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Abstract—The electric field of two dielectric straight circular cylinders containing line charges on their axes
is investigated. The cylindrical bodies in question are parallel and touch each other from the exterior. They have
different dielectric permittivities, charges, and radii. Also, they are surrounded by an arbitrary dielectric
medium. An analytic solution to the respective boundary-value problem is given, and the most important par-
ticular cases are analyzed. Special features of the electric field in the region around the contact of the dielectric
cylinders are studied versus the permittivity of the material used and the relationship between electric charges.
© 2005 Pleiades Publishing, Inc.
INTRODUCTION

This article presents an analytic solution obtained
for the electrostatic problem of electric-field formation
in the system of two long and straight dielectric cylin-
ders of circular shape in cross section that touch each
other from the exterior. Line electric charges are
assumed to occur on the axes of these cylindrical bod-
ies. The problem is studied in a general formulation—
that is, the permittivities of the cylinders and of the
ambient medium are arbitrary and the electric charges
are different. Under these conditions, the respective
boundary-value problem is two-dimensional and has a
closed solution that can be obtained by applying effi-
cient methods of the theory of functions of a complex
variable. In the final form, the expressions for the com-
plex-valued electric-field strength are given by infinite
series of simple poles of induced charges; in addition,
there are simple poles of real-valued charges. A large
number of known solutions to problems of electrostat-
ics follow from the above solution as particular cases
[1, 2]. Via a limiting transition, one can derive an
expression for a line electric dipole in which charges
have an insulating coating [3].

The problem under study has an obvious application
in electrical engineering. By virtue of the known anal-
ogy of electrostatic fields, the results obtained here can
also be extended to some similar problems in thermal-
conductivity theory, diffusion theory, fluid dynamics,
and some other fields of science.

This article is organized as follows. First, we present
basic expressions for the electric field in the dielectric
cylinders and in the ambient space. After that, we study
special features of electric-field formation and consider
some particular cases. The concluding part of the article
contains an analytic solution to the boundary-value
problem and a substantiation of our derivation of basic
1063-7842/05/5011- $26.001391
formulas. This order of exposition (it is inverse to the
actual sequence of manipulations) makes it possible to
get acquainted with the results of the present investiga-
tion without plunging into the technique and details of
the calculations (for example, in view of the possibility
of applying different methods for solving the problem
being studied).

ELECTRIC FIELD OF THE SYSTEM
A schematic cross-sectional view of the system

being studied is given in Fig. 1. In an infinite dielectric
medium of permittivity ε1, there occur two long and
straight cylinders having dielectric permittivities ε2 and
ε3 and radii r1 and r2, respectively. Charged filaments
with line charges q1 and q2 are placed at the cylinder
centers. The cylinders are parallel and touch each other
along the generatrix. In this system, the electric field is
two-dimensional.

Suppose, for the sake of definiteness, that the origin
of the system of Cartesian coordinates x and y coincides
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Fig. 1. Dielectric cylinders featuring line charges on their
axes.
 © 2005 Pleiades Publishing, Inc.
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with the center of the cylinder (that is, with the point of
intersection of its axis with a plane orthogonal to it)
whose permittivity is ε2 and that the x axis is directed
along the line connecting the centers of the cylinders
(Fig. 1). In the following, it will be shown that, in this
coordinate frame, the electric field is given by

(1)

Here, E1(z) = Ex1 – iEy1 is the complex-valued electric-
field strength in the region exterior to the cylinders
(region S1 in Fig. 1); E2(z) is the complex-valued elec-
tric-field strength within the cylinder having the permit-
tivity ε2, the radius r1, and the axial filament of line
charge density q1 (region S2); E3(z) is the complex-val-
ued electric-field strength in the cylinder whose param-
eters are ε3, r2, and q2 (region S3); Q1 and Q2 are the
reduced charges defined as

(2)

the geometric parameter δ is given by

(3)

and ∆12 and ∆13 are the relative dielectric permittivities

(4)
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From the last formulas, it follows that

(5)

One can see that the electric field of the system
being considered is represented by infinite series of
first-order poles. These poles are generated by induced
(fictitious) charges; there are also two real charges
whose poles are situated at the centers of the circles.
The charged filaments in space correspond to the real
charge sources q1 and q2 in the plane.

In the complex plane, the electric field of a simple
line pole can be represented as

(6)

where G is the strength of the pole and a is its coordi-
nate.

In expressions (1), the strength of the poles depends
on the line charges q1 and q2 and on the dielectric per-
mittivities of all elements of the system—that is, ε1, ε2,
and ε3 (∆12 and ∆13); it is noteworthy that this strength
is independent of the geometric characteristics of the
system (ratio of the radii of the cylinders). For ordinary
dielectric materials, the absolute values of the parame-
ters ∆12 and ∆13 are small (|∆12|, |∆13| < 1), whence it fol-
lows that the strength of the induced sources decreases
with increasing k; therefore, we can retain a finite num-
ber of terms in the sums in expressions (1).

All poles are within the segment [0, (r1 + r2)] of the
real axis; with increasing k, their density grows as one
approaches, from either side, the point x = r at which
the circles touch each other.

It should be noted that the coordinates of pairs of
poles appearing in expressions (1),

(7)

are related by inversion with respect to the circle of

radius r1: akbk = .

In just the same way, the second pair of pole coordi-
nates,

(8)

satisfies the relation of inversion with respect to the cir-
cle of radius r2 (this is readily proven by means of some
simple algebra upon transferring the coordinate origin
to the center of the circle characterized by the parame-
ters ε3 and r2).

Expressions (1) give a general solution to the prob-
lem being considered. They satisfy all conditions of the
problem. Indeed, the electric field tends to zero for
z  ∞ in the external region; the real charges q1 and
q2 occur at the centers of the circles; and the normal
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components of the displacement vector and the tangen-
tial components of the electric-field-strength vector are
continuous at the boundaries of the circles, which sep-
arate media differing in permittivity (the boundary con-
ditions can easily be tested by means of computer cal-
culations).

The above solution makes it possible to establish
some special features of electric-field formation in the
inhomogeneous structure being considered. By way of
example, we indicate that, for certain relations between
the parameters of the system, the electric-field strength
has minima in the interior of the cylinders and increases
toward their boundary at the point where they touch
each other (in the case of a single cylinder featuring a
charged filament on the axis, the field strength is known
to be in inverse proportion to the radius). We illustrate
the aforesaid in Fig. 2, which shows the variation of the
electric-field strength along the x axis at the following
values of the parameters: q2 = –2q1, ε1 = 1, ε2 = 3, ε3 =
10 (∆12 = –0.5 and ∆13 = –0.818182), and r1 = r2 (δ =
0.5). At these parameter values, the electric-field
strength at the point where the circles touch each other
takes the values of Ex2 = 2.717949 and Ex3 = 0.815385.
At the points x = 0.55 and x = 1.3, which are the points
of minima on the x axis, we have Ex2 min = 1.593578 and
Ex3 min = 0.568824, respectively. The curves in Fig. 2 are
given in terms of the relative quantities

(9)

To avoid encumbering the presentation, the asterisks
on the relative quantities are suppressed.

SOME PARTICULAR CASES

The general expressions for the electric field in (1)
make it possible to obtain a number of particular solu-
tions, which are of interest in themselves. Some of
these solutions are discussed in the present section
(solutions to some known problems [1, 2] are also given
to test our results).

(i) If the line charges do not have a dielectric envi-
ronment, εν ≡ ε (ν = 1, 2, 3) (∆12 = ∆13 = 0), then we
have an elementary system of two parallel charged fila-
ments in a homogeneous medium that are separated by
the distance h = r1 + r2 (the charges lie on the x axis, the
origin of the coordinate frame being coincident with the
position of the charges whose line density is q1). In this
case, we have

(10)

(ii) Let the system being considered consist of one
dielectric cylinder characterized by the parameters ε2,
r1, and q1. The other cylinder and the other charged fil-
ament are absent: ε3 = ε1 (∆13 = 0) and q2 = 0. In this
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case, expressions (1) reduce to an extremely simple
form,

(11)

where ε1 is the permittivity of the medium surrounding
the cylinder.

(iii) Expressions (1) provide a solution to the well-
known problem of the electric field of a dielectric cyl-
inder near which there occurs a charged filament paral-
lel to it [1]. Suppose, for the sake of definiteness, that
the parameters of the dielectric cylinder are ε2 and r1
and that the charged filament has a line charge density
q2 (see Fig. 3). In accordance with these conditions, we
must set

(12)

As a result, we obtain

(13)
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Fig. 2. Variation of the electric-field strength along the x
axis.
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where, as before, ε1 is the permittivity of the medium
surrounding the cylinder.

(iv) Let only one dielectric cylinder featuring a
charged filament (the parameters of the cylinder are ε2,
r1, and q1) be in the system considered originally. Fur-
thermore, a charged filament that carries a line charge
density q2 and which is parallel to the cylinder is situ-
ated at the distance h = r1 + r2 from the cylinder axis
(see Fig. 4). The solution corresponding to these condi-
tions is obtained from expressions (1) at ε3 = ε1 (∆13 =
0). Specifically, we have

(14)

Upon setting q1 = 0, we arrive at the solution quoted
in item (iii).

(v) Suppose that all of the conditions listed in item
(iv) hold, the only difference being that the filament
carrying the charge density q2 is situated at the cylinder
surface, at the point x = r1 on the x axis. The electric
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Fig. 4. Dielectric cylinder carrying a line charge on the axis
and charged filament outside the cylinder.
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Fig. 5. Dielectric cylinder carrying a charge on the axis and
metallic wire.

q2
field in this system is obtained from expressions (1) by
setting r2 = 0 and ε3 = ε1 (∆13 = 0).

We have

(15)

These expressions also follow from formulas (14)
upon setting h = r1.

(vi) If, in expressions (1), the permittivity ε3 is made
to tend to infinity (in electrostatics, this formal transfor-
mation corresponds to going over from a dielectric to
an ideally conducting material [1]), then we obtain the
solution to the problem where a dielectric cylinder
characterized by the parameters ε2, r1, and q1 touches a
metallic wire of radius r2, the wire carrying a line
charge density q2 (see Fig. 5). For ε3  ∞ (∆13 = –1),
expressions (1) assume the form

(16)

where we now have

(17)

Setting q2 = 0 in expressions (16), we arrive at the
solution to the problem where a dielectric cylinder fea-
turing a charged filament on the axis touches an
uncharged metallic wire of radius r2. We note that the
electric-field strength in the vicinity of this contact
changes nonmonotonically, developing a minimum.
The graph representing the variation of the electric-
field strength along the x axis is given in Fig. 6; this
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graph was constructed at the same parameter values as
those used for the curves in Fig. 2, the only difference
being that, now, ε3  ∞ (∆13 = –1). The dashed curves
correspond to the system at q2 = 0.

(vii) Upon supplementing the condition in item (vi)
with the limiting transition ε2  ∞ (∆12 = –1), we take
into account the equality

(18)

in order to recast expressions (16) into the form

(19)

Expressions (19) give the solution to the problem of
the electric field of two straight metallic wires having a
circular shape in the cross section, their radii being r1
and r2. The wires touch each other and carry the line
charge density q1 + q2.

(viii) From expressions (1), one can obtain the solu-
tion to the problem of the electric field generated by the
following system. A dielectric cylinder featuring a
charged filament on the axis is situated at the interface
of two different media. A schematic view of the system
and its parameters are given in Fig. 7. The solution to
this problem is obtained from expressions (1) upon set-
ting q2 = 0 and going over to the limit r2  ∞ (δ = 1).

After some simple algebra, we arrive at
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This solution was constructed independently in [4]
for a specially formulated problem. Also, many partic-
ular cases associated with the system being considered
were analyzed in that study.

(ix) Expressions (1) make it possible to obtain a for-
mula that determines the electric field of line dipole
whose charged filaments have dielectric coatings,
which are not identical in general.

Suppose that, in the system considered initially, the
cylinders have equal radii, r1 = r2 ≡ r. Further, charged
filaments carrying the charge densities q1 ≡ q and q2 =

E3 z( )
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Fig. 6. Variation of the electric-field strength along the x
axis in the system depicted in Fig. 5.
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Fig. 7. Dielectric cylinder featuring a line charge on the axis
and occurring at the interface of two different media.
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–q1 occur on the cylinder axes. We place the origin of
the Cartesian coordinates at the point where the circles
touch in the xy plane.

Under these conditions, the following asymptotic
estimates are valid at large distances from the system
(in the plane orthogonal to the cylinder axes):

(21)

By using these estimates, we can recast the first
expression in (1) into the form

(22)

Expression (22) determines the electric field of a
line dipole formed by insulated charged filaments. It
was derived and studied in detail in [3].

SOLVING THE BOUNDARY-VALUE PROBLEM

The electric field in the system is determined by the
linear equations of electrostatics,

(23)

where E is the electric-field-strength vector, D is the
electric-field-displacement vector, and ε is the permit-
tivity of the material being considered.

In the plane orthogonal to the cylinder axes,
Eqs. (23) are two-dimensional; therefore, we can intro-
duce the complex-valued functions
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which satisfy the Cauchy–Riemann equations.
The electric-field vectors E and D and the functions

E(z) and D(z) are related as
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where an overbar denotes complex conjugation.
A schematic view of the system being considered is

given in Fig. 1. Here, the plane of the complex variable
z is partitioned by the circles L1 and L2 into three
regions S1, S2, and S3, where the dielectric permittivi-
ties are ε1, ε2, and ε3, respectively. The pointlike
charges q1 and q2 at the centers of the circles L1 and L2
serve as the sources of the electric field. Field sources
are described mathematically by simple poles. Thus,
the sectionally analytic function E(z) = {E1(z), E2(z),
E3(z)} consists of the analytic function E1(z) in the
region S1 and two meromorphic functions, E2(z) in the
region S2 and E3(z) in the region S3.

At infinity, the electric field disappears; that is,
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ferent media, the electric charge satisfies standard
boundary conditions: the normal components of the
vector D and the tangential components of the vector E
are continuous. In terms of the function E(z), these con-
ditions are written as
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where we have taken into account the relations

(32)

In order to obtain simplified boundary conditions,

we eliminate one of the functions, for example, ,
from each pair of the relations in (31). As a result, we
arrive at

(33)

By using relations (4) and (5), we can recast
Eqs. (33) into the form
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Thus, a calculation of the electric field in the system
being considered reduces to solving boundary-value
problem (34) subjected to additional conditions (26)
and (27). In the theory of analytic functions, this prob-
lem is referred to as the boundary-value problem of
Riemann conjugation (in the mathematical literature, it
is usually called the boundary-value problem of R-lin-
ear conjugation). In the present case, a solution to the
problem formulated above can be obtained in a closed
form by using conformal-mapping methods and the
analytic-continuation principle. In the process of calcu-
lation, we will obtain a functional equation that has an
exact solution. It is this approach to studying the Rie-
mann boundary-value problem that was developed in
[4–6].
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-----------------------.= =

E1 t( )

2ε1E1 t( ) ε1 ε2+( )E2 t( ) ε1 ε2–( )
r1

t
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2

E2 t( ),–=

t L1;∈
2ε1E1 t( ) ε1 ε3+( )E3 t( )=

– ε1 ε3–( )
r2

t r1– r2–
---------------------- 

 
2

E3 t( ), t L2.∈

1 ∆12+( )E1 t( ) E2 t( ) ∆12

r1

t
---- 

 
2

E2 t( ), t L1;∈–=

1 ∆13+( )E1 t( )

=  E3 t( ) ∆13

r1

t r1– r2–
---------------------- 

 
2

E3 t( ), t L2.∈–

z T ζ( ) r1
ζ 1+
ζ 1–
------------ ζ ξ iη+=( ).= =

γ 1
δ
---

r1 r2+
r2

--------------- 1 γ ∞<≤( ).= =
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The function

(37)

realizes the mapping inverse to (35).

In the mapped plane, the sectionally analytic func-
tion

(38)

satisfies, on the contours λ1 and λ2, the boundary con-
ditions

(39)

For the function f(ζ) at the point ζ = 1, the condition
in (26) yields

(40)

In accordance with expressions (27), the meromor-
phic functions f2(ζ) and f3(ζ) in the mapped plane of the
variable ζ are written as

(41)

where (ζ) and (ζ) are analytic functions in the
regions Ω2 and Ω3, respectively, and A' and B' are the
constants that are related to the constants A and B by the
equations

(42)

ζ T 1– z( )
z r1+
z r1–
-------------= =

f ζ( ) E T ζ( )( )=

1 ∆12+( ) f 1 τ( ) f 2 τ( ) ∆12

r1

T τ( )
----------- 

 
2

f 2 τ( ),–=

τ λ 1;∈
1 ∆13+( ) f 1 τ( )

=  f 3 τ( ) ∆13

r2

T τ( ) r1– r2–
-------------------------------- 

 
2

f 3 τ( ), τ λ 2.∈–

f 1 1( ) 0.=

f 2 ζ( ) A'
ζ 1–
ζ 1+
------------ f 2' ζ( ),+=

f 3 ζ( ) B' ζ 1–( )
ζ 2r1 r2+( )/r2–
--------------------------------------- f 3' ζ( ),+=

f 2' f 3'

A'
A
r1
----, B'

B
r2
----.–= =

ζ

Ω3Ω1Ω2

ζ

η

γ 2γ – 11–1 0

Fig. 8. Conformal map of the system shown in Fig. 1.
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The function f1(ζ) can be represented in the form

(43)

where the function (ζ) is analytic in the half-plane

Reζ < γ and the function (ζ) is analytic in the half-
plane Reζ > 0.

With allowance for relation (43), the equalities in
(39) can be recast into the form

(44)

According to the theorem of analytic continuation
as applied to (44), one can introduce two meromorphic
functions:

(45)

We note that expressions (45) involve the functions

(46)

Of these, the first is analytic for Reζ > 0, while the
second is analytic for Reζ < γ.

From the above formulas, it follows that the func-
tion Φ(ζ) has a simple pole at the point ζ = –1 and a
first-order zero at ζ = 1 (under the conformal mapping
of the z plane onto the ζ plane, these points appear as
the images of, respectively, the coordinate origin and
the point at infinity). The function Ψ(ζ) possesses sim-
ilar properties.

In the ζ plane, the meromorphic functions Φ(ζ) and
Ψ(ζ) admit the existence of simple poles at the points
ζ = –1 and ζ = 2γ – 1, respectively; therefore, it can be
stated on the basis of the generalized Liouville theorem

f 1 ζ( ) f 1
+ ζ( ) f 1

– ζ( ),+=

f 1
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= 
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1 ∆12+( ) f 1
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r1

T ζ( )
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=  
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– ζ( ) f 3 ζ( )– , Reζ γ≤

1 ∆13+( ) f 1
+ ζ( )–

– ∆13
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T ζ( ) r1– r2–
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2
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r1

T ζ( )
-----------

ζ 1–
ζ 1+
------------,

r2

T ζ( ) r1– r2–
-------------------------------- ζ 1–

2γ 1– ζ–
------------------------.= =
that they are given by

(47)

where C1 and C2 are constants that are determined from
additional conditions—for example, from the behavior
of the functions Ψ(ζ) and Φ(ζ) at the points where their
values are known. For such a point, we take that at ζ = 1.
An analysis reveals that C1 = C2 = 0.

From expressions (43) and (47), it follows that the
sectionally analytic function f(ζ) admits the representa-
tion

(48)

Thus, the problem being considered has been

reduced to that of determining the functions (ζ) and

(ζ). They will be found consecutively by solving a
functional equation with respect to one of them.

Combining expressions (45) and (47), we obtain
two pairs of equalities,

(49)

Subsequent manipulations are aimed at deriving one
equality involving one unknown function. In (49), we
make the transformation of symmetry with respect to
the straight line λ1 in the second equality and the trans-
formation of symmetry with respect to the straight line
λ2 in the third equality. As a result, we arrive at

Φ ζ( ) = A'
ζ 1–
ζ 1+
------------– C1, Ψ ζ( )+  = B' ζ 1–

ζ 2γ– 1+
----------------------- C2,+–

f ζ( )
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f 1 ζ( ) f 1
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f 3 ζ( ) 1 ∆13+( ) f 3
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------------------------, Reζ γ .>+=
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+

f 1
–
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2
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(50)

After the elimination of the function f2(ζ) from the
first pair of equalities and the elimination of the func-
tion f3(ζ) from the second pair, some simple transfor-
mations lead to the relations

(51)

where

(52)

From relations (51), one can eliminate one of the

two unknown functions—for example, (ζ). We then
have

(53)

In this equality, we perform the transformation of
symmetry with respect to the straight line λ1. This
yields

(54)

Relation (54) is a functional equation with respect to

the unknown function (ζ). Its solution can be found
by the method of mathematical induction.
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By consecutively substituting into this function an
argument that increases by 2γ, we arrive at the relations

(55)

and so on. After the n-fold application of this procedure
and the use of relations (55), we reduce Eq. (54) to the
form

(56)

The last term on the right-hand side of (56) involves
the small parameters |∆12|, |∆13|, γ < 1, the function

(ζ) tending to zero at infinity; therefore, the residual
term tends to zero as the number n grows indefinitely. It

follows that, for n  ∞, the function (ζ) is given by

(57)

The second unknown function, (ζ), can be found
from the second equality in (51) by using expression
(57), where it is first necessary to perform the required
transformations. The respective calculations yield

(58)
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Thus, both unknown functions, (ζ) and (ζ),
have been completely determined. According to rela-
tions (48), these functions make it possible to obtain
explicit expressions for the sectionally analytic func-
tion f(ζ). Upon returning to the plane of the variable z,
we find the required expression for the electric field in
the system being considered.

In terms of the variable z, expressions (58) and (57)
assume the form

(59)

In these expressions, the terms of the series have the
general form C/(z – p)(z – q), where C, p, and q are con-
stants. Such a term can be decomposed into the sum of
simple fractions. The application of this operation
makes it possible to recast expressions (59) into the
form [with allowance for the notation specified by (52),
(42), and (28)]
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With the aid of these formulas, we have obtained the
expressions for the electric field in (1), which are given
in the second section.

CONSTRUCTIVE METHOD FOR SOLVING 
THE PROBLEM BEING CONSIDERED

The rigorous method proposed here for solving the
boundary-value problem in question is based on well-
known statements of the theory of analytic functions.
Albeit requiring meticulous calculations, the method is
quite straightforward in principle. The expressions that
it ultimately yields for the electric field are simple in
form, not cumbersome, readily amenable to analysis,
and convenient for numerical calculations.

The problem formulated here can also be studied by
different methods. Among other methods for solving
this problem, the constructive method for analytically
calculating the electric field deserves particular atten-
tion in view of its extreme simplicity and physical clar-
ity of operations at each step of solving the problem.
The essence of the method is as follows. An analysis of
solutions to a number of model problems featuring line
charge sources gives sufficient grounds to assume that,
in the sectionally homogeneous medium being consid-
ered, the electric field in each region can be represented
as an infinite series of simple poles corresponding to
fictitious charges; in addition, there are two simple
poles corresponding to real charges.

The general expressions for the electric field in the
system can then be represented in the form

(61)

where q1 and q2 are the line densities of the real charges,
pνk are the strengths of the poles, z1 and z2 are the coor-
dinates of the real charges, and zνk are the coordinates
of fictitious charges.

The appearance of the double sums in (61) is
explained below.

Thus, the problem reduces to that of determining the
unknown quantities pνk and zνk.

× q1 ∆12q2–( ) z r1
k 1–

k 1– δ+
--------------------– 

 
1–

– ∆12 ∆13q1 q2–( ) z r1
k δ–

k
-----------– 

 
1–





.

E1 z( ) 1
2πε1
-----------

pνk

z zνk–
--------------, z S1;∈

ν 1=

4

∑
k 1=

∞

∑=

E2 z( ) = 
1

2πε2
-----------

q1

z z1–
------------ 1

2πε2
-----------

pνk

z zνk–
--------------, z S2;∈

ν 1=

2

∑
k 1=

∞

∑+

E3 z( ) 1
2πε3
-----------

q2

z z2–
------------ 1

2πε3
-----------

pνk

z zνk–
--------------, z S3,∈

ν 1=

2

∑
k 1=

∞

∑+=
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The coordinates zνk of fictitious charges can be
determined from the inversion relations. The validity of
this statement was emphasized above in analyzing
basic formulas (1). Two real charges generate two
chains of fictitious charges [they appear in each circle;
therefore, double sums arise in expressions (61)]. The
real charge at the center of one of the circles is inversely
mapped in the second circle, the fictitious charge
obtained at this point is mapped in the original circle,
the resulting fictitious charge is then mapped in the sec-
ond circle, and the process of the inverse mappings of
the newly formed charges is repeated infinitely. The
other chain of poles is calculated in just the same way,
but, for the original charge, one takes, in this case, the
charge at the center of the second circle; this charge is
inversely mapped in the first circle, the fictitious charge
is then mapped in the second circle, etc.

In order to establish the rule according to which one
could calculate the strengths pνk of the poles, it is nec-
essary to make use of the auxiliary problem of deter-
mining the electric field in a straight circular dielectric
cylinder near which there occurs a charged filament
parallel to it. The solution to this problem is known [1]
[it is given in item (iii) above]. From the solution to this
problem, one can find an explicit expression for the
strengths of the poles corresponding to fictitious
charges associated with inverse mapping. In this way,
we can determine all unknown elements pνk in expres-
sions (61).

As a matter of fact, the field-calculation algorithm
described immediately above is a version of the image
method, which is extensively used in the theory of elec-
tromagnetism.

The main drawback of this algorithm is that, in order
to determine the parameters of the kth pole, one has to
calculate consecutively the coordinates of all k – 1
poles preceding it. Although this involves performing
operations of the same type, the implementation of the
algorithm in question is not always convenient in
numerical calculations and in the case where use is
made of asymptotic expansions.

If, however, the problem is solved by the rigorous
method described in the preceding section, the pole
parameters in the resulting analytic expressions are
determined for each pole independently, this simplify-
ing, in many cases, the calculations and the analysis of
the general expressions (1).
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CONCLUSIONS

The present investigation makes it possible to draw
some general conclusions.

The problem addressed in this study has an exact
analytic solution. This solution has been presented
above in a simple form. The physical clarity of the
results simplifies the analysis of the electric field in the
system considered here, which is rather complicated for
a theoretical analysis and which is characterized by
many parameters. The latter circumstance explains the
presence of a large number of particular cases that fol-
low from the general solution.

The calculations presented here have made it possi-
ble to establish some special features of electric-field
formation in the region around the contact of the cylin-
ders versus the charges and dielectric permittivities of
the cylinder materials and of the ambient medium.
Physically, the presence of a minimum of the electric-
field strength within the cylinders can be explained by
the superposition of the electric fields generated by
each of the two real sources.

It is interesting to note that the strength of the poles
corresponding to fictitious charges is independent of
the geometric properties of the system and is deter-
mined by its physical parameters exclusively (that is,
by the dielectric permittivities of the materials used and
by the charges of the filaments).
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Abstract—The volume and surface forces in the system of two long dielectric cylinders touching each other
from the exterior are investigated. Charged filaments on the axes of the cylinders are the sources of the electric
field. Analytic expressions for the forces acting on the cylinders are derived, and the most important particular
cases following from the general solution under various assumptions about the radii of the cylinders, their per-
mittivities, and the line densities of the charges are studied. A constructive method for calculating the forces
that takes into account special features of electric-field formation in the system was proposed on the basis of
the exact solution to the field problem. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The calculation of forces acting on conducting and
dielectric bodies in electric fields is an indispensable
part of many calculations that must be performed in
developing electrophysical facilities and devices used
in electrical engineering. For such calculations, it is
necessary at first to determine the electric field in the
elements of the structure being considered, and this is
the most complicated part of the calculations. Only in
individual special cases can one derive, for model prob-
lems, exact solutions that make it possible to analyze
the dependence of the forces on the shape of the con-
ducting and dielectric bodies involved and on the prop-
erties of their materials.

This article presents a calculation of the forces in the
system of two long and straight cylinders of circular
shape that feature charged filaments with various
charges on the cylinder axes. The cylindrical bodies
consisting of isotropic dielectric materials touch each
other from the exterior. In general, they have different
radii and different permittivities. Mechanical (pondero-
motive) attractive or repulsive forces whose properties
and absolute values depend on the parameters of the
system act between the cylinders. Also, surface forces
act at the boundaries of the dielectric cylinders.

In the system under consideration, the forces can be
calculated analytically on the basis of the solution
obtained in [1] for the field problem under the assump-
tion of isothermal conditions and the assumption that
electrostriction effects are insignificant in the system.
These forces can be calculated by different methods—
for example, with the aid of the Maxwell’s stress tensor.
However, the simplest way to calculate directly the vol-
ume forces is to consider the interaction of induced
charges with the electric field that is external with
respect to these charges. In the last case, general
1063-7842/05/5011- $26.00 1402
expressions for the forces are represented by double
sums that can sometimes be reduced to simple analytic
expressions. This method for calculating the forces is
motivated by the form of the resulting solution, which
is given by the sum of an infinite number of poles cor-
responding to induced charges that are obtained by
repeatedly constructing the images of the real charges
with respect to the boundary circles.

FORCES OF INTERACTION 
BETWEEN THE CYLINDERS

A schematic cross-sectional view and the parame-
ters of the system being studied are presented in [1].
From the solution obtained in [1] for the respective
boundary-value problem, one can see that the electric
field in the system is determined by an infinite number
of induced (fictitious) charges within the cylinders. The
charges within one of the cylinders determine the elec-
tric field of the other cylinder. In addition, there are the
real charges of the filaments on the cylinder axes. The
electric field in the surrounding medium is generated by
all charges of the two cylinders.

The forces acting on the cylinders can be calculated
as the interaction between the charges and the electric
field.

In order to calculate the forces, it is sufficient to use
the expression for the electric field in the region exte-
rior to the cylinders. This expression has the form [see
formulas (1) in [1]]

E1 z( ) 1
2πε1
----------- ∆12∆13( )k 1– Q1 z r1

k 1–
k 1– δ+
--------------------– 

 
1–





k 1=

∞

∑=
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(1)

Recall that, here, E1(z) = Ex1 – iEy1 is the complex-
valued electric-field strength; ε1 is the permittivity of
the external medium; and ∆12, ∆13, Q1, Q2, and δ are
parameters that are defined by the formulas

(2)

where ε2 and ε3 are the permittivities within the cylin-
ders having the radii r1 and r2 and the charge densities
q1 and q2, respectively. From expression (1), one can
see that the electric field E1(z) is determined by an infi-
nite series of poles corresponding to fictitious charges
(there are also two poles corresponding to the real
charges situated at the centers of the circles) and having
the general form

(3)

where Gp is a charge and ap is its coordinate.
In the plane of the complex-variable, the charges

(further labeled with the subscript m)

(4)

having the coordinates

(5)

where ∆ = ∆12∆13, and occurring within the circle char-
acterized by the parameters r1, ε2, and q1 are subjected
to the effect of the electric field produced by the charges
situated within the other circle, which is characterized
by the parameters r2, ε3, and q2. The strength of the
electric field generated by these charges and the coordi-
nates of the charges will be labeled with the subscript n:

(6)

The general term of the force in question (per unit
length of the cylinder) can be written as

(7)
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where

(8)

In the z plane, each charge within the first circle
(characterized by the parameters r1, ε2, and q1) is sub-
jected to the effect of the electric field produced by all
charges situated within the second circle; therefore, the
general expression for the force is

(9)

where the subscript 1 labels the force acting on the first
cylinder, which is characterized by the parameters
defined above (accordingly, the total force acting on the
second cylinder is labeled with the subscript 2).

By performing the same operations for the second
cylinder—that is, by considering the interaction of the
external field with the charges within this cylinder—we
can easily derive the equality

(10)

Let us substitute formulas (4)–(8) into expression
(9). After some simple algebra, we obtain

(11)

In this expression, the double sums at the factor
Q1Q2 can be simplified. Indeed, we find after some sim-
ple algebra that

(12)
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By using relations (12), we can recast expression
(11) into the form

(13)

By virtue of the method of derivation, expression
(13) determines the total force acting on the cylinder
characterized by the parameters specified above.
According to relation (10), the force applied to the sec-
ond cylinder is given by the same expression (13) but
with an opposite sign.

If the radii of the cylinders are identical, r1 = r2 ≡ r
(δ = 1/2), expression (13) is radically simplified. In this
case, we have

(14)

One can show that

(15)

Therefore, formula (14) assumes the form

(16)

It is noteworthy that, although the expression for the
electric field is rather cumbersome, the formula for the
force acting in the system has a simple form, especially
in the last case.

SOME PARTICULAR CASES

A number of particular solutions that are of interest
in themselves can be derived from the general expres-
sion for the force in (13) by changing the parameters of
the system.

(i) If we set ε1 = ε2 = ε3 ≡ ε (∆12 = ∆13 = 0), expres-
sion (13) reduces to a known formula for the forces of
interaction in the system of two likely oriented straight
charged filaments in a homogeneous medium that are
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separated by a distance h and which carry the charges
q1 and q2 (per unit length). Specifically, we have

(17)

(ii) Let the system being considered consist of one
long dielectric circular cylinder characterized by the
parameters ε2 and r and a charged filament parallel to it.
The charged filament is characterized by a line charge
density q and is situated at a distance h from the cylin-
der. Setting

(18)

and using the general expression (13), we then find that
the force acting on the cylinder has the form

(19)

The force acting on the filament is determined by
the same formula but with an opposite sign. Formula
(19) is given in [2].

(iii) For

(20)

expression (13) takes the form

(21)

This formula determines the force acting on a
dielectric cylinder touching the plane boundary
between two dielectric materials whose permittivities
are ε1 and ε3. The cylinder is of circular shape in a cross
section orthogonal to its axis and is characterized by the
parameters ε2 and r, and a charged filament of line
charge density q is situated on the cylinder axis. For-
mula (21) was derived in [3].

(iv) Let the dielectric cylinders have equal radii and
equal charges:

(22)

According to expression (16), the absolute value of
the repulsive force acting in this case between the cyl-
inders is given by

(23)

If the charges are equal in magnitude but different in
sign (q1 = –q2 ≡ q), we have

(24)

Comparing expressions (23) and (24), one can see
that, for identical characteristics of the dielectric mate-
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rials used and equal absolute values of the charges, the
attractive and the repulsive forces between the dielec-
tric cylinders featuring charged filaments on their axes
are in general unequal in absolute value, their values
significantly depending on the permittivities of the cyl-
inders and the surrounding medium. They can be equal
(in absolute value) only in the case of

(25)

which is equivalent to

(26)

The last relation means that, in this case, the permit-
tivity of the surrounding medium takes an intermediate
value between the permittivities of the materials of the
cylinders.

To illustrate the aforesaid, the dependences Fa(∆12)
and Fr(∆12), where Fa is the attractive force between the
cylinders according to formula (23) and Fr is the repul-
sive force between the cylinders according to formula
(24), are shown in Figs. 1 and 2. The curves are
depicted for two values of the parameter ∆13 (∆13 = 0.5
in Fig. 1 and ∆13 = –0.5 in Fig. 2) in terms of the relative
quantities

(27)

The asterisks are omitted for the sake of brevity.
The symmetry of the curves that is observed in these

two figures is a consequence of the equivalence of the
parameters ∆12 and ∆13 in formulas (23) and (24).

SURFACE FORCES

It is well known that, in inhomogeneous dielectric
bodies placed in an electric field, there arise mechanical
(ponderomotive) forces, whose density is given by

(28)

In a sectionally homogeneous medium, this expres-
sion assumes the form

(29)

where

(30)

is the vector of a unit normal to the surface separating
the materials having the permittivities ε1 and ε2 (the
vector n is directed toward the medium whose permit-
tivity is ε1); Et(+) and Et(–) are the tangential components
of the electric-field-strength vector at the boundary sep-
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arating the materials characterized by the permittivities
ε1 and ε2; and En(+) and En(–) are the normal components
of this vector at the same surface.

In order to calculate the force f at the surface of the
cylinders, we use the expression for the electric-field
strength in the region external to the cylinders, E1(z) [in
formula (29), it is the (+) components of the electric-
field-strength vector that corresponds to E1(z)].

At first, we introduce the relative quantities

(31)

where ε0 is the dielectric constant and E∗  = { , }
are the components of the electric field on the surfaces
of the cylinders characterized by the parameters r1, ε2

E*
E1

E0
----- E0

q1

2πε0r1
----------------= 

  , f *
f
f 0
----- f 0 ε0E0

2=( ),= =

z*
z
r1
----ε1 2 3*, ,

ε1 2 3, ,

ε0
------------Q1 2*,

Q1 2,

q1
----------,= = =

E*
' E*

''

1

–0.5–1.0 0 0.5 1.0

2

∆13 = 0.5

Fa

Fr

∆12

F

Fig. 1. Dependence of the forces acting between the cylin-
ders on the parameter ∆12 at ∆13 = 0.5. The attractive force
Fa and the repulsive force Fk acting between the cylinders
were calculated according to formulas (23) and (24),
respectively.

–0.5 0 0.5 1.0

1

2

–1.0
∆12

∆13 = –0.5

Fr

Fa

F

Fig. 2. As in Fig. 1, but for ∆13 = –0.5.
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and r2 ε3, respectively. Below, we omit asterisks for the
sake of brevity.

In terms of the relative quantities, expression (29)
assumes the form

(32)

From the scalar product nE(z), where n is the vector
of a unit normal to the cylinder of radius r1, we find the
normal and the tangential component of the electric-
field-strength vector at the boundary contour (they are
labeled with primes). Specifically, we have

(33)
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Fig. 3. Distribution of the surface forces in the system char-
acterized by the parameters ε1 = 1, ε2 = 2, and ε3 = 10. Here,
it is assumed that r1 = r2 and q1 = q2. We have denoted by
f1 the force at the cylinder whose parameters are ε2 and q1
and by f2 the force at the cylinder whose the parameters are
ε3 and q2.
where

(34)

The force density at the cylinder of radius r2 is deter-
mined by an expression similar to (32); that is,

(35)

The components of the electric field at the interface
(they are labeled with primes) are given by

(36)

where

(37)

The direction of the force density f coincides with
the direction of the normal n, but its sign depends on the
values of the parameters ∆12 and ∆13.

In order to illustrate clearly the dependence of the
surface forces on the charges, the graphs of f(θ) are
given in Figs. 3–5. These graphs show the distributions
of the force density at the surfaces of the cylinders of
identical radii, r1 = r2 (δ = 1/2), at fixed values of the
permittivities of the materials of the system, ε1 = 1, ε2 =
2, and ε3 = 10 (∆12 = –0.333333, ∆13 = −0.818182).
Here, the forces labeled with the subscripts 1 and 2 are
associated, respectively, with the cylinder characterized
by the parameters ε2 and q1 and with the cylinder char-
acterized by the parameters ε3 and q2.

The curves in Fig. 3 correspond to the case where
the charged filaments have identical line charge densi-
ties (q1 = q2). The data displayed in Fig. 4 were obtained
for the case where the charges of the filaments are equal
in absolute value and are opposite in sign (q1 = –q2). For
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Fig. 5, it is assumed that q2 = 0—that is, there is a
charge in only one cylinder (in that whose permittivity
is ε2). In order to obtain a clear presentation of the dis-
tribution of the forces at the surfaces of the two cylin-
ders, the dependences f2(θ) are shifted by an angle of π.

It is noteworthy that the curves in Figs. 3 and 5 have
distinct maxima and minima. This distribution of the
surface forces can readily be explained by using the
qualitative pattern of the electric field in the system and
by estimating the polarization phenomena in the dielec-
tric bodies under the conditions adopted here.

Maximum forces arise at q1 = –q2 in the vicinity of
the point where the cylinders touch each other (θ ~
0.2π) (Fig. 4). Approximately the same pattern of the
distribution of the forces is also observed in the case of
q2 = 0, this being due to a large permittivity of the mate-
rial of the uncharged cylinder (ε3 = 10; ε3 > ε1, ε2).

2π
θ

π

f2(θ + π)

f1(θ)
2.5

5.0

7.5

f

0

2ππ0

1.25

2.50

3.75

f1(θ)

f2(θ + π)

θ

f

Fig. 4. As in Fig. 3, but for q1 = –q2.

Fig. 5. As in Fig. 3, but for q2 = 0.
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CONCLUSIONS

The main objective of the present study was to
establish the dependence of the forces acting in a sys-
tem that includes charged conductors having insulated
coating and which is typical of many applications on
the permittivities of the materials used. This problem is
both of practical importance and of theoretical interest.
The investigation of this problem is significantly sim-
plified owing to the availability of the analytic solution
to the field problem and the derivation of explicit
expressions for the volume and surface forces in the
system under consideration on the basis of this solu-
tion.

The present investigation has revealed that the per-
mittivities of the cylinders featuring charged conduc-
tors within them and the permittivity of the external
medium can affect substantially the magnitude of the
forces in the system without changing their character.
By varying the properties of the dielectric materials,
one can purposefully change, within specific limits, the
distribution of the surface forces at the interface of dif-
ferent media and reduce the effect of the volume forces
between the cylinders.

The conclusion that there exist alternating maxima
and minima of the surface forces at the cylinder sur-
faces in the systems featuring likely charged conduct-
ing bodies (or in the systems not involving a charge on
one of the conducting bodies) is of special interest. The
calculations have shown that, in the systems where the
cylinders consist of the same dielectric material, the
attractive forces are not equal in magnitude to the repul-
sive forces at fixed charges, this not being so in only one
particular case.

The model problem being considered admits a gen-
eralization to the case where charged filaments can be
placed not only on the axes of the cylinders and where
there can be several charged filaments rather than one.
Moreover, charged filaments may also be outside the
cylinders. In all of these cases, the electric field in the
system and the respective forces can be calculated ana-
lytically.
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Abstract—Melting of an ultrathin lubricant film under friction between atomically smooth surfaces is studied
in terms of the Lorentz model. Additive noise associated with shear stresses and strains, as well as with film
temperature, is introduced, and a phase diagram is constructed where the noise intensity of the film temperature
and the temperature of rubbing surfaces define the domains of sliding, dry, and stick-slip friction. Conditions
are found under which stick-slip friction proceeds in the intermittent regime, which is characteristic of self-
organized criticality. The stress self-similar distribution, which is provided by temperature fluctuations, is rep-
resented with allowance for nonlinear relaxation of stresses and fractional feedbacks in the Lorentz system.
Such a fractional scheme is used to construct a phase diagram separating out different types of friction. Based
on the study of the fractional Fokker–Planck equation, the conclusion is drawn that stick-slip friction corre-
sponds to the subdiffusion process. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Sliding friction of smooth solid surfaces with a thin
lubricant film in between has recently become a subject
of increased interest [1]. One reason is that weakly rub-
bing surfaces are widely applied in a variety of
advanced high-tech products, such as computer memo-
ries, miniature engines, and space-borne devices. A
great insight into the physics of friction has been pro-
vided by experiments with atomically smooth mica sur-
faces separated by an ultrathin organic lubricant layer,
which behaves as a solid under certain conditions [2].
Specifically, intermittent (stick-slip) motion was
observed [3–6], which is inherent in dry friction and
causes wear and failure of rubbing parts. Such “mixed”
friction conditions arise when a lubricant film less than
four molecular layers thick solidifies, being com-
pressed by the walls. The subsequent abrupt transition
to melting takes place when the shear stress exceeds a
critical value (melting due to shear).

Thus, thin molecular films experience the transition
from the solid-like to liquid-like phase [2, 7], the prop-
erties of the latter being impossible to describe even
qualitatively in the terms (e.g., viscosity) characterizing
the properties of a normal liquid occupying a large vol-
ume. Such films exhibit a yield stress, which is a char-
acteristic of failure in solids, while the times of molec-
ular diffusion and relaxation in them may by more than
10 orders exceed the corresponding values for a normal
liquid or even films that are a little bit thicker.

Investigation of the effect of noise (fluctuations) on
sliding friction is also of great fundamental and applied
significance, since in real experiments, fluctuations
critically affect the frictional behavior, for example,
1063-7842/05/5011- $26.00 1408
reduce the friction [1, 8, 9]. Thermal noise, observed in
any experiments, may carry an ultrathin lubricant film
from the stable solid-like state to the liquid-like state
and thus, transform dry friction into sliding or stick-slip
friction. Therefore, considerable attention has recently
been given to the effect of noise and uncontrolled impu-
rities present at the friction boundary on static and
dynamic friction [10–12]. It has been shown that sur-
faces with a regular (periodical) relief have a lower fric-
tion coefficient than irregular surfaces.

Earlier [13, 14], we elaborated upon an idea that the
solid–liquid transition of an ultrathin lubricant film is
the result of thermodynamic and shear melting. The
associated processes were considered in terms of self-
organization of shear stress and strain fields, as well as
of the lubricant film temperature, with allowance for
the additive noise of these quantities (Sect. 1). How-
ever, the issue as to whether self-organized criticality
(SOC) [15] may occur in the system was left aside. In
this work, we try to find conditions for SOC using the
Lorentz model, which gives a field representation of a
elastoviscous medium [16].

The SOC conditions arise in the case of a power-
type stress distribution with a fractional exponent.
Therefore, in Sect. 2, we generalize (modify) the
Lorentz system in order to describe, in accordance with
experimental data [2], intermittent melting of a lubri-
cant film and, consequently, the related friction condi-
tions. By analogy with [14], we construct a phase dia-
gram that allows one to trace changes in the domains of
sliding, dry, and stick-slip friction depending on the
fractional exponent in the modified Lorentz system.
With such a generalization, we describe the behavior of
the system in terms of nonadditive thermodynamics
© 2005 Pleiades Publishing, Inc.
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[17] (Sect. 3). Such an approach can be implemented in
the fractional Lorentz system, where the stress serves as
the order parameter, the conjugate field is reduced to
nonadditive complexity, and the internal energy is a
control parameter. Eventually, it turns out that the stress
distribution inherent in SOC is provided by energy fluc-
tuations. This distribution is, on the one hand, a solution
to the nonlinear Fokker–Planck equation describing the
behavior of a nonadditive system [17] and, on the other
hand, stems from the fractional Fokker–Planck equa-
tion for Levi flights [18]. Contrasting solutions to these
equations, one can establish correlations between the
exponent in the stress distribution (the characteristic
exponent of multiplicative noise), fractal dimension of
the phase space, number of equations needed to
describe the self-consistent behavior of the system
under the SOC conditions, dynamic exponent, and
Tsallis nonadditivity parameter. It is shown that stick-
slip friction corresponds to the subdiffusion process.

1. BASIC EQUATIONS AND THE EFFECT 
OF NOISE

Rheologically describing a viscoelastic heat-con-
ducting medium [13], we derived a set of kinetic equa-
tions governing the consistent behavior of shear
stresses σ, strains ε, and temperature T in an ultrathin
lubricant film between atomically smooth rubbing mica
surfaces. Let us write these equations for σ, ε, and T
using the following units of measure:

(1)

where ρ is the lubricant density, cv is the specific heat
at constant volume, Tc is the critical temperature, η0 ≡
η (T = 2Tc) is the characteristic value of shear viscosity
η, τh ≡ ρl2cv/κ is the heat conduction time, l is the heat
conduction length, κ is the thermal conductivity, τε is
the strain relaxation time, and G0 ≡ η0/τε. The corre-
sponding equations are

(2)

(3)

(4)

Here, τσ is the stress relaxation time, Tm is the temper-
ature of atomically smooth rubbing mica surfaces, g =
G/G0 < 1 is a constant, and G is the shear modulus of
the lubricant. Equation (2) is reduced to the Maxwell
equation for a viscoelastic medium by substituting ε/τσ
for ∂ε/∂t. Expression (3) is similar to the Kelvin–Voigt
equation [13, 19], which takes into account the depen-
dence of the shear viscosity on dimensionless tempera-

σs

ρcv η0Tc
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--------------------- 
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,=

εs

σs
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τε
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ture η = η0/(T – 1). Expression (4) is the heat conduc-
tion expression that involves heat transfer from rubbing
surfaces to a lubricant film, dissipative heating of a vis-
cous liquid flowing under stress, and the reversible
mechanocaloric effect in the linear approximation. For-
mally, this set of equations coincide with the synergetic
Lorentz system [20, 21], where the shear stress serves
as the order parameter, the conjugate field is reduced to
the shear strain, and the temperature is a control param-
eter. As is known, this system is used for describing
thermodynamic and kinetic phase transformations.

In [13], melting of an ultrathin lubricant film
between atomically smooth rubbing mica surfaces is
viewed as a result of shear stresses spontaneously aris-
ing upon heating of rubbing surfaces above critical tem-
perature Tc0 = 1 + g–1. The initial reason for self-organi-
zation is positive feedback of T and σ with ε (see (3))
due to the temperature dependence of the shear viscos-
ity, which causes its divergence. However, negative
feedback of σ and ε with T (see (4)) is also of impor-
tance, since it makes the system stable.

In terms of such an approach, a lubricant is seen as
a high-viscosity liquid behaving like an amorphous
solid: it has a very high effective viscosity and still can
be characterized by a yield stress [2, 19]. In the solid-
like state, shear stresses σ = 0, since Eq. (2), describing
the elastic properties in the steady state (  = 0), is
omitted from consideration. Equation (3), containing
viscous stresses, reduces to the Debye equation, which
describes fast relaxation of the shear strain within the
microscopic time τε ≈ a/c ~ 10–12 s, where a ~ 1 nm is
the lattice constant or molecular spacing and c ~
103 m/s is the speed of sound. In this case, Eq. (4) turns
into the simplest expression for temperature relaxation,
which is free of the terms corresponding to dissipative
heating and the mechanocaloric effect for a viscous
liquid.

If stresses σ are nonzero, Eqs. (2)–(4) describe all
the above properties for the liquid-like state of the
lubricant. Moreover, if the shear strain is absent, the
rms thermal displacement of atoms (molecules) is
given by 〈u2〉  = T/Ga [6]. The rms displacement due to
shear is found from the expression 〈u2〉  = σ2a2/G2. The
total rms displacement is a sum of these two displace-
ments provided that temperature fluctuations and
stresses are mutually independent. This means that
melting of a lubricant is caused by both heating and
stresses generated by rubbing surfaces. This supposi-
tion is consistent with the concept of dynamic shear
melting, according to which the solid-like state is unsta-
ble in the absence of temperature fluctuations. Thus,
strain (stress) fluctuations and temperature fluctuations
should be considered separately. We will assume that,
as the temperature grows, the film becomes progres-
sively closer to the liquid state and the friction force
decreases as a result of a decrease in the molecular
jump activation energy. In addition, the friction force

σ̇
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decreases with increasing the velocity of relative
motion of contacting surfaces, V = l∂ε/∂t, since an
increase in the relative velocity causes a rise in shear
stresses according to the Maxwell-type relationship
∂σ/∂t = –σ/τσ + G∂ε/∂t between stress and strain.

In macroscopic Lorentz equations (2)–(4), stress σ,
strain ε, and temperature T are averaged over a physi-
cally small volume. Fluctuations, which arise over dis-
tances on the order of the heat conduction length, will
be taken into account by introducing stochastic terms in

the form of additive noise intensities ξ, ξ, and

ξ into the right-hand sides of Eqs. (2)–(4) (here,

intensities Iσ, Iε, and IT are given in terms of , ,
and (Tcκ/l)2, respectively, and ξ(t) is a δ-correlated sto-
chastic function [14, 22]). According to experimental
data for organic lubricants [2], the stress relaxation time
under normal pressure is τσ ~ 10–10 s and increases by
several orders of magnitude under a high pressure.
Since the ultrathin lubricant film is less than four
molecular layers thick in our case, the temperature
relaxes to value Tm for time τh that satisfies the inequal-
ity τh ! τσ. Then, in the adiabatic approximation τσ @
τε and τh [20, 21], Eqs. (2)–(4) take the form of the Lan-
gevin equation [14]

(5)

where force f is specified by the synergetic potential

(6)

Iσ
1/2 Iε

1/2

IT
1/2

σs
2 εs

2τε
2–
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-------,–≡+=
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2
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  1 σ2+( )ln+=
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Fig. 1. Phase diagram for g = 0.5 and Iε = 1.2. Curves 1 and
2 are the boundaries between the domains of stable SF, DF,
and SS (T and C are the tricritical and critical points, respec-
tively).
and the effective noise intensity is given by expression

(7)

which follows from the additivity of dispersions of
Gaussian random quantities [22]. The stationary distri-
bution of solutions to Eq. (5),

(8)

depends on normalizing factor Z and effective potential

(9)

where V is synergetic potential (6) and I(σ) is noise
intensity (7) [23].

The equation defining the positions of the maxima
of distribution function P(σ) has the form

(10)

Thus, distribution P(σ) does not depend on noise
intensity Iσ and stresses σ: it is specified by temperature
Tm of rubbing mica surfaces; noise intensities Iε and IT

for strain ε and lubricant film temperature T, respec-
tively; and parameter g.

With intensity Iε fixed, the phase diagram has the
form shown in Fig. 1, where lines 1 and 2 are those lines
where the system loses stability. Above line 1 defined
by the equality

(11)

the condition σ ≠ 0 is the most plausible and so the
lubricant is in the liquid-like state, which provides sta-
ble sliding friction (SF) and, accordingly, sliding of the
surfaces. Below curve 2, which touches straight line 1
in tricritical point T with the coordinates

(12)

function P(σ) has a maximum only at σ = 0 and we are
dealing with dry friction (DF), which is typical of a
solid-like lubricant film. Between these lines, where
P(σ) has maxima at both zero and nonzero stresses,
there lies the domain of stick-slip (SS) friction, where
the SF–DF and DF–SF transitions periodically occur.
Such transitions characterize intermittent melting of the
lubricant, when it represents a mixture of liquid- and
solid-like states. According to (12), such a scenario is
possible even when temperature Tm of rubbing surfaces
is zero provided that the amount of strain fluctuations
exceeds the critical value Iε = (1 + 2g–1)/2g. Under these
conditions, the system behaves as under the SOC con-
ditions [15].

I σ( ) Iσ Iε ITσ2+( )g2d2 σ( ),+≡

P σ( ) Z 1– U σ( )–{ } ,exp=

U σ( ) I σ( )ln
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I σ'( )
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1 g–( )x3 g 2 Tm–( )x2 2g2IT x– 4g2 IT Iε–( )+ + 0,=

x 1 σ2.+≡
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2. SELF-SIMILARITY CONDITIONS

To further investigate the system, it is necessary to
find probability distribution (8), which is specified by
effective potential (9). Temperature fluctuations (IT @ Iε
and Iσ) lead us to the expression

(13)

Since the integral in (13) tends to a constant in the
limit σ  0 and d(σ)  1, distribution (13) has a
power-type asymptotics, P(σ) ~ σ–2. Thus, self-similar
conditions without a characteristic stress scale are
established that are specified by the homogeneous
function

(14)

with integer exponent 2a = 2 [24].
However, this exponent may be fractional in the

general case; specifically, the SOC conditions are char-
acterized by 2a = 1.5. To avoid loss in generality, we
replace order parameter σ by σa (0 ≤ a ≤ 1) in all the
terms of Eqs. (2)–(4). Then, with regard to stochastic
additions, the basic equations in dimensionless vari-
ables take the form

(15)

(16)

(17)

Physically, such a replacement of the exponent
means that self-similarity is achieved under the
assumption that stress relaxation is nonlinear and both
positive and negative feedbacks are of fractional char-
acter. The adiabaticity conditions (τε, τh ! τσ) immedi-
ately lead us to the Langevin equation (cf. (5))

(18)

where force fa(σ) and noise intensity Ia(σ) are given by

(19)

The corresponding distribution (cf. (8)),

(20)

P σ( ) IT
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τhṪ Tm T–( ) σaε– σ2a ITξ t( ).+ +=
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.≡
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Ia σ( )
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is specified by partition function Z with the effective
potential

(21)

The extreme points of this distribution are found
from the equation

(22)

according to which the boundary of the SF domain,

(23)

meets the condition σ = 0. Expressions (22) and (23)
are extensions of equalities (10) and (11). It follows
from the above expressions that the results obtained at
a = 1 differ little from those obtained in the general case
0 ≤ a ≤ 1. In particular, the effect of the random stress
distribution is, as before, insignificant, while strain and
temperature fluctuations have a crucial effect. The
dependence of stationary shear stresses σ0 on tempera-
ture Tm changes most drastically. In the stationary
determinate case, set (15)–(17) has the solution

(24)

which generalizes the standard root dependence in the
case a = 1 (Fig. 2). As strain noise Iε increases, σ0
monotonically grows. A rise in IT produces a barrier
near σ0 = 0. In addition, the dependence σ0(Tm)
becomes nonmonotonic when IT lies above straight line
(23) (Fig. 3). The dashed lines in Fig. 3 cover unstable
values of stresses (σm); the continuous lines and por-
tions of lines, stable values (σ0). It follows from Fig. 3
that σm may take a zero value only at a = 1 or IT = 2Iε;
otherwise, the curves σm(Tm) asymptotically tend to
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Fig. 2. Shear stresses σ0 vs. temperature Tm for g = 0.5 and
a = (1) 0.5, (2) 0.7, (3) 0.9, and (4) 1.0.
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zero. This means that, if IT > 2Iε and a ≠ 1, there always
exists effective potential barrier (21) near the point σ0 =
0. In other words, either the lubricant experiences the
first-order liquid–solid transition or the DF conditions
set in. At IT < 2Iε and a ≠ 1, SF occurs, which corre-
sponds to a minimum of the potential with σ0 ≠ 0, since
the barrier reaches a maximum in the physically mean-
ingless domain σm < 0.

The phase diagram illustrating the state of the sys-
tem at different noise intensities Iε and IT (Fig. 4) is sim-
ilar to that corresponding to the case a = 1. As a grows,
the two-phase SS domain, which is bounded by straight
line (23) and a bell-shaped curve, expands. When a = 1,
the SF regime at small Iε does not occur, unlike in the
case a ≠ 1. In practice, the noise intensity is, as a rule,
low, and so friction is expected to reduce in systems
with fractional exponent a.

Figure 5 shows probability distribution (20) corre-
sponding to the points marked in Fig. 4. The positions
of maxima in this distribution are specified by a set of
parameters Iε, IT, Iσ, a, g, and Tm. For point 1 in the two-
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0

Fig. 3. Shear stresses σ0 vs. temperature Tm for g = 0.5.
(a) a = 0.75; Iε = 1; and IT = (1) 1, (2) 2, (3) 3, (4) 5, and
(5) 7. (b) Iε = 1; IT = 5; and a = (1) 0.25, (2) 0.50, (3) 0.75,
and (4) 1.00.
phase SS domain, the distribution obeys a power law
(typical of the SOC conditions) with external action
Tm = 0. Such conditions correspond to σ ! 1, Iσ, and Iε
! IT. With such values of these parameters, Eq. (20)
reduces to canonical form (14), in which function 3(σ)
is given by

(25)

At point 2, distribution Pa(σ) has maxima at both
zero and nonzero stresses. Hence, point 2 lies in the SS
domain. Point 3 belongs to the DF domain, where Pa(σ)
has a single maximum at σ0 = 0. Finally, point 4 lies in
the domain where the probability distribution has a sin-
gle maximum at σ0 ≠ 0 (SF).

3. FRACTAL AND NONADDITIVE NATURE 
OF FRICTION

A feature of distribution (25) is that it is expressed

through integral  of fractional power 1 – a (see
the Appendix),

(26)

where Γ(x) is the gamma function.
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Fig. 4. Phase diagram of the system for Tm = 0; g = 0.5;
IT and Iε ≠ 0; and a = 0.50 (dashed curve), 0.75 (continuous
curve), and 1.00 (dotted curve).
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At the same time, it is known [18] that an expression
of this type is a solution to the fractional Fokker–Planck
equation

(27)

where fractional derivative  (see A.2) implies the
operation inverse to fraction integration (A.1).

Let us multiply equality (27) by  and average
the result over σ. Then, for the average

(28)

with fraction order α ≡ 2 , we obtain

(29)

where z is the dynamic exponent.
Here, we take into account the diffusion contribu-

tion alone, which dominates in the long time limit.
Combining equalities (26), (29), and (A.1) yields 1 –
a =  = zω/2, or

(30)

In the mean field approximation, exponent a in (14)
is a = 3/4. Then, from expression (30), we have

(31)

At ω = 1, which corresponds to dynamic exponent
z = 1/2, the system evolves without traps in the phase
space. According to (29), this value of z is smaller than
z = 1, which is characteristic of ballistic behavior. On
the other hand, fractional Fokker–Planck equation (27)
leads to the diffusion conditions corresponding to z = 2
only when the order of the time derivative is ω = 1/4.

Thus, in the mean field approximation (a = 3/4,  =
1/4), stick-slip friction with effective traps in the phase
space is established when the order of the time deriva-
tive lies in the range 1/4 < ω < 1/2 and dynamic expo-
nent z falls into the range 1 < z < 2. Essentially, such a
situation is peculiar to the subdiffusion process, when
the displacement of a walking particle is continuous in
space but occurs discretely (at particular time instants);
hence, the order of the corresponding derivative is frac-
tional, ω < 1. Unlike this situation, the walk of a particle
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at Levi flights (arbitrary, including infinite, displace-
ments) proceeds continuously in time but discretely in
space [25]. In accordance with Fokker–Planck equation
(27), the Levi process is characterized by order ω = 1
and order  ≤ 1, the latter being the order of the frac-
tional derivative with respect to the particle coordinate.
To avoid confusion, it should be noted that we consider
hopping in the phase, rather than in the real geometri-
cal, space.

Following [17], let us analyze the system in terms of
nonadditive thermodynamics. It will be assumed that
strain is converted to the system’s complexity, which is
a measure of disorder and, by analogy with the Tsallis
entropy, is expressed as

(32)

where q ≠ 1 is the nonadditivity parameter.1 Also, the
temperature of the lubricant film is replaced by its inter-
nal energy given by

(33)

1 In the limit q  1, expression (32) turns into the formula for
conventional entropy, S(pi) = S(1)(pi) = –Σιpilnpi. Considering

two independent subsystems A and B yields  =  for the

probability and  =  +  + (1 – q)  for the

entropy. The latter does not possess the additivity property SAB =
SA + SB, unlike the entropy in the conventional sense.
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Fig. 5. Distribution function (20) for a = 0.75, g = 0.5,
Tm = 0, Iσ = 0, and conditions shown by points in Fig. 4:
(1) Iε = 0 and IT = 100 (SOC), (2) Iε = 2 and IT = 100 (SS),
(3) Iε = 4 and IT = 20 (DF), and (4) Iε = 4 and IT = 0 (SF).
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where distributions Qi ≡ /  and {ξi} are the
eigenvalues of the corresponding Hamiltonian that are
obtained in view of boundary conditions [26].

Such a parametrization allows us to relate exponent
z, order , and order ω with parameter q specifying
expressions (32) and (33) [17]. The evolution of a non-
additive system is represented by the nonlinear Fokker–
Planck equation

(34)

where order ω and exponent q are fractional,  is the
fractional time derivative, and the units of measure are
taken so as to exclude the effective diffusion coefficient
[27].

For the self-similar normalized function

(35)

where σc is the critical value [28], we have

(36)

At the same time, the linear fractional Fokker–
Planck equation (cf. (27))

(37)

yields [29]

(38)

Comparing the first expressions in (36) and (38)
gives the relationship

(39)

Since the mean value of |σ| in (28) is on the order of
σc for self-similar systems, we find from (29), (36), and
(38) that

(40)

From the above consideration, it follows that prod-
uct zω ≤ 1 is typically less than unity (specifically, in
the mean field approximation, we have (31)); so, condi-
tion (40) holds only if –1 < q < 0. Thus, the given ther-
modynamic system is superadditive (q < 1): the total
entropy exceeds the sum of partial entropies.

Fractional Lorentz system (15)–(17) can be
assigned a fractal phase space. To complete the analy-
sis, let us find a relationship between its fractal dimen-
sion D and the exponents and orders of derivative intro-
duced above. To do this, we take advantage of the stan-
dard scaling relationships [28]

(41)
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Comparing the last of them with (30), we find that

(42)

To calculate D, one should take into account that
each of the stochastic degrees of freedom (σ, S(q), and
ξ(q)), the number of which is n = 3, is assigned a conju-
gate momentum; therefore, a smooth phase space must
have dimension D = 2n. Such a space arises in the
absence of feedback (the simplest case), when its
related exponent a = 0 and noise is additive. As expo-
nent a (which specifies the effective force and noise
intensity in relationships (19)) grows (a > 0), so does
the amount of feedback and the fluctuations (noise)
become multiplicative. Accordingly, the phase space
becomes fractal [23] and its dimension decreases by
(1 – a) times. Eventually, the dimension of the space
where a self-organizing system evolves becomes equal
to

(43)

where n = 3 for the Lorentz system.
In the general case, using equalities (30), (42), and

(43), one can find the number of self-consistent sto-
chastic equations to describe SOC at different feedback
exponents,

(44)

In the range of interest (a ≤ 1), n indefinitely grows,
starting from the minimal physical value nc = 1, which

corresponds to a = 1 – 1/ . Such a one-parametric
case was considered in [30]. With a further increase in
a, the number of degrees of freedom needed to describe
SOC should be augmented. In particular, the case a =
1/2 corresponds to a two-parametric representation of a
self-organizing system [28, 31]. For the Lorentz system
(n = 3 [21, 32]) to be considered, deeper feedback, a =

1 – 1/ , is necessary.
Combining equalities (40), (42), and (43), we come

to a final expression for the nonadditivity parameter,

(45)

Substituting expression (44) for number n of equa-
tions needed to represent the SOC conditions into (45)
yields q = 1 – 2a. Hence, as the amount of feedback
reduces (a declines), parameter q grows. This parame-
ter tends to a maximal value (q  1) in systems with-
out feedback (a  0). Thus, provided that scaling
relationships (41) from the mean field theory are valid,
(i) one can reproduce the results obtained with various
approaches [33], using expression (44), and (ii) the
thermodynamic system under study is superadditive.

The above consideration has demonstrated that
stick-slip friction can be described in terms of the con-
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cept of SOC. Under the SOC conditions, the film melts
at the zero temperature of rubbing surfaces. The basic
feature of these conditions is that the system evolves in
a self-similar manner and, accordingly, its distribution
function has power-type asymptotics. It has also been
shown that this fact is embodied in the Lorentz system
parametrized by shear stresses, strain, and lubricant
film temperature. With the self-similarity conditions
taken into account, stress relaxation and feedback in the
Lorentz system acquire a fractional character. The asso-
ciated phase diagram separating out the SF, SS, and DF
domains qualitatively coincides with that constructed
for the case when this relaxation term and feedbacks are
free of a fractional exponent. It should be noted that,
when this exponent is other than unity, friction can be
reduced if the noise intensity is low. For a system
parametrized by stresses, complexity, and internal
energy, the fractional Lorentz model allows one to
relate the exponent in the stress distribution (multipli-
cative noise), fractal dimension of the phase space,
number of equations needed to represent the system
under the SOC conditions, and Tsallis nonadditivity
parameter. Finally, it has been demonstrated that stick-
slip friction is due to effective traps present in the phase
space and can be identified with subdiffusion, which
one may speak of when the order of the time derivative
in the fractional Fokker–Planck equation is less than
unity (ω < 1).
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APPENDIX

The integral of fractional order (  > 0) is defined
as [34]

(A.1)

where f(x) is an arbitrary function and Γ(x) is the
gamma function.

The operation inverse to such integration,  ≡

, is called fractional differentiation of order  > 0,

(A.2)

In the range 0 <  < 1, it is convenient to use the
expression

(A.3)
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which takes into account that xΓ(x) = Γ(x + 1) for
x ≡ − .
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Abstract—The problem of an ideal incompressible liquid flowing in an axisymmetric pipe with a cross section
varying in space and time is solved. The case when the area of variation of the cross section is represented by
two identical series-connected cylinders is considered. It is shown that, if the cross sections of the cylinders vary
with a constant frequency so that one decreases and the other increases, pressure difference oscillations arising
at the ends of the cylinders bear information on both the liquid density and the flow rate in the pipe. The feasi-
bility of designing an instrument based on these results and the choice of its performance parameters are dis-
cussed. It is noted, in particular, that the length of either cylinder must be no less than the pipe mean diameter.
© 2005 Pleiades Publishing, Inc.
Among the variety of liquid and gas flowmeters,
mass flowmeters are usually of primary interest for the
user. These devices measure the oscillations of a flow
whirled in a special manner [1], gyroscopic moments
acting on the moving parts of pipelines or moments of
inertia (Coriolis forces) of turbines (or radial bar rotors)
rotating in a flow to be measured [2], or distortion of the
temperature field in the pipeline heated from the out-
side and washed by the medium to be measured from
the inside [2].

In this paper, we offer a new method to measure the
density and mass flow rate of a liquid. The processes
occurring in this flowmeter allow us to categorize it as
an inertial mass flowmeter that stands out from other
representatives of this class because of its unique prop-
erties. Let us perform tentative theoretical calculations
based on which we shall proceed further.

Consider an incompressible ideal liquid (Fig. 1)
flowing in an axisymmetric pipe the cross section of
which is a function of coordinate and time. Cross-sec-
tional area S(x, t) of the pipe is assumed to be given.

Assuming the flow to be quasi-one-dimensional, we
can write the set of equations for such a flow in the
form [3]

(1)

Here, ρ is the liquid density, S(x, t) is the pipe’s cross-
sectional area, and V(x, t) is the velocity averaged over
the cross section. The average velocity is related to the

∂S
∂t
------ ∂ SV( )

∂x
---------------+ 0,=

∂V
∂t
------- V

∂V
∂x
-------+

1
ρ
---∂ρ

∂x
------.–=

† Deceased.
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mass flow rate as1

(2)

where p(x, t) is the pressure averaged over the cross sec-
tion.

If constant of integration C(t) is time-independent
and equal to Q0/ρ, where Q0 is the mass flow rate in the
unperturbed part of the pipe, the first equation of sys-
tem (1) yields

(3)

Substituting Eq. (3) into the second equation of (1)
and carrying out appropriate calculations, we obtain

(4)

Of interest is a solution to this equation for the case
when the cross section varies over a part of the pipe by
the law

(5)

1 In this formula, the mass flow rate may have both signs according
to the sign of velocity V(x, t) relative to the x axis.
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Here, δ = a0/S0. We shall seek an expression for the
pressure difference between points x = –L, x = 0, and
x = +L; i.e., ∆pleft(t) = p(0, t) – p(–L, t) and ∆pright(t) =
p(L, t) – p(0, t). By way of illustration, Fig. 2 shows two
phases in variation of the cross section: phase 1 corre-
sponds to time intervals when sin(ωt) > 0; phase 2, to
those when sin(ωt) < 0 (the positive direction of the x
axis coincides with the flow direction). We linearize
Eq. (4), assuming that δ is small and the inequality

Q0π
ρS0ωL
---------------- 1>

dx

V(x) x

S(x) S(x + dx)

Fig. 1. 

Phase 1

Phase 2

1

2

3

1

2

3

Fig. 2. (1) Flow to be measured, (2) left pressure meter, and
(3) right pressure.
is satisfied.2 Eventually, we arrive at the following
equation:

Integrating over x yields an expression for the pres-
sure of a nonviscous liquid flowing within the portion
x ⊂  [–L, L] of a moving-wall pipe and obeying law (5)
in the quasi-one-dimensional approximation (the
motion of the walls is small, δ ! 1),

(6)

where P0 is a constant of integration, which may be
equal, for example, to the hydrostatic pressure.

The pressures at the points of interest are

Now we construct the desired pressure differences,

(7)

According to formulas (7), if the cross sections of
two series-connected identical portions of a pipe with a

2 It will be shown that this stringent condition reduces the practical
value of the results obtained.
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flowing liquid vary harmonically in antiphase so that
the oscillation amplitude is much smaller than the
diameter of the unpertubed part of the pipe, variable
pressure differences arise within those portions. Sepa-
rately measuring the amplitudes of the mutually
orthogonal components of the pressure differences, one
can independently find the density and mass flow rate
of the liquid. From Eq. (7), the amplitude of the in-
phase and orthogonal components are given, respec-
tively, by

(8)

(9)

In essence, to measure the density and/or mass flow
rate, one should apply identical periodical axisymmet-
ric antiphase impulses to two series-connected portions
of the pipe perpendicularly to the axis of the pipe
(Fig. 2; such an action on a flow changes its axial
momentum within the portions of interest) and then
analyze a variable pressure difference in any of these
portions. The pressure difference is due to axial inertial
forces arising in the moving liquid.

Below, we would like to answer the questions that
inevitably arise in an attempt to implement a measuring
device.

FORCE PULSER

As an impulse-generating unit (force pulser), we
offer a thin elastic cylindrical membrane clamped at its
center and at both ends in such a way that the inner sur-
face faces the flow to be measured and the outer surface
is in a closed cylindrical vessel divided into two strictly
identical isolated semicylinders at the place of the cen-
tral clamp.

It is assumed that each of the isolated semicylinders
is hermetically connected to a bellows through holes in
the outer wall. The free end of one of the bellows is rig-
idly connected to the free end of the other semicylinder,
and the inner spaces of the semicylinders are discon-
nected and filled with a special bubble-free liquid
(Fig. 3). The joint of the bellows with a baffle in
between will be called the head of the bellows couple.
The case considered in [4] shows that the pressure
dependence of the deflection of the cylindrical mem-
brane is linear. Hence, a sinusoidal pressure variation
above the membrane will cause sinusoidal perturbation
∆R of its radius R0. It can be shown that, if δr = ∆R/R0
is small, the relative increment of the pipe’s cross-sec-
tional area, δ = a0/S0, may be set equal to δ = 2δr; hence,
the variation of the cross-sectional area is also sinusoi-
dal. Thus, a sinusoidal displacement of the head of the
bellows couple will lead to a sinusoidal variation in the
cross section of the cylindrical membrane. In other

Aρ ρδω2L2

π
--------------- dyn

cm2
--------- ,= =

AQ 4Q0
δωL
πS0
----------- dyn

cm2
--------- .= =
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words, to make the cross section vary by law (5) is quite
realistic.

Such a balance scheme of flow perturbation by
law (5) is very convenient: the equilibrium position of
the head of the bellows couple does not depend on a
strong variation of the hydrostatic pressure provided
that an external force displacing the head is absent; oth-
erwise, the mass flow rate and the density of the liquid
would have to be measured separately.

How long should length L of the cylindrical mem-
brane be? For a flow about a body vibrating with an
amplitude much less than its characteristic dimension
[5], it is argued that the velocity of the liquid experi-
ences perturbations on the order of the vibrating body
velocity over a distance roughly equal to the dimension
of the body. Then, taking the length of the “breathing”
wall for the length of a vibrating body and setting it
equal to the diameter of the pipe, one can assume that
the flow velocity will vary roughly by the wall velocity
over any cross section of the “modulated” part of the
pipe. That is, all the liquid will have an alternating-sign
momentum over the length of the modulated part.
Accordingly, the length of the measuring device with a
balance force pulser must be no less than two diameters
of the pipe. A more accurate selection of the dimen-
sions of the force pulser can be made after a careful
consideration of the flow velocity distribution over the
time- and coordinate-dependent cross section.

1

2

3 4 5

6
4 6

8

5
7

Q

ρ

14

10

11 12 12 13

14

915

14

cos(ωt)

sin(ωt)

Fig. 3. (1) Driving oscillator with frequency ω, (2) synchro-
nous motor, (3) π/2 phase shifter, (4) integrator over the
interval 0 < t < 2π/ω, (5) value proportional to the mass flow
per second, (6) value proportional to the liquid density,
(7) left analyzer, (8) right analyzer, (9) bellows couple,
(10) flow being measured, (11) elastic cylindrical mem-
brane fixed at the center and at the ends, (12) pressure dif-
ference sensor, (13) body of meter, (14) ring chamber her-
metically closed from the inside by the elastic cylindrical
membrane of diameter equal to the pipeline diameter, and
(15) displacement direction of bellows couple head.
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SENSOR
We recommend pressure-difference sensors based

on a single-crystalline silicon membrane. Silicon pres-
sure sensors offer a high precision, sensitivity, and
overload endurance; wide dynamic range; extremely
small hysteresis; and operating reliability. In addition,
they are almost inertialess.

ANALYZER
Analysis of the signal from the pressure sensor

implies harmonic separation. In general, measuring the
amplitudes of two harmonics with frequency ω and
mutually orthogonal initial phases is a task of spectral
analysis. Such a problem can be solved, e.g., with a
device described in [6].

The amplitude of the variable pressure-difference
component that is in phase with the moving membrane
is proportional to the flow density, and that of the
orthogonal component to the mass flow rate in the pipe.
From the expressions for ∆pleft(t) and ∆pright(t) in (7), it
readily follows that measuring the difference between
the output signals from the left and right analyzers
improves the sensitivity of mass-flow measurement
twofold. Similarly, measuring the sum of the output
signals improves the sensitivity of density measure-
ment by the same factor. A wide variety of different cir-
cuit-design approaches and devices that may be applied
to solve this problem saves us any comment on this
issue.

Let us perform a tentative calculation. For pipe
radius R0 = 5 cm, driving frequency f = ω/2π = 60 Hz,
half-length of the variable section of the pipe L = 30 cm,
liquid density ρ = 1 g/cm3, and relative change in the
pipe diameter δr = 0.005, the partial pressure amplitude
proportional to the density of the liquid is Aρ ≈ 0.41 ×
106 dyn/cm2 ≈ 0.41 × 104 mm H2O/cm2 ≈ 0.41 atm (see
formula (8)). To calculate the partial pressure amplitude
proportional to the mass flow rate, we substitute the
value of the mass flow taken with regard to the limita-
tion mentioned above (see footnote 2) into Eq. (9). This
is a critical value starting from which the theory pre-
sented here adequately describes the processes taking
place in the measuring device suggested. In our case,
this value is Q0 = 2.84 × 105 g/s and the partial pressure
responsible for the mass flow rate is AQ ≈ 1.27Aρ.

As was mentioned above, our theory is invalid when
δ ~ 1. We suppose that, without this limitation, the
response of the device (pressure difference) will also
depend on both the density and the mass flow rate of the
liquid, possibly in another form. It seems that a rela-
tionship between the components involving the mea-
surands will be more suitable for the combined mea-
surement. This issue will be clarified after solving this
more complicated problem.
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Abstract—The velocity of molecular gas slipping over a spherical surface is calculated by exact analytical
methods including the accommodation coefficients for the first two moments of the distribution function. An
extension of the BGK approach to the Boltzmann kinetic model for the case of rotational degrees of freedom
is used as the basic equation. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Description of molecular gases is basically more
difficult than that of simple (monoatomic) gases. [1].
The state of the latter is fully described by the distribu-
tion function specified as a function of coordinates r' of
the center of inertia of molecules and their velocities v.
For a molecular gas, the distribution function also
depends on rotational and vibrational degrees of free-
dom. Except for ultralow temperatures, the rotational
degrees of freedom of molecular gases can be described
in classical terms. The vibrational degrees of freedom
are described only in terms of quantum theory. How-
ever, for a wide temperature range (10–1000 K), it may
be assumed that the vibrational degrees of freedom are
not excited and molecules of the gas are in the ground
state [2].

The kinetic theory of rarefied gas is based on the
Boltzmann equation [2]. Since the fivefold collision
integral appearing on the right of this equation is non-
linear, its exact solutions are impossible to obtain in the
general case. In light of this, the Boltzmann equation is
usually replaced by related model equations. The sim-
plest model of the collision integral seems to be the
BGK collision integral

(1)

Here, f is the gas molecule distribution function, feq is
the locally equilibrium Maxwellian, and ν0 is the colli-
sion parameter of the model. For polyatomic gases,
f and feq depend on coordinates r' of the centers of iner-
tia of gas molecules and on their translational, v, and
rotational, ω, velocities.

The BGK model of the Boltzmann kinetic equation
can be generalized for the case of molecular gases,
where rotation is classical and vibration is “frozen,” as
follows. Consider a diatomic gas. A molecule of such a
gas rotates in the plane normal to the vector of rota-
tional moment M of the molecule. In actual physical

I f( ) ν0 f eq f–( ).=
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problems, the distribution function can be considered
as independent of the orientation of the molecule axis
of symmetry in this plane [2]. Therefore, the rotation of
a molecule of a diatomic gas is fully described by spec-
ifying the magnitude of the rotational moment vector,
M = Jω (J is the magnitude of the moment of inertia of
a molecule). Then, function feq for a diatomic gas can be
written in the form

where

(2)

(3)

Here, m is the molecular mass weight and kB is the Bolt-
zmann constant. Let us turn to the stationary BGK
equation written in the spherical coordinates [2] with
collision operator (1),

(4)

We assume that

f eq = neq
m
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where T0 is the temperature at the origin, λ is the mole-
cule free path, and ueq is the mass-averaged gas veloc-
ity.

Then, the distribution function takes the form

(5)

Here,

is the distribution function with parameters specified on
the surface over which the gas slides, and ns and Ts are
the gas concentration and temperature on this surface.

In view of (2), (3), and (5), we obtain

(6)

where

Substituting (5) and (6) into (4) and passing to
dimensionless quantities, we arrive at

(7)

Here, l = 2; dΩ = 2π–3/2exp(–C2 – ν2)νdνd3C; k =

3Kn/(3 Pr) for thermodynamic slip or k =

2Kn/( Pr) for thermal slip,

C = v ; ν = ω ; r = 3 Pr/(4λ)r'

for thermodynamic slip or r = Pr/(2λ)r' for thermal
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Cr
∂Y
∂r
------ Y r C ν, ,( ) k Cθ

∂Y
∂θ
------

Cϕ

θsin
-----------∂Y

∂ϕ
------++ +

+ Cθ
2 Cϕ

2+( ) ∂Y
∂Cr

--------- Cϕ
2 θcot CrCθ–( ) ∂Y

∂Cθ
---------+

– CϕCθ θcot CrCϕ+( ) ∂Y
∂Cϕ
---------

=  k C ν C'; ν', ,( )Y r C' ν', ,( ) Ω.d∫

π
π

k C ν; C' ν',,( ) 1 2C C'⋅+=

+
1

l 1/2+
--------------- C2 ν2 l– 1/2–+( ) C'2 ν'2 l– 1/2–+( ),

m/2kBT s J /2kBT s π

π

slip; λ = νg(πm/2kBTs)1/2; νg is the kinematic viscosity
of the gas; Kn is the Knudsen number; and Pr is the
Prandtl number.

For a polyatomic gas (number N of atoms in a mol-
ecule is greater than three), the distribution function
depends not only on rotational moment M of the mole-
cule but also on the angles specifying the orientation of
the axes of the molecule about vector M [2]. Therefore,

(8)

Here, Ji (i = 1–3) are the components of the moment of
inertia of gas molecules. Linearizing (8) in view of (5)
and passing to dimensionless quantities, we arrive, as in
the case of a diatomic gas, at Eq. (7) with the only dif-
ference being that, for a polyatomic gas, l = 5/2 and
dΩ = π−3exp(–C2 – ν2)d3νd3C. Thus, the extension of
the BGK model of the Boltzmann equation for molec-
ular gases has been constructed and has form (7).

Next, using this extension and the two-moment
accommodation boundary condition [4], we will calcu-
late the velocity of a molecular gas slipping over a solid
spherical surface with a small radius of curvature
(0.01 < Kn = λ/R' < 0.4, where R' is the dimensional
radius of an aerosol particle).

For a molecular gas, the two-moment accommoda-
tion boundary condition is written as

where d1 and d2 are found from the conditions

f eq neq
m

2πkBTeq
-------------------- 

  3/2 J1J2J3( )1/2

2πkBTeq( )3/2
------------------------------=

× mv 2

2kBTeq
----------------–

Σi 1=
3 Jiωi

2

2kBTeq
----------------------– ,exp

neq f d3ωd3v , u∫ 1
neq
------ v f d3ωd3v ,∫= =

Teq
2

5kBneq
---------------- m v u–( )2

2
----------------------- Jω2

2
---------+ f d3ωd3v ,∫=

f 0 v ω,( ) ns
m

2πkBT s
------------------ 

  3/2 J1J2J3( )1/2

2πkBT s( )3/2
----------------------------=

× mv 2

2kBT s
--------------–

Σi 1=
3 Jiωi

2

2kBTeq
----------------------– .exp

Y r C ν, ,( ) s 2d1Cθ 2d2CrCθ, Cr 0,>+=

1 q1–( ) f r C ν, ,( ) sCrCθ gd

Cr 0<
∫

=  f r C ν, ,( ) sCrCθ g,d

Cr 0>
∫–
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Here, dg = 2π–3/2νdνd3C or dg = π–3d3νd3C for a poly-
atomic and diatomic gas, respectively, and

For a monoatomic gas, the problem in such a state-
ment was solved in [5]. The case of the gas flow about
a direct circular cylinder was considered in [6]. At q1 =
q2 = ατ, the above boundary condition closely approxi-
mates the Maxwell specular–diffuse boundary condi-
tion. In [5], we showed that, for a rarefied gas slipping
over a flat solid surface, the discrepancies between the
ατ dependences (ατ is the accommodation coefficient of
the tangential momentum) of the thermal and isother-
mal slip coefficients that are obtained with the above
boundary condition and those given in [7] differ by 0.72
and 0.005%, respectively, throughout the ατ range.

It is noteworthy that the BGK model of the Boltz-
mann equation, though simple, adequately describes a
first-order slip (i.e., slip of a rarefied gas about a flat
solid surface). For a monoatomic gas slipping over a
flat solid surface, the thermal and isothermal slip coef-
ficients derived by means of rigorous analytical tech-
niques exactly coincide with those obtained with the

ellipsoidal statistical model,  = 1.149996 and

 = 1.14665627. It is important here that the ellip-
soidal statistical model in the hydrodynamic limit
yields the true value of the Prandtl number, Pr = 2/3.
For comparison, in [8], where gas molecules are con-
sidered as hard spheres, these coefficients calculated
from the linearized Boltzmann model were found to be

 = 1.00217 and  = 1.11132. Temperature steps
CT equal 2.2037 in the BGK model and 2.12703 in the
model used in [8]. The discrepancy between the values

of  stems from different approaches to establishing
a relationship between the molecule mean free path in
a gas and its kinematic viscosity—the parameters used
in reducing the physical quantities appearing in this

work and [8] to dimensionless form. In calculating 
and CT such a relationship is unneeded, and so the asso-
ciated discrepancies are smaller: within 3.17 and
1.69%.

1. PROBLEM DEFINITION 
AND BASIC EQUATIONS

Consider an aerosol particle suspended in a rarefied
molecular gas flow. Let the center of curvature of the
particle be coincident with the origin of the spherical

1 q2–( ) f r C ν, ,( ) sCr
2Cθ gd

Cr 0,
∫

=  f r C ν, ,( ) sCr
2Cθ g.d

Cr 0>
∫

f r C ν, ,( ) s f 0 C ν,( ) 1 Y r C ν, ,( ) s+[ ] .=

KTS
0( )

Cm
0( )

KTS
0( ) Cm

0( )

KTS
0( )

Cm
0( )
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coordinate system with the polar axis aligned with tem-
perature gradient ∇ T away from the surface. Since the
temperature in the gas volume is distributed nonuni-
formly, derivatives ∂T/∂r and ∂T/∂θ at the surface of the
particle will be other than zero. The first derivative
causes a temperature jump at the surface of the particle;
the other, a thermal slip of the gas over its surface. Let
us assume that the gradient component normal to the
surface slowly varies over the surface. In this case,
quantity ∂2T/∂r∂θ is also nonzero and contributes to gas
slip (the so-called second-order thermal slip).

Let us also assume that the shear component of the
mass velocity of the flow slowly varies along the nor-
mal to the surface. The nonuniformity of the mass
velocity distribution in the Knudsen layer causes the
gas to flow about the surface (isothermal slip). One
more reason for gas slip about the surface (Barnett slip)
is the presence of volume thermal stresses. Thus, in the
problem thus stated, derivatives k1 = ∂Uθ/∂r|∞, k2 =
∂lnT/∂θ|∞, k3 = ∂2T/∂r∂θ|∞, and k4 = Trθ/2T |∞ are other
than zero.

Following [9], we seek Y(r, C, ν) in the form of
expansion in parameter k,

(9)

In view of (9), the hydrodynamic parameters of the
gas, specifically, mass velocity component Uθ that is
normal to the surface, are also expanded in parameter k,

(10)

Substituting (9) into (7) and equating coefficients
multiplying powers of k, we arrive at equations for Y1(r,
C, ν) and Y2(r, C, ν),

(11)

(12)

Solutions to Eqs. (11) and (12) are sought in the
form

(13)

Y r C ν, ,( ) Y1 r C ν, ,( ) kY2 r C ν, ,( ) ….+ +=

Uθ Uθ
1( ) kUθ

2( ) ….+ +=

Cr

∂Y1

∂r
--------- Y1 r C ν, ,( )+

=  k C ν; C' ν',,( )Y1 r C' ν', ,( ) Ω,d∫
Cr

∂Y2

∂r
--------- Y2 r C ν, ,( )+  = k C ν; C' ν',,( )Y2 r C' ν, ,( ) Ωd∫

– Cθ
2 Cϕ

2+( )
∂Y1

∂Cr

--------- Cϕ
2 θcot CrCθ–( )

∂Y1

∂Cθ
---------+

– CϕCθ θcot CrCϕ+( )
∂Y1

∂Cϕ
--------- Cθ

∂Y1

∂θ
---------.–

Y1 r C ν, ,( ) Cθϕ1 x Cr,( )=

+ Cθ Cθ
2 Cϕ

2 ν2 l– 1–+ +( )ϕ2 x Cr,( )

+ ϕ3 x Cr,( ) γ C2 ν2 l– 1/2–+( )ϕ4 x Cr,( )+[ ] k2,
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(14)

Here, x = r – R and ϕ3(x, Cr) and ϕ4(x, Cr) are the func-
tions that were constructed for the temperature jump
problem in [10]. Quantities γ2 = 1/(l + 1/2), bk = (Cθ,
Cϕ), and Cθ constitute a complete set of orthogonal
polynomials with weight exp(–C2) in the velocity
space. As such polynomials, one can take Hermitean
polynomials widely used in the kinetic theory of gases [3].

Substituting (13) and (14) into (11) and (12) and
integrating the right-hand sides of the resulting equa-
tions over , , and ν' yields a set of equations for
ϕi(x, µ) and ψi(x, µ) (i = 1, 2; µ = Cr),

(15)

(16)

With regard to the way of linearization of distribu-
tion function (5) and the form of expansions (13) and
(14), the boundary conditions for functions ϕi(x, µ) and
ψi(x, µ) (i = 1, 2) can be written as

(17)

(18)

(19)

Since desired components  (i = 1, 2) in expan-
sion (10) of the mass velocity of the gas on the particle

Y2 r C ν, ,( ) Cθψ1 x Cr,( ) Cθ ν2 l– 1+( )ψ2 x Cr,( )+=

+ bk Cθ Cϕ,( )ϕk x Cr ν, ,( ).
k 3=

∞

∑

Cθ' Cϕ'

µ
∂ϕ1

∂x
--------- ϕ1 x µ,( )+

1

µ
------- τ2–( )ϕ1 x τ,( )exp τ ,d

∞–

∞

∫=

µ
∂ϕ2

∂x
--------- ϕ2 x µ,( )+ 0;=

µ
∂ψ1

∂x
--------- ψ1 x µ,( )+

1

µ
------- τ2–( )ψ1 x τ,( )exp τd

∞–

∞

∫=

+ µϕ1 x µ,( ) 2
∂ϕ1

∂µ
---------– 2µϕ2 x µ,( ) 4

∂ϕ2

∂µ
---------–+

– ϕ3 x µ,( ) γ µ2 1/2+( )ϕ4 x µ,( )+[ ] k3,

µ
∂ψ2

∂x
--------- ψ2 x µ,( )+ 4µϕ2 x µ,( ) 2

∂ϕ2

∂µ
---------.–=

ϕ1 ∞ µ,( ) 2Uθ
1( )

s 2µk1–=

– µ2 1
2
---– 

  k2 2µ µ2 1
2
---– 

  k4;–

ϕ1 0 µ,( ) 2d1
1( ) 2µd2

1( ), µ 0,>+=

ϕ2 ∞ µ,( ) k2, ϕ2 0 µ,( )– 0, µ 0;>= =

ψ1 ∞ µ,( ) 2Uθ
2( )

s, ψ1 0 µ,( ) 2d1
2( ) 2µd2

2( ),+= =

µ 0,>

ψ2 ∞ µ,( ) 0; ψ2 0 µ,( ) 0, µ 0.>= =

Uθ
i( )

s

surface in parameter k enter into only boundary condi-
tions (17) and (19), we will solve only Eqs. (15) and
(16) with boundary conditions (17)–(19).

Thus, calculation of the molecular gas slip velocity
by using the two-moment accommodation condition
has been reduced to the solution of Eqs. (15) and (16)
with boundary conditions (17)–(19).

2. BASIC RESULTS
The set of Eqs. (15) and (16) with boundary condi-

tions (17)–(19) is solved with the Case method of ele-
mentary solutions [11]. With regard to expansion (10)
and results obtained in [12–14], the desired velocity of
a rarefied gas slipping over a spherical surface is writ-
ten (in view of the accommodation coefficients for the
first two moments of the distribution function) in the
form

(20)

Here, Q1 = –1.01619, Q2 = –1.2663, Q3 = –1.8207 are
Loyalka integrals [15]. For diatomic gases, εT = 1.2168
and εn = –0.6716. For polyatomic gases, εT = 1.1914
and εn = –0.6525. Thus, for diatomic gases, ζ3 =
0.5740γ and for polyatomic gases, ζ3 = 0.5873γ.

Passing in (20) to dimensional quantities and writ-
ing these expressions in the form adopted in the kinetic
theory of rarefied gas, we obtain

Uθ s kUθ
1( )

s k2Uθ
2( )

s …,+ +=

Uθ
1( )

s ζ isk1 ζTk2 ζBk4,+ +=

Uθ
2( )

s ζ1k1 ζ2k2 ζ3k3,+ +=

ζ is 2 q2–( )
q1

1– 1–( ) π πQ1/2+( ) 1 π/4–( )Q1–

1 π/4– 1 q2–( ) 1 π/4 4Q1+ +( )+
------------------------------------------------------------------------------------------,=

ζT

= 
2 q2–( ) 1 π/4–( ) Q2 1/2+( )/2 1 q2–( ) πQ1/2 π/4+( )–

1 π/4– 1 q2–( ) 1 π/4 4Q1+ +( )+
-------------------------------------------------------------------------------------------------------------------------,–

ζB 2 q2–( )=

×
2Q3 Q1–( ) 1 π/4–( ) π q1

1– 1–( ) 2 πQ1+( )–

2 1 π/4–( ) 2 q2–( ) π 1 q2–( ) π 2Q1+( )+
-----------------------------------------------------------------------------------------------------------------,

ζ1 γ,–=

γ
2 q2–( ) 1 π/4–( )

2 q2–( ) 1 π/4–( ) 4 1 q2–( ) Q1 π/2+( )+
---------------------------------------------------------------------------------------------------------,=

ζ2 γ Q3 Q1Q2+[ ] ,=

ζ3 0.5γ Q2 1/2–( )εT Q1 2Q3– εn–+[ ] .=

Uθ' s Cm
0( ) Cm

0( )( )*Cm
1( )Kn–[ ]λ ∂Uθ'

∂r'
----------

∞

=
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(21)

where

Here, ( )* = 0.7645Pr–1 and ( )* = 0.7662Pr–1

are the associated coefficients for the case of complete
accommodation of the first two moments of the distri-
bution function (q1 = q2 = 1), βR = 0.6934Pr–1γ for
diatomic gases and βR = 1.7299Pr–1γ for polyatomic
gases.

Relationship (21) defines the velocity of a molecular
gas slipping over a sphere with a small radius of curva-
ture.

It is seen from (21) that taking into account the rota-
tional degrees of freedom of gas molecules renders the
slip coefficients functions of the Prandtl number. For a
monoatomic gas, such a dependence is absent. For most
gases under normal conditions, Pr is close to 2/3, i.e., to
the value for a monoatomic gas. For example, for N2
and O2, Pr = 0.76; for air, 0.7; and for Cl2, 0.64. There-
fore, the velocity of slip over a surface and the rate of
thermophoresis for molecular gases differ from those
calculated for monoatomic gases insignificantly. How-
ever, the above dependence should be borne in mind in
calculation of the rate of thermophoresis for particles
suspended in gases, since Pr for such particles much
differs from 2/3 (for example, for particles suspended
in the steam, Pr = 1.01 at 100°C).

+ KTS
0( ) KTS

0( )( )*β'Kn–[ ]ν g
∂ Tln
∂θ

------------
∞

+ KTS
0( )( )*βRνgKn

∂2 Tln
∂r'∂θ
-------------- KTS

0( )( )*βBνgKnTrθ

2T
-------

∞

,–

Cm
0( ) 0.7524Pr 1– ζ is, KTS

0( ) 2Pr 1– ζT,= =

Cm
1( ) 0.7403Pr 1– γ,=

β' 1.5723Pr 1– γ, βB 2.9454Pr 1– ζB.= =

Cm
0( ) KTS

0( )
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Fig. 1. Coefficients (1)  at q1 = 1, (2)  at q1 = 2,

and (3)  vs. q2 for Pr = 1.
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As for a monoatomic gas [4–6], the slip coefficients
strongly depend on the accommodation coefficient for
the second moment of the distribution function. In par-
ticular, when q2 varies between 0 and 1 at q1 = 1, coef-

ficients , , β', βB, and βR change by 53.67%;

and , by 35.25%. Also, coefficients  and βB

significantly depend on accommodation coefficient q1:

when q1 varies between 0 and 0.5 at q2 = 1,  and βB

change by 44.69% and 38.48%, respectively. The vari-
ation of the slip coefficients with the accommodation
coefficients for Pr = 1 is shown in Figs. 1–3.

CONCLUSIONS

In this work, we calculated the velocity of a molec-
ular gas slipping over a spherical aerosol particle with
a small radius of curvature, using the two-moment
boundary condition in the approximation linear in
Knudsen number. The slip coefficients are shown to

Cm
0( ) Cm

1( )

KTS
0( ) Cm
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Fig. 2. Coefficients (1)  and (2) β' vs. q2 for Pr = 1.Cm
1( )

Fig. 3. Coefficients (1) βR, (2) βB at q1 = 1, and (3) βB at
q1 = 0.5 vs. q2. Pr = 1.
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considerably depend on the Pr number and accommo-
dation coefficient of the second moment of the distribu-
tion function.
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Abstract—A two-component fan-shaped gas jet forming in the discharge gap of a chamber for fullerene pro-
duction is analyzed. Under standard fullerene production conditions, the averaged parameters of the jet can be
found with a reasonable accuracy using the well-known solution for an incompressible liquid jet. Based on the
analysis performed in this work, a simple model of gap–jet transition, and the fullerene formation kinetics con-
sidered earlier, the dependences of the fullerene yield on observable experimental parameters (current, helium
pressure, gap width, and electrode radii) are constructed. The calculated and experimental results are in good
agreement. The analytical data obtained in this work may be helpful in considering the fullerene production
kinetics in a real, finite-dimension chamber of a given geometry. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

It is known that wide application of fullerenes,
which are viewed as promising materials for a number
of advanced technologies, is retarded by their high cost.
While it has been reported that fullerenes can be pro-
duced in industrial amounts by burning-out of hydro-
carbons [1], a major part of this material is produced
around the world from fullerene soot, which is formed
by an arc discharge between graphite electrodes in a
buffer gas [2, 3]. The disadvantage of this technique
from the commercial standpoint is a high energy con-
sumption [1]; however, its potential is far from being
exhausted. Further refinement of this technique may lie
in improving gas dynamics in the discharge chamber.

Such an approach calls for a careful theoretical anal-
ysis of gas dynamics in the chamber and the fullerene
formation kinetics. The gasdynamic problem can be
solved, e.g., using a quasi-one-dimensional simulation
of plasma parameters in the gap (see, for instance, [4]).
An insight into the fullerene formation kinetics can be
gained by physicochemical simulation of assembling
fullerene molecules from multiring hydrocarbon clus-
ters [5] with subsequent extension of simulation results
for the general process of carbon evolution from atoms
to fullerenes upon cooling the vapor [6]. However, a
combined consideration of fullerene assembling kinet-
ics and gas dynamics in a specific discharge chamber
requires that several subproblems be first solved, at
which this paper is aimed. These subproblems are the
following.

(1) Simulation of the dynamics of a free two-com-
ponent (carbon and helium as a buffer gas) gas jet with
regard to its nonisothermality and fan-type (or radial–
slot [7, 8]) symmetry. The need for tackling this prob-
1063-7842/05/5011- $26.00 1423
lem is due to two reasons. First, the velocity field in the
jet specifies the gas flow in the outer (relative to the jet)
space. Second, in our early work [6], the evolution of
the atomic carbon vapor to fullerenes was considered as
the evolution of an impurity present in the free jet of an
incompressible liquid in small amounts. Such a signifi-
cant simplification was not substantiated: it was used
just because the theory of free turbulent jets of an
incompressible liquid is rather simple and well devel-
oped [7–9].

(2) Derivation (based on the dynamics simulation
results) of the dependences of the absolute and relative
fullerene yield on initial velocity V0 of the jet at the exit
from the electrode gap, jet initial temperature T0, and

initial concentration  of the carbon vapor (as was
done in [6]).

(3) Finding the fullerene yield as a function of arc
parameters (current, pressure, and gap configuration).
To solve this problem, it is necessary to devise an ade-
quate technique for converting the results of arc quasi-
one-dimensional simulation to parameters V0, T0, and

 [4], which are not determined from the above sim-
plified model.

Let us outline the basic features of fullerene produc-
tion from an arc. The discharge is initiated in helium
(hereafter gas) at a pressure of 100–300 Torr, a pressure
of 100 Torr being regarded as optimal [3]. Carbon evap-
orating from the anode surface generates a plasma. In
our laboratory conditions, the diameter of graphite
electrodes was equal to 2r0 ≈ 6 mm; the optimal width
of the electrode gap was the same, 2b0 ≈ 6 mm. In the
developmental setup [10], we used electrodes of larger
diameter, 2r0 = 10–12 mm, and an electrode gap of

nC
0( )

nC
0( )
© 2005 Pleiades Publishing, Inc.
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2b0 = 2–3 mm. The working pressure was raised to
300 Torr.

As follows from calculations [4], the discharge
plasma is near local thermodynamic equilibrium and its
temperature at the center of the gap is T0 = 0.8–1.0 eV.
Under such conditions, carbon exists in the form of
atoms and ions. The carbon vapor cools down away
from the arc, and so one can speak (to a certain degree
of convention) of condensation, which results in the
formation of fullerenes [6] and other components of the
fullerene soot. Fullerenes appear at distance x = 2.0–
3.5 cm from the arc axis [11]. Hereafter, x refers to the
radial coordinate in the cylindrical coordinate system
related to the discharge axis; r, to the same coordinate
in the spherical system (Fig. 1); and the discharge axis
runs from the anode to the cathode in the transverse (z)
direction.

The simulation made in [4] helps in visualizing the
variation of carbon temperature and concentration
across the gap at any given current, pressure, and gap
width. Then, one may evaluate the radial gas-plasma
flow, where the carbon vapor condenses. Observation,
theoretical estimates of the flow initial velocity [6], and
experiments with carbon deposition on probes [11]
show that the flow is a turbulent gas jet. However, under
optimal conditions for fullerene production, the Rey-
nolds number is no higher than 20–50. It is therefore of
interest to analyze both viscous and turbulent jets under
various conditions.

We assume that the jet forms near the source as a
result of carbon diffusion toward the periphery and con-
vective flow of the buffer gas. Visually, the jet makes
angle θ0 < π/2 with the z axis (Fig. 1). The jet is at least
two-component (the carbon and gas), the initial con-
centrations of both components coinciding in order of
magnitude. The components play different roles in jet
formation. For the carbon, the arc area acts as a source
and any other surfaces as absorbers. As for the gas, its
flow in the absence of pumping is confined within the
discharge chamber. Therefore, taking into account that
the discharge gap is narrow, one can assume without
loss in generality that the radial gas velocity at the exit
from the gap is much lower than that of the carbon

Cathode

θ0

y

x

z r'

Anode

Fig. 1. Discharge gap, jet (dark area) propagating along the
r axis, and coordinate axes.
vapor within the domain x ~ r0. If it is also assumed that
total pressure P is constant, the difference between the
component velocities in the two-component system
(thermal diffusion is ignored) is given by [9]

(1)

(subscripts C and g refer to carbon and gas, respec-
tively). This difference specifies carbon initial velocity

, which is virtually coincident with initial mass
velocity V0 of the jet (subscript or superscript 0 refers to
the parameter values at x = r0). In (1), nC is the carbon
concentration, which is defined as the number of car-
bon particles in a unit volume and D is the coefficient
of interdiffusion. Calculation by (1) supports the fact

that  ≈ V0 = 20–50 m/s under optimal fullerene pro-
duction conditions. This range is consistent with esti-
mates [12] made from radically differing standpoints.

VARIATION OF GAS PARAMETERS 
IN TURBULENT AND VISCOUS GAS JETS

(i) The procedure of calculating the parameters of a
turbulent two-component gas jet with its initial velocity
given that was described elsewhere [7, 8] can also be
applied to a fan-shaped jet. Over the main part of the jet
(Fig. 2), the radial mass velocity at the jet axis, umax; rel-
ative weight concentration ξ = nCmC/ρ of the carbon at
the axis, ξmax; axial temperature Tmax; and half-width
δ(x) of the jet can be calculated by the method of inte-
gral relations, i.e., using the laws of conservation of
fluxes of momentum, excessive enthalpy i – i∞, and car-
bon:

(2)

(3)

(4)

(ρ is the gas mixture density), as well as from the inte-
gral relation for energy [7]

(4')

These relations should be complemented by the
assumption that the curves of velocity fu = u/umax, con-
centration fξ = ξ/ξmax, and excessive enthalpy, as well as
correlation function 〈u'V'〉  of turbulent pulsations of
radial velocity u and transverse velocity V, have a trans-

VC Vg–
DP

P nCT–
-------------------

∇ nC

nC
---------- ∇ T

T
--------+ 

 =

VC
0( )

VC
0( )

2π zρxu2d

0

δ x( )

∫ 2πr0b0ρ0u0
2,=

2π zρxu i i∞–( )d

0

δ x( )

∫ 2πr0b0ρ0u0 i0 i∞–( ),=

2π zρxuξd

0

δ x( )

∫ 2πr0b0ρ0u0ξ0=

2π d
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------ zρxu3d

0

δ x( )

∫ 2πx zρ u'V'〈 〉 ∂u
∂y
------.d

0

δ x( )

∫=
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verse form. (Hereafter, the subscripts max and ∞ denote
the parameter values at the jet axis and outside the jet,
respectively.) Temperature T∞ outside the jet was taken
to be the same throughout the chamber. Such an
assumption is valid, since the jet originates not only in
the electrode gap but also from a nearby narrow region
on the lateral surface of the anode that is heated to
2000–3000 K. Beyond this region, the anode tempera-
ture sharply drops to 1200–1500 K, as follows from the
calculation [4], and so the relative variation of this
parameter outside the jet is much smaller than along its
axis.

If we replace integral relation (4') by the simpler
relationship

(5)

with empiric constant q = 0.26 [9] and assume that the
profiles of the excessive enthalpy and concentration fξ
are identical, the problem is reduced to solving three
equations for three unknown functions of x, which are
jet half-width δ, dimensionless velocity Umax = umax/u0,
and dimensionless carbon concentration γmax = ξmax/ξ0,

(6)

In (6), gas-to-carbon atomic mass ratio µ = mg/mC =
1/3 and parameter τ = T0/T∞ characterizes an initial
heating of the jet. The velocity distribution over the jet’s
cross-sectional area is assumed to obey the Ginevskiœ
profile fu(Λ) = 1 – 8Λ2 + 6Λ3 – 3Λ4 [8]. As concentration
and excessive enthalpy profiles, we used the experi-
mentally found relationship fξ(Λ) = fu(ΛPr) (Pr = 0.6)
[8], which assumes that the temperature boundary of
the jet is an outer boundary relative to the velocity
boundary. In going from the enthalpy profile to the tem-
perature profile in (3) and in the third equation in (6), it
is assumed that both carbon and helium remain mono-
atomic.

System (6) was solved by iterations at each x. In the
particular case of a heated jet of the heavy carbon vapor
striking a light buffer gas, the solution simplifies

qdδ/dx 2/ 1 ρ∞/ρmax+( )=

xδ x( )Umax
2 Λ f u

2 Λ( )
1 f ξ 1 µ–( )–
1 f ξ 1 µτ–( )–
--------------------------------- 1

1 ξ0 f ξγmax 1 µ–( )–
----------------------------------------------d

0

1

∫

=  
r0b0

τ
--------- 1

1 ξ0 1 µ–( )–
-------------------------------,

xδ x( )Umaxγmax Λ f u f ξd

0

1

∫

×
1 f ξ 1 µ–( )–
1 f ξ 1 µτ–( )–
--------------------------------- 1

1 ξ0 f ξγmax 1 µ–( )–
----------------------------------------------

=  
r0b0

τ
--------- 1

1 ξ0 1 µ–( )–
-------------------------------,

q
dδ
dx
------ 2

1 τ 1 ξ0γmax 1 µ–( )–( )+
----------------------------------------------------------.=
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greatly, because the density of the binary gas mixture
varies insignificantly along the jet axis. Figure 3 shows
the variation of the relative density of the mixture, ρ/ρ∞,

calculated for τ = 6 and P/ T0 = 3/2 (these values are
typical of fullerene production conditions). In this case,
ρ0/ρ∞ is ~1.2 (i.e., fairly close to unity); therefore, as an
initial iteration, one can use the well-known solution
for the main portion of a fan-shaped jet of an incom-
pressible liquid [8],

(7)

nC
0( )

umax

u0
---------

1

A2

----------
b0

12κr0
--------------

1

x
2
/r0

2( ) 1–
-----------------------------,=

z

r0

xopt

x1 ~ (3–4)b0

1 2

3
4

5

Fig. 2. Structure of a radial–slot jet propagating normally to
the discharge axis: (1) discharge axis, (2) potential core of
the jet, (3) main portion of the jet, (4) fullerene production
region, and (5) axial plane of the jet.
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(8)

(9)

where

and κ ≈ 0.01 is a phenomenological parameter of the
theory of turbulence [8] (it is related with parameter a
used in [7] as κ ≈ a/10).

As follows from calculations, the relative discrep-
ancy between the velocity curve and initial iteration is
within 15% even early in the main portion of the jet and
decreases further with distance from the source. Such a
result was expected, since the calculations made in [9]
for a jet heated to τ = 6 (though in the planar configura-
tion) showed that the velocity decreases relative to τ =
1 by no more than twofold even if the jet gas and buffer
gas are the same (the compensating effect of a heavier
component is absent in this case). Below, it will be
shown that, under conditions appropriate for fullerene
production, the carbon initial concentration and the ini-
tial temperature of the gas mixture are so high that the
density of the mixture can be put constant along the jet.

Formulas (6) are valid for a fan-type source, i.e.,
imply the presence of a symmetry plane. The condi-
tions under which the jet makes an angle with the cross
section of the chamber are typical of the fullerene-pro-
ducing arc geometry. This case can be reduced to equa-
tions for a symmetric jet by making the substitutions
x  r, z  y, u  Vr, and V  Vθ + uy/r [13] (the
coordinate system is shown in Fig. 1, angle θ is mea-
sured from the positive direction of the z axis).

The solution given by (7)–(9) refers to the main por-
tion of the jet. The technique of measuring the variation
of the thickness of the layer where the carbon vapor and
gas mix up at the initial portion (Fig. 2) and also of the
length of this layer (over which the longitudinal veloc-
ity remains nearly constant) is described elsewhere [8].
Radius x1 of the initial portion, which is found from the
relationship

(10)

equals (3–4)b0. Calculations show that taking into
account the initial portion of the jet influences the final
result insignificantly.

(ii) At low carbon concentrations and initial veloci-
ties of the get, the Reynolds number is no greater than

nmax
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12κr0
--------------

1

x2/r0
2( ) 1–

-----------------------------,

δ 12κr0
x
r0
----

r0

x
----– 

  ,=

Ap Λ f u
p Λ( ), Auξd

0

1
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1

∫= =

κ
x1/b0( )2 r0/b0( )2–

2x0/b0
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A2 A3–
2A2A4
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10. Therefore, it is of interest to analyze a viscous gas
jet. Carbon in this case can be considered as a small
impurity. Relevant calculations were performed in [14]
for the plane-parallel geometry using the Dorodnitsyn
transformation [9]. Similar consideration can be
applied to a fan-shaped jet. In the boundary layer
approximation [13, 15], the complete set of equations
for a viscous fan-shaped jet includes the continuity
equation, Navier–Stokes equation, energy balance
equation, and equation of state of gas,

(11)

(12)

(13)

(14)

where the term (∂Vi/∂xk) allows for viscous energy
losses and ρ, η, and χ are, respectively, the density, vis-
cosity, and thermal conductivity of the gas.

If the temperature gradient is high and the gas veloc-
ity is low, viscous losses in energy balance equation
(14) can be ignored. Then, it follows from (12) and (13)
that

In the elementary theory of gases, χ/η = 3/2; in the
rigorous kinetic theory of gases, χ/η ≥ 15/4 [16]. For
inert gases, χ/η = 15/4 is accurate to within 5%, so that
T(r) ~ V(0.7r). If χ/η = 5/2, the radial velocity (u) and
temperature (T) profiles are in full accordance,

(15)

this result being valid for both the initial and main por-
tions of the jet.

If (15) holds, set (11)–(14) has a solution in two
cases: η = η0 = const and η ~ T. Since the viscosity actu-
ally behaves as η ~ T0.6 [17], it would be of interest to
obtain both solutions and compare the final results.

For η = const, a solution to the continuity equation
at T @ Tδ is trivial, V/u = –z/x, and the Navier–Stokes
equation

x(∂u/∂x) – z(∂u/∂z) = ζx(∂2u/∂z2)

(where ζ = T0η/mPu0) transforms into the equation of
diffusion along an infinite axis after passing to variables
Ω = xz and ξ = x3/3. For 2b0 ! r0 and x @ b0, its solution

∂
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has the form

(16)

Hence, it follows that, when the conditions x @ r0
and T @ Tmax are met simultaneously, the jet width δ ~

 and umax ~ 1/x3/2.
At η ~ T, system (11)–(14) is reduced to the equa-

tions for an incompressible viscous liquid by means of
the Dorodnitsyn transformation V   = (ρ/ρ0)V +

u(∂Y/∂x) and z  Y = (ρ/ρ0); so, the well-known

solution will suffice provided that a relation between u
and T is specified.

For a fan-type source in an incompressible liquid
[13], the asymptotics for u has the form

(17)

where ν = η0/ρ0 and constant ω is found from the con-
dition of conservation of momentum in the jet.

For the gas, Eq. (17) with regard to (15) transforms
into an integral equation for u that is easy to solve,

(18)

where ε = T∞/(T0 – T∞).
Since ε ~ 0.1 ! 1, the last term in (18) can be disre-

garded; then, the solution has the form (at |z| < ω/u0)

(19)

(i.e., umax ~ 1/x), which somewhat differs from the law
umax ~ 1/x3/2 described in (16). From (19), it follows that
parameter ω/u0 has the meaning of effective jet width δ
at T @ T∞: it equals several centimeters and depends on
x insignificantly. Constant ω calculated by (18) is ω =

(3 η0r0d/ρ0)1/3.

From the definition of mass velocity 〈V〉 , formula
(1), and the continuity equation, it is easy to find for
carbon concentration nC that

(20)

where 〈V〉x = u and 〈V〉 z = V.
If nC is small and varies in the longitudinal direction

much more slowly than in the transverse one (as well as
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velocity u in the boundary layer approximation), (20)
reduces to

(21)

At a constant pressure, the dependence D(T) is
described well by the Fuller–Schletter relation D(T) ~
T1.7 [16]. Therefore, we considered two simple cases:
D(T) ~ T and D(T) ~ T2. If D(T) ~ T, (21) transforms to
the form

which coincides with the equation for velocity u if λ =
D0/u0 is substituted for ζ. Hence,

(22)

If the density of the carbon vapor is low, its velocity
is given by VC = V – D∇ ln(unC), so that, at D ~ T,
(VC)z = uz/2x and (VC)x ≈ u.

Based on these relationships, one can easily show
that the region of the most efficient fullerene production
is to the side of the jet axis. In [6], it was demonstrated
that assembling of a fullerene molecule, which can be
represented as the transformation of its precursor, a
two- or three-ring carbon cluster in a buffer gas, into
fullerene, takes place in a narrow interval near optimal
temperature Topt ≈ 0.25 eV. If ν = const and η = ρν ~ T,
this region, as follows from (15) and (19), is the surface
of revolution of a parabola,

(23)

However, transformation of the precursor into
fullerene is possible only if the carbon has already
evolved from the atomic state to multiring clusters
[5, 6]. The stages of evolution are assembling of carbon
atoms into chains, twisting of the chains to form ring
clusters, and coalescence of the clusters. These trans-
formations, viewed as chemical reactions, have a low
energy of activation (within 1 eV [5, 6]) and proceed at
an elevated temperature. Therefore, we may assume for
simplicity that total time t' taken to complete all the
stages depends on temperature insignificantly, unlike
the stage of fullerene assembling from multiring clus-
ters, which has a high energy of activation and critically
depends on temperature [6]. Therefore, the “readiness”
to assemble, i.e., the presence of multiring clusters in an
amount sufficient for fullerene formation, can be
roughly estimated from the condition t' = t, where t is
the time for which the impurity moves along the
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streamline that passes through a given point with coor-
dinates (x, z). If η ~ T, these coordinates are related to
initial coordinates (xS, zS) as z = zS(x/xS)1/2 and the time
of motion along the streamline is given by

(24)

The surface of revolution given by (24) at t = t' can
be named the “surface of readiness.” While quantity t'
is somewhat conventional, it is clear that the surface of
readiness must cross the axis z = 0 before an optimal
temperature is reached; that is, an optimal coordinate of
transformation into fullerene, xopt, is larger than quan-
tity (T0/u0)(ω2/2νTopt) in (23). Numerical analysis per-
formed with typical values of the parameters shows that
the surface of readiness (curve 1 in Fig. 4) crosses curve
(23) (curve 2 in Fig. 4) at z = zopt < ω/u0 and runs above
curve (23) at |z| > zopt. Thus, at |z| > zopt, the clusters can-
not yet produce fullerenes. At the same time, the carbon
flow velocity near zopt is much lower than near the jet
axis and so fullerenes at point zopt are bound to form
with a maximal rate.

The same result, though after more awkward math-
ematics, was obtained in the turbulent case under the
assumption that the jet density is constant.

FULLERENE YIELD VERSUS DISCHARGE 
PARAMETERS

Because of a small variation in the jet density, the
fullerene yields as a function of the jet initial parame-

ters (carbon concentration , temperature T0, and

velocity  is virtually the same as in [6]: the amount

of fullerenes drastically drops with increasing  and
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Fig. 4. (1) Curve of readiness and (2) curve of efficient
fullerene production.
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Fig. 5. (a) Relative content of the fullerene in the soot
(fullerene yield), α, vs. the current density in the arc. The
electrode radius is r0 = 0.5 cm, 2b0 = 0.32 cm, and P =
100 Torr (the dashed line fits experimental data).
(b) Fullerene yield vs. electrode radius r0. The electrode
gap width 2b0 is (1) 0.20, (2) 0.32, and (3) 0.45 cm.
(c) Fullerene yield vs. electrode gap half-width b0 at the
optimal current. r0 = (1) 0.30, (2) 0.45, and (3) 0.60 cm (the
dashed line fits experimental data).
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decreasing , the effect of the latter parameter being
stronger).

The procedure for finding these initial parameters at
a given current and gas pressure is the following. Using
the earlier developed algorithm [4], we determined the
variation of the carbon concentration and temperature
across the electrode gap (i.e., along coordinate z,
Fig. 1). The gap-averaged values were taken to be the
initial concentration of carbon and initial temperature
at x = 0. To calculate the average concentration of the
carbon, the curves for carbon atoms and ions were
added up at each point.

The radial run of the temperature and concentration
up to the beginning of the main portion of the jet, x =
x1, was assumed to obey a power-type law, and the
exponent was found by joining with (8) at point x1. In
this way, the initial velocity of the jet at x = r0 was deter-
mined. It was assumed that the width of the jet varies
linearly in the interval r0 < x < x1, and the velocity vari-
ation was found from the conditions that the carbon flux
2πxδ(x)VCnC remains constant.

The calculated dependences of the fullerene yield
on the current, pressure, gap width, and electrode radii
are shown in Fig. 5.

For the reasons noted in [6], the absolute fullerene
yield cannot be calculated exactly. This is because the
barrier due to the Gibbs energy, which must be over-
come when a fullerene molecule is generated, cannot
be calculated with a reasonable accuracy by the meth-
ods of quantum chemistry. Therefore, α in Fig. 5 is the
ratio of the actual yield to the absolute maximum
obtained by calculation.

The dependence of α on the current density (Fig. 5a)
peaks at a current density of about 300 A/cm2, the posi-
tion of this peak being dependent on the other parame-
ters only slightly. As the electrode radius increases, α
grows insignificantly, all other parameters being the
same (Fig. 5b). Such a dependences reflects the compe-
tition of the following tendencies, which are embodied
in the model suggested: (i) as r0 increases, the initial
velocity of the carbon jet remains almost unchanged but
the spatial scale of conservation of this velocity in the
potential core expands, thereby diminishing α; (ii) as r0
increases, the carbon vapor concentration in the poten-
tial core decreases more rapidly, which also causes a
decrease in α; and (iii) the discharge heats up, since the
radiation goes outside only from the circumferential
regions of the arc, which occupy a progressively
smaller area. This leads to an increase in both the car-
bon concentration and the initial velocity of the jet, the
former factor having a stronger effect on an increase
in α [11].

The α versus gap width dependence (Fig. 5c) is non-
monotonic. At a narrow gap, α decreases. This is
because the carbon temperature and concentration drop
as a result of shrinkage of the local thermodynamic
equilibrium area. Other factors (a decrease in radiation

nC
0( )
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losses, an increase in factor DP/(P – nCT) in (1) and,

hence, velocity ) play a minor role.

The curves shown in Fig. 5 are consistent with our
experimental data obtained in [3] (dashed lines). The
fullerene yield versus r0 (Fig. 5b) was not verified
experimentally. However, the associated curves are in
qualitative agreement with the results obtained in [18].

CONCLUSIONS
The basic results of this work are as follows.
(1) The presence of the hot discharge area with a

high carbon density and a low gas density generates a
two-component gas jet.

(2) Evaluation of the gas jet parameters is straight-
forward, since the initial portion of the jet is formed by
the heavier component (carbon) under the conditions of
interest for fullerene production. Accordingly, the den-
sity of the binary gas mixture varies along the jet axis
insignificantly. This allows one to use the well-known
solution for a jet of an incompressible liquid (at least,
as a first approximation).

(3) The rate of fullerene production is the highest at
the periphery of the jet rather than on its axial plane.
This finding holds true for both the turbulent and vis-
cous jet.

(4) Combined use of the 1D model of the discharge
gap, fan-shaped gas jet analysis, simple model of gap–
jet transition, and simple fullerene production kinetics
has made it possible to construct the dependences of the
fullerene yield on the width and radius of the electrode
gap, which are in good agreement with experimental
data.

The analysis performed in this work may serve as a
basis for considering the fullerene production kinetics
in a real finite-dimension reactor of a given geometry.
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On One Method of Simultaneously Measuring 
the Mass Flow Rate and Density of a Liquid
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Abstract—The problem of an ideal incompressible liquid flowing in an axisymmetric pipe with a cross section
varying in space and time is solved. The case when the area of variation of the cross section is represented by
two identical series-connected cylinders is considered. It is shown that, if the cross sections of the cylinders vary
with a constant frequency so that one decreases and the other increases, pressure difference oscillations arising
at the ends of the cylinders bear information on both the liquid density and the flow rate in the pipe. The feasi-
bility of designing an instrument based on these results and the choice of its performance parameters are dis-
cussed. It is noted, in particular, that the length of either cylinder must be no less than the pipe mean diameter.
© 2005 Pleiades Publishing, Inc.
Among the variety of liquid and gas flowmeters,
mass flowmeters are usually of primary interest for the
user. These devices measure the oscillations of a flow
whirled in a special manner [1], gyroscopic moments
acting on the moving parts of pipelines or moments of
inertia (Coriolis forces) of turbines (or radial bar rotors)
rotating in a flow to be measured [2], or distortion of the
temperature field in the pipeline heated from the out-
side and washed by the medium to be measured from
the inside [2].

In this paper, we offer a new method to measure the
density and mass flow rate of a liquid. The processes
occurring in this flowmeter allow us to categorize it as
an inertial mass flowmeter that stands out from other
representatives of this class because of its unique prop-
erties. Let us perform tentative theoretical calculations
based on which we shall proceed further.

Consider an incompressible ideal liquid (Fig. 1)
flowing in an axisymmetric pipe the cross section of
which is a function of coordinate and time. Cross-sec-
tional area S(x, t) of the pipe is assumed to be given.

Assuming the flow to be quasi-one-dimensional, we
can write the set of equations for such a flow in the
form [3]

(1)

Here, ρ is the liquid density, S(x, t) is the pipe’s cross-
sectional area, and V(x, t) is the velocity averaged over
the cross section. The average velocity is related to the

∂S
∂t
------ ∂ SV( )

∂x
---------------+ 0,=

∂V
∂t
------- V

∂V
∂x
-------+

1
ρ
---∂ρ

∂x
------.–=

† Deceased.
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mass flow rate as1

(2)

where p(x, t) is the pressure averaged over the cross sec-
tion.

If constant of integration C(t) is time-independent
and equal to Q0/ρ, where Q0 is the mass flow rate in the
unperturbed part of the pipe, the first equation of sys-
tem (1) yields

(3)

Substituting Eq. (3) into the second equation of (1)
and carrying out appropriate calculations, we obtain

(4)

Of interest is a solution to this equation for the case
when the cross section varies over a part of the pipe by
the law

(5)

1 In this formula, the mass flow rate may have both signs according
to the sign of velocity V(x, t) relative to the x axis.

Q x t,( ) ρV x t,( )S x t,( ),=

V
1
S
--- C t( ) ∂S

∂t
------ xd∫– 

  1
S
---

Q0

ρ
------

∂S
∂t
------ xd∫– 

  .= =

1
ρ
---∂p

∂t
------ 1

S3
-----∂S

∂x
------

Q0

ρ
------

∂S
∂t
------ xd∫– 

 
2

=

+
2

S2
-----∂S

∂t
------

Q0

ρ
------

∂S
∂t
------ xd∫– 

  1
S
--- ∂2S

∂t2
-------- x.d∫+

S

S0 G t x,( )+ S0 a0
xπ
L

------ 
  ωt( )sinsin+=

=  S0 1 δ xπ
L

------ 
  ωt( )sinsin+ 

  at L– x L,≤ ≤

S0, at L– x L x.>,>









=
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Here, δ = a0/S0. We shall seek an expression for the
pressure difference between points x = –L, x = 0, and
x = +L; i.e., ∆pleft(t) = p(0, t) – p(–L, t) and ∆pright(t) =
p(L, t) – p(0, t). By way of illustration, Fig. 2 shows two
phases in variation of the cross section: phase 1 corre-
sponds to time intervals when sin(ωt) > 0; phase 2, to
those when sin(ωt) < 0 (the positive direction of the x
axis coincides with the flow direction). We linearize
Eq. (4), assuming that δ is small and the inequality

Q0π
ρS0ωL
---------------- 1>

dx

V(x) x

S(x) S(x + dx)

Fig. 1. 

Phase 1

Phase 2

1

2

3

1

2

3

Fig. 2. (1) Flow to be measured, (2) left pressure meter, and
(3) right pressure.
is satisfied.2 Eventually, we arrive at the following
equation:

Integrating over x yields an expression for the pres-
sure of a nonviscous liquid flowing within the portion
x ⊂  [–L, L] of a moving-wall pipe and obeying law (5)
in the quasi-one-dimensional approximation (the
motion of the walls is small, δ ! 1),

(6)

where P0 is a constant of integration, which may be
equal, for example, to the hydrostatic pressure.

The pressures at the points of interest are

Now we construct the desired pressure differences,

(7)

According to formulas (7), if the cross sections of
two series-connected identical portions of a pipe with a

2 It will be shown that this stringent condition reduces the practical
value of the results obtained.

∂ρ
∂x
------

δω2Lρ
π

----------------- ωt( ) xπ
L

------ 
 cos 1+ 

 sin=

+ Q0
2δω
S0

---------- ωt( ) xπ
L

------ 
  Q0

2

ρ
------ δπ

S0
2L

--------- ωt( ) xπ
L

------ 
  .cossin+sincos

p x t,( ) δω2L2ρ
π2

------------------- ωt( ) xπ
L

------ 
 sinsin=

+
δω2Lρ

π
----------------- ωt( ) x L+( )sin

– Q0
2δωL
S0π

-------------- ωt( ) xπ
L

------ 
 cos 1+ 

 cos

+
Q0

2

ρ
------ δ

S0
2

----- ωt( ) xπ
L

------ 
 sinsin P0,+

p L– t,( ) P0,=

p 0 t,( ) δω2L2ρ
π

------------------- ωt( )sin Q0
4δωL
S0π

-------------- ωt( )cos– P0,+=

p L t,( ) 2δω2L2ρ
π

---------------------- ωt( )sin P0.+=

∆ pleft t( ) p 0 t,( ) p L– t,( )–=

=  ρδω2L2

π
--------------- ωt( )sin 4Q0

δωL
πS0
----------- ωt( ),cos–

∆ pright t( ) p +L t,( ) p 0 t,( )–=

=  ρδω2L2

π
--------------- ωt( )sin 4Q0

δωL
πS0
----------- ωt( ),cos+

∆p t( ) p +L t,( ) p L– t,( )–=

=  2ρδω2L2

π
--------------- ωt( ).sin
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flowing liquid vary harmonically in antiphase so that
the oscillation amplitude is much smaller than the
diameter of the unpertubed part of the pipe, variable
pressure differences arise within those portions. Sepa-
rately measuring the amplitudes of the mutually
orthogonal components of the pressure differences, one
can independently find the density and mass flow rate
of the liquid. From Eq. (7), the amplitude of the in-
phase and orthogonal components are given, respec-
tively, by

(8)

(9)

In essence, to measure the density and/or mass flow
rate, one should apply identical periodical axisymmet-
ric antiphase impulses to two series-connected portions
of the pipe perpendicularly to the axis of the pipe
(Fig. 2; such an action on a flow changes its axial
momentum within the portions of interest) and then
analyze a variable pressure difference in any of these
portions. The pressure difference is due to axial inertial
forces arising in the moving liquid.

Below, we would like to answer the questions that
inevitably arise in an attempt to implement a measuring
device.

FORCE PULSER

As an impulse-generating unit (force pulser), we
offer a thin elastic cylindrical membrane clamped at its
center and at both ends in such a way that the inner sur-
face faces the flow to be measured and the outer surface
is in a closed cylindrical vessel divided into two strictly
identical isolated semicylinders at the place of the cen-
tral clamp.

It is assumed that each of the isolated semicylinders
is hermetically connected to a bellows through holes in
the outer wall. The free end of one of the bellows is rig-
idly connected to the free end of the other semicylinder,
and the inner spaces of the semicylinders are discon-
nected and filled with a special bubble-free liquid
(Fig. 3). The joint of the bellows with a baffle in
between will be called the head of the bellows couple.
The case considered in [4] shows that the pressure
dependence of the deflection of the cylindrical mem-
brane is linear. Hence, a sinusoidal pressure variation
above the membrane will cause sinusoidal perturbation
∆R of its radius R0. It can be shown that, if δr = ∆R/R0
is small, the relative increment of the pipe’s cross-sec-
tional area, δ = a0/S0, may be set equal to δ = 2δr; hence,
the variation of the cross-sectional area is also sinusoi-
dal. Thus, a sinusoidal displacement of the head of the
bellows couple will lead to a sinusoidal variation in the
cross section of the cylindrical membrane. In other

Aρ ρδω2L2

π
--------------- dyn

cm2
--------- ,= =

AQ 4Q0
δωL
πS0
----------- dyn

cm2
--------- .= =
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words, to make the cross section vary by law (5) is quite
realistic.

Such a balance scheme of flow perturbation by
law (5) is very convenient: the equilibrium position of
the head of the bellows couple does not depend on a
strong variation of the hydrostatic pressure provided
that an external force displacing the head is absent; oth-
erwise, the mass flow rate and the density of the liquid
would have to be measured separately.

How long should length L of the cylindrical mem-
brane be? For a flow about a body vibrating with an
amplitude much less than its characteristic dimension
[5], it is argued that the velocity of the liquid experi-
ences perturbations on the order of the vibrating body
velocity over a distance roughly equal to the dimension
of the body. Then, taking the length of the “breathing”
wall for the length of a vibrating body and setting it
equal to the diameter of the pipe, one can assume that
the flow velocity will vary roughly by the wall velocity
over any cross section of the “modulated” part of the
pipe. That is, all the liquid will have an alternating-sign
momentum over the length of the modulated part.
Accordingly, the length of the measuring device with a
balance force pulser must be no less than two diameters
of the pipe. A more accurate selection of the dimen-
sions of the force pulser can be made after a careful
consideration of the flow velocity distribution over the
time- and coordinate-dependent cross section.

1

2

3 4 5

6
4 6

8

5
7

Q

ρ

14

10

11 12 12 13

14

915

14

cos(ωt)

sin(ωt)

Fig. 3. (1) Driving oscillator with frequency ω, (2) synchro-
nous motor, (3) π/2 phase shifter, (4) integrator over the
interval 0 < t < 2π/ω, (5) value proportional to the mass flow
per second, (6) value proportional to the liquid density,
(7) left analyzer, (8) right analyzer, (9) bellows couple,
(10) flow being measured, (11) elastic cylindrical mem-
brane fixed at the center and at the ends, (12) pressure dif-
ference sensor, (13) body of meter, (14) ring chamber her-
metically closed from the inside by the elastic cylindrical
membrane of diameter equal to the pipeline diameter, and
(15) displacement direction of bellows couple head.
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SENSOR
We recommend pressure-difference sensors based

on a single-crystalline silicon membrane. Silicon pres-
sure sensors offer a high precision, sensitivity, and
overload endurance; wide dynamic range; extremely
small hysteresis; and operating reliability. In addition,
they are almost inertialess.

ANALYZER
Analysis of the signal from the pressure sensor

implies harmonic separation. In general, measuring the
amplitudes of two harmonics with frequency ω and
mutually orthogonal initial phases is a task of spectral
analysis. Such a problem can be solved, e.g., with a
device described in [6].

The amplitude of the variable pressure-difference
component that is in phase with the moving membrane
is proportional to the flow density, and that of the
orthogonal component to the mass flow rate in the pipe.
From the expressions for ∆pleft(t) and ∆pright(t) in (7), it
readily follows that measuring the difference between
the output signals from the left and right analyzers
improves the sensitivity of mass-flow measurement
twofold. Similarly, measuring the sum of the output
signals improves the sensitivity of density measure-
ment by the same factor. A wide variety of different cir-
cuit-design approaches and devices that may be applied
to solve this problem saves us any comment on this
issue.

Let us perform a tentative calculation. For pipe
radius R0 = 5 cm, driving frequency f = ω/2π = 60 Hz,
half-length of the variable section of the pipe L = 30 cm,
liquid density ρ = 1 g/cm3, and relative change in the
pipe diameter δr = 0.005, the partial pressure amplitude
proportional to the density of the liquid is Aρ ≈ 0.41 ×
106 dyn/cm2 ≈ 0.41 × 104 mm H2O/cm2 ≈ 0.41 atm (see
formula (8)). To calculate the partial pressure amplitude
proportional to the mass flow rate, we substitute the
value of the mass flow taken with regard to the limita-
tion mentioned above (see footnote 2) into Eq. (9). This
is a critical value starting from which the theory pre-
sented here adequately describes the processes taking
place in the measuring device suggested. In our case,
this value is Q0 = 2.84 × 105 g/s and the partial pressure
responsible for the mass flow rate is AQ ≈ 1.27Aρ.

As was mentioned above, our theory is invalid when
δ ~ 1. We suppose that, without this limitation, the
response of the device (pressure difference) will also
depend on both the density and the mass flow rate of the
liquid, possibly in another form. It seems that a rela-
tionship between the components involving the mea-
surands will be more suitable for the combined mea-
surement. This issue will be clarified after solving this
more complicated problem.
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Abstract—In the fourth order of smallness in the amplitude of a periodic capillary–gravitational wave travel-
ling over the uniformly charged free surface of an ideal incompressible conducting liquid of a finite depth, ana-
lytical expressions for the evolution of the nonlinear wave, velocity field potential of the liquid, electrostatic
field potential above the liquid, and nonlinear frequency correction that is quadratic in a small parameter are
derived. It is found that the dependence of the amplitude of the nonlinear correction to the frequency on the
charge density on the free liquid surface and on the thickness of the liquid layer changes qualitatively when the
layer gets thinner. In thin liquid layers, the resonant wavenumber depends on the surface charge density, while
in thick layers, this dependence is absent. © 2005 Pleiades Publishing, Inc.
(1) Nonlinear waves on the charged surface of an
incompressible liquid are the subject of considerable
scientific and applied interest (see, for example,
reviews [1–4]). This phenomenon is most frequently
encountered when the depth of the liquid layer is finite
[1–4]. Therefore, it would be reasonable to see how the
depth of the layer influences the liquid flow and stabil-
ity of the charged liquid surface. This issue has been
repeatedly considered in the linear statement [5], in the
nonlinear statement for the uncharged liquid surface
[6, 7], and in the soliton statement [8–10]. A variety of
works [11–19] have been devoted to studying nonlinear
periodic capillary–gravitational waves on the charged
surface of an infinitely deep ideal liquid. The general
approach to analyzing nonlinear periodic waves on the
free liquid surface has long been formulated, and sev-
eral regular asymptotic methods of investigation have
been developed [20–23], among which the method of
many scales is the most efficient. This method will be
used in this work. Here, we aim at finding an expression
for the profile of a nonlinear capillary–gravitational
wave travelling on the charged free surface of an ideal
conducting liquid of a finite depth. The expression will
be sought in the fourth order of smallness in the wave
amplitude, which is assumed to be small compared
with the wavelength (the velocity field potential of the
wave liquid flow and the electrostatic field potential
above the liquid will be sought in the same order of
smallness). Our second goal is to find a nonlinear cor-
rection to the frequency.

The issues mentioned above are also topical because
of the fact that the solutions to the related problems
obtained recently for nonlinear periodic waves on the
charged surface of a viscous liquid of both infinite
[24, 25] and finite thickness [4, 26] are very awkward
even in the second order of smallness. Accordingly,
1063-7842/05/5011- $26.00 1435
investigation of relations between the physical parame-
ters of a nonlinear wave that is based on numerical anal-
ysis of these awkward analytical expressions is very
difficult. Therefore, many physical parameters of the
nonlinear wave process on the charged liquid surface
we are interested in, specifically, nonlinear frequency
corrections, are more convenient to analyze using the
ideal liquid model, which gives compact analytical
expressions up to the fifth order of smallness [19].

(2) Let an ideal incompressible conducting liquid
layer of density ρ and surface tension coefficient σ that
is infinite in the horizontal direction occupy the domain
0 ≤ z ≤ h. The layer is subjected to the gravitational field
and an electric field of strength E0, which is collinear
with free fall acceleration g. Unit vector ez of the Carte-
sian coordinate system is directed oppositely to g. Let a
plane wave of small amplitude a, wavenumber k, and
frequency ω,

(1)

travel over the surface of the layer in the positive Ox
direction. This wave disturbs the equilibrium free sur-
face of the liquid, z = h, so that the equation for the sur-
face takes the form z = h + ξ(x, t).

Mathematically, the problem of nonlinear wave flow
on the surface of an ideal incompressible conducting
liquid of a finite depth bordering a vacuum and placed
in an electrostatic field with strength E0 normal to the
free liquid surface is stated as

t 0: ξ x t,( ) a kx ωt–( )cos ; ka ! 1,= =

0 z h ξ : ∆φ+< < 0,=

ξ z ∞: ∆Φ< < 0,=

z h ξ : 
∂ξ
∂t
------ ∂ξ

∂x
------∂φ

∂x
------+ +

∂φ
∂z
------,= =
© 2005 Pleiades Publishing, Inc.
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(2)

where Pσ, PE, and Pg are the pressure of surface tension
forces under the free liquid surface disturbed by the
flow, pressure of electric field forces, and gravitational
pressure, respectively.

It is assumed that hydrodynamic velocities are much
lower than the velocity of electromagnetic waves. In
this approximation, the Maxwell equations for a time-
varying electric field above the time-varying free liquid
surface are reduced to the Laplace equation (with
appropriate boundary conditions) for the electric field
potential above the liquid, since the rate of equalization
of the electrostatic potential over the wave-disturbed
surface of an ideally conducting liquid may be taken as
infinitely high.

To uniquely solve the problem stated by (1) and (2),
it is necessary to set one more initial condition. In prob-
lems of this kind, preset initial conditions may exceed-
ingly complicate a final solution. Therefore, as is cus-
tomary in this case [11–14, 17–26], the second initial
condition will be chosen during the solution of the
problem in such a way as to simplify final expressions
for free surface perturbation ξ(x, t), velocity field poten-
tial φ(r, t) of the wave flow, and electric field Φ(r, t) as
much as possible.

(3) Let us split the problem into several subprob-
lems of different orders of smallness under the assump-
tion that the unknown functions are perturbation ξ =
ξ(x, t) of the free surface, velocity field potential φ =
φ(x, z, t), and electric potential Φ = Φ(x, z, t). We shall
seek them in the form of expansions in small dimen-
sionless parameter ε ≡ ak,

(3)

In accordance with the basic idea of the method of
many scales [6, 22, 23], we assume that desired func-

ρ∂φ
∂t
------ 1

2
---ρ ∂φ

∂x
------ 

 
2

+

+
1
2
---ρ ∂φ

∂z
------ 

 
2

ρgξ Pσ Pg PE–+ + + 0,=

Φ 0,=

z 0: 
∂φ
∂z
------ 0,= =

z ∞: Φ E0z.

Pσ σ∂2ξ
∂x2
-------- ∂ξ

∂x
------ 

 
2

1+ 
 

3/2–

,≡

PE
E2 ξ( )

8π
--------------, Pg ρg h ξ+( ),≡ ≡

ξ εξ 1 ε2ξ2 ε3ξ3 ε4ξ4 O ε5( ),+ + + +=

φ εφ1 ε2φ2 ε3φ3 ε4φ4 O ε5( ),+ + + +=

Φ –E0z εΦ1 ε2Φ2 ε3Φ3 ε4Φ4 O ε5( ).+ + + + +=
tions ξn(x, t), φn(x, z, t), and Φn(x, z, t) depend not only
on coordinates x and z, but also on time scales, specifi-
cally on the main scale T0 = t, and slower ones T1 = εt,
T2 = ε2t, and T3 = ε3t. In other words,

Then, according to the differentiation rule for a
function of several variables, operator ∂/∂t of taking the
first time derivative takes the form

(4)

Substituting (3) and (4) into (1) and (2) and equating
the coefficients multiplying the terms with the same
powers of ε to zero yields problems of the zeroth, first,
second, third, and fourth orders of smallness.

(4) In the zeroth order of smallness, the free liquid
surface remains unperturbed (and is described by the
equation z = h), the liquid is at rest, and the electric field
is uniform throughout the space,

(5) Mathematically, the first-order subproblem is
stated as

The first-order subproblem is easy to solve by clas-
sical methods,

(5)

ξn ξn x T0 T1 T2 T3, , , ,( ),=

φn φn x z T0 T1 T2 T3, , , , ,( ),=

Φn Φn x z T0 T1 T2 T3, , , , ,( ).=

∂
∂t
----- ∂

∂T0
--------- ε ∂

∂T1
--------- ε2 ∂

∂T2
--------- ε3 ∂

∂T3
--------- O ε4( ).+ + + +=

∇φ 0 0, PE≡
E0

2

8π
------, ∇Φ 0– E0– ez.⋅≡=

0 z h: ∆φ1< < 0,=

h z ∞: ∆Φ1< < 0,=

z h: 
∂ξ1

∂T0
---------

∂φ1

∂z
--------– 0,= =

ρ
∂φ1

∂T0
--------- ρgξ1 σ

∂2ξ1

∂x2
----------–

E0

4π
------

∂Φ1

∂z
----------+ + 0,=

ξ1

∂Φ0

∂z
---------- Φ1+ 0,=

z 0: 
∂φ1

∂z
-------- 0,= =

z ∞: Φ1 0.

ξ1
1
2
--- ζ iθ( )exp ζ iθ–( )exp+( ), θ kx ωT0,–≡=

φ1
iω
2k
------ kz( )cosh

kh( )sinh
---------------------- –ζ iθ( )exp ζ iθ–( )exp+( ),=

Φ1

E0

2
----- k h z–( )( ) ζ iθ( )exp ζ iθ–( )exp+( ),exp=
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where ω is the frequency, ζ = ζ(T1, T2, T3) is an
unknown complex function of time that is found by
solving the higher order problems, and the bar marks
complex conjugates.

(6) The second-order problem is stated as

Substituting first-order solutions (5) into the inho-
mogeneity functions, one can obtain a solution to the
second-order problem,

(6)

Coefficient Ω entering in this solution will be
defined below.

When seeking second-order solution (6), we used
the second initial condition: vanishing of the amplitude

ω2 k
ρ
--- kh( ) ρg σk2 E0

2k
4π
---------–+ 

  ,tanh=

0 z h: ∆φ2< < 0,=

h z ∞: ∆Φ2< < 0,=

z h: 
∂ξ2

∂T0
---------–

∂φ2

∂z
--------+

∂ξ1

∂T1
---------

∂φ1

∂x
--------

∂ξ1

∂x
-------- ξ1

∂2φ1

∂z2
----------,–+= =

ρ
∂φ2

∂T0
---------– ρgξ2 σ

∂2ξ2

∂x2
----------

E0

4π
------

∂Φ2

∂z
----------–+ +

=  ρ
∂φ1

∂T1
--------- ρξ1

∂2φ1

∂T0∂z
--------------- 1

2
---ρ

∂φ1

∂x
-------- 

 
2 1

2
---ρ

∂φ1

∂z
-------- 

 
2

+ + +

–
1

8π
------

∂Φ1

∂x
---------- 

 
2 1

8π
------

∂Φ1

∂z
---------- 

 
2

– ξ1

E0

4π
------

∂2Φ1

∂z2
------------,+

ξ2

∂Φ0

∂z
---------- Φ2+ ξ1

∂Φ1

∂z
----------,–=

z 0: 
∂φ2

∂z
-------- 0,= =

z ∞: Φ2 0.

ξ2
ω2

4g
------ 1 kh( )coth( )2–( )ζζ=

+ Ω ζ2 2iθ( )exp ζ2
2iθ–( )exp+( ),

φ2
iω
k

------ 2kz( )cosh
2kh( )sinh

------------------------- k
4
--- kh( )coth Ω– 

 =

× ζ2 2iθ( )exp ζ2
2iθ–( )exp–( ),

Φ2

E0ω
2

4g
------------ kh( )coth( )2 1–( )

E0k
2

---------+ 
  ζζ=

+ E0 2k h z–( )( )exp k
4
--- Ω+ 

 

× ζ2 2iθ( )exp ζ2
2iθ–( )exp+( ).
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coefficient multiplying a nonlinear correction to the
first-order solution (this correction has the same, not
double, argument of the hyperbolic cosine as the linear
solution).

(7) In the third order of smallness, the related sub-
problem is stated as

Substituting first- and second-order solutions (5)
and (6) into the inhomogeneity functions, one arrives at
a solution to the third-order subproblem performing
straightforward, while tedious, mathematical transfor-
mations,

0 z h: ∆φ3< < 0,=

h z ∞: ∆Φ3< < 0,=

z h: 
∂ξ3

∂T0
---------

∂φ3

∂z
--------–

∂ξ2

∂T1
---------–

∂ξ1

∂T2
---------–

∂φ2

∂x
--------

∂ξ1

∂x
--------–= =

–
∂φ1

∂x
--------

∂ξ2

∂x
-------- ξ1

∂2φ1

∂x∂z
-----------

∂ξ1

∂x
--------–

+ ξ2

∂2φ1

∂z2
---------- ξ1

∂2φ2

∂z2
---------- 1

2
---ξ1

2∂3φ1

∂z3
----------,+ +

ρ
∂φ3

∂T0
---------– ρgξ3– σ

∂2ξ3

∂x2
----------

E0

4π
------

∂Φ3

∂z
----------–+

=  ρ
∂φ1

∂T2
--------- ρ

∂φ2

∂T1
--------- ρξ1

∂2φ1

∂T1∂z
--------------- ρξ1

∂2φ2

∂T0∂z
---------------+ + +

+ ρξ2

∂2φ1

∂T0∂z
--------------- 1

2
---ρξ1

2 ∂3φ1

∂T0∂z2
----------------- ρ

∂φ1

∂x
--------

∂φ2

∂x
--------+ +

+ ρξ1

∂φ1

∂x
--------

∂2φ1

∂x∂z
----------- ρ

∂φ1

∂z
--------

∂φ2

∂z
-------- ρξ1

∂φ1

∂z
--------

∂2φ1

∂z2
----------+ +

+
3
2
---σ

∂2ξ1

∂x2
----------

∂ξ1

∂x
-------- 

 
2 1

4π
------

∂Φ1

∂x
----------

∂Φ2

∂x
----------–

1
4π
------ξ1

∂Φ1

∂x
----------

∂2Φ1

∂x∂z
------------–

–
1

4π
------

∂Φ1

∂z
----------

∂Φ2

∂z
---------- 1

4π
------ξ1

∂Φ1

∂z
----------

∂2Φ1

∂z2
------------–

E0

4π
------ξ1

∂2Φ2

∂z2
------------+

+
E0

4π
------ξ2

∂2Φ1

∂z2
------------

E0

8π
------ξ1

2∂3Φ1

∂z3
------------,+

Φ3 E0ξ3– ξ1

∂Φ2

∂z
----------– ξ2

∂Φ1

∂z
----------–

1
2
---ξ1

2∂2Φ1

∂z2
------------,–=

z 0: 
∂φ3

∂z
-------- 0,= =

z ∞: Φ3 0.

ξ3 Ψ ζ3 3iθ( )exp ζ3
3iθ–( )exp+( ),=
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(7)

The solution to the third-order subproblem defines
function ζ as a function of time scales T2 and T3,

(8)

Coefficients Ψ, Λ1, Λ2, Ξ1, Ξ2, and Θ appearing in
the above expressions will be defined below. Functions
ζ1 and β0 depending only on T3 will be determined by
solving the fourth-order subproblem.

(8) The fourth-order subproblem is mathematically
stated as

Awkward expressions for inhomogeneity functions
H41, H42, and H43, which are found by solving first-,
second-, and third-order problems (5)–(8), are given in
the Appendix.

The solution to the fourth-order problem subject to
the initial condition adopted has the form

This means that a solution to the general problem
will not contain fourth-order corrections to the pertur-
bation of the free surface of the liquid layer, as well as
to the hydrodynamic and electrostatic potentials.

(9) A final solution to problem (1)–(2) of a capil-
lary–gravitational periodic wave traveling over the uni-
formly charged equilibrium (free) surface of a conduct-
ing incompressible ideal liquid (namely, expressions
for free surface perturbation ξ(x, t) velocity field poten-

φ3
kz( )cosh

2k kh( )sinh
---------------------------- Λ2

1
2
---iΘ– 

  ζζ–=

× ζ iθ( )exp ζ iθ–( )exp–( )

–
3iωΨ Λ1+( ) 3kz( )cosh

3k 3kh( )sinh
------------------------------------------------------- ζ3 3iθ( )exp ζ3

3iθ( )exp–( ),

Φ3 Ξ2ζζ k h z–( )( ) ζ iθ( )exp ζ iθ( )exp+( )exp=

+ 3k h z–( ) E0Ψ Ξ1+( )( )exp

× ζ3 3iθ( )exp ζ3
3iθ–( )exp+( ).

ζ ζ 1 T3( ) iβ0 T3( )( ) iΘζ1
2T2( ).expexp=

0 z h: ∆φ4< < 0,=

h z ∞: ∆Φ4< < 0,=

z h: 
∂ξ4

∂T0
---------–

∂φ4

∂z
--------+ H41,= =

ρ
∂φ4

∂T0
---------– ρgξ4– σ

∂2ξ4

∂x2
----------

E0

4π
------

∂Φ4

∂z
----------–+ H42,=

E0ξ4 Φ4– H43,=

z 0: 
∂φ4

∂z
-------- 0,= =

z ∞: Φ4 0.

ξ4 φ4 Φ4 0, ζ1 1/k, β0 0.= = = = =
tials φ(x, z, t), and electric field potential Φ(x, z, t) will
be written in dimensionless variables such that ρ = σ =
g = 1. In terms of such variables, the characteristic
scales of the dimensional quantities are written as fol-
lows:

In the notation accepted, the solution is written in
the form

(9)

where frequency ω is determined from the dispersion
relation

and

is the dimensionless Tonks–Frenkel parameter charac-
terizing the charge stability of the free liquid surface.

ω*
ρg3

σ
--------

1/4

, k*
ρg
σ

------
1/2

, h*
σ
ρg
------

1/4

,= = =

E0 ρσg( )1/4, a*
σ
ρg
------

1/2

.= =

ξ a θ a2Θt+( )cos a2ω2

4
------ 1 kh( )coth( )2–( )+=

+ 2a2Ω 2θ 2a2Θt+( )cos 2a3Ψ 3θ( ),cos+

φ aω
k

------- kz( )cosh
kh( )sinh

---------------------- θ a2Θt+( )sin=

+ a2ω
k
---- 2kz( )cosh

2kh( )sinh
------------------------- k

4
--- kh( )coth– Ω+ 

  2θ 2a2Θt+( )sin

– a3 kz( )coth
k kh( )sinh
------------------------ iΛ2

1
2
---Θ+ 

  θ( )sin

– a32 –3ωΨ iΛ1+( ) 3kz( )cosh
3k 3kh( )sinh

---------------------------------------------------------------- 3θ( ),sin

Φ = 4πWz– a 4πW k h z–( )( ) θ a2Θt+( )cosexp+

+ a2 ω2 πW
2

------------------- kh( )coth( )2 1–( ) k πW+ 
 

+ 4a2 πW 2k h z–( )( ) k
4
--- Ω+ 

  2θ 2a2Θt+( )cosexp

+ 2a3Ξ2 k h z–( )( ) 3θ( )cosexp

+ 2a3 3k h z–( )( ) 4πWΨ Ξ1+( ) 3θ( ),cosexp

ω2 k k3 Wk2–+( ) kh( )tanh=

W E0
2/4π ρgσ,=
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In nondimensionalized form, the constant coefficients entering into the general solution take the form

Ω 4Wk2 2kh( )tanh– 2k kh( ) 1 k2 Wk–+( )H kh( )tanh+

32 kh( ) 1 k2 Wk–+( )tanh 16 2kh( ) 1 4k2 2Wk–+( )tanh–
-----------------------------------------------------------------------------------------------------------------------------------,=
(10)

(11)

H kh( ) 3 2kh( )tanh–≡

+ kh( )coth( )2 2kh( )tanh 4 kh( ),coth+

Λ1
3
4
---iωk2 2kh( ) kh( )cothcoth 3iωkΩ 2kh( )coth–=

– iωkΩ kh( )coth
1
8
---iωk2–

–
1
2
---iωkΩ 1

16
------iωk2 kh( ),coth–

Λ2
1
4
---iωk2 2kh( ) kh( )cothcoth iωkΩ 2kh( )coth–=

– iωkΩ kh( )coth
1
8
---iωk2–

1
8
---iω3k kh( )coth–

+
1
8
---iω3k kh( )coth( )3 1

2
---iωkΩ 1

16
------iωk2 kh( );coth–+

Ξ1
3
2
---k πW

k
8
--- Ω+ 

  ,=

Ξ2 k πW
k
8
--- 3Ω ω2

4
------ 1 kh( )coth( )2–( )+ + 

  ,=

Ψ ω2k 3kh( ) 3k 2kh( ) kh( )-cothcoth–
coth

=

+ 12Ω 2kh( )coth 4Ω kh( )coth k
2
--- 2Ω+ + +

+
k
4
--- kh( )coth 

 18Wk3 k
8
--- Ω+ 

 –

+
11
4
------ω2k kh( )coth 14kωΩ– 3k5

4
--------

7Wk4

4
-------------+ +

+ 10Wk3Ω 4ω2kΩ 2kh( ) kh( )cothcoth+

--– ω4k2 kh( )coth( )2 2kh( )coth 
 / 12ω2 3kh( )coth(

– 4k 36k3– 12Wk2 );+

Θ = ωk kh( ) k
4
--- 2kh( )coth kh( )coth Ω 2kh( )coth–

coth

– Ω kh( )coth Ω
8
----–

ω2

8
------ kh( )coth–

k
16
------ kh( )coth– 
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(12)

(10) In the limit h  ∞, the expression for the non-
linear wave profile coincides with the solution for an
infinitely deep liquid [19]; at W  0, it transforms
into the known expression for the profile of a nonlinear
capillary–gravitational wave on the uncharged surface
of a finite-thickness ideal liquid layer [6]. It was shown
[6, 19] that the amplitude coefficients of second- and
third-order corrections to a perturbation of the free sur-
face are of resonant character both for an infinitely deep
liquid and for a finite-thickness liquid layer. In the
former case, the amplitude coefficient of the second-
order correction increases resonantly at k2  1/2,
while the amplitude coefficient of the third-order cor-
rection exhibits the resonance behavior twice: at k2 
1/2 and k2  1/3. Despite expression (9) for ξ(x, t) is
applicable in a wide range of wavenumbers, amplitude
factors Ω and Ψ (see (10) and (11)) increase indefi-
nitely in the neighborhoods of the resonances when

(13)

Amplitude factor Ω resonates at n = 2, and Ψ has
two resonances: at n = 2 and 3. This means that expres-
sion (9) applies in the neighborhood of wavenumbers k
that are determined from Eq. (13), since nonlinear cor-
rections must be small compared with first-order quan-
tities. Figures 1a–1d show that the positions of the
internal nonlinear resonances due to nonlinear interac-
tion between gravitational and capillary waves appre-
ciably depend on the liquid layer thickness and surface
charge density (parameter W), the influence of the sur-
face charge increasing as the liquid layer gets thinner.
In thin layers (kh ≤ 1), the positions of the internal non-
linear resonances (i.e., the values of wavenumber k at
which the amplitude factor of quadratic (in small
parameter) correction Ω to the wave profile indefinitely
grows) depend on Tonks–Frenkel parameter W. In thick
layers (kh @ 1, Figs. 1c and 1d), the position of the
internal nonlinear resonance of quadratic correction Ω

+
Wk3

2ω
---------- k

8
--- 3Ω+ 

  Wk3ω
8

-------------- 1 kh( )coth( )2–( )+

+ kω k
4
--- kh( )coth Ω– 

  2kh( )coth kh( )coth

–
ωk
8

------- ω2 Wk2–( ) kh( )coth( )2 1–( ) 3k5

16ω
----------+

–
Wk3Ω

2ω
--------------- 5Wk4

16ω
-------------

9ωk2

16
------------ kh( )coth

3Ωk
2

-----------.–+ +

n kh( ) 1 k2 Wk–+( )tanh

– nkh( ) 1 n2k2 nWk–+( )tanh 0.=
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Fig. 1. Dimensionless amplitude factor Ω multiplying the quadratic (in the small parameter) correction to the wave profile vs.
dimensionless wave number k calculated for various layer thickness h and Tonks–Frenkel parameters W: (a) h = 1, W = (1) 1, (2) 0.8,
and (3) 0.5; (b) h = 1, W = (1) 1.1, (2) 1.3, and (3) 1.5; (c) h = 5, W = (1) 1.0, (2) 0.8, and (3) 0.5; and (d) h = 5, W = (1) 1.1, (2) 1.3,
and (3) 1.5.
does not depend on W. The positions of the internal
nonlinear resonances of the amplitude factor multiply-
ing third-order correction Ψ behave in a similar way.
However, Ψ varies with wavenumber k, parameter W,
and layer thickness h even more appreciably. From
Figs. 1a and 1b, it also follows that, when the wave-
number varies, the resonance positions shift in opposite
directions at W < 1 and W > 1. With Tonks–Frenkel
parameter W falling into these ranges, coefficient Ω
varies with wavenumber k also in qualitatively different
ways (for details of the wave liquid flow in these ranges
of W, see [17, 19]).

(11) According to expression (9), the wave profile is
nonstationary, because the terms of expression (9) that
are linear and quadratic in the small parameter involve
nonlinear frequency correction a2Θ (dimensionless
parameter Θ is given by (12)). The absolute value and
sign of amplitude factor Θ depend on wavenumber k,
parameter W, and layer thickness h (Fig. 2). Correction
a2Θ to the oscillation frequency of the last (third-order)
term of the total solution for wave profile ξ(x, t) (see
(9)) changes this term by a quantity of order O(a5).
However, quantities of such a high order are neglected
in the problem, and so the third-order term includes
unperturbed argument Θ. Eventually, the phase veloci-
ties of the waves involved in the total solution will be
different. A frequency correction ~a3 that could appear
in the linear term of (9) (recall that the problem is
solved up to terms ~a4) is absent, just as in the case of
nonlinear waves on the surface of an indefinitely deep
liquid [19]. In asymptotic calculations up to a5 [19], it
is shown that frequency corrections are proportional to
the small parameter squared and that frequency correc-
tions ~a2 and ~a4 appear in calculations up to a5.

From expression (10), it follows that the nonlinear
correction to the frequency, as well as amplitude factors
Ω and Ψ, has a resonance form. Dimensionless coeffi-
cient Θ, like Ω , resonantly grows in the vicinity of
wavenumbers determined from Eq. (13) at n = 2. Fig-
ures 2a and 2b indicate that the positions of resonances
of amplitude factor Θ multiplying the frequency cor-
rection appreciably depend on the layer thickness: in
thin layers (kh ≤ 1), the resonance value of wavenumber
k depends on the surface charge (on parameter W) (see
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
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Fig. 2a); in thick layers (kh @ 1, Fig. 2b), the resonance
value of wavenumber k is virtually independent of the
surface charge. This circumstance is of great impor-
tance for the problem considered: it means that mecha-
nisms responsible for the nonlinear wave flow in thin
and thick layers differ substantially. The dependences
of the nonlinear corrections to amplitudes Ω and Ψ on
wavenumber k and Tonks–Frenkel parameter W sup-
port this conclusion.

(12) The profiles of nonlinear waves on the charged
surface of a finite-depth liquid (Fig. 3) differ from those
of the waves on the uncharged liquid surface. That is,
the presence of a surface charge changes the form of the
curves describing the disturbed free surface: a high
density of the surface charge increases the curvature of
capillary wave crests. In addition, the profiles of peri-
odic capillary–gravitational waves on the charged liq-
uid surface vary with the layer thickness: the crests
smooth out as the layer thickens. From Figs. 3a and 3b,
it follows that an increase in the layer thickness may
change the sign of the nonlinear correction to the wave
profile (as is also evident from Fig. 1).
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Fig. 2. Dimensionless factor Θ multiplying the nonlinear
correction to the oscillation frequency vs. dimensionless
wavenumber k and Tonks–Frenkel parameter W at liquid
layer depth h = (a) 1 and (b) 5.
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CONCLUSIONS

Our calculation of nonlinear capillary–gravitational
waves traveling over the charged free surface of an
ideal finite-depth liquid layer (performed accurate to
the fourth order of smallness in wave amplitude) shows
that coefficients Ω and Ψ (specifying the wave profile,
wave flow potential, and electrostatic field potential), as
well as amplitude factor Θ multiplying the nonlinear
correction to the frequency, have a resonance form. The
positions of internal nonlinear resonances considerably
depend on the liquid layer thickness and surface charge
density, the influence of the latter increasing with
decreasing layer thickness. As the layer gets thinner, the
crests of periodic capillary–gravitational waves smooth
out, while a high surface charge increases the curvature
of capillary waves.

APPENDIX

The right-hand sides of the boundary conditions (z =
h) to the fourth-order subproblem have the form

H41
∂ξ3

∂T1
---------

∂ξ2

∂T2
---------

∂ξ1

∂T3
---------

∂φ3

∂x
--------

∂ξ1

∂x
--------

∂φ2

∂x
--------

∂ξ2

∂x
--------+ + + +=

+
∂φ1

∂x
--------

∂ξ3

∂x
-------- ξ2

∂2φ1

∂x∂z
-----------

∂ξ1

∂x
-------- ξ1

∂2φ2

∂x∂z
-----------

∂ξ1

∂x
--------+ +

1

2
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Fig. 3. Nonlinear wave profiles calculated at (1) k = 0.5 and
W = 0 and (2) k = 0.5 and W = 1.8. h = (a) 1 and (b) 5.
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1
2
---ξ1

2 ∂3φ1

∂2z∂x
--------------

∂ξ1
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-------- ξ3

∂2φ1

∂z2
----------– ξ2

∂2φ2

∂z2
----------–

– ξ1

∂2φ3

∂z2
---------- 1

2
---ξ1

2∂2φ2
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----------– ξ1ξ2

∂3φ1

∂z3
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1
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---ξ1

3∂4φ1

∂z4
----------,–

H42 = ρ
∂φ1

∂T3
--------- ρ

∂φ2

∂T2
--------- ρ

∂φ3

∂T1
--------- ρξ1

∂2φ1

∂T2∂z
--------------- ρξ1

∂2φ2
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---------------+ + + +

+ ρξ1

∂2φ3

∂T0∂z
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∂T0∂z
---------------+ +
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∂2φ1

∂T0∂z
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2
---ρξ1
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2
---ρξ1
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-----------------+ +
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---ρξ1
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----------------- 1

2
---ρ

∂φ2
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+ +

+ ρ
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-------- ρξ1
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----------- ρξ1

∂φ2
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-----------+ +
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---ρξ1

2 ∂2φ1

∂x∂z
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---ρ
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Abstract—Condensation of argon–methane and argon–monosilane gas mixtures in pulsed supersonic jets is
studied experimentally. The signal intensities from monomer and cluster ions are studied as functions of the
stagnation pressure, and the parameters characterizing the flow–condensation transition are determined. Fea-
tures of methane clustering are considered. It is shown that silicon–carbon complexes may form in the ternary
mixture. © 2005 Pleiades Publishing, Inc.
INTRODUCTION
Interest in clustering in supersonic jets of methane–

monosilane mixtures with an inert diluent stems from
the fact that these gases are used in plasma-chemical
film deposition, hydrocarbon conversion, waste utiliza-
tion, etc. [1, 2]. Considerable attention is also given to
formation mechanisms of organosilicon complexes [3].
Earlier, we studied condensation in argon–monosilane
mixtures [4, 5]. Along with hydrogenated silicon and
argon clusters, we observed argon–silane complexes
and found the conditions for their formation in the jet.
It was established that condensation in an argon–
monosilane jet at low stagnation pressures causes the
formation of only monosilane clusters and argon atoms
start depositing on these clusters with an increase in the
jet density. In this work, we elaborate upon studying the
initial stages of condensation in pulsed argon jets con-
taining small molecular additives. The data for Ar + (5–
10)%CH4 and Ar + (5–10)%SiH4 binary mixtures and a
2.5%SiH4 + 2.5%CH4 + Ar ternary mixture are com-
pared with those for pure argon.

EXPERIMENTAL
Experiments were performed on the LEMPUS com-

plex of gasdynamic benches at Novosibirsk State Uni-
versity [6] in the stagnation pressure range P0 = 1–
700 kPa at stagnation temperature T0 = 295 K. As in our
previous works [4–7], we employed a pulsed source
making it possible to vary the density of a supersonic
underexpanded jet of a given composition in wide lim-
its. The partial concentrations of the components
behind the sonic nozzle (d∗  = 0.55 and/or 1 mm) were
measured by the method of molecular-beam mass spec-
trometry [8]. Pulsed measurements were taken with a
1063-7842/05/5011- $26.00 1444
specially tailored MS-7303 quadrupole mass spectrom-
eter. The electron energy in the ionization chamber of
the mass spectrometer was set equal to 40 eV. All the
measurements were performed at a fixed nozzle-to-
skimmer distance (x/d = 175); therefore, the effect of
skimmer interaction was ignored.

The composition of the clusters was determined
from the stagnation parameters of di-, tri-, tetra-, and
pentamers in the argon–methane and argon–monosi-
lane mixtures. Data for condensation in a pulsed jet of
pure argon were both obtained by new measurements
and borrowed from our previous publications [9].

Figure 1 exemplifies the dependence of the mass
peak amplitude for monomers in the 10%SiH4 + 90% Ar
mixture on parameter P0d0.8. This parameter is com-
monly used for generalizing results on condensation in
argon. As was noted above, nozzles of two diameters
were used in the experiments. Therefore, the basic
parameter varying in a wide range was stagnation pres-
sure P0. In the mass spectrum of SiH4, signals at m/e =
29–32 were recorded. The peak at m/e = 28 (Si+) was
omitted from analysis because of the presence of resid-
ual molecular nitrogen in the setup. It is known that the

dissociative ionization cross section for Si  is larger

than that for Si  under equilibrium conditions
[10, 11]. In this work, as before [7], the spacing
between the peaks due to these two ions remains nearly
the same throughout the stagnation pressure range.
Therefore, both the peak at m/e = 30 and that at m/e =
31 will be assigned to the monomer of monosilane.

Silicon has three stable isotopes: 28Si (92.2%), 29Si
(4.7%), and 30Si (3.0%). The peaks corresponding to
masses of 32 and 33 are usually assigned to di- and tri-

H2
+

H3
+

© 2005 Pleiades Publishing, Inc.
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hydrates of the heavier isotopes, respectively [12].
Since the error introduced into the ionic signal by
heavier silicon isotopes (29Si and 30Si) is small com-
pared with the measurement accuracy, the contribution
of the heavy isotopes were not subtracted.

The same spectra for the 10%CH4 + 90%Ar mixture
are shown in Fig. 2. For methane, the peaks correspond-

ing to C  monomers (n = 0–4) are presented. It is
easy to see that the spacing between the peaks due to

C  and C  ions also remains almost the same
throughout the range of stagnation pressures (and,
accordingly, local densities at points of measurement).

In what follows, C  or C  (m/e = 16 and 15,
respectively) will be used as the methane monomer. As
was expected, the peaks at m/e = 14, 13, and 12, i.e., for

C , CH+, and C+, are much lower. Therefore, we suc-
ceeded in detecting these signals only at high P0. The

relationship between C  signals for two values of
parameter P0d0.8 is given in the table. The discrepancy
with the NIST data [13] is not so large that one can
speak of distortion due to condensation.

The results for the monomers in the argon–methane
and argon–monosilane mixtures at two component per-

Hn
+

H4
+ H3

+

H4
+ H3

+

H2
+

Hn
+

1
2
3
4
5

100 101 102 103
10–1

100

101

102

103

P0d0.8, kPa  mm

I

Fig. 1. Intensity of the argon and monosilane monomer sig-
nals vs. parameter P0d0.8 for the 90%Ar + 10%SiH4 mix-
ture. m/e = (1) 29, (2) 30, (3) 31, (4) 32, and (5) 40.
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centages (5 and 10% of the respective additive in argon)
are compared in Fig. 3. For the dimers and trimers, the
comparison is presented in Figs. 4a and 4b for the
argon–methane and argon–monosilane mixtures,
respectively. To illustrate the reproducibility of the
results, Fig. 3a plots the data obtained in three experi-
ments performed at different times with the 5% CH4 +
95% Ar mixture (2–4). Clearly, the reliability of the
results is high. Figure 3 also shows results obtained for
pure argon under similar conditions.

1
2
3
4
5

100 101 102 103

101

102

103

104

6

P0d0.8, kPa mm

I

Fig. 2. Intensity of the argon and methane monomer signals
vs. parameter P0d0.8 for the 90%Ar + 10%CH4 mixture.
m/e = (1) 12, (2) 13, (3) 14, (4) 15, (5) 16, and (6) 40.

 components detected in the mass spectrometry of
methane

m/e, u NIST

Experiment

, kPa mm

100 200

12 0.04 0.04 0.02

13 0.105 0.06 0.04

14 0.204 0.19 0.17

15 0.888 0.89 0.94

16 1 1 1

CHn
+

P0*d0.8
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Variation of the peak intensities with the stagnation
pressure is common to molecular-beam measurements
in the supersonic jets under condensation. The point
where the monomer signal intensity versus the stagna-
tion pressure curve deviates from linearity is usually
taken for the onset of clustering (the appearance of
dimers). The region near the local maximum for mono-
mers is considered to be the region of small cluster for-
mation. A further rise in pressure P0 favors condensa-
tion and increases the cluster average size. Association
of some of the monomers into clusters and release of
the heat of condensation cause the jet to turn in the
transverse direction. As a result, the gas density at the
axis of the jet drops [14] and the monomer signal inten-
sity in the molecular beam decreases. It is believed that
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5
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(b)

10–1

100
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100 101 102 103

P0d0.8, kPa mm

Fig. 3. Comparison of the monomer components at 5 and
10 vol % of the additives in the argon. (a) Argon–methane
mixtures: m/e = (1) 15 (mixture 1, 10% CH4), (2) 40 (mix-
ture 1, 10% CH4), (3) 15 (mixture 2, 5% CH4), (4) 40 (mix-
ture 2, 5% CH4), (5) 15 (mixture 3, 5% CH4), (6) 40 (mix-
ture 3, 5% CH4), (7) 15 (mixture 4, 5% CH4), (8) 40 (mix-
ture 4, 5% CH4), (9) 15 (pure Ar), (10) Nclust [20],
(11) Nclust [21]; (b) argon–monosilane mixtures: m/e = (12)
31 (mixture 5, 10% SiH4), (13) 40 (mixture 5, 10% SiH4),
(14) 31 (mixture 6, 5% SiH4), (15) 40 (mixture 6, 5% SiH4),
(9) 40 (pure Ar), (10) Nclust [20], and (11) Nclust [21].
the gas flow passes to the regime of developed conden-
sation under such conditions [15].

Ionization of the clusters in the detector of the mass
spectrometer by low-energy electrons causes their frag-
mentation and distorts the mass spectra [16]. Experi-
mental [17] and theoretical [18] insights into the ioniza-
tion of small Arn clusters (n = 9 of less) due to electron
bombardment showed that, as a result of ionization of
an Arn cluster, a positive charge is localized on the

dimer and the resulting –Arn – 2 complex disinte-

grates, generating  dimer ions and, less probably,
ions of other oligomers. Stability of the dimer is pro-
vided by its high bond energy [16]. Therefore, the sharp
initial increase in the dimer peak intensity is explained
by a substantial contribution of larger fragments to the
signal.

As the stagnation pressure rises further, the clusters
go on growing and their structure and phase state
change [19]. It is likely that fragmentation of such clus-
ters generates mainly monomer ions. Accordingly, the
signals from di-, tri-, and tetramers decline, while the
signal from monomers first stops decreasing and then
grows. The formation stage of large clusters is charac-
terized by a sharp increase in the monomer signal inten-
sity and subsequently in the intensity of the signals
from small clusters.

The dashed curves in Figs. 3a and 3b fit the experi-
mental data for the argon cluster sizes, Nclust, taken from
[20, 21]. Figures by the curves are the numerical values
of the cluster sizes. Obviously, comparison of these
curves with our data is valid only in the case of pure
argon. The minimal stagnation pressure at which
dimers can be found in a pure argon jet corresponds to
an argon cluster average size equal to two, in accor-
dance with [20]. The local maximum and minimum in
the argon monomer curve correspond to an average
cluster size of ≈20 and ≈100, respectively. At maximal
pressure P0 used in this study, the average size of clus-
ters in a pure argon jet is expected to reach several thou-
sand.

RESULTS AND DISCUSSION

Comparing the data for the methane–argon and
silane–argon mixtures highlights the difference in the
behavior of the monomers and clusters. It seems likely
that the methane additive has no effect on the initial
stage of argon condensation, unlike the monosilane
additive. In particular, the Ar monomer curves for the
Ar–CH4 mixture and pure Ar virtually coincide
throughout the range of parameter P0d0.8 (Fig. 3), while
the corresponding curves for the Ar–SiH4 mixture and
pure Ar diverge considerably (Fig. 3b). The methane
curve passes through a maximum at the same P0 as the
curve for the argon; in the case of monosilane, the peak
shifts noticeably toward lower values of P0d0.8.

Ar2
+

Ar2
+

TECHNICAL PHYSICS      Vol. 50      No. 11      2005



EFFECT OF SMALL METHANE AND MONOSILANE ADDITIVES 1447
Monosilane clusters appear at jet densities much
lower than those casing methane clustering (cf. Figs. 4a
and 4b). Moreover, for small methane clusters, no
extrema typical of the mixtures with monosilane are
observed. However, as the stagnation pressure rises,
covering the range where the monomer signal intensity
grows again, the run of the curves for methane and
monosilane monomers becomes almost identical. In
this range, the clusters rapidly grow.

Since methane and monosilane are small additives
to argon, the signals due to their monomers fade out
with decreasing P0d0.8. The extrema in the curves for
the argon and methane monomers in the binary mixture
coincide, which seems to mean that small argon and
methane clusters grow in parallel. We failed to detect a
tangible amount of methane dimers at low let densities
(low values of parameter P0d0.8).

In an argon–monosilane mixture, monosilane clus-
ters form first [4, 8]. This decreases the density at the
axis of the jet, and so the argon monomer signal inten-
sity grows more slowly. Although argon clusters arise at
a later stage than monosilane clusters, clustering as a
whole proceeds at a higher rate.

On a further increase in parameter P0d0.8 and,
accordingly, in the jet density, the signal intensity of
both argon monomers and monomers of the additives
rises abruptly for the second time (this is observed for
both binary mixtures). The second abrupt increase in
the monomer signal intensity is routinely explained by
formation of large clusters and their disintegration due
to ionization in the detector of the mass spectrometer. It
is assumed that large clusters disintegrate mainly into
monomers [21]. The intensity of the signal from addi-
tive monomers grows faster and even becomes equal to
the argon monomer intensity in the argon–10%
monosilane mixture. It is noteworthy that the curves for
the additives are nearly equidistant from that for the
argon. A reason for such behavior in the argon–monosi-
lane mixture may be prevailing clustering of the addi-
tive, as a result of which the monosilane monomer sig-
nal might be expected to increase. However, as follows
from our measurements, argon and methane clusters in
the methane-containing mixture grow concurrently. It
is likely that methane clusters in the argon–methane
mixture grow faster than argon clusters. Accordingly,
the intensity of the methane monomer signal in mass-
spectrometric measurements grows more rapidly. On
the other hand, in the monosilane-containing mixture,
monosilane nuclei may be gradually covered by an
argon “coat,” which generates mixed fragments, such
as argon–monosilane dimers and trimers [4] (Fig. 4b).
The clusters formed in the methane-containing mixture
may have a monoatomic structure. Certainly, other
explanations cannot be ruled out, e.g., those taking into
consideration complex mechanisms of disintegration of
clusters with a different size, structure, and phase com-
position. It should also be noted that we failed to detect
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
mixed clusters in the Ar–CH4 mixture, unlike in the Ar–
SiH4 one.

The above results on the behavior of binary mixtures
suggest that monosilane may also have a considerable
effect on clustering in the Ar–SiH4–CH4 ternary mix-
ture. Figure 5 presents the associated data for a clus-
tered jet of the ternary mixture where methane and
monosilane are small additives (2.5 vol% each) to the
argon carrier. Here, as before, the relative intensities of
the monomer peaks are plotted against parameter
P0d0.8. For comparison, Fig. 5 also plots the data for the
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Fig. 4. Amplitudes of the cluster components in the mix-
tures vs. parameter P0d0.8. (a) 95% Ar + 5% CH4 mixture:

m/e = (1) 28 (C2 ), (2) 29 (C2 ), (3) 30 (C2 ), (4) 43

(C3 ), (5) 44 (C3 ), and (6) 80 ( ); (b) 95%Ar +

5%SiH4 mixture: m/e = (7) 62 (Si2 ), (8) 63 (Si2 ),

(9) 70 (ArSi ), (10) 80 ( ), (11) 94 (Si3 ), and

(12) 110 (Ar2Si ).
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argon monomer in pure argon (solid line) and in the
mixtures (white, gray, and black circles), as well as for
the monomers of methane (gray squares) and monosi-
lane (black triangles) in the binary mixtures. As previ-
ously, the peaks at m/e = 16 and m/e = 31 are assigned
to methane and monosilane, respectively. It is seen
from Fig. 5 that the first argon peaks in the ternary mix-
ture (light dots) and in the 95%Ar + 5%SiH4 binary
mixture arise at the same value of parameter P0d0.8,
whereas the argon minimum for the ternary mixture
coincides with the argon minimum in the 95%Ar +
5%CH4 mixture. The data for methane and silane
monomers are fitted (within the measurement error) by
a single line, the spacing between this line and the line
for the monosilane-containing binary mixture remain-
ing the same: the extrema of these experimental lines
coincide. Thus, clustering in the ternary system pro-
ceeds otherwise than in the related binary mixtures: at
low jet densities (nucleation), it follows the mechanism
typical of the monosilane-containing binary mixture; at
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I
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Fig. 5. Variation of the argon, methane, and monosilane
monomer signals in the ternary mixture in comparison with
the binary mixtures. m/e = (1) 40 (pure Ar), (2) 16 (Ar +
CH4), (3) 40 (Ar + CH4), (4) 31 (Ar + SiH4), (5) 40 (Ar +
SiH4), (6) 16 (Ar + CH4 + SiH4), (7) 31 (Ar + CH4 + SiH4),
and (8) 40 (Ar + CH4 + SiH4).
higher densities (growth of clusters), it proceeds as in
the methane-containing binary mixture.

Using pulsed instrumentation to generate and diag-
nose gas flows with condensation, one can measure not
only the signal amplitude but also the rise time and half-
width of the pulsed signals from monomers and small
clusters of components in a mixture. It was found [22]
that condensation in the flow changes these parameters.
Monitoring the parameters of a pulsed jet enables one
to separate out stages of condensation.

Figures 6a–6c plot half-widths D (in microseconds)
of the monomer signals for the 95%Ar + 5%CH4,
95%Ar + 5%SiH4, and 95%Ar + 2.5%CH4 + 2.5%SiH4

mixtures, respectively, against P0d0.8 . The results for
pure argon are given for comparison. Here, the curves
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Fig. 6. Signal half-widths vs. parameter P0d0.8: (a) 95%
Ar + 5% CH4, (b) 95% Ar + 5% SiH4, and (c) 95% Ar +
2.5% CH4 + 2.5% SiH4. m/e = (1) 40 (pure Ar), (2) 16 (Ar +
CH4), (3) 40 (Ar + CH4), (4) 31 (Ar + SiH4), (5) 40 (Ar +
SiH4), (6) 16 (Ar + CH4 + SiH4), (7) 31 (Ar + CH4 + SiH4),
and (8) 40 (Ar + CH4 + SiH4).
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for the mixtures deviate from that for pure argon and
the data for the components diverge. Note that charac-
teristic points in the half-width curves correlate with
those in the intensity curves for the corresponding com-
ponents.

An abrupt change in the half-width of the mass-
spectrometric signal from only one component (espe-
cially if it is a small additive to the system) cannot be
explained in terms of gas dynamics. As was mentioned
above, the reason for this effect is disintegration of
clusters in the detector of the mass spectrometer. We
found that the half-width of the signals from small clus-
ters changes insignificantly throughout the range of
parameter P0d0.8. Comparing the dependences of the
half-width and intensity of the signals from individual
components (monomers, clusters of the additives and
carrier) on P0d0.8 makes it possible to reveal the differ-
ences in clustering occurring in the mixtures at differ-
ent stages of condensation.

The variation of the signal half-width is convenient
to consider in several ranges of P0d0.8.

(1) At small values of P0d0.8, when condensation is
absent in all the mixtures, the monomer signal intensi-
ties increase linearly with P0d0.8. Half-width D of the
signals from both the argon and small additives
decreases with increasing stagnation pressure only
slightly, as for the case of a pure argon jet [23]. This
agrees with the statement that argon, being a carrier
gas, specifies the gas dynamics of the pulsed jet in all
the mixtures.

(2) Early in condensation, small clusters (n ≤ 20) are
detected in the jet, which means that the run of the
curves becomes nonlinear and the monomer signals
reach a maximum. The amplitudes of the argon mono-
mer signals in the argon–methane mixture and in the
pure argon coincide, whereas in the argon–monosilane
and ternary mixtures, the argon monomer signals are
lower. The half-width of the monomer signals in the
mixtures, as well as in the pure argon, increases only
slightly, and the value of D for monomers in the mix-
tures and those in the pure argon jet is the same. Hence,
condensation in the argon–methane mixture starts at the
same values of P0d0.8 as in the pure argon. However, the
intensity of the argon dimer signal in this mixture is
considerably lower than in the pure gas (Fig. 4a), which
indicates simultaneous condensation of the argon and
methane.

With monosilane added to the argon, condensation
starts at lower local densities (lower values of P0d0.8).
Small monosilane clusters appear in the flow first
(Fig. 4b) and serve as centers of condensation. Monosi-
lane clustering inhibits argon condensation. As a result,
trimers and still heavier clusters of argon are absent in
the jet.

Condensation in ternary mixture starts as early as in
the argon–monosilane mixture, which seems to indi-
cate monosilane-stimulated clustering in the jet.
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(3) As P0d0.8 increases, so do the fraction of conden-
sate and cluster mean size. At the same time, the inten-
sity of the monomer signals in all the gas mixtures
declines. Fragmentation in the pure argon leads to an
increase in the monomer signal half-width in propor-
tion to the mean size of the clusters.

In the argon–methane mixture, the signal intensities
increase concurrent with a decrease in the half-width of
the signals from the carrier gas and additive, indicating
simultaneous condensation of both gases. The lack of
signals from methane dimers and trimers may be
explained by a low formation probability of small clus-
ters.

At this stage of condensation, argon condensation in
the argon–monosilane mixture ends in the formation of
dimers, whereas monosilane clusters continue to grow.
This is indicated, first, by the considerable drop of the
additive signal intensity compared with the argon inten-
sity (Fig. 1) and, second, by the fact that the half-width
of the argon monomer signal first slightly increases and
then remains constant, whereas the half-width of the
monosilane monomer signal increases by a factor of 2.5
(Fig. 6b).

In the ternary mixture, the equal decrease in the
monomer signal amplitudes synchronously with the
increase in the half-width of the signals may be
explained by jointly condensing all the components
with the formation of multicomponent clusters.

(4) At the stage of developed condensation in pure
gases, the mass fraction of the condensate stops grow-
ing, unlike the cluster average size. Restructuring of
clusters; modification of their phase state; and, eventu-
ally, the change in the fragmentation mechanism cause
the cluster signal amplitude to diminish and the mono-
mer signal amplitude to rise.

The abrupt increase in the amplitude and half-width
of the methane monomer signal in the argon–methane
mixture testifies that the condensation of the additive
proceeds at a higher rate than that of the carrier. As the
stagnation pressure (hence, the jet density) rises, a
major part of the methane turns out to be in the bound
state. As a consequence, the half-width of the monomer
signals does not increase, although their amplitudes
continue growing. On a further increase in the density
and persisting supersaturation of the medium, conden-
sation continues owing to the argon: both the amplitude
and half-width of its monomer signal increase.

In the argon–monosilane mixture, the intense con-
densation of the additive continues suppressing the
condensation of the carrier until almost all the additive
is in the bound state. As the stagnation pressure (density
of the jet) increases, the intense condensation of the
argon begins and argon atoms deposit on clusters con-
sisting of monosilane molecules. Upon disintegration,
such mixed clusters form argon–silane complexes [4]
and the half-width of the argon monomer signal
increase abruptly.
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In the ternary mixture, the condensation of the car-
rier is also retarded compared with that in the pure
argon, while to a smaller extent than in the argon–
monosilane mixture. So, we can speak of concurrent
condensation of all the three components. The cluster
size (half-width of the monomer signals) saturates as
early as in the argon–monosilane mixture. However, the
half-width of the signals is considerably smaller than in
the binary mixtures, which is an indication of concur-
rent condensation. This process is bound to form mixed
organosilicon complexes. The peaks from cluster frag-
ments with m/e = 46, 54, 69, and 87 that were found in
the ternary mixture at high values of parameter P0d0.8

(stagnation pressure) but were absent in the binary mix-
tures may be identified as methane–silane fragments of
large clusters.
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Abstract—A physical model of a self-sustaining reflective discharge is formulated based on the continuity
equation for the electron flux and the equation of energy balance on the hot cathode. The model allows one to
calculate the current-voltage characteristic of a high current reflective discharge with a hot cathode in a wide
range of magnetic fields, discharge cell dimensions, and cathode material work functions. An advantage of the
model is that it is capable of describing the ordinary operating mode of a reflective discharge with cold cathodes
as a limiting case. The model predicts the existence of two discharge operating modes with thermionic electron
emission on the cathode: a low-voltage mode with a high current density and a high-voltage mode with a sig-
nificantly lower current density. It is shown that the low-voltage operating mode can occur in a wide range of
the discharge currents, while the discharge voltage can be substantially reduced by using a cathode material
with a low work function. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The reflective discharge, also known as the Penning
discharge or the Phillips discharge, is an axisymmetric
low-pressure discharge operating in crossed E × B
fields (see [1]). This type of discharge has long been
used in charged particle generators [2–5]), ion pumps
[6, 7], and manometers [1]. An important advantage of
this discharge is the high efficiency of gas ionization in
a wide range of the gas pressures, magnetic fields, and
discharge cell dimensions. An analysis of the results
obtained in [2–12] show that the high-voltage low-cur-
rent mode of a low-pressure (p ≤ 10–3 Torr) Penning dis-
charge is of primary research interest. However, the
high operating voltages make this mode of limited util-
ity for high-purity technologies because of the erosion
of the cathode material under ion bombardment. In this
respect, the low-voltage mode of a reflective discharge
with a hot cathode is more advantageous [2, 5, 12]. In
this case, however, the discharge is non-self-sustaining
and the presence of the cathode heating system signifi-
cantly complicates the design of the discharge cell.
Therefore, a self-sustaining reflective discharge with a
self-heated cathode seems to be more promising [4, 5,
12, 13]. In this case, the heat-insulated cathode is
heated due to ion bombardment rather than by an exter-
nal heat source. Since this type of discharge requires
intense heat release on the cathode, it can operate only
at relatively high currents, which can only be provided
at relatively high gas pressures. It can be expected that
the structure and operating mechanism of such a dis-
charge, which will be further referred to as a high-cur-
rent reflective discharge with a hot-cathode, would sub-
1063-7842/05/5011- $26.001451
stantially differ from the low-pressure Penning dis-
charge. In recent years, sources of charged [4] and
neutral [13] particles have been created based on a
high-current reflective discharge with a hot cathode.
Since this type of discharge can be efficiently used in
advanced technologies, it is desirable to develop a gen-
eral theory that would allow one to calculate the main
characteristics of the discharge cell in a wide range of
geometrical and electrophysical parameters.

The interrelation between the ionization and recom-
bination processes in a discharge in crossed E × B
fields, as well as conditions that are necessary to sustain
such a discharge, is generally described by the analytic
model proposed in [14]. However, since the model is
one-dimensional, the results obtained in [14] cannot be
directly applied to real discharge cells, which are typi-
cally axisymmetric. For some reasons, it is impossible
to calculate the current-voltage (I–V) characteristic of a
real reflective discharge with sufficient accuracy. First,
it is rather difficult to calculate the gas ionization rate
and the motion of charged particles in crossed fields.
Second, although the linear model of gas ionization and
charged particle drift makes it possible to fairly exactly
evaluate the discharge voltage, it does not allow one to
calculate the discharge current without incorporating
the external circuit parameters in the model. The incor-
poration of these parameters makes the problem too
specific, so it becomes impossible to analyze the gen-
eral features of the discharge. It was shown in [13] that
the introduction of a central self-heated rod electrode
allows one to calculate the parameters of a real reflec-
tive discharge with sufficient accuracy. On the one
 © 2005 Pleiades Publishing, Inc.
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hand, the heated element complicates the calculation of
the discharge parameters and introduces a significant
nonlinearity in the set of equations describing the dis-
charge. On the other hand, however, the presence of
such an element relates the theoretical model to the
absolute values of the temperature and emission current
of the hot element. In the present study, it is shown that
the method proposed in [13] allows one to calculate the
discharge parameters in crossed E × B fields not only
when the central rod is used as a hot cathode, but also
when the hot cathode is one of the disk cathodes of a
reflective discharge.

PHYSICAL MODEL OF A HIGH-CURRENT 
REFLECTIVE DISCHARGE

Let us consider an axisymmetric Penning discharge
cell (of height h) consisting of a hollow cylindrical
anode of radius R and two plane-parallel disk cathodes
biased by the same negative potential relative to the
cathode (see Fig. 1). One of the disk cathodes is
assumed to be heat-insulated; due to its strong heating,
it can operate in the thermionic mode. The second disk
cathode is assumed to be relatively cold, so its thermal
emission current can be ignored. The discharge cell is
in a uniform external magnetic field, whose field lines
are parallel to the symmetry axis of the system.

The main parameters of such a discharge cell can be
calculated using the following simplified discharge
model.

(i) We consider only a steady-state high-current
mode in which almost the entire voltage drop occurs in
a thin cathode sheath. The main discharge space is
occupied by a quasineutral plasma, which will be fur-
ther referred to as a discharge column. The discharge
column is separated from the electrodes by relatively

2

1

B

R
3h

Fig. 1. Sketch of a discharge cell: (1) cylindrical anode,
(2) gas-discharge plasma, and (3) disk cathodes.
narrow space-charge sheaths. Such a simplification of
the discharge structure limits the model applicability to
the case of a relatively high plasma density.

(ii) It is assumed that the plasma column is weakly
ionized and the density of the neutral gas particles is
independent of the discharge current. This assumption
limits the charged particle density from above by a
value comparable to the neutral particle density.

(iii) In the cathode sheath, the flux of fast electrons
with energies approximately corresponding to the dis-
charge voltage is formed. This electron flux transfers
the energy supplied by the power source to the plasma
and provides the necessary level of gas ionization in the
discharge column.

(iv) Gas ionization by the thermal plasma electrons
is ignored. This is justified when the discharge voltage
greatly exceeds the gas ionization potential [4]. The
role of the plasma electrons in this case is reduced to the
transport of the electric current to the anode across the
magnetic field.

(v) It is assumed that the ions in the plasma column
are not magnetized and the ion current is distributed
uniformly over the entire cathode surface. Moreover,
the plasma nonuniformity along the height is ignored.
Such an averaging over height significantly simplifies
calculations and, thus, allows one to efficiently analyze
the general features of the discharge.

(vi) In contrast, the electrons are assumed to be
highly magnetized, so that their diffusion coefficient
across the magnetic field is proportional to the transport
frequency of electron–atom collisions. This approxi-
mation imposes constraints on both the gas pressure
and the magnetic field.

(vii) It is assumed that the temperature of the heat-
insulated cathode is determined by the power balance
between the energy release due to ion bombardment
and radiative heat transfer from the surface. The other
channels of energy removal are disregarded.

CALCULATION OF THE DISCHARGE I–V 
CHARACTERISTIC

The discharge I–V characteristic can be calculated in
the same way as in [13]. The flux of fast electrons jf

across the magnetic field in the discharge column is dif-
fusive in character and is described by [14]

(1)

Here, nf (r) is the radial profile of the fast electron den-
sity and Df is the classical cross-field diffusion coeffi-
cient of fast electrons. Under the above assumptions,

j f r( ) D f

dn f r( )
dr

----------------.–=
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this coefficient can be estimated as

(2)

where e and m are the charge and mass of an electron,
B is the magnetic induction, v f is the mean velocity of
the fast electrons in the discharge column, rLe is the
mean electron Larmor radius, Uc is the cathode drop
(approximately equal to the discharge voltage), τi is the
mean time between ionizing collisions of the fast elec-
trons with gas particles, and τa is the electron–atom col-
lisional time.

For electrons with energies of about a few hundred
electronvolts, the cross section for electron-impact ion-
ization of atoms is comparable to the electron transport
cross section; therefore, in Eq. (2), we assume τa ≅  τi/2.

We consider a steady-state influx of fast electrons
from the cathode surfaces into the plasma due to both
ion–electron emission (γ processes) (jfγ flux) and ther-
mionic emission (jft flux). These electrons then “disap-
pear” due to the loss of their energy over a characteris-
tic time τf. Therefore, taking into account the axial sym-
metry of the problem, the time-independent continuity
equation in cylindrical coordinates can be written as

(3)

Physically, τf is the time during which a fast electron
with an initial energy E0 becomes slow, losing its
energy in collisions with neutral particles and produc-
ing on average µ = E0/Ei plasma electrons. Here, Ei is
the mean energy spent on the production of one elec-
tron–ion pair, which is a characteristic value of a given
gas. Let us assume that E0 ≅  eUc; then, we have τf =
(eUc/Ei)τi.

In solving differential equation (3), it is convenient
to introduce the characteristic diffusion length λ, which
determines the distance covered by a fast electron with
a characteristic kinetic energy eUc across the magnetic
field during the time τf,

(4)

In our model, the fast-electron diffusion length λ is
independent of the gas pressure [13, 14]. If we take into
account that the electrons are magnetized incompletely,
then the parameter λ will decrease slightly with
increasing gas pressure.

Introducing the dimensionless coordinate ρ = r/λ
and substituting Eq. (1) into Eq. (3), we obtain the

D f

rLe
2

3τa

-------- 2
3τ i

-------
mv f

eB
----------- 

 
2 4

3
---

mUc

eτ iB
2

-------------,≅ ≅ ≅

1
r
---

d r j f r( )( )
dr

-----------------------
2 j fγ j ft+

h
---------------------

n f r( )
τ f

------------.–=

λ Uc B,( ) D f τ f
4m
3Ei

--------
Uc

B
------.= =
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equation for the radial profile of the fast-electron den-
sity,

(5)

If we impose the following boundary conditions at
the anode and the discharge axis,

(6)

then the solution to Eq. (5) is

(7)

where I0(ρ) is the zero-order modified Bessel function
and ρg = (R + rLe)/λ.

Let us write out the steady-state continuity equation
for the flux js of slow electrons, assuming that they are
produced only due to gas ionization by the fast elec-
trons and are lost only on the anode,

(8)

We introduce the following notation for the radial
dependences of the currents: Js(ρ) = 2πhρλejs(ρ) is the
plasma electron current, Jfγ(ρ) = πρ2λ2ejfγ is the current
of the fast γ-electrons from the cathode, and Jft(ρ) =
πρ2λ2ejft is the thermionic current of the fast electrons
from the hot cathode.

Integrating Eq. (8) with allowance for the natural
boundary condition Js(0) = 0, we obtain the expression
for the radial dependence of the plasma electron cur-
rent,

(9)

where I0(x) and I1(x) are the zero- and first-order modi-
fied Bessel functions, respectively. Analogously, inte-
grating Eq. (3) in dimensionless variables with the
boundary conditions Jf (0) = 0, we obtain the expression
for the fast-electron current Jf (ρ),

(10)

The total electron current in the anode circuit, Ja =
J(ρa = R/λ), can be obtained by adding currents (9) and
(10). Assuming that the ion flux onto the cathode is uni-
form, the net current in the cathode circuit Jc with
allowance for γ-emission and thermionic emission can
be written as Jc = Jem + Jic(1 + γ), where Jic is the total
current at the cathode and Jem is the total thermionic

d2n f ρ( )
dρ2

-------------------
1
ρ
---

dn f ρ( )
dρ

----------------- n f ρ( )–+
τ f

h
----- 2 j fγ j ft+( ).–=

n f r R rLe+=( ) 0, dn f

dr
--------

r 0=

0,= =

n f ρ( )
τ f

h
----- 2 j fγ j ft+( ) 1

I0 ρ( )
I0 ρg( )
---------------– 

  ,=

1
ρ
---

d ρ js ρ( )( )
dρ

------------------------ µ 1+( )λ
n f ρ( )

τ f

-------------.=

Js ρ( ) 2 µ 1+( ) 2J fγ ρ( ) J ft ρ( )+[ ] 1
2
---

I1 ρ( )
ρI0 ρg( )
------------------– ,=

J f ρ( ) λ
h
--- 2J fγ ρ( ) J ft ρ( )+[ ]

I1 ρ( )
I0 ρg( )
---------------.=
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current from the hot cathode. Equating Ja to Jc, we
obtain the self-sustainment condition,

(11)

This equation also determines the ratio of the ther-
mionic current to the ion current at the cathode as a
function of the cell size, magnetic induction, and dis-
charge operation voltage, which enter into expression
(4) for the length λ.

Assuming that thermal radiation escapes freely from
the hot cathode and that the energy of the ions incident

Jem

Jic

-------- γ+ µ 2 λ
2h
------ µ 1+

ρa

------------– 
  I1 ρa( )

I0 ρg( )
---------------+ 1.=
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Fig. 2. Calculated parameters of a reflective discharge with
a hot tungsten cathode at two different values of the mag-
netic induction for h = 2 cm, R = 1 cm, γ = 0.1, and Bcr ~
0.088 T: (1) B = 0.05 T < Bcr and (2) B = 0.1 T > Bcr. The
solid lines show the I–V characteristics, while the dashed
lines show the hot cathode temperature as a function of the
discharge voltage.
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Fig. 3. Concerning the stability analysis of the operating
modes of a reflective discharge with a hot tungsten cathode
for h = 2 cm, R = 1 cm, γ = 0.1, and B = 0.1 T.
onto the hot cathode is completely dissipated in it, the
power balance equation can be written as

(12)

Here, σ is the Stephan–Boltzman constant, εT ≈ 0.5 is
the emissivity factor of the hot cathode, and Sh0 is the
area of the hot cathode radiating surface. It is also taken
into account that only one-half of the ion current
reaches the hot cathode.

From Eq. (12), we find the temperature of the hot
cathode,

(13)

and the thermionic current,

(14)

where ϕh is the work function of the hot cathode mate-
rial and A0 ≈ 100 A/cm2 K2.

In fact, Eqs. (13) and (14) determine the thermionic
current as a function of the ion current at the cathode.
Expression (14), along with equality (11), relates these
currents to one another. The solution of this set of two
equations with two unknowns allows one to find both
the thermionic current and the ion current at the cath-
ode.

Having determined the total ion current at the cath-
ode, we can find the current of γ-electrons from the
cathodes, Jfγ = γJic, and, finally, the total discharge cur-
rent,

(15)

Thus, we can find the I–V characteristic of a dis-
charge cell with given parameters of the cathode mate-
rial. Because of the assumptions adopted in our model,
the gas density dropped out from all the above equa-
tions; therefore, the calculated I–V characteristic is
independent of the gas pressure. Such a dependence can
appear, if we account for, e.g., the relation between the
mean energy Ei spent on the production of one ion-elec-
tron pair and the actual kinetics of the ionization pro-
cess.

RESULTS AND DISCUSSION

Two Modes of a High-Current Reflective Discharge 
with a Hot Cathode

An analysis of solutions to the above set of equa-
tions shows that there is a certain critical value of the
magnetic induction, Bcr, that determines the voltage
range within which steady-state solutions for the dis-
charge current exist. It was found that, at B < Bcr, the
solution for the current exists at any voltage in the ther-
mionic mode, while, at B > Bcr, a voltage range appears
within which there are no steady-state solutions for the
current (the “forbidden” zone). Figure 2 shows two typ-

Prad Sh0εTσTh
4 1/2eUcJic.= =

Th

eUcJic

2Sh0εTσ
-------------------- 

 
1/4

,=

Jem πR2A0Th
2 ϕh/kTh–( ),exp=

J tot Jem 1 γ+( )Jic.+=
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ical dependences of the discharge current and hot cath-
ode temperature on the voltage for two different ratios
between B and Bcr. It can be seen that, at B > Bcr, the I–
V characteristic consists of two branches. The first
branch is characterized by high currents and low volt-
ages, whereas the second corresponds to high voltages
and substantially lower currents. Both branches, how-
ever, correspond to high cathode temperatures.

Let us analyze the stability of the two steady-state
operating modes of a reflective discharge in the case of
B > Bcr. The solid lines in Fig. 3 show (in the conven-
tional electrophysics representation) the two branches
of the I–V characteristic that correspond to curves 2 in
Fig. 2. The load curves of the discharge power source
for two values of the ballast resistance are also shown
in the figure by the dashed lines. Let us first consider
the load curve passing through points A and C of the
I−V characteristic. It can be seen that both these points
correspond to stable operating modes. Indeed, if the
discharge current increases, e.g., as a result of a random
fluctuation, the discharge voltage will become slightly
lower than that corresponding to the I–V characteristic.
In contrast, if the discharge current decreases, the volt-
age will be slightly higher than that required to sustain
the discharge. In both cases, the current fluctuation will
be suppressed and the discharge current will be stably
maintained at a level corresponding to the point where
the load curve intersects the I–V characteristic. The sit-
uation is, however, quite different when the intersection
point of the I–V characteristic and the load curve
(Fig. 3, point B) lies on the segment corresponding to a
negative differential resistance of the discharge. Similar
considerations show that, in this case, steady-state
modes corresponding to the high-voltage branch will be
unstable: a small current fluctuation would result in the
discharge extinction. Therefore, on the high-voltage
branch of the I–V characteristic, only those points that
lie in the vicinity of the minimum operating voltage
correspond to stable modes, while the entire low-volt-
age branch is stable.

Reflective Discharge with Cold Cathodes 
as a Limiting Case

The reasons for the appearance of the above forbid-
den zone are easier to understand by considering how
the discharge current and the hot cathode temperature
vary with varying discharge voltage at a given value of
the magnetic induction. A specific feature of the solu-
tions obtained is that the cathode temperature and the
discharge current decrease rapidly to zero as the dis-
charge voltage approaches the boundary of the forbid-
den zone. This allows one to interpret the boundaries of
the forbidden zone as the ignition voltage of a Penning
discharge with cold cathodes at a given value of the
magnetic induction.
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
The dependence B(U) for a reflective discharge with
cold cathodes can easily be obtained from Eq. (11), in
which it is necessary to set Jem = 0. Figure 4 presents
several examples of such curves for a given fast-elec-
tron energy required for one ionization event (Ei =
40 eV). The positions of the curves depend primarily on
the discharge cell geometry and the coefficient γ. Obvi-
ously, these curves correspond to the low-current mode
of a reflective discharge with cold cathodes. This mode
is determined not only by the discharge processes, but
also the parameters of the external circuit and power
source. Similar curves characterizing the region of
existence of a low-pressure Penning discharge are well
known [11, 15–18]; in the one-dimensional version of
a similar model, they were calculated in [14].

Low-Voltage Mode of a Reflective Discharge
with a Hot Cathode

In the (B, U) plane (Fig. 4), the domain of existence
of a steady-state reflective discharge with a hot cathode
is bounded from above by a curve B(U), whose mini-
mum corresponds to the critical value of the magnetic
induction, Bcr.

From I–V characteristic 1 in Fig. 2, it can be seen
that, at B < Bcr, a steady-state discharge with a hot cath-
ode can operate in a simply connected domain of volt-
ages. This mode can be efficiently used in devices
intended to operate in a wide current range [4, 13]. The
I–V characteristic of a reflective discharge with a hot
cathode has a negative differential resistance, which is
typical of arc discharges. Figure 5 shows an example of
the calculated structure of a high-current discharge with
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Fig. 4. Operating voltage of a reflex discharge with a cold
cathode vs. magnetic induction for h = 1 cm and different
values of the discharge cell radius R and the coefficient γ:
(1, 2) γ = 0.05 and R = 1 and 3 cm, respectively, and (3, 4)
γ = 0.1 and R = 1 and 3 cm, respectively.
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a hot cathode: the radial distributions of the fast-elec-
tron density and the current in the electrode gap.

To illustrate the possibility of reducing the discharge
voltage, Fig. 6 presents examples of the calculated I–V
characteristics of a discharge cell with a self-heated
cathode for different work functions. These character-
istics indicate that the discharge voltage substantially
decreases with decreasing hot-cathode work function,
as was previously observed experimentally (see, e.g.
[4]). A decrease in the discharge voltage below 100 V
usually results in a sharp decrease in the cathode ero-
sion rate; this extends the cathode lifetime and substan-
tially reduces the amount of impurities emerging from
the plasma source.
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Fig. 5. Radial profiles of (1) the fast-electron density nf(r),
(2) the slow-electron current Js(r), and (3) the fast-electron
current Jf(r) for Uc = 150 V, ϕh = 4.54 eV (tungsten), γ =
0.05, B = 0.08 T, h = 1 cm, and R = 0.5 cm.
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Fig. 6. Calculated I–V characteristics (solid lines) and the
corresponding temperatures of the self-heated electrode
(dashed lines) for a reflective discharge with a hot cathode
made of different materials for h = 1 cm, R = 0.5 cm, and
B = 0.08 T: (1) LaB6 (ϕh = 2.8 eV), (2) W (ϕh = 4.5 eV), and
(3) Re (ϕh = 5.0 eV).
Applicability Limits of the Model

Let us determine the applicability limits of our
model with respect to the gas pressure. Since the
plasma column is assumed to be weakly ionized, the
density of neutral particles should be much higher than
that of charged particles. The lower estimate for the
electron density can be obtained from the electron den-
sity near the anode, which in turn can be estimated from
the discharge current I, the anode surface area 2πhR,
and the thermal velocity of plasma electrons VTe. The
upper estimate for the atomic density can be obtained
from the condition that the electrons are magnetized.
The electron–atom collision frequency νea can be esti-
mated from the transport collision cross section σea and
the electron thermal velocity VTe. As a result, we obtain
the range of gas densities within which our model is
valid: 2I/πhReVTe ! na ! eB/mσeaVTe. Thus, for the dis-
charge parameters from Fig. 5, we have 4 × 1011 ! na !
2 × 1017 cm–3.

In addition, it is necessary that the thickness of the
electrode sheaths be much less than the discharge cell
dimensions. The cathode sheath thickness dc can be
estimated from the 3/2 law. As a result, we obtain the
limitations on the cell dimensions,

CONCLUSIONS

We have calculated the I–V characteristic of a high
current reflective discharge with a hot cathode and the
corresponding temperature of the self-heated electrode.
The domain of existence of steady-state modes of a
reflective discharge in the (B, U) plane has been deter-
mined. It is shown that, at sufficiently strong magnetic
fields, two modes of a Penning discharge can exist:
high-current and a high-voltage ones. At sufficiently
weak magnetic fields, the reflective discharge can oper-
ate only in the thermionic mode. The model proposed
allows one to optimize the design of charged- and neu-
tral-particle plasma sources based on this type of dis-
charge.
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Abstract—C60 fullerene powder and fullerene soot are examined by the method of small-angle X-ray diffrac-
tion. Small-angle diffraction patterns constructed in the Guinier coordinates make it possible to find the radii of
inertia of scattering elements. The small-angle diffraction scattering findings agree well with large-angle X-ray
diffraction data. © 2005 Pleiades Publishing, Inc.
Small-angle X-ray diffraction has been widely used
in studying solid disperse systems, such as powder-like
soots, coals, etc. [1]. However, small-angle X-ray dif-
fraction data should sometimes be compared with inde-
pendent experimental results, since this method is well
developed for only dilute systems of similar equal-size
particles [2]. Here, we took advantage of the fact that
the structure of C60 fullerene powder can also be exam-
ined by large-angle diffraction [3] and so applied both
X-ray techniques to find the size of its scatterers. The
soot from which the fullerene was extracted was also
studied by both techniques. The results obtained with
these two techniques not only correlate but also com-
plement each other.

EXPERIMENTAL

C60 fullerene (of purity 99.7%) was obtained by the
Krätschmer–Huffman method [4]. Large-angle diffrac-
tion studies were carried out on a DRON-2.0 diffracto-
meter (CuKα or CoKα radiation) with a graphite mono-
chromator using the Bragg–Brentano scheme. The
samples were prepared by applying a drop of a C60 or
soot suspension in ethanol on the degreased surface of
cover silicate glass. After the alcohol has evaporated, a
thin powder layer remained on the glass due to adhe-
sion. The glasses with the powder were placed directly
on the goniometer head, and reflection diffraction lines
were recorded under room conditions. From the width
of the reflections, we estimated mean size Lhkl of crys-
tallites in an [hkl] direction by the Scherrer formula [1].
In addition, the size of crystallites along the [111]
direction and parameter gII of lattice paracrystalline dis-
tortions were calculated, in accordance with the Hose-
mann theory [5], by measuring several orders of reflec-
tion from the (111) surface,

(1)δS( )2 δS( )c
2 δS( )II

2+ 1/Lhkl
2 πgII( )4m4/dhkl

2 ,+= =
1063-7842/05/5011- $26.00 1458
where (δS) is found by the formula

(2)

In the above formulas, S = 2(sinθ)/λ, λ is the X-ray
radiation wavelength, K is a constant close to unity, 2θ
is the scattering angle, (δS)c and (δS)II are the respective
contributions of the grain size and lattice distortions to
the width of the reflection, m is the order of reflection,
and gII = (∆dhkl/dhkl) is the relative change in interplanar

spacing dhkl. Formula (1) applies if 2π2 m2 ! 1.

Small-angle diffraction studies were performed in
the transmission mode on a KRM-1 setup with slot col-
limation of the primary X-ray beam. The width of the
beam at its base was 5'. Only Ni-filtered CuKα radiation
was used. The scattering angles were varied from 12′ to
2°. The substrate was a 7.5- to 10-µm-thick hydrated
cellulose film covered by a thin layer of silicate adhe-
sive. A thin layer of the powder was more or less uni-
formly distributed over its surface, and the entire com-
position was then rolled by a glass roller. The contribu-
tion of a reference adhesive-covered substrate to
scattering was insignificant compared to the back-
ground in the scattering angle range studied.

According to the Guinier theory, the distribution of
small-angle scattering intensity for X rays scattered by
dilute systems of similar equal-size particles is
described by the formula

(3)

where I(S) is the scattering intensity, n2 is the scattering
capacity per scatterer, Ri is the radius of inertia, and
S can be set equal to 2θ/λ (because of the smallness of
the scattering angle).

Formula (3) is valid if the product RiS is much
smaller than unity. Taking the logarithm of (3) yields

(4)

Lhkl K / 2 θcos( )/λ[ ]δθ 1/ δS( ).≈=

gII
2

I S( ) n
2

4π2Ri
2S2/3–( ),exp=

Ilog n2 4π2Ri
2S2/3( ) e.log–log=
© 2005 Pleiades Publishing, Inc.



        

X-RAY DIFFRACTION ANALYSIS 1459

                       
Therefore, experimental scattering curves were first
constructed in the standard coordinates (intensity ver-
sus scattering angle) and then converted to the curves in
the Guinier coordinates (logarithm of intensity versus
scattering angle squared). From slope α of these curves
in the Guinier coordinates, the radii of inertia of scatter-
ers were found. For CuKα radiation,

(5)

It was found experimentally [2] that, for a set of
scattering particles of, e.g., two sorts each with a rela-
tively narrow size distribution, the general distribution
constructed in the Guinier coordinates has the form of
a broken line with two respective linear portions.

In taking small-angle measurements, the goniome-
ter was rotated manually and a total of 1000 counts
were recorded at each fixed scattering angle; so, the rel-
ative error of intensity measurement was within 3–4%.

RESULTS AND DISCUSSION

Figure 1 shows the diffraction pattern of the C60
fullerene powder on the glass substrate. The reflections
from the fullerene are much more intense than the scat-
tering from the substrate, and so determination of their
intensities and positions poses no difficulties. Accord-
ing to calculations, the interplanar spacings in the fcc
and hcp lattices are nearly the same but the intensities
of the corresponding reflections differ. The majority of

the most intense peaks can be attributed to the Fm m
fcc lattice, which is observed at T > 260 K [6], and the
interplanar spacing agrees with the published data [3,
6–9] accurate to 0.001–0.002 nm.

Having constructed a linear dependence of (δS)2 on
m4 (Fig. 2) for the (111), (222), and (333) reflections by
the least squares method, we find from the point of
intersection of this plot with the vertical axis that L111 =
18 ± 2 nm. The slope of this line gives gII ≈ 2%.

The grain least size measured from the same reflec-
tions and also from the (220) reflection is 20–30 nm.
Thus, grains in the as-prepared C60 fullerene are suffi-
ciently perfect and 20–30 nm across, as follows from
the large-angle diffraction scattering data.

It should be noted that the structure of C60 fullerene
powders depends on the preparation technique. Korolev
et al. [3] studied seven lots of C60 fullerene that differ in
phase composition. They believe that fullerene powders
contain, along with the crystalline phase with perfect
“large” grains, fine “grains” 2–4 nm across and individ-
ual C60 molecules. The two additional phases show up
in wide-angle X-ray diffraction patterns as halos under
reflections in the interval 10°–15° and 17°–30°, respec-
tively (for CuKα radiation). In Fig. 1, these halos
(shown as dark areas) are seen not so distinctly as in [3].
Significantly, grains 2 nm across are physically unreal-
istic, since the interplanar spacings in the C60 lattice are

Ri 0.644 α–( )1/2.≈

3
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on the order of 1 nm (the molecular diameter exceeds
0.7 nm), so that long-range order cannot arise over a
distance of 2 nm. It seems that Korolev et al. [3] meant
clusters consisting of two to four molecules rather than
grains (crystallites).
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Fig. 1. Large-angle diffraction pattern taken of the C60
fullerene powder. Numbers above the peaks are reflection
indices in the fcc and hcp (in parentheses) lattices. CuKα
radiation.
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Fig. 2. (δS)2 vs. m4 (formula (1)) for the C60 fullerene
powder.
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Fig. 3. Large-angle diffraction pattern taken of the fullerene
soot. Reflection indices (except for (002)) correspond to the
fcc lattice of fullerene C60. The (002) reflection is that of
graphite. CoKα radiation.
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In the wide-angle diffraction pattern taken of the
fullerene soot (Fig. 3), only four reflections are dis-
tinctly seen, three corresponding to the fcc lattice of
pure C60 fullerene. The fourth (most intense) reflection
can be assigned to the (002) reflection from the graphite
lattice. The crystallite sizes in the C60 fullerene and
fullerene soot calculated by the Scherrer formula from
the widths of the (220) and (111) reflections are ≈20
and ≈25 nm, respectively. Thus, crystallites in the
fullerene powder and fullerene soot are of the same
size.

Before turning to the results of small-angle mea-
surements, we note that a C60 fullerene molecule has
the form of a hollow truncated icosahedron with zero
electron density inside (Fig. 4), as follows from exper-
imental and analytical results [10]. The inner and outer
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Fig. 4. Computer simulation of the electron density distri-
bution over two central cross sections of a C60 fullerene
molecule passing through (a) two and (b) four double bonds
[10].
diameters are, respectively, 0.4 and 0.714 nm (Fig. 5)
[11]. With this in mind, a C60 fullerene molecule can be
approximated by a spherical sheath with a uniformly
distributed density; then, its radius of inertia equals
0.30 nm.

Figure 6 shows the small-angle diffraction patterns
for the C60 fullerene powder; Fig. 7, the same patterns
constructed in the Guinier coordinates. It is noteworthy
that curves 1 and 2 have the same slope at very small
angles; the radius of inertia equals 10 nm in both cases.
If we assume that scattering particles are cubes with a
uniform density, the edge of the cube is then 20 nm
long. This value is in agreement with the large-angle
diffraction data for the C60 crystallite size in both the
powder and the soot.
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Fig. 5. (a) Cluster of two C60 molecules (the inner and outer
diameters of the molecule are indicated) and (b) its cylindri-
cal approximation.
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Fig. 6. Small-angle diffraction patterns taken of the C60
fullerene powder and fullerene soot.
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Let us now turn to the second portion of curve 1 in
Fig. 7. Here, two straight lines are drawn with regard to
the measurement error: their slopes give radii of inertia
of ≈0.9 and ≈0.3 nm, respectively. The first value corre-
sponds well to clusters consisting of two C60 molecules.
In fact, let us represent such a cluster as a cylinder of
height H equal to two diameters of a C60 molecule and
radius R equal to the radius of the molecule (Fig. 5b).
The relationship Ri = (R2/2 + H2/3)1/2, which is valid for
homogeneous cylinders, yields Ri = 0.86 nm, in good
agreement with the experimental data. The other value
corresponds to individual C60 molecules, a large
amount of which is present in C60 fullerene powder pre-
pared by the Krätschmer–Huffman method, as follows
from the shape of the amorphous halo observed in
large-angle diffraction patterns [3].
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Fig. 7. The same patterns as in Fig. 6 constructed in the
Guinier coordinates. Numbers by different rectilinear por-
tions indicate the corresponding radii of inertia.
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The second and third rectilinear portions of curve 2
in Fig. 6 correspond to fullerene soot particles with
radii of inertia of 3 and 2 nm, respectively. Such values
cannot as yet be assigned to any structural element.

Thus, the C60 fullerene powder consists of grains
≈20 nm in size, two-molecule clusters, and individual
fullerene molecules. The fullerene soot also contains
C60 grains 20–25 nm across.
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Abstract—The subject of study is ultrashort avalanche-produced electron pulses generated in air under atmo-
spheric pressure. The current amplitude of the pulses behind 45-µm-thick AlBe foil exceeds 100 A, and their
FWHM is ≈0.2 ns. The conditions of generation of ultrashort pulses persist at repetition rates as high as
1.5 kHz. A volume discharge initiated in an open coaxial-electrode gas diode by high-voltage nanosecond
pulses generates hard (>60 keV) radiation. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Pulsed and continuous sources of X rays are being
widely applied in various areas of science and technol-
ogy. Usually, X-ray radiation is generated by stopping
an electron beam on a target made of a heavy metal,
while electron beams are produced in high-voltage
(several tens of kilovolts) vacuum diodes [1]. It was
reported [2–7] that ultrashort avalanche electron beams
(UAEBs) were produced in gas diodes at a pressure of
1 atm or higher. Possible applications of nanosecond
electrons beams were considered in [8, 9].

The UAEB offers unique properties. Upon filling a
gas diode of an appropriate configuration (small dimen-
sions and a low inductance) with atmospheric-pressure
air, the beam current amplitude amounts to several hun-
dreds of amperes and the FWHM of the pulses is no
more than several hundreds of picoseconds [3–7]. Opti-
mized UAEBs were used to initiate a volume discharge
in an atmospheric-pressure CO2 laser [8] and excite
cathodoluminescence in crystals [9]. However, the
early experiments on UAEB generation used single
shots or a low repetition rate (no higher than 5 Hz),
while advanced nanosecond high-voltage pulse genera-
tors operate in the pulsed–periodic regime with a pulse
repetition rate of 1 kHz or higher [10, 11]. Specifically,
a mechanism of superfast current switching in semicon-
ductors based on tunnel–collision ionization has been
implemented [11]. Terminated by a 50-Ω load, a pulser
built around this effect generated pulses of amplitude
150–160 kV and duration 1.4 ns with a rate of up to
3 kHz. The pulse rise time was 200–250 ps.

The aim of this work is to study the properties of
UAEBs produced in gas diodes of different configura-
1063-7842/05/5011- $26.00 1462
tions and also the feasibility of producing UAEBs at a
high repetition rate of generating pulses. UAEBs were
generated in an open gas diode with subsequent record-
ing of X-ray radiation.

EXPERIMENTAL

The setup used in our experiments was described
elsewhere [11, 12]. An overvoltage across a tunnel–col-
lision sharpener was achieved with an SOS-diode-
based short-pulse generator and intermediate sharpener
[12] operating in the normal collision-ionized wave
mode. The generator provided an output voltage ampli-
tude of 220 V with a rise time of about 1 ns. A terminat-
ing tunnel–collision sharpener placed at the beginning
of the transmission line generated in the line a pulse
with a rise time of about 250 ps. All the circuits of the
generator were filled with transformer oil. The gas
diode used in the experiments (Fig. 1) was similar to the
diode described in [5] and was implemented in two ver-
sions: (i) a cathode mounted on a central electrode and
an anode made of foil and (ii) an open gas diode with-
out foil, which was used to generate X-ray radiation.

We studied the parameters of the electron beam
and/or X-ray radiation using three cathodes and two
anodes of different configuration. Cathode 1 (5 in
Fig. 1) is a tube 6 mm in diameter made of a steel sheet
100 µm thick. Cathode 2 was a steel ball 17.4 mm in
diameter. Cathode 3 was a steel ball 7 mm in diameter,
which was fixed at the end of a steel tube of diameter
6 mm. Planar anode 1 (4 in Fig. 1) was made of AlBe
foil 45 µm thick. As the second anode, we used the
inner metallic surface of the gas diode (3) to provide
© 2005 Pleiades Publishing, Inc.



        

GENERATION OF X-RAY RADIATION 1463

                              
more efficient (compared with the foil) anode cooling
at high pulse repetition rates. In the latter case, the foil
was removed, so that the diode remained open.

Under conditions 1, the gas diode consisted of the
planar anode and cathode 1 or 3. Here, breakdown was
accomplished between the end face of the cathode and
central part of the planar foil anode. The electrode gap
could be varied between 5 and 16 mm. As was already
noted, when the diode was open (conditions 2), the foil
was removed and breakdown of the air was accom-
plished at a low repetition rate between the end face of
the tube (cathode 1) or lateral surface of the ball (cath-
odes 2 and 3) and the edge of the cylindrical case of the
diode. The electrodes were coaxial. The gap between
the cylindrical surface of the anode and cathode 1 was
equal to 21 mm; cathode 2, 15.3 mm; and cathode 3,

1'

4

3

5d

6

7

8

40

10

1

2

Fig. 1. Schematic of the experimental setup: (1, 1') dosime-
ter, (2) additional screen, (3) case of gas diode (anode 2),
(4) foil, (5) cathode, (6) gas diode insulator, (7) transmis-
sion line body, and (8) central conductor.
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20.5 mm. Since the foil was absent under conditions 2,
we could observe and photograph the integral glow of
the discharge. Under conditions 1, we measured the
beam parameters behind the foil. Under conditions 2,
the electron beam was detected and its relative intensity
was measured with a VICTOREEN541R dosimeter,
which was placed at a distance of 5 cm from the foil
normally to the axis of the transmission line of the gen-
erator (1 in Fig. 1). In the pulse train mode, the open
diode combined with the dosimeter allowed measure-
ments at a repetition rate of pulses in a train of up to
1.5 kHz. The number of pulses per train was varied
from 150 to 3000. The dosimeter used in the experi-
ments recorded the electrons and X-ray quanta that
have an energy exceeding 60 keV.

Voltage pulses were detected by capacitive voltage
dividers inserted in the transmission line of the genera-
tor. Current pulses were detected with a low-inductance
collector 2 cm in diameter terminated by a coaxial
cable. The pulses from the divider and collector were
applied to a TDS6604 digital oscilloscope with a
6-GHz transmission band and a recording rate of
20 points per nanosecond (20 GHz). The pulse rise time
in the measuring system did not exceed 100 ns. The
measurements were taken in the single shot mode and
at a pulse repetition rate varying from 1.5 to 1500 Hz.
At a rate of 100 Hz or more, the pulses were applied to
the gas diode in trains.

RESULTS AND DISCUSSION

In the course of experiments, we recorded the inci-
dent and reflected voltage pulses in the transmission
(b)(a)

(c) (d)

Fig. 2. Waveforms of the (a–c) voltage pulses and (d) beam electron current at a low pulse repetition rate. The horizontal scale is
0.5 ns/div, and the vertical scale is (a–c) 36 kV/div and (d) 30 A/div.
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line, beam current waveforms behind the foil, and elec-
tron beam “autograph”; measured the X-ray exposure
dose; and calculated the electron energy distribution
behind the foil. Figure 2a shows the waveform of a
pulse from the voltage divider placed in the transmis-
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Fig. 3. UAEB amplitude vs. electrode gap width under con-
ditions 1 (single shots, cathode 1).

(‡) (b)
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Fig. 4. UAEB autographs behind aluminum foil (a) 10 and
(b) 70 mm thick (the gap width is 11.7 mm, cathode 1).
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Fig. 5. Electron energy distribution in the UAEB (the gap
width is 11.7 mm, cathode 1).
sion line of the generator. The pulse is unaffected by
reflection from the gas diode due to the elongation of
the transmission line. The pulse voltage and current
amplitudes are, respectively, 156 kV and 3.2 kA, and
the FWHM equals 1.4 ns. The voltage pulse generated
by the gas diode with cathode 1 under conditions 1 is
shown in Fig. 2b, and the current waveform after the
foil is depicted in Fig. 2d. The incident and reflected
voltage pulse amplitudes are, respectively, 134 and 55
kV, which corresponds to a maximal voltage across the
gap of ≈190 kV (at this voltage, the resistance of the gas
diode equals ≈120 Ω). Under optimal conditions, the
UAEB amplitude (Fig. 2d) behind the foil exceeds 100
A, and the FWHM is ≈0.2 ns. The voltage pulse wave-
form for the open diode with cathode 1 is represented
in Fig. 2c. The increase in the reflected pulse amplitude
is associated with an extension of the gap and, accord-
ingly, an increase in the gap resistance to ≈170 Ω .
Remarkably, the peak in the voltage pulse waveforms
(Figs. 2b and 2c) is followed by a shallow dip, which
reflects a decrease in the discharge plasma resistance
during the pulse. The current pulse amplitude behind
the foil (cathode 1) versus gap width dependence is
shown in Fig. 3. The highest current is observed at a gap
width of 11.7 mm. When cathode 1 was replaced by
cathode 2 in the single shot mode, the optimal gap
shrinks to 7.5 mm and the electron beam current
decreases by ≈30%.

Note a considerable scatter in the measured beam
current amplitudes, especially under nonoptimal condi-
tions. However, the peak amplitudes were reliably
reproduced from measurement to measurement and the
operating stability of the gas diode was even improved
after pretraining in the pulsed–periodic regime. Here,
we give the maximal amplitudes of the beam current.
Figure 4 demonstrates the autographs of the electron
beam behind Al foil 10 and 70 µm thick. In the latter
case, the number of pulses needed to record the auto-
graph was raised from 450 to 1350. The diameter of the
autograph in the plane of the foil is about ≈16 mm. The
electron energy distribution taken by the foil method is
shown in Fig. 5. The distribution after the foil peaks at
an electron energy near 100 keV. A substantial number
of electrons had an energy above 140 keV. Narrowing
of the voltage pulse front compared with the front of
voltage pulses produced in the RADAN-303 accelera-
tor [5, 6] increased the UAEB energy.

The most significant result was obtained when the
open diode was studied in the pulsed–periodic regime
(Fig. 6). With cathode 1 (Fig. 6a), the maximal X-ray
exposure dose (within the initial 150 pulses) was
observed at a pulse repetition rate of 1.5 Hz or less. As
the repetition rate was raised, the exposure dose
declined continuously and, eventually, the dosimeter
did not detected X-ray radiation within the initial 450
pulses when the rate achieved 100 Hz. However, with a
further rise in the repetition rate, X rays were detected
again. The second maximum appears at a repetition rate
of ≈200 Hz. When the repetition rate was increased
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
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from 0.5 to 1.5 kHz, the X-ray exposure dose per initial
150 pulses dropped only twofold.

With cathode 2 (Fig. 6b), the minimal and maximal
doses were observed t repetition rates of 1.5 Hz and
≈200 Hz, respectively. When the repetition rate was
raised from 0.5 to 1.5 kHz, the X-ray exposure dose per
150 pulses decreased by no more than three times and
was 1.5 times higher than with cathode 1. With cathode 3
(Fig. 6c), the maximal dose, as with cathode 1, was
observed at a repetition rate of 1.5 Hz; however, the
second maximum appeared at a lower rate, ≈50 Hz.
Thus, in all the three cases, X-ray radiation was gener-
ated at a high pulse repetition rate and a change in the
repetition rate or cathode design influenced the expo-
sure dose of the X-ray radiation.

With a 5-mm-thick lead screen (2 in Fig. 1) placed
before the dosimeter, X rays were not detected under all
the conditions. However, when an aluminum screen
170 µm thick was mounted at the same place, the
dosimeter readings changed insignificantly. With the
dosimeter placed in position 1' in Fig. 1 (i.e., behind the
lateral wall of the diode and transmission line), X rays
were not detected over 450 pulses.

Visual observation and photographing of the glow in
the gas diode suggest that the discharge in the diode is
volume and concentrates at the places where the elec-
tric field is slightly enhanced (Fig. 7). With cathode 3,
the discharge is the most homogeneous (Fig. 7c) and
the current partially closes to the central part of the ball.
When the pulse repetition rate was low and the number
of pulses per train was small, the volume discharge had
the form of overlapping jets with bright spots at the end
of the tube (cathode 1) [6] or on the spherical surface
(cathode 2), which is at a very short distance from the
anode.

When the pulse repetition rate is high and the num-
ber of pulses per train is large (more than 50), the dis-
charge remains volume but its form changes. The dis-
charge-occupied space between the electrodes starts
expanding, and an additional volume discharge of a
lower density arises between the cathode holder and
inner metallic surface of the cylindrical anode. As the
repetition rate and number of pulses per train grow fur-
ther (1000 or more), bright channels appear in the gap.

It should be noted that the X-ray exposure doses
under conditions 1 (with foil) and conditions 2 (open
gas diode) with cathode 1 differed by as little as 20%;
namely, they equaled 16 and 13 mR, respectively, over
150 pulses following with a rate of 1.5 Hz. In both
cases, the dosimeter was at a distance of 5 cm from the
foil.

Let us discuss the results obtained. When a high-
voltage pulse with a subnanosecond rise time is applied
to the gap, the plasma front moving from the cathode
toward the anode produces a critical field near the
anode and a UAEB forms [3]. The UAEB amplitude
and energy depend on many factors [6], including the
pulse repetition rate. X-ray radiation with a quantum
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
energy of >60 keV is generated mainly when the elec-
tron beam stops at the anode. In this work, it is for the
first time shown that the conditions for UAEB genera-
tion persist when the repetition rate of pulses, including
those in a train of 150 pulses, is high (1.5 kHz).

The second maximum in the dependence of the
exposure dose on the repetition rate is due to expansion
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Fig. 6. X-ray exposure dose (over 150 pulses) vs. pulse rep-
etition rate for the open gas diode with cathode (a) 1, (b) 2,
and (c) 3.
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(‡) (b) (c)

Fig. 7. Pattern of the volume discharge in the open diode with cathode (a) 1, (b) 2, and (c) 3 after one shot.
of the space occupied by the discharge. It appears that,
when the repetition rate is high, the plasma has no time
to recombine in the areas where the current density is
the highest and the UAEB forms under worse condi-
tions (the electric field gradient near the anode weak-
ens). As the current density decreases as a result of the
discharge area expansion toward the transmission line,
the UAEB forms in areas with a lower current density
and X-ray radiation is generated at high repetition rates.
Although the exposure dose at repetition rates of
0.5 kHz or higher was smaller than at lower rates, the
dosimeter continuously detected X-ray radiation with a
quantum energy above 60 keV.

CONCLUSIONS
We studied an ultrashort avalanche electron beam

produced in air under atmospheric pressure. It is shown
for the first time that the conditions for UAEB genera-
tion persist at a pulse repetition rate as high as 1.5 kHz.
X rays generated by electrons with an energy above
60 keV are detected if nanosecond high-voltage pulses
are employed and a volume discharge is initiated in an
open gas diode filled with air under atmospheric pres-
sure. The X-ray exposure dose depends on the pulse
repetition rate nonmonotonically (nonlinearly). It
seems that such a nonlinear dose–rate dependence may
be used to improve the stability of sharpeners operating
in the pulse–periodic regime. Behind 45-µm-thick
AlBe foil, the UAEB current amplitude exceeds 100 A
at an FWHM of ≈0.2 ns.
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Abstract—Optoelectrical characteristics of a pulsed-periodic discharge in xenon are investigated experimen-
tally under conditions such that the product of the electrode gap length and the gas pressure is in the range of
4–20 Torr cm. High conversion efficiency of the energy deposited into vacuum UV radiation in a discharge sus-
tained by 0.1-µs voltage pulses at a repetition rate of 1–10 kHz is demonstrated. It is shown that this effect is
related to the fast expansion of the negative glow occurring after each discharge ignition. The conditions are
determined under which the discharge is not accompanied by the heating and sputtering of the cathode. © 2005
Pleiades Publishing, Inc.
Pulsed-periodic discharge in xenon at pressures of
10–40 Torr was investigated in [1, 2] as a source of vac-
uum UV radiation in the 145- to 190-nm wavelength
range. The discharge was excited in two-electrode gaps
with a distance of 1–5 mm between the cathode and
anode. Zn2SiO4 : Mn phosphor was used to convert UV
radiation into visible light. It was shown that the light
power efficiency increases significantly as the duration
of the applied voltage pulses is reduced. At a pulse
duration shorter than 0.2 µs, the light efficiency was
found to be one to two orders of magnitude higher than
that in the negative glow of a dc discharge. It was shown
in [3] that the decrease in the duration of the voltage
pulses sustaining a discharge in xenon-filled industrial
gas-discharge indicator panel cells from 2 to 0.3 µs was
accompanied by a twofold increase in the UV radiation
intensity. However, the reason for such an efficient con-
version of the deposited energy into UV radiation
remains unclear.

In [4], the propagation of the negative glow bound-
ary toward the cathode with a velocity of 106–2.5 ×
106 cm/s was observed after discharge ignition in a Ne–
Xe(10%) mixture by voltage pulses with an amplitude
of 190–220 V. It is known [5] that the emission of UV
radiation is caused by the processes initiated by elec-
tron-impact gas ionization near the negative glow
boundary. The question naturally arises as to whether
the propagation of the cathode glow boundary can lead
to the production of the excited xenon atoms and
dimers in a volume larger than that in a dc discharge.

In this paper, we present results of experiments on
the investigation of the negative glow expansion as a
mechanism for the efficient conversion of the deposited
energy into UV radiation in a xenon discharge sus-
tained by short periodic voltage pulses.
1063-7842/05/5011- $26.00 1467
The experimental setup consisted of two identical
glass cells with internal dimensions of 20 × 20 × 6 mm.
The inner surface of one of the cells was covered with
a (Eu, Ba)MgAl10O17 phosphor. Both cells contained
two parallel 20-mm-long 0.15-mm-diameter nickel–
iron alloy wire electrodes separated by 3 mm. The setup
was located in a vacuum chamber with a residual pres-
sure of lower than 2 × 10–6 Torr. The xenon pressure
was measured by a VDG-1 vacuometer.

Voltage pulses with an amplitude of 200–800 V, a
repetition rate of 1–10 kHz, and an FWHM of 60–
450 ns were supplied to the anode. The cathode was
grounded through a 50-Ω measuring resistor. The volt-
age pulse rise time (from 0.1Umax to 0.9Umax) was 40 ns
and remained unchanged in the course of our experi-
ments. The discharge voltage and current were mea-
sured by a two-channel wideband oscilloscope. The
voltage pulses were supplied to the input of the oscillo-
scope through a frequency-independent divider. A sig-
nal proportional to the discharge current (from which
the signal of the displacement current through the
“cold” discharge gap was preliminary extracted) was
supplied to the second input of the oscilloscope. For
this purpose, the signals from resistors in the cathode
circuit and an RC-circuit connected in series to the
anode (the capacitance being chosen to be equal to that
of the “cold” interelectrode gap) were supplied to the
inputs of a differential amplifier.

A pulsed optoelectronic amplifier with a 2.8-cm-
focal-length objective producing a twofold magnified
image of the discharge gap was used as a system for
recording the phosphor and discharge radiation with a
spatial resolution of 0.1 mm. In the image plane, a vari-
able-width diaphragm was installed. Immediately
behind the diaphragm, an FÉU-115 optoelectronic
amplifier with a 5-ns response time was located. The
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Influence of the excitation duration on the character-
istics of a pulsed-periodic discharge: (a) waveforms of the
(1) voltage, (2) current, and (3) phosphor emission intensity
and (b) the dependence of the light power efficiency on the
voltage pulse duration.
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Fig. 2. Expansion of the negative glow after discharge igni-
tion: (1) voltage; (2) current; (3) phosphor emission inten-
sity; (4, 5) optical emission intensity from the anode and
near cathode regions, respectively; and (6) location of the
negative glow boundary.
entire system was mounted on a movable support and
could be displaced in the image plane by using a
micrometer screw. The light pulses were recorded by an
oscilloscope with a 2-ns time resolution.

Fig. 1a shows waveforms of the voltage U(t); the
discharge current I(t); and the anode current J(t) of the
optoelectronic amplifier, which is proportional to the
phosphor radiation intensity. The waveforms were
obtained at a 15-Torr xenon pressure and 1-kHz pulse
repetition rate. At the front of the current waveform,
there is a peak (with an amplitude Ip), which is followed
by a rapid drop and the subsequent gradual increase
with a tendency toward saturation. A steady-state dis-
charge current of Is ≈ 0.3Ip is established about 120 ns
after the beginning of the discharge. The peak current
Ip, the steady-state current Is, and the amplitude of the
phosphor radiation pulse depend slightly on the voltage
pulse duration. An increase in the latter results only in
a longer quasi-steady stage of the discharge current.

As a quantitative criterion of the conversion effi-
ciency of the energy deposited in a discharge into UV
radiation, we used the light power efficiency η,

(1)

where T is the pulse repetition period.
Figure 1b shows the dependence of the light power

efficiency η on the voltage pulse duration τU at a con-
stant repetition period. The maximum efficiency was
achieved at a voltage pulse duration below 100 ns,
which was insufficient for the formation of a quasi-
steady discharge. In this case, the conversion efficiency
of the deposited energy into UV radiation was four
times higher than that in the case of τU > 300 ns, when
an anomalous glow discharge was primarily in a quasi-
steady state. Hence, UV sources in xenon are produced
with the maximum efficiency due to the processes that
occur when the negative glow appears, which is accom-
panied by a characteristic peak in the current wave-
form.

Figure 2 shows waveforms obtained in the case of
short voltage pulses (τU ≈ 70 ns) with a repetition rate
of 1 kHz. In addition to the waveforms of the voltage,
current, and phosphor radiation intensity, optical radia-
tion signals from the anode and cathode regions of the
cell not covered with phosphor are also shown. In order
to determine the dependence of the time at which radi-
ation appears at a distance x between the center of the
recording region and the cathode, the optical system
was displaced from the anode toward the cathode
through 0.1-mm steps. The results of measurements of
the glow boundary propagation are presented in Fig. 2
by circles. The negative glow expands toward the cath-
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ode with a velocity of ~107 cm/s, which is two orders of
magnitude larger than the drift velocity of xenon ions
under the conditions of our experiments. An increase in
the voltage pulse amplitude or a decrease in the xenon
pressure is accompanied by an exponential increase in
the propagation velocity of the glow boundary.

A comparison between the propagation velocity of
the glow boundary and the peak amplitude of the cur-
rent Ip, as well as the coincidence in time of the current
peak and the glow expansion, allows us to interpret the
current flowing through the cathode region when the
glow appears as a displacement current caused by the
contraction of the region between the cathode and the
negative glow. When the pulse repetition period is less
than 50 µs, a plateau appears at the front of the wave-
form. As the repetition period decreases, the height of
the plateau increases and the time delay between the
voltage and current pulses decreases to zero. The peak
at the front of the current pulse, which is characteristic
of the negative glow expansion mode, disappears at a
pulse repetition rate above 25 kHz. Investigation of the
spatial distribution of the discharge optical radiation
shows that, at short repetition periods (T < 40 µs), the
aforementioned expansion of the negative glow is
absent. At the same time, the phosphor radiation inten-
sity decreases substantially: at a repetition rate of 100
kHz, it is five times lower than that at a 10-kHz repeti-
tion rate. Similar results were obtained when the xenon
pressure was increased to 70 Torr.

The high conversion efficiency of the deposited
energy into UV radiation in the negative glow expan-
sion mode is confirmed by the following experiment.
First, a pulsed-periodic discharge with a repetition rate
of 10 kHz and, then, a dc discharge were ignited in the
same cell. The discharge conditions were chosen such
that the average light flux emitted by the phosphor was
the same in both cases. The difference in the conversion
efficiencies was evaluated by comparing the average
power deposited in the pulsed-periodic discharge,

(2)

and the power PDC deposited in the dc discharge. A
comparison of the results presented in the table shows

P〈 〉 1
T
--- U t( )I t( ) t,d

0

T

∫=
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that the efficiency of the UV glow excitation in a
pulsed-periodic discharge is two orders of magnitude
higher than that in a dc discharge.

Thus, in a pulsed-periodic discharge in xenon under
conditions such that each ignition is accompanied by
the propagation of the negative glow boundary toward
the cathode with a velocity of 107 cm/s, the excitation
efficiency of UV radiation is much higher than in a dc
discharge. When utilizing this effect, it is desirable to
limit the duration of the voltage pulses by the time at
which the glow approaches the cathode (100 ns under
our experimental conditions). In this mode, the dis-
charge is not accompanied by the heating and intense
sputtering of the cathode. The results obtained open the
way to creating efficient gas-discharge sources of vac-
uum UV radiation without utilizing cathodes with a
protective (e.g., mercury) coating.
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Abstract—Problems associated with the formation of coherent oscillations of an ensemble of classical oscil-
lators and their superradiance instability are considered. The dispersion properties of an electron bunch and the
conditions for the generation of nonequilibrium radiation are determined in the quasi-steady anharmonic oscil-
lator approximation. © 2005 Pleiades Publishing, Inc.
† In an early paper [1], Ginzburg proposed a method
for converting the kinetic energy of relativistic beams
of charged particles into electromagnetic radiation. The
method is based on the oscillations of charges in the
field of an external wave (in the undulator field). The
first undulator source—a free electron laser (FEL)—for
producing coherent optical light was build in the mid-
dle of the 1970s [2]. At present, FELs are capable of
generating light over a broad spectral range (see,
e.g., [3]).

Problems concerning the radiative instability of
classical oscillators and their interaction with electro-
magnetic fields were studied in quite a number of
papers (see, e.g., [4] and the literature cited therein).
Since the active medium in an FEL is a relativistic elec-
tron bunch, the formation of the field of stimulated radi-
ations is a necessary condition for the generation of
laser light. By its very nature, the field of stimulated
radiations is nonequilibrium with respect to the energy
of electron oscillations in the undulator field; it is gen-
erated as a result of the energy exchange between a
nonequilibrium electromagnetic wave (primary radia-
tion) and oscillating electrons (oscillators). In theoreti-
cal papers, the presence of the field of nonequilibrium
radiations in an ensemble of oscillators is attributed to
random processes [5, 6], to the presence of an external
source [7, 8], or to such a width of the energy distribu-
tion of the beam electrons at which the oscillators can
efficiently exchange their energy via radiative transfer
[9–11]. Kurilko and Ognivenko [12] obtained the fol-
lowing condition for the generation of stimulated (col-
lective) radiation in a relativistic electron beam: N @ 1,
where N is the number of electrons in a bunch with a
size equal to the bremsstrahlung wavelength in a frame

† Deceased.
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of reference associated with the guiding center of the
bunch.

The objective of the present paper is to determine
the possibility, as well as the conditions, for the onset of
the superradiance instability (the superradiance
regime) of a relativistic electron bunch in an undulator
whose parameters are optimal for the generation of the
lowest radiation mode. By the superradiance instability
we mean the generation of nonequilibrium radiation in
an electron gas due to the random fluctuations of the
radiation field that are amplified by the energy
exchange between this field and the oscillating elec-
trons.

Let us consider the generation of electromagnetic
radiation by a relativistic electron bunch (v e ≈ c) with a
space charge density g that moves along the z axis in the
destabilizing undulator field H(z) = qHH0f(z), where qH

is a unit vector in the direction of the field H(z) and f(z)
is a periodic function of z. We assume that ve ⊥  H(z) and
that the electron bunch is a closed equilibrium system
in which the individual electrons can exchange energy
with a radiation field of any nature. We describe the
electron energy distribution in the bunch by the func-
tion F(γ) (with γ being the relativistic factor) such that
∆γ ! γc (where γc is the most probable electron energy
for a given distribution and ∆γ is the distribution width)
under the additional assumptions that there are no Cou-
lomb interactions between the electrons, electron losses
are absent, and the parameters of the undulator and of
the electron injector are optimal for the generation of
the lowest bremsstrahlung mode.

In the field of the force FL(z) = eve × H(z)/c, each
bunch electron moves along the vector qL = qv × qH

(where qL and qv are unit vectors in the directions of the
force FL(z) and the velocity ve) in “its own” potential
well (the electron gas is magnetized in the z direction).
© 2005 Pleiades Publishing, Inc.
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This is why, for virtually any value of the space charge
density, we can ignore the effects associated with the
fine structure of the electron bunch and thereby can
describe the processes in terms of classical electrody-
namics and field theory.

We consider the dynamics of an individual electron
in the frame of reference associated with its guiding
center (in what follows, this frame of reference will be
denoted by K'). In the frame K', the plane wave of the
undulator field is described by the expression H(t) =
qHH0ξ(t), where ξ(t) is a bounded function with the
period Tu. The field strength of bremsstrahlung from a
point charge, EBs(t), is generally related to the field
potentials A(t) and ϕ by the relationship EBs(t) =
−dA(t)/(cdt) – ∇ϕ . Since the scalar potential ϕ pos-
sesses central symmetry in the frame K' and since the
vector potential is given by the expression A(t) =
evL(t)/(cR – vL(t)R) (where vL is the velocity acquired
by the electron under the action of the force FL and R is
the position vector from the origin of the frame K' to the
observation point), the oscillating vectors EBs(t) and
H(t) are mutually orthogonal and have the same phase.
In this case, the bunch electrons move in the crossed
fields E and H and, in the z direction, the dielectric con-
stant of the electron gas is real (there are no free charges
in the direction of the vector qL). Hence, for a trans-
verse wave propagating along the z axis, the magne-
tized electron gas behaves as a dielectric [13].

Let there be an ensemble of Na oscillators near the
ith electron within a volume Va whose dimensions are
determined by the radiation wavelength, and let the
oscillators interact with the field Ei of the radiation
emitted by the electron. In turn, the dynamics of the ith
electron is influenced by the radiation field of the
ensemble of oscillators. We turn to the quasi-steady
anharmonic oscillator approximation and assume that
the parameters of the system under consideration do not
vary during the period Tu. In this case, we can describe
the system by using the Bush theorem of the conserva-
tion of the angular moment of an electron in the case of
radiative interaction in the bunches of oscillators [14].
In the generation regime, each electron of the bunch
simultaneously emits its own bremsstrahlung and
amplifies the radiation that is nonequilibrium with
respect to the energy of its oscillations in the undulator
field. The field strength of the bremsstrahlung emitted
by the electron is described by the relationship Ebs i =

(2gD γi /3)1/2 [15]. We take the limit ∆γ ! γc and
assume that the initial oscillations performed by oscil-
lators are incoherent to see that the averaged (over the
volume Va) intensity of the bremsstrahlung emitted by
an ensemble of Naoscillators is directly proportional to

the sum . The number Na can be determined
from the synchronization condition in the frame
K': ∆t = π, where  is the most probable

re
2 H0

2

EBsi
2

i∑
ωc' ωc'
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
bremsstrahlung frequency for a given distribution F(γ).
In this case, the ensemble of oscillators in question is
within a volume bounded by a spherical surface of

radius RS = /2 and we have Na = gVa = gπD3/(6 ).

SPONTANEOUS RADIATION REGIME

In the laboratory frame of reference, the intensity of
the radiation emitted by an electron bunch is the sum of
the intensity of spontaneous emissions from the elec-
trons, Isp, in the undulator field and the intensities of
stimulated emission from each of the electrons, Ist, in
the radiation field of an ensemble of Na neighboring
oscillators. In this case, the total intensity of the lowest
radiation mode generated in a unit volume of the elec-
tron bunch is equal to [15]

(1)

where ∆  =  –  is the characteristic frequency of
the electron injector.

The field strength EBs of the spontaneous emission
from an ensemble of Na oscillators is related to the

intensity Ia = IspNa/(4π) by the formula  =
gDIsp/(cγ), so we have

(2)

where D is the undulator period and re = e2/mec2 is the
classical radius of an electron.

It follows from relationship (1) that the function
Itot(γ) is nonmonotonic and has an optimum value at the
point at which the following equality (obtained with
allowance for formula (2)) is satisfied:

(3)

where  = 4πge2/me is the Langmuir frequency of the
electron gas.

In terms of the equations for electron dynamics in
the field H(t) of a plane wave, the function F(γ)
describes the frequency and width of the spectral line of
the bremsstrahlung emitted by an electron. However,
radiative energy exchange is collective in nature and is
largely governed by such parameters of the medium as
the width ∆ω' of the spectral line of radiation from a
wave packet and the temporal energy-exchange param-
eter ∆t. Consequently, in the frame K', the quantity
∆  = |  – | in formulas (1) and (3) should, first of
all, satisfy the uncertainty relation ∆ω'∆t = π, i.e., ∆ω' =

λ c' γc
3

I tot γi( ) Isp Ist+=

=  
2e4g

3m2c3
-------------- H0

2γi
2 EBs

2 Na ∆ωi'tsin
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πc/ran( ), where ra is the mean distance between the

electrons and n( ) is the refractive index of an elec-

tron gas at the frequency  that is most probable for a

given distribution F(γ). Since ∆ω' = ∆γ/γc, we see

that  = πcγc/( n( )∆γ) = D/(2∆γ), so, in the limit

ra   = λ'/2 = D/(2γc), we obtain ∆ω'  .
Hence, for ra ≤ λ'/2 < RS and ∆γ ! γc, we have ∆ω' @

∆ , which means that the shape of the distribution
function F(γ) has essentially no effect on the width of
the spectral line characteristic of the radiative energy
exchange between the electrons in the bunch. From
relationship (3) we thus readily find the minimum value
of the refractive index of the electron gas for a trans-
verse radiation wave with the frequency  propagat-
ing along the z axis:

The dispersion properties of the medium govern its
response to an electromagnetic perturbation. From for-
mula (3) it follows that, along the undulator axis, the
magnetized electron gas is completely opaque to the
bremsstrahlung at the frequency  that is most proba-
ble for a given distribution F(γ). In such a medium, for
ωp > , the field EBs is attenuated due to its resonant
interaction with the particles of the medium and falls
off to zero at a distance of about ~  [16]. The elec-
trons absorb the energy of the field EBs and reemit it, the
phase difference between the emitted electromagnetic
wave and the field EBs being π/2. The result is the for-
mation of the field of nonequilibrium radiations Epr in
an ensemble of oscillators. Since there are no other
mechanisms whereby the energy of the field EBs is dis-
sipated, for a monoenergetic electron bunch we can set
Epr( ) ≈ EBs; note that, in this case, the fields EBs and
Epr have the same direction and are polarized to the
same extent. The minimum value of the refractive

index,  = 1.54, determines the condition for the
existence of the field Epr and for the transition of an
ensemble of oscillators to the superradiance regime,

specifically, the condition gtr ≥ / D2re for the
space charge density of the bunch.

SUPERRADIANCE REGIME

The radiative energy exchange between the elec-
trons in the bunch gives rise to the field of the coherent
oscillations performed by oscillators, whose radiation

ωc'

ωc'

ωc'

ωc'

ra
min ωc' ωc'

ra
min ωc'

ωi'

ωi'

nz
min ωi'( ) 1

ωp
2

ωi'
2

-------+ 1.54.= =

ωc'

ωi'

λ c'

ωc'

nz
min

6γc
2 π
intensity is directly proportional to

(4)

where Ncoh = gSRVcoh, with gSR being the space charge
density in the superradiance regime and Vcoh being the
volume of the region in which the field of coherent
oscillations executed by oscillators has been formed.

However, for ra ~ λ'/2, the spectral range character-
istic of the radiative energy exchange broadens and we
have  ~ ∆λ'. As a result, the radiative energy
exchange becomes far less efficient; so, within the vol-
ume Va, binary interactions between the oscillators are
most probable. In this case, the region of coherent oscil-
lations is a spherical layer of radius r0 = λ'/2 and thick-
ness δ = ∆λ'. At ∆γ ! γc, the volume of the layer is equal
to Vcoh = πD3∆γ/(2γ4) and we have Ncoh = 3∆γNa/γc. For
γi = γc, relationship (1) reads

(5)

From relationship (5) we can easily determine the
electron energy that is optimal for superradiance from
the active medium of an FEL. With allowance for for-

mula (2), this energy is equal to  =

(2π2D7g3 ∆γ2/3)1/9. From this it follows that the opti-
mal condition for the generation of coherent radiation
by an electron bunch in the superradiance regime is gSR

= (3 /2π2D7 ∆γ6)1/3. At this value of the space

charge density of the bunch, we have ωp !  and,

moreover, gSR/gtr = (re/ λ'∆γ2)1/3 ! 1. For the
superradiance regime, we can readily obtain the disper-
sion of an electron gas magnetized in the z direction:

Hence, the transition of the active medium of an
FEL to the superradiance regime is a threshold process
whose characteristic parameter is the frequency of
Langmuir oscillations of the electron gas. The measure
of the threshold level can be the refractive index of the
medium, nz ≥ 1.54, at which the frequency of Langmuir
oscillations of the electron gas is comparable to the fre-
quency of electron oscillations in the undulator field.
Under such conditions, the active medium of the laser
generates radiation that is nonequilibrium with respect
to the energy of electron oscillations in the undulator
field and the field of coherent oscillations of an ensem-
ble of oscillators forms. In the superradiance regime,
the optimum value of the space charge density of an
electron bunch is nz ≤ 1.13.
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Abstract—Interference between inhomogeneous waves in a planar waveguide placed in a perfectly conducting
environment is studied. It is shown that the interference flux of copropagating waveguide TM modes behaves
like counterpropagating homogeneous volume waves. The longitudinal and transverse components of the inter-
ference fluxes of co- and counterpropagating waves in the general case result from interference between both
the active and reactive components of the field. The interference flux of waveguide modes may also be observed
when the partial fluxes of the modes equal zero. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Interest in wave phenomena occurring in media with
complex and/or negative material parameters, namely,
ε and µ [1–5], is largely associated with the problem of
redistributing energy fluxes when an electromagnetic
wave leaves an absorbing medium for a transparent one
[4, 5]. This problem is intimately related to the effect of
decreased absorption in thin metal films due to interfer-
ence between counterpropagating waves. This interfer-
ence was called “tunnel” [6–8], because the wavevec-
tors of waves traveling in a highly absorbing medium
have an imaginary part. It was shown [9] that interfer-
ing reactive components of wave fields generate inter-
ference fluxes (IFs) even in those directions where the
initial waves do not necessarily transfer the energy. In
the available publications, tunnel interference is ana-
lyzed mostly for the case of homogeneous waves pass-
ing through a layer in the normal direction. However,
interference has a significant effect on propagation of
inhomogeneous waves in various guiding structures. It
was shown [10] that the structure and direction of the IF
in the case of inhomogeneous co- and counterpropagat-
ing waves exhibit intriguing features that are absent
when homogeneous waves interfere. The most impor-
tant guiding structure is a planar waveguide, which can
support both volume [11] and surface [12] inhomoge-
neous waves (modes). The type of wave propagation in
a waveguide depends on the material of its layers and
on the type of propagating mode. Interference between
inhomogeneous waves is easiest to analyze by the
example of modes propagating in a waveguide consist-
ing of a planar dielectric layer sandwiched in ideal con-
ductors, which are barriers for the waveguide mode
field. With such a structure, one can derive fairly simple
analytical expressions for the mode fields and gain
insight into interference between inhomogeneous vol-
ume modes in a guiding structure. In this work, we con-
1063-7842/05/5011- $26.00 1474
sider interference between TM modes copropagating
and counterpropagating in the waveguide mentioned
above and analyze the effect of the active and reactive
components of the energy flux in the structure.

WAVEGUIDE MODE FIELDS 
AND ENERGY FLUXES

Consider a planar waveguiding layer of thickness d
and permittivity ε sandwiched in ideal conductors (the
top layer and substrate). The interfaces coincide with
the planes x = 0 and x = d. Let TM waveguide modes,
which are the subject of analysis here, propagate in the
positive z direction. With regard to the boundary condi-
tions for these modes, the solutions to the Maxwell
equations inside the layer can be written as follows:

(1)

where n is the mode order, k0 = ω/c, ω is the frequency,
and c is the speed of light in free space.

The propagation constant and transverse wavenum-

ber of the modes are given by βn = ( εµ – )1/2 and
qn = πn/d, respectively. Permittivity ε and permeability
µ of the waveguiding layer are generally frequency-
dependent complex quantities. The projections of the
energy flux density for the TM mode are expressed as

(2)
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(3)

The energy flux projection onto the z axis is defined
by the wave field active components: it is proportional
to the real part of factor βn/ε, which relates field com-
ponents Enx and Hny. If βn and ε are real, these field com-
ponents are in phase. The energy flux projection onto
the x axis depends on the wave field reactive compo-
nents: it is proportional to the imaginary part of ε. This
component of the energy flux changes sign at points
xl = πl/2qn. At real ε, field components Hny and Enz are
shifted in phase by π/2; accordingly, the flux in the x
direction is absent. It also follows from (2) that, when ε
is real and negative, flux component Snz and propaga-
tion constant βn have opposite signs and so one can
speak of backward waves [3]. For the mode propaga-
tion constant to be real in this case, it is necessary that
the conditions ε < 0 and µ < 0 be met simultaneously.

The role of flux component Snx, which appears when
Imε ≠ 0, can be clarified by analyzing an expression for
the thermal power released by a waveguide mode in a
unit volume of a lossy medium,

(4)

where Qnα is the partial heat release due to a particular
field component.

From the above relationships, it follows that energy
flux component Snx is responsible for heat release com-
ponent Qnz, which is associated with field component
Enz. At each point, this component of the energy flux is
directed toward the nearest maximum of Qnz, the max-
ima of Qnz being localized at points xl = (2l + 1)π/2qn.
Flux component Snz is responsible for heat release com-
ponent Qnx + Qny, which is associated with field compo-
nents Enx and Hny. The maxima of Snz and Qnx + Qny are
localized at points xl = lπ/qn. Figure 1 shows the distri-
butions of energy flux components Snz and Snx across the
waveguiding layer for the waveguide mode n = 2
(curves 1 and 2, respectively, in the upper part of
Fig. 1), as well as of heat release components Qnx and
Qnx (curves 1 and 2, respectively, in the lower part) for
this mode (Qny = 0 at Imµ = 0). Hereafter, we take ε =
2–10–5i, µ = 1, and ω = 3 × 1015 s–1. Thus, in a dissipa-
tive planar waveguide, the x component of the energy
flux provides energy transfer from the nodes to anti-
nodes (the regions of intense heat release) of a standing
wave along the x axis, which arises even if a single
mode propagates in the waveguide. This flux compo-
nent is nonzero even if the wave cannot propagate, i.e.,
when βn is imaginary, but vanishes in a nondissipative

Snx
c

8π
------– Re EnzHny*( )=

=  
cqn

16πk0
--------------Imε

εε*
---------H0

2 2qnsin x 2Imβnz( )exp .–

Qn
ω
8π
------ Imε EnzEnz* EnxEnx* ImµHnyHny*+ +([ ]=

=  Qnz Qnx Qny,+ +
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medium. The run of Snx with the structure parameters
and x coordinate suggests that this dependence is of
interference character.

INTERFERENCE BETWEEN COPROPAGATING 
MODES

Let two waveguide modes propagating in the posi-
tive z direction be shifted in phase by ϕ in the plane z =
0. For one of these modes (subscript a), field compo-
nents Hay, Eax, and Eaz are given by Eqs. (1), where H0
should be replaced by H0a; n, by na; βn, by βa; and qn,
by qa. The magnetic component of the field of the other
wave (subscript b) is given by

(5)

for electric components Ebx and Ebz, Eqs. (1) remain
valid.

For the total field, the time-averaged energy flux
density can be represented (according to the principle
of superposition of fields) as a sum of the flux densities
for individual modes and IFs,

(6)

Hby H0b qbxcos i ωt βbz– ϕ–( )[ ] ;exp=

Sz = 
c

8π
------Re Eax Ebx+( ) Hay* Hby*+( )[ ]  = Saz Sbz Sz

int,+ +

Sx = c
8π
------– Re Eaz Ebz+( ) Hay* Hby*+( )[ ]  = Sax Sbx Sx

int.+ +
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Fig. 1. Distribution of the longitudinal and transverse com-
ponents of the flux and of the heat release components for
the mode n = 2 across the thickness of the waveguide.
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Here, the flux components for each of the modes are
given by relationships (2) and (3), where H0 should be
replaced by H0a or H0b; n, by na or nb; βn, by βa or βb;
and qn, by qa or qb. The IF components are expressed as

(7)

(8)

where βa + βb = 2β, βa – βb = ∆β, qa + qb = 2q, and qa –
qb = ∆q.

From (7), it follows that the z component of the IF
for identical modes (na = nb) is associated with interfer-
ence between homogeneous waves, i.e., between the
active components, which depend on x and z in the

Sz
int c

8π
------Re EaxHby* EbxHay*+( )=

=  
c

8πk0
-----------H0aH0b qax qbx Im2βz( )expcoscos

× Re 2β/ε( ) Re∆βz ϕ–( )cos[
+ Im ∆β/ε( ) Re∆βz ϕ–( )sin ] ,

Sx
int c

8π
------– Re EazHby* EbzHay*+( )=

=  c
16πk0εε*
------------------------– H0aH0b Im2βz( )exp

× Imε 2q ∆qxsin ∆q 2qxsin+( ) Re∆βz ϕ–( )cos[
+ Reε 2q ∆qxsin ∆q 2qxsin+( ) Re∆βz ϕ–( )sin ] ,
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Fig. 2. Distribution of (a) the components of the total and
interference fluxes for copropagating modes na = 2 and nb =
1 along the thickness of the waveguide and (b) the enve-
lopes of the components along the waveguide.
same way as the single wave flux. For modes with dif-
ferent indices (na ≠ nb), the IF acquires a z component
due to interference between the reactive components.
For homogeneous waves, this component is present
when counterpropagating waves interfere and is absent
when interference between copropagating ones takes
place. In this case, the active and reactive components
exhibit a similar dependence on x and, along with the
damping, similar (phase-shifted by π/2) slowly oscillat-
ing dependences on z (with a period, which is the recip-
rocal of Re∆β).

Note that, if β and β/ε are purely imaginary (for
example, when mode numbers na and nb differ signifi-
cantly or the real part of the permittivity is negative),
the waveguide modes cannot propagate and their x
components equal zero. However, the z component of
the IF is other than zero in this case,

(9)

From (9), it follows that, depending on ϕ, the IF may
be either codirected with both modes (the cocurrent IF)
or counterdirected with both modes (the countercurrent
IF of copropagating modes). In the case of volume
homogeneous waves, such effects are absent for
copropagating waves and arise only when counterprop-
agating waves interfere.

For identical modes, the IF x component is equal to
the flux of either of the modes. This shows up in the
presence of only the reactive component, which
depends on x and z in the same way as the single mode
flux. In the case of various modes, the IF acquires an
active (x) component, which is present even if the fluxes
of individual modes in a given direction are absent (ε is
real). In this case, the active and reactive components,
along with the damping, exhibit similar (phase-shifted
by π/2) slowly oscillating (with a period, which is the
reciprocal of Re∆β) dependences on z and somewhat
differing periodic dependences on x. Figure 2a shows
the components of total energy flux Sz at z = 0 (curve 1),

as well as components  and  of the IF (curves 2
and 3), across the guiding layer for copropagating
modes na = 2 and nb = 1 of equal amplitude at ϕ = π/3
and L = 1 cm. Figure 2b demonstrates the variation of
the envelopes of the component distributions along the

waveguide. It is seen that component  is comparable
in amplitude to total flux Sz in this direction. When
modes are weakly absorbed, the flux along the x axis is
almost completely an interference flux; therefore, the
curve for Sx(x) is omitted in Fig. 2: it nearly completely

coincides with the curve for (x) on the scale
selected. This is because the x components of the single
mode fluxes have only a small reactive component,
which is proportional to Imε, while the x component of

Sz
int c

8πk0
-----------H0aH0b qax qbxcoscos–=

× Im ∆β/ε( ) Im2βz( ) ϕ .sinexp

Sz
int Sx

int

Sz
int

Sx
int
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the IF has a large active component, which is propor-
tional to Reε. As follows from (7) and (8), the coordi-
nate dependence of the IF z component is always
defined by the product of the independent functions of
z and x. When absorption is weak, the same is true for
the IF x component (except for copropagating modes of
the same order with the zero phase shift).

INTERFERENCE OF COUNTERPROPAGATING 
MODES

Consider two TM modes propagating along the z
axis toward each other. Let they have phase difference
ϕ in the planes z = –L and z = L. For the mode propagat-
ing in the positive z direction, the magnetic component
of the field is written as

(10)

and the electric components are defined by Eqs. (1). For
the flux components of this mode, we have

(11)

With regard to a phase difference, the field compo-
nents of the counterpropagating mode obey the follow-
ing relationships:

(12)

The energy flux components for this mode are given
by

(13)

As for copropagating modes, the time-averaged
energy flux density for the total field can be represented
as a sum of the single mode fluxes and the IF. Accord-
ing to (7) and (8), the IF components for counterpropa-
gating waves are given by

Hay H0a qax i ωt βaz– βaL–( )[ ]expcos=
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  H0a
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=
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Ebx

βb

k0ε
-------Hby, Ebz–

i
k0ε
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∂Hy
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---------.= =

Sbz
c

8πk0
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ε
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  H0b
2 qbxcos

2
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× 2Imβb z L–( )–[ ] ,exp
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cqb

16πk0
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εε*
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2 2qbxsin–=

× 2Imβb z L–( )–[ ] .exp

Sz
int = 

c
8πk0
-----------H0aH0b qax qbx Im ∆βz 2βL+( )[ ]expcoscos

× Re
βa

ε
----- 

  Re 2βz ∆βL–( ) ϕ–[ ]cos
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(14)

(15)

If the modes are identical, the z component of the IF
contains only the reactive component, which oscillates
along the z axis and depends on x in the same way as the
single mode flux, as follows from (14). At different
modes, the IF has also an active z component. The
active and reactive components exhibit the same peri-
odic dependence on x, the same damping (at Imβa ≠
Imβb), and slightly different oscillating dependences
on z (with an oscillation period proportional to
(Re2β)−1). Unlike the IF for copropagating waves and
individual waves, the damping of the IF for counter-
propagating waves is weak, since it depends on the dif-
ference between the imaginary parts of the mode prop-
agation constants. When Imβa = Imβb, the IF of coun-
terpropagating waves becomes undamped.

If β and β/ε are purely imaginary, the z components
of the single mode fluxes vanish, while the z component
of the IF is other than zero for different modes,

(16)

Depending on phase difference ϕ, this component
may propagate in both the positive and negative direc-
tion along the z axis. It differs from the corresponding
flux of homogeneous waves in that it weakly decays
along the z axis when Imβa ≠ Imβb. For the same
modes, the z dependence is absent and the flux becomes
undamped.

For identical counterpropagating modes, the x and z
components of the IF are purely reactive, oscillate
along the z axis, and depend on x in the same way as the
single mode flux. When the modes differ, the IF takes
an active component along the x axis, which persists
even when the single mode fluxes in this direction are
absent (ε is real). In this case, the active and reactive
components exhibit the same damping (at Imβa ≠
Imβb) along the z axis, the same (phase-shifted by π/2)

– Re
βb

ε
----- 

  Re 2βz ∆βL+( ) ϕ–[ ]cos

+ Im
βa

ε
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  Re 2βz ∆βL–( ) ϕ–[ ]sin

+ Im
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ε
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  Re 2βz ∆βL+( ) ϕ–[ ]sin
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× Imε 2q 2qxsin ∆q ∆qxsin+( ){

× Re 2βz ∆βL–( ) ϕ+[ ]cos

+ Reε ∆q 2qxsin 2q ∆qxsin+( )
× Re 2βz ∆βL+( ) ϕ+[ ]sin } .
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2β
ε
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  H0aH0b qax qbxcoscos–=

× Im ∆βz 2βL+( )[ ] ϕ .sinexp
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oscillating dependence on z (with an oscillation period
proportional to (Re2β)–1), and slightly different peri-
odic dependences on x. Figure 3a shows the compo-
nents of total energy flux Sz (curve 1), as well as com-

ponents  and  of the IF (curves 2 and 3), across
the guiding layer at z = 0 for counterpropagating modes
na = 2 and nb = 1 at ϕ = π/3 and L = 1 cm. Figure 3b
demonstrates the variation of the envelopes of the com-
ponent distributions along the waveguide at x/d = 0.2.
In this case of different modes, the flux along the x axis
is an almost totally interference flux for the same reason
as in the case of copropagating waves. From (14) and
(15), it follows that, when absorption is weak, the IF
reactive component is small and can be neglected.
Therefore, its coordinate dependence is defined by the
product of the independent functions of z and x.
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Fig. 3. Distribution of (a) the components of the total and
interference fluxes for counterpropagating modes na = 2 and
nb = 1 along the thickness of the waveguide and (b) the
envelopes of the components along the waveguide.
CONCLUSIONS

Thus, the interference fluxes of different modes
propagating in a planar waveguide differ in properties
from the same fluxes of homogeneous waves. For dif-
ferent waveguide modes, both the longitudinal and
transverse components of the interference flux consist
of two parts, one associated with interference between
the reactive components of the field and the other with
interference between the active components. For homo-
geneous waves, each of the projections of the interfer-
ence flux is either purely active or purely reactive. Dif-
ferent copropagating waves exhibit energy interference
effects inherent in only counterpropagating homoge-
neous waves. These features of interference fluxes may
be helpful in designing and applying waveguides and
integrated optical devices.
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Abstract—The propagation of electric and magnetic fields and of the Poynting vector in the near zone (Fresnel
zone) of an electric dipole, a loop, and a dipole–loop pair is considered. The dimensions of all radiators are
much smaller than the radiation wavelength. It is shown that the ideas of the field distribution (polar diagram)
in the far zone cannot be applied to the properties of the field in the Fresnel zone. The radiated-power fraction
that is absorbed by an object whose electrodynamic properties are close to those of biological media is found
at a distance from the radiator to the absorbing object on the order of several millimeters. © 2005 Pleiades Pub-
lishing, Inc.
In recent years, considerable attention has been
given to studying fields in the near zone (Fresnel zone)
of a radiating dipole [2], especially antennas whose
dimensions are much smaller than the radiation wave-
length [3]. This is due, in particular, to the development
of antennas for mobile telephones [4], since the user of
a mobile telephone is in the near zone of the ultrahigh-
frequency radiator entering into the composition of the
telephone apparatus. The distribution of electric and
magnetic fields in the Fresnel zone differs substantially
from the field distribution in the far zone (Fraunhofer
zone [1]), the latter being described by the polar dia-
gram of an antenna. Therefore, the field distribution in
the Fresnel zone of a radiator whose dimensions are
smaller than the radiation wavelength requires a dedi-
cated study.

A radiator such that all of its dimensions are much
smaller than the radiation wavelength will be referred
to here as a microradiator. For a microradiator, one can
consider an individual dipole or a loop. Of particular
interest is a device combining a small dipole and a
small loop. Such a combination makes it possible to
obtain directed radiation without using superdirectivity
effects [3]. In the far zone of radiation, a combination
of a dipole and a loop ensures a polar diagram in the
form of a cardioid featuring zero radiation in the direc-
tion of the main ray of the antenna being considered [5].
It is of particular interest to clarify the question of how
the strengths of the electric and magnetic fields of such
a pair of radiators change in the near zone (Fresnel
zone).
1063-7842/05/5011- $26.00 1479
STRENGTHS OF THE ELECTRIC 
AND MAGNETIC FIELDS 

OF A MICRORADIATOR IN SPHERICAL 
COORDINATES

Let us consider an electric dipole of length l ! λ and
a circular loop of radius a @ λ. Figure 1 shows the
arrangement of the radiators with respect to the chosen
coordinate frame [5]. We would like to emphasize that,
traditionally, fields generated by a loop are determined
for a loop lying in the xy plane. In our case, the loop lies
in the yz plane. By using known relations for going over
from the radiating current to the vector potential and the
field-strength vectors [6], we obtain the strengths of the

θ
z

ϕ

x

y

Fig. 1. Dipole and loop (microradiator elements) in spheri-
cal coordinates.
© 2005 Pleiades Publishing, Inc.
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magnetic and electric fields of an electric dipole aligned
with the z axis and a loop lying in the yz plane.

For an electric dipole of length l, we have

(1)

(2)

For a magnetic dipole represented by a loop of
radius a, the results are

(3)

(4)
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Fig. 2. Polar diagrams in the far region for microradiators of
three types: (a) dipole, (b) loop, and (c) dipole–loop pair.
Here, we have used the following notation: r is the dis-
tance between the center of radiation and the point of
observation and idip and Iloop are the currents in the
dipole and the loop, respectively. The wave number is

(5)

where λ is the wavelength in a free space.

Let us find the sum of the fields radiated by the
dipole and the loop arranged in such a way that their
phase centers coincide and that the phase difference
between the dipole and loop currents is 90°. We have

(6)

(7)

(8)

(9)

Here, we have used the following notation:

(10)

We note that the factors Aρ and Bρ have the dimen-
sions of a current. The table gives the sets of coeffi-
cients A and B for various microradiator types.

If the value of ρ = 0.01779 A is chosen, the total
active power radiated by each of the aforementioned
radiator is 1 W. The polar diagrams of each of the
microradiators in the far zone (kr @ 1) are shown in
Fig. 2 for the equatorial plane (θ = π/2).

COMPLEX FLUX OF THE POYNTING VECTOR 
THROUGH A SPHERICAL SURFACE 
SURROUNDING A MICRORADIATOR

Let us consider the flux of the Poynting vector
through a sphere of radius r surrounding a microradia-
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tor occurring in a free space. We have

(11)

where asterisks denote complex conjugation. The
dependence of the real and imaginary parts of the
Poynting vector flux on the radius r is shown in Fig. 3
according to formula (11). We note that Re[P0(r)] is
formally a function of r, but, in fact, it does not depend
on r. This is a consequence of the energy-conservation
law and confirms the validity of the analytic expres-
sions for Eθ(ϕ, θ, r) and Hϕ(ϕ, θ, r). For kr < 0.1, the
imaginary part of the Poynting flux vector, Im[P0(r)],
for an individual dipole or an individual loop exceeds
its real part; as one approaches the center of radiation,
the former may exceed the latter by several orders of
magnitude. This suggests that a large amount of pulsed
electromagnetic-field energy is accumulated in the
antenna whose dimensions are much smaller than the
radiation wavelength. At the same time, the imaginary
part of the Poynting flux vector, Im[P0(r)], for kr < 0.1
in the case of a dipole–loop pair is close to zero. This is
likely to indicate that the reactive energies of the dipole
and the loop compensate each other.

DISSIPATION OF ELECTROMAGNETIC ENERGY 
BY AN ABSORBING OBJECT 

IN THE MICRORADIATOR FRESNEL ZONE

Let us consider the dissipation of electromagnetic
energy by an absorbing object that has the shape of a
sphere and is placed in the Fresnel zone of the microra-
diator being considered (see Fig. 4a). The absorbing
object covers the radiation flux within the cone of open-
ing angle 4α, where

(12)

Here, R is the radius of the absorbing ball, while r is the
distance from the center of the radiator to the surface of
the ball.

For the sake of definiteness, we assume that the rel-
ative magnetic permeability of the ball is µr = 1 and that
its dielectric characteristics at a frequency of 1–2 GHz
correspond to the values of εm ≅  50 and σm ≅  1 (Ω m)–1.
The chosen parameters correspond to the properties of
biological objects [7]. In order to simplify the evalua-
tion of relevant integrals, we will calculate the absorp-
tion by using a simplified scheme that is illustrated in
Fig. 4b. In isolating the central part of the cone, we have
considered that, in the external part of the cone the lines
of force of the spherical wave radiated by the microra-
diator are orthogonal to the surface of the absorbing
ball and are strongly weakened at the dielectric charac-

P0 r( ) Eθ ϕ θ r, ,( )Hϕ* ϕ θ r, ,( )[
0

π

∫
0

2π
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α 1
2
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TECHNICAL PHYSICS      Vol. 50      No. 11      2005
teristics specified above. In the central part of the cone,
the lines of force of the spherical wave are tangential to
the surface of the ball and are therefore continuous at
the interface of the free space and the absorbing ball.

For kr ! 1, the interaction of the electric field with
the absorbing object is of a quasistatic character. In
view of this, it would be illegitimate to consider the
presence of incident and reflected waves in spherical
coordinates at a distance from the radiator center much
shorter than the radiation wavelength. We now consider
a sphere of radius r surrounding the microradiator. At
the surface of the sphere, one can introduce the charac-
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teristic impedance Zfresn in the Fresnel zone as the ratio
of Eθ(ϕ, θ, r) to Hϕ(ϕ, θ, r) at a specific small distance
r and arbitrary angles ϕ and θ [2]. For kr < 1, the char-
acteristic impedance Zfresn becomes a pure imaginary
quantity whose modulus may exceed Z0 substantially.
Upon averaging, we can set Zfresn = 2Z0 with an accept-
able degree of accuracy. We assume that, in accordance
with Fig. 4b, the cone of opening angle 4α cuts, from
the sphere surrounding the microradiator, a spherical
segment whose surface impedance is determined by the
properties of the absorbing object,

(13)

where ε0 and µ0 are, respectively, the electric permittiv-
ity of the free space and its magnetic permeability and
σm and εm are, respectively, the conductivity and the rel-
ative dielectric permittivity of the absorbing-object
material.

Let us consider the question of how the lines of
force of magnetic and electric fields penetrate into an
absorbing object. Within the cone of opening angle 4α,
the lines of force of the magnetic field are tangential to
the surface of the object; from this and from the known
boundary conditions, it follows that, at the surface of
the object, they generate a surface current that is numer-
ically equal to the magnetic-field strength. Further, the
irradiated ball surface, which is singled out by the cone
of opening angle 4α, will be considered as a conducting
segment surrounded by a weakly conducting medium.
In the quasistatic approximation, the electric field
causes a polarization of this segment, this leading to the
weakening of the field strength at its surface. To an
acceptable degree of precision, we can assume that the
spherical segment cut by the cone of opening angle 4α
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Fig. 5. Distribution of the lines of force of the electric field

on a planar conducting surface having conductivity 
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can be replaced by a plane disk. Figure 5 displays the
distribution of the lines of force of the electric field on
a plane conducting surface having the conductivity

 and containing an inserted disk of conductivity

. By solving Laplace’s equation [8], one can show
that the field strength in the disk plane is uniform and is
given by

(14)

The above considerations make it possible to calcu-
late the power that is absorbed by an absorbing object
situated near a microradiator. We have

(15)

where

ϕ0 and θ0 are the angles that, in the system of spherical
coordinates introduced above, determine the direction
from the center of the microradiator to the irradiated
segment of the absorbing object; and the factor π/4
reflects the ratio of the area of the circle used in the
model to the area of the square specified by the limits
of integration in (15).

We will now find the ratio of the power absorbed by
the absorbing object to the total power radiated by the
microradiator as a function of the distance between the
radiator center and the surface of the absorbing object.
We have

(16)

The parameter κ(ϕ0, θ0, r) is known as the specific
absorption coefficient. We note that, at a small distance
from the microradiator to the absorbing-object surface,
it may turn out that Pabs(ϕ0, θ0, r) > Re[P0(r)]. In this
case, the microradiator radiation resistance will grow
owing to a strong coupling to the absorbing object.

Figure 6 shows the specific absorption coefficient as
a function of the distance between the microradiator
and the absorbing-object surface at θ0 = π/2 for three
microradiator types considered here. For a dipole–loop
pair, the specific absorption coefficient is given for two
directions corresponding to the maximum and the zero
of the relevant cardioid (ϕ0 = 0 and π, respectively).
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From the graph in Fig. 6, one can see that, at the dis-
tance between the radiator center and the absorbing-
object surface on the order of 1–3 mm, the bulk of the
radiated power goes to the absorbing object. With
increasing distance, the absorption decreases sharply,
falling below 1% even at a distance as small as 10 mm.
In [9], the relative power absorbed by a phantom mim-
icking the head of a human being was measured at a fre-
quency of 1800 MHz, the distance from the radiator
center to the outer surface of the absorbing object being
taken to be 4.7 mm [7]. The measurement showed that
the experimental phantom absorbs 24% of the total
radiated power. The point corresponding to this mea-
surement is shown in Fig. 6.

DISCUSSION OF THE RESULTS 
AND CONCLUSIONS

We will now proceed to discuss some special fea-
tures of the distribution of electric and magnetic fields
in the near zone of microradiators. First of all, we will
consider the dependence of the electric- and magnetic-
field strengths on the azimuthal angle ϕ0 in the equato-
rial plane θ0 = π/2 of a dipole–loop pair. In order to
obtain an integrated characteristic of the dependence
being discussed, it is convenient to consider the angular
dependence of the specific absorption coefficient at var-
ious distances between the microradiator center and the
absorbing-object surface. Figure 7 shows κ(ϕ0, θ0, r) as
a function of ϕ0 at θ0 = π/2 for three different distances.
At r = λ/2, κ(ϕ0, θ0, r) is the square of the function
describing the cardioid—that is, it replicates the polar
diagram of the microradiator in the far zone. At r = λ/8,
the ratio of κ(0, θ0, r) to κ(π, θ0, r) is approximately
equal to 3, while, at r = λ/15, this ratio is close to unity.
The diagrams in Fig. 7 show how strong the distribution
of the field in the near zone of a microradiator differs
from the respective distribution in its far zone. For a
single dipole or a single loop, the ratio of κ(0, θ0, r) to
κ(π, θ0, r) is equal to unity at any value of r. Thus, we
see that, for r ≤ λ/15, the fraction of the power absorbed
in the absorbing object takes the same value for a loop,
a dipole, and a dipole–loop pair, although the polar dia-
gram of the pair in the far zone has the form of a car-
dioid. At first glance, it therefore seems that, in what is
concerned with the absorption of the power of ultra-
high-frequency radiation in a closely lying absorbing
object, a dipole–loop pair does not have advantages
over a single dipole or a single loop. However, we note
that the gain factor for a dipole or a loop such that either
has dimensions much smaller than the radiation wave-
length is G = 1.5, while the gain factor for a dipole–loop
pair is G = 3 [4, 5]. This means that, if the microradia-
tors used generate identical field strengths in the far
zone, the absorbed power in the absorbing object is two
times smaller in case of a dipole–loop pair than in the
case of a single loop or a single dipole.
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
We would like to emphasize that the imaginary part
of the Poynting vector flux through a sphere surround-
ing a microradiator grows extremely fast as the radius
of the sphere decreases. It can be shown that, for a sin-
gle dipole or a single loop, the ratio of the imaginary
and real parts of the Poynting vector flux determines the
quality factor of the radiator being considered. By way
of example, we indicate that, for a loop of radius a =
10 mm, the radiation resistance at a frequency of 2 GHz
is 6 Ω [6], while its reactive resistance under the same
conditions is about 150 Ω , which corresponds to a qual-
ity factor of Q = 25. From Fig. 3b, we find that, at r =
10 mm, Im[P0(r)] ≅  15, while Re[P0(r)] = 1. Thus, we
see that, if r is equal to the radiator size (r = a), then the
ratio of Im[P0(r)] to Re[P0(r)] is on the same order of
magnitude as the microradiator quality factor. The dis-
tinction between these quantities can be explained by
the fact that part of the reactive energy is stored in the
field components Er(θ, r) and Hr(θ, r), which do not
take part in the formation of the Poynting vector flux.
The explanation for the extreme smallness of the imag-
inary part of the Poynting vector flux for a microradia-
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tor in the form of a dipole–loop pair is expected to be
much more involved. The absence of the imaginary part
of the flux does not mean that the radiator quality factor
is close to zero. The point is that the imaginary part of
the flux vanishes in the case of the exact equality of the
amplitudes of the currents in the dipole and in the loop
(A = B in our case). Only at a fixed frequency is it pos-
sible to ensure the equality of the amplitudes of the cur-
rents in the reactive loads, a dipole and a loop, by means
of corresponding matching devices. In other words, the
problem of the quality factor for the system in question
becomes dependent on the characteristic of the fre-
quency dependence of the dipole and loop supply cir-
cuits.

We have considered special features of the distribu-
tion of the electric and magnetic fields in the Fresnel
zone of microradiators represented by a dipole, a loop,
or a dipole–loop air, whose polar diagram in the far
zone has the form of a cardioid. The main conclusion is
that the ideas of the field distribution (polar diagram) in
the far zone cannot be applied to the properties of the
fields in the Fresnel zone. For the radiators considered
here, the special features of the Fresnel zone manifest
themselves within a sphere of radius λ/8, naturally in
the case where the dimensions of the radiators do not
exceed the radius of this sphere. If a microradiator is
situated within a distance of several millimeters from
the surface of an absorbing object whose electrody-
namic properties are close to those of biological media,
the fraction of the absorbed power (specific absorption
coefficient) at a frequency of 1–2 GHz can be as high as
20–30%.
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Abstract—The height of an extra low-energy maximum in the energy distribution of electrons tunneling from
crystalline carbon fibers and carbon nanotubes is studied as a function of emitter heating and emitter rotation
relative to the energy analyzer axis. The relationships found are related to emission from electron states on the
surface of the reconstructed nanocrystals and nanotubes. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

In the previous works [1, 2], we described the phe-
nomena of spontaneous (current-related) thermofield
reconstruction (CTFR) and induced thermofield recon-
struction (ITFR) of an carbon nanocrystal emitting in
an electric field of appropriate (autoemission) sign. The
essence of the former is that the anode voltage and
field-emission probe current from an emitting carbon
nanocrystal may be increased to a certain threshold
over which the probe current sharply drops (roughly by
one order of magnitude) and the field-emitted electron
energy distribution (FEED) exhibits an extra low-
energy maximum shifted by 0.45–0.50 eV toward
lower energies relative to the main one. Heating of the
emitter to ≈1000 K recovers the FEED and restores the
probe current [1].

The latter phenomenon is typical of field emitters
made of metals and semiconductors. In this case, heat-
ing of the nanocrystalline emitter subjected to a voltage
of autoemission sign causes reconstruction of its tip and
shifts the total current–voltage characteristic. Further
heating almost restores the initial position of the char-
acteristic, since the emitter slightly blunts. In our previ-
ous experiments [2], upon heating the nanocrystalline
carbon emitter, as well as upon CTFR [1], the field-
emission probe current decreased by one order of mag-
nitude, the current–voltage characteristic shifted down,
and the FEED exhibited an extra maximum shifted by
0.45–0.50 eV toward lower energies relative to the
main one. A further smooth rise in the field-emission
current to some threshold value led to the spontaneous
restoration of the probe current–voltage characteristic
and FEED. The position of the characteristic and the
energy distribution did not change after this procedure
had been repeated many times.

The decrease in the probe current after ITFR and
CTFR was explained by the effect of surface electron
states (SESs) of type I arising near the Fermi level and
producing an additional barrier and also of SESs of
1063-7842/05/5011- $26.00 1485
type II, which lie 0.45–0.50 eV below the Fermi level
and are responsible for the extra low-energy peak in the
FEED.

Such assumptions are based on the results of study-
ing SESs on tungsten, silicon, and germanium emitters
[3–5]. It was found that the density of SESs and the
height of the extra low-energy peak in the FEED, which
is produced by the electrons emitted from the SESs, are
extremely sensitive to emitter heat treatment. It was
also established that the height of the extra maximum
depends on the angle between an emitter face probed
and the axis of an energy analyzer. Analytical calcula-
tions of the extra maximum for electrons emitted from
the (100)W face are in good agreement with experi-
mental data on the assumption that the SES energy dis-
tribution is Gaussian [6].

In this work, we check the hypothesis of the pres-
ence of SESs on the emitting surface of reconstructed
carbon nanocrystals and nanotubes. The second goal of
this study is to see how the height of the extra low-
energy maximum depends on the emitter heating and
angular position of the emitter relative to axis of an
energy analyzer. The objects of investigation are VMN-
RK crystalline carbon fibers annealed at 900°C and car-
bon nanotubes applied on W foil by electrophoresis.

EXPERIMENTAL

A fiber ≈1 mm long was attached to a narrow strip
cut of tantalum foil by Aquadag (the strip was welded
to a tungsten bow), dried, and heated in a vacuum at
≈1000 K. The field cathode thus produced was intro-
duced through a lock into a USU-4 ultra-high-vacuum
chamber equipped with a field electron microprojector
and an electrostatic energy-dispersion analyzer, the
secondary emission multiplier of which operated in the
electron count mode.
© 2005 Pleiades Publishing, Inc.
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After locking, the cathode (emitter) was “formed”
under a rough vacuum by raising the total emission cur-
rent to 150 µA. Such a procedure allows nanocrystals to
emerge on the emitting surface via removal (sputtering)
of amorphous carbon under the action of residual gas
ions [7]. Then, in an ultrahigh vacuum, the emitting
layer on the fiber surface was stripped off several times
by ponderomotive forces arising when a current pulse
of ≈130 µA was applied until the emission image, a sin-
gle spot at the center of the projector screen, appeared.
This spot was directed to the probing diaphragm of the
analyzer. The emitting surface of the samples was
cleaned by heating the tungsten bow to 1000 K. The
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Fig. 1. (a) I–V characteristics of the carbon fiber: (1) after
stripping off the surface layer by the current pulse; (2) after
10-min heating; (3) after rapid rise in the emitter current to
5 µA; and (4–6) after 10-, 20, and 30-min heating of the
reconstructed nanocrystal, respectively. (b) Energy distribu-
tion of electrons emitted from the carbon nanocrystal:
(2) after stripping off the surface layer by the current pulse
and 10-min heating and (4–6) after 10-, 20, and 30-min
heating of the reconstructed nanocrystal, respectively.
same heating was used to activate SESs. The FEED was
measured with the technique described in [8]. The
probe current–voltage characteristics were constructed
based on the values of the electron current passing
through the energy analyzer and corresponding anode
voltages Ua.

Electron emission from carbon nanotubes was
observed at the edge of a 2.0 × 0.5-mm curved strip cut
of the W foil. The strip was welded to a supporting
nickel tube, rinsed in ethanol, dried in the lock cham-
ber, and introduced into the vacuum chamber. Once the
entire vacuum chamber had been heated and the pres-
sure in the chamber had been decreased to 5 ×
10−10 Torr or lower, a voltage was applied to a ballast
resistor between the high-voltage supply and emitter
and the carbon nanotubes were heated by the Joule heat
due to the emission current. CTFR of the nanotube
region probed was also carried out after applying a volt-
age to the ballast resistor.
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Fig. 2. Height of the extra maximum in the FEED vs. emit-
ter angular position relative to the analyzer for the (a) first
and (b) second sample of the reconstructed nanocrystal.
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Fig. 3. (a) Initial energy distributions of electrons field-emitted from the carbon nanotubes, (b) energy distributions of electrons
field-emitted from the nanotubes subjected to current-related thermofield reconstruction, (c) probe I–V characteristics of the nano-
tubes (1) before and (2) after current-related thermofield reconstruction, and (d) the height of the extra maximum in the FEED vs.
emitter angular position relative to the analyzer for the reconstructed nanotube.
RESULTS AND DISCUSSION

After the surface layer of the emitter had been
stripped off in an ultrahigh vacuum, the I–V character-
istic of the nanocrystal was measured by scanning the
FEED (Fig. 1a, curve 1). Within 10 min of subsequent
heating of the emitter at 1000 K, the emitter image
stopped flickering and the FEED was measured again.
The energy distributions had one maximum (Fig. 1b),
and its FWHM increased from 0.30 to 0.45 eV as the
anode voltage was raised from 1800 to 2500 V. The I−V
characteristic of the heated sample is represented by
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
curve 2 in Fig. 1a. The fact that curves 1 and 2 run close
together suggests that stripping the surface layer off in
an ultrahigh vacuum does make the emitting surface of
the nanocrystal pure.

CTFR was accomplished by increasing the anode
voltage in several steps for a short time, after which the
energy distribution of electrons emitted from the region
probed was checked. An extra low-energy peak in the
distribution, which is shifted by 0.45–0.50 eV toward
lower energies relative to the main one, appeared after
the total emitter current reached a value of 5 µA. By
scanning the FEED in the anode voltage range from
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2000 to 2600 V, I–V characteristic 3 (Fig. 1a) was taken.
This curve demonstrates that the emission current from
the carbon nanocrystal decreased by one order of mag-
nitude. Then, the emitter was heated to 1000 K and kept
at this temperature for 10 min three times, and the
FEED was taken after each heating. The measurements
made at Ua = 2200 V (Fig. 1b) show that the extra low-
energy maximum lowers after each heating and the
energy interval between the maxima expands from 0.4
to 0.5 eV. The related I–V characteristics are presented
in Fig. 1a.

Using an arm with four degrees of freedom, the
emitter was rotated in the horizontal plane by +1°, –1°,
and –2° (the initial position is 0°). Angles –2° and +1°
correspond to the left- and right-hand edges of the
emission spot from the nanocrystal. The FEEDs shown
in Fig. 2a indicate that the height of the extra maximum
depends on the angular position of the emitter relative
to the energy analyzer with the interval between the
maxima remaining constant.

The dependence of the extra peak height in the
FEED taken of the reconstructed carbon nanocrystal on
the emitter heating and emitter rotation was checked on
the second sample of the same carbon fiber. To recon-
struct the nanocrystal, the total emission current was
increased to 5 µA and simultaneously the sample was
heated to ≈1500 K by applying a voltage to the bow for
a short time. In this case, too, the extra peak height
changes when the emitter is heated to T = 1000 K and
depends on the emitter rotation relative to the energy
analyzer. When the emitter is rotated, the interval
between the main and extra maxima changed by 0.3–
0.4 eV (Fig. 2b).

In another series of experiments, we studied the car-
bon nanotubes applied on the W foil by electrophoresis.
Examination of the nanotubes in a JEM 100S transmis-
sion electron microscope showed that they are closed
and have semispherical tops.

After the vacuum chamber and emitting nanotubes
had been warmed by Joule heat, the emission pattern
represented a number of aligned oval spots. One stably
emitting spot was directed to the probing aperture of the
energy analyzer, and the FEEDs were measured in the
anode voltage range from 2580 to 3140 V. The mea-
sured distributions are seen to be narrow and have a sin-
gle peak (Fig. 3a). As the anode voltage rises, the distri-
bution shits toward lower energies and its FWHM
increases from 0.30 to 0.35 eV. The current–voltage
characteristic (curve I in Fig. 3c) is linear. The carbon
nanotube probed was categorized as “metallic.”

To carry out the CTFR of the area probed, the anode
voltage was raised in steps until the total emission cur-
rent sharply dropped from 420 to 350 nA. Subsequent
scanning revealed an extra low-energy peak in the
FEED. As the anode voltage increases from 2700 to
3380 V, the extra peak slightly grows and the interval
between the maxima expands from 0.3 to 0.4 eV
(Fig. 3b). The voltage dependence of the probe current
(curve II in Fig. 3c) indicates a decrease in the emission
current by one order of magnitude, i.e., that the probed
area of the nanotube has been reconstructed. Figure 3d
plots the relative height of the extra maximum versus
the emitter rotation relative to the energy analyzer in the
angular range from –3° to +1°. Under rotation, the
interval between the maxima varies within 0.3–0.5 eV.

A total of five emission spots from three foils with
nanotubes were studied. As the anode voltage
increased, the FEED shifted toward lower energies in
proportion to either the probe current (metallic proper-
ties of the nanotubes) or the anode voltage (semicon-
ductor properties). Unlike nanocrystalline carbon
fibers, all the nanotubes were reconstructed at an emis-
sion current from one hundred to several hundreds of
nanoamperes. This confirms the compelling fact that
heat removal from the nanotube top is inferior to that
from a nanocrystalline carbon fiber.

Thus, our study demonstrated that the height of an
extra low-energy maximum in the energy distribution
of electrons field-emitted from carbon nanocrystals and
nanotubes depends on the emitter heating and emitter
angular position relative to the energy analyzer. This is
consistent with the assumption that the electrons
involved in the distribution are emitted from states on
the field emitter surface.

CONCLUSIONS

We studied VMN-RK nanocrystalline carbon fiber
annealed at 900°C. The nanocrystals were recon-
structed by raising the total emission current to 5 µA
and heating them at ≈1500 K. As a result, their emission
current decreased by one order of magnitude and an
extra low-energy peak appeared in the FEED, whose
energy position is 0.45–0.50 eV below the position of
the main maximum. The FEED taken of the recon-
structed nanocrystals suggests that the height of the
extra peak depends on the heat treatment conditions. As
the heating duration grows, the peak lowers, indicating
the possibility of recovering the normal energy distribu-
tion of electrons emitted from the carbon nanocrystal.

Another subject of investigation was carbon nano-
tubes with semispherical tops. It was found that they
are prone to current-related thermofield reconstruction:
when the anode voltage reaches some threshold, the
emission current from the nanotube top drops by nearly
one order of magnitude and an extra low-energy peak
appears, whose energy position is 0.45–0.50 eV below
the position of the main maximum.

The FEEDs taken of reconstructed samples upon
rotating about the energy analyzer axis show that the
height of the extra maximum depends on the angular
position of the emitting nanocrystals and nanotubes.
This counts in favor of the assumption that the extra
maximum is due to the electrons emitted from surface
states of the reconstructed samples.
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From the dependences of the extra low-energy max-
imum on the heating duration and emitter angular posi-
tion relative to the analyzer, the interval between the
extra and main peaks in the FEED is estimated as 0.3–
0.5 eV for the samples of both types.
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Abstract—The rate of Li+ ion transport in an insulating solid electrolyte film on the Li metal surface versus
electric field (<107 V/cm) and temperature (in the range 238–343 K) is studied. The dependences found in this
work are shown to reflect structural disorder in the electrolyte film material. Disorder causes a spread in the site-
to-site hopping length and time. © 2005 Pleiades Publishing, Inc.
The transport properties of dielectric ion-conduct-
ing films covering the metallic lithium surface are of
great practical interest, since Li–film–solution struc-
tures are used in lithium cells with a nonaqueous elec-
trolyte [1]. The chemical composition of a solid electro-
lyte film on lithium is rather complex and depends on
the composition of a surrounding solution. The thick-
ness of the film varies between 10–7 and 10–5 cm, its
ionic conductivity ranges between 10–9 and 10–6 (Ω
cm)–1, and its electron conductivity is less than 10–12 (Ω
cm)–1. Even at the early stage of investigation it was
found that electrical processes in Li–film–solution
structures are described well in terms of the concept of
carrier injection into the surface layer, which increases
its ionic conductivity under a voltage [2, 3]. In this
work, the author elaborates upon the model mechanism
of ion transport in solid electrolyte films on lithium and
contrasts theoretical results with experimental data.

EXPERIMENTAL DATA

Experiments were carried out with hermetically
sealed cells assembled in dry argon. The cells contained
a lithium electrode to be tested, a small amount of an
electrolyte, and polarizing and measuring electrodes. A
solid electrolyte layer was formed on the surface of the
lithium electrode by keeping it in the electrolyte for
1 month. As electrolytes, we used concentrated solu-
tions of LiClO4 in propylene carbonate (PC) and buty-
rolactone (BA), where a film consisting of lithium car-
bonate Li2CO3 and lithium oxide Li2O forms, and solu-
tions of LiBF4 in BA, which produce a film consisting
of lithium oxide Li2O and lithium fluoride LiF. Mea-
surements were taken in the temperature range from
−35 to 70°C with a temperature control accuracy of
0.1°C. To protect the surface films from damage, the
electrode tested was polarized by short direct current
pulses of amplitude from 10–8 to 10–2 A. The same tech-
nique was applied to determine the thickness of the
1063-7842/05/5011- $26.00 1490
films, which was found to vary between 5 and 40 nm in
our case. The current pulse minimum width needed to
complete the transient and establish a constant potential
jump varied within 0.5 and 10 ms.

For all the samples, the results were qualitatively
similar. To illustrate the generality of the approach
being developed, we present the results for films of dif-
ferent compositions. Figure 1 plots typical j–V curves
(j is the current density) in the log–log coordinates. The
final results did not depend on the current sense. No
hysteresis was found in heating–cooling cycles, as well
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Fig. 1. Current–voltage characteristics of the Li–film–solu-
tion structures at a temperature of (1) 30, (2) –18, (3) –27°C
(the LiBF4–BA electrolyte).
© 2005 Pleiades Publishing, Inc.
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as in taking the j–V curve in the forward and backward
directions. In the general case, an ohmic dependence j
~ V, observed at low V, changes to a power-type depen-
dence j ~ Vn at high voltages, with exponent n smoothly
varying with temperature. Such behavior is characteris-
tic of injection currents [4]. General current density j is
a sum of ohmic current jΩ = σiV/L and injection current
jinj,

(1)

The temperature dependence of ionic conductivity
σi is of activation character with constant energy of
activation ωi,

(2)

where k is the Boltzmann constant, T is the absolute
temperature, and coefficient σ0 depends on the sample’s
history.

For the films obtained in the LiClO4–PC, LiClO4–
BA, and LiBF4–BA solutions, the measured activation
energies were close to each other, namely, 0.59 ± 0.03,
0.58 ± 0.05, and 0.54 ± 0.05 eV, respectively (hereafter,
the confidence intervals are given with a 95% probabil-
ity).

Thus, injection current jinj can be viewed as an
increase of the total current over the ohmic (conduc-
tion) current. When the j–V curves are represented in
the coordinates –  (Fig. 2), the injection
current is seen to strictly follow the power-type depen-
dence jinj ~ Vn. The form and temperature run of the j−V
curves are nearly the same for all the samples, despite
the chemical composition of the surface films is differ-
ent. This suggests that a mechanism of charge transfer
in solid electrolyte films does not depend on their com-
position and structure.

THEORETICAL

Consider current passage through a thin homoge-
neous insulating layer of low ionic conductivity that is
sandwiched between high-conductivity materials (the
situation meeting experimental conditions). The
steady-state profiles of electric field strength ξ and the
concentrations of intrinsic, n0, and injected, ninj, carri-
ers (bearing a charge of +1 as Li+ ions) in a film of
thickness L along coordinate x (0 ≤ x ≤ L) satisfy the
Poisson and continuity equations. In the 1D case, these
equations have the form [4]

(3)

(4)

j jΩ jinj.+=

σi

σ0

T
-----

ωi

kT
------– 

  ,exp=

jinjlog Vlog

dξ
dx
------

qninj

εε0
----------,=

j qξ µΩn0 µinjninj+( ),=
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where q is the absolute charge of carriers, µΩ and µinj
are the respective mobilities of intrinsic and injected
carriers, and εε0 is the permittivity of the film material.

Let us integrate the set of Eqs. (3) and (4) on the
assumption that the film is kept under constant potential
V and the boundary x = 0 infinitely long injects carriers
(then, ξ(0) = 0), which all have the same mobility in the
film (µΩ = µinj = µ). The result of integration coincides
with experimentally observed dependence (1),

(5)

where ξL is the field strength at the absorbing boundary
x = L.

Since σi = qµn0 and ξL ≈ V /L [4], formula (5) can
be recast as

(6)

Expression (6) meets the experimental dependences
(Fig. 1) at only one temperature when n = 2. The reason
for such a discrepancy seems to be the following. Equa-
tion (4) implies that carriers of a given sort have the
same mobility, i.e., when subjected to an electric field,
are transferred through a given layer for the same time.
This assumption works well for single crystals but turns
out to be inadequate for the surface layer covering the
lithium surface. This surface layer incorporates various

j
qn0µV

L
----------------

µεε0ξL
2

2L
-----------------+ jΩ jinj,+= =

2

j
σiV

L
---------

µεε0V2

L3
-----------------.+≈

1.5

–1.25 –0.75
logV [V]
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–0.5

–1.5
–0.50 0.25

logjinj [mA/cm2]
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–1.00 –0.25 0

4

Fig. 2. Injection current–voltage characteristics of the Li–
film–solution structures at a temperature of (1) 40, (2) 25,
(3) 0, and (4) –27°C (the LiClO4–BA electrolyte).
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components, which form very rapidly; hence, the struc-
ture of the layer is heavily disordered. A specific feature
of disordered solids is a wide spectrum of times of ele-
mentary events, which characterizes many of their
time-dependent properties [5]. This feature is unrelated
to details of the atomic or molecular structure of solids
and therefore specifies their general behavior. Disorder
gives rise to a special type of transport when the trans-
port rate becomes a fractional-power function of time,
frequency, distance, or voltage, the exponent being con-
tinuously dependent on both material properties and
experimental conditions [5–18]. Based on the experi-
mental temperature dependence of the rate of charge
transport through the films on lithium, one can suppose
that such anomalous transport in a strong electric field
takes place in our case too.

Let us derive an expression for the voltage depen-
dence of the injection current in a solid film with intrin-
sic conductivity using the notion of transition time τ.
The current density is generally given by

(7)

where  and  are the mean concentration and drift
velocity of charge carriers.

The numerator of (7), q L, is the total charge of
mobile carriers per unit surface area of the film. Then,
τ is the time of transit of carriers from one boundary of
the sample to the other. Under the ohmic conditions, the
concentration is uniformly distributed across the film
and equals intrinsic concentration n0; hence, jΩ =
qn0L/τΩ . A similar formula holds for the injection cur-
rent, injected charge q L confined in the film being
related to the voltage across the sample by the formula
for a plane capacitor whose capacitance is roughly
equal to the geometric capacitance of the film; that is,
jinj = qninjL/τinj ≈ εε0V/Lτinj.

According to (1), the total current is a sum of these
two components,

(8)

A more exact expression can be obtained by solving
the set of Eqs. (3) and (4). Since the time it takes for
particles of sort i to transit through a layer of thickness
L is given by

(9)

the transit time for intrinsic carriers is

(10)

j qnν qnL/τ ,= =

n ν

n

ninj

j
qn0L
τΩ

------------
εε0V
τ injL
------------.+≈

τ i
1
µi

---- 1
ξ
--- xd

ξd
----- ξ ,d

0

ξL

∫=

τΩ
1
j
--- qn0L

εε0ξLµinj

µΩ
---------------------+ 

 =
and that for injected carriers is

(11)

Combining (10) and (11) yields

(12)

In final expression (12), mobility in explicit form is
lacking. The difference between Eqs. (8) and (12) is
minor, because ξL closely approximates the electric
field mean strength.

For charged particles migrating in a disordered
solid, the functional dependence τ = f(V, L, T) may both
coincide with and differ appreciably from this depen-
dence in an ordered crystal lattice [5–7]. Charge trans-
port may be both normal and anomalous, depending on
the material and experimental conditions. The differ-
ence between them shows up most vividly in experi-
ments on determining the transition time [5–13]. In the
case of normal (Gaussian) transport, τ linearly depends
on ratio L/ξ,

(13)

that is, carriers possess a certain mobility.
In the case of anomalous (dispersion) transport, a

train of charge carriers is characterized by a large dis-
persion (on the order of the sample’s thickness) and the
transit time becomes a nonlinear function of L/ξ: τ ~
(L/ξ)1/α, where 0 < α < 1. The notion of drift mobility
loses the physical meaning: this parameter calculated
from the transit time turns out to be dependent on the
sample thickness instead of being dependent on the
material properties [6, 7]. Experiments aimed at deter-
mining the transit time in various disordered materials
show that normal and anomalous transports may be
observed in the same material at different temperatures
[5–10].

The theoretical models accounting for anomalous
transport exploit the assumption that disordered materi-
als feature a spread in the spacings between neighbor-
ing localized sites and/or a spread in potential barriers
separating these sites. Accordingly, there appears a
wide variety of times of elementary events accompany-
ing the charge motion in a disordered material [15–18].
In the multiple sticking model, charge transfer proceeds
through multiple capture of carries by and their escape
from localized centers. If the crystal lattice is disor-
dered, sticking centers (levels) will be distributed over
energy. For the level exponential occupation, the j–V
curve is given by

, (14)

where

(15)

τ inj
1
j
---

qn0LµΩ

µinj
------------------- εε0ξL+ 

  .=

j
qn0L
τΩ

------------
εε0ξL

τ inj
-------------.+=

τ L/ξµ ;=

j V1 1/α+ /L1 2α+∼

α T /Tt,=
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that is, exponent n is equal to n = 1 + Tt/T, where Tt is
the distribution parameter [4, 14–17].

Another model, the model of stochastic transport,
considers the charge motion as a random hopping pro-
cess, when even small fluctuations of the hopping
length cause a wide spread in hopping times; in other
words, the hopping time distribution is due to hopping
length fluctuations rather than to hopping energy fluc-
tuations [6]. According to the theory of stochastic trans-
port, the transport can be considered as a sequence of
hops from site to site (a site may be a defect, localized
center, etc.). If the sites are equally spaced (the hopping
lengths are the same), the hopping frequency has cer-
tain value ν. If, however, distance r between neighbor-
ing sites that are accessible for a hopping carrier varies
about some mean value r0, the hopping frequency will
tangibly depend on the site spacing: ν(r) ~ exp(–r/Reff),
where Reff is the effective radius of localized centers.
Calculation of the group velocity of carriers hopping in
an electric field between randomly distributed centers
results in the following expression for the transition
time:

(16)

where

(17)

c is a factor on the order of unity (c = 0.92 at α = 0.5);
ω0 is the mean potential barrier between sites; ν0 is the

hopping frequency; and (ξ) is the mean group dis-
placement in the direction of the electric fields per hop,
which is proportional to ξ [6].

The proportionality coefficient can be found based
on the fact that, in going from anomalous transport to
normal one (α = 1), expression (16) is bound to trans-
form into (13), where the mobility depends on the
microscopic parameters of transport [19],

(18)

Hence,  = q ξ/kT and we arrive at an expression
for the transition time,

(19)

Associated numerical factors on the order of unity,
which depend on the number of nearest neighboring
sites and correlation effects [19], are embodied in ν0.
Next, assuming that c ≈ 1 and ξ ≈ V/L, we substitute
expression (19) for τinj into (8) to obtain an expression
for the injection current (accurate to a factor on the
order of unity) in a disordered solid for the case of

τ c
v 0
------ L

l ξ( )
--------- 

  1/α ω0

kT
------ 

  ,exp=

α
Reff

r0
-------- 

 
3

ν0τ( )ln
ω0

kT
------–

2

,=

l

µ
qr0

2ν
kT

-----------
ω0

kT
------– 

  .exp=

l r0
2

τ c
ν0
----- LkT

qr0
2ξ

----------- 
  1/α ω0

kT
------ 

  .exp=
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anomalous transport when hopping is characterized by
one value, ω0, of the potential barrier,

(20)

While the models of multiple capture and stochastic
transfer are based on different assumptions, they use an
identical mathematical formalism [5, 14–17]. The
physical patterns are also the same. In turns out in both
cases that particles in a disordered solid travel over a
distributed network of unequal paths. Some of the par-
ticles cross the sample fairly rapidly (short routes),
while others stay in the sample for long, moving
through widely spaced sites (longer hopping times). As
the voltage across the sample rises, progressively wider
spaced sites (requiring increasingly longer hopping
times) become involved in the transport process. Such
a situation may be viewed as a change in the relation-
ship between the free charge and trapped (fixed) charge
or as a change in the mean effective mobility of carriers.
Eventually, the effective mobility becomes dependent
on the electric field strength and sample thickness. The
difference in the expressions for α (formulas (15) and
(17)) reflects different model assumptions. The theory
is helpful when intrinsic and injected carries are dissim-
ilar in nature and migrate with different velocities but
independently and without recombination (which may
occur, for example, when the electron current coexists
with the intrinsic ionic conductivity).

THEORY VERSUS EXPERIMENT

The form and temperature run of the current–volt-
age curves for total current j and injection current jinj
(Figs. 1 and 2) suggest that anomalous transport of car-
riers in the disordered solid films on lithium. Let us see
whether the temperature variation of exponent n in the
dependence jinj ~ Vn correlates with the theoretical pre-
dictions. Both models give n = 1 + 1/α. However, in the
model of multiple capture, parameter α is given by for-
mula (15), which yields a straight line issuing from the
origin in the coordinates (n – 1) – T–1, while in the sto-
chastic transport model, formula (17) for α is linearized
in the coordinates (n – 1)–0.5 – T–1 (see Fig. 3a). The
temperature run of exponent n in the dependence jinj ~
Vn satisfied Eq. (17) and did not satisfy Eq. (15) for all
the samples studied.

Now let us check whether the temperature variation
of the current–voltage curves agrees with the general
behavior predicted by the stochastic transport theory.
Expressions (2) and (20) suggest that the current
depends on T–1 exponentially and effective activation
energy ωj = –kd(lnj)/d(T–1) does not depend on the volt-
age in the intrinsic conductivity range of the film,
remaining equal to ωΩ = –kd(lnσi)/d(T–1). As the volt-
age grows, ωj is bound to change from ωΩ to the effec-

jinj ν0εε0
V
L
---

qr0
2V

kT L2
------------

 
 
 

1/α
ω0

kT
------– 

  .exp≈



1494 CHURIKOV
1

2.8
103/T, K–1

2

0

–4

log j [mA/cm2]

1700 mV

3.0

–3

–2

–1

1400 mV

1000 mV

700 mV

300 mV

100 mV

10 mV

3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

1

2.8
103/T, K–1

2

0

–4

log jinj [mA/cm2]

1700 mV

3.0

–3

–2

–1

1400 mV

1000 mV

700 mV

500 mV

300 mV

3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

200 mV

0

0.5

1.0

1.5

2.0

3.0

2.5

3.5

2.5 3.0 3.5 4.0 4.5

(n–1)

103/T, K–1

(a)

(c)

(b)

(n – 1)–0.5

1.5

1.0

0.5

0

Fig. 3. Temperature dependences of (a) exponent n in the relationship jinj ~ Vn, (b) the logarithm of total current j, and (c) the log-
arithm of injection current jinj (the LiClO4–PC electrolyte).
tive activation energy of the injection current, ωinj =
−kd(lnjinj)/d(T–1). According to (17) and (20),

(21)

Experimental dependences –T–1 and –
T–1 for different voltages are shown in Figs. 3b and 3c.
The slope of the straight lines in Fig. 3b remains con-
stant in the intrinsic ionic conductivity range and
changes markedly with increasing V, approaching the

ωinj ω0 1 2
Reff

r0α
-------- 

 
3/2 qr0

2V

kT L2
------------

 
 
 

ln–
kT
α
------.–=

jlog jinjlog
slope of the current in Fig. 3c. From Eq. (21), it follows
that effective activation energy ωinj depends on mean
potential barrier ω0 being overcome in the hopping pro-
cess and, at the same time, is a complicated function of
α, T, and V, remaining constant only in a narrow V-
dependent temperature range. Under our experimental
conditions, the voltage across the sample was varied
significantly while T and α only slightly.

The voltage dependence of the effective activation
energy is shown in Fig. 4. For all the samples, ωinj is a
linear function of the potential in accordance with (21).
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The slopes of the curves (n – 1)–1/2 = a1 – b1/T (Fig. 3a)
and ωinj = a2 – b2lnV (Fig. 4) are interrelated and, as fol-
lows from (17) and (21), must correlate in view of the

equality 2kb1 〈1/α〉 3/2 = 1, in which the mean value
of 〈1/α〉  = 〈n – 1〉  in the temperature range under study
should be taken. Our measurements on lithium-based

ion-conducting films gave 2kb1 (1/α)3/2 = 1.00 ±
0.05.

Thus, one can state both qualitative and quantitative
agreement between equations derived from the theory
of stochastic transport in a disordered solid and experi-
mental data for the field and temperature effect on the
rate of carrier transport through a solid electrolyte film
on lithium. This allows us to find transport microscopic
parameters ω0, r0, Reff, and ν0 as follows. Let

(22)

Then, (20) can be recast as

(23)

where ν0 contains the numerical factor on the order of
unity. According to (23), all values of variable Winj, hav-
ing the dimension of conductivity, are the same at a
given temperature and all the experimental jinj–V curves
must be fitted by the same straight line in the coordi-
nates lnWinj–T–1 provided that hopping is characterized
by one potential barrier ω0. In calculations, parameters
ε, L, and τ are assumed to be given. We introduce a trial
value of r0, calculate a set of Winj by (22), and, based on
this set, find optimal values of coefficients ν0 and ω0 by
(23). Using Eq. (17), Reff and τ are found from known
coefficients a1 and b1. Then, we compare the calculated
value of τ with the given one, change r0 toward the
desired (given) value of τ, and repeat the procedure
again and again until these two values of τ coincide.

Figure 5 plots lnWinj against T–1 at the final sage of
calculation. The slope corresponds to potential barrier
mean height ω0 = 0.22 eV. All pairs jinj–V measured at
one temperature give, as was expected, the same value
of Winj. The plot is almost a straight line but may curve
if the temperature range is considerably extended.
Therefore, the assumption that one value of the poten-
tial barrier for hopping particles prevails in the films
can be adopted only as a first approximation.

Processing of the whole data array results in the fol-
lowing. The potential barrier has a smallest spread from
sample to sample: the mean value of this parameter is
ω0 = 0.24 ± 0.035 eV. The spread in the calculated val-
ues of parameters Reff and r0 is much larger; however,
ratio Reff/r0 appearing in the analytical equations is
nearly the same for most of the samples, 0.245 ± 0.045.

b2
1–

b2
1–

W inj jinj/
qr0

2V

kT L2
------------

 
 
 

1/α
V
L
---.=

W injln ν0εε0( )ln ω0/kT ,–=
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The logarithm of the hopping frequency is  =
10.5 ± 0.7 [s–1].

The parameters were calculated for ε = 8.9 (the per-
mittivity of Li2O as the basic component of the film)
and τ = 1 ms (the approximate duration of the transient
at V = 1 V). It is of interest to mention how the calcu-
lated parameters vary with ε and τ. A change in ε causes
a proportional change in L, r0, and Reff, with all other
parameters remaining the same. When τ changes by
one order of magnitude, ν0 changes two to four times
and ω0, r0, and Reff by 5–25%.

Combining Eqs. (1), (2), and (20), we can write a
general expression for the j–V characteristic of Li–
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Fig. 4. Activation energies of the total current, ωj, and injec-
tion current, ωinj, vs. the logarithm of the voltage.

Fig. 5. lnWinj. vs. T–1.
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film–solution structures in a wide ranges of current,
voltage, and temperature,

(24)

where dimensionless parameter α is given by (17).

As the temperature grows, so does α, and, at α ≈ 1,
Eq. (24) passes into Eq. (6) for normal transport.

The validity of the calculations was checked by the
inverse procedure, i.e., by calculating the j–V curves
using the parameters found. For the same set of trans-
port microscopic parameters, the experimental curves
and analytical ones calculated by Eq. (24) coincide
throughout the ranges of current, voltage, and tempera-
ture, as follows from Fig. 6. The small divergence of the
ohmic portions can be eliminated by taking into
account the variation of activation energy ωi with tem-
perature. The model suggested in this work provides a
general approach to solid-state lithium-based structures

j = 
V
L
---

σ0

T
-----

ωi

kT
------– 

 exp ν0εε0

qr0
2V

kT L2
------------

 
 
 

1/α
ω0

kT
------– 

 exp+ ,
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Fig. 6. Experimental j–V characteristics (circles) vs. analyt-
ical curves (continuous lines) for the Li–film–solution
structure (the LiClO4–PC electrolyte) at L = 7.90 nm, σ0 =

2614 (Ω cm)–1 K, ωi = 0.5357 eV, ω0 = 0.2125 eV, Reff=

0.080 nm, r0 = 0.404 nm, and ν0 = 1.521 × 1010 s–1. The
temperature is (1) 70, (2) 55, (3) 40, (4) 25, (5) 12.5, (6) 0,
(7) –17, and (8) –35°C.
the electric properties of which are controlled by sur-
face ion-conducting layers.

CONCLUSIONS

The field and temperature dependences of the Li+

ion transport rate in solid electrolyte films on lithium
have provided an insight into a transport mechanism in
such films. An ion transport model is suggested that
includes the effect of injection current and material dis-
order. This model is shown to provide a good fit to the
experimental data.
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Abstract—Magnetoresistive ceramic and thick- and thin-film La0.6Sr0.3Mn1.1 – xFexO3 ± δ (x = 0, 0.04) samples
are studied by X-ray diffraction, 55Mn nuclear magnetic resonance (NMR), resistivity measurements, and mag-

netic measurements. Their rhombohedrally distorted (R c) perovskite structure is found to contain anion and
cation vacancies and nanocluster defects. Their broad asymmetric 55Mn NMR spectra support high-frequency
electron–hole exchange between Mn3+ and Mn4+ and the fact that their environments are different due to a high
defect concentration and high structural inhomogeneity. Iron doping and an increase in the annealing tempera-
ture result in a decrease in the temperatures of the metal–semiconductor and ferromagnet–paramagnet phase
transitions and an increase in the magnetoresistive effect (MRE). The low-field MRE in the low-temperature
region (~100 K) in the ceramics and thick film is explained by tunneling in crystallite boundaries. An analysis
of the effect of iron and the annealing temperature on the activation energy confirms the conclusion regarding
a defect system of the perovskite structure and the presence of several mechanisms of activation processes. ©
2005 Pleiades Publishing, Inc.

3

INTRODUCTION

Among numerous compositions of the manganite–

lanthanum perovskites 
(where A2+ is Ca2+, Sr2+, Ba2+, or Pb2+) [1–5], the most
promising compositions from the scientific and applied
points of view are strontium-doped manganites [6–8].
These compositions are characterized by the maximum
peak temperatures Tp of the magnetoresistive effect
(MRE) occurring near the temperatures of the metal–
semiconductor (Tms) and ferromagnet–paramagnet (TC)
phase transitions. Scientific and applied interest in
these materials is warmed by the fact that the unique
relation between electrical and magnetic phenomena
near these phase transitions [9–11] is still a mystery and
also by possible application of the manganite–lantha-
num perovskites in transducers and sensors.

In most works, ceramic [12, 13] or thin-film [14, 15]
stoichiometric manganite samples were investigated. In
[16, 17], we showed that the most promising composi-
tions should contain excess hyperstoichiometric man-
ganese with respect to the A-sublattice cations of the
perovskite structure. Therefore, it is interesting to com-
pare the structure and properties of ceramic and thick-

La1 x–
3+ Ax

2+Mn1 x–
3+ Mnx

4+O3 δ±
2–
1063-7842/05/5011- $26.00 1497
and thin-film nonstoichiometric manganite–lanthanum
perovskites with excess manganese, whose structural,
resistive, and magnetic features are also controversial.

EXPERIMENTAL

The La0.6Sr0.3Mn1.1 – xFexO3 ± δ samples were pre-
pared from a mixture of the powders La(OH)3 (C63/m,
a = 6.537 Å, c = 3.865 Å) and SrCO3 (Pnma, a =
5.107 Å, b = 8.414 Å, c = 6.029 Å) and the analytical-
grade manganese oxides Mn3O4 (I41/amd, a = 5.76 Å,
c = 9.44 Å) produced in Belgium or at the Dnepropetro-
vsk chemicals plant (in the latter case, the oxide con-
tains an iron impurity). Due to the presence of the iron
impurity, the composition of the second batch of man-
ganite–lanthanum perovskites corresponded to the
molar formula La0.6Sr0.3Mn1.06Fe0.4O3 ± δ. We chose this
manganese-containing raw material to check the possi-
bility of using less scarce and cheaper raw materials for
the production of magnetoresistive transducers. The
samples of both batches were sintered at 1000°C for
22 h.

The ceramic samples (samples C) (d = 10 mm, h =
3 mm), including targets (d = 25 mm, h = 6 mm) for
© 2005 Pleiades Publishing, Inc.
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Table 1.  Structure type, lattice parameter, magnetic ordering temperature TC, metal–semiconductor phase transition temper-
ature Tms, MRE peak temperature Tp, and magnetoresistive effect MR in a magnetic field H for the ceramic (C), thick–film
(F), and thin–film (f) La0.6Sr0.3Mn1 – xFexO3 samples

Sample x
Structural data

TC, K ∆TC, K Tms, K Tp(H), K
MR (T, H = 2 kOe), %

type a, Å α T = 100 K T = Tp

C 1250 0 R c 7.745 90.32° 343 269–362 366 357 (2 kOe) 8.1 1.3

C 1350 0 R c 7.744 90.31° 357 313–370 – 357 (2 kOe) 10.5 2.3

C 1500 0 R c 7.742 90.30° 355 342–370 348 352 (2 kOe) 9.5 1.0

F 1250 0 R c 7.749 90.29° 345 312–356 367 358 (2 kOe) 8.3 1.3

C 1250 0.04 R c 7.766 90.33° 320 257–352 250 330 (5 kOe) 8.5 1.2

F 1250 0.04 R c 7.751 90.30° 327 260–355 250 330 (5 kOe) 8.5 6.0

f 0.04 Pseudo 
cubic

3.870 – – – 245 175 (2 kOe) 4.5 6.2

209 (5 kOe)

3

3

3

3

3

3

laser sputtering, were sintered from compacts at
1250°C for 22 h, 1350°C for 3.5 h, and 1500°C for 3 h.
The thick polycrystalline films (samples F) were pre-
pared using masks: a paste was applied onto an alumi-
num-oxide substrate containing 94–95% Al2O3, 2.5%
SiO2, 1.96% MnO, and 0.48% Cr2O3. This paste was
baked at 1250°C.

The thin (~2000 Å) single-crystal
La0.6Sr0.3Mn1.06Fe0.4O3 ± δ films (samples f) were fabri-
cated by laser sputtering of the ceramic target of the
second batch onto a single-crystal LaAlO3 substrate
with a pseudocubic structure (a = 3.787 Å) and the
(400) crystallographic surface orientation.

The samples were studied by the following meth-
ods. (i) X-ray diffraction (on a DRON-3 diffractometer
using Cu radiation) was used to determine the phase
compositions of the samples (with an error of 3%) and
the type and parameters of perovskite crystal lattice
(with an error of 0.1%). (ii) The four-probe method was
used to determine the electrical resistivity ρ and the rel-
ative resistance R = RT, H/R273 K, 0 (with an error of 0.5%)
over a wide temperature range (77–450 K). (iii) A mag-
netic method was used to find the temperature depen-
dence of the relative differential magnetic susceptibility
χac (with an error of 3%). (iv) 55Mn NMR using the
spin–echo technique was performed at a temperature of
77 K to determine the resonance spectral frequency
(with an error of 0.1%), the magnetic and valence states
of the manganese ions, and the difference between their
environments in the ceramic samples. (v) A magnetore-
sistive method was used to determine the magnetoresis-
tive effect MR = (ρ0 – ρH)/ρ0, where ρ0 is the resistivity
(or the relative resistance) at H = 0 and ρH is the resis-
tivity in a magnetic field H = 2 or 5 kOe.
RESULTS AND DISCUSSION

The X-ray diffraction data demonstrate that, unlike
the La0.6Sr0.2Mn1.2O3 ± δ samples studied earlier [18],
the La0.6Sr0.3Mn1.1 – xFexO3 ± δ samples of both composi-
tions (x = 0 and 0.04) are virtually single-phase and
consist of a perovskite-like rhombohedral distorted

(R c) structure. Table 1 gives the lattice parameters a
and α; the phase transition temperatures Tms, TC, and Tp;
and the magnetoresistive effects of the ceramic and
thick-film samples of the first (La0.6Sr0.3Mn1.1O3 ± δ) and
second (La0.6Sr0.3Mn1.06Fe0.04O3 ± δ) compositions. The
differences in the lattice parameters and the phase tran-
sition temperatures for the compositions with x = 0 and
0.04 are related to the effect of iron, whose ionic radius
is large, and these differences between the ceramic and
film are related to different values of their oxygen non-
stoichiometry δ [19]. The low Tms and Tp temperatures
of the samples of the iron-containing batch are caused
by Fe ions located in octahedral positions; they disturb
the Mn3+–Mn4+ interaction, which agrees with [20].

To reveal the role of iron in the formation of the
structure and properties of the
La0.6Sr0.3Mn1.1 − xFexO3 ± δ (x = 0, 0.04) ceramic sam-
ples, we performed 55Mn NMR studies. Figure 1 shows
the 55Mn NMR spectra of the ceramic samples with x =
0 and 0.04. A comparison of these spectra by making
allowance for the mechanism of defect formation [16],
valence states, and their distribution allowed us to find
their molar formulas (see Table 2). Computer decompo-
sition and analysis of the 55Mn NMR spectrum of the
ceramic sample shown in Fig. 1 demonstrate that the
average frequency for the composition with x = 0 is

 = 378.3 ± 0.3 MHz and that for x = 0.04 is  =
375.2 ± 0.3 MHz. A lower resonance frequency in the

3

F1 F2
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broader spectrum of the iron-doped sample indicates its
higher nanoinhomogeneity.

It is interesting to analyze the effect of the annealing
temperature of the ceramic samples on their relative
differential magnetic susceptibility χac and the TC deter-
mined from these data (Fig. 2). The character of the
χac(T) temperature dependences in Fig. 2 indicates fer-
romagnetic ordering of the samples below the Curie
temperature TC. The TC temperature was determined
from the position of an inflection point in the χac(T) in
the region of ferromagnetic ordering; that is,

which corresponds to the maximum rate of ordering of
the magnetic moment under the action of a measuring
field h = 0.1 Oe with a modulation frequency of 600 Hz.
The width ∆TC of the magnetic phase transition corre-
sponds to the temperature range from the maximum
magnetic susceptibility in the χac(T) dependences to the
temperature of transition into a paramagnetic state
(χac ≈ 0). According to Table 1, an increase in the sin-
tering temperature of the ceramics from 1250 to 1350
and 1500°C results in an increase in TC and a decrease
in Tms. This behavior is thought to be due to different
effects of the oxygen nonstoichiometry and the defect
concentration on the magnetic and resistive properties.
The effect of anion vacancies on the decrease in Tms can
explain its lowest value (Tms = 245 K) for the incom-
pletely oxidized thin laser film, whose crystal lattice
became pseudocubic because of a high concentration of
anion vacancies (Table 1). The decrease in ∆TC with
increasing sintering temperature (Table 1) is related to
a decrease in the inhomogeneity, which is caused by the
clustering of excess manganese. As was shown in [16],
this manganese substantially increases the magnetore-
sistive effect in the self-doped manganite
La1 − xMn1 + xO3 and the doped manganites
(La0.8Sr0.2)1 − xMn1 + xO3 [18] and
(La0.7Ca0.3)1 − xMn1 + xO3 [21], which are nearest to our
composition. The neutron diffraction studies of the
samples of the batch with x = 0.1 [22] supported their
single-phase state. In this case, in the presence of
hyperstoichiometric manganese, the perovskite
structure contains mesoscopic cluster nanodefects
[16, 23, 24].

The effect of the sintering temperature on the resis-
tivity and the metal–semiconductor phase transition
temperature Tms of the La0.6Sr0.3Mn1.1O3 ± δ ceramics
and thin film is illustrated in Fig. 3. An increase in the
sintering temperature is seen to decrease Tms, and this
decrease is more substantial as compared to the
decrease in TC (see Table 1). A comparison of the phase
transition temperatures Tms, Tp, and TC allowed us to
draw an interesting conclusion: the MRE peak temper-
ature Tp is located between Tms and TC. The Tms temper-
atures of the ceramics (366 K) and the thick film

∂χac T( )
∂T

-------------------
T TC=

max,=
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(367 K) sintered at 1250°C are virtually the same
(Fig. 3). A lower Tms value in the ceramics sintered at a
higher temperature (1500°C) is caused by higher oxy-
gen nonstoichiometry, i.e., by a higher concentration of
anion vacancies.

100

50

0
100

50

0

(a)

(b)

400380360340 420

Fig. 1. 55Mn NMR spectra of the La0.6Sr0.3Mn1.1 − xFexO3 ± σ
samples with x = (a) 0 and (b) 0.04 sintered at 1250°C.

(d)

(c)

(b)

(a)
C 1250

C 1350

C 1500

F 1250

400300200100
T, K

χac, arb. units

Fig. 2. Temperature dependences of the relative differential
magnetic susceptibility χac of the ceramic
La0.6Sr0.3Mn1.1O3 samples sintered at (a) 1250, (b) 1350,
and (c) 1500°C and of (d) the La0.6Sr0.3Mn1.1O3 thick film
annealed at T = 1250°C.

Amplitude, arb. units

F, MHz
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The temperature dependences of the magnetoresis-
tive effect in the ceramic samples sintered at various
temperatures and in the thick film are illustrated in
Fig. 4. It is seen that the magnitudes of MRE near Tms
and Tp for the ceramics and thick film are similar and
they depend relatively weakly on the sintering temper-
ature.

Interestingly, the MREs at 77–100 K in both ceram-
ics and thick film are significantly (a few times) higher
than those at Tp (Table 1). Since the nature of the MRE
in the low-temperature region is related to a tunneling
effect in crystallite (grain) boundaries, its magnitude
∆ρ/ρ0 should depend on the crystallite size, which, in
turn, is a function of the sintering temperature and dura-
tion. We are planning to determine the crystallite size
and to study its effect on the MRE in the low-tempera-
ture region to reveal the nature of this phenomenon,
which has not been observed in single crystals [25, 26],
including thin-film single crystals [27, 28].

We fabricated and studied thin-film laser-sputtered
samples only for the second system, which contained
an iron impurity. Figure 5 shows the temperature
dependences of the relative resistance and MRE of the
iron-doped (C) and thick-film (F) samples prepared at
1250°C and of the thin (f) laser films
La0.6Sr0.3Mn1.06Fe0.04O3 ± δ. As compared to the first sys-

(a)

C 1250

Ea = 64 meV

Tms = 366 K

Ea = 6 meV

Ea = 108 meV

C 1350

C 1500
Tms1 = 278 K

Tms2 = 348 K

Ea = 61 meV

Tms = 367 K

F 1250

(b)

(c)

(d)

400300200100
20
40

60
80

100

50

0
15

10

5

0

300

200

T, K

ρ0, mΩ cm
100

Fig. 3. Temperature dependences of the resistivity ρ0 of the
ceramic La0.6Sr0.3Mn1.1O3 samples sintered at (a) 1250,
(b) 1350, and (c) 1500°C and of (d) the La0.6Sr0.3Mn1.1O3
thick film annealed at T = 1250°C. The dashed lines show
the ρ(T) dependences with the corresponding values of Ea.
tem, the Fe impurity is seen to decrease Tms of the
ceramic and thick-film samples (the decrease in the lat-
ter sample is greater). The low phase transition temper-
ature Tms of the laser film is related to both the effect of
Fe and higher oxygen nonstoichiometry, i.e., to a higher
concentration of anion vacancies in the lattice of the
incompletely oxidized laser film. It should be noted that
Fe doping leads to a substantial decrease in Tms and Tp.
The thick-film and Fe-doped thin-film samples have
higher MRE magnitudes as compared to the impurity-
free La0.6Sr0.3Mn1.1O3 ± δ samples. The low-temperature
MRE in the iron-doped ceramic and thick-film
La0.6Sr0.3Mn1.06Fe0.04O3 ± δ samples is slightly sup-
pressed as compared to the first system (Figs. 4, 6).

The model that is most widely used to describe the
kinetic properties of rare-earth manganites and other
magnetic semiconductors having colossal magnetore-
sistive effect is the model of phase separation [9, 10].
Phase separation on a microscopic level is related to the
formation of localized charge states (polarons, mag-
netic polarons, ferrons) due to a strong effect of elec-
tron–phonon interaction, high degree of polarization in
a crystal, and a high defect concentration in its crystal
lattice because of the presence of point defects (anion
and cation vacancies) and clusters. In this case, the
physical foundation of galvanomagnetic phenomena is
the kinetic theory of low-mobility semiconductors [29,
30]. Large-scale phase separation is caused by the for-
mation of conducting ferromagnetic (FM) regions

10

5

(a)

10

5

(b)

10

5

(c)

10

5

(d)

15

H = 2 kOe

400300200100
0

0

0

0

∆ρ/ρ0, %

T, K

Fig. 4. Temperature dependences of the MRE of the
ceramic La0.6Sr0.3Mn1.1O3 samples sintered at (a) 1250,
(b) 1350, and (c) 1500°C and of (d) the La0.6Sr0.3Mn1.1O3
thick film annealed at T = 1250°C.
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(drops) inside a dielectric matrix. Such large-scale
phase separation in the spin system of a low-doped
La1 – xSrxMnO3 (x = 0.07) manganite single crystal was
detected by studying elastic neutron scattering [31]. It
was related to the formation of ≈200-Å ferromagnetic
regions spaced ≈420 Å apart. The appearance of con-
ducting regions separated by dielectric leads to a signif-
icant role of tunneling effects. As the FM drops grow
and the distance between them decreases, percolation
processes become important. They are related to charge
transfer via conduction electrons overcoming energy
barriers at the boundaries of FM drops rather than via
tunneling or diffusion of magnetic polarons through a
crystal. This mechanism begins to operate when the
interdrop distance becomes shorter than the tunneling
length. For the case of small-scale phase separation,
this mechanism begins to operate when the magnetic-
polaron (ferron) size is comparable with the lattice
parameter. It is characteristic that the temperature
dependences of the resistivity for these three processes
have the same shape. The only difference consists in the
fact that, upon tunneling and in the percolation model,
the activation energy has the Coulomb nature of inter-
action and it is equal to half the height of the energy
barrier that must be overcome to ensure charge transfer
from one phase-separated region to another [32].

Therefore, data on activation energy Ea are impor-
tant to reveal the effect of lattice defects, including both
point and cluster defects, on the electrical and magnetic
properties of semiconductor materials [33]. The classi-
cal theory of magnetic semiconductors [34] includes
three main mechanisms for an activation process:

0.5

100
T, K

1.0

200 300 400
0

Tms = 245 K

Ea = 106 meV

Film

(c)

0.5

1.0

0

Tms = 250 K

Ea = 142 meV

F 1250
(b)

0.5

1.0

0

Tms = 250 K

Ea = 146 meV

C 1250
(a)

R0, arb. units

Fig. 5. Temperature dependences of the relative resistances
R0 of the (a) ceramic, (b) thick-film, and (c) thin-film
La0.6Sr0.3Mn1.06Fe0.04O3 samples in a zero magnetic field.
The dashed lines show diffusion processes with the corre-
sponding values of Ea.
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(1) the activation energy caused by local-potential fluc-
tuations due to defects (impurities, vacancies), (2) the
activation energy caused by electron–phonon interac-
tion, and (3) the activation energy caused by p–f and/or
p–d exchange. To make the physical picture of the pro-
cesses that occur in rare-earth manganites more com-
plete, these three mechanisms should be complemented
by the effect of tunneling in intercrystallite regions in
the ceramic samples and the effect of tunneling related
to spin transfer from one ferromagnetic drop to another
for large-scale phase separation.

It is known that, in a paramagnetic region (T > TC),
the temperature dependences of the resistivities of man-
ganite–lanthanum perovskites can be described with a
good accuracy by an activation process of the diffusion
type [33, 34]:

(1)

where D = a2ν is the diffusion coefficient, e is the
charge, and n is the charge concentration.

In this case, charge transfer occurs via jumps
between localized states spaced a apart at a frequency ν.

Table 2 gives the values of Ea determined from the
temperature dependences of the resistivity (for x = 0)
and the relative resistance (for x = 0.04). The curves
calculated by Eq. (1) are shown in Figs. 3 and 5 for each
sample as dashed lines. As is seen from Table 2, iron
doping increases Ea over the whole temperature range
of the paramagnetic state. The activation energy is
mainly contributed by the first mechanism. The activa-

ρ kT

ne2D
------------

Ea

kT
------ ,exp=

5

100
T, K

10

200 300 400
0

5 kOe Film

(c)

F 1250

C 1250

2 kOe
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10

0

5 kOe

(b)

2 kOe
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10

0

5 kOe

(a)

2 kOe

∆R/R0, %

Fig. 6. Temperature dependences of the magnetoresistive
effect ∆R/R0 of the (a) ceramic, (b) thick-film, and (c) thin-
film La0.6Sr0.3Mn1.06Fe0.04O3 samples in magnetic fields
of 2 and 5 kOe.
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Table 2.  Molar formulas of the defect structure and the activation energy Ea of the ceramic (C), thick-film (F), and thin-film
(f) manganite-lanthanum perovskites La0.6Sr0.3Mn1.1 – xFexO3 ± δ (x = 0, 0.04)

Sample x Ea, meV Molar formulas of the clustered perovskite structure

C 1250 0 64

C 1350 0 6

C 1500 0 108

F 1250 0 61

C 1250 0.04 146

F 1250 0.04 142

f 0.04 106

La0.57
3+ Sr0.29

2+ V0.10
c( ){ } A Mn0.67

3+ Mn0.29
4+[ ] B Mn0.04

2+ Mn0.04
4+( )c1O2.85

2– V0.15
a( )

La0.57
3+ Sr0.29

2+ V0.10
c( ){ } A Mn0.63

3+ Mn0.29
4+ Fe0.04

3+[ ] B Mn0.04
2+ Mn0.04

4+( )c1O2.85
2– V0.15

a( )
tion energies of the ceramic (C 1250) and thick-film
(F 1250) samples with the same iron content are virtu-
ally the same. The lower Ea energy of the thin-film (f)
sample with x = 0.04 can be explained by the absence
of the contribution of tunneling effects in intercrystal-
lite regions to the activation energy. The nonmonotonic
character of the dependence of Ea on the annealing tem-
perature for the ceramic samples with x = 0 is of partic-
ular interest. The low value (Ea = 6 meV) of sample
C 1350 with x = 0 (Table 2), a metallic character of its
ρ0(T) dependence (Fig. 3), and its resistivity (which is
an order of magnitude lower than those of C 1250 and
C 1500) indicate an optimum defect structure, a more
uniform defect distribution, and an optimum crystallite
size (which results in a decrease in the fraction of inter-
crystallite regions in the samples sintered at 1350°C) in
this sample. It is also of interest that this sample fea-
tures the maximum values of MRE in both the high-
temperature region (at Tp) and at T = 100 K (Table 1).

An increase in the activation energy upon iron dop-
ing indicates the breaking (weakening) of the electron–
hole exchange in manganese–oxygen (exchange) and
manganese–manganese (superexchange) bonds due to
a higher degree of electron localization near trivalent
iron ions. Tunneling effects should play a specific role
in MRE [32], which is evidenced by the character of the
MR ~ H2/T5 dependences shown in Fig. 6 for samples C
1250 and F 1250 with x = 0.04, namely, by the absence
of a peak near Tp at H = 2 kOe. For this class of manga-
nites, a magnetic field of ≈2 kOe is close to the satura-
tion field at which the magnetic moments of domains in
the film samples and the magnetic moments of crystal-
lites in the ceramic samples are arranged along the
applied field. As follows from Fig. 6, the main mecha-
nism of the appearance of MRE at H ≈ 2 kOe in the
ceramic samples is tunneling in grain boundaries, and
the presence of a peak in MR(T) for the thin-film sam-
ple indicates the predominant role of the effect of spin
fluctuations near TC on the scattering mechanism of
charge carriers, whose contribution decreases as a mag-
netic field is applied.
Thus, in contrast to classic magnetic semiconduc-
tors with a giant magnetoresistive effect [36], in rare-
earth manganites one has to take into account all types
of interactions that have magnetic, lattice, and tunnel-
ing characters. Their contributions change depending
on the composition, annealing temperature, size, and
type of samples.

CONCLUSIONS

We studied ceramic, thick- and thin-film samples of
manganite–lanthanum–strontium perovskites
La0.6Sr0.3Mn1.1 – xFexO3 (x = 0, 0.04) by X-ray diffrac-
tion, resistivity measurements, magnetic measure-
ments, 55Mn NMR, and magnetoresistive measure-
ments and established the following.

(1) All the samples have a rhombohedrally distorted
perovskite structure, and its lattice parameters depend
on the composition, sintering temperature, oxygen non-
stoichiometry, concentration of anion vacancies, and
the Mn3+/Mn4+ ratio of the samples.

(2) The change in the metal–semiconductor phase
transition temperature Tms, the increase in the Curie
temperature TC, and the decrease in the temperature
range ∆TC of transition into a magnetically ordered
state with increasing annealing temperature of the
ceramic samples can also be explained by changes in
the oxygen nonstoichiometry and in the Mn3+/Mn4+

ratio and by different effects of defects on the magnetic
and resistive properties.

(3) The iron-containing samples have lower phase
transition temperatures Tms and TC and higher magni-
tudes of MRE.

(4) Relatively high magnitudes of the low-field
MRE of the ceramic and thick-film samples at T = 77–
100 K are accounted for by tunneling in grain (crystal-
lite) boundaries.

(5) Analysis of the 55Mn NMR spectra of the
ceramic samples with x = 0 and 0.04 confirmed high-
frequency electron–hole exchange between Mn3+ and
Mn4+ and the conclusion concerning a high defect con-
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
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centration in the crystal lattice, which contains anion
and cation vacancies and nanocluster defects.

(6) The MRE is maximum in the iron-doped film
samples.

(7) Analysis of the effects of the sintering tempera-
ture of the ceramic samples and an iron impurity on the
activation energy and the temperature dependences of
the resistivity and MRE showed that magnetic, lattice,
and tunneling interactions coexist in the magnetoresis-
tive manganite–lanthanum perovskites.
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Abstract—The possibility of growing single-wall carbon nanotubes from ring carbon clusters that appear at a
certain stage of cooling carbon vapor is discussed. Such a technique could allow one to grow single-wall nan-
otubes without introducing a macroscopic amount of a catalyst and to retain nanotubes open during their
growth. An analysis performed using semiempirical quantum-chemical methods shows that, when catalyst
atoms interact with the edge of an already formed nanotube surface, the bonds of these atoms with carbon tend
to occupy positions normal to the generatrix of the nanotube. This situation is natural for transition-metal atoms,
since they favor the destruction of pentagonal cycles at the edge of the surface. The destruction mechanism con-
sists in the fact that pentagons incorporate carbon atoms from the outside and become hexagons. The depen-
dence of this tendency on the type of catalyst atom is considered. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

In any event, the modern processes of producing
carbon nanotubes (NTs) are related to the mechanism
of carbon precipitation from the melt supersaturated by
carbon (the vapor–liquid–drop (VLD) mechanism). In
the processes of chemical decomposition of carbonifer-
ous substances, this mechanism is realized intention-
ally, and it is realized spontaneously in arc-discharge
and laser methods. The unavoidable disadvantage of
these methods is the presence of macroquantities of a
metal in the final product, at least, at one of the tube
ends. In some cases, such metallic particles can be used
for practical purposes (e.g., for magnetic data storage
[1]); in most other cases, they are removed, which is
accompanied by loss or damage of a huge number of
tubes.

Therefore, methods of NT growth that are not based
on the VLD mechanism are attractive. One of the alter-
natives is CVD of small carbon fragments on large sub-
strate-free carbon clusters, e.g., rings [2, 3]. In [2, 3],
this growth was described qualitatively, and the authors
of [4] tried to quantitatively describe it, but as applied
to a rather large well-shaped nanotube cage.

The idea of [2, 3] consists in the following: gas-
phase molecules of a metal carbide MenCm (e.g., CoC2)
attach to doubly bound carbon atoms at the edge of an
already formed nanotube surface and form the next
layer (circle) of hexagons (Fig. 1a). However, penta-
gons can easily form under these conditions. The possi-
ble mechanisms of their destruction or blocking were
studied in [4] (the Lee–Tomanek scooter mechanism).
In the Lee–Tomanek mechanism, a catalyst atom tem-
porarily substitutes for a deficient carbon atom and
waits for the arrival of another carbon atom to be dis-
placed by it. When simulating this process, the authors
1063-7842/05/5011- $26.00 1504
of [4] assumed that a significant portion of an NT was
assembled; therefore, the description is independent of
the type (microparticle on a substrate or a ring) of
nucleation centers for nanotube growth. For the mech-
anism to operate, an NT must be open from at least one
end. Then, if NTs grow from rings according to this
mechanism and if the whole catalyst is supplied to the
atomic phase, NTs are open from both sides. This is
important for practical growing of NTs, since there is

C C

Co

Co

C

C

(a)

(b)

Fig. 1. Nucleation of (a) a pentagon and (b) a hexagon when
an MeC2 molecule is trapped by the edge of an NT surface
(the circles stand for metallic (Co) atoms).
© 2005 Pleiades Publishing, Inc.
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no longer need to remove lumps of amorphous carbon
and solidified drops of catalytic metal.

The initial stage of NT growth, namely, the fixation
of the first hexagons to a ring is only declared in [2, 3]
and is ignored in [4]. Moreover, those authors did not
discuss the sensitivity of this mechanism to the choice
of catalyst, which manifests itself obviously in experi-
ments, and conditions for the mechanism of NT growth
from rings to be actualized.

The simulation [5] of the mechanisms of fullerene
formation indicates that ring carbon clusters without
foreign noncarbon atoms cannot be nucleation centers
for fullerenes. The situation changes in the presence of
a catalyst, and the effect of a catalyst can be of two
kinds. (1) In the initial stage of assembling, catalytic
atoms fix hexagons to a ring; then, for a large number
of hexagons, these atoms also fix pentagons, providing
the growth of a fullerene molecule. (2) Catalytic atoms
fix hexagons in the course of assembling and block the
appearance of pentagons, as in the scooter mechanism
of [4].

In the former case, fullerene growth can be stimu-
lated, and, in the latter, the growth of single-wall NTs
can be stimulated. Any general considerations cannot
prohibit the possibility of experimental conditions
under which both cases can be realized.

In this work, we aimed at studying the dependence
of the reactions used to assemble NTs on the type of
catalytic atoms and at estimating the interval of external
conditions required for nanotube growth.

Hereafter, a catalyst is taken to be any noncarbon
atom (it is designated by symbol Me (metal)) even in
the case if, in contrast to iron group metal atoms or plat-
inoids, it has no catalytic properties with respect to NT
growth.

For studies, we used the AM1 and PM1 quantum-
chemical methods for carbon clusters that included
third period element atoms (Ca, As, Si) and atoms of
elements of the first complete period (Zn, Ga, Ge, As,
Se). These methods give sufficiently reliable configura-
tions and characteristics for clusters containing carbon
atoms, and we used their results without any modifica-
tions.

The configurations of carbon compounds with ele-
ments of the first long period (Mg, Sc, …, Zn) were
studied semiquantitatively by the ZINDO-I method of
a HYPERCHEM 6.3 package. The ZINDO-I method
gives reasonable lengths and energies for metallic ele-
ment–carbon bonds. However, for purely carbon mole-
cules and large carbon fragments in carbon–metal clus-
ters, this method gives strongly distorted configurations
and wrong binding energies. Therefore, for configura-
tions with a large number of carbon atoms and several
metal atoms, their forms and energies were estimated as
follows. The configuration of a carbon cage with ele-
ments Zn, …, As located at the sites of metal Me was
calculated by the PM3 method; then, these Zn, …, As
atoms were replaced by Me atoms and optimization
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
was performed by ZINDO only with respect to the Me-
atom positions for a fixed carbon cage. The binding
energy E of the configuration obtained was estimated in
terms of molecular mechanics from the relation

whence, we have

(1)

In Eq. (1), EZINDO is the binding energy calculated

by ZINDO;  and  are the binding energies
of the cluster carbon cage calculated by PM3 and

ZINDO, respectively. For the calculation of ,
optimization was not carried out and a ready configura-

tion was used. The difference  –  can be
named as a defect of the ZINDO method. The use of
Eq. (1) implies that metal atoms weakly deform the
structure of the carbon cage calculated by PM3 and that
the metal-atom positions with respect to the carbon
cage is well determined by ZINDO.

The difference in the binding energies between two
configurations with the same atoms can be calculated
by ZINDO without the manipulation described above.
It is important that results in both cases agree with each
other.

The criterion of adequacy of the dependences calcu-
lated was their (at least approximate) retention when
metal atoms were replaced by the elements calculated
by PM3 (i.e., Zn, Ga, Ge, etc.). Unfortunately, the only
element that can be calculated by both methods (AM1
and PM3) is zinc.

THE INITIAL STAGE OF NANOTUBE 
GROWTH—FIXATION OF A HEXAGON 

TO A RING

The quantum-chemical simulation shows that, in the
absence of a catalyst, the embedding of the C2 molecule
into a ring and the formation of a hexagon (Fig. 2) are
possible and energetically favorable. However, the dis-
solution of the C2 molecule in the ring, which is accom-
panied by an increase in its size by two atoms (or three
atoms in the case of the C3 molecule) is much more
favorable (by about 1.5–2 eV).

The situation changes in the presence of a catalyst of
the Zn–Ga type. For example, when the ZnC2 molecule
forms a hexagon, the energy decrement is 1.5 eV
greater than that in the case of its dissolution in the ring.
The same result remains qualitatively the same for
“real” catalysts, such as Fe, Co, and Ni.

When a sufficient number of hexagons forms in the
ring, the atoms of both hexagons and retained ring sec-
tions take part in further reactions of entrapment of car-
bon fragments from the outside (Fig. 3). Both penta-
gons (A  B) and hexagons (F  D) can form

E E0
AM1– EZINDO E0

ZINDO;–=

E EZINDO E0
AM1 E0

ZINDO–( ).+=

E0
AM1 E0

ZINDO

E0
ZINDO

E0
AM1 E0

ZINDO
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under these conditions. The simulation demonstrates
that, in both cases, the appearing configuration with
two polygons is stable if a pentagon or a hexagon is
fixed by at least two catalyst atoms. Otherwise, the

Fig. 2. Ring carbon cluster with a hexagon—the nucleation
center of a nanotube in the mechanism proposed.

A
MeC2 MeC2

B D

F

E

Fig. 3. Possible cases of the attachment of the C2 molecule
to the hexagon–ring section joint.

Fig. 4. Isomer with two hexagons and four zinc atoms (cir-
cles) located approximately in the surface formed by the
generatrix of the nanotube (“planar” isomer).
common bond of two polygons breaks and the process
of assembling a nanotube terminates (D  E).

Further simulation shows that clusters having two
polygons and several catalyst atoms can have several
isomers, depending on the type of the catalyst atoms.
Along with the isomers where catalyst atoms are
approximately located as the continuation of the gener-
atrix of the nanotube surface (hereafter, they are called
“planar,” Fig. 4), there appear isomers where catalyst
atoms are located at almost the maximal distance away
from the surface formed by the generatrix. During opti-
mization, catalyst atoms, which have at least one free
valence, find additional bonds with carbon atoms that
were not taken into account in the initial configuration.
Hereafter, such isomers are called “inverted.” The ori-
entation in Fig. 5 is chosen so that both hexagons are
virtually invisible and that the position of catalyst
atoms (circles) is most clearly visible. Among the four
Zn catalyst atoms, only the bond of atom 1 with the
nearest angular carbon atom is located at a rather acute
angle with respect to the nanotube axis.

Obviously, this inverted isomer does favor NT
growth. On the one hand, the angular carbon atoms,
which have only two neighboring carbon atoms, are
rather stable due to bonds with metal atoms. On the
other hand, the bonds of the catalyst atoms are saturated
and do not trap carbon atoms coming from the outside
to the edge of the growing nanotube. On the contrary,
planar isomers cannot transform into an NT, since the
saturated bonds of the catalyst atoms trap the flux of
carbon fragments from the outside and form chaotic
structures.

The energies of the inverted and planar isomers
were compared using the elements Zn, Ga, Ge, As, and
Se within the framework of the PM3 method.

In the case of As, there is only an inverted specific
configuration: all As atoms are beyond the surface
formed by the generatrix; however, each As atom is
bound to only one angular carbon atom. When going
along the period from right to left (As  Ga  Zn,
etc.), we constructed various isomers, in which some
catalyst atoms occupy the planar positions and others
occupy the inverted positions. Figure 6 shows the dif-
ference ∆E in the absolute values of the binding ener-
gies of the planar and inverted isomers as a function of
the catalyst-atom position in the periodic table (the first
complete period). It is seen that the planar isomers are
more favorable to the right of zinc (Fig. 6, curve 3). For
Ga, however, the planar isomer does not exist, and it
only generates the inverted isomer. For Zn, the advan-
tage of the planar isomer is almost zero.

When going to real catalyst atoms (where an appear-
ing configuration cannot be completely optimized by
quantum-chemical methods), we used the procedure
described above: catalyst atoms were located in all con-
figurations considered above at the sites of Zn, …, As
atoms, and the configuration of a carbon cage was taken
to be unchanged. Then, for each configuration of the
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
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carbon cage, we optimized the positions of only cata-
lyst atoms by ZINDO. As a result, we determined a
conventionally optimum configuration and, then, the
most conventionally optimum configuration among all
the carbon-cage configurations; in all cases, the binding
energy was calculated by both methods described
above. The difference in the binding energies between
the optimum planar and optimum inverted configura-
tions is shown in Fig. 6 (curve 1). Curve 2 corresponds
to the energy difference calculated by ZINDO without
additional computation. The advantage of the inverted
configuration is obvious.

This situation is natural for atoms of the transition
triad, where the valence can be different (change by
one), the bonds of valence p and s electrons are weak,
the d-electron correction to the valence is uncertain,
and a large number of atomic bonds compensate for
prominent atomic positions. Different catalyst-atom
configurations are spatially closer than those in the pla-
nar configuration, and their displacements should be
easier. However, it is natural that, within the framework
of this dependence, the competition between the num-
ber of catalyst-atom bonds and the distorted valence
angles along the period can be very nontrivial.

CAN A CATALYST GIVE AN IMPETUS 
TO FULLERENE GROWTH?

The effect of a catalyst on the initiation of NT
growth described above can be successfully realized if
hexagon formation is more favorable than pentagon
formation in the stage of coalescence of islands appear-
ing along the radius of the initial ring. Figure 7 shows
the difference δEph in the energies of the configurations
with a pentagon or a hexagon attached to the first hexa-
gon (Fig. 3, configurations B and D, respectively). As
above, we assumed that there are no other hexagons
along the radius of the ring. We compared optimum
configurations at different numbers of catalyst atoms.

As is seen from Fig. 7, the binding energies of the
configurations with a pentagon or a hexagon are virtu-
ally equal in the cases of As and Ge. Pentagons are
favorable in the cases of Ga and Zn; in the case of Zn,
they are less favorable than in the case of Ga. However,
for Zn, the planar isomer is more favorable, which pro-
hibits the growth of both fullerenes and nanotubes,
since there is no place for a coming carbon atom. Gal-
lium, which has the only inverted configuration with a
hexagon or a pentagon, can have catalytic properties.
However, this might be a purely computation effect.

As going to real catalysts, pentagons become less
favorable than hexagons. This means that a catalyst
moves a ring carbon cluster toward nanotubes rather
than fullerenes. It is interesting that this tendency
depends only weakly on the number of catalyst atoms
(three or four).

This result shows that it is impossible to use well-
known catalysts to stimulate fullerene growth when
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
using not only atoms of the iron group but also plati-
noids, which cannot be simulated by quantum-chemi-
cal methods.

MECHANISMS OF SUBSTITUTING A HEXAGON 
FOR PENTAGON IN THE CASE OF A LARGE 

ASSEMBLED NANOTUBE FRAGMENT

Figure 8 shows a fragment of the edge of a large
growing carbon NT (the edge is located on the top of
each picture, and the formed nanotube “body” is shown
at the bottom). If a pentagon forms during the reaction

1

Fig. 5. Isomer with two hexagons and four zinc atoms (cir-
cles) whose bonds are almost orthogonal to the surface
formed by the generatrix of the nanotube (“inverted” iso-
mer).

–2

Fe
0

Co Ni Cu Zn Ga Ge As Se

4

6

8

10

–4

12

3

2

∆E, eV

Fig. 6. The difference ∆E in the absolute values of the bind-
ing energies of the planar and inverted isomers as a function
of the catalyst-atom position in the periodic table (the first
complete period). Configurations with two hexagons and
four catalyst atoms. (1) ZINDO with additional computa-
tion (smoothed curve plotted by points), (2) ZINDO without
additional computation (calculated points are not shown),
and (3) the PM3 method.



 

1508

        

ALEKSEEV, DYUZHEV

                                                        
of attachment of a carbon molecule to the edge (Fig. 8,
A), two basic directions of further reactions are possible
for trapping the next C2 molecule.

2

26 27 28 29 30 31 32 34 35
Ga

4

6

–2

0
Fe Ni Co Cu

∆Eph, eV

25 33

Fig. 7. The difference δEph in the absolute values of the
energies of the configurations with two hexagons and a pen-
tagon placed at the site of one of the hexagons (Fig. 3, con-
figurations B and D) as a function of the catalyst-atom posi-
tion in the periodic table. Solid (n), dashed (h), and dotted
(r) curves are plotted for two, three, and four catalyst
atoms, respectively.
(A) The extreme carbon atom (atom 1) attached to
the pentagon of the C2 molecule (Fig. 8, B) fixes the
nearest carbon at the edge of the surface (Fig. 8, D) to
form a hexagon. The earlier appeared pentagon is fixed
in this case.

(B) The carbon atom nearest to the fragment
(atom 2) occupies a place in the bridge of a pentagon
and complements it to form a hexagon (Fig. 8, C). The
pentagon is destroyed.

In the absence of a catalyst, version A is more ener-
getically favorable, and version B is favorable in the
presence of a metallic catalyst. This result is obtained
by using both molecular-dynamics simulation and
ZINDO. It can be explained by the fact that the energet-
ically unfavorable existence of the prominent carbon
atom (Fig. 8, atom 1 in D') is partly compensated due to
the saturation of the bonds of this atom by catalyst
atoms. On the other hand, there is no energy increment
induced by pentagonal cycles and the related surface
curvature.

The behavior of the difference in the total binding-
energy increment as a function of the element ordinal
number for this reaction approximately corresponds to
Fig. 7. Thus, well-known catalysts are seen to be pref-
erable. Another argument for the well-known catalysts
B'
1

2C '

C B D

D'
1

2

211
2

A C2

1

2

2

Fig. 8. Possible ways for the formation of a pentagonal cycle at the edge of the surface of a growing nanotube upon trapping the C2
molecule. The ways B  C, B  D show the evolution of the edge of the surface without catalyst atoms. The ways B' 
C', B'  D' show the evolution with catalyst atoms (circles).
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consists in the following. The substitution of a hexagon
for a pentagon should be accompanied by the rupture of
the carbon–catalyst bond, and the energy of this bond is
substantially lower for the well-known catalysts
(Fig. 9).

The basic mechanism of pentagon destruction is
analogous to the mechanism of [4], and it is realized
under the following additional conditions: (i) catalytic
atoms fixing an NT edge occupy the inverted positions
and (ii) the total concentrations of carbon (in the form
of atoms, the C2 and C3 molecules, and a MenCm car-
bide) and catalyst (in the form of atoms and molecules
of the same carbide) are intimately related.

The first condition is met by the proper choice of a
catalyst. Moreover, this condition specifies the upper
boundary of a carbon flux. Indeed, catalyst atoms that
occupy positions in the continuation of the generatrix
of the nanotube (as in the case of the planar configura-
tion) and break the following assembling of the nano-
tube appear in the case when a new layer (circle) of
hexagons has formed on the NT edge and when the cat-
alyst atoms fixed to the previous layer have not moved
to the edge. If the angular carbon atoms on the edge
interact with surrounding carbon atoms from the vapor
within the time it takes for this motion to occur, the pen-
tagons have no time to be fixed by the catalyst atoms
and become embedded in the growing surface. A
fullerene cap appears, and the nanotube growth ceases.
Therefore, a necessary condition for assembling nano-
tubes is a strong degree of rarefaction of the carbon
vapor.

On the other hand, the catalytic vapor should also be
rarefied; otherwise, nanotube growth is blocked by cat-
alyst atoms.

The maximum allowable concentrations of carbon
(N2) and catalyst (NMe) atoms can be estimated from the
relations

(2)

where τj is the time of jumping of the inverted catalyst
atoms to newly appearing angular carbon atoms at the
edge of the nanotube surface and σ is the average cross
section of trapping small fragments by the edge of the
surface (carbon and metal atoms that enter into the
compositions of carbon clusters and MenCm clusters
also included in N2 and NMe).

FORMULATION OF AN EXPERIMENT TO GROW 
NANOTUBES FROM CARBON CLUSTERS

If the quantum-chemical results correspond to the
real situation, nanotube growth from rings can be real-
ized in the framework of an arc-discharge method.
However, the formation of a discharge should differ
from that used for nanotube growth from supersatu-
rated drops.

σN2VT( ) 1– τ j, σNMeVT( ) 1– τ j,> >
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
(i) First, nucleation centers (rings) must appear. To
this end, the number of metal atoms in the early stages
of nucleation (atoms  chains  rings) should be
minimum, so that rings rather than nuclei for carbon–
metal drops appear. The allowable concentration of
metal atoms in the region of generation of carbon rings
from chains is determined by the condition that the ratio
of the concentration  of chains “loaded” by metal
atoms to the concentration of “pure” chains is low. On
the order of magnitude, the equilibrium /NC ratio is

(3)

where δE ~ 1.3–1.7 eV is the decrease in the total bind-
ing energy caused by the attachment of a carbon cluster
to a catalyst atom, NK is the metal-atom concentration,
(T/h〈ν〉 )3 is the ratio of the vibrational partition func-
tions of the loaded and pure chains, and 〈ν〉  is the aver-
age vibration frequency in the chain considered as a
system of harmonic oscillators.

At T = 0.2 eV, the upper boundary of the metal-atom
concentration is estimated to be 1018 cm–3. As the tem-
perature decreases, this requirement becomes more
stringent. However, in any case, this condition does not
look too stringent.

(ii) When moving to the region of a dense metallic
vapor and NT growth, formed ring carbon clusters must
not be destroyed; that is, the temperature of this region
has to be low.

From this standpoint, a steady-state low-tempera-
ture glow discharge or periphery area in a metallic tar-
get evaporated by laser radiation is optimum. The first
version is preferred, since it provides controlled evapo-
ration of nanotubes on a substrate in the strong electric
field of a near-electrode layer.

(iii) Thus, the conditions of growing NTs from a gas
phase are, to a certain degree, conflicting with the con-
ditions of growing NTs from a carbon–metal drop

NC'

NC'

NC'

NC
------- NK

h2

2πmKT
------------------ 

 
3/2 T
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------------ 
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  ,exp∼
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Fig. 9. The binding energy of a carbon atom with an atom
from the first complete period (as well as with Mg, Al, Si,
S, and P atoms).
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supersaturated by carbon. In the latter case, drops
should first be formed and deposited onto a substrate
surface. In the case of growing from rings, nanotubes
grow before deposition on the surface. They should be
deposited on a substrate as a finished product, and this
process creates additional difficulties.

(iv) Our consideration demonstrates that single-wall
carbon nanotubes can grow from rings only in the pres-
ence of a catalyst. Attempts to simulate the process that
only involves carbon atoms or small carbon molecules
were made in the initial stage of investigation of nano-
tubes [6] and later (e.g., see [7]); however, no experi-
mental evidence of this process has been obtained.

CONCLUSIONS
(1) In the initial stage of growth of carbon NTs and

ring clusters, the role of catalyst atoms consists in
blocking the “dissolution” of small carbon fragments in
a ring.

(2) When the edge of a formed nanotube surface
interacts with catalyst (Me) atoms, the Me–C bonds of
these atoms tend to occupy positions that are normal to
the generatrix of the nanotube. This situation is natural
for transition-metal atoms, which favor the destruction
of pentagonal cycles at the edge of the surface via the
incorporation of carbon atoms from the outside; thus,
they become hexagons.

(3) During normal nanotube growth, the “inverted”
catalyst atoms have time to move to the edge of the sur-
face to follow newly attached carbon atoms (radicals).
When the influx of catalyst atoms is sufficiently high,
NT growth ceases, since the edge has no time to be
annealed: the bonds of carbon atoms supplied to the
edge of the nanotube are immediately “blocked” by cat-
alyst atoms, which occupy both the inverted configura-
tions and the configurations on the surface formed by
the generatrix. On the other hand, the inverted catalyst
atoms that are already bound to the nanotube have no
time to reach the edge of the nanotube to follow carbon
atoms; therefore, they fill the inside of the tube.

(4) When the influx of carbon atoms is sufficiently
high, a catalyst has no time to manifest itself, and the
nanotube is closed by a pentagonal cap.

Thus, the formation of an NT with open ends
requires a very accurate combination of external condi-
tions, namely, the concentrations of catalyst and carbon
atoms and the temperature.
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Abstract—It is suggested that the selectivity of crystal-like structures (semiconductor superlattices, photonic
crystals, and phononic crystals) be raised by apodization of their edges. The transmission and reflection coeffi-
cients illustrating the efficiency of this approach are presented. © 2005 Pleiades Publishing, Inc.
Artificial periodic structures similar in properties to
natural crystals have been extensively developed in
recent years. These structures form a basis for advanced
integrated signal processing devices, most of which
have nanometer dimensions. Of crystal-like structures
(CSs), semiconductor superlattices, where electrons
behave as de Broglie waves; photonic crystals for elec-
tromagnetic waves; and phononic crystals for elastic
waves have become the subject of special interest. In
crystals and CSs, constructive interference between
reflected waves results in forbidden frequency bands
where waves cannot propagate (gaps for electrons, pho-
tons, and phonons). Such frequency filtering allows one
to control wave propagation in CSs and, hence, greatly
extends the potential for signal processing.

CS-based devices are being put into mass produc-
tion. Commercial fiber waveguides built around photo-
nic crystals offer unique properties [1]. Synthetic opals
show great promise as optical photonic crystals [2].
High-frequency one-dimensional phononic crystals for
surface acoustic waves that are made in the form of
periodically arranged relatively deep grooves on the
substrate surface make it possible to improve the per-
formance of acoustoelectron devices [3].

High selectivity is a critical issue for good CS-based
devices. This parameter of multielement structures can
be raised by apodization, i.e., by changing the ampli-
tudes and phases of locally excited or reflected waves.
In [4], amplitude apodization of rf photonic crystals as
models of more complicated optical photonic crystals
has been considered.

In this work, the author suggests an effective way of
edge amplitude apodization for CSs. Both construc-
tively and technologically, such a local apodization is
much simpler than standard apodization distributed
over the structure.

In CSs, reflection of waves is due to the fact that dif-
ferent CS regions have different wave properties, which
are characterized by wave impedances. Impedance
ratio rZ = Z1/Z2, where Z1 and Z2 are the impedances of
1063-7842/05/5011- $26.00 1511
CS regions, specifies local reflection coefficient r = (rZ

– 1)(rZ + 1). Quantity rZ and the arrangement of local
reflectors define the CS spectral characteristics [5].
Local reflectors over a CS period are responsible for
frequency response h(F) of the reflection coefficient of
the period, where F = f /f0 and f0 is the mean frequency
of the first forbidden band. Function h(F) defines the
oscillation damping of the reflection (R) and transmis-
sion (T) coefficients in allowable bands of the material.

Figure 1a illustrates a correspondence between
curves R(F) and h(F) for a standard (nonapodized) CS.
Local reflectors of opposite polarity are arranged in
time half-period. The value rZ = 2.8 for photonic crys-
tals is the boundary of the optical contrast necessary to
complete the forbidden band for photons [6].

0

0.5

1.0 (a)
R, h

(b)

1 2 3
0

0.5

1.0 (c)

1 2 3

(d)

F F

Fig. 1. Frequency dependences of reflection coefficient R
for a 1D CS (continuous lines) and reflection coefficient h
for an equivalent reflector of a period (dashed lines).
(a) Nonapodized CS and (b–d) edge apodization versions
s2–s4. The number of layers is 15, and rZ = 2.8.
© 2005 Pleiades Publishing, Inc.
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The decay of sidelobes in the R(F) curve depends on
exponent n of the characteristics h(F) = ϕn(F). The
value n = 1 corresponds to the case considered above,
where a reflector of a period is composed of two local
reflectors in antiphase. We designate the structure of
such a period reflector as s1 = {r; –r}. For n > 1, a period
reflector is bound to have a more complicated structure.
Let each of the local reflectors be replaced by a resona-
tor. Then, we obtain the structure s2 = {r/2; –r; r/2},
which corresponds to n ≈ 2. Compared with the initial
structure, here only the reflection coefficients of the two
edge local reflectors are changed (0.5r). The factor mul-
tiplying the reflection coefficient is the weight coeffi-
cient of a local reflector. A structure with n ≈ 3, s3, is
formed by two structures s2/2 of opposite polarity,
which are arranged in time half-period. Their weight
coefficients measured from the CS edges are 0.25 and
0.75. For n ≈ 4, a reflector of a half-period with the
structure s4 = {r/8; –3r/8. 3r/8; −r/8} is needed. In this
case, the weight coefficients for edge local reflectors
equal 0.125, 0.5, and 0.875.

Figures 1b–1d show the efficiency of CS edge
apodization versions s2–s4. It is seen that edge apodiza-
tion greatly improves the CS selectivity.

Transmission coefficient T of a CS is given by T =

. In highly selective allowable bands of a CS,
where R ! 1, T ≈ 1 – R2/2. Thus, the oscillation damp-
ing of the transmission coefficient depends on function

1 R2–

0.20 0.35 0.50
0

0.5

1.0
T

E, eV

1

2

Fig. 2. Transmission coefficient T of the AlxGa1 – xAs/GaAs
superlattice vs. electron energy E (1) for edge apodization
version s4 and (2) without apodization.
ϕ2n(F) with an exponent twice as large as that appearing
in the related function for the reflection coefficient.
According to the model of equivalent reflectors [5],
ϕ(F) = |sin(πF/2)|.

Figure 2 plots the energy dependence of the trans-
mission coefficient for an AlxGa1 – xAs/GaAs superlat-
tice where the thickness of the layers equals, respec-
tively, 10 and 15 lattice constants of GaAs in the [100]
direction (2.82665 Å [7]). The number of barriers is 15,
and the barrier height is V = 0.2 eV. The effective elec-
tron mass in the barrier is m1 = (0.0665 + 0.0835x)m0
[8]; in the well, m2 = 0.0665m0. Here, m0 is the mass of
an electron at rest and V and x are related as V = 0.7731x
[9]. Since the electron wave impedance depends on

energy, Z ~  [10], the apodization procedure
was carried out for the mean energy (0.36 eV) of the
allowable energy band. Edge apodization substantially
improves the efficiency of electron passage over a bar-
rier.

CSs were simulated with the model [1], which is
appropriate for wave structures, including CSs, of dif-
ferent complexity.

Edge apodization makes it possible to considerably
raise the CS selectivity and still does not complicate the
design, which is of great importance for advanced CS-
based devices.
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Abstract—Tin diffusion into cadmium telluride substrates having different types and values of conductivity is
used to fabricate layers with a resistivity of ~1010 Ω cm at 300 K. © 2005 Pleiades Publishing, Inc.
A unique combination of the physical and chemical
properties of cadmium telluride makes it promising for
ionizing radiation detectors operating near room tem-
perature [1]. One of the most challenging problems in
this field is to grow crystals and/or films having a near-
intrinsic conductivity. This problem is usually solved
by doping of growing cadmium telluride by chlorine. In
this way, CdTe crystals with resistivity ρ = 108–109 Ω cm
at 300 K can be obtained [2]. A higher resistivity (ρ ≈
5 × 109 Ω cm) can be reached when CdTe〈Cl〉  samples
are additionally compensated by copper atoms [3]. The
main disadvantage of the material thus produced is a
severe degradation of its electrical performance at tem-
peratures above 100°C. Such temperatures are typical
in creating ohmic, including low-temperature indium,
contacts. Moreover, high-resistivity samples require
that measurements be taken at high temperatures. Note
that, to one degree or another, the degradation shows up
in both CdTe〈Cl〉  crystals and crystals doped by Cl or
Cu. In this work, the author reports the fabrication of
high-resistivity cadmium telluride layers with a high
long-term and temperature stability and present their
basic electrophysical properties.

Starting 4 × 4 × 1-mm substrates were cut from
Bridgman-grown bulk cadmium telluride crystals. The
type and value of conductivity were varied during
growth by doping with In or Cl impurities and by devi-
ation from stoichiometry. Diffusion layers were
obtained by annealing the substrates in the saturated tin
vapor at 650–950°C. Annealing was performed in a
sealed quartz ampoule evacuated to 10–4 Torr with a
charge and a substrate at the opposite ends. Before
being placed into the ampoule, the substrate was
mechanically polished and then chemically etched in a
K2Cr2O7 : HNO3 : H2O = 2 : 5 : 10 solution with subse-
quent rinsing in deionized water [3, 4]. Indium contacts
to the samples had symmetric linear I–V characteristics
in the voltage range 0.1–100 V. The resistivity was mea-
sured by the two-point probe method in the temperature
1063-7842/05/5011- $26.00 1513
range 300–450 K, and energy position E of electrically
active centers was found from the ρ(T) dependence.

The values of ρ listed in the table were measured at
300 K; subscripts 0 and T designate the parameters of
the starting and annealed substrates, respectively,
which were averaged over five samples in each batch of
crystals.

The lack of data on the diffusion coefficient of Sn in
CdTe may introduce a high error in ρ measurements,
since the diffusion layer thickness is not known exactly.
Therefore, electrophysical measurements were taken
from the samples where Sn atoms diffused through the
whole substrate. At the annealing temperatures used,
through diffusion is accomplished in ≈4 h [3]. Finding
the diffusion coefficient of tin in cadmium telluride,
which is an independent and complicated task, espe-
cially with regard to point intrinsic and impurity
defects, is beyond the scope of this work.

As follows from the tabulated data, the activation
energies for all the samples are virtually the same, irre-
spective of the parameters of the starting crystals. This
indicates that the conductivity of the CdTe〈Sn〉  sub-
strates is specified by the same deep center. This center
is likely to be a complex including a Sn atom and an
intrinsic defect, since ET is independent of the nature
and composition of the dopant. The tendency of ρT to
increase with ρ0 can be explained by a higher purity of
the as-prepared high-resistivity crystals compared with
the low-ohmic (doped) crystals.

Electrophysical properties of cadmium telluride crystals

Conduc-
tivity type Dopant ρ0, Ω cm ρT, Ω cm Ε0, eV ΕT, eV

n In 1010 1010 – 0.75

n Absent 10 1010 0.04 0.76

n » 103 2 × 1010 0.1 0.75

n » 108 4 × 1010 0.58 0.76

p » 107 4 × 1010 0.65 0.76
© 2005 Pleiades Publishing, Inc.
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Thus, obtaining CdTe〈Sn〉  diffusion layers with a
near-intrinsic conductivity is quite feasible. Note that
the conductivity of the diffusion layers is independent
of the type and value of the conductivities of the as-pre-
pared crystals and of the intrinsic and impurity defect
composition in them. By varying the process parame-
ters, e.g., the diffusion time, one can easily control the
layer thickness. Finally, all the CdTe〈Sn〉  samples dem-
onstrate a long-term and temperature stability: their
electrophysical performance does not change after one-
year storage under normal conditions and after thermal
cycling in the range 300–450 K. Such properties of the
material make it promising for designing resistive and
barrier detectors of different types.
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Abstract—Results are presented from measurements of the electromagnetic field of a high-frequency capaci-
tive discharge operating in air and argon at atmospheric pressure. The experimental results are compared to
those obtained for a high-frequency torch discharge. © 2005 Pleiades Publishing, Inc.
In [1], a model of a high-frequency torch discharge
was proposed according to which the discharge oper-
ates at the expense of dissipation of a symmetric sur-
face transverse magnetic (TM) wave propagating along
the discharge channel. It was assumed that the ampli-
tude of the electromagnetic wave decreases exponen-
tially along the channel. In order to explain the pro-
cesses occurring in a high-frequency capacitive dis-
charge, it was proposed in [2] to consider the
propagation of two TM waves (direct and reflected
ones) along the discharge channel. The measurements
of the electromagnetic field of a high-frequency torch
discharge [3] demonstrated the presence of the field
components characteristic of a surface TM wave and
the absence of the field dissipation along the discharge
channel. In order to interpret these results, it was sup-
posed that both a direct and a reflected TM wave were
present in the torch discharge channel, which was then
confirmed experimentally in [4].

The similarity between torch and capacitive dis-
charges allows one to use a similar approach in describ-
ing them. However, there is a discrepancy between the
estimated parameters of these discharges in different
studies. Therefore, in the present study, we performed
measurements of the electromagnetic field of a high-
frequency capacitive discharge and compared them to
those of a high-frequency torch discharge.

In our measurements, we used capacitive and induc-
tive probes that could be displaced in the radial and
axial directions relative to the discharge channel. Fig-
ure 1 shows a schematic of the experimental setup. A
copper rod 1 mm in diameter and 3–5 mm in length was
used as a capacitive probe. Three copper wire loops
wound on a 10-mm-diameter Teflon cylinder were used
as an inductive probe. The probe signals were fed to an
oscilloscope or phase-meter, depending on the type of
the measured quantity.
1063-7842/05/5011- $26.00 ©1515
The discharge was excited in a 36-mm-diameter
cylindrical quartz chamber enclosed by 70-mm-diame-
ter ring electrodes located at a distance of 200 mm from
one another. The electromagnetic field frequency was
35.5 MHz, and the discharge power was varied from
1.5 to 2.0 kW.

The measurements showed that four components of
the electromagnetic field are present in the near zone of
a high-frequency capacitive discharge: the axial and
radial components of the magnetic field (Hϕ and Hr)
and the radial and axial components of the electric field
(Er and Ez). The presence of a magnetic field compo-
nent was established by rotating the inductive loop in
the corresponding plane relative to the discharge chan-
nel. Figure 2 shows the radial profile of the ratio Hϕ/Hr.
Measurements of the ratio Hϕ/Hr showed that, without
discharge ignition, there was only the radial component
of the magnetic field. With a discharge, the ratio Hϕ/Hr

increased as the inductive probe approached the dis-
charge zone (see Fig. 2). This indicates that the field

1

2

3 4

Fig. 1. Schematic of the experimental setup: (1) discharge,
(2) probes, (3) measuring instrument, and (4) reference sig-
nal generator.
 2005 Pleiades Publishing, Inc.
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components characteristic of a symmetric TM wave are
predominant near the discharge channel (r = 1.5–
2.0 mm).

Figures 3 and 4 show the axial profiles of the radial
component of the electric field of high-frequency
capacitive discharges in air and argon, respectively. The
axial profiles of the other field components are similar
in shape. The axial coordinate is counted from the
upper edge of the high-frequency electrode. It can be
seen from Figs. 3 and 4 that three zones can be distin-
guished in the axial profiles of the field components.
The first zone is located near the high-frequency elec-
trode, where the field amplitude decreases rapidly
along the discharge axis. The length of this zone is
comparable to the radius of the high-frequency elec-
trode. It is this zone in which a surface TM wave forms.
In a high-frequency torch discharge, the formation zone
of a surface TM wave is practically absent. This is
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Fig. 2. Radial profile of the ratio Hϕ/Hr at z = 100 mm.
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Fig. 4. Axial profiles of the radial component of the electric
field of a high-frequency capacitive discharge in argon for
r = (1) 30 and (2) 50 mm.
related to the torch discharge electrode being a cylindri-
cal conductor along which a surface TM wave propa-
gates. In a capacitive discharge, the surface TM wave is
excited by a ring electrode, whose electromagnetic field
contains the radial component of the magnetic field.

The formation zone of the surface TM wave is fol-
lowed by a region where the field amplitude changes
insignificantly. The axial distribution of the field com-
ponents in this region can be represented as a superpo-
sition of two electromagnetic waves: a wave excited by
the high-frequency electrode and that reflected from the
grounded electrode. The closer to the discharge axis,
the flatter the axial profile of the field amplitude. In the
axial region, the field amplitude varies only slightly.
This is especially pronounced in an argon discharge.
Moreover, in the case of an argon discharge, a slight
growth of the field amplitude along the discharge axis
is observed as the discharge power is increased. This
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Fig. 3. Axial profiles of the radial component of the electric
field of a high-frequency capacitive discharge in air for r =
(1) 30 and (2) 50 mm.
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z = (1) 30, (2) 110, and (3) 170 mm.
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can be explained by the higher conductivity of argon
plasma [5] compared to that of air plasma: in an argon
discharge, the dissipation of an electromagnetic wave
propagating along the discharge axis is lower and the
contribution of the reflected electromagnetic wave in
the field distribution is larger.

The third region in the axial distribution of the field
components is characterized by a drop in the field
amplitude near the grounded electrode due to its shield-
ing effect. The grounded electrode has little effect on
the discharge operation as a whole. In air, the decrease
in the field amplitude caused by the grounded electrode
results in the termination of the discharge channel. On
the other hand, this effect is absent in an argon dis-
charge. Presumably, the electromagnetic wave is
reflected from the end of the discharge channel rather
than from the grounded electrode.

Figure 5 shows the radial profiles of the radial com-
ponent of the electric field of a high-frequency capaci-
tive discharge in air. As in the case of a high-frequency
torch discharge [3], this profile, except for the zone
adjacent to the high-frequency electrode (curve 1), can
be described by a Hankel function (curves 2 and 3).

Similarly, the axial distributions of the phases of the
field components in a capacitive discharge differ from
those in a torch discharge [3] only in the initial segment
of the discharge channel.

Therefore, the spatial distribution of the electromag-
netic field of a high-frequency capacitive discharge is
similar to that of a high-frequency torch discharge,
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
except for the zone adjacent to the high-frequency elec-
trode. Our measurements indicate that the field ampli-
tude near the channel of a capacitive discharge, where
the energy of the surface TM wave is localized, varies
significantly along the discharge axis. Therefore, the
torch and capacitive discharges can be described in a
similar way. A certain difference in the electrodynamic
properties of the torch and capacitive discharges can be
associated with the termination of the channel of the
latter by the grounded electrode. This in turn causes
certain changes in the axial distribution of the discharge
parameters.

REFERENCES

1. A. V. Kachanov, E. S. Trekhov, and E. P. Fetisov, Zh.
Tekh. Fiz. 40, 340 (1970) [Sov. Phys. Tech. Phys. 15,
248 (1970)].

2. A. V. Zvyagintsev, R. V. Mitin, and K. K. Pryadkin, Zh.
Tekh. Fiz. 45, 278 (1975) [Sov. Phys. Tech. Phys. 20,
177 (1975)].

3. I. A. Tikhomirov and Yu. Yu. Lutsenko, Zh. Tekh. Fiz. 59
(11), 128 (1989) [Sov. Phys. Tech. Phys. 34, 1307
(1989)].

4. A. Ya. Khal’yaste, in Proceedings of the 4th All-Union
Conference on Physics of Gas Discharge, Makhachkala,
1988, Chap. 1, pp. 135–136.

5. J. Janca, Czech. J. Phys., Sect. B, No. 9, 780 (1967).

Translated by B. Chernyavskœ



  

Technical Physics, Vol. 50, No. 11, 2005, pp. 1518–1519. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 75, No. 11, 2005, pp. 127–128.
Original Russian Text Copyright © 2005 by Zelensky, Kolesnikov.

         

SHORT
COMMUNICATIONS

                          
Mathematical Simulations of the Development 
of the Ion Hose Instability of a Relativistic Electron Beam 

in a Plasma Channel with a Varying Density
A. G. Zelensky and E. K. Kolesnikov

Smirnov Research Institute of Mathematics and Mechanics, 
St. Petersburg State University, St. Petersburg, 198904 Russia

e-mail: zel_alex@e-mails.ru; Kolesnikov_evg@mail.ru
Received December 21, 2004

Abstract—The effect of different parameters of a plasma channel with an increasing or a decreasing density
on the onset and behavior of the ion hose instability is investigated using the distributed-mass model. © 2005
Pleiades Publishing, Inc.
At present, investigations are being carried out on
application of relativistic electron beams (REBs) in
various areas of science and engineering, such as the
development of new types of charged particle accelera-
tors, the solution of the controlled thermonuclear fusion
problem, the development of high-power sources of
electromagnetic radiation (including free electron
lasers), and space research.

Particular attention is paid to the problem of trans-
porting REBs in gas–plasma media by means of an arti-
ficial plasma channel produced by ionizing the neutral
component of the background gas by UV radiation
from an auxiliary laser [1, 2].

It is well-known that, when the duration of the beam
pulse is comparable to the characteristic bounce period
of the ions of the plasma channel in the potential well
of the beam, the evolution of the beam–channel system
is governed by the common dynamics of the relativistic
beam electrons and channel ions. Both theory and
experiment show that, in such circumstances, condi-
tions in the beam–channel system may become favor-
able for the onset of various instabilities, the most dan-
gerous of which is the ion hose instability (IHI) [3–8].

The propagation of an REB in a gas–plasma
medium is described by very complicated equations
and thus can be studied analytically only in a few special
cases. This is why numerical simulations (along with
experiments) play a key role in the relevant studies.

In our earlier paper [9], we investigated the dynam-
ics of the development of the IHI of an REB propagat-
ing along a plasma channel in the form of a sequence of
straight channels. In [10], we studied the characteristic
features of the development of the IHI of an REB in a
plasma channel with periodic density variations.

In the present paper, we analyze the dynamics of the
IHI of an REB propagating in a plasma channel with an
exponentially increasing (or decreasing) density.
1063-7842/05/5011- $26.00 ©1518
We simulated the development of IHI by using the
distributed-mass model, which was developed in [11,
12] and was implemented in [3] in order to study the
guiding of a beam along a conventional uniform ion
channel having a radius larger than the beam radius.
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Fig. 1. Time evolutions of the coordinate Y of the centroids
of the beam segments at the distances x = (a) 0.12λβi,
(b) 0.63λβi, and (c) 1.25λβi from the beam front in a plasma
channel with an exponentially decreasing density.
 2005 Pleiades Publishing, Inc.
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The characteristic features of the development of the
IHI of an REB in a plasma channel with a decreasing
density are illustrated in Fig. 1, which shows the results
of computations of the time evolution of the transverse
coordinate Y of the centroids of three fixed beam seg-
ments located at different distances from the beam
front, x = 0.12, 0.63, and 1.25λβi (where λβi is the wave-
length of oscillations of the channel ions about the
beam). The total beam length was 2λβi, and the longitu-
dinal scale on which the density in the plasma channel
decreases was 5800λβi. The radial profiles of the beam
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Fig. 2. Time evolutions of the sccoordinate Y of the cen-
troids of the beam segments at the distances x = (a) 0.12λβi,
(b) 0.63λβi, and (c) 1.25λβi from the beam front in a plasma
channel with an exponentially increasing density.

z/λβe
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electron density and the density of the channel ions
were both assumed to be Gaussian. The characteristic
radii of the beam and the ion channel were assumed to
be the same.

From Fig. 1 we see that, in each of the three beam
segments, the transverse oscillations of an REB grow in
amplitude. As in the case of propagation of an REB in
a uniform channel, the IHI is of a convective nature.
The instability develops fairly slowly and thereby does
not hinder the beam propagation over distances on the
order of 30λβe.

The results of numerical simulations of the develop-
ment of the IHI of an REB in a plasma channel with an
increasing density are illustrated in Fig. 2. From this
figure it is clear that, in the case in question, the trans-
verse oscillations of electrons in the three beam seg-
ments grow in amplitude at a significantly faster rate
than in the previous case, with the result that the beam
can be guided over shorter distances, on the order of
10λβe.
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Abstract—It follows from an earlier work of the authors that taking into account plasma compressibility may
stabilize the flow of plane and cylindrical plasma jets under certain conditions. Subsequent analysis and numer-
ical calculation have shown that such conditions are unfeasible. Thus, compressibility destabilizes a plasma jet.
© 2005 Pleiades Publishing, Inc.
In [1], it was shown that the dispersion relation for
the natural oscillation of an ideally conducting slightly
compressible plasma jet has the form

(1)

where ε is a small quantity that includes the effect of
compressibility on the stability of the jet and the run of
function G(δ) depends on the jet configuration: for a
plane jet, G(δ) =  monotonically grows from 0 to
1; for a cylindrical jet, G(δ, ξ) = I0(δ)K1(δ)/I1(δ)K0(δ)
monotonically decays from ∞ to 1 when δ varies from
0 to ∞.

The critical velocity of the jet above which the jet
becomes unstable is found by equating the determinant
of this equation to zero [1]. The effect of compressibil-
ity on jet stability depends on the sign of difference

∆  between the squares of the critical velocities of
compressible and incompressible (ε = 0) jets,

(2)

where β = b2/νb1 is the parameter that specifies flow
conditions that are optimal in terms of MHD stability
versus jet configuration.

It is seen that the sign of ∆ , which depends on the
signs of [G2(δ) – β2] and ε, may be positive under cer-
tain conditions. This means that compressibility has a
stabilizing effect.
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Subsequent calculations showed, however, that such
conditions are unfeasible: having found an explicit
expression for ε by formulas in [1], we obtain

(3)
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for a plane jet and

(4)

for a cylindrical jet.
Since the functions plotted in the figure are positive,

one can argue that the right-hand sides of (3) and (4) are
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negative throughout the range of δ. Hence, compress-
ibility destabilizes a plasma jet of any configuration
under any flow conditions.
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Abstract—A simple and universal criterion of the efficiency of energy loss by thermal radiation is obtained for
the class of small conducting particles, including, in addition to metals and graphite, the majority of carbides
of metals important for practical applications, such as tungsten and titanium carbides. © 2005 Pleiades Pub-
lishing, Inc.
In recent years, the volume of investigations and
developments in the realms of nanotechnologies, nano-
materials, and nanosystems has been growing vigor-
ously worldwide [1]. The production and application of
nanopowders, which are used in metallurgy, microelec-
tronics, and the food industry, are one of the important
lines in nanotechnologies. The production of nanopow-
ders and their use frequently involves heating nanopar-
ticles to high temperatures, in which case one naturally
expects intense thermal radiation.

At the same time, there is presently great interest in
dust plasmas [2] and dust in thermonuclear facilities
[3], where micro- and nanoparticles are heated to high
temperatures, so that loss by radiation may play a sig-
nificant role in the energy balance of particles.

In calculating the energy balance of nanoparticles, it
is illegitimate to employ the Stefan–Boltzmann law for
the radiation from a black ball, since this law yields
strongly overestimated results at particle dimensions
smaller than the radiation wavelength. The energy loss
of atomic clusters by radiation was discussed in a
review article of Smirnov [4].

In order to calculate the energy loss of a small body,
one can employ the Kirchhoff law for equilibrium ther-
mal radiation [5]. The thermal radiation from a body of
temperature T in the circular-frequency interval dω is

(1)

where σ(ω) is the effective absorption cross section at a
frequency ω, c is the speed of light, T is the tempera-
ture, and k is the Boltzmann constant.

Following [5], we can express the cross section for
radiation absorption by a ball of volume V in terms of
the electric permittivity  and the magnetic perme-

ability  normalized to the volume. As a result, we
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arrive at

(2)

In the case of conducting bodies, the magnetic com-
ponent is dominant, and it is precisely this component
that will be taken into account below for this reason.

Although general dependences of the absorption
cross section on particle parameters could not be
obtained [6] within Mie theory, which provides the
most consistent approach to the scattering and absorp-
tion of electromagnetic radiation on small particles, an
approximate method based on taking into account the
radiation penetration depth into a medium can be
employed in the case of conducting spheres [5]. Within
this approach, the magnetic permeability for a sphere of
radius r0 depends on the dimensionless parameter
(r0/δ), where δ = c/(2πσω)1/2 is the radiation penetration
depth in a conductor, as

(3)

At small values of the radius (r0/δ ! 1; this condi-
tion is also realized at low frequencies), one can use the
approximation

(4)

The respective approximation at large values of the
particle radius (r0/δ @ 1; this condition is also realized
at high frequencies) is

(5)

where σ is the static conductivity of the material used.
The dependences specified by Eqs. (3)–(5) are depicted
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in Fig. 1. Upon substituting high-energy approximation
(5) into the integral of (1) for the radiation, the particle
radius r0 drops out from the final expression, in just the
same way as in the case of blackbody radiation.

By introducing the dimensionless parameter p,

(6)

which takes into account the conductivity of matter, its
temperature, and the particle radius, and performing
integration with respect to the frequency, we can go
over from expression (1) to

(7)

The dependence of the integral J(p) on the dimen-
sionless parameter p, which is defined in (6),

(8)

is illustrated in Fig. 2. In (8), we have employed the
dimensionless variable x = "ω/kT. It should be noted
that J(p) ~ 1/p for p @ 1, which corresponds to the case
of high temperatures or large particle radii, and that
J(p) ~ p2 for p ! 1. In the latter case, the quadratic
asymptotic behavior reflects a high-power dependence

of the normalized cross section σ(ω)/(π ) on the small
radii of spherical particles; this dependence also fol-
lows from calculations within Mie theory [6].

For the sake of clarity, it is convenient to normalize
the expression for the intensity of thermal radiation to
the intensity of blackbody radiation:

(9)

In view of the aforementioned asymptotic behavior
J(p) ~ 1/p, the normalized intensity (emissivity) in the
case of large particles is independent of the radius and
depends only slightly on temperature. The surviving
temperature dependence is explained by the inaccuracy
of the above model of radiation absorption by conduct-
ing balls at high temperatures.

The dependence of the normalized emissivity
(degree of blackness) I/Ib on the particle radius r0 at the
temperatures of T = 1773, 1273, and 773 K for copper
microparticles is shown in Fig. 3 with allowance for the
temperature dependence of the conductivity of matter
[7]. Similar results for graphite microparticles at the
temperatures of T= 2773, 2273, 1273, and 773 K are
given in Fig. 4.

The dependence of the emissivity normalized to the
blackbody emissivity, I/Ib (degree of blackness), on the
size of spherical particles reflects the cubic dependence
of the normalized absorption cross section on the radius
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for nanoparticles; with increasing particle size, this
dependence approaches a constant value that agrees
with values quoted in reference books. For molten cop-
per of temperature in the range 1100–1300°C, the
degree of blackness is from 0.13 to 0.15 [8], this being
in good agreement with the results of the calculations
for particles of radius in excess of 1 µm (Fig. 3). For
graphite at a temperature of 500°C, the degree of black-
ness is 0.71 [9], which is in accord with the results of
the calculations within the chosen model of radiating
conducting balls. The exaggerated results on the radia-
tion from graphite at high temperatures should be
attributed to the inaccuracy of the model. The model
used is valid in the region of radiation frequencies at
which ω/(2π) ! σ. At high frequencies, the normalized
cross section that is derived for the absorption on a
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spherical particle by using the asymptotic expression

(5) can be recast into the form σ(ω)/(π ) =
3[ω/(2πσ)]1/2. In a more accurate model of radiation
absorption by a conducting medium, the respective
asymptotic expression additionally involves terms of
order ω/(2πσ) [6]; in the case being considered, the
inclusion of these terms would lead to an improvement
of the agreement with experimental data at large radii
of particles at high temperatures. It should be noted that
the condition of applicability of the approach used is
well satisfied in the case of metal carbides, which is of
importance for practice.

In either of the above examples, we see from Figs. 3
and 4 that, with decreasing particle size, the emissivity
of particles for p ≤ 1 falls substantially short of that pre-
dicted by the Stefan–Boltzmann law. Thus, the dimen-
sionless parameter p = (r0/c)(2πσkT/")1/2 characterizes
the emissivity of small conducting particles as a func-
tion of their dimensions and conductivity.

We note that, albeit being small in relation to black-
body radiation, radiation from nanoparticles exceeds
radiation from the same amount of a gas and can there-
fore be used as a source of light [4].
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Fig. 3. Normalized emissivity of copper particles at the tem-
peratures of (1) 773, (2) 1273, and (3) 1773 K.

Fig. 4. Normalized emissivity of graphite particles at the
temperatures of (1) 773, (2) 1273, (3) 2273, and (4) 2773 K.
In the case of dielectric particles, it is hardly possi-
ble to construct a rather simple dependence of the radi-
ation-absorption cross section on the radius of a spher-
ical particle. However, some results obtained on the
basis of Mie theory for the scattering and absorption of
an electromagnetic wave by absorbing spherical parti-
cles [6] suggest that the absorption cross section
changes only slightly for wavelength values satisfying
the condition 2πλ(n – 1)/r0 ≤ 6, where n is the refraction
index of matter. Since, according to the Wien displace-
ment law [8], the maximum of the thermal-radiation
spectrum at elevated temperatures corresponds to the
wavelength λmax = B/T, a significant decrease in the
emissivity of dielectric particles should be expected for
particles of radius in the region r0 ≤ (n – 1)B/T.

CONCLUSIONS

The efficiency of the energy loss of hot conducting
particles, including, in addition to metals and graphite,
the majority of metal carbides important for applica-
tions, such as tungsten and titanium carbides, which
possess a high electrical conductivity [10], depends
greatly on their dimensions. For dimensions smaller
than the wavelength at the maximum of the thermal-
radiation spectrum, the efficiency of losses by radiation
depends both on the temperature T and on the conduc-
tivity σ of the particle material. The universal criterion
p = (r0/c)(2πσkT/")1/2 > 1 makes it possible to deter-
mine the applicability range of the Stefan–Boltzmann
law for losses by radiation as the radius of a conducting
particle decreases to dimensions of r0 ≤ λmax = B/T.
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Abstract—It is shown that, when irradiated by light on one side, both as-prepared samples of molybdenum foil
and those annealed in the temperature range 75–900°C change their microhardness on the other (nonirradiated)
side. Annealing influences the relative variation in the microhardness under the action of a single irradiation and
multiple irradiations, the changes being dependent on the annealing temperature. Recrystallization annealing
increases the relative change in the microhardness and makes the microhardness variation under irradiation–
relaxation cycling regular, whereas low-temperature annealing breaks this regularity. The results demonstrate
that the state of defects in the initial state of the metal is of crucial importance in the phenomenon. © 2005 Ple-
iades Publishing, Inc.
In [1–4], we found a new effect: a change in micro-
hardness H of one side of a metal foil upon irradiation
of the other side by light. This effect was qualitatively
explained by the fact that photoelectrons trapped in a
native oxide (NO) film that is present on the foil gener-
ate deformation waves under the action of Coulomb
forces that appear as a result of violation of local elec-
troneutrality near the traps. Having penetrated into the
metal, the waves modify the defect subsystem and,
thereby, change H. Krivelevich [5] proposed a phenom-
enological theory of transformation in systems with
more than one local minimum of the free energy that
applies in our case (if the effect of deformation waves
is taken into account). He showed that an energy flux
incident on such a system may cause a long-range
change of the “switching wave” type in its structure and
properties. This theory implies a relation between the
amount and character of the effect, on the one hand, and
the initial state of the system, on the other. The state of
the system (foil) can be changed by annealing. Relevant
experiments are necessary to uncover the mechanism
behind this phenomenon. In particular, it was found that
light does not affect the state of the NO-free surface;
therefore, it is necessary to see what the role is of the
metal structure itself in this effect.

The effect is characterized by relaxation of H after
irradiation. Sometimes, the microhardness recovers to
the initial (or close to initial) value and changes again
upon repeat irradiation. If the defect system in the metal
is important, the variation of H at irradiation–relaxation
cycling (photocycling) can be expected to depend on
the state of the defect system.

In this work, molybdenum foils are used to study
how annealing influences (i) H variation under irradia-
1063-7842/05/5011- $26.00 1525
tion and (ii) the reproducibility of this variation at pho-
tocycling.

We experimented with 50-µm-thick rolled molybde-
num foils. According to X-ray diffraction data, the foils
were textured and had an average grain size of more
than 1 µm. Illumination was accomplished by a 20-W
incandescent lamp with the filament 5 cm distant from
the foil. The foils were annealed in air (Tann ≤ 150°C)
and in a dried nitrogen flow (Tann ≥ 200°C) for 30 min.
Despite the protective atmosphere, we could not avoid
additional oxidation. After each annealing, the oxide
was removed in HCl and irradiation was carried out
after the time (2 h or longer) it takes for a new NO layer

–10

–5

0

10

5

15

20

25

10–1 100 101 102

∆H/H0, %

Φ, J/cm2

Fig. 1. Dose dependence of the relative change in the micro-
hardness.
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to grow. With such a procedure, we exclude annealing-
induced transformations in the oxide.

The microhardness was measured with a PMT-3
device at an indentation load of 50 g. The load chosen
after recording an H–load curve was a tradeoff between
a high accuracy of H measurement (deep indentation)
and a smaller amount of the effect (a thicker layer being
probed) at high loads. The results were averaged over
five indentations, and the diagonals of the indentations
were measured twice. Based on the estimation of sys-
tematic and random errors, a change in H exceeding 4%
of the initial value was considered significant.

Figure 1 shows the dose dependence of the relative
change in H on the rear side of the foil (within the limits
of experimental error, no changes in H on the front
(irradiated) side were detected). When calculating the
dose (energy density), we assumed that the radiation
power equals 50% of the total power. Two features are
noteworthy: the nonmonotonic run of the dose depen-
dence and the trend of the H change to zero at high
doses. Both features were observed and discussed ear-
lier for permalloy-79 [1–4]. The behavior of H in Mo
demonstrates that these features are not accidental (the
reasons for such behavior are beyond the scope of this
work). The data in Fig. 1 were used to choose the dose
for further experiments.

After the as-prepared foils had been annealed, their
microhardnesses changed. The range of annealing tem-
peratures can be divided into three subranges: in the
first subrange (to Tann = 150°C), H increases; in the sec-
ond subrange (150–850°C), it virtually returns to the
initial value; and in the third subrange (above 850°C),
the microhardness drops below the initial value. The
behavior of H indicates that the metal structure
changes. The range of decreasing H (above 850°C) cor-
responds to temperatures of ~0.4Tm, where Tm is the
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Fig. 2. Relative changes in the microhardness of the as-pre-
pared foils, ∆H/H0, and of the foils annealed at different
temperatures, ∆H/H1. The first circle refers to ∆H/H0; the
others, to ∆H/H1. H0 is the microhardness of the as-pre-
pared foil, and H1 is the that of the annealed foil.
melting point (in K). This correspondence means that
the decrease in H is related to recrystallization, which
occurs just in this temperature range [6]. The behavior
of H at lower Tann may be associated with processes
occurring in the subsystem of point defects (largely in
Cottrell atmospheres).

Figure 2 shows the Tann dependence of the relative
microhardness variation at a radiation energy density of
3 J/cm2 (the irradiation time is 100 s). Shown also is the
value of ∆H/H0 in the as-prepared foil. It is seen that the
magnitude and even the sign of the change depend on
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Fig. 3. Changes in the microhardness of the as-prepared
samples (upper curve) and the samples annealed at different
temperatures during photocycling. Odd and even numbers
in the abscissa axis correspond to the postirradiation and
postrelaxation states, respectively.
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whether the foil was annealed and, if so, on the anneal-
ing temperature. Interestingly, after recrystallization
annealing, the effect of illumination on H is twice as
large as that for the as-prepared samples. At other val-
ues of Tann, the amount of the effect, on the contrary,
decreases down to its complete disappearance. After
irradiation, the changes relax to zero in approximately
a few hours.

The results of repeated irradiations performed after
aging (relaxation) also depend on annealing itself and
on the annealing temperature. In the as-prepared sam-
ple, relaxation returns the microhardness to its initial
value and, upon repeated irradiations (photocycling), H
each time increases to a value that is close to that
achieved upon the first irradiation (Fig. 3). In the sam-
ples annealed in the range Tann = 75–800°C, the changes
in H upon photocycling turned out to be irregular
(poorly reproducible from cycle to cycle). As an exam-
ple, Fig. 3 shows the results for Tann = 300°C. Such
behavior was also observed at other annealing temper-
atures in this range. At Tann = 900°C, the situation is dif-
ferent: after annealing of the foil at a temperature
slightly above the recrystallization temperature, H
again starts varying in a regular (sawtooth) manner.

Thus, preannealing has a substantial effect on the
photosensitivity of the foils. This finding demonstrates
a significant role of the state of defects in the metal and
is consistent with the phenomenological model [5],
according to which the effect depends on the initial set
of “order parameters.” On the whole, the results agree
with our qualitative model [1–4], where a change in H
is related to the modification of the defect system under
the action of radiation-induced deformation waves (this
relation is rather complicated). However, one cannot
rule out the situation where the effect weakens or even
disappears at annealing temperatures well above 0.4Tm
(where the system approaches its equilibrium state), as
was observed in the case of Cu–Ni foils [7]. This sug-
gests that the system has to be slightly out of equilib-
rium in the initial state for the effect to arise. A more
detailed explanation of the above dependences calls for
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
a deeper insight into the state of defects before and after
annealing.

From the applied standpoint, our results demon-
strate that the metal can be returned to the radiation-
induced state by repeated irradiations. Another impor-
tant conclusion is that the amount of the effect can be
both high and negligible in the same material, depend-
ing on conditions. These facts should be taken into
account in both practice and research.
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Abstract—Granulated gold films activated by cesium and oxygen are found to produce an intense photoelec-
tron emission band about 100 nm wide at a wavelength of 530 nm with a sensitivity of about 4 mA/W in the
visible range. This band is likely to be associated with excitation of surface plasmons. The results obtained indi-
cate that, owing to surface photoeffect, gold films activated by Cs and O can be used as fast photocathodes with
a time constant of several femtoseconds. © 2005 Pleiades Publishing, Inc.
It is known that absorption and reflection of light by
thin granulated metallic films (unlike by bulk metals) in
the visible range are accompanied by the formation of
absorption bands due to size effects [1]. As was shown
in [2], granulated films of Au nanoparticles exhibit an
absorption band near 600 nm and a similar band is
observed in films of Ag nanoparticles near 500 nm [3].
According to [2, 3], these bands are due to the excita-
tion of surface plasmons in metallic nanoparticles hav-
ing the shape of oblate spheroids. The ratio of the sub-
strate area filled by nanoparticles to the total area was
equal to f ≈ 10–3 for Au [2] and f ≈ 0.5 for Ag [3], which
indicated the vertical growth of Au nanoparticles on the
substrate surface (their average size was z = 3–4 nm). In
[4], we detected intense photoelectron emission (PE)
near 500 nm from Ag particles activated by Cs and O,
which is likely to be caused by surface plasmons
excited in such spheroids. In this case, photoelectron
transport to the surface is absent; therefore, one can
expect a small time constant (of about several femto-
seconds) for photocathodes based on metallic nanopar-
ticles. This time constant is specified by the time it
takes for a plasmon to pass through a nanoparticle. The
production of such photocathodes is now becoming a
topical problem in view of recent advances in femtosec-
ond photoelectronics—a burgeoning area of science
and technology [5]. Moreover, metallic photocathodes
are the most convenient to produce femtosecond elec-
tron pulses by means of powerful pulsed lasers, since
they offer a high thermal conductivity, electric conduc-
tivity, and specific heat. Such cathodes are exemplified
by massive photocathodes with an inactivated surface
that operate in the reflection mode at glancing inci-
dence of a light beam on the surface. They exploit the
surface photoeffect under one- [6] and multiphoton
[7, 8] excitation. However, the sensitivity of these pho-
tocathodes is low: for continuous Au films, it is about
1063-7842/05/5011- $26.00 1528
3 µA/W at λ = 250 nm [6] and 10–2 µA/W at λ = 800 nm
[7].

The purpose of this work was to generate surface-
plasmon-induced PE from granulated Au films in the
visible range and compare this effect with the proper-
ties of bulk Au samples and with PE from Ag nanopar-
ticles studied in [4].

The production of granulated Au films, their activa-
tion by Cs and O, recording of PE and reflectance spec-
tra, and examination of the film surface compositions
by Auger electron spectroscopy (AES) and X-ray pho-
toelectron spectroscopy (XPES) were carried out at a
pressure of 10–10 Torr using the same technique as that
applied for production of Ag films [4]. An Au film of
thickness d = 7 nm was evaporated onto a thin (d ≈
3 nm) Al2O3 film grown on a thick (d ≈ 100 nm) Al film.
The Au film was then heated at T ≈ 300°C for 20 min.
The films thus obtained are usually granulated, as evi-
denced by XPES spectra, where the Al2p and Al2s peaks
from the substrate are approximately equal to the Au4f

peak from the Au nanoparticles. Since the elemental
sensitivity coefficients of the Al peaks are roughly one
order of magnitude lower than those of the correspond-
ing Au peaks, we have f ≈ 0.1, which indicates vertical
growth of the nanoparticles. The Au films were acti-
vated by Cs and O without switching off the Cs source.
Contrary to the case of Ag films, the O source, which
increased the pressure in the chamber by about
ten times, was switched on only at the final stage of
activation, after sensitivity S had dropped by 30% of a
maximum value reached upon activation by Cs alone
(Fig. 1, time instant 2). With the O source switched on,
sensitivity S rose by one to two orders of magnitude in
both the granulated and continuous Au films. To maxi-
mize the sensitivity in the red spectral range, the films
were activated first by white light and then by the light
passed through a KS-19 red filter (λ ≥ 700 nm; Fig. 1,
© 2005 Pleiades Publishing, Inc.
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time instant 1). PE was excited by nonpolarized light
incident at an angle of 0°, and the reflected light inten-
sity was measured at an angle of 45° to the normal to
the film surface.

Spectral sensitivity S(λ) of the continuous films acti-
vated by Cs and O in the range under study (λ = 400–
800 nm; Fig. 2, curve 2) is about ten times higher than
that of the films activated only by Cs (Fig. 2, curve 1).
Spectrum S(λ) for these films consists of one broad
band with a maximum (Sm = 1.8 mA/W) at λ1 = 30 nm.
This corresponds to quantum yield Q = 0.52% relative
to incident photons. As follows from Fig. 2, the spectral
range of this PE band (curve 2) nearly coincides with
spectral range R(λ) of the reflection band. The mini-
mum of the latter, R = 40%, lies at λ ≤ 500 nm (curve 4).
According to [9], this reflection band is due to inter-
band absorption of light in the volume of Au.

S(λ) spectra taken of the granulated films activated
by Cs and O contain a new long-wavelength PE band
(Fig. 2, curve 3) about 100 nm wide with a maximum
at λ2 = 530 nm. The sensitivity in this maximum is Sm =
3.9 mA/W, which corresponds to Q = 0.9%. As com-
pared to the continuous films, the PE intensity of the
short-wavelength band in the granulated films rises to
Sm = 4.3 mA/W (Q = 1.24%), and the reflection band
edge shifts toward longer waves (from 570 to 750 nm).
The minimum of the reflection band declines to R =
26% at λ = 480 nm (Fig. 2, curve 5).

The appearance of the new intense PE band with a
maximum at λ2 = 530 nm, whose spectral range (Fig. 2,
curve 3) coincides with that of the reflection band
(Fig. 2, curve 5), in the granulated Au films activated by
Cs and O may be explained by the excitation of surface
plasmons in Au nanoparticles, just as in similar Ag
films [4]. Unlike the Ag films, the Au films do not
exhibit a volume plasma resonance at λ = 330 nm
because of intense interband absorption, which begins
at λ ≤ 550 nm [9]. Therefore, unlike in the case of Ag
[4], we could not reveal a distinct band due to surface
plasmons in the reflection spectra of the granulated Au
films because of the shading effect of the band associ-
ated with interband absorption. Another dissimilarity
from the Ag films is a significant increase in the PE sen-
sitivity in the continuous Au films activated by both Cs
and O up to S = 1.8 mA/W in the visible region versus
S = 0.19 mA/W for the films activated by Cs alone
(Fig. 2; curves 2 and 1, respectively). Since PE in these
films is caused by interband transitions and the work
function after activation by Cs and O is lower than that
after activation by Cs alone, a larger number of photo-
electrons reach the surface and escape into a vacuum
before their energy becomes lower than the vacuum
level because of scattering. The different results of acti-
vation of the Au and Ag films by cesium and oxygen is
likely to be related to the difference in their chemical
properties: Ag is active with respect to O, forming
Ag2O oxide, and inactive with respect to Cs, whereas
TECHNICAL PHYSICS      Vol. 50      No. 11      2005
Au forms a CsAu compound but is inactive with respect
to O.

The AES and XPES studies show that the chemical
composition of the surface of the Cs- and O-activated
Au films is identical to that of the Ag films [4]. There-
fore, as in the Ag films, the decrease in the work func-
tion of the Au films is caused by a thin (about 1 nm)
dipole layer consisting of Cs+ ion dipoles and Cs–O–Cs
dipoles.

Thus, a new intense PE band associated with surface
plasmons appears in granulated Au films. At the maxi-
mum of this band (λ2 = 530 nm), we have S ≈ 4 mA/W,
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which is several orders of magnitude higher than the
sensitivity of photocathodes made of inactivated con-
tinuous metal films [6, 7]. Since photoelectron trans-
port to the surface is absent, both Au and Ag granulated
films activated by Cs and O can be used as photocath-
odes with a resolution of a few femtoseconds for time
analysis of fast processes and for generation of pulsed
electron beams. Since the granule size is low and verti-
cal growth of Au nanoparticles is slow, semitransparent
and low-resistivity Au films evaporated onto a transpar-
ent substrate, e.g., onto a SnO2 film on quartz, may
serve as effective metallic photocathodes operating in
the transmission mode in the visible spectral range.
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Abstract—The properties of a lens antenna are calculated by the equivalent-current method (second equiva-
lence principle). A Luneberg lens formed by glass bricks is considered. The results of these calculations are
compared with experimental data. The possibility is considered of applying the above theoretical method to cal-
culating lens antennas where there is a random deviation of the dielectric constant from a preset distribution. ©
2005 Pleiades Publishing, Inc.
In the present study, we consider antennas of the
Luneberg lens type—that is, a spherical lens character-
ized by central symmetry and a refraction coefficient
changing along the radius. It enables one to create a
cophased distribution of the field over the antenna aper-
ture, the amplitude distribution of the field at the lens
aperture becoming constant for a specific polar diagram
of the feeding antenna. The advantages of Luneberg
lenses, such as electromechanical scanning over a total
sector of angles without rotating the antenna as a dis-
crete unit and the possibility of creating multiray sys-
tems by using one lens, are due to central symmetry.
However, the technology of manufacturing such lenses
is rather complicated. This problem is partly solved by
going over from a continuous distribution of the refrac-
tion coefficient to a stepwise one—that is, to a spherical
lens formed by layers from a homogeneous dielectric
material or to a lens from bricks (the latter is considered
in [1] and in the present article).

In this study, we determine the diffraction field at a
Luneberg lens by using the equivalent-current method
(the second equivalence principle proposed by Kontor-
ovich). The method essentially consists in that the
dielectric field generating a secondary field is replaced
by a system of equivalent currents in a vacuum.

Let us consider one of the Maxwell equations,

where je is an outside electric current.

This equation can be recast into the form

curlH j
ω
c
----εE

4π
c

------je,+=

curlH j
ω
c
----ε0E je j

ω
c
---- ε ε0–( )E+ +=

=  j
ω
c
----ε0E

4π
c

------je
4π
c

------je' ,+ +
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where

is an equivalent current.
For a free space, ε0 = 1; therefore, we have

For another Maxwell equation, we can perform sim-
ilar transformations by introducing an equivalent mag-
netic current.

In accordance with the equivalent-current method,
we can represent the polar diagram of the lens being
considered in the form

(1)

where θ1 is the angle between the direction to the obser-
vation point and the axis connecting the center of the
lens and the feeding antenna, θ and r' are coordinates of
an integration point within the body of the lens (the
radius of the lens is taken to be unity), k is the wave vec-
tor, E(θ, r') is the electric-field strength at an integration
point, and le is the electric length of the ray going from
the feeding antenna to the integration point.

The Bessel function in the integrand on the right-
hand side of (1) arises upon integration over angle ϕ.
The amplitudes E(θ, r') and the phases kle of the rele-
vant rays were calculated at individual points with a

je' j
ω
4π
------ ε ε0–( )E=

je' j
ω
4π
------ ε 1–( )E.=

FL θ1( ) J0 kr' θ θ1sinsin( )
0

π

∫
0

1

∫=

× Φ r θ θ1, ,( )r'2 θE θ r',( ) ε r'( ) 1–( )
ε r'( )4

-------------------------------------------dθdr',sin

Φ r θ θ1, ,( ) jkle( ) jkr' θ( ) θ1( )coscos( ),expexp=
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step of 1° in angle θ and a step of 0.01 in the radius.
Also, we employed the principle of geometric optics (in
order to determine the trajectories of the rays) and the
energy-conservation law. The integral in (1) was evalu-
ated by means of Simpson’s rule. In representing the
field in form (1), it was assumed that the field within the
body of the lens is independent of the angle ϕ (a corru-
gated horn was used for a feeding antenna).

Let us consider a lens fabricated by the Konkur
enterprise in accordance with [2]. This lens was made
from bricks having different dielectric constants. The
type of a brick is chosen in such a way as to ensure the
closest proximity of its dielectric constant to the dielec-
tric constant of the Luneberg lens at the radius equal to
the distance between the lens center and the center of
this brick. The shape of a brick is shown in Fig. 2.

The faces of the bricks generate two sets of parallel
vertical planes. If we now assume that the coordinates
of the brick centers in the horizontal plane are integers,
then it turns out that, if their sum is even, the coordi-
nates of the brick centers in the vertical direction are
also integers. Otherwise, the bricks are shifted in the
vertical direction by half their height.

Figure 3 shows the coordinate dependence of the
refraction coefficients in a lens from bricks (solid line)
and a Luneberg lens (dotted curve).

A lens from bricks can be considered as a low-tur-
bulent random medium. There exist approximate meth-
ods for calculating such media. The Rytov and Born
approximations [3] for a spherical wave and a low level
of fluctuations of the refraction coefficient (the graph is
given in Fig. 4) are the most popular approximations.
One can see from Fig. 3 that the deviation of the refrac-
tion coefficient from the preset one does not exceed
4%; therefore, it would be legitimate to use the afore-
mentioned approximations.

Since the number of nominal values of the dielectric
constant is usually small, the number of regions where
the dielectric constant differs from an ideal law is much

r
r'

θ1 θ

ϕ

1

2

Fig. 1. Geometry of the problem: (1) observation point and
(2) feeding antenna.
greater. Moreover, the signs of the deviation of the
dielectric constant in neighboring regions are opposite
(see Figs. 3, 4). Therefore, one can expect that fields
associated with errors in integration will generate a
rather small total field, so that the polar diagram of a
lens from bricks will not differ substantially from the
polar diagram of the respective ideal Luneberg lens
(Fig. 5).

The Born approximation, which was used in the
present study, can be represented as

(2)

where U0(r) is the field of the Luneberg lens (undis-
turbed lens), U0(r') is the field within the body of the
lens, n1(r') is the deviation of the refraction coefficient
from the preset continuous one (see Fig. 4), G(r – r') is
the Green’s function for a free space, and k is the wave
number.

Expression (2) differs from expression (1) in that the
unperturbed value of the field is used there for the field
itself in the integrand.

In the case being considered, it is not reasonable to
use the Rytov approximation because the jumps in
U0(r) may be quite sizable (above 50 dB). The point is
that, appearing in the denominator [3, 4], U0(r) gives
rise to large numbers in the integrand. This leads to
unreliable results since the number of decimal places
admitted by a computer is finite.

The integral in (1) was calculated by the method of
rectangles with a step of 1° in angle θ and a step of 0.01
in the radius. The integral in (2) was evaluated by the
method of rectangles as well, but, in contrast to the pre-
ceding case, use was made of a cubic grid chosen in
such a way that there were five grid points over the
length of a brick.

One can see from Fig. 4 that the presence of bricks
leads to the appearance of an additional background in

U r( ) U0 r( ) k2G r r'–( )U0 r'( )n1 r'( ) V',d

V'

∫+=

Fig. 2. Shape of a brick.
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the region of far side (E2) and back radiation at a level
of from 40 to 45 dB. The average level of this back-
ground can be estimated by calculating the power asso-
ciated with this background. Indeed, both the linear
dimensions and the positions of the regions where there
are deviations of the dielectric constant are quasiran-
dom, their linear dimensions being on average equal to
half the brick length. It follows that, upon performing
summation of the fields from these regions in power
[without regard to phases] and normalization to the
maximum field, we obtain

(3)

Enoise = 

2π 2
∆n

ε r'( )4
--------------E θ r',( )r'2 θ( ) k2

4π
------sin 

 
2

θ r'dd

0

π

∫
0

R

∫
Emax

-------------------------------------------------------------------------------------------------------,

E2 20 Enoise( ).log=
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Fig. 3. Refraction coefficient (x = 0, z = 0).
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Fig. 5. Polar diagrams of (solid curve) the Luneberg lens
and (dotted curve) the lens from bricks at a focal length of
f = 1.4R, where R is the radius of the length. The remaining
parameters are D/λ = 18.3 and D = 2R, λ being the wave-
length.
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This formula is a corollary of formula (1). The fac-
tor k2/4π is the coefficient of proportionality between
the amplitude of the equivalent current and the ampli-
tude of the field E generated by this current in the far
zone.

For the lens being considered, the level of the back-
ground in terms of the field was –46 dB.

In order to confirm the possibility of employing the
proposed approach, we have measured the polar dia-
gram of a lens built from bricks. In order to increase the
dynamical range of these measurements, we used a
synchronous detection in processing a relevant signal in
a computer. The developed code made it possible to
perform an appropriate treatment of resulting data and
to construct the polar diagram of the antenna.

It should be noted that the experimental polar dia-
grams of the antenna were determined for various ori-
entations of the feeding antenna with respect to the

–6.5 –4.5 –2.5 –0.5 0.5 2.5 4.5 6.5
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x

n1

–0.04

0

0.02
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Fig. 4. Deviation of the refraction coefficient (y = 0, z = 0)
within a lens formed by bricks from the value correspond-
ing to the Luneberg lens.
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Fig. 6. Averaged theoretical polar diagram (solid curve) and
one of the realizations (dotted curve).



1534 SHANNIKOV et al.
brick planes. We can state that we are dealing with indi-
vidual realizations of a random process. This process is
not steady-state; therefore, it is reasonable to compare
averaged theoretical and experimental polar diagrams.

In our experiment, the lens was always arranged in
such a way that the brick faces not containing tenons
and mortises (see Fig. 2) lay in the plane of angle θ1. By
rotating the lens about the vertical axis, we then
obtained a new realization.

Figure 6 shows the calculated polar diagrams (the
solid and dotted curves represent, respectively, the
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Fig. 7. Experimental (solid curve) and theoretical (dotted
curve) polar diagrams of the lens from bricks.
polar diagram averaged over four realizations and the
polar diagram for one of the realizations). One can see
that the distinction between specific realizations is
insignificant.

For a lens from bricks, Fig. 7 displays the theoretical
(represented by the solid curve in Fig. 6) and the exper-
imental polar diagram averaged over the angle θ1. The
averaging was performed in a window of size 10°, this
window being moved over the entire range of the angle
θ1, with the exception of the segment |θ1| < 20°—that
is, over the region of far side lobes.

From this graph, one can see that the approach out-
lined in the present article yields reliable results over
the entire sector of angles. This method may be used to
calculate the fields of dielectric antennas belonging to
different types and featuring random deviations of the
dielectric constant from a preset one.
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