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Abstract—Isomeric ratios were measured in the (γ, n) and (n, 2n) reactions leading to the formation
of 184Re, 190Ir, and 196Au odd–odd nuclides. The measurements were performed by the activation
method implemented for Re, Ir, and Au samples of natural isotopic composition that were irradiated with
14.7-MeV neutrons and bremsstrahlung photons of endpoint energy 22 MeV. Isomeric- and ground-state
nuclei formed in these reactions were identified by their x- or γ-ray spectra and by their half-lives. The
isomeric ratios were calculated on the basis of the statistical model, and the results were compared with
experimental data, whereby it was possible to determine parameters that characterize the dependence of
the level density on the excitation energy and angular momentum. The effect of the nuclear structure on
these parameters is discussed. c© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Investigation into the structure of nuclei involves

determining the dependence of the level density on
the excitation energy and angular momentum. These
dependences are an important source of information
about collective and single-particle properties of ex-
cited nuclei. Their comparison with the results of cal-
culations performed within various models provides a
basis for choosing parameters of these models and for
describing the properties of excited nuclei.

Various methods are used to study such depen-
dences experimentally. Measurement of the ratios of
the cross sections or yields for reactions leading to
nuclear levels of substantially different angular mo-
menta (usually, one of these levels is the ground-
state level, while the other is an excited one) is one
of the most efficient methods. Various systems of
excited states participate in the population of each
level, and the probabilities of their population allow
one to derive information about some properties of
these systems. The sensitivity of measurements of
cross-section ratios is considerably higher if the ex-
cited state is isomeric; that is, it is characterized by
a rather long lifetime (for example, in excess of 1 s).
In this case, it is possible to separate in time the
excitation of nuclei and measurement of the spec-
trum of radioactive radiation emitted in their deex-
citation and to perform the measurement at a much
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lower level of background radiation. This extends the
possibilities of investigations significantly; therefore,
measurement of cross sections for reactions leading
to isomer formation or of the ratios of cross sections
for reactions producing isomeric and ground states
(isomeric ratios) has become one of the main lines
of investigations of level densities in excited nuclei. A
vast body of data on isomeric ratios in photonuclear
reactions and the possibility of deriving new informa-
tion about the structure of nuclei from these data are
surveyed in [1, 2]; similar information about (n, 2n)
reactions is given in [3].

The objective of this study is to measure isomeric
ratios for the production of 184Re, 190Ir, and 196Au
odd–odd nuclides (which occur in the transition re-
gion between spherical and deformed nuclei) in (γ,
n) reactions at an excitation energy around a giant
dipole resonance and in (n, 2n) reactions at a neu-
tron energy of 14.7 MeV. In this region of nuclei,
the structure of low-lying excited states undergoes
changes. An analysis of isomeric ratios on the basis of
the statistical model could make it possible to explore
the changes in the properties of higher lying levels
(up to the neutron binding energy), which determine
isomeric ratios. We imply here the level density and
its dependence on the excitation energy and angular
momentum.

The choice of the above nuclides was motivated
by a high level density in them even at relatively low
excitation energies, thismaking it possible to describe
these nuclides on the basis of the statistical model. In
addition, the 190Ir and 196Au nuclei have two isomeric
states each, with the result that information about
2004 MAIK “Nauka/Interperiodica”
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Table 1. Spectroscopic features of the ground and isomeric states of the nuclides under investigation

Nucleus Z N β2 Ei, keV Jπ Nucleonic configuration References
184Re 75 109 0.21 0 3− π5/2 [402] + ν1/2 [510] [5]

105 8+ π5/2 [402] + ν11/2 [615]
190Ir 77 113 0.17 0 4+ π3/2 [402] + ν11/2 [615] [6]

26 7+ π3/2 [402] + ν11/2 [615]

175 11− π11/2 [552] + ν11/2 [615]
196Au 79 117 0.12 0 2− π3s1/2 + ν2f5/2 [7]

85 5+ π2p3/2 + ν1i13/2

595 12− π1h11/2 + ν1i13/2
the isomeric ratio appears to be richer in this case. It
should also be noted that (γ, n) and (n, 2n) reactions
leading to the same final nuclei with close excitation
energies supplement each other well (in the former, an
angular momentum of 1� is introduced in the nucleus
at all photon energies, while, in the latter, the mean
angular momentum is about 5� at a neutron energy
of 14.7 MeV).

Although isomeric ratios are known for a number
of reactions resulting in the formation of the nuclei
in question (they are quoted below along with our
data for the sake of comparison), they do not provide
a complete pattern of isomeric ratios in the nuclear
region under investigation. Moreover, they are often
insufficiently accurate or were obtained under differ-
ent conditions of measurements of the yields of the
nuclei in the isomeric and ground states. In this study,
we measured the isomeric ratios under identical con-
ditions in all cases and determined the yields in the
different reactions from the same γ lines, whereby we
were able to improve the accuracy and reliability of
our results.

PROPERTIES OF THE NUCLIDES
UNDER STUDY

As was mentioned above, the nuclides in ques-
tion belong to the transition region between spherical
and deformed nuclei; therefore, the properties of low-
lying excited states change sharply in them. In the
Nilsson scheme, the single-particle states of 184Re
and 190Ir for a deformed potential are identified in
terms of the 11/2[505] and 3/2[402] proton and the
11/2[615], 9/2[505], and 7/2[503] neutron orbits. It is
precisely these orbits that form the spectrum of low-
lying excited states. The presence of high-angular-
momentum levels among them leads to the appear-
ance of high-spin isomers. According to the Mayer
scheme, the single-particle states in 196Au have the
PH
following configurations for a spherical potential: the
h11/2, d3/2, and s1/2 proton and the i13/2, f5/2, and
p3/2 neutron orbits.

Table 1 gives the spectroscopic features of the
ground and isomeric states of the nuclei under in-
vestigation: their energies Ei, spins–parities Jπ, nu-
cleonic configurations, and quadrupole-deformation
parameters β2 for the ground state. The features of
the radioactive decay of these nuclei in the ground
and isomeric states (half-lives T1/2, energies Eγ of γ
lines, their fractions Iγ per decay, and full-internal-
conversion coefficients α)—they are necessary for
identifying them and for determining their yields—are
listed in Table 2. In a number of isomeric states, these
nuclei are deexcited in low-energy, high-multipolarity
radiative transitions characterized by large internal-
conversion coefficients. In those cases, the intensity
of γ radiation was very low, and we measured the
areas of x-ray L lines in order to determine the re-
spective yields. The energies Ex of the most intense
of them (α1,2 lines, whose fraction per decay is 84%
[4]) are also displayed in Table 2. The data in Tables 1
and 2 are systematized in [5–7].

EXPERIMENTAL PROCEDURE

The isomeric ratios in the relevant (γ, n) reactions
were measured by using a beam of bremsstrahlung
photons with an endpoint energy of 22 MeV from
a microtron electron accelerator. In the case of the
(n, 2n) reactions, we employed 14.7-MeV neutrons
obtained at a neutron generator in the interaction of
deuterons accelerated to 120 keV and a tritium target.

The targets used were identical for either type of
reactions. The targets were made from metallic foils
of natural isotopic composition that were 20, 30, and
50 µm thick for Au, Ir, and Re, respectively. They
had the shape of a disk 15 mm in diameter. The
irradiation was performed in “close” geometry; that is,
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Table 2. Features of the radioactive decay of the nuclides under study

Nucleus Jπ T1/2 Decay mode Eγ , keV Iγ , % α Ex, keV References
184Re 3− 38 d ε 903 39 0.021 8.610 [5]

8+ 169 d ε 792 38 0.012

105 75 6.5
190Ir 4+ 11.8 d ε 187 70 0.42 [6]

7+ 1.12 h i.t. 26.3 10−6 106 9.117

11− 3.25 h ε 616 97 0.014

562 97 0.023
196Au 2− 6.18 d β−, ε 357 88 0.041 [7]

5+ 8.2 s i.t. 64.6 4× 10−3 240 9.686

12− 9.7 h i.t. 148 43 0.32

188 32 0.23

Note: ε and i.t. denote electron capture and isomeric transitions, respectively.
the targets were arranged in the immediate vicinity of
the braking target (tungsten disk 3 mm thick) or the
tritium target (tritium implanted in titanium). This
enabled us to harness a considerable fraction of the
bremsstrahlung or the neutron flux. Their intensity
at the irradiated target amounted to 1012 s−1 (in the
energy range 7–22 MeV) and 1010 s−1, respectively.
Such intensities made it possible to obtain reasonably
high yields of the nuclides being studied even for low
isomeric ratios.

After been irradiated, the targets were transported
into a room protected from γ rays and neutrons, and
their γ spectra were measured there. In these mea-
surements, we employed a HpGe detector of volume
200 cm3, a Ge(Li) detector of volume 60 cm3 (their
resolutions for 60Со γ lines at Eγ = 1331 keV were
2.0 and 2.2 keV, respectively), and a silicon detector
2 mm thick (its resolution for the 55Fe x-ray line at
Ex = 5.4 keV was 0.340 keV). The choice of detector
for the measurement depended on the γ-line energies
in the spectrum. In the case of the short-lived iso-
mer 196mAu (T1/2 = 8.2 s), the irradiated target was
transported to the detector by a pneumatic rabbit (the
transportation time was 2 s).

The measured γ spectra were processed by means
of a code that made it possible to separate γ lines of
close energies in a complicated spectrum. For each
detector, the dependence of the photon-detection ef-
ficiency ε on the photon energy was determined with
the aid of a set of calibration sources. From an anal-
ysis of the γ spectra, we deduced the areas S of the
γ lines associated with the products originating from
the decay of the nuclei being studied. These areas are
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
related to the yields of nuclei in the ground or isomeric
states by the equation

Y =
S(1 + α)f(t)τ

εIγt
, (1)

where t is the time of the measurement; τ is the
lifetime of the nucleus; and f(t) is the factor that takes
into account the accumulation of nuclei within the
irradiation time, their decay prior to the beginning of
the measurements, and the population of the ground
state owing to the isomer decay.

EXPERIMENTAL RESULTS

Because the yields of nuclei in the isomeric and
ground states were measured by using the same tar-
gets under identical conditions of irradiation, the iso-
meric ratios in the relevant (n, 2n) reactions can be
considered as the ratio of the respective yields:

IR =
σis
σgr

=
Yis
Ygr

. (2)

In (γ, n) reactions, this ratio is only approximate
because the bremsstrahlung spectrum is continuous
and because, for reactions leading to the formation of
the isomeric and ground states, the excitation func-
tions have different forms. In this case, the measured
isomeric ratios can be represented as

IR =
Yis
Ygr

=

Emax∫

Bn+Eis

σ(E)N(E)dE

Emax∫

Bn

σ(E)N(E)dE
, (3)
4
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Table 3. Experimental and calculated values of the isomeric ratios in question

Nucleus Levels

Isomeric ratios

(γ, n) (n, 2n)

experiment calculation experiment calculation
184Re 8+(is.), 3−(gr.) 0.019(3) 0.019 0.20(4) 0.19

0.018(5) [9] 0.15(8) [12]
190Ir 7+(is.), 4+(gr.) 0.15(3) 0.18 0.26(5) 0.17

11−(is.), 4+(gr.) 8(2)× 10−4 7.4× 10−4 0.07(2) 0.04

0.11(3) [13]
196Au 5+(is.), 2+(gr.) 0.10(3) 0.26 0.22(4) 0.50

12−(is.), 2+(gr.) 6.0(4)× 10−4 5× 10−4 0.08(2) 0.09

6.1(4)× 10−4 [14] 0.10(1) [15]
where σ(E) and N(E) are, respectively, the reac-
tion cross section and the number of photons in the
bremsstrahlung spectrum; Bn is the neutron binding
energy; Eis is the energy of the isomeric level; and
Emax is the endpoint energy of the bremsstrahlung
spectrum. In [8, 9], it was indicated that, in a num-
ber of reactions, the threshold energy exceeds the
sum Bn + Eis and corresponds to the population of
isomers through some activation states lying 1 to
2 MeV above the isomeric state. Information about
the relationship between the ratios of the yields and
of the cross sections at a given photon energy can
be deduced from the shapes of the excitation func-
tion (they are given in [10] for the ground states of
nuclei and in [8, 9] for a number of isomers) and
of the bremsstrahlung spectrum (its calculation for
the present conditions of irradiation is given in [11]).
From these data, it follows that, at the maximum of
the excitation function (it is close to the energy of the
giant dipole resonance), the ratio of the cross sections
is 10 to 15% greater than the ratio of the yields,
the incertainty in determining the threshold for the
isomer-formation reaction having but a slight effect
on the isomeric ratios.

The isomeric ratios obtained in this way according
to Eqs. (2) and (3) are given in Table 3. They agree
with known data (which are also presented in Table 3)
within the common errors, but, as a rule, the former
have a higher accuracy.

CALCULATION OF ISOMERIC RATIOS

The isomeric ratios were calculated within the
statistical model [16, 17] on the basis of the method
proposed for the first time by Huizenga and Vanden-
bosch [18] and subsequently improved by a number
of authors (see, for example, [19–21]). This method
PH
involves calculating the distributions of nuclei with
respect to the excitation energy and angular momen-
tum at each step of the reaction. In (γ, n) reactions,
the formation of a compound nucleus, the evaporation
of a neutron, and the emission of a photon cascade are
such steps. In (n, 2n) reactions, there is yet another
step, that of the evaporation of one more neutron from
a nucleus whose mass number is greater by unity.

In the case of a (n, 2n) reaction, the compound
nucleus is formed at a single value of the excita-
tion energy, while, in a (γ, n) reaction, a distribution
of the excitation energy is observed because of the
bremsstrahlung spectrum of γ radiation. At the same
time, the angular-momentum distribution in (γ, n)
reactions is significantly narrower because a photon
introduces an angular momentum of unity in the tar-
get nucleus (the contribution from the capture of γ
rays having higher multipolarities can be neglected).
Examples of these distributions at various reaction
steps are shown in Figs. 1 and 2.

Neutron evaporation from a compound nucleus
(second step of the reaction) leads to the smearing of
the distributions with respect to the excitation energy
and angular momentum. In order to obtain these dis-
tributions, we calculated the transmission coefficients
for neutrons having various orbital angular momenta
(in these calculations, we used the parameters of the
optical model [22]). These transmission coefficients
determine the probability of neutron evaporation from
a compound nucleus having preset values of the ki-
netic energy and angular momentum; therefore, they
make it possible to derive the excitation-energy and
angular-momentum distributions of a product nu-
cleus. In (n, 2n) reactions, this operation was per-
formed twice.

The calculation of the last reaction step (pho-
ton cascade) reduced to obtaining the energy and
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 1. Excitation-energy distributions of Ir nuclei in
(upper panel) (n, 2n) and (lower panel) (γ, n) reactions
at various steps: (1) compound nucleus, (2) after the
emission of the first neutron in (n, 2n) reactions, and (3)
final nucleus prior to the photon cascade.

angular-momentum distributions after the emission
of every photon of the cascade. Every time, we com-
puted the probability of a transition to the ground or
isomeric state or to a known intermediate level from
which the only radiative transition to the ground or
isomeric state proceeded. This step of the reaction
is the most sensitive to variations in the statistical-
model parameters that determine the dependence of
the level density on the energy (a) and the angu-
lar momentum (σ), especially in the case of (γ, n)
reactions, which involve a smaller number of steps
and narrower distributions with respect to angular
momenta. A detailed description of this method for
calculating isomeric ratios and examples of such cal-
culations are given in [23].

Using the approach outlined above, we have cal-
culated the isomeric ratios for all of the nuclei un-
der investigation and all reactions for both isomeric
states. Naturally, the isomeric ratios depend on the
statistical-model parameters a and σ. The calculated
isomeric ratios are listed in Table 3 for these param-
eters set to values typical of the nuclear region under
investigation (a = 20 MeV−1, σ = 4.9) [24].

DISCUSSION OF THE RESULTS

From a comparison of the data in Table 3, one
can see that the results of the calculations faith-
fully reproduce the behavior of the isomeric ratios in
the nuclear region under investigation—in particular,
their dependences on the isomer spin and the angular
momentum introduced in the target nucleus. By way
of example, we indicate that, in all cases, the isomeric
ratios are lower for high-spin isomers than for low-
spin ones and that they are higher in (n, 2n) than
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
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Fig. 2. As in Fig. 1, but for angular momenta.

in (γ, n) reactions. At the same time, the distinc-
tion between the measured and calculated isomeric-
ratio values is beyond the experimental errors for both
reactions and levels in a number of cases [the Jπ =
7+ and 11− levels in 190Ir for the (n, 2n) reactions
and the Jπ = 5+ level in 196Au for (γ, n) and (n,
2n) reactions]. This distinction can be explained by
the approximate character of the model used in the
calculation, the uncertainty in the choice of param-
eters, and the effect of the nuclear structure on the
population of the isomers.

However, agreement between the calculated and
experimental isomeric ratios can be attained by vary-
ing the parameters a and σ within rather narrow
intervals. For the same nucleus, the resulting values
of these parameters appear to be slightly different for
different isomers and reactions. By way of example,
we indicate that, for the Jπ = 5+ isomer in 196Au,
the values of σ at the fixed value of a = 20 MeV−1

in the (γ, n) and (n, 2n) reactions prove to be 3.3
and 3.7, which are appreciably lower than those for
the Jπ = 12− isomer (σ = 4.9). A similar distinction
is also observed for the 190Ir nucleus in the (γ, n)
and (n, 2n) reactions; for the latter, the agreement
between the experimental and calculated isomeric ra-
tios is reached at σ = 8. In all probability, the reason
behind this distinction is that the above factors re-
sponsible for the deviations of the calculated isomeric
ratios from their experimental counterparts manifest
themselves differently in different cases.

Such a scatter of the values of σ that are nec-
essary for describing the isomeric ratios when the
entire body of information is used for each of the
nuclei under investigation gives no way to establish
unambiguously the variation of this parameter (and,
consequently, the dependence of the level density on
the angular momentum) in the transition nuclear re-
gion. It seems that a more refined model that takes
4
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into account the effect of the nuclear structure on
the population of isomeric states is required here.
This could be the quasiparticle–phonon model pro-
posed by V.G. Soloviev and his coauthors [25, 26]
and successfully used, for example, in describing the
dependence of isomeric ratios for 1h11/2 states on
the atomic number of a nucleus in the vicinity of the
N = 82 closed neutron shell [27].
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Abstract—The effect of parity violation in the interaction of thermal neutrons with lead was discovered in
a number of studies. According to the existing theory, this effect is explained by the mixing of compound
states characterized by different parities (s- and p-wave resonances). In view of the absence of a p-wave
resonance in the region of thermal neutron energies, it is of importance to reveal a level below the neutron
binding energy, a so-called negative resonance. The energy dependence of the cross section for radiative
neutron capture on lead was measured in the present study, and it is shown that, for the 207Pb isotope, the
results of this measurement deviate from the 1/

√
E law, thereby suggesting the presence of a strong nega-

tive resonance. The parameters of this resonance are estimated. c© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In the early 1980s, enhanced parity-violation ef-
fects in slow-neutron interaction with nuclei were
predicted theoretically [1–3] and discovered experi-
mentally [4, 5]. It was shown that the mechanism
responsible for the enhancement of such effects is
associated with the structure and properties of target
nuclei. The effects in question are maximal in the
region of p-wave resonances. By way of example,
we indicate that, for 139La, the total cross section at
the p-wave resonance of energy 0.75 eV changes by
10% upon going over from unpolarized to polarized
neutrons.
A detailed investigation of such effects for a num-

ber of nuclei was later performed at Los Alamos [6],
where total neutron cross sections were measured as
functions of the neutron helicity. All of the results
obtained in this way were matched with a theory
where these effects were explained in terms of mixing
of compound states that have different parities, s- and
p-wave resonances in the case being considered.

In addition to parity violation in the total cross
section, there is yet another effect, the rotation of the
spin of a neutron having a polarization orthogonal to
the momentum vector and traversing the target being
studied, and this effect was measured experimentally.
Both effects were described on the basis of a unified
theoretical model.
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The range of nuclei for which the rotation of the
thermal-neutron spin was measured includes lead
nuclei. The result obtained for this case in [7] is

∆ϕ = (2.24 ± 0.33) × 10−6 rad/cm.

The target used was manufactured from natural lead
containing four isotopes. Since lead features no res-
onances in the vicinity of thermal neutron energies, it
was interesting to find out which isotope is responsi-
ble for the effect. An experiment performed anew with
natural lead [8] confirmed the existence of the effect.
The value obtained for spin-rotation angle was

∆ϕ = (3.53 ± 0.79) × 10−6 rad/cm.

A measurement performed with the 207Pb isotope,
whose concentration in the natural mixture of lead
isotopes is 22%, revealed that this isotope makes no
contribution to the effect being studied [8].
Later on, a measurement was performed with the

204Pb isotope [9], whose concentration in natural lead
is as low as 1.4%, and the value obtained for the spin-
rotation angle was

∆ϕ = (8± 2)× 10−5 rad/cm.

This value is somewhat smaller than that which is
required for reproducing the effect in natural lead, but
it could qualitatively account for it.
Within the simplified two-level model where one

s-wave resonance is mixed with one p-wave reso-
nance, the expression for the spin-rotation angle can
be represented in the form [10]

∆ϕ (1)

=
4πλ2(1 eV)ρWsp

√
Γsn(1 eV)Γpn(1 eV)

(E − Es)(E − Ep)
[rad/cm].
2004 MAIK “Nauka/Interperiodica”
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Here, λ is the neutron wavelength divided by 2π;
ρ is the number of nuclei per unit volume (in cm3)
of the target;Wsp is the matrix element of the weak-
interaction-induced mixing of states having opposite
parities; Γsn and Γpn are the neutronic widths of,
respectively, the s- and the p-wave resonance; and
Es and Ep are their energies. The symbol “1 eV”
in parentheses indicates that a given quantity is
rescaled to 1 eV. For the total resonance widths, it
is assumed in expression (1) that Γs � E − Es and
Γp � E − Ep.
By using in (1) the known parameters of s- and

p-wave resonances in 204Pb [11], one can show that
∆ϕ appears to be a few orders of magnitude smaller
than its experimental counterpart. It is possible that
the compound state corresponding to the p-wave res-
onance lies below the neutron binding energy (this is
the case of a so-called negative resonance). From (1),
it can be seen that the effect in the thermal region
forE < 0.1 eV is proportional to

√
Γs,pn /Es,p. Choos-

ing, for the s-wave resonance, the maximum value of
this ratio from [11] [Es = −3 keV and Γsn(1 eV) =
1.3 eV] and assuming, for the p-wave resonance,
the mean values of Γpn (1 eV) = 3× 10−7 eV and
Ep = D/10 = 100 eV (D is the mean level spacing,
which is about 1 keV for 204Pb), we obtain ∆ϕ =
9× 10−7 rad/cm, which is two orders of magnitude
smaller than the corresponding experimental value.
The value of Wsp = 5× 10−3 eV, which was used
here, is somewhat overestimated with respect to the
relevant mean value. A greater effect can be obtained
by considerably increasing Γpn and by loweringEp. By
way of example, we indicate that, increasing Γpn by an
order of magnitude and placing the resonance at an
energy of 5 eV below the neutron binding energy, we
would arrive at ∆ϕ = 6× 10−5 rad/cm. This value is
already close to the experimental result for 204Pb, but
it is sizably smaller than that which was obtained in
the measurements with natural lead.

Thus, the explanation of the parity-violation effect
in lead may be associated with the presence of a
strong p-wave resonance in the vicinity of the neutron
binding energy. Therefore, it would be of paramount
importance to discover such a negative resonance.

FORMULATION OF THE EXPERIMENTAL
PROBLEM AND ESTIMATION
OF THE EXPECTED RESULT

As a method for seeking a negative resonance,
we proposed studying the cross section for radiative
neutron capture as a function of neutron energy. This
P

cross section is described by the Breit–Wigner for-
mula

σγ(E) =
πλ2gΓnΓγ

(E − E0)2 + Γ2/4
. (2)

For E � E0 and Γ� E0, expression (2) can be re-
duced to the form

σsγ(E) =
πλ2(1 eV)Γ(0)

n Γγ
E2
s

√
E

(3)

for s-wave interaction and to the form

σpγ(E) =
πλ2(1 eV)gΓ(1)

n Γγ
E2
p

√
E

V1 (4)

for p-wave interaction.

In expressions (3) and (4), Γ(0)
n and Γ(1)

n are
the neutron-energy-independent reduced neutronic
widths of the s- and p-wave resonances at the
energies Es and Ep, respectively. The centrifugal
attenuation factor

V1 =
(kR)2

1 + (kR)2
, (5)

where k = 1/λ is the neutron wave number and R is
the nuclear radius, plays an important role in the p-
wave cross section.

The quantity V1 for lead is V1 = 3× 10−6E. It
follows that the neutron-capture cross section as a
function of energy behaves differently for s and p
waves; that is,

σsγ(E) ∼ 1/
√
E and σpγ(E) ∼

√
E.

Let us now estimate σpγ for the strong negative

resonance considered above: Ep = −5 eV, Γ(1)
n =

1 eV, and Γγ = 0.5 eV. At an energy of 0.025 eV, we
then have σpγ = 6.3× 10−3 b, which is about 1% of
the total capture cross section at the thermal point:
σsγ(0.025 eV) = 660 × 10−3 b [11]. Even at a neutron
energy of 1 eV, however, the relationship in question
changes significantly: σsγ = 104mb and σpγ = 40 mb.

Figure 1 displays (dashed cuve) σsγ and (solid
curve) σsγ + σpγ versus the neutron energy. It can be
seen that, by measuring the energy dependence of the
cross section for radiative neutron capture over the
range between the thermal point and 2 to 3 eV, we
can estimate the contribution of the p wave or set an
upper limit on this contribution.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 1. Cross sections for radiative neutron capture on a
204Pb nucleus versus (dashed curve) σsγ and (solid curve)
σsγ + σpγ [(σ

s
γ)
T = 660mb, and (σpγ)

T = 6.3mb].

EXPERIMENTAL PROCEDURE
AND DESCRIPTION OF THE EXPERIMENT

The experiment was performed in a neutron beam
from the IBR-2 pulsed reactor installed at the Neu-
tron Physics Laboratory (Joint Institute for Nuclear
Research, Dubna). The well-developed time-of-flight
procedure was used in the spectrometry of neutrons.
As follows from the results mentioned in the Intro-
duction, the discovery of a negative resonance in ra-
diative neutron capture on the lead isotope of mass
number 204 was expected to be the most proba-
ble. For the target being studied, we therefore used
a cylindrical sample from lead enriched in this iso-
tope: it contained 36.6% 204Pb, 30.6% 206Pb, 13.2%
207Pb, and 19.6% 208Pb versus 1.43, 24.15, 22.4,
and 52.4% in a natural mixture of isotopes. The total
weight of the sample was 4.7 g. In order to reduce
the probability of various systematic effects in per-
forming the experiment in question, it was thought
to be the most convenient to measure the spectra
of gamma rays from two targets simultaneously, the
target being studied and a reference one such that
the neutron-capture cross section for it obeys the
standard 1/

√
E law. If the relationship between the

relevant intensities is favorable for the purposes pur-
sued here and if the energy resolution is sufficiently
high for separating the chosen gamma lines from the
two components of such a target, the results would
make it possible to draw an unambiguous conclu-
sion on whether the energy dependence of the cross
section for radiative neutron capture deviates from
the 1/

√
E law for the target being studied. In the

present study, the spectrum of gamma radiation in
radiative neutron capture was measured with the aid
of theHPGe detector entering into the composition of
the COmbined COrrelative Spectrometer (COCOS).
The application of this spectrometer in neutron beams
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
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is motivated by the need for suppressing the back-
ground to the maximum possible degree in order to
improve the accuracy of the analysis of the spectrum
of gamma rays accompanying the neutron–nucleus
interactions being studied. The concept of the spec-
trometer is based on the cascade nature of gamma
radiation from an excited nucleus. It is characterized
by a combined application of a semiconductor Ge
detector, which possesses a high energy resolution,
and scintillation crystal detectors, which have a high
photon-detection efficiency, and by a compact geom-
etry of themultichannel detector system, a correlation
analysis of multidimensional experimental data being
involved. The layout of the spectrometer is shown in
Fig. 2.

A collimated neutron beam 1n0 of diameter 1 cm
is incident on the target of dimensions ∅0.6× 2 cm.
Crystal BGO scintillators surrounding the target and
the HPGe detector are intended for recording gamma
rays with an energy resolution of 15 to 20% (at the
energy of Eγ = 511 keV) and an absolute efficiency
close to 50%. The semiconductor HPGe detector of
1 to 2% absolute efficiency records cascade gamma
rays in a 200- to 300-ns time window of coincidences.
A high energy resolution of this detector (0.1–0.4%)
makes it possible to single out in the spectrum and to
identify individual lines associated with the deexcita-
tion of excited compound nuclei formed in the target.
The recorded-photon energies lie in the interval be-
tween 200 keV and 8 MeV.
In our measurements, information about γγ coin-

cidences is recorded on magnetic carriers. The soft-
ware of the spectrometer makes it possible to monitor
basic parameters in the on-line mode and to perform
subsequently a full treatment of experimental data in
the off-line mode.
In processing data obtained in our experiment, we

sorted them with the aim of selecting the required
events with respect to the energy of neutrons captured
by the sample and with respect to the energy of ac-
companying gamma radiation. For one measurement
series of duration 156 h, Fig. 3 shows the integrated
4
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Fig. 3. Integrated time-of-flight spectrum for the full
energy interval of γγ coincidences (the mean neutron
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time-of-flight spectrum—that is, the spectrum cor-
responding to HPGe–BGO γγ coincidences over the
full range of photon energies. The spectrum was par-
titioned into seven segments, and the mean neutron
energy is indicated within each of these. For each seg-
ment, we constructed the spectrum of gamma rays
recorded by the HPGe detector in coincidence with
the detection of annihilation photons in the energy
range 511± 100 keV by the BGO scintillators.

Figure 4 displays the gamma-spectrum section
corresponding to that part of the time-of-flight spec-
trum where the mean neutron energy is 0.04 eV. In
the measurement series being discussed, a copper
foil served as a reference sample. For photons from
a direct transition to the ground state, a selection of
coincidences with the 511-keV line ensures a distinct
separation of the peaks associated with the single (S)
and double (D) emission of annihilation photons for
both the lead isotope being studied and the copper
isotope used.

The spectrum also features the analogous S and D
peaks that clearly stand out against the background
and which correspond to radiative neutron capture by
the 207Pb isotope, which was present in the sample
along with the 204Pb isotope. With the aim of reduc-
ing the counting rate in the spectrometer, we there-
fore conducted further measurements without a cop-
per foil and compared the intensities of the relevant
gamma radiation for the 207Pb and 204Pb isotopes.
In the gamma spectra corresponding to each of the
seven intervals of the neutron energy, we determined
the areas of the S and D peaks for both isotopes
and calculated the ratio of the sums of these areas
corresponding to the number of recorded photons
P
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Fig. 4.High-energy section of the gamma spectrum from
the HPGe detector for a mean neutron energy of 0.04 eV
(tmeas = 156 h).

associated with a direct transition in compound nuclei
upon neutron capture.
For the isotope being studied, the number of

events recorded by the spectrometer over the mea-
surement time that contribute to the peak area is
generally given by

Ni(En) = φ(En)niσEγ(En)ε(Eγ), (6)

where φ(En) is the number of neutrons that hit the
sample, ni is the number of nuclei per 1 cm2 in
the isotope being studied, σEγ (En) is the partial
radiative-capture cross section for a gamma transi-
tion of energy Eγ , and ε(Eγ) is the absolute efficiency
of the detection of a photon with energy Eγ .
In our case, the ratio of the areas of the peaks

for the sample being studied (1) and the reference
sample (2) then corresponds to the ratio K(1/2) of
the intensities of direct transitions in them and has
the form

N1(En)
N2(En)

=
n1εEγ1

n2εEγ2

[σsEγ(En) + σpEγ (En)]1
[σsEγ (En)]2

(7)

= K(1/2)(En).

This expression does not involve the neutron flux
since both isotopes are exposed to the same beam
simultaneously. The ratio (n1εEγ1)/(n2εEγ2) is in-
dependent of the neutron energy; only the ratio of
the cross sections changes. If the numerator of the
expression on the right-hand side of (7) does not
involve the p-wave cross section for the sample being
studied, then the ratio K(1/2) will be identical for
all values of the neutron energy. Thus, we can see
that the existence of the energy dependence of this
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Table 1.Normalized ratios of the intensities of direct tran-
sitions in the 207Pb, 204Pb, and 63Cu isotopes

En, eV K(207Pb/204Pb) K(207Pb/63Cu)

0.008 1.00± 0.05 1.03± 0.05

0.02 1.02± 0.06 0.96± 0.04

0.04 1.01± 0.06 1.02± 0.04

0.10 1.02± 0.07 1.04± 0.06

0.30 1.23± 0.09 1.19± 0.08

1.0 1.60± 0.16 1.42± 0.17

3.0 2.30± 0.38 1.84± 0.30

ratio suggests the presence of the sought resonance
in the nucleus being studied and makes it possible to
estimate its parameters.

EXPERIMENTAL RESULTS AND THEIR
DISCUSSION

Upon processing experimental data from a few
series of measurements with samples enriched in the
204Pb isotope (the total duration of the measure-
ments was 575 h), it turned out that, with increasing
neutron energy, the ratio of the intensities of direct
transitions,K(204Pb/207Pb), decreases instead of in-
creasing (as might have been expected). The val-
ues obtained in this experiment for the inverse ratio
K(207Pb/204Pb) are given in Table 1 for seven groups
of neutrons in energy. These values were obtained
after a normalization where themean value of the ratio
K(207Pb/204Pb) for two groups in which the neutron
energies are 8 and 20 meV and for which the p-wave
contribution is negligible is taken as unity. According
to our experimental data, it is the 207Pb isotope rather
than 204Pb that has a negative resonance.
In order to confirm this surprising experimental

result, we performed additional measurements with a
different sample that was enriched in 207Pb to 88.3%.
For a reference sample, we took, instead of the 204Pb
lead isotope, the 63Cu copper isotope from a natural
composition. The results obtained by processing data
from the additional experiment of duration 125 h are
given in Table 1 and in Fig. 5 in the form of the ratio
K(207Pb/63Cu). These values were also obtained af-
ter a normalization to neutron groups where the mean
neutron energies are 8 and 20 meV. The results of the
additional experiment exhibit a similar dependence:
the ratio of the intensities of direct transitions in
compound nuclei upon radiative neutron capture by
the 207Pb and 63Cu isotopes grows with increasing
neutron energy.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
Table 2. Cross sections for radiative neutron capture by
the 207Pb isotope for the s and p waves

En, eV σsγ , mb σpγ , mb (σsγ + σpγ)/σ
s
γ

0.008 1120 5.5 1.00

0.02 707 9 1.01

0.04 500 12 1.02

0.10 316 20 1.06

0.30 183 33 1.18

1.0 100 56 1.56

3.0 58 82 2.41

The results of these two experiments lead to the
conclusion that, in the vicinity of the neutron binding
energy, there is a strong p-wave resonance in the
207Pb (and not in 204Pb) isotope.
We will now address the question of which neg-

ative p-wave resonance in 207Pb may explain the
observed parity-violation effect in natural lead, as-
suming, in accordance with the conclusion drawn
in the present study, that this effect is caused by
precisely this isotope. Taking, for the spin-rotation
angle in natural lead, the average value in two exper-
iments [7, 8], ∆ϕ = 2.5× 10−6 rad/cm, we find, for
the 207Pb isotope (its concentration in natural lead
is 22%), that∆ϕ = 1.14× 10−5 rad/cm. Further, we
use expression (1) to describe this spin rotation and
substitute all known values into it. In the denomina-
tor, we can concurrently discard E, since thermal and
cold neutrons, for which E � Es, Ep, were employed
in measuring∆ϕ. For the s-wave resonance, we take
the maximum value of

√
gΓsn(1 eV)/Es. From [11],

we have Es = −36 keV and gΓsn = 4.7 eV, and the
relative matrix element is Wsp ≈ 5× 10−3 eV. We
then have

√
gΓpn(1 eV)/Ep = 4.4× 10−4. This ratio

can be used to calculate the p-wave cross section for
radiative capture. It is obvious that this calculation
will yield only a rough estimate, since one has to use
a few quantities for which there are no precise data.
This concerns the matrix element Wsp, the radiative
width Γpγ in (4), and the partial gamma widths Γγi of
the s and p resonances (in the experiment, we have
examined only the ratio for specific transitions rather
than the ratio of the total cross sections for radiative
neutron capture). However, even such a rough esti-
mate is sufficient for comparing the values calculated
by formula (7) with experimental data. The square
of the ratio

√
gΓpn(1 eV)/Ep, which was estimated

above, directly appears in expression (4); however,
we use not only thermal neutrons, for which one can
4
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discard E in the denominator of the expression on the
right-hand side of (2), but also neutrons of energy up
to 3 eV. In view of this, we assume that Ep = −20 eV,
whence we deriveΓpn(1 eV). This choice does not have
a significant effect on the ensuing estimations. For the
total radiative width Γpγ , we take the value of 0.5 eV,
which lies within the region of the strongly scattered
values of Γpγ for known p-wave resonances [11]. On
the basis of values adopted for the parameters of p-
wave resonances, we can calculate the cross section
for p-wave radiative neutron capture and compare
it with the calculated s-wave cross section, which
receives the main contribution from the negative res-
onance with the above parameters. The results of
these calculations are presented in Table 2. The ratios
(σsγ + σpγ)/σsγ are also given there for the neutron
energies being considered.
Since, in neutron capture by 207Pb nuclei, a direct

gamma transition to the ground state of the com-
pound nucleus 208Pb nearly exhausts the radiative-
capture process, it is reasonable to compare the ratios
from Table 2 with the experimental values of K(En).
The curve in Fig. 5was constructed on the basis of the
results of the calculations from Table 2. One can see
that it is in fairly good agreement with experimental
data.

CONCLUSION

The results of our experiments and calculations
give sufficient grounds to conclude that the 207Pb iso-
PH
tope has a strong negative resonance, which can ex-
plain the parity-violation effect consisting in neutron-
spin rotation as polarized neutrons traverse a sample
of natural lead [7, 8]. However, this is at odds with
the experimental results reported in [8, 9], where such
an effect was not found in 207Pb, but it was observed
in 204Pb. In this connection, it is highly desirable to
measure anew the effect of parity violation for 207Pb.
In addition, it is of interest to make an attempt at
revealing parity violation in the correlation s · k (be-
tween the neutron spin and the photon momentum).
The expected magnitude of the effect is about 10−5;
that is, it is accessible to measurement.
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Abstract—Results obtained by measuring the energy dependence of the probability of 232Th ternary fission
in the region of vibrational resonances are presented. The measurements were performed by using a double
ionization chamber with Frisch grids and a CsI(Tl) scintillation detector. The use of digital methods for
pulse processing made it possible to obtain highly reliable results. The data analysis reveals that our value
of the ternary-fission probability is compatible with existing systematics, which nevertheless need some
correction. The results of our measurements unambiguously indicate that local variations in the total kinetic
energy of fission fragments in the region of the individual vibrational resonances cannot be explained by
corresponding variations in the ternary-fission probability. c© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Almost all fission events are known to be accom-
panied by the emission of light particles, including
neutrons evaporated from fission fragments. How-
ever, light particles emitted in the vicinity of the scis-
sion point of a fissile nucleus within periods consid-
erably shorter than the evaporation time are of major
interest for understanding of the dynamics of the fis-
sion process.

Upon formation, a light particle moves under the
effect of the Coulomb repulsion of two fragments
moving apart. Calculations by the trajectory method
allow one to reconstruct the angular and energy dis-
tributions of light particles for various initial condi-
tions. The calculations show that the angular and en-
ergy distributions of third particles emitted in the pro-
cess of nuclear fission are highly sensitive to the initial
position of the charged particle and to the velocity of
fission fragments at the instant of emission. Thus, the
final angular and energy distributions of third parti-
cles provide the most direct way of determining the
properties of a fissile system at the instant of scission.
At present, the probability of ternary fission has been
studied in detail for almost all spontaneously fissile
nuclei and a set of nuclei in fission induced by fast
neutrons. Fission channels involving the emission of
protons, deuterons, tritons, alpha particles, and other
heavier nuclei have been revealed [1].

At the same time, a number of nuclei that can
undergo fission only under the effect of fast neutrons
have not yet received adequate study. Investigation
of the ternary-fission probability for these nuclei can

*e-mail: hva@ippe.obninsk.ru
1063-7788/04/6707-1239$26.00 c©
contribute to the development of systematics owing
to the extension of the range of the fissility parameter
(Z2/A). Also, of particular interest is the dependence
of the ternary-fission yield on the excitation energy of
a fissile nucleus, and this dependence can be studied
only with fast neutrons. For example, the observed
effect of a local decrease in the total kinetic energy
of fission fragments in the vicinity of some vibrational
resonances [2] cannot be explained either by varia-
tions in the mass distribution or by the behavior of
the prompt-neutron multiplicity [3]. It was assumed
that the ternary-fission probability may increase in
the vicinity of these resonances, thereby causing a de-
crease in the total kinetic energy of fission fragments
[4].

The breakup of a nucleus into three particles
is improbable and can justifiably be classified with
rare events. By way of example, we indicate that,
in the spontaneous fission of 252Cf, the probabilities
of alpha-particle, triton, and proton emission are
about 3× 10−3, 2× 10−4, and 6× 10−5, respectively.
Systems of two or more (∆E + E) semiconductor
detectors are usually used to study ternary fission
[5, 6]. This experimental scheme of low luminosity
is widely applied in studying spontaneous fission and
fission induced by thermal neutrons since the sta-
tistical accuracy needed for analysis can be obtained
with it. A high threshold of light-particle detection—
it is determined by the total particle absorption in a
∆E detector—is an obvious drawback of this system.
Complex multidetector setups characterized by a
high efficiency of light-charged-particle detection
[7] provide yet another example of setups used to
study ternary fission. Detectors of this type were
2004 MAIK “Nauka/Interperiodica”
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successfully applied in investigating spontaneous
ternary fission. However, they cannot be used in
beams of fast and even thermal neutrons because of
their large dimensions and complexity.

The cross section for fission induced by fast neu-
trons is two orders of magnitude smaller than that
induced by thermal neutrons. A high gamma-ray
background from a neutron target and stringent geo-
metric constraints arising in operation at an acceler-
ator cause additional difficulties. In order to solve the
problem efficiently, a novel detector system satisfying
our specific conditions was designed.

EXPERIMENTAL SETUP

The spectrometer used incorporates a double
pulsed ionization chamber (PIC) with Frisch grids
for recording pair fission fragments and a thin scin-
tillation screen with photomultiplier tube (PMT) for
recording light particles. Figure 1 shows the layout
of the setup. The ionization chamber consisted of two
anodes, two Frisch grids, and a common cathode.
A 232Th spectrometric layer 3 cm in diameter and
200 µg/cm2 in thickness on an Al2O3 substrate
transparent to fission fragments was placed at the
center of the cathode. The whole surface of the spec-
trometric layer was covered with gold (of thickness
about 50 µg/cm2) in order to ensure the electrical
conductivity of the cathode.

The electrodes are 120 mm in diameter. In order
to ensure the uniformity of the electric field, three
guard electrodes were placed in between the cathode
and the grid. The distance between the cathode and
the Frisch grid is 40 mm, and the distance between
the grid and the anode is 2 mm. The ring-shaped
upper anode of the chamber was manufactured from
stainless steel and was covered with a metallized
P

polypropylene film 100 µm thick glued onto it in
order to ensure the accumulation of electrons from
the ionization chamber. This film is transparent to
long-range particles produced within the layer of the
isotope under study. The chamber was filled with a
gas mixture (90%Ar + 10%CH4) at a pressure of
0.75 atm, and a –4-kV bias voltage was applied to
the cathode. A system of dividers between the cath-
ode and the ground ensured the application of the
required potentials to the guard electrodes and the
Frisch grids. The anodes were grounded.

A scintillation detector based on a thin CsI(Tl)
crystal and equipped with an PMT-110 photomulti-
plier tube was used as a detector of light particles. The
crystal, 1 mm thick, can fully absorb alpha particles of
energy up to 50 MeV, tritons of energy up to 20 MeV,
and protons of energy up to 14 MeV. The scintillator
diameter is 70 mm.

The pulses from the spectrometer—that is, a cath-
ode pulse, two anode pulses from the chamber, and
one anode pulse from the photomultiplier tubes—
were supplied to the input of a pulse-shape digitizer
(Le Croy 2262). These four pulses were recast into
a digital code and were saved in computer memory
for further processing. Figure 2 displays an example
of digital oscillograms corresponding to an event of
233Th ternary fission. This structure of the spectrome-
ter tract made it possible to improve the accuracy and
the reliability of the measurements substantially. A
pulse-shape analysis based on well-developed power-
ful mathematical methods—such as Fourier analysis
and the method of least squares—permitted obtaining
information that is inaccessible by present-day ana-
log methods for pulse processing.

An analysis of digital oscillograms by digital
methods of pulse processing enabled us to obtain
the kinetic energy, the mass, and the emission angle
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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[8] and to study the behavior of specific ionization
losses [9] for each of the complementary fission frag-
ments simultaneously. The fragment energies were
corrected for the inefficiency of the Frisch grid [10],
the energy losses within the target [11], and the pulse-
height defect [8]. Additionally, each of the pulses was
tested carefully for a pileup caused by alpha particles
and scattered protons. The following main features
of the fission-fragment detector were obtained: the
energy resolution for alpha particles was 36 keV
at Eα = 6 MeV; the energy resolution for fission
fragments was about 1 MeV; the mass resolution was
about 1 amu; and the angular resolution was 0.067 in
units of the cosine of the emission angle.

Pulses from the long-range-particle detector were
analyzed for possible overlaps. The particle energy
was determined from the pulse area. The energy res-
olution estimated by using alpha particles from 226Ra
decays was 180 keV. The tail of the pulse was approxi-
mated by a superposition of two exponential functions
by the method of least squares. For each pulse, this fit
yielded the contributions of the individual exponen-
tials and their decay times. The resulting area of the
fast component was used as a criterion for sorting the
particles according to their types. Methods for pro-
cessing CsI(Tl) pulses were described in more detail
elsewhere [12]. The method based on an analysis of
the contribution of the fast component provides a res-
olution that is 1.5 to 2 times higher than the resolution
of the conventional ∆E method. This difference in
the resolution can be explained by the fact that the
former method makes it possible to analyze the total
contribution of the fast component over the entire
time interval and, in contrast to the analog method
ICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
of pulse processing, does not admit any admixture of
the slow component. It is of importance that the new
method ensures a clear separation of electrons from
other charged particles (there is no fast component
for electrons at all). In studying ternary nuclear fission
induced by fast neutrons, gamma rays, beta particles,
and neutrons are the main source of the background,
which can be efficiently suppressed by using this
method of particle separation.

An analysis of the correlation between the times
of arrival of pulses from the cathode of the ionization
chamber and the anode of the photomultiplier tube of-
fers wide possibilities for estimating the contribution
of random backgrounds and for investigating their
structure.

To test the spectrometer, we choose the sponta-
neous ternary fission of 252Cf. The choice was mo-
tivated by the fact that this reaction was thoroughly
studied, so that the data published in the literature
can be used to test the operating properties of the
setup. We employed a 252Cf layer of diameter 5 mm
whose activity was 15 Bq. Figure 3 displays the two-
dimensional spectrum of scintillation pulses that was
obtained in coincidence with the production of frag-
ments. In addition to alpha particles, the spectrum in-
volves tritons, protons, and electrons. Figure 4 shows
the measured energy distribution of alpha particles.
The yields of tritons and protons with respect to the
yield of alpha particles were 6.96% and 1.4%, respec-
tively; in [14], these yields were reported to be 7.1%
and 1.6%. The yields of particles and their angular
and energy distributions are in good agreement with
data obtained by other researchers [13, 15].
4
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The detector design, the structure of the accumu-
lation system, and the algorithms of data processing
were described in more detail elsewhere [16].

DESCRIPTION OF THE EXPERIMENT

The measurements were performed in a beam
from the EG-1 accelerator at the Institute of Physics
and Power Engineering (Obninsk). The reaction
T(p, n)3He was used to obtain fast neutrons. The
mean current at the target was 10 µA. The yields from
232Th ternary fission induced by fast neutrons of en-
ergy 1.6, 1.8, and 2.2 MeV were measured for the first
time. Since the detector of light particles covered only
part of the solid angle, it was necessary to determine
its detection efficiency. The geometric efficiency εwas
obtained by three independent methods.

(i) A Monte Carlo calculation of ε was performed
for the actual dimensions of the ionization chamber,
the fissile layer, the scintillator, and the Frisch grid.
The result was ε = 10.5%.

(ii) The absolute alpha-particle activity was deter-
mined for the 252Cf layer within the ionization cham-
ber. After that, the working gas of the chamber was
evacuated, and 6-MeV alpha particles from 252Cf
spontaneous fission had the possibility of reaching
the scintillator. The ratio of the scintillator counting
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Fig. 4. Energy distribution of alpha particles produced in
ternary fission: (points) data obtained in this study and
(solid curve) data from [13].

rates to the absolute activity of the layer served as an
estimate of the geometric efficiency, which appeared
to be 10.8%.

(iii) In measuring 252Cf ternary fission, the geo-
metric efficiency was determined by using the well-
known value of the ratio of the ternary-fission yield
to the binary-fission yield for this element (T/B =
3.77 ± 0.11 [5]). The resulting efficiency appeared to
be ε = 10.6%.

Three independent methods for determining the
efficiency allowed us to estimate it to a precision
of 4%—that is, ε = 10.6 ± 0.4. A special feature of
the geometry of the spectrometer is that it records
alpha particles traveling in the forward direction. In
turn, long-range alpha particles are emitted with the
highest probability in the direction orthogonal to the
axis along which fission fragments fly apart. It follows,
among other things, that the maximum probability of
the detection of long-range alpha particles is observed
in the situation where fission fragments fly apart along
the layer (cos θ = 0), while the minimum detection
probability is realized for cos θ = 1. This effect is ab-
sent if the angular distribution of fission fragments
is isotropic, in which case the geometric efficiency
can be used to determine the probability of ternary
fission correctly. In fact, the angular distributions of
fragments originating from 232Th fission can have
considerable anisotropy and can fluctuate strongly in
the vicinity of vibrational resonances [17]. For each
fission fragment, the angles of escape from the tar-
get were measured throughout the experimental time.
The total angular distributions were reconstructed at
the stage of data processing. In Fig. 5, the angular
distributions obtained in our study are displayed along
with those from [17], where the measurements were
performed with tracking detectors. Some discrepancy
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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between the angular distributions in the region of co-
sine values close to zero can be explained by fragment
scattering within the target. An additional correc-
tion to the detection efficiency was calculated by the
Monte Carlo method. This was done on the basis of
a specially developed algorithm by using the known
shape of the angular distributions of fragments, the
geometry of the spectrometer, and the angular dis-
tribution of the long-range particles with respect to
the fragment emission angle. This correction did not
exceed 15% of the geometric efficiency throughout
the neutron-energy range being studied, this value
being less than the statistical accuracy attained in the
experiment.

Figure 6 shows the resulting probability of 233Th
ternary fission as a function of the incident-neutron
energy. The mean value of the ternary-fission prob-
ability over the range between 1.6 and 2.2 MeV
is (1.7 ± 0.3) × 10−3. The experimental values of
the probability of ternary nuclear fission that were
obtained for both spontaneous and thermal-neutron-
induced fission [1, 7, 18, 19] are displayed in Fig. 7
versus the fissility parameter Z2/A. It is evident
that a fissile system has different values of the
excitation energy, depending on the fission type.
However, a simple analysis of the displayed data
reveals that the effect of the excitation energy on
the ternary-fission probability is modest at low ex-
citation energies. By way of example, we indicate
that, according to available data on the sponta-
neous fission of 240Pu and 242Pu and on 239Pu and
241Pu fission induced by thermal neutrons, these
fissile systems are similar apart from the excita-
tion energy associated with the neutron binding
energy (about 5 MeV). Figure 7 demonstrates that
the difference of the ternary-fission yields is within
the experimental uncertainties in this case. This
fact permits performing a global analysis of our
result obtained for 233Th and the data available
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
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from the literature. The fissility-parameter range
between 35.69 and 39 has been investigated quite
comprehensively (see Fig. 7). However, the data
sample presented here can be described, at the
same confidence level, in terms of a wide variety of
functions, so that it is hardly possible to draw an
unambiguous conclusion concerning the behavior
of the ternary-fission probability. The fissility pa-
rameter for 233Th is 34.76, which is considerably
smaller than the lowest value obtained previously
(232Pa, Z2/A = 35.69). This allows us to assess
the behavior of the ternary-fission probability over a
wider region of fissility-parameter values. The dash-
dotted line in Fig. 7 represents the ternary-fission
probabilities predicted by the semiempirical formula
[20]

T/B = 1.081 × 10−7A2/3(Z2/A− 26.12) (1)

× (Z2/A2/3 − 178.13),

which was obtained within the model assuming a
random rupture of the fissile-nucleus neck.

On the whole, this dependence describes fairly
well the behavior of the ternary-fission probability, al-
though the predicted values are systematically below
the experimental data. The value predicted for 233Th
4
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is also somewhat below that which was obtained
in our study; probably, a correction of the empirical
coefficients in (1) is necessary.

Let us consider in more detail the behavior of the
energy dependence of the ternary-fission probabil-
ity. In the region of the 2.2-MeV vibrational reso-
nance, the total kinetic energy of fission fragments
decreases locally by ∆TKE ∼ 0.5 MeV with respect
to nonresonance fission. As was mentioned above,
a fluctuation of the ternary-fission yields in nuclear
fission via vibrational resonances was hypothesized
as one of the possible explanations of this effect. One
of our objectives here was to test the validity of this
hypothesis.

The measurements performed previously by Mehta
et al. [21] showed that the total kinetic energy of
ternary-fission fragments is 12 MeV lower than
that for ordinary binary fission. This fact permits
estimating the ternary-fission-probability value that
is necessary for explaining the observed decrease in
the total kinetic energy,

TKE = (1− µ)TKEB + µTKET, (2)

where TKE is the mean total kinetic energy deter-
mined for a given neutron energy, TKEB is the mean
total kinetic energy in binary fission, TKET is the
mean total kinetic energy in ternary fission, and µ
is the ternary-fission probability. Considering that
TKEB − TKET = 12 MeV, we can easily express the
expected difference in the ternary-fission probability
(∆µ) in terms of the difference of the mean total
kinetic energies in fission induced by neutrons of dif-
ferent energies (∆TKE),

∆µ = ∆TKE/12. (3)
PH
Using (3), we can easily find that the observed
difference in TKE (about 0.5 MeV) could be explained
by an increase in the ternary-fission probability by
0.042. The experimentally observed variation in the
ternary-fission probability is 0.0012, which is about
40 times less than the expected value. It follows that,
despite the meager available statistics of ternary-
fission events, experimental data unambiguously lead
to the conclusion that the local decrease in the total
kinetic energy in the region of vibrational resonances
cannot be explained in terms of a local increase in the
ternary-fission probability.
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Abstract—The time-of-flight technique is used to measure the ratios R(E,En) = N(E,En)/NCf(E) of
the normalized (to unity) spectra N(E,En) of neutrons accompanying the neutron-induced fission of
238U at primary-neutron energies of En = 6.0 and 7.0 MeV to the spectrum NCf(E) neutrons from the
spontaneous fission of 252Cf. These experimental data and the results of their analysis are discussed
together with data that were previously obtained for the neutron-induced fission of 238U at the primary
energies ofEn = 2.9, 5.0, 13.2, 14.7, 16.0, and 17.7 MeV. c© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

During the evolution of a fissile nucleus from the
equilibrium to the saddle-point configuration, neu-
tron emission is the main channel among those that
compete with the fission process. It is common prac-
tice to assume that the time of the transition from the
saddle to the scission point is so short that a signifi-
cant number of particles cannot be emitted within it.

Up to the threshold of emission fission, there is
no preequilibrium component either in the measured
spectra of prompt fission neutrons or in their mean
multiplicity. Secondary neutrons are emitted predom-
inantly from fully accelerated fragments originating
from the fission of the primary compound nucleus A.
When all directions in which fission fragments may
fly apart are equiprobable, the shape of the spectra
of prompt fission neutrons is identical at any angle
and is the simplest, being close to that of a Maxwell
distribution. This case is realized in nuclear fission
induced by thermal neutrons or in the spontaneous
fission of nuclei. The emission of postfission neutrons
has but a small effect on the observables of the fission
process, and one can take this effect into account by
means of the corresponding corrections. The emis-
sion of prefission neutrons leads to more far-reaching
consequences. It forms new possibilities for fission—
new reactions in which nuclei of lower mass undergo
fission come into play. This causes serious difficulties
for studying the properties of the fission process as
functions of energy.

In emission fission, the shape of the spectra of
prompt fission neutrons differs significantly from the
shape of the postfission component because of the

*e-mail: svirin@ippe.obninsk.ru
1063-7788/04/6707-1246$26.00 c© 2
contribution from prefission neutrons. The spec-
trum of neutrons from fully accelerated fragments
serves as a reference of shape, and it is against this
reference that one observes effects associated with
the emission of prefission neutrons. A comparison
of the experimentally measured ratios R(E,En) =
N(E,En)/NCf(E) of the normalized (to unity) spec-
tra of neutrons from the neutron-induced fission of
the nuclides under study, N(E,En), at the primary-
neutron energies of En = 2.9 and 14.7 MeV to the
spectrum NCf(E) of neutrons from the spontaneous
fission of 252Cf [1–3] demonstrates clearly, for 232Th,
235,238U, and 237Np target nuclei, the distinctions
between the shapes of the measured distributions
below and well above the threshold for emission
fission. The calculated curves that were obtained
on the basis of the model of two neutron sources
reproduce satisfactorily the shape of the observed
distributions at En = 14.7 MeV over a broad region
of secondary-neutron energies (E ≥ 2 MeV). In
the “soft” section of the spectrum (E < 2 MeV),
however, the calculated curves lie considerably lower
than the corresponding experimental values [1, 2, 4].
An anomalously high yield of soft neutrons was also
observed in the distributions R(E,En) measured at
different energies for 238U (at En = 13.2 MeV [5] and
at 16.0 and 17.7 MeV [6, 7]) and for 232Th (at 14.6
and 17.7 MeV [8]).

In order to remove the discrepancy between the
results of the calculations and experimental data for
En > 13 MeV, one can assume that, at high exci-
tation energies of the primary compound nucleus, a
third source of neutrons, that which produces soft
neutrons, comes into play. In [7–9], the system of
well-developed fragments prior to their separation—
004 MAIK “Nauka/Interperiodica”
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that is, the system of nonaccelerated fragments—was
considered as a third source. It was assumed that
this dinuclear system is in a statistical equilibrium
with respect to all degrees of freedom and that its
lifetime is sufficiently long for neutron emission to
occur, provided that this is energetically possible.
With allowance for three neutron sources, it proved
to be possible to describe the experimental behavior of
the distributionsR(E,En) forEn > 13 MeV over the
entire measured range of prompt-fission-neutron en-
ergies, including the anomalous segmentE < 2 MeV.

The entire body of accumulated data on the spec-
tra of fission neutrons in the region of emission fis-
sion is insufficient for pinpointing primary-neutron
energies (En) at which the traditional model of two
neutron sources describes experimental results ade-
quately. Alternatively, the question is that of deter-
mining the energy value En above which the third
source of neutrons comes into play. In order to an-
swer this question, we must have at our disposal
experimental information about the spectra of prompt
neutrons from 238U fission over the range between
the emission-fission threshold of En = 6 MeV and
En = 13 MeV. In order to supplement the data ob-
tained previously, we have measured and analyzed
the energy distributions R(E,En) at the emission-
fission threshold ofEn = 6 MeV and at the beginning
of the second plateau in the fission cross section (at
En = 7 MeV). We present here the respective results
and assess the mean multiplicity and the mean energy
of prompt fission neutrons within the models of two
and three neutron sources.

1. DESCRIPTION OF THE EXPERIMENT

The spectra of neutrons from the fission of 238U
nuclei were measured over the energy range E =
0.14–15 MeV. The measurements relied on the time-
of-flight method and employed a fast-neutron spec-
trometer created at the Institute of Physics and Power
Engineering (Obninsk) on the basis of the EGP-
10M electrostatic charge-exchange accelerator. The
most important units of the spectrometer included a
source that produced fast neutrons via the reaction
T(p, n)3He occurring on a gaseous tritium target, a
neutron detector, a fission-fragment detector in the
form of a multilayer flow-type ionization chamber, a
system for monitoring primary neutrons, and elec-
tronics.

In choosing a source of neutrons, we tried pri-
marily to obtain a reasonably high neutron flux at a
high energy resolution and a low background from
structural materials. As a source of monoenergetic
neutrons, a gaseous tritium source [10] bombarded
with protons from the EGP-10M accelerator satisfies
these requirements. A gaseous-tritium-containing
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
target chamber in the form of a thin-wall (0.2-mm-
thick) steel cylinder 40 mm in length and 10 mm
in diameter was mounted in the ion guide of the
accelerator. Two windows between which a cooling
helium flux circulated separated tritium from the vac-
uum system of the proton accelerator. The windows
were made from rolled 58Ni foils of thickness 10 µm,
which were tightened with ring indium gaskets. The
geometric dimensions of the proton beam incident on
the target were bounded by bars having a straight-
through hole of diameter 6 mm, which were located
at a distance of 10 cm upstream of the target. The
inner surfaces of the target and of the cooling cell,
as well as the side of the bars that faces the beam,
were covered with a layer of the 58Ni isotope (its
degree of enrichment was 96%) 0.1 to 0.3 mm
thick. This was done in order to reduce the yield of
background neutrons from the reaction (p, n) on the
structural materials of the target—the threshold for
the reaction 58Ni(p, n) is rather high (9.5 MeV). A
detailed comparison of the parameters of solid-state
and gaseous tritium targets as neutron sources was
performed in [11]. It was shown there that, in the
case of a gaseous tritium target, the contribution of
nonmonoenergetic neutrons did not exceed 1% at
proton energies in the region Ep < 9 MeV; at the
same time, it turned out that, with solid-state tritium
targets, it was very difficult to obtain monoenergetic
neutrons of energy in excess of 5 MeV.

In order to determine the sought energy of neu-
trons emitted at zero angle with respect to the inci-
dent proton beam (in this direction the neutron energy
and yield are maximal), it is necessary to know the en-
ergy of bombarding protons. In the present study, the
accelerated-proton energies ofEp = 7.7 and 8.5 MeV
were used to obtain the neutron energies of En = 6
and 7, respectively.

The neutron detector consisted of a paraterphenyl
crystal 5 cm in diameter and 5 cm in thickness and
a FEU-143 photomultiplier tube (Kren) produced in
Russia. An anode signal from the photomultiplier
tube served for forming a “start” label and for iden-
tifying a pulse in shape with the aim of suppressing
photons.

A scintillator from paraterphenyl has a higher
neutron-detection efficiency than a stilbene crystal.
This enables us to create a neutron detector having a
lower energy threshold for recording neutrons, about
100 keV, and an absolute efficiency of about 50%.
These are features of paramount importance for per-
forming a thorough investigation into the low-energy
section of neutron spectra (E < 2 MeV), which is
of greatest interest for revealing the mechanism of
neutron emission in spontaneous fission. For the first
time, such a detector was created and applied in [12].
4
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Our neutron detector had the following properties:
the time resolution was about 2.5 ns; the energy
threshold for neutron detection was about 80 keV;
and the photon-suppression factor was about 10.
The detector was placed within a special, combined,
massive shielding in the form of a tank filled with a
mixture of lithium hydride and paraffin. A truncated
steel pyramid of length 70 cm was arranged in front of
the tank. In order to suppress the photon background,
the detector was surrounded on all sides by lead of
thickness 10 cm; the end face of the crystal was
closed with lead 0.5 cm thick. Thereby, we ensured an
efficient shielding of the neutron detector, and this led
to a considerable reduction of the background from
photons and neutrons scattered by the walls and the
floor of the experimental hall.

The fission-fragment detector has already been
repeatedly described in the literature (see, for exam-
ple, [1, 2]); in view of this, only a brief characteriza-
tion of its structure and operation is given here. A
multilayer flow-type ionization chamber containing
fissile-substance (238U) layers of total weight 5.61 g
served as the fission-fragment detector. In order to
reduce the electrical capacitance, the chamber was
divided into three sections. Each section was con-
nected to a specially developed small-size, wideband
preamplifier. One of the sections contained layers of
the substance under study, with the 252Cf isotope
being uniformly distributed over its thickness. This
made it possible to determine the neutron-detector
efficiency and to measure the fission-neutron spectra
in question with respect to the spectrum of neutrons
from the spontaneous fission of 252Cf. A simulta-
neous measurement of the fission-neutron spectrum
being studied and the respective spectrum for the
reference nucleus 252Cf under identical conditions
makes it possible to get rid of many experimental
errors. The efficiency of fission-fragment detection
was about 70%. Pure methane (99.9%) was used
as a flowing gas. Special attention was given to the
identity of the features of the cross sections for 238U
and the reference nucleus 252Cf.

The electronic system that was part of the fast-
neutron spectrometer was implemented within the
CAMAC standard. It included equipment connected
to the detectors in the experimental hall; equipment
for separating, selecting, and sorting events and for
coding, processing, and counting events; electron-
ics involved in the detection, on-line accumulation,
control, and graphical representation of relevant in-
formation; and equipment for saving, storing, and
processing information, as well as for recasting it
into a convenient form. A dedicated package of codes
was developed for accomplishing a computer-aided
control of the experiment. A more detailed description
PH
of the electronic equipment used was given in [13].
In order to record the time-of-flight spectra of neu-
trons from four sections of the chamber simultane-
ously, one time analog-to-digital converter was used
in the spectrometer, whereby it was possible to reduce
considerably systematic errors associated with the
differential nonlinearity and temperature drift of the
converter. This enables us to use the accelerator in
the continuous mode. The stability of operation of the
electronics and detectors was monitored by tracing,
on the time scale, the shape and the position of the
photon peak from the spontaneous fission of 252Cf
nuclei occurring in the ionization chamber.

The procedure of measurements (accumulation of
information) consisted in repeating measurements of
neutron spectra many times for each section of the
ionization fission chamber, which was arranged at an
angle of 45◦ with respect to the proton-beam axis at
a distance of 15 cm from the target center. In order to
monitor the flux of neutrons emitted from the target,
use was made of an all-wave counter oriented at an
angle of 90◦ and positioned at a distance of about 3 m.

The accumulated single experimental spectra were
summed, but, preliminarily, they were shifted along
the time scale in order to compensate for the time drift
of the equipment used. For this, we calculated, for
each single spectrum associated with each section,
the position of the centroid of the photon peak and
determined the shift in terms of channel fractions.
Upon performing data treatment in this way, we ob-
tained the total time spectra for each of the four sec-
tions of the fission chamber. After that, a correction
for different flight-path lengths for each section was
introduced in these total time spectra. The spectra
corrected in this way were summed and converted
into energy spectra.

In Fig. 1, the results of our present experiment are
given in the form of the directly measured ratios of the
prompt-neutron spectrum N(E,En) for 238U fission
induced by neutrons of energy En = 6 and 7 MeV
to the neutron spectrum NCf(E) for the spontaneous
fission of 252Cf; that is,

R(E,En) = N(E,En)/NCf (E).

The experimental data in question were treated in
such a way that, with allowance for the contribution
from neutrons of energy in the region E ≤ Emin =
0.14 MeV, both spectra were normalized as

∞∫

0

N(E,En)dE =

∞∫

0

NCf(E)dE = 1.

The error in the experimental data was determined
primarily by the statistical accuracy of the measure-
ments (1.5–25%). The mean energy of neutrons was
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 1. Ratios R(E,En) of the spectra of neutrons from the 238U + n fission process to the spectrum of neutrons from the
spontaneous fission of 252Cf. The points represent experimental values. The dotted (for En = 2.9 MeV) and the dashed (for
5 MeV) curves correspond to the ratios of the Maxwell distributions in (22). The solid and dash-dotted curves illustrate various
versions of the description of experimental distributions for En = 6 and 7 MeV (see main body of the text). The dashed lines
show the level of the postfission component.
evaluated by means of integration over the normalized
observed spectrum N(E,En),

Ē(En) =

∞∫

0

EN(E,En)dE.

This yielded Ē(En) = 1.99 ± 0.03 MeV at En =
6 MeV and Ē(En) = 1.87 ± 0.03 MeV at En =
7 MeV.
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2. EMISSION OF POST- AND PREFISSION
NEUTRONS

2.1. Basic Relations

The emission of neutrons from an excited fissile
nucleus prior to its disintegration is the main channel
that competes with fission. If the excitation energy
E∗ of the primary parent nucleus A is less than some
threshold value,E∗ < Ethr = BA

n +BA−1
f (whereBA

n

4
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and BA−1
f are respectively, the neutron binding en-

ergy in the nucleus А and the height of the fission bar-
rier in the nucleusA− 1), then, upon the emission of a
first-chance neutron, the residual nucleusA− 1 can-
not undergo fission. In the case of this, single-chance,
fission, the excited fragments originating from the
fission of the nucleus A, which are accelerated owing
to their mutual Coulomb repulsion, will be the only
source of neutrons. As to the emission of neutrons, it
is governed by the evaporation model, in which case
the angular distribution is nearly isotropic in the c.m.
frame of a fragment of mass number M , while their
energy spectrum has the form [14]

n(ε,M)dε =
1

Γ(k + 1)θk+1
εkexp

(
−ε
θ

)
dε, (1)

where k = 1 and θ = τ1(M − 1) for single-chance
emission, k = 5/11 ≈ 1/2 and θ = (11/12)τ1(M −
1) for multichance emission, and τ1(M − 1) is the
temperature of the residual nucleus M − 1 after the
emission of the first neutron.

In rescaling the distribution in (1) from the c.m.
to the laboratory frame, we use the relation ε = E +
ω − 2

√
ωE cosψ between the energies involved [the

transition Jacobian is J(ε,E) =
√
E/ε]; taking into

account the contribution from the complementary
fragment (under the assumption that the two frag-
ments are identical, M = A−M = A/2), we obtain
the expression at k = 1/2 for describing the spectrum
of neutrons at different angles ψ with respect to the
direction along which the fragments fly apart:

NW(E,ψ)dEdΩ = (2π)−1

(
E

πθ3

)1/2

(2)

× exp
(

−ω +E

θ

)

cosh

(
2
√
ωE

θ
cosψ

)

dEdΩ.

The angular distributions of neutrons in the labora-
tory frame are highly anisotropic, having the shape of
rather narrow rosettes along the direction of fragment
motion. Expression (2) can easily be generalized to
the case of fragments whose parameters are different.
For example, one can readily take into account the
difference of the mean kinetic energies ω per nucleon
for two groups of fragments, light and complementary
heavy ones.

Integration of expression (2) over the solid angle
dΩ = 2π sinψdψ leads to the well-known Watt for-
mula

NW(E, θ, ω) = (πωθ)−1/2 (3)

× exp
(

−ω + E

θ

)

sinh

(
2
√
ωE

θ

)

P

with the mean energy given by

ĒW = 3θ/2 + ω. (4)

Expression (3) describes integrated spectra, which
are identical at different angles if all directions at
which fragments fly apart are equiprobable. This case
is realized in spontaneous fission and in fission in-
duced by thermal and fast neutrons—for example, in
the experiments of our group at En = 2.9 MeV [2, 3]
and at 5.0 MeV [5]. The parameters θ and ω, which
are to be determined from experimental results, are
averages over a broad distribution of excitation ener-
gies of fission fragments and over their mass distribu-
tion. Expression (3), which depends on two parame-
ters, is not convenient in constructing a systematics
of mean energies and in simulating the spectrum of
postfission neutrons in emission (multichance) fis-
sion.

For fission events characterized by ω → 0, which
are not realized in experiments, the Watt formula
reduces to a Maxwell distribution; that is,

NM(E,T ) = 2
(
E

πT 3

)1/2

exp
(

−E
T

)

. (5)

Although there is no physical validation of the appli-
cation of relation (5) to describing the spectra of fis-
sion neutrons, it is widely used to parametrize the re-
sults of measurements. In this parametrization, there
is only one parameter (T ), which is determined from
the least squares fit to experimental spectraN(E,En)
and which is related to the mean energy as

ĒM = 3T/2. (6)

Experimental results revealed that the spectra of
prompt neutrons from spontaneous fission [15, 16],
fission induced by thermal neutrons [17, 18], and fis-
sion induced by fast neutrons in the case of single-
chance fission (En < BA−1

f ) have a shape close to
that of a Maxwell distribution. Deviations from it can
be taken into account quite correctly in terms of the
shape function µ(E),

N(E) = NM(E,T )µ(E). (7)

This function has received the most detailed study
for the spontaneous fission of 252Cf [19]. The features
of this fission process have the status of a neutron
reference [20].

An analytic estimate of the shape function can be
obtained with the aid of the relation [21]

µ̃(E) = NW(E, θ, ω)/NM(E,T ) (8)

if the parameters θ and T are eliminated from (3)
and (5) by using the assumption that the mean en-
ergies involved are equal, ĒW = ĒM = Ē. The result
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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is

µ̃(E) =
1
3

[
E

Ē3
ω(Ē − ω)

]−1/2

(9)

× exp
[

−3
2
ω(E + Ē)
(Ē − ω)

]

sinh

[
3(Eω)1/2

Ē − ω

]

;

for ω → 0, we have µ̃(E)→ 1. An expression that
approximates the thoroughly studied shape function
for the 252Cf nucleus is given in [5].

As soon as the excitation energy of the primary
compound nucleusA is increased above the threshold
for the respective (n, n′f ) reaction, E∗ > Ethr (En >
BA−1
f ), the fission process appears to be of an emis-

sion character. In this case, each of the (n, xn′f )
reactions [where x = 0, 1, ..., xmax(En) is the number
of neutrons emitted prior to the fission of, respectively,
A, A− 1, ...,A− xmax(En) isotopes] makes a contri-
bution σfA−x(En) to the total fission cross section:

σf (En) =
xmax(En)∑

x=0

σfA−x(En). (10)

The first chance of fission corresponds to x = 0, and
the (xmax + 1)th chance corresponds to x = xmax;
here, xmax(En) is the maximum number of prefission
neutrons that is possible for a given value of the
primary neutron energy En.

Within traditional concepts, one considers two
sources of neutrons accompanying the emission fis-
sion of nuclei. These are (i) the source of postfission
neutrons, which originate from the fully accelerated
fragments formed in the fission of A, A− 1, ..., A−
xmax(En) isotopes, and (ii) the source of prefission
neutrons, which originate from fissile nuclei them-
selves prior to their disintegration. Accordingly, the
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differential yield of secondary neutrons can be repre-
sented as the sum of two components; that is,

dν̄(E,En)
dE

=
dν̄faf(E,En)

dE
+
dν̄pre(E,En)

dE
. (11)

The energy distribution of postfission neutrons
from fully accelerated fragments can be represented
as a superposition of Maxwell distributions:

dν̄faf(E,En)
dE

= α

xmax(En)∑

x=0

ν̄fA−x(Ēnx) (12)

× µ(E)NM(E,Tx)
σfA−x(En)
σf (En)

.

In contrast to the primary compound nucleus A

(239U, x = 0, Ēn0 = En), which is characterized
by a single value of the excitation energy, E∗ =
En +BnA, the residual nuclei A− x(x ≥ 1) formed
upon the emission of x neutrons are characterized
by a distribution of excitation energies U = E∗ −∑x

i=0BnA−i −E,

FA−x(U) = dσnx

(

E∗ −
x∑

i=0

BnA−i − U
)

/dE,

(13)

where dσnx(E)/dE is the spectrum of neutrons
emitted from the excited nucleus A+ 1− x (the
main channel that competes with the fission of the
nucleus A+ 1− x). The primary-neutron energy
Ēnx = ŪA−x − B̄nA−x and the mean multiplicity
ν̄fA−x(Ēnx) of prompt neutrons from fully accelerated
fragments correspond to the mean excitation energy
ŪA−x =

E∗−
∑x
i=0 BnA−x∫

BfA−x

UFA−x(U)dU
/ E∗−

∑x
i=0BnA−x∫

BfA−x

FA−x(U)dU (14)
of the nucleus A− x.
The estimate of the mean neutron multiplicity

ν̄fA−x(Ēnx) in (12) was based on the use of the
systematics of ν̄f (En) in [22] and its extrapolation to
the region En ≥ BfA−1 of emission-fission energies,

ν̄fA−x(Ēnx) = 2.33 (15)

+ 0.06
[
2− (−1)A−x−Z − (−1)Z

]

+ 0.15(Z − 92) + 0.02(A − x− 236)

+ [0.130 + 0.006(A − x− 236)](Ēnx − Etx),
Etx = 18.6 − 0.36Z2/(A− x)
+ 0.2

[
2− (−1)A−x−Z − (−1)Z

]
−BnA−x

[in (15), A is a compound nucleus—that is, a target
nucleus plus one neutron], while the estimate Tx =
2Ēfx/3 was based on the Terrell semiempirical for-
mula [23]

Ēfx = a+ b
√
ν̄fA−x + 1, (16)

where the parameters take the values of a = 0.75 MeV
and b = 0.65 MeV [24], which are universal for all
4
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nuclei. The constant α in (12) was introduced to
fit experimental data and to compensate for the
inevitable error in the description of ν̄fA−x(Ēnx) on
the basis of the systematics of ν̄f (En). A similar un-
certainty is also inherent in the use of the systematics
of Tx; in view of this, the quantity Tx = 2βĒfx/3 was
varied within 3% with the aid of the constant β.

The differential yield of prefission neutrons in
emission fission can be represented in the form

dν̄pre(E,En)
dE

(17)

=
xmax(En)∑

x=1




xmax(En)∑

i=x

Nxi(E,En)
σfA−i(En)
σf (En)



 .

In expression (17),

Nxi(E,En)=
dσnx(E,En)

dE

× fi(E,En)
/∫

E

dσnx(E,En)
dE

fi(E,En)dE (18)

is the normalized (to unity) spectrum of neutrons
emitted by nuclei А + 1− x (at a fixed value of x = 1,
2, 3, ...) whose energies E are such that the subse-
quent fission of residual nucleiA− i formed upon the
sequential emission of i neutrons (i ≥ x) is energet-
ically possible. The cutoff function fi(E,En) is the
probability of the fission of nuclei A− i as a function
of the emitted-neutron energy E:

fi(E,En) (19)

= PfA−i

(

Ui = E∗ −
i∑

x=1

BnA−x+1 − E
)

.

If one disregards effects associated with tunnel pene-
trability of the fission barrier, nuclei A− i cannot un-
dergo fission at energies satisfying the condition Ui ≤
BfA−i. The neutron spectrum dσnx(E,En)/dE (1 ≤
x ≤ i) is cut off by the function fi(E,En) at the
threshold energy

E = Ethr
i = E∗ −

i∑

x=1

BnA−x+1 −BfA−i.

The neutron spectra studied here refer to the
primary-neutron-energy regionEn < 20 MeV, where
there can occur the one-, two-, and three-chance
fission reactions 238U(n, xn′f), x = 0, 1, 2. In the en-
ergy region En < BfA−1 of the one-chance reaction
(x = 0), we have dν̄pre/dE = 0. The expression for
the spectrum of prefission neutrons in the energy
PH
range BfA−1 ≤ En < BnA−1 +BfA−2 of the two-
chance reaction [xmax(En) = 1 in (17)] has the form

dν̄pre(E,En)
dE

= N11(E,En)
σfA−1(En)
σf (En)

. (20)

In the energy range BnA−1 +BfA−2 ≤ En <
BnA−1 +BnA−2 +BfA−3 of the three-chance reac-
tion [xmax(En) = 2 in (17)], the spectrum in question
is given by

dν̄pre(E,En)
dE

= N11(E,En)
σfA−1(En)
σf (En)

(21)

+N12(E,En)
σfA−2(En)
σf (En)

+N22(E,En)
σfA−2(En)
σf (En)

.

2.2. On the Shape of the Fission-Neutron Spectra
in the Reaction 238U(n, f) at En = 2.9 and 5 MeV

In the studies of our group, the shape of the
fission-neutron spectra from (n, f ) reactions was
investigated in detail at En = 2.9 MeV for target
nuclei 232Th, 235,238U [1, 2], and 237Np [3] and at
5 MeV for 238U [5]. For these energy values (En =
2.9 and 5 MeV), the measured spectra of neutrons
from 238U fission are given in Fig. 1, along with
their description. As was mentioned above, the data
are presented in the form of the ratios R(E,En) =
N(E,En)/NCf(E) of the normalized (to unity) quan-
tities

N(E,En) =
dν̄(E,En)

dE

/
ν̄(En)

for the induced fission of 238U and the quantity

NCf(E) =
dν̄Cf(E)
dE

/
ν̄Cf

for the spontaneous fission of 252Cf. The experimental
ratios R(E,En) are described satisfactorily by the
smooth energy dependences

RM (E,En) =
NM[E,T (En)]
NM(E,TCf)

(22)

=
(

TCf

T (En)

)3/2

exp
[
TCf − T (En)
TCfT (En)

E

]

,

which are obtained as the ratios of the Maxwell distri-
butions in (5) at the temperatures of TCf = 1.42 MeV
and T (En = 2.9 MeV) = 1.332 MeV (dotted curve)
and T (En = 5 MeV) = 1.352 MeV (dashed curve).

At a rather high precision achieved to date in
measuring R(E,En), these functions carry virtually
no information about the deviations of the shape of
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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the spectra N(E,En) under study from (5). If, in
reconstructing the spectra N(E,En) on the basis
of the experimental ratios R(E,En), one takes the
Maxwell distribution in (5), the resulting description
of the spectra in question will have the same form.
From the estimate presented in [19] and based on a
vast body of experimental data and from the results
of theoretical calculations, it follows, however, that
the spectrum NCf(E) for the spontaneous fission of
californium features quite significant deviations from
a Maxwell distribution. These deviations can be taken
into account in terms of the shape function in (7).
This means that the deviations of the fission spectra
N(E,En) being studied from the Maxwell distribu-
tion in (5) are similar to the deviations µ(E) exhibited
by the shape of the reference spectrum. The foregoing
is valid for other actinide nuclei as well; therefore, the
statement that the shape function is “universal” [3]
is quite plausible. Thus, we can say that, at actual
errors in measuring R(E,En), information about the
shape of the spectra N(E,En) under study is correct
inasmuch as the estimate of µ(E) for the reference
spectrum is reliable—that is, the situation here is typ-
ical of what we usually have for the results of relative
measurements.

2.3. Spectra of Prompt Fission Neutrons at En = 6
and 7 MeV (at the Emission-Fission Threshold

and above It)
Let us discuss the data presented in Fig. 1 and ob-

tained by measuring anew the energy dependences for
R(E,En) at the primary-neutron energies of En = 6
and 7 MeV. A specific feature in the soft section of the
experimental distributions in the form of a bell stands
out clearly against the background of a nearly linear
dependence of R(E,En) at En = 2.9 and 5 MeV in
the same region of secondary-neutron energies. At
higher energies,E ≥ 1 MeV atEn = 6 MeV andE ≥
2 MeV at En = 7 MeV, all four distributions have the
same form peculiar to postfission neutrons.

The feature in the shape of the distributions at
En = 6 and 7 MeV is a manifestation of the contri-
bution of postfission neutrons, which appear as soon
as the relevant (n, n′f) reaction becomes possible.
Figure 2a shows the prefission-neutron spectrum
dν̄pre(E,En)/dE calculated at En = 7 MeV accord-
ing to (20) for two versions of the cutoff function,
(which is given in Fig. 2b): (curve 1) the function
f1(E,En) simulated in the form of a step function
with a smoothed edge and (curve 2) the function
f1(E,En) = PfA−1(U = En − E) [see (19)]. If one
disregards the tunnel penetrability of the fission bar-
rier, the threshold for the relevant (n, n′f) reaction
cuts off the spectrum dσn1(E,En)/dE of first neu-
trons (Fig. 2c) at the secondary-neutron energy E =
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
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Fig. 2. (a) Spectrum of prefission neutrons at En =
7 MeV according to our calculations for two versions
of the cutoff function f1(E,En): (curve 1) that which is
simulated in the form of a step function with a smoothed
edge and (curve 2) that which is defined by (19); (b) cutoff
function (the notation for the curves is identical to that
in Fig. 2а); (c) spectrum of first neutrons (solid curve)
and its components: (dotted curve) compound compo-
nent and (dashed curve) preequilibrium component.

Ethr
1 = En −BfA−1. From Fig. 2, it can be seen that

the spectrum of prefission neutrons (Fig. 2a) is deter-
mined primarily by the compound component of the
spectrum of first neutrons (Fig. 2c). In this prefission-
neutron spectrum, the fraction of preequilibrium neu-
trons of energy in the region E ≤ 1.5 MeV is more
than one order of magnitude less than the fraction of
the compound component.

Various versions of the description of the experi-
mental data at En = 6 and 7 MeV in terms of ex-
pression (11)—that is, in terms of a linear combi-
nation of the contributions from post- and prefission
neutrons [dν̄faf(E,En)/dE (12) and dν̄pre(E,En)/dE
(17), respectively] for xmax(En) = 1—are illustrated
in Fig. 1, where the respective results are given in the
form of the ratios R(E,En). The mean yields ν̄i and
4
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Calculated mean yields, mean energies (in MeV) for the components of the neutron spectra, and cross sections for
individual chances (in barns)

Cutoff function ν̄ ν̄faf ν̄pre Ē Ēfaf Ēpre σf239 σf238 χ2
N/N

En = 6 MeV

f1(E,En = 6 MeV) 3.201 3.155 0.046 1.995 2.020 0.261 0.536∗ 0.026∗∗ 1.42

f1(E,En = 6.5 MeV) 3.201 3.115 0.086 1.994 2.038 0.391 0.536∗ 0.051∗ 0.50

En = 7 MeV

f1(E,En = 7 MeV) 3.374 2.980 0.394 1.861 2.018 0.676 0.582∗ 0.379∗ 1.16

Steplike f1 3.374 2.980 0.394 1.859 2.026 0.600 0.582∗ 0.379∗ 2.07

Note: Given in the table are the mean yields and mean energies for (ν̄faf, Ēfaf) postfission neutrons from fully accelerated fragments and
(ν̄pre = σf238/σf , Ēpre) for prefission neutrons; also given are the sum ν̄ = ν̄faf + ν̄pre and the quantity Ē determined according to (30)
(see below).

∗ Values obtained from a description of the standard cross section for 238U fission by means of its decomposition into individual
chances.
∗∗ The second-chance-fission cross section σf238 was obtained from the best fit to the fission-neutron spectrum with the cutoff
function f1(E,En = 6 MeV).
the mean energies Ēi (i = faf, pre) for the components
of the neutron spectra and the fission cross sections
for various chances, σfA−x, are presented in the table
for various versions of the calculation.

The best description of the experimental data
at En = 6 MeV is achieved with the cutoff func-
tion f1(E,En) = PfA−1(U = En − E) calculated at
En = 6.5 MeV (and not at 6 MeV, as would be
more natural). In this version of the calculation,
the fission cross section σf = σf239 + σf238 and its
first- and second-chance components (σf239 and
σf238, respectively) were taken from a self-consistent
description of the standard cross section for the fission
of a 238U target nucleus by means of its decompo-
sition into individual chances [7]. In describing the
experimental distribution R(E,En) at En = 6 MeV
with the relevant cutoff function f1(E,En = 6 MeV),
the best fit to experimental data was obtained upon
reducing the second-chance-fission cross section
σf238 nearly by a factor of 2 (see table). In Fig. 1, one
can see that, for this version of the calculation, curve 1
does not lie in the region of experimental points at
low energies (E < 0.8 MeV). [For the presentation in
Fig. 1 to be clearer, the soft sections of the spectra
(E ≤ 2 MeV) at En = 6 and 7 MeV are shown on
the left, while the spectra for the entire range of
measured energies Е are displayed on the right.] The
calculated spectrum of prefission neutrons appears to
be softer than the spectrum observed experimentally.
The description of the spectrum with the function
f1(E,En = 6.5 MeV) (solid curve in Fig. 1 for En =
6 MeV) leads to satisfactory agreement with the
experimental results.
PH
In contrast to what we have in the case of En =
6 MeV, the description of the experimental distribu-
tion R(E,En) at 7 MeV with the relevant function
f1(E,En = 7 MeV) reproduces the shape of the
observed distribution over the entire rangeE = 0.14–
15 MeV of measured energies (solid curve), this being
indicative of an adequate interpretation of features
that are associated with the emission of prefission
neutrons. In the low-energy region (E < 1.8 MeV),
these features are especially pronounced against
the background of a nearly linear dependence for
postfission neutrons from fully accelerated fragments.
Curve 2 in Fig. 1 for En = 7 MeV—it was calcu-
lated with the cutoff function in the form of a step
whose edge is smoothed [a simplified version of the
simulation of f1(E,En)]—reproduces the shape of
the spectrum somewhat worse in the energy region of
prefission neutrons.

Additional experimental investigations are re-
quired for establishing the reason why the description
with the relevant cutoff function f1(E,En = 6 MeV)
is unable to reproduce experimental results at En =
6 MeV. Detailed measurements and a detailed anal-
ysis of the fission-neutron spectrum on the two sides
of the emission-fission threshold En = BfA−1—for
example, over the range of primary-neutron energies
En between 5.6 and 6.6 MeV with a step of ∆E =
0.2 MeV—could contribute to clarifying this point.
At energies in the regionEn < BfA−1, the probability
for a nucleusA− 1 (238U) to undergo fission is deter-
mined by the tunnel penetrability, which is sensitive
to the shape of the fission barrier. The distinction
between the barrier shape used in the calculation and
that which actually exists may be the reason why it
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 3. Ratios R(E,En) of the spectra of fission neu-
trons from the reaction 238U(n, xn′f) to the spectrum
of neutrons from the spontaneous fission of 252Cf. The
points represent experimental data. The solid curves 1
and 2 show the results of the calculation disregarding the
contribution of neutrons from nonaccelerated fragments
[see (11)] and employing (1) fi(E,En) in the form of
a step function with a smoothed edge or (2) that taken
according to (19); curve 3 corresponds to the calculation
allowing for the contribution of neutrons from nonaccel-
erated fragments [see (25)] and employing fi(E,En) in
the form (19). The dashed lines show the level of the
postfission component.

is necessary to select f1(E,En). At En = 7 MeV, the
excitation energy of the fissile nucleus A− 1 (238U)
is 1 MeV above the barrier height, with the result
that the function f1(E,En) is virtually insensitive to
the barrier shape. In principle, the true reason can be
different, however.

Thus, we can see that, within the model of two
sources, the experimental distributions of neutrons
from the emission-fission process induced in 238U
target nuclei by incident neutrons of energy 6 or
7 MeV can be described in terms of relations (11).
The change in the shape of the distribution of the
neutron yield at low energies in relation to the shape
of R(E,En) at En = 2.9 and 5 MeV is adequately
described by the contribution of prefission neutrons.
A sharp decrease in the yield of prefission neutrons
at higher energies E owing to the cutoff of the spec-
trum of first neutrons by the function f1(E,En) and
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Fig. 4. Ratios R(E,En) and their angular depen-
dence. The points represent experimental data. The solid
curves show the results of the calculation (1) with-
out and (2) with allowance for the contribution of neu-
trons from nonaccelerated fragments [see Eqs. (11)
and (25), respectively], the cutoff function fi(E,En) be-
ing parametrized in the form of a step function with a
smoothed edge. The dashed curves were calculated for
angles of (upper curve) 30◦, (middle curve) 90◦, and
(lower curve) 150◦.

the softness of their spectra in relation to the harder
spectrum of postfission neutrons make it possible to
observe it against the background of the postfission
component in the measured dependences R(E,En).

2.4. Features of the Shape of the Spectrum
of Neutrons Accompanying Emission Fission

for En > 13 MeV

The “family”of single-type distributions R(E, En)
for the emission fission of 238U target nuclei that is
induced by neutrons of energy En = 13.2, 14.7, 16.0,
and 17.7 MeV is displayed in Figs. 3 and 4. For the
sake of comparison, the distributions R(E,En) at
En = 5 and 7 MeV are also presented in Fig. 3; the
shape of the last two was discussed above (see Fig. 1).
A detailed analysis of the shape ofR(E,En) forEn >
13 MeV is given in [5, 7]. Here, we will dwell only on
4
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its basic points in connection with the emergence of
new experimental information at En = 6 and 7 MeV.

In the region En > 13 MeV, a manifestation of
the cutoff of the spectrum of first neutrons by the
threshold of the reaction (n, n′f) at the energy E =
Ethr

1 = En−BfA−1 is associated with the preequilib-
rium component of neutrons; at En = 6 and 7 MeV,
this is associated with the compound (evaporation)
component. If the spectrum of first neutrons forEn >
13 MeV were of a purely evaporative origin, then the
number of neutrons of such energy would be negli-
gible at E = Ethr

1 ; for this reason and because of an
exponential decrease in the yield of postfission neu-
trons with increasing E, the effect being discussed
would not be observable. An admixture of a hard
component (because of a nonequilibrium mechanism
of the emission of first neutrons, the yield here being
a few orders of magnitude higher than in the case of
the evaporation mechanism) renders possible a visual
observation of a sharp upper boundary and of a high-
energy maximum that is associated with prefission
neutrons. In accord with the results of a theoreti-
cal calculation that employed the exciton model of
preequilibrium decay to describe the hard component
of first neutrons, they are seen most clearly in the
experimental distribution for En = 14.7 MeV (this
distribution was measured to a fairly high statistical
accuracy). From Figs. 3 and 4, it is obvious that,
in response to a change in the bombarding-neutron
energy En, the upper boundary and the maximum of
prefission neutrons in the distribution are shifted on
the energy scale according to the relationE = Ethr

1 =
En−BfA−1, this corroborating the correctness of the
present interpretation of the observed effect.

In contrast to what we have in the energy range
En = 7–10 MeV, it is rather difficult to measure,
at higher energies, the shape of the distribution
R(E,En) in the region of the high-energy maximum
that is caused by the emission of prefission neutrons;
the higher the energy En, the greater the difficulties
to be overcome here because of low statistics and
background conditions of the experiment. For En =
13.2 and 14.7 MeV, Fig. 3 illustrates the description of
the data with the cutoff function simulated in the form
of a step having a smoothed edge (curves 1) and with
that which is defined in terms of the fission probability
according to (19) (curves 2). For En > 13 MeV,
the agreement between the calculated and measured
values in comparing them in the region of the high-
energy maximum associated with prefission neutrons
is therefore qualitative rather than quantitative. An
answer to the question of which of the two versions
of the cutoff function fi(E,En) that are used in our
calculations leads to better agreement with experi-
mental data can be obtained more readily at lower
PH
energies (En = 7–10 MeV). Previously, this was
demonstrated in Subsection 2.3 for the example of
the distribution R(E,En) measured at En = 7 MeV.
In our calculation, we did not introduce a correction
for the smearing of the upper boundary of the function
fi(E,En) due to the energy resolution; its inclusion
would lead to the broadening of the high-energy
maximum and to a decrease in its amplitude.

A second special feature that was first discovered
in the spectra of neutrons accompanying the fission of
actinide nuclei 232Th, 235, 238U, and 237Np [1–4] that
is induced by neutrons of energy En = 14.7 MeV is
associated with an anomalously high yield of soft neu-
trons (E < 2 MeV) in experimental distributions as
contrasted against the results of a theoretical descrip-
tion within the traditional approach that takes into
account two sources of secondary neutrons. Mea-
surements at different values of the primary-neutron
energy—at En = 13.2 MeV [5] and 16.0, 17.7 MeV
[6, 7] for 238U target nuclei and at 14.6 and 17.7 MeV
[8] for 232Th target nuclei—confirmed the presence
of such an excess in new experimental information.
In Fig. 3, two versions of the description of the ex-
perimental distributions R(E,En) for En = 13.2 and
14.7 MeV in terms of two neutron sources are shown
by curves 1 and 2. In Fig. 4, the results of the cal-
culation for 16.0 and 17.7 MeV in the version that
employs fi(E,En) in the form of a step function
are represented by curves 1. Thus, an analysis of
the experimental distributions R(E,En) within the
two-source model leads to a contradictory situation.
On one hand, the distribution R(E,En) measured
in the two-chance fission reaction at the primary-
neutron energy of En = 7 MeV, which corresponds
to the beginning of the second plateau in the fission
cross section, has a shape that complies well with
its calculated counterpart. On the other hand, an
excess yield of soft neutrons (E < 2 MeV) in relation
to theoretical results is observed in the experimental
distributionR(E,En) for the same two-chance reac-
tionEn = 13.2 MeV and in the distributionR(E,En)
measured for the three-chance reaction at 14.7, 16.0,
and 17.7 MeV. It is natural to assume, in the energy
range between 7 and 13.2 MeV, a third source that
emits neutrons having a soft energy spectrum comes
into play.

The statistical model taken in a conventional for-
mulation disregards the possibility of particle emis-
sion during the evolution of the system from the
saddle configuration to the scission point. As was
indicated above, it is common practice to assume
that this time is so short (in relation to particle-
emission time) that no significant number of particles
can be emitted within it. In principle, the observed
excess in the distributions R(E,En) at high values
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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of the primary-neutron energy En may be due to an
increase in the lifetime of the system in the transition
from the saddle to the scission point. The additional
emission of particles alone would not result in the
inapplicability of the relations of the statistical model
that are used here and would not change the calcu-
lated partial cross sections σfA−x. The spectrum of
additional neutrons can be calculated on the basis
of the statistical model, but, within this model, it is
difficult to determine thermal excitation energies in
the process of a dynamical transition of the system
from the saddle to the scission configuration. The
problem can be simplified by reducing it to determin-
ing the spectrum of neutrons emitted by the system
of fragments at the scission point that have already
been formed. For example, the theoretical analysis of
Brunner and Paul in [25], who studied the dinuclear
system of fragments, made it possible to assess the
mean kinetic energy of fragments as a function of the
fragment-mass ratio, the resulting dependence being
in surprisingly good agreement with experimental da-
ta. In considering neutron emission, it is necessary
to assume that, in the system of fragments that have
already been formed, there is statistical equilibrium
with respect to all degrees of freedom, the lifetime
of the system being such that the fragment Ai (i =
1, 2) can emit a neutron, provided that the fragment
excitation energy satisfies the condition

E∗
i0 = C(En +BnA)

Ai
A
> BnAi . (23)

The coefficient C indicates which fraction of the exci-
tation energy E∗ = En +BnA of the compound nu-
cleus A was converted into the thermal excitation
energy of the dinuclear system of already formed frag-
ments at the instant of their separation.

Although a physical validation of the existence of
a long-lived system of fragments that are in con-
tact presents considerable difficulties, the spectrum of
neutrons emitted from such a system of nonacceler-
ated fragments can be calculated on the basis of the
statistical model. The result is [7]

dν̄naf(E,En)
dE

=
σfA
σf

∑

Ai

Y (Ai) (24)

×
∫

E∗
i0

G(E∗
i0, 〈E∗

i0〉)

×




∑

Zj

P (Ai, Zj)N(E,Ai, Zj , E∗
i0)



 dE∗
i0,

where Y (Ai) is the mass distribution of fission frag-
ments that is normalized to two; G(E∗

i0, 〈E∗
i0〉) is the

excitation-energy distribution normalized to unity;
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Fig. 5. Differential yield (24) of neutrons from nonac-
celerated fragments produced in the fission of a 239U
compound nucleus at the primary-neutron energies of
En = (curve 1) 13.2, (2) 14.7, (3) 16.0, and (4) 17.7 MeV.

P (Ai, Zj) is the charge distribution of fixed-Ai frag-
ments that is normalized to unity (as a rule, a few
isobaric nuclei correspond to such fragments); and
N(E,Ai, Zj , E∗

i0) is the spectrum of neutrons from
fragments having fixed values of Ai, Zj , and E∗

i0 that
is normalized to unity (for more details, see [7]). With
allowance for the third neutron source in (24), the
differential yield of fission neutrons can be represented
in the form

dν̄(E,En)
dE

=
dν̄faf(E,En)

dE
(25)

+
dν̄pre(E,En)

dE
+
dν̄naf(E,En)

dE
.

The first two terms in (25) are given by the same
relations (12) and (17) as in the two-source model
specified by Eq. (11). In describing the experimen-
tal distributions R(E,En) for En > 13 MeV with
allowance for all three neutron sources in (25), the
coefficient C in (23) [recall that the hardness of the
spectrum in (24) depends on this coefficient] was
used as an adjustable parameter. For 238U, satisfac-
tory agreement between the measured and calculated
distributions R(E,En) at En = 13.2, 14.7, 16.0, and
17.7 MeV over the entire range of energies E under
study, including the low-energy region E < 2 MeV,
can be obtained at a single value of the coefficient
C, C = 0.53. The results obtained by describing the
experimental values of R(E,En) with allowance for
all three sources are represented by curves 3 in Fig. 3
and by curves 2 in Fig. 4. For four values of En,
the neutron spectra (24) from nonaccelerared frag-
4
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neutron-induced fission of 238U target nuclei as a func-
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curves correspond to the calculation performed under the
assumption of three neutron sources (see main body of
the text).

ments produced in the fission of the compound nu-
cleus A =239U are given separately in Fig. 5.

3. ESTIMATING THE MEAN MULTIPLICITY
ν̄(En) AND THE MEAN ENERGY Ē(En)
OF NEUTRONS FROM 238U FISSION

INDUCED BY FAST NEUTRONS VERSUS
THEIR PRIMARY ENERGY En

3.1. Mean Multiplicity of Neutrons

Since there is presently no experimental informa-
tion about the distributions R(E,En) for energies
in the range 7 < En < 13.2 MeV, we are unable to
establish the exact value of the threshold energy Ethr3

n
above which a third source of neutrons having a soft
spectrum comes into play. An attempt can be made
to estimate Ethr3

n by invoking the mean neutron mul-
tiplicity ν̄(En) per fission event, which is an inte-
grated feature of the fission process. Unfortunately,
there is only one experimental study, that reported
in [26], where the dependence ν̄(En) was measured
over the energy range En = 7–13 MeV, which is of
interest for our purposes. The overwhelming majority
of the experiments devoted to determining ν̄(En) were
performed at primary-neutron energies below 7 MeV
and in the vicinity of the value of 14 MeV. For 238U
P

target nuclei, Fig. 6 displays a sample of experimental
data on ν̄(En) [26–34] measured up to an energy of
En = 15 MeV.

The integrated counterpart of the differential rela-
tion (11) has the form

ν̄(En) = ν̄faf(En) + ν̄pre(En). (26)

In expression (26), which determines the mean multi-
plicity of neutrons per fission event under the assump-
tion of two neutron sources, the first term

ν̄faf(En) =
xmax(En)∑

x=0

ν̄fA−x(Ēnx)
σfA−x(En)
σf (En)

(27)

determines the mean multiplicity of postfission neu-
trons from fully accelerated fragments, while the sec-
ond term

ν̄pre(En) =
xmax(En)∑

x=1

x
σfA−x(En)
σf (En)

(28)

=
xmax(En)∑

x=0

x
σfA−x(En)
σf (En)

represents that for prefission neutrons.
For the one-chance (n, f) reaction [En <

BfA−1 ≈ 6 MeV, xmax(En) = 0], we must set
ν̄pre(En) = 0 in relation (26). In this case, the mean
yield of neutrons is determined by neutron emission
from fully accelerated fragments produced in the fis-
sion of the nucleus A: ν̄(En) = ν̄faf(En) = ν̄fA(En).

The description of the observed feature ν̄(En) is
based on Howerton’s systematics [22] [formula (15)
above]. It is used to estimate the postfission-neutron
yield ν̄faf(En). In the energy region En > BfA−1 ≈
6 MeV of emission fission, the yield ν̄faf(En) is sup-
plemented with the prefission-neutron contribution
ν̄pre(En). The quantities ν̄faf(En) and ν̄pre(En) were
calculated by using the cross sections σf and σfA−x
obtained from the description of the standard cross
section for 238U fission and its decomposition into
individual chances. The cross section for 238U fission
and its components are displayed in Fig. 7a.

In Fig. 6, the calculated mean multiplicity of neu-
trons per fission event as a function of the primary-
neutron energy En is shown by the solid curve. A
change in the slope of ν̄(En) as a function of energy is
clearly seen at En = 6 MeV, this structure being due
to the prefission-neutron contribution that emerges
as soon as the second source becomes operative. In
the distribution R(E,En) measured for En = 6 MeV,
the soft spectrum of prefission neutrons (E < 1 MeV)
stands out distinctly in Fig. 1 against the background
of the hard postfission component.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Above 6 MeV, the experimental data and the val-
ues estimated on the basis of expression (26), which
takes into account two neutron sources, agree up to
En = 9–9.5 MeV. At still higher energies, the ex-
perimental values of ν̄(En) lie somewhat above the
calculated curve.

In Fig. 6, the dashed curve for En > 9 MeV rep-
resents the mean neutron multiplicity estimated ac-
cording to the relation

ν̄(En) = ν̄faf(En) + ν̄pre(En) + ν̄naf(En), (29)

which takes into account the contribution ν̄naf(En)
of neutrons from nonaccelerated fragments (third
source). It can be seen that the calculated dashed
curve goes somewhat higher than the experimental
values quoted in [26]. In a close vicinity of the energy
En = 14 MeV, where there is a set of data from differ-
ent measurements, the estimate based on (29) agrees
with the experimental results from [27, 29] and even
lies below the values obtained in [28]. In principle, the
system of nonaccelerated fragments can lose part of
its thermal energy via gamma radiation. Assuming
that the mean photon energy is Ēγ = B̄nAi/2 and
taking it into account in the total energy balance, we
obtain an estimate of ν̄(En) (dotted curve in Fig. 6),
which agrees with experimental data from [26]. One
can see that the experimental data reported in [26]
for ν̄(En) in the range En = 7–14 MeV (the only
source of such information) are obviously insufficient
for testing relations (26) and (29). On the basis of an
analysis of the mean neutron multiplicity, the thresh-
old energy Ethr3

n above which there appears a third
source of neutrons having a soft energy spectrum can
be taken to be about 9 MeV for a first approximation.
A more accurate estimate of Ethr3

n can be obtained by
additionally measuring and analyzing the distribution
R(E,En) in the energy range En = 7–14 MeV.

3.2. Mean-Energy of Fission Neutrons

For the 238U target nucleus, the number of mea-
sured and analyzed distributions R(E,En) for En <
20 MeV makes it possible to determine the de-
pendence of the mean energy of fission neutrons
on the primary-neutron energy En, Ē(En). It has
the simplest form in the region of energies below
the threshold for emission fission, En < BfA−1 ≈
6 MeV. Here, one can make use of the well-known
systematics developed by Terrell [23], who proposed
parametrizing the mean energy in the form (16).
Within this systematics, three quantities En, Z,
and A, which are of interest for the nuclear-fission
process, are replaced by one quantity that is depen-
dent on them—this is the mean yield of postfission
neutrons from fully accelerated fragments. In Fig. 7b,
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Fig. 7. (a) Cross section for 238U fission. The points
correspond to the standard values, while the calculated
curves represent the cross sections (1) σfA, (2) σfA +
σfA−1, and (3) σfA + σfA−1 + σfA−2. (b) Mean en-
ergy of neutrons accompanying the fission of 238U tar-
get nuclei as a function of the primary-neutron energy
En. The points represent the experimental values (•) for
En = 2.9 MeV from [2], 5 MeV from [5], 6 and 7 MeV
from the present study, 13.2 MeV from [5], 14.7 MeV
from [2], and 16.0 and 17.7 MeV from [6]; (�) for En =
14.3 MeV from [36]; and (�) for En = 1.35–9 MeV
from [35]. The solid and dashed curves show the results
of the calculations for, respectively, Ē(En) and Ēfaf(En)
with allowance for (curves 1) two and (curves 2) three
neutron sources.

one can see that, in the energy region of the first
plateau of the fission cross section (En < 6 MeV),
the mean energy Ē(En) increases monotonically with
increasing En. Our experimental values of Ē(En),
as determined from the fission-neutron spectrum
N(E,En) = R(E,En)NCf(E) measured atEn = 2.9
and 5 MeV, comply well with the systematics specified
by Eq. (16). The experimental values taken from [35]
and from other earlier studies are characterized by
large uncertainties and are widely scattered around
the calculated curve.

The prefission-neutron component appears above
the threshold for emission fission—for example, in
the distributions measured at En = 6 and 7 MeV
(see Fig. 1). In this case, the fission-neutron energy
averaged over the two-component spectrum (11) is
given by the expression

Ē(En) = (ν̄faf(En)Ēfaf(En) (30)

+ ν̄pre(En)Ēpre(En))/ν̄(En),

which is represented by the solid curve 1 in Fig. 7b.
The dashed curve 1 shows the primary-neutron-
energy dependence of the mean energy for the post-
4
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fission component (neutrons from fully accelerated
fragments), Ēfaf(En). Upon going over from the
primary-neutron energy En of 5.8 to 7 MeV, the
second source of neutrons (prefission ones) becomes
operative, which is manifested in a sharp decrease in
Ē(En), this corresponding to a transition from the
first to the second plateau in the fission cross section
(see Fig. 7a). Concurrently, the mean prefission-
neutron yield ν̄pre(En) = σfA−1(En)/σf (En) in-
creases from zero to a maximum value. The mean
energy Ē(En) (30) decreases because of the con-
tribution of the soft prefission-neutron component,
which is concentrated in the energy range 0 ≤ E ≤
En −BfA−1. A modest decrease in the mean energy
Ēfaf(En) of postfission neutrons in this case is as-
sociated with the contribution of neutrons from fully
accelerated fragments produced in second-chance
fission—that is, the fission of 238U nuclei. Within
the second-plateau range 7 ≤ En ≤ 13 MeV, the
function ν̄pre(En) changes with energy only slightly.
With increasing En, the mean energies of pre- and
postfission neutrons [Ēpre(En) and Ēfaf(En), respec-
tively] grow. The dependence Ē(En) (solid curve 1
in Fig. 7b) reaches a maximum at 13 MeV (at the
end of the second plateau). A second decrease in
Ē(En), but with a smaller amplitude than in the range
5.8 ≤ En ≤ 7 MeV, is observed in going over from
the second to the third plateau in the fission cross
section—that is, in the range 13 ≤ En ≤ 15 MeV.
In the region En > 15 MeV, the mean energy grows
again. One can see that prefission-neutron emission,
which generates new possibilities (chances) for fis-
sion complicates considerably the energy dependence
of the mean energy of prompt fission neutrons in re-
lation to the simple Terrell systematics for postfission
neutrons as given by Eq. (16).

The systematics of Ē(En) as obtained within the
traditional approach of two sources of neutrons [see
Eq. (26)] accompanying the fission of actinide nuclei
is in good agreement with our experimental data for
En = 6 and 7 MeV,1) but it gives mean-energy val-
ues (solid curve 1 in Fig. 7b) that are much greater
than their experimental counterparts for En = 13.2
[5], 14.3 [36], 14.7 [2], and 16.0, 17.7 MeV [6].

In Fig. 7b, the solid curve 2 represents the mean
energy

Ē(En) = (ν̄faf(En)Ēfaf(En) + ν̄pre(En)Ēpre(En)
(31)

1)The experimental values of Ē(En) forEn = 7, 8, and 9 MeV
from other studies were obtained in terms of temperature [see
Eq. (6)] determined by using that section of the spectrum
where there are no prefission neutrons. These values must
be compared with the estimate of the mean energy for the
postfission component (dashed curve 2 in Fig. 7b).
PH
+ ν̄naf(En)Ēnaf(En))/ν̄(En),

which was estimated with allowance for the contri-
bution of neutrons from nonaccelerated fragments.
Owing to the fact that the third source of neutrons
having a soft spectrum [see Eq. (24)] is operative
in the primary-neutron-energy region En > Ethr3

n =
9 MeV, the mean energy there is lower than that
which is given by (30) (solid curve 1). In this case,
the experimental data for En > 13 MeV in Fig. 7b lie
rather close to the calculated solid curve 2. Because
of the loss of thermal energy via neutron emission
from the system of nonaccelerated fragments, the
mean energy Ēfaf(En) of postfission neutrons from
fully accelerated fragments in (31) (dashed curve 2)
will be somewhat less than that in the case of (30)
(dashed curve 1).

4. ANGULAR DEPENDENCE
OF FISSION-NEUTRON SPECTRA

Our experiment consisted in directly measuring
the ratios R(E,En) at an angle of ϑ = 90◦ with re-
spect to the momentum of primary neutrons [1, 2].
This corresponds to the double-differential neutron
yield d2ν̄(E,En, ϑ)/dEdΩ. In analyzing experimental
information, the quantity

N(E,En, ϑ) = 4π
d2ν̄(E,En, ϑ)

dEdΩ
/
ν̄(En) (32)

for the angle ϑ = 90◦ was taken for an integrated
yield of fission neutrons. The experimental spectrum
in (32) may be different from the actual spectrum that
is obtained upon integration over the solid angle,

Ñ(E,En) (33)

= 2π

2π∫

0

d2ν̄(E,En, ϑ)
dEdΩ

d(cos ϑ)/ν̄(En),

since it is rather difficult to obtain a complete set of
data on the spectrum d2ν̄(E,En, ϑ)/dEdΩ at differ-
ent angles. First, this would consume much time.
(A measurement of the fission-neutron spectrum at
one angle to an acceptable statistical accuracy takes
about a month of continuous accelerator operation.)
Second, unacceptable background conditions at for-
ward angles (ϑ ≤ 60◦) give no way to obtain reliable
experimental information there.

At different angles ϑ, the change in the spectrum
given by (32) in relation to the spectrum in (33)
integrated with respect to angles can be estimated
as follows. Under the assumption of two sources,
we represent the double-differential yield of fission
neutrons as the sum of three components; that is,

d2ν̄(E,En, ϑ)
dEdΩ

=
d2ν̄faf(E,En, ϑ)

dEdΩ
(34)
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+
d2ν̄com

pre (E,En, ϑ)
dEdΩ

+
d2ν̄dir

pre(E,En, ϑ)
dEdΩ

.

The first term in (34) determines the yield of post-
fission neutrons, which are directly related to the
energy released upon the disintegration of fully ac-
celerated fragments. Since all directions along which
fission fragments may fly apart are equiprobable in the
laboratory frame, the angular distribution of neutrons
is isotropic there, so that expressions (32) and (33)
yield the same integrated postfission-neutron spec-
trum, Nfaf(E,En, ϑ) = Ñfaf(E,En). The same is true
for the angular distribution of neutrons emitted from
nonaccelerated fragments. In describing experimen-
tal distributions, this, third, source of neutrons is
included to match the calculated and measured re-
sults in the low-energy region E < 2 MeV (curve 3
in Fig. 3 and curve 2 in Fig. 4). In emission fission
(En > BfA−1), the angular distribution of the com-
pound component of prefission neutrons [second term
in (34)] in the primary-neutron-energy region En <
20 MeV, which is studied here, is nearly isotropic, so
that N com

pre (E,En, ϑ) = Ñ com
pre (E,En).

The anisotropic component in the angular distri-
bution of neutrons accompanying emission fission is
due to the contribution of the prompt (nonequilib-
rium) mechanism of the emission of first neutrons,
whose angular distribution

dν̄dir
pre(ϑ)
dΩ

=
∫

E

d2νdir
pre(E,En, ϑ)
dEdΩ

dE (35)

is stretched in the forward direction (the yield is max-
imal at an angle of ϑ = 0◦ and is minimal at an angle
of 180◦).

The exciton model of preequilibrium decay has
been successfully used to simulate the integrated
(over a solid angle of 4π) spectrum of secondary par-
ticles emitted upon the multistep direct interaction of
a bombarding particle with target nuclei in various
(n, n′), (p, n), (p, p′), etc., reactions, but it cannot
predict the angular dependence of the yield of emitted
particles. The general idea behind the treatment of
multistep statistical and multistep compound pro-
cesses can be used in a phenomenological approach
to parametrize the angular dependence of the cross
section for the emission of secondary particles within
the exciton model and traditional statistical theory
as [37]

d2σ(E,ϑ)
dEdΩ

=
1
4π

[
dσpreeq

dE

lmax∑

l=0

blPl(cos ϑ) (36)

+
dσcom

dE

lmax∑

l = 0
∆l = 2

blPl(cos ϑ)

]

,
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where dσpreeq/dE and dσcom/dE are, respectively, the
preequilibrium and the compound spectrum within a
solid angle of 4π, while Pl(cos ϑ) are Legendre poly-
nomials. In [37], it was proposed to take the coeffi-
cients bl in the general form

bl =
2l + 1

1 + exp [Al(Bl − E)]
(37)

by analogy with the weighted penetrability factors
for a parabolic barrier. This resulted in deriving the
systematics

Al = k1 + k2 [l(l + 1)]m1/2 , (38)

Bl = k3 + k4 [l(l + 1)]m2/2 ,

where mi are integers. A fit to experimental data on
(p, p′) reactions yields

Al = 0.036 MeV−1 (39)

+ l(l + 1)× 0.0039 MeV−1,

Bl = 92 MeV− [l(l + 1)]−1/2 × 90 MeV.

In [37], the proposed angular dependence was
tested by using the experimental angular distributions
measured for secondary particles b = n, p, d, t, 3He,
and 4He over the energy range Eb = 4–60 MeV in
A(a, b) reactions for a broad range of nuclei from
A = 12C to 232Th and bombarding particles a = p,
d, 3He, and 4He of energy in the interval Ea = 18–
80 MeV. It was found that the above semiempirical
parametrization has a high predictive power. This
makes it possible to estimate the double-differential
cross sections (yields) (36) for secondary particles by
combining the systematics of angular distributions
from [37] with the existing models of preequilibrium
decay and with statistical theory.

Such an estimate of the angular dependence of the
spectra of neutrons accompanying the spontaneous
fission of 238U nuclei that is induced by neutrons of
energy En = 14.7, 16.0, and 17.7 MeV is given in
Fig. 4 in the form of the ratio of the spectrum in (33)
under study for three angles of 30◦, 90◦, and 150◦

to the spectrum for the spontaneous fission of 252Cf
(respectively, the upper, the middle, and the lower
dashed curve). It can be seen that the middle dashed
curve corresponding to the calculated spectrum (32)
for an angle of 90◦ and the solid curve corresponding
to the calculated spectrum (33), which is integrated
with respect to angles, differ only slightly and only
at the end of the ascent toward the apex in the hard
section of the distributions. The experimental fission-
neutron spectrum (32) taken over a solid angle of 4π
and obtained from a measurement at an angle of ϑ =
4
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90◦ can be refined by multiplying it by the calculated
correction factor

η(E) = Ñ(E,En)/N(E,En, ϑ = 90◦). (40)

The maximum value of this factor is max[η(E)] =
1.04 for En = 14.7 MeV and 1.10 for 17.7 MeV.

CONCLUSION

The ratios R(E,En) of the spectra of prompt neu-
trons originating from the neutron-induced fission of
238U to the spectrum of neutrons from the sponta-
neous fission of 252Cf have been measured over the
range of secondary-neutron energies between 0.14
and 15 MeV, the energy of bombarding neutrons
being either at the emission-fission threshold, En =
6 MeV, or somewhat above, En = 7 MeV.

The shape of the observed energy distributions has
been reproduced by the calculations based on the tra-
ditional approach of two neutron sources in emission
fission, this indicating that interpretations in terms of
the emission of prefission neutrons are correct.

At the same time, the investigation of the spec-
tra of prompt neutrons from 238U fission induced
by neutrons of energy En = 13.2, 14.7, 16.0, and
17.7 MeV revealed that, in the low-energy section
(E < 2 MeV), the shape of the experimental distri-
butions cannot be reproduced within the same model
of two sources.

The values of En = 7 and 13.2 MeV belong to
the same energy region, that of the two-chance fis-
sion reaction, and correspond to the beginning and
the end of the second plateau in the fission cross
section. The calculated shape of the fission-neutron
distribution for the first energy value is consistent
with its experimental counterpart, while that for the
second one is not. At the energy of En = 13.2 MeV
and above, there is an excess yield of soft neutrons
(those of energy in the region E < 2 MeV) in the
experimental distributions in relation to the results of
the calculations. This discrepancy can be removed by
introducing, at an energy between 7 and 13.2 MeV
(En � 9 MeV according to a rough estimation), a
third source that produces neutrons having a soft
spectrum. In explaining the shape of the energy dis-
tributions observed for En > 13.2 MeV in the low-
energy region E < 2 MeV, the assumption that the
third source is associated with neutron emission from
nonaccelerated fragments has led to encouraging re-
sults.

In the case of emission fission, the systematics of
the mean energies of prompt fission neutrons that is
based on the relations of the traditional model assum-
ing that there are two sources of neutrons complies
with experimental data on Ē(En) for En = 6 and
7 MeV, but it leads to values exceeding experimental
P

data forEn > 13.2 MeV. By including, in the system-
atics of Ē(En) for En > 9 MeV, additional neutron
emission from a third source that has a soft spectrum,
one can reduce the calculated values of the mean
energy to a level of their experimental counterparts.

Measurements and analysis of the spectra of
prompt fission neutrons at primary-neutron energies
in the range En = 8–13 MeV are of considerable
interest for precisely determining the threshold energy
above which the contribution from a third source
appears in experimental distributions.
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Abstract—An interpolation formula that was previously obtained on the basis of a statistical approach is
applied to experimental data quoted in the literature over the past few years for light-particle yields from the
ternary fission of nuclei. Arguments are adduced in favor of this approach, and an analysis of errors inherent
in it is given. Tables are presented in which experimental light-particle yields for eight cases of fission are
given along with those that were obtained from the interpolation formula. The applicability of this formula to
estimating the yields of so-called scission neutrons is analyzed. c© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The first systematic measurements of the yields
of light nuclides from ternary nuclear fission induced
by thermal neutrons were performed in 1969–1975 at
the Leningrad Nuclear Physics Institute (presently
Petersburg Nuclear Physics Institute) by a group
of researchers headed by A.A. Vorobyov [1–4]. This
group explored the ternary fission of 233U, 235U,
239Pu, and 242mAm nuclei that was induced by
thermal neutrons. Themeasurements in those studies
were performed with the aid of a magnetic time-
of-flight mass spectrometer (MTOFMS) installed
in a horizontal channel of a PWR-M reactor. For
the case of the spontaneously fissile nucleus 252Cf,
the measurements had been performed since 1967
by means of a ∆E–E telescope (see, for example,
[5]). That method of investigations, which, of course,
has a lower potential than the MTOFMS method,
is advantageous in that it is characterized by a high
efficiency of particle detection in the case of relatively
weak sources of spontaneous fission.

Over the past few years, the yields of light particles
in ternary fission have intensively been studied with
the aid of the Lohengrin mass separator at the Laue–
Langevin Institute (Grenoble, France). In addition
to the aforementioned cases, the ternary fission of
229Th [6], 241Pu [7], 245Cm [7, 8], and 249Cf [9] nuclei
that is induced by thermal neutrons was explored
there among other things. High neutron fluxes from
the Grenoble reactor and high qualities of the Lo-
hengrin mass separator made it possible to reach, in
some cases, silicon isotopes in measuring the yields
in question. Thus, a vast body of experimental data

*e-mail: pleva@pnpi.spb.ru
1063-7788/04/6707-1264$26.00 c©
on the yields and energy spectra of “third” particles
has been accumulated at the present time.

Attempts at describing the yields of light nuclei
in ternary fission in terms of a single mathemati-
cal expression that would reflect, at the same time,
the physics behind the phenomenon being studied
have been made many times (see, for example, [10–
14]). A survey of basic models used in calculating
the yields and spectra of particles originating from
ternary fission is given in [7]. None of the formulas
for describing the yields in question was derived on
the basis of underlying principles of quantum me-
chanics. As a matter of fact, the ternary-fission pro-
cess is treated in terms of classical mechanics, the
quantum-mechanical features of this process being in
the background. The formulas used are semiempiri-
cal and involve parameters that are determined from
experimental data. In the course of the fission pro-
cess, a fissile system passes through a state in which
the production of a third particle requires minimum
expenditures of energy. A state where three fission
fragments have already undergone separation but still
have quite modest initial velocities is considered in
the majority of ternary-fission models as an input
state for trajectory calculations. A comparison of the
ultimate results obtained in such calculations for the
angular and energy distributions of third fragments
with respective distributions found from experiments
makes it possible to correct the choice of input con-
figuration. The difference of the energies of the input
configurations for different versions of ternary fission
permits applying the methods of statistical physics to
estimating the relative yields of different third parti-
cles.

We will dwell at some length on the approach
adopted in [11], where it is assumed that the problem
2004 MAIK “Nauka/Interperiodica”
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of yields from ternary fission can be solved on the basis
of applying general principles of statistical physics to
the emission of light nuclides in the ternary fission of
nuclei without invoking any parameters that deter-
mine a specific configuration at the instant of scission.

1. PARTICLE YIELDS IN TERNARY FISSION
IN TERMS OF STATISTICAL PHYSICS

Upon passing the saddle point owing to a decrease
in the potential energy at the initial stage, a fissile
nucleus, which is a complex system, begins a collec-
tive motion toward scission, simultaneously evolving,
according to the laws of statistical physics, toward
an increase in the density of its possible quantum
states—that is, toward an increase in the internal
excitation. Upon scission, the excitation energy of
fragments is removed by neutron and photon emis-
sion. In much more rare cases, moving fragments
may emit an alpha particle or a proton (so-called polar
emission).

As to the emission of a third particle in the “scis-
sion” of the nucleus undergoing fission, the preva-
lent concept is that, in the fission process, the con-
figuration of the nucleus passes through the stage
within which two main fragments that have not yet
undergone separation are connected by a compara-
tively thin neck formed by a few nucleons. It is pre-
cisely the place where particle fluxes associated with
the formation of stationary nucleon orbits in would-
be fragments have the highest density and where
the collective energy of the fluxes can go over with
the highest probability to the excitation energy of
individual quasiparticles, increasing the temperature
in the region of the neck. The “thermal emission”
of neutrons, alpha particles, and other light nuclei
from this region of an elevated temperature becomes
possible for a short time (less than 10−20 s). This
emission is facilitated for a particle that, at the in-
stant of separation—that is, at the saddle of the po-
tential barrier surrounding the nucleus—possesses
the lowest energy, thereby ensuring the highest level
density in the residual nuclear system. A decrease
in the density of quantum states in a system that
has a rather large number of degrees of freedom and
a rather high excitation energy is characterized by
the factor e−∆E/Θ, where ∆E is the decrease in the
energy of the residual system due to the arrival of the
particle at the potential barrier and Θ is a tempera-
ture parameter. The main contribution to the energy
∆E that the emitted particle of mass number A and
charge number Z removes from the fissile system
comes from the sum of the separation energies of Z
protons andN = A−Z neutronsminus their binding
energy in the particle. The Coulomb energy of the
particle at the barrier makes a contribution of equally
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
great importance. We note that the increase in the
kinetic energy of a charged light particle owing to its
acceleration upon scission does not coincide with its
Coulomb energy at the instant of scission because of
the simultaneous motion of two main fragments. It is
the Coulomb energy at the barrier top that affects the
probability of the emission of one particle or another.
The initial kinetic energy at the instant of separation
has no effect on the relative probability of particle
emission, since, according to statistical mechanics, it
must be identical (and equal to 2Θ) for any particle,
with the exception of two main fragments.

The above concepts served as a basis for attempts
at deriving an interpolation formula that would make
it possible to estimate as-yet-unknown integrated
yields of some particles by using only data on the
measured yields of other particles. In particular, such
a formula could be applied to those nuclides for which
a direct measurement of the yields is complicated for
one reason or another. This refers not only to unstable
nuclei—that is, to those that are able to decay in flight
to lighter nuclides—but also to protons, for which
yield measurements are impeded by the background
associated, at least partly, with (n, p), (d, p), and
(α, p) reactions on the structural elements of the
instruments used, and, finally, to neutrons, for which
it is difficult to measure yields against the background
of neutrons from fully accelerated fragments. Such
a formula was proposed in [11], and the first results
obtained by applying it to experimental data were
also presented there. As a matter of fact, this for-
mula involves four parameters, whose values are to
be determined from a comparison with experimental
data. These are (see [11]) the proton work function
εp taken, together with the proton energy, at the
Coulomb barrier; the neutron work function εn; a
temperature parameter (Θ); and a scale parameter
(η). For the sake of simplicity, it was assumed that
the particle that removes energy from the original
system does not possess internal degrees of freedom,
since it would be necessary otherwise to include in the
respective calculation the energy expended into them
with allowance for the probability of their excitation.
Since this probability is low in view of a large spacing
between the ground and the first excited state in the
majority of light nuclei, it was assumed that the use
of the expression 2I + 1, where I is the ground-state
spin of the emitted light nuclide, for a statistical factor
would not lead to significant errors.

Flaws in this approach to the ternary-fission phe-
nomenon are obvious. First and foremost, we note
that, in traditional applications of statistical physics,
one deals with an equilibrium system characterized
by a uniform distribution of energy over degrees of
freedom. But in our case, the system being consid-
ered undergoes such quick variations that the energy
4
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released in processes proceeding predominantly in the
neck region hardly has time, before particle emission,
to be distributed uniformly over the entire volume of
the system and, accordingly, over degrees of freedom.
Therefore, the temperature parameter Θ in the above
formula may only have the meaning of a local tem-
perature that characterizes the emission zone. (The
approach being considered can be justified to some
extent by considering that, on one hand, energy is
continuously supplied to the emission zone owing to
a decrease in the deformation energy and that, on
the other hand, it is transferred from this zone to the
region of lower energies in large fragments, whereby
there arises some kind of a dynamical equilibrium.)
Second, the assumption that the proton work func-
tion εp and the neutron work function εn remain un-
changed irrespective of the number of nucleons sepa-
rated from the system in the formation of the emitted
particle underlies formula (1) from [11]. This property
is inherent in a classical equilibrium system that con-
sists of a “heat bath” having a high level density (and
containing a large number of various particles inter-
acting with one another) and a small “subsystem”
(that is, a “gas” formed by emitted particles) that is
in equilibrium with the heat bath. Concurrently, it is
assumed that the exchange of nuclides between the
two parts of the system can occur without inducing
any changes in the parameters of the heat bath. In this
case, εp and εn are constant quantities (proton and
neutron “chemical” potentials). But our system is in
fact only part of a fissile nucleus, where the number
of nucleons is finite. It can hardly be expected that
the second, the third, etc., neutron or proton would
have the same work function as the first one. It is more
probable that the work function of a specific nucleon
depends on how many nucleons and which ones were
separated within previous time intervals.

In view of the above comments, the applicability
of the formulas proposed in [11] has a limited range.
At least, it can be expected that the yields of particles
having a rather large mass number would be overesti-
mated, since, in this case, the reserve of our heat bath
in energy and the number of particles approaches the
limit beyond which it would be incorrect to treat Θ,
εp, and εn as constant quantities, even approximately.
This was confirmed in a comparison of the results of
calculations based on the interpolation formula with
experimental results.

In the review part of Köster’s dissertation [7] (see
pp. 35, 37, 38), a comparison of the results obtained
by calculating light-particle yields in ternary fission
on the basis of various models and experimental data
is given in a graphical form. It was indicated there
that all of these models reproduce quite correctly the
yields of particles emitted with rather high intensities,
but they describe poorly the yields of particles for
PH
which the ratio N/Z deviates from the mean value
strongly. For the example of 233U and 235U fission,
it was shown that the model proposed in [11] re-
produces fairly well the yields in the region of the
lightest particles originating from ternary fission and,
in contrast to othermodels, describes quite accurately
a large jump of the yields of 4He and 3He; however,
it overestimates the yields in the region of high mass
numbers significantly.

The next section of the present article is devoted
to a detailed consideration of special features of the
approach proposed in [11]. It is assumed that the
advantages that this approach possesses in the region
of the lightest particles will make it possible to assess
neutron emission in the ternary-fission process.

2. ANALYSIS OF THE RESULTS OBTAINED
BY PROCESSING EXPERIMENTAL DATA
ON THE BASIS OF THE INTERPOLATION

FORMULA

Tables 1–5 give experimental data from [1–3, 6–
8, 15–23] and the results of fitting the interpolation
formula to various sets of experimental data. Some
of the results quoted here were already presented in
a graphical form in [11]. In the tables, the symbol
# labels those experimental data that were used in
the equations for determining the parameters of the
interpolation formula. Yields that do not possess a
high reliability, since they were calculated for nuclides
whose charge and mass numbers, Z and A, are far
beyond the region where the parameters were deter-
mined, are enclosed in brackets (as a matter of fact,
it is extrapolation rather than interpolation that was
applied to these nuclides). The term “unstable” was
used in the sense specified in the preceding section.
In examining these tables, one can easily see that
the result of fitting depends on the range (in A and
Z) to which those light nuclei belong whose yields
were used to derive equations for determining the
parameters of the interpolation formula.

Two fits were constructed for the case of the fission
process 233U(nth, f ): one was based on data from [1]
(Table 1), while the other was based on the same
data supplemented with new data from [6] (Table 4).
The first fit, in which use was made of the yields of
nuclides belonging to the range from 4Не to 9Ве, is
satisfactory for elements from hydrogen to beryllium,
only the calculated yield of 10Be being underestimated
in relation to experimental data by a factor approxi-
mately equal to two. The fit quality is characterized by
the criterion value of χ2/(N − n) = 0.38. (Here,N =
6 is the number of equations used and n = 4 is the
number of parameters in the interpolation formula.
The values of the agreement criterion are given in the
last column of Table 6.) The second fit, in which use
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Table 1. Comparison od experimental and interpolated yields of light nuclides in the ternary fission of nuclei (normalized
to 104 nuclei of 4He)

No. Z N Nuclide Unstable
nuclides

235U + nth [2] 233U + nth [1]

experiment interpolation experiment interpolation

1 0 1 n – [5.99(64)× 106] – [2.13(37)× 106]

2 1 0 1H 115(15)∗ [160(17)] – [38(13)]

3 1 1 2H 50(2) [204(17)] 41(2) [48(15)]

4 1 2 3H 720(30) [1920(90)] 460(20) [630(130)]

5 2 1 3He <0.01 2.87(57)× 10−2 – 5.8(24)× 10−3

6 2 2 4He 10 000(190)# 10 020(190) 10 000(270) # 10 000(270)

7 2 3 5He 4He + n+ 0.89 MeV – 1980(45) – 1500(60)

8 2 4 6He 191(9)# 193(8) 137(7)# 140(70)

9 2 5 7He 6He + n+ 0.44 MeV – 50.0(32) – 28(3)

10 2 6 8He 8.2(6) 8.0(7) 3.6(4) 4.6(5)

11 3 2 5Li 4He +1 H + 1.97 MeV – 2.4(5)× 10−2 – 11(3)× 10−3

12 3 3 6Li 0.05(2) 0.13(2) – 7.6(14)× 10−2

13 3 4 7Li 4.1(3)# 3.8(3) 3.7(2)# 3.6(2)

14 3 5 8Li 1.8(3)# 2.0(1) 1.8(2)# 1.9(1)

15 3 6 9Li 3.0(4)# 3.2(2) 3.6(5)# 3.4(3)

16 4 3 7Be <10−2 2.9(8)× 10−5 <10−2 1.6(5)× 10−5

17 4 4 8Be 2(4He) + 0.092 MeV 0.5(2)∗∗ 1.2(1) – 2.8(4)

18 4 5 9Be 2.9(3) 1.5(1) 3.7(8)# 3.3(5)

19 4 6 10Be 32(2) 6.1(3) 43(3) 19.7(53)

20 4 7 11Be 2.0(3)# 1.53(9) – [4.3(11)]

21 4 8 12Be 1.5(3) 0.76(6) – [2.1(5)]

22 5 5 10B <0.02 0.96(19)× 10−3 – [2.0(3)× 10−3]

23 5 6 11B 0.25(13)# 0.29(3) – [1.4(4)]

24 5 7 12B 0.17(5)# 0.25(2) – [6.9(27)× 10−2]

25 5 8 13B 0.20(6) 1.17(9) – [7.4(32)]

26 5 9 14B 0.10(5) 0.15(1) – [0.85(37)]

27 6 7 13C 0.5(3) 0.25(3) – [3.1(15)]

28 6 8 14C 5.4(6)# 5.4(6) – [110(74)]

29 6 9 15C 1.5(10)# 1.3(1) – [44(29)]

30 6 10 16C 0.2(1) 2.4(3) – [59(43)]

31 7 9 16N <0.05 8.3(13)× 10−2

32 8 10 18O <0.05 [0.10(2)]

33 8 12 20O 0.5(2) [2.4(5)]

34 9 11 20F – [3.3(6)× 10−3]

35 10 14 24Ne – [2.1(20)]

36 10 16 26Ne – [38(13)]

Note: Data labeled with * and ** were borrowed from [15] and [16], respectively.
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Table 2. Comparison of experimental and interpolated yields of light nuclides in the ternary fission of nuclei (normalized
to 104 nuclei of 4Не)

No. Z N Nuclide Unstable
nuclides

239Pu + nth [3] 242mAm + nth [3]

experiment interpolation experiment interpolation

1 0 1 n – [2.8(2)× 106] – [2.17(27)× 106]

2 1 0 1H 190(10)∗ [164(9)] – [213(27)]

3 1 1 2H 69(2) [205(10)] – [256(30)]

4 1 2 3H 720(30) [1620(50)] 620(60) [1720(70)]

5 2 1 3He <0.01 5.5(5)× 10−2 – 0.10(2)

6 2 2 4He 104(200)# 9900(200) 104(150)# 10 020(230)

7 2 3 5He 4He + n+ 0.89 MeV – 2100(40) – 2270(50)

8 2 4 6He 192(5)# 205(10) 214(6)# 212(7)

9 2 5 7He 6He + n+ 0.44 MeV – 56.5(25) – 62(3)

10 2 6 8He 8.8(4) 8.7(6) – 9.0(6)

11 3 2 5Li 4He +1 H + 1.966 MeV – 5.5(5)× 10−2 – 0.10(3)

12 3 3 6Li <0.05 0.26(2) – 0.42(8)

13 3 4 7Li 6.5(2)# 6.6(3) 8.2(26)# 8.8(10)

14 3 5 8Li 3.2(3)# 3.4(1) 3.6(4)# 4.4(4)

15 3 6 9Li 5.3(3)# 4.9(2) 6.4(13)# 5.8(3)

16 4 3 7Be <0.01 1.2(2)× 10−4 – 2.8(10)× 10−4

17 4 4 8Be 2(4He) + 0.092 MeV – 2.7(2) – 3.7(5)

18 4 5 9Be 5.1(6) 3.35(60) 7.5(15)# 4.5(5)

19 4 6 10Be 49(1) 11.0(3) 57(6) 12.3(6)

20 4 7 11Be 3.5(3)# 2.9(1) – –

21 4 8 12Be 2.2(5) 1.35(5) – –

22 5 6 11B 0.9(3)# 0.85(5) – –

23 5 7 12B 1.0(4)# 0.66(3) – –

24 5 8 13B 1.3(4) 2.8(1) – –

25 5 9 14B 0.2(1) 0.38(2) – –

26 6 7 13C <1 0.85(5) – –

27 6 8 14C 14.0(6)# 14.4(7) 14.5(15) 15.1(15)

28 6 9 15C 3.5(13)# 6.2(3) – –

29 6 10 16C 3.5(16) 6.0(4) – [5.7(8)]

30 7 9 16N <0.02 [0.34(20)] – –

31 7 10 17N – [0.90(5)] – –

32 7 11 18N – [1.5(1)]

33 8 10 18O – [0.50(5)]

34 8 12 20O 0.8(4) [8.7(8)]
∗ Data borrowed from [17].
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Table 3. Comparison of experimental and interpolated yields of light nuclides in the ternary fission of nuclei (normalized
to 104 nuclei of 4Не)

No. Z N Nuclide Unstable
nuclides

241Pu + nth [7] 245Am + nth [7]
experiment interpolation experiment interpolation

1 0 1 n – [4.3(7)× 106] – [1.73(22)× 106]
2 1 0 1H – [162(18)] – [233(25)]

3 1 1 2H 42(4) [240(38)] – –
4 1 2 3H 786(42) [2.23(15)× 103] 679(44) [689(35)]

5 2 1 3He – – <0.6 0.17(3)
6 2 2 4He 104(700)# 9.81(65)× 103 104(600)# 9680(540)

7 2 3 5He 4He + n+ 0.89 MeV – 2.5(1)× 103 – –
8 2 4 6He 260(30)# 288(19) 286(16)# 294(14)

9 2 6 8He 15(1) 17.9(22) 19(4) 17.5(18)
10 3 2 5Li 4He + 1H + 1.97 MeV – 4.4(10)× 10−2 – –
11 3 3 6Li – 0.24(4) <0.3 0.73(11)
12 3 4 7Li 6.7(6)# 7.0(6) 13.6(13)# 14.4(11)
13 3 5 8Li 4.2(6)# 4.4(3) 5.6(18)# 8.2(5)
14 3 6 9Li 8.3(6)# 7.4(5) 13.6(17)# 11.3(6)
15 4 3 7Be <0.2 8(2)× 10−5 – –
16 4 4 8Be 2(4He) + 0.092 MeV – 2.1(20) – –
17 4 5 9Be 4.4(5) 3.1(3) 9.1(11) 7.5(6)
18 4 6 10Be 46(6) 11.8(4) 66(5) 19.6(6)
19 4 7 11Be 5.9(17)# 3.7(2) 8.1(10)# 6.2(3)
20 4 8 12Be 2.8(13) 2.1(2) 5.5(17) 3.0(2)
21 4 10 14Be 2.7(10)× 10−3 2.7(4)× 10−2 0.018(12) 0.043(6)
22 5 5 10B <0.03 2.6(1)× 10−3 <0.3 0.016(3)
23 5 6 11B 1.6(10)# 0.67(8) 2.4(13)# 0.72(7)
24 5 7 12B 1.0(4)# 0.62(5) 2.3(4)# 2.05(13)
25 5 8 13B – – 2.2(6) 6.15(30)
26 6 6 12C – – <4.8 0.30(6)
27 6 7 13C – – 1.1(5) 1.8(2)
28 6 8 14C 12.6(8)# 11.3(7) 23.3(16)# 22.8(13)
29 6 9 15C 4.3(4)# 5.8(4) 7.7(11)# 11.4(7)
30 6 10 16C 5.0(9) 6.7(7) 9.5(13) 10.5(10)
31 6 12 18C 0.28(5) [1.9(3)] 0.32(11) [2.4(4)]
32 7 8 15N <0.044 [0.15(9)] 0.17(7) [0.59(7)]
33 7 9 16N 7.9(32)× 10−2 [0.24(11)] 0.27(8)∗ [0.85(7)]
34 7 10 17N 0.34(10) [0.72(6)] 0.77(31) [1.85(13)]
35 7 11 18N 0.16(4) [1.48(14)] 0.47(21) [3.37(29)]
36 8 8 16O – – <47 [0.014(3)]
37 8 9 17O – – <0.2 [0.14(2)]
38 8 10 18O – – 1.0(4) [0.53(5)]
39 8 11 19O 0.26(12) [1.66(16)] 0.77(47) [4.78(42)]
40 8 12 20O 1.10(12) [7.2(9)] 2.7(4) [13.4(17)]
41 8 14 22O 0.12(4) [152(36)] 0.39(19) [161(36)]

∗ Data borrowed from [8].
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Table 4. Comparison of experimental and interpolated yields of light nuclides in the ternary fission of nuclei (normalized
to 104 nuclei of 4Не)

No. Z N Nuclide
233U + nth [1, 6] 245Cm + nth [7]

experiment interpolation experiment interpolation

1 0 1 n – [3.4(3)× 106] – [9.3(11)× 105]
2 1 0 1H – [124(8)] – [40(5)]
3 1 1 2H 41(2) [139(7)] – –
4 1 2 3H 463(23) [1.22(5)× 103] 679(44)# 739(37)
5 2 1 3He <0.1 2.5(4)× 10−2 <0.6 1.7(4)× 10−2

6 2 2 4He 104(266)# 9.76(26)× 103 104(600)# 9880(540)
7 2 4 6He 137(8)# 140(7) 286(16)# 264(11)
8 2 6 8He 3.6(4) 4.4(4) 19(4)# 15.8(15)
9 3 3 6Li <0.05 4.3(5)× 10−2 <0.3 0.29(5)

10 3 4 7Li 3.7(2)# 3.8(2) 13.6(13)# 11.6(9)
11 3 5 8Li 1.81(20)# 1.75(8) 5.6(18)# 7.4(5)
12 3 6 9Li 3.56(48)# 2.49(14) 13.6(17)# 14.6(8)
13 4 5 9Be 3.7(8) 1.9(1) 9.1(11) 13.6(12)
14 4 6 10Be 43(3) 7.2(2) 66(5)# 70(4)
15 4 7 11Be <0.3 0.86(4) 8.1(10) 21.0(15)
16 4 8 12Be 1.1(2)# 0.70(5) 5.5(7) [13.0(13)]
17 4 10 14Be – – 0.018(12) [0.15(2)]
18 5 5 10B – – <0.3 [0.018(4)]
19 5 6 11B – – 2.4(13) [7.6(8)]
20 5 7 12B 3.7(6)× 10−1# 3.6(2)× 10−1 2.3(4) [7.9(7)]
21 5 8 13B 6.2(13)× 10−1# 1.55(6) 2.2(6) [47(5)]
22 5 9 14B 1.4(8)× 10−2 0.30(2) 0.21(6) [12.5(14)]
23 6 6 12C – – <4.8 [2.0(3)]
24 6 7 13C – – 1.1(5) [19(2)]
25 6 8 14C 11.4(4)# 11.0(4) 23.3(16) [560(80)]
26 6 9 15C 2.4(3)# 4.1(2) 7.7(11) [280(40)]
27 6 10 16C 2.1(3) 4.0(3) 9.5(33) [380(70)]
28 6 12 18C – – 0.32(11) [118(27)]
29 7 8 15N – – 0.17(7) –
30 7 9 16N 2.6(11)× 10−2 [0.20(1)] 0.27(8)∗ –
31 7 10 17N – – 0.77(31) –
32 7 11 18N – – 0.47(21) –
33 8 8 16O – – <47 –
34 8 9 17O – – <0.2 –
35 8 10 18O – – 1.0(4) –
36 8 11 19O – – 0.77(47) –
37 8 12 20O 0.71(8) 6.9(5) 2.7(4) –
38 8 14 22O – – 0.39(19) –
39 9 11 20F – – <0.08 –
40 10 14 24Ne – – 0.23(6)∗ –
41 12 18 30Mg – – 0.060(27)∗ –

Note: Data labeled with * were borrowed from [8]. In the “Experiment” column for the case of 233U, data on the yields of nuclides from
12Be were taken from [6], while the remaining data were taken from [1].
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Table 5. Comparison of experimental and interpolated yields of light nuclides in the ternary fission of nuclei (normalized
to 104 nuclei of 4Не)

No. Z N Nuclide Unstable
nuclides

248Cm (spont. fis.) [18] 252Cf (spont. fis.) [19–23]

experiment interpolation experiment interpolation

1 0 1 n – [2.3(6)× 106] – [0.65(14)× 106]

2 1 0 1H 160(20) [26.6(35)] 160(20)∗ [19.4(36)]

3 1 1 2H 50(5)# 51(5) 63(3)∗ 37(5)

4 1 2 3H 922(18)# 921(18) 590(20)∗# 591(19)

5 2 1 3He – – <9∗ 0.95(39)× 10−2

6 2 2 4He 104(500)# 10 100(500) 104(350)# 10 028(540)

7 2 3 5He 4He + n+ 0.89 MeV – – 2.1(5)× 103∗∗ 2.6(2)× 103

8 2 4 6He 354(31)# 335(21) 403(26)# 369(15)

9 2 5 7He 6He + n+ 0.44 MeV – – 85(21)∗∗ 128(8)

10 2 6 8He 24(4)# 26(3) 25(4)# 30.6(31)

11 3 2 5Li 4He + 1H + 1.966 MeV – 1.1(5)× 10−2 – 3.3(14)× 10−2

12 3 3 6Li – 0.11(4) – 0.29(9)

13 3 4 7Li – 7.2(16) 17(4)# 16.3(27)

14 3 5 8Li – 5.6(2) 10(5)# 12.7(17)

15 3 6 9Li – 14.7(2) 25(11)# 31.5(26)

Sum of Z = 3 yields 26(9) 27.6(16) 52(5)∗∗∗ 61(4)

16 4 3 7Be – 2.1(13)× 10−5 – 1.3(8)× 10−4

17 4 4 8Be 2(4He) + 0.092 MeV – 4.0(11) 10(6)∗∗∗∗ 15.2(32)

18 4 5 9Be – 7.2(20) – 28(5)

19 4 6 10Be – 58(11) 185(20) 193(16)

20 4 7 11Be – [19.3(42)] – [67.5(61)]

21 4 8 12Be – [15.3(32)] – [52(6)]

22 4 10 14Be – [0.21(2)] – [0.80(12)]

Sum of Z = 4 yields 49(24) [104(12)] 126(30)∗∗∗ [340(20)]

23 5 5 10B – – – [3.4(15)× 10−2]

24 5 6 11B – – – [22(5)]

25 5 7 12B – – – [28.6(46)]

26 5 8 13B – – – [220(25)]

sum of Z = 5 yields – – 6.3(4)∗∗∗ [271(26)]

Note: Data on the light-nuclide yields labeled with * and ∗∗ were borrowed from [19] and [21], respectively; ∗∗∗ data on the integrated
yields of elements from [22] and ∗∗∗∗ data on the yield of 8Ве from [23]; the remaining data were taken from [20].
was made of nuclides from 4Не to 15С, resulted in
χ2/(N − n) = 8.6 for N = 10, this suggesting that
its quality is much poorer. Nonetheless, it faithfully
reproduces the yields of light nuclei from helium to
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 20
carbon, with the exception of 10Be, whose yield calcu-
lated by the interpolation formula is underestimated

by a factor of 6, and 14В, whose yield is overestimated
by a factor of 20. The yields of the hydrogen isotopes
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Table 6. Some features of ternary fission according to calculations on the basis of some fits (for comments to this table,
see main body of the text)

Reaction N wα × 103 Θ, MeV wp × 105 wn εp, MeV εn, MeV τ0, 10−21 s χ2

N − n
235U + nth 10; 4 ≤ A ≤ 15 1.57(3) 1.31(2) 2.52(26) 0.94(10) 17.1(5) 3.3(4) 8.2(10) 0.97
233U + nth 6; 4 ≤ A ≤ 10 1.88(5) 1.17(3) 0.71(24) 0.40(7) 16.0(3) 3.2(3) 5.3(7) 0.37
233U + nth 10; 4 ≤ A ≤ 15 1.88(5) 1.29(1) 2.33(16) 0.64(6) 16.6(2) 3.4(2) 6.7(7) 8.6
239Pu + nth 10; 4 ≤ A ≤ 15 2.00(4) 1.37(1) 3.28(18) 0.56(4) 16.8(2) 3.4(1) 4.0(3) 2.1
241Pu + nth 10; 4 ≤ A ≤ 15 1.98(13)∗ 1.38(3) 3.25(35) 0.87(14) 17.2(5) 3.2(3) 4.2(8) 3.8
242mAm + nth 6; 4 ≤ A ≤ 9 2.21(5) 1.43(3) 4.71(62) 0.48(12) 16.7(3) 3.5(3) 2.5(3) 4.3
245Cm + nth 8; 3 ≤ A ≤ 10 2.8(4)∗∗ 1.28(2) 1.11(14) 0.26(3) 16.9(4) 3.4(3) 1.5(2) 3.0
245Cm + nth 10; 4 ≤ A ≤ 15 2.8(4)∗∗ 1.51(2) 6.51(71) 0.48(6) 16.7(3) 3.6(3) 3.3(5) 4.4
248Cm, sp.f. 5; 2 ≤ A ≤ 8 2.35(12)∗ 1.20(3) 6.24(81) 0.54(13) 16.5(6) 2.3(6) 3.4(11) 0.78
252Cf, sp.f. 8; 3 ≤ A ≤ 10 2.84(10) 1.25(3) 0.55(10) 0.18(4) 15.8(6) 2.8(4) 1.0(3) 1.1
2Нand 3Нalso proved to be overestimated, by a factor
of 3.5 and by a factor of 2.5, respectively. In relation
to the first fit, the results are overestimated for the
neutron yield as well, approximately by a factor of
1.5 (there are presently no experimental data on this
yield). Since the first fit was constructed by using
experimental data for a lighter group of nuclides (we
refer to this as an “interpolation on the basis of a short
series”) and has a much better value of the agreement
criterion, the results of its application to the yields
of the lightest particles, including neutrons, deserve
more confidence. (It should be noted that, in compar-
ing different models, Köster [7] calculated the yields
of nuclides having relatively high values of A for the
case of 233U fission by the formula from [11], where,
in all probability, he used the parameters determined
on the basis of the short series, and this could result
in a considerable excess of the calculated yields above
their experimental counterparts in Fig. 1.6.5 in [7]).

Two different fits were constructed for the case
of the fission process 245Cm(nth, f ) as well: one on
the basis of a short series from 3Н to 10Ве inclusive
(Table 4) and the other on the basis of a heavier group
of nuclides belonging to a long series from 4Не to
15С (Table 3). The first exhibits good agreement with
experimental data within the interpolation region (up
to 10Ве), but it overestimates the yields of nuclides
having higher values of Z and A. The second is in
satisfactory agreement with experimental data up to
16С, but it underestimates the yields of 10Ве and
11В, albeit leading to severalfold overestimated results
for the yields of 13В and for the yields of almost all
isotopes of Z ≥ 7 nuclei. In relation to the first fit,
the second one gives higher values for the yields of
single nucleons—for example, by a factor of two for
neutrons.
PH
Our fits for the fission processes 235U + nth,
239Pu + nth, and 241Pu + nth (Tables 1–3) overesti-
mate the yields of 2Н and 3Н nuclei and, probably, the
yield of neutrons. Since the fits in question were based
on a “long series,” as in the case of the second fits for
245Cm(nth, f ) and 233U(nth, f ), where, in relation to
the fits based on the groups of lighter nuclides, the
neutron yield was overestimated by a factor of 2 and
by a factor of 1.5, respectively, it can be assumed that
the overestimation here is within a factor of 1.5 to
2 as well. In relation to experimental data, the yield
of 10Ве is underestimated by a factor of about 5,
while the yields of 13В, 16С, and 20О are significantly
overestimated, as a rule.

For the yields in the ternary-fission process
242mAm(nth, f ) (Table 2), the interpolation formula
was fitted to data on the same nuclides as in the first
version of the fit for the reaction 233U(nth, f ). As
before, the yield of 10Ве proved to be underestimated
(by a factor greater than 4 here), but, in contrast to the
case of 233U(nth, f ), the yield of 3Н is overestimated
nearly by a factor of 3 here. In all probability, the
neutron yield is also overestimated, whereas the yield
of the comparatively heavy nuclide 14С proved to be
in agreement with the experimental value. In this
respect, the case of 242mAm(nth, f ) is rather close
to the fits based on long series.

The next two fits refer to the spontaneous fission of
the 248Cm and 252Cf isotopes (Table 5; use was made
here of data from [18–23]). The first of these was
constructed on the basis of data on the yields of two
hydrogen and three helium isotopes. In the second,
use was made of data on the yield of three helium
and three lithium isotopes. Both fits underestimate
the proton yield (by a factor of 6 in the first and by
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 1. Ratio of the sum of the yields calculated by the
interpolation formula for all light nuclei of mass number
A to the sum of the yields found experimentally for the
same nuclei versus A. Use was made of the weighted
mean of data on the thermal-neutron-induced fission of
233U, 235U, 239Pu, 241Pu, 242mAm, and 245Cm nuclei.
With the exception of the case of 242mAm, interpolation
was performed on the basis of a long series of nuclides.

a factor of 8 in the second case), but they faithfully
reproduce the total yield of lithium isotopes. The first
overestimates the total yield of beryllium isotopes by a
factor of about two [18], while the second faithfully re-
produces the 10Ве yield [20], which, however, proved
to be in excess of the total experimental yield of Ве
from [22]. As to the calculated yields of neutrons from
these two reactions, it can hardly be expected that
they are sizably overestimated, since the values of the
parameters in the respective formulas were calculated
on the basis of equations for isotopes of the lightest
three elements.

One can easily see that a fit on the basis of a “long
series” overestimates, as a rule, the yields of nuclei
having low values of A and Z and the yields of nuclei
having high values ofA and Z, while a fit on the basis
of a “short series” overestimates, almost exclusively,
the yields of nuclei having high values of A and Z.
These features of the fits are demonstrated in Fig. 1
(fit on the basis of a “long series”) and Fig. 2 (fit on
the basis of a “short series”). For the aforementioned
reasons, the case of 242mAm(nth, f ) was included in
Fig. 1.

In Figs. 1 and 2, the nuclide atomic weight and
the ratio of the sum of the yields calculated by the
interpolation formula for all nuclei of given A to the
sum of the experimentally measured yields of the
same nuclei are plotted along the abscissa and the
ordinate, respectively. The weighted mean values of
such ratios for six and four fits are shown in Figs. 1
and 2, respectively. From Fig. 1, one can see that,
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Fig. 2. As in Fig. 1. Use was made of the weighted mean
data on the thermal-neutron-induced fission of 233U and
245Cm nuclei and on the spontaneous fission of 248Сm
and 252Сf nuclei. The interpolation here was performed
on the basis of a “short series.”

within the atomic-weight range being considered, the
majority of the ratios lie between 0.7 and 1.4. In Fig. 2,
the points are grouped closer to the straight line on
which the ratio in question is equal to unity. However,
the points corresponding to A > 17 for Fig. 1 and to
A > 12 for Fig. 2 were not plotted in the figures, since
they lie far beyond the boundaries adopted here for the
figures, thereby indicating the limit above which the
formulas used become inapplicable.

If the interpolation formula were correct, the graph
would lie horizontallly around the mean ordinate
(Xinterpol/Xexpt) = 1, with the scatter of points being
within the statistical errors; however, it can be seen
from the figures that this is not so. If we eliminate,
in Fig. 1, the points at A = 1 (protons) and A =
13 (predominantly 13В) from consideration, it can
be seen there that the points are rather grouped
around a parabola. It follows that our interpolation
formula, which involves four parameters, is unable to
ensure the required accuracy over so wide a range of
argument values (2 < A < 17).

In fitting on the basis of a short series (Fig. 2),
the situation is better. Here, we see nine points ly-
ing (within the errors) on the expected horizontal
line. Therefore, there are reasons to believe that, for
nuclides whose atomic weights satisfy the condition
A ≤ 10, the interpolation formula reproduces their
yields quite precisely. Yet, the point A = 1 does not fit
in the general graph, in just the same way as in Fig. 1.
The number of protons recorded experimentally is
nearly an order of magnitude greater than that which
is expected on the basis of the interpolation formula.
One possible reason for this was already indicated in
Section 1. It should be noted that all data on protons
4
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Table 7. Estimates of the yields of scission neutrons per nuclear-fission event

Nucleus 235U 233U 239Pu 241Pu 242mAm 245Cm 248Cm (sp.f.) 252Cf (sp.f.)

wn 0.55 0.40 0.33 0.51 0.48 0.26 0.54 0.18

∆wn 0.09 0.07 0.05 0.10 0.12 0.03 0.13 0.04
were obtained with the aid of ∆E–E telescopes. As
usual, thin foils used for filtering beams can be a
source of secondary protons in this case.

Summarizing the above comments on the content
of Tables 1–5 and relying on the data of the graph
in Fig. 2, we have to recognize that the interpolating
formula from [11] leads to satisfactory results only in
the case where it is applied to the range of light nuclei
(A ≤ 10).

Table 6 lists the main parameters of the interpola-
tion formula and some quantities that were calculated
on the basis of these parameters and which have
clear physical meaning. The quantityN in the second
column is the number of equations used to determine
the parameters; there, we also give the intervals of
atomic weights for those nuclides whose yields were
taken into account.

In the third column, we quote the yields of alpha
particles per fission event. These values, which were
measured in individual experiments, serve for a nor-
malization of other yields. They were taken predom-
inantly from [4]. An asterisk labels values obtained
by interpolating the dependence wα(Z2/A), which
was also presented in [4]. A number of wα values for
245Cm are quoted in [7]. The data labeled with two
asterisks correspond to the last publication cited in [7]
(1998).

In the columns from the fourth to the ninth one, we
give successively the temperature parameter Θ, the
proton yield wp and the neutron yield wn per fission
event, the partial (or “chemical”) potentials for pro-
tons (εp) and neutrons (εn), and the mean emission
time τ0.

The quantities quoted in the tenth column char-
acterize the quality of the fits in terms of the inter-
polation formula to experimental data for those nu-
clides whose yields were employed in these fits. From
Tables 1–5, one can see how great the distinctions
between the yields obtained on the basis of the inter-
polation formula and their experimental counterparts
can be for those nuclides whose A and Z values are
beyond the boundaries of the interpolation region.

The possibility of estimating the yields of neutrons
that are emitted via the same mechanism (as a matter
of fact, the evaporation mechanism) as charged par-
ticles and within the same time interval and which
are therefore identified here as scission neutrons is
PH
the most interesting consequence of the applications
of the interpolation formula. [Various authors refer to
such neutrons as “prescission” or “breakup” neu-
trons because of their main special feature: the en-
ergy spectrum and the angular distribution of these
neutrons differ from the corresponding distributions
of neutrons emitted by fully accelerated fragments.
There is no generally accepted terminology for this
kind of neutron emission in nuclear fission; nor is
there a clear understanding of whether the emission
of such a neutron occurs prior to the scission of the
nucleus (that is, before the instant after which the
short-range nuclear interaction between main frag-
ments virtually disappears), after it, or both prior to
and after it.]

As was indicated above, the estimate of the
neutron yield depends on whether interpolation was
based on a long or a short group of nucleons. Ap-
proximate values of scission-neutron yields in nuclear
fission are given in Table 7. The estimates obtained on
the basis of data on a short group (including those for
the case of 242mAm) were taken from Table 6 without
any changes. In order to arrive at unified normaliza-
tion, the estimates in Table 6 for 235U, 239Pu, and
241Pu, in which case the interpolation was performed
on the basis of a long series, were multiplied by
0.57± 0.07. This coefficient was obtained as themean
ratio of the data on the neutron yields in the second
and third lines for 233U and in the seventh and eighth
lines for 245Cm (Table 6).

A nearly horizontal plateau of the ratios
(Xinterpol/Xexpt) ≈ 1 in Fig. 2 from A = 2 to A =
10 provides an additional argument in favor of the
correctness of estimating the neutron yield by means
of a fit based on a short series. An extrapolation of this
plateau to the point A = 1 corresponding to neutrons
will hardly lead to a large deviation from unity. The
point A = 1 in the figures corresponds to protons
exclusively, since we do not have experimental data
on neutron yields at our disposal. According to
measurements (see Tables 1, 2, 5), the proton yield
in ternary fission is only (1–2)× 10−2 of the alpha-
particle yield; therefore, it can be distorted by the
contributions from possible background reactions,
especially (n, p), as was indicated above, while the
neutron yield, which, according to interpolations,
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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is two orders of magnitude higher than the alpha-
particle yield, is nearly unaffected by such distortions.

Despite a broad, nearly isotropic angular distri-
bution of scission neutrons, their expected high yield
renders them appropriate, along with charged parti-
cles, for studying the T -odd triple correlation that was
discovered quite recently (see, for example, [24–27])
and which arouses great interest. It should be noted
that, at an angle of 90◦ with respect to the axes along
which fission fragments fly apart—recall that this is
precisely the angle at which a counter for recording
a third particle in measurements of the triple correla-
tion is arranged—the background of neutrons emitted
from fully accelerated fragments is relatively small. In
one of the recent investigations devoted to examining
prescission neutrons [28], it was established that the
excess of neutrons at an angle of about 90◦ (this
excess cannot be explained within the model of emis-
sion from fully accelerated fragments) is about 30%
for the spontaneously fissile nucleus 252Cf and about
60% for the fission process 235U(nth, f ). Our data on
neutron yields in Table 7 are in qualitative agreement
with the results presented in [28], but this fact alone
does not give sufficient grounds to believe that the
emission of all prescission neutrons proceeds via the
same mechanism as that which governs the emission
of light charged particles.

The data in Tables 6 and 7 make it possible to dis-
close some special features of ternary fission that are
unlikely to have been seen previously. By way of ex-
ample, we indicate that, in the fission of nuclei char-
acterized by identical values of Z, a heavier isotope
emits a greater number of scission neutrons. Further,
there is a distinct anticorrelation, with a coefficient
K ≈ −0.7, between the yields of alpha particles (third
column in Table 6) and neutrons (Table 7), this being
indicative of a strong competition between the emis-
sion of these two types of particles. It is interesting
to note that the neutron and proton work functions
(with allowance for the Coulomb barrier in the case
of protons) as calculated for various fissile nuclei with
the parameters of the interpolation formula proved to
be constant within the statistical errors. A fit of all
values in the seventh and the eighth column of Table 6
to constant values leads to 〈εp〉 = 16.64 ± 0.31 MeV
at χ2/(N − n) = 1.09 and 〈εn〉 = 3.36 ± 0.18 MeV
at χ2/(N − n) = 0.75 (in the table, the root-mean-
square scatter is indicated parenthetically near the
corresponding results). The neutron work function
is much smaller than its ordinary values for nonex-
cited nuclear fragments, but this may probably be ex-
plained by the excitation of nucleons in the neck above
the ground-state level under nonstationary condi-
tions before their emission.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
From Table 6, one can see that, in just the same
way as the neutron and proton yields, the fitted tem-
perature depends on the group of nuclides used in a
fit. In relation to εp and εn, the quantity Θ undergoes
wider variations from one fit to another. The emission
time τ0 changes within a still wider interval, also
showing a strong dependence on the interpolation
region. As the main trend for it, we can indicate
the reduction of τ0, with increasing nuclear-fissility
parameter Z2/A.

CONCLUSION

An analysis of the results obtained with aid of the
interpolation formula has revealed that the evapora-
tion model provides a rather sound basis for describ-
ing the emission of light particles in ternary fission.
From a detailed consideration, it has become clear,
however, that the interpolation formula used, which
involves only four adjustable parameters, is unable to
reflect correctly the probabilities of the emission of
light nuclides for any A and Z values encountered
in ternary fission. It the parameters were fitted to
the known yields of the lightest third fragments—
for example, from 3Н to 9Li—then the extrapolation
of the formula to the isotopes of Z ≥ 5 nuclei leads
to overestimated results, the excess above the ex-
perimental values growing sharply with increasing
Z. If a fit is constructed on the basis of the known
yields of light nuclides belonging to the intermediate
range—say, from helium to carbon—the resulting
yields will be overestimated for Z ≥ 7 nuclei, on one
hand, and for 2Н and 3Н, on the other hand. Probably,
the formula can be “corrected” by introducing one
to two adjustable parameters, but this would lead to
a complication of respective calculations and would
mean a deviation from a simple evaporation concept.

As to the predictive power of the interpolation
formula in what is concerned with the yield of scission
neutrons, we can hope that this yield will be deter-
mined correctly if the parameters in this formula are
chosen in such a way as to reproduce the yields of
the isotopes of hydrogen (with the exception of 1Н),
helium, and lithium correctly. The expected relatively
high yields of scission neutrons open new possibilities
for studying the dynamics of fission. In particular, I
think that, in addition to the already known values
of the triple-correlation coefficient for alpha particles
in the fission of 235U and 233U, it would be desirable
to measure this coefficient for such neutrons in the
fission of the same nuclei [29]. A comparison of the
results obtained in this way would make it possible
to draw some conclusions on the effect of the charge
and mass of a light particle on the phenomenon being
studied.
4
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which contains a comprehensive review on various
issues of ternary nuclear fission. Thanks are also due
to Prof. G. A. Petrov for permanent attention to this
study and enlightening discussions on the problems
considered there.

This work was supported by the Russian Foun-
dation for Basic Research (project no. 02-02-17051)
and INTAS (grant no. 99-0229).

REFERENCES∗

1. A. A. Vorobyov, D. M. Seliverstov, V. T. Grachev,
et al., Phys. Lett. B 30B, 332 (1969).

2. A. A. Vorobyov, D. M. Seliverstov, V. T. Grachev,
et al., Phys. Lett. B 40B, 102 (1972).

3. A. A. Vorob’ev, V. T. Grachev, I. A. Kondurov, et al.,
Yad. Fiz. 20, 461 (1974) [Sov. J. Nucl. Phys. 20, 248
(1975)].

4. I. A. Kondurov, A. M. Nikitin, and D. M. Seliverstov,
Byull. Tsentra Dannykh LIYaF, No. 6, 11 (1977).

5. S. W. Cosper, J. Cerny, and R. S. Gatti, Phys. Rev.
154, 1193 (1967).

6. M. Wostheinrich et al., in Proceedings of the
Second International Workshop on Nuclear Fis-
sion and Fission-Product Spectroscopy, Seyssins,
France, Ed. by G. Fioni et al.; AIP Conf. Proc. 447,
330 (1998).
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Abstract—The correlation effects are found to provide a dominant contribution to the nuclear binding
energies. This result is obtained within a simple renormalizable model for the multiparticle forces between
nucleons. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The correlation energy of nuclear matter remains
one of the most important problems of nuclear the-
ory in view of applications to astrophysics and high-
density QCD. As discussed in our previous work [1],
quantitative information about the correlation ener-
gies of finite nuclei can be obtained within the frame-
work of the theory of doorway states for one-nucleon-
transfer reactions [2] by calculating the nuclear static
energy, arising from the motion of nucleons in the
nuclear static field. But we found that the results seem
to be ambiguous because only the three- and four-
particle forces were taken into account in addition to
the two-particle ones (the estimated effect of the finite
range of the multiparticle forces is found to be small).
Accounting for the fact that the ultimate origin of the
multiparticle forces is the nonlinearity of strong in-
teraction, we proposed a simple model of nonlinearity
that includes both the forces of all multiplicities and
the finite range [3] (see also the Appendix in [2]).

In this model, the multiparticle forces are taken
into account by introducing an additional scalar–
isoscalar field with the Lagrangian density

L =
1
2
∂µφ∂

µφ− 1
2
Λ2φ2 − 1

3
λ3φ

3 − 1
4
λ4φ

4 − gψ̄ψφ,
(1)

the corresponding classical static field thus obeying
the equation

Λ2φ+ λ3φ
2 + λ4φ

3 = −gρs + ∆φ, (2)

where ∆ is the Laplacian and ρs is the scalar den-
sity distribution of nucleons in the nucleus [4]. The
last term on the right-hand side of (1) describes the

∗This article was submitted by the authors in English.
**e-mail: birbrair@thd.pnpi.spb.ru
1063-7788/04/6707-1277$26.00 c©
coupling of the field φ to the nucleon one ψ; g is the
coupling constant.

The field φ contains the “two-particle” component
φ2 obeying the equation

Λ2φ2 = −gρs + ∆φ2. (3)

It must be subtracted, because this part of the nuclear
scalar field results from the observed free-space two-
particle forces as described in [2]. Thus, the contribu-
tion of multiparticle forces to the nuclear static field
is

W (r) = g[φ(r) − φ2(r)]. (4)

2. ANALYSIS

As shown in [2], the multiparticle field W (r) is
repulsive in the nuclear surface region and attractive
in the nuclear interior (Fig. 1a). Let us analyze the
situation in the local density approximation W (r) =
W [ρs(r)]. Since the scalar density ρs is a decreasing
function of r, the field W is positive at 0 < ρs < ρ1

with the maximum Wm in this region and negative
at ρs > ρ1, ρ1 = ρs(r1) (Fig. 1b). Let us neglect for a
moment the Laplacian terms of Eqs. (2) and (3) (they
are taken into account in the actual calculations; see
Section 3). In this case,

W = g(φ − φ2) = −gλ4

Λ2

(
λ3

λ4
+ φ

)

φ2. (5)

At ρs = ρ1 [see Fig. 1b and Eq. (3) without the Lapla-
cian term],

g
(
φ+

gρ1

Λ2

)
= −gλ4

Λ2
φ2

(
λ3

λ4
+ φ

)

= 0 (6)

and therefore
λ3

λ4
=
gρ1

Λ2
. (7)
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Contribution of multiparticle forces to the nuclear
static field as a function of (a) radial distance r and
(b) scalar density ρs.

Introducing the dimensionless quantities y and y2 [3],

φ = −gρ1

Λ2
y, φ2 = −gρ1

Λ2
y2, (8)

we get

W = −g
4ρ3

1

Λ8
λ4y

2(1− y). (9)

The maximumWm occurs at y = 2/3, so

λ3 = −27Λ6Wm

4g3ρ2
1

, λ4 = −27Λ8Wm

4g4ρ3
1

(10)

and therefore

W = − g

Λ2

(
λ3φ

2 + λ4φ
3
)

=
27
4
Wmy

2(1− y).
(11)

Thus, both the φ3 and φ4 terms of the Lagrangian
density (1) must be included to get the required
form of the “multiparticle” field (Fig. 1). It should
be mentioned in this connection that the condition
of the renormalizability requires the absence of higher
power terms in (1). According to the contemporary
point of view, the renormalizability is not obligatory
at the meson–baryon level, but in our opinion it is
highly desirable, because otherwise the theory has
no predictive power. It is also important that the
renormalizability allows only a restricted number
of phenomenological parameters, in contrast to the
effective theories, where the above number can be
arbitrary (the only restriction in this case is the so-
called “naturalness” [5, 6], which is not confirmed by
the experimental data on the doorway states [3, 7]).

From Eqs. (2), (8), and (10), we get the following
equation for the quantity y:

y +
3
x
y2(1− y) =

ρs
ρ1
, x =

4g2ρ1

9Λ2Wm
. (12)

The ratio ρs/ρ1 is plotted in Fig. 2. As seen from the
plot, the solution y = y(ρs) has three branches: the
physical one

0 ≤ y ≤ ye =
1
3
(√

1 + x+ 1
)

(13)
P
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Fig. 2. The ratio ρs/ρ1 as a function of y. The solid curve
is for the physical branch of the solution of Eq. (12).

in the region

0 ≤ ρs ≤ ρse =
1
9
ρ1

(

1 +
2(1 + x)√
1 + x− 1

)

(14)

and two unphysical ones with (i) y < 0 and (ii) y > ye.
Indeed, branch y < 0 begins at negative densities,
which is obviously nonsense, whereas branch y > ye
has a nonzero value at ρs = 0, thus existing without
the source.

Therefore, the physical solution of Eq. (12) has
the endpoint with the coordinates (13) and (14). As
follows from above, this is the consequence of nonlin-
earity and renormalizability. The physical significance
of this result will be discussed in the next section.

3. RESULTS

In the case of finite nuclei, the quantities y(r) and
y2(r) obey the equations

y(r) +
3
x
y2(r)[1− y(r)] (15)

=
ρs(r)
ρ1

+
1
Λ2

∆y(r),

y2(r) =
ρs(r)
ρ1

+
1
Λ2

∆y2(r). (16)

Equation (15) is solved by iteration starting from the
physical solution of Eq. (12). Both Eqs. (15) and (16)
are solved jointly with the relations for the neutron
and proton scalar densities ρsτ (r), τ = n, p, in the
local density approximation [4]:

ρsτ (r) =
Mτ (r)
2π2

[

kFτ (r)
√
M2
τ (r) + k2

Fτ (r) (17)

−M2
τ (r) ln

√
M2
τ (r) + k2

Fτ (r) + kFτ (r)

Mτ (r)

]

with (kFτ (r) =
(
3π2ρτ (r)

)1/3 is the local Fermi mo-
mentum)

Mτ (r) = m+ Sτ (r), (18)
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Sτ (r) = S2(r)−
9xWm

4
[y(r)− y2(r)]

+
1
2
β[ρ−s (r)]2 − τ3

[
S−

2 (r) + βρs(r)ρ−s (r)
]
,

ρs(r) = ρsn(r) + ρsp(r),

ρ−s (r) = ρsn(r)− ρsp(r),

τ3 =

{
−1, τ = n,

+1, τ = p,

and m being the free nucleon mass. The “two-
particle” scalar–isoscalar and scalar–isovector fields
S2(r) and S−

2 (r), as well as the vector–isoscalar
and vector–isovector ones, are expressed through the
free-space two-particle forces as described in [2] (in
the present work, the Bonn B potential [8] is used for
the two-particle forces).

As shown in [2], the dominant part of the isovec-
tor nuclear potential results from the multiparticle
forces. But in contrast to the isoscalar termW (r), the
isovector one W−(r) is positive in the whole nuclear
region, and, therefore, its multiparticle structure can-
not be safely determined. For this reason, we assumed
W−(r) to be of three-particle origin:

W−(r) = βρs(r)ρ−s (r). (19)

It is a functional derivative of the multiparticle sym-
metry energy

Em,symm =
1
2
β

∫
ρs(r′)

[
ρ−s (r′)

]2
dr′ (20)

with respect to the isovector–scalar density ρ−s (r).
But Em,symm also has a functional derivative with
respect to the isoscalar–scalar density ρs(r), and this
is just the third term on the right-hand side of the
second equation in (18).

The parameters of the nonlinearity are determined
by performing the procedure of [2], i.e., solving the
Dirac equation with the scalar and vector fields for
the doorway-state energies and comparing the cal-
culations with the experimental data. The results are
practically the same as those in Fig. 4 of [2]. In this
way, we found

Wm = 11.5 MeV, ρ1 = 0.146 fm−3, (21)

x = 16.127, β = 5.604 fm5, Λ = 986.64 MeV.

As follows from [1] and the present work, the nu-
clear static energy is

Est =
p∑

τ=n

(∑

λ

θ(εFτ − ελτ )nλτελτ (22)

+ εFτNτ,out

)

− 1
2

∫ {[

S2(r)−
9xWm

4
(y(r)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
− y2(r)) + 2β(ρ−s (r))2
]

ρs(r) +
27Wmρ1

8
y3(r)

×
(

2
3
− y(r)

)

+ S−
2 (r)ρ−s (r) + V (r)ρ(r)

+ V −(r)ρ−(r) + C(r)ρch(r)
}

dr,

where V (r) and V −(r) are vector–isoscalar and
vector–isovector nuclear fields, C(r) is the Coulomb
one, ρ(r) and ρ−(r) are isoscalar and isovector
density distributions, ρch(r) is the charge-density
one, ελτ are the doorway-state energies, εFτ is the
Fermi level, nλτ are the occupation numbers, and

Nτ,out =
∑

λ

θ(ελτ − εFτ )nλτ . (23)

We used the following ansatz for the occupation num-
bers:

nλτ = xλτAτ

(
∑

ν

xντ

)−1

, (24)

xλτ =
1
2

(

1− ελτ − Fτ√
(ελτ − Fτ )2 +D2

)

,

Aτ =

{
N, τ = n,

Z, τ = p,

with D = 10 MeV, i.e., the half-spreading width of
the doorway states [2]. The energy Fτ is between the
Fermi one εFτ and that of the first unoccupied state.
The Fτ value is chosen to minimize the quantity
∫ (

ρτ,exp(r)−
∑

λ

nλτψ
+
λτ (x)ψλτ (x)

)2

dr. (25)

Here, ψλτ (x) are the doorway-state wave functions,
x = {r, α}, α is the spin variable, and ρτ,exp(r) are
the experimentally observed density distributions of
neutrons and protons in nuclei. The sum in the inte-
grand is only the diagonal part of the nucleon-density
distribution: the latter also has the nondiagonal one

∑

λν(λ�=ν)
ρλν;τψ

+
λτ (x)ψντ (x), ρλν;τ <

√
nλτnντ ,

(26)

but, as shown in [1], the nondiagonal elements ρλν;τ
of the density matrix do not enter the static energy.
In the calculations, we included the positive-energy
states up to 100 MeV, discretizing the continuum by
introducing the infinite potential well

Uτ (r) =

{
Sτ (r) + Vτ (r), r ≤ Rch,

∞, r > Rch,
(27)
4
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Static, binding, and correlation energies (in MeV)

Est Ebind Ecorr
[1] present work

16O −47.0 −86.2 −127.6 −41.4
40Ca −120.7 −121.2 −342.0 −220.8
90Zr −234.2 −107.7 −783.9 −676.2
208Pb −233.3 +154.6 −1636.5 −1791.1

where the interval 0 < r < Rch is the region in which
the nuclear-charge densities are determined in [9].

The correlation energy of nuclei is the difference
between the binding and static ones, the former being
the experimental quantity. The results of the calcula-
tions are shown in the table. As seen from the table,
the correlation energy becomes of increasing impor-
tance with increasing mass number. The reason for
which the static energy changes sign between 90Zr
and 208Pb is the increase in positive energy contribu-
tions from the multiparticle terms [9xWm/8](y(r) −
y2(r))ρs(r) and [27Wmρ1/16]y3(r)(y(r)− 2/3) with
increasing nuclear size.

It is instructive to compare the present results
for the static energy with those of [1], where only
three- and four-particle forces are taken into account
together with the two-particle ones. In this case, the
static energy is negative throughout the periodic sys-
tem, whereas it changes sign between 90Zr and 208Pb
when the higher multiparticle forces are included via
the nonlinearity of strong interaction.

According to Eqs. (13), (14), (18), and (21), the
endpoint values of the scalar density and the scalar
field in isosymmetric nuclear matter are

ρse = 0.1933 fm−3, ye = 1.7128, (28)

Se = S2e +We = −bρse −
9xWm

4

(

ye −
ρse
ρ1

)

= −497.22 MeV,

where

b =
3g2
σ1

4µ2
σ1

(
Λ2
σ1 − µ2

σ1

Λ2
σ1

)2

(29)

+
g2
σ0

4µ2
σ0

(
Λ2
σ0 − µ2

σ0

Λ2
σ0

)2

= 11.62 fm2,

and
g2
σ1

4π
= 8.2797,

g2
σ0

4π
= 16.9822, (30)

µσ1 = 550 MeV, µσ0 = 720 MeV,

Λσ1 = Λσ0 = 2000 MeV
PH
are the Bonn-B-potential parameters [8]. The corre-
sponding endpoint density ρe is obtained by solving
the equation [4]

ρse =
Me

π2

(

kFe

√
M2
e + k2

Fe (31)

−M2
e ln

√
M2
e + k2

Fe + kFe

Me

)

,

Me = m+ Se

for the endpoint Fermi momentum kFe. In this way,
we get

kFe = 1.4739 fm−1, (32)

ρe =
2k3

Fe

3π2
= 0.2213 fm−3 = 1.3ρ0,

where ρ0 = 0.17 fm−3 is the equilibrium density of
nuclear matter. Thus, the nuclear static field does
not exist at higher densities than the endpoint one.
But this result is hardly of any practical significance
because (i) there are no stable nuclei with such den-
sity values, and (ii) as follows from our results for
the static energies, the properties of finite nuclei and
nuclear matter are governed by the correlation effects.

4. CONCLUSIONS

Until very recently, it was assumed that nucleons
in nuclei interact mainly via the two-particle forces.
For this reason, the conventional logic of textbooks
on nuclear theory was as follows: “Let us first study
deuteron and elastic NN scattering; deduce the NN
potential from the relevant experimental data; and
use it for few-nucleon systems, complex nuclei, and
nuclear matter.” But as unambiguously follows from
our investigation of the doorway states [1–3, 7], this
is the “way nowhere.” Indeed:

(i) The three- and four-particle forces are found
to be of the same magnitude as the two-particle
ones. For this reason, the Faddeev and Faddeev–
Jakubowsky equations as well as the Hartree–Fock–
Brueckner and Dirac–Hartree–Fock–Brueckner
methods are irrelevant approaches, since they are
based on the two-particle forces only.

(ii) The seeming success of the above approaches
is due to the fact that the three- and four-particle
forces nearly compensate each other at observed nu-
cleon density values. But such a near compensation
hardly occurs at higher densities, and therefore the
contemporary results for the equation of state of nu-
clear matter are at least doubtful.

(iii) As seen from our results for nuclear static
energies, the nonlinearity of strong interaction is of
importance, and therefore it must be taken into ac-
count to the full extent in nuclear theory.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Abstract—The microscopic eikonal phase shifts for nucleus–nucleus collisions and total reaction cross
sections are calculated by using the expression previously derived for the profile (thickness) of a realistic
distribution of nucleons in the form of a symmetrized Fermi function. If, in addition, the density of the
projectile nucleus is approximated by a Gaussian function and if a density profile of arbitrary form is taken
for the target nucleus, the phase shift in question reduces to a one-dimensional integral. Questions are
considered that are associated with the derivation of density parameters for “pointlike” nucleons in nuclei,
with the possibility of approximating realistic densities by Gaussian functions in the region of the nuclear
surface, with the dependence of the cross section on the range of nucleon–nucleon interaction and on the
nuclear-medium density, and with the role of the distortion of the trajectory. Conclusions on the physics of
the process are drawn, and the cross sections calculated on the basis of the present approach without using
free parameters are compared with available experimental data. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In nuclear physics, the Glauber–Sitenko ap-
proach [1, 2], with allowance for some modifications,
is used to study nucleus–nucleus collisions at ener-
gies of about 10 to 100 MeV per projectile nucleon.
Within this conceptual framework, the eikonal phase
shift can be determined either by specifying a phe-
nomenological optical potential or by calculating it
within a microscopic approach, where it is expressed
in terms of nuclear-density distributions and the
amplitude for nucleon–nucleon scattering.

Usually, the parameters of a phenomenological
potential Uopt(r) = V (r) + iW (r) are fitted on the
basis of a comparison of the results of calculations
with experimental data on elastic-scattering cross
sections and on total reaction cross sections. How-
ever, there remain here questions concerning am-
biguities in the resulting parameters [3]. To illus-
trate this statement, we note that, for the total reac-
tion cross section obtained analytically in [4] for the
Woods–Saxon potential, it was shown there that this
cross section is determined primarily by two com-
binations RW0 and R/a of three parameters of the
potential—its rangeR, its diffuseness a, and its depth

1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

2)Faculty of Physics, Warsaw University of Technology, War-
saw, Poland.

3)Institute of Atomic Energy, Otwock-Swierk, Poland.
*e-mail: lukyanov@thsun1.jinr.ru
1063-7788/04/6707-1282$26.00 c©
W0; naturally, this makes it possible to vary these
parameters within broad ranges of their possible val-
ues. As to the microscopic approach, it is absolutely
free from adjustable parameters and enables one to
calculate the eikonal phase shifts themselves instead
of scattering potentials. Owing to this, it is possible
to perform predictive calculations—in particular, cal-
culations of total cross sections for reactions involv-
ing radioactive nuclei. The latter is of importance for
solving problems of radioactive-waste transmutation
[5, 6].

Since the early study of Fernbach et al. [7], the
microscopic approach has been used to calculate
proton–nucleus cross sections. Later on, it was
generalized in [8, 9] to the case of nuclear–nuclear
scattering on the basis of the theory of multiple
nucleon scattering by nuclei [1, 2]. It has been
extensively employed in analyzing total cross sections
for the interaction of beams of light nuclei with nuclei.
Among other things, this made it possible to discover
a neutron halo in the 6He and 9Li nuclei and a proton
halo in the 11Be nucleus and to find neutron- and
proton-rich nuclei (see, for example, [10]; see also the
review articles of Bertulani et al. [11] and Knyazkov
et al. [12]). Much attention has also been given
to studying the mechanism of nuclear scattering—
namely, to taking into account the deviations of true
trajectories from a straight-line one [13, 14], the
role of higher order corrections to the eikonal phase
shift [15], the clustering of nuclei [16], and other
effects.
2004 MAIK “Nauka/Interperiodica”
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In the majority of such studies, use is made of
Gaussian functions for nuclear densities, since it is
possible in this case to perform a separation of vari-
ables in multidimensional integrals for eikonal phase
shifts and to obtain relevant results in an analytic
form. This is the main reason why such functions and
their modifications are used in calculating cross sec-
tions even for heavy-ion scattering, although physical
considerations obviously require taking, in this case,
functions of an extended shape as a basis. Fermi
functions of the form uF(r) = [1 + exp(r −R/a)]−1,
which provide the most realistic representations for
the distributions of the densities and potentials in
medium-mass and heavy nuclei, are employed most
often in nuclear physics. Unfortunately, it is difficult to
perform analytic calculations with Fermi functions—
for example, it is impossible to separate variables in
the aforementioned multidimensional integrals for the
phase shifts. Nevertheless, it has become ever more
common to resort to them not only in numerical but
also in analytic calculations. In contrast to Gaussian
functions, Fermi functions have a correct, exponen-
tial, behavior at the periphery of nucleus–nucleus
collisions, which is a region that, in such processes,
makes a dominant contribution to differential cross
sections for scattering and to total reaction cross
sections. Therefore, it is highly desirable to develop
analytic methods for calculating cross sections within
a microscopic approach that would employ realistic
shapes of nuclear densities. The parameters of such
densities can be borrowed from tabular data obtained,
for example, from an analysis of information about
electron–nucleus scattering. This would provide suf-
ficient grounds to believe that basic structural fea-
tures of nuclei participating in the scattering of nuclei
are taken correctly into account and would make it
possible to study the true mechanism of their interac-
tion and to perform reliable predictive calculations of
respective cross sections. This is precisely the objec-
tive of the present study.

The ensuing exposition is organized as follows.
In Section 2, we present some modifications to the
basic formula for the phase shift in the microscopic
approach, this being of importance both for obtain-
ing deeper insight into the mechanism of nucleus–
nucleus scattering and for performing calculations
without resort to assumptions adopted in a number of
studies. In Section 3, we give explicit expressions for
so-called nuclear-density profile functions specified
in the form of a Gaussian, a uniform, and a sym-
metrized Fermi function. It is shown how the four-
dimensional convolution integral for the phase shift
can be reduced to a one-dimensional integral if the
density of the projectile (light) nucleus is taken in the
form of a Gaussian function, while the density of the
target nucleus is taken in the form of a symmetrized
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
Fermi function. In the case of densities having an
arbitrary form, this integral can be represented in the
form of a one-dimensional integral of the Fourier–
Bessel transforms of their profiles. An explicit form of
such a transform is given for the profile of a nuclear
density represented by a symmetrized Fermi function.
Conclusions on the applicability of so-called modified
Gaussian density functions are drawn. In Section 4,
we examine problems concerning the use of nuclear
densities as obtained from nuclear form factors in
electron–nucleus scattering, the effect of the choice
of range for nucleon–nucleon forces and the effect of
distortions of scattering trajectories, and the role of a
nuclear medium. In Section 5, we perform a compar-
ison with experimental data and draw conclusions.

2. BASIC FORMULAS
OF THE MICROSCOPIC APPROACH

Within the eikonal approximation and the micro-
scopic approach [1, 2], the total reaction cross section
has the form

σR = 2π

∞∫

0

dbb
(
1− e−χ(b)

)
, (2.1)

where the phase shift

χ(b) = σ̄NNI(b) (2.2)

is expressed in terms of the isospin-averaged total
cross section for nucleon–nucleon scattering,

σ̄NN =
ZpZtσpp +NpNtσnn + (ZpNt +NpZt)σnp

ApAt
,

(2.3)

and the convolution integral, which, in the case of
nucleus–nucleus scattering, has the form [8]

I(b) =
∫
d2spd

2stρ
0
p(sp)ρ

0
t (st)f(ξ), (2.4)

ξξξ = b− sp + st.

Here, s and ξξξ lie in the impact-parameter (b) plane,
which is orthogonal to the z axis aligned with the
projectile momentum ki,4) and ρ0(s) stands for the
so-called thicknesses (profiles) of the density dis-
tributions ρ0(r) of the centers of mass of nucleons
(“pointlike nucleons”) in the projectile and target nu-
clei (their mass numbers being denoted byAp andAt,
respectively).5) The densities themselves are defined

4)A similar expression was obtained in [17] within the model of
the flux tubes of nucleons of colliding nuclei.

5)We denote by s and r the coordinates in, respectively, two-
and three-dimensional spaces, the relation r2 = s2 + z2 be-
ing valid in our case. Accordingly, ρ(r) and ρ0(r) stand
for the density distributions, while ρ(s) and ρ0(s) are their
profiles.
4
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as follows:

ρ(s) =

∞∫

−∞

dzρ
(√

s2 + z2
)
. (2.5)

The pointlike densities ρ0(r) differ from the matter-
density distributions ρ(r) in nuclei that consist of
actual, “dressed,” nucleons. There is a vast body of
tabular data for ρ(r) that were obtained from an anal-
ysis of the form factors for electron–nucleus scatter-
ing,6) and our objective is to develop an approach that
would be free from adjustable parameters. However, it
is not convenient that, here, pointlike densities ρ0(r)
must be determined each time on the basis of known
experimental nuclear densities ρ(r).

The function f(ξ) determines the form of the am-
plitude for nucleon–nucleon interaction; that is,

f(ξ) = (
√
πaN )−2e−ξ

2/a2N , a2
N =

2
3
r2
N rms, (2.6)

where r2
N rms is the mean-square range of nucleon–

nucleon interaction. It can be determined if one con-
siders that the parameter aN is expressed with the
aid of the relation a2

N = 2β in terms of the slope pa-
rameter β of the amplitude for nucleon–nucleon scat-
tering7) in the form exp(−q2β/2). According to [18],
values of β at an energy of about 1 GeV lie within the
range 0.21–0.23 fm−2, which corresponds to r2N rms =
0.63–0.69 fm2. In our case, nucleon–nucleon forces
act in a nuclear medium. In order to take into account
its effect, an extra factor fm is usually introduced
in the integrand in (2.4). In the following, we will
consider this issue in greater detail.

The convolution integral in (2.4) is close in form
to the six-dimensional double-folding integral in the
calculations of a nucleus–nucleus potential [19]. In
either case, one has to seek methods for separating

6)In general, the densities ρ(r) appearing here depend on coor-
dinates in the c.m. frame of the correspondingnucleus.How-
ever, the center-of-mass-motion factor exp(q2〈r2〉/6A),
where q is the momentum transfer, 〈r2〉 is the mean-square
radius of the nucleus being considered, and A is its mass
number, is not isolated in them, as a rule, in analyzing ex-
perimental form factors. In view of this, tabular ρ(r) provide
nuclear-charge or nuclear-matter distributions in the field of
a fixed potential. At low q and highA, the densities in the two
systems coincide.

7)The amplitude is fN (q) = fN (0)f(q), where fN (0) =
(kN/4π)σ̄NN (i+ αNN ), with kN and αNN being, respec-
tively, the relative momentum of colliding nucleons and the
ratio of the real part of the amplitude to its imaginary part.
For f(q) = exp(−q2a2

N/4), the Fourier–Bessel transforma-
tion f(ξ) = (2π)−2

∫
exp(−iq · ξξξ)f(q)d2q then yields ex-

pression (2.6); in the zero-range approximation (aN = 0), in
which case f(q) = 1, we obtain f(ξ) = δ(2)(ξ).
PH
variables in relevant integrands. In Section 3, it will be
shown that this integral can be calculated explicitly if
both densities are specified in the form of Gaussian
functions or can be reduced to a one-dimensional
integral if one of the densities is taken in the Gaussian
form. At the same time, there is a standard method for
reducing such integrals to one-dimensional integrals
via a transition to the momentum representation.
For this, we make two-dimensional Fourier–Bessel
transformations of the integrands in (2.4) as

u(s) =
1

(2π)2

∫
e−ik·sũ(k)d2k (2.7)

=
1
2π

∞∫

0

J0(ks)ũ(k)kdk,

where

ũ(k) =
∫
eik·su(s)d2s = 2π

∞∫

0

J0(ks)u(s)sds.

(2.8)

Expression (2.4) then takes the form

I(b) = 1
2π

∞∫

0

kdkJ0(kb)ρ̃0
p(k)ρ̃

0
t (k)f̃(k), (2.9)

where

f̃(k) = exp
(
−k2r2

N rms/6
)
. (2.10)

For the nuclear-density profile, we further use the
convolution

ρi(s) =
∫
d2sNρN (sN )ρ0

i (|s− sN |), (2.11)

where ρN (sN ) is the nucleon-density function. With
the aid of (2.7), we then obtain

ρ̃i(k) = ρ̃N (k)ρ̃0
i (k). (2.12)

For a Gaussian nucleon density of mean-square
radius r2

0 rms, we have

ρ̃N (k) = exp
(
−k

2r2
0 rms

6

)
. (2.13)

From (2.9), it then follows that

I(b) = 1
2π

∞∫

0

kdkJ0(kb)ρ̃0
p(k)ρ̃t(k) exp

(
−k

2τ2

6

)
,

(2.14)

τ2 = r2
N rms − r2

0 rms. (2.15)
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If we assume that r2
N rms and r2

0 rms coincide, then
τ2 = 0; therefore, we have

I(b) = 1
2π

∞∫

0

kdkJ0(kb)ρ̃0
p(k)ρ̃t(k). (2.16)

Accordingly, the following relation holds in the coor-
dinate representation:

I(b) =
∞∫

0

d2sρ0
p(|b− s|)ρt(s). (2.17)

Thus, we have derived expressions for the con-
volution integrals in the form of (2.14), (2.16), and
(2.17). Instead of the profile functions for the pointlike
target-nucleus density, these expressions involve the
profiles of the nuclear-matter density, ρt(s) or ρ̃t(k).
It is the corresponding densities ρ(r) that are known
from an analysis of nuclear form factors and are pre-
sented in tables; for medium-mass and heavy nuclei,
it is common practice to parametrize them in the form
of Fermi functions. In principle, relations (2.12) and
(2.13) can be used for the projectile nucleus as well,
in which case it is necessary to set ρ̃0

p = ρ̃p/ρ̃N . But
in the integrands in (2.14) and (2.16), there will then
appear a growing Gaussian function, and the inte-
grals in question will be divergent at the upper limit
if realistic functions having exponential asymptotic
behavior are taken for the profiles of both densities. Of
course, one can proceed in a formal way that consists
either in cutting off the integrals at a point where the
integrands begin to grow or in replacing the Gaus-
sian nucleon form factor ρ̃N (k) (2.13) by the dipole
expression [see Eq. (4.2) below]. On the other hand,
no divergence appears if the profile of the density of
one of the nuclei is also taken in the Gaussian form.

Finally, we note that, frequently, phase shifts are
calculated in the zero-range approximation (r2N rms =
0), this leading to the convolution integral (2.9) with
f̃(k) = 1 or, in the coordinate representation, to an
expression that is analogous to (2.17), but which
involves ρ0

t (s) instead of ρt(s). The replacement of
the pointlike densities ρ0 by the nuclear densities ρ
is an even rougher approximation. It can now be seen
that such approximations are not necessary and that
they distort the true mechanism of nucleus–nucleus
scattering.

3. EIKONAL PHASE SHIFTS
FOR REALISTIC NUCLEAR-DENSITY

DISTRIBUTIONS

It has already been indicated that, in order to ob-
tain analytic expressions for phase shifts and cross
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
sections, many authors use Gaussian distributions of
the densities and their profiles; that is,

ρG(r) = ρG(0)e−r
2/a2G , ρG(0) = A/(

√
πaG)3,

(3.1)

ρG(s) = (
√
πaG)ρG(0)e−s

2/a2G , a2
G =

2
3
R2

rms,

(3.2)

where the only parameter aG is determined by the
root-mean-square radius Rrms of the nucleus being
considered.8)

Since uniform density distributions are sometimes
used for medium-mass and heavy nuclei, we also
present the corresponding distributions and their pro-
files:
ρu(r) = ρu(0)Θ(Ru − r), ρu(0) = 3A/(4πR3

u),
(3.3)

ρu(s) = ρu(0)
√
R2
u − s2Θ(Ru − s), (3.4)

R2
u =

5
3
R2

rms.

In a number of cases, a realistic density in the
form of a Fermi function is approximated as a linear
combination of Gaussian functions with adjustable
weight coefficients and the adjustable parameters aG.
This was done in [20]; in [21], a similar fit to the
profile of a Fermi function was constructed directly.
Unfortunately, one has to repeat this procedure for
each new set of parameters R and a of the original
Fermi function. However, one can use the fact that,
for heavy ions, scattering cross sections and total
reaction cross sections are determined primarily by
the behavior of phase shifts at the periphery of the
collision process. In all probability, this was first taken
into account in [22], where the Fermi distribution
ρF(r) was simulated only in the region of its tail by
using one Gaussian function. Later on, Charagi and
Gupta [23] employed this procedure to simulate the
profile ρF(s) of the Fermi function rather than the
Fermi function itself. In doing this, they matched, at
the periphery, the profile of a Gaussian function [see
Eq. (3.2)] to the profile ρF(s) at two points, thereby
determining both parameters aḠ and ρḠ(0) of the
modified Gaussian function

ρḠ(s) = (
√
πaḠ)ρḠ(0)e

−s2/a2
Ḡ . (3.5)

This function is not normalized since, in contrast to
what we had in (3.1), its parameters are not related
to each other. In general, the matching of the profile

8)In those cases where it is necessary to take the pointlike
distributions ρ0

G(r), the parameter (a0
G)2 = 2

3
R2

rms can be
determined in terms of the root-mean-square radius of the
distribution of pointlike nucleons in the nucleus, R2

rms =

R2
rms − r20 rms.
4
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ρḠ(s) with any smooth and extended function ρ(s)
at two points s1 and s2 leads to determining the two
parameters of this profile function ρḠ(s); that is,

ρḠ(0) =
(√

πaḠ

)−1
ρ(s1) exp(s21/a

2
Ḡ), (3.6)

a Ḡ =
[ s22 − s21
ln ρ(s1)− ln ρ(s2)

]1/2
. (3.7)

In [23], this matching of profiles in the form of mod-
ified Gaussian functions with the profiles ρ0

F(s) of
pointlike nuclear Fermi distributions was performed
at the points s1 = c and s2 = c+ 4d, where c and d
are, respectively, the radius and the diffuseness pa-
rameter of the density ρ0

F(r). The profile functions
ρ0

F(s) themselves were found by means of a numerical
integration in (2.5); the diffuseness parameter was
taken to be identical for all nuclei, d = 0.53 fm; and
the radius c was determined on the basis of known
data on the root-mean-square charge radii of nuclei
and the nucleon (Rrms and r0 rms, respectively) with
the aid of the formula

R2
rms = R2

rms − r2
0rms =

3
5
c2
[
1 +

7
3

(πd
c

)2]
. (3.8)

In general, the accuracy of this matching must be
tested each time when the diffuseness parameter a
of the nuclear Fermi densities ρF(r) have different
values for different nuclei; therefore, the values of the
diffuseness parameter d in the calculation of the pro-
files ρ0

F(s) are also different. Moreover, the parameters
of modified Gaussian functions depend on the choice
of matching functions as well.

Since the study reported in [24], the symmetrized
Fermi function

uSF(r) =
sinh(R/a)

cosh(R/a) + cosh(r/a)
(3.9)

=
1

1 + exp
r −R
a

− 1

1 + exp
r +R

a

has been used first in calculating nuclear form fac-
tors in electron–nucleus scattering and then in other
nuclear-physics problems. It possesses a number of
advantages over the Fermi function, this also con-
cerning the case of analytic calculations [25, 26]. Its
universality in applications consists in that it faithfully
simulates the density distribution in nuclei from light
to heavy ones [27]. From (3.9), it can be seen that, for
medium-mass and heavy nuclei (R� a), this func-
tion is virtually coincident with the usual Fermi func-
tion uF(r) = 1/(1 + exp[(r −R)/a]). For the sym-
metrized Fermi density, one can therefore use tabu-
lated data on the Fermi distributions of both nuclear
densities [28] and pointlike-nucleon densities [29].
For our problem, it is of importance that the profile
PH
for precisely the symmetrized Fermi function could
be found explicitly [30], whereby the ensuing calcu-
lations are significantly simplified. The symmetrized
Fermi distribution and its profile have the form

ρSF(r) = ρSF(0)
sinh(R/a)

cosh(R/a) + cosh(r/a)
, (3.10)

ρSF(0) =
3A
4πR3

[
1 +

(πa
R

)2]−1
,

ρSF(s) = 2RρSF(0)
sinh(R/a)

cosh(R/a) + sinh(s/a)
P (s).

(3.11)

Here, the main dependence of the profile on s is de-
termined by the symmetrized Fermi function having
the same parameters as the density ρSF(r). The cor-
rection function P (s) is given in [30] and is defined
in terms of the auxiliary function x(s), which satisfies
the condition x(s)� 1. This makes it possible to
simplify the function P (s) in such a way that

P (s) =
a

R
ln(4/x(s)), (3.12)

x(s) =
2
κ

cosh(s/a)
cosh(s/a) + cosh(R/a)

{

1 +
κ− 1

cosh(s/a)

}

,

where κ is expressed in terms of the radius R and the
diffuseness parameter a as

κ = eδ , (3.13)

δ = 1.10315 + 0.34597(R/a) − 0.00446(R/a)2 .

The numerical coefficients in (3.13) were found in [30]
by fitting the profile in (3.11) to the numerical values
of the profile integral (2.5) of the function ρSF(r)
(3.10) in the parameter region 5 ≤ R/a ≤ 20. At the
center of the nucleus, the correction function assumes
the value of P (0) = 1, while, in the region of the main
contribution between s = R and ∞, it changes only
slightly, by about 0.4(a/R). This makes it possible
to use the approximation where P (s) is taken at one
point—for example, at s = R or at the point s =
s1/3 = R+ a ln 2, where the density is one-third as

great as its value at the origin.9) Under the condition
cosh(R/a)� κ, we then have

Pa(R) �
a

R
[ln 4κ] (3.14)

=
a

R

[

2.48945 + 0.34597
R

a
− 0.00446

(
R

a

)2
]

9)In [19], it was found that the behavior of the cross sections for
nucleus–nucleus scattering is determined primarily by the
overlap region of the densities at their periphery for s ≥ s1/3,
where ρ(s1/3) = (1/3)ρ(0).
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and, accordingly,

ρSF(s) � 2RρSF(0)
sinh(R/a)

cosh(R/a) + cosh(s/a)
Pa(R).

(3.15)

For the 16O, 40Ca, and 208Pb nuclei, the profile
functions for the densities in the form of the sym-
metrized Fermi function are shown in Fig. 1 ac-
cording to a numerical calculation by formula (2.5)
(points), along with the corresponding profiles for a
modified Gaussian function that were obtained by
formulas (3.6) and (3.7) at s1 = R and s2 = R+ 4a.
The solid curves there represent the results of the
calculation of ρSF(s) by the analytic formula (3.11).
The parameters of the density in the form of the
symmetrized Fermi function were borrowed from [27]
and are quoted in Table 1. It can be seen that, in the
internal region, there is a strong discrepancy between
the profiles for a modified Gaussian function and the
profiles of the density in the form of the symmetrized
Fermi function (for example, by nearly two orders of
magnitude for 208Pb). There is also a discrepancy in
the region where the densities themselves decreased
by not less than two orders of magnitude. The profiles
of a uniform and a Gaussian form of the density
distribution will differ from the profile of the Fermi
functions even more pronouncedly. In Fig. 2, the
profiles ρSF(s) are shown for the same nuclei, but
according to the calculation by (solid curves) the ana-
lytic formula (3.11) with the exact correction function
P (s) and (dashed curves) the analytic formula (3.15)
with the approximate correction function Pa(s = R).
It turns out that the use of the correction function
at the radius value introduces virtually no changes in
the behavior of the profile function in the peripheral
region. A modest distinction within a factor of 2 for
the 208Pb nucleus appears only in the nuclear interior,
this being much less than the distinction between
the profile functions for the symmetrized Fermi and
modified Gaussian functions (see Fig. 1).

Thus, we have the possibility of choosing, in the
following, the profiles ρ(s) of an explicit analytic form
for a Gaussian, a uniform, and a symmetrized Fermi
function. Below, these three types of functions will
be employed in calculating the microscopic eikonal
phase shifts χ(b) and total reaction cross sections.

First, we consider the convolution integral (2.17)
for the case where the Gaussian function (3.5) is
taken for the profile ρ0

p(ζ) of the projectile-nucleus
density. Substituting in it

ρ0
Ḡ,p(|b− s|) = (

√
πa0

Ḡ,p)ρ
0
Ḡ,p(0) (3.16)

× exp
[
− 1
(a0

Ḡ,p
)2
(
b2 − 2bs cosϕ+ s2

)]
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and employing, in performing integration with respect
to the variable ϕ, the definition of the zeroth-order
Bessel function of an imaginary argument, I0(x) [31],
we obtain

IḠ,t(b) = 2π(
√
πa0

Ḡ,p)ρ
0
Ḡ,p(0) exp

(

− b2

(a0
Ḡ,p
)2

)

(3.17)

×
∞∫

0

sdsρt(s) exp

(

− s2

(a0
Ḡ,p
)2

)

I0

(
2bs

(a0
Ḡ,p
)2

)

.

In a more general case where the root-mean-square
radius of the nucleon differs from the range of nuc-
leon–nucleon interaction, it is convenient to use the
convolution integral (2.4) featuring the profiles of
pointlike densities for both nuclei. It can then be
shown that, in the case of a modified Gaussian profile
function for the projectile nucleus [see Eq. (3.5)], the
convolution integral takes the form

IḠ,N,t(b) = 2π
(a0

Ḡ,p
)2

(a0
Ḡ,p
)2 + a2

N

(3.18)

× (
√
πa0

Ḡ,p)ρ
0
Ḡ,p(0) exp

(

− b2

(a0
Ḡ,p
)2 + a2

N

)

×
∞∫

0

sdsρ0
t (s) exp

(

− s2

(a0
Ḡ,p
)2 + a2

N

)

× I0

(
2bs

(a0
Ḡ,p
)2 + a2

N

)

.

Table 1. Parameters of the symmetrized Fermi nuclear-
density distributions ρSF(r,R, a)∗

Nucleus R, fm a, fm Rrms, fm References
12C 2.214 0.488 2.496 [27]
16O 2.562 0.497 2.711 [27]
20Ne 2.74 0.572 3.004 [28]
24Mg 2.934 0.569 3.105 [27]
27Al 3.07 0.519 3.06 [28]
28Si 3.085 0.563 3.175 [27]
32S 3.255 0.601 3.370 [27]
40Ca 3.556 0.578 3.493 [27]
66Zn 4.340 0.559 3.952 [28]
89Y 4.86 0.542 4.27 [28]
208Pb 6.557 0.515 5.427 [27]

∗ The parameters taken from [28] were given there for the Fermi
distributions ρF(r,R, a), which are close to ρSF(r,R, a) for the
four nuclei indicated there.
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Fig. 1. Thickness functions for the density in the form of the symmetrized Fermi function: (points) results of a numerical
integration by formula (2.5), (dashed curves) profiles in the form of a modified Gaussian function that are matched with them,
and (solid curves) results of the calculation by the analytic formula (3.11). The parameters of the density were borrowed from
Table 1.
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Fig. 2. Thickness functions for the densities in the form of the symmetrized Fermi function according to the calculation by
(solid curves) the analytic formula (3.11) with the exact correction function P (s) and (dashed curves) formula (3.15) with the
approximate correcting function Pa(s = R). The parameters here are identical to those used for Fig. 1.
If the Gaussian profile function for the target nucleus
is substituted in this expression, the integral in (3.18)
is taken explicitly [31]. The result is [22]

IḠ,N,t(b) =
1
π

(
√
πa0

Ḡ,p
)3(
√
πa0

Ḡ,t
)3

(a0
Ḡ,p
)2 + (a0

Ḡ,t
)2 + a2

N

ρ0
Ḡ,p(0)

(3.19)

× ρ0
Ḡ,t(0) exp

(

− b2

(a0
Ḡ,p
)2 + (a0

Ḡ,t
)2 + a2

N

)

.

We note that the substitutions Ḡ→ G and
(
√
πa0

i )
3ρ0

Ḡ,i
(0)→ Ai are necessary in (3.17)–(3.19)

if use is made of the normalized Gaussian func-
tions (3.1).

We take it for granted that symmetrized Fermi
functions provide realistic density distributions in
P

medium-mass and heavy nuclei. The corresponding
profile functions are given explicitly by Eq. (3.10)
or (3.15). The Bessel functions I0(x) and J0(x) are
also known explicitly in the form of approximations in
terms of polynomials [32]. Thus, all functions in the
convolution integrals (3.17) and (3.18) are specified
explicitly, which is very convenient for a numerical
integration.

In the case where, for both nuclei, the density dis-
tribution is specified in the form of symmetrized Fermi
functions, it is advisable to use the convolution inte-
grals in the momentum representation (2.9), (2.14),
or (2.16), a convenient form of the profiles for such
distributions being that in the approximation specified
by Eq. (3.15). The respective Fourier transform can
then be calculated explicitly. Indeed, the substitution
of the density function (3.15) as u(s) into (2.8) makes
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 3. Total reaction cross sections obtained by using various models of the density-thickness functions. For the projectile
nucleus 12C, use was made of a profile taken in the form of a modified Gaussian function and fitted to the profile of the pointlike-
nucleon density in the form of a symmetrized Fermi function (the values of the relevant parameters are quoted in Table 2). For
target nuclei, the density profiles corresponded to nuclear densities in the form of symmetrized Fermi functions (the parameter
values are quoted in Table 1), uniform nuclear densities [see Eq. (3.4)], or nuclear densities simulated in the same way as for
the target nucleus [model of modified Gaussian functions—see Eq. (3.5)]. The results for these three cases are represented by
the solid, dash-dotted, and dashed curves, respectively.
it possible to write

ρ̃SF(k) = 4πRρSF(0)Pa(R)FSF(k, a,R), (3.20)

where
FSF(k, a,R) ≡ FSF(k) (3.21)

=

∞∫

0

sdsJ0(ks)
sinh(R/a)

cosh(R/a) + cosh(s/a)
.

Taking into account the peripheral character of nu-
clear collisions, we can assume that the main con-
tribution comes from the region ks� 1. We then
have the following approximate expression (see, for
example, [33]):

FSF(k) =
πaR

sinh (πak)
J1(kR). (3.22)

Sprung and Martorell [25] obtained corrections to
it, but these corrections are immaterial in the above
calculations of the total cross sections.

In Fig. 3, the total reaction cross sections calcu-
lated for collisions between 12C projectile nuclei of
energy 50 to 350 MeV per nucleon and 16O, 40Ca,
and 208Pb target nuclei are shown for three cases
where the nuclear densities in the target nuclei were
chosen in the form of symmetrized Fermi functions,
modified Gaussian functions, or uniform-distribution
functions. In calculating the phase shift χ, use was
made of the convolution integral in the form (3.17).
For the projectile nucleus 12C, we took the density
profile in the form of a modified Gaussian function
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
matched at the points s1 = c and s2 = c+ 4a [see
Eqs. (3.5)–(3.7)] with the profile of the pointlike-
nucleon density in the form of a symmetrized Fermi
function (the parameter values are given in Table 2).
The profile functions for the target nuclei in the form
of modified Gaussian functions were matched in the
same way, the parameters of ρSF being taken from
Table 1. This table also presents the values of the
root-mean-square radius Rrms that were used to
calculate the radius Ru of the uniform-distribution
density (3.4). The total cross sections σNN for
nucleon–nucleon scattering as functions of energy
were parametrized as in [23]. One can see that, for
the density in the form of a step (dash-dotted curves),
the behavior of the total reaction cross section differs
significantly from that which is obtained in the case

Table 2. Parameters of the symmetrized Fermi distribu-
tions ρ0

SF(r, c, d) of the pointlike-nucleon density in nu-
clei [29]

Nucleus c, fm d, fm
12C 2.275 0.393
16O 2.624 0.404
24Mg 2.984 0.484
28Si 3.134 0.477
32S 3.291 0.520
40Ca 3.593 0.493
4
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Fig. 4. Illustration of the dependence of the calculated cross sections on the parameters of the pointlike-nucleon density that
were determined from an analysis of data on electron–nucleus scattering: (solid curves) results of the calculations with the
parameter values from Table 2, (dashed curves) results obtained with the parameters determined by using Eqs. (4.3), (dash-
dotted curves) results of the calculations with the parameters borrowed from [37], and (points) results of the calculation in the
momentum representation with the aid of Eq. (3.20) (see main body of the text).
of the physically validated density in the form of
a symmetrized Fermi function (solid curves). The
calculations of the cross sections on the basis of
the models of a symmetrized Fermi function (solid
curves) and a modified Gaussian function (dashed
curves) are in satisfactory agreement with each other.
That, at low energies, the cross sections calculated
with symmetrized Fermi functions exceed slightly
those calculated with modified Gaussian functions
is due to an extended tail of the densities in the form
of a symmetrized Fermi function. A weak growth of
the cross sections calculated with modified Gaussian
functions for target nuclei at higher energies in
relation to the case of symmetrized Fermi functions
is associated with the greater values of the modified
Gaussian functions in the nuclear interior, this re-
sulting in that absorption is switched on earlier.

The calculation of the cross sections in the mo-
mentum representation for the case where realistic
symmetrized Fermi distributions ρSF are taken for
both nuclei with an approximate correcting function
Pa(R) in the form (3.14) and, accordingly, approxi-
mate profiles in the form (3.20) leads (see Fig. 4) to
results (points) that differ slightly (by about 2%) from
the results of precise calculations (solid curves).

4. RESULTS OF THE CALCULATIONS
AND DISCUSSION

4.1. On the Use of Nuclear Densities
from Electron–Nucleus Scattering

The convolution integrals (2.4) and (2.9) involve
the profiles of the pointlike-nucleon densities ρ0(s) of
both nuclei. At the same time, one of the densities in
the transformed integrals (2.16) and (2.17) remains
a pointlike one, while the other is a nuclear density
P

[ρ(s)]. Thus, the problem of determining pointlike-
nucleon densities is not removed, so that it is nec-
essary to address the question of how they can be
derived. In general, they can be constructed on the
basis of nuclear models. However, we were inclined
from the outset to rely on data from independent
experiments—for example, on densities as obtained
from nuclear form factors. As before, we will assume
that ρ0

(S)F(r) provides a realistic form of pointlike-
nucleon density.

The first method was developed in [29] and is based
on isolating, in the experimental nuclear form factor
F (q), the form factor F 0(q) for a nucleus formed by
pointlike nucleons and on extracting, from the latter,
the density distribution of pointlike nucleons. In just
the same way as in (2.12), the nuclear form factor is
then represented in the form

F (q) = FP (q)F 0(q); (4.1)

for the proton form factor, use was made of the dipole
formula, which, at low momentum transfers, can be
approximated by a Gaussian function as

FP (q) =
(

1 +
q2r2

0 rms

12

)−2

� exp(−q2r2
0 rms/6).

(4.2)

Further, the method of a model-independent analy-
sis was used to reconstruct the density ρ0(r) from
F 0(q), a trial density function being chosen as a lin-
ear combination of the function ρ0

SF(r) and its radial

variations in the form of the derivatives ρ0(n)
SF (r) with

adjustable weight coefficients. For these trial densi-
ties, the calculations of F 0(q) were performed in the
high-energy approximation [34, 35] (rather than in
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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the Born approximation), which yields results that are
close to numerical solutions to the Dirac equation.
Table 2 presents part of these data [29]—namely,
the radius c and the diffuseness parameter d of the
density ρ0

SF(r, c, d). We disregarded the contribution
of the radial variations to the total cross sections,
since they manifest themselves only in differential
cross sections at high momentum transfers. We note
that the value of r2

0 rms = 0.658 fm2, which was used
in the analysis in [29] for the proton mean-square
radius, is close to the nucleon mean-square radius
of r2

0 rms = 0.65 fm2 in the calculation of the double-
folding potential in [19]. Therefore, it is quite legiti-
mate to identify the pointlike-nucleon densities ob-
tained in [29] with the density distributions ρ0

SF(r) of
pointlike nucleons.10)

An alternative method was developed in [36] and
is based on deriving the parameters c and d of the
density ρ0(r, c, d) from data on the nuclear densities
ρ(r,R, a) with the aid of a comparison of rn moments
calculated analytically, on one hand, for the density
ρF(r,R, a) having an explicit form and, on the other
hand, for the same density specified by the folding
formula, which is similar to (2.11). If only terms of
order (πa/R)2 and r2

0 rms/(9c
2) are retained in the ex-

pansions of the corresponding integrals, it then turns
out that

c = R

[

1 +
1
3

(r0 rms

R

)2
]

, (4.3)

d = a

[

1− 1
2

(r0 rms

πa

)2
]

.

If one employs the parameters of the nuclear density
ρSF(r,R, a) from Table 1 and sets r20 rms = 0.658 fm2,
then the calculations by formulas (4.3) yield results
for the radius c of the pointlike-nucleon density that
are slightly underestimated (by less than 1%) in rela-
tion to the data in Table 2 and results for the diffuse-
ness parameter d that are overestimated (by not more
than 10%) in relation to the respective data there. In
order to assess the degree to which the accuracy in
determining them is of importance in calculating total
cross sections, we examine the data in Fig. 4. For
that case, pointlike-nucleon densities in the form of

10)Assuming that the neutron and proton components of
the nuclear density are related by the equation ρ0

N (r) =

(N/Z)ρ0
Z(r) and specifying the root-mean-square radii of

the nuclear density (R2
rms) and of the pointlike-nucleon

distribution (R2
rms), as well the mean-square radii of pro-

tons (〈r2〉p = 0.76 fm2) and neutrons (〈r2〉n = −0.11 fm2)
(see [19]), we find from the relation R2

rms = R2
rms + 〈r2〉p +

〈r2〉n = R2
rms + 〈r2〉 that the mean-square radius of nucle-

ons is 〈r2〉 = 〈r2〉p + 〈r2〉n = 0.65 fm2.
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symmetrized Fermi functions were taken for both nu-
clei in the convolution integral (2.9). The solid curves
there show the results obtained for the case where
the parameters c and d were set to the values from
Table 2. The dashed curves correspond to the cal-
culations with the parameters c and d determined by
formulas (4.3) on the basis of theR and a values from
Table 1. The dash-dotted curves represent the results
of the calculations with the parameters c and d of
pointlike-nucleon distributions from [37], where they
are given (in femtometers) for 12C (2.1545, 0.425),
16O (2.525, 0.45), and 40Ca (3.60, 0.523). In that
study, they were used in calculating the real part
of the double-folding potentials for nucleus–nucleus
interaction, and this made it possible to explain data
on the elastic scattering of nuclei at energies of about
10 MeV per nucleon. In all cases, we set r2N rms =
0.658 fm2. It can be seen that the distinction be-
tween the cross sections is within about 6 to 10%.
We believe that the method of deriving the pointlike-
nucleon densities from an analysis of nuclear form
factors F 0(q) is the most justified, and it is of impor-
tance to compose tables of such densities.

4.2. On the Choice of Range for Nucleon–Nucleon
Interaction

In Section 2, it was shown that, in the case where
the root-mean-square nucleon radius is assumed to
be equal to the range of nucleon–nucleon interaction
(r2

0 rms = r2
N rms), the convolution integral is simpli-

fied, taking the form (2.17), where only two functions
overlap, the profile of the nuclear-density distribution
in the target nucleus and the profile of the pointlike-
nucleon density in the projectile nucleus. In general,
the above radius and range may be different, however.
As to the shape parameter of the nucleon–nucleon
interaction, a2

N = (2/3)r
2
N rms, it can be found from

data on free-nucleon scattering that r2N rms takes
values in the range 0.63–0.69 fm2. At the same
time, r2

0 rms was taken to be 0.658 fm2 in the dipole
formula (4.2) [29] and 0.650 fm2 in calculating the
double-folding potential for the nucleus–nucleus
interaction [19]. We have calculated the total reaction
cross sections with r2

N rms = 0.63, 0.658, 0.69 fm2

(Fig. 5), employing the more general expression for
the convolution integral in the form (3.18). For the
12C, 16O, and 40Ca nuclei, the parameters c and d of
the pointlike-nucleon densities are given in Table 2,
while, for the 208Pb nucleus, they were calculated by
formulas (4.3). As in Fig. 3, the profile for the 12C
projectile nucleus was taken in the form of a modified
Gaussian function and was matched with the profile
in the form of a symmetrized Fermi function. In Fig. 5,
4
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Fig. 5. Effect of the choice of range for nucleon–nucleon interaction on the total cross sections for nuclear–nuclear reactions:
r2Nrms = (solid curves) 0.658, (dashed curves) 0.630, and (dash-dotted curves) 0.69 fm2. The values of the parameters c and d
were taken from Table 2 for the 16O and 40Ca nuclei and were determined for the 208Pb nucleus by formulas (4.3) on the basis
of the R and a values from Table 1. For the 12C nucleus, the profile in the form of a modified Gaussian function is identical to
that in Fig. 3.
it can be seen that, in all of the examples considered
here, the cross sections are nearly identical, especially
for heavy target nuclei. Thus, investigation of total
cross sections for nucleus–nucleus reactions does
not highlight distinctions between the root-mean-
square nucleon radius and the range of nucleon–
nucleon interaction. Moreover, it should be borne in
mind that the parameter aN of the amplitude for the
nucleon–nucleon interaction in a nuclear medium
can differ from its value in the case of free-nucleon
scattering.

4.3. Effect of the Distortion of Trajectories

In the repulsive Coulomb field of the target nu-
cleus, the trajectory of the projectile nucleus is de-
flected from the scattering center, this naturally lead-
ing to a decrease in the total reaction cross section.
In [38], this effect was taken into account by replac-
ing, in the phase shift χ(b), the impact parameter b
by the distance bc of the closest approach of colliding
nuclei in the Coulomb field; that is,

b→ bc = ā+
√
ā2 + b2, (4.4)

where ā = ZpZte
2/(2Ec.m.) is half the distance of the

closest approach in the field ZpZte2/r at b = 0, with
Ec.m. being the kinetic energy in the c.m. frame of
colliding nuclei. The substitution of bc for b in the
nuclear part ΦN (b) of the phase shift has come into
use in calculating differential cross sections for elastic
scattering as well (see [13]); in general, this procedure
proved to be quite justified (see, for example, [39]).
PH
At the periphery of the collision process, the contri-
bution to the distortion from the real part V (r) of
the attractive nuclear potential can also be taken into
account, in principle, which would bring the Coulomb
trajectory closer to the target nucleus. If the region
b ≥ Rs = Rp +Rt + (ap + at) ln 2, where the over-
lapping nuclear densities are less than one-third of
their values at the center [19], is assumed to be the
main region of elastic collisions, then the effect of the
tail of the nuclear potential can be qualitatively taken
into account by means of the substitution

b→ b̃c = ã+
√
ã2 + b2, (4.5)

where ã =
(
ZpZte

2 −Rs|V (Rs)|
)
/(2Ec.m.). A more

refined method for taking into account nuclear dis-
tortions was formulated in [40] and was applied in a
number of studies (see, for example, [14]). If, however,
the optical potential Vopt(r) itself is constructed by
means of a numerical fit to experimental data, then the
use of its real part for taking into account the distor-
tion of the trajectory in calculating total reaction cross
sections σR ismeaningless. Indeed, data on σR, if any,
are included themselves in such cases in the fitting
procedure. If, on the contrary, there are no such data,
then they are calculated on the basis of the Sl matrix
obtained by using data on only elastic scattering, and
these “calculated” σR are frequently considered as
“experimental data” on total cross sections. Thus, the
inclusion of nuclear distortions of trajectories is likely
to be meaningful only in constructing the eikonal
phase shifts for distorted waves in calculating inelas-
tic scattering and nucleon-transfer reactions within
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 6. Illustration of the role of the distortion of trajectories in calculating total reaction cross sections. The solid curves
correspond to cross sections obtained without allowance for distortions, while the dashed and dash-dotted curves represent the
results of the calculations allowing, respectively, for only the Coulomb distortion and for the Coulomb and nuclear distortions.
The choice of parameter values for these data is discussed in the main body of the text.
the theory of direct reactions. In principle, the real part
of the nucleus–nucleus potential can be calculated—
for example, by the folding method. In this case, it
is meaningful to calculate both differential and total
cross sections on the basis of the Glauber–Sitenko
approach with allowance for the distortion of the tra-
jectory by both the Coulomb and the nuclear field.

Figure 6 presents the results obtained by cal-
culating the total cross sections for 13C + 208Pb
and 16O + 28Si reactions by using the convolution
integral in the form (3.17). The calculations were
performed either without allowance for distortions
of trajectories (solid curves) or with allowance for
such distortion by only the Coulomb field according
to (4.4) (dashed curves) or by both the Coulomb and
the nuclear potential according to (4.5) (dash-dotted
curves). In the last case, it was necessary to specify
the parameters of the real part of the optical potential,
and we took them from [41] for 13C + 208Pb (potential
С at 390 MeV) and from [42] for 16O + 28Si (potential
E-18 at 215.2 MeV). In calculating phase shifts,
we used, for the 13C nucleus, the parameters of the
pointlike-nucleon density in the 12C nucleus and took
them from Table 2, together with the density parame-
ters of the 16O nucleus. For the 208Pb and 28Si nuclei,
such parameters were calculated by formulas (4.3) on
the basis of theR and a values from Table 1. As might
have been expected, the inclusion of the Coulomb dis-
tortion generates sizable corrections (about 10%) in
the total cross sections for reactions on heavy nuclei
at energies below 100 MeV per nucleon, these cor-
rections being beyond the experimental errors. With
increasing collision energy, the corrections in ques-
tion decrease; for lighter target nuclei (right panel in
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
Fig. 6), they are about 2%, which can be disregarded.
The contribution of the nuclear distortion is small in
relation to its Coulomb counterpart for 208Pb and is
commensurate with it for the reaction on 28Si, but
both effects are small in the latter case. Moreover,
it should be borne in mind that the real part of the
nuclear potential decreases with increasing energy. In
view of this, the contribution of the nuclear distortion
decreases at higher energies, but we disregarded this
in our estimate.

4.4. Role of a Nuclear Medium

The microscopic approach involves the energy-
dependent cross section σNN (εlab) for free-nucleon
scattering, and this is precisely what determines pri-
marily the dependence of the nuclear cross section on
the collision energyElab = εlabAp. We take σNN (εlab)
in the form of the parametrization obtained in [23]
within the energy range εlab = 0.01–1 GeV. In a more
general case, the effect of a nuclear medium is taken
into account by introducing this cross section in the
integrand of the convolution integral and by making
the substitutions

σnp → σnpfm(np), (4.6)

σpp = σnn → σnnfm(nn),

where the factors fm(np) and fm(nn) depend on the
nucleon energy εlab = Elab/Ap and on the nuclear-
matter density. The problem of the nuclear-medium
effect on the nucleon–nucleon interaction has been
examined by many authors. For example, numerical
calculations of the total cross sections for nucleon–
nucleon interaction in nuclear matter were performed
in [43] on the basis of the Dirac–Brueckner approach,
4
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while the parametrization of these cross sections was
given in [44] by means of introducing the correction
factors

fm(np) =
1 + 20.88ε0.04lab ρ2.02

1 + 35.86ρ1.90
, (4.7)

fm(nn) =
1 + 7.772ε0.06lab ρ1.48

1 + 18.01ρ1.46
,

where the energy and density are given in MeV and
fm−3 units. It can be seen that, in the particular case
of free nucleons, where ρ = 0, we have fm(np) =
fm(nn) = 1; with increasing density, the factors in
question and, hence, the effective cross sections de-
crease.11) It is difficult to calculate the convolution
integrals with the correction factors in the above form
and with allowance for the dependence of the den-
sity on r; therefore, we restrict ourselves to deriving
qualitative estimates of the nuclear-medium effect on
total cross sections for nucleus–nucleus reactions. In
Fig. 7, the results of such calculations are illustrated
for the case where the nuclear densities in (4.7) are
assumed to be constant (ρ = ρ̄ = ρ̄p + ρ̄t) for any
region of location of an interacting-nucleon pair. De-
noting by ρ0 = ρp(0) + ρt(0) the total density at the

11)In microscopic approaches where nucleus–nucleus poten-
tials are constructed on the basis of the double-folding pro-
cedure, there arise similar problems of taking into account
the dependence of nucleon–nucleon potentials on energy
and nuclear densities. However, the Glauber–Sitenko ap-
proach possesses the advantage that the main energy depen-
dence has already been taken into account in parametrizing
the cross section σNN for free-nucleon scattering.
P

centers of colliding nuclei, we then present the results
obtained by calculating the cross section for (solid
curves) free-nucleon scattering (at ρ̄ = 0), as well as
for (points) ρ̄ = (1/20)ρ0, (dotted curves) (1/6)ρ0,
(dash-dotted curves) (1/3)ρ0, and (dashed curves)
ρ0. One can see that the inclusion of the medium
factor may lead to the reduction of the cross section
by 4 to 7%, the nuclear-matter dependence appearing
to be highly nonlinear.

5. CONCLUSION AND COMPARISON
WITH EXPERIMENTAL DATA

(i) It has been shown that the original expression
for the eikonal phase shift within the microscopic ap-
proach can be represented in a form that is convenient
for use—namely, one of the two profile functions there
for the pointlike-nucleon density in nuclei has been
transformed into the nuclear-density profile in that
expression. This is convenient since the latter can be
directly obtained from independent experiments—for
example, from data on nuclear form factors.

(ii) The microscopic approach is based on the
calculation of eikonal phase shifts. These have been
significantly simplified—namely, the original four-
dimensional integrals for them have been reduced to
one-dimensional integrals. In contrast to the existing
practice of calculating phase shifts by means of
representing nuclear densities in the form of Gaussian
functions, we have also demonstrated here wide pos-
sibilities for employing realistic density distributions
in the form of (symmetrized) Fermi functions, whose
parameters for the majority of the nuclei can be found
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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in existing tables. Moreover, all of the functions ap-
pearing in the one-dimensional integrals for eikonal
phase shifts are specified explicitly, which simplifies
the relevant calculations significantly.

(iii) Two methods have been presented for deriv-
ing the parameters c and d of the pointlike-nucleon
density ρ0

SF(r, c, d) in nuclei: one relies on experi-
mental information about nuclear form factors, while
the other consists in rescaling on the basis of the
parameters of the nuclear density ρSF(r,R, a). It has
turned out that the distinction between these two
methods may lead to a distinction between the calcu-
lated cross sections that exceeds characteristic errors
in their experimental measurements. We believe that
the derivation of the infolded densities ρ0

SF(r) from the
respective form factors obtained by dividing nuclear
form factors by the nucleon form factor and, if neces-
sary, by taking into account the factor associated with
center-of-mass motion (as was done, for example,
in [29]) would be a more justified method.

(iv) In the course of methodological calculations,
it has been shown that the root-mean-square value
of the range of nucleon–nucleon interaction and the
root-mean-square nucleon radius can be taken to be
identical (r2

N rms = r2
0 rms). Slight distinctions between

them are within the accuracy of their determination,
this introducing virtually no changes in the calculated
total reaction cross sections. At the same time, the
rather simple expressions (2.16) and (2.17) can be
used for the convolution integral if r2N rms = r2

0 rms, the
convolution integral (2.17) of two density-thickness
functions, the nuclear and the pointlike one, reduces
to a rather simple one-dimensional integral.

(v) In many cases, the Coulomb distortion of the
trajectory must be taken into account in calculating
cross sections. This may be done by formally replac-
ing, in the phase shift χ(b), the impact parameter b by
bc according to (4.4). It does not seem reasonable to
take additionally into account the nuclear distortion,
since the parameters of the nuclear potential itself
must be determined from a numerical fit to experi-
mental data with allowance, in general, for the same
total cross sections that are to be explained within the
Glauber–Sitenko approach.

(vi) We have not been able to obtain a definitive
answer to the question of whether it is necessary to
introduce the factor fm correcting the dependence
of nucleon–nucleon cross sections on the nuclear-
medium density. Estimations have revealed that, in
the region of intermediate energies, this factor does
not generate significant corrections to total cross
sections. Moreover, the use of the factors fm(np)
and fm(nn) presented in [44] is rather difficult in
calculations usually performed in practice. This dif-
ficulty arose, for example, in the simpler problem of
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
analyzing data on proton–nucleus scattering [45].
Moreover, Gaussian functions were taken for basic
nuclear densities both in [44] and in [45], and the
replacement of these functions by realistic ones may
change conclusions on the form of fm themselves.
For example, the agreement between the results of the
calculations and experimental data on the total cross
sections for reactions induced by the interaction be-
tween protons and nuclei, alpha particles and nuclei,
and 12C nuclei at intermediate energies was attained
in [46] with realistic densities ρF(r) and a factor fm
that differs in form from that which was presented
above.12)

(vii) Our calculations revealed that, in the case of
comparatively light projectile nuclei, it is more advis-
able to use the convolution integral in the form (3.17),
where the profile function ρ0

p(s) for the pointlike-
nucleon density in the projectile nucleus is simu-
lated by a modified Gaussian function ρ0

Ḡ
, which is

determined with the aid of (3.6) and (3.7) in terms
of the parameters of a realistic symmetrized Fermi
function, these parameters being taken, for example,
from Table 2. In the case of heavier projectile nuclei,
it is more reasonable to employ the convolution in-
tegral in the form (2.16), where, for both nuclei, one
can substitute the explicit expressions known for the
Fourier–Bessel profiles of the realistic densities in the
form of a symmetrized Fermi function [see Eq. (3.22)].
In all calculations, we have taken into account the
Coulomb distortion of the trajectories.

(viii) We note that the problem of correctly em-
ploying the input formula (2.4) for computing the
convolution integral has not been properly discussed
in the available literature. If a finite range of nucleon–
nucleon interaction (a2

N �= 0) is taken explicitly into
account, it involves both densities for pointlike in-
tranuclear nucleons. If, however, the root-mean-
square nucleon radius is taken to be identical to
the range of nucleon–nucleon interaction, then the
nucleon–nucleon factor f(ξ) disappears from this
integral; concurrently, one of the pointlike-nucleon
densities transforms into the distribution of the
nuclear-matter density. At the same time, by no
means does the absence of the factor f(ξ) in such an
integral imply that use was made of the zero-range
approximation for the nucleon–nucleon interaction.
Confusion arises if one speaks about the zero-range
approximation, setting, in fact, a2

N = (2/3)r
2
N rms = 0

12)In the calculations of the real part of the double-folding
nucleus–nucleus potential, the nuclear-medium effect on
the nucleon–nucleon potential is parametrized in terms of
simpler dependences of fm in the form of power-law and
exponential functions of the density ρ(r) (see, for example,
[47]).
4
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Fig. 8. Results of the calculations for the total cross sections along with experimental data from [48]. For the parameters of
nuclear densities, use was made of data known from experiments on electron–nucleus scattering (see main body of the text).
The Coulomb distortion of the trajectories was taken into account.
in the original integral (2.4) and employing, at the
same time, tabular data for both densities (that is,
nuclear densities instead of pointlike-nucleon densi-
ties).

In Figs. 8a and 8b, the results of our calculations
are given along with experimental data from [48].
The parameters of the density distributions in the
form of a symmetrized Fermi function were taken
from Table 1. For the 12C projectile nucleus, the
PH
parameters c and d of the density ρ0
SF are given

in Table. 2, while, for the 20Ne nucleus, they were
calculated by formula (4.3) on the basis of data
given in Table 1. The convolution integral was used
in the form (3.17). Only the Coulomb distortion
of the trajectories was taken into account. Thus,
no free parameters were introduced. One can see
that, in all cases, with the exception of those of
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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12C + 89Y and 20Ne + 27Al reactions, there is
good agreement with experimental data. The dis-
crepancies in the aforementioned cases may be due
to determining the density parameters for the odd
nuclei 89Y and 27Al from form factors in electron–
nucleus scattering (see the respective references
in [28]) by formulas for spinless nuclei. This dis-
crepancy can be removed by taking into account
the medium factor fm in the calculations. How-
ever, we believe that, first of all, it is necessary
to refine data on the densities of these nuclei. It
is also worth noting that the calculations in [48],
which employed Gaussian functions [22] and which
reproduced the tails of the density distributions,
yielded, for the reactions indicated in Figs. 8a and
8b, overestimated cross-section values beyond the
experimental errors. Possibly, this was due to the
use of nuclear densities instead of pointlike-nucleon
ones (see above). At the same time, the calculations
in [49] with uniform distributions for target nuclei
and Gaussian distributions for projectile nuclei led
to underestimated cross sections for 20Ne + 12C
and 12C + 27Al reactions, although nuclear root-
mean-square radii (rather than those for pointlike-
nucleon distributions) were used there to determine
the “step” radius Ru in (3.3). This result com-
plies with what is shown in Fig. 3 for the cal-
culation of cross sections with unrealistic density
functions.
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Abstract—The nature of quantum description is clarified. It is shown that complex-valued probability
amplitudes are admissible within classical Hamiltonian mechanics. According to standard probability
theory, such a description is always possible. The case of a spherical phase space is considered. It is shown
that, in such a classical theory, there appears a universal constant that has dimensions of action (h), as
well as Fock space and all attributes of quantum mechanics. Excitations of a chain of such systems are
described by the equations of quantum mechanics with a correct normalization condition. It is shown
that an answer to the question of what a particle and its wave function are is provided by quantum
field theory (these are a single-particle field excitation and a function that describes it). Experiments are
proposed that would make it possible to solve the problem of the physical nature of the wave function.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In getting acquainted with quantum mechanics,
there arise a number of questions. These include the
following: Why is a wave associated with a particle,
and what is the nature of this wave? Why is this wave
complex-valued? Why is this a “probability wave”?
As one obtains deeper insights into this theory, the
main problem comes to the fore: quantum mechanics
is a probabilistic theory, but a quantity that appears
to be its main object is a complex function ψ (a
probability amplitude, also referred to as a “complex
probability”) rather than a probability. This brings
about new questions:

(i) Why is it necessary to harness complex-valued
probabilities and why is standard probability theory
(its main object being a probability densityw ≥ 0) not
applicable?

(ii) What are connections between a theory fea-
turing complex-valued probabilities and a standard
theory—is the former a generalization of the latter,
or, on the contrary, can it be obtained as a particular
case?

(iii) Does a quantum-mechanical description not
impose constraints on a probabilistic description of
processes in spacetime?

There are reasons to believe that other problems
and paradoxes—namely, the particle-wave duality
(uncertainty relation), the integrity of the photon (an

*e-mail: lev.prokhorov@pobox.spbu.ru
1)Extended version of the report presented at the session of the
Department of Nuclear Physics, Russian Academy of Sci-
ences, on November 29, 2000, at the Institute of Theoretical
and Experimental Physics (ITEP, Moscow).
1063-7788/04/6707-1299$26.00 c©
extended particle in a theory involving a local inter-
action), the origin of the Planck constant h, para-
doxes associated with the description of macroscopic
bodies in terms of a wave function (for example,
Schrödinger’s paradox concerning a superposition
of states of “a living and a dead cat” [1], and the
Einstein–Podolsky–Rosen paradox [2])—are of a
subordinate character and will be clarified upon
resolving the question of why it is necessary to invoke
complex-valued probabilities.

In this study, we consider the question of the
nature of a quantum-mechanical description and of
its place in standard probability theory. The ensuing
exposition is organized as follows.

First of all, we find out (Section 2) whether it is
possible—and if so, in which cases—to construct,
within classical probability theory, a description in
terms of auxiliary functions whose bilinear combina-
tions yield probability densities (distributions) (see
also [3]). It turns out that one can easily indicate
examples of such systems. Their basic properties are
the following: factorability of the distribution in phase
space (that is, W (q, p) = w1(q)w2(p); this property
is desirable, but it is not necessary) and finiteness of
the motion in it (the requirement that the probability
be normalizable). A transition to complex-valued
canonical variables (q, p→ z, z̄, z = (q + ip)/

√
2)

highlights the similarity of the mathematical formal-
ism of original classical Hamiltonian theory to the
formalism of quantum mechanics (the role of the
complex variable z is analogous to the role of the
probability amplitude).

In Section 3, it is shown that classical probability
theory [4] admits the existence of a theory relying
2004 MAIK “Nauka/Interperiodica”
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on the concept of a probability amplitude (albeit this
theory does not specify rules according to which one
should treat such amplitudes). Moreover, the repre-
sentation of the probability density in terms of the
squared modulus of some complex-valued function is
a necessary and sufficient condition for the existence
of an absolutely continuous probability distribution.
In connection with the requirement that the motion
be finite in phase space, we will examine the sim-
plest case where the phase space is a sphere (Sec-
tion 4). As a result, it turns out that (a) in the
theory, there appears a universal constant that has
dimensions of action (volume of the two-dimensional
phase space)—it is natural to associate it with the
Planck constant h; (b) there exists a transformation
that maps a sphere onto a complex plane and which
proves that a system whose phase space is spherical
is equivalent to a Hamiltonian system specified by
the canonical variables z and z̄ that possesses a non-
trivial symplectic structure, which can be interpreted
as a Gibbs distribution for a harmonic oscillator; (c)
random variables of this system (entire functions)
form a Fock space; (d) the random variables zn/

√
n!

are eigenfunctions of the harmonic-oscillator-energy
operator; and (e) energy is quantized, Ē = �ω. As a
matter of fact, a probabilistic theory in such a phase
space contains the entire mathematical formalism of
quantum mechanics, including the Planck constant
and commutation relations for canonical variables.
It should be emphasized that we imply a description
within classical probability theory.

It can easily be shown (see Section 5) that, in the
continuous limit, a chain of such systems character-
ized by an oscillatory interaction between the nearest
neighbors leads to one-dimensional relativistic quan-
tum mechanics and that, in the nonrelativistic limit,
we arrive at the Schrödinger equation and at the for-
mula w ∼ ψ∗ψ for the probability density. It is natural
to set the spacing between neighboring systems, a, to
a value about the Planck length lP = 1.6× 10−33 cm.
Thus, we see that, in the model being discussed,
a quantum theory on the real axis is obtained as a
limiting case of a classical structure that is discrete at
short distances and which is described within stan-
dard probability theory. Similar results arise in more
intricate cases as well (such as those featuring a po-
tential, an arbitrary dimensionality of relevant spaces,
and a multicomponent wave function).

In Section 6, we emphasize that quantum field
theory does indeed unambiguously solve the problem
of an “elementary particle” and of its wave function:
a particle is a quantum (that is, a single-particle
excitation) of the corresponding field, while its wave
function is a function that describes a single-particle
excitation of the field, this being fully consistent with
P

the proposed model. In Section 7, we discuss ex-
periments that would make it possible to clarify the
nature of the wave function. In Section 8, which
concludes the present article, we give a summary
of our analysis. The Appendix contains some points
of a purely mathematical character (various cases of
bilinear expressions for the probability density and the
proof of some formulas given in Section 4).

It should be noted that attempts at exploring pro-
found connections between classical (“determinis-
tic”) and quantum theories were made in the recent
studies of ’t Hooft [5] and Man’ko andMarmo [6] (the
former was motivated by the problem of a quantum-
mechanical description of a gravitational field—see
references quoted in [5]).

Problems discussed in this article were formulated
rather long ago, but they have recently become quite
urgent. First of all, this is explained by the accu-
mulation of new experimental data concerning the
most important statements of quantum mechanics
(Bell’s inequalities [7, 8], Bose–Einstein condensa-
tion [9], Schrödinger’s paradox of “a living and a dead
cat” [10], quantum mechanics of particles in a grav-
itational field [11]). Second, this is associated with
the perception of the gravity of problems that arise
in quantizing a gravitational field [5, 12]. The point
here is not even that the gravitational Lagrangian
is nonrenormalizable, which prevents a calculation
of corrections to the main process. Anyway, this is
nothing but a kind of flaw common to all local field
theories. A more serious problem is associated with
the existence of black holes, where there occurs a loss
of information. According to [13], a black hole radi-
ates as a blackbody, but, within a theory specified by
a self-conjugate Hamiltonian, the evolution operator
is unitary, in which case no dissipative processes are
possible [12].

All of this caused enormous and quite justified
interest in the foundations of quantum mechanics.
The present study gives an answer to the question
of how quantum mechanics employing probability
amplitudes and containing a fundamental constant
that has dimensions of action (h) may appear within
classical theory. Of course, this is impossible in Eu-
clidean physical space. In order to accomplish this
goal, it is necessary to go beyond it by representing,
say, a one-dimensional space by a chain of oscillators.
A probabilistic theory is obtained if such a chain
is placed in a heat bath. By identifying the Gibbs
distribution for an oscillator with the measure of the
phase-space volume, one can then equate this volume
to the Planck constant h. As a result, the evolution
of perturbations of the chain in the continuous limit,
where the spacings between oscillators tend to zero,
is described by one-dimensional quantum theory. The
fundamental structure (chain) is now discrete, which
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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removes the problem of ultraviolet divergences; as to
the heat bath, not only does its presence explain the
appearance of probabilities in the theory, but this also
provides the possibility of dissipative processes in the
system.

By no means is the present consideration aimed
at questioning the validity of quantum mechanics in
the microcosm or its corollaries. The objective of this
study is to seek a more general theory that is free from
the aforementioned difficulties. The proposed model
faithfully reproduces standard quantum mechanics in
the continuous limit.

2. PRELIMINARY DISCUSSION

We will now address the question of whether
the probability distribution (probability density) can
be given by a bilinear function of dynamical vari-
ables within standard probability theory. Suppose
that a state of a matter point is characterized by a
probability density W (q, p), where q and p fix the
point in two-dimensional phase space [W can also
be the probability of finding the particle within a
rectangle that is specified by the vertex coordinates
(±q,±p)]. If the probability densitiesw1(q) andw2(p)
on the q and p axes are independent, then W (q, p) =
w1(q)w2(p). This circumstance can be represented in
different forms. If, for example, w(w1, w2) is the two-
dimensional vector formed by the components w1 and
w2, we haveW = wĝw/2 ≡ (w,w)/2, where ĝ = σ1

is a metric tensor, σ1,2,3 being the Pauli matrices.
We emphasize that the dependence of W on the
two-dimensional vector w has a bilinear form: such
dependences, which are characteristic of quantum
mechanics, are not alien to classical probability
theory.

Different forms of presentation are also possible.
Along withw, we introduce the conjugate vector w̄ =
= wσ3. We then have W = w̄ ∧w/2, where ∧ sym-
bolizes the external product of vectors and the density
is the bivector measure |W| (area specified by the
bivector). There is yet another form of presentation
that is more appropriate for our purposes.

Hamilton’s equations of motion q̇ =
= ∂H/∂p = {q,H} and ṗ = −∂H/∂q = {p,H},
where H is a Hamiltonian function and {, } is a
Poisson bracket, can be written in terms of the com-
plex numbers z = (q + ip)/

√
2 and z̄ = (q − ip)/

√
2,

{z, z̄} = −i: ż = −i∂H(z, z̄)/∂z̄ (see, for example,
[14]). If, by using the functions w1,2, one forms the
complex number

w(q, p) = w1(q) + iw2(p), (2.1)

then
W = |w̄ ∧w/2i| = w1w2 (2.2)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
(we treat w1 and iw2 as the components of a 2-
vector). But in this case, we have to restrict ourselves
to the positive quadrant of the complex plane, since
the physical domain is specified by the inequalities
w1,2 ≥ 0. The entire plane spanned by w1 and w2 can
be used only upon unambiguously defining w beyond
the physical domain. Yet, one could assume w to be
arbitrary in intermediate calculations, setting w1,2 ≥
0 only in the ultimate expressions. For example, w
may be an analytic function of z; that is,

w = w1(q) + iw2(p) = w(q + ip).) (2.3)

The last equality is a functional equation. Its solution
is given by a linear function w(z) = bz + c, where
Im b = 0. Without loss of generality, we set b = 1 and
c = 0 in the following. If the Hamiltonian is invari-
ant under rotations in the complex plane, that is, if
H(z′, z̄′) = H(z, z̄), where

z′ = exp(iα)z, (2.4)

then a “coordinate axis” can be chosen arbitrarily (we
will need this circumstance).

Thus, a description in terms of complex numbers
that is extended to the entire complex plane is appro-
priate only for distributions of quite a particular form.
The “complex probability” w(z) is proportional to the
canonical variable z; therefore, it follows from the
normalizability of probabilities that motion in phase
space must be finite (as motion on a Riemann sphere
or on a torus). There is the following duality: the
variable z plays two roles—it is a dynamical variable,
on one hand, and a “complex probability,” on the
other hand; that is,

canonical variable← z

→ probability amplitude.

To the best of my knowledge, Strocchi [14] was
the first who paid attention to the fact that, upon a
transition to complex-valued canonical variables, the
mathematical formalism of classical theory becomes
closer to the quantum-mechanical formalism. A
construction of specific models belonging to the type
in question is given in Sections 4 and 5, along with
the discussion of reasons behind the probabilistic
description of a particle.

If phase space is compact (or if motion in it is finite
for one reason or another), the meaning of the Planck
constant h becomes clear—it relates the probabilityP
to the area of the phase space (P ∼ |qp|/h). If, further,
z is a dimensionless quantity, it is necessary that there
exist yet another world constant (l), having dimen-
sions of length; we then have z = (q/l + ilp/h)/

√
2.

It is natural to identify the constant l with the Planck
length: l ∼ lP. It should also be noted that one can
4
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render the formalism fully real by making the substi-
tution i→ −iσ2.

In order to define the probability in a general case
featuring a “complex” coordinate axis—that is, in
the case where q and p are complex numbers—we
introduce the vector z(zq, zp) = zqeq + zpep, where zq
and zp are complex numbers and eq,p are basis vectors
in phase space. We then have

W = iz̄ ∧ z = i(z∗qzp − z∗pzq)e, (2.5)

where e = eq ∧ ep is a unit bivector. The probability
is then given by the coefficient of e.

Finally, one can go over from the measure
w1(q)w2(p)dqdp in the phase space to the trivial
measure dQdP by making the noncanonical trans-
formation specified by the relations (see [15]) dQ =
w1(q)dq and dP = w2(p)dp. It can easily be proven
that the ultimate formalism will be canonical and
will feature a nontrivial symplectic form. Upon going
over to the complex variables Z = (Q + iP )/

√
2,

we arrive at a theory characterized by a nontrivial
symplectic manifold. In the Appendix, we present
various generalizations of expressions (2.2) and (2.5),
including those for arbitrary distributions w(q, p) and
for Grassmann variables.

3. THEOREM ABOUT A CHARACTERISTIC
FUNCTION

We will now find out whether standard probability
theory admits a description in terms of probability
amplitudes. The following theorem is proven in prob-
ability theory [4, p. 100].

A complex-valued function f(t) of a real-valued
variable t is a characteristic function for an absolutely
continuous distribution if and only if it admits the
representation

f(t) =

∞∫

−∞

g(t + θ)g(θ)dθ, (3.1)

where g(θ) is a complex-valued function of a real-
valued variable θ such that

∞∫

−∞

|g(θ)|2dθ = 1.

A distribution is absolutely continuous if it is specified
by the probability density p(x) ≥ 0. The characteristic
function f(t) is the Fourier transform of the function
p(x); that is,

f(t) =

∞∫

−∞

dxeitxp(x).
PH
Going over to a new function ψ(x) as

g(θ) = (2π)−1/2

∞∫

−∞

dxψ(x)eiθx,

we recast expression (3.1) into the form

p(x) = |ψ(x)|2. (3.2)

The equality in (3.2) establishes a relationship be-
tween the mathematical formalism of quantum me-
chanics and the formalism of probability theory.
From (3.2), it follows that, for any absolutely con-
tinuous distribution on the real axis, the probability
density can always be represented as the squared
modulus of a complex-valued function from L2 (that
is, a function belonging to a Hilbert space), and
vice versa: |ψ(x)|2, where ψ ∈ L2, always specifies
some absolutely continuous probability distribution.
But these are functions that are used in quantum
mechanics. From here, it follows that a quantum-
mechanical probabilistic description is within the
standard conceptual framework of probability theory
as specified by Kolmogorov’s axioms [16]. It does not
constrict standard probability theory.

However, the aforesaid does not mean that noth-
ing new appears upon going over to complex-valued
functions ψ(x) (probability amplitudes). If one as-
sumes that the function ψ(x) corresponds to some
“physical reality” [2] and takes it as a basis for a
physical theory, it is necessary to specify rules accord-
ing to which one would treat probability amplitudes.
Obviously, they must be such that the rules accord-
ing to which one treats probability distributions and
which follow from them will be consistent with Kol-
mogorov’s axioms [16]. The axioms of a theory that
is based on the concept of a probability amplitude
are formulated in [17]. In the following, a theory that
employs probability amplitudes will be referred to as a
quantum theory.

4. HAMILTONIAN MECHANICS
OF A SYSTEM WHOSE PHASE SPACE IS

COMPACT

Spherical phase space. Suppose that the phase
space of a particle is a sphere S2 of radius R. The
area 2-form is then ω2 = R2 sin θdϕ ∧ dθ, and the
respective Poisson bracket is given by

{f, g} =
1

R2 sin θ

(
∂f

∂ϕ

∂g

∂θ
− ∂f

∂θ

∂g

∂ϕ

)

.

It is well known that, with the aid of a stereo-
graphic projection, a sphere can be mapped onto the
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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complex plane Z, |Z| = 2R cot θ/2 and argZ = ϕ, a
2-form being defined there as

ω2 =
1
2i

(

1 +
Z̄Z

4R2

)−2

dZ̄ ∧ dZ.

This is an example of a noncanonical transformation
to the new canonical variables Z and Z̄ (transition to
a Riemann sphere) with a new Poisson bracket,

{f, g} = 2i
(

1 +
Z̄Z

4R2

)2(
∂f

∂Z̄

∂g

∂Z
− ∂f

∂Z

∂g

∂Z̄

)

.

The following mapping of a sphere onto a complex
plane admits a clear physical interpretation:

|z|2 =
1
β

ln
1

2βR2 sin2 θ/2
, arg z = ϕ, (4.1)

ω2 =
dz̄ ∧ dz

i
e−βz̄z. (4.2)

Setting z = (q + ip)/
√

2 and 1/β = kT in (4.2), we
arrive at the Gibbs distribution for an oscillator,

G(q, p) = e−H/kT , (4.3)

where H = (p2 + q2)/2. Thus, a dynamical system
that has one degree of freedom and whose phase
space is spherical is equivalent to an oscillator in
a heat bath. Going over to a new Hamiltonian ac-
cording to the relationH → H̃ = p2/2m+ γq2/2 and
equating the area of the phase space to h, we obtain

∫
dqdpe−βH̃ =

2π
ω

1
β

= h(= 4πR2), (4.4)

ω =
√

γ

m
.

The mean energy of an oscillator is

Ē = h−1

∫
dqdpH̃e−βH̃ =

1
β
. (4.5)

With allowance for (4.4), this yields

Ē = �ω (� = h/2π). (4.6)

It is natural to identify the constant h with the Planck
constant. Considering further that G(q, p)dqdp/h,
which is proportional to an element of the phase-
space area, specifies the probability distribution in the
phase space, we can represent the probability P (A)
corresponding to an event A in the form

P (A) =
∫

A
e−βHdqdp/h =

S(A)
h

, (4.7)

where S(A) is the area of the region A of the phase
space.

Fock space. Surprisingly, a system whose phase
space Γ is compact (suppose that Γ is a sphere)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
opens the way to a probabilistic description. Indeed,
there is a natural measure (area) on a sphere—that is,
there appears, in a natural way, the probability space
(Ω,A, P ) [18], where Ω (set of elementary events) is
the set of points on the sphere, A is the Borel set
(algebra) of all subsets of Ω, and P is a nonneg-
ative function (probability distribution) specified on
A (for example, it can be specified by the condition
requiring that the probability density p be constant on
the sphere, p(θ, ϕ) = 1/4πR2). There is a fact that is
still more important: it was established above that a
sphere admits such a mapping onto a complex sphere
that a particle on a sphere system can be interpreted
as a harmonic oscillator in a heat bath system.
This circumstance introduces radically new elements
in the theory. An oscillator whose state is controlled
by the Gibbs distribution characterized by some tem-
perature is an object described within probability the-
ory. Concurrently, there appears, however, tempera-
ture and the possibility of dissipative processes, the
temperature being expressed in terms of h and being
a world constant. A fact that is even more noteworthy
is that random complex quantities form a Fock space.

Let us first discuss an ordinary case. In a one-
dimensional space R1, one can consider three differ-
ent constructions: classical Hamiltonian mechanics,
statistical mechanics for a phase space in the form of a
plane, and quantummechanics. It is only necessary to
specify a Hamiltonian (and a temperature in the sec-
ond case; the Poisson bracket is assumed to have a
conventional form, since the phase space in question
is a plane).

In the case of a spherical phase space, the Poisson
bracket is determined by the measure of the sphere’s
surface area—that is, by a nontrivial symplectic form.
Concurrently, it turns out that (i) the problem of a
“free” particle is equivalent to the problem of a particle
in a plane phase space with a nontrivial symplec-
tic form; (ii) a harmonic oscillator in a heat bath
system is obtained upon going over to a statistical
description; and (iii) random orthogonal variables of
the system form a basis in the respective Fock space.
The first two statements were validated above.Wewill
now prove the third one.

We denote

dµ(z̄, z) =
dz̄ ∧ dz

2πi
e−z̄z

=
dq ∧ dp

2π
e−(q2+p2)/2 (4.8)

(

z =
q + ip√

2

)

.

The measure in (4.8) is normalized to unity. En-
tire complex-valued functions f(z) of order ρ ≤ 2
form a set of random complex-valued quantities [18,
4
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Chapter Х]; also, 〈|f(z)|2〉 =
∫
dµ|f(z)|2. They form

a Hilbert space where the scalar product is defined
as [18, Chapter Х]:

(f, g) =
∫

dµ(z̄, z)f(z)g∗(z̄) (4.9)

(g∗(z̄) = g(z)).

The Hilbert space where the scalar product is speci-
fied by Eq. (4.9) is a Fock space [19, page 72] [“scalar
field in (0 + 1) spacetime”—only one oscillator re-
mains from the field]. Indeed, it can easily be shown
that the functionsZn(z) = zn/

√
n! form an orthonor-

malized basis in this space (see Appendix); that is,

(Zn, Zm) = δnm.

Further, we have

z̄Zn(z̄) =
√
n + 1Zn+1(z̄),

d

dz̄
Zn(z̄) =

√
nZn−1(z̄); (4.10)

that is, the multiplication of the functions Zn(z̄) by z̄
and their differentiation with respect to z̄ are identical
to the action of the operators â+ and â on the state |n〉
of a harmonic oscillator. That the operator â = d/dz̄ is
the Hermitian conjugate of the operator of multiplica-
tion by z̄ (that is, â+) follows from the definition of the
scalar product in (4.9) with allowance for (4.8) (see
Appendix); therefore, the notation Zn(z̄) = 〈z̄|n〉 is
appropriate. The random complex-valued quantities
Zn(z̄) are eigenfunctions of the harmonic-oscillator-
energy operator Ĥ = â+â + 1/2 = z̄d/dz̄ + 1/2. The
commutator of the operators â and â+ is equal to
unity ([â, â+] = 1); in view of the relation z̄ = (q −
ip)/
√

2, which is equivalent to q̂ = (â + â+)/
√

2
and p̂ = (â− â+)/i

√
2, it follows that [q̂, p̂] = i and

Ĥ = (q̂2 + p̂2)/2. In the Appendix, we derive the
corresponding commutation relations that take ex-
plicitly into account the reduced Planck constant �

([â, â+] = � and [q̂, p̂] = i�). Thereby, we reproduce
the quantum-mechanical formalism of a harmonic
oscillator. Within this model, the classical equations
of motion are modified. According to (4.2), the Pois-
son bracket assumes the form

{f, g} = ω(z̄, z)
(
∂f

∂z̄

∂g

∂z
− ∂f

∂z

∂g

∂z̄

)

, (4.11)

ω(z̄, z) = ieβz̄z.

From the above, we derive ż = {z,H} = ieβz̄z(−z),
which leads to

z(t) = e−iω
∗tz(0),

since {eβz̄z,H} = 0; here, ω∗ = eβz̄z (see Appendix
for details).
PH
Since analytic functions are determined by their
values on the boundary of their analyticity domain,
one can go over to an equivalent description in terms
of complex-valued random variables on the real axis,
ψn(q). Introducing eigenfunctions of the operator Ĥ
on the q axis, 〈q|n〉 = Hn(q), where

Hn(q) = (2nn!
√
π)−1/2Hn(q)e−q

2/2

is an orthonormalized set of Hermite functions, we
can construct the kernel of the unitary operator
U(z̄, q) relating the entire complex-valued functions
f(z) of the Fock space to the functions ψ(q) from L2

on R1; that is,

U(z̄, q) =
∑

n

〈z̄|n〉〈n|q〉 (4.12)

=
∑

n

Zn(z̄)Hn(q) = π−1/4e−
z̄2+q2

2
+
√

2qz̄.

The function U(z̄, q) possesses the property (see Ap-
pendix)

∞∫

−∞

dqU(z, q)U(z̄, q) = ez̄z,

where the exponential function ez̄z is the kernel of the
identity operator for the scalar product specified by the
measure in (4.8) (“complex delta function”). Further,
we have∫

dµ(z̄, z)U(z, q)U(z̄, q′) = δ(q − q′)

and
∞∫

−∞

dqU(z̄, q)Hn(q) = Zn(z̄),

∫
dµ(z̄, z)Zn(z)U(z̄, q) = Hn(q);

that is, the functions Zn(z) correspond to eigenfunc-
tions of a harmonic oscillator on the q axis.

We note that, here, a transition from a statisti-
cal description (Gibbs distribution) to a quantum-
mechanical description (Fock space) does not involve
any “quantization procedure.” There only occurs here
a transition from a probabilistic Gibbs distribution to
a set of the distributions

|Zn(z)|2 exp (−|z|2)

fully in accordance with standard probability theory
(see Section 3). Thus, a Hilbert space appears here
as one of the possible schemes of description that
are compatible with classical probability theory. The
recognition of a superposition of random quantities
as admissible (physical) states—that is, the inclusion
of the superposition principle in the scheme—would
appear to be an actual quantization.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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5. QUANTUM MECHANICS

Chain of oscillators. Within the model formu-
lated in Section 4, there was only a possibility of a
quantum description. We will now construct a classi-
cal probabilistic model in which states and processes
are described in terms of quantum mechanics. We
will consider a chain of N oscillators introduced in
Section 4, the corresponding Lagrangian being (γ̃ �
γ > 0)

L =
1
2

∑

i

[q̇2
i − γ̃(qi − qi+1)2 −m2q2

i ], (5.1)

q̇i =
dqi
dt

.

Perturbations propagate along the chain, so that, if
only one oscillator was excited at the initial instant
t0, then the excitation wave will reach the other ones
with time. According to the Poincaré [20] theorem,
the integral

P (S) =
1
h

∫

S

∑

i

dqi ∧ dpi (5.2)

over an arbitrary surface S in 2N-dimensional phase
space RN

q ×RN
p does not change with time. On the

other hand, the integral in (5.2) can be interpreted,
according to (4.7), as the probability distribution on
a 2D surface in 2N-dimensional space, that is, as
the probability of recording an event either in the
2D region

∫
S dq1 ∧ dp1, or in the region

∫
S dq2 ∧ dp2,

etc; therefore, the conservation of the integral in (5.2)
is equivalent to probability conservation. It should
be emphasized that probability conservation follows
from the laws of classical Hamiltonian mechanics. In
the continuous limit, where the spacing a between
the oscillators tends to zero (a→ 0, i→∞, ai→ x,
qi/
√
a→ ϕ(x), γ̃a2 → 1), expression (5.1) reduces to

the Lagrangian for a massive scalar field; that is,

L =
1
2

∫
dx(ϕ̇2 − ϕ′2 −m2ϕ2). (5.3)

From (5.3), one readily obtains the Klein–Fock–
Gordon equation of motion

(�−m2)ϕ = 0.

We now recall that ϕ can be treated as the probability
amplitude; that is, the propagation of the field ϕ(x, t)
along the chain can be treated as the propagation of
a “complex-probability” wave. However, the field ϕ is
real-valued; in order to extract a probability amplitude
(wave function) from solutions to the equation of
motion, it is therefore necessary to make use of its
general solution,

ϕ(x, t) =
∫

d2kδ(k2
0 − k2 −m2) (5.4)
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× f(k0, k) exp[−i(k0t− kx)].

In view of manifest relativistic invariance of the
theory, the probability density on the x axis must
transform as the zero component of a conserved 2-
vector. Such a vector cannot be constructed from the
real-valued solution in (5.4). However, the function
in (5.4) can be broken down, in a relativistically
invariant way, into positive-frequency and negative-
frequency solutions [those featuring, respectively,
the exponentials exp(iEkt) and the exponentials
exp(−iEkt), whereEk =

√
k2 + m2]. From them, we

construct the conserved vectors
jµ = iε(E)(ϕ∗

±∂µϕ± − ∂µϕ
∗
±ϕ±), (5.5)

where the functions

ϕ±(x, t) =
∫

dk

4πEk
f(±Ek,±k) exp[∓i(Ekt− kx)]

correspond to “positive”-energy (ϕ+ ∼ exp(−iEkt))
and “negative”-energy (ϕ− ∼ exp(iEkt)) solutions.
The appearance of the sign ε(E) of energy in (5.5)
is associated with the requirement that the Lorentz-
invariant integral

∫
dxj0 be positive,

∫
dxj0 > 0. The

condition
∫
dxj0 = 1 is the normalization condition

for probabilities. It is the, expression in (5.5) forE > 0
that is used in the relativistic quantum mechanics
of bosons, although the density j0 is not positive
definite. In order to verify that this expression for the
probability density on the x axis is in accord with the
above definition of the probability in (2.5), we recall
that z and z̄ are canonically conjugate quantities.
Here, ϕ and π = ∂L/∂ϕ̇ = ϕ̇ are canonically con-
jugate; introducing the complex 2-vector Φ(ϕ+, π+)
and using (2.5), we therefore find that the probability
density on the x axis is given by j0e = iΦ̄∧Φ, so that

j0 = i(ϕ∗
+π+ − π∗

+ϕ+) = i(ϕ∗
+ϕ̇+ − ϕ̇∗

+ϕ+),

which is fully consistent with (5.5). For monochro-
matic waves, this is the invariant normalization of
“2E particles in a unit volume.” Setting now ϕ =
exp(−imt)ψ, we arrive, in the nonrelativistic limit, at
the Schrödinger equation for a free particle,

iψ̇ = −ψ′′/2m,

with j0 ∼ ψ∗ψ. This example demonstrates how,
within classical probability theory, one can obtain
a quantum description, including the superposition
principle, since the sum of solutions is also a solution.

The model in question is a chain of coupled os-
cillators that are placed in a heat bath and which
are described statistically. There arises the question
of how the concept of a wave function can appear
in such a system, since each oscillator is described
by the Gibbs distribution (4.3). The answer is nearly
obvious. First, the particles here, in contrast to what
4
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occurs in the case of N particles in a heat bath,
form an ordered chain where only the nearest neigh-
bors interact. In other words, this is not a stan-
dard case considered in statistical physics. Second,
a particle affects its neighbors only through one of
the two canonical variables (namely, through q). The
Lagrange equations of motion are formulated only for
one of the two variables appearing in the probability
distribution. Of the canonical variables, the second
half, which are necessary for calculating probabilities,
are reconstructed from Hamilton’s equations of mo-
tion. Herein lies the reason behind the appearance of
quantities whose bilinear combinations yield proba-
bilities; these quantities carry probabilistic informa-
tion, but they are not probabilities themselves.

Schrödinger equation for a particle in a force
field specified by a potential U(x) is obtained in the
following way. Instead of the Lagrangian in (5.1), we
take

L =
1
2

∑

i

[q̇2
i − γ̃(qi − qi+1)2 −m2q2

i − 2mU0(i)q2
i ].

Going over to the continuous limit, where a→ 0,
i→∞, ai→ x, qi/

√
a→ ϕ(x), etc., under the con-

ditions γ̃a2 → 1 and U0(i)→ U(x), we obtain the
Lagrangian density

L =
1
2

(ϕ̇2 − ϕ′2 −m2ϕ2 − 2mU(x)ϕ2), (5.6)

which yields, in the nonrelativistic limit, the Schrö-
dinger equation with the potential U(x). It is now
straightforward to construct the entire formalism of
one-dimensional quantummechanics—that is, to in-
troduce the operators x̂ and p̂ satisfying the appropri-
ate commutation relation, the Hilbert space of state
vectors, uncertainty relations, the superposition prin-
ciple, etc. We note, however, that only the formalism
of quantummechanics will be reproduced in this way;
at the moment, it does not follow from anywhere that
all of this concerns the description of a particle, since
the concept of a “particle” has yet to be specified.
Only upon constructing a quantum field theory can
one speak about particles.

Quantum mechanics in k-dimensional space.
The above construction can easily be generalized to
the case of a space having an arbitrary number of
dimensions. For this, we choose aCartesian system of
coordinates in a k-dimensional Euclidean space and
place oscillators (elementary systems) at integral-
valued points. Each oscillator is then characterized
by k integers n(n1, ..., nk); its coordinate q is de-
noted by ϕ(n). The interaction of the neighbors is
specified by the function V (∆ϕ1(n), . . . ,∆ϕk(n)) ≈
V (0) + V,i(0)∆ϕi(n) + V,ij(0)∆ϕi(n)∆ϕj(n)/2 +
m2ϕ2(n)/2, where ∆ϕi(n) = ϕ(n) − ϕ(ni), ni =
P

n(n1, . . . , ni − 1, . . . , nk), and V,i = ∂V/∂∆ϕi(n).
Setting V,i(0) = 0 and V,ij(0) = γ̃δij , we find that,
in the limit where ai → a→ 0, ni →∞, nia→ xi,
and γ̃a2 → 1, the Lagrangian

L =
1
2

∑

(n)

[
ϕ̇2(n, t)− γ̃

(
∆ϕi(n, t)

)2 (5.7)

−m2ϕ2(n, t)
]

=
1
2

∑

(n)

Πai

[(
ϕ̇(n, t)

(Πai)1/2

)2

− γ̃
∑

i

a2
i

(
∆ϕi(n, t)
ai(Πai)1/2

)2

−m2ϕ
2(n, t)
Πai

]

[here, Πai =
∏i=k
i=1 ai, and summation is performed

over the set (n1, . . . , nk)] takes a familiar form,

L =
1
2

∫
dkx[ϕ̇2 − (∂iϕ)2 −m2ϕ2]. (5.8)

In the nonrelativistic limit, we arrive at the Schrö-
dinger equation in k-dimensional space. Following
the same line of reasoning as in the above one-
dimensional model, we can straightforwardly obtain
the Schrödinger equation for a particle in a potential
field.

Quantummechanics featuring amulticompo-
nent wave function. It is straightforward to con-
struct a theory that describes an “isospin” state of a
particle as well. The “isospin” indices j number the
components ϕj and πj of the canonical variables of
an elementary system. Thus, it is assumed that the
elementary system is multidimensional and that the
quantities ϕj realize a representation of some simple
group—that is, the sublimiting Lagrangian is invari-
ant under this group.

While the description of “intrinsic” degrees of free-
dom of a particle does not present any serious dif-
ficulties, it is impossible to introduce spin variables
in so straightforward a way. This is because “space-
time” appears only upon going over to a continuous
limit, whence it follows that relativistic tensor indices
(that is, spin variables) cannot be introduced in a
natural way in an elementary system. Since the re-
sult is known from the outset, this can be done, of
course; however, the resulting construction will be
quite artificial. In this respect, fields of half-integer
spin will cause still greater difficulties. Their inclu-
sion in the scheme being considered is associated
with an even more serious question—a simulation
of supersymmetry. This problem is of importance in
and of itself, irrespective of the origin of a quantum
description; it is related to the fundamental properties
of the physical object referred to as “spacetime.” Spin
variables appear in a natural way in constructing a
theory involving superstrings.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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6. WAVE FUNCTION AND PLANCK
CONSTANT

Wave function and “wave–particle” duality.
According to [2], each element of physical reality
must be reflected in a physical theory. What physical
reality corresponds to a wave function? It is obvious
that the answer to this question will clarify the prob-
lem of “particle–wave” duality.

The question of how a “wave” (wave function)
is related to a “particle” (matter point) has arisen
since the beginning of the quantum era. Originally,
Schrödinger assumed that a particle is a wave packet.
However, a wave packet spreads with time, while a
particle is not. De Broglie assumed that linear quan-
tum mechanics is a limit of some nonlinear theory
admitting singular solutions that are identified with
particles (double-solution theory), but linear quan-
tum mechanics reproduces experimental data to an
extremely high degree of precision. That the problem
in question was considered in its original formulation
dating back to the 1920s, when present-day quantum
field theory had yet to be developed, was a weak point
of all subsequent attempts at interpreting quantum
mechanics.

According to Sections 2, 4, and 5, a wave function
describes a state of the chain of excited oscillators
[correspondence qi(t)/

√
a↔ ϕ(x, t) in Section 5].

This is fully consistent with quantum field theory,
which provides a clear answer to the question of what
a particle (for example, the electron) is: a particle is
a quantum (single-particle excitation) of the corre-
sponding field. This excitation is inevitably nonlocal
(inasmuch as its energy is finite), and the very concept
of a “pointlike particle” is inapplicable to such an
object. Nonetheless, the electron is considered as the
quintessence of a pointlike particle and, according
to quantum mechanics, can be recorded within an
arbitrarily small region of space. This also seems to be
fully consistent with the obvious fact that the interac-
tion of fields is local. We will show that not only does
quantum field theory remove the problem of wave–
particle duality, but it also resolves the problem of
physical reality behind the concept of a wave function.

In quantum field theory, a single-particle excita-
tion is described by the state vector

Â(f)|0〉, (6.1)

where Â(f) = −i
∫
d3xÂ(x)

↔
∂ 0 f(x), Â(x) is the

operator of the scalar fieldA(x), and |0〉 is the vacuum
vector. The function f(x) characterizes a field excita-
tion. On the other hand, f(x) is the wave function for
the single-particle excitation being considered—that
is, for a particle; therefore, one can give the following
answers to above questions.
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(i) The wave function for a particle is a function
that describes a single-particle excitation of the cor-
responding field, which is precisely the physical reality
behind the wave function.

(ii) A single-particle nonlocal field excitation be-
haves as a pointlike particle; that is, it is produced
and absorbed as a discrete unit in an arbitrarily small
region of space.

This gives an answer to questions concerning the
nature of wave–particle duality and solves the prob-
lem of “photon integrity” (a photon is emitted and
absorbed as a discrete unit). Indeed, a field (for ex-
ample, an electromagnetic field) is a set of coupled
oscillators. Fields interact locally—that is, each os-
cillator interacts with the corresponding oscillator of
another field (for example, of an electron–positron
field). A given oscillator cannot lose the entire amount
of its energy without affecting neighboring oscillators,
since this would lead to a discontinuity of the func-
tion that describes the corresponding field. However,
such states are impossible since they correspond to
infinite energies. Indeed, the Hamiltonian of any bo-
son field involves a (∇ϕ)2 term, and a discontinuity
in ϕ would mean the emergence of a nonintegrable
singularity of the form [δ(x)]2 in this term. Therefore,
the process of field interaction is not completed until
neighboring oscillators transfer their energy to a given
and, ultimately, different field. This explains, on one
hand, why a particle can be found at any spatial point
where ψ(x) �= 0 (any excited oscillator can interact
with any other field) and, on the other hand, why
particles behave as discrete units in quantum me-
chanics (a single-particle excitation is produced and
absorbed entirely by virtue of the continuity of fields).
The meaning of uncertainty relations also becomes
clearer. The uncertainty in the coordinate of a par-
ticle is a property inherent in the object (nonlocal
field excitation) that is associated with the particle.
We emphasize once again that, within quantum field
theory, the answer to the question of what the nature
of a wave function is appears to be fully consistent
with the results presented in Sections 2 and 5: the
field ϕ is a dynamical variable, while a function that
characterizes an excitation of this field is, accord-
ing to (6.1), a wave function—that is, dynamical
variable–probability amplitude duality indicated
in Section 2 holds.

This, at first glance obvious, statement on the
essence of the wave function has far-reaching corol-
laries. The simplest of these is the possibility of break-
ing down or composing quanta—for example, the
possibility of breaking down a photon or an elec-
tron into two, three, etc., parts. It seems that this is
impossible for the reasons listed immediately above.
However, the prohibition is removed by resorting to
4
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macroscopic bodies, which, on the scale of the mi-
crocosm, possess an indefinitely great energy. Indeed,
the possibility of partitioning an electron was demon-
strated about twenty years ago through the obser-
vation of the fractional quantum Hall effect [21] (the
authors of that study were awarded a Nobel prize of
1998 in physics for their discovery). Recently, there
appeared articles [22] reporting on a direct observa-
tion of objects with charges of e/3 and e/5, where e is
the electron charge.

Thus, the problem of the meaning of the wave
function is solved within quantum field theory. Con-
currently, answers are given to a number of important
questions, such as wave–particle duality, the integrity
of the photon (and of other quanta), and uncertainty
relations. However, the question of why field theory
invokes probability amplitudes remains open, and this
is one of the fundamental questions. Moreover, there
arise new questions. The most important of these is
the following: If a field excitation is indeed a wave
function, why is the equation for the wave function
linear? Is it not true that fields are described by non-
linear equations?

In order to answer the first question, one has to
address physics at Planck distances (it is necessary to
construct a quantized-field model). It turns out that
the reason behind the appearance of probabilities in
it is identical to the reason behind the appearance
of a probabilistic description in quantum mechanics
(Sections 4, 5). These issues will be discussed in a
dedicated publication. The answer to the last question
is simple: field theory is linear in the corresponding
Fock space.

Planck constanthhh. The appearance of the Planck
constant h in a theory is usually thought to be a signal
of a transition to quantum theory. That this is not so
follows from a simple example. This is a mechanical
system having one degree of freedom and a compact
phase space Γ. Suppose that this is a sphere of radius
R. The classical Hamiltonian mechanics of such a
particle will then inevitably contain, from the outset, a
constant that is fundamental for this theory and which
has the same dimensionality as h—this is the phase-
space area (4πR2). Thus, we see that, within classical
PH
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Hamiltonian mechanics, one can construct dynami-
cal systems involving a quantum of the action func-
tional. From the aforesaid, it does not follow, how-
ever, that such systems have no bearing on quantum
mechanics. Although the appearance of h in a theory
does not mean an automatic transition to a quantum
description, one can construct, from such systems,
whose phase space is compact, a structure (chain)
whose excitations are described in terms of quantum
mechanics (see Section 5). It is natural to expect that
such structures appear at Planck distances.

7. SOME EXPERIMENTAL CONSEQUENCES

The following experiment will enable us to give an
answer to the fundamental question of whether it is
possible to break down a photon.

In Fig. 1, light from a source S finds its way to
photomultiplier tubes (1, 2). In the experiment being
discussed, one records (i) the number Nc of events in
which both photomultiplier tubes are actuated (the
counter C records only coincidences) and (ii) the
number Nn of events in which only one of the pho-
tomultiplier tubes is actuated (the counter C now
records only such events).

In Fig. 2, light from a source is incident on a semi-
transparent mirror (П) and then goes to photomulti-
plier tubes (1, 2). There is the following alternative:

(i) In accordance with the generally accepted in-
terpretation of quantum mechanics, the number of
simultaneous actuations of the photomultiplier tubes
in the experiment depicted in Fig. 2 is Nc/2 (since
the probability that two photons hit the mirror П
simultaneously is equal to the probability that they
hit photomultiplier tubes 1 and 2 simultaneously in
Fig. 1).

(ii) In accordance with [3] and with the results
presented in Sections 2, 5, and 6, the number of si-
multaneous actuations of photomultiplier tubes in the
scheme depicted in Fig. 2 is Nc/2 + Nn/4 because
the number of single photons hitting the mirror П
is one-half as great as the total number of photons
hitting the photomultiplier tubes 1 and 2 in Fig. 1 and
because, in half of the cases, part of the wave goes
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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toward the photomultiplier tube 1, while its remaining
part goes toward the photomultiplier tube 2, both
parts being recorded.

It is desirable that the experiment depicted in
Fig. 2 be implemented in two versions: (1) the
distance between the photomultiplier tubes 1 and 2
is longer than the photon coherence length and (2)
the distance between them is shorter than the photon
coherence length. Since Nn > Nc for nondegenerate
light, the effect in question can be discovered even
with instruments whose sensitivity is moderate.

A similar experiment is possible for electrons as
well. In a branched quantum wire, an electron can
break down into two or more parts (depending on
the number of lines at the branch point of the wire).
This would yield an independent (and more direct
in relation to that in [22]) piece of evidence for the
partitioning of an electron.

8. CONCLUSIONS

The facts that have been established in the present
study and which are of importance for obtaining
deeper insights into the nature of a quantum descrip-
tion are the following:

(i) Theories are possible in which there is a duality
in the sense that complex canonical variables are si-
multaneously probability amplitudes (Sections 2, 4).

(ii) Standard probability theory admits a descrip-
tion of stochastic processes in terms of complex-
valued probability amplitudes (Section 3).

(iii) In a classical theory whose phase space is
compact, there is a fundamental constant (h), the
phase-space area, having the dimensionality of action
(Section 4).

(iv) A particle whose phase space is spheri-
cal system is equivalent to a particle whose phase
space is a plane and has a nontrivial symplectic
structure system. Here, (a) the resulting distribution
is identical to the Gibbs distribution for an oscillator
in a heat bath and (b) random variables in such a
phase space form a Fock space.

(v) In the case of a spherical phase space, the
time evolution of a particle state can be described by
(a) classical mechanics featuring a nontrivial Pois-
son bracket, (b) classical statistical mechanics with
a Gibbs distribution for a harmonic oscillator, or (c)
probability theory involving distributions in the phase
space that are specified by orthonormalized (oscilla-
tor) functions in the corresponding Fock space (that
is, |Zn(z)|2 exp (−z̄z); see Section 4).

(vi) Quantum mechanics on the real axis arises in
the classical system of linearly ordered oscillators in a
heat bath (Section 5).
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This approach is characterized by the following
features: recourse to physics at Planck distances,
discreteness of the fundamental structure, determin-
ism (classical mechanics), and possibility of dissi-
pative processes. The reason behind the emergence
of probabilities in quantum mechanics (even for a
free particle in Euclidean space) becomes clear. The
fact that the wave function, which is an object of a
theory where there is no determinism, obeys a causal
equation of motion is also explained.

’t Hooft [5], who studied the possibility of a quan-
tum description of gravitation (it was indicated above
that, in the quantum theory of gravitation, there is loss
of information in black holes in addition to the obvious
difficulty associated with the nonrenormalizability of
the theory), formulated similar requirements on the
theory.

Let us consider the classical limit h→ 0 in (4.4).
It corresponds to zero temperature of the heat bath:
T = �ω/k → 0. Since, according to (4.4), the radius
R of the Riemann sphere then tends to zero, the
concept of a probability distribution on it loses mean-
ing; therefore, the possibility of dissipative processes
disappears, so that the theory becomes deterministic
in accordance with ’t Hooft’s hypothesis that quanti-
zation appears as the result of dissipative processes at
Planck distances [5] (see also [23]).

Finally, it should be noted that the idea of a curved
momentum space of the Universe (see, for exam-
ple, [24, p. 52] and references therein) proved to be
useful for physics at Planck distances.

As will be shown in a dedicated publication, the
proposed approach makes it possible to construct, in
a natural way, a string model (chain of oscillators on
a segment) and a superstring model (for example, a
Ramon–Neveu–Schwarz superstring). This leads to
the appearance of noncommuting (Grassmann) vari-
ables and of excitations featuring an angular momen-
tum of �/2 and to a clarification of the nature of the
Dirac sea. Moreover, a model that unifies all interac-
tions, including gravitational interaction, is obtained
if one assumes that space is a network formed by
superstrings (this unification is due to the fact that
superstring excitations contain all fields). By con-
struction, the resulting theory will be supersymmetric
(by virtue of the supersymmetry of the Lagrangian)
and will not contain ultraviolet divergences (by virtue
of the original discreteness of the model).

Note added in proof. A subsequent analysis has
revealed that quantum mechanics is a statistical the-
ory of nonequilibrium states of ordered structures
(chains of oscillators in a heat bath) characterized by
a long relaxation time.
4
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APPENDIX

Generalization of the Formulas Presented
in Section 2

Arbitrary dimensions. The results given in Sec-
tion 2 can easily be generalized to the case of space
having an arbitrary number n of dimensions. Indeed,
we assume that

W (x1, . . . , xn) = w1(x1) . . . wn(xn). (A.1)

Further, we form the vectors

wi =
n∑

j=1

αijwjej , (A.2)

where αij are elements of some nondegenerate ma-
trix, detα �= 0. We then have

W =
1

detα
w1 ∧ . . . ∧wn (A.3)

= w1(x1) . . . wn(xn)e1 ∧ . . . ∧ en ≡We.

Arbitrary densities. The factorability require-
ment (A.1) is not necessary. We assume that

W (x, y) =
∑

k

w
(k)
1 (x)w(k)

2 (y). (A.4)

Instead of (A.2), we can then form the vector

w =
∑

i=1,2

∑

k

w
(k)
i e(k)

i , (A.5)

where

e(k)
i ≡ ei ⊗ εεε(k), (A.6)

e(k)
i ∧̇e

(k
′
)

j ≡ ei ∧ ejεεε(k) · εεε(k
′
),

ei ∧ ej = εije, εεε(k) · εεε(k
′
) = δkk

′
,

ε12 = 1

[the vectors εεε(k) form an orthonormalized basis in
a space whose dimensionality is determined by the
number of terms in the sum on the right-hand side
of (A.4)], and the conjugate vector

w̄ =
∑

i=1,2

∑

k

(−1)δi2w(k)
i e(k)

i . (A.7)

By analogy with (A.3), we have

W =
1
2
w̄∧̇w =

∑

k

w
(k)
1 w

(k)
2 e = We; (A.8)

that is, probabilities are given by bilinear forms of
auxiliary quantities in the present case as well. A
generalization of formulas (A.4)–(A.8) to the case of
a space having an arbitrary number of dimensions is
trivial.
PH
Complex variables. If the variables q and p are
complex-valued from the outset (that is, if q describes
a system having two degrees of freedom), then we
have q(±) = (q1 ± iq2)/

√
2, p(±) = (p1 ∓ ip2)/

√
2,

{q(±), p(±)} = 1, z(+) = q(+)eq + p(+)ep, and

W(+) = iz(+)∗ ∧ z(+)

≡ i[q(+)∗ ∧ p(+)eq ∧ ep + p(+)∗ ∧ q(+)ep ∧ eq].

Here, the external product q(+)∗ ∧ p(+) is the product
of the 2-vectors q(+)∗ and p(+) whose components
are (q∗1/

√
2,−iq∗2/

√
2) and (p1/

√
2,−ip2/

√
2); that

is, q(+)∗ ∧ p(+) = −i(q∗1p2 − q∗2p1)/2.
Fermions. We introduce ψ = qθ/

√
2 and ψ+ =

q∗θ̄/
√

2, where q is a complex number; θ = θ1 + iθ2;
and θ̄ = θ1 − iθ2, with θ1 and θ2 being real-valued
generators of the Grassmann algebra, [θ1, θ2]+ = 0.
In this case, the Lagrangian is linear in velocities
(L ∼ ψ+ψ̇), so that pψ = ψ+. For z, we take z =
ψeq + ψ+ep. We define

W = z ∧ z = ψ · ψ+eq ∧ ep
+ ψ+ · ψep ∧ eq = qq∗θ · θ̄e,

where θ · θ̄ = θθ̄ = 2iθ2θ1; the probability is then the
factor in front of θθ̄e.

Proof of the Formulas Presented in Section 4
The orthonormality of the functions Zn(z) is

proven by performing integration by parts in the
scalar product

(zn, zm) =
∫

dz̄ ∧ dz

2πi
e−z̄zznz̄m

=
∫

dz̄ ∧ dz

2πi
zn
(

− d

dz

)m
e−z̄z = n!δnm (m ≥ n);

for n ≥ m, it is necessary to perform differentiation
with respect to z̄. Formula (4.12) follows from the
expansion

e−z
2+2zq =

∞∑

n=0

Hn(q)
zn

n!

(the exponential here is the generating function for
Hermite polynomials). We will now present the proof
of the fact that exp (z̄z) is the kernel of the identity
operator:

∫
dµ(ζ̄ , ζ)ezζ̄f(ζ) =

∫
dζ̄ ∧ dζ

2πi
e−ζ̄ζ+zζ̄f(ζ)

=
∫

dζ̄ ∧ dζ

2πi
e−ζ̄ζf(ζ + z) = f(z);

in the last equality, we have used the expansion of
the function f(ζ + z) in a Taylor series in ζ . The
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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derivation of other formulas that are associated with
U(z̄, q) does not involve any difficulties either.

In order to take � into account explicitly, we go
over to the Hamiltonian

H̃ =
1
2

√
γ

m

(
p2

√
γm

+
√
γmq2

)

= ω ˜̄zz̃,

z̃ =
q̃ + ip̃√

2
, q̃ = q(γm)1/4, p̃ = p(γm)−1/4.

We then have
dz̄ ∧ dz

i
e−βz̄z → d˜̄z ∧ dz̃

i
e−βω ˜̄zz̃ ≡ dµ̃, βω = 1/�

(instead of z̃, we will write z in the following). Further,
if â+ ↔ z̄, then

∫
dµ̃f(z)z̄g∗(z̄) =

∫
dµ̃�

d

dz
f(z)g∗(z̄);

that is, â↔ �
d

dz̄
, whence it follows that [â, â+] = �

and [q̂, p̂] = i�.
According to (4.11), the classical equations of mo-

tion have the form

ż = {z, H̃} = iez̄z/�(−ωz);

that is, z(t) = exp (−iω∗t)z(0) =
exp (−iĒ∗t/�)z(0), where ω∗ = ω exp (z̄z/�).

Obviously, Żn(z) = −iωn exp (z̄z/�)Zn(z); that
is, Ē∗

n = �ω∗n. This is precisely the equation for the
state vector of a harmonic oscillator with energy Ē∗

n
in the corresponding Fock space.
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Abstract—The preliminary LEP2 data on e+e− → l+l− scattering are analyzed to establish a model-
independent search for the signals of virtual states of the Abelian Z ′ boson. The recently introduced
observablesmake it possible to pick up uniquely the AbelianZ ′ signals in these processes. The mean values
of the observables are in accordance with the Z ′ existence. However, the accuracy of the experimental data
is deficient to detect the signal at more than a 1σ C.L. The results of other model-independent fits and
further prospects are discussed. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The recently stopped LEP2 experiments have ac-
cumulated a huge amount of data on four-fermion
processes at the c.m. energies

√
s ∼ 130–207 GeV

[1, 2]. Besides the precision tests of the Standard
Model (SM) of elementary particles, these data allow
the estimation of the energy scale of a new physics
beyond the SM.

Various approaches to detect manifestations of
physics beyond the SM have been proposed in
the literature. They can be subdivided into model-
dependent and model-independent methods. The
former usually means the comparison of experimental
data with the predictions of some specific models
which extend the SM at high energies. In this way,
some popular grand unified theories, the supersym-
metry models, as well as the theories of technicolor
or extra dimensions, are intensively discussed and
the values of couplings, mixing angles, and parti-
cle masses are constrained. In particular, model-
dependent bounds are widely presented in the LEP
reports [1, 2].

In the model-independent approach, one fits some
effective low-energy parameters such as four-fermion
contact couplings. Below the scale of the heavy par-
ticle decoupling, various theories beyond the SM can
be described by the same set of effective contact in-
teractions between the SM particles. The only differ-
ence is in the values of the corresponding coefficients,
which can be fitted by experimental data. This idea is
elaborated in the effective Lagrangian method [3] as
well as in the helicity “models” introduced by the LEP

∗This article was submitted by the authors in English.
**e-mail: gulov@ff.dsu.dp.ua
***e-mail: skalozub@ff.dsu.dp.ua
1063-7788/04/6707-1312$26.00 c©
collaborations (LL, RR, . . . ) [1, 2]. An advantage of
the approach is the restricted set of parameters which
describe the low-energy phenomenology of any model
beyond the SM for a specified scattering process. Un-
fortunately, each effective model-independent param-
eter conceals a number of different scenarios of new
physics. As a consequence, the model-independent
approach makes it possible to detect a signal of new
physics, but it cannot distinguish the particle (defined
by specific quantum numbers) responsible for the sig-
nal.

It seems to us that it is reasonable to develop
model-independent searches for the manifestations
of heavy particles with specific quantum numbers.
Such an approach is intended to detect the signal of
some heavy particle (for example, the heavy neutral
vector boson) by means of the data of the LEP2 or
other experiments without specifying a model beyond
the SM. In this way, it is also possible to derive
model-independent constraints on the mass and the
couplings of the considered heavy particle. To develop
this approach, one has to take into account some
model-independent relations between the couplings
of the heavy particle as well as some features of the
kinematics of the considered scattering processes.

In the present paper, we focus on the problem of
model-independent searches for signals of the heavy
Abelian Z ′ boson [4] by means of the analysis of the
LEP2 data on the lepton processes e+e− → µ+µ−

and e+e− → τ+τ−. This particle is a necessary ele-
ment of different models extending the SM. The low
limits on its mass estimated for a variety of popular
models (χ, ψ, η, L–R models [5] and the Sequential
Standard Model (SSM) [6]) are found to be in the
wide energy interval 600–2000 GeV [1, 2]. In what
follows, we assume that theZ ′ boson is heavy enough
to be decoupled at the LEP2 energies.
2004 MAIK “Nauka/Interperiodica”
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In the previous papers [7], we argued that the low-
energy Z ′ couplings to the SM particles satisfy some
model-independent relations, which are the conse-
quences of renormalizability of a theory beyond the
SM, remaining in other respects unspecified. These
relations, called the renormalization-group (RG) re-
lations, predict two possible types of low-energy Z ′

interactions with the SM fields, namely, the chiral
and the Abelian Z ′ bosons. Each Z ′ type is described
by a few couplings to the SM fields. Therefore, it is
possible to introduce observables which uniquely pick
up the Z ′ virtual state [7].

TheZ ′ signal in the four-lepton scattering process
e+e− → l+l− can be detected with a sign-definite
observable, which is ruled by the c.m. energy and
an additional kinematic parameter. The incorporation
of the next-to-leading terms in m−2

Z′ allows one to
consider the Z ′ effects beyond the approach of four-
fermion contact interactions [8]. As a consequence,
the four-fermion contact couplings and the Z ′ mass
can be fitted separately.

The introduced observable can be computed di-
rectly from the differential cross sections. However,
the statistical errors of the available differential cross
sections of LEP2 experiments are one order of magni-
tude larger than the accuracy of the corresponding to-
tal cross sections and the forward–backward asym-
metries. Fortunately, the differential cross sections
of the e+e− → l+l− processes at the LEP2 energies
(including the one-loop radiative corrections) can be
successfully approximated by a two-parametric poly-
nomial of the cosine of the scattering angle. This
makes it possible to recalculate the observable from
the total cross sections and the forward–backward
asymmetries, reducing noticeably the experimental
uncertainty.

Thus, the outlined analysis has to answer whether
or not one could detect the model-independent signal
of the AbelianZ ′ boson by treating the LEP2 data. As
will be shown, the LEP2 data on the scattering into µ
and τ pairs lead to the AbelianZ ′ signal at about a 1σ
confidence level.

The paper is organized as follows. In Section 2,
the necessary information on the model-independent
description of the Z ′ interactions at low energies and
the RG relations are given. In Section 3, the observ-
ables to pick up theZ ′ boson uniquely are introduced.
In the last section, the results on the LEP data fit
and the conclusions as well as further prospects are
discussed.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
2. Z ′ COUPLINGS TO THE SM PARTICLES

The Abelian Z ′ boson can be introduced in a
model-independent (phenomenological) way by de-
fining its effective low-energy couplings to the SM
particles. Such a parametrization is well known in the
literature [4]. Since we are going to take account of
the Z ′ effects in the e+e− → l+l− process at LEP2
energies

√
s� mZ′ , we parametrize the Z ′ interac-

tions induced at the tree level only. As the decoupling
theorem [9] guarantees, they are of renormalizable
type, since the nonrenormalizable interactions are
generated at higher energies due to radiation cor-
rections and suppressed by the inverse heavy mass
(mZ′ in our case). The SM gauge group SU(2)L ×
U(1)Y is considered as a subgroup of the underlying
theory group. Thus, the mixing interactions of the
types Z ′W+W−, Z ′ZZ, . . . are absent at the tree
level. Under these assumptions, the Z ′ couplings to
the fermion and scalar fields are described by the
Lagrangian

L =
∣
∣
∣
∣

(

Dew,φ
µ − ig̃

2
Ỹ (φ)B̃µ

)

φ

∣
∣
∣
∣

2

(1)

+ i
∑

f=fL,fR

f̄ γµ
(

Dew,f
µ − ig̃

2
Ỹ (f)B̃µ

)

f,

where φ is the SM scalar doublet, B̃µ denotes the
massive Z ′ field before the spontaneous breaking
of the electroweak symmetry, and the summation
over all SM left-handed fermion doublets fL =
{(fu)L, (fd)L} and the right-handed singlets fR =
{(fu)R, (fd)R} is understood. The notation g̃ stands
for the charge corresponding to the Z ′ gauge group,
and Dew,φ

µ and Dew,f
µ are the electroweak covari-

ant derivatives. Diagonal 2× 2 matrices Ỹ (φ) =
diag(Ỹφ,1, Ỹφ,2), Ỹ (fL) = diag(ỸL,fu , ỸL,fd) and
numbers Ỹ (fR) = ỸR,f mean the unknown Z ′ gen-
erators characterizing the model beyond the SM.

In particular, the Lagrangian (1) generally leads to
the Z–Z ′ mixing of order m2

Z/m
2
Z′ which is propor-

tional to Ỹφ,2 and originated from the diagonalization
of the neutral vector-boson states. The mixing con-
tributes to the scattering amplitudes and cannot be
neglected at the LEP2 energies [10].

The Z ′ couplings to a fermion f are parametrized
by two numbers ỸL,f and ỸR,f . Alternatively, the cou-
plings to the axial-vector and vector fermion currents,
alZ′ ≡ (ỸR,l − ỸL,l)/2 and vlZ′ ≡ (ỸL,l + ỸR,l)/2, can
be used. Their values are determined by an unknown
model beyond the SM. Assuming an arbitrary under-
lying theory, one usually supposes that the parame-
ters af and vf are independent numbers. However,
4
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if a theory beyond the SM is renormalizable, these
parameters satisfy some relations. For the Z ′ boson,
this is reflected in the correlations between af and
vf [7]. These correlations are model-independent in
a sense that they do not depend on the underlying
model. A detailed discussion of this point and the
derivation of the RG relations are given in [7]. Therein,
it is shown that two types of Z ′-boson interactions
are admitted—the chiral and the Abelian ones. In the
present paper, we are interested in the Abelian Z ′

couplings, which are described by the relations

vf − af = vf∗ − af∗ , af = T3,f Ỹφ, (2)

Ỹφ,1 = Ỹφ,2 ≡ Ỹφ,
where T3,f is the third component of the fermion weak
isospin, and f∗ means the isopartner of f (namely,
l∗ = νl, ν∗l = l, . . .).

The relations (2) ensure, in particular, the invari-
ance of the Yukawa terms with respect to the ef-
fective low-energy subgroup Ũ(1) corresponding to
the Abelian Z ′ boson. As follows from the relations,
the couplings of the Abelian Z ′ to the axial-vector
fermion currents have a universal absolute value pro-
portional to the Z ′ coupling to the scalar doublet.
So, in what follows, we will use the short notation
a = al = −Ỹφ/2. Note also that the Z–Z ′ mixing is
expressed in terms of the axial-vector coupling a.

An important benefit of the relations (2) is the
possibility of reducing the number of independent
parameters of new physics. For example, they can
be used to relate the coefficients of the effective La-
grangians [11]. Due to a fewer number of independent
Z ′ couplings, the amplitudes and cross sections of
different scattering processes are also related. As a
result, one is able to pick up the characteristic signal
of the Abelian Z ′ boson in these processes and to fit
successfully the corresponding Z ′ couplings. In the
present paper, we take into account the RG relations
(2) in order to introduce the observables convenient
for uniquely detecting the Abelian Z ′ signals in LEP
experiments and to obtain the corresponding experi-
mental constraints on the signal.

3. OBSERVABLES

3.1. The Differential Cross Section

Let us consider the processes e+e− → l+l− (l =
µ, τ ) with nonpolarized initial- and final-state fer-
mions. In order to introduce the observable which
selects the signal of the Abelian Z ′ boson, we need
to compute the differential cross sections of the pro-
cesses up to the one-loop level.

The lower order diagrams describe the neutral
vector-boson exchange in the s channel (e+e− →
P

V ∗ → l+l−, V = A,Z,Z ′). As for the one-loop cor-
rections, two classes of diagrams are taken into
account. The first one includes the pure SM graphs
(the mass operators, the vertex corrections, and
the boxes). The second set of one-loop diagrams
improves the Born level Z ′-exchange amplitude by
“dressing” the Z ′ propagator and the Z ′-fermion
vertices. We assume that Z ′ states are not excited
inside loops. Such an approximation means that
the Z ′ boson is completely decoupled. Then, the
differential cross section consists of the squared tree-
level amplitude and the term from the interference of
the tree-level and one-loop amplitudes. To obtain an
infrared-finite result, we also take into account the
processes with the soft-photon emission in the initial
and final states.

Various computational software programs for
calculation of amplitudes and cross sections have
been developed. For example, the SM cross sections
in the LEP fits are usually generated with ZFITTER.
However, ZFITTER requires severe modifications to
incorporate the effects of heavy particles beyond the
SM. Therefore, we perform the necessary calcula-
tions with other software programs. The Feynman
diagrams and the amplitudes are generated with
FEYNARTS. The algebraic reduction of the one-
loop tensor integrals to scalar integrals as well as
the cross-section construction are carried out with
FORMCALC. The scalar one-loop integrals are
evaluated with the LOOPTOOLS library within the
MS renormalization scheme. The unknown Higgs
boson mass is set to 125 GeV in accordance with the
present-day bounds.

In the lower order inm−2
Z′ , the Z ′ contributions to

the differential cross section of the process e+e− →
l+l− are expressed in terms of four-fermion contact
couplings only. If one takes into consideration the
higher order corrections in m−2

Z′ , it becomes possible
to estimate separately the Z ′-induced contact cou-
plings and the Z ′ mass [8]. In the present analysis, we
keep the terms of order O(m−4

Z′ ) to fit both of these
parameters.

Expanding the differential cross section in the in-
verse Z ′ mass and neglecting the terms of order
O(m−6

Z′ ), we have

dσl(s)
dz

=
dσSMl (s)
dz

(3)

+
7∑

i=1

i∑

j=1

[
Alij(s, z) +Blij(s, z)ζ

]
aiaj

+
7∑

i=1

i∑

j=1

j∑

k=1

k∑

n=1

C lijkn(s, z)aiajakan,
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where the dimensionless quantities

ζ =
m2
Z

m2
Z′
, ε =

g̃2m2
Za

2

4πm2
Z′
, (4)

(a1, a2, a3, a4, a5, a6, a7)

=

√
g̃2m2

Z

4πm2
Z′

(a, ve, vµ, vτ , vd, vs, vb)

are introduced. In what follows, the index l = µ, τ
denotes the final-state lepton.

The coefficients A, B, C are determined by the
SM couplings and masses. Each factor may include
the tree-level contribution, the one-loop correction,
and the term describing the soft-photon emission.
The factors A describe the leading-order contribu-
tion, whereas others correspond to the higher order
corrections inm−2

Z′ .

3.2. The Observable

To take into consideration the correlations (2), we
introduce the observable σl(z) defined as the differ-
ence of cross sections integrated over some ranges of
the scattering angle θ [12]:

σl(z) ≡
1∫

z

dσl
d cos θ

d cos θ −
z∫

−1

dσl
d cos θ

d cos θ, (5)

where z stands for the cosine of the boundary angle.
The idea of introducing the z-dependent observable
(5) is to choose the value of the kinematic parameter z
in such a way as to pick up the characteristic features
of the Abelian Z ′ signals.

The deviation of the observable from its SM value
can be derived by the angular integration of the differ-
ential cross section and has the form

∆σl(z) = σl(z)− σSMl (z) (6)

=
7∑

i=1

i∑

j=1

[
Ãlij(s, z) + B̃lij(s, z)ζ

]
aiaj

+
7∑

i=1

i∑

j=1

j∑

k=1

k∑

n=1

C̃ lijkn(s, z)aiajakan.

There is an interval of values of the boundary angle
at which the factors Ãl11, B̃

l
11, and C̃

l
1111 at the sign-

definite parameters ε, εζ , and ε2 contribute more than
95% of the observable value. This makes it possible
to construct the sign-definite observable∆σl(z∗) < 0
by specifying the proper value of z∗.

In general, one could choose the boundary angle
z∗ in different schemes. In the previous papers [10,
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12], we considered just a small number of tree-level
four-fermion contact couplings and specified z∗ in or-
der to cancel the factor at the vector–vector coupling.
However, if one-loop corrections are taken into ac-
count, there are a large number of additional contact
couplings. Thus, we have to define some quantita-
tive criterion F (z) to estimate the contributions from
sign-definite factors at a given value of the boundary
angle z. Maximizing the criterion, one could derive
the value z∗, which corresponds to the sign-definite
observable ∆σl(z∗). Since the observable is linear
in the coefficients A, B, and C, we introduce the
following criterion:

F =
|Ã11|+ ωB|B̃11|+ ωC |C̃1111|

∑

all Ã

∣
∣
∣Ãij

∣
∣
∣+ ωB

∑

all B̃

∣
∣
∣B̃ij

∣
∣
∣+ ωC

∑

all C̃

∣
∣
∣C̃ijkn

∣
∣
∣
,

(7)

where the positive “weights” ωB ∼ ζ and ωC ∼ ε take
into account the order of each term in the inverse Z ′

mass.
The numeric values of the “weights” ωB and ωC

can be taken from the present-day bounds on the
contact couplings [1, 2] or [13]. As the computation
shows, the value of z∗ with an accuracy of 10−3 de-
pends only on the order of the “weight” magnitudes.
So, in what follows, we take ωB ∼ 0.004 and ωC ∼
0.00004.

The function z∗(s) is a decreasing function of the
c.m. energy. It is tabulated for the LEP2 energies
in Tables 1 and 2. The corresponding values of the
maximized function F are within the interval 0.95 <
F < 0.96.

Since Ãl11(s, z
∗) < 0, B̃l11(s, z

∗) < 0, and
C̃ l1111(s, z

∗) < 0, the observable

∆σl(z∗) =
[
Ãl11(s, z

∗) + ζB̃l11(s, z
∗)
]
ε (8)

+ C̃ l1111(s, z
∗)ε2

is negative with an accuracy of 4–5%. Since this
property follows from the RG relations (2) for the
Abelian Z ′ boson, the observable ∆σl(z∗) selects
the model-independent signal of this particle in the
processes e+e− → l+l−. This allows one to use the
data on scattering into µµ and ττ pairs in order to
estimate the Abelian Z ′ coupling to the axial-vector
lepton currents.

Although the observable can be computed from
the differential cross sections directly, it is also pos-
sible to recalculate it from the total cross sections and
the forward–backward asymmetries. The recalcula-
tion procedure has the proper theoretical accuracy.
Nevertheless, it allows one to reduce the experimental
errors on the observable, since the published data on
4



1316 DEMCHIK et al.
Table 1. The boundary angle and the observable for the
scattering into µ pairs at the one-loop level

√
s, GeV z∗ Fmax ∆σµ(z∗)

130 0.450 0.89 −729ε− 1792εζ − 19 636ε2

136 0.439 0.91 −709ε− 1859εζ − 16 880ε2

161 0.400 0.94 −643ε− 2183εζ − 6890ε2

172 0.390 0.95 −619ε− 4099εζ − 4099ε2

183 0.383 0.95 −599ε− 2545εζ − 1334ε2

189 0.380 0.96 −586ε− 2635εζ − 495ε2

192 0.380 0.96 −579ε− 2681εζ − 63ε2

196 0.380 0.96 −571ε− 2745εζ − 528ε2

200 0.378 0.95 −564ε− 2811εζ − 1137ε2

202 0.376 0.96 −560ε− 2845εζ − 1448ε2

205 0.374 0.96 −555ε− 2897εζ − 1923ε2

207 0.372 0.96 −552ε− 2932εζ − 2245ε2

the total cross sections and the forward–backward
asymmetries are still more precise than the data on
the differential cross sections.

The recalculation is based on the fact that the
differential cross section can be approximated with a
good accuracy by a two-parametric polynomial in the
cosine of the scattering angle z:

dσl(s)
dz

=
dσSMl (s)
dz

+ (1 + z2)βl + zηl + δl(z), (9)

where δl(z)measures the difference between the exact
and the approximated cross sections. The approxi-
mated cross section reproduces the exact one in the
limit of the massless initial- and final-state leptons
and if one neglects the contributions of the box dia-
grams.

Performing angular integration, it is easy to obtain
the expression for the observable,

∆σl(z∗) = σl(z∗)− σSMl (z∗) (10)

= (1− z∗2)ηl −
2βl
9
z∗(3 + z∗2) + δ̃l(z∗),

and for the total and forward–backward cross sec-
tions,

∆σTl = σTl − σ
T ,SM
l =

8βl
9

+ δ̃l(−1), (11)

∆σFBl = σFBl − σ
FB,SM
l = ηl + δ̃l(0).

Then, the factors βl and ηl can be eliminated from the
observable:

∆σl(z∗) = (1− z∗2)∆σFBl (12)
PH
Table 2. The boundary angle and the observable for the
scattering into τ pairs at the one-loop level

√
s, GeV z∗ ∆στ (z∗)

130 0.460 −687ε− 1664εζ − 25 782ε2

136 0.442 −688ε− 1779εζ − 20 784ε2

161 0.400 −625ε− 2097εζ − 10 993ε2

172 0.391 −601ε− 2263εζ − 8382ε2

183 0.385 −571ε− 2402εζ − 7580ε2

189 0.380 −568ε− 2533εζ − 5135ε2

192 0.380 −562ε− 2578εζ − 4769ε2

196 0.379 −554ε− 2640εζ − 4272ε2

200 0.378 −547ε− 2704εζ − 3761ε2

202 0.377 −543ε− 2736εζ − 3501ε2

205 0.374 −548ε− 2834εζ − 1292ε2

207 0.372 −544ε− 2868εζ − 1010ε2

− 3
12
z∗(3 + z∗2)∆σTl + ξl.

The quantity ξl,

ξl = δ̃l(z∗)− (1− z∗2)δ̃l(0) +
3
12
z∗(3 + z∗2)δ̃l(−1),

(13)

measures the theoretical accuracy of the approxima-
tion.

The forward–backward cross section is related to
the total cross section and the forward–backward
asymmetry by means of the following expression:

∆σFBl = ∆σTl A
FB
l + σT,SMl ∆AFB

l . (14)

As the computation shows, δ̃l(z∗) � 0.01∆σl(z∗),
δ̃l(0) � 0.007∆σFBl , and δ̃l(−1) � −0.07∆σTl at the
LEP2 energies. Taking into account the experi-
mental values of the total cross sections and the
forward–backward asymmetries at the LEP2 ener-
gies (∆σTl � 0.1 pb, σT,SMl � 2.7 pb, ∆AFB

l � 0.04,
AFB
l � 0.5), one can estimate the theoretical error as
ξl � 0.003 pb. At the same time, the corresponding
statistical uncertainties on the observable are larger
than 0.06 pb. Thus, the proposed approximation is
quite good and can be successfully used to obtain
more accurate experimental values of the observable.

4. DATA FIT AND CONCLUSIONS

To search for the model-independent signals of
the Abelian Z ′ boson, we will analyze the introduced
observable∆σl(z∗) on the basis of the LEP2 data set.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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In the lower order inm−2
Z′ , the observable (8) depends

on one flavor-independent parameter ε,

∆σthl (z∗) = Ãl11(s, z
∗)ε+ C̃ l1111(s, z

∗)ε2, (15)

which can be fitted from the experimental values of
∆σµ(z∗) and∆στ (z∗). As we noted above, the sign of
the fitted parameter (ε > 0) is a characteristic feature
of the Abelian Z ′ signal.

In what follows, we will apply the usual fit method
based on the likelihood function. The central value of
ε is obtained by the minimization of the χ2 function:

χ2(ε) =
∑

n

[
∆σexpµ,n(z∗)−∆σthµ (z∗)

]2

(δσexpµ,n(z∗))2
, (16)

where the sum runs over the experimental points en-
tering a chosen data set. The 1σ C.L. interval (b1, b2)
for the fitted parameter is derived by means of the
likelihood function L(ε) ∝ exp[−χ2(ε)/2]. It is deter-
mined by the equations

b2∫

b1

L(ε′)dε′ = 0.68, L(b1) = L(b2). (17)

To compare our results with those of [1, 2], we
introduce the contact interaction scale

Λ2 = 4m2
Zε

−1. (18)

This normalization of contact couplings is admitted
in [1, 2]. We use again the likelihood method to de-
termine a one-sided lower limit on the scale Λ at
the 95% C.L. It is derived by the integration of the
likelihood function over the physically allowed region
ε > 0. The exact definition is

Λ = 2mZ(ε∗)−1/2, (19)
ε∗∫

0

L(ε′)dε′ = 0.95

∞∫

0

L(ε′)dε′.

We also introduce the probability of the AbelianZ ′

signal as the integral of the likelihood function over
the positive values of ε:

P =

∞∫

0

L(ε′)dε′. (20)

Actually, the fitted value of the contact coupling ε
originates mainly from the leading-order term in the
inverse Z ′ mass in Eq. (8). The analysis of the higher
order terms allows one to estimate the constraints
on the Z ′ mass alone. Replacing ε in the observable
(8) with its fitted central value ε̄, one obtains the
expression

∆σl(z∗) =
[
Ãl11(s, z

∗) + ζB̃l11(s, z
∗)
]
ε̄ (21)
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+ C̃ l1111(s, z
∗)ε̄2,

which depends on the parameter ζ = m2
Z/m

2
Z′ . Then,

the central value on this parameter and the corre-
sponding 1σ C.L. interval are derived in the same way
as those for ε.

To fit the parameters ε and ζ , we start with
the LEP2 data on the total cross sections and the
forward–backward asymmetries [1, 2]. Those data
are converted into the experimental values of the
observable ∆σl(z∗) with the corresponding errors
δσl(z∗) by means of the following relations:

∆σl(z∗) =

[

AFB
l

(
1− z∗2

)
− z

∗

4
(
3 + z∗2

)
]

∆σTl

(22)

+
(
1− z∗2

)
σT,SMl ∆AFB

l ,

(δσl(z∗))2 =

[

AFB
l

(
1− z∗2

)

− z
∗

4
(
3 + z∗2

)
]2

(δσTl )2

+
[(

1− z∗2
)
σT,SMl

]2
(δAFB

l )2.

We perform the fits assuming several data sets, in-
cluding the µµ, ττ , and the complete µµ and ττ data,
respectively. The results are presented in Table 3. As
one can see, the more precise µµ data demonstrate
the signal of about 1σ level. It corresponds to the
Abelian Z ′ boson with a mass of the order of 1.2–
1.5 TeV if one assumes the value of α̃ = g̃2/4π to be
in the interval 0.01–0.02. No signal is found by the
analysis of the ττ cross sections. The combined fit of
the µµ and ττ data leads to the signal below the 1σ
C.L.

Note that the mean values of ε have changed by
20% in comparison with thewinter 2002 data, where-
as the uncertainties remain approximately the same.
Thus, the AbelianZ ′ signal will probably be picked up
at no more than 1σ C.L. when the final LEP2 data on
e+e− → µ+µ−, τ+τ− are completed.

Being governed by the next-to-leading contribu-
tions in m−2

Z′ , the fitted values of ζ are characterized
by significant errors. The µµ data set gives the central
value which corresponds tomZ′ � 1.1 TeV.

We also perform a separate fit of the parameters
based on the direct calculation of the observable from
the differential cross sections. The complete set of
available data [14] is used (see Table 4). The results
are given in Table 5. As one can see, the experimen-
tal uncertainties of the data on the differential cross
sections are one order of magnitude larger than the
4
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Table 3. The contact coupling εwith a 68%C.L. uncertainty, a 95%C.L. lower limit on the scaleΛ, the probability of the
Z ′ signal P , and the value of ζ = m2

Z/m
2
Z′ as a result of the fit of the observable recalculated from the total cross sections

and the forward–backward asymmetries

Data set ε Λ, TeV P ζ

Winter 2002

µµ 0.0000482+0.0000496
−0.0000493 15.7 0.83 0.007± 0.215

ττ 0.0000016+0.0000661
−0.0000656 16.0 0.51 −0.052± 8.463

µµ and ττ 0.0000313+0.0000396
−0.0000395 18.1 0.78 0.006± 0.264

Summer 2002

µµ 0.0000366+0.0000489
−0.0000486 16.4 0.77 0.009± 0.278

ττ −0.0000266+0.0000643
−0.0000639 17.4 0.34 −0.001± 0.501

µµ and ττ 0.0000133+0.0000389
−0.0000387 19.7 0.63 0.017± 0.609
corresponding errors of the total cross sections and
the forward–backward asymmetries. These data also
provide the larger values of the contact coupling ε.
As for the more precise µµ data, three of the LEP2
collaborations demonstrate positive values of ε. The
combined ε is also positive and remains practically
unchanged by the incorporation of the ττ data.

Now, we compare the fits based on the differen-
tial cross sections and the total cross sections. As
was mentioned in the previous section, the indirect
computation of the observable from the total cross
sections and the forward–backward asymmetries in-
spires some insufficient theoretical uncertainty about

Table 4. The differential cross sections used for fitting (the
letters F and P mark the final and the preliminary data,
respectively)

√
s, GeV ALEPH DELPHI L3 OPAL

130 F

136 F

161 F

172 F

183 F F F

189 P F F F

192 P P P

196 P P P

200 P P P

202 P P P

205 P P P

207 P P P
P

2% of the statistical one. It also increases the sta-
tistical error because of the recalculation procedure.
Nevertheless, the uncertainty of the fitted parameter
ε within the recalculation scheme is one order of
magnitude less than that for the direct computation
from the differential cross sections. This difference is
explained by the different accuracy of the available ex-
perimental data on the differential and the total cross
sections. If the final LEP2 differential cross sections
are as accurate as the present data on the total cross
sections, the direct computation of the observable will
be able to reduce, in principle, the uncertainty of the
fitted coupling ε.

To compare our results with the fits of the con-
tact couplings presented by the LEP collaborations
in [1, 2], let us briefly describe the approach used
therein. Since only one parameter of new physics can
be successfully fitted, the LEP collaborations usually
discuss eight “models” (LL, RR, LR, RL, VV, AA,
A0, V0) which assume specific helicity couplings be-
tween the initial-state and final-state fermion cur-
rents. Each model is described by only one nonzero
four-fermion coupling, while the others are set to
zero. For example, in the LL model, the nonzero cou-
pling of left-handed fermions is taken into account.
The signal of new physics is fitted by considering the
interference of the SM amplitude with the contact
four-fermion term. Whatever physics exists beyond
the SM, it has to manifest itself in some contact
coupling mentioned. Hence, it is possible to find the
low limit on the masses of the states responsible for
the interactions considered. In principle, a number of
states may contribute to each of the models. There-
fore, the purpose of the fit described by these models
is to find any signal of new physics. No specific types
of new particles are considered in this analysis.

As has been shown, the characteristic signal of the
Abelian Z ′ boson is related to the flavor-independent
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Table 5. The contact coupling ε with 68% C.L. uncertainties computed from the differential cross sections

µ data τ data µ and τ data

ALEPH 0.00014+0.00068
−0.00069 −0.00007+0.00120

−0.00120 0.00009+0.00059
−0.00060

DELPHI −0.00010+0.00070
−0.00070 0.00000+0.00140

−0.00140 −0.00008+0.00062
−0.00063

L3 0.00013+0.00043
−0.00043 0.00024+0.00053

−0.00054 0.00018+0.00033
−0.00033

OPAL 0.00028+0.00074
−0.00075 −0.00017+0.00120

−0.00120 0.00015+0.00063
−0.00063

Combined 0.00012+0.00028
−0.00030 0.00012+0.00043

−0.00043 0.00012+0.00024
−0.00024
couplings to the axial-vector currents. To pick up the
signal, we construct the observable which is dom-
inated by the axial-vector couplings. The contribu-
tions of the remaining couplings are suppressed in
the observable by the special choice of the kinematic
parameters. In this regard, let us turn to the helicity
“models” [1, 2] and compare our results with the fit for
the axial model (AA). As it follows from the present
analysis, this model could be sensitive to the signals
of the Abelian Z ′ boson. Of course, the parameters
ε [1, 2] (in what follows, we will mark it as εEWWG)
and ε in the present paper are not the same quantity.
First, they are normalized by different factors and
related as εEWWG = −εm−2

Z /4. Second, as we have
already noted, in the AA model the Z ′ couplings to
the vector fermion currents are set to zero; therefore,
it is possible to describe only some particular case of
the Abelian Z ′ boson. Moreover, in this model, both
the positive and the negative values of εEWWG are
considered, whereas in our approach only the positive
ε values (which correspond to the negative εEWWG)
are permissible. As the value of the four-fermion con-
tact coupling in the AA model is dependent on the
lepton flavor, the Abelian Z ′ induces the axial-vector
coupling which is universal for all lepton types. Con-
sidering the winter 2002 data [1], it is interesting to
note that the fitted value of εEWWG in the AAmodel for
the µ+µ− final states (−0.0025+0.0018

−0.0023 TeV
−2) and the

value derived under the assumption of lepton univer-
sality (−0.0018+0.0016

−0.0019 TeV
−2) are similar to our re-

sults, which correspond to −0.0015 ± 0.0015 TeV−2

and−0.0009± 0.0012 TeV−2, respectively. As for the
summer 2002 data [2], only the value of εEWWG un-
der the assumption of lepton universality is available
(−0.0013 ± 0.0017 TeV−2). It is close to our result
for the µµ process (−0.0011 ± 0.0015 TeV−2). How-
ever, the central value of εEWWG is about three times
greater than the corresponding one for the combined
µ and τ data (−0.0004 ± 0.0012 TeV−2). Thus, the
signs of the central values in the AA model agree
with our results, and the uncertainties are of the same
order. The fitted values of the 95% C.L. lower limit
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on the scale Λ are again in good accordance with the
corresponding values of Λ− for the AA model of [2].
Thus, we come to a conclusion that the AA model
is mainly responsible for signals of the Abelian Z ′

gauge boson, although a lot of details concerning its
interactions are not accounted for within this fit.

It is worth mentioning the recent paper by Chivu-
kula and Simmons [15], who derived model-depen-
dent bounds on the mass of the Z ′ boson for flavor-
changing technicolor models. It has been found that,
in these models, mZ′ is heavier than about 1 TeV. It
is interesting to note that this value is very close to
our model-independent result which corresponds to
the flavor-conserved case.

As follows from the present analysis, the Abelian
Z ′ boson has to be light enough to be discovered at
the LHC. On the other hand, the LEP2 data on the
processes e+e− → µ+µ−, τ+τ− do not provide the
necessary statistics for the detection of the model-
independent signal of the Abelian Z ′ boson at more
than 1σ C.L. Thus, it is of interest to find the ob-
servables for other scattering processes in order to
increase the data set. In this regard, let us note the
paper [16], where the helicity “models” were applied
to the Bhabha scattering e+e− → e+e−(γ). As was
shown therein, theAAmodel demonstrates a 2σ-level
deviation from the SM. However, these deviations
could not be interpreted directly as the signal of the
Abelian Z ′ boson because of the reasons mentioned
above. Therefore, it seems appropriate to us to find the
observable for the Abelian Z ′ search in the process
e+e− → e+e−.

ACKNOWLEDGMENTS
This work was supported in part by the State

Foundation for Fundamental Research of Ukraine
(grant no. F7/296-2001).

REFERENCES
1. ALEPHCollab., DELPHI Collab., L3 Collab., OPAL

Collab., LEP Electroweak Working Group, SLD
Heavy Flavour, Electroweak Working Group, hep-
ex/0112021.
4



1320 DEMCHIK et al.
2. LEP ElectroweakWorking Group, LEP2FF/02-03.
3. J. Wudka, Int. J. Mod. Phys. A 9, 2301 (1994).
4. A. Leike, Phys. Rep. 317, 143 (1999).
5. P. Langacker, R. W. Robinett, and J. L. Rosner, Phys.

Rev. D 30, 1470 (1984); D. London and J. L. Ros-
ner, Phys. Rev. D 34, 1530 (1986); J. C. Pati and
A. Salam, Phys. Rev. D 10, 275 (1974); R. N. Mo-
hapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975).

6. G. Altarelli et al., Z. Phys. C 45, 109 (1989).
7. A. Gulov and V. Skalozub, Eur. Phys. J. C 17, 685

(2000).
8. T. G. Rizzo, Phys. Rev. D 55, 5483 (1997).
9. T. Appelquist and J. Carazzone, Phys. Rev. D 11,

2856 (1975).
10. A. Gulov and V. Skalozub, Nucl. Phys. B (Proc.

Suppl.) 102, 363 (2001).
P

11. A. Gulov and V. Skalozub, Int. J. Mod. Phys. A 16,
179 (2001).

12. A. Gulov and V. Skalozub, Phys. Rev. D 61, 055007
(2000).

13. A. Gulov and V. Skalozub, hep-ph/0107236.
14. ALEPH Collab., Preprint ALEPH 2000-047;

Preprint ALEPH 2001-019; DELPHI Collab., Phys.
Lett. B 485, 45 (2000); Preprint DELPHI 2000-128;
Preprint DELPHI 2001-094; L3 Collab., Phys. Lett.
B 479, 101 (2000); OPAL Collab., Eur. Phys. J. C
2, 441 (1998); 6, 1 (1999); 13, 553 (2000); Preprint
OPAL Physics Note PN424 (2000); Preprint OPAL
Physics Note PN469 (2001).

15. R. Chivukula and E. Simmons, hep-ph/0205064.
16. D. Bourilkov, Phys. Rev. D 64, 071701 (2001).
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004



Physics of Atomic Nuclei, Vol. 67, No. 7, 2004, pp. 1321–1329. From Yadernaya Fizika, Vol. 67, No. 7, 2004, pp. 1344–1353.
Original English Text Copyright c© 2004 by Kharlov, Morozov, Nurushev, Vasiliev.

ELEMENTARY PARTICLES AND FIELDS
Experiment
Single-Spin Asymmetry of Inclusive γ Production
in ppp↑↑↑ppp Interactions at 200 GeV/c*

Yu. V. Kharlov, D. A. Morozov, S. B. Nurushev, and A. N. Vasiliev
Institute for High Energy Physics, Protvino, Moscow oblast, 142284 Russia

Received September 17, 2003

Abstract—From the data of Fermilab polarization experiment E704, the analyzing powerAγN of inclusively
produced photons was extracted. It is small, of the order of 2–4%. The analyzing power of “leading”
photons (the fastest in π0 → γγ decay) is a factor of 2 higher than AγN assuming a definite model for xF
dependence of AγN . A Monte Carlo simulation is performed in order to see effects at higher statistics than
in the E704 experiment. This simulation showed that the process of inclusive photons may be used as a
basis for future polarimetry at polarized colliders. The example of one local photon polarimeter at RHIC is
discussed. c© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The powerfully polarized RHIC is becoming avail-
able for spin physics study in the highest ever reached
beam energy range (50 ≤ √s ≤ 500GeV) [1]. One of
the important problems in making RHIC an efficient
tool is to build a local polarimeter for measuring the
beam polarization at the interaction region. There are
several proposals to use for such a goal the inclusive
neutral pion polarimeter [2–4]. But space limitation
and several other experimental conditionsmay require
a polarimeter placement far away from the interac-
tion point. In this case, inclusive photon production
becomes attractive and it was proposed in [5]. Due
to an absence of experimental data on AγN (xγF, p

γ
T ),

the authors of [5] used the phenomenological model
for estimation of AγN (xγF, p

γ
T ). In the present paper,

we aim to reconstruct AγN (xγF, p
γ
T ) from the Fermilab

polarization experiment E704 [6, 7] making use of
experimental data and Monte Carlo simulation. The
consistency of two such approaches is also consid-
ered.
This paper is organized in the following way.

Section 1 is dedicated to analysis of experimental
data in E704 and offers the extracted asymmetries
AγN (xγF, p

γ
T ). Section 2 describes a simulation pro-

cedure by the Monte Carlo technique and presents
the estimated values of AγN (xγF, p

γ
T ). In Section 3, we

discuss a photon polarimeter in the E704 environ-
ment at 200 GeV. Section 4 presents the estimates
of parameters for one inclusive photon polarimeter
which is under test at RHIC [8]. In the Conclusion,
the main results of our study are summarized.

∗This article was submitted by the authors in English.
1063-7788/04/6707-1321$26.00 c©
1. EXTRACTION OF AγN (xγF, p
γ
T )

FROM E704 DATA

In the previous papers [6, 7], the analyzing power
for inclusive π0 production Aπ

0

N (xF, pT ) in the reac-
tion

p↑ + p→ π0 +X (1)

was extracted at 200-GeV/c initial momentum by
detecting both photons from π0 decay. In the present
paper, we have a goal to perform an extraction of the
photon analyzing power AγN (xγF, p

γ
T ) in the reaction

p↑ + p→ γ +X

under various conditions.
First of all, one needs to know the analyzing power

of all inclusively produced photons. A shower in the
calorimeter which is well fitted by the electromagnetic
shower shape is accepted as a photon. To select the
electromagnetic shower, we follow the criterion devel-
oped in [9] (see also [10]). Table 1 contains the recon-
structed analyzing power AγN (xγF, p

γ
T ) for such pho-

tons at threshold pcT = 0.5 GeV/c. Analyzing power
is defined as a relative difference of the cross sections
with different beam polarization. Figure 1a shows
small but nonzero asymmetries of the order of 2–
4% at xγF = 0.3−0.5. False asymmetry is determined
similarly to the analyzing power, but the event sam-
ples are not correlated with the beam polarization.
These uncorrelated samples can be defined in dif-
ferent ways: (i) on the basis of the same statistics
which were used for AγN (xγF, p

γ
T ) estimates mixing all

directions of the beam polarizations, (ii) using the
unpolarized beam, and (iii) for whole statistics. All
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. The analyzing power in E704 experiment for (a) all inclusively produced photons, (b) “raw” neutral pions, and (c)
“leading” photons. The inner error bars are the statistical uncertainties, and the outer error bars are the statistical and
systematic uncertainties added in quadrature.
cases give us a value of false asymmetry of the order
of 1% on average and it has been added as system-
atic error in Fig. 1. There is an indication that the
inclusively produced photons might have small but
nonzero analyzing power AγN . The statistics of E704
are poor for making an unambiguous statement.

Keeping in mind that the reaction (1) has Aπ
0

N

much higher than AγN estimated above for inclusively
produced photons, we decided to restrict sources
of photon pairs to the mass region 0.07 < mγγ <

0.2GeV/c2. Not being able to identify a decay photon
from π0, we called such a source of photon pairs as
“raw” π0. The analyzing power of such “raw” neutral
pions is presented in Table 2 and Fig. 1b. The false
asymmetries calculated in a similar way as in Fig. 1a
give 1% values as well. Asymmetry AγγN (xF, pT ) in
this case is a little bit higher than in Fig. 1a for
AγN (xF, pT ) but approximately a factor of 2 smaller

Table 1. The analyzing power of reaction p↑ + p→ γ +X

at 200 GeV/c

xF AγN , %

0.0–0.1 −1.0± 0.4

0.1–0.2 −0.7± 0.4

0.2–0.3 0.8± 0.5

0.3–0.4 2.4± 0.8

0.4–0.5 4.6± 1.7

0.5–0.6 2.9± 3.1

0.6–1.0 −4.9± 4.8
PH
than for true π0. Such a difference can be explained
by an unpolarized combinatorial background which
was estimated strictly in [7].
To improve the situation, we selected the leading

photons (i.e., the photons with a higher energy) for
each π0 decay. The corresponding analyzing powers
for “leading” photons are presented in Table 3 and in
Fig. 1c. Again, the systematic errors connected with
false asymmetry are of the order of 1%. The analyzing
power of leading photons is approximately a factor of
2 higher than that of inclusive photons (see Tables 1
and 3 in xF intervals 0.2–0.3 and 0.3–0.4).
So somehow our expectation is justified. The con-

clusions from analysis of E704 data are the following:
The inclusively produced photons have an asym-

metry of the order of 2% at xF = 0.35 and about 4%
at xF = 0.45.
The leading photons have an analyzing power of

the order of 4% at xF = 0.35.

Table 2. The analyzing power of reaction p↑ + p→
“raw” π0 +X at 200 GeV/c

xF AN , %

0.0–0.1 −1.6± 0.5

0.1–0.2 −1.0± 0.4

0.2–0.3 0.3± 0.4

0.3–0.4 1.1± 0.7

0.4–0.5 2.1± 0.9

0.5–0.6 4.7± 1.4

0.6–0.8 7.1± 2.2
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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The asymmetry of photons is smaller than the
asymmetry of π0 (by approximately 2–3 times), but
in the case of photons one can work at smaller xγF.
The statistics of the E704 experiment are scarce

for more detailed analysis. For this reason, in the
following sections, we will describe a Monte Carlo
simulation procedure which we made in order to see
asymmetries at much higher statistics.

2. SIMULATION OF A SINGLE-SPIN
ASYMMETRY BASED ON THE E704 DATA

In the E704 experiment, the single-spin asym-
metry of π0 mesons in the reaction p↑p→ π0X was
studied. We simulated a π0 production with the
single-spin asymmetry defined by the experimental
measurements [6, 7]. Expecting that the decay pho-
tons (from π0 → γγ) have nonzero asymmetry, we
have analyzed the following dependences:

AγN (xγF) for leading photon in the decay π
0 → γγ

(it means that xγF of this photon is the highest in
π0 decay) for every π0 having nonzero asymmetry
(“useful” pion [5]),

AγN (xγF) for all photons produced by p↑p inter-
action versus cuts in pγT : 0.3, 0.4, 0.5, 0.6, and
0.7 GeV/c.

2.1. Event-Generation Algorithm

In the E704 experiment, the following results for
single-spin π0 asymmetry were obtained [see Fig. 2
(circles)] [6].
The following algorithm was constructed for gen-

eration of such events for the reactions p↑p→ aX at
E(p↑) = 200GeV, where

a =






“useful” π0,

γ from “useful” π0,

γ from all sources.

(2)

(i) Minimum-bias pp events are generated by
PYTHIA-5.72 [11]. The decay π0 → γγ is forbidden.
(ii) Assuming that AN (xF) depends on xF linearly

(from Fig. 2),

AN = b + cx, (3)

the factors b and c are determined: b = −0.082 ±
0.032, c = 0.341 ± 0.070 with χ2/ndf = 1.76/2.
(iii) For each generated “useful” π0 meson (in

correspondence with Fig. 2), the Aπ
0

N (xF) value was
assigned according to relation (3). The other π0 have
been left in the events without asymmetry.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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(iv) The azimuthal angle of π0 was generated by
the following dependence of the π0 yield:
I(xF, pT ) = I0(xF, pT )[1 +AN (xF, pT )Pb cosφ],

(4)

where I is the invariant cross section of π0 produc-
tion, I0 is the same cross section for an unpolarized
beam, and Pb = 0.456 is beam polarization in E704.
(v) All π0 decays are allowed.
After proceeding through this algorithm, we have

the same set of events as in E704 with the only
difference that polarization asymmetry (spin ↑ and ↓)
is converted to azimuthal asymmetry (left–right), and
we assume zero asymmetry in all other channels of γ
production in the p↑p interaction.

2.2. An Approach to Estimate the Asymmetry
The asymmetry of inclusively produced particle a

[see (2)] in the interaction of interest was calculated
in the following way.

Table 3. The analyzing power of reaction p↑ + p→ “lead-
ing” γ +X at 200 GeV/c

xF AN , %

0.0–0.1 −0.9± 0.4

0.1–0.2 −0.7± 0.3

0.2–0.3 1.4± 0.5

0.3–0.4 4.6± 1.2

0.4–1.0 0.7± 3.1
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With fixed value of xF, the asymmetry AN (pT ) is
determined from (4) via the equation

AN (pT ) =
1
Pb

IL(pT )− IR(pT )
IL(pT ) + IR(pT )

=
1
Pb

NL(pT )−NR(pT )
NL(pT ) +NR(pT )

,

whereNL(pT ) andNR(pT ) are the numbers of parti-
cles a with positive and negative directions of beam
polarization (i.e., in our terminology flying, respec-
tively, to the left and to the right relative to the beam
direction) normalized by the flux of incident protons
hitting the target and having on average zero polar-
ization.

For normalized events NL,R, one may write

NL,R(pT , φ) = N0(pT )(1 ± ε(pT ) cos φ),

where N0 means events averaged over beam polar-
ization. A raw asymmetry ε(pT ) was determined as a
P

result of a fit versus cosφ:

ε(pT ) cosφ =
NL(pT )−NR(pT )
NL(pT ) +NR(pT )

.

After the calculation of the raw asymmetry ε(pT ), an
unknown quantity AN (pT ) was reconstructed as

AN (pT ) =
ε(pT )
Pb

.

2.3. Results of Asymmetry Estimate

As a test of the algorithm, the generated results for
Aπ

0

N (xF) for π0 mesons (the acceptance of the E704
calorimeter was taken into account) are compared to
their experimental values (see Fig. 2).

There is good consistency between the simulated
Aπ

0

N (xF) and their experimental values: χ2/ndf =
2.3/4. Kinematical variables of “useful” π0 mesons
are shown at Fig. 3.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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These results convinced us that this algorithm
may be applied to study AγN (xF) of inclusive γ pro-
duction.
Firstly, we assume that the only source of γ pro-

duction is a π0 decay. It is known that η mesons may
add around 10% additional photons. Since AN for η
production is the same as AN for π0 [10], we can take
the η source as a π0 source. In this case, only “useful”
π0 were chosen; i.e., in some sense, this is the ideal
version for our polarimeter, which may not be reached
in the experiment. Photon distributions over xγF, p

γ
T ,

and AγN (xγF) are shown in Table 4 and Fig. 4.
Figure 3a reflects the distribution (4) for approx-

imate value of ε = ANPb 	 0.07. Since the electro-
magnetic calorimeter has a full azimuthal acceptance,
one does not need to make corrections for the de-
tector acceptance. Figure 3b illustrates the limited
acceptance of the electromagnetic calorimeter used
in the E704 experiment. Figure 3c demonstrates the
importance of making the cut at xF = 0.3 in order
to suppress a contribution of “harmful” π0 mesons
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
to the analyzing power. Figure 3d stems from the
distributions presented in Figs. 3b and 3c. For ex-
ample, taking the position of the distribution max-
ima θ = 0.5◦, xF = 0.4, one gets an expected posi-
tion of the maximum in the pT distribution, pT =
8.5 × 10−3 · 0.4 · 200 GeV/c = 0.7 GeV/c, which is
consistent with Fig. 3d. Table 4 shows thatAγN (xF) is
higher than Aπ

0

N (xF) at lower xF values. This can be
easily understood in the following way. The photons
with low xγF are produced by π

0 of higher xπ
0

F . Since

these π0 have a higher analyzing powerAπ
0

N (xF), they
transfer them to photons with lower xγF (on average

xγF 	 xπ
0

F /2).

Figure 4a presents the energy spectrum of the
“leading” photons coming from π0 decays. As ex-
pected, this spectrum is softer than the spectrum of
the parent π0 (see Fig. 3c). According to Fig. 4a, one
must put a cut at xγF 	 0.2 in order to select practi-
cally all “useful” photons (having nonzero analyzing
power) and, at the same time, to suppress back-
4
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Table 4. The MC parameter AN for “leading” γ from π0

decay

xγF AγN , %

0.1–0.2 2.23± 0.97

0.2–0.3 5.16± 0.44

0.3–0.4 5.98± 0.48

0.4–0.5 10.94± 0.70

0.5–0.6 12.48± 1.06

0.6–0.8 14.75± 1.57

grounds essentially. The pγT distribution presented in
Fig. 4b gives a hint to the necessary pT threshold
for keeping the “useful” photons and decreasing the
background contributions. Figure 4c is ourmain goal.
It demonstrates that the AγN (xF) for “leading” pho-
tons behaves practically in the same way as Aπ

0

N (xF)
does. Therefore, assuming that backgrounds may be
essentially suppressed, one can use the “leading”-
photon production as a basis of a new type of po-
larimeter.

3. THE POSSIBLE PHOTON POLARIMETER
IN THE E704 EXPERIMENT

In this section, we make an estimate of the possi-
ble photon polarimeter in the E704 environments. We
calculated the photon distributions on xF and pT (see
Figs. 5a and 5b) and also analyzing powerAγN (xF) for
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P

different pT threshold (see Fig. 6). All photons were
taken into account.
The results for photon yield and analyzing power in

the reaction p↑p→ γX at 200 GeV/c are presented
in Table 5. The typical distributions are shown in
Fig. 5 for the cut pcT = 0.3 GeV/c. The steps of these
distributions decrease on xF and pT reflect the yield of
photons. The analyzing powerAγN (xF) increases with
xF at fixed pT . With increasing threshold in pT (see
Table 5), AγN (xF) steadily increases with xF. At the
same time, the increase of threshold on pT suppresses
the yield of photons and the so-called a factor of merit

M = 〈AγN 〉
2N

varies with the cut on pT , where N is the number of
photons integrated over xF and pT , and 〈AγN 〉 is the
analyzing power integrated over pT and averaged over
xF. The precision in beam polarization measurement
δPb = ∆Pb/Pb depends on this factor in the following
way:

δP 2
b =

1
Md2

,

where d is a dilution factor defined as

d =
S

B + S
,

S is a signal (number of γ from “useful” π0), and B is
a background (number of γ from all other sources).
Another important parameter is geometrical effi-

ciency of the detector, which is defined as

E =
Naccγ

Nev
,

whereNaccγ is the number of photons accepted by the
detector and Nev is the number of generated events
in p↑p collisions. The parameter of interest is time
T for accumulation of necessary statistics N at the
luminosity of experiment L, which is given by

T =
N

LσE
,

where σ = 40 mb is the total cross section of pp
interaction at 200 GeV. For the E704 experiment,
the luminosity was estimated in the following way.
From [12], it follows that the intensity of tagged
protons with polarization magnitude >35% and av-
erage polarization 45% is 3× 106 polarized protons
per spill (at incident flux of 1012 protons per 20-s
spill). Since the duty factor is 3, the intensity of a
polarized proton beam is I = 3× 106/(20 · 3) = 5×
104 polarized protons/s. In the E704 experiment, a
liquid hydrogen target was used with a length of l =
100 cm and a density of ρ = 0.07 g/cm3. Therefore,
the luminosity L is L = INAρl = 5× 104 · 6× 1023 ·
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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0.07 × 100 cm−2 s−1 = 2.1× 1029 cm−2 s−1. This
is consistent with [13]. In Table 6 and Fig. 7, these
parameters are shown for different pT cuts.

4. THE LOCAL INCLUSIVE PHOTON
POLARIMETER AT RHIC

The main RHIC detectors, PHENIX and STAR,
occupy practically all free space around the interac-
tion region (IR) with length of about±10m. The only
spot where one can install the local inclusive photon
polarimeter (LIPP) is about 18 m from the interaction
point (IP), just in front of the zero-degree calorimeter
(ZDC) [14]. Such an approach was discussed earlier
in [5], where only the top energy,

√
s = 500 GeV, was

taken into account. Additionally, it was assumed that
the analyzing power of leading photons from π0 and
η decays is the same as for parent particles. On the
other hand, in this paper, we put the results of the
E704 experiment (see above) as a basis for the photon
analyzing power AγN . We assume that A

γ
N does not

depend on the initial energy.
We analyze three cases:
the initial colliding protons having a total energy√
s = 500 GeV;√

s = 200 GeV;
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
the fixed target mode (FTM) with initial laboratory
momentum pL = 200 GeV/c (similar to E704) but
with the internal jet target.
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Table 5. The MC estimates for AγN (xF) (in percent) taking into account all sources of photons in reaction p↑p→ γX at
200 GeV/c in E704 environment

xF
pcT , GeV/c

0.3 0.4 0.5 0.6 0.7

0.1–0.2 0.06± 0.05 0.05± 0.07 0.00± 0.10 0.02± 0.14 −0.28± 0.21

0.2–0.3 0.82± 0.07 0.85± 0.10 0.78± 0.14 0.69± 0.21 0.31± 0.32

0.3–0.4 1.95± 0.11 2.83± 0.14 3.62± 0.20 3.88± 0.29 3.95± 0.43

0.4–0.5 2.95± 0.16 4.19± 0.20 5.87± 0.27 6.64± 0.39 5.90± 0.57

0.5–0.6 3.26± 0.24 4.71± 0.29 7.10± 0.38 8.51± 0.53 8.72± 0.76

0.6–0.8 3.28± 0.32 4.67± 0.38 7.85± 0.49 11.06± 0.66 12.83± 0.94

Table 6.Main parameters of the photon polarimeter in E704 environment

pcT , GeV/c Nev, 108 S, 107 S +B, 107 d 〈AN 〉, % N , 106 E, 10−2 T , 104 s

0.3 5 3.25 7.58 0.43 2.5± 0.4 3.57± 1.11 2.84 1.50± 0.46

0.4 5 1.81 4.03 0.45 3.6± 0.7 1.52± 0.59 1.75 1.03± 0.37

0.5 5 0.98 2.00 0.48 5.1± 1.4 0.67± 0.37 0.97 0.82± 0.45

0.6 5 0.49 0.94 0.51 6.0± 2.3 0.43± 0.33 0.48 1.06± 0.81

0.7 5 0.21 0.43 0.50 6.1± 2.8 0.43± 0.40 0.22 2.33± 2.14
The parameters of a proton beam and a proton jet
target are taken as close as possible to the RHIC
ones [14, 15]. The electromagnetic calorimeter is
taken as it was made for the PHENIX collaborators
and recently tested at a RHIC polarized run [8]. So it
has a rectangular shape with a width of 10 cm and a
height of 24 cm and is installed at a distance of 18 m
from the IP.

The Monte Carlo results for AγN are presented in
Fig. 8 and Table 7 at a pT cut of 0.5 GeV/c. 2×
109, 5× 108, and 2× 109 events were generated at

Table 7. Analyzing power AγN (xF) (in percent) for two
RHIC modes

xF
√
s = 500GeV FTM pL = 200GeV/c

0.3–0.4 0.00± 0.00 3.41± 2.20

0.4–0.5 6.08± 1.35 5.27± 0.87

0.5–0.6 7.11± 1.41 5.77± 0.80

0.6–0.8 5.41± 1.28 6.21± 0.72
P

√
s = 200, 500 GeV, and FTM at pL = 200 GeV/c,

respectively.

Figure 8a (for
√
s = 500 GeV case) shows an

analyzing power of ∼ 6% at xF > 0.4. At xF = 0.35,
AN is practically zero. Due to a correlation between
pT and xF, at our cut pcT = 0.5 GeV/c, there are
no statistics for xF < 0.3. The same comments are
applicable to FTM at pL = 200 GeV/c (Fig. 8b):
only AN varies in range 3–6% for xF > 0.3 and also
there are no statistics at xF < 0.3. We do not show
in Fig. 8 and Table 7 results for

√
s = 200 GeV due

to the small acceptance of the detector and a cut
pcT = 0.5GeV/c. There are no statistics from “useful”
π0, while the background contribution prevails over
signal and makes AN close to zero.
Table 8 (analog of Table 6) presents the main

parameters of the local inclusive photon polarimeter
for RHIC in different modes of RHIC operation. For
time estimates for reaching 5% precision in beam
polarization measurement, the following luminosities
were used: L = 2× 1032 cm−2 s−1 at

√
s = 500GeV

[16], L = 1031 cm−2 s−1 at
√
s = 200 GeV [16], L =

1031 cm−2 s−1 at FTM [15]. Since at
√
s = 200 GeV
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Table 8.Main parameters of the RHIC local inclusive polarimeter at different modes of operation

Regime Nev, 109 S, 106 S +B, 106 d 〈AN 〉, % N , 106 E, 10−3 T , min
√
s = 500GeV 0.5 0.43 1.24 0.35 4.2± 3.1 1.80± 2.59 1.61 2.0± 2.8

FTM pL = 200GeV/c 2 1.45 3.82 0.38 5.5± 0.8 0.97± 0.28 1.19 33.5± 9.7
in the actual configuration a local inclusive photon
polarimeter cannot serve as a useful tool (see expla-
nation above), we omitted it from Table 8.

CONCLUSION
Single-spin asymmetry of inclusively produced

photons has been obtained from the E704 experimen-
tal data. However, the statistics in the experiment
were not appropriate to achieve an accuracy in the
asymmetry needed for polarimetry. A Monte Carlo
algorithm based on π0 asymmetry from E704 [10] has
been developed with a goal to estimate the expected
parameters of a local inclusive photon polarimeter at
RHIC.
In the Monte Carlo study, it has been shown that

the asymmetry of leading photons from decays of π0

with Feynman variable xγF > 0.3 and pγT > 0.6GeV/c
increases linearly with xF and approaches 15% at
xγF 	 0.7. The asymmetry of all inclusive photons in
p↑p interactions is significant as well. It is in the range
4–6% for moderate transverse momenta thresholds
for photon detection. This asymmetry can be consid-
ered as an analyzing power for polarimetry.
The idea to create a polarimeter based on the

analyzing power of single inclusive photons in p↑p
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interactions has been checked by numerical calcu-
lations. No time-consuming π0 reconstruction algo-
rithm is needed for this polarimeter. As an example,
it is shown for the E704 environment that this po-
larimeter can measure the beam polarization with an
accuracy of 5% at transverse momentum threshold
pcT = 0.5 GeV/c in approximately 2 h. In the RHIC
environment with the same pcT cut, it takes∼ 5min at√
s = 500GeV and∼ 30min in FTM.Andwe cannot

measure the beam polarization at
√
s = 200 GeV.
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Abstract—The inclusive spectra of pions produced in CC and CTa collisions at a momentum of 4.2 GeV/c
per nucleon are analyzed in terms of light-front variables ξ and ζ. The phase space of the secondary pions
is divided into two parts with very different angular and momentum distributions. In one of these parts, the
thermal equilibrium assumption seems to be in good agreement with the data. Corresponding temperatures
T are extracted, and their dependence on (APAT )1/2 is studied: T decreases linearly with increasing
(APAT )1/2. The results are compared with the predictions of the quark–gluon string model (QGSM).
The QGSM satisfactorily reproduces the experimental data. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of single-particle inclusive processes [1]
remains one of the simplest and effective tools for the
investigation of multiple production of secondaries
at high energies. The consequences of the limiting
fragmentation hypothesis [2] and those of the parton
model [3] and the principle of automodelity for strong
interactions [4] have been formulated in this way.

At high energies, different dynamical mechanisms
contribute to the spectra of secondaries. Among
them, “pionization” and fragmentation mechanisms
have been widely discussed. Pionization means the
existence of secondary pions with relatively low
momenta and a flat (almost isotropic) angular dis-
tribution in the c.m. frame of colliding objects. The
fragmentation component has a sharply anisotropic
angular distribution in the c.m. frame. One of the
main problems in this direction is the separation of
these two components. Currently, there exists no
unique way to separate these mechanisms. Different
authors propose different ways and none of them
seems to be satisfactory. It will be shown that the pre-
sentation of inclusive spectra in terms of light-front

∗This article was submitted by the authors in English.
1)High Energy Physics Institute, Tbilisi State University,

Georgia.
2)Mathematical Institute, Georgian Academy of Sciences,

Tbilisi.
3)Joint Institute for Nuclear Research, Dubna, Moscow

oblast, 141980 Russia.
**e-mail: ida@sun20.hepi.edu.ge;ichkhaidze@yahoo.
com
1063-7788/04/6707-1330$26.00 c©
variables provides a unique possibility of separating
these two components.

An important role in establishing the properties of
multiple particle production is played by the choice of
kinematic variables in terms of which the observable
quantities are presented (see, e.g., [5–7]).

In this paper, we continue the study of π mesons
produced in relativistic nucleus–nucleus collisions in
terms of light-front variables. The choice of light-
front variables is due to the fact that these variables
seem to be more sensitive to the interaction dynamics
as compared to the well-known Feynman variables
xF and rapidity y.

The light-front analysis of π− mesons produced
in He(Li,C), CNe, CCu, CPb, and MgMg collisions
at a momentum of 4.5 GeV/c per nucleon has been
performed in previous publications [8, 9]. The data
were obtained on the SKM-200-GIBS facility of the
Joint Institute for Nuclear Research in Dubna. On
the basis of this analysis, we were able to separate
the phase-space region, where thermal equilibrium
seems to be achieved. The same analysis was per-
formed on a part of inelastic CC and CTa collisions
at a momentum of 4.2 GeV/c per nucleon registered
in the 2-m Propane Bubble Chamber of JINR [10]. In
this paper, the spectra of pions from semicentral CC
and CTa collisions at a momentum of 4.2 GeV/c per
nucleon are studied in terms of light-front variables.
Semicentral collisions were separated from the whole
ensemble of inelastic CC and CTa interactions iden-
tified unambiguously.
2004 MAIK “Nauka/Interperiodica”
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2. EXPERIMENT

The data were obtained on the 2-m Propane Bub-
ble Chamber of JINR. The chamber was placed in a
magnetic field of 1.5 T. Three Ta plates 140 × 70 ×
1 mm in size mounted in the fiducial volume of the
chamber at a distance of 93 mm from each other
served as a nuclear target. The separation method of
CC collisions in propane, data processing, identifi-
cation of particles, and discussion of corrections are
described in detail in [11]. Apart from the unambigu-
ously identified CC collisions with the we probability
equal to one, the experimental data also contain the
sample of CC events with we = 0.21. When studying
the inclusive characteristics of CC collisions, the dis-
tributions are obtained for the whole ensemble of CC
collisions taking into account the weight factor we.

The subsample of “semicentral” events with the
number of participant protons Npart ≥ 4 was selected
for the analysis from the whole ensemble of CC and
CTa collisions. With this aim, the target fragments
(p < 0.3 GeV/c for CC and p < 0.2 GeV/c for CTa),
projectile stripping (p > 3 GeV/c and angle θ < 4◦)
fragments, and also light projectile fragments with
Z > 1 (3He, 4He) identified by ionization visually and
π+ mesons were excluded from the whole ensemble of
secondary particles.

An additional identification of π+ mesons was per-
formed [12] in order to separate participant protons
since π+ mesons were identified in a narrow interval
of momenta up to 0.5 GeV/c in the propane chamber.
For the particles with p > 0.5 GeV/c in all CC col-
lisions, special statistical weights were introduced for
π+ meson and proton hypothesis separately. The sep-
aration of the group of CC collisions with we = 1 and
the necessity of unambiguous separation of protons
and π+ mesons led to the difference in the momentum
distributions of π− and π+ mesons. To remove this
difference, the correction of π+ meson identification
was made. The procedure was performed for CC and
CTa events statistically with the assumption that the
distributions of π− and π+ mesons must be similar.

In consequence, the group of semicentral 9500
(20 477 π− mesons) CC and 1620 CTa (11 318 π±

mesons) collisions was separated from inelastic
15 965 CC (25 409 π− mesons) and 2469 CTa (12 160
π± mesons) collisions.

3. LIGHT-FRONT PRESENTATION
OF INCLUSIVE DISTRIBUTIONS

Here, we propose unified scale-invariant variables
for the presentation of single-particle inclusive distri-
butions, the properties of which are described below.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
Consider an arbitrary 4-momentum pµ(p0,p) and
introduce light-front combinations [13]:

p± = p0 ± p3. (1)

If the 4-momentum pµ is on the mass shell (p2 =
m2), the combinations p±,pT (where pT = (p1, p2))
define the so-called horospherical coordinate system
(see, e.g., [14]) on the corresponding mass-shell hy-
perboloid p2

0 − p2 = m2.
Let us construct the scale-invariant variables [15]

ξ± = ± pc±
pa± + pb±

(2)

in terms of the 4-momenta paµ, p
b
µ, p

c
µ of particles

a, b, c, entering from the inclusive reaction a+ b→
c+X. The z axis is taken to be the collision axis, i.e.,
pz = p3 = pL. Particles a and b can be hadrons, heavy
ions, and leptons. The light-front variables ξ± in the
c.m. frame are defined as follows [15]:

ξ± = ±E ± pz√
s

= ±E + |pz|√
s

, (3)

where s is the usual Mandelstam variable, and E =√
p2
z + p2

T +m2 and pz are the energy and the z com-

ponent of the momentum of the produced particle.
The upper sign in Eq. (3) is used for the right-hand-
side hemisphere, and the lower sign is used for the
left-hand-side one. It is also convenient to introduce
the variables

ζ± = ∓ln|ξ±| (4)

in order to enlarge the scale in the region of small
ξ±. The invariant differential cross section in terms of
these variables looks as follows:

E
dσ

dp
=
|ξ±|
π

dσ

dξ±dp2
T

=
1
π

dσ

dζ±dp2
T

. (5)

In the limits of high pz (|pz| 
 pT ) and high pT
(pT 
 |pz|), the ξ± variables go over to the well-
known variables xF = 2pz/

√
s and xT = 2pT /

√
s, re-

spectively, which are intensively used in high-energy
physics. The ξ± variables are related to xF, xT , and
rapidity y as follows:

ξ± =
1
2

(

xF ±
√
x2

F + x2
T

)

, (6)

xT =
2mT√

s
,

y = ±1
2

ln
(ξ±
√
s)2

m2
T

, (7)

mT =
√
p2
T +m2.
4
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Fig. 1. The ξ± distribution of pions from (a) CC collisions
and (b) CTa collisions. Points: (◦) experimental data, (∗)
QGSM data. (The curves are the result of spline approx-
imation of experimental data in order to guide the eye.)

These variables are widely used in the treatment of
many theoretical problems (see, e.g., the original and
review papers [16–21]).

4. THE ANALYSIS OF PION DISTRIBUTIONS
IN TERMS OF LIGHT-FRONT VARIABLES

The analysis in CC collisions has been carried out
for the π− mesons. To increase small statistics of CTa
collisions, the data on π− and π+ mesons have been
combined. Figure 1 presents the ξ± distributions of
π− mesons in CC and π− and π+ mesons in CTa
interactions. The main differences of the ξ± distribu-
tions and xF distributions (Fig. 2) are the following:
(i) the existence of a forbidden region around the point
ξ± = 0; (ii) the existence of maxima at some ξ̃± in the
region of relatively small |ξ±|; (iii) the existence of the
limits for |ξ±| ≤ m/

√
s.
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Fig. 2. The xF distribution of pions from (a) CC collisions
and (b) CTa collisions. Points: (◦) experimental data,
(∗) QGSM data.

The experimental data for the invariant distribu-
tions (1/π)dN/dζ± are shown in Fig. 3. As the ξ and
ζ distributions for CC collisions are symmetric, the
data have been analyzed over the whole range (ξ±,
ζ±) of the ξ and ζ variables. The CTa data have been
analyzed only in the forward hemisphere (ξ+, ζ+).
The maxima at ζ̃± are also observed in the invari-
ant distributions (1/π)dN/dζ± . However, the region
|ξ±| > |ξ̃±| goes over to the region |ζ±| < |ζ̃±| and
vice versa [see Eqs. (3) and (4)]. Maxima are observed
at |ζ̃±| = 1.95 ± 0.05 for CC and |ζ̃±| = 2.00 ± 0.05
for CTa. ζ̃± is a function of energy [see Eqs. (3), (4)]
and does not depend on the projectile (AP ) and target
(AT ) masses.

In order to study the nature of these maxima, we
have divided the phase space into two regions |ζ±| >
|ζ̃±| and |ζ±| < |ζ̃±| and studied the p2

T and angular
distributions of π mesons in these regions separately.
For example, the number of pions in CTa interactions
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 3.The ζ± distribution of pions from (a) CC collisions
and (b) CTa collisions. Points: (◦) experimental data,
(∗) QGSM data.

is equal to 2770 in the region ζ+ > ζ̃+ and 3904
in ζ+ < ζ̃+. The angular and p2

T distributions of π
mesons from CC and CTa interactions in different
regions of ζ± are presented in Figs. 4 and 5.

From Figs. 4 and 5, one can see that the angular
and p2

T distributions of pions in CC and CTa differ
significantly in the |ζ±| > |ζ̃±| and |ζ±| < |ζ̃±| re-
gions. The angular distribution of pions in the re-
gion |ζ±| < |ζ̃±| is sharply anisotropic in contrast to
an almost flat distribution in the region |ζ±| > |ζ̃±|
(Figs. 4a and 4b). A flat behavior of the angular
distribution allows one to think that a partial ther-
mal equilibrium is observed in the region |ζ±| > |ζ̃±|
(|ξ±| < |ξ̃±|) of phase space. The slopes of the p2

T

distributions differ greatly in different regions of ζ±

(Figs. 5a and 5b). Thus, the values of ζ̃± are the
boundaries of two regions with significantly different
characteristics of pions. The validity of this statement
can be seen from the momentum distributions of π−
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
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mesons in the laboratory frame. Figure 6 presents the
momentum distribution of pions from CC (Fig. 6a)
and CTa (Fig. 6b) collisions in the laboratory frame.
The shaded area corresponds to the region ζ+ > ζ̃+

and the nonshaded one to the region 0 < ζ+ < ζ̃+. As
can be seen from Fig. 6, these two regions have al-
most no overlap in the momentum space. Pions from
the region ζ+ > ζ̃+ have a small momentum, up to
0.5 GeV/c. The pions from ζ+ < ζ̃+ region have the
momentum from ∼0.5 to 3 GeV/c. Figure 7 presents
the 〈plab〉 dependence on θlab for both pairs of nuclei
in the ζ+ > ζ̃+ and ζ+ < ζ̃+ regions. The shapes of
these dependences are different. It is necessary to say
that with increasing AP and AT , 〈plab〉 decreases and
〈θlab〉 increases.
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To describe the spectra in the region |ζ±| > |ζ̃±|,
the Boltzmann distribution f(E) ∼ e−E/T has been
used.

The (1/π)dN/dζ± , dN/dp2
T , and dN/d cos θ dis-

tributions in this region look as follows:

1
π

dN

dζ±
∼

p2T,max∫

0

Ef(E)dp2
T , (8)

dN

dp2
T

∼
pz,max∫

0

f(E)dpz , (9)
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Fig. 6.The momentum distribution of pions in the labora-
tory frame from (a) CC collisions and (b) CTa collisions.
The shaded areas correspond to the region of |ζ+| >
|ζ̃+|.

dN

d cos θ
∼

pmax∫

0

f(E)p2dp, (10)

E =
√

p2 +m2
π, p2 = p2

z + p2
T , (11)

where
p2
T,max = (ξ̃±

√
s)2 −m2

π,

pz,max = [p2
T +m2 − (ξ̃±

√
s)2]/(−2ξ̃±

√
s),

pmax =
(
− ξ̃±

√
s cos θ

+
√

(ξ̃±
√
s)2 −m2

π sin2 θ
)
/ sin2 θ.

The experimental distributions in the region |ζ±| >
|ζ̃±| have been fitted by expressions (8)–(10), respec-
tively. The results of the fit of the dN/d cos θ, dN/dp2

T ,
and (1/π)dN/dζ± distributions are given in Table 1
and Figs. 4 and 5. They show good agreement with
experiment. The values of the parameter T obtained
by fitting the data with the Boltzmann distribution are
presented in Table 1.

The spectra of π− mesons in the region |ζ±| >
|ζ̃±| are satisfactorily described by the formulas which
follow from thermal equilibrium. The same formulas
extrapolated to the region |ζ±| < |ζ̃±| deviate signif-
icantly from the data. Therefore, in the region |ζ±| <
|ζ̃±|, the p2

T distributions have been fitted by the for-
mula

dN

dp2
T

∼ αe−β1p2T + (1− α)e−β2p2T (12)
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004



THE ANALYSIS OF π−-MESON SPECTRA 1335
Table 1. The results of fitting the distributions of pions in the region |ζ±| > |ζ̃±| by Eqs. (8)–(10)

Reaction |ζ̃±| Type of event
T , MeV

(1/π)dN/dζ± dN/d cos θ dN/dp2
T

CC→ π− +X 1.95± 0.05 Experiment 86± 2 67± 3 79± 1

QGSM 88± 1 62± 1 81± 1

CTa→ π± +X 2.00± 0.05 Experiment 63± 2 59± 5 64± 2

QGSM 66± 1 66± 2 70± 1
and the ζ+ distributions by the formula

1
π

dN

dζ+
∼ (1− ξ+)n = (1− e−|ζ+|)n. (13)

The latter is an analog of the (1− xF)n dependence—
the result of the well-known quark–parton model
consideration (see, e.g., [22]) which gives n = 3 for
π− mesons. The dependence (1− e−|ζ±|)n is in good
agreement with experiment in the region |ζ±| < |ζ̃±|
and deviates from it in the region |ζ±| > |ζ̃±|. The
results of the fit are given in Table 2 and Fig. 5.

Thus, in the ζ± (ξ±) distributions, we have sin-
gled out points ζ̃± (ξ̃±) which separate in the phase
space two regions with significantly different charac-
teristics. There are no such points in the xF and y
distributions.
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In this paper, the quark–gluon string model
(QGSM) [23] is used for comparison with the ex-
perimental data.

A detailed description and comparison of the
QGSM with experimental data over a wide energy
range can be found in [8, 9, 24]. The model yields
a generally good overall fit to most experimental
data [24, 25].

We have generated CC and CTa interactions using
the Monte Carlo generator COLLI [26] based on the
QGSM.

In the COLLI generator, there are two ways to
generate events: (i) at unfixed impact parameter b̃ and
(ii) at fixed b.

At the first step, the version of the generation
program with unfixed impact parameter b̃ has been
used; 50 000 CC and 10 000 CTa inelastic collisions
at a momentum of 4.2 GeV/c have been generated.
Then, similarly as for the experimental data, the selec-
tion criteria of participant protons have been applied
on these events; namely, the target fragments (p <
0.3 GeV/c for CC and p < 0.2 GeV/c for CTa) and
the projectile strippings (p > 3 GeV/c and angle θ <
4◦) have been excluded. From the analysis of gen-
erated events, the protons with deep angles greater
than 60◦ have been excluded additionally, because
such vertical tracks are registered with less efficiency
in the experiment. After selection of events with the
number of participant protons Npart ≥ 4, the group of
semicentral collisions remains for analysis. For these
events from the impact parameter distribution, the
mean values of 〈b〉 = 2.65± 0.02 fm for CC and 〈b〉 =
5.65 ± 0.03 fm for CTa semicentral interactions have
been obtained.

At the second step, 50 000 CC and 10 000 CTa
semicentral collisions have been generated at a fixed
impact parameter equal to 〈b〉. The average physical
characteristics and analyzing distributions generated
for fixed and unfixed impact parameter coincide within
the errors.
4
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Table 2. The results of the fit of the distributions of π− mesons in the region ζ+ < ζ̃+ by Eqs. (12) and (13)

Reaction Type of event
dN/dp2

T (1/π)dN/dζ+

α β1, (GeV/c)−2 β2, (GeV/c)−2 n

CC→ π− +X Experiment 0.71± 0.06 16.2± 1.4 5.9± 0.5 3.4± 0.6

QGSM 0.69± 0.03 24.0± 3.0 8.7± 0.1 4.1± 0.1

CTa→ π± +X Experiment 0.76± 0.03 24.6± 2.0 7.1± 0.4 2.8± 0.1

QGSM 0.66± 0.10 22.5± 3.0 8.1± 0.2 2.5± 0.3
The experimental results have been compared with
the QGSM generated events for values of 〈b〉. Fig-
ures 1 and 3 present the ξ± and ζ± distributions of π
mesons from the QGSM calculations together with
the experimental ones for CC and CTa interactions.
One can see that the QGSM reproduces experimen-
tal distributions well. The QGSM also reproduces
the xF, cos θ, and p2

T distributions (Figs. 2, 4, and
5). The QGSM data show similar characteristics in
different regions of ζ as experimental data: sharply
anisotropic angular distributions in the region |ζ±| <
|ζ̃±| and almost flat distribution in the region |ζ±| >
|ζ̃±|; the slopes of the p2

T distributions differ greatly in
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P

different regions of ζ±; the momentum distributions
of pions in the laboratory frame in different regions
of ζ± have a similarly different shape of spectra as
the experimental ones (Fig. 6). The momentum dis-
tributions of the QGSM data reproduce the corre-
sponding experimental spectra in both regions of ζ±.
The distributions obtained by the QGSM in the re-
gion |ζ±| > |ζ̃±| have been fitted by expressions (8)–
(10). The results of the fit are given in Table 1 and
Figs. 4 and 5. In the region |ζ±| < |ζ̃±|, the p2

T and ζ±

distributions have been fitted by Eqs. (12) and (13),
respectively. The results of the fit are given in Table 2
and Fig. 5. One can see from Table 1 that the values
of T extracted from the experimental and QGSM data
agree within the errors for CC and CTa collisions.

Figure 8 shows the dependence of the parameter T
from Table 1 on (APAT )1/2, obtained from the exper-
imental and QGSM data together with our previous
results [8, 9] for He(Li, C), CNe, CCu, MgMg, and
OPb interactions obtained on the SKM-200-GIBS
setup and pC and HeC obtained by the Propane
Collaboration in [10]. One can see that T decreases
linearly with increasing (APAT )1/2, i.e., with increas-
ing the number of participating nucleons. A similar
behavior is predicted by the QGSM. It is worth men-
tioning that the values of T obtained for semicentral
CC and CTa collisions in this paper agree within
the errors with the results for inelastic CC and CTa
obtained in [10]. Thus, the values of T seem to depend
on the centrality degree very slightly.

5. CONCLUSIONS

The inclusive spectra of pions produced in CC
and CTa collisions at a momentum of 4.2 GeV/c per
nucleon are analyzed in terms of light-front variables
ξ and ζ .

(i) The results of this paper confirm the conclu-
sions of the previous publications [8, 9] that the phase
space of secondary π mesons is divided into two re-
gions with respect to the maximum value of ζ̃± (ξ̃±).
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004



THE ANALYSIS OF π−-MESON SPECTRA 1337
The angular and momentum distributions of pions in
these regions are very different.

(ii) In one of these kinematical regions |ζ±| >
|ζ̃±|, the dN/d cos θ, dN/dp2

T , and (1/π)dN/dζ± dis-
tributions are fitted by statistical model predictions.
Thus, thermal equilibrium seems to be reached and
corresponding temperatures were obtained.

(iii) The T dependence on (APAT )1/2 is studied.
The temperature decreases with increasing
(APAT )1/2.

(iv) The experimental results are compared with
the QGSM. The model seems to be in a good agree-
ment with the data.
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ELEMENTARY PARTICLES AND FIELDS
Theory
Double Vector-Charmonium Production in Electron–Positron
Annihilation into Two Photons at

√
s = 10.6
√
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√
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Abstract—In experimentally studying the exclusive production of two cc̄ mesons in electron–positron
annihilation, the BELLE Collaboration obtained results that differ substantially from theoretical predic-
tions. Recently, it was assumed that a significant part of this discrepancy can be explained by the process
e+e− → 2γ∗ → 2J/ψ, and its cross section was published. It is shown here that these results are incorrect
(the cross sections are overestimated). The correct values of the cross sections for the double production of
various vector charmonia are given. c© 2004 MAIK “Nauka/Interperiodica”.
Charmonium states (such as J/ψ, ψ(2S), or ηc)
are of great interest both from the theoretical and
from the experimental point of view. First, they have
a clear experimental signature. Second, their theo-
retical description is simplified significantly owing to
their nonrelativistic nature. Of special interest is the
exclusive production of various charmonium states
in e+e− annihilation since all nonperturbative con-
stants involved in such processes can be determined
phenomenologically from V → e+e− decay widths,
where V stands for one of the cc̄ vector–charmonium
states, V = J/ψ, ψ(2S), ψ(3770), ψ(4040), ψ(4160)
or ψ(4415).

Recently, the BELLE Collaboration investigated
double charmonium production in e+e− annihilation
at the c.m. energy of

√
s = 10.6 GeV [1]. Its re-

sults differ significantly from the predictions based on
nonrelativistic QCD (NRQCD) [2–4]. For example,
the measured cross section for the process e+e− →
J/ψηc is about one order of magnitude larger than the
results obtained in [3–5]. This difference is a chal-
lenge to our current understanding of charmonium-
production processes.

A possible explanation of this discrepancy was
proposed by Bodwin, Braaten, and Lepage (BBL) [6],
who assumed that some of the events considered by
the BELLE Collaboration like those of J/ψηc pro-
duction in fact involve the production of a J/ψ pair
in electron–positron annihilation into two photons.
They obtained the following values:

σBBL[e+e− → J/ψ + J/ψ] = 8.70 ± 2.94 fb,

σBBL[e+e− → J/ψ + ψ(2S)] = 7.22 ± 2.44 fb,

*e-mail: Alexey.Luchinsky@ihep.ru
1063-7788/04/6707-1338$26.00 c©
σBBL[e+e− → ψ(2S) + ψ(2S)] = 1.50 ± 0.51 fb.

However, these results have some drawbacks that
follow from the approximations used in [6].

(i) The calculations in [6] were performed with the
aid of NRQCD, and the values ofMJ/ψ = Mψ(2S) =
2mc = 2.8GeV were used there instead of the phys-
ical masses of vector mesons. Since the reaction in
the experiment proceeded at a c.m. energy close to
the threshold, the cross section depends strongly on
the final-particle masses, so that this approximation
may lead to large errors.

(ii) All QCD corrections were neglected in [6]. As
was shown in [2], the effect of these corrections may
be significant. By way of example, we indicate that,
in the zeroth order in αs, the matrix element 〈O1〉J/ψ ,
which was used in [6] and which is proportional to the
J/ψ-meson width with respect to decay through the
electron mode, is

[〈O1〉J/ψ]LO = 0.208 GeV3,

but that, upon taking into account the first-order
QCD corrections, it becomes

[〈O1〉J/ψ]NLO = 0.335 GeV3.

Both of these disadvantages can be remedied by
using physical values of input parameters (vector-
meson masses and couplings of vector mesons to
electrons) rather than model ones.

Four diagrams for the process e+e− → V1V2 are
shown in Fig. 1. Two additional diagrams can be
obtained from the diagrams in Figs. 1c and 1d by
interchanging the final vector mesons. First of all, it
worth noting that the diagrams in Figs. 1c and 1d
are suppressed with respect to the first two diagrams
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Diagrams for the process e+e− → 2γ∗ → V1V2.
by a factor of (4M2
V /s)

2 ∼ 0.1, which arises from
the virtual-photon propagators. The QCD correc-
tions caused by a gluon emitted and captured by the
same quark or by the quarks of a vector meson are
taken into account in the effective coupling of the vec-
tor meson to an electron. An additional suppression
arises owing to the gluon propagator and color when
a gluon line connects quarks from different vector
mesons. For these reasons, we consider below only
the diagrams in Figs. 1a and 1b, which lead to a
sizable peak in the angular distribution for the case
where vector mesons travel in directions very close
to the beam axis. At the same time, the diagrams in
Figs. 1c and 1d produce a nearly isotropic distribu-
tion.

The amplitude corresponding to the diagrams in
Figs. 1a and 1b is given by

M = e2g1g2φ
µ
1φ

ν
2

×
[
v̄(k2)γν q̂aγµu(k1)

q2a
+
v̄(k2)γµq̂bγνu(k1)

q2b

]

,

where u(k1) and v̄(k2) are, respectively, the electron
and the positron spinor wave function;φαi is the polar-
ization vector of the ith meson; and gi is the coupling
constant in the eeVi vertex. This coupling can be
obtained from the vector-meson width with respect to
decay via the electron mode:

g2
i = 12π

Γeei
Mi

.

Here, Mi is the mass of the Vi particle and Γeei is its
width with respect to decay into electrons.

The differential cross section has the form
dσ

dx
=

1
64π

2b
s2

∑
|M|2 (1)

=
g2
1g

2
2b

32πs2

[
6s(M2

1 +M2
2 )

M2
1M

2
2

− 6 +
4a2

M2
1M

2
2

− 3M2
1

M2
2

− 3M2
2

M2
1

− s2

M2
1M

2
2

+ 12
a2 + b2x2

a2 − b2x2
ATOMIC NUCLEI Vol. 67 No. 7 200
− 8M2
1M

2
2

a2 + b2x2

(a2 − b2x2)2
+ 2s

(
M2

1

M2
2

1
a− bx

+
M2

2

M2
1

1
a+ bx

)

+ 2
(
M2

1

M2
2

a+ bx

a− bx +
M2

2

M2
1

a− bx
a+ bx

)

+ 2
(

1
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1

(a− bx)2
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+
1
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2
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a− bx
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− 2
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a− bx
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2

+
a+ bx

M2
1

)

− 2s2
(

1
M2

2 (a− bx)

+
1

M2
1 (a+ bx)

)

+
4sa

a2 − b2x2

]

,

where summation is performed over the polarizations
of all particles, x = cos θ is the cosine of the angle
between the e− and V1 momenta in the c.m. frame,

a =
s−M2

1 −M2
2
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Fig. 2. Angular distribution for the process e+e− →
2J/ψ.
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Table 1.Masses of vector mesons and their widths with respect to decay into electrons

i J/ψ(1S) ψ(2S) ψ(3770) ψ(4040) ψ(4160) ψ(4415)

Mi [GeV] 3.097 3.685 3.77 4.04 4.159 4.415

Γeei [eV] 5.26 2.12 0.26 0.75 0.77 0.47

Table 2. Values of σ(e+e− → V1V2) (in fb)

V2

V1

J/ψ(1S) ψ(2S) ψ(3770) ψ(4040) ψ(4160) ψ(4415)

J/ψ(1S) 2.26 1.46 0.17 0.46 0.46 0.26

ψ(2S) 1.46 0.23 0.06 0.15 0.15 0.08

ψ(3770) 0.17 0.06 0.003 0.02 0.02 0.01

ψ(4040) 0.46 0.15 0.02 0.02 0.05 0.03

ψ(4160) 0.46 0.15 0.02 0.05 0.02 0.02

ψ(4415) 0.26 0.08 0.01 0.03 0.02 0.01
b =
1
2

√
s− (M1 +M2)2

√
s− (M1 −M2)2.

For the case of V1 = V2 = J/ψ, Fig. 2 presents the
differential cross section as a function of the cosine of
the scattering angle (since the differential cross sec-
tion is an even function of the cosine of the scattering
angle, only the region of positive x is shown). One can
easily see the aforementioned peak in the vicinity of
the point x = 1.

The total cross section can be obtained from ex-
pression (1) by integrating it with respect to x from
−1 to 1:

σ =

1∫

−1

dσ

dx
dx =

g2
1g

2
2

8πas2
(2)

×
(

(s2 + (M2
1 +M2

2 )2)ln
a+ b

a− b − 8ab
)

.

In the case of identical final particles, the result in (2)
must be divided by 2 to avoid the double counting of
identical states.

Using the experimental values given in Table 1 for
the masses of vector mesons and their widths with
respect to decay into electrons, we obtain the total-
cross-section values presented in Table 2. These re-
P

sults differ significantly from those quoted in [6].1) By
way of example, we indicate that, for V1 = V2 = J/ψ,

σBBL(e+e− → 2J/ψ)
σ(e+e− → 2J/ψ)

≈ 3.8.

This is because the QCD corrections were not taken
into account in [6]. Here, these corrections are in-
cluded in the effective coupling of vector mesons to
an electron.

Thus, I would like to note that the explanation
proposed in [6] is not adequate, so that the question
of the discrepancy between the results of the BELLE
experiment and the respective theoretical predictions
remains unsolved.
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Abstract—Bremsstrahlung-induced electroweak radiative corrections to observables of the Møller scat-
tering of polarized particles are calculated. The covariant method is used to remove infrared divergences.
Owing to this, the ultimate result does not involve unphysical parameters. The electroweak corrections
being considered are shown to reduce the polarization asymmetry in the region studied in the E-158
experiment at SLAC. For example, the asymmetry is shifted by approximately −11% at E = 48 GeV and
y = 0.5. c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Among experiments that are being presently per-
formed at SLAC, the E-158 experiment [1], which
is devoted to studying the Møller scattering of a po-
larized 45- to 48-GeV electron beam on unpolarized
electrons of a hydrogen target, is of particular interest
because of an unprecedented precision to which the
experimentalists involved in this project are going to
measure the parity-violating polarization asymmetry

A
(1)
LR of this process (it is assumed that the relative

error in determining this asymmetry will be about
8%), whereby they hope to obtain the squared sine
of the Weinberg angle, s2

W (this is one of the most
important parameters of the Standard Model), to a
precision of δs2

W ≈ ±0.0008.
In order to extract reliable information from ex-

perimental data, it is necessary to take into account
higher order effects—that is, to allow for processes
that are more intricate than that under study, but
which are indistinguishable from it experimentally.
This procedure (the inclusion of radiative corrections)
is inherent in any modern experiment, especially that
which is as precise as E-158.

Naturally, interest in the Møller scattering of po-
larized particles is not caused exclusively by its po-
tential for determining s2

W. For example, the scat-
tering of two identical polarized fermions has long
since been used in determining, to a high degree of
precision, the polarization of an electron beam (see [2]
and references therein), as well as in monitoring lu-
minosities (in particular, at DESY). Electromagnetic
radiative corrections and the degree of their influence
on measurement of beam polarizations in a Møller

*e-mail: zykunov@gstu.gomel.by
1063-7788/04/6707-1342$26.00 c©
polarimeter were assessed in [3]; also, the history of
the calculation of radiative corrections in the process
considered here was expounded there. It is natural
that, at energies applied in polarimetry, electroweak
effects are negligible in relation to electromagnetic
effects.

Yet another reason that stimulates interest in
Møller scattering is that it enables one to test the
Standard Model and to reveal traces of new physics.
By way of example, we indicate that, in the intensively
discussed projects of the TESLA collider and e−e−

and µ−µ− colliders [4], high hopes for the discovery of
Higgs bosons, manifestations of contact interactions,
the compositeness of the electron, new gauge bosons,
etc., are pinned on the scattering of identical polarized
fermions. It is quite obvious that, since the projects
being discussed are characterized by energies in
the TeV region, radiative corrections will play an
extremely important role in relevant experiments, the
electroweak component there being on the same order
of magnitude as the electromagnetic component.

Having said this, we return to low-energy exper-
iments that study the Møller scattering of polarized
particles, but which nevertheless require calculating
electroweak corrections. For the first time, radiative
corrections to the observables of Møller scatter-
ing (under the kinematical conditions of the Е-
158 experiment) were calculated by Czarnecki and
Marciano [5]. According to their calculations, the
asymmetry measured in the kinematical region of
the Е-158 experiment is approximately 40% lower
than its theoretical value calculated at the tree
level. Approximately the same value was obtained
by Denner and Pozzorini [6], who studied radiative
corrections in the Møller scattering of polarized
particles at arbitrary energies. It should be noted
2004 MAIK “Nauka/Interperiodica”
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that different renormalization schemes were used in
those two studies—these were the modified minimal-
subtraction (MS) scheme in [5] and the scheme of
on-shell renormalization in [6]—so that the good
agreement between those results indicates that the
calculations were quite reliable. However, all radiative
contributions to observables were not consistently
taken into account in [5] or in [6]. For example,
Czarnecki and Marciano [5] disregarded completely
the bremsstrahlung contribution, assuming that it
is small and is dependent on specific experimental
conditions.

The next step was due to Petriello [7], who cal-
culated the total set of O(α) electroweak radiative
corrections. As to the contribution of virtual par-
ticles, which was calculated in [7] by applying the
scheme of on-shell renormalization, the result was
fully in accord with that presented by Denner and
Pozzorini [6]. In addition, Petriello [7] investigated the
contribution of hard bremsstrahlung under the E-158
experimental conditions. He found that the sensitivity
of the cross sections and polarization asymmetry to
this part of radiative corrections becomes much lower
upon imposing the respective experimental cuts.

The use of an unphysical parameter ∆E that sep-
arates the region of soft photons is a feature peculiar
to the calculation performed in [7]. The introduction
of ∆E makes it possible to avoid difficulties associ-
ated with the contribution of real photons, but one
can dispense with this under conditions of the E-
158 experiment. Since the problem being discussed
is of great topical interest, an attempt is made here
to calculate and to estimate numerically, within the
Standard Model, electroweak radiative corrections
caused by internal bremsstrahlung in the the pro-
cess e−e− → e−e−γ under experimental conditions
where the emitted photon is not recorded. The last
circumstance plays a key role in our approach to the
problem—we can apply the procedure that ensures a
covariant separation and cancellation of an infrared
divergence (so-called Bardin–Shumeiko method [8]);
owing to this, our result for radiative corrections will
not be dependent on any unphysical parameters (in-
cluding ∆E).

The ensuing exposition is organized as follows. In
Section 2, we give the result for the Born process
and explain its kinematics. In Section 3, we present
infrared-divergent contributions that are caused by
additional virtual particles and which were calculated
in the Feynman gauge within the scheme of on-
shell renormalization; also, we calculate there internal
bremsstrahlung and demonstrate how the infrared
divergence cancels. A numerical analysis and conclu-
sions are given in Section 4. The Appendix contains
the list of integrals that are involved in the calculation
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Fig. 1. Diagrams describing radiationlessMøller scatter-
ing in the t and in the u channel (left and right figures,
respectively).

of bremsstrahlung, but which were not determined in
previous studies.

2. BORN CROSS SECTION AND BASIC
NOTATION

Within the Standard Model, the Born cross sec-
tion for Møller scattering can be represented in the
form

dσ0

dy
=

πα2

s

4∑

l=1

(M0
l + M̂0

l ). (1)

We denote by k1 and p1 the 4-momenta of initial
electrons and by k2 and p2 their counterparts for final
electrons (see Fig. 1). In terms of these 4-momenta,
the standard set of Mandelstam invariant quantities
can be written as

s = (k1 + p1)2, t = (k1 − k2)2, u = (k2 − p1)2.
(2)

The variable y is given by

y = −t/s. (3)

We note that, in the Born approximation, y = (1−
cos θ)/2, where θ is the scattering angle of the
recorded electron with the 4-momentum k2 in the
c.m. frame of initial electrons, since, in the c.m. frame,
the energy of the initial electron (E∗) is equal to
the energy of the recorded electron (E′∗). The “hat”
operator in expression (1) and below denotes the
substitution t↔ u. Its origin in (1) is obvious—this is
crossing symmetry.We also note that, where possible,
we disregard the electron mass m.

The squares of the matrix elements in the Born
cross sections are expressed in terms of the propaga-
tors

Dik =
1

k −m2
i

(i = γ, Z) (4)

and the functions Mev and Modd as

M0
1 = Dγt(DγtMγγγγ

ev −DγuMγγγγ
odd ), (5)

M0
2 = Dγt(DZtMγZγZ

ev −DZuMγZγZ
odd ),

M0
3 = DZt(DγtMZγZγ

ev −DγuMZγZγ
odd ),
4
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means of the substitution k2 ↔ p2.

M0
4 = DZt(DZtMZZZZ

ev −DZuMZZZZ
odd ).

The functions Mev and Modd were chosen in a form
that is convenient for representing not only the Born
cross section but also radiative contributions; that is,

M ijkl
ev = 2(s2 + u2)λ1

ij
Bλ1

kl
T + 2(s2 − u2)λ2

ij
Bλ2

kl
T ,
(6)

M ijkl
odd = −2s2(λ1

ij
Bλ1

kl
T + λ2

ij
Bλ2

kl
T ). (7)

In taking the squares of the matrix elements, we
made use of the equation

ρij(k1) = (vi − aiγ5)ρ(k1)(vj + ajγ5) (8)

=
1
2
(λ1

ij
Bk̂1 − λ2

ij
Bγ5k̂1) + O(m)

[and of the analogous equation for ρij(p1)], which
relate the γ matrices, the density matrices ρ(k1) and
ρ(p1) for the initial particles, and the couplings and
the polarizations pB(T ) of beam (target) electrons.
The cross sections involve these couplings and po-
larizations only in specific combinations; that is,

λ1
ij
B(T ) = λijV − pB(T )λ

ij
A, (9)

λ2
ij
B(T ) = λijA − pB(T )λ

ij
V ,

λijV = vivj + aiaj , λijA = viaj + aivj , (10)

where
vγ = 1, aγ = 0, vZ = (I3

e + 2s2
W)/(2sWcW),

(11)

aZ = I3
e /(2sWcW).

We recall that I3
e = −1/2 and that sW (cW) is the sine

(cosine) of the Weinberg angle.
It should be noted that, in the cross section (1), the

contribution corresponding to photon exchange is co-
incident with the result presented in [3]; also, agree-
ment with the results quoted in [5] for the cross sec-
tions dσLL/dy, dσRR/dy, and dσRL/dy = dσLR/dy
P

is achieved. The subscripts L and R on the cross
sections mean that pB(T ) = −1 and pB(T ) = +1, re-
spectively.

3. ELECTROWEAK RADIATIVE EFFECTS

It is meaningless to consider “internal”-brems-
strahlung effects (which we are going to investigate)
without simultaneously taking into account one-loop
radiative corrections caused by the presence of ad-
ditional virtual particles (so-called V contribution).
Under the conditions of the E-158 experiment, this
part has received quite an adequate study (see In-
troduction); therefore, a complete calculation will not
be reproduced here. Nevertheless, we will need that
part of the V contribution which contains an infrared
divergence. The isolation of this part is ambiguous—
the only thing that must be strictly respected is that
the isolated term must be proportional to the Born
cross section. In our situation, where the correc-
tion to the polarization asymmetry is of interest (this
is the ratio of the cross sections), this contribution
alone cannot change the asymmetry and is very small
against the background of the remaining terms (as
will become clear from a numerical analysis). Thus,
the isolation of the divergent part will be performed
here by using the results obtained in [9, 10], where
the self-energies of gauge bosons (in the renormal-
ization scheme used in [9], there are no contributions
from electron self-energies) and vertex functions were
calculated. We will also need expressions for the con-
tributions of box diagrams from [11].

3.1. Isolation of the Infrared Divergence
from the Contribution of Virtual Particles

The contribution of virtual particles to the observ-
ables of Møller scattering can be represented by three
classes of diagrams: boson “self-energies,” vertices,
and “boxes” (see Fig. 2). The corresponding cross
section is given by

dσV

dy
=

dσS

dy
+

dσVer

dy
+

dσB

dy
. (12)

(i) The contributions of the photon and Z-boson
self-energies (diagram 1 in Fig. 2) are free from in-
frared divergences and are not considered here.

(ii) In order to calculate the required part of the
electron vertex corrections (diagrams 2 and 3 in
Fig. 2), we have used the form factors δF je

V,A from [9]

(pp. 722, 723) at k2 = t, u. Replacing the coupling
constants v and a by these form factors (for example,
vγ → δF γe

V ) in the corresponding terms of the Born
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 3. Diagrams for the bremsstrahlung process
e−e− → e−e−γ in the t channel. Four u-channel dia-
grams are obtained from those displayed in this figure by
means of the substitution k2 ↔ p2.

functions Mev,odd, we obtain the vertex component of
the cross section in the form

dσVer

dy
=

2πα2

s
Re

4∑

l=1

(MV
l + M̂V

l ), (13)

where

MV
1 = Dγt(Dγt(MF γγγγ

ev + MγγF γγ
ev ) (14)

−Dγu(MF γγγγ
odd + MγγF γγ

odd )),

MV
2 = Dγt(DZt(MF γZγZ

ev + MγZF γZ
ev )

−DZu(MF γZγZ
odd + MγZF γZ

odd )),

MV
3 = DZt(Dγt(MFZγZγ

ev + MZγFZγ
ev )

−Dγu(MFZγZγ
odd + MZγFZγ

odd )),

MV
4 = DZt(DZt(MFZZZZ

ev + MZZFZZ
ev )

−DZu(MFZZZZ
odd + MZZFZZ

odd )).

(iii) As to the box component of the cross section
(diagrams 4 and 5 in Fig. 2), we are interested in the
contributions of those boxes that involve at least one
virtual photon; diagrams containing two Z bosons
and two W bosons are infrared-finite and are not
considered here for this reason. Thus, the required
cross-section component, written with the aid of the
results presented in [11], has the form

dσB

dy
=

2πα2

s
Re((M0

1 + M0
2 )(Cγγ(t, s) (15)

− C5
γγ(t, s)) + (M0

3 + M0
4 )(CγZ(t, s)

− C5
γZ(t, s))) + (t↔ u).

The explicit expressions for the functions C and C5

are given in [11] (p. 1088).
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
 

–0.06 –0.04 –0.02 0

0.06

0.04

0.02

0

 

t

 

, GeV

 

2

 
v

 
, GeV

 
2

 

s

–s

v

 

max

Fig. 4. Chew–Low diagram at s ≈ 0.05 GeV2 for (solid
line) the actual electron mass and (dashed line) that
which is artificially magnified by a factor of 20. The dotted
line corresponds to vmax under the conditions of the E-158
experiment.

We represent the V contribution as the sum of
an infrared-divergent and an infrared-finite part. Fur-
ther, we use the identity transformation

dσV

dy
=

dσVIR
dy

+
dσV

dy
(λ2 → s), (16)

where λ is the photon mass regularizing the infrared
divergence. For the infrared-divergent part, we ob-
tained an expression that is proportional to the Born
cross section; that is,

dσVIR
dy

= −2α
π

ln
s

λ2

(

ln
tu

m2s
− 1
)

dσ0

dy
. (17)

3.2. Contribution of Real-Photon Emission
(R Contribution)

Let us consider Møller scattering process involv-
ing the emission of one bremsstrahlung photon of
4-momentum k: e−e− → e−e−γ. Eight diagrams
correspond to it: these are four t-channel diagrams
(see Fig. 3) and four u-channel diagrams, which
can be obtained by means of the substitution k2 ↔
p2. The differential cross section for the process in
question has the form

dσR

dy
= − α3

4sπ

vmax∫

0

dv (18)

×
∫

d3k

k0
δ[(k1 + p1 − k2 − k)2 −m2]
4
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×
4∑

j,i=1

(−1)i+jMR
ij ,

where, for the kinematical variables (the square of the
matrix element MR

ij depends on them—see below),
we use the standard set

z = 2kk2, z1 = 2kk1, t1 = (p2 − p1)2, (19)

v1 = 2kp1 = s + u + t1 − 4m2,

v = 2kp2 = s + u + t− 4m2,

which satisfies the equalities

v1 − v = z − z1 = t1 − t. (20)

We note that, as before, s, t, and u are given by the ex-
pressions in (2). In a number of cases (see Appendix),
it is advisable to use the nonstandard variable

z2 = (k1 − p2)2 = u− v + z1. (21)

The domain of v was investigated in [12] and is
described by the Chew–Low diagram in Fig. 4. The
solid line represents an upper bound on v at s ≈
0.05 GeV2. It can be seen that, within the segment
t� 0, the hyperbola degenerates into the straight
line vmax = s + t. This is due to the smallness of the
P

square of the electron mass in relation to other invari-
ant quantities. The dashed line represents vmax at the
same value of s, but for the electron mass artificially
magnified by a factor of 20. Here, the shape of a hy-
perbola is clearly seen (the straight lines v = s+ t and
t = 0 are asymptotes to it). Further, we emphasize
that, since the upper bound v = vmax corresponds
to the point u = 0 (collinear singularity), we must
cut off the integration domain at a value that corre-
sponds to the possibilities of the E-158 experiment—
the energy of the detected particle lies in the region
EL ≥ 10 GeV. We then have umax = 2m(m−EL)
and vmax = s + t + umax − 4m2. The last equation
yields a straight line lying below vmax ≈ s + t (dotted
line in Fig. 4).

The indices i and j in expression (18) denote the
type of diagram (in Fig. 3) that contributes to the
cross section; both i and j can take four values (their
meaning is obvious—the indices label the intermedi-
ate boson and the channel through which the reaction
proceeds):

i, j = (1, 2, 3, 4) = (γt, γu, Zt, Zu). (22)

By employing the standard Feynman rules for cal-
culating the matrix elements MR

ij , we obtain
MR
ij =






(MR
ij )zz + (MR

ij )zv + (MR
ij )vz + (MR

ij )vv for ij = 13, 31, 11, 33

(MR
ij )f + (MR

ij )l + (MR
ij )tu + (MR

ij )s for ij = 12, 14, 32, 34.
The terms in this formula are the traces of the prod-
ucts of combinations of the γ matrices and density
matrices, these traces being multiplied by the corre-
sponding propagators; that is,

(MR
ij )zz = tr[Gµα

1 ρij(k1)Gνα
1
TΛ(k2)] (23)

× tr[γµρij(p1)γνΛ(p2)]Dit1Djt1 ,

(MR
ij )zv = tr[Gµα

1 ρij(k1)γνΛ(k2)]

× tr[γµρij(p1)Gνα
2
TΛ(p2)]Dit1Djt,

(MR
ij )vz = tr[Gµα

2 ρij(p1)γνΛ(p2)]

× tr[γµρij(k1)Gνα
1
TΛ(k2)]DitDjt1,

(MR
ij )vv = tr[Gµα

2 ρij(p1)Gνα
2
TΛ(p2)]

× tr[γµρij(k1)γνΛ(k2)]DitDjt,

(MR
ij )f = tr[Gµα

1 ρij(k1)Gνα
3 Λ(p2)

× γµρ
ij(p1)γνΛ(k2)]Dit1Dju,

(MR
ij )l = tr[Gµα

1 ρij(k1)γνΛ(p2)

× γµρ
ij(p1)Gνα

4 Λ(k2)]Dit1Djz2,
H

(MR
ij )tu = tr[γµρij(k1)

×Gνα
3 Λ(p2)G

µα
2 ρij(p1)γνΛ(k2)]DitDju,

(MR
ij )s = tr[γµρij(k1)γνΛ(p2)

×Gµα
2 ρij(p1)Gνα

4 Λ(k2)]DitDjz2,

where

Λ(p) = p̂ + m, p̂ = γµpµ, (24)

Gµα
1 = γµ

2kα1 − k̂γα

−z1
+

2kα2 + γαk̂

z
γµ, (25)

Gµα
2 = γµ

2pα1 − k̂γα

−v1
+

2pα2 + γαk̂

v
γµ, (26)

Gνα
3 =

2kα1 − γαk̂

−z1
γν + γν

2pα2 + k̂γα

v
, (27)

Gνα
4 =

2pα1 − γαk̂

−v1
γν + γν

2kα2 + k̂γα

z
. (28)
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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In order to obtain the expressions for MR
ij at other

values of i and j (22, 44, 24, 42, etc.), we can use a
peculiar symmetry of the expressions in (23):

(MR
24)zz = (MR

13)zz
∣
∣
k2↔p2

(29)

=
[
(MR

13)zz
∣
∣
∣
k2↔p2,k1↔p1

]∣∣
∣
∣
k1↔p1

= (MR
13)vv

∣
∣
k1↔p1

= (MR
13)vv

∣
∣
t↔u

and

(MR
24)vv = (MR

13)zz
∣
∣
t↔u

. (30)

For the cases of 22 and 44, we obtain the analogous
result, while, for the interference part (the indices zv
and vz), the symmetry is somewhat more compli-
cated:

(MR
24)zv + (MR

42)vz =
[
(MR

13)vz + (MR
31)zv

]∣
∣
∣
t↔u

;

(31)

similar relations hold for other terms in expres-
sion (18). As a result, we can represent the sum in
the bremsstrahlung cross section as

4∑

j,i=1

(−1)i+jMR
ij = (MR

11 + MR
13 + MR

31 + MR
33

(32)

−MR
12 −MR

14 −MR
32 −MR

34) + (t↔ u).

3.3. Isolation of the Infrared Divergence
in the R Contribution

Our next task is to isolate the infrared divergence
in the bremsstrahlung cross section. For this purpose,
we will make use of the method proposed in [8]: first
of all, we will find the infrared-divergent parts of the
squares of the matrix elements in (23); naturally, they
must be proportional to the corresponding Born ex-
pressions. On the basis of these results, we will then
construct the infrared-divergent part of the R con-
tribution dσRIR/dy by formula (18). The finite expres-
sions that are obtained from this infrared-divergent
part by subtracting divergences,

(MR
ij )

F
= MR

ij − (MR
ij )

IR
, (33)

will then form [naturally, according to (18) as well] the
infrared-finite cross section dσRF /dy. Thus, the cross
section in (18) breaks down into two terms

dσR

dy
=

dσRIR
dy

+
dσRF
dy

. (34)

Upon integration with respect to the variables k
and v and upon λ parametrization (the details of
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
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this procedure are described in [13]), the infrared-
divergent part in expression (34) (the first term there)
can be represented in the form

dσRIR
dy

=
2α
π

ln
(vmax)2

sλ2

(

ln
tu

m2s
− 1
)

dσ0

dy
. (35)

The integrals involved in the bremsstrahlung cross
sections will be calculated analytically over the phase
space of the bremsstrahlung photon and numeri-
cally (since the resulting expressions are very com-
plicated) with respect to the variable v. The integral
over the photon phase space can be represented in the
form [14]

I[A] =
1
π

∫
d3k

k0
δ[(k1 + p1 − k2 − k)2 −m2][A]

(36)

=
1
π

tmax
1∫

tmin
1

dt1

zmax∫

zmin

dz√
Rz

[A],

where Rz is a Gram determinant multiplied by −1; it
can be represented as a polynomial of second degree
in z,

Rz = Azz
2 + 2Bzz + Cz, (37)

with the coefficients being given by

Az = 4m2t− (v − t)2, (38)

Bz = Et1 + F,

E = v(u− 2m2)− st, F = t(2m2v + st− sv),

Cz = −(At21 + 2Bt1 + C),

A = (s− v)2 − 4m2s,

B = −st(s− v − 4m2)− 2m2v2,
4
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The integration limits zmin/max and tmin/max
1 (see

Fig. 5), which are necessary for the calculations,
can be found by solving the equations Rz = 0 and
zmin = zmax, respectively. The results are

zmin/max = (−Bz ±
√

B2
z −AzCz)/Az(Az < 0),

(39)

tmin/max
1 =

1
2τ

(v(t− v) + 2m2t∓ v
√
−Az), (40)

τ = v + m2,

where the upper (lower) sign is for min (max). It
should be noted that, here, there is some arbitrariness
in choosing variables to which one can go over in
performing integration over the phase space of the
bremsstrahlung photon (see Appendix).

The expression for (MR
ij )

F was calculated by
means of the REDUCE system for analytic calcu-
lations [15]. Its role amounted to (a) evaluating the
trace in (23), (b) subtracting the infrared divergence
according to (33) and (c) summing similar terms.
Since the results are rather cumbersome, they are not
presented here. In order to reduce the probability of an
error in rewriting them, the data obtained as an output
of the application of the REDUCE system were
transferred, without editing, to the FORTRAN code
RCORR2A11) (Radiative CORRections TO asym-
metry A1) as a set of subroutine functions [for ex-
ample, the function MRz(pB , pT , i, j, s, v, t, t1, z, 0)
corresponds to (MR

ij )
F

zz
]. The integrals involved in the

calculation are presented in the Appendix. They are

1)This code can be obtained from the present author by e-mail.
P

also introduced in RCORR2A1 as individual subrou-
tine functions and are tested there for correctness of
analytic integration.

3.4. Result of the Cancellation of the Infrared
Divergence

Summing the infrared-divergent parts of the V
and R contributions [formulas (17) and (35)],

dσC

dy
=

dσVIR
dy

+
dσRIR
dy

(41)

=
4α
π

ln
vmax

s

(

ln
tu

m2s
− 1
)

dσ0

dy
,

we arrive at a result that is completely free from
infrared divergences and which does not involve un-
physical parameters; the index “C” on this part of the
cross section means the cancellation of the infrared
divergence.

4. NUMERICAL ESTIMATES
AND CONCLUSIONS

Here, we present the results obtained by nu-
merically estimating the radiative effects consid-
ered above. Particular attention will be given to the
bremsstrahlung effect on the observed polarization

asymmetry A
(1)
LR in the scattering of longitudinally

polarized 45- and 48-GeV electron beams on an
unpolarized electron target, this corresponding to the
E-158 experiment (SLAC) [1]. We also consider the
case corresponding to an electron energy of 100 GeV.
In the present study, we take into account only
one experimental cut, that which is associated with
cutting off the integration domain in the variable v,
and construct the FORTRAN code RCORR2A1 in
such a way that the resulting formulas are readily
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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applicable to estimating the correction in question
under any experimental conditions. All estimates are
given at the electroweak-parameter values of mW =
80.451 GeV, mZ = 91.1863 GeV, and

cW = mW/mZ , sW =
√

1− c2W. (42)

The polarization asymmetry A
(1)
LR is defined in a

standard way:

A
(1)
LR ≡ A =

σLL + σLR − σRL − σRR
σLL + σLR + σRL + σRR

. (43)

Here and below, we use the condensed notation σ ≡
dσ/dy. We define the correction to the asymmetry as
the ratio

δA
(1)
LR =

ARC −A0

A0
, (44)

where A0 is the Born asymmetry and ARC is the
asymmetry with allowance for radiative corrections.
Further, the cross section that takes into account
electroweak radiative corrections is defined here as
the sum

σRC = σ0 + σC + σRF . (45)

We begin our analysis by considering the Born
cross sections σ0

LL and σ0
LR and the cross sections al-

lowing for the corrections σRC
LL and σRC

LR. They are dis-
played in Fig. 6 for the electron-beam energies ofE =
48 and 100 GeV. It should be noted that, both for the
Born cross sections and for the cross section allowing
for the corrections, σLL is close to σRR (by virtue
of the smallness of electroweak effects) and σLR ≡
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
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Fig. 8. Corrections δ1 versus y. The numbers on the
curves indicate the values of E in GeV units.

σRL. The cross-section ratios (σRC
LL − σ0

LL)/σ0
LL and

(σRC
LR − σ0

LR)/σ0
LR, which are shown in Fig. 7 at the

energies of E = 48 and 100 GeV, are also determined
almost completely by the electromagnetic compo-
nent.

Further, we proceed to analyze the effect of ra-
diative corrections on the cross-section components
forming the polarization asymmetry. For example, the
correction δ1 defined as

δ1 =
σRC
LL + σRC

LR

σ0
LL + σ0

LR

(46)
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Fig. 9. Corrections δ2 versus y: (dotted curves) correc-
tions allowing only for electromagnetic effects and (solid
curves) corrections allowing for all radiative effects. The
numbers on the curves indicate the values of E in GeV
units.
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Fig. 10. Polarization asymmetries in Møller scattering versus y: (dotted curves) Born result and (solid curves) asymmetries
allowing for radiative corrections (the curves labeled with EM and EWeak in the left panel represent the results including,
respectively, only electromagnetic corrections and the total electroweak corrections). The left panel corresponds to the
kinematics of the E-158 experiment and the beam energy of E = 48 GeV, while the right panel corresponds to the beam
energy ofE = 100 GeV.
and shown in Fig. 8 is virtually independent of
electroweak-physics effects. On the contrary, the
correction composed from a drastically different com-
bination present in the asymmetry,

δ2 =
σRC
LL − σRC

RR

σ0
LL − σ0

RR

(47)

(see Fig. 9), depends greatly on the electroweak con-
tribution.

The scale and the behavior of the asymmetry A
(1)
LR

are shown in Fig. 10 (a maximum in the asymmetry
at y = 0.5 is quite distinct). It can be seen that the
inclusion of radiative effects leads to a result below
the value in the Born approximation, their influence
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Fig. 11.Corrections to the polarization asymmetry versus
y at various beam energies.
P

becoming more pronounced with increasing y. Since,
owing to the structure of the asymmetry in (43),
the purely electromagnetic component contributes
only to the denominator of the asymmetry in the
form of the term 2σRC,unpol

γγ (the indices “unpol”
and “γγ” mean that, in the cross section σRC,
one takes terms corresponding to the scattering
of only unpolarized electrons and only via the ex-
change of photons; it is obvious that σ

RC,unpol
γγ > 0),

this part of the correction reduces the asymmetry,
as it must. This effect is partly compensated by
“weak” effects (that is, by the contributions to the
cross section from the diagrams involving Z-boson
exchange and from the interference of the γ and
Z diagrams; at comparatively low energies of the
E-158 experiment, the effects of weak physics are not
expected to exceed purely electromagnetic effects),
which increase the asymmetry slightly. Nevertheless,
the total effect remains negative at E-158 energies,
but, even upon increasing the energy only up to
E = 100 GeV, the electromagnetic and the “weak”
effect compensate each other in the region of small
y. It should be noted that the result quoted for the
correction in [7] is positive (+4%), which is difficult
to explain on the basis of qualitative arguments
similar to those presented above. The regularities
of the influence of electroweak corrections on the
asymmetry are reflected in Fig. 11, which displays

the behavior of the correction to the asymmetry δA
(1)
LR

versus y at various electron energies. For example, it
can be seen that, at the energy of E = 48 GeV and at
y = 0.5 (0.75), the correction is about −11%(−6%);
this correction is minimal in the region of intermediate
values of y, and it can also clearly be seen that, with
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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increasing energy, this minimum is shifted toward
greater values of y.

In summary, electroweak effects of bremsstrah-
lung in the Møller scattering of polarized particles
have been calculated in the present study. Partic-
ular attention has been given to investigating the
observables of the E-158 experiment (SLAC), where
it is planned to measure, with an unprecedented

precision, the polarization asymmetry A
(1)
LR. The

Bardin–Shumeiko method has been used to remove
the infrared divergence. Owing to this, the result does
not contain unphysical parameters. The calculations
have revealed that, in the region studied by the E-158
experiment, the effects of internal bremsstrahlung

reduce the polarization asymmetry A
(1)
LR significantly;

for example, the asymmetry is shifted by about
−11% (−6%) at y = 0.5 (0.75). The FORTRAN
code RCORR2A1 has been written, which makes
it possible to apply the formulas quoted above to
estimating corrections to the polarization asymmetry
measured in the E-158 experiment.
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Note added in proof. At present time, the esti-
mates given above changed owing to the removal of
inaccuries in the numerical calculation based on the
RCORR2A1 code, the refinement of the kinematical
region of the E-158 experiment, and the addition of
box diagrams involving a photon that were calculated
anew. For example, the correction to the asymmetry
in Fig. 11 is about 7% at a beam energy of 48 GeV
and y = 0.5.

APPENDIX

Scalar Integrals

Here, we present scalar integrals that must be
evaluated in calculating the bremsstrahlung cross
section. The expressions that are integrated are
grouped in such a way that the result is free from
infrared divergences. Thereby, we achieve, first, a
more compact form of the resulting expressions and,
second, the preservation of the required accuracy at
the end of the domain of integration with respect
to the variable v (vmin = 0). Where possible, we
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
used the approximation motivated by the kinematical
conditions of the E-158 experiment; that is,

m2 � s, |t|, |u|, v, z, z1 , v1, |t1|, |z2| � m2
Z .

The asterisk symbol denotes the substitution z →
z1—for example, I[f(zn)]∗ = I[f(zn1 )]. The meaning
of the indices i and j is determined here by the first
symbol in expression (22)—that is, we have i = γ, Z
and j = γ, Z.

First, we present the list of integrals with respect
to z that were involved in the calculations:

J0 =

zmax∫

zmin

dz√
Rz

=
π√
−Az

,

J1 =

zmax∫

zmin

dz

z
√
Rz

=
π√
−Cz

,

J∗
1 =

zmax∫

zmin

dz

z1

√
Rz

=
π√
−Cz

∣
∣
∣
∣
s↔u

,

J2 =

zmax∫

zmin

dz

z2
√
Rz

=
πBz

(−Cz)3/2
,

J∗
2 =

zmax∫

zmin

dz

z2
1

√
Rz

=
πBz

(−Cz)3/2

∣
∣
∣
∣
∣
s↔u

,

J3 =

zmax∫

zmin

zdz√
Rz

=
πBz

(−Az)
3/2

,

J4 =

zmax∫

zmin

z2dz√
Rz

= π
(3B2

z −AzCz)

2(−Az)
5/2

,

Jj5 =

zmax∫

zmin

Djz2dz√
Rz

= − π
√
−Rp

,

Rp = Azp
2 − 2Bzp + Cz, p = u− v1 −m2

j .

Further, we present the lists of expressions in-
tegrated with respect to both variables (z and t1).
We arrange them in the same order as they appear
in the text of our FORTRAN code. Thus, the in-
tegrals evaluated in calculating the term (MR

ij )zz in
the bremsstrahlung cross section (the part caused
exclusively by photon emission from electrons of 4-
momentum k1 and k2—the “upper” electron in Fig. 3)
are labeled with the index z and are given by

Iijz,1 = I

[
m2

z2
(DitDjt −Dit1Djt1)

]

=
1
s
Dit
v D

jt
v

4
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×
(
m2
iD

it + m2
jD

jt +
v

s
(m2

im
2
jD

itDjt − 1) + 2
)

(i �= j),

Iγγz,1 =
2s − v

t2s2
− v(v − t)2

t4s2
, IZZz,1 ≈ 0;

Dit
v =

1
t−m2

i (1− v/s)
;

Iijz,2 = I

[
m2

z2
(tDitDjt − t1D

it1Djt1)
]

=
t

s
Dit
v D

jt
v

×
(
1 + m2

iD
it + m2

jD
jt +

v

s
m2
im

2
jD

itDjt
)

(i �= j),

Iγγz,2 =
1
st

, IZZz,2 ≈ 0;

Iijz,3 = I

[
m2

z2
(t2DitDjt − t21D

it1Djt1)
]

=
t2

s
Dit
v D

jt
v (m2

iD
it + m2

jD
jt +

v

s
m2
im

2
jD

itDjt);

Iijz,4 = I

[
DitDjt −Dit1Djt1

zz1

]

,

IγZz,4 ≡ IZγz,4 ≈
1

tm2
Z

(Iγz,10 − Iγ∗z,10);

Iijz,6 = I

[
Dit1Djt1

z

]

,

IγZz,6 ≡ IZγz,6 ≈ −
1

m2
Z

Iγz,10;

Iijz,7 = I

[
t1D

it1Djt1

z

]

,

Iγγz,7 = Iγz,10, IγZz,7 ≡ IZγz,7 ≡ IZz,10 ≈ −
1

m2
Z

Iz,12;

Iijz,8 = I

[
t21D

it1Djt1

z

]

,

Iγγz,8 = Iz,12, IγZz,8 ≡ IZγz,8 ≈ −
1

m2
Z

I

[
t1
z

]

;

Iijz,9 = I
[
t1D

it1Djt1
]
,

Iγγz,9 =
1√
−Az

ln
m2t2

τ(t− v)2
,

IγZz,9 ≡ IZγz,9 =
1√
−Az

ln
m2
Z

m2
Z + v − t

;

Iiz,10 = I

[
Dit1

z

]

= − 1√
c

ln
(st + m2

i (v − s))2

m2(m2(m2
i − t)2 −m2

i vpz)
,

c = Am4
i + 2Bm2

i + C, pz = t− v −m2
i ;
Iz,11 = I

[
1

zz1

]

=
2

v
√

t(t− 4m2)
Lm,

Lm = ln
|t|
m2

;

Iz,12 = I

[
1
z

]

=
1√
A
LA, LA = ln

(s− v)2

m2τ
.

The integrals from the terms (MR
ij )zv and (MR

ij )vz
(these are the parts corresponding to the interfer-
ence between photon emission from electrons of 4-
momentum k1 and k2 and emission from electrons of
4-momenta p1 and p2—the “lower” electron in Fig. 3)
are labeled with the index zv and can be written as

Iizv,1 = I

[
Dit −Dit1

zv

]

= (DitIz,12 − Iiz,10)/v;

Iizv,2 = I

[
tDit − t1D

it1

zv

]

= m2
i I
i
zv,1;

Iizv,3 = I

[
t2Dit − t21D

it1

zv

]

,

Iγzv,3 =
t

v − s
Iz,12 −

−st + uv

τA
,

IZzv,3 = − 1
2m2

ZA

(

2t2(v − 2s)Iz,12

− (v − t)|u| − 3B(|u|v − s|t|)
τA

)

;

Iizv,4 = I

[
Dit −Dit1

zv1

]

= − Dit

|4m2 − u|pz
ln

(4m2 − u)2

m4
+

1
pz

Iiz,10;

Izv,5 = I

[
v

zv1

]

=
1

|4m2 − u| ln
(4m2 − u)2

m4
;

Iizv,7 = I

[
t1D

it1

z

]

= Iz,12 + m2
i I
i
z,10;

Iizv,8 = I

[
t21D

it1

z

]

,

Iγzv,8 ≡ I

[
t1
z

]

= −v

τ

|u|v − s|t|
A

− B

A
Iz,12,

IZzv,8 ≈ −
1

m2
Z

I

[
t21
z

]

= − 1
2m2

ZA
2

× (−3B|st| − (A(t− v)− 3B)|uv| + 2B2Iz,12);

Iizv,10 = I

[
Dit1

v1

]

= − 1
(v − t)pz

× ln
(m2(t−m2

i )
2 −m2

i vpz)m
2

p2
z(t− v)2

;
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Iizv,11 = I

[
zDit1

v1

]

= − 1
pz

(

vIizv,14 −
vE

(v − t)2τ
+

vu

(v − t)2
Lu

)

,

Lu = ln
(t− v)2

m2v
;

Iizv,12 = I

[
Dit1

v

]

=
1

v(v − t)
Lit,

Lit = ln
∣
∣
∣
∣
m2(t−m2

i )
2 −m2

i vpz
τp2

z

∣
∣
∣
∣ ;

Iizv,13 = I

[
t1D

it1

v

]

,

Iγzv,13 =
1
τ
, IZzv,13 ≈

v − t

2m2
Zτ

;

Iizv,14 = I

[
zDit1

v

]

,

Iγzv,14 =
E

(v − t)2τ
+

F

(v − t)3v
Lγt ,

IZzv,14 ≈
st + vu

2τm2
Z(v − t)

.

The integrals that had to be evaluated in calculat-
ing the term (MR

ij )vv (this is the part corresponding
to photon emission from the “lower” electron) are
labeled with the index v. Since these integrals do
not involve propagators, they are independent of the
intermediate-vector-boson mass and, hence, coin-
cide with the expressions from the calculation of the
R contribution for the case where only photons are
exchanged [3]. The same is true for the cross-section
component (MR

ij )tu, which corresponds to the inter-
ference between emission from the “lower” electron in
the t channel and emission from the “lower” electron
in the u channel. Thus, the integrals Iv and Itu are not
presented here.

Further, we consider the integrals corresponding
to the interference between emission from the “upper”
t-channel electron and emission from the “lower” u-
channel electron. They are contained in the compo-
nent (MR

ij )f and are labeled with the index f . We have

Iif,2 = I

[
Dit −Dit1

zz1

]

= Dit(Ii∗z,10 − Iiz,10);

Iif,3 = I

[
tDit − t1D

it1

zz1

]

= Dit(−I∗z,12 + Iz,12 + Ii∗zv,7 − Iizv,7);

Iif,4 = I

[
t2Dit − t21D

it1

zz1

]
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= Dit(−Iγ∗zv,8
+ Iγzv,8 − tI∗z,12 + tIz,12 + Ii∗zv,8 − Iizv,8);

Iif,5 = I

[
v

zz1

]

= vIz,11;

Iif,8 ≡ Ii∗zv,1; Iif,9 ≡ Ii∗zv,2;

Iif,10 ≡ Ii∗zv,3;

Iif,14 = I

[
m2(Dit −Dit1)

z2
1

]

=
(Dit

v

s

)∣∣
∣
∣
s↔u

tDit;

Iif,15 = I

[
m2(tDit − t1D

it1)
z2
1

]

=
(m2

iD
it
v

s

)∣∣
∣
∣
s↔u

tDit;

Iif,16 = I

[
m2(t2Dit − t21D

it1)
z2
1

]

=
(m2

iD
it
v − 1

s− v

)∣∣
∣
∣
s↔u

t2Dit;

Iif,17 ≡ Ii∗zv,8; Iif,18 ≡ Ii∗zv,7;

Iif,19 ≡ Ii∗z,10; Iif,20 ≡ vIizv,14;

Iif,21 ≡ vIizv,13; Iif,22 ≡ vIizv,12;

If,23 ≡ I∗z,12; If,24 = I

[
m2v

z2
1

]

= 1.

The integrals corresponding to the interference
between emission from the “lower” t-channel elec-
tron and emission from the “lower” u-channel elec-
tron are contained in the component (MR

ij )s and are
labeled with the index s (the specific invariant quan-
tity z2 manifests itself in it; therefore, it is more con-
venient, in a number of cases, to perform integration
with respect to the variables v1 and z1 or with respect
to the variables z and z1). The results are

Ijs,1 = I

[
Dju −Djz2

zv

]

=
(

DjuIz,12 +
1
dz2

Ls1

)

/v,

dz2 = −su + m2
j(s− v), ps = u− v −m2

j ,

Ls1 = ln
d2
z2

m2ps(m2ps −m2
jv)

;

Ijs,3 = I

[
Djz2

z

]

= − 1
dz2

Ls1;

Ijs,4 = I

[
Dju −Djz2

v1v

]

=
(

Dju 1√
−Az

Lu +
1
dz1

Ls4

)

/v,
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dz1 = tu + m2
j(v − t),

Ls4 = ln
d2
z1τ

m2vps(m2ps −m2
jv)

;

Ijs,7 = I

[
Djz2

v1

]

= − 1
dz1

Ls4;

Ijs,10 = I

[
Djz2

v

]

=
1

(s + t)v
ln
∣
∣
∣
∣1 +

v(s + t)
τps

∣
∣
∣
∣ ;

Ijs,11 = I

[
Djz2z

v

]

=
Es

τ(s + t)2

+
Fs − Esps
(s + t)3v

ln
∣
∣
∣
∣1 +

v(s + t)
τps

∣
∣
∣
∣ ,

Es = s(s + t)− v(s− t), Fs = −vt(s + t);

Ijs,12 ≡ vIjs,10;

Ijs,13 = I

[
m2(Dju −Djz2)

v2
1

]

=
u

dz1
Dju.

The integrals corresponding to the interference of
emission from the “upper” t-channel electron and
emission from the “upper” u-channel electron—these
are contained in the component (MR

ij )l and are la-
beled with the index l (for the sake of simplicity and
in order to improve the accuracy of the calculations,
some of these integrals were brought together into
combinations labeled with the index ll)—can be writ-
ten as

Iijl,1 = I

[
m2

z2
(DitDju −Dit1Djz2)

]

,

Iγγl,1 =
2s − v

s2tu
, IγZl,1 ≈ −

1
m2
Zst

,

IZγl,1 ≈ −
1

m2
Zsu

, IZZl,1 ≈ 0;

Iijl,2 = I

[
1

zz1
(DitDju −Dit1Djuv)

]

= DitDjuv(−DjuIf,5 + Ii∗z,10 − Iiz,10),

Djuv =
1

u− v −m2
j

;

Iil,4 = I

[
1

zv1
(Dit −Ditv)

]

= −DitDitvIizv,5,

Ditv =
1

t− v −m2
i

;

Iijl,6 = I

[
1
z
Dit1Djz2

]

,

Iγγl,6 = −1
s

(

Iγz,10 − Iγγl,13 +
2
su

ln
s

m2

)

,

PH
IγZl,6 ≈ −
1

m2
Z

Iγz,10, IZγl,6 ≈ −
1

m2
Z

Iγs,3, IZZl,6 ≈ 0;

Iijl,8 = I

[
1

z1v1
(DitDju −DitvDjuv)

]

=
s + m2

i + m2
j

s
DitDjuDitvDjuv ln

s2

m4
;

Iil,9 ≡ Ii∗z,10; Il,10 ≡ I∗z,12;

Iijl,13 = I[Dit1Djz2],

Iγγl,13 =
2

√
s2v2 − 4st(s + t)m2

ln
sv2

m2ut
,

IγZl,13 ≈ −
1

m2
Z(v − t)

ln
m2t2

τ(t− v)2
,

IZγl,13 ≈ −
1

m2
Z(s + t)

ln
m2

τ
, IZZl,13 ≈ 0;

Iill,1 = I

[
vDit1

zz1

]

= Dit(If,5 − vIi∗z,10 + vIiz,10);

Ill,2 = I

[
Dγt −Dγtv

z1v1

]

= − 1
st(t− v)

ln
s2

m4
.
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ELEMENTARY PARTICLES AND FIELDS
Theory
SSS Wave of Pion–Pion Scattering from Data on the Reaction π−p→ π0π0nπ−p→ π0π0nπ−p→ π0π0n

N. N. Achasov* and G. N. Shestakov**

Institute of Mathematics, Siberian Division, Russian Academy of Sciences,
pr. Akademika Koptyuga 4, Novosibirsk, 630090 Russia
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Abstract—The results of recent experiments performed at KEK, Brookhaven National Laboratory, the
Institute for High-Energy Physics (Protvino), and CERN to study the reaction π−p→ π0π0n are analyzed
in detail. For S-wave pion–pion scattering in the channel of isospin I = 0, new data are obtained for
the phase shift δ0

0 and the inelasticity parameter η0
0 . Difficulties that arise in using, for the amplitudes

of the S and D waves of the final π0π0 system, physical solutions selected on the basis of partial-wave
analyses are discussed. It is noteworthy that other solutions are preferable in principle in the region
of the invariant mass m of the π0π0 system above 1 GeV. With the aim of clarifying the situation
and further studying the properties of the f0(980) resonance, it is proposed to perform, in the reaction
π−p→ π0π0n, an especially careful examination of the m region in the vicinity of the KK̄ threshold.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Reactions of the πN → ππN type, which, at
high energies and low values of the square of the
4-momentum transfer from the incident pion to
the final dipion system (0 < −t < 0.2 GeV2), are
dominated by the one-pion-exchange mechanism,
are one of the main sources of information about
ππ → ππ processes. The method of partial-wave
analysis is used to treat data on these reactions. As
a rule, a number of possible solutions are obtained
for the amplitudes of partial waves of the final dipion
system. In some cases, the only solution is selected
on the basis of additional physical arguments. In
general, vast statistics, the use of polarized targets,
and precise measurements of absolute cross-section
values for πN → ππN reactions at various energies
are required for obtaining reliable and unambiguous
results over a broad range of m values. Relevant
surveys and detailed discussions on the results of ex-
perimental investigations performed for πN → ππN
reactions and pion–pion scattering over the region
2mπ < m < 2 GeV by the beginning of 1999 can be
found in [1, 2].
In the present study, we analyze the latest data

on the intensities and the relative phase of the S
and D waves of the π0π0 system produced in the
reaction π−p→ π0π0n over the range of m values
between 0.32 and 1.64 GeV. These data were ob-
tained at КЕК [3], Brookhaven National Laboratory

*e-mail: achasov@math.nsc.ru
**e-mail: shestako@math.nsc.ru
1063-7788/04/6707-1355$26.00 c©
(BNL) [4], the Institute for High Energy Physics
(IHEP, Protvino) [5], and CERN [6] at incident-pion
energies of 8.9, 18.3, 38, and 100 GeV, respectively.
The main objective of our analysis is to determine
the phase shift δ0

0 and the inelasticity parameter η0
0

for S-wave pion–pion scattering through the channel
of isotopic spin I = 0; these new results would be
supplementary to old “canonical” data extracted from
experiments that studied the reaction π−p→ π+π−n
at an energy of 17.2 GeV [7–12]. We pay special
attention to a similarity of physical solutions selected
as the result of partial-wave analyses for all four ex-
periments that studied the production of π0π0 sys-
tems and to common difficulties arising in attempts at
interpreting these data and at comparing them with
data on the production of π+π− systems. It turns
out, among other things, that some of these solutions
lead to strong violations of the unitarity condition for
the ππ-scattering amplitude under study. Moreover,
it can be concluded that, for the branching fraction
of the decay process f2(1270) → ππ, data on the
production of π0π0 systems suggest a value that is
considerably smaller than that which is quoted by the
Particle Data Group (PDG) [13]. In view of great in-
terest in the sector of light scalar resonances (see, for
example, the review articles in [1, 2, 13-15]), we pro-
pose performing especially thorough measurements
of the reaction π−p→ π0π0n in the range ofm values
between 0.9 and 1.1 GeV—that is, in the region of the
KK̄ threshold—because this would make it possible
to determine more reliably the coupling of the f0(980)
resonance to the KK̄ channel and to solve the long-
2004 MAIK “Nauka/Interperiodica”
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standing question [16] of a possible ambiguity in the
behavior of the phase shift δ0

0 above the KK̄ thresh-
old.
The ensuing exposition is organized as follows. In

Section 2, we analyze the results of the КЕК exper-
iments [3], in which data on the phase shift δ0

0 were
obtained in the region of m values between 0.36 and
1 GeV. The δ0

0 values that we found by a different
method over the m range between 0.68 and 1 GeV
agree with the data from [3] within the errors. We also
quote new results for δ0

0 and η0
0 in the range 1 < m <

1.64 GeV. In Section 3, the S- and D-wave mass
distributions obtained in the BNL experiment [4] are
extrapolated from the physical region of the reac-
tion π−p→ π0π0n to the pion-pole point (t = m2

π).
Considering various solutions found in [4] for these
distributions, we determine a few sets of values for
δ0
0 and η0

0 in the range of m values between 0.32
and 1.52 GeV. The results of the GAMS Collabora-
tion [5, 6] for the reaction π−p→ π0π0n are discussed
in Section 4. There, we also summarize all difficul-
ties indicated in the course of our consideration that
are associated with the physical solutions presented
in [3–6] and with the normalization of data on the
production of π0π0 systems. In the Conclusions, we
briefly formulate a few specific proposals concerning
a further investigation of the reaction π−p→ π0π0n.
We hope that they will be used to clarify the current
experimental situation.

2. ANALYSIS OF THE КЕК DATA

In the КЕК experiments [3], data on the intensities
of the S and D waves in the process π+π− → π0π0

and on the relative phase of the respective amplitudes
were obtained over the interval of m values between
0.36 and 1.64 GeV. With the aid of the Chew–Low
linear extrapolation and a partial-wave analysis, these
data were extracted from experiments that studied the
reaction π−p→ π0π0n. Since the absolute value of
the cross section for the production of the π0π0 sys-
tem was not determined in [3], the intensities of the S
andD waves (|AS |2 and |AD|2, respectively) were ini-
tially presented in identical arbitrary units. No alter-
native solutions for |AS |2 and |AD|2 were discussed
in [3]. The intensity of the S wave is related to the
phase shifts δI0 and the inelasticity parameters η

I
0 in a

standard way; that is, |AS |2 ∼ |a0
0 − a2

0|2, where aI0 =
(ηI0 exp(2iδI0)− 1)/(2i). Similarly, we have |AD|2 ∼
|a0

2− a2
2|2, where aI2 = (ηI2 exp(2iδI2)− 1)/(2i). In or-

der to find the phase shift δ0
0 , it was assumed in [3]

that the relation η0
0 = η2

0 = 1 holds below the KK̄

threshold, in which case |AS |2 ∼ sin2(δ0
0 − δ2

0). Since
it is well-known from many previous experiments
P

that, with increasing m, the phase shift δ0
0 , which

increases smoothly, passes through the value of 90◦

in the range 0.7 < m < 0.9 GeV and that the phase
shift δ2

0 < 0 is smooth and is modest in magnitude
(see, for example, [2, 7, 8, 17]), the normalization
condition max(|AS |2) = 1 was adopted in [3] in or-
der to evaluate the difference δ0

0 − δ2
0 . The КЕК da-

ta normalized in this way that were obtained in [3]
for the intensities of the S and D waves are dis-
played in Fig. 1, along with data on the relative phase
δ = φS − φD of the amplitudes AS = |AS | exp (iφS)
and AD = |AD| exp (iφD). In [3], the parametrization
δ2
0 = −0.87q (where q = (m2/4−m2

π)1/2 and δ2
0 are

taken inGeV and radians, respectively) was employed
for the I = 2 phase shift of the S wave, and data for δ0

0
in them range between 0.36 and 1GeVwere obtained
in this way. In the following, we will use, for δ2

0 , the
fit to data from [17, 18] in Fig. 2.1) Using this fit and
the data on |AS |2 in Fig. 1a, we have also evaluated
the phase shift δ0

0 for m < 1 GeV (see Fig. 1d), and
the results proved to be nearly coincident with those
presented in [3].

We will now determine simultaneously the phase
shift δ0

0 and the inelasticity parameter η
0
0 in the range

ofm values between 0.68 and 1.64GeV, invoking data
on the relative phase δ and the intensity |AS |2 (see
Figs. 1c and 1а). Taking into account the present-
day accuracy of data on the D wave (see Fig. 1b),
we can disregard the small amplitude a2

2 [17, 18] in
estimating the phase shift φD and assume that theD-
wave amplitude is saturated by the contribution of the
f2(1270) resonance and is given by

AD =
mf2Bf2ππΓ

m2
f2
−m2 − imf2Γ

, (1)

where mf2 is the mass of the f2(1270) resonance,
Bf2ππ is the branching fraction of its decay into the ππ
system, and Γ = (mf2/m)Γf2(q/qf2)

5 ×
D(qf2Rf2)/D(qRf2). In the last expression, D(x) =
9 + 3x2 + x4, qf2 = (m2

f2
/4−m2

π)
1/2, Rf2 is the

interaction range, and Γf2 is the width of the f2(1270)
resonance. The fit in Fig. 1b corresponds to the

1)This fit was constructed by means of the parametrization
δ20 = aq/(1 + bm2 + cm4 + dm6), where a, b, c, and d are
adjustable parameters. For want of reliable data on the de-
viation of η2

0 from unity, we set η
2
0 = 1 for all values of m.

Upon obtainingmore or less reliable data on η2
0 , it would be of

interest to take into account possible inelastic effects as well.
It is natural to expect sizable manifestations of inelasticity in
the I = 2 pion–pion channel only form > 1.54 GeV—that
is, above the actual ρρ threshold rather than above the KK̄
threshold, as in the case of the I = 0 pion–pion channel.
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 1. КЕК data [3] on the reaction π+π− → π0π0: (a) normalized intensity |AS |2 of the S wave; (b) normalized intensity
|AD|2 of the D wave [the curve represents a fit to the data in terms of the form in (1) with the parameters of the f2(1270)
resonance that are set to those in (2)]; (c) relative phase δ of the amplitudes of the S andD waves; and (d) phase shift δ00 in the
S wave of pion–pion scattering through the I = 0 channel according to data on |AS|2 under the assumption that η0

0 = 1.
following values of the parameters of this resonance:

mf2 = 1.283 ± 0.008 GeV, (2)

Γf2 = 0.170 ± 0.014 GeV,

Rf2 = 3.59 ± 0.71 GeV−1,

Bf2ππ = 0.760 ± 0.034.

Thus, φD is specified as the phase of the Breit–
Wigner amplitude (1). In order to express the sought
parameters δ0

0 and η0
0 in terms of the known values of

δ, |AS |2, δ2
0 , and φD, it is convenient to represent the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
amplitude AS in the form (see footnote 1))

AS = e2iδ20
η0
0e

2i(δ00−δ20) − 1
2i

(3)

= e2iδ20 ÃS = ei(2δ
2
0+φ)|ÃS |,

where φ is the phase of the amplitude ÃS , which is
characterized by the fact that, for it, the relationships
between δ0

0 − δ2
0 , φ, η

0
0 , and |ÃS | in the Argand di-

agram have the same form as the relationships be-
tween the corresponding parameters of any unitary
partial-wave amplitude of specific isospin—for exam-
ple, the phase φ lies within the interval 0◦–180◦, since
4
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Fig. 2. Phase shift in the S wave of pion–pion scattering
through the I = 2 channel. The displayed data were bor-
rowed from (closed circles) [17] and (open circles) [18].
The curve represents the fit to the data that was con-
structed on the basis of the procedure described in the
main body of the text.

Im(ÃS) > 0. Thus, we obtain

φ = δ − 2δ2
0 + φD, (4)

η0
0 =

√
1− 4|AS | sin φ + 4|AS |2,

sin[2(δ0
0 − δ2

0)] =
2|AS | cos φ

η0
0

, (5)

cos[2(δ0
0 − δ2

0)] =
1− 2|AS | sinφ

η0
0

.

Since information about δ is extracted from data
on the product |AS ||AD| cos δ and since cos δ does not
determine the sign of the relative phase of the S andD
waves, there are also two solutions for δ, one in which
δ > 0 and the other in which δ < 0. This is not the
whole story, however: if cos δ is close to unity in some
region of m, there can occur a transition from one
solution to the other. The KEK data from [3] in Fig. 1c
indicate that the phase shift δ undergoes the sharpest
variations in the vicinity of the KK̄ threshold [this
is a manifestation of the f0(980) resonance] and that
cos δ ≈ 1 at m ≈ 1 GeV. Thus, we have in principle
four possible versions: (i) δ > 0 for m < 1 GeV and
δ < 0 form > 1GeV, (ii) δ > 0 for allm, (iii) δ < 0 for
allm, and (iv) δ < 0 form < 1GeV and δ > 0 form >
1 GeV. However, versions (iii) and (iv), where δ < 0
for m < 1 GeV, can be discarded from the outset.
Indeed, an estimation of δ for m < 1 GeV by means
of the relation δ = δ0

0 + δ2
0 − φD readily demonstrates

that, in this region of m, the phase shift δ will in-
evitably be positive for the generally accepted defini-
tion of the signs of the phase shifts δ0

0 , δ
2
0 , and φD [see

Figs. 1d and 2 and formula (1)]. In the following, we
will therefore consider only versions (i) and (ii).
P

For the above two versions of the behavior of the
phase shift δ, Fig. 3 shows δ0

0 and η0
0 values in the in-

terval 0.68 < m < 1.64GeV that were extracted from
the KEK data (see Figs. 1a–1c) by using formulas (4)
and (5). For the sake of comparison and complete-
ness, the values of δ0

0 that were obtained from data on
|AS |2, which have already been given individually in
Fig. 1d, are also displayed in Fig. 3 within the range
0.36 < m < 1GeV. As can be seen, for example, from
Fig. 3a, the sets of δ0

0 values obtained in the region
0.68 < m < 1 GeV by two different methods are in
reasonable agreement with each other. We note that,
in extracting δ0

0 and η0
0 values, an individual Argand

diagram for the amplitude ÃS (3) was constructed for
each version, whereupon the 2(δ0

0 − δ2
0) values found

by formulas (4) and (5) were extrapolated by requiring
that changes in the phase shift δ0

0 as a function of
m be smooth. That a strong violation of unitarity
occurs in the second version for m > 1.16 GeV (see
Fig. 3d) can easily be understood on the basis of
the first equation in (4): φ = δ − 2δ2

0 + φD. For this
version, the values of φ for 1.16 < m < 1.64 GeV
appear to be within the range between 180◦ and 360◦,
but this is forbidden for the phase of a formally unitary
amplitude ÃS . Moreover, the phase shift δ0

0 for m >
1 GeV in the second version (see Fig. 3c) proves to
be strongly different from that which is expected on
the basis of π+π−-production data [7–12], accord-
ing to which the phase shift δ0

0 taken, say, at m in
the vicinity of 1.3 GeV must be about 270◦. Thus,
the second version, which corresponds to δ > 0 for
all values of m, has been disproved. As to the first
version, its characteristic features are the following
(see Figs. 3a, 3b): a sizable deviation of η0

0 from unity
form < 1GeV, an approximate equality of η0

0 to unity
for 1 < m < 1.12 GeV, a violation of unitarity in the
region around 1.2 GeV, and rather sharp variations in
δ0
0 and η0

0 at still higher values of m. The resulting
pattern agrees poorly with data from [7–12] on the
production of π+π− systems and is hardly anything
more than an artifact of a partial-wave analysis of data
on the reaction π−p→ π0π0n.
We would like to highlight yet another diffi-

culty. The normalization adopted for |AS |2 results
in that the branching fraction of the decay pro-
cess f2(1270) → ππ is Bf2ππ = 0.760 ± 0.034 [see
Eq. (2)]. But according to the PDG data [13], it is
Bf2ππ = 0.847+0.024

−0.013. These values differ from each
other by about the doubled sum of their errors,
whence one can in principle draw the following
conclusion. The KEK data from [3] indicate that, at
least for m ≈ mf2 , the absolute value of the cross
section for the production of the f2(1270) resonance
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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in the reaction π−p→ π0π0n through the one-pion-
exchange mechanism may prove to be about 20%
smaller than that which is expected on the basis of
the PDG data [13]. On the other hand, it is clear
that the normalization of m distributions obtained
in [3] to the known value of Bf2ππ [13] with the aid

of the relationmax |AD|2 = (1 + η0
2)

2/4 = B2
f2ππ

will
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
lead to a result that is approximately 25% above the
unitary limit for |AS |2 in the most interesting region
of m—namely, in the region of the lightest scalar
resonance σ(600) [3, 13, 19].

In the following, we will see that all of the afore-
mentioned difficulties also arise in the analysis of
4
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data from other experiments that studied the reaction
π−p→ π0π0n.

3. ANALYSIS OF THE BNL DATA

Vast statistics of π−p→ π0π0n events were ac-
cumulated in the BNL experiment [4], and a partial-
wave analysis of the angular distributions of π0π0

distributions in these events was performed in the
same study. This analysis, which scanned ten con-
secutive intervals of−t that cover the range 0 < −t <
1.5 GeV2 and a broad range of m values (between
0.32 and 2.2 GeV) with a step of 0.04 GeV, resulted in
deriving two possible solutions for the nonnormalized
intensities of S andD0 partial waves and, accordingly,
four possible solutions for their relative phase. In just
the same way as in [4], we will use here the notation
|S|2 and |D0|2 for the intensities of the S and D0

waves, respectively, and the notation ϕS−D0 for their
relative phase. Also, we denote by D0 the Lz = 0 D
wave, where Lz is the projection of the relative orbital
angular momentum of the π0π0 system onto the z ax-
is in theGottfried–Jackson frame [4]. A solution such
that it corresponds to a large value of |S|2 and a small
value of |D0|2 form < 1GeV and extends smoothly to
the regionm > 1GeV, where the f2(1270) resonance
is dominant in the D0 wave, was singled out in [4],
together with two corresponding solutions for the
phase shift ϕS−D0 , as a physical solution. It should be
noted that a different solution intersects the physical
solution atm ≈ 1GeV. We agree with the arguments
used in [4] to reject this different solution in the region
m < 1GeV. Form > 1GeV, however, we will analyze
both solutions, along with the case where the relative
phase goes over from one solution to the other.
For our analysis, we take the BNL data from [4]

on |S|2, |D0|2, and ϕS−D0 for five intervals of −t,
0.01 < −t < 0.03 GeV2, 0.03 < −t < 0.06 GeV2,
0.06 < −t < 0.1 GeV2, 0.1 < −t < 0.15 GeV2, and
0.15 < −t < 0.2 GeV2, and the regionm < 1.6 GeV.
We note that data on ϕS−D0 are available only for
m > 0.8 GeV. In order to evaluate them dependence
of the quantities |AS |2, |AD|2, and δ (see Section 2),
which characterize the reaction π+π− → π0π0 on the
mass shell, we parametrize the t dependences of |S|2,
|D0|2, and ϕS−D0 as

|S|2 =
m2

q
|AS |2

−t exp[bS(t−m2
π)]

(t−m2
π)2

, (6)

|D0|2 = 5
m2

q
|AD|2

−t exp[bD0(t−m2
π)]

(t−m2
π)2

,

ϕS−D0 = δ + α(t/m2
π − 1) (7)
PH
and, for eachm interval of width 0.04 GeV, determine,
from a fit to the data from [4], the nonnormalized
intensities |AS |2 and |AD|2 and the phase shift δ,
along with the slope parameters bS , bD0 , and α in
the corresponding extrapolating functions.2) In the
regionm < 1GeV, we concurrently accepted, in each
interval of −t, only one solution for |S|2 and |D0|2—
namely, the physical solution that was singled out
in [4]—and the two solutions for ϕS−D0 that cor-
respond to it. For m > 1 GeV, we took the physi-
cal and the aforementioned different solution for |S|2
and |D0|2 and, accordingly, four solutions for ϕS−D0 .
Since the absolute value of the cross section for the
reaction π−p→ π0π0n was not determined in [4], we
use here the same procedure as in Section 2 in order
to normalize |AS |2 and |AD|2. After the extrapolation
to the point t = m2

π in the way outlined above and
normalization, the data corresponding to the physical
and the different solution are represented by, respec-
tively, closed and open symbols in Figs. 4a, 4c, and
4e. It is interesting to note that, for the different
solution, two branches of the phase shift ϕS−D0—
that where ϕS−D0 > 0 for all values of m and that
where ϕS−D0 < 0 for all values of m—intertwine in
the region m > 1.24 GeV upon the extrapolation, so
that there arise (as can clearly be seen in Fig. 4e)
two new branches of the phase shift δ, which depend

2)This two-parameter fit to the experimentally measured off-
shell intensities of partial waves, which is aimed at obtaining
data extrapolated to the pion pole, has been extensively used
in the literature (see, for example, [9, 17, 20, 21]). A determi-
nation of the phase shift δ by means of a direct extrapolation
of the data from [4] on ϕS−D0 [see Eq. (7)] is questionable.
The problem would not have arisen if direct data on the
contribution of the interference between the S andD0 waves
had been presented in [4]. A fit to such data with the aid of the
two-parameter form−2ta exp[b(t−m2

π)]/(t−m2
π)

2, which
is similar to that in (6), and an identification of the parameter
a with

√
5(m2/q)|AS ||AD| cos δ would have made it possi-

ble to determine |δ| according to a conventional scheme. For
want of such data, we have performed an indirect verification
of the results for the phase shift δ that were obtained with
the aid of formula (7). We evaluated 2|S||D0 | cosϕS−D0

on the basis of data from [4] on |S|2, |D0|2, and ϕS−D0

and found the interference contribution on the mass shell
with the aid of the aforementioned extrapolation, whereupon,
knowing |AS |2 and |AD|2 from independent sources, we
determined δ. The values of δ that were obtained by the above
two independent methods proved to be nearly coincident.
Because of the inevitable double rescaling of errors in the
above indirect verification, the errors in δ of course proved to
be larger than those in the fit on the basis of expression (7).
On the other hand, the error in the δ values determined with
the aid of (7) are virtually identical to the errors in the data
from [4] on ϕS−D0 that are used here. All of the aforesaid
gave us sufficient grounds for adopting the above method for
determining δ.
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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on m smoothly and which are either intersecting or
touching atm ≈ 1.26GeV.

As in Section 2, we will first determine δ0
0 form <

1GeV on the basis of data on |AS |2 (see Fig. 4a), set-
ting η0

0 = 1 in this region. The values of δ0
0 that were

obtained in this way are represented by the open cir-
cles in Fig. 5a. We note that a couple of points in the
region around m ≈ mK , where there are distortions
associated with events of the decay K0

S → π0π0 [4],
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were discarded. Having at our disposal data on |AS |2,
|AD|2, and δ in the regionm > 0.8 GeV (see Fig. 4),
we will further determine the values of δ0

0 and η0
0 on

the basis of the general formulas (3)–(5) and (1). For
solutions preliminarily selected among those given in
Fig. 4 and for some of their combinations, the results
are represented by the closed symbols in Fig. 5. As
a matter of fact, this selection reduced, first of all,
to discarding, for m < 1 GeV, the physical solution
4
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solution (see Fig. 4) where δ > 0 for all values of m; (c, d) results corresponding to the physical solution for the case where,
at m ≈ 1 GeV, the phase shift δ goes over from the branch of its positive values to the branch of its negative values (see
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0 = 1.
in which δ < 0 (see Fig. 4e), since, according to the
simple estimate δ0

0 = δ− δ2
0 + φD (see Section 2), the

phase shift δ0
0 for this solution in the range between

0.8 and 1 GeV proves to be about−(25◦–40◦), which
is of course unsatisfactory. From Figs. 5a and 5b,
which correspond to the physical solution where δ >
0 for all values of m, it can further be seen that this
solution must also be discarded because of a strong
P

violation of the unitarity condition for m > 1.2 GeV.
Figures 5c and 5d correspond to the physical solution
for |AS |2, |AD|2, and δ, but, atm ≈ 1GeV, the phase
shift δ in this solution goes over from the branch
of its positive values to the branch of its negative
values (see Fig. 4e). This solution does not violate
unitarity, but it corresponds to a weak coupling be-
tween the ππ and KK̄ channels in the vicinity of the
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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KK̄ threshold, since, in this solution, η0
0 is close to

unity in the region 1 < m < 1.15GeV. The latter does
not agree with data on the reactions π−p→ π+π−n,
π+p→ π+π−∆++, and πN → KK̄(N,∆) (see, for
example, [7, 9, 10, 16, 22, 23]). Figures 5e and 5f
correspond to a combination of the physical solution
where δ > 0 form < 1GeV and the different solution
for m > 1 GeV where δ > 0 for 1 < m < 1.28 GeV
and δ < 0 for 1.28 < m < 1.52 GeV (see Figs. 4a,
4e). Figures 5g and 5h correspond to a similar com-
bination of the physical solution and the different
solution where δ < 0 for 1 < m < 1.52GeV (see also
Fig. 4e). The versions that differ from the last two
only in that, for them, δ > 0 form > 1.28GeV lead to
a sizable violation of the unitarity condition for m >
1.32 GeV. For this reason, they are not illustrated
here. Thus, we can conclude that only the version de-
picted in Figs. 5e and 5f agrees qualitatively in many
respects with the results obtained from analyses of
data on the production of π+π− systems [1, 7, 9, 11].
It was indicated above that, in this version, the relative
phase δ = φS − φD goes through zero in the vicinity
of the f2(1270) resonance, being positive below the
f2(1270) resonance and negative above it. It is of
importance to emphasize here that precisely this type
of behavior of the relative phase δ as a function of
m is confirmed by the data of the experiment that
studied the reaction π−p→ π+π−n at 17.2 GeV on
a polarized target and which was reported in [11].
In comparing Figs. 5 and 3, it is worth noting that,

for m < 0.5 GeV, the BNL data lead to values of the
relative phase δ0

0 that are considerably greater than
those from the analysis of the KEK data.
In extracting information about δ0

0 and η0
0 , the

phase shift φD was determined from a fit to data on
|AD|2 with the aid of expression (1) that are given in
Fig. 4c. As a result, the parameters of the f2(1270)
resonance proved to be (see also the curves in Fig. 4c)

mf2 = 1.279 ± 0.002 GeV, (8)

Γf2 = 0.205 ± 0.005 GeV,

Rf2 = 3.96 ± 0.24 GeV−1,

Bf2ππ = 0.697 ± 0.008

for the physical solution and

mf2 = 1.281 ± 0.002 GeV, (9)
Γf2 = 0.211 ± 0.005 GeV,

Rf2 = 4.65 ± 0.33 GeV−1,

Bf2ππ = 0.712 ± 0.007

for the different solution. Thus, the BNL data indicate
that Bf2ππ may be about 84% of the value presented
by the PDG [13]. The possible implications of this
discrepancy have already been discussed at the end of
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Section 2, which is devoted to the analysis of the KEK
data (recall that the analogous ratio for the KEK data
was 90%).

4. DISCUSSION OF THE GAMS DATA

The experiments of the GAMS Collaboration,
which were performed at energies of 38 GeV [5] and
100 GeV [6], accumulated the vastest statistics of
events of the reaction π−p→ π0π0n. Despite this, the
range of low−t between 0 and 0.2GeV did not receive
adequate study in [5, 6]. Only data averaged over
this region were presented in [5] for |S|2 and ϕS−D0

and in [6] for |S|2, |D0|2, and ϕS−D0 . On this basis,
nothing can therefore be said about the corresponding
quantities extrapolated to the pion pole. Nonetheless,
we will discuss some special features of these data.
A physical and a different solution are quoted in [5]
for |S|2 over the range 0.8 < m < 1.6 GeV, and
only one physical solution for ϕS−D0 is given there,
only its branch where ϕS−D0 > 0 being presented
(supposedly, the reader is tacitly assumed to guess
himself that there exists a branch where ϕS−D0 =
−|ϕS−D0 |). The results established in [5] for the m
dependences of |S|2 and ϕS−D0 comply well with
the corresponding BNL data [4]. In the case of the
physical solution, for example, them dependences of
|S|2 and ϕS−D0 from [5] behave in nearly the same
way as the those for the quantities |AS |2 and δ in
the corresponding case (closed symbols in Figs. 4a
and 4e). As was shown above, however, this physical
solution for |AS |2 and δ (where δ > 0 for all values
of m) is unsatisfactory because of a strong violation
of the unitarity condition in the region m > 1.2 GeV
(see Figs. 5a, 5b). We also note that, for |S|2, |D0|2,
and ϕS−D0 measured at an energy of 100 GeV, only
one solution was singled out and presented in [6] as
the result of their analysis. Unfortunately, this single
solution is similar to the physical solution obtained in
the GAMS experiment for the reaction π−p→ π0π0n
at 38 GeV [5].
It is of paramount importance that the GAMS

experiment performed to study the reaction π−p→
π0π0n at an energy of 38 GeV resulted in establish-
ing the absolute value of the cross section for the
D0-wave production of the f2(1270) resonance in
the −t range between 0 and 0.2 GeV2: σD0(π

−p→
f2(1270)n → π0π0n) = 2.3± 0.2 µb [24]. Later on,
this result was used to normalize data obtained at
100 GeV [6]. Although the above cross-section value
is about 1.5 to 2 times larger than that in previous
experiments [24, 25], it is 1.57 times smaller than
the estimate based on the one-pion-exchange model
(for details of the history concerning the production
4
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of the f2(1270) resonance, see [25]). Indeed, the esti-
mate obtained on the basis of the one-pion-exchange
model with allowance for the PDG data [13] onmf2 ,
Γf2 , and Bf2ππ yields

σD0(π
−p→ f2(1270)n → π0π0n) (10)

≈ σOPE(π−p→ f2(1270)n → π0π0n)

≈
g2
π−pn

4π
5π

m2
pP

2
π−

mf2Γf2
2
9
B2
f2ππ

×
0∫

−0.2GeV2

−t exp[bf2(t−m2
π)]

(t−m2
π)2

dt ≈ 3.6 µb,

where Pπ− = 38 GeV, g2
π−pn/4π ≈ 2× 14.3, and the

slope parameter is bf2 ≈ 7.5 + 2× 0.8 ln(38/18.3) ≈
8.68 GeV−2 (the Regge energy dependence and the
results for the slope parameter bD0 in the region of
the f2(1270) peak in Fig. 4d were taken into account
in estimating it). The cross-section value obtained
in [24] is smaller by approximately the same fac-
tor than the estimate obtained in [25] from an ex-
trapolation of available data on the reaction π−p→
f2(1270)n → π+π−n at energies of 17.2 GeV [8],
and 100 and 175 GeV [26] to the GAMS energy of
38 GeV. Thus, theGAMS data from [24] indicate that
Bf2ππ may be about 80% of the value presented by the
PDG [13].

We will now briefly summarize the main difficul-
ties that we encountered in analyzing data from four
different experiments that studied the reaction π−p→
π0π0n. First, physical solutions selected as the result
of partial-wave analyses of data on the production
of π0π0 systems yield, for δ0

0 and η0
0 , values that

are in poor agreement with known results that were
obtained from data on the production of π+π− sys-
tems, at least form > 1GeV, some of these solutions
leading to a strong violation of the unitarity condition.
At the same time, preferable solutions can be found
among other solutions in the region m > 1 GeV.
Second, all data on the production of π0π0 systems
astonishingly suggest a sizably smaller value ofBf2ππ

in relation to that which is adopted at the present
time [13]. This difficulty seems serious and interest-
ing. We recall that experiments studying the pro-
duction of dipion systems on unpolarized targets—
in particular, the experiments discussed here, which
were reported in [3–6]—are unable in principle, even
in the case of enormously vast statistics, to separate
the contributions of amplitudes having the quantum
numbers of π and a1 exchanges in the t channels,
because these contributions to the unpolarized cross
sections are incoherent [27]. In other words, there
PH
is no model-independent method here for perform-
ing such a separation. In our opinion, the difficulty
concerning Bf2ππ is therefore yet another piece of
evidence that a partial-wave analysis of the experi-
ments discussed here, which were aimed at studying
the production of dipion systems on unpolarized tar-
gets, can determine the intensities and phases of the
S, D, etc., waves of pion–pion scattering only ap-
proximately, irrespective of the extrapolation method
used. The degree to which this determination is ap-
proximate depends on the relative contribution of a
nondominant a1 exchange. In the case of a rather
high statistical accuracy, its presence in events cor-
responding to |S|2 can manifest itself, in experiments
with unpolarized targets, precisely as the aforemen-
tioned difficulty. As a matter of fact, this statement
follows, in quite a natural way, from an analysis of
the nonnormalized KEK and BNL data (see the dis-
cussion at the end of Section 2). As to the GAMS
data [24], they are rather indicative of the existence of
the general problem of reliably measuring the abso-
lute value of the cross section for the reaction π−p→
π0π0n (in the above consideration, we have already
pointed to the evolution of data on the cross section
for the production of π0π0 systems). Detailed discus-
sions on additional assumptions that are necessary
in analyzing data from experiments with unpolarized
targets and on the contribution of a1 exchange can be
found, for example, in [1, 2, 11, 12, 27–29].

5. CONCLUSIONS

By using the simplest possible procedure, we have
extracted, from data on the reaction π−p→ π0π0n,
the phase shift and the inelasticity parameter for S-
wave pion–pion scattering through the I = 0 chan-
nel.
Obviously, further experimental investigations of

the reaction π−p→ π0π0n are required both for refin-
ing our knowledge of its mechanism and for obtaining
more detailed information about pion–pion scattering
and about light scalar resonances in this channel.
Setting aside the general recommendation to study
the reaction π−p→ π0π0n on a polarized target, we
will now briefly formulate a number of specific propos-
als aimed at clarifying the situation currently preva-
lent in this realm:
(i) It is highly desirable to measure the absolute

value of the cross section for this reaction at var-
ious energies—for example, at KEK, BNL, IHEP,
and CERN—and to obtain detailed data on m and t
distributions for the S and D waves of the π0π0 sys-
tem, especially in the region −t < 0.2 GeV2, which
is dominated by the one-pion-exchange mechanism.
The relative accuracy of such measurements must be
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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on the same order as or higher than that to which
(Bf2ππ)

2 is known at the present time [13]. This
would immediately make it possible to obtain a re-
liable description of the differential cross section for
the production of the f2(1270) resonance within the
standard model of one-pion exchange and to assess
the degree to which the cross section for the produc-
tion of the π0π0 system in the S wave at its abso-
lute maximum occurring within the range 0.6 < m <
0.8GeV is consistent with this model under the stan-
dard assumption (which is incorporated in the model)
that the normalization is performed in such a way
that |AS |2 = 1 (or δ0

0 − δ2
0 = 90◦ and η0

0 = η2
0 = 1) at

the point of the maximum. An experimental value in
excess of the estimate within the one-pion-exchange
model would be a good piece of evidence, from an
experiment with an unpolarized target, that the a1-
exchange amplitude is present in the region of the
absolute maximum of the S-wave cross section. But
if the experimental value proved to be less than the
value that is expected within the one-pion-exchange
model, this would lead to a complete disorganization
of the currently prevalent concepts of the behavior of
the phase shift δ0

0 in the regionm < 1GeV, but this is
improbable.
(ii) We propose that, for low values of −t, espe-

cially thorough measurements of the production of
π0π0 systems in the S wave be performed over the
region of m values between 0.9 and 1.1 GeV—that
is, over the region of the well-known interference
minimum in |S|2 in the vicinity of theKK̄ threshold.
Such measurements would furnish additional impor-
tant information about the coupling of the f0(980)
resonance to the KK̄ channel (the corresponding
coupling constant is denoted by gf0KK̄) and would
make it possible to resolve the long-standing ques-
tion [16] of the possible ambiguity in the behavior
of the phase shift δ0

0 above the KK̄ threshold for
g2
f0K+K−/(4π) > 4πm2

K ≈ 3.1 GeV2. Moreover, the
cross-section value in the immediate vicinity of the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
minimum (if it occurs below the K+K− threshold)
can be used to set a presumably rather stringent upper
bound on the contribution of a1 exchange at low−t in
this region ofm.

(iii) Among the requirements that make it possible
to single out a physical solution, there is the assump-
tion of the phase coherence of the amplitudes of the
D0 and D− waves (see, for example, [4, 6, 9, 30]),
where D− is the D wave in which |Lz| = 1 in the
Gottfried–Jackson frame and which is caused by
unnatural-parity exchanges in the t channel of the
reaction πN → ππN . In this connection, we would
like to highlight a new alarming circumstance: ac-
cording to the observations reported in [6], the ratio of
the cross sections for the production of the f2(1270)
resonance in the D− and D0 waves depends sizably
on energy, its value at 100 GeV being one-half as
great as that at 38 GeV. This may suggest that the
contributions of the πP and a2PRegge cuts (P stands
for Pomeron exchange), which determine the ampli-
tude of the production of theD− wave in the reference
frame being considered, begin to compensate each
other with increasing energy, the phase coherence of
the amplitudes of the production ofD0 andD− waves
therefore being destroyed.

(iv) We also propose that, for the contribution
associated with the interference between the S and
D0 waves and extracted from experiments with
unpolarized targets, use be made in the following
not of the frequently employed simplified notation
|S||D0| cosϕS−D0 but of a notation that carries
information about the coherence factor (see, for
example, [31]) and which is more adequate to the
actually observed quantity. In an experiment, one si-
multaneously measures the intensities |S|2 and |D0|2
and the interference contribution ξ|S||D0| cos ϕ̃. As
a matter of fact, the intensities are given by |S| ≡
[|Sπ|2 + |Sa1 |2]1/2 and |D0| ≡ [|D0π|2 + |D0a1 |2]1/2,
while the coherence factor ξ (0 ≤ ξ ≤ 1) and the
phase shift ϕ̃ can be represented as
ξ =

∣
∣
∣
∣
∣
∣

∑

i=π,a1

SiD
∗
0i

∣
∣
∣
∣
∣
∣

/







∑

i=π,a1

|Si|2







∑

i=π,a1

|D0i|2








1/2

,

ϕ̃ = arctan








∑

i=π,a1

|Si||D0i| sinϕi





/


∑

i=π,a1

|Si||D0i| cosϕi







 ,
where Sπ (D0π) and Sa1 (D0a1) are the amplitudes
of the production of the S (D0) wave through the
mechanisms of, respectively, π and a1 exchanges
(these amplitudes correspond to two independent
configurations of the nucleon helicities in the re-
action πN → ππN ) and ϕi is the relative phase of
4
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the amplitudes of the Si and D0i waves. We will
now consider the case where the amplitude of the
D0a1 wave can be disregarded. Denoting ϕ̃ = ϕπ by
ϕS−D0 , we can then see that, even in this case, the
interference contributions differ from the simplified
expression |S||D0| cosϕS−D0 by the coherence factor
ξ = 1/

√
1 + |Sa1 |2/|Sπ|2. But if we set ξ = 1 for all

values of m, then we will always be dealing with the
effectively reduced value | cosϕS−D0 |.
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Abstract—From the fact that nonperturbative self-energy contribution CSE to the heavy-meson mass
is small, CSE(bb) = 0 and CSE(cc) ∼= −40 MeV, strong restrictions on the pole masses mb and mc are
obtained. The analysis of the bb and the cc spectra with the use of the relativistic (string) Hamiltonian
gives mb(2-loop) = 4.78± 0.05 GeV and mc(2-loop) = 1.39± 0.06 GeV, which correspond to the MS
running masses mb(mb) = 4.19± 0.04 GeV and mc(mc) = 1.14± 0.05 GeV. c© 2004 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The spectrum of heavy quarkonia (HQ) is very
rich and provides a unique opportunity to study static
interaction in the infrared (IR) region and hyperfine-
and fine-structure effects. To use that opportunity,
one needs to know, besides such fundamental param-
eters as the string tension and the strong coupling,
the heavy-quark mass, which cannot directly be mea-
sured since a quark is not observed as a physical
particle. Therefore, the heavy-quark mass mQ has
to be determined indirectly, e.g., from the study of
hadronic properties like e+e− → bb, hadronic decays,
and theQQ spectra.

In the QCD Lagrangian, the mass parameter de-
pends on the renormalization scheme, and by conven-
tion, this current mass is taken in theMS scheme. In
perturbation theory, it is convenient to introduce the
pole quarkmass, i.e., the pole of the quark propagator,
and at present the MS pole mass is known to 3-
loops [1, 2]:

mQ = mQ(mQ) (1)

×





1 +

4
3
αs(mQ)

π
+ ξ2

(
αs
π

)2

+ ξ3

(
αs
π

)3




,

where ξ2, ξ3 are known numbers and the Lagrangian
current masses,

mb(mb) = 4.25 ± 0.25 GeV, (2)

mc(mc) = 1.20± 0.20 GeV,

∗This article was submitted by the authors in English.
1)Free University, Amsterdam, The Netherlands.
**e-mail: badalian@heron.itep.ru
1063-7788/04/6707-1367$26.00 c©
are known now with an accuracy of 6% (17%) for
the b quark (c quark). Most calculations of the pole
masses mb and mc have been done in the QCD sum
rules [3, 4], lattice QCD [5], and different perturbative
approaches [1, 2].
For three decades, many properties of HQ like the

spectra, electromagnetic transitions, and hadronic
and semileptonic decays were successfully studied in
different potential models (PM) [6–13]; however, the
heavy-quark masses used in PM are considered “to
make sense in the limited context of a particular quark
model” [1], i.e., as fitting parameters.
Meanwhile, in the last decade, the situation

changed when in [11] the relativistic (string) Hamil-
tonian was derived directly from the QCD La-
grangian, starting with the gauge-invariant meson
Green’s function in the Fock–Feynman–Schwinger
(FFS) representation. In [11–13], it was established
that, for orbital momentumL ≤ 5 and not overly large
string corrections, as in HQ, the string Hamiltonian
reduces to the well-known Hamiltonian H0 used
in the relativized potential model (RPM) for many
years [7, 8]:

H = H0 + CSE, H0 = 2
√

p2 +m2
q + Vstat(r).

(3)

It follows from the derivation of H0 in [11] that the
mass mq in (3) (it refers to any quark mass, includ-
ing mq = 0) coincides with the MS running mass
mq(mq) if the perturbative interaction is neglected or
with the pole mass of a heavy quarkmQ (1) if the per-
turbative self-energy corrections are taken into ac-
count. The nonperturbative (NP) self-energy contri-
bution to the meson mass CSE was calculated in [14]
and a choice of the static potential Vstat(r) will be
2004 MAIK “Nauka/Interperiodica”



1368 BADALIAN et al.
discussed later. Therefore, this Hamiltonian can be
used to extract the pole mass mQ from the analysis
of the HQ spectrum.
Nevertheless, if one looks at the heavy-quark

masses used in PM, a large variety of mb and
mc values can be found in different analyses: mc

in the range 1.30–1.84 GeV and mb in the range
4.20–5.17 GeV [7–10]. The main reason behind this
wide spread in the mb and mc values (even for the
same Hamiltonian H0) is the presence of a negative
arbitrary constant C0 in the mass formula (or in the
chosen static potential). We give three examples:
in [7], mc = 1.327 GeV and C0 = 0 are used by
the Wisconsin Group; in [8], mc = 1.628 GeV and
C0 = −253 MeV (in both cases, the Hamiltonian
H0 (3) was used); in [6], mc = 1.84 GeV and C0

∼=
−800 MeV are taken—i.e., the magnitude of C0 is
always larger for larger heavy-quark mass.
The meaning of the constant C0 was understood

recently when in [14] it was shown that the neg-
ative contribution to the meson mass comes from
the NP color-magnetic quark (antiquark) interaction
with the background (vacuum) field which gives rise
to the self-energy NP term denoted as CSE; it was
analytically calculated with 10% accuracy [14] [see
Eq. (A.13) in Appendix]:

CSE(nL) = − 4σ
πωq(nL)

η(mq) (4)

for a quark and an antiquark with equal masses. This
constant appears to be different for the states with
different quantum numbers nL.
In expression (4), mq is the pole mass which de-

fines the factor η(mq) (A.11), while the average over
the kinetic energy operator

ωq(nL) =
〈√

p2 +m2
q

〉

nL
(5)

is the dynamical quark mass. For low-lying states in
charmonium and bottomonium, the mass ωQ turns
out to be∼ 200MeV larger thanmQ.
The essential fact (for light and heavy–light

mesons) is that CSE(nL) depends on the quantum
numbers, and just due to this the correct intercept
of the Regge trajectory was obtained in [13]. In HQ,
the situation appears to be much simpler. The factor
η(mq) in (4) depends on the flavor through the pole
mass mq, and from the analytical expression (A.11),
one obtains a small value: ηc ∼= 0.35–0.27 for mc in
the range 1.37–1.70 GeV and ηb ∼= 0.07 for mb

∼=
4.7–5.0 GeV. As a result, CSE(bb) ∼= −3 MeV (i.e.,
it can be taken equal to zero), and CSE(cc) is also
small:

CSE(bb) = 0; CSE(cc) ∼= −40MeV. (6)
PH
Thus, the self-energy contributions to the HQ
states are well defined and therefore there is no longer
an opportunity to vary the pole mass by introducing a
fitting constant. We shall show in our paper that the
condition (6) puts strong restrictions on the mb(mc)
needed to describe the bb(cc) spectrum. The extracted
pole masses mb and mc in our analysis will be deter-
mined with an accuracy better than 60 MeV, and the
main uncertainty in their values comes not from the
method used (for fixed string tension and the strong
coupling, or theQCDconstantΛQCD, the uncertainty
is ±10MeV), but from uncertainty in our knowledge
of the strong coupling in the IR region. We shall show
that HQ spectra, in particular, high excitations and
the recently discovered 1D state in bottomonium [15],
can give very important information about the strong
coupling in the IR region.
Our analysis of HQ spectra shows that, in bot-

tomonium, mb(2-loop) < 4.70 GeV and the values
mb > 4.85 GeV turn out to be incompatible with the
condition CSE = 0. In charmonium, the extractedmc
values, mc = 1.39 ± 0.06 GeV, appear to be rather
small and agree with that obtained by Narison with
the use of the QCD sum rules for the (pseudo)scalar
current [3]. Our calculations of the HQ spectra are
done with the use of only three parameters: the string
tension, the QCD constant Λ(nf ) (in this paper, we
mostly take the number of flavors nf = 4), and the
pole mass mQ. The main emphasis in our fit lies on
the excited (not ground) states.
The paper is organized as follows. In Section 2, the

mass formula, following from the relativistic Hamil-
tonian, as well as the approximations to that, is pre-
sented and the notion of the dynamical mass is in-
troduced. In Section 3, the static potential and the
strong coupling in the IR region, defined as in back-
ground perturbation theory (BPT), are discussed. In
Section 4, from the analysis of the bb spectrum (with
special accent on high excitations), the restrictions on
the pole mass mb(2-loop) are obtained. In Section 5,
the pole mass mc is extracted from the cc spectrum.
In Section 6, our conclusions are presented, and in
the Appendix the method and NP self-energy term
are discussed.

2. THE MASS FORMULA

The string corrections are small in HQ and there-
fore the simplified form of the relativistic Hamiltonian
HR [11] may be used (see Appendix):

HR =
p2

ω
+ ω +

m2
q

ω
+ Vstat(r). (7)

To derive this Hamiltonian in the FFS representation,
one needs to go over from the proper time τ in the
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004



THE POLE HEAVY-QUARK MASSES 1369
meson Green’s function [formula (A.2) in Appendix]
to the actual time t, and at this point, the new variable
ω(t)must be introduced [11]:

ω(t) =
1
2
dt

dτ
. (8)

This variable is the einbein (canonical) coordinate
and, since HR does not depend on its derivative ω̇,
the requirement that the canonical momentum πω =
0 is preserved in time corresponds to the extremum
condition

π̇ω =
∂H

∂ω
= 0. (9)

From this extremum condition, the operator ω,

ω =
√

p2 +m2
q , (10)

is defined as the kinetic energy operator. Substituting
the definition (10) into the HR (7), one comes to the
HamiltonianH0 (3),

H0 = 2
√

p2 +m2
q + Vstat(r), (11)

which does not explicitly depend on the variable ω.
However, to calculate different corrections to the me-
son mass (like spin, string, and the self-energy cor-
rections), which can be considered as a perturbation
and depend on ω, we shall use an approximation
where for a given nL state the operator ω will be
replaced by its average:

ωq(nL) = 〈ω〉nL =
〈√

p2 +m2
q

〉

nL
. (12)

This mass ωq(nL) can be called the dynamical mass,
since its difference in comparison to the current
(pole) massmq is fully defined by the dynamics. Note
that, for vanishing pole mass (mq = 0), the value of
ωq(nL) is finite and defines the constituent quark
mass [12, 13].
It is also important that perturbative corrections

to the current mass, which are essential at small
quark–antiquark separations, r � 0.1 fm [16, 17], are
included in the pole mass mq present in H0. On the
other hand, the static potential Vstat(r) is well defined
at the QQ separations r � Tg ∼= 0.2 fm, where Tg is
the gluonic correlation length [14]. The eigenvalues
(e.v.) ofH0, denoted asM0(nL),
{
2
√

p2 +m2
Q + Vstat(r)

}
ψnL(r) = M0(nL)ψnL(r),

(13)

together with the self-energy term (6) define the
heavy-meson masses. As shown in the Appendix,
in bottomonium CSE = 0 and therefore the spin-
averaged mass M(nL) for a given bb state coincides
with the e.v.M0(nL),

M(nL, bb) = M0(nL), (14)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
while in charmonium from Eq. (A.13)
CSE ∼= −40MeV and

M(nL, cc) = M0(nL) + CSE. (15)

There exist two approximations to the solution of
spinless Salpeter equation (SSE) (13) or to the me-
son mass M(nL). The first one is the nonrelativistic
(NR) approximation, where the massMNR(nL) is the
following:

MNR(nL) = 2mQ + ENRnL (mQ) + CSE, (16)

where ENRnL (mQ) is the eigenvalue of the Schrödinger
equation with the reduced mass equal tomQ/2.
There is also another, so-called “einbein,” approx-

imation (EA) to the solutions of SSE (13) [12], where
the meson mass is given by the expression

MEA(nL) = ωQ(nL) +
m2
Q

ωQ(nL)
+ EnL(ωQ) + CSE,

(17)

and it appears to be closer to the exact solution
M(nL) than the NR approximation [12]. In EA, the
binding energy EnL(ωQ) is defined as the solution
of Schrödinger equation with the reduced mass
equal to ωQ(nL)/2 (not with the mass mQ/2), while
ωQ(nL) ≡ ωnL is to be defined from the extremum
condition for the meson mass (17)

∂MEA
∂ωnL

= 0, or ωnL =
m2
Q

ωnL
− ωnL

∂EnL(ω)
∂ωnL

. (18)

In EA, the relativistic corrections are taken into ac-
count through ωnL in the mass formula (17). More-
over, due to the special form of the mass formula (17),
the value of the dynamical mass ωb(nL) ∼= 5.0 GeV
turns out to be compatible with the condition CSE =
0, while in NR approximation (16) the admissible val-
ues of the pole massmb are about 200 MeV smaller.
It is worthwhile to note that, in bottomonium,

when both ωb(nL) and mb are large, around 5 GeV,
the difference between the NR, EA, and relativis-
tic cases is small, |δR| = M(nL)−MNR(nL) being
about 10–20 MeV. In charmonium, this difference
depends on the quantum numbers and for high ex-
citations can reach∼ 100MeV (see the discussion in
Section 5).

3. STATIC POTENTIAL

The static potential contains perturbative and NP
contributions, where the NP linear potential can di-
rectly be derived from the meson Green’s function if
the qq separation is larger than the gluonic correlation
length. From analysis of the Regge trajectories of
light and heavy–light mesons, the value of the string
4
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tension, σ = 0.185 ± 0.005 GeV2 [6, 13], is fixed,
while the perturbative interaction in coordinate space
can be represented in the form

VP (r) = −
4
3
αstat(r)

r
, (19)

where αstat(r) is well known only in the perturbative
region, i.e., at very small distances, r � 0.1 fm [16, 17].
In bottomonium, however, the rms radii span a

very wide range,

R(Υ(1S)) = 0.2 fm, R(χb(1P )) = 0.4 fm, (20)
R(χb(2P )) = 0.65 fm, R(Υ(4S)) = 0.9 fm,

R(Υ(6S)) ∼= 1.3 fm,

and in charmonium,

R(J/ψ) ∼= 0.4 fm, R(χc(1P )) = 0.6 fm, (21)

R(ψ(1D)) = 0.8 fm, R(ψ(3S)) = 1.1 fm,
R(ψ(4S)) ∼= 1.40 fm.

Apparently, with the exception of Υ(1S), the sizes of
HQ states lie outside the perturbative region.

Therefore, the problem arises how to define the
strong coupling αstat(r) at all distances, i.e., in the IR
region. In PM, it has always been assumed, and later
this fact has been supported by direct measurement
of the static potential in lattice QCD [16], that the
strong coupling freezes and reaches a critical (sat-
urated) value at large r. Unfortunately, at present
there is no consensus about the true value of αcrit.
At present, different critical values are used in phe-
nomenological analysis (αcrit = 0.60 in [8], αcrit ∼= 1.4
in analytical perturbation theory [18], and in BPT
αcrit ∼= 0.56 being fully defined by ΛQCD [17, 19]).

For the definition of αstat(r), it is better to start
with the vector coupling in the momentum space
αB(q), entering the static (vector) potential VB(q):

VB(q) = −4πCF
αB(q)
q2

. (22)

The coupling αB(q) in BPT is defined in Euclidean
momentum space at all q2, including q2 = 0 (i.e.,
it has no Landau singularity), and in the two-loop
approximation is given by the standard expression

αB(q, 2-loop) =
4π
β0tB

{

1− β1

β2
0

ln tB
tB

}

. (23)

Here, β1 = 11− 2
3
nf , β1 = 102− 38

3
nf , and the log-

arithm

tB = ln
q2 +M2

B

Λ2
B

(24)
P

contains the background mass MB , which appears
due to the interaction of a gluon with the back-
ground field at small q2. This massMB

∼= 1GeV has
the meaning of the lowest hybrid excitation: MB =
M(QQgg)−M(QQg) [19]. From the comparison
of VB(q) (22) with the lattice static potential, the
background mass MB was found to be equal to 1±
0.05 GeV [17]. The logarithm tB (24) coincides in
form with the parametrization of αs(q) suggested
in [20], where, instead of the background mass MB ,
two gluonic masses (2mg) enter. However, because
of gauge invariance, the physical gluon cannot have
mass, while the mass of hybrid excitation is a well-
defined physical quantity and can be calculated in
different theoretical approaches [21] and in the lattice
QCD.

By definition, αB(q) has correct asymptotic free-
dom (AF) behavior at large q2, and in this region, the
connection between the vector coupling αB(q) and
αs(q) in theMS renormalization scheme is very sim-
ple, so that the QCD constant ΛB (in vector scheme)
can be expressed through ΛMS [22]:

Λ(nf )
B = Λ(nf )

MS
exp

(
a1

2β0

)

. (25)

Here, a1 =
31
3
− 10

9
nf . At present, the value

Λ(5)

MS
(2-loop) = 215± 25 MeV is established from

high-energy processes [1], while in quenched QCD

the value Λ(0)

MS
= 240 ± 20 MeV was calculated on

the lattice [23]. Then, from relation (25), it follows
that, in the quenched approximation, the QCD con-
stant in the vector scheme (25)

Λ(0)
B = 385± 30 MeV (26)

and for nf = 4, 5

Λ(4)
B = 370± 35MeV; Λ(5)

B = 293 ± 34MeV.
(27)

Our choice of ΛB in this paper will be in accordance
with the numbers (26) and (27).

In coordinate space, the background coupling
αB(r) is defined as the Fourier transform of αB(q),

αB(r) =
2
π

∞∫

0

dq
sin qr
q

αB(q), (28)

so that the perturbative part of the static potential is

VB(r) = −
4
3
αB(r)

r
(29)
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Table 1. The effective coupling αeff(nL) (33) for different
bb and cc states for the static potential (30) with mb =
4.78GeV,mc = 1.45GeV, αcrit = 0.547; σ = 0.185GeV2,
Λ(4) = 360GeV (nf = 4)

State bb̄ cc̄

1S 0.386 0.441

2S 0.419 0.447

3S 0.427 0.446

4S 0.430 0.446

5S 0.431 –

6S 0.432 –

1P 0.474 0.510

2P 0.480 0.505

3P 0.482 0.505

1D 0.508 0.531

2D 0.508 0.526

and the static potential is the sum of VB(r) and NP
linear potential:

Vstat(r) = σr − 4
3
αB(r)

r
. (30)

In phenomenological potentials, the coupling αB(r),
equal to a constant, is often used. This approxima-
tion is valid because at distances r � 0.4 fm αB(r)
approaches the freezing (critical) value. Note that,
at large distances, r � 1.2 fm, the confining linear
potential, due to the creation of qq pairs, becomes
flatter [24, 25], and this effect can be important not
only for light mesons but also for high excitations in
charmonium.
The critical values of αB(q) and αB(r) coincide,

αB(q = 0) = αB(r →∞) = αcrit, (31)

and their characteristic values in the two-loop ap-
proximation are given below:

α
(0)
crit(Λ

(0)
B = 385MeV) = 0.428, (32)

α
(3)
crit(Λ

(3)
B = 370MeV) = 0.510,

α
(4)
crit(Λ

(4)
B = 340Mev) = 0.515.

Our calculations show that the bottomonium spec-
trum appears to be rather sensitive to AF behavior,
while in charmonium the approximation αB = const
can be used with good accuracy. It is also instructive
to look at the effective coupling αeff for different cc and
bb states, which can be defined as

〈αB(r)
r

〉

nL
= αeff(nL)〈r−1〉nL, (33)
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Table 2. The spin-averaged masses M(nL) (in GeV) in
bottomonium for the potential (30) with the parameters
(35) (NR case)

State Set I Set II Set III Experiment

1S 9.460 9.406∗ 9.379∗ 9.4603± 0.0003

2S 10.013 10.001 9.988 10.0233± 0.0003

3S 10.367 10.359 10.359 10.3552± 0.0005

1P 9.900 9.900 9.900 9.9001± 0.0006

2P 10.267 10.267 10.270 10.2601± 0.0006

1D 10.150 10.156 10.161 10.1622± 0.0016

Above BB̄ threshold,Mth = 10.558GeV

4S 10.659 10.647 10.649 10.580± 0.0035

5S 10.917 10.900 10.902 10.865± 0.008

6S 11.146 11.131 11.132 10.019± 0.008
∗ The massM(1S) increases by∼ 50–80MeV if the AF correc-
tion is taken into account.

and, being dependent on the quantum numbers (see
Table 1), it is∼ 10–20% smaller than αcrit.
From Table 1, one can see that, in bottomonium,

because of the different behavior of the wave func-
tions, the effective coupling is smaller for the nS
states and larger for orbital excitations like nD states.

4. BOTTOMONIUM

To extract the pole mass mb from the spin-
averaged masses (Mcog(nL) ≡M(nL)), the bb spec-
trum will be studied here as a whole. Moreover,
we mostly concentrate not on the ground state—
the Υ(1S) mass—for which perturbative corrections
are important [2], but on the following experimental
splittings [1, 15]:

M(1D)−M(1P ) ∼= M(13D2)−M(1P ) (34)

= 261.1 ± 2.2MeV(exp.),
M(2P ) −M(1P ) = 360.0 ± 1.2MeV(exp.).

The important feature of the 1P, 2P, 1D states is
that they lie below the BB threshold and have no
hadronic shifts. Also, for the mass splittings (34),
small relativistic corrections are partly (or totally for
the ∆1) canceled and therefore the calculations can
be done either with the use of SSE or in the NR
approximation.
First, we consider the case with αstat = const and

give the bb spectrum in Table 2 for three sets of pa-
rameters with differentmb:

set I:mb = 4.727 GeV, σ = 0.20GeV2, (35)
4
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Table 3. The dynamical mass ωb(nL) for SSE with Cornell potential (mb = 4.78GeV, σ = 0.185GeV2, αstat = 0.4125)

State 1S 2S 3S 4S 5S 6S 1P 2P 1D

ωb(nL) [GeV] 5.04 5.01 5.03 5.06 5.09 5.13 4.96 4.99 4.96

ωb(nL)−mb [MeV] 263 228 248 277 308 347 179 209 182

Table 4. The bb̄ spectrum (M(nL) in MeV) defined by the mass formula (16) for spinless Salpeter equation

State

Set A Set B Set C

Experiment∗mb = 4.828GeV,
σ = 0.178GeV2,
Λ(5)
B = 330MeV

mb = 4.83GeV,
σ = 0.19GeV2,
Λ(4)
B = 390 MeV

mb = 4.817GeV,
σ = 0.185GeV2,

Λ(0)
B (1-loop) = 365 MeV

1S 9469 9478 9470 9460

2S 10 022 10 032 10 023 10 023

3S 10 369 10 386 10 375 10 355

1P 9900 9901 9900 9900

2P 10 267 10 278 10 266 10 260

1D 10 158 10 162 10 152 10 162

∗ The experimental errors in the masses are given in Table 2.
αstat = 0.3345;

set II:mb = 4.765 GeV, σ = 0.19 GeV2,

αstat = 0.390;

set III:mb = 4.778 GeV, σ = 0.188 GeV2,

αstat = 0.415.

In all cases, CSE = 0 is taken as in the mass for-
mula (14).

From the masses presented in Table 2, one can see
the following:

(i) For small mb = 4.727 GeV (set I), the mass
M(1D) appears to be ∼ 10 MeV lower than the ex-
perimental number even for very large σ = 0.20GeV2.

(ii) For sets II and III, almost identical fits are
obtained, with exception of the 1D state, when good
agreement with experiment can be reached only for a
larger value of the coupling, as for set III.

(iii) The 1D–1P splitting,

∆ = Mcog(1D)−Mcog(1P ), (36)

has remarkable properties: it is practically indepen-
dent both of relativistic correction δR and of the small
variations of the string tension, and therefore ∆ can
be considered as the best and very stable criterion to
determine the critical value of strong coupling as well
as the pole massmb.
P

(iv) In NR approximation (16) and for SSE for
b-quark masses mb ≤ 4.70 GeV or mb ≥ 4.85 GeV,
the condition CSE = 0 cannot be combined with a
reasonably good fit to the bb spectrum.
However, if one uses EA (17) instead of NR mass

formula (16), then the values of the dynamical mass
ωb(nL) are larger and the difference ωb(nL)−mb

varies in the range (180–300 MeV) (see Table 3),
from which one can see that the dynamical mass
ωb(nL) is slightly different for different nL states,
ωb(nL)−mb

∼= 200± 50MeV. The bb spectrum cal-
culated with ωb(nL) = 5.0 GeV and mb = 4.78 GeV
with the use of the mass formula (17) gives numbers
within ±5MeV, coinciding with those from Table 2.
Thus, from our fits with the coupling αstat taken as

constant, the extracted value of the pole mass is

mb = 4.76± 0.02 GeV (αstat = const). (37)

The picture does not change much if the AF be-
havior of αB(r) (in two-loop approximation) is taken
into account. However, in this case, the admissible
values of mb appear to be larger by ∼50 MeV. The
bb spectrum for mb

∼= 4.82 GeV and mb = 4.83 GeV
for the number of the flavors nf = 4, 5 and also in the
quenched approximation is presented in Table 4.
As seen from Table 4, for sets A, B, good agree-

ment is obtained for the 1P, 1D states, but for the
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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1S level the mass is ∼ 10MeV higher than the spin-
averaged M(1S). This fact can be considered as an
indication of possible contribution of the three-loop
perturbative corrections, which are neglected here.
Our conclusion is that, for the background cou-

pling (24) with Λ(4)
B = 390 MeV (nf = 4), or Λ(5)

B =
330MeV (nf = 5), and σ = 0.183± 0.006GeV2, the
extracted pole mass lies in the narrow range

mb(2-loop) = 4.81 ± 0.02 GeV. (38)

Thus, if the AF behavior of αB(r) is taken into
account, the extracted pole mass is ∼ 50MeV larger
thanmb (37) for αstat = const. Then, combining (35)
and (38) for above considered choices of αB , one finds
that the extracted pole mass of the b quark lies in the
range

mb(2-loop) = 4.78 ± 0.05GeV. (39)

From here, by definition of the two-loop pole mass
(1) (nf = 5), where the parameter ξ2 is

ξ2(nf = 5) (40)

= −1.0414
NL∑

k

(

1− 4
3
mQk

mQ

)

+ 13.4434,

and the sum over k extends over the NL flavors Qk,
which are lighter than Q, one finds ξ2(nf = 5) ∼=
9.6–9.7. Then, for the conventional αs(mb) = 0.217,
from (37) it follows that

mb(mb) = 4.19 ± 0.04 GeV. (41)

This number forMS current mass (41) appears to be
in good agreement with the conventional value (2) but
has smaller theoretical error, ∼ 40MeV, as compared
to the PDG number (2).

5. CHARMONIUM

The cc spectrum has several differences in com-
parison to bottomonium.
First, the self-energy contribution to the mass

M(nL) is nonzero, being equal to ∼ −40 MeV (6),
and the value of CSE is practically the same for differ-
ent nL states; therefore, CSE can be taken equal to a
constant for all states (with an accuracy of 1–3MeV).
Secondly, relativistic (R) corrections are negative

and not small in charmonium, so that M(nL) in R
case is always smaller, and

δR(nL) = M(nL)−MNR(nL) (42)

is negative. Note that the self-energy contribution
must be the same in the R and NR cases (see third
and fourth columns in Table 5). However, if for com-
parison one uses the fit to the spin-averaged mass
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
of the 1S state, M(1S) = 3067 MeV, then CSE are
different in the R and NR cases and δR(nL) has
irregular behavior (see Table 5, sixth column). Such
a fit is often used in HQ. From Table 5, where CSE =
−35 MeV in the R case and CNRSE = −57 MeV in
the NR case are taken, one can see that δR(nL) is
even positive (∼ 10–20 MeV) for the 1P, 1D states;
equal to zero for the 1F state; and negative for the
excited nS states, 2P, 2D, and other higher states. It
is important that, for the 4S (3S) state, |δR| is large,
∼100MeV (60 MeV), and therefore the cc spectrum
has to be calculated with a relativistic Hamiltonian.
An interesting observation is that, while the

ground-state mass is fitted, the relativistic correc-
tions for 1P, 1D states turn out to be positive (since
for such fit a negative CNRSE has larger magnitude than
in the R case).
The third difference refers to the choice of αB(r).

Since the cc states have larger sizes, than the bb ones,
the AF behavior ofαB(r) appears to be less important
in charmonium and the approximationαB(r) = const
is valid with good accuracy. For example, for two sets
of parameters

set A:mc = 1.42GeV, σ = 0.18 GeV2, (43)

αB = 0.42; CSE = −35MeV,
set B:mc = 1.42 GeV, σ = 0.185 GeV2,

Λ(4)
B = 360MeV, CSE = −30MeV,

close values ofM(nL) in theR case are obtained (see
Table 6).
As seen from Table 6, the high excitations, like

3S, 4S, and 2D states, lie higher by ∼ 40MeV than
the experimental values. All these states have large
rms radii:R(3S) = 1.1 fm,R(4S) ∼= 1.4 fm,R(2D) ∼=
1.4 fm. At such distances, as was observed on the
lattice [24], the confining potential flattens due to the
quark–antiquark pair creation, and this phenomenon
results in the correlated shift of all radial excitations
down for light mesons [25]. The flattening of the static
potential can be illustrated by taking, instead of the
linear σ0r potential, the modified confining potential
σ(r)r, which was suggested in [25]:

σ(r) = σ0(1− γ0f(r)), (44)

f(r) =
exp(√σ0(r − a))

B + exp(√σ0(r − a))
,

with the parameters

σ0 = 0.185 GeV2, γ0 = 0.40, (45)

a = 6.0GeV−1, B = 20.

For this set of parameters, the cc spectrum (R case)
is given in Table 7 together with that for the standard
4
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Table 5. The cc̄ spin-averaged massesM(nL) (in MeV) inR and NR cases with the same static potential (αsatic = 0.42,
σ = 0.18GeV2,mc = 1.42GeV) and differentCSE

State Experiment
R NR

NR (CNRSE = −57MeV) δR = M(nL)−MNR(nL)
CSE = −35MeV

1S 3067± 0.7 3067 3089 3067 (fit) 0

2S 3673± 6 3661 3710 3688 –27

1P 3525± 0.6 3528 3532 3510 +18

AboveDD̄ threshold

1D 3770± 2.5 3823 3834 3812 +11

3872± 1.2

2P – 3964 4006 3984 –20

1F – 4067 4067 0

3S 4040± 10 4081 4163 4141 –60

2D 4159± 20 4200 4249 4227 –27

4S 4415± 6 4431 4549 4527 –96

Note: δR is the difference between the masses given in third and fifth columns.
Table 6. The spin-averaged masses (in MeV) in charmo-
nium inR case for static potential with the parameters (43)

State Set A Set B Experiment

1S 3067 3067 3067± 0.7

2S 3660 3668 3673± 8

1P 3528 3500 3525± 0.6

AboveDD̄ threshold

1D 3823 3805 3871.8± 1.2

3770.0± 2.5

2D 4199 4193 4159± 20

3S 4080 4099 4040± 10

4S 4424 4459 4415± 6

2P 3964 3954 –

1F 4067 4064 –

linear σ0r potential (σ0 = 0.185 GeV2); the value
αstat = 0.42 is taken in both cases.
From Table 7, one can see that themodified poten-

tial σ(r)r does not affect orbital excitations, but the
masses M(4S) and M(3S) of radial excitations for
the modified potential are shifted down by ∼50 and
∼20 MeV, respectively, and turn out to be close to
experimental numbers.
For spin structure of a meson, one needs to know
PH
Table 7. The comparison of the spin-averaged masses (in
MeV) in charmonium (R case) for confining σ0r poten-
tial and modified potential (44) (mc = 1.42 GeV, CSE =
−42MeV, αstat = 0.42 in both cases)

State σ0 = const
= 0.185GeV2

σ = σ(r) with
parameters (45) Experiment

1S 3068 3067 3067

2S 3670 3664 3672

3S 4097 4077 4040± 10

4S 4454 4403 4415± 6

1P 3525 3530 3525± 0.6

2P 3979 3965 Absent

1D 3835 3828 3770± 2.5

2D 4217 4194 4159± 20

1F 4076 4070 Absent

the dynamical masses ωc(nL), which are larger than
the pole mass, and for low-lying states

ωc(nL)−mc
∼= 220–250MeV, (46)

while for high excitations this difference can reach
300–340MeV (see Table 8).

The observed difference between the dynamical
and the pole mass can be essential for such phys-
ical characteristics as hyperfine- and fine-structure
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Table 8. The dynamical masses ωc(nL) for the potential
with the parameters (43) (set A)

State 1S 2S 3S 4S 1P 2P 1D 2D

ωc(nL) [GeV] 1.65 1.69 1.74 1.76 1.63 1.69 1.66 1.77

splittings, which are determined by the dynamical
mass [26] and give rise to a decrease in spin splitting
in charmonium [27].
From our analysis, the best fit to the cc spectrum

[together with the correct choice of the self-energy
constant (6)] is obtained for the pole massmc, which
lies in the range

mc(2-loop) = 1.39 (47)

± 0.03 (theory)± 0.03(αB)GeV.

Then, from (1), the following MS running mass
(nf = 4, the coefficient ξ2 ∼= 10.5, αs(mc) = 0.30)
can be obtained:

mc(mc) = 1.14± 0.05 GeV. (48)

The extracted value turns out to be in good agreement
with the conventional number formc(mc) (2), but has
a smaller theoretical error.

6. CONCLUSION

Our study of the bb and cc spectra is performed
with the use of the relativistic Hamiltonian H0 and
correct NP self-energy contribution to the meson
mass.
By derivation, the kinetic part of H0 contains the

pole heavy-quark massmQ and it can directly be ex-
tracted from the analysis of the QQ spectrum. In our
study, all the meson masses are expressed through
two parameters, the string tension and the QCD con-

stant Λ(nf )
B (in the vector scheme), which at present

are known with∼ 5%accuracy. The variations of σ in
the range 0.185 ± 0.005 GeV2 and Λ(4)

B in the range
385 ± 15 MeV give the uncertainty in the pole mass
mb(mc) around 50 MeV. In charmonium, the strong
coupling αB(r) can be approximated as a constant
with good accuracy.
The spin-averaged splittings like 1D–1P , 2P–1P

in bottomonium and 2S–1P , 1P–1S in charmonium
appear to be very sensitive to the chosen freezing
(critical) value of the strong coupling. A good de-
scription of the HQ spectra is reached only if αcrit
is rather large, αcrit ∼= 0.56 ± 0.02, while the effec-
tive αeff = const, present in the Cornell potential, is
∼20% smaller.
From our analysis, one can conclude the following:
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
(i) The dynamical quark mass ωb(ωc) is about
200 MeV larger than the pole mass mb(mc) for low-
lying states. This difference should be taken into ac-
count when the spin structure in heavy quarkonia is
studied, and it is especially important in charmonium.
(ii) The pole masses mb(2-loop) = 4.78 ±

0.05 GeV and mc(2-loop) = 1.39± 0.06 GeV were
extracted from our fit to the QQ spectra, which
correspond to the MS running masses mb(mb) =
4.19 ± 0.04 GeV and mc(mc) = 1.14 ± 0.05 GeV.
The obtained numbers are in good agreement with the
conventional values but have smaller theoretical error.
Our theoretical error is small because in our analysis
only one parameter, ΛMS (or αcrit), is actually varied
while the second parameter, the string tension, is
taken to be the same as for light mesons.

APPENDIX

Below, we present the main steps to derive the
HamiltonianHR (7) [11] and NP self-energy term (4)
from [14]. The starting point is the gauge-invariant
meson Green’s function written in the FFS represen-
tation [14, 24] with the use of the QCD action:

GM (x, y) = 〈trΓ1Gq(x, y)Γ2 Gq(x, y)〉B . (A.1)

Here, Γ1(Γ2) is the matrix defining the quantum
numbers of the initial (final) state of a meson. For
a spinless quark (antiquark), Γ1 = Γ2 = 1. In (A.1),
the averaging goes over the background field Bµ and
Gq(x, y) (Gq(x, y)) is the Euclidean quark (anti-
quark) Green’s function:

Gq(x, y) = (mq + D̂)−1
x,y (A.2)

= (mq − D̂)x(m2
q − D̂2)−1

x,y

= (mq − D̂)x

∞∫

0

ds(Dz)xye−KRaRBRF ,

where the factorsRa,RB ,RF are the following:

Ra = Paexp



ig

x∫

y

aµdzµ



 , (A.3)

RB = PBexp



ig

x∫

y

Bµdzµ



 , (A.4)

RF = PF exp

( s∫

0

gσµνFµνdτ

)

. (A.5)

Here, Pa, PB , and PF are the ordering operators of
the matrices aµ (the field of valence gluon), Bµ (the
4
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background NP field), and the NP field strength Fµν ,
respectively, and

σµνFµν =



σ ·H σ ·E
σ ·E σ ·H,



 (A.6)

with σµν =
1
4i

(γµγν − γνγµ), represents the interac-

tion of the quark (antiquark) color magnetic moment
with NP field strength Fµν .
In Eq. (A.2), the kinetic energy term K contains

the integral over the proper time τ :

K = m2
qs+

1
4

s∫

0

(żµ)2dτ. (A.7)

The quark, moving along the trajectory zµ(τ), in-
teracts with the field of valence gluon aµ and by its
color charge also interacts with the NP background
field Bµ.
In Eq. (A.7), the quantity mq, which refers to a

quark with any mass, is the Lagrangian current mass
taken in theMS renormalization scheme. The factor
Ra is to be responsible for standard perturbative cor-
rections to the quark massmq [as for the heavy-quark
mass mQ in Eq. (2)], i.e., for the appearance of the
pole mass in the QCD action (Hamiltonian) [2]. Also,
the factors Ra and Ra (from the quark and the anti-
quark) provide the perturbative static interaction [26].
The other two factorsRB andRB (from the quark

and the antiquark) in GM (x, y) (A.1), (A.2) are re-
sponsible for the full NP (string) dynamics and were
considered in detail in [11], where after several steps
the meson Green’s function was presented in the
following form:

GM =
∫

dωdνdrexp(−AR), (A.8)

where the action AR in coordinate space is expressed
through two auxiliary fields ω and ν. Since this action
(see [11]) does not depend on the derivatives ω̇ and
ν̇, the integration over ω, ν in (A.8) is equivalent to
the canonical quantization of the Hamiltonian HR

which corresponds to the action AR. It results in the
following Hamiltonian:

HR =
p2
r +m2

q

ω
+ ω(t) (A.9)

+
L2

r2

[

ω + 2

1∫

0

dβ · βν(β)
]−1

+
1
2
σ2r2

1∫

0

dβ

ω(β)
+

1
2

1∫

0

dβν(β),
P

where L is the orbital momentum and by definition

the field operator ω(t) is ω(t) =
1
2
dt

dτ
(t is the actual

time).

With the use of the extremal conditions (it gives
the solution ν0 = σr) and considering the string cor-
rections as the perturbation (the procedure is de-
scribed in [13]), one arrives at theHamiltonianH0 (3).

The terms RF and RF (from quark and anti-
quark) provide the NP self-energy (gauge-invariant)
contribution CSE to the meson mass [14], where the
total self-energy correction ∆m2

q to the pole mass
mq appears to be expressed only through the string
tension σ and the factor η(mq):

∆m2
q(mq) = −4σ

π
η(mq). (A.10)

The factor η(mq) is calculated in analytical form
in [14] and, formq > Tg, where Tg is the gluonic cor-
relation length (δ = T−1

g ), is given by the expression

η(mq) = −
3m2

qδ
3

(m2
q − δ2)5/2

(A.11)

× arctan

√
m2
q − δ2

δ
+

δ2(2m2
q + δ2)

(m2
q − δ2)2

.

The direct calculations give for bottomonium η(mb
∼=

5.0 GeV) ∼= 0.07 and for charmonium η(mc =
1.70 GeV) = 0.24 and η(mc

∼= 1.40 GeV) ∼= 0.30.
Then the string Hamiltonian (7) acquires the correc-
tion (A.10),

H ′
R = H0 +

∆m2
q

ωq
=

p2 +m2
q + ∆m2

q

ωq
(A.12)

+ ωq + Vstat = H0 + CSE,

with the self-energy correction

CSE =
∆m2

q

ωq
= − 4σ

πωq
η(mq). (A.13)

In the self-energy correction, considered as a pertur-
bation, the operator ω̂ in (7) can be replaced by the
average of this operator (5), which is called by the
dynamical mass,

ω̂ → ωq =
〈√

p2 +m2
q

〉

nL
. (A.14)

The NP self-energy term CSE appears to be depen-
dent on the quantum numbers nL just through the
dynamical mass ωq. However, in bottomonium for
mb
∼= 5.0GeV,

CSE(bb) ∼= −3MeV (A.15)
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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is very small and can be neglected. In charmonium
for mc

∼= 1.40 GeV, the factor η(mc) = 0.29 and the
value of CSE ∼= −40± 10 MeV is obtained, which is
practically the same for different nL states because of
weak dependence of ωc(nL) on the quantum numbers
nL (see Table 8).
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Abstract—The results of a partial-wave analysis of the angular distributions for the process γp→ ηp over
the energy range up to 2 GeV are presented. Reliable estimates of the Breit–Wigner parameters of the
S11(1535) resonance, as well as the energy dependence of the real and imaginary parts of the electric dipole
amplitude E0+ and its phase, are derived from the energy dependence of the regression coefficient a0(W ).
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The present article completes our phenomenolog-
ical analysis of experimental data on η-meson photo-
production on protons. The first part of our study [1]
was devoted to a partial-wave analysis of the angular
distributions and polarization observables, including
the asymmetry Σ in a beam of linearly polarized γ
radiation and the asymmetry T for a polarized proton
target, which were measured over the photon-energy
range from the threshold to about 1 GeV. In order to
estimate the regression coefficients correctly, the con-
tributions of various partial waves were determined
on the basis of a linear nonparametric model: each
observable was represented as a series in Legendre
polynomials, all nonnegligible terms being retained.

At the second stage of the analysis, we solved a
set of nonlinear equations involving bilinear combi-
nations of the real and imaginary parts of the electric
(El±) and magnetic (Ml±) multipole amplitudes for
the production of an η meson in the l ± 1/2 states.
The nonlinearities generally give rise to some addi-
tional difficulties [2]; however, it is shown below that,
in the case of η-meson photoproduction on protons,
the situation becomes simpler.

2. RESULTS OF THE PARTIAL-WAVE
ANALYSIS

The main results of the partial-wave analysis per-
formed in [1] are as follows:

(i) We confirm the well-known fact that, over the
energy range from the threshold to about 1 GeV, η
mesons are produced predominantly in the s-wave
state, the photoproduction process, described by the
amplitude E0+, being of a resonance character.

*e-mail: yudin@helene.sinp.msu.ru
1063-7788/04/6707-1378$26.00 c©
(ii) Higher partial waves manifest themselves only
in sp and sd interferences, whose contributions are
small in relation to the dominant s-wave contribution.
Data obtained in different experiments [3–5] are con-
tradictory.

Thus, only the S11(1535) resonance is seen over
the indicated photon-energy range being consid-
ered, whereas the contribution of the P11(1440) and
D13(1520) resonances, which lie in the same energy
region, is on the same order of magnitude as non-
resonance contributions, which, according to [3], do
not exceed a few percent of the S11(1535)-resonance
contribution.

In this connection, an analysis of the differential
cross sections for the process γp→ ηp is of particular
interest. In the experiment reported in [6], angular
distributions for this process over the energy range
from 0.795 to 1.925 GeV were measured with a step
of 50 MeV. In all, 24 distributions were obtained,
each being measured at eight values of the η-meson
emission angle. Our analysis was based on expanding
the respective differential cross section in a series in
Legendre polynomials and on retaining the first three
terms of this expansion (linear model) [7]. In just the
same way as in the region of lower energies, the linear
model proved to be statistically justified. The coeffi-
cients a0, a1, and a2 are given in Fig. 1 versus energy
according to the analysis of the angular distributions
measured in [6] (the expressions for the regression
coefficients a0, a1, and a2 in terms of the multipole
photoproduction amplitudes to E3− and M3− terms
inclusive are presented in [1]).

As can be seen from Fig. 1, the s-wave amplitude
E0+ is dominant, the P- and D-wave contributions
being an order of magnitude less. Also, the absence
of noticeable resonance contributions over the en-
ergy range between 1 and 2 GeV, where there are
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Regression coefficients a0, a1, and a2 versus the photon energyEγ and the total energyW in the c.m. frame according
to data from [6].
many well-established nucleon resonances, includ-
ing S11(1650), D15(1675), F15(1680), D13(1700),
P11(1710), and P13(1720) [8], is worthy of note. A
rather smooth behavior of the coefficients a0, a1, and
a2 with increasing energy suggests that resonances
do not play a significant role in the energy range
under consideration. Thus, the S11(1535) resonance
is an isolated broad resonance, whose parameters are
estimated below.

3. DETERMINATION
OF THE BREIT–WIGNER PARAMETERS

FOR THE S11(1535) RESONANCE
AND FOR THE AMPLITUDE E0+

OF η-MESON PHOTOPRODUCTION
ON PROTONS

The results obtained by assessing the contribu-
tions of various partial waves to η-meson photopro-
duction on protons over the energy range from the
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
threshold to about 2 GeV made it possible to simplify
the determination of the parameters of the S11(1535)
resonance. This simplification is due to the fact that,
over the entire energy range under consideration, the
process γp→ ηp can be adequately described by the
first three terms of the expansion in Legendre poly-
nomials. The validity of this description implies that,
in formulas (2), (4), and (5) from [1], it is sufficient to
retain only terms involving the amplitude E0+. This
being so, the leading s-wave contribution appears
only in the first equation,

a0(W ) = |E0+|2. (1)

Assuming that the electric dipole amplitude can
be approximated by a Breit–Wigner resonance curve,
one can determine its parameters by using the re-
spective parametric model either for the energy de-
pendence of the regression coefficient a0(W ) or for
the total cross section (k/q)σ(W ) for the reaction
4
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Table 1. Parameters of the S11(1535) resonance that were determined from an analysis of data obtained in [3]

(k/q)(dσ/dΩ) bη = 0.55, bπ = 0.35 bη = 0.45, bπ = 0.45 bη = 0.35, bπ = 0.55

σ(WR) [µb] 33.51± 1.5 35.88± 1.48 38.18± 1.57

WR [MeV] 1563.68± 9.53 1555.32± 8.32 1547.68± 7.86

ΓR [MeV] 270.42± 41.18 264.02± 40.5 271.34± 46.61

ξ [10−4 MeV−1] 2.08± 0.05 2.15± 0.04 2.22± 0.05

A1/2 [10−3 GeV−1/2] 129.25± 6.78 142.32± 7.46 164.28± 9.53

χ2/ν 1.2 1.21 1.24

4πa0(W ) bη = 0.55, bπ = 0.35 bη = 0.45, bπ = 0.45 bη = 0.35, bπ = 0.55

σ(WR) [µb] 34.63± 0.82 36.92± 0.8 39.25± 0.76

WR [MeV] 1558.73± 4.79 1551.32± 4.16 1543.9± 3.57

ΓR [MeV] 244.09± 20.32 238.41± 19.83 240.16± 20.44

ξ [10−4 MeV−1] 2.11± 0.02 2.18± 0.02 2.25± 0.02

A1/2 [10−3 GeV−1/2] 122.96± 3.51 135.31± 3.83 154.43± 4.42

χ2/ν 0.52 0.52 0.49

Table 2. Parameters of the S11(1535) resonance that were determined from an analysis of data obtained in [4]

4πa0(W ) bη = 0.55, bπ = 0.35 bη = 0.45, bπ = 0.45 bη = 0.35, bπ = 0.55

σ(WR) [µb] 41.06± 1.24 42.89± 1.28 44.79± 1.35

WR [MeV] 1537.33± 1.47 1533.53± 1.54 1529.4± 1.69

ΓR [MeV] 139.7± 5.76 137.08± 5.49 134.99± 5.3

ξ [10−4 MeV−1] 2.3± 0.03 2.35± 0.04 2.4 ± 0.04

A1/2 [10−3 GeV−1/2] 93.43± 1.54 102.71± 1.67 115.62± 1.9

χ2/ν 15.27 15.29 15.54

Table 3. Parameters of the S11(1535) resonance that were determined from an analysis of data obtained in [5]

4πa0(W ) bη = 0.55, bπ = 0.35 bη = 0.45, bπ = 0.45 bη = 0.35, bπ = 0.55

σ(WR) [µb] 29.83± 0.76 31.16± 0.71 32.51± 0.66

WR [MeV] 1559.18± 2.83 1554.0± 2.46 1548.47± 2.13

ΓR [MeV] 199.61± 13.86 196.17± 13.43 194.25± 13.25

ξ [10−4 MeV−1] 1.96± 0.02 2.0± 0.02 2.05± 0.02

A1/2 [10−3 GeV−1/2] 103.35± 2.45 113.83± 2.63 128.63± 2.92

χ2/ν 2.3 2.3 2.31
under study. Although these quantities coincide apart

from the factor 4π, they are determined with different

errors. The energy dependence of the resonance width
PH
is taken into account by means of the formula [3]

k

q
σ(W ) = 4πa0(W ) =

σ(WR)W 2
RΓ2

R

(W 2
R −W 2)2 +W 2

RΓ2(W )
,

(2)
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Table 4. Parameters of the S11(1535) resonance that were determined from an analysis of data obtained in [6]

4πa0(W ) bη = 0.55, bπ = 0.35 bη = 0.45, bπ = 0.45 bη = 0.35, bπ = 0.55

σ(WR) [µb] 43.18± 9.13 46.15± 11.43 49.25± 14.19

WR [MeV] 1530.63± 12.13 1525.6± 13.74 1520.34± 15.46

ΓR [MeV] 152.4± 18.7 147.94± 16.4 143.97± 14.53

ξ [10−4 MeV−1] 2.36± 0.25 2.44± 0.3 2.52± 0.36

A1/2 [10−3 GeV−1/2] 96.86± 8.32 106.03± 10.47 118.47± 13.74

χ2/ν 11.22 11.22 11.25
whereW is the total energy in the c.m. frame (that is,
the resonance mass); ΓR is the total resonance width;

Γ(W ) = ΓR

(

bη
qη
qηR

+ bπ
qπ
qπR

+ bππ

)

; (3)

bη, bπ, and bππ are the branching fractions for the de-
cays of the S11 resonance through the corresponding
channels; and qη and qπ are the momenta of the η
and π mesons, respectively, qηR and qπR being their
values at the resonance peak. The parameters were
estimated by fitting a0(W ) to data from [3–6], the
results being presented in Tables 1–4 {in the case of
data from [3], (k/q)σ(W ) was also subjected to fit-
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Fig. 2. Theoretical description (curves) of experimental
data from [3] (points) on the basis of the parametric model
at bη = 0.55 and bπ = 0.35 [see formulas (2) and (3)].
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ting}. The estimates given in these tables correspond
to three sets of values of the parameters bη and bπ
at bππ = 0.1. Tables 1–4 also display values of the
helicity amplitudes calculated by the formula

A2
1/2 =

WR

2mp

ΓR
bη
σ(WR), (4)

where mp is the proton mass, and values of the pa-
rameter ξ, which is independent of bη,

ξ =
1
2

√
k

q
σ(WR). (5)

Table 1 demonstrates that, within the errors, the val-
ues of the parameters obtained from a fit to the cross
section agree with those obtained from a fit to the
regression coefficient, the errors being much smaller
in the latter case. There is a substantial distinction
between the value obtained for the total width of the
S11(1535) resonance from data presented in [3, 5] and
that extracted from data quoted in [4, 6]. The origin
of this distinction is illustrated by the Breit–Wigner
curves for bη = 0.55 and bπ = 0.35 in Figs. 2–4. It
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should be noted that the results obtained by analyz-
ing data presented in [4, 6] remove the disagreement
between the values of Γ obtained from hadron pro-
cesses and those obtained from η-meson photopro-
duction [8].

It is worth noting that the values of χ2/ν (that
is, χ2 per degree of freedom) for an analysis of the
data from [4, 6] are anomalously large, but that the
estimates of the parameters agree within the errors.
The reason is that the actual deviations of the ex-
perimental points considerably exceed the respective
errors, as can be seen fromFig. 3. Therefore, the scat-
ter of the experimental values of 4πa0(W ) with re-
spect to the Breit–Wigner curve cannot be described
by a Gaussian distribution with zero central value;
that is, the experimental values cannot be considered
PH
as random independent variables, in which case the
standard χ2 criterion does not work. It is known [9]
that, if the expectation values of some terms of the χ2

distribution are nonzero, then the goodness of a fit can
be estimated on the basis of the noncentral criterion
χ2
nc characterized by the noncentrality parameter δ2

defined as the sum of the squares of the expectation
values of individual terms [9]. For the 4πa0(W ) values
obtained from the partial-wave analysis of data re-
ported in [4], we present in Table 5 the deviations from
the Breit–Wigner curve for bη = 0.55 and bπ = 0.35.
These deviations were used as estimates of the ex-
pectation values of individual terms in the noncentral
criterion χ2

nc. The respective value of the noncentrality
parameter is δ2 = 46.8. The expectation value of χ2

nc
is Mnc = ν + δ2, where, in the present case, ν is the
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Table 5. Difference∆ of the experimental values of 4πa0(W ) and the results of the fit

W , MeV ∆ W , MeV ∆ W , MeV ∆

1490.16 2.9± 0.91 1553.9 1.41± 0.71 1612.92 0.83± 0.4

1501.14 0.36± 1.05 1564.08 0.98± 0.28 1622.26 −0.06± 0.13

1511.98 0.09± 0.78 1574.06 0.82± 0.54 1631.55 −0.67± 0.37

1522.61 −2.6± 1.08 1583.98 2.3± 0.46 1640.78 −1.09± 0.23

1533.85 −1.59± 0.42 1593.49 2.78± 0.56 1649.79 −1.53± 0.25

1543.61 −1.06± 0.42 1603.12 2.03± 0.42 1658.81 −1.55± 0.27
number of independent terms. According to [9], the
value of χ2

nc per effective degree of freedom νnc is eval-
uated as Mnc/νnc = 1.05. It characterizes statistical
reliability of the results presented in Table 2. A similar
argument is valid for the results of the partial-wave
analysis of data from [6]. Thus, the estimates given
in Tables 2 and 4 for the parameters of the S11(1535)
resonance are quite reliable.

Both the real and the imaginary part of the electric
dipole amplitude E0+ describing the production of
the S11(1535) resonance, as well as the phase of this
amplitude, can readily be determined from the energy
dependence predicted for 4πa0(W ) by the parametric
model on the basis of the Breit–Wigner formula. The
data obtained with the aid of the energy dependence
of 4πa0(W ) from [4] (under the assumption that the
arbitrary phase of E0+ is zero) are shown in Fig. 5
by way of illustration. The upper and lower curves in
Figs. 5a and 5b were calculated with allowance for
the covariance matrix for the errors in the parameters
WR, σ(WR), and ΓR. At bη = 0.55 and bπ = 0.35 (see
Table 2), this matrix has the form








1.54 −1.23 −4.71

−1.23 2.16 1.84

−4.71 1.84 33.20







.

Upon determining the real and imaginary parts of
E0+, the equations that involve the interference with
the amplitude E0+ reduce to a set of linear equations.
Unfortunately, the errors in the regression coefficients
b0, b1, c0, and c1 are significant; moreover, these coef-
ficients were determined only for six (b0, b1) or eight
(c0, c1) values of energy. Therefore, a considerable
enlargement of the relevant database and refinement
of data on polarization observables, including the data
on the angular distribution of the polarization of recoil
protons, are required for performing a further analysis
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 20
and for reliably estimating p, d, and higher multipole
amplitudes.

4. CONCLUSION

The partial-wave analyses of the observables of
η-meson photoproduction on protons in [1] and in
the present study confirmed that the s-wave contri-
bution dominates the photon energy range from the
threshold to about 2 GeV. This contribution exhibits
resonance behavior, corresponding to the production
of the S11(1535) nucleon resonance. Moreover, the
experimental data on the differential cross sections
over the energy range under study do not show any
contribution from l > 2 partial waves. The p- and d-
wave contributions manifest themselves only in the
interference with the s wave. These contributions
are small, and data on them from different studies
are contradictory. In all cases, a statistically reliable
description of the experimental data is achieved by
retaining the three lowest terms in the expansion of
the differential cross section in Legendre polynomi-
als. Thus, we conclude that, throughout the range
of photon energies up to 2 GeV, experimental data
do not reveal many of the well-established nucleon
resonances [8].

Isolating the s-wave contribution made it possible
to determine the energy dependence of the multipole
amplitude E0+ and the parameters of the S11(1535)
resonance. Unfortunately, the data from [3, 5] are in-
consistent with those from [4, 6], the latter leading to
resonance parameters closer to those obtained from
an analysis of other processes [8]. In view of insuffi-
ciently vast statistics and a low precision of available
experimental data and in view of the aforementioned
inconsistencies in determining the p- and d-wave
contributions, other multipole amplitudes for the pro-
cess γp→ ηp can hardly be evaluated at present.
04
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Abstract—The most impressive examples of the application of Cherenkov detectors in modern-physics
experiments are considered. c© 2004 MAIK “Nauka/Interperiodica”.
In 1934, Pavel A. Cherenkov, who was at that
time S.I. Vavilov’s postgraduate student, discovered
blue luminescence of transparent liquids under the
effect of gamma rays. Analyzing the properties of
this radiation, which were explored by Cherenkov,
Vavilov assumed that it is caused by the motion of a
charged particle in a medium. The mechanism of this
new effect—the emergence of light in response to the
motion of a charged particle at a speed v exceeding
the phase velocity of light c/n in a medium whose
refraction index is n—was revealed in the study of
I.E. Tamm and I.M. Frank of 1937, who also proposed
its quantitative theory. This outstanding discovery
was recognized by the physics community worldwide,
and its authors (Cherenkov, Tamm, and Frank) were
awarded the Nobel prize of 1960 in physics.

Since the advent of photomultiplier tubes, which
are capable of recording weak light splashes, the
characteristic properties of Cherenkov radiation have
become a basis for developing highly efficient meth-
ods for recording various types of nuclear radiation.
The threshold character of Cherenkov radiation made
it possible to separate charged particles reliably by
their velocities. That the optical-photon emission
angle is strictly correlated with the particle velocity
is a remarkable property of Cherenkov radiation. As
a result, a light ring whose radius carries information
about the particle velocity can be observed at a certain
distance from the radiator. Rather thick Cherenkov
radiators were used as a basis for constructing many
full-absorption spectrometers for electromagnetic
showers.

A special international seminar dedicated to the
50th anniversary of the discovery of the Cherenkov
effect was held in 1984 at the Lebedev Institute of
Physics (USSR Academy of Sciences, Moscow).
The reports presented at this seminar [1] reflected
great advances made in constructing Cherenkov
detectors of various types and in applying them in
cosmic-ray and accelerator experiments. The results
1063-7788/04/6707-1385$26.00 c©
obtained in further development of Cherenkov de-
tectors and in their applications in subsequent years
proved to be even more impressive.

Cherenkov detectors made it possible to imple-
ment numerous experiments in various realms of
physics, whose range is extremely wide. Our con-
sideration below covers only a modest part of the
most important lines of investigation. Also, we briefly
touch upon a number of studies at accelerators and
in space where use has been made of the latest
achievement in the field of radiators of Cherenkov
light and photorecorders detecting it.

SEARCHES FOR NEUTRINO
OSCILLATIONS

Cherenkov detectors play a special role in study-
ing the properties of the neutrino. First of all, this
concerns searches for neutrino oscillations, which
were hypothesized by B. Pontecorvo in 1957. The
presence of transitions between different neutrino
flavors implies a violation of the postulated law of
lepton-number conservation and a nonzero neutrino
mass [2]. The number of such transitions depends
on the ratio of the distance R between the point of
production and the point of detection of a neutrino
state pure in flavor to the neutrino energy Eν . The
amplitude of vacuum neutrino oscillations depends
on the angle of mixing of massive neutrino states
(within a model where only two neutrinos are mixed,
this amplitude depends on one mixing angle θ),
while the period of these oscillations depends on
the difference of the squares of their masses, ∆m2.
The existence of such oscillations may in principle
explain the problem of solar neutrinos (recall that
the problem is that of why the result obtained by
recording the electron-neutrino flux from the Sun
in the known Cl–Ar [3] and Ga–Ge [4, 5] ra-
diochemical experiments is much lower than that
which is predicted by the standard solar model). A
number of new underground facilities that employ
various detection procedures were created for solving
2004 MAIK “Nauka/Interperiodica”
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the problem of solar neutrinos (see [1–12] in [6]).
Important results were obtained in experiments with
the Cherenkov detectors Kamiokande (2140 t of
water, Japan) [7] and SuperKamiokande (50 000 t
of water, 11 200 photomultiplier tubes of diameter
50 cm) [8] and especially with the SNO (Sudbury
Neutrino Observatory) detector (1000 t of heavy
water, Canada) [9]. The flux of boron neutrinos was
measured in each case. In the Kamiokande facility,
neutrinos were recorded via elastic νee scattering, and
a 49% deficit in relation to the calculated value of their
flux was found there. The choice of D2O in the SNO
experiments was motivated by the fact that, in this
transparent liquid, neutrinos can be recorded owing
to the reactions

νe + d→ p+ p+ e− (Q = −1.44 MeV), (1)

νx + d→ νx + p+ n (Q = −2.2 MeV), (2)

νx + e→ νx + e. (3)

The first process involves only electron neutrinos,
while the second and the third one are possible for
any neutrino flavor. Thus, the SNO detector records
individually the flux of electron neutrinos and the total
flux of active neutrinos of all flavors. The experiment
resulted in proving the existence of neutrino oscil-
lations and the correctness of the prediction of the
neutrino flux on the basis of the standard solar model.

The discovery of the anomaly in the ratio of the
number of atmospheric muon and electron neutrinos
was another important result of investigations at
the Kamiokande Cherenkov detector: the number
of recorded muon neutrinos was 40% less than the
value expected on the basis of the calculation of
their production mechanism in the atmosphere [10].
In addition, an experiment was performed in a νµ
beam (Eν ≈ 1.3 GeV) formed at the К2К accel-
erator situated at a distance of 250 km from the
SuperKamiokande detector [11]. Light images from
Cherenkov radiation generated by electrons and
muons were recorded in that experiment. The different
shapes of these light images from electrons and
muons permitted separating these particles to a rather
high degree of reliability.

DETECTION OF COSMIC RAYS
OF EXTREMELY HIGH ENERGIES

Entering the Earth’s atmosphere, primary protons
and nuclei of extremely high energy generate ex-
tensive air showers through the interaction with the
atmosphere. The value of El ≈ 5× 1019 eV, which
followed from generally accepted ideas of particle pro-
duction and acceleration in the Universe, was taken
for an upper limit on the cosmic-ray energy. However,
P

a few extensive air showers of energy E > El had
been recorded at the early 1990s, and this was an as-
trophysical puzzle. It is assumed that sources of cos-
mic rays having extremely high energies are beyond
the Milky Way Galaxy. Since intergalactic magnetic
fields are not sufficiently strong to deflect such cosmic
rays considerably, there is the hope that the sources
of their generation can be found by the direction of
the axes of extensive air showers, each such shower
containing billions of particles and covering an area of
S ∼ 10 km2. However, cosmic rays of extremely high
energy come to the Earth’s atmosphere very rarely—
there occurs one event of this kind per kilometer
squared over 100 years for E > 1020 eV; therefore,
observatories of giant area are necessary to reach a
reasonably high efficiency in recording such cosmic
rays.

In particular, it is planned to enlarge manyfold
the observatory in Utah (USA), where extensive air
showers are recorded by the fluorescence of atmo-
spheric nitrogen excited by charged particles. In or-
der to view the sky both in the Northern and in the
Southern Hemisphere of the Earth, an observatory
that is supposed to have an area of about 3000 km2 is
presently being constructed in Argentina [12]. There,
Cherenkov detectors will be basic elements. Water
in tanks of of volume 11 m3 that are arranged at
a distance of 1.5 km from one another are used as
the radiators of Cherenkov light. In each tank, the
light is recorded by three large photomultiplier tubes
(∅22 cm). The angle of the shower-axis slope can
be determined by the time difference between the
emergence of light splashes in different tanks.

Cherenkov light in tanks can be recorded 24 hours
a day, while fluorescence in air is visible only in the
case of a dark and cloudless sky. Herein lies an im-
portant advantage of the Cherenkov procedure over
the fluorescence procedure.

In order to implement searches for cosmic rays of
extremely high energy, the project of an experiment
that employs the International Space Station, from
which a surface area S ∼ 150 000 km2 of the Earth
can be seen, is presently being discussed [13]. It is
planned to record, in air, not only fluorescence but
also Cherenkov radiation, a considerable fraction of
which is reflected from the Earth’s surface, sea sur-
face, and clouds.

NEUTRINO ASTRONOMY

Since the neutrino is a neutral particle weakly in-
teracting with matter, it provides rich possibilities for
seeking, in the Universe, objects emitting neutrinos
and for studying various phenomena in the Universe.
Of particular interest are ultrahigh-energy muons,
which form the only cosmic-ray component that can
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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traverse the entire thickness of the Earth, forming
muons in it. For an observer, these muons propagate
upward. The directions of the neutrino and muon
momenta are nearly collinear, within an angle of α ≈
1.5/
√
Eν (in angular degrees), where the energy is

taken in TeV.
Albeit being positive in the sense indicated above,

the neutrino property of propagating through mat-
ter almost freely is simultaneously negative since it
causes considerable difficulties in detecting neutri-
nos. However, nature itself is helpful in this respect,
providing enormous water reservoirs, which are used
as radiators of Cherenkov light and shields from at-
mospheric cosmic rays.

The first such detector (NT-200 neutrino tele-
scope [14]) was constructed in Lake Baikal, where
modules equippedwith photomultiplier tubes (∅37 cm)
and separated by a typical distance of about 6 m from
one another were arranged at a depth of 1.1 km. The
geometric volume of this telescope in 1998 was V ≈
105 m3, and its effective volume was 2V to 6× 106 m3

for detecting neutrinos of energy 10 to 104 TeV. An
observation of not less than 50 upward directed light
signals with this telescope was reported in [15]. Still
larger neutrino Cherenkov detectors (the planned
volume of these detectors range up to 1 km3) are
presently under construction in the Mediterranean
Sea at the shores of France (ANTARES) [16] and
Greece ( NESTOR) [17].

The AMANDA Cherenkov detector embedded
deep in the extremely transparent ice of Antarctica
is very unusual [18]. In the region of the highest
sensitivity of photomultiplier tubes (about 400 nm),
the light-absorption length is 85 to 225 m. Modules
equipped with photomultiplier tubes are arranged at a
depth of 1.5 to 1.9 km with a step of 10 to 20 m. At the
beginning of 1997, the effective area of the detector
for recording upward-going muons was 104 m2. An
analysis of events recorded there within half a year
revealed that 153 to 188 of them were generated by
such muons. At the present time, the effective area
of the detector is about 105 m2, and it is planned to
enlarge it to 1 km2 (IceCube project).

The enormous amounts of transparent ice in
Antarctica proved to be highly appealing for em-
ploying yet another wonderful property of Cherenkov
radiation, the Askaryan effect, which consists in
the coherent emission of radio waves of frequency
about 1 GHz from neutrino-induced electromagnetic
showers [19]. It is of importance that radio-wave
emission is enhanced in proportion to the squared
energy of particles inducing it [20]. The existence of
the Askaryan effect was recently confirmed experi-
mentally [21]. This experiment involved irradiating
a target from 3.5 t of quartz sand with a beam of
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
photons of energy in excess of 1 GeV and seeking
radio waves of frequency 0.3 to 6 GHz by means of
antennae. As a result, distinct pulses of subnanosec-
ond radio-frequency range that were generated by
showers were recorded.

The ice of Antarctica is so pure that radio waves
can be transmitted over a few hundred or even a
thousand meters. At the present time, a prototype of
the RICE (Radio Ice Cherenkov Experiment) radio
detector of ultrahigh-energy neutrinos operates at the
South Pole [22]. The antennae used, together with
the modules of the AMANDA photodetector, are ar-
ranged in holes deep in the ice. Experimental data ob-
tained with this detector, which already involve a few
candidates for the sought effect, are presently being
processed. ANITA, which is yet another Cherenkov
radio radio detector and which will be arranged on
board a balloon to be launched in 2006, is at the stage
of preparation [23]. This telescope will make it possi-
ble to scan an enormously large layer of Antarctic ice
from one horizon to the other.

The proposal to use geological deposits of ultra-
pure salt, which is twice as heavy as ice, so that
more intense Cherenkov radio emission is expected
to be generated there by showers, is also of great
interest [24].

DETECTORS FOR INVESTIGATIONS
AT ACCELERATORS AND IN SPACE

Cherenkov detectors have become an irreplace-
able tool in numerous experiments with elementary
particles and relativistic ions. Compelling results on
CP violation in a B-meson system that were ob-
tained in experiments at the B-meson factories at
SLAC (USA) and KEK (Japan) (see, for example,
[25]) are among the most important advancements
made by using, among other things, Cherenkov de-
tectors for identifying particles. This initiated the de-
velopment of new B-meson physics, whose funda-
mental task is to explain the relationships existing in
the family of quarks and between matter and anti-
matter. An extensive program of investigations into
B-meson physics was proposed for LHC and Teva-
tron, where the rate of B-meson production is ex-
pected to be severalfold higher than at B-meson fac-
tories. In such and in other experiments [25], so-
called Rich Imaging CHerenkov (RICH) detectors
recording rings from Cherenkov radiation ensure the
highest efficiency of particle identification.

Gases or an aerogel, which is a transparent solid-
state material successfully replacing cumbersome
gas radiators at threshold particle velocities not
exceeding 0.993, is predominantly used as a radiating
medium in RICH detectors.
4



1388 AKIMOV
The aerogel structure is formed by spherical quartz
clusters of diameter about 4 nm that are arranged
in a three-dimensional network whose hollows are
filled with air (see, for example, [26] and references
therein). The dimensions of the hollows are many
times as great as the dimensions of the clusters and
can be controlled during the preparation of an aerogel;
as a result, it is possible to obtain a material whose
refraction index ranges from 1.007 to 1.1.

Being a solid-state medium, an aerogel makes
it possible to design compact Cherenkov detectors,
and this is especially important for applying them in
satellite-borne experiments. In particular, an aerogel
RICH detector enters into the composition of the
magnetic spectrometer of the AMS experiment,
whose start is planned in 2004 at the Interna-
tional Space Station Alpha [27]. This experiment
is intended for solving the fundamental problem
of searches for antimatter and dark matter via a
precision measurement of the composition of cosmic
rays.

In media characterized by low values of n, the in-
tensity of a light splash is usually very weak; therefore,
it is necessary to ensure a highly efficient detection
of even single photons, frequently under conditions of
a high level of the background from accompanying
processes. An important advantage of this mode of
photorecorder operation is that a reliable energy cal-
ibration of the detector is automatically implemented
in this case.

Photorecorders, especially those in RICH detec-
tors, must ensure the required spatial accuracy in de-
tecting light rings, this being achieved by using a rel-
atively large number of photosensitive channels. For
this purpose, industry proposes multichannel vacuum
photomultiplier tubes featuring 16 to 256 diminutive
channels (≥ 2.5 × 2.5 mm) within one vessel about
5 cm in diameter. Up to 2048 channels are arranged
in a hybrid photodiode, which is an image amplifier
where photoelectrons are accelerated by an electric
field of strength about 20 kV. Hitting a silicon detec-
tor, each accelerated photoelectron generates about
105 electron–positron pairs in it. Owing to modern
technologies, multichannel recording microelectron-
ics can be arranged within the same vacuum vessel
of diameter about 8 cm, these microelectronics being
in immediate contact with a position-sensitive silicon
detector.

A system of such hybrid photodiodes was chosen,
for example, as a photorecorder in the RICH detec-
tor for experiments at LHC [28]. However, a second
version was also provided there, that which employs
multichannel vacuum photomultiplier tubes, whose
operational stability with time was better tested.

Gas position-sensitive instruments, whose high-
est precision and fast operation are achieved if use
P

is made of CsI photocathodes, which are sensitive
to light of wavelength below 220 nm, permit obtain-
ing the largest photosensitive area. For example, the
area of the photocathode manufactured from seg-
mented CsI is 5.3 m2 in the RICH detector for the
COMPASS experiment (CERN) [29].

Physics problems solved with the aid of Cherenkov
detectors are quite diverse. Cherenkov detectors pro-
vide the most efficient way to seek sources of particles
having extremely high energies and to study the na-
ture of their emergence, and this is themost important
problem in contemporary astrophysics.

The use of transparent and deep water reservoirs
and enormous masses of ice as radiators of Cherenkov
light and shields from atmospheric cosmic rays makes
it possible to create unique telescopes for neutrino
astronomy.

Without Cherenkov detectors, it would be impos-
sible to identify particles in numerous experiments at
accelerators and in space vehicles. The resulting need
for fast multichannel photorecorders of large area that
are able to detect single photons is a decisive factor
in the development of many types of photosensitive
instruments.

The observation of the Cherenkov effect was one
of the outstanding discoveries in the 20th century.
Without its application, many physical experiments of
fundamental importance would have been impossible.
The name of its author, Pavel A. Cherenkov, a recip-
ient of a Nobel Prize in physics, is known among the
physics community worldwide. It will forever remain
in the history of science.
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Abstract—A Cherenkov quartz detector possesses a high radiation resistance because of the radiation
resistance of quartz fibers in which a light signal is formed and which are used to transfer signals to
photodetectors. Owing to properties of Cherenkov radiation, such as the existence of a threshold with
respect to the velocity of radiating charged particles and an instantaneous character of the radiation,
this type of calorimeter is not sensitive to neutrons and the majority of radiative-decay products and
generates a short signal within a narrow spatial region. In view of these special features of a Cherenkov
quartz calorimeter, it is advantageous (with respect to other calorimetric methods) in detecting narrow jets
of high-energy particles against the background of high-density energy fluxes, this being necessary, for
example, in experiments at the Large Hadron Collider, which is presently under construction at CERN.
The results obtained by measuring the radiation resistance of quartz fibers and the main features of a
Cherenkov quartz calorimeter that were measured for prototypes are discussed in the present article.
c© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Calorimeters—that is, detectors intended for mea-
suring energy fluxes associated with particles of vari-
ous types—have been extensively used in contempo-
rary experimental physics. Calorimeters enter into the
composition of all operating facilities, as well as those
that are under construction, for various colliders of
high-energy particles. Calorimeters will play an im-
portant role in experiments at the Large Hadron Col-
lider, which is presently being constructed at CERN
and which is intended for implementing collisions
between 7-TeV proton beams. In searches for new
types of fundamental particles, it would be necessary
to measure the fluxes of energy of all secondary par-
ticles, with the exception of those that are emitted
within narrow regions (of angular dimension smaller
than 1◦) around colliding beams. High energies and
high luminosities of the Large Hadron Collider will
create extremely unfavorable conditions for the op-
eration of the detecting equipment used. This con-
cerns above all regions adjacent to colliding beams,
where the bulk of the energy of secondary particles is
concentrated. Calorimeters installed in these parts of
the facilities will have to operate under conditions of
extremely high radiation doses (up to 100 Mrad/yr)
and neutron fluxes [up to 1016 neutron/(cm2 yr)].
Therefore, the requirement of a high radiation resis-
tances of the calorimeter components and the re-
quirement of a reliable operation for many years in the

*e-mail: Vladimir.Gavrilov@cern.ch
1063-7788/04/6707-1390$26.00 c©
situation where the maintenance of the calorimeter
is complicated by high levels of induced radioactivity
impose stringent constraints on the choice of possible
calorimetric technologies.

A Cherenkov quartz calorimeter is able to solve
the above tasks. Optical quartz fibers, which possess
the necessary radiation resistance and which will not
require replacement in the course of operation, are
active elements of such a calorimeter that are situated
in the region of high radiation fields. Moreover, the
nature of Cherenkov light, on which the operation of
the calorimeter is based, makes it possible to obtain
a number of advantages over other calorimetric tech-
nologies relying on ionization or scintillation. These
advantages include a very fast and short signal and a
low sensitivity to neutrons and products of radiative
decays. In view of this, a group of physicists from
the Institute of Theoretical and Experimental Physics
(ITEP, Moscow) proposed that an international col-
laboration involved in the СМS experiment employ a
Cherenkov quartz calorimeter for the region of small
angles with respect to the colliding-beam axes. The
radiation resistance of various quartz fibers was mea-
sured, a full-scale calorimeter prototype was man-
ufactured, and the main parameters of the forward
calorimeters for the CMS experiment were optimized.
At the present time, these calorimeters are being as-
sembled at CERN.
2004 MAIK “Nauka/Interperiodica”
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2. RADIATION RESISTANCE OF QUARTZ
FIBERS

The main advantage of Cherenkov quartz calori-
meters over the majority of calorimeters of other types
is a high radiation resistance of its components—
first of all, quartz fibers. In [1], the results obtained
by measuring signals from various quartz fibers ir-
radiated with a 2-MeV electron beam are presented
versus the absorbed irradiation dose of up to 2.2 Grad.
The light signal was formed owing to Cherenkov radi-
ation from electrons in fibers. It was shown that fibers
whose reflecting layer was obtained by saturating
quartz in the reflecting fiber layer with fluorine possess
the highest radiation resistance.

The spectra of absorption in quartz fibers irradi-
ated up to a dose of 1 Grad with the aid of a 60Со
radioactive source were investigated in [2]. Figure 1
shows the light-wavelength dependence of the ab-
sorption defined in terms of the transmission loss

A(λ) =
10
L

log
I2(λ)
I1(λ)

in a fiber irradiated to various doses. Here, λ is the
wavelength of light; L is the length of the irradiated
fiber; and I1 and I2 are the intensities of light trans-
mitted by the fiber, respectively, prior to and after
the irradiation. From Fig. 1, it is obvious that the
wavelength range between 400 and 550 nm is the
operating wavelength range for a Cherenkov quartz
calorimeter, since, in the region of shorter waves,
quartz fibers become nontransparent upon irradia-
tion. Similar dependences were observed for various
types of quartz fibers.

The results of further investigations into the prob-
lem of the radiation resistance of quartz fibers were
given in [3, 4]. Measurement of the absorption spectra
for fibers directly during their irradiation was the main
feature that distinguished the procedure used in [3, 4]
from that in [2]. It was found that the transparency
of quartz fibers is restored to some extent immedi-
ately after irradiation, but the general character of
the absorption spectra measured during irradiation
remained by and large similar to that in Fig. 1. The
absorbed-dose dependence of the loss of transparency
of quartz fibers can be approximated by a power-law
function:

A(D, λ) = α(λ)Dβ(λ).

The results of the measurements reported in [3, 4]
revealed that quartz fibers featuring a new type of
polymer reflecting coating possess the required radi-
ation resistance and are cheaper than fibers where the
reflecting coating is obtained by doping quartz with
fluorine.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
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Fig. 1. Spectra of absorption in a quartz fiber irradiated
to various doses [2]: (◦) without irradiation, (�) after the
dose of 10 Mrad, (∗) after the dose of 57 Mrad, (�) after
the dose of 100 Mrad, (�) after the dose of 680 Mrad, and
(+) after the dose of 1000 Mrad. The curves are drawn to
guide the eye.

3. PRINCIPLE OF CALORIMETER
OPERATION

A Cherenkov quartz calorimeter consists of optical
quartz fibers embedded in an absorbing host material.
In calorimeters, use is made of optical fibers whose
core of radius about a few hundred micrometers is
formed by a molten quartz and whose reflecting coat-
ing has a lower refraction index, whereby the prop-
agation of light along a fiber is ensured owing to
total internal reflection at the boundary between the
quartz core and this coating. High-energy particles
(hadrons, electrons, photons) finding their way to
the calorimeter give rise to showers that develop in
a calorimeter material. Relativistic charged particles
belonging to such a shower that travel through quartz
fibers radiate Cherenkov light, part of which prop-
agates along fibers to photodetectors transforming
it into an electric signal. The number of Cherenkov
photons emitted by charged particles can be esti-
mated by the formula

d2Nph

dLdλ
= 2παz2 sin2 ϑC

λ2
,

where α is the fine-structure constant, ϑС is the angle
at which Cherenkov light is emitted, λ is the light
wavelength, and L is the distance that a particle
of charge z travels in matter. The angle at which
Cherenkov light is radiated with respect to the mo-
mentum of the radiating particle is given by

cos ϑC =
1
nβ

,

where β = v/c and n is the medium’s refraction index.
For quartz, ϑС ≈ 45◦ for visible light and β = 1.

It was Gorodetzky [1] who first proposed widely
employing quartz calorimeters in high-energy phy-
sics in view of a high radiation strength of quartz
4
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Fig. 2. The amplitude of the signal (mean number Npe

of photoelectrons in a signal) in a quartz-calorimeter
prototype for electrons of energy 4 GeV as a function of
the angle θ between the beam axis and the quartz-fiber
direction [6]: (point) results of measurements and (curve)
results of a Monte Carlo calculation.

fibers. The results obtained by measuring signals that
arise in quartz fibers as single ultrarelativistic charged
particles propagate through them at various angles
are quoted in [5]. The signal from a single particle is
maximal if the particle travels at the angle ϑС with
respect to the fiber axis, since, in this case, the largest
part of the emitted Cherenkov light satisfies the con-
dition of total internal reflection and propagates along
the fiber to the photodetector used. In order to attain
a maximum signal from a quartz calorimeter (at a
given relationship between the masses of the quartz
and absorber), the fibers must therefore be arranged at
the angle ϑС with respect to the direction of detected-
particle incidence [1].

The forward calorimeters of the СМS facility will
serve for reconstructing hadronic jets emitted at small
angles with respect to colliding proton beams and
(together with central and end-face calorimeters)
for measuring the missing transverse energy carried
away by particles that have not undergone any
interaction in the detector (neutrinos and, possibly,
new hypothetical particles). For this purpose, it is not
sufficient to measure the total energy of all particles
entering the calorimeter; it is necessary to measure
energy fluxes in calorimeter cells corresponding to
different polar and azimuthal angles of secondary-
particle emission. The most natural way to ensure
the transverse segmentation of a quartz calorimeter
is to arrange fibers in the absorber along a direction
close to that of the detected-particle trajectories
and to group fibers in front of the photodetector
in accordance with the required segmentation. Al-
though the collection of Cherenkov light is lower
for such an arrangement of fibers than for the con-
figuration in which fibers lie at the angle ϑС with
PH
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Fig. 3. Schematic of the cross section of a quartz-
calorimeter prototype [7].

respect to the momentum of detected particles, the
energy resolution of the calorimeter will remain at
an acceptable level. According to the results of the
measurements performed at ITEP for a calorimeter
prototype [6], the amplitude of the quartz-calorimeter
signal for electrons of energy 4 GeV is displayed
in Fig. 2 versus the angle between the quartz-fiber
direction and the electron-beam axis. The results of
these measurements reveal that, for the orientation
of fibers along the beam, the signal is only one-half
as great as that for the orientation of fibers at the
angle ϑС ≈ 45◦. This behavior is explained by a broad
angular distribution of electrons and positrons in an
electromagnetic shower.

4. CALORIMETER PROTOTYPE
AND ITS PROPERTIES

In order to determine experimentally the main
properties of signals from a quartz calorimeter that
are caused by electromagnetic and hadronic showers,
a full-scale prototype of such a calorimeter was
manufactured [7]. The prototype absorber had a
cross-sectional area of 27× 27 cm2 and was made
from copper plates having channels for fibers. These
channels formed a hexagonal structure characterized
by a distance of 2.3 mm between the nearest neigh-
bors (see Fig. 3). In the prototype, use was made of
quartz fibers having a quartz core of diameter 300 µm
and a reflecting coating 15 µm thick from quartz
doped with fluorine. The fraction of the sensitive
fiber volume in the calorimeter was 1.5%. The total
length of the calorimeter absorber was 135 cm, which
corresponded to 8.5 nuclear-absorption-length units.
About 6000 quartz fibers were employed in the
prototype, which were grouped into ten bundles, each
corresponding to a region of area 5.3 × 5.4 cm2 in
cross section. Each such bundle was viewed by a
photomultiplier tube (see Fig. 3).
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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The calorimeter prototype was exposed to elec-
tron and pion beams of various energies. The am-
plitude distributions of signals from electrons are
fully determined by fluctuations of the numbers of
photoelectrons produced at the photocathodes of
the multiplier phototubes used and are described
by Poisson distributions. In the case of pion detec-
tion, fluctuations in the development of the hadronic
shower in the absorber material play a more im-
portant role, dominating over fluctuations of the
number of photoelectrons. The ratios of the mean
amplitudes of signals to the energies of detected
particles are shown in Fig. 4 versus energy. For
electrons, the ratio in question is independent of
energy, this being indicative of a good linearity of
the calorimeter signal for electromagnetic showers.
In the case of pions, the particle-energy dependence
of the amplitude of the signal is seen to be nonlinear,
the mean signal for pions being much less than
that for electrons of identical energy. The reason
behind these properties of a quartz calorimeter is
that the number of relativistic charged particles
traversing quartz fibers at angles close to ϑC is
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much less in hadronic than in electromagnetic show-
ers.

Figure 5 shows the energy resolution of the
calorimeter prototype as a function of the electron
energy. The energy resolution can be approximated
as follows:

σ(E)
E

=
A√
E
.

The parameter value of A = 1.37 complies well with
the number of photoelectrons (0.6 ph.el./GeV) that
was determined from the position of the single-
photoelectron peak. Figure 6 shows the calorimeter
resolution as a function of the pion energy. In this
case, the resolution can be approximated by the
dependence

σ(E)
E

=

√(
A2

E
+B2

)

.

In the case of pions, the contribution of photosta-
tistical fluctuations to the energy resolution is less
4
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than the contribution of fluctuations in the devel-
opment of the hadronic shower, which are caused
primarily by fluctuations of the total energy of neutral
pions formed in the shower. It should be borne in
mind that the energy resolution of a Cherenkov
quartz calorimeter is much poorer than the energy
resolution of the majority of calorimeters of other
types, and this constrains the applicability range of
quartz calorimeters; however, a quartz calorimeter
is adequate to problems to be solved in the CMS
experiment.

The fraction of the calorimeter signal formed be-
yond a cylindrical region whose axis is aligned with
the incident-particle momentum is shown in Fig. 7
as a function of the radius of this region [7, 8]. For
the sake of comparison, the analogous dependence
is also given there for a calorimeter of the SPACAL
type, where scintillation fibers were used for active
elements. It can be seen that the sensitive region is
much narrower in a Cherenkov calorimeter than in a
scintillation calorimeter of the above type (by way of
example, we indicate that, in a Cherenkov calorime-
ter, 90% of the signal is collected from a region of
radius 9 cm, this radius being 22 cm in a scintillation
calorimeter). This feature of a Cherenkov calorimeter
is of paramount importance in reconstructing narrow
hadronic jets formed in the region of small angles,
since, in this case, the dimensions of the calorime-
ter region within which the jet deposits the bulk of
its energy are smaller than the transverse size of a
hadronic shower. Figure 8 displays the oscillograms
of prototype signals for pions of energy 375 GeV [8].
These data confirm that signals from a Cherenkov
calorimeter are very short and, as a matter of fact,
are determined by the time characteristics of the pho-
todetectors used.
P

5. DETECTION OF ENERGY FLUXES
AND HADRONIC JETS

The quartz Cherenkov calorimeter of the CMS
facility is intended for recording and measuring the
energies of hadronic jets and energy fluxes associated
with particles that are emitted at small angles (0.5◦–
5.7◦) with respect to the axis of colliding-proton
beams. The bulk of the energy recorded in this
calorimeter comes from hadrons and high-energy
photons from decays of neutral pions and other short-
lived particles. The fraction of energy carried by
hadrons and photons is expected to fluctuate strongly
from one event to another; therefore, the distinction
between the amplitudes of the calorimeter signals
for hadronic and electromagnetic showers will be a
source of errors in measuring the energy of hadronic
jets, and this error will be added to the intrinsic
energy resolution of the calorimeter. This additional
error can be reduced by introducing a longitudinal
segmentation of the calorimeter and a corresponding
calibration of signals from different segments.

The results obtained by simulating the detec-
tion of hadronic jets in a longitudinally segmented
Cherenkov quartz calorimeter are presented in [9].
This simulation was based on data from an experi-
ment where two calorimeter prototypes arranged one
after the other in close proximity were exposed to
electron and pions of various energies. The two proto-
types had the same transverse structure (see Fig. 3)
and differed only in length. The upstream prototype
had a length of 34 cm, while the other (downstream)
prototype (it has already been discussed above)
was 135 cm long. The length of the first prototype
corresponded to 24 radiation-length units; therefore,
it absorbed electromagnetic showers from electrons
almost completely. This prototype played the role of
an electromagnetic (EM) segment of the calorimeter.
In order to determine the energy of hadronic showers,
it was necessary to sum signals from both segments;
therefore, the second segment was referred to, by
convention, as a hadronic (HAD) segment.

This, longitudinally segmented, prototype was ex-
posed to electron and pion beams of energy 10 to
200 GeV and 12 to 350 GeV, respectively. An initial
calibration of signals from all cells of both segments
was performed in a 80-GeV electron beam (the ЕМ
segment was removed from the beam in calibrating
the HAD beam). The shower energy was determined
by the formula

E = WtEMEEM + WtHADEHAD,

where WtEM and WtHAD are calibration coefficients
that were introduced in order to reduce the distinc-
tion between the signals from electrons and pions
of the same energy. The optimum values of these
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004



CHERENKOV QUARTZ CALORIMETER 1395
coefficients were determined by optimizing the energy
resolution for hadronic jets.

At WtEM = WtHAD, the energy dependences of
the mean amplitudes of signals and the energy reso-
lutions both for electrons and for pions were in agree-
ment, within the experimental uncertainties, with the
results for the nonsegmented prototype. In this case,
the amplitude of signals from pions (as is shown in
Fig. 4) proves to be much less than that for electrons.
This difference can be reduced by using, for the cal-
ibration coefficients, values satisfying the condition
WtEM < WtHAD. However, the energy resolution for
pions then becomes poorer since the uniformity of
the calorimeter is lost, so that the amplitude of the
signal becomes dependent on the character of the
longitudinal development of a hadronic shower.

Data obtained for the calorimeter segmented in the
way indicated above were used to simulate signals
from hadronic jets that will be produced at small
angles in collisions of 7-TeV protons at the Large
Hadron Collider. Such jets of energy in the range
between 400 GeV and 2 TeV were simulated with
the aid of the PYTHIA package. Each jet consisted
of hadrons (predominantly charged pions) and pho-
tons emitted into a narrow cone around the mo-
mentum of a primary quark that initiated its pro-
duction. The response of the calorimeter was simu-
lated as the sum of signals from hadronic and elec-
tromagnetic showers of corresponding energy that
were chosen at random from the library of showers
that were recorded with the aid of the prototypes
of two segments of a Cherenkov quartz calorime-
ter. The resolution of the longitudinally segmented
calorimeter for hadronic jets is shown in Fig. 9 as
a function of energy for three values of the ratio of
WtHAD to WtEM. The value of WtHAD/WtEM = 1
corresponds to a uniform (nonsegmented) calorime-
ter, while the value of WtHAD/WtEM = 1.97 makes it
possible to reach an approximate equality of signals
for hadronic and electromagnetic showers; as to the
value of WtHAD/WtEM = 1.45, it corresponds to the
optimum energy resolution for high-energy hadronic
jets. It can be seen that the optimum value of the ratio
of WtHAD to WtEM remains unchanged over a broad
range of jet energies.

6. CHERENKOV CALORIMETERS
FOR THE CMS EXPERIMENT

The calorimetric system of the CMS facility is
predominantly intended for performing an efficient
measurement of hadronic jets and energy fluxes over
a wide pseudorapidity interval, |η| < 5,

η = − ln tan
ϑ

2
.
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Fig. 9. Energy dependence of the resolution of a lon-
gitudinally segmented calorimeter for hadronic jets at
WtHAD/WtEM = (•) 1.00, (�) 1.45, and (�) 1.97 [9].

Here, ϑ is the emission angle of a secondary par-
ticle with respect to the axis of one of the colliding
beams. Electromagnetic calorimeters involving lead
tungstate crystal and hadronic calorimetrs employ-
ing scintillator plates as sensitive elements will be
installed in the central part of the facility and in
its end-face parts. In the region of angles adjacent
to the beam axis, such calorimeters cannot oper-
ate, primarily because of an insufficiently high ra-
diation resistance. In the region of forward angles,
the radiation doses expected in the high-luminosity
(L = 1034 cm−2 s−1) mode of Large Hadron Collider
operation are as high as 100 Mrad/yr. Therefore,
Cherenkov quartz calorimeters, which possess the
required radiation resistance, will be used in the CMS
facility in the region of small angles with respect to
the axes of colliding beams. The energy resolution of
a Cherenkov calorimeter is poorer than that of a scin-
tillation calorimeter at the same energy of detected
hadrons. If, however, these resolutions are compared
at identical transverse (with respect to beam axes)
energies, it turns out that, in the CMS facility, the
resolution of the forward calorimeters with respect to
transverse energy is not inferior to the resolution of
the central calorimeters. Moreover, special features
of a Cherenkov calorimeter, such as a short signal, a
low sensitivity to neutrons and products of radiative
decays, and a narrow region of signal formation, will
make it possible to attain significant advantages over
different calorimetric methods in suppressing back-
grounds in reconstructing hadronic jets.

In the CMS facility, the forward calorimeters are
positioned beyond the central part of the detector and
its end-face parts [10]. This arrangement of the for-
ward calorimeters will considerably facilitate access
to other elements of the facility during exploitation,
since, within the period of servicing the facility, the
forward calorimeters, which are powerful radioac-
tive sources, can be removed to specially provided
shielded zones. Moreover, the disposition of the for-
ward calorimeters beyond other units of the facil-
4
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Fig. 10.Quartz-fiber-equipped sectors of the forward calorimeters of the CMS facility.
ity will make it possible to reduce significantly the
backgrounds in the central part of the CMS from
secondary particles (first of all, neutrons), which will
be copiously produced in the forward calorimeters.

The absorber of the forward calorimeters of CMS
are manufactured from steel in the form of 20-degree
sectors 165 cm long and 123 cm in height. This form
of the absorber makes it possible to assemble the
calorimeter sectors as independent units (including
the absorber, quartz fibers, and blocks involving pho-
todetectors) and to ensure an optimum transverse
segmentation of the calorimeter for reconstructing
hadronic jets (∆η ×∆ϕ = 0.175 × 0.175, where η is
a pseudorapidity and ϕ is an azimuthal angle). In the
absorber, there are holes about 1 mm in diameter that
are separated by a distance of 5 mm in the transverse
direction. Quartz fibers featuring a core of diameter
0.6 mm and a radiation-resistant polymer coating
are inserted into these holes. One-half of the fibers
pass over the entire length of the absorber, while
the other half stop short of reaching the forward end
face of the absorber (at a distance of 22 cm from
it). The long and short fibers, which alternate in a
staggered order, are grouped into separate bundles
for the readout of signals by photodetectors. This en-
sures a longitudinal segmentation of the calorimeters,
whereby one reduces the difference of the signals from
electromagnetic and hadronic showers and improves
the energy resolution for hadronic jets. An external
view of the calorimeter sectors equipped with quartz
fibers is illustrated in Fig. 10. Two forward calorime-
ters will have a total weight of about 200 t and will
contain about 1000 km of quartz fibers. At the present
time, the CMS quartz calorimeters are the largest
P

Cherenkov quartz calorimeters. Other examples il-
lustrating the use of Cherenkov calorimeters can be
found in [11].

7. CONCLUSION

A Cherenkov quartz calorimeter is radically dif-
ferent from calorimeters that are based on ionization
or scintillation signals. In a shower initiated by a
high-energy particle in a calorimeter, the fraction of
energy going into the formation of a Cherenkov signal
is much less than the fraction of energy going into
ionization or scintillation. In what is concerned with
the energy resolution, a Cherenkov quartz calorime-
ter is therefore inferior to calorimeters of traditional
types. Owing to the nature of Cherenkov radiation,
however, such a calorimeter has a very short signal
and a considerably narrower sensitive region than
other calorimeters and is not sensitive to neutrons and
products of radiative decays. These advantages are of
greatest importance for calorimeter operation under
conditions of high particle fluxes. A high radiation
resistance of quartz fibers is a property that enables
one to make use of the advantages of Cherenkov
calorimeters. At the present time, the assembly of
the two largest Cherenkov quartz calorimeters, which
will operate in the region of small angles of the CMS
facility at the Large Hadron Collider, is being com-
pleted.
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Abstract—We estimate BR(K → πνν) in the context of the Standard Model by fitting for λt ≡ VtdV
∗
ts

of the “kaon unitarity triangle” relation. To find the vertex of this triangle, we fit data from |εK |, the
CP-violating parameter describing K mixing, and aψK , the CP-violating asymmetry in B0

d → J/ψK0

decays, and obtain the values BR(K+ → π+νν)|SM = (7.07± 1.03)× 10−11 and BR(K0
L → π0νν)|SM =

(2.60± 0.52)× 10−11. Our estimate is independent of the CKM matrix element Vcb and of the ratio of
B-mixing frequencies ∆mBs/∆mBd

. We also use the constraint estimation of λt with additional data
from ∆mBd

and |Vub|. This combined analysis slightly increases the precision of the rate estimation of
K+ → π+νν andK0

L → π0νν (by�10 and�20%, respectively). The measured value of BR(K+ → π+νν)
can be compared both to this estimate and to predictions made from∆mBs/∆mBd

. c© 2004 MAIK “Nau-
ka/Interperiodica”.
The ultrarare FCNC (Flavor Changing Neutral
Currents) kaon decaysK+ → π+νν andK0

L → π0νν
are of particular interest as these “gold-plated de-
cays” can be predicted in the Standard Model (SM)
framework with very high theoretical accuracy.

The K → πνν decays are treated in detail in a
number of papers [1–34]. We list some of the key
aspects of these decays.

(a) The main contribution to these FCNC pro-
cesses arises at small distances r ∼ 1/mt, 1/mZ ;
therefore, a very accurate description for the strong
interactions at the quark level is possible in the frame-
work of perturbative QCD. This analysis has been
carried out in the leading logarithmic order (LLO)
with corrections to next-to-leading order (NLO)
[1–4].

(b) The calculation of the matrix element
〈π|Hw|K〉πνν̄ from quark-level processes involves
long-distance physics. However, these long-distance
effects can be avoided by the renormalization pro-
cedure developed by Inami and Lim [5], relating
the matrix element to that of the well-known de-
cay K+ → π0e+νe through isotopic-spin symme-
try. Other possible long-distance contributions to
BR(K+ → π+νν) have been shown to be negligi-
ble [6].

∗This article was submitted by the authors in English.
1)Brookhaven National Laboratory, Upton, New York, USA.
2)Institute of High Energy Physics, Protvino, Moscow oblast,
142280 Russia.

3)Fermi National Accelerator Laboratory, Batavia, USA.
1063-7788/04/6707-1398$26.00 c©
(c) Since the effective vertex Zds̄ in the diagrams
of Fig. 1 is short-distance, these processes are also
sensitive to the contributions from new heavy objects
(e.g., supersymmetric particles).

A very important step in the study ofK+ → π+νν
was achieved by the E787 experiment [7] at BNL
in which two clean events were found in favorable
background conditions, indicating a branching ratio
of BR(K+ → π+νν) = (15.7+17.5

−8.2 )× 10−11. This ob-
servation has opened the door for future more precise
study of theK+ → π+νν decay [8, 9].

In the SM, theK+ → π+νν decay is described by
penguin and box diagrams presented in Fig. 1. The
partial widths have the form

Γ(K+ → π+νν) = κ+|λcF (xc) + λtX(xt)|2 (1)

= κ+[(F (xc)Reλc + X(xt)Reλt)2

+ (F (xc)Imλc + X(xt)Imλt)2]

� κ+[(F (xc)Reλc + X(xt)Reλt)2 + (X(xt)Imλt)2],

where

κ+ =
(

GF√
2

)2

|〈π+νν̄|Hw|K+〉|2

× 3
(

α

2π sin2 ϑW

)2

.

The factor of 3 in the expression for κ+ results from
the three flavors of neutrinos (νe, νµ, νr) participating
in the K+ → π+νν decays. The factors F (xc) and
X(xt) are functions corresponding to the quark loops.
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. The dominant contributions toK → πνν.

These functions include the Inami–Lim functions [5]
and the QCD corrections that have been calculated
to NLO [1–4, 10]. They depend on the variables xi =

(mi/mW )2 with themasses of the+
2
3
quarks,mi, i =

c, t. The λi ≡ VidV
∗
is are vectors in the complex plane

that satisfy the unitarity relation

λt + λc + λu = 0 (λi = VidV
∗
is; i = u, c, t). (2)

This equation describes the “kaon unitarity triangle,”
which can be completely determined from measure-
ment of the three kaon decays:K+ → π0e+νe,K+ →
π+νν, and K0

L → π0νν. This triangle is highly elon-
gated with a base-to-height ratio of∼ 1000.

Using the values ofmc andmt in the table (see be-
low), the calculations from [1] yield F (xc) = (9.82 ±
1.78)× 10−4 andX(xt) = 1.52± 0.05. The accuracy
improves with increasing quark mass, and there are
systematic dependences on QCD scale parameter

Λ(4)

MS
(see [1]). The c-quark contribution in (1) is

smaller than the t-quark contribution, but is non-
negligible. Although F (xc)/X(xt) ∼ 10−3, Reλc is
much larger than Reλt and Imλt (Reλc ∼ λ, while
Reλt, Imλt, and Imλc are less than λ5).

For the CP-violating [11, 12]K0
L → π0νν decay,

Γ(K0
L → π0νν) (3)

� 1
2
|A(K0 → π0νν̄)−A(K̄0 → π0νν̄)|2

= κ0 1
2
|λcF (xc) + λtX(xt)− h.c.|2

= κ0 · 2 [F (xc)Imλc + X(xt)Imλt]
2

� κ0 · 2 [X(xt)Imλt]
2 ,
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where

κ0 =
(

GF√
2

)2

|〈π0νν̄|Hw|K0〉|2 · 3
(

α

2π sin2 ϑW

)2

.

The c-quark contribution is negligible since
F (xc)Imλc � X(xt)Imλt.

The partial width for the well-known decay mode
K+ → π0e+νe is given by

Γ(K+ → π0e+νe)

=
(

GF√
2

)2

|Vus|2|〈π0e+νe|Hw|K+〉|2.

As mentioned above, one can relate this to
〈π+νν̄|Hw|K+〉 and 〈π0νν̄|Hw|K0〉 with the help of
isotopic-spin symmetry:
∣
∣
∣
∣
〈π+νν̄|Hw|K+〉
〈π0e+νe|Hw|K+〉

∣
∣
∣
∣

2

=
∣
∣
∣
∣
〈π+|Hw|K+〉
〈π0|Hw|K+〉

∣
∣
∣
∣

2

= 2r+,

(4)

∣
∣
∣
∣
〈π0νν̄|Hw|K0〉
〈π0e+νe|Hw|K+〉

∣
∣
∣
∣

2

=
∣
∣
∣
∣
〈π0|Hw|K0〉
〈π0|Hw|K+〉

∣
∣
∣
∣

2

= r0. (5)

The factor 2 in (4) accounts for the pion quark struc-
ture |π0〉 = 1√

2
|uū− dd̄〉 and |π+〉 = |ud̄〉. The fac-

tors r+ = 0.901 and r0 = 0.944 arise from the phase-
space corrections and the breaking of isotopic sym-
metry [13].

Hence, from (1), (4), and (5), the branching ratio
for theK+ → π+νν decay is

BR(K+ → π+νν)|SM = R+
X(xt)2

λ2
(6)

×
{[

(Reλc)f
F (xc)
X(xt)

+ Reλt

]2

+ [Imλt]2
}

,

where

R+ = BR(K+ → π0e+νe)
3α2

2π2 sin4 ϑW
r+ (7)

= 7.50 × 10−6,

f
F (xc)
X(xt)

= (6.66 ± 1.23) × 10−4,

f = 1.03 ± 0.02.

Here, f is an additional correction factor to the c-
quark term to take into account nonperturbative ef-
fects of dimension-8 operators [14]. The branching
ratio for theK0

L → π0νν decay is

BR(K0
L → π0νν)|SM = R0

X(xt)2

λ2
[Imλt]2 (8)
4
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with

R0 = R+
r0

r+

τ(K0
L)

τ(K+)
= 3.28 × 10−5,

r0/r+ = 1.048, τ(K0
L)/τ(K+) = 4.17.

The intrinsic theoretical uncertainty of the SM
prediction for BR(K+ → π+νν)|SM is ∼ 7% and
is limited by the c-quark contribution, whereas for
BR(K0

L → π0νν)|SM the uncertainty is 1–2%. How-
ever, in practice, the uncertainties of the numerical
evaluations of the K → πνν branching ratios are
dominated by the current uncertainties in the CKM
quark mixing matrix parameters.
The parameters Imλt, Reλt, Reλc can be esti-

mated within the standard unitarity triangle (UT)
framework using the improved Wolfenstein parame-
trization [15] η̄, ρ̄, A, and λ (with Aλ2 = |Vcb|, ρ̄ ≡
ρ(1− λ2/2), and η̄ ≡ η(1− λ2/2)). To O(λ4), the
CKM matrix is

VCKM =








Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








(9)

=








1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1








+ O(λ4),

and to higher order we have

Reλc = −λ
(
1− λ2/2

)
+ O(λ5), (10)

Reλt = −A2λ5
(
1− λ2/2

)
(1− ρ̄) + O(λ7),

Imλt = ηA2λ5 + O(λ9).

The current values of these and other parameters
used in this paper can be found below in the table.
Using (10) and PDG [35] (see table), Eqs. (6) and (8)
can be naively solved to give the branching ratios for
K+ → π+νν andK0

L → π0νν:

BR(K+ → π+νν)|SM (11)

= R+A4λ8X(xt)2
{

1
σ

[(ρ0 − ρ̄)2 + (ση̄)2]
}

= R+|Vcb|4X(xt)2
{

1
σ

[(ρ0 − ρ̄)2 + (ση̄)2]
}

= 7.50 × 10−6[2.88 × 10−6 ± (19.4%)]
× [2.30 ± (6.9%)]{1.44 ± (20%)}

= [7.15 ± (28.9%)] × 10−11 = [7.2± 2.1] × 10−11;
P

BR(K0
L → π0νν)|SM (12)

= R0A
4λ8X(xt)2

{
ση̄2
}

= R0|Vcb|4X(xt)2
{
ση̄2
}

= 3.28 × 10−5[2.88 × 10−6 ± (19.4%)]
× [2.30 ± (6.9%)]{0.129 ± (28.6%)}

= [2.8 ± (35%)] × 10−11 = [2.8 ± 1.0]× 10−11

with ρ0 = 1 + ∆ = 1 + fF (xc)/(|Vcb|2X(xt)) =
1.40 ± 0.08 and σ = 1/(1 − λ2/2)2 = 1.051.
The uncertainties of BR(K → πνν) in (11) and

(12) are dominated by the current uncertainties in the
CKM parameters and are significantly larger than the
intrinsic theoretical uncertainties. The uncertainty of
|Vcb| is quite significant in the evaluation of BR(K →
πνν) due to the |Vcb|4 dependence. CLEO has re-
cently measured [36] a somewhat higher |Vcb| value of
(46.9 ± 3.0) × 10−3, which would cause a significant
increase in BR(K → πνν) in Eqs. (11) and (12).
The numerical solutions of Eqs. (11) and (12) do

not include correlations between ρ̄, η̄, X, and Vcb.
Rather, these calculations are used to demonstrate
the influence of different factors in the calculation of
BR(K → πνν). An evaluation [16] employing a scan-
ning method and conservative errors for VCKM ob-
tained the following values: BR(K+ → π+νν)|SM =
(7.5 ± 2.9) × 10−11 and BR(K0

L → π0νν)|SM =
(2.6 ± 1.2) × 10−11. A more recent evaluation with
similar CKM inputs but employing a Gaussian
fit obtained BR(K+ → π+νν)|SM = (7.2 ± 2.1) ×
10−11 [17]. These values are not very different from
the results in Eqs. (11) and (12). In some recent
analyses [18–21] with correlations included, higher
precision on the BR(K → πνν) predictions has been
obtained.
For the values of the parameters |Vcb|, ρ̄, and η̄

in Eqs. (11) and (12), we adopt the more conserva-
tive approach of PDG [35]. A more aggressive ap-
proach [22] for the evaluation of these errors can sig-
nificantly increase the precision for BR(K → πνν).
Solving Eqs. (11) and (12) with the values of [22]
gives BR(K+ → π+νν)|SM = (7.4 ± 1.2) × 10−11

and BR(K0
L → π0νν)|SM = (2.8± 0.5)× 10−11. The

precision of the outputs of the standard UT fits is de-
pendent on the value of ξ, theSU (3)-breaking correc-
tion to ∆mBs/∆mBd . The generally accepted value
of ξ is ξ = 1.15 ± 0.06; however, recent works would
suggest a higher value of ξ = 1.18± 0.04+0.12

−0.0 [37] (or
even as high as ξ = 1.32 ± 0.10 [38]).
Given the strong dependence of Eqs. (11) and (12)

on |Vcb|, we consider an estimate of BR(K+ → π+νν)
that is essentially independent of |Vcb|. This estimate
is also independent of∆mBs/∆mBd . It is based solely
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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on |εK | and aψK , is remarkably competitive to other
estimates, and has the advantage of simplicity.

In this work, we directly evaluate λt to calculate
BR(K → πνν) from (6) and (8). This avoids the use
of ρ̄ and η̄, as has been used in previous calculations
of BR(K → πνν). This approach has been discussed
in the literature [23, 24], but as far as we know, no
calculations of BR(K → πνν) exist by this method.
In order to minimize uncertainty from |Vcb|, it is
natural to consider |εK | and aψK in terms of the kaon
UT.4) We recall that λu = VudV

∗
us � λ(1− λ2/2)

is real, and λc = VcdV
∗
cs has a very small complex

phase ϕ(λc) � Imλt/λ � 6× 10−4. The phase of Vts
is ϕ(Vts) � −π + (Imλt)λ/|Vcb|2 = −π + 0.0172 =
−π + 1.0◦. The phase of Vtd is ϕ(Vtd) = −β and the
angle (βK) between λt and λu is

βK = π − ϕ(VtdV ∗
ts) = π − ϕ(Vtd) + ϕ(Vts) (13)

= β + 1.0◦ = 24.6◦ ± 2.3◦.

This angle is very close to β, which in the SM is
extracted cleanly from the precise measurement of
aψK , the CP asymmetry in B0

d → J/ψK0 decays:
sin(2β) = 0.734± 0.054 [39].We use an iterative pro-
cedure, starting with βK = β, from our fit to derive
Imλt [as will be explained later in (15)] and then recal-
culate βK as βK = β + (Imλt)λ/|Vcb|2. This proce-
dure converges after one iteration since the correction
to β is small. There is also a small dependence on
|Vcb|; however, a 10% change in |Vcb| results in only
a 0.6% shift in BR(K+ → π+νν), which is signifi-
cantly less than the uncertainty in our result. For all
practical purposes, our result is independent of |Vcb|.
The preferred solution for β, based on other SM input,
such as Vub/Vcb, is β = 23.6◦ ± 2.3◦, so we shall only
consider this particular solution. The extraction of
sin(2β) from aψK is also clean inmodels withminimal
flavor violation (MFV) [22, 25, 26]. In these models,
there are no new phases and all of the influences of
new physics are in modifications to the Inami–Lim
functions.

In the SM, the apex of the kaon UT (λ(a)
t ) is

constrained by various measurements as shown in
Fig. 2 (without errors). The constraint from |εK | is
4)We expect that a precise determination of the apex of the
kaon UT (λ(a)

t ) will be available, entirely from kaon decay
data, in the near future. In the meantime, it is necessary to
use some data from the B system, so we chose to augment
|εK | with the theoretically clean measurement of the CP
asymmetry aψK from theB system.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
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t (no
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(|εK | and aψK) illustrate the main constraints used in
this paper. The dashed lines illustrate the constraints from
K → πνν. The constraint from ∆mBd is shown as the
circle centered at the origin. The inset shows the triangle
(not drawn to scale).

expressed as [10, 40–43] 5)

|εK | = LB̂KImλt{Reλc[ηccS0(xc) (14)

− ηctS0(xc;xt)]− ReλtηttS0(xt)}
with parameters as shown below in the table. We can
find the apex of the kaon UT as the intercept of the
|εK | curve with the line representing the constraint
from aψK :

Imλt = −tanβK · Reλt = (−0.458 ± 0.049)Reλt.
(15)

To calculate a probability density function (PDF)

for λ(a)
t , we follow the Bayesian approach of [44, 45]

and [22]. Let f(x) be the PDF for x, where x is a point
in the space of (βK , |εK |, B̂K ,mt,mc, λ, αs, ηcc, ηct,
ηtt). Equations (14) and (15) define the mapping from
x to λ

(a)
t . Through these equations and f(x), we de-

rive f(λat ), the PDF for λ
(a)
t . Probability density f(x)

depends on the PDFs for the components of x. We
assume that the component PDFs are independent
from one another except for the small dependence of
ηcc on mc and αs (discussed below). The component
PDFs are taken from the table (see below).

Figure 3 shows the PDF for λ
(a)
t . We find the

following central values:

Reλ(a)
t = (−2.84 ± 0.31) × 10−4, (16)

5)We stress that the loop functions S0(xt), S0(xt, xc), and
S0(xc) and their QCD corrections ηtt, ηct, and ηcc for the
expression for |εK | [see (14)] were first introduced in the
pioneering work of Vysotsky [40].
4
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Imλ
(a)
t = (1.30 ± 0.13) × 10−4.

ForBR(K+ → π+νν)|SM, we obtain fromEqs. (6)
and (16)

BR(K+ → π+νν)|SM (17)

=

{

[(Reλc)fF (xc)

+ X(xt)Reλ
(a)
t ]2 + [X(xt)Imλ

(a)
t ]2

}
R+

λ2

=
Rt

λ2
[X(xt)]2

{[
(Reλc)fF (xc)

X(xt)
+ Reλ(a)

t

]2

+ [Imλ
(a)
t ]2

}

= (7.07 ± 1.03) × 10−11.

The three largest contributions to the uncertainty are
due to B̂K (0.69 × 10−11), mc (0.44 × 10−11), and
aψK (0.49 × 10−11). The probability distribution for
BR(K+ → π+νν)|SM is presented in Fig. 4.
In obtaining the results of Eq. (17), we have ac-

counted for the correlations between the terms λ
(a)
t

and (Reλc)fF (xc)/X(xt) through the variables xc,

xt, and Λ(4)

MS
. The functions X(xt) and F (xc,Λ

(4)

MS
)

are given in [1], from which we have parametrized

Table 1 (in [1]) to get (here and below mc and Λ(4)

MS
are in GeV)

F (xc,Λ
(4)

MS
)× 104 = 9.82 + 16.58(mc − 1.3) (18)

+ 7.8(0.325 − Λ(4)

MS
),
P
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C.L. lower limit is 5.6 × 10−11. Here, MEAN is the
weighted average of BR; RMS is the root-mean-squared
standard deviation for BR.

where

Λ(4)

MS
[GeV] = 0.341 + 16.7(−0.119 + αs(mZ)).

(19)

Equation (19) is accurate to 0.7% for αs in the range
0.116 to 0.122 [46]. The expression for |εK | (and the
determination of the apex, λ(a)

t ) has a dependence on
xc and xt through the Inami–Lim functions S0(xc),
S0(xt), and S0(xc, xt). In addition, the NLO correc-
tion ηcc has the following dependence [46]:

ηcc = (1.46 ± σ1)
(
1− 1.2

( mc

1.25
− 1
))

(20)

× (1 + 52(αs(mZ)− 0.118))

with

σ1 = 0.31
(
1− 1.8

( mc

1.25
− 1
))

(21)

× (1 + 80(αs(mZ)− 0.118)).

It is seen that the inclusion of the correlations
between λ

(a)
t and (Reλc)fF (xc)/X(xt) through xc,

xt, and Λ(4)

MS
(the most important is the correla-

tion through xc = (mc/mW )2) partly compensates
the uncertainties in these terms and reduces the un-
certainty in BR(K+ → π+νν)|SM by ∼ 20% com-
pared to the case of ignoring these correlations.

ForK0
L → π0νν, we obtain from (8) and (16)

BR(K0
L → π0νν)|SM = R0

X(xt)2

λ2
[Imλ

(a)
t ]2

= (2.60 ± 0.52) × 10−11. (22)

The four largest contributions to the uncertainty are
due to B̂K (0.37 × 10−11), aψK (0.23 × 10−11), mc
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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Fig. 5. The relative values of PDF for BR(K0
L →

π0νν)|SM obtained from the measurement of |εK | and
aψK (notation is the same as in Fig. 4).

(0.16× 10−11), andmt (0.08× 10−11). The probabil-
ity distribution for BR(K0

L → π0νν) is presented in
Fig. 5.
The results of these new calculations (17) and

(22) of K → πνν branching ratios from fits to λt
are in good agreement with the calculations based
on the standard UT variables (11) and (12) but are
free of uncertainties in |Vcb| and are independent of
∆mBs/∆mBd . Themain source of uncertainty in (17)
and (22) is the lattice calculation of B̂K = 0.86 ±
0.15. (We note that some lattice calculations using
domain-wall fermions [18, 47, 48] find values of B̂K

that are 10–15% lower than the recent world aver-
age [37, 49] that we use in the table—see below.) If
future lattice QCD calculations [50] can significantly
reduce the uncertainty in B̂K , an improvement in
BR(K → πνν)|SM will be possible.
Given the difficulty of assigning PDFs to theoret-

ical uncertainties, we explore the influence of a more
conservative scanning technique on the uncertainty

in BR(K+ → π+νν)|SM. We determine λ
(a)
t again

from only |εK | and aψK , using Gaussian errors for
all quantities except B̂K and mc, which are scanned
throughout their ranges: 0.72 < B̂K < 1.0 and 1.2 <

mc < 1.4 GeV. For B̂K = 0.72 and mc = 1.4 GeV,
which maximizes BR(K+ → π+νν), the 95% C.L.
upper limit is BR(K+ → π+νν)|SM < 9.9× 10−11.
For B̂K = 1.00 and mc = 1.2 GeV, which mini-
mizes BR(K+ → π+νν), the 95% C.L. lower limit
is BR(K+ → π+νν)|SM > 5.0× 10−11. These limits
are not much worse than those derived from Fig. 4.
We have emphasized that our estimate uses only

aψK and |εK |. Nevertheless, it is interesting to
consider how the measurements of ∆mBd and |Vub|
would constrain λ

(a)
t . Here, we will use the more

aggressive treatment of |Vcb| errors (see table below)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
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in order to obtain the smallest errors on BR(K+ →
π+νν). From the following relations (here and in
other places, we use standard notation—see, for
example, reviews [30–33])

∆mBd =
GF
6π2

m2
WmBdf

2
Bd

B̂BdηBdS0(xt)|VtdV ∗
tb|2,

0 = VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb,

and using the approximations of (9), V ∗
tb ≈ 1, Vus =

λ, Vud ≈ 1− λ2/2, and Vcb ≈ −Vts, we convert the
equations above into

∆mBd =
GF
6π2

m2
WmBdf

2
Bd

B̂BdηBdS0(xt)|VtdV ∗
tb|2

(23)

= N2|VtdV ∗
tb|2 � N2 |λt|2

|Vcb|2
,
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Some SM parameters used for evaluation of the standard unitarity triangle, the kaon unitarity triangle, and BR(K →
πνν̄)|SM [the subscript G(U) denotes the Gaussian (uniform) probability density distribution for the errors; errors shown
without subscripts are assumed to be Gaussian]

λ = Vus = 0.222± 0.002

ρ̄ = 0.22± 0.10

η̄ = 0.35± 0.05

|Vcb| = (41.2± 2.0)× 10−3

|Vub| = (3.6± 0.7)× 10−3






PDG-2002 [35]

ρ̄ = 0.173± 0.046

η̄ = 0.357± 0.027

|Vcb| = (40.6± 0.8)× 10−3

βK = β + 1◦ = 24.6◦ ± 2.3◦






[22]

|εK | = (2.282± 0.017)× 10−3 [35]

B̂K = 0.86± 0.06G ± 0.14U � 0.86± 0.15 [37, 49, 52]

mc = m̄c = 1.3± 0.1GeV/c2

mt = m̄t = 166± 5GeV/c2

X(xt) = 1.52± 0.05

F (xc) =
2
3
Xe
NL(xc) +

1
3
Xτ
NL(xc) = (9.82± 1.78)× 10−4

Λ(4)

MS
= 0.325± 0.08GeV






[1]

f = 1.03± 0.02 [14]

fF (xc)/X(xt) = (6.66± 1.23)× 10−4

S0(xc) = (2.42± 0.39)× 10−4

S0(xc, xt) = (2.15± 0.31)× 10−3

S0(xt) = 2.38± 0.11

ηcc = 1.45± 0.38 [41]

ηct = 0.47± 0.04 [42]

ηtt = 0.57± 0.01 [43]

L = 3.837× 104 [30]






Inami–Lim functions and QCD
corrections forK0 � K̄0 and |εK |
evaluation

|Vcb|(incl.) = (40.4± 0.7G ± 0.8U)× 10−3 [53]

|Vcb|(excl.) = (42.1± 1.1G ± 1.9U)× 10−3 [53]

|Vub|(incl.) = (40.9± 4.6G ± 3.6U)× 10−4 [22]

|Vub|(excl.) = (32.5± 2.9G ± 5.5U)× 10−4 [22]

∆mBd
= 0.489± 0.008 ps−1 [35]

∆mBs > 14.4 ps−1 (95% C.L.) [51]

fBd

√
B̂Bd

= 230± 30G ± 15U MeV






|Vub| and∆mBd
parameters used in

evaluating the constraint on λ
(a)
t in

Fig. 6

ξ =
fs
fd

√
B̂s

B̂d

= 1.15± 0.06 } Old value

ξ = 1.32± 0.10 [38]

ξ = 1.18± 0.04+0.12
−0.0 [37]

ξ = 1.22± 0.07 [54]





New data with chiral log extrapolation
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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whereN2 =
GF
6π2

m2
WmBdf

2
Bd

B̂BdηBdS0(xt) and

λt = V ∗
ubV

∗
cb(1− λ2/2) − λ(V ∗

cb)
2 (24)

� V ∗
ubV

∗
cb(1− λ2/2) − λ|Vcb|2.

These two equations describe two circles in the
(Reλt, Imλt) plane (see Fig. 2):

(Reλt)2 + (Imλt)2 = R2
1 =

∆mBd |Vcb|2
N2

(25)

(with the center at Reλt = 0, Imλt = 0 and the radius
R1 =

√
�mBd |Vcb|/N ) and
(Reλt + |Vcb|2λ)2 + (Imλt)2 = R2

2 (26)

(with the center at Reλt = −λ|Vcb|2, Imλt = 0 and
the radiusR2 =

(
1− λ2/2

)
|VubVcb| � |VubVcb|).

The intersections of these circles contain the apex

of the kaon UT λ
(a)
t . Equations (25) and (26) are cor-

related somewhat through Vcb. Similar to the case of
|εK |, with large uncertainties from B̂K , there are large

uncertainties in the extraction of λ(a)
t from the∆mBd

and |Vub| constraints, with large uncertainties from
f2
Bd

B̂Bd , |Vub|, and Vcb. The uncertainty on the con-
straint from B mixing may be significantly improved
by the addition of ∆mBs , once the situation with ξ
is resolved (this will be further improved once ∆mBs
is actually observed). Using the Bayesian procedure
described earlier and the parameters in the table (see

also [51–54]), the PDF for λ
(a)
t derived solely from

the constraints of∆mBd and |Vub| is shown in Fig. 6.
We see that this PDF does not constrain the kaon
UT apex as well as aψK and |εK |. Combining all four
constraints, we get the PDF for λ(a)

t (Fig. 7) and the
PDF for BR(K → πνν̄) (Fig. 8). Thus, the results of
this combined analysis are only slightly more precise
than Fig. 3–5 and (16), (17), and (22):

Reλ(a)
t,comb = (−2.91± 0.22) × 10−4, (27)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
Imλ
(a)
t,comb = (1.27 ± 0.11) × 10−4

and

BR(K+ → π+νν)|SM,comb = (7.22 ± 0.91) × 10−11,
(28)

BR(K0
L → π0νν)|SM,comb = (2.49 ± 0.42) × 10−11.

The CKM matrix appears to be the dominant
source of CP violation. However, some models [55]
allow for a significant contribution of new physics
to BR(K → πνν), while preserving the equality
between sin(2β) as measured from aψK and global
CKM fits. A crucial test of the CKM description
will be to compare β derived from BR(K → πνν)
to that from aψK [12, 27–29]. The most important
new information on the CKM matrix will be mea-
surements of BR(K+ → π+νν) [9] and BR(K0

L →
π0νν) [56] to 10% precision. The combination of
these, in context of the SM, will determine sin(2β) to
0.05 [30], competitive with the current uncertainty on
sin(2β). The comparison of this angle obtained from
BR(K → πνν) with that from aψK will provide a very
strong test of the SM description of CP violation.
Another critical test of the SM will be the direct

comparison of BR(K+ → π+νν) to either
∆mBs/∆mBd , which in the SM both directly mea-
sure |Vtd|, or to evaluations of BR(K+ → π+νν)|SM
such as this work. Currently, the E787 measure-
ment of BR(K+ → π+νν) = (15.7+17.5

−8.2 )× 10−11 is
consistent with the SM expectation, but the central
experimental value exceeds it by a factor of two.
To date, there is only a limit on ∆mBs > 14.4 ps−1

(95% C.L.) [51], but it is likely to be observed soon.
Until ∆mBs is observed, this limit can be used
to set an upper limit on BR(K+ → π+νν) [1]. A
recent calculation of this limit [17] gives BR(K+ →
π+νν)|SM < 13.2× 10−11, which is below the central
experimental value [7]. This work used a value of
4
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ξ = 1.15± 0.06, whereas a higher value of ξ would
raise this upper limit. Our work is an estimation
of BR(K+ → π+νν)|SM based solely on |εK | and
aψK and is not dependent on |Vcb| or ∆mBs/∆mBd .
Our 95% C.L. upper limit is 8.9 × 10−11 with the
largest systematic error of this approach coming from
B̂K . The uncertainty from our prediction is com-
parable to the expected experimental uncertainties
that might be achieved in the future measurements
of K+ → π+νν [8, 9]. An experimental measure-
ment significantly larger than that determined from
∆mBs/∆mBd or our 99% C.L. limit of BR(K+ →
π+νν)|SM < 10× 10−11 will be a strong indication of
new physics.
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Notes added in proof:

1) The new experimental value of BR(K+ →
πνν̄)|exp = (1.47+1.30

−0.89)× 10−10 was obtained as a
combined result of E787 and E949 experiments
(V.V. Anisimovsky et al. (E949 Collab.), hep-
ex/0403036).

2) New estimates of BR(K → πνν̄)|SM were
obtained in a global fit of standard CKM unitarity
triangle:

a) BR(K+ → π+νν̄)|SM = (0.77± 0.11)× 10−10 ;
BR(K0

L→ π0νν̄)|SM = (0.26± 0.05)×10−10 (G. Isi-
dori, hep-ph/0307014).

b) BR(K+ → π+νν̄)|SM = (0.80± 0.11)× 10−10 ;
BR(K0

L→ π0νν̄)|SM = (0.32±0.06)×10−10 (A. Bu-
ras et al., hep-ph/0402112).
P
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Abstract—Results obtained by investigating the reaction π−p→ η′π0n at the VES spectrometer (In-
stitute for High Energy Physics, Protvino) are presented. The effective-mass spectrum and angular
distributions of η′π0 events are compared with their counterparts for ηπ0 and η′π− events selected from
the same data sample. The ratio R of the branching fractions for the decays of a0

2(1320) mesons into η′π
and ηπ is measured. The result is R = 0.047± 0.018, which agrees with the value measured previously for
a−2 . An investigation of P-wave production in the η′π0 and ηπ0 systems over the effective-mass interval
1.45–1.9 GeV/c2 leads to the conclusion that the coupling of the exotic object π1(1600) to the ρπ channel
is suppressed in relation to its coupling to the η′π or the b1(1235)π channel. c© 2004 MAIK “Nau-
ka/Interperiodica”.
INTRODUCTION

The main reason why it is of interest to study the
production of η(η′)π systems is that, in the case of the
orbital angular momentum equal to unity, they have
exotic quantum numbers: JPC = 1−+. The ηπ− [1–
4], η′π− [1, 4, 5], and ηπ0 [6, 7] systems were explored
in the VES, KEK E-179, GAMS/NA12, and E852
experiments on the basis of vast statistics. The exotic
partial wave 1−+ behaved differently in all three final
states.

In the ηπ− and ηπ0 systems, the exotic-wave
spectrum features a broad peak at a mass value of
M ≈ 1.4 GeV/c2. For the ηπ− system, the behavior
of the phase shift suggests the possible existence of
an exotic resonance [it is referred to as π1(1400)]
in this mass region [3], while, for the ηπ0 system,
there is no resonance behavior of the phase shift [6,
7]. This difference may be due to different production
mechanisms: the ηπ0 system can be produced only via
the exchange of isospin-1 particles [predominantly,
ρ and b1 (ρ2) trajectories for positive- and negative-
naturality exchanges, respectively], while the system
ηπ− can also emerge from exchanges of isoscalar
particles (Pomeron, f2).

*e-mail: gouz@mx.ihep.su
1063-7788/04/6707-1408$26.00 c©
The 1−+ wave with positive-naturality exchange is
dominant in the η′π− system and forms a broad peak
at a mass value of M ≈ 1.6 GeV/c2, its width being
Γ ≈ 0.3 GeV/c2. This object, known as π1(1600),
can be interpreted as a manifestation of an exotic
meson [4, 5, 8]. The peak near 1.6 GeV/c2 in the 1−+

wave is also observed in the b1(1235)π and f1(1285)π
final states [4, 9, 10].

The P-wave states in the η′π and ηπ systems have
substantially different SU(3)f properties: in the η′π
system, it is mainly an octet state, while, in the ηπ
system, the P-wave state belongs to the representa-
tion 10⊕ 10 [11]. In terms of the quark model, the
P-wave state of the ηπ system is predominantly a
multiquark state (qq̄qq̄), while that in the η′π system
can be either a multiquark or a hybrid (qq̄g) state.
This can explain the observed distinctions between
the P-wave spectra of the η′π and ηπ systems. This
also means that the hypothetical resonance π1(1400)
cannot be a hybrid state.

It is worth emphasizing that, at the present time,
π1(1400) and π1(1600) are not firmly established res-
onances. The peaks in theP-wave spectra of the η′π−

and ηπ− systems can be explained by a dynamical en-
hancement that is generated by an anomalous chiral
Lagrangian of the Wess–Zumino type for VPPP in-
teraction [12] or a Lagrangian of a different form [13].
2004 MAIK “Nauka/Interperiodica”



INVESTIGATION OF THE REACTION π−p→ η′π0n 1409
Also, attempts were made to explain these peaks by
nonresonance amplitudes associated with the Deck
effect [14].

In this study, we have first examined the fourth
final state of this type, η′π0. The P-wave state in the
η′π0 system is also predominantly an SU(3)f octet,
this making it possible to obtain new information
about the properties of the hypothetical π1(1600) me-
son and to check it for compatibility with available
information. We will compare the distributions for
the η′π0 system with the corresponding distributions
obtained for the η′π− and ηπ0 systems from the same
data sample.

EVENT SELECTION AND DATA ANALYSIS

We selected events of the reaction π−p→ η′π0n
from the entire body of data obtained in the VES
experiment for the decay mode

η′ → π+π−η, η → γγ, π0 → γγ. (1)

The VES facility was described earlier in [15]. We
applied the following selection criteria:

(i) An event should contain two tracks of op-
posite charges and generate, in the electromagnetic
calorimeter, four clusters that can be interpreted as
photons. One additional photon cluster of energy not
exceeding 1 GeV is allowed.

(ii) The effective masses of two photon pairs
should be close to the masses of π0 and η: 0.105 <
M(γ1γ2) < 0.165 GeV/c2 and 0.478 < M(γ3γ4) <
0.618 GeV/c2. In the ensuing calculations, we use
the most probable photon energies calculated under
the assumption that the corresponding photon pairs
products of the decay of π0 and η to two photons.

(iii) The photon sample should not obey the π0π0

hypothesis for any possible photon combination; this
criterion suppresses the background from the pro-
duction of the π+π−π0π0 system.

(iv) Charged particles should not admit identifi-
cation with electrons (positrons). This criterion was
specified on the basis of the energy deposition in the
electromagnetic calorimeter: ECal/|p| < 0.8.

(v) The effective mass of the π+π−η system
should be close to the η′-meson mass: 0.938 <
M(π+π−η) < 0.978 GeV/c2. Events from the con-
trol intervals around the η′-meson mass, 0.916 <
M(π+π−η) < 0.936 GeV/c2 and 0.980 <
M(π+π−η) < 1.0 GeV/c2, were used to estimate and
subtract the background.

(vi) We rejected events generating a signal in the
veto system of the target in order to suppress pro-
cesses where an isobar decaying into a neutron and
a π0 meson is produced instead of a neutron.
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
(vii) The π+π−π0 system should not admit iden-
tification with an η meson: |M(π+π−π0)−mη)| >
0.02 GeV/c2. This requirement suppresses the ηη-
production background, which is significant near the
η′π0 threshold.

Figures 1a–1c display the M(γγ) distributions
near the masses of π0 and η and the M(π+π−η)
distribution. Against a linear background, these dis-
tributions feature peaks associated with π0, η, and η′

mesons. We selected 1955 “signal” and 809 “back-
ground” events. Figures 1d and 1e show the dis-
tributions with respect to effective masses and the
square of the momentum transfer. In the effective-
mass distribution, we can see a peak associated with
the a2(1320) meson.

By using similar selection criteria, we separated
events of the reaction π−p→ ηπ0n from the same
sample of the experimental data for the decay mode

η → π+π−π0, π0 → γγ. (2)

We selected signal events from an interval of π+π−π0

effective masses around the η-meson mass, 0.528 <
M(π+π−π0) < 0.568 GeV/c2. Events from the con-
trol intervals 0.506 < M(π+π−π0) < 0.526 GeV/c2

and 0.570 < M(π+π−π0) < 0.590 GeV/c2 were used
in estimating background and subtracting it. Fig-
ures 2a–2c show the effective-mass distributions
for “free” π0 and for π0 from η-meson decay and
the distribution with respect to the effective mass
M(π+π−π0). For a further analysis, we selected
18 547 “signal” and 8436 “background” events.
Figures 2d and 2e display the distributions of events
with respect to the effective mass and the square of the
momentum transfer. The effective-mass distribution
exhibits distinct peaks associated with a0(980) and
a2(1320) mesons, this being in agreement with the
results presented in [6, 7].

On the basis of the effective-mass distribution,
the ratio of the branching fractions for the decays
of a0

2(1320) meson to η′π0 and ηπ0 was found to
be R ≈ 0.047 ± 0.018, which agrees with the tabular
value [16] previously obtained for the η′π− and ηπ−

final states [1, 5]. Figures 3а and 3b display the results
obtained by correcting the effective-mass distribu-
tions of the η′π0 and ηπ0 systems for the detection
probability. The curves represent fits to the distribu-
tions in terms of the Breit–Wigner formula for reso-
nances against a smooth polynomial background.

A conventional partial-wave analysis of the ηπ0

system [6, 7] was performed over 50-MeV/c2 effective-
mass intervals by using a standard set of waves that
includes the S0, P0, P−, D0, and D− waves for
negative-naturality exchange and the P+ and D+
waves for positive-naturality exchange. In order to
4
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Fig. 1. Selection of η′π0 events: M(γγ) distributions for (a) π0 and (b) η; (c) M(π+π−η) and (d) M(η′π0) effective mass
distributions; and (e) |t′| distribution for η′π0 events.
subtract the background, we added “background”
events with an opposite sign to the minimized func-
tional having the form of the logarithm of likeli-
hood [1]. The results are shown in Fig. 4. They
agree with the results of the GAMS/NA12 and E852
experiments performed earlier on the basis of vaster
statistics [6, 7]: the mass spectra of the S0 and D+
waves show peaks caused by a0(980) and a2(1320)
mesons, respectively; the spectrum of the P+ wave
features a broad peak; also, we observe a fast change
in the phase difference between the P+ and D+
waves near 1.3 GeV/c2 due to the a2(1320) meson.

DISCUSSION OF THE RESULTS

Figure 5 displays the effective-mass distributions
for the η′π0 and η′π− systems selected from the same
data sample. The scales along the ordinate are chosen
in such a way that the visible heights of the peaks
due to the a2(1320) meson are approximately iden-
tical. We can see that the shapes of the distribu-
tions are significantly different. The production of the
JPC = 1−+ exotic state π1(1600) [1, 8] dominates
the spectrum of the η′π− system. In contrast, the
production of the a2(1320) meson is dominant for the
η′π0 system, the production of the η′π0 system being
substantially less intensive forM > 1.4 GeV/c2. The
PH
reason behind the difference of the spectra is that
the η′π0 system can be produced only in isovector-
exchange processes, while the η′π− system can also
be generated by isoscalar-exchange processes. Since
a0

2(1320) mesons emerge primarily from ρ-exchange
processes [6, 7, 17], the branching fraction for their
decay into η′π is about 0.5% because of suppression
by the barrier factor. In view of this and in view of the
fact that the probability of π1(1600) decay into η′π is
not small, the coupling of the π1(1600) meson to the
ρπ channel is substantially lower than the coupling of
the a2(1320) meson to this channel.

In order to study the coupling of the π1(1600)
state to the ρπ channel more comprehensively, it
is necessary to estimate the fraction of the P+
wave in the η′π0 system in the mass region around
1.6 GeV/c2. Figures 6a and 6b display the angular
distributions of the η′π0 system in the effective-
mass interval 1.45–1.9 GeV/c2. For the sake of
comparison, the analogous distributions for the ηπ0

system in the same mass interval are shown in
Figs. 6c and 6d. The distribution of the cosine of the
polar angle in the Gottfried–Jackson frame features
a clear asymmetry for both systems. The dominance
of positive-naturality exchanges for the ηπ0 system
manifests itself in the distribution with respect to the
YSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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polar angle (Treiman–Yang angle φTY) in the form

of a large component proportional to sin2 φTY. The

fraction of the component sin2 φTY in the distribution
with respect toφTY for the η′π0 system is substantially
lower.
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The number of η′π0 events is insufficient for per-
forming a mass-independent partial-wave analysis
and for studying the shape of the wave P+ and the
behavior of its phase. Nevertheless, we can perform
a partial-wave analysis for events from the effective-
mass interval 1.45–1.9 GeV/c2, assuming that the
4
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Fig. 5. Comparison of the effective-mass distributions of
the η′π− and η′π0 systems.

relative phase of any pair of partial waves does not
undergo significant variations over the entire mass
interval (this being true for the ηπ−, η′π−, and ηπ0
P

systems) and considering that there is no abrupt vari-
ations in the detection efficiency of the facility. Fig-
ures 7a and 7b show the results of such an analysis for
the η′π0 and ηπ0 systems. Each cell of the histogram
represents the intensity of one wave. All possible so-
lutions [18] are represented by the dashed lines within
the cells. The thick lines correspond to one solution
that we consider to be physical. The physical solution
for ηπ0 is chosen in such a way that it is compatible
with the results presented in [6]. Since, for the same
naturality of exchange, waves characterized by the
orbital-angular-momentum projection equal to unity
are usually suppressed in relation to waves charac-
terized by the orbital-angular-momentum projection
of zero, the requirement that the intensity of the P0
wave exceed that of the P− wave is taken to be a
criterion for choosing a solution for the η′π0 system.
However, the main conclusions of the present study
remain valid for any choice of physical solution.

In the η′π0 system, theD0 wave has the maximum
intensity in all solutions; the P0 wave is also sig-
nificant. For any choice of solution, the contribution
of the P+ wave does not exceed 20% of the total
intensity of η′π0 production. Assuming that the whole
intensity of the P+ wave in the η′π0 system is due
to the production of the π1(1600) state through ρ
exchange, we can compare it with the peak of the
a0

2(1320) meson, which is also produced through ρ
exchange, in the spectrum of theD+ wave in the ηπ0
HYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 2004
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system (see Fig. 4). Assuming the same dependence
of the coupling of a2 and π1 to ρπ on the ρ-meson
virtuality, we then obtain

Br(π1 → ρπ)Br(π1 → η′π)
Br(a2 → ρπ)Br(a2 → ηπ)

� 3× 10−2

or

Br(π1 → ρπ)Br(π1 → η′π) � 3× 10−3. (3)
PHYSICS OF ATOMIC NUCLEI Vol. 67 No. 7 200
The object π1(1600) is observed in the f1π, η′π, and

b1π decay channels with probabilities in the ratio

(1.1± 0.3) : 1 : (1± 0.3) [10, 19]. Searches for a sig-

nal of π1(1600) in other channels, f2π
−, K∗K, and

η(1295)π− , in the VES experiment show that the

signal in any of these channels is substantially lower

than that in the η′π− channel. With allowance for the
4
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errors, this leads to the constraint Br(π1 → η′π) >
0.1. It follows from (3) that Br(π1 → ρπ) < 0.03.

In order to compare the production of the P+
wave in the η′π0 and ηπ0 systems, we determined
the ratio of the squares of the corresponding matrix
elements. Taking into account the probabilities of η
and η′ decays into the final states (1) and (2) and the

phase space, we obtain |T η
′π0

P+ |2/|T
ηπ0

P+ |2 ≈ 0.1 ± 0.1.
The error includes the statistical error and the am-
biguity in choosing the solution of the partial-wave
analysis. A small value of this ratio indicates that, in ρ
exchange, the 1−+ wave is predominantly produced
in the SU(3)f-decuplet state. This value is on the
same order of magnitude as η–η′ mixing; therefore,
a significant part of the P+ wave in the η′π0 state can
indeed be due to the decuplet state rather than to the
π1(1600) state.

In the physical solution that we chose for the
η′π0 system, the ratio of the intensities of the P+
and P0 waves is 0.15 ± 0.2. The ratio of the inten-
sities of production in the positive- (ρ exchange) and
negative-naturality [b1(ρ2) exchange] exchanges was
measured in the VES experiments for a2(1320) and
ω3(1670) [17] and was found to be 1.3± 0.2 and 1.1±
0.3, respectively. Since the probabilities of π1(1600)
decays into b1π and η′π are on the same order of mag-
nitude [9], a small value of the P+/P0 ratio agrees
with our conclusion that the coupling of π1(1600) to
the ρπ channel is weak.

The results of direct searches for the decay of
π1(1600) to ρ0π are ambiguous. The peak of π1(1600)
in the JPC = 1−+ wave of the ρπ system in the
case of positive-naturality exchange was observed
in the π+π−π− final state in the analysis of E852
data [20] and in early results of the VES experi-
ment [10, 19]; according to these data, the proba-
bilities of π1(1600) decays to ρπ, η′π, and b1π are
approximately in the ratio 1.5 : 1 : 1. Later, it turned
out [21, 22] that the shape of the 1−+ wave of the
ρπ system in the π+π−π− final state is highly model-
dependent and that, at a reasonable choice of model
parameters, the peak of π1(1600) disappears.

The majority of the theoretical models predict the
suppression of the decays of the JPC = 1−+ hybrid
meson to ρπ [23, 24]. This conclusion is based on the
fact that the ρ-meson wave function is approximately
identical to the π-meson wave function. In [25], it
was shown that, within the pointlike-pion model,
the probability of hybrid-meson decay to ρπ can
reach 10–25%. Our investigation of the η′π0 final
state has provided an indirect piece of evidence
that the coupling of π1(1600) to the ρπ channel
is indeed suppressed, thereby disproving the ratio
ρπ : η′π(b1π) ∼ 1.
P

CONCLUSION

The reaction π−p→ η′π0n has been studied in the
VES experiment. The effective-mass spectrum and
the angular distributions of η′π0 events have been
compared with the analogous distributions in ηπ0 and
η′π− events selected from the same data sample. The
ratio of the branching fractions for the decay of the
a0

2(1320) meson to η′π and ηπ has been found to
be R = 0.047 ± 0.018, which is in agreement with
the tabular value of this quantity measured earlier for
a−2 . That the production of the exotic object π1(1600)
has not been observed in positive-naturality exchange
leads to the conclusion that its coupling to the ρπ
channel is suppressed in relation to coupling to the
η′π or the b1(1235)π channel. This feature was pre-
dicted for the decays of hybrid mesons in various
phenomenological models.
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