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IN MEMORIAM
OF F. L. SHAPIRO

 

Fedor L’vovich Shapiro
(April 6, 1915–January 30, 1973)
The articles that are presented under this rubric are
dedicated to the 85th anniversary of the birth of Profes-
sor Fedor L’vovich Shapiro, a prominent physicist and
a corresponding member of the USSR Academy of Sci-
ences. A rara avis among nuclear physicists, Shapiro
was a broad-minded person, known for his wide erudi-
tion and passionate enthusiasm for science. A man of
principles, he was simultaneously kind and considerate
to people, who loved and held him in high esteem for
these generous qualities.

Shapiro was born in Gomel on April 6, 1915. He
graduated from school at 15 years of age and entered an
electrotechnical school. Being only 19 years old, he
proposed an original method for converting thermal
energy into electric energy by changing the magnetic
flux generated by controlled variations in the tempera-
ture of a ferromagnetic core near the Curie point. In
1936, Shapiro entered the Faculty of Physics at Mos-
cow State University. In 1941, he graduated from it
with honors. In the same year, he joined the army as a
volunteer and was seriously wounded. After the war,
Shapiro became a postgraduate student of I. M. Frank
at the Institute of Physics (USSR Academy of Sciences,
Moscow) and, from then on, remained a close associate
of this teacher. In those years, he also became an assis-
tant professor at the Department of Nuclear Physics of
the Faculty of Physics, Moscow State University. After
finishing his postgraduate studies, Shapiro—together
with E.L. Feinberg, L.E. Lazarev, L.V. Groshev, and
I.V. Shtranikh—embarked on investigations into sub-
critical uranium–graphite systems. The results of these
investigations, which were performed at the Institute of
Physics within the program for developing nuclear
weapons in the USSR, formed the basis of his candi-
date’s dissertation, which he successfully defended in
1949.

In the early 1950s, Shapiro’s group developed a
spectrometer for recording neutrons by the time of their
moderation in lead. This spectrometer was used in an
extensive series of experiments that studied neutron–
nucleus interactions and which showed, among other
things, that the cross section for neutron capture by
nuclei can deviate from the 1/v law (an explanation of
this phenomenon was also given in Shapiro’s studies).
Along with research work, Shapiro delivered lectures
on neutron physics at the Faculty of Physics at Moscow
State University (his students dubbed these lectures
Shapiro’s special course). His lectures were character-
ized by extreme clarity and precision of presentation; as
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a teacher, he was able to explain involved physics prob-
lems in very simple and comprehensive terms.

In 1958, Shapiro became a deputy director of the
Laboratory of Neutron Physics (headed by I. M. Frank)
at the Joint Institute for Nuclear Research. In 1960, a
pulsed fast-neutron reactor was commissioned at this
laboratory, and Shapiro was among those who evolved
the program of scientific investigations for this reactor.
The program included investigations of the total and
partial cross sections for neutron–nucleus interactions
and the development of a method for polarizing
resonance neutrons with energies between 1 eV and a
few tens of keV that was previously unavailable to
researchers.

The aforementioned reactor was used in a series of
experiments that were able to measure the spins and
magnetic moments of neutron resonances in nuclei and
to determine the amplitudes for low-energy neutron
scattering on a deuteron.

While continuing his studies in neutron physics,
Shapiro took part in investigations of the Mössbauer
effect. As a matter of fact, Shapiro became the pioneer
of this new method of gamma spectroscopy in the
Soviet Union. He developed the classical theory of the
Mössbauer effect. Together with I.Ya. Barit and
M.I. Podgoretsky, he indicated for the first time that,
with the aid of the Mössbauer effect, an experiment
aimed at testing the implications of the general theory
of relativity could be implemented on the Earth. In the
course of this experiment, it proved possible to observe
the shift of the photon frequency in gravitational and
inertial fields. For this, Shapiro proposed using narrow
gamma lines as a source of photons. As a result, a
velocity sweep of the 92-keV gamma-line resonance in
the 67Zn nucleus was obtained for the first time with a
relative energy resolution of about 10–15, which still
remains a record value.

In 1961, Shapiro indicated that slow neutrons from
pulsed fast-neutron reactors could be employed in
investigations into condensed-matter physics. He
developed a highly sensitive method of inverse geome-
try. This method made it possible to study thermal
vibrations of atoms in solid bodies and liquids and to
measure self-diffusion coefficients in the critical state
of liquid–vapor systems. Together with the Polish
physicist B. Buras, Shapiro substantiated the applica-
tion of the neutron-time-of-flight method to diffraction
investigations. In addition, the method of neutron dif-
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fraction at magnetic structures in strong pulsed fields
was implemented under his supervision.

In 1964, he became a member of the Editorial Board
of the journal Uspekhi Fizicheskikh Nauk (known in the
English-speaking world as Soviet Physics—Uspekhi).

In April 1968, Shapiro proposed using ultracold
neutrons in a device for seeking the electric dipole
moment of the neutron (such searches are of paramount
importance for testing the conservation of T invari-
ance). In the summer of the same year, a group of
experimentalists headed by Shapiro observed for the
first time ultracold neutrons (gas of elementary parti-
cles, neutrons) that were created with the aid of the low-
energy pulsed fast-neutron reactor installed at the Lab-
oratory of Neutron Physics and which were confined
within a vessel made from ordinary matter.

After that, Shapiro initiated experiments with ultra-
cold neutrons at more powerful stationary reactors at
the Kurchatov Institute of Atomic Energy (Moscow),
Research Institute for Atomic Reactors (Dmitrovgrad),
and Institute of Nuclear Physics (Kazakh SSR Acad-
emy of Sciences, Alma-Ata).

Shapiro fell seriously ill in 1971 and passed away on
January 30, 1973 three months before his 58th birthday.

For his scientific and pedagogical achievements,
Fedor L’vovich Shapiro was rewarded with various
state decorations and prizes. The degree of professor
was conferred upon him in 1967. In 1968, he was
elected to corresponding membership in the USSR
Academy of Sciences.

The name of Fedor L’vovich Shapiro belongs to the
history of physics and will ever be remembered by
those who had a privilege to know him.

L. B. Pikelner
A. V. Strelkov
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Abstract—The partial cross section for radiative neutron capture accompanied by gamma transitions to the
ground state of the 59Ni nucleus was measured as a function of energy by a new neutron-spectrometry method
that employed the shift of a primary gamma transition in response to a change in the energy of the captured
neutron. The reaction 7Li(p, n)7Be was used as source of neutrons for the present measurements. The protons
that induced this reaction were accelerated by a Van de Graaff electrostatic generator to energies exceeding the
reaction threshold by 60 keV, in which case an appropriate geometry of the experiment permitted irradiation of
the sample under study with neutrons whose energy ranged between 10 and 120 keV. The partial widths of some
resonances and radiative strength function for hard primary M1 gamma transitions were determined in addition
to the above cross sections. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, there exists a vast body of experimental
data on the parameters of neutron resonances in nuclei,
as well as experimental and estimated data on cross
sections for radiative neutron capture. The most com-
prehensive compilations of such data can be found in
well-known libraries like ENDF/B and JENDL. At the
same time, experimental information about partial
gamma transitions accompanying neutron capture is
less comprehensive, covering a limited range of neu-
tron energies and a very limited range of nuclei (no
such information is available for the majority of
nuclei). In all probability, this is because partial cross
sections for the reactions being discussed are small,
requiring highly efficient experimental methods involv-
ing the spectrometry of the recorded gamma radiation.
For those cases, the application of the time-of-flight
method for neutron spectrometry is limited because of
its low efficiency.

In the present study, the partial cross sections for
radiative neutron capture were measured by a new
method employing the shift of the energy of the pri-
mary gamma transition triggered by resonance-neutron
capture in relation to the energy of the analogous tran-
sition following thermal-neutron capture [1, 2]. For the
first time, the capabilities of this method were demon-
strated by Thomson et al. [3], who were able to record
two resonances in silicon by using a reactor-neutron
beam filtered by a boron layer. However, those authors
failed to extract any information from their results other
than the experimental resonance widths. At the same
time, this new method, which is being refined in our
laboratory, makes it possible to measure not only the

* e-mail: ypopov@nf.jinr.ru
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partial cross sections for gamma transitions to the
ground and the first excited state of a daughter nucleus
but also partial radiative widths. The latter enables a
determination of E1 and M1 radiative strength func-
tions [2]. In this connection, we believe that the analy-
sis of averaged radiative-capture cross sections that was
performed in the experiments of F.L. Shapiro’s group
with the first spectrometer using the time of neutron
moderation in lead [4] may prove promising in extract-
ing neutron strength functions.

At the first stage of refining the method, we
employed Fe and Ni samples, for which the partial
gamma widths for some of the strongest resonances
(for the most part, s-wave resonances) had been mea-
sured by the time-of-flight method [5, 6]. This provided
reference values for our relative measurements of cross
sections and made it possible to test the new procedure.

2. DESCRIPTION OF THE EXPERIMENTAL 
PROCEDURE

In measuring partial cross sections for the reaction
58Ni(n, γ0)59Ni, we recorded primary gamma transitions
to the ground state of the daughter nucleus 59Ni. The
spin–parity of this state is Iπ = 3/2–; therefore, the mul-
tipolarity of these transitions is E1 for s-wave reso-
nances and M1 for p-wave resonances.

The arrangement of the equipment in the neutron
beam is schematically illustrated in Fig. 1. A sample
that was made from natural nickel and which had a
thickness of 4 mm and a shape similar to that of a ring
was exposed to a flux of neutrons from the reaction
7Li(p, n)7Be. The protons that induced this reaction
were accelerated by a Van de Graaff electrostatic gen-
erator to energies exceeding the reaction threshold by
000 MAIK “Nauka/Interperiodica”
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60 keV, whereby irradiation of the sample with neu-
trons of energies between 10 and 120 keV was ensured.
A lead block shielded the germanium detector used
from hard gamma radiation originating from the reac-
tion 7Li(p, γ). A compact geometry of the experiment
made it possible to achieve optimal efficiency both for
photon detection and for the irradiation of the sample
with neutrons.

The measurements were performed in short series of
one-hour runs (the total time of measurements was
about 70 h). After that, the resulting spectra, prelimi-
narily corrected for the drift of the electronics amplifi-
cation factor, were summed. For a drift indicator, we
used background peaks that were invariably present in
the measured spectra and which represented the well-
known doublet of gamma transitions to the ground and
the first excited state of 57Fe nuclei generated in the
reaction 56Fe(n, γ)57Fe induced by thermal (back-
ground) neutrons incident on iron nuclei that were in
abundance both in structure materials and in the equip-
ment of the experimental hall.

The background was measured without any sample
in the time intervals between the experimental series.
The bulk of the background was due to Compton scat-
tering that photons originating from the radiative cap-
ture of neutrons scattered and moderated in surround-
ing materials, including the material of the massive
magnet used to rotate the proton beam, suffered in the
germanium detector.

The energy resolution of this spectrometric method
was determined almost completely by the resolution of
the germanium detector at the energies of the photons
under investigation, amounting to about 8 keV in our
case.

A section of the experimental gamma spectrum for
gamma transitions to the ground state of the daughter
nucleus is displayed in Fig. 2. The corresponding back-
ground, also presented in this figure, shows no peaks
that could distort the sought effect.

Fig. 1. Layout of the experimental setup.
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3. RESULTS OF MEASUREMENTS
AND THEIR ANALYSIS

The area of the primary gamma transition under the
peak corresponding to the ith neutron resonance can be
represented as

(1)

where Γni is the neutron width of the ith resonance, 
is the partial radiative width, Γ i is the total resonance
width, φi is the neutron flux, and gi is the spin factor.
Since the sample used proved to be thick for some
strong neutron resonances, a correction factor ki that
takes into account multiple neutron scattering in the
sample and changes in the neutron flux over the thick-
ness because of self-absorption was introduced in (1).
For each resonance, this factor was computed by the
Monte Carlo method. We used the neutron-resonance
parameters from the compilation presented in [7]. The
angular and energy dependences of the neutron flux
were calculated by using the known cross sections for
the reaction 7Li(p, n)7Be [8] and its kinematical fea-
tures and by taking into account the overall geometry of
the experiment (see Fig. 1). We have also introduced a
correction for inefficiency of photon detection, consid-
ering that points occurring at different distances from
the sample center are hit by neutrons of different ener-
gies.

The background conditions in the presence of the
sample are different from those in the absence of it,
because, in the former case, there arise neutrons scat-
tered by the sample and Compton tails from nuclei of
the 61Ni isotope (its binding energy is Bn = 10598 keV)
that are present in the sample. In processing the spectra,
the background under the peaks was therefore approxi-
mated separately by background functions in the
regions to the right and to the left of the effect being
detected. The boundaries of the effect were determined
by the interval of energies of the neutrons hitting the
sample. For an approximating function, we used a poly-
nomial of the second degree. Upon background sub-
traction, the area under the peak for each resonance was
evaluated with the aid of computer fits that were
obtained with the peak positions fixed strictly at Eγ =
Bn + E0[A/(A + 1)], where A is the atomic weight of the
target, E0 is the neutron-resonance energy, and Bn =
8999.43 keV is the neutron binding energy. In addition
to strong resonances, which are responsible for the for-
mation of peaks, the experimental spectrum features a
large number of weak resonances [7]. It was assumed
that these weak resonances form the continuous distri-
bution of gamma-transition intensities in the region of
well-resolved strong peaks. This is the reason why the
adjustable function was taken in the form of the sum of
Gaussian functions (which represented the peaks) and
a smooth function. For a first approximation, we used a
polynomial for the latter.

Ai kiφiεiλ i
2
gi

ΓniΓγi
p

Γ i

--------------,∼

Γγi
p
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Fig. 2. (a) Experimental spectrum taken with a Ni sample: section that corresponds to gamma transitions populating the ground state
of the 59Ni nucleus (the data-accumulation time is 70 h); (b) background spectrum measured without a Ni sample (the data-accu-
mulation time is 16 h).
Because the mean spacing between the resonances
under study and the resolution of the method were 2
and 8 keV, respectively, the experimental curve was
analyzed by the method of successive approximations.
First, only those resonances were taken into account
whose positions coincided with experimental peaks.
After that, other resonances (the strongest ones, accord-
ing to [7]) were added in order to improve the shape of
the fitted curve and to minimize the χ2 value. The pro-
cedure of adding resonances was terminated when this
no longer resulted in the reduction of χ2, leading simul-
taneously to the growth of the error in Ai. The total area
of the resonances was used in the cases where they
were closely spaced (Ei – Ei  + 1 ≤ 0.5 keV).

3.1. Partial Parameters of Neutron Resonances

The relative area values for the E0 = 15.28 keV res-
onance and for the E0 = 26.07 + 26.64 keV and E0 =
32.26 + 32.38 keV summed resonance pairs proved to
be proportional to the corresponding partial widths
from [5]. The proportionality factor was used for an
absolute normalization of our relative values of the reso-
nance areas. The results of this normalization are shown
graphically in Fig. 3 and in the table, where the quoted
errors are purely statistical. As a result, we additionally
obtained the partial-width values for the E0 = 36.12 keV
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
resonance and for the E0 = 51.91 + 52.22 keV unre-
solved resonances. The reason behind the discrepancy
for the E0 = 20.00 + 21.12 keV summed resonance pair
(see table) has yet to be clarified.

15
.2

8

20
.0

 +
 2

1.
12

26
.0

7 
+

 2
6.

64

32
.3

9
36

.1
2

47
.9

51
.9

1 
+

 5
2.

22

61
.7

9 
+

 6
3.

27
63

.2
7

gΓ   Γn/Γ, eV
0.8

0.6

0.4

0.2

0

10 30 50 70
Neutron resonance energy, keV

Fig. 3. Partial parameters g Γn/Γ of neutron resonances:
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Parameters of neutron resonances in 58Ni (the underlined values are used for the absolute normalization of our results)

E0, keV Jπ [7] gΓγΓn/Γ, eV
[7]

Γn/Γ, eV Γn/Γ, eV

[5]

15.28 1/2+ 1.21 0.140(27) 0.124(17)

20.002 + 21.12 1/2– 0.25 + 0.69 0.017(53) 0.196(41)

26.07 + 26.64 1/2– 0.28 + 0.89 0.155(79) 0.159(35)

32.26 + 32.38 1/2+ + 3/2– 0.46 + 1.35 0.443(152) 0.456(98)

36.12 1/2+ 1.19 0.074(63) –

47.89 3/2– 1.3 0.068(57) 0.088(19)

51.91 + 52.22 3/2– 0.82 + 1.0 0.074(34) –

61.79 + 63.27 1/2+ + 1/2– 1.43 + 2.3 0.538(60) –

63.27 1/2+ 2.3 0.258(33)

gΓγ0

gΓγ0
The absolute normalization of the partial widths
made it possible to rescale our experimental spectrum
into the dependence of the absolute partial cross section
for the reaction 58Ni(n, γ0)59Ni as displayed in Fig. 4,
which also shows the cross section calculated by using
the partial parameters obtained here for neutron reso-
nances (see table) with allowance for neutron absorp-
tion and rescattering in the sample.

3.2. Radiative Strength Function

A transition to the absolute values of the neutron-
resonance parameters makes it possible to estimate not
only the partial reaction cross section but also the radi-
ative strength function. According to [7], about 45 p-
wave resonances occur in the energy region studied in
our experiment. This enables us to deduce the mean
partial parameters of neutron resonances and, in partic-
ular, to calculate the radiative strength function for pri-
mary M1 gamma transitions to the ground state of the
59Ni.

The radiative strength function was computed by
the conventional formula

(2)kM1 Γ ij
M1

/DiEγ
3
.=
Partial cross section, mb

12

8

4

0

–4

20 40 60 80 100 120
Neutron energy, keV

Fig. 4. Partial cross section for the reaction 58Ni(n, γ0)59Ni: (points) experimental data that were corrected for the neutron flux, but
which do not involve corrections for rescatterings and absorption in the sample; (curve) partial cross section that was calculated on
the basis of the values obtained in this study for the partial parameters of neutron resonances (see table) and which take into account
rescatterings and absorption in the sample.
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For p-wave resonances, the mean value of the partial
width Γij was evaluated by taking into account all p-
wave resonances having a specific spin value and
occurring in the energy region being studied. In doing
this, we included both strong resonances that mani-
fested themselves as individual peaks in the experimen-
tal spectrum and weak resonances that contributed to
the continuous pedestal (the contribution of weak reso-
nances amounted to some 40% of the contribution of all
resonances populating this energy region). In the calcu-
lation, we assumed, in accordance with the statistical
model, that the radiative strength function takes the
same value for resonances with different spins. The
mean spacing between the spin-1/2 and spin-3/2 p-
wave resonances was computed by using data from [7].

For the mean value of the M1 radiative strength
function, the above procedure yields kM1 = (12 ± 6) ×
10−9 MeV–3. The quoted error includes statistical uncer-
tainties in approximating the experimental spectrum,
errors in averaging over resonances in computing the
mean values of Γn/Γ and the mean level spacing, and
the error associated with Porter–Thomas fluctuations of
the partial widths with respect to gamma transitions.

Obviously, the radiative-strength-function value
obtained on the basis of the procedure outlined above
depends on the way of background subtraction (that is,
on the form of the function used to approximate the
background, on the boundaries of the regions where the
background was studied, and on some other similar fac-
tors). Bearing this in mind, we performed a test calcu-
lation of the radiative strength function within an expo-
nential approximation of the background instead of the
above approximation in terms of a second-degree poly-
nomial. The result of this test calculation is kM1 = (10 ±
5) × 10–9 MeV–3. Variations in the boundaries of the
background intervals change the kM1 value within the
quoted statistical errors.

The value obtained here for kM1 complies well with
data from [5] and with the compilation presented in [9].

4. CONCLUSION
We have demonstrated the capabilities of a new

method of neutron spectroscopy. The efficiency of this
method is higher than that of the time-of-flight method.
The energy resolution of the method is determined by
the resolution of a germanium detector in recording
gamma transitions of energies in the range 6–9 MeV.
This is, however, sufficient for studying light and
medium-mass nuclei for which the spacing between the
resonances is greater than or commensurate with the
resolution of the germanium detector.
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
The high resolution of the method has enabled us to
analyze not only strong resonances manifesting them-
selves as individual peaks but also weak resonances
contributing to the continuous spectrum. Owing to this,
we have been able to estimate the resonance parameters
averaged over a large number of resonances. This has
been demonstrated in calculating the mean value of the
M1 radiative strength function.

Further plans are associated with studying gamma
transitions that populate not only the ground state of the
daughter nucleus but also its excited states, as well as
with refining procedures for analysis of continuous
spectra. This will make it possible to estimate the mean
values of the partial parameters of neutron resonances,
of the partial cross sections, and of radiative strength
functions for heavier nuclei.
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Abstract—The experimental results on delayed-neutron yields from thermal-neutron-induced fission of some
actinides in the IBR-2 pulsed reactor are presented. A method of periodic irradiation without displacement of
the sample was used. The measurements of delayed-neutron total yields in thermal-neutron-induced fission of
239Pu, 233U, and 237Np and in cold-neutron-induced fission of 235U, 233U, and 239Pu were carried out. All values
were obtained with the use of the value of β0 for (nth + 235U) as a reference. Precise measurements of decay curves
in the time interval 5–350 ms for 235U and 239Pu were performed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the emission of delayed neu-
trons (DN) after neutron-induced fission of heavy
nuclei has a fundamental significance for the realiza-
tion of a controllable fission chain reaction. The yields
and time characteristics of delayed neutrons from the
thermal-neutron-induced fission of the main reactor
isotopes (235U, 239Pu, and 233U) are some of the most
important nuclear reactor constants used in reactor-
kinetics calculations [1–5]. An accuracy of 3% for 235U,
4% for 239Pu, and 6% for 233U has now been achieved
for DN yields. The requirements for the accuracy of the
parameters have continued to increase, especially in con-
nection with the problems of reactor safety [4, 5].

However, despite a considerable number of mea-
surements, the discrepancy in the obtained data is sig-
nificant. This discrepancy is especially seen when com-
paring the DN data obtained by using two radically dif-
ferent methods for determining the DN parameters: (1)
DN decay curve measurements with a subsequent
approximation with six exponentials and determination
of DN parameters: decay constants λi and weights ai;
(2) calculation of the group parameters by summation
of all precursor yields included in this group. In the sec-
ond case, the DN yield for a given precursor νdi is equal
to the product of the cumulative yield of the precursor
Yi and the neutron-emission probability Pni. For exam-
ple, the experimentally achieved accuracy in the DN
yield for one of the well-studied cases (thermal-neu-
tron-induced fission of 239Pu) is 4%, but the calculated

* This article was submitted by the authors in English.
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value of the DN yield νd is 10% above the experimental
one [6]. Moreover, the boundaries of the six groups
have an arbitrary character and vary in different works
[7, 8]. One should mention that the values of the param-
eters for the fifth and the sixth group are determined with
the poorest accuracy (20–40%) because of their short
decay periods (less than 1 s). This is comparable with the
time needed, in some works, to move a sample from the
irradiation position to the position of DN recording.

As a consequence, the values of νd and β0 = νd /ν
(where ν = νd + νp is the total number of fission neu-
trons and νp is the number of prompt neutrons per fis-
sion event) are the subject of continuing efforts to
improve their accuracy.

The total-yield determination for DN from the
thermal-neutron-induced fission of 233U, 239Pu, and
237Np and from the cold-neutron-induced fission of
233U, 235U, and 239Pu (by using the data on νd from the
thermal-neutron-induced fission of 235U as a refer-
ence) is the subject of this work. Our specific interest
in the investigation of fission characteristics for 237Np
was stimulated by the recent work by Lisowski et al.
[9], who demonstrated that 237Np is a promising iso-
tope for accelerator-driven energy production and
waste transmutation. Also, one of the purposes of this
work was to check experimentally the existence of
DN groups with very short periods (less than 0.1 s) in
thermal-neutron-induced fission of 235U and 239Pu,
which is due to the existence of such isotopes as 94Br,
99Rb, 100Rb, and 102Sr.

2. METHOD

To study the short-lived DN groups in the millisec-
ond time range, a method of periodic irradiation of the
000 MAIK “Nauka/Interperiodica”
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samples without displacement was developed at the
Frank Laboratory of Neutron Physics (JINR, Dubna).
Since the method has been discussed in detail else-
where [10–12], we present here a short summary with
relevant formulas.

The IBR-2 pulsed reactor [13] was used as a neutron
source. The reactor pulses with a half-width of 230 µs
at a repetition frequency of 5 Hz and a high intensity of
the pulse neutron flux (the peak power is about 1350
MW) give a unique possibility to study DN with short
decay periods. The pulse reactor allows us to carry out the
periodic irradiation of samples and to measure the DN in
the time intervals between the pulses. The detection of
prompt neutrons and DN under the same conditions
allows one to determine the β0 value with good accuracy.

In the case of a periodic sample exposure, the count-
ing rate for DN decreases with time t according to the
expression

(1)

where Nf is the number of fission events; εd is the detec-
tor efficiency for DN; λi and ai are the decay constant
corresponding to the half-life T1/2, i (λi = ln2/T1/2, i) and
the relative yield for the ith group of the DN

, respectively; ∆t is the irradiation time; and

T is the time interval between neutron bursts. The value
of t is measured from the end of the irradiation time.
This formula uses the well-known six-group approxi-
mation of Keepin [1] and takes into account the peri-
odic irradiation of the target.

If the count numbers of prompt (measured in some
time interval [t0, t1]) and delayed neutrons (in a time
interval [t1, t2]), Np and Nd, respectively, are known
from the experiment, one can calculate the value of β0
using the formulas given below.

In particular, the total number of DN is

(2)

where F(T, ∆t, t1, t2) is a function that can be obtained
from (1) and which takes into account the finite time
interval of the DN measurement,

(3)

The number of prompt fission neutrons is

(4)

nd t( ) N f νdεd
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where εp is the detector efficiency for prompt neutrons.
Obviously, we have

(5)

and 

(6)

Therefore, the determination of the β0 value is
reduced to measurements of the detector counts for
prompt and delayed neutrons and the ratio of their
detection efficiencies.

The main advantage of this method lies in the fact
that it is not necessary to know the absolute detector
efficiency, the neutron flux, and the sample mass for
these measurements. On the other hand, the measure-
ments of DN from the short-life groups are carried out
with a background from other groups with longer peri-
ods, which reaches saturation a few minutes after the
start of irradiation.

3. THE EXPERIMENTAL SETUP

The measurements were performed at the Isomer
setup (see Fig. 1), which was described in detail in [11,
12]. The Isomer facility was placed 27 m from the reac-
tor core, and the time-of-flight method allowed the
energy of the incident neutrons to be determined. The
neutrons from the reactor core passed through a bent
mirror guide (cross section 150 × 15 mm2), which con-
siderably suppressed the background from fast neu-
trons and photons. The thermal-neutron-flux density at
the exit of the mirror guide was 6 × 105 n cm–2 s–1.

The Isomer facility consists of a slow neutron chop-
per and a 4π neutron detector. The chopper is a Cd disk
with two slits. The rotation of the chopper was synchro-
nized with the reactor neutron bursts. The chopper
served the following purposes: (1) to cut off the tail of
cold neutrons quickly (during a time of about 1 ms) and
to produce neutron pulses with a width of 10–40 ms,
depending on the size of the slits and the rotation phase;
(2) to suppress the reactor neutrons between these
pulses. By shifting the chopper phase relative to the
neutron bursts, one can choose different energy inter-
vals of incident neutrons.

The neutron detector consists of 12 3He counters in
a polyethylene moderator. The counters can be placed
either in an internal ring (∅  = 22.5 cm) or in an external
ring (∅  = 33 cm). The sample was placed in the central
hole (∅  = 15 cm) of the detector. To avoid recording
thermal neutrons scattered by the sample, the detector
was shielded inside by a Cd tube. The outside of the
detector was covered with a 5-cm borated-polyethylene
shield against the environment scattered neutrons.

The high-intensity neutron burst from the reactor
causes a pileup of prompt-fission-neutron pulses during
the exposure. Also, the dead time of the electronics
used in these measurements leads to additional count

νd/ν p Sd/Sp=

β0

νd/ν p

1 νd/ν p+
----------------------.=
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R = 2000 m

4

27 m 1.3 m

1 2 3 4 35 6 7 8

9

Fig. 1. The scheme of the Isomer setup: (1) IBR-2 reactor core and moderator, (2, 3) collimators, (4) bent mirror guide, (5) chopper,
(6) neutron detector, (7) 3He counters, (8) Cd tube, and (9) sample.
losses. Therefore, special attention was paid to the cor-
rect estimation of the loss of prompt neutrons. The total
dead time of the acquisition system, τ, was measured
by the usual method of two neutron sources. The main
part of the measurements were carried out with τ = 5.5 µs;
other measurements were performed with improved
electronics (τ = 2.5 µs). The conditions of the experi-
ments were chosen such that the total correction of the
number of detected prompt fission neutrons obtained in
such measurements was not more than a few percent.

CAMAC-based electronics, connected to a PC,
were used in the experiments to collect the data.

4. MEASUREMENTS

In this section, we present the results of the DN
yield measurements for the 233, 235U, 239Pu, and 237Np
isotopes and the decay-curve measurements for the
235U and 239Pu isotopes performed in our work.

Table 1. Characteristics of the samples used in the measure-
ments

Isotope Weight, g Enrich-
ment, %

Chemical
compound Backing

235U 0.025 90 Oxide Al
235U 7.0 90 Metal –
233U 0.067 98.1 Oxide Ni
239Pu 0.057 95.2 Metal –
239Pu 20.0 99.9 Metal –
237Np 40.4 99.999 Oxide Ni
Due to the large thermal-neutron-fission cross sec-
tion, the samples used to measure the DN yield values
for the main reactor isotopes had masses of about 25–
70 mg. Since the thermal-neutron cross section for
237Np is rather small, we used a sample of 237Np with a
mass of 40 g. For the decay-curve measurements, much
larger samples of 235U and 239Pu (with masses of 7 and
20 g, respectively) were used. Some characteristics of
the samples used are shown in Table 1.

4.1. Delayed-Neutron Yields

A typical spectrum measured with the 235U sample
over 18 h is shown in Fig. 2. The background was mea-
sured with a 1.5-mm Cd filter in the beam just behind
the chopper. The background was due to (a) the (α, n)
reaction on the backings and on the oxygen in the
oxides of the isotopes and (b) the scattering of fast reac-
tor neutrons in the sample. To reduce the first part of the
background, Ni foils for the backings or metallic sam-
ples were used. The background value in the time inter-
val [t1, t2] for the DN counting was approximately 15%
for 235U, 30% for 233U, and 45% for 239Pu.

Our preliminary results were obtained from a num-
ber of runs that measured the effect for several hours
and the consequent measurement of the background for
approximately the same time [14]. To ensure the long-
term stability of the results, we repeated the measure-
ments with improved detector electronics, software,
and automatic system, which allowed us to alternate the
measurements of the effect and the background with a
period of 20 min. The ratio of the efficiencies for
delayed and prompt neutrons was obtained from the
measurements with the 235U sample at a mean energy of
0.023 eV and a value of β0 = (0.680 ± 0.020)%. The lat-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
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Fig. 2. The experimental time distributions of the detector counts measured with a 235U sample: (a) without chopper, (b) with chop-
per, and (c) with a Cd filter in the beam. (1) Cutoff point of the reactor thermal-neutron-flux, (2) delayed neutrons measured for
interval [t1, t2], and (3) “satellites” of the main burst due to the specific design of the IBR-2 reactor.
ter was derived by using the recommended values of
νd = 0.01653 [5] and ν = 2.4320 ± 0.0036 [15]. The
resulting ratios of the efficiencies were εd/εp = 1.32 ±
0.04 and εd/εp = 1.08 ± 0.035 for internal and external
rings, respectively. These values were in good agree-
ment with the calculations made by the Monte Carlo
method, which were performed with the help of the
MCNP code [16].

A typical spectrum measured with the 239Pu sample
(57 mg) is shown in Fig. 3.

The β0 values were measured for the neutron-energy
intervals having mean energies of 0.003 and 0.023 eV.
These energy intervals were chosen by changing the
phase of the neutron chopper. A Be filter was used to
perform measurements with cold neutrons with a mean
energy of about 0.003 eV (see Fig. 4). Several runs of
about 10–15 h each were carried out for each isotope.
The statistical errors were less than 0.5% for 235U and
233U and less than 1.0% for 239Pu. The total error was
calculated as a standard deviation from the weighted
mean value obtained from all runs and the error in the
reference.
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
The data for the main reactor isotopes are shown in
Table 2.

We should stress that the final experimental error in
β0 includes both the experimental error itself and the
error of the reference used. The main contribution to
the final experimental error arises from the error of the
reference used (~3%). The experimental error itself is
much lower (~1.5%) and determined by the statistics of
prompt neutrons and by their losses.

One can see from Table 2 that there is no energy
dependence for the β0 values in the studied energy
region. Therefore, we calculated the mean values of β0,
and, using the known values of ν from [15], we
obtained the values of νd, shown in Table 3.

In conclusion, the values of β0 and νd for the iso-
topes presented are in agreement with previously mea-
sured data obtained with thermal neutrons and have an
accuracy comparable with that of the recommended
evaluated data [5, 17].

Measuring the β0 value for thermal-neutron-induced
fission of 237Np is an extremely difficult task because
Table 2. The β0 values (in %) for different energies of the initial neutrons and their ratios (in parentheses) to the reference β0

[235U(nth , f)] for 235U, 233U, and 239Pu

Isotope En = 0.003 eV En = 0.023 eV

235U 0.683 ± 0.021 (1.004 ± 0.009) 0.680 ± 0.021 (1.000)
233U 0.274 ± 0.009 (0.403 ± 0.006) 0.267 ± 0.009 (0.393 ± 0.006)
239Pu 0.227 ± 0.011 (0.334 ± 0.013) 0.234 ± 0.008 (0.344 ± 0.004)
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Fig. 3. The experimental time distributions measured for the 239Pu sample with and without Cd filter.
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Fig. 4. The experimental time distributions measured for the 233U sample and Be filter with and without Cd filter.
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Table 3. Values obtained for β0 and νd, along with the data from the literature

Isotope β0, % ν
νd

our data other data

233U 0.270 ± 0.009 2.4946 ± 0.0040 0.006735 ± 0.00022 0.00667 ± 0.00029 [29]
239Pu 0.232 ± 0.008 2.8799 ± 0.0090 0.00668 ± 0.00023 0.00653 ± 0.00026 [5]

Table 4. The values of νd for 237Np

νd × 102 Reference Comment νd × 102 Reference Comment

1.25 ± 0.11 This work Thermal neutrons 1.26 ± 0.07 [25] Fast neutrons (1.3 MeV)

1.14 ± 0.11 [19] Thermal neutrons 1.14 ± 0.12 [6] Calculation

1.29 ± 0.04 [22] Fast neutrons (144 keV) 1.07 ± 0.10 [27] Fast neutrons

1.18 ± 0.13 [23] Fast neutrons 1.00–1.14 [26] 0.4–1.2 MeV

1.22 ± 0.03 [24] Fast neutrons
237Np has a very small fission cross section (21.5 mb
[18]) and a relatively large neutron background due to
the (α, n) reaction. Up to now, only two attempts to
measure the value of νd for the thermal-neutron-
induced fission of 237Np are known: our preliminary
result [14] and a measurement made by a similar
method, but with another acquisition system [19].

Because the thermal-neutron-fission cross section
for 237Np is 3 × 104 times smaller than that for 235U and
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
that for 239Pu, determination of the possible admixture
is a very important task. Therefore, the 237Np sample
was chemically purified from 235U and 239Pu contami-
nation to reduce their concentrations to a value less
than 10–6 g/g. The concentration of 239Pu was measured
by the method of α spectroscopy, which gave the limit of
10−6 g/g. Unfortunately, the methods of α and γ spec-
troscopy do not allow the concentration of 235U to be
determined with good sensitivity. To solve this prob-
0 50 100 150 200
Time, ms

237Np (40 g)

Meas. time 61 h

104

105

106

Counts

Fig. 5. The experimental spectrum for 237Np. The channel width is equal to 1.024 ms (see the caption under Fig. 3).
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lem, the method of neutron resonance spectroscopy was
used. For this purpose, an ionization chamber with the
same purity 237Np (weight 88 mg) was made. The measu-
rements were carried out at the 16-m flight base of the
IBR-30 booster, with a pulse width of 4 µs [20]. The
results showed no indications of the strongest reso-
nances of 235U in the measured spectra. The conclusion
that the concentration of 235U was less than 10–5 g/g was
made from these data.

The measured time spectrum of the DN for 237Np is
shown in Fig. 5. One should note that, despite the large
mass of the sample, the number of DN counts was only
about 5–6% relative to the background. Any further

*

1.4

1.2

1.0

0.80 0.4
0.8

1.2

Energy, MeV

237Npνd × 102

Fig. 6. νd for 237Np as a function of neutron energy: (e)
[19], (*) [22], (,) [23], (D) [24], (×) [25], (u) [26], (d) [27],
and (s) this work.

×

increase in the sample mass was useless and was lim-
ited by the flux attenuation due to the large radiative-
capture cross section for thermal neutrons in the sam-
ple. As the result of ten runs of measurements (5–12 h
each), we obtained

β0 = (0.506 ± 0.030)%. 

Taking into account the known value of ν = 2.47 ±
0.14 [21], one can obtain the value of νd, which is
shown in Table 4 and in Fig. 6, along with the measured
[19, 22–27] data for thermal- and fast-neutron-induced
fission.

In conclusion, it is worth noting that the values of νd
for the thermal-neutron-induced fission of 237Np are in
reasonable agreement with published data obtained for
fast neutrons [22–27]. Some evidence for an energy
dependence of νd as shown in Fig. 6 have to be con-
firmed by following more precise measurements.

4.2. Decay-Curve Measurements

The time dependence of the DN counting rate after
irradiation with thermal neutrons (decay curve) was
measured for 235U (7 g) and 239Pu (20 g) in time inter-
vals up to 350 ms. The results are shown in Figs. 7 and
8 for 235U and 239Pu, respectively. In this case, the back-
ground was less than 0.2%. Each experimental point in
Figs. 7 and 8 represents a time interval of 1.024 ms and
has statistical errors less than 0.3% for 235U and 0.2%
for 239Pu.

It is interesting to check the consistency between the
time dependence of the DN yield measured by our Iso-
1.1

1.0

0.9
0 100 200 300 Time, ms

1

3

2

235U

Meas. time 102 h

×105

Counts

Fig. 7. The experimental time dependence of DN for  235U and the decay curves calculated on the basis of different six-group
approximations: (1) Keepin–Tuttle [1, 2], (2) Waldo et al. [27], and (3) Mills et al. [28].
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Fig. 8. A DN decay curve for 239Pu and the calculated ones using the six-group set of DN constants: (1) Keepin–Tuttle [1, 29],
(2) Wahl [7], and (3) Waldo et al. [27].
mer facility and the decay curves calculated by equa-
tion (1) within different six-group approximations [1,
2, 7, 27–29]. The calculated curves were normalized to
the experimental data at the 350-ms time point.

One can see from these figures that the best agree-
ment between the measured data and the calculated
curves is achieved with the Keepin–Tuttle parameter set.

To check the existence of the DN groups with
shorter periods, a fit of the 235U data was made with the
Keepin–Tuttle parameter set by adding a seventh group
with T1/2, 7 = 50 ms. The conclusion should be drawn
that the seventh group is absent at a level of a7 < 5.2 ×
10–3 (with a probability of 95%). A more detailed analy-
sis of the decay curves will be made in a separate paper.
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Abstract—Three interference asymmetry effects in the angular distributions of fragments originating from
233U fission induced by resonance neutrons were measured. The energy dependences of the asymmetry factors
being studied show sizable irregularities that are associated, according to modern theory, with the interference
of s and p resonances at the stage of a compound nucleus. The basic features of weak p-wave resonances in the
low-energy region were obtained from a global theoretical analysis of the asymmetry factors as functions of
energy. The first estimates of nuclear matrix elements of weak interaction were derived for a few p-wave reso-
nances. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The present study reports on experiments that have
been performed to continue implementing a vast pro-
gram of investigations into the asymmetry of the emis-
sion of fragments originating from the interactions of
neutrons with fissile nuclei [1–7]. In experiments with
233U nuclei, we have studied parity-nonconserving
(PNC) and parity-conserving (PC) left–right (LR) and
forward–backward (FB) effects. The objective of this
investigation was to compare experimental data with
the existing theoretical results and to estimate some
parameters of low-lying p-wave resonances, including
the matrix elements of weak interaction mixing states
of opposite parities.

In slow-neutron-induced fission, angular correla-
tions can be represented as

(1)

where pf and pn are unit vectors in the directions of,
respectively, the light-fragment momentum and the
momentum of neutrons that induced fission; sn is a unit
pseudovector aligned with the neutron polarization;

W p f( ) 1 αnf sn p f⋅( )+=

+ αnf
LR p f sn pn×[ ]⋅( ) αnf

FB p f pn⋅( ),+
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and αnf, , and  are the asymmetry factors for the
PNC, LR, and FB effects, respectively.

According to the existing theories [8, 9], the effects
being considered are associated with the resonance
structure of the neutron cross section; they are due to
the mixing of compound states of opposite parities. As
is shown below, all the coefficients α are similar and
depend on the same resonance parameters. There are,
however, two exceptions. First, this is not so for the
dependence of αnf on the matrix element of weak inter-
action. Second, the mixing of levels for this effect
occurs only at equal spins of s- and p-wave resonances.
For even effects, there is no this restriction.

For the general case of mixing of several s- and
p-wave resonances, Sushkov and Flambaum [8]
showed that the angular distribution of fission frag-
ments is given by

(2)
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where

(3)

(4)

with

(5)

In the above expressions, E is the neutron energy, Es

(Ep) is the energy of the s-wave (p-wave) resonance; 

and  (  and ) are, respectively, the neutron and
the fission width of the s-wave (p-wave) resonance; j is
the total angular momentum of the neutron; Js, Js' and
Jp are the spins of the s- and p-wave compound states;
K is the projection of the spin J onto the symmetry axis

of a fissile nucleus; Fs =  and Fp =  are
the fission amplitudes featuring phase factors; 〈 p|HW|s〉
is the matrix element featuring weak interaction; and

The factors Q(JsJp jKI) in (2) and (4) depend only on
the angular momenta. For PC interference effects, we
have

(6)

Expression (6) holds for the PNC effect as well, but we
must bear in mind the constraint j = 1/2.

Considering that the main contribution to the fission
cross section σf (E) comes from s-wave resonances and
using equations (2) and (4), we can show that, over a
segment of width ∆E, the asymmetry factors can be
represented as

(7)
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(9)

The asymmetry factors are much greater in the
region of p-wave resonances than in the region of
s-wave resonances. This is because the values of the fis-
sion cross section σf (E) are different at these reso-
nances.

A global analysis of all three effects considered
above, which was performed over a wide integral of
neutron energies, yielded new information about the
parameters of p-wave resonances and about the matrix
element of weak interaction. It should be noted that, by
measuring various cross sections, it is hardly possible
to detect directly p-wave resonances in nuclei like 233U
and 235U. This is because, in relation to the neutron
width of an s-wave resonance, the neutron width of a
p-wave resonance involves the suppression factor
(kR)2, where k is the neutron wave number, while R is
the radius of the nucleus being considered. In the region
around a few keV, this factor is about 10–5. It is clear
that, in the 233, 235U nuclei, which are characterized by a
very high level density, it is hardly possible to detect
such weak resonances.

2. EXPERIMENTAL EQUIPMENT
AND MEASUREMENTS

The present study is devoted to a measurement and
a global theoretical analysis of the energy dependences
of PNC and PC asymmetry effects in 233U fission
induced by resonance neutrons. Similar investigations
of our group for 235U were reported previously in [5–7].

By using unpolarized-neutron beams from the IBR-
30 reactor (Dubna) [10], the effect of forward–back-
ward asymmetry for 233U was measured in [2–4] in the
neutron-energy range from thermal energies to 70 eV.
In order to detect fission fragments and to separate
them into light and heavy ones, we evolved a 16-section
fast ionization chamber [5, 11].

The first measurements of PNC and PC (LR) effects
were performed in a polarized-neutron beam from the
WWR-M reactor at Gatchina. A crystal monochroma-
tor was used there as a medium where the beam neu-
trons were polarized, on one hand, and where they
deposited energy, on the other hand; it enabled an
investigation of only a narrow neutron-energy region
below 2 eV [1, 3, 4]. In the present study, we performed

αnf
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measurements in a beam of polarized resonance neu-
trons from the IBR-30 reactor (POLYANA facility)
[12]. A new fast fission chamber that was divided into
40 sections and which made it possible to detect both
LR and PNC effects was developed for these measure-
ments [5]. The total weight of the 233U isotope in the
chamber was about 2 g.

A beam of polarized neutrons, with the degree of
polarization being 60%, was obtained by passing the
neutrons through a polarized proton target. A collima-
tor of area 70 × 70 cm2 was positioned in front of the
inlet of the chamber. Targets containing 233U layers
were arranged in such a way that their planes were par-
allel to the neutron-beam direction, coinciding with the
plane spanned by the neutron momentum and the direc-
tion of vertical neutron polarization. The emission of a
fixed-mass fragment to the left or to the right of this
plane made it possible to measure the corresponding
LR effect. In the order to measure the PNC effect, we
rotated the chamber through a right angle about the
beam direction in such a way that the target planes were
orthogonal to the direction of neutron polarization;
after that, we measured the fragment yields in this
direction and in the direction opposite to it.

By spectroscopically measuring the kinetic energies
of fragments, we were able to break down the set of
fragments into two groups comprising light and heavy
fragments. The direction of neutron polarization could
be reversed by means of an adiabatic flipper.

The main objective of our experiment was to deter-
mine the asymmetry factor. For light fragments, it was
defined as

(10)

where  and  are the normalized numbers of
light-fragment counts for two directions of the polar-
ization. The asymmetry factor for heavy fragments was
defined in a similar way.

In our experimental results, we introduced correc-
tions for the chamber length (of about 80 cm), for a
background accompanying the measurements, for
overlaps of light and heavy fragments in the spectrum
because of a poor resolution, for a large solid angle
(about 2π) of fragment emission, and for the degree of
neutron polarization. The absence of spurious instru-
mental effects was checked by performing additional
measurements in a beam of unpolarized neutrons.

3. BASIC EXPERIMENTAL RESULTS

The results obtained in our experiment by measur-
ing asymmetry effects are displayed in Fig. 1. The fac-

tors , , and αnf are presented over a wide range
of neutron energies from 20 meV to 70 eV. We can see
that the energy dependence of these factors is quite

α
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+
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–
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–
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--------------------,=
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+

NL
–

αnf
FB αnf
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complicated, as might have been expected on the basis
of the theoretical predictions from [8, 9]. The maximal
magnitude of PC effects amounts to 1%, while that for
PNC effects is a few times less. Therefore, the statisti-
cal accuracy is insufficient, in the latter case, for deter-
mining weak-interaction matrix elements for many res-
onances.

Figure 1d shows the experimental spectrum of 233U
fission versus the energy of the neutrons that caused fis-
sion. All resonances visible in the figure are s-wave
ones—the p-wave resonances do not show up in the
spectrum, as was indicated above. As the energy of the
neutrons is increased, the energy resolution becomes
poorer; in view of this, it is not reasonable to analyze
asymmetries at energies above 15–20 eV. It should be
noted that, sometimes, the energy widths of the
observed irregularities exceed considerably the total
resonance widths [13]. In all probability, this is due to
the overlap of the neighboring sections of the spectrum
in the case of a poor resolution.

4. THEORETICAL ANALYSIS OF THE DATA
AND DISCUSSION OF THE RESULTS

A theoretical analysis of our data was performed for
all three interference effects in 233U fission at neutron
energies from 20 meV to 15 eV (see Figs. 2, 3), where
the energy resolution was still satisfactory.
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Fig. 1. Asymmetries of fragment emission from neutron-
induced fission of 233U versus the neutron energy in the
range 0.02–70 eV: (a) PC FB interference effect, (b) PC LR
interference effect, (c) PNC interference effect, and
(d) experimental spectrum of 233U fission. The curves in
Figs. 1a–1c represent theoretical fits.
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The main objective of this analysis was to verify
whether it is possible describe experimental data in
terms of expressions (7) and (8), which represent PC
effects and which involve many levels, and to estimate
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Fig. 2. As in Fig. 1, but for neutron-energy range 0.02–
15 eV.
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Fig. 3. As in Fig. 1, but for low neutron energies between
0.02 and 2.5 eV: (open circles) results of the present study
(IBR-30) and (closed circles) results borrowed from [1, 3, 4]
(WWR-M).
the p-wave-resonance parameters, which were then
used to extract the matrix elements of weak interaction
from the relevant data.

As a first step in determining the parameters of the
p-wave resonances from the energy dependences of the
LR and FB effects, the theoretical values of the asym-
metry factors were fitted to the corresponding experi-
mental values by varying the parameters of the p-wave
resonances, the known parameters of the s-wave reso-
nances [13] and the above expressions being taken into
account in doing this. In the range 0.02–15 eV, we
included 30 s-wave resonances in our calculation. The
parameters of the p-wave resonances were fitted within
specific energy intervals of width ∆E. In doing this, we
varied the following parameters of the p-wave reso-
nances: the resonance energy Ep, the partial neutron

widths  and  (  +  = ), the fis-

sion width , and the phase factor  =  – .

The radiative width was fixed at  = 40 meV, while

the total width was taken to be Γp =  + . It was
also assumed that a given section of the spectrum fea-
tures only one or two p-wave resonances, whose spins
are 2 or 3. In the case of an unsatisfactory fit, we tried
the spins of 1 and 4.

The parameters were obtained by using the least
squares method as implemented on the basis of the
FUMILI code. The results for 18 p-wave resonances
are listed in the table.

As a next step in data processing, we fitted the PNC
effect. In order to do this, the experimental dependence
of the asymmetry factor αnf was described in terms of
the known parameters of the s-wave resonances and the
parameters found for the p-wave resonances. Here, we
considered that only those s-wave and p-wave reso-
nances that have identical spins contribute to the effect
being considered [8]. Apart from the fixed parameters
of the s- and p-wave resonances, the expression for αnf
features only one free parameter, the weak-interaction
matrix element, which is determined by the least
squares method. Figure 2 displays the fitted curves that
were obtained as the result of a global analysis of the
FB and LR effects (Figs. 2a, 2b) and of the PNC effect
(Fig. 2c) over the neutron-energy interval from 20 meV
to 15 eV. It can be seen that the resulting curves
describe the experimental points fairly well.

Figure 3 singles out the low-energy section between
20 meV and 2.5 eV, where the experimental data are
much more precise and much more comprehensive
than in the region of high energies. Figure 3 also dis-
plays the results obtained previously by measuring the
LR and PNC asymmetries in the experiment that
employed thermal neutrons from the WWR-M reactor
at Gatchina and a polarizing crystal-diffraction mono-
chromator. We can see that the experimental data
obtained by the different methods are consistent and

Γ p 1/2,
n Γ p 3/2,

n Γ p 1/2,
n Γ p 3/2,

n Γ p
n

Γ p
f ∆φsp

f φp
f φs

f

Γ p
γ

Γ p
γ Γ p

f

PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000



INVESTIGATION OF PARITY VIOLATION AND INTERFERENCE EFFECTS 543
Parameters of the p-wave resonances as obtained in describing the LR and FB effects (  is the reduced width; the rest of
the notation is explained in the main body of the text)

Ep , eV Jp , meV , meV , rad

1 0.19 ± 0.02 3 ≤0.1 90 ± 20 0.50 ± 0.05 1.6 ± 0.1

2 0.34 ± 0.07 3 5.1 ± 0.3 1700 ± 100 0.99 ± 0.01 2.75 ± 0.05

3 0.41 ± 0.04 4 6.5 ± 1.5 330 ± 80 0.00 1.05 ± 0.30

4 1.52 ± 0.03 2 1.35 ± 0.15 500 ± 30 0.99 ± 0.01 –0.25 ± 0.15

5 1.95 ± 0.04 2 ≤0.1 350 ± 50 0.90 ± 0.05 3.1 ± 0.2

6 3.01 ± 0.03 3 3.2 ± 0.3 870 ± 40 0.68 ± 0.03 1.3 ± 0.1

7 3.53 ± 0.02 3 0.6 ± 0.10 250 ± 30 0.85 ± 0.02 0.15 ± 0.15

8 4.58 ± 0.04 (3) 0.55 ± 0.05 860 ± 60 0.01 ± 0.01 –1.30 ± 0.15

9 4.85 ± 0.05 2 ≤0.1 760 ± 90 0.99 ± 0.01 1.5 ± 0.2

10 6.62 ± 0.04 (3) 7.8 ± 1.3 1700 ± 100 0.05 ± 0.03 –2.3 ± 0.15

11 6.71 ± 0.04 3 6.8 ± 1.3 1050 ± 50 0.15 ± 0.03 1.0 ± 0.2

12 7.77 ± 0.05 (3) 0.3 ± 0.1 1150 ± 100 0.02 ± 0.02 0.25 ± 0.4

13 9.08 ± 0.03 3 0.75 ± 0.10 370 ± 40 0.47 ± 0.04 1.25 ± 0.10

14 9.79 ± 0.14 3 0.7 ± 0.1 2500 ± 100 0.96 ± 0.03 0.00 ± 0.05

15 11.73 ± 0.04 (3) 0.3 ± 0.07 430 ± 130 0.02 ± 0.02 0.0 ± 0.03

16 12.30 ± 0.03 2 1.2 ± 0.1 500 ± 50 0.13 ± 0.05 0.45 ± 0.10

17 13.14 ± 0.01 3 0.8 ± 0.3 280 ± 150 0.98 ± 0.02 1.9 ± 0.3

18 14.34 ± 0.07 (3) 0.15 ± 0.05 400 ± 150 0.11 ± 0.11 0.65 ± 0.25

Γ p
nl

Γ p
nl Γ p

f Γ p 1/2,
n /Γ p

n ∆φsp
f

that they are reproduced satisfactorily by the results of
our theoretical analysis. A significant PNC effect is
observed only at energies of about 0.2 and 2.0 eV.
Unfortunately, the statistical accuracy achieved in the
present experiment is insufficient for describing this
small effect in greater detail.

The p-wave-resonance parameters that are listed in
the table were deduced as the result of applying our fit-
ting procedure, which involved some assumptions.
Therefore, the quoted errors reflect the quality of the fit
under the condition that the number of the p-wave res-
onances within a given segment and some other
hypotheses were chosen correctly. These errors do not
include uncertainties that are associated with changes
in the hypotheses and which appear to be systematic
errors.

Systematic errors stem, in particular, from the
absence of some data on the s-wave resonances. Infor-
mation about the spins of these resonances in 233U is
scanty, and there are no data on the projections of their
angular momenta on the fission axis (K values). In view
of this, we always set K = 1 in implementing our fitting
procedure, because this is the most probable value at
J = 2 or 3. Among the s-wave-resonance parameters
that are determined from fitting, the energies of the s-
wave resonances and their total widths are the most sta-
ble ones, because these are directly related to the posi-
tions and widths of the structures observed in the
energy dependences of the asymmetry factors.
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The parameter , whose values are quoted in the
table, represents the phase difference between the fis-
sion amplitudes for the case where the s- and the
p-wave resonances are mixed. However, we cannot
assign rigorous meaning to it in the representation
being considered. It is retained in the expressions for
fission amplitudes, but the opinions as to whether the
phase in question is a real physical parameter that can
change differ. In our calculations, it is rather a normal-
ization factor that can be used as an adjustable parameter.

In fitting the reduced neutron widths of p-wave res-
onances, we considered that they involve two compo-
nents corresponding to two values of the neutron angu-

lar momentum,  and . Their sum is equal to

the total neutron width . The table quotes the values

of the reduced neutron widths  and of the ratio

/ . For three resonances, we present only an

upper bound on , while the corresponding ratios lie
in a broad interval between zero and unity. For the res-
onance-spin value of Jp = 1 or 4 (Jp = I ± 3/2), we have

only one component,  = . In view of this, the
fitting was initially performed with the Jp values of 2 or
3; in those cases where the above ratio proved to be
close to zero, the spin value of 1 or 4 was probable.
Despite this, the parenthetical value of (3) was left in

∆φsp
f
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the table, because a better value of χ2 was obtained in
fitting with a spin of 3 than in fitting with a spin of 1 or 4.

The matrix elements 〈 p|HW|s〉  from a fit to the PNC-
asymmetry factor could be estimated only for energies
below 2 eV, where the statistical accuracy of the mea-
sured PNC-asymmetry factors was sufficiently high.
Presented immediately below are the results for the
above matrix element:

The errors in determining the matrix elements
amount to some 30%. For other p-wave resonances, we
were able to estimate only an upper limit. The result is
|〈p|HW|s〉| ≤ 10–3 eV. This is because the statistical accu-
racy becomes much poorer as we go over to p-wave res-
onances at higher energies.

5. CONCLUSION
A global analysis of PC asymmetry effects in fission

(that is, FB and LR effects) and of the PNC effect fur-
nishes information about p-wave resonances and about
the character of the angular distributions of diverging
light and heavy fragments and makes it possible to
compare experimental data with theoretical predic-
tions. In this context, it is important to perform relevant
measurements over a sufficiently broad energy interval
containing at least 15–20 resonances, in which case it is
possible to reveal the character of fluctuations and to
estimate relevant mean values. In the present study, we
have performed such a comprehensive experiment with
the 233U isotope. Previously, we conducted similar mea-
surements with 235U [7].

A measurement of the angular distributions of frag-
ments emitted from aligned nuclei [14] would be an
interesting extension of the investigations described
here. The results of such experiments would provide
missing information about the projections K of the
spins for s-wave resonances. Unfortunately, experi-
ments with aligned nuclei are very complicated techni-
cally; therefore, their results can hardly be expected in
the near future.

An investigation into interference effects is very
promising for the 239Pu nucleus. That the level density
in this nucleus is less than those in the uranium isotopes
is expected to simplify a theoretical description of
experimental data and to render this description less
ambiguous. In addition, only two values of K = 0 and 1
are possible for s-wave resonances in plutonium at the
spin value of I = 1/2. This circumstance also reduces the
number of unknown parameters included in the
description. All this is expected to increase the reliabil-
ity of the results to appear. Experiments of this type are

Ep, eV 0.19 0.34 1.95

〈 p|HW |s〉 , meV 0.15 0.05 –1.0
complicated by the alpha-particle activity of 239Pu
nuclei, which prevents the use of sufficiently large
targets.

It should be noted that, in experiments like those
that are described above, a considerable refinement of
results can be expected from the use of sources charac-
terized by a higher intensity and a better resolution,
such as LANSCE in Los Alamos or IREN projected in
Dubna. This is especially important for measurements
of small PNC effects.
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Abstract—The possibility of time focusing for very slow neutrons is considered. This focusing may prove very
useful in solving the problem of accumulating ultracold neutrons in a trap that are generated by a pulsed source.
Diffraction at a phase grating moving across a beam or resonance neutron-spin flip is proposed to implement
time-controlled changes in the neutron energy. © 2000 MAIK “Nauka/Interperiodica”.
In this article, we would like to attract the attention
of researchers to the possibility of time focusing of very
slow neutrons generated by a pulsed source. This focus-
ing may prove useful in developing new-generation
sources of ultracold neutrons (UCN). Figure 1 illus-
trates the physics behind our proposal.

Suppose that, at the instant t = 0, neutrons are emit-
ted from the point x = 0 in the positive direction of the
x axis and that the velocities of these neutrons are dis-
tributed over a certain interval. The time of neutron
arrival at the observation point x = L, tL, is distributed
over the interval tmin < tL < tmax. We assume that some
device, a time lens, capable of changing the neutron
energy by ∆E(t) according to a preset time law in the
interval t1 < t < t2 is positioned at the point x = a. The
principle underlying the operation of the time lens will
be considered below. For now, we only require that,
upon traversing the lens, the velocities of the neutrons
be such that the neutrons arrive at the observation point
simultaneously at the instant tL = t0; that is,

(1)

where va and vb are the neutron velocities before and
after traversing the lens, respectively.

We then have

(2)

In optics, image formation is associated with a
transformation of the angular distribution of rays; like-
wise, time focusing is accompanied by changes in the
velocity distribution, as can clearly be seen from Fig. 1.
Concurrently, the duration of the neutron pulse is trans-
formed, which makes it possible to introduce the con-
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cept of time magnification, M. For a relatively small
energy transfer, |∆E| ! E, the thin-lens formula

(3)

where τ and T are the durations of the primary pulse
and of its “image,” respectively, holds.

The possibility of neutron time focusing seems
appealing in connection with the long-standing prob-
lem of the accumulation of UCNs from a pulsed source.
It was first indicated by F.L. Shapiro in 1964 that, if we
inject UCNs into a neutron trap at the instant of pulsed-
reactor burst and isolate the trap after the completion of
the burst and if there are no losses, the UCN density in
the trap will correspond to the peak neutron density,
which can exceed the time-averaged density by a few
orders of magnitude [1].

The majority of fundamental experiments with
UCNs employ the so-called accumulation regime, in
which case the removal of UCNs from the trap is either
absent or very small (see, for example, [2]). Under such
conditions, the Shapiro expression for the neutron-den-
sity gain takes the form

(4)
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Fig. 1. Time focusing.
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where τ1 is the time over which the gate is open (this
time exceeds the duration of the neutron burst), θ is the
time interval between the successive reactor bursts, S is
the area of the converter surface emitting UCNs,2) Σ is
the area of the inner surface of the UCN vessel, and µ
is the probability of UCN loss in one event of reflection
from the vessel wall.

In current experiments, we have µ ≈ 10–5 [3]. At rea-
sonable values of Σ and S, the gain factor can therefore
(in principle) achieve the value of about 103, which
does not exceed the ratio θ/τ. By way of example, we
indicate that, for the pulsed fast-neutron reactor IBR-2,
the value of θ/τ is about 500.

The idea of F.L. Shapiro has yet to be implemented,
because arranging a locking gate near a converter
involves considerable technical difficulties. Moreover,
the converter and the accumulating vessel are usually
located rather far from each other and are connected by
a neutron guide a few meters long. The neutron guide is
included in the vessel volume, but this reduces signifi-
cantly the storage time for a number of reasons. Only
for sources with a low repetition frequency is it useful
to arrange the locking gate near the trap [4] because, in
this case, the scatter of the time of UCN arrival at the
trap is about one second. For the majority of pulsed
sources, this exceeds substantially both the burst dura-
tion τ and the interval θ between the bursts.

Time focusing removes these difficulties, making it
possible to arrange the gate in close proximity to the
trap, the effective burst duration being changed insig-
nificantly (by a factor of M). The position of the lens,
the time magnification associated with this, and the
interval of the velocities of the neutrons to be focused
can be chosen on the basis of practical considerations.
In this case, the time lens plays a role similar to the role
of the optical lighter in a conventional microscope. It
permits matching the object under study with the image
of the light source, while the source itself (lamp) cannot
be matched with the object.

Let us consider the possible construction of the time
lens. Generally, it is necessary to analyze all mecha-
nisms capable of changing the neutron energy.

Methods based on the Doppler effect in the pro-
cesses of neutron reflection [5] or diffraction [6] can
hardly be operative because of the need for rapidly
changing the scatterer (mirror or crystal) velocity.

Changing the neutron energy by means of time-
dependent quantum effects [7, 8] is an attractive possi-
bility, albeit it may seem bizarre at first glance. In this
case, a quantum modulator can play the role of a focus-
ing device. By a modulator, we mean a device that
affects periodically the amplitude or the phase of the

2)In UCN physics, a thin moderator located inside the reactor core
is referred to as a converter.
initial plane wave, so that the wave function at small
distances from the modulator assumes the form

(5)

The state in the right half-space represents a time-
dependent superposition of waves with energies "ωn
and the corresponding wave numbers kn; that is,

(6)

where the amplitudes an are the Fourier coefficients for
the modulation function f(t), and

(7)

T being the period. In a sense, a modulator appears to
be a time analog of a diffraction grating.

Since a modulator generates neutrons whose ener-
gies differ from the original value (by quantities that are
integral multiples of "Ω), such a device appears to be a
good candidate for a time lens. In order to satisfy the
focusing conditions, the modulator frequency must be
changed with time in just the same way as, in optics, the
space frequency of focusing devices (zone plates) is
made to change with coordinates. If we restrict our con-
siderations to the focusing of the waves of the first dif-
fraction order, the frequency Ω(t) = E(t)/" will change
with time according to (2). It is necessary that these
changes obey the adiabaticity condition

(8)

Figure 2 displays the frequency of the time modula-
tor, f(t) = Ω(t)/2π, as a function of the time of flight for
UCN velocities and a neutron-guide length chosen
quite arbitrarily, but within realistic limits.

For a purely phase π modulator that changes the
phase of the neutron wave by π for each half-period, the
intensity of the wave corresponding to the first order of
diffraction is about 0.4 of the initial wave intensity.

Since we are interested only in changes in the parti-
cle energy, the modulation phase can be arbitrary at
each point of the beam cross section. For a phase mod-
ulator, we can use a conventional phase grating having
a variable step and moving across the beam [9]. The
characteristic modulation frequency is then determined
by the ratio V/d, where V is the grating velocity and d is
the space period of the grating. If d is about a few
microns, which is quite feasible for modern technolo-
gies, the required modulation frequency is ensured by
neutron velocities on the order of a few tens of meters
per second.
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Another attractive possibility is based on resonance
neutron-spin flip in a magnetic field [10]. Upon travers-
ing a volume where there are a slowly changing field
B(t) and a radio-frequency field orthogonal to it and
where the resonance condition ensuring spin flip is per-
manently satisfied, neutrons change energy by "ωr(t),
where ωr(t) is the frequency of the radio-frequency
field.

An implementation of this method in practice will
probably be simplified if, in contrast to the case illus-
trated in Figs. 1 and 2, the quantity v0 = L/t0 does not
lie in the interval of the velocities of the neutrons to be
focused. In particular, all neutrons can be moderated by
the lens used. In this case, the magnetic field B(t) does
not take zero value in the process of focusing, whereby
permanent fulfillment of the resonance condition is
facilitated. For the case being discussed, Fig. 3 shows
the magnetic field as a function of time. The position of
the time focus t0 and the geometric parameters of the
neutron guide are identical to those in Fig. 2, but the ini-
tial neutron velocities are increased.

The efficiency of the resonance lens for unpolarized
neutrons is 50%. In this case, only neutrons with one
value of the spin projection are focused. The possibility
of accumulating polarized neutrons in a trap can con-
tribute significantly to solving the problem of a fast
pulsed gate. For this, we can use, for example, a mag-
netic film whose magnetization is reversed with a rather
high frequency [11].
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Fig. 2. Frequency of a quantum modulator as a function of
time after the source burst.
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Abstract—The temperature dependence of inelastic ultracold-neutron scattering on beryllium and copper sur-
faces at low energy transfers (about 10–7 eV) is investigated, and the results of this investigation are presented.
The recorded flux of neutrons inelastically scattered by these surfaces at liquid-nitrogen temperature is less than
that at room temperature by a factor of about two. © 2000 MAIK “Nauka/Interperiodica”.
This article reports on an investigation into the prop-
erties of ultracold neutrons (UCN). This realm owes its
existence to F.L. Shapiro, who initiated, in 1968, the
first observation of UCNs in Dubna. He supervised the
pioneering experiments devoted to UCN generation,
propagation, and confinement in closed vessels. The
physics of UCNs was Shapiro’s favorite topic during
the last years of his life, and he was able to contribute
greatly to the development of this realm, laying its
foundations, which have suffered virtually no changes
since then. A slight heating of UCNs, which was
observed in recent years, is probably the only effect that
stands out in this respect, since it does not fit in the con-
ventional pattern of UCN interaction with matter.

1. INTRODUCTION

The present-day view of inelastic UCN interaction
with matter assumes that the energies of scattered neu-
trons lie predominantly in the region corresponding to
the temperature of the walls of the vessel containing
UCNs. In [1, 2], however, a UCN scattering process
was found where an energy transfer of about 10–7 eV
occurs with a probability exceeding that which is pre-
dicted theoretically by many orders of magnitude [3, 4].
In the following, we will refer to this type of scattering
as a slight heating of UCNs, in contrast to the well-
known heating of UCNs to energies of the thermal
region [5, 6], and to neutrons heated in this way as
excited UCNs (EUCN). The nature of this process has
yet to be clarified. Knowing the temperature depen-
dence of the probability of slight heating at the surfaces
of various substances, we could constrain the range of
possible mechanisms of this phenomenon.

1) Laue–Langevin Institute, Grenoble, France.
2) Petersburg Nuclear Physics Institute, Russian Academy of Sci-

ences, Gatchina, 188350 Russia.
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2. EXPERIMENTAL SETUP

Our measurements were performed with the aid of a
gravitational UCN spectrometer shown schematically
in Fig. 1 (this facility and the experimental procedure
used are described in greater detail elsewhere [7, 8]). A
Steyerl turbine at the reactor of the Laue–Langevin
Institute (Grenoble) was used as a source of UCDs.
Ultracold neutrons from this source arrived at the spec-
trometer representing a vertically arranged cylindrical
vessel (1) 180 cm in height and 20 cm in diameter. In
this vessel, which was made from copper, neutrons
could be confined with the aid of a shutter (2). A slide

1

4

6

57

2

3

UCN

Fig. 1. Layout of the experimental setup: (1) storage vessel,
(2) inlet shutter, (3) slide valve, (4) UCN absorber, (5) UCN
detector, (6) aluminum foil, and (7) monitoring detector.
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valve (3), impermeable to UCNs when latched, was
arranged in front of the shutter.

The spectrum of stored UCNs was cut off from
above by a polyethylene absorber (4) installed at a cer-
tain altitude. (The kinetic energy of a neutron that rises
at an altitude of 1 cm in the gravitational field of the
Earth is reduced by about 1 neV.)

In order to ensure an investigation of UCN storage
in the temperature range between about 80 and 750 K,
a coil for pumping liquid nitrogen and an electric heater
were fastened to the outer surface of the storage vessel
along its full height.

The samples under study were placed on the bottom
of the spectrometer. At low temperatures, thermal con-
tact between the sample and the spectrometer walls was
ensured by supplying 4He to the spectrometer (at a
pressure of P ≈ 1 mbar), which was removed before the
measurements.

The whole storage vessel, together with the neutron
inlets, was enclosed in a vacuum chamber, which was
evacuated with an oil-free turbo-molecular pump to a
pressure of about 10–4–10–5 mbar.

A UCD detector (5) was connected to the spectrom-
eter by a curved neutron guide and was separated from
the storage vessel by an aluminum foil (6).

The UCN flux in the spectrometer was measured by
a monitoring detector (7), which was similar to the
main detector (5). Ultracold neutrons from the storage
vessel penetrated into the monitor through a small hole
(of area about 5 mm2) in the vessel bottom.

The two UCN detectors (5) and (7) represented pro-
portional counters of the same design and performance;
either was filled with 3He (at a pressure of P ≈ 3 mbar)
and had an aluminum window of thickness 100 µm and
area about 60 cm2. The detectors were positioned about
1 m below the spectrometer bottom, so that neutrons
accelerated in the gravitational field could penetrate
through the inlet aluminum windows of the detectors
with a higher probability. The half-width of the peak of
the pulse-height distribution for the reaction 3He(n,  p)t
was about 6 to 7%; by recording only pulses from this
pulse-height bin, we were able to reduce substantially
the background from pulses that were not associated
with neutrons. The background over the entire pulse-
height spectrum was (4.0 ± 0.3) × 10–3 s–1, while the
background within the bin was (3.0 ± 0.7) × 10–4 s–1,
which was much less than the recorded EUCN flux.

3. MEASUREMENTS AND RESULTS

An aluminum foil (6) 12 µm thick was positioned in
the neutron guide, covering its cross-sectional area
entirely (Fig. 1). In order to eliminate the possible leak-
age of UCNs into the detector, the foil was gasketed
along the perimeter with polyethylene rings (efficient
UCN absorbers) on both sides. Thus, only UCNs whose
energy was in excess of the endpoint energy of the alu-
minum spectrum (about 52 neV) could penetrate
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
through the foil into the detector. Prior to filling the
spectrometer with UCNs, the absorber was arranged at
an altitude of 48.5 cm. After the inlet shutter was
closed, all UCNs whose kinetic energy was sufficient
for reaching the absorber, efficiently left the storage
vessel, the time constant for their escape being about
3 s. Some of the neutrons escaping from the vessel with
energies above the endpoint energy of the aluminum
spectrum penetrated through the aluminum foil and
were recorded by the UCN detector. Thus, the removal
of UCNs with such energies from the stored-neutron
spectrum can be traced by monitoring the variation of the
detector counting rate. After a lapse of some 40 s since
the latching of the slide valve, the detector counting rate
must decrease to background values; however, a sharp
dropout gives way to a smooth reduction whose charac-
teristic time coincides with the storage time constant for
UCNs with energies below the endpoint energy of the
aluminum spectrum (about 100 s). In this case, the detec-
tor counting rate is much greater than the background
value. If the absorber is raised at that moment, the count-
ing rate in the UCN detector will increase sharply to some
maximal value, but it then again begins to follow the
UCN storage curve recorded by the monitoring detector.

Thus, the observed neutrons penetrating through the
aluminum foil were slightly heated UCNs (EUCN) that
were unceasingly produced throughout the storage
period. Some of them had hit the detector even before
the absorber was raised; once the absorber had been
raised, however, EUCNs perished in it no longer: accu-
mulated in the vessel, almost all of them arrived at the
detector, whereby the counting rate increased sharply.

The results of the measurements can be conve-
niently represented as the time dependence of the ratio
of the flux of recorded EUCNs to the monitor counting
rate. Figure 2 shows such dependences for a beryllium
sample and the empty copper spectrometer at room
temperature and those at 100 K. This sample consisted
of separate plates 0.1 and 0.3 mm thick made from
rolled beryllium and separated on average by about
0.5 mm; it was 12 cm in height, and its total cross-sec-
tional area was 2.6 m2. The sample was placed on the
vessel bottom. The absorber was raised after a lapse of
55 s since the inlet shutter had been closed (it was the
95th second from the beginning of the cycle). The solid
curves in Fig. 2 represent results obtained from fits to
experimental data. Before the absorber was raised, the
fitting was performed in terms of the sum of a decreas-
ing exponential with a time constant of about 3 s and a
constant that corresponds to the EUCN flux recorded
when the absorber was in the lower position. When the
absorber was in the upper position, the fitted function

was A – Bexp , where the constant A corre-

sponds to the EUCN flux recorded when the absorber was
in the upper position, the constant τ ≈ 20 s is close to the
time constant for EUCN escape through the foil to the
detector, and t0 is the instant at which the absorber is raised.
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The experimental setting in question gives no way
to determine the total probability of EUCN generation
because the spectrometer is sensitive only to a rather
narrow bin in the spectrum of heated neutrons. From
above, this bin is limited by the fact that neutrons with
energies exceeding the endpoint energy of the copper
spectrum are not stored in the spectrometer; from
below, the boundary is determined by the impossibility
of observing neutrons whose energies are slightly
above the endpoint of the aluminum spectrum since
such neutrons are readily reflected by the separating
aluminum foil or are absorbed within it. These bound-
aries are somewhat uncertain, a determination of the
lower boundary being complicated by coherent elastic
scattering within the foil [9]. In view of these method-
ological difficulties, we cannot state that the probability
of a slight heating per hit also changes upon cooling,
since the reduction of the recorded EUCN flux may
result from changes in the EUCN spectrum.

The cooling of the sample from room temperature to
(100 ± 5) K led to the reduction of the detector counting
rate by a factor of about two both in measurements with
the empty spectrometer and in measurements with a
beryllium sample within it. This can be caused by a
decrease in the probability of slight heating and by
changes in the spectrum of EUCNs. If we assume that
the spectrum of EUCNs remains unchanged and con-
sider that, as the vessel is cooled, the storage time
increases, which results in that a greater fraction of
EUCNs hit the detector, the observed variations in the
counting rate correspond to the reduction of the proba-
bility of a slight heating of neutrons by a factor of 2.5 ±
0.2 for beryllium samples and by a factor of 2.4 ± 0.5
for the empty copper spectrometer.

4. CONCLUSION

Irrespective of the method used to obtain the UCN spec-
trum, this spectrum always features EUCNs—that is, neu-

100

10–1

10–2

10–3

10–4

50 150 250 350 t, s

Ndet/Nmon

Absorber up

Fig. 2. Ratio of the EUCN flux to the monitor counting rate
versus time: (d) results for rolled beryllium (S = 2.6 m2) at
298 K; (s) results for the same sample at 100 K; and (m and
n) results for the walls of the empty copper spectrometer
(S = 0.2 m2) at 298 K and 100 K, respectively.
trons that have energies in excess of the endpoint energy and
which are generated from neutrons with energies below the
endpoint energy. This irremovable admixture of EUCNs in
the spectrum of stored neutrons causes a systematic error in
precision experiments studying UCN storage—for exam-
ple, in the measurements of the free-neutron lifetime.

The observed temperature dependence of the EUCN
flux is compatible with the presumed linear tempera-
ture dependence of EUCN generation [10], but it is
much weaker than that for conventional phonon heating
to thermal energies [5, 6], which is substantially sup-
pressed at liquid-nitrogen temperatures.

We note that the very presence of the temperature
dependence makes it possible to disprove the popular
point of view that it is not UCN heating that we
observe, but faster neutrons from the initial spectrum
that do not reach the absorber for some reason or
another (for instance, they can be captured into ring tra-
jectories under the absorber). In the last case, the pro-
cess would be independent of temperature.

ACKNOWLEDGMENTS
The experiment was performed at the high-flux

reactor installed at the Laue–Langevin Institute
(Grenoble, France). We are grateful to the staff of the
ILL, especially to P. Geltenbort, J. Butterworth, and
T. Brenner, who were responsible for the beam, for
their continuous and high-qualified assistance.

This work was supported by the Russian Foundation
for Basic Research (project no. 99-02-16621).

REFERENCES
1. V. V. Nesvizhevsky, A. V. Strelkov, P. Geltenbort, et al.,

ILL Annual Report (1997), p. 62.
2. V. V. Nesvizhevsky, A. V. Strelkov, P. Geltenbort, et al.,

Yad. Fiz. 62, 832 (1999) [Phys. At. Nucl. 62, 776
(1999)]; Preprint No. R3-98-79, JINR (Joint Institute for
Nuclear Research, Dubna, 1998).

3. V. K. Ignatovich, The Physics of Ultracold Neutrons
(Nauka, Moscow, 1986).

4. R. Golub, D. J. Richardson, and S. K. Lamoreaux, Ultra-
cold Neutrons (Adam Hilger, Bristol, 1991).

5. A. V. Strelkov and M. Hetzelt, Zh. Éksp. Teor. Fiz. 74, 23
(1978) [Sov. Phys. JETP 47, 11 (1978)].

6. A. D. Stoica, A. V. Strelkov, and M. Hetzelt, Z. Phys. B
29, 349 (1978).

7. P. Geltenbort, V. V. Nesvizhevsky, D. G. Kartashov, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 70, 175 (1999) [JETP Lett.
70, 170 (1999)].

8. P. Geltenbort, D. G. Kartashov, E. V. Lychagin, et al., Pre-
print No. R3-99-91, JINR (Joint Institute for Nuclear
Research, Dubna, 1999).

9. A. Steyerl and H. Vonach, Z. Phys. 250, 166 (1972).
10. A. L. Barabanov and C. T. Belyaev, Yad. Fiz. 62, 824

(1999) [Phys. At. Nucl. 62, 769 (1999)].

Translated by E. Kozlovskiœ
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000



  

Physics of Atomic Nuclei, Vol. 63, No. 4, 2000, pp. 551–561. Translated from Yadernaya Fizika, Vol. 63, No. 4, 2000, pp. 613–624.
Original Russian Text Copyright © 2000 by Kadmensky.

                          

IN MEMORIAM
OF F. L. SHAPIRO

         
Theoretical Approaches to Studying Protonic Decays
of Nuclei and Interpretation of Experimental Data

S. G. Kadmensky
Voronezh State University, Universitetskaya pl. 1, Voronezh, 394693 Russia

Received June 11, 1999; in final form, October 25, 1999

Abstract—A comparison of various theoretical approaches to describing deep-subbarrier protonic decays of
nuclei leads to the conclusion that the multiparticle theory of protonic decays of nuclei that is based on the use
of an integral formula for decay widths is quite correct and general. A theoretical scheme for computing the
protonic widths of odd–odd deformed nuclei is developed. The dependence of the fine structure in the protonic
spectrum of the 141Ho nucleus on the type of the odd-proton orbital is investigated. It is shown that the nuclear-
deformation parameters as extracted from the analysis of protonic decays are consistent with analogous param-
eters predicted in some compilations. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of protonic decays of ground and iso-
meric states of nuclei [1], which has been vigorously
continued over the past years, makes it possible to
determine protonic widths and the energies of emitted
protons for a wide range of nuclei lying in the vicinity
of the proton drip line, which determines the bound-
aries of the existence of nuclei in nature. By comparing
the experimental values of protonic widths with the
corresponding widths computed on the basis of modern
theories of protonic decay, we can deduce unique infor-
mation about the structure of the states involved and
about the shapes of parent and daughter nuclei. Con-
trasting this information against the predictions of vari-
ous compilations, we can verify the consistency of
nuclear physics concepts based on studying the proper-
ties of nuclei from the vicinity of the beta-stability band.

The first theoretical calculations [2–6] of half-lives
assumed the spherical shape of proton-decay nuclei and
relied on the single-particle formula for the protonic
width in the semiclassical approximation. To the best of
my knowledge, the only calculation that deals with a
protonic width [7] and which takes account of the mul-
tiparticle character of the protonic-decay process was
performed for an isomeric state of the 53Co nucleus, but
this calculation was based on some unrealistic approx-
imations—in particular, on the resonance approxima-
tion for the wave function of the emitted proton.

A multiparticle theory of the protonic decay of
nuclei was constructed in [8, 9] on the basis of the inte-
gral formula for decay widths that was derived for the
first time in [10–12] and which was used in studying the
alpha decay of spherical nuclei [13–15]. Within this
theory, protonic transitions were classified according to
the degree of their diagonality, and protonic spectro-
scopic factors were introduced that take into account
the effect of multiparticle states of the parent and
1063-7788/00/6304- $20.00 © 20551
daughter nuclei on protonic-decay probabilities. Within
the multiparticle theory of protonic decays, it proved
possible to describe successfully widths of spherical
nuclei with respect to protonic decays not only from the
ground states [1, 8, 16] but also from multiquasiparticle
isomeric states [9]. A high-spin excited state of the 53Co
nucleus provides a typical example of the latter case.
The decay of this state was detected experimentally
[17] long before the discovery of the protonic decay of
nuclei from the ground states [3, 4].

Later on, it was shown in [18] that by no means can
we explain the features of the protonic decays of the 109I
and 113Cs nuclei without going beyond the assumption
that these nuclei are spherical. At the same time, it fol-
lows from the compilations presented in [19–21] that
the 109I and 113Cs nuclei, as well as some other nuclei
lying in the vicinity of the proton drip line, are charac-
terized by significant deformations. In this connection,
it became necessary to develop a multiparticle theory of
protonic decays for deformed nuclei.

This theory was constructed in [22–24] on the basis
of the formalism that was used previously to describe
the alpha decay of deformed nuclei [25–27] and which
also relies on the integral formula for decay widths. In
contrast to R-matrix theory [28, 29], where there arises
the problem of choosing decay-channel radii dependent
on angles, this version of the multiparticle theory of
protonic decays is free from such difficulties; owing to
this, it provided an appropriate framework for success-
fully describing [22–24, 30, 31] the protonic-decay
widths of some deformed nuclei, including the 147Tm,
147mTm, and 151Lu nuclei, which were assumed to be
spherical in the first calculations [3–5, 8].

In recent years, there have appeared new methods
[16, 32–35] for computing the single-particle features
of protonic decays of spherical and deformed nuclei.
Presently, these methods are used to analyze experi-
000 MAIK “Nauka/Interperiodica”
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mental data. The objective of the present study is to
compare the capabilities of various theoretical
approaches to describing protonic decays of nuclei and
to investigate, on the basis of the aforementioned mul-
tiparticle theory, the protonic decay of deformed odd–
even and odd–odd nuclei and the fine structure of pro-
ton spectra.

2. STUDYING CONDITIONS UNDER
WHICH THE INTEGRAL FORMULA

FOR PROTONIC-DECAY WIDTHS
OF NUCLEI IS APPLICABLE

By using methods developed in constructing the
theories of protonic and alpha-particle radioactivity [8–
15], we will investigate the deep-subbarrier protonic
decay of a parent nucleus having an atomic weight A
and a charge number Z and occurring in a state

described by the wave function  characterized
by a nuclear spin Ji, its projection Mi, a parity πi, and
other quantum numbers σi. This function represents a
quasistationary state of the parent nucleus in question
and satisfies the Schrödinger equation

(1)

where H is the Hamiltonian of the A nucleus, while Ei =

 – iΓi/2 is a complex energy, whose imaginary part
is related to the total decay width Γi of the state under
study. That this state is quasistationary implies that its
lifetime Ti = "/Γi is much greater than the characteristic
periods of the single-particle and collective modes of
intranuclear motion that determine this state. As a
result, the total width Γi appears to be the sum Γi =

Γiλ of the partial widths Γiλ with respect to all pos-

sible open decay channels λ, including the α, β, and γ
channels, as well as the channel of protonic decay.
Since the parent-nucleus state considered here is qua-
sistationary, an analysis of various channels of its decay
and, hence, a calculation of various partial widths Γiλ
can be performed independently. It follows that, for the

wave function of the nucleus, , the boundary
condition at the absolute value of the relative coordi-
nate r of the centers of mass of the emitted proton and
the daughter nucleus in excess of the proton-channel
radius R0 [in which case all terms in the potential VpA – 1

of the interaction between the emitted proton and the
daughter nucleus, with the exception of the long-range

Coulomb potential (r) = (Z – 1)e2/r, are negligibly
small] can be taken in the form of the Gamow condi-
tion, which involves diverging spherical waves for all

Ψσi

JiMiπi

H Ei–( )Ψσi

JiMiπi 0,=

Ei
0

λ∑

Ψσi

JiMiπi

V0
Coul
open channels c (c ≡ Jfπfσf jplp) of protonic decay:

(2)

Here,  is the operator of antisymmetrization between
the emitted proton and the protons of the daughter
nucleus [this operator acts on the bracketed functions in

(2)]; Qc = "2 /2m =  – , where m = MpMA – 1/MA

is the reduced mass of the system formed by the emitted
proton and the daughter nucleus, is the energy of rela-
tive motion in this system; Gl(kr) and Fl(kr) are, respec-
tively, the irregular and the regular radial Coulomb
function; and Uc is the channel function given by

(3)

where  is its spin–orbit component and where
the braces correspond to the vector composition of the
total spin Jf of the daughter nucleus and the total spin jp

of the emitted proton.
We will further make use of the continuity equation

following from equation (1), the boundary condition
(2), and the condition requiring that the function

 be normalized to unity within a multidimen-
sional sphere specified by the equation r ≤ R1 in the
configuration space τ of all coordinates of the parent-
nucleus nucleons, where the radius R1 lies in the deep-
subbarrier region, considerably exceeding the proton-
channel radius R0, so that we additionally have the con-
dition (kcR1) @ (kcR1). The constants Nc in (2)
can then be expressed in terms of the partial widths Γipc

with respect to protonic decay through the channel c as

Nc = . It should be emphasized that a
decaying-nucleus state is quasistationary only if its

wave function  is not sensitive, over the entire
region r ≤ R1, to the presence of open decay channels
and, hence, to the emergence of an imaginary part that
the energy of the nucleus develops in this case. For pro-
tonic decay channels, this implies that, in the region
R0 ≤ r ≤ R1, the function (kcr) can be disregarded

against (kcr) in (2) owing to the fact that protonic
decay is a deep-subbarrier process. As a result, the
boundary condition (2) becomes real:

(4)

In this case, the wave function  coincides, in the
region r ≤ R1, with the function that satisfies the

Ψσi

JiMiπi Nc Â Uc

Glp
kcr( ) iFlp

kcr( )+

r
----------------------------------------------- .

c

∑=

r R0.≥

Â

kc
2 Ei

0 E f
0

Uc Ψσ f

J f M f πf Φ j plpmp
Ωr sp,( ){ } JiMi

,=

Φ j plpmp

Ψσi

JiMiπi

Glp
Flp

kcΓ ipc/2Qc

Ψσi

JiMiπi

Flp

Glp

Ψσi

JiMiπi( )0

kcΓ ipc

2Qc

-------------- Â Uc

Glp
kcr( )
r

------------------- .
c

∑=

Ψσi

JiMiπi
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Schrödinger equation (1) and the boundary condition
(4) and which corresponds to the stationary-state wave

function  for the real-valued energy  =
ReEi.

Let us now consider the wave function  that
satisfies the time-independent Schrödinger equation
with a Hamiltonian H and which describes proton scat-
tering on the daughter nucleus at energies E close to the

quasistationary-state energy , in which case the
input channel corresponds to the channel function 
(3). In the external region R0 ≤ r, this function normal-
ized to the delta function of energy satisfies the bound-
ary condition

(5)

where the quantity  is related to the exact S matrix
by the simple equation

(6)

with  being the Coulomb phase shift. Since the
proton involved in the reaction being considered occurs
in the deep-subbarrier region, we can disregard the con-

tribution to the  matrix from the direct mechanisms of
elastic and inelastic proton scattering on the daughter
nucleus that are due to the nuclear and the nonpointlike
Coulomb component of the potential VpA – 1, restricting
our consideration to the only mechanism that is of
importance in the case being studied, a resonance reac-
tion mechanism. In the vicinity of an isolated resonance

at E ≈ , the matrix  can then be represented
as [15]

(7)

If we make use of this formula and if, in the region R0 ≤
r ≤ R1, we disregard the functions Fc in equation (5)
against the functions Gc because of a deep-subbarrier
character of the process, it can be shown that the func-
tion in (5) obeys the asymptotic condition

(8)

The functions  and  satisfy the
Schrödinger equation with the same Hamiltonian H and
correspond to close energies; in addition, they obey the
boundary conditions (4) and (8), which differ by a con-

Ψσi

JiMiπi( )0 Ei
0

Φc0

JiMiπi

Ei
0

Uc0

Φc0

JiMiπi i
2r
-----

kc

πQc
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c
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× Â Uc Gc iFc–( )δcc0
S̃cc0
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S̃cc0

Scc0
S̃cc0

i δc
Coul δc0
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δc
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S̃cc0
δcc0

i
Γ ipc0

1/2 Γ ipc
1/2

E Ei
0 iΓ i/2+–

----------------------------------.–=

Φc0

JiMiπi
Γ ipc0

1/2 Γ ipc
1/2

E Ei
0 iΓ i/2+–
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kc

4πQc
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Gc r( )
r
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c
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Ψσi

JiMiπi( )0 Φc0

JiMiπi
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stant factor. From all this, it follows that, within the
sphere r ≤ R1 of the configuration space τ, these func-
tions are related by the equation

(9)

By using the methods developed in [10–15], we can

express the matrix  in terms of the relevant T-matrix
element as

(10)

where  = Fc is the regular radial Coulomb
function normalized to the delta function of energy. By
substituting (9) into (10) and comparing the resulting
expression with that in (7), we can obtain an integral
expression for the partial width Γipc in the form

(11)

where the amplitude Bipc for the protonic decay of the
parent nucleus through the channel c is given by

(12)

integration in (12) being performed over the multidi-
mensional sphere r ≤ R1 in the configuration space τ.

From the above derivation, it follows that the inte-
gral formula (12) is quite accurate, provided that
Fc(r)/Gc(r) ! 1 for r ≤ R1, whence we immediately find
that the condition Γip/Qc ! 1, under which the decay-
ing-nucleus state is quasistationary, holds automati-
cally. The above formula has nothing to do with pertur-
bation theory in the potential VpA – 1 of interaction
between the decay fragments; in contrast to the state-
ment of Aberg et al. [16], it does not therefore represent
the distorted-wave Born approximation (DWBA).

Indeed, the wave function  of the quasista-
tionary state of the parent nucleus generally takes into
account the potential VpA – 1 in all orders of perturbation
theory.

To conclude this section, we note that the developed
multiparticle theory of protonic decay is free from the
difficulties of the R-matrix theory [28, 29] that are asso-
ciated with the choice of the decay-channel radii; this
theory is quite general, which makes it possible to
investigate, within a unified conceptual framework,
protonic transitions between various states of both
spherical and deformed parent and daughter nuclei.

Φc0

JiMiπi
Γ ipc0

2π
----------

1

E Ei
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---------------------------------- Ψσi

JiMiπi( )0.=
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F̃c kc/πQc

Γ ipc 2π Bipc
2,=
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F̃lp
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r
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Coul r( )–( )∫=

× Ψσi

JiMiπi( )0dτ ,

Ψσi
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3. CLASSIFICATION OF TYPES
OF PROTONIC DECAYS OF NUCLEI

The multidimensional integral in (12), which deter-
mines the protonic-decay amplitude, can be repre-
sented as the sum of integrals over the internal (shell),
intermediate, and external regions specified, respec-
tively, as r ≤ Rsh, Rsh ≤ r ≤ R0, and R0 ≤ r ≤ R1. As was
shown in [8], the main contribution to the integral in
question comes from the internal region, where the

wave function , which describes a quasista-
tionary state of the parent nucleus, coincides with the

function . By analogy with the wave func-
tions of bound nuclear states, the latter is computed on
the basis of the generalized model of the nucleus [36],
a model that relies on the multiparticle shell model and
which takes into account normal and superfluid corre-
lations, as well as collective modes of motion—for
instance, a rotational mode for deformed nuclei. In this
case, protonic decays of nuclei can be classified by the
degree of their diagonality [8, 9].

The case of diagonal protonic decays of nuclei is

realized when the radial shell form factor (r) ≡

〈 {δ(r – r1)Uc /r}| 〉  is dominant for the
decay channel c under study. This corresponds to the
situation where the dominant contribution to the decay-
width amplitude (12) is due to that matrix element

(r) of the potential VpA – 1 which is diagonal in the

channel functions Uc. The form factor (r) can be
represented as [8]

(13)

where Zic is the proton spectroscopic factor, while
(r) is the radial shell-model wave function for the

proton in the jplp state. The protonic width Γipc is then
given by [8]

(14)

where  is the effective single-particle decay width
of the proton shell state characterized by the radial
wave function (r). This width has the form (11),
where the amplitude is given by

(15)

The diagonal case is realized for protonic transitions
from the ground states of spherical nuclei to the ground
states of daughter nuclei. Owing to this, the experimental
protonic width for such transitions can be successfully
described within the formalism developed above [8].

Ψσi

JiMiπi( )0

Ψσi

JiMiπi( )0

sh

ϕ ic
sh

Â ΨσI

JiMIπI( )0

sh

V pA 1–
0

ϕ ic
sh

ϕ ic
sh r( ) Zic

1/2χ j plp
r( ),=

χ j plp

Γ ipc ZicΓ j plp
,=

Γ j plp

χ j plp

B jplp
 = F̃lp

kcr( ) V pA 1–
0 r( ) V0

Coul r( )–[ ]χ j plp
r( ) r.d

0

Rsh

∫

The case of nondiagonal protonic decays is possible

if the shell form factor (r) for the decay channel c
being studied is negligibly small. The width Γipc is then
nonzero either owing the intermediate and external
regions for the amplitude in (12), where the form factor
ϕic(r) is nonzero, or owing to the effect of those compo-
nents of the potential VpA – 1 of interaction between the
emitted proton and the daughter nucleus that are nondi-
agonal in the channel function Uc. The case of nondiag-
onal protonic decay is realized if the contribution of the
intermediate and external regions to the amplitude in
(12) is small. This occurs if the core of the daughter
nucleus is strongly rearranged in the decay process.
The situation in question is exemplified by protonic
decays of multiquasiparticle isomeric states of parent
nuclei into the ground states of daughter nuclei and by
protonic decays of the ground states of parent nuclei
into collective vibrational and multiquasiparticle states
of daughter nuclei. In [9], the protonic decay of a high-
spin three-quasiparticle isomeric state of the spherical
nucleus 53Co was successfully explained within the for-
malism described here.

Finally, the intermediate case is realized when tran-
sitions that are diagonal in the potential VpA – 1 and those
that are nondiagonal in this potential both play an
important role. This is peculiar to protonic transitions
from the ground states of deformed nuclei to levels of
the ground-state rotational bands of daughter nuclei.

4. COMPARISON OF VARIOUS APPROACHES
TO DESCRIBING PROTONIC DECAYS

OF DEFORMED NUCLEI

Here, the potential of the multiparticle theory of
protonic decays [8, 9, 22–24] and the potential of some
new approaches [16, 32–35] will be considered by
applying them to protonic decays of the ground and sin-
gle-quasiparticle isomeric states of odd–even deformed
nuclei to levels of the ground-state rotational bands of
even–even daughter nuclei. We will assume that the
deformation parameters of the parent and the daughter
nucleus are close. We introduce the complete orthonor-
malized basis of the shell-model nucleon wave func-
tions fk(r', s') in the intrinsic coordinate frame of a
deformed axisymmetric nucleus, where the subscript k

stands for the form [NNzΛ] involving, according to
the Nilsson classification [36], the projection k of the
total nucleon spin onto the symmetry axis of the
nucleus, the parity πk, and asymptotic quantum num-
bers—the principal quantum number N, the number Nz

of quanta corresponding to the motion of the nucleon
along the symmetry axis z of the nucleus, and the pro-
jection of the nucleon orbital angular momentum Λ
onto the z axis. The quantity Σ = k – Λ then determines
the projection of the nucleon spin onto the z axis. The
function fk(r', s') corresponding to the energy εk appears
to be a solution to the single-particle Schrödinger equa-

ϕ ic
sh

k
πk
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tion describing the motion of a nucleon in the non-
spherical shell-model potential V0(r', s'). In the case of
protons, this potential is equal to the sum of the non-
spherical nuclear, nonspherical Coulomb, and non-
spherical spin–orbit potentials. The nuclear potential

(r') can be represented as

(16)

where

(17)

βλ being the deformation parameters of the nucleus.

The nonspherical Coulomb potential (r') is given by

(18)

where  are the intrinsic electric multipole moments
of the nucleus. 

The wave function fk(r', s') can generally be repre-
sented as an expansion in spin–orbit functions as

(19)

The radial function (r) in turn can be expanded in a
series in radial spherical shell-model functions Rnjl(r) as

(20)

In the strong-coupling approximation [36], the mul-
tiparticle shell-model wave functions of the deformed
parent and daughter nuclei can be represented as

(21)

(22)

where (ω) is the generalized spherical function

dependent on the Euler angles ω,  ≡ 2J + 1, and 

and  are the intrinsic wave functions of the parent
and daughter nucleus. Within the superfluid model of

the nucleus, we can make use of the formulas  =

 and  = , which are obtained on the
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basis of the Bogolyubov method of u–v transforma-
tions [37]. In these formulas, the intrinsic wave func-
tions of the proton and neutron subsystems of the par-
ent and the daughter nucleus in the second-quantization
representation are given by

(23)

(24)

where  is the operator creating a proton in the shell
state k.

From (23) and (24), it follows that, for the protonic
transitions being studied, the structure of the wave

function  of the daughter-nucleus core undergoes
virtually no changes. For this reason, we can make use
of the approximation where the potential VpA – 1 is diag-

onal in the intrinsic wave function  of the daughter
nucleus and replace this potential by the shell-model

potential (r', s'). In this case, the shell-model proton

form factor (r', s') given by

(25)

appears in expression (12) for the amplitude of the pro-
tonic width.

In order to take into account the antisymmetrization
operator in expression (25), we can go over to the sec-
ond-quantization representation, where the wave func-

tions  and  are given by (23) and (24) and where
the completeness condition for the set of the shell-
model wave functions fk(r', s'),

(26)

makes it possible to represent the product of delta func-
tions in the form

To a high accuracy, the proton form factor (25) can then
be approximated as [22]

(27)

Let us express the function (Ωr, s) in terms of
intrinsic coordinates. We have

(28)
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By taking into account the addition theorem for D func-
tions [36], the channel function Uc (3) can be reduced
to the form

(29)

Upon integration with respect to the Euler angles,
the amplitude Bipc (12) can be written as

(30)

where the amplitude of the proton spectroscopic factor
is given by

(31)

while the amplitude  for the protonic decay of the
single-particle proton state described by the wave func-
tion fk(r', s') can be represented in the form

(32)

The expression for the partial protonic-decay width Γipc
can then be recast into a form similar to that of (14);
that is,

(33)

where the effective single-particle width  of the
quasistationary state described by the wave function
fk(r', s') with respect to the protonic decay through the
channel characterized by the quantum numbers jplp has

the form (11) with the amplitude  given by expres-
sion (32). Since the problem of protonic decays of

nuclei is of a multiparticle character, the width  dif-

fers substantially from the decay width  of the sin-
gle-particle quasistationary state characterized by the
wave function fk(r', s'). If the function fk(r', s') is rep-
resented in the form (19), it can be shown that, in the
asymptotic region r ≥ R0, the functions χjl(r) satisfy a
boundary condition similar to the boundary condition
(2); that is,

(34)

where  =  is the nucleon wave vector cor-
responding to the shell energy . Since protonic decay
is a deep subbarrier process, we can disregard the Cou-

lomb functions Fl( r) and obtain a boundary condi-
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tion that is similar to that in (4) and which leads to a real
energy  of the proton shell state described by the
wave function fk(r', s'). In general, this energy, , dif-
fers substantially from the proton separation energies

Qc =  –  for all channels of parent-nucleus decay,
since the energies of the parent and the daughter

nucleus,  and , include not only shell energies of
nucleons but also effects caused by nucleon–nucleon
correlations of the normal and superfluid types, as well
as by the finiteness of nuclear dimensions and by col-
lective modes of nuclear motion that are associated
with it—for example, rotational modes. For this reason,

the amplitude  of the width  differs from the

amplitude  (32) of the width  in that the former

features the Coulomb functions (r) corresponding
to the emitted-proton energy  rather than the energy
Qc. Since the Coulomb functions depend greatly on the
proton energy in the deep-subbarrier region, the widths

 differ significantly in magnitude from the widths

. An attempt at improving the situation can be
made by varying the well depth in order that the energy

 of the proton shell state described by the wave func-
tion fk(r', s') become the energy Qc dependent on the
decay channel under study, whereby we would arrive at

the modified widths . Even in this case, however,

the absolute values of the widths  can differ from

the values  obtained within the consistent theoreti-
cal scheme because the function fk(r', s') is modified in
the internal region r ≤ R0 of the parent nucleus as we go
over from the energy  to Qc.

A new method for calculating the partial widths
with respect to protonic transitions from the ground or
single-quasiparticle states of deformed odd–even par-
ent nuclei to the ground states of the even–even daugh-
ter nuclei was developed in [33–35], where formula
(33), with the spectroscopic factor Zipc (31) obtained in
[22], was used for the protonic partial width. In the case
of Jf = 0, this spectroscopic factor takes the value

. As to the effective single-particle width

, it was replaced there by the width  with
respect to the protonic decay of the quasistationary
state that is described by the wave function fk(r', s') and
which occurs at an energy  whose real part was fit-
ted, by varying the well depth, to the experimental
energy  for the channel c0 of parent-nucleus decay
into the ground (Jf = 0) state of the daughter nucleus.
The following method was used to compute the quanti-
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ties . The Schrödinger equation with the potential

(r', s') for the function fk(r', s') was solved on the
basis of the representation in (19) by using the Gamow
boundary conditions (34), and the imaginary part of the

energy was determined as Im  = /2, where  is the
total protonic-decay width of the state being studied:

 = . Further, the width  was found with
the aid of the relation

(35)

which follows from the condition in (34). Here, the
radius r was chosen in the asymptotic region r > R0.
Aberg et al. [16] used a similar procedure to describe
protonic decays of spherical nuclei.

It should be noted that, even for modern supercom-
puters, the method of those studies leads to formidable
difficulties because it is necessary to calculate the
imaginary part of the energy, Im , a quantity whose
absolute value can prove to be 20 orders of magnitude
less than the real part of the energy . However, this
method can be simplified substantially without spoiling
the accuracy of the calculations. To do this, it is suffi-
cient to recall that, in the deep-subbarrier region for
R0 ≤ r ≤ R1, the condition Gl(r) @ Fl(r) holds for all
channels of the decay of the quasistationary state
described by the wave function fk(r', s'). In the asymp-
totic condition (34), we can therefore discard the func-
tions Fl(r) and solve the corresponding problem for a
stationary state that is described by the wave function

(r', s') and which has the real-valued energy  by
fitting the well depth as is described above and by
using, for R0 ≤ r ≤ R1, the boundary condition

(36)

which is similar to (4).
Within this simplified approach, the partial decay

width  can be calculated by the formula

(37)

which is similar to the formulas of R-matrix theory.
It should be noted that the method used in [32–35]

to calculate the shell-model wave functions (r', s')
corresponding to arbitrary real negative and positive
(for subbarrier case) energies  relies on the represen-
tation in (19) and on the coupling-channel method for
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determining the functions (r) over a vast basis of the

spin–orbit functions . This makes it possible to
improve considerably the accuracy in evaluating the

functions (r', s') in the surface region of the nucleus
in relation to what is obtained by using a representation
of the type in (20) with a set of shell-model spherical
harmonics that are discrete in energy.

From the above, it can be concluded that, in contrast
to the multiparticle theory of protonic decays [8, 9, 22–
24], the methods that were developed in [16, 32–35]
and which made it possible—albeit they involve
extremely cumbersome calculations—to obtain some
interesting results are approximate, as was indicated
above in discussing the relationship between the widths

 and  in the case of protonic transitions
between the ground states of the parent and daughter
nuclei. Hence, these methods are less accurate than the
multiparticle theory of protonic decays and show little
promise for extensions to the case of nondiagonal pro-
tonic decays.

5. PROTONIC DECAYS OF ODD–EVEN NUCLEI

With the aid of expressions (30)–(32), we can calcu-
late the half-lives of odd–even deformed nuclei with
respect to protonic decays, Tp1/2. Since these half-lives
are highly sensitive both to values of the deformation
parameter β2 and to the type of proton orbitals, a com-
parison of the results of calculations for Tp1/2 with cor-
responding experimental data may furnish information
about β2 and about the structural features of the parent
and the daughter nuclei.

The Tp1/2 values as computed in [8, 35] are in agree-
ment with data on the 109I nucleus at β2 = 0.14 for the
(1/2)+ [420] proton orbital and with data on the 113Cs
nucleus at β2 = 0.1–0.15 for the (3/2)+ [421] proton
orbital. In [34], it was shown that experimental data on
113Cs can also be described by using the value of β2 =
0.12 and the (1/2)+ [420] proton orbital, for which the
half-life Tp1/2 exhibits an anomalous dependence on the
deformation parameter β2. The β2 values obtained from
the aforementioned calculations comply well with the
compilations presented in [19–21].

On the basis of these compilations, we can also
expect sizable equilibrium deformations in the 147Tm,
147mTm, and 151Lu nuclei, which were first treated as
spherical nuclei [3, 4]. For these nuclei, the experimen-
tal values of Tp1/2 were reproduced [24] at β2 = 0.1–0.2,
which is consistent with the compilation presented in
[21]. The corresponding proton orbitals are (7/2)– [523]
and (7/2)+ [404] for the 147Tm nucleus, (1/2)+ [411] for
the 147mTm nucleus, and (7/2)– [523] and (7/2)+ [404]
for the 151Lu nucleus. It should be recalled that more
recent compilations from [19, 20] predict sizable nega-
tive deformation parameters [β2 = –(0.15–0.25)] for the
147Tm, 150Lu, and 151Lu nuclei. In view of this, it would
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be of interest to calculate anew the half-lives of these
nuclei with respect to protonic decays under the
assumption that they are oblate.

It was shown in [30–32, 35] that, at a deformation-
parameter value of β2 ≈ 0.3, the Tp1/2 values calculated
for the 131Eu, 141Ho, and 141mHo nuclei are compatible
with relevant experimental data and with compilations
presented in [19–21], the corresponding proton orbitals
being (3/2)+ [411] and (5/2)+ [413], (7/2)– [523] and
(5/2)– [532], and (1/2)+ [411], respectively.

Thus, we can see that, for the deformation parame-
ter β2 in even–odd nuclei undergoing protonic decays,
the values that are extracted from half-life calculations
agree fairly well with the compilations presented in
[19–21]. This indicates that, by and large, the basic
concepts of modern nuclear physics are self-consistent.

6. FINE STRUCTURE OF PROTON SPECTRA

The problem of discovering the fine structure of the
proton spectra is of extreme interest to experimenters
investigating the protonic radioactivity of nuclei. (That
such a structure can be observed was demonstrated in
[38].) The point is that the protonic decay of a parent
nucleus can result in the population of not only the
ground state of the daughter nucleus but also its excited
states. As a result, the spectrum of emitted protons
involves several groups differing in energy. Of particu-
lar interest is the situation that arises in the protonic
decay of an odd–even parent nucleus, in which case
proton emission leads to the formation of an even–even
daughter nucleus. If this nucleus is characterized by a
sizable deformation—say, β2 ≈ 0.3—the spin–parity is

 = 0+ in its ground state and  = 2+ in the first
excited state. For A ≈ 140 nuclei, the latter corresponds
to the rotation of the nucleus as a discrete unit at a suf-
ficiently low excitation energy of ∆E =  –  ≈
120 keV. In this case, protonic transitions can occur,
with a sizable probability, not only to the ground state
of the daughter nucleus but also to its first excited state.
Owing to this, the proton spectrum develops a second
line corresponding to the emitted-proton energy Ep that
differ from the energy of the main line by ∆E. From
(14) and (15), it follows that the partial width 

with respect to protonic decay to the ground state of the
daughter nucleus is related to fixed values of the total

spin  = Ji = ki and of the orbital angular momentum

 of the emitted proton whose parity coincides with
the parity of the state of the emitted proton in the parent
nucleus, the orbital-angular-momentum values corre-

sponding to this parity being  =  ± 1/2 = ki ± 1/2.
As to the total width Γip2 with respect to protonic decay
to the 2+ state of the daughter nucleus, it is given by the
sum Γip2 =  of four partial widths 

J f
π J f

π

E
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Γ
ip0 j p
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0
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corresponding to the following values of jp and lp: ,

;  + 1, ;  + 1,  + 2; and  + 2,  + 2. On
the basis of these data, we can find the branching frac-
tion α2 for protonic decays to the 2+ state: α2 =
Γip2/(Γip0 + Γip2). An especially favorable situation for
protonic decay into the 2+ state is realized under the
condition that the contribution to the shell-model pro-

ton wave function fk(r', s') (19) from the j =  + 1, l =

 spherical component is much greater than the contri-

bution from the j = , l =  spherical component. In
this case, the main contribution to the width Γip2 comes
from the partial width , which is much greater

than the partial width . Such a situation is real-

ized in the 131Eu nucleus for the (3/2)+ [411] protonic

configuration since the squared coefficient ( )2 in the
spherical-harmonic expansion (20) of its wave function

is 0.04 for the j = , l =  d3/2 state and 0.6 for the j =

 + 1, l =  d5/2 state. A still more interesting situation
is realized for the (5/2)– [532] proton configuration in

the 141Ho nucleus, in which case ( )2 is close to zero

for the j = , l =  f5/2 state and is 0.13 for the j =  +

1, l =  f7/2 state.

But in the case where the l =  + 2 spherical con-
figuration is dominant in the wave function (19), the
enhancement of the partial amplitude  (32) in

relation to the amplitude  is compensated by a

substantial reduction of the amplitude of the radial
Coulomb function (R) in the subbarrier region when

lp is changed from  to  + 2, so that the partial widths

corresponding to l =  + 2 do not contribute substan-
tially to the width Γip2. A similar situation is realized for
the (5/2)+ [413] proton orbital in the 131Eu nucleus and
for the (7/2)– [523] proton orbital in the 141Ho nucleus.

The calculation of α2 for 131Eu protonic decay into
the ground state of the daughter nucleus yields the val-
ues of α2 = 0.25 and 0.03 for, respectively, (3/2)+ [411]
and (5/2)+ [413] odd-proton configurations (see [30–
32, 35]). That the value of α2 is sizable for the (3/2)+

[411] configuration in the 131Eu nucleus gives sufficient
grounds to hope that a second proton line will be
detected, which will furnish information about the
energy ∆E and refine the odd-proton configuration in
this nucleus.

Let us consider in greater detail the fine structure of
the proton spectrum for the decay of the 141Ho nucleus.
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Table 1.  Ratio α2 =  for transitions to the first excited state of the even–even nucleus 140Dy in the protonic

decays of the odd–odd nucleus 141Ho versus the structure of the odd-proton orbital

p Ji = ki Jf jp lp α2, %

7/2– [523] 7/2 0 jp0 = 7/2 3 0.125 1

7/2– [523] 7/2 2 7/2 3 0.29 0.11 10

5/2– [532] 5/2 0 jp0 = 5/2 3 0.073 1

5/2– [532] 5/2 2 5/2 3 0.13 0.08 73

5/2– [532] 5/2 2 7/2 3 0.13 2.54

Γ
2+/ Γ

0+ Γ
2++( )

ZJ f jplp

Γ J f j plp
Qc( )

Γ
0 j p

0
lp

Qc0( )
---------------------------
From Table 1, it can be seen that, for the (7/2)– [523]
proton configuration of the parent nucleus, α2 is equal
to 0.1 if a value of 120 keV is used for the energy ∆E.
This gives reason to hope that a second line in the pro-
ton spectrum can be detected. As to the (5/2)– [532] pro-
ton configuration of the same nucleus, the correspond-
ing width Γ ip2 with respect to protonic decay to the 2+

excited state of the daughter nucleus is 2.6 times as
great as the width with respect to analogous decay to
the ground state of this nucleus, in which case we have
α2 = 0.73. The total width Γip = Γip0 + Γip2 with respect
to the protonic decay of the 141Ho nucleus then exceeds
the width Γip0 with respect to its decay to the ground
state of the daughter nucleus by a factor of 3.6. The cal-
culated half-life Tp1/2 corresponding to Γip0 is 8 ms,
which is twice as great as the value of Tp1/2 = 4 ms, the
141Ho half-life observed experimentally. If we consider
that uncertainties in the computational scheme that are
associated with the choice of specific form for the
potential V 0(r', s') are estimated within a factor of two,
it will become clear that so great a value obtained the-
oretically for Γip2 does not contradict experimental
data. It would be interesting to continue detailed inves-
tigations of the shape of the proton spectrum for the
141Ho nucleus.

Presently, the first experiments aimed at observing
the fine structure of proton spectra have been com-
pleted at the Argonne National Laboratory (USA).
Having accumulated vast statistics, the authors of [39]
were able to reveal a second proton line in the spectrum
of 131Eu decay. They found that it is shifted by ∆E ≈
120 keV with respect to the main line. Upon introduc-
ing corrections for the conditions of the experiment in
question, the experimental result for α2 proved to be
0.24 ± 0.05, which is in good agreement with the theo-
retical value of α2 = 0.25 derived in [39] for the
(3/2)+ [411] proton configuration. Thereby, the assump-
tion that the shape of the 131Eu nucleus deviates strongly
from that of a sphere was confirmed, and the structure of
the proton orbital was established; concurrently, it was
demonstrated once again that the multiparticle theory of
protonic decay is applicable to deformed nuclei.

Searches for the fine structure of proton spectra for
strongly deformed nuclei such as the odd–even nucleus
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
141Ho and the odd–odd nucleus 140Ho are of great topi-
cal interest. Investigations along these lines could prove
promising in this respect for Tm and Lu isotopes as
well, where we can expect strong negative deforma-
tions of β2 ≈ –(0.15–0.25) (see above).

7. PROTONIC DECAYS OF ODD–ODD 
DEFORMED NUCLEI

Let us now address the case of protonic decays of
odd–odd deformed nuclei. In the strong-coupling
approximation [36], the wave function of the ground
state of an odd–odd nucleus can be represented in the
form (21), where ki takes two values—these are (ki)1 =
kip + kin (kip and kin are the positive definite projections
of the total angular momenta of, respectively, the odd
proton and the odd neutron onto the symmetry axis of
the nucleus) with  =  and (ki)2 = kip – kin with

 = . For the (ki)1 and (ki)2 states, the Gal-
lagher–Moszkovski rule [40] says that, of these two,
that in which the projection of the spin of the odd pro-
ton onto the z axis is parallel to the analogous projec-
tion of the odd-neutron spin has the lower energy. This

rule is not fulfilled only for the  = 0– state.
The wave function of states belonging to the

ground-state rotational band of the even–odd daughter
nucleus can also be represented in the form (21), but we

must replace there ki by +kin and  by  for the
case of the parent nucleus in the (ki)1 = kip + kin state and

ki by –kin and  by  for the case of the parent
nucleus in the (ki)2 = kip – kin state.

Further, we can make use of the technique devel-
oped above for describing the protonic decay of odd–
even nuclei. Within this framework, the partial width
with respect to the protonic decay of an odd–odd
nucleus can be represented in the form (33), where the
proton spectroscopic factor Zipc is given by

(38)
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Table 2.  Ratio δ of the protonic-decay half-lives of the 140Ho and 141Ho nuclei versus the structure of the odd-proton orbital
and the odd-neutron orbital in the 140Ho nucleus

p n Ji = ki Jf = kni jp , lp δtheor δexpt

7/2– [523] 9/2– [514] 8+ 9/2 7/2, 3 2.26–5.53 0.75–2.25

7/2– [523] 5/2+ [402] 6– 5/2 7/2, 3 2.9–7.1 0.75–2.25

5/2– [532] 9/2– [514] 7+ 9/2 7/2, 3 0.76–1.88 0.75–2.25

5/2– [532] 5/2+ [402] 5– 5/2 7/2, 3 0.92–2.27 0.75–2.25
for two possible sets of ki and kf values: (i) (ki)1 = kip +
kin and (kf)1 = kin; (ii) (ki)2 = kip – kin and (kf)2 = –kin. For
the protonic transitions between the ground states of
the odd–odd parent nucleus and even–odd daughter
nucleus, in which case Ji = |ki| and Jf = |kf|, it follows
from the properties of the Clebsch–Gordan coefficient
in (38) that the total angular momentum of the emitted
proton, jp, satisfies the following conditions: (i) kip ≤
jp ≤ kip + 2kin for the first set of ki and kf values; (ii) kip ≤
jp ≤ –kip + 2kin if kip ≤ kin and jp = kip if kip ≥ kin for the
second set of ki and kf values. A comparison with the
case of protonic transitions from the ground states of
odd–even deformed nuclei to the ground states of even–
even daughter nuclei, where the selection rule jp = kip
follows from equation (31), shows that, although the
odd neutron plays the role of a spectator in the transi-
tion being considered, its state can affect the decay
width of the odd–odd nucleus through the law requiring
the conservation of the total spin of the system.

By using equations (33) and (38) and the Gallagher–
Moszkovski rule, we will now analyze the protonic
decay of the odd–odd nucleus 140Ho, for which the val-
ues of Tp1/2 = 6 ± 3 ms and Ep = 1086 ± 10 keV for,
respectively, the half-life and the emitted-proton energy
are known from experiments [20, 21]. Concurrently, we
will compare the features of this decay with those of the
protonic decay of the odd–even nucleus 141Ho, for
which the experimental values of the half-life and of the
emitted-proton energy are, respectively, Tp1/2 = 3.9 ±
0.5 ms and Ep = 1169 ± 8 keV [20, 21]. In Table 2, the
calculated values of the ratio δ =
Tp1/2(141Ho)/Tp1/2(140Ho) for 140Ho and 141Ho half-lives
are displayed for the case of the (7/2)– [523] and (5/2)–

[532] odd-proton configurations, which were estab-
lished in studying the protonic decay of the 141Ho
nucleus. In these calculations, the (9/2)– [514] and
(5/2)+ [402] orbitals occurring near the Fermi surface
were used for the odd proton in the 140Ho nucleus [31]
at the deformation-parameter value of β2 ≈ 0.3, which
was also fixed in analyzing the protonic decay of the
141Ho nucleus. Uncertainties in the δ values are associ-
ated with the errors in the measured energies of protons
emitted from 140Ho and 141Ho decays, as well as with
the errors in the measured half-life of the 140Ho nucleus.
It can be seen from Table 2 that, for the (7/2)– [523] pro-
ton configuration, the admissible interval of theoretical
δ values only borders on the upper boundary of the cor-
responding experimental interval. At the same time, the
intervals of the experimental and theoretical δ values
overlap almost completely for the (5/2)– [532] proton
configuration, which leads to a substantial contribution
to the protonic-decay width of the 141Ho nucleus from
transitions to the first excited state of the daughter
nucleus (see above). At the same time, either of the
(9/2)– [514] and (5/2)+ [402] neutron configurations is
consistent with experimental data.

In the future, I am going to continue the calculation
of protonic-decay half-lives for odd–odd nuclei, espe-
cially for the cases where there are sizable deviations
from a spherical shape.

8. CONCLUSION

A comparison of various approaches to describing
the protonic decays of nuclei that has been presented
above confirms the viability of the multiparticle theory
of protonic radioactivity and demonstrates the potential
of this theory in determining the deformation parame-
ters of odd–even and odd–odd nuclei capable of under-
going protonic decays, as well as in establishing the
fine structure of proton spectra for such nuclei. That the
deformation parameters as extracted from the analysis
of the protonic decays of deformed nuclei occurring in
the vicinity of the proton drip line are similar to those
parameters predicted by modern compilations indicates
that the fundamental concepts of modern nuclear phys-
ics are self-consistent.
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Elastic Scattering of 3He Nuclei on 13C Nuclei at 50 and 60 MeV 
and V–W Ambiguity in Choosing Optical Potentials

N. Burtebaev1), A. Duœsebaev1), B. A. Duœsebaev1), and S. B. Sakuta*
Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia

Received April 15, 1999

Abstract—At energies of 50 and 60 MeV, the elastic scattering of 3He nuclei on 13C nuclei is investigated at
laboratory angles in the range 10°–170°. The measured differential cross sections are analyzed on the basis of
the optical model of the nucleus by using Woods–Saxon potentials, including both volume and surface absorp-
tion. The potential parameters are determined by fitting the computed cross sections to experimental data. It is
found that, even in the region of sensitivity, the values of the real and imaginary parts of the potentials (V and
W, respectively) show considerable scatter, with extreme values differing by a factor greater than two. This scat-
ter is explained by the existence of a V–W ambiguity in choosing optical potentials. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Two types of scattering that represent the extreme
cases of the same process—diffractive scattering and
rainbowlike scattering—can be singled out at energies
above the Coulomb barrier, in which case nuclear
forces play the most important role. As is well known,
the type of scattering depends on the effect of absorp-
tion in it. By way of example, we indicate that, in the
case of strong absorption—this is realized most often in
heavy-ion collisions—scattering shows virtually no
sensitivity to the behavior of the real potential within
the nucleus involved, so that the cross-section value is
affected by quite a few partial waves corresponding to
peripheral collisions. In this case, the observed angular
distributions are well described by a diffraction at an
absorbing sphere—they show a pronounced oscillating
structure covering the entire range of angles. A deter-
mination of the real part of the potential from such
experimental data is highly ambiguous; that is, any
potential capable of reproducing phase-shift values for
a limited set of partial waves is appropriate for describ-
ing angular distributions. Under certain constraints
imposed on the imaginary part of the potential, the
ambiguity in choosing its real part manifests itself in
the discrete form as well.

In the weak-absorption case, which is usually real-
ized for light projectiles at sufficiently high energies,
the character of scattering is totally different. Oscilla-
tions observed at small angles give way to a broad max-
imum at larger angles, which is followed by a sharp
exponential fall. It was shown in [1] for the first time
that this behavior of the cross sections is associated
with refractive properties of the potential and with the

1) Institute of Nuclear Physics, National Nuclear Center of Repub-
lic of Kazakhstan, Almaty, 480082 Republic of Kazakhstan.

* e-mail: sakuta@dni.polyn.kiae.su
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existence of the angle of maximal deflection in the
attractive nuclear field, a feature peculiar to rainbow
scattering. The observed rainbowlike structure corre-
sponds to small impact-parameter values. This suggests
a sufficiently high nuclear transparency and, hence, a
sensitivity of cross sections to the real interaction
potential at small distances. By analyzing elastic alpha-
particle scattering measured over a wide angular range,
Goldberg and Smith [1] and Goldberg et al. [2] were
able to show that, in the case of a rainbowlike angular
distribution, the problem of a discrete ambiguity in
choosing the real part of the optical potential can
indeed be removed. This conclusion was confirmed by
numerous subsequent investigations. We note, how-
ever, that investigations leading to this conclusion
relied on standard Woods–Saxon potentials featuring
volume absorption, which fix rather tightly the radial
dependence of the imaginary part of the potential. At
the same time, it has long since been known that there
is a strong correlation between the real (V) and imagi-
nary (W) parts of the potential. We mean here that
changes in the real part can be compensated by the cor-
responding changes in the imaginary part (and vice
versa) without spoiling the quality of description of
experimental cross sections.

A strong correlation between the parameters of the
real and imaginary parts of the potential was discovered
in [3]. There, an analysis of a conventional Woods–
Saxon potential describing the scattering of 50.5-MeV
alpha particles on 64Zn nuclei revealed that by no means
are the factors  and  measuring the correla-
tion between the parameters of its real and imaginary
parts less than the factor , which is responsible for
the well-known continuous ambiguity in determining
the real part of the potential.
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Fig. 1. Differential cross sections for the elastic scattering of (a) 50- and (b) 60-MeV 3He nuclei on 13C nuclei. The solid and dashed
curves represent the results of the optical-model calculations with potentials nos. 1 and 5 (Tables 1, 2), respectively.
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The interrelation between the shapes of V and W
was found by Freindl et al. [4] in describing the scatter-
ing of 40- and 99.5-MeV alpha particles on a 90Zr
nucleus. On this basis, they arrived at the conclusion
that, in the optical model, there exists an ambiguity of
a new type.

In a model-independent analysis of alpha-particle
scattering on 50Ti nuclei, Roberson [5] was unable to
find a clear-cut χ2 minimum in fitting the depth of the
real part of a potential belonging to a family character-
ized by the volume integral of JV/4A ~ 300 MeV fm3,
because variations in the real part of the potential could
be compensated by the corresponding changes in its
imaginary part.

Brandan et al. [6], who analyzed the angular distri-
butions of elastic 12C + 12C and 12C + 16O scattering at
a few hundred MeV, showed that, even in the case of con-
ventional Woods–Saxon potentials, whose real and imag-
inary parts have strongly different geometric characteris-
tics, there arises a new type of discrete ambiguities.

The latest investigations of the V–W correlations
were performed in [7–9] on the basis of data on the
elastic scattering of 40- and 72-MeV 3He nuclei on 12C,
13C, and 14C nuclei. These investigations, which
employed potentials featuring both volume and surface
absorption, revealed that, despite the manifestation of
effects associated with nuclear rainbow scattering, a
discrete ambiguity in choosing the real part of the
potential still remains. Specifically, three potential fam-
ilies characterized by volume-integral values of about
200, 300, and 400 MeV fm3 were found to describe the
experimental cross sections equally well.

Thus, a correlation between the real and imaginary
parts of the potential leads to ambiguities in their deter-
mination even when a nuclear rainbow is observed, in
which case differential cross sections are sensitive to
the interaction at small distances. In this context, inves-
tigations of the V–W correlation gains in importance,
especially in the case where data from a phenomeno-
logical analysis of elastic scattering are used to deduce
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
information about the distribution of nuclear matter or
about the matter radii of nuclei.

In the present article, we report on an investigation
of the elastic scattering of 50- and 60-MeV 3He nuclei
on 13C nuclei. The corresponding differential cross sec-
tions measured in a full angular interval are analyzed
within the optical model of the nucleus by using
Woods–Saxon potentials that involve both volume and
surface absorption. The main objective of our analysis
is to deduce information about the correlations between
the radial dependences of the real and imaginary parts
of the optical potentials.

2. EXPERIMENTAL PROCEDURE

Our experiment was conducted in 3He beams
extracted from the isochronous cyclotron installed at
the Institute of Nuclear Physics, National Nuclear Cen-
ter (Republic of Kazakhstan). The energies of the accel-
erated ions were 50 and 60 MeV. For a target, we used
a self-supporting carbon film of thickness 1.2 mg/cm2

enriched in the 13C isotope to 86%. Charged reaction
products were recorded by a ∆E–E telescope of silicon
counters whose thicknesses were about 100 µm for ∆E
and 2 mm for E. The particles were identified via a
computer-aided two-dimensional analysis. The total
energy resolution was 500–600 keV; it was determined
primarily by the energy spread in the beam and by the
target thickness. The differential cross sections for elas-
tic scattering were measured for laboratory angles in
the range 10°–170° for  = 50 MeV and for labora-

tory angles in the range 10°–150° for  = 60 MeV.
The absolute error of the measurements was about 10–
15%, while the statistical error did not exceed 5%.

3. ANALYSIS OF EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 1 shows the angular distributions for the elas-
tic scattering of 50- and 60-MeV 3He nuclei on 13C
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Table 1.  Potential parameters found from an analysis of the elastic scattering of 50-MeV 3He nuclei on 13C nuclei

no. –V, MeV rV , fm aV , fm –W, MeV rW, fm aW, fm WD, MeV rD, fm aD, fm

1 126.6 1.00 0.82 13.39 1.21 0.92

2 159.4 0.78 0.86 1.53 1.32 0.03 12.29 1.05 1.06

3 136.5 0.97 0.82 1.75 1.10 0.35 12.76 1.37 0.82

4 105.8 1.12 0.71 12.22 1.780 0.97 4.09 1.33 0.50

5 149.3 0.76 0.83 5.44 2.31 0.95 8.94 1.08 0.47

6 118.6 1.0 0.73 4.10 2.36 0.95 10.02 1.24 0.58

7 106.2 1.15 0.74 6.00 2.15 0.90 9.43 1.43 0.47

8 106.7 1.19 0.77 1.39 1.33 0.57 14.65 1.42 0.70

no. Vso, MeV rso, fm aso, fm JV/3A, MeV fm3 JI /3A, MeV fm3 χ2/N

1 2.98 1.45 0.58 390 171 4.6

2 5.00 1.29 0.85 335 170 4.6

3 0.12 1.18 0.89 394 174 5.8

4 0.23 1.67 0.84 355 174 9.2

5 5.18 1.25 0.87 288 160 7.2

6 5.39 1.25 0.91 322 170 7.8

7 3.57 1.25 0.65 392 178 5.6

8 3.35 1.45 0.54 439 176 8.0
nuclei. These distributions exemplify manifestations of
effects associated with nuclear rainbow scattering. The
region of Fraunhofer oscillations at small angles (less
than 50°) is followed successively by a broad maxi-
mum around 60° and then by an exponential fall. A
comparison with data obtained in [7, 8] at energies of
40 and 72 MeV reveals that the position of this maxi-
mum varies in inverse proportion to energy: θ ~ 1/E.
This dependence is peculiar to rainbow scattering [10].

The angular distributions in question were com-
puted within the optical model of the nucleus as imple-
mented on the basis of SPI-GENOA code [11]. In addi-
tion to volume absorption, the optical potentials used
involved surface absorption and a spin–orbit term; that is,

where fi(r) = [1 + exp (r – ri A1/3)/ai]–1 is the Woods–
Saxon form factor, while VCoul(r) is the Coulomb poten-
tial of a uniformly charged sphere of radius RCoul =
1.3A1/3 fm.

The potential parameters were determined by fitting
the theoretical cross sections to experimental values.
For an input potential, we took that from the study of
Trost et al. [12], who proposed empirical expressions
for the central potential involving purely surface
absorption, the parameters of this potential being
dependent on the 3He energy and on the target-nucleus

U r( ) V f V r( ) i W f W r( ) 4aDWD

d f D r( )
dr

----------------+ 
 +=

+ V so
h

mπc
--------- 

 
2
1
r
--- 

d
dr
----- f so r( ) Lσ( ) VCoul r( ),+
mass. The potential in question describes well 3He scat-
tering on nuclei from beryllium to lead in the energy
range between 10 and 220 MeV. Other input parameter
values were borrowed from [8, 9]. The results of fitting
via a χ2 minimization are quoted in Tables 1 and 2. For
each energy value, we obtained eight potentials
describing experimental data equally well. Some exam-
ples of the resulting description are displayed in Fig. 1.
As can be seen from the tables, the volume integrals of
the real parts of the potential (JV) per pair of interacting
particles show a considerable scatter, from 200 to
430 MeV fm3. As to the analogous integrals for the
imaginary part (JI = JW + JD), they change only slightly.
By way of example, we indicate that JI = 172 ± 7 MeV fm3

at 50 MeV and JI = 153 ± 13 MeV fm3 at 60 MeV.

With an eye to the ensuing discussion, it is advisable
to specify the regions where the results show the high-
est sensitivity to the real and imaginary parts of the
potential. For this purpose, we performed a series of
calculations with potential no. 6 from Table 2. The val-
ues of this potential were specified on a grid of radii
with a step of 0.1 fm. For the potentials V(r) and W(r),
we determined intervals such that no more than 20%
changes could be induced in χ2/N by variations in the
potentials within these intervals, established individu-
ally for each point lying between 0 and 7.5 fm. The
resulting ratios V '/V and W '/W versus r are displayed in
Fig. 2a. It can be seen that the region of the highest sen-
sitivity to the real potential is between 0.5 and 5 fm. For
the imaginary part, it is somewhat narrower, occurring
between 2.5 and 5.5 fm. The calculations reveal that, in
region of sensitivity, changing V(r) and W(r) by about
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
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Table 2.  Potential parameters found from an analysis of the elastic scattering of 60-MeV 3He nuclei on 13C nuclei

no. –V, MeV rV , fm aV , fm –W, MeV rW, fm aW, fm WD, MeV rD , fm aD , fm

1 135.6 0.95 0.84 13.85 1.26 0.80

2 127.7 0.80 0.78 0.45 1.52 0.04 11.93 1.00 1.04

3 136.9 0.97 0.82 7.43 1.10 0.35 12.24 1.39 0.72

4 111.5 1.08 0.72 7.26 1.83 0.95 8.50 1.29 0.58

5 142.6 0.67 0.81 3.95 2.58 0.42 6.35 1.10 0.48

6 113.0 1.06 0.73 4.28 2.23 0.84 13.43 1.17 0.48

7 109.5 1.15 0.74 3.38 2.29 0.73 13.32 1.43 0.47

8 112.0 1.15 0.78 2.33 1.33 0.26 14.59 1.39 0.69

no. Vso, MeV rso, fm aso, fm JV/3A, MeV fm3 JI /3A, MeV fm3 χ2/N

1 2.75 1.29 0.58 390 156 3.5

2 18.20 0.65 1.16 245 147 6.7

3 0.09 1.76 0.89 395 158 4.4

4 2.23 1.69 0.80 350 157 4.5

5 6.84 0.38 1.24 215 128 3.0

6 3.98 1.48 0.89 344 153 6.1

7 2.18 1.15 0.56 404 166 3.4

8 2.62 1.39 0.56 433 166 5.3
10% only at one point increases χ2/N by 20%. In the
central and the peripheral region, only a more than two-
fold change in the potential values can generate a simi-
lar growth of χ2.

The real and imaginary parts of the resulting poten-
tials from Table 2 are displayed in Fig. 2b. It can be
seen that, even in the region of the highest sensitivity,
the extreme values of V(r) differ by a factor greater than
two. The scatter decreases for r < 2.0 exclusively—that
is, in the region where the imaginary part of the poten-
tial affects insignificantly cross-section values—and
only there can we deem that the potential is determined
almost unambiguously. In the overlap of regions of the
highest sensitivity to V and W, the imaginary parts of
the potentials also differ significantly. Only in the
region of values that exceed somewhat 5 fm and which
are close to the strong-absorption radius, where V has a
less pronounced effect on cross-section values, are they
close, which ensures the identity of the diffraction
structure for all potentials found here. In all probability,
this is reason why the volume integrals of the imaginary
parts of the potentials have a comparatively small scat-
ter, so that they can be determined quite reliably from
scattering data (see above). All that was said here in
connection with the data in Fig. 2 applies equally well
to the potentials from Table 1.

A considerable scatter of the V and W values in the
region of the highest sensitivity can be explained by the
interrelation between the potentials V and W, which
makes it possible to compensate even quite sizable
changes in the real part by the corresponding changes
in the imaginary part (and vice versa) without changing
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
the computed cross sections. Figure 3a, which displays
the values of V and W at a radius of 4 fm, provides a
good illustration of the V–W interrelation. From this
figure, it can be seen that the real and the imaginary part
of each potential from Tables 1 and 2 are related as
V(r = 4 fm) . 1.5W(r = 4 fm). The relation between V
and W holds in the region r = 2.5–5 fm, as is suggested
by close radial dependences of the ratio V/W for the
potentials from Tables 1 and 2 (see Fig. 3b, where these
dependences are depicted for the case of  =
50 MeV). Figure 3b shows that, over the interval r =
2.5–5 fm, the mean value of the ratio in question
changes smoothly from 4 to 1.

Although all the potentials found here reproduce
experimental data equally well, the scattering matrices
corresponding to them can differ strongly. By way of
example, the complex scattering-matrix elements (Sl)
associated with potentials no. 2, 3, and 5 from Table 2
are displayed in Fig. 4 for partial waves making the
largest contributions to the cross section. As can be
seen from this figure, the potentials in question do not
yield identical phase shifts; hence, they do not belong
to families associated with conventional discrete and
continuous ambiguities. It is well known that potentials
from those families are nearly phase-equivalent ones.

In order to answer the question of whether there is
some degree of ambiguity—and to assess this degree, if
any—in extracting the volume integrals of the real part
of the potential from scattering data, we performed
more detailed calculations in which we studied the
quality of fitting versus JV. These calculations were per-
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Fig. 2. (a) Relative changes that must be introduced in the real and the imaginary part of the potential at  r in order that χ2 grow by
20%. (b) Radial dependences of the real and imaginary parts of the potentials found at E = 60 MeV (Table 2).
formed for a grid of fixed radii in the vicinity of their
tabular values for each potential from Table 2. The
remaining parameters, with the exception of the param-
eters of the spin–orbit interaction, were sought by fit-
ting the cross sections calculated theoretically to the
corresponding experimental values. Since the spin–
orbit component is operative only at the largest angles,
it was sufficient to perform fitting within 120° in order
to eliminate its effect on the results of our analysis. The
resulting dependence of χ2/N on JV is illustrated in
Fig. 5. Naturally, this is not the only possible depen-
dence of this type—as a matter of fact, it is determined
by the input values of the potentials and by the proce-
dure of searches itself. The calculations only indicate
that a satisfactory description of the experimental data
in question can be obtained at almost any value of JV

from the interval 200–450 MeV fm3. Thus, the volume
integral of the real part of the optical potential cannot
be determined unambiguously from scattering data
without imposing additional constraints on the poten-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
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Fig. 3. (a) Values found for the optical potentials at r = 4 fm for the energy values of E = (s) 50 and (j) 60 MeV. (b) Radial depen-
dence of the ratio V(r)/W(r) at an energy of 50 MeV.
tial parameters. By no means do relatively higher val-
ues of χ2/N for potentials with JV . 250–300 MeV fm3

imply that, among other potentials having JV values in this
range, there are none that describe angular distributions. In
support of this, we note that, at an energy of 50 MeV, there
are potentials with JV . 290 and 320 MeV fm3 (see
Table 1) that provide quite a satisfactory description.

Our analysis confirms that the special features of
angular distributions are explained by nuclear-rainbow
effects. Indeed, it can be shown that, for all potentials,
classical deflection functions yield limiting angles less
than 180°. For an energy of 60 MeV, they lie in the
range 80°–100°. Since the rainbow bump observed in
the angular distribution is due to the refraction proper-
ties of the nuclear potential—that is, to its real part—
this bump must be reproduced in the far cross-section
component corresponding to scattering at negative
angles on the far edge of the nucleus under the effect of
the nuclear attractive field [13]. The expansion of the
cross section into the far and the near component is
shown in Fig. 6 for potential no. 5 from Table 2. It can
be seen that the far component makes a dominant con-
tribution to the cross section in the angular range
between 40° and 100°, completely saturating the max-
imum in the vicinity of 60°. The oscillating structure at
small angles results from the interference of the ampli-
tudes of the far and the near component. The calcula-
tion for the far component with zero imaginary part
clarifies the pattern still further, demonstrating that the
maximum proper and the fall that follows it are due to
the refracting properties of the nuclear field and that
absorption leads only to an overall reduction of the
cross sections. The analogous calculation with poten-
tial no. 8—the results of this calculation are shown by
the dashed curve in Fig. 6—leads to strongly different
cross sections. For this potential, the classical angle of
the maximal deflection θR is shifted toward larger
angles by 20°. Nonetheless, an appropriate choice of
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
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the imaginary part of the potential compensates for this
distinction to such an extent that the calculated angular
distributions are virtually indiscernible up to an angle
of 160°.

Thus, we conclude that, despite the observation of a
distinct rainbow in the scattering of 50- and 60-MeV
3He nuclei, an unambiguous determination of the opti-
cal potential on the basis of a phenomenological analy-
sis of the experimental cross sections cannot be per-
formed even in the region of the highest sensitivity to
this potential. The ambiguity in the choice of potential
stems from the interrelation between its real and imag-
inary parts. This complies with the results of the analy-
ses performed by Ershov et al. [7] and Demyanova
et al. [8], who studied the scattering of 40- and 72-MeV
3He nuclei on carbon isotopes.

4. CONCLUSION

We have investigated the elastic scattering of 50-
and 60-MeV 3He nuclei on 13C nuclei. The differential
cross sections measured over a broad angular range (up
to 160°–170°) have been analyzed within the optical
model of the nucleus by using Woods–Saxon potentials
including both volume and surface absorption. The
potential parameters have been determined phenome-
nologically by fitting the computed cross sections to
experimental data. For each energy value, we have
found eight potentials that describe experimental data
over the full angular range equally well. Their volume
integrals for the real parts show a considerable scatter
from 200 to 450 MeV fm3. Our analysis has revealed
that, in the region of the highest sensitivity, the values
of both the real and the imaginary parts of the potentials

σ/σR

10–3

0 40 80 120
θc.m., deg

10–1

101 W = 0

F

N

Fig. 6. Ratio of the differential cross section for the elastic
scattering of 60-MeV 3He nuclei on 13C nuclei to the corre-
sponding Rutherford cross section: (solid curves) results
based on the optical model with potential no. 5 from Table 2;
(dashed curves) results obtained with potential no. 8;
(curves labeled with uppercase F and N) results for, respec-
tively, the far and the near component of the cross section;
(two upper curves) results for the far components of the cross
section at W = 0.

160
can differ by a factor greater than two. The observed
scatter is explained by a strong correlation between V
and W. Because of this correlation, even considerable
variations in the real part can be compensated by the
corresponding variations in the imaginary part (and
vice versa). This indicates that there is a V–W ambigu-
ity in choosing optical potentials. This type of ambigu-
ity complicates, despite clear-cut manifestations of
nuclear-rainbow effects in the scattering processes
being discussed, the extraction of information about the
distribution of nuclear matter or about the matter radii
from data of phenomenological analyses.

Data on 3He and alpha-particle scattering are suffi-
cient for drawing a more general conclusion. Although
the broad maximum observed in the angular distribu-
tions and the exponential fall that follows it are due to
refraction effects—that is, eventually to the behavior of
the real part of the potential at small distances—it is
hardly possible at present to make use of this circum-
stance for deducing unambiguous information about
the radial dependence of this real part. Here, the ambi-
guity is associated with a strong correlation between
the real and the imaginary part of the potential. The sit-
uation here is aggravated by the fact that the modern
theory of the nucleus is unable to compute the imaginary
part of the potential on the basis of first principles. In
practice, this part is treated phenomenologically, which
creates a vicious circle: from scattering data, we cannot
determine the real part of the potential because we do not
know its imaginary part, and vice versa.

This brings about the natural question of whether it
is possible to extrapolate these results to heavier projec-
tiles such as 12C and 16O. Considerable advances have
recently been made in understanding the dynamics of
collisions between such ions (for an overview, see [14]
and references therein). Among other things, it was
shown that, at energies in excess of 10 MeV per projec-
tile nucleon, the angular distributions for 12C + 12C and
16O + 16O elastic scattering exhibit refraction effects—
in particular, a nuclear rainbow. These effects manifest
themselves despite an almost complete absorption (the
values of the scattering-matrix elements for the inner
region are |Sl| < 0.3). No high penetrability is required
in order to trace a signal from the inner region of the
potential at large angles. A few-percent amplitude of
scattering off this region or even a smaller value is quite
sufficient. An analysis of such angular distributions
made it possible to determine basic features of optical
potentials and, in many cases, to remove ambiguities in
the depth of the real parts of the potentials. In the light
of data obtained for the elastic scattering of 3He nuclei
and alpha particles, it is interesting, however, to con-
sider the effect of V–W correlations on the results of the
phenomenological analyses of 12C + 12C, 16O + 16O, and
12C + 16O scattering under the conditions of limited
transparency.
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Abstract—For collective even–even nuclei, a relation between the E2-transition probabilities, which charac-

terize the decay properties of - and  states, are obtained. This relation features no free parameters; it is

applicable to describing nuclei that are soft with respect to β vibrations. The 152Sm and 154Gd nuclei are con-
sidered as examples illustrating the application of the aforementioned relation. © 2000 MAIK “Nauka/Interpe-
riodica”.
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1. INTRODUCTION

A description of ground nuclear states is a challeng-
ing problem for spectroscopic nuclear calculations.
This is so both within phenomenological models like
interacting-boson models (IBM) and within shell-
model calculations. The reason is that configuration
spaces of various models used are insufficiently wide.
The quantity that is taken to be a ground-state wave
function in some model calculation may in fact saturate
only a small part of its norm [1].

At the same time, it is well known from experimen-
tal data that the application of the quadrupole-moment
operator or of the magnetic-dipole-moment operator to
the ground state of a nucleus yields, respectively, the
first 2+ state or the collective 1+ state. These examples
suggest that, with the aid of the ground-state wave
function, it is possible to reproduce faithfully the wave
functions of collective excited states by applying
appropriately chosen single-particle operators to the
ground state. This approach underlies the scheme of Q
phonons [2–6], which was developed to describe col-
lective quadrupole excitations of nuclei. The basic idea

of the approach is as follows. Let | 〉 be the state vec-
tor for the ground state of a nucleus. The state vectors
for nuclear excitations above this ground state are then
constructed in terms of the basis

(1)

where Q2 is the quadrupole-moment operator, while
1(I, n) is a normalization factor. Investigations revealed
that states of interest for experiments can be described
by invoking one to two components of the basis in (1).
(It is important to note that this simple form of collec-
tive-state vectors can be retained over the entire range
of the IBM parameters—that is, in going over from
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spherical through transition nuclei to deformed ones.)
For example, the first 2+ state can be represented as

(2)

the accuracy of the description being about 90%. By
taking into account the component involving two qua-

drupole operators, the accuracy in describing the 
state can be improved up to 98% [5].

That simple expressions featuring no more than one
free parameter can be used for the wave functions of
collective states makes it possible to demonstrate that
E2-transition probabilities satisfy definite relations
depending only on quantities that can be determined
experimentally [7, 8]. This proves possible because the
state vectors in question are constructed in terms of the
transition quadrupole-moment operator.

It was shown in [6] that, irrespective of whether the
nucleus being considered is spherical, transition, or
deformed, the wave function of the first excited (Iπ = 0+)

state—it is common practice to denote it by | 〉—can
be approximated, to a high accuracy, as a superposition
of two components; that is,

(3)

where

(4)

(5)

with

For γ-soft nuclei—within the generalized model of the
nucleus, these are described by a potential that is inde-
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pendent of γ—the second component is dominant,
while, for β-soft nuclei, which include those from the
beginning of the rare-earth region (say, for 150, 152Sm
and 152, 154Gd), the first component prevails.

In recent years, considerable advances have been

made in experimental investigations of the decays of 

and  states [9]. In the future, such investigations
promise a considerable extension of a database that can
be used as a testing ground for various theoretical mod-
els. For this reason, it is of interest to derive equations
that would relate transition probabilities and which
would feature no free parameters.

The objective of this study is to obtain a relation for

the probabilities of E2 transitions from excited 

states of β-soft nuclei. In such nuclei,  states are of
particular interest since they have comparatively low
excitation energies.

2. RELATION FOR B(E2)

Let us consider the reduced probabilities of E2 tran-

sitions between the , , , , and  collective

states. The expressions for the , , and  state
vectors in terms of the Q-phonon basis are given by [2,
3, 5, 8]
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(9)

02
+

2γ
+

02
+

02
+

01
+

02
+

21
+

2γ
+

41
+

21
+

2γ
+

41
+

21
+ µ,| 〉 1

1 R1+
------------------- 2µ

+
Q,| 〉=

+ 01
+〈 | QQQ( )0 01

+| 〉( )
R1

1 R1+
--------------- 2µ

+
QQ,| 〉 ,sgn

2γ
+ µ,| 〉 01

+〈 | QQQ( )0 01
+| 〉( )

R1

1 R1+
--------------- 2µ

+
Q,| 〉sgn–=

+
1

1 R1+
------------------- 2µ

+
QQ,| 〉 ,

41
+ µ,| 〉

QQ( )4µ

1
3
--- 01

+〈 | QQ( )4 QQ( )4( )0 01
+| 〉

----------------------------------------------------------------- 01
+| 〉 ,=

2µ
+

Q,| 〉 1

1

5
------- 01

+〈 | QQ( )0 01
+| 〉

----------------------------------------------Q2µ 01
+| 〉 ,=

2µ
+

QQ,| 〉 1

5
------- 01

+〈 | QQ( )2 QQ( )2( )0 01
+| 〉 -









=

PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
(10)

(11)

The sign of 〈 |(QQQ)0 | 〉  coincides with the sign of

the quadrupole moment in the  state. Since we con-
sider only β-soft nuclei that are comparatively stiff with

respect to γ vibrations, the  state vector can be repre-
sented as

(12)

where | 〉  is given by (4).

By means of direct calculations based on the above
expressions for the state vectors involved, it can be
shown that the reduced matrix elements of the quadru-
pole-moment operator Q2µ can be represented as
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By using expression (14) and (15), we can recast the
ratio of one pair of reduced matrix elements into the
form

(16)

where

(17)

In a similar way, the other ratio of the reduced
matrix elements can be expressed as

(18)

In [7, 8], it was shown that the ratio  can be approx-
imated as

(19)

By comparing (16) and (18), we arrive at the rela-
tion

(20)

which involves only experimentally measurable quan-
tities. In terms of the E2-transition probabilities, the
last relation can be rewritten as
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3. COMPARISON WITH EXPERIMENTAL DATA

Because of large experimental uncertainties in the
measured values of

the use of relation (21) involves some difficulties in a
comparison with experimental data. We will now trans-
form it, considering that, to within 10–15%, the E2-
transition probabilities as computed on the basis of the
IBM model obey the relation

(22)

The validity of relation (22) was checked by using the
Hamiltonian [10, 11]

(23)

where

(24)

Let us compare relation (22) with experimental data for

nuclei such that the wave function of the  state can
be represented by the approximation in (12). The
required information is available for Pd isotopes [12–
16]. The results of this comparison are presented in the
table. It can be seen that relation (22) is compatible
with the data for Pd isotopes.

Substituting (22) into (21), we arrive at

(25)

We emphasize once again that relation (25) was
obtained under the assumption that the wave function

of the  state is given by (12). It follows that relation
(25) can prove to be valid for a small number of nuclei

such that  states for them are purely β-vibrational
states. It is interesting to note that relation (25) can also
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be inferred from the Davydov–Chaban model, within
which it was obtained many years ago [17], albeit on
the basis of a totally different formalism.

Let us now consider experimental data. The
required information is available for the 152Sm and
154Gd nuclei [9]. We have

for 152Sm and

for 154Gd.
For the 172Yb nucleus, which is not soft with respect

to β vibrations, so that relation (12) does not hold for it,
we have

and the ratio of the expression on the left-hand side of
equation (25) to that on the right-hand side of it is equal
to 23. Thus, relation (25) is quite a sensitive criterion
for β-soft nuclei.

It should be noted that, within the present approach,
the smallness of the quantity on the left-hand side of
(25)—this point was discussed in [9]—is explained by

the fact that, by virtue of the hypothesis that the 
state is of a beta-vibrational origin, it coincides with the
quantity that appears on the right-hand side of (25) and
which is small for all nuclei.

4. CONCLUSION

For collective even–even nuclei, we have obtained a
relation between the E2-transition probabilities charac-

terizing the decay properties of the  and  states.
The relation is applicable to nuclei that are soft with
respect to β vibrations. A comparison with experimen-
tal data has revealed that this relation is quite a sensitive
criterion for β-soft nuclei that are sufficiently stiff in γ.
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Experimental values of  and

 for the 104–110Pd isotopes

Isotope  

104Pd 1.08 ± 0.01 1.02 ± 0.10
106Pd 1.20 ± 0.06 1.18 ± 0.21
108Pd 1.21 ± 0.05 1.04 ± 0.20
110Pd 1.10 ± 0.01 1.14 ± 0.01
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Abstract—For three-body scattering at positive total energies, integral equations are obtained whose kernels
have no logarithmic singularities on the contour of integration. The corresponding singularities that are present
in original integral equations can be circumvented by shifting a part of the contour of integration from the real
axis to the complex plane. This is done only for a special auxiliary solution appearing to be an analytic function
in this region. The physical amplitude proper is found as one of the solutions to the resulting set of equations.
In contrast to conventional techniques, an additional analysis is therefore not required here, so that numerical
solutions can be obtained within standard computational schemes. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Some time ago, the problem of moving singularities
hindered significantly the development of methods for
numerical calculations of three-body scattering at pos-
itive total energies. In this region, the logarithmic sin-
gularities of the kernels of relevant integral equations
occur on the real axis of the complex plane of momen-
tum variables—that is, on the contour of integration
itself. That these singularities move along the real axis
in response to variations in momentum variables,
including those that determine the functional form of
sought solutions is the main reason behind the afore-
mentioned difficulties. As a result, it becomes difficult
to obtain numerical solutions directly and to control the
accuracy of the relevant calculations [1–3].

The problem of moving singularities was solved by
Hetherington and Schick [4] and by Sohre and Ziegel-
mann [5], who proposed a method for sidestepping
these difficulties by deforming the contour of integra-
tion. Essentially, the method consisted in shifting the
contour of integration to the region of complex momen-
tum values. This led to a new equation whose numerical
solutions could be obtained straightforwardly within
standard computational schemes. That constructing the
scattering amplitude at physical momentum values
required, within this method, a continuation of the
resulting solutions back to the real axis created, how-
ever, difficulties of another kind. These could be over-
come only via a dedicated analysis of the analytic prop-
erties of the solutions and additional numerical calcula-
tions [1, 2, 4, 5].

At the same time, the advent of modern supercom-
puters made it possible to perform direct calculations
by using, for example, spline functions or a finer (or
a  variable-step) grid in the region of moving singular-
ities [1, 3].
1063-7788/00/6304- $20.00 © 20574
Thus, we can say that the problem has been solved
in principle, but specific applications call for some
refinements, including a simplification or a unification
of relevant computational schemes and an extension of
the approaches in question to more involved problems
of few-body physics.

In the present study, a new method is proposed for
solving the problem of moving singularities. This
method, which can prove useful in performing practical
calculations, combines two well-known techniques,
that of the theory of scattering on two potentials and
that of a deformation of the contour of integration. In
the region of moving singularities, the proposed proce-
dure involves isolating a compensating potential that
contains these singularities explicitly. Solutions in the
compensating potential are of an auxiliary character.
From the equation with the compensating potential, we
further find solutions that are analytic either in the
upper or in the lower half-plane of complex momenta.
It is for this purpose that we shift the contour of integra-
tion. At the same time, the equation for the scattering
amplitude in the physical region is parametrized from
the outset in terms of real momentum values—that is,
without shifting the contour of integration. The latter
equation, together with the equations for the auxiliary
solutions, gives a complete solution to the problem. It
is important that the kernels of the resulting equations
have no singularities on the corresponding contours of
integration. As a result, we arrive at a closed set of
equations that features an equation that determines
directly the physical amplitude.

The ensuing exposition is organized as follows. In
Section 2, we briefly discuss the properties of the basic
equation for the three-body scattering problem—the
equation that describes the elastic scattering of one par-
ticle on the bound pair of the other particles. This equa-
tion plays a special role in three-body physics. Some
000 MAIK “Nauka/Interperiodica”
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general information about moving singularities is given
in this section as well. The properties of the compensat-
ing potential are presented in Section 3. Solutions that
are analytic on the upper or on the lower half-disks of
the complex plane of momenta and equations govern-
ing these solutions are also obtained in Section 3. Sec-
tion 4, where a method is developed for transforming
the basic equation into a set of equations whose kernels
are free from moving singularities, is a key one in this
study.

2. BASIC EQUATION FOR THREE-BODY 
SCATTERING AND PROBLEM

OF LOGARITHMIC SINGULARITIES

Omitting the details concerning the three-body
problem, which is expounded consistently and rigor-
ously in classical monographs and textbooks (see, for
example, [1, 6, 7]), we focus here on a key result of the
theory, the equation for quasi-two-particle transitions.
Such equations (we refer to them as basic equations)
were obtained in [8] by the method of Alt–Grass-
berger–Sandhas transformations of basic Faddeev
equations (for T matrices or wave functions [6]) into
equations for the matrices of quasi-two-particle transi-
tions. These equations can also be obtained within the
effective-potential approach, which represents a modi-
fication of the Alt–Grassberger–Sandhas method [9].
Here, it is important that, if solutions to the basic equa-
tion are known, all other transitions, including breakup
processes and 3  3 scattering, can be determined
independently—that is, by using integral relations
rather than by solving the basic integral equation.

Since we analyze here the problem of moving sin-
gularities—a problem common to all situations in
three-body physics for E ≥ 0—we can maximally sim-
plify it, retaining only the main ingredient of this prob-
lem, moving singularities and all other things that are
related to them.

For the sake of simplicity, we will henceforth
assume that the particles involved are identical (m1 = m2 =
m3 = m = 1) and spinless and that their pair interaction
is short-range, yielding only one bound state (at energy ε).

We note, however, that a generalization to the case
of nonidentical particles and the inclusion of multi-
channel transitions and of the spin–isospin and other
dependences are straightforward. In this case, it is nec-
essary to treat the original equation as a matrix equation
whose rank is equal to the number of channels and to
introduce summation over spin–isospin quantum num-
bers and other quantum numbers involved. There
remains, however, the main problem, that of developing
a procedure for overcoming difficulties associated with
moving singularities.

Under the adopted simplifying assumptions, the
amplitude of the quasi-two-particle elastic scattering of
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a particle on a bound pair of the other two particles, f(ki,
kj; E), appears to be a solution to the equation

(1)

where E = 3 /4 – ε, Es = 3 /4 – ε is the energy of the
quasi-two-particle intermediate state, ks is the momen-
tum of the relative motion of the free particle in the c.m.
frame, and γ  0+.

In contrast to the conventional two-body problem,
the potential V(ki, kj; E) is complex-valued here and is
dependent on the energy E. A determination of its exact
form is a separate problem [8, 9]. It is important, how-
ever, that moving singularities in this effective potential
are generated by the lowest order (Born) term in its
expansion in nonrepeated pair forces—that is, by the
exchange diagram (see Fig. 1). In this figure, a circle
labeled with the symbol ν(j, i) corresponds to the tran-
sition of a pair of free particles into a bound state, while
the square vertex Γ(i, j) represents the effective
(dressed) value for the inverse of such a transition in the
space of three particles [as a matter of fact, this vertex
is equal to the product of ν(i, j) and the residue of the
pair Ti matrix at the pole). Higher order terms in this
expansion, which are represented by the diagrams in
Fig. 2, do not involve the moving singularities in ques-
tion (because they are averaged upon summation over
additional intermediate states).

This is in accord with the obvious circumstance that
moving singularities are of a kinematical origin—they
are related to the character of pair forces only indi-
rectly, to the extent that such forces are necessary for
the existence of pair bound states. In particular, the
region where such singularities exist and their behavior
depend only on kinematical variables like the total
energy, the wave numbers, and the ratios of the particle
masses. By way of example, we can investigate separa-

f ki k j; E,( ) V ki k j; E,( )–=

+ ksV ki ks; E,( )
f ks k j; E,( )
E Es– iγ+

-----------------------------,d∫
k0

2
ks

2

ki

kj

ν(j, i)

Γ(i, j)

Fig. 1. Diagram corresponding to the Born term in the
expansion of the potential V(ki, kj; E).

+

ki kj ki

kj

+  . . . 

Fig. 2. Diagrams corresponding to higher order terms in the
expansion of the potential V(ki, kj, E).
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ble pair forces, in which case the effective potential has
a compact form since only one exchange diagram in
Fig. 1 corresponds to it. However, all problems associ-
ated with moving singularities survive in that case com-
pletely.

From equation (1) for the partial-wave components
of the amplitude, we obtain

(2)

For the sake of simplicity, we have introduced here the
notation fi, 0 = fL(ki, k0; E), Vi, j = VL(ki, kj; E), and so on.

Let us present the lowest order general expression
for Vi, j corresponding to the exchange diagram in Fig. 1.
We have

(3)

where PL(x) is a Legendre polynomial of the first kind.
It is the Green’s function for three free particles in this
expression that generates moving logarithmic singular-

ities. Indeed,  is proportional to QL(x0 + iγ), where
x0 is determined by the condition

(4)

If all the variables involved are real-valued, this equal-

ity holds for –1 ≤ x0 ≤ +1 only when E ≥ 0 and ,

 ≤ 4E/3.

It is well known that the Legendre polynomial of the
second kind can be represented in the form

(5)

where

which is a regular function.
Obviously, the logarithmic term, whose singulari-

ties change positions in the ki plane in response to
changes in the other variable, kj, is hazardous.

Logarithmic singularities were analyzed in a num-
ber of monographs devoted to the three-body problem
(see, for example, [1, 2]). Here, we will dwell on the
basic points of these analyses.

Let us introduce an auxiliary variable kZ that is

defined by the condition E = 3 /4 ≥ 0. Normalizing
the momentum variables to it, we denote

(6)

f i 0, Vi 0,
2

3π2
-------- ks

2
ks

Vi s, f s 0,

k0
2

ks
2

– iγ+( )
--------------------------------.d

0

∞

∫+–=

Vi j,
B 1

2
--- xPL x( ) Γ i j,( )ν j i,( )

E ki
2

– k j
2

– kik jx– iγ+
-------------------------------------------------------,d

1–

+1
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Vi j,
B

E ki
2

– k j
2

– kik jx0– 0.=

ki
2

k j
2

QL x0( ) 1
2
---PL x0( )

1 x0+
1 x0–
--------------

 
 
 

ln WL 1– x0( ),–=

WL 1– x( ) 1
l
---Pl 1– x( )PL l– x( ),

l 1=

L

∑=

kZ
2

yi ki/kZ, y j k j/kZ.= =
The region on the real axis where the logarithmic sin-
gularities manifest themselves at real values of the

above variables is specified by the conditions  ≤ 1

and  ≤ 1.

Let us investigate this region of yi, j values in some
detail. We recast the logarithmic term in (5) into the
form

(7)

The quantities a1 and a2 are given by [10]

(8)

where bj = . The auxiliary functions a1 and

a2 possess the following symmetry properties:

(9)

For these functions, we also present transformation for-
mulas. Upon the formal change of variables according
to y = a1(t), we obtain

(10)

For y = a2(t), the corresponding results are

(11)

It is noteworthy that the logarithmic term on the right-
hand side of (7) can be represented as the sum

(12)

It is important that, if yi is taken to be real-valued and if
|yi, j| ≤ 1, the first (second) term is analytic in yj in the
upper (lower) unit half-disk.

These analytic properties, as well as the symmetry
properties of a1, 2, will be used below in transforming
the basic equation (2).

yi
2

y j
2

1 x0+
1 x0–
--------------

 
 
 

iπ–ln

=  
yi a1

j
iγ+ +( ) yi a2

j
iγ–+( )

yi  a1
j

–   i– γ( ) yi a2
j

– iγ+( )
-----------------------------------------------------------------

 
 
 

.ln–

a1
j

y j/2 b j, a2
j

+ y j/2 b j,–= =

3
2

------- 1 y j
2

–

a1 y–( ) a2 y( ),–=

a2 y–( ) a1 y( ).–=

a1 y( ) t, t 0.5,≥=

a2 y( ) a2 t( )– , t 0.5,≥=

a1 y( ) a2 t( )– , t 0.5,≤=

a2 y( ) t, t 0.5.≤=

a1 y( ) t, t 0.5– ,≥=

a2 y( ) a1 t( )– , t 0.5– ,≥=

a1 y( ) a1 t( )– , t 0.5– ,≤=

a2 y( ) t, t 0.5– .≤=

yi a1
j

iγ+ +

yi a2
j

– iγ+
---------------------------

 
 
  yi a2
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3. TRANSFORMATION OF THE BASIC 
EQUATION IN THE SINGULAR REGION

As a matter of fact, we have already broken down
the entire interval of the momentum variables into two
regions, k ≤ kZ and k > kZ. In order to distinguish
between solutions in these regions, we introduce the
notation

(13)

where the variables k0 and E are omitted for the sake of
simplicity. It should noted that k0 > kZ by definition—
that is, y0 = k0 /kZ > 1.

From equation (2), it follows that the function ϕ
(yi ≤ 1) satisfies the equation

(14)

where ωs = (  –  + iγ).

For fi (yi > 1), we have

(15)

It can easily be seen that only the kernel of the first inte-
gral term in (14) has logarithmic singularities since the
inequalities yi, ys ≤ 1 hold for it. The kernels of the
remaining integral terms in (14) and (15) have no such
singularities on the contour of integration since at least
one of the variables or both exceed unity. Therefore,
our transformations will be applied only to the integral
term featuring the singular kernel.

Let us introduce the compensating potential (yi,
yj) in the form

(16)

where the variables satisfy the conditions yi , yj ≤ 1 and
where Zi, j ≡ Zi, j(x0) = Zi, j  with

(17)

Let us assume that the functions Zi, j and Zi, j(x) are
analytic within the unit disk |yi|, |yj| ≤ 1. For problems
featuring only short-range pair forces, this is indeed so,

f L ki k0; E,( ) ϕL yi( ) ϕ i, ki kZ,≤= =

f L ki k0; E,( ) f L yi( ) f i, ki kZ,>= =

ϕ i Vi 0,–
2kZ
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2
ysVi s,

ϕ s

ωs

-----d

0

1

∫+=

+
2kZ

3π2
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f s
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-----,d

1
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2
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2
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2kZ
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2
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∫+=

+
2kZ
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-----.d
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∞
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V L
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0 1
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-----
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yiy j

----------------------------Zi j, ,=

x( )
x x0=

Zi j, x( ) 1
kZ

-----Γ i j,( )ν j i,( ).=
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as follows from the analytic properties of the relevant
pair solutions.

Let us now consider the difference

(18)

in the singular region (that is, for yi, yj ≤ 1). This differ-
ence does not involve logarithmic singularities
because, in the lowest (hazardous) approximation, we
have

(19)

Representing the integrand in (19) as a series, we ar-
rive at

(20)

where

... .

That the series in (20) is convergent follows from the
properties of the pair vertex form factors.

Equation (14) can be rewritten in the form (yi ≤ 1)

(21)

where

(22)

The kernel of equation (21) still remains singular, but
some important transformations can be performed
owing to its simple structure. The kernels of the integral
terms in Ωi (22) have no logarithmic singularities.

Let us represent V 0 in the form

(23)
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where

(24)

(25)

The functions in (24) and (25) have the following sym-
metry properties:

(26)

(27)

In accordance with the decomposition in (23), we seek
the solution ϕ in the form of the sum

(28)

whose components satisfy the equations

(29)

(30)

These components possess the following symmetry
properties:

(31)
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+1–1 * *
–a1 – iγ –a2 – iγ

Fig. 3. Contour C consisting of the segment (–1, +1) and the
unit semicircle L closing it from above. The extreme points
of the segment are circumvented along circles of infinitely
small radius (δ  0). The dashed line indicates the cut.
By taking into account the above symmetry properties,
it can be shown that the set of equations (29) and (30)
decouples into the following independent equations for
r+ and r–:

(32)

(33)

We note that the solutions r+ and r– are the analytic
functions in, respectively, the upper and the lower unit
half-disk in the complex plane of yi.

On the real axis, these functions are related by sim-
ple transformations [see equations (31)]. In order to
obtain a complete solution to the problem in question,
it is therefore sufficient to determine one of these func-
tions—for example, r+.

4. SET OF EQUATIONS TO BE SOLVED

By using the analytic properties of the function r ≡
r+, the argument values yi in equation (32) can be cho-
sen on the semicircle yi = exp(iξi) in the interval 0 ≤ ξi ≤
π (see Fig. 3). It is obvious that the logarithmic singu-
larities will then be circumvented and that the equation
itself will relate the values r(exp(iξi)) on the upper
semicircle (left-hand side of the equation) to the values
r(ys) on the real-axis segment –1 ≤ ys ≤ +1 [integral
term on the right-hand side of (32)]. In order to obtain
a closed set of equations, equation (32) must now be
supplemented with the inverted equation that deter-
mines the values r(yi) on the real-axis segment –1 ≤ yi ≤
+1 in terms of the values r(ys = exp(iφ)) on the semicir-
cle where 0 ≤ φ ≤ π.

In order to derive this equation, the integral

(34)

where L is the semicircle shown in Fig. 3 and where ys
are real-valued, is subtracted from and added to the
expression on the right-hand side of equation (32). For
the sake of brevity, we introduce the notation

(35)

Equation (32) then reduces to the form

(36)

where the integral

(37)
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is taken over the closed contour C going along the real
axis from –1 to +1 and along the semicircle L in the
inverse direction. 

First, we consider the integral along the semicircle, IL.

At real values in the range –1 ≤ yi ≤ 1 and at ys =
exp(iφ), where 0 ≤ φ ≤ π, the quantity λ+(yi, ys) is
finite—that is, it features no singularities. This is not so
only for the extreme points of the semicircle L (see
Fig. 3), where arg(xs) = 0 or π. However, a circumven-
tion of these points along circles of infinitely small
radius δ yields a contribution proportional to δlnδ;
therefore, this contribution can be disregarded.

It is important that the integral IL involves the func-
tion rs defined on the semicircle L, whereby the closure
problem is solved.

We now proceed to estimate the integral IC for real
yi values satisfying the condition yi ≤ 1. This integral
can be evaluated by conventional methods of the theory
of analytic functions by taking into account the impor-
tant circumstance that the function Mi, s is analytic
everywhere inside the contour C and on the contour
itself. Further, the logarithmic function that appears on
the right-hand side of (24) and which generates the dif-
ficulties studied here can be represented in the form

(38)

It should be noted that the first term on the right-hand
side of (38) makes zero contribution to IC because its
branch points are situated outside the contour C. In
other words, the singularities of the function λ+(yi, ys)
in ys do not belong to the contour C if yi > 1/2. The sin-
gularities are determined by the second term for yi ≤
1/2. Here, the situation is more intricate because the
singular points at complex values of ys are within the
contour C, occurring immediately above the real axis.
Let us represent the contribution of this term as

(39)

and change the order of integrations. This is quite legit-
imate because, in the integration along the contour C
near the point of singularity, the contribution to the
integral from the interval (–δ, +δ) for δ  0 is propor-
tional to δlnδ; therefore, this contribution can be disre-
garded.
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The integral IC can be represented as

(40)

where

(41)

(42)

The integrals in (41) and (42) can be simplified. For
example, the expression for J1 can be recast into the
form

(43)

where we have used the obvious equality

(44)

From the expression for J1, it can be seen that the sin-
gularities of the integrand in the complex variable ys are
fixed by the variable t. The two singularities occur
within the contour C: one is at ys = –a1(t) for t ≤ 1/2,
while the other is at ys = –a2(t) for t ≤ –1/2.

We note that, at the point ys = –a1(t), the residue
involves the factor

t + i0 + a2(–a1(t)) = t + i0 – a1(a1(t)) = t + i0 – t

[see the transformations given by (10) and (11)]; that is,
it is equal to zero. The residue at the other singular
point, ys = –a2(t), involves the factor

t + i0 + a2(–a2(t)) = t + i0 – a1(a2(t)) = t  + i0 + a1(t),

which is different from zero.
Thus, we conclude that J1(t) = 0 for –1/2 < t < 1 and

that
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for –1 ≤ t ≤ –1/2.

IC
1

3π2
-------- t J1 J2–{ } ,d

xi

1/2

∫=

J1 ys

Mi s,

t i0 a1
s

+ +
------------------------,d

C
∫°=

J2 ys

Mi s,

t i0 a2
s

–+
------------------------.d

C
∫°=

J1 ysMi s,
t i0 a2

s
+ +

t i0 a1
s

+ +( ) t i0 a2
s

+ +( )
-----------------------------------------------------------d

C

∫°=

=  ysMi s,
t i0 a2+ +

ys a1 t i0+( )+( ) ys a2 t i0+( )+( )
------------------------------------------------------------------------------,d

C

∫°

t i0 a1
s

+ +( ) t i0 a2
s

+ +( ) t i0+( )2
=

+ t i0+( )ys ys
2

3/4–+

=  ys a1 t i0+( )+[ ] ys a2 t i0+( )+[ ] .

J1 πi
t a1 t( )+

bt

-------------------- Mi s,{ }
ys a2 t( )–=

=

=  2πia2' t( ) Mi s,{ }
ys a2 t( )–=



580 TAKIBAYEV
For the integral J2, we similarly obtain J2(t) = 0 for
1/2 < t ≤ 1 and

(46)

for –1 ≤ t ≤ 1/2.

Eventually, we have the following results:

(a) for 1/2 < yi ≤ 1,

(47)

(b) for –1/2 ≤ yi ≤ 1/2,

(48)

(c) for –1 ≤ yi ≤ –1/2,

(49)

We note that the integrand in IC involves the function rt
specified at real values of the argument t. All the
remaining quantities [Zi, t, PL(x0), etc.] also involve real
momentum variables (yi and t instead of ys).

Let us summarize our results. For the problem of
three-body scattering at positive total energies of the
system, we have derived a closed set of equations
whose kernels feature no moving singularities on the
contour of integration; that is, the problem in question
can be solved within conventional computational
schemes.

We will now present this set of equations in an even-
tual form.

(i) For |yi| ≤ 1, where yi = exp(iξi) (0 ≤ ξi ≤ π), the
function r(ξi) ≡ r(yi = exp(iξi)) satisfies the equation

(50)

At real yi satisfying the condition –1 ≤ yi ≤ 1, the equa-
tion for ri takes the form

(51)

J2 πi
t a2 t( )+

bt

-------------------- Mi s,{ }
ys a1 t( )=

=

=  2– πia1' t( ) Mi s,{ }
ys a1 t( )=

IC 0;=

IC
2i
3π
------ tZi t, PL x0( )

rt

ωt

-----;d

a1
i

1

∫=

IC
2i
3π
------  + 

a– 2
i

1

∫
a1

i

1

∫
 
 
 
 
 

tZi t, PL x0( )
rt

ωt

-----.d=

r ξ i( ) Ωi
2

3π2
-------- ysZi s, λ i s,

+ rs

ωs

-----.d

–1

1

∫+=

ri Ωi i
2

3π2
-------- φr φ( ) ysZi s,

λ i s,
+

ωs

--------
 
 
 

ys iφ( )exp=

IC,+d

0

π

∫–=
where Ωi is given by

(52)

while IC is defined in (47)–(49).

(ii) In the region yi > 1, the equation for the scatter-
ing amplitude has a nearly conventional form:

(53)

Here, all momentum variables are real-valued.

Equation (50) relates the function r[yi = exp(iξi)]
specified on the semicircle L to its values on the real
axis—that is, to r(ys), where –1 ≤ ys ≤ 1. Equation (51)
defines the inverse dependence—it expresses the func-
tion specified on the real axis in terms of the function
on the semicircle. Finally, equation (53) determines the
scattering amplitude in the region yi > 1—that is, the
physical amplitude (at the point yi = y0).

Thus, instead of two equations (14) and (15) corre-
sponding to one original equation (2) with a singular
kernel, we have obtained a set of three equations whose
kernels feature no singularities.

We note that only on the real segment –1 ≤ yi, s ≤ +1
can we relate the same values r+ by the same equation,
but this is achieved through a singular kernel [see equa-
tion (32)]. The values r+ defined on any other contour—
for example, on the semicircle L—cannot be related by
one equation. This is because the contour of the integral
IC always circumvents moving branch points, which
occur within the contour C for any complex values of y.

In the case considered above, singular points pene-
trate into the region circumvented by the contour C and
occur immediately above the real axis. The curve in
question, which corresponds to a circumvention of the
moving branch points in IC, then proves to be adjacent
to the real ys axis from above, and the new values r+

involved will be coincident with the old ones—that is,
with the values on the real axis proper. Thus, the set of
equations obtained in the present study becomes
closed.
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Abstract—A simple NN potential is proposed in an analytic form. The parameters of this potential are fixed by
fitting the effective range, the scattering length, and the deuteron binding energy. The phase shifts for np scat-
tering at energies ranging up to 500 MeV and the properties of the deuteron are calculated with the resulting
parameters. The effect of the πNN coupling constant on the potential parameters and on the accuracy in describ-
ing various properties of NN interaction is explored. The results of the present calculations are found to be in
good agreement with experimental data, with available results from NN partial-wave analyses, and with the
results of calculations with Nijmegen potentials. The tensor polarization t20 in elastic electron–deuteron scat-
tering is analyzed by using some NN interactions. © 2000 MAIK “Nauka/Interperiodica”.
A phenomenological triplet NN potential involving
a tensor component and the one-pion-exchange poten-
tial (OPEP) was proposed in [1]. This potential pro-
vides a good description of phase shifts for energies up
to 500 MeV and of the properties of the deuteron,
including form factors A(q) and B(q) for momentum
transfers q < 6 fm–1. The wave functions calculated with
it for the deuteron and for np scattering have a node at
a distance of about 0.52 fm in the S wave and are node-
less in the D wave. The parameters of the potential
involving a forbidden state were fixed by fitting only
the scattering length, the effective range, and the deu-
teron binding energy, all other properties of the deu-
teron being calculated with the parameters obtained in
this way. It was shown that the potential in question
provides a more accurate description of all the above
features of NN scattering than the Gaussian and the
exponential versions of deep interaction (see [2] and
[3], respectively), which lead to wave functions that
have nodes both in the S and in the D wave.

The approach based on the concept of forbidden
states [4] assumes that the deuteron ground state corre-
sponds to the {42} orbital symmetry consistent with the
orbital-angular-momentum values of L = 0, 2 and that
the first bound state of {6} orbital symmetry is forbid-
den. This means that the triplet interaction potential
involves a low-lying forbidden state and that the deu-
teron ground state corresponds to the second bound
state in this potential. Therefore, the wave function of

1) Petersburg Nuclear Physics Institute, Russian Academy of Sci-
ences, Gatchina, St. Petersburg, 188350 Russia, and George
Washington University, Washington, DC, USA.

  * e-mail: serg@lorton.com
** e-mail: igor@gwis2.circ.gwu.edu
1063-7788/00/6304- $20.00 © 20582
the deuteron ground state must have a node only in the
S wave.

The πNN coupling constant f 2 = 0.0776 determined
in [5] from an analysis of the features of NN scattering
was used in [1] to specify the deep NN potential. At the
same time, other values of this constant are also
known—for example, the values of f 2 = 0.074 and f 2 =
0.076 were obtained in [6] and [7], respectively.

In view of this, it is of interest to establish the depen-
dence of the parameters of deep potentials involving
forbidden states on the πNN coupling constant and to
study the sensitivity of the description of the results
obtained from NN partial-wave analyses to variations in
this coupling constant. Following [1], we use here the
NN local potential 

where the tensor operator S12 has the conventional form
S12 = 3(nσ1)(nσ2) – (σ1σ2) [8] and

In accordance with [1–3], the central and tensor com-
ponents of the OPEP are written, respectively, as

and as

where the function g(r) = 1 – exp(–αr) cuts off the ten-
sor component at small distances. As in [1–3], the aver-
age mass of the pions is set to mπ = 138.03 MeV, which
leads to µ = mπ/"c = 0.6995 fm–1 ("c = 197.327 MeV fm).

V r( ) Vc r( ) Vt r( )S12,+=

Vc r( ) V0exp αr–( )– Voc r( )g r( ),+=

Vt r( ) Vot r( ) g r( )[ ] 20.=

Voc r( ) V1exp µr–( )/ µr( )–=

Vot r( ) V1 1 3/ µr( ) 3/ µr( )2+ +[ ] exp µr–( )/ µr( ),–=
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In our calculations, we also use the value of
"2/mN = 41.47 MeV fm2. The depth of the OPE poten-
tial is related to the πNN coupling constant f 2 as V1 =
mπf 2 [1, 3].

For each f 2 value, the potential parameters were
determined by fitting the effective range r0, the scatter-
ing length a0, and the deuteron binding energy Ed; after
that, the np phase shifts for energies up to 500 MeV,
mixing parameters, and the properties of the deuteron
were calculated with the parameter values found in this
way. The results of recent NN partial-wave analyses are
presented in [6, 9], while the properties of the deuteron
can be found in [5, 6]. Various features of the deuteron
and of np scattering that were calculated here for the
resulting versions of NN potentials are presented in the
table versus f 2 values, along with the potential-param-
eter values. It can be seen that all features under consid-
eration are faithfully reproduced in all cases and that,
with increasing f 2, the quadrupole moment value some-
what decreases, falling between the results obtained in
[5] and in [6]. At f 2 = 0.0776, the parameters of the sin-
glet-interaction potential were found to be α = 3.30 fm–1

and V0 = 3170.72 MeV. The scattering length as and the
effective range r0 calculated with these α and V0 values,
as = – 23.716 fm and r0 = 2.732 fm, are in good agreement
with the results presented in [5], as = –23.715(15) fm and
r0 = 2.73(3) fm.

The power-law exponent of the cutoff function in
the tensor component of the OPEP was set to N = 20 in
order to avoid the emergence of a node in the D wave.
Small values of N = 3–5 do not remove the node [2, 3];
only by increasing N to 15 can we eventually get rid of
a node. As a matter of fact, variations in the power-law
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
exponent of the cutoff function affect only slightly the
results of our calculations, and we can choose this
exponent in the range N . 15–30. A further increase in
this exponent spoils the description of the np phase
shifts, but the general shape of the deuteron wave func-
tion remains virtually intact.

For any version of the NN potential, the deuteron
wave function has a node in the S wave at a distance in
the range 0.50–0.52 fm; as to the D wave, it has no
nodes. These statements are illustrated by the solid
curves in Fig. 1, which were calculated for f 2 = 0.074.

U(R)

0.5

0.3

0.1

–0.1

–0.3
0 4 8 R, fm

3S1

3D1

Fig. 1. Deuteron wave function calculated for various NN
potentials. The meaning of the curves is explained in the
main body of the text.
Properties of the deuteron and of np scattering for various versions of NN potentials
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Ed , MeV Qd , fm2 PD ,
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η =
AS /AD

at , fm rt , fm Rd , fm V1, 
MeV

α, 
fm–1 V0, MeV 

LP1 2.2246 0.271 5.62 0.884(1) 0.0253
(1)

5.417 1.753 1.965 10.076 0.0730 3.68 3495.641

LP2 2.2246 0.274 5.75 0.884(1) 0.0256
(1)

5.417 1.753 1.966 10.214 0.0740 3.72 3524.172

LP3 2.2246 0.279 6.00 0.884(1) 0.0261
(1)

5.419 1.754 1.967 10.490 0.0760 3.80 3575.435

LP4 2.2246 0.285 6.23 0.884(1) 0.0266
(1)

5.417 1.751 1.968 10.710 0.0776 3.90 3652.860

LP5 2.2246 0.290 6.56 0.884(1) 0.0273
(1)

5.419 1.752 1.968 11.080 0.0803 4.05 3744.980

Nijm93
[6]

2.224575
(9)

0.271
(1)

5.67 0.8845
(8)

0.0253
(2)

5.4194
(20)

1.7536
(25)

1.9676(10) – 0.074 – –

CERN 
[5]

2.224579
(9)

 0.2859
(3)

– 0.8802
(20)

0.0271
(4)

5.419
(7)

1.754(8) 1.9560(68) 10.71
(12)

0.0776 – –

Note: The abbreviation LP denotes local potentials.

f πNN
2
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The dashed curves in Fig. 1 represent the wave func-
tions obtained in [2] with a Gaussian potential.

Figures 2 and 3 show the phase shifts and mixing
parameter calculated with the parameter values pre-
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–5
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–45
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(c)
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2

0 200 400 600
Ölab, MeV

3S1

Fig. 2. (a, b) Triplet phase shifts and (c) mixing parameter
for NN scattering.
sented in the table for f 2 = 0.074 (solid curves), the
results of SM97 partial-wave analysis from [9] (dash-
dotted curves), the phase shifts obtained in [6] (dotted
curves), and the phase shifts calculated with the poten-
tial presented in [2] (dashed curves).

The accuracy in describing the triplet phase shifts
for f2 > 0.076—in particular, for f2 in the range 0.0776–
0.0803 [5, 10]—is much poorer. For example, the D-
wave phase shift decreases faster than in the partial-
wave analysis. This is clearly illustrated in Fig. 2b,
where the dashed curve calculated for the Gaussian
potential from [2] at f 2 = 0.07745 shows a much steeper
decrease. The value of 0.074 proposed in [6] for the
πNN coupling constant is preferable for describing
more precisely the D-wave phase shift.

Figure 4 presents the deuteron form factors calcu-
lated with the ground-state wave function for the expo-
nential interaction at f 2 = 0.074 (solid curves) and the

Fig. 3. Singlet phase shifts for NN scattering.
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results obtained with the potential from [2] (dashed
curves), with the Reid potential [8] (dotted curves), and
with the Nijmegen potential Nijm93 [11] (dash-dotted
curves). Experimental data were taken from [12].

The form factors were calculated on the basis of
nonrelativistic expressions from [2, 12]. This is justi-
fied by a comparison drawn in [13] between relativistic
and nonrelativistic computational procedures as imple-
mented with the Paris and Argonne potentials. It turned
out that, in the momentum-transfer range q = 3.5–
4.0 fm–1, there is no significant difference between the
results. Relativistic effects become sizable for higher
momentum transfers of q = 4.0–6.0 fm–1, but they do
not considerably affect the shape of the form factors
and do not play a dominant role. Relativistic correc-
tions were also considered in [14], where it was demon-

Fig. 4. Deuteron form factors calculated for various NN
potentials.
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strated that they do not make a crucial contribution in
the momentum-transfer region extending to 5 or 6 fm–1,
nor do their values exceed the experimental errors.

Figure 5 shows the momentum distributions of
nucleons in the deuteron for f 2 = 0.074 (solid curve);
for a momentum transfer of q ~ 3 fm–1, they are approx-
imately 1.5–2 times less than those for the potential
leading to a node in the D wave [2] (dashed curve). The
dotted and dash-dotted curves in Fig. 5 represent the
results for, respectively, the Reid potential and the
Nijm93 potential [11].

It was shown in [15] that the potentials that were
presented in [2] and which lead to a node in the D wave
yield strongly overestimated cross sections for proton-
induced deuteron disintegration and for backward pd
scattering at high momentum transfers. It is commonly

P2(q)/P2(0)

10–1

10–3

10–5

10–7
0 1 2 3 4 5 q, fm–1

np–d

Fig. 5. Momentum distributions of nucleons in the deuteron.

t20(θe = 70°)

0.2

–0.4

–1.0

–1.6
0 8 16 24 32

q2, fm–2

ed

Fig. 6. Tensor polarization t20 in ed scattering.
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believed that this is due to comparatively large momen-
tum distributions for potentials that lead to two nodes in
the wave function. That the momentum distributions at
momentum transfers of about 3 fm–1 are less for inter-
actions leading to a node only in the S wave can
improve the theoretical description of the cross sections
for elastic pd scattering and deuteron disintegration.

With the potentials obtained here, we also considered
the tensor polarization observables for elastic ed scatter-
ing that are defined as (see, for example, [13, 16])

where A(q) and B(q) are the deuteron form factors; η is
the Coulomb parameter; and Gc , Gq, and Gm are the
structure functions defined in terms of the wave func-
tions in [13, 16].

Figure 6 displays the polarization t20 calculated for
f 2 = 0.074 (solid curve) and the corresponding results
obtained for the potential from [2] (dashed curve), for
the Nijmegen potential Nijm I [11] (dash-dotted curve),
and for the Reid potential [8] (dotted curve). Experi-
mental data were taken from [13, 16]. It can be seen
that, at low momentum transfers, the results obtained
by using the different potentials are virtually coinci-
dent. The difference between the results corresponding
to the potentials involving a repulsive core and those
corresponding to the potentials involving forbidden
states becomes pronounced for q > 15 fm–1. However,
no definitive conclusion in favor of a specific interac-
tion type can be drawn at present because of the
absence of data at high momentum transfers and
because of large experimental uncertainties. But even at
this stage, we can see that the potential from [2] leads
to an underestimated value of t20 for q2 > 20 fm–2. The
potential version with f 2 = 0.074 yields somewhat bet-
ter results, but they also fall significantly short of the
experimental data. For the tensor observables t21 and
t22, available experimental data are scanty, the uncer-
tainties in them being so large that no decision in favor
of one potential type or another can be made.

In summary, it can be seen that all properties of the
np system that have been considered here can be suc-
cessfully described on the basis of a simple two-param-
eter deep potential leading to a node only in the S wave.
For the proposed interaction form, as well as for the
Nijmegen potentials [11], small values of the πNN cou-
pling constant are preferable, because they provide a

dσ/dΩ S dσ/dΩ( )Mott,=

S A q( ) B q( ) θe/2( ),tan
2

+=

A q( ) Gc
2

q( ) 8η2
/9( )Gq

2
q( ) 2η /3( )Gm

2
q( ),+ +=

B q( ) 4η /3( ) 1 η+( )Gm
2

q( ),=

t20 S/ 2( ) 8η /3( )GcGq 8η2
/9( )Gq

2
+{–=

+ η /3( ) 1 2 1 η+( ) θe/2( )tan
2

+[ ]Gm
2 } ,
better description of available experimental data on the
deuteron and on np scattering.
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Abstract—The narrow structure K(1630) is singled out in the effective-mass spectrum of the π+π– system

originating from π–p collisions at 16 GeV/c. This structure is predominantly formed in inelastic collisions
accompanied by high momentum transfers. For events from the K(1630) region, kinematical distributions show
special features that may be associated with spin manifestations and with correlations between the products
arising from the decays of the hypothesized exotic resonance state. Experimental observations of narrow had-
ronic structures formed at high momentum transfers are reviewed. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Experimental data collected with a 2-m hydrogen
bubble chamber at CERN indicate that, in the effective-

mass spectrum of the π+π– system formed in π–p
collisions at 16 GeV/Ò, there is a narrow enhancement
characterized by the mass and width values of M =

1629 ± 7 MeV/Ò2 and Γ =  MeV/Ò2, respectively,
and referred to as K(1630) (see Fig. 1‡, which illus-
trates the data for four-prong events each featuring a

detected  meson). The enhancement is not sensitive
to variations in the bin width of the effective-mass spec-
trum within 50 MeV/Ò2, nor could it be explained by
kinematical reflections from any known resonances [1].

In the same data sample, the effective-mass spectra
of the neutral systems K+π+π–π–, K–π–π+π+, and

π+π+π–π– showed narrow enhancements near
1.63 GeV/Ò2 (see Fig. 1b). Likewise, the effective-mass
spectra of K+π+π– and K+π–π– (exotic system) from
four-prong events each featuring a detected Λ hyperon
proved to be weakly enhanced near the same mass of
1.63 GeV/Ò2 [2] (see Fig. 1c).

In analyzing the K(1630) structure, we were able to
reveal kinematical distinctions between the groups of
events populating the central and sideband regions of

this structure in the effective mass of the π+π– sys-
tem. The origin of these distinctions appears to be sys-
tematic rather than purely statistical. The structure
K(1630) is manifested predominantly in events charac-
terized by high momentum transfers from the primary
π– meson to the secondary one accompanying K(1630)
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production [1, 2], t ' > 0.8 (GeV/Ò)2, where t ' = |t – tmin|,
t being the square of the 4-momentum transfer.

Available data on the formation of Kππ resonances
were obtained primarily by studying quasi-two-body
reactions. That these reactions are characterized by rel-
atively low momentum transfers effectively suppresses
the yield of K(1630) with respect to fragmentation pro-
cesses if this hypothetical state is indeed formed at high
momentum transfers. As a result, the statistics of an
individual experiment prove to be insufficient for
detecting the effect being discussed. The procedure
used in [2] to push down statistical uncertainties that
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0
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Fig. 1. Effective-mass distributions of weighted Kmπ sys-
tems formed in π–p collisions at 16 GeV/c: (a) distribution

of the  system for events each featuring a detected

 meson, (b) distribution of the K+π+π–π– + K–π–π+π+ +

π+π+π–π– systems in events each featuring a detected 

meson, and (c) distribution of the K+π+π– and K+π–π– sys-
tems for events each featuring a detected Λ hyperon (the
contribution of the exotic system K+π–π– is shown by the
dashed histogram).
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are due to enhanced statistics involved combining the
data from different bubble-chamber experiments [3, 4]
for each Kππ channel that were included in the table
presented in [5]. This procedure was justified by the
fact that, in each of them, the mean event weight was
close to unity. The combined effective-mass spectra,
which are illustrated in Fig. 2, show a prominent peak

associated with the known resonance (1430) and a
narrow enhancements near 1.63 GeV/Ò2.

Beyond the realm of bubble-chamber experiments,
the formation of broad resonances in the reaction

K−p  π+π–n at an incident-kaon momentum of
10 GeV/Ò was investigated with the broad-aperture
spectrometer OMEGA at CERN [6]. Again, the effec-

tive-mass spectrum of the π+π– system revealed, in
addition to the peaks associated with the known broad

resonances (1430) and (1780), a narrow
enhancement occurring near 1.63 GeV/Ò2 and reaching
a level of some four standard deviations above the

background. Of all M( π+π–) < 2 GeV/Ò2 events
detected in [6], about 10% are characterized by the
squares of the 4-momentum transfers from the proton
to the neutron, t '(p  n), in excess of 0.8 (GeV/Ò)2.
The electron experiments that were reported in [7] and
which applied the selections t '(p  n) < 0.2 and
0.3 (GeV/Ò)2 to the same reaction at primary K–-meson
momenta of 6 and 11 GeV/Ò [7] failed to detect a peak
near 1.63 GeV/Ò2 in the corresponding effective-mass
spectra.

The emergence of exotic narrow resonances in mul-
tiparticle final states of high-momentum-transfer inter-
actions was predicted theoretically in a number of stud-
ies (see, for example, [8]).

2. SELECTING THE K(1630)  π+π– SIGNAL

For π–p interactions at 16 GeV/Ò that are detected in
the 2-m hydrogen bubble chamber, an estimate of ion-
ization in hydrogen along the tracks of secondaries
indicates that the hypothesized resonance K(1630) 

π+π– is predominantly formed along with a second-
ary π– meson [2]. The transition that reveals the above
resonance structure can be represented as

(1)

where the subscript I labels primary particles;  and
π– are the pions that enter into the resonance structure

being discussed, π+π–; and  (not necessarily
identified) and π2 are the extra charged secondaries;
and X 0 stands for neutral secondaries that escaped
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detection in the bubble chamber. The assumption that
 is of a resonance origin is not supported by the data.

In an inelastic reaction featuring no charge
exchange, a secondary identical to the projectile may
provide a measure of inelasticity [9, 10]. In K(1630)-
formation reactions of the type in (1), such a secondary
( ) is predominantly emitted into the target hemi-
sphere in the collision c.m. frame, picking up a high
momentum from the projectile: t '(   ) >
0.8 (GeV/Ò)2 [1, 2]. In other words, the hypothetical
state K(1630) is predominantly formed in highly inelas-
tic collisions, where the projectile invests the bulk of its
energy in the emission of other secondaries, eventually
appearing in the final state as a soft π– meson. In accor-
dance with this qualitative picture, such processes can
be isolated by using the momentum of a  meson (or
the angle of its deflection from the beam direction) in
the laboratory frame. (Note that this kind of event
selection may prove useful in a dedicated electron
experiment.) Indeed, the resonance K(1630) is predom-
inantly formed in the kinematical region specified by
inequalities

(2)

For the case of these selections, the effective-mass

spectrum of the π+π– system is illustrated in Fig. 3‡.
By the method of least squares, sections of the spec-
trum that were symmetric with respect to the peak were
fitted either to

BG(M) = C(3) + C(1)M + C(2)M2, (3)

or to

BG(M) = (M – Msum)C(3)(C(1)M + C(2)M2), (4)
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Fig. 2. Combined data of different experiments for the effec-
tive masses of various Kππ systems: (a) distribution of the

π+π– system formed in the reaction K–p  π+π–n
at incident-kaon momenta of 3.9–16.0 GeV/c [3] and
(b) distribution of the K0π+π– + K+π–π0 system formed in
the reactions π–p  ΛK0π+π– and π–p  ΛK+π–π0 at
incident momenta of 3.8–6.0 GeV/Ò [4].
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where M is the effective mass of the π+π– system,

Msum stands for the sum of the , π+, and π– masses,
and C(i) are adjustable parameters.

Treating the enhancement in the range 1600–
1680 MeV/Ò2 as a statistical fluctuation and fitting the
mass distribution over the interval 1360–1920 MeV/Ò2,
including the peak region, to the regular form (3), we
arrive at a confidence level (C.L.) of only 0.00004.
Excluding the peak region from the fit, we obtain
C.L. = 0.14 (in Fig. 3‡, the latter fit is depicted by the
solid curve).

Fitting the mass spectrum in question over the entire
interval 1120–2160 MeV/Ò2 to the alternative form (4),
we arrive at C.L. = 0.003. The fit without the peak
region 1600–1680 MeV/Ò2 yields 0.76. The latter fit,
which is depicted by the dotted curve in Fig. 3‡, yields
a signal of 72.5 combinations, the background being
constituted by 96.3 combinations. In the case of the null
hypothesis treating the peak as a statistical fluctuation
[11], its magnitude reaches 7.4 standard deviations.

Since the width of K(1630) is small, the statistical
significance of the peak is not totally immune to chang-
ing the interval of fitting the effective-mass distribu-
tion. In particular, a mass shift of 20 MeV/Ò2 results in
the least significant peak observed in the interval 1580–
1700 MeV/Ò2. Fitting the mass spectrum over the entire
interval 1340–1940 MeV/Ò2 to the form (3), we obtain
C.L. = 0.002 in this case. When the peak region is
excluded from the fit, the result is C.L. = 0.12. Accord-
ing to such estimates, the significance of the effect
amounts to 5.5 standard deviations, the signal-to-back-
ground ratio being 0.5.

For the selections

(5)
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Fig. 3. Effective-mass distributions of weighted π+π–

systems selected according to (‡) (2) and (b) (5). In Fig. 3a,
the solid and the dotted curve represent fits of the relevant
distribution to the forms (3) and (4) over, respectively, the
range 1.36–1.92 GeV/Ò2 and the range 1.12–2.16 GeV/Ò2,
not including the peak region 1.60–1.68 GeV/Ò2.
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in which case at least one of the conditions in (2) is vio-

lated, we obtain the π+π– mass spectrum illustrated
in Fig. 3b. Treating this distribution as a background to
the distribution in Fig. 3‡ and normalizing it by area to
the latter, we find an excess of 8.3 standard deviations
above the background in the enhancement region.

A relatively high multiplicity of secondaries in reac-
tions of the type in (1) implies high inelasticity and high
4-momentum transfers from the primary to the second-
ary particles. The conditions in (2) are aimed at select-
ing those collisions that are characterized by high
momentum transfers from the primary π− meson to the

secondary  meson. The processes in question can be
represented as

(6)

where B+ stands for the baryonic system that is formed

by the nonidentified positively charged secondary  and
the undetected neutral secondaries X0. For the events
populating the peak interval 1600–1680 MeV/c2 of the
mass spectrum in Fig. 3a (Fig. 3b), the mean values of

t '(   ), t '(   ), and t '(pI  

 

B

 

+

 

)

 

are 2.93 

 

±

 

 0.27 (3.64 

 

±

 

 0.30), 3.69 

 

±

 

 0.20 (1.18 

 

±

 

 0.11),
and 3.85 

 

±

 

 0.31 (2.04 

 

±

 

 0.19) (GeV/

 

Ò

 

)

 

2

 

, respectively.

We can see that the values of 

 

〈

 

t

 

'(   )

 

〉

 

 do

not differ significantly, but that the values of 

 

〈

 

t

 

'(  

)

 

〉

 

 and 

 

〈

 

t

 

'(

 

p

 

I

 

  

 

B

 

+

 

)

 

〉

 

 are much greater for the distri-
butions showing the structure in Fig. 
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meson (the energy of the leading one if the multiplicity
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 mesons in the process is greater than unity)—that
is, the inelasticity factor has the meaning of the total-
energy fraction invested in the formation of all second-
aries other than the leading 
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 meson [10]. For the
events populating the peak interval 1600–1680 MeV/
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of the  mass spectrum in Fig. 3
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, the mean
value of 
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 is estimated at 0.955 
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 0.002 if we use the
energy of the  meson accompanying the hypothe-
sized-resonance production and at 0.839 
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 0.010 if we
use the energy of the fastest secondary 
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 meson. Sim-
ilar estimates for the spectrum in Fig. 3
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 are 0.798 
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0.010 and 0.766 

 

±

 

 0.010. We can see that criteria (2)
isolate events characterized by a high degree of inelas-
ticity; for 

 

π–p collisions producing the resonance

K(1630)  , the mean inelasticity factor is
close to 0.955 ± 0.002 [here, the smallness of the
quoted uncertainty reflects the fact that the K distribu-
tion of events selected according to (2) is relatively nar-
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row owing to the softness of ). For the sake of com-
parison, we indicate that, in π–p collisions at 40 GeV/Ò
[10], the mean values of the inelasticity factor for six-,
eight-, ten-, and twelve-prong events were estimated at
0.76 ± 0.01, 0.77 ± 0.01, 0.81 ± 0.02, and 0.80 ± 0.02,
respectively.

3. POSSIBLE SPIN MANIFESTATIONS

For the hypothesis of the π+π– resonance, we
analyzed the distribution of events with respect to the
cosine of the angle formed by the normal to the plane
of the decay of the resonance (in its rest frame) and the
direction of its motion in the π–p c.m. frame
[cosθ( , )]. For a strongly decaying state,

such distributions can be described by the sum of Leg-
endre polynomials of even degrees not exceeding 2J,
where J is the resonance spin [12]. For zero spin, the
distribution in question must be isotropic.

Figure 4 shows the cosθ( , ) distribu-

tions for events that were selected according to the cri-
teria in (2) and which populate the peak region (1600–
1680 MeV/Ò2) and various sideband regions of the
effective-mass spectrum in Fig. 3‡. The distribution of
peak events in Fig. 4c differs from the corresponding
distributions of events from the sidebands (Figs. 4‡,
4b): the distribution for the peak region is not isotro-
pic—the hypothesis of isotropy leads to C.L. = 0.01—
while the distributions for the sidebands 1520–1600,
1680–1760, 1440–1600, and 1680–1840 MeV/Ò2 are
nearly flat, fits to them for the hypothesis of isotropy
yielding high confidence levels of 0.45, 0.34, 0.58, and
0.65, respectively. That the peak events are not uni-
formly distributed suggests the formation of a reso-
nance with a nonzero spin. The background distribution
either can be assumed to be uniform or can be estimated
from the data as a weighted mean of the distributions
for the two 80-MeV/Ò2-wide sidebands between 1520
and 1600 MeV/Ò2 and between 1680 and 1760 MeV/Ò2

(see the dashed histogram in Fig. 4c for the latter esti-
mate). The background estimated by either method is
then subtracted from the central distribution (see Fig. 4d),
and the difference is fitted to the sum of Legendre poly-
nomials of maximum degrees 2J = 0, 2, 4, and 6. For
the former (latter) estimate of the background, these fits
are characterized by confidence levels of 0.01 (0.03),
0.01 (0.20), 0.42 (0.48), and 0.73 (0.29), respectively.

The above distribution of events from the peak
region of the effective-mass spectrum that is plotted in
Fig. 3‡ and which corresponds to the selections in (2)
differs from the analogous distribution of events from
the peak region of the effective-mass spectrum in Fig.
3b. The latter distribution is more isotropic (under the
assumption of isotropy, we obtain C.L. = 0.13). The
distributions in question for the peak regions of the
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mass spectra in Figs. 3‡ and 3b are compared in Fig. 4e
(the latter, shown by the dashed histogram, was normal-
ized to 96.3 events—see Section 2). Again, the result
(Fig. 4f) obtained by subtracting the background from
the central distribution was fitted to the sum of Leg-
endre polynomials of maximum degrees 2J = 0, 2, 4,
and 6, whereby we arrived at confidence levels of 0.04,
0.40, 0.79, and 0.59, respectively.

Thus, the above analysis of the angular distributions
strongly suggests that the resonance state K(1630) pos-
sesses a nonzero spin.
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Fig. 4. Distributions of events from the effective-mass spec-
trum in Fig. 3a with respect to the cosine of the angle
between the normal to the plane of hypothesized-resonance
decay in the resonance rest frame and the direction of reso-
nance motion in the π–p c.m. frame: (a) distributions for the
sidebands 1.44–1.60 and 1.52–1.60 GeV/Ò2, (b) distribu-
tions for the sidebands 1.68–1.84 and 1.68–1.76 GeV/Ò2,
(c) distributions for the peak region 1.60–1.68 GeV/Ò2 (the
dashed histogram represents the weighted mean distribution
for events from the sidebands 1.52–1.60 and 1.68–
1.76 GeV/Ò2), (d) difference of the distributions shown in
Fig. 4c, (e) distribution for events from the interval 1.60–
1.68 GeV/Ò2 of the spectrum in Fig. 3a (the dashed histo-
gram represents the distribution obtained for events from the
interval 1.60–1.68 GeV/Ò2 of the spectrum in Fig. 3b and
normalized to the number of background combinations in
the region of the hypothesized resonance—see main body of
the text), (f) difference of the distributions shown in Fig. 4e.
Also displayed in this figure (solid curves) are fits to some
distributions in terms of Legendre polynomials of maximal
degrees six (Fig. 4c) and four (Figs. 4d, 4f).
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4. CORRELATIONS BETWEEN THE DECAY 
PRODUCTS

In contrast to known broad resonances, the

K(1630)  π+π– candidate events show no reso-
nance substructures in the two-body subsystems ππ and
Kπ. This, together with the extremely small width of
K(1630) in relation to known Kππ resonances and
unusual properties of the production processes, is in
line with some theoretical predictions for multiquark
states. By way of example, we indicate that, according
to the color-cluster model [13], the small width (large
lifetime) of a multiquark system is due to a centrifugal
barrier between two color quark clusters bound
together by color exchanges. (However, the analyses in
[13] did not pave ways to seek experimentally internal
clustering in such states and possibilities for breaking
them down into two constituent clusters.)

We performed searches for angular correlations
between the products of K(1630) decays. For events

from the peak region of the π+π– mass spectrum in
Fig. 3‡, we analyzed the angular variable

(7)

{for events not subjected to the selections in (2), a sim-
ilar analysis was performed in [1]}, where

θT( ) is the angle between the transverse

momenta of the  system and the  meson,

θT( ) is the angle between the transverse

momenta of the  system and the  meson, and

 and  are the two charged pions from the
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Fig. 5. Asymmetry A = (B – F)/(B + F) (see main body of

the text) as a function of the effective mass of the π+π–

system for events contributing to the mass spectra in Figs.
(a) 3a and (b) 3b. Dotted curves represent fits of the distri-
butions to the regular form (3) over intervals not including
the peak region 1.60–1.68 GeV/Ò2. The value of A for the
peak region is also shown along with its values for the side-
band regions of the same size (plots on the right of Figs. 5a
and 5b).
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 combination considered in the mass spec-
trum. In contrast to what is observed in the sideband
regions, events from the peak region of the mass spec-
trum in Fig. 3a are characterized by negative values of
the difference δθ

 

T

 

. Yet another variable that is sensitive to
grouping the decay products into two different parts is
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Either excluding or including the peak region in fitting
the distribution in Fig. 5
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 to the regular form (3), we
obtained 
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 = 4.13 at C.L. = 0.53 or 
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, respectively. Similar fits of the distribu-
tion in Fig. 5
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 yielded 
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 = 1.02 at C.L. = 0.96 for
the case where the peak region is excluded and 

 

χ

 

2

 

(6)

 

 =
2.97 at C.L. = 0.81 for the case where the peak region
is included. From Fig. 5

 

a

 

, we can see that events popu-
lating the peak region show a much greater asymmetry
than the events populating the sideband regions of the
same width: the deviation is characterized by the value
of 

 

χ

 

2

 

(1) = 16.83 at C.L. = 4 × 10–5. For the distribution
in Fig. 5b, we have χ2(1) = 1.39 at C.L. = 0.24.

Kinematically, the observed anomalous behavior of
the asymmetry A (Fig. 5‡) is not correlated with the
enhancement in the mass spectrum shown in Fig. 3‡;
therefore, it provides an extra means for isolating the
effect. Conceivably, the feature that we revealed in the
distributions of the invariant quantities δθT and δMT
[correlation between the color-singlet products of
K(1630) decay] may reflect the underlying dynamics of
color clusters that, according to [13], form exotic states.
Probing the spatial separation of two color clusters will
require further theoretical and experimental studies.

5. CONCLUSION

The effective-mass spectrum of the  system
formed in π–p collisions at 16 GeV/Ò shows a narrow
resonance that occurs near 1.63 GeV/c2 and which is
referred to as K(1630). This state originates predomi-
nantly from inelastic collisions characterized by high

KS
0π1

+ π1
–,

δMT MT KS
0π1

–( ) MT π1
+( )+[ ]=

– MT KS
0π1

+( ) MT π1
–( )+[ ] ,

pT
2

KS
0π1

+ π1
–,

KS
0π1

+ π1
–,

KS
0π+π–
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momentum transfers. For events from the peak region,
we have revealed anomalies in kinematical distribu-
tions. These anomalies are probably associated with
manifestations of the spin of the hypothesized exotic
resonance and of correlations between its decay pro-
ducts.

Previous searches for exotic resonances in the Kππ
system were largely performed in peripheral collisions
featuring low momentum transfers. However, more
favorable conditions for the formation of such states
may be offered by high momentum transfers that are
expected to excite the internal color degrees of freedom
more efficiently [8]. Indeed, the formation of two nar-
row baryonic resonances N(3520) and Σ(3170) (possi-
ble candidates for exotic states) [14], whose decay
products also feature strange particles, were observed
in the region of high momentum transfers as well.

The N(3520) state, which reveals itself as an

enhancement, with width Γ = MeV/Ò2, in the mass

spectrum of the K+pπ–π– system, is largely formed
in quasi-two-body reactions [15]. That the enhance-
ment is not a statistical fluctuation is supported by spe-
cific kinematical features of candidate events. In the
π−p c.m. frame, the majority (ten standard deviations) of
the resonance combinations in question travel in the
hemisphere of the primary π– meson, the mean square of

the momentum transfer being 〈t '(pI  K+pπ–π–)〉 =
6.3 ± 0.6 (GeV/Ò)2.

The formation of the Σ(3170) state, with Γ < 20 MeV/Ò2,
was observed in quasi-two-body K–p interactions at 6.5
and 8.25 GeV/Ò [16]. This baryonic resonance decays
to final states that, apart from several pions, include

either ΣK  + (≥)2π, or ΛK  + (≥)2π, or ΞK + (≥)3π
[16]. In the K–p collision frame, the resonance system
being discussed is predominantly emitted into the
hemisphere of K–, picking up a high momentum trans-
fer from the primary proton.

The formation of the exotic states K(1630),
N(3520), and Σ(3170) may be best investigated in had-
ronic collisions occurring at relatively low energies and

involving high 4-momentum transfers (t > ). A high
momentum transfer implies that, in the target rest
frame, the secondaries are emitted at a large angle with
respect to the projectile momentum [2, 15]. Therefore,
the bulk of the signal can be lost in a spectrometer hav-
ing a limited angular acceptance for secondaries. In
view of this, the specific kinematics of the signal dic-
tates either the 4π geometry of the detector or a spe-
cially designed trigger.
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Abstract—The scattering of a pion on a pion in the energy region  ≤ 1 GeV is successfully described on the
basis of pole diagrams featuring spinless, spin-1, and spin-2 intermediate particles, provided that the properties
of these particles and of their interactions are deduced from the basic principles of QCD and from the require-
ments of chiral theory. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Quantum chromodynamics (QCD), which is used to
describe high-energy hadronic processes, loses its pre-
dictive potential upon going over to low energies. This
is because the coupling constant increases fast there,
invalidating perturbation theory. In view of this, low-
energy processes are described by means of effective
Lagrangians that reflect more or less the properties of
the fundamental QCD interaction. Another way is to
employ an effective Lagrangian including all possible
covariant combinations of pseudoscalar fields and their
derivatives up to a certain order pn in the meson
momentum. The latter approach is realized in chiral
perturbation theory (ChPT). In the case of mesons, the
relevant Lagrangian involves ten terms in the p4

approximation [1], the coefficients of these terms being
determined predominantly from a comparison of theo-
retical predictions with experimental data.

This approach is quite general, but it is not free from
some substantial disadvantages:

(i) It does not take fully into account the nature of
physical phenomena leading to specific values for the
coefficients of various meson-matrix combinations.

(ii) Chiral perturbation theory can be employed to
evaluate the amplitudes only near the threshold. Its

application in the energy region  > mK is not quite
correct because resonances emerging there cannot be
described by the function p2 + ap4 and because correc-
tions of higher orders in p2 cannot be evaluated in prac-
tice. To illustrate this statement, it is sufficient to recall
that, even in the p6 order, the effective Lagrangian
includes 111 combinations of meson matrices not fea-
turing εµνστ and 32 terms involving this antisymmetric
tensor, all the coefficients being unknown [2].

(iii) Chiral perturbation theory, which is based on a
nonlinear realization of chiral symmetry, is incapable
of determining the features of scalar partners of the
mesons from the pseudoscalar nonet, thus providing no
way to interpret the features of the existing scalar reso-
nances.

s
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In an attempt at advancing toward higher energies,
it was found in [3, 4] that the theory that employs only
the p2 part of the effective Lagrangian and which elicits
terms of order p4 from the expansion of the propagators
of resonances added to the theory leads to a set of con-
stants that is virtually identical to that which is pro-
vided by ChPT. In this case, however, the use of a non-
linear realization of chiral symmetry leads to terms of
order p2 that are not associated with any particular
internal structure of interaction. In view of this, it is
impossible to specify the function whose expansion
leads to terms of order p2, and the underlying physics
cannot therefore be understood conclusively.

Moreover, some other problems were not solved in
[4]. In particular, the authors of [4] could not explain
why the gρ value as determined from data on the decay
process ρ  ππ differed from that extracted from
data on the charged-pion form factor, nor were they
able to reproduce the experimental behavior of the

phase shift (s) for  > 0.85 GeV and the experi-

mental behavior of the phase shift (s) for  > mK.

In my opinion, there were two reasons behind these
failures: (i) The approach to the problem of specifying
the form of interaction between the resonances under
study and the pions was oversimplified in [4]. (ii) The
relations established in chiral theory between pseudos-
calar and scalar particles were not taken into account
there.

In many studies, the behavior of phase shifts is ana-
lyzed in terms of some resonance and a repulsive core
that is postulated in an ad hoc manner and which
ensures a negative background (see [5] and references
therein). It will become clear from the following, how-
ever, that the negative background is due to the
exchanges of scalar sigma particles and rho mesons in
the t and u reaction channels. For this reason, the back-
ground contribution cannot be treated as an adjustable
function in fitting a theoretical description to experi-
mental data.

δ0
0 s

δ0
2 s
000 MAIK “Nauka/Interperiodica”
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The above list of unresolved problems and problems
solved unsatisfactorily, which includes, above all, the
problem of extrapolating chiral theory from the near-
threshold region, where the use of ChPT is quite legiti-
mate, to the resonance region gave me an incentive to
revising all basic ideas and conclusions of the theory of
low-energy pion–pion scattering.

The result of the present analysis is that the phase

shifts , , , , and  in the energy range from the

threshold to  ≤ 1 GeV can be described quite satis-
factorily within a theory that takes into account only
exchanges of intermediate low-lying spinless, spin-1,
and spin-2 resonances, provided that the properties of
the resonances and of their interactions are compatible
with QCD and with the principles underlying the con-
struction of chiral theory.

2. SPECIFYING THE FORM OF LOW-ENERGY 
THEORY ADEQUATELY REFLECTING

THE PROPERTIES OF QCD
In the chiral-symmetry limit (that is, at mq = 0), the

QCD Lagrangian

(1)

is invariant under independent transformations of the
left- and the right-handed quarks:

(2)

Here,  are independent 3 × 3 matrices in flavor
space,

(3)

 being c numbers.

Within QCD, the construction t aqL and its Her-
mitian conjugate correspond to the simplest spinless
states. In constructing a Lagrangian satisfying the prin-
ciples of QCD, we must therefore invoke a non-self-
conjugate matrix featuring opposite parity fields,

(4)

where σa and πa are, respectively, the scalar and the
pseudoscalar members of the meson-field nonet.
According to (2), the transformation properties of the
matrix U under independent chiral rotations of the left-
and the right-handed quarks are given by

(5)

δ0
0 δ0

2 δ1
1 δ2

0 δ2
2

s

LQCD 1
4
---Gµν

a Gµν
a–=

+ q iγµ ∂µ i
g

2
-------Gµ

a ta+ 
  mq– q

q

∑

qL qL iε̂L 2⁄–( ),exp

qR qR iε̂R 2⁄–( ).exp

ε̂L R,

ε̂L R, εL R,
a ta, t0 1

3
-------1, t1–8 1

2
-------λ1–8,= = =

εL R,
a

qR

Û σ̂ iπ̂,+=

Û iε̂R 2⁄( )exp Û iε̂L 2⁄–( ).exp
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This transformation converts scalars into pseudosca-
lars, and vice versa:

(6)

Since the transformations in (2) do not change the
number of quarks, σa and πa appear to be the chiral
partners constructed from the same number of quarks.
Consequently, QCD dictates the presence of diquark
scalar states. Formally, however, we can eliminate sca-
lar mesons from our consideration by choosing the
matrix U in the form

(7)

which corresponds to the nonlinear realization of chiral
symmetry and which means that the chiral partner to
the pseudoscalar field π is a combination of even pow-
ers of the same field. Since two pions represent a four-
quark system, the above choice results in the loss of
physical states corresponding to a scalar combination
of two quarks; hence, we can no longer, in this case,
treat observable scalar resonances as chiral partners to
pseudoscalar mesons.

Actually, the choice of the form (7) for the matrix U
is equivalent to the assumption that the masses of the
scalar mesons are either infinite or so great that the cor-
responding quantum excitations are absent at low ener-
gies. From what follows, it will be seen that a transition
to the limit of an infinite mass mσ is not forbidden from
a formal mathematical point of view, but this transition
leads to unphysical values for the parameters of the the-
ory that control mσ.

Thus, the use of a nonlinear realization of chiral
symmetry—it should be emphasized that this simplifies
considerably the calculation of amplitudes in the lead-
ing order in p2—involves rejecting the principle of
detailed conformity between theory and nature, in
which case some part of information contained in QCD
is lost.

According to QCD, the Lagrangian of spinless
fields must be constructed by employing the matrix U,
and this will therefore be the sigma-model Lagrangian.

For spin-1 fields, the principle of detailed confor-
mity between the properties of QCD objects and the
real world implies that such fields must be associated

with the quark combination σµνt aqL and its con-

jugate rather than with the combinations γµt aqL and

γµt aqR, as was often assumed. This circumstance
affects substantially the character of vector-meson
interaction with the system of two spinless mesons.

σ̂ σ̂ i

2
------- σ̂ ε̂V,[ ]––

1

2
------- π̂ ε̂A,{ } +,+

π̂ π̂ i

2
------- π̂ ε̂V,[ ]––

1

2
------- σ̂ ε̂A,{ } +.–

Û
Fπ

2
------- i 2π̂ Fπ⁄( ),exp=

xν∂
∂

qR

qL

qR
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In order to describe ππ scattering up to  ≤ 1 GeV,
it is also necessary to take into account effects associ-
ated with the scalar resonance f0(980), which does not
fit in the simple  two-quark picture, and those asso-
ciated with the spin-2 resonance f2(1270). These objects
will be included in our consideration, and the form of
their coupling to the pions is matched with the require-
ments of chiral theory.

We now return, however, to the scalar mesons of
chiral theory.

3. SPINLESS FIELDS
AND THEIR INTERACTIONS

The simplest Lagrangian of the system of 0± fields
has the form

(8)

where the first three terms possess, in just the same way
as the Lagrangian in (1) at mq = 0 does, left–right global
symmetry—that is, they are invariant under the trans-
formations in (5). The parameter A induces a spontane-
ous breakdown of symmetry via a nonzero vacuum
expectation value  in QCD. The matrix  ~
diag{mu, md, ms} secures a hard breakdown of chiral
symmetry. The last term in (8) solves the U(1) problem
in the pseudoscalar-meson sector by shifting the mass
of the isosinglet π0 meson with respect to the masses of
the π1–8 mesons belonging to the octet. This shift is due
to the mixing of the quark state i γ5t0q with the pseu-

doscalar gluonium state  [6]. A similar

effect occurs in the case of the quark state t 0q, whose

mixing with the scalar gluonium state 

shifts the mass of the isosinglet scalar meson σ0 with
respect to the masses of the scalar mesons σ1–8 belong-
ing to the octet. In the case of processes involving no
more than four pseudoscalar mesons, this effect is taken
into account through that term in Lagrangian (8) which
is proportional to ξ.

From the analysis presented in [7], it follows that,
for processes featuring an arbitrary number of pseudo-
scalar mesons, the third term in (8) must be replaced by

(9)

s

qq
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1
2
---tr ∂µU∂µU†{ } ctr UU† A2t0
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q
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π
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q

α s

π
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a Gµν
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2 UU†
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 
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.–
Since 0+ and 0– mesons enter into the matrix U on an
equal footing, the masses of the octet 0± mesons and
their coupling constants are expressed in terms of the
same parameters c, A, and . This implies that they can
be related to the parameters of the 0– mesons by simple
equations. For example, we have (see [8])

(10)

where µ2 ≡  and

(11)

FK and Fπ being given by

(12)

From (10) and (11), it follows that, although a tran-
sition to the limit mσ  ∞ is admissible in the theory
from the purely mathematical standpoint, this would

correspond either to (  – µ2)  ∞ or to FK  Fπ.
This possibility is not realized, and the masses of the
octet scalar mesons are on the order of 1 GeV, enabling
us to identify these mesons with the scalar resonances
in the same mass region.

For the isosinglet scalar mesons, the mass formulas
are more complicated than those in (10), since σ0 is
mixed with the scalar gluonium state and since σ0 is
mixed with σ8 owing to the breakdown of SU(3) sym-
metry. The expressions for the masses of the physical
isoscalar–scalar mesons

(13)

can be found in [8, 9].

In just the same way as the parameter δ , the
parameter ξ is not specified in the theory; it can be
determined by fitting theoretical predictions to experi-
mental data.

Since the widths of scalar mesons are on the same
order of magnitude as their masses and since the inter-
pretation of data for wide resonances is rather intricate,
comparatively reliable information on the mass of the
lightest scalar meson is extracted from data on the
decay K+  π+π–e+ν [9]. The analysis of the relevant
experimental results yielded

(14)

m̂

mσπ

2 µ2– mK
2 µ2–( ) R 1–( ) 2R 1–( )[ ] 1– ,=

mσK

2 mK
2– mK
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mπ
2

R
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Fπ
------,≡

0 qγµγ5
λa

2
-----q πb k( )

=  iδab Fπkµ, a 1 2 3, ,=

  F K k µ , a 4 5 6 7 , , , =  
 

 
.

mK
2

ση' σ0 θS σ8 θS,sin+cos=

ση σ– 0 θS σ8 θScos+sin=

mP
2

mση'
650 20  MeV . ±  =
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Within three standard deviations, this value agrees with
that found in the present study from an analysis of the
phase shifts for ππ scattering as functions of energy in

the region  ≤ 1 GeV:

(15)

The exchange of scalar mesons σ1 ≡  and σ2 ≡
ση, in addition to the contact interaction π4(x) appear-
ing in Lagrangian (8), leads to the amplitude

(16)

where

(17)

(18)

By virtue of the properties of chiral theory and
according to the results of the soft-pion approximation,
the quantities G1 and G2 are related by the equation

(19)

Although Gj and  depend on the parameter ξ, rela-
tion (19) holds for any value of this parameter. In the
leading order in p2, equation (16) then yields, irrespec-
tive of the masses of intermediate scalar sigma mesons,
the well-known result [10] of the current algebra and of
the soft-pion approximation:

(20)

That the near-threshold amplitude is associated with
sigma-meson exchanges enables us to trace the evolu-
tion of Tσ with increasing s. In doing this, it is necessary
to take into account not only the dependence fixed by
(16) but also the fact that the quantities G1, 2 satisfy
relation (19) only in the soft-pion approximation—that
is, for s, t, u  µ2. A more general form of Tσ violat-

s
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ing neither the properties of chiral theory nor the
requirements of crossing symmetry is then given by

 

¶ (21)

 

This form actually considers that the 

 

σππ

 

 vertex may
involve the form factor. With the exception of the con-
dition

 

(22)

 

and of the fact that the form factor shows identical
functional dependences on 

 

s

 

, 
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,

 

 and 

 

u

 

, our theory can
say nothing about the form factor. In our analysis, we
employ the form factor given by
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chiral partners to the 
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 and 
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0

 

(980)

 

 plays an important role in the region  <
1 GeV. The features of this resonance do not fit in the
simple  pattern. According to chiral theory, it inter-
acts with the 

 

π 

 

mesons through coupling to derivatives:

 

(24)

 

The contribution of this resonance to the amplitude
of 

 

ππ

 

 scattering is given by

 

(25)

 

where

 

(26)

 

In (25), we disregarded the possible additional
dependence of  on momentum transfers, assuming

that this dependence is very weak for  < 1 GeV.

4. SPIN-1 FIELDS AND THEIR INTERACTIONS

A conventional way to include spin-1 fields in chiral
theory is to supplement the Lagrangian in (8) with the
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Lagrangian of left- and right-handed Yang–Mills
fields [11],

(27)

and to replace the derivative ∂µ in (8) by the covariant
derivative

(28)

In the above formulas, we have introduced the notation

(29)

(30)

Within this approach, the Hermitian fields  and

 are associated with the Hermitian quark currents

(31)

However, this procedure does not define correctly
the correspondence between the features of physical
spin-1 mesons and the quark structures associated with
them. This becomes obvious when we consider that
spin-1 fields—both vector ones Vµ and axial-vector
ones Aµ—must satisfy the transversality condition

(32)

which eliminates the spinless component from these
fields. For the vector combination of the quark currents
(31), this condition is not satisfied at a = 4, 5, 6, and 7;
for the axial-vector combination, it is satisfied at no
value of a. Quark constructions that satisfy the condi-
tion in (32) are given by

(33)

This suggests that physical fields associated with vector
and axial-vector mesons are determined by the diver-
gences of tensor and pseudotensor quark currents,
respectively. The assumption that spin-1 fields could be
associated with the divergence of tensor currents was
put forth previously in [12, 14]. However, our statement
in (33) follows from different considerations—namely,
from the requirement of one-to-one correspondence
between the properties of physical objects and quark–
gluon constructions. Thus, our theory leads to the rela-
tion

(34)
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1
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∂
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∂
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which possesses a remarkable feature: the ρππ vertex
vanishes at zero value of the squared rho-meson
momentum. Indeed, relation (34), used in conjunction
with the reduction technique, means that

The most general form of the integral of the relevant
matrix element is

where P = p1 + p2 and q = p1 – p2. Thus, we have

(35)

In the absence of massless hadrons, the function
F(q2) does not feature a pole at q2 = 0; physically, this
is equivalent to a shift of the rho meson with respect to
the pion for q2  0. This circumstance can be taken
into account by choosing a phenomenological
Lagrangian of interaction between spin-1 fields and the
system of two spinless mesons in the form

(36)

where

(37)

while  and  are antisymmetric tensors of the
vector and the axial-vector field, respectively.

In the case of Lagrangian (36), the use of the propa-
gators of the antisymmetric tensors Vµν and Aµν,

(38)

from the outset provides a convenient framework for an
analysis of processes featuring intermediate spin-1 par-
ticles.

ρµ
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This approach to taking into account the contribu-
tion of vector exchange to ππ scattering was employed
in [1, 3, 4]. We will follow it here.

For the amplitude caused by rho-meson exchange,
the use of relations (35), (36), and (38) yields

(39)

where s, t, and u are specified by relations (17) and

(40)

If the conditions g(s) = g(t) = g(u) = gρ = const are sat-
isfied, the requirements of chiral symmetry lead to the
validity of expressions of the type (39) for Tρ both in
the approach based on the theory specified by
Lagrangian (27) and in the approach where vector
fields are included in the theory according to (28) [15,
16]. But for processes where it is not the pion current
but some other source (for example, weak current) that
is responsible for ρ-meson production, the presence of
the additional factor q2F(q2) in the matrix element (35)
leads to results that are different from those predicted in
the standard approach.

Moreover, our result in (39) for the amplitude of ππ
scattering differs drastically from those obtained in [1,
3, 4], where no account was taken of the fact that,
according to (35), g(s) ≠ g(t) ≠ g(u). Although the
explicit form of the x = s, t, u dependence of g is not
specified by our theory, phenomenological consider-
ations suggest that

(41)

The result in (41) solves a number of problems:
(i) In accordance with the constraints imposed by

unitarity in going over to high energies, the near-thresh-
old growth of the ππ-scattering amplitude is mode-
rated.

(ii) The contradiction (indicated in [1, 4]) between
the gρ value determined from data of the decay ρ 
ππ and that deduced from the electromagnetic form
factor for the charged pion is removed.

(iii) For the vector form factor fπ(s) of the pion at s =

, the present result—in contrast to the prediction of

Tρ πk p1'( )πl p2'( ) πi p1( )πj p2( ) ρ=
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------------------+

+ δilδjk g2 s( )
u t–( )s

Mρ
2 s–

------------------ g2 t( )
u s–( )t

Mρ
2 t–

------------------+ 
 ,

g2 s Mρ
2=( ) gρ

2≡ 48πΓ ρ 2π( )

Mρ 1 4µ2 Mρ
2⁄–( )

3/2
-----------------------------------------------.=

g x( ) gρ 0.7855 x

2Mρ
2

-----------
x

2Mρ
2

----------- 
 

2

–
 
 
 

.exp=

Mρ
2
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the vector-dominance model (VDM)—yields a value
close to that measured experimentally.

(iv) In contrast to what is obtained in [4], the s

dependence obtained here for the phase shift  agrees

with experimental data for  > 0.5 GeV.

The statement in (i) immediately follows from the
form of g(x). The statement in (ii) resolves the problem
of theoretically reproducing the well-known experi-
mental result according to which the root-mean-square
charge radius of the π± mesons virtually coincides with
that predicted on the basis of the VDM. Within our the-
ory, the vector form factor for the pion is given by the
expression

(42)

In order to derive it, we made use of the relation

(43)

Within the VDM, we have

(44)

The condition

(45)

is equivalent to the requirement

(46)

The second equality in (46) corresponds to the choice
of Mρ = 770 MeV and to the value of Fρ = 154 MeV,
which was fitted to the ρ  e+e– decay width. For Γρ,
we used the value of 153 MeV. All the above values are
within 1σ around the world-average experimental val-
ues. The relation (40) yields

(47)

which is in accord with (41).

To demonstrate that the statement in (iii) is correct,
we indicate that

(48)

which is much closer to the experimental value of 43.95 ±
1.78 from [17] than the value of 26.35 predicted by the
VDM.

The role of t and u dependences of g in calculating

the phase shift  will be clarified in Section 7.
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5. SPIN-2 FIELDS AND THEIR INTERACTIONS

The gauge-invariant form of the vertex describing
the interaction of a spin-2 particle with two π mesons
(see, for example, [18]) is

(49)

However, this vertex and the amplitude of ππ scattering
via a tensor meson do not satisfy Adler’s self-consis-
tency condition [19], according to which the amplitude
must vanish when one of the meson 4-momenta is zero.
In order to satisfy this condition, the ϕππ vertex must
have the form

.

In conjunction with the requirement of gauge invari-
ance and the requirement that there be no pole at q2 = 0,
this yields

(50)

where gT(q2) is a slowly varying function of q2; in the

limit of q2 = , it becomes

(51)

The form in (50) means that, within chiral theory, the
ϕππ vertex is of order p4 and not of order p2, as might
have been expected. Recall that a similar situation
occurs in the case of the ρππ vertex—within chiral the-
ory, it appeared to be of order p3 instead of p1 expected
intuitively.

The tensor-meson propagator has the form [20]

(52)

where

(53)

Tensor-meson exchange is responsible for the ππ-
scattering amplitude of the form
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(54)

In the ensuing analysis, we set gT (x) to

(55)

6. FORMALISM FOR DESCRIBING
ππ SCATTERING

6.1. Partial-Wave Expansion

Each amplitude associated with resonance exchange
is given by

(56)

where the subscript n = σ, f0, ρ, and ϕ specifies a rele-
vant resonance. The crossing symmetry of the ampli-
tude implies that Bn and Cn are obtained from An by
means of the substitutions (s  t, t  s) and (s 
u, u  s), respectively.

For the case of a fixed total isospin of the system of
initial (final) pions, the expressions for the amplitudes
are given by [21]

(57)
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The amplitudes for various charged channels are
expressed in terms of T (a) as

(60)
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The decomposition of the isotopic amplitudes into
amplitudes corresponding to fixed values of the orbital
angular momentum is given by

(61)

where θ is the scattering angle in the c.m. frame of pri-
mary mesons. It follows from (61) that the partial-wave

amplitude  is

(62)

The near-threshold behavior of the partial-wave
amplitudes is described by the expansion

(63)

where

(64)

and where the quantities  are referred to as scattering
lengths. However, phase shifts as functions of energy
are of greater interest than the low-energy parameters

 and , because the former control the scattering

cross sections. Since the partial-wave amplitudes 
grow with energy, unitarization of the amplitudes is an
important element of scattering theory. We address this
point immediately below.

6.2. Unitarization Procedure and Phase Shifts

In calculating phase shifts, it is necessary that oper-

ations with the amplitudes (s) not violate the unitarity
of the S matrix. In other words, we must ensure fulfill-
ment of the condition SS† = 1 for the S matrix con-
structed from the transformed amplitudes.

If there are a number of resonances at  = ,

, … in a channel specified by fixed values of I and l
and if, in addition, there is potential scattering, the
expression for the S matrix in the region of elasticity
can be represented in the form

(65)

where
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Here, the subscript bg labels the potential-scattering
amplitude, while

(67)

From (65) and (66), it immediately follows that the res-
onance phase shifts are given by

(68)

The same formula, featuring, however,  is valid for
the potential-scattering phase shift. Obviously, the total
phase shift in a channel characterized by fixed I and l is
given by

(69)

In our theory, the phase shift  for potential scat-
tering is controlled by the diagrams involving the
exchanges of spinless, spin-1, and spin-2 particles in
the t and u channels. This very contribution determines
that part of the amplitude which is referred to as a
repulsive core.

In a conventional analysis of experimental data (see,
for example, [5]), such a core is introduced as an adjust-
able function. In our case, however, this core is deter-
mined by formulas (21), (25), (39), and (54), which
admit only variations in vertex form factors and in
some constants (the masses of the scalar mesons σ and
their coupling constants, as well as the constant gf for
the f meson).

7. RESULTS FOR PHASE SHIFTS
In this section, we present the results for the S-, P-,

and D-wave phase shifts calculated for a specific set of
the parameters of our theory. This set provides a satis-

factory description of the functions , , ,

, and  in the energy range from the threshold

for the generation of two pions to  = 1 GeV.1) In the
present article, we restrict our consideration to the
above energy values in order to avoid complications
associated with a need for taking into account the pro-
duction of  systems.

The results for the phase shifts are presented in
Figs. 1–4. Listed below are the parameter sets used to
obtain these results. For the scalar sigma mesons, we set

(70)

1)Searches for different parameter sets that could provide a better
description of the entire body of experimental data on ππ scatter-
ing would be rather interesting, but this requires a cooperation
with experimentalists since those features of interactions that are
dictated by chiral theory were often disregarded in previous data
analyses.
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Fig. 1. Phase shift  for (a)  ≤ 0.7 GeV and (b) 0.7 GeV ≤  ≤ 1.1 GeV. The curve represents the predictions of the present

theory with the parameters specified in Sections 4 and 7. The compilation of experimental data was borrowed from [4].

δ0
0

s( ) s s

0.4 0.6
         

                   
which corresponds to the mixing angle of θS = 19.8° in
(13). For the form factor (23), we used the value of k =
0.5/(GeV)2. For the isosinglet scalar resonance f0(980)

having a width in the range  = 40–100 MeV [25],

we chose the value of  = 7.62, which corresponds to

the total width of  > 63 MeV.

The parameters of the rho-meson form factor were
specified in Section 4.

Γ f 0
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Fig. 2. Phase shift  for  ≤ 1.1 GeV. The curve rep-

resents the predictions obtained within the present theory. The
compilation of experimental data was borrowed from [22].

δ0
2

s( ) s
                      

For the tensor meson f2(1270), we took the values

(71)

Although this resonance is off the energy range
under consideration, it has a pronounced effect on the
D-wave phase shifts since its coupling constant is

rather large (  = 17.8), its relatively small width

being due to the presence of the factor (2J + 1)–1 = 1/5
in the expression for the decay probability.

7.1. Phase Shift 

In order to clarify the question of why the scalar res-
onance σ1 of mass about 700 MeV does not lead to the

phase shift of  = π/2 at  = , it is reasonable to

consider the relation between δres and δbg in expression
(69) for the total phase shift. Table 1 lists terms contrib-

uting to the total phase shift . Recall that, according
to the discussion in Subsection 6.2, we have

(72)

Among other things, the data in Table 1 indicate
that, although the phase shift for resonance scattering

takes the value of π/2 for  < 0.7 GeV, the total phase

 assumes this value in the energy range 0.8 <  <

0.9 GeV (more precisely, at  = 0.845 GeV), which
complies well with available experimental data (see

Fig. 1b). The compilation of data on the phase shift 
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in Figs. 1‡ and 1b was borrowed from [4], where the
reader can also find references to relevant experimental
studies.

7.2. Phase Shift 

In the absence of exotic resonances, the phase shift

 is caused by purely potential scattering. The phase

shift  differs from  in that the rho-meson contri-

bution appears in  with a factor of –1/2; hence, this
contribution is opposite in sign to the sigma-meson
contribution. Had the condition g(t) = g(u) = const been
satisfied for the rho meson, a fast growth of the rho-
meson contribution with energy would have resulted in

a sharp rise of the  curve in Fig. 2 from  ≈ mK, an
effect that was indeed obtained in [4], but which is at
odds with experimental data. This flaw is remedied,

δ0
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Fig. 3. Phase shift  for  ≤ 1.1 GeV. The curve rep-

resents the results obtained within the theory proposed here. The
compilation of experimental data was borrowed from [23].
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however, by taking into account the dependence of g on
t and u, as is demonstrated by the present result.

The compilation of data on  was borrowed from
the article of Ishida et al. [22], who also present refer-
ences to relevant experimental studies.

For the difference , which is of inter-

est for verifying CP and CPT invariance in K  2π
decays, we obtained

 = 44.85°. (73)

Relevant experiments yield

(74)
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characteristic of  decays. The curve represents the

results obtained within the theory proposed here. Experi-
mental data were borrowed from [24].
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Table 1.  Contributions of resonance and potential scattering to  (the resonance contribution comes from the exchange of
σ1,2 and f0 particles in the s channel, while the potential contribution comes from the exchange of all scalar mesons, a vector
particle, and a tensor particle in the t and u channels)

, GeV , GeV

0.3 5.72 0.0037 –1.21 4.52 0.7 96.89 1.3445 –26.14 72.09
0.4 24.7 0.0444 –5.9 18.84 0.8 112.54 3.5781 –32.34 83.78
0.5 49.95 0.1763 –12.07 38.05 0.9 125.38 12.54 –37.44 100.48
0.6 76.07 0.5151 –19.13 57.45 1.0 137.43 127.03 –41.64 222.82

Note: All phase-shift values are given here in angular degrees.
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s δσ1 2+
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res δ0
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Table 2.  Comparison of the results obtained in this study for  and  with those evaluated on the basis of Roy’s dispersion
relations

, GeV
, deg , deg

present result result from Roy’s relations [29] present result result from Roy’s relations [29]

0.3 0.00065 – 0.00012 –

0.4 0.057 0.07 ± 0.01 0.0052 0.00 ± 0.01

0.5 0.28 – –0.00095 –

0.6 0.78 0.9 ± 0.1 –0.065 –0.1 ± 0.1

0.7 1.765 – –0.237 –

0.8 3.51 3.5 ± 0.5 –0.535 –0.5 ± 0.2

0.9 6.42 – –0.92 –

1.0 11.35 11 ± 2 –1.3 –1.0 ± 0.6

δ2
0 δ2

2

s
δ2

0 δ2
2

Table 3.  Low-energy parameters of ππ scattering

Experiment [31] Standard ChPT [1, 32] Generalized ChPT1 [33] Generalized ChPT2 [33] Present theory

0.26 ± 0.05 0.20 ± 0.01 0.27 0.28 0.186

0.25 ± 0.03 0.25 0.26 0.28 0.255

–10 0.28 ± 0.12 0.42 0.23 0.28 0.43

–10 0.82 ± 0.08 0.72 0.79 0.75 0.79

10 0.38 ± 0.02 0.37 0.39 0.38 0.324

100 0.48 0.48 0.28 0.126

100 0.17 ± 0.03 Input 0.18 0.21 0.154

103 0.13 ± 0.31 ″ 0.24 0.57 0.515

Note: A comparison of the predictions of the present theory with experimental data from [31] and with the predictions of standard ChPT
[1, 32] and of two versions of generalized ChPT [33] that correspond to setting r = 10 and 103L3 = –3.5 or 103L3 = –2.

a0
0

b0
0

a0
2

b0
2

a1
1

b1
1

a2
0

a2
2

7.3. Phase Shift 

Our result for (s) is presented in Fig. 3. The com-
pilation of experimental data was borrowed from [23].

In Fig. 4, our result for (  – ) in the range 2µ ≤

 ≤ 0.38 GeV is presented along with data on 
decays.

7.4. Phase Shifts  and 

Information about the D-wave phase shifts  and 
from [23, 28] is incomplete and may involve large
uncertainties. Moreover, it is desirable that the proce-

δ1
1

δ1
1

δ0
0 δ1

1

s Ke4

δ2
0 δ2

2

δ2
0 δ2

2

dure for extracting this information from experimental
data take into account the effect of the f2(1270) reso-
nance, whose role has yet to be clarified conclusively,
as can be seen from our study. In the dispersion
approach, this is not very important. Therefore, it
seems preferable to compare the present results with
those obtained in [29] by using Roy’s dispersion rela-
tions. The results of this comparison are illustrated in
Table 2.

8. BRIEF COMMENTS ON THE SCATTERING 
LENGTHS

For the sake of completeness, our results for the
scattering lengths calculated according to (64) are pre-
sented in Table 3 along with the scattering-length val-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
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ues that were extracted from experimental data, as well
as the values predicted within various modifications of

ChPT. It can be seen that our value of  = 0.186 for

the length is somewhat larger than ( )W = 0.157, but
the current-algebra prediction

(75)

is satisfied to within 0.6%.

9. CONCLUSION

From the study presented here, it follows that the
dynamics of low-energy ππ scattering is controlled by
the exchanges of spinless, spin-1, and spin-2 particles
having the lowest masses. The near-threshold behavior
of the phase shifts is determined primarily by the
exchanges of scalar sigma mesons, chiral partners of η'
and η mesons. In order to reproduce, within the concept
of single-particle exchange, experimental data on the

phase shifts , , and  and the predictions of
Roy’s dispersion relations for the D-wave phase shifts,
it is necessary consider that the σππ, ρππ, and f0, 2ππ
vertex functions depend on the square q2 of the momen-
tum transfer. Although the structure of these vertices
for either q2  0 or q2  µ2 is fixed by the require-
ments of chiral theory—and by the requirement of
gauge invariance as well for ρ and f2—the expressions
for the form factors far off the threshold are not speci-
fied completely within the theory. An example of the
form-factor type for scalar, vector, and tensor ππ inter-
actions that provides a satisfactory description of five
phase shifts as functions of energy in the energy range

from the threshold for two-pion generation to  =
1 GeV has been given in this study.

According to the present analysis, the lightest scalar
sigma meson has a mass of mσ ≈ 700 MeV and a width
of Γ ≈ 725 MeV.

The approach developed here may prove useful in
constructing a theory for other low-energy hadronic
processes as well.
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Abstract—By using a statistical approach within noncovariant perturbation theory, the distributions of light
and charmed quarks in hadrons are derived with allowance for the charmed-quark mass. The parameters of the
model are extracted from a comparison with NA3 data on the hadroproduction of J/ψ particles. A reanalysis of
EMC data on charm production in muon–nucleon scattering is performed. In relation to the conventional source
of charmed quarks from photon–gluon fusion, the EMC data are found to suggest the presence of an additional
contribution from deep-inelastic scattering on charmed quarks at large x. The resulting admixture of Fock states
that contain charmed quarks in the decomposition of the proton wave function is about 1%. The approach pre-
sented for the excitation of Fock states involving charmed quarks can also be applied to states featuring beauty
quarks, as well as to the hadronic component of the virtual photon (resolved photon component). © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The production of heavy flavors in lepton–hadron
and hadron–hadron collisions is a very important tool
for a quantitative test of QCD and for searches for new
physics. Due to the presence of a pointlike probe parti-
cle (lepton) and the possibility of controlling the QCD
scale of hard subprocess, deep-inelastic scattering
(DIS) has a number of advantages in relation to had-
ronic reactions in the analysis of charm production. The
QCD-based parton model has been remarkably suc-
cessful in describing a wide variety of high-energy pro-
cesses involving energy scales much greater than the
masses of known particles and of the partons them-
selves. Many analyses of charm production that were
performed within the parton model assume that had-
rons consist only of massless or approximately mass-
less partons (gluons and u, d, and s quarks). The heavy
quarks (charm and bottom ones) are treated as massive
objects external to hadrons. In DIS neutral-current
reactions, this kind of consideration leads naturally to

the O( ) “photon–gluon fusion” (PGF) mechanism

γg   as a dominant mechanism of heavy-quark
production. In hadronic collisions, analogous “parton–
parton fusion” processes, gg   and   ,
are expected to contribute. These parton-fusion pro-
cesses are flavor-creating (FC) since heavy flavor is
created by the interaction with a light constituent of a
hadron.

Existing experimental data on µp collisions [1]
show some irregularities that are inconsistent with PGF
predictions. The experimental observation of a devia-
tion of the charm distribution at large pseudorapidities
(that is, charm production close to the direction of the

α s
1( )

cc

cc qq cc

* This article was submitted by the author in English.
1063-7788/00/6304- $20.00 © 20606
proton beam) from conventional predictions in ep scat-
tering were also reported by the ZEUS experiment at
the HERA collider [2]. In hadronic collisions, the inter-
pretation of data on open-charm production within the
standard parton–parton fusion scheme followed by the
hadronization of charmed quarks runs into problems
for charmed particles at large xF. In this region, the
charm distributions are harder than the predictions of
the factorization approach. Furthermore, the yield of
charmed particles containing the valence quarks of the
projectile significantly exceeds the yield of their anti-
particles. Models considering the recombination of the
newly created charmed quark with one of the valence
quarks of the projectile [3, 4] or string fragmentation
[5] can improve the situation with open-charm produc-
tion. In both approaches, a part of the proton-remnant
momentum is imparted to the final-state charmed parti-
cle, increasing its momentum and improving the agree-
ment with experimental observations. However, these
models have problems with describing J/ψ and double-
J/ψ production, as well as with the A dependence of the
charm-production cross section in hadron–nucleus col-
lisions at large xF [6–8].

A part of the discrepancies between data and models
can be resolved by introducing the flavor-excitation
(FE) scheme, which assumes that heavy quarks can
also be constituents of hadrons. We note that a consid-
eration of heavy quarks as those that are external to
hadrons is appropriate when the characteristic scale of
the process (µ) is less than or on the order of the heavy-
quark mass—that is, µ & mQ. This condition holds for c
and b quarks for the majority of fixed-target experi-
ments. The HERA ep collider provides an opportunity to
investigate heavy-quark production at Q2 scales much

greater than 4 . At such scales, it seems justified to
consider charm (and bottom) quarks as light objects.

mQ
2
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The so-called variable-flavor-number scheme pro-
posed in [9–11] combines the FC and FE schemes and
ensures a “soft” transition between the two production
mechanisms. A more sophisticated approach for the FC
mechanism performs an effective resummation of large

logarithms of the type [αs(µ)ln(µ2/ )]n, which limit
the validity of the conventional FC mechanism to the
region µ ~ O(mQ). It was shown in those studies that the
contribution from scattering on a charmed constituent

quark of the proton [process of order O( )] becomes
more important than PGF for x * 0.1 at surprisingly low
Q2 * 20–30 GeV2. The authors used splitting functions
and standard distributions for massless partons, includ-
ing heavy flavors, and introduced the “slow-rescaling”
variable x  x[1 + (mQ/Q)2] to take into account the
charmed-quark mass. However, perturbative QCD
requires the scale µ to be large and needs, as inputs, the
initial parton distributions for their evolution. The ini-
tial distributions of heavy quarks are not necessarily
similar to the distributions of light partons because of
the nonzero quark mass, which is commensurate with
the QCD scale. This kind of consideration is closely
related to the old question of which type of high-order
QCD corrections must be assigned to the matrix ele-
ment and which is due to QCD evolution of the parton
distributions. So far, we have no clear answer to this
question.

The authors of [12] proposed a procedure for
obtaining the distribution of massive charmed quarks in
hadrons. They considered the proton-wave-function
decomposition that may contain the Fock state compo-
nent | 〉  called “intrinsic charm” (IC). Such a
state may appear as a quantum fluctuation of the hadron
wave function and may become free in interactions fea-
turing substantial momentum transfers. In this case, the
proton is described as a decomposition in terms of
color-singlet eigenstates of the free Hamiltonian: |uud〉 ,
|uudg〉 , | 〉 , …. Over a sufficiently short time, the
proton can contain Fock states of arbitrary complexity,
including pairs of charmed quarks. In the proton rest
frame, the lifetime τ of such fluctuations is on the order
of the nuclear time about Rh, where Rh is the hadronic
size. On average, there are extra partons (gluons and

 pairs) in addition to valence quarks. In the infinite-
momentum frame, a partonic fluctuation will be “fro-
zen” and can be observed, for example, in lepton–had-
ron scattering. Charmed quarks are heavy objects, and
their lifetime is much smaller than those of light par-
tons. On average, the admixture of heavy-quark pairs is
expected to be small, about (mq/mQ)2. Because quantum
fluctuations in the initial proton are determined by the
self-interaction of the color field, the structure of the
Fock states of the proton can be considered indepen-
dently of hard interaction, providing the initial nonper-
turbative parton distributions. These distributions will

mQ
2

α s
0( )

uudcc

uudqq

qq
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evolve in hadron–hadron or lepton–hadron collisions
owing to high momentum transfers.

In the present paper, we modify and generalize the
statistical approach to the Fock state hadron structure
with heavy quarks, suggested in [12–14], within nonco-
variant perturbation theory. We obtain scaling expres-
sions for the heavy- and light-parton distributions in the
infinite-momentum frame. We calculate the charmed

structure function of the proton, (x, Q2), taking into

account QCD radiative corrections of order , as
well as mass corrections caused by the nonzero values
of the c-quark and the proton mass. We use the experi-
mental data for πA  J/ψX [7] and µp  µ X [1]
to evaluate the parameters of the model and present the
relative contributions of the PGF and the IC mechanism
to the charm structure function of the proton. Note that
we use the terms FE and IC for the charm-production
mechanisms involving the charmed constituent quarks
of the proton.

2. DESCRIPTION OF THE MODEL

2.1. General Features

In QCD, high-energy hadrons are coherent superpo-
sitions (Fock state vectors) of quarks and gluons. Note
that the lifetime of a fluctuation, ∆t ~ 1/∆E ≈ 2 Ph/(M2 –
m2) (Ph is the hadron momentum, m is the hadron mass,
and M is the mass of the fluctuation), can be sufficiently
large at high energies even for large mass values of the
fluctuation.

Based on the above picture of the proton, Kuti and
Weisskopf [13], who used the statistical approach,
achieved a good description of the proton structure
function. In [14], I presented a statistical consideration
of the hadron structure and obtained noninvariant (that
is, frame-dependent) expressions for parton distribu-
tions. In principle, the frame dependence can take place
at sufficiently low energies, while, in the infinite-
momentum frame, one expects invariant expressions.

We take all partons on the mass shell and use non-
covariant perturbation theory. Thus, we consider a had-
ron as a statistical system that consists of N quarks car-
rying quantum numbers of the hadron, two charmed
quarks c and , and a system of n light partons (gluons
and quarks) carrying, in total, the quantum numbers of
the vacuum.

In noncovariant perturbation theory, the probability
of producing an m-particle final state in the case of an
instantaneous interaction has the form [15]

(1)

where d  is an element of the m-particle phase
space; m = N + 2 + n; Ph and Eh are, respectively, the

F2
c( )

α s
1( )

cc

c

dW m( ) H int
2

Efin Eh–( )2
---------------------------δ Pfin Ph–( )dΦfin

m( ),∼

Φfin
m( )
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momentum and the energy of the hadron being consid-
ered; Pfin and Efin are, respectively, the momentum and
the energy of the final-state partonic fluctuation; and

d  describes the Lorentz invariant phase space,

(2)

The delta function in (1) ensures the conservation of
the total 3-momentum.

Due to a sharp cutoff on the transverse momenta of
partons, it is sufficient to consider only the longitudinal
phase space; that is,

(3)

where ξ = pz/Ph and µ = m⊥ /Ph, m⊥  being the transverse
mass of the parton.

Following the parton model, we assume an indepen-
dent primordial distribution of each parton and make
the substitution

(4)

where ρ(ξ) is the probability density for observing a
parton with a momentum fraction ξ. Therefore, the
probability of observing an m-parton Fock state has the
form

(5)

The omitted common factors will be incorporated in
the general normalization. Integration with respect to m
parton momenta can be performed [13] by using the
following integral representation of the delta function:

(6)

Upon integration with respect to all ξk, we obtain

(7)

Here, integration with respect to ξ could be extended to
infinity owing to the presence of the fast-oscillating
exponential, and the Fourier transform of the parton
density ρk(ξ) was defined by

Φfin
m( )

dΦfin
m( ) d3 pk

εk

----------.
k 1=

m

∏=

d3 p
ε

--------- dξ

ξ2 µ2+
---------------------,

H int
2dΦfin

m( ) ρk ξk( )dξk,
k 1=

m

∏

W m( ) ξkρk ξk( )δ 1 ξ j

j 1=

m

∑–
 
 
 

.d
k 1=

m

∏
0

1

∫=

2πδ x( ) νeiνx.d

∞–

+∞

∫=

W m( ) 1
2π
------ νeiν ρk ν( ).

k 1=

m

∏d

∞–

+∞

∫=

ρk ν( ) ξρk ξ( )e iνξ– .d

0

∞

∫=
Following [13], we introduce different probability
densities for valence quarks, charmed quarks, gluons,
and light sea quarks: ρv , ρc, ρg, and ρq, respectively.
Because all light sea partons of the same type have the
same distributions, we have to perform summation over
all possible permutations of the n light sea partons (glu-
ons and  pairs separately). For the probability of
observing a Fock state featuring N valence quarks, one

 pair, ng gluons, and nq pairs of light sea quarks (n =
ng + 2nq), we arrive at the expression

(8)

where  is the probability of creating a  pair.

The factors 1/ng! and 1/(2nq)! take into account the
indistinguishability of gluons and quarks, respectively.
In order to obtain the total probability for all Fock states
containing a  pair, we must perform summation over
0 < n < ∞. This summation can be carried out by using
the properties of binomial sums:

(9)

The general form of the partition function is [16]

(10)

It is clear from (5) that the distribution Pk(ξ) for the
kth parton can be obtained by omitting integration with
respect to the momentum of precisely this parton. In
general, one- or many-particle distributions can be
derived from the partition function by taking the func-
tional derivative of the required function(s) [16]. Thus,
the inclusive distribution of light partons and the distri-
bution of the  pair are given by

(11)

qq

cc

WN
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2π
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Pcc ξc ξc,( ) 1

ZN
c( )--------ρcc ξc ξc,( )

δZN
c( )

δρcc

-----------=

≡ 1

ZN
c( )--------ρcc ξc ξc,( )Ccc 1 ξc– ξc–( ),
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where Ck(1 – ξ) and (1 – ξc – ) are correlation
functions that ensure momentum conservation and
where normalization to unity is implied.

2.2. Probability Densities and Parton Distributions

The origin of the  pair is the same as that of light-
sea-quark pairs—namely, the splitting of a gluon into a
virtual -pair, g  . At sufficiently low energies,
where ξcPh ≤ m⊥ c, one can in principle expect ρc ≈
const, but, in the limit Ph  ∞, one has ξ @ µc; there-
fore, the situation is similar to that for light sea quarks.
We will compare the model with data from fixed-target
experiments, neglecting the transverse mass of the
charmed quarks for the projectile hadron. Following
[13], we can then represent the probability densities
ρ(ξ) as

(12)

and

for valence quarks, gluons, light sea quarks, and
charmed quarks, respectively, with ag and aq being
unknown constants.

In the infinite-momentum frame, we neglected the
transverse mass in the probability densities (12) for the
valence and charmed quarks. At the same time, we
retain temporarily, for sea partons, the term µ in the
denominators to perform the Fourier transformations
later. In the final expressions, we will go over to the
limit µ  0.

From experiments, we know that the momentum
distribution of valence quarks at small ξ is approxi-

mately proportional to 1/ —that is, α = 0.5. We will
use this value in our comparison with experimental
data, but, in the formulas, we use the general expression
(12).

Let us consider the energy denominator in (1). Tak-
ing into account the momentum-conservation equation

Ph =  and using the light-cone expansion in the
infinite momentum frame, we obtain

(13)

Ccc ξc

cc

cc cc

ρv ξ( ) ξα

ξ2 µv
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--------------------- ξα 1– ,≈∝
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---------------------,=
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aq
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---------------------,=
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2
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 
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Because the transverse mass of the charmed quark is
much larger than Mh (the hadron mass) and than the
transverse mass of the light partons, m⊥ k, we have [12]

(14)

The validity of the light-cone expansion of the
energy denominator for Fock states featuring heavy
quarks was considered in [14].

Substituting expression (14) into the definition of
the probability density  for observing the pair ,
we arrive at

In just the same way as in the case of valence
quarks, we will use a more general form for  proba-
bility density in the formulas that are given below:

(15)

We have introduced in this formula the phenomeno-
logical parameter β to take into account a possible devi-
ation of the charm distribution from the phase-space-
approximation expression (12) at moderate energies or
momentum transfers. In analytic expressions, we use
the generalized formula (15); in numerical calculations
and in a comparison with data, we go over to the phase-
space approximation, setting β = 1.

For the partition functions of Fock states featuring a
 pair and for that of Fock states featuring no such

pairs (  and ZN, respectively), the expressions that
are obtained from (10) in the limit µ  0 are then
given by

(16)

where Γ(x) is the gamma function and g = ag + aq is the
unknown model parameter characterizing the level of
the sea in the hadron being considered.

Note here that the integral for light sea partons is
proportional to 1/µg and diverges logarithmically in the
limit µ  0, but this divergence can be incorporated
in the general normalization, as can be seen from (11),
and is not important.

The analytic expressions for the partition functions
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with and without a  pair are

(17)

For integer β, the function fc(β) takes the values of
fc(0) = 1, fc(1) = 1/6, fc(2) = 1/30, and fc(3) = 1/140. For
arbitrary values of β, integration can be performed
numerically.

For the parton momentum distributions of valence
quarks, sea partons, and charmed quarks, we obtain

(18)

The valence-quark and c-quark distributions are

normalized to unity, P(ξ) = 1.

Although the charmed-quark mass does not appear
directly in the final expression for the probability of the
Fock state, we see from (18) that, due to the factor ξβ

with β > 0, the distribution of charmed quarks is much
harder than the distribution of light sea partons. This
hardness stems from the large value of the charmed-
quark mass. This effect must be taken into account by
any phenomenological parametrization of the initial
(not QCD-evolved) charmed-quark distribution.

If SU(3) symmetry in the sea is broken, one can
introduce a suppression factor λs for strange quarks and
obtain

(19)

Since the total probability of the excitation of a 
pair in a hadron is unknown, we assumed normalization

cc
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Ss ξ( ) Ss ξ( )
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4 2λ s+
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cc
to unity. The final result can be obtained via multiplica-
tion by the factor Nc to be extracted from experimental
data. In the sections that follow, the model is compared
with experimental data in order to evaluate the free
parameters Nc and g.

A comment on the excitation of states featuring
beauty quarks is in order here. If we consider b quarks
within this approach, we again obtain expressions (15)
and (18), neglecting the charmed-quark mass against
the much larger mass of the beauty quark. In this case,
charmed quarks must be treated as massless partons of
the sea.

This model can also be applied to the excitation of
the heavy flavors in the virtual photon (“resolved pho-
ton”) in e+e– annihilation or in photoproduction. In
order to obtain the required distributions, it is sufficient
to omit the term [ρv(ν)]N in (10) because the photon
does not obviously contain valence quarks.

3. COMPARISON OF THE MODEL
WITH J/ψ HADROPRODUCTION

It was noted in the Introduction that there exist a
number of hadronization mechanisms that describe
more or less successfully the inclusive open-charm
yield at large xF. These schemes incorporate some
aspects of the hadronization process, but there is no
commonly accepted mechanism that is based on a well-
founded theoretical approach and which describes the
entire body of available data. The uncertainties in the
existing hadronization models are too large to perform
a direct evaluation of the parameters of the model for
the charm-quark distribution presented here from the
experimental data on open-charm production.

On the other hand, the data from NA3 collaboration
[7] on the production of J/ψ particles in hadron–plati-
num collisions suggest an unusual production mecha-
nism. Badier et al. [7] identified two different compo-
nents in the xF distribution of J/ψ mesons: a hard com-
ponent with the usual A dependence σA ~ AσN and a
diffractive component with a weaker A dependence—
namely, σA ~ A0.77σN for incident pions and σA ~ A0.71σN
for incident protons. The relative contributions of the
diffractive component are about 0.20 and 0.30 for pion
and proton projectiles, respectively. The hard compo-
nent, as was shown in [7], can be described well by the
conventional QCD parton–parton fusion mechanism.
The linear A dependence agrees well with the predic-
tions of the QCD factorization theorem valid for hard
processes.

The unusual A dependence of the diffractive compo-
nent can naturally be described within the intrinsic-
charm model [12] and within the model [6] based on
the Gribov approach to particle interactions with
nuclei. It can be shown in [6] that, for J/ψ production at
NA3 energies, plab ≈ 150–300 GeV, a deviation from the
A1 behavior for inclusive spectra is present only for
those components of the initial partonic configuration
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
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that contain a heavy state. Therefore, we can attribute
the diffractive component in J/ψ distribution, as is seen
in the NA3 experiment, to the interaction of the had-
ronic Fock state containing a  pair and use these data
to evaluate the parameters of our model.

In order to estimate the longitudinal distribution of
J/ψ particles, we use the recombination model [17]. In
this model, the differential cross section for J/ψ pro-
duction can be written as

(20)

where (ξc, ) is the two-particle distribution of c

and  quarks with momentum fractions xc and ,

respectively, while R(ξc,  xF) is the recombination
function describing the probability for two quarks to
coalesce in the final J/ψ meson with a momentum frac-
tion xF. In the simplest case, we have

which ensures longitudinal-momentum conservation.
For charmed particles, the primordial transverse
momenta of the initial c quarks can in principle reach
large values (in excess of 1 GeV), so that they must be
taken into account (see, for example, [4]). This is not
important, however, for the purposes of the present
paper. Since we consider only longitudinal distribu-
tions, integration over transverse momenta is included
in the total normalization of the experimental data. As
a result, the following expression is obtained from (18)
and (20) for the xF distribution of J/ψ particles:

(21)

For a fit, we used only πN data from [7], assuming
that the number of valence quarks is N = 2. We do not
use pp  J/ψ data because we actually do not know
the probability for the  pair to form a J/ψ meson.
This probability can be different for incoming π
mesons and protons. Therefore, expression (21) has
two free parameters, the total normalization and the
parameter g characterizing the level of sea partons in
the π meson. The fit yielded

g = 1.35 ± 0.09, (22)

with χ2/NDF being approximately equal 0.9. It should
be borne in mind that the parameters α and β have been
fixed at α = 0.5 and β = 1. The results are shown in
Figs. 1a–1d.

In order to rescale the predictions of our model to
the NA3 data on pA  J/ψ, we must set N = 3 in (21)

and replace the normalization  found for pion data by

cc

dσ
dxF
-------- σtot ξ1 ξ2Scc ξc ξc,( )R ξc ξc; xF,( ),dd∫=

Scc ξc

c xc

ξc;

R ξc ξc; xF,( ) δ xF ξc– ξc–( ),=

dσ J ψ⁄( )
dxF

----------------------- σtot
expt ZN

ZN
c( )-------- Γ β 1+( )[ ]

Γ 2β 2+( )
--------------------------=

× xF
2β 1– 1 xF–( )αN g 1–+ .

cc

σtot
expt
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Wpπ , where Wpπ = σtot(pp  J/ψ)/σtot(πp  J/ψ).
To estimate the ratio Wpπ, we neglect any dynamical
effects and use a combinatorial consideration based on
the following simple assumptions. We consider only
fast quarks—that is, the valence and c quarks of the
beam particle. Each massless quark has two spin states
and three color states (we neglect masses for fast c
quarks). In order to form a color-singlet, spin-1 final
J/ψ meson, we must take c and  quarks with parallel
spins in the color-singlet state. It is clear that the prob-
ability of choosing at random a  pair with the neces-
sary quantum numbers is given by the binomial coeffi-

cients , where n is the total number of states in the
beam particle. The statistical weight of the final state
takes the same value for both beam particles and can-
cels in the ratio. In the π mesons, we have four fast

quarks ( ) and, consequently, nπ = 3 × 2 × 4 = 24
states. In the proton, we have five fast quarks ( )
and np = 3 × 2 × 5 = 30 states. Thus, we arrive at

Wpπ = /  = 92/145, in good agreement with data.

In Fig. 1e, we plotted the resulting distribution
dσ/dxF(J/ψ) for pp interactions. We can see from
Fig. 1e that the model provides a satisfactory descrip-
tion for J/ψ production in pp collisions as well. This
allows us to use the same parameter g for the analysis
of EMC data on charm production in muon–proton
scattering.

There are some irregularities in J/ψ distributions in
Figs. 1a–1c around xF ≈ 0.8–0.9. By way of example,
we indicate that, in Fig. 1c, the point at xF ≈ 0.85 is
about one order of magnitude higher than the theoreti-
cal curve. If this is not a statistical fluctuation in data,
this discrepancy can be easily understood within the
model developed in [6], which predicts that, for very
large A and xF  1, the production cross section can
have an A1/3 dependence if there is final-state interac-
tion between the product J/ψ particle and nuclear mat-
ter. In this case, we would obtain an additional factor of
1951/3 ≈ 5.8, in good agreement with Fig. 1c.

In Fig. 1f, we also present the distributions xq(x) for
charmed and valence quarks in the model and the dis-
tribution of the valence u quark from the MRS(G)
parametrization.

4. CHARM ELECTROPRODUCTION
4.1. IC Structure Function and Subleading Corrections

The cross section for charm production in deep-
inelastic muon–proton scattering is given by

(23)

where x = Q2/2(Pq) is the Bjorken variable and y =
Q2/sx is the muon-momentum fraction carried by the

σtot
expt

c

cc

C2
n

udcc
uudcc

C2
24 C2

30

dσ
dxdQ2
---------------- 2πα2 1 1 y–( )2+[ ]

xQ4
----------------------------------------------F2

c( ) x Q2,( ),≈



612 GOLUBKOV
dσ/dxF, nb/nucleon
102

101

100

102

101

100

102

101

100

102

101

100

102

101

100

100

10–2

10–4

dσ/dxF, nb/nucleon

xq(x)

0 0.2 0.4 0.6 0.8 xF

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 xF

0 0.2 0.4 0.6 0.8 x

(a) (b)

(c) (d)

(e) (f)

π–p, 150 GeV π–p, 200 GeV

π+p, 200 GeVπ–p, 280 GeV

pp, 200 GeV

Fig. 1. (a–e) Results of a fit to the NA3 data on J/ψ production in πp and pp interactions using the model described in the main body
of the text. The fit was performed only for πN collisions. (f) xq(x) distributions in the proton of the (solid curve) c and (dashed curve)
valence u quarks in the model and (dotted curve) MRS(G) parametrization for valence u quarks.
virtual photon (we neglected the contribution from the
longitudinal structure function FL).

In the approach developed here, the charm structure
function of the proton can be represented as the sum of
two terms; that is,

(24)

where Nc is an unknown normalization constant to be
found from a comparison with experimental data. The
first term in (24) describes the conventional photon–
gluon fusion µg  µ  (Fig. 2a), while the second
term represents the direct scattering of the muon on the

F2
c( ) x Q2,( ) F2

PGF( ) x Q2,( ) NcF2
IC( ) x Q2,( ),+=

cc

Fig. 2. Diagrams for (a) photon–gluon fusion and (b) scat-
tering on the intrinsic charmed quark.

γ
γ

(a) (b)
e' e'

c'

c–

c

c

e

g

constituent charmed quark of the proton, µ + c  µ +
c (Fig. 2b).

Within the naive parton model, the IC structure
function is related to the momentum distribution c(x, Q2)
of the charmed quark in the proton as

(25)

where ec = 2/3 is the electric charge of the c quark.

The PGF charm structure function is given by [18]

(26)

where

(27)
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α s ŝ( )

π
-------------ec

2πz=

× Vc
1
2
---– 2z 1 z–( ) 2 λ–( )+





+ 1 2z 1 z–( )– 4λz 1 3z–( ) 8λ2z2–+[ ]
1 Vc+
1 Vc–
---------------ln





.

PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000



DISTRIBUTION OF CHARMED CONSTITUENT QUARKS 613
In the above expressions,  = Q2(1 – z)/z, while

Vc( ) =  is the c-quark velocity in the (γg)
c.m. system.

In order to compare the model with the experimen-
tal data, we must take into account the dependence of
c(x) on the momentum transfer squared Q2. This depen-
dence originates from two sources [19]. The first is
associated with the nonzero masses of the proton and
the c quark. The second source is represented by the
first-order QCD radiative corrections (Fig. 3).

To take into account effects of the nonzero masses,
we replaced the variable x by the variable ζ [19, 20],

(28)

and, for the distribution c(x), used the substitution

(29)

The parameters ρ, , λ, and  are then given by

(30)

The first-order correction to the structure function

(x, Q2) can be represented as a convolution of the

c-quark distribution c(ζ, ) with the radiative correc-
tions. As a result, the IC structure function, including
the radiative corrections, has the form [19]

(31)

The expression for the first-order radiative correc-

tions (z, λ) is given in the Appendix.

In this paper, we do not consider the QCD evolution
of the charmed-constituent-quark distributions and
assume that the QCD radiative corrections to the matrix
element of virtual-photon absorption give a correct

description of  effects. At large Q2, this point
requires a more careful study. There is also the problem
of correctly describing the QCD evolution of the heavy-
quark distributions for intermediate momentum trans-
fers, where the mass of the heavy partons cannot be
neglected.

ŝ
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4.2. Comparison with EMC Data

In order to evaluate the contribution to the charm

part  of the proton structure function F2 from scat-
tering on charmed constituent quarks (also called
intrinsic-charm quarks), we used the data on charm
production that were obtained by the EMC collabora-
tion [1] in µp collisions at Eµ = 200 GeV. The EMC col-
laboration presented data on σ(γ*p   + X). Thus,

it is necessary to extract (x, Q2) from the data by
taking into account both the difference in the defini-
tions used for the virtual-photon flux in (23) and in the
EMC study [21] and the finite size of the experimental
bins in (x, Q2) plane.

According to the equivalent-photon approximation
(EPA) [22], the cross section for muon–proton scatter-
ing can be represented as

(32)

where dnγ is the differential flux of equivalent photons.
The definition of the equivalent-photon flux is arbitrary
to some extent. The conventional expression used in
(23) for Q2/E2 ! 1 has the form

(33)

The EMC collaboration employed a slightly differ-
ent definition for the photon flux [21]; it includes the
additional factor (1 – x) on the right-hand side of (33).
Taking into account this factor and approximating the
differential flux dnγ/dxdQ2 by ∆n/∆x∆Q2 [where (∆ν,
∆Q2) is the experimental-bin size], we can relate the
structure function to the experimentally measured γp

cross section  for charm production as

(34)

The value of ∆nγ is found by integrating the expres-
sion for the photon flux over each experimental bin

F2
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4πα 1 1 y–( )2+[ ]
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γ γ γ

g g
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1 2 3

Fig. 3. O(αs) corrections to the intrinsic-charm structure
function: (1, 2) gluon bremsstrahlung and (3) virtual gluon
corrections.
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Fig. 4. (a, b) Results of the fit of the PGF + IC sum to the EMC data at Q2 = (closed circles) 1.4, (closed boxes) 2.5, (closed triangles)
4.4, and (inverted closed triangles) 7.8 GeV2 in Fig. 4a and Q2 = (open circles) 13.9, (open boxes) 24.7, (open triangles) 43.9, and

(open diamonds) 78.1 GeV2 in Fig. 4b; (c) ratio K = /  of the contributions from intrinsic charm and photon–gluon fusion.F2
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(∆ν, ∆Q2). Defining ∆ν = ν2 – ν1 and ∆Q2 =  – ,
we obtain

(35)

The mass corrections for IC structure functions
were used in the form of ζ scaling (29). The radiative
corrections (see Appendix) were also taken into
account. The strong-coupling constant αs(Q2) and the
QCD scale ΛQCD were chosen according to the PDFLIB
parametrization [23].

To perform a fit to the EMC data, we used expres-
sion (24) for the charmed structure function with two

free parameters: Nc, the normalization of , and mc,
the charmed-quark mass, which enters into the PGF
structure function and both the radiative and the mass
corrections. For the gluon distribution, we took the
MRS(G) parametrization, which is the default one for
PDFLIB 7.09 [23].

The results of our fit to the EMC data are shown in
Figs. 4a and 4b. The fit yields

Nc = (0.9 ± 0.2)%

for the admixture from scattering on the charmed con-
stituent quark and

mc = 1.43 ± 0.01 GeV
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F2
IC( )
for the charmed-quark mass. We have also used other
PDFLIB parametrizations and, within the errors,
obtained similar values.

Figure 4c presents the ratio /  versus x for
some values of Q2. We see that, at large x (x > 0.1), a
1% IC component dominates charm production for
Q2 & 10–12 GeV2.

5. CONCLUSION

We have modified and generalized the statistical
approach to the Fock state hadron structure with heavy
quarks, using the framework of noncovariant perturba-
tion theory. We have obtained scaling expressions for
heavy- and light-parton distributions in the infinite-
momentum frame. We have calculated the charmed

structure function of the proton, (x, Q2), taking into

account the QCD radiative corrections of order , as
well as the mass corrections to the structure function
that are caused by the nonzero masses of the c quark
and of the proton. We have used the experimental data
on πA  J/ψX and µp  µ X to evaluate the
parameters of the model and presented the relative con-
tributions of the photon–gluon fusion mechanism and
of direct scattering on the charmed constituent quark
(intrinsic charm) to the charmed structure function of
the proton.

We have found that, in πA collisions, the so-called
diffractive component of J/ψ can be well described by
the coalescence of c and  constituent quarks. This suc-
cess supports, in my opinion, Gribov’s spacetime pic-
ture of hadron interaction with nuclei, as well as the
presence of long-lived heavy-quark fluctuations in had-
rons (intrinsic charm). The results also show that the
longitudinal distribution of the constituent heavy
quarks is harder than that for light sea partons and has
a shape like that of the valence-quark distributions.

F2
IC( ) F2
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F2
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α s
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cc
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From a comparison with charm production by
muons at Eµ = 200 GeV, we have estimated the contri-
bution from scattering on charmed constituent quarks
to total charm production. This contribution is about
1% and is expected to grow with increasing beam
energy. At large values of the Bjorken variable, x * 0.1,
scattering on the charmed constituent quark dominates
forward charm production in deep-inelastic lepton–
proton collisions.

The approach adopted here to consider the excita-
tion of Fock states containing heavy quarks can also be
applied to states featuring beauty quarks in hadrons, as
well as to the hadronic component of the virtual photon
(resolved photon).

Finally, we want to emphasize that the HERA ep
collider is well suited to investigating heavy-flavor pro-
duction mechanisms over a wide kinematical region of
(x, Q2) that is inaccessible at other existing facilities.
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APPENDIX

The expression for the first-order radiative correc-

tions (z, λ) to the charmed structure function has
the form

(Ä.1)
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where

(Ä.2)
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Abstract—In the index-spinor approach, the transition amplitude for a free massive particle of arbitrary spin
is obtained by calculating the relevant path integral in the BFV–BRST formalism. The calculation is performed
without any renormalization of the measure in the path integral. The result coincides with the Weinberg prop-
agator in the index-free representation. It is shown that the type of representation for the particle spin—a holo-
morphic or an antiholomorphic one—is determined by the choice of boundary conditions for the index spinor.
© 2000 MAIK “Nauka/Interperiodica”.
A spin can be described by either commuting or
anticommuting variables, which can be used indepen-
dently or on equal terms within supersymmetric theo-
ries. Boson, as well as fermion, variables can be ade-
quately included in spin theory in the form of spinors.
In this case, there exists a nontrivial “classical limit” of
the spin; hence, all what is needed for quantization is to
pinpoint ordering constants. Until recently, spinors
involving boson variables have been used quite rarely
in spin theory, primarily as twistor-type variables for
resolving the mass constraint in the massless case.
There are, however, other fields of application for such
variables. By way of example, we indicate that, in a the-
ory featuring index spinors [1], there is, at least at the
classical level, an elementary solution to the problem of
an infinite reducibility of fermion κ symmetry. This
suggests the existence of subtler geometric and group-
theoretical aspects.

In dealing with massive spinning particles, the
quantization procedure combining Batalin–Fradkin–
Vilkovisky and Becchi–Rouet–Stora–Tyutin
approaches (BFV–BRST quantization [2]) has
attracted little attention. In a few studies devoted to this
subject [3], a consideration was restricted to making
use of Grassmann vectors in the case of spin-1/2 parti-
cles. In these models, the derivation of the propagator
does not amount to calculating the original path inte-
gral, requiring some additional steps associated with
choosing a representation for spin operators.

In the present study, we apply the BFV–BRST
quantization procedure to a massive particle of arbi-
trary spin in the conventional spacetime dimension.
Our description of the spin in terms of index spinors [1]
is readily applicable to the massless case in higher

 1) Ukrainian Engineering Pedagogical Academy, Universitetskaya
ul. 16, Kharkov, 310003 Ukraine.
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** e-mail: fed@postmaster.co.uk
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spacetime dimensions. Thus, our study here merely
provides a test of the efficiency of the method.

Within modern approaches to quantization, this is
the first consideration of the above type. Apart from
extending our approach to higher spins, it was for the
first time that full advantage was taken of the Hamilto-
nian formalism in similar problems, whereby it became
possible to calculate the path integral without resort to
an indeterminate renormalization of the functional
measure. The resulting propagator coincides with that
obtained previously in conventional field theory within
the (2J + 1)-component formalism [4].

In D4, a spinning particle can be described in terms

of commuting coordinates (zA) = (xµ, ζα, ), where x is
a spacetime vector and ζ is a Weyl index spinor. Within
the first-order formalism, the Lagrangian for such a
particle has the form

(1)

where ω ≡ dτ = dx – idζσζ  + iζσdζ is the boson
superform. The kinetic term p  is the sum of the con-
ventional kinetic term for a spinless particle, p  (pµ is
the auxiliary energy–momentum vector), and a spin
term that takes a standard oscillator form in the rest
frame. As a consequence, ω coincides with the super-
form of N = 1 SUSY, provided that the Grassmann
spinor in N = 1 SUSY is replaced by the index spinor.
It should be emphasized that this coincidence is some-
thing other than the result of some naive or straightfor-
ward generalization of the well-known expression of
supersymmetric theory. In fact, it is a manifestation of
a characteristic feature common to descriptions of the
spin in terms of commuting and anticommuting vari-
ables—namely, the two descriptions emerge from an
extension of the known representations of the small

ζ
α̇

L pω̇ e
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group by, respectively, c and a numbers to the relativis-
tic case; that is, these descriptions are associated with
the respective induced representations of the Poincaré
group. A transition to these induced representations
naturally leads to the boson or fermion supersymmetry
of the kinetic terms. Unfortunately, boson supersym-
metry is broken because the boson configuration space

is restricted by the spin constraint ζ  – j ≈ 0 [1]; in
the relativistic form, this constraint enters into the
Lagrangian in (1) with a Lagrange multiplier.

In the Lagrangian (1), the coefficients e and λ are
Lagrange multipliers, while j is the classical spin,
whose sign determines the sign of energy. The action

functional A = dτ is correctly defined both in the

massive and in the massless case. In the present study,
however, we restrict our consideration to the massive
case. In the absence of the last term in the Lagrangian
specified by (1), our action functional coincides with
that of Casalbuoni, Brink, and Schwarz [5], provided
that ζ is assumed to be a Grassmann spinor.

Upon going over to the Hamiltonian form of the the-
ory [6], we obtain, in addition to the mass constraint

T ≡ (p2 + m2) ≈ 0 and the spin constraint ζ  – j ≈ 0,

which appear explicitly in the action functional, the
spinor Bose constraints

(2)

On the constraint surface, the spin constraint is equiva-
lent to the constraint

(3)

since S ≡ (ζdζ + ) + (ζ  – j).

The constraint algebra was described in detail else-
where [1]. The constraints (Fa) = (F1, F2) ≡ (T, S) are
first-class constraints, while the spinor constraints (Gi) =

(dζα, ) are second-class constraints (  = m2 > 0).
The mass constraint generates the conventional rep-

arametrizations δxµ = pµe, δpµ = 0, and δe = . The spin
constraint (3) generates phase transformations of the
spinor components,

.

The corresponding variation of the action functional,

vanishes only when e(τi) = e(τf) = 0 and ϕ(τi) = ϕ(τf).
For this reason, only those relativistic gauges featuring
derivatives are admissible that express  in terms of the
other quantities from this action functional [7, 8].
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The constant j in Lagrangian (1) is referred to as a
classical spin because, on the constraint surface, the

Pauli–Lubanski vector w = (ζ )p – p
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To obtain the quantum spectrum of the system
whose behavior is controlled by the Lagrangian in (1),
we must perform operator quantization. Since the sec-
ond-class constraints can be divided into two complex-
conjugate groups so that all constraints within each
group commute with one another, we can employ the
Gupta–Bleuler procedure. According to this procedure,
all first-class constraints and half of the second-class
constraints chosen in such a way that they weakly com-
mute with one another are imposed on the states
involved, so that all expectation values of these con-
straints vanish. Of course, the above choice of second-
class constraints is not unambiguous. This ambiguity
does not affect the spectrum, but a specific choice deter-
mines the realization of the Hilbert space of the states.
There are two essentially different options referred to as
a holomorphic and an antiholomorphic representation,
the respective constraints being  and 
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In the quantum operator 
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which corresponds to the classical quantity 
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, the
constant 

 

J

 

 represents the classical spin 

 

j

 

 renormalized
by the ordering constant. Since the wave function is
single-valued, 

 

J

 

 can take only half-integer and integral
values, 
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J
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Z

 

. The spin constraint imposed on 

 

Ψ

 

implies that the (anti)holomorphic field 

 

Φ

 

±

 

 must be

homogeneous of degree 

 

±2J in ζ ( ). The requirement
that the wave function Ψ be bounded both at the origin
of the complex plane C2 of the index spinor ζ and at
infinity implies that the function Φ± is holomorphic or
antiholomorphic, depending on the sign of J and the
sign of energy: in the holomorphic representation, J ≥ 0
and p0 ≥ m, while, in the antiholomorphic representa-
tion, J ≤ 0 and p0 ≤ m. The field Φ± is then a homoge-

neous polynomial of degree 2|J| in ζ ( )—that is, it
appears to be a contraction of the conventional field
carrying 2|J| undotted (dotted) spinorial indices with

2|J| spinor factors ζ ( ). The conventional field is irre-
ducible (symmetric in spinor indices), satisfies the
Klein–Gordon equation (obeys the mass constraint T),
and describes spin-|J| particles (antiparticles).

Thus, the wave function naturally acquires an index-
spinor dependence in our approach. This dependence is
equivalent, in a sense, to equipping a conventional field
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with an index associated with a finite-dimensional rep-
resentation of the Lorentz group. It is precisely this cir-
cumstance that is concealed behind the term “index
spinor.”

It should be emphasized that our field does not
transform according to any elementary representation
of the SL(2C) group over index (this notion was intro-
duced in [10]); hence, it is not a polynomial in the index
spinor. A field that is transformed according to an ele-
mentary representation generally corresponds an infi-
nite-dimensional representation of the SL(2C) group
over index. A finite-dimensional representation may be
contained in such an infinite-component field, together
with an infinite-dimensional representation, provided
that the homogeneity index takes an “integral” value
[11], in which case the representation is reducible.

The BFV–BRST approach provides a consistent
formalism for calculating the transition amplitudes for
a constrained system [2]. For each first-class constraint
Fa, the coordinates of the original phase space are sup-
plemented, in this approach, with the “dynamical”
Lagrange multipliers (λa) ≡ (λT, λS) and the correspond-
ing canonically conjugate momenta πa, as well as with
the ghost variables, including the ghosts Ca and the

antighosts , together with the quantities  and 3a

canonically conjugate to the ghosts and antighosts,
respectively.

Upon going over to the Dirac bracket, the algebra of
the first-class constraints Fa remains Abelian, so that
the rank of the BRST charge is zero:

(4)

In the expression for the transition amplitude,

(5)

we make use of the Liouville measure for integration
with respect to both Bose and Fermi variables. In terms
of conventional integrals used in a finite-dimensional
approximation of the path integral, this means that each
product of the differentials of two canonically conju-
gate real-valued Bose variables in the measure is
divided by 2π. In accordance with the boundary condi-
tions being considered, the differential of each variable
that has no canonically conjugate partner is also
divided by 2π. The boundary conditions [see equations
(7) and (9) below] are chosen in such a way that this
concerns the variables pµ and λa. In the Hamiltonian
approach, the measure does not feature factors that cor-
respond to the Jacobian of the transformation from the
complex variables to the real ones.

C̃a 3̃a

Ω FaC
a πa3

a
.+=

ZΨ D z pz; λ π; C 3̃; 3 C̃,,,,[ ] δ Gi( )
i τ,
∏∫=

× 2π( )2
det Gi G j,{ } 1/2

iAeff( ),exp
τ

∏
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In expression (5), fulfillment of the second-class
constraints (2) is ensured by the functional delta func-
tion; upon going over to real-valued variables, the fac-
tors that correspond to the Jacobian of this transition do
not appear in the product (Gi). The measure is

normalized by the determinant det{Gi, Gj} = (4p2)2 of
the matrix of the Poisson brackets for the real second-
class constraints. For each instant of time τ, a factor of
2π must be additionally introduced in the measure for
each pair of canonically conjugate real second-class
Bose constraints.

In the effective Hamiltonian action

(6)

of the theory being considered, the Hamiltonian HΨ is
defined as the BRST derivative of a gauge fermion Ψ:
HΨ = {Ω, Ψ}. The transition amplitude is independent
of the choice of a gauge fermion, provided that the path
integral is taken along trajectories from the same coset
with respect to BRST transformations. This coset is
specified by an appropriate choice of gauge and bound-

ary conditions. With Ψ = λa, we obtain the relativ-
istic gauge with derivatives for the Lagrange multipli-

ers (  = 0), in which case we have HΨ = Faλa + 3a.
We do not simplify the expression for Ψ further by
eliminating some terms, because this would require
infinite renormalizations of the integration measure [12].

We calculate the transition amplitude by using the
boundary conditions

(7)

(8)

where the labels (1, 2) on the spinors stand for (f, j) in
the case of the holomorphic representation and for (i, f)
in the case of the antiholomorphic representation; we
also have

(9)

The boundary values of the remaining variables are not
fixed. These boundary conditions are BRST-invariant
and ensure that the BRST charge vanishes at the bound-
ary. The conditions in (8) determine a covariant solu-
tion compatible with the fact that, by virtue of the sec-

ond-class constraints, the quantities ζ and  are canon-
ically conjugate to each other. This solution is not
unique. There are an infinitely large number of covari-
ant boundary conditions for the index spinor. All of

δ
i∏

Aeff pẋ ζ̇ pζ pζ ζ̇ πλ̇+ + +(
τ i

τ f
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these are essentially equivalent to each other, each
specifying an individual realization of the Hilbert space
of spin states. Here, we restrict our consideration to two
basic types of (8) described in the literature [1].

For the boundary conditions (8) to be compatible
with the variational principle, we must introduce the
boundary term [8]

(10)

where the values of εζ = +1 and –1 correspond to the
holomorphic and the antiholomorphic representation,
respectively.

In the gauge under consideration, the path integral
(5) factorizes to become

(11)

The integral with respect to the ghost variables, Zgh,
has a simple Gaussian form. We break down the inter-
val of variation of the evolution parameter τ into N
equal parts, setting Tτ = τf – τi and ∆τ = Tτ/N. By induc-
tion, it can easily be proven that, prior to evaluating the
limit of the expression for Zgh, it is independent of N.

For zero boundary values of C and  (8), we obtain

Zgh = – .

Integration with respect to πa yields the delta func-

tion δ( ), so that the expression for  involves only

conventional integrals over zero modes of λa. Below,
the domain of integration with respect to these
variables is determined more precisely, which plays a
key role.

Integration with respect to x leads to the delta func-
tion δ( ); therefore, the path integral with respect to p
in (11) reduces to the standard integral over the zero

modes, with the integral dτ in the exponent of the

exponential function in the integrand being replaced by
the expression ip(xf – xi).

The second-class constraints (2) are resolved for the
spinor momenta pζ and . This makes it possible to
perform integration with respect to these variables by
using the functional delta functions in the expression
for the measure.

The remaining integral with respect to the index
spinor factorizes to become

(12)

Ab.t.

εζ–
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ṗ

pẋ∫

pζ

Zζ d
2ζ

τ
∏ d

2ζ p
2∫=

× i iζ̇ p̂ζ– iζ p̂ζ̇ λSζ p̂ζ–+( ) τ i Ãb.t.+d
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 

,exp
where  = –iεζ(ζi  + ζf ). The exponential
factor in the expression resulting from the evaluation of
the Gaussian integral (12) can be found by the saddle-

point method. The equations of motion for ζ and 

have the form 2i  + λSζ  = 0 and c.c.; therefore, a
nontrivial contribution to the ultimate result comes

only from the boundary term . The equations of
motion can readily be solved. Taking into account

equation (8) and the relations ζ  = ζ1  and

 = , we obtain

(13)

The preexponential factor in (13) is equal to unity;
it can be evaluated as follows. We break the range of the
evolution parameter τ into small segments and then
determine the integral in (12) as the limit

Zζ = [ζ1, ; Tτ, N]. It is straightforward to

derive the relation

which goes over to (13) in the limit N  ∞.
Now, all functional integrations have been per-

formed and the expression for ZΨ takes the form

(14)

The appearance of the quantum spin J in this formula
means that the classical spin j from formula (1) can be
redefined by using the ordering constant that arises in
going over from classical theory to the corresponding
quantum theory.

The orbits of the gauge group are characterized by
the Teichmüller parameters

(15)

where CT is the proper time [7]. In the theory under
consideration, the quantities CS arise from the classical
description of the intrinsic quantum numbers (spin,
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charge, etc.) in terms of the topological characteristics
of paths on a torus.

If the parameters of gauge transformations satisfy
the boundary conditions, the quantities CT and CS are

invariant under such transformations because δλT = 

and δλS = . The fact that the gauge  =  = 0 is
admissible implies that there is one-to-one correspon-
dence between the orbits and the zero modes of the
Lagrange multipliers. For the latter, we have

(16)

Only those reparametrizations are admissible that
correspond to monotonic functions [7]. Therefore, the
reparametrization group is broken down into two con-
nected components: the subgroup conserving orienta-
tion of the world line and the set of reparametrizations
changing orientation. The corresponding modular
group is ]2. BFV–BRST quantization involves only
those gauge transformations that are continuously con-
nected with the identical transformation. For this rea-
son, integration must be performed over the fundamen-
tal domain of the modular group in the Teichmüller
space. If the fundamental domain for the parameter CT
is defined as that where CT > 0, positive-energy parti-
cles propagate forward in time, and the transition
amplitude (5) appears to be a causal propagator.

The fundamental domain of the modular group for
the phase transformations of index spinors is deter-
mined by expression (14) for the amplitude. Since the
integrand is a periodic function of CS at half-integer
values of J, any interval of length equal to the period
(say, [0, 2π]) can be taken for the fundamental domain.
The corresponding modular group is ].

We can consider the modular invariance of the tran-
sition amplitude as the condition on the quantum theory
resulting from the classical theory through the calcula-
tion of the path integral. In this case, the boundary con-
ditions on the parameter ϕ are relaxed to take the form
ϕ(τf) – ϕ(τi) = 2πn, n ∈ ], in which case the require-
ment that the transition amplitude be a single-valued
function leads to a quantization of the spin J (a similar
consideration can be found in [13]).

Integration with respect to CT in (14) can be per-
formed by using the relation

Thus, the above choice of the fundamental domain cor-
responds to a conventional prescription for the circum-
vention of poles in the integral representation of the
causal propagator.

The integral with respect to CS can be calculated by
the Cauchy formula for the nth derivative of an analytic
function of a single complex variable z.

ė

ϕ̇ λ̇T λ̇S

CT λT T τ× /2, CS λS T τ× /2.= =

CT iCT p
2

m
2

+( )–{ }expd

0

∞

∫ i/ p
2

m
2

i0–+( ).–=
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
The ultimate result for the transition amplitude,

(17)

is an index-free representation of the Weinberg propa-
gator [1]. In the holomorphic case, J ≥ 0 [1] and the par-
ticles are described by symmetric spinors carrying
(2J + 1) undotted indices; in the antiholomorphic case,
J ≤ 0 and the particles are described by spinors carrying
dotted indices. The connection between the sign of J
and the sign of energy indicates [7] that the change in
the boundary conditions (8) is equivalent to the change
in the definition of the particles and antiparticles.

The spin-dependent factor in the integrand on the
right-hand side of (17) can be represented in the form
(2εζζ1 )2|J|/(2|J|)! = (2εζζ1 )2|J|/Γ(2|J| + 1),
which is valid for all spin values. This formula can be
analytically continued in J to the entire complex plane;
this is important for the theory of moving Regge poles
and for string theory.

Our result can be compared with the propagator
from [4] as follows. The Wigner wave function u(p, ζ; σ)
is determined by first quantization [1]. It obeys the spin

constraint (  – J)u = 0 and, in the holomorphic case,

the constraint u = 0. In the representation diagonal in
the index spinor, this wave function has the form [1]

u(p, ζ; σ) = [ζ]J, σ, where [ζ]J, ζ is a homogeneous
polynomial in ζ of degree 2J and σ is the spin projection.

The wave function for an arbitrary momentum p can
be obtained from the wave function for the standard
momentum  = (m, 0) by transforming the index

spinor as u(p, ζ; σ) = u( , ζBp; σ), where Bp =  is
the Wigner operator.

In the rest frame, we have (  – σ)u( , ζ; σ) = 0,

where  is the spinor part of the third component of
the angular momentum. This equation determines the
degree (J  σ) of the component [ζ]J,σ of the index
spinor in the expression 

[ζ]J,σ = NJ (ζ1)J – σ(ζ2)J + σ,

where  is a binomial coefficient and NJ is a

normalization factor.
For functions polynomial in ζ, a conventional ses-

quilinear form in the space of holomorphic functions of
the index spinor induces the scalar product

(18)

ZΨ
i–

2Jεζ( )!
------------------=

d
4
p

2π( )4
-------------e

ip x f xi–( ) 2εζζ1 p̂ζ2( )
2Jεζ

p
2

m
2

i0–+
-----------------------------------,∫

p̂ ζ2 p̂ ζ2

Ŝζ

d̂ζ

e
ζ p̂ζ–

p°

p° Bp
+

M̂3 p°

M̂3

+−

2J

J σ– 
 
 

1/2

2J

J σ– 
 
 

ϕ ψ,( ) N d
2ζd

2ζe
2ζ p̂ζ– ϕψ.∫=
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For homogeneous functions of degree J, we obtain

(19)

(see also [10], where the common factor is not fixed).
The orthonormality condition ([ζ]J', σ', [ζ]J, σ) = δJ 'Jδσ 'σ
determines the norm of basic symmetric spinors. The
factor N can be found from the condition requiring that
NJ be equal to unity at J = 0.

Multiplying the integrand in (17) by [ζi]J, σ[ ]J, σ'

and integrating this product with the measure from for-
mula (18) with respect to the initial (ζi) and final (ζf)
index spinors, we obtain the Weinberg propagator

where ∆C(x) = (2π)–4 peipx/(p2 + m2 – i0) is the causal
Green’s function for the scalar field, while ΠJ is deter-
mined by the formula

The properties of ΠJ are listed in [4]; it is important that
Πσ'σ( ) = m2Jδσ'σ.

In comparing our propagator with that obtained in
[4], we must consider that the factors π–1 and 2i reflect
the difference between our and Weinberg’s descriptions
of the spin and the difference between the ways in
which the pole factor was introduced in the integrand
here and in [4].
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Symmetry and Some Consequences for Spin-Particle Reactions*
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Abstract—On the basis of general spacetime and crossing symmetry, the general structure for amplitudes
describing spin-particle binary reactions is considered. Using the knowledge of the kinematic structure of helic-
ity amplitudes in the dynamical amplitude approach, we can get as model-independent general consequences
about observable quantities, as some asymptotic relations between polarization parameters on the basis of a
“kinematic hierarchy” assumption. © 2000 MAIK “Nauka/Interperiodica”.
1. SYMMETRY AND SPIN

Symmetry means harmony, beauty, and order.
In physics, symmetry has three levels:
(i) Coordinate systems and frames (spherical sys-

tem, inertial systems);
(ii) Variables (for example, for binary processes, we

have two independent variables, energy and angle, or
invariant variables, s and t);

(iii) Functions. If we consider reactions with parti-
cles with spin

(1)

we have N = (2s1 + 1)(2s2 + 1)(2s3 + 1)(2s4 + 1) func-
tions to describe the process, and we must choose the
optimal set of these functions.

In particle physics one can consider three types of
symmetry [1]:

(i) Spacetime symmetries;
(ii) Intrinsic symmetries;
(iii) “Intermediate” symmetry: crossing.
The language of symmetry is the mathematical the-

ory of groups and their representations. We have rota-
tion, Lorentz and Poincaré invariance, and the corre-
sponding groups with their representations. The
Poincaré invariance has two Kasimir operators, or two
invariants. These invariants are connected with two
fundamental properties of elementary particles: mass
and spin. Their existence is connected with symmetry.
Mass is both a classical and a quantum quantity,
whereas spin is a pure quantum object.

Symmetry is connected with fundamental conserva-
tion rules—conservation of energy, momentum, and
angular momentum (the latter is the sum of spin and
orbital momentum).

Thus, in elementary particle physics, we have a par-
ticle with mass m, spin s, energy E, and momentum p.
It is often convenient to consider helicity as well, the
projection of spin onto the direction of motion.

s1 s2 s3 s4,+ +

* This article was submitted by the author in English.
1063-7788/00/6304- $20.00 © 20623
We have two types of symmetry: global and local
(gauge). If we suggest symmetry (Lorentz) and the spin
of the particle, we can write a free particle Lagrangian
L0. If we suggest the gauge symmetry for a free particle
Lagrangian, we necessarily obtain a particle that takes
interactions (photon, gauge W and Z bosons, gluon) and
even the interaction Lagrangian LInt.

Generalization of the spin onto the “intrinsic” direc-
tion is isospin [2]. The isospin is connected with the
group SU(2). Wigner [3] suggests first generalization of
SU(2) and SU(4). A revolution in physics was made by
suggesting SU(3) and quarks [4], color [5], unified the-
ory of electroweak interactions, and quantum chromo-
dynamics.

Due to the symmetry in particle physics (quantum
field theory), we have a Lagrangian of a definite form
that depends on a small number of masses and interac-
tion constants. This is in sharp contrast with quantum
mechanics where interactions are considered as arbi-
trary functions (potentials) for every pair of particles.
Symmetry does not admit arbitrary functions. Today,
we have the following succession:

Symmetry  group  particle interaction.
Thus, SUc(3) symmetry and the corresponding

group give us quantum chromodynamics, and symme-
try and group U(1) × SU(2) give us electroweak inter-
actions. We have the standard 1 × 2 × 3 model and other
unification schemes. These unifications are realized at
very high energies, which occurred at the earliest stages
of our Universe in the Big Bang theory, so symmetry
gives us the key to the Universe.

Symmetry between fermions and bosons creates
supersymmetry, a theory that predicts new particles—
supersymmetric partners of the old ones. These
particles are the gravitino (with spin 3/2), photino, and
so on.

Thus, symmetry gives us the characteristics of par-
ticles (mass, spin momentum, and so on), the particles
that carry interactions (gauge particles), and the inter-
action Lagrangian. This, in principle, must be the full
theory.
000 MAIK “Nauka/Interperiodica”
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However, today we have no full and final theory for
the time being. Thus, there exists a problem that has its
own history: the problem of direct investigation of pro-
cesses with elementary particles based on the general
symmetry principles and independent of the explicit
form of the Lagrangian—spin kinematics (or amplitude
kinematics).

2. SPIN AND PARTICLE REACTIONS

Most particles have a nonzero spin. We are going to
consider binary reactions with particles of arbitrary
spins. The spin-particle reactions are convenient to
describe in the helicity amplitude formalism [6]. Helic-
ity amplitudes  have a clear physical
meaning, and observables are expressed by them in a
simple way. Helicity amplitudes contain all the infor-
mation about the considered process. But helicity
amplitudes have kinematic singularities.

Scattering of spinless particles is described by one
amplitude. Considering this amplitude as a function of
invariant variables, we have the function A(s, t). This
amplitude has some singularities. They are called
dynamical singularities. The analytic properties of the
amplitude are connected with causality and unitarity,
and this amplitude obeys dispersion relations.

For spin particles, the process is described by sev-
eral functions, several helicity amplitudes. And they
have additional, so-called kinematic, singularities.
Thus, helicity amplitudes do not fulfill simple disper-
sion relations. It is necessary to find and separate kine-
matic singularities. Thus, helicity amplitudes are
expressed via a set of other amplitudes without kine-
matic singularities. For a lowest spin, it is convenient to
introduce invariant amplitudes.

Let us consider the simplest nontrivial reaction:
π−N scattering, elastic scattering of a spin-zero particle
with the mass µ on a spin-1/2 particle of mass m. Using
the Dirac equation, we can find the following connec-
tion between the helicity and invariant amplitudes (in
standard designation):

(2)
Here A(s, t) and B(s, t) are invariant amplitudes. Prop-
erly defined invariant amplitudes have no kinematic
singularities.

For the general case of scattering of particles with
spins si , we have

(3)

Kinematic singularities of (s, t) are con-

tained in the coefficient functions an(s, t).
This procedure is nice for low spins. It is difficult to

construct such an expansion for high spins. For all si =

f λ3 λ4; λ1 λ2,, s t,( )

f 0 λ4; 0 λ2,,
s s t,( ) u

λ4 p4( ) A s t,( ) Q̂B s t,( )+{ } u
λ2 p2( ).=

f λ3 λ4 λ1 λ2, , , s t,( ) aλ3 λ4 λ1 λ2, , ,
n s t,( )An s t,( ).

n 1=

N

∑=

f λ3 λ4 λ1 λ2, , ,
3/2, we have N = 256, and for si = 11/2, we have N .
20000. Besides, the main difficulty is in finding such a
decomposition in a way that coefficients of invariant
amplitudes do not contain “secret singularities” rather
than in dimensions. Thus, in describing the Compton
effect, for several years people used a decomposition
suggested in [7], but then it appeared that those invari-
ant amplitudes had additional singularities, and later a
more complicated decomposition [8] was suggested.

Besides technical difficulties for spins greater than
unity, a nontrivial question of uniqueness of such a
decomposition arises, and, since for higher spins the
invariant amplitude decomposition is not unique, the
“secret” singularities and additional and noncontrolla-
ble kinematic constraints appear.

There exists another way that uses symmetry princi-
ples and is connected with the use of representations of
a rotation group—Wigner’s d functions. If we use d
functions in the s channel, then using d functions in the
t channel and finally connecting channels also by d
functions, we can obtain a result much more convenient
than (3).

The helicity amplitudes in the center-of-mass sys-
tem of the s channel obey rotation symmetry (this sym-
metry is connected with the conservation of angular
momentum). Because of this symmetry, it is convenient
to expand helicity amplitudes over the representation of
a rotation group, over Wigner’s functions:

(4)

Here, we have infinite summation. Wigner’s functions
have the form

(5)

where (cosθ) are Jacobi polynomials (see, for
example, [9]),

with M = max(|λ|, |µ|) and N = min(|λ|, |µ|).
The crossing relations between the s- and t-channel

helicity amplitudes appear as follows [10]:

(6)

f λ3 λ4 λ1 λ2, , ,
s

s t,( )

=  2J 1+( ) f λ3 λ4 λ1 λ2, , ,
J

s( )dλµ
J θcos( ).

J

∑

dλµ
J θcos( )

=  g θ
2
---sin 
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θ
2
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PJ M–
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Pk
mn
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J M+( )! J M–( )!
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The crossing relations also contain the Wigner func-
tions. Here, the summation is over helicity values, and
it is restricted (α is some phase factor).

3. SPIN KINEMATICS AND DYNAMICS

A lot of people have worked in this direction by con-
sidering spin kinematics and decomposition of helicity
amplitudes in terms of other sets of amplitudes [11].
Combining some approaches and modifying others, we
suggest a new variant of formalism that has all the
advantages of different approaches, differs from all of
them, is based on the symmetry and conservation laws,
and is general and simple.

Symmetry imposes restrictions on amplitudes.
When one has additional symmetries in definite direc-
tions, the number of independent amplitudes in such
“symmetrical directions” is reduced. Such situations
occur for forward and backward scattering.

Consider the reaction in the s channel described by
the helicity amplitudes. Introduce the quantities λ =
λ1 – λ2 and µ = λ3 – λ4. Two particles in the center-of-
mass system move in opposite directions, and thus λ
and µ are projections of the total spin onto the direc-
tions of motion prior to and after collision. Owing to
the conservation of the projection of the total angular
momentum, the amplitudes in the forward direction,
θs  0, should vanish in all cases except for λ = µ.
Analogously, for backward scattering, θs  π, the
amplitudes should vanish for the same reasons in all
cases except for λ = –µ. For forward scattering, we have

(7)

whereas for backward scattering,

(8)

Two questions arise:

Can the helicity amplitudes be parametrized so as to
satisfy the conditions (7) and (8) automatically?

Can kinematic singularities of helicity amplitudes
be found and separated in a simple way?

The answer is “yes.”

Using (4), for the spinless case, we get the decom-
position via the Legendre polynomials, depending on
cosθ. By definition, in the spinless case, we have no
kinematic singularities.

In the nonzero spin case, helicity amplitudes are
split into two parts: one part is defined by the symmetry

properties and enters into the functions (cosθ) that
make the conservation laws of the angular momentum

f λ3λ4 λ1 λ2, ,
forward f λ3λ4 λ1 λ2, , , when λ µ=

0, when λ µ,≠



=

f λ3λ4 λ1 λ2, ,
backward f λ3λ4 λ1 λ2, , , when λ µ–=

0, when λ µ– .≠



=

dλµ
J
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valid, and the other part has a dynamic nature and

enters into the partial helicity amplitudes (s).

In (4), all the t dependence is contained in d func-
tions via cosθs . At the points cosθs = ±1, the d function
has kinematic singularities on the t variable, which can
be separated explicitly.

These singularities do not depend on J, and we can
separate the common singular factors. The rest of the
sum will contain decomposition by polynomials on the
t variable. Therefore, we can define dispersion ampli-
tudes for any binary process:

(9)

Here,

The mass factors in the denominators make A and B
dimensionless without introducing additional singular-
ities in the variable s. Under this parametrization, the
conditions (7) and (8) are fulfilled automatically. All
kinematic singularities in the variable t are separated
explicitly, and no false singularities in s are introduced.

The amplitudes (s, t) are well suited to study-
ing the analytic properties of the amplitudes at fixed s
because they obey dispersion relations. Therefore, we call
them the dispersion amplitudes [12]. They may still have
the kinematic singularities in the variable s.

Dispersion amplitudes resemble reduced ampli-
tudes [11], but they have no additional s-variable false
singularities.

For t-channel processes, the corresponding disper-
sion amplitudes are free from kinematic singularities in
the variable s. Expressing the dispersion amplitudes of
the s channel in terms of the dispersion amplitudes on
the annihilation channel, we obtain the connection
between the amplitudes having kinematic singularities
in s with the amplitudes that are free from them. Thus,
kinematic singularities of the s-channel helicity ampli-
tudes are in crossing coefficients in crossing relations
between s- and t-channel amplitudes. The number of
coefficients is restricted, and we do know the singular-
ities of these coefficients; indeed, these coefficients are
Wigner’s functions and we do know their singularities!

Therefore, using crossing symmetry, we can find
kinematic singularities of the s-channel dispersion

f λ3λ4 λ1 λ2, ,
J
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amplitudes also in the variable s. Separating these sin-
gularities, we determine a new set of functions describ-
ing binary processes—dynamical amplitudes. Dynam-
ical amplitudes for elastic processes (m + µ  m + µ)
have the following relations with the helicity ampli-
tudes [13]:

(10)

Dynamical amplitudes are in fact modified regular-
ized helicity amplitudes, and they differ from the
reduced amplitudes by dimensions: all dynamical
amplitudes have the same dimensions, whereas the
dimensions of regularized amplitudes depend on spins
and helicities.

4. OBSERVABLES

The dynamical amplitude formalism is interesting
for studying the general characteristics of particle reac-
tion theory, and it also suitable for exploring concrete
processes. This approach provides an analysis where
kinematics is fully taken into account and is clearly
separated from dynamics. The observable quantities
are simply expressed via the helicity amplitudes.

As we have already mentioned, the helicity ampli-
tudes have a clear physical meaning, and physical
observables (polarization cross sections, asymmetries,
etc.) are simply expressed via them. As for elastic pro-
cesses, the connection between the helicity and dynam-
ical amplitudes is one-to-one and every helicity ampli-
tude for elastic scattering is expressed in terms of one
dynamical amplitude. Hence, it follows that all attrac-
tive features of the helicity amplitudes—a clear physi-
cal meaning, simple relations with observables, and
equal dimensions—are also inherent in the dynamical
amplitudes. The formalism of dynamical amplitudes is
simple for low spins and remains so for higher spins as
well: the formalism is simple for any spins.

The differential cross section for elastic scattering,
when one measures the helicity of each particle, is
expressed via helicity, invariant, and dynamical ampli-
tudes in the following form:

(11)
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1
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2
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=

         
The first relation in outward appearance is the sim-
plest, but helicity amplitudes contain kinematic singu-
larities, and the conservation laws are not fulfilled auto-
matically, so kinematics and dynamics are not sepa-
rated. Here, we have one term. In the second equation,
there is a sum of all invariant amplitudes. Here, we have
N terms. For the spins equal to 3/2, there are 256; and
for the spins equal to 11/2, more than 20000 terms. In
each term, we have kinematic–dynamical separation,
but there are so many such terms. In the parametriza-
tion via dynamical amplitudes, we have no summation!
The differential cross section is expressed only via one
dynamical amplitude with the kinematic factors that
contain all kinematic singularities. We have only one
term.

Other quantities such as P, Ann, A

 

ll

 

, and 

 

A

 

ss

 

 in terms
of the helicity amplitudes have the form [14]

Here, 

 

m

 

 and 

 

n

 

 represent sets of helicity indices, 

 

c

 

mn

 

 =

 

±

 

1

 

. The sum is taken for all values of helicities. Obvi-
ously, the expressions will be most convenient in terms
of dynamical amplitudes.

5. KINEMATIC HIERARCHY

In the framework of the general spin formalism
based on the symmetry properties (“dynamical ampli-
tude” approach), obligatory kinematic factors arise in
the expressions of observables. These spin structures
for high energies give a small parameter that orders the
contributions of helicity amplitudes to observables.
Such a “kinematic hierarchy” predicts for 

 

pp

 

 elastic
scattering at high energies and a large fixed angle (90

 

°

 

)
a simple connection between asymmetry parameters
and even numerical values for them [15].

Dynamical amplitudes in some sense are a general-
ization of form factors: in both cases, we separate kine-
matics. Dynamics of the processes containing matrix
elements of the electromagnetic current operator
(three-point functions) are described by form factors.
After separation of kinematics and dynamics, it is con-
venient to express physical observables in terms of
form factors. Analogously, dynamics of binary reac-
tions (four-point functions) are contained in dynamical
amplitudes (it is the reason they are so called). After
separation of kinematics and dynamics, it will be con-
venient to express observables in terms of dynamical
amplitudes.

In the dynamical amplitude approach, obligatory
kinematic factors arise in the expressions of observ-
ables. These spin structures for high energies give a

L2 st+

m µ+( )2
---------------------

 
 
 

λ µ+–
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m µ+( )2
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Dλ3λ4 λ1λ2, s t,( )
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cmn f m f n*∑
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2∑
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small parameter that orders the contributions of helicity
amplitudes to observables.

In studying the binary processes at fixed scattering
angles and high energies, it is convenient to represent
kinematic factors in the definition of dynamical ampli-
tudes as functions of the scattering angle θ in the cen-
ter-of-mass system and invariant variable s. Kinematic
factors expressed in terms of θ and s are factorizable,
and we can write

(12)

At high energies when s  ∞, we get the small
kinematic factor

(13)

For different values of helicities l changes, lmin ≤ l(λ3λ4,
λ1λ2) ≤ lmax.

In observables, some of the contributions of the
amplitudes are kinematically increased (such ampli-
tudes will give leading contributions), whereas others
are suppressed (and can be neglected in the first
approximation). Thus, we have the “kinematic hierar-
chy”—the helicity amplitudes are divided into classes
giving the leading contribution, the first corrections,
second corrections, and so on. The kinematic hierarchy
also gives definite relations between various observ-
ables.

We have five independent helicity amplitudes:

(14)

For asymmetry parameters, we have [10]

(15)

(16)

For nucleon–nucleon scattering, the connection
between helicity and dynamical amplitudes at fixed
angles and asymptotics has the following form:

(17)

f λ3λ4 λ1λ2, Pλ3λ4 λ1λ2, s( )ϕλ3λ4 λ1λ2, θ( )Dλ3λ4 λ1λ2, .=

Pλ3λ4 λ1λ2, s( ) m

s
------ 

  l λ3λ4 λ1λ2,( )
.∼

f 1 f 1/2, 1/2; 1/2, 1/2, f 2 f 1/2, 1/2; –1/2, –1/2,==

f 3 f 1/2, –1/2; 1/2, –1/2, f 4 f 1/2, –1/2; –1/2, 1/2,==

f 5 f 1/2, 1/2; 1/2, –1/2.=

dσ
dt
------Ann Re f 3 f 4* f 1 f 2*– 2 f 5

2–[ ] ,–=

dσ
dt
------Ass Re f 1 f 2* f 3 f 4*+[ ] ,=

dσ
dt
------All

1
2
--- f 1

2
f 2

2 f 3
2– f 4

2–+{ } .–=

f 1 s t,( ) m

s
------ 

  2

D1 s t,( ), f 2 s t,( ) m

s
------ 

  2

D2 s t,( ),==

f 3 s t,( )
θs

2
----D3 s t,( ),cos

2
=

f 4 s t,( )
θs

2
----D4 s t,( ),sin

2
=
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In the high-energy large-fixed-angle region, we

have the small parameter (m/ ) ! 1, and helicity
amplitudes are split into three classes in the order of
smallness determined by the kinematic factors:

(18)

Here “a @ b” means that the contribution of b is sup-
pressed relative to the contribution of a in the observ-
ables.

For proton–proton scattering at θc.m. = 90°, we have
from the s–u crossing symmetry that f1/2, 1/2; 1/2,–1/2(90°) =
0 and f1/2, –1/2; 1/2, –1/2(90°) = –f1/2, –1/2; –1/2, 1/2(90°).

Taking into account the dominating amplitudes, we
obtain for asymmetries

(19)

Recent developments in acceleration of polarized
protons using the so-called Siberian snakes now allow
the achievement of polarized proton–proton collisions
at new accelerators. New possibilities will be open for
studying spin effects at high energies [16, 17], and it
will be possible to check our predictions. Existing data

show growth of Ann( (GeV2)) [18]: Ann (3.81) = 0.26,
Ann(4.79) = 0.52, and Ann(5.56) = 0.59.

Another interesting process is the reaction proton +
antiproton  photino + antiphotino. The process is
interesting because, at new accelerators, we will have a
chance to discover particles predicted by theories based
on supersymmetry, in particular, photino. Dynamical
amplitudes for inelastic reaction with massive particles
of masses m + m  M + M are expressed by binary
combinations of helicity amplitudes (kinematic factors
are considered as functions of the variables s and θ) [19]:

(20)

We have helicity amplitudes

(21)

f 5 s t,( ) s
2m
------- θsD5 s t,( ).sin=

s

f 1/2, 1/2; 1/2, –1/2 @ f 1/2, –1/2; 1/2, –1/2 f 1/2, –1/2; –1/2, 1/2∼
@ f 1/2, 1/2; 1/2, 1/2 f 1/2, 1/2; –1/2, 1/2.∼

Ann Ass– All= =

=  
2Re f 1/2, –1/2; 1/2, –1/2 f 1/2, –1/2; –1/2, 1/2

*

f 1/2, –1/2; 1/2, –1/2
2

f 1/2, –1/2; –1/2, 1/2
2

+
---------------------------------------------------------------------------------- 1.

p⊥
2

Dλ3λ4 λ1 λ2, ,
s ±, s

m M+
--------------- 

 
a

s 4m2–
m M+

---------------------- 
 

b
s 4M2–
m M+

----------------------- 
 

c

=

× θ
2
---sin 

  λ µ–– θ
2
---cos 

  λ µ+–

Fλ3λ4 λ1 λ2, ,




  θ 
2
---sin  

  
λ µ

 

+–

 θ 
2
---cos  

  
λ µ

 

––

 F λ 
3

 λ 
4

 λ – 
1

 λ – 
2

 , , ±




 .

F1 F1/2, 1/2; 1/2, 1/2, F2 F1/2, 1/2; –1/2, –1/2,==

F3 F1/2, –1/2; 1/2, –1/2, F4 F1/2, –1/2; –1/2, 1/2,==

F5 F1/2, 1/2; 1/2, –1/2, F6 F1/2, –1/2; 1/2, 1/2.==
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For asymmetry parameters, we have [14]

(22)

(23)

(24)

In these equations,

(25)

Using the explicit form of connection between
helicity and dynamical amplitudes and smallness of the
kinematic factor that appears, we have a “kinematic
hierarchy” for the discussed reaction. Helicity ampli-
tudes are split into three classes in the order of small-
ness determined by the kinematic factors.

(26)

If we take into account only the dominating ampli-
tudes, we get asymmetries (for some other reasons, for
example, for s–u symmetry and at definite angles, there
can be additional restrictions, which have not been
taken into account here).

Thus, we have two results.
(i) Hierarchy relation: All = Ass.
(ii) Numerical value for asymmetry parameter:

Ann = –1.

6. OTHER APPLICATIONS
Spin kinematics allows one to obtain the low-energy

theorems for photon–hadron processes [20] and grav-
itino scattering on a spin-0 target. For the latter process
at low energies, the helicity amplitudes up to O(E3) are
determined by their t-channel Born terms with the pho-
ton exchange [21].

The dynamical amplitudes, or more simply the t-
channel dispersion amplitudes, can be used to prove
mode-independent dispersion inequalities for the
Compton effect on the pion and nucleon target, includ-
ing the case of polarized photon scattering [22].

Here, we have mentioned other possible applica-
tions of dynamical amplitudes. These are the dispersion
relations for individual helicity amplitudes for any elas-
tic scattering and sum rules (especially dual sum rules),
also for any elastic scattering.
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Abstract—A study of a certain subset of Volterra equations has revealed that some statements about time-inde-
pendent constants of motion, Hamiltonian functions, and Poisson structure matrices appearing in the Lotka–
Volterra equations, either regarded as proven or of the sort that could be proven, are not valid, in fact. Particular
cases are given as examples to explain the reasons for the occurring phenomena. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The Lotka–Volterra equations (LVE) are systems of
ordinary nonlinear differential equations of the form

(1)

The Volterra equations (VE) are a special case of the
LVE [1], when there exist βi ≠ 0 such that

(2)

In the odd-dimensional case of the VE, the matrix A is
degenerate. Initially even-dimensional systems were
studied with variables coupled in predator–prey pairs,
admitting a classical Hamiltonian approach (see [2])
with nondegenerate symplectic structure. The classical
approach, however, cannot be applied in a straightfor-
ward way for odd-dimensional systems, or in even
dimensions when the equation for the central equilib-
rium point p,

(3)

gives pi = 0 for at least one i. In the biological imple-
mentations, the dependent variables xi are regarded as
real positive numbers, representing populations of spe-
cies i; the components of the vector b are called linear
growth rates, or Malthusian terms; and A is called the
interaction matrix, the diagonal terms describing self-
interaction of species and the off-diagonal terms being
responsible for interactions between different species.
The terms of interaction matrix A and the Malthusian
terms b are arbitrary real numbers in the case of the
general LVE. In the case of the VE, the terms of the
interaction matrix are not completely arbitrary; for
instance, the self-interaction (diagonal) terms are all
equal to zero.

·xi xiyi, i 1 … N , where y, , Ax b.+= = =

βiaij β ja ji.–=

Ap b,–=

* This article was submitted by the authors in English.
1) Laboratory of High Energy, Joint Institute for Nuclear Research,

 Dubna, Moscow oblast, 141980 Russia.
2) Laboratory Comp. Tech. Automat., Joint Institute for Nuclear

 Research, Dubna, Moscow oblast, 141980 Russia.
1063-7788/00/6304- $20.00 © 20629
The Volterra lattice model, usually written as Ni =

Ni(Ni + 1 – Ni – 1), studied with the Hamiltonian methods
in [3], known for close relations to the Toda lattice
model and the Korteveg–de Vries (KdV) equation (see
[4, 5]), and cited by Gümral and Nutku [6] as the Fad-
deev–Takhtajan system, turns into different subcases of
the VE under different boundary conditions. For exam-
ple, the 3D case of periodic boundary conditions (22)
complies with the form of “ABC matrix” (4) used in [6–
8], while the conditions used in [4] do not. Both are
subcases of the general antisymmetric interaction
matrix studied in [9], which in turn is a subcase (βi = 1,
;i; b = 0) of the VE; and the latter are a subset (2) of the
LVE (1). We classify the systems with multiple pair-
wise interactions, called LVE in [10], as Volterra equa-
tions.

To make things clear, we use the definition of the
LVE and the VE complying with that given in [11, 12],
the works that we cite most extensively. But, in contra-
distinction to [11, 12], we do not assume the “natural”
xi > 0 conditions.

2. BI-HAMILTONIAN STRUCTURE

The first example of a bi-Hamiltonian structure for
an LVE system of a special form was given by Nutku
[8]. For the system studied earlier by Grammatikos et al.
[7] with the “ABC” interaction matrix

(4)

on the conditions

d
dt
-----

A
0 C 1

1 0 A

B 1 0 
 
 
 
 

, b
λ
µ
ν 

 
 
 
 

,= =

ABC 1+ 0, ν µB λAB,–= =
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and for the constants of motion

(5)

Nutku has written Hamiltonian equations as

(6)

with the antisymmetric Poisson structure matrices J1
and J2, which we represent here by the corresponding
vectors j1 and j2, so that ji = ((Ji)23, –(Ji)13, (Ji)12)T:

(7)

(8)

satisfy the Jacobi identity,

(9)

where the square brackets denote symmetrization in the
indices m, n, p.

In the 3D case, the Jacobi identity for the Poisson
structure matrix J, represented by vector j, becomes

(10)

which is recognizably the condition of the theorem of
Frobenius on the integrability of Pfaff’s form, this fact
being more than a mere coincidence, and subsequently
substantially used in [6]. However, the “ABC matrix,”
on the terms of the constraints used, is a very special
case of the interaction matrix of a Volterra type.

3. THE PRIMARY INVARIANTS
OF CAIRÓ AND FEIX

The invariants of motion for the LVE of the most
general form were studied in [11, 13] by means of the
generalized Carleman embedding method. These
invariants come together with certain constraints and
have been classified by Cairó and Feix [11] into pri-
mary invariants of three types, secondary invariants,
and those deduced by rescaling.

If and only if det(A) = 0, the primary invariant type I

(11)

exists with αi and s satisfying

(12)

Defining the auxiliary matrix D and the vectors n and

(A) according to

(13)

H1 AB x1 B x2 x3,ln+ln–ln=

H2 ABx1 x2 Ax3– ν x2 µ x3,ln–ln+ +=

ẋi J1
ik∇ kH2 J2

ik∇ kH1= =

j1 x2x3 BCx1x3 Cx1x2,–,–( )T ,=

j2 x1x2x3 Cx1x3 x2 ν+( ) Cx1x2 Ax3 µ+( ),–,( )T=

Jk[
m∇ k Jnp] 0,=

j rot j,( ) 0,≡

(I xi
α iest

i 1=

N

∏=

ATa 0, s a b,( ).–= =

diag

dij aij a jj, n– 1 1 … 1, , ,( )T ,= =

diag A( ) a11 a22 … aNN, , ,( )T ,=
the conditions for the existence of the primary invariant
type II are (N – 1)(N – 2)/2 equations

(14)

together with the conditions

(15)

The form of the invariant type II is

(16)

where α i and s are found from the equations

(17)

Considering the time dependence, Cairó and Feix state
that s = 0 when N is odd. This statement is based on the
assumption rank(A) = N, which does not appear among
the conditions, but is used in the proof of their theorem,
and becomes invalid when det(A) = 0. Here is an exam-
ple that makes this clear:

(18)

The primary invariant type III of Cairó and Feix

(19)

exists on N(N – 1)/2 conditions

(20)

For this invariant, a and s are defined from

(21)

There is a certain correspondence between invariants II
and III in the neighboring odd and even dimensions that
Cairó and Feix have discovered. However, for the pri-
mary invariant III, their statement is that s = 0 for even
N. The controversial example for the latter statement is
the same as (18), with an additional equation

Considering the classical Volterra invariant, Cairó and
Feix use a procedure for obtaining a limit of invariant
III when the diagonal terms of the interaction matrix
tend to zero. They have managed to obtain it for N = 2,
but in the case of the “ABC matrix” (4), their result for

Rijk dijd jkdki d jidkjdik+ 0,= =

b1 b2 … bN b0, that is b b0n.= = = = =

(II xi
α i –x1

d1l

dl1
------xl

l 2=

N

∑+
 
 
 

est,
i 1=

N

∏=

ATa diag A( ), s– b0 1 a n,( )+( ).–= =

A
3 4 5

2 3 4

1 2 3 
 
 
 
 

, b
3

3

3 
 
 
 
 

,= =

(II x2
3– x3

3 x1– x2– x3–( )e 3t– .=

(III xi
α i 1

all

bl

-----xl

l 1=

N

∑+
 
 
 

est

i 1=

N

∏=

Rij

aii

bi

-----dij

a jj

b j

------d ji+ 0.= =

ATa diag A( ), s– aaaa b,( ).–= =

ẋ4 x4 –3 3x4–( ),=

(III x2
3– x3

2x4
1– 1 x1 x2 x3 x4+ + + +( )e 3t– .=
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the Volterra invariant is H1, which is not correct, since
the expression for the Volterra invariant should contain
the coordinates of the central equilibrium point, or sta-
ble population levels; thus, the correct expression
should be H2. This is a consequence of the fact that the
generalized Carleman ansatz does not contain logarith-
mic terms additively to the linear ones.

4. BI-HAMILTONIAN TECHNIQUE VERSUS 
RESCALING

Gümral and Nutku [6] studied the Poisson structures
of dynamical systems with three degrees of freedom
from the point of view of the theorem of Frobenius on
the integrability of Pfaff’s equation. Among others,
they used the same “ABC-matrix” example (4) and Fad-
deev–Takhtajan system closed modulo 3

(22)

as its particular case. Although the bi-Hamiltonian
structures for the LVE given in [6] are the same as in
[8], the general considerations on the forms of the bi-
Hamiltonian structures are important. Namely, the
Poisson structures include, in general, the terms of the
order from 0 to 3 in the powers of xi. The Poisson 1-
forms corresponding to the Poisson structures should
be compatible, so a conformal factor should be used to
add two of them. In a certain case, the equations of
motion can be written in a manifestly bi-Hamiltonian
form through the exterior product of the gradients of
two Hamiltonians. It was also pointed out in [6] that a
ratio of components of Poisson structure functions
obeys a partial differential equation, which could be
quite a manageable one. An analogous idea was also
used in [14, 15].

In [14], a representative set of three-dimensional
autonomous systems was studied, the LVE being the
last and the most difficult case. The procedure imple-
mented therein included rescaling of the vector field
and using the Jacobi identities for the Poisson structure
matrix as partial differential equations to obtain one of
its components. The idea was that every particular solu-
tion of these equations should identically satisfy both
the Hamiltonian form of the rescaled equations and the
Jacobi identities. However, to find a particular solution
in the case of the LVE with primary invariant I as the
Hamiltonian function, an additional constraint

(23)

was imposed. In [15], the same idea was used but two
constraints were imposed. The common feature of both
works [14, 15] is that no numerical examples are given,
so a consistency check is still to be performed. On our
part, we have found that the formulas from [15] do not
reproduce the Malthusian terms b for s = 0. The Poisson

A
0 1 1–

1– 0 1

1 1– 0 
 
 
 
 

, b 0= =

d32 a23a11 a13a21–( ) d31 a23a12 a13a22–( )=
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structure functions obtained in [14] are also not appli-
cable if s = 0, although the constraint (23) and the two
constraints imposed in [15] are satisfied with matrices
(32) given in Section 6. The correct Poisson structures
in this case are given in Section 7.

5. HAMILTONIAN STRUCTURES BY PLANK

Plank studied generalized Hamiltonian structures in
the LVE [12] using time-independent constants of
motion as Hamiltonian functions and quadratic Poisson
structure functions

(24)

where cil are the matrix elements of a constant skew-
symmetric matrix C. To the usual items of the definition
of the generalized Hamiltonian system, “(i)  = J∇ H is
the vector field with smooth real-valued Poisson struc-
ture matrix J and Hamiltonian function H defined on an
open subset G of RN, and (ii) the Jacobi identities for the
skew-symmetric J are satisfied,” he added the third
item, “(iii) The matrix of linearization at every fixed
point can be written as a product of a symmetric and a
skew-symmetric matrix.”

The forms for the Hamiltonian functions were
deduced by Plank from the explicitly solved case N = 2:

(25)

(26)

(27)

(28)

Cairó and Feix [16] regard the constant of motion of
the  form (28) as a limiting case of their primary invari-
ant type III. The following example shows that this is
not so:

(29)

jil cilxixl,=

·x

H x( ) βi xi pi xiln–( );
i 1=

N

∑=

H x( ) xi
α i 1 Blxl

l 1=

N

∑+
 
 
 

, Bl 0;≠
i 1=

N

∏=

H x( ) xi
α i Blxl

l 1=

N

∑ 
 
 

, Bl 0;≠
i 1=

N

∏=

H x( ) α i xi

B0 Blxl

l 1=

N

∑+

xk

------------------------------+ , Bkln
i 1=

N

∑ 0.= =

A
3 1– 1

3– 1– 2–

0 2 1 
 
 
 
 

, b
0

1

1– 
 
 
 
 

,= =

H x( )
x1x2

x3
2

----------
1 x2– x3–

x1
------------------------,+ln=
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because the equations for a (21) give α2 = α3 for (III in
contrast to α = 1, α3 = –2 in the example.

However, all of Plank’s theorems, with the excep-
tion of that on the Volterra invariant, in the case N > 2
are not valid for the part of the proof that the first part
of the definition of a Hamiltonian system fulfills. Cal-
culating the Hamiltonian vector field  = J∇ H, the
author [12] obtains the correct expressions

(30)

where g(x) = 1 for (25), g(x) =  for (26) and

(27), and g(x) =  for (28). The proofs of the men-
tioned Plank theorems end with the following similar
words: “Since the factor g(x) is positive in the first
orthant, it can be dropped without altering the phase
portrait of the differential equation QED.” All these
words are true except for the last three letters “QED,”
because the definition point (i) demands the differential
equation itself to be written in the Hamiltonian form,
not the phase portrait. Thus, Plank has discovered, or
rather, constructed, Hamiltonian systems with qua-
dratic Poisson structure matrices having the same phase
portrait as certain LVE in the first orthant. For the pure
LVE, another form of Poisson structure matrices should
be used with Plank’s Hamiltonian functions:

(31)

In three dimensions, the Jacobi identities with this form
of Poisson structure matrices are satisfied. When N = 4,
additional constraints arise from the closure of the
Jacobi identities: a = b = 0 when det(C) ≠ 0, or det(C) =
det(A) = 0. Of course, when N > 4, still more additional
constraints will appear. However, the open subset G in
which the Hamiltonian system should be defined may
be extended now, in certain cases, to the entire RN,
excluding the subspaces xi = 0.

6. DEGENERACIES WITH 3D PLANK 
STRUCTURES

The puzzling absence of the analog of Cairó and
Feix’s primary invariant type I among Plank’s Hamilto-
nian functions can be explained by comparing Nutku’s
example (8), with cubic terms, and Plank’s ansatz (24),
without cubic terms in the Poisson structure matrices.
But, in fact, all of Plank’s Hamiltonian functions (26)–
(28) imply the degeneracy of interaction matrices in
three dimensions, which is easily proved by straightfor-
ward calculations of the vector fields through J∇ H. The
following formulas (32) and (33) are the results of such
calculations. Defining g as the vector dual to the matrix
C and introducing B0 = 1 for (26) and B0 = 0 for (27),

·x

ẋi g x( )xi bi aijx j

i 1=

N

∑+
 
 
 

,=

xi
α i

i 1=
N∏

xk
1–

jil
1

g x( )
-----------cilxixl.=
we have for the cases of Hamiltonian functions (26)
and (27)

(32)

where l = Ca ≡ [a, g]. In the same notation, for the
case of Hamiltonian function (28), with k = 1 we have

(33)

The determinants of these matrices are

(34)

for (32) and

(35)

for (33). They are identical to zero because (l, g) ≡ ([a,
g], g) ≡ 0. This means that primary invariants type I
should exist in both cases. Moreover, g is a solution of
the equations for this invariant with s = 0. The corre-
sponding equations in Plank’s form are ATg = 0; (g, b) =
0 for the constant of motion

(36)

7. THE “MANIFESTLY BI-HAMILTONIAN” 
EQUATIONS

With the invariant (36), we can write, using Gümral
and Nutku’s expression, the “manifestly bi-Hamilto-
nian form” of the equations of motion of the system as

(37)

so that
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det A( ) B1B2B3 n g,( ) l g,( ) 0≡=

det A( ) B2B3 n g,( ) l g,( ) 0≡=

K x( ) xi
γi.

i 1=

3

∏=

ẋ m x( ) ∇ H ∇ K,[ ] ,=

jH m x( )∇ K      and j K m x ( )∇ H ,–= =
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where the scalar function m(x) is defined from (37)
using a component of the vector field:

and

(39)

Along this line, we get the correct form of Poisson
structure matrices with Plank’s Hamiltonian functions
in the dual representation

(40)

which is equivalent to (31), containing quadratic terms
due to their origin from ∇ K. The Poisson structure
matrices for the time-independent case of the invariant
(I of Cairó and Feix contain only cubic terms when this
invariant exists together with Plank’s Hamiltonian
function (27), and with Hamiltonian functions (26) and
(28), the quadratic terms are also included. In the dual
representation, the expressions for the Poisson struc-
ture matrices corresponding to the invariants (26) and
(27) are

(41)

and for the invariant (28),

(42)

These should be compared with the results of Haas and
Goedert, since the additional constraints imposed in
[15] are satisfied for interaction matrices (32) when
B1 = B2 = B3.

8. NONDEGENERATE 3D INTERACTION 
MATRICES

The degeneracy of interaction matrices (32) in the
case of Plank’s Hamiltonian function (26) is implied in
the three-dimensional case by the conditions of the cor-
responding theorem Ca = b, ail = Bl(bi + cil). However,
in the case of Plank’s theorem for the Hamiltonian
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PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
                                                    

function (27), the conditions b = 0, ATa = – (A),
and Bidik = –Bkdki do not imply the degeneracy of A. In
the latter case, if a row e(B1, B2, B3) is added to each

row of a degenerate interaction matrix , the corre-
sponding matrix D (13) remains the same. The determi-
nant of the new interaction matrix A is nonzero; thus,
the invariant K(x) ceases to exist for the new system.
The phenomenon appearing in such a case is clear from
the following example with e = 1 and b = 0:

(43)

with the constant of motion

(44)

common to both systems. It is a Hamiltonian function

of the type (26) for , but it is not for the new system
with the interaction matrix A, since the values of the
components of the vector field coincide for these two
matrices only in the invariant plane : 3x1 – x2 + 3x3 of
the invariant (II, defined in [11]. Thus, the conditions
of Plank’s theorem for this case are not sufficient to
reproduce even the phase portrait of the differential
equation.

However, all the known examples of Hamiltonian
structures for LVE up to this moment have been of
degenerate interaction matrices for the case N = 3. Here
follows an example with a nondegenerate interaction
matrix with a bi-Hamiltonian structure of Lie–Poisson
form:

(45)

(46)

(47)

Equations (45) were derived by Brenig [17] from the
equations of an asymmetric top and resonant three-
wave interaction system. The Hamiltonian functions
(46) could be thought of as secondary invariants of
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Cairó and Feix, since Plank’s Hamiltonian function of
the type (27) must have all coefficients Bl ≠ 0 in the lin-
ear polynomial expression. The Poisson structures (47)
are not equal to those given in [6] for Euler’s top, but
are of the same linear type.

9. CONCLUSIONS

The conditions of Plank’s theorems on the Hamilto-
nian systems for LVE with Hamiltonian functions of
the types (26)–(28) are not sufficient to reproduce the
vector field of LVE with quadratic Poisson structure
matrix (24). For (27), the conditions are not sufficient
to reproduce even the phase portrait of LVE (43). A
modified Poisson structure matrix (31) should be used,
and an additional constraint det(A) = 0 is implied in the
3D case of the Hamiltonian function (27).

In the 3D case, the interaction matrices (32) and
(33) are identically degenerate, implying the existence
of the second Hamiltonian function (36) and allowing
the Poisson structure matrices to be obtained using the
gradients of the two Hamiltonians.

In three dimensions, Lie–Poisson-type structures
may appear in the cases when secondary linear polyno-
mial invariants of Cairó and Feix exist.

Plank’s conditions for the absence of time depen-
dence of the constants of motion are more exact than
those of Cairó and Feix. The existence of a sufficient
number of time-independent constants of motion is
important, since it makes possible a direct application
of a bi-Hamiltonian [6] or, more generally, multi-
Hamiltonian [18, 19] formulation, thus leading to com-
plete integrability.

With the exception of the case of the Volterra invari-
ant, the correct forms of Poisson structure matrices
include the product of certain powers of dependent
variables, which give their contributions to the left-
hand sides of the Jacobi identities, implying some addi-
tional constraints when N > 3. For instance, in the case
of N = 4, either the Poisson structure matrix and the
interaction matrix are both degenerate, or the Hamilto-
nian function is linear.
NOTE ADDED IN PROOF

The work by M. Plank “Bi-Hamiltonian Systems
and Lotka–Volterra Equations: A Three-Dimensional
Classification” [M. Plank, Nonlinearity 9, 887 (1996)],
which contains, in particular, some results to those in
Section 7, was not available to us when this report was
submitted.
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VIII INTERNATIONAL CONFERENCE
ON SYMMETRY METHODS IN PHYSICS
Semiclassical Model of Atomic Collisions: Stopping and Capture 
of Heavy Charged Particles and Exotic Atom Formation*

W. A. Beck
MicroSound Systems, Issaquah, WA 98027, USA

Abstract—The semiclassical approach to modeling atomic collision systems lies between the easy classical
model, which is most useful for simple systems in which quantum effects can be neglected, and the full quantum
mechanical description, which is generally too difficult for more than simple systems. By adding a mathemat-
ical model of quantum-mechanical effects to a classical Hamiltonian, the calculational simplicity of the many-
bodied classical model can be extended to the quantum realm; the validity of this approach can be measured by
the degree to which the semiclassical model can replicate experimental data. Evolving from earlier work by
Kirschbaum and Wilets, our model uses momentum-dependent pseudopotentials to exclude particles from
quantum mechanically forbidden regions of phase space: a Heisenberg pseudopotential stabilizes the system by
preventing atomic electrons from collapsing into the nucleus, while a Pauli pseudopotential holds identical elec-
trons apart in phase space, structuring the electron configuration. This semiclassical model of an atom is then
used as a target in collision simulations with a heavy projectile, which is itself treated classically. Collision cross
sections are calculated from a series of simulation runs with Monte Carlo target orientations and impact param-
eters. The model is dialed in to match published experimental proton stopping powers, then applied to other
systems of interest. Here, we present stopping and capture cross sections for antiprotons colliding with our
semiclassical model of He. Antiproton stopping on He is compared with the results reported recently by the
OBELIX group, and initial capture states are discussed in some detail, including a comparison with the quan-
tum-mechanical calculations originally presented by Yamazaki and Ohtsuki and the later paper by Shimamura;
among the differences: (1) In our calculations, the angular momentum of captured antiprotons obeys the clas-
sical limit l = n, and (2) the angular momentum distribution of our He+  states extends beyond that of the quan-
tum calculations. It should be emphasized that our calculations are for times much shorter than the metastable
lifetimes. © 2000 MAIK “Nauka/Interperiodica”.

p

1. INTRODUCTION

Classical Trajectory Monte Carlo (CTMC) calcula-
tions of charged particle collisions, in which individual
collisions are calculated microscopically and then aver-
aged over an ensemble of initial conditions, have long
been used to model collision processes in simple sys-
tems. The lack of any quantum mechanics in the CTMC
approach, however, apparently limited it to systems in
which quantum effects played a small role, e.g., single
heavy charged particle collisions with very simple tar-
gets such as H and He+, or in which one active electron
was treated classically in the mean field of the rest of
the target; in classical models of multielectron atoms,
outer electrons evaporate, while inner electrons col-
lapse into the nucleus.

Following the approach of Kirschbaum and Wilets
[1], our semiclassical trajectory Monte Carlo (STMC)
method uses momentum-dependent pseudopotentials
of the general form

(1)V
ξ2

"
2

4αr2
----------- α 1 rp/ξ"( )4–[ ]{ }exp=

* This article was submitted by the author in English.
1063-7788/00/6304- $20.00 © 0635
to exclude electrons from forbidden regions of phase
space; ξ" is the size of the forbidden region, and α is
the hardness of the exclusion. Effective use of this
approach requires an understanding of how these
parameters determine the static and dynamic behavior
of the atomic model [2].

2. THE SEMICLASSICAL MODEL OF AN ATOM

With atomic units " = e = me = 1, the semiclassical
N-electron atom of atomic number Z is described by

(2)

where ri and pi are the positions and momenta of the
atomic electrons relative to the fixed nucleus and rij and
pij are the relative coordinates of electron pairs;

(3)

is the Heisenberg pseudopotential which prevents col-
lapse of electrons into the nucleus;
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0 1.0 1.50.5
Electron radius, a0

Fig. 1. Radial distribution of semiclassical ground-state
electrons for (a) He, (b) Be, (c) C, (d) O, and (e) Ne.

Fig. 2. Semiclassical vs experimental proton stopping pow-
ers for (a) He, (b) Be, (c) C, (d) O and (e) Ne.
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is the Pauli pseudopotential, separates identical elec-
tron pairs (electron spin si = sj), resulting in an electron
structure in the ground state atom.

This semiclassical model of an atom is minimized to
find a stable ground state in which the electrons, while
at rest, have nonzero momenta in the presence of
momentum-dependent pseudopotentials. Proper choice
of the parameters αH, ξH, αP, and ξP is essential to pro-
vide a physically reasonable ground state model which
will not distort collision dynamics. Figure 1 illustrates
the radial distribution of ground-state electrons for our
semiclassical models from He to Ne. While all of these
ground states have the correct total binding energy, the
electron configurations were not chosen to meet any
particular detail of real atomic ground states, e.g., first
ionization potentials or mean electron radii, but were
chosen as reasonable overall approximations of ground
state conditions for use in collision studies.

3. SEMICLASSICAL COLLISION MODELING; 
STOPPING POWER

The total Hamiltonian for a proton colliding with a
fixed nucleus of a semiclassical atom is given by

(5)

where R and P are the coordinates of the proton relative
to the nucleus. To model collisions, the classical equa-
tions of motion for this system,

(6)

are solved for ri, pi and R, P over time. Note that there
is no pseudopotential term VH, p(|ri, p|, |pi, p|) between the
projectile and the target electrons; VH is used only to
stabilize the target system, and all interactions between
the target and the projectile are via the Coulomb forces.

Quantum uncertainty is rolled into the model by aver-
aging over a sequence of collision calculations using
Monte Carlo initial conditions: target distributions are
generated by separate, solid body rotation and parity
inversion of the electron positions and momenta, and
impact parameters are randomized with equal areas πdb2

up to some bmax. The same Monte Carlo seed is used for
sequences of collisions allowing calculation of collision
cross sections from repeatable ensembles of initial condi-
tions. For N collisions starting with such initial conditions,
the total energy-loss cross section or stopping power,
σ∆E, is calculated from the average proton-energy loss as

(7)

with an uncertainty
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Figure 2 shows the semiclassical stopping powers
calculated for the semiclassical He to Ne targets
depicted above in Fig. 1; with correct design of the tar-
get systems, good agreement with the experimental
data is obtained [2].

4. STOPPING AND CAPTURE OF NEGATIVELY 
CHARGED PARTICLES

To first order, the atomic stopping of positive and
negative particles is equivalent, as is shown in the first-
order treatment of the Born approximation [3]. The
Barkas effect [3–5] is the reduction in the atomic stop-
ping of negative particles relative to positive particles at
lower projectile energies, around the region of maxi-
mum stopping. In concept, the Barkas effect is fairly
straightforward: as the projectile slowly approaches the
atomic target, at a velocity on the order of the electron
velocities, it will have time to interact with the electron
cloud, and Coulomb forces deform the electron cloud
toward or away from the projectile, increasing or
decreasing the interaction between the electrons and
the projectile, thus splitting the (primarily electron)
stopping of the atomic target for projectiles of opposite
charge.

Theoretical analyses of this effect remain fairly
complicated [5, 6], but it is understood that higher order
terms, including electron–electron correlations, play a
significant role. In the Born approximation, the first-
order term in the energy loss of heavy charged particles

is proportional to , where Z1 is the charge of the pro-
jectile; the next higher order Born term is proportional

to ; thus, a change of sign in the projectile charge
changes the contribution of this term [3]. The unique
advantage of the STMC approach to collision modeling
is its simultaneous treatment of all particles in the col-
lision system, thus incorporating all of the higher order
terms due to multiple particle interactions, terms which
are not well handled by methods which must average
over a large number of particles in order to make their
calculations tractable. This advantage shows up in cal-
culation of the stopping powers of negatively charged
particles.

In our initial study of antiproton stopping on He, we
used the technique described above for proton stop-
ping, averaging the results of 5000 collision calcula-
tions performed at a series of fixed initial energies, each
time using the same ensemble of initial conditions for
target configuration and impact parameter. We
extended our calculations down to 0.01 keV/amu,
allowing us to rough out the behavior of our model
when applied to antiprotons, particularly in the lower
velocity region of interest for antiproton capture. Fig-
ure 3 plots these STMC antiproton stopping powers
against the recent antiproton stopping powers of the
OBELIX group [7]; the proton experimental values are
shown for comparison. Our results differ somewhat

Z1
2

Z1
3
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from the OBELIX values, but the differences are com-
parable to those obtained from the current (and much
more complicated) state of the art in quantum approxi-
mations to this problem, the atomic orbital method of
Schiwietz and Grande, which involves calculation of
several hundred atomic orbital base states [8]. As
shown in Fig. 4, which details the ionization and cap-
ture cross sections for these collisions, capture begins

8

6

4

2

0

Stopping power, 10–15 eV cm2

10–3 10–1 101 103 105

E0, keV/amu

1

2

3
4

5

6

7

8

1
2
3
4
5
6
7

Proton experimental
Semiclassical
OBELIX best fit stopping
OBELIX upper bound
OBELIX lower bound
Low-energy semiclassical collision cascade
OBELIX “unacceptable” low-energy stopping
OBELIX “acceptable” low-energy stopping8

Fig. 3. Low-energy, semiclassical collision cascade antipro-
ton stopping powers compared to the higher energy semi-
classical results calculated from discrete initial energies and
compared with the recent experimental results of the OBE-
LIX group.
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Fig. 4. Semiclassical cross sections for antiproton single and
double ionization of the He target and for antiproton capture
onto the He target via single and double ionization.



638 BECK
6040200

2

4

E, a.u.

L, a.u.

Before double ionization capture

Before single ionization capture

Fig. 5. Antiproton energies and angular momenta at the start of the collisions leading to capture on helium at the end of the collision
cascade.
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Fig. 6. Energies and angular momenta of antiprotons captured at the end of the collision cascade via single and double ionization;
total system energy and angular momentum for the neutral He+ system.p
near the low-energy end of this data set, at an energy
roughly equal to that observed experimentally; capture
via single ionization into the neutral He+ is much less
frequent than the double ionization capture into He++;
the large error bars result from the small number of cap-
ture and ionization events in this approach.

To obtain a more realistic picture of the capture pro-
cess, we developed a collision cascade [9], in which
antiprotons were started with an energy above the onset
of capture, then followed as they slowed via a sequence
of collisions until capture occurred. Figure 3 shows that
our cascade stopping powers fall between the OBELIX
“acceptable” and “unacceptable” estimates. Given the
current state of experimental knowledge, the fact that

p
p

the STMC method yields results in the right ball park,
particularly at the lower energies, where capture begins
to occur and the experimental uncertainties remain
quite high [7, 10, 11], is more reassuring than the spe-
cific disagreements with experiment are disquieting;
even in this difficult low-velocity region, where the pro-
jectiles are actually stopped and capture processes
begin to predominate, the STMC approach remains a
reasonable approximation to the imperfectly under-
stood experimental situation.

The larger number of capture events resulting from
the collision cascade provided a better picture of the
capture process; most captured antiprotons would
quickly annihilate, but the distribution of those cap-
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Fig. 7. Typical antiproton–electron dynamics after capture via single ionization; the high-velocity electron trajectory (r) is aliased
from undersampling.
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Fig. 8. Expanded view of antiproton–electron dynamics (a) immediately after antiproton capture and (b) after t = 12000 a.u.; the
electron trajectory (r2) is again aliased due to undersampling.
tured by single ionization into the potentially metasta-
ble Condo–Russell states could then be studied in
greater detail.

5. CAPTURE ANALYSIS

Figure 5 shows the distribution of antiproton ener-
gies and angular momenta at the start of the last stage
of the collision cascade, just prior to capture; due to the
limited amount of energy and angular momentum that
can be exchanged by the massive antiproton and the
bound electrons of the He atom, antiproton energies
and angular momenta which result in capture fall into a
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 4      2000
fairly narrow range. Figure 6 shows the energies and
angular momenta of the states into which antiprotons
were captured at the end of the collision cascade. The
continuous distribution of antiprotons prior to capture
has split into separate, distinct distributions of energy
and angular momentum; the higher energy, higher
angular momentum antiprotons have only been able to
ionize a single electron during the capture process and
have been captured into the higher energy and angular
momentum states of Fig. 6.

Of the 4000 collision cascades followed until cap-
ture, 916, or about 23%, ended with capture via single
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Fig. 9. Comparison of the center of the capture distributions of Fig. 6 with calculated antiproton states.
electron ionization into the neutral exotic He+, while
the remaining 77% resulted in capture via double ion-
ization into a positively charged He++. While signifi-
cantly larger than the observed metastable fraction of
3.6%, the value of our primary population of neutral
antiprotonic helium is comparable to that obtained by
Korenman, who used a semiclassical calculation for
coupled two-particle and three-particle channels to
estimate the primary population of antiprotons cap-
tured into high l orbitals by an isolated helium atom at
30% [12, 13] and reasoned that the higher lying states
would be quickly destroyed by collisions with other
atoms in the target medium.

In our model, after capture via single ionization, the
antiproton continues to interact and exchange energy
and angular momentum with the remaining electron, so
each of the single ionization antiproton states plotted in
Fig. 6 represents a time average of the antiproton con-
figurations. The (constant) total sum of the antiproton
and electron energy and angular momentum in these

p

p

neutral antiprotonic helium atoms are the quantities
used by Yamazaki and Ohtsuki in their original analysis
of the metastability [14].

Figure 7, showing the changing electron and anti-
proton radii after antiproton capture, is an example of
the overall nature of antiproton–electron dynamics in a
typical He+ system; because of the much higher
velocity of the electron relative to the antiproton, the
electron trajectory is unavoidably undersampled and
aliased. This antiproton is initially captured into a fairly
eccentric orbit with R . 0.5–2, from which it has little
interaction with the electron until about t = 1800, at
which time its orbit begins to tighten and become less
eccentric, and the antiproton–electron interaction
increases, as shown by the increased eccentricity of the
electron orbit from t . 2000 to 5500; the amount of
antiproton–electron interaction continues to vary over
the time, with the final conditions at t = 20000 similar
to those existing shortly after initial capture of the anti-
proton.

p
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Figure 8 provides expanded views of the system
dynamics of Fig. 7. Figure 8a depicts the initial dynam-
ics after capture, including the immediate ionization of
e1, the initial stability of e2, and the change in system
dynamics as the antiproton–electron interaction begins
to increase for t > ~1800. Figure 8b illustrates the con-
tinuing variation in the amount of antiproton–electron
interaction as the antiproton and electron continue
exchanging angular momentum as the system evolves
after capture.1) 

Figure 9 overlays the expanded view of the central
portion of the capture distributions of Fig. 6 with calcu-
lated antiprotonic states: The antiprotons in the doubly
ionized He++ stack up against the classical L = n cir-
cular states, while antiprotons in the singly ionized

He+ stack up against the L = neff circular states for
Zeff . 1.7–1.8. Note that the He+ system states extend
well beyond the E0, j circular boundary calculated by
Shimamura [15], which is essentially the L = n – 1 cir-
cular boundary of Ohtsuki [14]; this results from the
excitation of the remaining electron to higher angular
momentum states during the capture process. As dis-
cussed in our original paper on this topic [9], this is an
entirely reasonable result: because of the infinite range
of the Coulomb potential, the total system energy level
diagram of E(L) should extend further to the right than
the Ohtsuki–Shimamura circular boundaries, since
electrons in hydrogenic states of arbitrarily small
energy and arbitrarily large angular momentum can be
added to any of the simple He++ states. It appears that
neither Ohtsuki nor Shimamura located these states,
because neither included electron base states of l > 1 in
their quantum-mechanical calculations of the system;
in the semiclassical system, it is clear that the antipro-
ton can transfer angular momentum to the electron dur-
ing the capture process and can continue to exchange
angular momentum as it interacts with the electron
after capture into He+, as shown in Figs. 7 and 8.

6. SUMMARY AND CONCLUSIONS

The good agreement obtained to experimental pro-
ton stopping power values with our semiclassical
model, in particular, in the difficult region of maximum
stopping, where the proton collides with a velocity on
the order of the Bohr velocity, resulting in complex,
many-body interactions with the target electrons,

1)As in Fig. 7, undersampling of the much faster electron results in
aliasing of the electron orbit, more visible on the expanded time
scale of Fig. 8.

p

p
p

p

p
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allows us to apply the model with greater confidence to
less well-defined experimental problems such as anti-
proton capture on helium.

The semiclassical description allows a detailed
examination of the antiproton capture process, includ-
ing the continuing exchange of energy and angular
momentum between the antiproton and the electron
after initial capture, and a prediction of antiproton cap-
ture states with higher total angular momentum than
have been found in the more complicated treatments of
this system. Whether or not these states actually exist
remains an open question, but this treatment of antipro-
ton capture on helium provides a good example of the
“less is more” nature of the semiclassical method: by
approximating a complex quantum-mechanical system
with a more manageable model, calculations can pro-
ceed further than is possible in a more rigorous treat-
ment, offering a greater, albeit approximate, insight
into the overall nature of the system.
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on the time-dependent Dirac equation, the electron mass-shift due to dressing by a superstrong laser field is
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mediate range of the field strengths where, in the zeroth order of the high-frequency approximation, the binding
is stabilized by the field. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The nonrelativistic theory of interactions between
atoms and high-frequency, high-intensity laser fields is
well developed in several complementary forms, all of
which assume the dipole approximation. Theories
based on the Floquet method include the high-fre-
quency Floquet theory [1], the Sturmian–Floquet
method [2], and the R-matrix Floquet theory [3]. An
alternative approach is offered by ab initio time-depen-
dent calculations carried out on atomic hydrogen [4, 5],
as well as more recently on helium, particularly in [6],
although at somewhat lower intensities. Recent
accounts of work done in the nonrelativistic field can be
found, e.g., in reviews [1, 7, 8].

The numerical studies of relativistic interactions
between atoms and classical fields are more limited,
although the full QED treatment of the problem was
considered in the case of multiphoton ionization (MPI)
some time ago [9]. The time-dependent Dirac equation
for an atomic electron in the presence of a classical
laser field has been solved only very recently. Kylstra
et al. [10] considered a one-dimensional model, and
Rathe et al. [11] examined a two-dimensional model.
Prior to that, several classical and quantal models were
considered in [12–15].

The high-frequency approach that was so fruitful in
the nonrelativistic domain, particularly in the studies of
atomic stabilization by strong laser fields, has not yet
been explored in relativistic conditions, although the
problem was formulated some time ago [16–18] and
the general equations were presented. This talk draws
attention to the high-frequency theory of Kristi –Mit-
tleman (KM) [17] and presents some results obtained in
the numerical solution of a 1D model problem.

c′

* This article was submitted by the author in English.
1063-7788/00/6304- $20.00 © 20642
2. RELATIVISTIC HIGH-FREQUENCY 
APPROXIMATION

The theory of Kristi –Mittleman [17] is a relativis-
tic generalization of the zeroth order of Gavrila’s non-
relativistic high-frequency theory described in detail in
[1]. The unitary transformation U, Ψ = UΦ, where Ψ is
the wave function in the laboratory frame and Φ is the
wave function in the relativistic Kramers–Henneberger
(KH) frame, is obtained in the form

(1)

In equation (1), Ψq is the relativistic Volkov state, χq is
a relativistic (Dirac) free state of an electron with the
mass m* dressed by the laser field, and summation in
electron momentum q is extented to all components of
the relativistic spinors. Generally, the expression is
very complicated, and the resulting operator is nonlo-
cal. However, it can be made local and considerably
simplified if it is assumed that the wave functions con-
tain only values of q that are small compared to mc. In
the approximation of Kristi –Mittleman, the contribu-
tion from large q is neglected, only terms linear in q are
retained in the phase, and only terms of order q0 are
retained in the prefactors of the matrix U. Then the
matrix U is local and gives a time-dependent local
potential 8 = U–1VU, where V is the nonrelativistic
atomic potential.

The time-dependent Dirac equation in the relativis-
tic KH frame takes the form (in atomic units used
throughout)

(2)

where

(3)

c′

U r r' t, ,( ) Ψq r t,( )χq* r' t,( ).
q
∑=

c′

i
∂Φ
∂t
------- ca p βµc2 8 r t,( )+ +⋅[ ]Φ ,=

8 r t,( ) V r( ) β0 φg φ( )sin–=
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and

(4)

In equation (3), it is assumed that the electric field %0 is
directed along the x axis, the propagation vector k is
directed along the z axis, and the parameters β0 and η0
are defined below by equation (8). On account of retar-
dation, the total phase φ is defined as φ = ωt – kz'(z),
with z'(z) to be obtained by inverting the transcendental
equation

(5)

where γ0 = β0η0/4.
8 can be compared with the potential in the nonrel-

ativistic KH frame. In both cases, the potentials have all
harmonics, and further simplification is achieved by
introducing the high-frequency approximation. As
usual, the zeroth order is obtained by averaging the
time-dependent KH potential over the laser period. In
the relativistic case, however, this averaging procedure
must take retardation into account.

Equation (2) provides a convenient model for the
studies of coupling with the negative energy states in
the presence of a superintense laser field. By reducing
this equation to the Pauli form, the spin effects may be
accounted for in a simpler form.

Further approximations in the main equation (2) are
possible. Within the large-component approximation,
which will be considered in this work, equation (2) for
an atom in an intense, linearly polarized laser field
takes the form of a Schrödinger equation with a static
potential 80; thus,

(6)

where p = –i∇  is the momentum operator, W is the non-
relativistic bound energy, and µ is the averaged electron
mass dressed by the laser field [18]. For a mono-
chromatic wave, the invariant time-averaged mass µ is
given by

(7)

In equation (7), α0 = %0/ω2 is the classical quiver ampli-
tude of a nonrelativistic electron oscillating in a laser
field of frequency ω and field strength %0, and c ≈ 137
is the velocity of light. Using the parameters

(8)

the relativistic atomic potential of Kristi  and Mittle-
man averaged over a cycle of the laser field is

(9)

where 8 is given by equation (3).

g φ( ) êx
1
2
--- êzη0 φ.cos–=

z z' γ0 2φ,sin–=

p2/2µ 80 r( )+[ ]Φ r( ) WΦ r( ),=

µ 1 α0
2ω2/2c2+ .=

β0 α0/µ, η0 ωβ0/2c,= =

c′

80 r( ) 1
2π
------ 1 η0

2 2φcos+( )8 r φ,( ) φ,d

π–

π

∫=
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The zeroth-order equation (5) contains two laser
parameters, %0 and ω (or β0 and η0), instead of a single
parameter α0 of the nonrelativistic high-frequency the-
ory. The parameter β0 is the quiver amplitude of the rel-
ativistic motion of the electron under the influence of
the electric field of the laser. The parameter η0 is of the
same order of magnitude as the ratio of the quiver
amplitude (i.e., the characteristic size of the atom in the
laser field) to the wavelength of the laser field. The con-
dition η0 ! 1 corresponds to the physical domain
where the dipole approximation is justified. Beyond
this approximation, the retardation correction is given

by the cos2φ term in equation (9), and the magnetic
field enters equation (3). The curve defined by it is the
classical figure-eight trajectory in the xz plane, and it
corresponds to the electron motion in the reference
frame where the average momentum is zero. The ratio
of the amplitudes of the x and z oscillations is given by

ρ0 = η0. For a Coulomb potential V, the KM potential

80 has a logarithmic singularity on this curve [17].
We observe from equation (7) that the dressed mass

µ scales as α0 at ultrastrong field strengths %0. Hence,
both β0 and η0 remain bound at a given laser frequency
ω, and the potential (9) does not depend on the field %0
in this limit. The full domain of the parameter values is

(10)

where T is the laser period. During one cycle, the elec-
tron travels a distance along x with a speed that does not
exceed the velocity of light c whatever the magnitude of
%0 may be. Consequently, the quiver amplitude β0 is
always finite. In the high-intensity limit, ρ0 = 0.1768,
and it does not depend on either amplitude or frequency
of the field.

The upper panels of Fig. 1 show xz plots of the y = 0
cross section of the KM potential for the field strength
of %0 = 175 a.u. and for two laser frequencies ω = 1 and
2 a.u. The graphs |80| in Fig. 1 are for the Coulomb
potential in the hydrogen atom. Note that, by taking a
coarse grid, the singularities of the KM potential have
been smoothed near the discontinuities.

Several general features can be seen in Fig. 1. The
trace of the classical figure-eight trajectory on the
potential surface can be clearly observed as a ridge. The
dimensions of the ridges in Fig. 1 are those given by
equation (8). The distortion of the potential surface in
the vicinity of the origin is quite significant. The ridge
of the potential formed all along the figure-eight line
replaces the simpler picture of the Gavrila potential. In
the latter, nonrelativistic, case and for linear polariza-
tion, the potential is square-root singular near the turn-
ing points and has a logarithmic singularity on the line
connecting the turning points. This produces a distinc-
tive dichotomic structure of the nonrelativistic potential

η0
2

1
4
---

0 β0 2c/ω 0.225cT , 0 η0 1/ 2,≤ ≤≈≤ ≤

0 ρ0 2/8,≤ ≤
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Fig. 1. The upper panel: xz plots of the 3D potential of Kristi  and Mittelman, |80(x, 0, z)| (a.u.) for %0 = 175 a.u. The base areas
correspond to –225 ≤ x ≤ 225, –40 ≤ z ≤ 40 (a.u.). (a): ω = 1 a.u. (µ = 1.347, β0 = 129.9 a.u., η0 = 0.474, ρ0 = 0.118); (b): ω = 2 a.u.
(µ = 1.097, β0 = 39.9 a.u., η0 = 0.291, ρ0 = 0.073). The potential has been smoothed out. The ridges along the figure-eight curves
represent a logarithmic singularity of varied strength. The lower panel: frontal views of the plots in the upper panel in the  z (prop-
agation) direction. Apart from the potential wells representing the turning points, there is a central potential well which becomes
more prominent as the laser frequency ω increases.
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and the ground state wave function in the KH frame.
Kristi  and Mittleman have suggested [17] that the
dichotomy of the relativistic wave function may disap-
pear in the high-intensity limit. Figure 1 shows that,
even at such a high field strength as 175 a.u., it does not
yet happen. The lower panels in Fig. 1 present the fron-
tal view of the xz plots in the direction of propagation,
with distinctive potential wells near the turning points
and at the origin. This structure persists at the higher
field strengths up to 1000 a.u. investigated in the
present work.

The three-dimensional KM theory accounts for rel-
ativistic effects due to dressing of the electron mass by
the laser field and the averaged motion in the magnetic
field, as well as due to retardation. However, some
other important effects are left unaccounted for. Among
those, spin interactions were later discussed by the
same authors in [19] within the same approximations.
Coupling with the negative energy states can be studied
in an approximate way within the present theory if the
KM potential is included in the Dirac equation, as is
done in (2). However, the dynamical effects due to the
magnetic field [12, 20] including the switching on and

c′

off of the pulse are beyond the scope of the present
static model, which also assumes a monochromatic
external field. Such QED effects as, for example, pair
creation [21] are also not considered.

3. THE 1D-MODEL PROBLEM

An application of the full theory is a difficult prob-
lem. However, as seen from Fig. 1, some essential fea-
tures of the theory can be recognized in a one-dimen-
sional model that accounts for only motion of the elec-
tron along the direction x of the electric field and where
the retardation term in (9) is dropped. The correspond-
ing 1D time-dependent Dirac equation has been
recently solved numerically by Kylstra et al. [10]. In
this work, we report a complete numerical solution for
this model in the high-frequency approximation. The
time-averaged potentials 80(x), the binding energies
Wn, and the wave functions Ψn(x) have been obtained
for the ground and a few low-lying excited states. As in
[10], in these calculations, a “soft” potential V(x),

(11)V x( ) Z ε x–( ) x–( )exp–exp( )/ x ,–=
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which is finite at the origin, has been used with Z = 1
and ε = 0.001. Its binding energy W1 is –0.60149 a.u.
Generally, this potential is similar to the smooth so-
called Rochester potential used, for instance, in [15].
The main reason for preferring the present form was
that the Fourier transform of (11) required in the
momentum space calculations [10] could be carried out
analytically.

For a given %0, the 1D solution of (2) was obtained
by a finite-difference method. The Hamiltonian was
discretized on a uniform N-point grid, ∆x = 0.005–
0.015 a.u., with N ≈ 105. This allowed the box size of
500–1500 a.u. to be used. The averaging of the poten-
tial, equation (11), was carried out at each point of the
x grid by using an M-point φ grid. Typically, M ≈ 400
had to be taken for good averaging at high α0 in the
range considered. Computations have been carried out
on the Cray J916 at the Université Libre de Bruxelles.

4. RESULTS AND DISCUSSION

Figure 2 shows the binding energy W1 of the ground
state with the potential (9)–(11) as a function of α0 and
ω. For low field strengths %0, the binding always
depends on a single parameter α0, so that the upper
curve in Fig. 2 represents W1 for any ω in the nonrela-
tivistic limit considered by Gavrila [1].

As the field strength increases, the dependence of
W1 on ω develops, and at larger %0, the binding shows
a rapid change and a deviation from the nonrelativistic
curve. Whereas the nonrelativistic binding decreases
and asymptotically approaches the free-field ionization
limit, the relativistic binding exhibits quite a different
pattern of behavior. For low field intensities, it follows
the nonrelativistic pattern, but at some intermediate
intensity, it departs from the nonrelativistic curve and,
for a given laser frequency ω, is practically independent
of the field strength. At higher intensities, the binding
gradually increases, although at a very slow rate. For
the ground state, for example, the rate is 3 × 10–6 at α0 =
1000 a.u. In a wide region of field strengths that
stretches out well beyond the graph, the binding as a
function of %0 is practically constant, although it is
remarkably different at different ω. This can be charac-

terized by a parameter  = W1( , ω), where  is
chosen to be 300 a.u. The dependence of the binding

 on ω is shown in the insert to Fig. 2.

It is interesting to compare these results with the
estimates obtained by Kristi  and Mittleman [17].
Using a one-state variational function, they obtained an

estimate  for the binding energy at ultrahigh inten-
sities as follows:

(12)

W1 α0 α0

W1

c′

W̃1

W̃1 ω 3/8( )1/2αF

4π
------ α0/a0( ) 4.23–ln( ),–=
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where αF is the fine-structure constant. According to
their result, the binding slowly increases with α0 and
the dependence of the binding on ω is strictly linear.
The present calculations show that the change of the

binding (ω) with ω is faster than linear at lower fre-
quencies but is better represented by a linear function
as the laser frequency increases.

As an example, the potential 80(x) and the corre-
sponding probability densities |Ψ1(x)|2 in the ground
state are displayed in Fig. 3 for the case of ω = 1 a.u.
and increasing field strengths %0, up to 1000 a.u. For
this laser frequency, the relativistic effects in the poten-
tial 80 and those in the probability density are not sig-
nificant at field strengths below 50 a.u. However, as the
classical quiver amplitude α0 increases with the field,
the dichotomy of the relativistic potential tends to satu-
rate and the relativistic probability densities tend to
peak at the relativistic quiver values, x0 = ±β0. For ω =

1 a.u., the value of β0 is limited by c/ω ≈ 193 a.u.,
whereas the corresponding nonrelativistic densities
peak at ever increasing distances x0 = ±α0. There is
exact agreement between this and the results obtained
from the dynamical treatment [10].

In the nonrelativistic case, the spatial variables scale

as , and the width of the dichotomy peaks around

the end points x = ±α0 increases as  [1]. The scaling
is different in the relativistic case. We now have to take
into account the variable dressed mass of the electron,
µ, in equation (1). Then, one finds that the width of the
relativistic peaks around the end points x = ±β0
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Fig. 2. Plot of the relativistic ground state energy W1(α0, ω)
as a function of α0 at a fixed laser frequency ω. The numbers
at the curves are values of ω in a.u. The upper curve Wnr,
which asymptotically approaches the free-field ionization
threshold, is the nonrelativistic ground state term. Insert:

 defined in the text as a function of ω.W1

ω
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decreases as  with increasing field strength. Tran-
sition from a nonrelativistic to the relativistic case is
clearly seen in the variation of the peak widths and
heights in Fig. 3 at α0 around 100 a.u.

It is also useful to compare our ab initio calculations
[10] and the present results with the relativistic
Schrödinger treatment of Protopapas et al. [15]. Their
time-dependent, relativistic KH potential is obtained by
replacing the quiver amplitude α0 in the nonrelativistic
KH potential by the relativistic amplitude β0. Conse-
quently, they also observe a contraction of the relativis-
tic potential due to the mass shift. In comparison with
the KM equation (2), it is clear that other square-root
differential terms in the relativistic Schrödinger equa-
tion [15] are just to account for the mass shift in the
kinetic term of (6). Therefore, we would expect that
their method should be close to solving a time-
dependent equation with the 1D Hamiltonian (6) (see
also [22]).

The present 1D results may suggest that it is justi-
fied, for ω = 1 a.u., to use the Schrödinger equation
(instead of fully relativistic equations) at field strengths
%0 up to 100 a.u. However, for a three-dimensional
atom with a full potential (9) presented in Fig. 1, the
relativistic treatment may become necessary at lower
field strengths. The calculations of Latinne et al. [5] on
atomic hydrogen beyond the dipole approximation
(time-dependent Schrödinger and Pauli equations)
show that the relativistic corrections for the ionization
rates are still small at %0 ≈ 10–20 a.u. However, the

%0
1/6–

0.1

0

–0.1

–0.2
–250 –150 –50 50 150 250

Probability density

Potential

x, a.u.

0

1 2 3 4 5 6
7

0
1

2

3
4567

Fig. 3. The 1D relativistic high-frequency model. The
potential 80 is obtained by taking the z = 0 cross section of
the potential in Fig. 1. Dichotomy of the relativistic ground
state as a function of α0 at ω = 1 a.u. Upper panel: probabil-
ity density |Ψ(x)|2. Lower panel: the corresponding potential
80. The numbers 0 through 7 at the curves denote nonrela-
tivistic classical excursion amplitudes α0 of 0, 20, 50, 100,
175, 300, 500, and 1000 a.u. Note that the relativistic excur-
sion amplitude, β0, tends to 193 a.u.
classical Monte Carlo calculations of Keitel and Knight
[12] and the quantal calculations of Bugacov et al. [23]
carried out at higher field strengths both appear to sug-
gest that, for ω = 1 a.u., the magnetic field must be
included in the atom–laser interactions at a relatively
low %0 ≈ 50 a.u.

Finally, we note that the localization of the wave
packets away from the nucleus as the laser field is
applied is usually considered as the reason for the sta-
bilization of the atom against ionization. Since the size
of the atom remains finite according to equation (7),
some inhibition of stabilization may be generally
expected in the relativistic regime. However, this may
occur at intensities well above the nonrelativistic stabi-
lization region. This question will be addressed else-
where.
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Symmetry as a Source of Hidden Coherent Structures
in Quantum Physics: General Outlook and Examples*

V. P. Karassiov
Lebedev Institute of Physics, Russian Academy of Sciences, Leninskiœ pr. 53, Moscow, 117924 Russia

Abstract—A general algebraic approach incorporating both invariance groups and dynamical symmetry alge-
bras is developed to reveal hidden coherent structures (closed complexes and configurations) in quantum many-
body physics models due to symmetries of their Hamiltonians H. Its general ideas are manifested on some
recent new examples: (1) G-invariant biphotons and a related SU(2)-invariant treatment of unpolarized light;
(2) quasispin clusters in nonlinear models of quantum optics; and (3) construction of composite particles and
(para)fields from G-invariant clusters due to internal symmetries. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION: GENERAL REMARKS

Symmetry methods have been widely used in quan-
tum physics from the time of its origin and up to now
because they yield powerful epistemological and com-
putational tools for examining many physical problems
(see, e.g., [1–14] and literature cited therein). In partic-
ular, invariance principles provide formulations of
dynamical laws and classifications of quantum states
which are most adequate to reveal different physical
phenomena [1, 2], whereas the formalism of groups
and Lie algebras, especially generalized coherent states
and related techniques, yield simple and elegant solu-
tions to spectral and evolution problems [9, 13]. From
the spectroscopic point of view, one distinguishes two
(exploiting, as a rule, independently) types of physical
symmetries depending on the behavior of Hamiltonians
H under study with respect to symmetry transforma-
tions [5]. One of them, associated with invariance
groups Gi(H) ([Gi , H]– = 0) of Hamiltonians, describes
(nonaccidental) degeneracies of energy spectra within
fixed irreducible representations (irreps) of Gi(H),
while another one, connected with so-called dynamical
symmetry (or spectrum generating) algebras gD ([gD,
H]– ⊆  gD ≠ 0) [5], enables one to determine such spectra
within fixed irreps of gD and to give spectral decompo-
sitions of Hilbert spaces L(H) of quantum systems in
gD-invariant subspaces L(λ) (with λ being labels of
gDirrepsDλ) which describe certain (macroscopic)
coherent structures (CS), i.e., stable sets of states
(shells, (super)multiplets, configurations, phases, etc.
[3–12]) evolving in time independently under actions
of H.

Applications of these methods are especially fruitful
in examining many-body problems whose Hamiltonians
H and quantum state spaces L(H) are given in terms of

boson–fermion operators: H = H(ai, , bj, ), L(H) ⊆ai
+

b j
+

* This article was submitted by the author in English.
1063-7788/00/6304- $20.00 © 20648
LF(n; m) ≡ Span  ([ai ,

]– = δij = [bi , ]+). Indeed, various (originating from
[16]) boson–fermion mappings f,

(1)

enable us to introduce generators Fβ of d(<∞)-dimensi-
onal Lie algebras (or superalgebras [11]) as
(super)symmetry operators of both types and collective
dynamical variables of problems under study in whose
terms one gets reformulations of H, L(H) facilitating
solutions of many, mainly spectroscopic, many-body
tasks [3–12]. On the other hand, within many-body
models, due to composite structures of their “elemen-
tary” coupled microobjects (quasiparticles, clusters,
etc.), one can reveal in a natural manner deep (although
hidden) interrelations between both symmetry types
above; therefore, a study of one of them automatically
yields information about the other one [16]. A conse-
quent realization of this standpoint, being comple-
mented by an “invariant confinement principle” (for
constituents), leads to a unified “invariant-dynamical”
approach (IDA) to reveal new cooperative effects and
phenomena in many-body physics on both micro- and
macrolevels [14]; from the methodological point of
view, it may be considered as a specification of the gen-
eral natural philosophical principle (used at the intu-
itional level by Kepler and explicitly realized by Weyl
and Wigner within modern physics [1, 2]): symmetry
generates (induces) the formation of CS (coherent con-
figurations) in sets of interacting objects.

Note that single (mostly formal) aspects of IDA
were implemented in quantum physics long ago, begin-
ning with the use of binary SU(2) invariants to describe

ai
+( )

η i

i 1=
n∏





b j
+( )

µ j

0| 〉
j 1=
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a j
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b j
+

ai ai
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b j b j
+, , ,( ) ° Fα ,
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bipolar molecular valent bonds in 1931 [18] and with
group-theoretical studies of complex atomic spectra by
Racah between 1942 and 1949 [19]. Specifically, these
were fruitfully developed later in nuclear, atomic, and
molecular physics [3, 4, 6, 12] and have led to exact
definitions of two basic concepts of IDA [13, 20]:
dynamical symmetry algebras (see [4, 5] and refer-
ences therein) and complementarity of groups [20]. The
most complete (although implicit) implementations of
IDA were given in superfluidity/superconductivity the-
ories by introducing U(1)-invariant Bogolyubov–Coo-
per pairs and the SU(1, 1)/SU(2) canonical transforma-
tions [22] and in particle physics [interrelations
between “color” and “flavor” SU(n) symmetries] [10].
However, until recently, an explicit mathematical for-
mulation of IDA summing up such implementations
was absent, which prevented its systematic application.
The aim of this paper is to give (destined for physicists)
mathematical grounds of IDA [13, 23] and to manifest
its efficiency and physical meaning on some recently
examined examples in quantum optics [20, 24–27] and
in the theory of composite particles and fields with
internal symmetries [13, 23].

The paper is dedicated to the memory of Academi-
cian N.N. Bogolyubov, whose ideas and works pro-
moted the formulation of IDA, and of Prof. Ya.A. Smo-
rodinsky, discussions with whom stimulated the devel-
opments presented below.

2. MATHEMATICAL GROUNDS: G-INVARIANT 
JORDAN MAPPINGS AND WEYL–HOWE DUAL 

PAIRS IN MANY-BODY PHYSICS

The mathematical formulation of IDA is based on a
synthesis of vector invariant theory [1, 28] and exten-
sions [13, 20] of the concept of complementary groups
and of Jordan mapping [15].

As is known, the original Jordan mapping given by
equations (1) with quadratic functions f introduces col-
lective dynamical variables Fα(t) related to generators

Fα of certain Lie (super)algebras  of dynamical
symmetry and reduces quadratic (in field operators)

Hamiltonians H0(ai , , bj , ) describing free and lin-
ear (in the Heisenberg picture) dynamics to the form

(2)

where λα are c-number coefficients; herewith algebras

 for particular H are subalgebras of certain “maxi-
mal” (in a sense) finite-dimensional Lie superalgebras

 which act on LF(n; m) irreducibly and are semidi-
rect products of the superalgebras osp(2n|2m) (with the

g0
D

ai
+

b j
+

H0 λα Fα C, Fα C,[ ]–+
α
∑ 0,= =

Span Fα{ } g0
D

,=

g0
D

g0
DM
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even part sp(2n, R) ^ o(2m) and the Weyl–Heisenberg

superalgebras w(n, m) = Span(ai, , bj, ) [5, 11–13].

Suppose now that H0 has (both continuous and dis-

crete) invariance groups Gi(H0) =  and that field

operators form sets of vectors  = ( ) and  = ( )
which are transformed with respect to some (e.g., fun-

damental) irreps of the groups . Then, Fα ∈   are

quadratic vector  invariants, and, in addition, there

is the characteristic equation [ , ]– =

 =  entailing functional connec-

tions between Gi and  invariant (Casimir and class

[3]) operators Ck(Gi) and Ck( ) and specifications of
their eigenvalues on spaces L(H) by common sets [li] ≡
[l0 , l1, …] of invariant quantum numbers li which deter-

mine irreps of both Gi and  and label their common
extremal (usually lowest) vectors |[li]〉  [23]. All that, in
turn, yields spectral decompositions

(3)

of spaces L(H) in direct sums of the subspaces L([li]),

which are invariant with respect to joint actions D( ) ̂

D( ) of algebras  and groups  being carrier
spaces of so-called isotypic components (factor repre-
sentations) [5] of both these algebraic structures; i.e.
L([li]) contains carrier spaces of equivalent irreps

( )( ( )) with multiplicities being equal to

dimensions of irreps ( ) ( ( )). In the case

of suitable [for given H and L(H)] groups , decom-
positions (3) have the simple spectra σ([li]) = 1 and then

pairs ( , ) [or ( , ),  = exp( ),  ^

 ⊂  ] are said to act complementarily [21, 29]
on L(H) and to form the Weyl–Howe dual pairs [28],

since pairs (  = SN ,  = U(n)) of permutation and
unitary groups were first considered within quantum
mechanics by Weyl [1], and their explicit mathematical
characterization for pairs (O(n), Sp(2m, R)) of orthogo-
nal and symplectic groups was given by Howe [28]
(from here on, indices i, 0, and D are omitted whenever
it is of no importance). Note that implicitly such Weyl–
Howe dual pairs were used in different fields of many-
body physics (see, e.g., [20, 29] and references
therein); without dwelling on a review of these applica-
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tions, we mention some of the known examples: pairs
SU(n), SU(m)) in particle physics [10]; (U(1), su(1, 1)
⊂  sp(2m, R)) (m  ∞) in superfluidity theory [9]; and
(C2, SU(1, 1)) in describing so-called squeezed light [30].

The constructions above are generalized in a natural
manner when extending quadratic Hamiltonians H0 by

 (⊆ )-invariant polynomials HI(ai , , bj , ) of
higher degrees, which describe essentially nonlinear
interactions [13, 31] [and, often, with enlarging Hilbert
spaces L(H)]. In general, such extensions lead to dual
pairs where dynamical algebras gD are infinite-dimen-
sional graded Lie (super)algebras gD = ,

[gr , gs] ⊂  gr + s enlarging Lie algebras  and embed-
ded into enveloping algebras 8(w(n; m) of algebras
w(n; m) (from here on, we omit the subscript “±” in [,]±
whenever it is unnecessary) [17]. However, Gi invari-
ance of H enables us to obtain generalized dual pairs

( , gD = ) where dynamical symmetry is described
by finite-dimensional nonlinear (polynomial) Lie

(super)algebras  =  + y+ + y– extending Lie alge-

bras  and having an independent meaning. These

algebras  are introduced with the help of -invariant
polynomial Jordan mappings, which, in the simplest
case, when HI(…) are homogeneous polynomials in ai ,

, bj , and , has the form  [13, 16],

(4)

where generators Yλ ∈  y– and  ∈  y+ are simulta-
neously elementary vector Gi invariants [1] and compo-

nents of two mutually conjugate -irreducible tensor
operators Y and Y+. In practice, Hamiltonians H0 and HI

may be inhomogeneous polynomials in ai , , bj and

 and, in addition, contain other -covariant opera-
tors that lead to modifications of equation (4) [20, 26].
The first example of using the mapping (4) in physical
problems was given (implicitly) in [30] for extending
the unitary algebra u(1) by its Gn-invariant symmetric
tensors; later, such constructions were introduced
explicitly in [17, 20] for extending algebras u(m) by
their Cn-invariant symmetric and SU(n)-invariant skew-
symmetric tensor operators (see Section 5), as well as
for extending the symplectic algebras sp(2m, R) by
SO(n)-invariant skew-symmetric tensors.

Without dwelling on a complete analysis of the
algebras , we outline some of their features. As is seen
from equations (4), algebras  resemble in their struc-

Gi
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Gi
0
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b j
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grr ∞–=
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D
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ture so-called q-deformed Lie algebras (widely used
over the last time [14]) and have the coset structure
(generalizing the Cartan decomposition for real semi-
simple algebras [5]) that enables us to construct irreps

of  starting from  modules. However, unlike usual

(linear) Lie algebras, exponentials exp( ) generate
only pseudogroup structures rather than finite-dimen-
sional Lie groups (cf. [32]), which impedes direct
extensions of standard group-theoretical techniques for
solving physical tasks [23]. Nevertheless, using gener-
alizations [20]

(5)

of the Holstein–Primakoff mappings [15] [with h being
usual Lie (super)algebras and “coefficients” fα, β(…)
determined from sets of finite-difference equations],
one can construct some finite-dimensional Lie sub-
groups exp(h) ⊂  exp( ) which are useful for physical
applications [23].

Let us now sketch some of the physical aspects of
the formal constructions above to elucidate the heuris-
tic meaning of IDA. The key role here belongs to the
decomposition (3), which describes “kinematical” pre-
mises of arising CS in L(H) due to the Gi symmetry.
Indeed, subspaces L([li]) consist of the “gD layers”

L([li]; ν) = Span{|[li]; µ; ν〉  = ( , )|[li]; µ〉}
obtained by actions of polynomials in the gD positive
weight-shift generators on basic vectors |[li]; µ〉 =

|[li]〉 of the irreps (Gi), which are simulta-
neously specific (degenerated) “pseudovacuum” vec-
tors with respect to gD: Yλ |[li]; µ〉 = Fα |[li]; µ〉  = 0. Thus,
Gi invariance plays a “synergetic” role and yields
“potential (kinematical) forms” for CS which may be
formed in L(H) and are described by subspaces L([li]) at

the macroscopic level and by gD-cluster variables 

and  at the microscopic level. Note that, generally,
the decompositions (3) contain the “particular” (Gi sca-
lar) subspaces L([0]) “consisting” only of gD clusters,
whereas other spaces L([li]) “contain” fixed (deter-
mined by the “signatures” [li]) numbers of uncoupled
or partially coupled “primary particles.” “Physical”
realizations of these hidden CS are implemented
dynamically in their “pure” or “mixed” kinematical
forms determined by concrete Gi-invariant Hamilto-
nians HI [containing or not Gi-covariant coupling
parameters (fields) “mixing” different L([li])] and ini-
tial states |ψ(0)〉 . “Pure” realizations lead to superselec-
tion rules for quantum numbers li (cf. [5]), whereas
“mixed” ones imply possibilities of critical (“thresh-

ĝ g0
D

ĝ

Fα Yλ Yλ
+, ,( )

f̃
 ° Fα

0
Fα Fα'

+
Fα', ,=( ) h,∈

Fα'
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old”) phenomena and spontaneous symmetry breaking
(cf. [7]). And now, we turn to some recent examples of
explicit IDA applications, focusing our attention only
on key points.

3. G-INVARIANT BIPHOTONS
AND THE SU(2)-INVARIANT TREATMENT

OF UNPOLARIZED LIGHT

The first examples of applications of IDA to be
examined deal with quantum-optical parametric mod-
els with m spatiotemporal and two polarization (±) light
field modes whose Hamiltonians

(6)

are quadratic in field operators and c numbers 
determine concrete parametric processes [13, 20, 24].
Their simplest one-mode version [m = 1, α = +(–)] has

the invariance group  = C2 = {ck2 = exp(iπka+a), k =
0, 1} acting on the Fock space LF(1) ≡ LF(1; 0) = L(H2)
as follows: a+  ck2a+. The dual pair is (Gi = C2, gD =
su(1, 1) = Span{Y0 = a+a/2 + 1/4, Y+ = a+2/2, Y =
a2/2} ~ Sp(2, R)), and the decomposition (3) is trivial:
LF(1) = L(0) + L(1/2), where the eigenvalue l0 = κ /2 of
the operator R0 = a+a/2 – [a+a/2] ([x] is the “entire
part” of x), connected with the lowest weights k of the
su(1, 1) irreps realized on LF (1) : κ = 2k – 1/2, deter-
mines the number Nup = κ of unpaired photons in L(l0) =
Span{(Y+)µ(a+)κ |0〉}. The “particular” space L(0)
consists of biphotons Y+ and contains states |β〉 =
exp(βY+ – β*Y) |0〉  of the so-called “squeezed vacuum”
light [30]. However, more interesting examples of CS
in quantum optics due to symmetry have been found
recently by using a specific polarization invariance of
light fields.

Indeed, the free field Hamiltonian Hf in (6) is invari-

ant with respect to the group  = (2) ⊂
Sp(4m, R), where Ui(2) = {exp(iγNi + iη0P0(i) + η1P+(i) –

P–(i))}, Ni =  (Nαi = aαi) is the pho-
ton number operator of the ith spatiotemporal mode,

and P0(i) = [N+i – N–i]/2, P±(i) =  are generators

of the SU(2  ⊂  U(2)i subgroups defining the polariza-
tion P(i) quasispins (related to the polarization Stokes
vector operators of single spatiotemporal modes) [24].

The group  contains the SU(2)p subgroup generated

by the total P-quasispin operators Pα = (i) and

H
2
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2
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enabled us to reveal hidden CS and to examine new col-
lective phenomena connected with “polarization clus-
terizations” of light field modes [13, 24].

Really, the SU(2)p group acts on LF(2m) ≡ LF(2m; 0)
complementarily to the so*(2m) algebra generated by

operators Eij ≡ aαj ∈  u(m) and SU(2)p invari-

ants  =  –  : [Pα , ] = 0, α = 0, ≠, –,

Xij = ( )+. The decomposition (3) of L(H) = LF (2m)

with respect to the dual pair (  = SU(2)p , gD =
so*(2m)) contains an infinite number of the SU(2)p ^
SO*(2m)-invariant subspaces L(l0 = p) = L(p) =
Span{|p; µ; ν〉} labeled by values p of the total P qua-
sispin, which also determine the Casimir operator val-
ues of the so*(2m) irreps realized on LF (2m) and are
measured in experiments with “polarization noises”
[13, 24]. Basic vectors |p; µ; ν ≡ [ni, pj]〉, specified by
the P0 eigenvalue µ (helicity), photon numbers ni, and
“intermediate” cluster quasispins pj, have, in general,

the form |p; µ; ν〉  = ( )|p; µ〉, where the
so*(2m) “pseudovacuum” vectors |p; µ〉 =

( , )|0〉 are given by polynomials in 

and P0-invariant operators  = (  + )/2,

[P0, ] = 0, which are direct analogs of Bogolyubov

pairs in superfluidity. The operators , Yij = ( )+

extend the algebra so*(2m) to the algebra u(m, m) act-
ing on LF(2m) complementarily to the polarization sub-
algebra u(1)p = Span{P0}. From the physical point of

view, quantities ,  may be interpreted, respec-
tively, as creation operators of P-scalar and P0-scalar
biphoton kinematical clusters determining, in fact, two
classes of unpolarized light (UL) associated, respec-
tively, with the “particular” subspaces L(0) ≡ L(p = 0)
and L'(0) ≡ L'(µ = 0) = Span{|p; µ = 0; ν〉} [24].

Indeed, in [24], we proved that quantum states
|〉  ∈  L(0), L'(0) satisfy the familiar definition of UL,
3 ∝  [〈P0〉2 + 〈P1〉2 + 〈P2〉2]1/2 = 0 [3 is the light polariza-
tion degree, P± = (P1 ± iP2), and the symbol 〈…〉 denotes
both statistical and quantum averages] and, in addition,
extra (polarization “classicality” and “squeezing”) con-
ditions

(7)

States |〉 ∈  L(0), |〉 ∈  L'(0) (P- and P0-scalar light in ter-
minology [24]) are natural [and “particular” due to
equations (7)] representatives of two (introduced in
[33] and named as P- and P0-invariant light in [24])
kinds of UL which obey general invariance conditions
used in [33, 34] (in different forms) for stronger (in
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comparison with the above familiar) definitions of UL
retaining some features of the natural (thermal) UL.
Namely, states of P-invariant light satisfy the condi-
tions

(8)

for arbitrary Pα-dependent observables A({Pα}) of field
density operators ρ (and appropriate quasiprobability
functions) with any S = exp(ib0P0 + b1P+ – P–) ∈
SU(2)p , while states of P0-invariant light obey equa-
tions (8) with S = exp(ib0P0)exp(iπP2) ∈ SU(2)p . We
emphasize, however, that P0- and P-scalar types of UL
are due to strong phase correlations between photons,
unlike familiar states of UL generated by randomizing
mechanisms. Note also that, in fact, the usual definition
of arbitrary UL states (3 = 0) can be given in the form
(8a) with any S ∈  SU(2)p if one takes in it only linear
functions A({Pα}) [25]. All these observations lead to a
new treatment of (quantum and classical) UL states
based on their SU(2)p invariance properties and to a nat-
ural division of UL into two classes: (i) weak UL hav-
ing a characteristic property (8a) with any S ∈  SU(2)p

only for first moments 〈Pα〉  (measured in standard
polarization experiments) and (ii) strong UL possess-
ing invariance properties (8) for higher moments and
including P0- and P-invariant light.

Thus, taking into account only the SU(2)p invariance
of Hf, we have found in LF(2m) hidden kinematical CS
(“polarization domains”) described by subspaces L(p)
and L'(µ), which, according to the general remarks in
Section 2, can be realized “physically” with the help of

-invariant interaction Hamiltonians HI of two kinds:

(i) HI =  depending only on biphoton variables Yij,

, Xij, and , and -scalar coupling constants; (ii)

HI  =  containing “free” photon operators  and

-covariant coupling parameters describing (phe-
nomenologically) the chiral SU(2) symmetry of the
matter (which, perhaps, is realized in some of biophys-

ical models) [24]. The simplest examples of  are
obtained from equations (6) by imposing the conditions

 =  =  and  = 0 otherwise in Hf; actually,

their (Xij, )-independent versions were used to pro-

duce P0-scalar light (as states exp(β  – β*Y11) |0〉  of
the “two-mode squeezed vacuum” [30]), while the
problem of an experimental production of P-scalar
light is not yet solved [24].
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4. COHERENT CLUSTERS IN NONLINEAR 
MODELS OF QUANTUM OPTICS

The examples of applications of IDA using general-
ized Weyl–Howe dual pairs (

 

G

 

i

 

, ) are yielded by gen-
eralizations of models (6) describing multiphoton scat-
tering processes and quantum matter–radiation interac-
tions [20]; their simplest versions are given by
Hamiltonians
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“pump” mode  by “atomic” operators [20, 26].
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} describing additional interaction sym-
metries; for instance, models 
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 have dynamical con-
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). Groups  form on the

Fock spaces 
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 + 1) the generalized dual pairs [ ,

 = (
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n; 1)] together with polynomial Lie alge-

bras (m, n; 1) = s(u(m) + u(1)) + y(n; 1) obtained via
the mapping (4) as extensions of the Lie algebras u(n +

1) = Span{Eij = aj} by coset spaces y(n; 1) =

Span{  = … a0,  = };

herewith commutators [ , ] are polyno-

mials in Eij [17]. Such an introduction of -invariant

collective variables Eij, , Y…; 0 enables us to
rewrite Hamiltonians Hmp in the linear form (2) with

respect to Eij, Y…; 0,  and to apply the (m, n; 1)
formalism for revealing hidden CS and examining col-
lective dynamical peculiarities in models (9), which
slip off within standard studies [13, 27].
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In order to elucidate basic ideas of such applica-
tions, we restrict our analysis to models with Hamilto-

nians Hhg when (m, n; 1) are reduced to the polyno-
mial Lie algebras supd(2) = Span{Y0 = (N1 – N0)/(1 + n),

Y+ = ( )na0, Y– = (Y+)+} with commutation relations

(10)

resembling those for su(2) but with polynomial struc-
ture functions Ψ(Y0; R1) = (R1 – Y0 + 1)(nY0 + R1)(n)

(A(n) ≡ A(A – 1)…(A – n + 1)) [26]; note that the R1

dependence of Φ(Y0; R1), in fact, “intertwines”  =
Cn ^ exp(iβR1) and gD = supd(2) in an algebraic object
resembling the semidirect product of groups (cf. [3, 5]).
Then, Hamiltonians Hhg are expressed by linear func-
tions

(11)

in the generators Yα and dynamical constant R1, and the
decomposition (3) of L(H) = LF(n + 1) with respect to

( , supd(2)) contains an infinite number of the
supd(2)-irreducible s-dimensional subspaces L([li]) =

Span{(Y+)η|[l0]〉, |[l0]〉 = |0〉, κ = 0, …, n – 1,
s  ≥ 0} labeled by eigenvalues l0 = (κ – s)/(1 + n), l1 =
(κ + ns)/(1 + n) of Ri , where R0 is determined from the
identity Ψ(R0; R1) ≡ Ψ(Y0; R1) – Y+Y– defining the
supd(2) Casimir operator [27].

This “supd(2)-cluster” formulation of models entails
a dimension reduction of physical tasks and an explicit
“geometrization” of model dynamics manifested at the
classical level of examination. Thus, e.g., the decompo-
sition (3) implies the representation of model phase

spaces Cn + 1 as fiber bundles: Cn + 1 = ([li]),

where supd(2)-invariant dynamical manifolds !([li])
correspond to spaces L([li]) and are in the mean-field
approximation Abelian varieties given in dynamical
variables  = 〈Yα〉 as follows: !([li]) = {  :  +

 = Ψ( ; l1) + Ψ(  + 1; l1)}. Then, states

belonging to a fixed manifold !([li]) {or !([ ]) in
the general case} will evolve in it under the action of
Hamiltonian flows with Hamiltonian functions * =
a  + b  + b*  + c . Herewith, (approximate)
dynamical trajectories are determined as intersections
of manifolds !([ ]) with energy planes * = E, which
enables us to determine some features of model dynam-
ics [27].

ĝ
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These considerations become more transparent if
“quasispin” reformulations of the models (11) are used
in terms of the su(2) generators Vα connected with Yα
via the mapping (5): V0 = Y0 – R0 – J, V+ = Y+[ϕ(V0)]1/2,
ϕ(V0) = (J + V0 + 1)(J – V0)/Ψ(Y0 + 1; R1), Y– = (Y+)+ [J
is the su(2) highest weight operator with eigenvalues
j = s/2] [20]. Then, the Hamiltonians (11) are repre-
sented by nonlinear functions

(12)

in the “su(2)-cluster” variables Vα , and fiber-bundle
representations of phase spaces Cn + 1 contain SU(2)-

invariant “Bloch spheres” ,  +  +  = j2

instead of supd(2)-invariant manifolds !([li]), while
energy planes are replaced by nonlinear energy sur-
faces 〈H〉 = E. Furthermore, these “quasispin” reformu-
lations enable us to obtain new (in comparison with
those obtained earlier) su(2)-cluster semiclassical solu-
tions of spectral and evolution tasks using techniques of
the SU(2) coherent states |φ0; α〉  = SV(α)|φ0〉 ∈  L(H),
SV(α) = exp(αV+ – α*V–), which can be of “spinlike”
type {when |φ0〉  ∈  L([li])} or su(2)-reducibile [when
|φ0〉 ∈  L(H)] [27].

For example, energy eigenstates |E([li]; v)〉 and
spectra {E([li]; v)} can be approximated by means of
standard variational schemes using SU(2) coherent

states SV(ξ)1([li]; v) |[li]〉  = |[li]; v; ξ〉  as trial func-
tions. Namely, we find approximate eigenstates
|Eqc([li]; v)〉  = |[li]; v; ξ〉  and eigenergies Eqc([li]; v) =
〈[li]; v; ξ |H |[li]; v; ξ〉 , where values of the parameter
ξ = rexp(– iθ) are determined by the stationarity condi-
tions for the energy functional *([li]; v; ξ):

(13)

In fact, in such a way, we obtain exp(–iθ) = b/|b| and a
whole series of competitive potential solutions for val-
ues r; their final selection may be made with the help of
a “quality criterion” using the “energy error” function-
als introduced in [20]. Similarly, an appropriate semi-
classical dynamics is described by the classical Hamilto-
nian equations [27]

(14)

for “motion” of the canonical parameters p and q of the
SU(2) coherent states |φ0 ; z(t)〉  = SV(z(t)) |φ0〉  [z =
−rexp(iθ)] as trial functions in the time-dependent
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Hartree–Fock variational scheme. Note that solutions
of equations (13) and (14) smoothly approximate exact
ones and catch explicitly quantum cooperative features
of models at semiclassical levels [27].

5. GENERALIZED DUAL PAIRS IN THE THEORY 
OF COMPOSITE FIELDS

Another area of “natural” appearance of generalized
dual pairs (Gi , gDS = ) is the algebraic analysis [13,
23] of composite fields with internal (gauge) symme-
tries [5], which generalizes basic ideas of the paraquan-
tization [8, 35] and implements in a sense the method
of fusion of de Broglie [36]. Actually, the simplest
example of such an analysis (but without introducing
dual pairs and nonlinear Lie algebras ) was given in
[31] by means of using n-boson one-mode versions

(15)

of Hamiltonians (6) to describe resonance states in par-
ticle physics; later, it was generalized on multimode
cases to study multiphoton processes in quantum optics
(see [13] and references therein).

Specifically, in [31], it was shown that operators

Y+ ≡  describe n-particle kinematical clusters
which display unusual (para)statistics and correspond
to generalized asymptotically free fields realized on the
Fock space LF(1). In fact, the operators Y+, Y = (Y+)+,

Y0 = a1/n ≡ E11/n satisfy [13] (noncanonical) com-
mutation relations (10) of the supd(1, 1) algebra with the
structure polynomial Ψ(Y0) = (E11)(n) and, in addition,

extra multilinear relations a Y+ = a (adYY+) = 0,
adYY+ ≡ [Y, Y+], generalizing (for n ≥ 3) trilinear para-
statistical Green’s relations [8, 35]. Thus, we obtain an
action of the generalized dual pair (Gi = Cn = {exp(i ×
2πk a1)/n},  = supd(1, 1)) on the space LF (1). The
appropriate decomposition (3) contains the subspaces
L([l0 = κ /n]) = Span{(Y+)η|[l0]〉, |[l0]〉 = (a+)κ|0〉}, κ = 0,
1, …, n – 1, describing coherent mixtures of constant

numbers κ of uncoupled bosons  and of numbers
varying in time NY of Y clusters. However, operators NY

have no standard [for (para)fields] forms bilinear in Y
and Y+ [8], but they can be expressed [due to the evident
identity Ψ(Y0) = Y+Y on LF(1)] as nonlinear functions in
the bilineals Y+Y and YY+ [13]: NY = (E11 – nR0)/n =

[ a1/n] = [E11/n], E11 = ϕ(Y+Y) ≡ nΨ–1(Y0), as is the
case for algebras A(K) describing nonstandard statistics
[35]. Therefore, at best, the quantities Y+ and Y can be
set in correspondence only to parafield (when n = 2)
quanta [8, 35] rather than to certain asymptotically free

ĝ
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particles [13]. Nevertheless, one can construct from
them operators W+ = W+({Yi}), W = (W+)+ obeying
canonical commutation relations [W, W+] = 1, having
the standard number operators NW = W+W (=NY) and
corresponding to quanta of asymptotically free multi-
boson fields {which can be realized in subspaces L([0])
in “pure forms”}. Actually, two equivalent forms [13,
20, 31],

(16)

were found for such W+ and W, where the second one is
a specification of the mapping (5).

The analysis above has been generalized [18] by
means of (i) using “m”-mode extensions of models (15)
with Cn-invariant interaction Hamiltonians

,  = … ;

(ii) considering their analogs with non-Abelian groups
Gi = SU(n) [whose Hamiltonians are obtained by the

substitutions ai  (  · ai) ≡ aji,

   ≡ …  (  is

the totally antisymmetric tensor)]; and (iii) involving
both boson and fermion variables. These procedures
yield a variety of generalized dual pairs. For instance,
when using the first two, we get dual pairs Cn, oscY(m;
(n)) and (SU(n), oscX(m; 1n)), where oscY(m; (n)) and
oscX(m; 1n) are extensions of the unitary algebras u(m) =

Span{Eij , Eij = aj and Eij = (  · ai)} by their sym-

metric ( , Y…) and skew-symmetric ( , X…) ten-

sor operators [17, 23]. The operators , X…, , and
Y… satisfy noncanonical commutation relations whose
right-hand sides depend on Eij [and on the SU(n)
Casimir operators for oscX(m; 1n)] and obey (due to the
invariant theory [1, 29]) certain extra “bootstrap” rela-
tions of the type Y1…1Y2…2 = Y21…1Y12…2 [13, 17], which
are similar to those occurring in quantum field theories
with constraints [5, 8] and in nonstandard quantization
schemes discussed in [35]. All this entails unusual sta-
tistical and other features of Gi-invariant clusters asso-

ciated with  and  and complicated extensions of
the one-mode analysis above [17]. Specifically, the task
of obtaining m-mode generalizations

(17)
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of the mapping (16) is, in general, fairly difficult owing
to “syzygies” between Y/X clusters (and resembles the
“reducibility problem” for algebras A(K) [35]).

When determining explicit expressions for f…(…) in
equations (17) [and in their generalizations, e.g., for

constructing  ∈  A(K)], we obtain an effective tool
for analyzing composite field models with internal Gi

symmetries at the algebraic and quasiparticle levels
(including a new insight into some “old problems,”
such as, quark confinement [3, 10]). Furthermore,
examining the limit “m  ∞” and taking spatiotem-
poral variables and symmetries into consideration, one
can also construct in terms of “quanta” Wa appropriate
“physical” (asymptotically free) composite fields [13]
and then develop standard theories for them, including
nonlinear (due to Hamiltonian forms) evolution equa-
tions and their soliton/instanton solutions [7]; herewith,
discrete quantum numbers li labeling subspaces L([li])
in (3) may display themselves as specific topological
charges. In particular, in such a way, using suitable ana-
logs of equations (16) for P/P0-scalar biphotons [24],
we answer in the affirmative within quantum optics the
problem of the existence of UL waves posed by Fresnel
at the beginning of the nineteenth century and having a
negative solution within the framework of classical
electrodynamics due to the vector nature of the Max-
well equations [4, 6].

6. CONCLUSION

Thus, we have formulated mathematical grounds of
IDA and have shown its physical meaning “in action.”
In conclusion, we briefly discuss some ways of apply-
ing and developing the results obtained.

The general constructions of Sections 2 and 5 may
be applied to the systematic search for hidden CS
within different areas of quantum many-body physics
by using known dual pairs [20, 28] and to developing
field theories with “hidden quantum variables” and
unusual statistics [8, 13, 35] (including the problem of
consistency of the Poincaré symmetry with dynamic
ones [7, 11, 13]). On the other hand, they are useful in
solving appropriate “inverse problems” [16] to display
hidden symmetries Gi and “preparticles” from analyz-
ing spectroscopic data for complex systems associated
with irreps of certain dynamic algebras gD (that is of
great importance when interaction Hamiltonians are
determined phenomenologically). For this aim, it is
worthwhile to enlarge lists of dual pairs used by taking
new classes of groups Gi and q-deformed oscillators
into consideration [23].

More concrete results of Sections 3 and 4, firstly,
can be used as general patterns for applying IDA in Gi-
invariant many-body models and, secondly, to open
new lines of investigation in quantum optics. For exam-
ple, the above SU(2)p-invariant treatment of UL stimu-
lates experiments on producing new states of quantum

Wa
+
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UL (especially, of P-scalar light); studies of interac-
tions of these states with material media [13]; and their
applications in communication theory, spectroscopy of
anisotropic media, and biophysics [24]. At the same
time, “quasispin” formulations and su(2)-cluster semi-
classical approximations in models (9) outline (related
to geometric quantization schemes [32]) ways of
“geometrization” of dynamics in models of strongly
interacting subsystems and, simultaneously, can be
used to reveal new collective phenomena in such mod-
els, including topological features of Hamiltonian
flows determined by equations (14) at the different
semiclassical levels [27].
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1. INTRODUCTION
An essential ingredient of the conventional super-

symmetric quantum mechanics (for reviews see [1]) is
the well-known Darboux transformation [2] for the sta-
tionary Schrödinger equation. This transformation per-
mits us to construct new, exactly solvable stationary
potentials from the known ones. Similar constructions
may be developed for the time-dependent Schrödinger
equation [3].

Our approach to the Darboux transformation is
based on a general notion of the transformation opera-
tor introduced by Delsart [4]. In terms of this notion,
Darboux [2] studied differential first-order transforma-
tion operators for the Sturm–Liouville problem. This is
a reason, in our opinion, to call every differential trans-
formation operator a Darboux transformation opera-
tor. A different approach to the Darboux transformation
is presented in the monograph [5]. It is worthwhile
mentioning that our approach, in contrast to that of [5],
leads to real potential differences. This property is cru-
cial for constructing the supersymmetric extension of
the nonstationary Schrödinger equation.

2. FORMALISM
In this section, we briefly review the basic construc-

tions leading to the supersymmetry of the nonstationary
Schrödinger equation established in [3].

Consider two time-dependent Schrödinger equa-
tions:

(1)

(2)

We assume the potential V0(x, t) and the solutions of
equation (1), called the initial Schrödinger equation, to
be known. By definition, the transformation operator
denoted by L transforms solutions ψ(x, t) into solutions
ϕ(x, t) = Lψ(x, t). It is obvious that this condition is ful-
filled if L participates in the following intertwining
relation: L(i∂t – h0) = (i∂t – h1)L. In the simplest case of

i∂t h0–( )ψ x t,( ) 0, h0 ∂x
2– V0 x t,( ),+= =

i∂t h1–( )ϕ x t,( ) 0, h1 ∂x
2– V1 x t,( ).+= =

* This article was submitted by the authors in English.
1063-7788/00/6304- $20.00 © 20657
a first-order differential operator L this equation can
readily be solved with respect to operator L and poten-
tial difference A(x, t):

Note that the operator L and the new potential V1(x, t)
are completely defined by a function u(x, t) called the
transformation function. This function is a particular
solution to the initial Schrödinger equation (1) subject
to the condition ( / )xxx = 0, called the reality con-
dition of the new potential.

Operator L+ = –L1(t)[ (x, t)/ (x, t) + ∂x], which is
Laplace adjoint to L, realizes the transformation in the
inverse direction, i.e., the transformation from the solu-
tions of equation (2) to the ones of equation (1). The
product L+L is a symmetry operator for equation (1),
and LL+ is a similar one for equation (2).

With the help of the transformation operators L and
L+, we build up the time-dependent nilpotent super-
charge operators

, (3)

which commute with the Schrödinger superoperator
iI∂t – H, where H = diag{h0, h1} is the time-dependent
super-Hamiltonian and I is the unit 2 × 2 matrix. In gen-
eral, the super-Hamiltonian is not the integral of motion
for the quantum system guided by the matrix
Schrödinger equation

(4)

Two-component function Ψ(x, t) belongs to the linear
space defined over the complex number field and spanned
by the basis Ψ+ = ψe+, Ψ– = Lψe–, where e+ = (1, 0)T and
e– = (0, 1)T. The sign “T” stands for the transposition.

The operators (3) are integrals of motion for equa-
tion (4). Using the symmetry operators L+L and LL+, we

L L1 t( ) –ux x t,( )/u x t,( ) ∂x+[ ] ,=

L1 t( ) 2 dtIm ulog( )xx∫[ ] ,exp=

A x t,( ) V1 x t,( ) V0 x t,( )– u x t,( ) 2log[ ] xx.–= =

ulog u

ux u

Q 0 0

L 0 
 
 

, Q+ 0 L+

0 0 
 
 

= =

iI∂t H–( )Ψ x t,( ) 0.=
000 MAIK “Nauka/Interperiodica”
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can construct the other integral of motion for this equa-
tion: S = diag{L+L, LL+}. The operators Q, Q+, and S
realize the well-known superalgebra sl(1/1)

where, instead of the Hamiltonian, we see another sym-
metry operator. In general, the operators S, Q, and Q+

depend on time; consequently, we have obtained the
time-dependent superalgebra.

3. HARMONIC OSCILLATOR
WITH A TIME-VARYING FREQUENCY

Consider the Hamiltonian

(5)

The variety of potentials we can obtain by the tech-
nique described above depends on the variety of solu-
tions of the initial Schrödinger equation suitable for use
as transformation functions. A wide class of solutions
can be found with the help of the method of R separa-
tion of variables [6] based on the orbit structure of the
symmetry algebra with respect to the adjoint represen-
tation of the corresponding group symmetry. The sym-
metry algebra of the Schrödinger equation with Hamil-
tonian (5) is the well-known Schrödinger algebra G2
[6]. The following representation of this algebra is suit-
able for our purpose:

where ε = ε(t) is a (complex) solution to the classical
equation of motion for the oscillator (t) + 4ω2(t)ε(t) = 0.

Five orbits are known for this algebra which give
four nonequivalent solutions to the Schrödinger equa-
tion in R-separated variables with respect to transfor-
mations from the Schrödinger group. Below is a sum-
mary of all suitable transformation functions and corre-
sponding potentials.

(1) Two orbits with the representatives J1 = K1 and
J1 = K2:

Q S,[ ] Q+ S,[ ] 0, Q Q+,{ } S α I ,–= = =

h0 –∂x
2 ω2 t( )x2.+=

K1 a a+, K 1–– i a a++( ), K0– i,= = =

K 2– i a a++( )2
, K2– i a a+–( )2

,–= =

K0 2 a2 a+( )2
–[ ] ,–=

a ε∂x iε̇x/2, a+– ε∂x– iε̇x/2,+= =

aa+ a+a– 1/4,=

ε̇̇

u x t,( ) uλ uλ+ γ 1/2– cosh νx
8γ
------ µν δ

32γ
---------+ 

 = =

× ix2γ̇
4γ

---------- iµx
8γ
--------– i ν2 µ2–( ) δ

64γ
---------+ ,exp

λ –µ iν , L1 t( )– γ ε ε+( )/2,= = =
(2) The orbit with representative J2 = K2 – K1:

where γ = ε + , iδ = ε – , λ is a separation constant,
and Q(z) is an Airy function defined by the equation
Q''(z) = zQ(z). An exactly solvable potential is
expressed in this case through the Airy function Ai(z).
It is an easy exercise to show that a regular on full real
axis potential can be obtained with the help of the sec-
ond-order Darboux transformation operator with trans-
formation functions ψλ and .

(3) The orbit with the representative J3 = K2 – K–2
gives several classes of potentials. First, we may choose
solutions which form a discrete basis in the Hilbert
space of states [7] as transformation functions

where Hen(z) = 2–n/2Hn(z/ ) are the Hermite polyno-
mials. The second-order Darboux transformation with
transformation functions un and un + 1 produces poten-
tials

Second, we may use a general solution to the quan-
tization equation for the operator J3,

This leads to potentials that, in the case of ω(t) = const,
reduce to the well-known isospectral potentials

V1 x t,( ) ω2 t( )x2 ν2

32γ2
-----------cosh 2– νx

8γ
------ µν δ

32γ
---------+ 

  .–=

ψλ x t,( ) δ 1/2– ix2 δ̇
4δ
------ ix

γ
2δ2
--------– i

γ3

6δ3
-------- iλγ

δ
--+ + 

 exp=

× Q 2
1/2– x

δ
-- γ2

2δ2
--------– 

  22/3λ– 
  ,

ε ε

ψλ

un x t,( ) = Nnγ
1/4– ε

ε
-- 

 
n/2 1/4+ 2iγ̇ 1–

16γ
-----------------x2

 
  Hen

x

2 γ
---------- 

  ,exp

γ εε,=

2

Vn x t,( ) ω2 t( )x2 1
2γ
------

Jn'' z( )
Jn z( )
-----------

Jn' z( )
Jn z( )
-----------

 
 
 

2

– 1– ,–=

z x/ 2 γ( ),=

Jn z( ) Γ n 1+( )
Γ k 1+( )
---------------------Hek

2 z( )
k 0=

n

∑ kJk 1– z( ) Hek
2 z( ).+= =

u x t,( ) ε 1/2– 2iγ̇ 1+
16γ

-----------------x2

 
  C erf

x

2 2γ
------------- 

 + .exp=

V x t,( ) ω2 t( )x2=

–
1

4γ
------ 1 2zQ

1–
z( )e z

2/2–– 2Q 2– z( )e z
2––[ ] ,
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Other cases are similar to those described in [3] for the
free particle Schrödinger equation, so they are omitted
here.

4. THE DEPENDENT SINGULAR OSCILLATOR
Consider now the following Hamiltonian:

The symmetry algebra of the Schrödinger equation
with this Hamiltonian is su(1, 1) ~ sl(2, R). We use the
following representation for this algebra:

Consider solutions of the Schrödinger equation which
are eigenstates of K0: K0ϕλ(x, t) = λϕλ(x, t). When λ =
n + k, n = 0, 1, 2, …, we have a discrete basis of the Hil-
bert space,

To construct a model with spontaneously broken super-
symmetry, we need transformation functions u(x, t) such
that neither u(x, t) nor u–1(x, t) are not from the Hilbert
space and u(x, t) is nodeless for all real values of t and
x > 0. These conditions are fulfilled for the functions

These transformation functions create the following
exactly solvable family of potential differences A(x, t) =
ω2(t)x2 + gx–2 – V1(x, t):

Q z( ) π
2
--- C erf

z

2
------- 

 + , z
x

2 γ
----------, C 1.>= =

h0 –∂x
2 ω2 t( )x2 gx

2–
.+ +=

K+ 2 a+( )2 ε2gx
2–

–[ ] , K– 2 a2 ε2gx 2––[ ] ,= =

K0
1
2
--- K–K+ K+K––( ) 1

2
--- K– K+,[ ] .= =

ϕn x t,( ) 21/2 3k– n!
Γ n 2k+( )
------------------------γ k– ε

ε
-- 

 
n k+

x2k 1/2–=

× i
x2γ̇
8γ
-------- x2

16γ
---------– Ln

2k 1– x2

8γ
------ 

  ,exp

k
1
2
---

1
4
--- 1 4g+ , γ+ εε.= =

up x t,( ) γ k– ε
ε
-- 

 
p– k–

x2k 1/2–=

× i
x2γ̇
8γ
-------- x2

16γ
---------+ Lp

2k 1– x2

8γ
------– 

  ,exp

K0up x t,( ) p k+( )up x t,( ).–=

A x t,( ) Ap x t,( ) 1
4γ
------ 4k 1–

x2
---------------–

1
8
---

xLp 1–
2k z( )

γLp
2k 1– z( )

----------------------
 
 
 

2

–= =

+
x2Lp 2–

2k 1+ z( ) 4γLp 1–
2k z( )+

8γ2Lp
2k 1– z( )

----------------------------------------------------------, z
x2

8γ
------.–=
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To construct a model with exact supersymmetry, we
need transformation functions u(x, t) such that u–1(x, t)
is a square integrable on semiaxis x ≥ 0 and satisfies the
zero boundary condition at the origin for all values of t.
The following solution of the Schrödinger equation
may be chosen in this case:

It is not difficult to establish the possible values of p. If
p is even, it may take the values p < 2k – 1 and p = [2k] +
1, [2k] + 3, …. For odd p values, we may use only
p = [2k], [2k] + 2, …, where [2k] ≡ entire(2k). For reg-
ular potential differences we obtain

5. CONCLUSION

The supersymmetry of the time-dependent
Schrödinger equation based on the nonstationary Dar-
boux transformation is very useful for obtaining a wide
class of exactly solvable nonstationary quantum mod-
els. With the help of the Darboux transformation oper-
ator, we may obtain solutions for transformed equa-
tions. In particular, if we know the coherent states for
the initial system, then by applying to them the Dar-
boux transformation operator we obtain coherent states
for the transformed quantum system [8]. The coherent
states are known [7] for the systems considered here.
Next step is to obtain and investigate coherent states for
the transformed systems. Corresponding results will be
presented elsewhere.
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Consider the system evolving according to the
Schrödinger equation

(1)

If |ψn(x(t); y)〉  are solutions to the equation

(2)

and form a complete orthonormal set
|ψn(x; y)〉〈ψ n(x; y')| = δ(y – y'), 〈ψn(x; y)|ψm(x; y)〉  = δnm

for ;x, with elements depending on x = x(t) parametri-
cally, the solution of equation (1) is sought in the form
of expansion over eigenstates |ψn(x(t); y)〉  of the self-
adjoint parametric Hamiltonian H(x(t)) [1],

(3)

Taking into account (3) in (1), we find that the system
of equations for 8n(t) can be written in the form

(4)

The matrix elements of the exchange interaction
Bnm(x(t)) are generated by the basis functions |n〉 = ψn(x;
y) of the “instantaneous” Hamiltonians (2)

(5)

where the dot denotes the time derivative. Thus, the ini-
tial problem is formulated by consistently reducing it to

i"
d Ψ t( )| 〉

dt
------------------ H x t( )( ) Ψ t( )| 〉 .=

H x t( )( ) ψn x t( );  y ( )| 〉 % n x t ( )( ) ψ n x t ( ) ;  y ( )| 〉 =

Ψ x t( ) y,( )| 〉 8n x t( )( )
n
∑=

× i
"
--- %n x t'( )( ) t'd

0

t

∫–
 
 
 

ψn x t( ); y( )| 〉 .exp

∂t8n t( ) Bnm x t( )( )
m
∑=

× i
"
--- %n t'( ) %m t'( )–( ) t'd

0

t

∫– 8m t( ).exp

Bnm x t( )( ) n ṁ〈 | 〉 Anm x t( )( ) ẋ x( ),= =

Anm x( ) ψn x;  y ( ) ∇ x ψ m x ;  y ( )〈 〉 ,=                          

* This article was submitted by the author in English.
1) Gomel State University, Gomel, Belarus.
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the parametric one (2) and the multichannel system of
equation (4). Here, we assume that H(x(t)) is real, lim-
ited, and continuous in t. Since the eigenfunctions are
real-valued and orthonormal for each t, the nonadia-
batic couplings Bnm = –Bmn in (5) are real and antisym-
metric in n and m. The transitions from an initial state
Ψ(t

 

0

 

) = 

 

ψ

 

(

 

x

 

(

 

t

 

0

 

))

 

 to a final state 

 

Ψ

 

(

 

x

 

(

 

t

 

))

 

 are determined by
the matrix elements of the evolution operator 

 

8

 

(

 

t

 

, 

 

t

 

0

 

)

 

that satisfies the integral equation

 

(6)

 

One can solve this equation by iteration,

 

(7)

 

The transition amplitudes in this case are defined by the
matrix elements 

 

B

 

nm

 

(

 

x

 

(

 

t

 

))

 

 of the exchange interaction
(5), which can be calculated in terms of the basis func-
tions 
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)

 

. The inversion method permits one to
construct a wide class of potentials and corresponding
solutions of the parametric equation (2) in a closed ana-
lytic form. After that, the obtained exact solutions

 

ψ

 

n

 

(

 

x

 

(

 

t

 

), 

 

y

 

)

 

 are applied to calculate the matrix elements
of the nonadiabatic coupling determining the exchange
interaction. Note that the first procedure is an algebraic
one, but that the second one is, in general, numerical;
therefore, the method is semianalytical.

Transform the procedure of the inverse problem to
straightforwardly express the time-dependent potential
and solutions of the parametric equation (2) in terms of
time-independent ones. Note that this statement is par-
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ticularly convenient for the investigation of systems
with slowly varying spectral functions of time. The
solution of this problem is achieved in two stages. At the
first stage, one can reconstruct the time-independent

potentials (x, y) and corresponding solutions (k, x, y)
within the ordinary procedure. After that, the potential
and solutions parametrically depending on time
through x(t) can be defined from the generalized rela-
tions of the parametric inverse problem [2] by using the

above-obtained solutions (k, x, y) as the initial ones. In
complete analogy with the procedure [2], when para-
metric Jost functions are chosen to be rational,

(8)

the integral equations of the inverse problems are
reduced to a set of algebraic equations parametrically
depending on the dynamical variables x(t) through the
dependence of spectral parameters on these variables.
The parametric Jost function (8) has N curves k =
−iβj(x(t)) of simple poles and N curves of simple zeros
k = iαj(x(t)) defined as functions of the parametric vari-
able x = x(t). In this case, the scattering matrix and the
spectral function assume the form

For this type of 6(x; k) and ρ(x; k), the kernels of the
integral equations of the parametric inverse problem
can be represented as the sums of terms with a factor-
ized dependence on the fast variable y: Q(x; y, y') =

Bi(x; y)Bi(x; y'). When the kernel Q is inserted into
the base parametric equation of the inverse problem

(9)

it is evident that the kernel of the generalized shift
K(x; y, y') also becomes degenerate. As a consequence,
the system of integral equations of the inverse problem
is reduced to a system of algebraic equations. Potentials
and Jost solutions are determined from K(x; y, y'), with
respect to which the linear integral equation (9) is
solved for every fixed x. The parametric dependence of
the scattering data {6(x, k), M 2(x), %(x)} or the spec-
tral data {ρ(x, k), N 2(x), %(x)} reflects the peculiarity of
the nonstandard parametric inverse problem. Specify-
ing this dependence and employing the algebraic meth-
ods of the inverse scattering problem, one can present a
wide class of parametric Hamiltonians for which one
can construct exactly solvable models and, conse-
quently, derive solutions in a closed analytic form [3].
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For instance, for the reflectionless potentials
6ref(k) = 0, the kernel Q(x(t); y, y') is obtained from the
potential curves %n(x(t0)) and 
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. The diagonal 

 

2

 

N 

 

×

 

2

 

N matrix  is combined from two block matrices,

each also being diagonal: Γ(x(t)) = γj(x(t))  and

(x(t0)) = γj(x(t0)) ,

The kernels K(x(t); y, y') obtained from (9) with
Q(x(t); y, y') determined by (10) are presented in the
matrix form as

(11)

Here, Φ(x(t), y) = |φn(x(t), y)〉 is the 2N vector, the N
components of which are taken at k = iκn(x(t)), φn(x(t),
y) = φ(iκn(x(t)), y), n = 1, 2, …, N and the other N com-
ponents are taken at k = iκn(x(t0)), n = N + 1, N + 2, …,
2N. If the spectral data are defined as κn(x(t0)) = κn and

γn(x(t0)) = γn, then φn(iκn(x(t0)), y) = (iκn, y). Substitut-

ing the vector (x(t), y) and the kernel K(x(t); y, y') (11)
into (9), we obtain the following equation for the
sought solution Φ(x(t), y):

(12)

or in an alternative form,

Here, the functions (k, y) are taken at k = iκn(x(t)).

This is possible, since the functions (k, y) are deter-

γn
2 γn

2

V°

Q x t( )   y y ' , ;( )

=  

 

γ

 

n

 

2

 

x t

 

( )( )

 

φ

 

i

 

κ

 

n

 

x t

 

( )( )

 

y

 

,( )φ

 

i

 

κ

 

n

 

x t

 

( )( )

 

y

 

'

 

,( )

 

°

 

n

N

 

∑

 

–

 

γ

 

n

 

2

 

x t

 

0

 

( )( )

 

φ

 

i

 

κn x t0( )( ) y,( )φ iκn x t0( )( ) y',( )°

n

N

∑
=  ΦT

x t( ) y,( )Γ̂ x t( )( )Φ x t( ) y',( ).

°

°

°°

φ° φn
°

Γ̂
Î
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mined for any k. The matrix P(x(t), y) is

(13)

Now the potential can be obtained in the following
form:

(14)

The normalized eigenfunctions ψn(x(t); y) = γn(x(t)) ×
φ(iκn(x(t)), y) can be determined by using (12). It is evi-

dent that at t = t0, we have ψn(x(t0); y) = n(y).

Now the matrix elements Bnm(x(t)) (5) can be writ-
ten in terms of the exact time-independent solutions

(iκn(x(t)), y) taken at k = iκn(x(t)) and for the paramet-
ric spectral data {%n(x(t)), γn(x(t))}. Note that
φ(iκn(x(t)), y) can be obtained analytically in terms of
free solutions by the ordinary procedure of Darboux or
Bargmann transformations performed at each moment
of time [3–6]. Nevertheless, in both cases, the matrix
elements Bnm(x(t)) (5) should be obtained in terms of
exact solutions by numerical calculation, although it is
straightforward. However, for the investigation of adia-
batically driven systems, the statement where

φ(iκn(x(t)), y) is expressed in terms of (iκn(x(t)), y) is
preferable. The matrix elements (6) of the evolution oper-
ator 8nm(t, t0) should be calculated numerically by using
Bnm(x(t)) within the iteration procedure. In many cases
when spectral functions iκn(x(t)) and γn(x(t)) are slowly
and smoothly varying functions of time through the
dependence of the adiabatic variable on time, x(t) = xg(t),
it is possible to make the following replacement in (5):

The parametric dependence of the matrix elements
Bnm(x(t)) can be factorized,

where g(t) is a slowly varying function of time. After
that, the transition matrix takes a very simple form,

(15)

In principle, it is not difficult to take into account the
exact functions ψn(x(t); y), but calculating 8nm(t0, t)
becomes cumbersome. The transition amplitude for the
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concrete smooth behavior of 

 

x

 

(

 

t

 

) = (1 + 

 

a

 

exp(–1/
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was investigated in [7].
It is quite evident that one can choose a different

dependence of the adiabatic variables on time and dif-
ferent spectral data with the prescribed properties. In
particular, for a special case of parametric variation, the
spectral characteristics may be taken in a factorized

form, 

 

%

 

n

 

(

 

x

 

) = 

 

x

 

2

 

, where  are eigenvalues of the
initial problem (see, e.g., [8]). Some examples of the
reconstruction of time-dependent and time-indepen-
dent two-dimensional potentials and the corresponding
solutions were considered in [3–6].

CONCLUSIONS
The method presented permits one to construct a

wide class of potentials and corresponding solutions of
the parametric equation (2) in a closed analytic form
and, after that, calculate the matrix elements of the
exchange interaction and the transition matrix. The first
procedure is an algebraic one, but the second step is, in
general, numerical. Therefore, the method is semiana-
lytic. We have constructed time-dependent potentials
and wave functions in terms of time-independent ones on
the basis of the parametric inverse scattering problem in
the adiabatic representation. This statement is suggested
for investigating adiabatically driven systems.
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Abstract—A regular method for constructing vortexlike solutions with cylindrical symmetry to the equations
of the SU(2) Skyrme chiral model is proposed. A numerical estimate for the length density of mass is given.
© 2000 MAIK “Nauka/Interperiodica”.
The Skyrme model [1] has proven its efficiency in
modeling the structure of baryons [2] and nuclei [3]
since the appearance of Witten’s analysis of the quark
confinement problem [4, 5]. The model considers pions
as Goldstone bosons and uses the Lagrangian density

(1)

constructed from the chiral current lµ = U+∂µU, U ∈
SU(2). The energy in the model is estimated from
below through the topological charge

which takes integer values and can be interpreted as the
baryon number. In particular, the nucleon emerges as
an absolutely stable state with minimal energy in the
first homotopic class (Q = 1) [6]. Unfortunately, the cor-
responding hedgehog configuration cannot be described
analytically due to the complexity of the nonlinear equa-
tions for the chiral field. The situation is aggravated for
the higher homotopic classes in view of nonseparability
of radial and angular variables. To overcome these diffi-
culties, we propose to approximate the configuration
with higher charges by closed vortices. As a first step in
this direction, we consider in the present paper the sim-
plest static vortex configurations given by the matrix

(2)

with ρ and ϕ being cylindrical coordinates. The config-
uration (2) appears to be equivariant under the group
G = T(z) ⊗  diag[SO(2)I ⊗  SO(2)S] including the trans-
lation along the vortex and combined isotropic-space
rotations around its axis.

Substituting (2) into (1) amounts to the radial
Lagrangian density for the chiral angle Θ(ρ):

+
1

4λ2
--------tr lµlµ( ) ε2

16
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24π2
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After the change of variable ρ = λ et, –∞ ≤ t ≤ +∞,
we obtain the mechanical problem given by the action
functional

(3)

where the dimensionless parameter ε2 is reserved for
technical purposes.

From (3), we derive the canonical momentum

(4)

and the Hamilton–Jacobi equation

(5)

Now, we search for the solution to equation (5) as a
formal series

(6)

Inserting (6) into (5), we get the recurrence relation

(7)

with the evident particular solution for n = 0,

(8)

In order to satisfy (7), we set for n > 0

(9)

From (7)–(9), we derive for n = 1 the equation

with the two different solutions (two branches) corre-
sponding to the ranges π/2 ≤ Θ ≤ π and 0 ≤ Θ ≤ π/2,
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respectively:

(10)

(11)

For n > 1, we deduce from (7)–(9) the equation

with the solution

(12)

where a+ = π and a– = 0. Formulas (10)–(12) determine
the recurrent procedure for constructing the solution to
the Hamilton–Jacobi equation (5). Inserting this solu-
tion into the right-hand side of equation (4), we can find
the canonical momentum p for the two branches of the
solution:

(13)

For matching these branches at the point Θ = π/2,
t = t0, we deduce from (13) the algebraic equation

(14)

In particular, within the scope of the n = 2 approxi-
mation, we obtain from (14) the effective development
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parameter

which permits us to calculate the mass of the vortex (its
length density):

In conclusion, we note that the function Θ(t) defin-
ing the radial distribution of matter inside the vortex
can be found from equation (13), which is represented
in the integral form
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Abstract—The S matrix in the static limit of a dispersion relation is a matrix of a finite order N of meromorphic
functions of energy ω in the plane with cuts (–∞, –1] and [+1, +∞). In the elastic case, it reduces to N functions
Si(ω) connected by the crossing-symmetry matrix A. The scattering of a neutral pseudoscalar meson with an
arbitrary angular momentum l at a source with spin 1/2 is considered (N = 2). The Regge trajectories of this
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The analytic structure of physical amplitudes in
gauge theories with confinement was investigated in
[1]. It was shown that the analytic structure of hadron
physical amplitudes established in old proofs of disper-
sion relations remains valid in QCD. It is well known
[2] that the static limit of a dispersion relation is equiv-
alent to the system of nonlinear integral equations [3].
Below, we will study this type of equations, reducing
them to a nonlinear boundary-value problem [4]. It
consists of the following series of conditions on Si, S-
matrix elements:

(1a)

(1b)

(1c)

(1d)

Real values of the variable z represent the total
energy ω of a relativistic particle scattered at a fixed
center. The requirement that function Si(z) be meromor-
phic results from the static limit of the scattering prob-
lem [5]. The elastic condition of unitarity (1c) is valid
only on the right cut of the plane z. On the left cut, func-
tions Si(z) are given by the conditions of crossing sym-
metry (1d). The matrix of crossing symmetry A is
defined by the group under which the S matrix is invari-
ant (see, for instance, [4]). Let us write conditions (1a)–
(1c) in matrix form. To this end, we introduce the col-
umn S(0)(z) = [S1(z), S2(z), …, SN(z)], where the upper
index denotes the physical sheet of the Riemann sur-
face of the S matrix. Conditions (1a), (1b), and (1d)

Si z( ) are meromorphic functions in the complex

plane z with cuts ∞ 1–,– ] +1 +∞, ),[,(

Si* z( ) Si z*( ),=

Si ω i0+( ) 2 1 at ω 1;≥=

Si ω i0+( ) Si ω ie+( ),
e +0→
lim=

Si z–( ) AijS j z( ).
j 1=

N

∑=
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refer to the physical sheet, while the unitarity condition
(1c) can be extended to complex values of ω, being of

a componentwise form, (z) (z) = 1. The matrix
form of the unitarity condition (1c) is derived by the
nonlinear operation of inversion I according to the for-
mula IS(z) = [1/S1(z), 1/S2(z), …, 1/SN(z)]. As a result,
conditions (1a)–(1d) assume the form

(2a)

(2b)

(2c)

(2d)

Analytic continuation onto unphysical sheets will
be defined as follows [6]:

(3)

By using definition (3), we can easily continue the uni-
tarity condition (2c) and crossing-symmetry condition
(2d) onto unphysical sheets

(4)

and we arrive at the formula

(5)

For example, the scattering of a neutral pseudoscalar
pion at a fixed nucleon with spin 1/2 is defined by the
condition (1) and the two-row matrix

(6)

Let us introduce the function X = S1/S2 and consider
it for z = 0. Then, the continuation of X onto the first

Si
0( ) Si

1( )

S 0( ) z( )—a column of meromorphic functions in the

complex plane z with cuts ∞ 1–,– ]  and +1 + ∞, ) , [(

S
0( )* z( ) S 0( ) z*( ),=

S 1( ) z( ) IS 0( ) z( ),=

S 0( ) z–( ) AS 0( ) z( ).=

S p( ) z( ) IA( )pS 0( ) z 1–( )p( ).=

IS p( ) z( ) S 1 p–( ) z( ), AS p( ) z( ) S p–( ) z–( )= =

IA( )qS p( ) z( ) S q p+( ) z 1–( )q( ).=

A
1

2l 1+
-------------- 1– 2l 2+

2l 1 
 
 

, l N .∈=
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unphysical sheet is determined by the rule

and, together with the crossing-symmetry conditions
(4), gives the following expression for X(n):

(7)

Thus, on any unphysical sheet n, the ratio S1/S2 is
defined at z = 0, and, in order to construct S1 and S2, it
is sufficient to find any of them. Let us denote S2 by ϕ =
S2. This function is determined by the system of func-
tional equations

(8)

(9)

which follows from the unitarity and the crossing sym-
metry conditions (4) on the unphysical sheets. Here,
only those equalities are used from (4) which were not
used for derivation of equation (7). Equation (8) has an
obvious solution in the ring of meromorphic functions

(10)
where G(n) is an entire function. Solution (10) can be
represented in another form ϕ(n) = g(n – 1/2), where
g(n – 1/2) is any odd function of its argument. That
form of ϕ(n) is convenient for the solution to equation
(9), which is now of the form

A partial solution to this nonhomogeneous differ-
ence equation can be found by subsequent substitutions
of unknown functions according to the formulas

where αk = 1/2 + l – k and g0(n) = g(n). The function gk
obeys the equation

It is clear that
(11)

and a general solution to this equation gives a trivial
solution to the problem (1), which does not depend on
l. Therefore, we obtain [5]

(12)

X 1( ) 2lX 0( ) 1+

–X 0( ) 2l 2+( )+
--------------------------------------,=

X n( ) n l 1+( )–
n l+

------------------------, X 0( ) 1 1/l+( ).–= =

ϕ n( )ϕ 1 n–( ) 1,=

ϕ n( )

ϕ n–( )----------
n l+
n l–
----------,=

ϕ n( ) G n( )/G 1 n–( ),=

g n 1+( ) g n( )+
n 1/2 l+ +
n 1/2 l–+
-------------------------.ln=

gm n( ) gm 1+ n( )
n 1–( )mαm 1++

n 1–( )mαm 1+–
------------------------------------,ln+=

gk n 1+( ) gk n( )+
n 1/2 1–( )k l k–( )+ +

n 1/2 1–( )k l k–( )–+
---------------------------------------------------.ln=

gl n 1+( ) gl n( )+ 0=

ϕ n( ) n 1/2 1–( )m 1/2 l m–+( )––

n 1/2 1–( )m 1/2 l m–+( )+–
--------------------------------------------------------------------.

m 1=

l

∏=
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We have an infinite product in formulas (12) for nonin-
teger l ∈  R. Now, equation (11) is of the form

(13)

In this case, we have instead of equation (12)

(14)

where ψ(n) is a general solution of equation (13) with
properties

(15)

Until now, one of the unitarity conditions (1c) was not
used, and it gives the following result:

(16)

where β(z) = –β(–z) is a meromorphic function. Equa-
tion (16) shows that the Riemann surface of the model
has algebraic branch points at z = ±1 and a logarithmic
one at infinity. Now, formulas (7), (14)–(16) give the
general solution to the problem (1) for matrix (6). The
function ψ can be determined from the requirement that
equation (14) turn into equation (12) for integer l. This
gives ψ(n) = –  × π/2 for l even and ψ(n) = −  ×
π/2 for l odd.

Let us recall that, in equation (14), l ∈  R, but it is
clear that this relation can be continued to l ∈  C and
allows explicit determination of the Regge trajectories

with definite signature (z). The common part of the
set of Regge trajectories for J± = l ± 1/2 is of the form
l±(z) = {2 – n(z) + 2k, n(z) + 2k|k = 0, 1, 2, …}. The Regge
trajectories for J– = l – 1/2 contain one additional trajec-

tory (z) = –n(z). All the Regge trajectories of the
model depend on one function β(z).
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Abstract—A simple method for calculating the Casimir energy for a sphere and a compact ball is developed
on the basis of a direct mode summation by means of contour integration in a complex plane of eigenfre-
quencies. © 2000 MAIK “Nauka/Interperiodica”.
      
1. INTRODUCTION

The Casimir effect can be generally defined as an
influence of the boundedness of the configuration space
on the physical characteristics of the quantum field sys-
tem.

When considering the Casimir effect, different
methods are used: Green’s function formalism, the
stress-tensor method, multiple scattering expansion,
the zeta regularization technique, and the heat-kernel
series [1]. In all the approaches to calculation of the
Casimir effect, a vague point is the procedure of unique
separation and subsequent removal of the divergences.
The lack of a universal mathematically rigorous pre-
scription for this purpose leads, in some problems, to
different results when different methods are applied.

With allowance for all this, the simplest, from the
mathematical point of view, method of direct mode
summation [2] has an obvious advantage because it
right away allows one to reveal the difficulties gener-
ated by divergences. The main goal of this paper is to
show the simplicity and efficiency of this method when
calculating the Casimir energy for a perfectly conduct-
ing and infinitely thin spherical shell and for a solid ball
placed in an infinite medium. This approach is com-
pletely based on using the classical frequencies of the
quantum field system concerned, and the main tool
employed is the Cauchy theorem from complex analysis.

2. PERFECTLY CONDUCTING SPHERICAL 
SHELL

The starting point of our approach is the following
definition of the Casimir energy:

(1)

Here, ωs are the eigenfrequencies of the system under
consideration, and  are those of the same system

E
1
2
--- ωs ωs–( ).

s

∑=

ωs

* This article was submitted by the author in English.
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when the parameters determining its boundaries take
on some limiting values. There are two modes of oscil-
lations of the electromagnetic field inside and outside
the perfectly conducting sphere with radius a: trans-
verse-electric and transverse-magnetic modes (TE
modes and TM modes, respectively). The eigenfrequen-
cies of the TE modes are defined by the equations [3]

(2)

and the eigenfrequencies for the TM modes are given by

(3)

In formulas (2) and (3), jl(z) and (z) are the spherical
Bessel functions [4],

(4)

and l = 1, 2, …. Only positive roots of these equations
ωnl > 0, n = 1, 2, …, should be considered. The first
(second) equations (2) and (3) specify the frequencies
of the electromagnetic oscillations inside (outside) the
sphere [3].

In the case of a spherical boundary, the sum  in
(1) can be written as

(5)

where Sl = , and each frequency equations

(2) and (3) generates its own partial sum , α = 1, …,

4, so that .

For the partial sums , we use the integral repre-
sentation that follows from the Cauchy theorem [4]:

(6)

jl ωa( ) 0, hl
1( ) ωa( ) 0,= =

d
dr
----- r jl ωr( )[ ] r a= 0,

d
dr
----- rhl

1( ) ωr( )[ ] r a= 0.= =

hl
1( )

jl z( ) π
2z
-----Jl 1/2+ z( ), hl

1( ) z( ) π
2z
-----Hl 1/2+

1( ) z( ),= =

s∑

1
2
--- ωs

s

∑ 1
2
---   ω nl

n

 

1=

 

∞

 ∑ 

m l

 

–=

 

l

 ∑  

l

 

1=

 

∞

 ∑  l 1/2+ ( ) S l , 

l

 

1=

 

∞

 ∑ = =

ωnln 1=
∞∑

Sl
α

Sl
α( )

α 1=
4∑

Sl
α( )

Sl
α( ) 1

2πi
-------- dzz

d
dz
----- f α( ) z a,( ).ln

C

∫°=
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Here, f (α)(z, a) are the functions defining the frequency
equations (2), (3) in the form f (α)(ω, a) = 0, α = 1, 2, 3,
4. The contour C encloses counterclockwise positive
roots of these equations and consists of the segment
[−iΛ, iΛ] of the imaginary axis and a semicircle of
radius Λ with Λ  ∞ in the right half-plane. When Λ
is fixed, the contour integral (6) gives the regularized
value of corresponding frequency sum. For negative
values of the argument ω, the functions f (α)(ω, a) have
to be defined by a condition f (α)(–ω, a) = f (α)(ω, a),
ω > 0.

In accordance with definition (1), it is necessary to
perform subtraction in order to obtain a finite (observ-
able) value of the Casimir energy. As usual, we shall
subtract the contribution of the Minkowski space that
corresponds to the limit a = ∞ in equation (6). Letting

 represent the value of the partial sum , which
is to be subtracted from (6), we get

(7)

Integration along the semicircle of radius Λ does not
contribute to difference (7) when Λ  ∞. Now we
proceed to substitute into equation (7) the concrete
expressions for the functions f (α) defined by frequency
equations (2) and (3). From equation (2), we obtain

(8)

(9)

Here, Iν(z) is the modified Bessel function Jν(iz) =

iνIν(z) and  = Jν(z) + iNν(z) is the Hankel function
of the first kind. We have used here the asymptotic
expressions for the functions Iν(z) and Kν(z) for a fixed
value of ν and large z [4].

In the same way, we deduce from the frequency
equation (3)

(10)

Sl
α( )

Sl
α( )

Sl
α( ) Sl

α( )
–

1
π
--- dy

f α( ) iy a,( )
f α( ) iy a ∞,( )
------------------------------------------ .ln

0

∞

∫=

f 1( ) iy a,( )
f 1( ) iy a ∞,( )
-----------------------------------------

Jν iya( )
Jν iya( )

a ∞→
lim
----------------------------

Iν ay( )
Iν ay( )

a ∞→
lim
--------------------------= =

=  2πaye ay– Iν ay( ),

f 2( ) iy a,( )
f 2( ) iy a ∞,( )
-----------------------------------------

Hν
1( ) iya( )
Hν

1( ) iya( )
a ∞→
lim
---------------------------------

Kν ay( )
Kν ay( )

a ∞→
lim
----------------------------= =

=  2ay
π

---------eayKν ay( ).

Hν
1( )

f 3( ) iy a,( )
f 3( ) iy a ∞,( )
-----------------------------------------

Jν/2 iyaJν'+

Jν/2 iyaJν'+[ ]
a ∞→
lim
---------------------------------------------=

=  2π
ay
------e a– y Iν/2 ayIν'+[ ] ,
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(11)

The prime over the Bessel functions Iν(ay) and Kν(ay)
means differentiation with respect to their arguments.

Finally, summing up the contributions of the TE and
TM modes to the Casimir energy, we obtain from (1),
(5), (7)–(11)

(12)

where the notation (y) is introduced for the derivative
of the function σl(y) = yIν(y)Kν(y), ν = l + 1/2. The inte-
gral in (12) converges. This follows from the asymp-
totic behavior of (y) for large y and fixed ν = l + 1/2
[4]. To carry out the summation with respect to l in (12),
one needs the asymptotic behavior of the integral Ql at
large l. Applying the uniform (with respect to z) asymp-
totic expressions for the modified Bessel functions at
large ν [1, 4],

(13)

we obtain from (12)

(14)

Thus, the sum (12) at large l diverges as

. To determine the finite value for this
sum, we rewrite (12) in the following way:

(15)

where  = Ql + 3/64.

The sum  converges because  =

−9/(16384ν2) + O(ν–4) at large l. The last divergent sum

f 4( ) iy a,( )
f 4( ) iy a ∞,( )
-----------------------------------------

Kν/2 ayKν'+

Kν/2 ayKν'+[ ]
a ∞→
lim
----------------------------------------------=

=  2
πya
---------– eay Kν/2 ayKν'+[ ] .

E
1

πa
------ l

1
2
---+ 

  dy 1 σl' y( )( )2
–[ ] 1

a
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l 1=

∞

∑≡ln

0

∞

∫
l 1=

∞

∑=

σl'

σl'

Iν νz( )Kν νz( ) . 
1

2ν
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1 z2+( )1/2
-----------------------,

Ql . 
ν2

π
----- dz 1 1

4ν2 1 z2–( )3
-----------------------------–ln

0

∞

∫

. 
1

4π
------ dz

1 z2+( )3
--------------------

0

∞

∫–
3
64
------, l ∞.–=

l 1/2+( )0

l 1=
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E
1
a
--- Ql

3
64
------ 3

64
------–+

l 1=

∞

∑=

=  
1
a
--- Ql

3
64a
--------- l

1
2
---+ 

  0

,
l 1=

∞

∑–
l 1=

∞

∑

Ql

Qll 1=
∞∑ Ql
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in (15) can be defined by using the Hurwitz zeta func-
tion ζ(z, q) [4] as

(16)

since ζ(0, 1/2) = 0.
Finally, we obtain

(17)

The sum  can be estimated with allowance for

the asymptotics of  at large l:

(18)

Thus, the main contribution to (17) is given by the sec-
ond term, and to a good approximation one can put for
the Casimir energy E . 3/(64a) = 0.046875/a. Taking
into account (18), we get, with greater accuracy, E .
0.046361/a. It is worth comparing our calculations with
those using other methods [1].

3. SOLID BALL IN AN INFINITE MEDIUM
WHEN εµ = 1

Let us consider the Casimir effect for a ball made of
a material with dielectric constant ε1 and magnetic con-
stant µ1. The ball is assumed to be surrounded by an
infinite medium with dielectric and magnetic constants
ε2 and µ2, respectively.

The central role in our consideration is again played
by the equations defining the eigenfrequencies of the
electromagnetic oscillations [3]. The TE modes are
determined by the equation

(19)

where ωi = ω, i = 1, 2. The prime means differen-
tiation with respect to the arguments of the Bessel func-
tions ωir, i = 1, 2. For the TM oscillations, we have the
analogous frequency equations

(20)

The parameter l in equations (19) and (20) takes the
values 1, 2, … . Under the exchange εi  µi, equation
(19) turns into equation (20) and vice versa.

3
64a
---------– l

1
2
---+ 

  0

l 1=

∞

∑ 3
64a
--------- ζ 0 1/2,( ) 1–( )– 3

64a
---------= =

E
1
a
--- Ql

3
64a
---------.+

l 1=

∞

∑=

Qll∑
Ql

Ql . 
9

16 384
--------------- 1

l 1/2+( )2
----------------------

l 1=

∞

∑–
l 1=

∞

∑

=  
9

214
------- ζ 2 1/2,( ) 4–[ ]– 0.000514….–=

ω1r jl ω1r( )[ ] '
µ1 jl ω1r( )

--------------------------------
ω2rhl

1( ) ω2r( )[ ] '

µ2hl
1( ) ω2r( )

-------------------------------------, r a,= =

εiµi

ω1r jl ω1r( )[ ] '
ε1 jl ω1r( )

--------------------------------
ω2rhl

1( ) ω2r( )[ ] '

ε2hl
1( ) ω2r( )

-------------------------------------, r a.= =

                                
If the characteristics of the media εi, µi, i = 1, 2, sat-
isfy the condition εi µi = 1, i = 1, 2, the frequency equa-
tions are considerably simplified. With allowance for
this condition, equations (19) and (20) can be written as
follows:

(21)

where µ = µ1/µ2. Following the calculations in the pre-
vious section, we obtain the Casimir energy of a solid
ball in the form

(22)
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 as in equation (12). Thus
the only difference from the case of a perfectly con-
ducting sphere is the multiplier 
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in (24) again by making use of the
Hurwitz zeta-function technique. It gives
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By the taking into account the uniform (in x) asymp-
totic behavior of the Bessel functions Iν(x) and Kν(x) at
large ν [4], we obtain

(27)

The sum in (26) converges. It can be estimated with the
aid of the asymptotic expression (27):

(28)

Thus, the basic contribution to equation (26) is due to
the second term. Therefore, with fairly good accuracy
(a few percent), one can set Eball . 3η2/(64a). It was
shown in the preceding section that, with the same
accuracy, we have Eshell = 3/(64a); therefore, Eball .
η2Eshell. Taking into account (28), we obtain a more pre-
cise formula for the Casimir energy of a solid ball, Eball .
3η2(1.066 – 0.077η2)/(64a) (cf. [6]).

4. CONCLUSION
The calculation of the Casimir effect for nonflat

boundaries (specifically, for a sphere) by a direct sum-
mation of eigenfrequencies has been used only in the

Ql . 
9

16 384
---------------η2
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----- 6 7η2–( ) O ν 4–( ).+

Ql . 
9
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---------------η2 6 7η2–( ) 1
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=  
9

214
-------η2 6 7η2–( ) π2

2
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pioneering paper by Boyer [5]. The fact that it is done
by us is actually a development and maximum sim-
plification of the Boyer method. We recast it into a
form requiring virtually no numerical calculations;
what is more important is that no cutoff functions are
used here.
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1. A fundamental issue in quantum chromodynam-
ics (QCD) is the behavior of the strong-interaction run-

ning coupling constant αs = /4π. The basic research
tool is perturbation theory (PT) with its renormaliza-
tion-group improvement [1]. In the QCD case in the
limit of large momentum transfers Q, this approach
provides a logarithmic decrease of the running cou-
pling constant αs ~ 1/ln(Q2/Λ2), where Λ is the QCD
scale parameter that determines where the theory
becomes asymptotically free. The study of the behavior
of αs outside of the asymptotic region is more difficult.
It is known that the direct use of PT improved by the
renormalization group leads to infrared instability of αs

and unphysical singularities—for instance, a ghost pole
at Q2 = Λ2. Unphysical singularities of the PT running
coupling constant preclude a self-consistent determina-
tion of the effective coupling constant for timelike
momentum transfers. Recently, a new method has been
proposed [2] for constructing the QCD running cou-
pling constant in such a way as to retain the correct ana-
lytic properties. This method is called analytic pertur-
bation theory (APT). The main purpose of this paper is
to analyze the region of timelike momentum transfers
on the basis of the APT approach. The running coupling
constant in QCD as a function of Q2 is determined by a
renormalization-group analysis in the region of space-
like momentum transfers. However, to parametrize
many physical processes, one needs to know the cou-
pling constant in the timelike region. Therefore, a theo-
retical description of timelike processes (e+e– annihila-
tion into hadrons, τ-lepton and Z-boson widths with
respect to their decays into hadrons, and so on) requires
analytic continuation of the running coupling constant
from the spacelike (Euclidean) region of momentum
transfers (q2 = −Q2 < 0) to the timelike (physical) region
(q2 > 0). It is obvious that information on the running
coupling constant obtained from timelike processes
corresponds to knowledge of the coupling constant
extracted from spacelike processes such as deep-inelas-

gs
2

* This article was submitted by the author in English.
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tic scattering, if the transition from the Euclidean to the
physical region is performed in a correct manner (see
[3, 4]) without violation of the analytic properties of the
hadronic correlation function Π(q2) and the Adler func-
tion D(q2). When the analytic properties are not
respected, the question arises: to what extent does this
breakdown of analyticity affect the quantities extracted
from physical processes? It is impossible to answer this
question within standard perturbation theory. On the
other hand, the APT method retains the correct analytic
properties of the D function and, in addition, gives sim-
ple analytic expressions that can be compared with cor-
responding PT expressions; therefore, it allows a quan-
titative analysis of the effect that the breakdown of Q2

analyticity has on the running coupling constant.
2. As is known, many experimentally measured

ratios Rσ, where, e.g., σ = e+e–, τ, Z, …, can be written

in the form Rσ = (1 + ∆σ). Here, ∆σ is a QCD cor-

rection and  represents the parton level of descrip-
tion of a given process with electroweak corrections.
The quantity ∆σ can be expressed in terms of the imag-
inary part of the hadronic correlation function as
5(s) = ImΠ(s)/π. To parametrize 5(s) in terms of
QCD parameters, a special procedure of analytic con-
tinuation is required. With this end in view, one usually
employs the dispersion relation

(1)

where z = q2, and the inverse relation

(2)

We define the effective coupling constants  and
, respectively, in the spacelike (t-channel) and time-

like (s-channel) regions, using the notation a = α/4π
and dimensionless (in units of the scaling parameter Λ)

Rσ
0( )

Rσ
0( )

D z( ) z ds
5 s( )
s z–( )2

-----------------,

0

∞

∫–=

5 s( ) 1
2πi
--------= dz

dΠ z( )
dz

---------------

s ie–

s ie+

∫ 1
2πi
-------- dz

D z( )
z

------------.
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s ie+

∫–=

a
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momentum variables, by

(3)

(4)

Equations (1) and (2) and the equality d1 = r1 result in a
relation between these coupling constants:

(5)

(6)

Therefore, the QCD corrections ∆σ for the class of
physical processes considered with timelike momen-
tum transfers are to be parametrized, according to equa-
tion (4), by the effective coupling constant (s), which

is analytically related to (z) by equations (5) and (6).
In the one-loop approximation, the effective coupling
constants coincide with the running coupling constants;
in higher loops, the connection depends on the physical
process.

3. Consider the above procedure of analytic contin-
uation within PT with

(7)

Then, we obtain the following the expression for the PT
running coupling constant in the s channel:

(8)

This expression is physically meaningless, because it is
negative for any s and does not have the correct asymp-
totic behavior, going as 1/lns as s  ∞; the reason
will be explained below.

There is another way of calculating  based on the
Shankar method [5]. Using analyticity of the D func-
tion in the complex z plane with the cut along the posi-
tive real axis, we may pass from the integral along the
cut (see the contour C1 in Fig. 1) to an integral around
a circle of radius |z| = s in the complex z plane, begin-
ning at z = s + ie and ending at z = s – ie (the contour C2

D z( ) 1 d1a z( ) d2a2 z( ) …+ + +∝ 1 d1a z( ),+=

5 s( ) 1 r1as s( ) r2as
2

s( ) …+ + +∝ 1 r1as s( ).+=

as s( ) 1
2πi
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s ie–
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a z( ) z
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-----------------as s( ).
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a
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Q2/Λ2( )ln
------------------------- 1
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z–( )ln
---------------,= =

z Q2/Λ2.–≡
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2πiβ0
-------------- dz

z
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z–( )ln
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s ie–

s ie+

∫–=

=  
1

πβ0
--------- π

2
--- arctan

sln
π

-------+ 
  .–
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in Fig. 1) and parametrized by z = –sexp(iϕ), –π < ϕ <
π, to arrive at the expression

(9)

This is positive when s > 1 and possesses the correct
ultraviolet asymptotic behavior. It is just this expres-
sion that is used as a one-loop PT result for all timelike

momenta s > 0 (see, e.g., [6]): (s) = .

Thus, a formal conversion of the PT one-loop run-
ning coupling constant in the spacelike region (7) into
expressions for the coupling constant in the timelike
region leads to the contradictory results (8) and (9). The
reason can easily be understood if one applies the
Cauchy theorem (see Fig. 1) to establish the connection
between the integrals in equations (8) and (9),

(10)

which is consistent with equations (8) and (9), because
the residue of the function ψ(z) at the point z = –1 is
equal to unity. Therefore, the discrepancy between
equations (8) and (9) is due to an unphysical ghost pole
in (7) at z = –1, which violates the required analytic
properties of the running coupling constant. The inclu-
sion of multiloop corrections does not solve this prob-
lem, but it rather produces new unphysical singulari-
ties. Within standard PT approximations, which violate

1
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Fig. 1. Integration contours in the complex plane.
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the necessary analytic properties of the running cou-
pling constant, it is therefore impossible to pass into the
timelike region in a self-consistent way.

4. The problem of how to make the correct transition
between the space- and timelike regions can be solved
within the APT method [2, 4], which ensures the cor-
rect analytic properties of the coupling constant with-
out introducing extra parameters. The resulting one-
loop expression for the analytic coupling constant in
the Euclidean region is 

(11)

When one employs the analytic coupling constant (11),
both methods for calculating  considered above pro-
duce the same result; i.e.,

(12)

Consistency of the APT approach also follows from the
fact that we can reconstruct the initial expression (11)
when the timelike coupling (12) is substituted into
equation (6). It is of interest to note that this consis-
tency is due to the second term in equation (11), which
compensates the pole, whose contribution to the con-
tour integral is equal to zero when s > 1; i.e., we have
the equality

(13)
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α–

s = q2/Λ2

Fig. 2. The behavior of the running coupling constant calcu-
lated by various methods.
where the function (z) is defined by equation (7).
Therefore, the PT expression (7) gives the same result
as the APT approach in the timelike region for s > 1 if
the contour C2 is used. However, there is no inverse cor-
respondence for PT. Moreover, note that an equality
analogous to equation (13) does not arise if the inte-
grand contains the running coupling constant multi-
plied by a function of z. For the Rτ ratio, for instance, 
is multiplied by a polynomial in z and, as is shown in
[7], the contour integral along C2 in PT turns out to be
different from that in the APT approach.

5. The results obtained are illustrated in a series of
figures. Firstly, we consider the region of small
momentum transfers. Figure 2 shows the behavior of
the running coupling constant computed by various
methods in the region –10 ≤ s = q2/Λ2 ≤ 10. The solid
curve represents the APT coupling constant calculated by
formula (11) in the spacelike region (curve 1 in Fig. 2)
and by formula (12) in the timelike region (curve 1*).
Dots denote the coupling constant determined by equa-
tion (9) (curve 2*) and by making an inverse transition
from the timelike to the spacelike region with the help
of the dispersion relation (1). The dash-dotted curve 3
represents the PT coupling constant computed by for-
mula (7) in the spacelike region, and curve 3*, the same
by formula (8) in the timelike region.

Figure 3 shows the behavior of the running coupling
constant in the region where the running coupling con-
stant  is about 0.3, which approximately corresponds
to the mass scale of the τ lepton, Mτ = 1.78 GeV. As is
seen from Fig. 3, curves 1, 2, and 3, which describe the
spacelike region, noticeably differ from one another.
With increasing s, they begin, as they should, to
approach each other, which is demonstrated on the top
right of Fig. 3. Values of the parameter Λ calculated

aPT

a

α

0.34

0.30

0.26

0.22
0 50 100 150 200

s = |q2|/Λ2

α– 0.3

0.2

200 600 1000
s2 1 3

1*, 2*

1
3

2

1*, 2*

Fig. 3. Behavior of the running coupling constant. The nota-
tion is the same as in Fig. 2. The graph on the top right
shows the behavior of the same curves for large values of s.
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with the running coupling constants described by
curves 1, 2, and 3 are different. For example, the value
of APT function (curve 1), equal to 0.34, is achieved at
s0 = 41.5, which corresponds to ΛAPT = 276 MeV. For
the PT curve 3, s0 = 60.5 and ΛPT = 228 MeV. Note that,
for curve 2, the value  = 0.34 cannot be achieved at
any values of s. For timelike momentum transfers,
recall that curves 1* and 2* as functions of the dimen-
sionless variable s coincide when s > 1. However, they
are characterized by different values of Λ, which results
in different values of the running coupling constant in

the timelike region, (Mτ) = 0.31 and (Mτ) =
0.29. With the accuracy attained at present for experi-
mental data on the hadronic decay of the τ [8], this
quantitative discrepancy becomes significant.

Finally, Fig. 4 shows the evolution of the running
coupling constant in the region of momentum transfers
of the order of the Z-boson mass MZ = 91.2 GeV. The
running coupling constant  corresponding to the
dimensionless variable s is drawn in Fig. 4. The curve
denoted by  represents all three curves 1, 2, and 3
drawn in Figs. 2 and 3 and describing the behavior of
the running coupling constant in the spacelike region;
they merge into one curve with high accuracy for these
large values of s. The curve denoted by  corresponds
to the coupling constant in the timelike region and to
curves 1* and 2* plotted in Figs. 2 and 3. In the region
of sufficiently large values of s, the well-known approx-
imate formula with the so-called π2 term (see, e.g., [9]),

 = [1 – (π2/3)/ln2s], works well (with an accuracy
of about 0.1%) both for PT and for APT. This approxi-
mation gives a difference between  and  of about
2%. Substituting the value of the parameter Λ fixed at
q = Mτ, we obtain the corresponding values of the run-

ning coupling constant at q = MZ:  = 0.120,  =

0.117 (spacelike region);  = 0.118,  = 0.114
(timelike region). Thus, even at such large values of s,
the effect of analyticity on the running coupling con-
stant amounts to ~2%; i.e., it is comparable with the
contribution from the π2 term and from higher PT loop
corrections.

6. Let us briefly summarize our considerations. To
determine the running coupling constant in the timelike
region, we took advantage of APT because it provides
a consistent procedure necessary for analytic continua-
tion. It is to be noted that the APT method ensures not
only correct analytic properties of the running coupling
constant but also stability with respect to higher loop
corrections, which is essential for the stability of our
procedure of analytic continuation.

Quantitatively, our analysis shows that the effect of
analytic continuation can be associated with π2 terms
only at very large momentum transfers of the order of
the Z-boson mass, where the contribution of the π2

α

α s
APT α s

PT

α

α

α s

α s α

α s α

αAPT αPT

α s
APT α s

PT
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terms is small. At intermediate and, especially, at low
momentum transfers, it is important to take account of
the correct analytic properties of αs, which permits a
consistent transition into the timelike region. The Q2

dependence of  is essentially different from the

dependence of  in PT. Our analysis shows that the

popular PT expressions for  as expansions in

1/ln(Q2/Λ2), containing nonphysical singularities, do
not allow a self-consistent interpretation of information
obtained from various experiments that studied the evo-
lution of αs outside of the asymptotic region. From our
numerical estimates, it follows that analyticity of the
running coupling constant has a pronounced effect on
the experimental value of the parameter ΛQCD and on
the Q2 evolution of αs. Note that these considerations
are also important for the investigation of power-law
corrections, which are now under intensive study (see,
e.g., [10]). The analysis of power-law corrections in
APT at the one-loop level naturally changes their
importance relative to perturbative terms.

The APT method appears to be fruitful for studying
the problem of analytic continuation of αs to the time-
like region. There is no doubt that extracting more
detailed information from experimental data on time-
like processes requires a more thorough theoretical
analysis within APT, including the estimation of the
contributions from higher order processes, mass cor-
rections, and so on. These will be considered in our
subsequent papers.
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1. BASIC EQUATIONS

We consider the system of equations

(1)

where ρ and u are density and pressure and λ is the
parameter of the medium [1]. The system (1) is the
long-wave approximation for the wide class of abso-
lutely unstable media (for example, overturned shallow
water, constrictions on a plasma pinch, and a flat grav-
itating gaseous layer).

We introduce the new dependent variables

In these variables, system (1) becomes

(2)

Using the godograph transformation, we obtain the sys-
tem

(3)

We suppose that the Jacobian D(r, z)/D(x, t) ≠ 0.
The compatibility condition for equations (3) is

(4)

Equation (4) is a complex analog of the Euler–Pois-
son–Darboux equation.

∂u
∂t
------ u

∂u
∂x
------ λ∂ρ1/λ

∂x
------------–+ 0,=

∂ρ
∂t
------ ∂ ρu( )

∂x
--------------+ 0, λ R/ 0{ } ,∈=

r ρ1/ 2λ( ), z u/ 2λ( ).= =

∂r
∂t
----- 2λz

∂r
∂x
------ r

∂z
∂x
------++ 0,=

∂z
∂t
----- r

∂r
∂x
------– 2λz

∂z
∂x
------+ 0.=

∂x
∂r
------ 2λz

∂t
∂r
----- r

∂t
∂z
-----,+=

∂x
∂z
------ r

∂t
∂r
----- 2λz

∂t
∂z
-----.+–=

∂2t

∂r2
-------

2λ 1+( )
r

-------------------- ∂t
∂r
----- ∂2t

∂z2
-------+ + 0.=

* This article was submitted by the author in English.
1063-7788/00/6304- $20.00 © 20677
2. SYMMETRIES OF THE BASIC EQUATIONS

Proposition 2.1. System (2) admits Lie group sym-
metries with the following basis:

Proposition 2.2. Equation (4) admits Lie group
symmetries with the following basis:

provided that 4λ2 – 1 ≠ 0.

3. PERIODIC SOLUTIONS

Let us consider the equation

(5)

Equation (5) describes fundamental solutions to equa-
tion (4).

Proposition 3.1. Periodic (for space variable x)
solutions to system (2) are fundamental solutions to
equation (4).
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The proof follows from the identity

Here, Γ is a closed path in the (r, z) plane where t =
const and Σ is the inner domain.

Remark 3.1. The space period Λ is

4. SYMMETRIES OF LINEAR PARTIAL 
DIFFERENTIAL EQUATIONS AND 

FUNDAMENTAL SOLUTIONS
Fundamental solutions to linear partial differential

equations of mathematical physics are often invariant
under the symmetry transformations admitted by the
equation [2, 3]. Usually, fundamental solutions can be
obtained by dimensional analysis [4] or, more gener-
ally, from the invariance under groups of scalings.
Here, we formulate the algorithm for constructing fun-
damental solutions on the basis of our knowledge of the
Lie group point symmetries.

Let us consider the pth order linear partial differen-
tial equation

(6)

We use the standard notation: α = (α1, …, αm) is a
multi-index with integer-valued nonnegative compo-
nents, |α| = α1 + … + αm,

Fundamental solutions of equation (6) satisfy the equa-
tion

(7)

It was demonstrated in [5] that, in the cases p ≥ 2
and m ≥ 2, equation (6) admits symmetry operators
only of the following special form:

(8)

Let  be the pth order prolongation of the operator (8).

Proposition 4.1. The necessary and sufficient con-
dition for the infinitesimal operator of the form (8) to be
the symmetry operator of equation (6) is the existence
of the function λ = λ(x) satisfying the identity

(9)

for an arbitrary function u = u(x).

dx

Γ
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Let us formulate the main result [6, 7].

Theorem 4.1. Lie algebra of symmetry operators of
equation (7) is a subalgebra of the symmetry algebra of
equation (6) distinguished by the relations

(10)

(11)

Let us formulate the algorithm for constructing fun-
damental solutions by using symmetries [7]:

(i) Find the general form of the symmetry operator
of equation (6) and the corresponding function λ(x) sat-
isfying identity (9).

(ii) Find the general form of the equation (7) sym-
metry operator using restrictions (10) and (11).

(iii) Construct invariant fundamental solutions
using the symmetries of equation (7).

(iv) Construct new fundamental solutions from the
known ones using the symmetry group of equation (7).

5. THE INVARIANT PERIODIC SOLUTIONS

The general form of the equation (4) symmetry
operator is

where ai are some arbitrary constants. Then, the func-
tion λ(r, z) is

Proposition 5.1. Equation (5) admits only one sym-
metry operator

(12)

Proposition 5.2. The symmetry operator (12) corre-
sponds to the one-parameter group of transformations

where e is the group parameter and σ = (2λ + 1)/2.
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The symmetry operator (12) has two functional
independent invariants

Proposition 5.3. The invariant fundamental solu-
tion to equation (4) is

(13)

where P–σ(ξ) and Q–σ(ξ) are Legendre functions [8] and
c is an arbitrary constant. 
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ON SYMMETRY METHODS IN PHYSICS
The Exact Solution to the Cauchy Problem
for Two Generalized “Linear” Vectorial Fokker–Planck 

Equations: Algebraic Approach*
A. A. Donkov1), A. D. Donkov2), and E. I. Grancharova

University of Sofia, Bulgaria

Abstract—The exact solutions to the Cauchy problem for two equations, which are slight generalizations of
the so-called linear vectorial Fokker–Planck equation, are found using Feynman’s disentangling techniques and
algebraic (operational) methods. This approach may be considered as a generalization of the Suzuki method for
solving the one-dimensional linear Fokker–Planck equation. © 2000 MAIK “Nauka/Interperiodica”.
   
1. INTRODUCTION

The Fokker–Planck equations (FPE), the one-
dimensional FPE

(1)

and the “vectorial” FPE

(2)

where a(t, x) = (a1(t, x), a2(t, x), …, an(t, x))T is the

“drift vector”, (t, x) is a symmetric nonnegative def-

inite rank-two “diffusion” tensor field, and ∇∇  :  =
∂2Dij/∂xi∂xj (Einstein summation convention accepted),
are widely used [1–19] as a tool in modeling various
processes in many areas of theoretical and mathemati-
cal physics, chemistry and biology, pure and applied
mathematics, and in engineering: nonequilibrium sta-
tistical mechanics (in particular, in the theory of
Brownian motion and similar phenomena: random
walks, fluctuations of liquid surfaces, local density
fluctuations in fluids and solids, fluctuations of cur-
rents, etc.), metrology (Josephson voltage standards),
laser physics, turbulence theory, cellular behavior, neu-
rophysiology, population genetics, and the mathemati-
cal theory and applications of stochastic processes, to
mention only a few of them.

Because of its importance, there have been many
attempts to solve FPE exactly or approximately (for a
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review see [4, 6–11, 14]). Among the recent investiga-
tions of this problem, noteworthy for us is the Suzuki
method [18].

In this paper, we find the exact solutions of the fol-
lowing Cauchy problems:

(a) The case with independent of t coefficients

(3)

where  is a symmetric nonnegative definite rank-two
tensor.

(b) The case with t dependent coefficients

(4)

where

and therefore (t) is a symmetric nonnegative definite
rank-two tensor function of the scalar parameter 

 

t

 

.

It is easy to see that equations (3) and (4) are con-
nected with the “linear” vectorial FPE (2) with a linear
in 
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 diffusion tensor . (Here, 
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, 
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, and  are con-
stant in the case (a) and they are functions of 

 

t

 

 in the
case (b).) Equations (3) and (4) are slight generaliza-
tions of the “linear” vectorial FPE (2) with independent
of 

 

t

 

 and 

 

t

 

-dependent coefficients, respectively.

We consider the Cauchy problems (3) and (4) sepa-
rately because we have used different formulas to find
the solutions, but obviously problem (3) with coeffi-
cients independent of 

 

t

 

 is a special case of problem (4).
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â4 t( ) a4 t( )â, a4 t( ) 0, â
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In the paper [20] the “isotropic” problems

(5)

and

(6)

have been exactly solved with similar techniques [here,
a4 and a4(t) are an arbitrary nonnegative constant and a
function of t, respectively]. Our method may be
regarded as a combination of Feynman’s disentangling
techniques [21], with the operational methods devel-
oped in functional analysis and, in particular, in the the-
ory of pseudodifferential equations with partial deriva-
tives [22–26]. As we have emphasized in [20], this
approach is an extension and generalization of the
Suzuki method [18] for solving the one-dimensional
linear FPE (1).

2. EXACT SOLUTION TO THE CAUCHY 
PROBLEM (3)

In the spirit of the operational methods we can write
the solution to the Cauchy problem (3) using the
pseudodifferential operators [23–26] in the form

(7)

where

(8)

Therefore, to obtain the solution u(t, x), we must find

out how the pseudodifferential operator  acts on
φ(x). To do this, we will employ Feynman’s disentan-
gling techniques [21].

If we put

(9)

we will find for (t) the following initial value problem

d /dt = , (0) = 1, the solution of which
is

(10)

where the symbols T – exp ≡ exp+ designate the Volt-
erra-ordered exponential.
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e
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Using the formula

 

 =  – 

 

s

 

[ ] + [ , [ ]] – …

 

 

and the commutation relation 

 

[ ] = 

 

−

 

2

 

a

 

3

 

, we

obtain for  an expression with the usual, not
ordered, operator valued exponent function
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where
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is a nonnegative definite symmetric rank-two tensor
function of 
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.
Hence, from equations (7), (9), and (11), we have
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. Taking into
account the known formulas
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and
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we obtain the following expression for the exact solu-
tion to the Cauchy problem (3);
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One may check that the function 
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 from (15) is
the solution to problem (3); according to the Cauchy
theorem, it is the only classical solution of this prob-
lem.

3. EXACT SOLUTION TO THE CAUCHY 
PROBLEM (4)

We will proceed here by analogy with Section 2.
In view of the 
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 dependence of the coefficients of
equation (4), we formally have for the solution to prob-
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lem (4) an ordered exponential

(16)

The linearity of the integral and the explicit form of
the operators in (16) permit us to write u(t, x) in terms
of the usual, not ordered, operator-valued exponent

(17)

where, for convenience, we have denoted

(18)

If we introduce the operators
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we have (from now on ' means d/dt)

(20)

and we can write (17) in the form
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which is analogous to (7). In order to find the action of

the pseudodifferential operator  on the func-
tion φ(x), we put

(22)

and, as in Section 2, we obtain
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where
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From (24) and from the properties of a4(t) and , it is
obvious that (t) is a symmetric nonnegative definite
rank-two tensor function of t.
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Â t( ) α2 t( ) ∇ α3 t( )x ∇ , ⋅+⋅=

B̂ t( ) α4 t( )â  :  ∇ ∇ ,=
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Recalling (19) and (21)–(23), we can then write the
solution to the problem (4) in the form
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Now taking into account formula (14) and the ana-
log to formula (13) [20],
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we obtain the following expression for the exact solu-
tion of the Cauchy problem (4):
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Substituting expression (27) into equations (4), we
immediately see that the function 

 

u

 

(
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, 

 

x

 

)

 

 is the solution
to the problem (4); and, according to the Cauchy theo-
rem, it is the only the classical solution to this problem.

4. CONCLUDING REMARKS

The exact solutions to the Cauchy problems (3) and
(4) are obtained using the algebraic method we have
described.
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pic” problems (3) and (4) reduce to the “isotropic” ones
with the exact solution found in [20]. It is easy to check
that the solutions (15) and (27) reduce to the solutions
obtained in [20] {there is an error in [20]: the sign
before 
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2

 

 in equations (17) and (34) should be (+)}.

For different choices of the coefficients 
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j

 

, equations
(3) and (4) may be also regarded as a set of different dif-
fusion equations. Therefore, from formulas (15) and
(27) we obtain the exact solutions to the Cauchy prob-
lems for this set of diffusion equations.
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VIII INTERNATIONAL CONFERENCE
ON SYMMETRY METHODS IN PHYSICS
Linear Groups of Symmetries of State Equations
in Relativistic Continuum Mechanics*

A. N. Golubiatnikov
Moscow State University, Vorob’evy gory, Moscow, 119899 Russia

Abstract—On the basis of classification of continuous subgroups of the SL3 group and their invariants as func-
tions of components of the rank-two tensor gij , a description of possible relativistic anisotropic continua is
given. Stability of relativistic media (or hyperbolicity of motion equations) with high symmetry (≥4 group
parameters) is investigated. © 2000 MAIK “Nauka/Interperiodica”.
1. The approach connected with affine symmetry in
Newtonian continuum mechanics was proposed by
Coleman [1] and Wang [2]. It is used for describing
such anisotropic media as liquid crystals and plasma.
The complete classifications of the continuous sub-
group of groups SL3 and GL3, more exactly, their Lie
algebras, and their invariants as functions of gij, was
given in [3, 4]. The results for group SL3 { a, deta = 1
are presented in the table.

In the given work, an application of this theory to
relativistic mechanics is considered. Let ξi(xα), i = 1, 2,
3, be Lagrangian coordinates of a point in the medium;
xα, α = 1, 2, 3, 4, be observer variables; and ηαβ(xγ) be
components of the metric tensor of the spacetime with
signature +++– and

(1)

so that (gij)–1 = (gij) is a three-dimensional metric tensor
(+++) of the manifold of world lines.

As is known, the energy density of a homogeneous
simple medium has the form ε(gij, s), s being the spe-
cific entropy. Thus, the results of Newtonian symmetry
for the function of accompanying components of the
space metric gij are transferred in the relativistic
mechanics.

In the table, the following notation is used: n is the

dimension of group Lie Gn, N 0 is its number;  is a
matrix that has unity on the intersection of the i line and
j column, the remaining elements being zeros; x is here
the parameter of series of subgroups; and g = det(gij).
The groups act as transformation groups on the set of

Lagrangian variables ξk, so that matrix  (with compo-

nents  = δikδjl) responds to the infinitesimal opera-

tor  = ξj∂/∂ξi.

gij ξα
i ξβ
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e j
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e j
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Xi
j

* This article was submitted by the author in English.
1063-7788/00/6304- $20.00 © 20684
2. Questions of the stability of media with G4 sym-
metry and higher in the framework of Newtonian
mechanics are considered in [5]. It is shown that in
these cases only the media admitting G5 symmetry can
be stable [see the invariants of G4, 5 and 6 (x = –1), and
G5, 2 and 3, in the table].

We shall examine the relativistic equations of isen-
tropic (s = const) motion of an ideal continuum

(2)

It should be noted that the motion equations in form
(2) always have the divergent form of certain conserva-
tion laws. To trade form ∇ α  = 0, they are reduced by

contraction with .

The motion of surface f(xα) = 0 of weak discontinu-
ity is described by the condition of solubility of the fol-
lowing linear equations relative to w j:

(3)

The functions ηαβ(xγ) are assumed to be smooth.

Let ni ~ ∇ αf  be components of a unit normal vec-
tor and D be the value of the discontinuity speed with
respect to the medium. Then,

(4)

where u = ε/ρ is the specific inner energy, ρ is the mass
density, pij is the stress tensor, and c is the velocity of
light in vacuum.

For the stability of a given medium state, the tensors
Q1, ij and Q2, ij must define at each vector ni three linearly

∇ α
∂ε
∂ξα

i
-------- 0.=

Tβ
α

ξβ
i

Qijw
j ∂2ε

∂ξα
i ∂ξβ

j
----------------- f α f βw j≡ 0, f α

∂f
∂xα
--------.= =

ξα
i

Qij nknl

∂pi
l

∂g jk
----------

∂p j
l

∂gik
---------+

 
 
 

gijε pij–( )D2

c2
------+∼

≡ Q1 ij, Q2 ij,
D2

c2
------, pij+ 2ρ ∂u

∂gij
--------,–=
000 MAIK “Nauka/Interperiodica”



LINEAR GROUPS OF SYMMETRIES OF STATE EQUATIONS 685
Symmetry groups and their invariants

No. Lie algebra Invariants

1.1 g,    g33(g11 + g22)2,    g33(g11 + g22)2,

x ≥ 0 g33g33,    g33

1.2 g,    g33     g11     g13g23,

x = 0, 1 g11

1.3 g,    g11g22g33,    g22     g11     g33

–1/2 < x ≤ 1

1.4 g,    g11, g33,    g22 – 2g13,    g11g23 + g12g33

2.1  g,    g33(g11 + g22)2,    g33(g11 + g22)2,    g33g33

2.2  g,    g11g22g33,    g22     g11

2.3  g,    g11,    g33,    g11g23 + g12g33

2.4  g,    g33     g11     g13g23

2.5  g,    g11,    g22,    g23

2.6  g,    g11,    g12,    g22

2.7  g,    g33     g22 – 2g13,    (g11g23 + g12g33)

2.8  g,        g23     

2.9  g,    g23     g33     g11

2.10  g,    g11         g33

3.1   g,    g11 – g22 – g33,    g11 – g22 – g33

3.2   g,    g33,    g33

3.3   g,    g11 + g22 + g33,    g11 + g22 + g33

3.4   g,    g33,    (g11g23 + g12g33)

3.5   g,        g23

3.6 (1 + x)   
|x | ≤ 1

g,    g23     (g22)1 + x

3.7   
x = 0, 1

g,    g33     g33

3.8   
x ≥ 0

g,    (g22 + g33)     g11
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1 x+( )e2
2

1 2x+( )e3
3
,–+ e2

1
g11

1–
g13

2
g33

1–
, g11
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1 2x+
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 exp
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g
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 
 
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–
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g11
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e3
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,– e2

1
g11

1–
g13

2
g33
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1
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e3
3
,–– e2

1
, e3

1

g11
1 2/–
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x–

x 2e1
1
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e3
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1
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1
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 
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Table. (Contd.)

No. Lie algebra Invariants

3.9         
|x | ≤ 1

g,    ,    g11

3.10         g,    g33,    g11

3.11         
x ≥ 0

g,    g33(g11 + g22)–2,    g33

4.1             g,    g23

4.2             g,    (g22 + g33)

4.3             g,    

4.4             g,    g33(g11 + g22)–2

4.5             g,     g33
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|x | ≤ 1

g,    (g33)1 + x
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e1
1

e2
2

2e3
3
,–+ e2

1
e1

2
,– e3

1
, e3

2

e1
1

e2
2
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3

independent vectors wi and appropriate real speeds D.
In the Newtonian approximation, the tensor Q1, ij
depending on the vector ni is the same. The tensor Q2, ij
is independent of ni (Q2, ij ≈ gijρc2). Thus, the results of
Newtonian mechanics in medium instability that are
connected with the change of signature of the tensor
Q1, ij at variations ni [5] remain valid in the relativistic
theory.

Let us give at the positive definiteness of tensor Q2, ij

sufficient conditions of the strong hyperbolicity of
equations (2) for the media with G5 symmetry. Let V =

 ~ 1/ρ be the relative volume, I =  be the length

of the covector (in the proper basis), and J =  be
the length of the vector. These vectors define the
medium anisotropy.

g g33

g33
In case 1, we have an isotropic fluid with pij = –pgij,
where p is the pressure and ∂p/∂ε > 0. In case 2,

(5)

and in case 3,

(6)

where indices V, I, J indicate the partial derivatives.
In Newtonian mechanics, case 2 corresponds to lay-

ered liquid crystals or fluids with disk-shaped mole-

u
V
--- uV 0, uI 0, uII 0,>>>–

uVV 0> , uIIuVV V2 uI

V
---- 

 
V

2

,>

uV uV–
JuJ

V
-------- 0, uJ 0, uJJ 0,>>>–

uVV 0> , uJJuVV uJV
2 ,>
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cules. In this case, it is the gradient field (I = |∇ξ 3|)
dragged by the continuum. In case 3, we have fluids
with prolate molecules and ideal magnetic hydrody-
namics in the general case with “anisotropic pressure,”
where H = J/V is the value of the magnetic field. If the
model of the relativistic magnetic hydrodynamics is
well known, then stable structures of case 3 can also
have applications in problems of relativistic mechanics.
Here, for example, the model with

is possible.

u f s( )V I2 u1 V s,( ), f 0,>+=

u1/V( )V 0< , u1 VV, 0>
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Abstract—A symmetry associated with the inversion of the speed of light is considered. © 2000 MAIK
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1. INTRODUCTION

We shall mean by “minus c” symmetry that con-
nected with discrete transformation as the inversion of
the speed of light. Discrete transformations play an
important role in theoretical physics. The space inver-
sion P(x  –x), the time reversal T(t  –t), and the
charge conjugation C are examples of these symmetries
[1, 2]. Recently, the existence of an additional discrete
symmetry of such a type [3, 4] was established. It is the
inversion of the speed of light x0  x0, x  x, c 
–c, where x0 = ct. Let us designate this symmetry by the
symbol Q. The equation of light cone (x0)2 – x2 = 0 can
demonstrate the example of the Q symmetry. “Minus c”
symmetry is also inherent in the D’Alembert equation,
the Maxwell equation, the equation of motion of a
charged particle in an electromagnetic field, and
Schrödinger and Klein–Gordon–Fock equations [3]. The
“c  –c” symmetry is connected closely with the charge
conjugation C, which may be interpreted as the composi-
tion of the QPT transformations [4]. The purpose of the
present work is the further study of the Q-symmetry.

2. G8 GROUP OF DISCRETE 
TRANSFORMATIONS OF SPACE, TIME,

AND THE SPEED OF LIGHT

Let us introduce the 5-dimensional space of events
V 5(x0, x, c) and two hyperplanes with c = +3 × 1010 cm/s
and c = –3 × 1010 cm/s in it and construct four matrices
of dimension 5 × 5:

(1)

αT
1– 0 0

0 I 0

0 0 1 
 
 
 
 

, αP
1 0 0

0 I– 0

0 0 1 
 
 
 
 

,= =

αQ
1 0 0

0 I 0

0 0 1– 
 
 
 
 

.=

* This article was submitted by the author in English.
1063-7788/00/6304- $20.00 © 20688
Here, I is the 3 × 3 unit matrix and [αT, αP] = [αT, αQ] =
[αP, αQ] = 0. Matrices and their products form the
cyclic Abelian group and induce the 8-dimensional
group G8 of discrete transformations of time, space, and
speed of light in the 5-space of events V 5(x0, x, c):

(2)

The matrices αP, αT, and αQ are in conformity with
operators P, T, and Q acting on field functions of the
equations studied at replacement of variables (2).

We consider the place of the group G8 and its sub-
groups in symmetry theory of classical and quantum
equations.

3. DISCRETE SYMMETRY OF MAXWELL 
EQUATIONS

We take the one-charge Maxwell equations and con-
sider them in the 5-dimensional space V 5(x0, x, c) on
hyperplanes with +c and –c. Each hyperplane can be
interpreted as the 4-Minkowski subspace, as long as the
sign of speed of light does not affect the view of the
metric tensor gab = diag(+, –, –, –). On the +c hyper-
plane, we have

(3)

Here, x0 = ct, x1, 2, 3 = x, y, z; E and H are the electric and
the magnetic field; ρ is the density of electric charge e;
J = ρv/c is the density of current; v is the speed of
charge; E = –∂0A – ∇φ  and H = ∇ ×  A; and A = (φ, A)
is the 4-dimensional potential.

The following statement holds true: the group of
transformations (2) is the group of discrete symmetry
of the Maxwell equations.

The proof is convenient to do with the help of the 16-
dimensional function

Φ(x0, x, c) = column(0, E, 0, H, ρ, j, φ, A) 

xa' αT
k

αP
l

αQ
m

( )
ab

xb; a b, 0 1 2 3 5., , , ,= =

∇ H ∂0E–× 4πJ; ∇ H⋅ 0,= =

∇ E ∂0H+× 0; ∇ E⋅ 4πρ.= =
000 MAIK “Nauka/Interperiodica”
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written on the +c hyperplane. The Maxwell equations
are transformed to themselves if the function Φ is trans-
formed by the rules

(4)

(5)

The given ratios generalize the ones from [2, 5, 6]. In
addition to the Maxwell equations, they keep invari-
ance of the D’Alembert equation for the 4-potential and
the equation of motion of a charged particle in an elec-
tromagnetic field. By this they form a discrete symme-
try in classical electrodynamics.

Below, we shall study the symmetry connected with
the speed of light.

4. THE FREE MAXWELL EQUATIONS

The inversion of the speed of light is a particular
case of discrete transformations of group G8 and thus
forms the symmetry of the Maxwell equations. Let us
consider the properties of charge conjugation induced
by the c  –c inversion in the case of the free Max-
well equations.

4.1. The Charge Conjugation in the Classical Sense

We now consider the combination Q1Q2, which we
denote by symbol Ce and which induces the transfor-
mations

(6)

Operator Ce changes the sign of the electric charge and
may be interpreted as the operator of charge-conjuga-
tion type.

In the case of free fields, the charge-conjugate func-
tion is  = column(0, –E, 0, –H, 0, 0, 0, –φ, –A). By

means of replacement k0 = ω/c = %/"c = p0/", k = k0n =

T1Φ x0 x c, ,( )
=  column 0 +E 0 H +ρ J +φ A–,,–,,–, ,,( )

x
0 x c, ,–( )

,

T2Φ x0 x c, ,( )
=  column 0 E– 0 +H ρ– +J φ– +A,,,,, ,,( )

x
0 x c, ,–( )

,

P1Φ x0 x c, ,( )
=  column 0 E– 0 +H +ρ J +φ A–,,–,,, ,,( )

x
0 x– c, ,( )

,

P2Φ x0 x c, ,( )
=  column 0 +E 0 H– ρ– +J φ– +A,,,,, ,,( )

x
0 x– c, ,( )

,

Q1Φ x0 x c, ,( )
=  column 0 E– 0 H– ρ– J φ– A–,,–,,, ,,( )

x
0 x c–, ,( )

,

Q2Φ x0 x c, ,( )
=  column 0 +E 0 +H +ρ +J +φ +A,,,,, ,,( )

x
0 x c–, ,( )

.

CeΦ x0 x c, ,( )
=  column 0 E– 0 H– j ρ,  –  φ –  A – ,,  –  ,, ,,( ) 

x
 0 

x
 

c
 

, ,( )
 .

ΦCe
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p/" (ω is the frequency of the electromagnetic field, "
is the Planck constant, n is the guiding wave vector, % is
the energy of field, and p is the momentum of the field)
the result of charge conjugation (6) can be written as

(7)

where Ψ ∈ Φ . The charge conjugation Ce changes the
signs of polarization vectors l

 

 and 

 

m

 

 and preserves the
signs of the energy 

 

C

 

e

 

%

 

 = 

 

%

 

, momentum 

 

C

 

e

 

p

 

 = 

 

p

 

 and
guiding wave vector of field 

 

C

 

e

 

n

 

 = 

 

n

 

. It agrees with the
behavior of the density of the field energy and the field
momentum calculated directly from Maxwell equa-
tions 

 

W

 

 = (

 

E

 

2

 

 + 

 

H

 

2

 

)/8

 

π

 

, 

 

S

 

 = 

 

c

 

(

 

E

 

 

 

×

 

 

 

H

 

)/4

 

π

 

. By this, the
charge conjugation 

 

C

 

e

 

 = 

 

Q

 

1

 

Q

 

2

 

, being the transformation
of symmetry of the Maxwell equations, does not result
in negative energies. It differs from the charge conjuga-
tion 

 

C

 

 in quantum theory. By the given attribute, it is
possible to identify the 

 

C

 

e

 

 conjugation as the charge
conjugation in the classical sense.

 

4.2. The Charge Conjugation in the Quantum Sense

 

Let us write the Maxwell equations in the form of
the Dirac equation with the help of the 8-dimensional
function 

 

Ψ

 

 = 

 

column

 

(0, 

 

E

 

1

 

, 

 

E

 

2

 

, 

 

E

 

3

 

, 0, 

 

H

 

1

 

, 

 

H

 

2

 

, 

 

H

 

3

 

) [6]:

 

(8)

 

where 

 

x

 

a

 

 = (

 

ct

 

, 

 

x

 

, 

 

y

 

, 

 

z

 

); 

 

g

 

ab

 

 = diag(+, –, –, –); 

 

p

 

a

 

 =
i"∂/∂x a; a, b, = 0, k; k = 1, 2, 3; the summation is carried
out over dummy indices; γa = (γ0, γ); and γ ≡ γk = (γ1,
γ2, γ3) are the 8-matrices [4, 6]. Implying the conver-
sion of Maxwell equations into the Dirac equation, we
use the operator of charge conjugation C from the
quantum theory and define the action of the operator C
by analogy with [1] as

(9)

Here, UC is the charge-conjugation matrix,  = Ψ+γ0 is
the Dirac conjugate function, * denotes complex conju-
gation, and T is transposition. The equation for the con-
jugate function is

(10)

It coincides with the original equation (8) if

(11)

CeΨp n l x0 x c, ,( )

=  column 0 l 0 m–, ,–,( )e

i
"
--- p

0
x

0 p x⋅–( )–

Ψp  n – l ,=

γα paΨ x0 x c, ,( )

=  i"γ0∂0 i"γ ∇⋅+( )Ψ x0 x c, ,( ) = 0,

CΨ x0 x c, ,( ) = UCΨT
x0 x c, ,( ) = UCγ0Ψ* x0 x c, ,( ).

Ψ

γa paΨ 0 i"UCγ0TUC
1– ∂0 i"UCγTUC

1– ∇⋅+( )=

× UC Ψ+γ0( )T
0.=

UCγ0TUC
1– γ0; UCγkTUC

1– γk;–= =

k 1 2 3., ,=



690 KOTEL’NIKOV
We have from here UC = λγ0, where λ = (±1, ±i) is a
proportionality factor. Further, we write the function
describing the initial photon state by analogy with [2] as

(12)

where Ψ+Ψ = 1, p = (%/c, %n/c) is the 4-momentum,
% = "ω and p = %n/c are the energy and momentum of
a photon, n is the guiding vector of the photon, and l is
the vector of electric polarization. Applying the opera-
tor C to function (12), we find the charge-conjugate
function in the form

(13)

where λ = –i. Similarly to the solution of the Dirac
equation for a particle with a nonzero rest mass, it is
possible for the photon charge-conjugate function to be
considered as the function describing a particle with
negative energy % = –"ω and opposite momentum p =
–("ω/c)n.

We introduce the notation ΨC = iΨ–p n –l and, in the
spirit of the Dirac interpretation of the solution with
negative energy, shall consider the solution ΨC as that
which describes directly unobservable vacuum pho-
tons. It follows from expressions of the quantum 8-cur-

rents j a = γaΨ and  = γaΨC that the relations

j 0 =  = 1 and jk =  = (n1, n2, n3) are compatible
with the fact that the photon has no charge. Due to this
circumstance, we may interpret the charge-conjugate
state as the antiphoton identical with the photon in
accordance with [2].

Further, we shall find how the operator of charge
conjugation C may be related to the operator of conju-
gation Q induced by the inversion of the speed of light
c  –c. Let us define the conjugation Q as follows:

(14)

The inversion of the speed of light and Planck constant
does not change equation (8), due to the absence of
photon rest mass. Consequently, the conjugation Q for-
mally transforms equation (8) into itself by means of
the same matrix UQ = UC = λγ0 and the following inter-
relation is true:

(15)

The most important conclusion may be drawn from
here. The charge-conjugate function describing the
vacuum photon state with negative energy on the +c

Ψp n l x0 x c, ,( )

=  
1

2
-------column 0 l1 l2 l3 0 m1 m2 m3, , , , , , ,( )e

i
"
--- p

0
x

0 p x⋅–( )–

,

CΨp n l x0 x c, ,( )

=  
i

2
-------column 0 l 0 m–, ,–,( )e

i
"
--- p

0
x

0 p x⋅–( )
iΨ p– n l– ,=

Ψ jC
a ΨC

jC
0 jC

k

QΨ x0 x c, ,( ) UQΨT
x0 x –c, ,( )=

=  UQγ0Ψ* x0 x –c, ,( ), " ".–

CΨp  n  l x 
0

 x c , ,( ) Q Ψ p  n   l x 
0

 x c , ,( ) .=                                
hyperplane coincides with the function describing the
free photon state with positive energy on the –c hyper-
plane:

(16)

One can see that the vacuum photon from the +c hyper-
plane is equivalent to the free photon from the –c hyper-
plane. It is possible to admit that this is the same object
with a different interpretation.

In the case of the vacuum interpretation, we may
believe that the photon is located on a +c hyperplane,
with the positive Planck constant " > 0. Its energy is
negative % = –"ω < 0, the frequency is negative ω < 0,
and the 4-momentum components have opposite signs
pa = (–p0, –p

 

)

 

. The photon is in a condition of vacuum
movement, with a positive speed of light and negative
energy.

In the case of the “minus 

 

c

 

” interpretation, we may
believe that the photon is located on the 

 

–

 

c

 

 hyperplane,
with the negative Planck constant 

 

"

 

 < 0. Its energy is
positive 

 

%

 

 = (–

 

"

 

)(–

 

ω

 

)

 

 > 0, the frequency is negative 

 

ω

 

< 0, and the 4-momentum components have opposite
signs 

 

p

 

a

 

 = (–

 

p

 

0

 

, –

 

p

 

)

 

. The photon is in a condition of free
movement with the negative speed of light and the pos-
itive energy.

Both interpretations reflect the invariance of Max-
well equations with respect to the inversion of the speed
of light 

 

c

 

  –

 

c

 

. The similar property is true not only
for photon, but also for electron states from the Dirac
equation. We note only that the operation of the 

 

Q

 

 con-
jugation in our case differs from the previous 

 

Q

 

 conju-
gation ([4], hep-ph/9703047), where the Planck con-
stant kept the invariant significance. The choice of the

 

Q

 

 conjugation in the form (9) seems more correct for
those two reasons.

In the case of the Planck constant invariance, the
fine-structure constant 

 

α

 

 = 

 

e

 

2

 

/

 

"

 

c

 

 is not invariant as far
as 

 

Q

 

(

 

e

 

2

 

/

 

"

 

c

 

) = –

 

e

 

2

 

/

 

"

 

c

 

, as this is undesirable.
In classical electrodynamics with a noninvariant

speed of light, the new invariants hold true: 
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 [8].
Below, we select the first version according to which

the particle rest mass 

 

m

 

 is transformed as 
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m

 

) =

 

m

 

' =

 

 mc

 

2

 

/(–

 

c

 

)

 

2

 

 = 

 

m

 

—that is, it preserves the invariant
significance on the hyperplane 

 

–

 

c

 

.

5. THE DIRAC EQUATION

We consider the case of the Dirac equation briefly
and note that analogously to results (15) and (16) for
photon states, those for electron states are

 

(17)

ΨC x0 x c, ,( ) ΨQ x0 x –c, ,( )=

Ψ p–  % n l–– x0 x c, ,( ) Ψ p–  +% n l– x0 x –c, ,( ).=

Cψp σ % x0 x c, ,( ) Qψp σ % x0 x c, ,( )=

ψ p σ %––– x0 x c, ,( ) ψ p σ +%–– x0 x –c, ,( ).=
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The difference consists in that the Ψp n l field is 8-com-
ponent field and describes the neutral bosonic particles
(photons) when γ matrices γ0 and γ5 are commutative
[γ0, γ5] = 0 [4], and the ψpσ% field is a 4-component field
and describes the charge fermionic particles (electrons,
positrons) when γ matrices γ0 and γ5 are anticommuta-
tive {γ0, γ5} = 0 [1, 2].

6. CONCLUSION

It is shown that the charge conjugation Ce in the
classical sense and the charge conjugation C in the
quantum sense may be interpreted as the consequence
of symmetry of Maxwell and Dirac equations, with
respect to the discrete transformations x0  x0, x 
x, c  –c.

We also note that the inversion of the speed of light
is compatible with Lorentz transformations, because
this inversion does not change the form of Lorentz
transformations, as follows from

(18)

x0' x0 βx1–

1 β2–
-------------------, x1' x1 βx0–

1 β2–
-------------------, x2' x2,= = =

x3' x3, c' +c;= =

x0' x0 βx1–

1 β2–
-------------------, x1' x1 βx0–

1 β2–
-------------------, x2' x2,= = =

x3' x3, c' c– ,= =
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where β' = –β. Consequently, the inversion of the speed
of light does not violate the requirement of Lorentz and
the relativistic invariance in physics. The reason for this
lies in the fact that equations of classical and quantum
electrodynamics satisfy the original principle of relativ-
ity: they are independent of the concrete value of the
speed of light.
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In classical mechanics, the description of motion
with friction described by the equation of motion has
no ambiguities present in quantum description. Quan-
tum friction in the classical formulation of quantum
mechanics was considered in [1]. The aim of this work
is to discuss the problem of friction for a quantum Cald-
irola–Kanai oscillator [2, 3].

Moyal [4] obtained the evolution equation for quan-
tum states in the form of the classical stochastic equa-
tion for a function which turned out to be the Wigner
quasidistribution function [5], which cannot be consid-
ered as a probability since it takes negative values. Man-
cini et al. [6] obtained the evolution equation for the
quantum state in the form of the classical stochastic
equation for a function which turned out to be a proba-
bility distribution for a position measured in an ensemble
of squeezed and rotated reference frames in the classical
phase space of the system. The idea of this classical-like
formulation of quantum dynamics uses the notion of
optical tomography suggested by Vogel and Risken [7].
Man’ko [8] obtained the equation for energy levels in the
frame of the classical-like formulation of quantum
mechanics and rederived the energy spectrum of the
quantum oscillator (see also [9]).

The distribution w(X, µ, ν, t) for the generic linear
combination of quadratures, which is a measurable
observable,

(1)

where  and  are the position and momentum,
respectively, depending on two extra real parameters µ,
and ν, is related to the state of the quantum system
expressed in terms of its Wigner function W(q, p, t) as
follows [6, 8]:

(2)

X̂ µq̂ ν p̂,+=

q̂ p̂

w X µ ν t, , ,( ) ik X µq– νq–( )–[ ]exp∫=

× W q p t, ,( )dk dq dp

2π( )2
---------------------.

* This article was submitted by the author in English.
1063-7788/00/6304- $20.00 © 20692
The distribution is normalized,

(3)

As was shown [2, 3], the quantum friction appears in a
system with the Hamiltonian (we assume " = m = 1)

(4)

where the friction coefficient γ and the frequency of the
quantum oscillator ω are taken to be constant. For this
system, the wave functions of the coherent |α〉 and Fock
|n〉  states can be written as [10] (we assume ω = 1)

(5)

(6)

In these formulas, the time-dependent function ε(t) sat-
isfies the equation

(7)

and the initial conditions

(8)

where Ω2 = 1 – γ2. The solution ε(t) has the form

(9)

The physical meaning of the Fock state of the Cald-
irola–Kanai oscillator (6) was discussed in [8]. It was
shown that this state is a loss-energy state, and the wave
function of this state has the property of periodicity in
time with a purely imaginary period. Using the known

w X µ ν t, , ,( ) Xd∫ 1.=

Ĥ t( ) p̂2

2
----- 2γt–( ) ω2 2γt( ) q̂2

2
-----,exp+exp=

Ψα q t,( )

=  
1

π4 ε
-------------- iε̇e2γt

2ε
-------------q2 2α

ε
-----------q

ε̇*
2ε
-----α2– α 2

2
--------–+ 

  ,exp

Ψn q t,( )

=  
1

π4 ε
-------------- ε*

2ε
----- 

 
n/2 1

n!
--------- iε̇e

2γt

2ε
-------------q2

 
  Hn

q

εε*
------------- 

  .exp

ε̇̇ t( ) 2γ ε̇ t( ) ε t( )+ + 0=

ε 0( ) 1

Ω
--------, ε̇ 0( ) iΩ γ–

Ω
---------------,= =

ε t( ) 1

Ω
--------e γt– Ωt( ) i Ωt( )sin+cos[ ] .=
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expression for the Wigner function in terms of the wave
function of coherent state (5) (see [6, 8]) and calculat-
ing the integral (2), we obtain the probability distribu-
tion for the coherent state in the form

(10)

Using the wave function (6), we analogously find the
probability distribution for the Fock state,

(11)

where the probability distribution of the oscillator
groundlike state is

(12)

where

(13)

Here, ε(t) is given by equation (9). In the figure, we
show the probability distribution for the first excited
state (loss-energy state) w1(X, ϕ, t) as a function of the
rotation angle ϕ (abscissa) and homodyne output vari-
able X (ordinate) [7]

(14)

In the figure, we assume t = 5 and γ = 0.05.

It was shown in [6] that, for the system with Hamil-
tonian

(15)

wα
1

πεε* a2 b2+( )
------------------------------------- α 2–( )exp=

× X2

εε* α 2
b2+( )

------------------------------– 
  α2 ε*2 a ib–( )2

2εε* α 2
b2+( )

---------------------------------–exp⊗exp

+ α 2ε*X α ib–( )
εε* α2

b2+( )
------------------------------------- α*2 ε2 a ib+( )

2

2εε* α 2
b2+( )

---------------------------------–exp⊗

+ α*
2εX α ib+( )

εε* α 2
b2+( )

---------------------------------- .

wn X µ ν t, , ,( )

=  w0 X µ ν t, , ,( ) 1

2nn!
----------Hn

2 X

εε* α 2
b2+( )

----------------------------------
 
 
 

,

w0 X µ ν t, , ,( )

=  
1

πεε* α 2
b2+( )

--------------------------------------
X2

εε* α 2
b2+( )

------------------------------–
 
 
 

,exp

a
2γt( )ν ε*ε̇ εε̇*+( )exp

2εε*
------------------------------------------------------- µ, b+

ν
εε*
--------.= =

X̂ ϕ( ) q̂ ϕ p̂ ϕ .sin–cos=

Ĥ t( ) p̂2

2
----- V̂ q t,( ),+=
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the quantum evolution equation alternative to the time-
dependent Schrödinger equation has the form

(16)

For the damped oscillator, this equation takes the form [1]

(17)

where

(18)

(19)

We have

(20)

In (16) and (17), overdots label partial derivatives with
respect to t'. Using the relation (18), one can rewrite
(17) as

(21)

One can check that the probability distributions wα (10)
and wn (11) satisfy this equation.

Let us consider the invariants of the damped quan-

tum oscillator (t) and ( )*(t) in the classical for-

ẇ µ ∂
∂ν
------w– i V

1
∂/∂X
------------ ∂

∂µ
------– i

ν
2
--- ∂

∂X
------- t,– 

 –

– V
1

∂/∂X
------------ ∂

∂µ
------– i

ν
2
--- ∂

∂X
------- t,+ 

  w 0.=

ẇ µ ∂
∂ν
------w– i Ṽ

1
∂/∂X
------------ ∂

∂µ
------– i

ν
2
--- ∂

∂X
------- t',– 

 –

– Ṽ
1

∂/∂X
------------ ∂

∂µ
------– i

ν
2
--- ∂

∂X
------- t',+ 

  w 0,=

Ṽ q t',( ) 2γt t'( )[ ]V q t t'( ),[ ]exp=

=  4γt t'( )[ ]q2

2
-----,exp

t' t( ) 1 2γt–( )exp–
2γ

----------------------------------, t t'( ) 1 2γt'–( )ln
2γ

----------------------------.–= =

∂t t'( )
∂t'

------------- 2γt( ).exp=

∂
∂t'
------w µ ∂

∂ν
------w– 4γt( )ν ∂

∂µ
------wexp+ 0.=

â†â â†â

2

0.2

0
–2ϕ

0.4

0.6

0
4

w1(X, ϕ, t)

–2
0

2

X
–4

Marginal distribution of the excited (loss-energy) state γ =
0.05 and t = 5.

4



694 SAFONOV
mulation of quantum mechanics. Here, the asterisk
means the complex conjugate operator. The operator

(t) acts on the variable q, and the operator ( )*(t)
acts on the variable q' of the density matrix ρn(q, q', t);
these describe the Fock state |n〉  of the system. These
invariants act on the distribution wn of the Fock state
(11) as

(22)

(23)

Invariants (t) and ( )*(t) have the form

(24)

and

â†â â†â

â†â t( )wn X µ ν t, , ,( ) nwn X µ ν t, , ,( ),=

â†â( )* t( )wn X µ ν t, , ,( ) nwn X µ ν t, , ,( ).=

â†â â†â

â†â t( ) 1
2
--- ∂

∂X
------- 

 
2–

εε*
∂

∂ν
------ 

 
2

ε̇ε̇*e4γt ∂
∂µ
------ 

 
2

+




=

– e2γt ε*ε̇ εε̇*+( )
∂2

∂µ∂ν
------------- ∂

∂X
------- 

 
2

εε*µ2 ε̇ε̇*e4γtν2+[–

+ e2γt ε*ε̇ εε̇*+( )µν ] i
εε*
2

-------- µ ∂
∂ν
------

∂
∂ν
------µ+ 

 +

+
ε̇*εe2γt

2
-----------------ν ∂

∂ν
------ ε*ε̇e2γt

2
----------------- ∂

∂ν
------ν+ i

ε̇ε̇*
2

-------- ν ∂
∂µ
------

∂
∂µ
------ν+ 

 –

+
ε*ε̇e2γt

2
-----------------µ ∂

∂µ
------ ε̇*εe2γt

2
----------------- ∂

∂µ
------µ+





â†â( )* t( ) 1
2
--- ∂

∂X
------- 

 
2–

εε*
∂

∂ν
------ 

 
2

ε̇ε̇*e4γt ∂
∂µ
------ 

 
2

+




=

+ e2γt ε*ε̇ εε̇*+( )
∂2

∂µ∂ν
------------- ∂

∂X
------- 

 
2

εε*µ2 ε̇ε̇*e4γtν2+[–
(25)

To obtain this form of the operators under discussion,
we used the correspondence of the action of the opera-
tors on the Wigner function W(q, p, t) and the probabil-
ity distribution w(X, µ, ν, t) [8].

The main result of this work is the introduction of
the positive normalized distribution function (probabil-
ity distribution) for describing the quantum states of the
damped quantum oscillator. This distribution contains
complete information about the state of the system. For
the probability distribution of the damped oscillator,
the quantum evolution equation is found, which is an
alternative to the Schrödinger equation.
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Abstract—It is shown that the set of transformations of the s and d boson operators that maintain the IBM-like
form of the Hamiltonian comprises a discrete point symmetry group  The transformations manifest them-
selves as a parameter symmetry of the IBM-1 Hamiltonian. The transformations considered are also necessary
for constructing the most general IBM-2 Hamiltonian. The properties of the potential energy surfaces arising
in connection with these transformations are discussed. © 2000 MAIK “Nauka/Interperiodica”.

ñ

D2' .
1. INTRODUCTION

An ambiguity in the definition of the boson creation
and annihilation operators within the Interacting Boson
Model (IBM) was mentioned a long time ago [1, 2].
The gauge transformations

(1)

do not change the spectrum of eigenvalues of the IBM-
like Hamiltonian

(2)

Here and below, l and m are the angular momentum of the

boson and its projection, respectively,  = (–1)l – mbl, –m;

[  ×  = µ1λ2µ2 |λµ) × ,

and λ1µ1λ2µ2 |λµ is an O(3) Clebsch–Gordan coeffi-
cient. The parameters a(l1l2l3l4) are assumed to be real.
The Hamiltonian (2) is Hermitian and invariant with
respect to the O(3) group. It commutes with the boson
number operator N. In general, the phases φl in transfor-
mations (1) are arbitrary. However, if we constrain our-
selves to time-reversal invariant Hamiltonians, we
should choose only discrete values: 0; π [3]; and, in
some cases, π/2 [1, 2].

The following discrete transformations of the boson
operators have been used before in the literature:

(1) V transformation [1, 2], 

(3)

blm
+ iφl( )blm

+ , b̃lm iφl–( )b̃lmexpexp

H H0 εl bl
+ b̃l×[ ] 0

0( )

l

∑+=

+ a l1l2l3l4( ) bl1

+ bl2

+×[ ] λ( )
b̃l3

b̃l4
×[ ] λ( )×[ ] 0

0( )
.

λ l1l2l3l4

∑

b̃lm

t
λ1( )

u
λ2( )

] µ
λ( )

λ1(µ1µ2∑ tµ1

λ1( )
uµ2

λ2( )

V: blm
+ iblm

+ , b̃lm ib̃lm;–
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(2) S transformation [3, 4], 

(4)

(3) F transformation (particle–hole conjugation) [5], 

(5)

It is interesting to study the possible appearance of a
discrete group associated with the transformations (3)–
(5) and to consider some consequences of such discrete
symmetry in the IBM. Note that all the transformations
(3)–(5) are canonical ones; i.e., they preserve the boson
commutation relations

(6)

Thus, we look for a discrete subgroup of the continuous
group Sp(2, R) of linear canonical transformations [6].
It is easy to verify that the transformations V, V–1, S,
and F, together with their products FV, FV–1, and SF
and with a unit element E, form a double-point symme-
try group  acting in the two-dimensional space of

the operators  and . In fact, the transformations
V, V–1, F, and FV–1 can be identified with the rotations

C2z, , C2y, and C2x, respectively, while S = V2 is

equivalent to the element Q of  (here we use the
notation of reference [7]).

Generally, the transformations (3) and (4) can be
performed independently for each value of l. The trans-
formation F does not conserve the total number of
bosons N. Note that the transformation F was initially
introduced for fermion systems and is incorrect for a
boson system with bosons of one type. Therefore, to
obtain a modified Hamiltonian of the IBM-like form
(8), we should apply the particle–hole transformation F
to s and d bosons simultaneously.

S: blm
+ b– lm

+ , b̃lm b̃lm;–

F: blm
+ b̃lm, b̃lm blm

+ .–

blm
+ bl'm'

+,[ ] b̃lm b̃l'm',[ ] 0,= =

b̃lm bl'm'
+,[ ] 1–( )l m– δll'δm m'–, .=

D2'

blm
+ b̃lm

C2z
3

D2'
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The group  contains all discrete boson transfor-
mations used in the literature on IBM. For example, the
transformation

(7)

introduced in [8] is equivalent to the product of the F-
transformation for s and d bosons and the S-transfor-
mation for s bosons.

We now turn to the consequences of the  symme-
try in the boson Hamiltonians.

2. PARAMETER SYMMETRY OF IBM-1

The IBM-1 involves the bosons of two types, s and
d, with angular momenta l = 0 and l = 2, respectively.
The most general IBM-1 Hamiltonian has the form [2]

(8)

The Hamiltonian (8) can be equivalently expressed in
terms of the first (C1) and second order (C2) Casimir
invariants of the algebras entering the following reduc-
tion chains of the U(6) algebra [2]: 

(9)

i.e.,

(10)

Generally, one can find the eigenvalues diagonalizing
the Hamiltonian H using an appropriate basis. How-
ever, if the Hamiltonian contains Casimir operators
belonging to only one of the reduction chains (9), then
the spectrum of the system can be found analytically.
These cases, referred to as dynamical symmetries (DS)

D2'

Q d+ s s+ d̃×+×[ ]µ
2( ) 7

2
------- d+ d̃×[ ]µ

2( )
–=

d+ s s+ d̃×+×[ ]µ
2( ) 7

2
------- d+ d̃×[ ]µ

2( )
,+

D2'

H H̃0 ε d+ d̃⋅( )+=

+
1
2
--- 2λ 1+ cλ d+ d+×[ ] λ( )

d̃ d̃×[ ] λ( )×[ ]0
0( )

λ 0 2 4, ,=

∑

+
1
2
---ṽ 0 d+ d+×[ ] 0( )

s s×[ ] 0( )×[

+ s+ s+×[ ] 0( )
d̃ d̃×[ ]×

0( )
]0

0( )

+
1

2
-------ṽ 2 d+ d+×[ ] 2( )

d̃ s×[ ] 2( )×[

+ d+ s+×[ ] 2( )
d̃ d̃×[ ] 2( ) ]0

0( )
.×

U 6( )
U 5( ) SO 5( ) SO 3( ) SO 2( )⊃ ⊃ ⊃
SU 3( ) SO 3( ) SO 2( )⊃ ⊃
SO 6( ) SO 5( ) SO 3( ) SO 2( ),⊃ ⊃ ⊃

H ki{ }( ) H0 k1C1 U 5( )( )+=

+ k2C2 U 5( )( ) k3C2 SO 5( )( )+

+ k4C2 SO 3( )( ) k5C2 SO 6( )( ) k6C2 SU 3( )( ).+ +
of the IBM, determine three typical nuclear spectra:
vibrational (the U(5) DS limit), rotational (the SU(3)
DS limit), and γ-unstable (the SO(6) DS limit). The
transitional nuclear Hamiltonian that does not pertain
to any DS is conventionally believed to generate a spec-
trum different from those corresponding to any of the
DS limits.

The transformation S applied to s bosons is equiva-

lent to the substitution    =  in the equa-
tion (8). However, for the same Hamiltonian but
expressed through Casimir operators [see (10)], it
results in a more complicated transformation. Let us
define the Casimir operators as in [3, 4]. The trans-
formed Hamiltonian H({ }) = SH({ki})S–1 with
parameters

(11)

has the same spectrum of eigenvalues as the initial
Hamiltonian (10). Therefore, the fit of the IBM-1
Hamiltonian parameters to the experimental data
appears to be ambiguous.

If k6 = 0 in the Hamiltonian (10), then the transfor-
mation V becomes compatible with time-reversal
invariance. Applying the transformation V to only one
type of boson (e.g., to s bosons), we obtain a new
Hamiltonian H({ }) = VH({ki})V–1 with parameters

(12)

which is also isospectral to H. It is important to note
that applying the transformations S and V (to only one
type of boson) and the transformation F to both types
of bosons (in the case of DS limits SO(6) or SU(3)), we
obtain the Hamiltonian H', which does not seem to cor-
respond to any DS limit but is isospectral to the initial
Hamiltonian H. The reason for this paradox is that S, V,
and F transform the DS algebra G to the alternative
algebra G', which is isomorphic but not identical to G.

3.  TRANSFORMATIONS AS A SOURCE
OF NEW DYNAMICAL SYMMETRY ALGEBRAS

The transformation V for s bosons transforms the
SO(6) algebra with generators

(13)

ṽ 2 ṽ 2' ṽ 2–

ki'

H0
' H0, k1

' k1 2k6, k2
'+ k2 2k6,+= = =

k3
' k3 6k6, k4

'– k4 2k6,+= =

k5
' k5 2k6, k6

'+ k6–= =

ki'

H0
' H0 20k5N , k1

'+ k1 8k5 N 2+( ),+= =

k2
' k2 8k5, k3

'– k3 4k5,+= =

k4
' k4, k5

' k5, k6
'– k6 0,= = = =

D2
'

d+ d̃×[ ]µ
λ( ) λ 1 3,=( ), Dµ = d+ s s+ d̃×+×[ ]µ

2( )
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into a new SO'(6) algebra with generators [5]

(14)

The Casimir operator of SO'(6) can be expressed in
terms of C2(SO(6)) and the rest of the Casimir operators
as [4, 9]

(15)

The substitution of C2(S0(6)) by C2(SO'(6)) in the
Hamiltonian (10) with k6 = 0 is seen from (15) to be equiv-
alent to the parameter symmetry transformation (12).

Similarly, the transformation S transforms the SU(3)
algebra with generators

(16)

into the alternative SU'(3) subalgebra of U(6) with gen-
erators

(17)

C2(SU'(3)) can be expressed in terms of C2(SU(3)) and
the rest of the Casimir operators as [4, 9]

(18)

Due to (18), the substitution of C2(SU(3)) into equation
(10) by C2(SU'(3)) is equivalent to the transformation
(11) in the parameter space.

New algebras can be obtained by the application of
the transformation F (see [5] for details) and the other

elements of the  group. In the case of IBM-1, the
corresponding algebras are not independent of the ones
considered. However, this is not the case for IBM-2.

4. COMPLETE SET OF CASIMIR OPERATORS 
FOR THE GENERAL IBM-2 HAMILTONIAN

IBM-2 distinguishes proton and neutron degrees of
freedom; i.e., it deals with proton and neutron boson
operators sρ, dρ, where ρ = π, ν. The general IBM-2
Hamiltonian H includes proton Hπ and neutron Hν
Hamiltonians and the interaction between protons and
neutrons Hπ + ν, i.e., [2]

(19)

d+ d̃×[ ]µ
λ( ) λ 1 3,=( ),

Dµ
'  = i d+ s s+ d̃×–×[ ]µ

2( )
.–

C2 SO' 6( )( ) 20N 8 N 2+( )C1 U 5( )( )+=

– 8C2 U 5( )( ) 4C2 SO 5( )( ) C2 SO 6( )( ).–+

d+ d̃×[ ]µ
1( )

,

Qµ d+ s s+ d̃×+×[ ]µ
2( ) 7

2
------- d+ d̃×[ ]µ

2( )
–=

d+ d̃×[ ]µ
1( )

,

Qµ
' d+ s s+ d̃×+×[ ]– µ

2( ) 7
2

------- d+ d̃×[ ]µ
2( )

.–=

C2 SU' 3( )( ) 2C1 U 5( )( ) 2C2 U 5( )( ) 6C2 SO 5( )( )–+=

+ 2C2 SO 3( )( ) 2C2 SO 6( )( ) C2 SU 3( )( ).–+

D2
'

H Hπ Hν Hπ ν+ ,+ +=
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where Hρ is given by (8) for each kind of boson, while

(20)

We thus have 21 parameters which, in the framework of
the IBM-2, describe the excitation spectrum of nuclei
[2]. The general IBM-2 Hamiltonian can be equiva-
lently expressed in terms of the first and second order
Casimir invariants for the algebras entering the reduc-
tion chains of Uπ(6) ⊗  Uν(6) algebra [2], i.e., each pro-
ton and neutron subsystem algebras Uρ(5), SOρ(6),
SOρ(5), SUρ(3), and SOρ(3) and combined proton and
neutron algebras Uπ + ν(6), Uπ + ν(5), SOπ + ν(6),
SOπ + ν(5), SUπ + ν(3), and SOπ + ν(3) with generators

(21)

However, this results in only 18 independent Casimir
operators instead of the needed 21. To the best of our
knowledge, the general IBM-2 Hamiltonian has not
been presented before in terms of Casimir operators.

Here, we propose to express the necessary three
additional independent terms through the Casimir oper-
ators of the alternative algebras obtained by transfor-
mations (3)–(5).

(1) The new (6) algebra with generators

(22)

where  and  are defined according to (14).

(2) The new (3) algebra with generators

(23)

where  and  are defined according to (16) and
(17), respectively. This algebra is not independent of
the SU*(3) algebra introduced in [8].

(3) The new (3) algebra with generators

(24)

where  and  are defined according to (17).

It can be verified that the general IBM-2 Hamilto-
nian (19) can be expressed in terms of the Casimir oper-

Hπ ν+ w0 dπ
+ d̃π⋅( ) dν

+ d̃ν⋅( )⋅=

+ wλ dπ
+ d̃π×[ ] λ( )

dν
+ d̃ν×[ ] λ( )⋅( )

λ 1=

4

∑

+ w8 sπ
+ d̃π dπ

+ sπ×+×[ ] 2( )
sν

+ d̃ν dν
+ sν×+×[ ] 2( )⋅( )

+ w9 sπ
+ d̃π dπ

+ sπ×–×[ ] 2( )
sν

+ d̃ν dν
+ sν×–×[ ] 2( )⋅( )

+ w10 dπ
+ d̃π×[ ] 2( )

sν
+ d̃ν dν

+ sν×+×[ ]⋅
2( )

( )

+ w11 sπ
+ d̃π dπ

+ sπ×+×[ ] 2( )
dν

+ d̃ν×[ ] 2( )⋅( ).

&π ν+ &π &ν.+=

SOπ ν+
'

&π ν+
' &π

' &+ ν
' ,=

&π
' &ν

'

SUπ ν+
'

&π ν+
' &π &+ ν' ,=

&π &ν
'

SUπ ν+
''

&π ν+
'' &π

' &+ ν
' ,=

&π
' &ν

'
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ators of the algebras given above, i.e.,

(25)

5. DISCRETE SYMMETRY OF THE IBM
AND POTENTIAL-ENERGY SURFACES

Nuclear shapes are conventionally associated within
the IBM-1 with the so-called potential-energy surfaces
(PES) [10]

(26)

where

(27)

is a coherent state. The quadrupole parameters αµ can
be expressed in terms of Euler angles and the β and γ
parameters of Bohr and Mottelson in the usual manner.
The shape of the PES (26) depends on the parameters
of the IBM Hamiltonian H. The PES behavior under
transformation of the IBM-1 Hamiltonian parameters
has been thoroughly investigated in [11] in the frame-
work of the catastrophe theory. It has been shown that
the points in the parameter space corresponding to the
U(5), SO(6), SO'(6), SU(3), and SU'(3) DS limits are of
great importance for the determination of the PES. In

this section, we discuss the relevance of the  trans-
formations in the PES.

The explicit expression for the PES corresponding
to the IBM-1 Hamiltonian can be obtained using the
results of [10], i.e.,

H ki{ }( ) H0 k1
πC1 Uπ 5( )( )+=

+ k2
πC2 Uπ 5( )( ) k3

πC2 SOπ 5( )( )+

+ k4
πC2 SOπ 3( )( ) k5

πC2 SOπ 6( )( )+

+ k6
πC2 SUπ 3( )( ) k1

νC1 Uν 5( )( )+

+ k2
νC2 Uν 5( )( ) k3

νC2 SOν 5( )( )+

+ k4
νC2 SOν 3( )( ) k5

νC2 SOν 6( )( )+

+ k6
νC2 SUν 3( )( ) kC2 Uπ ν+ 6( )( )+

+ k2C2 Uπ ν+ 5( )( ) k3C2 SOπ ν+ 5( )( )+

+ k4C2 SOπ ν+ 3( )( ) k5C2 SOπ ν+ 6( )( )+

+ k5
' C2 SOπ ν+

' 6( )( ) k6C2 SUπ ν+ 3( )( )+

+ k6
' C2 SUπ ν+

' 3( )( ) k6
''C2 SUπ ν+

'' 3( )( ).+

E β γ,( ) N β γ H N β γ, ,, ,〈 〉
N β γ N β γ, ,, ,〈 〉

----------------------------------------------,=

N β γ, ,| 〉 s+ αµdµ
+

µ
∑+

 
 
 

N

0| 〉=

D2
'

E β γ ki, ,( ) 10N k5 k6+( )=
(28)

It is seen from (28) that the transformation S applied
to s bosons results in the transformation

(29)

which corresponds, e.g., to the transformation from a
prolate equilibrium shape to an oblate one and vice
versa.

The transformation V (in the case k6 = 0) applied to
s bosons results only in a sign change of the term pro-
portional to β2. The difference between SO(6) and
SO'(6) DS limits can be visually demonstrated in the
particular case where k1 = k2 = k3 = k4 = k6 = 0 and
H = k5C2(SO(6)). In this case, the PES is given by

(30)

According to (15) the transformation V leads to a new
Hamiltonian, 

(31)

In this case, we have a constant PES [11]:

(32)
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Dirac Equation in Curved Spacetime with the Metric
in the Kerr–Schield Form*
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Abstract—The solution of the Dirac equation in the wave package form in a slightly curved spacetime (com-
pared with the size of the wave package) was studied. For the metric in the Kerr–Schield form, a system of com-
mon differential equations describing spin conditions of massive neutral Dirac particles (neutrinos) was
obtained. The effect of depolarization of the massive neutrinos in a gravitational field are discussed. This effect
allows a considerable similarity between the theoretical and observed solar neutrino flows to be established if

 ≥ 10–4 eV. © 2000 MAIK “Nauka/Interperiodica”.mνe
The study of spin phenomena in curved spacetime is
one of the most important problems of modern astro-
physics. A study of massive-neutrino spin behavior in
gravitational fields with various geometries presents
particular interest. As will be shown in the present
work, the spin phenomena in curved spacetime are
most simply described by the Dirac equation [1] for the
class of the metrics presented in the Kerr–Schield form
[2]: gµν = ηµν + ξµξν, where ξµ is an isotropic vector in
relation to the Minkowski metric ηµν.

The Dirac equation in curved spacetime with the
metric in the Kerr–Schield form can be presented in the
form of the Schrödinger equation [3]:

(1)

where γ5, β, and σl are Dirac and Pauli matrices and m
is the mass of the particle.

We present Ψ in the form of a combination of the

i
∂Ψ
∂t

-------- ĤΨ,=

Ĥ i 1 ξ2+( ) 1–
1

1
2
---ξ2+ 

  γ5 s ∇⋅( )––=

+ ξ 1
2
---γ5 s x⋅( )+ 

  x ∇⋅( ) i
2
---ξ s x ∇×[ ]⋅( )+

+
1
4
--- ∂

∂t
----- ξ2 γ5 s x⋅( )ξ–( ) 1

4
--- ∇ ξ x γ5 s x⋅( )x–( )⋅( )+

+ imβ 1
1
2
---ξ2 1

2
---γ5ξ s x⋅( )+ + 

  ,

ξa ηabξ
b, ξ0 ξ , ξµ ξ x,( ),= = =

* This article was submitted by the author in English.
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conditions with left and right helicities:

(2)

Then

(3)

The wave function Ψ will be normalized according to
the following condition:

(4)

As follows from (2), the probability of a neutrino being
in the conditions of right and left helicities equals

(5)

We look for the solution of equation (3) in the form
of a wave package localized in a spatial area with a
diameter l. We designate the length on which ξ is essen-
tially changed as Lg. It is obvious that Lg ~ 1/max|∇ξ| .

Ψ ΨL ΨR, ΨL+
1
2
--- 1 γ5+( )Ψ,= =

ΨR
1
2
--- 1 γ5–( )Ψ.=

i
∂ΨL R,

∂t
-------------- i 1 ξ2+( ) 1– 1

1
2
---ξ2

+ 
  s ∇⋅( )+−





–=

+ ξ 1
2
--- s x⋅( )

 x ∇⋅( ) i
2
---ξ s x ∇×[ ]⋅( )+±



+
1
4
--- ∂

∂t
----- ξ2 s x⋅( )ξ+−( ) 1

4
--- ∇ ξ x s x⋅( )x+−( ))⋅(+ ΨL R,

+ imβ 1
1
2
---ξ2 ξ s x⋅( )+−+ 

  ΨR L,




.

Ψe a( )
0 γaΨ g– d3x∫ 1.=

WR ΨRe a( )
0 γaΨR g– d3x,∫=

WL ΨLe a( )
0 γaΨL g– d3x,∫=

WL WR+ 1.=
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Virtually, Lg is of the order of the sizes R of the gravita-
tional field source. For black holes, Lg is of the order of
the gravitational radius Rg of the collapsing astrophysi-
cal object, while Rg of stars with mass of the order of
the Sun’s mass is 1.5 km.

We seek the solution of (3) in the form of a wave
packet with a width Lp @ Lg:

(6)

Substituting (6) into (3), we obtain

(7)

In (7), x is taken in the maximum of the wave package
amplitude (6). Here, we have an accuracy of the order
of Lp/Lg. The maximum of the wave package amplitude
(6) is defined by the following condition:

(8)

which corresponds to the movement of the package’s
gravity center along the classical trajectory. The system
of differential equations (7) describes the behavior of
the massive-neutrino spin in curved spacetime with the
Kerr–Schield metric. Contrary to the classical theory of
spin in a gravitational field, the quantum system of
equations (7) obviously includes the mass of the parti-
cle m. Moreover, in (7), there are terms which are stip-

ulated by a nonhermiticity of the Hamiltonian  for

particles with spin  in curved spacetime. This circum-

stance defines the character of the neutrino spin behav-
ior in the gravitational field.

ΨL R,
1

π1 4⁄ d –3 2⁄---------------------- d3q
q p0–( )2

2d2
---------------------–





exp∫=

--------+ i E q τ,( ) τ i q r⋅( )–d

0

t

∫ 



u q t,( )L R, ,

uL

F

F– 
  , uR

H

H 
  .= =

d
dt
-----F H( ) i 1 ξ2+( ) 1–

E 1 ξ2+( ) ξ x q⋅( ) ---–






–=

± (s Q+− )⋅ 
 F H( ) m 1

1
2
---ξ2 1

2
---ξ s x⋅( )+−+ 

  H F( )+




,

Q  +− q
1
2
--- x x q×[ ]⋅[ ]–

i
2
---ξ x q×[ ] .+−=

r ∇ qE q τ,( )( ) τ r0,+d

0

t

∫=

Ĥ
1
2
---
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Let us present (7) in a more suitable form

(9)

where

The term  in (9) leads to the change of the spin con-

ditions, i.e., F ≠ 0 and H ≠ 0. That is why we solve

(9) for a stationary case  = 0. Then, we have

(10)

where F0 and H0 is a solution of the system of linear
algebraic equations (10). The value of E(q, x) can be
found from the conditions of compatibility of the sys-
tem equations (10).

Due to the presence of the term ξ[x × q] in 

and , the values E(q, x) are complex and ImE(q, x) ~
mξ2sinΘ (Θ is the angle between the vectors q and x).
In (10), we need to substitute only ReE(q, x). We do not
need the explicit form of F0 and H0. These solutions are
normalized according to the conditions

(11)

We divide F0 and H0 into two linearly independent
terms:

(12)

d
dt
-----F –iĤ1

+( )
F iĤ2H– iV̂cH ,+=

d
dt
-----H –iĤ1

–( )
H iĤ2F– iV̂cF,–=

Ĥ1
±( )

1 ξ2
+( )

1–
E 1 ξ2+( ) ξ x q⋅( )– s Q+−⋅( )±( ),=

Ĥ2

m 1
1
2
---ξ2+ 

 

1 ξ2+
----------------------------,=

V̂c
mξ

2 1 ξ2+( )
---------------------- s x⋅( ).=

V̂c

d
dt
----- d

dt
-----

V̂c

Ĥ1
+( )

F0 Ĥ2H0+ 0, Ĥ1
–( )

H0 Ĥ2F0+ 0,= =

i
2
--- Ĥ1

+( )

Ĥ1
–( )

F0
+ 1

1
2
---ξ s x⋅( )+ 

  F0 1,=

H0
+ 1

1
2
---ξ s x⋅( )– 

  H0 1.=

F0 f 0

m 1
1
2
---ξ2+ 

 

Ĥ1
+( )----------------------------h0,–=

H0 h0

m 1
1
2
---ξ2+ 

 

Ĥ1
–( )---------------------------- f 0.–=
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Then, the solution of the initial system (9) is to be
searched for in the form

(13)

Substituting (13) into (9) and neglecting the terms of
order (m/E), we obtain a system of differential equa-
tions for CR and CL:

(14)

We indicate ξ( (s · x)h0) = ω. Here, the notation

“+” means Hermitian conjugation. The case of CR(0) =
0 presents particular interest. After integrating (14),
we get

(15)

This kind of CL and CR behavior is radically different
from the case of the effect of an electromagnetic field
on the spin conditions of a neutral particle, with a spin

of  and anomalous magnetic moment. There, we deal

with spin precession into the electromagnetic field,
which, unlike (15), is described in trigonometric func-
tions.

For defining WL and WR, we need to find

exp(−2Im (q, x)dτ) explicitly; the result is pre-

sented together with CL and CR. Equation (17) gives
several values of ImE(q, x). The concrete values of
ImE(q, x) are estimated by the functions CL(t) and
CR(t), which determine the particle’s spin conditions.
That is why we express E(q, x) by F and H, using the
system

(16)

F CL t( ) f 0 CR t( )
m 1

1
2
---ξ2+ 

 

Ĥ1
+( )----------------------------h0,–=

H CR t( )h0 CL t( )
m 1

1
2
---ξ2+ 

 

Ĥ1
–( )---------------------------- f 0.–=

d
dt
-----CL t( ) i

2
--- mξ

1 ξ2+( )
------------------- f 0

+ s x⋅( )h0( )CR t( ),=

d
dt
-----CR t( ) i

2
---–

mξ
1 ξ2+( )

------------------- h0
+ s x⋅( ) f 0( )CL t( ).=

m
2
---- f 0

+

CL Acosh ω τ , CRd

0

t

∫ iA
ω+

ω
------sinh ω τ .d

0

t

∫–= =

1
2
---

E
0

t∫

ImE
ξ

2 1 ξ2
+( )

----------------------=

× H+ s x q×[ ]⋅( )H F+ s x q×[ ]⋅( )F+

F+F( ) H+H( )+
------------------------------------------------------------------------------------------.
In the general case, the calculations in (16) are compli-

cated and bulky. However, for ξ2 ! 1 and  ! 1, cal-

culation of (16) is considerably simplified:

(17)

As a result, for a weak gravitational field ξ2 ! 1 with
the help of (5), (15), and (17), we find the dependence
of WL and WR on time in the Kerr–Schield metric

(18)

From (18), an effect of massive-neutrino depolarization
in the gravitational field follows. The gravitational field
of a rotating gravitating body can be described by the
following Kerr axial-symmetrical stationary metric
under r @ a:

(19)

Here, a = J/M, J is gravitating body’s angular momen-
tum and M is its mass. For the Sun, a( = 0.28 km and
Rg( = 2.96 km.

Assume that a particle is moving along the radius r.

Then, |ω| = mRgar–2sinα (α is the angle between the

vectors r and a). In this case, the effect of changing
massive-neutrino helicity can be explained by the fact
that the gravitating body has its own angular momen-
tum, or rotation. Since (19) describes the external grav-
itational field, we shall calculate it with t = 0, r = R (R
is the gravitating body’s radius). Making the necessary
calculation, we have the evaluation at r @ R:

(20)

The exact formula for Ω will evidently differ from (20)
by a factor of the first order. It will also consider the
particular geometry in the gravitational field of the
rotating gravitating body. Let us assume that Ω = ln10.
Then, WL = 0.51, WR = 0.49, and m = m0 =

ln10(R/aRg)sinα. Hence, if m ≥ m0, the flows of right

and left neutrinos emitted by a star will be virtually
equal. The values of WL and WR change most consider-
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ably if 0.1m0 ≤ m ≤ 0.7m0. Here, 0.92 ≥ WL ≥ 0.55 and
0.45 ≥ WR ≥ 0.08.

For a solar neutrino, m0 = 3.14 × 10–4 eV by α = π/2.
If the neutrino is emitted by a neutron star having the
same moment and mass as those of the Sun and a radius
of R = 10 km, then, if α = π/2, m0 will be greater than
m0 = 3.14 × 10–8 eV. The deficit of the left solar neutri-
nos on the Earth, , evidently amounts to WR. The
effect described in this work allows us to establish con-
siderable similarity between the theoretical and
observed solar-neutrino flows if  ≥ 10–4 eV. The

DνL

mνe
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effect of the massive-neutrino depolarization will also
considerably influence cooling of rotating neutron
stars, especially at the moment of their formation when
supernova stars explode.
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