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Abstract—The surface restructuring (faceting) of solids subjected to longitudinal electric-field and tempera-
ture gradients has been studied experimentally and theoretically. Tungsten crystals and wires preheated with a
direct current in vacuum or a hydrogen atmosphere to a temperature higher than half the melting temperature
are studied by electron microscopy and metallography. The processes of formation of bulk defectsand of areg-
ular surface structure are found to correlate. For the first time, these processes are analyzed in terms of syner-

getics. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

A specific steplike surface structure is developed in
refractory-metal crystals heated to atemperature higher
than half the melting temperature if the crystal is sub-
jected to an electric or thermal macroscopic field whose
gradient exceeds 0.4-0.5 V/cm or 500 K/cm, respec-
tively [1-6]. The step shape depends on the surface ori-
entation, and the step size along the field varies from 4
to 15 um.

Although the causes of the restructuring of the crys-
tal surfaces were discussed in [1-6], the models pro-
posed in those papers are not exhaustive and are often
conflicting. In particular, the authors of [1-3] believe
that this phenomenon is caused by volume processes.
L ater, the authors of [4—6] took into account the specific
features of only surface diffusion on an anisotropic sur-
face and ignored volume processes. The purpose of this
work isto reveal the essence and role of these processes
using the fluctuati on—dissi pative principle.

2. RESULTS OF MICROSCOPIC STUDIES

We studied epitaxial tungsten foils 5-10 um thick
evaporated on molybdenum single-crystal substratesin
afluoride process. Thefoilswere annealed with adirect
current at 21002200 K for 10-30 h at a pressure of
1078-10"° Torr. The small thickness of the foils (crys-
tals) was an important factor. During dc heating, the
electric-field strength in foils is relatively high (3
5V/cm), which accelerates the formation of a wave
surface (Fig. 1). Asthe current is switched off, the crys-
tals cool rapidly and nonequilibrium structural defects
in them are quenched. The foils were thinned from one
side by electropolishing in a 3% NaOH solution and
were then studied with an electron microscope.

We found that the crystal volume near the wave sur-
face (Fig. 1) contains defects that manifest themselves

in the form of triangles and other more complex struc-
tures (Fig. 2a). In terms of their contrast, the defects
correspond to stacking faults and are located in the
{112} planes. The electron diffraction pattern of acrys-
tal area(Fig. 2a) with the (111) plane paralel to the sur-
faceisshownin Fig. 2b. Figure 2c shows the magnified
(110) reflection, which has the shape of a three-rayed
star. This shape indicates lattice distortions in the crys-
tal volume.

The formation of stacking faultsin a pure metal can
only be related to an excess vacancy concentration and
vacancy-complex formation. Therefore, dc heating dis-
turbs thermodynamic equilibrium in the vacancy sub-
system of the crystal. Thefact that thereisacorrelation
between the processes of formation of bulk defects and
of aregular surface structure was supported by ametal-
lographic study (in an optical microscope) of tungsten
wires 120 um in diameter preheated with an electric
current in a hydrogen atmosphere. A high hydrogen

Fig. 1. Optical micrograph of a single-crystal tungsten foil

de-heated in vacuum (P = 10°-10~° Torr, T = 2100 K,
t=10h).
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Fig. 2. Single-crystal tungsten foil dc-heated in vacuum
(P=10"2-10"Torr, T = 2100 K, t = 10 h), observed in an
electron microscope. (a) Defects near a surface structure,
(b) the electron diffraction pattern of thisregion, and (c) the
shape of the (110) reflection.

pressure (760-1520 Torr) provided intense heat
removal from the wires and rather high fields (3—
4V/cm) in them; these fields are three to four times
higher than the fields that can be created in vacuum at a
pressure of 10°-10° Torr at the same temperature
(2800 K). Therefore, a surface structure in the wires
heated in a hydrogen atmosphere develops within 10—
20 h (in contrast to 100-200 h for the samples heated to
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Fig. 3. Optical micrographs of the surface of atungsten wire
dc-heated in a hydrogen atmosphere (P = 760-1520 Torr,
T = 2800 K). (a) The wire surface after 1-h annealing fol-
lowed by electrochemical etching and (b) the wire surface
after annealing for 10-15 h.

the same temperature in vacuum). The wires heated in
ahydrogen atmosphere at 2800 K for 1-2 h are almost
smooth when analyzed with an optical microscope.
However, after etching in an ammonia solution, ridges
appear on the wire surfaces because of the contact
potentia difference in the Ni-W pair (Fig. 3a); the size
and arrangement of ridges correspond to those after
longer heat treatments (Fig. 3b). Therefore, we can con-
clude that the distribution of structural defects in the
crystal volume correlates with the crystal shape and
that excess vacancies appear at the very beginning of
the formation of the steplike structures. Hence, surface
restructuring can be conjectured to be related unambig-
uously to asignificant deviation of the vacancy concen-
tration from its equilibrium value in a crystal carrying
an electric or a heat flow and to effective mass transfer
between its surface and volume. Thisfinding cannot be
explained by the models of this phenomenon proposed
in [4, 5], in which the concentration of diffusion carri-
ers (atoms or vacancies) is taken to be equal to ather-
modynamically equilibrium value. Steplike structures
are detected in fields that only slightly exceed the criti-
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cal fields (according to the data of many authors).
Structural defectsin such samples have not been clearly
revealed by the methods of metallography and electron
microscopy. In the former method, it is difficult to sep-
arate them from the shape effect during chemical etch-
ing, and, in the latter method, the character of contrast
indicates a high density of vacancy—impurity clusters.

Thus, the main featuresthat characterize the restruc-
turing of the crystal surface are the following:

(i) Surface restructuring occurs only in the presence
of gradients of an electric or heat field of the same direc-
tion. When subjected to ac heating or uniform heating,
the steps lose their stability and disappear [1-3].

(i) The step growth rate is nonlinear in time; in the
first heating stage, the surface shape does not change (a
latent period); in theintermediate stage, the step growth
rate is maximum; and, at the fina stage, the rates of
changes in the step size and height become stable in
time[1-3].

(iii) This phenomenon has a threshold; that is, cer-
tain critical field gradients must be exceeded [1-3].

(iv) Thevacancy concentrationin the crystal volume
is not a thermodynamically equilibrium value. The
period of changes in the excess vacancy concentration
iscorrelated with the surface-relief period. Thisconclu-
sion is supported by the results given in this section.
The experimental data indicate a correlation between
the processes of formation of bulk defects and of areg-
ular surface structure.

These features demonstrate that the restructuring of
polycrystalline and single-crystal surfaces has a fluctu-
ation—dissipative character.

3. THERMODYNAMIC CONSIDERATION
OF THE RESULTS

The features given above correspond to the neces-
sary conditions for the formation of dissipative struc-
tures [7, 8]. According to the theory of self-organiza-
tion in nonequilibrium systems [7, 8], such structures
can form only when the following four conditions are
simultaneously satisfied:

(i) The system is thermodynamically open; i.e., it
exchanges energy and matter with its environment.

(ii) The system is substantially nonlinear (it is
described by nonlinear equations).

(iii) The deviation from equilibrium exceeds a criti-
cal value.

(iv) Microscopic processes correlate.

In this case, the regular structures that form in a
crystal currying an electric or a heat flow should be
attributed to the class of dissipative structures. These
structures are ordered configurations appearing beyond
the stable region of athermodynamic branch (the states
that appear from an equilibrium state via continuous
deformation) [7, 8]. If adeviation of anonlinear system
from equilibrium exceeds a certain critical value, these
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states can become unstable and the system passesto a
new mode and becomes adissi pative structure. Dissipa
tive processes are characterized by nonzero entropy
production. Thefirst condition of structure formationis
related to the second law of thermodynamics.

Let us show that, although the transition from a
smooth defectless crystal to a stepped crystal with bulk
defects that occurs in the system under study isrelated
to adecreaseinitsentropy S, the second law of thermo-
dynamicsis not violated and that it manifestsitself ina
more general form. The system is open for flows of
electricity, heat, and matter. Its entropy can decrease
under specific external and internal conditions, more
specificaly, if the loss of entropy S per unit time
(d.Sdt) exceeds the entropy production inside the sys-
tem (d;Sdt). Thus, we have

ds _ d.S, dS

Frialiery + 5 <0, (@D}
if
(:Lij >dd‘—tsz 0, )
where
%"‘t—s = —J’Isndz, (3)
dd‘—f = J’crdV. 4)

Here, ~ and V are the surface area and volume of the
crystal, respectively; |, is the local entropy flux on the
crystal surface; nisaunit vector normal to the surface;
and o isthe local entropy production.

It can be shown that the total entropy flux (d.Sdt),,
through two rectangular sections 1-1 and 2-2 chosen
arbitrarily and located normal to the crystal axisis neg-
ative.

According to [9], the local entropy flux can be writ-
tenintheform

If_zuklk
_ 1
lg = —=—. )

where y, and |, are the electrochemical potential and
the flux of the kth component, respectively; |; isthe heat
flow; and T is the temperature.

For the vacancy mechanism of electrodiffusion,
Eqg. (5) can be rewritten as

_ If_UeIe_Uala_uVIV

I T

(6)
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or, using the equality I, =-l,, as

— If_p-ele_(l-1 _p-a)l
I = T (7)

where |, K, and Wy, are the electrochemical potentials
and I, |,, and |, are the fluxes of electrons, atoms, and
vacancies, respectively.

Using the approximation , = Wy, and taking into
account the equalities Pgp — Heg = —€0 and P — Hgg =
Zed, we obtain

e _ —edl.—Zedpl,
Odtt,, T

where e and Ze are the electron and ion charges, respec-
tively; ¢ isthe potential difference between the second
and first cross sections; and %, is the cross-sectional
area of the crystal.

As the electric field increases, the loss of entropy
(d.S/dt);, increases. When it exceeds a certain critical
value, the smooth defectless crystal beginsto transform
into a stepped crystal with bulk defects.

Thus, a direct current passing through the crystal
ensuresthat inequality (1) issatisfied (the sameresultis
obtained for a heat flow). The second and third condi-
tions for the formation of dissipative structures require
a transition from ordinary linear to nonlinear
approaches, where ordering occurs spontaneously
under certain conditions. We can assume that crystal
surface shape fluctuations decrease in amplitude and
disappear if the field gradient isless than a certain crit-
ical value. However, when the field gradient exceeds
the critical value, some fluctuations grow and result in
the formation of macroscopic order in the crystal sur-
face. Thefourth condition (the cooperative character of
behavior) reflects the causality (at a microscopic level)
of the processes resulting in structure formation. When
these processes are cooperative due to specific interac-
tions, spontaneous structure formation is observed.

As follows from the experiment, the vacancy con-
centration in crystals under valleys between steps can
substantially exceed the equilibrium concentration dur-
ing dc heating even for a steady-state shape of the sur-
face (Fig. 1). This fact can be related to a substantial
contribution of the flux of surface vacancies to the sur-
face diffusion flux. The diffusion coefficient of these
vacancies is anisotropic (it is dependent on the local
surface orientation). Therefore, the deceleration of the
surface flux in aregion with alow diffusion coefficient
can lead to two limiting effects: (i) the fixation of
vacancies directly on the surface with the formation of
valleys or (ii) the appearance of a bulk diffusion flux,
when the electrochemical potential of the vacancies
providing the diffusion flux isequal to the el ectrochem-
ical potential of vacancies on the surface of agiven cur-
vature. According to the decomposition phenomenon
observed, the supersaturation can be as high as a frac-
tion of one percent; however, for distances of several

2,<0, (8)
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microns, this value can cause rather intense diffusion
fluxesthrough the crystal volume at relatively low tem-
peratures.

It follows that an electric field on the surface creates
a steady-state excess vacancy concentration in valleys
and that the portion of a step facing the output minus
terminal of the power supply is abarrier to surface dif-
fusion flux, since this portion contains |oose faces hav-
ing arelatively high surface energy. We can state that
the structure formation on crystals that are subjected to
electric or heat fields is related to cooperative surface—
volume diffusion.

The interrelation between the surface shape and the
redistribution of surface and volume diffusion fluxes
reflects specific couplings that cause the cooperative
character of this microscopic process. The operation of
these couplings obeys the principle of macroscopic sur-
face restructuring, according to which the crystal sur-
face takes a shape for which the output total entropy
flux is maximum.

Let usintroduce a coordinate system xy in the plane
of the crystal under study. Let y = y(X) be an equation of
its surface (in our two-dimensional case, this is the
equation of its boundary line). The function y(x) is
determined from the condition of the maximum |oss of
entropy, i.e., the maximum of the curvilinear integral

J’Isndz orJ’ISHAll + yzdx at agiven crystal volumeor,

inthetwo-dimensional case, at agiven area [ydx. If I,

is a function of the direction of the line tangent to the
sought curve (i.e., afunction of y"), then, following the
L agrange method, we seek the maximum of theintegral

I(Ian1+y2+Ay)dx 9)

with the undetermined multiplier A.
Then, the Euler equation gives

oy iy @iy s cons. (10)
Ry T

Given an explicit expression for the entropy flux |,
we can determine the crystal surface shape from
Eg. (10).

4. RESULTS OF THE CONSIDERATION
OF TRANSPORT PROCESSES

Theformation of astacking faultin apure metal can
only be related to the presence of excess vacancies in
the crystal. Direct-current heating of the crystal causes
supersaturation. Therefore, apart from the devel opment
of a periodic surface structure, a mathematical model
describing surface restructuring in a crystal with mac-
roscopic fields must also explain the appearance of
excess vacancies and the possible correlation of these
phenomena.
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Theformation of nonequilibrium vacanciesin solids
asaresult of the action of external fieldsisdescribed by
the phenomenological diffusion theory [9] developedin
terms of the thermodynamics of irreversible processes.
Therefore, a model of this phenomenon should be
based on this theory. It can be shown that, when foils
are heated by passing a direct current through them,
there appear fluxes of vacancies and of current and heat
carriers:

CyZegrad¢ C\,QV grad T

|y =-DyHyradC, — = = H,(11)
|e = _M’ (12)

p
lf = —kgradT, (13

where C, = C!) + g is the vacancy concentration

(CY and g areits equilibrium and nonequilibrium com-
ponents, respectively), Dy is the vacancy diffusion
coefficient, Zeisthe effective vacancy charge, Q, isthe
heat for vacancy transfer, ¢ isthe electric potential, Tis
the absolute temperature, p is the electrical resistivity,
K is the thermal conductivity, and k is the Boltzmann
constant.

Here, the subscripts V, e, and f stand for vacancies
and current and heat carriers, respectively. Asis known
[10], defects contributeto the electrical resistivity (ther-
mal conductivity) of pure metals. In the approximation
of alow defect concentration, an increase in the resid-
ual resistance should be proportional to this concentra-
tion. For vacancies, the additional resistivity is[10]

mwC, A
Pv = — T
N.€

(14

where misthe electron mass, w is the electron velocity
near the upper boundary of the Fermi distribution, n.is
the number of free electrons per atom, e is the electron
charge, and A isthe effective scattering area (from scat-
tering theory).

Thus, vacancies interact with electric and tempera-
ture fields. In this case, the problem of calculating the
electric and temperature fields and the vacancy concen-
tration can be reduced to the solution of a set of conti-
nuity equations for vacancies and current and heat car-
riers. For a steady state, this set of equations has the
form

divl,+0o, =0
E—divlez
Hdivi, +o, = 0,

(15)
where
-9
Oy &
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Here, oy, is the rate of formation or disappearance of
vacancies at relatively low supersaturations [11], o; is
the density of heat sources, and ty, is the average life-
time of nonequilibrium vacancies. For the correspond-
ing boundary conditions, set (15) can numericaly be
solved with a computer.

Here, we restrict ourselves to the approximation
grad$ = E, E = const, and T = const. Then, for the one-
dimensional case, the vacancy-concentration distribu-
tion along the sample surface (with the electric field
directed along the surface) can be determined from the
continuity equation for vacancies

d’g_ZeEdg, g _

O

0 (16)
dX2 kT dx 12
and has the form
1
é
= Eplgn[lz_[iz__aa
O [
. (17)
1 ZeE? O ZeEx
+C2cos[|2 DkTD} p KT

where C; and C, are constants of integration and | =

(t,Dy)"? isthe vacancy mean free path [9, 11]. In gold
at high temperatures, | = 4 um [12]; aa Z =1, E =
1V/em, T = 2400 K, and | = 10 cm (which corre-
sponds to the experimental conditions), we have
(ZeEI/KT)? = 25 x 1078, Thus, in the rather wide range
of | =10*-10-2 cm, we have (ZeEI/KT) < 1 and Eq. (17)
can be signifi cantly simplified:

g= B: sm x+C2cos %expzeEX, (18)
where the surface structure period is
A = 2md. (29

If E =0, then gy, = 0 and, instead of Eq. (16), we
obtain a version of the second Fick law from the conti-
nuity equation for vacancies. In this case, in contrast to
Eq. (16), there are no periodic solutions for the vacancy
concentration. Therefore, the formation of a periodic
structure of the nonequilibrium component of the
vacancy concentration is caused by an electric field.
Obviously, a periodic surface structure can correlate
with the volume-vacancy distribution.

Since a vacancy exchange between the volume and
surface in a steady state must not lead to a further
change in the surface, the properties of the surface (the
vacancy concentration in the surface layer) should
change for a period A identical to that of the volume-
vacancy concentration. Changes in the properties of a
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local surface region can only be related to a change in
its crystallographic orientation (hkl); hence, the surface
should have arelief of the same period.

Thus, within the framework of this model, the sur-
face structure period is specified by the state of the vol-
ume vacancy subsystem.

A more compl ete solution to the problem that simul-
taneously takes into account volume and surface diffu-
sion can substantially correct the surface structure
period in Eq. (19). However, even in the approximation
used above, the solution agrees well with the experi-
mental dataon | and A at high temperatures. In particu-
lar, in dc-heated tungsten (T = 2400 K, E = 1-2V/cm),
a surface structure with a period A = 12 um forms. In
this case, the model proposed gives | = 2 pm, which
agrees well with the value of | determined in gold at
high temperatures (I = 4 um) [12].

In our calculations, we did not take into account the
interaction of vacancies with a temperature field (T =
const). However, depending on the sign of the heat for
vacancy transfer, thisinteraction can result in either an
increase or decrease in the distribution amplitude of
nonequilibrium vacancies.

In metals with Q,, < 0 (vacancies move from a cold
to hot region), hot and cold regions alternating at a
period A should form as aresult of the effect of vacan-
cies on electrical resistivity (14) along the surface.
Vacancies can move from cold to hot regions due to
thermal diffusion, which would lead to an increase in
the distribution amplitude of nonequilibrium vacancies
and to a subsequent increase in the amplitudes of the
nonequilibrium components of the electrical resistivity
and temperature and so on (afluctuation process).

To date, a “dc structure” has only been detected in
metals (W, Mo, Ta, Nb, Pt) of thistype (Qy < 0), which
supports this assumption.

Thus, our anaysisindicates that an important roleis
played by volume processes in the dc-structure forma:
tion and that it is necessary to simultaneously consider
volume and surface diffusion processesin developing a
model based on the fluctuation—dissipative principle.

5. CONCLUSIONS

Electron-microscopic and metallographic studies of
tungsten single crystals and wires heated to high tem-
peraturesin vacuum or a hydrogen atmosphere through
the passing of a direct current have shown that the
appearance of a steplike surface structure is related to
theinteraction of the surface and volume diffusion sub-
systems when the system strongly deviates from equi-
librium.
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It has been experimentally and theoretically shown
that the structure under study belongs to the class of
dissipative structures; therefore, the development of a
model to describe this phenomenon requires a syner-
getic approach [7, 8]. As aresult of the surface macro-
scopic restructuring of a crystal subjected to a super-
critical electric or temperature gradient, the crystal sur-
face takes a shape for which the total entropy flux
passing through the surface into the environment is
maximum.

Note that the results obtained and the technique
developed can be used to study surface restructuring
not only in metals but also in semiconductors (e.g., in
gallium arsenide, where the process of surface faceting
[13] is similar to that observed in metals [1-6] and is
used in molecul ar-beam epitaxy to grow structureswith
aone-dimensional electron gas[14]).
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Abstract—The electrical conductivity is measured experimentally and the parameters of the superconducting
transition are determined in a regular spatial network of multiply connected submicron-sized indium grains
embedded in voids of an ordered opal dielectric matrix. The In—opal hanocomposite was prepared by pressure
injection of the molten metal into voids of opal samples. Arrays of In grains of different sizes were produced
by properly varying the characteristic geometric sizes of the opal voids, which offered the possibility of observ-
ing quantitative and qualitative changesin the temperature dependence of electrical resistance and studying the
size effects on the critical temperature and critical magnetic field in the In—opal nanocomposites. It was found
that, as the coherence length becomes comparabl e to the size of the superconducting grains, the parameters of
the superconducting transition in the nanocomposite increase sharply. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The conductivity and superconductivity of ensem-
bles of low-dimensional conductors have been attract-
ing considerable research interest, because they offer
the possibility of observing size effects originating
from asubstantial decrease of a conductor or supercon-
ductor in size, which entails a change in the basic car-
rier scattering mechanisms and, accordingly, an
increase in the critical temperature T, [1] and critical
magnetic field H, [2]. The superconducting (SC) state
becomes more stable in nanostructured systems,
because their inherent inhomogeneities pin magnetic
vortices and, thus, change the magnetic flux dynamics.
This feature is well known to be typical of thin films
(see, e.g., [3]). If the size of the SC nanoparticles is
comparable to the coherence length &, the behavior of
such structures becomes still more complicated. In this
case, a magnetic field penetrates deep into a sample
because of the field being incompletely screened [4]
and the superconductivity in ensembles of nanoparti-
cles becomes spatially inhomogeneous. Coexistence of
the normal and SC phases becomes possible, and resis-
tive anomalies [5, 6] associated with the presence of
interfaces, as well as topological effects of the type of
resistance oscillations, may occur [7].

The electrical conductivity of three-dimensional
(3D) regular ensembles of SC nanoparticles has been
studied much less comprehensively than that of 2D lat-
tices [8] because of the technological difficulties
encountered in the course of sample preparation. Ini-
tialy, artificial ensembles of millimeter-sized metallic
spheres were obtained [4]. As far as we know, direct
extension to micron- and submicron-sized spheres
proved impossible because of a lack of suitable tech-

nology for the preparation of such objects. The behav-
ior of 3D structureswith particles of submicron size has
been investigated for the particular case of granular
superconductors [4], superconductors embedded in
voids of porous glasses [9-11], and synthetic opals
[12].

It must be remembered that most of the granular
conductors studied thus far have percolation-type con-
duction, because auniform current distributionin asys-
tem of contacting particles isimpossible to ensure due
to the uncontrollable quality of the intergrain contacts.
The method of stabilizing SC nanoparticle ensembles
in voids of aregular porous dielectric opal matrix that
is employed in the present work provides a good
approach to a spatially uniform current distribution
[12]. This approach permits one to attain periodic mod-
ulation of the properties of a nanocomposite with a
crystalline dielectric matrix [13]. A liquid metal
injected under pressure into a 3D matrix occupies all
accessible free space, forming grains and intergrain
bridges in intervoid windows. The bridges replacing
point contacts between grains impart stability to the
intergrain conductivity. On the whole, the lattice opal-
pore topology confers a regular structure to the metal
spatia network.

Increasing the nanoparticle ensemble dimensional-
ity makes interpretation of the electrical conductivity
and superconductivity of the ensemble complicated. In
the case where the size of the nanoparticlesisless than
the L ondon penetration depth, magnetic vortices cannot
form in the grains via the Abrikosov mechanism.
Therefore, in [14], the results obtained in studying the
magnetoresistance and current—voltage characteristics
of metal—opal nanocomposites were interpreted in
terms of magnetic field transport by topological vorti-
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Fig. 1. Close packing of spheres forming a face-centered
cubic lattice (model of the opal structure).

ces that correspond to screening currents flowing along
the lattice contours. It was assumed also that magnetic
field penetration into a sample is actualy a stepwise
process giving rise to the formation of a3D current lat-
tice of amultisized architecture.

The present communi cation reports on astudy of the
dependence of the electrical conductivity and SC prop-
erties of an In—opal nanocomposite on theindium nano-
particle size. The size of nanoparticles was varied by
(i) using opals with silicate spheres of different size;
(ii) deposition of silicon oxide from a polysilicate solu-
tion to attain a sufficiently large geometric-modulation
depth of the current flow channel, i.e., the ratio of the
maximum to minimum cross section of the channel;
and (iii) deposition of agiven number of titanium diox-
ide monolayers on the inner opal surface for high-pre-
cision controllable variation of void size.

SHAMSHUR et al.

2. SAMPLES AND EXPERIMENTAL
TECHNIQUE

Opal isadensely packed, face-centered cubic array
of identical silicate spheres [15] with voids between
contacting spheres (Fig. 1). The fcc packing of spheres
of diameter D has voids of two types, namely, octahe-
dral (O voids) with a characteristic sized, = 0.41D and
tetrahedral (T voids) with d; = 0.23D, interconnected
by channels of varying cross section with the smallest
sized, = 0.15D. Voidsin the opal form, in turn, aregu-
lar lattice. In the present work, we used opals with
spheres of different size (Table 1), with the scatter in
diameter not exceeding 5% for each sample. The
method of molecular layer-by-layer deposition of
oxides on the inner surface of the silica gel (“over-
growth™) [16] makesit possible, asapplied to opal [17],
to vary the void dimensions to within the thickness of
one molecular layer of the deposited oxide. One opera-
tional cycle including several chemical reactions
applies one monatomic TiO, layer [16]. Opals with dif-
ferent numbers of titanium oxide monolayers Nq;o, (Up
to 60) were prepared. To prepare nanocomposites 1.4
and 1.5, the free volume fraction of opal voids f was
reduced considerably, from 26% in an ideal fcc lattice
to 13%, by predeposition on the inner opal surface of a
thick SiO, layer from apolysilicate solution. To prepare
an In—opal nanocomposite, molten metal was pressure
injected into the voids of the opal samples [12]. The
samples measured about 5 x 2 x 0.4 mm.

Electron-microscope images (Fig. 2) showed the
metal to form in the opal a regular continuous three-
dimensional network between the dielectric spheres.
Viewed in cross section, the metal network is aregular
array of closed contours that include metal grainsinter-
connected by bridges of a smaller cross section than

Table 1. Geometric characteristics and superconducting transition parameters of the In-opal nanocomposites studied

Sarr]r;;f)le fin Nrio, 5, nm D, nm do, nm | dp, nm d,, Nm T K H(0), Oe
11 0.26 0 0 230 95 52 36 3.57 2200
12 0.23 23 31 230 89 46 30 3.61 2900
13 0.17 54 7.2 230 81 37 21 3.66 3850
15 0.13 0 8.2 230 79 35 19 4.15 15000
14 0.08 34 13 230 69 26 10 3.724.17 | 18900-22200
21 0.26 0 0 290 120 66 45 3.49 940
2.2 0.22 20 2.7 290 115 60 40 3.495 1250
2.3 0.19 40 53 290 109 55 34 351 1750
24 0.16 60 8.0 290 104 49 29 35 2200-5000
31 0.26 0 0 190 79 43 30 3.46 2260
3.2 0.20 20 2.7 190 73 37 24 3.47 1740
3.3 0.16 40 53 190 68 32 19 3.55 2300
34 0.12 60 8.0 190 63 27 14 3.58 2650

Note: Thevoid volume fraction of samples 1.4 and 1.5 was preliminarily reduced to 13% through the deposition of SiO, (for sample 1.5,
0= 0gp,; for sample 1.4, 6 = 3, + Bjp, ). Theerror of & determination was 2 nm, and that for sample 1.4, 4 nm.
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that of a grain. The metal used to fill the voids by this
method [18] occupies the entire opal free space [19],
and, therefore, the metal network is a spatial replica of
the sphere array.

To preclude the manifestation of surface conduc-
tion, indium was removed from the thin near-surface
region of the opal by etching it in a 20% solution of
nitric acid for 20 min, with subsequent checking for the
absence of surface conductivity of the sample. Next,
contact pads less than 0.3 mm wide were prepared by
grinding and a current-conducting glue-based silver
paste was applied to them.

Experimental studies were conducted on In—opal
samples of three lots differing in terms of the diameter
of the silicate spheres making up the opal matrix. The
characteristic geometric dimensions of the opal voids
and the superconducting transition parameters of the
nanocomposite samples studied are listed in Table 1.
Also givenin Table 1 are the number of TiO, layer dep-
osition cycles, the oxide thickness §, and the indium
volume fraction f,..

The geometric dimensions of In grains were deter-
mined in the following way. The shape of each grain
was approximated by a sphere inscribed into the void,
with the diameter reduced by 25 to account for the
thickness of the TiO, film:

do = D(/2-1)-23, 1)
3

d, = DH é—lg—Zé, )
2

d, = gﬁ—%—za. A3)

The TiO, overgrowing procedure lengthens the
channelsinterconnecting the opal voids; therefore, cyl-
inders provide a good approximation to the In bridges
filling intervoid opa windows in samples with a large
number of deposited TiO, monolayers. The cylinder

axislengthis
L = D%I.

The dimensions of indium nanoparticles dg, dr, and
d, were determined by two different methods, depend-
ing on the approach employed to calculate the total
TiO, layer thickness. In one method, we used the rela

tion = Nyi0,0,, Wwhere 8, = 0.13 nm is the monolayer

thickness derived with due account of the anatase struc-
ture. The other method is based on optical measure-
ments providing the fraction of empty space in the opal
volume. Optical measurements yielded the position of
the maximum of the reflectance band produced by dif-
fraction from the (111) planes of the fcc lattice of an
unloaded opal. As follows from the Bragg law, A =
2n4d in the case of normal incidence of light on the
sample surface. The effective refractive index was

+ 20. 4
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Fig. 2. Electron microscope image of In—opa hanocompos-
ite sample 1.1.

found as nsﬂ = néoz fso, + n%oz frio, + fan Where
Nso, Nrio,» ad fgo,, frio, aretherefractive indices
and volumefractions of silicaand anatase, respectively.
The replacement of air in the opal voids by optical oil
with a known refractive index produces a red shift of
the diffraction maximum. Knowing the refractive indi-
cesof silicaand anatase (1.43 and 2.3, respectively) and
assuming that the lattice constant remains unchanged
and that the volume fraction of silicais equal to 0.74,
one can readily solve the two equations for the volume
fraction of anatase and air in the opal matrix.

Next, the TiO, layer thickness was derived from the

expression
0 =cDh %L

where foergronn 8N forigin are the free volume fractions of
the “overgrown” and “origina” (Without the oxide lay-

overgrowr[l (5)

ongm

0l _1g.
ers) opal, respectively, and ¢ = D,T % 60~ = 0.0584.

Equation (5) isvalid in the case of spheres contacting
at one point and can be derived! from the obvious

1 To derive Eq. (5), consider a sample of cubic shape with Nge”
elementary opal cells, bearing in mind that each cell has a lattice
constant a = D./2 and contains n = 4 silicate spheres. Introduc-
ing the notations Sgy, for the sphere surface area and <ph for the

sphere volume, we obtain Vyrigin = (Nl a)’ - Ce” NVgon for the

total free volume and §pper = Nge” NSph — 6N§e” n x 0.58, for

the opal inner surface area; note that the outer opal surface area
(the second term) may be neglected because of its relative small-
ness. For samples 1.4 and 1.5 featuring a large change in the free
volume (i.e., d ~ dy), & was calculated accounting for the change

in the inner opal surface area, with §pner @ssumed to be alinear
function of the variable 8. In this particular case, in place of
overgrowrﬂ =o.

ongln

Eq. (5), we obtain 562 — D& + cDZ%L
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Fig. 3. Superconducting transition in In—opa nanocompos-
ite samples. (a) Temperature dependences of resistance
R(T) and (b) magnetic-field dependences of resistance
R(H). The volume fraction of Inis 0.26 (5), 0.23 (5), 0.17
(5), 0.08 (1), and 0.13 (5) in samples 1.1, 1.2, 1.3, 1.4, and
1.5, respectively. The figuresin parentheses are currents (in
milliamperes) through the samples.

relation

fovergrovwn — Vorigin _ Snneré
= v ,
origin

forigin

(6)
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Fig. 4. Temperature dependences of the effective electrical
resistivity of In—opal samples. The currents flowing through
the samples of lot 1 are the same asin Fig. 3, and the cur-
rents for lot 2 are 5 and 0.1 mA for samples 2.1 and 2.4,

respectively.

where Vg is the volume of the original opal and Sy
isthetotal inner opal surface area.

Thetotal layer thicknesses & cal culated by the above
methods differed by lessthan Ad = 2 nm for all samples
except for sample 1.4 (the difference for this sampleis
about 4 nm due to the fact that the void size was modi-
fied using two different methods, namely, SiO, deposi-
tion and subsequent TiO, layer-by-layer overgrowth).

The electrical resistance of the samples was mea-
sured in the temperature range 300-0.4 K and in mag-
netic fields of up to 70 kOe by the dc four-probe tech-
nique.

3. EXPERIMENTAL RESULTS

All the samples of the In-opal nanocomposite stud-
ied undergo the SC transition. Cursory examination of
Fig. 3and Table 1 revealsthat the critical temperatures
and critical magnetic fields of the SC transition notice-

ably exceed those of bulk indium (T = 3.41 K and

H2(0) = 280 Oe at T = 0). Below the critical temper-
ature T, the application of amagnetic field restoresthe
sampleresistivity to itsnormal-state value, p = py. One
can see that T, and H,. (Fig. 3, Table 1) correlate with
the indium grain size within the same lot. Samples
with a larger number of TiO, layering cycles exhibit
higher T, and H,. Note that the decrease in the indium
grain sizeis accompanied by an increase in the “ effec-
tive” electrical resistivity of a sample ps= (Ss/I9R in
the normal phase directly before the SC transition and
by the slope of the temperature dependence of R(T)
becoming smoother (Fig. 4). The pgT) dependence
measured on a sample with the smallest In bridge
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diameter (d, = 10 nm) takes on anonmetallic character:
P<(300 K)/p44.2K) = 0.7 (Fig. 4).

The SC transition widthsin temperature, AT, and in
magnetic field, AH., were determined from the resis-
tance jump as the difference in temperature (or mag-
netic field) between the 0.9py and 0.1py levels, and T,
and H_ were derived at the p = 0.5p, level.

Samples with a comparatively high volume fraction
of indium (f,, = 0.17-0.26) exhibit a narrow SC transi-
tion, AT, < 0.1 K and AH, < 100 Oe (Fig. 3). The SC
transition in samples characterized by arelatively small
volume fraction of the conducting part, f,,, < 17% (sam-
ples 1.4 and 2.4), is broad both in temperature and in
magnetic field, with the R(T) and R(H) curves (for T <
T.) featuring a stepwise character [20]. For these sam-
ples, Table 1 lists two values of T, and H,(0), namely,
the boundaries of the interval within which the param-
eters vary between the 0.9py and 0.1p, levels. Sample
1.5 occupies an intermediate position: one observes a
sharp SC transition which splits into two transitions
with critical temperatures that are close in magnitude.

Note that our results are consistent with the data
reported in [18], where the SC transition width in tem-
perature measured in In-opal nanocomposite samples
increases with the depth of geometric modulation, i.e.,
with increasing ratios dy : d, and d; : d,. Also, the crit-
ical magnetic field in sample 1.4 extrapolatedto T =0

exceeds H" (0) by about 70 times [20].

4. DISCUSSION OF THE RESULTS

4.1. Sze Dependence of the Critical Superconducting
Transition Temperature

The strong-coupling theory of Eliashberg [21, 22],
which takes into account the delayed nature of elec-
tron—phonon interaction and provides a consistent
interpretation of excitation decay, was used by
McMillan [23] to derive the relation

. +
I = © el 1041+ Aew) [

T 1457 O N — H* (1 + 0.628 )

(7)

which contains as parametersthe Debye temperature ©,
the electron—phonon coupling constant A, and the
Coulomb pseudopotential p*, whose exact value is
known fairly well for polyvalent metals: u* = 0.1. This
relation does not contain any fitting parameters.

Therelation A ~ 1/[dh?[[23] wasemployed in[1] to cal-
culate the ratios [ 7doy,  Jand G277, Cfor a parti-
cle of spherical shape having an fcc lattice and, using
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Fig. 5. Critical superconducting transition temperature plot-
ted vs characteristic sample dimension: indium film thick-
nessd, In wire diameter d,;,e for indium in asbestos pores,
or the smallest dimension of the In network in opal, dy, (1)
In—opal nanocomposite, lot 1; (2) In—opal, lot 2; (3) In—
opd, lot 3; (4) thin films[1]; and (5) In—asbestos nanocom-
posite [24]. The dashed lineis aplot of Eq. (8).

Eq. (7), to derive an expression relating the T,/ T,

ratio to the particleradiusr [23]:
bulk

T /T
_ 1 exp% 104(1+A25)
1+0.674(29/r) " OANMK —0.1(1 + 0.62A 00 )
y 8
_104a+kagy) O ®)
KA —0.1(1 + 0.62KA™%) D
_ 1+0.674(aylr)

~ 1-0.551(ay/r)’

where )\ff",',‘] is the electron—phonon coupling constant

of the bulk material and a, isthelattice constant (for In,
ao=0.33nm, A2 =0.71[1]).

The critical temperatures observed in In-opal sam-
plesarefitted satisfactorily (except for T, of sample2.4)
by Eq. (8). Thisisillustrated by Fig. 5, which presents,
in addition to the In—opal data, the results obtained with
films[1] and with In loaded in asbestos voids [24].

The decrease in the coordination number, i.e., in the
number of nearest neighbors, for surface atoms was
found [1] to reduce the force constants, with the elastic-
ity tensor components responsible for the shear strain
decreasing to a greater extent, and thisis why the aver-
age phonon frequency decreases. This givesrise to an
increase in the electron—phonon coupling constant
(inversely proportional to the mean squared phonon
frequency) [23]. On the whole, despite a certain
decrease of the Debye temperature (© ~ (D), the criti-
cal SC transition temperature increases.
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Fig. 6. Temperature dependences of critical magnetic fields
for In—opal nanocomposite samples. Solid lines are calcu-
lated dependences, and symbols refer to experimental data.
(8) Samples 1.1, 1.2, and 1.3 with f|,, = 0.17-0.26; the aver-

age thermodynamic critical magnetic fields were cal culated
from Egs. (9) and (10), and the experimental values of H,
were determined from the condition p(H) = 0.5py. (b) Sam-
ple 1.4 (f;, = 0.08); the calculated critical magnetic fields
were identified with H,, of the superconducting transition of
spherical In particles with diameters dg, dr, and dy; the

experimental values of Hg and Hg were derived from the

corresponding maxima of the dR(H)/dH derivative. Dotted
lines are the fitting of experimental data with the relation

H(T) = H(0)(1 — (T/TY?).

4.2. Sze Dependence of the Critical Magnetic Field

Samples with f,,, = 0.17 exhibited a sharp SC transi-
tion without steps. In such samples, In grains differing
in size become superconducting apparently at the same
value of H.. One may therefore introduce an average
thermodynamic critical magnetic field (H 1 To find this
guantity, we represent the energy of SC state destruc-
tion by the magnetic field, Ae = gy — €5, as the sum of

the energies Ag; = (1/8T[)(HL)2Vi corresponding to dif-
ferent In grains (i.e. the sum over al voids) Ae =
Zi Ag;. Therefore, we can write

HO= J(l/V)ZmL)Zvi, 9)

where V isthe sample volume. In grainsembedded in a
nanocomposite are typicaly of three characteristic
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sizes corresponding to the different sizes of the voidsin
an opal, namely, do, d, and d,. Each of the critical mag-

netic fields HiC can be identified with the characteristic
grain size d; and grain volume V, and is calcul ated sep-
arately for each grain type from the relation [ 2]
(MA(T)/d;

bulk

HL(T) = kH? (10)

in the limit d;, < A(T), where H2™ (T) = H2™ (O)[(1 -
(T/T)F, M(T) = MO)[1 = (T/T)"Y2, and A(0) = 64 nm
for bulk indium at T = 0. The coefficient k depends on

the actual sample shape; we used the valuek = 4./5 for
particles of spherical shape.

From examining Fig. 6a, it is evident that the exper-
imentally measured critical magnetic field for samples
with a comparatively high volume fraction of indium
f,, =0.17-0.26 is satisfactorily described by the average
thermodynamic critical magnetic field (H [ This quan-
titative agreement implies “classical” behavior (i.e, a
pattern consistent with the Landau—Ginzburg theory) of
the superconductor network in the opal.

For samples with f,, < 0.17 (samples 1.4 and 2.4),
which exhibit a broad stepwise SC transition [20], one

can isolate two critical magnetic fields, Hi and Hf.
For sample 1.4, Fig. 6b shows the experimentally

observed critical magnetic fields H: (T) and HZ (T), as

well asthe critical magnetic fields HiC (T) as calculated

from Eq. (10), for In grainswith the characteristic sizes
specified in Table 1. We readily see that the experimen-
tally observed critical magnetic fields range up to
H(0) = 22 kOe and are noticeably higher than the pre-
dicted values. Thus, they do not fit into the classical pat-
tern, even with the small transverse bridge dimension
d, = 10 nm taken into account.

4.3. Estimation of the Electrical Resistivity
of the Indium Network in Opals

In order to explain the observed qualitative and
guantitative differences in the SC properties between
samples with a relatively high (f,, = 0.17-0.26) and a
relatively low (f,, < 0.17) indium volume fraction, it
appears reasonable to estimate the coherence length of
SC electrons. To do this, one needs to know the effec-
tive carrier mean free path |4 (here, “effective” means
sample-averaged, because the scattering in grains with
different characteristic indium nanograin sizes dq, dr,
and d, may differ considerably). Thiswould require, in
turn, knowledge of the electrical resistivity of the In
network in the opal.

The electrical resistivity of the In network in the
opal, P Can be estimated from the experimentally
measured sample resistance R, linear sample dimen-
sions, and indium grain dimensions d, dy, and d,. In
general, p.« depends on the ratio of the effective cross-
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Table 2. Electrical resistivity of the In network, effective carrier mean free path, and coherence length calculated for In—opal

samples
Sample no. P4(300 K), mQ cm % Pret(42K), uQ cm| 14 (4.2K), nm £si(0K), nm
(4.
1.1 0.066 7.41 1.11 49 150
1.2 0.086 12.36 0.663 8l 194
13 0.101 2.9 2.82 19 94
15 0.455 1.77 4.64 12 73
14 >0.102 0.74 >11 <5 <48
2.1 0.058 14.32 0.573 94 208
2.2 0.057 7.11 1.15 47 147
2.3 0.065 554 1.48 36 130
2.4 >0.08 1.91 >4.31 <13 <76
3.1 0.064 5.22 1.57 34 126
3.2 0.076 13.71 0.598 20 204
3.3 0.101 43.64 0.188 287 364
3.4 0.097 66.67 0.123 438 450

Note: The entries for samples 1.4 and 2.4 are corrected parameters.

sectional area of the conducting component in the
nanocomposite to the effective length of the current-
carrying path

Pree = R(Sue/ler)- (11)

Because the fairly complex shape of the opa voids
makes exact calculation of p,. difficult, let us take a
simple model.

Consider a sample in which all indium making up
the network is molten and forms a rectangular parallel-
epiped-shaped rod of length | 4 = | and cross-sectional
area S = f,Sg the In volume fraction f,, = V,,/Vs
remains unchanged. This model neglects completely
carrier scattering from the superconductor—matrix
interface. In this case, we can write

Pmode = f In(SS/I S) R. (12)

The 300-K electrical resistivities of the In network
in opals calculated by the above method and listed in
Table 2 demonstrate the validity of this model, proga =
Pnet- AS seen from Table 2, the values of p, are closeto
those of p,, and there is no clear-cut trend toward a
changein p.« Withavariationin grain size. Thisreflects
apparently that there is no noticeable carrier scattering
by the interface with opal at 300 K. Indeed, the mean
free path of carriers in bulk indium at 300 K as esti-
mated from the Drude relation

hk
NOe pnet

lbuk(300 K) = 7 nm, turns out to be smaller than the In
grain size (here, the electron wave vector k- is calcu-

PHYSICS OF THE SOLID STATE Vol. 47 No. 11

lated by the Sommerfeld theory of metals. k- =

A/3T[2No, where N, is the electron concentration in a

metal). The above reasoning suggests that the electrical
resistivity of the In network in opal at 300 K may be
reasonably accepted as equal to that of bulk indium:
Pret(300 K) = Pyi(300 K).

At low temperatures, the electrical resistivity of the
In network is substantially higher than py,. Indeed, the
observed values of R(300 K)/R(4.2 K) exceed theratios
for bulk indium by one to two orders of magnitude
(Table 2): PLuk(300 K)/ppuk(4.2 K) = 256 [25]. Obvi-
ously enough, as the temperature decreases, scattering
from boundaries plays an ever increasing role and the
relative decrease in the sample resistance observed
experimentally reflects in the same measure the
decrease in P
R(300K)/R(T) = pna(300K)/pr(T). (19)
Table 2 contains the electrical resistivities of the In
network in opa calculated for 4.2 K. The resistivity
Pret(4.2 K) isseento grow with decreasing In grain size.
Figure 7 displays the temperature dependence of the
electrical resigtivity of the In network, p,«(T), as calcu-
lated for two samples with the maximum (sample 2.1)
and minimum (sample 1.4) variation in electrical resis-
tivity (between room and liquid-helium temperatures).
The calculated temperature dependence of electrical
resistivity for bulk indium (dashed line) was derived
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Fig. 7. Temperature dependences of the electrical resistivity
of the In network in opal. (1) In-opal nanocomposite sam-
ple 2.1 (with the largest In grains), (2) In—opa sample 1.4
(with the smallest In grains), and (3) bulk indium [25, 26].
The dashed lineisaplot of Eq. (15) for bulk indium.

from that of pure indium at 273 K (p,(273) = 8.2 x
10 Q cm) using the relation [26]

p(T) = p(273)(O/273)F(OIT)/F(©/273), (15)

where F(O/T) isatabulated function[27]. Relation (15)
isvalid for any pure metal and follows from the Bloch—
Grineisen expression for the electrical resistivity of an
ideal metal |attice.

The above reasoning isvalid for any In—opal sample
except for samples 1.4 and 2.4, whose experimental
electrical resitivity wasfound to be approximately two
orders of magnitude higher than that of the other In—
opal samples (Fig. 4). This should apparently be
assigned to a substantial number of bridges breaking in
the course of thermal cycling. Therefore, weintroduced
correctionsto the electrical resistivity by plotting for al
sampl esthe dependence of the effective electrical resis-
tivity of a sample ps = (S5/lIgR a 300 K on the mini-
mum characteristic In grain size d, The results
obtained by extrapolating the linear relation are pre-
sented in Table 2. This procedure disregards carrier
scattering from boundaries, which can play a signifi-
cant role in these samples even at 300 K; therefore, the
corrected quantity R, @nd the function p.«(T) calcu-
lated using this quantity yield underestimated values.

4.4. Properties of the In—Opal Nanocomposite
in the Normal Sate

As aready mentioned, the electrical conductivity of
the indium present in an In—-opal nanocompositeis con-
siderably affected by electron scattering of two types,
namely, from phonons and from the opal matrix inter-
faces. Scattering from point defects may be neglected
because the experimental value of the ratio
P<(300 K)/p(4.2 K) < 14 is small in al the In—opal
samples studied as compared to that of bulk indium
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Fig. 8. Calculated temperature dependences of the quanti-
ties characterizing the relative role of boundariesin carrier
scattering in In—opal nanocomposite samples.

(Table 2). Assuming the number of electron collisions
with boundaries to be temperature independent, one
can estimate the fraction of such collisionsinrelationto
the total number of collisions per unit time from the
temperature dependence of the resistivity. The function

r]ph(T) = pph(T)/(pph(T) + pbound(T))
= Pouk(T)/Ps

is the relative number of scattering events by phonons
in In—opal samples under temperature variation, and
Noound(T) = 1 —Npn(T) is the relative number of scatter-
ing events by the interfaces. Figure 8 displays the tem-
perature dependence of Ny,(T) as calculated for two

(16)
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Fig. 9. Ratio pg(300 K)/pg(4.2 K) plotted vs minimal char-
acteristic size: bridge size dy, (for In-opa nanocomposite
samples) or film thickness d (for thin films). (1) Thin films
[28]; (2) thin films [29]; (3) In—opal samples, lot 3; and
(4) In—opal samples, lots 1 and 2.
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samples (2.1 and 2.4) with markedly different modula-
tion of the current-carrying channel.

Figure 9 compares the size dependences of the ratio
P<(300 K)/p4(4.2 K) for the In network in the opal mea-
sured in the present work with those for thin indium
films taken from [28, 29]. Note the good correlation of
this quantity between films and the In-opal nanocom-
posite at close values of the characteristic size. The
deviation observed for In—opal samples from the linear
relation typica of films toward a decreasing
Ps(300K)/p{4.2 K) ratio should apparently be
assigned to the effective dimension of In grains being
less than that of the film. Another point to mention is
that samples of lot 3, which have the highest concentra-
tion of grain array defects and, accordingly, contain a
substantial portion of In grains of macroscopic size,
exhibit adeviation in the opposite sense.

It isworth noting that, in sample 1.4 with the small-
est size of the In network, we have pg(300 K)/p44.2 K) =
0.7 <1 (thissample hasanonmetallic behavior of resis-
tivity; see Fig. 4). The smallest characteristic bridgesize
inthissample, d, ~ 10 nm (Table 1), iscloseto themean
free path of carriers in bulk indium at 300 K, which
implies that scattering from the In-TiO, interface
becomes significant even at room temperature. While
the dimensions of the octahedral and tetrahedral voids
for this sample substantially exceed I, (300 K), their
resistivity is hardly noticeable against the background
of the high bridge resistance (Fig. 4).

4.5. Coherence Length

We made an estimate of the SC electron coherence
length in order to account for the quantitative variation
of the SC transition parameters observed to occur in In—
opal samples at In volume fractions f,, < 0.17.

The coherence length was calculated using the
Gor'kov equation [30] in the dirty limit:

| T2
§4(T) = 0.g55R0ler L]

DTC _ T |:| 1 (17)

lett < &0,

0.18% v ¢
KoTe
lengthin the pure material at T = 0and | 4 isthe electron
mean free path. As follows from the estimates of the
carrier mean free path at 4.2 K presented in Table 2, the
condition | 4 << &, for adirty superconductor is satisfied

for al the In—opa samples studied.

The effective electron mean free paths in In—opal
samples were estimated using the values of p,«(4.2 K)
[calculated from Eq. (14)] and the Drude relation (13).

The values of the coherence length at T = 0 calcu-
lated from Eq. (17) are presented in Table 2 and Fig. 10.
Wereadily seethat, in sampleswith arelatively high In
volume fraction, f,, = 0.17-0.26, which exhibit a com-
paratively narrow SC transition (AT, < 0.1 K, AH, <

= 640 nm is the BCS coherence

where &, =
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Fig. 10. (1) Calculated coherence length at T = O correlated
with the grain size dg (2) for In-opa nanocomposite sam-

ples. The dashed line showsthe coherencelength in the pure
material at T=0.

100 Oe), the coherence length is in excess of the In
grainsize. A trend isalso seen toward & decreasing with
decreasing grain size. As is evident from Table 2, for
samples with f,,, < 0.17, which exhibit a broad stepped
SC transition [20], the calculated coherence length
turnsout to be of about Ingrain sizeand in all casesless
than the largest dimension d, of the grains occupying
octahedral opal voids. In—opal samples of lot 3 have
typically large values of & because of the presence of
macroscopic In inclusions accounted for by a high
defect concentration in the opal void network.

5. CONCLUSIONS

Synthetic opal samples with a volume fraction of
indium-loaded voids 8% < f, < 26% have been
employed to systematically study the dependence of
the electrical conductivity and SC transition parameters
in amultiply connected array of indium grains on their
size. The grain size was changed (with the maximum
variation of the channel dimension in samples of lot 1
being 10 < d, < 36 nm) through proper variation of the
free volume of the opal by layer-by-layer deposition on
itsinner surface of a given number of titanium dioxide
monolayers, with the grain array parameter of the
superconductor remaining unchanged. It has been
shown that the characteristic pattern of the magnetic-
field and temperature dependences of electrical resis-
tivity in the SC transition region varies with decreasing
indium grain size. The observed effect is treated as
implying that the coherence length becomes compara-
ble to the In grain sizein the opal.

ACKNOWLEDGMENTS

The authors are indebted to M.S. Kononchuk for
carrying out the low-temperature experiments and data

2005



2014

analysis. Theauthorsare also grateful to R.V. Parfen’ev
for his continual interest in thiswork and valuable dis-
CuSsions.

Support of the Russian Foundation for Basic

Research (project no. 02-02-17685), the Presidium of
the Russian Academy of Sciences, and the Foundation
for Support of Leading Scientific Schools (project no.
NSh-2200.2003.2) is gratefully acknowledged.

e

10.

11
12.

13.

14.

REFERENCES

. S. Matsuo, H. Sugiura, and S. Noguchi, J. Low Temp.

Phys. 15, 481 (1974).

V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 34, 113 (1958) [Sov.
Phys. JETP 7, 78 (1958)].

V. V. Moshchalkov, Y. Bruynseraede, L. van Look,
M. J. van Bael, and A. Tonomura, in Handbook of Nano-
structured Materials and Nanotechnology, Ed. by
H. S. Nawa (Academic, San Diego, 2000), Val. 3, p. 451.
T. D. Clark, Phys. Rev. B: Solid State 8, 137 (1973).

P. Santhanam, C. C. Chi, S. J. Wind, M. S. Brady, and
J. J. Bucchignano, Phys. Rev. Lett. 66, 2254 (1991).

Y. K. Kwong, K. Lin, P. J. Hakonen, M. S. Isaacson, and
J. M. Parpia, Phys. Rev. B: Condens. Matter 44, 462
(1991).

W.A. Littleand R. D. Parks, Phys. Rev. Lett. 9, 9 (1962).
E. V. Charnaya, C. Tein, K. J. Lin, C. S. Wur, and
Yu. A. Kumzerov, Phys. Rev. B: Condens. Matter 58,
467 (1998).

J. H. P Watson, J. Appl. Phys. 37, 516 (1966).

N. K. Hindley and J. H. P. Watson, Phys. Rev. 183, 525
(1969).

J. H. P.Watson, Phys. Rev. B: Solid State 2, 1282 (1970).
V. N. Bogomolov, V. V. Zhuravlev, A. |. Zadorozhnii,
E. V. Kalla, and Yu. A. Kumzerov, Pis ma Zh. Eksp.
Teor. Fiz. 36, 298 (1982) [JETP Lett. 36, 365 (1982)].
S. G. Romanov and D. V. Shamshur, Fiz. Tverd. Tela
(St. Petersburg) 42, 581 (2000) [Phys. Solid State 42,
594 (2000)].

S. G. Romanov, Pis ma Zh. Eksp. Teor. Fiz. 59, 778
(1994) [JETP Lett. 59, 809 (1994)].

PHYSICS OF THE SOLID STATE \Vol. 47

15.

16.

17.

18.

19.

20.

21.

22.

23.
24,

25.

26.

27.

28.

29.

30.

SHAMSHUR et al.

V. N. Bogomolov, L. K. Kazantseva, E. V. Kolla, and
Yu. A. Kumzerov, Fiz. Tverd. Tela (Leningrad) 29, 622
(1987) [Sov. Phys. Solid State 29, 359 (1987)].

V. B. Aleskovskii, Chemistry of the Solid Sate
(Vysshaya Shkola, Moscow, 1978) [in Russian].

S. G. Romanov, A. V. Fokin, and K. Kh. Babamuratov,
Pis'ma Zh. Eksp. Teor. Fiz. 58, 883 (1993) [JETP Lett.
58, 824 (1993)].

V. V. Tretyakov, S. G. Romanov, A. V. Fokin, and
V. 1. Alperovich, Mikrochim. Acta, Suppl. 15, 211
(1998).

V. G. Baakirev, V. N. Bogomolov, V. V. Zhuravlev,
Yu.A. Kumrezov, V. P. Petranovskii, S. G. Romanov,
and L. A. Samoilovich, Kristallografiya 38, 111 (1993)
[Crystallogr. Rep. 38, 348 (1993)].

D. V. Shamshur, A. V. Chernyaev, A. V. Fokin, and
S. G. Romanov, Nanostructures. Physics and Technol-
ogy (loffe Institute, St. Petersburg, 2000), p. 311.

Zh. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 996 (1960)
[Sov. Phys. JETP 11, 716 (1960)].

Zh. M. Eliashberg, Zh. Eksp. Teor. Fiz. 39, 1437 (1960)
[Sov. Phys. JETP 12, 1000 (1960)].

W. L. McMillan, Phys. Rev. 167, 331 (1968).

Yu. A. Kumzerov, in Nanostructured Films and Coat-
ings, Ed. by G. M. Chow, I. A. Ovid'ko, and T. Tsakala-
kos (Kluwer Academic, Dordrecht, 2000), NATO Sci.
Ser., 3, Vol. 78, p. 63.

Encyclopedia of Physics, Ed. by S. Flugge (Springer,
Berlin, 1956), Vol. X1X, p. 173.

Tables of Physical Quantities (Atomizdat, Moscow,
1976) [in Russian].

J. McDonald, in Low Temperature Physics, Ed. by
C. DeWitt (Springer, Berlin, 1956; Inostrannaya Liter-
atura, Moscow, 1959).

G. J. Dalan, J. Low Temp. Phys. 15, 133 (1974).

B. L. Brandt, R. D. Parks, and R. D. Chaudhari, J. Low
Temp. Phys. 4, 41 (1971).

L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959) [Sov.
Phys. JETP 9, 1364 (1959)].

Trandated by G. Skrebtsov

No. 11 2005



Physics of the Solid State, Vol. 47, No. 11, 2005, pp. 2015-2019. Translated from Fizika Tverdogo Tela, Vol. 47, No. 11, 2005, pp. 1937-1940.

Original Russian Text Copyright © 2005 by Mustafaeva.

SEMICONDUCTORS

AND DIELECTRICS

Photoelectric and X-ray Dosimetric Properties
of TIGaSYb) Single Crystals

S. N. Mustafaeva
Intitute of Physics, National Academy of Sciences of Azerbaijan, pr. Dzhavida 33, Baku, 1143 Azerbaijan
e-mail: itpcht@itpcht.ab.az
Received November 25, 2004

Abstract—The photoelectric properties of TIGa, _,Yb,S, (x = 0, 0.01) single crystals are investigated. It is
established that partial substitution of ytterbium for gallium leads to (i) an increase in the electrical resistivity
of the samples, (ii) a shift in the maximum of the intrinsic photocurrent toward the long-wavelength range of
the spectrum, (iii) a considerable broadening of the spectral sensitivity range, and (iv) an increase in the ampli-
tude of the extrinsic photocurrent. Analysis of the x-ray dosimetric characteristics of the TIGg, _,Yb,S, single
crystals demonstrates that, upon partial substitution of ytterbium for gallium in TIGaS,, the x-ray sensitivity
coefficient increases significantly and the current—dose characteristics Al o ~ E® tend to linearity (a = 1) at low
doserates (E, R/min) of soft x rays. At high dose rates of hard x rays, a tendsto 0.5 for both undoped and ytter-
bium-doped TIGaS, single crystals. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Single crystals of the TIGaS, compound belong to
the class of wide-band-gap semiconductors with alay-
ered structure and a high sensitivity to electromagnetic
radiation in the visible spectral range. In our previous
works [1, 2], we investigated dc and ac hopping con-
duction of TIGaS, single crystals. The influence of
gamma radiation on the ac conductivity of TIGaS, sin-
gle crystals was analyzed in [3]. As was shown in [4],
the physical properties of TIGaS, single crystals can be
controlled by doping with metallic impurities.

The purpose of thiswork was to investigate how the
ytterbium doping of TIGaS, single crystals affects their
photoelectric and x-ray dosimetric characteristics.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Homogenous samples of TIGaS, and TIGaS,[Y b(]
single crystals at an ytterbium content of 0.1 mol %
were synthesized directly from the initial components.
Single crystals of the TIGaS, and TIGaygg9Y byoo1S;
compounds were grown by the Bridgman method. The
samples synthesized were ground and placed in quartz

ampules, which were then evacuated to aresidual pres-
sure of 1073 Pa and placed in a two-zone furnace. The
velocity of travel of theampulein thefurnace was equal
to 0.3 cm/h. The crystallographic data obtained from
analyzing the x-ray diffraction patterns of the single
crystals under investigation are presented in the table.

Samples of TIGaS, and TIGaS,[Y bsingle crystals
were prepared in the form of platesin such away that
the dc electric field applied to the sample would be
directed parallel to the natural layers of the single crys-
tal and the light (x rays) would be incident along the
C axis. Indium was used as a contact material. The dis-
tance between the contacts in al the samples studied
was varied in the range 0.10-0.15 cm. After the ytter-
bium doping of the TIGaS, crystals, the dark resistance
along the layers increased by afactor of ~70.

As an x-ray source, we used a URS-55a instrument
with a BSV-2 (Cu) tube. The x-ray intensity was con-
trolled by varying the el ectric current in the tube at each
specified value of the accelerating voltage. The abso-
lute values of the x-ray dose were measured on a
DRGZ-02 dosimeter. The change in the electrical con-
ductivity of the samples under exposure to X rays was
measured at alow-load resistance (R < R,,).

Crystallographic datafor TIGaS, and TIGa gg9Y b 001 S, Single crystals

Composition Crystal Unit cell parameters Space Py .

of the crystal system a A b, A c A B, deg 2 group g/lcm
TIGaS, Monoclinic | 10.772 10.772 15.638 100.06 16 C2/c 5.560
TIGaS, [0.1 mol %YbO | Monoclinic | 10.776 10.776 15.646 100.06 16 C2/c 5.022

1063-7834/05/4711-2015$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Photocurrent spectra (normalized to unity): (1)
TIGaS, and (2) TIGaS,[Yblsingle crystals. T = 300 K.
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Fig. 2. Dependences of the characteristic x-ray conductivity
coefficient K5 on the doserate E for the TIGaS, single crys-
tal (F = 80 V/cm) at different accelerating voltages across
the tube. V, = (1) 25, (2) 30, (3) 35, (4) 40, (5) 45, and
(6) 50 keV.

The results of the investigations into the photoel ec-
tric and x-ray dosimetric properties of TIGaS, and
TIGaS,[Y bOsingle crystals are given below. All mea-
surements were carried out at temperature T = 300 K.

3. RESULTS AND DISCUSSION

Figure 1 shows the photocurrent spectra measured
(and then normalized to unity) for TIGaS, (curve 1) and
TIGaS,LY bl(curve 2) single crystals. The strengths F
of the dc electric fields applied to the TIGaS, and
TIGaS,[YbO single crystals are equal to 200 and
300V/cm, respectively. The photocurrent reaches a
maximum at an energy hv,,, = 2.72 €V for the undoped
TIGaS, single crystal and at an energy hv,,,, = 2.68 eV
for the ytterbium-doped single crystal. Furthermore,
the ytterbium doping of the TIGaS, single crystalsleads
to a considerable broadening of the spectral sensitivity
range. At energieshv = 2.15 and 2.30 eV, the photocur-
rent spectra of the TIGaS, and TIGaS,[Y b[single crys-
tals display two peaks corresponding to the extrinsic
photocurrent (for the TIGaS, single crystal, the extrin-
sic photocurrent spectrum is plotted on an enlarged ver-
tical scalein theinset to Fig. 1). A distinguishing fea-
tureisthe extrinsic-to-intrinsic photocurrent ratio being
less than 0.01 for the TIGaS, single crystals and
exceeding 0.6 for the TIGaS,[Y blsingle crystals; i.e.,
after the ytterbium doping of the single crystals, the
amplitude of the extrinsic photocurrent increases sig-
nificantly.

Moreover, the single crystals of the TIGaS, and
TIGaS,LY blcompounds are sensitive to x rays. The x-
ray conductivity coefficient (K,), which characterizes
the x-ray sensitivity of the crystals under investigation,
can be defined asthe relative change in the conductivity
due to x rays per unit dose:

_ 0g—0p _ Aog,
Ko = 0,E  O.E’ (1)

where g, isthe dark conductivity and o is the conduc-
tivity under exposureto x rays at adose rate E (R/min).
The characteristic x-ray conductivity coefficients were
determined for undoped and ytterbium-doped TIGaS,
single crystals at different accelerating voltages V,
across the tube and at corresponding x-ray dose rates.
Figure 2 showsthe dependences of the x-ray conductiv-
ity coefficient K, on the x-ray dose rate for the TIGaS,
single crystal at temperature T = 300 K with adc elec-
tric field strength F = 80 V/cm (the ohmic portion of the
current—voltage characteristic). Figure 3 depicts the
dependences K, (E) for the TIGaS,LY bl single crystal at
an operating voltage U =7V (F =80 V/cm). As can be
seen from these figures, the x-ray sensitivity of the
TIGaS, single crysta varies in the range 0.025-
0.174 min/R, whereas the x-ray conductivity coeffi-
cient K, of the TIGaS,[Yblsingle crystal falls in the

PHYSICS OF THE SOLID STATE Vol. 47 No. 11 2005
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Fig. 3. Dependences of the x-ray conductivity coefficient
Kg on the dose rate E for the TIGaS,[Y bOsingle crystal
(F =70V/cm) at different accelerating voltages V, = (1) 25,
(2) 30, (3) 35, (4) 40, (5) 45, and (6) 50 keV.

range 0.024-0.480 min/R; i.e., the x-ray conductivity
coefficient of the TIGaS,LY blsingle crystal is approxi-
mately 3 times greater than the coefficient K, of the
TIGaS, crystal. The analysis of the experimental results
demonstrated that the x-ray conductivity coefficient K,
of the TIGaS,LY blsingle crystals regularly decreases
with an increase in the dose rate and the accelerating
voltage V,. For V, > 30-35 keV and E > 20 R/min, the
variation inthe x-ray conductivity coefficient K, (E, V,)
of the TIGaS, and TIGaS,LY blsingle crystals becomes
very insignificant.

One of the possible reasons for this behavior of the
x-ray conductivity coefficient K (E, V,) isasfollows. At
relatively low accelerating voltages, the x-ray conduc-
tionispredominantly caused by the absorption of x rays
in the surface layer of the crystal. In this case, as the
X-ray intensity increases, the mechanism of quadratic
surface recombination becomes dominant, which leads
to the observed decrease in the x-ray conductivity. An
increasein the accelerating voltage leads to an increase
in the effective x-ray hardness. As aresult, the depth of
penetration of X rays into the crystal increases; i.e., the
absorption of x rays and the generation of x-ray free
carriers occur predominantly in the bulk, and the frac-
tion of X rays penetrating through the crystal increases.
Consequently, asthe accel erating voltage increases, the
x-ray conductivity coefficient decreases and becomes
less dependent on the dose rate.
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Fig. 4. Dependences of the x-ray conductivity coefficient
K onthe doserate E for the TIGaS,[Y bsingle crystal in a

dc electric field F = 1.5 x 10%V/cm at different accelerating
voltages V, = (1) 25, (2) 30, (3) 35, (4) 40, (5) 45, and
(6) 50 keV.

The x-ray conductivity coefficient K, as a function
of the dose rate E was also measured at operating volt-
ages lying in the quadratic portion of the current—volt-
age characteristics of the TIGaS, and TIGaS,L[Y b(sin-

K, 1072 min/R
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Fig. 5. Dependences of the x-ray conductivity coefficient
K of the TIGaS,[Y bOsingle crystal on the x-ray hardness
at thedoserate E=10 R/minindc electric fieldsF = (1) 70
and (2) 1.5 x 10% V/cm.
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Fig. 6. Current—dose characteristics of the TIGaS, single
crystal at different x-ray hardnesses: (1) 25, (2) 30, (3) 35,
(4) 40, (5) 45, and (6) 50 keV.

glecrystals. Figure 4 displaysthe dependence K, (E) for
the TIGaS,[YbOsingle crystals a a dc electric field
strength F = 1.5 x 10° V/cm. It can be seen from Fig. 4
that these values of K, are several times smaller than
those measured at operating voltages in the ochmic por-
tion of the current—voltage characteristic. A similar sit-
uation is observed for the TIGaS, single crystals. These
experimental results indicate that, in strong electric
fields, the concentration of charge carriers injected
from the contact is considerably higher than the con-

A[E, 0> A
1077+

10—]0

10°" : '
1 10 102
E, R/min

Fig. 7. Dependences of Alg  on the dose rate E for the
TIGaS,[YbOsingle crystal at accelerating voltages V, =
(2) 25, (2) 30, (3) 35, (4) 40, (5) 45, and (6) 50 keV.
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centration of carriers generated under exposure to X
rays. In other words, the dark conductivity o, in rela
tionship (1) increases as a result of the injection and,
hence, the x-ray conductivity coefficient K, decreases.
From acomparison of Figs. 3 and 4, we can seethat, as
the accelerating voltage V; increases, the x-ray conduc-
tivity coefficient K, decreases at operating voltages
lying in the ohmic portion of the current—voltage char-
acteristic and increases linearly at operating voltagesin
the quadratic portion of the current-voltage characteris-
tic. Figure 5 illustrates these features of the variation in
the x-ray conductivity coefficient K,(V,) for the
TIGaS,[Y blkingle crystal.

From analyzing the current—dose characteristics of
the TIGaS, and TIGaS,LY blkingle crystals (Figs. 6, 7),
it follows that the dependence of the steady-state x-ray
current on the dose rate can be adequately described by
apower law:

Alg o = lg—1,0E". (2)

The exponent a is plotted in Fig. 8 as a function of
the effective x-ray hardness V, for the TIGaS, and
TIGaS,LY blsingle crystals. It follows from Fig. 8 that,
upon partial substitution of ytterbium for gallium in the
TIGaS, single crystals, the current—dose characteristics
tend to linearity (a = 1) at low dose rates of soft x rays
(at low voltages V,). At relatively high dose rates of
hard x rays (at high voltages V,), the exponent a tends
to 0.5 for undoped and ytterbium-doped TIGaS, single
crystals.

2.0

Fig. 8. Dependencesa(Vy) for (1) TIGaS, and (2) TIGaS,LY b
single crystals.
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Abstract—The electronic states of silicon with a periodic array of spherica germanium clusters are studied
within the pseudopotential approach. The effects of quantum confinement in the energies and wave functions
of the localized cluster states are analyzed. It is demonstrated that clusters up to 2.4 nm in size produce one
localized s state whose energy monotonically shifts deep into the silicon band gap as the cluster size increases.
The wave function of the cluster level corresponds to the single-valley approximation of the effective-mass
method. In the approximation of an abruptly discontinuous potential at the heterointerface, the quantities cal-
culated using the effective-mass method for clusters containing more than 200 Ge atoms are close to those
obtained by the pseudopotential method. For smaller clusters, it is necessary to take into account the smooth
potential at the interface. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Silicon structures with germanium quantum dots
that self-assemble during molecular-beam epitaxial
growth have attracted particular research attention as
promising materials for use in microelectronics and
optoelectronics [1]. Dense arrays of ultrasmall germa-
nium clusters that are characterized by a high photolu-
minescence intensity at room temperature and, hence,
can be used for lasing are of special interest [2, 3]. Ina
recent work [4], nearly spherical germanium islands
lessthan 10 nmin size on silicon oxide films were pre-
pared by low-temperature synthesis. These quantum
dots are intermediate in terms of their characteristics
between point defects (or small-sized aggregates of
defects) and large-sized clusters (crystal fragments)
with bulk properties. In order to describe adequately the
electronic states of ultrasmall clusters, it is necessary to
elaborate appropriate models whose parameters,
depending on the number of atoms in clusters, would
gradualy transform from atomic parameters of deep-
lying levels to band parameters of the envelope wave
function method.

A reliable basisfor the description and devel opment
of correct models for cluster materials can be gained
from fundamental methods accounting for the actual
microscopic potential in the structure asawhole. These
methods, as applied to cluster materials, make it possi-
bleto determineall of the most important parameters of
the electronic and crystal structures of a particular
material and to reveal regularities in their variation as
the cluster size changes. A number of regularities, for
example, pinning of Schottky barriers by metallic clus-

ters, have been revealed for clusters containing only a
few hundred atoms [5]. Such a situation occurs in the
case where the states of adefect correspond to strongly
localized wave functions. In Si/Ge strained structures,
this condition is satisfied for hole states owing to the
large values of the valence-band discontinuity and the
effective mass of the holes.

In thiswork, we investigated the specific features of
the electronic structure of silicon with dense periodic
arrays of ultrasmall spherical germanium clusters. The
electronic states were calculated using the pseudopo-
tential method, as was done in our previous study [6].
However, in the present work, we considered clusters
containing a substantially larger number of germanium
atoms as compared to that of the clusters studied in [6].
This enabled us to analyze the quantum confinement
effects more thoroughly and to determine the range of
applicability of the standard effective-mass method
within the approximation of an abruptly discontinuous
potential at the cluster—matrix heterointerface.

2. COMPUTATIONAL TECHNIQUE

The electronic states of silicon with cluster defects
composed of germanium atoms were calculated using
two methods, namely, the model pseudopotential
method and the method of a (10 x 10 x 10) extended
unit cell. The local pseudopotentials of silicon and ger-
manium ions were chosen in the form of a parabolic
function that has an effective depth V, = V(0) inside a
sphere of radius R,, and continuously transforms into
the Coulomb potential outside this sphere. The poten-
tial of valence el ectrons was taken into account through
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r L X A(0, 0, 3/4)
M1y S 126 (-12.4) Ly, -102(-9.3) | Xy, 83 Ay, ~10.13
Ge ~12.1(-12.6) ~10.1 (-10.6) -83
. S 0.00 Ly, —72(-68) |Xyy —30(=29) |Ay -6.17
Ge 0.00 —7.0(=7.7) 2.8
M s S 3.36(3.37) |Lg, 12(-12) | X 135 As, —2.75
Ge 3.25(3.2) ~1.1(-1.4) 1.23
e S 426(42) | Ly 2.23(2.10) Ay 1.26 (1.30)
Ge 1.06 (1.0) 0.90 (0.84)

Note: The experimental values of the corresponding quantities[7] are given in parentheses. The spin-split levels are averaged.

the screening of the pseudopotentials of theions by the
permittivity function with corrections for exchange
interaction and correlation in the Hubbard-Sham
approximation. The crystal potential wasrepresented as
a superposition of the pseudopotentials of individual
atoms. The band spectrum of an ideal crystal was cal-
culated using the Ldwdin method in the basis set con-
sisting of plane waves (approximately 65 waves were
exactly taken into account, and approximately 100
waves were included in terms of perturbation theory).
The parameters of the pseudopotentials were deter-
mined by fitting the band spectra to the energies of the
optical transitions in idea crystals. The parameters of
the pseudopotentials (in atomic unitsa =m,=c=1) are
as follows: Vy(Si) = —1.83, R(Si) = 3.41, Vy(Ge) =
-2.01, and R(Ge) = 3.18.

The calculated band energies of the silicon and ger-
manium ideal crystals at symmetric points of the Bril-
louin zone are listed in the table. The minimum of the
conduction band for the silicon crystal islocated on the
line A with wave vector k = 21va(0, 0, 3/4) (a=5.43 A).
To this minimum there corresponds the indirect band
93P Eg ind(DicT 25v) = 1.26 €V. The irreducible repre-

sentations of the space group OZ are given in the nota-

tion proposed by Bouckaert et al. [8]. A comparison
shows that the band energies of the silicon and germa-
nium crystals are in good agreement with experimental
data on the optical and photoemission spectra of these
materials.

We considered spherical germanium clusters con-
taining up to 329 germanium atoms located in sequen-
tial coordination spheres with a maximum radiusr =

a./18/2 = 1.2 nm. The levels of the clusters were iden-
tified with the states of the superlattice with awave vec-
tor equal to zero. The wave functions were determined
inthe basis set consisting of symmetrized combinations
of Bloch functions for 15 lower bands of the silicon
ideal crystal. Since the lattice constants of the silicon
and germanium crystals differ from each other, the ger-
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manium clusters are in a strained state. Taking into
account that the strain that arose in ultrasmall germa-
nium clusters was close to a uniform strain, the germa-
nium atoms were located at sites of the ideal lattice of
the silicon crystal. This corresponds to uniform com-
pression of the clusters. The potential of the Gegy het-
erostructural defect was assumed to be equal to the dif-
ference between the pseudopotentials of the germa-
nium and siliconions AV = Vg, — Vg, which is screened
by the Thomas—Fermi function with corrections for
exchange interaction [5]. The density of the electron
gas was taken equal to that in the silicon ideal crystal.
Owing to the compensation for the Coulomb tails of the
potentials of the Si** and Ge*™ ions, the potential AV
was localized inside the sphere with a model radius
R.(Si) and had an amplitude that was one order of mag-
nitude smaller than the amplitude of the pseudopoten-
tial of silicon. The relatively weak potential of the Geg
singledefect produced only aresonant state near the top
of the silicon valence band.

3. RESULTS OF THE CALCULATIONS
WITHIN THE PSEUDOPOTENTIAL APPROACH

For all the germanium clusters under consideration,
one deep-lying level that is completely filled with elec-
trons and has symmetry I ;5 is displaced by the pertur-
bation potential into the silicon band gap. This state
arises asaresult of the interaction between the resonant
states of the Gey single heterostructural defects. The
energy of the cluster level E, which is reckoned from
the top of the valence band of the silicon ideal crystal,
increases monotonically as the number of atoms Ny in
the cluster increases (Fig. 1). The germanium cluster
produces asubstantial effect on the statesin the vicinity
of the top of the silicon valence band but has virtualy
no effect on the states of the conduction band edge.
Thisis associated with the fact that the strained germa-
nium clusters serve as sufficiently deep quantum wells
for holes (AE, ~ 0.8 eV) and, simultaneously, act aslow
barriersfor electrons (AE, ~ 0.2 €V). However, the con-
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Fig. 1. Dependence of the energy E of the deep-lying level
on the number N of germanium atoms in the cluster.

tribution of the cluster statesincreasesin the upper con-
duction bands of silicon. An increase in the cluster size
leads to a slower change in the position of the corre-
sponding deep-lying level. A comparison between the
results of our previous calculations performedin [6] for
an (8 x 8 x 8) extended unit cell (corresponding to the
surface density of clusters Ny = 2.63 x 102 cm=) and
the data obtained in this work for a (10 x 10 x 10)
extended unit cell (corresponding to the surface density
of clusters Ny = 2.23 x 10'> cm) shows that, when the
germanium fraction in the cluster material increases by
afactor of approximately 2, the deep-lying levelsE, are
shifted deep into the band gap by a nearly identical
energy of ~0.03 eV for clusters consisting of 99, 123,
147, and 159 Ge atoms. These shifts are caused by the
enhancement of the hybridization of the states in the
nearest neighbor clusters as they approach each other.
The same shift for different clusters means that the
effects associated with the delocalization of the func-
tion dueto both the increase in the geometric size of the
clusters and the decrease in the energy of the level
equally affect the hybridization of the states.

We analyzed the wave functions of the deep-lying
levelsfor different cluster sizes. It was revealed that the
wave function is predominantly localized within the
geometric boundaries of the cluster. Figure 2 showsthe
distribution of thetotal charge density for three states of
the deep-lying level for a cluster consisting of 191 Ge
atoms in the cross section of the (10 x 10 x 10)
extended unit cell by the (111) plane. It can be seen
from this figure that, for the most part, the charge den-
sity islocalized within the cluster.

In the expansion of the localized cluster functionsin
the basis set of the symmetrized Bloch functionsfor the
silicon ideal crystal, the largest coefficients C,,, corre-
spond to the states near the top of the valence band.
This isillustrated in Fig. 3 for a cluster consisting of

n RN

Fig. 2. Charge density distribution of the localized state for
silicon with clusters consisting of 191 Ge atoms (Ey =
0.19 eV) in the (111) plane. Triangles and squares indicate
germanium and silicon atoms, respectively. Contour inter-
val of 10 &/Q, where Qg isthe volume of the extended unit
cell.
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Fig. 3. Dependence of the expansion coefficients C,, of the
cluster wave function (Ny = 191, Ey = 0.19 eV) on the
energy of the included states (reckoned from the top of the
valence band of the siliconidea crystal).
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191 Ge atoms. The state located immediately at the top
of the valence band I';5, has the maximum weight
(IC«| ~ 0.7). Other states in the vicinity of the extre-
mum are characterized by considerably smaller
weights. As the sizes of the germanium clusters
decrease, the deep-lying levels shift toward the top of
the valence band and the weight of the I state becomes
closeto unity. Therefore, the wave function of the deep-
lying level corresponds to the single-valey (I'is,)
approximation of the effective-mass method.

4. CALCULATION OF THE CLUSTER STATES
WITHIN THE EFFECTIVE-MASS APPROACH

In order to describe the hole quantum-well statesin
the framework of the envel ope wave function method,
the clusters were represented in the form of spherical
guantum dots, whose radii ry, in accordance with the
approximation of an abruptly discontinuous potential at
the heterointerface, were chosen equal to the mean
radius of the last coordination sphere of the cluster and
the subsequent sphere filled with silicon atoms. The
matching conditions for the envelope wave functions
on aspherelead to the following equation for determin-
ing the energy of the s statesin the germanium quantum

well (W): krycot(kry) = 1 — %‘Wa + Arg), where k =
b

(2m,E)Y?/h is the wave vector in the quantum well and
A =[2my(AE, — E)]¥Y?/h isthe damping decrement in the
silicon barrier (b). The radial part R(r) of the envelope
wave function has the form

(Csin(kr)/r, r<ry
R(r) = 0.
[psn(krd)exp[)\(rc,—r)],

where C is the normalization factor. In this case, we
used the calculated effective masses (averaged over
directions) of heavy holes m,(Si) = 0.45 and m,(Ge) =
0.35 (expressed in terms of a free electron mass). The
valence-band discontinuity AE, = 0.63 eV was deter-
mined as the difference between the energies at the top
of the valence band of the strained germanium crystal
and the unstrained silicon crystal. The inclusion of the
strain in the calculation leads to aradical changein the
mutual arrangement of the band edges of these two
materials. When the strain is disregarded, the germa-
nium guantum dot acts as a quantum barrier for holes,
whereas the surrounding silicon matrix serves as a
quantum well. The calculated energies of the deep-
lying level E, are presented in Fig. 4. It can be seen
from this figure that, as the cluster size increases, the
values obtained using the effective-mass method rap-
idly approach the data calculated by the pseudopoten-
tial method. For clustersin which the number of atoms
exceeds 200 and the radius is larger than ~2 nm, the
energies of the deep-lying level E, calculated by the
two methods almost coincide with each other. This

r>r
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Fig. 4. Dependence of the energy of the deep-lying level on
the cluster radius r according to the calculations per-
formed by the pseudopotential method (points) and the
effective-mass method (solid line).

Fig. 5. Model radial part R(r) (solid line) of the envelope
wave function for a quantum dot inside the silicon crystal
and the function (pd/pSi)l’2 (points) calculated using the
pseudopotential method.

rather rapid convergence of the results is associated
with the strong localization of the wave function of the
deep-lying level due to the large values of the valence-
band discontinuity and the effective mass of the holes.
The observed nonmonotonic dependence of the energy
of the deep-lying level on the cluster radius (calculated
by the pseudopotential method) is explained by the
nonmonotonic change in the number of atoms in the
sequential coordination spheres. Figure 5 shows the
model radial function R(r) and the corresponding func-
tion (py/pg)Y? calculated using the pseudopotential
method for a cluster consisting of 191 Ge atoms on a
uniform grid of points inside a sphere with a volume
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equal to the volume of the (10 x 10 x 10) extended unit
cell. Here, py and pg are the total densities p(r) =

|Wr.(N)] ? for three degenerate states of the cluster level

with energy E4 and the top of the valence band of the
silicon ideal crystal, respectively. For convenience of
comparison, the radial function R(r) is multiplied by a
factor that brings the value of thisfunction at the center
of the cluster into coincidence with the corresponding
value of the function (py/pg)¥2. Close agreement
between the results obtained by the two methods dem-
onstrates the validity of the single-valley model of the
effective-mass method for calculating the cluster states.
The discrepancy observed outside the cluster is associ-
ated with the fact that the tails of the functions of the
nearest neighbor clusters overlap.

However, the energy levels calculated by the effec-
tive-mass method for clusters containing less than
150 atoms are considerably shallower than those
obtained from the exact calculation. This can be
explained by two main factors. First, the actual poten-
tial, which is smooth in the vicinity of the heterointer-
face, differs from the discontinuous potential used in
the model calculation. Second, since the states of the
band spectrum of bulk germanium are still not formed
in clusters containing a small number of atoms, the use
of the effective-mass method with band parameters of
the crystal for the calculation of these states is not jus-
tified.

5. CONCLUSIONS

Thus, it was demonstrated that, as the size of ultras-
mall spherical germanium clusters increases, the hole
guantum-well level monotonically shifts deep into the
silicon band gap. This should lead to ared shift in the
edge of the impurity absorption due to optical transi-
tions from localized levels of the germanium cluster to
thelower conduction band of the silicon matrix [6]. The
wave function of the cluster level corresponds to the
single-valley approximation of the effective-mass
method. This makes it possible to use the effective-
mass method for calculating the electronic states of
large-sized germanium clusters of arbitrary shape. In
the approximation with an abruptly discontinuous
potential at the cluster—matrix heterointerface, the
guantities calculated by the effective-mass method for
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clusters larger than ~2 nm in size are close to those
obtained by the pseudopotential method. For smaller
sized clusters, it is necessary to take into account the
smooth potential at the interface and to elaborate new
correct modelsin terms of atomic parameters.
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Abstract—The effect of a magnetic field on the photocurrent 1, in Si and GaAs solar cellsis investigated. It
is shown that the observed change in the photocurrent |, of the solar cells in response to a magnetic field can
be caused by adecreasein the diffusion length of excitons L. A simplified model of the photomagnetic exper-
iment is proposed to estimate the diffusion length of excitons L, and the contribution made by excitons to the
photocurrent of the solar cells. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Research into semiconductor solar cells has demon-
strated that excitons can make a significant contribution
to the photocurrent of solar cells [1-3]. In particular,
Corkish et al. [4] revealed arelatively high density of
excitonsin silicon at room temperature. In this respect,
excitons should be taken into account in the theories
describing diodes and solar cells. Although excitons are
neutral particles, they can make a noticeable contribu-
tion to the electric current of devices owing to their dif-
fusion into a junction region in which these particles
can decay into free charge carriers under the action of
thefield. Corkish et al. [4] also developed ageneralized
three-particle theory of charge carrier transfer in semi-
conductors. The results obtained within this theory as
applied to silicon-based devices indicate that the inclu-
sion of excitonsin the theory leads to a decrease in the
dark saturation current and to an increase in the photo-
generated current, because the diffusion length of exci-
tons exceeds the diffusion length of minority carriers.
Moreover, those authors proposed a method for experi-
mental verification of the contribution from excitonsto
the electric current and made estimates of the exciton
parameters by measuring the spectral photoresponse of
solar cells.

Itisobviousthat correct estimate of the contribution
made by excitons to the efficiency of a solar cell
requires experimental data on the lifetime and the dif-
fusion length of excitons in different semiconductor
materials. The particular interest expressed by
researchers in these characteristics stems from the pos-
sibility of producing an exciton condensate in semicon-
ductors, because both the lifetime and the diffusion

length of excitons are important parameters that deter-
mine the conditions providing the formation of an exci-
ton condensate in solids.

As arule, these parameters can be estimated from
the results of optical measurements of semiconductor
samples with alow density of impurities. Semiconduc-
tor solar cellsare characterized by arelatively high den-
sity of shallow impurities. However, to the best of our
knowledge, there are no experimental datain the litera-
ture on the lifetime and the diffusion length of excitons
that could be obtained by optical methods for such
structures.

Itisknown that an exciton has a zero electric charge.
Hence, the lifetime and the diffusion length of excitons
cannot be directly determined from electrical measure-
ments. Nonetheless, the possibility exists of estimating
these characteristics from the photoel ectric parameters
of solar cellsand other semiconductor devices (see[4]).

In this work, we proposed a possible method for
estimating the diffusion length of excitonsin semicon-
ductors. It iswell known that, when excitons reach ap—
n junction region, they decay into free charge carriers
and make a contribution to the photocurrent |,

In a magnetic field, the energy of formation of an
exciton changes insignificantly. However, the magnetic
field can lead to a substantial decrease in the lifetime
and the diffusion length of the excitons. In the case
where the diffusion length considerably decreases in
response to a magnetic field, this effect opens up new
possibilities for correctly determining the diffusion
length of excitonsin semiconductors.

1063-7834/05/4711-2025$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Dependences of the photocurrent on the light inten-
sity upon illumination of GaAs solar cells with (a) shallow
and (b) deep p—njunctions.

2. SSIMPLIFIED MODEL
OF THE EXPERIMENT

Let us consider a simplified model of the experi-
ment. It isassumed that, inamagneticfield, all excitons
decay into free charge carriers and that the photocurrent
lon Passing through a p—n junction is determined only
by the lifetime and the diffusion length of free charge
carriers, i.e., electronsand holes. It should be noted that
the above assumption is a rather rough approximation.
The assumption that the diffusion length of excitons
should decrease in response to a magnetic field would
be more realistic. However, the main objective of the
present work isto demonstrate that the diffusion length
of excitons L, in semiconductors can, in principle, be
determined experimentally.

We also assume that excitons are generated only at
the surface of a semiconductor (this can be easily
achieved by appropriately choosing the wavelength of
photons to be used in illumination).

It is easy to show that, in the stationary case, the
change in the photocurrent after the magnetic field is
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switched on can be adequately described by the rela
tionship

Al = [Iph_lph(H)]

1
0 Nexc(o)[exp(_l- pn/ L@(c) - exp(_l—pn/ Le, h)] . ( )
As follows from relationship (1), the change in the

photocurrent Al depends primarily on (i) the ratio
between the diffusion length of charge carriers L, ,, and
the diffusion length of excitonsL,, (ii) the depth of the
p—n junction L,,, and (iii) the exciton density N, near
the surface of the semiconductor. The photocurrent 1,
should remain unchanged at L, = L, 1, should increase
at Le < L, and should decrease at Lg, > L 1. It can
also be seen from relationship (1) that the diffusion
length of excitons can be determined more precisely
from the experiments with samples characterized by
different depths of the p—n junctions.

Of course, our assumption that the diffusion length
of excitons drastically decreases in response to a mag-
netic field significantly simplifies the model of the
experiment. However, as was already mentioned, the
purpose of thiswork isto demonstrate that it is possi-
ble, in principle, to determine experimentally the diffu-
sion length of excitons.

3. EXPERIMENTAL TECHNIQUE
AND RESULTS

The experiments were performed using Si- and
GaAs-based solar cells (with different areas) in amag-
netic field of 0.55 T [5]. The solar cellswere exposed to
light from an incandescent lamp and a semiconductor
laser (1 mW, A =0.63-0.68 um). It should be noted that
the photocurrent in the experiments with the semicon-
ductor laser was of the order of 1 pA because of the
small exposure area (the diameter of the laser beam was
approximately 3 mm). Moreover, the design of the solar
cells corresponded to the solar spectrum.

Figure 1 shows the dependences of the photocurrent
on the light intensity upon exposure of the GaAs solar
cells (Fig. 1a, sample 1 (GaAs) with an efficiency of
23%; Fig. 1b, sample 2 (GaAs) with an efficiency of
18%) to light from a semiconductor laser. The light
intensity was controlled by varying the voltage applied
to the laser in the range from 2.5t0 4.5V, in which the
light intensity depends linearly on the applied voltage.
The diffusion length of charge carriers in the base
region of the solar cell was approximately equal to 3—
4 um, and the depth of the p—n junction in the heavily
doped surface region was approximately 1 um (accord-
ing to the data sheet for the solar cells).

The results of the measurements demonstrated that,
at room temperature, the change in the photocurrent
Al = [l — I 5(H)] < 0 amounts to 6-8%. Consequently,
the inequality Lec > Ly ~1 um holds for the surface
region of the solar cell and the contribution made by the
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excitons reaches 6-8%. The photocurrent I, increases
linearly with anincreaseinthelight intensity. At liquid-
nitrogen temperature, the contribution of the excitons
increasesto 10-15% (Fig. 1b). Therefore, the condition
Lec > Le 1 is satisfied for all the GaAs solar cells under
investigation.

Figure 2 shows the dependences of the photocurrent
on the light intensity upon illumination of silicon solar
cells (Fig. 2a, sample 1 (Si) with an efficiency of 15%;
Fig. 2b, sample 2 (Si) with an efficiency of 11%) in a
magnetic field. The diffusion length of charge carriers
in the base region of the solar cellsliesin the range 60—
80 um. In the heavily doped surface p region, the diffu-
sion length of charge carriers Ly, is approximately
equal to 0.6-0.9 um and the depth of the p— junction
Lpn is approximately 1 um. According to the measure-
ments of the spectral sensitivity, the junction depth of
silicon solar cell 1 with an efficiency of 15% issmaller
than that of silicon solar cell 2 with an efficiency of
11%.

It can be seen from Fig. 2 that the photocurrent of
the silicon solar cells exhibit a behavior different from
that of the GaAs solar cdlls: in the former case, the
change in the photocurrent Al amounts to approxi-
mately 3% at room temperature and has the opposite
sign. In our opinion, the above features of the changein
the photocurrent are associated with the mechanism of
generation and accumulation of photoinduced charge
carriersin these cells.

In the GaAs solar cells, photocarriers are generated
near the surface of the crystal, as was assumed in [3].
However, the generation and drift of photocarriers and
excitonsin silicon occur not only near the surface of the
crystals but also in their bulk, because the quantity 1/a
for A = 0.63-0.68 um is approximately equal to 3 um
[6]. Therefore, the photocurrent in silicon solar cells
with a sufficiently deep p—n junction is predominantly
generated in the diffusion region and the diffusion
length of excitons L in this region should be com-
pared with the diffusion length of charge carriers L, ,,
(Lexc > Le 1) and Al < O (Fig. 2b, silicon solar cell 2).

In the case of shallower p—n junctions, the genera-
tion and accumulation of charge carriers predominantly
occur in the base region of the solar cell. In thisregion,
we have Lo, ~ 6080 um, L. < Ly, and Al > 0
(Fig. 2a, silicon solar cell 1).

When the solar cells were exposed to light from an
incandescent lamp, the light intensity was controlled by
varying the distance between the light source and the
solar cell, because the variation in the filament voltage
of the lamp leads to a change in the optical spectrum.
The experimental results demonstrated that, in this case
also, the photocurrent of the solar cells under investiga-
tion changesin the magnetic field.
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Fig. 2. Dependences of the photocurrent on the light inten-
sity upon illumination of silicon solar cellswith (&) shallow
and (b) deep p—n junctions.

4. DISCUSSION

The model proposed is based on the assumption that
the diffusion length of excitons drastically decreasesin
a magnetic field. First and foremost, we consider the
possibility of excitons decaying in semiconductors due
to the influence of the magnetic field on the exciton
binding energy. The exciton binding energy is equal to
7.5meV in S and 3.2-4.4 meV in GaAs[7]. It iswell
known that the exciton binding energy in semiconduc-
torsdecreasesin responseto amagneticfield[8, 9]. The
change in the exciton binding energy Ag,;,4 due to the
interaction of the spin of charge carriers with the mag-
netic field can be written in the form

A€ping 1GeMpS, (2

where g, isthe electronic Landéfactor (equal to 2.0-2.5
for Si, 1.5-1.8 for Ge, and 0.44 for GaAs), Uz =
58ueV/T is the Bohr magneton, and Sis the magnetic
induction. In our experiments, the magnetic field was
0.55 T. In this case, the change in the exciton binding
energy Ag,,q should be approximately 0.05 meV. It is
clear that this change is too small and, hence, the mag-
netic field used in our experiments cannot substantially
affect the diffusion length of excitons through the bind-
ing energy.
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According to Zeeger [10], the magnetic field brings
about the Zeeman splitting of exciton states and
changes the character of the exciton recombination. It
is known that the interaction of excitons with charged
shallow impuritiesisthe main channel of exciton decay
in semiconductors [11-13]. As follows from the esti-
mates made by Trlifg) [12, 13], the probability of exci-
ton decay in direct-band-gap and indirect-band-gap
semiconductors through this channel is five or six
orders of magnitude higher than that through the other
recombination channels. The probability of decay P of
an exciton due to the interaction with a shallow impu-
rity is proportional to the impurity density. According
to Singh and Landsberg [11], the probabilities of exci-
ton decay in Si, Ge, and GaP semiconductors are asfol-
lows:

P4 00.48x107°n; s 1,
P 00.17x 10 n; s,
Pep 00.45x 100, s .

Here, n, isthedensity of charged shallow impuritiesin
the crystal.

It is evident that the splitting of exciton statesin the
magnetic field leads to a sharp increase in the probabil-
ity of interaction of excitons with charged shallow
impurities and to a decrease in the exciton diffusion
length. Therefore, the change in the photocurrent Al =
[1pn—1pn(H)] of the solar cellsin our experiments can be
associated with the decrease in the diffusion length of
excitonsin the magnetic field.

Another possible factor that can be responsible for
the observed change in the photocurrent Al = [l,, —
l;n(H)] is the decrease in the diffusion length of free
charge carriers L, .. Asis known, the change in the dif-
fusionlength AL , of free charge carriersin amagnetic
fieldissmall and liesin the range 0.5-1.5%. Hence, the
change in the photocurrent Al for all semiconductor
solar cellsshould be only negativein sign. However, the
change in the photocurrent Al for silicon is positive in
sign; consequently, the reveal ed effect cannot be caused
by the change in the diffusion length AL, ,, of charge
carriers.

The photoelectromagnetic effect cannot manifest
itself in our experiments, because the electromative
force induced in this case is aligned paralel to the sur-
face of the solar cell.

One more possible factor that can affect the photo-
current is associated with the influence of the magnetic
field on the transfer of charge carriersin the solar cells.
In order to check thiseffect, an el ectric current (from an
external power supply) equal to the photocurrent
induced under exposure to light was passed through the
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sample in the dark. It turned out that, in this case, the
electric current remained unchanged after the magnetic
field was switched on.

Thus, the observed change in the photocurrent can
be explained by the change in the exciton diffusion
length due to the increase in the probability of exciton
recombination through charged shallow impurities in
response to amagnetic field.

Gorban’ et al. [14] theoretically calculated the pho-
toconversion efficiency for silicon solar cells with a
high efficiency under air-mass-zero conditions [6] with
due regard for the excitonic effects. It was found that
thetotal contribution of all excitonic effects to the pho-
tocurrent in silicon solar cellsleadsto adecreasein the
limiting photoconversion efficiency by 5-10%. Conse-
guently, the photocurrent of the silicon solar cellsin our
case should increase by ~5-10%. In our experiments,
the corresponding increase in the photocurrent reached
3%. Therefore, the results obtained in the present work
arein agreement with the theoretical model proposed in
[14].

5. CONCLUSIONS

Theresults obtained in this study have demonstrated
that the observed change in the photocurrent of semi-
conductor solar cellsin responseto amagnetic field can
be associated with the decrease in the exciton diffusion
length. Thiseffect can be used to estimate both the exci-
ton diffusion length in semiconductors and the contri-
bution made by excitons to the photocurrent of solar
cells.
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Abstract—The electronic structure and plastic properties are investigated for anumber of alkali halide crystals
(CsCl, CsBr, Cdl). First-principles calculations are carried out within the Hartree—Fock and density-functional
theory approximations using several variants of the exchange—correlation functional, including the hybrid
exchange technique. The results obtained with the use of five methods are compared with the available experi-
mental data. The tendencies revealed in the variations in the band parameters and plastic properties of the crys-
tals under investigation are analyzed. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Alkali halide crystals are of particular interest
because they occupy a specia placein solid-state phys-
icsasmodel objects. The most significant feature of the
electronic structure of crystals with a CsCl-type lattice
isthe energy gap Eg, between the occupied states of the
anions and cations, which is considerably narrower
than the “main” band gap Eg,. It is this circumstance
that makes it possible to observe core-valence band
transitions or cross luminescence. A necessary condi-
tion for the excitation of cross luminescence is the
occurrence of a hole in the core band, and the cross
luminescence spectrum itself is determined by radiative
transitions of electrons from the valence band formed
predominantly by the p states of the halide ions to the
highest lying cation core band in which the hole is
located [1]. In order to describe the mechanism of cross
luminescence quantitatively, it is expedient to calculate
the electronic structure of the crystals under investiga-
tion. Owing to the recent progress in the development
of the electronic structure theory, it has become possi-
ble to obtain more reliable information on the band
structure of insulators as compared to previous data
[2 3].

This paper reports on the results of investigations
into the band structure and plastic properties of CsCl,
CsBr, and Csl crystals.

2. COMPUTATIONAL TECHNIQUE

The calculations were performed within the frame-
work of the ab initio linear combinations of atomic
orbitals (LCAO) method in the Hartree-Fock (HF)
approximation with the CRY STAL 98 program package
[4, 5]. We also used the Wien2k program package,
which provides for calculations within the approxima-
tions of augmented plane waves and linearized aug-

mented plane waves (LAPW/APW + 10) on the basis of
the density functional theory (DFT) [6].

One of the advantages of the CRY STAL 98 program
package is that the calculations of the electronic struc-
ture can be carried out both in the framework of the
Hartree—Fock approximation and on the basis of the
density functional theory. Moreover, the program pack-
ageincludesavariant of the hybrid method in which the
DFT exchange and correlation are superposed on the
exact Hartree—Fock solution. In this case, the calcula-
tions are performed using identical basis sets (BS) and
other computational parameters. These features of the
CRYSTAL98 program package are unique because
they provide a means for analyzing different aspects of
the microscopic and macroscopic characteristics of the
objects under investigation in the framework of asingle
program code with the use of severa methods [7].
When describing the electronic subsystem of atoms (or
ions), we used basis sets of Gaussian-type functions
(GTFs) with the appropriate exponents and contraction
coefficients [4]. For heavy ions, we used the effective
core potentials (ECP), because, in this case, the exact
description of the wave functions of the core electrons
can be replaced by the effective potentials in order to
decrease the computational time [8].

The Wien2k computer code employs a mixed
(LAPW/APW + |0) basis set. Here, LAPW isthe main
basis set and APW + |o is the basis set used for calcu-
lating states that are “heavy” for LAPW (for example,
the d and f valence states and the statesin atoms with a
muffin-tin (MT) sphere that is considerably smaller
than the other spheresin the cell). This technique sub-
stantially increases the efficiency of the calculation
(accuracy/computational time) [6].

Crystals of CsCl, CsBr, and Csl have asimple cubic
|attice with space group Pm3m. The primitive cell con-
sists of two atoms, namely, the cesium atom with coor-
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dinates (0,0,0) and the halogen atom with coordinates
(1,1,1)(a/2), where a is the lattice parameter.

In the calculations with the CRY STAL98 program
package for cesium, we used the effective core poten-
tials with a valence basis set of six functions (4, 1, and
1 GTFsfor the 5sp, 6sp, and 7sp shells, respectively)
for all the crystals under investigation. For bromine and
iodine, we also used the effective core potentials and a
basis set with four functions (3 and 1 GTFs for the
valence sp shell and one unoccupied sp shell, respec-
tively). For chlorine, we employed the complete basis
set of 19 functions (8, 6, 3, 1, and 1 GTFs for the 1s,
2sp, 3p, 4sp, and 5sp shells, respectively) [9]. Using
these basis sets, we calculated the total energies and
electronic structures for all three crystals in the frame-
work of several approximations, namely, the Hartree—
Fock approximation, the density functional theory
approximation, and the hybrid scheme with the above
algorithm. In the density functional theory calculations,
we used the local density approximation (LDA) with
the Dirac—Slater exchange [10] and the Vosko—Wilk—
Nusair correlation [11], as well as the gradient approx-
imation to the exchange and correlation in the variant of
the generalized gradient approximation (GGA), which
was proposed by Perdew and Wang (PWGGA) [12].
For the cal culations with the hybrid method, we applied
the gradient correction of the exchange functional pro-
posed by Becke [13] in the framework of the Hartree—
Fock exchange formalism. In this case, the hybrid
exchange potential was used together with the gradient
correction of the correlation potential proposed by Per-
dew and Wang (B3PW). For the density functional the-
ory calculations, the exchange and correlation poten-
tialswere augmented in terms of the auxiliary Gaussian
basis sets [5].

In the calculations with the Wien2k program pack-
age, theradii of the muffin-tin atomic sphereswere cho-
sen to be equal to each other. Their values were deter-
mined from the condition of coincidence of the lattice
constant with the experimental value after minimizing
the total energy. We used the exchange—correlation
potential in the Perdew—Burke—-Ernzerhof generalized
gradient approximation [14] with an energy separation
of —8.16 eV between the ground and valence states.

The bulk elastic modulus was calculated from the
curves describing the dependence of the total energy on
the strain of the unit cell. These curves were obtained
from the calculated dependence E(a), where a is the
calculated lattice constant.

Both the CRY STAL98 and Wien2k program pack-
ages provide a means for determining the elastic con-
stants, which characterize the plastic properties of the
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crystals upon deformation of the unit cell, with the use
of the strain tensor:

) %511 €p 813%
€= Eszl €2 €3 E
€z €3 €331

The éastic constants of the crystals can be deter-
mined by approximating the obtained dependences of
the total energy on the strain.

For a simple cubic lattice, there exist only three
independent components of the tensor of the elastic
constants: C;;, C;,, and C,,. For the cubic crystal sys-
tem, it isconvenient to use acombination of € astic con-
stants, for example, the bulk elastic modulus, which
was calculated for the crystals under consideration
according to the following relationship [5]:

_Cu+2Cy,
B = 3 .

The calculations of the electronic structure and elas-
tic properties were carried out for the equilibrium lat-
tice parameter obtained by minimizing the total energy
for each computational algorithm (see table).

3. RESULTS OF CALCULATIONS

The band structures and model densities of states
(DOS), which were obtained within the framework of
all the computational algorithms used in this work, are
qualitatively identical for all the crystals under investi-
gation.

For brevity, the graphic data on the electronic struc-
ture are presented only for the B3PW hybrid algorithm.
The band structure of the CsCl, CsBr, and Csl crystals
isshownin Fig. 1. The model densities of statesfor the
valence band and quasi-core subbands are presented in
Fig. 2.

Thevalence band isformed by the Cl 3p shell for the
CsCl crystals, the Br 4p shell for the CsBr crystals, and
the | 5p shell for the Csl crystals (i.e., by the p shells of
the halogens). The core band top for all the studied
crystalsisformed by the Cs 5p shell.

The table presents the effective charges determined
from the Mulliken charge density distribution, the inte-
grated data on the band parameters calculated within
different approximations, and the corresponding exper-
imental data obtained using ultraviolet photoelectron
spectroscopy [16].

It can be seen from the table that the Hartree—Fock
calculations, without invoking additional approxima-
tions, lead to a substantial overestimation of the band
gap E, for al three crystals, whereas the calculations
performed within the density functional theory give an
underestimation of this quantity. These tendencies are
characteristic of the methods used for modeling the
electronic structure of wide-band-gap insulators. The
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Equilibrium | attice parameters a (A); bulk elastic moduli B (GPa); band parameters Eq, AE,, and
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Eg (eV); and effective ion

charges Q (e) for CsCl, CsBr, and Csl crystals according to calculations in the framework of the Hartree—Fock and density-

functional theory approximations

Crystal Parameter HF B3PW LDA PWGGA Wien2k Experiment
CsCl a 4.437 4.360 4.180 4.390 4.160 4.120[2]
B 14.6 13.0 23.7 11.6 19.2 19.8[15]
Eq 12.4 6.2 46 4.4 5.5 7.9[16]
AE, 0.93 0.90 1.17 0.85 13 1.8[16]
Eg 55 5.3 4.4 5.4 4.3 4.0[16]
Q s +0.994 +1.054 +1.074 +1.071 - -
Qqr —0.1006 —-0.946 -0.926 -0.929 - -
CsBr a 4713 4.615 4.400 4.619 4.330 4.295[2]
B 129 104 175 10.7 14.5 18.0[15]
Eq 12.3 6.3 45 4.8 4.6 7.3[16]
AE, 1.04 0.99 131 0.93 14 2.1[16]
Eq 6.5 5.9 49 5.8 4.9 45(16]
QCS+ +1.007 +1.035 +1.076 +1.054 - -
QBr, —0.993 —-0.965 —-0.924 —-0.946 - -
Cdl a 5.018 4.840 4.630 4.860 4.610 4567 [2]
B 12.1 9.5 16.3 9.6 13.7 14.4[15]
Eg1 11.6 6.1 4.3 4.7 3.8 6.5[16]
AE, 1.24 1.24 1.58 1.14 2.1 2.4116]
Eg 7.6 6.3 5.3 6.2 45 5.2[16]
QCS+ +1.006 +1.027 +1.064 +1.044 - -
Q- —-0.994 -0.973 -0.936 —-0.956 - -

most realistic band gaps were obtained using the B3PW
hybrid functional. This is consistent with the results
obtained for other objects[17, 18].

4. DISCUSSION

The analysis of the data given in the table and the
densities of states presented in Fig. 2 demonstrates that
the results obtained by the methods used in this study
adequately reflect the tendencies revealed in the varia-
tionsin the band parameters of the CsCl, CsBr, and Csl
crystals. Specifically, the band gap Ey, decreases, the
valence band width AE, increases, the width of the sec-
ond energy gap of the crystal Ey, increases, and the core
band width ACs 5p decreases.

The characteristic variation in the valence band
width AE, in the series of crystals under consideration
is associated with the increase in the degree of overlap
of the wave functions of the anions with anincreasein
their ionic radii as the lattice constant increases. The
opposite situation is observed for the cation. In this
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series of compounds, an increase in the lattice constant
leads to a decrease in the core band width ACs 5p due
to the decrease in the degree of overlap of the wave
functions.

The effective charges Q obtained from the Mulliken
charge density distribution indicate that the chemical
bond in these compounds exhibits purely ionic nature
(seetable).

The calculated data on the plastic properties of the
crystals under investigation are important from the
standpoint of the possibility of correctly describing the
macroscopic physical properties from first principles.
Moreover, in this case, the discrepancy between the cal-
culated data and the experimenta values characterizes
the correctness of the basis setsused. Theresults of cal-
culations of the bulk elastic moduli (see table) reflect
well the experimentally observed tendencies in the
variations in the elastic moduli upon changing over
from the CsCl crystalsto the Csl crystals.
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Fig. 1. Band structure of the CsCl, CsBr, and Csl crystals (calculations according to the B3PW hybrid algorithm). The statesin the
ranges of negative and positive energies correspond to the valence and quasi-core bands and the conduction band, respectively.
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Fig. 2. Model densities of states for the valence band and quasi-core subbands of the CsCl, CsBr, and Csl crystals (calculations
according to the B3PW hybrid algorithm). The states in the ranges of negative and positive energies correspond to the valence and
quasi-core bands and the conduction band, respectively.

In general, the results obtained are in satisfactory 5. CONCLUSIONS

agreement with the experimental data. It should be _ _
noted that the “pure” Hartree-Fock calculations, as a The above calculations demonstrated that the transi-

rule, give substantially overestimated band gapsbut are  tions from the Cs 5p band to the valence band corre-
in excellent agreement with the experimental data on  spond to the transparent region of the CsCl, CsBr, and
the total energy of the system. The hybrid algorithm  Csl crystals and initiate cross luminescence in the
leads to more realistic results from the standpoint of the  course of the effective generation of core holes in the
optical experiment. Cs 5p band.
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Abstract—Electrodynamic Green’'sfunctions are used to construct an analytical theory of the Bragg diffraction
of polarized light in photonic crystals having a close-packed structure. For opal-based photonic crystals, the
Bragg diffraction intensity is calculated with alowance for permittivity periodic modulation and for the pres-
ence of an optical crystal boundary and interlayer disordering, which usually appears during sample growth. A
comprehensive study is made of the effect of the structure disorder caused by the random packing of growth
layers on diffraction. For arandom constructed twinned fcc structure, the average structure factor and the scat-
tering (diffraction) cross sections (which are dependent on the linear polarization of the incident and scattered
waves) are calculated. Numerical examples are used to show that the theory devel oped can be applied to analyze
and process experimental diffraction patterns of real photonic crystals having a close-packed structure disor-

dered in one direction. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The diffraction of waves of different physical nature
(x rays, neutrons, electrons) serves as a basis for the
methods of studying the atomic structures of crystals
[1] and disordered solids [2]. However, the Bragg dif-
fraction of waves in periodic structures (crystals)
causes the formation of band gapsin their energy spec-
tra[1, 3]. The main feature of periodic dielectric struc-
tures, which are called photonic crystals, is the pres-
ence of stop bands, i.e., band gaps in an electromag-
netic spectrum for certain directions in a crystal or a
total band gap for all directions [4]. These circum-
stances have attracted particular interest in the creation
and study of photonic crystals, which have band gapsin
various spectral regions, from the microwave [5, 6] to
the visible [6-9] range.

In an x-ray spectrum, stop bands are extremely nar-
row and atotal band gap cannot form, since the permit-
tivity spatial-modulation depth, which specifies the
stop-band width, is ~10-° [3]. As a consequence, x-ray
studies of crystals deal with the angular (directional)
measurement of diffraction patterns[1] rather than with
the spectroscopy of stop bands. Conversely, primary
interest in photonic crystalsis provoked by the presence
of rather wide band gaps in the visible and long-wave-
length regions of an energy spectrum. Such band gaps
are analyzed by spectroscopic methods, predominantly
by reflection and transmission methods (see, e.g., [6-8,
10, 11)).

Studies of the Bragg diffraction of light in photonic
crystals, which began only recently [12-14], have
revealed qualitatively new effects as compared to x-ray

diffraction analysis of atomic crystals. In particular, it
has been demonstrated [14] that Bragg reflections in
visible light not only carry direct information on the
spatial structure of a photonic crystal but also serve as
indicators of the formation of energy stop bandsfor cer-
tain directions in the crystal. Therefore, a diffraction
experiment allows oneto empirically distinguish Bragg
diffraction channels responsible for the formation of
certain stop bands. Hence, it becomesimportant to ana-
lyze the main specific features of the diffraction of light
inarea photonic crystal, which are affected by refrac-
tion of light, structure disordering, etc.

The purpose of this work is to develop a theory of
the Bragg diffraction of visible light for real photonic
crystals and to calculate observable quantities of prac-
tical importance. The theory isformulated in an analyt-
ical form and is based on electrodynamic Green’s func-
tions; the effects of refraction of light by a crysta
boundary and diffraction of light by Bragg planesin the
crystal are separated. Using photonic crystals based on
opals, we aso consider the effect of growth interlayer
disorder on Bragg diffraction. The article consists of
the following sections. In Section 2, we consider the
general formulation of the problem. In Section 3, we
calculate the diffraction intensity of linearly polarized
waves in a photonic crystal. The structure factor is ana-
lyzed for individual layers and fcc lattices in Section 4
and for random layer packing in Section 5.

2. GENERAL RELATIONSHIPS

The permittivity of anideal photonic crystal istaken
to be

1063-7834/05/4711-2035$26.00 © 2005 Pleiades Publishing, Inc.
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e(r) = g +Ag(r). (D)

Here, the background constant

£ = \llfdr % (r) @)

is obtained by averaging over the crystal volume V. The
contribution Ag(r) = Ag(r + &) isperiodic with periods
equal to the vectors &; of the basic crystal lattice trans-

lations and is responsible for the processes of Bragg
diffraction. It can be expanded in a Fourier series,

Ag(r) = zAsbeibD,
b(#0)

©)
Ag, = Vioj'dr Ee_'bDAs(r) = Ag¥,,

where v isthe unit cell volume, b isareciprocal lattice
vector, and Ag,, _, = 0. The kinematics of diffraction is
specified by the orientation of the crystallographic
(Bragg) planes, each of which is perpendicular to the
corresponding vector b. Equation (3) implies the pres-
ence of long-range order and becomesinvalid for adis-
ordered crystal; however, the short-range order and spe-
cific featuresrelated to it remain the same, which finds
application in the structural analysis of noncrystalline
solids[2].

Let the half-space z > 0 be occupied by a photonic
crystal whose dielectric function is described by Eq. (1)
with the background constant expressed by Eq. (2). In
a zero approximation (Ae = 0), we only take into
account the background permittivity using a function
€%(2) thatisequal to g, if z<0andto g, if z>0. A jump
in the background permittivity €°(z) defines the optical
boundary of the photonic crystal z= 0, which provides
amirror reflection of light irrespective of the orienta-
tion of the crystallographic planes. For monochromatic
light (with frequency w), the electric field EC, the tensor

Green'sfunction G° of the zero approximation, and the
total field E are defined by the following electrody-
namic equations:

[curlcurl —k2e°(2)T1{ E’(r), G°(r, r'), E(r)}

. ) @
= {0, 13(r —r"), kgAe(r)E(r)} .

Here, k, = wic, cisthe velocity of light invacuum, T is

the unit matrix with the elements | ;5 = 44, 0 and [3 are

Cartesian indices, d, is the Kronecker delta, and

Ag(r) = 0 outside the crystal. Solutionsto Eq. (4), E%(r)

and G° (r, r"), satisfying the Maxwell boundary condi-
tionsin zat the z= 0 plane are given in Appendix I.
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When a perturbation Ag(r) exists, the total electric
field outside the photonic crystal (at z< 0) is expressed
by the relation

Eq(r) = Eq(r)

= 5
+k§ZIdr‘ [Gap (1, r')Ae(r)Ep(r'); ©)
B

hereafter, atilde labelsthefield in the crystal (at Z > 0).
The total field taking into account the diffraction of
light by the Ag(r) relief is determined from the integral
equation

Eq(r) = Ep(r)

) . ~0 , o (6)

+ kOZIdr [Gey(r, r')Ag(r)Ey(r').
Yy

When solving the set of equations (4)—(6), we
assume that a wave with linear polarization o (p or s),

an amplitude E.°, and awave vector
K=x+ek, &=./¢kysind(ecosd+esing),

k, = ./e.k,c0S0

is incident from the medium occupying the half-space
z<0onthecrystal surfacez=0at anangle 6 (Fig. 1a).
Hereafter, e, are the Cartesian unit vectors of the “opti-
cal” coordinate system, 8 isthe polar angle, and ¢ isthe
azimuthal angle. At z < 0, the first of Egs. (4) has the
solution

(7)

inc_o

Eq(r) = Eq e (K)exp(ik [p)

©®
x [exp(ik,2) + o (K) exp(-ik,2)]

for the tangential (o = x, y) field components and
EJ(r) = (i/k3)d(x - E9)/dz for the normal component,

wherer = (p, 2), with p = (X, y). The polarization unit
vectors of field (8) can be expressed as

e’(K) = (e,cosd +e,sin¢)cosb —e,sinb, ©
e’(K) = —esing +e,cosd
for the p- and s-polarized waves, respectively. The coef-
ficients of reflection rg of thesewavesfor the boundary
z=0havetheform
0 _ Slk—Sokl 0 _ kl—k
g kteky Sk +K (10)

wherek(K) = JJeoki —k”. Inthe crystal (z> 0), the tan-
gential components of the external field in Eq. (6) are

Ea(r) = ECtO(k)e0(Q)exp(iQ ), (1)
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where tg =1+ rg . The relation between the vectors

Q = k+ek, k= [ekocosd (12)

and K defined in Eq. (7) is determined from the law of
refraction of light ,/e;Sin@ = ,/g,sin® = k/k, (the con-
dition of conservation of vector x) at the boundary z =
0 (Fig. 1a). Here, the unit vectors €°(Q) are obtained
from Eqg. (9) through the substitution of 8 — 3. The
wave vectors of the scattered wave Q' inside the crystal
and K' outside it are obtained by substituting ¢ —» ¢,
9 — 1—39',and 8 — 11— 0'into Egs. (7) and (9) for
K and into Eq. (12) for Q, where the angles 9" and ©'
are reckoned from the negative direction of the unit
vector e,. For elastic diffraction, we have |Q'| = |Q] =

Jeoko and [K'| = [K | = . /eko.

3. OBSERVABLE OPTICAL QUANTITIES

The Bragg diffraction of waves is coherent elastic
scattering and manifestsitsalf at wavelengths compara-
ble to the spatial period of a scattering medium. When
an atomic structure is analyzed, the Born approxima-
tion of the theory of diffraction (scattering) is usualy
sufficient [2]. This is also true of opal-like photonic
crystals having asmall optical contrast, |As)e, << 1. Let
us cal cul ate the observabl e characteristics of diffraction
inthe Born approximation (inthelowest order in Ag) by

putting E = Eo(r) = EO(Q)exp(iQ -r)inEgs. (5) and
(6) and using Eq. (11). In this case, E has the same
polarization o asthat of the external field EC. The field

outside the crystal E' = E — E° can be found from
Eqg. (5) using representation (1.1) [see Appendix 1] for

the Green's function G’ (r, r"). Evaluating the integral
with respect to « in representation (1.1) by the method
of stationary phase [15, 16] results in the following
asymptotic expression for the field radiated into the

back hemisphere (z < 0, ./e,kor > 1):

. 3 L K
i /e,y cOSO o ekt

Eu(r) = 21T r

(13)
[l O~
x§ D2, (07,0 «)dr (he(r)e " OER(Q).
3 Dap(0. 0% ) far ae(re ™ L@

For the problem of radiation from the crystal, the tensor
Green'sfunction D° (z Z; ) inamixed (z, k) represen-
tation is given by Egs. (1.3), (1.4), (1.6), and (1.7). The
vector k' is expressed by Eqg. (7) through the angles ©'
and ¢' of the vector K' directed to the point of observa-
tionr = (p, 2 = r[(e,cosd’ + g,sind’)sinG’ — e,coso]

PHYSICS OF THE SOLID STATE Vol. 47 No. 11

2037
(a)
K\° o
Kl
&
Z=0 80
b
\I [001] ®)
[111]
y
X
(111) [010]
[100] [011]

Y4
[101] \
[112

\Q
]

Fig. 1. Geometry of the problem. (a) Wave transformation
during diffraction of light in a crystal. The wave vector
K (K" of the incident (secondary) wave corresponds to the
vector Q(Q') inside the crystal; Q + b = Q', where b isa
reciprocal-lattice vector. (b) Main directions and planes
used to analyze the diffraction of light in an opal fcc lattice.

outside the crystal. In Eqg. (13), we introduced a light
scattering vector in the crystal,

q=Q-Q. (14)

Using Eg. (12) for the wave vectors Q and Q', we find
the dimensionless quantities

{, = —%

Kon/€o

in the optical coordinate system with the g, unit vec-
tors:

o} (15)

(, = sind'cos¢' — sind cos
{, = sind'sin¢g'—sindsing,
¢, = —(cosd' + cosd).

(16)

2005



2038

Let us calculate the Poynting vector Si° =
2
c. /&5 |EL| /81 of incident wave (8) with polarization &

and the Poynting vector S, = c¢,/&;|E}| /8T of scat-
tered wave (13) with polarization ¢' outside the crystal
(at z—» —0). Their ratio S, /S, specifies the scatter-
ing (diffraction) cross section

4t (k)|
(17)

dW(oc—a') _
dQ'

4
0
1617

J’dr e(r)e’
\

X W (Q, Q) THS(x)|

in al channels (K, o) — (K', ¢") controlled by the
polarizations of the incident (o) and diffracted (o")
waves.

In Eq. (17), dQ' = sinB'd0'd¢’ is an element of the
solid angle and the quantities

We; = cos’(¢' ),
pp = COS 0'[cosd cos(¢'—¢)—sindtand]", (18)

Wy, = cos e'sin’ (¢’ —¢),

Wy = coS9sin’ (0" —¢)
are calculated using functions (1.4), (1.6), and (1.7).
According to Egs. (17) and (18), when light is dif-

fracted in the plane of incidence on the crystal (¢' = ¢,
Wy, = W, = 0), depolarization is absent.

According to Eqg. (17), the basic specific features of
diffraction depend on the quantity

2

= voV|Asq|ZS(q),

w

(19)

Idr Me(r)e’ "
\Y

which includes the structure factor
2

_lq DRn — l _lq [(Rn_Rn')
e = NZe , (20
n,n

q) =

1
W2
where N is the number of unit cellsin the crystal vol-
umeV = vgN.

The formfactor

Ag, = -Vl—ojdr Me(r)e’®” (21)
Vo

is obtained upon integration over the Wigner—Seitz cell
volume v, centered at R, = 0. For an fcc lattice con-
structed from close-packed dielectric balls of the same
size, from EqQ. (2) wehaveegy, = ¢, f + (1 —f), whereg;
and ¢,) are the dielectric constants inside and outside
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the balls, respectively, and f = T./2/6 = 0.74 is the
packing factor.

The angular and frequency dependences of the scat-
tering intensity are defined by quantities (17). We use
them to discussthe Bragg diffraction of light in the case
of randomly packed growth layers, which is typical of
self-organizing systems, such as synthetic opals [12—
14, 17] and the photonic crystals related to them [18].
When opals grow, monodisperse a-SiO, balls of a sub-
micron diameter a form close-packed (hexagonal) lay-
ers. Such two-dimensional crystals form close packing
in the growth direction of a three-dimensional struc-
ture. The hexagonal layers can occupy the A, B, or C
positions known for fcc lattices [1]. In the close-packed
structure obtained, the positions of adjacent layers are
different and the shift of alayer from one position (e.g.,
A) to the next position B or Cis controlled by atranda-
tion vector u, or u,,, respectively. Intheideal fcclattice,
only one of these vectors is realized, whereas in rea
opal crystalsthe choice of thetrandlation vector u, or u;,
isaprobabilistic event.

The random character of alternation of the A, B, and
C layersimplies that observable quantities (17) should
be averaged and, in the case of close packing of identi-
cal bals, only structure factor (20) is averaged. In
Eq. (20), we divide the summation over sitesn = (n, |)
intointralayer (over ny) and interlayer (over |) summation
and use the representation Ry_, = Ry o + Ro o,
where I(l") is the layer number. The random vector
Ry, | =1 can take two values, u, or u,. In the case of ran-

dom packing, the averaging of structure factor (20)
gives

L .
[S(q)0= §(a) (By(a)0= Sq|(q)<% S e’ ER> (22)
LI'=1
Here, S(q) is a sum of type (20) relating to a regular

layer and L is the number of layers along the structure
growth axis.

4. DIFFRACTION BY A REGULAR STRUCTURE

Our next problem is to calculate the quantities that
are observed during the diffraction of light in opalswith
allowance for disordering and to analyze them as
applied to the experimental data from [12-14]. First,
we discuss the Bragg diffraction of light by two possi-
ble regular fcc lattices, namely, ...ABCABC... and
...ACBACB..., which arecalled fcc-1 and fcc-11 inwhat
follows. The fcc-1 lattice is taken to be basic, and all
crystallographic planes and directions shown in Fig. 1b
are referenced to it. The fcc-1 and fecc-11 lattices have a
common hexagonal layer and are constructed by the
trangdlation of thislayer by avector a;, which isequal to
u, or uy,, respectively.

Close-packed (hexagonal) layers serve as building
blocks for constructing both ideal fcc lattices and ran-
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dom close-packed structures. Therefore, we first con-
sider the structure factor §(q), involved in Eq. (22), for
a two-dimensional lattice specified by two intralayer
basis vectors &; (withi =1, 2). Summation over layer
sitesnin Eq. (20) gives

sin’(N,q [&/2)

, (23
sin’(q [&/2) ©3

1

S =[] s =[]x

i=1,2 i=1,2

where N; is the number of sitesin the & direction. At

N; — oo, each multiplier in Eq. (23) transformsinto a
2re-periodic delta function

S(a) = 2ny &g (8 -2m), 24

where m areintegers. For aregular packing of hexago-
nal layers (fcc structure), layer-by-layer summation
over | in EQ. (22) gives

1sin(Lq [By/2)

S =1 sin’(q [Bs/2)

(25

mg

where m; are integers.

In the case of athree-dimensional ideal lattice, the
maximaof structure factor (22) correspond to the zeros
of the delta functions entering into Egs. (24) and (25),

i.e., totheLaueequationsq - & =2mm withi=1,2, 3.
These equations are used to make a kinematic analysis

of diffraction processes in the ideal crystal lattice. For
this lattice, we define the reciprocal lattice with basis

vectors b; and expand scattering vector (14) in terms of
this basis. Taking into account the identity (&; - 6,—) =
2mg;, we can verify that the three equations q - & =
2rm, are equivalent to the diffraction conditions

q=bEZmiE6i (26)

or Q' — Q = b, which depend on the set of indices
(my, m,, mg). Interms of the dimensionless quantities of
Eqg. (15) and B = ba/(2m) Eg. (26) takes the form

E=AB = /\Zmiﬁh 27)
where A = M(a./g,), A = 211k, is the light wavelength

in vacuum, and a is the fixed distance between the hex-
agonal-layer sites. At m; = m, = my = O, diffraction is
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absent: Q'=Q (¥' =9, ¢' = ¢), according to Eq. (26).
A set of (my, m,, my) with at least one nonzero index
determines a possible intensity maximum (reflection)
caused by diffraction from a system of crystallographic
planes normal to the vector b given by Eq. (26). It is
important that m are not the (hkl) Miller indices char-
acterizi ngladiffracting plane and the vector b(hkl) nor-
mal to it.” At given values of 9 and ¢, the solutions to
Eqg. (26) or (27) specify the angles ©' and ¢' for the
propagation direction of diffracted light in the crystal.

Due to the constraint || < 2 the quantity A/(a./g,) at

which thisreflection can appear decreaseswith increas-
ing indices (my, my,, M) in Eq. (27).

To comprehensively analyze the kinematics of dif-
fraction of light in opals, it is sufficient to consider two
geometries of light incidence (we call them Aand B). In
geometry A, light isincident in the (111) plane of the
fcclattice; that is, Q || (111) (Fig. 1b). In this geometry,
recently studied experimentally in [12-14], we can
reveal specific features characteristic of the diffraction
of light by layers with a two-dimensional hexagonal
lattice. In geometry B, light is obliquely incident on the
(111) plane. In this geometry, which is used in most
studies dealing with the optics of opals, the diffraction
of light from the one-dimensional lattice formed by the
(111) planes become pronounced.

4.1. Geometry A

Let the wave vector of the incident wave Q || (111)
make an angle @with the [ 112] direction in the fcc lat-
tice (Fig. 1b). By expressing basis vectors (I1.1) [see
Appendix 1] in terms of the optical coordinate system

1 To describe Bragg diffraction in this work, we use the following
coordinate systems: (i) An optical system with unit vectors e, in
terms of which wave vectors (7) and (12) are specified (Fig. 1a).

(i) A crystallographic system with unit vectors X || [100], Y ||

[010], and Z ||[001], with respect to which the Miller indices of
the basic fcc lattice are determined (Fig. 1b). (iii) A system with
X, ¥, and Z unit vectors, in which the contributions from dif-
fraction by hexagona layers and diffraction by their packed
structure are separated using representation (22). Miller indices,
which are used to determine systems of (hkl) crystallographic
planes and the direction of the wave vector Q in the crystd, are
related to the basic fcc lattice; the relation between the indices
(hkl) and the indices {m} involved in Eq. (26) is given by Eq.
(11.4) [see Appendix I1]. For the fcc-11 lattice, which is obtained
by mirror reflection of the basic fcc-I lattice through the (111)
plane, it is convenient to consider Eq. (26) using the coordinate
system whose unit vectors are obtained by inverting the unit vec-

tors X, ¥, and Z. Then, for agiven direction of Q, the parame-
ters{m;} and the Miller indices (hkl) of the planes responsible for

diffraction in the fcc-1 and fcc-11 lattices would be different in
sign.
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Fig. 2. Dependences of the normalized structure factors
5" /L ontheangle @ at Q ||[ 112] for the fec-1 and foc-I1
structures consisting of L hexagonal layers. (a) The values
of (1) S,/L, (2) S/L, and (3) (S, + S )/(2L) at L = 10.
(b) The values of (SID + Sg )/(2L) at L equal to (4) 5and (5)
20. The caculations were performed from Eq. (25) at
aJ?() = 370 nm, which corresponds to the radius a/2 =

135 nm of a-SiO, spheresin an opal with ,[e, = 1.37. The

dependence of the Bragg wavelength A on the ©' angle,
whichisequal to©' =9%"'at ¢' = W2 andto ©' = 5" at ¢' =
3172, is specified by Eq. (29).

with basis vectors e, = Q/Q, we find the vector B in
Eq. (27) to be

p = —ex—j—é[mlsingp+ ECE+ mzsingp—%}
" ezr/z_g[mlcosgp+ T+ mycosFp- gg}

ml + mﬂ
Tea %n?’_ 3 [
Here, a = a/A, where A is the interlayer distance (a =

J3/2 for the fcc lattice). Substituting Eqgs. (16) and
(28) into Eq. (27), we find that the x and z components
of vector eguation (27) are independent of a; that is,
their form is formally identical to that in the case of a
single layer (a — 0). This pair of equationsisinvari-

(28)
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ant with respect to rotations of the vector Q through
angles @ that are multiples of 173 if the indices m; and
m, are properly chosen for each of the equivalent posi-

tions of the hexagonal layer. In the case of Q ||[112]
(p=0), theseequations {, = A(m,—my) and {, = A(m, +
m,)/ /3 with m; = m, = —1 have solutions ¢} = T¥2 and
¢’ = 312. The corresponding condition for Bragg dif-
fraction by the layer is

a./3g

)‘[112] (‘9) = 2
Expression (29) describes the dispersion of light in the
angle 0 < 8' < 172 made in the back hemisphere by the
diffraction direction in the (110) plane with the (111)
plane; here, a./3g,/2 <A < a,/3¢g,.

In order to analyze the diffraction of light by three-
dimensional fcc lattices, we take into account the third
of equations (27), {, = Aa(3mg —m, —my,). With allow-
ancefor Eq. (29) at m; = m, =1, we obtain

3 J3a s
ans = Zsinq)'lyﬁnﬁ:ﬂ

(1+ cosd'). (29)

(30)

For the fcc-I lattice, Eq. (30) has two solutions: 87 =
70.5°at ¢; =1wW2andmy=0and 9, =39° a ¢, =312
and m; = —1. Relation (I1.4) shows that these solutions
correspond to diffraction of light by the (002) and
(111) planes, respectively. At other values of m, it fol-
lows from Eq. (30) that 9' > 1/2; that is, the light is dif-
fracted into the forward hemisphere. Similarly, for the

fce-11 lattice, there exist two solutionsin the back hemi-
sphere; they are mirror-symmetric with respect to the

previous solutions about the (111) plane: 9] = 39° at
¢; =m2andmy=1and 9, =70.5° a ¢, = 3172 and
mg; = 0.

Figure 2 shows the angular dependences of the nor-
malized structure factorsfor the fce-1 and fec-11 lattices
consisting of asmall number L of hexagonal layers. The
guantities S'D ! (q)/L are calculated from Eq. (25) as
functionsof theangle ®' =3' at ¢' =172, i.e., abovethe
(1112) plane, and of theangle®' =—-9" at ¢' = 3172, i.e,,
below the (111) plane. The A(©®") scale corresponds to
Eqg. (29). Asfollowsfrom Fig. 2a, S'D/L IS maximum at
the angles calculated from Eq. (30) (©' = —39° and

70.5°) and SH/L is maximum at ©' = —70.5° and 39°.

Figure 2 also showsthe quantity (S, + S, )/(2L), which
is the form factor of a mixture of the fcc-I and fec-l|
structures having a common growth axis and the same
number of layers L. Asis seen from Fig. 2b, the broad-
ening of all diffraction maxima |A@'| ~ 1/L isrelated to
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asmall number of layersin the fcc structures. Accord-
gL =1atL=1.

ing to Eq. (25), S5
4.2.Geometry B

To consider the case where light is incident at an
angle 9 # 102 to the [111] direction in the plane that
makes an angle @ with the [ 112] direction, we express
quantity (28) in terms of the unit vectors €, =g, €, =

e, and €, = —§,
B = —e;%[m‘lsingw Z:E+ m'zsian_l:E}

+ e;,%3 [m‘l cosBp + I:E +my cosBp— %} (32)

Ot m
+e20(5ml3 2—m,

It follows that diffraction is independent of @at m; =
m, = 0. In this case, a m; > 1, Eq. (27) with B =
-msa e, describes diffraction from a one-dimensional

chain of structureless planes with specular reflection of
light from them (8' = 8 and ¢' = ¢). The Bragg wave-
lengths

(32)

correspond to the period a/a of this chain in ahomoge-
neous medium with dielectric constant €, At m; = 1,
from Eq. (32) we find the long-wavelength limit A(0) =
2a,/2¢,/3 for diffraction by a system of planes with
b ||[111] inthefcc lattice. At m; = 2, we find the upper

boundaries A(0)/m; for higher order diffraction. These
results are identical for the fcc-1 and fcc-1l lattices.
Note that diffraction of the type m; = m, = 0 and

m; = 1 manifestsitself in the spectraof light reflection
(transmission) by the (111) growth plane of opals,
which have been studied in most works. The diffraction
pattern becomes much more complex as the wave-

length decreases when m; # 0 or m, # 0in Eq. (31).

According to Eg. (17), the maximum of the structure
factor specified by the vector b can be observed if the
corresponding quantity |Ag, [? is sufficiently large. The
simplest estimate of the form factor Ag,, can be obtained
from Eqg. (21) in the isotropic approximation, where the
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Fig. 3. Dependence of Aggy/(g; — €g) on X = |q|a/2 as calcu-
lated from Eq. (33) (curve 1) and the function F(x) =

(T /2 )(sinx — xcosx)/x® (curve 2). The computations were
carried out for an fcc lattice (f = 0.74). The (hkl) pointsin
curve 1 correspond to the conditions |q| = |b(hkl)| with
reciprocal lattice vectors b(hkl) related to the (111), (200),
and (220) planes.

polyhedral Wigner-Seitz cell of the fcc lattice is

replaced by a sphere of the same volume (v, = a¥ J2).
Evaluating integral (21) gives

A, = (si—se)[Fm—""]—FDﬂD} (33)

20 [bfﬂﬂ '

Here, F(x) = (T7/2)(sinx — xcosx)/x; f is the packing
factor for balls forming an fcc lattice; and €; and €, are
the permittivities inside and outside the balls, respec-
tively. InFig. 3, curve 1 showsthe normalized form fac-
tor F(x) — F(x/f ¥3) as compared to the form factor F(x)
of an individual ball (Fig. 3, curve 2). The (hkl) points
in curve 1 give the values of Ag,/(g; — &) caculated
from Eqg. (33) at q = b(hkl) for the (111), (200), and
(220) planes. Below, we consider how the specific fea-
tures of the diffraction of light described above for an
fcc lattice are modified when we take into account the
growth disordering of opals.
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Fig. 4. Dependence of the average structure factor on ©' at
Q|[112]. (@) Normalized functions [$-[piven by Eq. (41)
for randomly packed hexagonal layers with various values
of p: (1) 0.65, (2) 0.75, and (3) 0.9. (b) (4) Normalized func-
tion [8;given by Eq. (41) for randomly packed hexagonal
layerswith p = 0.8 and (5) the function (SID + Sg )IL given
by Eq. (25) for a mixture of the fcc-I and fce-1l structures
with L = 10. The calculations were performed at o = ./3/2

with the same parameters as those in Fig. 2. The Bragg
wavelength A isrelated to the angle ©' through Eqg. (29).

5. DIFFRACTION BY RANDOM
CLOSE-PACKED LAYERS

For randomly packed L hexagonal layers, the aver-
age value of the structure factor entering into Eq. (22)
can be written as[19]

[8y(q)0 = Z %l “'D@"qm‘”

l=-L+1

(34)

As noted above, for close-packed hexagona layers,
each subsequent layer is obtained through translation of
the previous layer by the vector u, or u,,. We introduce
a stacking correlation coefficient p, which is equa to
the probability of the vectors of two sequential layer
tranglations being the same. At p = 0, we have a three-
dimensional hexagonal close-packed (hcp) lattice.
Upon tranglation by the vector u,(u,), we have p =1
and the fce-l (fee-11) structure is formed. If 0 < p < 1,
we have a statistical mixture of the fcc-I and fecc-ll
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structures with stacking faults. In the last case, the
matrix

specifies the average value of the phase factor

el = (1/2)e" - M (q) - e, Where e is a matrix
vector whose transposition gives ' = (1, 1); therefore,

e’ - e = 2. Taking into account the fact that, at | > 0,

o = ;eT ™' (q) (e, (36)
from Eq. (34) we obtain
[55(q)0
(37)

[|\/I +(M*)]DD9

I+ZE*L

Summation in this formula to an accuracy of terms of
theorder /L < 1 (L — o) gives

By(a)0 = 3" (T -y "+ (T - W%) 1] e, (39)

where 1 istheunit matrix. Using the elements of matrix

(35), we obtain
[5;(a)d

p(l p)sin’Ay
(1 2p)sm Yo+ p (1 2cos,CosAY + cos AqJ)

where

(39)

Ay = %q Hu—uy), Yo = %q [u, +uy).  (40)

In geometry A, where Q ||[112] and u, , = a(§/a +

2/./3), we can use Egs. (39) and (40) to find the aver-
age structure factor

[5,(q)0

_3 p(1—-p)
2(2p 1)(cos2y, — 1) + p>(2cosy, + 5/2)

(41)

at wavelength (29); here, Y, = 4mtan(9'/2) /(a./3).
Note that, according to this derivation, in Eg. (13) from
[12], which is a particular case of Eqg. (41), the cotan-
gent should be replaced by the tangent.

Structure factor (41) normalized to unity inits max-
imais shown in Fig. 4afor random close-packed (a =

J3/2) layershaving different correlation coefficientsp.
Curves 1-3 show the dependence of structure factor
(41) onangle ®' (whichisequal tod' at ¢' =12 and to

No. 11 2005



ON THE THEORY OF DIFFRACTION OF LIGHT IN PHOTONIC CRYSTALS

—9'at ¢' = 3172) and on wavelength (29). It is seen that,
as p increases in the range p > 0.5, the function (5,0
changes substantialy and, at 1 —p < 1, approaches the
sum of the angular dependences characteristic of the
fcc-1 and fee-ll lattices with limited thicknesses. This
conclusion follows from Fig. 4b, where the normalized
value of [, Icalculated for arandom packing with p =
0.8 (curve 4) is compared with the structure factor

(S'D + SB)/L corresponding to a mixture of the fcc-

and fcc-11 structures with the number of layersL = 10
(Fig. 4b, curve 5). Near maxima, these dependences are
seen to be rather close to each other. If we take into
account the good agreement between the angular
dependence of [$,[with p = 0.8 and experimental data
[12] and the similarity between this dependence and the

angular dependence of (S, + S )/(2L) with L = 10, we
can conclude that the latter dependence also agrees

with experiment. Therefore, the characteristic number
of hexagonal layersin fcc domainsin the opals experi-

mentally studied in[12] is L 010.

Thus, in random close-packed hexagonal layers,
regular regions (domain) ABCABC and ACBACB of fcc
structures alternate with each other. The alternation of
these domains means the formation of atwin structure
[12]. The length of domains forming twins is random
because of random breaks in the regular packing. For
stacking correlation coefficients p close to unity, there
exist domains with a fairly large number of layers L;
these domains can generate specific features character-
istic of fcc latticesin the diffraction patterns. As shown
above, this behavior allows usto use the angular depen-
dences of the diffraction intensity to estimate both the
correlation coefficient p [12] and the characteristic fcc
domain size. Therefore, it seems interesting to theoret-
icaly find the length distribution of fcc domains at a
given p and to calculate the average length and its dis-
persion with allowance for the coexistence of fcc and
hcp domains, stacking faults, etc.

In concluding this section, we note that the effects of
interlayer disordering discussed above will not mani-
fest themselves in the standard geometry of mirror
reflection of light by the (111) planes, that is, for dif-
fractionwith m; = m, =0 at wavelengths (32). Indeed,

H H [ ' -ig[R —ilg [}
inthiscase, wehaveu, =uj, and & = “O=¢ = "

in Eq. (34); that is, the contribution of this diffraction
process to structure factor (34) is independent of ran-
dom layer packing if the layers are equally spaced.
However, the effects of atwin structure should manifest
themselves in nonspecular diffraction processes with

m; Z0or m, #0.

6. CONCLUSIONS
In this work, we have developed a theory of the
Bragg diffraction of linearly polarized light in photonic
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crystals with allowance for its refraction by adielectric
interface and for the effects of interlayer disorderingin
asample. The quantitiesthat can be observed using dif-
fraction (as a function of the scattering direction) and
spectroscopy (as a function of the probing-light fre-
guency) methods have been calculated. The theory can
be applied to analyze the crystal structure of opals and
to refine the quantitative characteristics of the visual-
ized patterns of stop bands in photonic crystals [14].
The results of analyzing the intensities of diffraction
maxima agree well with the diffraction experimental
data from [12], which demonstrate the existence of a
random fcc twin structure in synthetic opals. By com-
paring the theoretic results obtained for two models of
domains having an fcc lattice with the experimental
data from [12], we have estimated the characteristic
domain size aong the sample growth direction. To
devel op the theory, we used the Born approximation for
light scattering; that is, strictly speaking, the theory can
only be applied to describe the effects of simple diffrac-
tion in photonic crystalswith relatively weak permittiv-
ity modulation (such as opals). However, this theory
can be directly generalized using self-consistent solu-
tions to the equations for an electromagnetic field in a
crystal. This generalization is necessary in relatively
rare cases of multiple Bragg diffraction [20] or in the
case of diffraction in photonic crystals with very strong
permittivity modulation.

APPENDIX |
Solution of the Electrodynamic Problem

In the case where the dielectric tensor has the form
£%(z, w)dqp, With the function £9(z, w) being equal to €,
at z<0andto gy at z> 0, the components of the Green's
function that isthe solution to the second of Egs. (4) are
given by the integral Fourier representation

Ggﬁ(r, r'; w)
2 (.2
- J’(grgzexp[ilc [p-p)]D%(2 Z; ¥, ).

Here, r = (p, 2), p = p(e,cos@ + g,SinQ), k = K(e,cosd +
gsing), and

(1.2)
= zTau(d))dSv(Z, Z; K, w)Tpy(9)
u, v

for agiven direction of the wave vector k. The nonzero
elements of the angle ¢ rotation matrix are T,, = T, =
cosd, —T,, = Tx=sin¢, and T,, = 1. Tensor (I.2) hasthe
form
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5 dS,cos’g +db, s’ (o -
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d)?y) sind cos¢ d‘x)zcoscb E

20
b = B(dfx—d;)y)sinq)cosd) de,Sin’0 +dy,cos’d  dy,sing &l (1.3)
O 0 0 . 0 [l
0 d,, cosd d, sind d, O
The components dSB (z, Z; K, w) are obtained from the dfz(z, 2) = — ' {sgn(z—2)exp[iklz—2]]

second of Egs. (4) with the wave vector k = ek (¢ =0)
and with the operator {0/dr} = {ik, 0, d/dz. These
components are separated for indicesx and zin the case
of p polarization and for index y in the case of s polar-
ization. The functions dgl3 (z, 2) at z = 0 satisfy the
Maxwellian boundary conditions for z and can be
expressed in terms of the reflectivities ro given by
Eq. (10) andof t2 =1+ ro.

We now give expressions for the components of the
Green’'sfunction dSB (z, Z; K, ) by writing them in the
form dgg (M, M), where m and m' are the number of

media (1 or 2) that contain the point of observation (2)
and the source (2), respectively; that is, m=1atz<0
and m =2 at Z > 0. For s-polarized waves, we have

2k§80 (1.10)
—r exp[ik(z+ 21},

d°(2,2) = —K E“D{exp(ndz 2))

(1.12)

+r3exp[ik(z+z)]}—5(z—‘f).

€oKo

APPENDIX |1

In this work, we use the basis vectors

- g(—mfsz), 8, = S(%+./32),
(11.2)
a; = adl 13‘}3

Df aD’

0 1
dyy(1,2) = 2k S—teexp(—ikiz+ikz), (I.4)  where the following unit vectors of an fcc lattice are
involved: % || [110], ¥ || [111], and 2 || [112]
df,)y(z, 2) (Fig. 1b). Thevectors &, and &, specify thelatticesites
i o (1.5) of ahexagonal layer with an intersite distance a. The
= 5 exp[iklz—2z|] —rsexp[ik(z+2)]} , introduction of the basis translation vector &, which
depends on the parameter a = a/A, allows usto consider
and, for p-polarized waves, we have a set of lattices that are topologically equivalent to the
fcc lattice but have different distances A between the
4 (1 2 = 0 K2+ ikz L6 hexagonal layers. The limiting cases of these structures
o1 2) = Ss PP (k2 +1kz), (6 arethefcclatticeat A= ay273 (0 = O = +/3/2) and
individual layersat A — o, o —» 0.
o i Based on Egs. (11.1), the basis vectors of the recip-
dp(1,2) = xz(l 2) = —dzx(1.2) rocal |attice can be found to be
(1.7) no_2m 1. a
K’ by = SH-&+—2-29,
k dd.(1,2), al J3 30
1 ) ) (1.2)
b, = 2M Ly O o - 20
SX(Z 2') b, = a%+/\/§2 SyE, bs aGy.
1.8 . ' i .
28 {expliklz—2]] —rCexplik(z+ )]} (1.8) gcrg 0, basis vectors (11.2) transform into the vec
0<0
0 _ 21 ., 1
bl = —FX+t— 1]
dgx(21 2') = - 2 {$n(z z)exp[lklz zl] a = /\/é% [ 3
o€o (1.9) ~0 _ 2TT 1 ~0 (11-3)
| 2= S+ b3=0,
+roexplik(z+2)]}, all" /3
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which correspond to the individual-layer model. The
indices m in expansion (26) of the reciprocal lattice
vector b intermsof basisvectors(l1.2) arerelated to the
Miller indices (hkl) of the plane normal to the vector b:

= (M —my+ M) (=M + My + mMg) : (=M —m, + my).
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Abstract—~Partial suppression of twinning in bismuth crystals in a static magnetic field is found not to be
accompanied by a change in the bulk elastic energy stored in wedge twins. Application of a magnetic field
decreases the surface energy of the twin—matrix interface. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Earlier [1], we established that twinning in bismuth
crystals is partially suppressed under long-term con-
centrated loading in a static magnetic field. This mani-
fests itself in a decrease in the number and size of
wedge twins. As a result, the volume of the twins and
the area of the twin—matrix interfaces decrease [2]. In
this connection, it is important to answer the question
as to whether the application of a magnetic field leads
to adecrease in the bulk elastic energy of twinsand in
the surface energy of the twin—matrix interface.

2. SPECIMEN PREPARATION
AND EXPERIMENTAL TECHNIQUE

Bismuth single crystals were grown by the Bridg-
man method from raw materials of chemical purity.
Specimens in the form of arectangular prism (10 x 5 x
5 mm in size) were prepared by cleaving a bismuth sin-
gle crystal along the cleavage plane. The wedge twins
belonging to the { 110} [001system were produced by
pressing a standard diamond pyramid into the (111)
cleavage plane of the bismuth crystals. The measure-
ments were carried out using a PMT-3 microhardness
tester and a specia device fabricated from nonferro-
magnetic metals for applying aload to aspecimenin a
magnetic field. The magnetic induction vector lay inthe
(112) cleavage plane of the bismuth crystals. Some pre-
cautionswere taken to eliminate effects from the instru-
ments. Specia control tests showed that switching the
magnetic field on and off during loading of the speci-
men did not result in an increase in the size of the
indentation made by the diamond pyramid. Therelative
change in the magnetic field at the geometric center of
the gap in the electromagnet limb into which the speci-
men was placed did not exceed 2%.

The concentrated load P amounted to 0.14 N. In the
first series of measurements, the magnetic field induc-

tion B was constant and equal to 0.2 T and the time of
loading of the crystal with theindenter wasvariedin the
ranget = 0-5 h. In the second series of measurements,
the magnetic field induction was varied intherange B =
0-0.9 T, whereas the time t of loading of the crystal
with the indenter was constant and equal to 5 min.

During the experiments, the length and width of the
wedge twins, as well as their number in the vicinity of
the indentation produced by the diamond pyramid,
were directly measured with an eyepiece micrometer in
the PMT-3 instrument. Points in the experimental
curves were obtained by averaging over the results of
measuring the sizes of twin interlayers wedged around
20 or moreindentations. The experimental error did not
exceed 3%.

The bulk elastic energy of a twin was estimated
from the relationship W, = wy VN, where wy, is the bulk
elastic energy density, V is the average volume of the
twin, and N is the average number of mechanical twins
wedged around the indentation after the load is
removed and the magnetic field is switched off.

On each side of the “twin—parent crystal” interphase
boundary in the crystal, there occur displacements of
the same order of magnitude as the width of the wedge
twin. Since the displacements at the end of the wedge
twin are equal to zero, elastic strains arise around the
twin. These strains are of the order of sh/L, where his
the width of the wedge twin at the twin mouth, L isthe
length of the wedge twin, and s = 0.694 is a multiplier
[3]. Consequently, the bulk elastic energy density can
be estimated in order of magnitude as

_ G(sh)zl Q)
L2

\%
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Then, the bulk elastic energy of the wedge twin can
be obtained from the relationship

W, = G—(fg‘) VN, @

Since the shape of twin interlayers formed under
point loading can be approximated by a lens, the vol-
ume of atwin can be calculated according to the expres-
sion for the volume of a spherical segment. The radius
of the base of the spherical segment was taken to be
equal to the average length of the wedge twin, and the
thickness of the spherical segment was assumed to be
egual to the average thickness of the wedge twin at the
mouth [4, 5].

The surface energy of the twin—parent crystal inter-
phase boundary can be estimated according to the
expression W, = w;SN, where w; is the specific surface
energy of the twin—matrix interphase boundary and Sis
the surface area of the twin—-matrix interphase bound-
ary. In the monograph by Klassen-Neklyudova [3], the
specific surface energy of the twin boundary was esti-
mated from the relationship w, = Ga, where G is the
shear modulus and a is the lattice parameter of the bis-
muth crystal. Therefore, the surface energy of the twin—
matrix interfaces can be determined as

W, = GasN. A3)

The area of the twin—matrix interfaces Swas calculated
as half the area of the spherical segment with the base
radius taken equal to the average length of the wedge
twin [4, 5].

3. RESULTS AND DISCUSSION

The experimental dependences W, (t) and W,(t)
obtained in the first series of experiments are shown in
Figs. 1 and 2, respectively. It can be seen from the
curves depicted in Figs. 1 and 2 that the energies W,
and W, increase both in the presence and in the absence
of the magnetic field and exhibit atendency toward sat-
uration as the time t of loading of the crystal with the
indenter increases. It can be concluded that, within the
limits of experimental error, the application of the mag-
netic field does not lead to a change in the bulk elastic
energy of the wedge twins for the sametimet.

The magnetic field decreases the average distance
between the dislocations L/h, which is expressed in
terms of the lattice parameters of the bismuth crystal
(Fig. 3). Ascan be seen from relationship (1), thisleads
to an increase in the density of the bulk elastic energy
Wy Which is stored in the wedge twin during concen-
trated loading of the crystal with the indenter in the
magnetic field. Therefore, although application of the
magnetic field to the bismuth crystals resultsin the sup-
pression of twinning, the bulk elastic energy of the
wedge twins remains unchanged for equal timest.

PHYSICS OF THE SOLID STATE Vol. 47 No. 11
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t,h

Fig. 1. Dependences of the bulk elastic energy W, of wedge
twins in bismuth crystals on the time t of loading of the
crystal with an indenter (1) without amagnetic field and (2)
inamagnetic field of 0.2T.

1.2 1
— 1.0}
)
S 08F 2
04 1 1 1 1 1
0 1 2 3 4 5

t,h

Fig. 2. Dependences of the surface energy Wy of twin—
matrix interfaces of wedge twinsin bismuth crystals on the
timet of loading of the crystal with an indenter (1) without
amagnetic field and (2) in amagnetic field of 0.2 T.

Fig. 3. Dependences of theratio L/h on thetimet of concen-
trated loading (1) without amagnetic field and (2) in amag-
netic field of 0.2T.

The magnetic field does not suppress the generation
of twinning dislocationsin the mouth of thetwin. Asis
known, the number of twinning dislocations located at
atwin—matrix interface is equal to the ratio h/a. Asthe
timet of concentrated loading increases, the twin thick-
ness h increases both in the presence and in the absence
of a magnetic field [1]. An increase of the twin thick-
ness h brings about an increase in the twin volume V
and the interfacial area Sand, as follows from relation-
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Fig. 4. Dependences of (1) the bulk elastic energy WA, and
(2) the surface energy W of wedge twins on the magnetic

field induction B upon loading of the crystal with an
indenter for t =5 min.

ships (2) and (3), an increase in the bulk energy W, and
the surface energy W, respectively.

For equal times t, the surface energy of the twin
boundary W in the presence of the magnetic field is
considerably less than that in the absence of the mag-
netic field (Fig. 2). Apparently, application of the mag-
netic field disables magnetosensitive (paramagnetic)
stoppers and the unlocked twin boundary takes on a
thermodynamically equilibrium length. As a conse-
guence, the area S of the twin—matrix interfacesin the
magnetic field decreases [5], which, according to rela-
tionship (3), leadsto a decrease in the surface energy of
the twin boundary W,

In the second series of experiments, the bulk elastic
energy and the surface energy of the twins were inves-
tigated as functions of the magnetic field induction. As
was shown in our previous study [6], the length of
wedge twins abruptly decreases as the magnetic field
induction reaches athreshold value B = 0.2 T. Although
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the total volume of the twins also decreasesin asimilar
manner at B = 0.2 T, the bulk elastic energy of the
wedge twins W, remains virtualy constant (Fig. 4,
curve 1). The latter circumstance can be explained by
the shortening of the distance between the dislocations
L/hat B =0.2T. This leads to an increase in the bulk
elastic energy density w,,, which is localized in the
twin. Since the area of the twin—matrix interfaces S at
B= 0.2 T decreases abruptly (primarily due to the
shortening of the average length of the wedgetwinsL),
the surface energy of the twin boundary W, aso
decreases in a similar manner (Fig. 4, curve 2).
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Abstract—The distribution of defectsin dislocation tracksin silicon plates was studied for various indentation
angles. The regularities of variations in the linear density and maximum path of dislocations in dlip bands are
established. A model is proposed to describe the distribution of dislocationsin the dislocation tracks. By fitting
the theory to the experimental data, the dependence of this distribution on the energy relaxation time is deter-

mined. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Studying the dislocation mobility in semiconductor
crystals in fields of various nature is one of the main
problems in solid-state physics [1-9]. The objects of
research are usually dislocationsintroduced into acrys-
tal through indentation or scratching. As aresult of the
action of external forces, dislocation motion develops
in dlip planes, which causesalinear arrangement of dis-
location pits (rows, chains, tracks) along the corre-
sponding crystal directions. In the literature, this pro-
cessis analyzed, for the most part, in terms of both the
maximum distances passed by dislocations from a
stress concentrator [1, 4-8] and the variationsin dislo-
cation density with penetration depth [9]. However, the
reasons for the dissociation of dislocation tracks in
crystals and the character of the dislocation redistribu-
tion between their localized and scattered states have
not actually been studied. Thereisvirtually noinforma
tion on the mechanism of dislocation redistribution
caused by a change in the direction of indentation. The
character of the dislocation distribution in chains dur-
ing their expansion in the corresponding directions
likewise has not yet been considered. This study is an
attempt to fill this gap.

2. EXPERIMENTAL

Standard 76-mm dislocation-free  phosphorus-
doped silicon plates with a resistivity p = 0.01 Q cm
were used to make the samples (~3 x 1 x 0.04 cm) for
the experiment. The plates were prepared, using the
conventional technology, from asingle crystal grownin
the [111] direction by the Czochralski technique.
Scratches 5 to -10 mm long served as dislocation
sources (stress concentrators) on theworking (111) sur-
face, which were produced under a load P = (0.78—
2.45) N using atetrahedral diamond pyramid (indenter)
with a vertex angle of 90°. Scratches were scribed at

various angles (0°, 10°, 20°, 30°, 40°) with respect to
the [110] crystal direction. The motion of dislocations
in the field of introduced internal stresses was stimu-
lated by isothermal annealing of samples at 923 K for
t = 150 min. Over this time t, the internal stresses
relaxed amost completely and dislocation transport
stopped [9]. The arrangement of dislocations in the
plates was studied using etching pits, which were pro-
duced by immersing the platesin astandard SR-4 selec-
tive etching solution [3, 9].

3. EXPERIMENTAL RESULTS
AND DISCUSSION

It is known [10] that in silicon the main slip planes
coincide with the [110[directions. Our results are fully
consistent with this assertion. However, the orientation
of the etch figure rowsis unambiguously determined by
the indentation direction with respect to the[110] crys-
tal axis. Let us consider this result in more detail.

When a scratch is scribed in the [110] direction
(Fig. 1a), dislocations are observed to run away in the

[011] and [101] directions. On the other hand, when a

plateisindented in the [ 110] direction, opposite to the
[110] direction, the predominant running tracks are

[101] and [011]. Such a distribution of dislocations
indicates the specia nature of the stresses created by
microcracks caused by scribing. Apparently, the projec-
tion of the leading vector of microcrack propagation
onto a scratch aways coincides in sign with the direc-
tion of the introduced concentrator of stresses. That is
why the angle a between the [110] direction and the
direction of indentation of the crystal surface (Fig. 1b)
was measured carefully in our experiments as reckoned
counterclockwise from the basic direction. The precise
determination of a was checked with etching of thefig-

1063-7834/05/4711-2049$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. The main directions of dislocation motion in the crystal under study. (a) The indentation direction coincides with the crystal

direction (1) [110] and (2) [110]. (b) The direction of scratching does not coincide with the [110] direction; a scratch is drawn at
an angle a to the [110] direction. (1, 2) Dislocation etch pits; (3) a stacking fault; and (4) a stress concentrator.

ures, whose orientation was the same throughout the
crystal surface due to the specific crystal features.

If 0° < a < 15°, the direction of dislocation motion
isidentical to that in the case considered above. How-
ever, as o approaches 15°, the didocation etch pits are
rearranged gradually from well-defined rows along the

direction of running away, [101], to randomly scat-
tered individual dislocations located on the right-hand
side of a scratch.

For higher angles, 15° < a < 30°, the scattered dis-
location etch pits begin to group again into rows of etch
figures oriented along anew direction, [110]. However,
when a = 30°, only two predominant directionsremain,

X, km

0 10 20 30 40 50
a, deg

Fig. 2. Displacements of the leading dislocations from the
edge of a scratch (drawn at various angles a to the [110]
direction; P = 1.0 N) measured after 150 min of isothermal
annealing at 923 K. Measurements were carried out (1)
aong dislocation rows coinciding with the [011] direction
and (2) in the direction normal to the scratch.

PHYSICS OF THE SOLID STATE \Vol. 47

[011] and [110], which make an angle of 60° between
them.

Astheangle a increases further from 30° to 60°, the
pattern of the dislocation distribution repeatsitself, but
the orientation of the slip lines on the left-hand side of
the scratch changes: the rows of etch figures in the

[011] direction disappear but appear inthe [ 101 ] direc-
tion. The angle between the observed rows (along

[101] and[110]) inthiscaseis 120°, asin thefirst case.
The general pattern of dislocation redistribution over
the dip planesisgivenin Table 1.

Thus, the angle between the observed rows, as well
astheir orientations, is always determined by the near-
est allowed dlip directions on both sides of the scratch
and the dissociation of dislocation tracks into individ-
ual dislocationsin an indented crystal always becomes
more intense as a approaches angles 15° + n x 30°,
wheren=0, 1, 2, 3, .... Therefore, taking into account
this periodicity, we will consider only the motion of
dislocations associated with scratches whose angle
with respect to any of the [110Ckcrystal directions does
not exceed 30°.

According to the experimental results, not only the
topography of the dislocation distribution but aso the
character of their motion along the corresponding
chains depend on a (Fig. 2). It is seen from Fig. 2 that,
as the angle between a scratch and the [110] direction
increases, the didocation path length x(a) aong the
[011] dislocation rows increases (curve 1 in Fig. 2),
whiletheir distance from the scratch decreases (curve 2
inFig. 2).

The most unexpected result was obtained when ana-
lyzing the character of the dislocation distribution in
dislocation rows arranged along the corresponding
crystal directions. It was established that the linear dis-
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Table 1. Directions of dislocation paths starting from a stress concentrator at different angles a

Num- | Angle between ascratch | Indentation | Crystallographic orientation Comments
ber and the [110] direction direction of dislocation rows
. a=0° [1101 § | [011] and [101]
a =180° [110] J |[101] and [011]
o o = Gradual transition to scattered disloca
) Csa<l1s ‘ [011] and [101] tions on the right-hand side of a scratch
o o = —= Gradual transition to scattered disloca
180° <0 <195 ‘ [101] and [011] tions on the left-hand side of a scratch
— 1o Scattered dislocations on the right side
a=15 ‘ [011] of ascratch
3
— 1050 == Scattered dislocations on the left-hand
=195 ‘ [011] side of ascratch
Gradua redistribution of dislocations
15° <a < 30° ‘ [110], [011] into rows on the right-hand side of a
4 scratch
o o Gradual redistribution of scattered dis-
195° < a < 210° ‘ [110], [011] locationsinto rowson theleft-hand side
of ascratch
o =30° R [011], [110]
5
a =210° v [110], [011]
o o Gradual transition to scattered disloca
30°<a<45 \ [110], [011] tions on the left-hand side of a scratch
6 - - Gradual transition to scattered disloca
210° <a <225 \ [110], [011] tions on the right-hand side of a scratch
— Ao Scattered dislocations on the left-hand
; a=45 \ [110] side of ascratch
— 5oE0 = Scattered dislocations on the right side
a =225 \ [110] of ascratch
- Gradual redistribution of scattered dis-
45° < a < 60° \ [101] , [110] locationsinto rowson theleft-hand side
8 of ascratch
o ~ Gradual redistribution of dislocations
225° < o < 240° \ [110] , [101] into rows on the right-hand side of a
scratch
o = 60° W& |[10y,[110]
9
o = 240° N | [ii0], (107

location density in the direction of migration [011]
shows a steady tendency toward a decrease (for 0° <
o < 30°), is constant (for a = 30°), or increases (for
30° < a < 60°), changing smoothly from one state to
another with an increase in a. Furthermore, regardless
of the azimuth angle a of a scratch, there are almost
always one or more clusters of etch pitsin dislocation
chains that produce high peaks in the dislocation den-
sity.

PHYSICS OF THE SOLID STATE Vol. 47 No. 11

This feature is observed most clearly at high values
of a, where, in addition to the main peak, a significant
number of smaller peaks are observed, which distort the
general pattern of the dislocation distribution (Fig. 3).
Optical microscopy studies showed that the main rea-
son for the appearance of these small peaksisthe pres-
ence of areas of intersection of dislocation tracks with
different crystallographic orientation involved in the
dislocation redistribution described above. The con-
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Fig. 3. Measured linear dislocation density in the [011] slip
line as a function of distance at various values of a: (a) 0°,
(b) 30°, and (c) 40°. Curves calculated from Eq. (8) are
superimposed on the experimental points. The load on the
pyramid during scratching is 0.98 N.

vincing reproducibility of these results excludes the
possibility of any procedural error and calls for clarifi-
cation of the physical reasons for the observed phe-
nomena.

We carried out such an analysis with allowance for
the periodical distribution of microcracks along certain
crystal directions and their redistribution caused by a

PHYSICS OF THE SOLID STATE \Vol. 47
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A o // A s a)

3 2 A

Fig. 4. Distribution of stresses that are caused by microc-
racks 3, 2, 1, 0, 1, 2, 3 introduced into a crystal during
indentation of the surface and act on a chosen dislocation
dip line.

change in the azimuth position of a scratch, as well as
for the fact that the rate of dislocation nucleation varies
due to relaxation processes.

Our conclusion will be based on the vel ocity of dis-

location motion over the dip planes, which is deter-
mined, above al, by theinternal stresses g, [6] caused
by indentation of acrystal:
- [PmD 0 En
V= dt = Vorgad Pt @)
whereV, and o, are constants, m= 1 for silicon, Eisthe
activation energy for dislocation motion, k isthe Boltz-
mann constant, and T is temperature.

Indeed [11], when a scratch is produced, there
appear a great number of microcracks (Fig. 4) with lin-
ear density f(n), which expand predominantly over
the “leading” dlip planes. At the tip of each (ith) micro-
crack, stressis induced, which decreases with distance
x according to the law [9, 12]

bGN;
2m(1 dv) %l X &)

where g; is the stress at the dislocation site, G = 1.5 x
10"Pa is the shear modulus, v = 0.3 is Poisson’s ratio,

b isthe Burgers vector, and Ng isthelinear dislocation
density in aregion a' near the microcrack.

The dastic stress field created by an ensemble of
microcracks with linear density f relaxes during high-
temperature annealing, spending its energy on disloca-
tion nucleation and on the motion of microcracks over
favorable dlip bands.

Assuming f to be constant and taking into account
the various distances of a dislocation from stress con-

gi(x) =
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centrators (crack tips, Fig. 4), it is easy to estimate the
resulting stress o that pushes thisdislocation in adlip
plane as a sum of the corresponding components.

The intermediate results of the calculations are
shown in Fig. 5. They are obtained with allowance for
the redistribution of microcracks (by analogy with dis-
locations) between different (for example, [011] and

[101]) crystal directions, depending on the azimuth
angle of the scratch:

_ B ag
Fioa (@) = 60° % fon(a) = f%_@ﬂ’

f = o+ fi,.

©)

It is seen that the higher a, the larger the areas with
localized didlocations that are subjected to the effective
action of stresses. This has a direct influence on the
penetration depth of dislocations into the crystal along
the chosen dlip direction.

The stresses considered are not constant but rather
rapidly relax during high-temperature annealing, which
favors dislocation nucleation and motion. Taking this
into account, we can write [13]

t t
O(% 1) = () faeP T+ &P (4
1

where 1, and 1, are the characteristic rel axation times of
dislocation nucleation and mation, respectively, and
and &, are dimensionless coefficients satisfying the
condition &, + &, = 1. It should be noted that the energy
of asingle microcrack prevailsin the generation of dis-
locations forming a track, whereas the energy of an
ensemble of microcracks prevails in the dislocation
motion.

When t is specified, expression (4) describes the
relaxing stress acting only on the leading dislocation in
adlip chain. In order to describe all the following dislo-
cations, it is necessary to introduce the appropriate cor-
rection that accounts for the dislocation generation rate.
Thisrateisrelated to 6, through a simple relation,

v(t) = dn/dt = X0in(t, Xo), ©)

where n is the number of generated dislocations, x isa
dimensional function, and X, is the coordinate of adis-
location source.

Thus, taking into account Eq. (4), we get
dn _ 0 t0 0t
@ - Vet herd T O

Here, v, isthe dislocation generation rate at t = 0.
Solving this equation makesit possible to determine
both thetimet =t; at which any dislocationi =1, 2, 3...
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t,10%s

Fig. 5. Distances traveled by the leading dislocations from
a stress concentrator plotted vs annealing time. The points
are experimental data, and the lines are the results calcu-
lated using Eq. (8). (1) a = 40°, (2) 30°, and (3) 0°.

appears and the total number n of dislocations gener-
ated during the annealing time t:

M = Vo(&1T1 +&,T5)

t, t; (7)
- VO%lTleXp E_T_E +&,T,eXp E—T—%

Substituting Egs. (4) and (7) into Eq. (1), we obtain

0 t_tiD 0 t_tiDD
dXi ~ VOOint(Xiv t)%leXpD_—ﬁ—D + EzeXpD_'{_;‘DD
dt o
E" t)

Equation (8) makesit possible to follow the kinetics of
each dislocation with stress, which relaxes continually
during isotherma annealing beginning from the
moment of its nucleation t —t;, and the redistribution of
dislocations! in slip lines at an arbitrary moment t.

Using Eqg. (8) and the experimentally determined
distribution of dislocationsin dislocation tracksfor var-
ious angles of indentation of silicon plates (Fig. 3), itis
possible not only to estimate the relaxation parameters
(14, T,) and the coefficients &, and &, but also to estab-
lish the basic mechanism responsible for variations in
the linear dislocation density in dislocation tracks at
various a.

The calculated results for a values correlated with
the experiment are shown in Figs. 3 and 5. It should be

1The linear dislocation density was determined, taking into

) dng 2

account Eq. (8), from the equation Ny = i P
dny is the number of dislocations within section dx.

, where
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Table 2. Numerical data correlated with the experiment for
T=923K

Azimuth angle a between the [110]
Parameters crystal direction and a scratch
0° 30° 40°

14, S 75 150 200
15 S 1000 2000 2700
&1 0.93 0.94 0.91
NG, 10°m? | 2308 2.308 2.308
Vo, ST 0.128 0.077 0.045
E, ev 2.2
0p, Pa 1x10°
Vo, M/s 1x103

noted that coincidence of the experimental and calcu-
lated data (including the paths of the leading disloca-
tions (Fig. 5), their distribution over the dip lines
(Fig. 3), and the presence and position of the main
peaks in the N4(x) curves) occurs for each value of a
only at certain values of 1, and 1, listed in Table 2.

Consequently, the above-described, experimentally
determined transformation of the linear dislocation
density with a variation in the azimuth angle of a
scratch is unambiguously determined by the relaxation
time of the energy needed for the disl ocation generation
and motion. We do not have independent data on these
parameters and cannot compare the results of these cal-
culations with the experiment, which is of interest. We
will accomplish thisin practice in the near future.
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Abstract—The mechanical properties of thin Ag films of equal thickness containing grains of various sizes
were studied. The film hardness was measured using the Oliver—Pharr techniques based on indentation work
calculations or on direct measurements of the area of pyramid imprints in AFM images. In order to avoid the
influence of a substrate on the measured hardness, a technique was developed to determine the true values of
thefilm hardness. It was established that the hardness of Ag films decreaseswith anincreasein mean grain size,
whereas the elastic modulus remains almost unchanged. It was shown that the dependence of theyield stress of
Ag films on grain size does not obey the classical Hall-Petch law. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Thin metalic films are widely used in the produc-
tion of integrated circuits, magnetic and optical
devices, microsensors, etc. Though the electrical prop-
erties of thin-filmed materials draw the most attention,
their mechanical properties aso play an important role,
because when films are being deposited and operated
on strong internal stresses can be created in them,
which can cause deformation and fracture during rel ax-
ation [1-3].

Among the techniques developed for studying the
mechanical properties of thin films is nanoindentation,
which makes it possible to analyze the processes of
elastic and plastic deformation in very small volumes.
Thisis very important, because the thickness and grain
size of films are very small. However, some difficulties
arise caused by the fact that the results of measurements
are not always in one-to-one correspondence with the
actual characteristics of afilm[4—6]. Thereasonfor this
is, above al, the influence of a substrate under the
deposited film, which, asarule, has absolutely different
mechanical properties. Furthermore, there is the prob-
lem of material pile-up or, on the contrary, sink-in over
the faces of the indenting pyramid, which causes inac-
curacies in determining the contact area between the
indenter and a sample and, thus, results in data distor-
tions. Finally, the measurement results depend on the
method used to process the indentation curves. Despite
there being a great number of studies in this area [4—
11], the problem of measuring the mechanical proper-
ties of thin films by using the nanoindentation tech-
nigue has not been solved yet.

In the present work, the accuracies and reliabilities
of various techniques devel oped for analyzing nanoin-
dentation data are compared in order to accurately
determine the hardness of Ag thin films and to study
the influence of grain size on their mechanical pro-
perties.

2. EXPERIMENTAL

Ag filmst =460 nm thick were deposited on SIO,/Si
substrates using the magnetron sputtering technique at
room temperature. Thegrain sized inthefilmswasvar-
ied using one-hour isothermal air annealing at temper-
aturesof 150 and 200°C. Thismadeit possibleto obtain
films of equal thickness with various grain sizes.

Atomic-force microscopy (AFM) studies of the sur-
face morphology of the Ag films showed that the as-
deposited film surface is characterized by afine grained
structure with amean grain size of 100 nm. The surface
roughness of the films does not exceed 50 nm. Anneal-
ings at 150 and 200°C cause the mean grain size to
increase to 250 and 400 nm, respectively. In this case,
the maximum roughness height of the sample surfaceis
100 nm.

The mechanical properties of the films were studied
using the nanoindentation technique and a NanoTest
600 setup. Tests were carried out using a Berkovich tri-
hedral pyramid. The film hardness was determined
using three different methods.

1063-7834/05/4711-2055$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Dependence of the hardness of an Ag film with a
mean grain size of 250 nm on the relative penetration depth
of the indenter. (1) The hardness as calculated using the OP
technique; (2) the hardness as calculated from the work
done during indentation; and (3) the hardness obtained from
AFM measurements of an indenter imprint. Lines show the
fitting of Eq. (7) to the experimental data.

Using the technique proposed by Oliver and Pharr
[12], the hardness H was cal cul ated from the expression

_ Prma
where P, is the maximum applied load and A is the
contact area between the indenter and a sample,

A = 245h> + C,h,. )

Here, C, = 1.65 x 10-% isaconstant, which describesthe
deviation from an ideal Berkovich pyramid caused by
the tip curvature, and

P
h, = hpa —0.75%X 3
is the contact depth between the indenter and asample,
where h,,, is the maximum penetration depth of the
indenter and Sis the contact rigidity of a material.

Another method used to calculate the film hardness
is based on determining the work that is done during
indentation. According to this approach, the hardnessis
determined as [5]

kP

oW’

where k is a constant, which depends on the indenter
geometry (for aBerkovich pyramid, k = 0.0408), and W
isthe work done in the indentation process.

Finaly, direct measurements of the contact area
between the indenter and a sample were carried out
using the AFM images of indentations on the surface of
the films. The measured area of a pyramid imprint
includes the contact area between the indenter and the

H =

(4)
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piled-up material. The value of H was calculated from
Eq. (1).

Usually, in order to avoid the influence of asubstrate
on the results of nanoindentation of thin films, the pen-
etration depth of the indenter is limited so that it does
not exceed 10% of the film thickness. However, calcu-
lations of the contact area between the indenter and a
sample using formula (2) imply that the sample surface
isideally smooth. If afilm has arough surface and the
penetration depth of the indenter is smaller than the
roughness height, then the real contact area can differ
significantly from the calculated value, which will
result in considerable inaccuracies in determining the
hardness and elastic modulus. Taking into account that
in the studied Ag films the maximum roughness height
on a surface reaches 20% of the film thickness, the
maximum |load was chosen so as to make the penetra-
tion depth of the indenter more than the roughness
heights. Consequently, the maximum load wasfrom 0.5
to 200 mN.

The elastic modulus of the samples was determined
from the relaxation curve slope using the following
relationships [12]:

S
* = —é_—ﬁ’ (5)
_ 2 1— .2 -1
e

where E* is the effective elastic modulus of the film—
indenter system and E, E;,4 and v, v;4 are the elastic
moduli and Poisson’s ratios of the materials of the film
and the indenter, respectively.

3. RESULTS AND DISCUSSION

M easurements of the hardnesswere carried out with
the abovementioned techniques taking the Ag film with
amean grain size d = 250 nm as an example. Figure 1
shows the measured hardness as a function of the pen-
etration depth h of the indenter normalized by the film
thicknesst. It followsfrom Fig. 1 that, regardless of the
calculating technique, H increases with h/t. When h/t =
0.2-0.5, al techniques give similar results. However,
when h/t > 1.0, the hardness as determined from the
indentation work (1W) is far lower than the hardness
determined using the Oliver—Pharr (OP) technique or
AFM images.

There can be several reasons for the observed
dependence of the hardness on the penetration depth.
First, when indenting a film—substrate system, the
response to indentation is determined by the mechani-
cal properties of both the film and the substrate and the
contribution made by the substrate becomes more con-
Siderable as the penetration depth increases. Second,
the increase in film hardness can be due to the actual
contact area broadening in comparison with the calcu-
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|ated value because of the extrusion of the material over
the indenter faces and its piling-up on the film surface
(Fig. 2).

However, asis seen from Fig. 1, theinclusion of the
increase in the contact area between the indenter and
the samplein the casewhere A isdetermined from AFM
images actually has no effect on the character of H
increasing with h/t. Moreover, the hardness of the film—
substrate composition increases only until it reachesthe
hardness of the substrate (Fig. 3). Thus, itisthe Si sub-
strate that causes the increasein H.

Recently, several models have been suggested
which allow one to exclude the contribution of a sub-
strate to the measured hardness of the film—substrate
composition and determine the true hardness of the
film. According to [6], the variation in the composition
hardness with an increase in the indenter penetration
depth can be described by the expression

H;—H
He = Hg+ — h;, ()
1+—
ot

where H,, H,, and H; are the hardnesses of the compo-
sition, the substrate, and the film, respectively, and a is
a parameter with dimensions of length that mainly
depends on the film thickness in the case of plastic
materials. Expression (7) makes it possible to estimate
the real hardness of a film by fitting the experimental
data for the film—substrate composition to Eg. (7) and
determining the values of H; and a.

Figure 1 showsthe dependence of the film—substrate
composition hardness on the indenter penetration depth
as determined by fitting the experimental data and the
actual hardness of the Ag film found from this depen-
dence. The fitting was performed using the following
parameter values. H,=10.5 GPaanda = 1.55x 10" m
(OP), H,=7.7 GPaand a = 0.56 x 10" m (IW), and
H,=10.5GPaanda =4.42 x 10" m (AFM). Asisseen
from Fig. 1, all three methods give different values
for H;.

In order to verify the results obtained by the various
techniques, H; was used to calcul ate the el astic modulus
of the films. Combining Egs. (1) and (5), the effective
elastic modulus was found to be

* = ﬂ§
E /PmaXZ' 6)

Substitution of the calculated values of the true hard-
ness of the film into Eq. (8) gives E* = 93 GPa (OP),
E* = 59 GPa (IW), and E* = 132 GPa (AFM). Using
these values and the parameters v = 0.37, v;4 = 0.07,
and E;y= 1000 GPa, we get from Eq. (6) that E =
88 GPa (OP), E = 54 GPa (IW), and E = 130 GPa
(AFM). A direct analysis of the nanoindentation curves
carried out using Egs. (5) and (6) shows that, when
h/t < 0.5, the elastic modulus of a film is 80-89 GPa,
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Fig. 2. AFM image and profilogram of an indenter imprint
on the surface of an Ag film. Py, = 200 mN.
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Fig. 3. Dependence of the hardness of (1, 2) a Si substrate
and (3, 4) an Ag film with agrain size of 250 nm on the pen-
etration depth of the indenter. (1, 3) The hardness as deter-
mined using the OP technique and (2, 4) the hardness cal cu-
lated from the work done during indentation.

which agrees well with the elastic modulus of bulk sil-
ver. Since these results coincide only with the value of
E obtained by the OP method, we conclude that this
technique gives the most reliable results. That is why
the OP technique in combination with the method for
calculating the true hardnessis further used to study the
dependence of the mechanical properties of the Ag
filmson grain size.

The measured values of the hardness of the films
with grains 100 and 400 nm in size are presented in
Fig. 4. Incalculating H;, weused H;=10.5GPaand a =
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Fig. 4. Hardness of Ag films with a mean grain size of (1)
100 and (2) 400 nm plotted vsthe relative penetration depth
of theindenter. Lines show thefitting of Eq. (7) to the exper-
imental data.
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Fig. 5. Dependence of the elastic modulus of Ag filmswith
various grain sizes on the relative penetration depth of the
indenter.
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Fig. 6. Dependence of the yield stress of Ag films on the
mean grain size. (1) The experimental data and (2) calcula-
tions based on the Nix—Freund model and the Hall-Petch
relationship.
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1.55x 10" m. An analysisof the results obtained shows
that, asthe grain size decreasesfrom 400 to 100 nm, the
true hardness of the Ag films increases from 0.7 to
1.5 GPa

The values of the elastic modulus of the films stud-
ied areshown in Fig. 5. The E valueis practically inde-
pendent of grain size and, for the indenter penetration
depth not exceeding ~30% of the film thickness, it is
~80 GPa. As h increases further, E asymptotically
approaches the elastic modulus of the silicon substrate.

The nanoindentation technique does not make it
possible to directly measure the precise yield stress o,
of the samples studied. However, this quantity can be
estimated using the Tabor technique [13], according to
which ¢¥ = H/3. Figure 6 shows the o,(d) dependence
for Agfilms. It should be noted that the val ues obtained
are one order of magnitude higher than the yield stress
of bulk silver.

The primary factors that cause the hardness of thin
films to be higher than that of the corresponding bulk
materials are small grain sizes and restrictionsimposed
by a substrate on the dislocation motion in afilm. The
latter factor causes the strength characteristics of thin
filmsto be dependent on the film thickness. To describe
this dependence, the Nix—Freund model is usually used
[1, 14]. According to this model, the minimum stress
that should be applied in order to cause dislocation
motion in asingle-crystal film deposited on a substrate
isgiven by

b p-fp-s [B_ID
o —wtn, oo ©

where b is the Burgers vector of the film; p; and pgare
the shear moduli of the film and substrate, respectively;
and B is a constant. For polycrystalline materias, the
effect of grain size on the strength properties is tradi-
tionally described by the Hall-Petch relationship

0, = O+ kypd 2, (10)
where o, is the yield stress component independent of
grainsizeli.e, theyield stress of asingle crystal, which
can be determined, e.g., from Eq. (9)] and kg is the
Hall—Petch coefficient.

The values of o, of the Ag films calculated from
Egs. (9) and (10) are presented in Fig. 6. In the calcula-
tions, the following parameter values of the film and
substrate were used: g = 27 GPa, g = 66.5 GPa, b =
289 A, v = 0.37, B= 2.6, and kp = 0.083 MN/m=2
[15]. Itisseenthat theyield stress as estimated from the
nanoindentation data agrees well with the calculated
value only for the Ag filmswith agrain size of 400 nm.
For the films with d = 100 and 250 nm, discordance is
observed between the experimental and cal culated data,
which increases as the grain size decreases.

It is known that, when the grain size in bulk materi-
als decreases from 1 pum to 30 nm, the Hall-Petch rela-

o, = 3.464
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tionship differs from the classical relation in that the
exponent d changes from —0.5 to amost zero [16, 17].
The observed increasein theyield stress of the Ag films
studied is, on the contrary, faster than the o, ~ d2
dependence. A similar effect of more intense strength-
ening with adecreasein grain size (o, ~d™) in compar-
ison with that of bulk materials was observed earlier in
thin Al films [18].

4. CONCLUSIONS

The nanoindentation technique has been used to
measure the hardness and elastic modulus of thin Ag
filmson S substrates. It has been shown that, when the
surface roughness of filmsis high, it is possible to use
a load which causes the penetration depth of the
indenter to be deeper than 10% of the film depth. Inthis
case, the OP technique in combination with the method
for calculating the true hardness makes it possible to
correctly determine the mechanical properties of thin

films deposited on a substrate. The studies performed  10.
have shown that the Ag film hardness decreases as the
mean grain size increases, whereas the elastic modulus
remains constant. 11.

The data on nanoindentation have been used to 12
determine the yield stress of the films. It has been 13'
shown that, for Ag filmswith agrain size of 400 nm, the '
experimentally estimated yield stress agrees well with
the value obtained from the Nix—Freud model and the 14
Hall-Petch relationship. For films with smaller grain 1>
sizes, significant discordance is observed between the
experimental and calculated data. 16.
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Abstract—The strength of partially stabilized zirconia-based ceramics is analyzed as a function of the porosity,
the grain size, and the degree of tetragonality of the tetragonal phase. It is found that the strength of the studied
ceramics, unlike conventional materials, is virtually independent of the porosity and the average grain sizeand is
determined primarily by the content of the easily transformed tetragona phase. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

It isknown that the flexural strength o; of polycrys-
talline ceramic materials can be most adequately
described by the formula proposed by Knudsen [1]:

o; = Bd “exp(-kP), (1

where B is a constant; d isthe average grain size; a is
the numerical coefficient, whichisapproximately equal
to 0.5; k is the numerical coefficient ranging from 4 to
9; and P is the relative porosity. As can be seen, rela-
tionship (1) does not account for possible phase trans-
formations that can occur during fracture of the mate-
rial. The influence of phase transformations on the
strength of ceramic materials has been comprehen-
sively discussed in papers concerned with investigating
the cracking resistance K,.. In particular, McMeeking
and Evans [2] and Lange [3] derived expressions rel at-
ing the cracking resistance K. to the mechanically acti-
vated phase transformation of the tetragonal (T) phase
into the monoclinic (M) phasein partially stabilized zir-
conia (PSZ) ceramics. However, it is known that
mechanical stresses can also bring about the T —> M
transformation on the surface of the PSZ ceramics. This
transformation is accompanied by an increase in the
volume and, hence, should give rise to compressive
stresses at the surface, thus affecting the flexura
strength o; [4]. As a rule, the flexura strength o; is
determined primarily by the surface condition of the
ceramic material. It is well known that the strength of
ceramic materials can be substantially enhanced by
increasing the smoothness of their surface, i.e., by elim-
inating stress concentrators from the surface. More-
over, stress concentrators existing on the surface and
under the surface can be blocked (rather than elimi-
nated), for example, by compressive stresses.

In thiswork, we carried out an additional analysis of
the results reported earlier in [5, 6], with due regard for
the new data obtained after the publication of those

papers.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Ceramic samples were prepared under cold isostatic
pressing (CIP) from a powder of partially stabilized
ZrO, + 3 mol % Y ,O; zirconia ceramics [5] (series 1)
and a powder of ZrO, + 4 mol % Y ,O; [6] (series 2).
Powders of series 1 were compacted under a pressure of
0.1 GPaand were then sintered in air at temperatures of
1623 and 1773 K. Powders of series 2 were also com-
pacted under a pressure of 0.1 GPa and were then sin-
tered at atemperature of 1773 K. After sintering in air,
some of the samples of series 2 were subjected to hot
isostatic pressing (HIP) in an argon atmosphere under a
pressure of 0.2 GPa at atemperature of 1723 K [6].

The density p,,, for al the samples studied was
determined by hydrostatic weighing, and the porosity
Peop
ptheor .

The theoretical density pyer Was calculated from the
x-ray powder diffraction data.

After grinding, al samples were tested for strength
by three-point bending. The base length of the gauge
was egual to 14.5 mm, and the velocity of the movable
crosspiece of the testing machine was 0.5 mm/min.

The phase composition was determined using x-ray
powder diffraction at room temperature on a DRON-
3M diffractometer (CoK, radiation) with computer
recording and plotting of the x-ray powder diffraction
patterns. The calculation of the phase composition was
performed according to the procedure described earlier

was calculated according to the formulaP =1 —

1063-7834/05/4711-2060$26.00 © 2005 Pleiades Publishing, Inc.



INFLUENCE OF THE COMPOSITION OF THE TETRAGONAL PHASE 2061
Influence of the composition of the tetragonal phase in the surface layers of zirconia-based ceramics on their strength
Ceramics Ceramics
ZrO, + 3mol %Y ,0; (series 1) ZrO, + 4 mol %Y ,0; (series 2)
Parameters o sintering conditions
sintering temperature * T, K
T31 K TS’ K + TH“q K
1623 1773 1773 1773 + 1723
p, g/lcm?® 5.99 5.99 5.98 6.13
P, % 15 15 1.64 Not determined**
o;, MPa 720+ 20 720+ 20 1026 + 30 1400 + 20
d, pm 0.20 £ 0.05 06+0.1 06+0.3 16+0.3
c/afor the tetragonal phase 1.0080 (43) 1.0100 (30) 1.0170 (71) 1.0170 (61)
(%) ** 1.0155 (57) 1.0157 (70) 1.0350 (14)
Content of the other phase (%) Not Not M (4) M (8)
found found *xE*E (25) F@Q7)

* Tgisthe sintering temperature.

** Since there were no data on the theoretical density of the PSZ ceramics subjected to hot isostatic pressing, it was impossible to calcu-
|ate the porosity. The value of pyeqr fOr the PSZ ceramicsis equal to 6.1 g/cm®.

*** Content of the tetragonal phase.
*x** | stands for the cubic phase (fluorite).

in [7]. In our calculations, we used x-ray powder dif-
fraction patterns for the (111) reflections in the angle
range 33° < 20 < 39° and x-ray powder diffraction pat-
terns for the (400) reflections in the angle range 85° <
20 < 90°. The data were averaged over five points.

The degree of tetragonality c/a for the tetragonal
phase was determined according to the procedure
described in [6].

The average grain size was estimated by analyzing
the micrographs obtained using scanning electron
microscopy (SEM). For samples of series 1 and 2, we
examined the SEM micrographs of the microsections
and cleavages, respectively. The results obtained are
giveninthetable.

3. RESULTS AND DISCUSSION

It can be easily verified that the Knudsen relation-
ship (1) does not hold upon substitution of the parame-
ters listed in the table. This can be clearly seen from a
thorough analysis of the results presented in the table.
For example, the average grain sizes in ceramic sam-
ples of series 1, which were sintered at two different
temperatures, differ by a factor of 3, with the porosity
and strength of the samples being equal. For ceramic
samples of series 2, the grain size after hot isostatic
pressing islarger than that prior to hot isostatic pressing
by afactor of ailmost 3. In this case, the strength of the
ceramic samples subjected to hot isostatic pressing
does not decrease but rather increases by 30%. The
porosity of 1.64% does not provide an explanation for
the above findings: in the case when the strength most
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strongly depends on the porosity in terms of relation-
ship (1), i.e., when the coefficient k takes on a value of
9, the decrease in the porosity by 1.64% should lead to
an increase in the strength by only 14%.

The above-described circumstance forced usto ana-
lyze the main characteristic of the tetragonal phase,
namely, theratio of the lattice parameter c to the lattice
parameter a, i.e., the degree of tetragonality c/a. Since
only the tetragonal phase can transform into the mono-
clinic phase under tensile stresses and the maximum
stresses arising upon three-point bending are localized
on astretched surface of the sample, it ison this surface
that the aforementioned phase transformation occurs
first of all and is accompanied by compressive stresses
that block stress concentrators. In turn, this leads to an
increase in the flexural strength o .

In ceramic samples of series 1, the surface layer
down to a depth of 20 um (which corresponds to the
penetration depth of x rays at the given wavelength)
consists of grains of the tetragona phase. This result
holds good within the accuracy of the x-ray powder dif-
fraction analysis. In this case, there exist two madifica-
tions of the tetragonal phase with degrees of tetragonal -
ity c/ain the ranges 1.008-1.010 and 1.0155-1.0157.

Ceramic samples of series 1 sintered at a tempera-
ture of 1623 K have smaller grains, which should lead
to an increase in strength. However, the degree of tet-
ragonality c/a is also somewhat smaller, which makes
the T — M transformation difficult. At this point, it
should be remembered that the degree of tetragonality
c/afor the tetragonal phase can vary over awide range
from 1.005 to 1.035. The former value corresponds to
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the so-called T' phase, which does not transform under
external stresses, and the | atter value is characteristic of
the easily transformed phase [6, 8]. Asregards ceramic
samples of series 1 sintered at atemperature of 1773 K,
an increase in the grain size is compensated for by an
increase in the degree of tetragonality c/a.

This effect of the degree of tetragonality is espe-
cially pronounced in ceramic samples of series 2.

Ceramic samples of series 2 subjected to hot isos-
tatic pressing have very large grains and consist of sev-
eral phases. This should lead to an abrupt decrease in
the flexura strength o;. However, we observed quite
the reverse: the flexural strength o; reached 1400 M Pa.
Thisvalue of o; is apparently provided by only 14% of
the easily transformed tetragonal phase with the degree
of tetragonality c¢/a = 1.035. It is worth noting that, for
ceramic samples of series 2 not subjected to hot isos-
tatic pressing, the grain size is smaller by a factor of
more than 2 and the strength is considerably lower,
even though these samples contain 71% of the tetrago-
nal phase with arelatively high degree of tetragonality
c/a=1.017. In closing the analysis of the experimental
results, we should note one more very strong effect. For
ceramic samples of series 1, which were sintered at a
temperature of 1623 K and had grain sizes~0.2 um, we
observed the flexural strength o; = 720 MPa. For
ceramic samples of series 2, which were sintered at a
temperature of 1773 K and had grain sizes~0.6 um, we
obtained o; = 1026 M Pa. The degrees of tetragonality of
these materials differ by no more than 0.0015, whereas
the flexural strengths o; differ by 306 MPa.

If the above analysis of the experimental results ade-
quately reflects reality, we can argue that, at a suffi-
ciently high density (98-99% of the theoretical value),
the degree of tetragonality of the tetragonal phase,
rather than its amount, is primarily responsible for the
strength of the PSZ ceramics. The higher the degree of
tetragonality c/a, the greater the strength of the PSZ
ceramics. The observed increase in the strength of the
ceramic samples can be explained by the presence of
the easily transformed tetragona phase with a high
degree of tetragonality c/a. According to the data
obtained by Nikol’skii et al. [8], the high degree of tet-
ragonality c¢/a can be associated with the decreased
content of yttrium ionsin the crystal lattice of zirconia
In this case, even weak elastic tensile stresses bring
about the T — M transformation, which naturally
occurs at the strongest stress concentrators, thus ham-
pering the nucleation of cracks.
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When the amount of the easily transformed tetrago-
nal phase is exhausted, the applied stress becomes rela-
tively strong and the tetragona phase with a lower
degree of tetragonality makes a significant contribution.
Thisleadsto a high strength of the ceramic material.

4. CONCLUSIONS

Thus, the results reported in this paper and their
analysis alowed us to draw the following conclusions.
The strength of PSZ ceramics at arelatively high den-
sity (~98-99% of the theoretical value) substantially
depends on the presence (or absence) of a modification
of thetetragonal phase with ahigh degree of tetragonal-
ity in the structure. It seems likely that the presence (or
absence) of structural elements in the monoclinic or
cubic (fluorite) phase does not play adecisiverole. The
grain sizeis also of little importance, at least for grain
sizesranging from 0.2 to 1.9 um. Possibly, the sameis
also true for larger sized grains, because, according to
Jue and Vikar [9], such grains contain morphological
elements (twins or domains) with asize of ~0.3 umiin
the tetragonal phase.
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Abstract—Disordered and DO; type-ordered Fe,5(Si; _Ge,),s aloys are fabricated and investigated using x-
ray diffraction, M&sshauer spectroscopy, and magnetic measurements. The variations in the magnetic and
Mossbauer characteristics are interpreted using ab initio calculations of the electronic structure, magnetic
moments, hyperfine magnetic fields, and isomer shifts. The main differencesin the properties are related to the
increase in the crystal lattice parameter when Si isreplaced by Gein ordered alloys and to a different behavior
of the correlations in the Si and Ge positions in disordered alloys. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Binary Fe,_,M, (M =Si, Sn, Ge) alloysareclassica
model objects for analyzing magnetic properties that
are dependent on the type and concentration of the sp
element and on the parameters and type of the crystal
lattice[1-6]. By studying quasi-binary Fe,s(Si; _,Sn,),s
and Fe,(Si;_,Ge)s aloys, it is possible to compare
the effect of different sp elements. Disordered
Fe,5(Si; _Sn,),s aloys were prepared and studied in
[7]. To date, Fe,5(Si; _,Ge),s aloys have not been fab-
ricated in the entire range of values of the parameter x.
Based on earlier data [3, 8], we assumed that
Fe,s(Si; - ,.Ge),s aloys could be obtained not only in a
disordered state but also in the ordered phase of type
DO; (Fig. 1; in what follows, samples of this type are
referred to as Fe;Si;_,Ge). The preparation of the
ordered phase would extend the possibilities for study-
ing the relation between the magnetic properties and
the local characteristics of the crystalline structure.

In this work, we fabricated disordered samples
Fe,s(Si;_,Ge)ss in the entire range of values of the
parameter x using the method of mechanical alloying;
then, the samples were DO;-type ordered by thermal
treatment. Disordered and ordered samples were stud-
ied using x-ray diffraction, M&ssbauer spectroscopy,
and magnetic measurements.

To explainthe main laws of the variation of the mag-
netic and Méssbauer characteristics, we performed ab
initio calculations of the electronic structure, magnetic
moments, hyperfine magnetic fields (HFMFs), and iso-
mer shifts of ordered Fe;Si, Fe,Si;Ge, Fe, S Gey,
Fe ,SiGe;, Fe;Ge, FexSi;,, FexsSisGe,, and FexGe,
alloys and disordered Fe;Si and Fe;Ge dloys.

2. EXPERIMENTAL METHODS
AND RESULTS

Disordered Fe,5(Si; _,Ge,).s samples(x=0, 0.2, 0.4,
0.6, 0.8, 1.0) were fabricated by mechanical alloyingin
a“Pulverizette-7" planetary ball mill from high-purity
components of appropriate compoasition. Grinding was
performed in an argon atmosphere over 16 h using
bowls and balls of ShKh-15 steel. The mass of the orig-
inally loaded powder was 10 g. Possible penetration of
the grinder materials into the sample under study was
monitored by gravimetric measurements of the bowls,
balls, and powder before and after grinding. The weight

’/O

B2

Fig. 1. The DOs-type ordered phase. Sites D are occupied

by atoms of sp elements, and sites A and C are occupied by
iron atoms and have nonequivalent environments.

1063-7834/05/4711-2063%$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 2. X-ray diffraction patterns (CuK, radiation) of

mechanically alloyed Fe;5(Siq_Ge,)os powders. The
grinding time is tgjng = 16 h.

increase after grinding was less than 1% for all sam-
ples.

To obtain an ordered state, the ground sampleswere
annealed over 4 h in avacuum furnace at temperatures
of 723K (Fe;sGeys) and 773 K (for x <1).

Earlier published data [1, 7, 9] on a disordered
Fe;sSi,5 solid solution and the Fe;Si DO5-type ordered
phase were used.

X-ray powder diffraction patterns were obtained at
room temperature using a DRON-3 diffractometer
(monochromated CuK,, radiation). Méssbauer spectra
were recorded using aYaGRS-4M spectrometer with a
57Co source in a Cr matrix at a temperature of 77 K.
Mathematical processing of Mdssbauer spectra was
performed using a continuous (based on a generalized
regular algorithm for solving inverse problems [10])
and a discrete representation. Data on the saturation
magnetization were obtained using a vibrating-sample
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Fig. 3. X-ray diffraction patterns (CuK, radiation) of
Fes(Si1 - xGe,) powders annealed at various temperatures
over tgyn=4h.

magnetometer at 77 K in an external magnetic field of
1.27 x 105 A mL. From these data, the average mag-
netic moments per iron atom mg, were calculated.

In the x-ray diffraction patterns of all ground sam-
ples, only broadened bcc reflections were observed,
without any additional linesfrom possible pure compo-
nents of the loaded mixture and their compounds
(Fig. 2). This fact confirms the single-phase nature of
the nanocrystalline state of the alloys obtained. In the
diffraction patterns of the annealed samples (Fig. 3), a
set of bee reflections and (111) and (200) superstruc-
tural reflections corresponding to the DOj-ordered
structure was observed. Reflections that would indicate
phase decomposition of the samples during annealing
were not observed. The lattice corresponding to the
DO, ordering in Fe;Si is shown schematically in Fig. 1.
When ordered, S and Ge atoms randomly occupy D
sites. At small deviations from the stoichiometric com-
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Fig. 4. Mdsshauer spectraand hyperfine magnetic field dis-
tribution functions P(H) for mechanically alloyed
Fezs(Si1—xGeJas powders. tying = 16 h, and the measure-

ment temperature is Tyneasyr = 77 K.

position, in alloys with alower content of sp elements,
additional iron atomsreplace S or Ge. In aloyswith a
Si and Ge content exceeding 25 at. %, excess sp atoms
replace iron atoms without forming nearest neighbor
pairs, i.e., they occupy C sites (Fig. 1).

Mobsshauer spectra and the corresponding HFMF
distribution functions P(H) for mechanically aloyed
Fe(Si;_,Ge).s powders are shown in Fig. 4. The
spectra have a shape (characteristic of disordered crys-
talline systems) corresponding to a set of different local
atomic configurations of the environment of iron
atoms, with smooth lines, without any components
from the possible phases, and with smooth functions
P(H). With increasing germanium concentration, the
function P(H) shiftsto a higher field region.

The Mosshauer spectra and the functions P(H) of
the samples that were ground and subsequently ordered
by annealing (Fig. 5) agree with the results of the x-ray
studies and confirm that the heat treatment indeed con-
verted the alloys under study to the DOs-ordered state.
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Fig. 5. Mdsshauer spectraand hyperfine magnetic field dis-
tribution functions P(H) for FesSi;_,Ge, powders

annealed over ty, =4 h.

There are two nonequivalent positions of iron atoms
(Fig. 1): position C, where all eight neighboring sites
are occupied by iron atoms and the magnitude of the
HFMFisH,=33.3-34.7 T, and position A, where there
arefour (Si, Ge) atoms and four iron atomsin the first
coordination sphere and H, = 21.5 T. The additional
low-intensity component in the M dssbauer spectra and
inthe P(H) curveintheregion of 27.0 T belongstoiron
atomswith three atoms of an sp element in their nearest
environment (Hs), thus indicating a deviation from the
stoichiometric composition to alower impurity concen-
tration. Therelative intensities of the components of the
M 6sshauer spectra with three (I15) and four (1) (Si, Ge)
atoms in the nearest environment of an iron atom and
the calculated concentration dependences of the proba-
bilities of the corresponding local atomic configura

. O. (@) . —
tions PE * and Pf * show that the maximum deviation

from the stoichiometric composition (75 at. % Fe) is
0.7 at. % in the Fe;sSisGe,, sample (Fig. 6). The prob-
abilities P, of the formation of local atomic configura-
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tributions of the[4 00 1 1] and [4 0 0 1 2] configurationsto

DO
P, ® (dashed lines), and the intensities of separate compo-

nents of the M ésshauer spectra of annealed samples, which
are superimposed on these curves for estimating the real
composition of an aloy. Theintensities | 5 are shown by tri-
angles, |, by open sguares, and |44 by diamonds; closed
squares correspond to the sum of 1, and | 4.

tions with afixed number k of atoms of the sp elements
in the nearest environment of an Fe atom were calcu-
lated from the conditions for atoms of the sp elements
to be replaced randomly by iron atoms:

DO; 2
3 T 3+4y

DO, 2
4 = 3+4y(l_y)4

4y(1-y)’,
1

Here, y is the deviation of the iron concentration from
its stoichiometric value to higher concentrations.

Figure 5 shows that the shape of the function P(H)
in the region corresponding the H, component varies
with the relative content of silicon and germanium. For
binary intermetallic compounds, the distribution P(H)
isnarrow and symmetric (Fig. 5), whereasfor 0<x< 1
the distribution is broadened and asymmetric. In dis-
crete processing, this asymmetry was taken into
account as an additional satellite line, which we denote
by H,.. The results of processing the spectra using dis-
crete and continuous representations (the values of
HFMFs and isomer shifts) are shown in Fig. 7. These
two sets of the experimental data obtained using differ-

PHYSICS OF THE SOLID STATE \Vol. 47

ARZHNIKOV et al.

38
(a)
4sE_ gm0 ———0-———0——79°
[ °
~ 30 ] °
f26 o —R———H——— i ——— &
|
2 2 ‘_‘_—_-%—_-l—_ :—_—_Q'__—S
18 1 1 L | .
0.4+ (b)
L N 5
- ——%
§03— o;—:”*,g—— ot M
g - = L
10&0 E___.x———-x——-——x— §
.__0———-—"'0
0.1 90— e .
- °
1 | . | |
0 0.2 0.4 0.6 0.8 1.0

Fig. 7. Concentration dependence of () hyperfine magnetic
fieldsHy and (b) isomer shifts § (kisthe number of (Si, Ge)

atoms in the nearest environment of an iron atom) for

annealed FesSi4 _,Ge, powders. Hg and & are shown by

circles, Hz and &3 by triangles, H, and 4 by squares, and
Hys and 45 by diamonds. Open symbols correspond to

gxperimental data, and solid symbols indicate theoretical
ata.

ent methods of spectrum processing, except for a satel-
lite component, virtually coincide and therefore are
shown in Fig. 7 by the same symbols. With increasing
germanium content, the HFMFs H, and H; increase
from 33.4t034.7 T and from 26.8 up to 27.4 T, respec-
tively. The hyperfine fields corresponding to four impu-
rity atoms remain practically unchanged both for the
main component H, = 21.5 T and for the satellite com-
ponent H,, = 21.0 T. The intensity of the latter compo-
nent, |, as determined by discrete processing varies
from 8% at x = 0.2 to 18% at x = 0.6. The isomer shifts
0 corresponding to the above local atomic configura-
tionsincrease linearly with x (Fig. 7). It should be noted
that in Fig. 7 the hyperfine interaction parameters H,
and 9, calculated from P(H) are obtained without sepa-
rating the main and satellite components in P(H).

The quantitative results of the study of the behavior
of the average characteristics are shown in Fig. 8. With
increasing germanium concentration, the bcc lattice
parameter increases linearly from 0.2838 to 0.2896 nm
for disordered alloys and from 0.2826 to 0.2882 nm for
ordered alloys (Fig. 8a). The average magnetic moment

of an iron atom mg. caculated from the saturation
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magneti zation increases with x from 1.64 to 2.03 g for
disordered alloys, whereasin the ordered state the vari-
ation of mg, isweak (Fig. 8b). The average hyperfine

magnetic field at an iron atomic nucleus Hee increases

from 24.6t0 27.4 T for the disordered state and remains
practically unchanged (26.2 T) for the ordered state.

The average isomer shift e changes from 0.13 to
0.24 mm s* and from 0.18 to 0.29 mm s for ground
and annealed powders, respectively. Theratio Hre/ Mg,
also changes, decreasing from 14.8t0 13.4 T/ for dis-

ordered aloys and from 16.4 to 15.8 T/ for ordered
systems.

It should be noted that, first, in contrast to the non-
linear relations for Fe,s(Si;_,Sny),s aloys [7], in this
case al concentration dependences are ailmost linear
and, second, during ordering, the magnetic moment at
high Ge concentrations undergoes more significant
changes than at low concentrations (Fig. 8b).

3. THEORETICAL CALCULATIONS:
METHODS AND RESULTS

In this study, we performed quantum-mechanical
calculations of the electronic structure, magnetic
moments, hyperfine magnetic fields, and isomer shifts
using the spin-polarized density-functiona theory. The
exchange-correlation potential was described in the
local density approximation (LDA) [11]. As shown in
[12], the LDA and the generalized gradient approxima:
tion (GGA) [13] yield the same results in many cases if
they are scaled by the magnitude of the magnetic
moment.

Since the experimental data indicate that the lattice
remains bcc in the entire concentration range, the sys-
tems were simulated using a bec lattice. The values of
the lattice parameters were chosen to be equal to the
experimental ones.

Calculations were performed by two methods. The
method of linearized plane waves FP LAPW (WIEN2k
software package [14]) was used to perform simulation
for the Fe;Si, Fe,Si;Ge, Fe,,Si,Ge,, Fe,SiGe;, Fe;Ge,
Fe,sSi;, FexsSisGe,, and Fe,sGe; periodic systems. Cal-
culations for ordered and disordered Fe;Si and Fe;Ge
systems were performed using the Korringa—Kohn-
Rostoker (KKR) method and the software package
from [15].

Fully relativistic KKR calculations were performed
using the parametrization of the exchange-correlation
potential suggested in [16]. The conventional values of
the main parameters for this software package were
chosen in the calculations. The number of points on the
energy scalefrom E,,,, =—0.3 Ry to the Fermi level was
equal to 250. Expansions in angular momentum were
performed up to |, = 4. The number of created k vec-
torswas 834. Calculations for disordered systems were
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Fig. 8. Concentration dependence of (a) the bcc lattice
parameter, () average magnetic moment m,,, () average

hyperfine magnetic field Hg, at a °’Fe nucleus site,
(d) average isomer shift Ope (0pe), and (€) Hpe/Mg, ratio

for mechanically alloyed (circles) and annedled (squares)
Fezs(Siy - xGey)2s powders.

preformed in the coherent potential approximation
(CPA).

When using the FP LAPW method, we expanded
the wave functions, charge density, and potentia in
terms of spherical harmonics in nonoverlapping atomic
spheres of radius Ry,r and in terms of planewavesinthe
remaining part of the unit cell. The basis set of func-
tionswas divided into valence and core (for electrons at
theinner levels) parts. The core levelswetook to be the
1s, 2s, 2p, and 3slevelsfor iron; the 1s, 2s, 2p, 3s, and
3p levels for germanium; and the 1s, 2s, and 2p levels
for silicon. These states were calculated using a spher-
ical potential and were assumed to have a spherically
symmetric charge density and to be ailmost completely
confined inside the muffin-tin spheres of radius Ry
Theradius of sphereswas chosento be Ry, =2.3 aufor
al atoms. The valence electron wave functions inside
the atomic spheres were expanded up to |, = 10 and
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Table 1. The average magnetic moment per iron atom, magnetic moments (measured in Bohr magnetons pg), HFMFs
(inteslas), and isomer shifts (in millimeters per second) for nonequivalent iron atoms in ordered alloys

X | agnm| m2 S?at?lﬂo% Mo Ho 8 | Configuration | m, H, 34

Fe;Si 0 0.2815 165 |[[0600]] 252 —26.9 | 0.074 |[40012] 128 | -19.6 | 0.246

FexSis 0.2815 [40011] 1.26 | -19.1 | 0.257

Fe,SisGe | 025 |0.2838 | 169 |[0600]| 248 | —275 | 0.065 |[40012] 132 | -199 | 0273
[0600]| 257 | —27.8 | 0.109 |[40012]

Fe,,Si,Gey 0.5 0.28575| 1.68 |[[0600]| 2.56 —27.9 | 0.116 |[40012]** 1.38 | —20.6 | 0.270

[400121*** | 131 | —200 | 0.301

[40022]**** | 1.23 | -19.4 | 0.339

Fe,SiGe; 0.75 |10.2866 173 |[0600]| 2.64 —289 | 0.164 |[40012] 1.37 | —20.5 | 0.320
[0600]| 256 | 287 | 0117 |[40012]

Fe;Ge 1.0 |0.2880 174 |[0600]| 2.60 -29.1 | 0119 |[40012] 1.37 | —20.7 | 0.319

FexGes 0.2880 [40011] 139 | —20.0 | 0.341

FesSi 0 0.2880 174 |[0600]| 2.60 —28.6 | 0.142 |[40012] 1.39 | —20.9 | 0.304

* Simulation of this system was performed in order to determine the configuration that arises in a non stoichiometric compound.

** Configuration with four Si atomsin the nearest environment.

*** Configuration with two Si atoms and two Ge atoms in the nearest environment.

**%* Configuration with four Ge atomsin the nearest environment.

Table2. Magnetic moments (measured in Bohr magnetons pg), HFMFs (in teslas), and isomer shifts (in millimeters per sec-
ond) for iron atoms with different configurations of the nearest environment

By, M COI’:];IO gnur& M Ho 5 COT;IO %ur& m Hi 5

FesSi 0.2838 | [0200] 222 274 0.036 [1003] 2.04 -27.8 0.080

[004Q] 2.23 —26.7 0.016

[000Q] 2.37 -29.2 0.050
Fe,Si, 0.2838 | [0240] 2.34 —24.8 0.026 [2006] 175 -25.5 0.143
Fe,sSi;Gey 0.2880 | [0500] 2.56 -29.4 0126 ([30010] 174 -25.3 0.260

[0400Q] 255 -29.5 0.115 |[40011] 1.39 -20.3 0.320

[0600Q] 252 -29.6 0.141

[0600Q] 2.58 —28.9 0.141

[00120Q] 255 -23.7 0.056

calculated with the potential expanded in spherical har-
monics up to | = 4. We used the APW + lo basis [17]
with additional local orbitals for the Fe 3p and Ge 3d
states. Thewavefunctionsin theinterstitial region were
expanded in plane waves with a cutoff vector K.
defined by therelation Ry, K.« = 7. The charge density
was expanded in aFourier seriesup to G,,,, = 20. A grid
of 35 k points was chosen in the irreducible part of the
Brillouin zone. Practice shows that such a choice of the
parameters ensures the accuracy of calculations
required for the systems under study.

Theresultsof simulationsarelisted in Tables1-3. In
these tables and further in the text, we denote various

PHYSICS OF THE SOLID STATE \Vol. 47

atomic configurations of the environment by the sym-
bol [nmk...], where n is the number of atoms of the sp
elementsin thefirst coordination sphere, misthe num-
ber of these atoms in the second coordination sphere,
etc. For al systems, except for Fe;Si and Fe;Ge having
a symmetric structure, the relaxation of atoms inside
the unit cell was simulated under the condition that the
forces acting on the atoms be zero. For the Fe,,Si,Ge,
system, simulations were performed in an extended cell
in order to generate nonequivalent configurations of the
nearest environment with four Ge atoms, with four Si
atoms, and with two Ge atoms and two Si atoms. Like-
wise, to interpret the lines related to a nonstoi chiomet-
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Table 3. Hyperfine magnetic fields (in teslas) and the average magnetic moment (in Bohr magnetons pig) for aniron atomin

ordered and disordered alloys

MM | Hy Ha m2 || &g nm | Ho H, med | i
Fe;sSi(KKR) 0.2815 —26.7 -19.0 171 0.2838 —27.3 -19.6 174 2.08
Fe;Si(WIEN) 0.2815 —26.9 -19.6 1.65 0.2838 —27.5 -20.1 1.68 -
Fe;Ge(KKR) 0.2880 —28.5 —20.3 1.80 0.2896 —29.9 —20.0 191 2.27
Fe;Ge(WIEN) 0.2880 -29.1 -20.7 1.74 0.2896 —29.7 -21.0 177 -

ric composition, an extended cell was used to simulate
the Fe,sSi;Ge,, Fe,sSi;, and Fe,sGe; systems, in which
there are cluster configurations with three sp atomsin
the nearest environment. To study the effect of the lat-
tice parameter on the magnetic properties, calculations
were performed for the Fe;Si and Fe;Ge systems with
the same lattice constant equal to 0.2880 nm (Table 1).

We note that the calculated values of the HFMFs
differ from the experimental values. However, this dif-
ference has a regular character. This type of disagree-
ment between theory and experiment for HFMFs is
customary. We believe that the deviations from the
experimental data arise because the approximations of
the exchange-correlation potential are not sufficiently
good. Therefore, it is more reasonable to compare the
calculated HFM Fswith the experimental datausing rel-
ative units (for example, reducing them to one of the
values of thefield in agiven series of samples). Indeed,
a comparison of relative results shows quite good
agreement with experiment (Fig. 7).

Using the KKR method, we performed simulations
for ordered and disordered Fe;Si and Fe,Ge alloys
(Table 3). In the table, the data are listed for ordered
systems with lattice parameters characteristic of the
ordered and disordered alloys and for disordered sys-
tems with the corresponding parameters. For compari-
son, the results of the FP LAPW (WIEN) calculations
are also shown. In the proposed realization of the KKR
method in the coherent potential approximation, there
isno possibility of calculating the HFMFsasafunction
of the nearest environment. Moreover, in a one-site
approximation such as CPA, calculations of the HFM Fs
in the disordered case are generally problematic [18,
19]. Earlier in our calculations [20, 21], we were
repeatedly convinced that the changesin the HFMFsin
binary alloys of iron with sp elements are mainly
related to the changes in the spin polarization of the
core electrons at the nucleus site, which, in turn, is pro-
portional to the magnetic moment of the atom to ahigh
accuracy. Calculations performed for ordered quasi-
binary aloys aso confirm this proportionality and the
predominance of the contribution of polarization of the
core electrons to the HFMFs. Judging by experiment
(Fig. 8e), this trend is also observed for disordered
quasi-binary aloys. Therefore, we can estimate the
average HFMFs in disordered samples from the aver-
age magnetic moment calculated in the CPA.

PHYSICS OF THE SOLID STATE Vol. 47 No. 11

The isomer shift was calculated using the formula
O = A-Bpy(0), 2

where p,(0) isthe electron density at the nucleus site of
an iron atom having k atoms of the sp elements in its
nearest environment. The coefficients A and B (A =
3240.3359, B = 0.21286470) were chosen from the
condition that, in the ordered Fe;Si aloy, the calculated
and experimental isomer shifts &, and o, are equal. We
note that, both in experiment and in theory, the values
obtained for the isomer shift should be treated with
care. In experiment, the reason for thisis related to the
possible inevitable errors in absolute measurements,
and in theory, to alow relative accuracy of calculating
the quantities p,(0). When calculating the HFMFs, inte-
gration is performed over a sufficiently large sphere
(which reducesthe possible errors). Asfor 9, the quan-
tities are calculated at one point lying very close to the
center of the nucleus, i.e., in the most problematic
region for approximations of the exchange-correlation
potential. The isomer shifts calculated from Eq. (2) for
ordered ternary alloys are shown in Fig. 7 and Table 1.

4. DISCUSSION

Above all, we consider the HFMFs in DO5-ordered
systems. By comparing the experimental and theoreti-
cal data (Figs. 7, 8), we can conclude that the changes
in the HFMFs with increasing germanium concentra-
tion are related to the increase in the local magnetic
moments and, accordingly, to a greater contribution of
the polarization of core electrons to the HFMFs
(Table 1). In turn, the increase in the loca magnetic
moment is due to the increase in the crystal lattice
parameter. In these systems, just as in the binary sys-
tems[20], theincrease in the local moment with the lat-
tice constant is due to a decrease in the overlap of the
wave functions of the d electrons located at different
sitesand to the concomitant narrowing of thed band. To
find additional justification for this statement, we per-
formed calculations for the Fe,Si and Fe;Ge systems
with the same lattice constant (Table 1). From Table 1,
it can be seen that, in this case, the magnetic moments
and HFMFs for both systems virtually coincide.

A comparison of the intensities of the H; and H,
components with the probabilities of formation of the
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configurations with three and four atoms (Fig. 6) and
the results of ab initio calculations (Table 2) confirm
the assumption regarding the reason for the value of the
HFMF in the region of 2.7 T. This HFMF value is
related to the nonstoichiometry of the composition and
the appearance of configurations with three atoms of
the sp elements in the nearest environment of an iron
atom.

It is more difficult to explain the nature of the satel-
lite H s appearing at intermediate concentrations, x =
0.2, 0.4, 0.6, and 0.8 (Fig. 5). The assumption that the
satellite is related to local crystal distortions of asym-
metrical configurations of atoms of different typesin
the nearest environment is not confirmed by the calcu-
lations. It should be noted that the satellite appears
simultaneously with the component H; associated with
anonstoichiometric composition (Fig. 5). At deviations
from the stoi chiometric composition to higher iron con-
centrations, there appear not only iron atoms with three
atoms of the sp elementsin the nearest environment but
also nonequivalent positions of iron atoms with four
atoms of the sp elements in the nearest environment;
they differ in terms of the number of atoms of the sp
elements in the fourth coordination sphere: [4001 2],
[40011], etc. The probabilities of the most probable
[40012] and [40011] configurations are determined
by the expressions

DO, 2
Pioorz = = (1-y)"(1-y)",
3+4y 3)
DO, 2
Pioo11 = 3+—4y(1—y)4(1—y)”12y,

where, asin Eq. (1), y isadeviation from stoichiometry.
The probabilities of configurations with ten or less sp
atomsin the fourth coordination sphere, which are pro-
portional to o(y?), are small at small deviations from
stoichiometry, and we disregard them.

In Fig. 6, which shows these probabilities, we see

that, at small deviations, the probability P,osy, can be
as high as 10-15%. The ab initio calculations show
(Table 1) that the HFMF for the [4 0 0 1 1] configura
tion is 0.5 to0 0.7 T lower than that for the [4001 2]
configuration. This result is in reasonable agreement
with the position of the satellite with respect to the H,
line. Thus, we can assert that the splitting of the H, line
is due to the appearance of two configurations with dif-
ferent numbers of sp atoms in the fourth coordination
sphere. The intensities of these lines depend on the
deviation of the concentration from the stoichiometric
composition and are determined by Egs. (3). In Fig. 6,
the line intensities are compared with the probabilities.
It is seen that the experimental data are in reasonable
agreement with the calculated valuesfor the[4 00 1 1]

and [4 00 1 2] configurations and PE %
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Theoretical calculations explain the concentration
changes in the magnetic moment and HFMFs in the
DOs-ordered aloys. However, for disordered aloys,
calculations of the magnetic moment do not agree with
the changes observed experimentally. The calculations
show that, for Fe;Ge and Fe;Si, the relative changesin
the magnetic moment caused by the transition from the
disordered to the DO;-ordered phase are approximately
the same (Table 3). The fact that the value of the mag-
netic moment is larger in the disordered phase is par-
tially dueto the larger lattice parameter, but mainly itis
caused by the formation of configurations with one,
two, and three sp atomsin the nearest environment and
by the decrease in the number of configurations with
four atoms. Studies of disordered binary aloys have
shown that the magnetic moment of iron in the config-
urations with one and two sp atoms in the nearest envi-
ronment is close to the magnetic moment of pure iron
[5]. In adisordered state, these configurations are most
probable at an Fe concentration of 75 at. %. Therefore,
the average magnetic moment increases at the expense
of adecrease in the number of iron atoms with four sp
atomsin the nearest environment and with a rather low
magnetic moment. This conclusion is easily verified by
calculating the average number of sp atomsin the near-
est environment:

8
k=Y kP,
2"

where k is the number of sp atoms in the nearest envi-
ronment and P, is the probability of the formation of
configurations with k atoms of the sp elements. In the
case of complete disorder (in the absence of correla
tionsin the positions of sp atoms), we have

_ 8
~ kI(8—K)!

wherey is the deviation of the iron concentration from
a stoichiometric value of 75 at. %. For y = 0, we have

k =2, whereas for aDOs-ordered dloy, Py = 1/3, P, =
2/3,and k = 2.7.

From the experimental data(Fig. 8b), we seethat the
change in the magnetic moment under ordering in the
Fe,sGe,s alloy is much greater than that in the FeysSi,s
alloy. Therefore, the ordering and disordering pro-
cesses in these aloys are different. Deconvolution of
the M 6sshauer spectraof disordered Fe,sSi,s alloysinto
elementary spectra of separate configurations and
EXAFS measurements show that the average number
of Si atomsin the nearest environment differs strongly
from 2 (the figure corresponding to compl ete disorder)
and is equal to kMﬁssb =27 [1] orkEXAFS =28 [9] On
the contrary, for a disordered Fe,sGe,s aloy, this num-

ber iscloseto 2 (kwsss = 2.2 [4]); therefore, this alloy
can be considered to be virtually disordered. Obvioudly,

P, (0.25- 075 +y)° %, (4)
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Fig. 9. Dependence of the isomer shift 8, on the number k

of (Si, Ge) atomsin the nearest environment of an Fe atom
for systems with a lattice parameter close to that of (1)
Fe;Ge and (2) FesSi.

aloys with high Si concentrations are not completely
disordered and exhibit significant correlations in the
positions of silicon atoms at short distances, which are
not detected by x-ray diffraction.

Variationsin the isomer shift are related to the com-
position and ordering of aloys. The effect of an
increase in germanium concentration is mainly deter-
mined by the induced increase in the lattice parameter
and the corresponding decrease in the electron density
at the nucleus site. The ordering-induced changes are
associated with the disappearance of the configurations
with one, two, and three atoms of the sp elementsin the
nearest environment and the appearance of the nearest
environment configurations with four atoms, for which
an iron nucleus has a higher isomer shift. Confirmation
of the last conclusion can be found in Fig. 9, where the
calculated values of the isomer shift are plotted as a
function of the number of sp atomsin the nearest envi-
ronment.

Thus, the main differences in properties between
quasi-binary Fe,(Si;_,Ge),s aloys are related to the
variation in the crystal |attice parameter when Si atoms
are replaced by Ge atoms in ordered alloys and to the
different behaviors of the correlations of Si and Ge
positionsin disordered alloys.
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Abstract—The formalism of the linear augmented Slater-type orbital method in the LDA + U approximation
is described. All the expressions necessary for the program implementation of this method are derived, and the
electronic structure of the ferromagnetic compounds MeBg (Me = La, Gd) is calculated. The results obtained
can be used in analyzing experimental data for rare-earth hexaborides. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Research in the 4f states of rare-earth metals and
their compounds is a central problem in the study of
these materials. Consideration of the f states is neces-
sary for constructing a correct structure of the band
spectrum. Asis known, the use of the electron-density
functional in the local density approximation (LDA)
does not provide an adequate description of strongly
correlated systems. The gradient corrections as applied
to the exchange—correl ation potential in the generalized
gradient approximation (GGA) [1] substantially refine
the description of the energy spectrum for systemswith
arapidly varying electron density; however, in the case
of strongly correlated systems containing 4f (5f) orbit-
als, description of their energy spectrum remains unsat-
isfactory.

In order to determine the exact location of the
energy bands associated with the 4f (5f) orbitals, it is
necessary to take into account strong intra-atomic cor-
relation interactionsin thef shell. The description of the
electronic properties of strongly correlated systems can
be refined by including the correlation effects in terms
of the multiband Hubbard model. These interactions
can be taken into account in the framework of the so-
called LDA + U approximation [2].

In this paper, we use the LDA + U scheme based on
the linear augmented Slater-type orbital (LASTO)
method proposed by Davenport et al. [3, 4] for one
atominaunit cell and generalized in our previouswork
[5] for an arbitrary number of atoms in a unit cdll. It
should be noted that LASTO calculationsin the LDA +
U approximation have already been reported in the lit-
erature [6]; however, the formalism of this method has
not been published before. This gap will befilled inthe
present paper.

2. COMPUTATIONAL TECHNIQUE

The starting point for the changeover from the LDA
approximation to the LDA + U approximation is the
consideration of the total energy of the system. In the
LDA + U approximation, the total energy of the system
can be represented in the following form [7]:

tot LDA

E%(p, A) = E™™(p) + E¥(A)—E“(R), (1)

where E'PA(p) is the conventional functiona of the
local spin density p°(r)(c = 1, 1); E®(h) is the elec-
tron—electron interaction energy for the f orbitals,
which is taken into account in the framework of the
multiband Hubbard model; and E%(1) isthe energy of
interaction inside the f orbitals, which is aready
included in thelocal spin density functional E-PA(p). In
order to calculate the total energy of the system, it is

necessary to determine the density matrix A°. The
explicit form of the density matrix depends on the com-
putational technique.

According to [3-5], the wave function in the
LASTO approximation can be represented as a linear
combination of so-called augmented Slater-type orbit-
as

Y(r) = 3 cun(r), @

where

Wy (r) = ﬁ%e”R“cpN(r—ri—Rv). )

Inrelationships(2) and (3), N={i, n, Im} isthe posi-
tion of theith atom in the unit cell; R, isthe lattice vec-
tor; and the functions @(r) are the Slater-type orbitals

outside the muffin-tin (MT) spheres and the exact solu-
tions of theradial Schrédinger equation inside the muf-

1063-7834/05/4711-2072$26.00 © 2005 Pleiades Publishing, Inc.
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fin-tin spheres, which are smoothly augmented to the
Slater-type orbitals at the boundary of the muffin-tin
spheres. The Slater-type orbital outside the muffin-tin
spheres is conveniently represented as a series in vec-
tors of the reciprocal lattice:

1 i(k+g)r~
——)e on(k +9)Ti(9),
JNCQE (4
r Q..

Here, T;(g) = exp(-gr;) and the basis function inside
the muffin-tin spheres can be written in the following
form:

Wn(r) = xn(r) =

1 ik(R+1y)
e

JINGQ

X Z[BN kg (M) + O kng, (M YA(TK),
A

Wn(r) = on(r) =

()

r Q.

Here, N, is the number of unit cellsin the crystal; Q is
the volume of the unit cell; k isthe wave vector; gisthe
vector of the reciprocal lattice; o and 3 are the coeffi-
cients in the expansion of the Slater-type orbital of the
ith sphere in terms of solutions of the radia
Schrodinger equation in the kth sphere, which are
determined from the continuity condition of the basis
wave function and its derivative with respect to the sur-
face of the kth sphere and are given in [4]; g, and gy,
are the solution of the Schrédinger equation and the
corresponding energy derivative for the kth atom and
the orbital quantum number A; Y,(r) are the spherical
harmonics; A stands for the set of indices {Au}; Q, is
the region inside the muffin-tin spheres or the first-type
region; and Q, is the region outside the muffin-tin
spheres or the second-type region.
The electron density can be represented as

p°(r) = 3 fral®l ()] ©)
k, b

where f, |, is the population of the band with index b.
Then, following Shick et al. [ 7] and using the represen-
tation of the wave function (5) with due regard for rela-
tionship (6), we obtain the expression for the density
matrix in the framework of the LASTO method:

*b,0 b o

ns;r = Z frb Z Cv Cy
k, b k, N, N' (n
X [B; B g + ag, O Gial, Gl
A possible changeover from the LDA approximation to
the LDA + U approximation consists in implementing
the so-called “second-variation”-based procedure [7].
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This procedure enables one to obtain the solution in the
LDA + U approximation after only one iteration on the
basis of the self-consistent LDA solution. The key idea
in this procedureisthat the LDA + U eigenfunctions of
the problem |®'Uare expanded in a set of functions
obtained from the solution of the equation

(0% + Vpa(MW™°(r) = e°W™°(r). (9

Here, Wb °(r) is the LDA eigenfunction, because the
potential V., is constructed using the LDA electron
density.

In order to determine the coefficients of the expan-
sion | = ZJ d} |le [ it is necessary to solve the sec-
ular equation Zj.Hjj.d}. = ed;, where the Hamilto-

nian written in terms of the LASTO method has the
form

Hop = €85+ z C:lbycclt\’l"c

* o o .
X Z (B o Ve Bre g T 0K i Vi O ke il G -
TS

Here, fou. is the effective potential acting on the Y,
subspace (d () states) [7].

The LASTO method in the LDA + U approximation
wastested using ferromagnetic gadolinium. The energy
location of the 4f bands is well reproduced for U =
0.49 Ry and J = 0.05 Ry [7]. These parameters can be
calculated from first principles and in different approx-
imations, however, here, they are used as adjustable
parameters. This problem calls for further consider-
ation and will not be discussed in the present paper.

3. RESULTS AND DISCUSSION

The results of calculating the electronic structure of
LaBg and GdBg compounds in the LDA and LDA + U
approximations are presented bel ow. These compounds
have a CaBg-type crystal lattice (space group On—
Pm3m). The unit cell of each compound contains seven
atoms. one metal atom and six boron atoms forming an
octahedron. The LaBg compound is a paramagnet in
which the magnetic unit cell coincides with the crystal-
lographic unit cell. In the ground state, the GdBg com-
pound isaferromagnet; hence, the magnetic unit cell of
GdBg a'so coincides with the crystallographic unit cell.
The lattice parameters of the LaBg and GdBg com-
poundsarelisted inthetable. Theradii of the muffin-tin
spheres for boron atoms were calcul ated from the near-
est distance between the boron atoms in the adjacent
octahedra, whereas the radius Ryt of the metal atom
was chosen from analyzing the Me-Me distance.
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L attice constants of the MeBg (Me = La, Gd) compounds and
the largest radii of the muffin-tin spheres

Compound I&ztrg![c[%]cogl; RUS , au Ry, au
LaBg 7.8593 3.9296 1.5954
GdBg 7.7751 3.8875 15783

The calculation in the LDA approximation was car-
ried out for 85 k points in the irreducible part of the
Brillouin zone, which corresponds to approximately
1600 k points in the whole Brillouin zone. In order to
check the convergence of the results, the calculation
was performed with 165 k points in the irreducible part
of the Brillouin zone. A comparison of the densities of
states did not reveal a substantial difference between
them. The calculation was carried out using the von
Barth—Hedin exchange—correlation potential [9]. The
sets of basis functions for valence electrons of the
atoms were chosen as follows; 2s2p for boron atoms
and 5p5d4f6s for lanthanum and gadolinium atoms. For
both compounds, the calculation was carried out in the
spin-polarized version. After applying consistent pro-
cedure in the LDA approximation, we obtained the
paramagnetic solution for the LaBg compound and the
ferromagnetic solution for the GdB4 compound, which
isin compl ete agreement with the experiment. Thetotal
densities of states and the partial densities of f states as
calculated in the LDA approximation for spinst and |
of the LaBg and GdBg compounds are presented in

Density of states, (1/Ry)/cell
2001

T

100

—100F

-200 !
-0.4 0

Fig. 1. Density of states for the LaBg compound according
to the LASTO calculations in the LDA approximation for
spins 1 and {. The Fermi level is located at an energy
Erpa) = 0.929 Ry. The dashed and solid lines represent
thetotal density of states and the partial density of 4f states,
respectively.
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Figs. 1 and 3, respectively. The results of these calcula-
tions agree well with those obtained earlier, for exam-
ple, by Kimura et al. [10]. However, in a number of
experimental works concerned with the determination
of the Fermi surface for rare-earth hexaborides (in par-
ticular, for the LaBg hexaboride), the conclusion was
drawn that the frequencies of de Haas-van Alphen
oscillations can be correctly reproduced from the band
calculations in the LDA approximation. In order to
describe the frequencies of de Haas—van Alphen oscil-
lations correctly, Harima et al. [11] artificialy dis-
placed the empty 4f bands up to an energy of 0.1 Ry.
This modified band structure of the LaBg compound
allowed those authors to achieve good agreement
between the theoretical calculation of the frequencies
of de Haas—van Alphen oscillations and the experimen-
tal data. Therefore, it can be assumed that the energy
location of the 4f bands in the LaBg compound isincor-
rectly described in the LDA approximation, even
though these bands are not occupied. In the GdBg com-
pound, the energy location of the 4f levels, as should be
expected, coincides with that of pure gadolinium in the
LDA calculation. The occupied 4f band has a width of
the order of 0.04 Ry and lies at an energy approxi-
mately 0.3 Ry below the Fermi level, whereasthe unoc-
cupied 4f states are located at an energy 0.05 Ry above
the Fermi level and have a width of approximately
0.08 Ry. The fact that the energy location of the 4f
bandsin the GdBg compound changesinsignificantly as
compared to pure gadolinium can be explained by a
strong localization of the 4f orbitals (approximately

Density of states, (1/Ry)/cell
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Fig. 2. Density of states for the LaBg compound according
to the LASTO calculations in the LDA + U approximation
for spinst and | . Er pa) = 0.929 Ry. The dashed and solid
lines represent the total density of states and the partial den-
sity of 4f states, respectively.
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Density of states, (1/Ry)/cell
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Fig. 3. Density of states for the GdBg compound according

to the LASTO calculations in the LDA approximation for
spins t and 1. Er pay = 0.758 Ry. The dashed and solid

lines represent the total density of states and the partial den-
sSity of 4f states, respectively.

95% of the 4f electrons are located inside the muffin-tin
sphere of the metal).

We attempted to correct this situation for the energy
location of the 4f states and carried out the calculation
of the band structure of the LaBg and GdBg compounds
in the framework of the LASTO method in the LDA +
U approximation. In the band cal culations for the GdBg
compound, we used the same parameters as for pure
gadolinium, i.e.,, U = 0.49 Ry and J = 0.051 Ry, which
were taken from Shick et al. [7]. Taking into account
that the parameter U does not change significantly for
all lanthanides, we used the same value of U = 0.49 Ry
in the band calculation for the LaBg compound. The
parameter J should decrease as the distance between
the metal atoms increases; therefore, this parameter
could be taken to be somewhat less than that for pure
gadolinium both in the case of the GdB, compound and
for the LaBg compound. However, the parameter J was
chosen equal to its value for gadolinium. Figures 2 and
4 present the total densities of states and the partial den-
sities of f states according to the LASTO calculation in
the LDA + U approximation for the LaBg and GdBg
compounds, respectively. It can be seen from these fig-
uresthat, in the case of LaBg, the 4f bands are shifted to
higher energies by approximately 0.17 Ry. For this
compound, the density of states at the Fermi level is
somewhat decreased. The result obtained confirms the
assumption that the 4f bands in the LaBg compound are
located at higher energies. For the LaBg compound, the
density of states at the Fermi level is approximately
equal to 10 (L/Ry)/cell [electronic specific heat coeffi-
cient y, = 1.7 mJ(mol K?)]. For the GdB, compound,
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Fig. 4. Density of states for the GdBg compound according

to the LASTO calculations in the LDA + U approximation
for spinst and | . Er pa) = 0.758 Ry. The dashed and solid

lines represent the total density of states and the partial den-
sSity of 4f states, respectively.

the calculations demonstrated that the energy location
of the f bands in the spectrum is similar to that of pure
gadolinium [7]. The occupied 4f bands are shifted to
lower energies by approximately 0.5 Ry and located at
an energy 0.8 Ry below the Fermi level. This is con-
firmed by the results of the optica experiments
reported in the paper by Kubo et al. [12]. The empty 4f
bands are shifted to higher energies, and the energy
splitting between 4f t+ and | is equal to 11.5 eV. The
density of states at the Fermi level for the GdBg com-
pound is approximately equal to 14 (1/Ry)/cell, which
corresponds to the electronic specific heat coefficient
Ye = 2.4 mJ/(mol K?).

For comparison, the electronic specific heat coeffi-
cient for pure gadolinium, according to our calculation,
is equal to 7.48 mJ(mol K?), which isin good agree-
ment with the experimental value of 6.38 mJ/(mol K?)
[13].
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Abstract—An analytical expression for the amplitude of a single-pulse nuclear echo signal generated in mag-
netically ordered materiasis obtained taking into account the inhomogeneous broadening of the spectroscopic
transition and theinhomogeneous distribution of the gain with an average value of greater than unity. Itisshown
that, in this signal, summation of the oscillations of nuclear magnetic moments with equal amplitudes and
phases occurs at each instant of time. The cause of the effective suppression of the nuclear magnetic moment
oscillations in the initial portion of the free precession signal is revealed analytically. The dependence of the
amplitude of the one-pulse echo signal on the strength of an external alternating magnetic field, the pulse dura-
tion, and the width of the gain distribution is determined. The results obtained are compared with the experi-
mental datafor a Co,MnSi ferromagnetic polycrystalline sample. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

It isknown that, in magnetically ordered media, the
generation of coherent nuclear magnetic resonance
(NMR) responses is caused not only by inhomoge-
neous broadening but also by amplification of the
radio-frequency (RF) field at nuclei arising upon a
strong hyperfine interaction between the electronic and
nuclear subsystems[1, 2]. Since ferromagnets have an
extended domain structure, the corresponding coeffi-
cients of amplification of the radio-frequency field at
nuclei inside the domains and at the domain boundaries
differ significantly in magnitude [1, 2]. As aresult, the
frequencies of oscillations of the nuclear magnetic
moments (Rabi frequencies) during exposure to an
alternating radio-frequency field should have different
values[3]. In magnetically ordered media, the superpo-
sition of these oscillations of the nuclear magnetic
moments after the radio-frequency field is switched off
leads to the generation of aferromagnetic single-pulse
echo signal [4, 5]. Although there are numerous studies
[6-8] concerned with theoretical treatment of this phe-
nomenon in which the inhomogeneous gain distribu-
tion and the inhomogeneous broadening are taken into
account, the role played by the inhomogeneous gain
distribution in the generation of aferromagnetic single-
pulse echo signal remains unclear. The mechanism pro-
posed earlier in [9] for the formation of a single-pulse
echo in conventional spin systems under nonresonant
excitation conditions cannot be used to elucidate the
nature of a ferromagnetic single-pulse echo signal,
because, according to experimental data, this signa is
generated not only under nonresonant but also under
resonant excitation conditions [4, 5]. In the aforemen-

tioned works, the ferromagnetic single-pulse echo sig-
nals were calculated numerically. Hence, it is difficult
to draw an unambiguous conclusion regarding the
physical nature of this phenomenon. In order to eluci-
date the nature of the ferromagnetic single-pulse echo
signal and the mechanism of its formation, it is neces-
sary to obtain analytical expressions for the single-
pulse echo response in magnetically ordered media
with due regard for the inhomogeneous broadening of
the spectroscopic transition and the inhomogeneous
gain distribution. The purpose of the present work isto
solve this problem.

2. ANALYTICAL CALCULATIONS

In magnetically ordered media, a free precession
signal generated by aresonant radio-frequency pulsein
a two-level nuclear spin system can be represented in
the following form [7]:

Nm +o00

MV (t)D = jn F(n)dnJ’v(A,n,t)g(A)dA, 1)

1

where A = w), — ), isthe detuning of the precession fre-
guency wy, of asingle spin packet from the central fre-
guency wy, of the NMR ling; g(A) and F(n) arethe func-
tions of the distribution of the detuning of single spin
packets A over the NMR frequencies and the distribu-
tion of the gain n of the radio-frequency field, respec-
tively; n,, is the maximum gain; and v(4, n, t) isthev
component of the magnetic moment of a single spin
packet with gain n and detuning A. By ignoring the
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relaxation processes, we can write this component in
the following form [9]:

V(A1) = Vworn E[%fs‘n(stl—m)

B+A AsnAt o ()
+ e S|n([3t1+At)1+[ ! LD
= vy(A N, 1) +Vy(A, N, t).

Here, v, is the equilibrium magnetization, w, = yH, is
the Rabi frequency (where y is the gyromagnetic ratio
and H, is the amplitude of the radio-frequency pulse),

B=(n"w. + A)V2 s the effective field (expressed in
terms of frequency) acting on a spin packet with detun-
ing A, and t is the time reckoned from the end of the
radio-frequency pulse of duration t,.

Let us assume that the inhomogeneous broadening
of the spectroscopic transition and the inhomogeneous
gain distribution in a ferromagnetic material can be
described by the normal distribution laws g(4A) and

F(n):

_ 1 0A [0
A) = ex , 3
1 On-mH
F = expF ], 4
(n) J2mn, pD 2nZ O @

where o and 1, are the quantities characterizing the

half-widths of the corresponding distributionsand ] is
the average gain. Then, relationship (1) can berewritten
as

Nm
V() = In WV 1 (n, )EF(n)dn
' (5)

Nm

+_[n W,(n, t)IF(n)dn,

where

+o00

Wi(n, )0 = IV i(A,n,t)g(A)dA. (6)

In order to evaluate theintegral M ,(n, t)Clwe usethe
stationary phase approximation [10]. The area of the
radio-frequency pulse wit; > 1 is taken as a large
parameter. Using the standard computational procedure
in the framework of the method described in [10], we

find the stationary points A; , = ir]oolt/A/tf—tz. As a
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result, we obtain the following expression for thisinte-

gral [11]:
Jon (-0

Ot (t,+1)"

0 n’A
X exp[-)—n—z%sinq)(t),
0 200

Ij)l(r]! t)D =V 0

wheret O [0, ty), & = (A)lt/A/tf—t2 is the stationary
point in the absence of amplification of the radio-fre-

guency field, and ®(t) = r]ooy/tf —t* + 4isthe phase
of magnetization oscillations of the nuclear subsystem
under inhomogeneous broadening conditions.

It follows from relationship (7) that integral (6) with
the subscript i = 1 describes damped oscillations of the
magnetization at a variable frequency d®(t)/dt =
nuw,t/(t2 — t2)¥2. Since the analytical expression for
integral (6) with the subscript i = 2 is cumbersome in
form, we do not present it in this paper. Note only that
the time dependence of this integral exhibits a maxi-
mum (in the vicinity of the instant at which the radio-
frequency pulseis switched off) and then decays mono-
tonically. In the saddle-point approximation [10], we
calculated the first integral in relationship (5), which
has the form

[V, () = v, @4A(t)exp(E(t))sin(P(t)), (8)
40n,

where

(t,—t)** [+ ngwi(t?—t2)] "
ty(t, + )" q(t) ’

£t = /mo-witi=t) _ °f
O 4q(t) 2n

At) =

’

— 2 2 2 2
t;—t WAt —t
P(t) = nw12 1 +garctanm° vl D_'_T_T,
2n,a(t) o n o4
2
A—O2+i2.
20" 2n,

The analysis of expression (8) for the first integral in
relationship (5) demonstrated that this expression holds
within the time interval t O [0; kt;), where k =

q(t) =

2 -1
1—{1+ 02 2(r‘l—l)} . Inthisinterval, the magne-
W1 No

tization of the nuclear subsystem [see relationship (8)]
in ferromagnets oscillates at a variable frequency
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Fig. 1. Time dependences of the exponential function
exp[E(t)] and the instantaneous frequency of magnetization
oscillations Q(t) at wyt; = 21, o/ = 5, ng = 0.8, and

q=27

Q(t) = dP(t)/dt, with the amplitude being a composite
function of time.

According to numerical calculations of the second
integral in relationship (5), thisintegral, like the quan-
tity N ,(n, t)0] passes through a maximum (in the vicin-
ity of the instant at which the radio-frequency pulseis
terminated) and then monotonically decreases to zero.
Expression (8) contains the exponential function
(Fig. 1) with an exponent capabl e of taking on extreme
values. Thisindicatesthat the signal amplitude can take
on a maximum value at a certain instant of time. Since
this maximum is formed at the end of the time interval
[O; kt,), it can be interpreted as the ferromagnetic sin-
gle-pulse echo signal. Thus, the first term in relation-
ship (5) describes the maximum of the signal amplitude
at the end of the time interval [O; kt;) and the second
term characterizes this maximum immediately after the
termination of the pulse. The total free-precession sig-
nal described by relationship (5) is presented in Fig. 2.
Therefore, a resonant pulsed field acting on the inho-
mogeneous broadened nuclear subsystem with an inho-
mogeneous gain distribution in ferromagnets leads to
the generation of aferromagnetic single-pulse echo sig-
nal in afree precession signal (Fig. 2). Thetime of gen-
eration of the ferromagnetic single-pulse echo signal t,,,
can be determined by analyzing the exponential factor
in relationship (8) for extrema:

tm ©)

_ (*)ftfrlg wltmgﬂoftfng o’ 0
=4 l-|—t—— =+ —=-1
n N On wne U
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Fig. 2. Time dependence of the free precession signal gen-
erated in the ferromagnet at wyt; = 21, 6/w; =5, ng = 0.8,

and [ =2.7.

The instantaneous frequency Q(t) of the magnetization
oscillations [see relationship (8)] increases monotoni-
cally according to a linear law and, at the end of the
timeinterval [O; kt,), i.e., a theinstant of generation of
a ferromagnetic single-pulse echo signal, exhibits an
asymptotic behavior (Fig. 1). A comparison of the two
curves depicted in Fig. 1 showsthat the maximum con-
tribution to the ferromagnetic single-pulse echo signal
comes only from those oscillations of nuclear magnetic
moments whose generalized Rabi frequencies nw, lie
within the range of the linewidth of the function
exp[E(t)], whichisthe envelopefor thissignal. Interest-
ingly, the amplitude of the signal [relationship (8)]
immediately after the termination of the pulse increases
monotonically in a weak linear fashion and does not
display oscillations with time. In other words, this por-
tion of the time interval is characterized by effective
suppression of the magnetization oscillations, which
has been observed in many experiments with a single-
pulse echo [1, 2].

3. RESULTS AND DISCUSSION

When calculating expression (8) in the saddle-point
approximation, the first integral in relationship (5) is
divided into the difference between two integrals with
saddle pointsin such away that, at each instant of time,

their real parts are determined asn; = N /2q(t)r]§ and

the imaginary parts n, = J_rwlﬁ/tf—t2/2q(t) differ only
in sign. In this representation, at each instant of time,
combinations of oscillations of nuclear magnetic
moments are chosen from the response such that their
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Fig. 3. Theoretical field dependences of the amplitude of the
ferromagnetic single-pulseecho signal atng=0.8, N =2.7,
and oty = (1) 120 and (2) 200.

A, arb. units
1 1

0 2 4 6
(A)l, 1072 Hz

Fig. 4. Experimental field dependences (see [5]) of the
amplitude of the ferromagnetic single-pulse echo signa at
t=(1) 10 and (2) 20 ps.

amplitudes are equal to each other and the phases are
opposite in sign. The combinations of oscillations thus
chosen make a nonzero contribution to the free preces-
sion signal: asthe end point of the time interval [0; kt;)
is approached, the amplitudes of these oscillations
increase and, hence, the amplitude of the resultant
oscillation increases, passes through a maximum, and
then decreases to zero; i.e., the ferromagnetic single-
pulse echo signal isformed. Thus, in the free precession
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signal, there occurs effective summation of particular
combinations of nuclear magnetic moment oscillations
providing a dominant contribution to the response.

The time dependence of the resultant magnetization
amplitude considered above reflects the time depen-
dence of the function exp[E(t)], whose effective width
changes with time, which leads to the asymmetric
shape of the ferromagnetic single-pulse echo signal
(Fig. 2). The time interval [0; kt;) in which the ferro-
magnetic single-pulse echo signal can be generated is
determined by the Rabi frequency w, the width of the
inhomogeneously broadened spectrum o, the width of
the inhomogeneous gain distribution n,, and the aver-

age gain n [see relationship (8)]. It follows from the
expression kt; for the upper limit of thisinterval that its
length is maximum and approximately equal tot, inthe

case where the relationship > 1 + oofngloz holds.

Thisrelationship is one of the conditions for the obser-
vation of the ferromagnetic single-pulse echo signal.

In order to compare the theoretical description of
the ferromagnetic single-pulse echo signal with exper-
imental data [4, 5], we examine the amplitude of the
ferromagnetic single-pulse echo signal [see relation-
ship (8)] at theinstant the signal isformed asafunction
of the Rabi frequency, the duration of the radio-fre-
guency pulse, and the width of the gain distribution. As
aresult, we obtain

34
2a+./b
[TV, (t,) = VOM(—A/_)wz
b(a+ ./b)
D _2 2/ 2 2 (10)
XeXan . 1_9 (wiNo) ’
0 2n, a+.b
where
M = 4 CS)-SIT]Z ’ a= leLng,
Wy No(ty +ty) n
, o ﬁm
b=a+—==-1 ¢= -5
W No W, N

Let us analyze relationship (10) for the two limiting
cases a/w; > 1, and o/w,; < n,, in which the amplitude
of the ferromagnetic single-pulse echo signal is given,
respectively, by the expressions

1/2_2
Wy N
[V, (t) M =V o——, (11)
207"t
3_7 D _ZD
(6)
MY, (t) M = vo——epid—4.  (12)
11 No 0 2n

It can be seen from these expressions that the ampli-
tude of the ferromagnetic single-pulse echo signal

No. 11 2005



SINGLE-PULSE NUCLEAR ECHO SIGNALS

increases according to a fractional-power law at low
Rabi frequencies (small strengths of the alternating
magnetic field) and decreases hyperbolically at high
Rabi frequencies. Consequently, as the strength of the
radio-frequency field increases, the amplitude of the
ferromagnetic single-pulse echo signal passes through
a maximum (Fig. 3), which, in turn, shifts toward
weaker fields and decreases monotonically in height as
the duration of the radio-frequency pulse increases.
This behavior of the ferromagnetic single-pulse echo
signal agrees well with the experimental data [5]
(Fig. 4). It followsfrom relationships (11) and (12) that
the amplitude of the ferromagnetic single-pulse echo
signal decreases with increasing width of the gain
distribution n, and increases with increasing average

gann.

4. CONCLUSIONS

Thus, the generation of aferromagnetic single-pulse
echo in magnetically ordered materialsis caused by the
inhomogeneous distribution of the gain with an average
value of greater than unity. The absence of oscillations
of thefree precession signal isexplained by the fact that
the dominant contribution to the response is made by
nuclear magnetic moment oscillations whose ampli-
tudes at every instant are equal to each other and whose
phases differ only in sign. The analytical description of
the ferromagnetic single-pulse echo signal agrees well
with experimental data [4, 5]: the dependence of the
amplitude of the ferromagnetic single-pulse echo signa
on the Rabi frequency exhibits a pronounced maxi-
mum, which, as the duration of the radio-frequency
pulse increases, shifts toward lower frequencies and
decreases in height.
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Abstract—The band structure and the magnetic and elastic characteristics of SrFeO5 and LaFeO; perovskites
with ferromagnetic and antiferromagnetic collinear spin configurations (of the A, C, and G types) are investi-
gated using the ab initio pseudopotential method (the VA SP program package) with the inclusion of the single-
site Coulomb correlations (the LSDA + U formalism). It isshown that, in the pressure range 0-50 GPa, the most
stable states are the ferromagnetic metal state for the SrFeO; compound and the antiferromagnetic insulator
state of the G type for the LaFeO5; compound. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Since the discovery of giant magnetoresistance in
manganates [1], the spin and charge ordering effects
and their rolein the formation of the band structure and
physical properties of complex transition metal oxides
(i.e., systems with strong Coulomb corrélations) have
attracted considerable research attention. This class of
compounds involves MFeO; perovskite-like ferrites,
some of which possess a mixed electronic-ionic con-
ductivity and hold promise as cathode and membrane
materials (see, for example, review [2]).

Asisknown, the MFeO; phases can exhibit different
properties depending on the type of M sublattice. In
particular, LaFeO; isan antiferromagnetic (AFM) insu-
lator [3], SrFeO; isametal [4], and CaFeO; isasystem
with charge ordering (FeV — F&V +**+ FV—X) [5]. It
should be noted that the type of spin and charge states
for MFeO; phases can radically change depending on
many factors, such as the stoichiometry (the presence
of oxygen vacancies in the lattice), temperature, and
external pressure. For example, stoichiometric SrFeO,
(2.5 < x < 3.0) is characterized not only by different
states of the charge and spin ordering but also by acom-
bined state of the charge and spin ordering [6]. Pressure
treatment of the CaFeO; compound brings about the
suppression of charge ordering (at P > 20 GPa) and a
substantial change in the temperature of the transition
from the antiferromagnetic state to the spin-glass state
[7]. Pressure treatment of the SrFeO; compound
encourages the antiferromagnetic — ferromagnetic
(FM) phase transition [8, 9].

The band structure of the SrFeO; and LaFeO; per-
ovskites has been studied in a number of works. In par-

ticular, the energy bands and atomic interactions in the
SrFeO; perovskite were investigated in the framework

of the density functional theory (DFT) in the local spin
density approximation (LSDA) using the tight-binding
linear muffin-tin orbital method within the atomic
sphere approximation (TB LMTO-ASA) [10] and the
augmented spherical wave (ASW) method [11, 12].
The band structure of the ferromagnetic and antiferro-
magnetic phases of the LaFeO; perovskite was investi-
gated using the TB LMTO-ASA [13], linearized aug-
mented plane wave (LAPW) [13], and full-potential
linearized augmented plane wave and LMTO (within
the generalized gradient approximation) (FLAPW-
GGA, LMTO-GGA) [14] methods at the LSDA level.
It turned out that the LSDA calculations lead to a sys-
tematic underestimation of the band gap and atomic
magnetic moments of the ferrite. According to Sharma
et al. [3], the band gap and the magnetic moment (Fe)
for the LaFeO; compound are 0.2 eV and 3.7 [g,
respectively, whereas the experimental values are
approximately equal to 2.1 eV (optical measurements
[15]) and 4.6 £ 0.2 g [16]. The LMTO-ASA calcula-
tions in the LSDA + U approximation with the inclu-
sion of the single-site correlations [17] demonstrated
that, as the Coulomb parameter U increases from 0.5 to
10.0 (at a constant exchange parameter J), the theoreti-
cal band gap and magnetic moment (Fe) for the LaFeO;
perovskite increase to 3.4 €V and 4.4 g, respectively.
The contribution of the correlation correction to the
parameters of the band structure of the SrFeO; perovs-
kite was not considered.

In this study, the LSDA + U scheme was used to
make a comparative analysis of the band structures and
atomic interactions in SrFeO; and LaFeO; perovskites
with different types of collinear magnetic ordering,
namely, ferromagnetic and antiferromagnetic ordering
(of the A, C, and G types). Moreover, taking into
account that ferrite-based phases are promising for use

1063-7834/05/4711-2082$26.00 © 2005 Pleiades Publishing, Inc.
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as cathode materials, we calculated their elastic param-
eters (such as the bulk moduli B, and their first deriva-

tives By) for the first time and analyzed the changesin

the energy and magnetic parameters of these phases
under uniform compression.

2. MODELS AND CALCULATION TECHNIQUE

The comparative analysis of the band structures of
the SrFeO; and L aFeO; perovskite-like phases was per-
formed for a cubic structure (space group Pm3m) with
the following atomic positions (in the cell): O, 3d (0, O,
12); Sr(La), 1b (1/2, 1/2, 1/2); and Fe, 1a (0, O, 0). The
coordination polyhedra of the oxygen and iron atoms
are the [Fe,(Sr,La),] and [Og] octahedra, respectively.
The coordination polyhedra of the strontium or lantha-
num atoms are the [O,,] cubo-octahedra. The inter-
atomic distances and the unit cell parameter a are
related as follows: Fe-O = a/2, O-O = (S,La)-0 =

(a/+/2), and Fe—(Sr,La) = a./3/2. The number of for-
mula unitsin the unit cell isassumed to be Z = 1.

We consider four types of collinear magnetic states
of the ferrites: one ferromagnetic state and three types
of antiferromagnetic configurations. In our case, the
antiferromagnetic configurations correspond to the fer-
romagnetic ordering of spins in the planes and to the
antiferromagnetic ordering between the adjacent planes
of theiron atoms along the z axis (D010 type A), along
the diagonal of the cube base ([110LC]type C), and along
the diagonal of the cube itself ((1110)type G) (Fig. 1).
All these types of magnetic ordering were described
using computational supercells composed of eight unit
cells(Z =8).

The band structures of the SrFeO; and L aFeO; com-
poundswere cal culated by the ab initio pseudopotential
method with the VA SP program package [18-20]. The
exchange—correlation energy was taken into account
according to the schemedescribed in[21]. Theab initio
pseudopotentials were generated with the use of the
projector augmented wave method [22]. The single-site
Coulomb correlations in the LSDA + U scheme were
included in the representation proposed by Dudarev
et al. [23], according to which the Coulomb (U) and
exchange (J) parameters are expressed through the
effective parameter Uy = U — J. For both phases, the
parameters used for theiron atomsU = 6.0 eV and J =
0.6 eV (Ug =5.4 eV) weretaken from [17]. Theresults
of the LSDA calculations of the LaFeO; (SrFeOs) para-
magnetic phases (U = J=0) were used astheinitial data
in the discussion of the magnetic effects.

When constructing the densities of states, the inte-
gration over the Brillouin zone was performed by the
tetrahedron method. The convergence criterion for the
total energy of the systemswas equal to 0.0001 eV. The
pressure treatment (in the range 0-50 GPa) was simu-
lated by isotropic compression of the cell. The bulk
moduli B, and their first derivatives B' with respect to
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A type

C type G type

® Spin up
Spin down

Fig. 1. Ferromagnetic (F) and antiferromagnetic (A, C, G)
types of collinear spin ordering (in the iron sublattice) for

the SrFeO3 and LaFeO3 phases.
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a,

Fig. 2. Dependences of the total energy Ey on the lattice
parameter for the magnetic phases of the SrFeOs; and
LaFeO3 perovskites.

pressure were determined by calculating the total ener-
gies of the crystals as functions of the cell volume with
the use of the Birch equation [24].

The tota and partia densities of states were
obtained for the equilibrium states of the phases. In
order to analyze the effects of interatomic interactions,
we constructed the charge density maps (p) and the dif-
ference spin density maps (Ap = pt —p1l).
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Lop Fe 3d(e,) were determined by minimizing the total energy E
0.5 N J\jMf\)” V\_ﬂf\ (Fig. 2). For the SrFeO, compound, the equilibrium lat-
0 - tice parameters a, for the magnetic phases are close to
051t each other. Thelattice parameter for the most stablefer-
' romagnetic phase was calculated to be a; = 0.3790 nm.
-1LOr This is in reasonable agreement with the experimental
_15 L L L L L data (0.3851-0.3852 nm [25, 26]). The differences
-8 -6 4 —EZ v 0 2 4 between the calculated and measured [25, 26] lattice
, €

Fig. 3. Spin densities of Fe 3d states and their decomposi-
tion into the components ty, and e for the ferromagnetic

phase of the SrFeO; perovskite.

3. RESULTS AND DISCUSSION

At the first stage, the equilibrium states for all the
magnetic phases of the SrFeO; and L aFeO; compounds

parameters a, do not exceed 1.6% (see table). The lat-
tice parameter a, varies by no more than 0.3% depend-
ing on the type of magnetic ordering. According to the
recent measurements performed by Maljuk et al. [27],
the lattice parameters of an annealed single crystal of
the composition SrFeO,q; are as follows. a =
0.3864 nm, b = 0.3865 nm, and ¢ = 0.3868 nm. For the
model cubic phase LaFeO,, the lattice parameter a, is
equa to 0.3841-0.3852 nm. This is in satisfactory

Calculated (within the LSDA + U formalism) and experimental characteristics for the ferromagnetic and antiferromagnetic
(types A, C, G) phases of SrFeO; and LaFeO5 perovskite-like oxides: the differences AE; (€V/cell) between the minimum
energy for each magnetic phase under consideration and the energy of the stable phase, equilibrium | attice parameters a, (nm),
bulk moduli By (GPa) and their first derivatives B', the density of states at the Fermi level N(Eg) (states/eV cell) or the band

gap (eV), and the magnetic moments of atoms (Lg)

LaFeO, SrFeOq
Parameter
experiment FM |AFM(G)| experiment FM | AFM(A) | AFM(C) | AFM(G)

AE - 0.318 | 0.000 - 0.000 0.072 0.146 0.262
a 0.3926[16] | 0.3852 | 0.3841 0.3850[4] 0.3790 | 0.3789 | 0.3793 | 0.3801
By - 1979 | 1984 - 171.3 162.0 159.0 147.5
B' - 5.40 5.40 - 5.40 5.42 5.42 5.40
N(Ep)/Band gap 2.1[16] 2.78 252 - 0.84 0.76 0.83 0.64
M agnetic moment (Fe) 46+0.2[16]| 4.23 4.06 3.1+0.1[4] 3.70 3.72 3.73 3.64
M agnetic moment (O) - 0.21 0.00 |0.1-0.3[26,27]| 0.08 0.06 0.00 0.00
Magnetic moment (Sr, La) - 0.00 0.00 - 0.01 0.02 0.00 0.00
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Fig. 5. Spatial configurations of spin densities and their distributions in the (110) plane for the ferromagnetic phase of the SrFeO3
perovskite: (a) states with spin up (p1), (b) states with spin down (p1), and (c) the difference spin density map (Ap = pt —p1!).

agreement with the neutron diffraction data for the
cubic perovskite structure (space group Pm3m, a, =
0.3926 nm [16]) and a so with the interatomic distances
in the orthorhombic (space group Pbnm) perovskite-
like structure of the synthetic LaFeO; samples[28].

It can be seen from Fig. 1 and the table that, among
the collinear magnetic phases of the SrFeO,; compound,
the ferromagnetic phase is most stable and the stability
of the other phases decreases in the following order:
FM — AFM(A) — AFM(C) — AFM(G).

According to neutron diffraction data [4], the
SrFeO5; compound at temperaturesbelow Ty =134 K is

PHYSICS OF THE SOLID STATE Vol. 47 No. 11

a noncollinear antiferromagnet with a spiral structure.
This suggests competition of the ferromagnetic and
antiferromagnetic interactions between the iron atoms
within the Heisenberg model. However, the small wave
vector of the spira structure (Q = 0.135a* along the
[A110direction), the small angle of rotation of the
neighboring spins (~40°), and the experimental esti-
mates of the parameters of the exchange interactions
between the nearest neighbor (J; = 1.2 meV) and more
distant (J, = -0.2 meV, J, = 0.3 meV) iron atoms [4,
29, 30] indicate that the ferromagnetic interactions in
the SrFeO; compound are considerably stronger than
the antiferromagnetic interactions. This agrees with our
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Fig. 6. Charge density maps for the LaFeO3 perovskite in the (a) (110) and (1/2 0 0) planes (contour interval p = 0.025 e/A3).

data on the highest stability of the ferromagnetic state
(among the collinear magnetic phases of the SrFeO;
perovskite). Furthermore, the ferromagnetic phase of
the SrFeO; compound is stabilized upon light doping
with cobalt [31]. At high pressures (~70 GPa), the
SrFeO; compound, according to 5’Fe M dsshauer spec-
troscopy, transformsinto the ferromagnetic state [8, 9].
It isassumed that thistransformation is associated with
the decrease in the Fe-Fe distances and with the
increase in the width of the Fe d band. As can be seen
from Fig. 2, the ferromagnetic phase for all the lattice
parameters remains more stable, which makes it possi-
ble to explain qualitatively the experimental data
obtained in [8, 9].

A radically different situation occurs with the
LaFeO; compound (Fig. 2). The results of the calcula-
tions (in agreement with experimental data[3]) demon-
dtrate that, for this compound, the antiferromagnetic
configuration (G type) is most stable and the difference
between the energies of the ferromagnetic and antifer-
romagnetic phases (AE,,; = 0.318 eV/cell) is substan-
tially larger than the corresponding difference for the
SrFeO; compound.

A comparison of the calculated elastic moduli for
the magnetic phases of the SrFeO; and LaFeO; com-
pounds (see table) shows that the bulk modulus B, for
the G-type antiferromagnetic phase of the LaFeO,
compound is greater than the bulk modulus B, for the
ferromagnetic phase of the SrFeO; compound.

PHYSICS OF THE SOLID STATE \Vol. 47

Depending on the type of magnetic ordering, the
changesin the elastic moduli By(FM)/By(G-type AFM)
for metal-like SrFeO; appear to be considerably larger
(~16%) than those for the LaFeO; insulator (no more
than 1%).

Let us consider the specific features of the band
structures for the ferromagnetic phase of the SrFeO,
compound and the antiferromagnetic phase of the
LaFeO; compound. The total density of states for the
ferromagnetic phase of the SrFeO; compound involves
the low-energy bands of the O 2s and Sr 4p quasi-core
states. The spin splittings are small (~0.4 eV) for the
O 2s band and virtually absent for the Sr 4p states (the
magnetic moment of strontium is approximately equal
to 0.01 pg). The spin polarization effect most clearly
manifests itself for the Fe 3d bands. As a result, the
energy of thedr band decreases, whereas the energy of
thed! band increases. The separation of the Fe d states
(according to the spatial and spin symmetry) into four
groups (t,g! , tyt, €41, €1 ) leadsto different degrees of
their hybridization with the O 2p states in the range
from—7.2 eV to E¢ (Figs. 3, 4). The effects of the polar-
ization of the states with the opposite spin orientation
for different atoms become especially clear when com-
paring the spin density mapspt and p! and the differ-
ence spin density map Ap (Fig. 5). It can be seen from
these maps that the polarization of the oxygen statesis
insignificant. The magnetic moment of the oxygen
atoms (~0.2 ) isinduced by the iron states due to the
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Fig. 7. Dependences of the total energy E;; on the external
pressure for the magnetic phases of the SrFeO3 perovskite.

overlap of the iron—oxygen valence shells. It should be
emphasi zed that the occupied d states with the opposite
spin orientation are involved in the atomic interactions
occurring in the SrFeO; compound in different ways.
As can be seen from Fig. 5, the contours of the positive
values of Ap for the iron atom are substantially dis-
torted. This suggeststhat thet,yt high-spin states dom-
inate in the formation of the Fe—O “side” 1t bonds. By
contrast, the low-spin states of oxygen make a signifi-
cant contribution to the formation of the o bonds.

The Fermi level E for the ferromagnetic phase of
the SrFeO5; compound is located in the vicinity of the
tog! and €' bands, whereas the contributions of the
t,y1 and e, bands are negligible (Fig. 3).

For the LaFeO,; compound, the t,,t and e, bands
arelocated near the lower edge of the occupied band of
the O 2p states (the o band). In turn, the lower edge of
the conduction band is predominantly formed by the
t,yl States, whereas the g,! states are located ~0.8 eV
above and are admixed to acommon band of the O 2p—
Fe 3d-La5d free antibonding states (the o* band). Like
the strontium ferrite, the LaFeO,; compound is charac-
terized by hybridization of the Fe di-O 2p states
responsible for the covalent component of the Fe-O
bond. Contrastingly, the overlap of the occupied La—O
states in the o band is insignificant. These differences
are clearly seen in the charge density maps (Fig. 6). The
band gap for the antiferromagnetic phase of the LaFeO,
compound is equal to 2.52 eV, which isin good agree-
ment with the experimental data (2.1 eV [15]), as well
as with the results of the LMTO-ASA calculations in
the LSDA + U approximation (2.1 eV [17]). The mag-
netic moments of the iron atoms are equal to 4.06 g
(the experimental magnetic moments are 4.6 g [16]).
According to the data obtained from other calculations,
the magnetic moments of the iron atoms are equal to
35ug (LMTO-ASA [17]), 3.7 yg (LSDA + U, [32)]),
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4.1 yg (LSDA + U [17]), and 4.6 pg (the Hartree—Fock
method [33]).

In conclusion, we note that the above calculations
enabled us to analyze the changes observed in the
energy states of the collinear magnetic phases of the
SrFeO, and LaFeO; cubic perovskites under conditions
of an external hydrostatic pressure. The estimates dem-
onstrated (Fig. 7) that, in the pressure range up to
50 GPa, no magnetic phase transitions occur; i.e., the
state of the ferromagnetic metal for the SrFeO; perovs-
kite and the state of the G-type antiferromagnetic insu-
lator for the LaFeO; perovskite remain most stable.
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Abstract—The velocity of oscillatory motion of domain walls is investigated as a function of the parameters
of amagnetic material and an external acoustic field. The dependence of the amplitude of domain-wall oscilla-
tions on the frequency of an external acoustic wave is determined. It is found that this dependence exhibits a

resonant behavior. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

In recent years, magnetic materials have been exten-
sively used in various fields of engineering. The devel-
opment of one of the promising applications of mag-
netic materials is associated with the use of magnetic
domains as carriers in the recording and transfer of
information in computer engineering [1, 2]. In films
and bulk materials with a domain structure, the main
process responsible for the magnetization reversal is
motion of domain walls. It is this maotion (velocity) of
domain walls that directly limits the speed of comput-
ersin which microdomains are used asinformation car-
riers.

At present, the effect of a magnetic field on the
dynamics of domain walls is well understood. Motion
of domain walls can be induced by static or alternating
magnetic fields[1-5]. Thedynamics of domainwallsin
magnetic fields was experimentally investigated in [5—
7]. The amplitude of displacements of adomainwall as
afunction of an external magnetic field was determined
for weak ferromagnets[5, 6] and yttrium garnet ferrites
[7]. The oscillatory motion of domain walls was theo-
retically studied by Bar’ yakhtar et al. [8], who obtained
the dependences of the domain-wall velocity in weak
ferromagnets on the strength and frequency of the mag-
netic field. The dynamics of domain walls in two-sub-
lattice ferrites in an aternating magnetic field was
examinedin [9]. A comprehensivereview of the studies
concerned with the dynamics of domain walls in the
low-frequency range (0.1-10.0 kHz) was given by Kan-
daurova[10].

The domain structure of magnets, apart from mag-
netic fields, can be affected by an acoustic wave field.
Investigations into the interaction of elastic waves and
domain structures provide valuable information for the
search for new ways of controlling magnetic carriers,
the analysis of conditions favorable for the operation of
magnetic recording devices, and the design of elec-

tronic elements based on the use of surface acoustic
waves. A domain wall can execute oscillatory and drift
motionsin responseto an acoustic wave [11-16]. These
effectswere experimentally observed in yttrium ferrites
garnet [17, 18] and iron borate [19].

In this paper, the oscillatory motion of domain walls
in two-sublattice garnet ferrites is theoretically ana-
lyzed within the Lagrangian formalism.

2. MODEL AND EQUATIONS OF MOTION

The dynamics of garnet ferrites with two nonequiv-
alent sublattices in an acoustic wave field will be
described on the basis of the Lagrangian density func-
tion L represented in terms of the unit antiferromag-
netic vector | [20]. For the description of the domain-
wall dynamics, it is convenient to change over to the
spherical coordinate system by parametrizing the vec-
tor | with the angular variables 8 and ¢; that is,

I,+il, = snBexp(i9), I, = cosb. (D)

The Lagrangian density function for a ferrimagnet in
the angular variables has the form

L(6, 9) = MZ| Z[(0)"+ (9)"sin'0)

—~3SU® )+ (@ )*sin"] —%snzes'nzq; —%cosze

-B,[(u,s n2d> + uzzcoszq))sinze + uyycosze] 2
+ B,[sin20(u, cos¢ + uy,Sind) + uxzsin2¢sin26]

. 14 C
+ 3(0) + =70 (1. 0058) — ZHu, + ) + U7

2 2 2
_C12(uxxuyy T UyUy, + uyyuzz) - 2C44(uxz + uxy + uyz)] .

1063-7834/05/4711-2089$26.00 © 2005 Pleiades Publishing, Inc.
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Here, dots indicate the derivatives with respect to the
timet; M, isthe magnitude of the sublattice magnetiza-

tion vectors, ¢ = gM,./ad/2 is the minimum phase

velocity of spin waves; d and a are the constants of the
uniform and nonuniform exchange interactions, respec-
tively; g isthe gyromagnetic ratio, which is assumed to
beidentical for both sublattices; 3, and 3, are the effec-
tive orthorhombi ¢ anisotropy constants; p isthe density
of the material; u is the displacement vector; u, is the
elastic strain tensor; ¢; isthe fourth-rank tensor of elas-
tic constants, which is written in the matrix notation
(C11 = Cooxr C12 = Cuyys Cas = Cypy); @nd By and B, are the
guantities determined through the tensor of magne-
toelastic constants as B, = by; — by, = by — by and
B, = by, = by,,, respectively.

The parameter v characterizes the conditions under
which the ferrite can be treated as an effective ferro-

magnet with the net magnetization Ms= ) . M;, where

M; is the magnetization of the ith sublattice. The model
of an effective ferromagnet is considered to be accurate
in the case when the magnitudes of the sublattice mag-
netization vectors differ significantly, i.e., when the net
magnetization of the ferrite is sufficiently large [20]:

M1 =M,
==t 2 B
M.J B 3

This inequality is the standard approximation used for
interpreting experimental data on the dynamics of non-
linear excitations in ferrites. In the subsequent treat-
ment, we will consider garnet ferrites with two non-
equivalent sublattices whose magnetizations differ
insignificantly. Below, we will make estimates for

: . : B ,
yttrium garnet ferrite for whichv < R Inthiscase,

the ferrite cannot be considered an effective ferromag-
net.

The dynamic retardation of domain walls due to
magnetic dissipative processes is taken into account by
the dissipative function

_ )\Mol'z
= 29

where A is the Hilbert damping constant. It is assumed
that the damping in the elastic subsystem is relatively
weak and, hence, can be ignored.

)\MO

F = (9 +$°sin’g), 4

The elastic wavelength is assumed to be consider-
ably larger than the domain-wall thickness. We will
restrict our consideration to the isotropic magnetoelas-
tic model y= B, = B..

In the framework of these approximations, the equa-
tions describing the magnetization dynamics (with due
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regard for the relaxation terms) and the equations of
elastodynamics take the form

a%ke —%(%+ sinBcos

<[af3(®) ~(@ )H-Busn'e + B | + -psine

®)
—y[sin26(uzzcos ¢ +u,Sn2¢ + uxxsin ¢ —uy)]
+200526(U,, oS + U, Sind)] = Ag
gM,

ad@ )sin’ 6)——Za—t(¢sm 0) — B,sin’0sind cos
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Here, oi(li() isthe component of theinternal stresstensor;

and fi(e) stands for the externa force, i.e., the external

acoustic wave. It is assumed that the strain induced by
an acoustic wave (~k uo, wherek, isthe wave vector and
Up is the displacement amplitude in the elastic wave)
exceeds the striction strain (~B,/c;j, k=1, 2).

The solutions to Egs. (5) and (6) will be sought in
terms of the perturbation theory based on the introduc-
tion of an implicit collective coordinate [9, 15, 16]. As
azeroth approximation, we use the equilibrium magne-
tization distribution

cosdo(y) = —tanh Y, 6)
Yo

wherey, = ./a/B, hasthe meaning of the thickness of

the domain wall. Let us consider a monochromatic
acoustic wave that has a frequency w, propagates per-
pendicular to the plane of the domain wall, and is char-
acterized by the displacement vector u =
Re{ugexpli(k,y — wt)]}. In order to analyze the motion
of adomainwall in an elastic stressfield induced by an
acoustic wave, we use the perturbation theory scheme
for solitons with a collective variable. The collective
variable Y(t) isintroduced as the coordinate of the cen-
ter of the domain wall, whose derivative determinesthe

instantaneous velocity of the domain wall V(t) = Y (t).
By assuming that the amplitude of the acoustic waveis
asmall parameter, the functions 6(y, t), ¢(y, t), and V(t)
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can be represented in the form of expansions in powers
of the amplitude; that is,

g T
B(E 1) = T+ 0,61+ 0,6, 1)+ .
O

IE D = 0o +0u(E D +0xE )+ O
BV = Vi + Vo) +

where & =y —Y(t). The subscriptsn=1, 2, ... indicate
the order of smallness in the acoustic wave amplitude.
The function ¢4(¢) describes the motion of the unper-
turbed domain wall and has aform similar to the static
solution (8). The higher order functions 6,,(¢, t) and
0,(& 1) (n=1, 2, ...) characterize the distortion of the
domain wall.

After substituting expansions (9) into Egs. (5) and
(6) and separating theterms of first order in the acoustic
wave amplitude, we obtain the first-order equations of
the perturbation theory
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Here, we introduced the following designations. o =

(B, — B1)/B1, Wy = clyy = gM,,/B18/2 is the activation
frequency of the lower branch of bulk spin waves, w, =
vogMy/4, and w, = AdgM,/4 is the characteristic relax-
ation frequency.

The operator L has the form of the Schrodinger
operator with the reflectionless potential
L= yZd— 1- + (12)
de”? cosh™(&/Yo)
The spectrum and wave functions of the operator L
(12) are well known. This spectrum consists of one dis-
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crete level with the eigenvalue A, = 0 to which there
corresponds the localized wave function,

cosh™ £

1
J2yo Yo

and the continuous spectrum A, = 1 + pzyg described
by the eigenfunctions

fo(8) = (13)

fo(8) = fganh——lpyq]exp(upz) (14)

whereb, = 1+ p2y§ and L isthelength of the crystal.

The eigenfunctions fy(¢) and f,(€) form a complete
orthonormal set of functions. Consequently, the solu-
tion to the system of equations (10) and (11) to thefirst
order of the perturbation theory will be sought in the
form of an expansion in the complete set of eigenfunc-
tions {fy(€), f,(€)} . As aresult, we obtain

0.(, 1)

O . 0 (15)
= Regg[cpfp(i)ﬂofo(é)] eXp[l(kyY—wt)]E,

61(&, 1)

O . 0(16)
= Re%%[dpfp(éhdofo(é)] exp[l(kyY—wt)]H

For two different positions of the sample, the
domain wall executes a trandlational motion with an
equal energy. The spatial magnetization distribution for
the domain wall is described by relationship (8) with
the angular variable ¢. Consequently, the term describ-
ing intrawall oscillations (with the coefficient dy) in
expansion (16) corresponds to the Goldstone mode.
The presence of this mode in the spectrum can lead to
divergence [21]. In order to avoid divergence, we use
the implicit collective coordinate method and omit this
mode in expansion (16) [21] (i.e., we set d, = 0).

From the condition that the coefficient of the shear
mode must vanish, we obtain the equation for the
domain-wall velocity in the approximation linear in the
field; that is,

Va(t) + Ho, - "*’“qﬂvl(t)

2 .

_ TTY(KYo) W, IUg, Uox 17)
TN G =
COShDTD h|:| 5 0
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Fig. 1. Dependence of the amplitude hy of domain-wall

oscillations on the acoustic wave frequency w for the
yttrium garnet ferrite'Y sFe5015.

where k =k, g = g, +id, oy = (Wle)? G, = (Ww)/w;,
g; = (oooq,)/oof , and ug; is the ith component of the

amplitude of the displacement vector of the elastic
medium.

The solution of this equation can be represented in
the form

2
v = — Moo
2B,(0 ) B, —ito— 20
q
(18)
';T‘”y Lg:ky exp[i (KY — )] .

0 0
coshD > 0] inh 05 0

When deriving relationship (18), we were interested
only in forced oscillations and assumed that damped
natural oscillations can be disregarded within a suffi-
ciently long timeinterval t > 1/w,.

3. DISCUSSION

The solution of the equations of motion to the first
order of the perturbation theory describes the oscilla-
tory motion of domainwallsat avelocity V;. The exper-
imentally measured quantity is the amplitude of

domain-wall oscillationsh, = Reg Vy D
roexp[i(kY — wt)]D

In an elastic stress field induced by an acoustic wave
propagating perpendicular to the domain-wall planein
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the ferrite, the oscillation amplitude is defined by the
expression

0 iy’
= RenImkyw,

_|q3w\D
2P0~ ) o —io— =5

(19)
i qu qu

Ky [TKYq
coshD > 0] h 0% 0

I

In the experimental studies performed by Vlasko-
Vlasov and Tikhomirov [17, 18], the strain tensor kuy;
was assumed to be a specified parameter of the elastic
wave. In the analysis of expression (19), we aso
assume that the strain tensor kug Cw is a specified
parameter of the elastic wave and has a magnitude of
the order of 10°.

In the long-wave approximation (ky, < 1), garnet
ferrites satisfy the following relationships: ¢, < 1 and
(oo,2 + oov2 - ooz)/oof < 1. In this case, the frequency

dependence of the amplitude of domain-wall oscilla-
tions takes the form

hy(w) = w[kuozw KU, ZS}L
2B,0M;s W + W,
A (20)
1+ (wlo,)?

where s is the velocity of propagation of the elastic
strains induced by the acoustic wave.

The frequency dependence of the amplitude of
domain-wall oscillationsin the yttrium garnet ferriteis
plotted in Fig. 1. This dependence exhibits a pro-
nounced resonance at the frequency w,. A similar fre-
guency dependence of the oscillation amplitude is
observed for a nonlinear oscillator in a medium with
damping in response to an external periodic force [22].
The asymmetry of the frequency dependence of the
oscillation amplitude with respect to the extremum is
associated with the external force, which leadsto adis-
tortion of the curve. Moreover, a dependence similar to
that shown in Fig. 1 was obtained in our earlier work
[15], in which we investigated the dynamics of domain
walls in an elastic stress field induced by an acoustic
wave propagating in the domain-wall plane. However,
the behavior of the frequency dependence of the oscil-
lation amplitude was not analyzed in [15].

Before proceeding to further anaysis of the
obtained frequency dependence of the amplitude of
domain-wall oscillations, we note one important cir-
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cumstance regarding the solution of the equation of
domain-wall motion in weak alternating magnetic
fields. Itisknown[23, 24] that, when the ferromagnetic
resonance frequency is considerably higher then the
relaxation frequency (this holds true for the classes of
magnets under consideration), the frequency depen-
dence of the amplitude of domain-wall oscillations is
characterized by a relaxation decay described by the

——EQD—St————Z , Where congt is a parameter
1+ (ww)
independent of frequency. A similar relaxation decay of
the amplitude of domain-wall oscillations in magnetic
fieldswasrevealed in [9] within the ferrite model under
investigation. This dependence for the yttrium garnet
ferriteisdepicted in Fig. 2.

formula hy =

The presence of amaximum in thefrequency depen-
dence of the amplitude of domain-wall oscillations has
been established for magnetic materials in an acoustic
wave field. A specific feature of this effect is that the
restoring force does not act on the domain wall,
because, in the approximation used, the domain wall is
characterized by the trandational invariance. The reso-
nant behavior of the amplitude of domain-wall oscilla-
tionsis governed by the linear dependence of the strain
tensor components on the acoustic wave frequency.
Actually, since the strain tensor obeys the relationships
u; ~ kiu; ~ wu;, the numerator in the formula describing
the frequency dependence of the amplitude of domain-
wall oscillations includes afactor proportional to w. As
a consequence, there appears a maximum at the relax-
ation frequency.

The frequency dependence of the amplitude of
domain-wall oscillations can be analyzed using the fol-
lowing numerical parametersfor the yttrium garnet fer-
riteY 5Fes0q, [25]: o= 10°cm, 3, =0.6,0 ~ 1, A ~ 1074,
Mo=1400e,v=5x103g=1.76x 107 (sOe) %, w} =
7 x 108 s, @ ~ 101 s, kug ~ 105, yM{ = 35 x
106 erg/cm?®, and s~ 10° cm/s. In the yttrium garnet fer-
rite, the maximum oscillation amplitude at frequencies
close to the resonance frequency w is equal to 0.8 x

107® cm, which is comparable to the thickness of the
domain walls.

L et us comparethe oscillation amplitude obtained in
this study with the data available in the literature. The
average magnitude of the oscillation amplitude for the
yttrium orthoferrite YFeO; in an alternating magnetic

field at the frequency w=7 x 108 s can be aslarge as
5 x 10 c¢m [8]. In this case, the domain-wall oscilla-
tions are induced by the magnetic field components
aligned parallél to the easy magnetization axis. In the
garnet ferrite in an oscillating magnetic field [9], the
domain-wall oscillations are induced by the y and z
components of the magnetic field, which are aligned
with the hard and easy magnetization axes, respec-
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Fig. 2. Dependence of the amplitude hy of domain-wall

oscillations on the magnetic field frequency w for the
yttrium garnet ferrite’Y sFesO15.

tively. The oscillation amplitude at the frequency w, is

equal to 10 cm for the z component and 10~ cm for
the y component of the magnetic field.
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Abstract—The specific features of the spin-flop and spin-flip transitions in thin antiferromagnetic layers and
“ferromagnet—nonmagnetic metal” multilayer magnetic structures are considered. The dependence of the mag-
netic fields corresponding to these phase transitions on the thickness of the antiferromagnet or on the number

of layersin the multilayer is determined. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Magnetic layers with a thickness of 1-10 nm and
multilayer structures formed by these layers have been
widely used in modern microelectronics. For these
objects, the influence of the surfaces and interfaces of
the layers, as well as the size effects, are clearly pro-
nounced. In this respect, the study of their propertiesis
an important problem. The purpose of the present work
was to investigate theoretically the spin-flip and spin-
flop transitionsinduced by an external magnetic field in
athinlayer of amirror-symmetric antiferromagnet with
uncompensated surfaces.

The results obtained are completely applicable to
antiferromagnetically coupled multilayer magnetic
structures consisting of aternating ferromagnetic and
nonmagnetic metal nanolayers. Similar structures have
attracted the particular attention of researchers since
the discovery of the giant magnetoresistance effect in
these materials [1]. If ferromagnetic layers in such a
multilayer are assumed to be uniformly magnetized, the
behavior of thismultilayer in an external magnetic field
should be similar to the behavior of a plane-paralel
antiferromagnetic layer with uncompensated bound-
aries. Theoretical studies of the structures under con-
sideration have been performed using numerical meth-
ods [2-9]. However, to the best of our knowledge,
attemptsto investigate the size effectsin these materials
analytically have not been made.

In our previous work [10], we considered the distor-
tions of the magnetic structure in response to an exter-
nal magnetic field near the surface of the antiferromag-
net. We analyzed the cases of both compensated and
uncompensated surfaces and calculated the depth of
penetration r.. of these distortionsinto the antiferromag-
net (the correlation radius of the order parameter) over
the entire range of magnetic fields up to the field at

which the magnetizations of the two sublattices of the
antiferromagnet become aligned with the external mag-
netic field (the field of the spin-flip transition).

It has been found that, in the case of a compensated
surface of the antiferromagnet, the penetration depth of
surface distortionsis of the order of the interatomic dis-
tancesin all magnetic fields, except inthefield rangein
the immediate vicinity of the field of the spin-flip tran-
sition in which the penetration depth r.. diverges when
tending to thisfield.

For an uncompensated surface of the antiferromag-
net, the penetration depth of surface distortions in a
magnetic field weaker than that of the sublattice reori-
entation (or of the spin-flop transition) isequal in order
of magnitude to the thickness of the domain wall in the
antiferromagnet. Moreover, the penetration depth r in
thefield aligned parallel to the easy magnetization axis
diverges as the bulk spin-flop transition point is
approached.

In magnetic fields comparable to the field of the
spin-flip transition, the behavior of the penetration
depthr.issimilar to that for the compensated surface of
the antiferromagnet. Thus, the size effects in the struc-
tures under consideration are clearly pronounced in
magnetic fields of less than or of the order of the spin-
flop transition field, as well as in the vicinity of the
spin-flip transition field.

2. DESCRIPTION OF THE MODEL

Let us consider an antiferromagnet with ideally
smooth boundary surfaces at temperatures T < Ty
(where Ty is the Néel temperature) with the sublattice
magnetizations assumed to be constant in magnitude.
We will restrict our consideration to the special case of
localized spinsin the approximation of the Heisenberg

1063-7834/05/4711-2095$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Orientation of the magnetization vectors of the
atomic planes in an antiferromagnetic layer with respect to
the easy magnetization axis (the x axis) and the direction of
an external magnetic field.

exchange interaction between nearest neighbors. The
number of nearest neighbors for spinslying in the sur-
face atomic plane is|ess than that for spinsin the bulk.
Consequently, the surface spins are more strongly
affected by an external magnetic field. It isfor thisrea-
son that the field of the surface spin-flop transition is
weaker than the field of the bulk spin-flop transition
[11-13]. We assume that the easy magnetization axis
liesin the surface plane.

In the case of an uncompensated surface, al the
spinslying in the surface atomic plane are collinear and
belong to one sublattice. The atomic planesaligned par-
allel to the surface are numbered by the index j begin-
ning from one of the surfaces. Spinsin the even and odd
planes correspond to different sublattices. The direction
of aspinin the atomic plane is determined by the angle
8; that the magnetic moment corresponding to this spin
makes with a specified direction paralel to the easy
magnetization axis (Fig. 1).

The exchange interaction energy can be written in
the form

N|J | Sha s
W, = %z[cos(ej—ej_l)(l—%)
j=1

1)
+ COS(eJ- —ej+1)(1_6|\/|,j)],

where N is the number of spins in the atomic plane,
Js < 0 is the exchange integral between the nearest
neighbor spins, S; is the average spin of the atom, a is
the number of nearest neighbors of agiven spinlyingin
the adjacent atomic plane, M is the number of atomic
planesin the layer, and 9, ; is the Kronecker delta. The
number of nearest neighborsisa = 4 for the (100) sec-
tion of a body-centered tetragonal lattice (with the ¢
axislying in the plane of the section) or an orthorhom-
bic lattice and a = 1 for amultilayer magnetic structure.

The single-ion anisotropy energy and the Zeeman
energy are represented in the following form:

M
W, = KNS z cos26;, @)

=1
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M
Wp = —2lgS; BgN z cos(0; - ), 3
i=1

where K isthe anisotropy constant, pg isthe Bohr mag-
neton, and By is the induction of an external magnetic
field aligned paralld to the surface and directed at an
angle Y to the easy magnetization axis (Fig. 1).

By minimizing the total energy W=W,, + W, + Wj
with respect to the angles 6;, we obtain the system of
equations

sin(8;—8;_1)(1 -9y ;) +sin(6;—06;,1)(1-3y, ;)

o : (4)
= asin20; +Bsin(6; - y),
where
a = 2K/a|dy| < 1, (5)
B = 2HgBo/aldy|Sy- (6)

The behaviors of thin antiferromagnetic layers (fer-
romagnet—-nonmagnetic metal multilayers) with even
and odd numbers of atomic planes (ferromagnetic lay-
ers) differ significantly. For an odd number of atomic
planes, the surface atomic planes belong to one sublat-
ticeand, hence, the dependence 6(j ) appearsto be even
with respect to the center of the structure. By contrast,
this symmetry is absent in the case of an even number
of atomic planes, when the surface atomic planes
belong to different sublattices.

3. SPIN-FLOP TRANSITION IN A LAYER
WITH AN EVEN NUMBER OF ATOMIC PLANES

In a semi-infinite antiferromagnet, when the exter-
nal magnetic field is antiparallel to the magnetization
vector of the uppermost atomic plane, there occurs a
surface spin-flop transition in the magnetic field (35 =

B,/ /2, where

B, = +/8a (7)

is the field of the bulk spin-flop transition [11-13]. In
this case, as was shown in our previous work [10], a
180° domain wall arises near the surface. Within this
wall, the magnetizations of the second, fourth, and
other successive even layers compensate for the magne-
tizations of the third, fifth, and other odd layers, respec-
tively. Since the magnetization of the first atomic plane
is approximately parallel to that of the last even atomic
plane, the surface magnetic moment iscloseto 4ugNSy.

The numerical solution to the system of equations (4)
for layers with the numbers of atomic planes M = 10,
16, 20, 30, 40, 60, and 80 and a = 0.01 suggests that,
when the magnetic field is aligned parallel to the easy
magnetization axis (¢ = 0), the spin-flop transition
occursin the magnetic field 3 = 3. Then, there arises a
domain wall with the center located at the center of the

layer.
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For B <, wehave8,,_, =0and 6,, =Tt For 3 =
Bs + 0, the angles at the center of the layer are given by

00 | = 0.750).1 + 0.258,,,_, = TU2,

051" = 0.750,, + 0.250,54 » = —TU2.
Thus, the angles 6; change jumpwise in the magnetic
field B = Bs

L et us assume that the layer thickness d exceeds the
penetration depth of distortions r¢, which, in magnetic
fields 3 = 3,, is defined by the formula[10]

ro = 2bl,/|p* B3, ®)

where b is the interplanar distance. In this case, the
magnetization of the surface atomic planes is nearly
parallel to the external magnetic field (Fig. 2a). Atd <
r., the dependence 6(j ) exhibits almost linear behavior
and the magnetization has not managed to rotate
through an angle of 12 from the center of the layer to

the surface (Fig. 2b). The dependence x = 6, — e;“,i"_l

on the number M of atomic planesin alayer inthefield
B3, of the spin-flop transition is plotted in Fig. 3.

As the bulk spin-flop transition field B, is
approached, the correlation radius r, divergesin accor-
dance with relationship (8). Therefore, the dependence
8(j) is characterized by linear behavior at all the num-
bers M of atomic planes in the layer under consider-
ation.

4. SPIN-FLOP TRANSITION IN A LAYER
WITH AN ODD NUMBER OF ATOMIC PLANES

In this case, both surface atomic planes belong to
one antiferromagnetic sublattice. As a result, in the
magnetic field aligned parallel to the magnetization of
this sublattice, the spin-flop transition in afinite layer is
suppressed and should occur in stronger magnetic

fields B > B;, because the collinear orientation of the

magneti zation vectors of the surface atomic planeswith
respect to the direction of the magnetic field is energet-
ically favorable.

The phase transition in the magnetic field g7 to the

spin-flop phase is a second-order transition. Unlike the
first-order bulk spin-flop transition and the case of an
even number of atomic planes, the rotation angle of the
sublattices varies continuously with a change in the
magnetic field and reaches a maximum at the center of
the antiferromagnetic layer (multilayer). This situation
isillustrated in Figs. 4 and 5.

The change in the field of the spin-flop transition as
compared to the field of the bulk spin-flop transition

can be determined from the condition d = Cr(B7),
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where C is a dimensionless constant of the order of
unity. By using expression (8), we abtain

2
(87)° = pi+ BT ©)

2005



2098 BERZIN et al.

ell
*® o
[ ]
L]
1LOF *
M .
L]
. ®e
° L]
0.5 .
.
° .
f I I I H
0 1 2 3 4
B

Fig. 4. Dependence of the direction of the magnetization
vector of the central atomic plane on the magnetic field in
the layer withM = 21.

051
sk ...000...
L] L]
L] L]
L] L]
| | -
. 10 20 J
[ ) L)

0.7+

L] L]

Fig. 5. Directions of the magnetization vectors of the odd
atomic planesin thefield 3 = 0.4 for the layer with M = 41.

BY

Bl __________________ e
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atomic planes.

A comparison of the proposed approximation with
the results of calculations (Fig. 6) leads to the dimen-
sionless constant C = 2.

5. STRONG MAGNETIC FIELDS

Inthefield range 3, < B < B, [where3, =2(2—-a) =
4 isthe field of the bulk spin-flip transition in the case
where the external magnetic field is aligned parallel to
the easy magnetization axig], the penetration depth of
surface distortions is described by the relationship [10]

re = —bllnal—a +—BZ(2_G)

2

B; —2p°

(10)

0 200 _oYF O
- |B-a+B(2=95 45
0 R2_2p’0 O

It is easy to see that the penetration depth r,
decreases with an increase in the magnetic field and

vanishesat B = B,/+/2 = /8. With afurther increasein
the magnetic field, the penetration depth r. increases
and exhibits a square-root divergence at 3 — [3,.

ForB~21and|B,—B|~1, wehaver, ~b. Therefore,
a M > 1, the distortion in the vicinity of two bound-
aries of the layer can be independently considered, the
size effect is absent, and the problem is reduced to that
studied in our earlier work [10].

It should only be noted that the deviations of the
canting angles of the sublattices from the bulk canting

anglesat B < B areoppositein sign, whereas the corre-

sponding deviations at 3 > [3 are identical in sign
(Fig. 7).

In the vicinity of the magnetic field 3,, whenr, —
oo, the size effects become significant. Sincethe antifer-
romagnetic layer (multilayer) has afinite thickness, the
spin-flip transition occurs in a continuous manner in a

magnetic field B; < [,. The magnetic field B, deter-
mined from the condition d = C'r. is given by the for-
mula

s = g1 | (1)

By comparing the calculated resultswith formula (11),
we obtain C' = 4.5 for both even and odd numbers of
atomic planesin the layer (Fig. 8).

6. SURFACE MAGNETIC MOMENT

L et us now discuss the difference between the mag-
netic moment induced by an externa magnetic field
and the magnetic moment of the same antiferromag-
netic layer mentally separated in the bulk of the antifer-
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romagnetic specimen (hereafter, this specimen will be
referred to as the bulk analog).

In the case of layers with an even number of atomic
planes, the magnetic moment is induced in the mag-

neticfield B, =B,/ +/2;i.e., inthefieldrange < B < B,
the magnetic moment of the finite antiferromagnet is
nonzero (unlike the magnetic moment of the bulk ana-
log). The magnetic moment is aligned with the mag-
netic field parallel to the easy magnetization axis.

In magnetic fields 3 > 3,, the magnetic moment var-

iesalmost linearly and reaches saturation in thefield B5

(Fig. 9a). The difference between the magnetic
moments of the layer and the bulk analog in strong
magnetic fields B < B is insignificant (Fig. 9b) and,
hence, isdifficult to determine with experimental meth-
ods.

In the case of layers with an odd number of atomic
planes, the longitudinal (along the field) magnetic
moment m, equal to the magnetic moment of an uncom-

pensated plane occursin azero magnetic field. With an
increase in the magnetic field, the magnetic moment m,

increases drastically at B} and then increases linearly
(Fig. 10a).
Apart from the longitudinal component, in the mag-

netic field B} , there arises a magnetic moment compo-
nent m;, that is perpendicular to the magnetic field and

lies in the plane of the layer (Fig. 10b). The magnetic
moment component M is nonzero in the field range

B = P71, in which the sublattice magnetizations rotate

continuously. In magnetic fields > B7, therotation is
completed and m, = 0. In the bulk anal og, the magnetic
moment component

2
m. = 2Ny 1~

differs substantially from zero over the entire field
range B; < B < B, (except for magnetic fields in the
vicinity of the point 3,) and has the opposite direction.

7. THE EFFECT OF ROUGHNESS

If the number of layersin multilayer magnetic struc-
tures is fixed, the presence of atomic steps on the sur-
face of the antiferromagnet leads to a change in the
number of atomic planes. On different sides of a step,
the number of planes differs by unity.

In the case when the characteristic distance R
between steps is considerably larger than the penetra-
tion depth r,, the antiferromagnetic layer is separated
into domains whose boundaries are perpendicular to
the surface of the layer and coincide with step edges on
one of the layer surfaces. The behavior of the magneti-
zation in each domain is governed by the number of
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Fig. 8. Dependence of the spin-flip transition field on the
number of atomic planesin the layer.

atomic planes. This number inside a domain remains
unchanged. The domain typeis determined by acombi-
nation of two parameters, namely, the parity of atomic
planes and the number of the antiferromagnetic sublat-
tice corresponding to the uppermost atomic plane.
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There are four possible combinations and, hence, four
domain types. For B < B < B7, the spin-flop phase
should be observed in domains with an even number of
atomic planes, whereas the collinear phase should be
stablein domainswith an odd number of atomic planes.

For B — [; — 0, the correlation radius of distor-
tions diverges. This leads to smearing of the domain
structure at r () > Rdueto the averaging of surfacedis-
tortions.

The domain structure again becomes clearly pro-
nounced in magnetic fields B > By, when r(p) is less
than the characteristic distance R between steps. Asthe

magnetic field B is approached, the contrast between
domains weakens and disappears at the point 3 = B3 .

8. CONCLUSIONS

The main conclusions drawn in this study can be
summarized as follows.

(1) The character of the spin-flop transition in an
antiferromagnetic nanolayer (“ferromagnet—-nonmag-
netic metal” antiferromagnetically coupled multilayer
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structure) depends substantially on the parity of the
number of atomic planes (ferromagnetic layers).

(2) Inalayer with an even number of atomic planes,
the first-order spin-flop transition occursin the field of
the surface spin-flop transition. As aresult, there arises
a state with a domain wall located at the center of the
layer.

(3) Inalayer with an odd number of atomic planes,
the second-order spin-flop transition is observed in a
magnetic field that is stronger than the field of the bulk
spin-flop transition and depends on the thickness of the
layer.

(4) The spin-flip transition in an antiferromagnet
takes place in a magnetic field that is weaker than the
field of the bulk spin-flip transition and depends on the
thickness of the antiferromagnet.

(5) The surface roughness of the antiferromagnetic
layer under specific conditions leads to its separation
into domains whose boundaries are perpendicular to
the surfaces of the layer and coincide with edges of
atomic steps on the surfaces. The four types of domains
formed differ in terms of the parity of the number of
atomic planes and the number of the sublattice corre-
sponding to the surface atomic plane.
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Abstract—The acoustical, resistive, and magnetic properties of a Lag 755 ,5MnO5 lanthanum manganite sin-
gle crystal are investigated in the temperature range involving the second-order magnetic phase transition. The
acoustical measurements are performed by the pulse-echo method in the frequency range 14-90 MHz. It is
found that, as the temperature decreases, the velocity of a longitudinal acoustic wave propagating along the
[111] axis in the single crystal drastically increases at temperatures below the critical point of the magnetic
phase transition. No dispersion of the acoustic velocity isrevealed. A sharp increase in the acoustic velocity is
accompanied by the appearance of an acoustical absorption peak. The observed effects are discussed with due
regard for theinteraction of acoustic waveswith the magnetic moments of the manganeseions. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

Rare-earth manganites of the genera formula
R, . /AMNO;, where R is a rare-earth metal (La, Nd,
Pr) and A is an akaline-earth metal (Ca, Sr, Ba), have
been intensively studied in recent years. These com-
pounds have attracted alarge amount of research atten-
tion owing to the unique combination of their elec-
tronic, magnetic, and structural properties, aswell asto
the very high sensitivity of their resistance to magnetic
fields and mechanical deformations (see, for example,
reviews [1, 2]). In this respect, the rare-earth mangan-
ites are convenient model objects for use in investigat-
ing the physical nature of strongly correlated systems
and hold the greatest promise for practical applications
(specifically in devices for the recording, storage, and
processing of information).

At present, it isuniversally accepted that the proper-
ties of manganites are determined not only by the dou-
ble-exchange mechanism [3] but also by the strong
Jahn—Teller electron—phonon interaction [4]. From the
standpoint of strong e ectron—phonon interactions,
acoustical methods are the most attractive as providing
a deeper insight into the physical properties of manga-
nites and the nature of the giant magnetoresistance
effect. Investigation into the acoustical characteristics
of manganites (such as the absorption and velocity of
sound) alows one to obtain independent information
on the relaxation processes occurring in electronic,
phonon, and magnetic subsystems of the objects under
investigation; on the structural and magnetic phase
transitions; and on the mechanisms of the electron—
phonon and spin—phonon interactions [5-7].

In this work, we investigated the acoustical, resis-
tive, and magnetic properties of aLg _,Sr,MnO; lan-
thanum manganite single crystal in the temperature
range involving the second-order magnetic phase tran-
sition and the metal—insulator transition. The
L&y 755r0,sMNO5; manganite is a typical representative
of the compounds characterized by magnetoresistance
in the vicinity of the ferromagnetic phase transition
with a high critical temperature T, = 340 K. Owing to
the simple phase diagram and the possibility of
growing high-quality single-crystal samples, the
L&y 755r0.25MNO5 compound is a convenient object for
usein studying the specific features and mechani sms of
the interaction of acoustic waves with the electronic,
phonon, and magnetic subsystemsin rare-earth manga-
nites.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

A single crystal of the Lay 755, ,5MNO; manganite
was grown by floating zone melting with radiation heat-
ing from a preliminarily sintered ceramic material [8].
X-ray diffraction analysis was performed by the Laue
and rolling-crystal methods. The x-ray diffraction pat-
tern of a powdered sample was recorded on a DRON-2
diffractometer (CuK, radiation). The absorption and
velocity of longitudinal acoustic waves were measured
at temperatures of 77-420 K and frequencies of 14—
90 MHz. A cylindrical sample (3 mm in diameter and
5 mm long) oriented along the [111] cubic axis was
prepared by cutting in a coolant with subsequent fine

1063-7834/05/4711-2102$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. X-ray diffraction pattern of the Lag 75Srg 25MNO3
single crystal. The reflection indices correspond to a hexag-
onal pseudocell.

grinding and optical-quality polishing of the faces.
Sound was excited by resonant piezoelectric transduc-
ers made of lithium niobate and piezoel ectric ceramics.
The transducers were glued to the polished face of the
sample with the use of Nonag Stopcock grease. We
used both the fundamental frequencies of the transduc-
ers (f = 50, 30, 14 MH2z) and their higher harmonics.

The data on the vel ocity of sound were obtained by
the ultrasonic pulse-echo-overlap technique (the
Papadakis method [9]). The accuracy of the relative
measurements was approximately equal to 0.01%.

The €electrical resistance of the sample was mea-
sured by the four-point probe method in the tempera-
ture range 77470 K. The magnetic susceptibility was
determined by the induction method at a frequency of
1 kHz.

The measurements were carried out in a cryostat
filled with liquid-nitrogen vapors. The temperature was
controlled by aheater and measured with athermocou-
ple. Therate of change in the temperature in the course
of the measurements was 1 K/min.

3. RESULTS AND DISCUSSION

The analysis of the experimenta x-ray diffraction
pattern shown in Fig. 1 reveded that the
L&y 755r025MNO; single crystal has rhombohedral sym-
metry. The unit cell parameters of the Lay /551 ,sM N0,
single crystal are presented in the table. Our results are
in good agreement with the data obtained by Urush-
ibaraet al. [10].

The x-ray diffraction investigations demonstrated
that the sample is a block single crystal in which the
misorientation of the blocks does not exceed 1°. The
quality of the single crystal did not permit us to reveal
a rhombohedral distortion. According to our data, the
L&y 755r0.,5MNO; crystal has acubic pseudocel | with the
unit cell parameter a = 3.91(1) A. The Laue x-ray dif-
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2103

Fig. 2
Lag 75519 25MNO3 single crystal along the [110] cubic axis.

Laue x-ray diffraction pattern of the

fraction pattern of the sample under investigationisdis-
played in Fig. 2.

At T =430 K, the sample has the electrical resistiv-
ity p =6 x 10 Q cm. The temperature dependence of
the electrical resistance R (Fig. 3) exhibits a behavior
typical of this composition [10]: a broad maximum is
observed in the temperature range 470-350 K, and the
electrical resistance drastically decreases (by afactor of
approximately 5) at T = 330-350 K.

According to the data obtained from magnetic mea-
surements (Fig. 3), the sample undergoes a second-
order magnetic phase transition at a temperature T, =
337 K. As the phase transition temperature is
approached, the magnetoresistivity Ap(H)/p(0) =
[p(H) — p(0)]/p(0) increases and becomes equal to 7%
in the magnetic field H = 30 kOeat T = 300 K.

The temperature dependences of the acoustical
absorption coefficient a and the relative change in the
velocity AV/V of longitudinal acoustic waves propagat-
ing in the Lay75SrsMNO; single crystal aong the
[111] direction are plotted in Fig. 4. At T = 300 K, the
magnitude of the acoustic velocity is V = 6.41 x
10° cm/s. The dependence AV/V(T) involves three char-
acteristic portions. It can be seen that the acoustic
velocity increases monotonically with adecreasein the
temperatureintherangesT> 345K and T< 325K and
changes drastically (AV/V ~ 1%) in the temperature
range of the magnetic phasetransition (T = 340K). Nei-
ther temperature hysteresis nor dispersion of the acous-

Unit cell parameters of the Lag 755 ,sMNO5 single crystal

Rhombohedral cell

ag, A
5.492

Hexagonal pseudocell
ay, A cy, A
5.530 (3) 13.404 (6)

y, deg
60.46
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Fig. 3. Temperature dependences of (1) the electrical resis-
tance R in a zero magnetic field and (2) the magnetic sus-
ceptibility x for the Lag 75Srg ,sMnO3 single crystal.
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Fig. 4. Temperature dependences of (1-3) the acoustical
absorption coefficient a and (4—7) the relative changein the
velocity AV/V of longitudinal acoustic waves propagating in
the Lag75SrgsMNO3 single crystal at frequencies f =
(1, 4) 90, (2, 5) 50, (3, 6) 36, and (7) 14 MHz.

tic velocity isrevealed to within the experimental error
of the measurement.

The temperature dependence of the acoustical
absorption coefficient a at all frequencies is relatively
weak outside the temperature range corresponding to
the phase transition (Fig. 4). In the phase transition
range (T = 340 K), the acoustical absorption coefficient
exhibits a sharp maximum. As follows from the results
of the measurements, the acoustical absorption Aa at
the maximum increases with an increase in the fre-
guency. Note that, within the limits of experimental
error, the temperature position of the maximum does
not depend on the acoustic frequency.

The absence of additional features in the tempera-
ture dependences of the absorption coefficient and the
velocity of sound indicates that no structural transfor-
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mations occur in manganites of the given composition.
This is confirmed by the results of x-ray and neutron
diffraction investigations [11].

Our data on the absorption and vel ocity of sound are
in qualitative agreement with the experimental temper-
ature dependences of the velocity of longitudina
acoustic waves and the internal friction coefficient of
the Lay5Sr,sMNO; single crystal measured by the
composite-oscillator method at afrequency of 100 kHz
[12]. Asin our case, Zainullina et al. [12] observed an
increase in the acoustic velocity and the maximum of
the internal friction coefficient in the range of the mag-
netic phase transition. Furthermore, according to [12],
the internal friction coefficient at T = 415 K exhibits a
“giant” peak, which is not accompanied by anomalies
in the temperature dependence of the acoustic vel ocity.
Intheauthors opinion [12], this peak isassociated with
the relaxation processes occurring in the system of
point defects in the sample. The absence of a similar
absorption peak in our case may suggest that either
point defects are absent in the single crystal under
investigation or this effect at frequencies of 14-90 MHz
can be observed only in the high-temperature range (at
T = 570-660 K according to our estimates made from
the data presented in [12]).

The acoustical absorption maximum observed inthe
range of the magnetic phase transition at T = 340 K
(Fig. 4) can be explained by the additional absorption
dueto the interaction of the longitudinal acoustic wave
with the order parameter (the spontaneous magnetic
moment). In the general case, there exist the following
mechanisms of additional absorption [13-15]. First and
foremost, according to the Landau—K hal atnikov theory
[13, 15], the inclusion of the critical slowing-down of
the order parameter relaxation in the vicinity of the sec-
ond-order phase transition at T < T, leads to an addi-
tional contribution to the acoustical absorption. This
contribution is a function of the frequency and has the
classical form for Debye relaxation:

_ AM®_ o't

T 1+t

Or

where A is a numerical factor, M is the spontaneous
magnetic moment, T = 1 — T/T, is the reduced tempera-
ture, w = 2r1tf is the circular frequency of the acoustic
wave, and t = t,1 1 is the relaxation time of the sponta-
neous magnetic moment. The temperature dependence
of the relaxation contribution o has the shape of an
asymmetric peak with amaximum at the temperature at
which the condition wt = 1 is satisfied. The characteris-
tic time of spin relaxation t, for conventional magnetic
materialsis of the order of 10° s. Therefore, the maxi-
mum of the relaxation contribution ag in the frequency
range 14-90 MHz should be observed at temperatures
close to the critical point T.. Thisisin agreement with
the observed position of the acoustical absorption peak.
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Apart from the Landau—Khalatnikov mechanism,
the additional contribution to the absorption of sound
can be made by the interaction of the acoustic wave
with critical fluctuations of the magnetization. Thetem-
perature dependence of thisfluctuation contribution has
the shape of a symmetric peak a Ot| ™ (wherenisa
critical exponent), which diverges at T = T, [14, 15].
However, this divergence can be observed only for very
pure materials. In real materials, the divergenceis can-
celed, for example, by structural defectsand inhomoge-
neities. In some cases, the fluctuation contribution o
can turn out to be insignificant as compared to the
relaxation contribution ag [15].

The shape of the acoustical absorption peak
observed for the La, ,5Sr; ,sMnO; single crystal (Fig. 4)
differs significantly from the peak corresponding to the
Landau—K halatnikov relaxation mechanism. The shape
of this peak can be most adequately described by the
sum of the contributions from the Landau—K halatnikov
relaxation and fluctuation mechanisms: a = ag + d.
Unfortunately, the accuracy of the measurement does
not enabl e us to separate these contributions and to per-
form amore detailed analysis.

4. CONCLUSIONS

Thus, the acoustical, resistive, and magnetic proper-
tiesof aLay755r,,5MNO; manganite single crystal were
investigated over a wide temperature range, including
the magnetic phase transition at T, = 340 K. The acous-
tich measurements performed by the pulse-echo
method in the frequency range 1490 MHz revealed
that a decrease in the temperature leads to a drastic
increase in the velocity of the longitudinal acoustic
wave propagating along the [111] axis of the single
crystal at temperatures below the critical point T, The
drasticincreasein the velocity of sound isaccompanied
by the appearance of an acoustical absorption peak.
These anomalies of the acoustical properties suggest
that the acoustic waves strongly interact with the mag-
netic moments of manganese ions in the
L&y 755r02sMNO; single crystal. The results obtained
were analyzed theoretically. As follows from this anal-
ysis, the asymmetric shape of the acoustical absorption
peak indicates that the absorption of sound in the com-
pound under investigation is substantially affected by
both the Landau—K halatnikov relaxation and the inter-
action of the acoustic wave with critical fluctuations of
the magnetization at temperatures in the vicinity of the
second-order magnetic phase transition.
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Abstract—The variations in the magnetic resonance spectra accompanying the transition from the paramag-
netic to ferrimagnetic state in [{Cr(CN)g} {Mn(S)-pnH-(H,0)}] - H,O orthorhombic chiral molecular crystals
were studied. The dependence of the EPR linewidth on temperature in the proximity of the transition point 7 =
38 K argues for the two-dimensional character of spin ordering. The spin resonance line was found to undergo
exchange narrowing at T > T. The ferrimagnetic phase has an easy magnetization axis coinciding with the a

crystallographic axis. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

The wuse of hexacyanometalate complexes
[(M(CN)e)*, where M stands for a transition metal] in
the synthesis of new molecular magnets has lead to
considerable progress in increasing magnetic ordering
temperatures and to observation of the photomagnetic
effect [1]. The above complexes are molecular precur-
sors capable of being incorporated into various com-
pounds and of controlling the number and efficiency of
exchange channels among neighboring spins. This has
made it possible to raise the magnetic ordering point to
room temperature [2, 3] and prepare monomolecular
magnets with spins of up to 27/2 [4, 5]. The high sym-
metry of the M(CN)s complexes makes their magnetic
properties in crystals predictable, and their compatibil-
ity with metals of various types makes it possible to
vary the symmetry and overlap of electronic shells.
Most compounds of this type exhibit three-dimensional
(3D) magnetic ordering. However, crystals whose spe-
cific structural features are capable of giving rise to
magnetism of lower dimensions or helicoidal spin
ordering have also attracted attention.

There have been reports [6] on the preparation of a
new molecular crystal, [{Cr(CN)qs}{Mn(S)-pnH-
(H,0)}] - H,0, which undergoes a magnetic phase tran-
sition at T, = 38 K (orthorhombic crystal structure
P2,2,2, with lattice parameters a = 7.6280(17), b =
14.510(3), and ¢ = 14.935(3) A). Transparent, needle-
shaped, greenish crystals have been termed green nee-
dles (GNs). The atomic structure of GN crystals is
shown in Fig. 1a. Their molecules are coupled to form
quasi-two-dimensional wavy layers parallel to the ab
plane. Within a layer, the alternating paramagnetic ions

Cr* and Mn** are covalently bonded through —CN-
groups to form a slightly distorted square lattice
(Fig. 1b). The layers are coupled by van der Waals
interaction. The local environment of the Cr** ions con-
sists of six carbon atoms occupying the corners of a
octahedron. The Mn?* ions are also surrounded by six
nearest neighbors, five of which are nitrogen atoms and
one, an oxygen atom. In addition, as the N5-N6 long
axis of the coordination octahedron is displaced along
the ¢ axis, it turns about it. In other words, the structure
exhibits chirality with respect to Mn?* positions and has
no inversion symmetry. The chirality gives rise to circu-
lar rotation of the plane of light polarization and to
asymmetry in the Faraday rotation, which depends on
the strength of an external dc magnetic field [6]. The
specific features of magnetic ordering of the GN molec-
ular compound have not yet been adequately studied. In
particular, the effect of chirality on the formation of the
magnetic structure of this compound remains unclear. It
is these features that account for the interest in GN
crystals in connection with the progress made in mag-
netic resonance techniques as applied to chiral ferrites,
chiro-FMR (see, e.g., review [7]).

The present study was aimed at determining the type
of magnetic ordering and investigating the magnitude
and direction of the anisotropy field in a magnetically
ordered state, as well as at observing the features in the
magnetic properties of GN crystals that originate from
the quasi-two-dimensional character of the structure of
these crystals.

It is appropriate to note also that
[{Cr(CN)¢ }H{Mn(S)-prnH-(H,0)}] - H,O can be synthe-
sized (depending on the actual conditions of prepara-
tion) in three different orthorhombic modifications hav-

1063-7834/05/4711-2106$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Atomic structure of GN crystals as viewed (a) along the a axis and (b) along the ¢ axis.

ing the same space group P2,2,2, to which GNs belong
and chirality of the Mn?* positions: GNs themselves;
phase I and phase II with the same chemical formula as
GNs; and phase III, the dehydrated compound
[{Cr(CN)¢}{Mn(S)-pnH-(H,0)}] [6]. Here, we deal
with phase I only.

2. EXPERIMENTAL TECHNIQUE

Crystals were grown as rectangular platelets mea-
suring ~0.1 x 0.3 X 2 mm. Experiments were run with

PHYSICS OF THE SOLID STATE Vol. 47 No. 11

X-range (~9.5 GHz) and Q-range (~32 GHz) EPR spec-
trometers (Bruker ESP300E and E500) with H,y,-type
rectangular resonators providing modulation frequen-
cies of 1.56-100 kHz and a dc magnetic field sweeping
range B, = 0-1.5 T. The crystals were fixed in a node of
the magnetic component of the applied microwave
field. The resonator Q factor was monitored in the
course of measurements. The EPR signal was propor-
tional to the first derivative of the imaginary part of the
crystal magnetic susceptibility dy/dH. The temperature
was varied in the range 3.1-300 K. The sample to be
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Fig. 2. (a) EPR spectra of a GN single crystal and of the
K3Cr(CN)g paramagnetic salt used to prepare GN crystals
at 293 K; (b) angular dependence of the linewidth AH,,,
obtained with the spectrometer dc magnetic field rotated in
the ac plane at 293 K. The solid line is a fitting of experi-
mental data to the relation AH,?;\I =a+ (- 300529)2.

The inset shows the angular dependence of the linewidth
AH,,, obtained under rotation of the spectrometer dc mag-

netic field in the ab plane. The solid line is a fitting of exper-
imental data with a AH,,, = o + Bcos29 relation.

studied was sealed in a quartz ampoule filled with
argon. CuSO, - 5H,0 single crystals exposed previ-
ously to an atmosphere saturated with water vapor were
used for calibration. The magnetic susceptibility of the
reference sample derived by double integration of its
EPR spectrum was normalized against the value of
obtained with a SQUID magnetometer. This permitted
us to determine the deviations of the %(7) relation in
CuSO, - 5H,0 for T < 20 K from purely paramagnetic
behavior so as to introduce the corresponding correc-
tions into the temperature dependence of the EPR sig-
nals of the GN crystals under study.
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3. EXPERIMENTAL RESULTS

At T =290 K, the EPR spectrum obtained in the X
range has a single line whose shape is Lorentzian to
within 99% for any orientation of the spectrometer dc
magnetic field H, with respect to the crystal (Fig. 2a).
Also shown for comparison is a broader line in the
spectrum of the K;Cr(CN), salt from which the crystal
was prepared. The EPR line halfwidth (from the maxi-

mum to a minimum) is AHS: =25 Oe for H,, aligned
parallel to the a axis and reveals a very weak anisotropy
with the vector H, rotated in the ab plane. By contrast,
the halfwidth is notably anisotropic when H, is rotated
in the ac plane (Fig. 2b). The resonance fields vary by
less than 2 Oe for rotation in any plane.

Reducing the temperature to below 40 K makes the
spectrum more complex (Fig. 3). Indeed, (i) its inte-
grated intensity in the interval from 40 to 10 K
increases by 2 to 3 orders of magnitude, (ii) additional
weaker lines of a smaller amplitude appear about the
central maximum, and (iii) the resonance field of the
strongest central line in the spectrum shifts abruptly
toward higher values for the dc magnetic field H,
aligned with the b axis and becomes lower for H || a
(Fig. 4a). Rotation of the crystal leaving H;, in the ab
plane reveals a substantial anisotropy of the resonance
magnetic field H,.,, which is derived from the position
of the strongest line in the spectrum at 7 < 12 K
(Fig. 4b). Note that the value of H ., remains practically
constant over a broad range of angles 0 between H, and
the a axis. H,. increases strongly only when H,, devi-
ates from the a direction by more than 45°.

The magnetic susceptibility of the crystal ygy Was
obtained through double integration of the spectrum
and by comparing it with the magnetic susceptibility of
the reference sample throughout the temperature range
covered. Figure 5 shows the temperature dependence of

the reciprocal magnetic susceptibility xa}q along the

a axis normalized against its value at 7= 300 K. Plotted
in these coordinates, the temperature dependence of the
reciprocal magnetic susceptibility is a straight line,

X;,l = T/C (C is the Curie constant). The deviation of

experimental points from this line makes it possible to
judge the sign of the exchange interactions and to deter-
mine the critical temperature and the type of magnetic

ordering. At temperatures of 300-80 K, the XE}}\J D

dependence for GN crystals is very nearly a straight
line characteristic of antiferromagnets and ferrimag-
nets. For T < 80 K, experimental points start to deviate

strongly from this straight line, with Xa\, decreasing

markedly by about two orders of magnitude in the
vicinity of T ~ 40 K. A further decrease in temperature
to below 40 K brings about only a slight decrease of

xa\l in magnitude. The observed xa\] (T) relation sug-
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Fig. 3. EPR spectrum of a GN single crystal plotted vs temperature. The extreme left-hand point in the spectrum is the signal from
the CuSOy - 5SH,0 reference single crystal. The right-hand line in the spectrum is a signal from the GN sample. The dc magnetic

field is directed along the b axis.
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Fig. 4. (a) Temperature dependence of the resonance field H, for (/) a GN crystal at Hy || b, (2) a GN crystal at Hy || @, and (3) a
K3Cr(CN)g powder. For T < 40 K, the resonance field was determined for the strongest line at the center of the spectrum (see inset).
(b) Dependence of the resonance field H,. for the GN EPR signal on the angle between the dc magnetic field Hy and the b axis,
with the magnetic field swept in the ab plane: (1) T=3.3, (2) 12, and (3) 293 K.

gests a ferrimagnetic character of magnetic ordering in
GN crystals. For comparison, Fig. 5 presents the tem-
perature dependence of the reciprocal susceptibility of
K;Cr(CN)g, which indicates typical paramagnetic
behavior down to a temperature of 3.1 K.

Measurements of the temperature dependence of
Xc~ under different sample orientations relative to H,

PHYSICS OF THE SOLID STATE  Vol. 47 No. 11

showed that, for the field aligned with b or ¢, Y gn(T)
increases monotonically for T < 38 K, whereas for the
field directed along the a axis an increased is observed
in the value of gy followed by a sharp decrease normal-
ized against its room-temperature value yrr (Fig. 6a).
Variations of the modulation frequency and amplitude
within approximately two orders of magnitude did not
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Fig. 5. Temperature dependence of the reciprocal magnetic

susceptibility X_l (1) of GN single crystals along the a axis
and (2) of the paramagnetic salt K3Cr(CN)¢ from which the

GN crystals were prepared.

affect either the pattern of the spectrum or the tempera-
ture dependence of ¥ to within experimental accuracy.
This strongly suggests that the crystal magnetization
was saturated in the magnetic field used, H, ~ 3.5 kQOe.

Because the dependence of the resonance frequency
v of a magnetically ordered crystal on the magnetic
field H, should differ from that for a crystal in the para-
magnetic phase, the value of v was measured with X-
and Q-range spectrometers (Fig. 7). The resonance fre-
quency corrected for the demagnetizing field for a plane
rectangular plate (which was determined using the Kittel
relations [8]) yields a negligible correction. It was estab-
lished that, in the paramagnetic phase at 7 > 38 K, the
straight line drawn through the experimental v(H,)
points passes through the origin, whereas at 3.1 K this
line gives an intercept of 2000 Oe on the abscissa axis.
Because the spectrometer magnetic field used results in
magnetization saturation, i.e., it is in excess of the
anisotropy field, the intercept on the abscissa axis is the
double anisotropy field H, ~ 1000 Oe. By determining
in this way the dependence of the anisotropy field on
the angle the b axis makes with the direction of the dc
magnetic field lying in the bc plane (Fig. 8), it could be
verified that the anisotropy fields along the b and c axes
are different. From the data obtained, it follows that the
b axis is the hardest magnetization axis.

The dependence of the resonance linewidth AH,,, on
temperature contains information on the mechanisms
of relaxation and EPR line broadening (Fig. 9a). The
smooth increase in AH,, in the range 300-110 K is
replaced by a decrease in AH,,,, and after the minimum
at T=60 K is reached the linewidth is seen to grow rap-
idly over the range up to the magnetic transition tem-
perature. The ratio of the linewidth for the dc magnetic
field aligned with the a axis, AH,,, (6 = 0), to that for the
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Fig. 6. Temperature dependence of the magnetic suscepti-
bility % of GN crystals for the dc magnetic field aligned with
(1) the b axis and (2) the a axis. The susceptibility is nor-
malized against its value at 7= 293 K. Also shown for com-
parison is a plot of the Curie law for ions with spin 5/2
(curve 3).

field oriented along the b axis, AH,, (8 = 90°), also
exhibits a minimum followed by a sharp increase as T
is approached (Fig. 9b).

4. DISCUSSION

Because GN crystals have alternating paramagnetic
ions of two types with different spins, Cr** and Mn?*,
the experimental dependence of the reciprocal mag-
netic susceptibility above the critical temperature was

(9%}
=]
T

Resonance
o frequency

Hsf

o520k Magnetic field

10

4 7’ i i

0 5 10 15
H, kOe

Fig. 7. Resonance frequency v corrected for the demagne-
tizing field and the corresponding values of the resonance
magnetic field H ¢ for (1) T=293 and (2) 3.1 K. The inter-
cept of the straight line on the H axis is twice the anisotropy
field 2H,,. The inset gives a schematic representation of the
resonance frequencies plotted vs the resonance field for a
typical ferromagnet for parallel and perpendicular orienta-
tions of the dc magnetic field with respect to the principal
magnetization axis [12].
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Fig. 8. Anisotropy field H,, defined as shown in Fig. 7 and
plotted vs the angle between the dc magnetic field Hy and the
b axis for the GN crystal rotated in the bc plane. T=3.1 K.

described in terms of the model of a two-sublattice fer-
rimagnet using the formula [9]

_(C+C)T+2,/C,C,T¢

ferri — 2 2
T° - T,

ey

where C, and C, are the Curie constants for the Cr** and

Mn?* sublattices, respectively. As seen from Fig. 5, the
theoretical (solid) curve fits fairly well the experimental
points for 7 > T, where T = 38 £ 2 K is the critical
temperature of the transition of the GN crystal to the
ferrimagnetic state. This relation suggests also that the
intrasublattice Mn—-Mn and Cr—Cr interactions in the
GN crystal are positive, while the sublattices them-
selves are coupled with each other by weak negative
exchange interaction (with a coupling constant Ay, =
—-0.62 + 0.3 emu/mol).

Note that the resonance linewidth of GN crystals in
the paramagnetic phase is substantially smaller than the

EPR linewidth AH,, =265 Oe of the K;Cr(CN); salt

from which they were prepared. Since the starting salt
remains paramagnetic down to 7 = 3.1 K (Fig. 5), one
may suggest that the narrowing of the EPR line of GN
crystals is due to the interion exchange interaction aver-
aging out local magnetic field fluctuations at the para-
magnetic center induced by the dipole—dipole interac-
tion and/or other relaxation processes. According to
Anderson and Weiss [10], the width of the EPR reso-
nance line in the presence of exchange interaction can
be written as

ox _ (10/3)AH, + AH,,

AHD) .

(T>T,), 2)
where H, is the “exchange” magnetic field (the energy
of exchange interaction expressed in field units), AH,, is

the contribution to the linewidth from the dipole—dipzﬂe
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Fig. 9. (a) Temperature dependence of the linewidth AH),,
of GN crystals plotted for 7> T~ = 38 K. The dc magnetic
field is aligned with the easy magnetization axis (the a axis).
For comparison, the inset shows the temperature depen-
dence of the EPR line halfwidth for a two-dimensional
uniaxial antiferromagnet K,MnF, with an easy magnetiza-

tion axis (data from [11]). (b) Temperature dependence of
the ratio of the EPR line halfwidth of GN crystals along the
easy magnetization axis, Apr(G = 0°), to that obtained in

the transverse orientation, Apr(e = 90°). The inset shows
an analogous plot drawn for K,MnF, crystals [11].

interaction, and AHy, is the contribution to the linewidth
from relaxation processes not related to exchange inter-
action (hyperfine interaction, zero-field splitting, etc.).

We accept AHy = 0 to estimate the part played by

exchange interaction. According to [10], AH,Z, =

5.1(gupn)?S(S + 1). Here, S is the spin of paramagnetic
ions; n is their volume concentration; g is the g factor
derived from the EPR condition hv = gugH,.; V is the
microwave frequency; 4 is the Planck constant; Ly is
the Bohr magneton; H, is the resonance field; and H, =
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J

2.83gM AS(S+ 1), where J is the exchange integral,

B
which in the Weiss molecular field theory (accounting
only for the exchange among nearest neighbors) is
related to the critical ordering temperature through the
relation 3kgT- = 2zJS(S + 1), with z being the number
of nearest neighbors and kg being the Boltzmann con-
stant [1]. Thus, the Anderson—Weiss theory makes it
possible to estimate the critical temperature of mag-
netic ordering from the magnitude of line narrowing. It
appears appropriate to note here, however, that this the-
ory was developed for magnets with paramagnetic ions
of one type only. In our case, there are two such ions,
Cr* and Mn?*; therefore, the above expressions for H,
and AH,, should be modified by replacing S(S + 1) —»

JSc(Scr + 1)Sym(Sam + 1), where S, = 3/2 and Sy, =

5/2 [9], and by considering the exchange integral J to be
an effective parameter including the inter- and intrasu-
blattice exchange integrals. After these modifications,
we estimate the critical temperature for GN crystals
using the following parameter values: g = 2, n = 4.84 X
102! em™, 7= 6, AHy = AH),, =265 Oe, and AH,, =
25 Oe (Fig. 2a). Assuming the contributions to the lin-
ewidth that are not related to exchange factors to be
small, we arrive at T = 30 K, which compares well
with the measured value 7» = 38 K and means that the
exchange interaction dominates the linewidth (and is
responsible for its substantial narrowing) in the para-
magnetic region.

The literature abounds with data on the magnetic
properties of crystals based on hexacyanometalate
complexes, so it seems appropriate to compare this
experimental value of T with the values found for this
parameter in other compounds. It was shown in [1] that
the value of T is readily predictable and is determined
by two factors, namely, (i) the relative number of ferro-
and antiferromagnetic exchange channels for metallic
ions, as well as the symmetry of their wave functions,
and (ii) the number of nearest magnetic neighbors z. In
GN crystals, the Mn** ions with a 3d° shell contain
three electrons with wave-function symmetry 7,, and
two electrons of e, symmetry. The 34*> Cr** ions have
three electrons with wave-function symmetry 7,,. It is
known that indirect exchange interaction in a pair of
ions coupled by the CN bond is ferromagnetic if the
wave functions of two unpaired electrons belonging to
different ions are of symmetry #,, and this interaction is
antiferromagnetic if the symmetry of one wave func-
tion is 1,, and that of the other is e,. Therefore, the crys-
tals under study have six ferromagnetic and nine anti-
ferromagnetic exchange channels. As a result, the net
intersublattice exchange is antiferromagnetic, which,
on account of the Mn?* and Cr3* spins being different,
results in ferrimagnetism. The value of 7. in known
compounds of this kind with z; = 6 is close to 60 K [1].
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In GN crystals, z, = 4. The simple model mentioned
above yields therefore T = 60z,/7, = 40 K, a figure
which is in good agreement with the experimental value
T-=38 K. The fact that data on the crystal stoichiome-
try permit a good guess of T~ suggests that the approx-
imation of independent exchange channels and d-elec-
tron pair interactions offers a correct description of the
interrelation between the electronic and magnetic prop-
erties of the crystals under study.

Consider the angular dependences of the linewidth.
The classical theory of exchange narrowing in three
dimensions predicts the angular dependence of the
halfwidth to be AH,, = o + Bcos®0, where o and [3 are
constants and 0 is the angle between H,, and the plane.
The small variations of the EPR line halfwidth in GN
crystals observed with H,, rotated in the ab plane, to
which layers of exchange coupled ions are stacked in
parallel, do indeed fit with the above relation (solid line
in the inset to Fig. 2b). In the ac plane, however, the line

halfwidth scales as AH,?,I,\I = o + B(l — 3co0s?0)?
(Fig. 2b). The factors accounting for the relation of the
type (1 — 3c0s?0)?> were studied in considerable detail
by Richards and Salamon and reported in a number of
publications [11] on the magnetic resonance in 1D and
2D antiferromagnets for 7 > T-. These factors basically
consist in that, because the exchange interaction is
localized in an atomic chain or plane, the interaction
cannot effectively average the local magnetic field fluc-
tuations initiated by dipole—dipole interactions in the
direction perpendicular to the line or plane of exchange.
This fact accounts for the appearance of the EPR line-
width contribution ~(1 — 3c0s20)? characteristic of
dipole—dipole interaction. The only exception is the
magic angle 0 = 55°, at which 1 — 3co0s?0 = 0; in this
case, the dipole—dipole correlations are nonexistent and
the linewidth is minimal (Fig. 9b). Thus, one is led to
the conclusion that, in GN crystals, exchange interac-
tion among Cr** and Mn?* ions for T > T, as well as
ferrimagnetic spin ordering for T < T, occurs in the ab
plane. This conclusion is consistent with the fact that
the covalently bonded Cr’* and Mn?** layers are
arranged along the ab plane and that there are no cova-
lent bonds coupling the layers (Fig. 1).

5. CONCLUSIONS

[{Cr(CN)¢}{Mn(S)-pnH-(H,0)}] - H,O crystals
undergo a magnetic phase transition from the paramag-
netic to ferrimagnetic state at 7= 38 K. The easy mag-
netization axis is aligned with the a axis.

Exchange narrowing of the spin resonance line has
been found to occur for T > T,. The critical magnetic
ordering temperature as estimated from the linewidth,
T~ 30 K, compares with T = 38 K, the figure derived
from magnetic susceptibility measurements, and is
consistent with theoretical predictions based on data on
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the filling of metal ion electronic shells and crystal sto-
ichiometry.

It has been established that, when the dc magnetic
field rotates in the ab plane, in which complexes of
paramagnetic ions are coupled by covalent CN bonds,
the resonance linewidth is very nearly isotropic, while
when the rotation occurs in the ac plane the resonance
linewidth obeys the Richards relation. This behavior of
the linewidth argues for two-dimensional spin ordering
in the ab plane.
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Abstract—The magnetic susceptibility and specific heat of single crystals of the Ba,Fe,GeO, barium ferriger-
manate are investigated. It is revealed that the temperature dependence of the magnetic susceptibility exhibits
akink at atemperature T = 8.5 K. The number of nonequivalent positions of Fe** ions and their occupancies
are determined using M éssbauer spectroscopy. It is shown that the Fe®* ions located in tetrahedral positions T2
are ordered incompletely, which is inconsistent with the results obtained previously. An assumption is made
regarding the possible ground magnetic state of the Ba,Fe,GeO, compound. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Magnetic systems whose structure contains tetrago-
nal layerswith antiferromagnetic exchangeinteractions
can exhibit interesting properties, such as order by dis-
order (with complete frustration of the exchange inter-
actions in the layer) [1] and a spin-singlet state due to
the modification of the structure through magnetoel as-
tic coupling [2]. It isworth noting that an important role
inthiscaseisplayed by quantum magnetic fluctuations.
Thesituation is complicated when the system is charac-
terized by a considerable covalency of bonding, i.e.,
when different spin states of paramagnetic ions become
possible due to the violation of the Hund rule. Similar
effects can be observed, for example, inamelilite struc-
ture [3] with paramagnetic ions.

It should be noted that, in the physics of polyfunc-
tional materials, single crystals with a combination of
different magnetic and electrical properties have partic-
ularly attracted the attention of researchers. For exam-
ple, tetragonal copper metaborate, which is of interest
from the standpoint of the nontrivial type of magnetic
ordering [4], exhibits a piezoel ectric effect comparable
in magnitude to that of quartz [5]. Similar properties
can be expected for other magnetically ordered crys-
tals. In the present work, we synthesized and investi-
gated the properties of single crystals of tetragonal bar-
ium ferrigermanate Ba,Fe,GeO, [3]. The barium ferri-
germanate undergoes melting with decomposition, and
single crystals of this compound have not been grown
to date.

In thiswork, we grew barium ferrigermanate single
crystals using the solution—melt method and analyzed
the first results of an experimental investigation into its

magnetic properties, specific heat, and Md&ssbauer
effect.

2. CRYSTAL STRUCTURE
OF BARIUM FERRIGERMANATE

Tetragonal barium ferrigermanate Ba,Fe,GeO; is a
representative of the family of compounds that have a
structure of the melilite (Ca,Al,SIO;) type and crystal-
lizeinthe spacegroup P42,m (Z=2) [3, 6]. Polycrys-
tals of this compound were first synthesized by the
solid-phase reaction at a temperature T = 1200°C [3].
The structure of the barium ferrigermanateis built up of
layersthat alternate along the c tetragonal axisand con-
sist of polyhedra containing barium ions (Thomson
cubes) and two types of oxygen tetrahedra joined into
five-membered rings (Fig. 1). Larger sized relatively

regular tetrahedra T1, which have symmetry 4 and are
located at vertices and at the center of the bases of the
tetragona cell, are predominantly occupied by Fe**
ions. Less regular tetrahedra T2, which form diortho
groups [M,O;] with symmetry mm2, are statistically
occupied by Fe** and Ge** ions approximately inal: 1
ratio. The structura formula, which accounts for the
distribution of cations over crystallographic positions
T1 and T2, can be approximately written in the form
Ba,(Fe*") ,(Fe**Ge*),0,. This distribution of Fe*
cations over tetrahedral positions T1 and T2 was deter-
mined using Modsshauer spectroscopy for polycrystal-
line samples[3]. Among the compounds synthesized to
date in the melilite family and belonging to the same
structura type, the Ba,Fe,GeO, barium ferrigermanate
is characterized by the highest iron content and is most

1063-7834/05/4711-2114$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1 Structure of the melilite crystal as projected onto the
(001) plane. AZ* = Ba?* or Sr2*.

attractive for use in magnetic investigations. Asregards
the magnetic properties, it isimportant to note that Fe**
ions form square planes perpendicular to the c crystal-
lographic axisin such away that the Fe** ion islocated
at the center of each square formed by the Fe** ions. In
the case when the exchange interactions in each plane
are antiferromagnetic in nature, they are frustrated
completely. This prevents manifestation of a long-
range antiferromagnetic order. Consequently, the
exchange interactions between far neighbors play an
important role. Moreover, the so-called mechanism of
attainment of order by disorder due to the nonlinear
interaction of magnetic excitationsin the frustrated spin
system [1] can also make a significant contribution.

3. EXPERIMENTAL TECHNIQUE, RESULTS,
AND DISCUSSION

3.1. Crystal Synthesis

This paper reports on the results of the first investi-
gationsinto the crystal structure and the magnetic, ther-
mal, and electrical properties of barium ferrigermanate
single crystals. The crystals were grown by the solu-
tion—melt method with the use of a PbF,—B,05-based
solution melt containing 68 wt % (PbF, + 0.62B,0; +
1.09Ba0 + 0.45Ge0,) and 32 wt % Ba,Fe,GeO;. In
this system, Ba,Fe,GeO; is the high-temperature phase
(T = 940°C) and, in the range of its stability, isrepre-
sented in abinary form. The density of the solution melt
ishigher than that of the barium ferrigermanate, and the
growth was performed in aweakly nonuniform temper-
aturefield at dT/dh < 0 (|[dT/dh| < 2 K/cm) according to
the Kyropoulos method. Black single crystals of the
compound had the shape of rectangular plates (4 x 6 x
2 mm).
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Fig. 2. Temperature dependence of thereal part of the mag-
netic susceptibility at afrequency of 1000 Hz in amagnetic
field of 10 Oe.

The X-ray diffraction investigations confirmed that
the crystal grown has a helenite structure with the tet-
ragonal unit cell parametersa=8.33A andc=5.59 A.
The lattice parameters of the crystals grown and the
polycrystals synthesized by the solid-phase reaction [ 3]
are in good agreement. This indicates that partial sub-
stitution of Pb?* for Ba?* due to the ion exchange
PbF, + BaO = PbO + BaF, does not occur under the
above conditions of crystal growth.

3.2. Magnetic Susceptibility and Specific Heat

The magnetic and thermal measurements were per-
formed on a PPM S setup and a SQUID magnetometer.
The complex magnetic susceptibility was measured in
the temperature range 2-150 K at afrequency of 1 kHz
in amagnetic field of 10 Oe, which was directed both
perpendicular and parallel to the ¢ axis. The results of
the measurements are presented in Fig. 2.

It can be seen from Fig. 2 that, at a temperature of
approximately 8.5 K, the temperature dependence of
the magnetic susceptibility exhibits a kink, which is
characteristic of transitions to a magnetically ordered
state. The anisotropy of the magnetic susceptibility
manifests itself at temperatures below 30 K. It should
be noted that the temperature dependence of the recip-
rocal of the magnetic susceptibility can be separated
into three linear portions (13K < T<45K, 60K < T <
100 K, 120 K < T < 150 K) with different slopes and,
hence, with different Curie-Weiss temperatures. This
can be associated with the retention of exchange-cou-
pled fragments of the magnetic structure at intermedi-
ate temperatures. The fitting at temperatures higher
than 120 K results in the Curie-Weiss temperature 6 =
—6.7 K and the effective magnetic moment Py = 2.3g,
where |z isthe Bohr magneton. This magnetic moment
differs substantially from the theoretical value of the
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Fig. 3. Temperature dependence of the specific heat for the
Bay,Fe,GeOy crystal.

magnetic moment (5.92 |ig) for Fe** ions. The Curie—
Weiss temperature is hegative and, hence, the antiferro-
magnetic exchange interactions are dominant in the
studied compound. Under the assumption that the
Curie-Weiss temperature 6 is determined by the
exchange interaction J of the nearest neighbors z = 4,
the exchange interaction between the nearest neighbors
of the Fe** ions(i.e., J = 0.6 K) isdetermined from the
relationship 6 = —zJ(S + 1)/3kg. It should be empha
sized that the obtained val ue correspondsto the average
exchange interaction in the system. Since al the
exchange interactions in the plane are antiferromag-
netic and frustrated, the calculated exchange integral
can appear to be considerably underestimated.

The experimental temperature dependence of the
specific heat in the temperature range 2-14 K is plotted
in Fig. 3. Note that this dependence does not exhibit a
noticeabl e feature at temperatures closeto 9 K. A sim-
ilar situation was also observed for the Ca;sCoRhOq
compound and was explained by the smearing of the
magnetic phase transition [7]. However, this effect is
till not clearly understood.

The Ba,Fe,GeO;, crystal is agood insulator.

3.3. Mssbauer Investigation

The analysis of the crystal structure of the ferri-
helenite revealed that the spacing between layers con-
taining structure-forming tetrahedraisrather large. The
distance between the nearest anions of the adjacent lay-
ersis greater than 3 A. The Ba-O distance is approxi-
mately equal to 2.5 A. These large distances allow usto
ignore the exchange interaction between cations of the
adjacent layers. Within this approximation, the ferri-
helenite lattice can be considered a two-dimensional
lattice from the standpoint of magnetism.
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T1 N\

Fig. 4. Ordering of Fe3* and Ge** ions over the T2 positions
of helenite.

Large-sized weakly distorted tetrahedra T1 form
two simple tetragonal lattices inserted into each other.
More strongly distorted tetrahedra T2 are joined in
pairs. These pairs also form two simple tetragonal lat-
tices inserted into each other. One lattice is located
above and the other latticeis positioned below the plane
formed by T1 tetrahedra. In the ferrihelenite structure,
the T1 tetrahedra are occupied only by Fe** cations,
whereas the T2 tetrahedra are occupied by Fe** and
Ge** cationsinal: 1ratio.

From analyzing the cation—cation exchange interac-
tions in the framework of the simple model of indirect
coupling [8, 9], we obtained the following relation-
ships.

J,(Fe*'(T1) —Fe*'(T2)) = —6a°Ucos45°/25,
J,(Fe¥ (T2) —-Fe*(T2)) = —24a°U/75,

where a is the parameter of ligand—cation electronic
transfer, which is equal to the sguare of the coefficient
characterizing the admixture of the ligand wave func-
tion to the cation wave function; U isthe energy of cat-
ion-igand electronic excitation; and the cosine roughly
describes the angular dependence of the transfer inte-
gral. It follows from relationships (1) that the exchange
interaction J, is nearly twice as strong as the exchange
interaction J,.

The distribution of Fe** and Ge** cations over the T2
tetrahedral positions plays an important role in the for-
mation of the magnetic structure of ferrihelenite layers.
By assuming that cations of different types are ordered
in the T2 tetrahedral positions, we can consider two
possible variants.

(i) A pair of T2 cations is formed by cations of dif-

ferent types (Fe**, Ge*). In this case, we obtain zigzag
chains along one of the a axes, asis shown in Fig. 4a,

(D)
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where circlesindicate Fe** cationsin the T1 tetrahedral
positions and triangles represent Fe** cations in the T2
tetrahedral positions. Since the exchanges for each cat-
ion to the right and to the | eft along the chain are equiv-
alent, the chains are magnetically homogeneous. For
this type of ordering, the (a, a, c) lattice should trans-
form into the (a, b, ¢) lattice due to the difference
between the radii of the Fe** and Ge** cations.

(ii) A pair of T2 cationsis formed by cations of the
same type (layer-by-layer ordering). In this case, we
have antiferromagnetic pairs of Fe** cations. These
pairs are coupled with each other in two directions
through the interaction with T1 cations, thus forming a
two-dimensional lattice. This type of ordering isillus-
trated in Fig. 4b. Since J, > J;, we can expect theforma-
tion of antiferromagnetic dimers, which arein asinglet
state and, hence, cannot be magnetically coupled with
the surrounding matrix. The matrix is the sublattice of
Fe’* cations (T1) that are not bonded to each other.
Consequently, this sublatticeisin aquasi-paramagnetic
state. Therefore, in the case of ordering of the second
type, we have an ensemble of antiferromagnetic dimers
Fe** (T2) in the paramagnetic lattice of Fe** ions (T1).
In this situation, the helenite lattice can undergo an
orthorhombic distortion.

The above analysis clearly demonstrates that, in the
casewhen the Fe** and Ge** cationsare statistically dis-
tributed over the T2 positions, the helenite layer
involves aset of magnetically different abjects, namely,
single paramagnetic cations, singlet pairs, finite homo-
geneous chains, and two-dimensional regions.

The M 6sshauer spectrum measured for a powder of
the single crystal is fairly well approximated by two
doublets. The doublet parameters listed in Table 1
(where |Sisthe isomer shift with respect to a-Fe, QSis
the quadrupole splitting, W is the absorption line width
at half-maximum, and Sis the fractional occupancy of
the cation position) are in qualitative agreement with
the results obtained for polycrystalline samplesin [3].
The considerably larger values of the isomer shift and
quadrupole splitting in [3] are most likely associated
with the defect structure of polycrystals. The isomer
shift is characteristic of Fe* ions in the tetrahedral
environment, and the large value of the quadrupole
splitting indicates a strong distortion of this environ-
ment.

In order to reveal the possible ordering of cations
over the T2 positions in the ferrihelenite structure, the
M 0ssbauer spectrawere identified in two stages. At the
first stage, we determined the distribution functions of
the quadrupole splitting P(QS) for two valence states of
iron. For this purpose, the Mossbauer spectrum was
represented as the sum of two groups of doublets with
the isomer shifts given in Table 1 and natural width of
the absorption line. The quadrupole splitting was varied
in steps of 0.05 mm/s. The distribution functions P(QS)
were determined by varying the amplitudes of doublets

PHYSICS OF THE SOLID STATE Vol. 47 No. 11

2117

Table 1. Parameters of the Mdssbauer spectrum of barium
ferrigermanate

Position | IS mm/s | QS mm/s| W, mm/s S
T1 0.205 1117 0.413 0.497
T2 0.187 1.525 0.337 0.503

and the isomer shiftsthat were identical for each group
of doublets. The distribution functions P(QS) thus
obtained are presented in Fig. 5.

The maxima in the distribution functions P(QS)
indicate that the helenite structure can involve addi-
tional iron positions that are nonequivalent in terms of
the degree of local distortion. Theinformation obtained
from the distribution functions P(QS) is qualitative in
character, because these functions were determined
using identical isomer shiftsfor each group of doublets.
In the general case, this can lead to the appearance of
false maxima.

At the second stage of the identification of the
M 6sshauer spectra, we constructed a model spectrum
on the basis of the number and approximate values of
the parameters estimated for the nonequivalent posi-
tions from the distribution functions P(QS). The model
spectrum was fitted to the experimental spectrum by
varying the entire set of hyperfine parameters with the
use of the least-squares procedure in the linear approx-
imation. In the course of thisfitting, the desired param-
eters are refined and the occupancies of positions that
are responsible for the doublets corresponding to the
false maxima become negligible. The results of the
two-stage identification of the Mdssbauer spectra are
presented in Table 2.

The revealed noneguivalent positions, namely, three
T1 and two T2 positions, can be assigned to the posi-
tions with different numbers of nearest cations of a par-
ticular type. In the case when the T2 positions are half
occupied, the most probable configuration of the four

P(QS)

IS=0.24

IS =0.17

1 ]
0 0.5 1.0 1.5 2.0 2.5 3.0
0S, mm/s

Fig. 5. Digtribution functions of the quadrupole splitting
P(QS) for two valence states of iron ionsin barium ferriger-
manate.
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Table 2. Mdssbauer parameters of the nonequivalent positions of iron ions in barium ferrigermanate

Postion | 1S mms | Qs mmis | wmmis | s NG EERCT o i ution
0.204 0.711 0.251 0.060 3FelGe 0.125
T1 0.223 1.038 0.268 0.065 1Fe3Ge 0.125
0.230 1.403 0.361 0.355 2Fe2Ge 0.1875
T2 0.163 1.201 0.432 0.253 3Fe 0.25
0.159 1571 0.312 0.267 2FelGe 0.25

nearest neighbors for the T1 position is the 2Fe2Ge
configuration. This is the sole configuration when the
cations are ordered over the T2 positions. The appear-
ance of the 3FelGe and 1Fe3Ge configurations indi-
cates a random distribution of Fe** and Ge** cations
over the T2 positions.

Of the three neighbors of the T2 position, two are
always represented by Fe** cations occupying the T1
positions. Thethird neighbor isaGe** cation in the case
of ordering. For arandom distribution, the Fe** or Ge**
cation can equiprobably serve as the third neighbor;
i.e., the presence of nonequivalent positions T2 counts
in favor of the random distribution. Therefore, the
structure of the barium ferrigermanate can be treated
from the standpoint of magnetism as built up of mag-
netically different objects (from isolated paramagnetic
cations to two-dimensional regions). It is worth noting
that the occupancies of the cation positions with the
revealed configurations differ significantly from their
occupation probabilities for the actual random distribu-
tion of cations (see the last column in Table 2). These
differences are larger than the experimental error and
may suggest apartial ordering of Fe>* and Ge** cations
over the T2 positions.

4. CONCLUSIONS

A tetragonal crystal of the Ba,Fe,GeO, melilite was

grown for thefirst time. The distribution of Fe** cations
over nonequivalent tetrahedral positions in the crysta
lattice was determined using M dssbauer spectroscopy.
The temperature dependence of the magnetic suscepti-
bility was measured. The presence of three linear por-
tionsin the temperature dependence of thereciprocal of
the magnetic susceptibility and the small effective mag-
netic moment can serve as indirect evidence that the
magnetic structure of the Ba,Fe,GeO, compound
involves singlet pairs, finite homogeneous chains, and
two-dimensional regions, which are characterized by
specific effective exchange interactions and are sequen-
tialy ordered with a decrease in the temperature. The
observed feature in the temperature dependence of the
magnetic susceptibility at T = 8.5 K can be associated
with the manifestation of a long-range magnetic order
in the system.

PHYSICS OF THE SOLID STATE \Vol. 47

The temperature dependence of the specific heat
does not exhibit an anomalous behavior at the point of
the magnetic phase transition. This finding is not
clearly understood. Possibly, this can be explained by
the specific features of the transition to the magneti-
cally ordered state.

At present, we intend to perform experiments on
inelastic neutron scattering in order to elucidate the
type of magnetic ordering in the Ba,Fe,GeO, com-
pound.
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Abstract—The existing, doubtful interpretations of the numerous phase transitions in cadmium pyroniobate
Cd,Nb,O5, which is aferroelectric with a pyrochlore-type structure and a Curie temperature lying near 200 K,
are critically analyzed. The manifestations of all phase transitions in cadmium pyroniobate, the mechanisms
proposed for these transitions, and doubts about their validity are discussed. Various dielectric anomalies
observed near 200 K are related to three phase transitions in this temperature range. The causes of the large
number of phase transitions observed in this material, the dislocation structure of the crystal, the diffuseness of
the ferroelectric phase transition, and the relaxor properties of the crystal are also explained. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

When the ferroelectric (FE) properties of cadmium
pyroniobate Cd,Nb,O; (which has a pyrochlore-type
structure and a maximum permittivity at T, = 173 K
and exhibits dielectric hysteresisbelow T,,[1, 2]) were
discovered, the behavior of this compound seemed
usual. Its peculiarities were discovered later.

It was found in [3] that, at a certain temperature
higher than T, the third harmonic suddenly appearsin
an electric current passing through a sample; moreover,
a step was also observed in the g(T) curve (Fig. 1a).
Below T, triple dielectric hysteresis loops were
detected (Fig. 2a), which had not been observed earlier
in any known ferroelectric [4]. The loops are character-
ized by primary and secondary saturation, which can be

used to determine the spontaneous pol arizations Py and

P: > P. Thefieldsunder which secondary growth and
saturation of polarization occur increase upon cooling;
so, when cooled in an actual field, thetripleloopstrans-
form into ordinary FE loops in a certain temperature
range. As a result, the total polarization P, passes
through a maximum (Fig. 2b) caused by the transition
from astate with P to astate with Py. The authors of
[5, 6] found a sharp change in the slope of the &(T) and
1/¢(T) curves at temperatures well above T,, (Fig. 1b).
This change is equivalent to a jumplike change in the
constants C and 0 in the Curie-Weisslaw € = C(T —0).
Moreover, an extremely sharp, narrow peak in &(T) was
later discovered dlightly above T,,, (Fig. 1c) [7, 8]. Very
strong dielectric dispersion was found in the region of
themaximum € at T, asthefrequency of the measuring
field E,. increases, this maximum shifts rapidly toward
high temperatures and almost merges with the sharp
peak in € (Fig. 1c) [9]. Strong dielectric dispersion is

characteristic of classic FE relaxors, where different-
type ions randomly occupy the same sublattice (e.g.,
likein PMN). However, in cadmium pyroniobate, cad-
mium ions occupy one sublattice and niobium ions
occupy another sublattice.

A substantial specific feature of cadmium pyronio-
bate is the large number of phase transitions (PTs),
which are spaced closeto each other in temperature and
can affect each other. The most interesting temperature
rangeisthat near 200 K, where various diel ectric anom-
alies are observed in most cases. Sometimes, these
anomalies overlap and it is difficult to relate them to a
certain PT. Nevertheless, we will attempt to do so.

Asisseen from Fig. 1, the most important dielectric
anomalies observed near 200 K are a diffuse maximum
a Tpy (=T,), a break in dope in the g(T) and 1/e(T)
curves at Tg, steps at Ty, and Tg,, and a sharp maxi-
mum in &(T) at Tgy. Sometimes, an St3 step is also
observed; however, its presence can be explained by a
certain difference in the temperature Ty, between the
surface and the volume of the crystal. PTs have also
been detected at lower temperatures: Ty, T,y (which
are close to liquid-nitrogen temperature), T, T, T,.
Moreover, therearesignsof PTsat T > T, (at tempera
turesTy, T, T3, Ty, T5). Each of these PTsis characterized
by a certain mechanism. In this work, we describe the
most important characteristics of these PTs and their
nature and discuss possible interpretations of them.
Moreover, we try to explain the large number of PTs,
the causes of the diffuseness of the FE PTs, the com-
plex dislocation structure, and the relaxor properties of
cadmium pyroniobate.

Figure 3 shows some actua €(T) curves (upper
curves) and an idealized dependence (curvef). The des-
ignations of the PT temperatures, which are used here-

1063-7834/05/4711-2119$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Some unusual properties of cadmium pyroniobate (the temperature dependence of its permittivity). (a) Hot-pressed ceramics

[3] (the arrow shows the temperature of appearance of the third harl

monic). (b) Single crystal [4]: €, 1/e, and tand measured at 1 kHz

along (1) [110], (2) [111], and (3) [100]; (4) V. (c) Single crystal: (T) measured at various frequencies [8]; the frequencies (in

kilohertz) are indicated on the curves.

after, are also given in Fig. 3. The PT from the cubic
paraelectric (PE) to a pseudocubic phase occurring at
Tpe isassumed to be characterized by ajump intheg(T)
curve. This PT can also manifest itself as an inflection
point or astepinthiscurve(i.e., westatethat Toe = Tg =
T4y). We assume that the PT at T, can aso manifest
itself in the form of a step (i.e., we assume that Tgy =
Tgo). Thus, we state that, in the vicinity of 200 K, there
occur only three PTs (at Tpg, Tou, Tom), which can man-
ifest themselves differently. The grounds for this state-
ment will be given below.

Let us consider each of the PTs separately.

PHYSICS OF THE SOLID STATE \Vol. 47

2. PHASE TRANSITION AT Tge

According to [5, 6], the PT to the pseudocubic phase
occurs a Tpe = Tg = 205 K. The Curie-Weiss law is
obeyed both below and above Tg: C = (1.13-1.30) x
10°K above T [6, 10] and C = (3.3+ 0.3) x 10*K below
Tg [7]. Thus, the constant C decreases four to five times
at Tg. Below Tg, tand increases sharply and adomain
structure appears [6]. According to [11], the tempera-
ture Tpe corresponds to the Stl step and the constant C
below and above this step has different values.
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Fig. 2. Some unusual properties of cadmium pyroniobate
(polarization in astrong field E,.). (a) Dielectric hysteresis
loops at E,; equal to (1) 22.4, (2) 44.6, and (3) 60 kV/cm.
(b) The temperature dependences of (1) the total polariza-
tion P, (2) spontaneous polarization Py, and (3) spontane-
ous polarization Py as determined from hysteresis loops

recorded at E,. = 25 kV/cm aong [111] and at 15 kV/cm
aong [100] [4, 5].

The PT at Ty is sometimes considered an improper
FE PT [12] or an improper ferroelastic PT [13]. The
guestion arises as to whether spontaneous polarization
appears a Tpe. Our results [6] indicate that it does
appear. The same conclusion follows from [9, 12],
where a clear peak in the pyroelectric current was
observed at Tpe = 205 K (Fig. 4). After appearing, the
spontaneous polarization P, increases upon cooling. In
the range between Ty and Tgy, i.€., in the improper
phase, P, is very low (about 0.02 x 107 C/cm?). The
value of Py measured in the [001] direction is higher
than that inthe[011] and [111] directions, which means
that P in the improper phase is directed along [001]

PHYSICS OF THE SOLID STATE Vol. 47 No. 11

2121

&

DM v (Tsm = Ts)

Fig. 3. Temperature dependence of the permittivities of dif-
ferent cadmium pyroniobate samples (schematic): (a—€)
real cases and (f) a hypothetic idealized curve.

[12]. (For ceramics, P, was aso found to occur in the
improper phase [14].) However, the authors of [15]
attributed theimproper phase to anonpolar space group
(of the mmm type), which excludes the presence of
spontaneous polarization (i.e., the phase is assumed to
be purely ferroelastic).

An increase in the measuring-field frequency does
not shift Tpe (Fig. 1c), and dielectric dispersion is
absent up to 200 kHz [8, 12]. Dilatometric studies of
ceramics [5] have shown that the appearance of P, and
pseudocubic distortions is accompanied by a weak
decrease in volume (which differentiates Cd,Nb,O;,
from FE perovskites). Below T, the spontaneous bire-
fringenceislow and positive (Fig. 5) [12].

Under the action of a strong dc bias field (Ey. =
8 kV/cm), only the anomaly with a maximum value of
€ at T isretained instead of the three dielectric anom-
alies (at Tpg, Toy, Tom) Near 200K [4, 5, 16]. When the
field increases further, this maximum shifts toward low
temperatures (Fig. 6b). This maximum islikely to cor-
respond to the transition from the PE to FE state; there-
fore, the behavior mentioned just above is unusual,
since an Eg field in al known ferroelectrics shifts the
maximum of € at the Curie point toward high tempera-
tures.

According to [8, 17], compression of the crystal
shifts Tpe = Ty toward high temperatures and the step
St1 changesinto asmall maximum (jump). That iswhy
theidealized €(T) curve (Fig. 3, curvef) containsajump
at T = T that looks like asmall maximum.

The authors of [18] concluded that the PT at T is
associated with athree-component order parameter that
transforms according to the F,, representation at the
center of the Brillouin zone of the cubic phase; this
behavior corresponds to improper ferroelectricity.
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Fig. 4. Temperature dependence of (a) the pyroelectric coef-
ficient y and (b) the spontaneous polarization Pg of single-
crystal cadmium pyroniobate measured along [110] [12].

However, the fact that multiplication of the unit cell has
not been observed below Ty is confusing. At the same
time, it is unclear whether this multiplication should
exist in the case of a unit cell as large as a pyrochlore
unit cell. Maybe “improper” displacements can occur
inside the unit cell without its multiplication. However,
this problem is for theorists to solve.

3. PHASE TRANSITION AT Tgy

At Tgy = Tgp = 201 K, there is either a sharp maxi-
mum of € or an St2 step. The curvesin Fig. 3 show that
the step is observed when the maximum at Ty, is suffi-
ciently high to conceal the sharp maximum (SM) and
only the St2 step is visible. Thus, the presence or
absence of the sharp maximum at Tg, is determined not
by the transformation at Tgy, but rather by the next PT
(at Tpy). The authors of [10] found that the Fe** accep-
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Fig. 5. Spontaneous hirefringence of single-crystal cad-
mium pyroniobate at a bias field Eq. In the inset, Ey is

equal to (1) 0, (2) 1, and (3) 2 kV/cm [12].

tor impurity causes the peak in € to become clearly
defined and that the Gd** donor impurity (which is
located on the Cd sublattice) makes this peak invisible.
In other words, impurities affect the dielectric polariza-
tion at Tpy.

The Curie-Weiss law is obeyed with constant C =
(3.3+0.3) x 10* K above the sharp peak in € and with
C=(5%1) x 10* K below this peak (over arange 1 K
wide) [7]. The temperature Tgy is independent of the
measuring-field frequency [8, 12].

According to [9, 19], a pyroelectric-current peak is
detected near 201 K (Fig. 4) and P increases faster
below 201 K. At Tgy, the spontaneous birefringence
changes sign and becomes negative in all low-tempera-
ture phases (Fig. 5) [6, 7]. Twin (domain) boundaries
below Tg,, become clearer [6, 7].

The application of a static electric field shifts Tgy,
toward T and, as noted above, changes the dielectric
anomaliesinto asingle maximum of € near Tpe. Asthe
field increases (at E4. > 8 kV/cm), the maximum shifts
toward low temperatures [5, 6]. A field applied along
[001] suppresses the sharp peak in €. On the contrary, a
field applied along [111] makes the peak well defined
[8]. What causes this phenomenon is still unclear.

The PT a Tg, is commonly considered to be a
proper FE PT. Perhapsthisistrue. However, its specific
features, such as the sharpness of the peak in €, the
validity of the Curie-Weiss law above and below Tgy
with very low values of the constant C (33000 above
and 50000 K below the peak), and, most importantly,
the finite value of the peak at the phase transition point,
which is far from temperatures where € — oo, raise
doubtsin the ordinary nature of this FE transition.
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According to [20, 21], a phase transition from a the PT point is finite. The assumption that Tg, corre-
symmetric phase to an incommensurate FE phase is  spondsto aPT to anincommensurate phaseisquiterea
sharp (in acertain approximation) and obeysthe Curie-  sonable. (The requirement that the constant C in the
Weiss law above and below the transition point, bute at ~ Curie-Weiss law be the same above and below Ter can
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be the result of the rough approximations used in the
theory.) However, if the phase below T, isincommen-
surate, thereis obviously no modulation in P, (since Py
neither disappears nor decreases below Tg, (Fig. 4)).
However, the present author states nothing and would
only like to show that the conclusion that the transition
a Tgy isan ordinary proper FE PT should not be con-
sidered final.

4. PHASE TRANSITIONS AT Tpy AND T,

In the case of classic FE relaxors (e.g., PMN), where
the temperature of a maximum in €(T) depends on the
frequency of the measuring field E,,, the average temper-
ature of the diffuse FE PT isusualy taken to be the tem-
perature of the maximum in € a a frequency of 1 kHz
(athough it ismore correct to take the temperature of the
maximum of static €). In this work, we aso defined the
temperature in this way and found that Ty, 1188 K for
cadmium pyroniobate. (Note that the position of the cor-
responding maximum of € depends not only on the fre-
quency but also on E; it shifts toward Tg, but does not
reach it with decreasing E,. [5, 6].)

As aready noted, below Ty, very narrow triple
dielectric hysteresis loops (Fig. 2a) with aratio Pg /Py
higher than 2.7 were observed at 155 K in [17]. Upon

cooling, the total polarization P, passes through a max-
imum due to an increase in the secondary polarization

PHYSICS OF THE SOLID STATE \Vol. 47

growth field (Fig. 2b). Inahighfield E,;, thismaximum
was observed at a lower temperature. (Although triple
loops were also detected between Tz and Ty, they
were |ess pronounced and extremely narrow.)

The data on the effect of a strong static field on the
PT at Ty, are very conflicting. Our results[5, 16] indi-
cate that the corresponding maximum of € is shifted by
a field E,. toward low temperatures (Figs. 6a, 6b),
whereas the results from [10] demonstrate that this
maximum shifts toward high temperatures (Figs. 6c,
6d). The causes of this discrepancy are unknown.

In a weak bias field, the elastic modulus passes
through a sharp minimum near Tpy (Fig. 7) [22]. At
Eq = 7 kV/cm, a flat minimum splits off from it and
shifts toward low temperatures (this fact supports the
shift in the temperature of the maximum of € noted
above).

The existence of triple hysteresis loops can be
explained by the presence of two types of domainswith
different pinning energies or by the occurrence of a PT
from the state with P; to the state with P; under the
action of afield (asissupposed in [4]) or of aforced PT
from the FE phase with alow € and avery low P to a
PE phasewith ahigh € (asissupposedin [6]). Itisobvi-
ous that, in the last case, the change in the thermody-
namic potential due to the application of a field E
(—€peE? in the PE phase and —€cE? — (1/2)P<E in the
FE phase) is greater in the PE phase. This fact can aso
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account for the decrease in the temperature of thesingle

an increase in field. (However, it should be noted that

thisis only an assumption.)

Upon cooling below Tpy,, the permittivity beginsto

€ maximum near Tpe at Ey. > 8 kV/cm that occurswith  decrease in time when a certain temperature T is

PHYSICS OF THE SOLID STATE Vol. 47
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reached, and the decrease is significant (Fig. 8, points
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A, B). (Theinset to Fig. 8 clearly showsthe jump (max-
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imum) in g(T) at Tpe that was discussed above.) Figure 8
also shows that the specific-heat maxima associated
with the three phase transitions merge into one diffuse
maximum extending toward low temperatures down to
140 K (i.e, to T)) [9, 23]. Kolpakova and coworkers
(see, eg., [17, 24, 25]) studied the relaxation dielectric
polarization of single crystals and ceramics [26] and
revealed two relaxation mechanisms. One mechanism
is related to the motion of domain walls, and the other
isrelated to jumps of cadmium ionsin potential wells,
which are assumed to exist inside the CdOg polyhedra.
Unfortunately, the great body of experimental results
obtained cannot explain the nature of numerous PTsin
cadmium pyroniobate.

As is seen from Fig. 3, a weak dielectric anomaly
occurs near T, = 140-150 K [11, 12]. The phase below
T, is till ferroelectric. (For ceramics, it was found that
P, =18 x 10° C/cm? at 100 K [2] and P, = 2.7 x
1076 C/cm? at 125K [14].) At 140-150 K, there exists a
hump in the temperature dependence of the pyroelectric
current (Fig. 4) [9, 12, 19]. According to [8], domains
cease to change in number upon cooling below 140 K.

The temperature T, = 140 K isconsidered in [12] to
be the lower boundary of the range where the improper
FE phase undergoing the diffuse PT exists. It should be
noted that PTsin classic FE relaxors do not have awell-
defined lower boundary. It is significant that, near T,,
the relaxation time distribution parameters are virtually
unchanged [25] and that the EPR spectrum has no
anomalies [27]. Apparently, it is still too early to dis-
cuss the nature of the phenomena occurring at 140—
150 K, since one has to reveadl first whether these phe-
nomena are associated with PTs.

5. PHASE TRANSITIONS AT T,y (Tiy)
AND T,

In Cd,Nb,O, ceramics, a PT with an € maximum at
80-86 K was detected in [2]. Later, two closely spaced
€ maxima (at 80 and 83 K) were detected in its single
crystals [13] and the authors of [8, 9] observed two
pyroelectric-effect maxima at 69 and 82 K (Fig. 4).
Since only one PT (at T, ) was observed in most stud-
ies, the presence of two € maximain single crystals can
be assumed to be caused by their inhomogeneity (i.e.,
by adifferencein T, between the bulk and surface lay-
ersof thesingle crystals).

According to [24], the PT at T, isof thefirst order.
However, weak broadening of the x-ray (622) reflection
(which is likely related to rhombohedral distortions)
begins at 115 K and, while increasing upon cooling,
does not undergo ajump near 80 K [28]. According to
[15], the symmetry below 86 K is likely to be mono-
clinic.

Taking into account the small value of tand (which
is 0.002), the unstable behavior of € in time, and the
character of the temperature hysteresis of € below Ty,
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the authors of [29, 30] concluded that the PT at T, is
to an incommensurate phase. Moreover, based on the
fact that the intensity of the soft mode appearing below
T_n decreases jumpwise upon cooling below T, = 46 K,
those authors assumed that a PT into anormal (unmod-
ulated) FE phase occurs at 46 K.

It is obvious that P, modulation should result in the
disappearance of or, at least, a decrease in the macro-
scopic spontaneous polarization. However, according
to [12], P actualy dlightly increases rather than
decreases below 80 K (Fig. 4). According to [23], this
increase is strong. Therefore, in the range from T, to
T, the phase has no P, modulation. The behavior of a
crystal modulated in a parameter other than P (but in
the presence of Pg) has not been studied. However, it is
clear that, if modulation occurs that is not in P, alow

value of tand does not guarantee incommensurability.
As for the time dependence of ¢, it is also observed
above T, (Fig. 6, points A, B). Thus, the assumption
that the phase between T, , and T, isincommensurate is
insufficiently grounded. Moreover, an analysis of the
damping of modes appearing below 80 K does hot sup-
port the opinion that this phaseisincommensurate[31].

6. TRANSITION AT T,

Below T, = 18-19 K, where a maximum in &(T) is
observed (Fig. 8), the crystal remains ferroelectric [21,
25, 29, 30]. (According to [2], dielectric hysteresis
loops are detected down to 1.2 K.) The authors of [25,
26, 31] assume that a glass phase exists below T, = 18—
19 K. Indeed, Lawless et al. [32] showed that
Cd,Nb,O; exhibitssigns of aglassy state at low temper-
atures; namely, c,/T3 passes through a maximum at
17 K, its thermal conductivity is proportional to T2 in
the range 0.7-5.0 K, and Ag/e passes through a mini-
mum at 0.47 K. However, does this mean that the PT to
a glassy state occurs at T,? For example, BaTiO; aso
exhibitssigns of aglassy state at low temperatures[32];
however, this does not mean that the low-temperature
PT (into the rhombohedral phase) in barium titanate is
atransition to aglassy state. We agree with [33], where
the signsof aglassy statein cadmium pyroniobate were
observed at high temperatures and were found to be
caused by various lattice defects and domain walls. In
this case, it is beyond reason to believe that T, is the
glass transition temperature and to designate it as Ty.
This transition is most likely an ordinary phase transi-
tion associated with a changein crystal symmetry.

7. TRANSITIONSAT T > Tpe

The occurrence of phase transitions at 1, = 218 K,
T, =230 K, and 15 = 261 K needs to be checked, since
data on them are scarce and have not been confirmed.
There are dataon DTA effectsat 1, and 15[ 34]. Krainik
et al. [11] observed jumpsin (T) and L/¢(T) in astrong
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bias field (E,4. = 8 kV/cm) at 1, and 1,, and the jumps
were absent in a zero field. These jumps were attributed
to phase transitions. It should be noted that a hump in
the temperature dependence of the electrooptic coeffi-
cient was observed at 1, inthe case of E,.=0and ahys-
teresisin An(E) appeared at Ey. > 10 kV/cm [7]. How-
ever, no anomalies in the resonance frequencies of
piezoelectric vibrations (which are very sensitive to
phase transitions) have been detected at 14, T,, and 15
(Fig. 7) [22].

The authors of [24, 35] reported on the occurrence
of Oﬁ—O; PTs(i.e., without achange in cubic symme-
try) at 1,= 319K and 15 =512 K, wheree, theionic con-
duction, and the lattice parameter changed only dlightly
(Aa/a=0.00002). However, those authors al so detected
a white hoarfrost-like deposit on the crystal heated
above 512 K, which unambiguously indicates chemical
changes [35]. They assumed a loss of water or of
another impurity at T, = 319 K. Thus, the temperatures
T, and 15 most likely do not correspond to phase transi-
tions.

8. DISCUSSION

Obvioudly, the cause of the specific features of
Cd,Nb,O; consistsinitscrystal structure. A cubic pyro-
chlore-type structure with space group Fd3m and a =
10.4 A is usually derived from a cubic fluorite-type
(CaF, or AQ,) structure with space group Fm3m and
a=5.4 A constructed from CaFg4 cubes (or AOg cubes).
In the case of a compound AB,O, =
2(A¢Bo5)(Ops7500.125)2, @ pyrochlore rather than fluo-
rite lattice forms if the B ions are smaller than the A
ions: the A and B ions become ordered. Theregular BOg
and AOg cubes change into BOg octahedra and strongly

distorted AOg = AOzO; cubes compressed along the

body diagonal of the cube. A pyrochlore-type structure
(Fig. 9) is characterized by an extremely rigid network
of octahedra (B,Og); and a very flexible sublattice
(OA,); (Fig. 9b) (which correspondsto a 3-cristobalite-
type structure) inserted into this network. (The A ions
enter the “windows’ between the octahedra, and the
spaces between the octahedra are occupied by O(Ags),4
tetrahedra (Fig. 9b).) Thus, avery compliant sublattice,
where the OA, tetrahedra are connected via“ hinges,” is
inserted into the very rigid network of octahedra.

The presence of these two sublattices can explain a
large number of the PTs in cadmium pyroniobate
induced by vibration modes characteristic of both the
(B,Og)., Network and the B-cristobalite sublattice and
by their relative-vibration modes. According to [31],
the pyrochlore lattice is characterized by 66 vibration
modes, 38 of which are infrared-active modes. There-
fore, itisnot surprising that Cd,Nb,O, undergoes many
PTs. It is obvious that finding a relation between the
PTs and the vibration modes requires knowledge of the
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Fig. 9. (a) Pyrochlore-type crystal structure (the projection
on the (110) plane); (b) cubic structure of the B-cristobalite
type, XA,; and (c) the location of an XA, tetrahedron in the
space between octahedra (only the octahedron faces adja
cent to theion X are shown).

symmetries of various phases; unfortunately, they are
either unknown or have been determined unreliably.

Now, let us discuss relaxor properties. In classic FE
relaxors (e.g., PMN or Ba(Ti,Sn)O,), the PTs are dif-
fuse due to inhomogeneities (frozen composition fluc-
tuations) induced by arandom distribution of two cat-
ion types in one of the sublattices. However, in
Cd,Nb,O;, one of the cation sublattices contains only
cadmium ions and the other contains only niobium
ions. Therefore, this mechanism of diffuse PTs is
invalidin this case. Thefact that the diffuse character of
the FE PT isdifferent is also supported by the presence
of a domain structure, which is clearly visible in the
absence of an electric field. (In classic FE relaxors, a
domain structure is invisible until a strong field is

applied.)

The causes of the diffuse FE PT in Cd,Nb,O, can be
explained if we pay attention to the similarity of the
pyrochlore and fluorite structures. We assume that, when
a pyrochlore lattice forms, numerous fluorite atomic
groups embedded into the pyrochlore lattice appear.
(They can ariseif the Aand Bionsrandomly changetheir
polyhedra. The sizes of the fluorite and pyrochlore cells
make this possible.) In principle, these groups can con-

tain excess oxygen ions and can have the (Cd,Nb,Og) f{

composition, or, rather, (Cd,Nb,0g_,[,) 2" with x <

1. (This situation is possible for small atomic groups.)
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These groups would have a negative charge, whereas
their environment would have a positive charge due to
an oxygen deficiency. It is known that randomly
directed nonuniform electric fields can make an FE PT
diffuse [36]. It is clear that the crystal fields acting on
the fluorite groups should be nonuniform and random.

Here, we would like to mention the results from
[37], wherethe (111) surfaces of plateswere studied by
x-ray diffraction. All the crystals had peculiar (disloca-
tion) defects. Colorless crystals and weakly colored
crystals were found to be most imperfect. Strongly col-
ored and doped crystals were most perfect. Undoped
crystals had a homogeneous netlike dislocation distri-
bution with alinear cell size of 10-50 um. The disloca
tion density ranged from 10* cm for strongly colored
crystalsto 5 x 10° cm2 for colorless or weakly colored
crystals.

This raises the following question: Why does cad-
mium pyroniobate have such a high disocation den-
sity? It is likely that dislocations are generated by the
fluorite groups. The additions of Zn, Ni, Cu, Fe**, and
Gd* ions used in [37] most likely hindered the forma-
tion of fluorite groups and thereby decreased the num-
ber of dislocations.

According to [33], the strongest dielectric disper-
sion near Ty, was observed in colorless or weakly col-
ored crystals, where the number of dislocations was
maximum. It is clear that the larger the number of
sources of random fields, the stronger the diffuseness of
an FE PT.

Itisobviousthat, because of their gradients, random
fields acting on fluorite groups affect the Curie temper-
atures of different pyrochlore regions differently (on a
microscopic rather than nanoscopic scale). As aresult,
boundaries arise between PE and FE regions. The dis-
placement of these boundaries dueto thermal motion or
an applied aternating field would result in dielectric
relaxation. Domain walls can also take part in dielectric
relaxation. Obvioudly, it is beyond reason to suppose
that in Cd,Nb,O, there are relaxing polar nanoscopic
regions characteristic of classic relaxors.

It is unlikely that cadmium-ion jumps in the poten-
tial barriers of CdOzO; polyhedra are responsible for
the FE PT and dielectric relaxation. The point is that
similar cadmium-ion displacements (or even larger)
have been found in Cd,Ta,0O, [38], which isnot aferro-
electric. Moreover, the cadmium-ion displacements
decrease as the temperature decreases.

9. CONCLUSIONS

Thus, we have discussed the phenomena accompa-
nying al PTs in cadmium pyroniobate and various
opinions regarding the nature of these PTs. As aresult,
anumber of doubts have arisen: (1) Isthe PT at Ty fer-
roelectric or only ferroelastic? (2) Isthe FE transition at
Tgw improper (without multiplication of the unit cell) or
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incommensurate? (3) Istherelaxor FE transition at Ty,
classic or of another nature? By analyzing the available
data, we have drawn the following conclusions: (i) The
presence of aPT at T, is not proved. (ii) The existence
of an incommensurate modulated phase seems to be
unlikely inthe range from T, to T,.. (iii) The transition
at T, is most likely an ordinary PT with a change in
symmetry. (iv) The occurrence of phase transitions at
14, T,, and T3 needs to be checked, and the phenomena
observed at temperatures 1, and t; are likely to be unre-
lated to phase transitions.

We have tried to explain the large number of PTs,
the dislocation structure, the diffuseness of the ferro-
electric phase transition, and the dielectric rel axation of
cadmium pyroniobate. However, our conclusions need
to be verified.

Thus, we have critically analyzed the generaly
accepted concepts of the nature of phase transitionsin
cadmium pyroniobate, which, in our opinion, errone-
ously explain the nature of these transitions.

The author hopes that the doubts described in this
work will stimulate further investigations.
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Abstract—The lattice dynamics of silver niobate AgNbO5 and sodium niobate NaNbO; is cal cul ated from first
principles. The unstable modes (i.e., tilting of oxygen octahedra and ferroel ectric atomic displacements) in sil-
ver and sodium niobates are analyzed. It is shown that the existence of ferroelectric modesis associated prima-
rily with the instability of the atomic positions of silver and sodium in the crystal lattice. The dynamic charges
inthe structure of silver and sodium niobates are determined. According to the first-principles cal cul ations, both
silver and sodium niobates in the ground state (T = 0) are characterized by ferroelectric atomic displacements
and frozen tilting of oxygen octahedra, with the only difference being that the tilting modes of the oxygen octa-
hedrain silver niobate correspond to the M point of the Brillouin zone, whereas those in sodium niobate are
attributed to the R point of the Brillouin zone. The results of these calculations are in good agreement with

experimental data. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Silver niobate AgNbO; and sodium niobate
NaNbO; [1-5] are promising materialsfor usein radio-
telephone engineering. Upon doping, crystals of these
compounds acquire properties inherent in relaxors,
which, in turn, can also have extensive applications in
various devices. The phase diagrams of silver and
sodium niobates are complicated by the formation of a
large number of phases due to tilting of the oxygen
octahedra and ferroel ectric atomic displacements. Both
crystals at low temperatures are ferroelectrics. More-
over, these crystals exhibit ferroelectric properties in
response to an electric field. At low temperatures, tilt-
ing of oxygen octahedra in the structure of silver and
sodium niobates is accompanied by ferroelectric
atomic displacements.

As the temperature increases, sodium niobate
undergoes the following sequence of phase transitions
(see [4] and references therein):

173K 633 K 753K 913K

N2 p2BE RIBE 2K 1) 22 10y 25 €. (1)
Here, the ground state N corresponds to the rhombohe-
dral ferroelectric phase. This phase is characterized by
both frozen tilting of oxygen octahedra of the araa-
type in the Megaw notation [2] and frozen rhombohe-
dral ferroelectric atomic displacements. The above
sequence of phase transitions was discussed earlier
when solving the problem associated with the determi-
nation of the sequence of phase transitions in the high-
temperature range [4, 5]. Note that the ground state of
sodium niobate was beyond question.

As the temperature increases, silver niobate under-
goes a somewhat different sequence of phase transi-

tions than that revealed for sodium niobate (see [4] and
references therein):

340K 540 K 626 K 634 K 660 K

M, M, M; O, 0, T C.(2
Silver niobatein the ground state M, is characterized by
both frozen displacements of oxygen octahedra of the
ara*h type in the Megaw notation and frozen rhombo-
hedral ferroelectric atomic displacements.

In this paper, we call attention to the fact that the
ground states of silver and sodium niobates differ from
each other. Thisfact has been reliably established, even
though the above difference is observed only in the
cryogenic temperature range. However, it should be
noted that the thermodynamics of excited states (stabi-
lized at relatively high temperatures), asarule, is gov-
erned by the structure of the compound in the ground
state. In this respect, the nature and structure of the
ground state are of special interest.

The structure of acrystal in the ground state (T = 0)
is governed by the atomic interaction constants, which,
in turn, determine the frequencies of atomic vibrations.
Thus, the structure and atomic vibrations correl ate with
each other. Indeed, it is known that the phase transition
to the low-symmetry phase leads to the disappearance
of the vibrational mode corresponding to the symmetry
of this phase. Thisfact has been used in first-principles
calculations, i.e., calculations that do not includefitting
parameters, are based on the fundamental laws of quan-
tum mechanics, and, asarule, are performed within the
density functional approximation.

The symmetry of the low-symmetry phase can be
determined from ab initio calculations of the unstable
modes in the high-symmetry phase. The unstable

852 K
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modes in the high-symmetry phase have acomplex fre-
guency, and their eigenvector indicates the direction
and relative magnitudes of the atomic displacementsin
the low-symmetry phase (provided these displacements
are sufficiently small, i.e., nonlinear effects do not sub-
stantially affect the results of the calculations). Calcu-
lations of the unstable modes (with complex frequen-
cies) entail relatively low computational costs, and the
results obtained make it possible to revea crystal dis-
tortions that reduce the energy of the system. In order
to refine these results, it is necessary to perform self-
consistent calculations of the atomic coordinatesin the
low-symmetry phase.

This paper reports on the results of comparative ab
initio calculations of the lattice dynamics in the cubic
phases of sodium and silver niobates at T = 0. The pur-
pose of these calculations is to determine the unstable
modes and their eigenvectors for both crystals. We will
discuss the nature of the ferroelectric and tilting modes
in sodium and silver niobates (tilting of octahedra).
This paper does not seek to calculate equilibrium
atomic coordinates and frequencies of atomic vibra-
tions in the ground state, because these calculations
would require considerably more computer time. All
the calculations are performed for cubic symmetry.
This does not permit us to compare directly the
obtained equilibrium (within the given symmetry)
atomic coordinates and the frequencies of atomic vibra-
tions with experimental data but does provide the fast-
est way of revealing the unstable modes.

2. CALCULATION TECHNIQUE
AND RESULTS

The calculations were performed with the Vienna
Ab Initio Simulation Package (VASP) [6, 7]. This pro-
gram package provides a means for performing self-
consistent quantum-mechanical calculations of the
electronic structure on the basis of ultrasoft atomic
potentials and the calculations of equilibrium atomic
coordinates in crystal structures. The VASP code does
not use any parameters. The electron wave functions
and forces exerted onindividual nuclei by electronsand
ions are calculated for each set of atomic coordinates.
The forces are minimized according to an efficient
scheme.

In order to solve the formulated problem, the equi-
librium parameters of the crystal structures were calcu-
lated with the cubic symmetry retained. A supercell
composed of 40 atoms was used in both cases (silver
and sodium niobates). This supercell is eight times
larger than the primitive cell of the ABO; crystals. Inthe
reciprocal space, we used an 8 x 8 x 8 Monkhorst—Pack
Grid. After complete relaxation of the lattice with
retention of the cubic symmetry, we obtained the
parameters a = 7.9088 A for silver niobate and a =
7.9033 A for sodium niobate. It should be noted that it
isincorrect to compare these datawith the experimental
data directly, because the structures of both oxides in
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Phonon densities of states for silver and sodium niobates.
The phonon densities of states at negative frequencies cor-
respond to the complex frequencies and are plotted along
one vertical axis for the sake of clarity.

the ground state are strongly distorted by tilting of the
oxygen octahedra.

Then, each atom was displaced in three possible
directions by 0.01 A and the self-consistent quantum-
mechanical calculations were again performed with a
high degree of accuracy. The interatomic forces thus
obtained were used to calculate the interatomic force
constants and to construct the dynamic matrices for
sodium and silver niobates. Let us now analyze the
results of diagonalizing these matrices.

The calculated phonon densities of states are pre-
sented in the figure. It can be seen from this figure that
both curves are similar to each other in the range of sta-
ble states. However, in the range of complex frequen-
cies (for the sake of clarity, the density of complex fre-
guenciesis plotted in the range of negative frequencies
with the same magnitudes), there are substantial differ-
ences. These differences can be analyzed using the
detailed information on the modes presented in Tables 1
and 2. The analysis of these data revealed that a*a*a’
and aaa” are the dominant unstable modes in silver
niobate and sodium niobate, respectively. Therefore,
the instability in silver niobate corresponds to the M
point of the Brillouin zone, whereas the instability in
sodium niobate is attributed to the R point of the Bril-
louin zone. This can be associated with the somewhat

2005



2132

PROSANDEEV

Table 1. Analysis of theinstability of the phonon modesin silver niobate

Crystal Freg#gfcy, Atoms Pol P;Jir:qt?gn%m' Designation Type Degeneracy

Silver niobate 184i 0 M atata’ (TWa, 7a, 0) 3
178i @] R aaa (Tva, W4, 1a) 3

122i  |Ag,Nb,O r To, 3

65i Nb, O 3 (172a, 1U2a, 0) 6

34 |Nb M (Ta, 173, 0) 3

Sodium niobate 140i O R aaa (Tva, W4, 1a) 3
138i 0 M atata’ (TWa, 73, 0) 3

121i Na, Nb, O r T 3

smaller size of sodium atoms as compared to silver
atoms.

In sodium niobate, the difference between the
ground state and the first excited state (a*a*a?) is very
small (Table 1). Consequently, the stable phase of
sodium niobate in a “sodium niobate-silver niobate”
solid solution should disappear even at avery low con-
centration of sodium niobate.

Apart from the tilting modes, the ferroelectric
modes are also unstable in both cases. The frequencies
of these modesin sodium and silver niobates are nearly
identical (121 cm™). However, the ferroelectric mode
along the [110] direction in silver niobate is predomi-
nantly unstable, whereas the vibrational mode at the
Brillouin zone boundary along the [110] direction in
sodium niobate is stable.

The analysis of the eigenvector of the ferroelectric
mode demonstrates that both atoms A (Na, Ag) and B
(Nb) move out of phase with oxygen atoms. Taking into
account that the atomic mass of sodium is considerably
smaller than the atomic mass of niobium, we can infer
that the niobium atomic displacements corresponding
to the ferroel ectric mode are relatively small in sodium
niobate (the relative displacements are determined by
dividing the eigenvector into the square root of the
mass). The atomic masses of silver and niobium are
closeto each other. As aconsequence, in silver niobate,
the niobium atoms make a significant contribution to
the displacements, even though the displacements of
the silver atoms are dominant. Therefore, the ferroel ec-
tric instability in silver niobate and, especialy, in

Table 2. Characteristics of the eigenvector of the unstable
mode Ty, for sodium and silver niobates

Atom Sodium niobate Silver niobate
Ag 0.106 0.082
Nb 0.063 0.109
Opar -0.087 —-0.113
Operp -0.144 -0.194

PHYSICS OF THE SOLID STATE \Vol. 47

sodium niobate is primarily determined by the instabil-
ity of the centrosymmetric atom A (silver and sodium,
respectively) rather than by the strong Lorentz field at
the niobium atoms (as is the case with classical ferro-
electrics of the potassium niobate type).

The ferroelectric instability in oxides, as arulg, is
explained by the large dynamic charges. The dynamic
charge is defined as the derivative of the polarization P
with respect to the displacement r; of the ith atom [8]:

0P,
orig’

In modern first-principles cal culations, the polariza-
tion has been determined in the framework of the
strictly quantum-mechanical approach with due regard
for charge transfer between atoms upon their displace-
ment and for the difference between the local field and
the mean field. For this purpose, it is common practice
to use the Berry phase approach. The VASP code
enables one to calculate the Berry phases. We used this
code in our calculations of the dynamic charges for
sodium and silver niobates. The results of the calcula-
tions are presented in Table 3. It can be seen from this
table that the dynamic charges of niobium and oxygen
in silver niobate somewhat exceed those in sodium nio-
bate. Hence, the inference can be made that the polar-
ization in silver niobate should exceed the polarization
in sodium niobate for identical displacements of nio-
bium and oxygen atoms. To the best of our knowledge,
data on the polarization in the low-temperature phases
of these crystals are not available in the literature.

Table 4 liststhe selected force constants obtained by
dividing the force acting on the atom in its displace-
ment by the atomic displacement. It isworth noting that
these force constants correspond to the interaction
between the atomic sublattices rather than to the inter-
action between individual atoms. Asfollows from ana-
lyzing these data, the inclusion of the interaction
between the atoms leads to relatively large diagonal
elements of the dynamic matrix. For sodium and silver
niobates, we obtained the following results: 79, 197,
248, and 695 cm (sodium niobate) and 76, 182, 214,

Zigg = 3
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Table 3. Results of calculating the dynamic charges Z, in
the cubic structures of sodium and silver niobates

Atom Sodium niobate Silver niobate
A=Na Ag 1.102 1.044
Nb 9.718 10.055
O, -2.270 -2.387
Oy, -2.270 -2.387
(@) —-6.280 -6.325

z
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and 681 cm™ (silver niobate) for atomsNa(Ag), Nb, O
(displacement perpendicular to the chemical bond), and
O (displacement along the chemical bond), respec-
tively. It can be seen from these data that the smallest
values are obtained for atoms Na (Ag), which are
responsible for the lattice dynamics. This is consistent
with the results presented in Table 2. Moreover, the
large off-diagonal elements of the force constants cor-
respond to tilting of the oxygen octahedra. The com-
plex values of the collective frequencies of polar atomic

Table 4. Selected force constants (€V/A?) according to the cal culations for sodium and silver niobates

Atom (dis- X y . Atom (dis- X y . Sodium Silver
placement) placement) niobate niobate
Nb(2) 0 0 0 0(2) Y, 0 0 1.053 0.607
0 0 Y, 2.746 3.157
1 0 1, -0.171 | -0.196
1, 1 0 0.084 0.112
Y, 0 1 -2.027 | -1792
Y, 1 1 -0.063 | -0.140
1 1 Y, 0.006 0.011
A2 Y, Y, Y, Nb(2) 0 0 0 0.176 0.133
0(2) 1, 0 0 -0.182 | -0.046
0 0 1, 0.496 0.315
Nb(2) 0 0 0 Nb(2) 0 0 1 23.180 | 20.154
1 0 0 -0.358 | -0.393
1 1 0 -0.191 | -0.409
1 0 1 0.482 0.483
1 1 1 0.179 0.410
A2 1, 1, 1, A2 Y 1, 1, 0.360 0.390
1Y, Y, , -0.121 | -0171
1Y, 1Y, 1, -0.064 | -0.111
1Y, Y, 1Y, 0.113 0.183
1Y, 1Y, 1Y, 0.063 0.102
02 0 Y, 0 0(2) 0 0 Y, -1.308 | -1.248
0@2) 1 0 1, 0(2) 1 0 1Y, 10.544 10.369
Y, 0 1 1.447 1.304
0 Y, 1 -0.003 | -0.003
0 0 Y, -1715 | -1343
0 1 Y, -0.530 | -0.310
0 1 1Y, 0.537 0.396
0 0 1Y, 2177 1.948
0(2 Y, 0 0 02 0 Y, 0 -0.393 | -0.458
1, 1 0 -0.061 | -0.058
1Y, 1 0 0.027 0.021
1Y, 0 0 0.623 0.545
Y, 0 1 0.322 0.273
1Y, 0 1 0.502 0.484
1, 1 1 0.044 0.053
1 1, 1 0.124 0.136

Note: The atomic coordinates are given in terms of the lattice constant of the primitive lattice.
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vibrations and the tilting of the oxygen octahedra sug-
gest that both types of motion are unstableat T = 0.

3. CONCLUSIONS

The results of the first-principles calculations per-
formed in this work are in agreement with the experi-
mental data available in the literature according to
which the ground state of sodium niobate differs from
that of silver niobate [3]. Both silver and sodium nio-
bates in the ground state are characterized by rhombo-
hedral ferroelectric displacements and frozen tilting of
the oxygen octahedra; however, the tilting of the oxy-
gen octahedra in sodium niobate corresponds to the R
point of the Brillouin zone, whereas the tilting of the
oxygen octahedra in silver niobate is related to the M
point of the Brillouin zone. The new data obtained pro-
vide an explanation of the difference between the
ground states of sodium and silver niobatesat T=0and
allow oneto perform the calculationsfor solid solutions
according to a similar scheme. Information on the
nature of the unstable modes and their frequencies can
be used in further investigation into solid solutions of
these crystals.
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Pyroelectric Properties of Some Compounds
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Abstract—Protein aminoacid—based compounds were synthesized, and their single crystals were grown. The
dielectric and pyroelectric properties of the crystals were studied in the temperature ranges 80-340 and 140—
340 K, respectively. It was established that three of the compounds studied (L-His(H3PO,),, L-TyrHCI,
L-Ala,H;PO; - H,0) are linear pyroelectrics, with their room-temperature pyroelectric figures of merit being
close to those of ferroelectric triglycine sulfate crystals. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Investigation of the physical properties and crystal
structure of compounds based on protein aminoacids
has been attracting considerable interest (see, e.g., [1]).
The present study deals with the dielectric and pyro-
electric properties of some of these materials. The
piezoel ectric properties of these compounds were stud-
ied previoudly in [2].

2. EXPERIMENTAL TECHNIQUES

The crystals to be studied were grown from satu-
rated aqueous solutions of the appropriate aminoacids
and inorganic substances by slow cooling from 25 to
8°C at arate of 1 K/day. The chemical composition of
the compounds under study was obtained by elemental
analysis. The crystal symmetry and orientation of the
crystallographic axes were derived from x-ray diffrac-
tion measurements. The crystals studied have mono-
clinic or orthorhombic symmetry; i.e., they belong to
the C,;, or D, diffraction classes.

The samplesintended for study were cut from single
crystalsin theform of 0.1- to 0.2-mm-thick platelets 5—
10 mm? in area, with the mgjor plane oriented perpen-
dicular to the C, symmetry axes. Conducting electrodes
were deposited from a suspension of finely dispersed
silver. Measurements were conducted in vacuum at a
pressure of 10~ bar.

The pyroelectric response of the crystals was mea-
sured through stepwise illumination with infrared light.
In this method, the kinetics of variation of the tempera-
ture of the crystals, AT, and of the pyroelectric voltage
U induced acrossthem by the radiation are described by
the differential equations[3]

d(AT)

du U dT

CqH TR MPar @
where C; isthe heat capacity of the sample measured in
JK; Gy isacoefficient in units of W/K characterizing
heat exchange between the sample and its environment;
A is the sample area in m?; F, is the radiation power
absorbed by aunit area of the crystal under illumination
in units of W/m?; C and R are the capacitance and the
resistance of the crystal with the amplifier capacitance
and load resistance connected paralléel to it, respec-
tively; and p is the pyroelectric coefficient. As follows
from these equations, the shape of a pyroelectric signal
is determined by two time constants, namely, the elec-
tronic time 1, = RC, characterizing the rise of the pyro-
electric response of the sample after the switching on of
illumination, and the thermal time t; = C;/Gy, charac-
terizing the attainment of thermal equilibrium under
constant illumination intensity.

In our experiments, the relation 1, < 17 held (T, <
1s, 1 =2 5 9). In accordance with the conclusions
reached in [3], the peak pyroelectric response voltage
under illumination of acrystal is given by

U, = pAFRIc,L, 3)

where ¢, and L are the specific heat and the thickness of
the crystal, respectively.

In the present study, we used techniques that
included either single illumination on—off cycles about
1 min long in intervals of a few minutes or periodic
trains with illumination pulses 1 s long in intervals of
10 s. Figure 1 presents the voltage diagrams corre-
sponding to these techniques, with the voltage propor-
tiona to the light intensity incident on the crystal (top
diagramsin Figs. 1a, 1b) and the pyroelectric response
(bottom diagrams). The source of radiation was an

1063-7834/05/4711-2135$26.00 © 2005 Pleiades Publishing, Inc.



2136

(@ |

T
-—H‘..
I

Fig. 1. Voltages across a load resistance of the photodiode
(top curves) and aload resistance of the pyroelectric detec-
tor (bottom curves) obtained under (a) single and (b) cyclic
illumination of the crystal under study. The illumination
pulselengthis(a) 1 minand (b) 1s.

incandescent lamp with a 0.2-mm-thick filter of
undoped silicon; the heat flux incident on a crystal was
varied in the range 1-100 mW/cn?. The illumination
intensity was monitored with an FD-1 photodiode
placed in the measurement chamber in the immediate
proximity of the crystal and connected in the photo-
diode mode (i.e., with a voltage of ~1V applied in the
blocking direction).

Asisevident from Fig. 1a, the pyroel ectric response
signals generated immediately after the illumination
was switched on and off are practically identical, which
indicates the absence of any noticeable contribution to

YARMARKIN et al.
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Fig. 2. Temperature dependences of the dielectric permittiv-
ity of (1) L-His(H3PO,),, (2) L-TyrHCI, and (3) L-
A|32H3PO3 . Hzo

the pyroelectric response due to a possible temperature
difference between the illuminated and nonilluminated
crystal surfaces. The specific shape of the pyroelectric
response voltage pulses observed under periodic illu-
mination (Fig. 1b) isaccounted for by the superposition
of the signals of opposite polarity generated after the
application and termination of the illumination pulses.
However, as follows from Egs. (1) and (2) and is sup-
ported by direct measurements, the peak voltagein this
case is also proportional to the pyroelectric coefficient
of the crystal studied. Periodic illumination permitsone
to obtain continuous recording of U, under a variation
in crystal temperature.

The voltage drop across the load resistance of
100 MQ wasfed into an operational amplifier based on
aKR544-UD-1A chip with avoltage gain of unity and,
thereafter, into an electronic recorder. The load resis-
tance was chosen so as to provide a high enough pyro-
electric current measurement accuracy (of about
1072 A), on the one hand, while reducing the crystal
resistance (to values of about 10° Q at the upper limit of
the temperature range covered), on the other.

The dielectric permittivity and the |oss tangent were
measured with an E7-12 bridge at a frequency of
1 MHz and avoltage amplitude of 100 mV.

Symmetry and room-temperature pyroelectric figure-of-merit coefficients (g, = 8.85 x 10712 F/m is the permittivity of vacuum)

, . Fi=plc, | Fu=plec, |Fp=pilcyEe)Y?
' 2 i i"“p u i ) D il Lp
Compound Symmetry | p;, nC/cm” K e'lggy £"/gg nA cm/W V cm?/J (cm¥g)V2
TGS G, 30 50 0.16 17.8 4000 0.149
L-His(H3PO,), G, 6 25 0.20 35 1600 0.04
L-TyrHCI Coy 3 8 0.02 15 2500 0.06
L-Ala,H4;PO; - H,0O G, 2.7 7 0.02 16 3200 0.07
PHYSICS OF THE SOLID STATE Vol. 47 No. 11 2005
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3. EXPERIMENTAL RESULTS
AND DISCUSSION

The table lists the measured dielectric permittivity
and pyroelectric coefficients of L-histidine phosphate
(L-His(HzPO,),) [5], L-tyrosine hydrochloride (L-
TyrHCI), and di-(L-alanine) phosphite monohydrate
(L-Ala,H5PO; - H,0) [6], which exhibited the highest
pyroelectric activity over the temperature interval cov-
ered, and analogous data for triglycine phosphate
(TGS) [4], which was chosen for comparison. (Taking
into account the small size of the crystals studied and
the limited accuracy of measurement of their capaci-
tance, the error with which the reduced real (g'/¢,) and
imaginary (g"/y) parts of the dielectric permittivity
were determined is about 10%.) Thetable also specifies
the crystal symmetry derived in this study from the dif-
fraction class of symmetry accounting for the results of
pyroel ectric measurements. The symmetry group of the
L-His(H5PO,), and L-Ala,H;PO; - H,O crystalsis con-
sistent with the available literature data [5, 6].

The values of the pyroelectric response of other
crystalline compounds based on protein aminoacids
differ by more than three orders of magnitude. The
pyroelectric response of some crystals with a diffrac-
tion class of symmetry D,,, such as L-asparagine, L-
arginine hydrochloride, and L-tyrosine hydrochloride,
measured along one of the three orthogona C, axes
substantially exceeds (by one to two orders of magni-
tude) the values obtained al ong the two other axes, thus
giving one grounds to assign these crystals to the C,,
symmetry group, which is a subgroup of the group of
diffraction symmetry Dy,

The temperature dependences of the dielectric per-
mittivity and pyroelectric response of the crystals did
not reveal any featuresin the temperature interval stud-
ied (Figs. 2, 3). Note that the pyroelectric response of
the crystals, as well astheir dielectric permittivity, was
not affected by prepolarization of the crystals by apply-
ing adc electric field of £10 kV/cm within the interval
from room temperature to 80 K and that no dielectric
hysteresis was observed, which implies that these crys-
tals are not ferroelectrics.

Since experimental data on the piezoel ectric moduli
ey and thermal expansion coefficients a,; of these crys-

tals are lacking, we cannot separate the primary, piI :

and secondary, pi” = g0y, components of the total
pyroel ectric coefficient, which determines the polariza-

tion variation of the crystals AP; = (piI + piII )AT.

In view of the relatively large pyroelectric coeffi-
cients of the L-His(H;PO,),, L-TyrHCI, and L-
Ala,H;PO; - H,O crystals and their relatively low
dielectric permittivity, it is of interest to compare these
crystals with TGS in terms of their pyroelectric figure-
of-merit coefficients[4]. Estimates of these coefficients
for the current sensitivity (F,), voltage sensitivity (F,),
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Fig. 3. Temperature dependences of the pyroelectric
response of (1) L-His(H3PO,4),, (2) L-TyrHCI, and (3) L-
A|32H3P03 . Hzo

and detectability (Fp) arelisted in the table. Because of
the lack of experimental data on the specific heat ¢, of
the crystals under study, their figure-of-merit coeffi-
cients were calculated using the value ¢, = 1.7 Jcm® K
for TGS crystals. From examining the table, it becomes
evident that some of the figure-of-merit coefficients of
the crystals studied here are comparabl e to those of the
TGS crystals.
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LATTICE DYNAMICS

AND PHASE TRANSITIONS

Effect of y Irradiation on the Thermochromic Phase
Transition in [(C,Hs),NH,],CuCl, Crystals
(as Derived From Heat Capacity M easur ements)
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Abstract—The heat capacity of [(C,H5),NH,],CuCl, crystals, both nonirradiated and y-irradiated to a dose of
10’ R, was studied in the temperature interval 90-330 K by adiabatic calorimetry. The temperature dependence
of C,(T) was found to have a peak-shaped anomaly in the region of the thermochromic phase transition (PT) at
T= §22.7 K. Smoothened experimental heat capacity datawere used to calculate the changesin the thermody-
namic functions. The changes in the entropy and enthalpy of the thermochromic PT were determined to be
AS=42 JK™t mol~ and AH = 13653 Jmol ™ for the nonirradiated crystals and AS= 39 JK~* mol~ and AH =
12120 Jmol~* for theirradiated crystals, respectively. Irradiation of a[(C,Hs),NH,],CuCl, crystal by yraysto
adose of 10’ R was shown to shift the PT point toward lower temperatures by AT = 1.7 K. © 2005 Pleiades

Publishing, Inc.

1. INTRODUCTION

The [(C,H5),NH,],CuCl, compound belongs to a
large family of A,BX, crystals most of which feature a
sequence of temperature-driven phase transitions
(PTs). The structure of the various phases of these crys-
talsis determined by a balance of hydrogen bonds cou-
pling the structural components, namely, molecular cat-
ions and metal-halogen complexes. This accounts for
the PT parametersin these crystals being very sensitive
to external factors of varioustypes, including y irradia-
tion.

The A,BCl, compounds [where A stands for
(C,Hs),NH,, and B stands for (Cu, Co)] represent a new
class of thermochromic materials, which are known to
have application potential in optoelectronics. The
[(C,Hs),NH,],CuCl, crystal undergoes a thermochro-
mic PT at T = 323 K, which changes the crystal color
from green to yellow with increasing temperature [1].
The nature of this phenomenon is still very poorly
understood. It should be pointed out, however, that the
manifestation of the thermochromic effect isdominated
in this case by hydrogen bonds, which account for the
deformation of structural blocks in the crystal lattice.
Studies of the nature of the PT in [(C,Hs),NH,],CuCl,
have revealed [1, 2] that the thermochromic transition
in this crystal is driven by a change in the coordination
geometry of the Cu?* ion from plane square to tetrahe-
dral, which is reflected in a change in the absorption
spectra.

Since this promising crystal has remained practi-
caly unstudied (with only a few publications avail-

able), it appeared worthwhile to measureits heat capac-
ity in the low-temperature domain, including the PT
region, and to investigate the effect of y irradiation on
the parameters of this PT.

2. EXPERIMENTAL TECHNIQUE

Crystals of [(C,Hs),NH,],CuCl, were grown from
an agueous solution of a stoichiometric mixture of
CuCl,, - 2H,0 and [(C,H5),NH,]Cl by slow evaporation
at atemperature T = 300 K. Bulk green crystalsgrew in
3104 weeksto asize ~10 x 6 x 3 mm.

The heat capacity was measured in the temperature
interval 90-330 K using a setup with automatic temper-
ature control in a vacuum adiabatic calorimeter with
discrete heat injection in steps of 1-1.5 K. The sample
5.8233 gin weight was placed in the calorimeter 10 cm?®
in volume, which was sealed in a helium atmosphere.

In the PT region, the measurements were conducted
in temperature steps of 0.2-0.5 K. The sample was
heated at a rate of 0.07-0.10 K/min. The error in the
heat capacity measurements as estimated against a KV-
grade quartz reference did not exceed 0.3% in the tem-
peratureinterval covered. In the region near the PT, the
accuracy of measurement was lower, because thermal
equilibrium was reached in this region in 2.5-4.0 h,
whereas both above and below the PT the equilibration
time was 7-10 min. The experimental heat capacity
data were least squares fitted with a cubic-power law.

1063-7834/05/4711-2138$26.00 © 2005 Pleiades Publishing, Inc.
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The samplewasirradiated at room temperature with
Co® y rays at dose rates of ~80 R/s in the irradiation
region.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

Figure 1 illustrates heat capacity measurements per-
formed on a nonirradiated [(C,Hs),NH,],CuCl, crystal.
The C,(T) curve reveals aclearly pronounced anomaly
intheform of afairly high symmetric peak at atemper-
ature T=322.7 K. The sharp anomaly in the heat capac-
ity, as well as the increase in the thermal equilibration
time in the PT region observed in the course of the
experiment, strongly suggests that the PT a T =
322.7 K is afirst-order transition. In order to avoid the
mergence of points, not all experimental data obtained
were used to construct the C,(T) curve. The PT temper-
ature determined by us almost coincides with the value
T = 323 K quoted in [1] while dlightly exceeding T =
311 K, the value derived from optical measurements[2].

Using numerical integration, the changes in the
entropy and enthal py due to this PT were determined to
be AS=42 JK- mol~t and AH = 13653 Jmol %, respec-
tively. The smoothened values of the heat capacity and
the changesin the thermodynamic functions (entropy S,
enthalpy H, Gibbs free energy @) as derived from these
values for the [(C,H5),NH,],CuCl, crystal are listed in
the table.

Note the large values of ASand AH. As pointed out
in [1], the reason for this liesin the fact that the PT in
this crystal not only entails disorder in individual
blocks but also gives rise to a radical structural rear-
rangement of the lattice.

Our experimental values AS = 42 J K~ mol and
AH = 13653 Jmol~ for the PT in [(C,Hs),NH,],CuCl,

C,, J/(K mol)
9000

6000

3000}
800+

600

400

200 C 1 | | | | |
100 150 200 250 300 350
T,.K

Fig. 1. Temperature dependence of the heat capacity of
[(C2H5)oNH,],CuCly.

a T = 3227 K are consistent with the values AS =
45(3) JK1 mol and AH = 14.6(9) kJ mol~* obtained
by differential scanning calorimetry in[1].

Figure 2 presents the experimental temperature
dependences of the heat capacity in the region of the
phase transition for [(C,Hs),NH,],CuCl, crystals both
nonirradiated and y-irradiated to a dose of 10’ R. We
readily see that y irradiation shifts the anomaly in the
Cy(T) curveat T = 322.7 K toward lower temperatures
by AT = 1.7 K. The cdculated changesin the entropy and
enthapy duetothe PT at T' = 321.0 K for the irradiated
[(C,Hs),NH,],CuCl, sasmple are AS= 39 JK~* mol~ and
AH = 12120 Jmol. Irradiation of [(C,Hs),NH,],CuCl,
crystals ruptures hydrogen bonds. Heating of irradiated
[(C,Hs5),NH,],CuCl, samples with broken hydrogen

Smoothened heat capacity data and changes in the thermodynamic functions of [(C,Hs),NH,],CuCl,

T.K Nl SN —S%0K) *(0 ~P(E0K) H(T) = H(80 K), J/mol
J(K mol)

80 199.7 0.000 0.000 0.0
100 2215 47.11 108 4212
120 2435 89.54 258 8860
140 265.1 1287 4.6 13944
160 286.9 165.6 60.1 19464
180 308.7 200.7 77.9 25420
200 3305 234.4 95.7 31812
220 3523 266.9 113 38640
240 374.1 2085 130 45904
260 395.9 329.3 148 53604
280 4177 3505 165 61740
300 4395 389.0 182 70312
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Fig. 2. Temperature dependence of the heat capacity of
[(CoHg)oNH,],CuCly, in the region of the thermochromic

phase transition for (1) a nonirradiated sample and (2) a
sampleirradiated to a dose of 107 R.

bonds brings about not only intensified ion thermal
motion but also rearrangement of the crystal structure.
As aresult of this rearrangement, the high-temperature
phase stabilizes at atemperature T' = 321.0 K, whichis
lower than that of the thermochromic PT in anonirradi-
ated sample. We thus see that the thermochromic PT in

PHYSICS OF THE SOLID STATE \Vol. 47
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[(C,Hs5),NH,],CuCl, crystals is sensitive to ionizing
radiation. Analogous results were obtained in [2] when
studying the absorption spectra of nonirradiated
[(C,H5),NH,],CuCl, samples and samples irradiated
with Co® and Ra??® isotopes. The shift of the PT tem-
perature in [(C,Hs),NH,],CuCl, under low irradiation
doses was shown to be reversible [2]. In view of the
clearly pronounced thermochromic effect and the high
sensitivity of the thermochromic PT temperature to
radiation, these materials may have application poten-
tial in sensors of ionizing radiation.
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Abstract—A model is proposed for a photoinduced Peierls-type semiconductor—metal phase transition that
makes it possible to determine the time dependence of the bandgap width in the electronic spectrum of vanadium
dioxide subjected to a light field and the dependence of the time at which a photoinduced semiconductor—metal
phase transition occurs on the laser pulse duration. The theoretical results obtained are consistent with experimen-
tal data on theillumination of aVO, film with an intense laser pulse. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Experiments have shown [1] that an intense laser
pulse incident on a vanadium dioxide film on a sub-
strate transfers the film from the semiconducting to
metallic state while heating it by less than 10 K [2].
This phase transition cannot be interpreted in terms of
the thermal model because the onset of thermal insta-
bility would require heating of a VO, film by about
50 K (up to 340 K) [3]. The nonthermal (for timest <
1 ps) and thermal (for t = 3-15 ps) stages in the devel-
opment of a photoinduced semiconductor—metal phase
transition have been observed experimentally to occur
in VO, subjected to alaser pulse 1, 50 fslong [4]. In
[5], a vanadium dioxide film was illuminated with a
laser pulse of energy density W 150 mJ/cm? and photon
energy 2w [11.6 eV. The dependence of thetimet to the
onset of the photoinduced semiconductor—-metal phase
transition on the laser pulse duration 1, wasfound in [5]
for 1, swept from 15to 1000 fs. Asfar aswe are aware,
the measured experimental relation has thus far not
been interpreted theoretically.

We report on a theoretical investigation of the
dynamics of the photoinduced semiconductor—metal
phase transition in vanadium dioxide. The nonthermal
mechanism of the onset of instability is considered. An
equation for the order parameter ¢ of the metal—semi-
conductor phase transition in a light field is derived.
The time dependence of the bandgap width in the elec-
tronic spectrum is found. The time T a which a photo-
induced phase transition occurs is calculated as a func-
tion of the duration 1, of the incident laser pulse. The
theory developed is used to interpret the experimental
datafrom[5] on theillumination of avanadium dioxide
film on a substrate by an intense laser pulse.

2. BASIC EQUATIONS

The electronic spectrum of vanadium dioxide has a
quasi-one-dimensional band deriving from the overlap
of the 3d electronic wave functions of vanadium atoms
arranged in parallel chains[3]. Thewave-function over-
lap along the chainsis substantially larger than that in a
perpendicular direction, thus permitting oneto treat this
system within a one-dimensional model.

Consider a chain of atoms bearing one outer elec-
tron each. It is known that, at a temperature T below a
certain critical value T, the equidistant arrangement of
atoms in a chain becomes unstabl e with respect to their
pairwise approach [6]. Asaresult, abandgap appearsin
the electronic spectrum at the Fermi level.

The coordinate x, of the nth vanadium atom in a
chain can be written as

(—1)2 RE. M

where a is the atomic separation in the metalic phase,
¢ isaparameter characterizing the pairwise approach of
atoms in the chain (the order parameter of the metal—
semiconductor phase transition), and R is the effective
radius of the electron wave function in an atom. The
evolution of the order parameter & with time is
described by the Lagrange equation:

e Qi (2)

X, = na+

where Q is the generalized dissipative force corre-
sponding to the generalized coordinate &; L is the
Lagrangian

-2
mx;,

L=2>"

n

mis the atomic mass;

-k -F=F ©)
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2
Fo= 2 @

isthefree energy of the crystal lattice written in the har-
monic approximation, which takes into account only
the first nonvanishing term in the Taylor expansion in
the order parameter & (A is the expansion coefficient);
F; are the free energies corresponding to the valence
( = 1) and conduction (j = 2) bands of the electronic
subsystem,

g;(k
F, = WN, 2kBTZIn%L+expD kT( )%, (5)

W;, N;, and g; (K) arethe quasi-Fermi level, the number of
electrons, and the jth-band dispersion law, respectively;
T isthe temperature; and kg is the Boltzmann constant.
The factor of 2 before the summation sign in Eq. (5)
accounts for spin degeneracy. The dispersion law €;(k)
of d-band electronsfor avanadium atom chain in vana-
dium dioxide described by Eqg. (1) can be cast in the
form [7]

£, ,(k) = ¥2b./cos’k + sinh’E. (6)

Here, 4b is the conduction band width in the metallic
phase (for & = 0) and k = -1t + 21¥/N,, wheres =1, 2,
., Ny and N, is the number of atomsin the chain.
Substituting Eqg. (3) into Eqg. (2) and taking into
account Egs. (1) and (4)—6), we arrive at

= o moNy- At - 5% nwn @
NOmR
where
(K — Ui
() = 1+ epfl=t0 ®

isthe electron occupation number of the kth level in the
jth band.

Accepting the relaxation time approximation (Q ~
¢ ), we calculate roughly the sumin Eqg. (7) for { < 1to
find

4
NomR

E+yE = -

2

(9)

#bN,
X g -

—N; +N,) + A&,

where y is the characteristic phonon relaxation time.
At T =0, al electronsin the absence of illumination are
in the valence band (N; = Ng, N, = 0) and the order
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parameter for the metal—-semiconductor phase transi-
tionis& = &,. In this case, we obtain from Eqg. (9)

A = 4D,
Tt

Ny, (10)

Eryt= - b

E 2N(n +pH, (D)

where N, n, and p are the concentrations of vanadium
atoms, of electrons in the conduction d band, and of
holesin the valence d band, respectively.

The time dependence of the hole concentration is
described by the rate equation [§]

(1-ral p

hw T, (12)

p =
where a and r are the optical absorption and reflection
coefficients, respectively; wand | arethe frequency and
intensity of the light field, respectively; and 1,(p, §) is
the recombination time. The film thickness is assumed
to be much smaller than the optical radiation attenua-
tion length Va.

3. RESULTS OF NUMERICAL ANALY SIS

Equations (11) and (12) were numerically solved for
the following parameter values [3, 9]: vanadium atom
concentration N [J 3 x 10?2 cm3, conduction d-band
width in the metallic phase 4b [11.1 eV, bandgap width
in electronic spectrum (6) in the low-temperature semi-
conductor phase €, = 4bsinh, [0 0.6 eV, vanadium

atomic mass m [J8.5 x 102 g, and effective electron
wave-function radius in the 3d state R [14.1 x 10~ cm.
For aphoton energy #w [11.6 eV, the optical reflectance
isr J0.2 [5] and the optical absorbance is a [12.3 x
10* cm. The characteristic room-temperature phonon
relaxation timeisy?* =5 x 103 s[10].

In the experiment described in [5], photons of
energy fw 1.6 eV excited electrons from the valence
d band into the conduction 1t band. The effective life-
time of nonequilibrium electrons present in a concen-
tration n; ~ 10?%° cm3 [2] in the conduction 1t band is
~10° s[1]. Therefore, for n,~ 10% cm2andt <102 s,
the second term on the right-hand side of Eq. (12) may
be neglected. In Eqg. (11), the electron concentration in
the conduction d band satisfies the inequality n < p.

The dependence of the light field intensity | on time
t was chosen to be a Gaussian pulse,

1ty = 2 )7,
T[Tp

(13)

where W and 1, are the energy density and pulse dura-
tion, respectively. The numerical analysis of Egs. (11)—
(13) was performed for the initial conditions

p(t=-2t,) =0, g(t=-21,) =06eV. (14)
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g, eV

1
400
t, fs

1
0 200

Fig. 1. Bandgap width of the electronic spectrum € plotted vs
time t in the case of illumination of the system with a light

pulse of intensity (13); energy density W= 50 mJcm?; and
duration T, equal to (1) 20, (2) 100, (3) 200, and (4) 400 fs.

T, fs
1000

100

10 100

Ll
1000
T, fs

Fig. 2. Time 1 a which a photoinduced semiconductor—
metal phase transition occurs in vanadium dioxide plotted
vs the duration 1, of a laser pulse of energy density W =
50 mJcm?. The line refers to calculations using Egs. (11)—
(13), and points are experimental data from [5].

Figure 1 plots the bandgap width € = 4bsinhg in the
€l ectronic spectrum (6) of vanadium dioxide versusthe
timet as obtained from Egs. (11) and (12) for the case
where the light field intensity is described by Eq. (13)

PHYSICS OF THE SOLID STATE Vol. 47 No. 11

2143

and the initial conditions are given by Eq. (14). We
readily see that the bandgap width € decreases with
time down to zero. The vanishing of € correspondsto a
photoinduced semiconductor—metal phase transition.
Thetime1 to the onset of the phase transition increases
with 1,. The 1(1;) dependence as calculated from
Egs. (11)<13) is shown graphically in Fig. 2, with
points referring to the experimental data from [5]. The
results obtained in terms of the proposed model are
seen to agree quite well with the experimental data.

In conclusion, we note that ultrafast (t ~ 1072 s)
photoinduced phase transitions to a new crystalline or
amorphous state have been observed experimentally to
occur in Si and GaAs. The mechanism underlying these
transitions involves electron—phonon coupling [8, 11],
which suggests their commonality with the photoin-
duced semiconductor—-metal phase transition in vana-
dium dioxide considered here.
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Abstract—The pseudo-e-expansions for the coordinate of the fixed point g*, the critical exponents, and the
sextic effective coupling constant gg are determined for the two-dimensional Ising model on the basis of the
five-loop renormalization group series. It isfound that the pseudo-e-expansions for the coordinate of the fixed
point g*, the inverse exponent y, and the constant g possess a remarkable property, namely, the higher terms
of these series are so small that reliable numerical results can be obtained without invoking Borel summation.
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1. INTRODUCTION

The two-dimensional Ising model, for which
Onsager obtained the exact solution 60 years ago, has
been widely used as a proving ground for testing
approximate methods [1-10]. Recently [7, 10], thefive-
loop contributions to the renormalization group (RG)
functions were determined for a theoretical-field ver-
sion of this model, namely, the two-dimensional scalar
Euclidean theory Ad“. These results, together with
known four-loop expansions [4], made it possible to
obtain renormalization group series of record-value
length. However, resummation of these series demon-
strated [7] that the high order of perturbation theory
does not ensure a sufficient accuracy in determining
numerical values. For example, the coordinate of the
Wilson fixed point specified by afive-loop seriesfor the
B function is 5% greater than the known value of high
accuracy [11],

g* = 1.7543637(25), 1)

and the renormalization group estimate of the critica
exponent n differs amost twofold from 1/4 [7]. This
situation contrasts sharply with the case of three-
dimensional systems[4-6, 12].

Does there exist any method for improving numeri-
cal estimates obtai ned from two-dimensional renormal-
ization group expansions? Below, it will be demon-
strated that such a method exists. This method consists
in transforming the renormalization group expansions
into alternative power series with the coefficients
exhibiting a more favorable behavior. The case in point
is the implementation of the pseudo-e-expansion tech-
nigque proposed by B. Nickel (see reference [19] in the
paper by Le Guillou and Zinn-Justin [5]). The idea put
forward by Nickel is that the coefficient of the linear
term in the expansion of the (3 function should be
replaced by afictitious small parameter 1 and that the
coordinate of a nontrivial fixed point g* should be
sought in the form of a power seriesin the parameter 1

in order to obtain the T expansions for the critical expo-
nents. Actualy, this technique has already been
employed for calculating the critical exponents in two
dimensions [5]; however, the relatively short series
used in these cal culations have made demonstrating the
advantages of the method impossible.

2. CALCULATION TECHNIQUE

We will operate with a two-dimensional massive
theory of the A¢* type, which is normalized to zero
external momenta. In this case, the five-loop renormal -
ization group expansions for the 3 function and the crit-
ical exponentsy and n have the following form [7]:

B(9)

B = —g+g°-0.716173621g" + 0.9307664439“( )

—1.58238834g° + 3.260429",

y=1- %g +0.125023295g° — 0.122455138¢"
+0.164004651g" — 0.288554g°,

n = 0.033966147g> — 0.002022555¢°

4
+0.011393097g" — 0.0137362g".
Here, the refined value of the five-loop contribution to
the inverse exponent y is taken from [10]. Let us sub-
stitute —tg for the first term on the right-hand side of
relationship (2) and implement the algorithm described
above. As aresult, we obtain the expressions

g* = T+ 0.7161736211° + 0.0950428671°

()
+0.086080396T" — 0.2041391",
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yi=1- %T —0.1137012467° + 0.0249406781°

—0.0398960591" + 0.06452121°,

n = 0.0339661471° + 0.0466287621°

(7
+0.0309254711" + 0.02568431°.

It can be seen that the power seriesin T for g* and y*
compare favorably with the renormalization group
expansionsin the space of physical dimension, because
their higher coefficients, even if irregular in sign, are
small in magnitude. The smallness of these coefficients
allows one to obtain reliable numerical estimates from
relationships (5) and (6) without invoking popul ar sum-
mation techniques based on the Bordl transform.

This can be easily verified by constructing the Padé
approximants [L/M] with a parameter T = 1 for g* and

vy

3. RESULTS AND DISCUSSION

The results obtained for g* and y are presented in
Tables 1 and 2, respectively. Since the T expansion for
the coordinate of the fixed point g* beginswith thelin-
ear term, the maximum rank of the approximantsL + M
in this case is actually equa to 4, whereas for the
inverse exponent y, we have (L + M) = 5. For this
reason, the numbers of rows and columns in Table 2
exceed those in Table 1 by unity. The subscripts on the
numbers in the tables indicate the coordinates of those
poles of the Padé approximants which lie on the real
positive T semiaxis. The best approximation properties
are exhibited by the diagonal Padé approximants [L/L]
and those close to them which do not have poles at a
parameter T > 0. Therefore, the most reliable estimates
of the coordinate g* should be the numbers 1.751 and
1.837 from Table 1. Averaging over these values, we
obtain g* = 1.794, which differs from the exact value
(1) by only 2%. As can be seen from Table 1, it isthis
five-loop approximation that gives such a good esti-
mate; almost all the Padé approximants have “ danger-
ous’ polesin lower orders, which leads to a consider-
able scatter in the numerical values. It seemslikely that
it isthis scatter that led to pessimism in earlier calcula
tions with four-loop series[5].

A similar situation occurs when calculating the crit-
ical exponent y. It can be seen from Table 2 that, in this
case aso, reliable estimates are obtained only in the
five-loop approximation. Indeed, the numbers specified
by the main working approximants [2/3] and [3/2], as
well as by the approximant [4/1], amost coincide with
each other and are close to the exact valuey = 1.75. In
contrast, the approximants[2/2] and [1/3], which corre-
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Table 1. Coordinate of the Wilson fixed point g* according
to calculations from pseudo-e-expansion (5) with the use of
the Padé approximants [L/M]

MI/L 1 2 3 4 5
0 |1000 |1716 |1.811 | 1.897 | 1.693
1 | 3523,,|1.826,5| 2.724,,| 1.837

2 | 1425 | 19185, 1.850,

3 | 2601, 1751

4 | 1194

Note: InTables 14, the subscripts on the numbersindicate the coor-
dinates of the dangerous poles of the corresponding approxi-
mants, i.e., the poleslying on the rea positive semiaxis.

Table 2. Critical exponent y calculated by the Padé summa-
tion of expansion (6) for y*

MIL| 0 1 2 3 4 5
0 |1.000 |1500 |1.808 | 1.730 | 1.859 | 1.660
1 1333 |2024,01.744 | 1778 | 1.777

2 | 1558 |1.702 |1.8005,| 1.777

3 | 1646 |6.871,,|1.772

4 |1732 |1718

5 | 1.714,

spond to the four-loop approximation, have dangerous
poles. It is worth noting that the pole of the second
approximant is located in the vicinity of the physical
value T = 1, which substantially affects the result
obtained.

Now, we calculate the Fisher exponent n. From the
comparison of series (4) and (7), we can conclude that,
in this case, the pseudo-e-expansion does not lead to
any advantages. Furthermore, upon changing over to
the expansion in terms of the parameter t, we obtain not
an aternating series but a series of constant signs in
which the coefficients are approximately equal in mag-
nitude. By adding four terms of thisseriesat 1 = 1, we
obtain the Fisher exponent n = 0.137, whereas the only
working Padé approximant [2/2] (all the other approxi-
mants have dangerous poles) gives = 0.0565. Both of
these estimates differ significantly from the exact value
n = 0.25, as well as the result of the processing of the
renormalization group expansion (4) using the Padé—
Borel-Leroy technique, i.e., n = 0.146 [7].

We made an attempt to improve the situation. For
this purpose, instead of series (7) for the “small” expo-
nent ), we processed series for the “large” exponentsv
and n®, which arerelated to the exponent n through the
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Table 3. Padé triangle for the critical exponent v calculated
by the summation of pseudo-e-expansion (9) for v

MIL| 0 1 2 3 4 5
0 | 0500|0750 [0.933 [0920 | 1.005]| 0.898
1 | 0667 |1.107,5 0921 |0.931 | 0955

2 0788|0901 |0.971;4| 0.959,

3 | 0.846 | 2.999, ,| 0.959

4 | 0.903 |0.907

5 | 0.907

Table 4. Padétrianglefor the universal ratio Ry specified by
pseudo-e-expansion (12)

ML 1 2 3 4
0 4.000 2364 | 3587 | 1.837
1 2.839 3064 | 2867
2 3.148,5 | 2.940
3 2.621

standard expression. To accomplish this, we find the
following expansionsin terms of T for v and v

=Y -
\Y 2_n

+

NI
(el ) o

T+ 0.12089771° + 0.0584363r3(8)

+0.05689181" + 0.00379871°,

1o 5 2 026136861+ 0.01457461°
v 3 9)

—0.09131271" + 0.11812171°.

It turned out that the first of these expansions is of
little use for obtaining numerical estimates: all the Padé
approximants generated by this expansion, except for
the approximants [5/0] and [0/5], have dangerous poles
located in the vicinity of the physical value T = 1.
Therefore, the series for v admits only direct summa-
tion and also summation of the corresponding inverse
series. These operations lead to amost coinciding
results, namely, v = 0.907 and v = 0.898, which, how-
ever, differ from the exact valuev = 1.

The expansion of the inverse exponent v, on the
contrary, has afavorable structure for the Padé summa-
tion. As follows from the results given in Table 3, all
except one of the higher (the fifth order) approximants
are free from dangerous poles. Moreover, the approxi-
mants [2/3], [3/2], and [4/1] lead to very close values.
Nonetheless, assuming that the values of y = 1.78 and
v = 0.96, which follow from the results presented in
Tables 2 and 3, are the most reliable estimates, we
obtain the critical exponent n = 0.156, which is only
scarcely better than the direct estimate n = 0.137.
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Unfortunately, the calculations with the critical
exponent N@ = (2 — n)(y?* — 1) are aso ineffective.
Although the pseudo-e-expansion for this exponent can
be efficiently summed using the Padé technique,
because all the higher approximants do not have poles
at T > 0 and the most symmetric of these approximants
give close values of n®@ (-0.851, —0.854, —0.837), the
final estimate of the exponent differs significantly from
the exact value n® = -0.75.

Apart from the critical exponents, some other quan-
tities also take on universal values at a temperature
T — T.. In particular, these are the higher effective
coupling constants gg, ds, - .., which enter into the equa-
tion of state and determine the nonlinear susceptibili-
tiesx,, of the system (see, for example, [13-17]). These
constants can be represented in the form of power series
in the renormalized charge g. At present, the renormal -
ization group expansion for the constant gg of the two-
dimensional scalar theory A¢p#isknownin thefour-loop
approximation [16]:

Os
o (10)
_4am

agﬁ(l —1.125210g + 1.822531g" — 3.64849g°).
By substituting expansion (5) into this series, we can
readily obtain the pseudo-e-expansion for the sextic
effective coupling constant:

Os
(11)

2
= ‘g—rlt(ﬁ +1.0233111" + 0.4229911° + 0.0212017°).

The coefficients of series (11) decrease rapidly in mag-
nitude. However, attempting to sum this series with the
use of the Padé approximants leads to the problem of
dangerous poles. Only one of the approximants corre-
sponding to the four-loop approximation, namely, the
approximant [4/2], is free from dangerous poles; the
calculation with this approximant gives the coupling
constant gg = 1.122. This estimate agrees well with the
result of the summation of the renormalization group
expansion (10) using the Padé-Borel-L eroy technique,
i.e, gs = 1.10[16].

On the other hand, it is known that the equation of
state and the expression for the nonlinear susceptibility
Xe iNvolve not the vertex gg itself but the ratio R; =

9¢/9; [13-17], where g, = grv9 [16]. Hence, it would

beinteresting to obtain a power seriesin 1 for the above
ratio. Such a series has the form

Re = 41(1—0.4090361

+0.3058831° — 0.4376761°).

The higher coefficients of this expansion do not exhibit
apronounced tendency toward adecrease. Nonethel ess,
eveninthiscase, the use of the Padé approximantsturns

(12)
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out to be efficient. As can be seen from Table 4, only the
approximant [1/2] has apole at T > 0 and the numbers
specified by the working approximants [2/2] and [3/1]
are very close to each other. By averaging these values,
we obtain R; = 2.90. This estimate differsby only 1.5%
from the results of analyzing the multiloop renormal-
ization group series (R; = 2.94 [16], R; = 2.95 + 0.03
[18]) and the high-temperature expansions (R; =
2.943 + 0.007 [19]), as well as from recently obtained
values of high accuracy (R = 2.94294 [11], R; =
2.94238 (9, 20]).

The computational potential of the pseudo-e-expan-
sion as applied to the ratio Ry is not exhausted by the
above estimate. Thisratio can be refined by resumming
series (12) using the Padé-Borel technique. The calcu-
lations demonstrate that the approximants [2/2] and
[3/1] constructed for the Borel transform of R; do not
have dangerous poles, and their processing leads to the
values R; = 2.970 and 2.909, respectively. Averaging
these values, we abtain the ratio Ry = 2.94, which coin-
cides with the results of the calculations performed in
[11, 16, 19, 20].

In conclusion, we should note that the Ising model
is not aunique system for which the higher coefficients
of the pseudo-e-expansions are small as compared to
the coefficients of the renormalization group seriesin e
and g. A similar feature was revealed recently for the
three-dimensional cubic model [21], the three-dimen-
sional chiral model [22], and the two-dimensional MN
model [10]. This made it possible, in particular, to
obtain alternative numerical estimates for the marginal
dimensions of the order parameter, i.e., those values of
M and N which separate the regions with different
regimes of the critical behavior [10, 21, 22].
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Abstract—In glass, the CuCl phase startsto form a certain time after the onset of supersaturation. Asthe tem-
peratureisincreased, thetransient period (stage of formation of critical nuclei) shortens and the growth kinetics
of the CuCl phase switches from thefirst to second stage. The observed pattern of the CuCl phase growth kinet-
icsisfully consistent with the Zel’dovich—Frenkel classical theory of new-phase formation. The delay timeis
determined by the radius of the critical nucleus (CuCl nanomelt) and the diffusion coefficient of the limiting
component, the Cu* ions. The radius of the critical nucleusis about 1 nm and does not vary within a broad tem-
perature range. The activation energy for the CuCl phase growth process does not change in the transition from
the formation of critical nuclel to the first and, subsequently, second stage. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

As seen from arecent review [1], the existing theo-
retical models of nucleation of a new phase are
extremely diverse. This imparts considerable signifi-
cance to experimental studies, which should facilitate
correct selection and refinement of theoretical models.

One of the key issues in the formation of a new
phase is its nonstationary stage and the determination
of the incubation (delay) time in the onset of intense
growth of the new phase. The classical studies by
Zel'dovich [2] and Frenkel [3] were followed by theo-
retical investigations of the nonstationary stage in the
formation of a new phase (see, e.g., [4-8] and refer-
ences therein). The relevant publications deal with
studies of the nonstationary nucleation of AgCl clusters
in glass [6], the electrical conductivity in supercooled
melts [7], the crystal nucleation on the surface [8] and
in the bulk [9] of glass, and the electrically conducting
layer of copper oxide on the surface of various glasses
[10, 11]. Most of those studies, both experimental and
theoretical, paid, however, little attention, if any, to the
part played by temperature and the size of the critical
nucleus in the growth kinetics of the new phase.

The present communication reports on astudy of the
initial stages in the formation of a new phase in solid
solutions of the CuCl phase components in glasses,
where nucleation of anew phaseislimited by diffusion
of one component, the Cu* ions[12]. Thekinetics of the
phase formation and the growth of CuCl particles in
size were studied experimentally within a broad tem-
perature range. The experimental results are shown to
be in good agreement with the Zel’dovich—Frenkel
classical theory of new-phase formation.

2. INITIAL STAGE IN THE CuCl PHASE
GROWTH KINETICS IN GLASS

Glass with additions of NaCl (1.5 wt %) and CuO
(0.7 wt %) heated to 500°C and higher reveals the for-
mation of nuclei of a new phase, a nanomelt (NM),
which contains CuCl and possibly a certain amount of
NaCl [12, 13]. Cooling the sample stops growth of the
new phase, after which the eutectic melt of the new
phase first detaches from the glass (because of their
thermal expansion coefficients being different) and
subsequently undergoes crystallization with segrega-
tion into CuCl and NaCl nanocrystals (NCs) [13]. (Ref-
erence book information [14]: above 500°C, the ther-
mal expansion coefficient of the CuCl and NaCl meltis
about 100 x 107, while for glass it is substantialy
smaller, about 6 x 1076.)

The formation of the CuCl crystalline phase is
accompanied by the appearance of optical absorptionin
the transparency window of the glass matrix. The opti-
cal absorption spectrum of the initial glass exhibits a
smooth faloff in the wavelength region from 300 to
370 nm, which is associated with the Cu* ions distrib-
uted in the glass. After the sample has been subjected to
a temperature of 500°C or higher, absorption starts to
grow throughout the above spectral region. Asthetime
of holding isincreased, the main absorption band of the
Z, , exciton in CuCl NCs peaking in the range 350—
370 nm appears. The absorption value at the band max-
imum was used to determine the amount of the CuCl
crystalline phase precipitated in glass, which yields the
number of CuCl moleculesin the NM of the new-phase
nucleus. The energy position of the maximum of the
Z, , exciton absorption band offered the possibility of
deriving the average radius of a CuCl NC.

Note that, due to the presence of NaCl (up to 30%
[13]), the radius of a nucleus in the growing new phase

1063-7834/05/4711-2148$26.00 © 2005 Pleiades Publishing, Inc.
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(nanomelt) may be dlightly larger than that of the CuCl
NC obtained experimentally.

To study the growth kinetics of the CuCl phase,
three samples (0.65, 0.64, 0.63 mm thick) were pre-
pared from a starting glass not subjected to thermal
treatment. Each glass sample was heated repeatedly at
one of three temperatures (500, 615, or 707°C). After
holding at this temperature, the sample was quickly
taken out of the furnace and the absorption spectrum
was measured (at 300 K) in the wavel ength region 310—
400 nm. After this, the sample was again held for acer-
tain time in the furnace at the same temperature and
then removed for the next absorption measurement.

Figure 1 illustrates the changes that occur in the
CuCl NC absorption spectraof glassasthetotal time of
holding of a sample in the furnace at 500°C increases.
Curve 0 is the absorption spectrum of Cu* ions distrib-
uted in the starting glass. After heat treatment for 4 h at
500°C, the absorption spectrum (curve 1) exhibits an
increase in Z; , exciton and CuCl NC interband edge
absorption [the spectrum is given in units of optical
density a(E) = log(ly/1), where |, and | are the light
intensitiesincident on and transmitted through the sam-
ple, respectively].

An increase in the time of holding brings about an
increaseininterband absorption and amore clearly pro-
nounced isolation of the Z, , exciton absorption band.
The energy position E,, of the Z; , exciton band was
derived from the second derivative (see the bars on the
corresponding curves in Fig. 1). The absorption at the
maximum of the absorption band may be considered, in
a first approximation, to be proportional to the total
amount of the CuCl phase precipitated in the glass.
Similar changes in the absorption spectra of CuCl NCs
were observed to occur after heat treatment of the glass
at 615 and 707°C.

Figure 2 shows experimental data (points) obtained
in the case where the absorbance in the region of the
Z, , exciton band maximum increased with the time of
holding at three different temperatures. Theincreasein
the absorbance K(t) = In(l,/1)/d with time (d isthe glass
sampl e thickness) is shown on a semilogarithmic scale.

The growth kinetics of the CuCl crystalline phase
permits the isolation of two regions, namely, delay
region | and a linear region where K(t) increases at a
constant rate (region 11). The linear part of the K(t)
curves can be extrapolated to give an intercept on the
abscissa axis, which is equal to the delay time 1. At
500°C, the time T is longer than 4 h; at 615°C, it is
0.5 h; and at 707°C, 7.7 min. The slope of the curvesin
region Il is practically the same for all temperatures of
CuCl phase formation.
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Fig. 1. Absorption spectra of CuCl nanocrystals in a glass
sample measured after heat treatment at 500°C over various
timest: (0) O, (1) 4.0, (2) 5.8, (3) 7.7, (4) 9.5, (5) 11.3, and
(6) 13.2 h. Sample thickness, 0.63 mm.
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Fig. 2. Kinetics of absorption growth at the maximum of the
CuCl NC Z; , exciton band measured at a glass heat treat-

ment temperature of (1) 707, (2) 615, and (3) 500°C. Points
are experimental data. Curves 1'-3' are plots of Eq. (7), and
solid curves 1-3 were obtained with inclusion of the
decreasein supersaturation given by Eq. (10). | indicatesthe
transition region, and |1 indicatesthe region of growth of the
new phase at a steady rate. K(t) is proportiona to the
amount of the CuCl phase precipitated intimeT.

3. VARIATION OF THE CuCl PHASE IN SIZE
IN THE COURSE OF GROWTH

As the content of the CuCl crystalline phase
increases, the spectra exhibit an energy shift of the Z; ,
exciton band maximum to longer wavelengths (Fig. 1),
which is associated with the growth of the average
radius of CuCl NCs. This shift is a signature of the
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Fig. 3. Energy positions of the Z; , and Z3 excitons plotted
vsthe inverse square of the average CuCl NC radius.

guantum confinement effect in exciton energy states
[15]:

a1
2ma2’ @

E, = E, +0.67

where E,, is the position of the exciton level for an NC
radius a = oo and mis the exciton effective mass.

The confinement shift in E,, for the Z; , exciton in
CuCl NCsisshownin Fig. 3 for room temperature. The
data presented in Fig. 3 were extracted from an analysis
of experimental data [16, 17] on the variation of the
CuCl NC melting temperature induced by quantum
confinement. Extrapolation of the datain Fig. 3 makes
it possible to determine the parametersin Eq. (1) deter-
mining the confinement shift of exciton energy in CuCl
NCs at 300 K. For the Z; , exciton, we find that E,, =
3.353 eV (which corresponds to the position of the
excitonic level inabulk sampleat 300K, a =) and the
effective massis m = 1.07my, (m, is the electron mass).
For the Z; exciton (see [15]), the corresponding values
arefoundto beE,, = 3.274 eV and m= 1.5m, These val-
ues of the effective masses and energy of excitonic
states in CuCl NCs differ from those reported in [15]
for 4K. Theincreased value of E,, ismost likely aresult
of thermal expansion of the CuCl NC lattice heated to
300K [18].

The values of the quantum confinement parameters
found for the Z; , exciton energy were used to deter-
mine the variation of the average CuCl NC nucleus
radius from the shift the maximum in the exciton
absorption spectra undergoes during growth of the
CuCl phase. The data on the variation in the NC size at
different growth temperatures are presented in Fig. 4.
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Fig. 4. (a) Square of the average radius and (b) radius of
CuCl NCsin glass as afunction of growth time.

4. DISCUSSION OF THE RESULTS

The radius of CuCl NCs at the beginning of the
curve presented in Fig. 4b is dlightly above 1 nm. This
implies that the critical radius of CuCl NCsin glassis
not abovethisvalue. Note that the critical CuCl crystal-
line nucleus in the melt of the same composition is
12 nm in size [17]. On the other hand, free-surface
CuCl NCsless than 1.3 nm in size crystallize without
supercooling, because the formation of the crystal sur-
face does not require any expenditure of work in this
case [17] (in other words, the surface energy of CuCl
particles of such size with afree surface is zero).

As follows from Fig. 4a, the average volume of
CuCl phase nucle increases by afactor 6.13 at 707°C.
The total amount of the CuCl phase increases in the
sametime by afactor of 8.22 (seecurve lin Fig. 2, the
seventh point in which corresponds to the first point in
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Fig. 4a). The fact that absorption of the CuCl phase
exceeds only by afactor of 1.34 the increase in the vol-
ume of the nuclel (which can be assigned to an increase
in the exciton absorption oscillator strength) suggests
that the conditions of growth of anew phaseat 707°C are
characteritic of the second stage, in which nuclei grow
in size without a noticeable increase in their number.

A similar analysis of data obtained at 615°C showed
the increase in absorption to exceed that of the nucleus
volume only insignificantly (by 1.24 times). Therefore,
accounting for the increase in the oscillator strength of
absorption, one may assume that the CuCl phase passes
through the second stage of growth at 615°C as well.

The situation is different at 500°C. During observa-
tion, the CuCl phase particles grew fairly little in size
(Fig. 4b), only by afactor of 1.4. However, absorption
increases by 7.78 times (curve 3 in Fig. 2). This means
that the number of particles increases nearly threefold.
Hence, the growth of the CuCl phase at 500°C passes
through thefirst stage (in which an increase in the num-
ber of nucle is accompanied by only a small increase
in their size).

Thus, at 500°C (curve 3in Fig. 2), one observes the
first stage of CuCl phase growth in glass. As the tem-
perature increases to 615°C or higher under the same
supersaturation (the beginning of the linear parts), the
new phase crosses over to the second stage of itsgrowth
kinetics. Thisis possibly due to an increase in the Cu*
diffusion coefficient and, accordingly, in the mean dif-
fusion path of the components of the new phase.

Next, we consider the possibility of interpreting the
experimental datain terms of the theory accounting for
the existence of atransient period of growth of the new
phase [2, 3], during which critical nuclei form. The
growth of K(t) in the region of the CuCl NC exciton
absorption band is proportional to the number N(t) of
CuCl moleculesin the new phase that have precipitated
intheglassintimet:

K(t) = yN(1), )

where vy is the effective oscillator strength of optical
absorption per CuCl molecule.

According to the nucleus formation theory (see [2,
Sect. 6]), N(t) is given by

t

N(t) = [Jsexp(-T/t)dt' 3)
0

Here, Jsisthe steady diffusion flux of CuCl molecules
penetrating into al critical nuclei, which is described
by the Zel’dovich—Frenkel equation:

Js = B(9«) fo(9x)Z(9x), 4)
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where B(gp) is the diffusion coefficient in size space,
fo(gp) is the equilibrium number of molecules in the
critical nuclei, and Z(gp) is the Zel’dovich factor

D(9«
fo(g.) = Cep R

1_p°®(g) ®
2(9¢) = J—mm agzg o,

In Egs. (5), Cisthe concentration of the limiting com-
ponent of the new phase in solution (glass), ®(g) isthe
minimum work expended in the formation of a new-
phase nucleus, gris the number of molecules in the

critical nucleus, k is the Boltzmann constant, and T is
the temperature. According to [2], the time T is deter-
mined by the following relation containing the initial
(a;) and critical (ap) radii of the nucleus and the diffu-
sion coefficient D = Dyexp(—€/KT) (where Dy is the
prefactor and € is the diffusion activation energy):

(A _a1)2

"TTap ©

In the case of vapor condensation, the coefficient B(gp)

isdetermined by the vapor pressure and temperature[3,
4], and for cavitation, by the temperature and viscosity
of the liquid [2]. In the particular case of weak solu-
tions, B(gp) is proportional to D and C (see [19, prob-
lemin Sect. 100]).

Substituting Eg. (3) into Eg. (2) and taking into
account Egs. (4)—(6), we obtain the following relation
for theinitial stage of CuCl phase nucleation:

t
_ 2. 0P| 1 @
K(®) = y[PCO) epr=3-1 21T D gt
0

2
D_(a* —-a) Oy
U 4pt U7

As the starting components of the CuCl phase
become expended, the equilibrium concentration C
decreases. It is believed [19, 20] that, in the case of
weak solutions, supersaturation near supercritical
nuclei is compensated from the bulk. In these condi-
tions, the variation C(t) can be written asthe difference
between C, (theinitial concentration of the components
of the new phase) and the number of molecules N(t)
already incorporated in the nuclei:

3

alg

(7)

X exp

C(t) = Co—N(t). (8)
Multiplying both sides by y, we obtain
YC(t) = yCo—yN(1). 9)

The product yC, = K, is hypothetical absorption in the
case of total precipitation of the CuCl phase. Using
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Egs. (2) and (9), we can make the following substitu-
tion into Eq. (7):

YC(1)® = (Ko—K(1))1y. (10)

Equation (7) can be used in combination with
Eqg. (10) to numerically cal culate the absorption K(t + dt)
at timet + dt from the known absorption K(t) at timet.

Without considering the decrease in supersatura-
tion, Eq. (7) correctly describes the phase growth kinet-
icswithininitial part | (fort<1),i.e, inthe stage of for-
mation of critical nuclei (curves 1'-3' in Fig. 2). The
calculation is carried out with the following parameter
values:. in the exponent of the second exponential func-

tionin Eq. (7), weput a; /4D, = 0.9 x 103 s (parameter
a, in this exponent is set to zero, because at the begin-
ning of the experiment there are no nuclel at any tem-
perature), the diffusion activation energy ise = 1.10 eV,
the quantity ®(g) does not exceed 0.05 €V, and

yDoCon—(0°P/0g°), =1.178 x 105 crL.

The time 1 is calculated to be 460, 1.8 x 103 and
15.54 x 10° s at temperatures of 707, 615, and 500°C,
respectively. These results practically coincide with the
values derived earlier graphically from Fig. 2.

By substituting Eqg. (10) into Eg. (7), one can
account for the decreasein C(t) in region Il asthe start-
ing components of the CuCl phase are being expended.
Numerical calculations (solid line 3 in Fig. 2) fit well
the experimental data obtained for the first stage of
phase growth. The parameter values are K, = 355 cm

and DOA/—(OZCD/agZ)* /y =0.885 cm™. In the course of
CuCl phase growth, supersaturation falls off in the
same way (by 30%) for all temperatures.

Although relation (4) for the diffusion flux Js cannot
be used to calculate K(t) for the temperatures 707 and
615°C (second stage), the agreement between the calcu-
lated curves and experimental data (see solid curves 1, 2
in Fig. 2) does not seem accidental. We believe this to
be due to the fact that the diffusion flux in the second
stage is dominated by the contributions from the diffu-
sion coefficient D and supersaturation C(t), while the
effect of the parameters associated with the variation of
d(g) issmall.

Calculations showed that K(t), which is propor-
tional to the amount of the CuCl phase precipitated in
time T (the time taken for the formation of the critical
nuclei), is the same at all temperatures and equals
10.9 cm (horizontal dashed linein Fig. 2). Theradii of
the nuclel are 1.05, 1.67, and 1.84 nm for temperatures
of 500, 615, and 707°C, respectively. It follows that, at
615 and 707°C, thefirst nuclei to appear undergo accel-
erated growth because of the large mean diffusion
length of the CuCl phase components.

Note that the constancy of the factor a’l4 D, deter-
mining the behavior of T with temperature may indicate
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that the size of the critical nucleus pushing out the glass
during its growth is independent of temperature. In
accordance with the classical theory of formation of
new-phase nuclei, we have

_ 20v

H-p
where o is the specific surface energy of the interface
between the critical nucleusand glass; v ' isthe average
volume of molecules of the nucleus; and y and p' are
the chemical potentials of the separated components of
the new phase in the glass and of their compounds in
the nucleus melt, respectively. According to Eq. (11),
the independence of ar from temperature during the

formation of a new phase may imply that the surface
energy o decreases with increasing temperature just as
the denominator does.

Asis evident from Fig. 4a, the square of the radius
a grows linearly with time at temperatures of 707 and
615°C. The data obtained can be approximated by a
relation describing the growth of the CuCl phasein the
second stage [20]. To obtain a better match with exper-
iment, we introduced a delay time 1, into the relation
proposed in [20] to describe the variation of a in the
second stage:

az(t) = 2Dv'C(t-1,) + af,

where v' isthe molar volume of the new phase.

The parameters providing the best fit of Eq. (12) to
the experimental data at temperatures of 707 and 615°C
are the same: Dyv/C = 1.2 x 10* nm?/s, a; = 1 nm, and
€ = 1.10 eV. Only the delay time 1, is different: for
707°C,1,=40s, and for 615°C 1, =600 s.

The situation changes radically at 500°C. CuCl
nanocrystals increase in size much more slowly. In

view of such asmall increase (1.5 times), the datafrom
Fig. 4b can befitted by alinear time dependence,

(11)

Ax

(12)

a(t) = 1.27x10°(t—1,) + a;. (13)

Assuming that a;, = 1 nm, the delay timeis found to be
1, =10.2 x 10®s. For azero delay time, theinitial radius
will bea; = 0.87 nm.

5. CONCLUSIONS

The kinetics of CuCl growth in glass in the first
stage is in agreement with classical theory for the non-
stationary case if the decrease in supersaturation is
included. For the CuCl phase growth in glass, the delay
time needed for the formation of critical nuclei may
range from a few hours to a few minutes. The delay
time is determined by the size of the critical nucleus
and the diffusion coefficient of the components of the
new phase. The size of the critical nucleus (CuCl
nanomelt) is practically independent of the temperature
of formation and does not exceed 1 nm.
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For the same supersaturation, the CuCl phase
growth kinetics in glass transfers from the first to sec-
ond stage with increasing temperature, which may
imply a substantial influence of the temperature-
induced variation of the mean diffusion length charac-
terizing the new-phase components on the growth
kinetics. The growth kinetics of the amount of the CuCl
phase in the first and second stages can be described
with one relation taking into account the stage of for-
mation of the critical nuclei.
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Abstract—Individual and multiquantum dots of InAs are studied by means of microphotoluminescence in the
case where, in addition to the principal laser exciting photoluminescence, second infrared laser is used. It is
demonstrated that the absorption of the infrared photons effectively creates free holes in the sample, which
leads to both a change in the charge state of a quantum dot and to a considerable reduction of their photolumi-
nescence signal. The latter effect is explained in terms of effective screening of the internal electric field, facil-
itating carrier transport along the plane of a wetting layer, by the surplus holes from the infrared laser. It is
shown that the effect of quenching of quantum dot photoluminescence gradually disappears at increased sample
temperature (T) and/or dot density. Thisfact is due to the essentially increased value of quantum dot collection
efficiency, which could be achieved at elevated sample temperatures for individual quantum dots or even at low
T for the case of multiquantum dots. It is suggested that the observed phenomena can be widely used in practice
to effectively manipulate the collection efficiency and the charge state of quantum-dot-based optical devices.

© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Semiconductor quantum dots (QDs) effectively
confine electrons (€'s) and holes (h's) on the nanometer
length scalein al three dimensions and, hence, may be
considered as “artificial atoms” [1]. Unlike real atoms,
QDscan be manipulated in different ways, which opens
the possibility of tailoring their shape, size, and compo-
sition [2] in order to achieve desired properties. Conse-
guently, QDs are potential candidates for various opto-
electronic (electronic) applications, such as QD lasers
[3], QD infrared detectors [4], QD memory devices[5],
and single-electron transistors [6].

For the mgjority of these devices, the QDs become
populated with carriers, which are primarily created
outside the QDs somewhere in the sample (in the barri-
ersor inthewetting layer (WL), on which QDs are nor-
mally grown [7]) by means of electrical or optical exci-
tation. Consequently, excited carriers undergo transport
in the WL/barriers prior to capture into the QDs. This
circumstance highlights the crucial role of the carrier
capture processes into the QD for the performance and
operation of QD-based devices.

The carrier capture mechanisms intensively studied
in the last decade reveal optical-phonon-assisted [8, 9],
Auger-like [10], shakeup [11] processes and carrier

L This article was submitted by the authorsin English.

relaxation through the band tail states of the WL with a
subsequent emission of localized phonons [12]. The
lateral carrier transport (in the plane of the WL) could
be affected by carrier hopping between QDs[13] or by
trapping of migrating particles into localized states of
the WL [14] or into nonradiative centers[15] in the sur-
rounding media. A more efficient carrier transfer from
the WL into the QDs via radiation-induced defects in
the WL has been reported [16]. A magnetic field
directed perpendicular to the plane of the structure was
observed to limit the lateral transport of carriers[17].

It has also been suggested [8] that the carrier drift
could be considerably influenced by a long-range
attractive potential caused by the strain field surround-
ing the QD. On the other hand, strain-induced potential
barriers in the barrier—QD [18] and in the WL-QD
interface [19] were considered to limit the carrier cap-
ture into the QD. The important role of an electric field
directed in the growth direction of the sample on the
carrier capture into and escape out of the QD has been
demonstrated by studies of the electric current passing
through QDs [20].

In our previous study [21], we pointed out another
mechanism of carrier transfer from the WL into the
QDs which had not been previously considered. A
built-in electric field (F) was directed in the plane of a
WL to facilitate the lateral carrier transport. However,

1063-7834/05/4711-2154$26.00 © 2005 Pleiades Publishing, Inc.
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in these measurements, individual QDs were studied
only at a fixed sample temperature (T) of 5 K. In the
present paper, the suggested mechanism of carrier cap-
ture into the QDs is investigated at increased sample
temperatures (up to 70 K), aswell asat an increased dot
density.

In our experiments, we use an additional infrared
(IR) laser to influence the field F. The excitation energy
of the IR laser, hv,g = 1.240 eV, is considerably less
than the lowest transition energy of the sample studied
and, accordingly, cannot simultaneously excite both
electrons (€'s) and holes (h's); however, it can generate
solely either €'s or h's through the excitation of deep
level (DL) defects positioned in the band gap of the
CaAsbarriers[22]. According to our model, these extra
carriers, excited by the IR laser, will effectively screen
thefield F and will consequently slow down the carrier
transport in the plane of the WL. Due to this effect, a
considerable reduction (up to 10 times) of the QD pho-
toluminescence (PL) signal (lgp) is experimentally
observed when the sampleis exposed to dual excitation
of an IR laser and amain laser.

To the best of our knowledge, there are very few ear-
lier publications [23, 24] on the study of the IR-laser-
induced changes in lgp. In contrast to our findings, it
was found in [23] that the IR laser induces an increase
in the PL from the QDs by up to 40%. This phenome-
non was explained in terms of an IR-laser-induced
release of carriers that were trapped into deep defects
from the QDs. Considerable changesin the fluctuations
of the Iop during the time interval of the measurement
were detected when the sasmple was illuminated with an
additional near-IR laser irradiation [24]. Carriers
trapped at deep localized centers in the vicinity of the
QDs were suggested to be responsible for the observed
phenomenon [24].

Our present results demonstrate that the strength of
the observed quenching effect of 1o, progressively
decreases as the temperature, as well as dot density,
increases. This is explained in terms of an essentially
increased QD callection efficiency (a), i.e., the ability
of QDsto collect photoexcited carriers from an illumi-
nated area. Under these experimental conditions, the
role of F, which facilitates carrier transport at lower val-
ues of a, becomes diminishing.

2. SAMPLE AND EXPERIMENTAL SETUP

The sample studied was grown by molecular beam
epitaxy on a GaAs(100) substrate. It consisted of lens-
shaped InAs QDs devel oped on an InNAsWL from about
1.7-monolayer InAs deposited in the Stranski—Krast-
anov growth mode. The WL—dot layer was sandwiched
between two 100-nm-thick GaAs barriers. The sample
was grown without rotation of the substrate, resultingin
agradual variation of the In flux across the wafer and,
consequently, in agradient in the QD density. The QDs
were studied by means of a diffraction-limited micro-
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PL (1PL) setup (a detailed description of the setup and
the sample growth procedureisgivenin [25]). The uPL
technique employed in the present experiments allowed
us to excite and study asingle QD (SQD).

To excite the sample, we used two Ti—Sp lasers,
whose beams were focused on the same position of the
sample surface down to a spot diameter of 2 um. The
main laser (L) was used to excite the PL of the WL and
the QDs. The excitation energy (hv,) was tuned in the
range from 1.410 to 1.480 €V with a maximum excita-
tion power (Py) of 20 uW. The other laser, L,g, operat-
ing at afixed excitation energy, hv,r = 1.240 eV, had a
maximum output power (P,g) of 100 uW. It isimportant
to note that the hv, iswell below the value of the QD-
related emission and, accordingly, no signal from either
the WL or the QDs was detected with excitation solely
with L,z. The sample was positioned inside a continu-
ous-flow cryostat operating in the temperature (T)
range 5-70 K.

To find the particular QD to stu