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Abstract—The basic concepts of high-resolution extreme ultraviolet nanolithography, which is aimed at pro-
ducing ultra-large-scale integrated circuits (with an integration one or two orders of magnitude exceeding
present-day integration levels), are reviewed and substantiated. The problems in and the current status of this
field of technology are considered. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The central issue behind the fast progress in micro-
electronics over the past 40 years has been the continu-
ous shrinkage of the minimal feature size (amin). Until
recently, the advances have been provided by refining
photolithography equipment operating in the visible,
ultraviolet, and near-vacuum ultraviolet ranges of elec-
tromagnetic radiation. A resolution as high as amin ≈
0.1 µm has been achieved to date using modern photo-
lithographic tools.

The key advantage of optical patterning is the possi-
bility of parallel transfer of a pattern consisting of many
millions of features owing to the wave nature of optical
processes. It is this approach that has provided a high
economic effectiveness of planar technology and made
it possible to fabricate ultra-large-scale integrated cir-
cuits with an integration level of 107–108 transistors per
chip.

Analysis of the current tendency toward a continu-
ous decrease in the integrated circuit (IC) minimal fea-
ture size shows that this parameter will inevitably go far
beyond the submicrometer range down to amin = 10–
60 nm.

Figure 1, based on a great deal of published data,
demonstrates how amin has varied with time. It is seen
that the progress in microelectronics throughout its
evolution has been related to an exponential decrease in
amin, with the exponent of the evolution curve being the
same; namely, amin has decreased by about 13% annu-
ally. However, the capabilities of optical systems are
restricted by the diffraction limit: the pattern linewidth
cannot be much smaller than the radiation wavelength.
According to the Rayleigh criterion, the minimal fea-
ture size (linewidth) is proportional to radiation wave-
length λ,

(1)amin kλ /NA,=
1063-7842/05/5005- $26.000535
where k is a proportionality coefficient and NA is the
numerical aperture of the objective lens. A further
decrease in the wavelength, which implies a deeper
advance into the vacuum ultraviolet, poses challenging
problems. These are the absence of natural transparent
materials suitable for UV optics and pattern photo-
masks, as well as the difficulty in designing efficient
radiation sources in this wavelength range. This neces-
sitates a search for nontrivial technological solutions
providing a further progress in microelectronics. Spe-
cifically, flying out of the sub-100-nm range becomes a
bottleneck, since materials that do not too highly
absorb electromagnetic radiation in this wavelength
range (up to hard X rays) are lacking.

Up to now, focused electron-beam lithography has
been viewed as a method that might fully meet the
requirements of submicron electronics. The potential of
electron-beam lithography in achieving a high resolu-
tion is well known: transmission electron microscopes
currently available provide a resolution as high as sev-
eral angstroms. However, fast electrons penetrating
deep into the material cause a number of secondary
effects smearing the pattern. Yet, nanometer feature
sizes here are quite feasible; unfortunately, another
problem is highlighted in this case. Focused electron-
beam lithography implies sequential (point- or feature-
wise) exposure, which greatly extends the patterning
time. This circumstance is the irreconcilability of the
tendency toward an exponential increase in the integra-
tion level (Fig. 1b).

The radical way out in this situation (as in other sit-
uations bearing on a very large number of events) or, in
other words, provision of efficient further development
consists in making a multitude of elementary processes
proceed in parallel. In practice, the projection versions
of electron- and ion-beam methods of lithography run
into the mask problem, which can hardly be resolved.
An electron-(ion-)beam mask contains small patterns
 © 2005 Pleiades Publishing, Inc.
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(fragments) that are transferred simultaneously. To this
end, however, the mask must be transparent to an elec-
tron (ion) beam. Sophisticated and expensive facilities
and processes have been developed for this purpose,
such as SCALPEL (the thickness of the transparent
mask is no more than 100 nm). With such masks,
today’s ICs can still be fabricated; in the near term,
however, they may become inappropriate.
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Fig. 1. Variation of minimal feature size (linewidth) amin
(upper part) and integration level (lower part). Year 2000:
Pentium IV, n = 4.42 × 106, 0.18 µm design rule; Pentium
IV Northwood, n = 5.5 × 107, 0.18 µm design rule. Year
2003: Pentium IV Prescott (n = 1.2 × 108) and SRAM (n =
3.3 × 108), 0.09 µm design rule. Year 2006: n = 3.5 × 108

(Intel’s forecast). Lines c and d: Meindl’s forecast (Stanford
University, the 1980s) according to which the minimal lin-
ewidth provided by electron-beam lithography will be
amin = 0.25–0.50 µm.

?

Let us return to the lower part of Fig. 1. Lines c and
d refer to the Meindl’s forecast made in the 1980s at
Stanford University, according to which electron
lithography will provide amin = 0.25–0.50 µm by 2010–
2020. This prediction turned out to be understated: an
even higher resolution has already been achieved with
conventional lithographic tools using vacuum ultravio-
let excimer lasers. For example, Intel Co. announced its
0.09-µm technology at the end of 2003. Such a resolu-
tion was achieved with standard 193-nm ArF excimer
lasers, phase-contrast masks, and specially tailored
resists. Moreover, it is expected that the resolution may
be improved still further (down to 0.065 µm) even with-
out resort to shorter wavelength (157-nm) F2 lasers.

Owing to the wave nature of the processes and the
possibility of parallel transfer of the IC entire pattern or
its major part onto a semiconductor wafer, photolithog-
raphy will be used until its potential is completely
exhausted. Demand for nontrivial approaches will arise
when amin shrinks down to 0.07 µm or below. The lack
of adequate transparent materials forces designers to
try mirror optics. In this case, however, the numerical
aperture of the objective lens reduces noticeably and,
hence, the resolution drops.

CONCEPT AND DESIGN OF AN EXTREME 
ULTRAVIOLET EXPOSER 

FOR NANOLITHOGRAPHY

The aforesaid makes us turn to wave processes in
the extreme ultraviolet (EUV) range (10 ≤ λ ≤ 50 nm).
This range borders that of soft X rays, λ < 10 nm. It is
in the EUV range that a great step forward in designing
reflection optics and efficient radiation sources has
been made in recent years. This progress has been
achieved largely in the course of developing new-gen-
eration weaponry (specifically, X-ray lasers). The cen-
tral point here is the creation of mirrors that efficiently
reflect EUV radiation and soft X rays. To this end, a
multilayer Bragg coating is applied on the atomically
smooth surface of a massive substrate with a given cur-
vature.

By way of illustration, Fig. 2 shows the typical
wavelength dependence of the reflection coefficient for
the Mo/Si multilayer coating, which proved to be one of
the most efficient systems in this respect. On Mo/Si-
coated Bragg mirrors, reflection coefficient R today
approaches 70% at 13.4 nm (the theoretical value is
Rmax = 74–78%). In the wavelength range 10–15 nm, a
reflection coefficient as high as R ≥ 60% has been
achieved; however, the fundamental (absolute) maxi-
mum in this range lies near 13.4 nm [1, 2]. That is why
main efforts are concentrated on using just this wave-
length.

Figure 3 demonstrates the speculative dependences
of the maximal resolution on the photon wavelength or
energy. Obviously, the EUV range, as well as the long-
est wave part of soft X rays, is the most promising for
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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fine-line lithography. Straight lines 1 and 1' refer to
contact lithography including proximity X-ray lithog-
raphy. Here, amin = (2λδ)1/2. Continuous line 1 refers to
δ = 10 µm; line 1', to the “zero gap.” The family of lines
2 refers to projection lithography for NA varying from
1.0 to 0.6. Here, amin = kλ/NA. Curves 3 and 3' show the
restrictions due to the generation of photoelectrons,
which smear the pattern, at different material densities.
Finally, straight line 4 is the restriction due to backscat-
tered electrons (in electron-beam lithography). Thus,
only EUV or soft X-ray lithography with reduction
Bragg optics may radically overcome the nanolithogra-
phy difficulties; however, losses due to incomplete
reflection may be minimized (within 30–40%) only in
the interval 13.4 ± 2.0 nm.

The leading tool developers and research organiza-
tions worldwide are now concentrating on design solu-
tions for EUV exposers that are capable of patterning
ULSI microprocessor slices of density 108–1010 per
chip. The basic idea here is fragmentwise patterning by
means of a projection reflection optical system using
multilayer Bragg coatings. This is a fundamentally new
IC pattern generator (having no analogues in conven-
tional microtechnology), which exploits the step-and-
repeat approach and is essentially an EUV projection
wafer stepper. Here, EUV radiation is emitted by a
plasma that is generated by a high-power pulsed laser
focused on a target. The related optics and mask are
fabricated in the same way as reflection X-ray optics
with multilayer Bragg coatings. The coatings are
applied on atomically smooth substrates, which are flat
(EUV mask) or have a desired curvature (objective lens
and condenser). The IC layout demagnified M times (M
is the demagnification of the objective) is patterned in
the absorbing layer by the standard methods of photoli-
thography or focused electron-beam lithography (since
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Fig. 2. Typical reflection spectrum of a Mo/Si-coated Bragg
mirror.
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the mask is used many times, the time of its formation
is not a critical point here). The surface of the wafer to
which the IC pattern is transferred in steps is covered by
a special film (EUV resist). An EUV exposer is sche-
matically shown in Fig. 4. Basically, it consists of four
units: (i) an EUV source illuminating the mask, (ii) a
mask assembly carrying the enlarged layout of an IC
layer, (iii) a patterning optical system, and (iv) a sample
assembly (the sample is coated by an EUV resist).

Significantly, the development of EUV facilities
should be additionally supported by a number of
advanced techniques, of which dose control in the vac-
uum ultraviolet, EUV, and soft X-ray ranges; spectral
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Fig. 3. Estimated dependence of minimal linewidth amin on
the actinic radiation wavelength or photon (electron) energy
for different lithography methods. Contact photolithogra-
phy up to the X-ray range (proximity X-ray lithography);
here, amin = (2λδ)1/2 (1, gap δ = 10 µm; 1', “the zero gap”).
Projection photolithography for NA varying from (2') 1.0 to
(2) 0.6; here, amin = kλ/NA. Curves 3 and 3' show the limi-
tations due to image-smearing photoelectrons at different
material densities (curve 3' corresponds to a higher density).
Curve 4 shows the limitation due to backscattered electrons
(for electron-beam lithography). (I) Infrared, (II) ultravio-
let, (III) vacuum ultraviolet, (IV) far and extreme vacuum
ultraviolet, (V) soft X rays, and (VI) hard X rays.
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Fig. 4. Schematic of an EUV nanoexposer with a laser-
plasma source of radiation.
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control of radiation and materials; and mask technol-
ogy are the most important. Relevant research is now
under way.

EUV SOURCE FOR NANOLITHOGRAPHY

Synchrotron radiation, which was used in early
studies by American and Japanese authors, is certainly
a very efficient EUV source. It is very convenient for
extensive research in this area. However, bulky and
expensive storage rings may strongly retard the intro-
duction of synchrotron radiation into the semiconduc-
tor industry. In addition, the specialists involved in the
American project believe that application of synchro-
trons may monopolize the semiconductor industry,
which is undesirable and should be avoided [3]. In their
opinion, the space occupied by an exposer for nano-
lithography (hereafter, nanoexposer) should not exceed
4 × 4 × 4 m and its price must be moderate (no higher
than $10 M) so that any medium lithography user may
buy it (this statement can hardly be open to argument).
Therefore, most early works considered the laser
plasma as an alternative EUV source. The plasma gen-
erated by a pulsed laser radiation striking solid, liquid,
or gaseous objects is an effective source of EUV and
soft X-ray radiation.

However, the industrial application of the nanoex-
poser poses the problem of high throughput, which is
difficult to combat. For example, the throughput
achieved on an ASML TWINSCAN AT : 1200B wafer
scanner/stepper, which offers a resolution of 0.08 µm,
is 103 circuit layers per hour on 300-mm silicon wafers
at 109 exposures of 26 × 33-mm chips [4]. The power
level providing such a throughput is unattainable with
laser-plasma-based EUV sources currently available.
This has given impetus to a search for new approaches
including those based on the well-known methods of
generating dense high-temperature discharge plasmas.
Some of the new processes have already been tested as
means for carrying out a controlled thermonuclear
reaction but failed in producing ultrahigh temperatures.
Among them are the Z (linear) pinch, Θ pinch, plasma
focus, capillary discharge, vacuum arc, and their com-
binations (including combinations with a laser plasma).
Also, much attention is now given to implementing an
X-ray laser, which may lase directly at 13.4 nm (the
wavelength of interest in the EUV).

Nevertheless, the laser plasma remains a convenient
and efficient EUV radiation source. The source as such
here is a rapidly (with a rate of ~106 cm/s) expanding
(up to 20-fold) ionized cloud of the target material
plasma heated to temperatures of (0.12–1.20) × 106 K
(or to 10–100 eV). A quasi-point source of radiation is
very convenient for developing and optimizing the
optics used. Initially, plasma of heavy metals was tried,
since they offer a high conversion efficiency (about
1% per 2π sr in the nanoexposer “operating” range
13.4 nm ± 2% nm). Emphasis was on the continuous
part of the radiation spectrum. In this case, however, a
plethora of debris contaminating the optical system and
quickly making it inoperative has presented an impen-
etrable obstacle. Mask contamination, resulting in
large-scale reproduction of faulty chips, is particularly
dangerous. Many expedients to protect the optics have
failed. Then, researchers turned to supersonic gas jets
of a heavy inert gas, xenon. The laser plasma of xenon
was used in radiation sources intended for the develop-
mental EUV exposers produced by American and Euro-
pean companies. Basically, application of an inert gas
as a target combats the problem of contamination. In
the radiation source, the collecting mirror, being in the
immediate vicinity of the target of the converter, runs
into danger to the greatest extent. Only this component
exhibits corrosion traces due to bombardment by high-
energy ions and atoms of the inert gas (xenon jet),
which cuts the service time of the mirror. More signifi-
cantly, contamination is prevented at the expense of
conversion efficiency η, which drops down to several
tenths of a percent and is then difficult to raise to rea-
sonable values. The value η = 0.7% is considered as
ultimate for Xe gas (the maximal value achieved to date
is η = 0.55% [5]). A reason for such a low value is the
low density of the gaseous target. In an attempt to raise
the conversion efficiency, the laser beam has to be
directed to the near-nozzle region, where the density is
the highest. In this case, one runs into the risk of nozzle
damage and contamination by nozzle material parti-
cles. The way out might be to form Xe clusters or apply
liquid or solid xenon. Recent experiments using the
above approach have demonstrated that relatively high
conversion efficiencies up to η = 1.5% are feasible.

The theoretical studies and spectroscopic analyses
performed up to the present time have made it possible
to establish an extremely important fact. Namely, EUV
photons in the range of interest come largely from a
10-fold ionized xenon ion Xe10+, and the emission here
is due to the discrete absorption lines that are attributed
to a series of transitions involving the fourth and fifth
atomic shells: 4p64d8  4p54d9 + 4d7(4f + 5p). How-
ever, the radiation at the necessary wavelength 13.4 nm
is accounted for by the weak transitions 4p64d8 
5p4d7 and is much weaker than the radiation at 11 nm,
which is accounted for by other transitions within the
fourth shell (n = 4  n* = 4 [6]) (Fig. 5). An increase
in the excitation intensity shifts the maximum toward
shorter wavelengths rather than enhances the emission.
As follows from calculations, the laser power density
exciting the line at 13.4 nm must not exceed 1010–
1012 W/cm2 and the maximal electron temperature must
be no higher than 55 eV [6].

Moreover, the conversion efficiency may be raised
only if the process of plasma generation is separated
from heating of the plasma to a desired temperature.
This may be done using a sequence of two pulses sev-
eral nanoseconds distant from each other [7].
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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Thus, Xe cannot be viewed as an appropriate mate-
rial compatible with mirror optics, which offers the
highest reflection coefficient (i.e., the reflection at
13.4 nm). Analysis shows that the material of choice
here is that with an atomic number of 50 (Sn), which
provides the highest conversion efficiency at 13.4 nm.
As the atomic number increases (Sb, I), the wavelength
shifts to the shorter wave range and vice versa (In, Cd)
(Fig. 6). Furthermore, Li, F, Sc, and O have also been
shown to be of interest as far as emission at 13.4 nm is
concerned. When highly ionized, these elements
exhibit appropriate lines of the discrete spectrum. Tin
as a medium generating a plasma that emits in the EUV
range has recently attracted considerable attention.
Even preliminary experiments turned out to be encour-
aging. A conversion efficiency of about 2% has been
reached, which is predicted to rise to 3% or even higher.
Using the Z pinch technique and its modifications, one
can provide an optical power on the order of 10 W at the
intermediate focus on the mask [5, 8]. One more advan-
tage of the discharge-type plasma source is the absence
of a high-power plasma-generating laser beam. How-
ever, in this case, one again faces the problem of con-
tamination of the optical path, which must be necessar-
ily solved.

In most recent works, a diode-pumped solid-state
laser is used as a primary source. This laser offers a
number of advantages, among which are operating sta-
bility, a high quality of the beam, and a high overall effi-
ciency. An array of semiconductor lasing diodes used
for pumping makes it possible to attain a high optical
output (from 5 to 20 kW) in the pulsed mode at a pulse
repetition rate of 0.5–15 kHz. A high wavelength
(1.06 µm) is more likely to be an advantage, since it
minimizes the optimal density of the plasma and
reduces the contamination level [5, 6]. An alternative
might be excimer lasers, e.g., 248-nm KrF or 308-nm
KrCl devices, in which high peak outputs are easier to
attain. However, reliable operation at high average out-
puts in the quasi-stationary mode seems to be problem-
atic here. In both cases, the primary source is of sophis-
ticated design and is made using leading-edge technol-
ogies, since, eventually, it governs the throughput of the
nanoexposer. Figure 7 presents the generalized scheme
of energy losses in the nanoexposer. Along with a low
conversion coefficient, there are many other factors
causing considerable energy losses (see also Tables 1
and 2). Losses due to multiple reflection stand out here.
In the case of an advanced eight-mirror objective lens,
they may increase 300 times. For a standard resist sen-
sitivity of 5 mJ/cm2, the energy of spectral-pure EUV
radiation that is necessary for today’s throughput
requirements to be met varies between 10 and 130 W
depending on the number of mirrors in the imaging
objective lens. A spectral filter used in the system has a
transmission coefficient of no higher than 50%. Even at
its exit part, an eight-mirror system will consume elec-
tric power of about 2.0 MW, which poses the problem
of heat removal from the source units.
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
OPTICAL SYSTEM

The nanoexposer has a number of special features
associated with the mirror optics in general and with
Bragg reflection coatings in particular.

(1) The mirror optics is free of dispersing elements;
therefore, the ray path is wavelength-independent and
the system may be tested with electromagnetic radia-
tion of any range provided that the radiation is intensely
reflected from the surface of the mirrors.

(2) The mirror optics cannot have a numerical aper-
ture close to unity. To this end, the last mirror but one
must be placed exactly at the focus of the last (pattern-
ing) mirror, i.e., in the image field. The numerical aper-
ture is maximal if the image field is minimized.

(3) Bragg coatings are, in essence, interference fil-
ters for wavelength λ. For coatings used in the system,
the wavelengths of reflection maxima must fall into dif-
fraction zone ∆λ. Losses are considered reasonable if
spread δλmax (<∆λ) is such that δλmax/λ ≤ 2%.
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Fig. 7. Energy losses in the nanoexposer.
(4) The parameters of Bragg coatings are calculated
for normal incidence. If the multilayer coating has the
same period throughout the mirror, there exists allow-
able deviation ∆Θmax from π/2 for the angles of inci-
dence and reflection. This additionally decreases the
attainable numerical aperture of the patterning EUV
objective.
The condenser is a separate optical unit of the
nanoexposer. It is in direct contact with the converter
and so must be isolated from the other optical elements,
as well as equipped with high-capacity pumping facili-
ties and means for removing conversion products.
Thus, the design of the condenser strongly depends on
the conversion method on the one hand. On the other
Table 1.  Factors responsible for energy losses in an EUV nanoexposer

Conversion
efficiency

η, %

Collector 
efficiency α 

(angle of
collection 

divided by 2π)

Transmis-
sion β

of debris
mitigation 

system

Collector 
mirror 

reflectivity
Rc

Reflectivity
R of other 

mirrors

Residual 
gas trans-
mission tr

Spectral 
filter trans-
mission tf

Mask 
reflectivity

Rm

Mirror (M) objective 
transmissivity T0

0.55 0.2–0.3 0.5 0.65 2 M 0.4225

0.70 1.0 0.5 0.65–0.86 0.9 4 M 0.1785

1.5

0.7 Condenser losses 6 M 0.0754

2.2 0.9 1.0 8 M 0.03186

3.0 0.7

Table 2.  Electrical and optical power levels in different units of an EUV nanoexposer with a throughput corresponding to an
advanced ASML TWINSCAN AT : 1200B scanner/stepper

Resist
sensitivity
S, mJ/cm2

Power P needed 
for exposing 100 
300-mm wafers 

per hour, W

Total radiation power Pm
on mask surface, W

Collectable
EUV power

Pα , W

Total EUV 
radiation 

power
P2π, W

Total radiation 
power P10
of primary 

source**, kW

Total electri-
cal power 

, kW

5 2.68* 2 M 9.8 77 310 15 150

4 M 23 183 734 37 370

6 M 55 434 1736 87 870

8 M 130 1027 4110 205 2050

    * Die-to-die exposure time losses are 50%, the power values are increased 10 times because of time losses due to scanning.
  ** Conversion efficiency η = 2%.
*** Laser efficiency ηl = 10%.

P1***
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hand, the optical path of the condenser must be built on
the same Bragg mirrors as the remaining part of the
optical system if a laser-plasma converter is employed
(the central wavelengths of the reflection bands must be
very close to each other) and is an integral part of the
entire optical scheme, including the imaging objective
and the mask. Therefore, the condenser, mask, and
objective should be optimized as a whole. As was noted
above, Bragg mirrors narrow interval δλ into which the
reflection maxima of all the mirrors must fall. Since
δλmax/λ ≈ 2%, this interval is roughly 0.27 nm for λ =
13.4 nm. Note that this value is not the FWHM of a
spectral line: only that part of the line is taken into
account where the reflection coefficient is fairly high.
Particular emphasis should be placed on the first (col-
lecting) mirror, which is in the immediate vicinity of
the conversion point and, thus, degrades most severely
during operation. The challenge is to extend the service
time of this mirror to 10 000 h of continuous operation
with a decrease in reflection coefficient R by no more
than 10% [5] (in light of this, R of the condenser mirror
was taken to be relatively small, R = 0.5, in calculation
of Table 2). At the same time, the closer the collecting
mirror to the converter and the larger its radius, the
higher the solid angle collecting the EUV radiation and
the higher the efficiency of the source. Typically, the
collecting solid angle equals 1.8 sr, corresponding to
28.6% of the omnidirectional radiation (i.e., covering
2π starting from the conversion point) [5]. Other
designs of the condenser, i.e., those based on grazing
incidence mirrors, are applied in discharge sources of
the plasma. A radically new design of the condenser
may be related to an X-ray laser with an appropriate
wavelength.

Since energy losses due to incomplete reflection of
the EUV in Bragg mirrors are considerable, their num-
ber should be minimized in both the condenser and the
imaging objective. A two-mirror objective consisting of
a large concave mirror and small convex mirror (the so-
called Schwarzschild objective) has found application
in X-ray astronomy. For lithography purposes, this
objective was first used in the American nanolithogra-
phy project and has numerical aperture NA = 0.06–0.09
[9]. Such a low aperture is the inevitable cost for a rel-
atively large image field. The real image has the form of
a narrow (less than 1 mm in width) circular arc. To fully
expose (transfer) an IC topological layer, it is necessary
to scan within a die over the semiconductor wafer sur-
face; so, such an exposer represents a “scanning step-
per.” The same idea was employed in subsequent
(refined) versions.

Clearly, the two-mirror Schwarzschild objective
(Fig. 8a) is inadequate in terms of resolution (see the
Rayleigh criterion) and/or image quality. In this case,
the Rayleigh optical resolution could not overcome the
barrier amin = 90–100 nm. It should be noted, however,
that the Rayleigh condition alone, which characterizes
the properties of the image optical field, cannot provide
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
a high-quality pattern unless special measures are
taken. For example, in the absence of phase-shift masks
and/or high-contrast resists, only a feature size equal to
two or three Rayleigh “lengths” amin can be reliably
reproduced. If the image field size is of minor impor-
tance, the numerical aperture can be greatly increased
by using the modified Schwarzschild objective. Two-
mirror Schwarzschild objectives with NA = 0.3 (ASET,
Zeiss) are currently available [10, 11], and a Schwarzs-
child objective with NA = 0.36 (Fig. 8b) has been devel-
oped and launched in production. However, here the
image field does not exceed 1 mm2. Four-mirror sys-
tems (Fig. 8c) might basically remedy the situation:
they offer an improved NA and still retain a consider-
able image field in the scanning stepper mode. In the
commercial versions of four-mirror objectives, how-
ever, NA is no higher than 0.10–0.14 [11, 12]. A unique
four-mirror objective (Fig. 8d) has recently been devel-
oped that offers NA as high as 0.485 at the expense of

(a) (b)

(c) (d)
Sample

Sample

Sample Sample

Screen

Fig. 8. Optical schemes of Bragg mirror objectives: (a) low-
aperture two-mirror Schwarzschild objective, (b) two-mir-
ror high-aperture objective [10, 11], (c) commercial four-
mirror low-aperture objective, and (d) four-mirror high-
aperture objective with a small image field [14].
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the image field size (0.5 × 0.5 mm). With such an objec-
tive, linewidth amin = 10 nm can be reached owing
solely to the image field quality without using tailored
masks and resists. A considerably higher NA is attained
in commercial six-mirror systems, and eight-mirror
systems may provide NA ≈ 0.4 (Fig. 9) even in commer-
cial versions of the scanning stepper (Zeiss specialists’
prediction). Thus, the resolution of a commercial
nanoexposer based on an eight-mirror objective, which
supposedly will come onto the market by 2014, may
reach 20–30 nm [13]. However, energy losses due to
six- or eightfold reflection become critical here at R < 1.

In view of the aforesaid, one cannot ignore image
correction techniques. For example, simple optics may
be equipped with a system of holographic correction.
The quality of mirrors, specifically, the maximal reflec-
tion coefficient achieved with a multilayer Bragg coat-
ing, directly depends on the surface roughness of a sub-
strate to be covered by the layers. Figure 10 shows the
surface roughness measurements on simple test mirrors
made of Sitall (devitrified glass such as Pyroceram).
Similar results were obtained on quartz glass and sin-
gle-crystal silicon. It follows from Fig. 10 that there
exist techniques providing an rms roughness of 0.10–
0.33 nm. Thus, an atomically smooth surface becomes
a reality! Moreover, the distortion of the aspherical
shape of patterning mirrors may be minimized down to
0.05λ or less (at λ = 13.4 nm).

2002 2008 2014
Years

30

50

70

100

Resolution, nm

4 M-system
0.10 < NA < 0.14

6 M-system
0.20 < NA < 0.30

8 M-system
NA > 0.40

Fig. 9. Forecast of minimal resolution amin attainable with
mirror objectives vs. the number of mirrors (M) and numer-
ical apertures [13].

0

0 40

∆, Å

x, µm
80

6

6

Fig. 10. Profilogram of the atomically smooth surface with
an rms roughness of 0.1 nm.
EUV MASK

Essentially, EUV masks are similar to any other
Bragg mirror of the optical system. The only difference
is that the mask is flat and incorporates a layer (W, Ta,
TaN, Cr, or other materials) efficiently absorbing in the
EUV range. On this extra layer, the M times magnified
pattern of a ULSI topological layer is formed by one of
the conventional methods (e.g., submicron photolithog-
raphy or focused electron-beam lithography). As nano-
lithography matures as a field of technology, produc-
tion of EUV masks becomes an independent chore.
One may expect the emergence of EUV mask suppliers
in the immediate future. The most feasible substrate for
the masks is a single-crystal silicon wafer, which is
classically used in the IC production. It is not improba-
ble, however, that quartz or Sitall will turn out to be
more appropriate for preparing atomically smooth sur-
faces.

EUV RESIST

The basic problem associated with the EUV resist is
that all natural materials highly absorb in the EUV
range. The EUV absorption depth of standard organic
photoresists does not exceed 100 nm. It seems most
likely that EUV resists will form a desired pattern in a
thin surface layer. Today, single-layer silylated, as well
as two-layer and three-layer, compositions are being
studied most extensively. A resist intended for large-
scale production must offer both a high contrast (in
image transfer) and a high sensitivity, so as to provide
an acceptable production rate. A sensitivity of 5–
10 mJ/cm2 is considered as meeting the production
requirements most adequately, since this value is a
tradeoff between a production rate and a level of fluctu-
ations due to photonic shot noise [14].

The EUV resist must have not only good optical
properties but also a high chemical performance. For
fine-line resists, line-edge roughness becomes a critical
issue irrespective of the lithography method used. The
EUV resist must be able to combat this problem as well.
When the feature profiles in real resists are simulated,
the illumination nonuniformity and resist–developer
interaction are classically included in the following dif-
ferential equation for the linewidth:

where E is the absorbed energy.
For a weakly absorbing resist and weakly reflecting

substrate, the first factor depends on the properties of
the resist–developer pair and the second only on the
performance of the optical system. Then, the first factor
is directly proportional to contrast γ and inversely pro-
portional to energy exposure E0 sufficing to transfer the
image (to develop the resist); i.e., ∂y/∂E ∝ γ /E0. Next,
taking into account that the contrast depends on the
inverse optical density of the resist material γ ∝  (β +
αd)–1, where β is a constant, α is the absorption coeffi-

dy/dx ∂y/∂E( ) ∂E/∂x( ),=
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Fig. 11. Photoabsorption cross section Aph vs. the atomic number for different elements.
cient, and d is the resist thickness), we find, in a first
approximation, the functional dependence of the fea-
ture profile on the parameters of the optical system and
resist,

Here, ∆z is the offset from the center in the image plane
and k is a coefficient close to unity. From this expres-
sion, it follows that high-contrast resists with low opti-
cal density αd provide a shaper feature image upon
developing. A decrease in the optical density through
thinning the resist is possible down to a certain limiting
thickness at which the resist film is still free of defects
and composition and thickness fluctuations are negligi-
ble. Also, the limiting (least) thickness depends on the
resistance of unexposed areas to the developer. There-
fore, searching for resist materials with an acceptable
sensitivity and low absorptivity remains to be a topical
issue [15].

Under our conditions (13.4 nm, 92.5 eV), the photo-
absorption cross section is determined mostly by inner
atomic shells; in other words, the absorption of the
resist material depends only on its stoichiometric com-
position and is almost independent of the chemical
bond structure. Figure 11 plots the calculated photoab-
sorption cross section against the atomic number for the
wavelength 13.4 nm.

Conventional organic resists consist largely of car-
bon, hydrogen, and oxygen but may also contain nitro-
gen, fluorine, and other elements. Calculations show
that fluorinated polymers cannot be used as photore-
sists because of their high absorptivity. It has been
found that aromatic hydrocarbon radicals incorporated
into polymers considerably decrease the absorption
coefficient at λ = 13.4 nm. In addition, these radicals
may greatly improve the chemical resistance of a mate-

dy/dx NA/ λ β α d+( )E0( )[ ] 1 k ∆z NA( )2/λ( )–[ ] 2
.∝
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rial to a developer and, thereby, favor the use of single-
layer EUV resists.

Silane polymers have the lowest linear absorption
coefficient and are, thus, the most promising for EUV
lithography. Siloxane polymers also have a low absorp-
tion coefficient but mostly because of their low density.
The advantages due to the low absorption of silicon are
inconspicuous when siloxane polymers are used [15].

When introduced into polymers, radiation-sensitive
side groups increasing the radiation yield of reactions
of polymer destruction under exposure may raise the
sensitivity to several mJ/cm2. However, the contrast of
the resists thus prepared drops to unity. Note that the
sensitivity and the contrast are in inverse proportion to
each other [16]. Important features of organic EUV
resists are their linearity and also the fact that the
energy exposure is independent of the exposing radia-
tion intensity. The intensity and the exposure time are
“interchangeable” here: only the integral dose taken up
by the resist is of significance. Therefore, a low radia-
tion intensity can be compensated for by a large number
of radiation pulses; hence, operation at a high repetition
rate is preferable.

The left side of Fig. 12 shows 2004–2005 predic-
tions for NA and coefficient k1 in the Rayleigh criterion,
together with the achievements in this area [17] during
the evolution of the UV scanner/stepper technology.
The natural trend toward making NA as close to unity
as possible (in 2003, the best objective had NA ≈ 0.85)
and reducing k1 as much as possible is obvious. By
using phase-shifting masks, high-contrast photoresists,
etc., it was made possible to considerably reduce the
value of k1 (down to ≈0.425 or lower). With these
means, a design rule of 0.09 µm was introduced into
practice using an ArF laser wavelength of 193 nm (i.e.,
amin = 0.5λ). Unfortunately, neither phase-shifting
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masks nor high-contrast resists appropriate for the
EUV range are available.

Thus, development of efficient high-contrast EUV
resists becomes a key issue. Tackling this problem is
really of great importance, since objectives with Bragg
coatings inherently cannot possess a high numerical
aperture, as was noted above. It was shown experimen-
tally that a number of thin inorganic films exhibit a
giant contrast in image transfer, which shows up under
specific irradiation conditions [18]. Based on this
effect, one could compensate for resolution losses due
to a low numerical aperture of the optics. This effect
can be phenomenologically described with three equa-
tions (akin to the well-known Dill equations) that take
into account the nonlinear character of photochemical
interaction and a change in the optical constants at the
actinic radiation front [19]. Central here is the consid-
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terion.
eration of a phenomenological function accounting for
nonlinear processes in photochemical interaction. The
best image quality is obtained if a certain relationship
between the resist material parameters and exposure
parameters is fulfilled, as follows from analysis. With
this condition met, the edge profile of a feature devel-
oped (transferred) becomes much sharper relative to the
light field (the contrast enhancement effect, Fig. 13).
Experiments also show that, along with a high contrast,
a high optical sensitivity reaching 3 cm3/kJ at a thresh-
old radiation flux of less than 17 kJ/(cm2 s) (AsSe) may
be attained. The related energy exposure needed for full
development does not exceed 2–3 mJ/cm2 for a film less
than 100 nm thick. However, this photoresist is nonlin-
ear and, therefore, the radiation intensity and the expo-
sure time are not interchangeable: the energy of each of
the pulses applied must exceed some threshold energy.
As follows from simulation, the threshold energy den-
sity for AsSe equals 0.34 mJ/cm2 (at a pulse duration of
20 ns). Basically, other EUV resists may be found.
Clearly, application of nonlinear inorganic resists
requires that the basic units of the nanoexposer be mod-
ified. The number of mirrors should be minimized, and,
possibly, special correction schemes will be necessary.
Furthermore, the peak (rather than the average output)
power density exceeding a threshold value of 10–
20 kW/cm2 will be the critical parameter of the source.
The exposure dose necessary for development can be
accumulated by repeatedly exposing the resist to
higher-than-threshold EUV pulses. Eventually, an
extremely high resolution (higher than the resolution of
a similar system based on linear resists) may be
reached. Note, however, that this goal is easier to
accomplish on relatively small image areas and may
require x–y (two-dimensional) scanning in IC produc-
tion. It should be emphasized that a resolution of 10–
20 nm makes it possible to reproducibly fabricate regu-
lar nanostructures with quantum dots and wires, as well
as mesoscopic devices.

CONCLUSIONS

The fabrication of a commercial nanoexposer
requires that the physicotechnical problems mentioned
above and also a number of problems of fine mechanics
be solved. Among the latter are the design of the sample
(and, perhaps, mask) assembly, which must incorporate
a precision table reliably providing a nanometer posi-
tioning accuracy at an overall travel of 300–450 mm.
A nanometer accuracy of focusing and alignment of all
topological layers on the sample has also to be pro-
vided. A more routine yet labor-consuming problem is
designing the nanoexposer as a whole (particularly, its
body) and its mechanical part. Optical adjustment and
focusing of the exposer in the EUV range is also a chal-
lenge. Significantly, the nanoexposer should be pro-
tected against dust and vibration and configured with
differential pumping facilities so as to provide the
ultrafine adjustment of the optical system. Discussion
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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of these problems is beyond the scope of this review.
Note only would solving them manifest creating a very
precise contemporary instrument, which would take
advantage of many technology breakthroughs. A con-
siderable barrier to the development of a commercial
nanoexposer is the energy problems of the radiation
source, which were mentioned above.

However, a much more serious circumstance that
may significantly postpone the entrance of the nanoex-
poser to the market is the recent idea of immersion as
applied to a standard scanner/stepper based on a
193-nm ArF excimer laser [20]. It has turned out that
water (with refracting index n = 1.43) may be injected
into the space between the imaging objective and semi-
conductor wafer virtually without adversely affecting
the image quality. Because of this, the operating wave-
length can be decreased n-fold, 193/n = 135 nm. The
numerical aperture of the objective increases n times
with a simultaneous increase in the depth of focus. This
greatly extends the potentiality of conventional photo-
lithography, essentially giving a chance to advance
lithography into the EUV range. It is today difficult to
estimate the actual capability of this new approach. The
advertising statements of leading lithographic tool pro-
ducers may be far from reality. However, it has become
known that the Intel 0.065 µm process announced in
2006 will likely be based on this approach. Certainly,
application of such a technology is much more cost-
effective than the production of sophisticated EUV
lithographic facilities. Other transparent immersion liq-
uids with refractive indices somewhat higher than that
of water may also be used. The predicted values of NA
and k1 are shown on the right of Fig. 12. According to
the estimates (which may seem to be somewhat opti-
mistic), a resolution as high as 22–35 nm may be
reached by 2014 without radically redesigning the
existing facilities. Thus, upgrading of present-day
exposers based on ArF excimer lasers makes the devel-
opment not only of exposers based on 157-nm F2 lasers
but even of EUV nanoexposers aimed at 20–65-nm
design rules meaningless.

The elaboration of the idea of immersion nano-
lithography using excimer lasers leaves only a niche for
extremely high resolution near 5–20 nm where EUV
nanolithography still remains unrivaled. Such a high
resolution can hardly be obtained without considerably
cutting the actinic radiation wavelength, i.e., without
resorting to the EUV at 13.4 nm. However, this goal
seems unrealistic unless EUV nanolithography pro-
cesses and equipment are refined. Along with an
increase in the numerical aperture of the imaging objec-
tive to a maximum possible extent, this requires appli-
cation of high-contrast nonlinear resists. Development
of two- or four-mirror objectives provided with image
correction schemes becomes a topical problem. Still more
advanced tools for image improvement are now under
development. As was noted above, a four-mirror objec-
tive (Fig. 8) makes it possible to pattern 10-nm-wide
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
features (lines and spacings) with a reasonable contrast
even in the light field. It is natural to assume that the
only way to further shrink the linewidth (at least twice)
is application of nonlinear resists. There is already no
doubt that a high-resolution EUV nanoexposer will be
created in the near future. However, wide application of
such facilities must be preceded by designing ULSI cir-
cuits based on new-generation mesoscopic and quantum-
size approaches. These new approaches are expected to
displace the conventional technologies, such as insulated-
gate MIS transistors, which have exhausted their poten-
tialities nearly completely. Therefore, at least at the
early stage, high throughput will not be a critical point
in ultra-high-resolution EUV nanoexposers.
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Abstract—The possibility of converting the modulated electron flux energy to electromagnetic oscillations
(transition radiation) when the flux collides with an unmoved metallic screen is considered. The interference of
waves arising at different sites of the screen changes the spectral–angular distribution of the radiation energy den-
sity. These changes are analyzed with allowance for a time delay between radiations coming from different parts of
the inclined bunch. A plausible mechanism behind the frequency shift of interference maxima, which is observed
when the angle of inclination of the screen is changed, is discussed. © 2005 Pleiades Publishing, Inc.
† About 60 years ago, Ginzburg and Frank showed
that a charge uniformly moving with a slower-than-
light velocity may radiate electromagnetic waves. This
happens when the charge moves in a medium the char-
acteristics of which vary in space and time [1, 2]. This
transition radiation is a purely classical effect, which is
completely described by the Maxwell equation.

In practice, the transition radiation is used largely in
detectors of charged relativistic particles and high-
energy beams. Specifically, it is applied for lepton iden-
tification in high-energy physical experiments [3]. Note
also that this type of radiation was observed in X-ray
tubes as anode “glow” well before its theoretical expla-
nation. This effect was explained only after the theory
of transition radiation had been developed.

The theory of transition radiation was elaborated
upon in [4, 5] and other works. In particular, Anisimov
and Levitskiœ [6] formulated a theory of transition radi-
ation and surface wave excitation for the case of normal
incidence of a modulated electron beam on the bound-
ary of a plasma.

The spectral and angular characteristics of the tran-
sition radiation from a periodic train of extended elec-
tron bunches differ considerably from those of the tran-
sition radiation from a single electron [7]. Interference
redistribution of the transition radiation energy may
result in its concentration within a narrow frequency
and/or angular range; thus, the radiation efficiency at a
selected frequency may increase drastically.

In this paper, we consider the transition radiation of
an electron flux modulated in the field of a traveling
electromagnetic wave (Fig. 1). Such a wave may be a
microwave (submillimeter) beam in free space, an Nth
harmonic generated when microwave radiation passes
through a nonlinear medium (at terahertz frequencies),

† Deceased.
1063-7842/05/5005- $26.00 ©0546
or a focused optical or UV laser beam. Wide (wider
than the radiation wavelength) sheet electron beam 1
passes through focused linearly polarized electromag-
netic beam 2, in which the electric field vector is
aligned with the beam particle velocity. When passing
through the electromagnetic beam, the electrons
become velocity-modulated and, continuing to move,
group into bunches 3. The bunches fall on stationary
metallic screen 4 and generate transition radiation 5.
We obtained the frequency and energy characteristics
of the radiation and its directional patterns. It was also
found that the frequency of interference fringes can be
controlled by rotating (inclining) the metallic screen.

A distinct feature of electron bunching in the system
shown in Fig. 1 is that the flux is not filamentary in its
cross section, since it is sufficiently wide. Accordingly,
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Fig. 1. Bunching of an electron flux and the inclined screen.
1, electron flux; 2, electromagnetic beam; 3, electron
bunches; 4, metallic screen; and 5, transition radiation of the
electron bunches.
 2005 Pleiades Publishing, Inc.
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the modulation of the electrons that are more distant
from the radiation source will lag behind by the time
taken for the light to travel the difference in distances.
As a result, the electrons group into linear bunches
making angle α with the propagation direction of the
electromagnetic beam.

Let us calculate this angle. The longitudinal electric
field of a monochromatic electromagnetic beam can be
written in the form

(1)

where E1 is the field amplitude, ω0 is the circular fre-
quency, and t is the time.

Let (xb, zb) be the coordinates of bunch B (Fig. 1) in
the plane y = 0 and tb be the time of arrival of an electron
at the bunch. We restrict our consideration to the two-
dimensional problem, ∂/∂y = 0. If Φ(xb) is the phase of
the electron exit velocity at a point with coordinate x =
xb at time instant t0, then

(2)

where ψ0 is the phase difference between the exit veloc-
ity and electromagnetic field at time t0.

The velocity of electron A (with coordinates (xb, z0))
at the exit from the modulating beam at time t0 can be
written in the form

(3)

where v 0 is the velocity with which the electron flies
into the beam and k is the velocity modulation effi-
ciency of the beam, which depends on the focusing,
amplitude, and mode composition of the beam.

Note that, in this work, we assume that the space of
interaction, the distribution of the electromagnetic
field, and the velocity of electron motion along the x
axis are uniform; i.e., ∂n/∂x = 0, ∂E1(x, y, z)/∂x = 0, and
∂v 0/∂x = 0. Hence, phase shift ψ0 is also independent of
this coordinate.

The time the particle takes to travel the distance
from the end of the modulator (z0) to the bunch (zb) is

(4)

Using the law of conservation of charge, I0dt0 =
Ibdtb, we determine the current of the bunch,

(5)

and then its coordinate.
Here, I0 is the convective current density of the elec-

tron flux flying into the bunch and Ib is the current den-
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sity in the bunch in cross section zb. Assuming that the
modulation amplitude is small (kE1 ! v 0), we can write

(6)

Let us take the maximal current of the flux to find
the coordinate of the bunch. The condition Ib = Ib, max is
fulfilled if cos[Φ(xb)] = –1, i.e., if Φ(xb) = (2n + 1)π,
where n = 0, ±1, ±2, …. Then,

Substituting this expression into (4) yields

(7)

Eventually, we obtain the spatial distribution of the
electrons in the bunch at fixed time instant tb (see
Fig. 1). Inclination α is found from (7),

(8)

Consider a charge moving with constant velocity
v  < c/n, where c is the speed of light in a vacuum and
n is the refractive index. Under these conditions, Cher-
enkov radiation is absent and the bremsstrahlung of the
charged particles at the target can be neglected. In addi-
tion, we assume that the electrons leaving the vacuum
fall on a nonmagnetic perfectly conducting metallic
screen.

The back-radiation energy is then calculated by the
formula [2]

(9)

where θ is the angle between wavevector k of the tran-
sition radiation and vector –v.

In (9), the angles are taken in the polar coordinate
system where the radius is measured from the point of
incidence of the electrons on the screen. The rotation
(polar) axis of this coordinate system coincides with the
normal to the plane of the screen, and the coordinates
are specified by angles θ and ϕ and by polar radius r.

For convenience, the directional diagrams of the
transition radiation will subsequently be represented in
the polar coordinate system with angles θ' and ϕ' and
polar radius r (angles θ and θ' are shown in Fig. 1). In
the new system, the polar axis passes through the points
of incidence of the electrons on the screen and is
directed upward on the plane of the screen. The two
systems are related by the formulas

(10)

(11)
In the primed coordinate system, formula (9) takes
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the form

(12)

Consider the transition radiation from a single fila-
mentary bunch under the assumption that its height
equals the distance between point of incidence of
neighboring bunches and the velocity spread in the
bunch can be neglected. Then, for normal incidence of
the electrons on the screen, the phase difference for the
point of the filamentary bunch that is displaced by x
from the initial point is given by

(13)

where ∆tz is the time delay due to different times of
arrival of the electrons from different parts of the bunch
at the screen, ∆td is the time delay due to different dis-
tances from the points of incidence of the electrons on
the screen to the observation point, and T0 = 2π/ω0 is the
modulating field period.

Let us calculate the amplitude of the field on the
screen between two neighboring points of incidence of
the electron bunches. The distance between these points
is clearly L = λ0 = 2πc/ω0. Then, using (13), we get

(14)

where

(15)

is the amplitude of the field of the transition radiation of
the bunch per unit screen length at the point r distant
from the screen (θ' is the angle between the wavevector
of the transition radiation and the plane of the screen,
and ω is the frequency of the transition radiation), and
K is a proportionality factor that depends on the screen
material properties and beam current density.

Substituting (15) into (14) yields
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Upon integration, we get

(16)

The above formulas allow us to construct the angu-
lar and frequency dependences of the transition radia-
tion field amplitude in the plane of incidence of the
electronic filaments and also in the plane normal to the
plane of incidence. The directional diagram of the tran-
sition radiation in the plane of incidence for ω = 1.1ω0
is shown in Fig. 2. It is seen that the transition radiation
from one filamentary electron bunch is highly smeared
over angles. The energy flux density is negligibly small
in any direction. Because of this, we will consider an
interference way of raising the directionality and,
hence, the power density of the radiation.

Calculation of the angular distribution of the transi-
tion radiation from a wide (much wider than the modu-
lating beam wavelength) electron flux requires that the
interference of rays from equilong (L = λ0) areas on the
metal surface be taken into account. The expression for
the angle of interference maximum is easy to derive,

(17)

where n is an integer (order of interference).
Thus, at frequencies ω < ω0, the energy of the radi-

ation is negligibly low. In the frequency range ω0 < ω <
2ω0, there exists one interference maximum of the radi-
ation amplitude.

Substituting (17) into (16) yields

(18)

the angle of nth interference maximum being given by
the expression θ' = nω0/ω). Note that the value
of E is other than zero at any angle ϕ', indicating that
the amplitude of the transition radiation field varies
with this angle only slightly.

The 2D directional diagram of the transition radia-
tion from a long train of filamentary bunches in the
direction ϕ' = 0 with the screen placed vertically is
shown in Fig. 3 (up to the ninth order of interference).

Here, the transition radiation concentrates in narrow
angular and frequency intervals, since the emissions
from different bunches interfere; accordingly, the radi-
ation power density increases significantly.
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Consider the transition radiation pattern when the
modulated electron beam strikes the screen that makes
angle β with the modulating electromagnetic beam. In
this case, the spacing between the points of incidence of
neighboring bunches on the screen is

(19)

where α is the angle between the bunch and electro-
magnetic beam (Fig. 1).

Thus, if it is necessary to generate radiation at fre-
quencies equal to, or lower than, that of the incident
bunch, angle β should be selected so that the radiation
intensity maximum is at a desired frequency.

In the case of the inclined screen, the angular direc-
tion of the transition radiation maximum differs from
that for the vertical screen. Instead of (17), we have

(20)

Substituting (19) into (20), we arrive at

(21)

L
λ0 α βcossin

α β–( )sin
------------------------------,=
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nω0

ω
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ω
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ω
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c
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  .=

Fig. 2. Directional diagram of the transition radiation from
filamentary electron bunches in the plane of incidence at
ω = 1.1ω0 and v  = 0.5c. The plot is constructed in polar
coordinates (r, θ') using formula (16). Here, θ' is the angle
between screen plane 4 and the wavevector of the transition
radiation; E is the transition radiation energy flux in the log-
arithmic scale.
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From (21), it follows that, if β  α (Fig. 1), inter-
ference maxima are absent. For β = α – π/2, an interfer-
ence maximum of the first order will be observed.

Let us trace how the angular direction of the inter-
ference fringe varies with the inclination of the screen.
In view of the fact that the normal component of the
electron velocity changes cosβ times when the screen is
inclined by angle β, we find from formulas (18) and
(21) that

(22)

where θ' = (1 – c/v ) .

E ω r θ' ϕ', , ,( ) = K
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Fig. 3. Two-dimensional directional diagram of the transi-
tion radiation from a train of inclined electron bunches for
the screen placed vertically (ω = 3.1ω0). The diagram is
constructed in the polar coordinates using formulas (17) and
(18). Along the radius, the transition radiation energy flux in
certain directions is plotted in the logarithmic scale. Inter-
ference is taken into account up to the ninth order. 1, elec-
tron flux direction; 2, line of incidence of the electrons on
the screen.
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Figure 4 plots the transition radiation flux density
against inclination β of the screen at ω/ω0 = 7.1. For
simplicity, the plot is constructed for the first order of
interference. For all other orders of interference, the
pattern is basically the same.

From Fig. 4, it is evident that a major part of the
energy concentrates in a narrow frequency interval. It is
also clear that the angle of inclination of the screen can
be taken such that the power of the transition radiation
at a desired frequency rises greatly. Such adjustability
is of great value in designing radiators finely tunable in
a wide frequency range.

The maximal frequency of the transition radiation is
limited by the properties of the metal the screen is made
of. As follows from the reference books, in the case of
a copper-made screen, the transition radiation disap-
pears at frequencies higher than 2.3 × 1016 s–1, because
the properties of the metal change at these frequencies.
If the modulation is accomplished using a 694-nm ruby
laser (ω0 = 2.7 × 1015 s–1), the transition radiation arises
at frequencies up to 8ω0. Figures 3 and 4 imply that the
total radiation power will concentrate in several narrow
angular peaks; accordingly, the transition radiation flux
density increases greatly in the directions of these
peaks (in comparison with the flux density associated
with the unmodulated beam in the absence of interfer-
ence). Varying the angle of inclination of the screen or
the initial velocity of the electron flux, one can control

–0.6 –0.4 –0.2 0 0.2 0.4 0.6
β

Fig. 4. Energy flux of the transition radiation from a wide
electron bunch vs. angle of inclination β (expression (22)).
ω/ω0 = 7.1. The bunch potential is 1.5 kV. Modulation is
accomplished with a 694-nm ruby laser. The energy flux is
shown in the direction of the field amplitude interference
maximum.
the angular and frequency positions of the amplitude
maxima in a wide range.

The data reported in this article indicate the possibil-
ity of using the transition radiation in continuously tun-
able sources of electromagnetic waves. The ways of
concentrating the transition radiation energy at selected
frequencies and within certain angular directions are
considered. Estimation of the power and efficiency of
the transition radiation is left beyond the scope of our
report. Of particular importance is also taking into
account the finiteness of the electron bunch width and
the effect of the bunch on the interference pattern. Also,
it is of applied interest to estimate the effect of a ther-
mal spread in electron velocities on the width and life-
time of electron bunches. Finally, coherence of the tran-
sition radiation (hence, the validity of considering
interference) in the case of the rough metallic screen
surface deserves special theoretical consideration and
experimental verification. It should be emphasized here
that the last-named problem cannot be solved analyti-
cally. It can be tackled either experimentally or by con-
structing a probability model of surface irregularity dis-
tribution on the screen and then applying the model
results in studying the properties of the transition radi-
ation.
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Abstract—The entropy of the steady state of an open electronic system is determined, and its relation to the
entropy arriving at the environment is established. The notion of system ordering is defined, and quantitative
parameters characterizing ordering are introduced. The information and conditional complexity of the system
versus the state of thermodynamic chaos are determined. These values are numerically estimated for vacuum,
magnetron, and Gunn diodes. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The theory of space–time structures [1–6] that form
in open systems containing a large number of particles
dates back to the evolution of thermodynamics. The
most comprehensive and consistent thermodynamic
theory of structure [2, 3] is valid under local equilib-
rium conditions, where temperature, pressure, and den-
sity at each point of the system are related through the
equations of equilibrium state, whereas the entropy is
given by the Gibbs formula. This theory has proved
itself adequate in many problems of chemical physics,
hydrodynamics, and biology; however, it is inapplica-
ble, e.g., to electronic systems.

High-field domains in a Gunn diode [7, 8], vortices
and solitons in a magnetron diode [9–11], and wave
processes in both Penning cells [12] and a plasma [13]
are generated at voltage gradients so high that the prin-
ciple of local equilibrium fails; moreover, the tempera-
ture and entropy are no longer critical parameters of the
system under these conditions. Electron motion in vac-
uum devices is described by time-reversible equations
of mechanics [14], and the energy is dissipated not
inside the device but at its boundaries, electrodes,
which are exposed to particles bombarding them from
the outside.

Yet, it is desirable to characterize the degree of
ordering in steady-state electronic (and any other)
structures using classical notions [1–6, 15] such as
entropy, information, and complexity. However, these
quantities do not directly follow from the thermody-
namic theory of structure [2, 3], since this theory deals
with production (variation) of entropy. Being a time
derivative, the associated value gives no estimate of the
steady-state value of entropy.

The focus of attention in this paper is electronic
devices. Interest in these devices is associated with
1063-7842/05/5005- $26.00 0551
long-range Coulomb forces, which considerably favor
electron self-organization, and also with the fact that
these devices may operate both under near-equilibrium
thermodynamic conditions and under substantially
nonlinear conditions, which are separated from the
states in the thermodynamic branch by points of insta-
bility. This circumstance greatly facilitates verification
of the characteristic functions introduced to uniquely
describe any operating regime. Among such functions
used in this paper are the translational entropy, entropy,
information, and complexity of a current steady state.

BASIC CONCEPTIONS

From the theory of electronic structures [14], it fol-
lows that the tendency of electrons toward self-organi-
zation in the devices shows up irrespective of the num-
ber of particles (it may be as small as desired) and a
deviation from thermodynamic equilibrium, however
slight. In other words, the electronic structures form
both on and beyond the thermodynamic branch, being
distinguished only by the degree of organization. Let us
demonstrate this statement with the devices the syner-
getic theory of which is presented in [14]. By the struc-
ture, we will mean the spatial distribution of electrons,
which is specified by their interaction with each other
and with external fields.

The objects of study are a vacuum diode (VD), a
magnetron diode (MD) and a Gunn diode (GD). The
VD is of interest as a device all states of which lie on
the thermodynamic brunch. The MD is also a vacuum
device, but its steady states are beyond the limits of sta-
bility on the thermodynamic branch. Importantly, when
the cathode emission changes, the MD demonstrates
both regular and turbulent behavior [16]. As for the GD,
its steady states depend on the applied voltage and may
occur both on the thermodynamic branch (low field
© 2005 Pleiades Publishing, Inc.



 

552

        

USYCHENKO

                                                                                                                                                  
conditions) and beyond a point of instability (high-field
domain conditions). In addition, unlike the VD and
MD, the GD is a solid-state, rather than vacuum, device
and the energy of its particles is dissipated not at the
boundaries of the system but in the interior. Let us
select quantities that will be used below, starting from
the synergetic theory of these devices [14].

The energy conservation law for an electron device
operating in the steady-state regime is given by

(1)

The left-hand side represents the total internal
energy of the system,

(2)

Here, –eβNUa = –e UvdV, where e < 0 is the electron

charge; n is the electron density in elementary volume
dV; N is the total number of particles in volume V of the
device; and Uv > 0 is the vacuum potential (of the vac-
uum device in the absence of electrons). Averaging fac-

tor β ≤ 1 expresses the value of integral UvdV in

units of NUa, where Ua is the anode voltage applied
from an external source. In essence, coefficient β indi-
cates the fraction of potential Ua per electron on aver-
age. Term NkTc characterizes (up to a factor close to
unity) the thermal energy of the particles, which
depends on cathode temperature Tc in VDs and MDs,
and k is the Boltzmann constant. The quantity

(3)

on the right of Eq. (1) determines the energy of the elec-
tronic structure, which generally involves the potential
energy

of the space charge (Usc ≤ 0 is the space charge potential
in elementary volume dV) and the sum of kinetic ener-
gies, , needed for the structure to move with a
transport velocity in the field of external forces. The
second term on the right of (1),

(4)

takes into account the kinetic energy of electron motion
relative to the structure. Here, u is the relative velocity
of the particles in elementary volume dV and 〈u2〉  is the
volume-averaged square of this velocity.

The appearance of particles in the system is
described in terms of probability theory, since the site
and time of emission, as well as the initial velocity vec-
tor, are random quantities for each particle. During self-
organization, the particles also gain a coherent compo-
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nent of the velocity, which reflects their collective
movement in space. A coherent motion of a large num-
ber of particles can be allowed for by introducing a col-
lective degree of freedom. However, in the course of
self-organization, initially random forms of motion do
not disappear, persisting in the relative velocity compo-
nents.

Along with time-invariant quantities N and WN, the
steady-state operation of an electronic device is charac-
terized by average lifetime 〈τ〉  of electrons in the sys-
tem and energy fluxes incoming to and outgoing from
the device.

At a constant anode voltage, Ua @ –kTc/e, energy
flux dW0/dt = P0 = UaIa (where Ia = –edN/dt ≅  –eN/〈τ〉 is
the anode current) enters the device from a power sup-
ply. Within time 〈τ〉 , the power source applies energy
W0 = –eNUa to the device. For the same time, the elec-
trons dissipate energy Wa (dissipation proceeds mainly
at the anode in the MD and VD or in the crystal lattice
in the GD). All energy Wa is transferred to the environ-
ment as heat; accordingly, power Pa = dWa/dt is the
energy flux out of the device. The two forms of energy are
related by an expression common to all the devices [14],

(5)

where 0 < ζ ≤ 1. If the structure is absent or is immobile
in the field of external forces, ζ = 1. In this case, energy
W0 = –eNUa from the power source is completely dissi-
pated, converting to heat. Such a situation is typical of
the GD operating in the low field mode and of the VD
when anode voltage Ua @ –kTc/e. If the structure pos-
sesses a collective degree of freedom, then, moving in
the device space with a transport velocity, it does work

(6)

with an efficiency η. It is clear from (5) and (6) that
parameter ζ = 1 – η < 1 determines the wasteful fraction
of energy W0.

For the MD operating in the soliton mode and the
GD in the domain mode, the values of ζ are given
by [14]

(7)

where rc and ra are the cathode and anode radii of the
MD, ω = –eB/m is the cyclotron frequency, B is the
magnetic field induction, M is the electron mass, Ω !
ω is the angular frequency of the soliton (see figure),
N1 is the number of electrons in the domain, Ea = Ua/l is
the mean electric field strength in the GD of length l,
and Er is the electric field strength outside the domain.

Let us consider a number of specific examples to
clarify the physical meaning of the quantities being
used. The structure of the VD is represented by the
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space charge, most electrons of which concentrate near
the cathode. Coulomb interaction between the particles
in the space charge is characterized by potential energy
Wsc. The space charge as a whole is quiescent; i.e., the
velocity coherent component is zero and, thus, Wksi = 0,
Wa = W0, and ζ = 1. The kinetic energy of any particle,
0.5mu2, is specified by its velocity u, which depends on
smoothed potential U = Uv + Usc at the particle location.
The value of Wkr in (4) is defined by the total kinetic
energy of all the particles moving independently rela-
tive to the quiescent space charge.

The electronic structure of low-emission MDs is
represented [11] by the Brillouin “hub,” along which
one (in the simplest case) soliton propagates. The struc-
ture has potential energy Wsc, and the wave travels
around the cathode with constant angular frequency Ω .
The cross section of this structure in the cylindrical
coordinate system rotating with frequency Ω is shown
in the figure. Moving with transport frequency Ω , the
wave as a collective object does two works: work
against the electromotive force and work against the
centripetal force. The energies

(8)

spent on doing these works are picked up from the
anode power supply. In the rotating coordinate system,
the mean square of the velocity of the electrons bom-

barding the anode, 〈 〉 , satisfies the equality 〈 〉  =
−ζ2eUa/m [14], from which we find parameter ζ given
by (7), ζ = ζMD < 1.

Energy Wkr of the relative motion of the particles is
described by formula (4), whose form differs radically
from (8). If Wkr is a sum of quadratic values, i.e.,
reflects the fact that the particles move independently,
energies Wks1 and Wks2 are expressed in terms of trans-
port frequency Ω , which characterizes the coherent
component of the motion of the same particles doing
work coherently. Then, parameter ζMD (see (7)), which
is directly related to the efficiency, depends on the
transfer velocity alone.

In high-field GDs, the structure is represented by a
domain possessing potential energy Wsc (outside the
domain, the space charge is absent because of the elec-
troneutrality of the semiconductor). The transfer of the
domain to the anode is characterized by drift kinetic
energy Wks1. The total energy of the domain, WΣ = Wsc +
Wks1, is not dissipated in the course of motion [14]. The
existence of the domain is provided by the work done
by the system with efficiency ηGD = 1 – ζGD. In this
case, only those electrons dissipate energy that are out-
side the domain. Drifting to the anode independently,
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these particles have total kinetic energy Wkr (4). The
facts noted above are reflected in formula (5) with
parameter (7), ζ = ζGD < 1.

Thus, in the general case, energy WΣ of space charge
(3), which represents a collective structure, and kinetic
energy Wkr, which takes into account incoherent parti-
cle motions, can be separated out in a device whose
steady-state operating conditions are analyzed in an
appropriate coordinate system. The sum of these two
energies is total energy (1) of the system. There also
exists energy flux dWa/dt = Pa escaping the device in the
form of heat. It is important that energy Wa of this flux
calculated for lifetime 〈τ〉 of the particles is directly
related only to energy Wkr. This relationship has the
form [14]

(9)

where

(10)

is a coefficient that characterizes the nonuniformity of
the particle kinetic energy spatial distribution.

ENTROPY ENTERING AN ENVIRONMENT

Consider an environment into which energy Wa is
dissipated as an infinite thermostat whose temperature
Te cannot be measured by a metering device at hand. In
thermodynamics, the generalized coordinate of heat
transfer is entropy S; therefore, the process of energy
absorption by the environment can be described as

Wkr 0.5mN u2〈 〉 θ Wa,= =

θ u2〈 〉 / ua
2〈 〉 1≤=

Ω

rc rh

ra

Space charge structure in the MD’s central cross section.
The lengths and directions of the arrows indicate the mag-
nitudes and directions of the particle velocities; on the sep-
aratrix (dashed line), the velocities are equal to zero.
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follows:

Hence,

Thus, total dissipated power Pa is spent to raise the
entropy in the environment. For electron average life-
time 〈τ〉 , N electrons will transfer the entropy outside
the device,

(11)

The thermodynamic theory of structure [2, 3] uses
the notion of entropy production. For example, for time
〈τ〉 , a resistor, which a low-field GD is, will produce the
entropy

where 〈Ti 〉 is the temperature appropriately averaged
over the volume of the GD.

Obviously, ∆iS ≤ ∆exS, the equality being achieved in
the limit Wa  0, when 〈Ti 〉   Te.

In the vacuum devices, the energy of moving elec-
trons is dissipated, being converted to heat, not in the
interior but at the inner surfaces of the electrodes. This
circumstance, however, is of little significance and
expression (11) is equally applicable to vacuum devices
as well.

Substituting Wa given by (5) into (11) yields an
expression for the entropy transferred outside the
device,

(12)

where

(13)

is the expression common to all the devices, which
determines a maximal amount of entropy gained by the
environment iff energy W0 = –eNUa picked up from the
power source is completely converted to heat.

It is clear from (12) and (13) that entropy ∆exS is an
extensive value. The ability of a specific device to trans-
fer the energy to the environment depends on parameter
ζ. Let us find the numerical values of this parameter for
the diodes and gain a deeper insight into its physical
meaning.

The space charge of the VD is quiescent in the field
of constant external forces: energy W0 = –eNUa deliv-
ered to the device is completely dissipated at the anode,
the electrons travel independently, and ζ = 1.

We now turn to the MD that was considered experi-
mentally and theoretically in [11, 14, 17]. The cathode
and anode radii in this MD are rc = 2.15 and ra =
4.5 mm, respectively. For Ua = 2500 V, B = 0.14 T, ω ≅

dWa

dt
---------- Pa Te

dS
dt
------.= =

dS
dt
------

1
Te
-----Pa.=

∆exS Pa τ〈 〉 /Te Wa/Te.= =

∆iS Pa τ〈 〉 / Ti〈 〉 Wa/ Ti〈 〉 ,= =

∆exS ζ∆ exSmax,=

∆exSmax eNUa/Te–=
2π × 3.9 × 109 Hz, and negligibly low cathode emis-
sion, the measured [16] and calculated [11] value of the
wave frequency is Ω ≈ 2π × 4.06 × 108 Hz. Under
such conditions, we find by formula (7) that ζ = ζMD =
3.3 × 10–2.

A low-field GD is a resistor where electrons drifting
from the cathode to the anode gain and completely dis-
sipate energy W0 = –eNUa. In this case, ζ = 1. Under the
high-field domain conditions, we find by formula (7)
that ζ = ζGD ≈ 0.2, assuming [14] that N1/N ! 1 and
Er/Ea ≈ 0.2.

The examples cited above illustrate that, if ζ = 1,
cooperative forms of particle motion are absent. The
higher the degree of electron cooperation, the smaller ζ.

ENTROPY OF A STEADY STATE
Let us multiply the right- and left-hand parts of (12)

by coefficient θ. In view of (1), (9), and (13), we obtain
a new quantity,

(14)

which will be referred to as the entropy of a steady state
of the system. Representing Wkr as Wkr = TeSst and sub-
stituting this expression into (1) yields the law of con-
servation of energy in the device in the form

(15)

Thus, total internal energy WN of the system is equal
to the sum of energy WΣ of the structure and energy
TeSst, which cannot be converted to the energy of the
structure under current equilibrium conditions and is
“useless” in this respect. Such an energy is called the
bound energy in the thermodynamics of reversible pro-
cesses. We will apply this term to energy Wkr.

The entropy of the steady state,

(16)

is proportional to the outgoing entropy. For all the
devices, entropy (11) leaving the system is related to
heat transfer to the environment and, therefore, it is a
thermodynamic quantity. On the other hand, the
entropy of the steady state, Wkr/Te, characterizes inco-
herent motions of particles appearing at random; there-
fore, it is a statistical quantity in essence and not in
form. Thus, formula (16) relates thermodynamic
entropy Wa/Te to statistical entropy Wkr/Te. The different
physical meanings of these quantities are due to the dif-
ference in their origins. Specifically, entropy Sst is
related to total internal energy (1) of the system through
energy Wkr, whereas entropy ∆exS is associated with the
flux of energy dWa/dt ≅  Pa being released from the sys-
tem in the form of heat.

Factor ∆exSmax in (16) indicates that Sst is an exten-
sive (generalized) value, whereas the product θζ ≤ 1

Sst θ∆exS θζ∆exSmax θWa/Te= = =

=  Wkr/Te θζeNUa/Te,–=

WN WΣ TeSst.+=

Sst Wkr/Te θζ∆exSmax,= =
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reflects specific features of steady states in each of the
devices and modes of operation. Let us find the values
of product θζ for the diodes operating in different
modes.

To begin with, consider a VD with a short-circuited
anode and cathode. At low emission, when the space
charge is absent, so that Wsc = 0, the electron velocities
obey the Maxwellian distribution [17] and are kept con-

stant throughout the path. Therefore, 〈u2〉  = 〈 〉 and
coefficient θ reaches a maximum, θ = 1. Thermal elec-
trons produce current Ia. Since Ua = 0, entropy ∆exS = 0,
according to (11). Thus, as was expected, the particles,
being scattered at the anode, give up to the environment
the same amount of energy (entropy) as they have when
entering the system from the outside.

Intense emission generates the space charge. The
number of electrons with an energy insufficient to get
out of the potential dip rises considerably [17]. The
larger the number of particles in the diode, the deeper

the potential dip, the stronger the inequality 〈u2〉  < 〈 〉 ,
and the lower θ.

Consider now a VD where the anode and cathode
are connected through a resistor of resistance R. Cur-
rent Ia through the resistor generates voltage Ua < 0 at
the anode. From (11), it then follows that ∆exS < 0; i.e.,
the entropy gained by the diode due to incoming elec-
trons will be restored to the environment by the diode
itself only partly, since the remaining part of the
entropy will be restored by the resistor. Let us deter-
mine steady-state entropy Sst = Wkr/Te of the diode in
this case. The value of Wkr will be found from energy
conservation law (1), which, in the case considered, can

be written as NkTc = Wsc + Wkr + R〈τ〉 . Eventually, we
have

(17)

It is clear from this formula that an increase in
energy Wsc of the space charge, as well as the insertion
of a resistor between the anode and cathode, decreases
entropy Sst. The electron motion becomes ordered. In
practice, this means the reduction of the electron flow
noise. In terms of thermodynamics, formula (17)
explains the well-known effect of low-frequency noise
suppression by means of negative feedback through the
space charge potential [17] and load resistance.

Let us now apply voltage Ua @ –kTc/e to a VD. At a
low emission rate, when Wsc = 0, we have θ =

〈u2〉/〈 〉  = 0.5. As the emission intensity grows, the
space charge forms near the cathode and θ, as well as
product θζ, diminishes. Entropy Sst (16) also decreases,
so the degree of ordering is bound to rise. Indeed, it has
been shown above that an increase in Wsc suppresses the
current low-frequency noise [17].

ua
2

ua
2

Ia
2

Sst NkTc W sc– Ia
2R τ〈 〉–( )/Te.=

ua
2

TECHNICAL PHYSICS      Vol. 50      No. 5      2005
In the GD, θ ≅  1; therefore, θζ ≅  ζ ≈ 0.2 in the
domain mode. In the low-field mode, the GD behaves
as a resistor for which θ ≅  1 and ζ = 1 [14].

Let us now find the value of θ for an MD with
parameter ζ known. To this end, the electrons of the
wave are ignored and only the electrons of the hub (see
figure) will be taken into account. The error of such an
approximation is reduced by assuming that the density
of the particles in the hub, n(r) = 1.7 × 1017m–3, is dis-
tributed uniformly and equals the density at the cathode
(actually, it declines gradually [11] over the radius of
the hub, rh = 2.75 mm, and is 17% lower at its outer sur-
face).

The electrons in the hub are assumed to circle
around the cathode [11] with radius-dependent azimuth

velocity u = r  = 0.5rω(1 – /r2) – rΩ . Here,  is the
angular frequency of the particle. Under this assump-
tion, the number of electrons in the volume of the hub is

N = nlπ(  – ) ≈ 1.6 × 1010

(where l = 10 mm is the MD length) and the energy of
their relative motion,

Wkr ≈ πmnl (r)dr ≈ 8.4 × 10–8 J.

From (9) with regard to (5) and (7), we obtain θζ =
Wkr/(eNUa) ≈ 1.3 × 10–2; hence, knowing ζ = ζMD, we
find that θ ≈ 0.4.

It follows from the above examples that, if θ = 1, the
electron velocities obey the Maxwellian distribution.
The smaller θ, the greater the deviation of the electron
velocity distribution from the Maxwellian law.

As the emission from the cathode grows, the elec-
tron density in the MD hub remains unchanged, while
the number of waves and the electron density in the
waves increase [11]. Accordingly, the values of θ and ζ
change. Eventually, a turbulent regime sets in [11, 16].
Measurements show (see, e.g., [18–20]) that, in fully
developed turbulence, the electron velocity distribution
is Maxwellian (θ = 1) with temperature Ttrb @ Tc. Sup-
posing that the formula Wkr = 1.5kTtrbN is also applica-
ble in this regime, along with the formula Wkr =
−θζeNUa, we obtain (θζ)trb = –3kTtrb/2eUa. In the MD
considered, fully developed turbulence is characterized
by temperature Ttrb ≈ 2 × 106 K [21], which yields
(θζ)trb = ζtrb ≈ 0.14 at θ = 1.

Among the diodes under consideration, only a low-
emission VD, Ua ! –kTc/e, and a low-field GD exhibit
the Maxwellian distribution of electron velocities and
the maximal value of θζ, θζ ≅  1. Such states in a system
of particles can be called “electronic thermodynamic
chaos.” In the fully developed turbulent mode of MD
operation, we have θtrb = 1 and ζtrb ≈ 0.14. The value
ζtrb < 1 testifies that turbulence is a form of coherent

ψ̇ rc
2 ψ̇

rb
2 rc

2

r3ψ̇2

rc

rb

∫
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particle motion that differs radically from thermody-
namic chaos (ζ = 1). Indeed, experimental data [16, 21]
show that, when the MD operates in the fully developed
turbulent mode, a statistically averaged set of approxi-
mately 106 jointly traveling electrons, rather than a sin-
gle electron, should be viewed as a charge unit. The
results obtained numerically support the concepts of
turbulence, which are accepted in contemporary ther-
modynamics [22, 23] and physics [24, 25].

It is clear from (14) that the entropy

(18)

is a measure of incoherent particle motions persisting in
a system the rate of which is characterized by bound
energy Wkr. Product θζ specifies the degree of disorder
in the system. In a completely ordered system, Wkr = 0
and θζ = 0. In this case, the particles are fixed relative
to each other and occupy sites where the resultant force
is zero. However, such a system is isolated rather than
open. Indeed, through an open system, a particle flux
flows and, hence, condition (9), Wkr = θWa > 0, means
the fundamental inaccessibility of absolute order. It has
been mentioned above that the collective structures in
the VD and MD exchange energy and matter with the
environment owing to just relative velocities of the par-
ticles. Therefore, Wkr also characterizes the energy of
exchange processes occurring inside the system.

Let us draw intermediate conclusions. In a com-
pletely disordered system, the particles are in the state
of thermodynamic chaos. This state features the abso-
lute absence of correlations and the Maxwellian distri-
bution of electronic velocities. Parameters ζ and θ
allow for the deviation of a specific state of the system
from thermodynamic chaos. Specifically, parameter ζ
characterizes the coherency of particle motion: when
correlations are totally absent, ζ = 1, while an increase
in the number of jointly traveling particles is accompa-
nied by a decrease in ζ. Coefficient θ shows to what
extent the electron velocities obey the Maxwellian dis-
tribution: for the complete correspondence, θ = 1. The
greater the deviation, the smaller θ. Based on the afore-
said, parameter ζ can be referred to as “the parameter
of spatial disorder of particles” and coefficient θ as “the
coefficient of velocity disorder of particles (or their
clusters in the turbulent regime).

ENTROPY AND TEMPERATURE 
OF A POWER SOURCE

Formula (6) represents the first principle of thermo-
dynamics for electronic devices. If energy W0 = –eNUa
delivered to the device is completely spent on doing
work A and transferring heat Wa to the environment
(i.e., any other energy losses, e.g., those due to electro-
magnetic radiation, are absent), the Carnot theorem on
maximum work [26] is valid. Entropy ∆psS = W0/Tps
transferred from the power source to the device for time
〈τ〉  (here, Tps is the temperature of the power source)

Sst Wkr/Te θζeNUa/Te–= =
will be equal to entropy ∆exS = Wa/Te transferred from
the device to the environment. Equating these entro-
pies, we obtain an expression for the effective tempera-
ture of the power source,

(19)

Ratio Tps/Te = W0/Wa = 1/ζ demonstrates the effi-
ciency of power source energy usage by the device.

INFORMATION AND COMPLEXITY

We assume that the Carnot theorem holds true at any
change in the operating mode of the device. Then, in the
absence of hysteresis, all processes taking place in the
device can be considered [26] as reversible and entropy
Sst (14) of a current steady state can be regarded as
being a function of this state. This means that the entro-
pies of any initial state and any final state are indepen-
dent of the route which the transition between them fol-
lows. Imagine, for example, that the anode voltage,
magnetic induction, and number of electrons are
changed in the MD. It is easy to check that the entropy
of the final state will be independent of the sequence of
these changes. Hence, it follows that the difference
between the initial and final entropy values will also be
a function of state.

Let us introduce the entropy of the reference (stan-
dard) state of the system as follows:

(20)

This expression coincides with (13) and gives the
entropy of a steady state for which θζ = 1 (see (14)).

Taking the entropy of the standard state, , as the ini-
tial value and entropy Sst of a current steady state as the
final value, we arrive at a new function of state,

(21)

which will be referred to as the thermodynamic infor-
mation.

Using the GD as an example, let us have a closer
look at the evolution of processes taking place in the
device after switching on the anode voltage source. At
the instant voltage Ua is applied, product θζ = 1 and the
standard state entropy is described by the relationship

 = ∆exSmax, according to (20) and (14). After a time,
a high-field domain forms and the steady-state regime
is established, which is characterized by product θζ ≈
0.2 and entropy Sst = θζ∆exSmax = 0.2∆exSmax.

Let us write formula (21) in expanded form,

(22)

Substantiating the principle of negentropy of infor-
mation, Brillouin [27] put forward the idea that a sys-
tem in the state characterized by a maximal value of

Tps Te

W0

Wa
-------.=

Sst
0 W0/Te ∆exSmax eNUa/Te.–= = =

Sst
0

I Sst
0 Sst,–=

Sst
0

I 1 θζ–( )∆exSmax 1 θζ–( )eNUa/Te.–= =
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entropy S0 possesses bound information Ib0 = 0. If the
negentropy flux reduces the entropy of the system to
final value S1, the bound information is Ib1 = S0 – S1. In
essence and in form, the Brillouin bound information
coincides with thermodynamic information given by
(21) and (22). Up to a constant factor the value of which
is insignificant in the given case, bound information Ib1
equals the maximal value of the Shannon’s information
entropy. Thus, Eq. (21) relates thermodynamic entropy

 = –eNUa/Te, statistical entropy Sst = Wkr/Te, and
information entropy I. It is worthy to note that statisti-
cal entropy equals thermodynamic entropy only if I is
zero.

Thermodynamic information has its own energy
measure,

(23)

which can be obtained from (22) by multiplying by the
environmental temperature. Information energy WI is
contained, e.g., in the food of living organisms. Infor-
mation I can be lost and the information energy can be
released when the structure breaks. Such an energy
release accompanied by the formation of molecular
chaos occurs, e.g., in the course of organic substance
burning.

Information I is an extensive quantity, characteriz-
ing a system as a macroscopic object. At the same time,
it contains an intensive (local) component,

(24)

which characterizes specific features of the structure at
the microlevel.

Thermodynamic chaos is the simplest state of a sys-
tem, since it can be completely described by the only
intensive parameter, temperature. Any deviation from
this state raises the complexity of the system, and addi-
tional parameters have to be introduced for its descrip-
tion. The complexity of one object, X, relative to that of
another object, Y, is called conditional complexity
K(X/Y)—the term introduced by Kolmogorov [28].
From (24), it follows that the conditional complexity of
a system can be measured with the parameter

(25)

which characterizes the structure of the system at the
microscopic level. Complexity κ(x/y) is independent of
the dimension of the system; therefore, it is not surpris-
ing that the human genome and the genome of a tiny
nematode are comparable in complexity. From (25), it
follows that the Kolmogorov conditional complexity is
a thermodynamic information of the system that is con-
tained in the system itself.

Numerical values of all the parameters discussed
above are listed in the table.

Judging by the value (1 – θζ) = 0, the least complex
systems are a VD for which –eUa ! kTc and a low-field
GD. The most complex system, i.e., that requiring the

Sst
0

WI –eNUa Wkr– 1 θζ–( )eNUa,–= =

ι 1 θζ ,–=

κ x/y( ) ι 1 θζ–( ),= =
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largest number of phenomenological parameters for its
description, is an MD operating in the regular mode,
(1 – θζ) = 0.987. The turbulent regime is less complex:
(1 – θζ) = 0.86. Indeed [16, 21], only two parameters
are necessary for its description: temperature Ttrb and
average number Ntrb of particles per coherent “frag-
ment.”

Thus, the starting point for measuring the degree of
ordering in a system is the state of thermodynamic
chaos, which is quantitatively measured in terms of the
entropy of the standard state (see (20)). Thermody-
namic information (as well as complexity) is a measure
of deviation of a system’s particular steady state from
thermodynamic chaos.

PRINCIPLES OF SELF-ORGANIZATION

Let us turn to formula (23). Given N and Ua, energy
WI is determined by energy Wkr. According to the prin-
ciple of minimization of integral Lagrangean [14], the
self-organization of particles in open systems is accom-
panied by a decrease in energy Wkr. In the steady state,
Wkr reaches a minimal value. According to (18), the
entropy of the steady state also reaches a minimum. In
this case, information I is maximal, as follows from
(23) and (22). Thus, the principle of Lagrangean mini-
mization implies that a system tends to the steady state,
which has a minimal entropy and a maximal informa-
tion and complexity.

Having introduced quantities KlnR0 and KlnR1,
where K is a constant and R0 and R1 are equiprobable
samplings in the initial and final states, Haken [29]
writes the information in the form I = KlnR0 – KlnR1 =
KlnR and, using an alphabet containing a large number
of symbols, passes to the information entropy

in Shannon’s formulation (up to coefficient K). Then,
he shows that, in a many-particle physical system, the
value of i reaches a maximum in the steady state. If K
is the Boltzmann constant, the maximum of the Haken
information entropy corresponds to the maximum of
thermodynamic information (22) and to the maximum

i K p j p j, p j

j

M

∑ln
j

∑– 1= =

Table

Param-
eter

VD,
−eUa ! kTc;
low-field

GD

D,
−eUa @ kTc

MD,
regular
mode

MD,
turbulent

mode

GD,
domain
mode

0 1 ≤0.5 0.4 1 1

ξ 1 1 0.033 0.14 0.2

θξ 1 ≤0.5 0.013 0.14 0.2

1 – θξ 0 ≤0.5 0.987 0.86 0.8
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of Brillouin bound information Ib1. These three maxima
refer to that state of the system in which energy Wkr and
entropy Sst reach maximal values. Thus, the principles
of self-organization of matter mentioned above are con-
sistent with each other. In states close to thermody-
namic equilibrium, we have θζ ≅ 1, Wkr ≅  Wa, and Sst =

 ≅  ∆exS ≅  ∆iS. Since Wa is the dissipated energy and
∆iS is the production of entropy, minimization of these
two quantities means fulfillment of the Onsager princi-
ple of least dissipated energy and the Prigogine entropy
production minimum principle.

CONCLUSIONS

The description of steady-state regimes that are far
from thermodynamic equilibrium requires two energy
relationships to be invoked. The law of conservation of
total internal energy (see (1)) defines the shape, vol-
ume, internal structure, and performance of a system,
as well as its steady state entropy and complexity. The
law of conservation of energy (see (6)) defines the rate
of energy, matter, and entropy exchange between the
system and the environment.

The steady states of open systems lie between two
extreme cases. One of them is thermodynamic chaos,
which is described by the probability law, the Max-
wellian distribution. In this state, the entropy of the sys-
tem is maximal, whereas the information and complex-
ity are zero. The other is a perfectly ordered state,
which is completely described by deterministic laws.
Here, the entropy is zero, whereas the information and
complexity are maximal. Thermodynamic chaos is the
simplest state, which is most frequently encountered in
nature. Therefore, any process describable by deter-
ministic functions is “perceived” by nature as an
unusual event that carries information about something
other than from thermodynamic chaos.

Absolute order in an open system is an idealization,
because it is impossible to reach the state that is charac-
terized by Wkr = 0 and θζ = 0. The inaccessibility of
absolute order means that a complete and exact descrip-
tion of an open system is basically impossible. It has
been mentioned above that Wkr covers the random com-
ponents of particle motion and characterizes the energy
of “exchange processes.” Thus, we cannot gain insight
into exchange processes so much deep that all elemen-
tary events involving individual particles be exactly
known. The Maxwell demon alone could observe all
these events simultaneously. However, to do this would
require a light source with an energy greater than the
energy of the system [27]. Such a severe intervention to
the system would drastically alter it. It only remains for
us to invoke probabilistic methods for comprehensive
description of elementary processes.

Sst
0
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[14].

(1) The first sentence after formula (2) should read:
“Here, n(t) is the particle number density … and L(t) is
the mean value of the Lagrangean of the particles occu-
pying elementary volume dV.”

(2) The first sentence after formula (5) should read:
“The obtained result … (reduction): the system of
material particles … with a minimal kinetic energy.”

(3) Section 4 “Gunn Diode,” subsection “Self-orga-
nization.” The third sentence in the first paragraph
should read: “The kinetic energy

Wks = …
of the collective structure (domain), as well as its total
energy,

WΣ = …,
are not dissipated during drift, since … .”

REFERENCES
1. E. Schrödinger, What is Life? The Physical Aspect of the

Living Cell; with Mind and Matter; and Autobiographi-
cal Sketches (Cambridge Univ. Press, Cambridge, 1992;
RDKh Izhevsk, 1999).

2. I. Prigogine, Introduction to Thermodynamics of Irre-
versible Processes, 3rd ed. (Interscience, New York,
1968; RKhD, Izhevsk, 2001).

3. P. Glansdorff and I. Prigogine, Thermodynamic Theory
of Structure, Stability and Fluctuations (Wiley, New
York, 1971; Mir, Moscow, 1973).

4. W. Ebeling, Strukturbildung bei Irreversiblen Prozessen
(Teubner, Leipzig, 1976; Mir, Moscow, 1979).

5. G. Nicolis and I. Prigogine, Exploring Complexity (Free-
man, New York, 1989; Mir, Moscow, 1990).

6. W. Ebeling, A. Engel, R. Feistel, Physik der Evolution-
sprozesse (Akademie-Verlag, Berlin, 1990; Editorial
URSS, Moscow, 2001).

7. M. E. Levinshteœn, Yu. K. Pozhela, and M. S. Shur, Gunn
Effect (Sov. Radio, Moscow, 1975) [in Russian].

8. H. Haken, Synergetics: An Introduction (Springer, Ber-
lin, 1977; Mir, Moscow, 1980).

9. N. A. Kervalishvili, Fiz. Plazmy 15, 174 (1989) [Sov. J.
Plasma Phys. 15, 211 (1989)].

10. A. V. Agafonov, V. M. Fedorov, and V. P. Tarakanov, Pre-
print No. 37, FIRAN (Lebedev Physical Institute, Mos-
cow, 1997).

11. V. G. Usychenko, Radiotekh. Élektron. (Moscow) 46,
1489 (2001).

12. N. A. Kervalishvili, Fiz. Plazmy 15, 362 (1989) [Sov. J.
Plasma Phys. 15, 436 (1989)].

13. S. V. Korobtsev, D. D. Medvedev, and V. D. Rusanov,
Fiz. Plazmy 19, 567 (1993) [Plasma Phys. Rep. 19, 291
(1993)].
TECHNICAL PHYSICS      Vol. 50      No. 5      2005



ENTROPY, INFORMATION, AND COMPLEXITY OF THE STEADY STATES 559
14. V. G. Usychenko, Zh. Tekh. Fiz. 74 (11), 38 (2004)
[Tech. Phys. 49, 1431 (2004)].

15. D. S. Chernavskiœ, Synergetics and Information: A
Dynamic Theory of Information (Nauka, Moscow, 2001)
[in Russian].

16. A. V. Smirnov and V. G. Usychenko, Radiotekh. Élek-
tron. (Moscow) 36, 151 (1991).

17. Noise in Electron Devices, Ed. by L. D. Smullin and
G. A. Hause (MIT, Cambridge, 1959; Energiya, Mos-
cow, 1964).

18. I. V. Vigdorchik, Zh. Tekh. Fiz. 6, 1657 (1936).
19. E. C. Linder, Proc. IRE 26, 344 (1938).
20. G. G. Sominskiœ, Zh. Tekh. Fiz. 38, 663 (1968) [Sov.

Phys. Tech. Phys. 13, 497 (1968)].
21. V. G. Usychenko, Radiotekh. Élektron. (Moscow) 44,

746 (1999).
22. L. G. Loœtsyanskiœ, Fluid Mechanics (Nauka, Moscow,

1987) [in Russian].
23. O. M. Belotserkovskiœ, A. M. Oparin, and V. M. Chechet-

kin, Turbulence: A New Approach (Nauka, Moscow,
2002) [in Russian].
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
24. I. Prigogine and I. Stengers, Order out of Chaos: Man’s
New Dialogue with Nature (Heinemann, London, 1984;
Progress, Moscow, 1986).

25. Yu. L. Klimontovich, Pis’ma Zh. Tekh. Fiz. 10 (2), 80
(1984) [Sov. Tech. Phys. Lett. 10, 136 (1984)].

26. D. Kondepudi and I. Prigogine, Modern Thermodynam-
ics: From Heat Engines to Dissipative Structures (Wiley,
Chichester, 1998; Mir, Moscow, 2002).

27. L. Brillouin, Science and Information Theory (Aca-
demic, New York, 1962; Fizmatgiz, Moscow, 1960).

28. A. N. Kolmogorov, Information Theory and the Theory
of Algorithms (Nauka, Moscow, 1987; Kluwer, Dor-
drecht, 1993).

29. H. Haken, Information and Self-Organization: A Macro-
scopic Approach to Complex Systems (Springer, Berlin,
1988; Mir, Moscow, 1991).

Translated by M. Lebedev



  

Technical Physics, Vol. 50, No. 5, 2005, pp. 560–575. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 75, No. 5, 2005, pp. 28–45.
Original Russian Text Copyright © 2005 by Potapov, Bulavkin, German, Vyacheslavova.

                    

THEORETICAL
AND MATHEMATICAL PHYSICS
Fractal Signature Methods for Profiling 
of Processed Surfaces

A. A. Potapov*, V. V. Bulavkin**, V. A. German*, and O. F. Vyacheslavova***
* Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 

Mokhovaya ul. 11, Moscow, 125009 Russia
e-mail: potapov@mail.cplire.ru

** Tekhnomash State Unitary Research Enterprise, Moscow, 127018 Russia
*** Moscow Automotive Institute (Technical University), Moscow, 105839 Russia

Received September 20, 2004

Abstract—A new approach to surface profiling of structural materials that evolves from the concept of fractal
signature is put forward. This approach has been developed and advantageously applied for acquisition of low-
contrast targets. It is based on the fractal theory, and fractal signatures and fractal dimensions (which are inti-
mately related to both the object’s topology and evolutionary processes in dynamic systems) are used as esti-
mating parameters. The experimental data obtained prove the existence of fractal clusters on the processed sur-
face microrelief. Quantitative characterization of these clusters is given. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Reliable and long-term functioning of a product to a
great extent depends on the surface condition. Surface
quality control is therefore a key problem in materials
science. It is common knowledge that surface proper-
ties, such as corrosion and wear resistance, as well as
tribological and reflection properties, have a dramatic
impact on the performance of a product as a whole and
of its parts [1].

Although this postulate has been long known and is
beyond question, surface conditioning, specifically,
roughness control, is now assuming an even greater sig-
nificance in light of emerging material processing tech-
nologies. Nanotechnology, where roughness is consid-
ered as an inherent property of a structure, and not as a
“response” (secondary characteristic) of the surface
layer structure to an external physical action (e.g., cut-
ting), is a most vivid example, since the thickness of
nanometer layers is comparable to the electron free
path in this case.

The surface quality is routinely characterized by
roughness (specifically, average roughness Ra, peak-to-
peak height Rmax, average roughness asperity spacing
Sm, etc.) and the physicomechanical properties of the
surface layer [1]. Surface roughness is considered as a
static object arising as a response to some action (phys-
ical processing). In other words, roughness may be
viewed as the trace of a tool on a surface being pro-
cessed that is represented by geometrical images:
globes, cones, cylinders, and so on. The roughness
value is estimated indirectly through the parameters of
processing (influencing factors). In machining, these
are cutting rate, depth of cut, and others.
1063-7842/05/5005- $26.00 0560
Evidently, it is impossible to reliably predict the
behavior of a given surface during use if appropriate
techniques that characterize its topography and esti-
mate the geometrical characteristics adequately
describing the surface profile formation are lacking.
Estimates of this kind are of particular value in fore-
casting the behavior of sophisticated systems (i.e., mis-
siles or space vehicles) where operating reliability and
safety are critical issues.

In view of the aforesaid, it is necessary to work up
alternative approaches to estimating the surface rough-
ness (at least for a certain group of surfaces). An avenue
for tackling this problem may be found in the fractal
theory: specifically, fractal (fractional) dimension D
and fractal signatures may be taken as estimating
parameters [2]. This work is aimed at checking this
assumption. It is hoped that such an approach could
make it possible to uniquely estimate surface rough-
ness.

CATEGORIZATION OF RELIEF FEATURES 
ON SURFACES PROCESSED BY MODERN 

TECHNIQUES

Extensive application of surface processing tech-
niques using concentrated energy fluxes (laser, plasma,
and electroerosion techniques) and advances in nano-
technology (chemical assembling, sol–gel methods,
CVD of metals, atomic layer epitaxy, etc.) make
description and estimation of roughness by means of
profilometry difficult. Roughness features and their dis-
tribution over a surface thus processed are far from
being a periodic sequence of “valleys” and “peaks”
describable in terms of Euclidean geometry (Table 1)
© 2005 Pleiades Publishing, Inc.
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[1]—a wide-spread belief related to machining. When
the material is exposed to intense energy fluxes; high
pressure; fast-moving gaseous media; or a combination
of mechanical, ultrasonic, etc., vibrations, roughness
features take the “strange” shapes of mushrooms,
ridges, grapes, splats, whiskers, etc. [1, 3, 4]. The dis-
tribution of these features over the surface is irregular
and has different probability densities.

These features are difficult, if at all possible, to
describe in terms of classical geometrical parameters,
and the surface topography cannot be adequately
described by the Abbot–Firestone reference curve [3].
It is worth noting here that the idealized fractal surface
assumes roughness features of any scale. A model
where the feature height is assumed to be fractal inevi-
tably becomes nondifferentiable (such notions as the
normal to the scattered wave front and the ray path, as
well as various effects of geometrical optics, are thus
excluded from consideration), and a model where the
feature slope is fractal allows for only the first deriva-
tive. Slopes, curvatures, and distributions of extrema
are not therefore critical surface parameters for the
fractal relief, as has been usually believed (for details,
see [2]).

New technologies where an entire surface being
processed is exposed to an external action (group sur-
face-conditioning techniques) generate clusters, the
evolution of which was outlined in [5]. Specific fea-
tures of the new processes dictate the need for revising
the available approaches to predicting the properties of
clusters and parametrically characterizing them.

PROCESSES IN MATERIALS SCIENCE 
AND RADAR AS EXAMPLES 

OF THE SYNERGETIC PARADIGM 
OF OPEN PHYSICOTECHNICAL SYSTEMS

The fractal theory is being advantageously used in
materials science to obtain materials with tailored prop-
erties [6, 7]. This theory is naturally related to the con-
cept of synergetics as self-organization of structures.
The fractal theory may be viewed as a basis for quanti-
tative description of dissipative structures forming
under highly nonequilibrium conditions. Elaborating
upon such an idea, researchers at the Institute of Metal-
lurgy and Materials Science, Russian Academy of Sci-
ences, have formulated a new branch of materials sci-
ence, fractal materials science [6, 7]. Now, it becomes
possible to establish a correlation between the compo-
sition, fractal structure, and properties of a material,
which is of great importance in surface conditioning,
e.g., in nanotechnology, where it is impossible to distin-
guish between the bulk and surface structures of the
material.

If by a dynamic system (DS) is meant an object or
process the state or a set of parameters of which is
uniquely defined at a given time and a determinate evo-
lution operator is specified, such a concept of dynamic
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
system may be extended to objects of any nature. The
DS properties are defined by invariants, such as
Lyapunov indices, fractal dimension of the strange
attractor, and entropy. Knowing these invariants, one
can determine the number of independent variables and
find a finite dimension of a phenomenon. After transients
have faded out, the phase space of the system contains a
limiting set of points that attract phase trajectories (the
so-called attractor). The existence of the attractor is
associated with a contraction of the DS space volume
under the action of the evolution operator.

The attracting set in the DS phase space with aperi-
odic steady-state oscillations has been called the
strange attractor [8]. The strange attractor always has
fractal (fractional) dimension D. An important feature
of chaotic motion is that initially it is extremely sensi-
tive to small changes. This means that closely spaced
trajectories in the phase space diverge exponentially in
time. Quantitatively, the rate of divergence is given in

Table 1

Surface relief features

Mushrooms

T-shaped

Pyramids

Splats

Grapes

Circular lunes

Globes

Globes/whiskers

Ridges

Moire
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terms of the Lyapunov indices, which exhaustively
characterize the complex chaotic behavior and struc-
ture of the attractor in the DS phase space. Of most sig-
nificance is Lyapunov index λ1, the positiveness of
which indicates chaos present in a DS. Remarkably, the
geometry and dynamics of the strange attractor are inti-
mately related: the Lyapunov indices describe the
geometry of the attractor, and the values of the indices
can be estimated by measuring fractal dimension D.

The basic method of research in metallurgy, materi-
als science, and materials processing remains to be the
thermodynamic method, which allows scientists to pre-
dict the general behavior of a system irrespective of
mechanisms behind processes involved. When in ther-
modynamic equilibrium, a system meets the conditions

(1)

where U is the internal energy, S is the entropy, V is the
volume, and ni is the number of moles of components
(i = 1, 2, …).

From (1), it follows that thermodynamic equilib-
rium corresponds to a maximal degree of disorder and
the impetus to equilibrium processes is the tendency of
the system to minimize its free energy. However, the
surrounding world is a rigid hierarchical system. This
comes into conflict with the second principle of ther-
modynamics, which states that the system’s entropy
rises with time. This contradiction was removed with
the evolution of the idea of synergetics. The term “syn-
ergetics” covers such areas as the theory of self-organi-
zation (or the theory of dissipative systems), theory of
open systems, theory of nonequilibrium systems, infor-
mation dynamics, dynamic theory of shaping, etc. Syn-
ergetics relies on the principles of (i) minimal entropy
production, (ii) current and local equilibrium,
(iii) mosaic nonequilibrium thermodynamics, (iv) least
constraint, (v) subordination, and (vi) “nonequilibrium
as a source of order” (see, e.g., [7, 9–14]).

These principles may be extended to both living and
inorganic nature. The simplest evolutionary equation
has the form

(2)

where  is the rate of production of a substance, q is its
concentration, and α is the order parameter.

Synergetic systems are stochastic: their time evolu-
tion (behavior) cannot be predicted with an absolute
accuracy. Therefore, Eq. (2) must be augmented by
term f(t) taking into account force fluctuations,

(3)

Surface roughness associated with physicochemical
methods of processing differs from roughness due to
cutting. In the latter case, it is the trace of a tool on the
surface, which is sequentially “swept” in space and
time. In the case of physicochemical methods, the
working medium itself (liquid, metal vapors, and so on)
serves as a tool. The components of the working

S U V ni, ,( ) max; dS 0,= =

q̇ αq,=

q̇

q̇ αq f t( ).+=
medium, which are activated by high temperature, high
pressure, or fields of various type, intensely interact
with the entire surface almost simultaneously at each
point of their location in the working space. This gen-
erates the so-called effect of group action on the sur-
face. Thus, the surface processed by physicochemical
methods is the result of action of a set of variously acti-
vated elementary processes and can be viewed as a syn-
ergetic system.

Let us now turn to radiophysics, the area of physics
dealing with waves and oscillations in a wide electro-
magnetic range. Radiophysics has given rise to a num-
ber of fields of engineering, radar among them. Exten-
sive research is now under way worldwide aimed at
making objects radioparent using advanced materials
offering an extremely low reflection coefficient in the rf
range (so-called Stealth technology). According to
[15], in 1980, the F-15 fighter had a radar contact (σ) of
about 10 m2; subsequently, σ was decreased to 1.0–
1.5 m2. For comparison, F-22 and JSF fifth-generation
supersonic fighters have σ on the order of 0.3 m2. In
light of these advances, radar approaches need to be
updated. Standard filtering methods are appropriate if
arriving radar signals are poisoned by Gaussian noise
alone. Actually, however, noise is almost always non-
Gaussian with extended tails and may have a high
intensity in different spectral ranges. Therefore, under
real conditions, the use of classical filtering algorithms

may be infeasible at low signal-to-noise ratio .

Present-day radar systems combined with a probing
channel should be viewed as complex nonequilibrium
systems open to energy, entropy, and information
fluxes. Elaborating upon this idea, scientists at the Insti-
tute of Radio Engineering and Electronics, Russian
Academy of Sciences, formulated new information
technologies as applied to radiophysics and radar.
These fresh insights are based on using texture (mid-
1980s) and fractal (mid-1990s) dimensions starting
from the DS principles (see above). In essence, a new
avenue of research has emerged: application of the DS
theory and fractal topology for increasing the informa-
tion content of radio engineering systems. From the
results of these pioneering investigations, the notions of
texture and fractal signatures were introduced and this
line of inquire was briefly named “fractal radar” and
“fractal radiophysics” [2].

Diagram 1 shows the basic problems involved in
these investigations and the years the associated works
began. Generally, any radio system, together with a
medium of radio wave propagation and objects being
probed, is natural to consider as open DSs with strange
attractors and bifurcation points, which define the pat-
tern of radiophysical processes occurring in such a
space–time continuum. Radiophysical phenomena are
best to treat in terms of nonlinear dynamics and fractal
topology and considered as taking place in a dissipative
environment open to information fluxes. Below, we will

q0
2
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discuss the basic notions of fractal analysis as applied
to radar.

ON THE NOTION OF FRACTAL
IN RADIOPHYSICS AND RADAR

In general form, a radar image (RI) can be repre-
sented as set Xk of pels whose values are proportional to
the effective scattering area (ESA) of a kth resolving
element of the radar station. Figure 1a demonstrates the
RI of a locality taken by a helicopter-borne radar at a
wavelength of 8.6 mm. Figure 1b shows the RI of the
same locality taken at a wavelength of 30 cm. Both
images are two-dimensional, the gray intensity being
proportional to the ESA. Suppose that surfaces
(Fig. 1c) with feature heights h proportional to the gray
intensity are constructed for either RI and the surface
area is to be measured. On the RI taken at 30 cm, the
surface area will be larger, since the number of distin-
guishable locality features increases with decreasing
wavelength. Here, the probing electromagnetic wave
serves as a sort of “ruler.” As the wavelength decreases,
a progressively finer structure of space–time signals, or
wave fields, begins to emerge.

If the RI at hand were obtained in a still shorter wave
range, the surface area would grow still further; i.e.,
decreasing the wavelength, we increase the surface
area. The obvious question arises: what is the true sur-
face area of the locality imaged? If the surface were
covered by objects of simple shape (for example, by
rectangular hills; Fig. 1d) and their size far exceeded
the wavelength, the surface areas on the RIs of the
objects would be nearly the same. Then, we could
answer this question, having calculated the number of
resolving elements covering the objects. In this case,
surface area S would be expressed as

(4)

where δ(λ) is the area of a resolving element of the
radar, N(λ) is the number of resolving elements cover-
ing the object, and λ is the radar wavelength. It was
noted above that S(λ) = const for a simple-shape object
(Fig. 1d).

For the images in Figs. 1a and 1b, the dependence
S(λ) = f (λ) can be constructed by putting δ(λ) = K(λ),
where K is a known function, and then constructing the
dependence S(λ) = f (δ). It turns out that measured sur-
face area S is fitted well by the formula

(5)

Since S(λ)) =  – D  (k and D are con-
stants), we can calculate parameter D. The dependence

(λ) = f( ), which defines the fractal signature
of an RI (Figs. 1a and 1b), is shown in Fig. 1e. It char-
acterizes the spatial fractal cepstrum of an RI (the
notion of fractal cepstrum was introduced in 1997 [2]).
Fractional parameter D is called the Hausdorff–Bezik-
ovich, or fractal, dimension. On the RIs of objects with

S S λ( )≡ N λ( )δ λ( ),=

S λ( ) kλ D– .=

(log klog λlog

Slog δlog
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a simple geometry (rectangles, circles, and smooth
curves), this dimension coincides with the topological
one (i.e., equals two for two-dimensional RIs) and is
specified by the slope of straight lines (5) in the log–log
coordinates. However, for most RIs taken from real
mantles and meteoric objects, the value of D exceeds a
topological dimension of two, highlighting their com-
plicated and irregular structure.

The fractal theory, dealing with geometry and the
theory of dimension, is intimately related to the theory
of dynamic chaos. It considers quantitative indices,
such as fractional, instead of integer, dimension D and
fractal signatures. Fractal fractional dimensions and
signatures not only characterize the object’s topology
but also, being related to their properties of dynamic
systems, reflect their evolution. The geometry of chaos
is representable in terms of the fractal theory and non-
linearity. It appears, however, that fractals are the lan-
guage not only of chaos but also of the nature. The con-
tours of all natural objects are essentially dynamic pro-
cesses combining stability and chaos that have
suddenly “congealed” in their physical forms. In
nature, ordering and disordering are basic interrelated

...?

Locality image synthesis, 1996

Image clustering, 1997

Fractal and texture signatures,
1987

Scattering of waves by fractal surface,
1997

Low-contrast target detection
(textures + fractals), 1987 + 1997

Target contour recognition
(textures + fractals), 1987 + 1997

Deterministic-chaos-based dynamic

Fractal coding of radar information,

Selective and absorbing fractal

Fractal antenna design, 2000

models of wave scattering, 1997

1988

materials, 2003

Fractals in radar

Diagram 1. Advances in information technology.
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Fig. 1. (a–d) Examples illustrating the essence of fractal processing of images and (e) spatial fractal cepstrum of the RI.
trends, especially as far as DS evolution is concerned.
Bifurcation is associated with catastrophic variations or
conflicts. Nonlinearity may suddenly and unpredictably
change the course of processes. Between bifurcation
points, an open system obeys deterministic laws; near
them, the behavior of the system is governed only by
fluctuations. Therefore, the effect of fluctuations in the
vicinity of bifurcation points is significant. Chaotic pro-
cesses beginning at the microlevel may “fly up” to the
macrolevel and influence the entire system. The ability of
an open system to endure under determinate chaos favors
information processes irrespective of initial conditions.
This statement applies to any engineering, ecological, bio-
logic, economic, and social open system [16].

The fractal–texture relation is a basic point in fractal
geometry. The relevant results are summarized else-
where (see, e.g., [2, 17–34] and Refs. therein). Diagram 2
[27] categorizes mathematical and physical fractals
encountered in radar and radiophysical applications. To
complete the discussion, it is appropriate to mention
definitions also introduced in [27]. In formalized math-
ematical terms, the fractal is a functional map (or a set)
that results from an infinite recursive process. The prop-
erties of the fractal are as follows: (i) self-similarity or
invariance under scale (unlimited scaling), which
means that fractals are, on average, the same on small
and large scales; (ii) fractional (Hausdorff) dimension,
which is strictly larger than the topological dimension;
and (iii) nondifferentiability (hence, fractional deriva-
tives and integrals). Physically, a fractal is defined as a
highly irregular geometrical object (a line or the surface
of a body) that possesses the property of self-similarity
on a limited scale. Note also that D0 usually designates
the topological dimension of the space where a fractal
of dimension D is considered.
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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Table 2.  Classification of physicochemical processing methods

Class A Class B Class C

Electroerosion dimensional processing Liquid-phase (chemical and electro-
chemical) metallization

Chemical assembling

Laser processing Metallization by liquid metal spraying Sol–gel processes
Electron-beam processing Plasma evaporation Atomic layer epitaxy
Ultrasonic processing Physical condensation CVD processes
Electrochemical dimensional processing Microarc oxidation Chemical synthesis combined with

various physical processes
Plasma cutting Electroerosion synthesis of coatings 

(hardening)
Laser processing of films

High-frequency mechanical processing Gas-flame hardening Free-abrasive processing in special media
Combined methods Laser-, ion-, and electron-beam hardening
Laser scribing Ion implantation ……………………
THERMODYNAMIC NONEQUILIBRIUM 
OF SURFACE PROCESSING AND FRACTALITY 

OF SURFACES PROCESSED

A better insight into the process of surface relief for-
mation (specifically, into a roughening mechanism)
that is described in terms of fractal analysis may be
gained through considering advanced surface process-
ing techniques. They differ widely in ultimate goals and
underlying physical mechanisms. This is not surpris-
ing: the rapidly burgeoning machine and instrument
building industries are now producing sophisticated
intricate small-size mechanisms and devices with
severe requirements placed upon the surface layer
properties and reliability.

In terms of plausible surface roughening mecha-
nisms, the variety of physicochemical processing meth-
ods may be subdivided into three basic classes (depend-
ing on the aim of application; see Table 2): class A,
methods that condition the surface by removing surface
layers of the material with its bulk remaining intact;
group B, those that apply (deposit) another material on
the surface with subsequent diffusion of the coating
material into surface layers, which modifies the surface
properties (the bulk of the host material remains
unchanged); and class C, methods with which struc-
tures are formed that may serve both as a matrix (host
material) and as a surface (owing to ultrasmall sizes of
these structures, as in nanotechnology).

Considering the physics of the methods belonging
to class A and class B allows us to infer that many of
them (electroerosion, electron-beam, and laser process-
ings; microarc oxidation; and gas-flame, laser, ion, etc.,
hardenings) share a number of processes. Among them
are plasma processes; that is, generation and loss of
charged particles in a definite space region that consti-
tute a charge-carrier gas. Strictly speaking, the very fact
that a plasma is confined in space entails its thermody-
namic nonequilibrium [35]. The nonequilibrium of a
plasma shows up in dissipative (collision or collision-
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
free) wave processes, such as absorption of waves by
charge carriers with subsequent decay of the waves.

Along with the nonlinear wave phenomena men-
tioned above, plasmas contain other regular nonlinear
waves, solitons. Sometimes, solitons are arranged into
structures in plasmas and we may speak of self-organi-
zation of nonlinear waves (synergetics); sometimes,
soliton chaos may be observed. The case in point is thus
dynamic processes causing the formation of dissipative
and self-organizing structures (both in the bulk and

Fractals

Finite number of

Mathematical

Infinite number of

Physical

Infinite number
of iterations

n → ∞
Finite number
of iterations

Fractional Hausdorff
dimension

D > D0

Fractional Hausdorff
dimension

D ≥ D0

scales, self-similarity
(scaling)

Fractional derivatives

scales, self-similarity
(scaling)

and integrals

Piecewise

functions
differentiable

Diagram 2. Categorization and structure of fractal sets (sig-
natures).
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directly on the surface), which show up as “unusual”
features on the surface (Table 1).

The processes attendant to continuous-wave laser
processing are characterized by a low-threshold optical
breakdown (lasting 10–8 s) in the zone being processed,
which generates a plasma cloud (for a time of 10–6–
10−5 s) [36]. Interaction between the material and heat
fluxes with a density of 102–105 W/m2 in the active
(N2, CO2, H2, CO, or CH4) or inert (Ar, He, or Xe)
environment leads to the formation of a heat source on
the surface, which contributes to the specific morphol-
ogy due to various instabilities.

Under pulsed laser processing (the pulse width on
the order of 10–9–10–6 s), the material experiences both
thermal and dynamic breakdown when subjected to a
thermal shock lasting from 10–10 to 10–7 s [37]. A set of
breakdown centers arising during the dynamic break-
down may be considered as a fractal cluster [38]. It was
noted that the pulsed heating loads the material dynam-
ically: the one-site mechanism of failure changes grad-
ually to the typical multisite mechanism. The kinetics
of dynamic failure may be viewed as being governed by
the process of failure center concentration at different
scale levels (this process being of percolation nature).

The essence of electroerosion is the breakdown of
an insulating medium in an applied electric field for a
time of 10–8–10–7 s followed by the avalanche-like
growth of the number of charge carriers (the formation
of a plasma) [39]. This process is also synergetic, since
it combines a variety of concurrent dynamic processes.
These are (i) bombardment of the surface by charged

particles (  and ), (ii) gaskinetic (thermal)
bombardment by the particles constituting the dis-

charge channel (  and ), (iii) deceleration of
the torches of the vapors arriving at the anode from

cathode and vice versa (  and ), (iv) thermal

radiation (  and , and (v) the action of the vol-

ume heat source (  and ); that is,

(6)

where W is the energy of the related process.
In the case of laser hardening of alloys [40], it was

found that concentrated radiation fluxes incident on the
surface may initiate either fluctuation (disordered)
nucleation and growth of a new phase (indicating that
the process is chaotic) or a cooperative (ordered) shift
of atoms by a small distance. The latter process may be
associated with self-organization, which is consistent
with the idea of synergetics in materials science.

It is known that electrode processes in electrolytes
are responsible for material removal in dimensional
electrochemical processing. These processes, which
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cause all the changes on the metal surface when its
potential is nonequilibrium, may be viewed as ordinary
heterogeneous chemical reactions initiated at the liq-
uid–solid interface by a potential difference between
the electrodes [41]. Anodic dissolution is a multistage
process including the concurrent processes of the for-
mation of the double electric layer (within the dense
part of which electrochemical reactions proceed), sup-
ply and removal of reacting particles through the dif-
fuse part of the double layer, and formation of new sub-
stances (reaction products).

When the current passes through an electrochemical
system, electrode potentials ϕa and ϕc become offset
from their equilibrium values (the phenomenon of elec-
trode polarization) by ∆ϕ. Essentially, the polarization
means that the electrochemical process is irreversible.
It may proceed at a reasonable rate only if the polariza-
tion (overpotential) is high, i.e., when the total current
is roughly equal to the current of the dominating pro-
cess. Then, the potential shift (concentration overpoten-
tial) is given by the Tafel equation

(7)

where a and b are constants and Jc is the cathode cur-
rent.

The fractality of the steel corrosion kinetics was
observed in [42], where the corrosion of structural
materials in sodium was studied. It was found that the
dissolution of a film coating the metal proceeds via the
coalescence of individual corrosion pits. Remarkably,
the extension of the corrosion area does not change the
fractality of the boundary of corrosion pit traces. The
empirical expression for the corrosion zone circumfer-
ence appears as

(8)

where D ≈ 1.20 is the fractal dimension of the circum-
ference.

Considering the processes involved in dimensional
electrochemical processing from the synergetic stand-
point, we note that they all are dynamic, obey the prin-
ciple of current and local equilibrium and the principle
of mosaic nonequilibrium thermodynamics, and corre-
late well with evolutionary equation (2).

As for CVD processes (including metallorganic
CVD (MOCVD) and others), as well as those attendant
to ion bombardment of the solid surface, it was found
[4, 43] that they typically result in the formation of
cones, facets, and/or layered columnar structures on the
surface and also favor the growth of large crystals and
needle crystals (whiskers). Such features of the relief
are attributed to the nonlinear kinetics under highly
nonequilibrium conditions (for example, when the tem-
perature varies from 150 to 1000°C, which is typical of
CVD processes). Lattice imperfections in the material
make a significant contribution to the formation of
these features, since the imperfections influence the
density of the features and the uniformity of their dis-

∆ϕ– a b Jc,ln+=

L l( ) l D– ,≈
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Fig. 2. SPM (3D) images of the surfaces (a–e, g, h, i) subjected to microarc oxidation (regimes 1, 2, 15, 12, 5, 9, and 7, respectively),
(f, k, l) coated by means of erosion synthesis (regimes 1, 3, and 5, respectively), (m) subjected to diamond grinding, and (n) sub-
jected to diamond turning followed by electrochemical etching.
tribution over the area being processed. In addition,
they have an effect on the onset of dissolution and dep-
osition [45].

Next, it was found [44] that CVD is a multistage
process including mass-and-heat transfer, adsorption
and desorption, the reaction of decomposition of metal-
lorganic compounds, formation of the solid phase, and
crystallization. The shape of surface features depends
on whether thermodynamically stable or unstable con-
ditions prevail.

Thus, most of the processes involved in physico-
chemical processing are consistent with the principles
of synergetics and can be referred to so-called nonequi-
librium techniques. Processes of such a kind cause, as a
rule, the formation of dissipative structures, which
require that the energy (electrical, thermal, or light) be
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
constantly delivered from the outside. The energy can
be delivered by special devices, such as power supplies,
electron guns, pump systems, etc. Thus, highly non-
equilibrium processes should be described in terms of
the fractal theory; specifically, the surface roughness
should be quantitatively characterized by introducing
fractal (fractional) dimension D or fractal signatures.

The roughening mechanisms involved in the pro-
cesses mentioned above differ radically from those
encountered in cutting. The physicochemical processes
imply application of various fields (electromagnetic,
thermal, and others), as well as high temperatures and
pressures, which simultaneously act on the surface in a
complicated manner. The methods used in these pro-
cesses can be classed as methods of group action: con-
ditioning of the surface starts almost instantly and
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simultaneously at many “seeding” sites chaotically dis-
tributed over the surface.

For the surface relief, both the environment and the
inner material structure are responsible. The environ-
ment may be electrolyte solutions, insulating media,
inert and chemically active gases, metal vapors, etc.
External parameters are the temperature, flow velocity
of the electrolyte, pressure, and applied fields. As was
noted above, lattice imperfections in the material influ-
ence the surface relief formation. According to the the-
ory of fractal materials science [6], lattice imperfec-
tions both in the volume and on the surface are due to
the mechanisms of self-organization of dissipative
structures, which are spontaneously reconfigured near
bifurcation points and are attributed to the fractal prop-
erties of the material. These mechanisms cause both
microdefects (vacancies, dislocations, slip bands, grain
boundaries, and atomic clusters) and macrodefects
ECHNICAL PHYSICS      Vol. 50      No. 5      2005
Table 3.  Fractal dimensions D and Ds of the surfaces pro-
cessed

Processing Regime 
no.

Fractal 
dimen-
sion D

Fractal 
dimen-
sion Ds

Vari-
ance
Σ2

Diamond grinding 5 2.117 1.985 0.024
8 2.288 2.022 0.026

Microarc oxidation 1 2.102 2.065 0.029
2 2.279 2.179 0.072

16 2.420 2.215 0.070
23 2.392 2.157 0.075

Electroerosion syn-
thesis of coatings

1 2.445 2.237 0.077
2 2.303 2.179 0.032

10 2.536 2.136 0.498
Diamond turning
followed by electro-
chemical etching

1 2.085 1.971 0.025
4 2.097 1.978 0.038
8 2.174 2.132 0.078
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(mosaic blocks and dislocation ensembles) that were
generated at previous stages of processing (casting,
rolling, annealing, etc.) to emerge on the surface. The
defects emerging on the surface specify the formation
of the above-mentioned surface features at further pro-
cessing. For example, the nucleation of atomic and/or
molecular clusters that then coalesce to form a contin-
uous coating and dissolution (pitting) start at sites ener-
getically more favorable for interaction with the work-
ing medium under processing conditions.

As processing goes on, the fractal properties of the
material and processing medium (e.g., electromagnetic
fields) superpose to form the final surface relief, specif-
ically, the roughness. Under these conditions, the sur-
face should be considered as an expanding stochastic
cluster system offering the property of self-similarity
(scaling).
HNICAL PHYSICS      Vol. 50      No. 5      2005
EXPERIMENTAL INVESTIGATION 
OF THE SURFACE FRACTALITY

To verify the approach suggested, we studied the
surfaces of AK-12M and AD-16 alloys and 45 steel pro-
cessed by diamond grinding, microarc oxidation, elec-
troerosion synthesis (hardening), and diamond turning
with subsequent electrochemical etching.

Prior to processing, the surfaces were examined
under a scanning probing microscope (NT-MDT Co.,
Zelenograd, Moscow). The images of the surfaces are
represented in Fig. 2 in the 512 × 655 × 256 bmp for-
mat.

Fractal dimension D and the fractal signatures (frac-
tal cepstrum) of the surfaces were measured with a
technique developed at the Institute of Radio Electron-
ics and Electronics, Russian Academy of Sciences [2,
17–34]. Original techniques for measuring the fractal
dimension and fractal signatures of multidimensional
Fig. 3. Fractal analysis of the surfaces subjected to (a) diamond turning, (d) diamond turning followed by etching, and (g) diamond
turning followed by oxidation; (b, e, h) fractal signatures of the surface images (fractal cepstrum); and (c, f, i) field (on the left) and
experimental distribution of local fractal dimensions D (on the right).
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Fig. 4. Fractal analysis of the surfaces subjected to (a, d) microarc oxidation and (g) diamond grinding; (b, e, h) fractal signature of
the surface images (fractal cepstrum); and (c, f, i) field (on the left) and experimental distribution of local fractal dimensions D (on
the right).
stochastic signals are comprehensively discussed in
[27, 34]. The experimental data are presented in Figs. 3
and 4. Some of the results were reported in [46]. The
fractal signatures (Figs. 3b, 3e, 3h, 4b, 4e, and 4h) show
the mean value of D and its rms deviation σ. Setting
desired range ∆D of local fractal dimensions in the
clustering mode, we see a field of fractal dimensions on
the monitor where all Di ∈  ∆D are shown black.

When implemented in software, the techniques for
measuring fractal characteristics display experimental
distributions of local fractal dimensions directly on the
monitor Figs. 3c, 3f, 3i, 4c, 4f, 4i). The color of each
point on the sample image is in proportion to Di. Mea-
surements are represented in a wide palette of pseudo-
colors. On the 2D images of the surface (the left-hand
side of Figs. 3c, 3f, 3i, 4c, 4f, 4i), the pseudocolors
mark all clusters with given D.

In the case of diamond turning (Fig. 3), experimen-
tal spatial distributions of D always have extended
“heavy” tails (Paretians) [2, 24, 26, 27, 29, 31, 33],
which indicates the hierarchic organization of the
HNICAL PHYSICS      Vol. 50      No. 5      2005
microrelief. Subsequent procedures (etching or oxida-
tion) considerably widen the range of average fractal
dimensions. Regime 2 of microarc oxidation (Figs. 4a–
4c) give D smaller than that in regime 7 (Figs. 4d–4f).
Diamond grinding gives a wider range of local fractal
dimensions, as clearly follows from the experimental
data (Figs. 4g–4i).

Thus, the numerical investigation of the surfaces
processed lets us argue that there are surface areas with
fractal properties. This statement is corroborated by the
fractal signatures and probability distributions with
heavy tails (Figs. 3 and 4), as well as by fractional val-
ues of the dimension both on the images (D) and in the
spectrum (Ds) (see Table 3). It should be noted that the
fractal dimension of the image must satisfy the condi-
tions D, Ds ≥ 2 [2, 34]. Values Ds < 2 are due to an algo-
rithmic inaccuracy and must be considered, in our case,
as a fast approach of Ds to the topological dimension of
the surface.
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CONCLUSIONS

Based on experimental data obtained in earlier
experiments, a universal and illustrative method of esti-
mating the surface quality using different fractal char-
acteristics is suggested. The existence of fractal areas
on the surfaces processed counts in favor of the idea
that the surface forms (at the micro-, mesa-, and mac-
rolevels) by the cluster mechanism, which is related to
dynamic nonequilibrium processes. Therefore, the
development of a fractal synergetic model of surface
relief (roughness) formation that takes into account
self-organization phenomena inherent in group pro-
cessing techniques seems to be of special interest. The
surface roughness and surface layer should be consid-
ered as a single hierarchic fractal or multifractal sys-
tem. Such a model would make it possible not only to
predict but also to control roughening mechanisms and
physicomechanical properties of the surface layer. In
this work, only one approach to tackling the challeng-
ing problem (estimating the roughness of surfaces pro-
cessed by nonequilibrium techniques with the aim of
controlling the geometric parameters of the roughness
and providing desired operational performance of prod-
ucts) is suggested. Effective numerical methods of
measuring fractal characteristics (fractal signatures)
that were tried experimentally [2, 17–34] may find wide
application in physical, engineering, astronomical, bio-
logical, and medical research.
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Abstract—Computer-aided simulation of the electrohydrodynamic flow pattern in an asymmetric system of
electrodes (configured as “narrow depression under plane” or “blade above plane”) is carried out. The objective
of the simulation is to reveal a correspondence between the kinematic flow pattern and the distribution of driv-
ing (Coulomb) forces. The kinematic pattern of the flow simulated is compared with the results of experimental
data processing. Good agreement between the simulation results and experimental data is found. © 2005 Ple-
iades Publishing, Inc.
INTRODUCTION

The features of electrohydrodynamic flows have
been described at length in a variety of works (see, e.g.,
[1, 2]). The range of existence of these flows is bounded
from below by a threshold voltage. At voltages slightly
exceeding the threshold, the flows are weakly devel-
oped; i.e., they are localized near the active electrode.
Then, as the applied voltage grows, a fully developed
electrohydrodynamic flow completely occupying the
electrode gap arises. In both developed and undevel-
oped regimes, the flow is usually of a laminar (parallel-
stream) character and is directed from the “wire”
(active) electrode to the plane (passive) one. Compara-
tive analysis of developed electrohydrodynamic flows
at various voltages has not revealed appreciable distinc-
tions in their pattern. The dependence of the average
velocity in the central stream on the voltage between
the electrodes is either a power-type function, v  ~ Uk

(k > 2), for the undeveloped flow or a linear function
(k = 1) for the developed flow. In [1], an analytically
convenient dimensionless form of the dependence V =
V(U) has been proposed, where average drift velocity
of ions V0 = bU/l0 (where b is the mobility of ions and
l0 is the electrode gap length) is taken as a unit of mea-
surement of the velocity. In this case, the voltage
dependence of the average velocity takes the form
Ree1 = V/V0 = f(U). Quantity Ree1 is usually called the
electric Reynolds number. Function Ree1 = f(U) has a
threshold, which is usually higher than the voltage of
transition to the supraohmic part of the I–V characteris-
tic. In the undeveloped flow, the electric Reynolds num-
ber grows very rapidly; in the developed flow, it is con-
stant.
1063-7842/05/5005- $26.00 0576
Recently, a procedure for computer-aided process-
ing of electrohydrodynamic flow observations has been
developed [3], allowing one to reconstruct the distribu-
tions of the velocities and accelerations in the electrode
gap. Such a processing visualizes the kinematic and
dynamic patterns of the flows. It has been noted [4, 5]
that the region occupied by an electrohydrodynamic
flow can be conditionally subdivided into several
zones.

(1) In the immediate vicinity of the electrodes, there
is a thin adherent layer of the quiescent liquid. Within
this layer, the liquid is structured.

(2) The zone near the active electrode where the liq-
uid is intensely accelerated by the electric field. The
length of this zone is 0.1–0.2 of the electrode gap. In
this zone, the velocity isolines concentrate and the
acceleration vectors are aligned with the flow direction
or are directed at an acute angle to the flow.

(3) The zone of smoothly varying flow (the so-called
central stream of electrohydrodynamic flow) or the par-
allel-stream part of the flow (the streamlines in this
zone are essentially straight lines parallel to each
other).

(4) The zone of flow stagnation, where the accelera-
tion vectors are directed oppositely to the flow.

(5) The layer of quiescent liquid in the immediate
vicinity of the surface of the passive electrode.

Studies of electrohydrodynamic flows under differ-
ent conditions have concerned mainly the sizes of and
flow patterns in those zones. As was already mentioned,
the average electric Reynolds number in a fully devel-
oped flow usually lies within 10–20; i.e., the ions out-
side the quiescent near-electrode zone are “frozen” into
the liquid. Therefore, there are good grounds to believe
that a charge injected from the surface of the wire elec-
© 2005 Pleiades Publishing, Inc.
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trode will be entrained by the flow into the electrode
gap and the charged liquid region will have the form of
a narrow strip between the electrodes. Certainly, the
charge distributions in the liquid may vary depending
on the flow conditions and the conductivity of the liq-
uid; however, these variations are insignificant in a fully
developed flow.

The objective of this paper is to establish a corre-
spondence between the space charge distribution in the
liquid and the kinematic pattern of the flow. To do this,
we carry out a computer-aided simulation using the
well-known software packages ANSYS and MatLab.
When simulating electrohydrodynamic flows, one runs
into a number of difficulties. First, the distributed elec-
tric charge has an appreciable effect on the electric field
distribution, which, in this case, has as yet unstudied
intriguing features and is of independent interest. Sec-
ond, electrohydrodynamic flows are caused by a vol-
ume electric force. In classical fluid dynamics, such
flows are poorly known.

For convenient comparison of data obtained in
numerical and full-scale experiments, the dimensions
of the model were taken to be comparable to the size of
the cell in which the experiments were carried out; for
the same reason, the liquid of choice is transformer oil.
We simulated a steady-state electrohydrodynamic flow,
which is the most-studied experimentally. In this case,
all electric and kinematic characteristics of the flow
may be taken to be time-independent. A two-step com-
putational algorithm was applied. At the first step, a
hypothetical space charge distribution is specified and
the corresponding distributions of the electric field and
Coulomb forces are calculated. At the second step, the
electrohydrodynamic flow velocity field caused by the
calculated distribution of Coulomb forces is computed.
The space charge distribution was set based on semi-
intuitive ideas regarding a possible flow pattern. Imme-
diately near the surface of the cylindrical electrode, the
space charge distribution is set in the form of a 0.1-mm-
thick ring coaxial with the electrode. This stagnant
near-electrode zone has been detected in experimental
studies of electrohydrodynamic flows. In addition, we
took into account the drift of the charge from the near-
electrode zone into the electrode gap. In this case, the
space charge distribution was set by a function of form
ρ0exp{α(y)x2 – y/β}. Parameter α specifies the width of
the charged strip. Near the active electrode, the width of
the strip was set to be equal to the electrode diameter.
Varying parameter β, one can control the rate of
decrease of the space charge density along the central
stream of the flow. Parameter α was varied along the
flow axis in such a way that the law of conservation of
charge in the stream held true. Physically, this means
the absence of charge sources and drains in the elec-
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trode gap. Applying various combinations of parame-
ters α and β, one can simulate different flow patterns.

CALCULATION OF THE ELECTRIC FORCE 
DENSITY DISTRIBUTION

Constructing the charge distribution is followed by
calculating the corresponding distribution of Coulomb
forces ρE. Throughout the simulation, the potentials on
the plane electrode and cylindrical electrode were set
equal to 0 V and 20 kV, respectively. At the boundaries
of the cell, the normal component of the electric field
was assumed to vanish. The average experimental value
of the flow velocity in the central stream measured at a
given voltage was taken to determine ρ0.The electric
field distribution and the electric force density were cal-
culated using the electrostatic version of the ANSYS
software package.

CALCULATION OF THE VELOCITY 
DISTRIBUTION IN ELECTROHYDRODYNAMIC 

FLOWS

The electric force density distribution obtained was
substituted into the equations of hydrodynamics as the
density of external forces. The boundary conditions
were taken to be zero velocities at the electrodes and
cell walls. The geometry of the electric and hydrody-
namic problems, as well as the properties of the liquid,
was assumed to remain the same and meet the experi-
mental conditions. The hydrodynamic problem was
solved by the finite-element method with the help of the
ANSYS package. The calculated velocity distributions
were analyzed and compared with the distributions
obtained by processing the experimental data. In the
numerical experiment, we studied the influence of var-
ious space charge distributions on the kinematic param-
eters of electrohydrodynamic flows.

Some of the authors approximate the electrody-
namic flow by an immersed jet. In this case, acting
forces are concentrated near the active electrode.
Therefore, at the first step, we assumed that the space
charge is localized near the surface of the cylindrical
electrode, ignoring the entrainment of the charge by the
flow (low electric Reynolds numbers). Subsequently,
the charge entrainment by the flow was allowed for.

SIMULATION RESULTS

Figure 1 shows simulation results for the situation
when the entire space charge concentrates in the near-
electrode zone, that is, within the cylindrical ring coax-
ial with the electrode. Space charge isolines and the
vector field of Coulomb forces (shown by the arrows)
for this case are demonstrated in Fig. 1a. The electrode
cross section corresponds to the inner circumference.
The distribution of Coulomb forces, as well as the
space charge distribution, are symmetric about the axis
of the active electrode. Figure 1b shows the isolines and
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at such a charge distribution.
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Fig. 2. (a) Space charge density distribution and (b) the flow velocity isolines at a small asymmetry (β = 0.001).
vector field of the flow velocity arising at such a charge
distribution. The emerging small-scale vortices are seen
to concentrate in the immediate vicinity of the elec-
trode. They form a symmetric pattern of size much
smaller than the electrode gap. As follows from the iso-
lines, the velocity in the vortices is very low (no higher
than 0.1 mm/s at a voltage of 20 kV and a charge den-
sity of 3 × 10–4 C/m3) and fades out over distances on
the order of the electrode diameter. Flows of this type
have not been observed in the experiments.
When a weak asymmetry appears in the charge dis-
tribution, the kinematic flow pattern changes apprecia-
bly. Figure 2 demonstrates the space charge density dis-
tributions and the flow velocity isolines in the case of a
weakly asymmetric charge distribution (β = 0.001).
From the charge distribution, it is seen that the charge
decreases by three times toward the counterelectrode
over a distance of 0.1 of the electrode gap length.
Therefore, one can assume that the charge concentrates
in the near-electrode zone as before is distributed asym-
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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metrically relative to the electrode center. However,
even such an insignificant deviation from symmetry
turns out to be sufficient for numerous small-scale vor-
tices in the near-electrode zone to transform into two
clear-cut ones. The flow is now directed toward the
counterelectrode, and its velocity increases to 2.5 cm/s.
However, the flow penetrates into the electrode gap
over a distance no larger than 0.3l0. In the rest of the
electrode gap, the flow velocity is insignificant. The
zone where the liquid is accelerated is equal to the elec-
trode diameter. It is followed by the stagnation zone.
This regime has all signs of an undeveloped electrohy-
drodynamic flow [1] and is characterized by low values
of the average electric Reynolds number. In this situa-
tion, the electrical field strength distribution is seen to
be little affected by the space charge outside the small
near-electrode zone. The electric forces act over a small
range equal to the electrode size. Thus, in this regime,
the electrohydrodynamic flow is similar to an immersed
jet.

When parameter β increases, the asymmetry rapidly
grows and the flow occupies an ever expanding part of
the electrode gap. At β > 0.003, the electric force distri-
bution exhibits a portion where the forces are uniformly
localized and the kinematic flow pattern takes the signs
of a fully developed flow. Figure 3 shows the calcula-
tion results for β = 0.005: the charge decreases tenfold
over a distance of 2.5 cm, which is equal to the elec-
trode gap length. The extent of the acceleration zone
amounts to ≈0.2l0 and is virtually independent of the
applied voltage. There also exists a wide zone of uni-
form motion, where the velocity vectors are aligned
with the axis passing through the center of the active
electrode normally to the plane electrode and the mag-
nitude of the velocity varies only slightly. This zone
occupies most of the electrode gap. The zone of effec-
tive stagnation starts to form at 0.6l0. All these features
are, in general, consistent with earlier publication [4]
concerning the kinematic pattern of developed electro-
hydrodynamic flows.

It is known that so-called smooth flow about a cyl-
inder occurs at low Reynolds numbers. In this case,
streamlines in the liquid are symmetric about the cylin-
der axis. The streamline pattern in the electrohydrody-
namic flow near the active electrode is akin to that in the
smooth flow: the streamlines describe circles centered
on the electrode axis. However, the symmetry about the
plane containing the axis of the active electrode and
being parallel to the plane electrode is broken. This is
because volume electric forces accelerate the liquid
behind the cylindrical electrode toward the plane elec-
trode. The jet of the liquid contracts, and the velocity
isolines clearly demonstrate a zero-velocity domain
extending in the flow direction. Behind the electrode, a
low-pressure zone is observed. As the rate of decrease
of the charge goes on dropping, the flow pattern as a
whole remains almost unchanged but acquires new
attributes near the central stream unobserved in the
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
experiments. Specifically, the velocity of the central
stream is no longer constant: it slowly grows, attaining
a maximum closer to the plane electrode. At β > 0.01,
the charged stream turns into a narrow strip of a nearly
constant width and the charge density along the stream
varies by no more than 30% over the electrode gap.

In the developed flow (unlike the undeveloped one),
the region of localization of acting forces occupies an
appreciable part of the electrode gap. Therefore, the
flow pattern acquires new attributes not found in the
immersed jet, namely, an extended acceleration zone
and an intermediate zone of weakly varying flow. These
zones are clearly seen in the acceleration distributions
shown in Fig 4. Also, the calculation shows that the
space charge appreciably influences the electric field
distribution in the liquid under these conditions.

Figure 4 shows the acceleration distributions along
a line passing through the center of the cylindrical elec-
trode normally to the plane one for rates of decrease of
the charge β = 0.001, 0.003, 0.005, …, 0.010. It is seen
that β = 0.001 corresponds to the undeveloped flow: the
acceleration zone occupying ≈0.1l0 is followed by the
extended stagnation zone, where the acceleration is
negative. At β ranging between 0.005 and 0.010, the
pattern of the flow is virtually invariable and consists of
three zones. In the acceleration zone, a maximum of
velocity is reached near 0.05l0. In the uniform flow
zone, the velocity is directed along the flow axis and
changes weakly (the accelerations are low). The loca-
tion of the effective stagnation zone depends on the rate
of decrease of the charge and begins at 0.4–0.6l0 with a
maximum of the velocity at 0.8l0. As β grows, the uni-
form flow zone expands.

As follows from the calculation, the space charge
distribution typical of a fully developed electrohydro-
dynamic flow may appreciably distort the electric field
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Fig. 3. Velocity isolines for the fully developed electrohy-
drodynamic flow (β = 0.005).
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distributions calculated without considering the space
charge. The distributions of Coulomb forces causing
electrohydrodynamic flows are of a complicated char-
acter: the forces differ both in magnitude and in direc-
tion. Unlike the distribution of accelerations, that of
Coulomb forces does not show a maximum. To gain a
deeper insight into the situation, we carried out a
numerical experiment, setting a uniform distribution of
forces acting along the central stream axis and localized
within a strip with sizes roughly equal to those of the
zone of space charge localization in a fully developed
electrohydrodynamic flow. The pattern of the resulting
flow is similar to that arising when the charge gently
diffuses along the central stream. Namely, the extended
acceleration zone and the intermediate uniform-flow
zone are virtually absent, and the acceleration and stag-
nation zones alternate. The velocity reaches a maxi-
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Fig. 4. Acceleration distributions along the line passing
through the center of the cylindrical electrode normally to
the plane electrode at different β.
mum within the strip of forces, and the stagnation zone
immediately follows the maximum.

Thus, having performed numerical analysis, we dis-
covered a correlation between the zone structure of the
electrohydrodynamic flow and the space charge distri-
bution in the central stream of the flow.

Now that we are fully aware of the kinematic and
electric characteristics of the electrohydrodynamic flow
(the distributions of electric field strength E, charge
density ρ, and the flow velocity), it is possible to find a
distribution of local electric Reynolds numbers, Ree1 =
V/bE, and the density of convection current, Jc = ρV, in
the volume of the liquid. The values of the current den-
sity (Fig. 5b) are normalized by the maximum value
(jmax = 0.7 × 10–4 A/m2). The electric Reynolds number
distribution (Fig. 5a) has a drop-shaped form with a
maximum in the central stream. The convection current
has the form of a narrow strip in the central stream of
the flow. The regions of low Ree1 and Jc near both elec-
trodes are seen. In these regions, ion transport is accom-
plished chiefly by migration.

In many works (see, e.g., [6, 7]), the nonlinear part
of the I–V characteristic is associated with the mecha-
nism of conduction by convection. We share this view-
point. The density of the total current is equal to the
sum of the conduction and convection current densities,
j ≅ ρ (V + bE). In the central stream, the density of the
convection current considerably exceeds the density of
the conduction current (Fig. 5b). However, in the stag-
nant near-electrode layers, the electric Re is small, so
that the role of the conduction current in these regions
becomes appreciable. The total resistance of the elec-
trode–liquid system is the sum of the resistances of all
the zones plus the resistances of the electrode–liquid
interfaces. The highest resistance region is the major
contributor to the total resistance, and it needs not be
the region around the central stream. Studying the influ-
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ence of the electrode–liquid interface on the form of the
I–V characteristic, one of the authors [8] showed that
the metal–liquid contact might be a controlling factor.
Therefore, while diving the convection term the atten-
tion it deserves, we yet believe that the influence of all
the zones on the I–V characteristic should be thor-
oughly analyzed in each particular case.

CONCLUSIONS
We carried out a computer-aided simulation of the

kinematic pattern of the electrohydrodynamic flow at
different space charge distributions in the liquid. The
conclusions drawn are as follows.

(1) Symmetric space charge distributions in the
form of a ring surrounding the electrode without con-
sidering charge drift into the liquid generate local mul-
tiple-vortex flows, which do not penetrate deep into the
liquid. Such flows have not been observed experimen-
tally.

(2) Weakly symmetric charge distributions localized
near the cylindrical electrode cause two-vortex flows
toward the plane electrode. The pattern of these flows is
similar to that of the observable undeveloped electrohy-
drodynamic flow described earlier. In this flow, the
influence of the space charge is insignificant and the
flow pattern resembles the pattern of an immersed jet.

(3) If the charge drift from the near-electrode zone
into the liquid is pronounced, the penetration depth of
the flow increases and the fully developed electrohy-
drodynamic flow sets in. In this flow, the space charge
has an appreciable effect on the electric field distribu-
tion in the liquid: the electric force density distribution
and the convection current density distribution have the
form of a fine filament along the flow axis. Under these
conditions, the zone structure of the flow is similar to
the developed electrohydrodynamic flow pattern
obtained earlier from analysis of experimental data.

(4) In the immediate vicinity of the cylindrical elec-
trode, there is a zone of very low velocities and reduced
pressure, although the density of acting electric forces
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
here is high. In this zone, the electrohydrodynamic flow
is akin to the smooth flow and does not separate. For
such a flow about the electrode, the charge in the form
of a fine filament is transported from the near-electrode
zone into the electrode gap.

(5) In the fully developed electrohydrodynamic
flow, the charge transport in the near-electrode zones
and in the central stream is accomplished largely by
migration and convection, respectively, as follows from
the simulated distributions of the electric Re and con-
vection current. When analyzing the mechanism gov-
erning the form of the I–V characteristic, one should
take into account all stages of the electrode processes,
including those at contacts.
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Abstract—A physical model that describes the structure of a 1D shock wave in a gas containing a moving heat
source is put forward. A stationary equation for the profile of a shock wave in a gas with an arbitrary-shape heat
source that is at rest relative to this wave is derived. Analytical solutions to this equation make it possible to
analyze the flow pattern in the case of external power supply. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Much interest has recently arisen in the effect of
external actions on supersonic flows. In particular, the
propagation of shock waves (SWs) in a weakly ionized
gas-discharge plasma was studied in [1, 2]. Anomalous
changes in the SW structure (SW front broadening, SW
attenuation, and the nonmonotonicity of the SW struc-
ture) were observed in experiments with traveling SWs
and with bodies flying through a plasma [3–5]. It was
supposed [6] that, when SWs propagate along an elec-
tric field, some of these effects can be accounted for by
the appearance of an electric field behind the shock
wave, where the density of the gas rises. Such condi-
tions are equivalent to the presence of an external
power supply.

Basic formulas that extend the Hugoniot–Rankine
relationships to the case when a heat source that is at
rest relative to a shock wave is present near the SW
front were derived in [7]. The results obtained in [7]
relate the asymptotic values of gas flow parameters in
the undisturbed (supersonic) flow with the asymptotic
values of the parameters in the disturbed flow and can-
not describe the shock layer structure.

In this work, we suggest simple analytical tech-
niques for calculating the SW shape at any point of the
space in the 1D approximation. Analytical techniques
make it possible to clearly illustrate how local energy
supply influences the SW structure. In addition, such
methods will allow researchers to reveal general trends
in a phenomenon under consideration. Specifically, we
consider here the supersonic motion of aerodynamic
objects in a plasma, that is, ballistic-range experiments
1063-7842/05/5005- $26.00 0582
[3]. Experimental approaches to determining the SW
parameters can be found elsewhere [1–5].

1. BASIC EQUATIONS

Consider a plane SW moving in a gas flow that con-
tains a heat source near the SW front. The set of 1D
nonstationary equations describing the SW parameters
in the presence of a heat source moving in the x direc-
tion with velocity w has the form

(1)

Here, ρ, u, e, µ, λ, and T are, respectively, the density,
mass velocity, internal energy, viscosity, thermal con-
ductivity, and absolute temperature of the gas and p is
the static pressure.

A stationary solution to set (1) will be sought in the
coordinate system moving with velocity w. To this end,
we pass to variable ξ = x – wt. As a desired function, we
take v  = w – u, which corresponds to the coordinate sys-
tem moving with the heat source and also makes it pos-
sible to consider the case of a stationary (unmoving)
heat source in a gas flowing along the ξ axis. Using
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well-known relationships, one can easily derive from
set (1)

(2)

where H is the gas enthalpy per unit mass; Q0, P0, and
E0 are positive constants; γ = cp/cv; and cp and cv are
specific heats at constant pressure and volume, respec-
tively.

Integration of the second equation in (2) subject to

at infinity gives for function ϕ(ξ) = H + (1/2)v 2 the
expression

(3)

Let  = v 1, where v 1 is the mass velocity of the

gas relative to the source moving in the undisturbed
flow. Suppose that there exists a point ξ = ξ0 where

v(ξ) being a continuous function at ξ > ξ0, and let
 = v 2. For enthalpy H(ξ), it follows from (3) that

Putting ξ  ∞ and ξ = ξ0, we obtain two relation-
ships
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where

is the delivered power flux per unit area with ∆E0 =
∆E(ξ0).

Substituting equalities (4) into the first equation in
(2) yields

(5)

In the dimensionless coordinate system

(6)

Eq. (5) turns into a stationary (in the coordinate system
selected) inhomogeneous equation for velocity v  = w – u,

(7)

where 

(8)

Here, v 1 and ρ1 are, respectively, the velocity and den-
sity of the gas, M ≡ M1 = v 1/a1 is the Mach number, and
a1 is the sound velocity in the undisturbed flow (at
y  +∞).
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It is evident that

From the expression for v 2, it follows that, if the
inequality

(9)

is met, there exists a point y = y0 where  = v 2 and

 = 0.

Detailed analysis of Eqs. (7)–(9) shows that the
above conditions are met iff y0  –∞.

If the heat source does not generate power, Eq. (7)
turns into the equation derived in [8]. In this case (β =
0), a solution to Eq. (7) can be found in implicit form,

(10)

The constant of integration here is taken such that
point y = 0 corresponds to the maximum of the first
derivative of the velocity (d2v(y)/dx2|y = 0 = 0). Velocity
v  = v(y) and its first derivative at point y = 0 are given
by the simple expressions

(11)

When solving Eq. (7) for β(y) ≠ 0 in order to find the
absolute value of the SW front displacement due to
heating, one must keep the origin at the point where the
first derivative of the velocity with respect to distance is
maximal (i.e., at y = 0). A constant of integration should
be taken such that a solution obtained will continuously
turn into solution (10) when β(y) ≠ 0 continuously
passes to β(y) = 0. To this end, it will suffice to find the
first derivative of the velocity from the condition of
vanishing of the second derivative and substitute

 into basic equation (7). Such a procedure

yields a fourth-degree polynomial in correction ∆ to
velocity v(0) at β(y) = 0 (see formula (7)),
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The second (in magnitude) root of polynomial (12)
gives ∆ needed to calculate v(0) = v 1(ω + ∆) (at β 
0, this root ∆  0, since a0  0). In most cases, v(0)
can be fairly accurately found from the approximate
formula

(13)

2. COMPUTATIONAL FORMULAS FOR SHOCK 
WAVE PARAMETERS

Knowing a solution at y = 0, one can uniquely deter-
mine the velocity profile. This may be done with rou-
tine programs (using, e.g., any version of the Runge–
Kutta method) or with approximants given below (these
approximants make it possible to determine the veloc-
ity profile with a fairly high accuracy). Then, using the
well-known relationships, one can find the pressure,
temperature, and density of the gas, as well as the local
Mach number,

(14)

(15)

From (15), one can find the velocity at which the
local Mach number (designated as M(y), whereas M is
the Mach number in the undisturbed flow) equals unity
at point ys,

(16)
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Point ys, where equality (16) is valid, specifies the
SW front displacement due to heating; thus, expression
(16) is an equation from which the SW front displace-
ment can be found.

As estimators, it is convenient to take analytical for-
mulas that describe the SW parameter variation with an
accuracy sufficient for our purposes. For the SW veloc-
ity in the absence of a heat source (β(y) = 0), asymptotic
estimates yield two approximate relationships,

(17)

(18)

Comparing the results obtained with (17) and (18)
shows that formula (17) provides an upper estimate of
the exact solution (implicitly, the exact solution is given
by (10)), while formula (18), a lower estimate At β(y) ≠
0, the SW velocity is approximately given by formula
(26) in the Appendix. Also, formula (28) in the Appen-
dix estimates SW front width ∆Q, and approximate for-
mula (29), SW front displacement ∆s.

3. WEAK-WAVE APPROXIMATION

In the weak-wave approximation (M – 1 ! 1), it is
convenient to take advantage of function

(19)

where

(20)

In this approximation, function ψ(z) satisfies the
equation
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where
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As in Section 2, the origin should be placed at point
z where d2ψ/dz2|z = 0 = 0. Note that

where δ is the second (in magnitude) root of the cubic
equation

(23)

Equation (15) can be solved exactly, e.g., if the inte-
gral heat supply is described by the exponential

(24)

or is approximated by a linear function in the interval
−L ≤ z ≤ L,

(25)

For the SW velocity subject to exponential integral
power supply (24), we obtain formula (30); for linear
power supply (25), we get formula (32) (formulas (30)
and (32) are given in the Appendix).

Figure 1 compares the numerical solution of exact
equation (7) (continuous line) with the analytical solu-
tion obtained by the formulas in the weak-wave approx-
imation (dots). The weak-wave approximation works
worst near the minimum of the SW velocity distribution
along the z coordinate. For M ≤ 1.4 and β < βlim, this
approximation yields almost exact values. Different
variants of the formulas for the SW velocity make it
possible to estimate the behavior of other SW parame-
ters (see formulas (14) and (15)).

Thus, we have derived estimators for SW shape
variation in the presence of a heat source. They relate
the amount of supplied heat with temperature, density,
and pressure variation.

4. RESULTS AND DISCUSSION

The formulas derived and basic equation (7) lead us
to the following conclusions: (i) in the case of external
power supply, the SW profile may be nonmonotonic;
(ii) the local Mach number may either be a monotonic
function of coordinate or have a single minimum down-
stream of the SW center; and (iii) at any Mach number,
the SW intensity drops and the SW front broadens as
the integral amount of the heat supplied increases
(Figs. 2 and 3).
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When analyzing the variation of the flow structure
subject to external heat supply, one has to determine the
boundaries of the super- and subsonic flows. In the
absence of external heat (β = 0), it can be shown, using
formulas (15), (17), and (18), that M0(y) > 1 for y > 0
and M0(y) < 1 for y < 0. Thus, in our coordinate system,
point y = ys separating the regions of super- and sub-
sonic flows in the SW coincides with the point of max-
imum of derivative dv 1(y)/dy; so, ys = 0. If heat is deliv-
ered to the shock layer, the boundary between the
super- and subsonic flows in the SW shifts upstream.
However, in the subsonic region at y  –∞, the Mach
number increases compared with the case when exter-
nal heat is not supplied.

From the formulas derived above, it follows that,
when the amount of heat equals a critical value (i.e., at
β(y0) ≡ β(–∞) = βlim; formula (9)), the flow behind the
wave asymptotically tends to become sonic (Fig. 2).
Hence, an SW, which is treated as a continuous decel-
eration through the sonic speed (the supersonic-to-sub-
sonic transition), disappears in this case. Let us con-
sider reasons for such behavior of the flow subject to
external heat supply and also why the Navier–Stokes
equations that are stationary in the coordinate system
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Fig. 1. (a) Coordinate dependence of the local Mach num-
ber. Continuous curves, the exact solution to Eq. (3); dotted
curves, the weak-wave approximation. (b) Relative error
associated with the weak-wave approximation at different
initial Mach numbers (figures by the curves).
related to a moving source cannot be solved at β(–∞) >
βlim.

We found that, at any β(–∞) < βlim, the flow splits
into the supersonic (y > ys) and subsonic (y < ys)
regions. As the shock layer is approached, the flow
deceleration in the absence of external heat is due to gas
compression. It is known that, when heat is delivered to
the supersonic region, the higher the amount of heat,
the more effective the flow deceleration, and the gas
temperature rises [9]. This additional deceleration
reduces the mass velocity in front of the shock layer;
that is, v(y) and the local Mach number decrease
(Figs. 2 and 3). As the Mach number decreases, so does
the compression in the SW and, hence, the deceleration
of the flow. In going to the subsonic region (y < ys),
external heat supply to the flow is known [9] to raise the
flow velocity, the mass velocity increasing with the rate
of heat delivery. Note that the increase in the mass
velocity in the subsonic region is not compensated for
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Fig. 2. (a) Velocity and (b) Mach number distributions at
different positions of the local heat source. The source has
a Gaussian shape with a half-width of 2.5 mm and generates
the maximal heat (βlim). (1) Distributions in the absence of
heat, (2) heat source is shifted downstream by 1 mm,
(3) heat source is at the shock front (unshifted), and (4) heat
source is shifted upstream by 1 mm.
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Fig. 3. Distributions of the (a) velocity, (b) Mach number, (c) intensity, (d) density, (e) pressure, ad (f) temperature for different
amounts of supplied heat β. β(–∞)/βlim (1) 0, (2) 0.25, (3) 0.50, and (4) 1.00.
by an increase in the gas temperature. Therefore, while
generally decreasing, the local Mach number becomes
the higher (at y  –∞) or the lower (at y  +∞), the
higher the rate of heat delivery (Fig. 3). As follows from
Fig. 3c, when the amount of heat grows, the intensity of
the SW decreases and the wave itself diffuses (the gra-
dients of v (y), ρ(y), etc. smooth out). Thus, it can be
argued that, at β(–∞) = βlim, the shock wave somewhat
transforms into a domain where the gas parameters vary
smoothly.

A significant remark is in order. Let the heat source
be in the subsonic region. Then, the heat will readily
propagate up- and downstream via heat conduction and
downstream via transfer by the flow.

Now consider the case when the heat source is in the
supersonic region. The heat transfer downstream will
be as efficient as in the former case. Since the heat is
transferred with a thermal velocity, it seemingly cannot
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
propagate upstream, i.e., against the direction of the
mass velocity. Actually, however, this is not the case,
because gas molecules obey the Maxwell velocity dis-
tribution. For any M, there exist particles with veloci-
ties directed against the flow and exceeding the mass
velocity. Obviously, the number of such particles
decreases with increasing the mass velocity of the gas.
Thus, irrespective of whether the flow is supersonic or
subsonic, heat delivered to a limited space will propa-
gate both downstream and (while with a lower effi-
ciency) upstream. Let us substantiate this statement. If
we represent volume power density Q(ξ) of a spatially
limited heat source, e.g., in the form Q(ξ) = Q0(ξ)θ(ξ –
ξ1)θ(ξ2 – ξ) (θ(ξ) is the Heaviside function), function
∆E(ξ) defined by formula (4) will exponentially drop
down to zero at ξ > ξ2 and remain constant at ξ < ξ1.
Such reasoning explains why a spatially limited source
supplying heat to the supersonic flow changes the flow
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pattern upstream of the heat release area in the station-
ary solution.

Consider now the gas flow when two heat sources,
one (Q1(y)) in the supersonic region and the other
(Q2(y)) in the subsonic one, generate the same power.
On the right of point y = ys, Q2 has a weaker effect than
Q1 because of the minor heat flux upstream, as we have
just concluded. In other words, the gas deceleration in
the supersonic region is stronger: v 2(y) > v 1(y) at y 
∞. As for the local Mach number, M1(y) < M2(y).
Because of the more significant decrease in the Mach
number in the former case (in the supersonic region),
the SW is attenuated more significantly; hence, the
compression of the flow in the shock layer exerts a
smaller effect on the gas deceleration. Therefore, a
point must exist (y21) where v 1(y21) = v 2(y21). In going
into the subsonic region, Q1 will make a higher contri-
bution to the flow acceleration until y ≥ y21. This is
because a major fraction of heat Q1 is transferred down-
stream via mass velocity and heat conduction. At the
same time, a part of heat Q2 propagates upstream; i.e.,
Q2 is less efficient. At y ≤ y21, the effect of Q1 and Q2 on
the flow parameters is nearly the same and the mass
velocities are asymptotically equalized. Therefore,
v 1(y) > v 2(y) and v 1(–∞) = v 2(–∞) at y  –∞. The
effect of the shape, intensity, and location of the heat
sources on other flow parameters may be analyzed in a
similar way. From the aforesaid, it follows, in particu-
lar, that, when heat is supplied to the supersonic region
(in front of the SW), the wave broadens to a greater
extent than when the same amount of heat is supplied
to the subsonic region (behind the wave).

The formulas derived allow one to study at length
changes in the SW structure that are induced by heat
delivered to the SW front.

APPENDIX

The approximate formula for the velocity (the
approximate solution to Eq. (7)) is given by

(26)
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The shock front width is

(28)

The approximate formula for the SW front displace-
ment has the form

(29)
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where  is calculated by formula (7).

The exact solution to Eq. (21) (weak-wave approxi-
mation) for the exponential integral heat supply (see
(24)) is given by
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where

(31)

For the case of the linear heat supply (see (25)), the
SW velocity calculated through the exact solution for
ψ(z) is expressed through Airy functions Ai(ζ) and
Bi(ζ),

(32)
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(33)

If the integral heat supply is describable by formula

(22) for f(z) = , velocity v(z) is found as the

half-sum of the velocities calculated by (30) and (32)
with a reasonable accuracy.
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Abstract—The problem of calculating a heat flux in a spherical layer is considered. The results are obtained in
terms of the Bhatnagar–Gross–Krook model and the Boltzmann collision integral. A general (independent of
the form of the kinetic equation and the solution method) expression for the heat flux as a function of the energy
accommodation coefficient is derived. The results are compared with the experiment and the analytical results
obtained previously. © 2005 Pleiades Publishing, Inc.
Investigation of heat transfer processes remains a
challenging problem in the kinetic theory of gases. In
particular, measurements of the heat flux from a physi-
cal body are used for gaining a better insight into gas–
surface interaction [1–3]. In the majority of the relevant
studies, the emphasis is on a heat flux from a single
sphere or on heat exchange between coaxial cylinders.
At the same time, nobody, except Lees [4], has centered
due attention on the analysis of a heat flux between two
concentric spheres.

As in [5], here we employ a version of the method
of half-spatial moments. The results are obtained in
terms of the Bhatnagar–Gross–Krook (BGK) model [6]
and Boltzmann collision integral for molecules inter-
acting as elastic hard spheres. The procedure of calcu-
lating all the moments of this integral is described else-
where [7]. General (independent of both the form of the
kinetic equation and the solution method) expressions
relating the heat flux to the energy accommodation
coefficient are presented. The results are compared with
experimental data and the analytical data obtained pre-
viously.

As the unit of length, we take

(1)

where

is the mean free path of gas molecules [8] and κ is the
thermal conductivity of the gas.

Let us consider a gas layer between two concentric
spheres with radii R1 < R2 and constant surface temper-

atures  > . Assume that the temperature drop

l
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-------,=

λ κ
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-----------=
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∆Ts =  –  is sufficiently small that our consider-
ation may be restricted to a linear approximation.

The gas law is stated as [8]

(2)

Here, V is the intrinsic thermal velocity of gas mole-
cules, f is the distribution function, and Jcol is the colli-
sion integral.

By virtue of the linearity condition assumed above,
Eq. (2) can be represented in the form

where 

is the equilibrium (Maxwellian) distribution function;
m is the molecular mass; k is the Boltzmann constant;

C = V ; and T0 and n0 are, respectively, some
temperature and concentration of gas molecules that
are taken to be equilibrium.

Passing to the spherical system of coordinates with
the origin at the center of the spheres and assuming that
function ϕ depends on only r, C, and Cr , we have
from (2)

(3)

where Icol is the linearized collision operator corre-

sponding to Jcol. Derivative  is taken with respect to

the projection alone and does not affect the functions of
the velocity magnitude.

T s
1 T s

2

V ∇ f⋅ Jcol f[ ] .=

f f 0 1 ϕ+( ),=

f 0 n0
m

2πkT0
--------------- 

  3/2

C2–( )exp=

m/2kT0

Cr
∂ϕ
∂r
------

C2 Cr
2–

r
------------------ ∂ϕ

∂Cr

---------+ Icol ϕ[ ] ,=

Cr∂
∂
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As boundary conditions, we use diffuse reflections
of gas molecules from the surfaces of either sphere,

(4)

where 

and  and  are, respectively, the temperature and
concentration of the molecules reflected from the sur-
face of a kth sphere.

Quantities  and  are defined by the requirement
that the bulk motion of the gas be absent,

(5)

and by the way of energy accommodation,

(6)

Here,

(7)

and

(8)

are, respectively, the incoming dimensionless energy
flux due to incident molecules and the outgoing dimen-
sionless energy flux due to the molecules reflected from
the surface of a kth sphere and

is the energy that would be carried away by the mole-

cules that reflect with temperature , i.e., by those
obeying the distribution function

In view of linearity, any of the gas characteristics
can be represented in the form

Hereafter, we mark by the asterisk the values related
to ∆Tr /T0, or, equivalently, to ∆Ts/T0 if the energy
accommodation is complete.

ϕ r Rk= Φr
k ∆nr
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---– 
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---------,+= =
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Let us first consider the internal sphere. From (5),
(7), and (8), we find that

(9)

Similarly,

Substituting these expressions into Eq. (6) yields

(10)

The desired energy flux is defined by the relation-
ship

(11)

On the strength of the energy conservation law and
the linearity of the problem, we may write

(12)

where Q* is a dimensionless constant. Without loss of
generality, it can be set equal to the density of the
energy flux from the surface of the internal sphere per
unit relative temperature difference under the condition
of complete energy accommodation.

On the other hand,

(13)

Comparing Eqs. (12) and (13), we get

Substitution of this expression into Eq. (10) gives

(14)

Consider now the external sphere. Without loss of
generality, the temperature and concentration of the
molecules reflected from it can be viewed as equilib-
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rium; i.e., T0 =  and n0 = . Under this assumption,
we obtain

(15)

Taking into account that

we arrive at

Eventually,

(16)

Comparing Eqs. (14) and (16) yields

Accordingly,

(17)

In the collisionless (ballistic) mode, which sets in
when the distance between the spheres or the radius of
the internal sphere is much less than the molecular free
path, one can evidently neglect a change in the distribu-
tion function in the volume and assume that function ϕ*

is zero in the domain of integration (9) and integrals 
vanish. Therefore, in this approximation,

Accordingly,
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(18)

The above relationship has a general character and
depends neither on the form of the kinetic equation nor
on the solution method.

To calculate Q*, we will take advantage of the gen-
eral idea of the method of half-spatial moments, specif-
ically, representing a solution to Eq. (3) as a sum of
given velocity polynomials.

Note that the distribution function exhibits a discon-
tinuity on the surface of either sphere and also the fact
that any point inside the gas can be assigned three
invariant cones in the velocity space, the boundaries of
these cones being crossed by molecules only when they
collide with each other. Bearing this in mind, we write

where

(19)

and H(x) =  is the Heaviside function.

Coefficients , which depend only on the distance
to the centers of the spheres, are determined from a sys-
tem of the moment equations that can be obtained by
successively multiplying Eq. (3) with ϕ in form (19) by
Hiexp(–C2), C2Hiexp(–C2), CrHiexp(–C2), and
CrC2Hiexp(–C2) and integrating the result over the
velocity space. Omitting here calculations that are sim-
ilar to, but much more tedious than, those presented in
[5, 7], we note that, by virtue of (4), the desired solution
must satisfy the conditions
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The value of ∆nr/n0 is defined by condition (5) (the
absence of mass transfer). Therefore, the first expres-
sion in (20) can be replaced by the equality

(22)

which follows from (5).
Next, it is necessary to take into consideration that

the system of differential equations presented above
has a singularity on the surface of the internal sphere,
which stems from the collapse of the central (i.e., cor-
responding to functions ϕ2 and ϕ3) cones in the velocity
space. Expanding the desired solution in powers of ξ =
r – R1 and including the requirement of the finiteness of
the distribution function, we get four additional condi-
tions,

(23)

Thus, the boundary conditions are specified by (i)
the distribution function for the molecules reflected
from the external sphere (i.e., by the values of functions
ϕ3 and ϕ4 at r = R2), (ii) the distribution function for the
molecules reflected from the internal sphere (i.e., by the
value of ϕ1 at r = R1), and (iii) the requirement that
function ϕ2 be finite at r  R1.

The heat flux from a unit surface of the internal
sphere can be determined as

Figure 1 presents numerical solutions to the system
of equations considered subject to the boundary condi-
tions listed above for R1/R2 = 0.1, 0.5, 0.9, and 0.99 (the
bundles of curves 1, 2, 3, and 4, respectively). At
R1/R2 & 0.01, the heat flux becomes independent of the
ratio between the radii and nearly coincides with the
results obtained in the limit R1/R2  0 (Fig. 2), which
is equivalent to the case of a solitary sphere. Specific
values of the heat flux are listed in the table.

It should be noted that most authors treat experi-
mental data using the Lees method. In this case, the dis-
tribution function is taken in the form

and the system of moment equations is constructed by
using factors 1, C2, Cr , and CrC2. This yields (see,
e.g., [2])

(24)

The disadvantages of such an approach were dis-
cussed, in particular, in [5, 7]. The values of Q* calcu-
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Q*

log R1

2 3 4–1–2

0.4

0.6

1 2 3 4

Fig. 1. Heat flux vs. the radius of the internal sphere for
R1/R2 = (1) 0.1, (2) 0.5, (3) 0.9, and (4) 0.99. The continu-
ous curves correspond to the model of elastic hard spheres;
the dashed curves, to the BGK model of the collision inte-
gral; and the dot-and-dash curves, to the standard Lees
method.

0.2

0 1

Q*

logR12

0.4

0.6

–1–2–3

Fig. 2. Heat flux from a solitary sphere. The symbols are the
results obtained by direct numerical integration [9] in terms
of (s) the BGK collision integral and (d) the model of hard
spheres and (×) by the variational method [11].

0.1

0.1 1

Q/Qth

A
10 100

0.01

Fig. 3. Ratio Q/Qth calculated for R2 = 7R1 and α1 = α2 =
0.3. (h) Data points [10].
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lated by formula (24) are shown by the dash-and-dot
lines in Fig. 1.

As is seen from the table and plots, the results of
solving the kinetic equation by the method proposed
agree with the values calculated in [9, 12] within 2.5%
for both the BGK and Boltzmann collision integrals.
The variational method provides nearly the same order
of accuracy. However, its application to the class of
problems similar to that considered in this paper is
restricted to model equations only. The error involved
in the standard Lees method is 10% or higher.

Figure 3 plots ratio Q/Qth calculated for R2 = 7R1 and
α1 = α2 = 0.3 (i.e., under the same conditions as those
used to measure the heat flux through a helium layer

Values of Q* for a solitary sphere

k = 
BGK model Molecules as hard 

spheres

1 2 3 4

0.05 0.10342 0.10334 0.10494 0.1064

0.1 0.18247 0.18125 0.18689 0.1885

0.2 0.28891 0.28416 0.30055 0.2996

0.4 0.39594 0.38751 0.41684 0.4095

0.6 0.44607 0.43712 0.46986 0.4595

1 0.49175 0.48395 0.51494 0.5032

2 0.52810 0.52331 0.54561 0.5361

4 0.54624 0.54384 0.55720 0.5511

6 0.55220 0.55065 0.56005 0.5559

10 0.55694 0.55593 0.56186 0.5593

20 0.56051 0.55954 0.56298 0.5616

Note: The first and the third columns list the results calculated by
the method of moments that is described in this paper, the
second column shows the results obtained by solving the
system of integral equations that follows from (3) [12], and
the fourth column presents the results of direct numerical
integration of the kinetic equation [9].

15
8R1
---------
bounded by glass spheres [11]). Here,

and

is the heat flux from a unit surface of the internal sphere
at a unit temperature drop between the surfaces that is
calculated in the thermodynamic limit.
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Abstract—A study is made of an electromagnetic instability of a homogeneous plasma with an arbitrary veloc-
ity distribution in interstellar space on long time scales typical of gas-dust clouds without a significant magnetic
field. It is shown that such instabilities develop on time scales of a few months or years and that it is only a
narrow class of nearly spherical solutions that conforms to the stability requirements. © 2005 Pleiades Publish-
ing, Inc.
INTRODUCTION

The problem of stability of an inhomogeneous
plasma is important in the physics of interstellar and
interplanetary media, especially because not all particle
velocity distributions can occur in a natural (even colli-
sionless) plasma. In fact, unstable distributions should
rapidly rearrange themselves into stable ones; this cir-
cumstance should be taken into account in constructing
theoretical models of the evolution of a medium [1, 2].
An example is the isotropization of an interstellar
medium in which two particle flows meet [3]. The
authors of [3] emphasized, however, the particular
character of this situation—the model of two overlap-
ping (interpenetrating) particle flows is not the only one
possible and many other anisotropic models may be
constructed as well. In addition, because of the huge
spatiotemporal scales of plasma objects in space, the
basic accepted views about the theory of plasma stabil-
ity, which is now better suited for laboratory applica-
tions, are already in need of revision. As will be seen
below, the conclusions derived here for space plasmas
are somewhat unusual; in particular, a particle velocity
distribution centered in a conventional manner remains
stable only when the second harmonic in the expansion
of the phase density in spherical functions vanishes
(rather than satisfies a certain inequality). Physically,
this indicates that the velocity diagram becomes isotro-
pic on time scales far shorter than the general evolution-
ary scales.

Existing theories are usually restricted to the so-
called potential plasma instabilities [4, 5], i.e., the per-
turbations are treated only in terms of their electrostatic
field. It is known, however, that there is the Weibel elec-
tromagnetic instability [6], which is rarely mentioned
in the literature and which involves a perturbed mag-
netic field. However, the growth rate of this instability
is substantially slower than that of the potential insta-
bilities. This is why the electromagnetic instability is
1063-7842/05/5005- $26.00 0595
almost never taken into account in describing ground-
based experiments: under terrestrial conditions, this
instability does not have time to develop in the course
of experiment. In astrophysics, the situation is differ-
ent: the relevant time scales are relatively long (a matter
of years or more). At the same time, observational data
and general considerations are insufficient to choose
between different realistic models [7, 8]; therefore, sta-
bility criteria have to be invoked.

It should be stressed that electromagnetic instability
should also manifest itself at moderate (nonrelativistic)
particle velocities; in this case, however, the wavenum-
bers k of the instability are small and its growth rate is
slow. This can be readily demonstrated, e.g., by the ele-
mentary example presented in [5]. The Weibel instabil-
ity of two discrete particle flows with the same density
n0 and with the velocities (0, 0, –V0) and (0, 0, V0) (the
wave vector being oriented along the x axis) is
described by the dispersion relation

(1)

where

(2)

is the Langmuir frequency. Here, e and m are the charge
and mass of a particle of a given species, c is the speed
of light, and ω is the oscillation frequency. We write the
solution to dispersion relation (1) in the form

c2k2
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---------- 1–

2ωp
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--------- 1
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ω2
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+ 0,=
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and, in the limit of small wavenumbers k, obtain

(3)

which agrees with the conclusion obtained earlier in [5]
that the system is unstable.

Note that asymptotic formula (3) does not contain
the speed of light. It will be seen later that this is a com-
mon feature of a wide class of nonrelativistic velocity
distributions: although the electromagnetic effects are
formally relativistic, the parameter c drops out in the
limit k  0. It is another matter, however, that, in the
example at hand, the Weibel instability occurs over the
entire range of k values and that, in the case of smoother
velocity distributions, there is a critical k value, which
approaches zero as the ratio of the mean velocity to the
speed of light decreases. The critical value of k will be
estimated at the end of the paper.

In order for the analysis to be more convenient from
the formal point of view and to comply better with the
existing literature on the subject [9], we begin with a
model of N discrete beams, which can be generalized to
a model with a continuous velocity distribution in a
trivial way. First of all, keeping in mind further possible
generalization, we nevertheless consider arbitrary par-
ticle velocities and then restrict ourselves to the limit
V ! c in order to single out and investigate the electro-
magnetic instability.

BASIC EQUATIONS

We adopt a model of a homogeneous plasma con-
sisting of the particle flows designated as i = 1, 2, …, N,
with the corresponding flow velocity vectors Vi(ui, v i,
wi), spatial densities ni particle masses mi, and particle
charges ei. The model also assumes a background with
a space charge density of opposite sign:

We consider the propagation of a wave in the linear
approximation, assuming that the z axis points along
the wave vector k. In this case, all of the linearized per-
turbed quantities contain the factor exp(λt + ikz), where
t is the time and λ is the growth rate.

If there were no perturbation, each particle would
move by inertia,

(4)

where the vector r0i(x0i, y0i, z0i) refers to a certain initial
position of a particle.

In fact, we must take into account small perturba-
tions of both the electric (E) and magnetic (H) fields. In
order to obtain an evolutionary equation for the velocity
vector of an individual particle, we first write the famil-

ω ikV0,≈

d niei.
i

∑–=

r r0i Vit,+=
iar equation for the particle momentum

(5)

and then take into account the algebraic relationships
between the velocity and the momentum,

(6)

Following what was said above, we can single out
the dependence on time and coordinates in the expres-
sions for E and H:

Linearizing Eq. (5) yields

(7)

Here and below, the symbol δ denotes the perturbation
of a given quantity.

Note, however, that the z coordinate on the right-
hand side of Eqs. (7) refers to the instantaneous posi-
tion of a particle and thus should be determined from
Eq. (4); in this case, the perturbation gives rise to only
a small (second-order) correction to Eq. (4). With these
remarks in mind, we integrate Eq. (7) from the infinite
past to find

(8)

On the right-hand side of this equation, the per-
turbed momentum is expressed in terms of the z coordi-
nate the particle would have in the absence of perturba-
tion. Since we are interested exclusively in unstable
perturbations, we set Reλ > 0. According to relation-
ships (6), we obtain the following equation for the
velocity perturbation:

(9)
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We again integrate over t and use for the moment the
expression for the instantaneous z coordinate. As a
result, according to Eq. (4), we get

(10)

The total current at each point should be found from
the relationship

The corresponding inverse relationship has the form

The current J is the sum of all the contributions
einiVi from each particle in each plasma flow; of course,
the contributions should also be summed over the sub-
script i. In the expansion of the quantity einiViexp(–ikz),
the zero-order terms entirely cancel each other, reflect-
ing the fact that, in an unperturbed state, there are no
currents. Accordingly, we have

or

(11)

This way of deriving the perturbed current is advan-
tageous in that it clearly illustrates how the factor L =
1/(λ + ikw) arises in this expression. The sought-for
current can also be obtained by linearizing the hydrody-
namic equations for each of the flows; in this way, we
again arrive as expected at the above expression (11) for
δj. Note that, if the quantities k and λ are assumed to be
of the same order of magnitude, then the generated cur-
rent is inversely proportional to k.

Formula (11) should be used in combination with
Maxwell’s equations. However, in the case at hand, we
have Hz = 0. Therefore, in terms of the wave vector

δri

ei 1
Vi

2

c2
------–

mi λ ikwi+( )2
--------------------------------eλ t ikz+=

× e
Vi h×

c
---------------

Vi e⋅( )Vi

c2
-----------------------–+ .

J jeλ t ikz+ .=

j
ke λ t–

2π
----------- Je ikz– z.d

0

2π/k

∫=

δj j
ke λ t–

2π
----------- ei δVi ikViδz–( )e ikz– zd

0

2π/k

∫
i 1=

N

∑= =

δj ni

ei
2

mi

----- e
Vi h×

c
---------------

Vi e⋅( )Vi

c2
-----------------------–+ L





i 1=

N

∑=

– ikVi εz

Vi h×( )z

c
---------------------

wi Vi e⋅( )
c2

-----------------------–+ L2





× 1
Vi

2

c2
------– Reλ 0>( ).
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
k(0, 0, k), Maxwell’s equations become

(12)

Following the scheme of analysis adopted here, we
consider the long-wavelength limit: k  0. Let the
quantities k and λ be of the same order of smallness.
Note that the generated current is generally inversely
proportional to k. Consequently, in order to satisfy
Eqs. (12), the relationship between k and λ should be
chosen in such a way that, when the vector h from the
first of Eqs. (12) is substituted into relationship (11),
the right-hand side of the latter, i.e.,

(13)

where

becomes a null vector (to within relatively small correc-
tions).

Recall that, at this step of the analysis, we are ignor-
ing a specific relativistic correction—the last terms in
the expression for Ri. We also restrict ourselves to a cer-
tain special class of velocity distributions. Namely, we
assume that all the particles are of the same species and
that the velocity distribution (i) possesses a rotational

symmetry, f(u, v, w) = (ρ, w) (ρ = ), and
(ii) is symmetric with respect to the equatorial plane,
f(u, v, –w) = f(u, v, w).

In the above specific formulation of the problem, it
is preferable to identify the z axis with the symmetry
axis of the velocity diagram; in this case, the wave vec-
tor k will be in an inclined position. Without loss of
generality, the plane that passes through the symmetry
axis and contains the wave vector can be assumed to be
the xz plane. Accordingly, the wave vector has the com-
ponents (ksinσ, 0, kcosσ), where σ is the angle
between the wave vector and the symmetry axis. In for-
mula (13), we switch from summation to integration
(for one particle species) and consider the components
of the expression obtained. All terms in the y compo-
nent of this expression contain the quantity εy, so we
divide by this quantity to obtain

(14)

For the quantities εx and εz, we arrive at the follow-
ing set of two coupled equations:

(15)

λ
c
---h i e k×( ),

λ
c
---e 4π

c
------δj i h k×( )+ + 0.= =

niei
2

mi

---------
Ri

λ ikVi+
-------------------- iVi

kRi

λ ikVi+( )2
---------------------------– ,

i 1=

N

∑

Ri e i
λ
--- Vi e k×( )×( )

Vi e⋅( )Vi

c2
-----------------------,–+=

f̃ u2 v 2+

1 k2v 2

λ ik u σsin w σcos+( )+[ ] 2
----------------------------------------------------------------–

 
 
 

f ud vd wd∫∫∫ 0=

εy 0≠( ).

Aεx Bεz+ 0, Bεx Cεz+ 0,= =



598 BARANOV
where

ANALYSIS OF THE BASIC EQUATIONS

Note that, according to the above conditions (i) and
(ii), changing the sign of the coordinates u, v, and w
leaves the function f unchanged but changes the quanti-
ties A, B, and C into their complex conjugates; i.e.,
these quantities are real for real values of λ. As λ 
∞, the left-hand side of Eq. (14) approaches its limiting
value

where ν is the spatial density of the particles of a given
species. Analogously, in the same limit, we have A =
C = ν and AC – B2 = ν2 > 0. By continuity, Eq. (14) and
the equation AC – B2 = 0 necessarily have the roots λ >
0, which imply instability, provided that the left-hand
side of Eq. (14) and the expression AC – B2 are negative
for small λ values. These are sufficient conditions for
the plasma instability. In order to analyze them in more
detail, we first turn to Eq. (14). To make the analysis
more illustrative, we begin by considering the class of
velocity distributions on a unit sphere. By virtue of the
above symmetry conditions, the expansion of the sur-
face density F on this sphere in spherical functions has
the form

(16)

where the sum is taken only over even values of n. Here
and below, we use the ordinary spherical coordinates:
θ is the angle with respect to the w axis, and µ is the azi-
muthal angle in the equatorial plane (u, v). It is conve-

A
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∑=
nient to rotate the coordinate system so as to pass over
to the new velocity components,

(17)

Applying transformation of rotation (17) to expan-
sion (16) reduces to using the familiar theorem of sum-
mation of the spherical functions. As a result, the left-
hand side of Eq. (14) becomes

(18)

where θ1 and µ1 are again the coordinates on the sphere,
but with respect to the new polar axis w1, and the Leg-
endre associated polynomials are abbreviated in the

conventional notation .

Integration over µ1 on the right-hand side of expres-
sion (18) is a simple matter; the result is that there
remain only the terms with ν = 0 and 2:

(19)

We are interested in the form of expression (19) in
the limit λ  0. Integrating by parts yields
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In the limit λ = 0, we obtain

Using the recurrence formula presented in [10], we
find

(the number n is always assumed to be even). Conse-
quently, we arrive at the integral

Other similar integrals on the right-hand side of
expression (19) reduce to this one and, hence, in the
limit λ  0, are equal to

We then get

and thus are left with the problem of calculating the
auxiliary integral. This is done by integrating by parts,

so we obtain

As a result, we have

(20)

A sufficient condition for the function M to be neg-
ative is derived by integrating the right-hand side of
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expression (20) with a weighting factor of sin2σ:

so that

(21)

By virtue of formula (21), the function M(σ) for c2 <
0 cannot be positive everywhere. There always exists a
σ value such that M(σ) < 0; this implies instability.
Hence, the sufficient instability condition is the nega-
tiveness of the corresponding coefficient in the expan-
sion of the phase density in spherical functions:

(22)

Let us now turn to the expression AC – B2. It is
readily verified that the following equality (which is a
result of the above transformation of rotation of the
coordinate system) is satisfied:

(23)

where the expressions

(24)

derive from the explicit expressions for A, B, and C for
the above class of velocity distributions on a unit
sphere. In particular, we have

Substituting the expressions for u1, w1, and F into
this relationship, we arrive at an expression that coin-
cides with expression (18) to within the replacement of
sin2µ1 by cos2µ1. We then simply have to change the
sign of the last term on the right-hand side of expres-
sion (19) to obtain
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The quantity C1 is described by the expression

(26)

which is valid to within small terms on the order of λ3

and higher. Finally, we get

The auxiliary integral can be taken by parts at
τ = iλ/k:

Hence, we have

(27)

Expressions (25)–(27) are sufficient to determine

the leading-order term of A1C1 – , which is propor-
tional to λ2. Note that the above expression for B1 is not
needed for further analysis and is given only to furnish
a more complete picture.

Let us estimate the mean value of the product A1C1
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(25) and (26) and on the recurrence formula (2n +
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where

The orthogonality property of the Legendre associ-
ated polynomials yields

(28)

The sought-for estimate is obtained by estimating
the mixed products αnαn + 2 with n ≥ 2 by means of the

obvious inequality 2αnαn + 2 ≤  + . This gives

(29)

We always have c0 > 0 and α0 > 0. If α2 < 0 and c2 >
0, then the right-hand side of inequality (29) is negative
and the above examination shows that, at a certain σ
value, the inequality A1C1 < 0, and especially the ine-

quality A1C1 –  < 0, should hold. This indicates that
the sufficient instability condition is given by the ine-
quality opposite to inequality (22). Accordingly, the
necessary stability condition is, on the whole, given by
the equality

(30)

GENERAL REMARKS

Up to this point, we have used an example of a
velocity distribution on a unit sphere. Now, the task is
to establish the extent to which the results obtained
apply to general velocity distributions.

For λ = 0, the contribution of a particle with the
velocity vector (ξu, ξv, ξw) to the left-hand side of
Eq. (14) is the same as that of a particle with the veloc-
ity vector (u, v, w) because the limiting transitions
λ  0 and λ/ξ  0 are equivalent. We thus can
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immediately write the generalization of instability con-
dition (22):

(31)

The situation with the expansions of A, B, and C in
powers of λ is more complicated. The replacement of
(u, v, w) by (ξu, ξv, ξw) generates the replacement
A(λ)  A(λ/ξ) (and the same replacements for B and
C); hence, the series expansion

becomes

Consequently, in formulas (25)–(27), the expres-
sions for the coefficients cn of the corresponding pow-
ers of λ will be different. In accordance with what was
said above, the coefficients in formulas (20) and (25)
are given by the expressions

(32)

As for the formula for C1, it contains the factor λ2;
therefore, the coefficients cn have some other form:

(33)

Finally, formula (27) for B1 contains the factor λ, so
the coefficients on the right-hand side of this formula
read

(34)

For some types of velocity distributions, the insta-
bility condition supplementary to condition (31) can be
constructed in a relatively simple way.

(1) Distributions in which the angular variables are
separated from V,

(35)

Substituting distribution (35) into expressions (32)–
(34) yields the integrals
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with different coefficients, which, for all three expres-
sions, are independent of n. Consequently, the expres-
sions for A1 and C1 will differ from those obtained for a
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velocity distribution on a unit sphere only in these con-
stant coefficients; it is obvious that they will not change
the final results. In complete analogy with condition
(30), a necessary condition for stability is obtained by
equating integrals (36) with n = 2 to zero. In terms of
the initial distribution function f, this indicates that

(37)

(2) Distributions without higher harmonics,

For such distributions, we naturally have cn =  =

 for n ≥ 4 and there remain only the first terms in
expressions (25) and (26),

For certain values of σ, the product A1C1 can take on
negative values, except when (a) c2 = 0 and (b)  =

2 , c2 < 0.

In case (b), instability condition (31) is certainly sat-
isfied because its left-hand side coincides with c2 to
within a positive factor. Stability is possible only in
case (a), namely, for c2 = 0, which coincides with con-
dition (37). Moreover, even when c2 = 0, the quantity

A1C1 –  will be negative if  ≠ 0. Hence, for distri-
butions of type 2, the necessary stability conditions
have the form c2 =  = 0 or, equivalently,

(38)

(3) Nearly spherical distributions

with κ  0. All the coefficients cn, , and  with
n ≥ 2 are proportional to κ. For κ  0, the leading-

order term in the expression for A1C1 –  is

This term, which is first-order in κ, is of variable
sign for c2 ≠ 0 and is identically zero for c2 = 0. By anal-
ogy with distributions of the previous type, we con-
clude that equalities (38) constitute necessary condi-
tions for stability in a certain range 0 < κ < κ0.

Thus, the requirement that there be no electromag-
netic instability severely restricts the class of admissi-
ble velocity distributions. It has been shown that, under
certain additional assumptions, the stability condition
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ĉn

A1

4πc2

5
----------- 2σ, C1cos

4πλ2

k2
------------ c0 2c2P2 σcos( )–[ ] .= =

c2

c0

B1
2 ĉ2
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should have the form of an equality (a conclusion
somewhat unusual for the relevant problems); specifi-
cally, the second zonal harmonic defined in one way or
another should vanish. In this respect, the electromag-
netic instability is stronger than the electrostatic one,
because the latter manifests itself when the velocity dis-
tribution deviates substantially from being spherically
symmetric: it may cause a separation of two beams, and
so on.

Notably, from energy considerations, it follows in
advance that a spherically symmetric distribution (such
that ∂f/∂V < 0) is completely stable: according to the
Liouville theorem, any perturbation in this case
increases the kinetic energy of the system [11].

Similar results were obtained in a number of earlier
papers. The result that most closely corresponds to
those presented above was obtained in [12] for an ellip-
soidal velocity distribution. Although the dispersion
relations, as well as the conclusions about the instabil-
ity, are the same as in the present paper, the model of
[12] is more specific in character because it refers to a
particular spheroidal distribution. In [13], a somewhat
different model was considered, namely, a superposi-
tion of two Gaussian distributions. That model, too,
showed the onset of instability for a sufficiently strong
total anisotropy of the particle velocities. Those two
papers concentrated on technical applications and paid
little attention to astrophysical aspects of the plasma
behavior. This is why, in my recent work [14], a study
was made of the ultrarelativistic limit (a case opposite
to that considered here) on the basis of a model of a tri-
axial ellipsoidal velocity distribution. Such a distribu-
tion was also found to be unstable, except, of course,
for the particular case of a spherical distribution.

The linear approximation used above to describe the
electromagnetic instability is valid only for sufficiently
long waves. The critical wavelength can be estimated
from dimensionality considerations, as is quite clear
from simple case (1), in which it was in fact assumed
that

(39)

where the Langmuir frequency ωp is defined by formula
(2). Thus, for electron densities of about ne = 0.1 cm–3,
which are more or less typical of interstellar media
[15], formula (39) gives a critical wavelength of λ* ~
2π/k ~ 100 km. So, any of the characteristic spatial
scales in interstellar space is certainly far longer than
λ* and the approximation in question is valid. As for
the instability growth rate, it is on the order of the time
required for an average particle to traverse the distance
equal to the wavelength. As a result, the instability
develops in certain astrophysical situations, e.g., at dis-
tances of 10–4 pc or less and on fairly short time scales
(about half a month).

Note that, here, the particle velocities were always
assumed to be nonrelativistic. In multicomponent sys-

k ! 
ωP

c
------,
tems, in which the particle velocities can differ by
orders of magnitude, there also may be some additional
phenomena, one reason being that charge transfer by
cosmic rays may sometimes be significant [16].

Finally, it should again be emphasized that taking
into account the electromagnetic instability severely
restricts the choice of models for describing anisotropic
velocity distributions in interstellar space.
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Abstract—The European Union is creating strict standards for air and water pollution and waste treatment and
implementing aggressive regulations. Compliance with these regulations is impossible without the develop-
ment of new depollution processes involving plasma or laser technology. Time is one of the major problems in
monitoring pollutants with the use of the time-resolution laser-induced breakdown spectroscopy technique,
which can perform online analysis without sampling with a high level sensitivity for all the species of the Peri-
odic Table. Plasma-enhanced desorption from fly ashes or polluted soils associated with a mass spectrometer
or an optical emission spectrometer allows the monitoring of volatile organic compounds (VOCs) and orga-
nochlorine species in a few seconds. In the last DBD point, we present the treatment of VOCs in air by the
plasma technique in order to destroy or trap PAH molecules. © 2005 Pleiades Publishing, Inc.
1 INTRODUCTION

Pollution is the contamination of the environment as
a result of human activities (combustion, mineral
extraction, chemical plants, energy production, etc.).

Each year in the European Union, we throw away
1.3 billion tons of waste, some 40 million tons of it haz-
ardous. Add to this total a further 700 million tons of
agricultural waste, and it is clear that treating and dis-
posing of all this material, without harming the envi-
ronment becomes a major headache. Between 1990 and
1995, the amount of waste generated in Europe
increased by 10%, according to the Organization for
Economic Cooperation and Development (OECD).
Most of what is thrown away is either burned in incin-
erators or dumped into landfill sites (67%). By 2020,
the OECD estimates that it could be generating 45%
more waste than we did in 1995.

The first step for the reduction of the pollutant emis-
sion and waste is their identification and characteriza-
tion by fast analytical techniques. European Union is
acting on air, water pollution and waste treatment,
implementing aggressive regulations. The compliance
with these regulations is impossible without the devel-
opment of new depollution techniques.

Therefore the second step must be precisely the
development of such techniques based on plasma sci-
ence.

For the first step in our laboratory we have devel-
oped two techniques for the online analysis of gases:

1 This article was submitted by the authors in English.
1063-7842/05/5005- $26.00 0603
(1) (TRELIBS) Time-resolution laser-induced
breakdown spectroscopy allows identification by
atomic emission of the elements resulting from high
power laser pulse on gases, liquids, powders, or sur-
faces of materials.

(2) (MS) Mass spectrometry on gases desorbed
from surfaces or powders, like fly ashes produced from
municipal solid wastes.

For a second step we have developed thermal
plasma techniques for the vitrification of fly ashes pro-
duced from the municipal solid wastes and DBD dis-
charges for the treatment of (VOCs).

In Section 2 is present the European legislation for
waste treatment. Section 3 is devoted to different types
of online pollutant analysis (TRELIBS and nonequilib-
rium plasma desorption coupled with mass spectrome-
try). The industrial treatment of waste by plasma tech-
niques and DBD processes for VOC elimination from
gases are presented in Section 4.

1. EUROPEAN LEGISLATION FOR WASTE 
TREATMENT

The European Union’s Sixth Environment Action
Program identifies waste prevention and management
as one of its top four priorities. It wants to reduce the
quantity of waste going to “final disposal” by 20% from
2000 to 2010 and by 50% by 2050, with special empha-
sis on cutting hazardous waste.
© 2005 Pleiades Publishing, Inc.



 

604

        

AMOUROUX 

 

et al

 

.

                                               
Table 1.  Air emission limit values

Pollutants Air emission limit values

Total dust 10 mg/m3 (#)

Gaseous and vaporous organic substances, expressed as total organic carbon 10 mg/m3 (#)

Hydrogen chloride (HCl) 10 mg/m3 (#)

Hydrogen fluoride (HF) 1 mg/m3 (#)

Sulphur dioxide (SO2) 50 mg/m3 (#)

Nitrogen monoxide (NO) and nitrogen dioxide (NO2) for existing incineration
plants with a nominal capacity exceeding 6 t/h or new incineration plants

200 mg/m3 (*) (#)

Nitrogen monoxide (NO) and nitrogen dioxide (NO2) for existing incineration 
plants with a nominal capacity of 6 t/h or less

400 mg/m3 (*) (#)

Cd + Tl Total 0.05 mg/m3 (+)

Hg 0.05 mg/m3 (+)

Sb + As + Pb + Cr + Co + Cu + Mn + Ni + V Total 0.5 mg/m3 (+)

Dioxins and furans 0.1 ng/m3 ($)

Note: (#) Daily average values; (+) average over a period of 30 min–8 h; ($) average over a period of 6–8 h; and (*) until January 1, 2007,
the emission limit value for NOx (does not apply to plants, only incinerating hazardous waste).
The European Union’s approach to waste manage-
ment is based on three principles:

1.1. Waste prevention: This is a key factor in any
waste management strategy. If we can reduce the
amount of waste generated in the first place and reduce
its hazardousness by reducing the presence of danger-
ous substances in products, then disposing of it will
automatically become simpler. Waste prevention is
closely linked with improving manufacturing methods
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Fig. 1. Waste products of human activities.
and influencing consumers to demand greener products
and less packaging.

1.2. Recycling and reuse: If waste cannot be pre-
vented, as many of the materials as possible should be
recovered, preferably by recycling. The European
Commission has defined several specific “waste
streams” for priority attention, the aim being to reduce
their overall environmental impact. This includes pack-
aging waste, used-up vehicles, batteries, and electrical
and electronic waste. EU directives now require mem-
ber states to introduce legislation on waste collection,
reuse, recycling, and disposal of these waste streams.
Several EU countries are already managing to recycle
over 50% of packaging waste.

1.3. Improving final disposal and monitoring:
Where possible, waste that cannot be recycled or reused
should be safely incinerated, with landfills only used as
a last resort. Both these methods need close monitoring
because of their potential for causing severe environ-
mental damage. The European Union has recently
approved a directive that sets strict guidelines for land-
fill management. It bans certain types of waste, such as
used tires, and sets targets for reducing quantities of
biodegradable rubbish. Another recent directive lays
down tough limits on emission levels from incinerators.
The Union also wants to reduce emissions of dioxins
and acid gases, such as nitrogen oxides (NOx), sulfur
dioxides (SO2), and hydrogen chlorides (HCl), which
can be harmful to human health.
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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Fig. 2. Experimental setup of TRELIBS analysis.
A recent directive (Directive 2000/76/EC) on the
incineration of waste that was published on December
28, 2000, lays down tough limits on emission levels
from incinerators. Although the volume of waste incin-
eration is predicted to increase across the European
Union in the near future, this directive will lead to sig-
nificant reductions in emissions of several key pollut-
ants. Considerable reductions will be achieved for
acidic gases such as nitrogen oxides, sulfur dioxide,
and hydrogen chloride as well as for heavy metals: Cd
from 16 t to 1 t in 2005 and dioxins and furans from an
annual 2400 g in 1995 to only 10 g.

This directive states the conditions of control and
monitoring of emissions and defines the periodicity of
the measurements.

The Table 1 defines the air-emission limit values.
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molecules 
2. ANALYSIS OF POLLUTANT 
EMISSION

Our purpose is to apply online diagnostics for mon-
itoring of emission gases from incineration of waste
materials. The requirements are rapid responses and
high levels of sensitivity. TRELIBS analysis and
plasma-enhanced desorption of gases coupled with MS
analysis are new methods that meet these requirements.
2.1. TRELIBS Online Analysis [1–4]

The goal of this technique is to identify, using
atomic emission, the elements in any kind of material,
gas, powder, or material surface.

For this purpose, we use a YAG laser (λ = 1064 nm)
with an energy beam between 25 to 160 mJ per pulse
with a frequency of 50 Hz (Fig. 2). At the focus of the
lens, the laser beam pulse produces plasma with a dura-
tion of 10 ms and a size of 6 mm in length and 3 mm in
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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height. In this plasma ellipsoid, a temperature increase
of 20 000 K and, after 500 ns of bremsstrahlung, the
atomic lines for a period of a few microseconds give us
the possibility to, using an optical fiber, a spectrometer,
and an OMA, measure the light intensity for each wave-
length while a software program gives us the nature of
the elements and their concentration.

The detection limit, the time evolution, and the sto-
ichiometric composition of the molecules have been
found for fluorine, chlorine, phosphorus, and sulfur
(Figs. 3–5).

The measurement lasts for about 10 µs in a volume
of a few mm3 of gas, and the technique permits a sensi-
tivity of 10–6 g/g. With this technique, we can also
determine the chemical composition of the melted fly
ashes by identifying elements in the bulk (Si, Ca, Mg,
or Al) or heavy metals trapped in the oxides of the
matrix (Ti, Cr, Ni, Mn, Zn, Fe, or Pb).

The main advantage of this method is that, without
any long and complex chemical preparation of the sam-
ples, it can provide direct analysis of solids. The vol-
ume needed for the analysis is a few mm3 of gas or a
surface of 100 µm diameter for liquids or solids. Only
optical access to the sample is required, and the risk of
sample contamination is negligible.

This method allows detection and identification of
the main heteroatoms (fluorine, chlorine, sulfur, etc.)
and atomic elements such as Si, Ca, Al, Cr, Mg, Pb, or
Fe in fly ash at very low concentrations (10–6 g/g).
Another advantage of this method is the use of an opti-
cal fiber to carry and treat the signal far from the loca-
tion of the measurements.
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
2.2. Nonequilibrium Plasma Desorption Coupled 
with Mass Spectrometry for Fly Ash Analysis 

of a Trapped VOC [5–8]

The organic compounds analysis of powders
trapped in fly ash generally need desorption methods
such as liquid/solider extraction by Sohxlet and GC/MS
analysis. This technique requires a long analysis time,
which is why we have developed a low pressure plasma
desorption process for polluted powders with online
mass spectrometry analysis of the desorbed organic
compounds (VOCs and organochlorine species). The
time from sampling of powders to MS analysis of the
organocompounds trapped in the powders is only few
seconds.
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Fig. 9. Chlorinated mass balance of the desorbed species
(Cl + HCl) for different treatments. Experimental condi-
tions: mass of fly ash 2 g; Ar 300 sccm, H2 = 24 sccm, O2 =
10 sccm; Pw = 100 W; P = 1 mbar.
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Table 2.  Inventory of chemical species qualified by Soxhlet extraction and GC/MS analysis

Alkanes: 
C10 to C31

Alkyl PAHs

Polychlorobenzenes (2, 3, 4, 5 Cl) Methylnaphtalene

Dichlorotetracycloheptane C7H6Cl2 Ethylnaphtalene

Ethylmethylbenzene Di/tri-methylnaphtalene

Benzaldehyde (C7H6O) Methylphenanthrene

Biphenyl (C12H10) Alkyl phenols

Dimethylbiphenyl (C14H14) Phosphoric compounds

Sulfur S8 (256) Triethylene phosphoric acid C6H15O4P

Phenol C15H24O, C16H26O Bromic compounds

PAHs Terbutylbromomethylphenol (C15H23OBr)

Naphtalene Sulphur compounds

Acenaphtylene Ethylphenylthiopentanone (C3H18OS)

Acenaphtene Acethylthienylbutanone (C10H12O2S)

Anthracene/phenanthrene Sulfonylbenzene (C12H10O2S)

Fluoranthene

Pyrene Chrysene/Benzo(a)anthracene Aromatic compounds

Benzo(b)fluoranthene Methylphenol

Benzo(k)fluoranthene Ethanolphenoxy (C8H10O2)

Benzo(a)pyrene Methanonebiphenyl (C13H10O)

Benzo(ghi)perylene/Indeno(1,2,3-cd) pyrene
This experimental technique is constituted by a flu-
idized bed in a quartz tube (0.04 m diameter and 0.3 m
length) with a gas injection (argon/H2/O2) at the bottom
and a connection with the vacuum system at the top.
An RF generator at 13.56 MHz produces a nonequi-
librium plasma in the fluidized bed (Fig. 6) of the ash
powder. The OES emission allows the measurement of
the vibrational and rotational temperatures of the
100
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Fig. 10. Chromatogram of soluble organic fraction of industrial fly ash.
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plasma. Analysis of the desorbed organic species is per-
formed directly by a mass spectroscopy quadripole
connected by a capillary tube to the reactor.

The use of a nonequilibrium plasma for fly ash treat-
ment provides a specific reactivity where electron
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Line surfaces ×103
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Fig. 13. Competition between the desorption of metallic
oxides and metallic chlorides (example of Pb and Cr).
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Fig. 11. Experimental setup for fly ash vitrification by ther-
mal plasma.
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impact is the initiation step of the overall reaction with-
out any thermal energy requirements.

The main advantages of this technique are the detec-
tion and the monitoring of the chlorine, the organochlo-
rine molecules, and the alkane compounds trapped in
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the porous structure of the matrix. This process lasts for
a few seconds. Depending on gas composition (Figs. 7–
9), desorption of chlorine or chlorine acid is observed.
Indeed, when pure argon is used, chlorine is desorbed
preferentially. In the case of Ar–H2 plasma, chlorine
acid is the desorbed species, chlorine does not react
with benzene molecules, and so the chlorobenzene
decreases. Moreover, this technique indicates the pro-
duction of the COCl2 phosgene, which is easily synthe-
sized by the reaction between CO and chlorine atoms
from chlorinated metals.

2.3. Soxhlet Extraction and GC/MS Analysis

This technique uses dichloromethane for liquid
extraction of organic molecules trapped in the porous
structure of ash powders. The extraction requires 24 h,
while concentration of the solvent and its analysis need
a total of 2 h (Fig. 10). Table 2 gives a list of the main
species analyzed by GC/MS. As this technique is very
complex and time consuming, it is impossible to apply
it in online control of an industrial process. The GC/MS
analyses of the 75 dioxins (PCDD isomers) and the 135
furans (PCDF isomers) done by the team M.F. Gonnord
showed the concentration in ng/g and the nature of the
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Fig. 16. Mass balance of hydrocarbons from CH3CHO air
treated in a DBD. N2, 20% O2, 1.5% acetaldehyde, D =
1 l/min, d = 6 mm, Upk = 10 kV.
isomers of PCDD and PCDF that have been identified.
The European regulations of these compounds
(0.1 ng/N m3) require a very long analysis procedure
and, consequently, are very expensive.

3. PLASMA PROCESSES FOR INDUSTRIAL 
TREATMENT OF WASTE MATERIALS 

AND POLLUTANTS

The two methods that have been developed in the
laboratory and used in industry are plasma vitrification
of fly ashes and VOC elimination by DBD plasma pro-
cess.

3.1. Plasma Vitrification for Ash Powders [9–17]

Arc plasma or RF plasma (Fig. 11) are used for ash
powder treatment in order to reduce the volume and to
produce a melted material that resembles slag.

Thermal plasma induces heating of the fly ashes,
and melting of the matrix creating a slag. The result is
the evaporation of volatile oxides or chlorines and
heavy metals (Figs. 12 and 13) trapped in the melted
slag (aluminosilicate matrix). The efficiency of the pro-
cess depends on the fusion temperature. In order to
reduce the fusion temperature of the slag, calcosodic
materials are added. The evaporation depends on the
plasma gas composition, and the competition between
oxygen and hydrogen modifies the complex equilib-
rium composition as predicted by complex chemical
equilibrium calculation.

3.2. Plasma Depollution by DBD Process 
for VOCs in Gas Flow [18–23]

The DBD discharge is a high speed electrical break-
down between a high voltage electrode and a ceramic
grounded material. The gas is blown through the gap of
the two electrodes, and an electrical discharge of a few
nanoseconds (50–100 ns) is produced. The energy con-
tent of a few nanocoulombs leads to dissociation of the
main molecules of the gas by electron impact and the
formation of radicals from the VOC.
TECHNICAL PHYSICS      Vol. 50      No. 5      2005



POLLUTION CONTROL AND DEPOLLUTION PROCESSES 611
10
1.5

R
el

at
iv

e 
ab

un
da

nc
e

Time, min
2.52.0 3.0 4.03.5 5.0 6.04.5 5.5

A

20

30

40

50

60

70

80

90

100 3.03

N2O
C2H4

C2H6

H2O

H

H

C
O

CH3 O NO

CH2 OH

1.48
1.80 1.84 2.22

2.27
2.83 2.89 3.00

3.29
3.31

B

9

R
el

at
iv

e 
ab

un
da

nc
e

Time, min
1110 12 1413 16 1815 17

30

40

50

60

70

80

90

100

9.25

3.433.513.67 4.29 4.36
4.49

4.55 4.64 4.82
4.94 5.10

5.30 5.62 5.89

6.03

6.05

6.24

10

0

R
el

at
iv

e 
ab

un
da

nc
e

Time, min
42 6 108 14 1812 16

20

30

40

50

60

70

80

90

100

9.13

N2, O2

CO2

CH3
H

C
O

0.89

2.27

19 20 21 22 23

CO, CH4

20 22 24 26

1.30

3.03 4.45 6.05

7.15

8.00 9.13 9.96 10.63 12.94

A B

14.36 14.76 15.63 17.73 19.98 20.87 22.08 22.98 24.2124.77 25.33 26.00

CH3O
H

C
O

9.96

CH3 O O CH3

CH3 O NO2

CH3 NO2

CH3
OCH3

C
O

CH3

C C

O O

O H

R CN
10.63 11.00 11.9612.9413.6814.13

14.36

14.76

15.49

15.63

16.29

17.22
17.68

17.73
17.92

18.0919.59
19.98

20.43
20.78

21.09
21.37

21.65
21.86

22.08
22.29

22.48
22.61

22.84

23.04
23.24

Fig. 17. Chromatogram exhaust gas composition from air CH3CHO (1000 ppm) mixture treated in a DBD reactor N2, 20% O2,
1.5% acetaldehyde, D = 1 l/min, d = 6 mm.

C

The high kinetic rate of these excited species are
responsible of molecules destruction, oxidation, or
polymerization. Thus, a large part of the VOC is
destroyed. The experimental devices have a multipoint-
to-plane geometry (Fig. 14) or cylindrical geometry
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
with a high tension screw electrode in the center. These
two main techniques are used for gas treatment. The
mass balance from Fig. 16 gives some details of the
excited phenomena responsible for the oxidation of
CH3CHO as an example of an organic pollutant.
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The process is suitable for the elimination of hydro-
carbon vapors or solvents from industry such as com-
bustion, painting, solvents, printing, etc.

CONCLUSIONS
Plasma processes for depollution open new routes

for gas treatment, toxic powders such as fly ashes, or
chemical waste destruction. The main plasma processes
use an arc jet for solid treatment, fluidized bed for halo-
gen organic molecules, and DBD reactors for VOCs in
very low concentrations in industrial emission gases.
However, online gas analysis is a key for optimization
of the processes through the working parameters.
TRELIBS and non-plasma-enhanced desorption and
mass spectrometry analysis, due to their high sensitiv-
ity and short time of analysis (less than 1 s), can meet
the requirement of EU regulations for “continuous
monitoring of emission pollutants.” Also, the short res-
idence time of toxic compounds in the plasma reactor
allows decreasing the toxic risk of the treated material
or gas, and these dry processes using arc discharge or
streamers are very flexible techniques that agree with
large modifications of the chemical composition of
waste compounds.
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Abstract—Adiabatic invariants occurring in the dynamic Laue diffraction of X rays, high-energy electrons,
and thermal neutrons are calculated for asymmetric scattering by regularly strained crystals. A criterion for adi-
abatically smooth variations of strain is found using a generalized pendulum analogy. The conceptual equiva-
lence of the adiabatic and ray modes of Bloch wave propagation in strained crystals is established. © 2005 Ple-
iades Publishing, Inc.
INTRODUCTION

The concept of adiabatic invariance, which origi-
nates from classical mechanics, has been extended to
various fields of contemporary physics [1–4]. This con-
cept was used to greatest advantage in quantum-
mechanical applications, as well as in nuclear physics
in designing magnetic traps. However, it has not been
applied to the problems of dynamic diffraction of
X rays, electrons, and neutrons by regularly strained
crystals. At the same time, keen interest in such prob-
lems stimulates elaboration of theoretical methods tak-
ing into account multiple scattering by the strained
crystal lattice. Thus, analysis of adiabatic invariance of
the above processes seems to be a promising trend
toward developing new analytic approaches to prob-
lems of such a sort.

In this study, the adiabatic invariants of the dynamic
theory are determined for asymmetric Laue (transmis-
sion) diffraction. The invariants are valid for the dif-
fraction of X rays, high-energy electrons, and thermal
neutrons (provided that spin-dependent interaction is
negligibly weak) owing to the equivalence of the corre-
sponding equations of scattering. It should be noted
that our results are correct when the displacement field
slowly varies with distance. Therefore, bearing in mind
asymmetric diffraction conditions, we worked out a cri-
terion of adiabatically smooth lattice distortions. We
believe that the invariants calculated here may be of
interest in solving nonlinear equations of the dynamic
theory. These equations would be much more readily
integrable if the corresponding adiabatic constants
were known. In this respect, it is worthy to note a non-
linear Riccati-type equation derived for the reflection
coefficient [5], which can be solved in terms of the con-
cept of adiabatic invariance.
1063-7842/05/5005- $26.00 ©0613
ADIABATIC INVARIANTS FOR ASYMMETRIC 
LAUE DIFFRACTION

Assuming that lattice strains are smooth, we will
solve the problem of adiabatic invariance under the
most general asymmetric conditions of transmission
diffraction. In this case, for amplitudes Φ0, h of the fields
of the transmitted and diffracted waves in a regularly
strained crystal, we can write the Takagi–Taupin equa-
tions [6], which are valid for X rays, high-energy elec-
trons, and thermal neutrons if nuclear scattering is
strong,

 

Here, quantities Φ0, h may describe the corresponding
amplitudes of the electric displacement field for X rays
or the coordinate part of the wave function for electrons

or neutrons. In these equations, σ0, h = /Λ0, h,
where Λ0, h are the extinction lengths in the directions of
the transmitted and diffracted beams; γ0 and γh are the
cosines of the angles between the normal to the crystal
surface and the propagation directions of these beams;
s is the deviation from the position of Bragg reflection;
and u is the strain field, which is regarded as one-
dimensional and varying along the z axis, which is
aligned with the normal to the crystal surface. Field u
corresponds to regular strains in the crystal lattice,
which may be associated, for example, with bending, a
single dislocation, an ultrasonic wave, etc. It should be
noted that, in the case of electron diffraction, the system
of Eqs. (1) and (2) is also referred to as the Takagi–
Howie–Whelan equations, which are derived in the col-
umn approximation of the scattering theory [7].

γ0

dΦ0

dz
---------- iπσh ih u⋅ isz+{ }exp Φh iπσ0Φ0,+=
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The adiabatic invariants corresponding to the dif-
fraction problem formulated can be determined without
resorting to the Takagi–Taupin equations. One may use
an approach [8] that is based on determining the adia-
batic invariants for the pendulum model. Generalizing
the above to asymmetric diffraction conditions,
we make the following change of variables in Eqs. (1)
and (2):

(3)

Substituting (3) into Eqs. (1) and (2), we obtain

(4)

where coefficients  and  have the form

(5)

In expression (5), we use the standard designations
for the deviation, β = (h ⋅ du/dz + s)/k + γ0(1 –
γh/γ0)/(kΛ0), and the magnitude of the incident wave
wavevector, k. It is also worth noting that coefficients

 correspond to those variables in the dynamic the-
ory defining, in the reciprocal space, the distance from
points of excitation on the dispersion surface to the
asymptote of the incident beam, which passes through

the Lorentz point. Variables  and  then corre-
spond to the points of excitation on the lower and upper
branches, respectively.

The Takagi–Taupin equations represented in form
(4) make it possible to pass from the diffraction prob-
lem to an equivalent mechanical problem with known
adiabatic invariants. In our case, such an analogue is a
mechanical system of two weakly coupled pendulums
with different masses for which the following equations
of motion are valid within sufficiently small time inter-
val ∆t:

(6)

Here, ω1, 2 = (κ/m1, 2)1/2 and ω0 = (g/l)1/2 are the frequen-
cies, where m1, 2, κ, g, and l are the masses of the pen-
dulums, coefficient of elasticity, free fall acceleration,
and length of the pendulum suspension, respectively.
Equations (6) written in “slow” angular variables ϕ1, 2
differ from the conventional Newton equations in that
the former do not contain second-order derivatives.
These derivatives will be negligibly small, because the
oscillations are subdivided into a “slow” component
and “fast” component with high frequency ωH = ω0 +

Φ0 h,
Φ̃0 h,
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ωb/2, where ωb is the beat frequency. Over time interval
∆t considered, masses m1, 2 of the pendulums (hence,
frequencies ω1, 2) are assumed to be constant; conse-
quently, we can establish local equivalence relations
between the parameters of the diffraction and mechan-
ical problems. It follows from equivalent equations (4)
and (6) that these relations have the form

(7)

Relations (7) show that an angular deviation from
the exact Bragg condition due to a regular strain or scat-
tering asymmetry can be simulated by varying the
masses of the pendulums in the given mechanical
model. Then, as for a perfect crystal under symmetric
diffraction conditions (s = 0), we must set m1 = m2. It
should also be noted that the pendulum analogy pro-
posed here remains correct in the case of extremely
high strains, when the points of excitation are beyond
the two-wave region of a local dispersion surface. It is
known that, under such conditions, energy exchange
between the transmitted and diffracted waves ceases
and the refraction mode sets in. Obviously, a similar
process will also be “observed” in terms of the pendu-
lum model. Indeed, setting β > 0 for definiteness and

assuming that  @ , we can easily derive from
relations (7) the equivalent condition m2 @ m1; under
this condition, energy transfer between the pendulums
ceases [9]. Naturally, the generalized pendulum anal-
ogy of asymmetric diffraction suggested here applies to
X rays, high-energy electrons, and thermal neutrons.
Provided that the masses slowly vary with time, the adi-
abatic invariants in the mechanical system will be vari-
able actions

(8)

Here, 〈E〉1, 2 are the pendulum energies averaged over
period T1, 2 = 2π/Ω1, 2, where Ω1, 2 are the frequencies of
normal pendular oscillations. It is clear that to calculate
〈E〉1, 2 requires that the Lagrange function correspond-
ing to the vibrations of coupled pendulums with vari-
able masses be diagonalized. Passing to variable ϕ1, 2
and assuming that frequencies ω1, 2 are functions of
time, we derive from Eq. (8) the expressions for I1, 2,

(9)

Here,  are the respective amplitudes of higher and
lower frequency oscillation modes into which the slow
oscillations of the first pendulum split.

Taking into account relations (7) and using Eq. (9),
we can easily find desired adiabatic invariants C1, 2 of
the diffraction problem,

(10)

ϕ1 2, Φ̃0 h, and ω1 2, 2 ξ0
1 2,( ),

ω0 γ0.

ξ0
1( ) ξ0

2( )

I1 2,
E〈 〉 1 2,

Ω1 2,
---------------.=

I1 2, 1 ω1 2,
2 /ω2 1,

2+( ) ϕ1
± 2

.=

ϕ1
±

C1 2, 1 ξ0
1 2,( )/ξ0

2 1,( )+( ) Φ0
± 2

,=
TECHNICAL PHYSICS      Vol. 50      No. 5      2005



ADIABATIC INVARIANCE OF DIFFRACTION 615
where  are the amplitudes of the transmitted wave
that correspond to the upper and lower branches of the
local dispersion surface.

It should be noted that the adiabatic invariants of the
dynamic theory can be represented in different ways.
For this purpose, we transform wave field amplitudes

 using the obvious relationships /  =

± . Taking into account these relationships,
which are valid within a small neighborhood of point z,
we can derive from (10) adiabatic invariants P1, 2 and
R1, 2 in the form

(11)

As usual, the adiabatic invariants in expressions (10)
and (11) are accurate to within a constant factor inde-
pendent of the variable. Invariants C1, 2 can be assigned
a simple physical meaning. It is easy to check that these

constants coincide with normal components  and 
of the triply averaged Poynting vector and probability
flux density vector for the corresponding Bloch waves
(we mean here averaging over time, lattice period, and
extinction length).

Using the pendulum analogy, one can also find the
conditions under which the concept of adiabatic invari-
ance applies to dynamic diffraction. To this end, it is
necessary to apply the condition of slow time variation
to a certain characteristic parameter of the mechanical
problem (beat frequency ωb is best suited to this case).
Next, with local relations (7), the following criterion for
adiabatically smooth strains in the crystal lattice can be
derived:

(12)

It was shown [10] that this inequality coincides with
the condition of applicability for the Kato ray theory
[11]. Thus, we may trace a correlation between the con-
cept of adiabatic invariance and the idea of ray (geo-
metrical) propagation of Bloch waves in crystals with a
regularly distorted lattice. In our opinion, this inference
would be helpful in deducing new fundamental laws of
dynamic diffraction of X rays and elementary particles
in imperfect crystals.

CONCLUSIONS

The concept of adiabatic invariance as applied to the
theory of diffraction appears to be worthy of noting.
Indeed, in view of the adiabatic nature of intrabranch
scattering, the interbranch transition between the
branches can be treated as transient beats, which reso-
nantly build up when the strains are high [12]. In addi-
tion, the adiabatic invariants calculated here are
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expressed in terms of the universal parameters of the
dynamic theory. This, in turn, makes it possible to unify
the definition of adiabatic constants when the methods
of X-ray, electron, and neutron diffraction are used.
This circumstance is of special significance for neutron
diffraction analysis, since it is usually combined with
X-ray and electron diffraction investigation. It should
be noted that much interest in the theory of dynamic
diffraction of thermal neutrons by thick single crystals
has recently arisen owing to technological break-
throughs favoring related experiments [13, 14]. In this
respect, it would be appropriate to indicate the possibil-
ity of devising a dynamic approach based on the
asymptotic methods used in the theory of nonlinear
vibrations [15]. The pendulum analogy of asymmetric
Laue diffraction proposed here could serve as a solid
basis for such an approach.
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Abstract—A theoretical explanation for the I–V characteristic of type II superconductors in the vortex state is
provided. The run of the experimental I–V curves is associated with discontinuities and depends on the exper-
imental prehistory. It is conjectured that dynamic phase transitions occur in the network of mobile and immo-
bile channels along which the vortices travel when a transport current is applied. This work has been done on
the author’s own initiative. © 2005 Pleiades Publishing, Inc.
The phenomena associated with dynamic phase
transitions (DPTs) in mobile vortex structures (VSs)
that are observed in type II superconductors constitute
a challenging area of the physics of vorticity. Such
DPTs, or crossovers, occur when the VS order changes
under the action of external effects (current, magnetic
field, rf field, etc.). Change of order is frequently
observed in periodic structures moving in the field of a
random potential. A similar situation is also common in
adjacent areas of physics and is encountered, i.e., in
studying Wigner crystals, charge density waves, mag-
netic domains, and so on. Investigation into DPTs
touches upon a number of dynamic issues, specifically,
strains due to vortex motion, mutual arrangement of
vortex lines, and I–V characteristics. Strains associated
with VS motion can be both elastic and plastic. Plastic
strains, in turn, are due to prehistory-related hysteretic
phenomena. Plastic dynamics is an intriguing aspect of
DPTs. Numerous studies of flux plastic flow (FPF) car-
ried out both numerically [1, 2] and experimentally [3–
5] showed that the FPF conditions set in when a certain
threshold is exceeded. This threshold correlates with
the values of transport current, pinning forces, and
other parameters.

FPF can also arise in a current-induced defect super-
structure associated with a vortex density gradient [6].
In this regime, the I–V curve is, as a rule, highly nonlin-
ear, contains steps, and may be even of a hysteresis
character, depending on the prehistory, and a plethora
of dynamic effects is observed. In the case of FPF, the
vortex structure is partitioned into regions (channels)
with different kinds of motion [7]. Not only vortex
motions through the channels but also interaction
between the channels may be different. Some of the
channels remain stationary, while others move. Some-
times, the motion of the channels is akin to that of
pieces of ice relative to each other. When moving, the
1063-7842/05/5005- $26.00 0616
channel system may reconfigure: new channels arise
and the old ones collapse. There may appear bottle-
neck-like constrictions in them. Plastic dynamics has
been the subject of investigation in a number of papers
[8–11].

It was shown [12] that, when the flux flows near the
plastic–elastic crossover in a vortex glass, the dynamic
friction force increases. An increase in the transport
current gives rise to the following DPTs. At extremely
low currents, the pinning state is observed. As the cur-
rent grows, first elastic and then plastic flux flow arises.
With a further increase in the current, the lattice
becomes ordered. Similar results were obtained in [13]
for disordered vortex structures. In particular, it was
found that first hexatic ordering appears at a certain cur-
rent and then the FPF of vortex liquid arises. As the cur-
rent increases further within the range of hexatic order-
ing, the differential resistance drops. It was found
experimentally [14] that the plastic flow of defects
causes the differential resistance to drop because of
vortex ordering and, hence, a decrease in the dynamic
friction. Hysteresis and FPF-related steps in the I–V
curve are also observed. At high currents, dynamic
ordering takes place. A microscopic motion of vortices
can hardly be seen experimentally; however, numerical
simulation allows studying vortex microdynamics [15].
In [15], the FPF and, at high currents, a vortex crystal
were also observed. It was found that the motion in the
FPF range is bimodal and the histograms of the mean
velocities have two peaks. The first one corresponds to
the slow motion, i.e., the motion of vortex islands,
which are pinned during most of the time. The second
peak, observed at higher velocities, is associated with
the fast vortex motion through the channels around the
pinned islands. The bimodal pattern of the velocity his-
togram reflects the spatial nonuniformity of vortex
instantaneous velocities. Under the FPF conditions, the
© 2005 Pleiades Publishing, Inc.
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width of the mean velocity distribution is much larger
than zero and but equals zero at the coherent motion.
The first depinning threshold separates vortices with
zero and nonzero velocities of the center of mass.
Above the second depinning threshold, all vortices are
depinned. In the range between the first and second
thresholds, some vortices move, while others are fixed.
Above the second threshold, all the vortices move but
the width of the mean velocity distribution is nonzero;
i.e., the motion is plastic. The peak in the differential
resistance appears when the current somewhat exceeds
the value at which the number of pinned vortices
decreases drastically and the defect density declines
[16]. Nonequilibrium processes, such as hysteresis,
dependence on the prehistory, and flux inhomogeneity,
are also associated with specific features of the FPF and
influence the I–V curve and the dependence dV(I)/dI,
where I is the current and V is the voltage. Many peaks
in this dependence were found experimentally [17].
Presumably, they are related to discontinuities in the
vortex lattice under the FPF conditions. Voltages V due
to vortex motion are proportional to product Nv〈v 〉 (V ∝
Nv〈v 〉), where Nv is the number of vortices moving with
velocity v  and 〈v 〉  means velocity averaging over space.
Then, the differential resistance is given by Rd =
Nv[d〈v 〉/I], where the term in the brackets is propor-
tional to the friction coefficient. By analogy with the
critical phenomena, it can be assumed that the power-
law scaling I–V dependence for continuous depinning,
which corresponds to a vortex liquid, has the form V ∝

(I – Ic , where α1 is the critical index. Under near-
FPF conditions, the friction coefficient will be a smooth
function of the current and the differential resistance
will vary by a saw-tooth law under the FPF conditions.
If Nv also depends on the current, the saw-tooth pattern
of dNv/dI will correlate with the peaks and dips in the
curve dV(I)/dI. Such a saw-tooth pattern would be evi-
dence that depinning proceeds irregularly and the volt-
age spatial distribution is nonuniform. With increasing
current, depinning is accomplished piecewise. In this
case, V ∝  nj 〈v j 〉 , each of the channels or teeth contrib-
uting to Rd. Every “piece” can be described in terms of
the time-averaged correlation length of velocity. In the
range where the I–V curve has steps, the dependence of
the I–V curve on the prehistory is also observed. A
higher mobility observed near the steps persists when
the current decreases. This is associated with the transi-
tion between metastable states. One can trace an anal-
ogy between this process and the coexistence of differ-
ent phase states at the first-order phase transition. Steps
in the I–V curve and its dependence on the prehistory
were also discovered in [18–21]. In most of those
papers, such processes were also explained by the coex-
istence of dynamic metastable variously ordered states,
FPF, channels, and two-stage depinning. It was also
noted that overheated states may appear as the current
decreases and that the I–V curve has no jumps in these
conditions.

)α1
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In this paper, the author reports a theoretical study of
I–V curves taken of BiSrCaCuO platelets placed in a
magnetic field. Experimental data discussed below
were courteously submitted by Ogrin [22]. Specifically,
the I–V curves were taken of BiSrCaCuO platelets mea-
suring 0.8 × 0.3 × 0.01 cm, which were placed in mag-
netic field H0 = 1500 Oe (directed normally to the sur-
face and parallel to the c axis and Z coordinate axis) at
79 K. A direct current passed along the Y axis. The I–V
curves behaved as follows. As the current was increased
for the first time, the I–V curve (hereafter, the curve)
passed through points A, O, B, E, C, and D (see figure).
If the current started decreasing from a value above
point O, the curve passed through points D, F, O, and A.
When the current was increased for the second time, the
result depended on the minimal current value in the first
experiment. If the minimal current was lower than at
point O, the hysteretic behavior was repeated. If the
current was higher than at point O, the curve followed
portion OED irrespective of whether the current was
increased or decreased; in other words, the behavior of
the curve depended on the experimental prehistory.

According to [23], the VS is in the liquid state under
our experimental conditions. There are two typical time
scales τpin and τth in an ordinary vortex liquid: the char-
acteristic pinning-related scale and the characteristic
thermodynamic scale in the liquid. Since τpin @ τth,
averaging over thermal fluctuations results in a homog-
enous unpinned structure. However, in a viscous liquid,
which may undergo plastic deformation, one more
characteristic time scale related just to plastic deforma-
tion, τpl @ τpin, appears. In the case of averaging over
plastic-deformation-related times, thermal averaging
over time will be incomplete; therefore, a vortex liquid
may be pinned by a random potential [24, 25]. In a plas-
tic vortex liquid, two ohmic regimes are established: at
high current densities (flux flow) and at low current
densities. Between them, an intermediate highly non-
linear regime of thermally activated flux flow (TAFF)
occurs. In this regime, the current is a power-type func-
tion of the voltage, with the exponent exceeding unity.

0.68 A

I

V

O

B

A

E

F C
D

D'

I–V curve taken of BiSrCaCuO platelets placed in a mag-
netic field.
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The initial part of the curve obtained in the experiments
is ohmic and reversible. The reversible part is followed
by the irreversible part, where the curve is nonlinear
(power-type) and has a positive curvature. Such a pic-
ture corresponds to the initial part of the TAFF. Above
point O, the curve exhibits steps, hysteresis behavior,
and dependence on the prehistory. It can therefore be
assumed that, above point O, we are dealing with the
plastic TAFF of the vortex liquid and that the DFT to
the plastic flow conditions takes place at point O. In the
plastic flow range, the vortex liquid is metastable and
exhibits many metastable states with their own energy
minima. At the elastic–plastic flux flow transition, the
vortex system is partitioned into channels, which are
stationary, near-stationary (moving with very small
velocities), or mobile. Some of the vortices that are
fixed or become less mobile, pass to the system of more
intense pining centers with the formation of corre-
sponding (stationary or near-stationary) channels. The
rest of the vortices, which produce mobile channels,
conversely, pass to the system of less intense pinning
centers. In systems with similar I–V curves, the depin-
ning process may go in two stages. If such systems have
channels with different mobility, estimation of the crit-
ical current must include two values of the effective
critical current: Jc1 for the threshold of partial depin-
ning and Jc2 (Jc2 @ Jc1) for complete depinning. Let us
estimate Jc1 and Jc2 using the following line of reason-
ing. Pinning in a vortex liquid is much weaker than in
the other phases; therefore, for bismuth cuprates, we
shall take the mean value of the critical current Jc =
104 A/cm2, according to [26]. In the experiments, the
mean current density above point O is 2 × 102 A/cm2;
so, it can be assumed that the critical current of partial
depinning is Jc1 = 103 A/cm2 and Jc2 = 104 A/cm2 is the
critical current of complete depinning. If it is supposed
that J1 < Jc in the mobile channels, then we must admit
that they are in the region near the region of partial
depinning and, that, in the stationary channels, Jc2 @ J2

(J2 is the current density in the stationary channels).
The stationary channels are far from depinning. Now
let us estimate the characteristic times in the vortex liq-
uid. The time of thermal fluctuations is τth ≈
8κ2 /c2ρn, where κ is the Ginzburg–Landau parame-
ter, ρn is the resistance of the normal phase, a0 the lat-
tice parameter, and c is the speed of light. Putting κ = 50,
a0 = 1.1 cm–5, and ρn = 50 µΩcm, we obtain τth ~ 10–11 s.
To estimate characteristic time of pinning τpin, we will
reason as follows. The pinning time is τpin ≈ rpin/v c. In

the vortex liquid, rpin ≈ ξ + 〈 〉 1/2, where 〈 〉 1/2 is the
mean square of thermal fluctuations and ξ is the coher-
ence length. The mean square of thermal fluctuations
can be estimated from the Lindemann criterion for vor-

tex lattice melting, 〈 〉 1/2 ≈ cLa0 (cL is the Lindemann
number). Parameter v c is determined from the critical

a0
2

uth
2 uth

2

uth
2

current values described above. Then, τpin ~ 10–10 s.
Considering that point O manifests the transition to the
FPF, so that typical times of VS motion become equal
to the time of plastic deformation, τpl, and estimating
the characteristic time of vortex motion at point O from
the experimental data, we find that τpl ~ 10–9 s. It then
follows that the conditions for vortex liquid pinning are
satisfied; hence, the liquid under study is pinned. Such
a viscous vortex liquid exists only in the range of long
times, τ @ τpl @ τpin. For processes characterized by the
intermediate time scale, τpl ≤ τv ≤ τpin (τv is the charac-
teristic time of vortex motion in the range of plastic
flow), τv ≈ a0/v, where v  is the vortex velocity. In this
time range, a vortex liquid is in many ways similar to a
vortex crystal. In particular, the shear modulus of such
a vortex liquid equals c66. In the case under consider-
ation, we have τv ≈ ≥10–9 s. Thus, the vortex liquid stud-
ied is similar to a vortex crystal in elastic properties.

Now let us turn to processes arising as the current
increases. Such of them lead to a rise in the differential
resistance. These may be (1) ordering, which results in
an increase in the dynamic friction; (2) expansion of the
mobile channels; and (3) an increase in the velocity in
these channels. A combination of several mechanisms
is also possible. The increase in the differential resis-
tance is observed in the portion near point E, where a
small increase in the current causes a drastic increase in
the voltage. Then, as the current increases further, the
arising dynamic configuration becomes energetically
unfavorable. However, it may exist as an overheated
state, since a radical reconfiguration of the system
requires that the barriers for plastic flow be overcome
and that the system transform into a new set of pinning
centers. When the transport current becomes suffi-
ciently high, the system is capable of overcoming the
barriers. In this situation, some of the channels collapse
and a bottleneck-like configuration, along with a new
channel distribution, may appear. Some of the vortices
become captured by the new pinning centers and stop.
This process corresponds to the descending portion of
the curve. As the current goes on rising, the process will
be repeated but with another initial current and another
initial channel distribution. Switching from one chan-
nel system to another corresponds to portion CD, and a
new cycle starts at point D. After the channels have
been rearranged, the current stars decreasing and the
state of the system corresponds to portion D'FO, since
the system is already in a new energy well and cannot
overcome the energy barriers. As the current increases
for the second time, two scenarios are possible. If its
minimal value at the time of decrease exceeds the value
at point O, the system remains in the same energy well,
in which it was when the current decreased. This is
because the energy stored in the system does not suffice
to overcome the energy barriers preventing the system
from being transferred to the energy well correspond-
ing to portion OC. If the minimal value at the time of
decrease is less than the value at point O, the system
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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falls into the range of elastic flow, where plastic defor-
mations are absent. In other words, the system returns
to the state where it had no memory. In this case, the
primary process is repeated as the current grows.

At point C, the energy increases to the point where
the system can overcome the energy barriers and pass
to the state corresponding to a neighboring metastable
energy minimum. Let us estimate the free energy of the
system at points C and D and the related energy barrier.
The system’s free energy can be expressed by

(1)

where upper and lower indices “1” hereafter refer to the
mobile areas and indices “2,” to the stationary ones;
V1 and V2 are the current-dependent volumes occupied
by the mobile and stationary areas, respectively; and
Fpin, Fel, FL are the densities of the pinning force
energy, elastic deformation energy, and Lorentz force
energy, respectively.

When estimating these energy densities, one should
bear in mind the following. If a vortex is captured by a
pinning center, its maximum possible displacement is
on the order of the pinning center size. However, this
statement is untrue in the case of thermal creep [23, 27].
During thermal creep, vortices jump to a much farther
position; in this case, the displacement is much larger
than when they are pinned. Using estimates made in the
papers cited, we can put u1 = χu2, where u is the vortex
displacement (χ @ 1).

When the current is applied under the TAFF condi-
tions, the vortices jump from one metastable state to
another that is energetically more favorable at the given
current. A new optimal state can be determined from
the condition that the energy contribution from the
Lorentz force is equal to a change in the energy of
deformation and pinning. For near-critical current val-
ues, this condition is satisfied for a neighboring meta-
stable state. In such transitions, which occur at low cur-
rent densities, a vortex is bound to travel a large dis-
tance. For pinned channels, where Jc2 @ J2, adjacent
metastable energy levels are spaced by the barriers [23]

For the plastic flow of a vortex liquid, Uc ≅  Upl, crit-
ical index µ is ≅ 1/7 [25]. In the mobile areas, the energy
barriers between adjacent metastable states are on the
order of

where α is the critical index that equals unity in the
Kim–Anderson model.

F Fpin
1( ) Fel

1( ) FL
1( )–+( ) V1d∫=

+ Fpin
2( ) Fel

2( ) FL
2( )–+( ) V2,d∫

U J2( ) Uc

Jc2

J2
------- 

 
µ
.≈

U J1( ) Uc 1
J1

Jc1
-------– 

  α
,≈
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To make estimates, we assume hat J1 ≈ χ1Jc1 and

J2 ≈ Jc1, where χ1 ! 1. It was shown [23] that the dif-
ference in the displacements of the pinned and mobile
vortices leads to the difference in pinning energy that is
of the same order of magnitude. With the aforesaid
taken into account, we get

(2)

The Lorentz force energy density can be estimated
as follows:

(3)

where J is the transport current density and B is the
external magnetic field.

Using the same line of reasoning as in estimating the
displacements of the mobile and fixed areas and taking
into account that the pinning center size in a pinned vor-

tex liquid is rp ≈ 〈 〉 ≈  cLa0 ≤ a0, we obtain

(4)

The mean current density at point C, J(C), is equal to
2.2 × 102 A/cm2; at point D, J(D) = 2.3 × 102 A/cm2. The
current difference between points C and D is ∆J = 0.1 ×
102 A/cm2 ! J(C, D). In light of this, we suppose that the
basic thermodynamic values (the current-dependent
Lorentz force and pinning force energy densities),
change insignificantly in passing from point C to point
D. A change in the elastic energy density, which
depends largely on the magnetic field, is also assumed
to be negligible. Thus, in passing from point C to point
D, a change in the volumes of the mobile and stationary
channels due to channel rearrangement makes a major
contribution to a change in the free energy. Also, in
passing from point C to point D, a change in the current
goes in parallel with a change in the voltage. At point
C, the voltage is V(C) = 72 mV; at point D, V(D) =
67.8 mV. Thus, the change in the voltage equals
∆V(C, D) = 4.2 mV. The difference in the power between
points C and D is ∆N ≈ 1.5 × 104 erg/s. For estimation,
we assume that the energy release due to a negative dif-
ferential resistance reflects the fact that some of the vor-
tices turn into a new metastable state with a lower
energy. The plastic vortex flow results in the transition
from state C to state D. Therefore, we suppose that time
τN characterizing this process is associated with plastic
deformation and also take into account the displace-
ment of the vortices under creep [23]. With this in mind,
we estimate τN as τN = τplχ and the energy barrier
between states C and D as ∆E = ∆NτN. This energy bar-
rier can be neglected, since the difference in the volt-
ages and currents between points D and D' is much
smaller than the voltage and current differences

χ1
2
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J1
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between all other points considered. Then,

(5)

Here, ∆V =  –  = –(  – ). For estima-
tions, we assume that the sum of the second and third
terms in the parentheses in Eq. (5) is equal to the energy
density of the barriers separating the metastable states.
To determine this energy density, we estimate the criti-
cal volume in the vortex liquid reasoning as follows.
Suppose that the critical force corresponding to the sec-
ond threshold of depinning is given by

Taking into account that Uc ≈ Upl for the plastic vor-
tex liquid, where Upl can be approximated as

and neglecting the second-order terms, we arrive at

(6)

Substituting the experimental and calculated data
into Eq. (6) yields ∆V ≈ 5 × 10–5 cm3. The volume of
the platelet is about 2.4 × 10–3 cm3. Comparing the
platelet volume with the DPT-related change in the vol-
ume of the mobile regions shows that the volume of the
stationary regions is roughly 2% of the total volume.
The DPT-related change in the voltage is also about 2%
of its value.

The voltage due to vortex flux flow in type II super-
conductors is proportional to the density of mobile vor-
tices. Hence, a change in the voltage is bound to be pro-
portional to a change in the number of mobile vortices,
which is consistent with the estimates made in this
paper and confirms the assumption that a dynamic
phase transition is responsible for a voltage step in the
I–V curve. Thus, it is shown that the mobile vortex sys-
tem in type II superconductors exhibits a DPT and this
DPT is associated with the rearrangement and collapse
of the channels through which the vortices move. As a
result, a descending branch of the I–V curve appears.
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Abstract—The shock wave pattern in zinc single crystals compressed in the direction normal to the basal plane
of the crystal is traced with a high time resolution. In this geometry of the experiment, plastic deformation of
the zinc is found to begin at a shock compression pressure above 15 GPa and is not accompanied by splitting
of the shock wave into an elastic precursor and a plastic compression wave. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Shock waves in elastic–plastic materials are known
to be unstable because of the difference in the longitu-
dinal compressibilities in the elastic and plastic strain
ranges and, therefore, split into an elastic precursor and
a shock wave of “plastic” compression in a certain
stress range [1]. The elastic precursor amplitude is mea-
sured for determining the yield strength of a material at
submicrosecond loading times [2]. However, when
experimenting with zinc single crystals [3], we found
that the shock wave remains intact at a certain geometry
of the experiment. Figure 1 shows typical free-surface
velocity profiles in planar single-crystal zinc specimens
variously oriented relative to the loading direction that
were subjected to shock compression [3]. The compres-
sion waves are seen to be radically different depending
on the direction of their propagation.

Zinc has a hexagonal close-packed (hcp) structure
with an anomalously large lattice parameter ratio, c/a =
1.856 (the “ideal” ratio for the hcp lattice is c/a =
1.633). Therefore, atomic bonds in a basal plane are
much stronger than those between basal planes and the
compressibility of zinc in the direction normal to the
basal plane is well above that in the transverse direc-
tions. According to a review [4] devoted to the elastic
properties of zinc, its compressibility in the axial direc-
tion is very close to the bulk value. Because of this,
deviator stresses arising during uniaxial compression in
the 〈001〉  direction build up slowly, so that deformation
remains elastic over a wide stress range. The purpose of
this work is to reveal the signs and conditions of the
onset of plastic deformation in zinc single crystals
shock-compressed in this direction.

EXPERIMENTAL

Zinc single crystals of 4N purity were grown by
directed crystallization from high-purity graphite cruci-
1063-7842/05/5005- $26.00 0621
bles [5] so that the normal to the surface of the crystals
measuring 100 × 16 × (3–4) mm was aligned with the
〈001〉  direction. Pieces with a 10 × 16-mm cross section
spark-cut from the single crystals were cleaved along
basal planes in liquid nitrogen to obtain specimens 0.3–
1.0 mm thick. Since the available data on the elastic
moduli of zinc diverge considerably, we additionally
measured the longitudinal sound velocity in the 〈001〉
direction; it was found to be cl = 2.98 ± 0.03 km/s. The
Hugoniot adiabat of polycrystalline zinc was measured
repeatedly [6–10]: in the particle velocity range 0.5–
3.5 km/s, the known experimental data can be approxi-
mated by the relationship Us = 3.0 + 1.57u (where Us is
the shock wave velocity and u is the particle velocity of
the shock-compressed material) with an accuracy of
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Fig. 1. Typical free-surface velocity profiles for 1.7-mm-
thick single-crystal zinc specimens loaded by a 0.85-mm-
thick aluminum flyer plate moving with a velocity of
650 m/s. The orientations of the planes of impact are indi-
cated.
© 2005 Pleiades Publishing, Inc.
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±1%. In our recent work [11], we determined the
dependence of the longitudinal sound velocity in (001)
zinc single crystals on the elastic compression/tensile
stress. In the quasi-acoustic approximation, the results
are described well by the relationships

(1)

where a is the sound velocity in the Lagrangean coordi-
nates, σx is the compression/tensile stress, c0 =
2.99 km/s, and b = 1.933.

The experimental scheme is shown in Fig. 2. The
zinc specimens were impact-loaded by a planar alumi-
num flyer plate accelerated by explosion. The shock
compression pressure was varied by changing the
impact velocity and using intermediate base plates
made of materials with different dynamic impedances,
namely, aluminum, polymethyl methacrylate (PMMA),
and molybdenum. A 0.02-mm-wide gap was provided
between the molybdenum base plate and the specimen

a c0 2bu, a+ c0
2 4bσx/ρ0+( )1/2

,= =

Al

Mo

Zn

VISAR

Fig. 2. Scheme of the experiment.
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Fig. 3. Free-surface velocity profiles for the 0.25–0.5-mm-
thick 〈001〉  zinc specimens at various shock compression
pressures. Shock waves producing a pressure above 30 GPa
were generated by an explosive detonating in contact with
the base plate; in the other cases, the waves were generated
by the colliding plates. Maximum compression stresses
behind the shock front are indicated.
to develop an appropriate initial shock compression and
eliminate the effect of the elastic precursor in the plate
on the loading history of the test specimen. In the
experiments, we recorded the history of free (rear) sur-
face velocity ufs(t) with a VISAR laser Doppler veloci-
meter [12]. The bandwidth of the measuring channel
was 0–350 MHz or wider. The output signal of the
velocimeter was applied to a four-channel digital oscil-
loscope at a sampling rate of 2.5 GHz (0.4-ns intervals
between record points). The ultimate time resolution of
the VISAR in the configuration used was 1 ns. To
ensure reliable recording, the rear surface of the speci-
men was matted by grinding, polishing, and etching in
hydrochloric acid.

RESULTS AND DISCUSSION

The free surface velocity profiles for different shock
compression pressures are summarized in Fig. 3. At a
particle velocity of up to 1 km/s (a compression stress
of ≈14 GPa), the compression wave is essentially a dis-
continuity in the parameters with a rise time within 1.0–
1.5 ns followed by a plateau where the parameters are
constant. As the shock compression pressure rises, the
shock front is followed by a region where the parame-
ters increase smoothly. The duration of this dissipative
region decreases with increasing intensity of the shock
wave. It is natural to assume that the appearance of the
dissipative region indicates the onset of plastic defor-
mation in the shock wave. Since the rate of plastic
deformation, being limited by the rate of dislocation
motion and multiplication, cannot be infinitely high,
plastic deformation is related to a finite time of stress
relaxation and the corresponding dispersion of the
shock wave. Apparently, the decrease in the stress
relaxation time with increasing shock compression
pressure can be explained in the same terms as the rou-
tinely observed narrowing of plastic shock waves [13].

Figure 4 compares the results in the normalized
coordinates. After the shock wave has reached the sur-
face of the specimen, a reflected rarefaction wave forms
in it. This wave propagates toward the base plate and
may rereflect from its boundary (Fig. 5). The time inter-
vals in Fig. 5 take into account the time it takes for
rereflected compression or rarefaction waves (which
form due to different dynamic impedances ρc of the
specimen and base plate) to reach the surface. Alumi-
num and PMMA have lower dynamic impedances than
zinc. Therefore, the rarefaction wave reflects from zinc
in the form of a compression wave. At the same time,
the reflection of the rarefaction wave propagating in the
zinc from the more rigid molybdenum plate produces
another rarefaction wave. In the former case, when the
rereflected wave reaches the surface, its velocity
increases, whereas, in the latter case, its velocity
decreases. The measurements demonstrate that the
shape of the rereflected compression wave changes and
the rise time of the parameters in this wave increases
when the region of stress relaxation appears behind the
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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shock front of the first wave. Thus, at a compression
stress of 14–15 GPa behind the shock front, the behav-
ior of the material changes qualitatively, presumably
manifesting the onset of plastic deformation.

The distance–time diagram shown in Fig. 5 allows
us to estimate the reverberation time for elastic and
plastic waves in the specimen. The estimation proce-
dure using this diagram is the following. We separate
triangle FBD bounded by the trailing C– characteristic
of centered rarefaction wave FB and the leading C+
characteristic of rereflected tensile pulse BD. The states
along these characteristics correspond to zero pressure;
therefore, their slope yields zero-pressure sound veloc-
ity c0. Then, the position of point B in the diagram can
be easily determined if we know time interval tD – tF

(where tD is the time instant the sample surface starts
quieting down and tF is the time instant the shock wave
reaches the surface) provided that the value of c0 is also
known (or specified). Section AB of the leading C+
characteristic of the rereflected wave is curved. Since
the slopes of the C+ and C– characteristics in the sub-
stantial Lagrangean coordinates are symmetric, we can
use the equation

(2)

to calculate trajectory AB. In Eq. (2), the left-hand side
is the slope of the leading C+ characteristic and the
right-hand side reflects the mere fact that the C– rarefac-
tion wave is simple and centered. Here, h is the target
thickness and x is the Lagrangean coordinate, i.e., the
initial (zero-pressure) distance from the surface of con-
tact with the flyer plate. Integrating Eq. (2), we have

(3)

and, eventually,

(4)

On the other hand,

(5)

Eliminating (h – xB) from Eqs. (4) and (5) yields

(6)

Time interval tA – tF = h/a is determined in quasi-
acoustic approximation (1) for the sound velocity a in
the shock-compressed material in Lagrangean coordi-
nates. The wave reverberation time is tD – tF = 1(tB – tF).

The estimates of the front reverberation time for the
elastic and plastic waves are shown in Fig. 4 (dashed
lines). To calculate the reverberation time of the elastic
wave, we used the coefficient values c0 = 2.99 km/s and
b = 1.933, which were determined from the longitudi-

dx
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t tF–
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t tF–
------------ h

h xB–
-------------- 

 ln

tA

tB

∫
tB tF–
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h xB–
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nal sound velocity measured for compression/tensile
stresses ranging from –2 to 13 GPa [11]. When estimat-
ing the reverberation time of the plastic wave, we used
the coefficients appearing in the linear expression for
the Hugoniot adiabat of zinc: c0 = 3.0 km/s and b =
1.57. Figure 4 shows that, at compression stresses
below 16 GPa, the actual reverberation time agrees well
with the assumption of elastic response of the material
to the load. However, in higher pressure experiments,
the reverberation time is close to estimates for the plas-
tic waves propagating with a volume sound velocity.

0.5
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200 400 800
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Fig. 4. Free-surface velocity profiles for the 〈001〉  zinc spec-
imens. The time is normalized by dividing by the specimen
thickness. The origin corresponds to the instant the shock
wave front reaches the specimen surface. (1, 2) Reverbera-
tion time curves estimated for the elastic- and plastic-wave
fronts, respectively.
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Fig. 5. Distance–time (l, t) diagram accounting for wave
interactions when the waves reflect from (1) the free target
surface and (2) the interface with the flyer plate or base
plate. Substantial Lagrangean coordinates are used; there-
fore, the boundaries in the diagram are fixed.
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Thus, at a compression stress of ≈14–15 GPa behind
the shock front, the response of the material to the load
changes qualitatively: a region of parameter relaxation
appears behind the shock, the shape of the rereflected
compression waves changes, and the dependence of the
wave reverberation time on the shock compression
pressure changes form. These findings indicate switch-
ing from purely elastic to elastic–plastic deformation in
this pressure range without loss of shock wave stability.

In stationary compression waves, all intermediate
states and the final state must correlate with the Ray-
leigh (Michelson) line,

where V0 and V are the initial and current specific vol-
umes of the material, respectively.

The positions of the Rayleigh lines relative to the
Hugoniot adiabat of polycrystalline zinc [6–10] and the
adiabat of elastic compression in the 〈001〉 direction
[11] are shown in Fig. 6. Because of the lack of relevant
data, the Hugoniot adiabat of polycrystalline zinc
obtained over a wide pressure range is considered here
as the adiabat of uniform compression. Marked in the
Rayleigh lines are the final states and the states corre-
sponding to the onset of stress relaxation. At an elastic
compression stress of 14–15 GPa (when plastic defor-
mation begins), the deviation of the adiabat of elastic
longitudinal compression from the Hugoniot adiabat of
zinc is ≈1.5 GPa. This value virtually coincides with the
deviative stresses at the front of the elastic compression

σx ρ0Us
2V0 V–

V0
---------------,=

10

0.75 0.80

σx, p, GPa

V/V0

20

30

40

0
0.85 0.90 0.95 1.00 1.05

1

2

Fig. 6. Zinc state variation in shock waves of different inten-
sity. The symbols show the final states and the states corre-
sponding to the onset of stress relaxation. (1) Isentrope for
longitudinal elastic compression and (2) isentrope for uni-
form compression.
precursor propagating in the transverse direction [3].
The final states of shock compression deviate from the
Hugoniot adiabat of polycrystalline zinc by no more
than 1.2–2.0 GPa.
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Abstract—The optical properties of a multilayer system comprising an optical diode, insulating layer, and mir-
ror are studied. The distribution of the electromagnetic wave energy in the system is considered. It is shown that
the energy of the wave is accumulated within certain spectral intervals. Two mechanisms underlying this obser-
vation are discussed. One is due to the diode effect (i.e., nonreciprocal transmission or reflection); the other is
associated with periodic layers existing in the system. Multilayer structures based on the phenomenon discov-
ered may find application in water or gas heaters and in optical-to-electric energy converters. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

Layered periodic structures have recently attracted
much attention because of the progressively expanding
potentialities of epitaxial technology for creating peri-
odic and/or aperiodic multilayer structures. Such struc-
tures are emerging artificial materials that offer spe-
cially tailored physical properties unattainable in natu-
ral insulators, metals, and semiconductors. The
properties of these artificial materials depend not only
on the physical parameters of the constituents but also
on the geometry of the layers and the period of the
structure. Structures of this sort are being widely used
in advanced optics; optoelectronics; antennas; and
laser, X-ray, and millimeter- and submillimeter-wave
technologies.

In studies of wave propagation in such systems, the
emphasis is usually on the fields of the reflected and
transmitted waves, while the field inside the system
remains undetermined. However, in many cases of
physical interest, it is necessary to know the distribu-
tion of the field both outside and inside the system.
Examples are radiation propagation in waveguides, as
well as in inhomogeneous and multilayer media; opti-
cal absorption in periodic systems; etc. [1–8]. For
example, in [6–8], where radiation absorption anoma-
lies under diffraction conditions were studied, a new
mechanism causing these anomalies was found that has
to do with the optical field (energy) distribution just
inside the system. It was shown, in particular, that, at
certain wavelengths, the optical energy density inside
the system may by several times exceed that outside it;
that is, the optical energy is accumulated by the system.
In [9], optical energy accumulation in layered periodic
systems was investigated.

It was shown [10–13] that nonreciprocal optical sys-
tems may act as optical diodes under certain conditions;
1063-7842/05/5005- $26.00 0625
i.e., they transmit light incident only on one side, mak-
ing light energy accumulators feasible. This work is
concerned just with this problem.

Experiments were carried out with a system consist-
ing of an optical diode (OD) and a mirror with an iso-
tropic insulating layer (IIL) in between. The optical
diode represents a cholesteric-filled Fabry–Perot reso-
nator. Two configurations of the system were used:
OD(1)–IIL–mirror (Fig. 1) and OD(2)–IIL–mirror,
where OD(1) = glass(1)–cholesteric–glass(2) and
OD(2) = glass(2)–cholesteric–glass(1).

THEORY OF THE OPTICAL 
DIODE–INSULATING LAYER–MIRROR SYSTEM

Consider the propagation of light through an OD–
IL–mirror system shown in Fig. 1. Wave propagation in
inhomogeneous and multilayer media remains a chal-
lenging problem of physics and is a subject of extensive

n0 OD

Ei

Er

O'

O

ε0 M n0

Et
E E

d ' d ''

d

Fig. 1. Configuration of the multilayer optical system.
OD(1) = glass(1)–cholesteric–glass(2), OD(2) = glass(2)–
cholesteric–glass(1). ε0 is the permittivity of the isotropic
insulator, d is the thickness of the insulator, and M stands for
mirror.
© 2005 Pleiades Publishing, Inc.
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research (see, e.g., [14–22]). It is convenient to tackle
this problem with the simple yet efficient Ambart-
sumyan method of addition of layers [20–22]. In this

method, extra matrices  and  are introduced in order
to exclude the solution of new equations that take into
account problem-complicating factors: insertion of
extra layers between multilayer systems or within a
multilayer system, insertion of radiating planes (lay-
ers), or determination of inner fields in the optical sys-
tem instead of finding transmission and/or reflection
characteristics.

Let wave Ei incident on an OD–IIL–mirror system
generate waves Er and Et transmitted through and
reflected from the system. The complex amplitudes of
the incident, reflected, and transmitted waves are
expanded in circular basis polarizations,

(1)

where n+ and n– are the unit vectors of circular basis
polarizations.

The reflected and transmitted waves are related to
the incident one as

(2)

where  and  are the Jones matrices for the given
system.

According to [22], if there is a system consisting of
adjacent subsystems A (left) and B (right), reflection

matrix  and transmission matrix  of system
A + B are expressed through the respective matrices of
the subsystems as

(3)

provided that light strikes system A + B from the left. It
is assumed that subsystems A and B are, respectively,
on the left and right of joining plane OO' (Fig. 1).
Hence,

(4)

where ,  and ,  are the transmission and
reflection matrices of the OD and mirror;

ε0 is the permittivity of the isotropic insulator, λ is the
wavelength in a vacuum; and d' and d" are the distances

Ŝ P̂

Ei r t, , Ei r t, ,
+ n+ Ei r t, ,

– n–+
Ei r t, ,

+

Ei r t, ,
–

,= =

Er R̂Ei, Et T̂Ei,= =

R̂ T̂

R̂A B+ T̂ A B+

R̂A B+ R̂A T̂ AŜT̂ A,+=
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T̂ A T̂1 ik0d'( ), R̂Aexp R̂1,= =

T̂
˜
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˜
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T̂1 R̂1 T̂2 R̂2

k0
2π
λ

------ ε0;=
from the joining plane to boundaries OO' of the left-
and right-hand isotropic insulating layers, respectively.
The quantities with a tilde designate the transmis-
sion/reflection characteristics of the system when light
strikes the system from the right.

Matrices  and  describe resulting waves in the
insulating layer on joining plane OO'. Thus,

(5)

is a wave arising on plane OO' and propagating to the
right and

(6)

is a wave arising on plane OO' and propagating to the
left. The total field on this plane in the insulator is there-
fore given by

(7)

According to [22], matrices  and  satisfy the set
of equations

(8)

Since OD(1) and OD(2) themselves are multilayer
systems, their respective transmission and reflection

matrices ( ,  and , ) can be found by the
same technique (see also [23]).

Using (1)–(8), one can calculate the coefficients of
reflection, R = |Er|2/|Ei|2, and transmission, T = |Et|2/|Ei|2;
the relative intensity of the wave resulting on the join-
ing plane, I = |Etotal|2/|Ei|2; and other optical characteris-
tics of the system.

NUMERICAL CALCULATION 
AND CONCLUSIONS

To study optical energy accumulation by a system
containing a periodic layer (several layers), we will first
consider a system comprising a cholesteric layer and a
mirror in which the joining plane coincides with the
interface. Figure 2a plots the wavelength dependence of
intensity I of the wave resulting on the joining plane for
different polarizations of the incident wave. It is seen
that the joining plane does not accumulate optical
energy (I < 1, incident light intensity I0 = 1). This, how-
ever, does not mean that the accumulation is absent at
all. Calculations show that the accumulation to an
extent takes place inside the cholesteric. Now we com-
plicate the system, introducing an isotropic insulating
layer between the cholesteric and mirror. Figure 2b
demonstrates the wavelength dependence of intensity I
of the wave resulting on the joining plane in this case
(here, joining plane OO' is in the middle of the isotropic
insulator). At certain wavelengths of the incident light,

Ŝ P̂

E→ P̂T̂ AEi=

E← ŜT̂ AEi=

Etotal Ŝ P̂+( )T̂ AEi.=

Ŝ P̂

Ŝ R̂B Î  – R̂̃AR̂B[ ]
1–
,=

P̂ Î R̂̃AR̂B–[ ]
1–
.=

T̂1 R̂1 T̂2 R̂2
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the resulting wave intensity in the system far exceeds
the incident intensity (for example, by a factor of 10.5
at λ = 0.6218 µm); that is, the optical energy is com-
pressed (accumulated). Thus, a periodic layer inserted
into the system makes it possible to accumulate optical
energy under certain conditions.

Let us now turn to an optical system containing a
nonreciprocal element to demonstrate another mecha-
nism of optical energy accumulation. The system com-
prises an OD and a mirror. Two structures of the optical
diode are considered: OD(1) = glass(1)–cholesteric–
glass(2) and OD(2) = glass(2)–cholesteric–glass(1).
The joining plane coincides with the OD–mirror inter-
face. Figures 3a and 3b plot the wavelength dependence
of intensity I of the wave resulting on the joining plane
when the light is incident on the (a) OD(1)–mirror and
(b) OD(2)–mirror systems. In this case, the joining
plane does not accumulate the energy again. Note that,
in this case, too, this does not indicate the absence of
the accumulation.

As before, we complicate the system by inserting an
isotropic insulating layer between the OD and mirror.
Figures 4a and 4b plot the wavelength dependence of
intensity I of the wave resulting on the joining plane
when the light is incident on the (a) OD(1)–IIL–mirror
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Fig. 2. Intensity I of the net wave at the IIL–mirror interface
vs. the wavelength for the (a) cholestric–mirror system and
(b) cholestric–IIL–mirror system when the incident wave is
polarized (1) clockwise, (2) counterclockwise, (3) linearly
along the x direction, and (4) linearly along the y direction.
The cholesteric has a right-hand helix.
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Fig. 3. Intensity I of the net wave at the OD–mirror interface
vs. the wavelength for the (a) OD(1)–mirror system and
(b) OD(2)–mirror system. For 1–4, see Fig. 2.
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Fig. 2.
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and (b) OD(2)–IIL–mirror systems. From Fig. 4, it fol-
lows that (i) in the first case (in the OD(1)–IIL–mirror
system), the energy compression is much higher than in
the other system and (ii) the value of I reaches 30 at cer-
tain wavelengths and may be raised further.

The above observations can be explained in simple
terms. In the former case, the optical energy is accumu-
lated via two mechanisms: the first one (diode effect) is
due to the asymmetric (nonreciprocal) transmission of
the system’s elements; the other is due to the presence
of the periodic layer in the system (we mentioned pre-
viously that the periodic structures may accumulate
optical energy in certain wavelength intervals). In the
latter case, only the second mechanism is accom-
plished.

Consider now possible applications of the effect of
optical energy accumulation. Note that the intensity of
the resulting wave in the periodic system is usually high
in narrow frequency intervals and when the system is
thick. However, an inevitably existing spread in the
optical system thickness averages the intensity over
both the thickness and the wavelength; as a result, the
intensity decreases significantly. Figures 5a and 5b
show the wavelength dependences of the wavelength-
averaged intensities for the (a) first and (b) second
cases. It is worth noting that, generally, a finite-thick-
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Fig. 5. Wavelength-averaged intensity I of the net wave aris-
ing in the IIL vs. the wavelength for the (a) OD(1)–IIL–mir-
ror system and (b) OD(2)–IIL–mirror system. For 1–4, see
Fig. 2.
ness layer of an isotropic insulator (semiconductor, or
another material) must be inserted into the system in
order to extract or utilize the energy stored. That is, the
possibility of light energy compression using optical
systems with an IIL (the case under consideration in
this work) is of great practical interest.

Figures 6a and 6b present the d' dependences of the
intensity for the two cases.

Thus, our experimental and analytical data demon-
strate that an OD–IIL–mirror system may efficiently
and reliably compress the light energy in the insulating
layer, the spectral interval of compression being rather
wide and insensitive to the layer thickness spread.

Note in conclusion the possible applications of the
systems. If the light energy compression is maximal in
a spectral range of maximal absorption (e.g., of water),
such systems may be used in heat engineering as effi-
cient water heaters. Similarly, they can operate as gas
heaters. Also, such systems may be used in optical-to-
electric energy converters. Of course, other fields of
application may be indicated.

Significantly, the numerical results reported in this
work were obtained in a real experiment for a system
containing (i) a cholesteric layer of composition cho-
lesteryl nonanoate : cholesteryl chloride : cholesteryl
acetate = 20 : 15 : 6, which is d = 100σ thick and exhib-
its a pitch of helix in the optical range (σ = 0.42 µm) at
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Fig. 6. Intensity I of the net wave arising in the IIL vs. d' for
the (a) OD(1)–IIL–mirror system and (b) OD(2)–IIL–mir-
ror system. For 1–4, see Fig. 2.
TECHNICAL PHYSICS      Vol. 50      No. 5      2005



OPTICAL ENERGY ACCUMULATION BY A SYSTEM 629
room temperature (24°C); (ii) a silver layer (d = 2 µm,
n = 1.44 + i3.631) as a mirror; and (iii) a glass sheet (d1

= 50 µm, n1 = 1.5 + i10–8) as glass(1) or a diamond sheet
(d2 = 50 µm, n2 = 2.417 + i10–8) as glass(2). The accu-
racy of the numerical data was estimated using the
energy conservation law (in the absence of absorption,
R + T = 1) or by comparing current data with those
obtained previously.

REFERENCES
1. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley,

New York, 1984).
2. P. Yeh, Optical Waves in Layered Media (Wiley, New

York, 1988).
3. F. Ramos-Mendieta and P. Halevi, J. Opt. Soc. Am. B 14,

370 (1997).
4. F. Villa, L. E. Regalado, et al., Opt. Lett. 27, 646 (2002).
5. V. V. Efimov and D. I. Sementsov, Opt. Spektrosk. 77, 72

(1994) [Opt. Spectrosc. 77, 61 (1994)].
6. A. H. Gevorgyan, Mol. Cryst. Liq. Cryst. 378, 187

(2002).
7. A. A. Gevorgyan, Izv. NAN Armenii, Phys. 38, 366

(2003).
8. A. A. Gevorgyan, Izv. NAN Armenii, Phys. 39 (2004).
9. A. A. Gevorgyan, Izv. NAN Armenii, Phys. 39, 225

(2004).
10. A. A. Gevorgyan, Zh. Tekh. Fiz. 72 (8), 77 (2002) [Tech.

Phys. 47, 1008 (2002)].
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
11. A. H. Gevorgyan, Mol. Cryst. Liq. Cryst. 382, 1 (2002).
12. A. A. Gevorgyan, Izv. NAN Armenii, Phys. 37, 155

(2002).
13. A. A. Gevorgyan, Pis’ma Zh. Tekh. Fiz. 29 (19), 60

(2003) [Tech. Phys. Lett. 29, 819 (2003)].
14. F. Abeles, Annales de Physique 5, 596 (1950); 5, 706

(1950).
15. D. W. Berreman, J. Opt. Soc. Am. 203, 385 (1974).
16. L. M. Brekhovskikh, Waves in Layered Media (Nauka,

Moscow, 1973; Academic, New York, 1980).
17. V. I. Klyatskin, Stochastic Equations and Waves in Ran-

domly Inhomogeneous Media (Nauka, Moscow, 1980)
[in Russian].

18. V. I. Klyatskin, The Method of Embedding in the Wave
Propagation Theory (Nauka, Moscow, 1980) [in Rus-
sian].

19. D. M. Sedrakian, A. H. Gevorgyan, and A. Zh. Khacha-
trian, Opt. Commun. 192, 135 (2001).

20. V. A. Ambartsumyan, Izv. Akad. Nauk Arm. SSR, Est-
estv. Nauki 1–2, 31 (1944).

21. O. V. Pikichyan, Dokl. Akad. Nauk SSSR 263, 601
(1982) [Sov. Phys. Dokl. 28, 1033 (1983)].

22. A. A. Gevorgyan, K. V. Papoyan, and O. V. Pikichyan,
Opt. Spektrosk. 88, 647 (2000) [Opt. Spectrosc. 88, 586
(2000)].

23. A. A. Gevorgyan, Zh. Tekh. Fiz. 70 (9), 75 (2000) [Tech.
Phys. 45, 1170 (2000)].

Translated by V. Isaakyan



  

Technical Physics, Vol. 50, No. 5, 2005, pp. 630–635. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 75, No. 5, 2005, pp. 101–106.
Original Russian Text Copyright © 2005 by Novitsky, Barkovsky.

                           

OPTICS,
QUANTUM ELECTRONICS
Covariant Dispersion Relations and Evolution Tensor Operators 
for Optical Waveguides
A. V. Novitsky and L. M. Barkovsky

Belarussian State University, ul. Skaryna 4, Minsk, 220080 Belarus
e-mail: Barkovsky@bsu.by
Received December 30, 2003

Abstract—The operation approach is applied to solve the Maxwell equations for a sequence of circular layers
the permittivity and permeability tensors of which depend on the radial coordinate. This makes it possible to
extend the well-known method of stratification for cylindrical structures. Operator dispersion relations
for graded-index and multilayer step-index isotropic circular fibers are derived. Numerical solutions to the dis-
persion relation for a multilayer waveguide with a periodically varying permittivity of the layers are obtained.
© 2005 Pleiades Publishing, Inc.
INTRODUCTION

The influence of polarization on the performance of
fiber-optic communications has recently been given
much attention. Among polarization effects, the polar-
ization–mode dispersion, which is attributed to a rap-
idly and randomly varying birefringence in the fiber,
and polarization losses are the most important. The
former effect causes a random change in the polariza-
tion of light, which greatly affects the signal at the exit
from the fiber [1, 2]. In a number of works, the perfor-
mance of fiber-optic gyros [3, 4] and lasers [5, 6] was
extensively studied. A fiber-optic ring-interferometer
gyro configured with a high-linear-birefringence light-
guiding loop is an example [4]. Such gyros offer a high
sensitivity and may be used in navigation. In [6], two
lasing conditions for a ring bidirectional fiber laser with
a Faraday phase shifter are treated theoretically. Of
interest are techniques for determining the refractive
index of a liquid from optical losses in a curved cylin-
drical light guide [7].

Operator methods as applied to the optics of com-
plex media are being extensively developed today. The
light reflection and transmission tensors [8, 9], the ten-
sor refractive index [10], and the velocity operator of
electromagnetic waves [11] generalize related scalar
quantities with regard to the vector nature of light (pho-
ton spin) [12]. These operators describe the superposi-
tion of eigenmodes propagating with certain velocities
and polarizations. In terms of the covariant formalism
developed by Fedorov [13, 14], the Maxwell equations
and dispersion relations are represented in a compact
form suitable for analysis and calculation of layered
bianisotropic structures. Here, the evolution operator
and the impedance tensor are of critical importance. In
[15], both are applied to attack the problems of
waveguide propagation, reflection, and transmission of
light. The mathematical structure of the vector equa-
1063-7842/05/5005- $26.00 0630
tions for the field implies that the evolution operator is
a block matrix. For planar waveguides, operator disper-
sion relations have been derived [9], which involve the
impedance tensors for the cladding and the evolution
operator for the core. The extension of the impedance
matrix for the case of spherical layered anisotropic
media, which simulate the terrestrial ionosphere, was
reported [16].

In this work, we apply the operator method to deter-
mine modes in circular fibers. The electromagnetic
field is described with sets of first-order differential
equations. These sets are valid for those media the per-
mittivity and permeability tensors of which are radially
nonuniform. Such an approach (also called the method
of stratification [18]) is, in essence, a multilayer step
approximation and has been long used in analysis of
planar waveguides [17]. In [9], it was extended for
inhomogeneous bianisotropic waveguide layers. This
method of deriving dispersion relations is demonstrated
with an isotropic circular waveguide. Dispersion rela-
tions for multilayer step- and graded-index fibers are
studied.

EVOLUTIONARY SOLUTIONS FOR CIRCULAR 
CYLINDRICAL WAVEGUIDES

Consider the propagation of electromagnetic waves
with fields E(r, t) and H(r, t) harmonically varying in
time. In cylindrical coordinate system (r, ϕ, y), the
Maxwell equations have the form

(1)

b× ∂
∂y
----- er

×

r∂
∂ 1

r
---eϕ

×

ϕ∂
∂

+ + 
  H r( ) ikε r( )E r( ),–=

b× ∂
∂y
----- er

×

r∂
∂ 1

r
---eϕ

×

ϕ∂
∂

+ + 
  E r( ) ikµ r( )H r( ),=
© 2005 Pleiades Publishing, Inc.
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where er(ϕ), eϕ(ϕ), and b are the basis vectors directed,
respectively, along the radius, tangent to the circle, and
generatrix of the cylinder; k = ω/c is the wavenumber in
a vacuum; ω is the wave frequency; and b× is the tensor
dual to vector b ((b×)ik = εijkbj) [10, 14].

In (1), we assume that the permittivity, ε(r), and per-
meability, µ(r), tensors depend on only radial coordi-
nate r. This is possible if ε and µ are composed of axial-
coordinate-independent (ϕ-independent) tensors, unit
tensor 1, dyad b ⊗  b, and dual tensor b×. Thus, we will
deal with the following permittivity (permeability) ten-
sors: (i) ε = ε(r)1, isotropic medium; (ii) ε = ε1(r)(1 –
b ⊗  b) + ε2(r)b ⊗  b, uniaxial crystal the optical axis of
which is aligned with vector b; (iii) ε = ε1(r)1 + χ(r)b×,
gyrotropic medium; and (iv) ε = ε1(r)(1 – b ⊗  b) +
ε2(r)b ⊗  b + χ(r)b×.

Taking into account the invariance of the field
strengths relative to coordinates y and ϕ, we separate
the variables,

where β is the longitudinal wavenumber (mode propa-
gation constant) and ν is an integer.

Since components Hy, Hϕ, and Hr of vector H(r, ϕ)
(similarly to the components of E(r, ϕ)) do not depend
on ϕ (i.e., H(r, ϕ) = Hy(r)b + Hϕ(r)eϕ(ϕ) + Hr(r)er(ϕ)),
Eqs. (1) take the form

(2)

Thus, the Maxwell equations are reduced to a set of
ordinary first-order differential equations in r for vector
functions E and H. Coordinate ϕ enters into vectors eϕ
and er, which specify the polarization of the electro-
magnetic waves. It is seen that the independence of the
field components on ϕ is satisfied. Set (2) can be split
into four ordinary differential equations and two alge-
braic equations. The algebraic equations make it possi-
ble to eliminate two of six components of E and H. It is
appropriate to leave the field components lying in the
plane tangent to the surface of the circular cylinder
(hereafter, tangential components). These components
are continuous at the circular cylindrical interface and
can be represented in the form Et = IE and Ht = IH,

where I = 1 – er ⊗  er = –  is the operator projecting
onto the plane perpendicular to vector er. Introducing
vector u = (β/k)eϕ – ν/(kr)b and considering the rela-
tionships uH = erεE and uE = –erµH, which follow
from (2), we come to a relationship between the total

H r( )
E r( ) 

  iβy iνϕ+( )exp
H r ϕ,( )
E r ϕ,( ) 

  ,=

er
×dH

dr
-------- iβb× iν

r
-----eϕ

× 1
r
---b eϕ⊗+ + 

  H+ ikε r( )E,–=

er
×dE

dr
------- iβb× iν

r
-----eϕ

× 1
r
---b eϕ⊗+ + 

  E+ ikµ r( )H.=

er
×2
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fields and their tangential components [8],

(3)

where

is the restoration matrix, εr = erεer, and µr = erµer.
In view of (3), we derive a set of equations for Et and

Ht from (2),

(4)

where

(5)

In (4) and (5), M is the block matrix in which blocks
A, B, C, and D are planar tensors (planar tensor A meets

the relationship Aer = erA = 0),  is the tensor adjoint to
transposed tensor  (adjoint tensor  is defined by the
formula α = α  = |α|, where |α| is the determinant of
α) [10, 14]. Relationships (5) turn into similar relation-
ships for a planar-layer medium at r  ∞, er  q,
and eϕ  a = b × q, where q is the unit vector normal
to the planar layers.

The fundamental solution to Eq. (4) is given by [8]

(6)

where [ikM(r)] (a ≠ 0) is the evolution operator,
which is represented through the multiplicative integral
[19].

Relationship (6) implies that, knowing initial vec-
tors Ht(a) and Et(a), we can find the tangential compo-
nents of the fields at any point r. Let us introduce
impedance tensor Γ(r) and define it as a quantity relat-

H r( )
E r( ) 

 
 

V
Ht r( )
Et r( ) 

 
 

,=

V
1 er erµ/µr⊗– er– u/µr⊗

er u/εr⊗ 1 er– erε/εr⊗ 
 
 

=

d
dr
-----

Ht r( )
Et r( ) 

 
 

 = ikM r( ) Ht r( )
Et r( ) 

 
 

, M = A B

C D 
 
 

,

A
i

kr
-----eϕ eϕ⊗ 1

εr
----er

×εer+ u
1
µr
----er

×u– erµI ,⊗ ⊗=

B
1
µr
----er

×u– u⊗ 1
εr
---- I ε̃er

×,+=

C
1
εr
----er

×u u⊗ 1
µr
---- Iµ̃er

×,–=

D
i

kr
-----eϕ eϕ⊗ 1

µr
----er

×µer+ u
1
εr
----er

×u– erεI .⊗ ⊗=

ε̃
ε̃ α

α α

Ht r( )
Et r( ) 

 
 

Ωa
r ikM r( )[ ] Ht a( )

Et a( ) 
 
 

,=

Ωa
r ikM r( )[ ] E ikM r( ) rd+( ), E

a

r

∫ I 0

0 I 
 
 

,= =

Ωa
r
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ing the tangential components of the magnetic and elec-
tric fields, Et = ΓHt. Eliminating vectors Ht and Et from
(4), we arrive at the Riccati tensor equation for Γ [9]

(7)

The solution of Eq. (7) yields two impedance ten-
sors, Γ1(r) and Γ2(r). Thus, the circular layer r ∈  (a, b),
a ≠ 0, supports the propagation of two waves, which
correspond to two independent solutions and have
impedances Γ1(r) and Γ2(r) The layers covering the
intervals 0 ≤ r ≤ a and b ≤ r ≤ ∞ support one wave
whose amplitude is finite at points r = 0 and r = ∞,
respectively. For both a homogeneous and an inhomo-
geneous circular layer, the impedance tensor depends
on r, so that the Riccati tensor equation cannot be
reduced to an algebraic equation. Differential equation
(7) can be solved numerically by techniques described
elsewhere [8, 9].

ISOTROPIC CIRCULAR LAYER

Consider a homogeneous isotropic medium with a
constant permittivity and permeability, ε = const and
µ = const. Then, tensors (5) are recast as

where u1 = k2εµ – β2 and u2 = k2εµ – ν2/r2.
A solution to this problem is given in terms of the

Bessel functions as follows:

(8)

where P– is the block matrix pseudoinverse to P (P–P =
PP– = E) [10, 14].

Matrix P is expressed through planar tensors α1, α2,
β1, and β2 as

(9)

1
ik
----dΓ

dr
------- ΓBΓ Γ A DΓ– C–+ + 0.=

A
i

kr
-----eϕ eϕ , D⊗ i

kr
-----eϕ eϕ ,⊗= =

B = 
βν

k2µr
----------- b b⊗ eϕ– eϕ⊗( )

u1

k2µ
--------b eϕ⊗

u2

k2µ
--------eϕ–+ b,⊗

C = βν
k2εr
---------- b b⊗ eϕ– eϕ⊗( )–

u1

k2ε
-------b– eϕ

u2

k2ε
-------eϕ+ b,⊗ ⊗

Ht r( )
Et r( ) 

 
 

Ωa
r Ht a( )

Et a( ) 
 
 

, Ωa
r P r( )P– a( ),= =

P r( ) α1 α2

β1 β2 
 
 

,=

αm Fν±
m( ) b

βνa2

u±
2r

------------eϕ+−
 
 
 

b⊗=
ikaε
u±

-----------Fν±
m( )'eϕ eϕ ,⊗±

βm
ikaµ

u±
-----------Fν±

m( )'eϕ b⊗+−=
Here,  = ±a2u1 = ±k2a2(εµ – β2/k2),  = Jν(u+r/a)

is the νth-order Bessel function of the first kind,  =
Yν(u+r/a) is the Bessel function of the second kind,

 = Iν(u–r/a) and  = Kν(u–r/a) are the modified

Bessel functions, and (x) = d (x)/dx means dif-
ferentiation with respect to argument. Superscripts 1
and 2 correspond to independent solutions of the Bessel
equation.

For each of the waves corresponding to independent
solutions to the Bessel equation, the impedance tensor
is given by

(10)

where  is the tensor pseudoinverse to tensor αm.

Given the initial amplitudes of waves Ht1(a) and
Ht2(a), the evolution of the fields is described by the
relationships

(11)

Evolution operator (8) of a homogeneous isotropic
layer equals the product of block matrices P(r) and
P−(a) and is also a block matrix. Tensors α1, α2, β1, and

β2 are defined by cylindrical functions  and mode
propagation constants β and ν. The layer a ≤ r ≤ b (a ≠
0) supports the propagation of two waves, the field
strengths of which are given by (11). In the layer 0 ≤ r ≤
a (and also b ≤ r ≤ ∞), one of the independent waves
does not meet the conditions that are imposed on H and
E at point r = 0 (r = ∞). Thus, only one wave can prop-
agate in the cladding and core of the waveguide.

DISPERSION RELATIONS AND MODE 
POLARIZATION IN ISOTROPIC FIBERS

Now we will apply our analytical results to the prop-
agation of electromagnetic waves in circular isotropic
infinite-cladding fibers. The objects of consideration
are multilayer step-index fibers and graded-index fibers
with an inhomogeneous core. Our aim is to derive dis-
persion relations and find the polarization of waveguide
modes. For a multilayer step-index fiber with radius a
and constant permittivities and permeabilities of the
core (εco, µco) and cladding (εcl, µcl), solutions to the
Bessel equation are routinely taken in the form

+ Fν±
m( ) b

βνa2

u±
2r

------------eϕ+−
 
 
 

eϕ ; m⊗ 1 2.,=

u±
2 Fν+

1( )

Fν+
2( )

Fν–
1( ) Fν–

2( )

Fν±
m( )' Fν±

m( )

Γm r( ) βm r( )αm
– r( ),=

αm
–

Htm r( ) αm r( )αm
– a( )Htm a( ),=

Etm r( ) βm r( )αm
– a( )Htm a( ).=

Fν±
1 2,( )

Fν

Fν+
1( ) Jν u+r/a( ), r a<=

Fν–
2( ) Kν u–r/a( ), r a.≥=




=
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Such a form of the solutions provides field oscilla-
tion in the core and field decay in the cladding. Then,
impedance tensors (10) at the boundary r = a (surface
impedance tensors) can be written as

(12)

where u2 = k2a2(εcoµco – β2/k2) and w2 = k2a2(β2/k2 –
εclµcl).

Next, multiplying the boundary conditions

(13)

by block matrix (Γcl – I), we get the equation

(14)

where Θ = Γcl – Γco is a planar tensor (erΘ = Θer = 0).
Thus, tensor Θ has two eigenvectors, er and

(a), which correspond to the zero eigenvalue.
Accordingly, Θ is a dyad and the invariant dispersion
relation takes the form [9]

(15)

where  is an invariant (the trace of the tensor adjoint
to Θ).

Taking into account that  = er ⊗  er = 0 and
applying the Hamilton–Cayley theorem

(16)

we write dispersion relation (15) in the form [9]

(17)

Substituting impedance tensors (12) into Θ, we get
a dispersion relation for a graded-index fiber that coin-
cides with the well-known expression from the theory
of circular fiber [18],

Γ co
iu

kaεco
------------

Jν u( )
Jν' u( )
------------- b

βνa

u2
----------eϕ– 

 – eϕ
βνa

u2
----------b+ 

 ⊗=

–
ikaµco

u
---------------

Jν' u( )
Jν u( )
-------------eϕ b,⊗

Γ cl
iw

kaεcl
-----------

Kν w( )
Kν' w( )
--------------- b

βνa

w2
----------eϕ+ 

 – eϕ
βνa

w2
----------b– 

 ⊗=

+
ikaµcl

w
--------------

Kν' w( )
Kν w( )
---------------eϕ b,⊗

Ht
co( ) a( )

Γ coHt
co( ) a( ) 

 
 
 

Ht
cl( ) a( )

Γ clHt
cl( ) a( ) 

 
 
 

=

ΘHt
co( ) a( ) 0,=

Ht
co( )

Θt 0,=

Θt

Θ Θt

Θ Θt– Θ Θ Θt–( ),=

Θ2( )t Θt( )2.=

Jν' u( )
uJν u( )
----------------

µcl

µco
-------

Kν' w( )
wKν w( )
--------------------+ 

  Jν' u( )
uJν u( )
----------------

εcl

εco
------

Kν' w( )
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--------------------+ 

 

=  
β2ν2

k2εcoµco
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u4w4
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The solution of Eq. (14) also yields tangential com-

ponents (a) of the field vector at the interface. In
fact, multiplying (16) by arbitrary vector p that satisfies
the condition (Θ – Θt)p ≠ 0 and comparing the result
with (14), we get

(18)

The amplitudes of the independent waves at any
point r in the core are determined from (11) at Ht1(a) =

(a) and Ht2(a) = 0. Vectors Ht(r) and Et(r) in the
cladding are found in a similar way by putting Ht1(a) =

0 and Ht2(a) = (a). The total field vectors are
expressed through the restoration matrix (see (3)). The
polarization of waveguide modes in the core is then
written in the form

(19)

(similar expressions can be written for the cladding).
Propagation constants β appearing in (19) are found
from dispersion relation (17). Thus, to solve the
waveguide problem, one has to know tensor Θ. Know-
ing this tensor, we write dispersion relation (17) and
determine the polarization of the modes (19).

In the case of a multilayer circular fiber with permit-
tivities and permeabilities specified as

the boundary conditions yield the relationship

(20)

Evolution operator  is the product of the evolu-
tion operators for each of the layers (see (8)) in the fol-
lowing order:

(21)

Ht
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Ht
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V
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For a graded-index fiber,

the boundary conditions yield a relationship similar to

(20) in which  should be replaced by evolution

operator . The latter can be represented as multipli-

cative integral (6). Numerically,  can be found in
two ways. The first way is to partition the interval (a, b)
into n parts and set block matrix M constant and equal
to M(rj) within each of the parts (rj, rj + 1), j = 0, 1, …,
(n – 1)). Then, the multiplicative integral is represent-
able as the product of exponentials with a matrix argu-
ment,

(22)

where rn = b, r0 = a, and ∆rj = rj + 1 – rj.

The evolution operator of a homogeneous layer can
also be calculated by formula (22). The second way
implies the partition of an inhomogeneous layer into n
homogeneous sublayers. In this case, the evolution
operator can be found by formula (21). For the same
number n of layers into which a fiber is split, formula
(21) gives a more accurate value of the multiplicative
integral than expression (22). On the other hand,
expression (22) does not require calculation of special
functions appearing in block matrix P and, thereby,
may cut the time taken to compute the multiplicative
integral.

ε
εco, r a<
ε r( ), a r b<≤
εcl, r b,≥






µ
µco, r a<
µ r( ), a r b<≤
µcl, r b,≥






= =
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Ωa
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Ωa
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b = ikM rn 1–( )∆rn 1–( ) ikM rn 2–( )∆rn 2–( )…expexp

… ikM r0( )∆r0( ),exp
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Dimensionless propagation constant β/k vs. fiber parameter

V = ka  for the modes of a fiber with a periodic

sequence of layers at ν = 0, 1, 2. The parameters of the prob-
lem are εco = 2.25, εcl= 2.10, d = 0.4a, and n = 5.

εco εcl–
NUMERICAL CALCULATION 
AND CONCLUSIONS

By way of example, consider a periodic multilayer
structure

µ = 1,     j = 1, …, n,

where a is the fiber core radius and n is the number of
periods of width d.

One half of the period, d/2, is occupied by a medium
with permittivity εcl; the second, by a medium with per-
mittivity εco > εcl. The modes of such a fiber are speci-
fied by dispersion relation (17). Planar tensor Θ is cal-
culated by formula (20), and the evolution operator
equals matrix product (21).

The figure shows the solutions to the dispersion
equation for ν = 0, 1, 2. The case ν = 0 corresponds to
the TE and TM modes. For the other ν, the modes are
hybrid; that is, neither longitudinal coordinate (Hy and
Ey) vanishes. The type of the hybrid mode is defined by
the ratio between the longitudinal components of the
electric and magnetic fields [18],

The case δ > 0 corresponds to the HE mode; δ < 0,
to the EH mode. The HE11 mode has the lowest cutoff
frequency and, hence, is the fundamental mode. The
fiber is regarded as single-mode (i.e., supporting only
the fundamental mode) if the fiber parameter V =

ka  is smaller than the cutoff frequency of the
next mode (V < 2.4 according to the figure).

Thus, we have derived dispersion relations and
found the polarizations of modes for circular multilayer
isotropic fibers. The awkwardness of mathematical
manipulation in deriving the dispersion relations is
compensated for by the generality of the approach and
feasibility of algorithmizing the problem irrespective of
the complexity of media (from the class of media rele-
vant to our problem) and the number of layers. For
anisotropic fibers, the permittivity and permeability
tensors of which are complex and independent of the
radial coordinate, dispersion relations (17) and formu-
las (18) for the mode polarization are also valid. In this
case, propagation constants β are complex; that is, the
modes decay. If tensors ε(r, ϕ) and µ(r, ϕ) are noniso-
tropic in the cross section of the fiber or the cross sec-
tion is not circular, Eqs. (2)–(5) fail. Then, it is neces-
sary to solve the partial Maxwell equations for the elec-
tric and magnetic fields.

ε

εco, r a,<
εcl, a j 1–( )d r a j 1/2–( )d ,+<≤+

εco, a j 1/2–( )d r a jd ,+<≤+

εcl, r a nd ,+≥







=

δ
Ey

iHy

--------
bΓ co a( ) Θ Θt–( )p

ib Θ Θt–( )p
--------------------------------------------.= =

εco εcl–
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Abstract—Forced oscillations excited by a radial magnetic dipole in a dielectric hemisphere (resonator) placed
on a perfectly conducting plane are studied. It is shown that the dipole excites H modes. When the dipole radi-
ation frequency equals the eigenfrequency of the resonator, an amplitude resonance is observed in the spectrum.
The excitation efficiency is high when the magnetic dipole is placed at the maximum of the radial field compo-
nent of the resonator’s eigenmode. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The study of oscillation excitation of a homoge-
neous dielectric sphere was pioneered by Mie [1] and
Debye [2], who considered scattering of electromag-
netic waves by the sphere. External and internal excita-
tion of a finite-conductivity sphere by electric and mag-
netic currents distributed in a homogeneous isotropic
space was addressed in [3, 4]. Today’s interest in this
problem is associated with the wide application of open
dielectric resonators in nondestructive complex-per-
mittivity measurements [5–7], in measurements of the
surface impedance of metals and thin-film high-tem-
perature superconductors [7–9], as well as in signal fil-
tering [10] and frequency stabilization techniques [11].
When studying these resonators, researchers focus on
eigenmodes of whispering-gallery type, which are
characterized by high polar index n. A low leakage of
these modes from the resonator is related to the almost
total reflection of the resonance field from the smooth
spherical surface. This effect was first demonstrated
and explained with acoustic waves propagating in a
cylindrical gallery [12]. The hemispherical dielectric
resonator placed on a conducting plane offers much
more extended functionality. In particular, it can be
excited through slots cut in a metal screen. In the elec-
tromagnetic field distribution over the spherical surface
of this resonator operating in whispering-gallery
modes, beltlike patterns were observed experimentally
[13]. It is of interest to theoretically study the field and
power distributions of oscillations excited in a hemi-
spherical dielectric resonator with a conducting planar
base.

THEORY

Consider a dielectric hemisphere of radius r0 that is
placed on a perfectly conducting plane (Fig. 1). The
1063-7842/05/5005- $26.00 0636
hemisphere is made of a homogeneous isotropic sub-
stance characterized by complex permittivity εd and
permeability µd. The environment has complex permit-
tivity εe and permeability µe. The structure is excited by
a magnetic dipole in the form of a radial slot in the con-
ducting plane, which has magnetic current density

where

J0 is the total magnetic current, ω is the dipole radiation
frequency, δ(x) is the delta function, and r1 is the radial
position of the source (dipole).

jr
M r θ ϕ t, , ,( ) jr

M r θ ϕ, ,( ) iωt–( ),exp=

jr
M r θ ϕ, ,( )

J0δ r r1–( )
r2 θsin

--------------------------δ θ π/2–( )δ ϕ( ),=

Z

Y

X

εe θ
µe

µd
εd

γ

ϕ
r1

(r, θ, ϕ)

Fig. 1. Hemispherical dielectric resonator on a conducting
base.
© 2005 Pleiades Publishing, Inc.
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The system of Maxwell equations for the field com-
ponents has the form

(1)

where subscript ν = “d” for r ≤ r0 and ν = “e” for r > r0,
k = ω/c, and c is the speed of light. All the field compo-
nents contain time-varying factor exp(–iωt), which is
hereinafter omitted.

After eliminating components Eθ, Eϕ, Hθ, and Hϕ
from Eqs. (1), the Maxwell equations reduce to the fol-
lowing differential equations for radial components Hr
and Er:

(2)

Here, the operator ∆⊥  is defined as

and 

An isotropic dielectric hemisphere supports H (Er =
0) and E (Hr = 0) modes [14]. As follows from Eqs. (2),

magnetic current (r, θ, ϕ) excites only H modes.

Let us introduce function U(r, θ, ϕ) that is related to
the radial magnetic field component as

(3)

∂
∂r
-----rEθ

∂
∂θ
------Er– ikrµνHϕ ;=

1
θsin

----------- ∂
∂θ
------ θEϕ

∂
∂ϕ
------Eθ–sin 

 

=  ikrµνHr
4πr

c
--------- jr

M r θ ϕ t, , ,( );+

1
θsin

----------- ∂
∂ϕ
------Er

∂
∂r
-----rEϕ– ikrµνHθ;=

1
θsin

----------- ∂
∂θ
------ θHϕ

∂
∂ϕ
------Hθ–sin 

  –ikrενEr;=

∂
∂r
-----rHθ

∂
∂θ
------Hr– ikrενEϕ ;–=

1
θsin

----------- ∂
∂ϕ
------Hr

∂
∂r
-----rHϕ– ikrενEθ,–=

∂2

∂r2
------- χν

2+ 
  r2 ∆⊥+ Hr r θ ϕ, ,( )

=  
4πi
ωµν
---------- ∂2

∂r2
------- χν

2+ 
  r2 jr

M r θ ϕ, ,( );

∂2

∂r2
------- χν

2+ 
  r2 ∆⊥+ Er r θ ϕ, ,( ) 0.=

∆⊥  = 
1

θsin
----------- ∂

∂θ
------ θ ∂

∂θ
------sin

1

θsin
2

------------ ∂2

∂ϕ2
---------+

χν k ενµν.=

jr
M

Hr r θ ϕ, ,( ) ∂2

∂r2
------- χν

2+ 
  U r θ ϕ, ,( ).=
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Then, the equation in (2) that specifies H modes takes
the form

(4)

The tangential field components of H modes can be
written in terms of function U(r, θ, ϕ) as

(5)

We seek a solution to Eq. (4) in the form of the
expansion

(6)

Functions Ynm(θ, ϕ) = (cosθ)exp(imϕ) are the

eigenfunctions of operator ∆⊥  with (cosθ) being the
associated Legendre functions, which are nonzero
when m ≤ n. Functions Rnm(χνr) satisfy the inhomoge-
neous differential equation

(7)

where qnm = π(n + m)!/(2n + 1)(n – m)!.
Equation (7) was derived by substituting expansion

(6) into Eq. (4), multiplying the obtained result
by Yn'm'(θ, ϕ), and integrating the product over angles ϕ
and θ from 0 to 2π and from 0 to π/2, respectively. In
so doing, the orthogonality condition is taken into
account [15],

where δij is the Kronecker delta.
On the conducting surface (θ = π/2), functions

(cosθ) and (d/dθ) (cosθ) satisfy the following
relationships:

∂2

∂r2
------- χν

2 ∆⊥

r2
------+ + 

  U r θ ϕ, ,( ) 4πi
ωµν
---------- jr

M r θ ϕ, ,( ).=

rHθ r θ ϕ, ,( ) ∂2U r θ ϕ, ,( )
∂θ∂r

------------------------------;=

rHϕ r θ ϕ, ,( ) 1
θsin

-----------∂2U r θ ϕ, ,( )
∂ϕ∂r

------------------------------;=

rEθ r θ ϕ, ,( )
ikµν

θsin
-----------∂U r θ ϕ, ,( )

∂ϕ
----------------------------;=

rEϕ r θ ϕ, ,( ) ikµn–
∂U r θ ϕ, ,( )

∂θ
----------------------------.=

U r θ ϕ, ,( ) Rnm χνr( )Ynm θ ϕ,( ).
m n–=

n

∑
n 0=

∞

∑=

Pn
m

Pn
m

∂2

∂r2
------- χν

2 n n 1+( )
r2

--------------------–+ 
  Rnm χνr( )

=  
4πi
ωµν
----------

Pn
m 0( )
qnm

--------------
J0δ r r1–( )

r2
--------------------------,

ϕ Ynm θ ϕ,( )Yn'm' θ ϕ,( ) θsin θd

0

π/2

∫d

0

2π

∫ qnmδnn'δmm' ,=

Pn
m Pn

m

Pn
m 0( ) 2m

π
------- π

2
--- n m+( ) 

  Γ n m 1+ +( )/2( )
Γ n m– 2+( )/2( )
-----------------------------------------,cos=
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(8)

where Γ(x) is the gamma function.
On the conducting surface of the resonator, field

component Eϕ vanishes. As follows from Eqs. (5) and
(8), this boundary condition is satisfied when the sum
of indices n + m is even. Consequently, azimuth-homo-
geneous H modes (m = 0) with odd polar index n cannot
be excited in the resonator.

Function

which is a solution to differential equation (7), is finite
at the center of the hemisphere and satisfies the radia-
tion condition at infinity. Function Rn(χνr) depends on
source location r1 and is defined as follows:

for r1 ≤ r0,

for r1 > r0,

Here, jn(z) = Jn + 1/2(z) and (z) =

(z), where Jn + 1/2(z) and (z) are the
cylindrical Bessel function and Hankel function of the
first kind, respectively. Function

describes the effect of the excitation source on the field

inside and outside the resonator. Amplitudes , ,

, and  of the fields excited by the magnetic
dipole are found from the boundary conditions of tan-
gential field component continuity on the surface of the
hemisphere, r = r0, and have the form

d
dθ
------Pn

m θcos( ) θ π/2=

=  
2m 1+

π
----------- π

2
--- n m+( ) Γ 2 n m+ +( )/2( )

Γ 1 n m–+( )/2( )
-----------------------------------------,sin

Rnm χνr( )
Pn

m 0( )
qnm

--------------Rn χνr( ),=

Rn χνr( )
Tn χdr( ) An

1( ) jn χdr( ), r r0≤+

Bn
1( )hn

1( ) χer( ), r r0;>



=

Rn χνr( )
An

2( ) jn χdr( ), r r0≤

Tn χer( ) Bn
2( )+ hn

1( ) χdr( ), r r0.>
=

πz/2 hn
1( )

πz/2Hn 1/2+
1( ) Hn 1/2+

1( )

Tn χνr( ) = 

4π
c

------
J0

µν ενµνk2r1
2

-------------------------------hn
1( ) χνr1( ) jn χnr( ), r r1,≤

4π
c

------
J0

µν ενµνk2r1
2

------------------------------- jn χνr1( )hn
1( ) χνr( ), r r1≥

An
1( ) An

2( )

Bn
1( ) Bn

2( )

An
1( ) εeµdTn χdr0( )hn

1( )' χer0( )[=

– εdµeTn' χdr0( )hn
1( ) χer0( ) ] /∆n ω( ),
(9)

Expressions (9) for the amplitudes have the denom-
inator

The prime by the cylindrical functions means differen-
tiation with respect to the argument. Solutions to the
equation

(10)

are eigenfrequencies ωp of the resonator [16]. Because
of radiation losses and dielectric losses, the eigenfre-

quencies of the resonator are complex, ωp =  – i

(  ≥ 0). The imaginary part of eigenfrequency ωp

determines the damping constant of a mode with index
p. In general, each pth oscillation mode is characterized
by three indices: n, m, and s. Polar index n specifies the
number of field variations in polar coordinate θ for azi-
muth-symmetric oscillations (m = 0). Azimuth index m
determines the number of field variations for azimuth
oscillations in ϕ. Radial index s, which is the serial
number of the root of dispersion relation (10), is
responsible for the number of field variations in radial
coordinate r.

At the same time, frequency ω of the forced oscilla-
tions is real. When frequency ω of the forced oscilla-
tions is equal to the real part, , of one of the eigen-
frequencies, an amplitude resonance is observed. As a
result, the frequencies and polar indices of the forced
and eigen H modes of the resonator are equal to each
other.

After applying the summation theorem [15],

the field components of the forced H modes, which are
determined by relationships (3) and (5) in view of solu-
tion (6), take the form

An
2( ) µe εe Tn' χer0( )hn

1( ) χer0( )[=

– Tn χer0( )hn
1( )' χer0( ) ] / µd∆n ω( ),

Bn
1( ) µd εd Tn χdr0( ) jn' χdr0( )[=

– Tn' χdr0( ) jn χdr0( ) ] / µe∆n ω( ),

Bn
2( ) εeµdTn' χer0( ) jn χdr0( )[=

– εdµeTn χer0( ) jn' χdr0( ) ] /∆n ω( ).

∆n ω( ) εdµe jn' χdr0( )hn
1( ) χer0( )=

– εeµd jn χdr0( )hn
1( )' χer0( ).

∆n ωp( ) 0=

ωp' ωp
n

ωp
n

ωp'

Pn γcos( ) = 
n m–( )!
n m+( )!

--------------------Pn
m θcos( )Pn

m 0( ) imϕ( ),exp
m n–=

n

∑

Er 0;=

Hr
1

πr2
-------- n n 1+( ) 2n 1+( )Rn χνr( )Pn γcos( ),

n 0=

∞

∑=
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where Pn(cosγ) is the Legendre polynomial, cosγ =

Hθ
θ ϕcoscos
πr

------------------------χν 2n 1+( )Rn' χνr( )Pn' γcos( ),
n 0=

∞

∑=

Eθ ikµν
ϕsin

πr
-----------– 2n 1+( )Rn χνr( )Pn' γcos( ),

n 0=

∞

∑=

Hϕ
ϕsin

πr
-----------– χν 2n 1+( )Rn' χνr( )Pn' γcos( ),

n 0=

∞

∑=

Eϕ ikµν
θ ϕcoscos
πr

------------------------– 2n 1+( )Rn χνr( )Pn' γcos( ),
n 0=

∞

∑=
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Fig. 2. Normalized (a) magnitude, |Hr|/|Hr|max, of compo-
nent Hr of the field and (b) power density of the H36ms mode
at the point with coordinates r = 3.9 cm and θ = ϕ = π/4 vs.
the location of the source.
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sinθcosϕ, and γ is the angle between the source and
observation point (Fig. 1).

Thus, each of the modes of a hemispherical isotro-
pic dielectric resonator with a conducting base exhibits
(n + 1)-fold frequency degeneracy in azimuth index m.
The mode degeneracy is also observed for forced oscil-
lations in the resonator excited by a radial magnetic
dipole.

The power density of the H modes excited at any
observation point is given by the relationship [17]

where the asterisk and c.c. mean complex conjugates.

NUMERICAL EXPERIMENT

Numerical simulations were performed with a
Teflon (εd = 2.04(1 + 1.7 × 10–4i), µd = 1) hemispherical

W (ενE E*⋅ µνH H*⋅ c.c.)+ + /16π,=
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Fig. 3. Power density distribution of the H36m1 mode
excited by the source located at r1 = (a) 3.7 and (b) 3.9 cm.
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resonator of radius r0 = 3.9 cm placed on a perfectly
conducting plane. The resonator was surrounded by a
medium with εe = µe = 1. Excitation of H36ms oscilla-
tions was considered. The resonator excitation effi-
ciency varied with distance of the magnetic dipole to
the resonator center (Fig. 2). The excitation was the
most efficient when the point of excitation (dipole’s
position) coincided with the maximum of the resonator
eigenmode power distribution. Experimentally, this
means that the excitation efficiency depends on the
degree of coupling between the source and hemisphere.
In our numerical simulations, the coupling coefficient
was proportional to the radial distance between the
source and the maximum of the field distribution of the
corresponding whispering gallery mode.

The distributions of the power density and radial
field component of the H36m1 mode on the hemisphere
and on the conducting plane outside the dielectric are
shown in Figs. 3 and 4. This mode was excited at a fre-
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Fig. 4. Distribution of the Hr component of the H36m1 mode
for the source located at r1 = (a) 3.7 and (b) 3.9 cm.
quency of 35.445 GHz. The Q factor of the resonator
thus excited is 5013.7. A (point) source was placed at
two points: one, with angular coordinates θ = π/2 and
ϕ = 0 and radial coordinate r1 = 3.7 cm, coincided with
the maximum of the eigenmode power distribution; the
other, with the same angular coordinates and r1 =
3.9 cm, lay on the surface of the hemisphere. At r1 = r0,
the energy of the mode excited concentrates in the form
of a belt close and parallel to the conducting surface
(Fig. 3b). Such a field distribution is typical of the azi-
muth mode with index m = n.

The maxima of the power density distribution for
the oscillation excited (Fig. 3) coincide with the max-
ima of the resonator’s eigenmode power distribution
and are in the same radial plane where the source is
placed. The power density and field distributions
(Fig. 3) show a beltlike pattern, which is especially dis-
tinct on the conducting surface. The belt passes through
the excitation point and pole of the hemisphere. Such a
distribution is typical of the azimuth-homogeneous
oscillation with index m = 0. By appropriately choosing
the source location, one can somewhat amplify a mode
with particular index m.

A similar field distribution is observed for mode
H36m2. The only difference is that the efficiency of exci-
tation of this mode is much lower (Fig. 2) despite its
higher frequency (39.743 GHz). The unloaded Q factor
of the resonator for this mode is 498.65.

CONCLUSIONS

Forced oscillations in an isotropic dielectric hemi-
sphere placed on a perfectly conducting plane are stud-
ied. It is shown that a radial magnetic dipole excites
only H modes. As follows from the boundary condition
on the conducting plane, the sum n + m of the polar and
azimuth indices for the H modes is even. As a result, the
forced, as well as natural, H modes exhibit (n + 1)-fold
degeneracy in azimuth index m. Azimuth-homoge-
neous H modes (m = 0) with odd polar index n cannot
be excited in this resonator.

When the dipole radiation frequency approaches the
frequency of a resonator’s eigenmode, an amplitude
resonance is observed. The radial magnetic dipole is
demonstrated to form a beltlike power distribution of
the whispering-gallery modes in the hemisphere—the
effect experimentally found in [13].
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Abstract—It is shown that the efficiency of pulsed electrode conditioning in a vacuum, which is estimated from
the state of the electrode surface, rises as conditioning pulses get shorter and may exceed the efficiency of con-
ditioning by dc breakdowns by two orders of magnitude or more. A criterion with which one can judge the
cathodic mechanism of breakdown initiation in the steady-state regime is suggested. Under optimal electrode
processing conditions (pulse width tp < 10–8 s, field strength E0 > 108 V/m), the ultimate dielectric strength cor-
responding to the cathodic mechanism of breakdown initiation in a vacuum can be reached. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

The condition of the electrode surface has a pro-
nounced effect on the vacuum insulation quality.
Microprotrusions, loosely bonded particles, oxide
films, contamination, dielectric inclusions, and gas
bubbles present on the surface all influence the values
of prebreakdown current and breakdown voltage.
Training by breakdowns is the most popular method
of electrode conditioning, training by milli- or micro-
second pulses being little different in efficiency from
training by steady breakdown [1]. Application of
high-voltage nanosecond pulses cuts the number of
vacuum breakdown initiation mechanisms, leaving
the cathodic mechanism as the most plausible. In this
mechanism, Joule heating due to the passing field-
emission current causes the explosive breakdown of the
emitter.

Joule heating of the emitter makes it possible to con-
sider breakdown delay time td as a function of electric
field strength E and physical constants of the emitter
material. The processing of electrodes by high-voltage
pulses whose width equals the breakdown time delay,
tp = td, is the optimal regime of conditioning. Under
such conditions, the cathode surface is formed with the
lowest value of field amplification factor β. Comparing
(at tα = const) analytical dependences of the time delay
on the field microstrength at the cathode, td = f(E), with
experimental time delay versus macrostrength curves,
td = f(E0), makes it possible to estimate the efficiency of
optimal pulsed conditioning regimes from a change in
the state of the surface. The conditioning efficiency
may also be estimated from a change in the electrical
performance of vacuum insulation.
1063-7842/05/5005- $26.00 0642
BREAKDOWN DELAY IN A VACUUM

Application of voltage pulses with a duration

(1)

(tr is the time of thermal relaxation; h is the emitter
height; and ρ, c, and λ are, respectively, the density,
specific heat, and thermal conductivity of the emitter
material) reduces the boundary-value problem of emit-
ter temperature distribution [2] to the form [3]

(2)

where j0 is the field-emission current density; k0 is a
proportionality coefficient in the temperature depen-
dence of the resistivity of the emitter material, k(T) = k0T;
T* is the inversion temperature, T* = 5.67 × 10–7Eϕ–1/2;
and ϕ is the work function.

Equation (2) written in integral form [4],

(3)

where

with

tr ! tp ! h2ρc/λ
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represents a criterion of vacuum breakdown initiation.
According to this criterion, the energy sufficient to
break the emitter is released for a time that is equal to
breakdown delay time tp = td. Quantity aρc/k0 is the spe-
cific energy of emitter breakdown and is constant for a
given metal.

If the voltage pulses are rectangular, one can easily
express from (3) the time delay as a function of the
emitter breakdown specific energy, work function, and
electric field microstrength,

(4)

OPTIMALITY CRITERION FOR PULSED 
CONDITIONING

Electrode conditioning in the prebreakdown regime,
tp < td, is inefficient, since the energy is insufficient for
emitter breakdown. The conditioning efficiency rises
with voltage pulse duration and reaches a maximum
when tp = td (the critical breakdown-initiating condi-
tion). The conditioning by pulses with tp = td smoothes
out the relief on the cathode surface and even polishes
it at tp ≤ 1 ns [5].

Under the conditions of explosive electron emis-
sion, tp > td, the pulse energy not only breaks the emitter
but also favors breakdown mechanism switching in the
electrode gap. The conditioning efficiency rises when
explosive emission current pulses narrow and reaches a
maximum (surface cathode polishing) as the pulse
width approaches the critical value tp = td. The polishing
is observed for tp ≈ 1 ns [6, 7].

The optimal regime of conditioning corresponds to
the critical condition tp = td, when the pulse energy
breaks the emitter but cannot initiate switching. The
processing of the emitter by pulses with tp = td smoothes
out microprotrusions without generating new emission
centers. The optimal conditioning regime minimizes
the emitter surface roughness. In this case, the optimal-
ity criterion takes the form [8]

(5)

According to (5), the energy being released in the
emitter for pulse time tp = td remains constant and equal
to the emitter breakdown energy. As the power of the
pulses in the optimal regime grows, their width shrinks.
As the pulse width decreases, so do the distance the
thermal wave travels and the depth of emitter damage.
Accordingly, the conditioning efficiency rises up to pol-
ishing.

td 4.2 1011aρc
k0

---------ϕ2 21.6ϕ 1/2––{ }exp×=

× 1.32 1010ϕ3/2E 1–×{ }exp

E4
------------------------------------------------------------.

j0
2 t( ) td

0

tp

∫ a
ρc
k0
------.=
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Experiments on determining the breakdown time
delay in a vacuum in which the emitter is processed by
pulses with tp ≈ td correspond to the optimal condition-
ing regime and make it possible to estimate the effi-
ciency of optimal conditioning regimes.

EMITTER SURFACE

The condition of the emitter surface is characterized
by electric field amplification factor β. This factor is
classically determined from the transconductance of
the Fowler–Nordheim curve. In the case of pulses with
tp = td, factor β can be found from the analytical depen-
dence of the time delay on the electric field micros-
trength td = f(E) (see (4)) and the experimental depen-
dence of the time delay on the field macrostrength
td = f(E0).

Experimental data for the vacuum breakdown time
delay [9–14] were obtained for copper, aluminum,
nickel, molybdenum, and iron electrodes with a devel-
oped surface. The pulse width was varied from the sub-
nanosecond range to the millisecond range. Comparing
the experimental curves td = f(E0) with the calculated
curves td = f(E) at t = const made it possible to estimate
the field amplification factor for these materials,

(6)

achieved after conditioning by pulses with tp ≈ td and
construct the dependences of β on the time, β = f(tp),
and intensity, β = f(E0), of optimal action.

Figure 1 plots the field amplification factor against
the pulse width tp ≈ td for copper electrodes. The curve
β = f(tp) shows how the emitter surface quality varies
with duration tp ≈ td of processing pulses. From this
curve, it follows that, at tp < 10–7 s, a decrease in the

β E/E0,=

102

1
10–9

β

tp, s10–7 10–5

10

103

Cu

Fig. 1. Field amplification factor vs. the duration of condi-
tioning pulses with tp ≈ td. Data points are taken from [5]
(d), [9] (s), [10] (n), [11] (h), and [12] (*).
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pulse width and a corresponding increase in the pulse
power reduce β and improve the emitter surface quality.
At tp ~ 10–7 s, the run of the curve changes. At tp >
10−7 s, the width does not influence both the field
amplification factor and the emitter surface quality and
the efficiency of training by milli- and microsecond
pulses differs insignificantly from the efficiency of
training by dc breakdowns. This is in accordance with
the results of [1] and can be explained by cooling of the
emitter via heat conduction.

Considering that amplification factor β0 obtained at
tp > 10–7 s corresponds to training by dc breakdowns,
one can estimate the efficiency of pulsed conditioning
from the relative change in the emitter surface quality,

(7)

where βp is the amplification factor after pulsed condi-
tioning.

Based on the curve β = f(tp), we can construct the
dependence of pulsed conditioning efficiency Kβ on
pulse duration tp ≈ td in the optimal regime.

Experimental data for aluminum [9–12], molybde-
num [11, 12], nickel [5], and iron [13, 14] electrodes
were also fitted by the curves td = f(E) calculated under
the assumption of explosive emission. In this way, we
estimated factor β for different conditions of training by
pulses with tp ≈ td and could construct the dependences
Kβ = f(tp) for these materials. Figure 2 plots the varia-
tion of Kβ against the time of processing (i.e., in the pro-
cess of conditioning regime optimization) and data
points for the delay time for Cu, Al, Mo, Ni, Fe, and Cr.

Kβ β0/βp,=

102

1
10–10

Kβ

tp, s
10–9 10–7

10

103

Cu [17]

10–8 10–6

Cr [16]

Fe [13, 14]

Ni [5]

Mo [11, 12]

Al [9–12]

Cu [5, 9–12]

Fig. 2. Emitter surface conditioning efficiency vs. pulse
duration tp ≈ td. (s) Efficiency of raising the dielectric
strength of the gap between all-metal electrodes [17] and
(d) the voltage of local glows in the gap between the evap-
orated electrodes [16].
From the curve Kβ = f(tp) (Fig. 2) generalizing the
available experimental data for the breakdown delay
time, it follows that the conditioning efficiency rises as
the pulse duration decreases and the pulse power
grows. At tp < 10–8 s, the efficiency rises by a factor of
three or more. At tp < 10–10 s, the efficiency of pulsed
processing exceeds the efficiency of conditioning by dc
breakdowns by more than two orders of magnitude. In
the limit, conditioning with such pulses may result in a
perfectly smooth surface with β = 1. At tp > 10–7 s, the
pulse duration influences the training efficiency only
slightly and the efficiency differs little from the effi-
ciency of conditioning in the dc regime.

Achievement of a smooth emitter surface requires
not only the pulse duration in the subnanosecond range
but also a high electric field strength. Strength E0 corre-
sponding to the optimal regime with tp ≈ td was esti-
mated by comparing the experimental, td = f(E0), and
calculated, td = f(E), curves at td = const. The depen-
dence of amplification factor β on the macrostrength
(β = f(E0)) that provides the optimal regime of condi-
tioning Cu, Al, Mo, Ni, Fe, W, and Cr electrodes [9–17]
is given in Fig. 3.

The unified dependence β = f(E0) in Fig. 3 fits well
the experimental data for processing of various materi-
als by pulses with tp ≈ td. This means that, under the
optimal conditioning regime, the field amplification
factor is independent of the electrode material and
depends only on breakdown-initiating electric field
macrostrength E0. From the curve β = f(E0), it follows

102

1
108

β

E0, V/m
1010

10

103

Cr [16]

109

W [15] 

Fe [13, 14]

Ni [5]

Mo [11, 12]

Al [9–12]

Cu [5, 9–12]

Fig. 3. Field amplification factor after conditioning by
pulses with tp ≈ td vs. the breakdown-initiating field macro-
strength.
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that β can be approximated by the power-law depen-
dence

(8)

where Ecr = 1.32 × 1010 V/m.

The curve β = f(E0) was constructed using the exper-
imental data for electrodes with a developed surface
and gaps varying from 3 µm to 20 cm. Thus, in the
experiments, the change in the electric field by three
orders of magnitude (from 1.5 × 107 ≤ E0 ≤ 1.3 ×
1010 V/m) and the corresponding change in factor β by
three orders of magnitude were provided largely by the
change in gap d by five orders of magnitude. The
dependence of macrostrength E0 that provides the opti-
mality of processing on gap d used in conditioning by
pulses with tp ≈ td is demonstrated in Fig. 4.

From the curve E0 = f(d) in Fig. 4, it follows that, for
d > 3 mm, the strength varies insignificantly and equals
E0 ≈ 2 × 107 V/m. This value corresponds to pulse dura-
tion tp > 10–7 s and amplification factor β0 ≈ 270, which
is reached when wide electrodes are processed in the dc
regime. At d < 1 mm and tp < 10–10 s, the increase in the
strength to E0 ~ 1010 V/m, which is accompanied by the
decrease in β nearly to the minimal value β = 1 and the
rise in the conditioning efficiency by more than two
orders of magnitude, was achieved by shrinking the
electrode gap to a micrometer size.

Figure 5 plots amplification factor β obtained under
the optimal processing conditions against the electrode
gap used in experiments [5, 9–17]. From the curve β =
f(d) (Fig. 5), it can be concluded that, as the gap nar-
rows, the efficiency of conditioning by pulses with tp ≈

β
Ecr

E0
------ 

 
0.9

tp td=
,=

109

107

10–2

E0, V/m

d, mm
10–1 10

108

1010

1 102

Cr [16]

Fe [13, 14]

Ni [5]

Mo [11, 12]

Al [9–12]

Cu [5, 9–12, 17]

Fig. 4. Electric field macrostrength at conditioning by
pulses with tp ≈ td vs. the electrode gap.
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td rises; that is, β tends to a minimum as the gap shrinks
to micrometer sizes.

Thus, the efficiency of pulsed electrode surface con-
ditioning in the optimal regime grows with decreasing
pulse duration and increasing field strength. Field
strength E0 is raised by narrowing the electrode gap.
The most efficient regime of conditioning is observed at
processing by pulses with tp < 10–8 s and field strengths
E0 >108 V/m. Such high values of E0 are achievable in
gaps d < 1 mm. In micrometer-wide gaps at E0 ~
1010 V/m, processing of the electrode by pulses with
tp < 10–10 s produces a perfectly smooth surface with
β ≈ 1. However, the fact that the emitter surface is per-
fectly smooth does not mean that the ultimate dielectric
strength of the vacuum insulation is reached, since
breakdown initiation mechanisms may change when
the voltage is applied for a long time.

DIELECTRIC STRENGTH

In the steady-state regime, the cathodic mechanism
of breakdown initiation in the electrode gap comes into
play when the electric field microstrength reaches the
critical value [18]

(9)

Under the conditions of the cathodic breakdown-ini-
tiating mechanism, any action changing the emitter sur-
face condition changes field amplification factor β and,
accordingly, electric field E0 and voltage U at which the
first breakdown occurs,

(10)

Optimized pulsed conditioning makes it possible to
bring the emitter surface to a desired quality. According

E βE0 const.= =

U E0 1/β.∼ ∼
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Fig. 5. Field amplification factor upon conditioning by
pulses with tp ≈ td vs. the electrode gap.
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to (10), a decrease in β is accompanied by an increase
in the dielectric strength and first-breakdown voltage
under the steady-state conditions of cathodic initiation.
Consequently, factor Kβ, which characterizes a change
in the emitter surface condition, must be equal to a
change in the dielectric strength,

(11)

where Up and U0 are, respectively, the dc voltage of the
initial (after processing) breakdown and the steady-
state breakdown voltage before processing.

The criterion of the cathodic mechanism can be rep-
resented in the form

(12)

Comparing relative changes in the surface quality
and in the dielectric strength of vacuum insulation
eliminates a systematic error and improves the accu-
racy of determining the onset of the cathodic mecha-
nism compared with criterion (9). If Kβ/KU ≠ 1, break-
down is caused by other mechanisms.

Criterion (12) was tested in experiments where all-
metal copper electrodes (C ≈ 110πF, d = 0.5 mm) were
processed by rectangular pulses (10 ≤ tp ≤ 800 ns, 1.5 ×
107 ≤ E0 ≤ 108 V/m) [19] and in experiments with com-
pound electrodes comprising a cathodoluminescent
screen coated by an evaporated microchannel Cr plate
(C ≈ 10πF, d = 0.9 mm) [16].

In the case of the all-metal electrodes, the efficiency
of pulsed conditioning in the optimal regime was esti-
mated from the relative change of the first-breakdown
voltage (i.e., from KU); in the case of the compound
(evaporated) electrodes, from the relative change of the
voltage at which local glows on the screen were
observed. In the latter case, the estimating parameter is

(13)

where  and  are the voltages at which local
glows were observed, respectively, after and before
pulsed conditioning.

Screen glows are associated with the field emission
from the exit surface of the microchannel plate, i.e.,
with the cathodic mechanism, while the breakdown of
the gaps in the microchannel plate is due to other mech-
anisms. That is why the dielectric strength remained
constant, E0 ~ 107 V/m, irrespective of the pulsed con-
ditioning regime at tp ≈ td.

The data points for copper and chromium in Fig. 2
show the variation of the dielectric strength and the
local glow voltage with the pulse duration in the opti-
mal regime (KU = f(tp) and K* = f(tp), respectively). For
both the all-metal and evaporated electrodes, a decrease
in the duration of conditioning pulses improves the per-
formance of the vacuum insulation due to cathodic pro-
cesses. The experimental curves KU = f(tp) and K* =

KU Up/U0,=

Kβ

KU

------- 1.=

K* Up*/U0*,=

Up* U0*
f(tp), which reflect the variation of the dielectric
strength and screen glow voltage at conditioning by
pulses with 10 ≤ tp ≤ 800 ns and 1.5 × 107 ≤ E0 ≤
108 V/m, coincide with the curve Kβ = f(tp), which char-
acterizes the change in the emitter surface condition
after processing in the optimal regime. When the field
amplification factor decreases twofold as a result of
emitter conditioning by pulses with tp ~ 10–8 s and E0 ~
108 V/m, the dielectric strength of the gap in the all-
metal electrodes increases twofold and so does the local
glow voltage in the case of the evaporated electrodes.
This coincidence indicates that cathodic processes ini-
tiate the breakdown (for the all-metal electrodes) and
local screen glows (for the evaporated electrodes), sup-
porting the validity of criterion (12). Conversely, the
independence of the dielectric strength of vacuum gaps
between the evaporated electrodes from the pulsed con-
ditioning regime leads us to infer that the breakdown-
initiating mechanism is other than field emission in this
case.

The conditioning of stainless steel Rogowski elec-
trodes (S = 100 mm2, d = 0.12 mm) by pulses with tp ≈
td = 10 ns made it possible to reach the dielectric
strength E0 = 2.1 × 108 V/m, which is close to the ulti-
mate value obtained on molybdenum electrodes after
long-term heating and conditioning in an argon glow
discharge [20].

The run of the curve Kβ = f(tp), which describes the
improvement of the emitter surface quality with a
decrease in the duration tp ≈ td of conditioning pulses,
suggests that, basically, the dielectric strength observed
at the cathodic mechanism of breakdown initiation may
be more than two orders of magnitude higher than in
the case of dc (steady-state) conditioning. However,
when the ultimate dielectric strength is attained in the
steady-state regime, the effective breakdown-initiating
mechanism may change. If Kβ/KU ≠ 1, the criterion sug-
gested may be used for estimating the ultimate dielec-
tric strength achievable at the cathodic mechanism of
breakdown initiation.

CONCLUSIONS

Optimization of pulsed electrode conditioning in a
vacuum was considered, and the efficiency of the opti-
mal regime was estimated. The efficiency of emitter
surface conditioning by pulses with tp ≈ td estimated
from the relative change in the emitter surface quality
(Kβ = f(tp)) in experiments on determining the break-
down delay time rises with a decrease in the pulse dura-
tion and may exceed the efficiency of conditioning by
dc breakdowns by more than two orders of magnitude.
In the optimal regime (tp < 10–10 s, E0 > 1010 V/m), the
emitter surface may become perfectly smooth with field
amplification β = 1. To attain an electric field strength
on the order of E0 ~ 1010 V/m, the vacuum electrode gap
should be shrunk to micrometer sizes.
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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In he case of the cathodic breakdown-initiating
mechanism, a change in the emitter surface condition
goes in parallel with a change in the dielectric strength
of the insulation. This circumstance is used to suggest
a new criterion for the cathodic initiation of breakdown.
This criterion was tested experimentally in the nanosec-
ond range of pulse durations for all-metal and evapo-
rated electrodes with a developed surface. Application
of pulses with tp < 10–8 s and E0 > 108 V/m for electrode
conditioning makes it possible to estimate the ultimate
dielectric strength achievable at cathodic breakdown
initiation.
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Abstract—Main medicinal preparations (MPs) administered by injections into a joint cavity are studied by
means of electret–thermal analysis and tribometry. In the latter case, the MPs are used as lubricants in a friction
pair (a model of an artificial joint) exposed to an electromagnetic field simulating the biological field. Changes
in the thermally stimulated current spectra from the MPs exposed to the electromagnetic field and those in the
friction coefficient of the pair provide a deeper insight into the physicochemical mechanisms of MP action.
Comprehensive tests of MPs involving electret–thermal and tribological analyses may be of great practical sig-
nificance for optimizing local treatment of diseased joints. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Of the variety of approaches to the treatment of
patients with diseases or injuries of joints, injections of
medicinal preparations (MPs) directly into the joint
cavity are considered to be the most effective [1, 2].
MPs are chosen individually with due regard for the
general state of the patient, anamnesis, and the course
of disease. Due to recent advances in pharmacology, a
broad range of MPs for treating joint diseases is avail-
able today [3]. For example, antibiotics and corticoster-
oid drugs are used to suppress inflammation, and pro-
gressing cartilage destruction with degenerative or dys-
trophic processes in the joints is treated by means of
MPs functioning as protectors and lubricants, i.e., sim-
ilarly to the natural synovial fluid. Being injected into
the joint cavity, MPs not only exert a directed therapeu-
tic effect but also, mixing together with the synovial
fluid, qualitatively change its biomechanical properties,
primarily the lubricating ability. Preparations with the
same pharmacological mechanism of action may have
different effects on the parameters of friction in joints.

As does any biological system, the tissues of a joint
generate electromagnetic field (EMF) and respond to
its action [4, 5]. The EMF energy influences the tissue
structure and biophysical mechanisms governing the
specific functions of the synovial fluid [6, 7]. There are
reasons to believe that the electrophysical and biome-
chanical properties of MPs injected into the joint cavity
are interrelated, and elucidation of this relation may
help to optimize the treatment of joint diseases.

The purpose of this study is to perform for the first
time tribological “monitoring” of some MPs routinely
used in rheumatological and orthopedic practice and to
1063-7842/05/5005- $26.00 ©0648
reveal the interplay between their tribological and
polarization parameters.

INVESTIGATION METHODS

We experimented with MPs of different pharmaco-
logical groups (table) chosen by the following criteria:
knowledge of the procedure of treatment among prac-
ticing physicians, accessibility, and pronounced clini-
cal effect.

For the test conditions to be as close to the friction
in a natural joint as possible and for a greater accuracy
of measurements, we used a pendulum-type tribometer
with a single (test) friction pair. The coefficient of fric-
tion was estimated from the logarithmic decrement of
damping of pendulum’s oscillations. The friction pair
consisted of a grooved plate made of superhigh-molec-
ular-weight polyethylene certified for orthopedic appli-
cations and a pendulum installed on a trihedral prism
made of 12Kh18N9 chrome–nickel steel. The base
(bearing) of the prism was rounded with a radius of
2 mm. The load created in the contact zone by the 2-kg
pendulum moving at a (sliding) rate of 1.0 m/s was
equal to the average physiological load on the human
knee joint. To simulate the biophysical field of a joint,
the bearing of the pendulum was placed into a solenoid
(the outer diameter 21 mm, 600 ± 2 coils of 0.07-mm
copper wire) connected to a dc power source. The mag-
netic field intensity at the friction surface averaged
1.2 kA/m, being within the optimal range of magnetic
field intensities used in joint magnetotherapy [8].

To estimate the polarization of MPs as pseudoelec-
trets consisting of coordination-bonded polar groups,
 2005 Pleiades Publishing, Inc.
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Medicinal preparations used in the study

Name Composition Manufacturer Mechanism of action

Hydrocortisone Hydrocortisone acetate, 125 mg;
lidocaine hydrochloride, 25 mg

Gedeon Richter AG, Hungary Antiinflammatory

Kenalog-40 Triamcinolone acetonide, 40 mg;
benzyl alcohol, 9.9 mg

Bristol-Myers Squibb SpA, Italy "

Dyprospan Betamethasone dipropionate, 6.43 mg;
betamethasone sodium phosphate, 2.63 mg

Shering-Plau, Germany "

Lincomycin
hydrochloride

Lincomycin hydrochloride, 30% solution Borisov Pharmaceutical Plant, 
Belarus

Antimicrobial

Synvisk Hylan A and Hylan B, 8.0 mg/ml Biomatrix, Inc., United States Synovial fluid substitute

Hyalart Hyaluronic acid in 0.9% sodium
hydrochloride solution, 2 ml

Bayer AG, Germany "

Diasynol 1.5% carboxymethylcellulose sodium 
salt and 1.0% Tecon-20 in 0.9% sodium 
hydrochloride solution

Belbiofarm Plant of Diagnostic 
and Pharmaceutical Preparations, 
Belarus

"

they were subjected to electret–thermal analysis (ETA).
A 0.2-ml sample of an MP was placed on a degreased
brass electrode and covered by an insulating Teflon
spacer, on which the second electrode was placed. Dur-
ing heating of the sample at a rate of 5°C/min, a current
of about 10–12 A was detected in the electrode circuit.
The spectra of these thermally stimulated currents
(TSCs) were mathematically processed (digital filtra-
tion with the Origin 5.0 application program) and dis-
played as I(T) plots.

RESULTS AND DISCUSSION

Tribometry data showed that, all other conditions
being equal, the initial value of friction coefficient µ0 in
the test pair depends on the chemical composition and
density of the MP.

The lowest value of µ0 was observed for Hyalart, the
synovial fluid “endoprosthesis” (substitute), which is
used mainly for treating the degenerative joint disease.
Synvisk, another MP of the same group, had higher µ0
and, therefore, was inferior to Hyalart as a lubricant.
Differences in their lubricating ability could be found
visually when the sample was placed in the tribometer.
Synvisk, a thick viscous gellylike substance, did not
spread over the bearing and was unevenly distributed in
the groove even after unloading. Hyalart, being more
watery, uniformly wetted the friction surface made of
extremely hydrophobic superhigh-molecular-weight
polyethylene, thus favoring sliding of the pendulum. It
appears that the clinical effect of treatment with Syn-
visk [9] is due to its viscoelastic properties (providing
for cartilage protection against peak mechanical loads)
and stimulation of synovial fluid production, rather
than to improved conditions for sliding in the joint.

Diasynol is another substitute of the synovial fluid
that was prepared by Belarussian scientists [7]. Its con-
sistency is similar to that of Hyalart. The formula of
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
Diasynol includes thermotropic liquid-crystal choles-
terol compounds, which makes it a good lubricant [10].

Steroid MPs with a strong antiinflammatory effect
(Kenalog-40, Dyprospan, and Hydrocortisone) have
high µ0. This may be attributed to the fact that these sus-
pensions are subject to phase separation immediately at
the instant they are drawn from ampoules with a
syringe. In the ascending order of the time of crystalline
residue formation upon drying, these MPs are arranged
as Hydrocortisone < Kenalog-40 < Dyprospan. The
highest friction coefficient was observed for Hydrocor-
tisone. This MP exhibited rapid phase separation fol-
lowed by the displacement of the liquid phase from the
contact zone (groove) of the friction pair, whereupon
the remaining coating consisted mainly of the crystal-
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Fig. 1. Time variation of friction coefficient µ in experi-
ments with MPs exposed to the EMF in the friction pair of
the tribometer: (1) Hydrocortisone, (2) Kenalog-40,
(3) Dyprospan, (4) Lincomycin, (5) Synvisk, (6) Hyalart,
and (7) Diasynol.
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Fig. 2. TST spectra taken of (a) Hydrocortisone, (b) Kenalog-40, (c) Dyprospan, (d) Lincomycin, (e) Synvisk, (f) Hyalart, and
(g) Diasynol.
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line phase acting as an abrasive rather than as a lubri-
cant. A similar picture was observed when the bearing
of the tribometer was lubricated with Kenalog-40.
Dyprospan, a suspension of finer particles with a mark-
edly lower sedimentation rate, had a relatively high
lubricating ability.

Lincomycin hydrochloride, an antibiotic prescribed
in cases of inflammation caused by bacterial infection,
is prepared in the form of a saline solution, which rap-
idly crystallized in the course of tribometry. One may
suppose that Lincomycin, being mixed with the syn-
ovial fluid in vivo, will not have a high abrasive effect
on the articular surfaces, since it contains no water-
insoluble components and readily enters the circulatory
system through the synovial membrane.

Figure 1 shows the time variation of the friction
coefficient in the EMF for different MPs. In the case of
Hyalart and Dyprospan, the exponential decrease in
this coefficient is apparently due to a high sensitivity of
their polar groups to the EMF and ordering of these
groups along the lines of force, which may improve the
lubricating properties.

As was noted above, the friction coefficient in the
case of Diasynol is low, because a liquid-crystal layer
with a high shear strength forms in the contact zone [7].
EMF-induced ordering raises the lubricating ability of
this layer, lowering µ still further.

The lubricating ability of Kenalog-40 and Hydro-
cortisone exposed to the EMF remained the same, pre-
sumably because of a low sensitivity of their large and
heavy particles to the field. Yet, these MPs respond to
the field, indicating that they incorporate polar groups
and electrically nonequilibrium structures.

The above differences can be explained on the basis
of specific electrophysiological properties noticed in
the course of ETA. We managed for the first time to take
and identify the TSC spectra of MPs administered by
injections into the joint cavity. The phenomenon of the
quasi-electret state was previously demonstrated for
biological protein systems, such as blood [11] and syn-
ovial fluid [12]. The results shown in Fig. 2 confirm that
the quasi-electret state is also characteristic of the
above MPs.

In the experiment with Hyalart (Fig. 2f), three TSC
peaks were recorded: a low-temperature peak at 30°C,
a medium-temperature peak at 85°C, and a high-tem-
perature peak at about 140°C. We assign the first one to
the generation of charge carriers upon thermal destruc-
tion of hydration sheaths around the polar groups of
hyaluronic acid molecules. The medium- and high-tem-
perature peaks seem likely to arise because of the
decomposition of supermolecular structures and the
thermal destruction of the molecules themselves. The
quasi-electret properties of the biopolymer components
entering into Hyalart suggest their increased sensitivity
to the EMF; in particular, the field may pass these com-
ponents to a tribologically optimal state.
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
The quasi-electret state is also characteristic of Syn-
visk (Fig. 2e), but its TSC spectrum has only one high-
temperature peak (≈115°C). Apparently, its biopolymer
components are characterized by a low polarity, poor
ability to form coordination compounds with water
molecules, and low sensitivity to the EMF under fric-
tion. This is confirmed by the degradation of Synvisk
lubricating ability under the EMF in the tribological
experiment (Fig. 1).

The TSC spectrum of Diasynol (Fig. 2g) has one
low-temperature peak (≈50°C) reflecting a heat-
induced reconfiguration in the liquid-crystalline phase,
the basic lubricating component of this MP. This corre-
lates with the behavior of the friction coefficient for
Diasynol in the EMF (Fig. 1, curve 7): µ decreases pro-
portionally to the time of EMF influence on the lubri-
cating coating. The liquid-crystal cholesterol com-
pounds seem likely to reconfigure into a tribologically
optimal structure under the action of the field.

Unlike Hydrocortisone and Kenalog-40, not exhib-
iting the quasi-electret effect, Dyprospan has two peaks
in the TSC spectrum: at 90 and 130°C (Fig. 2c). They
are accounted for by thermal destruction of two types of
betamethasone derivatives (table). Presumably, the pat-
tern of TSC spectra for steroid antiinflammatory MPs
depends on the polarity and binding energy of their
molecular components: the higher their polarity, the
more probable the coordination interaction between
these components and, consequently, the more pro-
nounced the quasi-electret properties of these MPs.

No TSC appears in the Lincomycin hydrochloride
solution upon heating (Fig. 2d), because this MP con-
tains no polarized molecules and molecules capable of
forming coordination structures.

CONCLUSIONS

A comprehensive analysis of basic MPs adminis-
tered by injections into the synovial joints has con-
firmed the hypothesis for a correlation between their
lubricating ability and coordination bonding between
their components, which impart quasi-electret proper-
ties to these substances. The reparations containing
EMF-sensitive components are the best lubricants, irre-
spective of the pharmacological groups they belong to.
The presence of such electrically nonequilibrium struc-
tures in these substances has been established by means
of ETA and is described for the first time. In our opin-
ion, further experimental studies on the tribological
properties of preparations administered in this way will
help to optimize methodological approaches to the
treatment of joints. A compromise between electret–
thermal research and tribological analysis, which is
routine in mechanics but new in medicine, would allow
specialists to produce new-generation MPs optimally
combining a specific therapeutic effect with a good
lubricating ability.
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Abstract—The nonlinear excitation of low-frequency oscillations in the case when an ion flux is radially
injected into the drift chamber where a tubular relativistic electron beam propagates is studied. A mechanism
behind low-frequency ion oscillations is discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Low-frequency (LF) ion oscillations play a great
part in the dynamics of high-current relativistic electron
beams (REBs) of long duration (a microsecond or
more). These processes are the most pronounced in
plasma-assisted microwave oscillators (e.g., plasma-
anode vircators [1], pasotrons [2, 3], and ion-drag
accelerators [4]). In plasma-anode vircators, intense ion
fluxes are generated directly at the anode. Depending
on the acceleration mechanism in ion-drag accelera-
tors, the ions may enter the operating system in the lon-
gitudinal direction (Luce diodes); be generated in the
operating space via residual gas ionization; or enter the
drift chamber in the radial direction from the edge
plasma sheath, which forms when a part of the REB
strikes the side wall of the drift chamber [5]. In an ion-
drag accelerator based on space–time REB modulation
[5], the edge plasma acts as a source of ions moving in
the radial direction. When moving in the field of a spa-
tial REB, the ions execute radial oscillations, which, in
turn, generate LF oscillations of the electric field and
ion density. Eventually, there arises a need for LF mod-
ulation of the REB, which is the case in the collective
method of acceleration [5]. In this work, using a simple
physical model, we study mechanisms behind LF ion
oscillations when the ion flux is radially injected into
the space of REB propagation.

PROBLEM DEFINITION AND BASIC 
EQUATIONS

Let a tubular REB of inner radius r1 and outer radius
r2 propagate in an infinitely long cylindrical metallic
drift chamber of radius a. The entire system is placed in
a magnetic field. The beam electrons are magnetized,
and the effect of the magnetic field on the ion motion is
1063-7842/05/5005- $26.00 0653
neglected. The latter implies that the condition

is satisfied. Here, ne0 is the REB density, M is the ion
mass, H0 is the applied magnetic field strength, and c is
the speed of light. It is easy to check that inequality (5)
is met in the experiments performed in [5].

Let ji(t) be the density of the radial ion flux on the
surface of the drift chamber (r = a). Under the action of
forces due to the space charge of the beam, the ions will
execute radial oscillations. The electric field of the
space charge will be written under the assumption that
the density and velocity of the beam are given. The
dynamics of the ionic component will be described on
a totally self-consistent basis. The radial electric field of
the space charge of a tubular REB is given by

where Ib is the REB current, v e is the REB velocity, and

The field of the ion space charge will be described
in terms of Lagrangean variables. The charge density of
an infinitely thin cylindrical ionic sheath entering into
the drift chamber at time t0 is given by
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Fig. 1. Time dependence of the potential at the outer boundary of the tubular REB for different values of the ion current. Ib = 4.6 kA,
Ee = 280 keV, Ei = 25 keV, r1 = 1.4 cm, r2 = 1.7 cm, and a = 1.5 cm.
where Ii = ji(t0)2πa is the total injection current of the
ion flux per unit length of the system and rL(t, t0) is the
trajectory of an ionic sheath entering into the drift
chamber at time t = t0 (rL(t0, t0) = a).

The radial electric field produced by an infinitely
thin ionic sheath is described by the equation

from which we obtain

(1)

An expression for the total electric field is found by
integration of (1) over the injection time,

(2)

where

is the unit Heaviside function.
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The ion current can be represented as Ii = I0iΨ(t0),
where Ψ(t0) is a function that takes into account the
shape of the injected ion current pulse (maxΨ(t0) = 1).

The dimensionless set of equations for the ion
motion in the self-consistent field of the ion flux and in
the field of the tubular REB has the form

(3)

where τ = ω0t is the dimensionless time,

is the characteristic ion oscillation frequency in the
electric field of the REB space charge, c is the speed of
light, IA = 17 kA,

 ≡ RL(τ, ), and m is the electron mass.

The boundary conditions to Eq. (3) are as follows:
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Fig. 2. Phase portraits of the ions at t = (a) 19.2, (b) 23.5, (c) 107, and (d) 156 ns. I0i = 70 A/cm.
where U0i = v 0i/aω0 is the dimensional initial radial
velocity of the ions.

Knowing ion trajectories RL(τ, τ0), one can find the
dimensionless potential in the drift chamber by the for-
mula

(4)

where 

ANALYSIS OF NUMERICAL RESULTS

Equations of motion (3) and electric potential (4)
were obtained numerically for different ion injection
currents. The REB parameters were fixed: Ib = 4.6 kA,
electron energy Ee = 280 keV, REB inner radius r1 =
1.4 cm, and REB outer radius r2 = 1.7 cm. To be defi-
nite, we considered hydrogen ions. The initial ion
energy was Ei = 25 keV; the drift chamber radius, a =
2.5 cm. The ion current injected into the system is con-
stant, Ψ(τ0) = 1.
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Figure 1 shows the time dependence of the potential
at the outer boundary of the beam for three values of ion
current I0i (A/cm). For the low-current ion flux (I0i =
70 A/cm), oscillations are excited roughly 80 ns after
the beginning of injection. For the high-current flux
(I0i = 400 and 1000 A/cm), oscillations start well before
than in the case of low-current flux. For the ion current
values, the oscillations decay with time. The decay time
and the steady-state level are almost independent of the
ion flux current. At the high currents, the time behavior
of the LF oscillations is the nearly the same. To gain
greater insight into the behavior of the LF oscillations
at different ion flux currents, let us turn to phase por-
traits (v r/c, r) of the ions, where v r is the ion radial
velocity.

Figure 2 shows the phase portraits of the ions for the
low-current beam. From the very beginning of injec-
tion, the ions move in the field of the REB space charge
toward the axis of the system. After crossing the axis,
the ion flux is divided into convergent and divergent
radial fluxes. At the axis of the system, their velocities
are equal in magnitude and opposite in sign. The decel-
eration of the ions in the self-field of the space charge
near the axis decreases the velocities of the fluxes at the
axis. Eventually, at t = 19.3 ns, the velocities of the con-
vergent and divergent fluxes at the axis vanish (Fig. 2a).
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Fig. 3. Phase portraits of the ions at t = (a) 10.6, (b) 17.2, (c) 25, and (d) 32 ns. I0i = 400 A/cm.
Because of the continuing deceleration of the conver-
gent flux, the point where the incident flux stops
becomes displaced from the axis. The ions that are
between the axis and the stopping point are accelerated
and give particles to the divergent flux. As a result, a
three-stream flux forms at the axis on the phase plane:
two divergent fluxes and one convergent flux (Fig. 2b).
Having approached the drift chamber, the ions of the
divergent fluxes leave the system and the particles of
the convergent flux are accumulated at the axis, causing
a rapid growth of the potential. Subsequently, the ions
of the divergent fluxes produce a bunch, which raises
the potential at the site of ion flux injection when
approaching the chamber edge. Eventually, at t = 74 ns,
a virtual ionic anode (VA) arises in the ion flux injected.
This cathode is nonstationary. The transmitted and
reflected currents make its position oscillate with a fre-
quency that is much higher than the potential oscilla-
tion frequency. The ion bunch is partially lost at the
wall of the drift chamber, while the rest of ions reflect
from the potential barrier and start moving toward the
axis of the system (circulation in the phase plane). The
potential reduces again, and the VA disappears. The cir-
culation of the ion bunch is accompanied by ion losses
at the wall of the drift chamber and simultaneously give
rise to new bunches. The ions near the wall (a part of
which leaves the system) and the continuously injected
ions produce a potential barrier near the wall. At the
same time, the ions that are permanently present near
the axis produce a potential barrier at the center of the
drift chamber.

Ion losses at the wall are compensated for by an
increase in the emission current from the ionic VA.
These processes go in parallel with the LF oscillations
of the electric potential. The circulation of the bunches
in the phase plane, which is accompanied by a continu-
ous generation of new bunches (bunch disintegration),
causes the formation of a complicated multistream flux
(Figs. 2c and 2d) and, eventually, turbulizes the radial
ion flux. This turbulence is the reason for the phase
mixing of the particles and for the decay of the coherent
ion oscillations of the potential. The steady state is
established, which is characterized, for example, by a
constant number of ions in the system. The ion flux
toward the wall is counterbalanced by the flux from the
stationary VA, which is invariably present at the wall
(Fig. 2d).

In the case of the high-current ion beam (I0i =
400 A/cm), an ionic VA forms very rapidly and is then
present all the time. The phase portraits for the high-
current ion flux, which are shown in Fig. 3, are taken at
time instants when the first two maxima and minima
appear in the time dependence of the potential. The
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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boundaries of the tubular REB correspond to r1 =
1.4 cm and r2 = 1.7 cm on the abscissa. The first maxi-
mum of the potential (t = 10.6 ns) appears at the stage
of bunch formation, when most of the ions are inside
the REB. At the time of potential minimum (t =
17.2 ns), two bunches are distinctly seen in the phase
plane, with their major part being outside the REB. The
particles of the bunches are partially lost at the walls.
The circulation of the bunches causes them to shift
toward the center of the drift chamber (Fig. 3c) and
increases the REB potential. At t = 25 ns, the potential
at the REB outer boundary reaches a maximum. At the
time of the second minimum (t = 32 ns), the bunches
are on the circumference again and some of the ions are
lost at the wall. It should be noted that the escape of the
ions from the drift chamber is accompanied by an
increase in the ion current entering into the system and,
accordingly, by a decrease in the VA-reflected ion cur-
rent. The phase mixing of the particles results in the
steady state, as in the case of the low-current beam.

CONCLUSIONS

We considered the excitation of LF ion oscillations
when an ion flux is radially injected from the drift
chamber wall into the space where a high-current REB
propagates. For a low-current ion current (I0i =
70 A/cm), an ionic VA at the wall does not form and a
two-stream flux arises. The interaction of the ion fluxes
opposing each other results in the formation of ion
bunches, which, when circulating in the phase plane,
continuously disintegrate. Eventually, the accumula-
tion of the ions in the system generates an ionic VA near
the lateral surface. The reason for the occurrence of the
LF oscillations is the formation of ion bunches and their
coherent radial oscillations in the potential well. The
decay of the LF oscillations is associated with bunch
disintegration during the radial oscillations of the
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
bunches and also with the phase mixing of the ions.
Ultimately, the steady state is established, which is
characterized by a constant number of ions in the sys-
tem. The ion losses at the wall are compensated for by
the ions injected into the system from the VA.

In the case of high-current ion fluxes (I0i = 400 and
1000 A/cm), a VA forms very rapidly. The pattern of LF
oscillations under the VA conditions is virtually inde-
pendent of the ion injection current. The fact is that an
ionic VA is an emitter whose current is limited by the
space charge. The transmitted ion current depends on
the REB current and the dimensions of the drift cham-
ber. When the ion flux current is high, the time taken to
establish steady-state oscillations is significantly
shorter and the oscillation amplitude is higher than in
the low-current case.
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Abstract—A ZnS : (In, Cu, Cl) electrophosphor that emits with an almost constant spectral density at wave-
lengths λ in the range 550 < λ < 750 nm and a ZnS : In photophosphor exhibiting the same property in the range
500 < λ < 700 nm are prepared. © 2005 Pleiades Publishing, Inc.
Doping of ZnS by various impurities makes it pos-
sible to obtain electrophosphors emitting in the green,
red, blue, and other parts of the spectrum [1, 2]. Super-
position of these emissions allows creation of an elec-
troluminescent white indicator. However, today, the
problem of a phosphor material whose spectrum con-
tains three basic colors, which, when combined, give
white light, still remains on the agenda. A much more
challenging problem in this field is to find a radiation
source offering a continuous spectrum with a constant
spectral density throughout the visible range. Solving
this problem would make it possible to remedy a num-
ber of engineering bottlenecks arising in designing
light-absorbing and light-emitting devices [1, 3]. In this
paper, we report on electroluminescence from a ZnS :
(In, Cu, Cl) powder with a constant spectral density in
the range 550–750 nm and photoluminescence from
ZnS : In powder with a constant spectral density in the
range 500–700 nm.

Doping of as-prepared ZnS powders was carried out
by thermal annealing under a low air pressure in the
presence of metallic In and CuCl for 3 h at 800°C [4].
After annealing, the powders were passivated in air for
30 h.

The luminescence spectra were recorded with a
KSVU-23 instrument at room temperature. Photolumi-
nescence (PL) was excited by radiation from an LGI-21
nitrogen laser (λ = 337.1 nm), and electroluminescence
(EL) was excited by applying a sinusoidal voltage (U =
250 V, ν = 5000 Hz). The electroluminescence proper-
ties were studied on electroluminescent indicators
(ELIs) prepared by the standard powder phosphor tech-
nology [1].

Figure 1a shows the PL spectra taken of the ZnS : In
powder before and after passivation in air. The PL spec-
trum of the unpassivated ZnS : In (curve 1) contains at
least three bands with peaks at λmax = 515, 600, and
640 nm. The origin of the luminescence band with a
1063-7842/05/5005- $26.00 0658
peak near 515 nm is unclear. In [2, 5], it is attributed to
oxygen and copper impurities in zinc sulfide. In [6], this
band (λmax = 515 nm) is associated with the radiation
from self-activated ZnS and with the formation of anion
vacancies in the sulfur sublattice. As for the band with
λmax = 600 nm, Morozova and Kuznetsova [2] assign it
to the presence of intrinsic In, which enters into ZnS
without the help of activators and coactivators.
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Fig. 1. (a) PL spectra of the ZnS powder annealed at 800°C
in the presence of metallic In (1) before and (2) after passi-
vation in air and (b) EL spectra (U = 250 V, f = 5000 Hz)
from the ELI made of the ZnS : (In, Cu, Cl) powder (3)
before and (4) after passivation in air.
© 2005 Pleiades Publishing, Inc.
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It can be seen from Fig. 1a that exposure of the
ZnS : In powder to air leads to the formation of a pla-
teau extending from 500 to 700 nm (curve 2); i.e., the
spectral density of luminescence in this range becomes
almost constant (within 8%). Thus, the passivation of
the In-doped ZnS powder in air (oxygen seems likely to
be a key passivating agent) causes either or both addi-
tional luminescence lines to emerge in this wavelength
range and the already existing lines to broaden (or over-
lap to a greater extent). In any of the cases, additional
energy levels are assumed to be involved in radiative
recombination that earlier (before passivation) partici-
pated in nonradiative transitions or were absent at all.

The situation with EL is slightly different. While
annealing of the ZnS powder in the presence of In, as
well as subsequent passivation, does not lead to any
tangible signs of EL, combined doping of zinc sulfide
by metallic In and CuCl leads to the emergence of EL
bands. Figure 1b (curve 3) shows the EL spectrum of
the ELI taken prior to passivation of the phosphor in air.
The spectrum consists of bands with λmax = 450 and
530 nm, which were repeatedly reported in the litera-
ture [2, 5–7]. These bands were attributed [2, 5, 7] to
copper impurity in ZnS. As for the case of PL in
ZnS : In, passivation in air causes considerable changes
in the EL spectrum. Curve 4 in Fig. 1b shows the EL
spectrum for the ELI made of air-passivated ZnS : (In,
Cu, Cl) powder. The main feature of this spectrum is a
plateau covering the 550–750 nm range, where the
intensity remains constant within 5%. Note that our
objective was to study EL in the visible range; for this
reason, the long-wave edge of the 550–750 nm plateau
in the EL spectrum should be refined.
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
The results obtained here are certainly insufficient
that final conclusions are drawn. Sound interpretation
of such nontrivial luminescence characteristics of the
powders studied calls for further investigation. How-
ever, our findings indicate the possibility of preparing a
continuous-spectrum ZnS : (Cu, Cl, In) electrophos-
phor with a constant spectral density in the range 550 <
λ ≤ 750 nm and a ZnS : In photophosphor with the same
luminescence properties in the range 500 < λ < 700 nm.
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Abstract—The energy relationships in the macroscopic electrodynamics of an insulator are analyzed with
regard to the polarization relaxation time distribution. Expressions for the discharge power and discharge
energy flux densities in an insulator are derived for an electric field exponentially depending on time. The
performance of polyethylene terephthalate in capacitive energy storage systems is estimated in terms of energy.
© 2005 Pleiades Publishing, Inc.
To perform comparative analysis of insulators used
in today’s capacitive energy storage systems, the author
has derived the relationships between stored energy
Wst, released (effective) energy Weff, and lost energy Wl

of the electric field under the condition of the Debye
mechanism of polarization of a dielectric medium. The
performance of an insulator can be estimated in terms
of efficiency as follows:

(1)

where Weff = Wst – Wl reflects the electric field energy
balance.

A wide class of polymer insulators and layered sys-
tems used for capacitor insulation is characterized by
the relaxation time spectrum, which may be both con-
tinuous and sparse. This paper is aimed at extending the
energy concepts of the electrodynamics of insulators by
taking into account the electric polarization relaxation
time distribution.

Let us consider the differential equation for elemen-
tary increment dτP of relaxation polarization in relax-
ation time interval dτ,

(2)

where y(τ) = d(εs(τ) – ε∞)/dτ is the relaxation time dis-
tribution function; ε∞ and εs are the permittivities for the
polarization instantaneously reaching the steady state
and static polarization at given time instant τ, respec-
tively; and E is the electric field.
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With regard to the prehistory of the polarization pro-
cess, a solution to Eq. (2) can be written in the form

(3)

Assuming that the relaxation process terminates at
static value Ps within the time interval [–∞, 0] and inte-
grating expression (3) over all possible values of τ, we
obtain the following expression for the total relaxation
polarization:

(4)

According to [1], the flux densities of the stored
energy, ∂Wst/∂t; effective energy, ∂Weff/∂t; and loss
energy, Q, for given τ are expressed as

(5)
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For an exponentially decreasing field, E =

E0exp , we have

(6)

where α = τE/τ is the ratio between the characteristic
times of variation of the electric field and relaxation
polarization process.

Then, the elementary increments of the correspond-
ing powers in the course of depolarization are given by

(7)

Integrating relationships (7) over time t between 0
and ∞ and over relaxation times τ within the same lim-
its, we arrive at the following expressions for stored
energy Wst, loss energy Wl, and effective energy Weff
being released in the load:

(8)

To obtain a final estimate of the energy characteris-
tics, we must know a specific form of relaxation time
distribution function y(τ). In a first approximation,
relaxation loss factor ε'' can be determined with the
Fouss–Kirkwood relationship

(9)
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where ω is the frequency of the applied field,  is the
maximum value of the loss factor, and λ is the relax-
ation time distribution parameter [2].

On the other hand, the frequency dependence of the
loss factor with regard to the relaxation time distribu-
tion has the form [3]

(10)

Knowing parameter λ and applying the inverse Fou-
rier transformation to expression (10), we can find the
form of function y(τ). For arbitrary dependences ε''(ω),
an effective procedure for determining y(τ) was pro-
posed in [4]. In particular, at moderate temperatures
(20–30°C), parameter λ for polyethylene terephthalate
(PET) assumes values from 0.48 to 0.53 [5]. Setting λ
equal to 0.5, we come to the following expression for
the distribution function:

(11)

where τ0 is the most probable relaxation time.
Taking into account relationship (11) and the iner-

tia-free polarization component yields final expressions
for the corresponding energies,

(12)

hence, Weff = Wst – Wl, as expected.
Let us estimate efficiency η for an exponential dis-

charge at E0 = 300 MV/m and τE = 10–4 s [6]. Under
normal conditions, the value of τ0 for PTE is equal to
≈5 × 10–4 s [7], εs ≈ 3.2, and ε∞ ≈ 2.46. Calculations by
formulas (12) yield Wst = 1.27 MJ/m3, Wl =
0.20 MJ/m3, and Weff = 1.07 MJ/m3; accordingly,

(13)

For single (short-term) discharges, energy Wl being
released as heat warms the insulator insignificantly.
However, with increasing discharge time τE, heating
may become appreciable (which is especially true for rf
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discharges) and cause thermal instability in the insula-
tor [8].
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Abstract—Methods of processing iron–manganese concretions from the Gulf of Finland in the Baltic Sea are
reported. The relative content of their basic components is found. The concentration of helium isotopes in and
the rate of growth of these concretions (7.5 mm/thousand years) are determined. It is shown that the content of
the cosmic matter in the concretions can be raised by means of special chemical processing. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

Iron–manganese concretions (IMCs) containing
Mn, Fe, Co, Ni, Cu, and other metals in amounts appro-
priate for industrial processes may well be viewed as
promising polymetallic ores for the chemical industry
and metallurgy in the near term. Concretions taken
from different seas and oceans differ significantly in
chemical composition, which depends on a variety of
factors, such as the geography of a basin, salinity,
depth, rate of sedimentation in general and rate of
growth of concretions in particular, redox properties of
the medium, and interaction of d elements with oxy-
gen- and sulfur-containing natural water. In concre-
tions, iron and manganese are present largely as Fe3+

and Mn4+ and, to a minor extent, as Fe2+ and Mn2+. In
Baltic concretions, some metals are present in lower
amounts than in deep-sea (oceanic) concretions [1–3].
However, Baltic concretions are more attractive,
because they are readily available (the seam depth is as
small as several tens of meters from the sea surface) and
are in the immediate vicinity of industrially developed
regions and technology centers.

Industrial usage of IMCs implies a preliminary esti-
mation of their rate of reproduction in nature, which, in
turn, requires the rate of growth of concretions to be
known. When estimating the latter parameter by the
conventional methods of nuclear geochronology [4],
one runs into serious difficulties. Namely, (i) these
methods are applicable under the assumption that the
rate of growth of concretions is constant, which is
doubtful in the case of Baltic concretions, and (ii) geo-
logic signs indicate that Baltic concretions of a size of
2 or 3 cm grow relatively rapidly (≈1 cm/thousand
years). The latter means that radioisotopes with a half-
life of 104–106 years, which are common in nuclear
geochronology, fail in predicting the rate of growth of
1063-7842/05/5005- $26.00 0663
Baltic IMCs. This problem (determining the rate of
growth of rapidly growing IMCs) may be solved using
the cosmic tracer method [5, 6]. This method is based
on the accretion of cosmic dust by the Earth and accu-
mulation of the dust by sedimentary rocks. When in
outer space, dust particles attract ions of the solar wind
and “transport” solar helium with an isotope ratio
3He/4He ~ 10–4 (which is higher than in terrestrial
helium, where this ratio is on the order of 10–8–10–7 [8])
to terrestrial sedimentary rocks. Therefore, the 3He iso-
tope in sedimentary rocks is basically of cosmic origin
and the rate of growth (r) of sedimentary rocks (includ-
ing IMCs) can be found from the relationship [7]

(1)

where F = 1.2 × 10–15 cm3/(cm2 year) is the 3Hec isotope
flux [5], ρ = 1.6 g/cm3 is the IMC density, and 3Hec is
the concentration of cosmic helium light isotope.

Since Baltic concretions grow very rapidly, the 3He
concentration measured in the sample is not entirely
cosmic helium. In terms of a two-component model,
the fraction of cosmic 3He can be found by the formula

(2)

where (3He/4He)rad = 2 × 10–8 is the isotope ratio in ter-
restrial (radiogenic [8]) helium, (3He/4He)c = 4 × 10–4 is
the isotope ratio in cosmic (solar) helium [9], and
(3He/4He) is the helium isotope ratio measured.
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EXPERIMENTAL

IMC samples were prepared as follows. Four spher-
ical concretions of roughly equal size (≈25 mm in
diameter) were mechanically crushed to produce a
powder with a grain size of a fraction of millimeter. To
uniformly distribute cosmic dust particles over the vol-
ume, the powder was intimately stirred. The total
weight of the powder was about 20 g. Samples to be
analyzed were taken from this preparation (Table 2).
They were processed in a dilute hydrochloric acid +
hydrogen peroxide mixture with and without adding
hydrofluoric acid.

The chemical composition of the concretions was
determined by means of a standard chemical technique
using (at the final stage of analysis) a PC 1000 Leeman
Labs echelle-based spectrometer configured with an
inductively coupled plasma source. In addition, a 216
Perkin–Elmer analyzer was applied to carry out atomic
absorption analysis. The relative error of the techniques
does not exceed 4% [10, 11].

Isotopic analysis was performed with a high-resolu-
tion magnetic resonance mass spectrometer [12].
Helium was released from the samples upon heating
them in a vacuum followed by gettering aimed at
removing reactive gases [13].

RESULTS AND DISCUSSION

The amount of Fe and Mn in Baltic concretions was
determined in five samples. On average, the concentra-

Table 1.  Elemental composition of the concretion sample
before and after the chemical processing

Element

Content, wt % Relative content of 
acid-soluble form, %

before
processing

after
processing

before
processing

after
processing

Manganese 32.01 28.61 100 100

Iron 9.15 12.32 97.3 98.2

Silicon 5.14 4.71 14.4 5.5

Aluminum 2.7 2.4 48.1 45.8

Sodium 0.56 0.50 100 100

Calcium 1.47 1.45 88.4 89.6

Magnesium 1.28 0.93 93.8 93.5

Titanium 0.105 0.09 38.1 44.4

Potassium 0.81 0.73 100 100

Vanadium 0.012 0.004 100 100

Copper 0.010 0.016 80 44

Nickel 0.03 0.03 100 100

Zinc 0.116 0.075 60.3 93.3

Lead <0.01 <0.01 – –

Barium 0.235 0.227 97.9 96.9
tions of Mn and Fe in the samples were, respectively, 32
and 9% (in other words, the Mn/Fe ratio was ≈3.5).
This value allows us to classify Baltic concretions with
iron–manganese concretions [1, 2]. To study the con-
tent of 3He in the concretions, we analyzed the samples
for Mn, Fe, and other elements before and after chemi-
cal processing in the reagent mixture. The processing
time was varied from 1 to 120 min, the weighed portion
was ≈1 g, and the volume of the 2% (HCl + H2O2) solu-
tion equaled 200 ml. After the processing, the content
of some of the metals in the fine-grain samples
decreased, while that of others increased. By way of
example, Table 1 presents the elemental composition of
one of the samples before and after the processing (the
data obtained with the PC 1000 spectrometer) and also
the content of acid-soluble forms of the same elements.
It is seen that the relative content of Mn, Si, Al, Mg, and
V in the concretions decreased markedly, while that of
Fe and Cu rose. At the same time, the content of Na, Ca,
K, Ti, and Ba changed insignificantly. These quantita-
tive results are not only of great value for developing
new technological approaches. They also form a basis
for tailoring the most appropriate (“soft”) chemical
processing conditions under which the 3He isotope con-
tained in cosmic silicate dust, which enters into IMCs,
will not be lost.

It is known that the 3He isotope is much less abun-
dant in terrestrial rocks than 4He [14]. That is why we
eventually selected the HCl solution (at room tempera-
ture) as a processing agent. Alkaline solutions and HF
here are inappropriate, since they dissolve the silicates
and 3He is lost.

Calculation using (2) and the experimental data in
Table 1 shows that the true content of cosmic He
amounts to 80% of the value measured. With this in
mind, we can now find from (1) the rate of growth of the
concretions in the Gulf of Finland of the Baltic Sea,

(3)

As far as we know, this is the first estimate of the rate
of growth of concretions in the Gulf of Finland (the ran-
dom error in determining the composition is about
10%). Previously, the rate of growth of Baltic concre-
tions was calculated for those in the western part of the
sea near the coastline of Denmark [15, 16]. The calcu-
lations were performed by various techniques, and the
rate of growth was measured to be 7 and 20 mm/thou-
sand years. Our estimate coincides with these values in
order of magnitude, being closer to the lower one.

The second task to be tackled in this work was to
find a method of chemical processing that carries the
main constituents of the concretions (Mn and Fe
hydroxides) to the solution and, thereby, increases the
concentration of the cosmic matter in the insoluble res-
idue. The basic goal here was to obtain the cosmic
material as pure as possible for detailed analysis. The
experimental data for the He isotope content are listed
in Table 2.

r 7.5 mm/thousand years.=
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Table 2.  Helium isotope content in chemically processed samples

Run
no.

Weighed
portion, g

4He × 106,
cm3/g

3He × 1012,
cm3/g

3He/4He × 107 Note

1 0.5435 13.7 ± 1.4 1.3 ± 0.13 0.95 ± 0.15 As-prepared mixture of unprocessed crushed concretions

2 0.4442 46.8 ± 4.7 10.9 ± 1.1 2.3 ± 0.34 Etching in HCl + H2O2, K = 4.35

3 0.3229 31.8 ± 3.2 1.01 ± 0.10 0.32 ± 0.04 Etching in HCl + HF, K = 7.05

4 0.5908 8.5 ± 0.85 1.4 ± 0.14 1.70 ± 0.25 Etching in HCl + H2O2 with HNO3 added, K = 2.05

5 0.4011 13 ± 1.3 1.3 ± 0.13 1.00 ± 0.14 As-prepared IMC powder (repeat of run 1)

Note: K is the ratio of the initial weight of the sample to the weight of the insoluble residue taken for isotopic analysis
It is seen that the concentration of the 3He isotope in
concretions from the shallow Gulf of Finland is nearly
the same as in those from the deep Pacific Ocean [5].
Presumably, this indicates that the cosmic dust flux
toward the Earth depends on the geographic coordi-
nates only slightly.

It also follows from Table 2 that, when hydrochloric
acid as a processing agent is free of hydrofluoric acid,
the insoluble residue is much more enriched by the 3He
isotope. Further optimization of the processing agent is
on the agenda.

The results of this work are in fairly good agreement
with the data in [17]. Note that our experimentally
found optimal concretion-processing solution turned
out to be the same as that found by Kanungo [18, 19].
However, unlike Kanungo, we used dilute hydrochloric
acid to which hydrogen peroxide was added.

CONCLUSIONS

The content of Mn and Fe in concretions of the Bal-
tic Sea was found by physicochemical methods. The
rate of growth of concretions in the Gulf of Finland was
determined for the first time. The value of the Mn/Fe
ratio obtained in the experiments indicates that the con-
cretions studied can be classified with IMCs. Acid solu-
tions to process these concretions were found, and opti-
mal (“soft”) processing conditions were formulated. A
solution of composition HCl + H2O2 can be used for
extracting Mn from the concretions and also for enrich-
ing the insoluble residue by light helium isotope 3He.
This offers scope for concentration of the cosmic mate-
rial and, thus, for its detailed analysis.
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Abstract—The effect of the laser energy density on the velocity of sapphire particles accelerated in the field of
a submillisecond pulse from an YAG : Er laser is reported for the first time. An original velocity-measuring sys-
tem is described. It is shown that the acceleration of sapphire particles immersed in water (suspension) requires
an energy that is nearly half as great as that needed to accelerate the particles containing the water adsorbed by
the surface (powder). It is found that the particle velocity is nonuniformly distributed over the period of the laser
pulse action. © 2005 Pleiades Publishing, Inc.
The idea of light pressure dates back to Kepler, who
postulated in 1619 that, because of light pressure, the
tail of a comet is always directed away from the Sun.
The corpuscular theory of light of Newton made the
idea of light pressure more plausible and stimulated
many attempts to measure it experimentally. In the 18th
and 19th centuries, all attempts to discover the light
pressure or find a force that cannot be assigned to con-
vection in air failed. Crookes in 1873 believed that he
had discovered light pressure in a partially evacuated
chamber, although actually he had invented a radiome-
ter. Finally, the existence of light pressure free of dis-
turbing thermal effects was proved by Lebedev in Rus-
sia and Nuchols and Hull in the United States [1].
Advances in the laser technology have caused a rebirth
of interest in light pressure. As early as in 1962,
Askar’yan [2] showed that an intense light beam may
have a strong influence on charged and polarizable par-
ticles and that the associated forces may change sign in
going through the resonant frequency of polarization.
Application of such an effect for preventing the particle
concentration difference, for particle transport, and for
producing rarefied or condensed areas in different
media was noted. At the same time, Askar’yan and
Moroz [3] demonstrated that light absorption by a par-
ticle irradiated may generate three types of forces
related to (i) heating and motion of the medium itself,
convective drag; (ii) heating of the medium by the
absorbing surface of the particle, radiometric pressure;
and (iii) pressure due to the evaporation of the particle
itself, light-reactive pressure. All the effects listed may
exceed the light pressure by many times and show up in
experiments with a high probability. It is noteworthy
1063-7842/05/5005- $26.00 0666
that the reactive pressure may be as high as 1012 atm.
Such a pressure may be used, in particular, for acceler-
ating microparticles [4] to velocities on the order of
106−108 cm/s to produce micrometeors, particles that
release a high local energy when colliding with a target
or with each other. These particles may be applied for
processing composites (including biological compos-
ites) when the potential of conventional and laser-
assisted technologies is exhausted. For example, a flux
of laser-accelerated Al2O3 particles may be applied for
increasing the rate of processing the enamel of human
teeth [5]. In this case, the water surrounding the parti-
cles (suspension) or adsorbed by them (powder) effec-
tively absorbs radiation at a wavelength of 2940 nm and
vaporizes, favoring the light-reactive motion of the par-
ticle. In this work, we for the first time experimentally
investigate the effect of laser energy density on the
velocity of hard sapphire particles accelerated in the
field of a submillisecond pulse from an YAG : Er laser.
The energy sufficient to accelerate the particles of dif-
ferent size is estimated, and the particle velocity varia-
tion with time after the laser action is determined.

In the experiments, we used a prototype of an
YAG : Er free-running 100-mm-long laser of diameter
6.3 mm operating at 2940 nm. The pulse FWHM was
250 µs. The radiation passes through a CaF2 lens and is
focused into a spot of diameter 600 ± 50 µm. In this
way, an energy density of 250 J/cm2 was achieved. As
hard particles, we used Swam-Blast ultrapure Al2O3
powder. The rated density of the particle material was
3.97 × 103 kg/m3. The diameters of the particles were
12, 27, 40, and 160 µm. Both the suspension and pow-
© 2005 Pleiades Publishing, Inc.
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der were studied. The suspension was prepared in pro-
portion 300 mg of the particles per 0.2 ml of water. The
particles (suspension or powder) were placed in a glass
cell with a sapphire bottom. The thickness of the parti-
cle bed was 200 ± 50 µm. The laser radiation was
focused on the contact plane between the particles and
cell bottom. The radiation-accelerated particles left the
space of interaction and were photographed with a
MINTRON high-sensitivity controlled-shutter video
camera interfaced to a computer and a synchronizer.
The optical axis of the objective of the video camera
was directed normally to the direction of laser beam
propagation and passed through the space of particle–
radiation interaction. The synchronizer generated a las-
ing-starting sync pulse and a frame sync pulse. Interval
∆tl between the time of the frame pulse (t0) and the time
of the laser pulse (tl) may be varied. The exposure time,
i.e., the time over which the shutter is open, may be var-
ied from 100 µs to 2 ms (in the experiments, it equaled
500 µs). We could also vary interval ∆ts between the
time of the frame pulse (t0) and the time of shutter open-
ing (ts). Thus, over a time interval of 500 µs, we could
record events taking place within time ∆ts. Cutting ∆ts

made the image of particles flying apart disappear from
the monitor, while a small increase in ts returned the
image to the monitor. This time instant (t1) was taken to
be the beginning of particle motion. Estimating the dif-
ference between t1 and t1, we determined the delay
between the beginning of the laser pulse and the begin-
ning of particle motion. Then, increasing ts, we could
record the accumulation of particles flying apart within
time ∆t that is the difference between ts and t1. The
computer controlled the synchronizer, as well as photo
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Fig. 1. Variation of the particle mean velocity with time
after the YAG : Er laser pulse has been switched on (the
Al2O3 particle diameter is 12 µm, the energy density is
135 J/cm2).
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acquisition, storage, and processing. The images were
used to measure the length of the most intense tracks of
pulse-field-heated particles flying almost normally to
the bed. In this way, we minimized the error in deter-
mining the track length due to the angular divergence of
the particles. Dividing the track length by ∆t, one can
easily find the mean velocity of the particles over this
time period.

In the experiments, we determined the threshold
value of the laser energy at which particles of different
diameters start moving. It turned out that the energy
density 0.3 J/cm2 suffices to accelerate particles of
diameter 12 µm from the suspension. To accelerate
these particles from the powder, 0.7 J/cm2 is required.
To accelerate particles of diameter 27 µm from the pow-
der, it is necessary that the energy density be 1.5 J/cm2;
for those of diameter 40 µm, 2.2 J/cm2; and for those of
diameter 160 µm, 6.0 J/cm2. That is, the energy density
required for sapphire particles to be accelerated from
water (suspension) is roughly half as high as that
needed for the particles containing water adsorbed by
the surface (powder) to be accelerated. It was estab-
lished experimentally that the particle velocity varies
within the time of laser action (Fig. 1), increasing with
laser energy density (Fig. 2). Over the time of laser
action, the velocity of 12-µm Al2O3 particles first
sharply grows, reaches a maximum (by the 40th micro-
second), and then declines gradually. Moreover, the
particles go on moving after the pulse is switched off. It
should be noted that such behavior was also observed
for particles of the other diameters. In the field of a sub-
millimeter pulse from an YAG : Er laser, a nonabsorb-
ing Al2O3 particle surrounded by surface-adsorbed
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Fig. 2. Variation of the particle mean velocity with YAG : Er
laser energy density (the Al2O3 particle diameter is 12 µm).
The velocity was measured 40 µs after the laser pulse had
been switched on.
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water (powder) may be accelerated to a velocity of
275 m/s, which corresponds to a kinetic energy of
about 0.27 µJ for the 12-µm particles. This energy suf-
fices to destroy a very hard material, such as tooth
enamel [5].
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Abstract—The methods of thermal analysis and scanning electron microscopy are used to study phenomena
taking place at thermal decomposition of porous polyacrylate composites filled with silver nanoparticles that
are synthesized in situ by UV reduction. Self-organization processes showing up in the redistribution of the sil-
ver nanoparticles in the polymer melt followed by their sintering into agglomerates are revealed. The morphol-
ogy of the agglomerates is found to depend on the structure of the porous polymeric matrix. Using X-ray dif-
fraction, it is shown that annealing produces silver crystallites 70–90 nm across, which are partially textured in
“sheetlike” {110} planes and are stable against dissolution in nitric acid. © 2005 Pleiades Publishing, Inc.
Processes taking place when nanoheterogeneous
materials consisting of metal nanoparticles immobi-
lized in a porous matrix are subjected to high tempera-
tures are of interest both for predicting their behavior in
real catalytic and other high-temperature operations
and for synthesis of novel materials with specially tai-
lored properties. Earlier, we studied the thermal decom-
position of porous polyacrylates that are filled with sil-
ver nanoparticles synthesized in situ and revealed char-
acteristic features of this process that are attributed to
inhomogeneities inherent in the polymer matrix and to
the presence of the nanoparticles, which may be redis-
tributed (self-organize) in the melt under the action of
surface tension forces [1]. However, the composition
and structure of annealing products are not yet under-
stood. In this work, we show that the self-organization
of nanoparticles during the decomposition of the
porous nanocomposite influences the structure of the
final annealing product and describe its composition
and properties.

Polymeric matrices were produced by the copoly-
merization of methyl methacrylate and potassium
methacrylate in the presence of a porogene (polyethyl-
ene glycol) and a polymerization initiator (benzoyl per-
oxide) at 65°C. The block samples obtained were 2 mm
thick.

The polymer porous structure formed by extraction
of the ethylene glycol by deionized water represents
spherical macropores connected via reagent-permeable
intercommunicating open micropores. The spherical
macropores contain the carboxylate groups of potas-
sium methacrylate, owing to which the polymer is
capable of forming complexes with metal ions. Small
aspherical inhomogeneities serve as through micro-
1063-7842/05/5005- $26.00 0669
channels connecting the macropores and allowing the
ions to diffuse into the volume. The size and amount of
the macropores depend on the molar ratio between the
diluent and methyl methacrylate in the mixture to be
polymerized and, thus, can be easily controlled [2]: an
increase in the polyethylene glycol concentration in the
system increases the size of the macropores in the poly-
meric matrix and diminishes their number. During dry-
ing of the polymeric matrix, some of the micropores
collapse and the size of the macropores decreases.

The sorption of the silver ions into the volume of the
porous matrix was accomplished from a 0.3 M solution
of silver nitrate. Silver nanoparticles were synthesized
in situ by the method of photoreduction (λ = 350 nm).
According to X-ray diffraction data, the mean size of
the nanoparticles was 7.3 nm and the silver concentra-
tion amounted to 12–15 wt%. The nanocomposites thus
prepared were dried in air and subjected to heat treat-
ment.

The thermal decomposition of the porous nanocom-
posites was studied in air with a Paulic–Paulic–Erdey
1500Q derivatograph. The heating rate was 10°C/min
in the interval 25–700°C. The weighed sample was var-
ied from 40 to 45 mg. The morphology of the decom-
position products was examined in a Philips SEM 515
scanning electron microscope.

X-ray diffraction data were taken with a Bruker D8
GADDS diffractometer (CuKα radiation, graphite
monochromator, angular range 2Θ = 5°–75°). Crystal-
lite size D was calculated by the Debye–Scherrer for-
mula [3], and the intensity of reflections from the
annealed silver was calculated using the POWDER-
SELL 2.0 program.
© 2005 Pleiades Publishing, Inc.
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As the temperature of the porous polyacrylate nano-
composites rises to 130–170°C, the polymer matrix
starts melting. The macropores transform into cavities,
which are gradually filled with gaseous products of
polymer decomposition. Initially, the decomposition of
the polymer is similar to the decomposition of pure
PMMA, which starts at 160°C [4]. Foaming of the melt
accompanied by a several-fold increase in the sample
volume is observed visually. During foaming, the silver
nanoparticles are redistributed, concentrating at the
melt–gas interface on the boundaries of resulting bub-
bles. On further thermal oxidation, the polymer consol-
idates and the bubbles collapse. At temperatures of
415–420°C, the metal nanoparticles are sintered, pro-
ducing spheroidal agglomerates. Carboniferous spac-
ings between the agglomerates prevent the silver nano-
particles from being sintered into a single continuous
block. At temperatures of 440–630°C, these spacings
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Fig. 1. Diffraction pattern taken from the products of
annealing of the porous silver–polyacrylate nanocomposite.

2 µm

Fig. 2. SEM micrograph taken of the silver agglomerates
(the final products of annealing of the porous silver–poly-
acrylate nanocomposite).
burn up, releasing a great amount of heat; however, the
silver agglomerates already formed are still not sintered
together, retaining a high specific surface area. SEM
micrographs taken from the final products of thermal
decomposition show mesostructures of size between
0.3 and 1.5 µm depending on the porosity of the as-pre-
pared polymer matrix. If the number of pores is small
and their size is large, the material decomposes into
larger agglomerates. Thus, one can obtain annealing
products with a desired morphology by varying the
composition of the mixture to be polymerized. The
influence of the polymer matrix structure on the silver
agglomerate size described elsewhere [1] is due to the
fact that the early stage of decomposition, which is
accompanied by gas release, proceeds on the surface of
structural irregularities present in the melt (these irreg-
ularities occupy the sites of former macropores). The
temperature-induced processes of metal nanoparticle
redistribution, sintering, and mesostructure formation,
proceeding in the porous matrix, may be viewed as self-
organization at the nano- and microlevels.

Figure 1 shows the diffraction pattern taken from the
products of annealing of the silver–polyacrylate nano-
composite kept in air at 630°C for 30 min. The diffrac-
tion lines from the silver are distinctly seen. Reflections
due to the carboniferous products of polymer decompo-
sition are absent. It seems that the UV preirradiation of
the polymer, which reduces its thermal stability, has a
significant effect on the annealing product purity:
according to X-ray diffraction data, silver agglomerates
extracted from silver–polyacrylate composites by ther-
mal reduction of silver salts in the volume of the same
polyacrylate matrix [5] contain a much higher amount
of carboniferous products.

The observed relative intensities of the (111), (200),
and (220) reflections (Fig. 1) for the annealed silver dif-
fer drastically from those calculated for isotropic pow-
der samples. The experimental intensity ratio may be
explained by assuming the presence of sheetlike texture
along {110} planes. The best coincidence between the
experimental and calculated intensities is observed at a
texture index of 0.35. The texture may be attributed to
the pre-orientation of the silver particles under the
action of surface tension forces at the gas–melt inter-
face in the polymeric “foam.” Another reason may be
oriented heat removal during the recrystallization of the
silver.

Ignoring internal elastic stresses and making allow-
ance for a correction for line broadening, we find that
the size of the coherent scattering region for the
annealed silver calculated by the Debye–Scherrer for-
mula equals 70–90 nm. This means that the agglomer-
ates with an apparent grain size of 1–2 µm (Fig. 2) are
actually composed of grains less than 100 nm across.

The silver agglomerates that are products of anneal-
ing of the silver–polyacrylate composite dissolve in
concentrated nitric acid only after long-term heating,
while silver produced by other techniques is readily
TECHNICAL PHYSICS      Vol. 50      No. 5      2005
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soluble in HNO3. There are a number of publications
noting that silver nanoparticles obtained by photolysis
offer high stability against nitric acid. These particles
≈4 nm in size have the form of icosahedra [6] and a reg-
ular crystal structure. It seems likely that silver crystal-
lites made up of nanoparticles obtained by photoreduc-
tion retain their regular structure during the thermal
decomposition of the silver–polyacrylate composite
and subsequent sintering. As a result, the products of
nanocomposite annealing are hard to dissolve in nitric
acid.
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