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Abstract—Isomeric ratios were measured in the (7,

n) and (n, 2n) reactions leading to the formation

of 184Re, 99, and 6 Au odd—odd nuclides. The measurements were performed by the activation
method implemented for Re, Ir, and Au samples of natural isotopic composition that were irradiated with
14.7-MeV neutrons and bremsstrahlung photons of endpoint energy 22 MeV. [someric- and ground-state
nuclei formed in these reactions were identified by their x- or y-ray spectra and by their hali-lives. The
isomeric ratios were calculated on the basis of the statistical model, and the results were compared with
experimental data, whereby it was possible to determine parameters that characterize the dependence of
the level density on the excitation energy and angular momentum. The effect of the nuclear structure on

these parameters is discussed. © 2004 MAIK “Nauka/Interperiodica”.

INTRODUCTION

Investigation into the structure of nuclei involves
determining the dependence of the level density on
the excitation energy and angular momentum. These
dependences are an important source of information
about collective and single-particle properties of ex-
cited nuclei. Their comparison with the results of cal-
culations performed within various models provides a
basis for choosing parameters of these models and for
describing the properties of excited nuclei.

Various methods are used to study such depen-
dences experimentally. Measurement of the ratios of
the cross sections or yields for reactions leading to
nuclear levels of substantially different angular mo-
menta (usually, one of these levels is the ground-
state level, while the other is an excited one) is one
of the most efficient methods. Various systems of
excited states participate in the population of each
level, and the probabilities of their population allow
one to derive information about some properties of
these systems. The sensitivity of measurements of
cross-section ratios is considerably higher if the ex-
cited state is isomeric; that is, it is characterized by
a rather long lifetime (for example, in excess of 1 s).
In this case, it is possible to separate in time the
excitation of nuclei and measurement of the spec-
trum of radioactive radiation emitted in their deex-
citation and to perform the measurement at a much
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lower level of background radiation. This extends the
possibilities of investigations significantly; therefore,
measurement of cross sections for reactions leading
to isomer formation or of the ratios of cross sections
for reactions producing isomeric and ground states
(isomeric ratios) has become one of the main lines
of investigations of level densities in excited nuclei. A
vast body of data on isomeric ratios in photonuclear
reactions and the possibility of deriving new informa-
tion about the structure of nuclei from these data are
surveyed in [1, 2]; similar information about (n, 2n)
reactions is given in [3].

The objective of this study is to measure isomeric
ratios for the production of ¥ Re, °Ir, and %6Au
odd—odd nuclides (which occur in the transition re-
gion between spherical and deformed nuclei) in (v,
n) reactions at an excitation energy around a giant
dipole resonance and in (n, 2n) reactions at a neu-
tron energy of 14.7 MeV. In this region of nuclei,
the structure of low-lying excited states undergoes
changes. An analysis of isomeric ratios on the basis of
the statistical model could make it possible to explore
the changes in the properties of higher lying levels
(up to the neutron binding energy), which determine
isomeric ratios. We imply here the level density and
its dependence on the excitation energy and angular
momentum.

The choice of the above nuclides was motivated
by a high level density in them even at relatively low
excitation energies, this making it possible to describe
these nuclides on the basis of the statistical model. In
addition, the 199Tr and 196 Au nuclei have two isomeric
states each, with the result that information about
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Table 1. Spectroscopic features of the ground and isomeric states of the nuclides under investigation

Nucleus Z N B E;, keV JT Nucleonic configuration References
184Re 75 109 0.21 0 3~ 75/2 [402] + v1/2 [510] (5]
105 8+ 75/2[402] + v11/2[615]
1901 77 113 0.17 0 4+ 73/2[402] + v11/2[615] [6]
26 7+ 73/2[402] + v11/2[615]
175 11~ 711/2 [552] + v11/2[615]
196 Ay 79 117 0.12 0 2- w3s1/2 + v2f5/2 [7]
85 5+ m2p3/2 + v1il3/2
595 12~ 71h11/2 + v1i13/2

the isomeric ratio appears to be richer in this case. It
should also be noted that (v, n) and (n, 2n) reactions
leading to the same final nuclei with close excitation
energies supplement each other well (in the former, an
angular momentum of 1A is introduced in the nucleus
at all photon energies, while, in the latter, the mean
angular momentum is about 5k at a neutron energy
of 14.7 MeV).

Although isomeric ratios are known for a number
of reactions resulting in the formation of the nuclei
in question (they are quoted below along with our
data for the sake of comparison), they do not provide
a complete pattern of isomeric ratios in the nuclear
region under investigation. Moreover, they are often
insufficiently accurate or were obtained under differ-
ent conditions of measurements of the yields of the
nuclei in the isomeric and ground states. In this study,
we measured the isomeric ratios under identical con-
ditions in all cases and determined the yields in the
different reactions from the same -y lines, whereby we
were able to improve the accuracy and reliability of
our results.

PROPERTIES OF THE NUCLIDES
UNDER STUDY

As was mentioned above, the nuclides in ques-
tion belong to the transition region between spherical
and deformed nuclei; therefore, the properties of low-
lying excited states change sharply in them. In the
Nilsson scheme, the single-particle states of 84Re
and °Ir for a deformed potential are identified in
terms of the 11/2[505] and 3/2[402] proton and the
11/2[615], 9/2[505], and 7/2[503] neutron orbits. It is
precisely these orbits that form the spectrum of low-
lying excited states. The presence of high-angular-
momentum levels among them leads to the appear-
ance of high-spin isomers. According to the Mayer
scheme, the single-particle states in 6 Au have the
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following configurations for a spherical potential: the
h11/2, d3/2, and 81/2 prOtOﬂ and the i13/2, f5/2, and
P32 neutron orbits.

Table 1 gives the spectroscopic features of the
ground and isomeric states of the nuclei under in-
vestigation: their energies E;, spins—parities J™, nu-
cleonic configurations, and quadrupole-deformation
parameters 9 for the ground state. The features of
the radioactive decay of these nuclei in the ground
and isomeric states (half-lives T} 5, energies FE, of
lines, their fractions I, per decay, and full-internal-
conversion coefficients «)—they are necessary for
identifying them and for determining their yields—are
listed in Table 2. In a number of isomeric states, these
nuclei are deexcited in low-energy, high-multipolarity
radiative transitions characterized by large internal-
conversion coefficients. In those cases, the intensity
of ~ radiation was very low, and we measured the
areas of x-ray L lines in order to determine the re-
spective yields. The energies E, of the most intense
of them (a2 lines, whose fraction per decay is 84 %
[4]) are also displayed in Table 2. The data in Tables 1
and 2 are systematized in [5—7].

EXPERIMENTAL PROCEDURE

The isomeric ratios in the relevant (v, n) reactions
were measured by using a beam of bremsstrahlung
photons with an endpoint energy of 22 MeV from
a microtron electron accelerator. In the case of the
(n, 2n) reactions, we employed 14.7-MeV neutrons
obtained at a neutron generator in the interaction of
deuterons accelerated to 120 keV and a tritium target.

The targets used were identical for either type of
reactions. The targets were made from metallic foils
of natural isotopic composition that were 20, 30, and
50 pm thick for Au, Ir, and Re, respectively. They
had the shape of a disk 15 mm in diameter. The
irradiation was performed in “close” geometry; that is,
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Table 2. Features of the radioactive decay of the nuclides under study
Nucleus J7 T2 Decay mode E, keV L, % « E., keV References
184Re 3~ 38d £ 903 39 0.021 8.610 (5]
8+ 169d € 792 38 0.012
105 75 6.5
190] 4t 11.8d € 187 70 0.42 [6]
(el 1.12 h i.t. 26.3 106 10° 9.117
11~ 3.25h € 616 97 0.014
562 97 0.023
196 Ay 2- 6.18d B, e 357 88 0.041 (7]
5T 82s it. 64.6 4x107% | 240 9.686
12~ 9.7h i.t. 148 43 0.32
188 32 0.23

Note: £ and i.t. denote electron capture and isomeric transitions, respectively.

the targets were arranged in the immediate vicinity of
the braking target (tungsten disk 3 mm thick) or the
tritium target (tritium implanted in titanium). This
enabled us to harness a considerable fraction of the
bremsstrahlung or the neutron flux. Their intensity
at the irradiated target amounted to 10'2 s~ (in the
energy range 7—22 MeV) and 10'0 s=1 respectively.
Such intensities made it possible to obtain reasonably
high yields of the nuclides being studied even for low
isomeric ratios.

After been irradiated, the targets were transported
into a room protected from  rays and neutrons, and
their v spectra were measured there. In these mea-
surements, we employed a HpGe detector of volume
200 cm?, a Ge(Li) detector of volume 60 ¢cm? (their
resolutions for ®°Co « lines at E., = 1331 keV were
2.0 and 2.2 keV, respectively), and a silicon detector
2 mm thick (its resolution for the ®*Fe x-ray line at
E, = 5.4keV was 0.340 keV). The choice of detector
for the measurement depended on the y-line energies
in the spectrum. In the case of the short-lived iso-
mer " Au (T} ;o = 8.2 s), the irradiated target was
transported to the detector by a pneumatic rabbit (the
transportation time was 2 s).

The measured -y spectra were processed by means
of a code that made it possible to separate  lines of
close energies in a complicated spectrum. For each
detector, the dependence of the photon-detection ef-
ficiency € on the photon energy was determined with
the aid of a set of calibration sources. From an anal-
ysis of the v spectra, we deduced the areas S of the
v lines associated with the products originating from
the decay of the nuclei being studied. These areas are
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related to the yields of nuclei in the ground or isomeric
states by the equation

S+ a)f(t)r

Y —
el,t ’

(1)
where t is the time of the measurement; 7 is the
lifetime of the nucleus; and f(t) is the factor that takes
into account the accumulation of nuclei within the
irradiation time, their decay prior to the beginning of
the measurements, and the population of the ground
state owing to the isomer decay.

EXPERIMENTAL RESULTS

Because the yields of nuclei in the isomeric and
ground states were measured by using the same tar-
gets under identical conditions of irradiation, the iso-
meric ratios in the relevant (n, 2n) reactions can be
considered as the ratio of the respective yields:

R=Ze - 2o
Ogr  Yor

(2)

In (~, n) reactions, this ratio is only approximate
because the bremsstrahlung spectrum is continuous
and because, for reactions leading to the formation of
the isomeric and ground states, the excitation func-
tions have different forms. In this case, the measured
isomeric ratios can be represented as

Emax
o(E)N(E)dE
IR = 3 = Pl SN
& [ o(E)N(E)E
B
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Table 3. Experimental and calculated values of the isomeric ratios in question

[someric ratios
Nucleus Levels (v, n) (n, 2n)
experiment calculation experiment calculation

184Re 8*(is.), 37 (gr.) 0.019(3) 0.019 0.20(4) 0.19

0.018(5)[9] 0.15(8)[12]
190p 7t(is.), 4(gr.) 0.15(3) 0.18 0.26(5) 0.17
117 (is.), 4™ (gr.) 8(2) x 1074 7.4 %1074 0.07(2) 0.04

0.11(3)[13]
196 Ay 5%(is.), 2 (gr.) 0.10(3) 0.26 0.22(4) 0.50
12 (is.), 2% (gr.) 6.0(4) x 10~* 5x 1074 0.08(2) 0.09

6.1(4) x 1074 [14] 0.10(1)[15]

where o(E) and N(E) are, respectively, the reac-
tion cross section and the number of photons in the
bremsstrahlung spectrum; B, is the neutron binding
energy; Fjs is the energy of the isomeric level; and
Fax is the endpoint energy of the bremsstrahlung
spectrum. In [8, 9], it was indicated that, in a num-
ber of reactions, the threshold energy exceeds the
sum By, + Eis and corresponds to the population of
isomers through some activation states lying 1 to
2 MeV above the isomeric state. Information about
the relationship between the ratios of the yields and
of the cross sections at a given photon energy can
be deduced from the shapes of the excitation func-
tion (they are given in [10] for the ground states of
nuclei and in [8, 9] for a number of isomers) and
of the bremsstrahlung spectrum (its calculation for
the present conditions of irradiation is given in [11]).
From these data, it follows that, at the maximum of
the excitation function (it is close to the energy of the
giant dipole resonance), the ratio of the cross sections
is 10 to 15% greater than the ratio of the yields,
the incertainty in determining the threshold for the
isomer-formation reaction having but a slight effect
on the isomeric ratios.

The isomeric ratios obtained in this way according
to Egs. (2) and (3) are given in Table 3. They agree
with known data (which are also presented in Table 3)
within the common errors, but, as a rule, the former
have a higher accuracy.

CALCULATION OF ISOMERIC RATIOS

The isomeric ratios were calculated within the
statistical model [16, 17] on the basis of the method
proposed for the first time by Huizenga and Vanden-
bosch [18] and subsequently improved by a number
of authors (see, for example, [19—21]). This method
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involves calculating the distributions of nuclei with
respect to the excitation energy and angular momen-
tum at each step of the reaction. In (v, n) reactions,
the formation of a compound nucleus, the evaporation
of a neutron, and the emission of a photon cascade are
such steps. In (n, 2n) reactions, there is yet another
step, that of the evaporation of one more neutron from
a nucleus whose mass number is greater by unity.

In the case of a (n, 2n) reaction, the compound
nucleus is formed at a single value of the excita-
tion energy, while, in a (v, n) reaction, a distribution
of the excitation energy is observed because of the
bremsstrahlung spectrum of  radiation. At the same
time, the angular-momentum distribution in (v, n)
reactions is significantly narrower because a photon
introduces an angular momentum of unity in the tar-
get nucleus (the contribution from the capture of v
rays having higher multipolarities can be neglected).
Examples of these distributions at various reaction
steps are shown in Figs. 1 and 2.

Neutron evaporation from a compound nucleus
(second step of the reaction) leads to the smearing of
the distributions with respect to the excitation energy
and angular momentum. In order to obtain these dis-
tributions, we calculated the transmission coefficients
for neutrons having various orbital angular momenta
(in these calculations, we used the parameters of the
optical model [22]). These transmission coefficients
determine the probability of neutron evaporation from
a compound nucleus having preset values of the ki-
netic energy and angular momentum; therefore, they
make it possible to derive the excitation-energy and
angular-momentum distributions of a product nu-
cleus. In (n, 2n) reactions, this operation was per-
formed twice.

The calculation of the last reaction step (pho-
ton cascade) reduced to obtaining the energy and
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W(E), arb. units
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Fig. 1. Excitation-energy distributions of Ir nuclei in
(upper panel) (n, 2n) and (lower panel) (v, n) reactions
at various steps: (/) compound nucleus, (2) after the
emission of the first neutron in (n, 2n) reactions, and (3)
final nucleus prior to the photon cascade.

angular-momentum distributions after the emission
of every photon of the cascade. Every time, we com-
puted the probability of a transition to the ground or
isomeric state or to a known intermediate level from
which the only radiative transition to the ground or
isomeric state proceeded. This step of the reaction
is the most sensitive to variations in the statistical-
model parameters that determine the dependence of
the level density on the energy (a) and the angu-
lar momentum (o), especially in the case of (v, n)
reactions, which involve a smaller number of steps
and narrower distributions with respect to angular
momenta. A detailed description of this method for
calculating isomeric ratios and examples of such cal-
culations are given in [23].

Using the approach outlined above, we have cal-
culated the isomeric ratios for all of the nuclei un-
der investigation and all reactions for both isomeric
states. Naturally, the isomeric ratios depend on the
statistical-model parameters a and o. The calculated
isomeric ratios are listed in Table 3 for these param-
eters set to values typical of the nuclear region under
investigation (a = 20 MeV ™1, o = 4.9)[24].

DISCUSSION OF THE RESULTS

From a comparison of the data in Table 3, one
can see that the results of the calculations faith-
fully reproduce the behavior of the isomeric ratios in
the nuclear region under investigation—in particular,
their dependences on the isomer spin and the angular
momentum introduced in the target nucleus. By way
of example, we indicate that, in all cases, the isomeric
ratios are lower for high-spin isomers than for low-
spin ones and that they are higher in (n, 2n) than
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Fig. 2. As in Fig. 1, but for angular momenta.

in (v, n) reactions. At the same time, the distinc-
tion between the measured and calculated isomeric-
ratio values is beyond the experimental errors for both
reactions and levels in a number of cases [the J™ =
7t and 117 levels in 'Ir for the (n, 2n) reactions
and the J™ = 5T level in *SAu for (v, n) and (n,
2n) reactions]. This distinction can be explained by
the approximate character of the model used in the
calculation, the uncertainty in the choice of param-
eters, and the effect of the nuclear structure on the
population of the isomers.

However, agreement between the calculated and
experimental isomeric ratios can be attained by vary-
ing the parameters a and o within rather narrow
intervals. For the same nucleus, the resulting values
of these parameters appear to be slightly different for
different isomers and reactions. By way of example,
we indicate that, for the J™ = 5T isomer in 196Ay,
the values of o at the fixed value of a = 20 MeV~!
in the (v, n) and (n, 2n) reactions prove to be 3.3
and 3.7, which are appreciably lower than those for
the J™ = 127 isomer (o = 4.9). A similar distinction
is also observed for the ™°Ir nucleus in the (v, n)
and (n, 2n) reactions; for the latter, the agreement
between the experimental and calculated isomeric ra-
tios is reached at o = 8. In all probability, the reason
behind this distinction is that the above factors re-
sponsible for the deviations of the calculated isomeric
ratios from their experimental counterparts manifest
themselves differently in different cases.

Such a scatter of the values of o that are nec-
essary for describing the isomeric ratios when the
entire body of information is used for each of the
nuclei under investigation gives no way to establish
unambiguously the variation of this parameter (and,
consequently, the dependence of the level density on
the angular momentum) in the transition nuclear re-
gion. It seems that a more refined model that takes
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into account the effect of the nuclear structure on
the population of isomeric states is required here.
This could be the quasiparticle—phonon model pro-
posed by V.G. Soloviev and his coauthors [25, 26]
and successfully used, for example, in describing the
dependence of isomeric ratios for 1h11/2 states on
the atomic number of a nucleus in the vicinity of the
N = 82 closed neutron shell [27].
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Nature of Parity Violation in Neutron Interaction with Lead
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Abstract—The effect of parity violation in the interaction of thermal neutrons with lead was discovered in
a number of studies. According to the existing theory, this effect is explained by the mixing of compound
states characterized by different parities (s- and p-wave resonances). In view of the absence of a p-wave
resonance in the region of thermal neutron energies, it is of importance to reveal a level below the neutron
binding energy, a so-called negative resonance. The energy dependence of the cross section for radiative
neutron capture on lead was measured in the present study, and it is shown that, for the 2°“Pb isotope, the
results of this measurement deviate from the 1/v/E law, thereby suggesting the presence of a strong nega-

tive resonance. The parameters of this resonance are estimated. © 2004 MAIK “Nauka/Interperiodica” .

INTRODUCTION

In the early 1980s, enhanced parity-violation ef-
fects in slow-neutron interaction with nuclei were
predicted theoretically [1—3] and discovered experi-
mentally [4, 5]. [t was shown that the mechanism
responsible for the enhancement of such effects is
associated with the structure and properties of target
nuclei. The effects in question are maximal in the
region of p-wave resonances. By way of example,
we indicate that, for 139La, the total cross section at
the p-wave resonance of energy 0.75 eV changes by
10% upon going over from unpolarized to polarized
neutrons.

A detailed investigation of such effects for a num-
ber of nuclei was later performed at Los Alamos [6],
where total neutron cross sections were measured as
functions of the neutron helicity. All of the results
obtained in this way were matched with a theory
where these effects were explained in terms of mixing
of compound states that have different parities, s- and
p-wave resonances in the case being considered.

In addition to parity violation in the total cross
section, there is yet another effect, the rotation of the
spin of a neutron having a polarization orthogonal to
the momentum vector and traversing the target being
studied, and this effect was measured experimentally.
Both effects were described on the basis of a unified
theoretical model.

l’Urliversi‘[y of Lodz, Lodz, Poland.

DNeutron Physics Laboratory, Joint Institute for Nuclear Re-
search, Dubna, Moscow oblast, 141980 Russia.

Institute of Theoretical and Experimental Physics, Bol’shaya
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The range of nuclei for which the rotation of the
thermal-neutron spin was measured includes lead
nuclei. The result obtained for this case in [7]is

Ap = (2.24 £0.33) x 107 rad/cm.

The target used was manufactured from natural lead
containing four isotopes. Since lead features no res-
onances in the vicinity of thermal neutron energies, it
was interesting to find out which isotope is responsi-
ble for the effect. An experiment performed anew with
natural lead [8] confirmed the existence of the effect.
The value obtained for spin-rotation angle was

Ap = (3.53 £0.79) x 107 rad/cm.

A measurement performed with the 2°7Pb isotope,
whose concentration in the natural mixture of lead
isotopes is 22%, revealed that this isotope makes no
contribution to the effect being studied [8].

Later on, a measurement was performed with the
204ph isotope [9], whose concentration in natural lead

is as low as 1.4%, and the value obtained for the spin-
rotation angle was

Ap = (8 +2) x 1077 rad/cm.

This value is somewhat smaller than that which is
required for reproducing the effect in natural lead, but
it could qualitatively account for it.

Within the simplified two-level model where one
s-wave resonance is mixed with one p-wave reso-
nance, the expression for the spin-rotation angle can
be represented in the form [10]

Ap (1)
_ATXP(1eV)pWi, /T (LeV)IT(1eV)
B (E - Es)(E - Ep)

[rad/cm].
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Here, A is the neutron wavelength divided by 2m;
p is the number of nuclei per unit volume (in cm?)
of the target; Wy, is the matrix element of the weak-
interaction-induced mixing of states having opposite
parities; T'¥ and T}, are the neutronic widths of,
respectively, the s- and the p-wave resonance; and
E, and E, are their energies. The symbol “1 eV”
in parentheses indicates that a given quantity is
rescaled to 1 eV. For the total resonance widths, it
is assumed in expression (1) that I'y < F — E; and
I'y< E - E,.

By using in (1) the known parameters of s- and
p-wave resonances in 2%4Pb [11], one can show that
Ay appears to be a few orders of magnitude smaller
than its experimental counterpart. It is possible that
the compound state corresponding to the p-wave res-
onance lies below the neutron binding energy (this is
the case of a so-called negative resonance). From (1),
it can be seen that the effect in the thermal region

for E < 0.1 eV is proportional to \/T'»” /Es ,,. Choos-
ing, for the s-wave resonance, the maximum value of
this ratio from [11] [Es = —3 keV and I'j(1eV) =
1.3 eV] and assuming, for the p-wave resonance,
the mean values of Th (1 eV)=3x 1077 eV and
E, = D/10 =100 eV (D is the mean level spacing,
which is about 1 keV for 2°4Pb), we obtain Ay =
9 x 10~7 rad/cm, which is two orders of magnitude
smaller than the corresponding experimental value.
The value of Wy, =5 x 1073 eV, which was used
here, is somewhat overestimated with respect to the
relevant mean value. A greater effect can be obtained
by considerably increasing I'y, and by lowering E,,. By
way of example, we indicate that, increasing T'}, by an
order of magnitude and placing the resonance at an
energy of 5 eV below the neutron binding energy, we
would arrive at Ap = 6 x 107° rad/cm. This value is
already close to the experimental result for 2°4Pb, but
it is sizably smaller than that which was obtained in
the measurements with natural lead.

Thus, the explanation of the parity-violation effect
in lead may be associated with the presence of a
strong p-wave resonance in the vicinity of the neutron
binding energy. Therefore, it would be of paramount
importance to discover such a negative resonance.

FORMULATION OF THE EXPERIMENTAL
PROBLEM AND ESTIMATION
OF THE EXPECTED RESULT

As a method for seeking a negative resonance,
we proposed studying the cross section for radiative
neutron capture as a function of neutron energy. This
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cross section is described by the Breit—Wigner for-
mula
7T)\2anF,Y

) = E R

(2)

For E < Ey and I' < Ejy, expression (2) can be re-
duced to the form

7A2(1eV)IT
S(B) = R 3
03(E) 52VE (3)

for s-wave interaction and to the form

1
mA2(1eV)gr T, .
E2VE

o?(E) =

(4)

for p-wave interaction.

In expressions (3) and (4), rﬁlo) and Fg) are
the neutron-energy-independent reduced neutronic
widths of the s- and p-wave resonances at the
energies Ey and E,, respectively. The centrifugal
attenuation factor

(kR)?

Vi=
YT IF (kR

(5)
where k = 1/X is the neutron wave number and R is
the nuclear radius, plays an important role in the p-
wave cross section.

The quantity Vi for lead is V3 =3 x 1075E. It
follows that the neutron-capture cross section as a
function of energy behaves differently for s and p
waves; that is,

o3(E) ~1/VE and o2(E)~ VE.

Let us now estimate o} for the strong negative

resonance considered above: E, = =5 eV, P =

1eV,and I, = 0.5 eV. At an energy of 0.025 eV, we
then have o) = 6.3 x 1073 b, which is about 1% of
the total capture cross section at the thermal point:
0(0.025 eV) = 660 x 1072 b[11]. Even at a neutron
energy of 1 eV, however, the relationship in question
changes significantly: o5 = 104 mb and of = 40 mb.

Figure 1 displays (dashed cuve) o5 and (solid

curve) o5 + of versus the neutron energy. It can be
seen that, by measuring the energy dependence of the
cross section for radiative neutron capture over the
range between the thermal point and 2 to 3 eV, we
can estimate the contribution of the p wave or set an
upper limit on this contribution.

Vol. 67 No.7 2004
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Fig. 1. Cross sections for radiative neutron capture on a
204ph nucleus versus (dashed curve) o5 and (solid curve)
o3 + ok [(05)" = 660 mb, and (¢2)" = 6.3 mb].

EXPERIMENTAL PROCEDURE
AND DESCRIPTION OF THE EXPERIMENT

The experiment was performed in a neutron beam
from the IBR-2 pulsed reactor installed at the Neu-
tron Physics Laboratory (Joint Institute for Nuclear
Research, Dubna). The well-developed time-of-flight
procedure was used in the spectrometry of neutrons.
As follows from the results mentioned in the Intro-
duction, the discovery of a negative resonance in ra-
diative neutron capture on the lead isotope of mass
number 204 was expected to be the most proba-
ble. For the target being studied, we therefore used
a cylindrical sample from lead enriched in this iso-
tope: it contained 36.6% 2°4Pb, 30.6% 2%5Pb, 13.2%
207ph, and 19.6% 298Pb versus 1.43, 24.15, 22.4,
and 52.4% in a natural mixture of isotopes. The total
weight of the sample was 4.7 g. In order to reduce
the probability of various systematic effects in per-
forming the experiment in question, it was thought
to be the most convenient to measure the spectra
of gamma rays from two targets simultaneously, the
target being studied and a reference one such that
the neutron-capture cross section for it obeys the

standard 1/+/F law. If the relationship between the
relevant intensities is favorable for the purposes pur-
sued here and if the energy resolution is sufficiently
high for separating the chosen gamma lines from the
two components of such a target, the results would
make it possible to draw an unambiguous conclu-
sion on whether the energy dependence of the cross
section for radiative neutron capture deviates from

the 1/v/E law for the target being studied. In the
present study, the spectrum of gamma radiation in
radiative neutron capture was measured with the aid
of the HPGe detector entering into the composition of
the COmbined COrrelative Spectrometer (COCOS).
The application of this spectrometer in neutron beams
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Fig. 2. Layout of the COCOS gamma spectrometer.

is motivated by the need for suppressing the back-
ground to the maximum possible degree in order to
improve the accuracy of the analysis of the spectrum
of gamma rays accompanying the neutron—nucleus
interactions being studied. The concept of the spec-
trometer is based on the cascade nature of gamma
radiation from an excited nucleus. It is characterized
by a combined application of a semiconductor Ge
detector, which possesses a high energy resolution,
and scintillation crystal detectors, which have a high
photon-detection efficiency, and by a compact geom-
etry of the multichannel detector system, a correlation
analysis of multidimensional experimental data being
involved. The layout of the spectrometer is shown in
Fig. 2.

A collimated neutron beam ng of diameter 1 cm
is incident on the target of dimensions @0.6 x 2 cm.
Crystal BGO scintillators surrounding the target and
the HPGe detector are intended for recording gamma
rays with an energy resolution of 15 to 20% (at the
energy of B, = 511 keV) and an absolute efficiency

close to 50%. The semiconductor HPGe detector of
1 to 2% absolute efficiency records cascade gamma
rays in a 200- to 300-ns time window of coincidences.
A high energy resolution of this detector (0.1—0.4%)
makes it possible to single out in the spectrum and to
identify individual lines associated with the deexcita-
tion of excited compound nuclei formed in the target.
The recorded-photon energies lie in the interval be-
tween 200 keV and 8 MeV.

In our measurements, information about ~~ coin-
cidences is recorded on magnetic carriers. The soft-
ware of the spectrometer makes it possible to monitor
basic parameters in the on-line mode and to perform
subsequently a full treatment of experimental data in
the off-line mode.

In processing data obtained in our experiment, we
sorted them with the aim of selecting the required
events with respect to the energy of neutrons captured
by the sample and with respect to the energy of ac-
companying gamma radiation. For one measurement
series of duration 156 h, Fig. 3 shows the integrated
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Fig. 3. Integrated time-of-flight spectrum for the full
energy interval of 4 coincidences (the mean neutron
energy is indicated in eV).

time-of-flight spectrum—that is, the spectrum cor-
responding to HPGe—BGO 4+ coincidences over the
full range of photon energies. The spectrum was par-
titioned into seven segments, and the mean neutron
energy is indicated within each of these. For each seg-
ment, we constructed the spectrum of gamma rays
recorded by the HPGe detector in coincidence with
the detection of annihilation photons in the energy
range 511 4+ 100 keV by the BGO scintillators.

Figure 4 displays the gamma-spectrum section
corresponding to that part of the time-of-flight spec-
trum where the mean neutron energy is 0.04 eV. In
the measurement series being discussed, a copper
foil served as a reference sample. For photons from
a direct transition to the ground state, a selection of
coincidences with the 511-keV line ensures a distinct
separation of the peaks associated with the single (S)
and double (D) emission of annihilation photons for
both the lead isotope being studied and the copper
isotope used.

The spectrum also features the analogous S and D
peaks that clearly stand out against the background
and which correspond to radiative neutron capture by
the 297Pb isotope, which was present in the sample
along with the 204Pb isotope. With the aim of reduc-
ing the counting rate in the spectrometer, we there-
fore conducted further measurements without a cop-
per foil and compared the intensities of the relevant
gamma radiation for the 2°7Pb and 2%*Pb isotopes.
In the gamma spectra corresponding to each of the
seven intervals of the neutron energy, we determined
the areas of the S and D peaks for both isotopes
and calculated the ratio of the sums of these areas
corresponding to the number of recorded photons
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Fig. 4. High-energy section of the gamma spectrum from
the HPGe detector for a mean neutron energy of 0.04 eV
(tmeas = 156 h).

associated with a direct transition in compound nuclei
upon neutron capture.

For the isotope being studied, the number of
events recorded by the spectrometer over the mea-
surement time that contribute to the peak area is
generally given by

Ni(En) = ¢(En)niop, (En)e(Ey), (6)

where ¢(E,,) is the number of neutrons that hit the
sample, n; is the number of nuclei per 1 cm? in
the isotope being studied, og (E,) is the partial
radiative-capture cross section for a gamma transi-
tion of energy E., and e(E,) is the absolute efficiency
of the detection of a photon with energy E.,.

In our case, the ratio of the areas of the peaks
for the sample being studied (1) and the reference
sample (2) then corresponds to the ratio K(1/2) of

the intensities of direct transitions in them and has
the form

Ni(E,)  mnieea [UJSEW(EH) + J%W(En)]l 7)
No(En)  moep,o [0 (En)l2
— K(1/2)(Ey).

This expression does not involve the neutron flux
since both isotopes are exposed to the same beam
simultaneously. The ratio (nieg,1)/(n2cg,2) is in-
dependent of the neutron energy; only the ratio of
the cross sections changes. If the numerator of the
expression on the right-hand side of (7) does not
involve the p-wave cross section for the sample being
studied, then the ratio K(I/Q) will be identical for
all values of the neutron energy. Thus, we can see
that the existence of the energy dependence of this
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sitions in the 2°7Pb, 2°4Pb, and ®3Cu isotopes

En, eV | K(207TPb/204pPh) | K (207Pb/S3Cu)
0.008 1.00 +0.05 1.03 +0.05
0.02 1.02 4+ 0.06 0.96 £ 0.04
0.04 1.01 + 0.06 1.02+0.04
0.10 1.02 +0.07 1.04 4+ 0.06
0.30 1.23 +0.09 1.19 +0.08
1.0 1.60 +0.16 1.42 +0.17
3.0 2.30 +0.38 1.844+0.30

ratio suggests the presence of the sought resonance
in the nucleus being studied and makes it possible to
estimate its parameters.

EXPERIMENTAL RESULTS AND THEIR
DISCUSSION

Upon processing experimental data from a few
series of measurements with samples enriched in the
204ph isotope (the total duration of the measure-
ments was 575 h), it turned out that, with increasing
neutron energy, the ratio of the intensities of direct
transitions, K(2°*Pb/?°"Pb), decreases instead of in-
creasing (as might have been expected). The val-
ues obtained in this experiment for the inverse ratio
K(?7Pb/?%4Pb) are given in Table 1 for seven groups
of neutrons in energy. These values were obtained
after a normalization where the mean value of the ratio
K(?7Pb/?%4Pb) for two groups in which the neutron
energies are 8 and 20 meV and for which the p-wave
contribution is negligible is taken as unity. According
to our experimental data, it is the 2°7Pb isotope rather
than 294Pb that has a negative resonance.

In order to confirm this surprising experimental
result, we performed additional measurements with a
different sample that was enriched in 2°"Pb to 88.3%.
For a reference sample, we took, instead of the 2°4Pb
lead isotope, the 3Cu copper isotope from a natural
composition. The results obtained by processing data
from the additional experiment of duration 125 h are
given in Table | and in Fig. 5 in the form of the ratio
K(®7Pb/%3Cu). These values were also obtained af-
ter a normalization to neutron groups where the mean
neutron energies are 8 and 20 meV. The results of the
additional experiment exhibit a similar dependence:
the ratio of the intensities of direct transitions in
compound nuclei upon radiative neutron capture by
the 207Pb and %3Cu isotopes grows with increasing
neutron energy.
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Table 2. Cross sections for radiative neutron capture by
the 207Pb isotope for the s and p waves

E,, eV o5, mb ob, mb (05 +ab)/os
0.008 1120 5.5 1.00
0.02 707 9 1.01
0.04 500 12 1.02
0.10 316 20 1.06
0.30 183 33 1.18
1.0 100 56 1.56
3.0 58 82 2.41

The results of these two experiments lead to the
conclusion that, in the vicinity of the neutron binding
energy, there is a strong p-wave resonance in the
207ph (and not in 2*Pb) isotope.

We will now address the question of which neg-
ative p-wave resonance in 2°"Pb may explain the
observed parity-violation effect in natural lead, as-
suming, in accordance with the conclusion drawn
in the present study, that this effect is caused by
precisely this isotope. Taking, for the spin-rotation
angle in natural lead, the average value in two exper-
iments [7, 8], Ap = 2.5 x 1076 rad/cm, we find, for
the 207Pb isotope (its concentration in natural lead
is 22%), that Ay = 1.14 x 107° rad/cm. Further, we
use expression (1) to describe this spin rotation and
substitute all known values into it. In the denomina-
tor, we can concurrently discard F, since thermal and
cold neutrons, for which F' < E,, E,, were employed
in measuring Ag. For the s-wave resonance, we take

the maximum value of \/¢I'$(1eV)/Es. From [11],
we have Es = —36 keV and ¢I'y = 4.7 eV, and the

relative matrix element is Wy, ~ 5 x 1072 eV. We

then have \/gI'h(1eV)/E, = 4.4 x 10~%. This ratio
can be used to calculate the p-wave cross section for

radiative capture. It is obvious that this calculation
will yield only a rough estimate, since one has to use
a few quantities for which there are no precise data.
This concerns the matrix element W, the radiative
width I'% in (4), and the partial gamma widths T',; of
the s and p resonances (in the experiment, we have
examined only the ratio for specific transitions rather
than the ratio of the total cross sections for radiative
neutron capture). However, even such a rough esti-
mate is sufficient for comparing the values calculated
by formula (7) with experimental data. The square

of the ratio \/¢gI'h(1eV)/E,, which was estimated
above, directly appears in expression (4); however,
we use not only thermal neutrons, for which one can
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Fig. 5. Energy dependence of the experimental values
of K along with the results of the calculation. The
points represent the results for (x) 2°"Pb/2°*Pb and
(e) 2°"Pb/%*Cu. The solid curve corresponds to (o5 +

o?)/a5.

discard FE in the denominator of the expression on the
right-hand side of (2), but also neutrons of energy up
to 3 eV. In view of this, we assume that E, = —20 eV,
whence we derive T'h (1 V). This choice does not have
asignificant effect on the ensuing estimations. For the
total radiative width IT'}, we take the value of 0.5 eV,
which lies within the region of the strongly scattered
values of I'y for known p-wave resonances [11]. On
the basis of values adopted for the parameters of p-
wave resonarces, we can calculate the cross section
for p-wave radiative neutron capture and compare
it with the calculated s-wave cross section, which
receives the main contribution from the negative res-
onance with the above parameters. The results of
these calculations are presented in Table 2. The ratios
(05 4 0%) /0% are also given there for the neutron
energies being considered.

Since, in neutron capture by 2°”Pb nuclei, a direct
gamma transition to the ground state of the com-
pound nucleus 2°®Pb nearly exhausts the radiative-
capture process, it is reasonable to compare the ratios
from Table 2 with the experimental values of K(E,,).
The curve in Fig. 5 was constructed on the basis of the
results of the calculations from Table 2. One can see
that it is in fairly good agreement with experimental
data.

CONCLUSION

The results of our experiments and calculations
give sufficient grounds to conclude that the 297Pb iso-
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tope has a strong negative resonance, which can ex-
plain the parity-violation effect consisting in neutron-
spin rotation as polarized neutrons traverse a sample
of natural lead [7, 8]. However, this is at odds with
the experimental results reported in [8, 9], where such
an effect was not found in 297Pb, but it was observed
in 2%4Pb. In this connection, it is highly desirable to
measure anew the effect of parity violation for 2°7Pb.
In addition, it is of interest to make an attempt at
revealing parity violation in the correlation s - k (be-
tween the neutron spin and the photon momentum).
The expected magnitude of the effect is about 107°;
that is, it is accessible to measurement.
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Abstract—Results obtained by measuring the energy dependence of the probability of 232Th ternary fission
in the region of vibrational resonances are presented. The measurements were performed by using a double
ionization chamber with Frisch grids and a CsI(Tl) scintillation detector. The use of digital methods for
pulse processing made it possible to obtain highly reliable results. The data analysis reveals that our value
of the ternary-fission probability is compatible with existing systematics, which nevertheless need some
correction. The results of our measurements unambiguously indicate that local variations in the total kinetic
energy of fission fragments in the region of the individual vibrational resonances cannot be explained by

corresponding variations in the ternary-fission probability. © 2004 MAIK “Nauka/Interperiodica”.

INTRODUCTION

Almost all fission events are known to be accom-
panied by the emission of light particles, including
neutrons evaporated from fission fragments. How-
ever, light particles emitted in the vicinity of the scis-
sion point of a fissile nucleus within periods consid-
erably shorter than the evaporation time are of major
interest for understanding of the dynamics of the fis-
sion process.

Upon formation, a light particle moves under the
effect of the Coulomb repulsion of two fragments
moving apart. Calculations by the trajectory method
allow one to reconstruct the angular and energy dis-
tributions of light particles for various initial condi-
tions. The calculations show that the angular and en-
ergy distributions of third particles emitted in the pro-
cess of nuclear fission are highly sensitive to the initial
position of the charged particle and to the velocity of
fission fragments at the instant of emission. Thus, the
final angular and energy distributions of third parti-
cles provide the most direct way of determining the
properties of a fissile system at the instant of scission.
At present, the probability of ternary fission has been
studied in detail for almost all spontaneously fissile
nuclei and a set of nuclei in fission induced by fast
neutrons. Fission channels involving the emission of
protons, deuterons, tritons, alpha particles, and other
heavier nuclei have been revealed [1].

At the same time, a number of nuclei that can
undergo fission only under the effect of fast neutrons
have not yet received adequate study. Investigation
of the ternary-fission probability for these nuclei can

“e-mail: hva@ippe.obninsk.ru

contribute to the development of systematics owing
to the extension of the range of the fissility parameter
(Z%/A). Also, of particular interest is the dependence
of the ternary-fission yield on the excitation energy of
a fissile nucleus, and this dependence can be studied
only with fast neutrons. For example, the observed
effect of a local decrease in the total kinetic energy
of fission fragments in the vicinity of some vibrational
resonances [2] cannot be explained either by varia-
tions in the mass distribution or by the behavior of
the prompt-neutron multiplicity [3]. It was assumed
that the ternary-fission probability may increase in
the vicinity of these resonances, thereby causing a de-
crease in the total kinetic energy of fission fragments
[4]

The breakup of a nucleus into three particles
is improbable and can justifiably be classified with
rare events. By way of example, we indicate that,
in the spontaneous fission of 252Cf, the probabilities
of alpha-particle, triton, and proton emission are
about 3 x 1073,2 x 107%, and 6 x 107°, respectively.
Systems of two or more (AE + E) semiconductor
detectors are usually used to study ternary fission
[5, 6]. This experimental scheme of low luminosity
is widely applied in studying spontaneous fission and
fission induced by thermal neutrons since the sta-
tistical accuracy needed for analysis can be obtained
with it. A high threshold of light-particle detection—
it is determined by the total particle absorption in a
AF detector—is an obvious drawback of this system.
Complex multidetector setups characterized by a
high efficiency of light-charged-particle detection
[7] provide yet another example of setups used to
study ternary fission. Detectors of this type were

1063-7788/04/6707-1239$26.00 © 2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Layout of the experimental setup: (PMT) photomultiplier tube, (PSD) pulse-shape digitizer, (CSPA) charge-sensitive
preamplifier, (FA) fast amplifier, (CS) coincidences scheme, (DB) delay block, (FD) fast discriminator, (S1—54) digitizer

inputs, (GE) guard electrodes, and (FG) Frisch grid.

successfully applied in investigating spontaneous
ternary fission. However, they cannot be used in
beams of fast and even thermal neutrons because of
their large dimensions and complexity.

The cross section for fission induced by fast neu-
trons is two orders of magnitude smaller than that
induced by thermal neutrons. A high gamma-ray
background from a neutron target and stringent geo-
metric constraints arising in operation at an acceler-
ator cause additional difficulties. In order to solve the
problem efficiently, a novel detector system satisfying
our specific conditions was designed.

EXPERIMENTAL SETUP

The spectrometer used incorporates a double
pulsed ionization chamber (PIC) with Frisch grids
for recording pair fission fragments and a thin scin-
tillation screen with photomultiplier tube (PMT) for
recording light particles. Figure 1 shows the layout
of the setup. The ionization chamber consisted of two
anodes, two Frisch grids, and a common cathode.
A 22Th spectrometric layer 3 ¢cm in diameter and
200 pg/cm? in thickness on an AlyOs substrate
transparent to fission fragments was placed at the
center of the cathode. The whole surface of the spec-
trometric layer was covered with gold (of thickness
about 50 pg/cm?) in order to ensure the electrical
conductivity of the cathode.

The electrodes are 120 mm in diameter. In order
to ensure the uniformity of the electric field, three
guard electrodes were placed in between the cathode
and the grid. The distance between the cathode and
the Frisch grid is 40 mm, and the distance between
the grid and the anode is 2 mm. The ring-shaped
upper anode of the chamber was manufactured from
stainless steel and was covered with a metallized
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polypropylene film 100 pm thick glued onto it in
order to ensure the accumulation of electrons from
the ionization chamber. This film is transparent to
long-range particles produced within the layer of the
isotope under study. The chamber was filled with a
gas mixture (90%Ar + 10%CHy) at a pressure of
0.75 atm, and a —4-kV bias voltage was applied to
the cathode. A system of dividers between the cath-
ode and the ground ensured the application of the
required potentials to the guard electrodes and the
Frisch grids. The anodes were grounded.

A scintillation detector based on a thin CsI(TI)
crystal and equipped with an PMT-110 photomulti-
plier tube was used as a detector of light particles. The
crystal, I mm thick, can fully absorb alpha particles of
energy up to 50 MeV, tritons of energy up to 20 MeV,
and protons of energy up to 14 MeV. The scintillator
diameter is 70 mm.

The pulses from the spectrometer—that is, a cath-
ode pulse, two anode pulses from the chamber, and
one anode pulse from the photomultiplier tubes—
were supplied to the input of a pulse-shape digitizer
(Le Croy 2262). These four pulses were recast into
a digital code and were saved in computer memory
for further processing. Figure 2 displays an example
of digital oscillograms corresponding to an event of
233Th ternary fission. This structure of the spectrome-
ter tract made it possible to improve the accuracy and
the reliability of the measurements substantially. A
pulse-shape analysis based on well-developed power-
ful mathematical methods—such as Fourier analysis
and the method of least squares—permitted obtaining
information that is inaccessible by present-day ana-
log methods for pulse processing.

An analysis of digital oscillograms by digital
methods of pulse processing enabled us to obtain
the kinetic energy, the mass, and the emission angle
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Fig. 2. Example of spectrometer pulses.

[8] and to study the behavior of specific ionization
losses [9] for each of the complementary fission frag-
ments simultaneously. The fragment energies were
corrected for the inefficiency of the Frisch grid [10],
the energy losses within the target[11], and the pulse-
height defect [8]. Additionally, each of the pulses was
tested carefully for a pileup caused by alpha particles
and scattered protons. The following main features
of the fission-fragment detector were obtained: the
energy resolution for alpha particles was 36 keV
at E, =6 MeV; the energy resolution for fission
fragments was about 1 MeV; the mass resolution was
about | amu; and the angular resolution was 0.067 in
units of the cosine of the emission angle.

Pulses from the long-range-particle detector were
analyzed for possible overlaps. The particle energy
was determined from the pulse area. The energy res-
olution estimated by using alpha particles from ?26Ra
decays was 180 keV. The tail of the pulse was approxi-
mated by a superposition of two exponential functions
by the method of least squares. For each pulse, this fit
yielded the contributions of the individual exponen-
tials and their decay times. The resulting area of the
fast component was used as a criterion for sorting the
particles according to their types. Methods for pro-
cessing Csl(Tl) pulses were described in more detail
elsewhere [12]. The method based on an analysis of
the contribution of the fast component provides a res-
olution that is 1.5 to 2 times higher than the resolution
of the conventional AE method. This difference in
the resolution can be explained by the fact that the
former method makes it possible to analyze the total
contribution of the fast component over the entire
time interval and, in contrast to the analog method
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of pulse processing, does not admit any admixture of
the slow component. It is of importance that the new
method ensures a clear separation of electrons from
other charged particles (there is no fast component
for electrons at all). In studying ternary nuclear fission
induced by fast neutrons, gamma rays, beta particles,
and neutrons are the main source of the background,
which can be efficiently suppressed by using this
method of particle separation.

An analysis of the correlation between the times
of arrival of pulses from the cathode of the ionization
chamber and the anode of the photomultiplier tube of-
fers wide possibilities for estimating the contribution
of random backgrounds and for investigating their
structure.

To test the spectrometer, we choose the sponta-
neous ternary fission of 2»2Ci. The choice was mo-
tivated by the fact that this reaction was thoroughly
studied, so that the data published in the literature
can be used to test the operating properties of the
setup. We employed a 2°2Cf layer of diameter 5 mm
whose activity was 15 Bq. Figure 3 displays the two-
dimensional spectrum of scintillation pulses that was
obtained in coincidence with the production of frag-
ments. [n addition to alpha particles, the spectrum in-
volves tritons, protons, and electrons. Figure 4 shows
the measured energy distribution of alpha particles.
The yields of tritons and protons with respect to the
yield of alpha particles were 6.96% and 1.4 %, respec-
tively; in [14], these yields were reported to be 7.1%
and 1.6%. The yields of particles and their angular
and energy distributions are in good agreement with
data obtained by other researchers [13, 15].
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Fig. 3. Two-dimensional spectrum of light particles ac-
companying 2*2Cf spontaneous fission in terms of the

area of anode pulses and the area of the fast component
(coordinate axes).

The detector design, the structure of the accumu-
lation system, and the algorithms of data processing
were described in more detail elsewhere [16].

DESCRIPTION OF THE EXPERIMENT

The measurements were performed in a beam
from the EG-1 accelerator at the Institute of Physics
and Power Engineering (Obninsk). The reaction
T(p, n)*He was used to obtain fast neutrons. The
mean current at the target was 10 pA. The yields from
232Th ternary fission induced by fast neutrons of en-
ergy 1.6, 1.8, and 2.2 MeV were measured for the first
time. Since the detector of light particles covered only
part of the solid angle, it was necessary to determine
its detection efficiency. The geometric efficiency € was
obtained by three independent methods.

(i) A Monte Carlo calculation of € was performed
for the actual dimensions of the ionization chamber,
the fissile layer, the scintillator, and the Frisch grid.
The result was € = 10.5%.

(ii) The absolute alpha-particle activity was deter-
mined for the 22Cf layer within the ionization cham-
ber. After that, the working gas of the chamber was
evacuated, and 6-MeV alpha particles from 2°2Cf
spontaneous fission had the possibility of reaching
the scintillator. The ratio of the scintillator counting
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Fig. 4. Energy distribution of alpha particles produced in
ternary fission: (points) data obtained in this study and
(solid curve) data from [13].

rates to the absolute activity of the layer served as an
estimate of the geometric efficiency, which appeared

to be 10.8%.

(iii) In measuring 252Cf ternary fission, the geo-
metric efficiency was determined by using the well-
known value of the ratio of the ternary-fission yield
to the binary-fission yield for this element (T'/B =
3.77 £ 0.11 [5]). The resulting efficiency appeared to
be e = 10.6%.

Three independent methods for determining the
efficiency allowed us to estimate it to a precision
of 4%—that is, ¢ = 10.6 & 0.4. A special feature of
the geometry of the spectrometer is that it records
alpha particles traveling in the forward direction. In
turn, long-range alpha particles are emitted with the
highest probability in the direction orthogonal to the
axis along which fission fragments fly apart. It follows,
among other things, that the maximum probability of
the detection of long-range alpha particles is observed
in the situation where fission fragments fly apart along
the layer (cos# = 0), while the minimum detection
probability is realized for cos# = 1. This effect is ab-
sent if the angular distribution of fission fragments
is isotropic, in which case the geometric efficiency
can be used to determine the probability of ternary
fission correctly. In fact, the angular distributions of
fragments originating from 232Th fission can have
considerable anisotropy and can fluctuate strongly in
the vicinity of vibrational resonances [17]. For each
fission fragment, the angles of escape from the tar-
get were measured throughout the experimental time.
The total angular distributions were reconstructed at
the stage of data processing. In Fig. 5, the angular
distributions obtained in our study are displayed along
with those from [17], where the measurements were
performed with tracking detectors. Some discrepancy
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Fig. 5. Angular distribution of fragments originating from
232Th fission induced by 1.6-MeV neutrons: (points) our
data and (curve) data from [17].

between the angular distributions in the region of co-
sine values close to zero can be explained by fragment
scattering within the target. An additional correc-
tion to the detection efficiency was calculated by the
Monte Carlo method. This was done on the basis of
a specially developed algorithm by using the known
shape of the angular distributions of fragments, the
geometry of the spectrometer, and the angular dis-
tribution of the long-range particles with respect to
the fragment emission angle. This correction did not
exceed 15% of the geometric efficiency throughout
the neutron-energy range being studied, this value
being less than the statistical accuracy attained in the
experiment.

Figure 6 shows the resulting probability of 233Th
ternary fission as a function of the incident-neutron
energy. The mean value of the ternary-fission prob-
ability over the range between 1.6 and 2.2 MeV
is (1.7+0.3) x 1073. The experimental values of
the probability of ternary nuclear fission that were
obtained for both spontaneous and thermal-neutron-
induced fission [1, 7, 18, 19] are displayed in Fig. 7
versus the fissility parameter Z2/A. It is evident
that a fissile system has different values of the
excitation energy, depending on the fission type.
However, a simple analysis of the displayed data
reveals that the effect of the excitation energy on
the ternary-fission probability is modest at low ex-
citation energies. By way of example, we indicate
that, according to available data on the sponta-
neous fission of 24°Pu and 2*2Pu and on #*°Pu and
24Py fission induced by thermal neutrons, these
fissile systems are similar apart from the excita-
tion energy associated with the neutron binding
energy (about 5 MeV). Figure 7 demonstrates that
the difference of the ternary-fission yields is within
the experimental uncertainties in this case. This
fact permits performing a global analysis of our
result obtained for ?33Th and the data available
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Fig. 6. Cross section for 2*2Th fission, total kinetic energy

of fission fragments [2], and probability of 232Th ternary
fission versus the energy of incident neutrons.

from the literature. The fissility-parameter range
between 35.69 and 39 has been investigated quite
comprehensively (see Fig. 7). However, the data
sample presented here can be described, at the
same confidence level, in terms of a wide variety of
functions, so that it is hardly possible to draw an
unambiguous conclusion concerning the behavior
of the ternary-fission probability. The fissility pa-
rameter for ?33Th is 34.76, which is considerably
smaller than the lowest value obtained previously
(?32Pa, Z2/A = 35.69). This allows us to assess
the behavior of the ternary-fission probability over a
wider region of fissility-parameter values. The dash-
dotted line in Fig. 7 represents the ternary-fission
probabilities predicted by the semiempirical formula
[20]

T/B =1.081 x 1077A%3(Z%2/A - 26.12) (1)
x (Z2)A?3 —178.13),

which was obtained within the model assuming a
random rupture of the fissile-nucleus neck.

On the whole, this dependence describes fairly
well the behavior of the ternary-fission probability, al-
though the predicted values are systematically below
the experimental data. The value predicted for 233Th
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Fig. 7. Ratio of the yields of ternary and binary fission for a
set of nuclei as a function of the fissility parameter Z2/A:
(m) spontaneous fission, (O0) fission induced by thermal
neutrons, and (e) data obtained in this study. The dash-
dotted line corresponds to the prediction from [20].

is also somewhat below that which was obtained
in our study; probably, a correction of the empirical
coefficients in (1) is necessary.

Let us consider in more detail the behavior of the
energy dependence of the ternary-fission probabil-
ity. In the region of the 2.2-MeV vibrational reso-
nance, the total kinetic energy of fission fragments
decreases locally by ATKE ~ 0.5 MeV with respect
to nonresonance fission. As was mentioned above,
a fluctuation of the ternary-fission yields in nuclear
fission via vibrational resonances was hypothesized
as one of the possible explanations of this effect. One
of our objectives here was to test the validity of this
hypothesis.

The measurements performed previously by Mehta
et al. [21] showed that the total kinetic energy of
ternary-fission fragments is 12 MeV lower than
that for ordinary binary fission. This fact permits
estimating the ternary-fission-probability value that
is necessary for explaining the observed decrease in
the total kinetic energy,

TKE = (1 — ) TKEg + uTKEr, (2)

where TKE is the mean total kinetic energy deter-
mined for a given neutron energy, TKEp is the mean
total kinetic energy in binary fission, TKE is the
mean total kinetic energy in ternary fission, and p
is the ternary-fission probability. Considering that
TKEg — TKET = 12 MeV, we can easily express the
expected difference in the ternary-fission probability
(Ap) in terms of the difference of the mean total
kinetic energies in fission induced by neutrons of dif-
ferent energies (ATKE),

Ap = ATKE/12. (3)
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Using (3), we can easily find that the observed
difference in TKE (about 0.5 MeV) could be explained
by an increase in the ternary-fission probability by
0.042. The experimentally observed variation in the
ternary-fission probability is 0.0012, which is about
40 times less than the expected value. It follows that,
despite the meager available statistics of ternary-
fission events, experimental data unambiguously lead
to the conclusion that the local decrease in the total
kinetic energy in the region of vibrational resonances
cannot be explained in terms of a local increase in the
ternary-fission probability.
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Abstract—The time-of-flight technique is used to measure the ratios R(E, E,) = N(E, E,,)/Nci(E) of
the normalized (to unity) spectra N(E, E,,) of neutrons accompanying the neutron-induced fission of
238U at primary-neutron energies of E,, = 6.0 and 7.0 MeV to the spectrum Nci(E) neutrons from the
spontaneous fission of 2°2Cf. These experimental data and the results of their analysis are discussed
together with data that were previously obtained for the neutron-induced fission of 23U at the primary
energies of E,, = 2.9, 5.0, 13.2,14.7, 16.0, and 17.7 MeV. © 2004 MAIK “Nauka/Interperiodica”.

INTRODUCTION

During the evolution of a fissile nucleus from the
equilibrium to the saddle-point configuration, neu-
tron emission is the main channel among those that
compete with the fission process. It is common prac-
tice to assume that the time of the transition from the
saddle to the scission point is so short that a signifi-
cant number of particles cannot be emitted within it.

Up to the threshold of emission fission, there is
no preequilibrium component either in the measured
spectra of prompt fission neutrons or in their mean
multiplicity. Secondary neutrons are emitted predom-
inantly from fully accelerated fragments originating
from the fission of the primary compound nucleus A.
When all directions in which fission fragments may
fly apart are equiprobable, the shape of the spectra
of prompt fission neutrons is identical at any angle
and is the simplest, being close to that of a Maxwell
distribution. This case is realized in nuclear fission
induced by thermal neutrons or in the spontaneous
fission of nuclei. The emission of postfission neutrons
has but a small effect on the observables of the fission
process, and one can take this effect into account by
means of the corresponding corrections. The emis-
sion of prefission neutrons leads to more far-reaching
consequences. It forms new possibilities for fission—
new reactions in which nuclei of lower mass undergo
fission come into play. This causes serious difficulties
for studying the properties of the fission process as
functions of energy.

In emission fission, the shape of the spectra of
prompt fission neutrons differs significantly from the
shape of the postfission component because of the

* . . . . .
e-mail: svirin@ippe.obninsk.ru

contribution from prefission neutrons. The spec-
trum of neutrons from fully accelerated fragments
serves as a reference of shape, and it is against this
reference that one observes effects associated with
the emission of prefission neutrons. A comparison
of the experimentally measured ratios R(E, E,) =
N(E, E,)/Nci(E) of the normalized (to unity) spec-
tra of neutrons from the neutron-induced fission of
the nuclides under study, N(E, E,,), at the primary-
neutron energies of E, = 2.9 and 14.7 MeV to the
spectrum Nc¢;(F) of neutrons from the spontaneous
fission of 2°2Cf [1—3] demonstrates clearly, for 232Th,
252381 and %*"Np target nuclei, the distinctions
between the shapes of the measured distributions
below and well above the threshold for emission
fission. The calculated curves that were obtained
on the basis of the model of two neutron sources
reproduce satisfactorily the shape of the observed
distributions at E,, = 14.7 MeV over a broad region
of secondary-neutron energies (E >2 MeV). In
the “soft” section of the spectrum (E <2 MeV),
however, the calculated curves lie considerably lower
than the corresponding experimental values [1, 2, 4].
An anomalously high yield of soft neutrons was also
observed in the distributions R(E, E,,) measured at
different energies for 238U (at E,, = 13.2 MeV [5] and
at 16.0 and 17.7 MeV [6, 7]) and for 232Th (at 14.6
and 17.7 MeV [8]).

In order to remove the discrepancy between the
results of the calculations and experimental data for
E,, > 13 MeV, one can assume that, at high exci-
tation energies of the primary compound nucleus, a
third source of neutrons, that which produces soft
neutrons, comes into play. In [7—9], the system of
well-developed fragments prior to their separation—
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that is, the system of nonaccelerated fragments—was
considered as a third source. It was assumed that
this dinuclear system is in a statistical equilibrium
with respect to all degrees of freedom and that its
lifetime is sufficiently long for neutron emission to
occur, provided that this is energetically possible.
With allowance for three neutron sources, it proved
to be possible to describe the experimental behavior of
the distributions R(E, E,,) for E,, > 13 MeV over the
entire measured range of prompt-fission-neutron en-
ergies, including the anomalous segment F < 2 MeV.

The entire body of accumulated data on the spec-
tra of fission neutrons in the region of emission fis-
sion is insufficient for pinpointing primary-neutron
energies (FE,) at which the traditional model of two
neutron sources describes experimental results ade-
quately. Alternatively, the question is that of deter-
mining the energy value FE,, above which the third
source of neutrons comes into play. In order to an-
swer this question, we must have at our disposal
experimental information about the spectra of prompt
neutrons from 238U fission over the range between
the emission-fission threshold of £, = 6 MeV and
E,, =13 MeV. In order to supplement the data ob-
tained previously, we have measured and analyzed
the energy distributions R(FE, E,,) at the emission-
fission threshold of E,, = 6 MeV and at the beginning
of the second plateau in the fission cross section (at
E,, =7 MeV). We present here the respective results
and assess the mean multiplicity and the mean energy
of prompt fission neutrons within the models of two
and three neutron sources.

1. DESCRIPTION OF THE EXPERIMENT

The spectra of neutrons from the fission of 238U
nuclei were measured over the energy range E =
0.14—15 MeV. The measurements relied on the time-
of-flight method and employed a fast-neutron spec-
trometer created at the Institute of Physics and Power
Engineering (Obninsk) on the basis of the EGP-
10M electrostatic charge-exchange accelerator. The
most important units of the spectrometer included a
source that produced fast neutrons via the reaction
T(p,n)3He occurring on a gaseous tritium target, a
neutron detector, a fission-fragment detector in the
form of a multilayer flow-type ionization chamber, a
system for monitoring primary neutrons, and elec-
tronics.

In choosing a source of neutrons, we tried pri-
marily to obtain a reasonably high neutron flux at a
high energy resolution and a low background from
structural materials. As a source of monoenergetic
neutrons, a gaseous tritium source [10] bombarded
with protons from the EGP-10M accelerator satisfies
these requirements. A gaseous-tritium-containing
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target chamber in the form of a thin-wall (0.2-mm-
thick) steel cylinder 40 mm in length and 10 mm
in diameter was mounted in the ion guide of the
accelerator. Two windows between which a cooling
helium flux circulated separated tritium from the vac-
uum system of the proton accelerator. The windows
were made from rolled 38Ni foils of thickness 10 pm,
which were tightened with ring indium gaskets. The
geometric dimensions of the proton beam incident on
the target were bounded by bars having a straight-
through hole of diameter 6 mm, which were located
at a distance of 10 cm upstream of the target. The
inner surfaces of the target and of the cooling cell,
as well as the side of the bars that faces the beam,
were covered with a layer of the ®®Ni isotope (its
degree of enrichment was 96%) 0.1 to 0.3 mm
thick. This was done in order to reduce the yield of
background neutrons from the reaction (p,n) on the
structural materials of the target—the threshold for
the reaction °®Ni(p, n) is rather high (9.5 MeV). A
detailed comparison of the parameters of solid-state
and gaseous tritium targets as neutron sources was
performed in [11]. It was shown there that, in the
case of a gaseous tritium target, the contribution of
nonmonoenergetic neutrons did not exceed 1% at
proton energies in the region E, < 9 MeV; at the
same time, it turned out that, with solid-state tritium
targets, it was very difficult to obtain monoenergetic
neutrons of energy in excess of 5 MeV.

In order to determine the sought energy of neu-
trons emitted at zero angle with respect to the inci-
dent proton beam (in this direction the neutron energy
and yield are maximal), it is necessary to know the en-
ergy of bombarding protons. In the present study, the
accelerated-proton energies of F, = 7.7 and 8.5 MeV
were used to obtain the neutron energies of E,, = 6
and 7, respectively.

The neutron detector consisted of a paraterphenyl
crystal 5 cm in diameter and 5 cm in thickness and
a FEU-143 photomultiplier tube (Kren) produced in
Russia. An anode signal from the photomultiplier
tube served for forming a “start” label and for iden-
tifying a pulse in shape with the aim of suppressing
photons.

A scintillator from paraterphenyl has a higher
neutron-detection efficiency than a stilbene crystal.
This enables us to create a neutron detector having a
lower energy threshold for recording neutrons, about
100 keV, and an absolute efficiency of about 50%.
These are features of paramount importance for per-
forming a thorough investigation into the low-energy
section of neutron spectra (F <2 MeV), which is
of greatest interest for revealing the mechanism of
neutron emission in spontaneous fission. For the first
time, such a detector was created and applied in [12].
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Our neutron detector had the following properties:
the time resolution was about 2.5 ns; the energy
threshold for neutron detection was about 80 keV;
and the photon-suppression factor was about 10.
The detector was placed within a special, combined,
massive shielding in the form of a tank filled with a
mixture of lithium hydride and paraffin. A truncated
steel pyramid of length 70 cm was arranged in front of
the tank. In order to suppress the photon background,
the detector was surrounded on all sides by lead of
thickness 10 cm; the end face of the crystal was
closed with lead 0.5 cm thick. Thereby, we ensured an
efficient shielding of the neutron detector, and this led
to a considerable reduction of the background from
photons and neutrons scattered by the walls and the
floor of the experimental hall.

The fission-fragment detector has already been
repeatedly described in the literature (see, for exam-
ple, [1, 2]); in view of this, only a brief characteriza-
tion of its structure and operation is given here. A
multilayer flow-type ionization chamber containing
fissile-substance (238U) layers of total weight 5.61 g
served as the fission-fragment detector. In order to
reduce the electrical capacitance, the chamber was
divided into three sections. Each section was con-
nected to a specially developed small-size, wideband
preamplifier. One of the sections contained layers of
the substance under study, with the ?*2Cf isotope
being uniformly distributed over its thickness. This
made it possible to determine the neutron-detector
efficiency and to measure the fission-neutron spectra
in question with respect to the spectrum of neutrons
from the spontaneous fission of 22Cf. A simulta-
neous measurement of the fission-neutron spectrum
being studied and the respective spectrum for the
reference nucleus 2°2Cf under identical conditions
makes it possible to get rid of many experimental
errors. The efficiency of fission-fragment detection
was about 70%. Pure methane (99.9%) was used
as a flowing gas. Special attention was given to the
identity of the features of the cross sections for 233U
and the reference nucleus 252Cf.

The electronic system that was part of the fast-
neutron spectrometer was implemented within the
CAMAC standard. It included equipment connected
to the detectors in the experimental hall; equipment
for separating, selecting, and sorting events and for
coding, processing, and counting events; electron-
ics involved in the detection, on-line accumulation,
control, and graphical representation of relevant in-
formation; and equipment for saving, storing, and
processing information, as well as for recasting it
into a convenient form. A dedicated package of codes
was developed for accomplishing a computer-aided
control of the experiment. A more detailed description
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of the electronic equipment used was given in [13].
In order to record the time-of-flight spectra of neu-
trons from four sections of the chamber simultane-
ously, one time analog-to-digital converter was used
in the spectrometer, whereby it was possible to reduce
considerably systematic errors associated with the
differential nonlinearity and temperature drift of the
converter. This enables us to use the accelerator in
the continuous mode. The stability of operation of the
electronics and detectors was monitored by tracing,
on the time scale, the shape and the position of the
photon peak from the spontaneous fission of 2°2Cf
nuclei occurring in the ionization chamber.

The procedure of measurements (accumulation of
information) consisted in repeating measurements of
neutron spectra many times for each section of the
ionization fission chamber, which was arranged at an
angle of 45° with respect to the proton-beam axis at
a distance of 15 cm from the target center. In order to
monitor the flux of neutrons emitted from the target,
use was made of an all-wave counter oriented at an
angle of 90° and positioned at a distance of about 3 m.

The accumulated single experimental spectra were
summed, but, preliminarily, they were shifted along
the time scale in order to compensate for the time drift
of the equipment used. For this, we calculated, for
each single spectrum associated with each section,
the position of the centroid of the photon peak and
determined the shift in terms of channel fractions.
Upon performing data treatment in this way, we ob-
tained the total time spectra for each of the four sec-
tions of the fission chamber. After that, a correction
for different flight-path lengths for each section was
introduced in these total time spectra. The spectra
corrected in this way were summed and converted
into energy spectra.

In Fig. 1, the results of our present experiment are
given in the form of the directly measured ratios of the
prompt-neutron spectrum N(E, E,,) for 233U fission
induced by neutrons of energy E,, =6 and 7 MeV
to the neutron spectrum Nci(E) for the spontaneous
fission of 252Cf; that is,

R(E,E,) = N(E,E,)/Nc¢(E).
The experimental data in question were treated in
such a way that, with allowance for the contribution

from neutrons of energy in the region F < Fyn =
0.14 MeV, both spectra were normalized as

/ N(E, Ey)dE = / Nes(B)dE = 1.
0 0

The error in the experimental data was determined
primarily by the statistical accuracy of the measure-

ments (1.5—25%). The mean energy of neutrons was
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R(E, E,)
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T
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Fig. 1. Ratios R(E, E,,) of the spectra of neutrons from the 233U 4 n fission process to the spectrum of neutrons from the
spontaneous fission of 2»2Cf. The points represent experimental values. The dotted (for E,, = 2.9 MeV) and the dashed (for
5 MeV) curves correspond to the ratios of the Maxwell distributions in (22). The solid and dash-dotted curves illustrate various
versions of the description of experimental distributions for E,, = 6 and 7 MeV (see main body of the text). The dashed lines

show the level of the postfission component.

evaluated by means of integration over the normalized 2. EMISSION OF POST- AND PREFISSION

observed spectrum N (E, E,,),

B(E,) = / EN(E, E,)dE.
0

NEUTRONS
2. 1. Basic Relations

The emission of neutrons from an excited fissile
nucleus prior to its disintegration is the main channel

This yielded E(E,)=1.99+0.03 MeV at E, = that competes with fission. If the excitation energy
6 MeV and E(E,)=187+0.03 MeV at E, = FE ol theprimary parent nucleus A'is less than some

7 MeV.

threshold value, E* < Ey,, = B4 + B?_l (where B

PHYSICS OF ATOMIC NUCLEI Vol.67 No.7 2004
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and B}‘l_l are respectively, the neutron binding en-

ergy in the nucleus A and the height of the fission bar-
rierin the nucleus A — 1), then, upon the emission of a
first-chance neutron, the residual nucleus A — 1 can-
not undergo fission. In the case of this, single-chance,
fission, the excited fragments originating from the
fission of the nucleus A, which are accelerated owing
to their mutual Coulomb repulsion, will be the only
source of neutrons. As to the emission of neutrons, it
is governed by the evaporation model, in which case
the angular distribution is nearly isotropic in the c.m.
frame of a fragment of mass number M, while their
energy spectrum has the form [14]

1 k €
T Tk geric P ( 9) dz, (1)
where k=1 and 0 = 7 (M — 1) for single-chance
emission, k=15/11~1/2 and 6 = (11/12)7, (M —
1) for multichance emission, and 71(M — 1) is the
temperature of the residual nucleus M — 1 after the
emission of the first neutron.

In rescaling the distribution in (1) from the c.m.
to the laboratory frame, we use the relation e = F +
w — 2VwE cos between the energies involved [the
transition Jacobian is J(e, E) = \/E/e]; taking into
account the contribution from the complementary
fragment (under the assumption that the two frag-
ments are identical, M = A — M = A/2), we obtain
the expression at k = 1/2 for describing the spectrum
of neutrons at different angles v with respect to the
direction along which the fragments fly apart:

n(e, M)d

£\ /2
Ny (E,)dEdQ = (2r) ! (m) (2)
w+FE 2Vwk
X exp (_T> cosh 7

The angular distributions of neutrons in the labora-
tory frame are highly anisotropic, having the shape of
rather narrow rosettes along the direction of fragment
motion. Expression (2) can easily be generalized to
the case of fragments whose parameters are different.
For example, one can readily take into account the
difference of the mean kinetic energies w per nucleon
for two groups of fragments, light and complementary
heavy ones.

cos 1/)) dEdS).

Integration of expression (2) over the solid angle
dQQ = 27 sin ¢dy leads to the well-known Watt for-
mula

Nw(E,0,w) = (mwf) "/ (3)

( w—l—E) . <2\/wE>
x exp | — 7 sinh 7
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with the mean energy given by
Ew =30/2 + w. (4)

Expression (3) describes integrated spectra, which
are identical at different angles if all directions at
which fragments fly apart are equiprobable. This case
is realized in spontaneous fission and in fission in-
duced by thermal and fast neutrons—for example, in
the experiments of our group at E,, = 2.9 MeV [2, 3]
and at 5.0 MeV [5]. The parameters 6 and w, which
are to be determined from experimental results, are
averages over a broad distribution of excitation ener-
gies of fission fragments and over their mass distribu-
tion. Expression (3), which depends on two parame-
ters, is not convenient in constructing a systematics
of mean energies and in simulating the spectrum of
postfission neutrons in emission (multichance) fis-
sion.

For fission events characterized by w — 0, which
are not realized in experiments, the Watt formula
reduces to a Maxwell distribution; that is,

Num(E,T) =2 (%)1/2 exp (—%) . (D)

Although there is no physical validation of the appli-
cation of relation (5) to describing the spectra of fis-
sion neutrons, it is widely used to parametrize the re-
sults of measurements. In this parametrization, there
is only one parameter (7"), which is determined from
the least squares fit to experimental spectra N(E, E,,)
and which is related to the mean energy as

Enm = 3T/2. (6)

Experimental results revealed that the spectra of
prompt neutrons from spontaneous fission [15, 16],
fission induced by thermal neutrons [17, 18], and fis-
sion induced by fast neutrons in the case of single-
chance fission (E, < B;}_l) have a shape close to
that of a Maxwell distribution. Deviations from it can
be taken into account quite correctly in terms of the
shape function p(E),

N(E) = Nu (B, T)u(E). (7)

This function has received the most detailed study

for the spontaneous fission of 2°2Cf[19]. The features
of this fission process have the status of a neutron
reference [20].

An analytic estimate of the shape function can be
obtained with the aid of the relation [21]

if the parameters 6 and T are eliminated from (3)
and (5) by using the assumption that the mean en-
ergies involved are equal, Fyy = Em = E. The result
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is
B —1/2
i(E) = § [%;(E - w>] ©)

for w — 0, we have i(E) — 1. An expression that
approximates the thoroughly studied shape function
for the 252Cf nucleus is given in [5].

As soon as the excitation energy of the primary
compound nucleus A is increased above the threshold
for the respective (n,n’ f) reaction, E* > Ey, (E, >

B?’l), the fission process appears to be of an emis-

sion character. In this case, each of the (n,zn’f)
reactions [where z = 0, 1, ..., Zmax(Ey) is the number
of neutrons emitted prior to the fission of, respectively,
A A—1, ..., A— zqma(E,) isotopes] makes a contri-
bution o4, (£y) to the total fission cross section:

Tmax (En)

Uf(En) = Z UfA—x(En)' (10)
=0

The first chance of fission corresponds to x = 0, and
the (xmax + 1)th chance corresponds to x = xmax;
here, zmax(Fy) is the maximum number of prefission
neutrons that is possible for a given value of the
primary neutron energy E,,.

Within traditional concepts, one considers two
sources of neutrons accompanying the emission fis-
sion of nuclei. These are (i) the source of postfission
neutrons, which originate from the fully accelerated
fragments formed in the fission of A, A —1, ..., A —
Tmax (Ep) isotopes, and (ii) the source of prefission
neutrons, which originate from fissile nuclei them-
selves prior to their disintegration. Accordingly, the

Er=3 7 0Bna—a
UAf:t =

Bia_g

of the nucleus A — x.

The estimate of the mean neutron multiplicity
ijA_x(Enx) in (12) was based on the use of the
systematics of 7¢(F,) in [22] and its extrapolation to

the region E,, > By4_ of emission-fission energies,
lijfx(Enac) =233 (15)
+0.06 [2 — (-1)47"7% — (—-1)7]
+0.15(Z — 92) + 0.02(A — = — 236)

+[0.130 + 0.006(A — & — 236)](Ene — Eia),
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differential yield of secondary neutrons can be repre-

sented as the sum of two components; that is,

dv(E, E,) B dvii(E, Ey) dﬂpre(E, E,)
dE dE dE

(11)

The energy distribution of postfission neutrons
from fully accelerated fragments can be represented
as a superposition of Maxwell distributions:

— l’max(En)
dvisi(E, Ep) _ =
el V' S Bl 7/ E _(F 12
dE i ViaA x( nac) ( )
JfAfx(En)

X w(EYNnw(E,T,) o1 (By)

In contrast to the primary compound nucleus A
(?*U, 2 =0, E,o = E,), which is characterized
by a single value of the excitation energy, E*
E,, + B, 4, the residual nuclei A — z(x > 1) formed
upon the emission of x neutrons are characterized
by a distribution of excitation energies U = E* —

Fu_o(U) = dopg <E Y Buai—U | JdE,
1=0
(13)

where doy,,(E)/dE is the spectrum of neutrons
emitted from the excited nucleus A+ 1—x (the
main channel that competes with the fission of the
nucleus A+1—xz). The primary-neutron energy
Eny =UA_z — Boa_p and the mean multiplicity

Ut A—z(Enz) of prompt neutrons from fully accelerated
fragments correspond to the mean excitation energy

E*_ZZ'I:O Bra—q
Fa_,(U)dU (14)

Bia_g

Ei, = 18.6 — 0.362% /(A — x)
+022— (1) % - (-1)?] = Bha—s

[in (15), A is a compound nucleus—that is, a target
nucleus plus one neutron], while the estimate T, =
2E,/3 was based on the Terrell semiempirical for-

mula [23]

Efx:a—l-b‘/lij_x-Fl, (16)
where the parameters take the values of a = 0.75 MeV
and b = 0.65 MeV [24], which are universal for all
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nuclei. The constant « in (12) was introduced to
fit experimental data and to compensate for the
inevitable error in the description of 7p4_y(Ens) on
the basis of the systematics of ¢ (£,). A similar un-
certainty is also inherent in the use of the systematics
of Ty; in view of this, the quantity T,, = 2ﬂEfx/3 was
varied within 3% with the aid of the constant j.

The differential yield of prefission neutrons in
emission fission can be represented in the form

Avpe(E, Ep)

dE (17
Tmax(Fn) [ Tmax(En)
le ( Z N.i(E, Ey) Uf;i(E(nE)”))
In expression (17),
Nopi(E, Ey) = don(E, Ey)

dE
< JAE. En>/ [ B e g G8)
E

is the normalized (to unity) spectrum of neutrons
emitted by nuclei A + 1 — x (at a fixed value of z = 1,
2, 3, ...) whose energies F are such that the subse-
quent fission of residual nuclei A — i formed upon the
sequential emission of 4 neutrons (¢ > x) is energet-
ically possible. The cutoff function f;(E, E,) is the
probability of the fission of nuclei A — i as a function
of the emitted-neutron energy E:

fi(E, Ep) (19)
= Pra_ <Ui =B - ZBnA—x-‘rl - E> -
rz=1

[f one disregards effects associated with tunnel pene-
trability of the fission barrier, nuclei A — ¢ cannot un-
dergo fission at energies satisfying the condition U; <
By a_;. The neutron spectrum do,,.(E, Ey,)/dE (1 <
x <1) is cut off by the function f;(E,E,) at the
threshold energy

i
=B — ZBnA—ac—f—l —Bjya_i.

r=1

E=EM

The neutron spectra studied here refer to the
primary-neutron-energy region E,, < 20 MeV, where
there can occur the one-, two-, and three-chance
fission reactions 233U (n, xn'f), z = 0,1, 2. In the en-
ergy region E,, < Bya_ ol the one-chance reaction
(x =0), we have dip/dE = 0. The expression for
the spectrum of prefission neutrons in the energy
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range Bpa_1 < E, < Bya-1+ Bya_o of the two-
chance reaction [zmax (Fy) = 1in (17)] has the form

dﬂpre(E, E,) ora—1(En)
— - =Nn1(E,E,) ———=~ 20
In the energy range Bpa_1+Brao2<E,<

By a-1 + By a—2 + Bya_3 of the three-chance reac-
tion [xmax (Ey) = 2 in (17)], the spectrum in question
is given by

dvye(E, E, —1(En
l/pl’e( ) ) :Nll(EaEn)O-fA 1( ) (21)
dE or(Ep)
ora—2(En)
+ Nyo(E, E,) A2\ En)
12( ) of(En)
ora—2(En)
Ny (E, E,) A2 En)
25 ) =0 (B

2.2. On the Shape of the Fission-Neutron Spectra
in the Reaction®*3U (n, f) at E,, = 2.9 and 5 MeV

In the studies of our group, the shape of the
fission-neutron spectra from (n, f) reactions was
investigated in detail at E, =2.9 MeV for target
nuclei 232Th, 23%238U [1, 2], and 23"Np [3] and at
5 MeV for 22U [5]. For these energy values (E,, =
2.9 and 5 MeV), the measured spectra of neutrons
from 23U fission are given in Fig. 1, along with
their description. As was mentioned above, the data
are presented in the form of the ratios R(E, E,) =
N(E, E,)/Nc¢i(E) of the normalized (to unity) quan-
tities

_dv(E,E,) ,_
N(E.Ey) = P
for the induced fission of 238U and the quantity
dvci(E) ,_
NCI(E) = dT/VCI

for the spontaneous fission of 2°2Cf. The experimental
ratios R(E, E,) are described satisfactorily by the
smooth energy dependences

Nu[E, T(En)]
Nm(E, Ter)

T \** [Tei—T(E
_( CI) exp{cr (n)E:|7

T(En) TCTT(En)
which are obtained as the ratios of the Maxwell distri-
butions in (5) at the temperatures of T = 1.42 MeV
and T(E, = 2.9 MeV) = 1.332 MeV (dotted curve)

and T(E, =5 MeV) = 1.352 MeV (dashed curve).

At a rather high precision achieved to date in

measuring R(E, E,,), these functions carry virtually
no information about the deviations of the shape of

Ry (E,E,) = (22)

Vol. 67 No.7 2004



SPECTRA AND MEAN ENERGIES OF PROMPT NEUTRONS FROM 2¥U FISSION

the spectra N(E, E,) under study from (5). If, in
reconstructing the spectra N(E, E,) on the basis
of the experimental ratios R(FE, E,,), one takes the
Maxwell distribution in (5), the resulting description
of the spectra in question will have the same form.
From the estimate presented in [19] and based on a
vast body of experimental data and from the results
of theoretical calculations, it follows, however, that
the spectrum N¢;(FE) for the spontaneous fission of
californium features quite significant deviations from
a Maxwell distribution. These deviations can be taken
into account in terms of the shape function in (7).
This means that the deviations of the fission spectra
N(E, E,) being studied from the Maxwell distribu-
tion in (5) are similar to the deviations p(E) exhibited
by the shape of the reference spectrum. The foregoing
is valid for other actinide nuclei as well; therefore, the
statement that the shape function is “universal” [3]
is quite plausible. Thus, we can say that, at actual
errors in measuring R(E, E,,), information about the
shape of the spectra N (E, E,,) under study is correct
inasmuch as the estimate of u(E) for the reference
spectrum is reliable—that is, the situation here is typ-
ical of what we usually have for the results of relative
measurements.

2.3. Spectra of Prompt Fission Neutrons at E, = 6
and 7 MeV (at the Emission-Fission Threshold
and above It)

Let us discuss the data presented in Fig. | and ob-
tained by measuring anew the energy dependences for
R(E, E,,) at the primary-neutron energies of E,, = 6
and 7 MeV. A specific feature in the soft section of the
experimental distributions in the form of a bell stands
out clearly against the background of a nearly linear
dependence of R(E, E,) at E, = 2.9 and 5 MeV in
the same region of secondary-neutron energies. At
higher energies, £ > 1 MeV at F,, = 6 MeV and F >
2 MeV at E,, = 7 MeV, all four distributions have the
same form peculiar to postfission neutrons.

The feature in the shape of the distributions at
FE, =6 and 7 MeV is a manifestation of the contri-
bution of postfission neutrons, which appear as soon
as the relevant (n,n'f) reaction becomes possible.
Figure 2a shows the prefission-neutron spectrum
dvpre(E, Ey)/dE calculated at E,, =7 MeV accord-
ing to (20) for two versions of the cutoff function,
(which is given in Fig. 2b): (curve 1) the function
fi(E, E,) simulated in the form of a step function
with a smoothed edge and (curve 2) the function
fI(E,E,) = Pra (U = E, — E) [see (19)]. If one
disregards the tunnel penetrability of the fission bar-
rier, the threshold for the relevant (n,n’f) reaction
cuts off the spectrum do,1(E, E,)/dE of first neu-
trons (Fig. 2¢) at the secondary-neutron energy £ =
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Fig. 2. (a) Spectrum of prefission neutrons at E, =
7 MeV according to our calculations for two versions
of the cutoff function f1(E, Ey): (curve ) that which is
simulated in the form of a step function with a smoothed
edge and (curve 2) that which is defined by (19); () cutoff
function (the notation for the curves is identical to that
in Fig. 2a); (c¢) spectrum of first neutrons (solid curve)
and its components: (dotted curve) compound compo-
nent and (dashed curve) preequilibrium component.

E}hr = E, — Bya_1. From Fig. 2, it can be seen that
the spectrum of prefission neutrons (Fig. 2a) is deter-
mined primarily by the compound component of the
spectrum of first neutrons (Fig. 2¢). In this prefission-
neutron spectrum, the fraction of preequilibrium neu-
trons of energy in the region £ < 1.5 MeV is more
than one order of magnitude less than the fraction of
the compound component.

Various versions of the description of the experi-
mental data at £, =6 and 7 MeV in terms of ex-
pression (11)—that is, in terms of a linear combi-
nation of the contributions from post- and prefission
neutrons [dbii(E, Ey,)/dE (12) and dvye (E, Ey)/dE
(17), respectively] for xmax(Ey) = 1—are illustrated
in Fig. 1, where the respective results are given in the
form of the ratios R(E, E,,). The mean yields 7; and
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Calculated mean yields, mean energies (in MeV) for the components of the neutron spectra, and cross sections for

individual chances (in barns)

Cutoff function 7 ‘ Do ‘ Vpre ‘ ‘ Eisi ‘ Epre ‘ 0239 ‘ o238 ‘ X% /N
E, =6 MeV
fi(E, E, =6 MeV) 3.201 3.155 0.046 1.995 2.020 | 0.261 0.536* 0.026** 1.42
fi(E, E, =65MeV) | 3.201 3.115 0.086 1.994 2.038 | 0.391 0.536* 0.051* 0.50
E, =7MeV
fi(E, E, =7 MeV) 3.374 | 2.980 0.394 1.861 2.018 | 0.676 0.582* 0.379* 1.16
Steplike f1 3.374 | 2.980 0.394 1.859 | 2.026 | 0.600 0.582* 0.379* 2.07

Note: Given in the ’Eable are the mean yields and mean energies for (D, i) postfission neutrons from [ully accelerated fragments and
(Dpre = O pa38/0f, Epre) for prefission neutrons; also given are the sum 7 = D, + Dpre and the quantity E determined according to (30)

(see below).

* Values obtained from a description of the standard cross section for 223U fission by means of its decomposition into individual

chances.

** The second-chance-fission cross section o238 was obtained from the best fit to the fission-neutron spectrum with the cutoff

function f1(E, En, = 6 MeV).

the mean energies F; (¢ = faf, pre) for the components
of the neutron spectra and the fission cross sections
for various chances, oy4_,, are presented in the table
for various versions of the calculation.

The best description of the experimental data
at £, =6 MeV is achieved with the cutoff func-
tion fi(E, En) = Pra—1(U = E,, — E) calculated at
E, =65 MeV (and not at 6 MeV, as would be
more natural). In this version of the calculation,
the fission cross section oy = 039 4 0238 and its
first- and second-chance components (o239 and
0 ra38, respectively) were taken from a self-consistent
description of the standard cross section for the fission
of a 238U target nucleus by means of its decompo-
sition into individual chances [7]. In describing the
experimental distribution R(E, E,) at E,, =6 MeV
with the relevant cutoff function f1(F, E, = 6 MeV),
the best fit to experimental data was obtained upon
reducing the second-chance-fission cross section
0 ro38 nearly by a factor of 2 (see table). In Fig. 1, one
can see that, for this version of the calculation, curve /
does not lie in the region of experimental points at
low energies (E < 0.8 MeV). [For the presentation in
Fig. | to be clearer, the soft sections of the spectra
(E <2 MeV)at E, =6 and 7 MeV are shown on
the left, while the spectra for the entire range of
measured energies E are displayed on the right.] The
calculated spectrum of prefission neutrons appears to
be softer than the spectrum observed experimentally.
The description of the spectrum with the function
fi(E, E, = 6.5 MeV) (solid curve in Fig. 1 for E,, =
6 MeV) leads to satisfactory agreement with the
experimental results.
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In contrast to what we have in the case of E,, =
6 MeV, the description of the experimental distribu-
tion R(E, E,) at 7 MeV with the relevant function
fi(E,E, =7 MeV) reproduces the shape of the
observed distribution over the entire range E = 0.14—
15 MeV of measured energies (solid curve), this being
indicative of an adequate interpretation of features
that are associated with the emission of prefission
neutrons. In the low-energy region (E < 1.8 MeV),
these features are especially pronounced against
the background of a nearly linear dependence for
postfission neutrons from fully accelerated fragments.
Curve 2 in Fig. 1 for E, =7 MeV—it was calcu-
lated with the cutoff function in the form of a step
whose edge is smoothed [a simplified version of the
simulation of f1(F, E,)]—reproduces the shape of
the spectrum somewhat worse in the energy region of
prefission neutrons.

Additional experimental investigations are re-
quired for establishing the reason why the description
with the relevant cutoff function f1(E, E, = 6 MeV)
is unable to reproduce experimental results at E,, =
6 MeV. Detailed measurements and a detailed anal-
ysis of the fission-neutron spectrum on the two sides
of the emission-fission threshold E,, = Bys_;—for
example, over the range of primary-neutron energies
E,, between 5.6 and 6.6 MeV with a step of AE =
0.2 MeV—could contribute to clarifying this point.
At energies in the region E,, < Bf4_1, the probability
for a nucleus A — 1 (?*®U) to undergo fission is deter-
mined by the tunnel penetrability, which is sensitive
to the shape of the fission barrier. The distinction
between the barrier shape used in the calculation and
that which actually exists may be the reason why it
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R(E,E,)

20 -

E,=5.0MeV E,=132MeV

14.7 MeV

E, MeV

Fig. 3. Ratios R(F, E,) of the spectra of fission neu-
trons from the reaction 2**U(n, zn’f) to the spectrum
of neutrons from the spontaneous fission of 2*>Cf. The
points represent experimental data. The solid curves /
and 2 show the results of the calculation disregarding the
contribution of neutrons from nonaccelerated fragments
[see (11)] and employing (/) fi(E, Ey) in the form of
a step function with a smoothed edge or (2) that taken
according to (19); curve 3 corresponds to the calculation
allowing for the contribution of neutrons from nonaccel-
erated fragments [see (25)] and employing fi(E, Ey) in
the form (19). The dashed lines show the level of the
postfission component.

is necessary to select f1(E, E,). At E, =7 MeV, the
excitation energy of the fissile nucleus A — 1 (?38U)
is 1 MeV above the barrier height, with the result
that the function fi(FE, E,,) is virtually insensitive to
the barrier shape. In principle, the true reason can be
different, however.

Thus, we can see that, within the model of two
sources, the experimental distributions of neutrons
from the emission-fission process induced in 23U
target nuclei by incident neutrons of energy 6 or
7 MeV can be described in terms of relations (11).
The change in the shape of the distribution of the
neutron yield at low energies in relation to the shape
of R(E,E,) at E, =2.9 and 5 MeV is adequately
described by the contribution of prefission neutrons.
A sharp decrease in the yield of prefission neutrons
at higher energies F owing to the cutoff of the spec-
trum of first neutrons by the function f,(E, E,,) and
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Fig. 4. Ratios R(E,E,) and their angular depen-
dence. The points represent experimental data. The solid
curves show the results of the calculation (/) with-
out and (2) with allowance for the contribution of neu-
trons from nonaccelerated fragments [see Egs. (11)
and (25), respectively], the cutoff function f;(E, E,) be-
ing parametrized in the form of a step function with a
smoothed edge. The dashed curves were calculated for
angles of (upper curve) 30°, (middle curve) 90°, and
(lower curve) 150°.

the softness of their spectra in relation to the harder
spectrum of postfission neutrons make it possible to
observe it against the background of the postfission
component in the measured dependences R(E, E,,).

2.4. Features of the Shape of the Spectrum
of Neutrons Accompanying Emission Fission
forE, > 13 MeV

The “family”of single-type distributions R(F, E,,)
for the emission fission of 23U target nuclei that is
induced by neutrons of energy E,, = 13.2, 14.7, 16.0,
and 17.7 MeV is displayed in Figs. 3 and 4. For the
sake of comparison, the distributions R(F, E,) at
E, =5 and 7 MeV are also presented in Fig. 3; the
shape of the last two was discussed above (see Fig. 1).
A detailed analysis of the shape of R(E, E,,) for E,, >
13 MeV is given in [5, 7]. Here, we will dwell only on
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its basic points in connection with the emergence of
new experimental information at E,, = 6 and 7 MeV.

In the region E, > 13 MeV, a manifestation of
the cutoff of the spectrum of first neutrons by the
threshold of the reaction (n,n’f) at the energy F =
E}hr = B, — Bya_1 is associated with the preequilib-
rium component of neutrons; at F,, = 6 and 7 MeV,
this is associated with the compound (evaporation)
component. If the spectrum of first neutrons for F,, >
13 MeV were of a purely evaporative origin, then the
number of neutrons of such energy would be negli-
gible at F = EI"; for this reason and because of an
exponential decrease in the yield of postfission neu-
trons with increasing F, the effect being discussed
would not be observable. An admixture of a hard
component (because of a nonequilibrium mechanism
of the emission of first neutrons, the yield here being
a few orders of magnitude higher than in the case of
the evaporation mechanism) renders possible a visual
observation of a sharp upper boundary and of a high-
energy maximum that is associated with prefission
neutrons. In accord with the results of a theoreti-
cal calculation that employed the exciton model of
preequilibrium decay to describe the hard component
of first neutrons, they are seen most clearly in the
experimental distribution for E,, = 14.7 MeV (this
distribution was measured to a fairly high statistical
accuracy). From Figs. 3 and 4, it is obvious that,
in response to a change in the bombarding-neutron
energy F,, the upper boundary and the maximum of
prefission neutrons in the distribution are shifted on

the energy scale according to the relation £ = Ei'" =
E, — Bya_1, this corroborating the correctness of the
present interpretation of the observed effect.

In contrast to what we have in the energy range
E, =710 MeV, it is rather difficult to measure,
at higher energies, the shape of the distribution
R(E, E,) in the region of the high-energy maximum
that is caused by the emission of prefission neutrons;
the higher the energy FE,,, the greater the difficulties
to be overcome here because of low statistics and
background conditions of the experiment. For E,, =
13.2 and 14.7 MeV, Fig. 3 illustrates the description of
the data with the cutofif function simulated in the form
of a step having a smoothed edge (curves /) and with
that which is defined in terms of the fission probability
according to (19) (curves 2). For E, > 13 MeV,
the agreement between the calculated and measured
values in comparing them in the region of the high-
energy maximum associated with prefission neutrons
is therefore qualitative rather than quantitative. An
answer to the question of which of the two versions
of the cutoff function f;(E, E,) that are used in our
calculations leads to better agreement with experi-
mental data can be obtained more readily at lower
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energies (E, = 7—10 MeV). Previously, this was
demonstrated in Subsection 2.3 for the example of
the distribution R(E, E,,) measured at E,, =7 MeV.
In our calculation, we did not introduce a correction
for the smearing of the upper boundary of the function
fi(E, E,) due to the energy resolution; its inclusion
would lead to the broadening of the high-energy
maximum and to a decrease in its amplitude.

A second special feature that was first discovered
in the spectra of neutrons accompanying the fission of
actinide nuclei 232Th, 23%:238U and 23"Np [1—4] that
is induced by neutrons of energy E,, = 14.7 MeV is
associated with an anomalously high yield of soft neu-
trons (£ < 2 MeV) in experimental distributions as
contrasted against the results of a theoretical descrip-
tion within the traditional approach that takes into
account two sources of secondary neutrons. Mea-
surements at different values of the primary-neutron
energy—at E,, = 13.2 MeV [5] and 16.0, 17.7 MeV
[6, 7] for 238U target nuclei and at 14.6 and 17.7 MeV

[8] for 232Th target nuclei—confirmed the presence
of such an excess in new experimental information.
In Fig. 3, two versions of the description of the ex-
perimental distributions R(E, E,,) for E,, = 13.2 and
14.7 MeV in terms of two neutron sources are shown
by curves / and 2. In Fig. 4, the results of the cal-
culation for 16.0 and 17.7 MeV in the version that
employs fi(F,E,) in the form of a step function
are represented by curves /. Thus, an analysis of
the experimental distributions R(E, E,,) within the
two-source model leads to a contradictory situation.
On one hand, the distribution R(E, E,) measured
in the two-chance fission reaction at the primary-
neutron energy of E, =7 MeV, which corresponds
to the beginning of the second plateau in the fission
cross section, has a shape that complies well with
its calculated counterpart. On the other hand, an
excess yield of soft neutrons (E < 2 MeV) in relation
to theoretical results is observed in the experimental
distribution R(E, E,,) for the same two-chance reac-
tion E,, = 13.2 MeV and in the distribution R(E, E},)
measured for the three-chance reaction at 14.7, 16.0,
and 17.7 MeV. It is natural to assume, in the energy
range between 7 and 13.2 MeV, a third source that
emits neutrons having a soft energy spectrum comes
into play.

The statistical model taken in a conventional for-
mulation disregards the possibility of particle emis-
sion during the evolution of the system from the
saddle configuration to the scission point. As was
indicated above, it is common practice to assume
that this time is so short (in relation to particle-
emission time) that no significant number of particles
can be emitted within it. In principle, the observed
excess in the distributions R(E, E,,) at high values
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of the primary-neutron energy F,, may be due to an
increase in the lifetime of the system in the transition
from the saddle to the scission point. The additional
emission of particles alone would not result in the
inapplicability of the relations of the statistical model
that are used here and would not change the calcu-
lated partial cross sections oy4_,. The spectrum of
additional neutrons can be calculated on the basis
of the statistical model, but, within this model, it is
difficult to determine thermal excitation energies in
the process of a dynamical transition of the system
from the saddle to the scission configuration. The
problem can be simplified by reducing it to determin-
ing the spectrum of neutrons emitted by the system
of fragments at the scission point that have already
been formed. For example, the theoretical analysis of
Brunner and Paul in [25], who studied the dinuclear
system of fragments, made it possible to assess the
mean kinetic energy of fragments as a function of the
fragment-mass ratio, the resulting dependence being
in surprisingly good agreement with experimental da-
ta. In considering neutron emission, it is necessary
to assume that, in the system of fragments that have
already been formed, there is statistical equilibrium
with respect to all degrees of freedom, the lifetime
of the system being such that the fragment A; (i =
1,2) can emit a neutron, provided that the fragment
excitation energy satisfies the condition

AA
The coefficient C indicates which fraction of the exci-
tation energy E* = E,, + By of the compound nu-
cleus A was converted into the thermal excitation
energy of the dinuclear system of already formed frag-
ments at the instant of their separation.

(23)

Although a physical validation of the existence of
a long-lived system of fragments that are in con-
tact presents considerable difficulties, the spectrum of
neutrons emitted from such a system of nonacceler-
ated fragments can be calculated on the basis of the
statistical model. The result is [7]

dﬂnaT(Ev En) _ 954 .
= - %;y(Az) (24)
« / G(Ejp, (Ejy))
E*

X ZP(AiaZj)N(EaAiazjvE;kO) dE;Ov
Zj

where Y'(A4;) is the mass distribution of fission frag-
ments that is normalized to two; G(EY,, (EY))) is the
excitation-energy distribution normalized to unity;
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Fig. 5. Differential yield (24) of neutrons from nonac-

celerated fragments produced in the fission of a 2*°U
compound nucleus at the primary-neutron energies of
E, =(curve[)13.2,(2)14.7,(3) 16.0, and (4) 17.7 MeV.

P(A;, Z;) is the charge distribution of fixed-A; frag-
ments that is normalized to unity (as a rule, a few
isobaric nuclei correspond to such fragments); and
N(E,A;, Z;, E})) is the spectrum of neutrons from
fragments having fixed values of A4;, Z;, and E}, that
is normalized to unity (for more details, see [7]). With
allowance for the third neutron source in (24), the
differential yield of fission neutrons can be represented
in the form

dD(Ev En) _ dﬂfaf(Ev En)
e dE
dvpre(E, Ey)  dvng(E, Ey)
dE dE ’

The first two terms in (25) are given by the same
relations (12) and (17) as in the two-source model
specified by Eq. (11). In describing the experimen-
tal distributions R(F, E,) for E, > 13 MeV with
allowance for all three neutron sources in (25), the
coefficient C' in (23) [recall that the hardness of the
spectrum in (24) depends on this coefficient] was
used as an adjustable parameter. For 233U, satisfac-
tory agreement between the measured and calculated
distributions R(E, E,,) at E,, = 13.2, 14.7, 16.0, and
17.7 MeV over the entire range of energies E under
study, including the low-energy region F < 2 MeV,
can be obtained at a single value of the coefficient
C, C = 0.53. The results obtained by describing the
experimental values of R(E, E,,) with allowance for
all three sources are represented by curves 3 in Fig. 3
and by curves 2 in Fig. 4. For four values of E,,
the neutron spectra (24) from nonaccelerared frag-

(25)
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Fig. 6. Mean multiplicity of prompt neutrons from the
neutron-induced fission of 2*®U target nuclei as a func-
tion of the primary-neutron energy F,. The displayed
experimental values were borrowed from (e)[26], (m)[27],
(V)[28], (4)[29], («)[30], () [31], (3) [32], (%)[33], and
(+) [34]. The solid curve in the region of emission fission
(En > 6 MeV) represents the results of the calculation
allowing two neutron sources. The dashed and dotted
curves correspond to the calculation performed under the
assumption of three neutron sources (see main body of
the text).

ments produced in the fission of the compound nu-
cleus A =29U are given separately in Fig. 5.

3. ESTIMATING THE MEAN MULTIPLICITY
7(E,) AND THE MEAN ENERGY E(E,)
OF NEUTRONS FROM 23U FISSION

INDUCED BY FAST NEUTRONS VERSUS
THEIR PRIMARY ENERGY E,

3.1. Mean Multiplicity of Neutrons

Since there is presently no experimental informa-
tion about the distributions R(E, E,,) for energies
in the range 7 < E,, < 13.2 MeV, we are unable to
establish the exact value of the threshold energy E'™
above which a third source of neutrons having a soft
spectrum comes into play. An attempt can be made
to estimate E{"™ by invoking the mean neutron mul-
tiplicity v(F,,) per fission event, which is an inte-
grated feature of the fission process. Unfortunately,
there is only one experimental study, that reported
in [26], where the dependence v(F,) was measured
over the energy range E,, = 7—13 MeV, which is of
interest for our purposes. The overwhelming majority
of the experiments devoted to determining v(E,,) were
performed at primary-neutron energies below 7 MeV
and in the vicinity of the value of 14 MeV. For 23U
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target nuclei, Fig. 6 displays a sample of experimental
data on v(E,,) [26—34] measured up to an energy of
E, =15 MeV.

The integrated counterpart of the differential rela-
tion (11) has the form

E(En) = ijaf(En) + Epre(En)' (26)

In expression (26), which determines the mean multi-
plicity of neutrons per fission event under the assump-
tion of two neutron sources, the first term

- :Emax(En) ~ _ O'fA_x(En)
VfaT(En) = Z VfAfx(Enac)W (27)
z=0 n

determines the mean multiplicity of postfission neu-
trons from fully accelerated fragments, while the sec-
ond term

Tmax (En)

ijre(En) - Z

r=1

JfAfx(En)

By

xrmx
JfA x )

- En)

M

represents that for preﬁssmn neutrons.

For the one-chance (n,f) reaction [E, <
Bia—1 =6 MeV, zna(E,)=0], we must set
Dpre(Ern) = 0 in relation (26). In this case, the mean
yield of neutrons is determined by neutron emission
from fully accelerated fragments produced in the fis-
sion of the nucleus A: D(Ey,) = Ui(Ep) = Upa(Ey).

The description of the observed feature v(E,,) is
based on Howerton’s systematics [22] [formula (15)
above]. It is used to estimate the postfission-neutron
yield Diyi(Ey). In the energy region E, > Bra_1 ~
6 MeV of emission fission, the yield z,;(E,) is sup-
plemented with the preﬁssion—neutron contribution
Upre(Er). The quantities ,i(E,) and D (E,) were
calculated by using the cross sections oy and opa_,
obtained from the description of the standard cross
section for 238U fission and its decomposition into
individual chances. The cross section for 233U fission
and its components are displayed in Fig. 7a.

In Fig. 6, the calculated mean multiplicity of neu-
trons per fission event as a function of the primary-
neutron energy E, is shown by the solid curve. A
change in the slope of 7(E},) as a function of energy is
clearly seen at E,, = 6 MeV, this structure being due
to the prefission-neutron contribution that emerges
as soon as the second source becomes operative. In
the distribution R(E, E,,) measured for E,, = 6 MeV,
the soft spectrum of prefission neutrons (E < 1 MeV)
stands out distinctly in Fig. 1 against the background
of the hard postfission component.
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Above 6 MeV, the experimental data and the val-
ues estimated on the basis of expression (26), which
takes into account two neutron sources, agree up to
E, =9-9.5 MeV. At still higher energies, the ex-
perimental values of v(E,) lie somewhat above the
calculated curve.

In Fig. 6, the dashed curve for E,, > 9 MeV rep-
resents the mean neutron multiplicity estimated ac-
cording to the relation

E(En) - Dfaf(En) + Dpre(En) + DnaT(En)a (29)

which takes into account the contribution 7p,i(E,)
of neutrons from nonaccelerated fragments (third
source). It can be seen that the calculated dashed
curve goes somewhat higher than the experimental
values quoted in [26]. In a close vicinity of the energy
FE,, = 14 MeV, where there is a set of data from differ-
ent measurements, the estimate based on (29) agrees
with the experimental results from [27, 29] and even
lies below the values obtained in [28]. In principle, the
system of nonaccelerated fragments can lose part of
its thermal energy via gamma radiation. Assuming
that the mean photon energy is E, = By, 4,/2 and
taking it into account in the total energy balance, we
obtain an estimate of 7(E),,) (dotted curve in Fig. 6),
which agrees with experimental data from [26]. One
can see that the experimental data reported in [26]
for v(E,) in the range E, = 7—14 MeV (the only
source of such information) are obviously insufficient
for testing relations (26) and (29). On the basis of an
analysis of the mean neutron multiplicity, the thresh-
old energy E!"™ above which there appears a third
source of neutrons having a soft energy spectrum can
be taken to be about 9 MeV for a first approximation.
A more accurate estimate of E"™ can be obtained by
additionally measuring and analyzing the distribution
R(E, E,) in the energy range E,, = 7—14 MeV.

3.2. Mean-Energy of Fission Neutrons

For the 228U target nucleus, the number of mea-
sured and analyzed distributions R(E, E,) for E,, <
20 MeV makes it possible to determine the de-
pendence of the mean energy of fission neutrons
on the primary-neutron energy E,, E(E,). It has
the simplest form in the region of energies below
the threshold for emission fission, E, < Bfa_1 ~
6 MeV. Here, one can make use of the well-known
systematics developed by Terrell [23], who proposed
parametrizing the mean energy in the form (16).
Within this systematics, three quantities E,, Z,
and A, which are of interest for the nuclear-fission
process, are replaced by one quantity that is depen-
dent on them—this is the mean yield of postfission
neutrons from fully accelerated fragments. In Fig. 70,
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Fig. 7. (a) Cross section for 2*®*U fission. The points
correspond to the standard values, while the calculated
curves represent the cross sections (/) ofa, (2) 054 +
OfA—1, and (3) ofa+0ofa—1+0ra—2. (b) Mean en-
ergy of neutrons accompanying the fission of 233U tar-
get nuclei as a function of the primary-neutron energy
FE,,. The points represent the experimental values (o) for
E, = 2.9 MeV from [2], 5 MeV from [5], 6 and 7 MeV
from the present study, 13.2 MeV from [5], 14.7 MeV
from [2], and 16.0 and 17.7 MeV from [6]; (A) for E,, =
14.3 MeV from [36]; and (O) for E, =1.35—9 MeV
from [35]. The solid and dashed curves show the results
of the calculations for, respectively, E(E,) and Eri(E,)
with allowance for (curves /) two and (curves 2) three
neutron sources.

one can see that, in the energy region of the first
plateau of the fission cross section (E, < 6 MeV),
the mean energy E(E,,) increases monotonically with
increasing E,. Our experimental values of E(E),),
as determined from the fission-neutron spectrum
N(E,E,) = R(E, E,)Nci(F) measured at E,, = 2.9
and 5 MeV, comply well with the systematics specified
by Eq. (16). The experimental values taken from [35]
and from other earlier studies are characterized by
large uncertainties and are widely scattered around
the calculated curve.

The prefission-neutron component appears above
the threshold for emission fission—for example, in
the distributions measured at E, =6 and 7 MeV
(see Fig. 1). In this case, the fission-neutron energy
averaged over the two-component spectrum (11) is
given by the expression

E(En) = (?Taf(En)EfaT(En)

+ (B By (B0) /7B,

which is represented by the solid curve / in Fig. 7b.
The dashed curve / shows the primary-neutron-
energy dependence of the mean energy for the post-

(30)
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fission component (neutrons from fully accelerated
fragments), Ei(E,). Upon going over from the
primary-neutron energy F, of 5.8 to 7 MeV, the
second source of neutrons (prefission ones) becomes
operative, which is manifested in a sharp decrease in
E(E,), this corresponding to a transition from the
first to the second plateau in the fission cross section
(see Fig. 7a). Concurrently, the mean prefission-
neutron yield Dye(Ey) = 0ra—1(En)/of(En) in-
creases from zero to a maximum value. The mean
energy F(FE,) (30) decreases because of the con-
tribution of the soft prefission-neutron component,
which is concentrated in the energy range 0 < E <
E, — Bfa—1. A modest decrease in the mean energy
Eii(E,) of postfission neutrons in this case is as-
sociated with the contribution of neutrons from fully
accelerated fragments produced in second-chance
fission—that is, the fission of 23¥U nuclei. Within
the second-plateau range 7 < E,, < 13 MeV, the
function Ty (£,) changes with energy only slightly.
With increasing F,, the mean energies of pre- and
postfission neutrons [ Epe(E;,) and Epi(E,), respec-
tively] grow. The dependence E(E,) (solid curve /
in Fig. 7b) reaches a maximum at 13 MeV (at the
end of the second plateau). A second decrease in
E(E,), but with a smaller amplitude than in the range
58 < E, <7 MeV, is observed in going over from
the second to the third plateau in the fission cross
section—that is, in the range 13 < E,, < 15 MeV.
In the region E,, > 15 MeV, the mean energy grows
again. One can see that prefission-neutron emission,
which generates new possibilities (chances) for fis-
sion complicates considerably the energy dependence
of the mean energy of prompt fission neutrons in re-
lation to the simple Terrell systematics for postfission
neutrons as given by Eq. (16).

The systematics of E(E,,) as obtained within the
traditional approach of two sources of neutrons [see
Eq. (26)] accompanying the fission of actinide nuclei
is in good agreement with our experimental data for
E, =6 and 7 MeV,") but it gives mean-energy val-
ues (solid curve / in Fig. 7b) that are much greater
than their experimental counterparts for E,, = 13.2
(5], 14.3[36], 14.7[2], and 16.0, 17.7 MeV [6].

In Fig. 7b, the solid curve 2 represents the mean
energy

E(En) = (Dfaf(En)Efaf(En) + ljpre(En)Epre(En)
(31)

DThe experimental values of E(E,) for E,, = 7,8, and 9 MeV
from other studies were obtained in terms of temperature [see
Eq. (6)] determined by using that section of the spectrum
where there are no prefission neutrons. These values must
be compared with the estimate of the mean energy for the
postfission component (dashed curve 2 in Fig. 7b).
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+ ljnaf(En)Enaf(En))/D(En)a

which was estimated with allowance for the contri-
bution of neutrons from nonaccelerated fragments.
Owing to the fact that the third source of neutrons
having a soft spectrum [see Eq. (24)] is operative
in the primary-neutron-energy region E,, > E3 =
9 MeV, the mean energy there is lower than that
which is given by (30) (solid curve 7). In this case,
the experimental data for E,, > 13 MeV in Fig. 7b lie
rather close to the calculated solid curve 2. Because
of the loss of thermal energy via neutron emission
from the system of nonaccelerated fragments, the
mean energy Ei(E,) of postfission neutrons from
fully accelerated fragments in (31) (dashed curve 2)
will be somewhat less than that in the case of (30)
(dashed curve 7).

4. ANGULAR DEPENDENCE
OF FISSION-NEUTRON SPECTRA

Our experiment consisted in directly measuring
the ratios R(F, E,,) at an angle of ¥ = 90° with re-
spect to the momentum of primary neutrons [1, 2].
This corresponds to the double-differential neutron
yield *0(E, E,,9)/dEdQ. In analyzing experimental
information, the quantity
d*v(E, E,,9) ,_

apan /)

for the angle ¥ = 90° was taken for an integrated
yield of fission neutrons. The experimental spectrum
in (32) may be different from the actual spectrum that
is obtained upon integration over the solid angle,

N(E,E,,¥) = 4 (32)

N(E, E,) (33)
2
d*v(E, En, 0 5
— QW/%d(cosﬁ)/u(En),
0

since it is rather difficult to obtain a complete set of
data on the spectrum d?v(E, E,,,)/dEdQ at differ-
ent angles. First, this would consume much time.
(A measurement of the fission-neutron spectrum at
one angle to an acceptable statistical accuracy takes
about a month of continuous accelerator operation.)
Second, unacceptable background conditions at for-
ward angles (¥ < 60°) give no way to obtain reliable
experimental information there.

At different angles ¥, the change in the spectrum
given by (32) in relation to the spectrum in (33)
integrated with respect to angles can be estimated
as follows. Under the assumption of two sources,
we represent the double-differential yield of fission
neutrons as the sum of three components; that is,

d*v(E,E,,0)  d*vi(E, Ey,0)

dEAQ dEdQ (34)
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PoNE, By, ) 08B, B, 0)
dEdSQ2 dEdO

The first term in (34) determines the yield of post-
fission neutrons, which are directly related to the
energy released upon the disintegration of fully ac-
celerated fragments. Since all directions along which
fission fragments may fly apart are equiprobable in the
laboratory frame, the angular distribution of neutrons
is isotropic there, so that expressions (32) and (33)
yield the same integrated postfission-neutron spec-
trum, Nii(E, En,¥) = Nii(E, Ey). The same is true
for the angular distribution of neutrons emitted from
nonaccelerated fragments. In describing experimen-
tal distributions, this, third, source of neutrons is
included to match the calculated and measured re-
sults in the low-energy region £ < 2 MeV (curve 3
in Fig. 3 and curve 2 in Fig. 4). In emission fission
(E), > Bya—1), the angular distribution of the com-
pound component of prefission neutrons [second term
in (34)] in the primary-neutron-energy region E,, <
20 MeV, which is studied here, is nearly isotropic, so
that NSO (E, By, 0) = NSOM(E, Ey,).

pre pre
The anisotropic component in the angular distri-
bution of neutrons accompanying emission fission is
due to the contribution of the prompt (nonequilib-
rium) mechanism of the emission of first neutrons,
whose angular distribution

s (9) / VS (B, Ey, )

pre
dQ2 dEdQ

dE

(35)
E

is stretched in the forward direction (the yield is max-
imal at an angle of ¥ = 0° and is minimal at an angle
of 180°).

The exciton model of preequilibrium decay has
been successfully used to simulate the integrated
(over a solid angle of 47) spectrum of secondary par-
ticles emitted upon the multistep direct interaction of
a bombarding particle with target nuclei in various
(n,n"), (p,n), (p,p’), etc., reactions, but it cannot
predict the angular dependence of the yield of emitted
particles. The general idea behind the treatment of
multistep statistical and multistep compound pro-
cesses can be used in a phenomenological approach
to parametrize the angular dependence of the cross
section for the emission of secondary particles within
the exciton model and traditional statistical theory
as [37]

lITIHX

d*o(E,9) 1 | dopreeq
GOEY) 2 | 29eed NTy pcos ) (36
dEIQ  in| dE lzg 1Fi(cos ) (36)
do_ lmax
com
+ dE ZE_O blPl(COS 19)]7

Al =2
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where dopreeq/dE and docom /dE are, respectively, the
preequilibrium and the compound spectrum within a
solid angle of 47, while P;(cos ) are Legendre poly-
nomials. In [37], it was proposed to take the coeffi-
cients b; in the general form

- 20+ 1
~ L+exp[A(B — E)]

b (37)

by analogy with the weighted penetrability factors
for a parabolic barrier. This resulted in deriving the
systematics

A=k + ko [I(1+ 1)]™/2,
By =ks+ k4 [l(l + 1)]m2/2 ,

(38)

where m; are integers. A fit to experimental data on
(p,p’) reactions yields

A; = 0.036 MeV ™!
+1(1+1) x 0.0039 MeV ™,
By =92 MeV — [I(I 4+ 1)]7/% x 90 MeV.

(39)

In [37], the proposed angular dependence was
tested by using the experimental angular distributions
measured for secondary particles b = n, p, d, t, >He,
and “He over the energy range Ej, = 4—60 MeV in
A(a,b) reactions for a broad range of nuclei from
A = 12C to 2Th and bombarding particles a = p,
d, >He, and *He of energy in the interval E, = 18—
80 MeV. It was found that the above semiempirical
parametrization has a high predictive power. This
makes it possible to estimate the double-differential
cross sections (yields) (36) for secondary particles by
combining the systematics of angular distributions
from [37] with the existing models of preequilibrium
decay and with statistical theory.

Such an estimate of the angular dependence of the
spectra of neutrons accompanying the spontaneous
fission of 228U nuclei that is induced by neutrons of
energy F, = 14.7, 16.0, and 17.7 MeV is given in
Fig. 4 in the form of the ratio of the spectrum in (33)
under study for three angles of 30°, 90°, and 150°
to the spectrum for the spontaneous fission of 2°2Cf
(respectively, the upper, the middle, and the lower
dashed curve). It can be seen that the middle dashed
curve corresponding to the calculated spectrum (32)
for an angle of 90° and the solid curve corresponding
to the calculated spectrum (33), which is integrated
with respect to angles, differ only slightly and only
at the end of the ascent toward the apex in the hard
section of the distributions. The experimental fission-
neutron spectrum (32) taken over a solid angle of 47
and obtained from a measurement at an angle of J =
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90° can be refined by multiplying it by the calculated
correction factor

"7(E) :N(EvEn)/N(EvEnaﬁ:9OO)~ (40)

The maximum value of this factor is max[n(E)] =
1.04 for E,, = 14.7 MeV and 1.10 for 17.7 MeV.

CONCLUSION

The ratios R(FE, E,,) of the spectra of prompt neu-
trons originating from the neutron-induced fission of
238U to the spectrum of neutrons from the sponta-
neous fission of 2°2Cf have been measured over the
range of secondary-neutron energies between 0.14
and 15 MeV, the energy of bombarding neutrons
being either at the emission-fission threshold, E,, =
6 MeV, or somewhat above, E/,, = 7 MeV.

The shape of the observed energy distributions has
been reproduced by the calculations based on the tra-
ditional approach of two neutron sources in emission
fission, this indicating that interpretations in terms of
the emission of prefission neutrons are correct.

At the same time, the investigation of the spec-
tra of prompt neutrons from 23U fission induced
by neutrons of energy FE, =13.2, 14.7, 16.0, and
17.7 MeV revealed that, in the low-energy section
(E < 2 MeV), the shape of the experimental distri-
butions cannot be reproduced within the same model
of two sources.

The values of E, =7 and 13.2 MeV belong to
the same energy region, that of the two-chance fis-
sion reaction, and correspond to the beginning and
the end of the second plateau in the fission cross
section. The calculated shape of the fission-neutron
distribution for the first energy value is consistent
with its experimental counterpart, while that for the
second one is not. At the energy of E,, = 13.2 MeV
and above, there is an excess yield of soft neutrons
(those of energy in the region £ <2 MeV) in the
experimental distributions in relation to the results of
the calculations. This discrepancy can be removed by
introducing, at an energy between 7 and 13.2 MeV
(En >~ 9 MeV according to a rough estimation), a
third source that produces neutrons having a soft
spectrum. In explaining the shape of the energy dis-
tributions observed for E,, > 13.2 MeV in the low-
energy region E < 2 MeV, the assumption that the
third source is associated with neutron emission from
nonaccelerated fragments has led to encouraging re-
sults.

In the case of emission fission, the systematics of
the mean energies of prompt fission neutrons that is
based on the relations of the traditional model assum-
ing that there are two sources of neutrons complies
with experimental data on E(E,) for E, =6 and
7 MeV, but it leads to values exceeding experimental
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data for E,, > 13.2 MeV. By including, in the system-
atics of E(E,) for E, > 9 MeV, additional neutron
emission from a third source that has a soft spectrum,
one can reduce the calculated values of the mean
energy to a level of their experimental counterparts.

Measurements and analysis of the spectra of
prompt fission neutrons at primary-neutron energies
in the range E, = 8—13 MeV are of considerable
interest for precisely determining the threshold energy
above which the contribution from a third source
appears in experimental distributions.
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Abstract—An interpolation formula that was previously obtained on the basis of a statistical approach is
applied to experimental data quoted in the literature over the past few years for light-particle yields from the
ternary fission of nuclei. Arguments are adduced in favor of this approach, and an analysis of errors inherent
in it is given. Tables are presented in which experimental light-particle yields for eight cases of fission are
given along with those that were obtained from the interpolation formula. The applicability of this formula to

estimating the yields of so-called scission neutrons is analyzed. © 2004 MAIK “Nauka/Interperiodica” .

INTRODUCTION

The first systematic measurements of the yields
of light nuclides from ternary nuclear fission induced
by thermal neutrons were performed in 1969—1975 at
the Leningrad Nuclear Physics Institute (presently
Petersburg Nuclear Physics Institute) by a group
of researchers headed by A.A. Vorobyov [1—4]. This
group explored the ternary fission of 233U, 235U,
29Py, and 2*2™Am nuclei that was induced by
thermal neutrons. The measurements in those studies
were performed with the aid of a magnetic time-
of-flight mass spectrometer (MTOFMS) installed
in a horizontal channel of a PWR-M reactor. For
the case of the spontaneously fissile nucleus 252Cf,
the measurements had been performed since 1967
by means of a AE—F telescope (see, for example,
[5]). That method of investigations, which, of course,
has a lower potential than the MTOFMS method,
is advantageous in that it is characterized by a high
efficiency of particle detection in the case of relatively
weak sources of spontaneous fission.

Over the past few years, the yields of light particles
in ternary fission have intensively been studied with
the aid of the Lohengrin mass separator at the Laue—
Langevin Institute (Grenoble, France). In addition
to the aforementioned cases, the ternary fission of
229Th [6], 241 Pu [7], 2*°Cm [7, 8], and 242Cf[9] nuclei
that is induced by thermal neutrons was explored
there among other things. High neutron fluxes from
the Grenoble reactor and high qualities of the Lo-
hengrin mass separator made it possible to reach, in
some cases, silicon isotopes in measuring the yields
in question. Thus, a vast body of experimental data

“e-mail: pleva@pnpi . spb.ru

on the yields and energy spectra of “third” particles
has been accumulated at the present time.

Attempts at describing the yields of light nuclei
in ternary fission in terms of a single mathemati-
cal expression that would reflect, at the same time,
the physics behind the phenomenon being studied
have been made many times (see, for example, [10—
14]). A survey of basic models used in calculating
the yields and spectra of particles originating from
ternary fission is given in [7]. None of the formulas
for describing the yields in question was derived on
the basis of underlying principles of quantum me-
chanics. As a matter of fact, the ternary-fission pro-
cess is treated in terms of classical mechanics, the
quantum-mechanical features of this process being in
the background. The formulas used are semiempiri-
cal and involve parameters that are determined from
experimental data. In the course of the fission pro-
cess, a fissile system passes through a state in which
the production of a third particle requires minimum
expenditures of energy. A state where three fission
fragments have already undergone separation but still
have quite modest initial velocities is considered in
the majority of ternary-fission models as an input
state for trajectory calculations. A comparison of the
ultimate results obtained in such calculations for the
angular and energy distributions of third fragments
with respective distributions found from experiments
makes it possible to correct the choice of input con-
figuration. The difference of the energies of the input
configurations for different versions of ternary fission
permits applying the methods of statistical physics to
estimating the relative yields of different third parti-
cles.

We will dwell at some length on the approach
adopted in [11], where it is assumed that the problem
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of yields from ternary fission can be solved on the basis
of applying general principles of statistical physics to
the emission of light nuclides in the ternary fission of
nuclei without invoking any parameters that deter-
mine a specific configuration at the instant of scission.

1. PARTICLE YIELDS IN TERNARY FISSION
IN TERMS OF STATISTICAL PHYSICS

Upon passing the saddle point owing to a decrease
in the potential energy at the initial stage, a fissile
nucleus, which is a complex system, begins a collec-
tive motion toward scission, simultaneously evolving,
according to the laws of statistical physics, toward
an increase in the density of its possible quantum
states—that is, toward an increase in the internal
excitation. Upon scission, the excitation energy of
fragments is removed by neutron and photon emis-
sion. In much more rare cases, moving fragments
may emit an alpha particle or a proton (so-called polar
emission).

As to the emission of a third particle in the “scis-
sion” of the nucleus undergoing fission, the preva-
lent concept is that, in the fission process, the con-
figuration of the nucleus passes through the stage
within which two main fragments that have not yet
undergone separation are connected by a compara-
tively thin neck formed by a few nucleons. It is pre-
cisely the place where particle fluxes associated with
the formation of stationary nucleon orbits in would-
be fragments have the highest density and where
the collective energy of the fluxes can go over with
the highest probability to the excitation energy of
individual quasiparticles, increasing the temperature
in the region of the neck. The “thermal emission”
of neutrons, alpha particles, and other light nuclei
from this region of an elevated temperature becomes
possible for a short time (less than 10720 s). This
emission is facilitated for a particle that, at the in-
stant of separation—that is, at the saddle of the po-
tential barrier surrounding the nucleus—possesses
the lowest energy, thereby ensuring the highest level
density in the residual nuclear system. A decrease
in the density of quantum states in a system that
has a rather large number of degrees of freedom and
a rather high excitation energy is characterized by
the factor e=2E/© where AFE is the decrease in the
energy of the residual system due to the arrival of the
particle at the potential barrier and © is a tempera-
ture parameter. The main contribution to the energy
AF that the emitted particle of mass number A and
charge number Z removes from the fissile system
comes from the sum of the separation energies of Z
protons and N = A — Z neutrons minus their binding
energy in the particle. The Coulomb energy of the
particle at the barrier makes a contribution of equally
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great importance. We note that the increase in the
kinetic energy of a charged light particle owing to its
acceleration upon scission does not coincide with its
Coulomb energy at the instant of scission because of
the simultaneous motion of two main fragments. It is
the Coulomb energy at the barrier top that affects the
probability of the emission of one particle or another.
The initial kinetic energy at the instant of separation
has no effect on the relative probability of particle
emission, since, according to statistical mechanics, it
must be identical (and equal to 20) for any particle,
with the exception of two main fragments.

The above concepts served as a basis for attempts
at deriving an interpolation formula that would make
it possible to estimate as-yet-unknown integrated
yields of some particles by using only data on the
measured yields of other particles. In particular, such
a formula could be applied to those nuclides for which
a direct measurement of the yields is complicated for
one reason or another. This refers not only to unstable
nuclei—that is, to those that are able to decay in flight
to lighter nuclides—but also to protons, for which
yield measurements are impeded by the background
associated, at least partly, with (n, p), (d, p), and
(o, p) reactions on the structural elements of the
instruments used, and, finally, to neutrons, for which
it is difficult to measure yields against the background
of neutrons from fully accelerated fragments. Such
a formula was proposed in [11], and the first results
obtained by applying it to experimental data were
also presented there. As a matter of fact, this for-
mula involves four parameters, whose values are to
be determined from a comparison with experimental
data. These are (see [11]) the proton work function
ep taken, together with the proton energy, at the
Coulomb barrier; the neutron work function g,; a
temperature parameter (©); and a scale parameter
(n). For the sake of simplicity, it was assumed that
the particle that removes energy from the original
system does not possess internal degrees of freedom,
since it would be necessary otherwise to include in the
respective calculation the energy expended into them
with allowance for the probability of their excitation.
Since this probability is low in view of a large spacing
between the ground and the first excited state in the
majority of light nuclei, it was assumed that the use
of the expression 27 4 1, where [ is the ground-state
spin of the emitted light nuclide, for a statistical factor
would not lead to significant errors.

Flaws in this approach to the ternary-fission phe-
nomenon are obvious. First and foremost, we note
that, in traditional applications of statistical physics,
one deals with an equilibrium system characterized
by a uniform distribution of energy over degrees of
freedom. But in our case, the system being consid-
ered undergoes such quick variations that the energy
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released in processes proceeding predominantly in the
neck region hardly has time, before particle emission,
to be distributed uniformly over the entire volume of
the system and, accordingly, over degrees of freedom.
Therefore, the temperature parameter © in the above
formula may only have the meaning of a local tem-
perature that characterizes the emission zone. (The
approach being considered can be justified to some
extent by considering that, on one hand, energy is
continuously supplied to the emission zone owing to
a decrease in the deformation energy and that, on
the other hand, it is transferred from this zone to the
region of lower energies in large fragments, whereby
there arises some kind of a dynamical equilibrium.)
Second, the assumption that the proton work func-
tion €, and the neutron work function &, remain un-
changed irrespective of the number of nucleons sepa-
rated from the system in the formation of the emitted
particle underlies formula (1) from [11]. This property
is inherent in a classical equilibrium system that con-
sists of a “heat bath” having a high level density (and
containing a large number of various particles inter-
acting with one another) and a small “subsystem”
(that is, a “gas” formed by emitted particles) that is
in equilibrium with the heat bath. Concurrently, it is
assumed that the exchange of nuclides between the
two parts of the system can occur without inducing
any changes in the parameters of the heat bath. In this
case, €, and €, are constant quantities (proton and
neutron “chemical” potentials). But our system is in
fact only part of a fissile nucleus, where the number
of nucleons is finite. It can hardly be expected that
the second, the third, etc., neutron or proton would
have the same work function as the first one. It is more
probable that the work function of a specific nucleon
depends on how many nucleons and which ones were
separated within previous time intervals.

In view of the above comments, the applicability
of the formulas proposed in [11] has a limited range.
At least, it can be expected that the yields of particles
having a rather large mass number would be overesti-
mated, since, in this case, the reserve of our heat bath
in energy and the number of particles approaches the
limit beyond which it would be incorrect to treat ©,
ep, and g, as constant quantities, even approximately.
This was confirmed in a comparison of the results of
calculations based on the interpolation formula with
experimental results.

In the review part of Koster’s dissertation [7] (see
pp. 35, 37, 38), a comparison of the results obtained
by calculating light-particle yields in ternary fission
on the basis of various models and experimental data
is given in a graphical form. It was indicated there
that all of these models reproduce quite correctly the
yields of particles emitted with rather high intensities,
but they describe poorly the yields of particles for
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which the ratio N/Z deviates from the mean value
strongly. For the example of 233U and 23°U fission,
it was shown that the model proposed in [11] re-
produces fairly well the yields in the region of the
lightest particles originating from ternary fission and,
in contrast to other models, describes quite accurately
a large jump of the yields of *He and 3He; however,
it overestimates the yields in the region of high mass
numbers significantly.

The next section of the present article is devoted
to a detailed consideration of special features of the
approach proposed in [11]. It is assumed that the
advantages that this approach possesses in the region
of the lightest particles will make it possible to assess
neutron emission in the ternary-fission process.

2. ANALYSIS OF THE RESULTS OBTAINED
BY PROCESSING EXPERIMENTAL DATA
ON THE BASIS OF THE INTERPOLATION

FORMULA

Tables 15 give experimental data from [1—3, 6—
8, 15—23] and the results of fitting the interpolation
formula to various sets of experimental data. Some
of the results quoted here were already presented in
a graphical form in [11]. In the tables, the symbol
# labels those experimental data that were used in
the equations for determining the parameters of the
interpolation formula. Yields that do not possess a
high reliability, since they were calculated for nuclides
whose charge and mass numbers, Z and A, are far
beyond the region where the parameters were deter-
mined, are enclosed in brackets (as a matter of fact,
it is extrapolation rather than interpolation that was
applied to these nuclides). The term “unstable” was
used in the sense specified in the preceding section.
In examining these tables, one can easily see that
the result of fitting depends on the range (in A and
Z) to which those light nuclei belong whose yields
were used to derive equations for determining the
parameters of the interpolation formula.

Two fits were constructed for the case of the fission
process 233U(ny,, f): one was based on data from [1]
(Table 1), while the other was based on the same
data supplemented with new data from [6] (Table 4).
The first fit, in which use was made of the yields of
nuclides belonging to the range from *He to ?Be, is
satisfactory for elements from hydrogen to beryllium,
only the calculated yield of 1°Be being underestimated
in relation to experimental data by a factor approxi-
mately equal to two. The fit quality is characterized by
the criterion value of x2/(N — n) = 0.38. (Here, N =
6 is the number of equations used and n =4 is the
number of parameters in the interpolation formula.
The values of the agreement criterion are given in the
last column of Table 6.) The second fit, in which use
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Table 1. Comparison od experimental and interpolated yields of light nuclides in the ternary fission of nuclei (normalized
to 10% nuclei of *He)

Nol Z | N | Nuclide Unstable U + 2] *BU + np [1]
nuclides experiment interpolation experiment interpolation
1101 n - [5.99(64) x 106] - [2.13(37) x 109
21110 'H 115(15)* [160(17)] - [38(13)]
311 2H 50(2) [204(17)] 41(2) [48(15)]
4112 SH 720(30) [1920(90)] 460(20) [630(130)]
51211 3He <0.01 2.87(57) x 1072 — 5.8(24) x 1073
6|22 “He 10000(190)#  10020(190)  [10000(270)#|  10000(270)
712 1|3| °He [|*He+n+0.89 MeV - 1980(45) - 1500(60)
8| 2|4| °OHe 191(9)# 193(8) 137(7 y# 140(70)
912 (5| "He [He+n+0.44 MeV - 50.0(32) — 28(3)
10| 2]6| SHe 8.2(6) 8.0(7) 3.6(4) 4.6(5)
11|32 °Li  [*He+!H + 1.97 MeV - 2.4(5) x 1072 — 11(3) x 1073
12133 SLi 0.05(2) 0.13(2) - 7.6(14) x 1072
13|34 Li 4.1(3)# 3.8(3) 3.7(2)# 3.6(2)
14135 8Li 1.8(3)# 2.0(1) 1.8(2)# 1.9(1)
15| 3|6 9Li 3.0(4)# 3.2(2) 3.6(5)# 3.4(3)
164 ]3| "Be <1072 2.9(8) x 107° <1072 1.6(5) x 10~°
17]14 |4 8Be [2(*He) +0.092 MeV | 0.5(2)** 1.2(1) - 2.8(4)
18] 45| “Be 2.9(3) 1.5(1) 3.7(8)# 3.3(5)
19]4]6| 'Be 32(2) 6.1(3) 43(3) 19.7(53)
20147 'Be 2.0(3)# 1.53(9) - [4.3(11)]
211 4|8 !’Be 1.5(3) 0.76(6) — [2.1(5)]
221515 108 <0.02 0.96(19) x 1073 — [2.0(3) x 1079]
23(5|6 1B 0.25(13)# 0.29(3) - [1.4(4)]
2415 |7 12 0.17(5)# 0.25(2) — [6.9(27) x 1072
25| 5|8 138 0.20(6) 1.17(9) — [7.4(32)]
26|59 4B 0.10(5) 0.15(1) — [0.85(37)]
2716 |7 13C 0.5(3) 0.25(3) - [3.1(15)]
286 |8 1c 5.4(6)# 5.4(6) — [110(74)]
290619 15C 1.5(10)# 1.3(1) - [44(29)]
30| 6 (10 16C 0.2(1) 2.4(3) - [59(43)]
3117]19] 1°N <0.05 8.3(13) x 1072
3218110 | ™O <0.05 [0.10(2)]
3318 (12| 200 0.5(2) [2.4(5)]
34|19 |11 W0Fp — [3.3(6) x 1077]
3510 |14 | %*Ne - [2.1(20)]
36 {10 [16 | 26Ne - [38(13)]

Note: Data labeled with * and ** were borrowed from [15] and [16], respectively.
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Table 2. Comparison of experimental and interpolated yields of light nuclides in the ternary fission of nuclei (normalized
to 10% nuclei of “He)

No.| Z | N | Nuclide Unst.able PPu (3] R Am 3]
nuclides experiment interpolation experiment interpolation

1101 n - [2.8(2) x 10] - [2.17(27) x 109
21110 'H 190(10)* [164(9)] — [213(27)]
3111 ’H 69(2) [205(10)] — [256(30)]
41112 3H 720(30) [1620(50)] 620(60) [1720(70)]
5121 3He <0.01 5.5(5) x 1072 — 0.10(2)
622 4He 10%(200)# 9900(200) 10%(150)# 10020(230)
701213 ®He |*He+n + 0.89 MeV — 2100(40) - 2270(50)
8121 4 6He 192(5)# 205(10) 214(6)# | 212(7)
91215 "He |°He+n+0.44 MeV — 56.5(25) — 62(3)

100126 8He 8.8(4) 8.7(6) — 9.0(6)

1|32 °Li |*He +' H + 1.966 MeV — 5.5(5) x 1072 — 0.10(3)

12133 6Li <0.05 0.26(2) - 0.42(8)

13131 4 TLi 6.5(2)# 6.6(3) 8.2(26)# 8.8(10)

141315 8Li 3.2(3)# 3.4(1) 3.6(4)# 4.4(4)

15136 OLi 5.3(3)# 4.9(2) 6.4(13)# 5.8(3)

16|43 "Be <0.01 1.2(2) x 107* - 2.8(10) x 1074

17| 4] 4 8Be |2(*He) + 0.092 MeV - 2.7(2) — 3.7(5)

18415 9Be 5.1(6) 3.35(60) 7.5(15)# 4.5(5)

191416 10Be 49(1) 11.0(3) 57(6) 12.3(6)

20| 4|7 Be 3.5(3)# 2.9(1) - -

211418 12Be 2.2(5) 1.35(5) - -

221516 1B 0.9(3)# 0.85(5) — —

235 |7 12 1.0(4)# 0.66(3) — —

24 | 5| 8 138 1.3(4) 2.8(1) - -

255 ]9 1B 0.2(1) 0.38(2) - —

26 |6 | 7 13C <1 0.85(5) - -

27 | 6 | 8 1 14.0(6)# 14.4(7) 14.5(15) 15.1(15)

28 (6|9 15¢ 3.5(13)# 6.2(3) — —

29| 6 [10 16¢ 3.5(16) 6.0(4) — [5.7(8)]

30719 16N <0.02 [0.34(20)] — —

317 (10| YN — 0.90(5)] - —

327 |11 18N — [1.5(1)]

33810 180 — [0.50(5)]

348 (12| 200 0.8(4) 8.7(8)]

* Data borrowed from [17].
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Table 3. Comparison of experimental and interpolated yields of light nuclides in the ternary fission of nuclei (normalized
to 10% nuclei of *He)

No.| Z | N | Nuclide Unstable *Pu + nip [7] PPAm 4y [7]
nuclides experiment interpolation  |experiment| interpolation
11011 n - [4.3(7) x 10°] - [1.73(22) x 10°]
21110 'H — [162(18)] — [233(25)]
311 ’H 42(4) [240(38)] -
4112 3H 786(42) [2.23(15) x 10%] | 679(44) [689(35)]
5021 3He — — <0.6 0.17(3)
622 ‘He 10%(700)# 981( 5) x 10 |10%(600)#| 9680(540)
71213 ®He |*He +n + 0.89 MeV — 2.5(1) x 103 - -
81214 SHe 260(30) 288(19) 286(16)# 294(14)
91216 8He 15(1) 17.9(22) 19(4) 17.5(18)
103 |2 SLi [*He + 'H+ 1.97 MeV — 4.4(10) x 1072 — -
111313 6Li — 0.24(4) <0.3 0.73(11)
12134 TLi 6.7(6)# 7.0(6) 13.6(13)# | 14.4(11)
13135 8Li 4.2(6)# 4.4(3) 5.6(18)# 8.2(5)
141316 9Li 8.3(6)# 7.4(5) 13.6(17)# | 11.3(6)
15413 "Be <0.2 8(2) x 107° - -
1644 8Be |2(*He) + 0.092 MeV - 2.1(20) — —
171415 9Be 4.4(5) 3.1(3) 9.1(11) 7.5(6)
1814 |6 | 1°Be 46(6) 11.8(4) 66(5) 196(6)
19147 1'Be 5.9(17)# 3.7(2) 8.1(10)# |  6.2(3)
2014 |8 | 12Be 2.8(13) 2.1(2) 5.5(17) 3.0(2)
211410 | '“Be 2.7(10) x 1073 2.7(4) x 1072 | 0.018(12) |  0.043(6)
221515 10 <0.03 2.6(1) x 1073 <0.3 0.016(3)
23|56 1B 1.6(10)# 0.67(8) 2.4(13)# | 0.72(7)
24| 5|7 128 1.0(4)# 0.62(5) 2.3(4)# 2.05(13)
25|58 138 — — 2.2(6) 6.15(30)
266 |6 12¢ — - <48 0.30(6)
2716 | 7 13C — - 1.1(5) 1.8(2)
2816 |8 14 12.6(8)# 11.3(7) 23.3(16)# | 22.8(13)
29169 15C 4.3(4)# 5.8(4) T7(10)# | 11.4(7)
30| 6|10 16C 5.0(9) 6.7(7) 9.5(13) 10.5(10)
31|16 |12 18C 0.28(5) [1.9(3)] 0.32(11) [2.4(4)]
321718 15N <0.044 [0.15(9)] 0.17(7) [0.59(7)]
331719 16N 7.9(32) x 1072 [0.24(11)] 0.27(8)* [0.85(7)]
34710 A\ 0.34(10) [0.72(6)] 0.77(31) [1.85(13)]
35| 7 |11 18N 0.16(4) [1.48(14)] 0.47(21) [3.37(29)]
36|88 160 - — <47 [0.014(3)]
371819 170 - - <0.2 [0.14(2)]
38| 8|10 180 — - 1.0(4) [0.53(5)]
39| 8 |11 190 0.26(12) [1.66(16)] 0.77(47) [4.78(42)]
40 | 8 |12 200 1.10(12) [7.2(9)] 2.7(4) [13.4(17)]
41| 8 |14 20 0.12(4) [152(36)] 0.39(19) [161(36)]

* Data borrowed from [8].
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Table 4. Comparison of experimental and interpolated yields of light nuclides in the ternary fission of nuclei (normalized
to 10% nuclei of “He)

No. | Z | N | Nuclide 22U +nun |1, 6] PCm + ny [7]
experiment interpolation experiment interpolation
1 0 1 n - [3.4(3) x 10°] - [9.3(11) x 10°]
2 | 1 0 'H — [124(8)] - [40(5)]
3] 1 1 ’H 41(2) [139(7)] — —
4 1 2 3H 463(23) [1.22(5) x 107] 679(44 # 739(37)
5 | 2 1 3He <0.1 2.5(4) x 1072 <0.6 1.7(4) x 1072
6 | 2 2 “He 10%(266)# 9.76(26) x 10° 10%(600)# 9880(540)
7] 2 4 SHe 137(8)# 140(7) 286(16)# 264(11)
8 | 2 6 8He 3.6(4) 4.4(4) 19(4)# 15.8(15)
9| 3 3 6Li <0.05 4.3(5) x 1072 <0.3 0.29(5)
10 | 3 4 TLi 3.7(2)# 3.8(2) 13.6(13)# 11.6(9)
1] 3 5 8Li 1.81(20)# 1.75(8) 5.6(18)# 7.4(5)
12 | 3 6 9Li 3.56(48)# 2.49(14) 13.6(17)# 14.6(8)
13 | 4 5 9Be 3.7(8) 1.9(1) 9.1(11) 13.6(12)
14 | 4 6 10Be 43(3) 7.2(2) 66(5 ) 70(4)
15 | 4 7 HBe <0.3 0.86(4) 8.1(10) 21.0(15)
16 | 4 8 12Be L1(2)# 0.70(5) 5.5(7) [13.0(13)]
17 | 4 |10 14Be - - 0.018(12) [0.15(2)]
18 | 5 5 108 - - <0.3 [0.018(4)]
19 | 5 6 1B — - 2.4(13) [7.6(8)]
20 | 5 7 12 3.7(6) x 10714 3.6(2) x 1071 2.3(4) [7.9(7)]
21 5 8 138 6.2(13) x 10~ 1.55(6) 2.2(6) [47(5)]
22 | 5 9 1B 1.4(8) x 1072 0.30(2) 0.21(6) [12.5(14)]
23 | 6 6 12¢ — — <4.8 [2.0(3)]
24 | 6 7 13C — - 1.1(5) [19(2)]
25 | 6 8 Hc 11.4(4)# 11.0(4) 23. 3(16) [560(80)]
26 | 6 9 15C 2.4(3)# 4.1(2) 7.7(11) [280(40)]
27 | 6 |10 16C 2.1(3 4.0(3) 9.5(33) [380(70)]
28 | 6 |12 18C — - 0.32(11) [118(27)]
29 | 7 8 15N - - 0.17(7) -
30 | 7 9 16N 2.6(11) x 1072 [0.20(1)] 0.27(8)* -
31 | 7 |10 17N - - 0.77(31) -
32 1 7 |11 18N — - 0.47(21) -
33 | 8 8 160 — - <47 —
34 | 8 9 170 - - <0.2 -
35 | 8 |10 180 — - 1.0(4) -
36 | 8 |11 190 - - 0.77(47) -
37 | 8 |12 200 0.71(8) 6.9(5) 2.7(4) —
38 | 8 |14 20 - - 0.39(19) -
39 | 9 |11 20F - - <0.08 -
40 | 10 | 14 24Ne - - 0.23(6)* -
41 |12 | 18 OMg - - 0.060(27)* —

Note: Data labeled with * were borrowed from [8]. In the “Experiment” column for the case of 2*3U, data on the yields of nuclides from
12Be were taken from [6], while the remaining data were taken from [1].

PHYSICS OF ATOMIC NUCLEI

Vol.67 No.7 2004



SCISSION NEUTRONS IN THE GENERAL SYSTEMATICS

1271

Table 5. Comparison of experimental and interpolated yields of light nuclides in the ternary fission of nuclei (normalized
to 10% nuclei of *He)

Nol z | 3 | Nucide Unstable 248Cm (spont. fis.)[18] 252Cf (spont. fis.) [19—23]
nuclides experiment| interpolation experiment interpolation
1101 n - [2.3(6) x 10°] - [0.65(14) x 10]
21110 'H 160(20) 26.6(35)] 160(20)* [19.4(36)]
3111 2H 50(5 )i 51(5) 63(3)* 37(5)
41112 3H 922(18)# 921(18) 590(20)* # 591(19)
5121 3He - — <9* 0.95(39) x 1072
6|2]2]| “He 10%(500)#| 10 100(500) 104(350)4 10 028(540)
712(3| °He [*He+n+0.89 MeV - - 2.1(5) x 103** | 2.6(2) x 103
82|4| OHe 354(31)# 335(21) 403(26)# 369(15)
9/2|5| T"He [°He+n+0.44 MeV - — 85(21)** 128(8)
10]2]6] ®He 24(4 y# 26(3) 25(4 y# 30.6(31)
1132 °Li  [*He + 'H + 1.966 MeV - 1.1(5) x 1072 - 3.3(14) x 1072
121313 OLi - 0.11(4) - 0.29(9)
131314 TLi - 7.2(16) 17(4 )y 16.3(27)
14135 8Li - 5.6(2) 10(5)# 12.7(17)
15|36 OLi - 14.7(2) 25(11)# 31.5(26)
Sum of Z = 3 yields 26(9) 27.6(16) 52(5)*** 61(4)
16|4|3| T"Be - 2.1(13) x 107° - 1.3(8) x 1074
1714 4| SBe [2(*He)+0.092 MeV - 4.0(11) 10(6)**** 15.2(32)
18/4(5]| 9Be - 7.2(20) - 28(5)
19/4]6| °Be - 58(11) 185(20) 193(16)
2014 7| YBe - [19.3(42)] - [67.5(61)]
21|48 '2Be - [15.3(32)] - [52(6)]
221410 | '“Be - [0.21(2)] - [0.80(12)]
Sum of Z = 4 yields 49(24) [104(12)] 126(30)*** [340(20)]
2355 108 — — — [3.4(15) x 1072]
24156 B - - - [22(5)]
255 |7 12 - — - [28.6(46)]
26|58 | B - - - [220(25)]
sum of Z = 5yields - - 6.3(4)"** [271(26)]

Note: Data on the light-nuclide yields labeled with * and ** were borrowed from [19] and [21], respectively; *** data on the integrated
yields of elements from [22] and **** data on the yield of 8Be from [23]; the remaining data were taken from [20].

was made of nuclides from *He to 1°C, resulted in
x2/(N —n) = 8.6 for N = 10, this suggesting that
its quality is much poorer. Nonetheless, it faithfully
reproduces the yields of light nuclei from helium to

PHYSICS OF ATOMIC NUCLEI
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carbon, with the exception of 1°Be, whose yield calcu-
lated by the interpolation formula is underestimated

by a factor of 6, and 4B, whose yield is overestimated
by a factor of 20. The yields of the hydrogen isotopes
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Table 6. Some features of ternary fission according to calculations on the basis of some fits (for comments to this table,

see main body of the text)

Reaction N we x 103 | ©, MeV | w, x 10° Wy £py MeV |, MeV | 79,1072 s NX2 -
25U 4 iy | 10:4< A< 15|1.57(3) | 1.31(2) | 2.52(26) | 0.94(10)] 17.1(5) | 3.3(4) | 82(10) | 0.97
U 4y | 6:4< A<10[1.88(5) | 117(3) | 0.71(24) | 0.40(7) | 16.03) | 3.23) | 53(7) | 037
23U £y [10:4< A< 15|188(5) | 1.20(1) | 2.33(16) | 0.64(6) | 16.6(2) | 3.42) | 677) | 86
29y £y [10:4< A< 15|2.004) | 137(1) | 3.28(18) | 0.56(4) | 16.8(2) | 34(1) | 403) | 2.1
21Dy 4y | 10:4< A< 15| 1.98(13) | 1.38(3) | 3.25(35) | 0.87(14)| 17.25) | 3.23) | 4.28) | 38
22 Am 4 | 6:A< A<9 [221(5) | 1.433) | 471(62) | 048(12)| 167(3) | 35(3) | 253) | 43
25Cm +ny | 8:3< A<10[28(4y* | 1.282) | L11(14) | 0.26(3) | 169(4) | 34(3) | 152) | 30
25Cm 4y |10:4< A< 1528047 | 151(2) | 651(71) | 0.486) | 167(3) | 3.6(3) | 33(5) | 44
23Cm, spi. | 52< A<8 |235(12)| 1.20(3) | 6.24(81) | 0.54(13)| 16.5(6) | 2.36) | 3.4(11) | 078
2201 spf. | 8:3< A<10[2.84(10) | 1.25(3) | 0.55(10) | 0.18(4) | 15.8(6) | 2.8(4) | 1.03) | 1.1

2H and 3H also proved to be overestimated, by a factor
of 3.5 and by a factor of 2.5, respectively. In relation
to the first fit, the results are overestimated for the
neutron yield as well, approximately by a factor of
1.5 (there are presently no experimental data on this
yield). Since the first fit was constructed by using
experimental data for a lighter group of nuclides (we
refer to this as an “interpolation on the basis of a short
series”) and has a much better value of the agreement
criterion, the results of its application to the yields
of the lightest particles, including neutrons, deserve
more confidence. (It should be noted that, in compar-
ing different models, Koster [7] calculated the yields
of nuclides having relatively high values of A for the
case of 233U fission by the formula from [11], where,
in all probability, he used the parameters determined
on the basis of the short series, and this could result
in a considerable excess of the calculated yields above
their experimental counterparts in Fig. 1.6.5 in[7]).

Two different fits were constructed for the case
of the fission process 24°Cm(ny,, f) as well: one on
the basis of a short series from 3H to “Be inclusive
(Table 4) and the other on the basis of a heavier group
of nuclides belonging to a long series from *He to
15C (Table 3). The first exhibits good agreement with
experimental data within the interpolation region (up
to °Be), but it overestimates the yields of nuclides
having higher values of Z and A. The second is in
satisfactory agreement with experimental data up to
16C, but it underestimates the yields of °Be and
1B, albeit leading to severalfold overestimated results
for the yields of 3B and for the yields of almost all
isotopes of Z > 7 nuclei. In relation to the first fit,
the second one gives higher values for the yields of
single nucleons—for example, by a factor of two for
neutrons.

PHYSICS OF ATOMIC NUCLEI

Our fits for the fission processes 23°U + ny,
9Py + nyy, and 24'Pu + ny, (Tables 1—3) overesti-
mate the yields of 2H and 3H nuclei and, probably, the
yield of neutrons. Since the fits in question were based
on a “long series,” as in the case of the second fits for
25Cm(nyg, f)and 233U(ny,, f), where, in relation to
the fits based on the groups of lighter nuclides, the
neutron yield was overestimated by a factor of 2 and
by a factor of 1.5, respectively, it can be assumed that
the overestimation here is within a factor of 1.5 to
2 as well. In relation to experimental data, the yield
of °Be is underestimated by a factor of about 5,
while the yields of 3B, 16C, and 2°O are significantly
overestimated, as a rule.

For the yields in the ternary-fission process
242m Am(ny,, f) (Table 2), the interpolation formula
was fitted to data on the same nuclides as in the first
version of the fit for the reaction 233U(ny,, f). As
before, the yield of '°Be proved to be underestimated
(by afactor greater than 4 here), but, in contrast to the
case of 233U(nyy, f), the yield of 3H is overestimated
nearly by a factor of 3 here. In all probability, the
neutron yield is also overestimated, whereas the yield
of the comparatively heavy nuclide C proved to be
in agreement with the experimental value. In this
respect, the case of 242mAm(ny,, f) is rather close
to the fits based on long series.

The next two fits refer to the spontaneous fission of
the 248Cm and 2°2Cf isotopes (Table 5; use was made
here of data from [18—23]). The first of these was
constructed on the basis of data on the yields of two
hydrogen and three helium isotopes. In the second,
use was made of data on the yield of three helium
and three lithium isotopes. Both fits underestimate
the proton yield (by a factor of 6 in the first and by

Vol. 67 No.7 2004
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X imerpol/ Xexpt

Fig. 1. Ratio of the sum of the yields calculated by the
interpolation formula for all light nuclei of mass number
A to the sum of the yields found experimentally for the
same nuclei versus A. Use was made of the weighted
mean of data on the thermal-neutron-induced fission of
3y, 2y, 2%9py, 24Py, 2%2™Am, and ***Cm nuclei.
With the exception of the case of 242™ Am, interpolation
was performed on the basis of a long series of nuclides.

a factor of 8 in the second case), but they faithfully
reproduce the total yield of lithium isotopes. The first
overestimates the total yield of beryllium isotopes by a
factor of about two[18], while the second faithfully re-
produces the 1°Be yield [20], which, however, proved
to be in excess of the total experimental yield of Be
from [22]. As to the calculated yields of neutrons from
these two reactions, it can hardly be expected that
they are sizably overestimated, since the values of the
parameters in the respective formulas were calculated
on the basis of equations for isotopes of the lightest
three elements.

One can easily see that a fit on the basis of a “long
series” overestimates, as a rule, the yields of nuclei
having low values of A and Z and the yields of nuclei
having high values of A and Z, while a fit on the basis
of a “short series” overestimates, almost exclusively,
the yields of nuclei having high values of A and Z.
These features of the fits are demonstrated in Fig. 1
(fit on the basis of a “long series”) and Fig. 2 (fit on
the basis of a “short series”). For the aforementioned
reasons, the case of 22™Am(ny,, f) was included in
Fig. 1.

In Figs. 1 and 2, the nuclide atomic weight and
the ratio of the sum of the yields calculated by the
interpolation formula for all nuclei of given A to the
sum of the experimentally measured yields of the
same nuclei are plotted along the abscissa and the
ordinate, respectively. The weighted mean values of
such ratios for six and four fits are shown in Figs. 1
and 2, respectively. From Fig. 1, one can see that,
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Fig. 2. As in Fig. 1. Use was made of the weighted mean

data on the thermal-neutron-induced fission of 2**U and
245Cm nuclei and on the spontaneous fission of 248Cm

and ?°2Cf nuclei. The interpolation here was performed
on the basis of a “short series.”

within the atomic-weight range being considered, the
majority of the ratios lie between 0.7 and 1.4. In Fig. 2,
the points are grouped closer to the straight line on
which the ratio in question is equal to unity. However,
the points corresponding to A > 17 for Fig. 1 and to
A > 12 for Fig. 2 were not plotted in the figures, since
they lie far beyond the boundaries adopted here for the
figures, thereby indicating the limit above which the
formulas used become inapplicable.

[f the interpolation formula were correct, the graph
would lie horizontallly around the mean ordinate
(Xinterpol / Xexpt) = 1, with the scatter of points being
within the statistical errors; however, it can be seen
from the figures that this is not so. If we eliminate,
in Fig. 1, the points at A =1 (protons) and A =
13 (predominantly '3B) from consideration, it can
be seen there that the points are rather grouped
around a parabola. It follows that our interpolation
formula, which involves four parameters, is unable to
ensure the required accuracy over so wide a range of
argument values (2 < A < 17).

In fitting on the basis of a short series (Fig. 2),
the situation is better. Here, we see nine points ly-
ing (within the errors) on the expected horizontal
line. Therefore, there are reasons to believe that, for
nuclides whose atomic weights satisfy the condition
A <10, the interpolation formula reproduces their
yields quite precisely. Yet, the point A = 1 does not fit
in the general graph, in just the same way as in Fig. 1.
The number of protons recorded experimentally is
nearly an order of magnitude greater than that which
is expected on the basis of the interpolation formula.
One possible reason for this was already indicated in
Section 1. It should be noted that all data on protons
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Table 7. Estimates of the yields of scission neutrons per nuclear-fission event

Nucleus | 235U | 238U | 289py | 24lpy | 22mAm | 265Cm | 28Cm(sp.l) | 252Ci(sp.f.)
Wy 055 | 0.40 0.33 0.51 0.48 0.26 0.54 0.18
Aw, 009 | 0.07 0.05 0.10 0.12 0.03 0.13 0.04

were obtained with the aid of AE—FE telescopes. As
usual, thin foils used for filtering beams can be a
source of secondary protons in this case.

Summarizing the above comments on the content
of Tables 1—5 and relying on the data of the graph
in Fig. 2, we have to recognize that the interpolating
formula from [11] leads to satisfactory results only in
the case where it is applied to the range of light nuclei
(A <10).

Table 6 lists the main parameters of the interpola-
tion formula and some quantities that were calculated
on the basis of these parameters and which have
clear physical meaning. The quantity N in the second
column is the number of equations used to determine
the parameters; there, we also give the intervals of
atomic weights for those nuclides whose yields were
taken into account.

In the third column, we quote the yields of alpha
particles per fission event. These values, which were
measured in individual experiments, serve for a nor-
malization of other yields. They were taken predom-
inantly from [4]. An asterisk labels values obtained
by interpolating the dependence wq(Z2/A), which
was also presented in [4]. A number of w,, values for
245Cm are quoted in [7]. The data labeled with two
asterisks correspond to the last publication cited in[7]
(1998).

In the columns from the fourth to the ninth one, we
give successively the temperature parameter O, the
proton yield w,, and the neutron yield w,, per fission
event, the partial (or “chemical”) potentials for pro-
tons (gp) and neutrons (e, ), and the mean emission
time T0.

The quantities quoted in the tenth column char-
acterize the quality of the fits in terms of the inter-
polation formula to experimental data for those nu-
clides whose yields were employed in these fits. From
Tables 1—5, one can see how great the distinctions
between the yields obtained on the basis of the inter-
polation formula and their experimental counterparts
can be for those nuclides whose A and Z values are
beyond the boundaries of the interpolation region.

The possibility of estimating the yields of neutrons
that are emitted via the same mechanism (as a matter
of fact, the evaporation mechanism) as charged par-
ticles and within the same time interval and which
are therefore identified here as scission neutrons is
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the most interesting consequence of the applications
of the interpolation formula. [Various authors refer to
such neutrons as “prescission” or “breakup” neu-
trons because of their main special feature: the en-
ergy spectrum and the angular distribution of these
neutrons differ from the corresponding distributions
of neutrons emitted by fully accelerated fragments.
There is no generally accepted terminology for this
kind of neutron emission in nuclear fission; nor is
there a clear understanding of whether the emission
of such a neutron occurs prior to the scission of the
nucleus (that is, before the instant after which the
short-range nuclear interaction between main frag-
ments virtually disappears), after it, or both prior to
and after it.]

As was indicated above, the estimate of the
neutron yield depends on whether interpolation was
based on a long or a short group of nucleons. Ap-
proximate values of scission-neutron yields in nuclear
fission are given in Table 7. The estimates obtained on
the basis of data on a short group (including those for
the case of 2#2™Am) were taken from Table 6 without
any changes. In order to arrive at unified normaliza-
tion, the estimates in Table 6 for 23°U, 239Py, and
24Py in which case the interpolation was performed
on the basis of a long series, were multiplied by
0.57 £ 0.07. This coefficient was obtained as the mean
ratio of the data on the neutron yields in the second
and third lines for 223U and in the seventh and eighth
lines for 24°Cm (Table 6).

A nearly horizontal plateau of the ratios
(Xinterpol / Xexpt) = 1 in Fig. 2 from A=2 to A=
10 provides an additional argument in favor of the
correctness of estimating the neutron yield by means
of a fit based on a short series. An extrapolation of this
plateau to the point A = 1 corresponding to neutrons
will hardly lead to a large deviation from unity. The
point A =1 in the figures corresponds to protons
exclusively, since we do not have experimental data
on neutron yields at our disposal. According to
measurements (see Tables 1, 2, 5), the proton yield
in ternary fission is only (1—2) x 1072 of the alpha-
particle yield; therefore, it can be distorted by the
contributions from possible background reactions,
especially (n, p), as was indicated above, while the
neutron yield, which, according to interpolations,
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is two orders of magnitude higher than the alpha-
particle yield, is nearly unaffected by such distortions.

Despite a broad, nearly isotropic angular distri-
bution of scission neutrons, their expected high yield
renders them appropriate, along with charged parti-
cles, for studying the T-odd triple correlation that was
discovered quite recently (see, for example, [24—27])
and which arouses great interest. It should be noted
that, at an angle of 90° with respect to the axes along
which fission fragments fly apart—recall that this is
precisely the angle at which a counter for recording
a third particle in measurements of the triple correla-
tion is arranged—the background of neutrons emitted
from fully accelerated fragments is relatively small. In
one of the recent investigations devoted to examining
prescission neutrons [28], it was established that the
excess of neutrons at an angle of about 90° (this
excess cannot be explained within the model of emis-
sion from fully accelerated fragments) is about 30%
for the spontaneously fissile nucleus 252Cf and about
60% for the fission process 23°U(ny,, f). Our data on
neutron yields in Table 7 are in qualitative agreement
with the results presented in [28], but this fact alone
does not give sufficient grounds to believe that the
emission of all prescission neutrons proceeds via the
same mechanism as that which governs the emission
of light charged particles.

The data in Tables 6 and 7 make it possible to dis-
close some special features of ternary fission that are
unlikely to have been seen previously. By way of ex-
ample, we indicate that, in the fission of nuclei char-
acterized by identical values of Z, a heavier isotope
emits a greater number of scission neutrons. Further,
there is a distinct anticorrelation, with a coefficient
K ~ —0.7, between the yields of alpha particles (third
column in Table 6) and neutrons (Table 7), this being
indicative of a strong competition between the emis-
sion of these two types of particles. [t is interesting
to note that the neutron and proton work functions
(with allowance for the Coulomb barrier in the case
of protons) as calculated for various fissile nuclei with
the parameters of the interpolation formula proved to
be constant within the statistical errors. A fit of all
values in the seventh and the eighth column of Table 6
to constant values leads to (g,) = 16.64 £ 0.31 MeV
at x2/(N —n) =1.09 and (g,) = 3.36 £ 0.18 MeV
at x2/(N —n) = 0.75 (in the table, the root-mean-
square scatter is indicated parenthetically near the
corresponding results). The neutron work function
is much smaller than its ordinary values for nonex-
cited nuclear fragments, but this may probably be ex-
plained by the excitation of nucleons in the neck above
the ground-state level under nonstationary condi-
tions before their emission.
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From Table 6, one can see that, in just the same
way as the neutron and proton yields, the fitted tem-
perature depends on the group of nuclides used in a
fit. In relation to €, and ¢, the quantity © undergoes
wider variations from one fit to another. The emission
time 79 changes within a still wider interval, also
showing a strong dependence on the interpolation
region. As the main trend for it, we can indicate
the reduction of 7y, with increasing nuclear-fissility
parameter Z2/A.

CONCLUSION

An analysis of the results obtained with aid of the
interpolation formula has revealed that the evapora-
tion model provides a rather sound basis for describ-
ing the emission of light particles in ternary fission.
From a detailed consideration, it has become clear,
however, that the interpolation formula used, which
involves only four adjustable parameters, is unable to
reflect correctly the probabilities of the emission of
light nuclides for any A and Z values encountered
in ternary fission. It the parameters were fitted to
the known yields of the lightest third fragments—
for example, from 3H to ?Li—then the extrapolation
of the formula to the isotopes of Z > 5 nuclei leads
to overestimated results, the excess above the ex-
perimental values growing sharply with increasing
Z. 1f a fit is constructed on the basis of the known
yields of light nuclides belonging to the intermediate
range—say, from helium to carbon—the resulting
yields will be overestimated for Z > 7 nuclei, on one
hand, and for ?H and 3H, on the other hand. Probably,
the formula can be “corrected” by introducing one
to two adjustable parameters, but this would lead to
a complication of respective calculations and would
mean a deviation from a simple evaporation concept.

As to the predictive power of the interpolation
formula in what is concerned with the yield of scission
neutrons, we can hope that this yield will be deter-
mined correctly if the parameters in this formula are
chosen in such a way as to reproduce the yields of
the isotopes of hydrogen (with the exception of 'H),
helium, and lithium correctly. The expected relatively
high yields of scission neutrons open new possibilities
for studying the dynamics of fission. In particular, [
think that, in addition to the already known values
of the triple-correlation coefficient for alpha particles
in the fission of 23°U and 223U, it would be desirable
to measure this coefficient for such neutrons in the
fission of the same nuclei [29]. A comparison of the
results obtained in this way would make it possible
to draw some conclusions on the effect of the charge
and mass of a light particle on the phenomenon being
studied.
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energies. This result is obtained within a simple renormalizable model for the multiparticle forces between
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1. INTRODUCTION

The correlation energy of nuclear matter remains
one of the most important problems of nuclear the-
ory in view of applications to astrophysics and high-
density QCD. As discussed in our previous work [1],
quantitative information about the correlation ener-
gies of finite nuclei can be obtained within the frame-
work of the theory of doorway states for one-nucleon-
transfer reactions [2] by calculating the nuclear static
energy, arising from the motion of nucleons in the
nuclear static field. But we found that the results seem
to be ambiguous because only the three- and four-
particle forces were taken into account in addition to
the two-particle ones (the estimated effect of the finite
range of the multiparticle forces is found to be small).
Accounting for the fact that the ultimate origin of the
multiparticle forces is the nonlinearity of strong in-
teraction, we proposed a simple model of nonlinearity
that includes both the forces of all multiplicities and
the finite range [3] (see also the Appendix in [2]).

In this model, the multiparticle forces are taken
into account by introducing an additional scalar—
isoscalar field with the Lagrangian density
—A%¢p% —

1 1 1 1 -
L= 0,00"— 3 SA0” — Thag — g,

(1)

the corresponding classical static field thus obeying
the equation

A%¢ + A30% + Mg® = —gps + Ag, (2)

where A is the Laplacian and p; is the scalar den-
sity distribution of nucleons in the nucleus [4]. The
last term on the right-hand side of (1) describes the

*This article was submitted by the authors in English.
“e-mail: birbrair@thd.pnpi.spb.ru

coupling of the field ¢ to the nucleon one 1); g is the
coupling constant.

The field ¢ contains the “two-particle” component
@2 obeying the equation

Ny = —gps + Ay (3)

[t must be subtracted, because this part of the nuclear
scalar field results from the observed free-space two-
particle forces as described in [2]. Thus, the contribu-
tion of multiparticle forces to the nuclear static field
is

W(r) =

glo(r) — ¢2(r)]. (4)

2. ANALYSIS

As shown in [2], the multiparticle field W (r) is
repulsive in the nuclear surface region and attractive
in the nuclear interior (Fig. 1a). Let us analyze the
situation in the local density approximation W (r) =
W ps(r)]. Since the scalar density ps is a decreasing
function of r, the field W' is positive at 0 < ps < p1
with the maximum W,, in this region and negative
at ps > p1, p1 = ps(r1) (Fig. 1b). Let us neglect for a
moment the Laplacian terms of Egs. (2) and (3) (they
are taken into account in the actual calculations; see
Section 3). In this case,

A
W= g(6— o) = -5 ( +¢>¢ (5)
At ps = p1[see Fig. 10 and Eq. (3) without the Lapla-

cian term],
o(0+ %) =-S5 (o) =0 ®

and therefore

A3 gp1
_— = — 7

1063-7788/04/6707-1277$26.00 © 2004 MAIK “Nauka/Interperiodica”



Fig. 1. Contribution of multiparticle forces to the nuclear
static field as a function of (a) radial distance r and
(b) scalar density ps.

Introducing the dimensionless quantities y and ys [3],

g g
o=y e=-"w  ®)
we get
4.3
g'p
W= —A—Sl)\492(1 ). (9)
The maximum W, occurs aty = 2/3, so
27N W, 2TABW,,
e~ L)
49°py 4g%py

and therefore

W = —% (As¢? + \ag®) = 2747 my?(1—y).
(11)

Thus, both the ¢? and ¢* terms of the Lagrangian
density (1) must be included to get the required
form of the “multiparticle” field (Fig. 1). It should
be mentioned in this connection that the condition
of the renormalizability requires the absence of higher
power terms in (1). According to the contemporary
point of view, the renormalizability is not obligatory
at the meson—baryon level, but in our opinion it is
highly desirable, because otherwise the theory has
no predictive power. It is also important that the
renormalizability allows only a restricted number
of phenomenological parameters, in contrast to the
effective theories, where the above number can be
arbitrary (the only restriction in this case is the so-
called “naturalness” [5, 6], which is not confirmed by
the experimental data on the doorway states [3, 7]).

From Egs. (2), (8), and (10), we get the following
equation for the quantity y:

- e 49%p1
P1 ’ 9A2Wm '
The ratio ps/p1 is plotted in Fig. 2. As seen from the

plot, the solution y = y(ps) has three branches: the
physical one

3
y+5y2(1—y (12)

0<y<ye=-(WV1+z+1) (13)

Wl
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-
-

Fig. 2. The ratio ps/p1 as a function of y. The solid curve
is for the physical branch of the solution of Eq. (12).

in the region

1 2(1+2)

0 <= gor (14220}
and two unphysical ones with (i)y < 0 and (ii)y > ve.
Indeed, branch y < 0 begins at negative densities,
which is obviously nonsense, whereas branch y > y,
has a nonzero value at p; = 0, thus existing without
the source.

Therefore, the physical solution of Eq. (12) has
the endpoint with the coordinates (13) and (14). As
follows from above, this is the consequence of nonlin-
earity and renormalizability. The physical significance
of this result will be discussed in the next section.

3. RESULTS

In the case of finite nuclei, the quantities y(r) and
ya(r) obey the equations

y(r) + 2201~ y(0)] (15)
= ,o;(:) + %Ay(r),
)= 4 LA, 6)

Equation (15) is solved by iteration starting from the
physical solution of Eq. (12). Both Egs. (15) and (16)
are solved jointly with the relations for the neutron
and proton scalar densities ps-(7), 7 =n,p, in the
local density approximation [4]:

per(r) = J‘g;(;“) [kFT(r)\/MTQ(r) +k2 (r) (17)
L MR+ KR () + K (r)
— M2(r)In M)

with (kp,(r) = (37r2,07(r))1/3 is the local Fermi mo-
mentum)

MT(T) :m—l_ST(T)? (18)
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9xW,,

Sr(r) [y(r)

4
4 2 8los () =75 [S5(r) + Bpa(r)o;
po(r) = pan(r) + (s,
ps (1) = psn(r) = psp(r),
l,7r=n

7_3:_777
{+LT=@

and m being the free nucleon mass. The “two-
particle” scalar—isoscalar and scalar—isovector fields
Sa(r) and S, (r), as well as the vector—isoscalar
and vector—isovector ones, are expressed through the
free-space two-particle forces as described in [2] (in
the present work, the Bonn B potential [8] is used for
the two-particle forces).

As shown in [2], the dominant part of the isovec-
tor nuclear potential results from the multiparticle
forces. Butin contrast to the isoscalar term W (r), the
isovector one W (r) is positive in the whole nuclear
region, and, therefore, its multiparticle structure can-
not be safely determined. For this reason, we assumed
W~ (r) to be of three-particle origin:

W= (r) = Bps(r)ps (1) (19)

[t is a functional derivative of the multiparticle sym-
metry energy

1
Emsymm = 50 / ps(r') [p5 ()] dr’

with respect to the isovector—scalar density p; (7).
But &, symm also has a functional derivative with
respect to the isoscalar—scalar density ps(r), and this
is just the third term on the right-hand side of the
second equation in (18).

The parameters of the nonlinearity are determined
by performing the procedure of [2], i.e., solving the
Dirac equation with the scalar and vector fields for
the doorway-state energies and comparing the cal-
culations with the experimental data. The results are
practically the same as those in Fig. 4 of [2]. In this
way, we found

W, =11.5 MeV, p; = 0.146 im 3,
r=16.127, [3=5.604Im’,

= 52(r) — — 4a(r)]

(T)] )

(20)

(21)
A = 986.64 MeV.

As follows from [1] and the present work, the nu-
clear static energy is

p
Ei=) (Z 0(crr — exr)narers  (22)
T=n A
FereNo) = 5 [ {520~ 22 00)
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2TWonp1 5

=)+ 20005 (112 )+ L)

< (3= 00)) + 57015 (1) + V)

V() + c<r>pch<r>}dr,

where V(r) and V~(r) are vector—isoscalar and
vector—isovector nuclear fields, C(r) is the Coulomb
one, p(r) and p~(r) are isoscalar and isovector
density distributions, peh(r) is the charge-density
one, ), are the doorway-state energies, ep, is the
Fermi level, ny, are the occupation numbers, and

Nrowt = Y 0(exr — €F7)nar (23)
)

We used the following ansatz for the occupation num-

bers:
—1
- x}\T T (Z xm’) )

(24)

1 1 ENT FT
Trr = = - ,
T2 Ve BRiD?
A = N, 7=n,
Z, T = p,

with D =10 MeV, i.e., the half-spreading width of
the doorway states [2]. The energy F:. is between the
Fermi one e, and that of the first unoccupied state.
The F; value is chosen to minimize the quantity

2
/(prexp an7—¢)\7— Jxr (@ )> dr. (25)

Here, ¥y, (x) are the doorway-state wave functions,
x = {r,a}, « is the spin variable, and p; cxp(r) are
the experimentally observed density distributions of
neutrons and protons in nuclei. The sum in the inte-
grand is only the diagonal part of the nucleon-density
distribution: the latter also has the nondiagonal one

Z Pv; 7—¢)\7— 2)Yur (), Prvir < A/ MArNyr,
Av(A#£v)
(26)

but, as shown in [1], the nondiagonal elements py,.,
of the density matrix do not enter the static energy.
In the calculations, we included the positive-energy
states up to 100 MeV, discretizing the continuum by
introducing the infinite potential well

Ur(r) = {ST(T) +Vi(r), 1< Ren,

(27)
0, r> Rch,
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Static, binding, and correlation energies (in MeV)

l Evind Eecorr
[1] present work
160 —47.0 —86.2 —127.6 —41.4
40Ca —120.7 —121.2 —342.0 | —220.8
07r —234.2 —107.7 —783.9 | —676.2
208pp | —233.3 +154.6 —1636.5 | —1791.1

where the interval 0 < r < Ry, is the region in which
the nuclear-charge densities are determined in [9].

The correlation energy of nuclei is the difference
between the binding and static ones, the former being
the experimental quantity. The results of the calcula-
tions are shown in the table. As seen from the table,
the correlation energy becomes of increasing impor-
tance with increasing mass number. The reason for
which the static energy changes sign between *°Zr
and 208Pb is the increase in positive energy contribu-
tions from the multiparticle terms [92W,, /8](y(r) —
Yo (7)) ps(r) and [27W,,p1/16]y3 (r) (y(r) — 2/3) with
increasing nuclear size.

[t is instructive to compare the present results
for the static energy with those of [1], where only
three- and four-particle forces are taken into account
together with the two-particle ones. In this case, the
static energy is negative throughout the periodic sys-
tem, whereas it changes sign between °Zr and 2°®Pb
when the higher multiparticle forces are included via
the nonlinearity of strong interaction.

According to Egs. (13), (14), (18), and (21), the
endpoint values of the scalar density and the scalar
field in isosymmetric nuclear matter are

pse = 0.1933fm ™3, y, =1.7128,  (28)
92 W,
Se:SQe+We:_bpse_ 4m (ye_@>
Pl
= —497.22 MeV,
where
2
h— Sggl Ag'l B :u’¢271 (29)
42 A2
ol ol
2 A2 _ 2 2
1 o0 ( o0 “"0) — 11.62 fm?,
4“00 AO’O
and
i 9s
Zol — 82797, 220 — 16.9822, (30)
4 7
to1 = 9550 MeV,  pso = 720 MeV,

AUI = AO’O = 2000 MeV
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are the Bonn-B-potential parameters [8]. The corre-
sponding endpoint density p. is obtained by solving
the equation [4]

M, /
Pse = W_Qe (kFe M62 + k]%e
2 2
e Y +kFe+’“F6),

M,
M, =m+ S,

for the endpoint Fermi momentum kg.. In this way,
we get

(31)

kp. = 1.4739 fm 1, (32)
2k
pe = —Le = 0.2213 fm ™3 = 1.3py,
32

where pg = 0.17 fm ™ is the equilibrium density of
nuclear matter. Thus, the nuclear static field does
not exist at higher densities than the endpoint one.
But this result is hardly of any practical significance
because (i) there are no stable nuclei with such den-
sity values, and (ii) as follows from our results for
the static energies, the properties of finite nuclei and
nuclear matter are governed by the correlation effects.

4. CONCLUSIONS

Until very recently, it was assumed that nucleons
in nuclei interact mainly via the two-particle forces.
For this reason, the conventional logic of textbooks
on nuclear theory was as follows: “Let us first study
deuteron and elastic NN scattering; deduce the NNV
potential from the relevant experimental data; and
use it for few-nucleon systems, complex nuclei, and
nuclear matter.” But as unambiguously follows from
our investigation of the doorway states [1—3, 7], this
is the “way nowhere.” Indeed:

(i) The three- and four-particle forces are found
to be of the same magnitude as the two-particle
ones. For this reason, the Faddeev and Faddeev—
Jakubowsky equations as well as the Hartree—Fock—
Brueckner and Dirac—Hartree—Fock—Brueckner
methods are irrelevant approaches, since they are
based on the two-particle forces only.

(ii) The seeming success of the above approaches
is due to the fact that the three- and four-particle
forces nearly compensate each other at observed nu-
cleon density values. But such a near compensation
hardly occurs at higher densities, and therefore the
contemporary results for the equation of state of nu-
clear matter are at least doubtful.

(iii) As seen from our results for nuclear static
energies, the nonlinearity of strong interaction is of
importance, and therefore it must be taken into ac-
count to the full extent in nuclear theory.
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Abstract—The microscopic eikonal phase shiits for nucleus—nucleus collisions and total reaction cross
sections are calculated by using the expression previously derived for the profile (thickness) of a realistic
distribution of nucleons in the form of a symmetrized Fermi function. If, in addition, the density of the
projectile nucleus is approximated by a Gaussian function and if a density profile of arbitrary form is taken
for the target nucleus, the phase shift in question reduces to a one-dimensional integral. Questions are
considered that are associated with the derivation of density parameters for “pointlike” nucleons in nuclei,
with the possibility of approximating realistic densities by Gaussian functions in the region of the nuclear
surface, with the dependence of the cross section on the range of nucleon—nucleon interaction and on the
nuclear-medium density, and with the role of the distortion of the trajectory. Conclusions on the physics of
the process are drawn, and the cross sections calculated on the basis of the present approach without using

free parameters are compared with available experimental data. © 2004 MAIK “Nauka/Interperiodica”.

1. INTRODUCTION

In nuclear physics, the Glauber—Sitenko ap-
proach [1, 2], with allowance for some modifications,
is used to study nucleus—nucleus collisions at ener-
gies of about 10 to 100 MeV per projectile nucleon.
Within this conceptual framework, the eikonal phase
shift can be determined either by specifying a phe-
nomenological optical potential or by calculating it
within a microscopic approach, where it is expressed
in terms of nuclear-density distributions and the
amplitude for nucleon—nucleon scattering.

Usually, the parameters of a phenomenological
potential Uy (r) = V(r) + iW (r) are fitted on the
basis of a comparison of the results of calculations
with experimental data on elastic-scattering cross
sections and on total reaction cross sections. How-
ever, there remain here questions concerning am-
biguities in the resulting parameters [3]. To illus-
trate this statement, we note that, for the total reac-
tion cross section obtained analytically in [4] for the
Woods—Saxon potential, it was shown there that this
cross section is determined primarily by two com-
binations RWy and R/a of three parameters of the
potential—its range R, its diffuseness a, and its depth
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YFaculty of Physics, Warsaw University of Technology, War-
saw, Poland.
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Wo; naturally, this makes it possible to vary these
parameters within broad ranges of their possible val-
ues. As to the microscopic approach, it is absolutely
free from adjustable parameters and enables one to
calculate the eikonal phase shifts themselves instead
of scattering potentials. Owing to this, it is possible
to perform predictive calculations—in particular, cal-
culations of total cross sections for reactions involv-
ing radioactive nuclei. The latter is of importance for
solving problems of radioactive-waste transmutation
[5, 6].

Since the early study of Fernbach et al. [7], the
microscopic approach has been used to calculate
proton—nucleus cross sections. Later on, it was
generalized in [8, 9] to the case of nuclear—nuclear
scattering on the basis of the theory of multiple
nucleon scattering by nuclei [1, 2]. It has been
extensively employed in analyzing total cross sections
for the interaction of beams of light nuclei with nuclei.
Among other things, this made it possible to discover
a neutron halo in the *He and °Li nuclei and a proton
halo in the 1'Be nucleus and to find neutron- and
proton-rich nuclei (see, for example, [10]; see also the
review articles of Bertulani ef al. [11] and Knyazkov
et al. [12]). Much attention has also been given
to studying the mechanism of nuclear scattering—
namely, to taking into account the deviations of true
trajectories from a straight-line one [13, 14], the
role of higher order corrections to the eikonal phase
shift [15], the clustering of nuclei [16], and other
effects.

1063-7788/04/6707-1282$26.00 © 2004 MAIK “Nauka/Interperiodica”
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In the majority of such studies, use is made of
Gaussian functions for nuclear densities, since it is
possible in this case to perform a separation of vari-
ables in multidimensional integrals for eikonal phase
shifts and to obtain relevant results in an analytic
form. This is the main reason why such functions and
their modifications are used in calculating cross sec-
tions even for heavy-ion scattering, although physical
considerations obviously require taking, in this case,
functions of an extended shape as a basis. Fermi
functions of the form up(r) = [1 + exp(r — R/a)]™!,
which provide the most realistic representations for
the distributions of the densities and potentials in
medium-mass and heavy nuclei, are employed most
often in nuclear physics. Unfortunately, it is difficult to
perform analytic calculations with Fermi functions—
for example, it is impossible to separate variables in
the aforementioned multidimensional integrals for the
phase shifts. Nevertheless, it has become ever more
common to resort to them not only in numerical but
also in analytic calculations. In contrast to Gaussian
functions, Fermi functions have a correct, exponen-
tial, behavior at the periphery of nucleus—nucleus
collisions, which is a region that, in such processes,
makes a dominant contribution to differential cross
sections for scattering and to total reaction cross
sections. Therefore, it is highly desirable to develop
analytic methods for calculating cross sections within
a microscopic approach that would employ realistic
shapes of nuclear densities. The parameters of such
densities can be borrowed from tabular data obtained,
for example, from an analysis of information about
electron—nucleus scattering. This would provide suf-
ficient grounds to believe that basic structural fea-
tures of nuclei participating in the scattering of nuclei
are taken correctly into account and would make it
possible to study the true mechanism of their interac-
tion and to perform reliable predictive calculations of
respective cross sections. This is precisely the objec-
tive of the present study.

The ensuing exposition is organized as follows.
In Section 2, we present some modifications to the
basic formula for the phase shift in the microscopic
approach, this being of importance both for obtain-
ing deeper insight into the mechanism of nucleus—
nucleus scattering and for performing calculations
without resort to assumptions adopted in a number of
studies. In Section 3, we give explicit expressions for
so-called nuclear-density profile functions specified
in the form of a Gaussian, a uniform, and a sym-
metrized Fermi function. It is shown how the four-
dimensional convolution integral for the phase shift
can be reduced to a one-dimensional integral if the
density of the projectile (light) nucleus is taken in the
form of a Gaussian function, while the density of the
target nucleus is taken in the form of a symmetrized
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Fermi function. In the case of densities having an
arbitrary form, this integral can be represented in the
form of a one-dimensional integral of the Fourier—
Bessel transforms of their profiles. An explicit form of
such a transform is given for the profile of a nuclear
density represented by a symmetrized Fermi function.
Conclusions on the applicability of so-called modified
Gaussian density functions are drawn. In Section 4,
we examine problems concerning the use of nuclear
densities as obtained from nuclear form factors in
electron—nucleus scattering, the effect of the choice
of range for nucleon—nucleon forces and the effect of
distortions of scattering trajectories, and the role of a
nuclear medium. In Section 5, we perform a compar-
ison with experimental data and draw conclusions.

2. BASIC FORMULAS
OF THE MICROSCOPIC APPROACH

Within the eikonal approximation and the micro-
scopic approach [1, 2], the total reaction cross section

has the form

oR = 27r/dbb (1 - e_X(b)) , (2.1)

0

where the phase shift
x(b) = anNZ(b) (2.2)

is expressed in terms of the isospin-averaged total
cross section for nucleon—nucleon scattering,

ZpZtUpp + NpNtUnn + (ZpNt + NpZt)an
A, A, ’

ONN =
(2.3)

and the convolution integral, which, in the case of
nucleus—nucleus scattering, has the form [8]

I(b) = / 2 syd2500(5) 050 £ £),
6 =b-— Sp + St.

(2.4)

Here, s and € lie in the impact-parameter (b) plane,
which is orthogonal to the z axis aligned with the
projectile momentum k;,* and p°(s) stands for the
so-called thicknesses (profiles) of the density dis-
tributions pY(r) of the centers of mass of nucleons
(“pointlike nucleons”) in the projectile and target nu-
clei (their mass numbers being denoted by A, and A,

respectively).?) The densities themselves are defined

YA similar expression was obtained in [17] within the model of
the flux tubes of nucleons of colliding nuclei.

®We denote by s and r the coordinates in, respectively, two-
and three-dimensional spaces, the relation 72 = s? + 2% be-
ing valid in our case. Accordingly, p(r) and p°(r) stand
for the density distributions, while p(s) and p°(s) are their
profiles.
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as follows:
pls) = /dzp (\/52 +z2). (2.5)

The pointlike densities p°(r) differ from the matter-
density distributions p(r) in nuclei that consist of
actual, “dressed,” nucleons. There is a vast body of
tabular data for p(r) that were obtained from an anal-
ysis of the form factors for electron—nucleus scatter-
ing,®) and our objective is to develop an approach that
would be free from adjustable parameters. However, it
is not convenient that, here, pointlike densities p°(r)
must be determined each time on the basis of known
experimental nuclear densities p(r).

The function f(&) determines the form of the am-
plitude for nucleon—nucleon interaction; that is,

F(6) = (Vran) e
where 7%, is the mean-square range of nucleon—
nucleon interaction. It can be determined if one con-
siders that the parameter ay is expressed with the
aid of the relation a3, = 243 in terms of the slope pa-
rameter 3 of the amplitude for nucleon—nucleon scat-
tering”) in the form exp(—¢28/2). According to [18],
values of 8 at an energy of about 1 GeV lie within the
range 0.21—0.23 fm~2, which corresponds to r%,, .. =
0.63—0.69 fm2. In our case, nucleon—nucleon forces
act in a nuclear medium. In order to take into account
its effect, an extra factor f,, is usually introduced
in the integrand in (2.4). In the following, we will
consider this issue in greater detail.

€2 /42 2
&/ N, a’?\f = gTJQVrmsv (26)

The convolution integral in (2.4) is close in form
to the six-dimensional double-folding integral in the
calculations of a nucleus—nucleus potential [19]. In
either case, one has to seek methods for separating

91n general, the densities p(r) appearing here depend on coor-
dinates in the c.m. frame of the corresponding nucleus. How-
ever, the center-of-mass-motion factor exp(g*(r?)/6A),
where ¢ is the momentum transfer, (r2) is the mean-square
radius of the nucleus being considered, and A is its mass
number, is not isolated in them, as a rule, in analyzing ex-
perimental form factors. In view of this, tabular p(r) provide
nuclear-charge or nuclear-matter distributions in the field of
a fixed potential. At low ¢ and high A, the densities in the two
systems coincide.

The amplitude is fn(q) = fn(0)f(q), where fn(0)=
(kn/4Am)ann (i + ann), with kny and ann being, respec-
tively, the relative momentum of colliding nucleons and the
ratio of the real part of the amplitude to its imaginary part.
For f(q) = exp(—q®a% /4), the Fourier—Bessel transforma-
tion f(&) = (2m) 72 [ exp(—iq - &) f(q)d*q then yields ex-
pression (2.6); in the zero-range approximation (ay = 0), in
which case f(g) = 1, we obtain f(¢) = 6 (¢).
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variables in relevant integrands. In Section 3, it will be
shown that this integral can be calculated explicitly if
both densities are specified in the form of Gaussian
functions or can be reduced to a one-dimensional
integral if one of the densities is taken in the Gaussian
form. At the same time, there is a standard method for
reducing such integrals to one-dimensional integrals
via a transition to the momentum representation.
For this, we make two-dimensional Fourier—Bessel
transformations of the integrands in (2.4) as

_ 1 —ik-s ~ 2
u(s) = )2 /e u(k)d“k (2.7)
1 o0
Jo(ks)u(k)kdk,
T o
0
where
u(k) = /eik'su(s)d% = QW/JO(ks)u(s)sds.
0
(2.8)
Expression (2.4) then takes the form
17 o
— o [ RAEREDA®ERTE, (29
0
where
f(k) = exp (_k2TJ2Vr1ns/6) : (2.10)

For the nuclear-density profile, we further use the
convolution

p(s) = [ dswon(on)ells — sl (211)

where pn(sy) is the nucleon-density function. With

the aid of (2.7), we then obtain
pillk) = pn (k)2 (k). (2.12)

For a Gaussian nucleon density of mean-square
radius 73, we have

_ /{:27“2
pn (k) :eXP< %) (2.13)
From (2.9), it then follows that
_ 1 r -0 ~ k27_2
I(b) = 5 / kedk Jo (kb) 5 (k) oy (k) exp<_T)’
0
(2.14)
T2 = T12Vrms - T(2)rmS' (215)
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2 2 . .
If we assume that 7%, and 7§, coincide, then
72 = 0; therefore, we have
oo

Z(b) = %/kdkjo(kb)ﬁg(k),ét(k). (2.16)

™
0

Accordingly, the following relation holds in the coor-
dinate representation:

o0

7(0) = [ spS((b ~ sl)mu(s).

0

(2.17)

Thus, we have derived expressions for the con-
volution integrals in the form of (2.14), (2.16), and
(2.17). Instead of the profile functions for the pointlike
target-nucleus density, these expressions involve the
profiles of the nuclear-matter density, p;(s) or p¢(k).
[t is the corresponding densities p(r) that are known
from an analysis of nuclear form factors and are pre-
sented in tables; for medium-mass and heavy nuclei,
it is common practice to parametrize them in the form
of Fermi functions. In principle, relations (2.12) and
(2.13) can be used for the projectile nucleus as well,
in which case it is necessary to set ﬁg = pp/pnN. But

in the integrands in (2.14) and (2.16), there will then
appear a growing Gaussian function, and the inte-
grals in question will be divergent at the upper limit
if realistic functions having exponential asymptotic
behavior are taken for the profiles of both densities. Of
course, one can proceed in a formal way that consists
either in cutting off the integrals at a point where the
integrands begin to grow or in replacing the Gaus-
sian nucleon form factor py (k) (2.13) by the dipole
expression [see Eq. (4.2) below]. On the other hand,
no divergence appears if the profile of the density of
one of the nuclei is also taken in the Gaussian form.

Finally, we note that, frequently, phase shiits are
calculated in the zero-range approximation (r%,, , =
0), this leading to the convolution integral (2.9) with

f(k) =1 or, in the coordinate representation, to an
expression that is analogous to (2.17), but which
involves pY(s) instead of p(s). The replacement of
the pointlike densities p° by the nuclear densities p
is an even rougher approximation. It can now be seen
that such approximations are not necessary and that
they distort the true mechanism of nucleus—nucleus
scattering.

3. EIKONAL PHASE SHIFTS
FOR REALISTIC NUCLEAR-DENSITY
DISTRIBUTIONS

[t has already been indicated that, in order to ob-
tain analytic expressions for phase shifts and cross
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sections, many authors use Gaussian distributions of
the densities and their profiles; that is,

pa(r) = pa(0)e™/%,  pa(0) = A/(V7ag)®

(3.1)
—S87/aq 2
po(s) = (Vmag)pa (0)e >/, af = SRA
(3.2)

where the only parameter ag is determined by the
root-mean-square radius Ryys of the nucleus being
considered.?)

Since uniform density distributions are sometimes
used for medium-mass and heavy nuclei, we also

present the corresponding distributions and their pro-
files:

pu(r) = pu(o)@(Ru - T)v pu(o) = 3A/(47TR2)7
(53

pu(s) = pu(O) V R% — 52 ®(Ru - 3)7
5

2 _ 952

R, = 3R

rms-*

(3.4)

In a number of cases, a realistic density in the
form of a Fermi function is approximated as a linear
combination of Gaussian functions with adjustable
weight coefficients and the adjustable parameters ag.
This was done in [20]; in [21], a similar fit to the
profile of a Fermi function was constructed directly.
Unfortunately, one has to repeat this procedure for
each new set of parameters R and a of the original
Fermi function. However, one can use the fact that,
for heavy ions, scattering cross sections and total
reaction cross sections are determined primarily by
the behavior of phase shifts at the periphery of the
collision process. In all probability, this was first taken
into account in [22], where the Fermi distribution
pr(r) was simulated only in the region of its tail by
using one Gaussian function. Later on, Charagi and
Gupta [23] employed this procedure to simulate the
profile pg(s) of the Fermi function rather than the
Fermi function itself. In doing this, they matched, at
the periphery, the profile of a Gaussian function [see
Eq. (3.2)] to the profile pp(s) at two points, thereby
determining both parameters ag and pg(0) of the
modified Gaussian function

pa(s) = (Vmag)pg(0)e /%, (35)

This function is not normalized since, in contrast to
what we had in (3.1), its parameters are not related
to each other. In general, the matching of the profile

®1n those cases where it is necessary to take the pointlike
distributions pg(r), the parameter (ad)? = 2R7,s can be
determined in terms of the root-mean-square radius of the
distribution of pointlike nucleons in the nucleus, RZ, =

2 2
ers — T0rms-
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pG(s) with any smooth and extended function p(s)
at two points s; and so leads to determining the two
parameters of this profile function pg(s); that is,

p6(0) = (Vmag) ™ p(s1)exp(si/a2),  (3.6)
53 — 52 1/2
6= [lnp(sj - 111,0(52)] (3.7

In [23], this matching of profiles in the form of mod-
ified Gaussian functions with the profiles pf(s) of
pointlike nuclear Fermi distributions was performed
at the points s1 = ¢ and sy = ¢ 4 4d, where c and d
are, respectively, the radius and the diffuseness pa-
rameter of the density p(r). The profile functions
pl(s) themselves were found by means of a numerical
integration in (2.5); the diffuseness parameter was
taken to be identical for all nuclei, d = 0.53 fm; and
the radius ¢ was determined on the basis of known
data on the root-mean-square charge radii of nuclei
and the nucleon (Ryms and 7 s, respectively) with
the aid of the formula
3 7 /mdN\?

Ry = Bns = 1ms = 21+ 5(5) |- (38)
In general, the accuracy of this matching must be
tested each time when the diffuseness parameter a
of the nuclear Fermi densities pp(r) have different
values for different nuclei; therefore, the values of the
diffuseness parameter d in the calculation of the pro-
files p(s) are also different. Moreover, the parameters
of modified Gaussian functions depend on the choice
of matching functions as well.

Since the study reported in [24], the symmetrized
Fermi function

sinh(R/a)

= 3.9
usk(r) cosh(R/a) + cosh(r/a) (3.9)
B 1 1
1-|—expr_R 1+expr+R

has been used first in calculating nuclear form fac-
tors in electron—nucleus scattering and then in other
nuclear-physics problems. It possesses a number of
advantages over the Fermi function, this also con-
cerning the case of analytic calculations [25, 26]. Its
universality in applications consists in that it faithfully
simulates the density distribution in nuclei from light
to heavy ones [27]. From (3.9), it can be seen that, for
medium-mass and heavy nuclei (R > a), this func-
tion is virtually coincident with the usual Fermi func-
tion up(r) = 1/(1 + exp[(r — R)/a]). For the sym-
metrized Fermi density, one can therefore use tabu-
lated data on the Fermi distributions of both nuclear
densities [28] and pointlike-nucleon densities [29].
For our problem, it is of importance that the profile

LUKYANOV ef al.

for precisely the symmetrized Fermi function could
be found explicitly [30], whereby the ensuing calcu-
lations are significantly simplified. The symmetrized
Fermi distribution and its profile have the form

sinh(R/a)

psr(r) = psr(0) cosh (R a) T cosh(r/a) (3.10)
o) = 5[+ ()T
psrls) = 2Rpsi(0) cosh(;i/r;l;(féfn)h(s/a) P(s).
(3.11)

Here, the main dependence of the profile on s is de-
termined by the symmetrized Fermi function having
the same parameters as the density psp(r). The cor-
rection function P(s) is given in [30] and is defined
in terms of the auxiliary function x(s), which satisfies
the condition z(s) < 1. This makes it possible to
simplify the function P(s) in such a way that

P(s) = %111(4/95(5)), (3.12)
2 cosh(s/a) k—1
#(s) = k cosh(s/a) + cosh(R/a) {1 + cosh(s/a) } ’

where k is expressed in terms of the radius R and the
diffuseness parameter a as

k=¢, (3.13)
§ = 1.10315 4 0.34597(R/a) — 0.00446(R/a)?.

The numerical coefficients in (3.13) were found in [30]
by fitting the profile in (3.11) to the numerical values
of the profile integral (2.5) of the function psg(r)
(3.10) in the parameter region 5 < R/a < 20. At the
center of the nucleus, the correction function assumes
the value of P(0) = 1, while, in the region of the main
contribution between s = R and oo, it changes only
slightly, by about 0.4(a/R). This makes it possible
to use the approximation where P(s) is taken at one
point—for example, at s = R or at the point s =
s1/3 = R+ aln2, where the density is one-third as

great as its value at the origin.?) Under the condition
cosh(R/a) > k, we then have

Py(R) ~ % [In 4] (3.14)

= e

R R\?2
2.48945 + 0.34597— — 0.00446 (—) ]
a a
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n[19], it was found that the behavior of the cross sections for
nucleus—nucleus scattering is determined primarily by the
overlap region of the densities at their periphery for s > s /3,

where p(s1/3) = (1/3)p(0).
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and, accordingly,
sinh(R/a)
cosh(R/a) + cosh(s/a)

psr(s) = 2Rpsr(0) Pu(R).

(3.15)

For the 160, 4°Ca, and 2°®Pb nuclei, the profile
functions for the densities in the form of the sym-
metrized Fermi function are shown in Fig. 1 ac-
cording to a numerical calculation by formula (2.5)
(points), along with the corresponding profiles for a
modified Gaussian function that were obtained by
formulas (3.6) and (3.7) at s; = R and so = R + 4a.
The solid curves there represent the results of the
calculation of psp(s) by the analytic formula (3.11).
The parameters of the density in the form of the
symmetrized Fermi function were borrowed from [27]
and are quoted in Table 1. It can be seen that, in the
internal region, there is a strong discrepancy between
the profiles for a modified Gaussian function and the
profiles of the density in the form of the symmetrized
Fermi function (for example, by nearly two orders of
magnitude for 2%Pb). There is also a discrepancy in
the region where the densities themselves decreased
by not less than two orders of magnitude. The profiles
of a uniform and a Gaussian form of the density
distribution will differ from the profile of the Fermi
functions even more pronouncedly. In Fig. 2, the
profiles psp(s) are shown for the same nuclei, but
according to the calculation by (solid curves) the ana-
lytic formula (3.11) with the exact correction function
P(s) and (dashed curves) the analytic formula (3.15)
with the approximate correction function P,(s = R).
[t turns out that the use of the correction function
at the radius value introduces virtually no changes in
the behavior of the profile function in the peripheral
region. A modest distinction within a factor of 2 for
the 298Pb nucleus appears only in the nuclear interior,
this being much less than the distinction between
the profile functions for the symmetrized Fermi and
modified Gaussian functions (see Fig. 1).

Thus, we have the possibility of choosing, in the
following, the profiles p(s) of an explicit analytic form
for a Gaussian, a uniform, and a symmetrized Fermi
function. Below, these three types of functions will
be employed in calculating the microscopic eikonal
phase shifts x(b) and total reaction cross sections.

First, we consider the convolution integral (2.17)
for the case where the Gaussian function (3.5) is
taken for the profile pg(g) of the projectile-nucleus
density. Substituting in it

PG (b =) = (Vmag e, (0)

Xexp[ ﬁ (v* — 2bscos<p—|—82)]
%Gp

(3.16)
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and employing, in performing integration with respect
to the variable ¢, the definition of the zeroth-order

Bessel function of an imaginary argument, I (z) [31],
we obtain

2

r s 2bs
X /sdspt(s) exp (— (a%my)ﬁ)((agpy) .

0

In a more general case where the root-mean-square
radius of the nucleon differs from the range of nuc-
leon—nucleon interaction, it is convenient to use the
convolution integral (2.4) featuring the profiles of
pointlike densities for both nuclei. It can then be
shown that, in the case of a modified Gaussian profile
function for the projectile nucleus [see Eq. (3.5)], the
convolution integral takes the form

(ag )?
“Gp

7z b 2T

GNt() 2+a?v

Q

G
(\/7ag7p < >
/sdspt( )exp( m)

0
2bs
x Iy | —————|.
((ag,p)2 + a?v>

Table 1. Parameters of the symmetrized Fermi nuclear-
density distributions psg(r, R, a)*

(3.18)

Nucleus | R,fm a,fim | Rums, fm | References
12C 2214 | 0.488 2.496 [27]
160 2,662 | 0.497 2711 [27]
20Ne 2.74 0.572 3.004 [28]
Mg 2.934 | 0.569 3.105 [27]
27Al 3.07 0.519 3.06 [28]
28Sj 3.085 | 0.563 3.175 [27]
328 3.255 | 0.601 3.370 [27]
0Ca 3.556 | 0.578 3.493 [27]
667n 4.340 | 0.559 3.952 [28]
89y 4.86 0.542 4.27 [28]
208pp, 6.557 | 0.515 5.427 [27]

* The parameters taken from [28] were given there for the Fermi
distributions pr(r, R, a), which are close to pse(r, R, a) for the
four nuclei indicated there.
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Fig. 1. Thickness functions for the density in the form of the symmetrized Fermi function: (points) results of a numerical
integration by formula (2.5), (dashed curves) profiles in the form of a modified Gaussian function that are matched with them,
and (solid curves) results of the calculation by the analytic formula (3.11). The parameters of the density were borrowed from
Table 1.
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Fig. 2. Thickness functions for the densities in the form of the symmetrized Fermi function according to the calculation by
(solid curves) the analytic formula (3.11) with the exact correction function P(s) and (dashed curves) formula (3.15) with the

approximate correcting function P,(s = R). The parameters here are identical to those used for Fig. 1.

[f the Gaussian profile function for the target nucleus
is substituted in this expression, the integral in (3.18)
is taken explicitly [31]. The result is [22]

Tonab) = = e, (V) P& p(0)
AV, T (a%yp)2 + (a%ﬂt)2 +a%, "GP
(3.19)

b2

(a%,t)2 +a3 |’

We note that the substitutions G — G and
(vma?)?pd .(0) — A; are necessary in (3.17)—(3.19)

if use is made of the normalized Gaussian func-
tions (3.1).

We take it for granted that symmetrized Fermi
functions provide realistic density distributions in

PHYSICS OF ATOMIC NUCLEI

medium-mass and heavy nuclei. The corresponding
profile functions are given explicitly by Eq. (3.10)
or (3.15). The Bessel functions Iy(x) and Jy(z) are
also known explicitly in the form of approximations in
terms of polynomials [32]. Thus, all functions in the
convolution integrals (3.17) and (3.18) are specified
explicitly, which is very convenient for a numerical
integration.

In the case where, for both nuclei, the density dis-
tribution is specified in the form of symmetrized Fermi
functions, it is advisable to use the convolution inte-
grals in the momentum representation (2.9), (2.14),
or (2.16), a convenient form of the profiles for such
distributions being that in the approximation specified
by Eq. (3.15). The respective Fourier transform can
then be calculated explicitly. Indeed, the substitution
of the density function (3.15) as u(s) into (2.8) makes

Vol. 67 No.7 2004
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Fig. 3. Total reaction cross sections obtained by using various models of the density-thickness functions. For the projectile
nucleus 12C, use was made of a profile taken in the form of a modified Gaussian function and fitted to the profile of the pointlike-
nucleon density in the form of a symmetrized Fermi function (the values of the relevant parameters are quoted in Table 2). For
target nuclei, the density profiles corresponded to nuclear densities in the form of symmetrized Fermi functions (the parameter
values are quoted in Table 1), uniform nuclear densities [see Eq. (3.4)], or nuclear densities simulated in the same way as for
the target nucleus [model of modified Gaussian functions—see Eq. (3.5)]. The results for these three cases are represented by

the solid, dash-dotted, and dashed curves, respectively.

it possible to write

psr(k) = AnRpsp(0) Pu(R)Fsp(k,a, R), (3.20)
where
Fsp(k,a, R) = Fsp(k) (3.21)
7 sinh(R/a)
N /SdSJO(kS)cosh(R/a) + cosh(s/a)’
0

Taking into account the peripheral character of nu-
clear collisions, we can assume that the main con-
tribution comes from the region ks> 1. We then
have the following approximate expression (see, for
example, [33]):

maR
Fsp(k) =

sinh (wak)

Sprung and Martorell [25] obtained corrections to
it, but these corrections are immaterial in the above
calculations of the total cross sections.

In Fig. 3, the total reaction cross sections calcu-
lated for collisions between '2C projectile nuclei of
energy 50 to 350 MeV per nucleon and 190, 4°Ca,
and 298Pb target nuclei are shown for three cases
where the nuclear densities in the target nuclei were
chosen in the form of symmetrized Fermi functions,
modified Gaussian functions, or uniform-distribution
functions. In calculating the phase shift y, use was
made of the convolution integral in the form (3.17).
For the projectile nucleus 2C, we took the density
profile in the form of a modified Gaussian function

J1(kR). (3.22)
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matched at the points s; = ¢ and sg = ¢ + 4a [see
Egs. (3.5)—(3.7)] with the profile of the pointlike-
nucleon density in the form of a symmetrized Fermi
function (the parameter values are given in Table 2).
The profile functions for the target nuclei in the form
of modified Gaussian functions were matched in the
same way, the parameters of psp being taken from
Table 1. This table also presents the values of the
root-mean-square radius R.ns that were used to
calculate the radius R, of the uniform-distribution
density (3.4). The total cross sections oyy for
nucleon—nucleon scattering as functions of energy
were parametrized as in [23]. One can see that, for
the density in the form of a step (dash-dotted curves),
the behavior of the total reaction cross section differs
significantly from that which is obtained in the case

Table 2. Parameters of the symmetrized Fermi distribu-
tions plr(r,c,d) of the pointlike-nucleon density in nu-
clei [29]

Nucleus ¢, fm d, im
12C 2.275 0.393
160 2.624 0.404
Mg 2.984 0.484
28Si 3.134 0.477
328 3.291 0.520
40Ca 3.593 0.493
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Fig. 4. Illustration of the dependence of the calculated cross sections on the parameters of the pointlike-nucleon density that
were determined from an analysis of data on electron—nucleus scattering: (solid curves) results of the calculations with the
parameter values from Table 2, (dashed curves) results obtained with the parameters determined by using Egs. (4.3), (dash-
dotted curves) results of the calculations with the parameters borrowed from [37], and (points) results of the calculation in the
momentum representation with the aid of Eq. (3.20) (see main body of the text).

of the physically validated density in the form of
a symmetrized Fermi function (solid curves). The
calculations of the cross sections on the basis of
the models of a symmetrized Fermi function (solid
curves) and a modified Gaussian function (dashed
curves) are in satisfactory agreement with each other.
That, at low energies, the cross sections calculated
with symmetrized Fermi functions exceed slightly
those calculated with modified Gaussian functions
is due to an extended tail of the densities in the form
of a symmetrized Fermi function. A weak growth of
the cross sections calculated with modified Gaussian
functions for target nuclei at higher energies in
relation to the case of symmetrized Fermi functions
is associated with the greater values of the modified
Gaussian functions in the nuclear interior, this re-
sulting in that absorption is switched on earlier.

The calculation of the cross sections in the mo-
mentum representation for the case where realistic
symmetrized Fermi distributions pgp are taken for
both nuclei with an approximate correcting function
P,(R) in the form (3.14) and, accordingly, approxi-
mate profiles in the form (3.20) leads (see Fig. 4) to
results (points) that differ slightly (by about 2% ) from
the results of precise calculations (solid curves).

4. RESULTS OF THE CALCULATIONS
AND DISCUSSION

4.1. On the Use of Nuclear Densities
from Electron—Nucleus Scattering

The convolution integrals (2.4) and (2.9) involve
the profiles of the pointlike-nucleon densities p°(s) of
both nuclei. At the same time, one of the densities in
the transformed integrals (2.16) and (2.17) remains
a pointlike one, while the other is a nuclear density

PHYSICS OF ATOMIC NUCLEI

[p(s)]. Thus, the problem of determining pointlike-
nucleon densities is not removed, so that it is nec-
essary to address the question of how they can be
derived. In general, they can be constructed on the
basis of nuclear models. However, we were inclined
from the outset to rely on data from independent
experiments—for example, on densities as obtained
from nuclear form factors. As before, we will assume
that p?S)F(r) provides a realistic form of pointlike-

nucleon density.

The first method was developed in[29] and is based
on isolating, in the experimental nuclear form factor
F(q), the form factor F°(q) for a nucleus formed by
pointlike nucleons and on extracting, from the latter,
the density distribution of pointlike nucleons. In just
the same way as in (2.12), the nuclear form factor is
then represented in the form

F(q) = Fp(q)F°(q);

for the proton form factor, use was made of the dipole
formula, which, at low momentum transfers, can be
approximated by a Gaussian function as

(4.1)

q2r2 —2
FP(Q) = <1 + %) = exp(_q2r(2]rms/6)'
(4.2)

Further, the method of a model-independent analy-
sis was used to reconstruct the density p°(r) from
F%(q), a trial density function being chosen as a lin-
ear combination of the function p2(r) and its radial

variations in the form of the derivatives pg(l?) (r) with
adjustable weight coefficients. For these trial densi-
ties, the calculations of FY(q) were performed in the
high-energy approximation [34, 35] (rather than in

Vol. 67 No.7 2004



TOTAL CROSS SECTIONS FOR NUCLEUS—NUCLEUS REACTIONS

the Born approximation), which yields results that are
close to numerical solutions to the Dirac equation.
Table 2 presents part of these data [29]—namely,
the radius ¢ and the diffuseness parameter d of the
density p(r, c,d). We disregarded the contribution
of the radial variations to the total cross sections,
since they manifest themselves only in differential
cross sections at high momentum transfers. We note
that the value of r3,, = 0.658 Im?, which was used
in the analysis in [29] for the proton mean-square
radius, is close to the nucleon mean-square radius
of r3 .. = 0.65 fm? in the calculation of the double-
folding potential in [19]. Therefore, it is quite legiti-
mate to identify the pointlike-nucleon densities ob-
tained in [29] with the density distributions pQp(r) of

pointlike nucleons.!?)

An alternative method was developed in [36] and
is based on deriving the parameters ¢ and d of the
density p°(r, ¢, d) from data on the nuclear densities
p(r, R, a) with the aid of a comparison of r moments
calculated analytically, on one hand, for the density
pr(r, R, a) having an explicit form and, on the other
hand, for the same density specified by the folding
formula, which is similar to (2.11). If only terms of
order (ra/R)* and r3,,./(9c?) are retained in the ex-
pansions of the corresponding integrals, it then turns

out that
. 1 /70rms 2
c=R |:1 + g( R ) :| 5

L /70rms\2
d—a[l 2( ma ) }
If one employs the parameters of the nuclear density
psk(r, R,a) from Table 1 and sets 73, = 0.658 Im?,
then the calculations by formulas (4.3) yield results
for the radius ¢ of the pointlike-nucleon density that
are slightly underestimated (by less than 1%) in rela-
tion to the data in Table 2 and results for the diffuse-
ness parameter d that are overestimated (by not more
than 10%) in relation to the respective data there. In
order to assess the degree to which the accuracy in
determining them is of importance in calculating total
cross sections, we examine the data in Fig. 4. For
that case, pointlike-nucleon densities in the form of

(4.3)

19 Assuming that the neutron and proton components of
the nuclear density are related by the equation p%(r) =
(N/Z)p%(r) and specifying the root-mean-square radii of
the nuclear density (R2,) and of the pointlike-nucleon
distribution (R2,), as well the mean-square radii of pro-
tons ((r*), = 0.76 im?) and neutrons ((r*), = —0.11 fm?)
(see [19]), we find from the relation R2,, = Ra. + (%), +
(r?), = R2u + (r?) that the mean-square radius of nucle-
onsis (r?) = (r?), + (r?), = 0.65 im?.

PHYSICS OF ATOMIC NUCLEI

Vol. 67 No.7 2004

1291

symmetrized Fermi functions were taken for both nu-
clei in the convolution integral (2.9). The solid curves
there show the results obtained for the case where
the parameters ¢ and d were set to the values from
Table 2. The dashed curves correspond to the cal-
culations with the parameters ¢ and d determined by
formulas (4.3) on the basis of the R and a values from
Table 1. The dash-dotted curves represent the results
of the calculations with the parameters ¢ and d of
pointlike-nucleon distributions from [37], where they
are given (in femtometers) for 12C (2.1545, 0.425),
160 (2.525, 0.45), and °Ca (3.60, 0.523). In that
study, they were used in calculating the real part
of the double-folding potentials for nucleus—nucleus
interaction, and this made it possible to explain data
on the elastic scattering of nuclei at energies of about
10 MeV per nucleon. In all cases, we set 7%, =
0.658 fm2. It can be seen that the distinction be-
tween the cross sections is within about 6 to 10%.
We believe that the method of deriving the pointlike-
nucleon densities from an analysis of nuclear form
factors F¥(q) is the most justified, and it is of impor-
tance to compose tables of such densities.

4.2. On the Choice of Range for Nucleon—Nucleon
Interaction

In Section 2, it was shown that, in the case where
the root-mean-square nucleon radius is assumed to
be equal to the range of nucleon—nucleon interaction
(78 1ms = T3ms ), the convolution integral is simpli-
fied, taking the form (2.17), where only two functions
overlap, the profile of the nuclear-density distribution
in the target nucleus and the profile of the pointlike-
nucleon density in the projectile nucleus. In general,
the above radius and range may be different, however.
As to the shape parameter of the nucleon—nucleon
interaction, a%; = (2/3)r%,,, it can be found from
data on free-nucleon scattering that r%, . takes
values in the range 0.63—0.69 fm2. At the same
time, r¢ .. was taken to be 0.658 fm? in the dipole

formula (4.2) [29] and 0.650 fm? in calculating the
double-folding potential for the nucleus—nucleus
interaction [19]. We have calculated the total reaction
cross sections with 7%, - =0.63,0.658,0.69 fm?
(Fig. 5), employing the more general expression for
the convolution integral in the form (3.18). For the
12¢, 160, and 4°Ca nuclei, the parameters ¢ and d of
the pointlike-nucleon densities are given in Table 2,
while, for the 2%Pb nucleus, they were calculated by
formulas (4.3). As in Fig. 3, the profile for the 12C
projectile nucleus was taken in the form of a modified
Gaussian function and was matched with the profile
in the form of a symmetrized Fermi function. In Fig. 5,
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Fig. 5. Effect of the choice of range for nucleon—nucleon interaction on the total cross sections for nuclear—nuclear reactions:
2ms = (solid curves) 0.658, (dashed curves) 0.630, and (dash-dotted curves) 0.69 fm?. The values of the parameters ¢ and d
were taken from Table 2 for the 190 and *°Ca nuclei and were determined for the 2°® Pb nucleus by formulas (4.3) on the basis
of the R and a values from Table 1. For the *2C nucleus, the profile in the form of a modified Gaussian function is identical to

that in Fig. 3.

it can be seen that, in all of the examples considered
here, the cross sections are nearly identical, especially
for heavy target nuclei. Thus, investigation of total
cross sections for nucleus—nucleus reactions does
not highlight distinctions between the root-mean-
square nucleon radius and the range of nucleon—
nucleon interaction. Moreover, it should be borne in
mind that the parameter ay of the amplitude for the
nucleon—nucleon interaction in a nuclear medium
can differ from its value in the case of free-nucleon
scattering.

4.3. Effect of the Distortion of Trajectories

In the repulsive Coulomb field of the target nu-
cleus, the trajectory of the projectile nucleus is de-
flected from the scattering center, this naturally lead-
ing to a decrease in the total reaction cross section.
In [38], this effect was taken into account by replac-
ing, in the phase shift x(b), the impact parameter b
by the distance b, of the closest approach of colliding
nuclei in the Coulomb field; that is,

b— b, =a+a+ b2 (4.4)

where @ = ZpZteQ/(QEc,m_) is half the distance of the
closest approach in the field Z,Z;e?/r at b = 0, with
FE.m. being the kinetic energy in the c.m. frame of
colliding nuclei. The substitution of b, for b in the
nuclear part ®n(b) of the phase shift has come into
use in calculating differential cross sections for elastic
scattering as well (see[13]); in general, this procedure
proved to be quite justified (see, for example, [39]).

PHYSICS OF ATOMIC NUCLEI

At the periphery of the collision process, the contri-
bution to the distortion from the real part V(r) of
the attractive nuclear potential can also be taken into
account, in principle, which would bring the Coulomb
trajectory closer to the target nucleus. If the region
b> R, =R, + R+ (ap + a;) In2, where the over-
lapping nuclear densities are less than one-third of
their values at the center [19], is assumed to be the
main region of elastic collisions, then the effect of the
tail of the nuclear potential can be qualitatively taken
into account by means of the substitution

b—b.=a+ a2+ b2, (4.5)

where @ = (ZpZie* — Rs|V(Rs)|)/(2Ecm.). A more
refined method for taking into account nuclear dis-
tortions was formulated in [40] and was applied in a
number of studies (see, for example, [14]). If, however,
the optical potential Vo (r) itself is constructed by
means of a numerical fit to experimental data, then the
use of its real part for taking into account the distor-
tion of the trajectory in calculating total reaction cross
sections o is meaningless. Indeed, data on og, if any,
are included themselves in such cases in the fitting
procedure. If, on the contrary, there are no such data,
then they are calculated on the basis of the S; matrix
obtained by using data on only elastic scattering, and
these “calculated” op are frequently considered as
“experimental data” on total cross sections. Thus, the
inclusion of nuclear distortions of trajectories is likely
to be meaningful only in constructing the eikonal
phase shifts for distorted waves in calculating inelas-
tic scattering and nucleon-transfer reactions within
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Fig. 6. Illustration of the role of the distortion of trajectories in calculating total reaction cross sections. The solid curves
correspond to cross sections obtained without allowance for distortions, while the dashed and dash-dotted curves represent the
results of the calculations allowing, respectively, for only the Coulomb distortion and for the Coulomb and nuclear distortions.
The choice of parameter values for these data is discussed in the main body of the text.

the theory of direct reactions. In principle, the real part
of the nucleus—nucleus potential can be calculated—
for example, by the folding method. In this case, it
is meaningful to calculate both differential and total
cross sections on the basis of the Glauber—Sitenko
approach with allowance for the distortion of the tra-
jectory by both the Coulomb and the nuclear field.

Figure 6 presents the results obtained by cal-
culating the total cross sections for 13C + 208pp
and 150 + 28Si reactions by using the convolution
integral in the form (3.17). The calculations were
performed either without allowance for distortions
of trajectories (solid curves) or with allowance for
such distortion by only the Coulomb field according
to (4.4) (dashed curves) or by both the Coulomb and
the nuclear potential according to (4.5) (dash-dotted
curves). In the last case, it was necessary to specify
the parameters of the real part of the optical potential,
and we took them from [41] for 13C + 208Pb (potential
C at 390 MeV) and from [42] for 150 + 28Si (potential
E-18 at 215.2 MeV). In calculating phase shiits,
we used, for the 13C nucleus, the parameters of the
pointlike-nucleon density in the 2C nucleus and took
them from Table 2, together with the density parame-
ters of the 10 nucleus. For the 298 Pb and 28Si nuclei,
such parameters were calculated by formulas (4.3) on
the basis of the R and a values from Table 1. As might
have been expected, the inclusion of the Coulomb dis-
tortion generates sizable corrections (about 10%) in
the total cross sections for reactions on heavy nuclei
at energies below 100 MeV per nucleon, these cor-
rections being beyond the experimental errors. With
increasing collision energy, the corrections in ques-
tion decrease; for lighter target nuclei (right panel in

PHYSICS OF ATOMIC NUCLEI

Fig. 6), they are about 2%, which can be disregarded.
The contribution of the nuclear distortion is small in
relation to its Coulomb counterpart for 2°Pb and is
commensurate with it for the reaction on 28Si, but
both effects are small in the latter case. Moreover,
it should be borne in mind that the real part of the
nuclear potential decreases with increasing energy. In
view of this, the contribution of the nuclear distortion
decreases at higher energies, but we disregarded this
in our estimate.

4.4. Role of a Nuclear Medium

The microscopic approach involves the energy-
dependent cross section oy (g1ap) for free-nucleon
scattering, and this is precisely what determines pri-
marily the dependence of the nuclear cross section on
the collision energy Ej,, = €}, Ap. We take oy v (€1ap)
in the form of the parametrization obtained in [23]
within the energy range €,;, = 0.01—1 GeV. In a more
general case, the effect of a nuclear medium is taken
into account by introducing this cross section in the
integrand of the convolution integral and by making
the substitutions

Onp — Unpfm(np)7

Onn — Unnfm(nn)a

(4.6)
Opp =

where the factors f,,(np) and f,,(nn) depend on the
nucleon energy ep,p = Ejan/A, and on the nuclear-
matter density. The problem of the nuclear-medium
effect on the nucleon—nucleon interaction has been
examined by many authors. For example, numerical
calculations of the total cross sections for nucleon—
nucleon interaction in nuclear matter were performed
in[43] on the basis of the Dirac—Brueckner approach,
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Fig. 7. lllustration of the role of a nuclear medium in calculating total reaction cross sections: results obtained (solid curves)
without allowance for the factor of the medium effect (5 = 0), (points) at the density value in the overlap region at 1/20 of the
density po = p,(0) + p¢(0) at the center of either nucleus, (dotted curves) at the density value (1/6)po, (dash-dotted curves)
at the density value (1/3)po, and (dashed curves) for the case of the density overlap at the centers of the nuclei involved (at po ).

while the parametrization of these cross sections was
given in [44] by means of introducing the correction
factors

14 20.8850'04p2'02
fm(np) = labl 90
1+ 35.86p1-

1+ 7.7720,06 148
fm(nn) — €lab P ’
1+ 18.01p!-46

(4.7)

where the energy and density are given in MeV and
fm~3 units. It can be seen that, in the particular case
of free nucleons, where p =0, we have f,,(np) =
fm(nn) = 1; with increasing density, the factors in
question and, hence, the effective cross sections de-
crease.!!) It is difficult to calculate the convolution
integrals with the correction factors in the above form
and with allowance for the dependence of the den-
sity on r; therefore, we restrict ourselves to deriving
qualitative estimates of the nuclear-medium effect on
total cross sections for nucleus—nucleus reactions. In
Fig. 7, the results of such calculations are illustrated
for the case where the nuclear densities in (4.7) are
assumed to be constant (p = p = p, + p¢) for any
region of location of an interacting-nucleon pair. De-
noting by po = pp(0) + p(0) the total density at the

"In microscopic approaches where nucleus—nucleus poten-
tials are constructed on the basis of the double-folding pro-
cedure, there arise similar problems of taking into account
the dependence of nucleon—nucleon potentials on energy
and nuclear densities. However, the Glauber—Sitenko ap-
proach possesses the advantage that the main energy depen-
dence has already been taken into account in parametrizing
the cross section o for free-nucleon scattering.

PHYSICS OF ATOMIC NUCLEI

centers of colliding nuclei, we then present the results
obtained by calculating the cross section for (solid
curves) free-nucleon scattering (at p = 0), as well as
for (points) p = (1/20)pg, (dotted curves) (1/6)po,
(dash-dotted curves) (1/3)pg, and (dashed curves)
po. One can see that the inclusion of the medium
factor may lead to the reduction of the cross section
by 4 to 7%, the nuclear-matter dependence appearing
to be highly nonlinear.

5. CONCLUSION AND COMPARISON
WITH EXPERIMENTAL DATA

(i) It has been shown that the original expression
for the eikonal phase shift within the microscopic ap-
proach can be represented in a form that is convenient
for use—namely, one of the two profile functions there
for the pointlike-nucleon density in nuclei has been
transformed into the nuclear-density profile in that
expression. This is convenient since the latter can be
directly obtained from independent experiments—for
example, from data on nuclear form factors.

(ii) The microscopic approach is based on the
calculation of eikonal phase shifts. These have been
significantly simplified—namely, the original four-
dimensional integrals for them have been reduced to
one-dimensional integrals. In contrast to the existing
practice of calculating phase shifts by means of
representing nuclear densities in the form of Gaussian
functions, we have also demonstrated here wide pos-
sibilities for employing realistic density distributions
in the form of (symmetrized) Fermi functions, whose
parameters for the majority of the nuclei can be found
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in existing tables. Moreover, all of the functions ap-
pearing in the one-dimensional integrals for eikonal
phase shifts are specified explicitly, which simplifies
the relevant calculations significantly.

(iii) Two methods have been presented for deriv-
ing the parameters ¢ and d of the pointlike-nucleon
density plp(r,c,d) in nuclei: one relies on experi-
mental information about nuclear form factors, while
the other consists in rescaling on the basis of the
parameters of the nuclear density psp(r, R, a). It has
turned out that the distinction between these two
methods may lead to a distinction between the calcu-
lated cross sections that exceeds characteristic errors
in their experimental measurements. We believe that
the derivation of the infolded densities p¢ . (r) from the
respective form factors obtained by dividing nuclear
form factors by the nucleon form factor and, if neces-
sary, by taking into account the factor associated with
center-of-mass motion (as was done, for example,
in [29]) would be a more justified method.

(iv) In the course of methodological calculations,
it has been shown that the root-mean-square value
of the range of nucleon—nucleon interaction and the
root-mean-square nucleon radius can be taken to be
identical (r%,,« = 8 ms)- Slight distinctions between
them are within the accuracy of their determination,
this introducing virtually no changes in the calculated
total reaction cross sections. At the same time, the
rather simple expressions (2.16) and (2.17) can be
used for the convolution integral if 7%/, .« = 8 s, the
convolution integral (2.17) of two density-thickness
functions, the nuclear and the pointlike one, reduces
to a rather simple one-dimensional integral.

(v) In many cases, the Coulomb distortion of the
trajectory must be taken into account in calculating
cross sections. This may be done by formally replac-
ing, in the phase shift x (), the impact parameter b by
b. according to (4.4). It does not seem reasonable to
take additionally into account the nuclear distortion,
since the parameters of the nuclear potential itself
must be determined from a numerical fit to experi-
mental data with allowance, in general, for the same
total cross sections that are to be explained within the
Glauber—Sitenko approach.

(vi) We have not been able to obtain a definitive
answer to the question of whether it is necessary to
introduce the factor f,, correcting the dependence
of nucleon—nucleon cross sections on the nuclear-
medium density. Estimations have revealed that, in
the region of intermediate energies, this factor does
not generate significant corrections to total cross
sections. Moreover, the use of the factors f,,(np)
and f,,(nn) presented in [44] is rather difficult in
calculations usually performed in practice. This dif-
ficulty arose, for example, in the simpler problem of
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analyzing data on proton—nucleus scattering [45].
Moreover, Gaussian functions were taken for basic
nuclear densities both in [44] and in [45], and the
replacement of these functions by realistic ones may
change conclusions on the form of f,, themselves.
For example, the agreement between the results of the
calculations and experimental data on the total cross
sections for reactions induced by the interaction be-
tween protons and nuclei, alpha particles and nuclei,
and 12C nuclei at intermediate energies was attained
in [46] with realistic densities pp(r) and a factor f,
that differs in form from that which was presented

above.!2)

(vii) Our calculations revealed that, in the case of
comparatively light projectile nuclei, it is more advis-
able to use the convolution integral in the form (3.17),
where the profile function p(s) for the pointlike-
nucleon density in the projectile nucleus is simu-
lated by a modified Gaussian function pOG' which is

determined with the aid of (3.6) and (3.7) in terms
of the parameters of a realistic symmetrized Fermi
function, these parameters being taken, for example,
from Table 2. In the case of heavier projectile nuclei,
it is more reasonable to employ the convolution in-
tegral in the form (2.16), where, for both nuclei, one
can substitute the explicit expressions known for the
Fourier—Bessel profiles of the realistic densities in the
form of a symmetrized Fermi function [see Eq. (3.22)].
In all calculations, we have taken into account the
Coulomb distortion of the trajectories.

(viii) We note that the problem of correctly em-
ploying the input formula (2.4) for computing the
convolution integral has not been properly discussed
in the available literature. If a finite range of nucleon—
nucleon interaction (a% # 0) is taken explicitly into
account, it involves both densities for pointlike in-
tranuclear nucleons. If, however, the root-mean-
square nucleon radius is taken to be identical to
the range of nucleon—nucleon interaction, then the
nucleon—nucleon factor f(&) disappears from this
integral; concurrently, one of the pointlike-nucleon
densities transforms into the distribution of the
nuclear-matter density. At the same time, by no
means does the absence of the factor f(&) in such an
integral imply that use was made of the zero-range
approximation for the nucleon—nucleon interaction.
Confusion arises if one speaks about the zero-range

approximation, setting, in fact, a%, = (2/3)r%,,s =0

2In the calculations of the real part of the double-folding
nucleus—nucleus potential, the nuclear-medium effect on
the nucleon—nucleon potential is parametrized in terms of
simpler dependences of f,, in the form of power-law and
exponential functions of the density p(r) (see, for example,
[47)).
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Fig. 8. Results of the calculations for the total cross sections along with experimental data from [48]. For the parameters of
nuclear densities, use was made of data known from experiments on electron—nucleus scattering (see main body of the text).
The Coulomb distortion of the trajectories was taken into account.

in the original integral (2.4) and employing, at the
same time, tabular data for both densities (that is,
nuclear densities instead of pointlike-nucleon densi-
ties).

In Figs. 8a and 8b, the results of our calculations
are given along with experimental data from [48].
The parameters of the density distributions in the
form of a symmetrized Fermi function were taken
from Table 1. For the 2C projectile nucleus, the
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parameters ¢ and d of the density p2p are given

in Table. 2, while, for the °Ne nucleus, they were
calculated by formula (4.3) on the basis of data
given in Table 1. The convolution integral was used
in the form (3.17). Only the Coulomb distortion
of the trajectories was taken into account. Thus,
no free parameters were introduced. One can see
that, in all cases, with the exception of those of
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12C 4+ %Y and 20Ne + 27Al reactions, there is
good agreement with experimental data. The dis-
crepancies in the aforementioned cases may be due
to determining the density parameters for the odd
nuclei 8Y and 27Al from form factors in electron—
nucleus scattering (see the respective references
in [28]) by formulas for spinless nuclei. This dis-
crepancy can be removed by taking into account
the medium factor f,, in the calculations. How-
ever, we believe that, first of all, it is necessary
to refine data on the densities of these nuclei. It
is also worth noting that the calculations in [48],
which employed Gaussian functions [22] and which
reproduced the tails of the density distributions,
yielded, for the reactions indicated in Figs. 8a and
8b, overestimated cross-section values beyond the
experimental errors. Possibly, this was due to the
use of nuclear densities instead of pointlike-nucleon
ones (see above). At the same time, the calculations
in [49] with uniform distributions for target nuclei
and Gaussian distributions for projectile nuclei led
to underestimated cross sections for 2°Ne + 12C
and '2C + 27Al reactions, although nuclear root-
mean-square radii (rather than those for pointlike-
nucleon distributions) were used there to determine
the “step” radius R, in (3.3). This result com-
plies with what is shown in Fig. 3 for the cal-
culation of cross sections with unrealistic density
functions.
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Abstract—The nature of quantum description is clarified. It is shown that complex-valued probability
amplitudes are admissible within classical Hamiltonian mechanics. According to standard probability
theory, such a description is always possible. The case of a spherical phase space is considered. It is shown
that, in such a classical theory, there appears a universal constant that has dimensions of action (h), as
well as Fock space and all attributes of quantum mechanics. Excitations of a chain of such systems are
described by the equations of quantum mechanics with a correct normalization condition. It is shown
that an answer to the question of what a particle and its wave function are is provided by quantum
field theory (these are a single-particle field excitation and a function that describes it). Experiments are
proposed that would make it possible to solve the problem of the physical nature of the wave function.
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1. INTRODUCTION

In getting acquainted with quantum mechanics,
there arise a number of questions. These include the
following: Why is a wave associated with a particle,
and what is the nature of this wave? Why is this wave
complex-valued? Why is this a “probability wave”?
As one obtains deeper insights into this theory, the
main problem comes to the fore: quantum mechanics
is a probabilistic theory, but a quantity that appears
to be its main object is a complex function ¥ (a
probability amplitude, also referred to as a “complex
probability”) rather than a probability. This brings
about new questions:

(i) Why is it necessary to harness complex-valued
probabilities and why is standard probability theory
(its main object being a probability density w > 0) not
applicable?

(i) What are connections between a theory fea-
turing complex-valued probabilities and a standard
theory—is the former a generalization of the latter,
or, on the contrary, can it be obtained as a particular
case?

(iii) Does a quantum-mechanical description not
impose constraints on a probabilistic description of
processes in spacetime?

There are reasons to believe that other problems
and paradoxes—namely, the particle-wave duality
(uncertainty relation), the integrity of the photon (an

“e-mail: lev. prokhorov@pobox.spbu.ru
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Department of Nuclear Physics, Russian Academy of Sci-
ences, on November 29, 2000, at the Institute of Theoretical
and Experimental Physics (ITEP, Moscow).

extended particle in a theory involving a local inter-
action), the origin of the Planck constant h, para-
doxes associated with the description of macroscopic
bodies in terms of a wave function (for example,
Schrédinger’s paradox concerning a superposition
of states of “a living and a dead cat” [1], and the
Einstein—Podolsky—Rosen paradox [2])—are of a
subordinate character and will be clarified upon
resolving the question of why it is nec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>