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Surface molecular ordering in ultrathin molecular films is investigated. The optical transmission
spectra of molecular films ranging in thickness from 2 to 13 smectic la$ers-43 nm

in the region of the electronic absorption bands in the sméctibase of cyanobiphenyl CB9

are measured. The thickness and temperature dependences of the permittivity are

determined. It is found that the orientational ordering of the molecules depends on the film
thickness. The penetration depth of the surface molecular orientational order does not exceed two
smectic layerg<7 nm). © 1999 American Institute of Physids$1063-776(099)02205-3

1. INTRODUCTION nied by a change in the structure of near-surface smectic
_ _ layers—® and transitions to a crystalline ph&s&**occur at
A great deal of attention has been devoted in the last feWemperatures 10-30 °C above transitions occurring in the in-

years in both pure and applied investigations to the study oferjor of the sample. Thin molecular films also melt at a
surface molecular layers. The difference of the interaction ofyigher temperature than bulk sampfés.

molecules with the environment on the surface and in the ~ Theoretical calculations have shoWwi® that the influ-

interior can change the structure of the layer, change thgnce of a surface on translational and orientational molecular
collective and molecular dynamics, shift the phase transitiorbrdering must be taken into account in a description of the
temperatures, and induce new phases on the surface. Dgrycture and dynamics of thin films. At the same time, up to
pending on the relative magnitude of various types of internoy there have been no direct experimental observations of
atomic and intermolecular interactions, surface layers cage differences in orientational order of molecules on a sur-
melt at higher or lower temperatures compared with the inface and in the interior, and in consequence no direct obser-
terior of the sample. For example, investigations of the strucyations of a dependence of the orientational ordering on film
tures of SmA and SmtF have shown that cooling the iSo- thickness. In the present work such investigations were per-
tropic phase produces layered smectic order on the surface gfmed using optical methods. The optical transmission
a temperature several degrees above the phase transition tegectra were measured in the region of the electronic absorp-
perature in the interior. As the sample is cooled furtheriion pands for films with various thickness. A smedhic-
Iayer-by-la_yer phas_e transitions eventually cause the SmeCthucture(Fig. 1), in which the “director” n (the direction of
phase to fill the entire sample. the predominant orientation of the long axes of the mol-
Free-standing molecular films are convenient objects f%cules. is perpendicular to the plane of the layers and the
investigating near-surface and dimensional effects in organigm surface, was investigated. The measurements were per-
materials> The two flat surfaces of these films are boundedigrmed in the UV region of the spectrum, where intense
by air, and the films themselves can be prepared with Variouébsorption bands of the molecules forming liquid-crystal
(rigorously determinednumbers of molecular layers. Imme- gryctures are found. This made it possible to observe the
diately after preparation a film can contain defeisloca-  gjectronic absorption in ultrathin samplésickness down to
tions, thickness nonuniformity, and so jorHowever, be- 7 nm) and to determine from the experimental spectra the

cause of the comparatively high mobility of the molecules,imaginary part of the permittivity,(w) for films with vari-
the quality of the surface and of the film itself can be sub-q,5 thicknesses. The quantity

stantially improved by holding the film for several hours near

the temperature of the transition to the isotropic or nematic

phase. This makes it possible to obtain filmsi(cn¥) that Ezj r(w)do,

are uniform over their thickness and contain a definite num-

ber of smectic layers. The surface of such a film is a single,

continuous smectic plane. This advantageously distinguisheshere the integral extends over an electronic transition, is
the surface of a free-standing organic film from inorganicproportional to the squared projection of the dipole moment
structures, where as a rule it is difficult to prepare perfecof the electronic transition on the direction of polarization of
surfaces of adequate size. For this reason, molecular filmghe light. The permittivity along the principal directiofzar-
aside from their intrinsic interest, can also serve as modedllel and perpendicular to the “directoy’depends on the
objects for investigating surfaces, two-dimensional struc-orientational order. This makes it possible to characterize the
tures, and phase transitions in finite-size samples. It has be@mientational ordering of a structure on the basis of the rela-
shown that in molecular films, phase transitions accompative value of the permittivity.
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FIG. 1. SmecticA film. The “director” n is perpendicular to the surface; ) N )

is the disorientation angle of the long axes of the molecules relative to the 30000 35000 40000 45000

“director.” w, cm!
FIG. 2. Transmission spectra of films with thickné¢s 2, 3, 4, 5, 6, and 8
smectic layers at temperatufe=47.7 °C.

N=23,4,5628

2. EXPERIMENTAL RESULTS AND ANALYSIS

The measurements of the transmission spectra were per-
formed on films of 4-cyano-4-n-alkylbiphenyl CB@ine is  in the frequency range displayed in Figs. 2 and 3 is deter-
the number of carbon atoms in a cheifThis substance mined by electronic absorption and interference effects in the
forms a smectid phase with the smecti- — nematic— reflection of light by the film surface. Even in the transmis-
isotropic-liquid phase transition temperatures 48°C andion range the transmission spectrum exhibits a strong spec-
49.5 °C, respectively, in the interior of the sample. The filmstral dependencd (w)=[1—1(w)/lo(w)] [see the expres-
were placed in a 5-mm opening of a thin metal plate. Layersion (1)]. This dependence is even more complicated in the
by-layer thinning by heating a thick film above the tempera-Vvicinity of the absorption bands, since the absorption coeffi-
ture of the phase transition to the isotropic liquid in the in-cient, the refractive index, and the change in phase of the
terior was used to obtain thin films with the required numbedight wave for transmission through a film depend en
of molecular layers??1?? The transmission spectra were Interference effects make a large contribution to the intensity
measured with the light polarized perpendicular to the “di-and frequency-dependence of the spectrum. Thus, the devia-
rector.” The spectrd (w) =1(w)/l o(w) presented in this pa- tion of T(w) from 1 in the low-frequency part of the spectra
per are the spectriw), normalized to the lamp spectrum is completely due to interference. On account of interference
lo(w), of the light transmitted through a film. To take ac- effects, the intensity of the light transmitted through a film in
count of the reflection of light from the quartz windows of the absorption region does not follow the Lambert—Beer law,
the heat-bath vessel, the spectriyfw) was measured inthe and the spectra must be analyzed taking account of energy
same geometry al{ w) without the film. To determine the dissipation in the film and interference.
film thickness(the number of smectic layersthe optical The transmission spectrum and the response of thé'film
reflection was measured in the transmission region. Théo alight wave are described by the permittivitw), which
spectral dependence of reflection under normal incidence ardepends on the orientational ordering of the molecules in the

“backward” reflection is given b§? film. Even though the expressions relating the transmission
) - spectrum of the absorbing film witt( w) were derived com-
I (0)  (n?-1)%sir(2rnNdw) n paratively long ago and are presented in the classic mono-

graphs(see, for example, Refs. 24 and)2&us far the op-
tical spectra of the ultrathin films have not been analyzed
using these expressions because of the lack of experimental
data.

lo(®)  4n2+(n2-1)%siR(2mnNdo)

whereN is the number of smectic layers in the filohjs the
interplanar distance~3.3 nm in the smectiéx phase of
CB9), nis the index of refraction, anéd=1/\. In thin films
(N=6), the reflected intensity is proportional to the squared
film thickness:

I (w)/1o(w)~N?d?72(n°—1)%w?. 2

In this case the number of smectic layers was determined
according to the relative reflection intensities for films with
various thicknesses.

Figure 2 shows the results of the measurements of the
transmission spectra of films with thickndds=2, 3, 4, 5, 6,
and 8 smectic layers. The spectra consist of two electronic
bands F, (w,~3.5x10* cm™!) and F, (w,~4.6x10*
cm 1). In cyanobiphenyls, the electronic transition dipole

moment for the low-frequency barﬁja is parallel to the long FIG. 3. Transmission spectra of a film with thicknéés 13 smectic layers

: P . at temperature¥ =37.6 °C and 47 °Gtop half of the figurg The bottom

axis of the molecule. The transmission spectrum of a f|Imh , L L .
alf of the figure shows the imaginary part of the permittivity, obtained

with N= 13 layers for two temperatures 37.6 °C and 47 °C iSusing Gaussiarfdashed curvgsand arbitrary(solid curves forms for the
shown in the top half of Fig. 3. The intensity of the spectrumspectral curveg,(w).
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For an absorbing medium the light transmission coeffici) of a film is given by the expressiéh®®

16(n°+ k?)exp(—4mdkw)
T(w)= N . , ®
[(N+1)"+k“][1-2pexp(—4mdkw)cod 2(B+2mdnw) ]+ pexp —8mdkw) ]

where position of vibronic transitions accidently happens to be

5. 2 close to a Lorentzian curve. For this reason, the calculations

p= (n—1)"+« (4 of the transmission spectrum were performed with a more

(n+1)%+ «? general form ofe(w) for each band. In this case, first, the

?s _th_e light _reflection coefficient of the surface of a semi-r,s;r: g;)i]:/gr? Z;ggé:};‘ gvlvr:gycapliﬁig()j gfnt?ﬁ eps;r;gtl\é;tyth e

infinite medium, and analytic properties of the functioe(w). The imaginary and
real parts of the permittivity are related by the Kramers—

(5)  Kronig relation. This makes it possible to determiagw)
from the given functione,(w) as*

is the phase delay due to energy dissipation in the absorbing

film. It is well known that the absorption coefficieri( ) S Ef X€5(X) dx, )

and the refractive inder(w) can be expressed in terms of 7] x°— w?

the real and imaginary parts of the permittivi
_ ; . e . () where we take the Cauchy principal value of the integral.
=€1(w)+ieyw):

The spectral dependeneg(w) was calculated by numeri-
B 2 21 1 cally integrating of Eq.(9) for two transitionsF, and F,.
n= E[(Eﬁ €)" el (6) Much better agreement with experiment was obtained by us-
ing Gaussians foe,(w). On the basis of this analysis, the
1 calculation of the optical transmission spectra of films with
k=—[(es+ e5) 12— ¢,]'2. (7)  various thicknesses and the determinatior ) from the
V2 experimental spectrum were performed in two steps accord-
Dipole electronic excitations bands are often described usintid to the following scheme.

B=tan !———
n2—1+ x?

for the permittivity the simple “classical dispersion” form  First, €(w) was approximated by a sum of two Gauss-
ians:
f120 w—w;|?
(@)= €= T T, ) e(w)=>, H; ex;{—ln 2(—_ (10)
1

wheref is a parameter characterizing the oscillator strengtiThe initial values of the adjustable parameterg,, c,p,

of the electronic transitiony, is the resonance frequency, andw,, were fixed, and the spectral dependeag@v) was

is a decay constant, arg is the permittivity due to all other determined from the Kramers—Kronig relati¢®) by nu-
electronic states. This representationefi) greatly simpli-  merical integration. The permittivity, served as another
fies the calculations, since the imaginary and real parts ofdjustable parameter. The functioes w) and €;(w) ob-
e(w) are given by analytic expressions that depend on théained in this manner were used to calculafe)and «(w)
same parameters. We have attempted to describe the expdiitgs. (6) and (7)] as well as the transmission spectrgé.
mental transmission spectfiigs. 2 and Busing the permit- The optimal values of the parameters of the Gaussianggnd
tivity for both transitions in the forni8). The quantities, were obtained by a least-squares fit of the computed curves
f, wg, andy served as adjustable parameters in the calculat3) to the experimental spectt&igs. 2 and B In Fig. 4 the

tion of the transmission spectra. However, we were not ablexperimental spectraoty are compared with the computed
to obtain a satisfactory description of the experimental specspectra(dashed curvedor films with N=3 andN=8. The

tra. In the region of the absorption bands the transmissiototal intensity of the transmission spectrum and the decrease
spectrum decreases much more rapidly than Lorentziaim intensity with increasing film thickness can be described
curves. This is due to the fact that, strictly speaking, thesatisfactorily in the absorption and transmission regions of
expression (8) is applicable for an isolated electronic- the film. However, the differences in the position of the
excitation band. Intrinsic absorption bands in the condensedeaks and in the shape of the low-frequency bagaannot
state are, as a rule, a superposition of a large number dfe eliminated by using Gaussians to desceb@v).

vibronic transitions with participation of intramolecular vi- In the second step of the calculations, the spectral depen-
brations. Individual vibronic transitions are broadened be-dencee,(w) for the bandF, was not approximated by an
cause of structural disordering and temperature, forming analytic expression. To work with arbitrary curves the imagi-
wide structureless band. The absorption bahgandF,, are  nary part of the permittivity was given by cubic spline inter-

a superposition of such vibronic transitions. In this case thgolation over a set of discrete values(w;) (1<i<15).
permittivity e(w) in the form(8) can be used to describe the This number of points was sufficient to describe the form of
spectrum when the structureless contour formed by a supee,(w). The real part of the permittivity,(w) was calculated
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FIG. 4. Comparison of the experimental specdaty with the computed
spectra for films withN=3 andN=8 smectic layers. Dashed curves —
calculation withe,(w) given by a Gaussian. Solid lines — calculaton with
an arbitrary form ofe,(w).

FIG. 6. Ej=d[ e,(w)dw versus film thickness\.

relative to the “director’n (Fig. 1) and therefore a higher

from the Kramers—Kronig relatiof®). In the second step of degree of orientational ordering. As temperature decre&ses,
the calculations the ordinates,(w;) served as adjustable decreasegFig. 7,N=13), i.e., the orientational order of the
parameters. Nexi[(w) [the expressior3)] was fit to the Mmolecules in the film increases. The temperature behavior of
experimental spectrum using the same scheme as in the firdte orientational order in a film is similar to the change in the
step of the calculations. The spectra obtained are presented®idering in bulk samples in the smectic and nematic
Fig. 4 (solid line9. It follows from this figure that this Phase$®?’ The fact that the molecules in a film become
method makes it is possible to obtain in the region offilge  ordered on cooling can also be seen qualitatively by compar-
band a computed spectrum that is essentially identical to thi@d the transmission spectra directfig. 3). The decrease in
experimenta| Spectrum_ Figures 5 and 6 d|sp|ﬁ/ the intensity of thd:a band on Cooling is due to the increase
=[e(w)dw andEy=d[ e,(w)dw as a function oN. Figure  in orientational order.
7 shows the temperature variation Bf= [ e,(w)dw for a The quantityP,=(1/2)(3(cos¢)—1), called the degree
film with 13 smectic layers. The figure also shows for com-0f orientational ordering® can be used to characterize the
parison the results obtained in the first computational stepprientational order of molecules in bulk samples. In our case
wheree,(w;)was described by a Gaussian. One can see frorfthe electronic transition dipole moment is parallel to the
Fig. 3 that the spectral dependeneg ;) obtained in the long axis of the moleculgshe dependence d&?, on E has
second computational step is appreciably different from ghe simple form
Gaussian. However, the integrated intensities do not differ P.—(1—3g/El 11
much(Fig. 7) and they show the same temperature variation. 2=( ), (11
WhereEH=feg(w)dw and el(w) is the permittivity in a di-
3. DISCUSSION rection parallel to the “director’n in a completely ordered
. . structure, i.e., withP,=1. In thick films P, should corre-
A characteristic feature of the behavior o spond to its value in the interior. Fé, of the order of 0.65

= [e;(w)dw as a function of film thickness is that in ultra- > : ) L . ;
thin films E decreasegthe fact that the straight line drawn in films with N=8, the relative variation of the orientational
orderingP,, in ultrathin films (N=2,3) can be estimated us-

throughE, in Fig. 6 does not pass through zero is due to this
effecy. As already mentionedk = [e,(w)dw characterizes ing Eq.(11) a.nd th? values OE for N:.z’ s a}ndN%S. The .
the orientational ordering of the molecules. Since the dipol egree of orientational ordering obtained in this manner is
moment of an optical transition for tHe, band is parallel to 2~0.72 N=2) andP,~0.69 (N=3). The sharp depen-
the long axis of a molecule, lower valuesBftorrespond to

lower values of the ang@of disorientation of the molecules

E, cmi’
3200
o © + o © °
3000 °
2800+ +
26001
2400 36 38 40 42 44 46 48
1 1 PR 1 1 A T,QC
0 2 4 6 8 10 12 FIG. 7. E= [€e,;(w)dw versus temperature for a film with=13 smectic
N layers (O) and the values OE = [ e,(w)dw obtained at the first step of the

FIG. 5. Total intensityE = [ e,(w)dw versus film thicknes$\. calculations where,(w) was given by a Gaussiarx().
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denceE(N) for N=<4 (Fig. 5 shows that the effect of the Our results on the thickness dependence of the transmission

surface is limited to a thin near-surface layer of the order okpectra and permittivity show that the effect of a surface on

one or two smectic planes. the orientational structure is localized in one or two smectic
A number of models have been proposed to describe thRiyers near the surface.

layer and orientational order of molecules near a surface. This work was supported by the Russian Fund for Fun-

Rosenblatt and Rorfi$'*were the first to use a lattice model gamental ReseardiProject 98-02-1663%nd the State Sci-
to study the effect of a surface on the structure of and phasgnific and Technical Program “Statistical Physics.”
transitions in films. The material parameters of the bulk

samples were used in the numerical calculations. A funda-

mentally important result of these works is that the order

parameter near a surface is different from its value in the

interior, and Fhe.thiclgness—averageq orienFatiopaI order pasg ... dolganov@issp.ac.ru

rameter in thin films is larger than in the interior. Surfaceuthe electronic spectra of molecules forming liquid crystals are investi-
ordering is often interpreted in terms of the wetting of the gated, as a rule, in solutions. The intrinsic absorption spectrum in the
interface between media by various phajésééff It has been liquid-crystal state is difficult to measure by the conventional method, i.e.,
shown that near the phase transition temperature in the inteyyhen the §ub§tance is in a cell, because of the' virtually cgmpletg absorp-
rior this process can occur by continuous and Iayer-by-layert'on even in thin samples-1um. Free-standing f||m§ maKe it p(.)SS.Ibll'a to

. . . perform such measurements and can be used to investigate intrinsic elec-
increase in the _number of smectic layers near the suﬁaﬂ@e. tronic and vibronic absorption.

In the mean-field model(the analog of the McMillan

theory® for bulk samplesthe influence of the surface was

also taken into account by introducing an effective orienting

field acting on a molecule at the surface
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This paper analyzes the effect of the screened Coulomb interaction between metallic electrons in
the sidewalls, on the one hand, and a localized electron in an impurity level, on the other,

on the tunneling in doped quantum structures with an intrinsic two-dimensional continuum. We
show that Mahan'’s non-Fermi-liquid singularity at the Fermi level is unstable against

additional scattering due to tunneling. As a result, the current—voltage characteristic changes
radically when the Fermi level in the sidewalls is approached by the edge of the two-dimensional
band. Specifically, the peak due to the non-Fermi-liquid singularity with a section of

negative differential resistance is replaced with a step-like or a two-step feature, which corresponds
to a single or split Fermi-liquid resonance near the edge of the 2D band involved in the

tunneling process. €999 American Institute of Physid$51063-776(199)02305-1

1. INTRODUCTION with an intrinsic two-dimensional continuum were analyzed.
A new physical realization of the two-channel Kondo model
Among the physical realizations of the non-Fermi-liquid was described, and a crossover from a non-Fermi-liquid to
behavior, the models that have been studied most extensivefermi-liquid state due to a variation in either the separation
by both theoretical and experimental methods are generabetween the Fermi level and two-dimensional band edge or
ized versions of Anderson’s impurity model, along with the the impurity level depth was detected.
multichannel Kondo model, both spin and orbital, and in  The physical reason for the crossover is the existence of
particular, the two-channel Kondo model, a prototype of allFermi-liquid resonances near the two-dimensional band
non-Fermi-liquid impurity modelgsee the review, for ex- edge. The resonances are generated in the process of tunnel-
ample, in Ref. 1. ing due to the scattering of electrons of the defect layer of the
Tunneling experiments open up an opportunity for directquantum structure by non-Fermi-liquid excitations from the
detection of non-Fermi-liquid effects in such systems using=ermi level in the sidewalls. In this case, the impurity level is
features of current—voltage characteristidsor this reason, the lowest and does not resonate with the Fermi level in the
studies of tunneling spectra of impurity systems with non-sidewalls.
Fermi-liquid ground states are of fundamental importance.  Thus, it has been provef that the non-Fermi-liquid
Detecting a crossover from a non-Fermi-liquid to Fermi-state is unstable against impurity scatterigth resonant
liquid state is probably feasible, since the non-Fermi-liquidand potentiglengendered by tunneling in the situation under
state is unstable against all perturbations that lift degeneraayiscussion.
in orbital or spin degrees of freedom. The contribution of the edge resonances to the tunneling
In particular, two mechanisms of instability in the non- current is considerably larger than the current in the non-
Fermi-liquid state have been described by the two-channdtermi-liquid state. For this reason, the described instability
orbital (quadrupol@ Kondo model. The first is instability of the non-Fermi-liquid state sidewalls to an anomalous in-
against distortions of the impurity center which lower its crease in the tunneling transparency and current.
symmetry(Jahn—Teller effect or pseudo-effgtand lift the The key role of the two-dimensional continuum in the
orbital degeneracy of an impurity level, and accordingly re-tunneling in doped quantum structures was first demon-
turn the system to the Fermi-liquid behavior at low tempera-sstrated in Refs. 7 and 8.
tures. One example of a system with non-Fermi-liquid excita-
The second mechaniéns responsible for instability of tions at the Fermi levéf© that has been well known for a
the non-Fermi-liquid state due to the anisotropy of scatterindong time is a system with Coulomb interaction between a
channels(recall that the scattering channel indices in thelocalized electron trapped at a nondegenerate impurity level
two-channel orbital Kondo model correspond to two projec-and conduction electrons in the sidewalls. Matveev and
tions of the electron sp)n The channel anisotropy arises Larkin'! considered the Coulomb interaction between a lo-
under an external magnetic field, and the correspondingalized electron in an impurity level and metallic electrons in
crossover from the non-Fermi-liquid to Fermi-liquid state the sidewalls in the context of tunneling via a resonant level
has been detected experimentlly. under a barrier. In this case, when the dominant role is
It was shown previousRf that a new instability mecha- played by Mahan's resonance at the Fermi légethe
nism of the non-Fermi-liquid state occurs in tunneling struc-current—voltage characteristic is a power law, and it contains
tures. Tunneling mechanisms in doped quantum structuress section of negative differential resistivity.

1063-7761/99/88(5)/9/$15.00 1010 © 1999 American Institute of Physics
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The present paper considers the effect of a screenegl yegyit, the impurity contribution td, ., is separable,
Coulomb interaction between metallic electrons in sidewalls L

and a localized electron in an impurity level on the tunnelingWh'Ch enables us to obtain an exact solution of the tunneling

in doped quantum structures with an intrinsic two- Proelem. , _
dimensional continuum. The “bare” tunneling between the sidewalls and quan-

It turns out that the tunneling mechanisms in quanturfum well, described by the term containifig(k) in TI:,ki
structures with an intrinsic two-dimensional continuum arecontrols the restructuring of the electronic spectrum near the
radically different from those taking place in systems withpand edge in the quantum well. This is the region where
both tunneling via a resonant level under a battiand a  evanescent edge states are forrhedhose density of states
non-Fermi-liquid state due to the two-channel orbital Kondofor £ — g . < y,<W, is
scattering”® An experimentally important result is that the
current—voltage characteristic radically changes when the Poc _, €& =W,

. . . . . pcle)=—|tan *—— —tan " ——|.
Fermi level in the sidewalls approaches the two-dimensional T Yo Yo
band edge: the peak with the section of negative differential _ ) _
resistivity due to Mahan’s non-Fermi-liquid feature at the H€répoc is the constant density of states in the unperturbed
Fermi level is replaced by a step-like or a two-step feature2D ba.nd,y0~EV.|T5(g?)2p0,,, wherepo,~W, is the corre-
which are due to the contribution of Fermi-liquid edge reso-SPonding tunneling width, anw, is the width of the con-

nances to the tunneling current. duction band in the sidewalls. _ _
Thus, in the energy range of interest, we have in the

tunneling HamiltonianH,. only the impurity term propor-
2. STATEMENT OF THE PROBLEM tional to TZ(k) in Eq. (3), but the 2D-continuum density of

. . . states is expressed by Ed).
1. Consider a quantum structure with a band-edge profile The tunneling Hamiltoniar, can be transformed to a

similar to that of a double-barrier quantum weDBQW), “‘single-band” form, which is more convenient for analysis.
such as GaAlAs/GaAs/GaAlAs layered structures, where thq'his is done using a linear transform

interior GaAs layer is a quantum well with an intrinsic two-

4

dimensione}llcontinuum of spatially quantized band statgs. Ak = UKkl o T UkBkRo»  Bko™= UkBkRo — UkBKLo »
A transition-metal impurity generates a deep level with a
binding energyE, within the band gap of the DBQW inner de s
layer. This layer also has a continuum of two-dimensional Uk~ T 20" TRz ugtoi=1. ©)

states with dispersioakL. We are considering the situation

when the Fermi level in the sidewalls is close to the conducit can be verified immediately that in the new representation
tion band edge in the inner layer. The system Hamiltoniaronly quasiparticles of one sort represented by operatgys
has the form are hybridized in both localized and continuum states.

The transformed tunneling Hamiltoniah{® can be de-
H=Hoot Hit Hint, @ rived from H, in Eq. (2) through the transformations

where Hgo=Hg,+H3+ HS, is the Hamiltonian of the de-

g + a _ L2 R \271/2
coupled sidewalls and quantum well. Ao 8kgr Tka— Tka=[(Tka) "+ (Tia) 175
The tunneling Hamiltonian for the system under consid- ) a L R
i i i T ’ —T ’ =T U +T 1Ok«
eration can be written in the form Kk | Kk~ Tk DK Tk Uk
H,=Hg+H, = E (Tﬁdalfwd(ﬁ H.c.) Here thg dlspLerS|oRn relatloqs in the 5|dewa}lls are a§sumed to
kvo be identical:e,=¢ =g, . Since the tunneling Hamiltonian
acts only on states,,, the interaction Hamiltonian is de-
> (T;kralfmck’(ﬁ H.c.). (2) fined in their basis.
kvo o L * 2. The singularities in the energy range of interest near

the edge of the 2D band are caused by the tdgpfrom the
tunneling Hamiltonian and the Hamiltoniat,,, of interac-
tion between the electrons in the sidewalls and impurity
states within the quantum well. Using the formalism devel-

Operatorsay,, describe electron states in the left-haid
and right-handR) sidewalls of the tunneling junction. Op-
eratorsd,, andcy correspond to wave functions of hybrid-

: i 3
ized localized,¢y(r), and band ¥ (k_ ,r), states. _ oped earlie’”’ it is convenient to diagonalize Hamiltonian
The tunneling matrix elements in E(R) are given by (1) in two stages. In the first stage, we diagonalize the
U =B(k )TUk), T ., =(TUk)S v +TL.B(K')), HamiltonianHy=H o+ H;,, and obtain multiparticle excita-
ko= Bk Ta(k) ik, (Toka) kiky T ke (ki) tions at the Fermi level in the sidewalls. Then we take into
TL=T!(k)B(K,). ) account the additional scattering of quasi-two-dimensional

electrons in the quantum well by these excitations due to the
Here B(k, )=V a/(Eq— €k ), Vi q is the matrix element tunneling HamiltoniarH, .
of hybridization in the quantum well. In E43) k=k, ,k|, In this study,H;, is the Hamiltonian of screened Cou-
and the longitudinal and transverse motions of electrons itomb interaction due to polarization of conduction electrons
the sidewalls are assumed to be decoupﬂ@d:.skﬁrskl. As in the sidewalls caused by recharging of impurity states in
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the process of tunneling. By expressiHg,; in terms of par-
tial statesay,,, which are introduced fod-wave impurity Pau(&)=Aupoa
states by the relationship

€F

Yu
:) o Ay=Umsin(ma, )l (a,). (8)
Herep(,a~s;1 is the density of states at the Fermi level for
noninteracting electrond;(«) is the gamma function, and
d, is the phase shift in the scattering chanpel

) _ ) _ Here we also recall that far,,— 0, the last factor in Egs.
whereKy,({),) are cubic harmonics as functions of the sol|d(7) and (8) should be written in a more accurate form,
angleQ, and u is the row number of the irreducible repre- namely

sentation of the point group, we obtain

o= Z ak/.m'de,(Qk)a
o

[(ep/e)“r—1],

Heem 2 2 V,u(KK)ay,,ac ,,d7d. (6)  so that the density of states is given by
kk'o M
€
As was shown previousf§the interactionH ., is generated Pau(&)~poa, Inf,

by two tunneling mechanisms, namellf, and Tj(k,) be-
tween the sidewalls and the 2D continuum. The seconénd the singularities at the Fermi level vanish in self-energy
mechanism is a manifestation of the “Bloch tail” of the functiongsee below, and accordingly inTy(z).
impurity state wave function. Specifically, the recharging of  The Green’s functiorGy4(z) of the localized state also
Bloch states near the 2D band edge generates charge fluctums a well-known form determined by the modification of
tions at the deep level, hence the interaction described by Ethe Fermi sea caused by the impurity potential:
(6).

This is the basic interactiof6) in the so-called non- Gq(2)~ ,
Kondo regime, in the absence of the exchange scattering. At (ep)®d(z—Eq)t
thed-level, such a situation is plausible when both the orbital

and spin degeneracy of the level are lifted by the combined M 2 Yd
; : = o ag=22 | B, ag< <1, 9
action of crystal fields, Jahn—Teller distortions, and Hund’s =\ ledl
rule.
It is knowrP'!! that solving a problem with the Coulomb Ey=E4+3S4(Eg)=eq+i 74,
interaction requires a description of two processes of differ-
ent physical character, which lead to an infrared divergence = a |2 e\
. i ) - Eqg)~ T = . 10
in the Green's function and tunneling characteristics. The *al(Eaq) ; | kF"“' Poa Eq—ec (10

first process is electron scattering by the potential i i :
P g by P In the case of a deep level discussed in this paper, the

following conditions are satisfiedley|=e.—eq~er, 74
2 E Vﬂ(kk,)al:—,u,aak’uai <|8d|' ¢
kk' I . . .
7 The elementary excitations at the Fermi level described

acting over a finite time interval. This scattering always leadsyy the Green’s function7) are boson-like electron—hole
to a divergence in the Green’s functi@. (¢) of conduc-  pajrs1©

tion electrons, which corresponds to Mahan’s resonance at

the Fermi level? The second process is related to the “or-

thogonality catastrophe:” even a weak potential due to

charge fluctuations at the impurity level modifies the multi-3- GENERAL EXPRESSION FOR THE SCATTERING MATRIX
particle electron wave function so that it becomes almosf™\P TS FEATURES

orthogonal to the initial wave function. This process, which 1. We now discuss additional scattering of quasi-two-
also effectively broadens the impurity level, spreads Mahyimensjonal electrons in the defect layer by electron—hole

an’s resonance in the conduction electron specfrum. pairs at the Fermi level in the sidewalls due to the tunneling
Below we will use the electron density of states in the Honi
HamiltonianH, .

sidewalls, The scattering matrix” <%k, ,k| ;z) for an electron in-
1 1 side the quantum well can be deriveifrom the Green’s
paM(8)=—; Imz Gkk(s)z—; ImG(e), >0, function
Gk, k! :2)=6, ' Gok (2)+Gg, (2z
whereG(¢) is a sum over the momenta of delocalized elec- o (K K32) kioky ok, { ) ok, ( )
trons scaFtered by a potential that is turneq on abrufatty X.7 %%k, K| 12)Gox (2), (12)
t=0). This function was calculated by Norés and de L
Dominicis?® which yields
. . €F “n _26,4/, o~ ¢ccC ’ i) — TO(Z) * (!
G(S)—|P0anF(|Wau)r(a,u)(;> ) a,u,_7u (7) T a'(klikj_'z)_ 1_T0(Z)JC(Z) B(kJ_)B (kj_)! (12)

hence the density of states is To(2)=124(2)|?Gye(2) + 3 2). (13
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Equation(11) uses the notatioﬁso,(l(z)=[z—"ékl]‘1, and tering channeluy where the phase shift is maximal, we

%, is the spectrum corresponding to the density of state§ansform Eq(17) for poles of the scattering matrix” °° to
described by Eq(4). N 2u
It follows from the definition(12) of the scattering ma- 1— EF “°+ 2 eF Ko
trix that To(z) acts as an effective scattering potential for 2D Ydug 7—¢ YduoPoa 12— e
. . . C Cc
electrons. The first term dffy(z) is responsible for the reso-

nant scattering involving virtual transitions between the 2D (
X

continuum and impurity states in the quantum well via elec-
tron states in the sidewalls. The second ternTjfz) de-
scribes potential scattering of quasi-2D electrons with ampli- ea ) )
tude S .(2). where g, =|Tg q,,|*Poal s~ Ya~ ol B|*.

The functionsX..(z) and 2 4.(z) can be conveniently It is clear that Mahan'’s resonance and the orthogonality
expressed in the form of a spectral representation of the corgatastrophe contribute to different quantities that control
duction electron Green’s functiorf To(2). The resonance in the Green’s function of conduction

a 12 elegtrons determines the depsity of states in spectral distri-

S.(2=> | Tkeul*f (2ka) butions of self-energy functlon§lc_c(z) and 2 4.(2). The _

cc kpo (Z2—e¢) —(eka—€c) channel related to the orthogonality catastrophe determines
the Green’s functionGy(z) of the impurity state. We are
:2 e |2j° de Pau(e) _ (14) interested in solutiong,=¢,+ivy, of Eq. (18) that corre-
n P ) e (Zmec) e spond to resonances near the 2D band edge for the deep
impurity level, so that

e l—ad
= ) }Jaz):o, (18)

z—Eq

Here the energy is measured with respeckfe~¢., and
f(e) is the Fermi distribution function.
It also follows from Eq.(14) that in an interacting sys-

tem the functions.c(z) andX4c(z) are Hilbert transforms ynqer this condition, the major contribution to the effective

of the multiparticle density of states; for this reason, theyscattering potentialo(z) is due to the resonant component,
have features at the Fermi level corresponding to Mahan'se  the second term in the brackets in K9, and the

peaks in the density of states. By substituting @J1in (14),  contribution of the power-law factor witly(z) is of the

|Zr_8c|<|gd_8c|~8F-

we obtain order of unity. This means that the resonant scattering of
ep | electrons in the quantum well is fully determined by Mah-
S(2)=> |TEFCM|2AMp0a<:) , A,~1. (15 an’s peak at the Fermi level in the sidewalls.
M c

The shape of the edge resonance is determined by the
The form of the expression fcﬁdc(z) is similar to Eq(ls) Competition between features in the Hilbert transforms

in the energy range of interest, bif: . |? is replaced by ~Zac(2) andJc(2) of the multiparticle and single-particle den-
a Tax F sities of states. The shape of these functions is determined by

Kecp "kedp - the interaction amplitude. If the interaction is weak ang

The integrall.(z) is the Hilbert transform of the quasi- . . . .
. . ; . is sufficiently small, the changes in the functid.(z) are
two-dimensional density of statgs(e) defined by Eq(4). ; . .
. T . o much smaller than id.(z) in the energy range of interest. In
In the region|z—e.|/yo<1, this integral is logarithmically ) . .
divergent: this case, an expo.nent_|ally narrow resonance dgtermlned
largely by the logarithmic divergence df(z) is feasible’
5 Yo _ 5 Using Eq.(18), one can easily prove that the condition for
J(2)=5PocLno——, Poc=Poc(ec)|B(ec)|*.  (16)  this resonance is
C

This logarithmic divergence in the self-energy part of
J.(2) generates one-particle resonances in the same energy
range where the multiparticle resonance responsible for the
peak in the effective scattering potentiBj(z) occurs. For  and hereafter it is assumed thag,,poc~ 1/eg. The first
this reason, poles of the scattering matrix are determined binequality in(19) is the condition that the density of states be
the self-consistent equation a power-law funct(i)on of er(})ergy_

_ _ For a>a.=A4.In(L/Ay.) (hereafter we use the nota-
1=To(2)3e(2)=0. €7 tion @, = «) the sfjglution g]? Eq(18) is determined by the
In the absence of the interactiofg(2) is a function slower multiparticle singularity in® 4.(z) [or in other words, by the
than J.(z), so one-particle resonances near the edge of thgingularity in the effective potentidly(z)], and the positions
2D band obtained previouslyare fully dependent on the and widths of resonances are accordingly power-law func-
logarithmic divergence i (z), and they are therefore ex- tions of the tunneling structure parameters. The solutions of

ponentially narrow. Eq. (18) in the energy range of interest can be written in the
2. Consider solutions of Eq17) in the presence of Cou- form

lomb interaction. By substituting expressioi® and(15) in
that for To(z) and considering for simplicity only one scat- g,+=g:,X 7Y, C0Sp, Y,+=7v,Sing, (20

Age<a, <Agen Ad=73poapoc/B|?<1, (19

0
Adc
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1 1 a
Fe=eo(Aad " somer, Mac= 5o Ade N o =50 2 Tou(e0) =2 [To(ea)*pulep) = Y0,
(21

and the arguments of all functions are the same as in the
Nl_adﬁ ni (22) previous equation.
LAY s It is clear that the tunneling widthEg(p, ;&) in Egs.

. o (26) and(27) can be written in the form
The edge resonance is split into two components that are

symmetric about the edge of the 2D bandgatn/4, when o .1 5 _
y,-<|e,+—s,. This condition defines the case of suffi- 1 a(P: iep)=—|B(PL)[" Im Zc(z—sc), Rez=ee. (28

ciently strong scattering:
y g g In the absence of edge resonances, we have for the tun-

neling widths

T3(er) =T3(er/T3) D, T~ y,. (29

1 Yd 1
a>20c, Q= ;(1—ad)mln E>ac. (23
Cc

Over a limited range of tunneling parameters, whe#

<e=ml2, or in other words for This expression(29) is different from a more familiar

onell*in that the exponent does not contain component
ag<as2Zac, (29 a4 associated with the orthogonality catastrophe. The reason
Eq. (18) has a solution in the form of a single resonance ofis that the tunneling Wi_dths are d(_etermined in the band chan-
width y, at the edge of the 2D band. nel, but not for a localized impurity level.

Thus, over a significant range of tunneling parameters, In the presence of edge resonances, tunneling widths are
the resonant scattering of quasi-two-dimensional electrons iUt Off aty;, and in accordance with E@8), take the form
the quantum well by the excitations from the Fermi level in p) @
the sidewalls, which are responsible for Mahan's resonancd’,i‘(sp)~AM0yo(—) IB(gp)|*~ 'yo<
gives rise to a split resonance in electronic Green'’s functions. 4
For all admissible values of tunneling parameters, Note that “exponential” quasi-single-particle resonances ex-
ist at a<a., whereas “power-law” multiparticle reso-
nances described by Eq20)—(24) occur in the region

2w 1/2
) B(ep)|*. (30

ac

|8r_8c|i Yr<%o- (29

Depending on the Fermi level position with respect to
the 2D band edge in the quantum well, solutions of the self- < (E) IB(ep)| % 31)
consistent equation for poles of the scattering operator have «a. Yo

the following forms. At|eg—s|<yq (in our notation,yg s Eq.(30) clearly shows how the character of the tun-

has the sense of Mahan’s resonance widtie peak at the neling, along with that of edge resonances, changes with the

Fermi level is due to a powe_r-law or exponeqtlal edge r€SOinteraction amplitude. Let us fix for definiteness the impurity
nance. Atle—e.|> v, there is only a Mahan-like feature at level depth a{B(e)|~1
F .

the Fermi level, whose contribution to the tunneling current Recall thaty, is an energy scale characterizing the

in the absence of a two-dimensional continuum was investi- . S . . L
: change thin which J has a logarithmic diver-
gated by Matveev and Larkift. ge inpo(#) within whi o(2) ganthmic div

ence(16). For this reason, in the absence of interaction,
3. Along with the scattering operator ¢%(k, k!'z), the d (16)

i h behavior is determined b F exponentially narrow edge resonances are formed in the pro-
parameters wnose benhavior IS determined Dy non-rerMmi, g ¢ scattering of evanescent states, whose density of
liquid singularities in the density of states in the sidewalls

tates i defined by Eq(4), by elect in the side-
are tunneling widths. They determine the tunneling transpar§ ates ispe(e) defined by Eq(4), by electrons in the side

in the band ch I bt — walls.
ency in the band channe .HF .8°|> Yd- . . A similar situation occurs at<<«., when the condition
In the case of tunneling via the 2D continuum with a

di ional ¢ the Fermi level the t &<y holds. This means that, in the case of weak scatter-
one-cimensional spectrum near the =ermi level, the tunne ng, resonances at the 2D band edge are still due to the scat-
ing widths have the form

tering of quasi-two-dimensional states from the region near
c , the band edge with a width much smaller thapn. As a
TS(pLsel) =2 (aqulHrclCp M(Cp, [Hiclag,) result, the domain of exponentially narrow quasi-one-particle

! resonances persists.

:2 ITE 128(s—&l) (260) In the case of “strong” scattering at> «, the condi-

= 1 kpy k7 tion I'¢> 1y, is satisfied. This means that, in this case, not
only the states from the energy band much narrower than
participate in the scattering, but also the states from the
“tails” of function p.(g). As a result, the character of edge

By expressing_r in Eq. (26) in terms ofay, by with the
help of Eq.(5), we obtain a relation that will prove useful:

ree, resonances is radically different from that in the case of one-
I r=Tare0 oo (27)  particle resonances.
r"+TI'g

The character of tunneling also changes with the impu-
where FE?R are tunneling widths in the absence of interac-rity level depth(at a fixed interaction amplitugeFrom Eq.
tion, (30) the following relations can be directly derived:
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Yo
I'¢>yo for 1>|B|>8_F (32 the sidewalls.
The probability of elastic tunneling can be expressed in

terms of the scattering matrix:

In(sF/y0|B|3)r’2 erL—err=eV, whereV is the potential difference between

a

Yo 1/2
i<y, for |B|<;

In(&¢/o|B®)

a

(33

W(k,ep k', e Ry =2m.7 (k,ef k', et 28(ek— D),

It follows from the above expressions thdti(z,) (35

<|Ty(z)|. This condition means that the characteristic tun-
neling times in the interacting systen{'~(I'2) "(z,), are
much longer than the characteristic scattering ti
~|To(z)| 1, so the electron lifetime within the quantum
well is sufficient to form resonances due to the scatterin
defined by the Hamiltoniah, .

In this case, the formation of edge resonances is largel
contrzolled by the resonant scattering with amplitude
2.4d“Gqy(2). Recall that, as was shown for the single- o X )
|chaaneI Kondo scatterirfgi.e., in the case of Fermi-liquid element c,ontatlnlng the- Green's fgnCt'OmCP|G|CP’>,
excitations at the Fermi level, edge resonances are deter- C?(ki 'lfi €), We obtain an expression for the tunneling
mined by the potential scattering. amplitude in the band channel:

One can see that, as in the case of the two-channel
Kondo scattering;® in the problem under discussion, the ad- -7(k,8k K’ elR)= E (Lo Hi| Cpo){Cpol Gl Cpr o)
ditional scattering of electrons from the region near the 2D pp' o
band edge by electron—hole pairs at the Fermi level due to (oo Hilagr)
the tunnelingH? generates a Fermi-liquid resonance at the prolt Itk Ra
2D band edge in the quantum well. This resonance has the

where.7=H;GH, and G=(z—H) ! is the Green’s func-
tion, and the7-matrix describes tunneling of multiparticle
xcitations from the Fermi level via both band and localized
mpurity states of the quantum well with due account of all
lastic scattering processes in the well, which determine the
orm of the Green’s functiorG. Assuming that the major
contribution to the tunneling amplitude is due to the matrix

Fermi-liquid nature, since it corresponds to a simple pole in = Uy 2 (akolHt Cpo)(Cpol GlCpr o)
electron Green’s functions. ppr

Without the tunnelingH,., there is only a power-law X(Cpro|Hilay ). (36)
feature in the density of staté8) in the sidewalls and in the
tunneling width owing to Mahan’s non-Fermi-liquid reso- By substituting Eqs(11) and(36) in the formula for the
nance at the Fermi level. tunneling probability, we find that the tunneling transparency

Thus, a crossover from the Fermi-liquid regime of tun-contains the non-Fermi-liquid and resonant contributions:
neling to the non-Fermi-liquid tunneling is possible when theo(eg) = o¢(&ef) + o, (). The non-Fermi-liquid contribution
separation between the Fermi level and 2D band edge in they(u) is fully determined by the tunneling width, i.e., non-
guantum well varies. The conditions of this transition areFermi-liquid singularities in the density of states in the side-
identical to those for the existence of a solution to Eg).  walls:
In the case of Coulomb interaction, these conditions are less
stringent than in the problem with the two-channel Kondo a
scattering. Indeed, solutions of Ed.8) exist throughout the oc(ep) = Erc(sF)PC(SF) (37)
region of the exponentr where the density of states is a

power-law function of energlsee Eqs(8) and(19)], and at  (the tunneling widthd™S,  in the absence of interaction are
all admissible positions of the deep level we haBg<1. assumed to be equalThe tunneling widthd™3(ef) are de-

In the case of the two-channel Kondo scattefifi@dge  termined by Eq(29). The non-Fermi-liquid contribution to
resonances exist only at interaction amplitudes in the colleche transparency atr— &> y4 dominates.

tive pseudospin channel above a certain critical value. More- At |e— & /< y,4, the prime contribution to the transpar-

over, the condition determining the impurity level position is ency is due to the resonances, so the character of tunneling is
more restrictive, namelyB|< yo/ek. Fermi-liquid.

The contribution of the edge resonances to the transpar-
4 TUNNELING TRANSPARENCY AND CURRENT—VOLTAGE ency is determineq by the seconq te'rm in the Green’s func-
CHARACTERISTICS tion G_?,C(kl_,ki ;2) in Eq. (12) and is g_lver(at equal tunnel-
ing widths in the absence of interactidny =1"gg) by
1. The tunneling transparency and current are deter-
mined by the expressions e2 '(z,)
oP(sp)= 5 —Fm —— 7 2 [(em— e+ %11%(2),
2 ’ 4 (ep—em)"+ Ym
o(ep)=2€" | dES(E—ep) 2 W(K, ki ;E), 39)
kp k|

2

whereF,, is a function of parameters, which is of the order
J=2me | dE[f(E)—fx(E)] >, W(k, k! ;E), (34  of unity m=r = for a split resonance armd=r for an unsplit
kp k] resonance,
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addition to the small width of edge resonances, by their prox-
1(z,)= kE IB(k)[*Gox, (80| imity to the 2D band edge, which yields the additional factor
: 1%(z).
lep—ec ™t for yo>|ep—ec> 7y, =, Equations(29), (40), and (41) determine the transpar-
ency enhancement in an elementéamjicroscopi¢ tunneling
event. The total contribution of impurities to the quantum
(39 well transparency is known to be,,=c,o,, wherec,, is
the impurity concentration. As follows from the above ex-
pressiono;,> o for the reasonable values of the impurity
concentration.
3. The foregoing tunneling mechanisms in a quantum
structure with an intrinsic two-dimensional continuum dic-
tate the changes in the current—voltage characteristic as the

1
=—5..|B 2
77p0°| (e0)] w2y, for yo>vy,>|ep—&

for the split and unsplit resonance, respectively, and;Re
=E&E.
2. By substituting the expressions for the tunnelidig)

and resonanty,) widths, we obtain the maximal contribu-
tion of a single edge resonance to the transparency, at

=gp: ) )
F structure parameters are varied. Consider as examples two
- e? (TS\2 g2 situations.
o a’YSF):FlrE ) = 155, (40 First, let us determine changes in tunneling spectra with
r

increasing interaction amplitude, i.e., exponent_et us fix
whereS(ep) is the enhancement factor given by the expresthe Fermi level in the sidewalls in the position when its

sion separation from the 2D band edge is smaller than Mahan'’s
. 5 ) resonance widthyy . In this case, as was shown above, there
S(ep)=F E) (@) B3~ 2_“(2) =1 (41) are edge resonances determined by solving(Eg).
F iy, . ac\ Y ’ As follows from Eq.(19), at small a<a., the main

) N . contribution to the transparency is due to the exponentially
where F1,~1 and |B|~1. Provided that conditio19) is  arrow quasi-one-particle edge resonance.

sat@sfied, the widthg, are .exponential function§ of the tun- When a> . [Eq. (23)], the transparency enhancement
neling parameter§ otherwise they are determined by EGS. factor is determined by the wider but split edge resonance
(20)—~(22). In either case, described by Eq(20), whose characteristics are power-law

M e ) > oM g ) functions of the tunneling parameters. Thus, a crossover

roEPE e AEEE from the regime of tunneling with the “exponentially high”

In the case of a split resonance, the enhancement factéiuasiparticle transparency with an enhancement factor of the
is larger than the value given by E@41) by a factor order ofSe(eg) in Eq. (42) to the regime with a lower trans-
(sing) ! [ is defined by Eq(20)]. parency with the enhancement factor approximately deter-

In the absence of interaction, the contribution of expo-mined by Eq.(41) should occur as the interaction amplitude
nentially narrow one-particle resonances at the 2D band edgBcreases. But in this case the transparency will most prob-

yie|ds the enhancement fac}or ably have two peak@compal’e Eqs(21) and (25)] that are
symmetric about the 2D band edge.
So(er) ~ (yo !/ ¥'D)?, (42) According to Eq(34), which yields the current, the reso-

) ; ) . _nant contribution to the transparency generates a broadened
wherey,"’ is the width of the one-particle resonance, WhICh“Step" in the current—voltage characteristic &/— eV,

is an exponential function of the tunneling parameters. = e <74
Interestingly enough, this enhancement factor in the

transparency is the greatest of those reported

previously>**° J= 27T‘ym0'ma“< tan™
Equations(29), (40), and (41) determine the transpar-

ency enhancement due to tunneling of electron—hole pairs

from the Fermi level via the two-dimensional continuum. It This change in the transparency corresponds to a modifica-

is clear that in all cases discussed above, the enhancemdin of theJ(V) curve: the step of height proportional to

factor

So(ep)>S(ep)>1. (43 J;nax(SF)Nez,yo{

The transparency enhancement factor due to the multiparticle

tunneling is much smaller than that due to one-particle tun{Fig. 1) is replaced by a two-step feature symmetrical about

neling because the multiparticle resonances described abottee 2D band edgéFig. 2b. The heights of the steps above

are wider than one-particle resonances, and this effect iand below the 2D band edge equal2a/a:)(yq/v,+) and

more significant than the effect of the increase in the tunnel2yo(2a/a¢)(yo/ ¥, =), respectively, the separation between

ing widths. them ise,+—¢,- [Eq. (20)], and their widths are propor-
An important point is that, in a quantum structure with ational to v, -.

two-dimensional continuum in its quantum well, the anoma-  The crossover is most sensitive to changes in the heights

lous transparency enhancement fa@@¢)>1 is caused, in  (or widthg of the barriers in DBQW heterostructures. In

e(V—-Vvq eV
127 W g (44)

m Ym

Yol V¥ for a<ag,
alag)(yoly,) for a<a<2ac



JETP 88 (5), May 1999 L. A. Manakova 1017

J metric aboutV—Vy,. The transition leads to anomalous
growth in the tunneling current, and it occurs at all interac-
tion amplitudes.

Note also that atv>V, there is a slow logarithmic
growth in J(V) owing to the intrinsic conductivity of the
structure with a two-dimensional continuum, which is pro-
portional to ygp.(€)-

max
J;

max:f
JO

5. CONCLUDING REMARKS

FIG. 1. J(V) in the case of weak scattering< « (at fixed positions of the S
Fermi level,|eg—e|<7vq, and of the impurity level The dashed line 1. The results of the reported study indicate that the

represents the non-Fermi-liquid current. mechanisms of tunneling in a quantum structure with an in-
trinsic two-dimensional continuum of electron states are
radically different from those of tunneling via a resonant
point of fact, the matrix elements of interaction in E6) are  level under the barriet: Let us discuss two essential differ-
proportional toy3 and are exponential functions of the bar- ences.
rier parameters. First, there is a strong resonant tunneling in the case
Thus, by varying the barrier parameters at a fixed posiwhen the Fermi level in the sidewalls is not resonant with the
tion of the Fermi level, as described above, we obtain docalized impurity level lying deep within the band gap of
crossover between the two Fermi-liquid tunneling regimeghe doped layer.
with differentJ(V) curves, whose overall shapes are shown  Second, the edge resonances associated with new tunnel-
in Figs. 1 and 2b. ing channels are Fermi-liquid resonances, because they are
The second situation to be discussed is the change in thaescribed by simple poles in electron Green'’s functidts.
J(V) curve as the separation between the Fermi level in th€él1) and (12)], instead of branch points, as in the case of
sidewalls and 2D band edge varies. In this case, we fix th&lahan's singularity at the Fermi levg¢Eq. (7)]. For this
impurity level at the position determined by the conditionreason, the existence conditions for edge resonances are
B~1. those of instability of the non-Fermi-liquid state against the
In this situation, the tunneling transparency ahd) interband impurity scattering, which takes place in the pro-
curve are determined by Mahan’s resonance at the Ferntiess of tunneling and is described by the tétmin Hamil-
level as long age—e.|> y4. The transparency in this case tonian (2).
is given by EQgs.(37) and (29). When the Fermi level and We can also summarize the physical differences between
band edge are so close tHat—zs.|<7y4, the transparency instability conditions for the non-Fermi-liquid state in the
and J(V) curve are determined by Fermi-liquid edge reso-problem with the Coulomb interaction studied in this paper
nances, and the transparency is given by E4@.and(41),  and in the problem with the two-channel Kondo scatterifig.
which contain the specific “Fermi-liquid” factor %,/ 7,)? As noted above, the stability condition common to these
(compare with the expression f&). two cases is the existence of the potentil,, and resonant,
Mahan's feature at the Fermi level corresponds to a peal,y, scattering due to tunneling. Nonetheless, the sufficient
on aJ(V) curve atvV— Vy, with a section of negative differ- conditions for the existence of edge Fermi-liquid resonances,
ential resistivity (Fig. 2a. The current at the peak!™, to  hence the instability of the non-Fermi-liquid state, are deter-
order of magnitude, is mined by “intrinsic” properties of the latter and differ con-
max. .21a siderably in the cases of the Coulomb interaction and two-
J. T ~eTy, .
channel Kondo scattering.
wherel'2 is given by Eq(29). At all admissible values of the In the two-channel proble™! the existence of edge reso-
parameters, the height of Mahan’'s peak od(®) curve is  nances and instability are possible only when the non-Fermi-
much smaller than the heights of steps in the resonant turiquid peak at the Fermi level is widened sufficiently by
neling currentd"™sJ1"®. Thus, the crossover from the non- screening in the pseudospin channel. In other words, insta-
Fermi-liquid and Fermi-liquid tunneling regimes correspondsbility can occur only as a result of the orthogonality catas-
to a transformation of a peak with a section of negative retrophe for collective fermion variables describing excitations
sistivity to either a step af —Vy;, or a two-step feature sym- in the two-channel problem.

FIG. 2. J(V) at different separations between the Fermi
level in the sidewalls and the edge of the 2D band: a
ler—ec>7vq4: D) |ee—ed <vyq, @>a. The position
of the impurity level is fixed. For comparison, the
dashed line shows the Fermi-liquid contribution plotted
in Fig. la.
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Electron spin resonance on samarium ions with stabilized valenéé &ninvestigated in the
fluctuating-valence semiconductor Sgalboth pure and doped with the rare-earth ions

EW*, EFT, and Gd*. The dynamic and static Jahn—Teller effects have been observed for the
first time on rare-earth ions. The relation between the Jahn—Teller effect in a fluctuating-
valence semiconductor and the excitonic nature of the ground state of such a semiconductor is
discussed. ©1999 American Institute of Physid$$1063-776(99)02405-]

1. INTRODUCTION Samarium purified by fractional sublimination was used
to prepare the samples. Spectral analysis showed that the
total impurity content of rare-earth elements in samarium is

4
lence of the samarium ions in S + 2.6, but the valence €SS than 107 at.%. The crystals were grown by the flux

actually fluctuates with frequency ¥6- 101 Hz between the solution method and consisted 0k2 X 0.1 mn? plates and
states Sf" and Smi*. The crystal structure of Sm@is 3% 0.2X0.2 mn? needles.

similar to that of CsCI. It consists of two interpenetrating ~ 1he measurements were performed on a Varian ra-
simple cubic lattices consisting of samarium atoms and bodiospectrometer at 9.3 MHz in the temperature range 1.6-4.2
ron octahedrdFig. ). K. Electron spin resonance spectra from the rare-earth dop-

Materials with fluctuating valence are of great interestant were observed on all samarium hexaboride samples. The
because this state is spatially homogeneous and at low terfeSR spectrum on the Bl ions is described by a spin
peratures it exhibits features of a coherent state, i.e., a matiamiltonian with cubic symmetry and is similar to that given
roscopically quantum state. Electron spin resonaiit®R) in Refs. 9 and 10. The ESR spectra on the trivalent ioRS Er
investigation of SmB has been very effective. In Ref. 2 it and Gd* had the same overall features as those observed in
was shown that the ground state of Sgréhibits character- Refs. 3 and 5, where they were described by a dynamic
istics of an excitonic insulator. In Ref. 3 the unusual configu-Jahn—Teller effect. A weak, narrofine width AH~5 O¢
ration 4f '5d* of the gadolinium ion was observed. This con- signal withg~2 is also seen in all samples, possibly from
figuration arises because an additional electron is localizedisordered boron with a dangling bond. Signals from defects,
on gadolinium. as described in Refs. 11 and 12, were not observed in any of

It is well known that the Jahn—Teller effect is ordinarily our single crystals.
not observed on rare-earth ions, if it is investigated by the |n all samples, rare-earth-doped and pure, ESR signals
ESR method. According to the conventional point of view,with g factor characteristic for St ions were observed in
the strong spin-orbit coupling typical of rare-earth ions sta+igh fields 8—16 kOe. The~ 10— 10 Hz (much higher
bilizes the high-symmetry state and prevents the appearanggan the frequency of the ESR spectrometer® Hy) fluc-
of the Jahn—Teller effeftAt the same time, a dynamic tyations of the samarium ions between the*Srand Sri+
Jahn-Teller effect has recently been observed 6fi Bnd  states make it impossible to observe directly the ESR signal
Gd®* ions in SmB.>>°In the present paper we report the o these ions. However, it was established a long time ago
observation of the static and dynamic Jahn—Teller effects ofhat impurities and defects in SrgBtabilize the valence of
Snt* ions in SmB. The preliminary results of this .WOI’k some samarium ions in the paramagnetic state®'Sth
have been reported at the LT-21 conferénaed partially  Tpherefore doping of SmBwith rare-earth impurities stabi-
published in Ref. 8. lized 0.04—-0.1 at. % of the samarium ions in the®$rstate.

In pure SmB vacancies and defects probably play a stabi-
lizing role.

The ESR investigations were performed on samarium The typical ESR spectrum for the Siion in pure and
hexaboride single crystals, both pure and doped with rareEl?*-doped SmB samples a9=45° (¢ is the angle be-
earth ions, namely, europium Eu (with concentrationc tween the magnetic field and tH&00] axis in the (100
=0.01-0.04 at. % gadolinium Gd* (c=0.05at.%, and plane is displayed in Fig. 2. Only the ESR lines that are not
erbium EF* (c=0.05 at. %. marked by arrows in Fig. 2 are observed for samples doped

Samarium hexaboride SrgBs a classical object in the
physics of fluctuating-valence materidlhe average va-

2. EXPERIMENTAL RESULTS

1063-7761/99/88(5)/7/$15.00 1019 © 1999 American Institute of Physics
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FIG. 1. Crystal structure of samarium hexaboride gmB

with the trivalent ions E¥" and Gd*. Depending on the
angle 0, three to five ESR lines were observed simulta-

neously. Figure 3 shows the positions of the resonance lines

versus angle at 1.6 K for all experimental samples.

T. S. Al'tshuler and M. S. Bresler

The experimental data can be described theoretica"y ilflG. 3. Angular dependence of the positions of resonance lines of thé Sm

terms of two types of spectra: one corresponding to a cubi®

center(quarte} and the other to an anisotropic doubetibic

ion with the magnetic field rotating in thel00) plane atT=1.6 K. The
experimental positions of the lines are shown by filled squares for pure
SmB;, filled circles for EG*-doped SmR, triangles and open circles for

symmetry is preserved by the presence of three types of SUGk#* and E?*-doped SmB. The linesA, B, C, andD show the theoreti-

doublets with symmetry axes along tkey, andz axes; the

cally computed positions of the lines of the quafigt the linesE, F, andG

doubletsl“ﬁx, FGy’ anerz are shown in Fig. 3 by the lines show the theoretically computed positions of the lines for the doublgts

E, F, andG). The parameters of these spectra were found tde

be P=0.465 andQ=—0.1 for the quartet andj =0.42
+0.02 andg, =0.79+0.02 for the doublet. Note that the
observed values d¢® andQ are close to the theoretical values
for the spin-5/2 Sm* ion, Py,=0.525 andQ,=0.144, i.e.,

v, andlg,.

sition —1/2—3/2 (the line D) is also experimentally inac-

the renormalization of these parameters that is ordinarily ateessible. The transition 1/23/2 (the lineC) is not observed
tributed to the closeness of the 7/2 level to the 5/2 grouncht #=0° and §=90° because the intensity is too low and
state is not too large. For the quartet with effective spin 3/2hoise is present ail ~12 kOe; at all other angles it is com-

the theory predicts four possible transitions. #t0° these
are — 3/2—3/2 (the lineB in Fig. 3), 1/2—3/2 and— 3/2—
—1/2 (the lineC), — 1/2—3/2 and— 3/2—1/2 (the line D),
and — 1/2—1/2 (the line A). However, only two transitions
are observed experimentally: 3/2—3/2 (the line B) and
—1/2—1/2 (the lineA) in the angle rang®=30—60°. The

pletely or partially forbidden. It is evident from Fig. 3 that
the proposed theoretical values of the parameters provide a
good description of the angular dependence of the positions
of the five observed ESR lines. The values of th&actors
were identical for all samples, irrespective of whether or not
the sample was doped, and they did not depend on the va-

maximum field of the spectrometer was 16 kOe, so that thgence of the dopant.
transition—1/2—1/2 is not seen at other angles and the tran-  The intensities of the strongest lines of the doublets and

H|[(100)

i 1 1 i 1 L i !

7 9 11 13 15
H, kOe

FIG. 2. Examples of traces of ESR signals on®$nions in SmB at two
temperaturesT = 3.8 K (curvel) andT=1.6 K (curve2). The arrows mark
lines belonging to the quartéls; all other lines correspond to the doublets
Te.

quartets were estimated by double integration. Since the
method for estimating the line intensities is relatively crude
and the intensity itself is low in many cases because of the
low values of theg factors, the error in the signal amplitude

is much higher than the error in the line positions, i.e.,ghe
factors. Nonetheless it can be asserted that the ratios of the
line intensities also agree with experiméhrtg. 4).

Subsequent analysis of the results showed that the dou-
blet state is not an independent center, but rather originates
from splitting of the quartel'g by the axial(tetragonal field.

In this case, as is well knowit,the quartel’g splits into two
doublets, they factors of these doublets being related to the
parameter® andQ of the quartet. For one of these states we
obtain g =+2Q=-0.2 and g, =(1/2)|]3P—Q|=0.747,
which is very close to the experimentally obsergefhctors
(an ESR experiment gives the absolute value ofgtfector).
(We note that in Ref. 15 it was indicated that partial renor-
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1, arb. units 3. DISCUSSION
200+ The formal description of the experimental results is
| /Y\ based on the coexistence of a center with cubic symmiggry
8 . . o 8F and centers with tetragonal symmetdoubletl’), obtained
150+ iy/ 7/10 Xﬁ ° LA from the splitting of a cubic center by a tetragonal field. The
o ground state is tetragonally distorted. This description, how-
[}

ever, does not answer the question of the mechanism that in

100} some cases gives rise to the splitting of the states while in

others it makes it possible to observe an unsplit quartet also.
The splitting of the quartet state by a tetragonal field

SOF aaa. g A & & .88 BF could be caused by breaking of local symméfor example,
L o ° B by the presence of an impurity or a defect near an ion with
W ¢ stabilized valenceas well as by the Jahn—Teller effect. We

of D shall consider both possibilities.
‘ ‘ [ . 1. The average valence of the fluctuating samarium ions
(;' 20° 40 ] 60° 80’0 100 is +2.6. In accordance with the charge-compensation

principle!® there are 2.6/046.5(i.e., 6—3 Snt" ions per
FIG. 4. Angular dependence of the intensity of ESR resonance lines o¥acancy in the samarium sublattice. Europi{@?*) dop-
Sn?* ions with the magnetic field rotating in tH&00 plane atT=1.6 K. ing of the SmR crystal gives 0.6/0.41.5(1-2 St ions
The intensities of the experimentally observed ESR signals are denoted T:?er Eu ion. Similarly, introducing the trivalent ions3trand
follows: filled squares for pure SmB filed and open circles for G#+ sh .|d hift ’ fl . | . . h
Ew?"-doped SmB for, respectively, the quartdtg (the linesA andB) and N should shi _Sor_ne UC“_“"‘“”Q'V"" en(_;e lons into the
the doubletl' (the linesE and F), and triangles for Gt -doped SmB. Snt™ state. In reality, introducing trivalent ions also results
Solid linesA, B, C, andD —_theoretically compute_d intensities of E_SR Iin_es in the production of lattice defects, so that erbium or gado-
IPr thit%“agg'gslg das?edt::“ef a[;‘ldF — theoretically computed intensi-  |injum introduced into the sample increases rather than de-
1es ot the ines for the doublet. creases the intensity of the ESR signal on the*Srions.

The Smi* ions (6—7 centers compensating the vacancy
malization of theg factor occurs for such splittingy | being charge can occupy positions both close to and far away from
renormalized more strongly thap ) the vacancy. However, if the St ions are located next to a

Investigation of the temperature dependence of the inYacancy, only some of the possible configurations will pos-

tensities of the resonance lines for pure and‘Edoped S€55 tetragonal symmetry; all other configurations of the
SmB, samples(only the strongest lines are usegveals a Sn?* ions in neighboring _S|tes will have a Ipwer symm(_etry.
relative decrease in the number of doublets and a relativéN€ absence of centers with low symmetry in the experiment
increase in the number of quartdtse corresponding data shows that the S ions are not clustered near vacancies
are shown in Fig. 5 Thus, in these samples some ions are in?hose charge they compensate. 010 3+ 5
a field with tetragonal symmetry, described by the doublets 90 theo other hand, the ESR of =0 _Er3 ;> and
Tex, I'sy, andls,, and the rest of the ions are in a field with (_Sd3 _ |0_nsl_ exhlblt_s exceptionally symme_tnc characteris-
cubic symmetry(the quartefs). As temperature increases, 1CS, indicating CUb'f symmetry of the environment around
the number of centers described by the qudfigincreases a0 ion, i.e., the Sriv ions compensating these charges are
and the number of tetragonal centers decreases. InySmiiSe located far from them.

containing the trivalent ions Bf and Gd* the Sn#* ions Hence it follows that Sf" ions, as a rule, are located
are located only in a tetragonal field. far from defects and impurities, i.e., in the symmetric envi-

ronment of SA" ions with fluctuating valencéwith average
valence+2.6), and the observation of the ground state of
Snt* in a tetragonal field can be explained by the Jahn—
Teller effect.

2. As temperature increases from 1.6 to 4.2 K, the rela-
tive number of quartetE g increases and correspondingly the
number of doublet states of Siions decreases. This result
is completely natural for the Jahn—Teller effect and does not
have a simple explanation in the case of local breaking of
L symmetry. In the latter case a temperature increase should
0 02 o4 06 08 1o result only in the observation of one more doublet state. Note

T, K" that the experimental data can also be explained by assuming
that the tetragonal field which splits the state of a quartet is
FIG. 5. Temperature dependence of the ESR signal intensity forgye to the presence of a defect near an’*Jsmni and ther-

+_ i I . . - . B
EwP *-doped SmB (curve 1) and for pure Smp (curve 2). The intensity a1 ey citation can transfer an $fnion into a symmetric
ratios are normalized to the theoretical value of the ratio of the transition

probabilities, so that the segments on the ordinate directly give the ratio ofNVironment. However, this explanation .ConFra_-diCtS.the argu-
the static ratedN, /N,. ments showned above, according to which it is unlikely that
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an Sni™ ion will be located next to a defect and, moreover

T. S. Al'tshuler and M. S. Bresler

, The part of the Hamiltonian that is linear in the vibrational

it makes it impossible to interpret the ESR of trivalent ions incoordinatesQ, and Qs can be diagonalized by a unitary

SmB; from a unified standpoint.

3. If the tetragonal splitting of the state of a trivalent

rare-earth ion in the cubic lattice of SgBad been due to

defects, then such splitting should have been observed in the

isomorphic compounds with integral valence laBaB;,

YbBg, and CaB, which also contain defects, vacancies, and

impurities. However, in contrast to SrgBthe standard ESR

transformation

0 cos®d /2 0 —sin®/2
. sin®/2 0 —cosd/2 0
R sind/2 0 cosb/2
—cosd/2 0 —sin®/2 0

)

signal for a rare-earth ion in a cubic field is observed in these

crystals®

4. In a recently published work on a Raman scattering

investigation of SmB,*® splitting of the state of an St ion

Then, introducing as usual the polar coordingiesnd ®

Q,=psin®, Qsz=pcosd, (4)

was observed and attributed to the dynamic Jahn—Teller efve obtain the energies of an ion in the elastic field of the

fect.
The theory of the Jahn—Teller effect on®Erions in

samarium hexaboride can be used to describe the experimen- E = 1

tal results>® This theory is not significantly different from
the theory of the interaction of aa state with lattice vibra-
tions transforming according to the representatisgn de-
scribed in the book by Abragam and Bleartéy.

In the SmB lattice the SmM* ion is in an octahedral
environment of fluctuating Sm iori¢he boron atoms form a
rigid framework, tied together by homopolar bonds, and d
not participate in the Jahn—Teller effdglg. 1)] (see, how-
ever, Refs. 11 and 12 concerning the influence of defects

the boron sublattice on the ESR of samarium ions in variou
charge statgs The vibrations of an octahedron which trans-

form according to thd"; representation are well known and

are described in, for example, Ref. 17. The contribution o
the interaction with these vibrations to the Hamiltonian of
the quartel’g can be constructed by the method of invariants

and has the form

H=A(Q,5,+ Q553 +B[(Q3— Q35— 2Q,Q55,],

o

lattice vibrations:

EwépziAp. 5)
The energy surfaces in the spdgg, p, and® will have the
familiar sombrero form. The terms p?, p containing an
anisotropic contribution to the interaction energy of an ion
with lattice vibrations(the factors simb and cosb) will give
rise to energy minima in thep(®) configuration space that
in ordinary space correspond to deformations of octahedra of
iSm ions along one of the principal cubic axes. Thus, a te-
ﬂagonal field= Ap develops which splits the quartEg into
Wwo doublets; the total cubic symmetry of the problem is
preserved because the doublets are equally likely to be occu-
ied in a tetragonal field directed along they, andz axes.
his is the static Jahn—Teller effect.

The degeneracy of ion states corresponding to different
energy minima in configuration space is lifted by tunneling
transitions between these states: if tunneling transitions are
sufficiently effective, then the six-fold degenerate vibronic

(1) state splits into a vibronic quartdtg (generally speaking,
where with renormalized parameters different from the initial pa-
rametery and a vibronic doublef’g (dynamic Jahn—Teller
0 0 O 0 0 1 O effec).
0 -1 0 0 00 0 1 If the tunneling splittingA is large (compared with the
S,= . 5= . (20 temperaturp and the ground state is a quartet, then the
0 0 -10 1000 Hamiltonian of the vibronic quartet can be written in the
0 O 0 1 0 1 0 O form
YZ X YZ J3Yz
A _= 0 -y —_=
A—XH,+ 7 H, sH-—gH- 8 N
YZ J3Yz X YZ
0 A _= = =
A—XH, 7 H, A 4 2H,+ 8 H_
H= : 6
X YZ J3Yz A Xy YZH 0 ©
2T g - PR
V3Yz X YZ X z
A - = 0 — = =
8 H_ 2H++ 8 H., A+2HZ+ ) H,
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whereX=P—-Q, Y=P+Q, Z=c;+4c,, and the constants distorted states correspond to one symmetric state. Taking
¢, andc, describe the matrix elements account of the large width of the resonance lines, the small
amplitude of the signals, and the rough approximation made
in finding the characteristics of the Jahn—Teller effect, it can
between the statds,) and|a,) corresponding to different be concluded that our estimate is close to the theory.
minima in the p,®) space.(Thus, the set;=1 andc, Thus, the observation of only one type of center, which
=0 corresponds to the static Jahn—Teller effect; the valueat low temperatures is in a doublet state and at high tempera-
¢,=0.7 andc,=0.08 were obtained for the dynamic Jahn—tures passes into a quartet state, in the ESR spectrum proves
Teller effect on E¥* ions?) If the splitting A is large and the  that, for the first time for rare-earth ions, both the static and
quartet—doublet interaction can be neglected, then only dynamic Jahn—Teller effects were observed orf Suenters
combination of the numbers; andc,, specifically,c=(c; in the compound SmB

+4c,), appears in the theory, and the Hamiltonian itself can ~ Although now there is no doubt that a dynamic Jahn-—
be represented in the standard form for a quartet by introducFeller effect can be observed on trivalent rare-earth ions in

c1=(ao|cosP|ap), Cc,=(ag|cosP|ay) (7

ing the parameters an SmRB lattice, the interpretation of this effect is different in
1 1 different models: Sturm, Elschner, and Hogclnsider the
_zi(p_Q)+Z(p+ Q)c, standard mechanism involving lattice vibrations, whereas

Weber, Sigmund, and Wagrhave proposed a new “elec-
_ 1 1 tronic” mechanism. In Ref. 18 the interaction of ar?Erion
Q=- §(P_Q)+ Z(P+Q)c. (8)  with the electronic excitations of neighboring Sm ions,
caused by fluctuations of the valence on these ions, is con-
(We note that a vibronic doublet is isotropic: its Zeemansidered. Specificallyfor the ions of an octahedron surround-
splitting does not depend on the direction of the magnetiang an EF* ion), collective wavefunctions with';(x,) and
field H with respect to the crystal axés. I'3(x1 and x,) symmetries, describing these excitations, are
Comparing with experiment shows that in order for theintroduced.
parameters of a vibronic quartet to describe the experiment However, the static Jahn—Teller effect observed for the
they must be the same as the parameters of the initial quart&ih®* ion cannot be obtained directly from the Hamiltonian
(in the absence of a Jahn-Teller effecte.,c=2. of Ref. 18. The reasons for this are, apparently, that Weber,
Thus, the idea of the appearance of a Jahn—Teller effe@igmund, and Wagner studied electronic excitations of the
in SmB; makes it possible to describe the experimental resystem, i.e., fermions, which unlike excitons cannot be re-
sults satisfactorily. Assuming that the transition of doubletsduced to the influence of a classical figltiey are created
into quartets is associated with a transition from the static t@nd vanish in pairs, as a result of which the Hamiltonian of
the dynamic Jahn—Teller effect, we shall estimate the splitRef. 18 is bilinear in the operators creating and annihilating
ting E;7 of the quartet and doublet states using the formuleelectronic excitations Nevertheless, for certain approxima-
for the intensity ratio of the corresponding ESR lines: tions the Weber—Sigmund—Wagner Hamiltonian can be put
I, NaWarsexp(—Eyr/KT) into a form similar to the Hamiltonian_of the standard Jahn—
4_TaTara T (9)  Teller effect problem. If the electronic degrees of freedom

2 Naw, 7 are considered to be fast and averaging over them is per-
whereN, and N, are the static weights of the doublet and formed in the spirit of the adiabatic approximation, replacing
quartet statesy, andw, are transition probabilities, anth the creation and annihilation operators by occupation hum-
and 7, are the spin-relaxation times determining the linebers tic, then dipole moment®,=t,,—t;; and P;=ty,
width. For a rough estimate we can set-r, and the ratio  +t2; Of the electronic clouds can be introduced, as is done in
w, /W, can be taken from the theory. Then we obt&iy  the theory of two-level systems. Such dipole moments can be
~2.8 K andN,/N,~3.5 for the pure sample arffl;;~1.8 treated as classical fields acting on an ion in an octahedral
K andN,/N,~8.5 for a europium-doped sampleee datain environment. Correspondingly, the tef8aP,+ S;P3, simi-

Fig. 5. To within the accuracy with which we can estimate lar to the interaction of an ion with lattice vibrations wifh

in practice the desired quantities for large resonance linesymmetry, can be distinguished in the Hamiltonian of Ref.
widths and low signal amplitudes, they are close for the twal8. Evidently, just as for lattice vibrations, such an interac-
samples, which once again confirms that the Jahn—Teller etion will give rise to a static Jahn—Teller effect, and terms of
fect is responsible for the observed phenomena: for the casehigher order irP, andP3 (which are not written out in the
where local symmetry is broken, there should not be anyWeber—Sigmund—Wagner Hamiltonjawill have to be in-
special correlation between the results obtained for thestoduced in order to localize ions at the energy minima in
guantities. The results obtained are somewhat more accurafp,®) space. In such an approach the appearance of a dy-
than the data presented in our brief report in Ref. 8. Thenamic Jahn—Teller effect in the model of Ref. 18 is due to
energyE;; characterizes in order of magnitude the barrierbreakdown of the conditions of adiabaticity.

separating the vibronic states responsible for the deforma- Averaging over the fastelectroni¢ degrees of freedom
tions of the octahedral environment of an 8mon along  therefore actually makes the influence of lattice vibrations on
different cubic axes. an ion indistinguishable from the influence of vibrations of

The ratio of the static weights of the quartet and doubleklectronic clouds associated with fluctuations of the valence
states should be three according to the theory, since thres Snt* ions. As shown in Ref. 19, the electron—phonon
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interaction plays an important role in the fluctuating-valenceradii of Snf* and Sm* ions. As shown in the excitonic
theory, and fast transitions of an ion from+&3 state into a model of a semiconductor with fluctuating valerfée nor-
+ 2 state strongly influence lattice stiffness and thus the fremal Sm ion maintains an electron in the nearest coordination
quency of lattice vibrations. For this reason the Jahn—Tellegphere, even when the electron escapes froni shell, i.e.,
effect in SmB probably arises as a result of the total effectwhen the samarium ion formally hast3 valence. Actually,
of both factors. We notdas even Weber, Sigmund, and we are dealing with a small-radius exciton. The radius of the
Wagner have emphasizethat in LaB;, CeB;, and YbE;,  exciton should be appreciably greater than that of a free ion
where the valence of the rare-earth ions is stable, the Jahnaith valence+3 and can be close to the radius of an ion
Teller effect is not observed, but unlike Weber, Sigmund,with valence+ 2. This explanation helps to explain the ten-
and Wagner we assume that this does not preclude the “odency of ions with valencet3 to break the local lattice
dinary” mechanism of the Jahn-Teller effect in SgnBut ~ symmetry (the Jahn—-Teller effegt while the Ed@* ion
rather indicates that the two mechanisms are closely relate¢hakes it possible for the cubic symmetry of the environment
Actually, the electronic states of an $mion interact not (i.e., the unperturbed statéo remain. Apparently, it is the
with pure phonon modes but rather with lattice vibrationsstronger deformation of the crystal lattice by trivalent ions in
renormalized by the coupling with valence fluctuatiégsse, = SmB; that stabilizes the static Jahn—Teller effect and is re-
for example, Ref. 19; experimentally mixed modes were obsponsible for the observation of only tetragonally split states
served in Refs. 20 and 21For such mixed modes the of the Sni* ion in SmB; doped with E¥* and Gd™.
method of invariants can be used to construct the interaction In summary, our experimental results taken together in-
Hamiltonian, as is done in Refs. 5 and 6, but the dispersiomlicate that the magnetic moments of the3Snions in SmB
law for these modes and the interaction constants will benteract with mixed electron—phonon vibrational modes and
different from the case of an interaction with purely vibra- attests to an exciton—polaron nature of the ground state of a
tional modes. semiconductor with fluctuating valence.

In Ref. 16, where Raman scattering in SgnBas inves-
tigated, bound electronic states with energies in the band gap CONCLUSIONS
of this semiconductor were observed. Analysis of these re- Electron spin resonance on samarium ions with stabi-

sults showed that on account of the magnetoelastic interag, o4 valence S8 was investigated in the semiconductor

t?on of the ground-state qu'arté‘tg with a quasilocal vibra- SmB; with fluctuating valence. The measurements were per-
tional modet,y the dynamic Jahn-Teller effect on 8m fformed on single crystals of both pure SgRnd SmB

lons 1S a posmblg explanatl_on of the origin of this series %Hoped with rare-earth ions with different valence:2Eu
bound states. This explanation agrees with our results, whic B+ and Gd*

. . . X , . The parameters of the spin Hamiltonian
are interpreted above in the representation of static and d¥/¥/ere obtained and the splittir,T between the quartet and
namic Jahn—Teller effects on Siions. In our case, how-

. . ) doublet states in SmBwvas estimated. It was established that
ever, we took account of the interaction of ‘g quartet with

all observed facts taken together can be explained by the
the vibrational mode, . It should be noted that the symme- g P y

X , existence of the dynamic and static Jahn—Teller effects in
try properties of the quartet state allow for the state to inter

ith both mod q | Id also b lai this compound. In addition, as far as we know, this is the first
act W't, oth modes, and our resu ts could also be explainegy, oy ation of a static Jahn—Teller effect on rare-earth ions.
by taking account of the modg, instead ofey. However,

: : ; J , It was shown that the observation of the Jahn-Teller effect
we chose a simpler model, which satisfactorily describes ou

| q q ful q ibe ESR Bh E fh a fluctuating-valence compound could be due to the
irgr?: ts and was used successiully to describe r excitonic—polaron nature of the ground state of such a semi-

| the ESR of trivalent ion&r*, G+, ~ comauctor
Snﬁ{\ T%ugmary, i : o.b rév? en IOn(f.f. d’ d, ] This work was supported by the Russian Fund for Fun-
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The transmission of wave packets through barriers by tunneling is studied in detail by the
method of quantum molecular dynamics. The distribution of the arrival times of a tunneling packet
in front of and behind a barrier and the momentum distribution function of the packet are
calculated. The average position and average momentum of the packet and their spread are
investigated. It is found that below the barrier a part of the packet is reflected, and a

Gaussian barrier increases the average momentum of the transmitted packet and its spread in
momentum space. €999 American Institute of Physids$$1063-776(199)02505-9

1. INTRODUCTION while the reflection or transmission time is determined by
their evolution. However, it has been shown in Refs. 5 and 6
The study of tunneling in nanostructures has acquired aand subsequent works that a wave-packet peak incident on a
important role in the last few years in connection with ad-potential barrier is not transformed into the peak of the trans-
vances in nanoelectronics. The problem of tunneling of wavenitted wave. In Ref7 a case is examined where the high-
packets through a potential barrier arises in many cases, f@iergy components reached the barrier before the other com-
example, in the study of the action of femtosecond lightponents because of dispersion of the wave packet in
pulses on coupled wells. This problem is also important bemomentum space. Since the tunneling probability increases
cause of possible applications of scanning tunneling microwith energy, these components made the main contribution
scopes irradiated with femtosecond pulses for studies o the transmitted part of the packet. The initial parameters
nanostructures with high spatial and temporal resolutiortould be chosen so that the transmitted part of the packet left
simultaneously. Other interesting questions are the tunnel-the barrier long before the arrival of the main peak, chosen as
ing time in the ionization of a hydrogen atom by ultrashortthe observed quantity. This example demonstrates the break-
laser pulses and the time for tunneling induced by the actiodown of the causality principle, which is the basis of this
of a laser pulse on low-lying nuclear energy levels. In themethod, and therefore limits the applicability of the method.
present paper we investigate the no less interesting questidioreover, it is difficult to conceive of an experimental
of the tunneling time in nanostructures. The tunneling time ismethod for measuring the arrival time of a packet according
of practical interest in this case because it permits the reto its peak or centroid.
sponse time of semiconductor components to be estimated. There also exists a class of approaches that employ an
In this connection we shall study the following problem: Let ensemble of dynamical trajectories to find the tunneling time.
a laser pulse produce a wave packet of an excited electrofhese dynamical trajectories arise as a necessary apparatus
near a tunneling barrier. The question is: When will the tun-of the description in the Feynman and Bohm interpretations
neling portion of the packet appear behind the barrier? Thef quantum mechanics. When Feynman trajectories were
arrival of the wave packet can be detected by studying localisedf the transmission time through a barrier was found as a
variations of the optical properties using ultrashort probepath integral over all possible trajectories that start from a
pulses. prescribed point to the left of the barrier and arrive at a
It is interesting that a number of effects which are absentertain time at a point located to the right of the barrier. The
in the time-independent case are observed when a packigitegrated function in the path integral contained the product
passes through a tunneling barrier. The tunneling time of ®f a classical residence time of a trajectory inside the barrier
packet is determined in general not by the reciprocal of thend a weight factor eX{S(x(t'))/%], where S(x(t")) is the
probability of time-independent tunneling, but rather is re-action related to the trajectorft’) under consideration. The
lated to complicated processes—the change in the shape andmputed times possess real and imaginary parts because of
behavior of the packet inside the barrier. Moreover, thethe multiplication by a complex weighting factor, and the
transmission time through a barrier is not a unique functiorguestion of how these times should be associated with the
of the measured quantities, i.e., the type of experiment.  physically observable quantities, which are always real,
The investigation of the question of the residence time ofarose. To explain the complex times, which arise in other
a tunneling particle below a barrier started long dgband ~ methods alsdfor example, in the method of physical clocks
many theoretical and experimental methods for measurinésee below), Sokolovski and Conndrexamined so-called
the tunneling time have been proposed. For example, themirect and indirect measurements. In indirect measurements,
exist approaches where the peak of the packet or the averagach as the method considered here, the quantities can be
position (the centroidl is chosen as the observed quantity complex.

1063-7761/99/88(5)/10/$15.00 1026 © 1999 American Institute of Physics
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Approaches employing physical clocks have found wideproperties is no less populit:?* As first noted by Pauff®
application. Physical clocks are various additional degrees ahe main difficulty is that a measurable hermitian time op-
freedom in the system that allow the residence time of arator for a system Hamiltonian with a bounded spectrum
particle to be determined in a given region. Three types ofloes not exist. Various attempts have been made to construct
clocks have been investigated in theoretical works. Baz’ an@perators that would describe the necessary properties of
Rybachenk®!! used spin precession in a weak uniform physical times. In order that the constructed operator satisfy
magnetic field inside a barrier. At first spin precession in athe correspondence principle, relations from classical me-
single plane was considered. Then Buttiker and Land&uer chanics were taken as the basis for the operator construction.
extended the analysis to three dimensions. Over the tunneHowever, it is well known that the construction of an opera-
ing time a spin acquires a component in the direction oftor expression corresponding to a classical quantity is not
motion and parallel to the magnetic field. It is obvious thatunique, and its relation to the measurement process requires
the intensities of the detected components with spin polarizaadditional analysis.
tion in these two directions will be proportional to the resi-  In the present work the tunneling time was calculated as
dence time of the particle in the region with the magneticthe difference of the average arrival and residence times of a
field, i.e., in the region of the barrier. It was found that for awave packetsee Sec. Bbefore and after the barrier. The
square barrier the tunneling times found in this manner ar&ethod of quantum molecular dynamics was used to calcu-
identical to the real and imaginary parts of the complex tunlate these times and to investigate the dynamics of a tunnel-
neling time introduced via Feynman path integfaEhe ex-  ing wave packet®2°
tension of this method to the case of an arbitrary potential As is well known, molecular dynamics investigates the
barrier was made in Ref. 13. Buttiker and Landatieon-  properties of classical systems in phase space. Therefore it is
sidered as physical clocks an oscillating barrier in which thdikewise natural to extend this method to quantum systems in
amplitude of the oscillations of the temporal component waghase space. The evolution of a system in phase space can be
much smaller than the barrier height. At low frequenciesdescribed, for example, in the Wigner formalism of quantum
particles see an effective static barrier, since the transmissigiRechanics by the Wigner—Liouville equation. To solve the
time through the barrier is much shorter than the period olVigner—Liouville equation written in integral form it is con-
the oscillations of the temporal component of the barrier. Asvenient to rewrite the equation in the form of an iterative
the frequency increases, the delayed particles or wave-packggries. Each term of this series can be treated as the weighted
components see a slightly modified potential barrier. Finally contribution of a trajectory consisting of segments of classi-
for some frequencies one or several periods of the oscillacal trajectories separated by finite disturbances of the mo-
tions influence the tunneling particles. The frequency afmentum. In what follows we shall call such a trajectory a
which a substantial difference from the adiabatic case correquantum trajectory. The statistical ensemble of quantum tra-
sponding to a time-independent barrier appears will be deteiectories makes it possible to calculate the sum of all terms in
mined by the reciprocal of the interaction time with the bar-the series. The Monte Carlo method is used to take account
rier or the transmission time through the barrier. Martin andof only the trajectories making the main contribution. In the
Landauel® chose as physical clocks the oscillating ampli- classical limit the quantum trajectories pass into classical tra-
tude of the incident wave. For this, a wave function consistiectories, and the method of generalized molecular dynamics
ing of a superposition of two plane waves with different becomes identical to ordinary molecular dynamics. The prin-
energies was chosen to the left of the barrier. It is obviougiples of the method are presented in Sec. 2. The expressions
that in this case the wave function to the right of the barrieffor calculating the distributions of the arrival and residence
will also be a superposition of the tunneled parts of the planéimes of a wave packet are presented in Sec. 3 on the basis of
waves, which, however, possess a different transmission anthe Wigner formalism of quantum mechanics. The simula-
plitude, since the amplitude depends on the energy. Th#on results are discussed in Sec. 4. The one-dimensional
transmitted wave function will reproduce the incident wavecase is considered in this paper, but the method employed
function if the amplitudes of the tunneled plane waves differnakes it possible to perform similar calculations for multi-
very little; this corresponds to the adiabatic case. The energ§fimensional and multiparticle systems, where it has serious
difference between the initial plane waves for which theadvantages from the standpoint of computer time over, for
wave function behind the barrier does not produce the inci€xample, the solution of the time-dependent Sdhrger
dent wave function makes it possible to find the transmissiogduation.
time through a potential barrier. The main advantage of this
method is that it applies to all types of potentials, but it
employs two values of the energy, so that it is not clear t0, ~oMpPUTATIONAL METHOD
which energy the tunneling time obtained should be ascribed.

Do all clocks give the same measurement result? Of To calculate the quantum-mechanical average of a quan-
course not. However, in many cases these results are identity A for a time-dependent staté) in the Wigner formula-
cal or close to one anoth&t®~18The main advantage of the tion of quantum mechanics it is necessary to calculate an
approaches using physical clocks is that they try to find theéntegral in phase spate
tunneling time in terms of possible measurements in physical
expeirments.

The search for time operators and the study of their

A(t)=<t/f|A(t)|</f>=f qudpA(q,p)W(q,p,t), N
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where, by definition, the Weyl symb@l(q,p) is introduced interval[0,7;], and the integral operatt] ** describing the
for the operatorA and W(q,p,t) is the Wigner function, eyolution between the times andr, ;. Now Eq.(8) can be
which is the Fourier transform of the off-diagonal density- represented in the form

matrix element:

_ W= Wi+ KEw?, €)
A( )—deex PE) g+ Eljg- 2 2) a — —
q.p)= ) q 2 q 2/ where Wi=W°(p,,q,). The corresponding iterative series
solving this equation can be written as
1 ipé ~ _ _ _

WapH=57 f déexg — 5~ W= K W+ K KA+ K KK
: : 10
Xyrla- E’t) gla+ E’t : 3 Now, to calculate the quantum-mechanical averégat is

necessary to calculate a linear functional of the Wigner dis-
Differentiating the distribution function with respect to time, tripution function
substituting it for the time derivative of the functighon the
right-hand side of the Schdinger equation, and integrating :f f
by parts, we obtain the Wigner—Liouville integrodifferential At dgdpAQ,p)W(g.p.t)

equatiori’ ~ ~ ~
=(A|Wt)+(A|K§1WH)+(A|K52KZWH)
W p oW oW o
W-FEE‘FF(Q)%ZJdeV\(p_S,q,t)w(S,Q)- _r_(AthT?’K:zKZer)_r_ o (11)
. . @ Here the brackets (. |...) for thefunctionsA=A(p,q)
In this equation and Wt or KtTin I .KZVVH indicate averaging over the
2 entire phase splaqep,q}.
w(s,q)= — f dg'V(q—q’) The first term on the right-hand side of EG0) gives the
classically evolving initial distributionV°(py,qo), i.e., the
[ 2sqd dé(s) evolution of the distribution function without quantum cor-
Xsin T) (D45 (5 rections. However, even this first term of the iterative series

describes not classical but rather quantum effects and can
takes account of the nonlocal contribution of the potential,contain arbitrary powers of the Planck constant, since a
andF(q)=—aV(q)/dq is a classical force. In the classical quantum initial state of the system is taken as the initial data
limit, #—0, Eq.(4) becomes the classical Liouville equation for Eq. (10). The rest of the terms in the iterative series
W p oW IW Qescribe qu_antum.correctio_ns t.o evolution: Each_term of the
—t+ ——=—F(q) —. (6) iterative serieg10) is a multiple integral. This multiple inte-
gt - madq ap gral can be replaced by an integral sum, and each term of the
Equation (4) can be written in integral form. For this integral sum can be represented as a contribution of trajec-
purpose one introduces the dynamical trajectorieéor'es of a definite topological type. These trajectories consist

P o : . of segments of classical trajectories—solutions of Egs—
ngé; gﬂi':zép;g'.p’q’t)}’ 7€ (0], starting from the point separated from one another by random perturbations of the

momentum.
dp/dr=F(p(7), pyt;p,q,t)=p, All terms of the iterative series can be calculated in ac-
@) cordance with the theory of Monte Carlo methods for solving
dg/dr=q(7)/m, q.t;p,q,t)=q. linear integral equations. For this, a Monte Carlo scheme

generating a large sample of the terms making the main con-
An integral equation is obtained by substituting the right-tribution to the serie10) has been derived. This sample also
hand sides of these equations into the Wigner—Liouvilledecreases the computer time required to calculate the rest of
equation, whose left-hand side becomes a total differential_-he integra|s appearing in each term of the iterative series.
and integrating over time Let us consider the second term of the sefl. This term

can be rewritten as

- t 0
Wip.0,0=WP(po.a0)+ | ar |~ dsw L -

- B K, Wri= fodnf ds;(sy,q1)WO(p5, o)
X(pT_S’qT’T)w(SYqT)' (8)

1 _ —
HereW°(py,do) =W(p,q,0) is the Wigner distribution func- = fo d71[B(02)(1+Q(02))]0(1—72)r(72)
tion at zero time. The solution of E¢8) can be represented
as an iterative series. For this we introduce the notafih

2\~
for the distribution function, which evolves classically in the X f d$,P(s1,92)C(qu)r (1)
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- 3. MEASURED QUANTITIES
{o(s1,aDtQa) 6(7,— 1)/ C(ADr () }WO(p5,ap), _

The study of the evolution of a wave packet can be taken
as the starting point for studying the temporal aspects of
tunneling. The probability of observing a wave packet or
particle at an arbitrary poirnX is determined by the squared
absolute valug y(X,t)|? of the wave function. In a time-
dependent problem this probability depends on the time and
determines the characteristic times of the wave-packet dy-

form (12), it can be given the following probabilistic inter- namics. If an ideal detectdr.e., measurement by the detec-

pretation. We shall employ the time-reversibility of the equa—tor does not d'St!”b th? wave f_unctDorrespondmg to the
tions of classical dynamiag) and start the construction of a presence Of_ partmlgs, is used in the experiment, then th_e
trajectory at timer=0. At time r, for a trajectory represent- average residence time measured by the detector at the point
ing an arbitrary term in the iterative series a perturbation OIX IS
the momentum of the trajectory by an amosptcan occur o )
with probability C(Ef), and the probability of rejecting a _ fo dtt|y(X,0)]
momentum perturbation B(qs) (C(Ei)ntB(qz):l) . The tx=—y
probability B for rejecting momentum jumps was introduced f dt|(X,1)|?
to make the algorithm more flexible, so that, depending on 0
the degree of quantization of the system, a transition fromy gescription of these times can be found in Refs. 31-33.
quantum to classical trajectories would occur automatically-The distribution of residence times at the paints

Since we are considering a trajectory representing the

where the substitution of variables— rt(7<[0,1]) was
made for all terms of the iterative seri€s0). The quantity
r(ry) is the probability of choosing a random time and 0
is the step function.

Once the second term of the ser{@$) is written in the

(14

second term in the iterative series, a perturbation of the mo- _ B | (X, 1)]?
mentum at the time; was accepted. Now it is necessary to x) =" S (15
choose in the time intervélr;,1] a random valuer,, which fo dt| (X, 1)]

is the time of the next attempt to perturb the momentum.
After a perturbation of the momentum by an amosnwe  To find the squared wave functidm(X,t)|? it is sufficient to
must continue the generation of the trajectory up to the timealculate a quantum-mechanical average of an operator

75 in accordance with Hamilton’s equations. At this time an

_atten"_npt to p_erturb the momentum for the secpnd term of the <¢(t)|5(a—x)|¢(t)>=f dgs(q—X)|w(q,1)|?

iterative series must be rejected, and we continue the genera-

tion of the trajectory up to the time=1. The rejected at- =| (X, 1)|2.

tempt at disturbing the momentum must be taken into ac-

count by multiplying the weighting function of the trajectory In the language of the Wigner formalism this is equivalent to
by a compensating factor, which stands in the braces on thealculating the integral

right-hand side of the expressidia?2). The product of the

Weyl symbol of the operator under consideration and the (w(t)|5(ﬁ—X)|¢(t))=f qudp&(q—X)W(q,p,t)
weighting function at different points along the trajectory

gives the time dependence of the computed quantities. Aver-

aging over a large ensemble of trajectories of this type gives = f dp WX, p,t). (16)

the contribution of the second term of the iterative series.

Similar expressions but with a large number of interme-If the point X is chosen to the right of the barrier, then this
diate times on classical trajectories when a perturbation ofitegral makes it possible to calculate the squared wave func-
the momentum occurs can also be written for the other termtion which has tunneled through the barrier. The distribution
in the series(10). The number of the term in the iterative of the residence times can be rewritten, in accordance with
series(10) described by the given trajectory determines theEd. (16), as
number of momentum perturbations along the trajectory.

The final expression used to calculate the linear func-  p, (t)= M
tional (11) is f“dtl HOX )|
A =M{a(AT)} ’
_ o S bt dpWIX,p.t)
=2 (bpra 2, 2, 2 2 a(ATHP(T), J—wdt dpPWIX.p.t) (17
(13
a(A;T)=A(p,9)W(p5,dg) (T), fo

where the function® and() are, respectively, the probabil- To determine the average time when the wave packet passes
ity of generating a quantum trajectofly and the weighting through a detector at the poiltit is necessary to calculate
function of this trajectory. the integral
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<t(X)>=f dttPy(t), (18) f J dqdpJ(q,p)W(a.p.t)
’ Px(t)=— , (23
and the average transmission time of a packet from the point f dtj f dqdpX(q,p)W(q,p.t)
X; to the pointX; will be °
(40X, X)) = (LX) — (X)) (19 where the Weyl symbol of the current operafgiX) is
. ) . o (2p(X—=q))\ d
If the pointsX; and X; are chosen on different sides of the Jx(q,p)= 5 sm( T) %5(q—X). (29

potential barrier, then the expressiof9) can be used to

estimate the tunneling time. Substituting into Eq(20) the expressiofi24) and calculating

The chief drawback of the definitiofl7) is that, as a the integral over the variablg by parts we obtain the ex-
rule, detectors responding to a flux density and not a probpression

ability density are used in physical experiments. Therefore a

different quantity must be considered in order to compare f dppWX,p,t)
theory and experiment. For this, the distribution of arrival Po(t)— o at| d % bt 25
times of a wave packet at a prescribed point in terms of the x()= o PPWX,p.). (25
probability flux density was introducet: fo
B ()| IX) (1)) Comparing the expressiori47) and (25), it is easy to see
Px()=— R ' 20 that they differ by the fact that the momentyrappears in
fo dt(g()[IX) (1)) the numerator and denominator in Eg5). This momentum
appeared in the last expression because the probability flux
where density is measured there.
R 1. . - -
IX) = 5[palq=X)+8(a—X)p]. (21)
4. SIMULATION RESULTS
Of course, the deflnltIOI(IZO) is not a real distribution func- We shall examine a series of experiments on the tunnel-
tion from probability theory, since this function can assumejng of an electron with the wave function
negative values at some points. Nonetheless, the definition
(20) will be a distribution function if there is no reverse flux 1 —Xo\2 .
through the pointX or the flux is negligibly small. For this P(x,0= (270 )1/4ex | 20, +ikox (26)
X

the pointX is chosen sufficiently far from the barrier. Mea-

suring the distribution of the arrival times of a packet in front through a Gaussian potential barrier

of and beyond the barrier, the transmission time through a

region much larger than the region of the potential barrier ;{ (x—=d)?

L . . V(X)=Vgexp —

can be calculated. This time is analogous to the asymptotic o2

phase time¥ and in addition to the tunneling time and the ) o ) )

packet—barrier interaction time it also contains the transmis] he Wigner distribution functior(3) corresponding to the

sion time through the region where the potential barrier idnitial wave function of the electron can be written as

zero. These two times cannot be resolved. Despite continu- 20%(p—tiky)?

ing discussions, this tunneling-time problem has still not W(p,q,O)zZex;{— XF{—#

been finally solved®2436:37 20 h?
Another problem concerns the physical implementation (27)

of an experiment in which simultaneous detection of a pack _ -
in front of and beyond a barrier would not substantially re(-iﬁ-he centexo=((x.0)|x|#(x,0)) of the wave packet at zero

duce the wave function. For this reason, ordinarily, a differ-time was chosen far enough from the left-hand boundary of
. ' Y, . the barrier so that the probability density beyond the barrier

ent quantity—the time delay—is measured in - . o
experimentS®“2 A time delay arises because of the pres_Would be negligibly small compared with the transmission
X robability |T|? through the barrier. Tunneling occurred

ence of a barrier and is defined as the difference of the aJ . n :
erage arrival times of the tunneling and free packets: through a wide ¢=2.5 nm, typical of AAGa _As struc-

ture9 and narrow ¢=0.5 nn) Gaussian barriers of height
. = tun_ free Vy=0.3 eV centered ati=0. The electron kinetic energy
A TannafX) = (1) (b (22 was Eq=12k3/2m=V,/2=0.15 eV. We employ a system of
The definition(20) for calculating the average arrival times units with#=m=V,=1. Distances were measured in units
gives a reasonable estimate of the time delays measured in afthe reduced de Broglie wavelengthi 1/k,. In this system
experiment. the parameters of the wave packet and barrierEgye 0.5,
The distribution of arrival time$20) can be rewritten in  Ak=0.04 (0.125), o,=1/2Ak=12.5 (4), X,=-92.5
the Wigner formulation of quantum mechanics as (—43), 0=5 (2.5 nm), ando0=1 (0.5nn).

(q—x0)2
— e
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FIG. 1. Probability density (a)
| href(X,1)|? of the reflected wave packet
0 and(b) | (x,1)|? of the tunneled wave
L 1 L : . . 1 L L packet at successive timgs= 144—239
-150 -100 -50 0 0 50 100 150 fs (curves1-5) with Ak=0.125 and bar-

rier thicknesso=1 (0.5 nm; (c, d
: [ (x,D)|? at time t=187 fs, Ak
1.5+ =0.125 with barrier thickness=1 (0.5

2 nm) (¢c) and o=5 (2.5 nm (d): curve
1 — calculation using classical trajecto-
ries, curve2 — calculation using quan-
’fo 1.0F tum trajectories.
2
3 0S¢
A
0
o 1 3 1 1 i
0 50 100
x
4.1. Evolution of the wave packet A study of tunneling through a wide barrier leads to the

opposite conclusion. The curvésand?2 in Fig. 1d are almost
narrow potential barriefe=1 (0.5 nm] is shown in Figs. coincident. Th|§ means that mos.t of. the packet has .passed
1a and 1b. These figures show the probability densityabove the barrier, and the contribution of all terms in the
| (x t)|2 (curves1-5) of reflected(Fig. 13 and tunneled series(10), except for the first term, is negligibly small. To
(Fig ' 1b wave packets at successive tintes114— 239 fs avoid such a situation and to restore the importance of quan-
The.probability density was calculated using Et6), i.e in' tum effects, it is necessary to decrease the uncertainty of the
terms of the Wigner distribution function. This integral was m?m?Tum ?f the '_”(;“at') wave packet. IntV\éh?t follows ?“
calculated along quantum and classical trajectories. In th&2 CU?POPZAOEBOW('); arrier are presented for momentum
calculation over classical trajectories only the high—energyuncer amnty T
components of a packet could pass classically above the bar-
rier. This calculation CorrespondS to the cutvén Flg lC, 4.2. Average position’ average momentum, and their
and the evolution of the Wigner function can be describetspreads
only by the first term of the serigd0). In the formalism of . . ..
guantum trajectories the passage of the components of a F|qure 2a shows the evolution of the av.erage pos.|t|on
packet beyond the barrier is associated with random pertur<-'/’(t)|x|_¢(t)> of the wave packet for calculation according
bations of the momentum, i.e., with a virtual change in en-0 classicalcurve 1) and quantunicurve 2) trajectories. In
ergy. The results of this calculation correspond to the carve these two methods for calculating the average positioro
in Fig. 1c. Now the quantum corrections introduced by alldifferences are observed before interaction with the barrier
terms in the serie§10) are taken into account in the evolu- (curvesl and2 are coincident This result can be explained
tion of the Wigner function. as follows. In the method under discussion the quantum-
Of course, the calculation over quantum trajectories alsénechanical properties appear at two points: in the properties
takes account of the high-energy components that pass abo& the initial state of a wave packet and in the evolution of
the barrier, since they describe the contribution of the firsthe packet. Since the same initial data were chosen for the
term in the serie§10). However, comparing the curv@sand  quantum and classical trajectories, the fact Xé the same
2 in Fig. 1c shows that their role is negligible for a narrow must be explained by the evolution of the wave packet. Spe-
barrier and most of the packet passes above the barrier aifically, while the packet moves freely in front of the bar-
account of the virtual change in energy, described as randomier, it is correctly described by classical trajectories also. In
perturbations of the momentum of the quantum trajectoriesthis case the first term in the seried)) suffices to describe

The interaction of a wave packet 4 k=0.125) with a
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the evolution of the Wigner function. This result can also bepackets on different sides of the barrier also explains the
obtained analytically, estimating the right-hand side of themore rapid increase of the position spread in the quantum
Wigner—Liouville equation(4). For the initial Wigner func- calculation(curve 2, Fig. 29 as compared with the classical
tion (27) and Gaussian barrier which we have chosen it iscalculation(curve 1), which takes only the spreading of the
easy to show that the integral on the right-hand side of Eqwave packet into account. The behavior of the packet width
(4) decays exponentially as a function of distance from theon scattering by a barrier is shown in greater detail in the
barrier. In this case Eq4) becomes the classical Liouville upper left-hand part of Fig. 2c.
equation, whose characteristics are ordinary classical trajec- The interaction of a packet with the barrier also gives
tories. rise to interesting behavior of the momentum spread in Fig.
A difference in the behavior of the curvdsand2 ap- 2d. The constant value&urve 1) on the initial and final
pears after the packet interacts with a barrier. Now the classections show the momentum spread in the incident and re-
sical trajectories are no longer characteristics and do not ddlected wave packets, i.e., before and after interaction with
scribe the evolution of the wave packet correctly. In Figs. 2&he barrier. The observed peak is due to the change in the
and 2b the average position and momentum of the calculasign of the momentum of the packet and to the fact that
tion over quantum trajectoriggurve 2) are greater than for different components reach the barrier and are reflected from
classical trajectoriegcurve 1). This is due to the following it at different times. The increase in the momentum spread
circumstances. In the first place, since most of the packet i&urve2) on the final section is explained by the appearance
reflected, as one can see from Fig. 2b the average momentuof a tunneling packet with positive momentum in the quan-
changes sign after being scattering by the barrier. In the setum computational method, while the total average momen-
ond place, the classical trajectoriésurve 1) do not take tum is negative.
account of tunneling; they only take account of the negligible
above-barrier transmission, arising because of the uncer-
tainty in the momentum of a Gaussian wave packet. At thet.3. Distribution of arrival and residence times: momentum
same time it is obvious that the tunneling part of the packetlistribution function
has positive momentum and moves in the opposite d'ECt'On The results of the calculation of the unnormalized distri-
relatile to the reflected part. Therefore its contributiorXto  pution of residence time&l7) at different points in front of
and P has a different sign. This is the explanation of thethe barrier, inside the barrier, and beyond barrier are pre-

difference between the curvdsand 2. sented in Figs. 3a and 3lgurves1-5). Figures 4a and 4b
In addition, the motion of the tunneling and reflected show the analogous results for the unnormalized distribution
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= = FIG. 3. Probability density or unnormal-
<4l = ized distributions of the residence times
= - (17: a — |¥(x;,1)|? at the point
& N‘: x1=—50 (curve 1); b — |¥(x;,1)|? at
> = the pointx,=—0.670 (curve 2), at x,

=0.670 (curve 4), and x5=50 (curve
5); center of the barrier located at
=0, barrier thicknesg=5 (2.5 nm.
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(20) of the arrival times. The curves in Figs. 3a and 4a 3) is much lower than the flux on the right-hand boundary of
show the behavior of the probability density and flux, corre-the barrier(curve4) and far to the right of the barridcurve
sponding to the fact that the incident and reflected wavé). This means that the tunneling components of the wave
packets pass through the detector at different times. Cirve packet which move in oppposite directions interfere inside
in Fig. 4a shows the behavior of the flux measured at ahe barrier. Some of these components pass completely
certain point to the left of barrier center. The tunneling andthrough the barrier, while others are reflected inside the bar-
high-energy components present in the initial packet reachder and do not reach its right-hand boundary. Interference of
ing the point classically pass through this point. An interestthe reflected and transmitted components yields the observed
ing result is obtained for the probability flux density in Fig. decrease in the flux amplitude at the barrier ceftarve 3)

4b (curves3-5). The flux measured at barrier centeurve  and at the right-hand boundafgompare curveg and5).

FIG. 4. Probability flux density or un-
normalized distributions of the arrival
times (20): a — J(x;,t) at the points
x;=—50 (curve 1) and point
X,=—0.670 (curve2); b — J(x;,t) at
Xx3=0 (curve 3), x,=0.670 (curve 4),
andxs=50 (curveb); center of the bar-
rier located atx;=0, barrier thickness
o=5 (2.5 nm.

J .0, 107
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& & t=0 (curvel) and in a packet transmitted through
2F 41 a potential barrietcurve2): a — Ak=0.125, bar-
{ rier thicknesso=1 (0.5 nm, t=218 fs; b —
Ak=0.04, barrier thicknessoc=5 (2.5 nm,
t=385 fs.
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Interestingly, the investigation of tunneling using classicalbeyond the barrier. These components move more rapidly
trajectories in complex time also shows a similar effédt.  than a free packet and eventually overtake a free packet.
is found that transmission through a barrier occurs as a seriéhen the time delays can only be negative. This confirms the
of attempts, many of which are unsuccessful because of renomentum distribution function
flections in different regions below the barrier. N

Comparing the distributions of the residence and arrival  (¥(D[8(P—p)[¢(1))
times in Figs. 3b and 4b shows that they are almost identical. (p(O]p(t))y
The computed average residence and arrival titi€s are .5 icyjated for narrowFig. 58 and wide(Fig. 5b barriers,

also identical(the difference is less than 1)fsAs we have  regnectively, at times=218 and 385 fs. At these character-
already stated, the distribution of the arrival tim@6) is not  jgtic times the distribution function no longer changes, since

a true distribution function and, as one can see from Fig. 4g,e interaction with the barrier has ceased. It is clear from
(curve?), it is not suitable for calculating the average arrival Fig. 5 that the average momentum of the tunneled wave

time of a packet in front of the barrier. This makes it impos-packet(curve?) is greater than the average momentum of the
sible to calculate the tunneling time as the differe(®® of  \y4ye packet initially(curve 1). The peak observed in the
the average arrival times of the packet in front of and beyongy,o mentum distribution functiofcurve2 in Fig. 53 is due to

the' barrier. Noneth.eles's, th'e express(b8) can be used to e packet components that had a large momentum and
estimate the tunneling time if the average residence (e assed above the barrier. It is evident that tunneling through

is used instead of the average arrival time in front of they narrow potential barrier increases the spread in the distri-
barrier. Then the tunneling time through the potential barrief, tion function, while tunneling through a wide barrier sub-

is 71(—0.670, +0.670) =12 s, i.e., it is almost equal to the giantially shifts the center of the distribution in the direction
transmission time of a free packet through a similar region,; large momentdcurve2 in Fig. 5.

7995~ 0.67,+0.670) =13.4 fs.

The time delays were measured at the poimts
=0.670 (1.6 nm andxs=50 (12 nm and were found to be
ATaniva(Xa) =8 fs and A 7pival(Xs) <0.5 fs. If these mea- The quantum generalization of classical molecular dy-
surements are performed even farther to the right of the bamamics was used to solve the Wigner—Liouville integral
rier, thenA 7,iva(X) becomes negative. Thus an interestingequation in the Wigner formulation of qguantum mechanics.
behavior is discerned: Even though the tunneling waverhe method discussed for solving this equation does not re-
packet is delayed by the barried ¢,iva(X4) =8 fS) and  quire a large increase of computer time and makes it possible
passes through the barrier approximately in the same time ds avoid the computational difficulties that arise when solv-
a free packet, it appears earlier at a definite distance to thiag the time-dependent Schiinger equation.
right of the barrier. This effect can be explained by the fact  This approach was used to solve the time-dependent
that the transmission probability through a Gaussian barrieproblem of tunneling of a finite wave packet, i.e., a problem
increases with energy, so that packet components with @ which it is important to take account of exponentially
larger momentum have a higher probability of ending upsmall quantum effects. The evolution of a wave packet, the

(28)

5. CONCLUSIONS
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The kinetics of indirect photoluminescence of GaAs(®d; _,As double quantum wells,
characterized by a random potential with a large amplittitie linewidth of the indirect
photoluminescence is comparable to the binding energy of an indirect exaiton

magnetic fieldB8=<12 T at low temperatures=1.3 K is investigated. It is found that the indirect-
recombination time increases with the magnetic field and decreases with increasing
temperature. It is shown that the kinetics of indirect photoluminescence corresponds to single-
exciton recombination in the presence of a random potential in the plane of the double

quantum wells. The variation of the nonradiative recombination time is discussed in terms of the
variation of the transport of indirect excitons to nonradiative recombination centers, and the
variation of the radiative recombination time is discussed in terms of the variation of the population
of optically active excitonic states and the localization radius of indirect excitons. The
photoluminescence kinetics of indirect excitons, which is observed in the studied
GaAs/ALGa ,As double quantum wells for which the random potential has a large amplitude,
is qualitatively different from the photoluminescence kinetics of indirect excitons in AlAs/

GaAs wells and GaAs/AGa, _,As double quantum wells with a random potential having a small
amplitude. The temporal evolution of the photoluminescence spectra in the direct and

indirect regimes is studied. It is shown that the evolution of the photoluminescence spectra
corresponds to excitonic recombination in a random potential. 1999 American Institute of
Physics[S1063-776099)02605-0

1. INTRODUCTION lifting of spin degeneracy. Theory predicts that when the
distance between the electron and hole layers is small,

The neutral system consisting of spatially separated twog<| (Iz= \Ac/eB is the magnetic lengihthe ground state
dimensional layers of electrons and holes in double quanturgs the system is determined by the electron—hole interaction
wells has been widely studied in recent year§.This sys-  and is an exciton condensate, while for large distances,
tem is of interest primarily because of the possibility of CON-4=|,, the ground state is determined by electron—electron

structing structures with the required architecture and a low,,4 hole—hole interaction and is an incompressible Fermi
rate of indirect(interwell) recombination. Since the effective liquid or Wigner crystal of electrons and hofts®

carrier temperature is determined by the ratio of the relax-

ation gnd_ recomb|nat|on_ tlmes_, the IOW. indirect- :rmd double quantum wells is the existence of a random po-
recombination rate makes it possible to obtain a neutratential roduced in the plane of a well by irregularities of the
electron—hole system of a high density with a low effective. P P ylrreg

temperature. A number of theoretical treatments have shc)V\I|I[|1terfr:1ces, composition fluctuations, defects, and impurities.

that in a system of spatially separated layers of electrons arfd random pot_e_ntial qualitatively affects the br operties of the
holes in double guantum wells at low temperatures collectiveyStem. Specifically, a strong random potential destroys pos-

states can be observed, including a condensate of indireSiP!€ collective statessee Ref. 12 and citations theréo
excitons similar to the Bose—Einstein condensatdh€ory of a system of spatially separated electron and hole

bosonst®~2°An interesting particular case is a system of SpaJayers in the presence of a random potential is yet available.
tially separated layers of electrons and holes in a strong magVe shall parametrize the magnitude of the potential by the
netic field perpendicular to the plane of the well. A numberratio of the binding energy of an indirect exciton to the width
of theoretical studies have shown that the critical condition®f the indirect luminescence line, determined by the ampli-
for condensation of excitons are improved in a strong magtude of the random potentia, /Ap . In terms of the pa-
netic field as a result of complete quantization of the energyametersd, Ig, E,, andAp, (in a zero magnetic field the
spectrum of electrons and hoted® and as a result of the analog ofl; is the Bohr radius of an indirect excitprfour

An inevitable property of semiconductor quantum wells

1063-7761/99/88(5)/9/$15.00 1036 © 1999 American Institute of Physics
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classes of spatially separated electron—hole systems inith the analogous dependences for class B1, B2, and Al
double quantum wells can be distinguished. Class B1 condouble quantum wells.

sists of double quantum wells with a small effective distance

between the layers and a weak disordé<(g, E;>Ap ). 2. SAMPLE AND EXPERIMENTAL PROCEDURE

According to theoretical studigg;?for this class of double L .
guantum wells the ground state of the system at low tem-. In gate voltage tunable™—i—n" heterostructure with a

peratures should be an excitonic condensate, and the criticgl'lngle GaAs/AlGa_xAs double quantum well, which was

conditions for condensation of excitons are improved in aad]usted by varying the gate voltage, was grown by

) ; Y .
strong magnetic field®*® Class B2 consists of double quan- rgoéiccuciﬁrsiz(;ag tSv%taSX%n?r\]Nigg gaﬁs 3:235?3@'—:—3?]; a
tum wells with a small distance between the layers and Y ' ’ q P

strong disorder d<Ig, E,<Ap.). Class Al consists of rated by a 5.5 nm thick AlzGa,e\s barvier and surrounded
: : by 55 nm thick A} 35G&, g5AS barriers. The band diagram of
double quantum wells with a large distance between the lay-~ * : o S .
. . thei layer of the structure in the indirect regime is shown in
ers and weak disorderdglg, E/>Api). According to oty The 1100 nm thick* layers on the substrate side and
theory32%for this class of double quantum wells the ground.. 2" - y

state of the system at low temperatures should be an inco {he 110 nm thick layer on the surface side were doped with

"5 t0 a densityNg=5% 107 cm 3. To im he electri
) S . Si . prove the electrical
pressible Fermi liquid or a Wigner crystal of electrons andcontact,5 doping withNg =10 cn-2 was performed at 10

holes. Class A2 consists of double quantum wells with & 1 from the surface. As a result of the hiah doping densit
large distance between the layers and strong disorder ( ' 9 ping y

. 7 then™ layers are of a metallic character, and the gate voltage
=lg, E;=<Ap|). This classification must be supplemented y g g

; . . "V, applied between the substrate and the surface decreases in
by the carrier density and the temperature, which determmﬁq‘?J PP

the phase boundaries. Interclass transitions between trw

The sample was placed in a helium cryostat with a su-
(S-:rconducting solenoid. Excitation and detection were per-
rmed through a 20Qwm in diameter optical light guide,
aced 300um from the mesa surface. The carriers were
xcited by a pulse semiconductor laséi(=1.85 e\j. The
laser pulse was approximately square wit0 ns duration
and ~1 ns edges. The temporal resolution of the detection

double quantum wells, characterized by a small distance bes'ystem was 0.5 ns. A double grating monochromator, a pho-

tr;]N:\?natr:](;eAelefcrtor%n BigdGhn(zlsvlayﬁ![::tgh::efT)Té Egj}o o tomultiplier, and a time-correlated photon counting system
' PL » WhI 9 10 \ith time resolution were used to detect the signal.

the classes B1 and B2, implying condensation of indirect
excitons in strong magnetic fields at low temperatures have
been observed: an anomalous increase of the diffusion coef: "HOTOLUMINESCENCE KINETICS IN THE INDIRECT
L L o . . EGIME
ficient and radiative recombination rate of excitons, inter-
preted as the appearance of superfluidity of excitons and The indirect regime in then™—i—n" structure of the
superradiance of an excitonic condensatnd anomalously GaAs/AlLGa,_,As double quantum wells occurs for finite
large fluctuations of the total intensity of the photolumines-values ofV,. TheVy dependence of the photoluminescence
cence of excitons, interpreted as critical fluctuations near apectra and kinetics are shown in Figs. 1a and 1c.\Fpr
phase transition, which are associated with instability of con=<0.3 V the energy of the photoluminescence line is essen-
densate domairfsAs the disorder in the experimental AlAs/ tially independent oWy, and the decay of this line is char-
GaAs wells increased, these anomalies became weaker aadterized by a short lifetime. Therefore the ground state of
disappeared, which corresponded to a transition from clashe system fo =<0.3 V is a direct exciton. Fov;=0.4 V,
B1 to class B2?2 increasingV, produces an approximately linear energy shift
The kinetics of photoluminescence in double quantunof the principal photoluminescence line and increases the
wells belonging to the class Al has been investigated in @ecay time of the line. Therefore fdf;=0.4 V electrons and
zero magnetic field. Specifically, double quantum wellsholes in the ground state of the system occupy different
GaAs/ALGa _,As with d~12nm, E,~5 meV, andAp,  quantum wells; this corresponds to an indirect regime. The
=1.3 meV have been investigattfdA sharp increase of magnitude of the shift of the indirect photoluminescence line
intensity and narrowing of the photoluminescence line ofis determined by the electrostatic energfyd, wheree is the
indirect excitons were found after the pulsed laser excitatiorelectron charge anid is the electric field in the direction. A
was switched off at low temperatures and high exciton dentransition from the direct regime into the indirect regime
sities. The effect was described by a rapid increase in theccurs in a nonzero electric fiel, _, . This corresponds to
population of optically active excitonic 2D stat&s. excitonic recombination with direct and indirect exciton en-
In the present work we investigate the optical propertiergies?p=E,—Ep and £, =E,—E,—eFd, whereEg is the
of a system consisting of spatially separated layers of elecenergy gap, including the electron and hole quantization en-
trons and holes in class A2 wells. Specifically, we investigateergy in the double quantum wely andE, are the binding
GaAs/ALGa _,As double quantum wells witd~11 nm  energies of the direct and indirect excitons. FerFp_, the
andE,~Ap ~6 meV. The experimental data are comparedenergy difference between the single-particle direct and in-

the classes B1 and Al and a transition between the class
B2 and A2 can be accomplished by increasing the magnetiE
field, while a transition between the classes B1 and B2 angi
between the classes Al and A2 can be followed by studyin
double quantum wells with various degrees of disorder.
At experimental investigation ofl'—X, AIAs/GaAs

+
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direct pair states is equal to the difference between the bindf the indirect photoluminescence line can be estimated by
ing energies of the direct and indirect excitorefp_,d comparing the widths of the direct and indirect photolumi-
=Ep—E, (see Refs. 7 and 9 and the references cited therenescence lines. In the GaAs/8a _,As double quantum
The width of the indirect-exciton line is determined by well studied the indirect photoluminescence li@€5 meV
the random potential in the plane of the double quantunfor V,=0.8 V) is even narrower than that of the direct pho-
well. Several types of disorder, making the main contributiontoluminescence ling€14.7 meV in the direct regime with
to the inhomogeneous broadening of the indirect photolumiV,=0 and 9.4 meV in the indirect regime with,=0.8 V),
nescence line, can be distinguished:imterfacial fluctua- indicating that fluctuations of the electric field make a neg-
tions; b electric-field fluctuations in thez direction; 9 ligibly small contribution to the broadening of the line. The
charged impuritiegother types of disorder, such as compo-quantum wells in the experimental structure are narrow: 5
sition fluctuations, neutral impurities, and defects also existhm corresponds to 18 monolayers. In narrow wells interface
but their contribution to disorder is, as a rule, small€tuc-  fluctuations make the main contribution to inhomogeneous
tuations of the electric field in the direction give rise to broadening of the line. Thus, in the experimental double
in-phase fluctuations of the potential for an electron and for juantum well a fluctuation of the well width by one mono-
hole, so that they can be treated as fluctuations of the poteayer with an infinite terrace produces a chaidge~5 meV
tial for the indirect exciton center of mass. Charged impuri-in the electron energy and2 meV in the hole energy. The
ties give rise to antiphase fluctuations of the potential for arfiniteness of the terraces results in quantization of the elec-
electron and for a hole. Strong fluctuations due to chargetton and hole energies in the plane. This produces states in
impurities can result in breakup of the exciton and indepenthe entire energy interval from 0 t),,. The observed width
dent localization of an electron and a hole in a local mini-of the indirect photoluminescence line correspondsétp
mum of the random potentié’r.lnterfacial fluctuations give (Fig. 19. This confirms that interfacial fluctuations make the
rise to in-phase fluctuations of the potential for an electrordominant contribution to the broadening of the line. There-
and a hole in single quantum wells; for an indirect excitonfore the large magnitude of the random potential in the ex-
(electron—hole pajrin GaAs/ALGa _,As wells interfacial perimental GaAs/AlGa, _,As double quantum wells is due
fluctuations produce independent fluctuations of the potentigbrimarily to the small width of the quantum wells. The shape
for an electron and a hole. Fluctuations of the electric field inof the photoluminescence line reflects the energy distribution
thez direction are determined primarily by fluctuations of the of excitons over local energy minima in the random poten-
extent of the section where gate voltage drops. To reductal. The direct-photoluminescence line is probably broad-
such fluctuations to a minimm th&" layers should possess ened in part because the widths of the two quantum wells are
good conductivity, and thielayer should be a good insulator. different and the direct photoluminescence line includes two
Then the region where gate voltage drops is clearlyspectrally unresolved lines from the two quantum wells.
determined—it is the layer. In the experimental structure in the indirect regime both
Since fluctuations of the electric field in tledirection  radiative and nonradiative recombination contribute to the
are specific to indirect excitons in double quantum wells,recombination of indirect excitons. The observed decrease of
their relative contribution to the inhomogeneous broadenindghe recombination rate with delay timsee, for example,



JETP 88 (5), May 1999 Butov et al. 1039

Fig. 1) is characteristic for both radiative and nonradiative 7, arb. units
recombination of indirect excitons. The radiative recombina- 50
tion rate of an exciton is proportional to the population of the 1
optically active D excitonic states(with quasimomenta 40
k<ky= #/fic, wherec is the velocity of light in the mediuin
and it increases with the extent of the wave function of the 13
exciton center of mass in the plane, called the coherent aree
of the exciton(the radiative recombination rate saturates
when the coherent length of the reciprocal of the wavelength
of the emitted light is reached?=2° As a result of the spread
of the localization radius in a random potential, the radiative
recombination time of excitons is nonuniform over the plane L N~
of the double quantum well. As a result, the radiative recom- 0+ T T . T
bination rate decreases with increasing delay time, since itis 2% 1375 1590 1605 1620  1.635
excitons with a large localization radius that are the first to Energy, eV
recombine in the photoluminescence decay process. [ . arb. units

Moreover, as the delay time increases, electrons and o
holes independently localized in the local minima of the ran-
dom potential and having, as a result of the spatial separation1
in the plane(in addition to separation in the direction for
indirect electron—hole pairsa low radiative-recombination
rate make an increasingly larger contribution to the intensity 100‘;
of photoluminescence. Since the independently localized ]
electrons and holes with the smallest separation in the plane
are the first to recombine in the process of photolumines- 103
cence decay, the radiative recombination rate of indepen-

—
w

|

=
W
doooon oot A

dently localized electrons and holes also decreases with in- 10
creasing delay timé' In narrow double quantum wells, .. : — :
characterized by a low diffusion coefficient of indirect exci- 50 100 150 200 250 300
tons, nonradiative recombination is determined by exciton Time, ns

transport toward nonradlatlye.recombma_tlon_ Cen{é%'_zlg FIG. 2. Time-integrated photoluminescence specttgmand indirect pho-
The decrease of the nonradiative recombination rate with thgiuminescence kinetics, measured at the maximum of the indirecttjne
delay time is due to the monotonic decrease of the excitoas a function of temperature wity="0.8 V, W,,=10 W/cn?, andB=0.
diffusion coefficient. As a result, more and more localizedThe speptra and kinetics are shiftg_d along the ordinate for clarity._ Tr_\e
. . . dashed line corresponds to the trailing edge of the 50 ns laser excitation
excitons, Whlch h.ave not ha‘?' en.OUQh time to reaCh. the Cerl)'ulse. The direct and indirect photoluminescence lines are label&dang
ters of nonradiative recombination and to recombine, pret, respectively.
dominate in the spectrum.
The magnetic-field and temperature dependences of the
indirect-photoluminescence spectra and kinetics are digoluminescence does not exhibit a sharp increase in the stud-
played in Figs. 1b, 1d and 2. The temperature dependence @fd double quantum well with a large random potential after
the indirect-photoluminescence spectra and kinetics in stronthe laser excitation pulse ceases because the large potential
magnetic fieldsB<12 T, is qualitatively the same as the smears the boundary between the optically actiwéh k
analogous dependence fBr=0. The corresponding initial <k,) and passivek>k,) excitonic state¥, so that the pos-
decay time of photoluminescence, and the integrated in- sible sharp increase in the population of optically active
tensity of indirect photoluminescendg, , are shown in Fig. states does not result in a higher photoluminescence inten-
3. The timer increases with magnetic fieleFigs. 1d and 3a  sity. The absence of a sharp decrease iof strong magnetic
and decreases with increasing temperatéig. 2b, 3b, and fields, which is observed in AlAs/GaAs double quantum
30). wells (B1 clas$ and indicates the appearance of superfluidity
The observed photoluminescence  kinetics inof excitons? indicates the absence of collective effects in
GaAs/ALGa _,As double quantum wells is qualitatively dif- the studied double quantum wells with a large random po-
ferent from the kinetics in the B1-, B2-, and Al-class doubletential and a low binding energy of the indirect excit@2
guantum wells investigated: in contrast to GaAs@d, _,As  clasg, as expectedsee Sec. 11
double quantum wells with weak disordérl clas3,?*in the The observed monotonic increase of the lifetime with the
experimental GaAs/AGa _,As double quantum wells a magnetic field is characteristic for radiative and nonradiative
sharp increase in the intensity of photoluminescence after thgingle-exciton recombination in a random potential. The
laser excitation pulse ceases is not observed; in contrast tthange in the radiative lifetime of excitons with increasing
AlAs/GaAs double quantum welle81 clas3,®'?in the ex- magnetic field is determined by the ratio of the increase in
perimental GaAs/AlGa, _,As wells a sharp decrease pin  the oscillator strength of the exciton as a result of a decrease
strong magnetic fields is not observed. The intensity of phoin the exciton radiu¥ and the decrease in the oscillator
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strength of an exciton as a result of a decrease in the locakrgy for photoexcitation is only 100 meV lower than the
ization radius of the excitdA % in a magnetic field as a energy of the A 3:Ga, gAS barrier, so that as a result of the
result of an increase in the mass of the magnetoexéitéh. Franz—Keldysh effect and the tails of the density of states in
The increase in the nonradiative lifetime of an excitde-  Al,Ga _,As, the absorption in the barrier layers was sub-
termined by transport toward nonradiative recombinationstantial. The collection of carriers generated in the barrier
center$ with the magnetic field is due to a decrease in thelayers to double quantum wells made an appreciable contri-
diffusion coefficient caused by an increase in the magnetoexsution to G, comparable to the generation in GaAs layers.
citon mass® A decrease of the diffusion coefficient with Thus the increase in the total photoluminescence intensity
increasing magnetic field has also been observed for indireatith a small applied gate voltagéig. 1) is due to an in-
excitons in AlAs/GaAs double quantum wells in weak mag-crease irG as a result of the drift of carriers generated in the
netic fieldd? and for direct excitons in single barrier layers(this effect is absent for photoexcitation with
GaAs/AlLGa _,As double quantum welf¥ We note that a photon energy much less than the gap width in the barrier
monotonic increase of the radiative and nonradiative lifedayer9. The drift of carriers generated in the barrier layers in
times with increasing magnetic field is also characteristic fodouble quantum wells can depend on the magnetic field and
independently localized electrons and holes and is due to ®mperature. For this reas@is not independent of the pa-
decrease of the carrier localization radius. rameters, and the method described above for finding the
The method described in Ref. 12 was used to distinguisllependence of, on the magnetic field and temperature from
the radiative and nonradiative lifetimes. The radiative life-the measured values afand|p, is not entirely correct for
time 7, can be directly extracted from the measured totalthe present experiment. Moreover, an error in estimating the
lifetime = and the time-integrated photoluminescence intenquantum yield for parameters corresponding to maximum
sity I 5, . For single-exponential decay of photoluminescencd p, will enter in the absolute value of andr,, as well as in
7,=(G/lp) 7, whereG is the generation rate of electron— the magnetic-field and temperature dependencesr,pf
hole pairs in double quantum wellereak nonexponentiality Nonetheless the method employed makes it possible to fol-
introduces negligible quantitative correctidfs The quan- low the qualitative variations of, and r,,, as a function of
tity G is unknown; to estimate it the quantum yield with magnetic field and temperature.
parameters corresponding to maximlipy was taken to be It is evident in Fig. 3 that, is virtually independent of
1. Then G=Ia and 7,= (I max/1p) 7. Where | o is the  the magnetic field and,,, increases monotonically with the
maximum integrated photoluminescence intensity observefield. This corresponds to the single-exciton behavior de-
in the experimental double quantum well withy=0.3 V  scribed above. As temperature increasesncreases and,,
(Fig. 1a. The formular 1= Tr_l+ r;rl was used to find the decreases$Fig. 3; the opposing behavior af and 7, could
nonradiative lifetimer,,, using the measured value efand  cause a weak nonmonotonicity of the temperature variations
the calculated value of, . The values ofr, and7,, found in  of 7, and the possible increase oft low temperatures falls
this manner are shown in Fig. 3. within the experimental error, Figs. 2 angl The decrease in
Note that the parameter dependencerofound by the 7, with increasing temperature is characteristic for both
method indicated above is correct@ does not depend on single-exciton recombination and recombination of indepen-
the given parameter. This condition was satisfied for thedently localized electrons and holes and is due to the in-
AlAs/GaAs double quantum wells studied in Ref. 12. How- crease in the diffusion of excitor(glectrons and holggo-
ever, it is not satisfied in the present investigations ofward nonradiative recombination centers as a result of their
GaAs/ALGa _,As double quantum wells. The photon en- thermal activation from local minima of the random poten-
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tial. The increase i, with temperature is characteristic for L,/W, . arb. units
excitonic recombination because the population of optically a
active excitonic states decreagésr a Boltzmann distribu- 100- I

tion of excitons the fraction of optically active excitons with

k=<kg is 1—exp(—Ey/kT), where E0=ﬁ2k3/2m~1 K; for

T>E, the Boltzmann distribution leads to a linear increase I

of the radiative lifetime of excitons with increasing D 10 wicm?

temperaturg?’~2However, the observed increasemfwith 3.1 Wiem?

temperature contradicts the model of recombination of inde- > 0.9 Wiom?

pendently localized electrons and holes, on the basis of

which an increase in temperature should enhance the over- A B=0 10 Wiem?

lapping of the electron and hole wave functions due to their .._,-/\ B3=0 3.1 Wiem?

delocalization. Hence it follows that the random potential in T~ B-0 0.9 Wiom?

the double quantum well under study is not strong enough to Oy T T RN

break up excitons, and the fraction of independently local- 1.560 1575 l'ﬁger lf\?s 1620 1635

ized electrons and holes is low. Note that the magnetic-field o

and temperature dependencesmpfand 7, in the studied I, arb. units

GaAs/ALGa _,As double quantum well correspond qualita- ’ i b

tively to the analogous dependences for AlAs/GaAs wells 1¢* : B-127 5

(B1 clas$ in weak magnetic field¥ In both cases these B=12T 10 W/°m2

dependences correspond to single-exciton recombination. i B=12T 3.1 Wiem
The photoluminescence spectra and kinetics of indirect 0.9 Wem?

excitons are virtually independent of the exciton density, o3

fixed by the laser excitation densiw,, (Fig. 4). For W, ! B

=10 Wicnt the density of indirect excitons with lifetime i P s

=100 ns is estimated to be several times®€m 2. As ‘ P~ 10 Wiem 5

W,, increases, a shift of the indirect exciton line in the di- 1024 i 3.1 Wiem

rection of high energies is observed. This behavior corre- ‘ 0.9 Wicm?

sponds to the theoretically predicted increase of the energy

of indirect excitons with increasing density° and is ex- ' T 1 7

plained by the repulsive dipole—dipole interaction between S0 100150 Zg?me‘niso 300 350 400

indirect excitons for low exciton densities and by the energy

shift for high electron—hole densities due to the electric fieldFIG. 4. Time-integrated photoluminescence spectrum normalized to the la-

between the separated electron and hole layers. Moreovef" excitation densitf) and indirect-photoluminescence kinetics measured

. . . . . af the maximum of the indirect lingb) as a function of the laser excitation

since the degeneracy of the zero-dimensional excitonic statgsiry WithV;=0.8 V, T=1.3 K, andB=0 and 12 T. The spectra and

in a local minimum of the random potential is finiteeglect-  kinetics are shifted along the ordinate for clarity. The dashed line corre-

ing the exciton-exciton interaction, the degeneracy i§p9nds to the trai!ing edge of_the 50 ns laser excitation pulse: The direct and

~S/a§, whereSis the area of the local minimum amé is indirect photoluminescence lines are labeledbgndl, respectively.

the Bohr radius of an indirect excithnan increase of the

exciton density results in an increase of the average exciton

energy. This effect should also contribute to the observegyeight proportional to the radiative-recombination probabil-

increase in the indirect-exciton energy with density. ity. The dependence of the photoluminescence spectra on the
A small decrease of the recombination time of indirecttime delay is shown in Fig. 5a and 5b, respectively, for the

excitons is observed with increasig,, (Fig. 4b. This be-  direct and indirect regimes. After the laser excitation pulse

havior is characteristic for single-exciton recombination in aends, both the direct-photoluminescence line in the direct

random potential: the exciton localization radius increasesegime and the indirect-photoluminescence line in the indi-

with exciton density (since at low density excitons are rect regime shift monotonically in the direction of low ener-

strongly localized in deep local minima of the potential gies as the time delay increas@sg. 5). Similar behavior is

This decreases both the radiative-recombination time ofiso observed in strong magnetic fields. The shift of the pho-

excitationg?~2% and the nonradiative-recombination time of toluminescence line with increasing time delay is typical

excitons due to transport toward nonradiative-recombinatiomoth for excitonic recombination and for recombination of

centers. independently localized electron—hole pairs as well as for

radiative and nonradiative recombinations. In the first place,

as the delay increases, the average energy of photoexcited

excitons (electron—hole paidsin a random potential de-

creases as a result of the energy relaxation of the carriers:
In this section we examine the temporal revolution of theexcitons (electrons and hol¢smigrate in the plane of the

photoluminescence spectra. This is the evolution of the endouble quantum well in search for lower-energy local

ergy distribution of excitons(electron—hole paijs with minima of the potential with the emission of acoustic

4. EVOLUTION OF PHOTOLUMINESCENCE SPECTRA IN
DIRECT AND INDIRECT REGIMES
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% ‘“""‘"‘"’/ E___"_j;,’ﬂ‘-‘\F £ indirect-photoluminescence spectrum in the in-
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Energy, eV Energy, eV scaled to roughly the same intensity. The curves

T of photoluminescence kinetics versus energy are

; d shown for the same parametécs d); the ener-

. gies of the detected signal are shown in panels a
p2 2 and b by dashed lines. The spectra and kinetics
S S 5 are shifted along the ordinate for clarity. The
o g 4 dashed line in panels ¢ and d corresponds to the
s © 3 trailing edge of the 50 ns laser excitation pulse.
X N 5 The direct and indirect photoluminescence lines

; are labeled byD andl, respectively.
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phonons. This mechanism of energy relaxation of excitons iphotoluminescence line than the width of the indirect line, a
a random potential was theoretically examined in Ref. 35specific energy dependence of the photoluminescence kinet-
and has been observed for indirect excitons in a double quarnes is observed in the mixed regin{€ig. 6). This depen-
tum well1%3 |n the second place, as the delay time in-dence is different from the monotonic decrease of the recom-
creases, the average energy of the excit@ectron—hole bination rate with decreasing energy, as is observed in the
pairg in a random potential decreases because the highedirect and indirect regimes. Specifically, in the mixed regime
energy excitons(independently localized electrons and the recombination rate on the initial times of photolumines-
holeg have higher radiative and nonradiative recombinationcence decay depends nonmonotonically on the energy,
rates. As the energy of the excitons in a random potentiateaching a minimum at energies corresponding to indirect
increases, their localization radius increaSeshich results  photoluminescencékinetics 4-6 in Fig. 6b). The high re-

in a higher radiative recombination r&te’®and higher non-  combination rate of direct photoluminescence at energies be-
radiative recombination rate, due to transport of excitons tolow the indirect-photoluminescence ener@y 9 in Fig. 6b

ward nonradiative-recombination centers. For independentlindicates that the electron—hole distance in the plane is less
localized electron—hole pairs, the higher-energy pairs alsthan the distance in thedirection. Since the latter distance
have a higher recombination rate because of their larger las ~11 nm, the electron—hole distance in the plane is less
calization radius and the corresponding larger overlap bethan the radius of a direct excitor=(LO nm) and especially
tween the electron and hole in the pldie. an indirect exciton, which has a larger radius as a result of

Another aspect of the dependence of the photolumineshe lower binding energy~20 nm)’ A small electron—hole
cence spectra on the time delay is the energy dependence distance in the plane indicates that excitonic recombination
the photoluminescence kinetics, shown in Figs. 5¢c and 5doredominates over recombination of independently localized
As energy decreases, the photoluminescence decay beconedsctrons and holes.
slower and slower, which corresponds to the time depen-
dence of the spectréFig. 5a and 5p and was discussed
above.

As a result of the inhomogeneous broadening of the di- We have investigated the kinetics of indirect photolumi-
rect and indirect photoluminescence lines, for the appropriataescence in GaAs/&Ga, _,As double quantum wells char-
gate voltages a mixed regime in which the direct and indirecticterized by a random potential with a large amplitithe
photoluminescence energies overlap can be obtained. Suchwédth of the photoluminescence line is comparable to the
regime of energy resonance between direct and indirect exbinding energy of an indirect excitprand a large distance
citons was considered in Ref. 38 in a study of the photolubetween the electron and hole layets<(11 nm, which is
minescence of zero-dimensional excitonic states in the locareater than the magnetic length & 5.5 T) in magnetic
minima of the random potentighatural quantum dotsIn fieldsB=12 T at low temperature$=1.3 K. It was found
our double quantum well the mixed regime appearsMgr that the indirect recombination time increases with the
~0.2-0.5 V; this is evident from th&, dependence of the magnetic field and decreases with temperature. Analysis of
photoluminescence spectf&ig. 1). In the studied double the variation ofr and the total intensity of photolumines-
qguantum well, characterized by a larger width of the direct-cence gave the radiative and nonradiative indirect recombi-

5. CONCLUSIONS
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lpl.arb. units indirect photoluminescence line in the indirect regime shift
60 9 3 2 ! a monotonically in the direct of lower energies as the delay
sot time increases. It was shown that the evolution of the photo-
luminescence spectra corresponds to excitonic recombination
401 in a random potential and is determined by the energy relax-
30t ation of excitons and by the energy dependence of the re-
combination rate.
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1ok discussion of the results obtained in this work as well as the
SR ; Russian Fund for Fundamental Reseal&hoject 98-02-
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We have developed a numerical technique for calculating inhomogeneous strains in stressed
semiconducting nanostructures, such as quantum wires and dots manufactured by nanolithography
from stressed InGaAs/GaAs quantum wells. The technique is based on solving a linear

problem of elasticity theory by the Green’s function method and presumes a lack of defects and
dislocations in nanostructure heterojunctions. Spatial distributions of strain tensor

components and shifts of electron and hole potentials in a nanostructure due to the strain have
been calculated. €999 American Institute of Physids$1063-776(99)02705-3

1. INTRODUCTION C1o—Cus
C—~0.057< 1.
In open nanostructures, such as quantum wires and dots 12
which are manufactured using nanolithography on the sur- N . : :
. In the approximation of an isotropic medium, the elas-
faces of samples containing InGaAs/GaAs quantum wells att . . : .
S .~ “ticity problem is fully characterized by two elastic constants,
small depths, stressed InGaAs layers give rise to large inho- ) . g
. . . . namely, Young’s modulug and the Poisson coefficiewnt
mogeneous strains determined by shapes of lithographicall . . ; .
; ) : . fact, we only require ratios of Young’s moduli.
defined nanostructures. Partial elastic relaxation of stresse

layers has considerable effect on spectra and wave functions The source of stress in a nanostructure is the difference
Y between the lattice constants of GaAs and InGaAs. In our

of electrons and holes, and this offers fresh opportunities for . .
alculations we use the following low-temperature formulas

banq-gzilE)3 engineering and control over wave functions OEOV the lattice constanté@neasured in nanometgf
carriers.” The present paper reports a technique develope

for calculating inhomog_eneous stra_lin fi_eld_s in_ stressed nano- gaad T(K))=0.565325- 6.86x10°° T,
structures, and calculations of strain distributions and result-

ing shifts of electron and hole levels in InGaAs/GaAs quan- 4 (T(K))=0.60583+4.52x10°6 T
tum wires and cylindrical quantum dots. nAs '

and linear interpolation for InGaAs.

For example, in an unbounded two-dimensional
Ing.1Ga As quantum well on a GaAs substrate, the differ-
ence between the lattice constants leads to the following ho-

In what follows, we will assume that the system undermogeneous uniaxial strain in the InGaAs well layer, pro-
consideration is dislocation-free, and the equations of elasdded that the epitaxial interfaces are matched at the atomic
ticity theory apply at nanometer scales. We suggest an ejeVvel:
tremely efficient approach to strain calculations based on

2. THEORETICAL MODEL

Green’s functions of elasticity theofyThis method explic- L0 — (0)— Beans™ Bincaas__

itly takes into account the piecewise-constant form of elastic % Y/ AinGaAs ’

parameters of semiconducting nanostructures, which usually

consist of homogeneous, epitaxially connected pieces of a ) Z_Uu(o)_2_05

variety of semiconductors. We will prove that the strain ten- 2z l1-c ™ 1-0’

sor can be expressed in regions of constant elastic parameters

as a functional of the forces at the boundaries of these re- u&?,):ugg):ug?():& )

gions, which allows one to reduce the problem of elasticity

theory to an integral equation at the interfaces between th&he GaAs barrier layers are unstrained. For finite fragment

various fragments of a nanostructure. sizes, compression is partially relaxed in InGaAs, and the
We model elastic properties of fragments in the approxi-strain becomes inhomogeneous and encompasses GaAs re-

mation of an isotropic elastic medium, whose Green'’s funcgions.

tions can be expressed in explicit fofnbuckily, the anisot- Consider the simplest case of dislocation-free matching

ropy of semiconductors in IlI-V nanostructures, for example,between two fragments of a semiconducting nanostructure

INnGaAs/GaAs, is fairly low. In particular, the difference be- V; andV, along some surfacg,,. If the equilibrium lattice

tween elastic modulC,, andC,, in both GaAs and InGaAs constants; anda, of the two fragments are different, both

is small: are strained owing to their mutual interaction on the inter-

1063-7761/99/88(5)/5/$15.00 1045 © 1999 American Institute of Physics
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face. We denote the surface force on the first fragment due telastic medium. The displacements caused by these forces

the second byg;,=g. By Newton’s third law,g;,=—g,; can be calculated using the known expressions for the

=-—q. Green’s functions for an unbounded, homogeneous elastic
In the general case, strains also lead to displacementaedium?

and rotations of fragments as a whole. A fragment’s arbitrary

displacementdue to strainsmuch smaller than its size can u(P)= j Aii(P,P)f;(P")dSs,

be expressed as S

U(P)=Ug(P) +tem+ QX (rp—Tem) +UY(P), 2 Aij(P,P)=A;j(R=rp—rp/)
whereug(P) is the initial equilibrium displacement of cells 1 1+0(3—40)J; R?+R; R
in the unstrained fragment,,, andQ are the shift and rota- “8rEl-o R3 , (6)

tion angle of the fragment as a wholg,, is the center-of- _ _ _ _
mass coordinate of the fragment(P) is the purely defor- WhereE is Young’s modulus andr is the Poisson coeffi-
mation displacement, which is a functional of the surfacecient. The strain tensor
forcesg: S 1fau oy,

ui(N=7 arj

u?<P>=JU%<P.P'>gj<P'>dspr. )
s and the stress tensor
In this paper, we show how to Calculau?j(P,P’), the ker- E o
nel of the functional that relates strain displacements in a  oj; ujj + 1_20u”5ij),
homogeneous fragment to the forces applied to its sui$ace

The condition of the defect-free matching between theare obviously also known functionals &fP’).

:1+U

fragments at each point of surfag, can be written The forces acting at poinf8’ on a fragmentdefined by
uO(P)=u@(P) 4) surfaceS) of an unbounded elastic medium equal, by defini-
' tion,
where -
(M(py=g;;(P)N;(P"), P—P’, @)

(1) =@ (1) (1) _ (1)
U (P)=ug(P)+tgn+ QX (rp—r
(P)=Ug™(P)+ tem (Tp=Tem) wheren;(P’) are the components of the unit normal to the

+J UID(P PYa(P)d surfaceS at pointP’, andP is an interior point of the frag-
S (P,P)g(P")dSe, ment. Just likeu; and oy, the distribution of forceg(™
also becomes a known functional P ’):

u@(P)=uP(P)+t2)+ Q@ x (rp—r2)

g?'”><P'>=JB”<P',P">fJ<P">dsp~. ®)
—J UI(P,P")g(P")dSs: . s
S We emphasize that the force$™(P’) are different
Note that the different signs in front of the integrals are duefrom f(P'), which can easily be verified by considering the

to the definitiong,,=g andg,;= —g1,=—0. special case in which the applied fordeare nonvanishing
For a time-independent stress constant, the total surfaganly at certain points on the surfac® Nonetheless, the
force and torque on each fragment should be zero: strains generated by these forces, and hefieg are gener-
ally nonvanishing over the entire surface.
J gi(P)dSs =0, fgi”rj(pf)gy(p')dsp,:o_ (5) Since the elastic interaction is short-range, the strain in
S S the interior of an unbounded elastic medium due to forces

In numerical calculations, it is convenient to replace integrald(P') is obviously the same as that in a free body of the
with sums over small surface elements. same shape and elastic properties acted upon by fgféés

Without a loss of generality, one can single out one frag- Thus, the problem of the strain in a'free body acted upon
ment, for example the first, and SE@?,FO and QW =0. by surface force@(P’_) can be solved in two sta_ge_s. First,
Suppose that the surfag, is broken up intoNs elements; W€ ca_lculate the distribution of forcé6P') that satisfies the
then Eqs.(4) and (5) yield 3Ng+ 6 equations for the forces €auation
g(P") (3Ng unknown quantities t'2), andQ? (another six
unknowns. Solving these equations, one can determine the f Bij(P",P")f;(P")dSer=g;(P’), )
surface forcesg(P'), and given these quantities and S
U?j(”)(P,P’), n=1, 2, for arbitrary fragment point® and then, given Eq(6), we calculate the strain in the interior of
P’ on the surface,,, one can calculate the displacement atthe elastic medium, which is identical to the desired strain in
an arbitrary point inside the fragment. the free body.

We now describe the technique for constructing the ker-  Since we are interested in time-independent strains, the
nel U%(P,P’). We fill the space outside the fragment underdistributions of forced and g should yield vanishing total
consideration with the same material and apply the forceforces and torques. Therefore, in addition to Ex), a simi-
f(P') to points P’ on the surfaceS in this homogeneous lar condition forf should be satisfied:
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a
—% %— FIG. 1. Cross sections of InGaAs/GaAs wires of

width L,=45nm with strain fields calculated for
four different combinations of the thicknesses of the
cap barrier layerl. .,,, quantum well layerl.,, and
the etch depth in the substrate barrier laygyr, The

) quantitiesL ., L,, andL, equal, respectively(a)
b d 10, 5, and 0 nm(b) 10, 5, and 35 nm(c) O, 5, and
0 nm;(d) 0, 5, and 35 nm. In order to visualize the
calculated strain tensor components, the vertical
displacements are multiplied by a factor of 200.

fsfmp')dsp;o, fssijkm(P')—r,-°m>fk(P'>dspr=o. UL(P,P)= AW(P.P(By (PP, (15

k,P”
. (10 At the beginning of this section, we discussed the case of
Equations(5) and (10) can be treated as scalar productstwo fragments abutting one another. This approach can eas-
of vectors in the configuration space of surface force distrijly be generalized to an arbitrary structure composed\ of

butions: fragments joined alN interfaces.
(g-F=0, (g-M)=0, i=1, 2, 3, (11
where the vectorsF(‘) and M® have the components 3. RESULTS FOR InGaAs/GaAs STRUCTURES; DISCUSSION
FOP) =8, MP(P)=¢jj(rj(P")—rM), and the scalar We now demonstrate the opportunities offered by the
product of vectors andb is defined by suggested technique by calculating strain fields in specific
semiconducting structures, namely quantum wires and cylin-
(a-b)= f a(P")b(PHdSs . (12)  drical quantum dots. The cross sections of these structures
S

are shown in Fig. 1. The strain tensor components in quan-

These conditions indicate that out of the entire configutum wires are independent of axial location, and in cylindri-
ration space of surface force distributions, only the subspacgal quantum dots they are independent of the azimuthal
orthogonal to the hyperplarféM defined by the vectors(” angle. Under these conditions, the formulas derived in the
andM®, =1, 2, 3, is interesting from the standpoint of Previous section can be simplified. The resulting integral
physics. equations become one-dimensional in this case and can eas-

Note that for an arbitrary distribution df even if the ily be solved using numerical techniques.
total forces and torques are zero, the resulting distributions ~ Figure 1 illustrates our calculations for cross sections of
of g should be orthogonal to the hyperplaffi!, since these guantum wires based onliGa sAs/GaAs heterostructures
are by definition the forces on an immobile fragment. ThISWIth quantum wells near their surfaces. In order to visualize
means that operatds;;(P’,P") in Eq. (8) transforms the the calculated strain fields, the vertical displacements shown
entire configuration space to the orthogonal complement o the graph are magnified by a factor of 200. The values of
the hyperplane=M; hence, it is degenerate. Therefore, the€lastic parameters used in our calculati¢thee Poisson co-
matrix B;;(P’,P”) cannot be directly inverted. efficient o and the relative change in Young's modulis

This difficulty, however, can easily be eliminatedsifin are given in Table I. We have analyzed structures with vari-
Eq. (8) is replaced with an operator equivalent over the subOUs combinations of the upper cap GaAs layer thickness

space of vanishing total forces and torques: Lcaps INGaAs quantum well thickneds,, and the depthk,,
of etched grooves in GaAs under the quantum well, given a
Bo=Ilgm+ (1—1gw)B(1—1Ilgy), (13

common lateral size of the wire &f,=45 nm. The diagrams
wherellg,, is the projection operator onto the hyperplane
FM. The operatorB, is nondegenerate. When integration
over the surface is replaced with summation oMarsmall
areas,B, becomes a nondegeneratigxX Ng matrix, which

TABLE |. Material parameters of GaAs andyl{Ga, /As at low tempera-
tures used in calculations.

can be inverted using standard techniques. The matrix ob- GaAs Iy :Gay A
tained by this method yields a solution of E§) in the form 031 031
f=B, “g. Substituting this expression fbinto u=Af in Eq. g ab. units 1 0.95
(6), we obtain the desired relationship between the strain, nm 0.56534 0.56939
field u in an elastic body and the forcgson its surface: - 6x10° 0 7.11295
_1 a., ev —-7.2 -7.0
u=Af=AB; "g. (14 a,, ev 1.2 1.2
. , . , i d,, ev 1.9 1.8
A comparison of this expression and K@) yields the final |, | oy 45 4.4

expression foJ? (P,P’):




1048 JETP 88 (5), May 1999 N. A. Gippius and S. G. Tikhodeev

50f 50[

FIG. 2. Changes in the band gap width at
the centers of the quantum well layers in
strained I3 1Ga, JAS/GaAs heterostructure
(a) quantum wires andb) quantum dots,
plotted as functions of lateral sizes of
nanostructures calculated for four differ-
ent configurations shown in Fig. 1
(squares correspond to the configuration
in Fig. 1a, black squares to Fig. 1b, tri-
angles to Fig. 1c, and black triangles to
Fig. 1d.
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7000 10 T 1000
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clearly show that the strain relaxation in the InGaAs layersThe deformation potential constants, a,, b,, andd,
peaks near the vertical walls defining the wires. Moreover, atRef. 5 are listed in Table 1.
small thicknesses of the cap barrier layer, the quantum well Figure 2 plots calculations of renormalization of the
layer as a whole is bertFigs. 1c and 1d One can see that band gap width, at theI’-point in the middle of the quan-
the GaAs cap layer leads to additional compression of théum well InGaAs layer versus nanostructure lateral size
InGaAs quantum-well layer. As will be shown below, this (quantum wire widthL, and cylindrical dot diameteb, re-
can lead to extremely abrupt changes in band parameters spectively. For each quantum object, the renormalization of
structures under discussion. The solutions for quantum dotthe band gap width is given for the four nanostructure cross
are similar to those for quantum wires, the only differencesections shown in Fig. 1.
being larger relaxation amplitudes in InGaAs quantum dots ~ The valueA,=0 in Fig. 2 corresponds to complete elas-
than in the wires. This is to be expected, due to the greatdic relaxation in an InGaAs layer, whereas the value
relative surface exposure of the quantum dots.

The shift of the semiconductor band gap, AP =(a;—a,)Tru@—|b,(uly—uld)| (19)

Ag=Ac—4,, (16) [see also Eq(2)], which equals approximately 40 meV in

can be expressed in terms of the strain tensor component&lo.1Ga./AS/GaAs structures at=2 K and is shown in Fig.
The shifts of the conduction band bottom and valence bang as a dashed horizontal line, corresponds to the total

top are determined by the formulas uniaxial strain in a stressedgliGa, )As quantum well on an
unbounded GaAs substrate. The closer the calculated change
Ac.=ace, (17)  in the gap width to zero, the greater the elastic relaxation of
2 the InGaAs layer; on the contrary, the closer the change is to
[b? (0) ; ;
A,=a et —e§+d562, (18) Ay’ the grgater thg elast|c_ stress in the InGaAs layer.
2 Of special note is the difference between the curves for

structures with and without a cap GaAs layer on top of the

respectively, where InGaAs quantum wellsquares and triangles in Fig. 2, re-

e=Tru;, spectively. This difference is considerably greater lat,
D<100nm and increases to 15-20 meV. This is due to
€3= (U= Uyy) ®+ (Uyy— Uy ) 2+ (Uzy— Uy %, greater elastic relaxation in structures without the GaAs cap

s , 5 layer owing to the larger bend, which can be seen in Fig. 1.
€=Uyt Uy + Uy As expected, the amplitudes of the gap width variations in
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the quantum dots are much greater than in the quantursored by the Ministry of Science and Technology of Russia
wires. (Grant 97-1072 One of the authoréN.A.G.) is currently the

A comparison of our calculations and data derived fromA. V. Humboldt fellow at the University of Wizburg, Ger-
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. . . . . . -mail: gippius@wpax13.physik.uni-wuerzburg.de

citonic luminescence spectrum with lateral sizes decreasinge_mail. tikh@gpi.ru
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The probability of charged particle production by the electric field of a charged black hole
strongly depends on the particle energy. This probability is found in the nonrelativistic and
ultrarelativistic limits. The range of values for the mass and charge of a black hole in

which the mechanism of emission discussed here dominates over the Hawking mechanism is
indicated. ©1999 American Institute of Physid$$1063-776(99)00105-5

1. The problem of particle production by the electric slightly along the path inside the barrier. However, the length
field of a black hole has been repeatedly discussd@he  of this path is not directly related to the Compton wavelength
probability of this process was estimated in these treatmentsf the particle. In particular, for an arbitrarily weak field the
using, in one way or another, earlier res(itdor the case of path inside the barrier becomes arbitrarily long.
an electric field constant over all space. This approximation  Thus, one can expect that the constant-field approxima-
would seem to be quite natural in relation to sufficiently tion generally cannot be used in the problem of particle pro-
large black holes, for which the gravitational radius signifi-duction by a charged black hole and that the probability of
cantly exceeds the Compton wavelength of the partikle, particle production in this problem is strongly energy-
=1/m. (In the present paper we employ a system of units idependent. The explicit form of this dependence is found
whichz=1 andc=1; Newton’s gravitational constaktis  below. In this paper we will limit ourselves to the case of a
written explicitly) However, as we will shortly see, gener- nonrotating black hole.
ally the constant-field approximation is inadequate here, 2. We start the solution of the problem by calculating
since it does not reflect several essential features of the prolthe action inside the barrier. The metric of a charged black
lem. hole is well known:

It is convenient to begin the discussion with the problem _ .
of particle production by g constant electric field. Herpe and in ds’=fdt*—f"Tdr®—r*(d6+sin’ 6.de?), @)
what follows we will limit ourselves to the case of electron where
and positron production, primarily because the emission

probability is maximized for these lightest charged patrticles. fo1_ 2kM N k_Q2 3)
Moreover, the concept of the Dirac sea makes it possible in B r r2’

the case of fermions to do without second quantization, thus

making our reasoning transparent. with M andQ the mass and charge of the black hole, respec-

To calculate the principal exponential dependence of théively. The equation for the particle 4-momentum in these
effect, it is sufficient to limit ourselves to a simple approachcoordinates is
originating in Ref. 7(see also the textbook in Ref. 10n the
potential —eEz of a constant electric field, the ordinary f-1
Dirac gap(Fig. 13 tilts (see Fig. 1h As a result, a particle
that had a negative energy in the absence of the field can now,

el rough e gaaee th dashe n n Fig Tand go 12 9740 2 e s1e0) nc iy mament of e
to infinity as an ordinary particle. The hole created in thisp » resp y: P 9

way is nothing but an antiparticle. Elementary calculationsOf the same sign as the black-hole chageattributing the

) . “charge—e to an antipatrticle.
fri%;&”:;? well-known result for the particle production Clearly, the action inside the barrier is minimized when

the orbital angular momentumnis zero. It is evident there-
m? fore (and this will be demonstrated in the next section ex-

W~exp{ - E] (1) plicitly) that as a result of summation oveethe s state de-
termines the exponential factor in the total probability of the
This simple derivation clearly explains important prop- process. Thus, for the time being we limit ourselves to the

erties of the phenomenon. First, the action inside the barriegase of purely radial motion. The equation for the Dirac gap
does not change when the dashed line in Fig. 1b is shifted ugt | =0 is

or down, and it is for this reason that E@) is independent
of the energy of the particles produced. Moreover, for the . _eQ JF
external field to be considered constant, it must vary only r '

2 |2

~fpP= 5=’ @

®

1063-7761/99/88(5)/5/$15.00 845 © 1999 American Institute of Physics
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~ 2, FIG. 1.

Figure 2 depicts the curve representing this dependence. Asherep,= ve2— m? is the momentum of the emitted particle
is well known!! at the horizon of a black hole, i.e., at  at infinity, and the turning points, , are, as usual, the roots
=r,=kM+k’?M?—kQ?, the gap vanishes. Then, ain-  of the quadratic polynomial under the radical; here we are
creases, the lower boundary of the gap(r) decreases interested in the energy interval<e<eQ/r, . Of course,
monotonically, tending asymptotically teem. The upper the integral can be found explicitly, although this requires
branche, (r) at first generally increases, and then decreasesjoing tedious calculations. The result, however, is simple:

tending asymptotically tan. m2
Figure 2 shows that the particles of the Dirac sea whose 2S=27—————[eQ—(e—pg)kM]. 8)
coordinater exceeds the gravitational radius and whose (€+Po)Po

energye lies betweemande_ (r) tunnel through the gap to  Of course, in contrast to the exponent in E, this expres-
infinity. In other words, a black hole loses its charge as asion is strongly energy-dependent.

result of this effect by emitting particles with the same sign  Note that the action inside the barrier does not vanish
of the chargee as that ofQ. Clearly, the phenomenon takes even at the energy limit,,=eQ/r . . Figure 2 clearly shows

place only if that this is the case for a non-extreme black hole. For an
eQ extreme black hole this is not as obvious. However, due to
—>m. (6)  the singularity of|p(r,e)|, the action inside the barrier is
M+ finite ate=¢,=eQ/r . for an extreme black hole as well. In
For an extreme black hole, wit?=kM?, the Dirac this case the exponential factor in the probability is

gap looks somewhat differerisee Fig. 3 as Q? tends to Jk

kM2, the position of the maximum of the curee (r) tends exy{ — w—mkmM ) 9

tor,, and the value of the maximum tendse®/r . . It is €

obvious, however, that qualitatively the situation is the samepe to the extreme smallness of the ratio

Thus, although an extreme black hole has a zero Hawking

temperature and, correspondingly, gives off no thermal ra- @~10,21 (10)

diation, it still produces charged particles due to the effect in e '

guestion.

the exponent here is large only for a very heavy black hole,

2 2 . . .
In the general casQ“<kM* the doubled action inside with a masdM exceeding that of the Sun by more than five

the barrier in the exponent for the particle production prob-Orders of magnitude. And since the total probability, inte-

ability is grated over energy, is dominated by the energy region
ra ~€em, the semiclassical approach is applicable in the case of
25=2fr dr{p(r,e)| extreme black holes only for these very heavy objects. Note,
! finally, that for particles emitted by an extreme black hole,
frz drr the typical values okt/m are very large:
e 12— 2kMr +kQ? c em_€Q _ e o
—~ ==~ 10"
X = p2+2(eeQ—kmPM)r— (e2—kmA)Q2,  (7) m m kmM \km
€ €
«Q «Q
r, r,

FIG. 2. FIG. 3.
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In other words, in all cases an extreme black hole emitg¢note that we have again omitted the subsariph the radial
mainly ultrarelativistic particles. momentun). To obtain an explicit expression for the particle
Let us now go back to non-extreme holes. In the nonreldensityp, we will use the semiclassical approximati@the

ativistic limit, when we haveeQ/r . _m and, correspond- conditions of its applicability for the region, <r=<r, will
ingly, the particle velocityy tends to zero, the exponential be discussed laterNote that the phase-space volume ele-
factor is of course very small: ment

2a7kmM
exp(— T ) 11) dpxdpydpzdxdydz
v (27T)3

is a scalar(Here the factor 2 is due, as usual, to the two

possible orientations of the electron spi®n the other hand,
p( m2 ) the number of particles in the elementary cgk dy dzis

ex

(19

Therefore, we will consider mainly the opposital-
trarelativistig limit, where the exponential factor is

—m—eQ]. (12  (see 890 in Ref. 12
€
. pNydxdydz (20)
Here too the energy range- e,,~eQ/kM plays an impor-
tant role, so that the ultrarelativistic limit corresponds to thewherey is the determinant of the space metric tensor. Since
condition all the states of the Dirac sea are occupied, by comparing
Egs.(19) and(20) we find that

e@>kmM. (13
But then the semiclassical resqit2) is applicable(i.e., the p__ 2 dpy dp, dp;
action inside the barrier is largenly if Voo  V9ooY (2m)?
kmMs1. (14 B dp,dp, dp,
Note that this last condition means that the gravitational ra- B NEe (2m)°

dius of the black hole r(, ~kM) is much larger than the
electron Compton wavelengthri/ In other words, the result

(12) refers to macroscopic black holes. Combin{d§) with srmmlation here anr(]j b((jalow Is done ]:Nirt]h f;)@drc]jdl see Eq. |
(14), we arrive at one more condition for the applicability of (17)]. In our case the determinagtof the four-dimensiona
formula (12): metric tensor does not differ from the flat metric tensor, so

that the radial current density of the Dirac-sea patrticles is

must be plugged into Eq17) for the current densitythe

e(@>1. (15
We will study this relationship later. i"(e,l)= 22 370 (21
Note that Gibborfscalculated the action inside the bar- (2m ) P

rier under the assumptions used in derividg). However, The summation on the right hand side actually reduces to
the result presented in Ref. 4S2 wm?%/eQ, is totally  multiplication by 2+1 of the possible projections of the
energy-independertand corresponds to E(L), which refers  orbital angular momenturhon thez axis and to integration
to the case of a constant electric fieldhere is no explana- over the azimuthal angle of the vectowhich yields 2r. If
tion of how such a result can be obtained for the integral inve now allow for the identity
guestion in the general cage* e, .

3. The obtained exponential yields the probability of a —dpr de,
particle that approaches the turning paipt(see Figs. 2 and Py
3) from the left passing through the potential barrier. It\ e arrive at
should be recalled that generally the position of a turning
point depends not only on the particle enekghut also on . 27(21+1)
its orbital angular momentuin The total number of particles i'te)= m (22
with given e andl approaching a spherical surface of radius v
r, per unit time is equal to the product of the area of thisFinally, the pre-exponential factor in the probability, which
surface is differential in energy and orbital angular momentum, is

S=4nri(e) (16) 2(21+1)
—.

(23
by the particle current density
Accordingly, the number of particles emitted per unit time is

p dr
(17 dN 2

Vgoo dt

(see, e.g., 890 in Ref. 12As usual, the particle velocity is

el
J'(el) deE (21+1)exg —2S(e,1)]. (29

In the most interestin@ultrarelativistio case dN/dt can

r:dr _ Ve (18) be calculated explicitly. Consider the expression for the mo-

U'7dt ap mentum in the region inside the barrier fiot 0:
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|p<e,l,r>|=f1\/

The main contribution to the integral over energies in for-
mula (24) is provided by the regior— €,,. In this region
the functionsf(r) ande—eQ/r entering into expressiof25)
are small and vary rapidly. In the quantity

2

2
m?+ —
r2

eQ-1 eQ

r. ro’

fo (25 €< (31)

e— —
r

eQ)2

Thus, for a non-extreme black hole in the most important
region e—¢,,, the condition for the applicability of the
semiclassical approximation fails to hold. Nevertheless, the
semiclassical resu(R4) remains valid qualitatively to within
a factor of order unity in the coefficient.
|2 We conclude this section with a few words about the
pA(r ) =m?+ —, (26)  emission of particles by light charged black holes, for which
r kmM<1 holds, i.e., for which the gravitational radius is
we can replace by the average value, which lies betweensmaller than the Compton wavelength of the electron. In this
the turning pointg; andr,. Obviously, in the limite—e,,  case the first part of inequalitl),

under discussion, the nearest turning point coincides with the eQ—1
horizon radiusy;=r . . In this limit the expression for the e< ,
farthest turning point is M+
) — 5 which guarantees the localization of the initial wave packet
2uc kM —kQ ; i i i ;
_ in the strong-field region, means in particular that
re=ry|1+— — ; . (27)
Em™ M * eQ=Za>1 (32)

If for the sake of making an estimate we assumer, in (here we have introduced=Qle). It is well-known (see,
(26), we can easily show that the correction to 1 in the squarg g Refs. 13 and }4hat the vacuum near a point charge

brackets is limited by the rafit?/(eQ)?. If we now assume yith zo>1 is unstable, so that such an object loses its

that this ratio is smallbelow we will see that this assump- charge by emitting charged particles. It is quite natural that
tion is self-consistepf we conclude that,~r . 1 S0 that,uz for a black hole whose gravitational radius is smaller than
can k;e considered independent of i.e., u°(r,1)=m"  he electron Compton wavelength the condition for emission
+14/r%. As a result we obtain of a charge is the same as in pure quantum electrodynamics.
2 12 (Note that the unity in all these conditions should not be
) (28)  taken literally: even in quantum electrodynamics, where the
instability condition for the vacuum of spin-1/2 patrticles is
Za>1 (for a point nucleus for a finite nucleus it
become¥'* Za>1.24. On the other hand, for the vacuum
eQ \3 7Tm2r2+ of scalar particles in the field of a point nucleus the instabil-
wmr+) B~ eQ (29) ity condition is Za>1/2 (see, e.g., Refs. 15 and )16As
) ~_ noted earlier, for a light black hole&kihM< 1 the condition
Note that the range of orbital angular momenta contnbutlngeQ>1 gives rise to a small action inside the barrier and to
to the total probability29) is effectively limited by the con-  the inapplicability of the semiclassical approximation
dition 1?<eQ. SinceeQ>1 holds, this condition makes it 4qopted in the present paper. The problem of emission of
possible to pass from summation with respect i (24) to particles by a charged black hole wikmM<1 has been
integration. On the other hand, this condition justifies theg;,dieq numerically by Padé.
approximationu?(r,1) =m?+1%/r% . 4. The exponential factor
However, up to now we have not considered one more -
condition necessary for the derivation of formyR0), the '{ Tm r+)

2S(e,l)~meQ

—+ .
€ rié
Now we can easily find that

dN_
a—m

applicability of the semiclassical approximation to the left of ~eQ

th rrier, for . <r<r,. Thi ndition has th | form . I . : -
e barrier, forr . ! s condition has the usual fo in our formula (29) coincides with the expression arising

d 1 from Eq. (1), which refers to the case of a constant electric
ar p( & (30 field E, if we replace this field by its valud/r2 at the black
hole horizon. As mentioned earlier, an approach based on the
In other words, the minimum size of the initial wave packetformulas for a constant electric field was used in Refs. 1-6.
must not exceed the distance from the horizon to the tumings, our result for the maifexponential dependence of the

point. Using the estimate probability integrated over energy coincides with the corre-
r.(eQ—er,) sponding result of these papers. Moreover, our final formula
p(r)y~———— (29) agrees with the corresponding result of Ref. 6 to within
(r=ry)(r=r_)

a common factor 1/2(This difference is of no interest by
for the momentum in the most important region, we canitself: as noted earlier, for a non-extreme black hole the
easily verify that for an extreme black hole the conditionsemiclassical approximation cannot guarantee an exact value
(30) is valid becauseeQ>1. In the non-extreme case, for for the common numerical factor.

r.—r_~r,, the situation is different: the conditiof80) Nevertheless, we believe that the analysis of the phe-
reduces to nomenon performed in the present paper, which demon-
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strates the essential difference between this phenomenon aMy, and hence the horizon surface and entropy of a non-
particle production by a constant external field, is useful.extreme black hole do not change, provided that the particle
First, the analysis shows that the probability of particle pro-energy is at its maximuneQ/r . . In other words, such a
duction by a charged black hole has a nontrivial energy spegrocess, which is the most probable one, is adiabatic.£For
trum. Moreover, real particles are produced by a charged-0, the irreducible mass, the horizon surface, and the en-
black hole not in the entire space: for a given enesgyar-  tropy increase.

ticles are emitted by a spherical surface of radig&e), a As usual, an extreme black hole, with=Q=2M,, isa
surface that is close to the horizon at maximum energyspecial case. Here at the maximum energy of the emitted
eQ/r,. (For instance, it follows that the derivation of the particle, e,,=e, we haveAM=AQ= —¢, so that the black
result of Ref. 6 fordN/dt has no physical meaning: it hole remains extreme after particle emission. In this case we
amounts to substitutingE=Q/r? into the well-known haveAM,=e/2, so that the irreducible mass and the horizon
Schwinger formuld, obtained for a constant field, and then surface decrease. In the more general cdge= — e+ ¢, the

integrating over the entire space outside the horjzon. irreducible mass changes as follows:

We will now compare the intensitlyof particle emission
due to the mechanism discussed in this paper with the Hawk- e—¢ / e ¢
ing intensityl . Introducing an additional weight into the AMo=— - T Mo— >t £ (38)
integrand of formula24), we obtain

4 2,2 Clearly, for a heavy extreme black hole, even for a small
e M o . )
| = 7m? ,{ - ) (33  deviation{ of the emitted energy from the maximum value,
M eQ the square root dominates in this expression, so that the ho-

The simplest way to estimate the Hawking intensity it is tofiZon surface increases.

use dimensional arguments: we divide the Hawking tempera- The author is grateful to I. V. Kolokolov, A. 1.

=1). Thus, ported by the Russian Fund for Fundamental Research
(Grant No. 98-02-17797 the Russian Ministry of Education
1 (Grant 3H-224-98 and the Federal Program “Integration
R (34 1998" (Project No. 274

A more accurate result fdy, differs from this estimate by a

small numerical factor=2x 102, but for qualitative esti-

mates this difference can be neglected. The intensi@&s

and (34) become equal at *)E-mail: khriplovich@inp.nsk.su

o (mry)? o (kmM)?
6 Inmr, 6 InkmM

(39

We believe that the conditioaQ~ 1/(4w) for the equality
of these intensities, which was obtained by Novikov and M. A. Markov and V. P. Frolov, Teor. Mat. Fia, 3 (1970.

. . 2
Starobinski® from a comparison ofe,=eQ/r, and Ty ,W. T. Zaumen, NaturéLondon) 247, 531 (1974).
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We study the neutralization of negative hydrogen ions in collisions with multicharged fast ions
(including relativistic iong by using an approach that allows a simple expression for the
neutralization cross section to be derived over a range of collision parameters where the standard
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1. INTRODUCTION collisions with the multicharged ions Ké (Z<4), Ar¢*
and Xé¢" (Z<8) at center-of-mass collision energigs ,,

Atomic collisions involving negative ions that result in a <200 keV, while Tawarat al® have started an experimen-
change in the charge composition of the colliding particlestal investiéation of the neutrélization of Hions by multi-

?;2’: EE)eenRt:f(;rollJ gug 25 t;?('jeg];}ittehrgtfraeséifezvf;g@?'eecad%%arged fast ions at much higher collision energies, on the
€9, e ) . order of several MeV/amu. The problem of neutralization of
study of such collisions may lead to important practical ap-,— . ) . . . : :
C 7 : H™ ions in collisions with multicharged fast ions was inves-
plications (e.g., the production of beams of fast neutral .. ; . .
. L - o tigated theoretically in Refs. 1,2,8—10, where the following
particles). A theoretical investigation of the neutralization of . )
. . - ) . . theoretical approaches were used to calculate the neutraliza-
H™ ions in collisions with fast particles that carry a relatively .. . .
. . . . tion cross section(l) the method of classical Monte Carlo
small charge, i.e., in the limiZ<uv (hereZ is the charge of 1 . .
. : I oo paths; (2) the method developed in Ref. 11 as a generaliza-
the particle, and is the collision velocity; in this paper we A
use, if not stated otherwise, the atomic system of initsn tion of the Keldysh theorji for the photoionization in a
' ' y strong field and applied by Melcheet al? to the problem of

be carried out either in the Born approximaticsee, e.g., neutralization of H ions, (3) the two-state modéf and (4)

Ref. 4 or by using the impact-parameter method, when forthe close-coupling methdt.,

all impact parameters the probability of electron transitions In the present paper we study the problem of neutraliza-

is calculated to first order in the interaction between the elec:. o : _ : . )
: . . ... tion of H™ ions in collisions with multicharged fast ions
tron and the field of the fast particle. For collisions with . . L . .
) : : (including relativistic iong by using an approach that, in
heavy fast particles the two approaches yield equivalent rex : : . !
. contrast to the methods just mentioned, makes it possible to
sults for the cross sectiolisee, e.g., Ref.)5and for the sake

. solve the problem of finding the cross sections analytically,
of brevity we call these approaches the standard Born ap-; :

e ) ; ; N . with results applicable over a broad range of values of the
proximation. Calculations in this approximation yield a

simple expression for the neutralization cross section: parameters of the problem,=Z and vo<v<c (here c
P P ’ =137 is the speed of light; the limits of this approach are

72 specified below
0_0=183.7In5.44. 1)
v
. . — . 2. GENERAL FORMULAS
In this paper we examine the neutralization of negative hy-
drogen ions in collisions with multicharged fast ions, In accordance with the description of Hions in the
_ oAz N T model of a split shell (%,1s’), we assume that one of the
HT+AT —H +AT +e, @ two electrons is on an almost hydrogenlike-drbital, while
in the collision parameter rangé=v>v, (herev, is the the other, loosely bound, electron occupied a diffuse orbital
characteristic velocity of the loosely bound electron in)H  with radius=4. The large difference in the binding energies
where the standard Born approximation cannot be used. Adf the electrons in H (0.5 and 0.0275, respectivelynakes
such values of charges and velocities the process of electranpossible to examine the problem of neutralization of the
capture by the multicharged ion has a very low probabilitynegative hydrogen ion by the one-electron approach, in
(see, e.g., Refs. 7 and.8Hence the reactiof®) almost fully ~ which it is assumed that the outer, loosely bound, active
determines the total cross section of neutralization for H electron moves in the effective field of the “frozen” core
ions in such collisions. Experimentally, the cross sections ofthe proton plus the tightly bound inner electyoRollowing
neutralization for H ions were studied by Melcheet al?in one of the methods of selecting the effective one-electron

1063-7761/99/88(5)/7/$15.00 850 © 1999 American Institute of Physics
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wave function of the bound state of the negative ion and theelocity in the course of the entire process remains much
valences-electron(see, e.g., Ref. 33we can write the wave smaller than the speed of light. Hence in calculating the tran-
function in the form sitions of the active electron in collisions with multicharged

; th b . .
expl — kr}—expl— Br} ions withb>r, we can use the Schilinger equation

r

do(1)=N () -
i—=[Ho+W(t)]¥, b>rg, (6)
wherer is the distance between the active electron and the at
nucleus of the H ion, N=kpB(x+B)2m(B—«)* is the  \hereH, is the effective one-electron Hamiltonian for the
normalization factor, and=0.235 is determined from the free hydrogen ion, anW(t) describes the interaction of the

known value of the affinity energyx®/2=0.0275. For the nonrelativistic electron and the field of the relativistic par-
value of parametef we take3=0.913, which was defined tjcle:

by Sidiset al* so as to correctly describe the value of the
singlet scattering length of an electr@n the swave scat- 1 2
tered by a hydrogen atom at energies lower than the first W(1)=5-(p-A+A-p)+ PYCILS @)
excitation threshold of the hydrogen atom. The wave func-
tion (3) behaves properly at large distances, with p the electron momentum operator. Since the negative
hydrogen ion is a nonrelativistic system, we can expect the
[ k exp[—«r} g i .
Po(kI>1)=G\/5s— ——, (4) magnetic field generated by the multicharged ions to affect
2m r only slightly the probability of electron detachment from H

with G=1.511 and remains finite as—0. Below we use In collisions withb>r,. By examining the expression for
the wave functior(3) and the corresponding functions of the the classical Lorentz force acting on an electron in the elec-
continuum spectrunfassuming, as usual, that the scatteringtfic and magnetic fields generated by the multicharged ions,
phase shift of the electron scattered by the hydrogen atom at 1

low energies is finite only for thes-wave to describe the F=E+ —VgXxH,

eigenstates of the discrete and continuous spectrum of the ¢

H™ ion. ) o _ with v, the electron velocity, we can make an estimate of the
Now we discuss the collision. We assume that prior t0rg|ative importance of these fields. For the fields generated

the collision the negative hydrogen ion was at the origin anq)y relativistic particles we can generally assume thiat

the multicharged ion was moving along a classical straight_g However, since/c<1, for the ratio of the magnetic

path S(t) =b-+vt, whereb is the impact-parameter Vector. component of the Lorentz force to the electric component we
Recent calculations by Liet al® have shown that even for havevy/v/c?<1. Then, when examining collisions with

moderate values of the cross section of neutralization for >r,, we can ignore the magnetic field of the multicharged
H™ ions in collisions with multicharged fast ions dependsigns for all values of the velocities in the collisions. Hence

only on the total charge of the ions and not on the internalne interactior(7) can be expressed to the first approximation

structure of the ions. Hence in what follows we assume thaj, terms of only the electric field. To this end we use the
a multicharged fast ion is a point charge. gauge transformation

To date the experimental results with respect to neutral-
ization of H™ ions by multicharged fast ions have been ob-  Ay(r,t)=A(r,t)+grady(r,t),
tained in studies of collisions where the velocities are much 19
smaller than the speed of light, so that relativistic effects can  ¢4(r,t)=¢(r,t)— p Ex(r,t),
be neglected. However, to obtain a more general solution, we
will not use the condition <c in deriving an expression for Wo(r,t)=exg —ix(r,t)] W(r,t), 8
the neutralization cross section. Accordingly, the field of Awhere x is the gauge function. Using the "@pert-Mayer
multicharged point ion moving, in general, with a relativistic gauge functio
speed, is described by the scalar and vector poter{Bals,

e.g., Ref. 16 x(r,t)=—r-A(0}), 9
_ E A= v and Eqs(6)—(9), expanding the scalar and vector potential in
TR’ c® powers of the electron position up to first-order terms inclu-
R=\(z—o0)2+ (1- 0¥ (p—b)2, (5) sive, and keeping only the principal term in the expression of

the interaction in the new Schiinger equation, we find that
where K,y,z)=(p,z)=r are the coordinates of the active -
electron, thez axis is directed along the velocity of the mul- ; 1_
: o ) i ——=[Ho+Wq(t)]¥,, b>rg, 10
ticharged ion, ang-v=0. As is known(see, e.g., Ref.)2 gt~ HotWa(b) ¥, 0 (10
collisions with impact parametets>r, (wherer,~«x~1 is B
the characteristic size of the ™Hion) provide the principal whereWy(r,t) =r-E(01), and
contribution to the cross section of neutralization for lens 1 0A0f) ZR
in collisions with multicharged fagbut nonrelativisti¢ions.  E(0t)=E= —grade(0}t)— A
Below we show that for collisions witlh>r, the electron

— = ., b>rg,
c at R3,2 0
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b\? 1
=(— — 202, [ 2 - -
R;=(—b,ut), Ry=1\/v? +(7) Y oot

11

HereE is the electric field calculated in the dipole approxi-
mation. The interactioltV,; can be interpreted as acting over
a finite time interval. Indeed, we have

fm W, () dt=W,(t=0)T, (12)

where T=T(b)=2b/yv has the meaning of the effective
collision time (see, e.g., Ref. 38 Depending on the magni-

tude of the impact parameter, this time may be either shorter

or longer than the characteristic time of revolution,
~rqolvg, Of the active electron in the bound state of a free
H™ ion. Using the wave functiot3), we can estimate the
characteristic velocity, of the electron in the bound state of
the H™ ion atv o= Bx= 1k, i.e., 7~ k%2 Following Ref.
19, we divide the entire rande>r of the impact parameter
into two subrangesi(l) ro<b<yv7, and (2) b>Z/vk.
These subranges overlapZif k< yv?7 holds, and below we
assume this condition to be true.

When the effective collision time is short compared to

Voritkiv et al.
As a result,
. 2n4 q q
w2 o(b(q))=1- 7 arctanz—K+arctan2—ﬂ
-2 arctani i (15
k+ B

For the contribution to the neutralization cross section,
of collisions with impact parametets;<b=<b, (whereb,
<vyv T, andb, is defined belowwe have

b,
AO'_O(b1$b$b2)=27T db bV\Is_o(b)

by
Z? (aidq

=87 — | —p(a), (16)
v-Jax

wherep(q) =w*® 4(b(q)), andq; ,=2Z/vb; ,.

Collisions with small impact parameterb=r,, are
characterizedprovided thaty <Z) by large energy transfers
to the active electron in comparison to the electron binding
energy in H'. The average energy transferred to the electron
in a collision with an impact parametbrcan be estimated at

the characteristic internal time of the atomic system, in cal,(b)=27?/b%v? for b=r, (see, e.g., Ref. 18 This means

culating the transitions of the atomic system we can use th
sudden approximation; see, e.g., Refs. 20 and 21. In th
impact-parameter range,<b<yv?r, where T(b)<r, to

that the energy is high even di=r, (e,=2Z%k?/v?
& k?/2) and, correspondingly, becomes even higher Hor
=ry. Such a large energy transfer to the active electron re-

calculate the neutralization probability we use the zerothsylts in electron detachment from the negative ion with a
order sudden approximation, within which the neutralizationprobabmtyWS_O(b):1. What is important is that the condi-

probability w_q(b) can be written

2

W,o(b)zwio(b)=f dk‘(k| ex;{—iJ’:Wl(t) dt}wo)
(13

tion b>r plays an important role in deriving E¢L4) (since

we use the dipole expansion for the interaction of the elec-
tron and the field of the multicharged ipand, correspond-
ingly, the use of this expression in calculating the neutraliza-
tion probability is justified only ifo>r. Calculations show,

where|k) is a state of the continuous spectrum of the effechowever, that forv<Z Eq. (14) yields reasonable values

tive one-electron Hamiltoniakly for H™. Allowing for the
fact that [*_W,(t) dt=qg-r, where q=2Zb/vb? has the

(close to unity of the detachment probability also in the
impact-parameter rangb=ry(w® ,(b)=<1). Hence below

meaning of the average momentum transferred by the field o¥¢ use Eq(14) to estimate the electron detachment prob-

the multicharged ion to the active electron, we can wWiit®
as follows:

W o(b)= | K (Klexat—ia-r}lue) 14

The value ofq is negligible compared tan,c= 137, which

justifies our assumption about the essentially nonrelativistic

electron velocities in collisions witb>r,. The spatial shift
of the electron over the collision timé&, a shift that can be
estimated até(b)~q(b)T(b)~Z/yv?<r,, is small com-
pared to the characteristic size of the kbn. The conditions
T(b)< 7 and &(b)<r justify the use of the zeroth-order

sudden approximation when investigating the problem in

guestion in the impact-parameter range<b<<yv 7.

In our case, when calculating the probabil{}4), it is
convenient to use the completeness condition for the stat
| o) and{|k)} of the negative ion:

|¢//0><‘/’0|+f dk [k)(k|=1.

ability in the range of small impact parametelss « 1.

Our calculations show that the contributi¢i6) to the
neutralization cross section is almost independen,ofor
g,=1. Hence below we simply puj;= (b;=0):

—3p(Q).
fqzqqu

ZZ
AO'_O(O$bSb2)=87T—2
v

(17)

The integral in(17) can be evaluated in the following way.

We write
= dq do
| Soca+ |
gdo g a2

whereqy< . Equation(15) suggests thai(q) = 6.05%)? for
< k. Moreover,q,<k for Z/v k<b,<<yv 7. Hence we can

dqg
p(q) Ep(q), (18)

rite
= dq = dqg Qobov
f —3p(q>=f —P(Q)+6.055In—2—, (19
a2 g g Qg
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whereZ/v k<b,<yv 7. For small values ofy, the integral % )
on the right-hand side of E¢19) depends ony, as In(16}). j dk KyiIn o
. . . . 0
Indeed, numerical calculations with differgiiut smal) val- Wef=EXP — =0.081.
ues ofgy show that this integral can written f dk szﬁl
Jm d_qp(q)=6_055|n37 (20) ' Usir'lg (21) and (24). and puttingb,=bs (which 'is pos-
0 q° Qo sible, since the two impact-parameter ranges in question

overlap, we arrive at a simple formula for the total cross

where C=0.46 is almost independent af,. Thus, using section of neutralization for Hions in collisions with mul-
Egs.(17)—(20), we arrive at an expression for the contribu- ticharged fast ions:

tion to the detachment cross section of collisions with impact

< i < z2| 3.2y 2
p<aram.eters from the rangestby<b,, with Z/vk<b, o 0=152.2= n Y > (25
<YV T v VA 2c
2 0.46b, The contribution of the impact-parameter rarger, does

(21 not exceedzrr(z) (in order of magnitude As Eq.(25) implies,
o_o> 5 for Z=v. This means that our initial assumption
about the relative contribution of the impact-parameter range
b>r, to the cross section was correct.
We now discuss the limits of our approach. First, to use
the sudden approximation we must ascertain thatv,
=~ \/k holds. Second, the conditiaf=v is needed to mini-
mize the error introduced by using Ed4) in calculations in
the impact-parameter randesr,. Third, an important re-
quirement is that the two impact-parameter ranges in ques-
tion overlap, which is the case &/kv<yvr=yvk %2
Hence Eq.(25) can be used to calculate the cross section in
22 a parameter range defined by the conditiassZ < yv?/\/x
W—o(b)“—‘f dk [(k|g-r|¢o)|?=1.34 " 2<1_ (22) and v>vy= Jk. In the relativistic case the applicability
vokb range reduces t&~v~c. For nonrelativistic collisions,

when @/c)2<1, the nonrelativistic limit of Eq(25), 2
Hence to calculate the electron detachment probability for

collisions with b>Z/v k we can use perturbation theory in Z? 3.2
the interactionW,(t). In first-order perturbation theory, the (’70:152-2;|” 7 (26)

expression for the electron detachment probabiliisée the
Appendix) can be used to calculate cross sections if both conditons,

<Z<v?\Jk andv>vy=k, are met. A remark is in order.

AU,0(0$b$b2)21522? In 27
For large impact parameteilsz yv 7, we cannot use the

sudden approximation. However, in collisions with large im-
pact parameters one can expect that the field of the multi-
charged ion(notwithstanding the large ion changs only a
small perturbation even for a loosely bound active electron i |n
H™. Calculations show that in collisions wit=>Z/v k the
electron detachment probability is low compared to unity.
Indeed, forZ/v k<b<+yv T we can also use E¢14), which
yields

o[ @k1b Since the active electron in"Hhas(on the atomic scajea
wW_o(b)=wP 4(b)= i 4f dkkzwklykl{K ( - ) very low binding energy and a low orbital velocity, even
collisions with particles witiz~1 andv~1 can be consid-
e o[ @k1b Z ered collisions with “multicharged” fast ions, and the values
K ( ” b> oK (23 of the cross sections of neutralization for Hons can be

estimated by Eq(26).
where wkl—(k2+ K2)/2 are the electron transition frequen-
cies,yZ,(z2,=x2,=y2,=rZ,/3) are the averaged squares of 3. DISCUSSION
the components of th@ne-electropdipole matrix elements
for H™, andK, andK; are the modified Bessel functions.
The contribution to the neutralization cross section of colli-
sions with impact parametebsrom the rangéd;<b< = has
a simple form if the poinb; is selected so tha/v k<bs
<yuT.

In Fig. 1 we compare the results of calculations done
using Eq.(26) and the experimental data on the cross sec-
tions of neutralization for H ions in collisions with ions of
Ne (Z=<4), of Ar (Z<8), and of Xe g=<8) at a center-of-
mass energ¥ . ,, of the colliding particles equal to 200 keV
(Ref. 2. If we take into account the assertion of Melchert
o et al? that, within experimental error, the values of the cross
Ao_o(bgsb<wo)=27| dbbw, sections depend only on the total charge of the ion and not

bs on the details of the ion internal structure, we can conclude
) ) that there is good agreement between our results and the
_ Z° 1123y v experimental data. Figure 1 also depicts the results of calcu-
=1522—|In————-—|, (29 ; . e
2 webs  2c lations in the standard Born approximatifigqg. (1)] and of

calculations that use the analytical Presnyakov—Uskov ap-
where proximation(Eq. (9) of Ref. 2. For these values of the col-
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FIG. 2. Cross section of neutralization for Hons in relativistic collisions

1 Ly \ with U%?* ions as a function of the kinetic eneréger atomic mass uniof

0 2 4 6 8 the multicharged incoming ion. The solid curve represents the results of
A calculations by Eq(25), while the dashed and dotted curves represent the

results of calculations by E@26) that use the relativistic and nonrelativistic

FIG. 1. Cross sections of neutralization for Hons at a(center-of-mass rejationship between the velocity and kinetic energy of the multicharged ion.
collision energyE, ,,=200 keV. The experimental data are taken from Ref.

2: 0, N& (Z=1-4); O, Ar?t (Z=1-8); and, X&" (Zz=1-8). The
solid, dashed, and dotted curves represent the results of calculations by Eq.
(26), by the Presnyakov—Uskov formula, and by E), respectively.

tion, f=0_g/op,_ys, We have 0.9 f(x)<<0.96.

lision parameters, Eq26) and the Presnyakov—Uskov for- As noted earlier, our approach can also be used to de-
mula yield very similar resultgsimilar to each other and scribe the neutralization of Hions in relativistic collisions
with respect to the experimental dafar all Z=1-8, while  with ions whose charge is excessively large. As an example,
for large values of the standard Born approximation yields Fig. 2 depicts the results of calculations of the cross section
overvalued results. of neutralization for the H ion in relativistic collisions with

Note that for other values of the paramet&rsand v U%2*. The relativistic effects, which influence the depen-
lying within the applicability range of our approach, the cal- dence of the neutralization cross section on the kinetic en-
culation of cross sections by E(26) also yields results that ergy of the multicharged ions, can be divided into two types:
are in good agreement both with the experimentaldatal  (a) the effect related to an increase in the velocity of the
with the results of other calculatioR$:*° multicharged ions with the ion kinetic energy that is slower

Tawaraet al® have started an experimental investigationthan predicted by nonrelativistic mechanics, dhyithe ef-
of ion neutralization at high collision energi&s(of order of  fect related to the “flattening” of the electric field a relativ-
several MeV/amu). At the 9th International Conference onistic particle experiences in the direction of its moti@ee,
the Physics of Highly Charged lons, Tawaal® reported  e.g., Ref. 16 Figure 2 suggests that effe@) becomes ap-
on their (preliminary experimental results for the cross sec- preciable at,;,~ 100 MeV/amu, while effectb) begins to
tion of neutralization for H ions by Af®" ions atE manifest itself atE,;,~1 GeV/amu. While the cross section
=2 MeV/amu. The value of the cross section they obtainedpecified by Eq(26) tends to a finite limit in the range of
was o®*P'=3.8x 10 “cn?. For such collision parameters ultrarelativistic collisiongprovided that we use the relativis-
Eq. (26) yields a value of 4.55810 “cn? for the cross tic relationship between velocity and enexgge relativistic
section, the Presnyakov—Uskov formula vyields 4.8Eq.(25) describes in this range an increase in cross section.
X 10" cn?, and Eq.(1) yields 8< 10~ *cn?. The substan- The physical meaning of this increase is simple. In the ul-
tial overvaluation of the cross sections for lalgstemming  trarelativistic limit, an increase in energy has almost no ef-
from the use of Eq(l) is the result of the nonunitarity of the fect of the collision velocity, buty increases and hence the
standard Born approximation. In this approximation the neuflattening of the electric field generated by the relativistic
tralization probability is proportional t&2 and for collisions  particle becomes more pronounced. This reduces the effec-
involving multicharged ions with small impact parameterstive collision time T(b) and extends the impact-parameter
may exceed unity. The approach used in the present paperriangeb= yv 7 where the collisions are sudden for the elec-
free from this drawback, since it uses the sudden approximaron and where the detachment probability decrease$, as
tion (which is unitary in calculations of the neutralization increases, much more slowfipy a power law; see E¢22)]
probability with moderate values db. Interestingly, the than it does in the range= yv 7, where the external pertur-
Presnyakov—Uskov formula and E@®6), derived by very bation is adiabatically slow for the electron and where the
different approaches, yield extremely close values of crosdetachment probability decreases exponentially with increas-
sections whew?/Z>1. For instance, when the parameter ingb. As a result, the flattening of the electric field gives rise
=p?/Z varies within the range €x<100, for the ratio of to a cross section that diverges with increasings Iny (see,
the cross sectiolfi26) to the Presnyakov—Uskov cross sec-e.g., Ref. 23 and the literature cited thepein
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4. CONCLUSION

47202 wy1b
2 ki o 2 k1
la(k)| ——0474 rkl{KO( o

)co§0

We have examined the process of neutralization of nega-
tive hydrogen ions in collisions with multicharged fast ions.
In this gpprpach, the Hion is despribed in the one—elegtron T yzKi(“’k_lb) Sir? 6 sir? 4, (30)
approximation, while the expression for the wave function of Yv
the active electron is selected in a form that guarantees co
rect asymptotic behavior of this function foe>«~1 and
finite results forr<« 1. Collisions with multicharged fast
ions are described by dividing the entire impact-paramete
range into two overlapping subranges. To describe neutral
ization in collisions withb<<yv 7, when the effective colli- ®
sion time T(b)~b/yv is short, we have used the zeroth- rk1=\/ﬂf0 drr R (r) io(r).
order sudden approximation. This approximation is unitary
and withinvo<v=<Z yields meaningful results for the de- From Eq.(30) we finally arrive at an expression for the
tachment probability even for collisions with<r, i.e., in  detachment probability:
the impact-parameter range whewe (b)=1. To describe
collisions withb>Z/v «, i.e., in the impact-parameter range W,O(b)zwﬂo(b)zf dk |a(k)|?
where the interaction of an electron with a multicharged ion

{vhere 6 (0O=6=<m) is the angle betweek andv, ¢ (0
< <2m) is the angle betweeh and the projection of the
electron momentunk in the final state on the impact-
Parameter plane, and

is already weak and the electron detachment probability is 472 (o Wb

low, we have used first-order perturbation theory in the field = f dk kzwﬁlrﬁl[%( )

of the multicharged ion. The resulting expression for the 3y'v™ Jo Y
neutralization cross section can be used in a wide range of Wb

the parameterg of v of the problem discussed above. + y2K§< o ) . (31
APPENDIX

YThe valueG=1.51 is very close t@&pe= 1.56, obtained from calculations
In first-order perturbation theory, the electron transition_with a multiparameter two-electron wave functith. _
amplitude has the form dInterestingly, aZ=1 Eq.(26) coincides, with an insignificant discrepancy
in the numerical factors in front of the logarithm and under the logarithm
sign, with the formula for the cross section of neutralization ofibins by

— - ; electron impact obtained by Smirnov and Chib&awnder the assumption
a(k) : j,xdt expi wiat) <k|W1| w0>’ (27) that the incoming electron moves along a classical path.
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The influence of self- and cross-phase modulation on third-harmonic generation in a hollow
waveguide is investigated. Analytic solutions of the coupled equations for the slowly varying
amplitudes of the pump pulse and the third harmonic in a gas-filled hollow waveguide are
obtained with consideration of self- and cross-phase modulation and first-order dispersion effects.
The possibility of controlling the nonlinear phase trajectory of the third harmonic by cross-

phase modulation is demonstrated. 1®99 American Institute of Physics.
[S1063-776(199/00305-4

1. INTRODUCTION first experiments on third-harmonic generation in hollow
waveguides filled with inert gases using pulses with a dura-

The coherent generation of optical harmonics in a fieldijon of 20 fs from a Ti:sapphire laser was reported in Ref. 29.
of short high-power laser pulses has been actively i”VGS“However, no quantitative data regarding the parameters of
gated for a fairly long timesee, for example, Refs. 116 hg third-harmonic beam were presented in Ref. 29. The ex-

Despite the impressive results achieved in the area of geneﬁ'eriments in Ref. 30 showed that the use of hollow-

ating high-order harmonics and obtaining coherent short\-N

Igarmonic generatiof0.2% and parametric four-wave mix-

proach, which is based on the use of focused laser beam 30 :
does not permit the achievement of high frequency—mg (13%). Durfeeet al" also experimentally demonstrated

conversion efficiencies even for low-order harmonigs  that the phase mismatch accompanying a nonlinear-optical
contrast to low-order harmonic generation in a lasefntéraction due to .the dispersion of the gas can be compen-
plasm&®-29. The way to solve the problem of increasing the Sated by phase mismatch of the waveguide modes. The effi-
nonlinear-optical interaction length in the gas medium wagiency of the nonlinear-optical interaction then increases sig-
pointed out by Milest al.,?” who demonstrated the possibil- hificantly.
ity of significantly (by three orders of magnituglincreasing The results of the experiments in Ref. 30 stimulated in-
the efficiency of the nonlinear-optical interaction in a hollow tensive research on nonlinear-optical frequency-conversion
dielectric waveguide for a four-photon process coherent antiprocesses in hollow waveguid&s3® In particular, it was
Stokes scattering process back in 1977. Nistlal?® dem-  shown that compensation of the phase mismatch in hollow
onstrated that the use of a hollow optical waveguide permitvaveguides permits a 100-1000-fold increase in the
effective broadening of the spectrum of an ultrashort lasefrequency-conversion efficiency for harmonic generation up
pulse due to self-phase modulation. In particular, it wasg the 45th order in comparison to the frequency-conversion
shown that pulses with a duration of 20 fs propagating in &fficiencies achieved in experiments with gas jetd.
hollow optical waveguide filled with an inert gas experience  Thus the result of the experiments in Ref. 30 provide
broadening of the spectrum as a consequence of self-phaggigence that phase matching and temporal overlap of the
modulation, which is s_uff|C|ent for subsequent COMPresSIoR, ngamental and third-harmonic pulses can be ensured for a
of the_ pulse 10 a _duratlon of 4.5 fs. - fairly long interaction length in the gas filling a hollow op-
Since the optical breakdown threshold for a gas filling a.. . . . .
: Lo L t*cal waveguide. Since the fundamental pulse effectively in-
waveguide significantly exceeds the characteristic values g

the breakdown threshold for ordinary optical fibers, the ap_teracts with the third-harmonic pulse and, at the same time,

proach developed in Refs. 27 and 28 is especially promisin&ccOrding to Ref. 28, experiences fairly strong self-phase

for the generation of high-power ultrashort laser pulses covinodulation, it can be presumed that the third harmonic

ering several light-field periods. Since hollow-waveguideShould also be phase-modulated owing to cross-phase
technology permits the use of high-power laser pulses, thignodulation®*=3% In particular, the influence of cross-phase

approach also seems very promising for optical frequencynodulation can lead to the significant broadening detected in
conversion using parametric mixing of light waves and har-Ref. 30 of the spectrum of the UV signal appearing as a
monic generation. When femtosecond pulses are used, thigsult of parametric four-wave mixing in a hollow optical

frequency-conversion efficiency in such processes is rewaveguide. Similar phenomena associated with self- and
stricted because of phase mismatching and group delay. Tloss-phase modulation were observed in experiments on

1063-7761/99/88(5)/11/$15.00 857 © 1999 American Institute of Physics
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third-harmonic generation in a field of ultrashort laser pulse.1. Solutions of the equations for third-harmonic
in connection with the optical breakdown of ‘Qif! under  generation in a hollow waveguide within the approximation
conditions such that the temporal self-interaction of the lightof slowly varying amplitudes

pulses was accompanied by self-defocusing of the funda- | et us represent the fundamentgump and third-
mental light due to the induced plasma-electron density pronarmonic pulses propagating along thexis in a hollow

file. According to the results of the theoretical analysis peryyayeguide filled by a gas with a noninertial Kerr nonlinear-
formed by Tempea and Brab&cihe self-phase modulation ity in the following form

due to plasma nonlinearity under ionization conditions in a 1
hollow waveguide permits the production of pulses with lin- - _ - cn'n "nan’n (ot n'n
ear chirp, which can be effectively compensated using a dis-? 2 f (P& "AT Rt Z)exd —i(wt =K ")+ ec., ()
persion delay line.

This paper shows that cross-phase modulation can be EEL:Efm’m( m’mgm’m —i —_Km'm
. . phas _ 5 th P)E, (t,z)exd —i(3wt—Ky' "2)]+c.c.,
important factor, which has a significant influence on the
efficiency of frequency conversion upon the generation of 2
optical harmonics in gas-filled hollow waveguides and, at thevhere w is the central frequency of the fundamental light;
same time, permits control of the nonlingarith respect to  the subscript® andh refer to the pump and third-harmonic

the inte_nsity of the laser radiatiiurphase trgjectory of the pulses, respectivel)i;g'”(p) andfhm’m(p) are the transverse
harmonic pulse. In Sec. 2 we obtain analytic solutions of thjistributions of the fields of the fundamental light and the
coupled equations for the slowly varying amplitudes of thethjrd harmonic in the hollow waveguide corresponding to the

pump pulse and the third harmonic in hollow waveguidesgigenmodes of the hollow waveguide with the indioésand
with consideration of self- and cross-phase modulation ang and withm’ andm, respectively;K”'” and Khm’m are the

the_ first-order d_|sper.3|on eﬁ_‘ects in a medium with a honin propagation constants of the pump and third-harmonic pulses
ertial Kerr nonlinearity. Unlike the plane-wave approxima-

. . . . , corresponding to the same eigenmodes of the hollow
tion, the equations obtained permit allowance for the influ- 46 ~n'n . . .
aveguide®® A"'"(t,z) is the slowly varying amplitude of

ence of the waveguide through the propagation constants, t " N
g 9 propag (E e fundamental pulsét is assumed that a definite wave-

group velocities of the pump and third-harmonic pulses, an ' de i ited at the f f the fund tal
nonlinear coefficients written with consideration of the trans-9!/!0€ MOCE IS excited at the irequency ot the fundamenta

verse pump and third-harmonic fields for the corresponding9nt); B™ "(t,2) is the slowly varying amplitude of the
waveguide modes. Section 3 describes a method for perfornfird-harmonic pulséthe indices corresponding to the trans-
ing numerical calculations of the parameters of the pump any€rse mode O,f the pump wave have been omitted for sim-
third-harmonic pulses in an argon-filled hollow waveguide.plicity); ande; " andef’ ™ are the unit vectors of the polar-
Section 4 discusses the results of the numerical calculatiorigations of the fundamental and third-harmonic pulses,
for a regime in which the effects of the group delay of therespectively.

pump and third-harmonic pulses are insignificant, as well as  When the inequalities

for the case where the difference between the group veloci-

ties of the pump and third-harmonic pulses has a significant >1, 3
influence on the efficiency and properties of the process of

third-harmonic generation in a hollow waveguide. The main KM me

results of this investigation are briefly summarized in the = 1 <1, (4)
Conclusion. wNy(@)

hold, wherd = p, h, andn;(w)) is the refractive index of the
gas in the hollow waveguide for radiation with the frequency
|, We can use approximate analytic solutions for the trans-
2 BASIC RELATIONS FOR THIRD-HARMONIC GENERATION verse distribution of the field and the propagation constants
IN A HOLLOW WAVEGUIDE WITH CONSIDERATION OF of the eleCtromagnetiC field in the hollow Waveguftﬁeln
SELF- AND CROSS-PHASE MODULATION particular, for the TEM,, modes of a hollow waveguide we
have
Let us consider the process of third-harmonic generation
in a hollow optical waveguide filled with a gas medium hav- fi™(p)=£"(p)=Jo
ing third-order nonlinearity. In analyzing this phenomenon

u._p). ®

a

we shall use the approximation of slowly varying ampli- Here Jy(x) is the zeroth-order Bessel function]” is the
tudes, presuming that the duration of the light pulses is larggijgenvalue of the TEN}, mode,a is the internal radius of
in comparison to the period of the light fieldee, for ex-  the hollow waveguide, and

ample, Ref. 43 Readily interpreted analytical expressions m ’

describing third-harmonic generation in a hollow waveguide KM= m_ wiNy (@) 1_( ue )

with allowance for the effects of self- and cross-modulation ! ! c awn(w)

can be obtained, in analogy to Refs. 44 and 45, in the case

where we can confine ourselves to consideration of the first- % (l + Im(p(@)) c)

order dispersion effects. 2 aw,

, (6)
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where 2

97w

B 631‘;((3)(3w;w,w,w)epepep

£2(@)+n%(w)) 2Kj'c?
u(w)=

- 2n(w)) (8o @) —n2(w)) Y2

f f fR(Lfp(p)]°p dp de
X

for TEM modes and:,(w)) is the dielectric constant of the

waveguide walls at the frequeney . J J [fM(p)1%pdpde
Using a procedure similar to the one described in Ref.

47, we obtain equations for the slowly varying amplitudes of  Equations(7) and (8) are similar to the equations de-

the pump[A"(z,t)=A™"(z,t)] and third-harmoni¢B™(z,t)  scribing third-harmonic generation in a gas medium with al-

(12)

=B'"(z,t)] pulses: lowance for self- and cross-phase modulation in the plane-
wave approximation(see, for example, Ref. 47 The
(iJr _i An:if}’/nAn|An|2 7) nonlinear term on the right-hand side of E@) describes

ot VB 0z ' ' self-phase modulation. The first term on the right-hand side

of Eqg. (8) describes the nonlinear polarization of the third-

J _~ . order medium, which is responsible for third-harmonic gen-
1T Tmgg BT IBT(AY eration and the cross-phase modulation of the third harmonic
Vh due to the self-phase modulation of the fundamental pulse

X exp( — i AK™Z) + 2i yTBM A, (XPM1). The second term on the right-hand side of this

equation corresponds to the cross-phase modulation due to
(8 the modulation of the refractive index at the frequency of the
third harmonic by the fundamental pul&¢PM2).
We assumed in writing Eq8) that the third-harmonic
pulse has a fairly low intensity and that the self-phase modu-
AK™M=K['—3K]~Ako+ AK)" (99 lation of this pulse can be neglected. However, unlike the
plane-wave approximation, EqS) and(8) take into account
is the phase mismatch taking into account the waveguidéhe influence of the waveguide through the propagation con-

Here v’,} and v} are the group velocities of the pump and
third-harmonic pulses, and

dispersion. In this equation stants(6), the group velocities of the pump radiation and the
third harmonic, and the nonlinear coefficients0)—(12),

Akfﬂ[nl(wh)— ny(w)] which were written with allowance for the transverse distri-

c P/ butions of the pump and third-harmonic fields for the corre-

sponding waveguide modes. In particular, the mismatch of
the wave vectors, which appears in E8) and specifies the
efficiency of third-harmonic generation, depends not only on
the dispersion of the gas, but also on the dispersion of the
are the components of the phase mismatch due to the dispefaveguide modes. As was noted in Ref. 30, this circum-
sion of the gas and the waveguide, respectiighe total  stance allows the phase-matching conditions for a particular
phase mismatch can be represented as a sum of two compgair of transverse modes of the pump radiation and the third
nents if the inequalit}nl(w|)—l<l h0|d3 The nonlinear harmonic to be improved_

coefficients}’l“, }g‘“, andB™" can be expressed in terms of Equations similar tq7) and (8) were analyzed in detalil
the nonlinear-optical cubic susceptibilities with the corre-for the case of second-harmonic generation in fiber
sponding frequency arguments: waveguides in Ref. 48 and for the combined propagation of
optical pulses of different frequency in a waveguide in Refs.
49-51. In particular, Het al.*® obtained an analytic solution

2

2
N M Y
w _pr

a 3\ a

- 37w?

n_ N*Z3)( () — *
Yl_ZK”czep X w0,~w,0)ee & for the process of second-harmonic generation with consid-
P eration of cross-phase modulation.
()] dp d6 Solv_ing the syst_em of equat_io(m) and(8) after_ Ref. 45,
p\P 1P ap we obtain the following expressions for the amplitudes of the
Xj f ) ' (10) fundamental and third-harmonic pulses:
[fo(p)]?pdpdo N
A"(p,2)=Ag( ) exili v1| Ag( 7p)] 2], (13)
2
~m”:2777w 62'*’\(3)(3(0'3 —w w)e::‘en*en m/ .M _\_:7%mn ~mn [ Fpan oML mng (2 4o
Y2 T gmezn X 20, 0, p Sp B™( 7k ,2)=iB""exp 2iy3" | |Ag(mn+{™"2")|*dz
h 0
z
| [ teseeegoro oo x [Caz cap n?+zm“z')>3exp[—mkm“z'
X , (1) °

j f[fhm(p)]zp dpdo +3i Yy AY( i+ ™) 22



860 JETP 88 (5), May 1999 Zheltikov et al.

TABLE |. Characteristic spatial scales for the generation of the TEModes of the third harmonic in an
argon-filled hollow waveguide with a diameter equal to 8 and in the free gas for pump radiation with a
wavelength equal to 0.78m, a pulse duration equal to 25 fs, and a power equal to 2 GW at an argon pressure
equal to 0.5 atm.

n lg,m  lgoem G, em g, em hem 1 em lgmy, €M g, €M
1 16.2 15.9 27 22 0.25 0.39 4 12
2 17.6 15.9 24 22 0.31 0.39 4 12
3 20.8 15.9 20 22 0.55 0.39 4 12

#Note Herely andly, are the dispersive spreading lengths in the waveguide and in the free gas, respectively;
I\}v” anollvﬁ,?J are the characteristic spatial scales of group delay in the waveguide and in the free gas, respec-
tively; I;ﬂ andlgﬂo are the characteristic spatial scales of phase mismatch in the waveguide and in the free gas,
respectively; and,,,; and gy, are the characteristic spatial scales of XPM1 and self-phase modulation,
respectively.

- 7 in a free gas for fundamental pulses of a Ti:sapphire laser
_ZiYg]nfo |A( 7+ {22 dZ' |, (149 having a duration of 25 fs and the third harmonic in an
argon-filled hollow waveguide at a pressure of 0.5 atm. The
where 7"= (t—2z/v")/ 7 is the time in the coordinate frame values presented were obtained using the data on the disper-
traveling with one of the pulsed € p,h), normalized to the sion of inert gases from Ref. 52. The table also presents
duration 7 of the pulse of incident radiation, and™  estimates for the dispersive spreading length of the pump
=(1/vy —1lvp)/ 7. Because we confined our treatment topulse in the hollow waveguide and the free gas and the char-
first-order dispersion theory, the main pulde) propagates acteristic spatial scales of self-phase modulatikp.j and
in the medium with no change in the shape of the envelopeXPM1 (I,ymi=~!spn{3)-
i.e., A"(7p,2) =Ag(7p) [Ag(7}) is the shape of the envelope As can be seen from the estimates presented, the char-
at the entrance to the mediynThe nonlinear phase trajec- acteristic scales of the nonlinear-optical interactions for the
tory of the fundamental pulse due to self-phase modulatioonditions considered are significantly smaller than the dis-
can be written persive spreading length of the pump pulse and the group-
C~ni AN, 2 delay length of the pump radiation and the third harmonic.
D spm= Y1lA0(7p)| 2. (15 Atthe same time, in the general case the phase-mismatching
Like Egs. (7) and (8), the solutions for the pump and effects have a significant influence on the frequency-
third-harmonic pulses are formally similar to the expressionsonversion efficiency. Phase mismatch can be partially com-
obtained in the plane-wave approximatiGrihut, unlike the pensated only in a narrow range of pressures for individual
equations presented in Ref. 45, they take into account thpairs of spatial modes of the fundamental light and the third
dispersion of the waveguide and the transverse intensity digarmonic(the TEM;; mode of the fundamental light and the
tributions of the pump and third-harmonic pulses. TEM,3 mode of the third harmonic in the case under consid-
eration; see also Secs. 4.1 and)4.2

2.2. Estimation of the characteristic spatial scales

As can be seen from E{l4), the significant restrictions ) ) )
on the efficiency of harmonic generation in the presence oﬁ"q" Case of combined propagation of the pump and third-
ultrashort laser pulses are associated with the phase mige' mone pulses
match and group delay of the fundamental and third- Taking into account that under the conditions specified
harmonic pulses due to the dispersion of the phase and grogbovel Spm,lxpml<lv’{,‘” (see Table), we shall illustrate some
velocities inherent in a nonlinear medium. As can be seeiimportant features of cross-phase modulation by examining
from Egs.(6)—(9), in the case of third-harmonic generation the initial stage of third-harmonic generation far|)",
in a hollow waveguide, it is possible to partially compensatewhere the group delay of the fundamental and third-
the mismatch of the phase and group velocities of the pumparmonic pulses can be neglected. In other words, we shall
and third-harmonic pulses associated with the dispersion afxamine the case of combined propagation of the pump and
the phase and group velocities in the gas by utilizing thehird-harmonic pulses. In this approximation we haaqg
dispersion of the waveguide modes. The characteristic spa= 7, = », and Eq.(14) reduces to
tial scales of the phase mismatch and group delay of the

pulses with respect to time in a waveguide are specified in . g N ~mn 3~n)ian 12
the following manner: B"(7,2) =18 Agexp iz| | v2 "+ 571||Ac(7)]|
1 T mn P mn.
mn_ R L _ Ak sin(éM"z)
ph Akmn w (g |(1/th—1/1/3)| - 2 gm“ ’ (16)

Table | presents estimates of the characteristic spatial scales
of the phase mismatch and group delay in a waveguide andhere
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(3;/2_2;/?n)|A8( 7])|2_Akmn on the 0.1% level, which i_s consistent in order of magnitude
&M= . (170 with the results of experimental measureme(@%) ob-
2 . )
tained in Ref. 30.

As can be seen from EqélL3), (14), and(16), self- and
cross-phase modulation give rise to an additional phase shi
between the fundamental and third-harmonic pulses, which e studied the process of third-harmonic generation in a
depends on the pump intensity and can partially compensatgss-filled hollow optical waveguide, treating the effects of
the intensity-independent phase mismatekz for a cer-  gelf- and cross-phase modulation,via numerical calculations

tain part of the pump pulse. The characteristic length of thfbsing Eqgs(13), (14), and(16). It was assumed that the pump
SynChI’OI’IOUS interaCtiOI’l betWeen the fundamental and thirq‘)u|se has an enve|0pe Of Gaussian Shape,

harmonic pulses is given Hy:, = 1/é™". Thus, when the con-
dition

$ NUMERICAL SIMULATION

2
A1) =Ao( 1) = exn( - %) , (19)

AK™=(3y1—275"[Ag(n)|? (18)  wheren,=7;, and a transverse intensity distribution which
corresponds to the TEM mode of the hollow waveguide

is satisfied(i.e., when the nonlinear medium, fundamentaland can be described by E&). Third-harmonic generation
frequency, and pump intensity are appropriately selgctedwith a transverse intensity distribution corresponding to the
the combined action of the XPM1 and XPM2 effects canlowest TEM;, TEM;,, and TEM3; modes of a hollow
partially or completely compensate the intensity-independentvaveguide with the eigenvalueg'~2.4, 5.5, and 8.7, re-
phase mismatch for third-harmonic generation in a certairspectively, was considered. As will be shown below, the
part of the pump pulse. In particular, if the conditi¢t8) bulk of the energy of the third harmonic generated in the
holds near the maximum of the pump pulse, the efficiency ofase considered is contained in the three lowest modes, so
third-harmonic generation is higher in this region than on thehat the effects associated with the generation of higher
leading and tailing edges of the pump pulse, where the phasaodes can be neglected.
mismatch remains. Shortening of the third-harmonic pulse  The calculations were performed for an argon-filled hol-
can also occur. This phenomenon is illustrated by the resultow waveguide with dielectric walls. The internal radias
of the numerical calculations presented in Sec. 4.1. was set equal to 8@xm, and the wavelength of the pump

As can be seen from Eq14), the phase trajectory and radiation was 780 nm. The waveguide length was set equal
variation of the frequency of the third harmonic depend onto L=40 cm. The power attenuation constants estimated ac-
the amplitude of the fundamental pulse. Thus, the spectrurording to Ref. 46 for a pump pulse of wavelength 780 nm
of the third harmonic at the exit from the nonlinear mediumand the third harmonic for the modes considered are less
can be controlled and the conditions for subsequent pulsthan 7x10 2 cm™!, permitting neglect of the absorption
compression can be optimized by varying the amplitude offects in the hollow waveguide for the wavelengths consid-
the fundamental pulse. Physically, such cross-phase contrered.
of the chirp of optical harmonics is possible because the The coefficienty}], which is responsible for self-phase
harmonics are generated in the pump field, which experimodulation of the pump pulse, was calculated using the ex-
ences self-phase modulation, and the phase of the third haperimental data for argon in Ref. 52. Far from the resonances
monic is modulated by the correction to the refractive indexof the third-order nonlinear-optical susceptibilities appearing
of the medium induced by the fundamental pulse. in (10—(12), 7" can be set equal t9] to within a multi-

To conclude this section we present an estimate for thelier specified by the mode structure of the pump radiation
efficiency of third-harmonic generation in a hollow wave- and the third harmonic in the waveguide:
guide when the group delay of the fundamental pulse and the
third harmonic can be neglected for the experimental param- J' f (fP(p)2(f"(p))2pdpde

mn n

eters realized in Ref. 30. If we use the estimate for the third- mn— 0 (20)
order nonlinear-optical susceptibility per krypton atom given f f (f°(p))4p dp do

in Ref. 47,x®)(3w; w,»,w)~3.2x 10~ %" esu, assuming that P pEp

the phase mismatches for the TEMnode of the fundamen- In estimating the minimum pulse duration to which the

tal light and the TEMs mode of the third harmonic are com- 56 modulated third-harmonic pulse can be compressed it

pletely compensated, and setting the gas pressure equal fja.s assumed that chirp compensation is describ&d by
p=61 Torr, the energy of the fundamental light injected into

the waveguide equal to 14bJ, the internal diameter of the BM(L. .7) 1 o0
hollow waveguide equal to 15am, and the length of the N v LI
waveguide equal to 30 cm, then we find that the intensity of 4 ¢
the third harmonic estimated from E(.6) for these condi- p(
xXexp —

B™(n',L)

tions is roughly 5< 10'® erg/cnt-s. For the TEM; mode of
the third harmonic with an effective area of X420 ° cn?
this energy corresponds to an efficiency of the conversion afvherelL. is the interaction length with a dispersive medium
the energy of the fundamental light into the third harmonicwhich provides for chirp compensation, and

r_ 2 !
2FmLc(7] 7) ) dn’, (2D
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m W, arb. units
Fm:i ﬁth) . 1
7-2 (9(1),2 o' =3w 4l 2
is a parameter which characterizes the dispersion of the 104‘;:*:: 5 %’“%,gﬁ‘,‘:nﬁﬂ
group velocity in that medium. 10'3' iR i
The second-order dispersioi™ and the interaction 10‘“
length L. were chosen so as to ensure maximum compres- 107H
sion of the phase-modulated third-harmonic pulse. 107
0 0.5 1.0 1.5 2.0
4. CALCULATION RESULTS AND DISCUSSION p, atm

In this section we discuss the results of the numericaFIG. 1. Total energy of the third-harmonic pulse at the exit from a hollow
calculations performed for the process of third-harmonidNavegu?dEWh versus argon pressure in the absence of group delay for a
generation in an argon-filled hollow optical waveguide undeﬁ&?"iﬁg"ée;%‘\%("z)z 40 cm and various peak pump powerst14, 2 (2), 1
the conditions specified above. Depending on the relation-" ' '

ship between the group-delay length of the fundamental and

. . n .
thlrd—harmo_nlc pul_seﬁ,*v‘ and Fhe Iength_ of the hollow OPt- " from a hollow waveguide as a function of argon pressure in
cal wgveg_mdd_., third-harmonic gengratlon can take place iN{ho apsence of spatial separation of the pump and third-
a regime in which the effects associated with group delay arg;rmonic pulses, which were calculated from Etg) for

insignificant or in a regime in which the difference betweenvarious values of the peak pump powRpo. The pressure

the group velocities of the pump and third-harmonic pU|Se§1ependence of the total energy of the third-harmonic pulse

- ) ,aéscillates because the phase mismatch varies as the pressure
well as on the duration and spectrum of the third harmoniCig jncreased. The energy of the third-harmonic pulse reaches

Let us evaluate the conditions under which the effects assqy ;ongtant level because at sufficiently high pressures the
ciated with group delay of the pump radiation and the thirdi, - 456 in the nonlinear susceptibility responsible for gen-

o n ration of the third harmonic in proportion to the pressure is
argon pressure ip=0.5 atm, the group-delay lengtff" of 1 ensated by worsening of the phase-matching conditions
the pulses of the fundamental light with wavelength QuiA8 [AKk™cp, so that at sufficiently high pressures the envelope

and of the third harmonic becomes of order the Iength of the function sinfmnl_)lgmnfalls off as (gmn)flocllp] The

=40 cm of the waveguide under consideration for & pumpygcijjation amplitude decreases with increasing pressure, be-
pulse durationr~50 fs. Thus, the group delay of the pump ¢5,se as follows from Eq17), an increase in pressure in-
and third-harmonic pulses does not significantly affect theeases in the difference in phase mismatch for the process of
process of third-harmonic generation under these conditiongirq_harmonic generation at the maximum and on the tails
for pump-pulse durations exceeding 50 fs. of the pump pulse. As a result, the integration over time in

The_case 'of weak group delay iS_ Qf spegial interest' Npe expression fow,, gives less pronounced oscillations than
connection with ensuring highly efficient third-harmonic ;, ihe case of low pressures.

generation. We begin our treatment with this case and then A can pe seen from Fig. 2, a large part of the energy of

move on to explore the influence of group delay on the page third harmonic belongs to the lowest TEMnode of the
rameters of the third-harmonic pulse. hollow waveguide. The TEWM mode also contains signifi-
4.1. Cross-phase modulation during third-harmonic cant energy. The energy belonging to the TiNMhode is
generation in the absence of group delay comparable to the energy contained in the two lower modes

Let the total energy of the third-harmonic pulse at theonly In a narrow range of argon pressurgs-(0.14 atm,

waveguide exit be

WhZE WE", W,,'",- arb. units !
™ 0.8
0.7¢
where 0.6F
05¢
W= f PR(7) dn 0.4¢
03¢
is the energy of the third-harmonic pulse in the TEM 0.2F
eigenmode of the waveguide and 0.1¢ fas
0 0.5 L0 15 2.0
th(n)=|Bm(77,L)|2fflfhm(p)lzpdgodp p. atm

is the power of the third-harmonic pulse corresponding to th FIG. 2. Energy of the third-harmonic pulse at the exit from a hollow wave-
P P P 9 uide W} versus argon pressure for the TEM1), TEMy, (2), TEMy; (3),

TEM;, eigenmode of the waveguide. Figure 1 presents plotgng TEM, (4) modes in the absence of group delay for40 cm and
of the total energy of the third-harmonic pulé, at the exit P =4 Gw.
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FIG. 3. Time dependence of the energy of the normalized pump-pulse
powerP, (1) and Pﬁ (2) and the normalized power of the TEMmode of 1?710 arb. units
the third-harmonic pulse at the exit from a hollow waveguide(3) and the 1.0}
normalized power after compensation of the linear ch?rﬂg (4) in the
traveling coordinate framey for p=0.536 atm and®,o=2 GW. 03}
0.6¢
where the phase-matching conditions are satisfied for the 0.4}
TEM;3 mode. As can be seen from Fig. 2, the energy of the 0ot
higher modes is negligibly small compared to the energy of )
the first three modes in the pressure range considered. 0
Figure 3 presents the envelopes of the potg¢rand the -1.0
cubed powexk2) of the pump pulse, as well as the envelopes
. . &ix
of the power of the lowest mode of the third-harmonic pulse 29.0
at the exit from the hollow waveguid®) and after compen-
sation of the linear chirg4), calculated from Eqs(16) and 283
(21) for p=0.536 atm and a peak pump poweg,=2 GW. 28.0
Figure 4 shows the absolute value of the spectrum e
1 27.5 A
Sn(Q)=‘2—J' BY(#n,L)exp(iQn) dy
w 27042
of the third-harmonic pulse for the TE}lyimode(1) and of 1.0 _05 6 0,.5 1.0

the pump pulsg2) at the waveguide exit, as well as the

absolute value of the spectrum of the pump pulse at the|c. 5. Time dependence of the power of the TEMhode of the third-

waveguide entrances) for p=0.536 atm andPpp=2 GW.  harmonic pulse at the exit from the waveguid (a) and after compensa-

The argon pressure was chosen so as to Satisfy the Conditioﬁfg’l of the linear Chil’[PﬁC (b) and of £&L/# (c) in the traveling coordinate
_ ; : frame 7 for Ppo=4 GW and p=0.549 atm(1), Pp,=2 GW andp

for a local phase- malltlc_hmg optimum for the TgMnode of ) ¢, atm(2), Ppo=1 GW andp=0.545 atm(3), andP ,,=0.5 GW and

the th|r_d ha_rmonlc{g =(N+0.5)m7, whereN is an _mtege] p=0.549 atm(4).

at a fairly high pressure. As can be seen from Fig. 2, under

these conditions a large part of the energy of the third har-

monic is contained in the TEMmode. The results presenteq fects and that its spectrum is broadened significantly even in

n IF'g‘?" Bhand 4 pdrolv|ded %wdence that tr?e th'rd'(;‘alrm.omcql,omparison to the pump pulse, which experiences the influ-
pulse Is phase-modulated due to cross-phase modulation ®hce of self-phase modulation. For this reason, the third-
harmonic pulse can be effectively compressed by compen-
sating the linear chirp.

2 (l):g- ! Figure 5, which shows the power envelopes of the third-
5 0.3¢ , : harmonic pulse corresponding to the TEMwaveguide
£ g'g: 24 mode at the waveguide exi€ig. 53 and after compensation
205} ;' : of the linear chirp(Fig. 5b), as well as a plot of*Y( %) (Fig.
10.4- ;’l 50), illustrates the sharpening of the third-harmonic pulse
:&8;: i due to the intensity-dependent correction to the phase mis-
0.1 .'3; ! ‘-“ match[see Eqs(16) and(17)] when the gas pressure and the
0 YR ld 3 Y pump power are selected to achieve the best phase-matching
‘ ‘ Q, arb. units conditions near the maximum of the pump pulse. It can be

_ seen from a comparison of curvésn Figs. 5a and 5c that
FIG. 4. Absolute value of the spectrum of the amplitude of the TEkbde the third-harmonic signal Corresponding to the TEMave-

of the third-harmonic puls&,=|(1/27) [B(75,L)exp(Q7) d7| (1) and the . . . .
pump pulse at the exit from the waveguidg,=|(1/2m)[Al(n.L) guide mode vanishes at the waveguide exit for valueg of

xexp(Qm)dy (2) and at the entrance to the waveguidB, such thaté*'= N, whereN i$ an integer. _
=|(1/2m) fAY(,0)exp(Q7) dy| (3) for p=0.536 atm andP,o=2 GW. As can be seen from Figs. 5a and 5b, the chirp of the
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5, arb. units Wh”', arb. units
072t 0.5¢
y 0.4f
107k
\ 0.3r
1074 -,“ 0.2r
v 0.1f
1073 : R
-15 -10 5 10 15 : '

Q. arb. units 0 01 02 03 04 05 06

p, atm
FIG. 6. Absolute value of the spectrum of the amplitude of the TEkbde

of the third-harmonic pulse at the exit from the waveguiefor P,,—=4  FIG- 8. Energy of the third-harmonic pulse for the TEM1), TEM;, (2),
GW andp=0.549 atm(1), P,,=2 GW andp=0.536 atm(2), P 0=1p GW and TEM; (3) waveguide modes at the exit from a hollow waveguide
andp=0.545 atm(3), and PZ[):O.S GW andp=0.549 atm(4).p versus argon pressure for=40 cm,P,,=4 GW, and 2=25 fs.

third-harmonic pulséFig. 53 and its spectral widtliFig. 6) varies with argon pressure, was obtained from @¢) with
increase with increasing pump power, making it possible tallowance for the group delay of the pump and third-
obtain fairly short pulses at the output of the compressorharmonic pulses for various values of the pump-pulse dura-
Note, however, that increasing the pump power can distortion and a peak pump powé,,=4 GW. In analogy to the
the pulseform of the third harmonic. case of small group delay of the pump and third-harmonic
Thus, the results of these calculations show that theuulses considered in Sec. 4.1, the total energy of the third-
phase cross-modulation accompanying third-harmonic gerharmonic pulse oscillates as a function of gas pressure due to
eration makes it possible to control the chirp of the thirdthe variation of the phase mismatch with increasing pressure.
harmonic by varying the amplitude of the pump pulse andAs in the case of small group delay, the energy of the third-
the parameterressure and dispersipaf the gas filling the  harmonic pulse reaches a constant energy because at suffi-
hollow waveguide and thereby permitting the formation of ciently high pressures the increase in the nonlinear suscepti-

pulses of tripled frequency and regulated duration. bility responsible for third-harmonic generation is
compensated by the worsening of the phase-matching condi-

4.2. Cross-phase modulation during third-harmonic tions. . .

generation with group delay of the pump and third-harmonic The dependence of the energy contained in the trans-

pulses

verse TEM; (1), TEM;, (2), and TEM3 (3) modes of the

. . . third-harmonic pulse at the exit from the hollow waveguide
When dl_spersn_/e spreading of the pulses can be nesn argon pressure calculated with consideration of the spatial

glected(the dispersion length for the parameters presented separation of the pump and third-harmonic pulses from Eq.

above significantly exceeds the length of the hollow optical(14) for L=40 cm,P =4 GW, andr=25 fs is presented in

waveguide, but the difference between the group veIocitiesFig_ 8. In analog)’/ tp ’

o the case of small group delay, a large
at the frequencies of the pump radiation and the third har- droup y g

. Ken i hird-h X ' part of the energy of the third harmonic belongs to the lowest
monic must be taken into account, third-harmonic generatio EM,, mode of the hollow waveguide, a smaller part of the

in a hollow waveguide can be analyzed with allowance forenergy is contained in the TEMmode, and the energy of
the eﬁ_ects of self- Qnd cross-phase modulation using Edhe TEM,; mode is comparable to the energy contained in
(14). Flgure 7, showing how the total energy of the ﬂ_“rd' the two lowest modes only in a narrow range of argon pres-
harmonic pulséV,, at the exit from the hollow waveguide sures p~0.14 atm, where the phase-matching conditions
for the TEM,;; mode are satisfied.
W . As can be seen from the envelopes of the power of the
b arb. units

0.7 pump pulse and the power of the lowest mode of the third-
0.6+ harmonic pulse at the waveguide exit in Fig. 9a, the group
0.5t 1 ] delay of the pump and third-harmonic pulses at first causes
0.4k i 2 an increase in the duration of the third-harmonic putsgve
0'3_ 2 in Fig. 9a, the pump and third-harmonic pulses spatially
’ 1e3 separate by a distanceg,= nﬁ=0.8 over the length of the
0.2¢ . waveguide and then(as the pump pulse duration further
0.1 ; : decreasesthe third harmonic splits into two pulsésurve 1
0 01 02 03 o4 035 06 in Fig. 9a, and the pump and third-harmonic pulses separate
p, atm by a distancen,=3 over the length of the waveguiderhe

i | Fhe thirdh < ou he et § right-hand pulse in Fig. 9a forms as a result of third-
FIG. 7. Normalized total energy of the third-harmonic pulse at the exit fromy oy i generation over a distance of order the coherence
a hollow waveguide versus argon pressure for two values of the pump-pulse 11 11

duration 2r=25 fs(1) and 200 f52) and with neglect of the group delay of |en_gth | ph:_l/Ak near the entrance endplate of the wave-
the pump pulse and the third harmori® for L=40 cm andP,,=4 GW.  guide, while the left-hand pulse corresponds to third-
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0.7
2 06 FIG. 9. Time dependence of the power of the
505 lowest mode of the third-harmonic pulse at the
£ o4b exit from the waveguide®,=P} (a) and after
© compensation of the linear chikp) in the trav-
:;50-3 eling coordinate framen, for p=0.52 atm,
0.2r Ppo=4 GW, and durations of the pump pulse
0.1F 27=25fs(1), 100 fs(2), and 800 fg3), as well

as with neglect of the effects of group del@y.

harmonic generation in the analogous region near the exthan near the entrance endplate. For this reason, the third-
endplate. The power of the third-harmonic pulse generated iharmonic pulse formed at the exit endplate of the waveguide
the central part of the waveguide is negligibly small com-is characterized by significant phase modulation and can be
pared to the third-harmonic signal formed near the waveeffectively compressed by chirp compensatigigs. 9b and
guide endplates. This phenomenon can easily be explaineldh). The corresponding spectra of the pump pulse and the
using Eq.(14). In fact, assuming thdt,<L, letting the upper third harmonic are shown in Fig. 11. As in the case of small
integration limit in (14) tend to infinity, and noting that at group delay of the pump and third-harmonic pulses, an in-
low pump powers the second and third terms in the argumerdrease in the pump power broadens the spectrum of the third
of the exponential function are small compared to the firstharmonic(Fig. 12.

we find that the power of the third-harmonic signal is speci-  Thus, the picture of the nonlinear-optical interaction of
fied by the Fourier transform of the pump-pulse amplitude inshort laser pulses in a gas-filled hollow waveguide is consid-
the Ak representation: erably more complicated with a significant group delay of
- the pump and third-harmonic pulses than in the absence of
) B Z/gmn -
By, 2)~i — dy" (AN 7+ 7"))3 group delay of the pulses. However, under these conditions,
n Zmn 0 too, the cross-phase modulation makes it possible to control

the parameters of the third-harmonic pulgégs. 10 and 1p
and permits the formation of ultrashort pulses of radiation in
the ultraviolet range.

Akmn
Xex;{ﬂ £ 7. (22
. P_hyS|caIIy, the low gfﬂmency of thwd-hgrmc_)nlc gen(.ara-ds' CONCLUSION
tion in the central portion of the waveguide is associate
with the significant phase mismatch between the pump radia- An analysis of the solutions obtained for coupled equa-
tion and the third harmonicAk!Y Z1*~100 for pulses of 25 tions describing the slowly varying amplitudes of the pump
fs duration at an argon pressure of 0.5 atm pulse and third harmonic with allowance for self- and cross-

It is noteworthy that the third-harmonic pulse appearingphase modulation and first-order dispersion effects has
near the exit endplate of the waveguide is phase-modulateshown that self- and cross-phase modulation can be impor-
far more strongly and, accordingly, can be compressed wittant factors, which have a significant influence on the effi-
a far higher efficiency(Fig. 9b than the third-harmonic ciency of frequency conversion in third-harmonic generation
pulse formed near the entrance endplate of the waveguide hollow waveguides. Unlike the plane-wave approxima-
This is because under conditions for which the pump andion, these equations include the influence of the waveguide
third-harmonic pulses separate by a fairly large distance ovahrough the propagation constants, the group velocities of the
the length of the waveguid@s occurs in Fig. 0the XPM2  pump radiation and the third harmonic, and the nonlinear
effect in the noninertial Kerr medium has a fairly weak in- coefficients written with consideration of the transverse dis-
fluence on the phase of the third harmonic. As a consequendgbutions of the pump and third-harmonic fields for the cor-
of self-phase modulation, the pump pulse is phase-modulate@sponding waveguide modes. It has been shown the phase
far more strongly near the exit endplate of the waveguiddrajectory of the third harmonic can partially compensate the

10 10
@ 1n-l b ) FIG. 10. Time dependence of the power of
2 1072 £10°¢ the TEM,; mode of the third-harmonic pulse
5 S -2} 1 o, at the exit from the waveguide,=P} (a)
£ -3 g 10 i T2 and after compensation of the linear chirp
= 107°F © SN N . . .
“{ 5 1073k iy 30N 5 Phc (b) in the traveling coordinate frame,
=, o it Ny for P,,=2 GW andp=0.506 atm(1), P,
10} 107 i Vi =1 GW andp=0.514 atm(2), and P
s -5 ! \i =0.5 GW andp=0.518 atm(3) with 27
10 ; 10 I7A . AL — 95 fs
-5 -5 -1 0 1 2 '
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This paper is a theoretical analysis of time-dependent nutation and echo signals in the effective
field of multipulse trains in NQR. The results of experimental investigations of the same

aspects were reported in earlier papers. The various features of dipole—dipole interactions in three-
level quadrupole spin systems are discussed. It is shown that, in contrast to NMR, the

dipole Hamiltonian in the interaction representation determined by the quadrupole Hamiltonian
contains only three diagonal components of the dipole—dipole interaction tensor. On the

other hand, the strong inhomogeneous broadening characteristic of NQR hinders exact
measurement of these components by ordinary methods. The theoretical analysis suggests

that the decay of the echo-signal envelope in the effective field of multipulse trains is determined
solely by the dipole relaxation time, which serves as justification of a new experimental

method used in measuring the characteristics of the dipole—dipole interaction tensor in spin
systems with an inhomogeneously broadened spectrum19@€® American Institute of
Physics[S1063-776199)00405-9

1. INTRODUCTION to a multipulse train or the structure or parameters of the
train have changed. In these papers several new results are
Multipulse trains were introduced into the realm of listed: echo in the effective fieldecho on the echo-signal
nuclear magnetic resonance studies by J. Waugh angnvelopg that arises after the phase in the multipulse train
collaborator$? in order to average dipole—dipole interac- has been inverted or an additional pulse has been applied,
tions, which made it possible to observe chemical shifts irand a time-dependent nutation signal in the effective field
solids. In NQR, the use of multipulse trains was also initiallythat has a pronounced oscillatory nature and coincides in
introduced for practical reasons, since such trains made ghape with the NMR induction signal in a solidhe ordinary
possible to dramatically increase the number of events panduction signal in NQR has no oscillations and resembles a
unit time, which is especially important in the search for Gaussian curvye
weak NQR signalgespecially NQR in**N). However, the In Ref. 6 it was noted that the experimental results could
successful use in NQR of multipulse trains in studies ofbe interpreted as stemming from time-dependent nutation in
polycrystalline samples, where the principal axes of the tenthe effective field of multipulse trains under conditions of
sor of the electric-field gradient are oriented at random instroboscopic observation, which means that the information
relation to the vector of the radio-frequengy) field so that is gathered once per cycle or “supercycle” of the train. In
there can be no 90° and 180° pulses in the strict sense of tithe same paper it was assumed that one application of the
word, required reviewing several aspects of the theoreticainethod could be the study of dipole—dipole interactions in a
explanation of multipulse regimes. The strict requirementsystem with an inhomogeneously broadened spectrum,
(obligatory in NMR) that the mean dipole—dipole interaction which is characteristic of NQR.
Hamiltonian be zero, which is impossible to meet in NQR Goldmar calls such a situation “dirty” and advises
for polycrystalline samples, was replaced by a less stringerdvoiding it. However, much reseafchhas gone into the
requirement that the initial density matrix commute with theproblem of a spin temperature setting in systems with large
mean Hamiltonian, provided that the initial density matrixinhomogeneous broadenir(grimarily in EPR. Moreover,
contains the transverse magnetization operator. inhomogeneous broadening was taken into account uncondi-
Because of the practical problems mentioned above, th#onally in research devoted to calculations of spin echo in
heightened interest of researchers in multipulse spin-lockinPR (see Refs. 10 and L1The spin-packet approximatith
in NQR caused the part of the initial density matrix that doesproved to be fairly effective in such calculations. However,
not commute with the mean Hamiltonigis orthogonal to it  all these approaches did not involve transient processes,
to be neglected. It is obvious, however, that the evolution ofwhich precede the setting in of quasistationary states in mul-
that term may be of interest from the practical viewpoint astipulse regimes.
well as from the theoretical. Previous pagefseported the The decay time of echo signals in the effective field
results of experimental studies of transient NQR signals irequals several ordinary eclidahn echpdecay times in the
1N in the effective field of multipulse trains, i.e., signals that same sample$This may occur because of partial averaging
appear immediately after the spin system has been subjectedl the dipole—dipole interactions by a multipulse train or

1063-7761/99/88(5)/7/$15.00 868 © 1999 American Institute of Physics
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because of the effect of large inhomogeneous broadening itnese components is zgrélere and below we drop the num-
the decay time of Hahn echo. Hence before we analyze trarbering of the spin operators and use the definition by posi-
sient process in the effective field of multipulse trains wetion, i.e., the operator of the first spin is in the first position
must examine the features of dipole—dipole interactions irand that of the second spin, in the second. While the initial
NQR and their effect on formation of ordinatidahn echo.  dipole Hamiltonian has the same form in NQR and NMR,
the “truncated” dipole Hamiltonian in NQR differs signifi-
cantly from the similar Hamiltonian in NMR. First, the trun-
cated dipole Hamiltonian in NQR has Aeterm of the “di-
pole alphabet” because tti®ecomponent of the nuclear spin
The quadrupole Hamiltoni&h is not diagonal in the representation where the quadrupole
L 2 2 2 2 Hamiltonian is diagonal. Second, the three remaining terms
Ho=A[31;— 17+ n(1—1§)/2] (1) describe flip—flop processes, and each term corresponds to an
for =1 (NQR of ¥N, which corresponds to the experiments €xchange of photons of the three allowed transition frequen-
described in Refs. 395can be represented in terms of cies. The first term of the truncated dipole Hamiltonigi

2. DIPOLE-DIPOLE INTERACTIONS IN A THREE-LEVEL
QUADRUPOLE SPIN SYSTEM

single-transition operatoré: describes flip—flop processes at a transition frequency equal
. 0q ar_ arp to the frequency of the external rf field, while the second and
Ho=wpeS; '+ (g = w0rp) (S = S). (2) third terms represent the sum and difference of similar terms

HereA is the nuclear quadrupole coupling constapis the  for the other two processes. All commute with each other;

asymmetry parameter of the tensor of the electric-field grathe first transforms as a tensor of rank 2, i.e., is rotated by a

dient; I, 1y, andl, are the spin-operator projections,, 'f pulse through a double angle, the th.ird as a tensor of rank

=E,—Eq, wq=Eq—E,, andw,,=E,—E, are the transi- 1, aljd thg s_econd as a scalar. Thus,. in NQR the dlpole_ res-

tion frequencies, wittE,, E,, andE, the energy levels; and ervoir splits into two constants of motion. This fact was first

| is replaced withS in the notation for single-transition op- noted in Refs. 15 and 17. As a result, NQR provides the

erators used in Ref. 14 so as to emphasize the differendeossibility of measuring the asymmetry parameter of the

between these operators and true spin operators. dipole—dipole interaction tensor in experiments, although in
The first feature of NQR we would like to stress and the laboratory reference frame the dipole—dipole interaction

allow for in our analysis is the large inhomogeneous broadtensor is axisymmetrit,in the same way as the tensor of

ening of lines due to the presence of impurities, imperfecinterest in the truncated dipole Hamiltonian in NMR is axi-

tions in the lattice, etc. Ordinarily, the inhomogeneous widthSymmetric.

of NQR lines forN, denoted by 1% , is about 1kHz in In the interaction representation we can write the quad-

molecular crystals and large compared to the dipole widtifupole Hamiltonian as follows:

1/T, (of order 100 Hx. At the same time, the width of the

spectrum of rf pulses, 8, is within 10kHz, i.e, T,>T3 Ho=A(S91+180% + 6(S1- 1509, (5)

>t,. Bearing all this in mind, we can write the Hamiltonian

of pairwise interacting spins as a sum of two-spin Hamilto-here A =

. pg— @o IS the deviation of the median spin-
nians:

interaction frequency from the frequency of the rf field,
H' = wq1 291, + w1 SPI+H. which is usually assumed to be the median frequency of the
parTeL P ? P resonance line. The first term on the right-hand side of Eq.
= wpy(Sii+ 1,85 + 6(Sh1,— 1,S5) +Hp. () (5) commutes with all the terms iH and with the second
ferm inHq. Thus, it is the “quadrupole reservoir,” corre-

The second term on the right-hand side commutes with al X -
the operators of thpq subspace and does not take part in the§pond|ng to the Zeeman reservoir in NMR. The second term

evolution process if the rf pulse is applied in this transition,” (_5) does not commute W'th the truncate_:d dipole Haml!-
so that it can dropped. Heflg and1, are the identity matri- ftonlan, and hent_:e no purely dipole reservoir can b_e specified
ces for the first and second Spingyq= (wpq1+ @pg2)/2 iS in NQR. The_ dlffer_ence of quadrupole frequenc!es of the
the median quadrupole frequency of these spins forpthe interacting spins bring us close to_ _such a reservoir.
transition, 8= (wpq— @pq2)/2 is the “difference” of these Anot.her _appro_ach to the transition to the mter_actpn rep-
frequencies, andtl]; is the dipole—dipole interaction Hamil- resentgtlon mvolymg the _total quadru_pole Hgmlltoman of
tonian. two spins is possible. In this case, the interaction representa-
The dipole Hamiltonian in the interaction representationion 1acks “quadrupole” terms but the dipole Hamiltonian
determined by the quadrupole Hamiltonian can be expressetf COMes time dependent:
in terms of single-transition operators:

= PadgPq PadgPqg PAdgQPd_ QPdgpPq
Ho= 20, SIS S - Qp(SrSy sy (P 2 (SOSCTSShe0sad SISO

+3r<p3;p+S;p%p)ﬁL(qu—Qrp)(Sﬂ'Sﬂ%Sﬁ’syq’ Xsin r25,:qt]+r29rqr[Fsgrsgr+S(yqrsyqr) Cors Z:Sqrt
—SPSP-SPSP), @ +(SI'SI - SIS sin 284,t]+2Q,,[(SPSP

rprp PP _ QfPrp H
where(),q, Q4, and{),, are the diagonal components of TSSy") €os 2t (S5 = SS) sin 25,t],

the dipole—dipole interaction tensdnote that the sum of (6)
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where 6,4, 4., and dy, are the differences of the quadru- detuning frequency increases. For the remaining terms in the
pole frequencies of the interacting spins in fhg, qr-, and  Hamiltonian and the part of the density matrix referring to
rp-transitions. the first spin, p;=wp,S)1, the solution of the quantum
It is now convenient to base our reasoning on examinind.iouville equation for thepg-subspacehas the form
the evolution of an isolated pair of spinshe two-spin .
mode). This model makes it possible to solve the quanturrszww"ql[syse COS wel (= SSeC+ 5;5Ca) SiN wet], )
Liouville equation exactly, which can produce useful infor-
mation about the effect of inhomogeneous broadening of théhere we=(02,+59)Y? is the effective precession fre-
dipole—dipole interaction and can be generalized to a multiduency, andc,= é/we and co={yq/we are the direction
spin system by various approximation schemes. cosines of the rotation axis. Here and below we place no
To obtain a solution we must introduce the initial density UPper indices on the operators and assume, if not stated oth-
matrix. In the high-temperature approximation, the equilib-erwise, that the operators belong to {hg-subspace.
rium density matrix is determined by the Boltzmann distri-  APplying a second 180° pulse to the spin system leads to
bution. When a 90° pulse is applied along thexis, the formation of spin echo. The density matrix describing the
initial density matrix is transforme(f we drop the first term ~ €volution of the observabl8,S, after the second pulse has

and a constant factpinto been applied can be written
_ 2 2
p1= 0 LI+ w1500 P3= wpq1SySel —[C5 COS we(t— 7) + €5 COSwe(t+7)]
= wpq( L1+ 150N + S(S[1— 1509 X COSA(t—7)+Cs Sin we(t—7) SiNA(t—17)}.
10
= op( 1+ 159, @ | 40
_ Thus, at 6=0, which corresponds to the spin-packet

sincewpq> 4. approximation'! formula (10) yield an echo signal with a

tonian is determined by the quantum Liouville equation. Itsmagnetization is fully restored, but in the general case there
formal solution, is partial refocusing of the isochromatic curves, which is
pr=exp —iHt) p.exp(iHt), d_etermined by the ratio of the_ direction C(_)sines, and the echo
signal decays with a decay time depending on Koth and
can be reduced to nonoperator form by successive differens, Hence, measuring the spin—spin relaxation time in sys-
tiation and calculation of the resulting commutatorsi®in tems with an inhomogeneously broadened spectrum by the
this process of such calculations the initial density matrixysual methodgthe Hahn two-pulse train methpchay lead
splits into two parts: to incorrect results. For the other part of the density matrix,
por» the explicit form of the solution of the quantum Liou-

= +p1r, : S ; .

P1=Ppa™ Pur ville equation is more complicated and describes two rota-

P1pg= wpq(srymlpmr 1pq35>Q)1 (8)  tions with frequencies

Pir= wpq(55q1r+ 1!'85(11), We1,2

Pd— 2P identi e 1 02.+02

where1P9=2S" is the identity matrix in thepg subspace, = =/ 2+ P [0 (02, + 0F) + 02,02,
and1"=1-1P9. Accordingly, the spin space splits into two V2 2
subspaces, for each of which we can put together a set of (12

spin operators that commute with the operators of the oth
subspacé® The matrix p,q commutes with the second and
third terms of the dipole Hamiltoniaf@), while p, commutes
with the first and second terms. Formally, the first subspac
is entirely analogous to spiiNMR, although the physical
meaning of the operators in these two cases do not coincide.
The operators of the second subspace describe two—photén
transitions through a third level and have no direct analogsin  The experiments described in Refs. 4—6 used a multi-
NMR.!2 The spin evolution in this subspace requires a sepapulse train with alternating phases,
rate investigation. The experiments described in Refs. 4—6

used 180° multipulse trains that averaged the internal inter- Py (T1= Y= 2T = Yx= Ta)n, (12
actions in this subspace?® which requires using other trains where ¢, is the angle of the rotation of the nuclear magne-
to study this subspace in experiments and makes it possibtezation vector initiated by a priming pulse directed along the
to discard the second part of the density matrix. We will alsoy axis of a rotating reference framg, (¥ _,) is the angle of
drop the first term of the quadrupole Hamiltonian @), the rotation initiated by a pulse from the train applied along
which commutes with the other terms of the total Hamil-thex (—Xx) axis,7; (27,) is the pulse spacing, andis the
tonian. The effect of this term will be determined in the lastnumber of cycles.

stage, although it is obvious from the start that it manifests  In the first approximatior(in which the pulses are ap-
itself in the divergence of the isochromatic curves as theroximated by delta functiopswe can use the ordinary

e{)bviously, the difference of these two frequencies is deter-
mined by the asymmetry of the dipole—dipole interaction
tensor. AtQérZpr one frequency vanishes and the other
Becomes equal to the frequeney in (9).

TIME-DEPENDENT NUTATION IN THE EFFECTIVE FIELD
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method of calculating mean Hamiltoniahis. Since the ex- ~  2Q sindt,

periments used a 180°-pulse train, the inhomogeneous- HD:T(SXS)(+ 5,5)=01(55+S,S)),
broadening Hamiltonian is averaged to zero, and the dipole ¢

Hamiltonian, which a tensor of rank 2 and is transformed by -~ 4w;t, ) )

a double angle by the pulses, remains unchanged. As a result Hl:T(SVSe Sin 4,7+ SeS, sin Ap7)

the time-dependent nutation in the effective field is an induc-

tion signal whose decay is determined by the dipole—dipole = 01a(5,Se SeS)) + 01p(SSe =~ SeSy). (16)
interaction Hamiltonian. However, this approximation de-\here r=t/4.

scribes neither the dependence of the period of oscillations of = The total Hamiltonian consists of two commuting terms,
the time-dependent nutation on pulse length and spacing N& S, +S,S, andS,S.—S.S,, each of which does not com-

the formation of echo signals in the effective field after themyte with the third termS, S, + S,S, . If we perform another
phase of rf pulses in the train has been inverted. Thus, ifansformation with the propagator

describing the experimental results discussed in Refs. 4-6 . )
one must not neglect the inhomogeneous-broadening Hamil-  P1=&xpli (S;S+S,S,) ajexpli (S,S— S:S,) B},
tonian during the action of the pulses. In this case the comghere

mon method used in calculating the mean Hamiltohiin 5

inapplicable, since the pulse propagators do not represent a . 201, , 1
. . . . sina= , Wer=2\/ 0zt —
unitary transformation. Hence in what follows we will use a We1 4
transition to the interaction representation in each $pae >
Eq. (6)]. In this representation there is no inhomogeneous- sin B= 2w1p 0o=2\] w2 + &
broadening Hamiltonian, and the dipole—dipole interaction wey e2 1" g

Hamiltonian and the Hamiltonian representing the interac;[he Hamiltonian(16) becomes a sum of commuting terms:
tion with the rf field become time-dependent. '

For a 180°-pulse train we may leave only the first termH=2[Q,S,S,+ S,S;(we1+ wep) + S,S(wep— wer)].  (17)
in the expression for the dipole Hamiltonié). The Hamil-
tonian representing the interaction with the rf field in this
case can be written

Thus, to obtain a solution, we must transform the initial
density matrix via the propagatoPsandP, find the solution
of the quantum Liouville equation with the Hamiltoniét),

Hi=w1(Sd cosA;t+1S, cosAt—S 1 sin Aqt and perform the inverse transformation. All these operations
) are extremely involved and cannot be described in detail in a
— 1S, sinA5t), (13 journal article(it is best to do all calculations on a computer
whereA ;= wyq— wg, Ap=wpg— wo, wg i the frequency using a package with computer algebra capabi)ities
of the rf field, andw, is amplitude of the Hamiltonian. A. Pulse train (12) without a priming pulse

The cycle (.) averages of the dipole Hamiltonian and of

the Hamiltonian representing the interaction with the rf field, The.initial density matri>(the.BoItzmann mgtrix dgnsjty
are given by the formulas in the high-temperature approximatjofor the first spin is

proportional to w,4,S,S, and for the second spin, to

= (0) 2Q) sindt, 0p2SeS,. The contribution of the first spin to the observ-
Hp'=——%—[(§5+S5S cositc ableS,S, is
C
+(S8,—S,S) sindt] p1~SS[ (Sin a+sin B)SIN(we + wer)teT (SiN &
2Q) sinést . . 1t
= TC expli(S,SeA 1+ SeS,A )t} (S,S,+S,S0) —Sin B)SiN(weg — wep)te]COS L teCOS—— <. (19
Cc
X expl— i (SeS,A0+ S,SeA )te), (14) The contribution of the second spin is
. Aztc . . .
H(0)24(1)1tp [Sin A17(S,S, COS 24,7+ S,S, sin 24,7) p2~SS, sin Q4te cosT SiN weqte SIN weote SIN(a+ B),
1 t
c (19
+5iN A, 7 (5SS, cos 24,7+ S.S, sin 2A,7) ] wheret,=nt, is the effective discrete time. These expres-
it sions imply that there is exchange of coherence between the
P expli(S,Sel 1+ S:S,A )t (S,Se sinAy7 spins. The contribution of the second spin to the transverse

te magnetization of the first spin is zero @i=0. The experi-
+SeS,sin Ay7)exp —i(SSeA 1 +SeSA Nt} (15 mental curve for time-dependent nutation obtained by the
. pulse train(12) without a priming puls&is depicted in Fig.
If we pass to a new reference frame defined by the propaga-. The curve represents damped sinusoidal oscillations and
tor gualitatively agrees with the expressiofis8) and (19). The
_ ; damping is determined by the dipole—dipole interaction
P=exp[—i(S,ScA1+ SeS,A)t ), oY Y .
XSSt SeSA2)te Hamiltonian (the factor co€),t,) and the mixing of oscilla-
we obtain tions with combinations of the frequencieg; and we,.
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o 1077 4. ECHO IN THE EFFECTIVE FIELD
= ¢
c i
;03';{ Echo signals in the effective field are formed by the
s il multipulse traift=°
_g0.6‘+~ '
2 *ﬂ' $ (Py_(Tl_QZ’x_ZTl_l/f—x_Tl)n
204n 4 F
TR AY AW SV —(T= )= 2m = Y T (22
202¢ Y ¢ _ _ :
S L ) Hence analysis requires that we examine all coherences that
0—4’ 26 20 %0 occur (during the timer,=nt;) due the mean Hamiltonians
Time, ms (14) and(15) and the reverse evolution of these coherences

FIG. 1. Envelope of an echo signal in a multipulse train with alternating

phasegsee(12)] for the casep=0, yy=m, 7=0.3 ms, and ;=50 us.

B. Pulse train (12) with a 90 ° priming pulse

after the phase of the rf field has been inverted in the train.
For this part of the train the mean Hamiltoniéi®) changes
sign. The priming pulsep, excites a transverse magnetiza-
tion S,S,. Then, due to the action of the sum of Hamilto-
nians (14) and (15), this magnetization transforms into the
orthogonal cophased coherer&s, , the two antiphased co-

After a 90° pulse has acted on the system, the initiaherencesS,S, and S;S,, and the two-photon coherences
density matrix becomes proportional$gS, andS,S, forthe  SS, andS;S; . After the phase has been inverted, additional
first and second spins, respectively. The first spin creates thgontributions to the observed cohererggs, are provided

observed coherence

P17~ SSe) COS 11, [COS weqte COS Wertet SIN weqte

by the antiphased coherencg S, and the orthogonal
cophased coheren&sS, . According to(14) and(15), in the
first stage there are rotations with combinations of the three
frequencied) (, weq, andwe,. After phase inversion is com-

Aqt pleted, there is convergence of coherence at one frequency
X SiN wepte COS(a+ B)]cog ; i +(cofa COSweite and divergence at another. The observed coher§feand
the antiphased coheren&S, are produced by terns that
LAt diverge at the frequenc§; and converge at the frequencies
+COS'B COS weyte) SIM > [ (200 W — wer aNd wey + wey, respectively:
The contribution of the second spin is p(S,S.) ~coL A;tc o aJZF,B sina sin g

P2~ SSe} SiN Qqto(—SiN weite COSweote COS @+ COS

X C0S ) (te+ 7o) COY We1 — Wep) (te— 7o), (23
Aqt Aot ., Agt atp .
X wete SIN weote COS B)COS ; ® cos ; ) p(S,S,) ~sir? 5 ¢ cog 5> Sina sin B
+(—COoFa COS wgitet COLB COS wepte— SiMPa X C0SQ(tet 7o) COS(wer+ wep)(te—Te).  (24)

+sir?B) sin

Aqgte
—— sin

2

At
>

(21)

This signal decays with an effective spin—spin relaxation
time T,.=1/Q4. The orthogonal cophased coherence pro-
vides a contribution which is totally convergent at the fre-

The experimental curdefor this case .is depicted in Fig. 2 quenciesw,; and w,. Thus, in the given experiment, the
and, according to the above expressions, represents dampggho-signal decay time is independent of inhomogeneous

cosinusoidal oscillations.

< b
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FIG. 2. Envelope of an echo signal in a multipulse train with alternating
phases withp=/2, ==, 7=0.5ms, and,=50 us. Signal sampling was

done once per cycle.
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40

50

broadening, which makes it possible to recommend this
method for measuring dipole—dipole interaction times in sys-
tems with an inhomogeneously broadened spectrum. The de-
cay of the echo-signal envelope obtained via the pulse train
(22) is depicted in Fig. 4 of Ref. 6. The decay time amounts
to 20us, whileT, in the same sample measured by the Hahn
two-pulse method is 7 ms.

Another approach to analyzing echo signals in the effec-
tive field amounts to calculating the mean Hamiltonian for a

“supercycle” consisting of two cycles with inverse phases.
With such a train,

(Py_(T_ U= 21— ¢ =T [(T— =27
— = Ton— (T= Y= 27— _x— T)onln, (25

multiple echo signals in the effective field have been
obtained’® The mean Hamiltonian calculated in this way
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Lor—s To go over to the many-body problem, we must average
1 the above expressions for the density matrix over the dipole
20841 and quadrupole frequencies with appropriate distribution
5 | o functions. Of course, in this case the solution does not be-
go.e A ) come ‘“many-body.” However, the approximations used
e Q"’ %a o here are no rougher than those employed in widely accepted
204 ﬁ ;Y methods that use second-moment calculations or an iteration
802 ai 114 & ??wg e N% a procedure(if the latter is limited to two iterations’ In both
SUd q? } S 4 cases one is forced to calculate a double commutator, which
E 0 r 4 corresponds to decoupling the equations before three-spin
coherence is exciteld.
~02 A detailed review of the methods used in describing
-12 36 84 132 180 228 276 time-dependent nutation in EPR in solids, which large inho-

Time in units of = mogeneous broadening must be taken into account, can be
FIG. 3. Multiple echo signals in the effective field obtained via t@8 at ~ found in Ref. 19. Here preference is given to a phenomeno-
7=0.3,t,=50 us, andn=3. The grid denotes the points of phase inversion. logical description that the Bloch equation instead of the
Liouville equation. In the spin-packet approximation, time-
dependent nutation represents damped oscillat{@nth a

. _ . , decay timeT,) with a frequency equal to the amplitude of
describes the echo-signal envelope in such a train. The d{he tf field, w,:

pole Hamiltonian(14) in this case remains unchanged, while
the Hamiltonian(15) representing the interaction with the rf t
field becomes My (t)=M,(0)sin w,t exp[ - —] ,

Tz
SIMP(A4t /4) 1te CAgte
oA, 7 (SxSeCOST+SySe sin— ) provided that the initial magnetization is directed alongzhe
axis. This approach can also be used to interpret time-
Sir(A,t /2) ( SAth Aztc” dependent nutation in the effective field of multipulse trains,
€

4w1tp

5O
1 tC

+SeSy sin

COSA,T 2 2 since the mean Hamiltoniard4), (15), and (26) formally
Aot (i.e., in the constituent operatgrare similar to the Hamil-
@1lp ; tonian describing time-dependent nutation in a steady-state rf
= expli(S,SeA 1+ S.S,A )t N : o
t. A (S:SeA 1+ SeSA )t field in EPR. For the sake of comparison, it is also useful to
. : consider the signals of time-dependent nutation and echo in
M smz(A—zth) the effective field of the single-phase multipulse train
€ COSA;T € CoOA,T

X exp{ —i(S,SeA 1+ S:.S,A )t} (26) ex~ (7= T (28)

where t. now denotes the duration of the entire “super- The mean Hamiltonian for this train can be written
cycle.” This Hamiltonian describes time-dependent nutation

in the effective field of the multipulse trait22), provided H(O)_Zwl sin Aqt, A o A
that signal strobing is done once per “supercycle,” and re- 1T A—l(SXSecos 17+ S, Sin Ay 7)
sembles the Hamiltoniafil5), differing only in the coeffi-

cients of the operators and the operators proper, in wgjch sin Ayt .

. - SeSy COSA,T+S nA

is replaced bys, . A, (SeSy COSA27+ S5 Sin A,7)
Accordingly, the solution of the quantum Liouville equa- 5

tion is close to(21): _c@

t

1 .

T expli(S,Sel 1+ SeS, A0t} (SSe

C

p~S,S:{c0sQt.[COS weite COS Weotet SIN Werte _

X +Sesx)exp{_|(SzSeA1+ SeSzAz)tc}- (29)
X SiN wepteCOS(a+ B)]+ COSa COS wete

. . . The experimental curves representing time-dependent nuta-
+COS B COS wetet Siffart SiMFBysin Ay 7. @7 tion and echo signals that arise after the phase has been in-
These patterns are reflected in the experimental curve in Figerted are depicted in Figs. 1 and 2 of Ref. 4. The oscillation
3 (see Ref. § whose envelope decays according to a doublefrequency in this case @t,/t.) is at its maximum, is lower
exponential law. The fast exponential is probably determinedor  the train (12) with  alternating  phases
by the timeT,. and the slow exponential by the formation of (4w,t, sin(A; ,7)/t;) (Fig. 2), and is still lower for the su-
multispin coherence. percycle of the train (22)(4w1t‘)sinz(A1,2t0/4)/tC cos
The contribution of the second spin exhibits the samei, ,7) (Fig. 3); oscillations are essentially unobservable in
features, but here expressions of the type wfds—7) are  the last case.
replaced by simu(t.— 7). This probably explains the “pair- All the experiments referred to in this paper were carried
ing” of echo signals depicted in Fig. 3. out using single-crystal samples of sodium nitrite NgNO
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(NQR in ¥*N) at 77K and the+ <0 transition. A more train and a zero priming pulse is of the greatest interest.
thorough description of the experimental methods can b&robably, these signals are due to mutual correlation of di-

found in Refs. 4-6. pole and quadrupole frequencies over the bulk of the sample.
If this is the case, then the proposed method can serve as a
5. CONCLUSION useful instrument for studying the inner structyh®moge-

The theoretical investigation of echo signals and time-ne'ty) of crystals.

dependent nutation in the effective field of multipulse trains
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It has been theoretically proven that a chaotic laser driven by an injected signal derived from a
similar chaotic master oscillator working at a slight frequency offset operates in a new

mode of synchronization. There is a certain relationship between average laser fields, which has
been approximately calculated in an explicit form, and instantaneous fields form an

attractor about the point defined by these average values, with a relatively small spread in the
phase trajectories around it. It has been shown that such a configuration can be used in
transmitting confidential information. ©999 American Institute of Physics.
[S1063-776(199)00505-3

1. INTRODUCTION have been discovered in dynamic systems described by
Rossler's equation3The“phase” in Ref. 6 is the phase of a

From the standpoint of oscillation dynamics, a laser is goint on the trajectory of Rssler’'s attractor, which corre-
nonlinear dynamic system that operates, depending on thgponds to the rotation on average, if the origin is chosen
conditions, in various modes, including regimes of dynamicappropriately. In the case of the delayed synchronization, the
chaos, which have been studied extensively in recent timéollowing asymptotic relation between state vectors applies:
Since lasers are used in communication systems, the issue of(t) =x,(t+1t,), wheret, is the delay between the evolu-
transmission of confidential information through commonlytion of the “slave” system with respect to the masteere
accessible channels has been broughtdiphe underlying the case of unidirectional coupling is consideress in the
idea is utilization of chaotic generation regimes for codingcase of the transition to turbulence in hydrodynamics, which
transmitted information. The development of this idea re-proceeds via sequential changes of oscillation modes, it turns
quired meticulous research into operating regimes of chaotigut that at certain system parameters of two coupled chaotic
lasers and feasibility of their synchronization by couplinglasers, essentially perfect synchronization is fully disrupted
radiation from one laser to another. from time to time, and then restoréd.

The issue of synchronization of oscillating systems dates  The brief review of papers on the synchronization of
from several centuries ago. However, since the synchronizachaotic systems given above indicates that the effects in such
tion effects in chaotic nonlinear oscillators are various andyenerators are many and varied, and this variety can hamper
sundry, the theory of these effects is far from complete. lthe development of practicable optical communication lines
has become clear by this time that the concept of “synchrofor transmission of confidential information based on chaotic
nization of coupled nonlinear systems” is still in the processlasers. Nonetheless, successful attefrfpts test in experi-
of development, because a lot of new synchronization modement a system of optical communication based on synchro-
are being discovered. The simplest form is synchronizatiomization of a chaotic lasefreceivej by injecting into the
of identical systems when they are coupled using an apprdatter the radiation from a master oscillator have demon-
priate technique. In this case, the state vecigrandx, of  strated the feasibility of this scheme. The technique for
these systems in the phase space approach one anothercasling/decoding information using a random sequence of la-
closely as one pleases as the time tends to infinity. One exser pulses is based on a nontrivial effect: it turns' dhiat a
ample taken from the laser physics is the synchronization oflave laser fed with an optical signal carrying coded infor-
optically coupled lasers: the experiment was reported in Refmation restores the initial signal and eliminates modulation.
3, and the theoretical aspects in Ref. 4. By comparing the input beam carrying information with the

The concept of generalized synchronization has als@utput signal, one can retrieve the coded information. It is
been introduced. It refers to the situation when certain funcebvious that the effect of information losses in the receiver
tional asymptotic relations are established between the stateith conservation of the carrier chaotic signal does not take
vectors of two lasers. For example, two chaotic lasers with @lace under all conditions. There are limitations on the den-
symmetric coupling and an upper limit imposed on the fre-sity of coded information and degree of identity between the
guency offset between their cavities are locked in such @wo lasers. The admissible bandwidth for information trans-
manner that the field amplitudes are identical, whereas theission was calculated numericaliyn the case of two iden-
phase difference takes a certain value depending on the offical lasers. The crucial parameter of two nonidentical lasers
set and coupling constafit. is the difference between effective lengths of their optical

Weaker forms of synchronization, namely, the so-calledcavities if it is not a multiple of the light wavelength. The
“phase synchronization® and delayed synchronizatidn, frequency offset between the cavities raises the issue of syn-

1063-7761/99/88(5)/7/$15.00 875 © 1999 American Institute of Physics
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laser;go(t) is the pumping power.
FIG. 2. Phase portrait of the real and imaginary components of figlet

chronization of two chaotic lasers and erasure of informationA M
in the output beam of the slave laser.

This paper addresses the synchronization of chaotic la- . .
sers at a finite frequency offset between them and the posstir-]e ma_ster osm_llator when they are opUcaIIy_coupIed,( so the
bility of decoding information transmitted by such a system.dynam'c equations for the two laser are identical &t

= (;;'2.

Replacing the complex field&;=E; expi¢qt) and £,
2. MATHEMATICAL MODEL =E, exple,t) with the amplitudes and phases= ¢;— ¢,
wwve rewrite Eq.(1) in the form more convenient for further

The model considers the chaotic operation of lasers o )
analysis:

ing to a periodic modulation of the rate of pumping to the

upper level with periodr,. WhenT,, is close to the period T91=00— 0y (1+ Ei):

of relaxation oscillations in a laser under constant pumping

at a level equal to the amplitude of the periodic pumping, the ~ 732=9o—g2(1+E3),

laser generates a random sequence of pulses. A diagram of 1

the studied laser system is given in Fig. 1. E;==(9;— 9w E1,
The differential equations describing the system shown 2

in Fig. 1 are given below in the simplest possible form: ) 1

E>= E(gz_gth)E2+M(E1 cosp—Ey),

791=0o(t) =91 (1+]24|%),

78,=0o(t) — 9a(1+]4,]?), @=A—M(E,/E,)sine. )

.1 . / In the numerical calculations described below, the di-

‘1= E(gl—gthﬂA)él, mensionless parameters of the cavities and media were se-
lected after a preliminary analysis of the bifurcation diagram

-1 S o of a laser under periodic pumpifgso that the master oscil-

#2= 5827 On=18) %2+ M(£,= %), @ ator should operate in the regime of “maximal chaos,”

which corresponds to the maximum positive Lyapunov ex-
onent(Lyapunov_dimensionality\ ~1.5). The system pa-

Efameters wergy,/go=0.5, M=0.1, andg,,= 0.5, whereg

is the pumping intensity averaged over time.

The kinetic properties of the gaiy , in the medium are
described in the simplest approximation of a fixed pumpin
go(t) and a single effective relaxation timeof the popula-
tion inversion. The field amplitudes; and #, are complex
parameters, and the squares of their absolute values are nor-

_rnah_zed tq the saturation intensity. The time is expresse_d 3 CHARACTERIZATION OF THE SYNCHRONIZATION MODE

in dimensionless form, and the natural selection of the time

unit is the inherent time characteristic of the laser, namely, Based on previous studies of synchronization of two
the photon round-trip time in the cavityl 2c. The effective  coupled chaotic lasers with a certain frequency offset be-
dimensionless time of the medium relaxation 1. tween their cavitie§,one might expect a generalized syn-

The two chaotic lasers are coupled by injecting a frac-chronization at small offset parameters in the scheme under
tion of the first laser’'s output into the second. The couplingdiscussionFig. 1). It follows, however, from numerical cal-
efficiency is determined by the coupling factbt, which  culations that even at a small frequency offset between the
takes account of the propagation and coupling logles  cavities, there is no asymptotically exact relation between
parameteiM is assumed to be a real vajudhe difference fields #; and#,. Figure 2 shows a phase diagram with the
between characteristic laser frequencies is determined by tHeld amplitudeE, plotted as the abscissa, whereas the ordi-
cavity offsetA=Aw-2L/c, whereAw is the difference be- nate represents two parameters, namelyZRand Im#,.
tween the eigenfrequencies, ands the cavity length of the One can see that the set of phase points for each parameter is
master oscillator. For identical laser caviti®#s=0. In order  concentrated near a straight line, but remains, nonetheless,
to obtain identical fields in the two lasers at zero offset, wechaotically spread aboutit.Strictly speaking, this behavior
set the threshold gaigy, of the slave laser to equal that of might simply be treated as a lack of synchronization between
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FIG. 3. The amplitude of the master oscillator output, ratio between fieldFIG. 4. The same as in Fig. 3, but At=1.5M.

amplitudes generated by the two lasers, and their phase difference as func-

tions of time;A=M.
wheret is a sufficiently long time interval. By minimizing
this functional, one can derive the following expressions for

the two lasers. It is noteworthy, however, that the spread o?ptlmalf and gp, in terms of 7, and Z,, which can be

phase points about the average straight lines is fairly smalIC"JlICUI‘FJ‘ted as functions of time numerically:
Thus, there is no generalized synchronization in its idea 2 o)

sense, but the correlation between the two fields is fairl _<f E2dt>

strong. This effect is also illustrated by Fig. 3, which shows 5 >

the chaotic dyna_mlcs of the fle!d amplituée generated_by > \/( f E,E, cose dt) +< f E,E,sine dt) 5

the master oscillator, the ratio between field amplitudes

|E,/E,|, and the phase difference at frequency offdet

=M. It is also noteworthy that althoudlk, /E,| and ¢ are @m:arg{f E.E, exp(i (p)dt). (6)

random functions of time, the amplitude of their deviations

from the mean is smalho greater than 59At lower A the  The parameters$, and ¢, calculated by Eqgs(5) and (6)

rms amplitude of deviation from nonvanishing means isusing the fields derived from E@) are plotted in Fig. 6 and

smaller. Therefore, the resulting process can be described &s respectively, as functions of the frequency offset divided

a generalized synchronization “on average”with fluctuationsby the coupling constaril. Note that in the case of the real

whose amplitude increases with the raitM. This descrip- generalized synchronization, the minimum of functiot#l

tion is inconsistent with all suggested scenarios of synchrotends to zero as tl/ whereas in our calculations it remains

nization between chaotic oscillators that have been known toonzero ag— .

date. Our calculations indicate that the suggested mode of In the case of small spreads of calculations about the

synchronization is realized in the region of parameters exstraight lines, as in Fig. 2, there is good reason to suppose

tending toA/M =1.5, and calculations corresponding to the

latter condition are plotted in Fig. 4. It clearly shows that

deviations from the mean values are up to tens of percent. At 4
higherA/M (see Fig. 5 forA/M =1.6) even the synchroni- E2 \_/\A_J
zation on average is destroyed, and spreads of parameters ar Fj\
210 215 2

higher than their mean values.
Based on considerations of physical dimensionality, it is
natural to suppose that, in the case of the generalized syn-__ 3E
6

20

chronization, a proportionality relation between the fields
should exist:

£, /E,
P

1=, 1 e, 3

wheref and ¢, are real constants. In the case of undamped
small fluctuations, one can calculate the constants minimiz-
ing the functional

2

2007[', 2051, 2107, 2157, 22OTP

2dt, (4

2olt) f | 41— f m€Xp(i o) £
0

FIG. 5. The same as in Figs. 3 and 4, bu\at 1.6M.
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o FIG. 8. Phase diagram of the relative spread of states plotted on the complex
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that directly calculated time averages of the rdtibetween
field amplitudes and phase differenceshould be close to
the optimal valueds,, and ¢,. This is supported by direct

calculations. These parameters are very close to their Optimg?rmL.Jnder the conditions of the “strange” svnchronization
values over the intervah/M<1.5 (Figs. 6 and 7. When discussed in this aI Ier the derivativesgon th)(la Ieft—ha:rz1d Isides
A/M is more than the critical valuA/M =1.5, the curves Paper,

diverge, which is accounted for by the disruption of synchro-Of Eq. (2 avera}ggd over a large time !”ter""?" are zero,
hereas the variations of all parameters, including the phase

nization even in the sense of average. Figure 5 shows that at - . ' A
A/M=1.6 the phase difference between fields and 7, Ifferencee, are flmte. By averaglng thg first and third lines
grows indefinitely(note that the phase in this graph is de_o_szq_.(Z) over time, one can easily find theh =gy, and
fined modulo 7). Thus, in the synchronization mode under E1=90/gn— 1, where an overbar denote time averaging of
discussion, the average difference between field frequenci¢@riables. After introducing a new variable=E; /E; in-
is zero, whereas beyond the synchronization interval the freStéad ofE;, we obtain a differential equation
guencies of fieldgt; and #, on average are different. _ 1

The proximity between constants defined in different F=MF(1—Fcos<p)—§(gz—gl)F. (7)
manners, which is demonstrated by Figs. 6 and 7, indicates
that the deviations of fields from their mean values are small By averaging this equation divided Wy over time, we
at each moment of time whek/M ranges up to the critical obtain
value. The spread of points in the strange attractor for the __ -
ratios between the field amplitudes is shown in Fig. 8, which ~ 92= 9+ 2M(1—F cose). 8)

plots the phase diagram of the complex ratio between the Another relationship can be derived by averaging the

fields atA/M=1. The emergence of the strange attraCtolyitrarence between the kinetic equations for gajpsndg,
allows us to speak of the synchronization mode under con-

The small amplitude of fluctuations justifies the applica-
tion of perturbation theory to integrate E() in explicit

sideration as “strange.” The spread of points in the phase 0o+ 9,E2=0;+0,E2=0,. (9)
diagram can be characterized by the parameterwhich _ o

has the sense of a variance. The curverafs a function of Let us replace, using a rough approximation, the average
A/M is plotted in Fig. 9. of the product of two variablesj, andE3, with the product

of the averagesy,E5~g,-E3. Given that the spread of the
points in the attractor shown in Fig. 8 is small, let us use the

2
1.3F _ r "
s \ 0.07t
b " 0.06f
: 0.05}
0.04f
03t 0.03
0.02}
0 0.5 1.0 L5 2.0 0.0 ~
a/M 0 02 04 06 08 10 12 14 16

AIM

FIG. 7. Optimal phase differenag,, and time average@ as functions of  FIG. 9. Functions(A/M), whereo? is the dispersion. The solid curve is an
the normalized frequency offset. interpolation through the points.
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approximate re@ionshiﬁ_§=E_§/f,2n. Using Eq.(5) and the

expressions foEZ given above, we derive another expres- \*“'
sion forg, from Eq. (9): + 1.0 ,
"ol U1 YU

_ f2

02= —go -, (10 200 208 216 224 232
2
=1+ 090/9n

The average valuE cose in Eq.(7) can be transformed & ;’*}é i lih
close to unity and smalp, by neglecting small components ':?0’9 A N i uAdR
- ~.U. T 1y
of higher orders, t& cose~F—¢%/2, and the data plotted in = g8 L SREHIHIN
Fig. 6 indicate thaE~f ,,. The combination of Eqg8) and 200 208 216 224 32
(10) and the approximate expression focose yield S .
+ 4c
fo 2M — = f
=14 (1 ft D). 1y T 2 M
1+(9m/90)(f—1) Yt Wb : , )
g
Usually M<gy,. Hence, with due account of the smallness 2007, 2087, 2167, 2247, t 2321,

of the expression in the parentheses on the right of(EL,
we find thatfﬁ1 is close to unity. If we defind,,=1+ «,
from Eq.(11) follows

FIG. 10. The original message sigriapper curvg retrieved signdmiddle
curve, and signal carrying information at the slave laser ingotver
curve. The ratio between the amplitudes was procesaed.

0212

= —. (12
1+(9tn/M)(1-9wn/9o) The signal in our calculations is a random function of

For the constants used in numerical calculatimgg,,  tMe fk(t), which takes three valuest0.1, which corre-
—2 andM=0.1, g;,=0.5), we havex~ ¢2/7. Averaging the spond to one bit of information, and zero, which denotes the
— - oLy th— . y . H H H H
last line in Eq.(2) and replacing the average of the Ioroductabsence of the signal. The width of a step with a given value

with the product of the averages, we obtain _fk cgmprises four tq Six random puIs@e the upper tra_ces
in Figs. 10-12, which show the function+if,). To avoid

AIM=F sinp~(1+k)o(1—¢%/6)~p(1+ ag?), (13 abrupt perturbations of the system by jumps in the signal

intensity whenf, switches to another value, the signal was

smoothed above a certain amplitude. As a result, the function
+f, has the shape of smooth pulses synchronized with

where the numerical factax for the parameters of our cal-
culations is small. Thus, the average phase differencg is

=A/M, and the average ratio between the field amplitude . .
= P . . . hose of fieldE, (compare the upper and lower traces in
F=1+(A/M)“/6. Comparison to numerical calculations re- Figs. 10-12

veals extremely good agreement between the approximate It was shown previous that the signal bandwidth

formulas and accurate calculations over an ur‘G)(IO(E(:te‘jlghould be several times less than the frequency of relaxation

broalg ranggA/hMil.h h lution | q . oscillations, so the time interval between state changes of the
Igure 8 shows that the solution Is attracted to a certaif,  inn £, s fairly long. The ten-percent amplitude modu-

compact set of parameters near the average values of fie tion is too small for visual detection of the signal against

and phase differences. The small dimension of this set is t e background of random laser pulgese the third curves
key factor for separating a signal from its chaotic carrier. The|n Figs. 1012 On the other hand, this modulation ampli-
_d|spers|||ortr(A/rl:/l) _deflneld by E%@) |smplll\<3|tt_eci n F'g'dgk') It tudeis higher than the dispersion characterizing the dynamic
's small over the interval extending =1.5, and be- spread of the field amplitudes about the state of generalized

yond this value the _strange s_ynchronlzanon_ IS d'S_rUpted'sglnchronizatior(Fig. 9). Therefore, one can retrieve the sig-
Note that the dynamic chaos discussed here is equwalenttn % — o (1+f.) by calculating the difference between th
noise in an optical communication line. aly=724( W) by calculating the difference between the

fields with due account of the complex optimal approxima-
tion factor, 27— f  explem £> .

The middle traces in Figs. 10 and 11 show numerical

Let us consider the problem of retrieving an encodedc@lculations of the retrieved signal for the cased ef0 and
signal in the system of two coupled chaotic lasers. A signaf* =M respectively. Itis clear that the accuracy of the signal
f(t) is impressed on the output radiation by means of modutransmission deterlorates'as the frquency offset increases.
lation at a modulation amplitude much smaller than the raNote that only changes in the amplitude ratio were pro-
diation intensity(within 10%). It turns out that such external C€ssed.

4. INFORMATION DECODING

perturbations do not destroy the effect of “strange” synchro- [N the case of a nonzero frequency offset, the phase dif-
nization. In order to incorporate the signal into equation sysi€rénce between the fields can be used as a set of auxiliary
tem (1), it suffices to modify the last line: data. The results of this processing are shown in Fig. 12 for

A=M. The data processing procedure taking into account
both the amplitude ratio and phase difference yield the signal

- 1 - v 2 ¢
227 5(02= 0= 1) Lt MIZL(IF (D) = %] (14 oo higher accuracy. The accuracy of the signal process-

2
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1.1F difficult. Note that the phase response to an input signal is
5 | oL __J zero in the absence of a frequency offset and increases with
- ]i ” U [_“ the offset parameter, whereas the amplitude response to a
0.9 ; ) N
00 208 216

L modulated input signal droggompare Figs. 10 and L1

224 232 Let us conclude this section with a remark on the coding

using phase modulation of the injection field. Numerical cal-

S N X culations indicate that in this case the slave laser is synchro-
§é'g~ N \ nized with the injected modulated radiation, instead of the
wg'g ) N input signal. Using Eq(14), we derive from Eq(1)

200 208 216 224 232

e=A-MFsin(¢+7),

b . 1
= l . ‘ I | I I F=MF[1-F cog e+ )]~ 5(g2~g)F, (15
F
0 U J L where 7 is the phase of functior,. Using the change of
2

007, 2087, 2167, 247, B2, variablesp= ¢+ 7, we obtain the equations in their original
form. Therefore, we expect that in a time of ord® k) 2,
FIG. 11. The same as in Fig. 10, but at the frequency oftseM. a state with a new phase is established. Thus, one cannot

retrieve encoded information in the case of phase modula-

ing can be also improved by taking into account repeating}'on'
distortions of the signal in the first pulses after steps in the
modulation function(see the first and second traces in Figs.>- CONCLUSIONS

10 and 1. In the general case, techniques for separation of  The study of synchronization between two chaotic lasers
a signal from nois€ can be used to retrieve the signal with through unidirectional injection of a signal from the master
higher accuracy. oscillator has demonstrated that a new mode of synchroniza-
It is natural that the signal r_estoration efficiency is great-f[ion can be implemented in the presence of frequency offset
est when the frequency offset is zero. Nonetheless, the effyatween laser cavity lengths, and this synchronization mode
ciency of resioration of the retrieved random signal carrying.an pe dubbed ‘strange.” The output of the slave laser is
the messagpE, /(fE;) — 1] is less than 100% even in this almost synchronized with the injected signal, since their in-
case, coming in at about 2/3 of the original level. At thetensities and phases are related in a definite way, but with
frequency offsetA=M (Fig. 11) the restored signal is no small errors that vary randomly with time. The relations be-
greater than half the original signal, if the averaging is pertween the average field parameters have been obtained in the
formed within the laser pulse. Note that the feasibility of reported work both numerically and analytically. The chaotic
retrieving information depends not on the signal amplitudedeviations of field parameters from those prescribed by de-
but on the possibility of identifying pulses carrying bits of terministic equations play the role of noise when the de-
information. The waveforms of retrieved signals are indentedcribed system of chaotic lasers is used for transmitting con-
considerably, which makes identification of bit pulses morefidential information. At a sufficiently high amplitude of
modulation of laser pulses by a signal carrying a message,
) the encoded signal can be retrieved by comparing the inten-
. sity of the beam carrying the information with the output of
the slave laser.
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DThe average straight lines for the two parameters are different, and the
difference between their slopes depends on the frequency offsef As
—0, the slope of R&, tends to 45°, whereas that of lif} tends to zero.
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We propose a theory that makes it possible to examine both laser and micromaser two-photon
light generation. The theory is based on the Lamb—Scully model, in which two-level

atoms have initial coherence. Such an initial state allows for light generation involving atoms
without inversion or even atoms with negative population inversion in the transition.

We analyze the conditions needed for the emergence of squeezed states of the light field. We
also show that the photon statistics in lasing is always classical but that there appears a

state of the field squeezed in the phase with maximum photodetection shot-noise suppression.
For a micromaser we find a regime where sub-Poisson light with a shot-noise suppression

level of 60% is realized in an inversionless transition. In another regime, a squeezed state that
produces 75% suppression of noise can be generatedl999 American Institute of
Physics[S1063-776(99)00605-9

1. INTRODUCTION tems where pumping creates atomic coherence involving the
active levels. We examine the effect of the atomic coherence
Lately there has been an upsurge of interest in studies gh the steady-state generation regimes of two-photon transi-
the interaction of light and atomic systems withouttions, on the linewidth, and on the formation of photon sta-
inversion* The common approach is to develop three-leveltistics. Following resonant two-photon interaction between
cavity models of atoms with and without relaxation and withthe coherence pump pulse and the active atoms, which are
different types of multimode interaction. Of interest are themodeled by the two-level system, the atoms are injected into
study of properties of generation of light fields as a lightan optical cavity. The presence of atomic coherence gives
source of a new type, the detection of the selective dynamicgse to a steady-state lasing regime when there is negation
of the system, dynamic chaos, and multistable regfraes  population inversion on the active levels and when the popu-
the possibility of extractingfrom spectroscopic measure- lations of these levels are equal. Due to phase locking, the
ments of probe radiatiorinformation about coherent inter- signal lineshape becomes monochromatic.
actions in the system and about mode competition. The two factors, the presence of initial coherence in the
Ordinarily, models of laser and micromaser light genera-atomic beam and the nonlinearity of the two-photon transi-
tion based on the Lamb-Scully theory examine incoherention, allows phase-squeezed laser light to form with maxi-
pumping, which excites a two-level atom to the upper ofmum noise suppression in photodetection. The photon statis-
lower active levef. In general, however, a mixed state or tics of the laser field always remains classical. For a two-
atomic coherence may emerge. For a maser or micromasghoton micromaser, the field in the ordinary case possesses
this may due, for example, to a spread in velocities in theguantum features, which manifest themselves in the photon
atomic beam interacting with pulses of the pump field. Herestatistics, with shot-noise suppression not exceeding 33%
due to the Doppler shift of the signal transition frequency, it(see Ref. & We establish the conditions needed for stronger
is impossible to push all the atoms into the upper state, sooise suppression in an inversionless transition. A phase-
that some of them end up in the lasing area in a mixed statsqueezed field state can also be formed in such a transition.
The fact that the atoms in an atomic beam have different  Ordinarily, the Lamb—Scully model is used to derive a
kinetic energies was investigated by Anal.®> who numeri-  kinetic equation for the density matrix of the field, which is
cally analyzed the equation for the density matrix of the fieldthe starting point in analyzing the photon statistics. This is an
with allowance for averaging over the velocities. However,operator equation, which is written either in operator form or
by controlling the pump pulse we can create mixed states ah the diagonal representation. In this paper we develop a
the atom. Here the properties of the generated system profermalism that makes it possible to immediately write the
to be different. Such lasing and masing under conditions ofFokker—Planck equation for the Glauber quasiprobability of
one-photon interaction of two-level atoms was analyzed by two-photon laser and micromaser. The method by which
Lu and Bergolf. Scully et al.” demonstrated the possibility this equation is derived for the Lamb—Scully model is de-
of squeezed field states forming in light generation involvingscribed in Sec. 2. In Sec. 3 we calculate the coefficients of
cascade transitions, provided that there is atomic coherendkis equation with allowance for an arbitrary state of the
between the upper and lower state of a three-level systenactive atoms injected into the cavity. The model used in
and L did the same for\ - and V-type transitions. pumping the atomic beam is discussed in Sec. 4. In Sec. 5 we
The aim of our investigation is to analyze optical sys-discuss lasingin particular, involving an inversionless tran-

1063-7761/99/88(5)/7/$15.00 882 © 1999 American Institute of Physics
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sition). The laser linewidth and the properties of the micro-into the cavity is on its upper or lower active level. Here we
maser are elaborated on in Secs. 6 and 7. allow for the general case where pumping produces an
atomic coherencéalAFA(0)|b). A convenient way to do
this is to employ the approach developed in Ref. 10. This
makes it possible to immediately write the initial Fokker—
Planck equation for the Glauber quasiprobabif«), by-

We use the standard Lamb—Scully theory to examine th@assing the extremely involved derivation of an operator
two-photon interaction of two-level atoms with a secondaryequation for the density matrig, which is actually only an
signal transition that are injected with a ratento a highQ  intermediate stage.

2. THE FOKKER—-PLANCK EQUATION FOR THE
LAMB-SCULLY MODEL

cavity. The starting equation is that for the density mafix For the single-atom density matrix we introduce the
This equation describes the interaction of a single atom and @uasiprobability® as follows:
field:
OF F=f ®|a)(a| d?a. (6)
Ez[V,F]wLRF, (1)

This quasiprobability is an operator function of the atomic
V=g(Ap.a'?—a%A,p), (2)  variables. Averaging it over the atoms yields the Glauber
quasiprobability Tx® =P(«). From Eqg.(1) we arrive at an

where A,,=1|a)(b| is a single-atom operator that transfers equation ford:

the atom from the lower active levelto the upper leveh,
andg is the coupling constant reflecting the interaction with P

a cavity mode, whose creation and annihilation operators are "5t =[Vo,®]+d(dP)+ R, @)
denoted bya' anda, respectively. The exit of the field from

the cavity and the departure of the atom from the activevhere

I_evels are de_zscribed by the relaxation operd&oiThe equa- Vo=gAp.a*2— gAa?,

tions are written for the case of exact resonance. Since the

atom enters the cavity at timte=0 in a given statd=,(0), 9 J
we have d(dX)=— 9(9—20(*2|b><a|x+9—*202X|a>(b|
a Ja
F(0)=Fa(0)p(0), 3 ) )
wherep=Tr,F is the density matrix of the field. + g&—2|b><a|x+g > X[a)(b| |. €)
To write the kinetic equation for the density matgix da da*

we introduce the usual assumption that the field varieg,q o yhe first term in square brackets is due to the noise of
slowly. According to this approximation, in the time interval o 4tomic system, while the second term in square brackets
T during which the atom interacts with the f'SId and the atoMyg 4,6 t4 the diagonal representation of the field employed in
passes_through tEe cavity, we haygT)~p(0), with —yic paper Ford we use the representatiom(t)
an(T)—_O for m,n=a,b. The ch_angg of the densEy matrix _ P(0)e(t)+TI(t), whereg is the single-atom density ma-

of the field brought on by this single atom@p=p(T)  iy. v o=1. Since the field develops slowly, we can as-
—p(0), can befound by solving Eq(1) with allowance for g me thatP(0)~P(T). The functionIl (here it is not a

(3): correlation matrix has the properties

F(T)—FA(O)p(0)=J'OT([V,F]JrRF)dt. (4) I1(0)=0, Tr\ll#0, TreIl#0, Traell=0,

_ _ ) where the subscripté and F denote the variables of the
Now we introduce the change of the density matrix of theaiomic and field systems over which averaging is done. Next
field due to the contribution afT atoms,Ap=rT 5p. Then e denote the averaging over atoms byF¢- - -). Equa-

the kinetic equation can be written tion (7) yields equations foP, ¢, andII:

2 fT[v Fldt+R (5 i

T A IV, P, EP=<a(d¢))P(O)+(8(dH)>+R;’:P, ©
where the left-hand side is a large-scale time derivative, and
the operatoiRg describes the exit of the field from the cav- E‘P:[VONP]*' Rpe, (10
ity.

A remark concerning the adopted approach is in order. If
the atom—field interaction time is short compared to char- E IT =[V,,I1]+ d(de)P(0) + a(dIT) + (Ry+ RA)IT,

acteristic atomic relaxation times, the method can be used to (11
describe a maser or micromaser, in which case atomic relax-

ation should be dropped from the starting equatiiisand  whered(dX) has been defined if8), andR: andR, are the
(4). Usually the incoherent model is sufficient for a descrip-relaxation operators in the representatién

tion of pumping, which requires knowing the initial state The change of the field brought on by a single atom can
FA(0) of the atom, i.e., it is assumed that the atom injectede found from(9):
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T and the coefficients of the kinetic equation can be found by
5P~ | (atdenP(o) + (a(am)) at. (12 soiing Eq.16)
where the relaxation term has been discarded. To obtain a ij(t) dt=f dSeXFXST)—lf(S) an
Fokker—Planck equation for the quasiprobabiftythe solu- 0 S '

tion for II must contain derivatives with respect to of

order not higher than the first. This can easily be done by Flor ? Iasgr We can use a sdlmplel rela;(atlon _mO(rj]eI, \.N'thl
solving Eq.(11), say, by the iteration method. As a result, equal relaxation constants, and neglect decay in the signa

instead of Eq(5) we arrive at an equation fd?, transition:
AP jT q q q (R,,Af)mn:_'yfmn- (18)
—=r d P(0)+ (o t, 13
T 0 ({9(de))P(0)+{a(dm)) a3 Then for the coefficients of the kinetic equation we have
where the functiongy and 7= can be found by solving the T
problem fo f(t) dt=f(s), (19
— ¢ =[Vy,0]+Rpe, wheref(s) is the solution of(16) ats=1y.
at Now we examine the case whefey has an arbitrary
J value. Then
5’7T:[VO,’JT]+0<(d(P)>P(0)+RA7T. ; expsT)— 1
0. ) . f f(t)dt:f ds————f(s+7y), (20
Hereg(0)=¢" is determined by the initial state of the atom 0 S

injected into the cavity, and-(0)=0. This problem for the
functions ¢ and = immediately yields a Fokker—Planck
equation for the Glauber quasiprobability.

wheref(s) is still a solution of Eq(16), and by replacing
with s+ y we allow for relaxation in the form{(18). As a
result, the Fokker—Planck equation for the Glauber qua-

siprobability becomes
3. THE STARTING EQUATIONS
, aP=(0,2a* A\y+ 32 Ay+ 3> 2a* Ay)P+c.c., (21)
The equations forp and 7 have the same structure. x

They can be represented in matrix form: where the coefficients are specified by the relationships
atfmn:[Vva]mn+(R;—\f)mn"'rmnv (14 ‘Pgb
where A(8)=-rg) -
J J 0 _ 0\_ 2.0
r=-g —2a*|b><a|cp+ 2a<,0|a><b| P(0). N 25(@aa §Dbb) 29(a”* ®apTC.C) +1C
da da* ga 21 42| 14 5 =%
s(s*+4g°%|al*)

This implies thatf= ¢, where ¢(0)=¢°, if =0 and f A B 29 %
=1, where 7(0)=0, if ['#0. Allowing for the fact that 2(8)=~1g°2ax
P(0)~P(T), we write the kinetic equatiofb) in the form [

49%0%|a|?@aq(S) + 250| al2a@qy(s) ]

J 2 2| |4
aP=—rg——2a s(s*+4g%a])

T T
j ©ap(t) dt+J ap(t) dt}PJrc.c.
0 0

(19 —{—Al—i—%Ca],
To write Eq. (15), we must find the solutions of the base
system(14), which describes the evolution of the atoms in
the fixed-field approximation over the time intervel The  Aj(s)= —rQZZa[
nature of this evolution strongly depends on the ratiolof
and the atom relaxation timg 1. Two cases are usually 2 14 P
distinguished. Foil y>1, when the atom reaches a steady + 29°|a|"¢aa(s) + sQa "Dba(s)]_
state, the atom “leaves” the active levels and lasing is said s(s’+4g?lal?)

to be achieved. Fofy<1, when atomic relaxation can be Hereo,(s) is the solution of the systef16) with the initial

negllect.ed,?/ can be set to Z€ro and maser or m|cromaserdata¢%n, andC is the cavity width, which characterizes the
oscillation is said to be achieved. In this case, after a flme

has elapsed, the atom leaves the cavity, which is equivaler?te at which the field leaves .t.he cavity. In' th? terms in
to the atom aeparting from the active Ie\;els r)\z_(o) we have, as usual, spe(_:lfled the qontrlbutlons due to
For a micromaser it is convenient to solve Ed4) noise of the atomic systeifthe first terms in braceésand to
) . Y the P-representation for the fieldhe second term in braces
where we 'T”“St puRA;O, by applying, say, the Laplace For lasing, in accordance witti9), we must puts= v, and
transformationf(s) = [ gexp(—st) f(t) dt. Then for describing a micromaser, with allowance fti7), we
Sfmn(s)_fmn(o):[VO:f(s)]mn+an: (16) must put

_ ®aals)
S
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Pump Laser
field field
k
a
® lAt i ¥y FIG. 1. (a) Optical sch th) active-level di
omic L1 (8 ptcal scheme, an active-level ailagram.
00 ® /> field I
7 b ——\
a b Y
expsT)—1 which have been defined in EqR2)—(24). The atoms are
A(S)Hf ds S A(s) injected into a high?® cavity where they interact with the

0 cavity mode whose frequency is half the frequency of the
Note that whenp,,=0 holds we have the well-known equa- sjgnal transition. The rates at which the atoms leave the ac-

tions of the micromaser and laser theofies. tive levels are the same and equahtoas shown in Fig. 1b.
Here we examine the ca3ey>1, which corresponds to las-
4. THE PUMPING MODEL ing, as described by Eq21).

) ) 0 0 If in Eg. (21) we keep only first-order derivatives with
The populations of the active levelp,, and ¢py, and  respect to, we find the solutionP(a,t)=5(a—2(t)) of

0 . .
the coherencep,, are determined by the mechanism of g (21) Herezis the complex-valued amplitude of the field
pumping and generally are not independent quantities. SUpy the cavity (with |z|2=n the average number of photons
pose that the initial atoms or the atomic beam also interactand satisfies the semiclassical problem

in a two-photon manner with a classical pump field, whose
Rabi frequency is

Q=2g|aol*.

Suppose that the population of the lower active level is
N, . We assumeonly to simplify mattersthatNy~1. If the _ A~y
interaction timer is much shorter thary ™2, the state of the = _4\/_—ﬁ¢’ab sind, (27)
atoms is determined by the density matrix:

0 0 ~0
> Paa™ Pbb 4AN @5, COSY

:2 —
n=2An 1+8n2 B (1+8n?

Cn, (26)

whereA=(2g?/y)(r/y) is the linear gaing/ vy is the number

1
¢gb: — Eexp{Zi argag}sinQ 7, (22) of atoms in the cavity8n? is the dimensionless intensity,
B=4(g/y)?> is the saturation parametery=2(arg
(Pga_ €08b: —cosQr, (23 zZ—argag) is the phase difference of the laser field and co-
L herenceZogb is defined according t(25), andC is the cavity
0. ==(1—cosl7) (24) width, WhICh characterizes the rate at which the field leaves
2 the cavity.

The presence of initial coherence is responsible for two
features of lasing. First, an additional term appears in the
equation forn. Second, the phases of the laser field and of
the initial coherence become locked. The latter results in a
situation in which a phase difference sets in the steady-state
éegime, and for this difference

where ¢ is the pump field amplitude. These solutions are
well known.

Depending on the size @b r, or “pulse area,” the fol-
lowing states of the atom are possible:

1. In the regionw/2<Q) < the inversion is positive.
At Q) 7= 7 the atom is on the upper level, and the coherenc

0 .
2. In the region B<Q r</2 the inversion is negative

and the transition is inversionless. ft7= /2 the popula- Here the value ofl, is determined by the initial coherence:
tions of both levels are the same and equal to 1/2, and the
coherence is at its maximurfyp?,|=1/2. @2, cosyy>0. (29

5 LASING IN A MEDIUM WITHOUT INVERSION: PHOTON This cont_jmon follows from theT r.equwernent that the steady-
STATISTICS state regime be stable. Combinit@p) with (22), we get

In the optical scheme depicted in Fig. 1la the classical ~, 1
pump field produces populatiors), and ¢, on the active #ab COSYp=7]sin{ 7.
levels and the coherence
o ~0 _ Then the steady-state number of photons in the cavity is
Pab= Pab EXP 2 @0}, (25 given by the expression
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Here
//N\‘\ 2 2
| / N pn-—1 5+ 8n
\\ FOZ 2 y D0=Fon§, §:—2
IS 5 S SN pn°+1 2(pn°—1)
7 AN
S~ The quantitied”; andD, and the Mandel parametércor-

!
/l respond to the case of an ordinary two-photon laser, for
- which we must puf) 7= 1.
H The diffusion coefficientD,,. in the Fokker—Planck
H equation forR always proves to be positivgor an ordinary
! laser and in conditions of lasing without inversipand the
v photon statistics is classical; more than that, it is always

n super-Poisson.

FIG. 2. Graphical solution of Eq26) in the steady-state case for a two-

photon inversionless laséthe solid curvg the case of an ordinary two-

photon laser is depicted by the dashed curve. The dash—dot straight i THE SPECTRAL CONTOUR OF TWO-PHOTON LASER
RADIATION; PHASE-SQUEEZED LIGHT

The spectral contour of a lasing line is determined by the
the correlation functiorG(7)

represents the loss level. The heavy dots represent stable lasing regimes

2An [ Ot sinQ7) 30 Fourier transform of
Lipnel 0T TG0 )T B0 —(a’(0ya(n)):
At Q 7=, Eq. (30) yields the ordinary(for a two-photon G(Q)= JMeXF(iQT) G(7) dr. (35)
lasep condition for steady-state lasing, where the necessary —
threshold condition for the gain is To find G((1), we use the small-fluctuation condition, as-
1+ Bn? (31 suming that the fluctuationg of the field phase are small:
' e=0st i, <L, eg=(1/2)(o+ ¢o), (36)

A>C N

At Q7=17/2 |aSing is stable and the Condltldl) is not where o and ®0 have been defined |(29) and (25) Then
needed. Fof) 7< /2 the inversion at the signal transition is the expression fo6(7) can be written in the form
negative. The steady-state regime emerges if

1
G(7)=n| 1+ R(G(O)e( 7)) + (1 (0) (7))

(37

|sian-|> 0 32
cosQ 7.
VBn _
. : iy . xXexp—iw7),
Note that for an inversionless laser the conditions for lasing _ _ _
are significantly less stringent than in the case of an ordinary¥heren is the steady-state number of photons in the cavity
laser, whose stable lasing regimes are depicted by dots @ven by (30), and(e(0)e(7)) is the correlation function of
Fig. 2. the photon-number fluctuations, which can be by found by
To determine the photon statistics, we emp|oy the CO”SO'Ving Eq(34) The phase-fluctuation correlation function

dition of small fluctuations for the number of photons in the(#(0)u(7)) can be found by solving an equation that fol-
lows from (21) under small-fluctuation conditions:

cavity:
aY=(T,d,m+D,,d)Y,

la|?=n+e, e<n, (33
wheren has been defined in E¢30). Under the conditions )
(33, we have an equation for the quasiprobabilRye,t) Y(p,t)= | Pla,t)d(|al), (38)
=[P(a,t) d(arga), (which describes photon-number fluc- h
tuations in the steady-state regime where
9R=(T.d.€+D..)R (34) _2AJsinQ7]  C|sinQ7|(1+Bn?%)
t eYe €e’e ’ F,u_ I ’ (39)
where the coefficients are VB |sinu7|— VB n cosdr
. 2\/Bn|sinQ7|(Bn?~1)"1-cosQr D :&[ _1+3pn’+2%n*  Bn
<0 |sinQ7|/\/Bn—cosQ 7 ' w8n (1+pBn?)? |sin€d ]
. -1 ()
|sinQ 7| 1+ Bn? ( cosiit }
D.=D —cos( 2 - : (40)
€€ 0( \/En CosiiT 5+ an 1+Bn2
inQ 9 > In contrast to an ordinary laser, here the lasing phase has a
+ [sin€7| 1-3/n —cosQr 3-pn _ steady-state distribution fdr,# 0. This is a consequence of
2 phase locking, which gives rise to a spectral line consisting

JBn 5+pn? cos 5+ 6n
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of a monochromatic component and two Lorentzians at th@phase-squeezed state of the lasing field is realized at low
lasing frequency due to amplitude and phase fluctuations: intensitiesy/8n<1, with — —1/2 and the noise in the re-

2 gion of Q=0 completely suppressed{ —1).
G(Q)=n|5Q—w)+ — <
( 2n’T', (Q—)?+T2
) 7. AN INVERSIONLESS TWO-PHOTON MICROMASER
2D, I 41 _ : -
T (Q—w)2+F2 . (41) In the case of an inversionless two-photon micromaser,
g ® Ty<1. The semiclassical masing equation has the form
We introduce the parameter ~
5 An=2r (@2, — eo,)Sirfl + 2r e%, cosy sinl cosl —Cn,

n=4n—-£~£ (42) (45)

r,’ ~
* o dyp=—4rgT 2, siny, (46)
whose negative value indicates that the phase quadrature of ] ] ) o ]
the field is squeezed. The field in such a squeezed state m¥{ere now the dimensionless intensity is defined las

7 . _ 2 . .
exhibit a dip below the shot-noise level in the low-frequency=9NnT. With n=|z|%. As in the case of a laser, in the steady-

region of the noise spectrum in heterodyne reception: state regime the phases of the maser field and of the initial
coherence become locked, which leads to conditR9). As
+ o . .
i2(0)=1+ J' exiQ 0 dr, 43 a result, the average number of photons in the cavity can be
(€0 Q —w RiQ7(p(0)u(r) dr “3 found from the condition
where normalization has been chosen so that the shot-noise 2r (2 — ¢ )sirPl + 1|2, |sinl cosl =Cn. 47)
level is unity, andQ is the quantum efficiency of heterodyne . - _
reception. To establish the photon statistics by employing the

The observable quantity is the relative reduction in theSmall-fluctuation approximation, we write E(34) for the
noise, which in terms of the introduced notation can be writ.distribution functionR, where the coefficients are given by

ten the formulas
I'y 2(21—tanl)
02 c I'=—= cosQT—F——
6=i1(0)=1=2Q5 7. (44) € |sinQ 7| — 2 cosQ rtanl 1—2I cotl
M
For an inversionless two-photon laser, as well as for a +lsina | 1+ | (tanl +cotl ) 49
laser with negative population inversion, the limit of the 1-21 cotl '
2Dy
Dee= 13 a1 cot
» 2 tanl + cosQ 7 (tanl —41) + (1/2)|sinQ 7|(1— 4l cotl + 4l tanl) 49
|sinQ 7| — 2 cosQ) rtanl ' (49)
|
Here the quantities the noise spectruif(Q) nearQ~0, the Mandel parameter
T'y=C[1-2I cotl], (50) determines the level (?f the surplus noise in relation to the
shot-noise component:
Cn
D0=7[1+4I cotl ] (51 c
i200)=1+6, 6= 20¢ - (53)

correspond to the case of an ordinary two-photon maser. The
masing regimes specified l¢7) are stable ifi’ . >0.

Using (48) and (49), we define the intracavity Mandel Here q is the quantum efficiency of the detector, and the

paramete: level of shot noise is assumed to be unity.
D At QO =, when active atoms are injected into the cav-
&= F—E; (52 ity only at the upper active level, combinir(§3) with (50)

and(51) yields the well-known resuit
The value of¢ determines the difference between the photon
statistics and Poisson statistig$1?) — (n)2=n(1+¢&). For
£<0 the state of the light is nonclassical with sub-Poisson  5— 1+2y
statistics. In measurements of the photocurrent spectrum or (1—y)?’

y=2I cotl. (59
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The valuey= —2 is optimal for the formation of a dip in the state allows generating light using atoms without population
photocurrent noise spectrum. Hefe= —q/3, which corre-  inversion and even a negative population inversion in the
sponds to a reduction of noise in the low-frequency region taransition. Due to locking of the phase of the coherence and

33% of the shot-noise level. _ the phase of the generated field, the lageasey line is
Numerical analysis of53) with (48) and(49) taken into monochromatic.

?‘CCOP”t shows that thg gptlmal minimum valueébrs' real- We have analyzed the conditions under which squeezed
ized in the case of the initial atomic state of the active atoms

of the maser without inversion a®r=/2. i.e.. when states of light appear. We have found that the photon statis-

atomic coherence is at its maximum. Under this condition &ics in lasing is always classical but that it is also possible to
set of almost periodic states in which the minimum value ofdenerate phase-squeezed states of the field, states character-

the paramete® is approximately—0.6q can be realized. 1zeéd by complete suppression of heterodyne photodetection
This depends on the value of the parametend hence on noise. We have also found that the photon statistics of mi-
the parameters of the maser system: the solution of4£. cromaser light may prove to be nonclassical and that light
and the simultaneous requirement thatbe positive. Evena can be generated by an inversionless transition, with the
slight variation inn “destroys” the photon statistics, and in level of photodetection-noise suppression amounting to
this sense the conditions for masing are stringent. about 60% of the relatively standard quantum limit, which is
The evolution of the linearized pha$i conditions of  pigher than in conditions of ordinary two-photon generation

small fluctuations; se€6)] of the maser field is determined ¢ jight by atoms in the excited upper state. The same type of
by Eq. (38) in which the coefﬂme_ntsl“ﬂ andD,,,,, with transition can be used to generate a phase-squeezed field
allowance for the steady-state regif#), have the form . . .

with a level of noise suppression in heterodyne photodetec-

I',=2rgT|sinQ 7] tion amounting to 75% of the shot-noise level.
2Cl|sinQ 7|
=2 . : (55
sinl cosl (|sinQ 7| —2 cosQ) 7)tanl
I cosQr sirfl
DMM:4_;: -1+ sinQ7] - [sinQ7] 21 *)E-mail: vn@vg3024.spb.edu
DE-mail: tai@at3025.spb.edu
N sinl cosl 56
—a (56)
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The polarization dependence of the stimulated bremsstrahlung and inverse bremsstrahlung
(SBIB) of quasiclassical electrons on highly charged ions with a core is calculated in the
approximation of a specified Coulomb current. Emission frequencies close to an
eigenfrequency of the ion core are considered. The contributions of the static and polarization
channels are taken into account in the amplitude of the process. When the nondipole

nature of the interaction between the incident particle and a resonant transition in the ion core is
taken into account, interference between these channels causes the spectral-amplitude
characteristics of the process to assume a specific dependence on the deglecen the

electric field intensity vector of the electromagnetic wave and the initial velocity vector of the
incident particle. This dependence, which persists after integration of the cross section

over the scattering angle of the incident particle, causes interference effects, viz., asymmetry of
the line shape and dips in the dependence of the SBIB cross section on electric field

intensity, to appear forr=7r/2 and significantly reduces them far=0. © 1999 American

Institute of Physics.S1063-776(99)00705-2

1. INTRODUCTION small angles, and the static channel dominates for large
angles. Thus, the interference term contributes little to the

Investigations of the influence of the polarization of thetotal bremsstrahlung cross section on a neutral atom for all
electron shell of a target on collisional radiative processesncident particle scattering angles, although for the angular
have been carried out in recent year$Along with brems-  gifferential cross section this interferen@ certain frequen-
strahlung on atoms and clustér%stimglated bremsstrahlung cjeg can cause the total spectral bremsstrahlung cross sec-
(including the multiphoton effegon highly charged iorts"> " tion to vanish for some incident particle scattering anfles.
and recombination on 'loﬁyvere examined. We note here that the stripping of an atom in bremsstrah-

The dynamic polarization of the electron core of a targefng a5 a consequence of consideration of the polarization
Opens up a new po_la_lrlzanon cha_nnel for the_ radlat|7ve PrOCeSthannel, which was first discovered in Ref. 9, is not an in-
along with the tradlthnall_y considered static chann_Als a  terference effect, but describes the addition to the ranges of
resuIF, th_e Cross s_ect|on is a sum of three terms, viz., Stat'(fhcident particle scattering angle that are important for the
polarization, and interference terms. static and polarization channels

The static channel is associated with the emission of a The situation for bremsstrahiunﬁgnd recombinationon
photon by the incident particle as a result of its acceleration th lect . litatively diff I thi
in the static potential of the target. The polarization channel®NS With an €electron core 1S qualitatively dierent. In this

can be interpreted as scattering of the self-field of the inci£as€ the ranges of significant incident particle scattering

dent particle(virtual photon into a real photon on the elec- angles for the two channels overlap, making the interference

tron shell of the target. It occurs even when the acceleratioff™™M in the total bremsstrahlung cross section important for

of the incident particle is negelected. This process is similafll Incident particle scattering angles. The role of this inter-
to the scattering of radiation on an atof@n ion with an ference for the near-resonant stimulated bremsstrahlung of

electron corg but, unlike the latter, alway@xcept in some ~guasiclassical electrons on highly charged ions was investi-
exotic caseshas a static “addition,” which facilitates inter- 9gated in Refs. 1, 4, and 5, and its role for recombination was
channel interference. The interference term becomes esp@¥amined in Ref. 10.

cially significant for the target iohproducing several inter- Stimulated bremsstrahlung in a laser field naturally also
esting features in the spectral-amplitude characteristics of th@kes place along two channels, a static channel and a polar-
bremsstrahlung: asymmetry of the shape of the spectral lingation channel. In the latter case the process can be de-
and dips on it(for a near-resonant procgssis well as a scribed as stimulated scattering of the self-field of the inci-
minimum in the spectral dependence of the recombinatioient particle into a laser mode.

rate*In fact, in the case of a target in the form of a neutral ~ We shall consider the situation in which the presence of
atom the regions of existence of the static and polarizatiom laser field weakly influences the motion of the incident
channels differ sharply with respect to the incident particleparticle, i.e, the approximation in which the current can be
scattering anglé: the polarization channel dominates for viewed as giver(see the basis for it in Ref.)1so that first-

1063-7761/99/88(5)/6/$15.00 889 © 1999 American Institute of Physics
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order perturbation theory with respect to the interaction bewe shall, of course, use a systematic quantum-mechanical
tween the incident particle and the laser radiation can be useapproact? to calculate the characteristics of the bound core
to calculate the amplitude of the static channel. At the samelectrons.

time, since a laser frequency close to one of the eigenfre- Within this picture the spectral amplitude of the SBIB
guencies of the ion core is being considered, the interactiofor the incident particle scattering angie[or the eccentric-

of the laser radiation with a near-resonant transition in thety of the orbite = 1/sin(/2)] is the sum of two terms, one of
core can be strong. It can be taken into account within thevhich is proportional to the time Fourier transform of the
rotating-wave approximatiotfor further details, see Ref).l  dipole moment of the scattered incident partifR*( w,e)

For our further discussion it is important to stress that— the static channgl while the other is proportional to the
the treatment in Refs. 1, 4, 5, and 10 was performed in th&ourier transform of the dipole moment induced by the inci-
dipole approximation with respect to the interaction of thedent particle in the ion corfDP°(w,s) — the polarization
incident particle with the target. This approximation was jus-channel).
tified for bremsstrahlung that is near-resonant to electron Next, let us consider SBIB at a frequenayof the ex-
transitions in the ion core witAn=0,1, since in the spirit of ternal radiation that is close to the eigenfrequeagyof a
the rotational approximatidh in the Kramers limit o  transition in the electronic ion core of the formm;(s)
> wcou=0°1Z;, Wherev is the velocity of the incident par- — (n,p), assuming that the frequency mismatkk w — w,
ticle, Z; is the charge of the ion, and atomic units are usedexceeds the linewidth of the transition, so that the real exci-
everywherg the radius of the portion of the incident particle tation of the ion core can be neglected.

trajectory responsible for emission of the specifiear- The corresponding formulas have the form
resonantfrequencies under consideration exceeds the radius
of the outer shell of the ion, which corresponds to the upper 172
level of the resonant transition in the iéfor further details, 5%, ¢, )= = —|E,D w,2)|%ede do, 1)
see below: 4 4

However, a more detailed treatmemot based on the
rotational approximationshowed that the influence of the D w,8)=DNw,&)+D"(w,s), 2

nondipole nature of the incident-particle—target interaction
on the total cross section of the process for all incident par-

ticle scattering angles is very significant: it smears out the_ _ 1 (n,1=0l[d|[n,I=1) [ gt gt Rj(t,e)
dips on the amplitude-frequency characteristics of the stimu-"! (0,8)= 6w Q — © R(t,e)
lated bremsstrahlung and eliminates the asymmetry of the

spectral line shape fakn=0 and, in addition, significantly X(n,I=1[|ay(rcoresR(t,€))[ [N ,1 =0), 3
reduces the bremsstrahlung cross sectiom\foe= 1 over the
entire near-resonant portion of the spectrtfm. ] R

The nondipole effects in stimulated bremsstrahlung and,(r,R)=6(R—r)—+ 6(r —R) —.
inverse bremsstrahlun@BIB) were investigated in Ref. 12 R? r?
for the case of an isotropievith respect to the initial veloci-
ties) distribution of the incident particles, where the depen—HereR].(t,g) is the jth projection of the radius vector of the
dence of the process on the polarization of the external rancident particle for a given orbital eccentricity as a function
diation vanishes. of time; 6(x) is a Heaviside step function)=(A?

The purpose of the present work is to take into account 02)12 is the generalized Rabi frequendyy=doE, is the
just this dependence. Therefore, below we calculate thgesonant Rabi frequencyl, is the dipole moment matrix
SBIB cross section without averaging over the direction ofelement of the resonant transition; aBglis the amplitude of
the initial incident particle velocity for various angles be- the electric field in the external radiation.
tween the initial velocity vector of the incident particle and The expressioti3) was obtained in first-order perturba-
the electric field intensity vector of the linearly polarized tion theory with respect to the interaction of an incident par-
laser radiation. ticle with an electronic transition in an ion core near-
resonant laser field system. Its systematic derivation within
the dressed-state model was given in Ref. 12. This approach
permits allowance for the influence of the near-resonant laser

In Ref. 1 we justified the specified-current approxima-field on the radiative transition in the ion core within the
tion for calculating the bremsstrahlung cross section omotating-wave approximation and, consequently, to obtain
highly charged ions with a core for arbitrary values of thethe dependence of the SBIB cross section on the electric field
Born parameter=Z; /v. For sufficiently slow incident par- intensity in the external radiation.
ticles, which satisfy the relatiosp=1, good results are pro- We note that consideration of the influence of the laser
vided by the so-called semiclassical approximation, in whickfield on the near-resonant transition formally reduces to re-
the classical theory of bremsstrahlung is used together witplacement of the frequency mismatch from resonanke (
several quantum restriction$* Here we shall also employ = w— w) by the generalized Rabi frequenc® ) in formula
the semiclassical approximation to calculate the polarizatiori3). The expression for the total cross section for all incident
channel of SBIB in the part concerning the incident particle;particle scattering angles has the form

2. BASIC FORMULAS
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A _2p It follows from Fig. 1 that a deviation from thedipole
viip. 2 appproximation in the interaction of the incident particle
10 with the near-resonant transition appearxg@t 12 (for An

=0), while the value ok corresponding to the radius of the
2p state of a hydrogenic ion is of order 4. Thus, nondipole
behavior begins to show up at distances between the incident
0.5 particle and the nucleus as small as three times the charac-
teristic radius of the upper resonant state. As we kiisee,
for example, Ref. 1 in the Kramers limit the portion of the
incident particle trajectory responsible for the emission of a
0 S n s photon of frequencw is located at a distance of the order of
RZ, au. R,(Z))~(Z;!»?)3 (for a Coulomb field from the center of
the field (this estimate corresponds to the rotational
FIG. 1. Devia_ttjon of the interaction potgntial of an inci_dept particlt_e wit_h the approximatioﬁl'lﬁ. In the case of lithium-like ions, the
2s—2p transition of a bound electron in a hydrogenic ion from its dipole . " .
approximation Z is the charge of the ion nucleus eigenfrequency of the.Q— 2p transition can be approxi-
mated by the expression,s ,,(Z)=0.070Z—-0.120 a.u.
(Z is the charge of the ion nucleusThe expressions pre-
o Z2 w sented can be used to estimate the nondipolarity parameter
do™(w,a)= E—;ESL [(IDX(w,e)[A)fx(a,e)
v

_ Vs 2p(Xe)
V5E 2p(X,)
4
@ [herex,(Z))=2Z;R,(Z;)] as a function of the charge of the

sirfa, lithium-like ion Z; for a near-resonants2-2p transition.
Simple calculations give

+(|Dw,e)[A)fy(a,e)]e de, XrdXo)

g2—1

fx(a,8)=COS2a+ 5

1 — _
fy()= (67~ 1)00% a-t 3 sir a. Xd(1,2,3,4,5=0.25,0.8,0.96,0.99 forn=0.

) . Thus, this estimate, which is based on the use of the
In these equationsandy are the axes of the focal coordinate yotational approximation, shows that for transitions with no

system assigned by the initial and final incident particle vehange in the principal quantum number in lithium-like ions
locity vectors;* and « is the angle between the initial inci- the nondipolarity parameter is close to unity for fairly large
dent particle velocity vect_or_and the ele_ctrlg field intensitygp, charges Z;=4). A similar estimate for a transition with
vecftor of the_ extern_al radiation. Th_e derivation (dj_from An=1 shows that the corresponding nondipolarity param-
(1) involved integration over the azimuthal scattering a”9|eeterxw(zi) is significantly smaller than unity for a; .
) . ) It should, however, be borne in mind that the rotational

~ Formulas(1)—(4) are the basic equations for our inves- apnroximation corresponds to the replacement of summation
tigation of the polarization-interference effects in the SBIB sf the contributions of different incident particle trajectories
of quasiclassical electrons on ions with a core. over the impact parameter by emission at a certain effective
distanceR (Z;). It is not cleara priori that such a replace-
ment is correct for taking into account the interference of the
static and polarization channels occurring for each fixed im-
pact parameter, especially in the region of destructive inter-

Polarization-interference effects stem from the nondi-ference of these channels, where the total cross section is
pole nature of the interaction between the incident particlessmall. As was mentioned above, the calculations performed
and the near-resonant transition in the ion core. In the dipolén Ref. 12 in the approximation of a specified incident par-
approximation the interference term in the bremsstrahlungicle Coulomb current show that the rotational approximation
cross section does not depend on the polarization of the exs, generally speaking, inadequate for describing fine inter-
ternal radiation:*® Thus, the difference between the ference effects in the region of the spectral-amplitude dips,
incident-particle—ion-core interaction potential and the di-but remains approximately correct in the region of the con-
pole analog(the incident-particle—point-ion interaction po- structive interference of the static and polarization channels
tential) is essential for the appearance of this dependence. for transitions with no change in the principal quantum num-

Figure 1 shows how the ratio of the exact interactionber. Therefore, for a correct description of this interference
potential to the dipole potential varies with the parametever the entire range of values of the parameters we must
x=ZR (whereRis the distance between the incident particlestart out from the general unsimplified formul@.
and the nucleysfor an incident particle interacting with the Bearing in mind the calculation of SBIB for lithium-like
2s—2p transition in a hydrogenic ion. ions, we shall henceforth use the Coulomb approximation for

A calculation in the model-potential approximation re- the incident particle current, in which the incident particle
veals that a similar dependence holds for transitions of thérajectory is assigned by the familiar classical expressfons
outer electron in a lithium-like ion. for the motion of a charged particle in an attractive Coulomb

3. INFLUENCE OF THE NONDIPOLE BEHAVIOR OF THE
PROJECTILE-TARGET INTERACTION ON THE RADIATING
DIPOLE MOMENT
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FIG. 2. Spectral dependenca € w— w,) of the SBIB cross section of a E, au.

quasiclassical electron on arf Nion normalized to the static values for two
values ofa (=0 — curvel, a==/2 — curve 2) between the initial FIG. 3. Dependence of the SBIB cross section normalized to the static value

velocity vector of the incident particlev&0.6 a.u) and the electric field  on the electric field intensity of the external radiation for two valuesof
intensity vector of the external radiatioE¢=10"° a.u) for a frequency of ~ (@=0 — curvel, a=m/2 — curve2), a negative detuning from resonance
the external field near the eigenfrequency of a near-resonant transition in tHew — @)/ wo=—0.3% near the eigenfrequency of the-22p transition in
ion core without alteration of the principal quantum numbes<(2p). the N** ion, and an incident particle velocity=0.6 a.u.

field with an effective charge equal Byy=Z;+1/2. A cal- Figure 2 shows the spectral dependence of the SBIB
culation of the dependence of the focal components of th@,,ss section normalized to the static value near the eigen-
induced dipole momeriD, (¢) of the ion core on the ec- fequency of the transition with no change in the principal
centricity of the incident particle orbit shows that for transi- quantum number in the ion core for two values @f(the
tions of bound electrons of the ion without a change in the;ngje petween the initial velocity vector of the incident par-
principal quantum number theprojection of the dipole mo-  yicje and the electric field intensity vector of the external
ment is close to its dipole analog, while theprojection of  4giation for an initial incident particle velocity = 0.6 a.u.
the dipole moment for eccentricities fairly close to unity dif- ¢ fo|10ws from this figure that the interference effects are
fers_strongly from the v_alue c_alculated in the dipole f"‘pprox"displayed most vividly fora= /2, while they are reduced
mation. In particular it vanishes and changes sign neagjgnificantly fora=0. This difference is greatest in the re-
e=1 for a certain eccentricity of the incident particle orbit. 4oy where the static and polarization channels experience
The difference just indicated underlies the dependencgegiryctive interferences(< wy), where the calculations in
studied herein of the polarization-induced effects in SBIB ony,o dipole approximation with respect to the interaction of
the angle between the initial incident particle velocity vectorina incident particle with the cotexhibit a deep minimum
and the electric field intensity vector of the electromagneticynhich is caused by mutual compensation of the polarization
wave. and static terms in the amplitude of the process. In the region

Physically, these features in the behaviorlof(e) and ¢ constructive interferenced> wo) the difference in the
D,(e) stem from the different effects of penetration of the

incident particle into the ion core on the projections of the

Fourier transform of the induced dipole moment in the focal

coordinate system. Penetration into the ion core has a stron- dU"")
ger effect on thex component of the dipole moment than on dew I
they component, since thecomponent of the radius vector
of the incident particle changes sign during its motion from
the point of closest approach to the center of the field to
infinity, while they component has a single sign on the por-
tion of the trajectory under consideration. 0.0051

0.01r

4. DISCUSSION OF RESULTS

The results of the calculations of the SBIB cross section 0 0002 0004 0006 0.008
within the approach under consideration are presented in £ au
Figs. 2__4 and for spontaneous bremsstrahlung in Fig. 5. ThEIG. 4. Dependence of the SBIB cross section averaged over the angle
calculations were performed for thes22p and 23—3p  [for an angular distribution of the for () = coSal(p+1) with a distri-
transitions in the lithium-like K" ion. The functions of the bution axis perpendicular to the polarization of the external radihtiarthe

model-potential method were employed as the wave funcelectric field strength of the external radiation for two values of the angular
. distribution parameterp=2 — curvel, p=12 — curve2), scattering of
tions of the valence electron. . L . electrons withv =0.6 a.u. on N* ions, and detuning of the frequency of the
The total SBIB cross sections for all incident particle exteral field from the eigenfrequency of the-22p transition in the ion

scattering angles are presented in all the figures. core equal t0 @ — wg)/ we= — 0.3%.
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'Y the interference of the channels leads to a larger value of the
SBIB cross section forr=7/2 than fora=0. However, in

this case the relative role of the interference term is small,
I since the total cross section of the process is large. This
1.5¢ circumstance is associated with the closeness of the nondi-
polarity parametely,q to unity for An=0 andZ;=2 men-
tioned in the preceding section.

i+ On the low-frequency wing of the spectral line, where
\/ the total cross section is small, on the other hand, the role of
the interference is very significant, and the dependence of the
0.5 ) ) . SBIB cross section on the polarization of the external radia-
-10 -5 0 5 10 tion under consideration is most pronounced.
Alay, %

A similar spectral dependence was also obtained for the
FIG. 5. Polarization of the spontaneous bremsstrahlgrg2o(«=0)  transition in which the principal quantum number changes,
—o(a=ml2)lo(a=0)+o(a=m/2) as a function of the relative frequency 25— 3p. In this situation the difference between the cross
mismatch from the eigenfrequency of the-22p transition in the N* ion  sections in the region of destructive interference is not so
with (curvel) and without(curve 2) consideration of the polarization chan- great as for the transition withn=0. This is attributed to
nel (Zeg=4.5,v=0.9 a.U), {min=0.77, {max=1.88. . . .
the greater influence of the nondipole behavior on the mag-
nitude of they component of the dipole moment induced in
spectral dependence of the cross sections for the two valuége ion core due to the larger radius of the State compared
of a is small. to the 2o state.

The polarization features in the spectral SBIB cross sec- Figures 3 and 4 present the amplitude dependence of the
tion under consideration are attributed to the difference distotal SBIB cross section for all incident particle scattering
cussed in the preceding section between the effects of thengles on the electric field intensity in the external radiation,
nondipo|e nature of the interaction of the incident partidefor which polarization-induced interference effects of the in-
with the near-resonant transition on the focal components deraction between the static and polarization channels also
the radiating dipole moment induced in the ion core: a stroneXist.
ger effect on itsc component and a weaker influen@er the Figure 3 presents the amplitude dependence of the ratio
transition withAn=0) on they component. In the case of of the total(including the polarization term in the amplitude
=0 the main contribution to the radiatidfor sufficienty ~ SBIB cross section to its static analog for two values of the
small incident particle velociti¢ss made byD, due to the anglee (a=0 — curvel, a=7/2 — curve2) in the region
form of the functionf, ,(a,&) [Eq. (5)]. In fact, fora=0 we of Qestructive interfgrence_ between the channeJ_g o) -
havef,=1 andfy(ols):,;Z_l, and if it is now taken into As is seen from the figure, in the former case the interference
account that for sufficiently small values of the incident par-€ffects are very weak: they are manifested by the fact that as
ticle Ve|ocity (|n the Kramers ||m&5) the main contribution the electric field intensity is increased, the cross section of
to the total cross section of the process for all eccentricitiehe process tends to a value somewhat smaller than the static
of the incident particle orbit is made hy~1 (close colli- Value as a consequence of destructive interference, which is
siong, it follows from the preceding relations th&;(0,e)  strongly suppressed by the nondipole behavior of the inter-
>f,(0,e). Similar arguments show that the reverse inequalaction of the incident particle with the ion core. There is
ity f,(7/2,e)<f,(m/2,) holds fora= /2 and that, accord- direct evidence of a strong interference effect for 7/2:
ingly, the main contribution to the process is made byyhe the amplitude dependence of the SBIB cross section has a
component of the radiating dipole moment. broad dip caused by the mutual compensation of the state

Thus, the anglex controls the relative contribution of and polarization terms in the cross section of the process,
the various focal components of the radiating dipole mo-Which is characteristic of treatments within the dipole ap-
ment. If the main contribution to the radiation is made byproximation with respect to the interaction of the incident
DX, the Strong influence of the nondipo|e nature of the in-particle with the ion coré'.4 The reason for preservation of
teraction of the incident particle with the ion core causes théhe dipole features in the amplitude dependence is the same
mutual compensation of the amplitudes of the static and poas in the spectral dependence: ter 7/2 the main contri-
larization channels(where they destructively interfere, bution to the radiation is made by tlyecomponent of the
w<wg) to occur only for fairly large eccentricities of the induced dipole moment, which is weakly subject to the in-
incident particle orbit. This compensation no longer occurgluence of the nondipole nature for transitions without a
for fairly small eccentricities. Moreover, at a certain value ofchange in the principal guantum number.
go the functionD,(&) changes sign, and the interference  Figure 4 presents plots of the amplitude dependence of
between the static and polarization channels takes on a coff?€ total SBIB cross section averaged over an angular distri-
structive character. As a result, the interference dip in théution of the incident particles of the form
total SBIB cross section for all eccentricities of the incident
particle orbit is smeared out, as is clearly seen in Fig. 2. Dp(a)=cod al/(p+1)

On the high-frequency wing of the spectral line at
> wq the situation is reversed: the stronger manifestation ofor two values of the angular distribution parametpr=(2



894 JETP 88 (5), May 1999 V. A. Astapenko

andp=12) and an angle between the distribution axis andsolute value of the velocity, and the angular distribution of
the electric field intensity vector of the electromagnetic wavethe incident particles, which is not observed in the dipole
equal to7/2. The form of the angular distribution of the treatment, appears in the more exact approach described
electrons chosen is characteristic of the ablation of a solidhere. In particular, a dependence of the interference dips in
state target under the action of high-power laser radiatiorthe total SBIB cross sectiofwith consideration of the polar-
and the angler= /2 corresponds to normal incidence of the ization channgl on the angle between the initial velocity
radiation onto the surface of the solid. vector of the incident particle and the electric field vector of

It can be seen from the figure that the interference effecthe external radiation has been discovered. This dependence
is displayed most strongly for the more pointed angular disis observed for both the spectral and amplitude SBIB cross
tribution (p=12), as would be expected, since the meansection and is most strongly manifested for near-resonant
value of « is closer tom/2 in this case. transitions in the ion core withn=_0.

Figure 5 presents the spectral dependence of the polar- In the case of spontaneous bremsstrahlung this effect is
ization of the spontaneous near-resonant bremsstrahlung calbserved in the spectral dependence of the polarization of the
culated with(solid curve and without(dashed curvecon-  radiation, which differs fundamentally from the static analog.
sideration of the polarization channel. The low-frequency  The SBIB features discovered can be significant for ana-
wing of the line exhibits a strong upward deviation of thelyzing the possibility of utilizing this phenomenon in the
polarization of the radiation parallel to the initial velocity context of the general problem of generating short-
vector of the incident particle from the perpendicular valuewavelength radiation.

[o(a=0)/o(a=m/2)=32] due to the interference-induced This research was carried out with partial financial sup-
suppression of the perpendicular polarization, which is lesport from the Russian Fund for Fundamental Research
subject to the effect of the nondipole behavior of the inter-(Project No. 98-02-16763

action of the incident particle with the ion core. This upward
deviation is an order of magnitude greater than the corre-
sponding value obtained without consideration of the polar-
ization term in the bremsstrahlung amplitude. —_—
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The problem of the amplification of high harmonics generated during the above-threshold
ionization of atoms in a high-power laser wave field is examined for the first time. An estimate
of the gain coefficient as a function of the parameters of the atom beam and the pump

wave is given. ©1999 American Institute of Physids$$1063-776(99)00805-1

1. INTRODUCTION number of photons in the amplified waWhe condition that

The generation of high harmonics provides a source Orhe gain coefficient of the probe wave over the interaction

coherent radiation in the hard-ultraviolet range. The signifi-ength of the beam with the probe wave be sipdiblds.

cant progress made in the area of creating high-pdwéh i Ttt]et ampliftifc]:atifcm effZCt isddetermined by thgﬂ:otrr?peti-
a peak intensity in a pulse=10~10¥W cm™2) ultrashort 0" Petween 1the forward and reverse procedse €

pulses ¢=600fs—1 ps has permitted advances into the emission and absorption of high-harmonic photons, respec-
range of harmonic wavelengths=210—100 nmt tively). The plots in Fig. 1 describe the processes taking

In the last few years some new experimental results havBIace when both waves are simultaneously present in the

been obtained in studies of the detailed properties of pulse'g'teraCtlon volume. Figure 1a corresponds to the process

of high harmonics. In particular, data on the angular distri-W'th the_ _absorptlon oéquanta of th_e laser wave by an atom,
a transition of an electron into a virtual stalqJ in the con-

bution of the radiationt;” its spectral profilé and temporal inuous spectrurthe familiar Volkov solution in a strong
icture® and the conditions for phase synchronism betwee X ) .
P P y vave field(the Keldysh—Faisal-Reiss motfg], and subse-

the high-harmonic wave and the pump wave have been o

tained. High-resolution cross-correlation experiments hav(guent stimulated recombination to the ground state of the

led to a conclusion regarding the possible temporal duratioﬁltom with the emission of on@ photon. Figure 1b corre-

of the generation of high harmonié<? sponds to the reverse process with the absorption dan

Advancements in laser technology have made it possibIBhOton' T.he initial ¥;) and final (F're,) functions of the
electron—ion system belong to the ground state of the atom,

to attain a large number of high-harmonic photons during ab . i .
. : L t the functionsV;, and¥;, differ in the energy and mo-
| ~10°-1 ly high u fe fa
pulse N;~10°-10") at comparatively high gas densities mentum of the atom after it interacts with the electromag-

(with a pressure in the bearR=10-100 Tory. These L

achievements raised the question of the possibility of obser\}:|etIC flelds._ - . .

ing the amplification of high harmonics as they pass through The gain cogfﬁment of the prope wave is determined by

the interaction region of the pump wave and the atom bean{.he total probability of the process:
This paper examines the problem of the amplification of

high harmonics generated in the above-threshold ionization

of atoms in a high-power laser wave field for the first t'me'wherewe,a are, respectively the probabilities of the stimu-

An estimate of the gain coefficient as a functlon_of t_he Pa,ted emission and absorption of Anphoton by the system
rameters of the atom beam and the pump wave is given.

of atoms in the interaction volume.

Let us focus our attention on one special feature of the
problem under consideration. Since the atom is in the ground

We consider the amplification of a pulse of a high har-state before and after the interaction with the waves, the
monic, where a weak probe wave of intendigywith a fre-  matrix elements for processes a andske Fig. 1 written
quencyQ~sw (s is the number of the harmonic, anglis  without allowance for the motion of the center of mass of the
the frequency of the pump waye sent into the interaction electron—ion system are equal, and, accordingly,=0. A
region of the atom beam with the strong pump wave in thenonzero result can appear () only in a basis set of wave
direction of that wave. functions that include the combined motion of the electron

We assume that the specified-field approximation, undeand the ion. In this case we must take into account the recoil
which the increment of the number of high-harmonic pho-effect, which appears when this system emits or absorbs
tons over the length of the interaction region is less than thguanta of a field. When the problem under consideration is

GrAW=Wg—W,, 1)

2. STATEMENT OF PROBLEM. BASIC EQUATIONS

1063-7761/99/88(5)/7/$15.00 895 © 1999 American Institute of Physics
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FIG. 1. The vertex in the form of a triangle with a wavy line corresponds to the interaction of an electron with the pump wave field, which leads to direct
multiphoton ionization of the atom from the ground state to a virtual state in the continuous spectrum; the vertex depicted by a wavy line with a filled circle
describes the interaction of the photoelectron in the continuum with the probe wave field, which leads to recombination to the ground state of the atom with
the emission of a photon of a high harmonic of frequeficycase & the double line with an arrow depicts the state of the photoelectron in the continuous
spectrum appearing in the strong wave fighte Keldysh method Case b corresponds to the reverse process, and the meanings of the notation are the same
as in case a.

S0 formulated, it becomes similgr to the familiar problem of Ve a=X —i(Eeat— Pea-R)]eXp —iEqt) (1), (3)

the stimulated Compton emission of an electisee, for

example, Ref. 12 We note a formal feature shared by thesewhere E., P, and E,, P, are the energy and momentum

problems. Since processes in specified wave fields are conalues which the atom acquires as a result of the emission

sidered in them, the final result for the gain coeffici@t (e) and absorptiond) of a photon with the wave vectdt

must be averaged over the distribution functions of both théind the frequency).

atom beam and the probe wafthis question is discussed in The intermediate stat®, in the figure corresponds to

greater detail in Sec.)3 the ion and electron in the continuous spectrum and is writ-
Let us consider the question of the basis set of wavéden as follows:

functions used to calculate the composite matrix elements of

the diagrams in Fig. 1. Because the parameter associated hd

with recoil of the atom is small, the amplification of a high

harmonic can be appreciable only if the condition of phase

synchronism of the emitters in the propagation direction of X expiaq CoSeq)exp —iay Sin2¢,). (4)

the waves is satisfied in the medium of atoth$he phase of

the atoms is determined by the phase of the coherent purrip (4) E" andP’ are the energy and momentum of the ion in

wave, and the calculation of the gain coefficient with allow-the intermediate state;,=e,+ U, is the energy of the pho-

ance for phase synchronism requires consideration of theelectron with consideration of the ponderomotive energy

motion of the center of mass of the electron—ion system antJ,= (e EoXo)2/4m, (E, is the amplitude value of the electric

assignment of the absolute coordinate of the electron in thfield intensity in the pump wave, and,=1/w); p=p

laboratory reference frame. +(Up/w)k is the momentum of the photoelectroRy+ R
The adiabatic approximation, within which the electron +r is the absolute radius vector of the electrd®y (is the

and the residual ion are treated as fast and slow subsysterfiged radius vector of the ion without consideration of its

respectively, is assumed to hold. This approximation makegotion); the dimensionless parameters

it possible to separate the spatial variables of the particles

(the terms in the Schdinger equation that are discarded in eEq-p (eBokp)®> U,

the separation procedure are small, beirgnes,/ME, al—m, az—m— 20 ©)

whereM andm, are the masses of the ion and the electron, ©

respectively,s, is the energy of a photoelectron with the are determined by the strength of the interaction of the elec-
momentump, andE is the kinetic energy of the atom tron with the laser wave field; ang, = wt—k(Ry+R+T) is

The psi function of the initial state of the system with the phase of the wave at the tirhat the site of the electron.
consideration of the combined motion of the ion and the e use the expression

electron is written in the form#{=c=1)
W, =exd —i(Et—P-R)]exp —iEqt) o(r) () Vi=eA (1) p/me+[eAy(t)]1%/2m; (6)

and describes the free motion of an atom with the energyo define the interaction operator of the electron with the
E=P?/2M and the momentur® in the ground state,(r) pump wave field. The vector potential of the wave is as-
with the energyE,. HereR is the radius vector of the atom signed by the classical expressidn(t) =Agsing;, where
(ion), r is the relative radius vector of the electron, and theA,, is the amplitude of the vector potential. The pump wave
normalization plane-wave volume is set equal to unity. Infield is used within the Keldysh methdd.
accordance with the Keldysh modelt is assumed that the The probe wave field is treated in first-order perturbation
ground state of the atom is weakly perturbed by the lasetheory. The perturbation operator associated with this wave
wave field. has the form

The wave function of the final state can be written in a
similar manner: Vo=eA,(t) - p/me+e?A (1) Ax(t)/mg, ™

p=exgd —i(E't—P"-R)]

xex —i(ept—p- (Ro+R+1))]
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whereA,(t) =AgsifQt—K - (Ry+R+r)] is the vector po- 2 4 2 i
_ d|Acal Ko lqly sinF u
tential of the probe wave, artd andQ are wave vector and wfj;:d—t'=87m2 ~oslg) Vinna)? —;
frequency. s* Ry’

The probability amplitude of the transition of an electron 2
from the ground state of thigh atom to the continuous spec- X 2 Esn| 0[Eca— EX(Q—sw)]. 1y
trum with the absorption of several quanta of the pump wave n

followed by stimulated recombination to the ground state  In (11) I, andl, are the intensities of the pump wave
with the emission of a high-harmoni€,() photon by the and the probe wave, respectively: (2 —n,sw)!/2; Eg , is

time t (Fig. 13 is given by the expression an expression which appears when the integrals in the com-
posite matrix element of the amplitud®) are evaluatelits
[P dP’ dp form is not shown in this paper, since the final result is
Ae()=(—1) f (2m)3 I(ZTP expressed in terms of the probability of spontaneous emis-

sion, which contains this expressi¢see beloy]; the sum-

t t x - mation indexn runs through the sequence of numbers of the
1" y(H) j
X f,wdtlf,mdt2<wfe|vz (t)| ) photoelectron peaks in the above-threshold ionization spec-
. _ trum of the atomsy=e?/%ic; Ry=m.e*/242 is the Rydberg
X(XII;J [Vi(ty) | Py, (8) constant; the plus and minus signs in the argument ofsthe

function, which assigns the energy conservation law for the
whereP’ andp are, respectively, the momenta of the ion andprocesses under consideration, refer, respectively, to the
the photoelectron in the virtual intermediate state, and thetimulated emissiong) and absorptiond) of a photon of
V(2+) terms, which are responsible for emission, have beefrequency)~sw; E is the initial kinetic energy of the atom;
left in the operato/,(t) (7). The analogous probability am- andE, , is the kinetic energy of the atom in the final state, to
plitude of the reverse proces(t) (Fig. 1b is a trivial  which it passes as a result of its interaction with the waves
problem. with the emissiorn(absorption of a high-harmonic photon.

The total probability amplitude of the stimulated emis- We note that the values d&, , in the stimulated pro-
sion (absorption of a K,{) photon by the entire system of cesses are determined from the momentum conservation law
atoms in the interaction volume of the beam with the waves, ,— P+ (K —sk)=0 and equal
appears as a result of summation of the amplitu@e®ver

X _ _ 2
all the numberg of the atoms in that volume and is distin- Eea=E1P (K= sk) + (K=sk) (12
guished from(8) by the multipliet® ’ M 2M
(the minus and plus signs correspond to emission and ab-

> exi(sk—K)]-Ry;. (9)  sorption processgs
i The probabilities of the simulated proces$g$) can be
related fairly simply to the probability$) of the spontane-

medium approximation and gives rise to a diffractive multi- n535 the form

plier in the expressions for the probabilities of the

2
processes® (6) = 4,2 sifu/u® 1
W =4p2\ol, ————— w9
, ea” TPOR0T2 Gip ug/uz s P
‘; exgdi(sk—K)]-Ry; X[Eea— Ex(Q—sw)], (13

whereuy=sw(1—n,)l/2 is the argument of the diffractive
, (10) multiplier u for the exact equalitf) =sw.
[(Q—n,sw)l/2]? The delta functions i13), which assign the energy con-
. . ) servation law for the transition of the system to a partial final
whereVy= mpgl is the interaction volume of the atom beam gtate, should be replaced in the ensuing calculations by inte-

with the waves;p, is the radius of the focus of the pump gration over the distributions in the interacting objects.
wave at its center| is the longitudinal dimension of the

interaction region in the direction of the wavas a rule, in
experiments on harmonic generation we hbwal, whered 3. GAIN COEFFICIENT
is the diameter of the beam of atoms sent in the direction
transverse to the Wav)esn,f1—co,23/2a>2 is the refractive
index of the ionized medium for the pump waveere w,
= J4mn.e?/m, is the plasma frequengyandn, is the con- (WweHQ
centration of atoms in the beam. G(S):—Z'
From (8) with consideration of the diffractive multiplier mpol2
(10) we obtain the following expression for the transition where (Aw(®)=(w—w{) is the total probability of the
probability of the system of atoms to the partial final statestimulated processes averaged over the distributions. The
per unit time: substitution of(13) into (14) leads to the result

2 i _
(%) (Ve )? sir[(Q—n, sw)!/2]

The dimensionless gain coefficient per transit of a probe
wave of frequency)~sw is given by

(14)
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(s)
G = BWwsp

I ,(sirPug/u3)
whereJ denotes the integral
sirfu
sz f > {8[Eec— E+(Q—5sw)]
u

(19

S[E,—E—(Q dePdlzdllde
—[Ea—E—(Q—sw)]}f(P) 30 do w,

(16)

f(P) is the distribution function of the initial atom beam

normalized to unity, and the functiomd,/dw anddl,/dQ

describe the spectral distributions in the pump wgwebe
wave normalized to the total intensitly; (and|,, respec-
tively), whose widths are related to the pulse durations.

D. F. Zaretskil and E. A. Nersesov

=sw), Which can be induced ahead of time under conditions
similar to the conditions of the amplification process, can
serve as the source of the probe wave. This radiation must
then be directed into the region where the second beam in-
teracts with the pump wave and be synchronized with the
arrival of the pulse of this wavéa two-beam experiment
scheme

In the ensuing calculations we shall confine ourselves to
this case and omit all the multipliers containing the differ-
ence()y—Sw in (18). The parametens,, andu, depend how
much of the medium is ionized and, therefore, on the local
characteristics of the field intensity in the focus of the pump
wave. Therefore, after substitutid@8) into (15), we must
average the expression obtained over the coordjmataich
is transverse to the focal axis, to derive the final formula for
the gain coefficient:

The integration procedure i16) is described in Appen- {G(S)>= _ (16)%sw J_pw(s) (19)
dix 1. The final result foiG® and the character of the inte- JTAOM p2 P’
grations in(16) depend on the formulation of the problem.
When an answer is heeded in the form of the gain coefficien‘f"here
in a mode, i.e., at a specified frequency of the probe wave, it Po
is sufficient to confine ourselves to integration over the dis-  Jp= jo [1—n,(p)]uo(p)cotug(p)p dp. (20)

tribution of the initial atom beam irf16). In this case, in
accordance with Eq1.8) from Appendix 1 for the gain co-
efficient in a mode, we obtain

The details of the calculations of the integ(2l0) are
described in Appendix 2. Using the resy®.3) obtained
therein, we present the expression for the averaged gain co-

GOQ)=8w® sirfu/u? [ 16y7M* Q-sw efficient (in ordinary unitg
% sird ud/u? AP |Q—n,so| -,
o'~o 2
© (16)2:cNg (ol [ tom
2 (G = —F—|— xcotx dx, (21)
wext — M2 (Q-sw 17) JrIMc2AQ 7\ Po 0
Q-n, sw

whereNy is the number of photons of tteth harmonic emit-
As follows from (17), the gain coefficient vanishes when ted during a pump-wave pulse, which can be estimated from
Q) =sw holds exactly and is positive for waves with frequen- the reIationNS~W§,) Ts; Ts IS the duration of the probe-wave
cies A<sw. An increase in the frequency mismatch pulse;p, is the characteristic constant of the Gaussian distri-
| —sw| is accompanied by a sharp decrease in the coeffipution of the electron density in the focus; angl, is the
cientG®(Q) in view of the large value of. value of the argument on the focal axisee Appendix 2
A situation in which averaging over the spectral distri- At fairly large values ofuy~1 (whenug<) we can
bution in the probe wave is also required in the integtal use the expansidh
should be considered more characteristic of the conditions of 2p
2k 2k+1

experiments on high-harmonic generation. In this case the f X COtx dx= z (—1)k (22)
final result forJ has the forn{Eq. (1.12 in Appendix 1 k=0 (2k+1)!
J 16\7 sw(1-n,,) sir? uol Qo—Sw 2 whereB,y is Bernoulli's number.
T T AQM 2 2PN T Tan
4. ESTIMATES; ANALYSIS OF RESULTS
(Qo—sw)sw(1—n,)
X| Ug Cotug+ (AO)? (18 Let us estimate the gain coefficient for the case in which

a Ti:sapphire lasewith a wavelength\ =800 nm) serves as

It follows from (15) and(18) that a positive value of the gain the source of the pump waves. Let us also assume that the
coefficient can be obtained in two limiting cases. If the den-probe wave is the spontaneous radiation appearing at the
sity of the atoms in the beam is small, so thigi<1 holds  frequency of a high harmonic when the pump wave interacts
(we recall thau, depends on the extent of ionization and thewith the atom beam. It is further assumed that this radiation
concentration of atoms in the mediynamplification of the crosses the second atom beam simultaneously with the
probe wave can be achieved only when the frequeidlgy = pump-wave pulsé¢a two-beam experiment

which corresponds to the maximum of its spectral distribu-  Let us consider the conditions needed for amplification
tion, is smaller tharsw. The other limiting case is realized of the probe wave. We first note that in the case of an atom
for dense beams, in whichy lies in the range Xuy<m. beam with a comparatively low densityud<1), where
Then the spontaneous emission of tste harmonic ),  cotuy~1/u,, the gain coefficient has a negative valsee
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(18)], which corresponds to absorption of the probe wave in  If we assume that the momentury is directed perpen-
the interaction volume. However, the situation changes whedicularly to the vector&K andk, it is convenient to go over

Ug is increased. In particular, whem, approachesr, the to the relative momentum of the atoras P— P, in all the
integral (21), which specifies the value of the averaged gainexpressions. We note that sending a beam at an arbitrary
coefficient, is represented in the form of the sef@®. For  angle? to the propagation direction of the waves gives rise
example, foruy=3 the integral(21) is equal to—2.6, i.e.,  to insignificant corrections- Py /M in the expression fod

the gain coefficient is positive. Substituting this value into(Pq = Pycos} is the component o, alongK andk).

(21) and assuming that photoionization saturation is achieved Using the known properties af functions, we can rep-
over the high-power laser wave field in essentially the entireesent the expressiort$.3) in the form

volume of the focus go~p,), we obtain the estimate

(G®)~16% forNg=10". This number of spontaneous pho- P(K—_Sk)_(Q_SwFM

tons is observed in the plateau region in the case of abeam | M 2M

of Xe atoms for harmonics with the numbers 40—60(the

corresponding frequencies afe=60-90¢eV). = Sla—a), (1.4
In conclusion, we note that the spectral composition of 2= n,swl[cosd|

the probe wave can differ from the spectrum of the high-\nere

harmonic spontaneous emission. In this cggcan differ

from sw. Then the value of the gain coefficient depends on M Q—-sw (Q—n,s0w)?

the magnitude and sign of the detuniag)l=Q,—sw and a+= 030 [Q—n_so| iZM(Q—Sw) 1.9

can be positive even wham<1.

We thank M. V. Fedorov for discussing the statement ofare the values of the initial relative momentum of an atom
the problem, as well as P. Agostini for discussing the possiparticipating in the emissiona(.) or absorption §_) of a
bility of experimental verification of the results obtained.  K,{) photon, and is the angle between the vecmand the

wave vectors of the waves.
When the frequency of the probe wave coincides with
APPENDIX 1: sw ({)=sw), the pulseg1.5) are identical and equal

Let us discuss the evaluation of the integfa6). The [Q—n,sw|
order of integration in it depends on the relative sharpness of &+~ 8-~ "Z1cosal
the distribution functions of the quantities over which the
integration is performed. The real conditions of an experi-In this case only atoms traveling in the propagation direction
ment on the generation of high harmonics in atom beamséf the waves, i.e., withd| < /2, participate in the emission
satisfy the inequalitied P/P<AQ/Q<Aw/w, whereAP is  of a high-harmonic photon. On the other hand, only atoms
determined by the temperature of the atoms in the accompéaraveling in the direction opposite to the waves, wj#]
nying reference frame, antiQ) ~ 1/7; andA w~1/7, are the > /2, participate in absorption processes. Because of the
widths of the spectral distributions of the waves, which aresymmetry of the directions of the momertaf the atoms in

related to the duration of the corresponding pulses. the beam relative to the vectoks andk and the equality
We usel to denote the following integral a,=a_ in the case of}=sw, the gain coefficient of the
probe wave vanishes at this frequency.
I :f {S[Ee—E+(Q—5sw)] In the general cas@ # sw the momentum difference
Q—-n,s
— §[E;—E—(Q—sw)]}(P) dP. (1.2) a+_a’:|coTw| (1.6

The momentum distribution function of the beam atoms is
assigned by the model dependence normalized to unity is related to the recoil experienced by the atom upon its
4 (P— P2 interaction with the waves and determines the value of the
f(P)= —exp{ S

1.2 gain coefficient.
Vm(AP)® (AP)? +2

Integration over the modulus of the momentarim (1.1)
whereP, is the momentum of the atom beam as a whole ancllreeiﬂi’_ with consideration dfL.4) and(1.9), to the following
AP is the width of the momentum distribution. '

The integration over the momenta of the atomgIirl) 16/7M2 Q- sw - sinode
is preceded by a series of transformations. Ugib®) we | = | | f
represent thes function in the form (AP)% |Q2=n,s0[ | Jo |cosé|cog ¢
P(K — sk) (K —sk)2 M2 [ Q-sw \?
| = (Q—sw) F—F—/, 1.3 -
+ M ( W) F (1.3 X ex oZg| 0-n_sw

to the emission of &,{) photon and the plus sign refers to

where the minus sign in the argument of the function refers
_ M2
the absorption process. (

O—sw >2fw sinfde

Q-n,sw/| Jo |cosb|cod 6
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;{ M2 0O-sw )2 ] —n,) 8%, which is significantly smaller than the distance be-
Xexp — — , (1.7  tween the pointsw and the special point, sw on the ()
cog g\ Q—n,sw axis.

where the value of the dimensionless parameter is The result of the subsequentcalculatpns depends on the
M=M/AP value of uy, the sharpness of the function €xi((x)

. . —Q0)/AQT%, and the possible detunin@ —so|.
The integrals in(1.7) are re_duced b% the replacement of In the general case, where the conditldg+ sw holds,
a variablex=cosé to known integral$® and, as a result,

) as a result of expansion of all the multipliers in front of
from (1.7) we obtain P P

exp(—M>@) in series in the small parameterfollowed by
16y7M2  Q—sw F{ - ( O—sw )2 integration we obtain

ex
AP |Q—n S0 Q-n,sw 5 16\/7 sw(1—n,)l, sir? ug Qp—sw)\’
(1.8 =- AOM 02 exd —| —xq
The substitution 0f1.8) into the definition of (16) yields
Qp—sw)sw(l—n,
the result «|ug cotu0+( 0 )sa( ) (112
. ) ) (AQ)?
_ 16M2l, (= sifu Q-0 S _ N
T TAPAQ ). 2 S I Vo) The result is valid if the following condition holds:
O—-sw f12 Q-sw \? 40 19 |Qo—iw|3w(]2.—nw)<1.
“Ta—n.s0] 9 "Ml 015w - (19 M(AL)

Equation (1.9 was obtained using a simple model depen-
dence for the spectral distribution of the probe wave: APPENDIX 2:

dl, I, Q—0\?
dQ ﬁAQeXF{_( AQ )
yvhich i§ normalized to the total _intensity. By virtue of the 1(p)=1 o exe] — p? p2]
inequality AQ/Q<Aw/w there is no need for subsequent 1p)=lo p-'Pol:
integration over the frequenay. wherel, is the intensity of the wave on the focal axis. In
The sharpest function d in the integrand in(1.9) is  accordance with this dependence we specify the electron
exp{_MZ[(Q_Sw)/(Q_nwsa,)]Z}, and the contributions to the density in the interaction volume by the expression

value ofJ are a result of integration in a small vicinity of the 2,72
. : N n =nNgeeXd — (p°/
point O =sw (an estimate of the characteristic width of the e(P)=NoeeXHL = (p*/p0)]

Let us describe the dependence of the intensity of the
' pump wave on the transverse coordinatédy the simple
Gaussian law

integration rangeS() is given below. (in view of the nonlinear dependence of the ionization prob-
To calculate(1.9) we perform the replacement of a vari- ability of an atom on the intensity of the ionizing wave
ablex=(Q—sw)/(Q2—n,sw). As a result(1.9 yields Po=po). It follows from the definition of the argument of the

diffraction multiplier uy that 1-n,=2uqy(p)/swl. This

_ 16M%Is0(1-n,) makes it possible to represent the valuaugfin the form of

= (AP)3AQ Je (1.19 the dependence
where Uo(p) = UomeXH — (p/po)?],
2 ) whereug,, is the value of the argument on the focal axis. The
3 :Jm sinfu(x)  x exr{— Q(X)_QO) } substitution of this dependence into the integdal (20)
e udx) (1-x)2 AQ brings it into the form
% =02 . u2 32
exp(—M<x?) dx, (1.11 3,= 2270‘]“ 2.2)
whereu(x) =uqy/(1—x) (we recall thauy is the argument of
the diffractive multiplier for the exact equalip = sw). where
As follows from(15) and Eqs(1.10 and(1.11), J, must (o /p0)?
be negative to obtain a positive value®f For this reason, it Ji= f e~ %'cot{ugme ") dt. (2.2
is important to take into account the diffractive multiplier 0
sirfu(x)/u’(x) and the distribution function exp[(Q Finally, the substitutionx=ugme ! reduces(2.2) to the
—0)/AQJ? in the lower orders with respect to familiar integrat®
The effective integration range if1L.11) is determined 1
by the width of the function exp{M??) and amounts to I~ fuomx cotx dx. 2.3
SX~1M=AP/M. The frequency interval 8Q~sw(1 Uom -0
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The lower integration limitgmexf — (po/po)?] is set equal to

zero, since exXp-(po/py)?]<1, and the contributions to the
value of the integral come mainly from the vicinity of the

upper limit.
*)E-mail: zaretsky@imp.kiae.ru
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Lorentz ionization emerges due to the motion of atoms or ions in a strong magnetic field. We
use the semiclassical approximation to calculate the probabi|itgf Lorentz ionization.

We also find the stabilization fact@ which takes into account the reduction by the magnetic
field of the probability of ionization decay of the bousdstate. We estimate the

probabilitiesw, in magnetic-cumulation experiments and in astrophysics. We also qualitatively
examine the dynamics of the magnetic cumulation process with allowance for the
conductivity of the shell. Finally, we discuss a paradox related to the use of the quasistationary
solution at the shell expansion stage.1®99 American Institute of Physics.
[S1063-776(199)00905-1

The semiclassical theory of ionization of atoms and ions Zo a
m a=(F2— 1)Sin2cp. (2)

by constant electric and magnetic fields has been developed p= 7/
in Refs. 1 and 2. The special case of calculating the prob-

ability w,_ of Lorentz ionization(i.e., ionization of atoms and The semiclassical theory of Lorentz ionization follows
ions as a result of their motion in a constant or quasistationdirectly from the results obtained in Refs. 1 and 2. The pa-
ary magnetic fiellis studied in the present papeiwe list ~ rameter y=w./w; introduced in those papers w{

the estimates ofv, made through magnetic cumulation ex- =€.7%,/meC is the cyclotron frequency and,= #/« is the
periments(compression of an axial magnetic field by an ex-tunneling frequency which determines the nature of subbar-
plosion, in which record-breaking values of the magneticrier electron motion, is given by the expression

field strength were obtained in laboratory conditién$and T K

from astrophysical datémagnetic white dwarfs We also Y= "(,'/O: —J1—(1-T ?)coge, 3)
give a qualitative description of the dynamics of the mag- €2 UL

netic cumulation process. wherev | =vsing is the transverséwith respect to the field

Throughout the paper we use the atomic system of unitsZ#) component of the atom’s velocitherev is expressed
hi=e=m,=1 (£,=5.14x 109ch‘1, Ta=137%£,=2.35  in atomic unitsp ,=e?/%), k=/2E,; in terms of the ioniza-
X 10°G, andme*/%3=4.13x10"s ! are the atomic units tion potentialE; of the atom(or ion), andc=a~1=137.
of the electric and magnetic field strengths and of the prob-  For nonrelativistic particles we haye<1, andy, may

ability w; ) and the same notation as in Refs. 2 and 3. take any values:
2
v, K v
p=—1 N=— %o 1+ — |7 4
c L 2¢?
1. THEORY OF LORENTZ IONIZATION
.On the other hand, for ultrarelativistic particleEx%1) we
If an atom or ion enters a region of space where there i i$,ave
a constant magnetic field?, the electric field®, that ap-
pears as a result of the Lorentz transformation in the refer- 1 .
ence frameK, in which the atom or ion is at rest causes T oo >,
A . A 2I2%sir e
ionization, which has become known as Lorentz ionization. p= (5)
Here &y L .75, )
“o VI +e
=\T?-1 sin o= \/— . .
T Hence crossed fields are generated in the reference #gme
Ty i.e., the fields, and.7, are mutually perpendicular and
=7 VIZsifo+cosep=1+a, 1 equal in magnitudéexcept for particles entering the region

within a narrow conegp=<I""1, around the direction of the
with I'=1/\/1—v?/c? the Lorentz factorp the velocity of magnetic field. Here £, may be several times greater than
the atom,p the angle betweewn and.7, and the initial magnetic field7, and

1063-7761/99/88(5)/11/$15.00 902 © 1999 American Institute of Physics
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TABLE I.

Y 7o a(v) P(7) Q) f(»)

0.5 0.5071 1.0084 0.9583 1.058 2(8B)

0.8 0.8296 1.0219 0.8934 1.160 1(+2)

0.9 0.9425 1.0280 0.8651 1.209 1(6®)

1.0 1.0590 1.0348 0.8337 1.268 2(32)

1.1 1.1795 1.0425 0.7990 1.339 3(12)

1.2 1.3046 1.0511 0.7614 1.422 462)

1.3 1.4349 1.0606 0.7208 1.523 52%2)

1.4 1.5711 1.0710 0.6776 1.643 6(62)

15 1.7137 1.0825 0.6319 1.787 822)

1.6 1.8636 1.0950 0.5843 1.962 0.101

1.7 2.0214 1.1087 0.5351 2.174 0.123

1.8 2.1878 1.1234 0.4850 2.432 0.148

1.9 2.3635 1.1393 0.4346 2.750 0.176

2.0 2.5490 1.1564 0.3847 3.143 0.209

2.1 2.7450 1.1748 0.3362 3.630 0.245

2.2 2.9517 1.1943 0.2899 4.239 0.285

2.3 3.1694 1.2150 0.2465 5.001 0.330

2.4 3.3983 1.2368 0.2067 5.959 0.379

2.5 3.3683 1.2597 0.1709 7.168 0.433

2.6 3.3894 1.2837 0.1394 8.699 0.492

2.7 4.1515 1.3087 0.1121 1.084 0.556

2.8 4.4244 1.3346 8.9052) 1.3111) 0.625

2.9 4.7078 1.3613 6.9812) 1.6251) 0.699

3.0 5.0018 1.3888 5.4062) 2.02711) 0.778

3.1 5.3061 1.4170 4.1862) 2.54Q1) 0.862

3.2 5.6207 1.4458 3.12%2) 3.1991) 0.951

3.3 5.9454 1.4752 2.3882) 4.0441) 1.045

3.4 6.2802 1.5051 1.7282) 5.1311) 1.145

3.5 6.6251 1.5355 1.2632) 6.5321) 1.250

3.6 6.9801 1.5664 9.1263) 8.3401) 1.359

3.8 7.7200 1.6292 4.6133) 1.37Q2) 1.594

4.0 8.5000 1.6934 2.2833) 2.2732) 1.849

4.5 1.062%1) 1.8583 3.010-4) 8.3182) 2.575

5.0 1.3001) 2.0280 3.136-5) 3.1563) 3.427

6 1.85Q1) 2.3767 1.546-7) 4.8994) 5.507

7 2.50Q1) 2.7332 2.722-10) 8.1595) 8.088

8 3.25Q1) 3.0945  1.726-13) 1.427) 1.1171)

9 4.10Q1) 3.4588 3.954-17) 2.5848) 1.4751)
10 5.05Q@1) 3.8254 3.292-21) 4.8139) 1.8841)
15 1.1302) 56751  3.560-48)  1.39816)  4.6751)
Note In all tablesx(y) stands forxx 10.

S 1+ <1
_— —_— L
771877 or%sirg
In particular, ifv.L.7, then
&o= JI2—1.7%, To=T7,
172 K K 1 ©)
P Ny 137 1-1°2

The probabilityw, of Lorentz ionization of the atomis

level is (in the lab frame

w =T kX 227C2e* 2P ()[Q(y)]"

2
><exp[ - §g(7L)J-

Here
e= 5ok, =Tk, h, h

= T ol k2T

@)

()
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e and h are the “reduced” values of the fields in the rest
frameK, of the atom,n= 2/« is the Sommerfeld parameter
for the discrete spectrurfor the effective quantum number
n*), Zis the charge of the atomic cor€,. is the asymptotic
coefficient (at infinity) of the wave function of the free
atom? andP(y), Q(y), andg(y) are functions introduced
in Ref. 2 and referring to the angte= /2 between the fields
(see Table)l Note that the factoF " in (7) allows for the
effect of relativistic retardation as one goes from the rest
frameKj to the lab frameK.

It is convenient to write the probability of Lorentz ion-
ization in the separable form

w =T "1Sw(#y), ®
wherew(#,) is the probability of ionization by the electric
field Z, alone, say, in the semiclassical approximation,

Wel(£o) = k2227|C,|2€1 27 exp{ — 2/3¢€}. 9
The other quantity i8) that need defining§ is the “stabi-

lization factor,” which determines the suppression of the de-
cay of a bound state initiated by the magnetic field:

1
S=P(y)[Q(y))]” eXp[ - Hf(n)]- (10)
Here
2
f(7)=§7[g(7)—1]
i 3 1+£ 24 ) <1
= 2527 r Y=L "
e er
4”7 3y ’ ’
P(y[Q(y]”7
1_1 1_f 24 <1
6 37] Y ] Y ’

= 1 (12)
n,1-27 N >1
CoClY ex 27 Ty, Y=4

where cy and c; are numerical factorsc,=1.716 andc,
=0.0106.

The Coulomb factoiQ(y,) substantially increases the
probability of Lorentz ionization ify, =1 and%>0. On the
whole, however, the pre-exponential factor(if) decreases
rapidly with increasingy, [see Eq.(12)]. We also note that
although the function®(y) andQ(y) change more rapidly
thang(y) andf(+y), the probabilityw, is most sensitive to
variations ing and f, since these functions enter into the
exponents in(7) and (10) with large coefficientg2/3¢ and
1/h, respectively.
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TABLE II. Stabilization factorS for the hydrogen atoniground state<=1).

v

Va 0.8 0.9 1.0 1.1 1.2 15 2.0 5 10
1 1.6-33 22-24 23-18 3.1(-14 15-7) 1389-3) 0.659 0.950
2 22-24) 42-17) 15-12) 15-9) 18-7 3.9-4 3.74—2) 0.813 0.975
5 37-10 29-7) 19-5 21-4) 205-3) 4.371-2) 0271 0.922  0.990
10 2.0-5 5.60-4) 453-3) 180-2) 4.62-2) 0.212 0.524 0.961 0.995
15 7.6-4) 6.96-3) 2.79-2) 6.96-2) 0.130 0.358 0.653 0.975 0.997
25 1.39-2) 5.22-2) 0.119 0.206 0.299 0.546 0.779 0.986 0.998
50 0.123 0.236 0.355 0.464 0.558 0.748 0.889 0.994 0.999
100 0.367 0.503 0.613 0.697 0.762 0.876 0.949 0.998 1000
350 0.799 0.863 0.905 0.933 0.952 0.981 0.995 1.000 1000

Note The magnetic field strength is measured in megagauss, and the atomic velécityeasured in atomic
unitsv,=e?#%=2.19x 10f cm s™1. The fact that a cell is empty means 8t 10~ “C.

For slow particles the stabilization factor is exponen-.77=25 MG in the USSRRefs. 4-6 and.7#=15 MG in the

tially small:
S~ exp{ —

1
4h

K

vy

|

[, e

(10)

USA (Ref. 8. Progress in this field of research could lead to
field strengths of X10'-1C° G (Ref. 9. Other possibilities

of generating ultrastrong magnetic fields are also discussed,
e.g., the compression of a metallic shell by the pressure of

with y,>1. This factor, however, rapidly increases with light from a high-power lasef’
atomic velocity and approaches unity foB-0.3<h™ 3, or

Y. <3.5hY3
2/ 3, 1 ,
S=l+gl =z gg it

o '}/L:

vy

(10)

Note that for negative ion&y=0) the stabilization factor

is always smaller than unity:

1 1 1
N2 N3 T A
1= " am:m” " 3220” ’

M= 11, 2 1
Covy Xp 12 ?Y ~ 37 35|

y—0,

y—®.

13

Bearing all these aspects in mind, we calculated the sta-
bilization factorSfor the hydrogen atom. Table Il shows that
in the region of values of7Z and v considered here the
exponential suppressiqi0’) of the ionization probability is
rapidly superseded by 0"), where the effect of the magnetic
field can be neglected. For fast particies., forv =10« and
the more so forl'>1) S~1, i.e., atomic-level ionization
proceeds at the same rate as in the case of an electri¢Ziield
acting alone in the rest frame of the atom. This distinguishes
Lorentz ionization with[’>1 from the well-known problem
of pair production in vacuum, whose probability for crossed
fields vanishes identical’!? Physically, the reason for this
difference is obvious: in the case of ionization of an atom

For neutral atoms and positive ions it can also be larger thathere is a special reference fratdg, whereas the vacuum is
unity, but this happens only within the range of parameterd.orentz-invariant and one can always select a reference
where the reduced fieldis of order unity, in view of which
the semiclassical approximation breaks down.
Numerical calculations yield the curves f8rshown in
Fig. 3 of Ref. 3. This figure shows th&<1 for weak mag-
netic fields and fory, =1. The effect of the Coulomb inter-
action onShecomes appreciable jf > 1.5, and allowing for
this interaction increases the numerical valuavpf.
Static magnetic fields generated in laboratory conditionsnuch smaller values ofZ andv.
do not exceed one megagafskhe method of magnetic cu-
mulation(i.e., explosive compression of a magnetic field sur-2- NUMERICAL ESTIMATES
rounded by a well-conducting shglproposed by Sakharov
in 1951, made it possible to reach record-breaking valuestable, since the electric field, is too weak ¢,<<0.01 if

frame in which the field strength$ and.7Z are as small as
desired(in this case, obviously, pairs are not produced
The results of calculations for the™Hion (the electron
affinity energyE;=0.7542 eV, anck=0.2359 are listed in
Table Ill. As for other negative ions with a small binding
energy? the dependence ofy, on.7 anduv is similar the
one previously studied, but the region wh&e 1 begins at

For .7 is less than one megagauss, the atom is actually

TABLE Ill. Stabilization factorS for a negative atomic hydrogen iqa=0.236.

v

K4 0.15 0.2 0.3 0.4 0.6 0.8 1.0 2.0
0.01 - - - 43-27 1.8-8 55-4) 215-2) 0.619
0.1 7.1-23 43-7) 219-3) 0.164 0.466 0.675 0.951
1.0 - 481-3)  0.209 0.514 0.815 0.914 0.954 0.993
10 9.4-11)  0.463 0.775 0.887 0.957 0.978 0.987 0.997
25 7.2-5) 0.628 0.846 0.919 0.967 0.983 0.989 0.998
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TABLE IV. Lorentz ionization probability for hydrogen atoms.

7/=25MG 7/=350 MG

v %o S Wy v Zo S Wy

0.5 5.32-3) 3.69-9) 4.1(—44) 0.167 2.48-2) 6.6(—19) 7.6(—12)

1.0 1.06—2) 0.119 1.08-9) 0.20 2.98-2) 1.0(-11 8.05—-3)

1.25 1.33-2) 0.345 6.41-4) 0.22 3.28-2) 7.79-9) 50.4

1.67 1.771-2) 0.645 2.40 0.25 3.12-2) 2.06-6) 1.065)

2.0 2.13-2) 0.779 1.5%5) 0.3 4.47-2) 6.73—4) 5.228)

25 2.66-2) 0.882 5.567) 0.4 5.96-2) 6.70-2) 1.3312

3.33 3.55-2) 0.950 2.1410) 0.5 7.45-2) 0.298 3.5413)

5.0 5.32-2) 0.984 6.2412) 1.0 0.149 0.905 2.135
10 0.107 0.998 7.134)

Note The values ob and #, are measured in atomic units, while the value of the ionization probabilitis
measured in st.

I'<25). If the atom velocity is very low, Lorentz ionization |ocitiesy=400km s !, with w, depending very strongly on
can be observed in the regiofr=10 MG. For instance, at .
#=25MG (h=0.0106), we obtain the values wof listed However, even if the stellar velocity with respect to the
in Table IV; the values of the atomic velocity (the case cloud of interstellar gas is relatively low, Lorentz ionization
where vL.7%) and the electric field?, acting in the rest of the atoms of this gas still takes place bec&ute atoms
frame of the atom are also listed Table IV. In the range offa|| to the surface of the star with a velocity=2GM/R
velocities in question, the situation of the atom changes fronfsince the gas density is low, we can neglect the collisions
almost total Stabl'lty to ionization in a time interval of between the aton)]sAssuming that a white dwarf has a mass
roughly the atomic time. M~Mo=2%x10%g and a radiusR~10*km, we getv

The stabilization factolS is especially large whery =(4-5)x10*kms L. Since 7(r)«.7(r/R) ~2 holds out-
>1. For the values of, (and, accordingly, of the probabil- side the star, Lorentz ionization of hydrogen atoms takes
ity wi) not to be too largex must be much less than unity; place at distances of the order of seveRal
thenv =«/y <1 holds, i.e., we are dealing with the nonrel- A remark concerning the calculations of the valuesvpf
ativistic case. Anomalously small valuessobre attained for  Jisted in Table IV is in order. Being asymptotically exact in
Rydberg atomic stateg.g., in the hydrogen atom=1/nfor  the [imit of a weak field ¢—0), the semiclassical formula
states with the principal quantum number and in solid  (7) ceases to be valid relatively soon. The complex-valued
state physicgfor Wannier—Mott exciton in semiconduc- energiesE(#) =E, —iT'/2 of the Stark resonances in the hy-
tors). For instance, since in the germanium crystal the effecdrogen atom have been calculated by many researchers; see,
tive electron mass im, ~0.2m, and the dielectric constant e.g., Refs. 19-27(the ionization probability isw(#)
is e~16, we havex=m, /em~1/80, with the result that =T'(#) if the level widthT is smal). They used various
the characteristic field strengths at which ionization is essemumerical methods, including summation of divergent
tially instantaneouge~1) are of orderx®#,~10kVem ™t perturbation-theory serigs3 by the use of Borel-Pade
Such fields can easily be generated in experiments. and PadeHermité! approximants. We write the probability

Ultrastrong magnetic fields can also be encountered ipf jonization of thes level as follows:
astrophysics. In this connection we should mention magnetic
white dwarf stars, which are being actively investigated at ~ W(£)=a(£)we(2), (14)
present>"18 The fields at the surface of such an object areynere Wy is given by formula(9), andw is the result of

huge (see, e.g., the table on p. 35 in Ref. 18, which listsyymerical calculations. Figure 1 depicts the functig)
about 50 such objects with fields ranging from 2MG to

roughly 1000 MG. For instance, the magnetic field in the
star Grw+70°08247 corresponds to a magnetic dipole and
varies from the maximum valueZ,,= 350 MG at the poles

of the star to 0.57,, at the equatdf (according to Ref. 18,

in this case7,,~240 MG). What makes white dwarfs so
special (compared, say, to neutron stars, where magnetic
fields are much strongers that it is possible to study their
optical spectra®!’ This allows us to study the effect of
and.7 on the atomic levels, primarily for the atoms of hy-
drogen and helium. Lorentz ionization of atoms may take . : .
place when such a star passes through a cloud of neutral 0 0.05 0.10 015 &

hydrogen. The data listed in Table IV suggest that the prObI_:IG. 1. The functionqy(#)=w/w for the ground state of the hydrogen

ability of Lorentz ionization of hydmgen_ atoms in a field aiom. The dashed curvés 3, and4 correspond to allowance ifL4) of
=350 MG (h=0.149) becomes appreciable for stellar ve-terms up to£?, and# 3, and#* inclusive.
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for the ground state of the hydrogeg=qg); here we have =2R,/v, is the characteristic of the entire processt/T,

used the results of Refs. 18—-23. In the case at Raffi?®  ~K~Y?<1). On the other hand, the electron tunneling time
» is Ty~ k21259~ (ke)  1x 10 Ye~(vh) "1x 10 s 1<At,

Wy(£)= 471 exp{ _ i} Go(#)= 2 Ckgk' (14" with the result tha_t the tota_ll Lorentz ioni;ation probability

3Z k=0 can be calculated in the adiabatic approximafion:

where cp=1, ¢;=—107/12, c,=7363/288, c;=—158.75 i

+0.07,¢,=469.0+1.0, cs= 10250+ 150, ... (this expan- wt=J wy (Z(1)) dt= uw (7 y)At, (18

sion can be used fof<0.1; see the dashed curves in Fig. 1 0

Note that the semiclassical asymptotic value of probability, h £ 11.9y_3/2 y <1
wq(#), overestimated the exact value of the ionization ,— ~/—— " — 1 T 7L1 A (18)
probability; for #~0.24,~10°Vcm the numerical values fyo) Ha |35y, y>1

of w are five to six times smaller tham,,.

Within the range of velocities where the probability
w,_ increases dramatically, the correction faaig(®) is im-
portant and was taken into account in calculating the value
of w, listed in Table IV. Note that formuld10) for the
stabilization factoiS has a wider range of applicability, up to
77~0.1. This follows from a comparison of our results with
those of numerical calculations done by Johnsoal*? for
the case of paralle¥ and.7 fields and with the results of
recent calculations done by Yféerg and Gani for the case
of crossed fields.

Here we have assumed that the particle stays in the region
with the magnetic field for a time= At. This is true for ions,

for which the Larmor radius is usually smaller than the mini-
Fum shell radiusR,=R(t,) =K Y2R,. A magnetic field
does not bend the path of neutral atoms, and so for atoms
pn=Lvg/Ryw, wherev, is the initial shell velocityp is the
atomic velocity, and. is the length of the path of the atom in
the magnetic fieldl(~ R, /sin ¢). In this caseu~103<1,

with the result that the probability of the atoms being ionized
(in conditions of an explosigris suppressed as compared to
the probability for negative ions. Using these formulas, we
can easily calculatev, if we know the parameters of the

3. IONIZATION IN THE PROCESS OF MAGNETIC magnetic cumulation process.
CUMULATION Note that the quantity

Up to this point it was assumed that the magnetic field .
does not vary in time. Now we turn to the case of a variable pAt=x
field .7(t) generated by magnetic cumulation.

Below we follow the ideas of SakharGV.The metallic  in (18) is expressed in terms of the paramet®gs vo, and
cylinder squeezing the magnetic fidlthe inner radius of the .7, which refer to the initial momentt & 0).

aw .7/0 RO
f(y) Zavo

(18"7)

cylinder isR(t), the thickness of the shell B<R, and its In the next approximation we must include the ohmic
conductivity iso) in the first approximation can be assumedlosses due to the finite conductivity of the shell material. We
an ideal conductor. Then have
T()=To(RoIR)?Z, W(1)=Wy(Ro/R)?, (15 d(1 [dR|2 1 1
Ja ol _ — oM =] 2R =—d=—ZcREH, (19
where W=.77?R?/8 is the magnetic-field energfper unit de{2 \dt) 8 2

length of cylindey. In terms of the dimensionless variables

£—RIR, and 7= v t/Ro, the energy conservation law yields wherelJ is the electromagnetic energy flux through a wall of

radiusR(t) in the wall rest frame. The Maxwell equations

: 1 1 } for the quasistationary field in a highly conducting
§2=1+R 1- 2 £(0)=-¢(0)=1, (160  medium3
G 2
whereK =Muv§/2Wo=8mpouidy /.7 Ry is the ratio of the I oA #=-S e, b=-S— (20
shell kinetic energy to the magnetic energy within the shell ot Amo Ao
at the initial moment=0 (real values oK are much larger .
than unity, pg is the density of the shell material, and the dothas the solutiortcf. Ref. 3
stands for a derivative with respect toThe solution of Eq. ‘ X (t
(16) is TUXN) =T ex —5+f Aty dt' ],
0
K+1 (21
&o(t)= \/§2+ (1= 7m)%, N
m K m g: _%,
(t—t.)2 -1 4o
-774/(0)(0:'7%{ 1+ (Atr)nz ] (170 wherex=r—R(t), =c/\AmoX is the skin depth, and
where 7| 7%y=W,,/Wo=K+1, the quantitiesé,,= (K _1d7  2dR_ Y
+1) Y2 and 7,,=K/(K+1) refer to the momemt of maxi- N T T Rat. Ao E (22)

mum magnetic field, &t=[ VK/(K+1)]T, is the time dur- ] )
ing which the field is close to its maximum value, algl  This solution is valid ifé/ 6<.721.77, or



JETP 88 (5), May 1999 Popov et al. 907

TABLE V. Results of numerical calculations.

K=100 K =1000 K=10"
@ B &m Tm B &m m B &m Tm
0 0 0.100  0.990 0 0.0316 0.999 0 0.0100 1.000
0.05 0.158 0.114 0971 0.281 0.0392 0.990 0.5 0.0138  0.996
0.115  0.968 0.0400  0.988 0.0144  0.995
0.1 0.316 0.126  0.960 0.562 0.0445 0.986 1.0 0.0162 0.994
0.129  0.953 0.0469 0.982 0.0178  0.992
0.15 0474 0135 0951 0.844  0.0490 0.983 15 0.0181  0.993
0.141 0.941 0.0531 0.977 0.0207 0.990
0.2 0.632 0.144  0.945 1.125 0.0528 0.980 2.0 0.0198 0.992
0.153  0.931 0.0587 0.973 0.0234  0.988
0.3 0.947 0.158  0.933 1.687 0.0593 0.976 3.0 0.0225 0.991
0173 0913 0.0688  0.965 0.0282 0.984

Note Here ¢, and 7, refer to the stopping point, and=K« is the inelasticity parameter. For given
>0 andK the first and second rows correspond to planar and cylindrical geoméfiigs (24) and (31),

respectively.
11d 1 1 o In deriving Eqs(16) and(24) we assumed that the mag-
5= 3 1- <1, (23)  netic flux ®= 7R inside the conducting shell is con-
2ldta(®)] 2 TP served. Let us now estimate the flux losses in the process of

cumulation. The solenoidal electric field generated in the

which is similar to the condition of applicability of the WKB pshell is

method in quantum mechanics. We also note that the a

proximation (21) is physically meaningful only in the case ) 1 9d Y
A (t)>0 (compression of the ;h@land cannot be used when CETS R It ‘\/m%,
the shell expandé&he reason is explained in Seg. 5
Equations(20)—(22) yield from which it follows that
1 4cW, : dd ¢ [\ da | &
— _ 1/,,//2 - Y (_ 1/2£—712 _ — Pp=—— ——R27/
J=SAA*RS (WTO)MRO( £, at RV o T, 2

whereW,=.773R2/8, so that we finally arrive at the equation Passing to dimensionless time= 2t/T,, we obtain

¢ | ¢
E+a —E), (26)

E=—| 1+ = |,
KE\ g |

with the same initial conditions as in E{.6). Herer, is the whereH_z_d H/.dT’ etc. This .eq”at."”? can be used 'T the total

flux variation is small. Bearing this in mind, we arrive at the

stopping point, wher&(7,) =0, anda is the dimensionless  ¢5j1owing estimate(when the shell is at maximum compres-
loss coefficient. sion):

c 40 W '
a= ~ 25 Hm_ ., _ ™o £
V27moRywe  VoRyug Ty = ém"ex 2a 0 §3d7

1 2a H
0<7< 11, (24) -2

(in this expression the conductivityr is measured in ) - 1
1. am-1 ; ; i ) ™

Q~t.cm™1, Ry in centimeters, and, in kilometers per sec ~(K+1) 1+2af 1+ [ édr .

ono). K§2 §3

As a guide we provide some numerical values. Rgr
=1cm, vo=1kms ! and K=100 (or 10®) we have (27)
a=0.05 (0.016 for c=6x10°Q *.cm ' (which corre- The ratiopn,=&,/£9=K+1 &, indicates how much the
sponds to the conductivity of copper at room temperatiure minimum radius of the shell changes due to losses. In Sec. 4
while for e=4x10*Q"t.cm ! (T=1500°C) we have we show thap,, depends not oK or « separately but on the
«=0.2(0.063. In the latter case copper is already in a liquid parameteB=Ka. This statement is confirmed by numeri-
state [,,=1085°C). ForRy=3 cm, vy=10kms !, andK cal calculationgFig. 2). For a given value oK, the values of
=1000 we havex=0.01 and 0.037 for the above values of the loss coefficienfincreasing in the order g8 in Fig. 2) are
o, which impliesa<1. The results gained from solving Eq. «=0.05, 0.1, 0.2, and 0.&he last value is true only &

(24) are listed in Table V; several specific features of these=10 and 100
solutions and the limits of this equation are discussed in the Allowing for losses in the cumulation process changes
Appendix. the value ofr,,. However, for the values d and « being
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fB 4. EFFECT OF THE GEOMETRY

Thus far we have neglected the curvature of the shell and
simply multiplied the results obtain for the flafone-
dimensional problem by 27R. However, real experiments
correspond to cylindrical geometry rather than to planar, and
this changes the formulas somewhat.
1.2¢ Assuming thatZ«exp{\t} with \ positive, we arrive at
the following solution of Eqs(20):

0.6 F= R Ko(r/9) o = A R Kq(r/d)
| H= AR R Yo" Name "Ry Ris)

(28)

1 L ) wherer=R, K,(2) are modified Bessel functions of the sec-
0 04 0.8 12 8 ond kind, §=c/v4mo\, and the other components o7

FIG. 2. The ratios, /&0 function of8=K ¥a: the point d and & vanish. The electromagnetic energy fldxflowing
. 2. e ratiogy, /&’ as a tunction o= «a; the points correspon . . — L.
o the results of numerical calculations () atk =10 (O), 100(®), 1000 MO the shell and the Joule heat liberated per unit time inside

(+), and 10 000A). For a given value oK these points correspond to the the shell,Q, are

following values of the loss coefficiet (increasing in the order ¢8): 0.05, c

0.10, 0.20, and 0.30. The curvAsandB correspond to planar and cylindri- _ oy _

cal geometries, respectively. J 27TR477 (5<P‘]ZZ|’:R Jof1(2),

sz ol ix2mrdr= %Jofz(z), (29
discussed this change is at most a few per¢ese Table VY R
and rapidly decreases with increasikg The drop in the \herez=R/S5,
maximum attainable magnetic fielt' 9= (K +1).7, (the )
ideal case: no losspss shown in Fig. 3, where curvé f1(2)= Ki(2) fz(z)=z[ Ka(2) |Ki(2) ] (29)
corresponds to the case in which the magnetic flux is con- Ko(2)' Ko(2) [Ko(2)] |’
served (b(t)~const and 7 £,%), while curvesBL, B2, andJ, corresponds to the case of planar geometry:
andB3 have been calculated 1087), i.e., correspond to cases

in which the decrease i®(t) is taken into account, foK 2 1 /N,

=100, 16, and 16, respectively. The last value &f corre- Jo=g N GRE=ZCN A oR.

sponds to the use of a low-yield underground atomic explo-

sion to compress the shell rather than conventional eproThe asymptotic expansion

sives(see p. 85 in Ref. 6 WhenK changes by a factor of K.(2) w22 (=) (uP—12-2)
1CP, the curves in Fig. 3 change only slightly, which con- K,(2) =1+ 27 + 872 +
firms the assumption that the parameter of the problem is
B=K¥q. yields”
Thus, atK~1000 anda~0.05, the magnetic flux de- 1 1
creases by factor of 1.5—-2 and the peak magnetic field de-(z)=1+ Z+ e, f(2)=1+ E+ cee, z—oo, (30

creases by a factor of 2—3 in comparison to the ideal case
(a=0). This estimate agrees with the brief remarks made imAllowing for the correction<1/z= §/R in the expression for

Ref. 5. J, we obtain the equation of shell motion in the form
. 1 @ 2 (
f=—| 1+ : 31
p K& N
1.0

which differs from(24) only in the & order. It would seem
that we can neglect this difference. We will show, however,
that the characteristic parameter of the problem gs
05t =K, which may be of order unitysee Table V.

Multiplying both sides of Eq(31) by ¢, integrating from

A ; ; :
i zero to the stopping point,,, and allowing for the boundary
B1 B3 B2 condition, we arrive at the relationship
0 05 1.0 15 g R.\2 . _
r;2=(—°) :K+1—2f "(a?+2aN-EE)E4dr. (32
FIG. 3. Magnetic-field losses in the cumulation process;. 7, /.7 9. Rm 0

CurveA corresponds to the case in which the magnetic duis conserved, .. . .
while curvesB1, B2, andB3 correspond to cases in which the decreasg in Combining this with(A6) and (A7), we see that,=(K

is taken into account. +1)"Y(1+c,B+c,B%+ - - ). The coefficients, c,, etc.,
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TABLE VI. Parameters of the magnetic cumulation process.

A

v f(y) i a=0.05 0.1 0.2
0.5 0.209 0.400 0.852 0.887 0.995
0.667 8.25-2) 0.636 0.922 0.977 1.114
0.833 4.09-2) 0.904 0.973 1.046 1.208
1.0 2.32-2) 1.20 1.012 1.101 1.283
1.250 1.17-2) 1.69 1.057 1.164 1.373
1.667 4.88-3) 2.62 1.11 1.24 1.48
2.0 1.81-3) 3.45 1.14 1.28 1.54
25 1.43-3) 4.83 1.17 1.33 1.61
5.0 1.79-4) 13.67 1.22 1.42 1.75

Note The values of the factoh (Eqg. (33)) are listed forkK=1000 and 7,,= 25 MG (k=1 andy, = 1/v).

can easily be calculated byA7). What is more important, 5. CONDITIONS OF APPLICABILITY OF THE
however, is that the ratip,= £,/£%), which determines the SEMICLASSICAL SOLUTION

effect of the inelasticity of the process, seems to vary \gith . L
This assumption is confirmed by the results of numerical As noted earlle.r, fof negative (i.e., when.the shell ex-
calculations—see Fig. 2, in which the curv@sndB refer to p_and:), the e_lpprOX|mat|on(21) has no ph_y3|cal meaning,
the cases of planar and cylindrical geometfiegs.(24) and since accordmg 121) as we move deep_er into the metal the
(31), respectively. Comparison of curvea andB shows that field .7(x,t) does not decrease but oscillatesxas>. Here

although the effect of the geometrical factor on the magnetiz,ﬁ fpe_tcomesltlmaglnary, and the calculation @fyields an
cumulation process is significant, it does not change the rghfinte resutt. - . .
To resolve this paradox, we examine the time-dependent

sults dramatically. ) Co
Now we can go back to the question of the probability Ofproblem for the equation of heat conductigdiffusion)
along the semiaxig>0:

ionization of atoms in explosion(svith allowance for lossgs
For =0 we have formulg18) for the total probabilityw; . U=DuUy,, U(Xte)=0, u(0t)=f(t) for t>t,, (34)
In the approximation in whichb (t) =const, which has al-

ready been used in deriving Eq31), we have.7(t) Whose solutioff

= W (€l€y) 2. Using the definition(10) and the adiabatic . 2 gt
approximation, we arrive g8 with an additional factoA ;( )= X f(t")exp — X t (35)
in the pre-exponential factor: VamD Jt, AD(t—t")] (t—1t")%?
2(K+1) (m m[[&())? determines the effect of a variable temperatimemagnetic
A= K Jo exp — el =1/ dm, (33 field), f(t), specified at the boundary of the mediux 0.

For f(t)=eM and\>0 in (36) we can pass to the limi,

wherey has been defined if18'), and&(7) is the solution of — — (adiabatic switch-on of field Allowing for the values

Eq. (31). At a=0 we have ¢@/¢,)2=1+K }(K+1)’ (1  of the integrai®

—1)% andA=1. If ais positive, the integral ii33) can be

evaluated numerically. This calculatioffior K=10°; see fxexp{—

Table V) shows that the factoh increases with the velocity 0

v of the atom and can reach values ranging from 1.5 to 2, )

i.e., if we allow for losses the probability increases some- (&,0>0), we find that

what (on the other hand, i is less than X10°cms ! the _ _ _

factor A is usually smaller than unity; for more details see UG =exXpNt=XI8),  p=x/5, 5=\DI\, (36

Table VI). which agrees perfectly witti21) at A=const. But if\ is
The data of Tables Ill and V suggest that, negative, we cannot puf=—o in (36), and the formal

=Aw, uAt=1 holds forv=4x10° cms 1. This means that solution

in the present case the ionization of hydrogen atoms is al-

most th))taI. yeros u(x,t)=exp(At) cosp, p=xy|A|/D, (37
Here is a numerical example. Takingz=25MG, K

=10%, @=0.1, andAt=K ?R,/v,=10""s, we obtain es-

timates for the total Lorentz ionization of hydrogen atoms in

the magnetic cumulation process=AuAtw, (#m): W Here are the results obtained by solving the boundary-

— —7 —3

:8X1O » 9.8x10°%, 0.067, 0.37, 0'6_4’ and 1.00 at value problem(34) numerically. Figures 4a and 4b, which
_5/.3‘_ 19,20,21,22, and 2.5, respegtlvely. We See“",lf'at correspond to\>0 and\<0 (the initial time ist,=0), de-
exhibits threshold behavior as a function of the atomic ve-,

ict the function
locity v. On the other hand, at a fixed value 0%, the P
dependence olv; on the loss coefficient is very weak. a(x,t)= u(x,t)/u(0y), (38

]73’2d7: \/g exp(—24/ab)

a
—+br
.

corresponds to nonphysical initiat€0) and boundary X
—o) conditions and cannot describe the magnetic field
when the shell is expanding.
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FIG. 4. Thermal wave profile fok >0 (a) and
\<0 (b); the numbers next to the curves indicate
the values of\|t. The dashed curve corresponds
to the stable regimé37).

which determines the profile of the thermal wave in the me- 2 (o

dium. Figure 4a shows that whenis positive, the thermal
wave travels from the boundary=0 into the shell(ast
increases where the distribution (36) holds (for x
=<4D\ ). It can be shown that

1
a(x,t)=1—a;p+ §p2+~~., p—0. (39
For small times the coefficiers; =a,(t) increases irrespec-
tive of the sign ofi:

a;=(m\t) " YH1+Nt+- 1), |A|t<1, (40)

with the result that the functiom(x,t) decreases with in-
creasinge much faster thai36). In the limit A\t>1 we have

a;=1+0(exp—\t} (A1) %), \>0, (40)

and a(x,t) is exponentially close to expp}. Thus, the
semiclassical solutiori26), (36) is an asymptotic solution,
which obtains in the limiit>1 andx<x, = 4D\ t.

If N\ is negative,a; vanishes ait=—0.854 and then
changes sign:

ay(t)~ —exp(|\[t)/2 |\t

(see Fig. 4hb Actually, the profile functiora(x,t) loses all
physical meaning in this case: the fieldx,t) inside the

t—oo

(40)

_ exp{—y?}
a=—| 0T gy
Jmlo 1+Ay=24+By 4
43
1+72 1+ 72

where, in particulara(0t)=1. Near the inner surface of the
shell, i.e., whenp=x/4DAt—0, for a(x,t) we have an
expansion of the forng39) in which

T 12 27

a;=|=(J1+7+71 1-—|, 44)
with

1.5(— =/, T— — 0,
ay(%) Val2(1=37+--.), 70, a4

T =
! 0, r=3"12=0577,
—\TT, T7— + 0,

Thus, there is a marked difference between the case of
an increasing magnetic field at the boundary and the case of
a decreasing magnetic field at the boundary: in the first case
the calculation of the magnetic field inside the conducting
shell and the ohmic losses can be done in the quasistationary
approximation(21), while in the second case we must find

conducting medium is determined not by the boundary valughe exact solution of the magnetic-field diffusion equation.
of f(t) bit by the values(t’) at the preceding moments, 0 The equation of motion of the shell becomes much more

<t’<|A|"1. Whenx<x, and|\|t>1, we find that

L
|\t ' V4Dt

(the maximum ofu is at é=¢&,=2"2 or x=x,= 2Dt

u(x,t)=~ (41

complicated in the latter case, but there is really no need to
use this approach if we are interested solely in the maximum
attainable magnetic field”,, and not in the shell expansion
stage.

6. CONCLUSION

<X, ). With the passage of time the distribution spreads in

proportion to+t (which is common in diffusion and the
Joule heat releaseger unit timg in the processQ, de-
creases in proportion to 32,

Similar results can be obtained for

1 t—t,

f(t)=m, AT (42

The following remarks are in order.

(1) We have found that the probability of Lorentz ion-
ization of neutral atoms reaches a substantial value when the
magnetic field strength is of order of tens of megagauss if the
atomic velocity isv ~10® cms 1. Herew, changes rapidly
within a narrow range of the parameters andv (which is
characteristic of tunneling processes; see, e.g., Ref.FF
negative iongsuch as H and Li~, wherex<1), the thresh-

which corresponds to the variation of the magnetic fieldold values of 7 andv are much smaller. Note that values of

27(0t) in the cumulation proceséwithout allowance for
losses. In this case the profile functiof88) is

the magnetic field strength for which almost total stability of
the atom is replaced by ionization in atomic times are en-
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countered in outer space and can be generated in laboratoAfPPENDIX

conditions (magnetic cumulation and excitons in semicon- ) ] )
ductors. We discuss the properties of the solutions of EQ¥)

(2) We have assumed all along that the current derisity and(31) and the procedure by which certain integrals can be

and the electric field are related locallyj=c#, with a  evaluated. o .
static value of the conductivity. This is also true in the case (@ From Eq.(24) it immediately follows that
of a variable field if*

C
1—7‘+—27'2+--~, 7—0,
1 &(1)= 2K
0< o) o>1, (49) Emta(ty— 1)+ b(ry— 12+, 17—70,

(A1)
wherel and r and the mean free path and time of conduction ) ] ) .
electrons. For a pulsed field2), the Fourier spectrum is cut Wheren is the stopping point, at whicf(7y,)=0. Here
off at frequenciesw~1/At~K % o/Ry~10"-—10°s™. ¢ —1424, a= 2,02 2373 p=p,K 13,
Since for metals we have~10''s !, 1/r=ne?/mo, andl (A2)
=vpe7 (hereve~10° cms ! is the velocity corresponding to
the Fermi boundajy we obtain the estimates 7/
~10%-10%s71, 1~106-10"%cm, and 6~c\At/dro
~0.05 cm. We see that the conditio@b) are met by a large
margin.

where a; =3%3x571=1.248, andb,=3/8 if « is positive
and b;=1/2 if a vanishes. Thus, the solutiof{7) has a
weak singularity at pointr=r,,, with a/b~a?°<1. The
discontinuity of the coefficieniv,; ata=0 is due to the non-

o . ) linearity of Eq. (24) and suggests that the dependence of
(3) In Egs.(24) and(3)) it is assumed thaf(7) is Ne€ga- (1) on the parametes is significant even whea<1.

tive, whicr_l means these eqqations can be used only for the Interestingly, Eqs(24) and (31) “limit” themselves at
compression stage. Calculations of theT losses at Fhe eXPafhe stopping point: the solutio&(7) is not continued to the
sion stgge can probably not be done in the qua5|stat|onar|5égion wherer> 7. holds, since this would yield complex
appzz;l_rpﬁtlon. i in (19 <5 of tw . values of the radiuf(t). Note that the skin depth satisfies

e energy fluxJ in consists of two parts] 12 e
=2y, whereqls e Joue neateleasgr g D<() U 207 0 e conon e e
in the process andy is the rate of variation of the energy of dissipatiof varies asQ~A2—0 (and notQ~ A2 as ear-

the magnetic field contained in the conducting shell: lier), which, however, has an effect on the behaviog6f)

- 1 ) only for values ofr that are very close te,,,. Indeed, the
Q=27TRL aZ5(X) dx= 7 N7 RS, conditions8<R and §=d imply that, respectively,
. & 1 [Ry\?
d 1 — 85— g2 _ 2 =,% =
JHZZWRa(EJ7K25> (46) gg 4a and 53 4“ (dO) ’ (A3)

whereR andd are the radius of the conducting shell and the
shell thickness, and is the loss coefficien{25). In deriving
these inequalities we used the relationships

Interestingly, in the quasistationary approximatiés;const,
Q=Jy=J/2 irrespective of the value af and the time con-
stant\. With allowance for the curvature of the shell,

Q z(Ky2z) Kyz)) 1 & 11/6)\2 ¢ 1 & o
[Kiz)—Ki(z)]‘ ( @ e 2N R

R
— & ¢

N R

J 2

2" 4R 64

R

o

(A4)

the shell material is assumed incompress-
ible). Plugging into(A3) in the zeroth approximation the
Expressiont?(7) =K1+ (7,,— 7)2, we find that these con-
ditions area violatedfor K>1) only near the stopping point.
The condition for the applicability of Eq24) has the form

Thus, the relation)=2Q is a specific feature of planar ge- (Rd=Rydo, i.e
ometry. L
Since the electric field rapidly decays as it gets deepe
into the shell, the total magnetic fluk,,, is conserved. How-
ever, the approximation®,=(7wR?>+27R5).7% breaks
down whené~R, and to calculate the variation of the flux

®(t)= 7R during the entire cumulation process requires 1, a? [Ro\?
the more precise expressi@29), in which it is not assumed Tm™ 7> Max 2¢ m d_o . (A5)
that 6<R.

The authors are grateful to S. I. Blinnikov, A. S. Cher- If we now takeoc=5x10'"s™ 1, which is the conductivity of
nov, V. S. Ishmennik, and P. V. Sasorov for interesting dis-copper, and assumed,/R,~0.1, K~10°—10°, and
cussions, to V. P. Kiaov for discussions concerning the a=0.05-0.1, we find 7,,— 7>10"4—10"3. Since 7,~1
results of the work, and to V. L. Morgunov, S. G. Pozdnya-[for K>1; see Eq(17)], the equation of motio24) can be
kov, A. V. Sergeev for the help provided in doing the nu-used in almost all stages of shell compression.
merical calculations. This work was made possible by a If we replace(24) with (31), the coefficientc, in Eq.
grant from the Russian Fund for Fundamental ResearctAl) changes very littlec,=(1+ «)?. We illustrate the pa-
(Grant No. 98-02-17007 rameter variations at the stopping point by a typical example:
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at K=10® and a=0.1 Eq.(24) yields &,=0.0445 andr,
=0.986, while Eq(31) yields £,,=0.0469 andr,,=0.982.

(b) Consider the integral

J#V:f mg’“(—é)VdT, pu>1, v>-—1. (AB)

0
Since <1 holds, in (A6) we substitute &(7)~ £©)(7)
= &2+ (71— )%, whereé~K Y2 and r,,~1. In this ap-
proximation we havéé= —/&2— gzm. Replacing integration
with respect tor in (A6) by integration with respect té, we
find that(for K>1)
-1
r(—“ )r

2

V+1)

_ -1)12 _
‘],U«V_CMVK(# ), Cuv=

(A7)

(however, fork =10° and a=0.1 this asymptotic expression
is not very exaot The value of],,, decreases with increas-
ing loss coefficiente, which is due to the corresponding
increase of,,. For instance, aK =1000 numerical calcula-
tions yieldJ/, 1,7~ 8.87, 7.96, 7.32, and 6.45 at=0.05, 0.1,
0.15, and 0.25, respectiveljor the case of cylindrical ge-
ometry).

*)E-mail: karnak@theor.mephi.msk.su
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The sudden approximation in energy is used to derive analytic formulas that describe the
anomalous light-induced drift_ID) of linear molecules absorbing radiation in the rovibrational
transitionnJ;—mJ; (n and m are the ground and excited vibrational states, &nds the

rotational quantum number in the vibrational statem,n). It is shown that for all linear
molecules with moderate valu@s1 cm ! of the rotational constant, anomalous LID

can always by observed under the proper experimental conditions; températotational
guantum numbed;, and type of transitionP or R). The parametery=B[J;(J;+1)—J:(J;

+1) v /2kgT(vy,— vy, is used to derive a condition for observing anomalous LjB:1

(kg is the Boltzmann constant ang, is the transport rate of collisions of molecules in the
vibrational statew and buffer particles at moderate molecular velocitiesv,,, where

vy, is the most probable velocity of the buffer partigleSor v,,> v,, anomalous LID can be
observed only inP-transitions, while forv,,<v, it can be observed only iR-transitions. It is
shown that anomalous LID is possible for all raties M, /M of the masses of the buffer
particles M) and of the resonant particlés!) and any absorption-line broadenitigoppler or
homogeneoys The optimum conditions for observing anomalous LID are realized when
the absorption line is Doppler-broadened in an atmosphere of medium-wgigh) and heavy
(B>1) buffer particles. In this case, anomalous LID can be observed in the same transition
within a broad temperature intervalT~T. If the buffer particles are lights<1) or if the
broadening of the absorption line is homogeneous, anomalous LID in the same transition
can be observed only within a narrow temperature rahfe<T. © 1999 American Institute of
Physics[S1063-776099)01005-7

1. INTRODUCTION unexpectedly large deviation of the frequency dependence of
o _ _ the drift velocity u, (Q2) from a dispersionlike curve: an
Light-induced drift (LID), predicted by Gel'mukhanov anomalous spectral profile of LID velocity with three zeros
and Shala_g|hand20_bseryed for the first time in experiments instead of the one zero predicted by the then existing theory.
by Antsyginet al,” is being actively investigated both theo- Today we have a vast body of data, both experim&htar®
retically and experimentallysee, e.g., the article in Ref. 3, 54 theoretical?1418-24gathered in anomalous-LID studies.
the monograph in Ref. 4, the reviews in Refs. 5-8, and thg; a5 heen found that anomalous LID is entirely due to the
literature cited therein The effect consists in the formation dependence of transport collision rates on the velogityf
ofa magrosgopic flux of absorb_ing pgrticles that interagt Withthe resonant particles, and the anomaly can arise only if the
a traveling light wave and collide with buffer gas partICIes'differenceA v(v) of the transport collision rates on the com-
The LID effect is due to velocity-selective excitation of the . . . _— o
. . ; bining (i.e., affected by the radiatigrievels changes its sign
particles absorbing the lightthe Doppler effegtand to a as a function ob
change in the values of the transport characteristics of the _ ) o . .
In view of such specific requirements for the behavior of

absorbing particles. The magnitude of the LID effect is pro-A ; | LID ist the followi .
portional to the relative difference of the transport collision ’_’(”) or anomalous to exist, the following question

rates of the collision of resonant particles in the ground an@'15€s: is the anomalous LID observed in some molecules an
excited states and buffer particles. exotic feature of the behavior of the potential representing

Until fairly recently, all data on LID experiments could the interaction of molecules in combining states and buffer

be described satisfactorily by a LID theory in which the particles, or is there a pattern in the manifestation of anoma-
transport collision rates were velocity independi®.This  lous LID that has yet to be discovered? The theoretical so-
theory yielded a dispersion-curve-likéhe frequency deriva- lution of this problem would be of interest not only to the
tive of the absorption lineshapérequency dependence of physics of the LID phenomenon but also to the physics in
the drift velocityu, () with one zero where the detunifyy  intermolecular interactions.

of the radiation frequency vanishésee curves in Fig. 1 The present paper discusses the problem of anomalous
below). In 1992, while studying LID in H, molecules with  LID for the case of linear molecules in the energy sudden
Kr acting as a buffer gas, van der Meetral!! detected an  approximation, which is effective when applied to molecules

1063-7761/99/88(5)/8/$15.00 913 © 1999 American Institute of Physics
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FIG. 1. Dimensionless drift velocityu(x) as a
function of the dimensionless frequency detun-
ing x=Q/kv of the radiation, att=12 in the
cases{a) =10,y=0.01, andy=1.7 (curvel),
1.3 (curve 2), 0.65 (curve 3), 0.4 (curve 4), 0
(curve 5), —0.5 (curve 6); (b) B=1, y=0.01,
and y=2.5 (curve 1), 1.5 (curve 2), 1.1 (curve
3), 0.95 (curve 4), 0 (curve 5); —0.5 (6) (c)
B=0.1, y=0.01, andy=1.5 (curve 1), 1.41
(curve 2), 1.34 (curve 3), 1.31 (curve 4), 0
(curve 5); and (d) B=1, y=10, and y=1.29
(curve 1), 1.288 (curve 2), 1.286 (curve 3),
1.283(curve4), 0 (curveb).

0.10

0.05

-0.05

-0.10¢

with moderate rotational constants. It was found that under T (v)
properly selected experimental conditions anomalous LID  Y(v)=
can always be observed.

[2(v)+(Q—k-v)?’
B N2A 2J;+1
 4ho 2)i+1°

| is the light intensity;\, o, andk are the wavelength, fre-

We consider the LID effect in the field of a traveling gyency, and wave vector of the light, which we assume to be
monochromatic light wave. The interaction between the light, yesonance with the rovibrational transitiod, —mJ; ; @,

and the molecules in the buffer gas is described by the folig {he frequency of theJ,—mJ; transition:A is the probabil-

OQ=w—omnn, (3
2. GENERAL RELATIONSHIPS

lowing transport equations: ity of spontaneous emission of light in te),—mJ; transi-
d tion; andI'(v) is the homogeneous halfwidth of the absorp-
gt Pm(Im V) =Sn(Im V) +NP(V) 8 5, tion line on thenJ,—mJ; transition. In Egs.(1) we have

1) neglected radiative relaxation, since it affects rovibrational
B transitions only at very low pressures.
EP”(‘]”'V)_S”(J“'V)_NP(V)ﬁJnJi' For the diagonal collision integral we will use the

. . o ) velocity-isotropic model of “arrival™:
Herep,(J,,V) is the population distribution over velocity

and the rotational leveld, for the absorbing molecules in Su(Ja V)= = 14(v.3)pa(Ja V) +SD(I, 0), (4)
the vibrational stater («=n is the ground vibrational state, where the arrival tem${2(J,, ,v) is a function of the abso-
a=m s a vibrational excited state, adg denotes the set of | .\ aiue of velocity,vi |v|aandv (v,3,) has the dimen-
rotational quantum numbers characterizing the rotationaéions and meaning of coIIi’sion ra{'te.’T%e collisional model
statd, Sy(J,,v) is the collision integral reflecting the colli- (4) allows for the dependence of the collision rate on veloc-
sions of buffer particles and molecules in the vibrationali,[y and at the same time makes it possible to obtain an ana-
statea anq the rotational st.atéa, anszNm.+ N, is the lytic solution of the problem.
concentration of the absorbing molecules, with We will now establish the dependence of the collision
rate v,(v,J,) in Eq. (4) on the velocity and the rotational
Na:JE f Pa(Jq,V)dv. quantum number. To this end we will examine the internal
“ friction force F, due to collisions of molecules in a vibra-
The probability P(v) (per unit time for a molecule with  tional statea and particles of the buffer gas. On the one
fixed velocityv to absorb light is given by the formula hand, this force is given by the well-known expression in
Bl terms of the collision integral,
NP(V)=—Y(V)[pn(Ji V) = pm(J1 V)], 2

F,=MY f VS,(J,,v)dv, (5)
where Jo
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which with allowance for(4) becomes The LID velocity of molecules is given by the formula
-
Fom M3 [ v, 0m,0.9,00v, ©  u=" =S e, mn 10
Ja ‘Ja

whereM is the mass of a molecule. Comparing this expreswherej, is the partial flux of molecules in the vibrational
sion with the general expression for the friction force instate a. In steady-state and spatially homogeneous condi-
terms of the transport collision ratsee Refs. 4 and 25we  tions, Eqs.(1), (4), and(10) yield an expression for the LID
conclude thav,(v,J,) in (4) has the meaning of a transport velocity:
collision rate, and its dependence on the characteristics of an

elementary scattering act is given by the formigdee Refs. 4 u = f it (VVP(V)dv, T(v)= Vn(v,90) = vm(©,31)

and 25 va(v,3) vm(v,J5)
(13)
- 2, .2 . . .
vo(0,d.)= ﬂf Wexd — u=tv F(uv)ot(u,d,)du As noted in the introduction, anomalous LID can occur
emme 3o v2 e only if the difference of transport collision rated,v(v)
(7) =vy(v,3s)—vu(v,J;) on the combining levelgor equiva-
where lently, the factorr;;(v)) changes its sign as a function of
Here molecules with both positive and negatiygv) con-
2uv 2uv 2uv tribute to the drift velocityu, , which may cause the fre-
F(uv)=—=;- cosh—-— sinh—, (8  quency dependence of the LID velocity () to differ
Ub Ub Ub greatly from a dispersion-curve-like dependence, including
o NLoL MM, ) \/m the occurrence of additional zeros at certain value8 of
VIR VIR VIR M,

Here N, and M, are the buffer particle concentration and 3. THE ENERGY SUDDEN APPROXIMATION
massKg is the Boltzmann constani,is the temperature, and

u is the relative velocity of the colliding particles before - g \
collision. The quantityo"(u,d,) has the meaning of the the molecules depend on their velocityand rotational state

transport scattering cross section of molecules on the rotale - FOT SUbsequent analysis it is convenient to transform the
tional levelJ,, in the vibrational stater and is given by the Intégral forv,(v,J,) in (7) and represent it as a sum of two

Let us study how the transport collision ratg(v,J,) of

expression terms,
Uy 5 vo(v,3) =1 (v,3)+vS(v,d,), (12
a(u,d,) =2, 1- —2 coy
a el u where
2 2
X : e u+v
Talth 0 §1)amJua) A8, vz<v,Ja>=%f0 v exp(_ =
Uiy 3, v b
O-Q(u101¢;‘]a_)"]al): |fa(u101¢;‘]a_)‘3al)|21 XF(UU)UL(U,Ja)du, (13)
20€,(J,413,) _ . q = u?+v?
Uy = \JW¥———————, dQ=singdodg. va(v,Ja)=—32 u?expg ———=—|F(uv)
a¥al /"L v JLl/l 0 Ub
©)
u
Hereo,(u,0,¢;J,—J,1) is the differential scattering cross x| 1— Yadag o®(u;d,—J,,)du. (14)
section in the channel,—J,, f,(u,0,¢;J,—J,1) is the ¢

amplitude for scattering through anglésind ¢ in the chan-  Here we have introduced the notation
nel J,—J,1, where § and ¢ are the polar and azimuthal

scattering anglesiAe ,(J,1d,) =€a(Ja1) —€4(J,) is the ot (u,d ):j (1—0059)(2 o (U, 0, bid 1))dQ,

change in rotational energy of the molecules due to inelastic i

transitionsJ,,—J,4 in the vibrational stater, ,(J,) is the (15
rotational energy of statd, of vibrational level o, and

uj s, is the value of the relative velocity of the colliding O-Z(u;‘]a*)‘]al):f cos o (U, 0, $;J,—J,1)dQ.

particles after collision. In deriving formul&) we assumed

that the buffer particles are structureless and their velocity For subsequent calculations we use the well-known for-

distribution is Maxwellian. mula that relates the differential cross sections of RT-
In the particular case of elastic collisiofisere we must transitions in linear molecules when they collide with

formally setAe,(J,4J,) to zero in(9)], formula (7) be-  atoms2®~?which is derived in the energy sudden approxi-

comes the well-known formula for the transport collision mation commonly used in the theory of inelastic molecular

rate in elastic scatterirfy. collisions:
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Sa(‘]a) vib

22,(J,)

To(U, 0,83, —3,0)=| 1+ " (23,1+1) Vh(v,d,) = vie(v) + gt Vial0), (239
L=J,+3p1 (‘]a Jus L)z where
X T,
L:“Ja_‘]all O 0 0 o0 2 2
vib q 2 v t
26.(3.) Voa(v)=—3 ucexp — —=; F(uv)og,(u)du, (24
x(u+ ;u“ ,a,¢;0—>|_>. (16) veo Ub
2 2,2
. qu® [~ u+uv
abc vib, oy A7 _ t
where{ o ) is the Wigner 3-symbol® This formula V1a(v) 3 fo ex;{ 02 F(uv)| oo4(U)
is valid If the atom—molecule collision time, is less than dot (u) ST
the molecular rotation period,, (see Ref. 3}t u S‘L du, u=+/ ,uB , (25)
Ted 49, (17)
Trot aga(u)=f (1—cose)(2 aa(u,0,¢;0—>L))dQ. (26)
For diatomic molecules this conditiqii7) become®+3
The quantitiesy{(v) and »¥°(v) in (23) have the dimen-
uAe . .- Oa la .
MK T< 1, (18 sions of collision rate and depend only on the velooeitgnd
r"\B

the vibrational stater. The entire dependence of,(v,J,)

where is the reduced mass of the colliding particldg, is N the ro'[tat|onql statd, is in the factore,(J,)/kgT. The
the reduced mass of the atoms comprising the diatomic moRuantity g, (u) in (26) is the total(i.e., the elastic and in-
ecule, andAe = |Ae (J,13,)]. e!asth transport scattgrlng cross section of a molecule on
Khare?® derived formula(16) in the energy sudden ap- ViPrational levela and in rotational statd,=0. _
proximation, i.e., by replacing the rotational energy operator e now simplify Eq.(14) for ’{Z(U'Ja)- Since the main
of the molecule with a constant. This energy sudden approxi¢ontribution to the integral it14) is provided by velocities
mation neglects the dependence of the cross section on the-u, in view of condition(22) the termuy; ; [defined in
energy in the outgoing channel. The factor 1 (9)]in the integrand can be expanded in powers of the small
+2e,(J,)/pu? in (16) appears by virtue of detailed quantity Ae,(J,,J,)/uu? (velocitiesu—0 contributes es-
balanc€®3?The sudden approximation is effective when thesentially nothing to the integralTo first order in the small
change in the rotational energy is small compared to the totgdarameter

energy.
ing i - Ag (I ,1d,
Taking into account the orthogonality relati3n | |£ T1 )| <1 27
J, J, L\2 B
% (2Jaa+1) 0O 0 O =1, (19 Eq. (14) yields
and combining(15) with (16), we obtain q o u+p?2
VZ(U'Ja): ) Z Asa(‘]al‘]a)f exp — —
t 2¢,3,)] 2¢,(3,) U7 Ja 0 vh
o,(Udy)=]1+ 5| Toa | UT , (20
pu pu XF(uv)os(u;d,—J,1)du. (29
where If in the linear approximation we allow for the correction
2¢.(3.) terme,(J,) in (16), substituting(16) in (28) gives excessive
gga u+ —2-¢ ):j (1—cos) E o, numerical precision. Hence i{28) we must substitut¢16)
mu L with ¢,(J,)=0. We also allow for the fact that for linear

molecules the energy of the rotational leveglis

( 28,(Ja)
X\l u+

e ,0,¢;0—>L”dﬂ.

£a(Jo) =Bola(Jot+1), (29

@1 where B, is the rotational constant for vibrational level
Since in the sudden approximation it is assumed that there Next, employing the fact th&t*
only a small change in rotational energy, EgQ) is valid if

2
&,(J,)<umu?. To first order in the small parameter Jo Ja L
+ +
o) 2 Jalat D@t oo
Sa (23
T 0 (22) =3, (J,+1)+L(L+1) (30)

Egs.(13) and(20) yield and, taking(19) into account, from28) we obtain
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o u+p2 Heree(J)=BJ(J+1), with B the rotational constant. Thus,
VS(v,d,) =15 (v)=—= >, L)J exp( ) the factor 7;;(v) is a sum of two independent terms, the
Up vibrational termr;,(v), which depends only on the vibra-
Cryy tional numbersm and n, and the rotational termr,,(v),
X F(Uv)og(u0—L)du S which depends only on the rotational numbérsand J; .
It is clear from (31) that in the linear approximation, The behavior of the vibrational termy,(v) is due to the
ve(v,Jd,) is independent of the initial rotational state of the nature of the colliding particles and cannot be controlled by
molecule,J,, . the experimenter. As for the rotational terg,(v), thanks to

Thus, if the conditiong18), (22), and (27) are met for  the factor[e(J;)—e(J;)]/ksT, the sign and value of this
the molecules, then to the first approximation the transporterm can easily be controlled by the experimenter by select-

collision ratev,(v,J,) in (11) is ing the proper temperatufe the rotational quantum number
£,(3,) Ji, and type of transitiofP or R). In P-transitionsr,,(v) is
vo(v,d,)=1"P(v) + k—Ta R(w), positive and in R-transitions, negative. For instance, in
_ P(J;)- and R(J;— 1)-transitions(i.e., in J;—J;=J;—1 and
VP (v)=0gi(v) + vi(v), (32 J;—1—J;=J; transitions, respectivelyr,,(v) has the same

wherer'®(v) and»{®(v) depend only on the velocity and absolute value but opposite signs:

vibrational statea. The dependence of the transport rate 2BJ vib(v)
va(v,J,) On the initial rotational statd,, is due only to the  [74(v)]p)= [ 7rot(v) IR, - 1)= i
factore ,(J,)/kgT, whose value can be assumed known.

KT e P

The value ofr,y(v) is proportional to the ratid; /T and can
easily be controlled by the experimenter.

4. THE LIGHT-INDUCED DRIFT VELOCITY Equations(ll) and(34) yield an important conclusion: if

If we allow for (32), the factorr;;(v) in the expression V4"(v)#vin(v), the experimenter can always observe
(12) for the LID velocity can be written anomalous LID by selecting the proper experimental condi-
b b tions (temperaturdl, rotational numbed;, and type of tran-
n (V)= vy (v) sition). Indeed, as noted earlier, anomalous LID is possible
mif(v)= V0 () pV(p) when the sign ofri;(v) changes. IfvY°(v)=1""(v), the
factor 7;(v) is equal tor,(v) and its sign does not change
en(JI)VIP(0) — em(Ip) Vi (0) (is independent ob), so that no anomalous LID can be

KeToP(v) P (p) (33 observed. But ifs"?(v) # v°(v), the possibility of changing
the sign and value of the rotational termp(v) at will en-
Here, in view of conditior(22), we have neglected the terms sures a controlled choice of the behavior of the faetpfv)
€4(Ja) V"'b(v)/kBT in the denominator, which has no effect needed for observing anomalous LID. From general physical
on the possible change of sign gf(v) and, therefore, does considerations it follows that the collision rates in different
not influence the description of anomalous LID by formulavibrational states are usually differem!°(v) # »\'°(v). This
(11. In (33) we can also neglect the difference between theconclusion is also confirmed by LID experiments involving
values of the rotational energy,,(J) and £,(J) with the  molecule$!%13-1®Hence by selecting the proper experimen-
same value ofl in different vibrational states, since it is at tal conditions we can always observe anomalous LID of lin-
most a few perceri and allowing for it results in excessive ear molecules.
accuracy. Since experiments have shown that the relative Note that a relationship similar t(4) exists for the
difference of the transport collision rates of molecules in therelative transport collision rateAv/v on combining(i.e.,
ground and excited vibrational states,|v‘rﬂb(v) affected by radiationlevels:
P()|1vP(v), is usually<1% (see Refs. 8,10 and 13—

16), in (33) we also neglect the difference betweeff(v) Av_ (v, = vnv,di) :<£) +(£) 37)
andv n because it is expected to be of the same order. Inthe 7V vn(v,J;) V- vib v rot,
denommator of (33) we neglect the difference between

P(y) and »P(v) as well, since, in view of what we have
just said, allowing for it results in excessive accuracy. As & A, . Av .
result, from(33) we obtain 8(7) = Tuin(0) ViP(v), (7> = Tol(v)VP(v). (39

vib rot

where

Tit (V) = Tyip(V) + Trol(V), (34

The representatiof37) of the quantity factorAv/v (mea-
where

sured in LID experimenjsas a sum of independent vibra-
V|b(v) vib ;) tional and rotational terms was suggested earlier on qualita-

Tyip(V) = V|b sz , tive grounds by Chapovskegt al!® and has been used to
(v)] process the data of LID experimenrifs->16-3
e(3)—s(3;) V\{ir!])(v) V\(o also note that, according (86), Fhe sum of the LID
Trotf(V) = T b > (35 ve_locmes forP(Ji)— andR(J;— 1)-transitions does not con-
B [vn (v)] tain a rotational component,
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ditions specified by27) inelastic rotational transitions have
(UL)P(Ji)+(UL)R(Jifl):2J Tib(v)VP(V)dv, (39 a small effect on the path of the colliding particles, the total

] ] -~ ] transport scattering cross sectiofb) also approximately
while the difference of LID velocities does not contain a corresponds the potentilecr ~a.

vibrational component, Inserting(45) into (24) and (25) yields
(U~ (U)R@ ~1)=2 f [Tro(v)]pyVP(V)dV.  (40) vhe(t) = v,P(a,— 13— Bt?), (46)
To do specific calculations, we will limit ourselves to the Rty =1, D(a,; 3 — Bt?), (47
case of low-intensity radiation:
o where
8m?hc(I +kov)
I<—W 3 , (41) b0 4 Vo (_)F<3 2)
: V=10 (0)=——=—=Npvyo,(v -z |
ni 0 3ym M bUb b 3

whereI' is the characteristidaverage value of I'(v), v
=/2kgT/M is the most probable velocity of the absorbed vib £~ 4

particles, andv,,; is the relative population of the leval; in V1a=V14(0)= 2(¢,—1) A+ B)va,

the absence of radiation. If conditigdl) is met, in(2) we

can neglect the excited-level population{J;,v)=0), and a :£+ } ,BE% (£.>1) (48)
the velocity distribution of the populations in the ground ¢ty 2 M “« '

state can be assumed to be close to Maxwelligf(J; ,v)
=w,iNW(v), whereW(v) is the Maxwell distribution Here
from (2) we find that

®(a;b;x) is Kummer’s confluent hypergeometric function,
andI'(x) is the gamma function. The quantitgj® (t) de-
creases monotonically with increasindor £,<4 and in-
Blw, creases monotonically withfor £,>4. At £,=4, 12 (1) is
T Y(V)W(V). (42) constant and independent of velocity. The quantit{(t)
monotonically decreases for all values &f.

To simplify matters, we will examine the case of equal

parameterg,,= £,= ¢ in the power-law potentials describing

P(v)=

Substituting(42) in (11) and integrating over the directions
of v, we arrive at

Kk 2Blw,,; (= the interaction of molecules in the ground and excited vibra-
U=juL, U=——7p J tri;(t)f(t)exp{—t2dt, (43)  tional states and buffer particles. This is equivalent to assum-
kr 0 ing that the collision rate§46) and(47) are similar:
where . )
vom(t) Vin(t)
y  y2+(t—x)2 Vb - —const, ——=const (49)
f(t)=xgp(t)+ = In ———, von(t) vin(t
2y (t+x)? o y
(vm# vy @and vy # v1,). Moreover, in view of the condition
B t+x t—x (22), we can neglectS(v) in Eq. (32) for V‘,;'b, and in cal-
y(t)=arcta y +arctan y (44) culating 7;¢(t) in Eq. (43) for the LID velocity we can as-
sume »"°(v)~viP(v). Here it is convenient to write the
_T'(v) e Q o v expression for the LID velocity, , obtained by(43), in the
w ' ko form
and the factorr;;(t)=r¢(tv)=r7(v) has been defined in U =Uou(X), (50)
(34) and(35). where we have introduced the parametgwith dimensions
of velocity,

5. ANALYSIS OF RESULTS
Vn— Vi 2Blwy;
To calculate the LID velocity by formul&3), we must Uo= VoVm ka2’ (5D)
know the dependence af;(t) on the dimensionless velocity
t. The collision rates in the expressiof®4) and (35) for and the dimensionless velocity(x) as a function of the
7;+(t) can be calculated by assuming that the total transpodimensionless frequency detuningf the radiation,

scattering cross section of a molecuts,, , depends on the

relative velocityu in (26) according to a power law: u(x)= fxtq-(t)f(t) expl —t2}dt. (52)
0
—alg,
O-E)a(u)zo-a(v_b)(:> . a=mn. (45  Here
Up
When the scattering is elastic, this dependence of the crosgt)— 1-yK(B,t) _e(J)—eJp) vy

section on the relative velocity corresponds to the power-law d(a—1;3—-pBt?) ’ - 2kgT e
interaction potential «cr ~ ¢« (Ref. 38. Since under the con- (53
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v, Av LID is at its maximum(curves3 in Figs. 1a—1f the maxi-
m~ ¥ v mum (or minimum) value of the drift velocityu(x) is almost
\ completely independent of the paramegefor f=1 and de-
1 3 —— creases in proportion t@ in the case of light buffer particles
4 — (B<D).
0 Anomalous LID can also be observed when the broad-
3 ening of the absorption line of the molecules is homogeneous
-1 2 (y>1; see Fig. 1d Figure 1d shows that gt=10 the inter-
; val of values ofy at which anomalous LID is observed is
-2r very narrow,Ay~0.005.
. . Numerical analysis showgartially the results of such
0 1 2 . 3 analysis are shown in Fig.) that anomalous LID can be
observed only fory~1.
FIG. 2. Relative difference of transport collision ratds;/ v, of molecules The foregoing implies that in Doppler broadening of an

on combining(i.e., affected by radiatiorlevels as a function of the dimen- absorption line in the case of heavy or medium-weight buffer
sionless velocity=v/v of molecules aB=1, £=12, and different values of particles anomalous LID in the same transitianfixed val-
the parametey. curvel, y=2.5; curvez, y=1.5; curve3, y=L1; curved, o5 of the rotational numbexs and J;) can be observed
y=0.95; curve5, y=0; and curves, y=—0.5. - f

over a broad temperature interval

A

S AT~T=L T, (55
(1+B)(E—4) P(a;z—pt9) 2 4
K(B.t)= , a=Z+

-1 d(a—1;3—pt?) £
For £é+4 the functionK(B,t) is finite and decreases mono-
tonically with increasing velocity. In LID experiments, the ¥
sign and value of the parametgiin (53) can be specified at AT~T7~3T<T- (56)
will by selecting the type of transitio(P or R), the value of
the initial rotational numbed;, and the temperaturé. For = When the absorption-line broadening is homogeneous, the
positive v, the factorr(t) can change its sign with increasing temperature intervaAT is also extremely narrow. For in-
t, so that anomalous LID can be observed only i posi- stance, ay=10 we haveAT~TA y/y~0.005T.

N =

while for light buffer particles anomalous LID can be ob-
served only in a narrow temperature interval

tive. From this condition it follows that fop,,>v,, anoma- Figure 2 shows how the relative differende/v in the
lous LID can be observed only iR-transitions, while for transport collision rates depends on the velocity of the mol-
vm<w, it can be observed only iR-transitions. ecules for the same values of the paramefef andy as in

Under the same conditiongé,=&, and »%°(v)  Fig. 1b. Figures 2 and 1b show that/t1 anomalous LID
~viP(v)], the relative difference of the transport collision (curves2, 3, and4 in Fig. 1b can be observed only if the
rates(37) is given by the formula difference of the transport collision rate§p(v), on com-

bining levels changes its sign as a functionwoiear the

[1-yK(B,1)]. (549) most probable velocity of the resonant particles.
The values of the parametérin the power-law interac-

Figures 1 and 2 illustrate the results of numerical calcution potential that are much greater than unity are usually
lations by formulag52)—(54). most suitable for describing realistic interaction potentials.

Figures 1a—1c depict the dependence of LID velocity onThe results of numerical calculations depicted in Figs. 1 and
the frequency detuning of the radiation for different rats 2 we obtained at=12. Numerical analysis shows that the
of the masses of resonant and buffer particles in the case ebnclusions of the present section are valid for any other
Doppler broadening of the absorption line of moleculesvalue of ¢ that is much larger than unity, i.e., are weakly
(y=0.01<1) and for equal values of the paramefdn the  sensitive to the details of the interaction potential.
power-law interaction potentials. Curv&s3, and4 in these We present an example in which our results will be used
figures correspond to anomalous LID, with cunZzand4  to make estimates. Suppose we have a linear molecule with a
marking the approximate limits of plots of anomalous LID rotational constantB=0.5cnm’! and suppose that vf,
and curve3 corresponding to maximum manifestation of —v,))/v,=10" 2 (this parameter can be measured in LID ex-
anomalous LID(near detuningg>0 orx<0 the amplitudes periment$. What transition is involved in anomalous LID at
of the minimum and maximum of the drift velocityx) are  room temperature? Since we havg>v,, anomalous LID
approximately the sameAnomalous LID is possible for all can be observed only i (J;)-transitions(i.e., in J;—J;
ratios 8 of the masses of resonant and buffer particles. For=J;—1 transitiong. Then formula(53) for the parametery
heavy buffer particle$s>1), the interval of values ofy at  vyields £(J;) —e(J;) =2BJ;, and hencey=100BJ; /kgT. If
which anomalous LID is observed &sy~1 (curves2 and4  we allow for the condition for observing anomalous LID,
in Fig. 1a. For medium-weight buffer particleg~1), Ay  y~1, we get Ji~kgT/100B. At T=300K and B
~0.6 (curves2 and 4 in Fig. 1b. Finally, for light buffer ~=0.5cm ! we obtainJ,~4, i.e., anomalous LID is observed
particles (8<1; see Fig. 15 Ay~p<1. When anomalous in the P(4)-transition.

Av vy,

v Vp
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6. CONCLUSION (Grant No. 98-02-17924and the State Scientific and Tech-

On the basis of the well-known factorization reIationshime"le Program(Laser Physics, Grant No. 7.41

for the cross sections d®T-transitions for linear molecules

in collisions with atomga relationship valid within the en-

ergy sudden approximatigrwe have derived formulas that

describe anomalous LID of linear molecules. It should be*)E-mail: shalagin@iae.nsk.su

expected that at room temperature these formulas are valid——

for linear molecules with moderate values of the rotational

constantB=1 cm ! and for moderate values of the initial

rotational numbed; , since the energy sudden approximation :\F/ *éh-A?]tes"m:’nkhsa‘”EV 2{‘&0’?’- '\F" Eﬁaggli’% jkEh;':]O'-veﬁg 7é1(leg9i-n o
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Ultrahigh spatial resolution of two-photon photoelectron ima@eshigh as 3 nm, which is the
best value that has been achieved to date in photoelectron microscopy with spatial

resolution is obtained when silicon nanotips are irradiated by the second harmonic of a pulsed
femtosecond Ti: sapphire laser. In addition, the absolute value of the two-photon external
photoeffect coefficient is measured. 99 American Institute of Physics.
[S1063-776(199)01105-1

1. INTRODUCTION The potential possibility of using femtosecond lasers to
achieve ultrahigh temporal resolution is also noteworthy, but
In the first experiments? which were performed com-  a discussion of this subject would be far beyond the scope of
paratively recently, an improvement in the possibilities ofthis paper.
laser photoionization projection microscopy was demon-  As for the spatial resolution of projection microscopy, it
strated: a spatial resolution ef30 nm was achieved by ir- is determined by the mean kinetic energy of the trans-
radiating the tips of needle@vith a radius of curvature,  verse motion of the electron emitted and the radius of curva-
=0.5—1 um) of single-crystal LiF containingcolor cen-  turer of the microtip(see below. The value ofE, can be
ters with continuous radiation from an argon laser, and singleletermined as half of the difference between the energy of
F, color centers were detected as light spots in the photoeleone photon of laser radiatigior many photons in the case of
tron image of the needle tip. Further progress in this arema multiphoton photoeffettand the external photoelectric
should be associated both with increasing the spatial resolwork function of the sample being examined. This difference
tion of the method and with the use of more powerful laseraisually has a value o&1 eV and cannot be much lower.
for achieving the external photoeffect, since the intensity ofThus, it can be presumed that investigating microtips with
continuous sources is clearly insufficient for obtaining effec-significantly smaller radii of curvature can be regarded as a
tive photoemission from most samples. systematic approach to improving the spatial resolution. Be-
An analysis of the characteristics of presently existinglow we shall present several estimates, which show that for
lasers revealed that the ideal source for observing resonanti=20 nm the spatial resolution can reach values-8fnm.
and nonresonant two-photon photoelectron images is a fensuch values are far better than the spatial resolution that has
tosecond laser with a higlin the megahertz or higher range been achieved with “classical” photoelectron microscopes
pulse repetition rate, particularly, the femtosecond Ti: sapfhere we are referring to a microscope equipped with a sys-
phire laser, which has recently drawn wide notice. The femtem of electrostatic or magnetic lenses for forming magnified
tosecond pulses generated by such a laser, even without aphotoelectron images; their spatial resolution is about 40 nm
plification, have a mean power of 3—10 mW in the secondRef. 5] and approaches the theoretical limit of the spatial
harmonic at a wavelength of 410 nm, which corresponds to aesolution of a photoelectron microscdpe.
photon energyhv=3.02 eV. Such powers and energies of In this paper we report the first experimental implemen-
single pulses are low enough to avoid the problems encounation of this approach. We obtained photoelectron images of
tered in strong electric fields, such as optical destruction andltrasharp silicon nanotips (=20 nm) by irradiating them
melting of the samples. At the same time, the parameters ofiith the output of a femtosecond Ti:sapphire laser and
our laser, viz., a pulse duration=40 fs, a pulse repetition achieved a spatial resolution ef3 nm. The possibility of
ratef =82 MHz, spot diameters equal to 0.01-0.1 famnd  using this microscope to perform quantitative measurements
a corresponding power, provide an intensity10°—3 of the two-photon external photoeffect for the samples ex-
x 10" W/cn?, which is fully sufficient for obtaining bright amined was also analyzed, and its quantum yield at a wave-
photoelectron images of a broad range of samples. In addiength of 410 nm for silicon was determined.
tion, the use of femtosecond lasers can make it possible to
perform experiments on the visualization of single molecule
implanted in a matrix, as was previously discussed in Refs.
and 4, since such an approach makes it possible to overcome A photoelectron projection microscope is shown in Fig.
the difficulties associated with the fairly fast transfer of thel. The sample investigated is a sharpened needle with a ra-
excitation energy of a molecule to the surrounding mediumdius of curvature ., which is tightly held in a special holder

2. LASER PHOTOELECTRON MICROSCOPE

1063-7761/99/88(5)/5/$15.00 921 © 1999 American Institute of Physics
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FIG. 1. Diagram of a laser photoelectron microscope equipped with
% a femtosecond Ti : sapphire lasdr— gas admission syster@;—

4 liguid-nitrogen cooling system3 — vacuum chamber4 — elec-
trode; 5 — nanotip examined§ — microchannel plates and phos-
phorescent screer?, — power supply;8 — chamber with a CCD
matrix; 9 — pumping system]10— femtosecond Ti : sapphire laser;
11 — argon laserl2 — KDP crystal; 13 — focusing lens;14 —

Argus-50 data-processing system.

at a distancd.=10 cm from a detector consisting of a mi- Simple steps, we can write the following expression for the
crochannel plate and a phosphorescent sctelamamatsu diameter of the spot formed in the detector as the image of
Photonics K. K., JapanA voltageU, in the range 0—4 kv  the emitting point source:

is applied to the sampléhe entrance to the microchannel _ _

plate is grounded and if this voltage is sufficiently high, 0 200~ 4¥eVEo/Uo. @
effective field (tunneling emission of electrons from the The same formula can be used to estimate the spatial reso-
needle tip takes place. The radial electric field around the tigution of the microscope. In this case it must be understood
directs the electrons emitted to the detector, forming a magthat the mean, rather than the maximum, energy is be used in
nified image of the needle on the screen. The magnificatiothe calculation. FOE,=0.75 eV, i.e., half of the difference
K=L/yr., where y is a numerical factor, which appears between the energy of two photons of the laser radiation
because of the deviation of the geometry of the system frong2hv=6.04 eV) and the work function of silicof4.5 eV

a simple spherical capacitor and is equal to 1.5s&e any (Ref. 9], r=20 nm, andU,=1kV, formula (1) gives d
monograph on field electron—ion microscopy, for example~3 nm.

Refs. 7 and 8 When the photoelectron image of the needle ~ We note that this value is close to the theoretical limit
tip, which does not appear upon field emission, is investifor the resolution of a projection microscope determined by
gated, the potential of the needle is reduced to a level dhe Heisenberg uncertainty princigié.n fact, according to
which the tunneling emission of electrons from the tip is(1), an electron emitted from an area of diamedgron the
equal to zero, and electrons are emitted exclusively as a réip surface will have a transverse velocity~h/2md, and

sult of the external photoeffect in the needle material causedill create an image in the form of a circle of diameter
by the second-harmonic output of the Ti: sapphire ld8er yrcx/h/me%Uo in the detector. The total diameter of the
parameters of the laser were indicated in the Introdugtion emitting region will thus equal

As in the case of field emission, the electric field around the

tip directs the photoelectrons to the detector, forming a pho- d= \/(Kd°)2+27h2/mquuo' @
toelectron image rather than a field image of the tip with the
same magnification.

A more detailed description of a laser photoelectron pro- o8
jection microscope can be found in Ref. 1.

The motion of the photoelectrons emitted in the radial
electric field of a projection microscope can easily be calcu-
lated with consideration of the angular momentum conserva-
tion law:’®

detectpr

py,=mr26=const=mrw,,

wherem is the mass of the electromy= 2Ey/m is the laser
- . . S radiation
initial transverse velocity of the electrok is the initial

energy of the_e|eCtr0n: anglis th? angle betW?enand the  Fig. 2. Ilustration of the motion of particles in the microsco@®t to
symmetry axis of the systeniFig. 2). Omitting several scale and its spatial resolving power.
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FIG. 4. Photoelectric curreriily, (integrated over the entire imagas a
function of the intensity of the second harmonic of the Ti: sapphire laser
irradiating the silicon tip.

then they were subjected to repeated temperature-induced
oxidation followed by removal of the oxide by HF. The tips
with a height of 100um thus prepared had a radius of cur-
vature less than 25 nrtthe sharpness of the needles was
verified using a high-resolution electron microscope, and in
some cases the tips were so sharp that even single silicon
atoms could be seen on the apex of the né@di€he growth
techniques and the sharpening procedures are described in
greater detail in Ref. 10.

The laser photoelectron image of an ultrasharp silicon tip
is shown in Fig. 3a. The tip potentibl;, was insufficient for
field emission from a nanotip, and thus the photocurrent
scarcely depended on the tip potential and exhibited a qua-
dratic dependence on the laser intengfig. 4). No photo-
current was observed with irradiation by pulses of the first
harmonic of the femtosecond Ti: sapphire lagke wave-
length was 820 nm, and the photon energy was 1.56ugV
to an intensity of order foW/cn?.
FIG. 3. Emission images of ultrasharp silicon nanotips with a radius of ~ These experimental observations unequivocally indicate
curvature equal to 20 nma — laser photoelectron imagd;,=1.0 kV, | that the photoelectron images of the needles are produced by
=3x10° Wien?, b — field-emission imagel ;,=1.5 kV. the two-photon photoemission of silicon subjected to femto-

second laser pulses with a photon energy of 3.02 eV, rather

After minimization of this diameter as a function dg, than, fpr ex_ample, by the laser-induced field emission of sili-
we obtain the following estimate of the best achievable spagon’ since in the Iattgr case the dependence of the photocur-
tial resolution: rent'on the tip potential would be much sharper than a qua-

dratic dependendesuch data were presented in, for example,
dim=2(yh?/medU,)*. (3)  Ref. 11). This conclusion is fully consistent with the known

Our experimental parameters imply,~1 nm, i.e., the fun- data on the work function of silicow/=4.5 eV (Ref. 9, as

damental resolution limit is, in fact, of the same order as théNe” as with the previ_ous_s_tudies of the linear and nonlinear
estimate of the spatial resoluti@B) for the microscope. external photoeffect in S|I|co_rﬁsee, for-example, Refs. 12
and 13 and the references cited therein

The image of the silicon tip itself obtained as a result of
field emission at a higher tip potential without laser irradia-
tion is shown in Fig. 3b. Neither image exhibits a well de-

Highly conductive single-crystal silicon microtips were veloped structure, and this is characteristic of all the silicon
grown on a(111) surface of a silicon rod measuring<ll  tips examined. We attribute this absence of a clear structure
X 100 mn? in the Institute of Crystallography of the Russian to the amorphous character of the tip surface. Moreover, in
Academy of SciencegMoscow). The growth surface was comparison to the case of a well developed surface crystal
polished and etched in an HF-HN@olution. Its dimensions  structure, the local variations in the work function are much
after preparation for growth were about 8.8.5 mnf. The  smaller, and the field electrofiield ion) images are not so
microtips grown were first sharpened by wet etching, anclearly structured:® Such an assumption is consistent with

3. EXPERIMENT WITH SILICON TIPS: PHOTOELECTRON
IMAGES AND ANALYSIS



924 JETP 88 (5), May 1999 Sekatskil et al.

the absence of high-qualithigh-resolution images of these fine 8, as the ratio of the photoelectron flux associated with
ultrasharp silicon needles in the field ion microscgpmny  two-photon photoemissiohlgﬁ'sed[photoelectrons/c?ns] to
attempts were made to observe theifhorough thermal an- the pulsed light fluxP [photons/crf-s]: Ngﬁ'sed: BoP2. In
nealing and a procedure of field evaporation in an ultrahigtact, the areds of the region from which the photoelectrons
vacuum are needed to obtain silicon tips with a clearly ex-are collected is specified by the geometry of the microscope
pressed crystal structufé? (the distance between the tip and the detetterlO cm, and
At the same time, we observed a distinct difference bethe working region of the microchannel plane has a diameter
tween the laser photoelectron image and the image obtained=32 mm) and can easily be calculated:
using field emission for one of the silicon tips examiEd). 2
3). T%e photoelectron image contains a bright spot, which is S=(¢mla)(yarc/L)*=0.3¢.
not observed in the field-emission image. Taking into ac-This relation clearly reflects the fact that the diameter of this
count the magnification of the microscope in this case, weegion is equal to the diametarof the working region of the
can conclude that the diameter of the object observed is lesaicrochannel plate divided l¥. The coefficient is close to
than 3 nm. We assume that this spot is caused by the preanity and takes into account that the tip surface is hemi-
ence of a strongly absorbing defdor several such defegts spherical, rather than flda simple calculation based on el-
near the surface of the silicon tiphe photoelectron escape ementary geometry give&=1.03 for our experimental con-
depth for silicon has been estimatéas 1.2 nm. We are  ditions, so that it can be neglectednd the spatial variations
referring to impurities which can be photoionized by a one-of K can be neglectet® Although the dimensions of the
or multiphoton mechanism under the action of radiation withemitting region are small, they are usually much greater than
a wavelength of 410 nm more efficiently than pure impurity-the typical values of the photoelectron escape dépgHor
free silicon. The photoionization of such impurities can leadthe materials studiefthe latter usually lies between 0.1-10
to a local(near an impurity significant increase in the pho- nm (Ref. 6); for example, for silicor.,=1.2 nm(Ref. 12].
tocurrent from a silicon tip and thus to the appearance of afor this reason, our calculations can be compared with the
additional bright spot on the photoelectron images. The posresults obtained by classical experimental methods based on
sibility of observing single light-absorbing centers using la-the irradiation of flat surfaces by a focused laser bésee,
ser photoelectron projection microscopy has already beefor example, Refs. 13,19, and 20 and the references cited
demonstrated for LiF:j-crystals, where single defects in the therein.
LiF lattice were observed on the photoelectron images of tips  The intensity of the laser radiatidncan also easily be
as bright spots having diameters specified by the spatial reneasured to a high accuracy, since strong focusing is not
solving power of the microscope. employed in the experiments described. In a photoelectron-
Utilizing the possibilities of our recording system counting mode with a microchannel plate having 100% effi-
(Argus-50, we also measured the local dependence of theiency (a coefficient smaller than unity can be introduced
photocurrent on the irradiation intensity for the bright photo-where necessaryhe total number of photoelectrons per sec-
induced spot in Fig. 3a. A quadratic dependenceNg{(1) ond can easily be measured:
w rved, and a similar dependence was observed for the
to?z; (():?Jsrreente(ltiig. 4). P Nph=B2P?Str= Bl 5S/(hw)?f 7. )
Various impurities on a tip surface can be manifested inFor simplicity, here we introduced the mean intensity of the
the field-emission image in the form of bright spots, whichlaser radiation, [W/cn?], which can be measured directly
are associated with the resonant tunneling of electrongy experimental means®=1,/hvfr. Thus, whenN,, is
through unoccupied impurity energy leve(see, for ex- measured, we can easily calcul#e. For our experimental
ample, Refs. 15 and 16 and the references cited thefiiis  conditions
did not occur in our case, most probably because the impu- 2 112 43 5
rity (defec) was located somewhere in deeper layers of the Ba=Npr(hv)*f 7/158=7.65<10""Npn/15S. ®)
tip, rather than directly on the surface. In this case such &sing formula(5) we determined the external two-photon
center is invisible to field emission, but is visible to the ex- photoeffect coefficient for silicon under the action of light
ternal photoelectric effect. with a wavelength of 410 nntafter averaging B,=1.5
Many different types of impurities and defects are x 10732 cn?s. This value corresponds to the well-known
known for silicon(see, for example, Refs. 17 and 18 and theyalue of the analogous coefficient for a wavelength of 355
references cited therginbut at present we do not have suf- nm: 8,=2.5x10"%? cn? s (Ref. 13.
ficient information to link the bright spot observed to a spe- Our measured value @8, lies in the same range as the
cific type of defect. other known values of the two-photon photoeffect coefficient
for semiconductors and insulatdrst®?° This means that
bright photoelectron images can also be recorded for these
materials using a femtosecond Ti: sapphire laser and that a
photoelectron microscope equipped with such a laser can be-
In this section we would like to focus attention on the come a universal tool suitable for studying virtually any
fact that the method under consideration also makes it posnetal, semiconductor, or insulator. Our approach has an ad-
sible to determine the absolute value of the two-photorditional advantage over the other classical methods for mea-
photoeffect coefficienB, for the materials studied. We de- suring the external photoeffect, since we measure not only

4. DETERMINATION OF THE ABSOLUTE VALUE OF THE
EXTERNAL TWO-PHOTON PHOTOEFFECT COEFFICIENT
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the averaged value g8,, but also its local valueswith a  mental equipment, as well as V. V. Zhirnov and E. I. Gi-

spatial resolution as high as 3 hWniNote that we have ne- vargizov for preparing the silicon tips.

glected the reflected light from the surface studied and the

variation of the angle of the light sphere in the calculation of*)g.mail: sekats@Iis.isan.troitsk.ru

B», but such neglect is typical of all the methods used to
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The power produced by existing sources of microwave radiation falls off with decreasing
wavelength. To solve this problem a new concept is proposed for generating microwave radiation,
based on the use of a superluminal source formed when electrons are emitted into vacuum

from a medium and the emission front propagates along the surface with a speed greater than that
of light. Such generators are shown to have a number of completely unique properties: they
radiate extremely short pulséas short as picosecongdgheir power exceeds that of existing
sources by orders of magnitude; and unlike existing sources, it increases as the wavelength

is reduced. ©1999 American Institute of Physid$S1063-776099)01205-6

1. INTRODUCTION and total energy of the output radiation increase as functions
of the energy of the emitted electrons. Calculations show that
in order to obtain electromagnetic radiation with energies
and intensities that are interesting, the emitted electrons must
. ’ : have energies of at least tens of keV. If we restrict ourselves
generators Is ever-increasing, to sources of electromagnetic radiation suitable for creating
but so is the level of difficulty of the problems that must gjgtron emission such as optical lasers, this problem can be
be overcome in order to achieve the desired result. In the,|yeq by combining the process of electron production with
meantime, the wavelength dependence of the power remaiRge formation of a radiating dipole layer. The laser light is

unchanged. , used only to drive off electrons with as small an energy as
To solve this problem we propose a new design conceplgssible: the electrons making up the radiating layer attain a

for microwave generation, based on a type of superlumingfa| energy of hundreds or thousands of keV from the ac-
source, namely, one created by electron emission from th€gjeration they undergo in the external electric field.
interface between vacuum and a material medium when the It follows that an element of a device radiating in the

emission front propagates along the surface faster than tgicrowave range typically has the form shown schematically
speed of lightc (Refs. 5 and B In this case the vacuum ;, Fig. 1.

propagation conditions combine beneficially with the high Using a superluminal source of electromagnetic radia-

current densities e_mitted by the_solid surface, and there is Ngyn makes it possible to raise the radiation power output by
problem of extracting the radiation. orders of magnitude and shorten the pulse length to the pi-

Any superlur_r18inal source produces a coherent tightly,osecond range. The power output from a superluminal
collimated beam2 In addition to everything else, however, source rises as the wavelength decreases and can be in-

a superluminal source resulting from emission can also havgqaseq by simply scaling up the devide!® A full-scale

a very short pulse lengthy, since in this case the duration of e with a large radiated energy can be constructed out of
the radiation pulse is determined by the densityof the ¢ o “elementary” sources in the same way a house is built

The dropoff in power with decreasing wavelengiulse
duration is an inherent aspect of existing microwave
technology:~ To be sure, the power output from microwave

emitted electron$>*° out of bricks.
27 1074 4me’n, The purpose of the present work is to study the proper-
o~ —~ . Wpe=\/ . (1)  ties of such an elementary source, develop the theoretical
®pe e m groundwork, and outline a program for building a systematic
Herem, is the electron mass anal, is the electron plasma theoreticgl and compu.tational fouqdation for the new con-
frequency cept and its hardware implementation.

The electron density increases as a function of the radia-
tion intensity and can be greater than or of ordeftfn 3.
Consequently the microwave pulse length can be less than Qr g,vio| E SUPERLUMINAL SOURCES
of order 10 1%s.

The amplitude of the radiated electromagnetic field is  Generally speaking, sources are called superluminal if
proportional to the first or second time derivative of the di-they travel faster than the phase velocity of light,
pole moment surface density. But as is well known, the latter
depends only on the energy of the electrons driven out of the
surface,Pyoce. It is therefore unsurprising that the intensity where n is the index of refraction in the medium. It is a

U>l)ph:C/n,

1063-7761/99/88(5)/10/$15.00 926 © 1999 American Institute of Physics
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~ n .
\\\ 1 R | mesh anode FIG. 1. Elementary microwave source.
>,

[~ photocathode

Vacuum, p < 0.005 torr

familiar fact that such sources can exist in media with 1 JE, dH,

n>1. It is much less well known that they can also exist in LT T T o
c ot 0z

a vacuunt

Below we will consider two very simple superluminal 1 9E, 4m  JH,
sources for which solutions exist in closed form. Such solu- ¢ 5t = ¢ 27 ax @
tions help in understanding the nature of the problem and the
implications of various approximations. 10H, 0B, JE

Throughout what follows we assunieo,.>1, whereT c gt  ox a9z’

is the pulse length of the ionizing radiation. , .
together with the boundary conditions

2.1. Superluminal source in free space E,=E,= Hy|t—X/U:O=0’ Ex|z:O=0: 3

The §implest superlu_minal source is a current puls&ye specify that in the limiz— = the wave is outgoing.
propagating faster than _Ilght along a condut_:tm.g. surface.  gince the curren, (which is the only thing responsible
Such a current pulse arises, e.g., when an ionizing planf the presence of a fieiand the boundary conditions de-

. . . . 6'7’9 ) |
wave illuminates a conducting planar surfa@ég. 2). pend onx andt only through the combinatiot— x/v, all the

The spatial current distribution of the emitted electrons cregiher quantities have the same dependence andt. This
ates an antenna near the surface excited in phase so that §€3ples us to reduce the dimensionality of E@sby going
radiated electromagnetic wave propagates in the directiofom the independent variablésx, andzto 7=t —x/v andz

corresponding to specular reflection of the ionizing radiationy, erms of these variable we obtain the following equation
We identify thex-y plane with an infinite planar surface for g, :

along which a superluminal current pulse

jz:jz(z-t_X/U)- v>C,

2

— 4

PE, 1 c? (72EX: 4 dj,
I v 9z’

9% ¢ v?

is propagating, composed of electrons emitted from the sur-
face. The Maxwell equations for the nonzero components of ~ As may easily be verified by substitution, the solution of

the electromagnetic field take the form Egs.(3) and(4) can be written in the form

front of electromagnetic pulse
pump radiation front

Xy

a, % FIG. 2. Schematic of electromagnetic pulse generation by a
superluminal current source.

emitted electrons (4
» v>e¢

s

emitting surface
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27| (2 z-z c? _C _T _
EX(T,Z):T[deleZ( —— 1 1_P’ Zl) Cosa—;, a—E—lﬂ, a=0. (12
" 742, 2 _ The solution given abpvg shc_>ws that at sufficiently large
+f dzj,| — 1__2, z; distances £>Az) the radiation field depends only on the
0 v surface density of the dipole moment, or rather, on its first

- [ aai,
z
If the current source is localized in some intervet,
then forz>Az

3 derivative with respect to time. To find this quantity it is
+ 4 /1_ c 21) } (5) necessary to solve the problem of the formation of the elec-
c 2’ ' tron boundary layer which arises in the course of electron
emission from the surface. It turns out that at sufficiently

large angle9 the radiated fieldE,, drops out of the problem.
It is quite clear that the radiated field, can be ne-

I e z-2, c2 glected when it is small compared with the space-charge
E (7,2)= — f dz;j,| 7 1-—, 74 field Eg.,

v 0 c v

E,<Egc.
o z+2z, c?
+ 0 dzj,| 7= c 1_0_’ zi| (- ® norder of magnitude,
If in addition we have P €

Az v Bo™~ Xtang® Fso~ b
—\/1-— <T,, @) _
¢ v Here we have writters =mg?/2 for the average energy of

whereT,, is the time scale on which the current varies, thenthe emitted electrons and s&t=cT, and N=vT,. Physi-
cally, 27X is the characteristic wavelength of the radiation

Ao (= z c? and\ is the electron Debye radius. Consequently, if
EX(T,z):—f dzljz( —o1-=, zl>. ®) D y quenty
v Jo C U2
i i 7 o i COSH< ——,
It is obvious thatAz~vT,, wherev is the average velocity 110232

of the emitted electrons. Since we have€ c, the inequality
(7) always holds.

4 it follows that the radiation field can be disregarded in the
The integral

calculation of the surface density of the dipole moment.
% But this is by no means the only simplification. In the
—€ f o dz;7;ne(t,2) vast majority of cases of practical interest we can restrict
ourselves to solving a one-dimensional problem in the vari-
is nothing other than the surface density of the dipole moablesz and r when we calculate the electron dipole layer.

ment. Then Thus, analysis of the above exact solution allows us to
Cdp " Ine " Ji, draw the following conclu_sio_ns: _ o _
P=—= _ef dz;z,—= —f dzz,— 1. Only the surface distribution of the first time deriva-
dt 0 dt 0 9z, tive of the dipole moment surface density is needed in order
x to calculate the radiative properties of a superluminal source,
zf dz;j,(t,z7). 9 and the calculation may be done using an electrodynamic
0 code with prescribed sources.
Hence returning t¢8) we have 2. The time dependence of the formation of the electron
boundary layer can be studied via a one-dimensional ap-
. z c? proach.
E(m2)= _P( V1T 02 ) 3. For sufficiently larged the radiation field can be ne-
glected and only one of the three Maxwell equations need be
. X z c? solved in order to get the polarization field, .
=Pl t— N 1-—= | (10) As already noted, the emitted electrons all radiate coher-
v ently. Consequently, at sufficiently large distange§.e., in
Correspondingly, the far field the illuminated surface will radiate in the direc-
5 tion of propagation of the electromagnetic pulse like a point
- 47 .P( . X z 1— ¢ ) (11) dipole with moment equal to the sum of the dipole moments
Y 2= c? v ¢ v2 due to the individual electrons. It follows immediately that
Thus, the radiated electromagnetic wave propagates in Ps PS

the direction corresponding to specular reflection of the inci- E,~H,~——~
iation(Fig. 2): c?R  c’TiR
dent radiation(Fig. 2): p

. (13
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Reflecting waveguide surface

Reflected
electromagnetic
wave

Virtual cathode

t"
Front of gqnerafed electromagnetic wave
b

e

~.
...
~.

el anode  Emitting surface of
Electron emission current v=X_ waveguide
j(z t-xtv) — oS  Accelerating gap of diode
[wustwssR AR Y LAMALATLLAARVLARR LB AL R R LR R 53— Photoemitter . .
e . FIG. 3. Schematic of microwave generator based on
\,\\Front of I?rftzrrsl'g;t&hxﬁ superluminal source in a waveguide.
\‘\\ surface moves Window for laser light
“~~._faster then
/ / A
Laser light < -
90° - a 0 x
Here |5~P/T§ is the second time derivative of the dipole coSa
moment surface densitfp=zc/2me, Sis the surface area, L:CTOSW' (18
ande s the electron charge. @
From(13) itis easy to estimate the radiated povgeand The conditions under which space chatged hence the
energyU: dipole momentbuilds up undergo a change, however, since
S the field of the electromagnetic wave grows during the am-
Q~2x10%y-1)*— W, (14)  plification process. Relatiofil8) is therefore valid, strictly
A

speaking, only when the field of the electromagnetic wave is
S smaller than the field of the space charge.
U~70(y— 1)2X J, (15) When thez-component of the electric fiel&,,, of the
wave becomes of order the space-charge fgld,

where 2rX=cT,, y=1+&/m,c? m, is the electron mass, 5

—m?2 — — — €
[S]=m? and[X]=cm. ForS=0.1 nt, K—O.%cm, andy Ey - Eq o dmenp= , (19
—1=0.7, Egs. (14 and (15 yields Q~10"W and U e\p

~350J.
its influence on the formation of the dipole layer can no

longer be disregarded.
_ _ _ Deceleration of the emitted electrons in the wave field
2.2. Superluminal source in a waveguide both reduces the dipole moment surface density and in-

Another interesting and simple example of a superlumi-reases the oscillation frequency, and so violates condition
nal source is an electron current pulse propagating superlyd?)- The linear stage of the amplification process is super-

minally along one of the surfaces of a planar wavegtiide S€ded by the nonlinear stage. o o
(Fig. 3. All these estimates are made within the restrictions of

As is well known, the amplitude of the radiation field the linear approach. Moreover, it should be noted that only

adjacent to the radiating surface is proportional to the firsth® caseE,;>Ey (cosa~1) is being treated. This means
derivative with respect to time of the dipole moment surfacéhat it is possible to disregard the presence of the
density (cf. Egs. 10 and 11 For example, in the case of a X-component of the wave field and thus avoid unnecessary

slab superluminal source we have Complications___ _
The conditionE,,,<Eg_. yields a bound on the growth

47 P 47 cof a . length:

HW:Ttana’ EWZ:? sina P. (16

4 Y

L
If the dipole moment surface density oscillates at some —< ,  A=27X. (20
[~2
frequencyw, equal to an integral multiple of an eigenfre- |

quency of the waveguide, At the output end of a waveguide of lendththe wave field

e is amplified by a factoN, where
k, k=1.2,..., 7

07 Fsina
L tana

then conditions obtain under which the radiated field can be  N= 2a

enhanced by a large factor. It is readily seen that the achiev-

able amplification length. is determined in principle by the Accordingly, the energy flux density is amplified by a

durationT 4 of the dipole moment oscillations: factor N2:

(21
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4 . z . 2a—z
JX:4_7T COnSja P2N2. (22) EO:T Sina( P( T—ESina’)—P< L Sina)),
C sira
(27)
The energy flux per unit length of the transverse cross sec- c c
tion of the waveguide grows by the same factor: JXZEHyEﬁJoNZ, JozﬂHSsina.
27 coSa . — .
dzJ~— — P2N4a. (23 Here N=[(L/2a)tan«], where[] signifies that the integral
C sifa part of the enclosed number is taken. Expressi@@sare in
Using these results we can show that if radiation is inci-COmplete agreement with the estimates made earlier.
dent with poweIQ and energyJ per unit length of the trans- Thus, superluminal sources of radiation open new, to-
verse cross section, then tally unique prospects for generating high-power micro-
waves. The estimatd44), (15), and(24) show that superlu-
T m2c® (y—1)2(L)?2 minal sources can generate short high-power pulses of
Q~ 4 Sina Cosa e? A N microwaves. The power and energy of these pulses grow as
the characteristic wavelength falls off.
(y—1?(L)\? L
~2X%10° - Wem?, (24)
A A 2.3. Estimate of the properties of a radiating element
mgc“ A radiating elementsee Fig. ] consists of a diode with

2
77 .
U~§sma COosa (y— DZ(X) a cathode made from a photemissive material and and a

mesh anode. The electrons expelled by the incident light are
3 accelerated by the electric field between the electrodes. After
~4.8x 102(7_1)2(X) Jem ™, passing through the mesh they form a radiating dipole layer
in the space above the mesh. Generally speaking, the accel-
For A=0.1cm, y—1=0.25, andL/A=10 we haveQ  eration process alters the space—time distribution of the cur-
~10"Wem ™t andU~3 Jem . rent density, so the time dependence of the current at the
One can check these estimates by looking at an analytanode and at the cathode can differ in functional form. If the
cal solution of the problem. Suppose a current pulse withyap between the electrodes is much smaller than the size of
current density,= j,(7), 7=t—x/v, is propagating in th&  the electrodes themselves, then when a superluminal pulse
direction along an interior surfacee€0; cf. Fig. 3 of a  develops on the cathode the pulse of accelerated electrons at
planar metal waveguide of width. The electromagnetic the anode will also be superluminal. Hence a synchronously
wave will be described by Eqé2) with the following initial  radiating dipole layer forms above the mesh too. A diode
and boundary conditions: with charge distributed in this manner is also a superluminal
E.=E,= Hy|r=0201 Eyl,—0=Ey,a=0. (25) source of elec_tromagnetic radiation and therefore will share
) ) ) ) all the properties of such sources. By varying the parameters
This problem has an analytical solution, which can beof the radiating elemer(diode and choosing different light

eZ

written in the dipole approximation in the form sources and power inputs to the diode we can obtain a broad
4 o onatz range of devices producing electromagnetic pulses in the mi-
Hy(z,7) —>2>th > Pl r— sina) crowave range. . .
vo— e n=0 Let us consider a planar diode with a gap between
_ 2(n+1)a-z electrodes charged to a potentia), where epq/mc?=y
+P| 7— —— sin a) ) , (26) —1. The discharge of the diode is intiated by a planar flux of

radiation obliquely incident on the cathode through the mesh
anode with intensity

=0yt (28)

From these expressions it follows that the electromag- Photons of the incident radiation expel electrons from
netic wave will be amplified if the oscillation frequency of the surface of the cathode, forming a pulse with current den-
the dipole moment surface density is close to a waveguidsity
eigenfrequency given b§l7). If relations(17) and(20) hold

Cc
E.z,7) TNy T ;Hy-

for the lengthL of the waveguide, then on exiting from the je=iit, jt:ﬂqh (29)
waveguide the electromagnetic wave will have the following €k
properties: whereg, is the energy of a photon of the incident radiation
H,~NH, andY [electrons per photdnis the yield.
y ’ Let A7 be the time taken by an electron to traverse the
Ao . z . 2a-z . interelectrode gap,
Ho= P| 7—=sina|+P| 7— sina | |,
ctana c L
d ’y+ 1
Ar=—\/—. (30

E,~NE, c Vy—1
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It is clear that if this time satisfies t.0
dA T 0.8+
TR (3D
o . 0.6}

then the current density is conserved and the current density
at the anode must equal that at the cathode. In this case the 0.4}
current density in the space above the mesh is also given by
Eq. (29), and we can estimate the characteristic timefor 0.2t
the formation of the dipole layer, which is obviously related
to the electron plasma frequency by 0 2 4 3 8 5 10

wpeTp=1, (32) ®

FIG. 4. Angular distribution of electromagnetic radiation from a square slab
and the characteristic wavelength of the broadband electrQagiator.

magnetic pulse radiated by the laydr=cT,. From (32) it

follows that
_|_72:47're2ne _ 47 Tp 33 2L4
oMy mgeyP-1 A= fy—1° (38
and hence Since the wavelength scales asj; ¥, letting the current
densityj; assume its maximum value reducé:b a factor
mec? V72—1 |13 sy of2 Vit y
47Te jt

L
In the diode discharge process the potential across the )(,imz—d

electrodes varies, and the time of flight across the gap varies vy—1
in consequence. If we takgto be time-dependent according  we can estimate the electromagnetic field this radiator
to y=eq/mec°+1, wherep=EL4 andE is the electric field  produces in the wave zorehe far field by making use of

(39

in in the gap, then frong30) it follows that the retarded potential. The easiest part is finding the mag-
netic field:
dAT Lg 1 dy
N TR ST i TR 1 9 sp
dt o (y-pVyF-1dt He— [dorxD w32 (40)
. c?R at’ c’R
Since
Here
dE i
ar - A7le . mgc?
= ot (y—=1)
we finally obtain m€ lp
is the second derivative with respect to time of the dipole
o< 1 mec® y—1 ¥2—1 (35) moment surface densit@is the surface area of the radiator,
“4r e |_d ' andR is the distance from the radiator to the point of obser-
vation.
and hence By using (40) we can obviously get the same values as
before for the properties of the radiation, e.g., intensity of the
) 1 mec y—1 5 . )
jo<< Y -1. (36)  Microwaves:
S4m ex Lﬁ
2
- 2 1 S”(r— 1)? 2.
After substltutlng forx we get from(36) J= 4—H ~1.8x10" e Wem 7, (41)
gy density:
Je< 71— Tox Vy+1. (37) 2
S (y—1) L,
In what follows we will not consider the casg>1, since V=JTp~5. 9_ X3 Jem' S (42)
presumably the higher the accelerating voltage the greater _ S
the difficulties in producing and maintaining this potential, divergence(diffraction limit):
anda fortiori in building a workable design for the radiating 2x
element as a whole. U= (43

If we assume that the value ¢f is one-eighth of the D
upper limit imposed by the inequalit®7), then the radiation whereD is the length scale of the radiator.
produced in this case will have a characteristic wavelength Figure 4 displays a plot of the angular dependence of the
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FIG. 5. Current density as a function of distance from the emission surface

at various times.
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radiated power relative to the direction of specular reflections . 6. current density at various distances from the emission surface.

of the laser light for a square slab radiator with a dipole

moment whose second time derivative has the functional

form

. d
P(7r)= d—T[rZexp(—r)], (44)

which is typical for a current with a linear time dependence,
From the plot it is clear that essentially all the energy is

concentrated within a cone with opening angl@g3
The energy stored in the gap between the electrodes
approximately equal to

(y—1)2

W,~116—

SJ. (45)

In the formulas given above the units 4R]=m, [S]=mn?
and[L]=[x]=cm.

The requirement on the intensity of the light source can

3. RESULTS OF NUMERICAL MODELING

It is evident that the problems that must be solved in
connection with radiation from superluminal sources made
up of radiating elements constructed as shown in Fig. 1 can
be broken down into three categories:

1. Problems related to the study of the electromagnetic
radiation produced by the superluminal source. In these
ISroblems the properties of the electron layer near the surface
(above the meghare assumed to be given. These problems
are purely electrodynamic, with sources prescribed.

2. Problems related to the properties of the electron layer
near the surfacéabove the mesh

3. “Systems” problems, i.e., problems in which the ra-
diation processes are considered together with the develop-
ment of the electron spatial and energy distributions.

For the vast majority of problems a two-dimensional

be found by substituting the expression for the current denggqe suffices. Hence the set of programs developed for the

sity in Egs.(28) and(29):

1 mecie y—1

= = - = [~2 —
from which it follows that
e y—1
q~3.4x 1027k 7L2 V=1 Wem2 (47)
d

When j, assumes its limiting value given by E37), q
increases by a factor of 4:

Qiim~4Q. (48)

If we take y=1.5, L=0.1cm, andS=0.02n?, then

these formulas show that microwave radiation is generated

with wavelengthx~0.28 cm, divergencédr~4x10 2rad,
total energy output=1.3 J, and total power 1:410'*W. The

studying superluminal sources numerically includes one- and
two- dimensional codes, both purely electrodynamic codes
that only solve Maxwell's equations and unified codes that
solve Maxwell equations for the electromagnetic fields to-
gether with the Vlasov equation for the electrons,

Numerical solutions were obtained for the following
cases:

a) An infinite plane, using a one-dimensional code to
solve the combined Maxwell-Vlasov system of equations
(Figs. 5-7.

b) An infinite conducting strip of widtlA =50 cm, using
a three-dimensional electrodynamic code with specified
sources, and using a two-dimensional code for the Maxwell
equations and a particle description for the electr@ig. 8).

The current of the emitted electrons was specified ac-
cording to

v

7 (49)

’ a:

X
jo(t)ec n(t— ECOSa

energy stored in the gap between the electrodes is 5.8 J, thiehere 5 is the Heaviside unit step function.

light intensity is~2X10° W cm™ 2 (e,~2 eV) and the yield
is Y~0.2.

The results of these calculations demonstrate that a di-
rected electromagnetic field is produced and confirm the the-
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FIG. 7. Magnetic field strength versus time ik, =17. The filled circles
are taken from the one-dimensional numerical model and the solid curve is —40 5‘ 1‘0 Is

the analytical solution.
Wpe

. . o L FIG. 9. First time derivative of the dipole moment of an electron cloud for
oretical estimates. The possibility of amplifying the electro-a monoenergetic emission electron spectrum.
magnetic field in a waveguide is related to the existence of
stable oscillations of the dipole moment surface density.

~ The time dependence of the dipole moment surface denyy| energy traverse the accelerating gap at constant potential.
sity is determined by the time dependence of the pulse Ofhe ggcillations in the electron flow observed in the case of
emission current and the energy spectrum of the emitted monenergetic electron spectrum are analogous to the well
electrons. In the numerical calculations a square-wave shagg,own oscillations of a virtual cathod@.Thus, the electro-
was asssumed for the emission current pulse: magnetic field is amplified when conditions are satisfied for
j,(ty=const for 0<t<T>wEel- (50  the formation Qf a virtual cathode. o _
) The behavior of the electromagnetic field generated in a
Two forms of the electron spectrum were considered: waveguide by a superluminal current pulse was studied
a a monoenergetic spectrum with=e and electrons a) using a two-dimensional electrodynamic code for a
emitted normal to the surface; current density distributed with a prescribed space—time de-
b) electrons distributed uniformly in energy within pendence; the width of the waveguide veas 4 cm; the su-
£<2e¢ and vanishing fore>2¢, with the electrons again perluminal current pulse propagated in thdirection along
emitted normal to the surface. the surface=0 with velocity \2 ¢; and the electron current
Results of the calculations are shown in Figs. 9 and 10density was nonzero only within a thin layer of depth0dt
The simulations show that stable oscillations of the di-the surface of the waveguide. The resulting time dependence
pole moment surface density develop only in the case 0bf the current is shown in Fig. 9; the time dependence of the
monoenergetic electrod.In particular, such an electron magnetic field at a distance from the beginning of the wave-
spectrum is found when emission electrons with a small ini-guide is that shown in Fig. 11.

\ _—
zZ, cm— \1 ~ 1 H,
e
ISG’ 6 B e S
==
10\
N FIG. 8. Contours of constant magnetic field strength pro-
1 duced by an electron current pulse propagating with velocity
v=v,=+2¢
x— V .

X, cm



934 JETP 88 (5), May 1999 Yu. N. Lazarev and P. V. Petrov

P, arb.units 1, arb.units
100

907 xN
801 g /
. electrodynamic g
70 calculation (2D)l /i

60}
S0t v

0f 2D PIC method | &

27

308 Y/ E,~03E
20t p
A s A A A e A i L 10- ’,’
0123 456728910 o
wp I 2 3 4 5 6 71 8 9
N = LIL,

FIG. 10. First time derivative of the dipole moment of an electron cloud for
a broad emission electron energy spectrum. FIG. 12. Strength of the electromagnetic wave as a function of distance

traveled along the waveguide.

b) using a two-dimensional particle-in-cglPIC) code
which solved the coupled Vlasov—Maxwell system of equa+ial across it—the current density is a conserved quantity,
tions; the spectrum of the emitted electrons was prescribed and the time dependence of the current pulse is therefore not
z=0: electrons with energy=500 keV were emitted by the altered. That is, the current density of the electrons dislodged
surface over an extended period of tifiend the emission from the surface of the anode will have the same time de-
front propagated along the surface with velogif§c. Figure  pendence as at the cathode, and if a superluminal current
12 shows the intensity of the electromagnetic wave as a fungulse propagates along the cathode then one will also propa-

tion of the distance traveled by the wave. gate along the anode.
The results of the numerical calculations agree with the  Calculations were performed for a two-dimensional pla-
theoretical estimates. nar diode. The length of the diode was 10 cm, the interelec-

In the radiating element shown in Fig. 1 the energy oftrode gap was 0.1 cm, and the applied potential was 100 kV.
the electrons comprising the current pulse propagating witlElectrons were injected perpendicular to the surface of the
superluminal velocity along the surface of the cathode incathode:
creases as a result of acceleration in an external field. During X X
the acceleration process, however, the time dependence of j (t,x,z=0)= ,7<t_ —)Jo(t— _),
the pulseform can change, so that the current pulse at the v v

anode may differ frqm tha}t at thg cgthode. jo=2.75x10% electroncm?s™!, v=42c. (51)
From the theoretical discussion it follows that for current

densities below a maximum value—which of course is de- The results of the calculations are shown in FlgS 13 and
termined by the length of the accelerating gap and the poter4. According to the previous section, we should find
X~0.39cm,T,~1.3x10 !s, andP~4x 10'] cgs]. In the
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FIG. 11. Time dependence of magnetic field at a fixed point in the wave-
guide. FIG. 13. Time dependence of the electron current above the anode surface.
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P, arb.units 2. The shape of the radiating surface ensures highly di-
0.5 rectional radiation and beam formation.
0 3. The generator is compact and relatively light in
weight.
-05r 4. In terms of power they surpass existing devices by
orders of magnitude, and unlike other designs the power in-
-1.07 creases as the wavelength decreases.

The physics of such generators is extremely simple. The

-L3y elementary concepts of classical electrodynamics suffice for
20k a basic understanding and for obtaining estimates. A rigorous
theory can be based on the Vlasov—Maxwell equations.
_25k The theory presented here permits us both to predict the
parameters of the radiation produced by an arbitrary emitting
-3.0f -x=3.33 cm 6.66 cm 9 cm surface and to obtain specifications for the components of a

generator, namely, the source of the ionizing radiation, the
accelerating gap, and the power supply.

FIG. 14. Time dependence of the first time derivative of the dipole moment
above the anode surface.
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Highly nonlinear buoyant convection is investigated analytically under conditions typically
encountered in the liquid cores of planets in the solar system. As a result of the supercritical
behavior(enormous Rayleigh numbeand ultrafast rotatiorismall Ekman numbeér

typical of such flows, diffusion and viscosity act only in layers that are asymptotically thin in
comparison with the radius of the core. These boundary layers control the buoyancy, the
large-scale velocity, and the magnetic field observed at the planetary surface. The interchange of
the internal layers determines the small-sdaleobservablefields and the prevailing

symmetry of the large-scale magnetic fields. It is proved for the first time that axisymmetric
azimuthal flows dominate at large scales, while convection cells elongated parallel to the axis of
rotation dominate at small scales. A system of equations is derived which is optimum for
describing magnetoconvection of planetary cores on both large and small scales. It yields estimates
in superb agreement with expensive numerical and experimental models of supercritical
convection associated with rapid rotation. Such models will be capable of solving the MHD
dynamo problem only when their algorithms are made consistent with the asymptotic limits
presented here. €999 American Institute of PhysidsS1063-776099)01305-0

1. INTRODUCTION AND FORMULATION OF THE PROBLEM HereD/Dt=4/ot+V-V andP is the total pressure. For the
liquid core of the Earth, with an outer radius bf=3.5
The problem of the magnetohydrodynanidHD) dy- 106 m, density ofp=10" kg/m?, and conductivityo =4
namo of the earth and the other planets of the solar systemy 15 m !, we haveQ=7.3x10"s™%, specific kinetic
was identified by Einstein as one of the five fundamentalenergy of convectior8 greater than or of order 2@ kg%,

problems of physics, but an approach in principle to findingy 4 “thermal diffusivity k and viscosity » less than

a solution has begun to appear only recently. For this reasofg-5 1251 At the boundary the velocity satisfies slip con-

until now the dynamics of the most active part of the planetyjions, the magnetic field is continuous, and the conditions

its liquid core, has not been understood, although the COr€necifying the buoyancy field, the basic source of the mag-
may be responsible for the evolution of all planetary interi- otoconvection. are applied.

ors. The large-scale magnetic field is the sole evidence atthe The thickness of the viscou€kman and that of the

planetary surface for activity of the liquid core. Its evolution yits sive (Archimedeahboundary layers are directly propor-
can be traced from times comparable with the age of thg;nal to the small quantitites and

planet (paleomagnetic investigationslown to the present
age(space investigationsThe magnetic fields are a unique

1
means of thoroughly evaluating the properties, dynamics, 525é<1, _SZRE%>1,
and structure of the deep-lying cores of the earth and other &
planets, since these regions are inaccessible to direct probes. gGlamkpw,
i - i ibi h = 2
The simplest fully self-consistent system for describing where 8 gaQlmkpc, . 2

an MHD dynamo in the Boussinesq approximation includes
the Navier—Stokes equation for a divergence-free velogity
(in the coordinate frame rotating about theaxis with the
angular velocityQ) of the mantlg, the Maxwell equation for
the divergence-free magnetic fieRl and the equation for
the diffusion of the light constituent which describes the ac
celerationA due to Archimedes’ Principle:

HereQ is the thermal power an@ is the gravitational power

of the source of the convection, which is located at the inner
boundary of the liquid coreg is the acceleration due to grav-
ity at the outer boundary of the mantle, ancandc, are the
thermodynamic parameters of the liquid in the core. The
purely gravitational source of convection is more effective
than the thermal.Accordingly, the specific gravitational en-
ergy w is considerably smaller than the specific thermal en-
ergy ¢,/ a in the liquid cores of planets. The power of the
thermal source can be substantially greater than that of the
( D 1 Vy gravitational source in giant planét$owever, so both ef-

D
—_— 2 = . _— 2 = —
v )B (B-V)V, (Dt kV )A Bz fects must be retained if2).

Ar/L=(2QX +D/Dt—vV?)V—(VXB)XB/ugp+ VP,
(1)

Dt MoO

1063-7761/99/88(5)/8/$15.00 936 © 1999 American Institute of Physics
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Direct numerical simulations of Eq¢l) are extraordi- varying the parameters of the system. The question of how
narily difficult because of the strong convection of the physi-these parameters determine the magnitude and structure of
cal fields A, V, and B in the boundary and shear layers, the magnetic, velocity, and buoyancy fields, however, re-
whose dimensionless thickness is set By10 7 and mains unanswered.
e<10"* from (2). Recently, by dint of enormous expendi- In the present world, , V, , andB, , the scale values
tures of computer time, direct calculations have been carriedf the buoyancy, velocity, and magnetic field, respectively,
out in which these quantities had values of 1QRefs. 2—8. are expressed analytically in terms of the basic parameters of
For the first time the behavior of the magnetic field has bethe system. We have also made estimates of the characteris-
gun to resemble that of the geomagnetic field, now that thestic large-scale, small-scale, boundary-layer, and internal
dimensionless guantities are small numbers. But simulationgiagnetoconvection structures analytically. This supplies a
of the geodynamo via this approach using realistic values o$imple explanation for the failure of Ref. 5 and the success of
the small parameters will not be feasible in the foreseeabl&ef. 6, and also points out an approach in principle to cor-
future. rectly reproducing the magnetic fields of the planets which

More promising is the asymptotic approach, in whicharise as a result of supercritical turbulence for typically gi-
these parameters are formally assumed to be vanishinggantic guantitiefR= 102 and extraordinarily small quantities
small, which makes it possible to resolve the structure of the’><10"'*. Obviously, both direct numerical simulation and
boundary layers with high accuracy. experiment are necessarily totally unable to attain such ex-

The self-consistent model of the geodynamo is supertreme values. Here we propose an asymptotic approach that
critical, since from Eq(2) its Rayleigh numbeR exceeds must be included in the numerical model if it is to satisfac-
the critical valueR,~ 62 for the onset of convection by torily solve the problem of supercritical magnetoturbulence
many orders of magnitude. Supoercritical behavior is charfor ultrafast rotation.
acteristic for dynamo systems, since magnetic fields can only ~For all planets under consideration we are entitled to
be generated when the strength of the sources exceeds sogf®opt the boundary conditions of impenetrability, continuous
threshold value. The main goal of the present work is to findnagnetic field, and constancy of the buoyancy and its flux:
an asymptotic form of Eq;(l) in the sup_ercritical limit, V,=0, B=B,;=B,, A(r=1)=0, dA(r=cL)/dr=0,
when the sources responsible for generating all the physical 3)
fields can formally be taken to be infinite. The strengths of ) )
the sources responsible for generating the velocity field Which are imposed on the systéft) at the interface between
and the buoyanc are characterized by huge numbers: thethe (possibly incompletelysolid inner core, labeled¢;” at
inverse Ekman number B/~ 8 2<10 and the Rayleigh '=CL and at the mantle—core boundafiabeled “1")
numberR= ¢~ 3<10'. The accuracy of the supercritical ap- " = L. Thg_boundary condition§3) are s_atlsfled by the no-
proximation is determined b and 1R, which appear as SliP conditionV=V at the boundary with the solid coté
small coefficients multiplying the Laplaciaa in Egs. (9) there is ong In terrestrial planets a similar no-slip c_ondmon
below, which optimize(1). Thus, the supercritical approxi- V=V, holds at the outer boundary as weII._ In the giant plan-
mation for the systenil) describing planetary cores should ts Uranus and Neptune the lattand possibly the former
be extremely good, since its accuracy ismax(E,1/R) is partly or yvholly replaced py free—s_urface conditions.
<1072 which is far more accurate than the familiar direct ~ 1he solid core rotates with velocity
models run for realistic lengths of tinfe® V.=(0V,p,Ve,)

Supercritical convection of the form described ) ¢ oo Teen
and(2) has been modeled in laboratofiesd in spacé;the and t_he magnetic field inside iffor r<clL) satisfies the
critical Rayleigh numbeiR, was exceeded by one to two €duation
orders of magnitude, but these mc_>de|s have not been able_ to o0 DB./Dt=V2B,
reproduce planetary hydrodynamics. Subsequent expensive
numerical experimeritsrevealed that highly nonlinearR(  With boundary conditions
>10°R,) supercritical convection differs in principle from B.=B(r=cL).
supercritical. The methods known prior to the present work ¢
required colossal amounts of computer time in order to simuThe core—mantle boundary rotates with velocity
Iazte raeigly rotating planetary cores wite- 10°R,~10° and _ Va(r=L)=(0V1,,Vs,),
6°<10 °. The most impressive model is that of Glatzmaier
and Roberts,which until now was the only model of super- and the magnetic field in the conducting part of the mantle
critical MHD convection, since the approaches developedfor L<r<(1+d;)L) is given by the equation
before now entailed amazing expense. Glatzmaier and _ _

Roberts used 2000 hours of time on a Cray C-90 in order to B/ A=V X (V1 X B=VXB1/uoos)
reach 5°=1.7x10 % and R=9.1x 1%, but were neverthe- with boundary conditions
less unable to reproduce even the order of magnitude of the B=B,(r=L)
geomagnetic field and its symmetry. In subsequent fvork ! |
Glatzmaier and Roberts, at the cost of even longer running In the upper(poorly conducting part of the mantle the
times, managed to get their model to generate magnetifield becomes irrotationaB,;= — VU, and is derivable from
fields approximately equal to the actual geomagnetic field by potential satisfying the Laplace equati®fU=0 for
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r=(1+d,)L. It is this magnetic field that is observed with is not surprising, since even strong flows in the core can not

spacecraft and on the planetary surface and serves as thatisfy the kinematic conditions for generation.

main source of information about the dynamics of the liquid  In the first two equations of the systett) the terms

core, which is inaccessible to observation. ~D/Dt are negligible and/,=0(d, /L) holds inside hy-
Ordinary differential equations describing the time de-dromagnetic boundary layers of thickneks<L, where the

pendence of the mantle and the solid-core dynamics conMHD equations(1) simplify to

plete the formulation of the problem. The essential part of

.. : . L 20 F _ 7
the description of the dynamics of the solid core is the bal-,; cog6)7— Vf? 7/: B, 0.7 1 %:B N
ance between the viscous and electromagnetic forces, WhiFe a2 mop 9r ' ugo or " o

effects not treated herésingular layers, the gravitational— (6)

precessmnal effect, e)cnan_make an equally large contrlbq— Here the complex velocity” =V, — iV, and magnetic field

tion to the mantle dynamics. To lowest order the massive ,_ o e ; . -
7%=B,—1B, vary strongly, while the integration constant

mantle does not move in our coordinate system, which ro-_ . o . .
. . . : and radial magnetic fielB, experience essentially no change
tates at angular velocity), while the considerably lighter

. . . s across the boundary layen 7, B,)/dr=0. The constants of
solid core rotates with angular velocityV, /L<10 °(Q). integration?’;, 77, %, in the general solution of Eq<6)
also do not vary at the inner boundary whexe=r—cL
2. BOUNDARY LAYERS AND TURBULENCE ~ob<L:

The balance between the Archimedean and Coriolis . %=.%,— uyoB,
forces gives a relation between the buoyancy and the veloc-

ity:

r=r
f Zdr+ ZAr}
r=cL

@)

o) 820' 1/2
P =q" Q" — | — -
A, =QV,, 7 70+76ex;{ <2| ” cosf+ Vp) Ar}

which follows from the first equation of the sét) in the
center of a layer. The variables appearing (i change + )
abruptly as a function of radius at the boundaries, and a 2ipQ) cosf+ trBr2
small radial componer¥, arises there due to the solid-wall
condition. Using the dominance of the radial derivatives
alor~1N, and takingV,~(l, /r)V, in the Archimedean
boundary layet, <L we therefore obtain
aA PA
—+V-VA—k——,8r—2:O, I*=r(

—oB, 7

The solution at the outer boundary looks similar, with differ-
ent constants of integration aldr =L —r~ 6L <L.

By using(6) and(7) to impose force balance and apply-
ing the boundary condition&) we find the thickness, of
QkL)l’3 @ the boundary layer, the characteristic magnetic field, and the

ot ar2 Br ratio M?B2/puoV2 of the magnetic energy to the kinetic
energy:
Herel, is the thickness of the Archimedean layer at the 9
outer boundaryr=L (wherel,=LR 3 or at the inner d, [o B, VS  Mm2B2 ,0[1,
boundaryr =cL. Comparing the second term {4) with the T |es \/Q:/U: S’ W: €ls
last one, we find typical magnitudes for the buoyancy and P * ’ ®)
velocity:
11302/3 where
1, k138 k
A, =QV,=B8->%, V,= =R?8—, (5) PURABE2 (<]
r Q2/3L L _p2i3 _ _ MoOT _ !
S=R¥As=pooVyL o= ——p——=1_ "

Using the parameters of Glatzmaier and Robemse find
from (4) a thicknesd, =17 km and from(5) a velocity V,, Here e=V,/LO<1 is the very small Rossby number,
=0.4cms?! and typical temperatur@, =3x10 3K (T, g=kugo<1 is the small Roberts number, and we hawle
=A, /ga, A,=3%X10"ms ?), in splendid agreement =2 because the peak magnetic field is shifted away from the
with the results of Ref. 5. Four modifications of Ref. 5 boundary(where magnetic flux generation is strongdsy
treated in Ref. 6 also give excellent agreement with ourseverald, (Refs. 9 and 1D
asymptotic estimates. The results shown in Edsand (5) The radial component of the magnetic fidd is gener-
are in good agreement with unmagnetized hydrodynamicated in the main volume, outside the region of peak flux
modeling done in the laboratofy,in space, and generation at the edges of the layer where the components
numerically? Our resultg4) and(5) even agree satisfactorily B,.,By~MB, are produced, which are perpendicular to the
with treatment&®in which only weakly supercritical param- radius r. Accordingly, the typical magnitud®,~B, ob-
eters were used, which confirms the high accuracy and reliserved at the boundary of the core is usually much less than
ability of this asymptotic approach. the (unobservejlfields in the interiorMB, . Consequently,
Thus, the scale value of the velocity depends weakly orirom (8) we find using the results of Ref. 11 tha& 1 holds
the magnetic fields, which nevertheless have a strong influfor the magnetic fields of Earth, Jupiter, Saturn, Uranus, and
ence on the nature of the MHD flow. Consequently, the abNeptune, while for the other planets and satellites we have
sence of an intrinsic magnetic field in a planet such as VenuS<1.
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PN (VXB)XB~ foVx(VxB)dt)x%Vx(VxV).

2 13
L - '"‘\f Comparing the averaged nonlinear terms with the linear
/7 \\ terms in the averaged E), for S=~1 we find the turbulent
| '/ 5 \ guantities(marked with a bar
&
\ #~5, e~3e=R Y q=g&%s. (10)
\\\ ’/ In '@e Earth’s core the Rayleigh number is large eno@h,
S~ =(&) 3~10°, and the Ekman number is small enoudh,

ad PR L .
-~ -
- -’
e

~10®, for the above results to be used in the boundary
layers. The corresponding value of the average scale velocity

V ~103mc1 . ;
FIG. 1. The coordinate system rotates about the unit vegtehich defines V,=10""ms = from (5) is in exc,e”em agreement_wnh the
the typical rotation of the central sphece The outer spherd is aimost ~ results of the most recent seismographic studies of the
motionless. Shown are the hydromagnetic boundary layers: theEarth’s core'® The average of the typical value of the mag-

Archimedean £§=R~'9), the Ekman §) and the Hartmannd/S) layers. netic field obtained fron8), B ~1mT=10G, also agrees
well with the results of extended observations of the mag-
netic field at the core—mantle boundafyOur theory also

The parameters of Ref. 5 yieB=6>1, so smaller val- does a good job reproducing the magnetic fields of the plan-
ues are reasonable i8). Hence we find the exceedingly ets(for specifics see the Conclusion
large value MB,=2X10°G and energy ratio The details of the dynamics are determined by the aver-
M?B2/puoV2=2x10°. This result is in excellent agree- aged system derived below fro(f), the solution of which
ment with Ref. 5. We therefore conclude that this model cartan be compared directly with the observed fields of the
reproduce the geomagnetic field, but only <1. Glatz-  planets. Equation$9) comprise a fourteenth-order system,
maier and Robertswere able to reproduce the geomagneticsince they satisfy fourteen boundary conditions. By virtue of
field satisfactorily in their subsequent w8ty varying the  the smallness 0d=10 2-10 4 ande=10"1-10"3, the or-
thermal flux at the mantle—core boundary, which is equivader is reduced to four in the main part of the layer, where the
lent to requiring thatS decrease whep does. However, as equations are easily solved analytically. The original order is
can be seen from E(d8), S can also be decreased by sub-recovered in the boundary layers: there the analytical solu-
stantially reducingr andk, which in Refs. 5 and 6 are con- tion (7) holds forV andB and the simplified equatiof@) for
siderably larger than quantities typical of the Earth’s core. A.

If we measure distances in units bf velocity in V,
=R%/L, time inL/V, , buoyancy inrA, =QV, , and mag-
netic field in B, = uopQV, LS, Egs. (1) go over to the
optimum system, in which all variables are of order urdfy

Thus, the difficult problem of solving the three-
dimensional se{1l) of seven equations is replaced by the
simple one of solving a single almost two-dimensional equa-
tion (4). Our theory also allows turbulent solutions (@ to

Fig. 1): be obtained directly fo5<10~ 2 ande <10 2. An additional
difficulty in studying supercritical magnetoturbulence di-
_ 22 _ _
(eD/Dt+2e,X = FVIV+VP=5(VXB)XB=Ar, rectly is that of resolving the structure of the hydromagnetic
DB , DA ., V, layers, described in Ref. 14.
ﬁ—§VB (B V)V SE—SVA—r (9)
where 3. FIELDS ON LARGE AND SMALL SCALES

The large-scale fields vary over distances considerably
greater than the thickness of the boundary and intgisesd
Sec. 4 layers. Thus, in Ref. 5 the dimensionless thickness of
these layers is of orde?=1.3x 10" 2 ande =5x 10 3. Even

e=R <R P~ (5 %) B<10t, s>4.

Here the dimensionless measure of the diffusioh,is small
for supercritical convection, the smallnessafcorresponds
to ultrafast rotation, and the condition @&derived from(8)  the most powerful existing computers are not capable of re-
is necessary for exciting a magnetic field. solving the structure of such thin layers, and so Glatzmaier
Since all variables in(9) are of order unity, we can and Roberts® used hyperviscosity to avoid having to resolve
readily estimate the turbulent diffusion that results from av-small scales, as is typically done in all present-day numerical

eraging(indicated by writing a bar above the sympadhe

nonlinear termvV - VA:

v-VA~v-Vf(v-VA)dt~f (VeV)dtVZA~V2A.

simulations®® This hyperviscosity is in outstanding agree-
ment with our estimat€10) for the magnitude of the turbu-
lent coefficients. For values of the parameters taken from
Ref. 5 we find from(10) 6~ 5'?=1/28 ands~&*=1/6, in
agreement with the thickness of the boundary layers in Fig. 3

Similarly, we estimate the turbulent viscosity by taking of Ref. 5. However, the estima{é&0), like the use of hyper-

into account the extreme smallnessesf 103

equationg9):

in the MHD

viscosity, is a crude and rather artificial approximation. The
required correction to the turbulent coefficients or the mag-
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nitude of the hyperviscosity should be based on the influence  ar=2e,xv— §2V2v+Vp+ S bX VX B
of small-scale effects on large-scale effects and vice versa,
described below.

To be specific, let us consider the magnetostrophic ap-
proximatione=0 and the cas&<1, which is typically valid

+BXVXb+(bXVXb—-%)],

b 6
— — ZVH=VX[VXb+VvXB+(vXb—)], (14

for planetary cores. Substituting for the variablésB, P, A a S
the quantities/ +v, B+b, P+p, andA+a and performing v Ja
averages over large scalédenoted by a bar over the sym- —5:8—+g[VVa+vVA+(vVa—.,zéf)]—eg’Vza.
bol) we obtain a system of equations for the large-scale fields ' dt
V., B, P, andA: The complete set of equatiofs3) and(14) is closed by the
Ar=2e,xV— 62V2V +VP+ 8(BX (VX B)+ %), boundary condi_tion$3) and the conditions that follow di-
rectly from (3) if we replaceV, B, P, and A by V+v,
B 5_, ) B+b, P+p, andA+a. Additionally, the small-scale fields
Zt TgVB=VX(VXB+ &), must satisfy solid-wall boundary conditiorfsee next Sec-
tion), and the small-scale fields in the boundary layer should
V., A ) 302 fall off sharply away from the boundary.
Y278 +e(V-VA+.7)— e V7A, (1) In the linearized layer the small-scale Ekman—Hartmann
o boundary field at a solid wall is completely given in terms of
L=bX(VXb), &=vXb, _Z4=v-Va. the large-scale and interior small-scale fields:

Here the influence of the small scales on the large ones is ) PO Y Ar
taken into account through the averagastbulen} Lorentz vy=ivy=7"+ (71~ 7)exp = \2icoso+ SE Fak

force £, electromotive force’s, and buoyant forceZ. It
should be noted that of these three, only the electromotive b,—ib,=.7%, =SB (7.~ 7)

force &= (a+ BV X)B has received special attention in pre- i
vious work®—10 1—exp(= \/2i cosf+ SEAr/3) 15
. " ) X
Neglecting the small quantitied and 64, we find V \J2i cosg+SE ' (19
from the incompressibility conditio¥ - V=0 and the angu-
lar momentum equation: 1 (r d(siné{v,b v,b
q w.0h = (snoto bbo) 20 Bl
v _2y 1 9P v ? P s rs Jar=o ¢
Tr? 2rg¢ % 2rsde 1 ¥ Here we have written”’=V+uv,—iv, at the upper
1P s boundary of the layer, where, , is the (exclusively inter-

V,= A. (12) nal field; the_ complex velocity gt the other boundary is
29s 2 71c=V1c—iVgc; the upper sign €) and Ar=r—1
apply to the boundary at the mantle, which rotates at velocity
V4; the lower sign ) andAr =r —c apply to the boundary
z z at the inner core, which rotates with velociy§, [see the
P:f Azdz ZVZZJ (0A/d¢)dz, expressions fol; and V. following Eq. (3)]. The radial
o ) o B velocity v, and the magnetic field, were obtained by inte-
and the lower limits of integration include unspecified fU”C'grating the divergence-free condition.

tions of (t,s,¢), which are needed in order to satisfy the = The small-scale buoyanayin the Archimedean bound-

Here

boundary conditions. _ S ary layer is found from the equation
Neglectinge and e.Z# we find V,=0, which implies
axisymmetry /(A,P)/d¢=0, in accordance wittl2). Thus, v, da da_ v, da Lo d(A+a)

the large-scale velocity is axisymmetric, has only an azi- FJF e gt e ox ot BT
muthal componenV=V(t,r,0)é , and is uniquely deter-
mined by the buoyanci. The axisymmetric velocity, the -
buoyancyA, and in the general case the nonaxisymmetric s Jde¢
magnetic fieldB obey a simple set of large-scale equations:

V+u, da )
-, (16)

where we have used the same values 0b,, andv, as in
z9A zdz s IA Eq. (15), and the “stretched” variable is=(r—1)/e atr
= =—_4, =1 andx=(r—c)/e atr=c.
The system of equation€l3) corresponding to large-
scale effects, the boundary soluti¢b5), and Eq.(16) to-
o7 T VX (VXB+ ). (13 gether with the equations given below for the internal small-
scale fields completely determine the solution of the
Clearly, the dynamics of the large-scale fields is significantlyproblem. In obtaining it we use only the boundary conditions
affected by the small-scale fields b, p, anda, which obey (3) without the solid-wall condition, since the the other
a set of equations that follows frof®) and (11): boundary conditions are already taken into accountLb).

s 2 2N w T
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4. INTERNAL AXIAL CONVECTION

In treating the internal small-scale fields we will assume
that the convection cells are elongated parallel to the axis of
rotation and

JS~S, <dp~ ¢, <dz~1.

Here the asterisks denote characteristic magnitudes for the
internal convection relative to the directions in which the
cylindrical variables %,s,¢) increase. We also assume the
following scaling, which comes from conditiaii4) for the
vanishing of the divergence:

V~120,~0, 20, @0, SUg~S, Uy -

And finally, we neglect the magnetic terms in the first force
equation(14). Later, when we have derived our final result,
we will show that these initial assumptions are justified.

Neglecting the corresponding terms(@#), far from the
boundaries we find

vzcose+ ,0%a Vaa+(9(a—A) 52(9202
—=——+——— za=-— .
erz % 3827 S g ot 9s®

17

Setting the magnitudes of the terms(d¥) equal, we find the

relations FIG. 2. Structure of convection cells in the=const cross section. Cells

with current flowing clockwise and counterclockwise are represented by
solid and broken traces, respectively. The locabordinate is transverse to

which yield the characteristic axial velocity, ~v, and the ceI'I ar_1d the locay coordlrjate is along th_e cwcumferen(_:g. The dot-dash
curve indicates the generating tangent cylinder. A transition zone aligned

bugyancya* ~a, as well as the scaling with respect to the it the cylinder (not shown and the inner sphere separate the various
cylindrical radiuss, and azimuthal angle, : convection zones.

x=v,la, =368, s,=e¥Y2 o,=6le¥% (19

v, le=g%a, /siza* loy, a*=5zu*/s§ ,

E(?tli’ccl:ni(r;lggc'{teiig?s similarly in the equation for the electromag-the geomagnetic field imposed by the internal convection

should come as no surprigsee Conclusion

—(61S)8%b,19s*=Bgdv,/ds We will describe the spatial structure of an individual
convection cell, which far from the boundaries is elongated
parallel to the axis of of rotatiom (see Fig. 2 In the cross
sectionz=const this cell is bounded by the cunds,¢)
=const, which is adjacent to neighboring curves, somewhat
as in a honeycomb. Fronil8), the variable which is
e?9%al 9z°=v,0al Iz “stretched” along the cell isx=X(s,¢)/s, . We complete
our local coordinate system by introducing=y(s,¢),
which encircles the cell and is orthogonalx@ndz.

We use the fact that the componetsand v, are of
orders, =452, which follows from the vanishing of the
divergence, and satis#(vy,b,)/dx=0. Using the smallness

yieldsb, =Sv,s, /6 for typical Bg of order unity.

In the Ekman—Hartmann boundary lay€i%) we have
dz~ 6, and far from the equatorsfc,1) balancing the
buoyancy equation

yields €2/ 6=v, . Finally, we find estimates of the charac-
teristic internal velocitw , , magnetic fielcb, , and electro-
motive forcea, =v, b, , and the fundamental restriction on
the initial choice of parameters:

v,=€%8, b,=Se4s%? of p, b, andv, in thezandy components of the force law, we
find from (14) and (17)
= 8819/4/ 55/2, 583/2< 5. (19)
1 %, 1 (9zvy

This estimate, together witf18), is used in the Conclusion - ; W=f costa, — ; Wﬂ/rfa,
to describe the magnetohydrodynamic interiors of planets.
Our original assumptions are valid #?< 6 and Se%?<é d’a  v,c0s80+Yy,vy
hold, as they do in most planetary interiors. The second con- = 552~ T xrz
dition usually overlaps the first; it is therefore the main limi-
tation on the use of turbuled€q. (10)] or hyperviscosity {vz.0y}=— xr{cosh,y,}[ C(e"*~cogkx))
valuese and§é instead of the smaller andé$. In the work of +Dsin(kx)], (20)

Glatzmaier and RobeR®ne of the conditions if19) is not
met, so the failure of their results to reflect the symmetry of  a=k?[ C(e*+ cogkx))—D sin(kx)].
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Herex=<0, |x|~1, yrzéy~ e ; CandD(t,zy) are free func- compared with that of Jupiter makésalmost one and a half
tions that are determined in the boundary layers; andimes largeraccording to Eq(2) in Ref. 17. Consequently,
k= [Xr(yr2+ cogd)]¥is a root of the characteristic equation. other factors being equaR,, in Saturn’s core exceed%i by
The boundary condition is the condition of intermittency: aimost two orders of magnitude. This marked superiority of
vz, vy=0 atx=0. the axisymmetric dynamo mechanism over the asymmetric
The radius of the cell is determined by the distance  mechanism is responsible for the very small observed incli-
nation of Saturn’s magnetic dipole.
The cores of Uranus and Neptune should be somewhat

a s, -
Xo=XgSx =S > X Ta less active than that of Jupiter. This raises the value and
[xr (y; +cos 6)] therefore, from2), R2 in Eq. (21) becomes comparable with
between zeros of the sine function {@0). Hence in the Rq . As a result the asymmetric and axisymmetric fields are
@=const cross section through the cells we have comparable, which is reflected in an angle of inclination of

the magnetic dipole of nearly 50 degrees for both plattets.
One should expect even less activity in the cores of Mer-
1 1 cury and Mars, where from Eq.(8) S<1. As a result, the
0= 2%y 10(£ 6%) %’ dynamo numbeR_ R, is small; probably it is barely bigger
than the critical value for generating large-scale magnetic
which is typically large. Thus, we haw,=10? for the val-  fields in the planetary core. This means that only very small
U85821072 and 5= 1073 of Ref. 5. With so many cells irregu|ar |arge_sca|e fields appear.
their stucture can not possibly be resolved numerically. This  The activity of the core of Venus is of orders®/and its
is why Glatzmaier and Robeftsised hyperviscosity, which - effective viscosity is of ordes?, according to(2). This is
increases the value af and e by an order of magnitude at g orders of magnitude higher than in Earth’s core; the
small scales. Consequently there were only seven cellgya50n is that Venus rotates 243 times slower. This high
which agrees perfectly with Fig. 3 of Ref. 5. activity and high viscosity, according {@9) and(21) almost
totally suppress internal small-scale turbulence. As a result,
the dynamo number in the core of Venus is far less than the
5. CONCLUSION critical value, and no large-scale field is generated there.
Thus, raising the activity of a planet can lower its observed

Let us compare our results with the observed planejtar¥ield. This is easy to see if one compares the fields of Uranus
magnetic fields' in order to check our theory and describe and Neptune and their activities

convection in planetary cores. We direct our attention prima- We h h h h is abl | he ob
rily at the magnitudes of the intrinsic magnetic fields of e have shown that our theory Is able to relate the ob-

Earth, Saturn, Uranus, and Neptune, which are very C|os§.erved magnetic fields of the plaflets to well known proper-
even though their interior structures are fundamentallylies of their structure and dynamics. The more detailed be-
different?>-17This happens because the flows in the corediavior of the field is determined by the optimum set of
of these planets are highly turbulent, since only then can theduationg9), which simplifies to(13)—(17) if we distinguish
basic parameterS<1, 6~.6~10"3, s~3s~10"2 be between large- and small-scale fields. Numerical solution of
close to one another; they differ little even when the molecuhese sets of equations together with) and(19) will be far

lar constituents vary greatly. The stronger field of Jupiter ischeaper and more realistic than using the widely accepted
explained by noting that its liquid metal core is relatively direct approaches employing hyperviscosity.

much larger than in the othet§Consequently, the observed In conclusion we summarize our main results.
field of Jupiter differs little from the field8) at the core— 1) The typical magnitudes of quantities determining the
mantle boundary. nature and principal structures of supercritical MHD convec-

The symmetry of the observed large-scale field resultsion associated with ultrafast rotation have been estimated
from the relationship between the internal small-scale turbufor the first time.

lence and large-scale azimuthal flow, which from E@. 2) For the first time an approach has been developed that

and (19) (cf. Refs. 8, 9, and 15are characterized respec- in principle permits a solution of the planetary MHD dynamo

tively by the following Reynolds numbers: problem and the associated problem of supercritical convec-
tion.

19/ "S5120 ~ S 5 ~
Re=e'"Ra/6”4(~10) and Ry=S/6(~10°).  (21) 3) A simple set of equations has been derived which

If the rough estimates given in parentheses are satisfied, thélgscribes in detail buoyant magnetoconvection in planetary
R? is a factor of ten smaller thaR,, for these planets. Under interiors on both large and small scales. For the first time it
this condition axisymmetric field strengths exceed nonaxihas been shown that axisymmetric azimuthal flows dominate
symmetric ones by almost an order of magnitude. This it large scales.

seen on Earth and Jupiter from the small anglbout ten This work was performed with financial support from
degrees between the angle of rotation and the axis of thethe Russian Fund for Fundamental Reseai@nant Nos.
magnetic dipole. The somewhat smaller size of Saturn’s cor870564402 and 960564048
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This paper discusses a theory for a new effect, the migration of solid dispersed patrticles initiated
by a nonuniform temperature field. The reason for the motion is the inhomogeneity of the
properties of a thin protective layer around a particle. The example of ionic dispersion shows that
the sign of the coefficient of thermodiffusion depends on the magnitude of the electrostatic
potential at the particle surface and the thickness of the Debye layer and that the coefficientis larger
than the values known for molecular systems by a factor of 100 to 10000. In contrast to
molecular systems, in disperse systems thermodiffusion should play a much more important role.
© 1999 American Institute of PhysidS1063-776099)01405-5

The phenomenon of separation of substances in a binatgmperatureT,, the ions obey a Boltzmann distribution
mixture initiated by a nonuniform temperature field has beeabout the seed:
known for more than a hundred years and is called thermod- 0
iffusion, or the Soret effect.Thermal diffusion is observed ni=nexp=W¥o), n-=nexp¥o), @
in an enormous number of molecular systems, such as mixvhere ¥ ,=eqp,/kT,, with ¢, the potential of the electro-
tures of gases, liquids, and saline solutions. The Soret coeétatic field anck the Boltzmann constant. The dimensionless
ficient S, which is a parameter characterizing the separatiopotential ¥, satisfies Poisson’s equation
of the substances in the mixtuigee below, is very small for .
these systems, which makes the use of thermodiffusion in AW,=sinhWo/D?, @
applications highly problematic&lThe Soret effect in dis- whereD = (ekT,/87ne?)2 is the Debye length, witls the
perse systems, such as colloidal solutions and suspensionfielectric constant of the liquid. The potential at the particle
has significantly more possibilities for practical applications.surface, /=¥ (R), is assumed to be a parameter of the
Such an effect was detected in experiments recently corproblem.
ducted by Blumset al® and Lengletet al.,* who observed Note that the label “0” in Eqs(1) and(2) designates a
strong migration of solid colloidal particles in a nonuniform state in thermodynamic equilibrium, where the temperature
temperature field. The Soret effect of such thermodiffusiorof the system is constant. In this case the electric figjd
exceeds the record-breaking valuesSofor molecular sys- = —gradp, around the seed is spherically symmetric, so that
tems by a factor of 100 to 1000. However, the nature of thighe net force acting on the particle is zero. Similarly, the
phenomenon is unknown. In the present paper a theory ddlectric bulk force on the electrolyte is balanced by the pres-
this novel phenomenon is studied. sure gradient in the liquid.

The main difference between disperse and molecular Let us now create a nonuniform temperature field in the
systems is that the solid particles in disperse systems ate&uid, with A the given temperature gradient far from the
about 100 A in sizéfor colloids), which is much larger than particle. The characteristic time of propagation of thermal
the molecules of a liquid solvent. This simplifies the theoret-perturbations,7+~R?/y, with y the thermal diffusivity of
ical investigation of the problem, since the liquid can bethe liquid, is much shorter than the time of rotational Brown-
regarded as a continuous medium. Note also that it is comian diffusion of the seedsg~ 7R3/kT,, wherez is the vis-
mon to divide disperse systems into two large categories;osity of the liquid® Indeed, using the data for an aqueous
ionic and surfactant, which differ in stability against particle solution, ~1 cP andy~0.0015cms !, we find rr/7g
coagulatior?. The first category is characterized by electro- ~10"3. Hence we may assume that the temperature distri-
static stabilization, which is achieved by imparting an elec-bution T(r) near the particle is time-independent. Its form is
tric charge to the particles. The second category incorporatesell known?®
disperse systems whose particles are covered by an addi- _ _ 3
tional layer of surface-active substances. In the present paper T(N=To+Ty=To*[1=x(RIN7A-T, ®
we will limit ourselves to ionic systems. where k= (k1= k2)/ (k1 + k3), With k; and x, the thermal

Suppose that a positively charged spherical particle otonductivity coefficients of the particle and electrolyte, re-
radiusR is in an electrolyte solution. For simplicity we as- spectively.
sume the electrolyte to be symmetric. Let the cation and In a nonuniform temperature field, the ion concentrations
anion charges be and —e, respectively and the cation and n,(r) andn_(r) and potentiakp(r) are no longer equal to

anion concentration far from the particle beAt a constant the equilibrium valuen® , n® , and ¢y. As a result, the

1063-7761/99/88(5)/3/$15.00 944 © 1999 American Institute of Physics
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electric potentials at the opposite sides of the particle do not
balance each other and the particle begins to move.

To determine the seed velocity, we must first find the
ion distributionsn . (r) andn_(r) in the temperature field.
We do this using the example of cations. The diffusion flux
of cations in an electrostatic field is

n.egrade

kT )" @

j+=—D,|gradn,+
whereD , is the cation diffusion coefficient. The distribution
n.(r) can be found by solving the equation of steady-state
diffusion in the approximation of small Blet numbers with
the additional condition that the particle surface is

impermeablé: FIG. 1. Particle migration velocity in units #&nkD?/ 5 as a function of the
L . electric potential at the particle surface for several values.of
divj; =0, j;,=0. )
The anion concentration was calculated by using formulas
similar to (4) and (5) with j, replaced byj_, D, by D_, Equation(7) must be linearized in the value of the tem-
ande by —e. perature gradierfjust as we linearized the diffusion equation

~ The next stage in simplifying the equations of ion diffu- (g)] However, to preserve clarity we will not clutter up the
sion is the linearization of these equations in the small Val“eﬁroblem with details.
of the temperature gradieAR/To<1. Here, however, we Equations(6) with the additional conditions of adhesion
will not perform the necessary calculations, since they arg; ine particle surfacev(r =R)=0) and of balance of the
rather cumbersome. One result of such linearization is that ijoctric and viscous forcesFE0) acting on the particle

is unnecessary to solve the separate problgm of findi.ng thform, together with Eqs(2) and (4), constitute a complete
electric fielde(r) around the charged seed in a nonuniformge of equations for finding the migration velocity of a dis-
temperature field: fop(r) we can take the resudiy(r) from persed particle.

the isothermal problen®). . Generally speaking, the solution of this system of equa-
We will now investigate the hydrodynamic part of the ions gepends on four dimensionless parameters: the poten-
problem. Suppose that the frame of reference is tied to thgy| 4t the particle surface, the ratio=D/R of the Debye
body of the seed, so that the particle in this frame is at r€Siength to the particle radius; [see the commentary to Eq.
T_he liquid velocityv far_from the _seed_determines the de- (3)], and a=d In &/dInT, the logarithmic derivative of the
sired value of the particle velocity with respect to the gielectric constant with respect to temperature. We write the
laboratory reference frame according to the obvious relatlon\-,emcity of particle motion in the temperature field ks

shipU=—v(r—=). In the approximation of small Reynolds _ Ankp2y/ 5, specifying the dimensionless migration veloc-
numbers the time-independent velocity fielr), in turn, it y explicitly. For an infinitely thin double layerx(—0),

satisfies the Stokes equatfon the value ofu can be found analytically:
nAv—gradp+f=0, divv=0, (6) 2 e

, o _ _ u=—=(1—«)| {>-8(3+ a)Incosh-|. (8
wherep and » are the pressure in the liquid and the viscosity 3 4

of the liquid. The bulk forcd of electrical origin is given by For arbitrary values ok only a numerical solution of the

the formuld system of equations is possible. Hence we will fix the values
(grade)? de of the parameterg=0.75 anda= —1.5. Both values corre-
f=—e(n,—n_)grade— —o—— ——gradT. (7)  spond to the experiment conducted by Lengleal* and are

characteristic of aqueous disperse systems, for which the
Clearly, the value of the bulk force is determined by twothermal conductivity coefficient of the dispersed phase ex-
terms: the Coulomb term, related to the presence of freeeeds that of the solvent by a factor of 10.
charges(ions) in the liquid, and the dielectrophoretic term, Figure 1 depicts the results of numerical calculations of
reflecting the temperature dependence of the dielectric corthe dimensionless particle velocity as a function{ofthe
stante of the liquid. Sincede/dT is negative, the dielectro- surface potential, for several values)ofthe respective val-
phoretic term forces the liquid to move along the temperatureies are placed at the curyegor an infinitely thin double
gradientA [basically, grad is directed alongA; see Eq. layer[see the lower curve in Fig. 1 and E®)], the particle
(3)]. This is equivalent to the particle moving in the oppositemigration velocity is always directed opposite the tempera-
direction, i.e., into colder layers of the liquid. In contrast to ture gradient. At finite values of this is the case only for
the second term, the projection of the Coulomb term on themall values of electric potential. A§ increases, all the
direction of A has no definite sign, i.e., it can be either posi-curves withA #0 first pass through a minimum and then, at
tive or negative. As a result the particle can migrate either ug=¢,, through zero. The latter means that the direction of
or down the temperature gradie(see below. particle motion reverses.
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& equal to zero the sum of the thermodiffusion flux of the seeds
12F jt=n,U (heren, is the particle concentratipmnd the ordi-
nary diffusion fluxjy= —(kTo/677Ry)grach, (hereRy, is
10+ the hydrodynamic radius of the partigleve arrive at an
. expression for the Soret coefficient:
6 s—_ 3R U (10)
TR T AL ATy

whereL=e?/ekT, is a characteristic length, interpreted as
FIG. 2. “Phase” diagram of thermodiffusion in terms of dimensionless the distance at which the energy of ion interaction is equal to
surface potential and Debye length. the thermal energy. For aqueous electrolytes,7 A.
Equation(10) and Fig. 1 suggest that the Soret coeffi-
cient may be either positive or negative, depending on the

Figure 2 depicts the “neutral” curvéy= {o(\) corre- . . .
sponding to the disappearance of thermodiffusion. The reamagnltudes of the electrostatic surface potenfiaind the

son the seed ceases to move on this curve becomes cIealdflmen.s'onlesS Debye radivs Leﬁ us est|ma}té3 using th?
we analyze Fig. 3, which depicts the streamlines and th xperimental data of Lenglet al,” who studied thermodif-

lines of constant anion concentration near the particle. Th usion in an aqueous colloidal solution. If we substitute the

dielectrophoretic bulk forcdsee Eq.(7)] forms the flow i)ﬂ:)grilmgntfal vaIu;:inH8=5290 i‘o T°:32;°’SK_' _qéz?(% '
chiefly along the temperature gradiehtand forces the seed - ™ (Ref. 4, and/=8.5 in (10), we getS=—0. '

to move in the opposite directiofagainstA). However, the Th(|js value dIS tlﬂ goodﬁggrefmfetnht with dt.?fe r_esultfs of IRef.l 4
Coulomb force opposes this maotion, so that near the “potraNd EXceeds he coetlicient of thermoditiusion of molecular

pole of the seed an excess of negatively charged ions formg.yStem% by a factor 0f 100. The Soret coefficient (.Jf suspen-
For the values ok and¢ depicted in Fig. 3, the tendencies sions, whose particles are roughly a hundred times larger

are balanced. It<¢, holds, the first tendency is predomi- than colloidal particles, must amoui accordance with Eq.

- -1 i-
nant, i.e., the particle migrates into the low-temperature reglo)] to S~100K"". Such large values of the Soret coeffi

gion: if ¢>¢, holds, the Coulomb term is predominant and cients of colloids and suspensions make practical applica-
the éeed moves int'o the hot layers of the liq(sde Fig. 2 tions of thermodiffusion as a source of enrichment of dis-
Since the velocity of thermodiffusion is known, we can perse systems highly promising.

calculate the Soret dispersion coefficiéhtFollowing Refs. S Thz_aufthor |sfg|rateful LO A. S.fpsg_en|chn_|kov and B. L
1 and 2, we define this coefficient by the equation morodin for useful remarks and for discussions concerning

this problem. The work was supported by a grant from the
grad® +SP(1-P)A=0, (9  Russian Fund for Fundamental Reseaf@Gnant No. 97-03-

where gradpb is the time-independent gradient of the bulk 32119.
concentration of the disperse particles, a gradient thatdevebe_mail: mrk@icmm.ru
ops in a temperature field with a gradieit Now, setting
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An explanation is proposed for the gigantic magnetoacoustic effect that we observed ins KMnF

in previous work{Kh. G. Bogdanova, V. A. Golenishchev-Kutuzov, M. |. Kurkén al.,

Zh. Eksp. Teor. Fiz.112 1830(1997 [JETP85, 1001(1997]}. The effect entails a tenfold
amplitude reduction of an acoustic pulse in a magnetic field that varies over the range

0-8kOe. It is shown that this effect is due to the interference of two nuclear magnetoelastic
waves propagating in the sample under magnetoacoustic resonance conditions, if this resonance
occurs in the region of strong spatial dispersion of nuclear spin waves. The effect is said to

be gigantic because it exceeds in magnitude the magnetoacoustic effects observed previously in
magnetically ordered materials even though it is due to nuclear magnetism, which is 10

times weaker than electronic magnetism. We observe a concomitant anomalous dependence of
the dispersion of the velocity of sound on the external magnetic field19@9 American

Institute of Physicq.S1063-776(99)01505-X

1. INTRODUCTION range 630—-670 MHz, which falls in the frequency band of
nuclear spin waves in KMng®’ Since this bandw, lies
Magnetoacoustic effects are ordinarily understood to rebelow the AFMR frequencies, the observed dependence
fer to the dependence of the acoustic parametrplitude  u(H) is due to nuclear and not electronic magnetism.
u, frequencyw, propagation velocity/, and polarization of It remained to determine how a weak magnetoelastic in-
an acoustic waveon the magnetic fieltd . Most investiga-  teraction such as the coupling of elastic deformations to vi-
tions are concerned with the effect of the field on the velocitybrations of the magnetic moments of nuclei can lead to such
and polarizatior{rotation of the polarization plane and ellip- large effects in magnetoacoustics. The work reported here
ticity) of sound™? This effect is ordinarily small even in attempts to resolve this issue.
magnetically ordered materials. The variations reach 100%
only in exceptional casesThe change produced in the am-
plitude u of an acoustic wave by a field is even less ap- 2. NATURE OF THE ATTENUATION OF ACOUSTIC
) S : TRANSMITTANCE IN KMnF 5
preciable, because the magnetoelastic interactions are small
compared with phonon anharmonicity, which is the principal ~ The character of the observed dependemg@ed) in the
determinant of acoustic damping in solids. Ordinarily, theform of minima(see Figs. 3 and 4 in Ref) Suggests that the
behavior ofu(H) is studied using acoustic excitation of ESR observed effectis due to a magnetoelastic resonance of
and NMR in paramagnefs. acoustic vibrations with the vibrations of nuclear spins.
Hence it is understandable how unexpected it was for uslowever, it cannot be related to nuclear magnetic relaxation,
to observe a dependencg€H) corresponding to a tenfold since its rate is much lower than the decay rate of sound due
decrease in the amplitudeof an acoustic pulse in KMnf= to phonon anharmonicity. In this case the contribution of
single crystalS. When it became clear that such a strongphonon damping to nuclear magnetic relaxation can be large,
magnetoacoustic effect is due to nuclear magnetism, which isut not vice versa.
10° times weaker than electronic magnetism, we could not The decisive factor in the search for nondissipative
resist the temptation to call this effect gigantic. In our previ-mechanisms of attenuation of the amplitudef an acoustic
ous worR it was shown that the observed effect agrees welpulse passing through a KMgBample was that we were not
with the crystalline and magnetic symmetry conditions of theable to observe a dependenegH) in another weak ferro-
compound KMnk, so it cannot be due to random factors magnet FeB@. It was well known that the character of the
(contamination, measurement errors, or other fagtémsad-  vibrations of nuclear spins in KMnHs substantially differ-
dition, the effect was observed in the acoustic frequencyent from that in FeB@. In KMnF; at liquid helium tempera-

1063-7761/99/88(5)/7/$15.00 947 © 1999 American Institute of Physics
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FIG. 1. Spectra of nuclear magnetoelastic
waves near nuclear magnetoacoustic reso-
nance: & no dispersion in the nuclear spin
wave spectrum; bnuclear magnetoacoustic
resonance falls in the region of strong disper-
- sion in the nuclear spin wave spectrum.

tures there is reasonably strong interaction between nuclearaves with the same frequen€y, and different wave vec-
spins at different sites of the crystal lattice; this gives rise taors q; andq, can propagate in the sample. As these waves
the formation of nuclear spin wav@snalogous to electronic propagate through the sample, a phase differefigewill

spin waves in magnetically ordered materials. Significantlyaccumulate between their acoustic componentand u,.

in KMnF; there are two branches of nuclear spin waves withThis phase difference can be described in the coordinate sys-
frequenciesv,1(q,H) andw,,(q,H) that depend differently temy| g, || g, by the expression

on H. The effect of this is that the nuclear magnetoacoustic

resonance conditions, i.e., equality of the frequencies and o¢(y)=(d1~a)y- @
wave numbers of the acoustic wavEd(q)] and nuclear The existence 0b¢ has a strong effect on the amplitude
spin waveq w,(q)], Up of an acoustic pulse propagating into a nonmagnetic me-

_ dium (LiNbO;) through the surface/=.% (Fig. 2. The

Q@) =on(qHy), Q)= wna(q.Hz), @ point here is that depends not only on the amplitudas
are satisfied at different values of the figld The values of andu, but also on the phase differenée (%) with which
H, andH, correspond to two minima observed in the curvesthey approach the surface=%. If u; and u, are in
u(H) (see Figs. 3 and 4 in Ref)5 antiphase, i.e.,

According to Ref. 7, the frequencies,1(q,H) and N o
wn2(q,H) in KMnF; lie in a frequency rang&w, of ap- op(£)=(a1=qp) #=2(n+1)m, ©)
proximately 100 MHz. The dependencewf; andw,, ong  (wheren are integers then the amplitudes will be deter-
(spatial dispersionis therefore strong in all processes wheremined by the differenchu|=|u; —u,|, so that foru; = u, the
nuclear spin waves participate, including nuclear magnetosurface y=.%# becomes opaque to such magnetoelastic
acoustic resonance. waves.

Estimates obtained for the range,, in FeBO, using the As will be shown belowu,=u, at exact nuclear mag-
well-known formulas of Ref. 8 yield a value iQtimes netoacoustic resonance, i.e., a strong decreasedmpared
smaller than in KMnk, i.e., about 1kHz. This is due to with the amplitudeu, of the incident acoustic wave is pos-
major differences between the magnetic moments and natsible only when(1) and (3) hold simultaneously. Although
ral abundances ofFe and®®Mn, and between the frequen- such a coincidence is a random event, it is nonetheless pos-
cies w, for FeBO; and KMnF;. For such smalldw, in  sible because the quantities in E¢B. and(3) depend on the
FeBG; (1 kHz is much less than the width of the NMR line  magnitudeH and orientation of the magnetic field and on the
spatial dispersion in the nuclear spin wave spectrum shoulffequency(), of the incident acoustic pulse. Variation of just
not lead to any observable effects. these three parameters makes it possible for the two condi-

The existence of nuclear spin waves is the reason for théons to be satisfied simultaneously to high precision. How-
strong dependence(H) in KMnF;. This can be seen in ever, the search for the required parameter values requires a
Figs. 1a and 1b, which show the dispersion curves for acoudarge number of measurements. For example, the curves of
tic and nuclear spin waves near a nuclear magnetoacoustibhe function
resonance in FeBQO(Fig. 18, wherew,(q) does not depend .
on g, and for KMnF;, where the brancheQ(q) and w,(q) K(H)=u(H)/uo, @
cross in the region of strong spatial dispersion of the nuclear
spin waves(Fig. 1b. The dashed lines show the dispersion
curves for magnetoelastic waves containing elastic and mag- q

. . . . . . ) u, > u
netic components. It_|s eV|den_t in this figure that in the ab- /\/{/\* A~
sence of nuclear spin wavéFig. 13 only one magneto- % |
acoustic wave, possessing a wave vecgr propagates in
the sample at the given frequenfy. However, if the mag- 0 £ Y

netoacoustic resonance falls in the region of StrPnQZIG.Z. Transmission of an acoustic pulse through the Kisdmple under
g-dependence ofw, (Fig. 1b, then two magnetoelastic nuclear magnetoacoustic resonance conditions.
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shown in Ref. 5, corresponding to a tenfold decreasH k)

y
[at the minimum ofK(H)], amount to only several percent
of the total number of curves measured. In what follows we
derive equations that make it possible to obtain quantitative i H
estimates of the parameters of the curidgsl). |
v M2
3. EQUATIONS FOR MAGNETOELASTIC WAVES NEAR A £\ ' x
NUCLEAR MAGNETOACOUSTIC RESONANCE ON ™M X
NUCLEAR SPIN WAVES M, A

In this section we present numerical results for the mag-
nitude of the indirect interaction of elastic waves with
nuclear spin waves via vibrations of the electronic magnetig:c. 3. Orientation of the wave vectar of the incident elastic wave, the
momentsM(r;) and the vibrational amplitudes of magneto- magnetic fieldH, the sublattice magnetizatios; andM,, and the antifer-
elastic waves. To describe the elastic waves we employed tHamagnetismL and ferromagnetisnM vectors relative to the axes of the
standard equation of elasticity thedry KMnF; crystal.

Pu, do
e ®) o |
at B netoelastic interaction constants. We note that in(Bgonly
whereu, (a=x,y,Z) are the components of the displace- thzta .flrscti two terms of the expansion in powers Mf are
retained.

ment of points of the elastic medium.,is the density of the
medium,t is the time,r , are spatial coordinates, aq,z is
the stress tensor, which is a variational derivative

of the free energyF with respect to the deformations,,z
=du,/dr 5. For a magnetically ordered elastic medium with
a hyperfine interaction, the expression Focan be written in
the fornf* (up to terms quadratic iM). In this approximation Eq(5)

F=Fg+Fy+Fue+Fue, 7y can bewritten

Since in KMnF; the vectorL (Fig. 3) lies in thexz plane
(the (002) plane, it is sufficient to retain in Eq(8) only the
terms containind3;, since

d d
2,02y 2_
gy (Lt LD = gyL?=0

where Fg is the elastic deformation energy, which deter—[wZ_QZ(q)]uy(q'w)

mines the velocity of the acoustic wavdsy, is the energy o

responsible for the properties of the ordered magnetic mo- =19p ‘Ba[My(0,@)L,(q,®)+M,(q,®)L(q,®)],
mentsM(r;) (it includes the exchange interaction, the mag- (10)
netic anisotropy, the Dzyaloshingkinteraction responsible

for weak ferromagnetism, and interaction with the magnetiGyhere

field H), F e is the magnetoelastic interaction energy of the

vectorsM(r;) with the elastic deformatiorld,;, andF ¢ is

the hyperfine interaction energy of the nuclear and electronic  uy(q,w)= f dyJ dtexpi ot+igy)uy(y,t) 11
magnetic momentsn(r;) andM(r;), respectively.

For longitudinally polarized elastic waves with wave . . -
vectorq |y (Fig. 3, the expression foF e , taking account is the Fourier transform of the elastic displaceman(sg,t)

. (the quantitiesM, ,(q,w) and L, ,(q,w) are defined simi-
of the crystal symmetry and magnetic strucltré of Xz Xz .
KMnF,, can be written in the forfh larly), andQ(q) =Vq andV are the frequency and velocity

of longitudinal elastic waves.
5 5 5 The relation(10) can be further simplified by expanding
Fme= _f dri{BsLy(r)+BalLi(r)+Lz(r)] the expressions foM, andL, in terms of small vibrations
due to their interaction with the elastic displacemeniy,t)
+Ba[Mx(NL(r) +Mo(NL(N1IUyy(r), (8 and vibrations of the nuclear magnetizationgy,t) of the
whereU,,=du,(r)/dy is the only nonvanishing component sublattices. To do so, it is necessary to transform ftoand
of the deformation tensor for the elastic waves under considM (9) to the sublattice magnetizationd; andM,, writing
eration; them in coordinate systems(,y;,2z;) and (X»,y,,2,) as-
sociated with the equilibrium orientations of the sublattices
L=M1—M;, M=M;+M, © Mo andMyg (z1 ]| M1g, Z || Myg). Then, to a first approxi-
are antiferromagnetism and ferromagnetism vectors for &ation it is sufficient to take account of only the components
two-sublattice antiferromagnety; andM, are the magneti- M, andM,,, wherej is the sublattice indexjE1,2). As a
zations of the sublattices; and;, B,, andB; are the mag- result, Eq.(10) becomes
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[wz—Qz(q)]uy(q,w) whereM, andmjy are the equilibrium values d¥l; andm;
N ) and vy, is the nuclear gyromagnetic ratio. Substituti(igh)
=igp~"B3My sin 2p{cosy{ My, (0,») —My (q,®)] and (17) into Egs.(12) and (19) yields the system of equa-
. tions
—25sin Y[ M, (0,0)+ M, (q,0)]}, (12 . .
[0"=0%(q,H)]Juy(q, ) —ip "qaz(q,H)I(q,w)
where "
—ip~ qay(q,H)M(q,0)=0, (20)
Maj(q,w)=fdyf dtexpliot+igy)M, (y,), (13 [w?—wi(q,H)IM(G, @)+ 2igyameas(d,H)uy(q,) =0,
(21)

a=X,Y; My is the equilibrium value oM (9); ¢ is the polar s 2 .

angle of the fieldH (Fig. 3); and ¢ is the azimuthal angle of [w— on,(0,H)]I(9, @) +2iq ypmoa(d,H)uy(q, ) =0,

the vectorlL in the xz plane. The quantity can be found by (22)

solving the fairly complicated trigonometric equatitt®); it (g, w)= myl(q"") — myz(q*“’)*

depends on the intensity of the field and its orientation

relative to the crystal axes. In the present paper we do ndn(d,w)=my (q,»)+m, (q,0), 23

analyze these dependences, since they are immaterial to

description of the gigantic decrease in the acoustic transmity €€

tance in KMnF. Q(q,H)=q{V+p 1B5Mj sirf2¢[ x»(q,H) coe
The component# X; andMyj in Eq. (12) were found by

H 1/2
minimizing the magnetic part of E§7) in the linear approxi- +4x1(q,H) sirfy]} (24
mation inFyg (8), with is the frequency of the longitudinal acoustic wave with al-
s lowance for the magnetoelastic interactiepg (8), and
Fre=— drA]_Z,l M, (r)my(r). (14) on1(A,H) = yo{ AM[AMo— 2A’mox, (g, H) 1}, (25)

@n2(d,H) = yo{AM[AMg—2A%mox,(q,H) }2  (26)

are the frequencies of the two branches of the nuclear spin
wave. The second terms in Eq®5) and (26) describe the
so-called dynamic shift of the NMR frequency. On account
of the factorsy; andy, they depend on the magnetic figtd

This makes it possible to tune to the nuclear magnetoacoustic

The component$/ aj(q,w) (13), uy(q,w) (11), and

maj(q,w):fdyf dtexp(iwt+iqy)maj(y,t) (15

satisfy the relations

Mxl(q"") = sz(q,w) resonance frequendy) by varying the field intensityd. The
parameters
= —+ —
Xl(an){A[mxl(q1w) mxz(q,w)] 2B3I\/|O al(q,H)ZZABSMO)(l(q;H) sin Z‘P sin lﬂ, (27)
Xsin 2¢ sin yuy(g, o)}, (16) (0, H)=ABsMox,(q,H) sin 2 cosy (28)
My, (0, 0)=—M, (q,®) determine the magnitude of the indirect interaction of the
longitudinal elastic waves with the first and second branches
=x2(0,H){AlMy (q,0)+my (q,@)]+BsMo of the nuclear spin wave.
Xsin 2p cos Yuy(q, @)}, @D, biscussion

wherex,(g,H) andx,(q,H) are the components of the sub- g0 properties of the functioki(H) (4) can be ob-
Iattlcse susceptibilities, which depend on the same quantitie,i o4 even without solving Eq&20)—(22).

as ¢.” Just as forp, these dependence_s were not analyzed in 1) The nuclear magnetoacoustic resonance condifipn
the present work. Nonetheless we singled outdr@ndH 5 e satisfied by varyingl while holding the frequency

dependences, since for what follows it is important that sucly ot the incident acoustic pulse constant. This is possible
dependences exist. because of the strong field dependence of the frequencies

The componentsmaj were found from the Bloch wn1(q.H) (25) andw,,(q,H) (26), which were investigated
equation¥’ experimentally in Ref. 6.

om; 13t=yym; X H;, (18) 2') As foIIovys from Eq.(28)., for 4=90° the magneto-

elastic interaction of sound with the second branch of the

whereH;= 6F,/om; are the effective fields acting an;  nuclear spin wave, which is described by the varidbtgpw)
andm, due toM; andM,. In the linear approximation in (23), vanishes. The satisfaction of this requirement was spe-
M, these equations are cially checked in Ref. §see Figs. 3 and 4 in Ref)5

3) According to Egs.(27) and (28) the magnetoelastic
coupling uy(q,w) with both branches of the nuclear spin
wave should vanish at singz0. Since the angle depends
on the azimuthal anglé® of the fieldH, the curvesu(®)/ug

amxj [ot= ynAMOmyj — ¥nAMmgM v

amyj [ot=— 7nAM0ij + ynAmoij, (19
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should contain points where(®)/uy=1. This conclusion ments these conditions must be prescribed in a form corre-

also agrees with the experimental data of Refsé&e Figs. 5 sponding to a Cauchy problem for the sample surfaed®

and 6 in Ref. 5. on which the acoustic pulse is incident. Strictly speaking, the
4) The magnitude of the indirect interaction of the elasticinitial conditions must also be taken into account. But for the

oscillationsuy(q, w) with the nuclear spin wave, just like the sake of simplicity, we decided to neglect transient processes

dynamic shifts of the NMR frequencie®5) and (26), is  and to work with the Fourier transforms with respect to time

proportional tomy and y; ,(q,H). This means that the mag- t. For the latter, the boundary conditionsyat 0 are

netoelastic effects due to nuclear spins should decrease to- m(0.0)=1(0,0)=0

gether with the dynamic shift. The absence of appreciable ' ' '

magneto acoustic effects in FeBQwhere the width of the Uz (@) + Upy(w) = Uy (0,0)expligg), (35

band of nuclear spin wavesvhich coincides with the mag-

nitude of the dynamic frequency sHifis 1 times smaller where m(0.w) and|(0.w) are the values of(y,w) and

than in KMnR;, agrees with this result. I(y,0) aty=0,
To analyze the other properties K{H) (4) it is neces- ot
sary to know the explicit form of the solutions of E480)— uy(0,0)= f dte“uy(0t) (36)

(22). These will be obtained for the case in which the fre- ] o ]
quencies of the nuclear spin wawe,(q,H) (25 and IS the Fourier transform of the incident pulse, from which the

wo(a,H) (26) differ substantially in magnitudénondegen- reflected pulse is subtracted, apglis the initial phase of the
erate case Then the condition for nuclear magnetoacousticVave that has entered the sample. The center frequency
resonancél) with each branch of the nuclear spin wave will u(O,w) of the spectrum equals the frequenfdy of the

be satisfied for different values &f, so that Eqs(20)—(22) ~ acoustic generator, and the wid#hw of this spectrum is
can be solved, setting determined by the pulse duration

w2 (q,H)=03(qH), 1(9.0)=0 (29 Sw=2mlr. @37
H nder nuclear magnetoacoustic resonance condit@®sor

in the case of nuclear magnetoacoustic resonance with t ;
9 (30) we obtain from Eqs(20)—(22) and (35)

first branch of the nuclear spin wave, and

1

03y (q,H)=08(q,H), m(g,w)=0 (30) Uy (@) = Up(@) = 5 Uy(0.0)expli go). (39)
for resonance with the second branch. o ) ) ]

The characteristic equation for the systé26)—(22) de- Substituting the expressidi38) into Eq. (34) we obta!n for
termines the wave vectorg andg, for the two branches of Uy(Y,®) at the second end surface of the sample: (©)
magnetoelastic waves in each of the indicated varig2@s Uy(Z, ) =u,(0,0)explieo)[explig; ) +expliq, ) 1/2.
and (30) of nuclear magnetoacoustic resonance. The corre- (39

sponding equations with the conditio(9) are The detected acoustic signal is determined by the function

[Q2—Q2(q,H)][Q3— w?,(a,H)]—g?a3(q,H) u,(,t) , which is related tai (.4, w) (once again with the
1 exception of the reflected wayvby an inverse Fourier trans-
X(2p~ *y,Mp) =0, (31 form
[Q56-Q%(a,H)IL0G~ wpa(a,H)] - a%a(q,H) (o L f et 7.0) 0
u(Zt)y=-—| dwe '"*u (% w).
X(2p~ tyamg) =0. (32) Y 27 y

Each of these equations possesses two rogtandq,. The ~ The result of the integration in Ed40) depends on how
analysis of these roots falls outside the scope of the presefitrong the frequency dispersion of the magnetoelastic wave
work, since we did not investigate the properties of the pavelocities

rametersa, 5(q,H) (27), (28). Only one property of these Vi(0)=0lgy(o), Vi(0)=wlg) ) (41)

roots will be important below:
is within the frequency spectruMo (37) of the incident

Aa/go=[d1—0l/gqo<<1, (33 pulse. If thew dependence o, andV, can be neglected,
whereq, is the value ofg satisfying the condition§29) or ~ then Eq.(40) can be written
(30). The inequality(33) follows from the requirement that 1
the second terms in Eq§31) and (32) be small compared u,(~,t)= E{Uy[o,(t—f/j/vl)]-i-Uy[o,(t—;:%yvz)]}, (42
with Q2(q,H).

Using q, anddq,, the expression for the elastic compo- where u(0t) is the amplitude of the elastic displacements
nent of the magnetoelastic waves in the sample can be wriexcited at the sample surfage=0 by the incident pulsgsee
ten Eq. (36)], and

uy(y, o) =us(w) expigq.y)+ux(w) expligyy),  (34) t,=YIVy, =21V, (43

where the coefficientsi; and u, must be found from the are the propagation times of the first and second magneto-
boundary conditions for Eq€$5) and (19). For our experi- elastic waves through the sample.
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It follows from Eq.(42) that the incident pulse excites in
the sample two magnetoelastic pulses with equal amplitudes - 70a
and with the same shape as the incident pulse. This fact was 1 0
already used abovesee Sec. 2 However, such an equality 2 “ 3000
occurs only under conditions of nuclear magnetoacoustic 3“3338
resonancé29) and(30) [see also Eq(1)], where the relation 5 ﬁ__ 4000
(38 is satisfied. As the distance from resonance increases, g“. I ﬁ%
the two magnetoelastic waves in question become less and 8“4600
less alike, so that they even have different names: elastic-like ;3 [Sersnie s e o | gggg
and spin-like waves. This inequivalence is manifested, spe- /; PR SRR R PRI -
cifically, in the fact that the amplitude of the elastic-like i2=5250
wave excited by the incident acoustic pulse is greater than ﬁ“ gggg
that of the spin-like wave, and this difference increases with 15 .m‘ 5400
distance from resonance. 16 B o e e 5450

We do not present here the corresponding expressions i;“ o
for u,(#,w) for two reasons. In the first place, they are !9-_2232
much more complicated than E@2). In the second place, zoﬁ
they can be used only if the explicit form of the functions “ 630
x1(0,H) andy,(q,H) is known[see Eqgs(16) and(17)]. We o “ 5700
have yet to do such an analysis, but for the time being we 22 “ 5800
confined ourselves to analyzing only Eg2) for two cases:
lty—t,|<r and|t,—t,|> . 23———*— 6000

| e |

a) In the case 193 6
[ti—ty| <7 (44) . iy - _
FIG. 4. Oscillograms characterizing the transmission dynamics of an ultra-
the pulses of the magnetoelastic waves excited by the inckonic pulse through a sample as a functiorHof
dent acoustic pulse emerge at the sample surfgee )

virtually simultaneously, so that the difference between the )
velocitiesV; and V, will be manifested only in the phase other, and therefore they can be studied separately. To assess

difference between these oscillations. In this approximatior‘ihe pgssibility of ggtisfying the inequalitid®) under our
Eq. (42) can be written in the form experimental conditions we used E¢41l) and(43) and the

parametersr~10 %s, V~10° cm/s, and%#~10 mm. This
uy (£, 1)=u,[0,(t—£1V,)]cogAq.£12), (45

made it possible to write the inequalit}6) as
whereAg=q;—(, andVy= w/qo=(V1+V,)/2 is the aver-

Ag/qy>0.1, (47
age propagation velocity of magnetoelastic waves. It follows . . . . .
from Eq. (45) that at timety=_%1V, after the exciting pulse whereqp is determined just as in Eq33). Comparing Egs.

reaches the opposite surface of the sampie (), an (47) and (33) shows that the inequality47) is consistent

acoustic pulse with the same shapgO;t) as the incident y;tlzeiqéf(isc’q) g;/tei}stf;nga':;nzwinr:;]g;it?ﬁl% I\rr/:arsiot\)/eeriagz
pulse but with a different amplitude because of the factorenough that thas dependence o, andV, (41) starts to
cos(Ag~/2) is formed. This factor describes the influence ofCome into play. As is well known 1such azdependence leads
the interference effects that were discussed in Sefits2 : '

o ; . to distortions of the pulse shape and size. We assume that
argumentAqg.# is identical to the expression for the phase s . .
. these effects made it impossible for us to consistently ob-
differencedo (%) (3)].

Of course, Eq(45) cannot be used to describe the ex- serve the splitting of the acoustic pulse transmitted through

perimental dependences of the rakigH) = u(H)/u, which tsr:;t}iél\:nﬁ sample in the experiments discussed in the next
are presented in Ref. 5. This is because it is valid only at thé '
magnetoelastic resonance frequerity. Since its position
depends orH, Eq. (45) can describe only one point on the 5- MEASUREMENTS OF THE VELOCITY OF
curve K(H). But this point can fall in the region where MAGNETOELASTIC WAVES NEAR A NUCLEAR
Aq.%= 7 and therefore coAlg4/2)~0. Thus Eq(45) dem- MAGNETOACOUSTIC RESONANCE
onstrates the possibility of achieving a large magnetoacoustic ~ Single-crystal KMng samples in the form of 44X7
effect by the interference mechanism. mm® parallelepipeds were used in the experiments. The crys-
b) The case tal structure and the geometry of the experiment are de-
scribed in Ref. 5.
ity >7 (46) The time intervak between the radio pulse of the trans-
is interesting primarily because under this condition the magmitter and the first ultrasonic pulse transmitted through a
netoacoustic pulses excited at §ve 0 surface of the sample compound resonatbtwas measured to determine the speed
separate completely when they emerge at the susfacé’. of soundV. The single-passage time of an ultrasonic pulse
After such separation they no longer interfere with one anthrough the sample was determinedtgg,c=t— 2tyansand
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Vv, 105 cm/s oscillograms2—11 and a decrease is observed in the oscillo-
10 grams11-13.
3l .{. . The oscillograms14-22 show the restoration of the
= . transmission time. The dependendg) is displayed in Fig.
of . 5. The broadening of the transmitted acoustic pgtseillo-
* grams2-22) and the change in the pulse shape attest to a
4t v substantial frequency dispersion of the speed of sound within
2 & the frequency spectrum of the pulse. If this dispersion were
2r , weaker, so that the transmitted pulse had an appreciable am-
0 . . ¢ . plitude at magnetoelastic resonance, it might have been pos-
3000 4000 5000 6000 s_|ble tq observe the. sphttmg of the acoustic pulse, as men-
H, Qe tioned in the preceding section.
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The results of an experimental investigation of the temperature dependences of the magnetic
susceptibility and resistivity in the shape-memory ferromagnetic alloys,Nin, _,Ga

(x=0-0.20) are reported. A—x phase diagram is constructed on the basis of these data. It is
shown that partial substitution of Ni for Mn causes the temperatures of the structural
(martensiti¢ T,, and magnetid’ ¢ (Curie poin} phase transitions to converge. In the region
whereT-=Ty the transition temperature increases linearly with magnetic field in the range from
0 to 10kOe. The kinetics of a magnetic-field-induced martensitic phase transition is
investigated, and the velocities of the martensite—austenite interphase boundary during direct and
reverse transitions are measured. A theoretical model is proposed amebthghase

diagram is calculated. It is shown that there exist concentration ranges where the magnetic and
martensitic transitions merge into a first-order phase transition. The theoretical results are

in qualitative agreement with experiment. 99 American Institute of Physics.
[S1063-776(99)01605-4

1. INTRODUCTION not only by varying the temperature and pressure but also by
varying the external magnetic field. For applications it is also
It is well known that some metal alloys undergo revers-helpful that the martensitic transition and the ferromagnetic
ible, crystallographic, thermoelastic, martensitic transformaproperties appear in this alloy near room temperature.
tions which are accompanied by a shape-memory effect. This For the stoichiometric composition of the alloy
effect is ordinarily manifested as follows: a deformed sampleNi,MnGa the ferromagnetic transition temperaturgg
in the low-temperature martensitic phase returns to its initia=376 K, and the structural transition temperature,
shape after the stress is removed and the sample is heatdq,=202K, differ strongly. The temperaturé&: and Ty,
The restoration of the initial shape is attributed to a reversean be changed by purposefully changing the composition of
ible transformation of the deformed martensitic phase to ahis compound. To realize this possibility some Mn atoms
high-temperature austenitic phase. These alloys can hmust be replaced by Ni atoms. Then the distance between the
trained by repeated deformation and heat cycling. In thisvin atoms in the alloy will increase, and therefore the ex-
manner, a bilateral shape-memory effect can be obtained. Ichange integral and magnetic transition temperafigevill
this case the sample will spontaneously acquire a definitdecrease. On the other hand, an increase in the electron den-
prescribed shape, wherein the austenite transforms to martesity accompanying the substitution of Ni atoms for some Mn
site and the reverse transformation returns the sample to ieoms will be accompanied by an increase in the volume
original shapé. bounded by the Fermi surface and by an increase in the
In most cases shape-memory alloys are nonmagnetistructural transition temperature. Thus in the alloys
and the methods for influencing their shape and size are limNi,, ,Mn,;_,Ga, Ty can be increased anit decreased by-
ited to stresses and temperature. However, in Mn-bearingartial substitution of Ni for Mn until these temperatures are
Heusler alloys an indirect exchange interaction between ththe same.
magnetic moments of the atoms produces ferromagnetism. One objective of the present work is to investigate ex-
Among such alloys there is one compound,MinGa, that perimentally the anomalies of the electrical conductivity and
undergoes a martensitic-type structural transformation to thenagnetic susceptibility of the alloys Ni,Mn,;_,Ga with x
ferromagnetic phase? The combination of magnetic order- =0-0.20 near the martensitic and magnetic phase transi-
ing and shape memory makes this alloy promising in theions, whose temperatures convergexamcreases, and to
search for the possibility of controlling the shape of a samplestudy in greater detail the properties of the alloy with coin-

1063-7761/99/88(5)/9/$15.00 954 © 1999 American Institute of Physics
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cident phase transition points, specifically, the influence of a
magnetic field on the structural transition point. Another ob-
jective is to construct a theoretical model that describes all
phase transformations, taking account of the interaction of |
the magnetic and elastic subsystems, to calculateTthe 0y
phase diagram, and to assess the influence of a magnetic fielc _ ;

2. EXPERIMENT
2.1. Samples and procedure

The polycrystaline samples of the alloys
Ni,. «Mn,;_,Ga investigated in the present work were pre-
pared by arc melting in an Ar atmosphere on a cold hearth.
More than twenty ingots of these alloys with concentrations
x=0-0.20 were obtained. The samples on which measure-
ments of the resistivity and the low-field magnetic suscep-
tibility x were performed were cut from ingots by the
electric-spark method. The resistivity was measured by the
four-point scheme, and the magnetic susceptibility was in-
vestigated by the induction method. These procedures mea- ‘-
sure the sample-averaged values of the transition parameters
The measurement accuracy is determined by the inhomoge-
neity of the polycrystalline sample.

Optical measurements were performed for local investi-
gation of the martensitic domain structure and to determine *
the temperature of the structural phase transition with a real .‘
resolution over the sample. To this end, chips approximately
5X5X2 mnT in size were polished at room temperature and
then subjected to heat cycling. In an experiment a sample
clamped to a substrate in a two-loop heat bath with transpar- |
ent windows was placed between the poles of an electromag-
net and observed under a microscope with oblique illumina-
tion. The mechanical stresses produced by a structural phase g
transition form a relief on the surface. The directions in
which the variation of the relief of individual microsections
of the sample surface yield the greatest optical contrast as a T
result of a martensitic transition can be found by adjusting
the angle of incidence of the illumination. The formation and %
motion of a martensite—austenite boundary as well as the *
formation of martensiti¢structura] domain walls can be ob-
served under a microscope. The evolution of the motion of
the walls was recorded with a video camera. A typical pat-
tern on the surface of a sample in the austenitic state is dig/C- 1. Photomicrograph of the surface of a,NMnog;Ga crystal in the
played in the photomicrograph in Fig. 1a. In Fig. 1b the sam@Ustenitic@ and martensitieh) states.
section is shown in the martensitic state. The boundaries of
microcrystals and martensitic domains in the form of plates
or stripes differently oriented in different microcrystals arewalls and the temperature range where the phase boundary is
clearly seen. The observations were performed in 0—10 kOmobile are different. Typical data characterizing the tempera-
fields, and the variations of the sample temperature werture variance of the direct and reverse structural transitions in
monitored with an accuracy of about 0.03 K. different microcrystals in the same sample are displayed in

As a result of the inhomogeneity of a polycrystalline Fig. 2. In this figure the arbitrary numbbiof a microcrystal
sample, the processes leading to the formation of martensitio the field of view of the microscope is plotted along the
domains in each microcrystal proceed at their own individuabrdinate in order of increasing transition onset temperature.
temperaturga microcrystal is about 0.3 mm in size and thelt is evident from this plot that indifferent micro-
variance of the transition temperatures is approximately.1 K crystals not only the transition onset point but also the tem-
Appreciable qualitative differences in the processes leadingerature range where the phase transition boundary passes
to the formation of martensitic domains in different microc- through the entire microcrystal are somewhat different in dif-
rystals are also observed. Specifically, the velocity of theerent microcrystals, as is the width of the temperature hys-
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martensitic transitions for the sample,NiMng g,Ga. -
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teresis loop. The magnetic field dependence of the phase x

tran'Sition pargmeters and of the C_haraCteriStiC featl_'lres of theg. 4. Concentration dependences of the structural phase transition tem-
motion of the interphase boundaries was also studied locallyeratureT,, and the magnetic phase transition temperafigref the system
in individual sections of the sample. of alloys Ni, ,Mn;_,Ga (experimeni

2.2. Temperature and concentration dependences of the ] ] ]
magnetic and electric properties characterized by the point$,y and Ty, of the direct

) (austenite—martensijteand reverse(martensite—austenite
The experimental temperature dependences of the resigs aitions Tau<Twa), respectively. For simplicity, the
tivity p(T) and the low-field magnetic susceptibili(T) ¢\ rves obtained during cooling are displayed in Fig. 3. As
obtained for some alloys are presented in Fig. 3. A kink wagpe composition changeickel content increased at the ex-
observed in the curvgs(T) at the point of a magnetic phase ,onge of manganesehe magnetic and structural phase tran-
transition, and a jump occurred at the point of a structuraEition temperatures converged, and the valuegpand Te
phase transition. The increase in the slope of the cu(T®  \yere essentially identical for=0.18—-0.20. Figure 4 shows

at the transition from the paramagnetic to the ferromagnetig- (x) andT¢(x) constructed from the current experimental
state can be attributed to a decrease in the scattering Hfgta.

charge carriers by magnetic fluctuations. The jump in the
curvesp(T) is due to the critical structural fluctuations in the » )
region of formation of a martensitic phase. In the curves?-3: Martensitic domain structure and the effect of a

- . magnetic field on the transition point
x(T), as temperature decreases, the signal increases abruptly
at the point of a magnetic phase transition and it decreases We investigated experimentally the effect of a magnetic
just as abruptly at the point of a structural phase transitionfield on the formation of structural defects accompanying a
This decrease is due to an increase in the magnetic anisanartensitic transition in polycrystalline samples with nonsto-
ropy of Ni,, ,Mn;_,Ga in the tetragonal phase. Near a struc-ichiometric composition Ni;gVMingg:Ga. The martensitic
tural phase transitiom(T) and x(T) exhibit temperature transition temperature in a sample with this composition is
hysteresigwhich increases witkx). The phase transition is close to the Curie pointTc~338K, Taoy~337K, Tya

p. arb. units X arb. units
L.6r L
a L b
1.0
1.4t -
f 0.8F
L - 1 2
1.2 i 314 5
L FIG. 3. Temperature dependences of the resistivity
0.6 - (8 and magnetic susceptibilityb) of the alloys
Lof i Niy.Mn;_,Ga with x=0 (1), 0.05 (2), 0.10 (3),
r 6 =~ 0.13(4), 0.16(5), and 0.196). The arrows mark the
0.4 ‘ phase transition points.
0.8¢ T
0.6- 02F [k
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T, K 3. THEORY
342¢
Ty, w ot 3.1. Phase diagram of a cubic ferromagnet
41t L4 .
341 st art We employ Landau’s phenomenological model of phase
A .. .
saph maststt 4 transitions to analyze the phase diagram of the ferromagnet
1 T,y v Ni,,Mn,_,Ga. We consider a cubic ferromagnet with the
335t . v 1AM point symmetry grougDy, and a magnetic phase transition,
AR Y which is accompanied by the onset of spontaneous magneti-
o v . . . . oy
SEa zationM, and a characteristic ferroelastic phase transition to
333 , , . X L a tetragonal phase witD,, symmetry, with the onset of
o 2 4 6 8 10 spontaneous deformatiofisi In this case the order param-

eters describing the structural transformations are compo-
FIG. 5. Temperatures of the direThy, and reversd,, martensitic tran-  nents of the macroscopic deformation tensgr. We de-
sitions versus the external magnetic field for one section of the samplgcripe the magnetic phase transitions by components of the
Niz 1Mo 5:Ga. macroscopic magnetizatiod. Then the expression for the

thermodynamic potential of the ferromagnet can be written

_ l 2 } 2., .2 1 2, .2, .2
®=5(cyyt2cpef+ sa(es+e3)+ 5Cquy(ey+es+ep)
~342 K). The transition in temperature therefore occurs 2 2 2
from the paramagnetic austenitic phase to the ferromagnetic 1 1 1
martensitic phase and vice versa. + -bey(e3—3e3)+ ~c(e3+e3)°+ —B,e;m?

In the experimenT 5y, andT)y, 5 are observed to increase 2 4 V3
in a magnetic field. They increase linearly with the field with 1 1
a slope of about 0.150.02 K/kOe in 2—10 kOe fields, while +B,| —=e,(m2—3)+ ——=ey(3m5—m?)
slower growth is observed in fields below 2 k@e€ig. 5. V2 G
Data are presented for one of the crystallites. Since the in- 1
crease in the tre_msition temperature does not exceed 1.5K + B3(e4mymy+esmoms+ egmgmy ) + Eal(mi
even a 10 kOe field and remains of the same order of mag-

nitude as the nonuniformity of the transition temperatures . .1 s 5. 2 -
over the volume of the sample, it becomes understandable +ma+mg)+ 7 S1(my+mp+my)“+ Ky (mym;
why the shift of the structural transition point in a magnetic

field cannot be observed by other methods. +mim3+mim?) — vTe;. 1)

In Ref. 7 the shift of the martensitic transition tempera- . L
I L . . Here thee; are linear combinations of the components of the
ture of a stoichiometric single-crystal MilnGa sample in a ; )
deformation tensoe;y :

magnetic field was investigated by the dilatometric method.
In this case the authors observégy and Ty, to decrease 1 1
with increasing field. This result might be due to the factthat  e;=—=(&xT€yy+€;), €r=—=(Ex—€yy),
in contrast to our experiments, the structural transition occurs \/§ \/E

from a ferromagnetic austenitic phase to a ferromagnetic
martensitic phase.

We also studied the effect of a magnetic field on the

kinetics of a martensitic transition, and we demonstrated that
the motion of a phase boundary can be controlled by a mag- €4=€y: ©€s=€yz, €s=€y,

netic field. Turning on a magnetic field in a certain tempera—a, b, andc are linear combinations of the components of the

ture range, which depends on the magnitude of the fieldh5stic moduli of second, third, and fourth orders, respec-
(somewhat abov@ ), during cooling of the sample gives tively, and are given by

rise to motion of the phase boundary with formation of mar-
tensite. Turning off the field in a certain temperature range
(somewhat abové&,, ) with the sample temperature increas- a=Cy;—Cyp, b= —=(C111—C11+Ci23,
R . ; 616
ing gives rise to motion of the phase boundary in the oppo-
site direction with formation of austenite. 1

The velocity of the phase interface with decreasing tem- c= 4—8(c1111+ C1112~ 3C1125— 8C1129,
perature(austenite—martensite transitjas higher than with
increasing temperature(martensite—austenite transiton m=M/M,, M, is the saturation magnetization far from the
Typical velocities are 107 and 5 10~ 3 cm/s, respectively. It Curie point,«; and 8, are exchange constan®,; and By s
was also noted that there was a delay of about 1s betweedre, respectively, the exchange and relativistic magnetostric-
the field being turned on or off and the phase boundary betion constantsK; is the first cubic anisotropy constant, and
ginning to move. v is the thermal expansion coefficient.

e;=—=(2e,,—e,,—€eyy),
3 \/E( zz XX vy
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As the point of the structural phase transition from thestable for
cubic to the tetragonal phase with a two-component order ) ) 2
parameter €,,e;) is approached, the elastic modulas o= Eb a< b_ a= b__( ay6e L )
=Cq,— Cq, approaches zero. In the expression for the free J6¢c’ 4c’ 4c
energy, only the terms that are responsible for this transitio? L .
are retained in the terms containing the third and fourth pow{ " Simplicity we drop the subscript 0By).
ers of the components of the deformation tensor. The third- 3. Cubic ferromagnetic phase
order terms present in the thermodynamic potential give rise m o
to a first-order structural transition. €,=€3=0, m=my=my=—, m’=-— ,
The expressionil) describes the case in which the mag- V3 o-4al3
netic and martensitic phase transition temperatures are closgaple fora<0 anda=B?q, whereq=|K]|.
to one another, as well as the situation in which these tem- 4. Tetragonal canted ferromagnetic phase
peratures differ substantially. In the first case, near the mar-
tensitic transition temperature the magnetic moment varies 9 9 1 «a Be;
strongly with temperature, both in direction and magnitude. M=M=~ 3 5= 4q/3“L \/‘T
In the situationT->T),, the structural phase transition is

accompanied primarily by a change in the direction of the 5 1 « 2Be,
magnetization. my=—3 5—4qi3~ \/—T

Minimizing the thermodynamic potential with respect to q
the components ofthe deformation tenegr e4, €5, andeg, b+ Vb%—4c(a—B?/q)

which are not responsible for the structural phase transition, €,=0, e;=

the expressioril) becomes 2¢
stable for
1 2 2 1 2 2 1 2 2\2
=P+ Ea(e2+e3)+ §be3(e3—3e2)+ Zc(e2+e3) b2 B?
as R‘F E,
1 1
+B, ﬁez(mi—m§)+%es(3m§—m2) b B \Fq afe b ?
=2 g 3B 6-4053 20|
+1a(m2+ m2+m2) + 16(m2+m2+m2)2
2 1T M)+ 1My My _ J6bB 4q
a<-— __1
4c 3
+K(m2m3+ m2m2+ m3m?), () q
H 5. Tetragonal collinear ferromagnetic phase
where
B,T BZ m;=m,=0 m2__1<a+48e3)
v 1= M=V, 3=~ o ,
a=a1+—l, 5:51_—1, 1) J6
V3 (Cy+2¢10) 6(c11t2¢1))
2
B2 e,=0, ae;+bej+cei+ \/% Bn?=0,
K=K;— =—
2C44

stable in the region bounded by the curves

are the magnetostriction-renormalized exchange constants b2 B2 > Je 2

and the first cubic-anisotropy constant. am o = \/j dave | b =0
To find all possible structural and magnetic phases, the 4c ¢ 3 B(6—4a3) 2c)’

potential(2) must be minimized with respect to the variables

e,, e3, My, m,, andms. As a result, we find the following and

states of the ferromagnet under study and their stability con- b2 aJ6e b \?

ditions, choosing for definitenesds>0, ¢>0, and K<0 a:R_<W__> , a=0
(which corresponds to magnetization orientation in[thil] 2\c

direction in the cubic phase; this state occurs in the StOiChiOand the upper part of the discriminant curve of the cubic
metric alloy N,MnGa). equation determining the deformatieq in this phase(see

1. Cubic paramagnetic phase Eq. (5) below).
In the cubic ferromagnetic phase 3, the magnetization

My=m,=ms=0, e,=e;=0, M ||[111]. In the canted ferromagnetic tetragonal phase 4,

stable fora=0 anda=0. the magnetizatioM changes direction from tHd 11] to the
2. Tetragonal paramagnetic phase [001] axis as the temperature changes. FindWy|| [001] in
the tetragonal collinear phase 5.
b+b’—4ac It follows from symmetry considerations that besides

m;=m,=m3=0, e,=0, ez=-— , .
1 2 3 2c these states, other tetragonal phases with the same energy
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phase 2 this region is bounded by the IIBAD, and for
phase 3 it is bounded by the lin¢' HEC. Phase 4 is abso-
lutely stable in the regionl' HK, and phase 5 is stable in the
regionKHEAD. The lines of instability in Fig. 6 are dashed:
% M the linesCO andOQ’ for phase 1IM'M andMD for phase
2, F'F and FC for phase 3,G’'GHK for phase 4, and
- KLL'PD for phase 5. The coordinates of the characteristic
points of this phase diagram are presented in the Appendix.
In phase 5, the thermodynamic potential can have one or
two minima as a function of the deformation. In the latter
case there can exist two phases, differing with respect to the
magnitude of the spontaneous deformation but identical with
respect to the magnetic and crystallographic symméthies

region of a double-well potentialThe cubic equation
FIG. 6. Theoretical phase diagram of a cubic ferromagnet in the coordinates

2 O

of the structurala) and magnetic4) order parameterschematically. 1 — 3 9 ~ 2 a

cubic paramagnetic phas2 — tetragonal paramagnetic pha8e— cubic ce;+bestae;— /5 =B=0, (4)
ferromagnetic phase; 4 dn5 — isostructural tetragonal ferromagnetic 346

phases. Solid lines — phase transition lines, dashed lines — phase- . . . .

instability lines. which determines the deformatian in phase 5, possesses

three real roots, and its discriminant is negative. Herea
—4B?/26. Stability analysis of the solutions shows that only
and domain of stability as those indicated above can alsévo of them correspond to an energy minimum. The dis-
occur in a ferromagnet. States with||[100] andM ||[010]  criminant curve of the cubic equati¢d) can be expressed as
are energy-equivalent to phase 5. Canted states, which are ~ ~\ 302
V6 803 9ca +( 30a>

similar to phase 4, and in which the magnetization changes _ B I
direction from the[111] to the[100] and[010] axes, and in 27Bc? 2b? b?
which the deformations are given by

b+ b%—4c(a—B?/q)
B 2c ’

©)

The region of the double-well potential lies in Fig. 6 inside
the contourQ’'SQLL' PD, the linesQ’'SQandLL’P being
the discriminant curvetb).

L . The lines of isostructural phase transitions between the
can arise in the same manner. The existence of several

. . - ; etastable tetragonal phasesRH) and between the stable
phases with the same energies and stability regions leads }0 , . e .
. : L etragonal phases 5ER’), with differing magnitudes of
the existence of structural and magnetic domains in ferro-

magnets. We note that from the standpoint of a tetragonaﬁpontaneous deformation, are determined by the expression

distortion of the lattice, phase 5 is identical in terms of sym- 4 B2 2Dp? aC
metry to phase 4, and therefore transitions between these a= 3 FJF 9¢ \/635 b (6)
phases are isostructural.

The lines of phase transitions between possible states are  We note that isostructural transitions in phase 5 are re-
determined by energy equality between the phases. The elated to the “magnetic pressureBm? due to the magneto-
pressions for the phase transition lines are presented in theastic interaction.

Appendix. The phase diagram of a ferromagnetic indha& When the diagram is traversed along the g, first a
plane is shown schematically in Fig. 6. The following phasesecond-order magnetic transition of the order—disorder type
transitions are possible from the paramagnetic cubic phase dccurs from the paramagnetic cubic phase to the ferromag-
along the lineAB — a first-order structural phase transition netic cubic phase. This transition is followed by a first-order
to a tetragonal paramagnetic phase 2; along theGiBe— a  orientational martensitic transition from a cubic ferromagnet
second-order isostructural transition to the cubic ferromagwith M along a body diagonal of the cube to a tetragonal
netic phase 3 withM ||[111]; and, along the linlEA —  ferromagnet with magnetization in(a10)-type plane.
first-order magnetic and structural transitions to the tetrago- When the phase diagram is traversed along the line
nal ferromagnetic phase 5. Aside from the transition 1-2Z'Z’, a cubic ferromagnetic phase with magnetization along
indicated above, a second-order isostructural magnetic trara body diagonal of the cube arises in an ordering-type tran-
sition to the tetragonal ferromagnetic phaséte line AD) sition on the lineCE. At the pointW of the martensitic tran-
can occur from the tetragonal paramagnetic phase 2. Firssition on the lineHE, the cubic ferromagnetic phase trans-
order structural and orientational transitions to tetragonaforms to a tetragonal martensitic phase with along the
phases 4the lineH'H) and 5(the lineHE) are also pos- [001] axis. Next, as temperature decreases, a transition from
sible from the cubic ferromagnetic phase 3. A second-ordethe tetragonal collinear phase to a canted tetragonal marten-
isostructural orientational phase transition to phas@ghg& sitic phase withM in a (110) type plane occurs on the line
line HK) occurs from phase 4. HK.

In summary, the domain of absolute stability of phase 1  In the case of the thermodynamic pa&hz”, first-order
lies in Fig. 6 in the first quadrant above the li@EAB. For magnetic and structural phase transitions occur simulta-

e5=3e3, 3

€3=
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neously on the lin&A from the cubic paramagnetic phase to

the tetragonal ferromagnetic phase with along the[001] T’}é
axis. 3501
Finally, when the diagram is traversed along the line

Z"7", first a martensitic transition from the cubic paramag- 300
netic phase to the tetragonal martensitic paramagnetic phase

occurs on the straight linAB, and then a second-order iso- 25‘9'
structural martensitic transition of the order—disorder type XV
200

from phase 2 to phase 5 occurs on the lkie. P
We note that all indicated sequences of phase transitions 0

should lead to the behavior typical of the various magnetic

characteristics of a ferromagnet. In particular, the indicatedr'G: 7- Phase diggram of a cgbic ferromagnet in the coordinates tempera-

temperature phase transitions should be accompanied by cdyre T—concentration (calculation.

responding kinks. It is this behavior of the susceptibility in

stoichiometric samples that was observed in Refs. 2-5 in

transitions to an ordered state and martensitic transitions. unknown at the present time, a comparison of this theoretical
It follows from the phase diagram that transitions be-diagram with the experimental diagram in Fig. 4 will only be

tween cubic paramagnetic and ferromagnetic phébkedine  qualitative. The diagram presented in Fig. 7 was obtained

CE) and tetragonal paramagnetic and ferromagnetic phasegith parameter valuesTcy=375K, Ty o=200K, a,

(the line AD) are second-order phase transitions. This is a=b/Tyo, ao=6/Tco, 6~1CFerg/cn?, b/c~0.5, b

typical situation for phase transitions in magnets at the Curie- 10*?erg/cn?, B~ 10’ erg/cn?, q~ 10* erg/en?, y=295 K,

point. The transition from the cubi@ustenit¢ paramagnetic and«=800 K. The notation in Fig. 7 is the same as in Fig. 6.

phase to the tetragoné&hartensite ferromagnetic phase is a

first-order phase transitiotthe line EA). This effect is en-

tirely due to the interaction of structural and magnetic order; 5 Thermodynamic estimate of the effect of a magnetic

parameters. For similar values ©f; andT¢, the first-order  fieiq and pressure on the martensitic phase

phase transition should be accompanied by a latent heat @hnsition temperature

transition and hysteresis in the temperature dependences of

various characteristics of the ferromagnet. This has been ob- The effect.of a magnetic field and pressure on th(_e tem-
served experimentally in nonstoichiometric alldys. perature of a first-order structural transition can be estimated

To compare theory and experiment, thea diagram we using the Clausius—Clapeyron thermodynamic equafion.

have constructed can be represented inthg plane. To do N dg ph:\;e ﬁqﬁ'l;gr'ur: dthe trizwod%nammvsﬁtehnn?ﬁf N
so, we expand the coefficientsand o in T and x near the a A O martensitic and austenitic phases, ch are func-

temperaturesly,o and Ty of the structural and magnetic tions of temperaturd, magnetic fieldH, and pressur®, are

transitions with stoichiometric compositiox< 0), truncat- equal:
ing the series at the linear terms, O \(T,H,P)=DA(T,H,P). (10
a(T,x)=ag(T—T;—«x) and a(T,x)=ag(T—Tco+ ¥X), The condition(10) determines the phase transition surface in

(7)  the spaceT,H,P). Near a fixed point with coordinates,
=0, Ty, and Py, the phase transition surface can be de-

where
scribed by the equation
2 2
T.=T —@:@(T -T )_ﬂ_g Dy IDp dDPy  IDs
1 MO b S Cco MO 9c 35an’ - = -
2o R 0 aT T gH ~ oH
anday, ag, k, andy are proportionality coefficients. The JP oD
temperaturd ; was chosen such that in tlae-a diagram the (_M - _A) AP=0, (12)
point Ty, (atx=0) corresponding to the martensitic transi- P P
tion lay within the rangeHE (the pointW). whereAT=T—-Ty,, AP=P—P,,
The phase transition lines in the—x plane have the
form IPm _ 9Pa =S,—S 2 (12
b2 aT 9T A M1
152 T=Ty+ + KX, ) oDy oDp
¢80 = = MAVaA- MV, (13
; : " . by DA
Analytic expressions for all other transition lines are too P &—P—VM—VA, (19

complicated to present here. The coordinates of the charac-
teristic points of this diagram are given in the Appendix.  Sis the entropyQ is the latent heat of the phase transforma-

The T—x phase diagram constructed in this manner istion at temperaturd,,, andM andV are the magnetization
shown in Fig. 7. Since many parameters of the problem arand volume of the corresponding phase.
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Substituting the expressiond2)—(14) into Eq. (11) firmation of a first-order magnetic phase transition here is the
makes it possible to determine the temperature shift of théinear dependence &T on H implied by Eq.(18). Indeed,
martensitic transition induced by a magnetic field at constamivhen a martensitic transition occurs in a paramagnetic state
pressure, of the sample, according to E(L7) the shift of the marten-
sitic transition temperature should depend guadratically on

AT=(MyVy=MaVa)HTY/Q, (15) the external field. If the martensitic transition occurs in a
and the pressure-induced shift B, in a constant magnetic ferromagnetic state of the sample, a strongly nonlinear de-
field, pendencAT(H) should also be expected in fields ranging

AT=(Ty/Q)(Va—Vy)AP. (16) from 1 to 10 kOe, since, as one can see from @§), the

slope of the linear dependendd (H) is determined by the
Equation(15) describes the shift of the martensitic transfor- difference of the magnetizations of the martensitic and aus-
mation temperature when the martensitic and austenitigenitic phases. It is knowrl that the magnetization curve for
phases are ferromagnetic. According to the phase diagramgistenite first grows more rapidly than for martensite, and it
(Figs. 6 and ¥, this situation prevails in Ni.,Mn;_,Ga on  saturates in fields near 2 kOe. The magnetically harder mar-
the linesH'H andHE. tensite saturates more slowly, only in fields 8—10 kOe, and

When the martensitic transition temperature is highethe saturation magnetization is higher. Thus, in this case
than the ferromagnetic-transition temperature, both phasesT(H) should be nonlinear in fields 1-8 kOe. It also fol-
are paramagnetic at a structural transformation and thiws from Eqg. (15 that the sign of the effect should be
change in the transition temperature can be cast in the formegative in this case, since the magnetization of austenite

_ _ 2 increases with field more rapidly than in martensite. Such

AT=(xmVm—xaVa)HTu/2Q, 17 behavior probably occurred in the experiments described in
where y is the magnetic susceptibility. This occurs in Ref. 7.

Ni,«Mn,_,Ga on the lineAB (Figs. 6 and 7. The shift of the martensitic transition temperature in a

When a structural transition occurs from the austeniticmagnetic field can be estimated from Ef8). Assuming the
paramagnetic phase to a martensitic ferromagnetic phase, teaturation magnetizatiod ;=300 G>’ martensitic transition
magnetization of the paramagnetic phase can be neglected @mperatureT,, =340 K, and latent heat of transitio@
comparison with the ferromagnetic phase, and the tempera=5.10° erg/cn?, we obtaindAT/dH=0.2 K/kOe. This esti-
ture shift has the form mate agrees satisfactorily with the experimental value

=0.15K/kOe.

AT=MuVuHTW/Q. (18 Assuming the relative change in volume at a martensitic
This situation occurs in Ni.,Mn; _,Ga on the lineEAof the  transformation to be\(,—V)/Vy~ 102, we estimate the
first-order phase transitiofFigs. 6 and Y. Therefore the pressure giving rise to the same change in the transition tem-
magnetizationM,, is nonzero on the phase transition line perature as a saturating magnetic field. Using @§) we

itself. obtain AP~ 10° Pa. This estimate agrees qualitatively with
Equating the change in the temperature of the martensihe experimental dat® ATy =—1.510 SAP=—1.5K.
tic transition in a magnetic field8) and the changél6) in The results obtained in this work also make it possible to

Tm under external pressure, we obtain the estimated value @fstimate the compositional inhomogeneity of the experimen-
AP for which the same change would have occurredin  tal samples, assuming that the variance of the structural tran-
in a field H: sition temperatures over the sample surface is entirely due to

AP=VMyH/(Va—V},). (19) com.posi.tional inhomogeneity. Compar.ison of the Qata plot-
ted in Figs. 2 and 4 shows that the inhomogeneity of the
concentratiorx that yields a variance=1 K in the transition
temperatures over the sample=i€.001.

Comparison of Figs. 4 and 7 shows that the experimen- We thank M. Matsumoto for providing the samples. This
tally obtainedT—x phase diagram in the concentration rangework was partially supported by the Russian Fund for Fun-
0<x<0.20 agrees qualitatively with the compufeex dia- damental ResearckGrant No. 96-02-19735and ISSEP
gram. Specifically, the temperature of the magnetic phaséGrant No. 615p
transition from the cubic paramagnetic phase 1 to the cubic
ferromagnetic phase 3 decreases linearly with concentration.

The temperature of the phase transition from the cubic ferappenpix
romagnetic phase 3 to the tetragonal ferromagnetic phase 5
increases with concentration. The phase transition lines determined by equating the

We conclude above on the basis of a calculation usingnergies of the phases are

the Landau theory of phase transitions that on the ke

4. DISCUSSION

(Fig. 7), the martensitic and magnetic phase transitions 2p2 8 bB
merge to a single first-order transitioparamagnetic 1-2: a=¥ for a>§—;
austenite—ferromagnetic martengit8uch a coincident sec- Vec

tion of the phase diagram was found experimentally near
concentrationx=0.18-0.20(Fig. 4). Another indirect con- 1-3: a=0 for a=B?(q;



962 JETP 88 (5), May 1999 Bozhko et al.

15:  27c6a*— (6b25—36cB2)ad— (8b2B2 F(OB—Z) G(_\ﬁ( _4_q)@ b? B_Z)
~ ~ o~ ~ ’ ’ 8 3/cq’ 4c ’

— 60V6 beBSw — 54c25%a%) 3%~ (5407 5% g g

- - - 4B2 2b? 4B? b2 4B?

—324c?°B% 50’ —72\/6 becB3a+ 12\/6 b®Bésa)a fintl i o— 4=
a?-726 bcB%a+ 126 b’Bsa) S 055 El0G-+ 35 L'|0gc+55)

+27c38%a*— 3616 bc?B 6%+ 324c?B* a2
“ Ve “ “ The characteristic points of tHe-x phase diagranfFig.

—12b2cB25a%+ 9b* 62a%— 128\/6 b*B3a/9=0; 7) are
3 8bB  2b?
and for 0< a< (8/3)bB/\/6C Al Xa= | Teom Tt 3V6cag  9ca
b2 1 ca\?
2+5: a=R—R b_\/gﬁ 8bhB 2b2)
Ta=——| k| Teog+ ——— |+ 9| 1+ —1|; &
A PR co 3\/€Ca0 Yl 1 9cay 5
f 8 bB
_° b,
o 3 6 E(X B T I i
E™ + (0] 17 gmra ’
- B 3(, 4a)|bB. Y 9c3, 3939
—4: a—g E or a<—§ —? ﬁ, b2 4B2
TE_K“F’)/ KTco+’}/ T1+ _gca0+35a0 .

3-5:  9cga’—(2b%q+9cB?)a%+(2b%B2
+20y6 bcBoa — 24c%q%a?) a2+ (24cqPa?
+ 10&2525&2_ 18\/6 chs’&_4\/6 bsBaa)a *)E-mail: shavrov@mail.cplire.ru

+16c%g%a* + 1616 be?BoPa® — 81c2BYa?

1
ARZARZET2  anAE2T2 353~ /a0 A. C. M. Wayman, J. Met6, 129 (1980.
4b“cB°qa“—4b"q e +32‘/€b B°a/9=0; (4) 2p. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Phil. Mag.
2 2 2 49, 295(1984.
b= B 2q ayc b 3A. N. Vasilev, A. Kaiper, V. V. Kokorin et al, JETP Lett.58 306
foS ATt T Vi B 5 aaB o (1999,
q q 2\/6 4A. N. Vasil'ev, A. R. Keiper, V. V. Kokorinet al, Int. J. Appl. Electro-
magn. Mater5, 163(1994. i
4q\ bB 5A. N. Vasilev, S. A. Klestov, V. V. Kokorinet al, Zh. Eksp. Teor. Fiz.
for a<-2|6- 3 —\@ , 109, 973(1996 [JETP82, 524 (1996)].
cq 6A. Zheludev, S. M. Shapiro, and P. Wocher, Phys. Rev61B 11310
(1995.
K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V. Koko-
2 rin, Appl. Phys. Lett69, 1966(1996.
- a - 4B> . & . _
a=—, a=a——=, =7 —=5. M. A. Fradkin, Phys. Rev. B0, 16326(1994).
1) 36 o— 4q/3 9Yu. M. Gufin, Structural Phase TransitiongnRussiar, Nauka, Moscow

. . . . (1982.
The coordinates of the characteristic points of this phase’Yu. A. lzyumov and V. N. Syromyatnikowhase Transitions and Crystal

diagram(Fig. 6) are Symmetnyfin Russian, Nauka, Moscow(1984.
113.-C. Toledano and P. Toledarkhe Landau Theory of Phase Transitipns
8 bB 2b? 2bB b?
A , , 12M. A. Krivoglaz and V. D. Sadovski Fiz. Met. Metalloved.18, 502
(1964.
( 2bB ( 4q) 2b2 B2 76 (1987).
H - ~ a5 1 _+ - 1
\/gcq 3 9c q

where

World Science Publishers, Singapdd€87).
- == M|l —, =
3 \/EC 9c \/EC 4c
137, Kanomata, K. Shirakawa, and T. Kaneko, J. Magn. Magn. M&®&r.

Translated by M. E. Alferieff



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 5 MAY 1999

Multiple self-propagating high-temperature synthesis and solid-phase reactions in thin
films

V. G. Myagkov*) and L. E. Bykova

L. V. Kirenski Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 660036
Krasnoyarsk, Russia

G. N. Bondarenko

Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences,
660036 Krasnoyarsk, Russia

(Submitted 3 July 1998

Zh. Eksp. Teor. Fiz115 1756-1764May 1999

A variety of self-propagating high-temperature synthesis in thin films has been found and
investigated. This modification, called multiple self-propagating high-temperature synthesis, occurs
in the solid phase and is a reversible phase transition. Multiple self-propagating high-
temperature synthesis is similar in many respects to a metal—insulator phase transition. It is
shown that for eutectic systems it is equivalent to a repeated transition through the eutectic
temperature of bulk samples. It is inferred that multiple self-propagating high-temperature
synthesis in bilayer films is governed by phase separation mechanisms that take place during
eutectic solidification and eutectoid decomposition. 1€99 American Institute of
Physics[S1063-776019901705-9

1. INTRODUCTION produce compounds with relatively high negative formation
enthalpy %% Thus, for the Al/Ni film system an NA; phase
Solid-phase reactions in thin films have been an objecis observed in the reaction products after passage of the SHS
of investigationin the pastand this activity continues un- wave, leaving no trace of Ni or Af+*? The second is char-
abatedsee, for example, Refs. 2x:4bove all else, they are acterized by the emergence of a second front following pas-
studied because thin layers are the foundation of modersage of the SHS wave along the sample. This is followed by
microelectronics. Solid-phase reactions occur at much lowephase stratification. SHS in Al/Ge films is of the second type,
temperatures in thin films than in bulk samples. The productsvhere the products of the reaction largely contain solid so-
of solid-phase reactions can be not only compounds but aldotions of aluminum and germanium, and only a negligible
solid solutions of reagents that result from the mixing ofquantity of metastable phases is form@difter the first SHS
layers'®® Layer mixing has also been observed during thecycle, the reagents are therefore mixed. Since the original
formation of quasicrystafsand in heterostructurésSearches reagents form after the first cycle, SHS can be reinitiated in
for optimal heat-treatment temperatures, and times at whicthe sample. Thus, SHS was initiated about 300 times in a
these reactions occur, are exclusively empirical. single Al/Ge sample, and could be initiated further. This phe-
It is believed that the dominant mechanism of solid-nomenon, called multiple SHS, emerges only in type-Il
phase reactions is diffusion along grain boundaries. Howsamples. The motion of the SHS front and phase separation
ever, such an analysis neglects the possibility that selffront can be easy to observe visually. The present paper de-
propagating high-temperature synthe@#9 is initiated in  scribes the basic characteristics of multiple SHS and its
thin films. SHS in powders is well knowtt® The kinetics ~ physical interpretation.
and propagation mechanism of an SHS front in bilayer thin
films have been described only receritly? These papers
also show that SHS is a modification of solid-phase reaction
in thin films. Previously>#SHS had been observed in mul-
tilayers, where initiation was accomplished by a point heat  The procedure for obtaining samples and the method of
source. Samples for investigating SHS in bilayer films coninitiating SHS in bilayer thin films are presented in Refs. 11
sist of layers of reagents successively deposited on variousnd 12. In the experiments, Al/Ge samples obtained by suc-
substrates. SHS occurs between the layers of reagents if tihessive deposition of germanium and aluminum films on
sample(substrate temperaturel s becomes equal to the ini- glass or mica substrates were investigated. The thickness of
tiation temperaturd . A nucleus of reaction products forms the germanium and aluminum layers ranged from 40 to
on the sample, and the SHS front propagates along th200 nm. The phases formed in the synthesis process were
sample surface. identified with a DRON-4-07 diffractometdCu K, radia-
Experiments show that SHS comes in two forms in thintion). After a sample is heated to the initiation temperature
films. The first is similar to SHS in powders, where reactionsT,=550-600K in a uniform temperature field, a nucleus of

. EXPERIMENTAL PROCEDURE AND EXPERIMENTAL
ESULTS

1063-7761/99/88(5)/5/$15.00 963 © 1999 American Institute of Physics
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° o- Ge
o- Al
.- AlsGej

FIG. 3. Diffraction patterns of ALOO nm/Ge&120 nm) thin film samples: a
n=1, vR=1x10"3m/s; n=300, vp,R=1X10"%m/s; b n=1, vy,=1
X10 tm/s.

observations show that SHS fronts resulting from repeated
initiation always start at the same point and mimic the mor-
FIG. 1. g Photograph of an SHS front and DBM clusters in the reaction phological features of the motion of the first SHS front. The
products of the sgampple AI00 nm/Ge(100 nm). b) Microstructure of a bi- phase composition of AI/,Ge films does not _depend on_ the
layer Al(100 nm/Ge(100 nm film sample containing DBM clusters. numbern of SHS cyclegFig. 33, but on the thickness ratio
of the reagent layers and the velocity of the phase separation
front. For vpp=1X 103 m/s and variousn, largely solid
a new phase randomly forms on the surface of the samplgg|ytions of aluminum and germanium are produced; only
(Fig. 1a. The SHS front moves along the surface and reflectﬁeg”(‘:’ime amounts of metastable phases exi&t. 3a.
the temperature topography of the film. The veloaityof  However, forn=1 and vph:1><10‘1 m/s, the metastable
the SHS front with initiation temperatur@, is v¢=3 phases stabilize: an ABe; phase emerges for 100 nm/
x 10 3m/s, and increases with temperature approximatel;Ge(loo) films (Fig. 3D, and an AlGe phase forms in
according to the Arrhenius laFig. 2). The SHS front can x| (100 NM/Ge(120 nm samples®
l:_Je _stopped by reducing the film temperature below the ini-  |yestigations show that the temperatig, at which a
tiation temperaturd. phase separation front emerges is the same as the initiation
A decrease in sample temperature gives rise to a phaﬁ@mperatureTo, which is 100-150 K below the eutectic
separation front, which starts from the boundary left behi”dcemperatureTE. In bulk sample, the phases separate after
by the SHS front. The velocity 5, of the phase separation eytectic solidification. It is to be expected that the initiation
front increases str(_)ngly with decre_asing substrate tempergsmperatureT, in Al/Ge films corresponds to the tempera-
tureTs, and starts in the “soft” regimeFig. 2). The emer-  re T for a bulk Al-Ge alloy. Since the rate of heat re-
gence of a phase separation front after passage of an Shgopyal from thin films is higher than for bulk sampleE,
wave was first noted in Ref. 15. The first SHS front has aghouid be less thafic. The initiation temperatur@, does
sharp boundary, since there is a difference in reflection frony ot depend on the thickness ratio of the reagent layers, just

the specular surface of the original film and the surface of thg,g the eutectic temperatufe does not depend on the com-
reacted sample, which produces diffuse scattering. Thggsition of the alloy.

boundary of the subsequent SHS fronts is more diffuse, and Al this suggests that type-1l SHS should emerge in bi-
it becomes much less appreciable after repeated SHS. Vlsu%lyer film systems for which the equilibrium phase diagram
is of the eutectic type. This was checked for the Pb—Sn sys-
tem, which has a simple phase diagram of the eutectic type

60
o with eutectic temperaturéz =456 K. SHS in a Pb/Sn bi-
® layer film can be repeatedly initiated at=440-450K.
‘g4or Stronger evidence can be gleaned from the initiation of mul-
7 tiple SHS in uniform films obtained by deposition of
;.20_ Vi _PQ(_Sr_}l,X, Al,Ge _, alloys (0.4<x<0.7). In this case the
o initiation temperatures does not depend xnand are the
same as the corresponding temperatures for Pb/Sn and Al/Ge
0 € , i ; i ;
450 50 o0 T.K bilayer films. Since the phase separation temperaliye

=T, in thin films is different from the eutectic temperature

FIG. 2. SHS front velocityw(T) and the phase separation front velocity Tg the melting temperature of the film was expected to be
von(Ts) as a function of substrate temperatlig the same as eithdr, or Tg.
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3. DISCUSSION

The fact that the initiation temperatufg is the same as
§ the temperaturel ,,, at which the phase separation front
¢ emerges provides a basis for considering the SHS front and
DN the phase separation front to be a single phase-
:: transformation wave. Since during multiple SHS the resistiv-
ity changes reversibly and SHS occurs in the solid phase,
type-1l SHS is a reversible structural phase transition resem-
bling a metal—insulator phase transition. The microstructure
FIG. 4. Resistivityp of an Al(100 nm)/Ge(100 nm bilayer film as a func- of these samples is very diverse, b“t it consists primarily of
tion of substrate temperatufe, . clusters with a dense branching morphologpBM
clusters®). The microstructure of Al-Ge films was studied in
connection with the emergence of fractal formatiGnas
Figure 4 shows the resistivity(T<) of an Al(100nm/  well as DBM clustert” within them. The intense interest in
Ge(100 nm film sample as a function of substrate tempera-DBM clusters with fractal dimensiod;= 2 is due to the fact
ture Tg. It follows from the dependence(T,) that the that they emerge in many physicochemical and biological
Al(100 nm/G&100 nm sample does not undergo any phasesystems. In Al-Ge films, DBM clusters comprise a nucleus
transformations above the temperatdig This result was of polycrystalline germanium, possessing dendritic structure,
checked directly. The ALOO nm/Ge&100 nm sample was  with single-crystal aluminum disposed among the branches
obtained by deposition on a cleavage surface of NaCl, andf the dendrite.
was then transferred to a glass substrate. Microscopic and The phase separation mechanism in Al-Ge films leading
visual observations clearly confirm a lack of melting up toto the formation of DBM clusters was studied in Ref. 17. Itis
Ts=850K>T,. This is surprising, since phase separation inbelieved that DBM clusters form from an amorphous phase.
bulk samples results from eutectic solidification. Neverthe-This agrees with Ref. 18, where it is shown that in Al-Ge
less, multiple SHS in thin films occurs in the solid phase, andilms with various concentrations there exists an amorphous
is similar to a repeated transition through the eutectic temphase that transforms into stable aluminum and germanium
perature in bulk samples. phases via intermediate metastable phases. The microstruc-
The existence of phase separation is also confirmed byure formed in Al/Ge films depends on the numbesf SHS
resistivity measurements on a film sample as a function oéycles and the velocity,, of the phase separation front.
substrate temperatufie and the number of SHS cycles. Fig- After the first SHS front has passed and as the phase sepa-
ure 5 shows the resistivity of an Al(100 nm)/Ge(100nm  ration front moves along the surface of the sample, circular
film as a function of temperaturg for three SHS cycles. nuclei emerge ahead of the front and subsequently merge
After initiation of SHS atT,>T,, the resistivity of the with the phase separation front. Microscopic investigations
sample increases. Afs<T, the resistivity of the sample show that these nuclei are DBM clustésee Fig. 1b which
returns to its original value. The fact that the resistivity of thecan range in diameter from }0m to several millimeters
sample is the same before and after SHS, and that it is th@ig. 19. DBM clusters of such sizes are observed during
same as the resistivity of the aluminum layer, confirm thatannealing in Bi/Al/Mn/SiO multilayer? At low front ve-
aluminum forms a percolation cluster in the film after phasdocities @pr=1X 10 3m/9), laminar microstructure forms
separation. Repeated initiation of SHS increases the initigherpendicular to the phase separation front. This structure
resistivity somewhat; this might be due to oxidation of theresembles the cellular structure that emerges during directed
sample by residual oxygen. Multiple SHS is also observed irerystallization?
AlISi (To=700K), Al/'S (To=750K), Al/Zn (To=770K), Investigations of sample surfaces on the substrate side
Au/Ge (To=600K), and Al/Ti (To=770K) film systems. show that SHS proceeds over the entire thickness of the film,
even when the layer thickness=sl.5um. A total thickness
of 3—4um is probably the maximum for SHS in bilayer thin

0 Y 1 i :
550 T, 650 T, 750  T,.K

18 films. Subsequent SHS cycles do not alter the original mi-
15t ! 2 3 crostructure; this confirms that multiple SHS proceeds in the
£ solid phase.
al?r 1 With long-term initiation of SHS =300), the branches
% o} l l I T of DBM clusters break up and the microstructure of the film
= I becomes uniform. If rapid mass transfer between layers in
< 6} the first SHS cycle proceeds perpendicular to the film sur-
3 face, then both SHS and phase separation occur in subse-
590 610 590 610 590 610 quent cycles along the surface on an interphase boundary

T, K between the branches of DBM clusters, which contain ger-
FIG. 5. Resistivityp of an Al(100 nm/Ge100 nm film sample as a func- mar_“um’ and the ,S',”Q"?'nySta”'”e aluminum between them.
tion of substrate temperatufle near the initiation temperatufg, for three ~ DUrnNg long-term initiation Of“SHS-, therefore, DBM clusters
SHS cycles. Arrows show the direction of variation of the resistivity. break down and phase stratification becomes more subtle.
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n T K
a b
0.8r - - ] 800 g 0e—o—s . P . FIG. 6. Degreey of transformatior(a) and SHS
-’r.-r 0 600+ initiation temperaturd, (b) of an Al(100 nm) /
oer F&05(200 nm film sample as a function of
0.4 . \ 400¢ ) . numbern of SHS cycles.
0 10 20 n 30 0 10 20 n 30

temperature or the temperature of eutectoid decomposition of
Assuming that diffusion between layers precedes to &ulk samples.
depth equal to the thickness of the reagent laybx2 The following mechanism of multiple SHS in thin films
x 10 ®m, and its velocity equals the velocity of the phasecan be inferred from the experimental data presented above.
separation front ,,=0.2X 10" m/s, we can estimate the Solid-phase amorphization of the samples occurs after the
diffusion coefficient during SHS in thin layers to e  first SHS front has passed. Beldly=T,,, the amorphous
=dv,,=0.4X 10" " m?/s. This is 9—10 orders of magnitude phase decomposes, depending on the velocity of the phase
greater than the diffusion coefficient along grain bounddries,separation front and the thickness ratio. For eutectic systems,
and 1-2 orders of magnitude greater than the diffusion cothere is a correspondence between the phase equilibrium dia-
efficient in the liquid phase. The actual value of the diffusiongram of the reaction products of bulk samples and the char-
coefficient during SHS can be even higher, so that SHS imacteristics of SHS. The eutectic temperatiligeand the per-
thin films must be attributed to explosive chemical reactionscentage abundance of reaction products determine the
Explosive chemical reactions in solids resulting from si-initiation temperaturelT, and thickness ratio, respectively,

multaneous uniaxial deformation and shear deformation are/hile the liquid eutectic corresponds to the amorphous
described in Refs. 21 and 22. The estimated diffusion coefphase. Fon>2, SHS does not encompass the entire sample,
ficient in such reactions is 1®-10'° times the value ordi- proceeding instead only at phase boundaries to a thickness of
narily observed in the solid phase. The proposed mechanisB~4um. Large stresses are produced at the interphase
involves the avalanche-like emergence of structural defectsoundary ahead of the SHS and phase separation fronts, pro-
at the instant elastic stresses relax. Such a solid is in a specidilicing zones of structural defects. Diffusion is greatly facili-
state that is neither solid, liquid, nor gaseous. At that instantated in these zones, and conditions for explosive reactions
the solid becomes permeable, and there is enough time faet in?1?2 Metastable phases might play a significant role in
explosive reactions to occéi>2An explosive reaction in the the initiation of multiple SHS, since their formation enthalpy
solid phase occurs between Al and,8¢.2? The metallic— can be high.
thermal reaction between Al and f&&; has been studied in
some depth; its initiation temperatureTig=1400- 1500 K,

and the front temperature is approximately 2300 K. 4. CONCLUSIONS
In the present work, SHS was studied in AljBPg bi-
layer films,which are type-ll and have an initiation tempera-  In conclusion, we note that solid-phase reactions in thin

ture To=750-770K. The bulk abundance of iron in the films that are in fact SHS reactions occur only at temperature
sample produced after the reaction and the degrektrans-  T,. Rapid mass transfer and diffusion mixing at the atomic
formation were determined by the torque metfddtigure  level occur only when SHS and phase separation fronts pass.
6a shows the degreg of transformation as a function of the After the passage of a phase separation front, diffusion in the
numbern of SHS cycles. It is clear from the function(n) film sample once again becomes negligible. This suggests
that the Fe abundance in the sample increasesmunatll, due  that layer mixing, often observed in multilay@ilayer films

to preignition. Forn>5 the degree of transformation is in- subject to heat treatments and thermal influefice&?°oc-
dependent oh. This confirms that multiple SHS is not gov- curs after type-lIl SHS in these samples. Multiple SHS is a
erned by the exothermal nature of the reaction between Aleversible structural phase transition, similar to a metal—

and FgOs,. insulator phase transition, and can be used in microelectron-
The initiation temperaturd, does not depend on the ics devices.
numbern of SHS cycleqFig. 6b. Such dependencdg(n) Multiple SHS corresponds to a transition through the

are observed in all bilayer film systems in which multiple eutectic temperature in bulk samples. At present the mecha-
SHS was obtained. It follows, then, thBg in Al/Fe,O5 films  nisms of SHS and solid-phase reactions in thin films are not
is analogous to the eutectic temperature of bulk ALd-e  completely understood. However, the multiple-SHS phenom-
samples. For eutectic solidification and eutectoid decompoenon clearly indicates that these mechanisms are related to
sition, phase separation often entails the formation of platephase separation mechanisms observed during eutectic so-
like structures, where the plate thicknesses can reach seveldalification and eutectoid decomposition. It is perhaps sur-
microns. Multilayers(including bilayer filmg are artificial  prising, considering the many recent studies of solid-phase
analogs of such platelike microstructures. The kinetics andeactions by various methods, that SHS and multiple SHS in
mechanism of multiple SHS in thin films should therefore bethin films went unnoticed, even though these pheonomena
the same as in the case of the formation and decompositiotan be observed at atmospheric presgnevacuum is re-

of plate-like structures during transitions near the eutectiquired, using straightforward experimental techniques.
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We analyze several almost exactly solvable models of the electronic spectrum of two-
dimensional systems with well-developed short-range-order dieldetgc, antiferromagneticor
superconducting fluctuations that give rise to an anisotropic pseudogap state in certain
segments of the Fermi surface. We develop a recurrence procedure for calculating the one-
electron Green’s function that is equivalent to summing all Feynman diagrams. The procedure is
based on an approximate ansatz for higher order terms in the perturbation series. We do
detailed calculations of the spectral densities and the one-electron density of states. Finally, we
analyze the limits of the adopted approximations and some important points concerning

the substantiation of these approximations. 1@99 American Institute of Physics.
[S1063-776(199)01805-3

1. INTRODUCTION (M.V.S.) proposed an exactly solvable model of pseudogap
formation in a one-dimensional system due to well-
In recent years there has been an upsurge of interest developed short-range-order charge density W&RW) or
observations of the pseudogap in the spectrum of elementagpin density wave(SDW) fluctuations(see Refs. 13-17
excitations of hight; superconductors in the range of cur- Recently this model has attracted the attention of researchers
rent carrier concentrations below the optimfiThe corre-  in connection with attempts to explain the pseudogap state of
sponding anomalies were observed in a number of experhigh-T, cuprates>*?*8-20n particular, Schmaliaet al***?
ments, such as measurements of optical conductivity, NMRmade an important generalization of this model to the case of
inelastic neutron scattering, and angle-resolved photoemis two-dimensional system of electrons that is in the random
sion (ARPES; see the review cited in Ref).. Probably the field of well-developed spin fluctuationshort-range-order
most striking evidence that such an unusual state exists wasFM fluctuations. In the model of hot spots on the Fermi
obtained in ARPES experimerit§,which demonstrated the surface developed in Refs. 11 and 12, the researchers ob-
presence of essentially anisotropic changes in the currentained, via the formal scheme developed in Refs. 15-17, a
carrier spectral density within a broad temperature range idletailed description of pseudogap anomalies at high tempera-
the normaknonsuperconductinghase of these systertgee  tures (the weak-pseudogap regionTchernyshyo?® and
the review in Ref. 2 A remarkable feature observed in theseRerf° used a simplified variant of the model developed in
experiments was the presence of a maximum of the correRefs. 13 and 14, which corresponds to the limit of very large
sponding anomalies close to the point,0) in the Brillouin  correlation lengths of short-range-order fluctuations, to de-
zone, while no such anomalies were observed in the direcscribe the pseudogap state determined by well-developed
tion of the zone diagondthe point (7, 7)], which actually  fluctuations of superconductingC) short range order. In a
means that near the pointr(0) the Fermi surface is de- recent papef® this simplified model was used to analyze the
stroyed, while the Fermi-liquid behavior in the direction of Ginzburg—Landau expansidifor different types of Cooper
the zone diagonal is retained. In this sense it is usually saipairing in a system with strong CDWSDW, AFM) fluctua-
that the pseudogap symmetry is of thavave type, which tions using the model of hot patches on the Fermi surface
coincides with the symmetry of the superconducting energyroposed in the paper. At the same time, Tchernysfyov
gap in these compoundg. At the same time, the very fact reviewed in detail the model developed in Refs. 13—17 and
that these anomalies exist at temperatures much higher thdound an error in the earlier pap&tst’in the analysis of the
the superconducting transition temperature and at nonoptiase of finite correlation lengths of short-range-order fluctua-
mal carrier concentrations could point to a different nature otions. In Ref. 12 it was suggested that this error is insignifi-
these anomalies, not related directly to Cooper pairing. cant, especially in analyzing the two-dimensional hot-spot
There are many theoretical papers in which the authorsodel, which is of the main interest to the physics of high-
attempt to explain the observed anomalies. Two main areasystems.
of such research can be identified. One is based on the idea The aim of the present paper is to analyze a number of
that Cooper pairs form at temperatures higher than the supeimportant aspects of the almost exactly solvable model,
conducting transition temperaturé-’ In the other it is as- mainly in the two-dimensional case. To this end we consider
sumed that pseudogap phenomena are due primarily to antioth the case of short-range-order CO8DW, AFM) fluc-
ferromagnetid AFM) short-range-order fluctuatiofis'? tuations in the hot-spot modéf‘?and the possibility of using
Some time ago one of the authors of the present papghe model within the framework of fluctuation Cooper

1063-7761/99/88(5)/12/$15.00 968 © 1999 American Institute of Physics
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pairing’1%2° (SC short-range-order fluctuationsn particu-

lar, in the most interesting case dfwave pairing. In addi- /NW\“‘\-\_‘
tion to a general analysis of the reliability of the formal
scheme used in Refs. 11-17, we do detailed calculations of
the spectral density and the one-electron density of states for

the hot-spot modé&t'? and in the scenario of fluctuation

Cooper pairing. /J_/"J\NW\\R
Madta N

2. THE HOT-SPOT MODEL P P+Q P+qrq,p+q, P

2.1. Description of model and an “almost exact” solution
for the Green’s function

b
The model of a nearly ferromagnetic Fermi ligtid*is m

based on the picture of well-developed fluctuations of AFM P P+q,P+q+q P+q, P
short-rang-order fluctuations within a wide region of the
phase diagram of higfi; systems. This model introduces the
effective interaction of electrons and spin fluctuations that ig"!C- 1. First- and second-order self-energy diagrams for an electron inter-
described by the dynamic spin susceptibility( ), which is acting with short-range-order fluctuations.

determined mainly from the fit to the data of NMR

experiments$?

C

Calculations can be simplified significantly if we replace

242

Ver(,0) = 9%xq(w)~ : , (1) (2) with a model interaction of the forrfcf. a similar model
ef a 1+ £(q—Q)2—i wl wg in Ref. §

whereg is the coupling constang is the correlation length 2671 2671

of the spin fluctuationsQ= (#/a,w/a) is the vector of an- Veir(Q) = A2 — 5T 5 4

tiferromagnetic ordering in the insulator phasey is the § (0= Q)7 €7+ (ay—Qy)

characteristic frequency of spin fluctuations, anid the lat- |y hereA2=22/4. Actually, Eq.(4) is quite similar to(2) and

tice constantof a square lattice differs quantitatively very little in the most important region
Since the dynamic spin susceptibiliy(w) has peaks at lg—Q|<¢ .

wave vectors that are in the vicinity ofr(a, /a), two types Consider the first-order correction Wy to the electron

of quasiparticle arise in the system: “hot” quasiparticles gg|f.energy, represented by the diagram in Fig. 1a:
with momenta in the vicinity of hot spots on the Fermi sur-

face, and “cold” quasiparticles with momenta in the parts of S (e p)=2 Vg () 1
the Fermi surface surrounding the diagonals of the Brillouin n T ;i
zone,|py|=|p,| (see Refs. 11 and 12Such terminology is
related to the fact that quasiparticles from the vicinity of hot
spots are strongly scattered through a vector of of@ldry
spin fluctuations(1), while for particles with momenta far éorq=épr ik~ Eprat Vprark, (6)
from hot spots this interaction is relatively weak.

®

8n_§p+q.

The main contribution to the sum ovaris provided by the
region close tdQ=(m/a,w/a). Then, writing

o« . .
In what follows we consider the case of high tempera—Where Vp+Q= 9p+Q/IPa. and integrating overk, we

- ‘. obtain”
tures, wT>wgg, wWhich corresponds to the “weak
pseudogap” region in the phase diagra? In this case A2
spin dynamics in irrelevant and we can limit ourselves to the 2 (&,,p) = - " y - )
static approximation: ien—&prqt ([vpsol +lvfig) & signe, @
~ §2 . _ -1
Ver()=B>———, (2 Wihr—E .
1+ £4(g—Q) The spectrum of baréree) quasiparticles can be taken

~ . . . . from Refs. 11 and 12:
where A is an effective parameter with the dimensions of

energy, which in the model of AFM fluctuations can be  &,=—2t(cosp,a+cospya)—4t’ cospsacosp,a, (8)

: 12
written wheret is the nearest-neighbor-hopping integrél, is the

<2 2 ) 02 next-nearest-neighbor-hopping integral for a square lattice,
A2=2T X xgliom) = gX(S)/3, (3 andu is the chemical potential. When real high-systems
mq . .
were analyzed in Refs. 11 and 12, it was assumed, e.g., for

with § the spin at a lattice sitéCu ions in the Cu@plane  YBa,Cu,0g. 5, thatt=0.25eV and’ = —0.4%, andu was
for high-T, cuprates Below we consided (as well as¢) a  fixed by hole concentration. Below we show that the analysis
phenomenological parameter that determines the effectivef the situation for different relationships betweeandt’
width of the pseudogap. produces interesting results.
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We now turn to second-order corrections to self-energyinteraction lines. Hence actually we may consider only dia-

which are depicted in Figs. 1b and 1c. Usi@) we obtain

dk, (dk, « K K
e [

7 K24k, K2+ kiy K2+ k3,

K 1

2,12
Kk +K5y Isn—§p+Q—v;§+Qk1X—U%+ley
1

ten— &p—vp(KaxtKay) —vp(Key +Kay)

X

1
X g — 9
|3n_§p+Q_Up+Qk1x_Up+ley

dk, & K K

dk
E(c)zA“f—;
aa

K2+ kix K2+ kiy K2+ k§x

K 1

K2+kgy isn_§p+Q_U;+lex_v%+ley
1
ien— & vp(Kixt ko) —vi(Kyy+kay)
1

x- . — (10
|8n_§p+Q_Up+Qk2x_Up+Qk2y

X

where we have employed the spectr@), from which, in
particular, it follows thaté,,,qo=§, and v, 0=V, at Q

=(wla,mla). If v, andv}, o are of the same sign, the inte-
grals in(9) and(10) are determined solely by the poles of the
Lorentzians determining the interaction with short-range-
order fluctuations. Doing an elementary contour integration,

we ge?
2 (b)=2(c)
[isn_§p+Q+i(|U;+Q| + |U¥+Q|)K]2

1
X - - .
ien—&pTi2(lugl+ vk

11

grams with noncrossing interaction lines, taking into account
the diagrams with crossing lines by introducing additional
combinatorial factors into the interaction vertices. This
method was first introducedin another problem by
Elyutin®® and was used in Refs. 15-17 for a one-dimension
model of the pseudogap state.
As a result we arrive at the following expression for the

one-electron Green’s function in the form of a recurrence
relation(the continued fraction representation; see Refs. 15—

17):
G_l(snvgp):Go_l(snugp)_zl(snugp)u (13

v (k)
ien— &t ikvek—2 (e -gp) ,

whereé,=§&,, g andv=|vy, ol +|v}). ol for oddk, and ¢,
=&, andv =|v| +[v]] for evenk. The combinatorial factor

v(k)=k (15

corresponds to our case of commensurate fluctuations with
Q=(mla,w/a) (see Ref. 1h Clearly, one can easily analyze
the vase of incommensurate fluctuations, wh€res not
locked to the period of the reciprocal lattice. In this case,
diagrams with interaction lines surrounding an odd number
of vertices are significantly smaller than diagrams with inter-
action lines surrounding an even number of vertices. Hence
only the latter diagrams should be taken into accdtifit.

As a result, the recurrence relatigbd) is retained, but the
combinations of the diagrams and hence the combinatorial
factor changé?

k+1

Ek(“snvgp):A2 (14)

for k odd,
v(k)= (16)
— for k even.

In Refs. 11 and 12, the spin structure of the interaction in the
“almost antiferromagnetic” Fermi-liquid mode(the spin-
fermion model of Ref. 1Pwas taken into account. This leads
to more complicated combinations in the commensurate case
with Q= (m/a,w/a). More precisely, spin-conserving scat-
tering yields formally commensurate combinations, while
spin-flip scattering is described by diagrams of the incom-

Here and below we assume, for the sake of definiteness, thBtensurate typéa “charged” random field, to use the termi-
e, is positive. Clearly, when the velocity projections are of nology of Ref. 12. As result, the recurrence relation for the
the same Sign’ we can use this approach to calculate t}{éreen’s function is still of the forr‘(114), but the combinato-
contributions of any higher-order diagrams. Accordingly, thefial factorv (k) is now**?

contribution of anNth-order diagram to the self-energy part

in the interaction(4) is
2N—-1

1
SMN(g,,p)=ANT]

j=1 isn—fj'i‘injUjK’ (12)

where §=¢&,. o andv;=[vy ol +|vy, gl for oddj, and

= &, andv;=|vp|+|v}| for evenj. Heren; is the number of

k+2
P for k odd,

v(k)= K (17)
3 for k even.

As noted earlier, the solutiofl4) can be obtained only
if the signs of the velocity projectionsgw(v%w) and

interaction lines surrounding thgh Green'’s function in a v’g(vg) are the same. Below we analyze the situation when

given diagram.

this is really the case. When the signs are different, the inte-

In this case any diagram with crossing interaction linesgrals of the form(9) and(10), corresponding to higher-order
is equal to a diagram of the same order with noncrossingorrections, cannot be calculated in such a simple form as
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above because contributions from the poles of the electron vl
Green’s functions become important. Here instead of simple 3
expressions of the fornill) we have much more compli-
cated expressions arfdven more importantythe very fact
that broad classes of diagrams with crossing and noncrossing e i
interaction lines are equal is not true any mtfee reader SN
will recall that it was this fact that made it possible to clas- 0 1= /‘?Zt'p/tzz 1—
sify higher-order contributions and to obtain the “exact” —
solution(14)]. This problem is important only for the case of
finite correlation lengthg= «~* of fluctuations, while in the \
limit £~ (k—0) the exact solution for the Green’s func-
tion is independent of the velocitieg, and v,, o and can 3
easily be obtained in analytic form by the methods developed . : ,
in Refs. 13 and 14see also Ref. 12In the one-dimensional -3 =2 -1 0 1 2 3un
model considered in Refs. 13-17, the signs of the corre- _ .
. . . . . FIG. 2. The region of parameters where hot spots dkiatched and the
spondlng Ve|OCI'[y prOJectIOUS are_ always d'ﬁeré‘“fe)/ cor- region where such spots exist and the velocity projections have the same
respond to electrons travelling “right” and “left). This fact  sign (doubly hatchey
was stressed in a recent paper by TchernysKgdm. the
Appendix we analyze these difficulties in detail for the one-
dimensional case and show that the ansatz of the fa2n
used in Refs. 15-17 for the contributions of higher-order y_5_§p
diagrams and the solutidii4) yield a very good approxima- Up™ apy
tion even when the velocity projections have opposite signs.
Obviously, this solution is exact in the limit§—x (x
—0) andé—0 (k—) and provides a fairly gooquanti-
tative) description in the region of finite correlation lengths.

| eonapemtmet]

et

=2tasinp,a+4t’'asinpyacosp,a,

VRV ps Q= 16t %a? sir? p,a

2t’

t 2
co$ pya— ( —)

2
, t
vivyio=16t a’si’ pa co§pxa—(2—t,) . (21)

2.2. Analysis of the spectrum
Clearly, for the Fermi surface to have points where the pro-

jections of velocities have the same sigt,/t| must be
greater than 1/2. Here we are chiefly interested in the region
surrounding the hot spots, where on accountl®j we have

For the energy spectrurt8) we can easily specify the
conditions (the relationships between t’, and u) for the
solution(14) to be exact. First, let us define the region of the
parameterd, t’, and u where there are hot spots on the
Fermi surface, i.e., the conditions for the existence of points
connected by the vectoQ=(m/a,m/a). If p=(py.p,) VU Bt Q= VRV o= 4t%a’
specifies the position of a hot spot on the Fermi surface, the

point p+q=(py+ w/a, p,+ m/a) must also belong to the Thys, the projections of velocities at hot spots have the same
Fermi surface, so that for the spectr& we have sign if

ut’

7’
t—z—l). (22)

1— —

t!

— 2t(cosp,a+ cosp,a) —4t’ cosp,a cosp,a—u=0, pt! 117> 1. (23

(18) Obviously, the same condition ensures that, o is posi-

tive (this is needed for the solutiofi4) to be valid in the
model described in Refs. 11 and)12
Figure 2 depicts the region of parameters where hot
spots exist(the hatched argaor O u/4t'<1, and the re-
(19) gion where such spots exist and the velocity projections have
the same signgt’>1). Figure 3 depicts, for different val-
ues of the chemical potential (band filling), the Fermi sur-
faces specified by the spectru@®) for which these condi-
0= wlat’ <1. (20) tions are either met or not met.

2t(cospya+ cospya) —4t' cospya cospya— u=0.
This yields the conditions needed for hot spots to exist:
cospya= —cosp,a, CoS p,a= u/4t’.

Thus, hot spots on the Fermi surface exist if

We now define the region of the parametérs’, and u
where the solutior{14) is exact by requiring that the prod- 2.3. Spectral density and density of states

uctsv v, o andv’vY, 5 be positive. We have . .
Prp+Q pUprQ PE P Let us examine the spectral density

9& . o 1
v’gza—p‘)=2tasmpxa+4t asinp,acosp,a, A(E,p)z—;lm GR(E,p), (24)
X
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FIG. 3. Fermi surfaces defined by the
spectrum(8) for different values of the
chemical potentiak (band filling and the
parametert’/t. (a) The case wherd’/t
=—0.6 andu/t has the following values:
curvel, —2.2; curve2, —1.8; curve3,
—1.666; curve4, —1.63; curve5, —1.6;
curve 6, 0; and curve7, 2; the solution
(14) is exact in the vicinity of hot spots
(the velocity projections are of the same
sign) for u/t<—1.665. .., and hotspots
exist if u/t is negative(b) The case where
t'/t=—0.4 (which is characteristic of
high-T. cuprateg and u/t has the follow-
ing values: curvel, —2.2; curve2, —2;
curve3, —1.6; curved4, —1.3; curveb, 0;
curve6, 2; and curve/, 4; hot spots exist
if —1.6<u/t<0.

whereGR(E,p) is the retarded Green’s function obtained by Far from hot spots, the velocity projections have, in gen-
ordinary analytic continuous @fL3) into the real energy axis eral, opposite signs, even if conditig@3) is met. Accord-

E. Figure 4 depicts the energy dependenceAQE,p) ob- ingly, the recurrence relatiofi4) for the Green'’s function is
tained from(13) and (14) for different variants of the com- not exact. At the same time, dsincreases, the region with
binatorial factorg15) and(16). Since the energy dependence the hot spot in the momentum space narrows and the accu-
of the spectral density in the case of the combinatid®  racy of our approximation grows. However, from a discus-
for the spin-fermion model is qualitativeliand even quan- sion in the Appendix it becomes clear that our anga®
titatively) very close to that obtained in the incommensurateand the solutior(14) only slightly overestimate the role of
case, Eq(16), we have not displayed it in Fig. 4a so as to the finiteness of the correlation leng¢h There we also pro-
save space. For'/t=—0.6 and u/t=—1.8<t/t’'=1.666, pose a slightly different variant of the solution, Eg11),

the projections of the velocities at the hot spots have thevhich somewhat underestimates this role. The insets in Fig.
same sign and the solutidfi4) defines the Green’s function 4 depict the energy dependence of the spectral density far
exactly. We see that in the incommensurate qa$e (Fig. from a hot spot for different combinationgl5) and (16).

43 as well as for the combination47) of the spin-fermion Figure 5 depicts the energy dependence of the spectral
model, the spectral density at a hot spot clearly exhibits nonédensity for the combinationd 5) and(16) at a hot spot with
Fermi-liquid behavior(for large values of the correlation t’/t=—0.4, which, according to Schmaliat al,'*?corre-
length ¢ of the fluctuations In the case of commensurate sponds to the YBAau;0g., s System. The spectral density in
combinations, Eq(15) (Fig. 4b), it is precisely at a hot spot the case of the combinationi$7) of the spin-fermion model
that the spectral density has a single peak and, in this sensgs, very close to that obtained in the incommensurate case
is similar to the spectral density of an ordinary Fermi liquid (16). For such a value df/t’, even at hot spots the velocity
even wher¥ is large. However, even in the vicinity of a hot projections have opposite signs. However, the spectral den-
spot the spectral density acquires two non-Fermi-liquidsity (in the incommensurate casebtained from the solution
peaks(the “shadow” band for large values of¢ (see the with “alternating” «, Eq. (All) (the dashed curve in Fig.

inset in Fig. 4b. 5a) is seen to be very close to that obtained fr(id). This
A(E.p) A(E,p)
35 200 35 ssof FIG. 4. Energy dependence of the spectral
r ssoI b00L density at a hot spotp(a/7=0.1666 and
30+ a ,i 3 30r b 12} L} p,a/7=0.8333) for different diagram com-
2 binations att’'/t=—-0.6 and w/t=-1.8,

when the solution(14) is exact:(a) the in-
commensurate case, afly) the commensu-
rate case. The correlation length corresponds
to the following values oka: curvel, 0.01;
curve2, 0.1; and curve8, 0.5;A=0.1t. The
insets depict the energy dependence of the
spectral density for the corresponding dia-
gram combinations ata=0.01: curvel, at

the hot spotp,a/7=0.1666 andp,a/m
=0.8333; curve2, near the hot spop,a/
=0.1663 andp,a/7=0.8155; and curve,

far from the hot spotp,a/7=0.0 and
-03 -02 -0.I . . . . . pya/m=0.333.

25

20

15
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FIG. 5. Energy dependence of the spectral
density at a hot spotpia/7=0.142 and
p,a/7=0.857) for different diagram combi-
nations att'/t=—0.4 and w/t=-1.3,

A(E.p)
30

2 which approximately corresponds to high-
cuprates:(a) the incommensurate cagthe
20 dashed curve represents the spectral density
for the incommensurate case obtained by
(A11)], and(b) the commensurate case. The
15 correlation length corresponds to the follow-
ing values ofxa: curvel, 0.01; curve?, 0.1;
i0 and curve3, 0.5;A=0.1t. The insets depict
the energy dependence of the spectral den-
sity for the corresponding diagram combina-
5 tions atka=0.01: curvel, at the hot spot
p.a/7m=0.142 andp,a/m=0.857; curve2,
0 near the hot spop,a/m=0.145 andp,a/w

03 02 -0l . E . . X . 0.3 =0.843; and curve, far from the hot spot
p.a/ 7= pyalm=0.375.

suggests that the ansdi2) and solution(14) quantitatively  correlation lengthé (see the inset in Fig. 6alf the band

are close to an exact solution. We stress once more that thi#ling is such that the Fermi level lands in this energy
solution(14) is exact in the limits€—~ andé—0, while for  interval, there are hot spots on the Fermi surfacet’At=
finite & it provides a good interpolation between the two — 0.6, the region where the hot spots exist is rather wide, but

limits. nevertheless the pseudogap in the density of states is essen-
Now consider the one-electron density of states, tially unobservable. What can be seen is a smearing of the
Van Hove singularity, a singularity that exists when there is
1 . ;
N(E)=>, A(E,p)=—— >, ImGR(E,p), (25)  no scattering by fluctuations.
p T p

determined by the integral of the spectral dengM{E,p) 3. MODEL OF “SUPERCONDUCTING” FLUCTUATIONS
over the entire Brillouin zone. Earlier we have seen that al- o _ ,
though for some topologies of the initial Fermi surfaéband 3.1 Pescrlptlon of model and the solution for the Green’s
fillings) we can guarantee that near hot spots the signs of thf netion
velocity projections are the same, far from hot spots the signs  As noted earlier, pseudogap phenomena can probably be
are usually different, and the solutigh4) based on the an- explained by employing the idea of fluctuation Cooper pair-
satz(12) is only an approximation. Correspondingly, using ing at temperatures above the superconducting transition
the solution(14) to calculate the density of states also yieldstemperaturd . (see Refs. 1, 597Consider the simplest pos-

an approximation, according t®5). Figure 6 depicts the sible model approach to this problem. Figure 7a depicts the
densities of states obtained fro(3), (15), and (25) with  self-energy diagram of first order in the fluctuation propaga-
allowance for the spectruii®), for different diagram combi- tor of Cooper pairs fof >T,. Bearing in mind that we wish
nations, Eqs(15), (16), and(17), att’/t=—0.4(Fig. 68 and  to consider both ordinarsgwave pairing andl-wave pairing,
t'/t=—0.6 (Fig. 6b. We see that at'/t=—0.4 the density which is a characteristic feature of high-systems, we in-

of states vs. energy curves acquire a (Bpeudogap This  troduce the pairing interaction of the simplgseparable
decrease in the density of states is weakly dependent on tlierm

ME) ME)

FIG. 6. One-electron density of states for
different diagram combinationga) the case
wheret'/t=—0.4 andu/t=—1.3, and(b)
the case wheré'/t=—0.6 andu/t=—1.8.
Curvesl correspond to the incommensurate
case, curve® to the commensurate case,
curves 3 to the combinations of the spin-
fermion model, and curved to the case
where there is no AFM fluctuations. The
dotted curves represent the spectral density
for the incommensurate case obtained by
(Al11), A/t=1, and the correlation length
corresponds taca=0.1. The insets depict
the one-electron densities of states energy
for the corresponding diagram combinations
0 . . . L . s L L : . . . “ at ka=0.1 (curvesl) and ka=0.01(curves
-3 -2 -1 0 1 2 3 4 5 -24 20 -16 -12 -08 04 0 2).

Elt Elt

0.8r

0.61

021




974 JETP 88 (5), May 1999 E. Z. Kuchinskil and M. V. Sadovskil

N, A ! s’
N P
C o -

P -p+q p - FIG. 7. Self-energy diagrams in the model of SC fluctuations:
ie ~ie ic (a) the first-order diagram with an “explanation” of the mean-
a ing of the wave line, the fluctuation operator of Cooper pairs

(the dashed lines correspond to pairing interagtiand(b) the
M second-order diagram.

P -P+q P4=q, -P*q P b
€ —IE lE —iE L&

V(p,p')=—Ve(g)e(d'), (26)  the anomalies observed in the experiments arises. However,
below we again assume thatandA are phenomenological
parameters of the theory, bearing in mind that in high-
systems these parameters should be found from experiments
rather than from a simple BCS-type theory, which does not

where ¢ is the polar angle specifying the direction of the
electron momenturp in the plane, and foe(¢) we use the
model dependence adopted in Refs. 26 and 27:

1 for s—wave pairing, apply to this case anyway.
e(¢)= J2 cos 2% for d—wave pairing. (27) Re_asoning in the same way as we did in p_assing _f(m)m
to (4), instead of(30) we introduce the model interaction
As usual, the coupling constaxitis assumed finite for elec-
trons within an energy layer near the Fermi surface. Then the - 2¢71 2¢71
self-energy part corresponding to Fig. 7a takes the form Ver(Q) = —A%€*(¢) 2 2 (32)
X y

S(en,p)=2 Ver(iom,q)G(iom—ie,,—p+q), (28)  whereA2=22/4. Quantitatively this is very close to E(0)
mp and simplifies calculations significantly by making it pos-
where the effective interaction with SC fluctuations is givensible to classify the contributions of higher-order diagrams.
by the expression In this case the first-order contribution of the diagram in Fig.
7a has the form

Ves(i 0m,Q) -
A%e()
2 (1) =
=_ ve(d) ) 2P enp) isn+§p+i(|vx|+|vy|)KSignsn' (33
1-VT Y Golien.p)Goliwm—ien, —p+a)e’(¢) wherev,=vg OS¢, vy=vg sing, andxk= ¢ . The contri-
P (29 bution of the second-order diagram in Fig. 7b is
Below we assume that the SC fluctuations are static, so that(&n,p)=(A%€*(4))?
in (33) we can limit ourselves to the term with,,=0. Here q q
the static approximation is valid forrT>wgc=8(T 5 f Qux & f Dy «
—T.)/m, which is formally similar to the conditionsT T k2+q3, ™ K2+q§y
> wg used in the hot-spot model. The closer the system is to
the superconducting transition point, the better the condition Xf dgi, & f day &
is met. Then the effective interaction can be written T k2+q3, T K24 qu
A%(¢)
Ver( )~ — ——— (30) « ! , ! ,
£9(M+q (ien+&p—Vy-Gy)? 18n™ & V2 Q1 V2: Q2
where (34)
o wherev,;=—v,=vg. We can easily see that in the given

£0~ 0.18¢/Te, (3D problem we have essentially the same rules of the diagram-

M= ——e=,
(T_ Tc)/Tc . . . . . .

_ ] matic technique as in the hot-spot model with combinations
with &, the ordinary coherence length of the superconductorgsrresponding to the incommensurate case. This becomes es-
and AZZJ_-/N(EF)&% (hereN(Eg) is the density of states at pecially obvious if we study the topology of the interaction
the Fermi levelEg). Of course, within the elementary BCS |ine (the fluctuation propagator of Cooper paiis the dia-

model considered here, gram of Fig. 7a: we see that in higher orders the only dia-
T Ag grams that exist are those in which the interaction line sur-
A~27%T, E—C~A0 E—<A0 rounds an even number of vertices. Equati84) is similar
F F

to (9), but the signs of the velocity projections in the denomi-
(where A, is the energy gap of the superconductorTat nators of the Green’s functions are always different,
=0), and so the obvious problem of explaining the scale of= —v,. Hence contributions to the integrals over momentum
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A(Ep) REYA(E,p)
2.0F
Lok a b FIG. 8. (a) Energy dependence of the spec-
’ tral densityA(E,p) for the case ofd-wave
2 1.5¢ fluctuation pairing at different values of the
0.8+ . polar angleg, which defines the direction of
," electron momentum in the plane: curie
,' ¢=0; and curve2, ¢= /6. The correlation
061 { 1.0r length corresponds twgx/A=0.5 (solid
," curves. (b) Energy dependence of the prod-
04fF i uct f(E)A(E,p) (f(E) is the Fermi func-
05k tion): curve 1, ¢=0; curve 2, ¢=ml6;
’ curve3, ¢=w/4.83. The temperatur@n the
0.2r Fermi function is T=0.1A, and vgx/A
=0.5.
0 A
-3 -2 -1 0 1 2 3 -3 1

transfer in higher-order diagrams are provided not only bytion calculated by35) for different values of the polar angle
the poles of Lorentzians but also by the poles of the Green’gp determining the direction of electron momentum in the
functions. Neverthelesgbearing in mind the discussion in plane(here we assume thf|=pg) for the case ofl-wave

the Appendix we can estimate the contribution of higher- fluctuation pairing. Clearly, in the vicinity of the point
order diagrams by using the ans&t2), i.e., we calculate all  (7/a,0) of the Brillouin zone, the spectral density exhibits
the integrals in, say34) as if the velocity projections were non-Fermi-liquid(pseudogapbehavior. As the vectop ro-

of the same sign, and then in the answer we \aut —Vv,  tates in the direction of the zone diagonal, the double-peak
=Veg. We again arrive at a recurrence relation for thegtycture disappears and the spectral density becomes a typi-

Green’s function of the forng14): cal Fermi-liquid spectral density with a single peak, and the
S(en,€p) closer the value of is to 7/4 the narrower the peak. The
- spectral density undergoes a similar transformation as the
- ATe’(¢)u(k) correlation lengthé becomes smaller.
ien—(—1) &, +ikvek(|cosg| +|sing|) ~Siia(en.&p) Figure 8b depicts the evolution df(E)A(E,p) (here

(35 f(E) is the Fermi distributiopy which is actually the param-
eter measured in ARPES experimehtsote that the curves

in Fig. 8b closely resemble the curves obtained in Refs. 11
and 12 in the hot-spot model. The picture of destruction of
the Fermi surface suggested by these calculations is very
similar to the one that follows from the experimental data
obtained by Normart al?® for Bi,Sr,CaCyOg., 5.

_ ) In the case ob-wave fluctuation pairing, the pseudogap
3.2. Spectral density and density of states appears isotropically on the entire Fermi surface, and the

Figure 8a depicts the energy dependence of the spectrapectral density is of the non-Fermi-liquid type everywhere
densityA(E,p) [Eq. (24)] of the one-particle Green's func- for large fluctuation lengthg of SC fluctuations.

wherev (k) has been defined ifL6). Of course, Eq(35) is

an approximation, but it gives the exact result in the limits
k—0 (§—) andk—> (£—0) and provides a fairly good
(quantitative interpolation between these two limits for fi-
nite correlation lengths.

N(e)/NO(EF) N(e)/NO(EF)
1.4 1.4
b
i.2 1.2+
1.0 FIG. 9. One-electron density of states in the
1.0 model of SC fluctuations(a) in the case of
0.8 swavepairing, andb) in the case ofl-wave
0.8 pairing. The curves are built for the follow-
0.6 ing values of the parameter-«/A, which
determines the correlation lengths of short-
0.4 0.6 range-order fluctuations: 0.Ccurve 1), 0.5
’ (curve2), 1.0 (curve 3), and 2.0(curve4).
0.2 04
! 1 1 0.2 ) L N
0 0.5 1.0 1.5 20 0 0.5 1.0 1.5 20

E/A E/A



976 JETP 88 (5), May 1999 E. Z. Kuchinskil and M. V. Sadovskil

In Fig. 9 we present the results of calculations of thethe region close to optimal dopin@orresponding to the
one-electron density of states usigg5) for the case of maximum superconducting transition temperatuddore-
s-wave pairing(Fig. 98 and in the case ofi-wave pairing over, an obvious problem inherent in this scenario is that of
(Fig. 9b for different correlation lengths of the SC fluctua- explaining the characteristic scales of the anomaliesem-
tions. We see that fod-wave pairing the pseudogap in the perature and in energyThe problem cannot be resolved by
density of states is not so pronounced assfarave pairing, using simple approaches based on the BCS theory—the so-
even for large correlation lengths of the fluctuations. At thelution requires new microscopic approachésThe models
same, Fig. 9 clearly shows that in the model of SC fluctuaconsidered in the present paper are useful in analyzing the
tions the pseudogap is more pronounced than the hot-sppseudogap formation in both scenarios, since they are actu-
model discussed earlier. ally based on a fairly generggemiphenomenologicaform
of the correlation function of short-range-order fluctuations.

The authors would like to express their gratitude to Oleg
Tchernyshyov for supplying the preliminary information on

We have examined almost exactly solvable models ohis analysis of the one-dimensional model. This was partially
the pseudogap state of the electronic spectrum of twosupported by the Russian Fund for Fundamental Research
dimensional systems. These models are based on alternati(Rroject 96-02-1606%and Project No. 1X.1 of the Statistical
scenarios of the origin of these anomalies: the picture oPhysics State Program and Project No. 96-051 of the High-
“dielectric” (AFM, SDW, CDW) fluctuations, which gives T. Superconductors State Program of the Russian Ministry
rise to the hot-spot model, and the picture of fluctuationalof Science.
formation of Cooper pairs abovE. (SC fluctuations The
term “almost exactly solvable” means that in this approach
it is possible to sum the entire series of Feynman diagram&PPENDIX: ANALYSIS OF THE ONE-DIMENSIONAL MODEL
for the one-electron Green’s functigand actually also for
the two-electron Green’s fgnctlb‘ﬁ”), using for the higher- (1) in estimating the contributions of higher-order dia-
order diagrams the approximate ansdf2). As showninthe gams we limit ourselves to the analysis of the one-
Appendix and also by the numerical examples in the Maifjimensional mode®®1 since in one dimension the problem
body of the text, the ansatz guarantees a rather good approxis most serioué® We are interested in the vicinity of the
mation (speaking quantitativejyto the exact solution in the  pq i points +pr and —pg, with electrons scattered by

region of finite correlation lengthg of short-range-order Gayssian short-range-order fluctuations scattering by a mo-
fluctuations, while in the limitg§—c and&—0 our solution mentum Q~ = —2pg, shifting them from one end of the

Is exact. Fermi line to the other with an accuracy of ordér!= «

Our calculations of spectral densities have shown that i'?Refs. 13-17. We examine the electronic spectrum in the
both scenarios we can obtain a rather appealing pi¢fto®  |in0arized approximationg,., =+ —vgp, and assume, for
—FF

the st'and'pomt of possible comparison with the experlmgnt Ihe sake of brevity, thatr=1. Here the system consists of
data in highT; cupratey of destruction of the Fermi-liquid .
) c. . . two types of electron: those electrons that move to the left,
state in specifiqhot) parts of the Fermi surface, with the : . .
Fermi-liquid state retained in the remainitapld) part of the and those that move to the right. It is convenient to do our
d (wld) p analysis in a representati@nin which the equation of mo-

Fermi surface._ Such non-Fermi-liquid behavior is due to th ion for the electrons in the given model takes the f8iR
strong scattering of electrons by short-range-order fluctua-
a) . ( 0 AX)

tions, and the larger the correlation lengtithe more pro- I R -

nounced the behavior. At the same time, there are certain ('15_"735 W (t,x)= A*(x) 0 W (t,x).
differences between these two scenarios, which can, in prin- (A1)
ciple, be utilized in the analysis of the situation in real sys- - . . .
tems. In particular, in the hot-spot mod&IFM fluctuations, We limit ourselves to mAcommensurate fluctuations, i.e.,
the pseudogap in the density of states is relatively stsat A" (X) #A(X). The spinor\If=($f) describes “right” and
Fig. 6). In the model of SC fluctuations the pseudogap in the‘left” electrons. The fluctuationsA (x) are assumed Gauss-
density of states is much more visiblsee Fig. 9. At the  ian with (A(x))=0 and (A*(x)A(x'))=]|A|%exp( «|x
same time, the model of dielectric AFM fluctuations appears-x’|). The free propagator in the frequency—coordinate rep-
to be more attractive even from a simple consideration of theesentation is

phase diagram of a highz system: pseudogap anomalies are . . .
observed in the underdocped region, and the closer the system C0(eX)=10(e3X)signe)explie osX), (A2)

is to a dielectric AFM state the more pronounced are thewith o3=+1 for right particles andr;=—1 for left par-
anomalies. It is in this region that we can expect the shortticles. A particle traversing a path of lengthproduces a
range-order dielectriGAFM) fluctuations to play a more im- phase factoe'®'. When calculating specific diagrams, it is
portant role, the correlation length to increase, etc. It is convenient to change the integration variables from the co-
rather difficult to understand why in this region of the phaseordinatesx, of interaction vertices to the lengthg of paths
diagram the fluctuational formation of Cooper paiSC traversed by particles from one scattering act to andther.
fluctuation$ may become more important. On the contrary,Here it is important to account for the fact that these path
it would seem that such formation should manifest itself inlengths are not independent, since for a given diagram the

4. CONCLUSION

Let us examine in greater detail the use of the ansatz
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total particle displacement—x’ is always fixed. The rules tive transition amplitude of any higher-order diagram can
of the diagrammatic technique for calculatis,x—x") only decrease. For the diagram in Fig. 1b in the coordinate
that result are as follow& representation the contribution of the interaction lines is

1. A solid line of length I, yields a factor
—jellke=(-1)*p)

2. A wavy (interaction) line connecting verticem andn
gives a factor

e g klli=la—l3l_, g=rlpg=x(1—Ip+l3) — g= (1 +13)
(A6)
In the momentum representation this yields
1 1 1

n-1 AG(e,p)=A* . - - .
|A|2exp(—K|xm—xn|)=|A|2ex;{ —x 2 (—1)M, ) e—ptidletptike—ptidetptik
k=m
1
3. Integration over all, is done from 0 tow. Xs—p+ i6’ (A7)
4. Integration ovem is done with a weighting factor

An analysis of any higher-order diagram shows that in this
. ; case the contributions of dl-order diagrams are equal and
In calculating G(e,p) the last rule can simply be

dropped. These rules show that allowing for the finiteness of the : momentum  representation have the forfthe
: S . . alternatingx ansatz
the correlation lengthé=«~* leads in each diagram to a
damping of the corresponding transition amplitude with the N
displacement of the particle. Taking this effect into account Gn(e,p)=|Al (
exactly constitutes a complicated problem, but lower and up- . . . .
per bounds on this effect can be found. On the one hand, wEhen the entire series can easily be summed, much like the
have the obvious inequality case withk=0 (Refs. 13 and 14 and for the Green’s func-

tion we obtain
n—1 n—1
ex%_K 2 (_1)k|k >eX4_K2 Ik) (A3)
k=m k=m

By using the right-hand side @A3) as the interaction line

we overestimate the transition amplitude damping., ef- j”d —¢ etptik

fectively overestimatex). We can easily see that the use of 0 ce (e—p+id)(e+p+ir)—|A]2

this approximation in calculating the Green'’s function in the

momentum representation amounts to addirgo the de- (A9)
nominator in each Green'’s function surrounded by the interThis expression can easily be used to calculate the corre-
action line and yields an expression for any higher-order corsponding spectral density or the one-particle density of
rection of the form(12) (cf. Ref. 22. For instance, the states:

&P 2,

. A8
s—p+i5)N+1 (8+p+iK)N (A8)

GR(e,p)= X N! Gy(e,p)
N=0

following expression corresponds to the diagram in Fig. 1bN(s) vek [ o
(we assume that>0 and6=07"): NE) %fﬁxdﬁ,fo d¢
AG =A% ! 2
(&P = A 5 s prin xe-t A
L L (%= &~ LA+ (vpk) (e &p)?
><s—p-l-ZiK et+ptik/e—p+id’ (Ad) (A10)

where we have restorad- . In Fig. 10 we compare the den-
sities of states for different values ef(or correlation length
that we calculated by the alternatirngansatz and a recur-
n-1 rence relation of the form(12) in the one-dimensional
<exp( -k, (—l)k‘mlk>. model’®~" We see that the results are quantitatively close
k=m for almost all values ok. Since, as noted earlier, our main
ansatz(12) and(A4) somewhat overestimates the role of the
By using the right-hand side @f\5) for the interaction line finiteness ofx, while the alternatingeansatz(A7) underes-
we underestimate the transition amplitude damgirg, ef- timates it, we can easily see that the exact value of the den-
fectively underestimat&). It may seem that this choice of sity of states differs little from the these two approximation
the expression for the interaction line can even increase th® the contributions of higher-order diagrams. The situation
transition amplitude over its value at=0, but this is not so. with the spectral densities is similar. Actually this means that
Since we are considering the incommensurate case, whetee results for the main physical quantities determined by the
the interaction line surrounds only an even number of verti-one-electron Green'’s function are not strongly dependent on
ces(i.e., an odd number df), the choice of a specific sign the way in which a finitec enters the expressions for higher-
in the exponent after the absolute-value sign has been rerder diagrams. What is important is that we must take into
moved is determined by what number lgfis greater, the account(at least approximatelyall perturbation-theory dia-
odd or the even. This leads to a situation in which the effecgrams with allowance for their different combinations. This

which is similar to(9) and(11). On the other hand, we can
employ the inequality
n—-1

exp — kK
k

> (=DM,

=m
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Me)N(EL) tuations with its maximum at an arbitrary scattering ve€or

1.4 much shorter tharpg. In this case, for large correlation
lengthsé, the electrons are scattered by fluctuations, staying
always on one brancfright or leff) of the spectrum. Here
expressions if the formA4) remain exact. After this is done,

in the final expressions for the contributions of higher-order
diagrams we perform a continuation to the regi@n 2pg of
interest to us, since the only dependence@ris already
present via the bare electron spectrum. A similar result can
be achieved by varying the chemical potengialband fill-

ing).
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0 05 1.0 1.5 20 YA model similar in meaning to the one used here but differing somewhat
EIA from (4) was employed by Schmalizat al:11?

-1 -1
FIG. 10. One-electron density of states in the one-dimensional model for Veﬁ(k):AZ%%,
different values of the parameteg«/A: 0.1 (curve 1), 0.8 (curve 2), and § 5k &kl
1.2 (curve 3). The solid curves represent the results of calculations by for- wherek; andk, are the projections of the vectérparallel and perpen-
mulas of the form(12) and (14) (Ref. 15, and the dashed curves represent dicular tov,.q, SO that a result similar t67) is obtained:
the results of calculations bjA10). A2

enp)= Te— &5 o 1|VprolKSigne,’
2In the model of Vo; employed by Schmaliaret al!**? for the case
should not come as a big surprise, since the main effect ofv,-v,.o>0 the following expression can be derived in a similar way:

pseudogap formation is due primarily to backward scatteringz(b)zz(c)zﬂ 1

by a vectorQ~2pg, which is accounted for exactly in the [ien—&psotilVpsgl k]2
limit £—0, while the effect of a finitec reduces to an addi- 1

tional weak modulation of the random field, which leads to X

ien— &proti2|Vp|(|cosp|+|sin @)k’

damping of the field’s correlator and smearing of the where  is the angle between, andv, . o

pseudogap.
Naturally, the alternating- ansatz can also be written in —————— . .
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Instability in a system of interacting quasi-two-dimensional excitons in a type Il superlattice of a
finite thickness due to attraction between oppositely-directed excitonic dipoles in neighboring
layers has been discovered. A stable system is that of indirect quasi-two-dimensional biexcitons
formed by indirect excitons with dipole moments oriented in opposite directions. The

radius and binding energy of indirect biexcitons has been calculated. A collective spectrum of a
system of such biexcitons with a weak quadrupole interaction between them has been

studied. Feasibility of Bose condensation, the density) of the superfluid component, and a
phase transition to the superfliud state in a low-density system of indirect biexcitons have

been analyzed. €999 American Institute of Physid$$1063-776099)01905-§

1. INTRODUCTION turn up in a system of indirect excitons in superlattices, just
as in coupled quantum welfs. If we have a structure of
Intense interest in electron—hole systems in coupledjternating electron and hole quantum welts the configu-
quantum wells~ has been stimulated by prediction of exci- ration described aboyethe excitons in one pair of wells
ton superfluidity in such systems, which can be manifestegyave equal dipole moments, whereas the dipole moments of
by the existence of undamped electric currents in eacRycitons in the couple including the neighboring well are
well.®” A number of other effects have been studied for suchyiented in the opposite directiofiig. 1). It turns out that
systems, namely, quasi-Josephson efféctystallization of ;g property results in a notable difference between the
indirect excitons, and a number of effects in high magnetic electron—hole system in a superlattice and in coupled quan-

1 10-13
fields: o _ _ _tum wells (which even in three-layee-h-e or h-e-h sys-
Of special interest are also collective properties of exu—tems

. . _ 6 .
tor:)s mt sfu t[;]erlattmets da.n d Iatyeretz.d sfcructdf‘efl_ 'Tjhte .ma|r|1 This paper considers a type Il superlattice of a finite
subject ot the reported investigation IS SUpertiuidity I & 1owW- ;. negs, Instability of the system of indirect excitons with

density elgctron—hqle SVSte'T“ n a superiattice. Therg are s€¥e dipole—dipole interaction at large separations between
eral plausible physical realizations of the model with spa-

. . : them has been discovered in such a structure, which is
tially separated electron®) and holes ) in superlattices. . . .

. X o . caused by the long-range attraction between excitons with
The holes can be in thermodynamic equilibrium in type I

superlattices. In addition, spatially separated electrons an%ppos_ﬁely—dwecte_d (_j|pole _”‘0”_‘9”‘5' we will d|scus_s qua3|-
holes can be generated by laser pumping in superlattices o-dimensional indirect biexcitons formed by two indirect
excitons with oppositely-directed dipole moments. The ra-

the form of periodic structures of coupled quantum wélhs ’ o R
example, based on AlAs/GaAs structdiesf the size- dius and binding energy of such F)Ie).(CItOI’\S hgve been cqlcu—
lated. In contrast to the case of indirect excitons, there is a

quantized level of carriers of a single type in one well is ) ) i e
below the quantization level of the same carriers in anothefePulsive quadrupole interaction between these biexcitons at

well (for carriers of the other type the relative positions oflarge distances. As a result, a system of indirect biexcitons is
their levels is reversed If the overlap between the wave Stable.

functions of spatially separated electrons and holes in In the ladder approximatiolf;*®we will calculate a col-
coupled quantum wells is sufficiently small, the recombina-€ective spectrum of two-dimensional indirect biexcitons
tion time can be much longer than the relaxation timeAt ~ formed by indirect excitons with opposite dipole moments
low densities, indirect exciton&omposed of spatially sepa- due to the quadrupole interaction between biexcitons. The
rated electrons and holesxist at times when direct excitons densityng(T) of the superfluid component of interacting in-
have already recombinéd Then indirect excitons can come direct two-dimensional biexcitons has been calculated at low
to quasi-equilibrium in a time shorter than the recombinatiortemperatured. The temperature of the Kosterlitz—Thouless
time of indirect excitons, and photogenerated electrons anghase transition to the superfluid stdteas been calculated.
holes are characterized by different chemical quasiProbable coexistence of phases of direct and indirect exci-
potentials. In this case, various quasi-equilibrium phases matpns will be discussed in the Conclusion.

1063-7761/99/88(5)/7/$15.00 980 © 1999 American Institute of Physics
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‘ ‘ ) o o ) binding energyE...=e? eD) between indirect excitons with oppositely-
FIG. 1. Indirect two-dimensional biexcitons formed by indirect excitons directed dipole moments from neighboring pairs of quantum wells as a

with oppositely-directed dipole moments from neighboring pairs of quantumfunction of distance between the indirect excitor{& units of D).
wells.

2 INSTABILITY OF A SYSTEM OF INDIRECT EXCITONS excitons, if t_he potential barr_ier_due to _the dir_ect dipole—

dipole repulsion between two indirect excitons with the same

Let us consider a low-density system of weakly interact-girections of dipole moments and the repulsion between two

ing indirect two-dimensional excitontheir electrons and ingirect excitons with oppositely-directed dipole moments at
holes being located in neighboring layeirs a type Il super-  gistances of order o is taken into account. The small

: o H —-1/2 . . . .
lattice of a finite thicknes. Suppose that,.“>L, where  tynneling parameter due to the barrier is given by the expres-

Nexc IS the surface density of excitons. Let us prove that ingjgn
this case, unlike in the case of a two-layered systeoupled 1
. . f )
quan_tL_Jm We_II};._the exc_ltonlc 2system is unstable. At low - __J' 2M[U(r)— ]dr|,
densities of indirect excitonsa“<<1 and low temperatures, fi Jap)
the .systim_ls a guasi-two-dimensional Bose gas of md'rec\}vhereM —mg+my, uis the chemical potential of the sys-
excitong* with dipole moments! (d~eD) perpendicular to : . ; . .
. . } .~ tem, andr is the classical turning point for repulsion at an
the quantum well plane and increasing with the separddion . . .
: : . : energy equal tqu. The potential energy of interaction be-
between neighboring quantum wells.,{D) is the exciton - . . L .
C % AP 5 tween two indirect excitons with the same directions of di-
radius in the well planeag~a*/4, a* =#“el u£° for ole moments at large distances is
D<a* and ag.~(a*)YD¥* for D>a*, the spectrum of 9
the lowest excitonic levels being identical to that of a two- _ e’D?
dimensional oscillator in the latter caseis the permittivity (n= erd’
of the material,ugyc=mM.m;,/(Mg+my)). In contrast to the g+ indi _ ith itelv-di 4 dibol
case of conventional excitons, the dipole—dipole energie&nd for two Ihn |rehct izxcno.ns with oppositely-directed dipole
U_ andU, of excitons with opposite and the same direc-MomMents it has the forrtFig. 2)
tions of dipole moments, respectively, contribute to the en- e2 2¢2 e?
ergy of low-density spatially indirect excitons. The interac- u(ry=—-— =+ > >
tion between two dipoles has the energy € eVr’+D?  eyr?+4D
e?D?2 At large D, the small tunneling parameter due to the
= barrier for two indirect excitons with dipole moments in the
same direction is

@

U.=-U_=U=—,

where R is the distance between the dipoles in the well 2eD M /D
plane. We assume th&t/R<1, which is the case in low- ex;{— | Nex;{ - _}
density systems. In what follows, we consider the case when h VaedD) aexd D)

1/4
so thatk<R,/D=1/D+/mn,, Which applies to the case of 2D ) }
fairly large k but very low exciton densitiefR, is the mean Fexe
distance between neighboring excitons in the quantum wellr .,.=a* /4 is the radius of the plane two-dimensional exci-
plane. Here we have the inequality R<1, wherer is the  ton). At large D, the small tunneling parameter for two in-
distance between dipoles in the direction normal to the welblirect excitons with oppositely-directed dipole moments is
plane. exp(—0.33yD/r gyc)-

The difference between excitons and point-like bosons Let us show that at a small overlap between excitonic
relates to exchange effect® For excitons with spatially wave functions, the exchange contribution to the chemical
separate@ andh, these effects are suppressed at large sepaotential is small. For simplicityonly in this specific cage
rationsD between quantum wells, whelgxcagxc(D)<1, ow-  we consider the Hamiltonian of a two-layered electron—hole
ing to the negligible overlap between wave functions of twosystem:

the numbek of quantum wells in the superlattice is limited, ;{
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. o p2 p2 wheren is the dimensionless surface density of charge car-
H= 2>, (2——,% apapi+ Z——Mh)b;bpi riers na’,; Aex=(8MexdD¥* is the indirect exciton
p=0i 1 2Me Mh radius**
1 . In order to calculate the exchange energy, let us analyze
+3 > ; V(K)(apiay j@pr 4k j8p-k,i some components of Hamiltoniadh, :
pp'k 17
+ o+ _ _ .2 N7
+bpibp'jbp’+k,jbp—k,i) Hex—p%j (Ep /.L)Upl)p Upg Vp_p,uprvp,}
_2i2j V(K)agby, by 41 jap-ki )

2
X(a;ibfpﬁ- b_piapi)_ ( 22[ Vp—p’Up/upvp
L , , P
where the subscriptsand| label the excitons composed of
the corresponding electrons and holaﬁ’; and b;i are the
creation operators of the electron and hole included in the
exciton with number; m,=m,=m are the electron and hole ) . .
effective massesy(k)=2me?/ek is the Coulomb interac- Where e,=p/2ue,. For calculating the average in the
tion within one layerV (k) = (2mwe?/ ek)exp(—kD) is the in- ground state, let us use the relationship
teraction between an electron and a hole in different layers; <a;ibfpj>+<b—pjapi>~~7ij(<a;ibfpi>+<b—piapi>),
Me and u,, are the chemical potentials determined by the

normalization condition(the densities ofe and h are as- wherefii=7~exq—sz/a(D)]~exp[—(D/2rexgl’4] is the

sumed to be equaNe=Ny): tunneling matrix element for electrons and holes of different
N N 1 excitons through the potential barrier of the dipole—dipole
; <apiapi>=; <bpibpi>=§N' repulsion, which is determined by the exponentially small
' ' overlap between their wave functions. Let us use the condi-
where N=N¢+ Ny, is the total number of particles in the tion that coefficientk, of the average pair combinations of
system;n=N/S is the two-dimensional density of particles operatorga,b” ;) +(b_gap) (which yield singular contri-
in the system, an@ is the total area. In order to calculate the butions to the energyshould equal zero in Hamiltonia,
exchange energy due to coupling between electrons ang Eq. (7) transformed to take into account theh coupling.
holes, let us apply Bogolyubov’'s canonical transform de-From conditionk,=0 follows

scribed by unitary operatofS to the electron and hole

+U;2)2 vp—p'up’vp') (apibipi+b pag), (9
p

operators® ep— =22 TV pvp |Upvp— (U= T505)
o
AS:GXF{% bpi(@pib pi—b_piap) |, (€©)) S Ty g0, a1
éapié+ - “papi"'”pbipi ' ) Ina Io:v-density systemy,, is of order of unity, whereas
© g alin e o s amersoness paneer 1 e
where order up toyn, Eq.(11) reduces to
Up=COSeh,, vp=SiNg,, Us+vi=1. (6) (Sp_MO)Up_jvp—p’vp’f;_:;fzo' (12)

Using anticommutation relations for fermion operators,
we derive in the standard manner the transformed Hamilln combination with the normalization conditiof8), Eq.
tonian (12) yields

H:H0+H/+U, (7) Up:\/ﬁwO(p)i Moo= — €0» (13)

where eg and o(p) are the binding energy and wavefunc-
tion of the ground state of an isolated exciton with spatially
€eparated electron and hole. The wave funcijgrand en-
ergy €, of indirect excitons were previously calculated for
various separatior® between layer$? The correction of the
next order inv, to Eq.(11) describes exchange effects. The

whereU is a numerical functional ofi andv, andH, and
H’ are Hamiltonians that are quadratic and quartic in th
transformed operators, respectively.

Functionv, obeys the normalization conditions

> vi=n/2, (8)  correction to the exciton chemical potentjal,. can be de-
P rived from Eq. (11) using the conventional perturbation
which derives from the relations theory by substituting), in the zero-order approximation
from Eq.(13) in terms of orden®?, which are omitted in Eq.
2 (éa*a ‘é+>22 <§b+-b _§+>:22 v2=n (12) and proportional to small parametef, and treating
o PP o PPl PP them as a perturbation. As a result, we obtain a correction to
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the chemical potentiale, in the region of small exciton direct excitons with oppositely-directed dipole moments. As

densitiesn and small separatior3 between layers: a result, we have only the terms describing attractterms
., responsible for attraction in E¢L7) are more numerous than
Meexe™ 7 NagycEo- 14 those describing repulsion because attraction can be de-

Thus, the exchange energy in a system with spatial Sepa;cribed using a greater number of combination of creation
ration of carriers is reduced in comparison with a one-laye@nd annihilation operatorsLet us diagonalize Hamiltonian
electron—hole system. This is caused by the small tunnelingl;,;, which is quadratic in these operators, using a unitary
exponent7 due to penetration through a barrier due to thetransform of the Bogolyubov typé
dipole—dipole interaction. Therefore, one can neglect ex-

. . e 1
change effects associated with the nonboson statistical prop- 5 — a+Aat +B.BT )
erties of indirect excitons. P \/l—Azp—sz( o Apt-pt Bob-p),

In analyzing the stability of the ground state of a weakly (19
nonideal Bose gas of indirect excitons in a superlattice, let us b.— (Bt A BT +Ba)
employ the Bogolyubov approximation. The total Hamil- P 1—paZ_g2 P PP ERT Pl

ploy golyubov approXimat I 1-A;-B;

tonianH ., of a low-density system of layered excitons is the
Hamiltonian for a tenuous gas of two-dimensional indirect
excitons with parallel and oppositely-directed dipole mo-
ments:

. A . 1
Hiot=Ho+ Hint- (15 Ap:Bp:m[_&‘o(p)"‘ V(go(p))?=(nU)?]. (20

Here H, is the Hamiltonian of a system of noninteracting As a result, we obtain the diagonalized Hamiltonian:
excitons:

where coefficient\; andB,,, obtained by equating the co-
efficients of the off-diagonal terms of the Hamiltonian to
zero, are

I:Itot: E 8(p)(a;ap+,3;ﬁp+ atpafp"'lgtpﬁ—p)a

Ho=2> eo(p)(aya,+byby+a’ a ,+b* b_p), p70
i (16 @)
] ) wheree(p) is the spectrum of modified quasiparticles:
where g4(p) =p?/2M is the spectrum of an isolated two- ,
dimensional indirect exciton in a superlatti} , b, , a;, e(p)=\eg(p)—(nU)2. (22

andb, are the creation and annihilation operators oj eXCitoNSht gmall momentap< 2MnU, the excitation spectrum is
with different orientations of their dipole moments;y is  purely imaginary because of interaction between excitons at
the Hamiltonian of interaction between excitons: large distances. Therefore, the low-density system of weakly
U L. L interacting indirect excitons in a superlattice is unstable.
(ap4ap3ap2ap1+ bp4bp3bp2bp1
3. RADIUS AND BINDING ENERGY OF AN INDIRECT

+ + Rt
ap,ap, —ap by ap,0p ), BIEXCITON

n
—aja bpszl_bp4bps
17 Consider the ground state of the system to be a tenuous
weakly nonideal gas of two-dimensional indirect biexcitons
formed by excitons with oppositely-directed dipole mo-

particles are in the condensdN—N)/Ny<1, whereN ments. If electron and hole quantum wells alternate, indirect

andN, are the total number of particles and the number ofiexcitons are constructed from indirect excitons with
particles in the condensatave take into account, as usual, oppositely-directed dipole moments in adjacent well pairs

only the interactions among condensate particles and béFig- 1- With the appropriate mutual alignment of dipoles,
tween the excited particles and condensate, thus neglectiﬁ ey attract at long distances between them and repel at short

interactions among excited particles. Then the total Hamildistances, and their interaction potentif{r) has the form
tonian has the form described by Eq.1), wherer is the distance between parallel

dipoles of indirect excitons in the quantum well plaffég.
2). Here the separatioR between coupled quantum wells is
assumed to be greater than the indirect exciton radiys
(Ref. 14: D>ag,~ (a*)¥*D¥* Whenr>1.11D, the indi-
—Ungda,b ,+agb p+alby+a b,+asby  rect excitons attract, whereas mt 1.11D they repel. Not-
+afpb_p+apb;+a_pbfp)], (18) withstanding the fact that, unlike the case of atoms and mol-
ecules, electron and hole masses are comparable, the
whereng,= N/V is the exciton density. All terms due to the adiabatic approximation applies to the problem of biexcitons.
first and second summands in HamiltonigdY), which de-  The small parameter in this case is not the ratio between the
scribe the mutual repulsion of indirect excitons with parallelelectron and hole masses, but the numerically small ratio
dipole moments, are cancelled by the rest of the terms ibetween the biexciton and exciton binding energtemn
Hamiltonian(17), which represent the attraction between in-terms of spatial scales, the small parameter is the ratio be-

whereV is the system volume.
We now consider the casé=0. Assuming that most

N 1
Hmt=§§0 [eo(p)(ag 8y + b by+at a p+b™ b )
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tween the exciton and biexciton radii in the quantum welleffects due to the nonboson statistical properties of indirect
plane. Curiously enough, in the biexciton problem, these pabiexcitons are reduced by the small overlap between wave
rameters are small evennf,=my, . Moreover, they are even functions of two biexcitons if we take into account the po-
smaller than similar small parameters for atoms andential barrier due to the long-range quadrupole repulsion
molecules’? Their smallness will be confirmed by calcula- (see the similar reasoning for the case of dipole excjtons
tions of parameters of the indirect biexciton. The Sehro The small tunneling parameter associated with this barrier is
dinger equation for internal motion of indirect excitons in an
indi iaxciton i 1(r 9e’D*
indirect biexciton in the center-of-mass frame has the form = _
ex A 2M piex 5 M
o R

121 a( ap(r)
Mool or

|

TU)Y(r)=Ey(r), (23

wherep is the chemical potential of the systdsee below,

R’ is the classical turning point for the quadrupole interac-
tion, and is determined by the conditit(R’) = «. At large

D this parameter has the form exg§.93yD/r,.). Hence,
exchange effects for indirect biexcitons can be neglected for
D>rgye-

In order to take into account the biexciton—biexciton
scattering, one can use results of the two-dimensional Bose
gas theory® The chemical potential of two-dimensional
bosons, with repulsion described by the formulKR)

=AR /M and the interparticle interaction taken into ac-

Thus, t.he b|§x0|ton levels .at Iar@ correspond to those count by summing ladder diagrarWsLs given by(hereafter
of a two-dimensional harmonic oscillator with frequenoy h=1)18

=.0.88%/MeD? and an equilibrium point at=r,. The

where (r) andE are the wave function and energy of in-
ternal motion in the indirect biexciton. The potential energy
minimum is at distance =r,~1.67D between the indirect
excitons (Fig. 2). For largeD we expand potential energy
U(r) in powers of ¢ —ry)/D<1 and retain terms up to the
second order:

U(r)= 004e2+044 ¢ 2 24

(r)y=-0. oD 0 6D3(r ro)<. (29

spectrum of low-lying levels is, therefore, equidistant: _Amn 1
2 *\ 302 1= N g AT (28)
En=—0.04—+21/iE0(—) (n+1), (25 o o
eD D In the case of biexcitons repelling like quadrupoles, the re-

Where lations A=9e?D*M e, and k=5 apply, and the chemical
A 22 potential of this system is
Me’ €
Eoz?z—, T*ZZM—,z, e'?=0.887. _47Tnbiex 1

€ e -1
H M piex 8#(962D4M biex) 2/?,nbiex

In the ground state the enerdy, and the characteristic
“spread” a,e Of the biexciton in the quantum well plane whereny.,=n/2 is the biexciton density anil ,.,=2M is

(near the biexciton mean radiug) are the biexciton mass.
e? p*)\ 302 At small momenta the collective spectrum of biexcitons
Eo=— 0.04—D +2v2E, 5) , (26)  is acoustice(p)=csp, wherecs=yu/Mpe, is the speed of
€

sound andu is determined by Eq29). This spectrum satis-

27 fies the Landau superfluidity criterion. The local density

Apjex= \/M—w=(8r*)1’4D3’4= 1.03c. (27)  ngT) of the superfluid component for a two-dimensional

Bose gas with an acoustic spectrum is given by

It follows from the equations given above that the adia- 3
batic condition holds, since the ratio between the exciton and Ne= 33 T
biexciton binding energies Byey/Ecyc=0.04<1. The ratio s 2q CﬁM biex_
between the exciton and biexciton radii i8¢./rg
=0.67(& oxd VD " V4<1 for D> ag,e.

The mean dipole moment of this biexciton is zero. It is
clear, however, that its quadrupole moment is nonzero an
equal toQ=3eD? (the quadrupole major axis is perpendicu-
lar to the quantum well planeTherefore, indirect biexcitons
interact at large distances as similarly aligned quadrupoles i
accordance with the formuld(R) =9e?D*/R®.

(30

where the second term on the right-hand side is the tempera-
ture dependent normal component density due to noninter-
cting excitations with the spectrua(p) = u/Mpiep (cf.
ef. 7). The estimate of the local superfluid component den-
sity by Eq.(30) applies to low temperatures and low densi-
Hes of excitations, which are assumed to be noninteracting,
whereas the renormalization nf due to a contribution from
vortices at temperatures below the Kosterlitz—Thouless tran-
sition is deemed negligible.
Superfluidity emerges in a two-dimensional system at
temperatures below the Kosterlitz—Thouless transitign
At large separations between indirect biexcitofs, (Ref. 19:
>D, there is a weak quadrupole repulsion described by the
formula U(R)=9e?D*R®. Inequality R,>D applies to _
low-density systems provided that1/77D?. The exchange ¢ 2Mypey’

4. COLLECTIVE PROPERTIES AND SUPERFLUIDITY OF
INDIRECT BIEXCITONS

N

(31)
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where bound vortices dissociate. Substituting the estimat® CONCLUSION
for the superfluid component density from Eq. (30) into

. . . : Spatially indirect excitons can transform to direct exci-
Eq. (31), we obtain an equation fof., which then yields P y

tons via two processes: tunneling of electrons and holes be-
16 YSHE 13 tween quantum wells and interaction between indirect exci-
1+ \/ ( o C) ) tons. The second effect was detected in experimemisd

T.=

3.4
(6-0.49777 1 Npiex should be negligible at low densities. Interaction between
\/ 16 MpiexT0 |3 v o direct excitons in different wells can lead to their transfor-
+|1- ( = C) 1 ) } . mation to indirect excitons. This process is also very slow in
(6-0.4537% | Npjey (4m)T3

a low-density excitonic system. Transformations of direct
(32 excitons to indirect should fix the phase of the superfluid
order parameter. This process should lead to various quasi-

HereT; is an auxiliary parameter equal to the temperature aﬁosephson effects in an excitonic system in a superlattice

which f'thlfj superfl_wd t_comp_lt_)one_n(t)-densny vanishes in thq?ef. 8. At sufficiently low temperatures, superfluid phases
mean-field approximatiomy(Tc) =0: of direct and indirect excitons can coexist. In this case, the

2 CIM ]33 difference between phases of order parameter of direct and
0 biexCs M biex Lo . .
= W indirect excitons can be ascertained. As a result, a gap should
open in oscillation spectra of the phase difference, which is
32 -2 1 Y8 Npiex @3 proportional to the matrix element of the direct exciton trans-
- n _ o R . n .
37(3) 8mNpoM2,D?|  Mpiex formation into the indirect exciton. In addition, various

soliton-like excitations should be generated in a system.
Equation(33) can be used as a rough estimate of the

characteristic crossover temperature, at which the local su- 4 for Fund al R h INTAS 4 Solid-Stat
perfluid component density becomes nonzero over distancé:sun or Fundamental Research, , and Sofid-state
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The nonadiabatic corrections to the self-energy patt, w) of the phonon Green’s function are
studied for various values of the phonon vectqreesulting from electron—phonon

interactions. It is shown that the long-range electron—electron Coulomb interaction has no direct
influence on these effects, aside from a possible renormalization of the corresponding
constants. The electronic response functions 2@, ») are calculated for arbitrary vectogs
and energyw in the BCS approximation. The results obtained der O agree with

previously obtained results. It is shown that for large wave numipevertex corrections are
negligible and®(q,w) possesses a logarithmic singularityaat 2A, whereA is the
superconducting gap. It is also shown that in systems with nesiig(@, ») (whereQ is the
nesting vectorpossesses a square-root singularitwat2A, i.e., exactly of the same

type as afg=0. The results are used to explain the recently published experimental data on
phonon anomalies, observed in nickel borocarbides in the superconducting state, gt ldrige
shown, specifically, that in these systems nesting must be taken into account in order to
account for the emergence of a narrow additional line in the phonon spectral fuS¢tiom)
~—7imD(q,»), whereD(q,w) is the phonon Green’s function, at temperatuFes

<T.. © 1999 American Institute of Physid$$1063-776(99)02005-3

1. INTRODUCTION in superconductors has been developed by Schuistehe
BCS approximation. In this work it was shown that the pho-
The phonon spectra of metals are ordinarily calculated imon frequencies and phonon linewidtte., damping times
the adiabatic approximatichj.e., the restructuring of the change at the transition of the metal to a superconducting
electronic subsystem in response to a shift of the ions istate. Specifically, for phonon frequencies,>2A the pho-
assumed to be instantaneous. Formally, this means that in th@n frequency itself increasésecomes hardgand the line-
calculation of the lattice dynamics all electron response funcwidth increases. For frequencies,,<2A nonadiabatic ef-
tions drawn into this process are taken into account in thgects decreasesofte the phonon frequencies and the
static approximation. The corrections due to the dynamidinewidths. Moreover, it was predicted in this work that a
characteristics of the electronic systdire., the frequency new, narrow line can appear in the phonon spectral function
dependence of the electron response funciiansordinarily  at frequenciesv~2A. However, such lines have not been
small (of orderym/M, wheremis the electron mass ald  observed for acoustic phonohs.
is the ion mass Engelsberg and Schrieffer were the first to Subsequently, the corresponding behavior of the phonon
noté that nonadiabatic effects may not be small for opticalspectral function was observed in NRSer low-frequency
phonons with small wave numbeg® < w,, Wherevg is  (q~0) optical phonons witlw~2A.° A theoretical interpre-
the Fermi velocity of the electrons amwg is the correspond- tation of this phenomenon, quite close to Schuster's
ing phonon frequency. In this case nonadiabatic effects caimterpretatiorf was given in Ref. 10. In fact, in Refs. 8 and
lead to a large renormalization of the phonon frequencied0 the standard Fhdich Hamiltonian, in which there is no
(not proportional toym/M), strong dispersion of phonon direct Coulomb interelectron interaction, was used to de-
frequencies for smati, and finite damping of such phonohs. scribe nonadiabatic effects in the phonon spectra of super-
This phenomenon has been observed in the Raman scatteringnductors. On this basis the results in Ref. 10 were criti-
of light by certain metal§> This problem has recently been cized by Littlewood and Varm& They asserted that the
investigated in detail in Ref. 6. long-range Coulomb interaction leads at small wave numbers
Nonadiabatic effects can be even stronger in the supeto complete screening of all contributions of the electron—
conducting state for phonon frequencies-2A, whereA is  phonon interactiorfincluding nonadiabatic contributionso
the superconducting gap. The change in the phonon frequethe phonon frequencies. To explain the experimentally ob-
cies and dampings at a transition to the superconducting stagerved phenomena they invoked the specific nature of the
has been observédn the standard superconducting metal low-frequency optical mode in NbSetreating it as an am-
Nb. The theory of nonadiabatic effects for acoustic phononglitude mode of the charge-density wave in this system.

1063-7761/99/88(5)/10/$15.00 987 © 1999 American Institute of Physics
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Note, however, that there is nothing special about thidrequencies of the phonon modes and linewidths derO
optical mode, associated with the structural transition to amave also been calculated elsewh@r&. Thus far, however,
incommensurate phase. Its only distinctive feature is that itthe role and magnitude of the nonadiabatic effects in super-
frequency is much lower than the frequencies of all otherconducting metals are still not completely understood, even
optical phonons in this metal, and is comparable in magniin the simple BCS model. We discuss these problems in
tude to 2A. This mode has another property that can givedetail in the present paper.
rise to the observed phenomena, but we discuss it below.

Moreover, we show that in the absence of low-frequency,. DERIVATION OF THE GENERAL RELATIONS IN THE BCS
collective excitations of the electron charge and spin densiMODEL

ties, the long-range Coulomb interaction does not introduce
any substantial modifications in nonadiabatic effects.

A large number of investigations of phonons in high-
temperature superconductors have been conducted in the last H=Hge+Hpp+ Hiy, D

few years.” Shifts of the phonon frequencies and a change Ir{NhereHee is the Hamiltonian of the superconducting elec-

the linewidths at a transition to. the .superconducting Stat(frons,th is the Hamiltonian of the starting phonons, and
have. been observed. No new lines in the phonon s.pectrﬂint describes the electron—phonon interaction
functions have been observed. The theory of nonadiabatic

effects in the superconducting state of metals with a strong
electron—phonon interaction has been proposed by Zeyher

and Zwicknagf:® This theory made it possible to explain a .
g y P b é—|ereaqvg andb, ¢ are, respectively, the electron and phonon

substantial part of the experimental data on the shift of th : & oh tori the vibrational b hes. Th
phonon frequencies and the change in the linewidths. How?2Perators, ana characterizes the vibrational branches. ihe

ever, some data that do not fit the theory developed in Reﬁingle-particle phonon Green's function can be represented

We begin our analysis of nonadiabatic effects with the
simple system described by the Rlich Hamiltonian

Hintquzl . gs(k:Q)a;aakm,o(bq,s*'b—q,s)- (2

13 show changes in the phonons in the superconductin'«f;1 the form
statet4-16 2 2
[ i i -1 ®”—wp(0,S)
Very interesting observations of phonon spectra have re- Dg "(Q,w)= 5 -34(q,0), 3
cently been performed using inelastic neutron scatterint. @(9,8)

The new superconducting compounds LgBC, where Ln  HereS (q,w) is the self-energy part of the phonon Green'’s

is either Lu or Y, were studied. The behavior of the low- function and wo(0,S) is the starting frequency of the

energy acoustic and optical vibrational branches in the direcphonons. In the Matsubara representation the function

tion (§,0,0) with {~0.55, i.e., close to the center of the 3 (q,w) satisfies the integral equatith

Brillouin zone, were studied. The frequencies of both

branches decreased with temperature; this in itself is atypical s (qiw,)=T> gu(k,q)Tr 736(K+0,i 0+ iwy)

of ordinary metals. The phonon spectrum radically changed k,m

below the superconducting transition temperafiyre A nar-

row peak appeared at energiegl meV, which is somewhat

less than A, and a wide peak corresponding to the energy (4)

of the phonons studied also appeared. _ where the matrix vertex functionk, satisfy the Bethe—
There exist at least two published theoretical works atgg|peter equation

tempting to explain the observed facts. Ghemploys the ) _ _

conventional BCS approach for a three-dimensional quasil's(K+a.K.ion+io,,iom)

isotropic system. In fact, the numerical results are very close

to those obtained by Schusteand, as follows from =g4k,q)73—T 2 m3G(K'Jiwm ) Ts(k'+q,k’,

Schuster’'s work itself, for an appropriate choice of system k'm'’

parameters they can explain the changes in the phonon spec-  xjg _ +iw,,iwmy)G(K' +q,i om +iw,) 73V(K' k),

trum at temperature3<<T.. However, the corresponding

model cannot describe the behavior of phonon spectra at (5

temperature¥ >T,.. Moreover, the choice of the parameters whereV(k,k") is the electron—electron interaction leading to

in this model that are necessary to describe the situation auperconductivity. In the Fhdich model, generally speak-

temperature§ <T_ is in our opinion clearly unrealistic. In ing, there is no need to introduce any special electron—

Ref. 21 it was suggested that the electron spectrum of thelectron interaction leading to superconductivity, since this is

experimental compounds contains a certain fraction of nessimply the electron—phonon interaction itself.

ing with momentaQ=(0.55,0,0). This conjecture is also In this case, the functioW(k,k’) can be expressed in

confirmed by a detailed first-principles calculafibof the  terms of the phonon Green’s function, and it depends not

electronic polarization of the electronic band structure ofonly on the moment& andk’ but also the energyw,,. For

these compounds. However, the analytic expressions in Refuperconductors with weak coupling, it is well known that

21 for the changes in the phonon spectra in the supercorihe Eliashberg theofy for systems with an electron—phonon

ducting state differ substantially from those that can actuallyinteraction reduces to the BCS model. At present we confine

be obtained for systems with nesting. The changes in theurselves to this approximation. The effect of strong

XTy(k+9,K,jwopntio,,iwg)GK,iwy),
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electron—phonon coupling will be examined later. We repreplete set of orthogonal functions. The latter can be chosen,
sent the electronic Green’s function in the BCS model as for example, to be Fermi-surface harmorm&gheir specific

. form is of no consequence for our purposes.
i, 7o+ AT+ €T3

G(K,iwpy)= . 6) We seek a solution of the Bethe—Salpeter equdfoim
T (o) e+ A2 the form
Here ¢, is the spectrum of single-particle excitations and 1*521*(52)724r rg3)73, 9)
is the superconducting gap, described by the BCS equation
(2,3)/1,1 _ (2,30 * (L !
A= =TS mG(K o) A V(K K. (7) PPk =2 TEME (KDL (K). 19
k’,n

To simplify the solution of the resulting equations we All other functions in Eqs(3) and(4) can also be expanded
represent the electron—electron interactidtk,k’) in the I the harmonicsV | (k). Here we confine ourselves to iso-

factorized form tropic s pairing. This means that the energy gap will
possess only the harmonic with=0
V(k',k)=—§ gaL0(we—| &) Olwc—| e ) Wi (K )WL (K). A=T_o(K)A . (11)

®  After long but simple calculations, which we do not present
Here w. is the cutoff energy, equal in order of magnitude tohere, we obtain for the analytically continued vertex func-
the characteristic phonon frequencies, andk) is a com-  tions

2L
igil(g,0)
r{(a,0)=g(a) , (12)
. T+ o150, [1- 671 5(g,0)]+[715(g,0) 7
G gt15(0,0) — gll15(q,0)15(d,0) = (15(g,@))?]
rSL(q!w)_gSL(q) 1_ 2L 2L 2L of > (13)
[1+9{15(9,0)][1-gil1(q, @) ]+[g{12(q,0)]
|
where The functionsl J-L:1’2’3(q,w) are determined by the function
I'C;'ﬁ'y(q,cu) with the following values ofx, B, andvy:
gt=2 o& M4  a=1 p=-1, y=-1, j=1,
" _ a=0, B=wl/A, y=0, =2, (18
and the functions; (q,w) can be represented using the func-
tions 1y, 5 (0, ): a=1, pB=-1, y=1, |j=3.
1 E, The form of the resulting expressions for the vertex
1% 5,(0,0)= 2 > |‘IfL(k)|20(wc—|ek|)tanhﬁ[ Mo sy functions is very similar to that obtained in Refs. 27-29 in a
K calculation of the dielectric response of superconducting
1 1 electrons. There is only one substantial difference, associated
X Ek+q—Ek+w+i5+ Ek+q—Ek—w—i5) with the matrl?( elements of the electron—glectron'lntelractlon.
In our analysis the long-range Coulomb interaction is com-
B 1 pletely absent. As we will show, this interaction does not
+Mapy ExiqtExto+id directly affect the phenomenon which we are studying.
We now write an expression for theh harmonic of the
1 3
n c e s ] (15) phonon self-energy part,
k*a k ESL(qva))
Here M* and M are the corresponding coherence o~ 2
@B, a,B, —— —
factors 4 295 13(9,0) — 295,
e BN yee y L 15@eN1-glli(ge)]+gil5Ge)?
By OE TR B (16 [1+0215(q,0)[1-g?15(q,0)]+[g?15(q, @) ]2

andE, is the energy of the superconducting quasiparticles (19

The functionT5(q,w) is determined by the same equation
Ex= e +A% (17 (15) but with 6(| €| — w.) instead ofg(w.—|&]). This func-
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tion describes in the Fhdich model the contribution of the

part of the electron—phonon interaction due to regions far
from the Fermi surface to the phonon self-energy. As a re-

sult, the functionlg(q,w) is completely independent of the
superconductivity parameters, and to calculate @an be set
to zero.

The equations obtained above completely describe the A

situation in systems witls pairing for any wave vectorg
and frequencies. They are suitable for quasi-isotropic sys-

A. E. Karakozov and E. G. Maksimov

where\ | is the coupling constant in theth harmonic

A =0g{N(0) 27
and

w _ w 2 )\0 1 28

20) T\2A) Ng—A, 28)

The functionl (w) can easily be calculated and is given by

tems and systems with nesting. We consider the casé 1 o dx
and T=0 first. Then the functions-(q, ») have the form (w)=5
i(a) (=2 1= (wi2n)—15]
. 1 o \2N(0)l(w)
17(0,0)=— + TN (20 AA | w ) <2A
= ————arcsin-—, o ,
% J1—(w/2A)2 2A
L o N(0)l(w)
0@ T2 G 220 i W iw) ~2A
————| arcsin = “1-=]|, o .
V(wl2A)2—1 2A 2
L N(O)I(w)
13(0,w)= s (22 (29
~ The expression26) for 3 (w) demonstrates the possible
I'§=0. (23 existence, well-known in the theory of dielectric respoffse,
HereN(0) is the density of states at the Fermi surface of a pole. in the polarlzatlon' operator of superconducting
electrons in the.#0 channel if
I(w>=3f6 dey A’ . (24) l(wp)  (wp)
2) - TEJEZ—(w/2)?-i6] I-M— B3/ 70 (30

Using expression&20)—(23), it is easy to verify that This expression yields the energy, of collective oscilla-

360(q=0,0)=0. (25)  fions,
This equality is a consequence of a Ward identity, which A AN2 ﬁ 2 31
exists in the Frhlich model, just as in any system with a “p~ LU (31)

gradient-invariant HamiltoniafY. It appears only when ver- ki and h dl . .
tex corrections are rigorously taken into account. The start- As Maki and Tsuneto showed long agbimpurity scat-

ing value of the phonon self-energy part neglecting Verte)gering of electrons can substantially modify the expressions
corrections(i.e., for Iy=g,) does not satisfy the identity obtained above for the electronic response functions. Specifi-
s} S S.

(25). As shown in Refs. 11-13, the long-range Coulombca"y' this can cause the pole in the polarization operator and
interaction is directly related to the componént 0 of the therefore the collective electronic excitations to vanish. This
self-energy par., (g, ) and causes the latter to vanish at problem was recently discussed in detail in Ref. 31 as part of

q=0. In systems with a gradient-invariant Hamiltonian this @ study of the Raman scattering spectra of superconductors.

quantity, as we have verified, is zero in itself. For this reason] S Work confirmed the results in Ref. 30 and showed that

phonons withq=0, which have a representation with=0 vertex corrections can be neglected for strongly disordered
(or, from the standpoint of the theory of crystal groups, gSystems. These results can easily be extended to our case of

unitary representation with the complete symmetry of thenonadiabatif: effects in the_ phonon. spectra of ;uperconduct-
point group, do not interact with the electrons in either the °'S- FOr optical phonons with=0, this was done in Ref. 32,
normal or superconducting states and do not manifest an{/Nere isotropic pairing and anisotropid pairing were con-
nonadiabatic effects. In contrast to the assertions made i dered_. Sp.ecmcally, It was sh.own that in thg V\{gak-coupllng
Refs. 11 and 13 this result is in no way related to the |Ong_apprOX|mat|on, vertex corrections do not significantly alter

range Coulomb interaction. Of course, just as for the dielect"® Phonon spectral functions compared with those calcu-

tric responsé’-2%the Coulomb interaction can renormalize lated in their absenc_e, even for systems V\_nthout |mpur|t|_es.
To conclude this section we examine the function

t
f(q,w) for momentag+ 0 satisfying
w 2A

ke>g>—,—,
F~q v Ur

the corresponding polarization operators and the constan

characterizing them, such as, for exam@&Q). But this

does not at all alter the physics of nonadiabatic effects so
long as there are no low-energy collective excitations of the

electron charge or spin densities.
We now consider the.#0 component of the phonon
self-energy pards (w), which has the form

(w)/2

s1(@)= =2\ T oA ()72

(26)

(32

wherev g is the Fermi velocity of the electrons akd is the
Fermi momentum. It is easy to show that the functions
lj=12,4(0,w) in this case reduce to the expressions

Ta(q,@)~N(0), (33
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11(q,0)~13(0,w), (34 _ gAQ) Ex 1
) Zo(Qu) == "5 2 ta”*(ﬁﬂm
l2(0,0)= = 5 15(0,0). (35 1
It follows from Egs.(33)—(35) and (19) that vertex correc- 2E—w—id

tions for large phonon momenégdo not lead to a pole inthe oy the normal state, i.eA =0, the well-known expressidh
vertex functions, and they can be neglected in the weakg,, 30(Q, ) follows from Eq.(39):

coupling approximation under study. The self-energy part of

the phonon Green’s function in this case is given by 5 ( € T ®
30(Q,w)=—2g%(Q)N(0)| INn ————— +i —tanh—].
34(q,0)=~262N(0) ~2g215(q, ), (36) mete Tt
where The equation40) shows that as temperature decreases, the
7wN(0) 2A ~7wN(0) phonon frequencies at=Q soften and the phonon lines are
I3(q,0)~ 2qur In 28— o +i 2qu; 0(w—2A),  broadened as a result of an increase in the imaginary part of

(37) 20(Q,w). This behavior of the phonon lines of the function
agrees quite reasonably with that observed in
which is identical to the result obtained in Refs. 8 and 20h5rgcarbided? ! Of course, a direct comparison of experi-
Formally, the experimentally obser/éd'® change in the mental data with the theoretical results in the zeroth approxi-
phonon spectral density can be explained, as shown in Refyation is hardly reasonable. It is obvious that in calculating
20, using these formulas. In fact, however, EGRE) and  the functionS o(Q,w), even for the normal state, vertex cor-
(37), as we have already noted in the introduction and as Weections as well as the changes induced in the single-particle
show below, cannot serve to explain these data. electron Green’s functions by the electron—phonon and the
electron—electron Coulomb interactions must be taken into
account self-consistently.
3. SYSTEMS WITH NESTING The corresponding analysis of the electronic susceptibil-
ity for metallic systems with nesting has been carried out in
Theoretical calculations of the electronic polarizability Ref. 35 on the basis of a semiphenomenological self-consis-
of the compound LUNB,C show the existence of so-called tent method taking account of only the electron—electron
nesting in the electron spectrum for sufficiently large sec-Coulomb interaction. We do not consider this problem here,
tions of the Fermi surface. Nesting is usually understood tGince our main concern here is to clarify the specific nature
mean that of the change induced in the phonon spectra by a transition
to the superconducting state.
The expressiofi39) for 3,(Q,w) at T=0 can be cast in
for single-electron energies in some finite phase volume neahe form
the Fermi surface. The vect@ for which Eq.(38) holds is
the nestiqg vegtor. As is well knom?ﬁffor ideal nesting[_i.e.,_ 30(Q,0)= —gz(Q)N(O) fEF % —gZ(Q)N(O)
exact satisfaction of Eq38)] the static electron polarizabil- — e Ex
ity I1(qg,0) diverges aj=Q. In turn, this can lead to waves 5
of spin density and/or structural transitions. Magnetic struc- W ) f €F ﬁ A (41)
ture with an incommensurate period characterized by the 2A) )¢ Ex E2—(0/2)?
vector Q=(0.55,0,0) is indeed observed in a number of _ o _
nickel borosaarbide compounds, for example, EABYC and ~ The first term in this equation
HoNi»,B,C.>" In LuNi,B,C and YNipB,C, no magnetic 92
structure is observed, but as mentioned in the introduction 20 (QIN(0)In(ee /), 42
substantially softening of the acoustic and optical modes ods quite well know and describes the elimination of the
curs for wave vectorsg close to the nesting vect@®. Both  singularity of the static response functions in systems with
phonon lines are broadened in this case. In the superconductesting when the system passes to a superconducting state.
ing state, i.e., al<T., the phonon spectral function dis- In particular, this terminates the softening of the phonon
cussed in the introduction changes abruptly. These circunmodes in the adiabatic approximation and leads to the ab-
stances together show that nesting could play an importarstence of structural transformations at temperat(resT ...
role in the modification of the phonon lines in the normal andThe second term describes the singular behavior of the func-
superconducting states. tion 24(Q,w) at energiesv~2A, and is due to a transition
Proceeding now to the self-energy part of the phonorto the superconducting state. Comparing E4l) and the
Green'’s function for systems with nesting, we first write its expressior(24) for the functionl (w), we see thak (Q, w) at
expression in zeroth order, i.e., neglecting vertex functionsw~2A has exactly the same singularity as gt0, i.e.,
Using the nesting conditio(38) and the equations for ~[1—(w/2A)?]~Y2 This result, just like the actual expres-
2.4(g,w) obtained in the preceding section, it is easy to ob-sion for the functionX ((Q,w), completely contradict the
tain forq=Q recently published expression in Ref. 21. A logarithmic sin-

€~ — 6k+Q (38)

F

X

ﬁ3’36
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gularity of %4(Q,w) at w~2A was obtained incorrectly
there. In reality, as shown above, this occurs in a quasi-

isotropic system at large momerdag>A.
Using the expressiong15)—(18) for the function
lj=124Q,w) it is easy to show that

11(Q,0)=N(0)l(w), (43
12(Q,w) =~ (w/2A)N(0)I (w), (44
13(Q,w) =1\ +(w/2A)>N(0)I(w), (45)
T5(Q,w)=N(0)In(er/wy). (46)

Accordingly, 24(Q,w) at T=0 can be written in the form

[(w)/2—1/\

2 M(w)/22— (w/2A)?]
(47)

€F
24(Q,w)= —ZAQInX—Z)\

Here AQ=gZ(Q)N(O) and \ is the total electron—phonon

coupling constant determined by the condition
1=NIn(2w./A). (49

It is evident from the expressio6) that 2(Q,w) pos-

sesses a pole corresponding to collective excitations that

determined by the second term in E47):
2

AM(wp) wp
2— > — ﬂ =0. (49)
Hence it follows that
A 2
(wp)?=(24)? 1—<§ (50)
The corresponding residueis
r=NoMNAZ (51)

Using the expressions obtained By(Q,w) and Eq.(3), the
expression foDg 1(Q,w) can be rewritten as

0?-03(Q,5) ~

_ES , ,
©3(Q.5) (Qe)

D;Y(Q,w)= (52)

whereES(Q,w) is the second term in E@g47). Notation was

A. E. Karakozov and E. G. Maksimov

rog(Q.s)
w§h~wo+ h>(2A)2 (56)
! p

The other solution exists fab<2A and describes the exis-
tence of an additional mode, mentioned several times in this
paper, with energy

,  Trog(Q.s) ,
———<(2A)".
i w%(Q,s>—w§<( :

(57)

2 .
WH=~ W

The spectral density of this mode can also easily be calcu-
lated:

2
SS(in): _w_wg ImDs(va)

_ ro§(Q.s)
 [03(Q,8)— wlP+T1wi(Q,5)

O(w— wp)

TWp

(58)

Although two solutions of Eq(55) exist for any phonon
energyw~wo(q,s), the intensity of the additional mode is
found to be very low foiw(q,s)>2A. The intensities of the
Rdditional mode and of the phonon are found to be compa-
rable only for phonon energias,(q,s)=2A.

Formally, our solutions for the energy,, of collective
excitations and the energy, of the additional mode and its
intensity are very close to those obtained in Ref. 21. How-
ever, there are substantial qualitative differences. First and
foremost, this is due to the fact that the energy of the
collective modes differs from bothA& and the residue,
which were obtained in Ref. 21, by an exponentially small
quantity

2A - wy

—ep/\A
2A '

~e
whereeg is the Fermi energy. An exponentially small differ-
ence of the same type,

ZA — Wp
2A

me_qUF/)\A,

between the energy, of the additional mode andX also

also introduced for the phonon frequencies renormalized as Aises in a quasi-isotropic system, as follows from EQs)

result of the first term in Eq47):

~2 2 3=
wO(Q,s)—wO(Q,s)(1—2)\QInK). (53

Using the equation$49)—(51) obtained above, the expres-

sion (52) can be rewritten as

w?— 03(Q,s) r
D:YQuo)=—5 - ——. (54)
w(Q,s) 0~ oy
It is easy to show that the equation
D' (Qw)=0 (55

possesses two solutions for amy(Q,s)>2A. One solution
corresponds to a phonon with energy

and (37). It is evident from the expressions0), (51), and

(57) that no exponential smallnessAi e andA/qug exists

for systems with nesting. This makes it much easier for an
additional mode to appear in such systems. From the experi-
mental data of Ref. 18, which show thag ranges from 4 to

6 meV, and especially from the wave-number dependence of
the energy of the additional mode, it clearly follows that the
difference between this energy ana 2loes not have any
special exponential smallness. We do not give here a detailed
discussion of the experimental data using the expressions
obtained above, since it is unlikely that ideal nesting exists in
real physical systems. Instead, we present below the results
of numerical calculations of IB4(q,») performed using a
model where nesting can vary from ideal to complete ab-
sence.
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To this end we employed a two-dimensional model of a 2.0t ! !
square lattice of strongly coupled electrons with overlap be- ‘\\ I/‘
tween nearest neighbors. The electron spectrum of such a
system can be written in the form

€= — 2t(cosk,+ cosky) — u, (59

where u is the chemical potential of the system, character-
izing the degree of filling of the band, ands the overlap
integral. For a half-filled bandy=0), the Fermi surface is
square, i.e., it corresponds to a system with ideal nesting. A
sparsely filled Fermi surface is nearly circular, i.e., it is a
standard quasi-isotropic system. By varying the degree of o .
filling of the band it is possible to investigate the entire tran- 0 6.5 1.0 1.5 2.0

sitional region from ideal nesting to an isotropic system. This;,5 ; Nesting vectors and lines for a square lattige=(—0.8) at the
model was used in Ref. 24 to calculate the self-energy partgordinatesr/a. The “surface” 2 (solid curve and equivalent surfaces
of the phonon Green’s functions in superconductors in the&dashed curves

zeroth approximation, i.e., neglecting vertex corrections.

However, the photon Green’s functions themselves and the

quantitiesSy(q, w) were not calculated in this work. Fig. 1, is quite far from the ideal nesting parameter, so the
We calculated the functioBy(q,w) numerically in @ nesting effect is quite weak here. Below, we examine more
model with isotropic pairing, taking account of vertex cor- gjitable examples for band filling factors corresponding to
rections completely. To this end, the functionss ,(d,@) 111 electrons percenteruE0.2) and 0.89 electrons per
were calculated for various values of the filling of the band,center = —0.2).
i.e., the values of, and for wave vectorg equal and close Figure 2 shows the behavior of the spectral function of
to the nesting vector. For ideal nesting the choice of nestinghonon modes 1 and 2 at four different temperatures. It was
vector is unique, and is governed by the geometry of theyssymed that the initial frequencies of these moa&8(q)
Fermi surface. In our model wite=0, the nesting vector g4 wBZ)(q) are degenerate, i.emél)(q,s)=wgz)(q,s). The
Qo is directed along the diagonals of the square Brillouing|ectron—phonon coupling constants of these modes were
zone, and equals in magnitude half the corresponding recigshosen to bex,=0.1 and\,=0.085, respectively, so that
rocal lattice vector. By changing the filling of the band the)\l>)\2_ The total coupling constant=0.372 was found
“nesting” vector Q can be determined, for example, accord-fom the condition (48), so that A~3meV for o,
ing to the position of the maximum of the static response< 30 mev. This choice ofA and w, approximately corre-
function in the normal state, i.e., the functiey(q.0). sponds to the values observed in borocarbides. The results
In our simple case the “nesting” vector can also beghown in Fig. 2 were obtained in a calculation with
found from the following considerations. In a geometric —q 2 je., for a more than half-filed band. The same results
sense, the vectd connects congruent sections of the Fermigre optained fromu=—0.2.
surface. For a simply-connected Fermi surface, as in our i is evident from Fig. 2 that aT>T, the phonon fre-
case, these are “almost flat” sections whose relative arguencies soften with decreasing temperature and the phonon
rangement is determined by the lattice symmetry, so that ifnes proaden, as also happens for an ideal nesting. At first
can be inferred that the “nesting surface,” i.e., the “Sur- gjance it may appear that intensity is transferred from the
face” of local minima of the static electron response func-peak with high energw(®(q) to the peak withwX(q). Of
tion, is formed by the tips of the vectorkg and the vectors  coyrse, in our approach there can be no transfer of intensity
g, which are equivalent to them, obtained by symmetryfrom one peak to another, since mode interaction is ne-
transformations of a square lattice from the vectdts &ig.  glected. In reality, the amplitude of the spectral density in-
1). The vectorsQ are determined by the position of the sin- ¢reases for all modes whose energy decreases with tempera-

gular “lines” on the “nesting surface,” which are “lines” e, This can easily be verified by writing the function
of self-intersection of this “surface(and, naturally, “lines” S{(g,) in the form

of its intersection with the boundaries of the Brillouin zone, _

and for this reason one of the coordinates of the nesting d(w—w(q,s))

vectors is exactly*- 7/a). (9,0)~ T
Figure 1 shows the corresponding construction for &

= —0.8 (henceforthu is considered to be a dimensionless Of course, such an increase $xq,w) has no effect on the

quantity in units of the overlap integrg). The nesting lines Sum rule for the Green’s functioR(q,w), which expresses

are identical to the numerical results obtained by Marsiflio. the conservation of the total number of phonon states,

The “nesting” vectors corresponding the maxima of the o

static electron response function are also shown. Thus, as the do w S((q,w)=1. (61)

filling varies, the maximum corresponding to the nesting o

vector Qg at u=0 splits into four equivalent maxima. The This example demonstrates that to interpret the experimental

parametep. = — 0.8, which for clarity we chose to construct data of Ref. 19 care must be taken in determining the param-

: (60)
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eters of the model of coupled modes and the intensity transjecrease of the vectay. It is clear from Fig. 1 that as the
fer, arising in the model, from one mode to another at temfilling of the band approaches 50%, the equivalent nesting
peraturesT>T.. Figure 2d shows the phonon spectral yectors converge, which produces a large nesting phase vol-
density aff <T.. The existence of a narrow additional peak yme and increases the probability of observing the additional
is clearly seen in this figure, and it is also evident, as comzyqqe in practice. Depending on the degree of filling, the
pared with Fig. 2c, that there exists an additional transfer O[)eaks associated with the wave vect@sand Q, are due
intensity from moqle 1 to_ the ad_dltlonal mode. . . ither to direct phonon scattering or Umklapp processes.

We have studied variations in the energy and intensity o hus, when less than half the band is filleg<C0), the peak
the additional mode as a function of the deviation of the ' . . R

at the wave vectoB), is due to direct scattering and the peak

phonon wave vector from the “nesting” vector. Figure 3 tal 00 is d Umk| This | "
shows the numerical results obtained with the vectpr a qf.argfer vec _OQ IS L;]e an m app.prociss. h IS.If? easily
+ 59, which vary in absolute magnitude over the range 1Ve' ied from Fig. 1, whence it is obvious that the difference

— ¢=1-1q|/|Q|= *0.15 on the “nesting” lines, i.e., on the of the vgctors— Q, andQ i.s precisely a ref:iprgcal lattice
lines of local maxima of the static electron response funcYector directed along the diagonal of the Brillouin zone. The
tion, and in the directior. The ¢ dependences of the en- opposite situation occurs for a more than half-filled band
ergy and intensity of the additional mode which have beer{#>0). Generally speaking, this can lead to a large differ-
presented above agree to some extent with the experimentgince of the matrix elements of the electron—phonon interac-
data of Ref. 19, despite the existence of obvious discrepariion which are responsible for the corresponding processes.
cies. Thus, the experimental data demonstrate only the exiSpecifically, the matrix element of the electron—phonon in-
tence of a large anisotropy with respect to an increase deraction for the direct scattering process can be very small

a b
0 L
£ 150 FIG. 3. Variation of the energga) and intensity
; (b) of the additional phonon mode as a function
5 of the deviation of the phonon wave vectgr
~100F from the nesting vectof) on the nesting line

(solid curve and in the direction of the vect@
(dashed curves £=|q|/|Q|.

1 A 50 i 3
0.85 0.95 1.05 £ LI5S 085 0.95 1.05 £ 1.15
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for a transverse phonon. In our calculations we neglecte@xcitations in superconductors. This happens because the
this, since otherwise it would be necessary to perform direcelectrons acquire a finite lifetime &/, (vimp is the relax-
microscopic calculations of the corresponding matrix ele-ation rate of electrons on impuritiesvhich results both in a
ments, which falls outside the scope of the present work. decrease in the amplitude of the response functions near sin-
The last problem that we wish to discuss here briefly isgularities and a changegveakening in the type of singulari-
the temperature dependence of the characteristics of the aties from square-root to logarithmic fdy/ y,,>1. The dy-
ditional mode. In the BCS model studied earlier, the tem-namic electron—phonon interaction also results in electrons
perature dependences of the energy and intensity of thiacquiring a finite lifetime, even in the superconducting state,
mode are governed by tlledependence of 2. The experi- which also depends on energy and temperature, and in the
mental daty’ ~°show an obvious deviation from this behav- elimination of singularities in the response functions and in
ior. Thus the energy of the additional mode is essentialljthe electronic density of statd$.The electron relaxation
temperature-independent, and its intensity decreases with itime (the reciprocal of the lifetimeincreases rapidly as tem-
creasing temperature much more rapidly tha(2). As we  perature approachég, and this results in a sharp decrease
show below, this can be explained completely naturally orin the intensity of the additional mode.
the basis of the tight-binding theory based on the Eliashberg We calculated these effects numerically for the ideal-
equations’ nesting model g =0) in the zeroth approximation, i.e., ne-
Just the fact, for example, that the intensity of the addi-glecting vertex corrections. Similar calculations for systems
tional mode decreases abruptly as the temperature amvithout nesting withgq=0 were performed in Ref. 13 at a
proachesT . can easily be understood even without any nu-temperature close to zero. Omitting the lengthy but simple
merical calculations. Indeed, as is well known for the casecalculations, the expression for the phonon self-energy part
q=0,%° impurities sharply reduce the intensity of collective 3s(Q,w) can be written in the form

2 0s(Q,w) w o' | —1+n(w—w')n(w')+a(o—o')a(w’)
—=f do' tanh—= -
2\sN(0) 0 2T g(w—o')te(w")+2iyinp
—1l-nlo—o')n*(o)—a(w—w')a*(o’) o0 w+to' '
- , —J do'| tanh—=——tanh;=
s(@=w')=&* (') +2i Yinp 0 2T 2T
o —1-n(o+o')n(o)+a(w+to)a(e’) —1+nlot+o’')n*(o')-a(o+ow')a*(w’)
g(oto')te(w)+2iyimp g(oto')—e*(0")+2iYinp
o¢ wt+to —1-n(w+o)N(ew)+alv+ow’)alw’ €
+2R f de’ tanh ( )n(w)+a( _ Ja@i{_ <. (62)
0 2T g(wtw')te(w")+2i ¥imp W
|
Here renormalized coupling constant/(1+\)=~0.4 also agrees
well with the coupling constant that we used in the BCS
(@) 1) () A(w) 63 calculations abovg.
nw)= v alw)= ' Our numerical results for the energy and intensity of the
VoZ—AZ? JoZ—AZ
@ (@) @ (@) additional mode are displayed in Fig. 4. It is evident from
s(w)ZZ(a))\/m, (64) Fig. 4a that the energy of the mode is essentially independent

of T over a sizable temperature range. Even in the tight-

and the functionsA(w) and Z(w) are determined by the binding theory, the energy of the mode naturglly start.s to
Eliashberg equations. The main quantity determining the sgd&crease rapidly a6—Tc, but as follows from Fig. 4b, this
lution of the Eliashberg equations is the spectral densitfl€crease occurs mainly in the temperature range where the
o?(w)F(w) of the electron—phonon interaction. We choselntensity of this mode is low and where the mode is in fact
this function in accordance with the function obtained fromunobservable.
tunneling experiment® We normalized it so that the total
coupling constant 4. CONCLUSIONS
In summary, our analytic and numerical calculations
demonstrate that the experimentally observed behavior of the
phonon spectral density in superconducting nickel borocar-
was approximately 0.7. This value ifmakes it possible to bides can be reasonably explained qualitatively on the basis
obtain T, and A in good agreement with experimerfthe  of a model that takes account of the existence of a sizable

» d
Azzfo ?waz(w)F(w) (65)
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We study the thermal mechanism of suppression of the anomalies in the nonlinear characteristics
of inhomogeneous media. A generalized expression for the effective nonlinear conductivity

is derived that allows for heat transfer from hot regions. We study the nature of the divergences
in two- and three-dimensional inhomogeneous structures as depending on the local

parameters and the microgeometry of the system. Finally, we show that in the critical region the
effective nonlinear conductivity may be much higher than the conductivity of the

components. ©1999 American Institute of Physids$$1063-776(99)02105-§

1. INTRODUCTION mechanism of stabilization of anomalies of the medium.

The nonlinear electrical properties of randomly inhomo-
geneous and periodic structures may differ substantially from
. N 2. STRUCTURE MODEL AND BASIC EQUATIONS

the properties of the components. This difference occurs bé-

cause the effective characteristics are depend not only on the The geometry of the two-dimensional structure is de-

properties of the microcomponents but also on the local dispicted in Fig. 1a. The hatched sections correspond to an elec-
tribution of fields and currents in the medium. Lately it hastrical conductivityo; and a thermal conductivity; (meta),
been discovered that the effective nonlinear characteristicghile the light sections correspond ¢6 and «, (insulatoy.

may be anomalously sensitive to the microstructure ofn three-dimensional media, the regions of greatest singular-
substance’ Earlier this was demonstrated in a series of eX-ity are those where pyramidal or conical regions touch each
periments. For instance, Dubsen aI.2 measured the third- other. We discuss the Singu|arity by using an exacﬂy solv-
harmonic amplitudeVs, on metal films near the metal— able model whose geometry is depicted in Fig. 1b, with the
insulator transition. They found that the critical exponents ofinternal regions of the cones having an electrical conductiv-
the concentration dependence\, are not universal—they ity ¢-; and a thermal conductivity, (meta) and the external
depend on the method of film preparation, i.e., on the microregions, an electrical conductivity, and a thermal conduc-
structure of the substance. A sharp increase in the strength @{ity «, (insulato). We assume that the structure in Fig. 1b
the linear effects and the nonuniversal behavior of these efs only a fragment of a three-dimensional lattice. We denote
fects near the percolation threshold were demonstrated ithe characteristic size of the unit cell hy in both two- and
Refs. 3-5. three-dimensional cases.

The occurrence of anomalies is related to the heating of  The electric current in the structures is described by the
the electron gas in local regions, in which the current percoformula
lates through narrow bridges formed by a poorly conducting .
material. It is these regions where there is concentration of j=o(Te, @)
current and field that provide the main contribution to theywhereo is temperature-dependent. In the absence of heating
effective nonlinear characteristics, such as the nonlinear Coxt T="T, (T, is the equilibrium temperature of the mediym
ductivity, the third-harmonic amplitude, and the coefficientU(TO) is a periodic function, with values, and o, in adja-

of 1/f nOise.2'3'6’7 ObViOUSly, local temperature distribution cent regions_ The current and field obey the equations
and conditions of heat exchange can strongly influence the

nonlinear response of the medium. divj=0, curle=0 @

In the present paper we study the effect of heat transfegn the following conditions at the boundaries of the regions
(thermal conduction and heat exchapgm the nonlinear | i different conductivity:
properties of periodic structures. As an example of a two-
dimensional structure we study a periodic “checkerboard”  (j:n)1=(jN)2, (e7);=(e-7)y, €)
lattice. In the three-dimensional case, we study the packin
of alternating cubes in which the neighborhoods of contact o
adjacent cubes are approximated by two highly conductin
cones. We generalize the results of Refs. 8—11 by allowin
for heat transfer from “hot” regions. We also find the con-
ditions under which the nonlinear response is determined b
small singular regions and reveal the role of the thermal (j-€)=0 E2+ yE*+---, (4)

heren and = are vectors normal and tangential to the inter-
ace separating the two media.
9 We can determine the effective characteristics of an in-
gP1omogeneous medium from the expression for the volume-
ga}veraged energy dissipation:

1063-7761/99/88(5)/8/$15.00 997 © 1999 American Institute of Physics



998 JETP 88 (5), May 1999 A. M. Satanin and V. V. Skuzovatkin

FIG. 1. Geometry of the structure considered in this
paper: (8 a portion of a two-dimensional two-
component structure, arid) example of contact of two
conical sections in a three-dimensional medium.

/ ' Lo

N\

which is written in the form of an expansion in powers of the sumed that the temperature of the massive substrate is con-
mean fieldE=(e). The angle brackets stand for averagingstant and equal td,. Within these assumptions, the equation
over the volume(or surface argaof the system. Below we for the temperature formally has the appearana@pivhere

limit ourselves to cubic nonlinearities. The expansidhis  « is the total heat-exchange coefficient.

valid if the nonlinear corrections are small in a certain sense. At the boundary of the sector§, satisfies the equations
For this to be the caser, must be much larger thag.E?, _ _

and this can be achieved by reducing the mean field in the 11~ 12 («n-gradT)y=(kn-gradT),. ™
sample. This limitation means that we are in the weak+For a given temperature dependencesdT), Egs.(1)—(7)
nonlinearity regime, and an increase in the effective nonlindetermine the distribution of the electric field and tempera-
ear conductivity means that the linear region narrows. Wheiture in an inhomogeneous medium.

there is a local relationship between current and figld, The nonlinear field terms in the expression for the cur-
=ge+ ye’e, we can usd4) to show(basing our reason on rent arise because of the temperature dependenedTof
Tellegen’s theorefd) that the effective nonlinear conductiv- which according td6) is determined by the electric field. We
ity x. is determined by the fourth-order correlator of the fieldlimit ourselves to the case of cubic nonlinearity. In the
in a linear medium: adopted approximation we can put

xeE*=(xe") (5) o(T)=a(To)+B T, )

(justification for this can be found in Refs. 13 and.lBqua- whereB=3da(Ty)/dT, andST=T—T,. The solution of Eqg.
tion (5) suggests that the effective conductivity is determined6) can be written

by the regions that provide the main contribution to the in-

tegral [ ye*dr. As shown in Refs. 8-15, the solutions of 5T(r)=J G(r,r")e(r" ) o(r )k Xr")dr’, 9
Egs.(1)—(3) in the linear case have singularities near micro-

constrictions, which enhances the release of Joule heat. SineghereG(r,r’) is the Green’s function of the heat equation
the functionj-e is spatially inhomogeneous, large tempera-(6). Using (8) and(9), we can write the left-hand side of Eq.
ture gradients develop near the singularities. Here we mus#) in the form

allow for heat exchange and an inhomogeneous temperature 1

distribution in .the system. To calculate th_e effective ponl|n—<(U(T0)+lg ST)e?) =0 E2+ Vj B(NEXNG(r,r)

ear conductivity we must in turn generalize E§), which

ea.rlier was obtained fqr a chal temperature—field rglation- x&(r ) o(r' )k r')drdr’,  (10)
ship. The nonlocal relationship between current and field can

dramatically change the nature of the singularities. where V is the volume(or surface argaoccupied by the

We can describe the steady-state temperature distribgystem. Comparing Eq¢10) and (4) and using Tellegen’s
tion in the medium by the equation theorem, we arrive at a generalized relationship for the ef-

. fective nonlinear conductivity in the form
—gradk-gradT=—a(T—Ty)+j-€ (6)
. o - . 1

wherex is the therr_nal con.ductlwty coefficient, wh|c_:h takes Xe:Tf B(NEXr)G(r,r)eX(r")
on valuesk; andk, in the different components, andis the E*V
heat-exchan fficient, which can differ from r
822:0(: change coefficient, ch can differ from sector to X o(r' ) k=L(r") dr dr’, (11)

In determining the temperature in a two-dimensionalwhere, as ir(5), the right-hand side contains the electric field
medium we additionally allow for heat exchange betweenn a linear medium. Equatiof®) implies that if we allow for
film and substrate. To do this we use a model according tthermal conduction, the relationship between temperature
which the heat flux into the substrate is proportional to theand electric field becomes nonlocal. Obviously, the nonlocal-
temperature difference between film and substrate. It is asty reduces the contribution of singular regions to the effec-
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tive nonlinear conductivity. However, the effect of thermal 1-h 1
conduction can be suppressed by intense heat exchange, tanmy=——, 0< 'ySE. (14
when the term—gradk-gradT in Eq. (6) is small compared vh

to the term that allows for heat exchange. In this CaS€rhe constand is defined as follows:
G(r,r’) behaves a$(r—r’) and Eq.(11) becomes Eq(5). '

The limiting cases are discussed in greater detail in Sec. 3. (1+h)o,
= (15
212(y)K*Y
3. THERMAL STABILIZATION OF ANOMALIES . w32 r 3 N 3 9\
=K cosmy| V2T 2) 27 2|

Equations(2) and(3) show that microconstrictions in a
inhomogeneous medium cause focusing of the electric-fieldvhereI'(-) is the gamma function. Equatio$2) show that
and current line§-'* A consequence of this is an increase inthe electric field has singularities at the corners of the lattice,
heat release near singular regions. We can easily show thaihere the field is concentrated. As noted earlier, we are in-
the asymptotic behavior of the temperature distribution canterested in the contribution of singular regions, and we as-
not strongly depend on the discontinuities in the thermal consume that the thermal length is small compared to the
ductivity and heat-exchange coefficients. This is demoniattice constant . In this case the expression for the field
strated by solving Eq(6) exactly in Appendix B. Since we simplifies. Expanding12) in power series in the small pa-
are interested in the nature of the divergences and in theametersr/L,, we obtain
mechanism of stabilization of anomalies, we assume that the

ivi ici - . AE?[Lo\*[ 2 [Kr\*
the_trr_nal cor_1duct|V|ty co_efﬂuent, and the heat-exchange co eX(r, )= (_0 (1_ 2y _) cos 4‘9), (16)
efficient a in each region are the same, and calculate the oy \r 57\ Ly
effective nonlinear conductivity, in the first order in the

wherer and J are polar coordinates, arid=1, 2. We can
deas:ily show that the quadratic correlator of the field, which
%etermines the effective linear conductivity, converges as
—0 despite the fact that the field diverges. However, the
local expression for the effective nonlinear conductiyEg.

nonlinearity.

Equation(6) shows that when thermal conduction an
heat transfer are taken into account, the problem acquires
new spatial scald, = \/x/a , which is assumed to be much
smaller than the unit cell size,. Here we are interested in i .
the nature of cutoff of the anomalies in the effective charac-(S).] diverges fpr Cefta'.” vglues of the system parameter_s.

This property is an indication of an anomalous increase in

teristics. We demonstrate that if the system has a small pz%-h i ductivitv. Note that th i f the di
rameterL<<L,, then in the critical region we can find the € nontinear conductivity. Note that the nature of the diver-

main contribution to the effective nonlinear conductivity, de-9eNnce IS determined by the paramefewhich according to

termined only by small singular regions near the microinho—(l4) depends on the ratio of linear conductivities,
. . h=o0,/0,. If we neglect nonlocal effects and calculate the
mogeneities of the medium. . > : )
nonlinear conductivity by the local expressi@) with the

3.1. Nonlinear conductivity of a film expansion(16), x. will diverge for y=1/4, orh<h.= (2

2
The electric field and current in the linear case for a— 1) (see Refs. 8—11 _ R,
checkerboard lattice has been calculated in Refs. 15 and 16 How does heat transfer affect this conductivity? If we

Here it is convenient to write the starting system of equation$UPStitute(16) in the right-hand side of E(6), we arrive at
(1)=(3) in a complex-valued representation. To simply mat-2n équation for the temperature in the first approximation:

ters, we limit ourselves to the vase where the external Eeld
is directed along a diagonal of the squares. If this is the case,
the square of the electric field in adjacent cells is determined
by the relationships

4y

1
—A+— , (17

AE? (L,
6T=—|—
L2

al?\r

whereL = \k/« is the thermal length. It is assumed that in

2 the event of heat exchange<L, holds. The Green’s func-
|91(Z)|220—1K47|X(Z)|2, tion of Eq.(17) is well known:
AE? 1 [r—r’|
2__ T w4 5%\ |2 —r’"Y= — -
lea(2) 2= —K*IX(iz)|?. (12) G(r=r’) ZWKO( - ) (18)
Here where Ky(x) is the zeroth-order modified Hankel function.
In integrating in(9) with respect to the angular variable it is
cn(Kz/Lg,k) 2y _ convenient to use the expansion
X(z)= . Z=X+Iiy, (13
snKz/Lg,k) dn(Kz/Lg,k) r—r’ . .
is the complete elliptic integral with modulkgfor a square, 0( L ) :IO(E) Ko f)
k=1/\/2=1.8541), where gn), cn(-), and dii-) are Jacobi - ,
elliptic functions, and_ is the length of a side of the square +2 cognd)l (L) K (r_) 19
cell. The parametey is linked toh by the relationship nZl ) nl Kl T 19



1000  JETP 88 (5), May 1999

for r<r’, wherel,(x) andK,(x) are modified Bessel and
modified Hankel functiongfor r>r’ the respective expan-
sion can be obtained froid9) by interchanging andr’ on
the right-hand side Integrating with respect to the angular
variable, we arrive at an expression for the temperature:

roft
fo'o(t
Lo t

Cl41-4
R

Consider the asymptotic behavior of this solution. To
find the expression fobT at small distances, wheme<L,

we write the second integral on the right-hand side of Eq
(20) in the form

L L t
fOKO( )tl“‘ydt:f OKO(—)tl“Wdt
r 0 L
' t 1-4
— — —ay
LKO(L)t dt.

Then in the first integral we can lety go to infinity (bearing

;
L

E2 Ly
5T(I'): 7

Tz KO( )‘1“”‘“

r

L

+1g (20)

t

L

(21)

in mind the properties of Bessel functions and the fact that

Lo/L>1), while in the remaining integrals i(20) we use

A. M. Satanin and V. V. Skuzovatkin

We now examine the behavior of the effective nonlinear
conductivity. Using the solutioit20), we can write(11) as
wA2LEY 2

follows:

al? ( )
[ ff] oo
E) erOKO( )t147dt)

Next we represent the effective nonlinear conductivity by a
sum of two termsy S andy, , reflecting the contributions of
the regiong <L andr>L, respectively, toy.. We estimate
the contribution of the region<L. The expression in paren-
theses in(25) is calculated for smalf in the same way we
calculated(20), and integration with respect toin (25) in

the interval G=r=<L yields

Br, P

e o,

03

X

t

L . (25

+1g

< A? Bi B[ L\
Xewlb‘a(l—zw(o_l E)(G)
22T (1-2y) - ——|. 26
x (1-29- 05— (26)

the asymptotic expansion of Bessel functions for small val-To estimate the contribution of the region-L, we substi-

ues of the argument,

lo(X)~1, Kp(X)~—Inx.
As a result
)= A 1] 020
1 r\2(1-2y)
_M(E) ] @2

We see thatdT(r) diverges only in the limith—0, i.e.,y
—1/2.
At distances > L the temperature distribution is due pri-

tute the asymptotic expansion of Bessel functions for large
values of the argumefEgs.(23)]. Integrating over in (25)
in the limit L<r<L,, the result is

2(1-4y)

] e

- AR B 1 [ (L
Xe a1 05) 2(1-4y) Lo

o

Note that(27) can be derived directly frortil1), since in
integrating in(11) over the regionr>L the argumenfr
—r’| of the Green’s functioif18) always remains larger than
L and hence the functionKy(|r—r’|/L) behaves as
2mwL28(r—r"). If in (11) we replace the Green’s function
with —L28(r—r’) and integrate over>L, we again arrive
at (27).

How does the effective nonlinear conductivity depend

marily to heat exchange. In this region the temperature i§n heat exchange, i.e., on the paraméterTo answer this

proportional to the release of Joule hedit: (o/a)e?. This
result can be obtained frofR0) by using the asymptotic
expansion of Bessel functions foe-L:

fE 1]

r '
Equation(20) reduces to
AE?[Lo\*
ST(r)y~—|—| . (24
a \r

We see that the temperature rapidly tendg gowhich jus-

tifies the use of the asymptotic expansion for the field when

calculating the correlator at distanceg>r>L.

question, we begin with the case where the ratio of the cell
linear conductivitiesh, is greater thai,., or wheny<<1/4. If

the thermal length tends to zero, the contribution(28) to

the linear conductivity vanishes ari@7) becomes

>~A_2(ﬁ+@) 1
Xe o1 0y) 2(1—4y)"

o
This coincides with the result obtained in Refs. 9 and 10.
Formula(28) implies that in this case we have a power-law
divergence of the effective nonlinear conductivitytas:h.
(y—1/4).

We now assume that the thermal length is fixed and
—h.. Clearly, ash—h,, the function(27) behave as
2
A (ﬁ + &) In E.

>~_
Xe ™7y o L

(28)

(29

(Y]

Forh<h,
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- A2(B, B, 1 Lo 2(4y-1) the structure, and the functidif) and its derivativef ' (1)
Xe ™~ ;( ) 2(4y—1) (—) (30 describe the angular dependence of the soluee Appen-
y-DIL .
dix A), and\=1-2y.

is anomalously large, sindg;,>L. We begin by calculating the contribution to the cor-

If L#0 holds, Eq.(26) implies that the contribution of relator (ye*) due to the singularities of the current in the
the regionr <L to the effective nonlinear conductivity di- conical region without allowing for thermal conduction.
verges as a power function only ks~ 0. Plugging the above solution for the field into EG), we

Thus, in calculating the nonlinear conductivity we have gptain
used the terms of greatest singularity in the expangl@h

g1 O3

Let us estimate the contribution of the oth@fiscarded a_Constflo o o g7 , 5
terms. We denote the correction g due to the second term (xe)= L3 Jo drrer fo dd sin & x(9)s°(9).
in (16) by Sxe, With Sx.=Sxs + Sxe - Forr<L, the cor- 0 (33)

rection to the square of the electric field is small in parameter

r/Lo. When we calculatéyg , integration is over the region We see that the integral diverges Xt=1/4, or y,=3/8.
r<L, and in this cas&y; is small in the parametdr/L . Knowing \ ., we can usé45) to find h. as a function ofd,.

The expression fofy, can be found in the same way as we To make the picture complete, we note that a numerical so-

found (27): lution of Eq. (45) yields h,=0.094 andd,.=55.50 for the
9my?KEAZ [ By B, 1—(L/ILg)26—47 maximum values of the critical parameters.
X>~7—(_1+_2) 0 Now we allow for thermal conduction. The Green’s
€ 25a o1 0y 5-4y function of Eq.(6) is
2182
_ 9myKAT (& @) (31) exp(—|r—r'|/L)
25a(5—4v) g1 0> ' G(|r—r’|)=W.

Equations(27) and (31) imply that the behavior of the _ _
effective nonlinear conductivity in the critical region is de- In calculatingT by formula(9) we use an expansion for the
termined byy. Here we must distinguish two cases<1/4  Green’s function:

and y>1/4. Wheny<1/4 (h>h.), we have the inequality w

Xe <Xo » andye~A2B,/c,a. The correctiondy, turns out exp(—|r—r'|/L) _ 1 S (2n+1)

to be of ordery.. This means that when E(L1) is used to Ir—r’| rr’ n=0

calculatey,., in the general case we must integrate over the

entire surface of the unit cell and use the exact expression X Pn(cos )l 1o r/L)Kpyqpor'/L)
(12) for the electric field. In the critical region, however, (34)

where y<1/4 buty—1/4 or y>1/4, we have, respectively,
’ ) 24y-1 for r<r’ [whenr>r’, we must interchange andr’ in
AB2 | Lo A 'BZ(LO) (34)]. Plugging(34) and (32) into (9) and integrating with

Xe™ Xe™ T

o L o | L ' respect to the angular variable yields
where to simplify matters we assume that the second com- 2 4y =
onent provides the main contribution to the nonlinear con- AE" Lo
ponent p N con _ _ ST(r,9)=— —= > Py(cos9)Q,
ductivity. Here the domain of integratiar~L provides the Jr i=o

main contribution tox, . Thus, in the critical region, the

corrections to the nonlinear conductivity that result if we %
allow for the next terms in the expansion of the squares of

the field prove to be small.

r r t
Kn+l/2( E) fo | n+1/2<E) t¥2-47 dt

ry (Lo t
_ _|¢3/2-4y
3.2. Nonlinear conductivity of a three-dimensional medium Flos 1/2( L) jr Ko+ 1/2( L)t dt

. (39

For the three-dimensional case we limit ourselves to the .
analysis of a medium with conical singular regiqsse Fig. where I, 1Ax) and Kn,1(x) are modified Bessel and
1b). The electric field near the point of contact of the verticesmOd'f'ed Hankel functions, and
of two cones is calculated in Appendix A. The square of the o2n+1 (=
electric field strength, which determines dissipation inside Q“:TJ d9 sin 9 P,(cosd)s(9).
and outside the cones, is given by the formula 0

AE2 [L.\4Y What is the asymptotic behavior of this solution? At
e(r,9)= W(T) s(9), small distancef <L, ST can be calculated in the same way
we calculated22):
s(9)=(f'(9))2+\f3(9), (32 AE? Lo\ 1|24
whereo () is equal togy in the regiond< 9, and too, in oT(r,9)= T(f) (E) F(r,d), (36)

the region9,<9<m/2, E is the amplitude of the external
electric field,A is a constant depending on the parameters ofvhere
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® 4. DISCUSSION

F(r,9)= 2 Pn(cos)Qu[n(n+1)—(3-4y)(2—4y)]*
n=0 As shown in Refs. 8—11, when there is a local relation-

T ((3—4y)/2)T(1-27) ship between current and field, the effective nonlinear con-
(32 221727, ductivity of two-component periodic lattices is anomalously
high near the percolation threshold. At the threshold the con-
r2-2y)rr((1—-4v)/2) du_ctivity diverges at a finite value of the linear-conductivity
+cosd Qy T(512) ratioh=o,/0;.

In the present paper we have studied the thermal mecha-
nism of divergence cutoff and have shown that allowing for
heat transfer from the hot regions may remove the singulari-
ties in the effective nonlinear characteristics at finite values

At large distances>L we use the asymptotic expansion of of the parameten. Note that the geometric cutoff effect were
Bessel functions ir{35) and obtain discussed in Ref. 17.

r
w2212y [ | ..
2 2L

AE;
ST(r,9)~ 705(19) (37) Refs. 8—11 for two-dimensional media and the similar quan-

tity h, for a three-dimensional mediurdiscussed in the

This expressiot37) corresponds to the local limit, since for Present papgiargely determine the behavior of the effective
r>L the Green's function behaves approximately asconductivityx. if we also allow for heat transfer. Allowance
4wL28(r—r'), which can easily be shown to be true if we for thermal conduction and heat transfer gives rise to a new
use(34) together with(23). As in the two-dimensional case, characteristic scale, the thermal lengthwhich acts as the
in this region the relationship between the nonlinear currenfutoff parameters for the singularities. At the same time, in
and the electric field becomes lodhlecause of heat trans- the nonlinear regime, the parametedetermines the spatial
fen). size of the critical region that is the source of anomalous

Let us estimate the value of the effective nonlinear coniNcréase in the effective nonlinear conductivige. At a
ductivity. As in the case of a film, we writg, as a sum of fixed value ofL, ash—h, the effective nonlinear conduc-

contributions due to the regions<L andr>L. The main tivity y. exceeds the characteristic nonlinear conductivity of
contribution toy due to the regiom <L can be calculated the componentsyo:
by inserting the asymptotic expressions for the temperature
[Eqg. (36)] and the electric fieldEq. (32)] in the left-hand
side of Eq.(10) and integrating over the volume within the
specified region. In the three-dimensional case, the square of
the electric field and the temperature depend in a compliwherel is the lattice constant. In the critical regidr<h,
cated manner on the angular variable, which makes it impoghe parameter of increase of the effective nonlinear conduc-
sible to calculate the integral with respectdan the expres- tivity becomes largel,/L>1. For instance, in the two-
sion for x, exactly. However, the anomalous increase in thedimensional case witly<1/4, according t¢26) and(27), the
effective Conductivity is determined by the dependence Oﬁffective nonlinear CondUCtiVity is finite, but its value ex-
the electric field and the temperatureoience to calculate ceeds the nonlinear conductivity of the components:
Xe approximately we only need to evaluate the integral with
respect tor, since the angular integral yields a nonsingular — 2(4y—1)

. . Xe~ Xo(Lo/L) .
factor of order unity. The result is

< B2A%Qq Lgfsy
Xe ™ o a(5-87) \ Ly '

Lo\ 4y Our results show that the values bf determined in
O)

Xe~Xo In (Lo/L),

A similar property appears in the three-dimensional case for
v<3/8[see Eqs(38) and(39)]; in the case of conical singu-

. . . larities,
Using Eg.(45) from Appendix A, we can easily show that

the denominator ii38) cannot vanish when the cone param-
eters meet the following conditions:<th<<1 and 0<d, Xe~ Xxo(Lo/L)8 73,
< /2. The contribution of the region>L can be found by
substituting(37) and (32) into (10) and integrating within
L<r<Lg:

. BAQ
Xe ™ 5,a(3-8y)

(39)

As mentioned earlier, the physical mechanism of the effec-
tive increase of the nonlinearity is related to the focusing of
L\3-87 field and current lines by microconstriction§'micro-

- (L_o) } (39 bridges”) in the nonlinear medium. Thus, the effective non-

linear conductivity in the critical regiorinear the metal—
We see that wheh is zero, x, diverges at a finite value of insulator transitiopis not only determined by the values of
the parameteh., which is specified by the conditioy,  the nonlinear conductivities of the components of the me-
=3/8. If the thermal length is fixed, there is logarithmic cut- dium but also strongly depends on the distribution of fields
off of the divergence in39). Thus, as in the case of a film, in the medium. This property must be accounted for in de-
heat transfer cuts off the divergence. signing artificial nonlinear media.
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APPENDIX A: ELECTRIC FIELD NEAR CONICAL
SINGULARITIES

Let us find the electric field near the point of contact of

the vertices of two cones. We seek the solution of Egjsin

the form
j=—o grad g, (40

where it is convenient to write the potential as

Lo\ 4”
<P:EL0<T) f(9),

and the functiorf () can be found by solving the equation

1 9
Smﬁ%smﬁ—fﬂ\()ﬁl)f 0.

(41)

For <9, we seek the solution of Eq41) in the form

f,=aP,(cos¥), (42

whereP, (x) is the Legendre function of the first kind, while

for 0,<O<m/2 we seek the solution in the form

f2=b

% (1—cosm\) Py(cos )+
(43

whereQ, (x) is the Legendre function of the second kind.
The functionsf, and f, on the surface of a cone obey

the boundary conditions

f(30)1=1(99)2, ' (99)1=hf"(F9),, (44)

wheref’ =g9f/99. Note that the solution foy>=/2 can be

INHOMOGENEOUS LATTICE

Let us give the solution of Eq6) with the boundary
conditions(7) for the case where the thermal conductivity
and heat exchange coefficients take different values in adja-
cent sectorsx, and a4, and x, and a,. We assume that
a1/ k1= as/ K, (this is true for metals As in the main body
of the text, we introduce the length=\/x,/a4 . The equa-
tion for 8T is similar to Eq.(17), but now the parameter on
the right-hand side of Eq17) depends on the angular vari-
able 9. To solve Eq.(17) with the boundary conditioné’),
here it is convenient to represefit by a sum of two terms:
OT=6T,+ 6T,, where 8T, is the temperature distribution
due to release of Joule heat inside the sectorssdpds the
temperature distribution due to the appearance of heat
sources at the boundary of the media with different thermal
conductivity coefficients. The Green’s function of Efj7) in
homogeneous space is knoysee Eq.(18)], so that

AE?

L' (I
27 o L a(9')L?

1 2 o’

=" on Z J ( L
where p(r) is the number density of heat sources at the
boundariesy,= w/4, O,=3nw/4, O3=5n/4, and9,=T7 /4.
In writing (47) we have allowed for the symmetry of reflec-
tion with respect to thex andy axes for the functior5T.
Using the properties of Bessel functions, we can employ Eq.
(47) to obtain the value of the derivativiesT, /9 at, say,
the boundaryd=n/4:

3STy(r, ml4+5) 1
99

8T ,= (r"y 47’ dr dd’, (46)

ﬁj-)p(r’)r’dr’, (47)

(r)r sgn 4, (48
where §—0. As expected, at the boundaries the normal de-
rivative of the functionsT, has a discontinuity, whil&T,,
6Ty, anddésT, /a9 are continuous. The heat-source number
densityp(r) can be found from the boundary conditiaf?3.

obtained from(42) and(43) via continuation, as an odd func- |f we write these conditions fosT, and 6T, and use(48),
tion, in the anglgin view of the boundary conditions in the e obtain

external field. Plugging(42) and(43) into the boundary con-

ditions (44), we can easily see that there is a general solution ay

—ay 1 98T,(r, w4
if p(r)=2

1+a2 r 00

(49

Plugging this into(47), we arrive at an expression for the

1
= (1—cosw\) P :
2 ( ™) Prea(0) heat-source number density:

hPy(x)

sin wA AE2L4Y _ 2 1 L
Qi 00— XFy (%) p(r)=— Ao b0 (mzar)” 1 f otat
wL2 aiax(aitay) 2 Jo Ay
=Fr(I[Py+1(X) =xPy ()], (45 < r+t < Ir—t| 50
where X[ Kol =] =Kol = (50
1 sin A Thus, formulag46), (47), and(50) constitute the exact solu-
x=cosdo, Fy(x)=7 (1—cosm\)P\(x)+ Qx(X).  tion of Eq. (17) with the boundary condition&7). Equation

(46) can be simplified if we use the addition theorem for
Equation(45) makes it possible to find the dependence of theBessel functions and integrate with respect to the angular
parametein on h and 9. variable in(46):
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rthdt t
Kol T} J, 7av ol T

1 1 1
+—2AE2L87(———)

L a;  ap

5T—1 AE2L4Y 1+1
a2L? O la;  ay

r »tdt t
+lg E fr t4_7K0 E
Xnil sin(2n(w/4— 0)):sin(2n(7r/4+ 9))

r rt dt t r =t dt t
Kan N fot4—7|2n L 1 r fr t4_yK2n ik

(51)

X

A. M. Satanin and V. V. Skuzovatkin

4y

AE? (LO
a()\ 1

Note that, strictly speaking, we cannot use EB3) over
distances of ordet near the boundaries. Due to thermal
conduction, the temperature in this region smoothly changes
from (AE2L?/kq)(Lo/r)*” to (AE?L?/ ky)(Lo/r)*Y. How-
ever, analysis of the asymptotic expressighg) and (53)
shows that the difference in the valuessoénd in the values

of « in adjacent sectors does not change the dependence of
6T on the coordinater. Analysis also shows that the
asymptotic behavior 0T depends only on the nature of the
divergence of the field and the relationship between heat
transfer and thermal conduction. These arguments justify the

6T(r,9)= (53

Consider the asymptotic behavior of the solution. Atuse of the same values afand « in the qualitative analysis
small distances <L, the main contribution to the integrals done in the main body of the text.

in (51) [and in similar expansion&7) and(50)] is provided
by the region where is small. Hence, when calculating the
integrals with Bessel functions, we can use the approximatg

relationships
[,(X)~ (L/nH)X", K(X)~ ((n=1)1/2) (2/x)",

Ko(X)~—In x.

Integrating and then summing {61) [and in the correspond-

ing representationg?7) and (50)], we get

AE3( 1 1\T%1-29)(Ly\*
(k) _of - o it
ST 9) 2( . ) - (L)

ag 01—2
r 2—4y LO 4y
L L

+Cy cog(2—4y) (1))

AE2
(2—4y)%ay

: (52

wherek=1 corresponds to the region#/4<d<ml4, k=2
corresponds to the region/4<9<3m/4, 4,=0, 9,=7/2,
and

a1~ Ay 1

C,=AE2 ,
VU0 ag(agt @) (2—4)? sin (7y)

Cy=— (a1/ay) Cy.
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