the same as the needle chan-
nel diameter, a portion of the grains was then pushed
from the needle end to the needle base.

The loaded injector was placed into a gas-discharge
chamber with a 450-mm-long interelectrode gap and a
100 x 100 mm cross-sectional area of the chamber and
electrodes. The chamber was then prepared for igniting
a glow discharge. The parameters of the discharge
plasma were determined using the probe technique.
After the needed steady-state regime of adischarge was
established, the dust grains wereinjected. In our exper-
iments, we used dielectric (silicon carbide) grains 20 +
5 um in size and a 50-mm-long needle with a channel
diameter of 200 um. The length of the dust portion in
the needle channel was 7 mm. The working gaswas air
at apressure of 1 Tort.

Thefirst series of experiments was aimed at measur-
ing the velocity of dust jets. For this purpose, we used
two cw red-light (A = 680 nm) semiconductor lasers
with an output power of 3 mW. The 3-mm-diameter
laser beams traversed the expected path of the dust jet
at distances of 5 and 15 mm from the needleend. Onthe
opposite side from this path, there were two FD-256
photodetectors whose signals were fed to the inputs of
a Tectronics TDS-3052B two-channel digital oscillo-
scope. In the absence of adust jet, the oscilloscope dis-
played base lines. In the presence of a jet traversed by
the laser beams, the photodetectors were shaded for a
short time and the oscilloscope displayed pulsed sig-
nals (called below shadow pulses). A similar technique
for detecting dust grainsin plasmawith the use of asin-
gle laser beam was implemented in [3].

Figure 2 presents typical waveforms of the shadow
pulses in the case of injection into atmospheric-pres-
sure air in the absence of a discharge. The estimated
velocity of thedust jet front is 10 + 1.5 m/s (hereinafter,
the results are averaged over a series of ten pulses). In
the case of injection into air at a pressure of 1 Torr, the
estimated velocity of the dust jet front is 0.15 *
0.02 m/s (Fig. 3). Such a great difference in the jet
velocities at different pressuresis quite understandable.
Indeed, theintensity of the shock wave produced by the
spark discharge decreases significantly with decreasing
gas pressure. In both cases, however, the jet length was
~1 cm, being approximately the same over the entire
flight base of the measurements. This length is a bit
larger than thelength of theinitial portion of dust grains
in the loaded needle channel.

TECHNICAL PHYSICS Vol. 49 No. 11 2004
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Fig. 5. Imprints of dust jets propagating in the plasma of aglow dischargein air at a pressure of P = 1 Torr and different discharge

currents: | = (a) 0, (b) 0.05, (c) 0.1, (d) 0.15, and (e) 0.25 pA.

Figure 4 presents typical waveforms of the shadow
pulsesin the case of injection into the plasmaof aglow
discharge with a current of 0.1 A (the corresponding
electron density and electron temperature measured by
the probe technique are n, = 2.6 x 105 cm=3 and T, =
5 eV). It turned out that the velocity of the dust jet front

TECHNICAL PHYSICS Vol. 49 No. 11 2004

in the plasma was 0.5 + 0.08 m/s, which was signifi-
cantly higher than that in a nonionized gas at the same
pressure. A comparison of thewaveformsin Figs. 4 and
5 show that the duration of the shadow pul sesis approx-
imately the same in both cases. This indicates that the
dust jet in plasma undergoes acceleration as a whole
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over acertain fraction of its path, rather than spreading
out in the longitudina direction. Estimates show that
the charged dust grains can be accelerated by the elec-
tric field in the cathode sheath. Note that the waveforms
inFig. 4 aremoreirregular. Thisfact pointsto the onset
of instability in the jet in the direction of its propaga-
tion, which leads to the dust agglomerization and clus-
terization. Presumably, thisisthe self-contraction insta-
bility described in [15, 16] and related to the intergrain
attraction, which was earlier revealed by usin [17]. It
follows from the average duration of the microspikesin
Fig. 4 that the longitudinal size of the dust agglomer-
atesis afew tenths of amillimeter or less.

The second series of experiments was devoted to
studying the transverse structure of a dust jet. To this
end, a 37 x 37-mm target was placed at a distance of
35 mm (i.e, at adistance longer than the jet longitudi-
nal size) from the needle end. The target was athin film
with a glue layer facing the jet (we used conventional
Rusi Star scotch tape). After taking an imprint, the film
with captured grains was tightly (without folds) pasted
on a Star Frost dide and then marked, after which it
became possible to store it for a long time to be pro-
cessed later. Figure 5a shows atypical imprint of a dust
jet propagating in nonionized air at a pressure of 1 Torr.
The image of the imprint was obtained by processing
with an optical scanner with a 1200 dpi resolution. The
shape of the imprint is nearly a circle with an azimuth-
ally-uniform distribution of dust grains; the dust con-
centration slightly decreases from the center to the
periphery.

Theimprints of adust jet propagating in aglow-dis-
charge plasma at a pressure of 1 Torr and different dis-
charge currents are shown in Figs. 5b—5e. It can be seen
that the imprint size of the dust jet in plasma is some-
what larger than that in nonionized air (Fig. 5a); how-
ever, the imprint shape is still close to a circle. An
increase in the size of the imprints in plasma as com-
pared to that in a nonionized gas at the same pressure
seems to be related to an additional scattering of dust
grains by plasma oscillations.

An analysis of the imprints (Fig. 5) shows that the
processes of the dust agglomerization and clusteriza-
tion also take place across the jet. The characteristic
transverse size of these dust agglomeratesisfrom afew
hundredths to a few tenths of a millimeter. Therefore,
the agglomerates contain from afew tensto afew hun-
dreds of dust grains.

The observed dust agglomerization and clusteriza-
tion in plasma is a direct experimental evidence of
attraction between likely charged grains. Such attrac-
tion was earlier observed only in one- and two-dimen-
sional simulations [17]. Previously, the dust agglomer-
ization and clusterization was observed only for
nanometer grains (e.g., for silicon grains growing from
the gas phase in an argon—silicon plasma [18]). To the
best of our knowledge, the clusterization of grains with

VYALYKH et al.

asizelarger than 10 ymin plasmahas been observed by
usfor thefirst time.

Thus, in this study, a technique for studying the
injection of dust jets into the plasma of a dc glow dis-
charge has been developed, the velocity of the dust jet
front in plasma has been measured (it happens to be
somewhat higher than that of ajet in anonionized gas),
and the longitudinal and transverse agglomerization
and clusterization of dust grains in plasma (which is
direct experimental evidence of attraction between
likely charged grains) have been observed.
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Abstract—The effect of compressibility on the stability of plasmajets with boundaries (tangential discontinu-
ity surfaces) of different configurationsis studied. It is shown that, depending on the relationship between the
MHD parameters of the jet and the surrounding medium, the compressibility may have astabilizing or adesta-
bilizing effect. It is also shown that, under certain conditions, the compressibility effect depends on the pertur-
bation wavelength. © 2004 MAIK “ Nauka/Interperiodica” .

(1) In the MHD approximation, the natural oscilla-
tions of a perfectly conducting plasma jet are described
by the dispersion relation [1-3]

No(8) _
NG5 - G069 @)
where
N, (§) = b;-&, 2
N,(8) = by;—(a-£8)% 3)

The form of function G(J, &) depends on the geom-
etry of the jet boundary, which is atangential disconti-
nuity surface:

Ell(lztanh(mlé) for aplanejet
o,

G(5¢) = [ |(MB)K (M) (4)
2 A 2 2 22 for acylindrical jet.

Hnll 1(M8)Ko(m,d)

Here,
> _ (B8 (Wi-E)
= =1 , 5
ey Y ©
2 = 2= (@=9) (ke —(a-8)]
b3 - (1 + b7)(2~8)°
E4
ib; — (i + b)E”

= 1+€,(2), (6)

€1(8) = (7)

e g
H3b; — (M3 + by)(a—¢)

and |y, 11, Ky, and K; are modified Bessel functions.
The rest of the notation is as follows:

€,(¢) =

V-U vV \% V
- P 4=V _ Va _ Ve
E C ] a C1 bl Cl b2 C1
_ P _C _22 _ kd _ md
V—p21 "'ll_ C1 uz_ C, 6— 2 - )\1

where V isthe jet velocity with respect to an immobile
plasma medium, V, = Hi/ ./J41tp is the Alfvén speed,
p; isthedensity, C; isthe speed of sound, C isaconstant
having the dimensionality of velocity, d isthe thickness
or the diameter of thejet, U, = w/kiisthe phase velocity,
and A isthe wavelength of the perturbation specified in
the form of a plane wave.

Dispersion relation (1) was derived under the
assumption that the vectorsV, k, and H; point along the
zaxis, which isthe symmetry axis of the cylindrical jet.
The plane jet is assumed to be symmetric about the
x =0 plane, in which case we will be interested in the
half-space x = 0. Hence, the perturbations are given by
the following formulas:

fi(x,z,t) = f,(x)exp[i(kz—wt)] for aplanejet, (9)
fi(r,z,t) = f,(r)exp[i(kz—wt
(r.z1) (.) _p[ ( )] (10)
for acylindrical jet,

where the subscripts i = 1 and 2 refer to the regions
inside and outside the jet, respectively. It is aso
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Fig. 1. Plots of the function G(d) for (1) aplanejet and (2) a
cylindricdl jet.

(by + by)? + Vb (1-P)?
(b + by)?

Fig. 2. Dependence of afr on G(3) for an incompressible

plasmajet: G(d) < 1for aplanejet, and G(6) > 1 for acylin-
drical jet.

assumed that the waves emitted by the jet into the sur-
rounding space are surface waves, this corresponds to

2
m;, >0.

(2) In the case of an incompressible jet, i.e., when
C=ow (i=1,2) and g(&) = 0, dispersion relation (1)
becomes a quadratic equation in &. The requirement
that the discriminant be nonnegative yields the foll ow-
ing condition for the stability of the jet [3, 4]:

2 _[VG(8) + 1] [v G(3)b; + b3)
as vG(3)

In condition (11), the equality sign corresponds to

the square of the critical velocity, af,r , above which the

instability develops at a given perturbation wavel ength.
The function G(8), which is determined from formulas
(4) with m; = m, = 1, is plotted in Fig. 1. We can see
that, for a plane jet, this function increases monotoni-
caly from 0 to 1 whereas for a cylindrica jet, it
decreases monotonically from o to 1. Consequently,
the geometry of the jet isimportant from the standpoint
of its stability only in the case of long-wavel ength per-
turbations such that 6 < 1.

In[4], condition (11) was analyzed in order to deter-
mine the minimum value of the critical velocity a,
below which the jet is stable for any & values. The
results of this analysis are illustrated in Fig. 2, which

(11)

ZHVANIA et al.

implies that, in the case at hand, the effect of the jet
geometry is determined by the parameter

1/2
B = & = @I—% .

vb, [p,H]
In the range G(d) < 1, corresponding to a plane jet,
the following regular features can berevealed. If 3 > 1,
then, as G(0) increases from 0 to 1 (i.e., as d increases

from 0 to ), the squared critical velocity aﬁ, decreases

monotonically from co to its minimum val ue at the point
G(d) =1

8| =1 = (b1+b,)" +vbi(1-p7).

If B < 1, then the squared critical velocity a2 isa
nonmonotonic function of G(6) and its minimum value
isreached at the extreme point G(d) = 3 and isequal to

az| i = (b +by)% (14)

Thesituation with acylindrical jet, corresponding to
the range G(0) = 1, is opposite to that with a plane jet.
Hence, for B > 1, aplane jet ismore stable than acylin-
drical jet, and vice versafor 3 < 1.

(3) Now, we consider the same problem but takeinto
account alow compressibility such that p; > 1 and p; >

(12)

(13)

b.. In this case, we have |g(€)] < 1, i.e, m’ >0 (i =
1, 2); therefore, the right-hand side of dispersion rela-
tion (1) is negative. This indicates that the necessary
condition for the stability of the jet, i.e., the condition
for the roots of dispersion relation (1) to bereal, can be
satisfied only when N;(§) and N,(§) have opposite
signs. Under the conditions of a low compressibility
such that p; > by, expressions (5) and (6) imply that the

inequality mi2 > Qissatisfied when N;(&) and D;(&) have

the same signs (here, D; isthe denominator of mi2 ),i.e,

when they are both positive or both negative, which
corresponds to the propagation of a transverse Alfvén
wave or a longitudinal magnetosonic wave, respec-
tively. Hence, the jet is stable when the hydrodynamic
waves propagating inside and outside it are different in
nature; moreover, a transverse Alfvén wave is gener-
ated on the side of the tangential discontinuity where
the Alfvén speed is higher, and alongitudinal magneto-
sonic wave is generated on the side where the Alfvén
speed islower [5].

We assume that G(9, &) isaslowly varying function
of & and write dispersion relation (1) in the form

[VG(3, &) + 1] 2a& +a”
—vG(3, &)bi-b5 = 0,

where &% istheroot of dispersion relation (1) in the case
of an incompressible jet, when the discriminant of the
relation is zero at the critical jet velocity.

(15)

TECHNICAL PHYSICS Vol. 49 No. 11 2004
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We expand the function G(, &°) in powers of the

small parameters sio = &(€° and retain terms up to the
first order to obtain

G(3, &) = G(3)(L+e), (16)
where
Eé[eg—e‘l’gt— sir?r?ztg} for aplanejet,
<= S Ko @
@-s‘jﬁ + gg:g - :;gg} for acylindrical jet.

It can be shown that all the coefficients by eio are
positive; hence, we have

0, for €2>0, £ <0,
€] : : (18)
[kO, for ¢&,<0, €,>0.

Comparing expressions (2) and (3) with expressions
(7) and (8), we easily find that, for p; > by, the quantities
g and N° = N,(£°) have the same signs.

Under the conditions of a low compressibility, dis-
persion relation (15) yieldsthe following expression for
the critical velocity:

2 _ [VG(& &) + 1] [V (5, &)b; +bj]
o VG, &) |

Since the right-hand side of expression (19) for-
mally coincideswith that of condition (11), we can ana
lyze this expression in the above manner to obtain an
analogous result. The only difference is that the
extreme point, which is defined by the formula

(19)

G(3) = % (20)
az
o JVBi(1 - B2)E
(by + by~ + Vbi(1 -B) b1 — Be

G

Fig. 3. Dependence of afr on G(d) for aplane compressible
jetap>1.
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will be somewhat shifted to the right or to the left,
depending on the sign of €. Accordingly, we will arrive

at another value of aczr at the point G(d) = 1.

2
aCf|G(6)=l
= (b} +bj) + vbi(1—B%) +vbi(1-B)e.

Let us now consider the difference between the
squared critical velocities given by expression (19) and
condition (11):

A2 = VBilG(®) B

Cr G(6)
It is clear that the effect of compressibility on the
stability of a plasma jet is governed by the sign of this
difference: when Aafr > 0, the compressibility stabi-

lizes the jet, and, when Aafr < 0, the effect is destabi-
lizing. Let us analyze expression (22) with allowance
for the results obtained in [4, 5].

Since the case in which 3 > 1 and G(d) < 1 is most
optimal for the stability of a plane jet, the differencein
the square brackets is negative. On the other hand, the
inequality B = (p,H2/p,H>)Y2 > 1 can be satisfied at
the expense of a jump in the magnetic field (H, > H;,
P, < py) or inthedensity (H, < Hy, p, < py). Inthefirst
case, we have V,, > V,; and, as was mentioned above,

N3 >0(e5 >0)and NJ <0 (€2 <0). Inthiscase, rela-

tionships (18) yielde >0and Aaczr <0, whichindicates
that the compressibility destabilizes the jet; moreover,
the waves generated inside and outside a stable jet area
were amagnetosonic wave and an Alfvén wave, respec-
tively. In the second case, we have V,, < V,; and, con-

sequently, N3 <0 (g5 <0), N >0 (g} >0),e<0,and

Aaczr > 0. This indicates that the compressibility stabi-
lizesthejet; inthis case, the waves generated inside and
outside the jet are an Alfvén wave and a magnetosonic
wave, respectively.

(21)

(22)

vl - B
(by +by)* + Vbi(1 = B)? === === -+ e
Vb1 - BE !
|

i
1 G

Fig. 4. Dependence of aczr on G(d) for a cylindrical com-
pressiblejet at B < 1.
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Fig. 5. Dependence of agr on G(J) for acompressible plane
jetatp<1.
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Fig. 6. Dependence of asr on G(d) for a compressible
cylindrical jetat 3 > 1.

Theoptimal conditionsfor the stability of acylindri-
cal jet are B < 1 and G(d) = 1; accordingly, the differ-
ence in the square brackets of expression (22) is posi-
tive, i.e, the sign of Aa’ is determined by the sign of
€. By analogy with the previous case, we can show that,
if H, < H; and p, = p;, then we have V,; > V., and
Aaczr <0 by virtue of € <0. Thisindicates that the com-
pressibility has a destabilizing effect; moreover, the

ZHVANIA et al.

waves generated inside and outside the jet arean Alfvén
wave and a magnetosonic wave, respectively. The
results of this analysis are illustrated schematically in
Figs. 3and 4.

It is aso of interest to consider conditions that are
nonoptimal for the jet stability, namely, the condition
B < 1foraplanejet and the condition 3 > 1 for acylin-
drical jet. The results of the corresponding analysis of
expression (22) aredemonstrated in Figs. 5and 6. It can
be seen that, under these conditions, the effect of com-
pressibility on the jet stability depends not only on the
relationship between the MHD parameters of the jet
and the surrounding medium but also on the perturba-
tion wavelength.

Finally, we can draw the following general conclu-
sions. For aplasmajet of acertain (planeor cylindrical)
geometry, the compressibility (which undoubtedly
destabilizes the tangential discontinuity in the classical
sense) can play a destabilizing or a stabilizing role,
depending on the jet-flow conditions and the perturba-
tion wavelength. In addition, the plasma jet operates as
agenerator of MHD waves, whose nature is also deter-
mined by the jet-flow conditions.
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Abstract—Thebasic electrical and optical properties of films made of propolis, which isanatural, biologically
active, organic compound, are studied. Photoluminescence is found to exist at room temperature with a maxi-
mum at 434 nm. The conduction activation energy in the temperature range 283-300 K is2.9 eV and correlates
with the optical band gap. © 2004 MAIK “ Nauka/Interperiodica” .

The application of different-type organic semicon-
ducting materials in electronics is widening continu-
ously [1, 2]. Thiscircumstance stimulates studies of the
physical properties of both synthesized and biological
(skin, green leaves, albumen, etc.) materials and their
possible application as components of optoelectronic
devices [3-5]. It was shown in [6-8] that semiconduc-
tor (p-InSe, n-Si)—propolis hybrid photosensitive struc-
tures, where the natural organic material behaves as an
p-type semiconductor, can be fabricated.

Propolis (bee glue), which is extensively used in
pharmacology, perfumery, and cosmetology, is a prod-
uct of the life of honeybees and is avery complex mix-
ture of organic materials; generaly, it consists of tarry
matter (50-55%), wax (up to 30%), and etherea oils
and balsams (about 10%). Moreover, propolis (hereaf-
ter, P) contains organic acids, antibiotics, a number of
vitamins and microelements (Al, V, Fe, Ca, Si, Mn, and
Sr), and some natural enzymes (e.g., carotene) [9]. The
methods of medical treatment with P and its chemical
composition were analyzed in numerous works (e.g.,
see[10]). Every new study of the chemical composition
still reveals new components of this compound. When
studying the physical properties of P, researchers
mainly determine its density, the temperature ranges of
its aggregation states, and so on.

In this work, we determined for the first time the
basic electrical and optical parameters of films made of
thisnatural, biologically active, organic compound. We
recorded its transmission spectrum in the wavelength
range A = 350—600 nm and its photol uminescence spec-
trum, determined the electrical conductivity at room
temperature, and found the temperature dependence of
the conductivity.

To prepare films of uniform thickness, a drop of a
10% alcohol solution of P was applied onto a sapphire
substrate fixed on a centrifuge; it rotated until the alco-
hol completely evaporated (no longer than 1 min). The
thickness of the P filmswas 15-30 ym. Asasolvent, we

used 96% ethyl alcohol. The conductivity of the films
was measured by the standard two-probe technique
[11]. Silver was used for electrical contacts.

Figure 1 shows the optical properties of the P films.
As can be seen, the P films are transparent in the wave-
length range from 410 to 600 nm (T = 90% at film
thickness d = 20 um) (Fig. 1, curve 1); the long-wave-
length tail of the optical absorption edgein Pisstrongly
diffused; and the absorption coefficient a changes by
an order of magnitude (from 10° to 10? cm™) in the
wavelength range from 380 to 410 nm (Fig. 1, curve 2),
which corresponds to photon energies of 3.26-3.02 eV.

Luminescence of P isobserved when it isexcited by
light with awavelength of 337 nm. The photolumines-
cence spectrum is shown in Fig. 1 (curve 3). The max-
imum in the spectral dependence corresponds to
434 nm (2.857 eV). Noticeable inflection points on
either side of the maximum indicate the presence of
several types of luminescence centers in P, which is
characteristic of both semiconductors having different
impurities and complex molecular mixtures [12].

A, nm
«E 300 400 500 600 700 800 900 1000
:f 800 T T T T T T T 100
,.E A
< 600 80
=
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=~ S
<7 400 60 &
g ~
S 200 40
(Q
S 20

0 350 400 450 500 550 600 0
A, nm

Fig. 1. (1) Transmission spectrum, (2) optical absorption
coefficient, and (3) photoluminescence spectrum of the pro-
polisfilmsat T =288 K.
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Fig. 2. Temperature dependence of the conductivity of the
propolisfilms.

Figure 2 shows the temperature dependence of the
conductivity a(T) of P. Ascan be seen, the conductivity
has a constant activation energy (=2.9 eV) in the tem-
perature range 283-300 K. As the temperature
increases further, the growth in the conductivity decel-
erates significantly, which can be caused by a number
of factors. First, the deceleration of the increase in the
conductivity with increasing temperatureis characteris-
tic of materials with a high content of impurities and
can be related to a decrease in the potential barrier
heights [13]. Second, this behavior of o(T) istypical of
noncrystalline semiconductors when al charge carriers
have passed from localized centers to the valence or
conduction band under the action of temperature [14].
Finally, if we assume that the P films are somewhat
ordered at T < 300 K (by analogy with inorganic semi-
conductors, which have a long-range order), an
increase in temperature results in disordering of the P
structure and the formation of localized states in the
energy structure of this material (at 30°C, the wax
entering into the P composition begins to soften). Of
course, each assumption requires additional studies.

Thus, the results of thefirst studies of the conductiv-
ity and optical properties of propolis indicate that this
natural, biologically active material is a semiconductor
with an optical band gap of =3 eV, which can be used to
design optoelectronic devices of different types. More-
over, P films have some advantages over other artifi-
cialy synthesized commercial organic materials that

DRAPAK et al.

are used as componentsin electronic devices[15]. Spe-
cifically, these films have a substantially lower resistiv-
ity (by four to five orders of magnitude) and a wider
optical band gap. Another advantage of P over its ana-
logs studied in the literature (skin, green leaves, albu-
men, etc.) [4, 5] and some organic semiconductorsisits
high environmental resistance [9].
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Abstract—It is shown that the adsorption, solubility, and diffusion coefficient of water molecules in metal-
oxide cuprate Y Ba,Cuz05 _ 5 are nonmonotonic functions of the oxygen content. The behavior of these quanti-
tiesisdetermined by the superposition of two processes. the change in the charge state of atomsin intermediate
layers and the el ectron density distribution between cuprate and intermediate layers upon filling of O1 positions

by oxygen. © 2004 MAIK “ Nauka/Interperiodica” .

It iswell known that water molecules are absorbed
by the crystal lattice of meta-oxide cuprates
YBa,Cu;0,_5 [1]. If adsorption takes place at room
temperature and under saturated vapor pressure, alayer
of physically bound water is formed; H,O molecules
from this layer are implanted into the lattice, where
they form four localized states at interstices of the BaO
and CulO intermediate layers. The filling of these
states increases with time [2]. It can be expected that
binding of molecules at the surface and their diffusion
to the bulk of the crystal depend on the charge states of
atoms in the lattice, which determine the energy barri-
ers of chemisorption and diffusion of molecules. Since
the charge states of atoms are determined by the oxygen
content in the system [3], water absorption may be a
function of the number of oxygen atomsin the lattice.

Here, we analyze the dependence of the absorption
of water molecules on the content of O1 atoms in the
system Y Ba,Cu;0;, _5. We studied disperse samples of
Y Ba,Cu;0,_5 with an oxygen content varying in the
range 0 < & < 1. Particles had the shape of flakes
~20 pm in diameter and ~10 pum in thickness. Adsorp-
tion took place at room temperature in an atmosphere of
saturated vapor (a vapor pressure of 18.7 Torr) on sam-
ples preliminarily annealed in a vacuum of ~1072 Torr
at T < 150°C. We used doubly distilled water as an
adsorbate. Adsorption was measured with the help of a
McBain balance. The specific surface was determined
on the GKh-1 setup from nitrogen desorption.

Figure 1 illustrates the adsorption kinetics of water
moleculesinY Ba,Cu;0; _ 5 samples upon avariation of
ointheinterval 0< o < 1. After theformation of alayer
of physically bound water at the surface of particles, the
adsorption coefficient a smoothly increases with timet
during t < 90 min and exhibits a tendency to saturation
at t > 2000 min. The slow increase in the adsorption
coefficient is determined by the implantation and diffu-
sion of H,O moleculesin the crystal lattice. A peculiar
feature of adsorption upon an increase in & is a non-

monotonic variation of a in the interval 0.1 < 6 < 0.4
and its sharp increase for 6 > 0.4, which is clearly man-
ifested in the behavior of limiting adsorption and solu-
bility (Fig. 2a). The dependences a,(d) and Ny(d) are
characterized by a nonmonotonic decreasein a,, and N,
with increasing d in the interval 0.1 < 6 < 0.35 with a
minimum at & [10.25, asharp increasefor 6 > 0.35, and
adlight increase for & > 0.45.

The behavior of the effective diffusion coefficient
D, of water molecules, derived from the expression [4]

where V is the volume and S; = pVs is the area of the
outer surface of particles (p is the density and sis the
specific surface), depending on the oxygen content is
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Fig. 1. Kinetics of adsorption of water molecules in
YBay,Cuz0; _swithd=0(1),0.2(2), 0.24 (3), and 0.44 (4).
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Fig. 2. Dependences of the limiting absorption and solubil-
ity (), the effective diffusion coefficient of water (b), the
specific surface (c), and the superconducting transition tem-
perature (borrowed from [5]) (d) on the oxygen content in
Y B%CU3O7 -5

similar to the behavior of function Ny() (Fig. 2b). In
determining D, we assumed that particles of the sam-
ples are of the same size and that the rate of transition
of an H,O molecule from the free to the bound state at
the surface of the particlesis much higher than the dif-
fusion rate in the crystal lattice.

It should be noted that the specific surface increases
nonmonotonically in the interval of the nonmonaotonic
decrease in a,,, Ny, and D, (Fig. 2¢). In addition, the
region of nonmonotonic variation of U and D, for 0.1 <
0 < 0.6 coincides with the interval in which the super-

GORELOV, SIDORCHUK

conducting transition temperature T, changes stepwise,
whiletherange of & > 0.6, wherethevaluesof U and D,
change insignificantly, corresponds to the interval of
oxygen content in which superconductivity is not
observed (Fig. 2d) [5].

Thus, the solubility and the diffusion coefficient of
water in' Y Ba,Cu;0; _ 5 are nonmonotonic functions of
the number of O1 atoms in intermediate layers. Since
the solubility is proportional to the number of vacancies
in the lattice and the binding energy of water atoms
with the atomic surroundings,

1 0y,
U= SHSEOanVG (2)

(where g, is the permittivity, qg is the charge state of

cuprate atoms of sort o, and Viq is the electrostatic

potential produced by jth atoms of th molecules of
water at an ith atom), a decrease in N, upon a smooth
increase in the number of O1 vacancies in the lattice
with increasing & indicates that H,O molecules do not
fill O1 vacancies and the behavior of N, can be attrib-
uted to the nonmonotonic variation of U and the charge
state of atomsin the lattice. Asthe number of O1 atoms
grows (06 — 0), the binding energy decreases first
insignificantly for & > 0.6 and then sharply in the inter-
val 0.25 < 8 £ 0.6, after which it smoothly increases for
0.1<0<0.25and virtually does not changefor 6 <0.1.

In addition, the diffusion coefficient in a multicom-
ponent system is given by [6]

- olnyn
D = ukTHL+ 5 3

where u, y, and N are the mobility, the activity, and the
number of H,O molecules. The mobility is connected
with diffusion rate v and chemical potential p by the
expression

_ _uoadu.
V= N,Ox’ )

consequently, the behavior of D() = Da./c; (Cp isthe
concentration of molecules at the particle surface) is
also determined by the nonmonotonic variation of
Ju/0x upon a smooth decrease in 8. On the other hand,
D = Dyexp(—E/KT), where k is the Boltzmann constant
and the activation energy E ~ U [6]; in this case, the
behavior of D(d) for & —= 0 is determined by the non-
monotonic decrease in E(d). It is important that the
behavior of U, E, and dp/ox for & — 0 can be associ-
ated with nonmonotonic variation of the charge state of
lattice atoms.

The increase in the number of Ol atoms in

Y Ba,Cu;0;,_5 for & — 0 changes the charge state of
the atoms constituting the intermediate layers. The
charge state of Ba and Cul decreases from 2.08 and
TECHNICAL PHYSICS Vol. 49
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1.46to 1.45 and 0.81, respectively; the charge of the O4
atom decreases from —2.08 to —0.67, and the number of
O1 atoms with acharge of —1.76 increases [4]. In addi-
tion, the lattice parameter ¢ decreases, but the apex
atom O4 moves away from Cul and approaches Cu2
[7]. In this case, holes are redistributed between the

dxz_yz and d . orbitals of the Cu2 atom when holes are

localized at dxz_yz, and the electron density becomes

extended along the ¢ axis [4]. Therefore, the nonmono-
tonic behavior of U, E, and ou/ox is probably deter-
mined by two processes that affect the value of op/ox,
viz., a smooth decrease in the charge state of Ba, Cul,
and O4 upon an increase in the number of O1 atoms,
leading to adecreasein U and E, and aredistribution of
the electron density in Cu2 orbitals upon a convergence
with the O4 atom in the interval 0.1 < & < 0.25, which

might result in an increase in Viu and, accordingly, in
the values of U and E.

It should be noted that the electron density redistri-
bution matches the increase in T. in the interval 0.1 <
0<0.25for 6 — 0, sinceit leads to an increase in the
number of holes, p, in cuprate layers and in the conduc-

tion band formed by the orbitals dxz_yz pu(py) of Cu2

and O2 (0O3) atoms and in temperature T(p) = T [1 —
82.6(p — 0.16)?], where T, is the maximal supercon-
ducting transition temperature in Y Ba,Cu;0, _5[8].
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Thus, the nonmonotonic absorption of water mole-
culesin YBa,Cu;0;_5 is due to changes in the charge
state of the atoms constituting intermediate layers and
the electron density distribution between cuprate and
intermediate layers upon avariation of the oxygen con-
tent.
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Abstract—Itisshown that SrF, can be used as an effective protective coating for indium phosphide films, since
it decreasesthe surface recombination rate of the films due to lattice matching between SrF, and InP. Asaresult,
the external quantum yield of radiative recombination increases. © 2004 MAIK “ Nauka/Interperiodica” .

The recording and numerical estimation of the
intensity of UV radiation have recently became a key
issuein view of ecological monitoring and wide appli-
cation of UV sourcesin science, engineering, medicine,
and industry. These factors require the diversification of
photodetector-based functional measuring instruments
[1,2].

Along with GaP-, Si-, Ge, and InGaA sP-based pho-
todetectors [3], photodetectors with the upper layer
made of n-InP are promising for the UV region. In such
photodetectors, the p—n junction should be located as
close as possible to the surface; in this case, however,
surface recombination may substantially affect the pho-
todetector efficiency.

Because of the high internal quantum yield (90%)
and a low surface recombination rate in n-InP, the role
of the effects of multiple passage and reradiation,
which are important for optoelectronic devices,
becomes more significant [4]. These effects provide
effective excitation transfer in n-InP [5].

The surface recombination rate in n-InP is only 2 x
10* cm/s (for comparison, this rate in n-GaAs is 3 x
10° cm/s[6]), which makesit possible to design ahigh-
sensitivity UV photodetector. However, the open sur-
face of n-InP is unstable in time [7]. The InP surface
can be stabilized with protective coatings. There are
many insulating coatings, such as native oxide In(PO,),
and oxides of other compounds (Al,O3, SIO,, etc.), that
can be used to protect n-InP. Interest in fluoride-based
films has quickened in the past few years[8, 9]; for InP,
such films are made of SrF,.

A SF, film ensures transparency in the near-Uv
region and increases the surface recombination rate,
sincethelattice parameter of SrF, iscloseto that of InP.
A S'F, film forms a heterojunction at the interface with
InP, which not only effectively protects the surface but
also reduces the surface recombinationin InP (whichis

evidenced by theincrease in the external quantum yield
of radiative recombination).

The epitaxial InP films were produced by liquid-
phase epitaxy [4]. The epitaxia-layer thickness was
2-3 pm, and the concentration of uncontrolled impuri-
tieswasn =5 x 10 cm3, as determined from metal—
insulator breakdown.

Each as-grown film was divided into three parts.
One part was not treated (the reference part), and the
two others were coated with SrF,, CaF,, or SIO + SO,
insulating films.

The insulating films were fabricated by vacuum
deposition; their thicknesswas varied from 0.4 to 1 pm.

To study the photoluminescence properties, we used
a setup similar to that described in [4]. A continuous
1-W Ar laser with wavelength A = 0.514 pm was used
as an excitation source.

The spectral dependences of all three parts of the
epitaxial film are shown in the figure. To estimate the

—
=)
T

1 1
1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44
hv, eV

L uminescence spectra of n-InP with and without ainsulat-
ing film: (1) the mirror surface of the epitaxial n-InP film,
(2) themirror surface of the epitaxial film coated by aSiO +
SO, insulating film, and (3) the mirror surface of the epi-
taxia film coated by a SrF, insulating film.
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external quantum yield, the spectra of all the samples
were compared with the spectrum of a calibrated het-
erostructure. The external quantum yield of the radia-
tive recombination in the InP epitaxial films was esti-
mated under the same experimental geometry and at a
constant quantum sensitivity of the photodetector.

The external quantum luminescent efficiency was
Ne = 2.2% for the pure (uncoated) sample, n, = 4% for
the film with the SiO + SiO, coating, and N, = 6.1% for
the film coated with SrF,.

To compare the experimental data with theory, we
calculated the external quantum yield of luminescence
for the uncoated and coated InP epitaxial films. We
assumed that the internal quantum yield of lumines-
cence is 100% in a narrow excited region and zero in
the unexcited region, the reradiation effects are absent,
the sample has a mirror surface, and the output emis-
sion islimited by the effects of total internal reflection:

2n3

n(ne +n)*

Ne

Our calculations show that the external quantum
yieldisn, = 2.6% for the uncoated n-InP epitaxial films
and does not exceed 4.5% for the samples coated with
the insulating films (ny, = 1.43). These calculations
agree well with the results obtained for some n-InP
films with the SIO + SIO, coating. An increase in the
external quantum yield of the films with the SrF, coat-
ing by afactor of more than three as compared to the
uncoated films is thought to be caused by a decreasein
the interface recombination rate, since SrF, has a cubic
| attice with aparameter of 5.79 A, which virtually coin-
cides with the InP | attice parameter. Thisfact resultsin
a significant decrease in the nonradiative recombina
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tion at the InP-SrF, interface and, hence, in an increase
in the reradiation, which is evidenced by increasing the
line halfwidth and a substantial increase in the external
guantum yield (this value exceeds the data calculated
using simple theoretical assumptions).

Thus, SrF, insulating films can serve as effective
protective coatings for InP epitaxial films.
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