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Abstract—A new mechanism for heating the el ectron component of plasmas formed upon the application of a
superintense ultrashort laser pulseto atomic clustersis proposed. Clusters considered here consist of deuterium
atoms. Upon the emission of alarge number of electrons, anirradiated cluster, which acquires apositive charge,
explodes (Coulomb explosion). Deuterons that are gjected as the result of this possess high kinetic energies, so
that collisions between them can result in 3He formation accompanied by neutron emission. The new mecha-
nism of the heating of the electron plasmafrom clustersisbased on the conjecture that, when an ionization el ec-
tron isreflected from the inner surface of the cluster ion in the presence of alaser field, it predominantly absorbs
(rather than emits) laser photons. © 2001 MAIK “ Nauka/Interperiodica” .

The nuclear reaction d + d —= 3He + n requires
high kinetic energies of the deuteronsinvolved for their
Coulomb repulsion to be overcome. This energy can be
estimated as 1/4Ry, where Ry = 1.96 fm is the deuteron
radius (hereafter, we use the system of atomic units,
where e =m, = f = 1), so that it amounts to 180 keV.
The cross section for the reaction in question depends
only dlightly on the deuteron kinetic energy, itsvaluein
the energy region around 200 keV being 0.01 b. The
energy of the emitted neutron is 2.45 MeV.

Deuterons of such high kinetic energies can be pro-
duced in the explosion of deuterium clusters exposed to
an ultrashort laser pulse of intensity in excess of 10—
10'6 W/cm?. Deuterium clusters have a spherical shape
and consist of a few hundred deuterium atoms bound
together by weak attractive Van der Waals forces.
Therefore, their density is much lower than typical den-
sities of solids.

When such clusters are irradiated with an intense
laser pulse, deuterium atoms in a cluster are ionized.
Since theintensity of the laser pulse exceeds the corre-
sponding quantities for atomic fields and since the laser
field penetrates freely in the cluster interior (the thick-
ness of the skin layer is much greater than cluster
dimensions), aimost all deuterium atoms are ionized
before the termination of the laser pulse. Part of free
electrons generated in this way begin to escape from
the cluster through its surface. This continues until the
positive charge of the cluster ion formed attains avalue
so large that the kinetic energy of electrons is insuffi-
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cient for overcoming the Coulomb field of this cluster
ion. This Coulomb field tends to pull the electrons in
the cluster again. All this occurs within the laser-pulse
duration of T = 30-50 fs. Because of Coulomb repul-
sion, deuterons in the charged cluster ion fly apart over
this time interval for a distance of about the cluster
diameter. After the termination of the laser pulse, the
divergence of the deuterons continues. This is the
explosion of a cluster, and it can generate deuterons
with energies in excess of the above value of 200 keV.
Asaresult, there can occur the fusion of two deuterons
emitted from different cluster ions (in addition to the
aforementioned channel, there is also the channel d +
d — t+ p), which was observed experimentally in[1].
For a cluster ion of charge Z = 1000 and initial radius
R=25 A (it is precisaly this mean radius of deuterium
clusters that was recorded in [1]), the mean kinetic
energy of emitted deuterons can be estimated at Z/R ~
2.5 keV. Thisvalue complieswith the datafrom the ear-
lier experiment reported in [2]. However, the energies
of individual deuterons can take values that substan-
tially exceed the above mean value and which are suf-
ficient for overcoming the Coulomb barrier for the
fusion of two deuterons. In the deuterium plasma
formed, deuterons undergo multiple collisionswith one
another, which resultsin thermalization (the concentra-
tion of deuteronsin the experiment reported in [1] was
1.5 x 10" cm™).

Of course, there are only few deuterons with ener-
gies E = 200 keV. According to the Maxwell distribu-
tion, their fraction at temperature Ty = 2.5 keV is as
small as exp(-E/Ty) ~ 10-%. However, deuterons with
subbarrier energies of 50 to 100 keV can fuse success-
fully by means of quantum tunneling through a Cou-
lomb barrier, which is low in this case. For example,
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Ditmire et al. [1] observed about 10* neutrons from the
reactiond + d —» 3He + n per laser pulse.

Fromtheaforesaid, it followsthat, in order toimple-
ment the fusion of deuterons, it is necessary that the
kinetic energy of electrons formed within a cluster as
the result of ionization by thefield of alaser pulse be as
high as possible, since this ensures a higher charge of
the resulting cluster ion. The most popular mechanism
for increasing the kinetic energy of ionization electrons
isthe following. At the instant of ionization, the kinetic
energy of electrons does not exceed afew eV. An elec-
tron that escapes from a deuterium atom collides with
positively charged deuterons. In the field of laser radia-
tion, it acquires energy—this is the so-called inverse
bremsstrahlung effect [3]: an electron can either absorb
or emit a laser-field photon, but the probability of
absorption is somewhat higher than the probability of
emission. For slow electrons, the probability of the
inverse bremsstrahlung effect was calculated in [4]. Of
course, electron—electron collisions also occur, but they
do not change the el ectron energy. The el ectron temper-
ature increases adiabatically with time.

The probability of an elastic el ectron—deuteron col-
lision is given by the expression

_ 4,/2nNInA
- 3.|.3/2

[T isthe electron temperature, N is the concentration of
deuterons in a cluster, and InA is the Coulomb loga-
rithm (equal to about 10 in the problem being consid-
ered)], which iswell known from physical kinetics[5].
At temperature T = 1 keV, which was recorded experi-
mentally in [1], and the deuteron concentration of N =
102! cm3, this probability is about 0.001 1/fs. Thus, no
electron—deuteron collision occurs over the duration of
the applied laser pulse; that is, the above mechanism for
enhancing the electron temperature is inoperative for
deuterium clusters. However, it is a dominant mecha-
nism for meta clusters, where the concentration of atoms
is much higher (close to concentrations in solids) and
where the nuclear charge Z' is much greater than unity
[the probability in Eq. (1) is proportional to (Z')?] [6].

In a deuterium cluster ion, ionization electrons fly
freely from one cluster surface to another (they can
hardly escape from the cluster because of alarge posi-
tive charge that the cluster has acquired owing to the
emission of preceding electrons). For the probability of
el ectron—€el ectron collisions, we have the same estimate
given by (1) as for electron—ucleus collisions. Under
the above conditions, the inner surface of a cluster ion
isan idedly reflecting surface for free electrons within
the cluster. In the absence of alaser field, the energy of
the reflected electron would obviously be equal to the
energy of an incident electron. In the presence of alaser
field, however, the electron can absorb or emit a |l aser-
radiation photon. On average, the probability of
absorption is higher than the probability of emission
[3], the mean energy increment per collision being

: (1)
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equal to the ponderomotive (vibrational) energy F?/4w?
of an electron in the laser-radiation field [7, 8]; here, F
is the amplitude of the electric-field strength in a laser
pulse, while w is the laser-radiation frequency. Of
course, thisenergy issmall in relation to the above ther-
mal energy of electrons; that is, the energy is enhanced
in small portions. For the intensity of 10> W/cm? and a
typical laser-photon energy of w ~ 1.5 eV (the laser-
radiation wavelength was 820 nm in the experiment
reported in [1]), we find that the ponderomotive energy
is about 50 eV.

The rate at which the thermal energy 37/2 of an
electron growsis determined from the balance equation

F2 v

3dr _ F v
T122R

2 dt @)
where2Risthe cluster diameter (the distancethat afree
electron travels between two opposite points of the
cluster surface), while v = (3T)"? is the thermal veloc-
ity of electrons. The phenomenological coefficient n,
which is much less than unity, considers that, in fact,
the collision between an electron and the cluster-ion
surface is not elastic and that the direction of the
strength of the electric field in the laser wave does not
coincide with the direction of electron mation. In the
following, we set n = 0.1.

Integrating Eq. (2) with respect to time, we find that
the temperature of electrons upon the termination of the
laser pulseis

o F 4T§ff
192"

where 1. is the effective time over which the field
strength F in the laser pulse is close to the amplitude
(maximum) value. In deriving Eqg. (3), it was aso
assumed that theinitial energy of an ionization electron
issmall in relation to its final energy. The distribution
of thelaser-pulseintensity intimeiscloseto aGaussian
distribution, but we retain only the quasi planar segment
of thisdistribution at itstop and denote by 1.4 the width
of this moderately narrow segment. For metal clusters,
similar estimates obtained by considering collisions
between electrons and atomic ions within a cluster can
be found in our review article[9].

Substituting the laser-radiation-intensity amplitude
of 10" W/cm?, thefrequency of w= 2 eV, and the effec-
tive pulse duration of 1. = 10 fsinto (3), we abtain the
final electron temperature of T =5keV. Thisvalue com-
plies with the experimental estimates of the electron
temperature for various cluster ions [10, 11] and is on
the same order of magnitude as the potential barrier
Z/R, which opposes the escape of an electron from the
cluster ion. Of course, the assumption that electrons are
reflected elastically from the inner surface of the cluster
isbased ontheinequality T < Z/R. Therefore, the above
estimates are quite rough.

T=n 3)
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Atomicionswith energiesupto 1 MeV [12, 13] and
electrons with energies up to 3 keV were observed in
experiments where argon and xenon clusters exploded
under the effect of ultrashort laser pulses of intensity
about 10'* W/cm?. Such highion energies (much higher
than deuteron energies) were due to large charges of
xenon and argon atomic ions (xenon ions of charge as
large as +40 were observed). We note that, in cluster
explosions caused by Coulomb repulsion, the hydrody-
namic expansion of the cluster plasma also contributes
to the generation of high-energy atomic ions, but its
role is less significant than the role of Coulomb repul-
sion.

Clusters of deuterium atoms should be preferred to
polyethylene targets containing deuterium, because
only some 100 neutrons from deuteron fusion were
observed in the second case per laser pulse [14].

In summary, we can conclude that the induced
absorption of laser-radiation photons at the instant of
free-electron reflection from the inner surface of aclus-
ter ion is a dominant mechanism for the enhancement
of the electron temperature in experiments where deu-
terium clusters are exposed to an ultrashort laser pulse.
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Abstract—We review some possible improvements of mean-field theory for application to nuclear-binding
systematics. Up to now, microscopic theory has been less successful than models starting from the liquid drop
in accurately describing the global binding systematics. We believe that there are good prospects for devel oping
abetter global theory, using modern forms of energy-density functionals and treating correlation energies sys-
tematically by the RPA. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

An important goal of nuclear theory is to predict
nuclear-binding energies. While mean-field theory
offers the most fundamental basis to understanding
nuclear structure, paradoxically it has not been as suc-
cessful as other approaches in making a global fit to
nuclear-binding energies. The most accurate theory of
nuclear-binding systematics [1] dtarts from the liquid-
drop modd and treats shell effects perturbatively. It fits
the binding energieswith an RM S deviation of 0.67 MeV,
taking 15 free parameters and asimilar number of fixed
parameters to achieve the fit. No such systematic study
with so many parameters has been attempted in a
purely microscopic approach, but there are anumber of
partial studies, beginning with the pioneering work of
Vautherin and Brink [2], using an energy functional
based on the Skyrme interaction. Noteworthy recent
papers using Skyrmeinteractions are by Patyk et al. [3]
and by Brown [4]. Patyk et al. found that Skyrme inter-
actions taken from the literature give RMS errors
greater than 2 MeV. This level is also found for the
Gogny interaction, which unlike the Skyrme has afinite
range. Brown recently made a new Skyrme fit to
closed-shell nuclei, including radii and spectroscopic
propertiesin thefitting [4]. Hefound an RM S deviation
of 0.8 MeV for the 10 nuclei he considered, encourag-
ing the hope that deviations below 1 MeV might be
reached microscopicaly. Of course, open-shell nuclei
have significant correlation energies, which must be
included. We discuss how this might be done in Section
3 below. Anacther prablem is the choice of energy-den-
sity functional, and there may be reason to use other
forms than the Skyrme or finite-range generalizations.
Thisis discussed in the next section.

* This article was submitted by the authorsin English.

2. NEW FORMS FOR THE ENERGY
FUNCTIONAL

Some perspective on the energy functional can be
obtained from the analogous problem in condensed-
matter physics. Correlation effects are rather mild in
the many-electron problem, and the mean-field
approach is very successful. The energy functional
analogous to the Skyrme is called the local-density
approximation (LDA), and it iswidely used to calculate
structures of many-atom systems. Its accuracy for
chemical purposes is inadequate, however. For exam-
ple, in a comparison of different functionals, Perdew
et al. [5] noted that the LDA had a mean absolute error
of 1.4 eV in asample of small molecules with binding
energiesin therange 520 eV. 1 Two refinements of the
energy functional, going beyond the LDA, make adra-
matic improvement in the quality of agreement. The
first refinement is to include aterm in the energy func-
tiona that depends on the gradient of the density. Gra-
dient terms are aready present in the Skyrme interac-
tion, but, in the electron system, improvement only
appears with a nonlinear functional form of the gradi-
ent term,

e(n, On) DLZ. (1
1+a(dn/n)

The mean absolute error decreases by a factor of 4, to
0.35 eV, when this term is added.?) The other improve-
ment isto allow the functional to depend on the kinetic-
energy density T, as well as on the local density n(r).
Thisasoisafamiliar feature of the Skyrme interaction,
but for the electron case, T is combined with the On
dependence in Eq. (1). The resulting mean absolute
error is reduced by amost a factor of 3, which gives a
final mean absolute error of 0.13 eV.

Dt should be mentioned, however, that the LDA energy functional
is constructed ab initio without fitting binding data.

2Again, no free parameters are added with this term; the functional
form and dependences on [n and T are constructed to simulate
the nonlocality of the exchange.
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MEAN-FIELD THEORY FOR GLOBAL BINDING SYSTEMATICS

The nuclear problem is different from the electron
problem in one important respect. In the latter, much of
the loss of accuracy is due to the exchange potential,
which is intrinsically nonlocal, but which must be
treated in a nearly local approximation for computa-
tiona reasons. In contrast, in the nuclear problem the
strong interaction is short-range, implying that the
exchange is also short-range and thus suited to loca
approximations. Nevertheless, it might be that more
complicated functional forms such as Eq. (1) could be
useful in the nuclear problem. Indeed, thiskind of gen-
eralization was examined by Fayans [6]. He used such
terms in an energy functional that was fit to 100 spher-
ica nuclei. He obtained an RMS binding error of
1.2 MeV, afactor of 2 better than the Gogny or the pub-
lished Skyrme functionals.

3. CORRELATION ENERGY

Asmentioned earlier, in open-shell nuclei the corre-
lation energy associated with nearly degenerate config-
urations can be of the order of several MeV, so the sin-
gle-configuration mean-field approximation is not
accurate enough for global energy systematics.

We believe that the following correlations should be
considered explicitly in the theory:

center-of-mass delocalization,

guadrupole deformations,

pairing.
These are obvious correl ations associated with symme-
try breaking in the mean-field Hamiltonian. Tranda
tional invarianceis always broken in finite systems, and
rotational invariance is often broken as well. Pairing
treated by BCS theory violates particle-number conser-
vation.

How important are these correlations to the energet-
ics? For the center of mass, the correlation energy can
be estimated in the harmonic-oscillator model (but see
below) as 3fiw,/4 = 30/AY3 MeV. The resulting magni-
tude of several MeV is certainly much larger than the
allowable error in a global mass theory. However, the
energy varies very smoothly and one could question
whether it needsto be treated explicitly asacorrelation
energy or whether its effect can be absorbed in the
parameters of the mean-field energy functional. The
latter might not be the case because the mean-field
functional determines most directly the leading terms
in the liquid-drop expansion, varying as A and A3,
One should not useit to simulate acompletely different
A dependence. This argument, and some mean-field
calculations to support, were given recently by Bender
etal.[7].

The correlation energy associated with the deforma-
tions may be thought of as the energy gained by pro-
jecting the states of good angular momentum out of the
deformed intrinsic state that contains many angular
momenta. Its magnitude can be quite large on our accu-
racy scale of hundreds of keV. For example, the nucleus
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2Ne has a Hartree—Fock ground state close in structure
to the [8, 0] U(J) state of the harmonic oscillator.
Combining probabilities of different angular stateswith
the energies of the states derived from the experimental
spectrum, one can easily show that the energy gained
by the projection is of the order of 4 MeV. A similar
number was obtained recently in the projected mean-
field calculations of Mg by [8]. Thus, this correlation
energy should be included with an accuracy of 10% or
better to achieve the desired accuracy of the mass the-
ory.

The situation with pairing is less severe. It is cer-
tainly necessary to include pairing in atheory of masses
just to get realistic odd—even mass differences, but the
need to include correlation effects beyond the Hartree—
Fock—Bogolyubov theory is less clear. With certain
simplified pairing interactions, the pairing Hamiltonian
can be solved exactly, without making the BCS approx-
imation [9]. The error in the BCS energy due to the
number nonconservation is of the order of 0.5 MeV
([10], Table 11.1). This might be significant in the glo-
bal mass theory, and we shall include it in our discus-
sion.

There are many ways in which correlation energies
can be calculated. The most popular one seems to be
the obvious method in which the eigenstates of the
symmetry are projected out of the mean-field wave
function. If the energy minimization is carried out after
the projection, this method is rather costly to use and
probably not suitable for a global mass theory. For a
global theory, it isimportant that the method be simple
computationally and also that it be systematic, applica-
ble in principle to al possible mean-field solutions.
Particularly important isthat it does not introduce adis-
continuity when the mean-field solution changes its
character. In the systematic development of many-parti-
cle perturbation theory, the leading term beyond the
mean-field approximation givesthe correlation energy as
anintegral over the RPA excitation modes. Inafinitesys-
tem, the RPA correlation formulais given by [10, 11]

1 O
= @Zhwi —tr(A)
21« O

ECOI’I' = (2)

where w; isthe (positive) frequency of the RPA phonon
and A is the A matrix in the RPA eguations. This
approach was first proposed by Friedrich and Reinhard
[12]. It seemsto usthat thisformulaiswell suited to the
requirements we need for a systematic mass theory. We
shall first argue that the formulais adequatein principle
and then take up the issue of computational feasibility.
In the next section, we summarize experience with sim-
ple model Hamiltonians that show that Eq. (2) is more
accurate than commonly used projection techniques or
is easier to calculate. In the section following, we
examine specific algorithms for calculating nuclear-
binding energies efficiently.
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Fig. 1. RPA frequenciesin thethree-level Lipkin model ver-
sus X = V(N — 1)/e. The number of particles N is chosen to
be 20.

E, . /e

es/
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Fig. 2. Comparison of the ground-state energiesin the three-
level Lipkin model that were obtained by several methods.
The solid line is the exact numerical solution. The ground-
state energy in the Hartree—Fock approximation is denoted
by the dashed line, while the dot-dashed line takes into
account the RPA correlation energy in addition to that.

4. EXPERIENCE FROM SIMPLE MODELS
A. Center-of-Mass Localization

The Hamiltonian of two particles interacting
through a quadratic potential V(r,) = mowgrs,/2 is
solvable exactly and also has an analytic mean-field
approximate solution. One might guess that the RPA
correlation energy might give the correction exactly,
because one can derive the RPA by considering qua
dratic approximations in a path integral formulation of
the problem. This is indeed the case [13]. The RPA
spectrum has two states, a zero-frequency mode and a
finite-frequency mode. Substituting these frequencies
into Eq. (2), one finds that the correction to the mean-
field energy Awy isjust what is needed to give the exact

energy for the total, 7iuy//2 .

It is interesting to compare the RPA approach with
other ways of dealing with correlation energies associ-
ated with broken symmetries. In the case of center-of-

BERTSCH, HAGINO

mass motion, a recipe that is often used is to subtract
the expectation value of the center-of-mass operator
from the mean-field energy (e.g., in [7]). With our
Hamiltonian, this prescription gives

_ 1(pi+p)°
Eom = _<MF‘2 2m

Thetotal Eyy + E,,, = 3, /4 isnot exact, dthoughitis

close to the exact energy, 7iwy/A/2. This study shows
that, for thisfirst kind of correlation, the RPA formula
provides a better method to calculate the associated
energy.

1
MF> = —ghwy. ()

B. Deformations

When the mean-field solution is deformed, a contin-
uous symmetry is broken. Asin the above example, a
signature of the broken continuous symmetry is a zero-
frequency RPA mode. A model to test theories of the
correlation energy should thus have a corresponding
continuous symmetry. We constructed a model with
those propertiesin [13], making a generalization of the
Lipkin model. In the origina Lipkin model, which has
been studied for 40 years, one considers many distin-
guishable particles, each of which can be in one of two
states. For that model, the ground-state correlation was
studied by Parikh and Rowe [14]. They compared vari-
ous methods for treating the correlation energy, finding
that the RPA formulaworked best. In[13], we extended
the Lipkin model to a three-state wave function to get
sufficient degrees of freedom for acontinuously broken
symmetry. The symmetry is imposed on the Hamilto-
nian by requiring it to be invariant under transforma-
tions within two of the three states. The two degenerate
upper states could be thought of as the first excited
states of a two-dimensional harmonic oscillator, thus
allowing deformed wave functions in two dimensions.
As expected, when the mean-field solutions and their
RPA excitations are cal culated, one sees zero frequency
when the mean-field solution is deformed. Thereisaso
another mode at afinite frequency. In this case, thefirst
mode corresponds to rotational motion perpendicular
to the symmetry axis, while the second mode corre-
spondsto abetavibration. In the “ spherical” phase, the
RPA frequencies for the modes are identical and have a
finite frequency. Figure 1 shows the RPA freguencies
versus X = V(N — 1)/e for the particle number N = 20,
whereV and e are the strength of the interaction and the
single-particle energy, respectively. One can clearly see
the discontinuity at the critical point x = 1.

Figure 2 compares the ground-state energies X that
were obtained by several methods. The number of par-
ticlesN is set to 20. The solid line is the exact solution
obtained by numerically diagonalizing the Hamilto-
nian. The dashed line is the ground-state energy in the
Hartree—-Fock (HF) approximation. It considerably
deviates from the exact solution through the entire
range of X shown in the figure. The dot-dashed line
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takes into account the RPA correlation energy in addi-
tion to the HF energy. Clearly, the RPA significantly
improves the results. The corresponding energy as a
function of the number of particlesis shown in Fig. 3.
One sees that the RPA correlation energy isreliable for
large N, but it may be problematic when there are only
afew valence particles. That situation isfurther compli-
cated by the pairing interaction, which may dominate
the mean-field solution for N = 2.

C. Pairing

Pairing is the final example of along-range correla-
tion that significantly affectsthe energy. The mean-field
approach leads to BCS theory, whose ground state has
an indefinite particle number. An early study by Bang
and Krumlinde [15] showed that the RPA formula
reproduces the exact correlation energy rather well ina
schematic model. The RPA method has in fact been
used in realistic models of deformed nuclei [16]. The
RPA correlation inthenormal phasewasstudiedin[17]
by using the self-consistent version of RPA.

Kyotoku et al. [18] derived an analytic solution for
the model first proposed in [19], fermionsin a space of
two nondegenerate j shells interacting with a pairing
Hamiltonian. They were ableto solve the model exactly
and then compared the energy with several approxi-
mate methods to cal cul ate the correlation correctionsto
the BCS energy. They found that the ground-state
energy in the BCS + guasiparticle RPA (QRPA) coin-
cides with the exact solution at the leading order of an
expansion in /N, N being the number of particlesinthe
system. None of the other methods obtained the correct
coefficient of the leading-order contribution. For exam-
ple, the well-known method of Lipkin and Nogami [20]
gave aresult that is only correct in the limit of a strong
pairing force (see Table | in [18]).

In [21], we specifically compared the RPA with the
computationally attractive alternative methods, testing
the behavior across shell closures and considering both
even- and odd-N systems. Taking, as atest case, the two-
level problem with a level degeneracy of Q = 8 and a
Fermi energy half-way between the levels, we found that
the RPA was much superior to the Lipkin-Nogami
method over most of the range of pairing strengths. This
behavior is consistent with the result of [18], as we dis-
cussed above. However, right at the phase-transition
point, the two methods had comparable errors of opposite
sgn.

We therefore also looked at a more redlistic situa-
tion, varying the particle number N rather than the
interaction strength G. We consider the pairing energy
in oxygen isotopes, taking the neutron 1p and 2s-1d
shells as the lower and higher levels of the two-level
model. The pair degeneracy Q thus reads Q, = 3 and
Q, = 6 for the lower and the upper levels, respectively.
The number of particlesinasystemisgivenby N=A—
8 — 2 for the“O nucleus. We assume that the energy dif-
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Eg.s./e

Fig. 3. The ground-state energy of the three-level Lipkin
model asafunction of N for x =5. The meaning of eachline
isthesame asin Fig. 2.

—-105

A, MeV
[\®]
T

\
) Sy e G
14 16 18 A

Fig. 4. The ground-state energy E,  (the upper panel) and

the pairing gap (the lower panel) for oxygen isotopes esti-
mated with the two-level model versus the mass number.
The exact results are denoted by the filled circles. For the
pairing gap in the Lipkin-Nogami method, A, is added to
the pairing gap A.

ference between the two levels e isgiven by e = 41A°173
and the pairing strength is G = 23/A. The upper panel of
Fig. 4 showsthe ground-state energy asafunction of A.
In order to match with the experimental datafor the '°O
nucleus, we have added a constant —72.8 MeV to the
Hamiltonian for al the isotopes. The exact solutions
are denoted by thefilled circles. The deviation from the
BCS approximation (the dashed line) is around 2 MeV
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for even-A systems and is around 1.2 MeV for odd-A
systems. This value varies within about 0.5 MeV aong
the isotopes and shows relatively strong A dependence.
One can notice that the RPA approach (the dot-dashed
line) reproduces the exact solutions quite well. In con-
trast, the Lipkin—-Nogami approach (the solid line) is
much |ess satisfactory and shows an A dependence dif-
ferent from the exact results. The pairing gap A in the
BCS approximation and in the Lipkin—Nogami method
is shown separately in the lower panel of Fig. 4. For the
Lipkin—-Nogami method, we show A + A,, whichisto be
compared with experimental data [20]. Here, the Lip-

kin-Nogami Routhian is defined as H — AR — A,N?,

H and N being the nuclear Hamiltonian and the parti-
cle-number operator, respectively. The closed-shell
nucleus %0 and its neighbor nuclei >0 have zero
pairing gap in the BCS approximation, and the Lipkin—
Nogami method does not work well for these nuclei.
On the other hand, the RPA approach reproduces the
correct A dependence of the binding energy. Evidently,
the RPA formula provides a better method to compute
correlation energies than the Lipkin-Nogami method,
especially for shell closures.

5. IS RPA COMPUTATIONALLY FEASIBLE?

We now discuss the practicality of using Eq. (2) to
calculate the correlation energy. In general, the RPA is
computationally more demanding than the mean-field
minimization for the ground state by an order of mag-
nitude or more. One must diagonalize an RPA matrix
whose dimensionsare 2D x 2D, where D isthe number
of particle-hole configurations. This number can be
huge if one is interested in deformed nuclei or heavy
spherical nuclei. A widely used way around this is to
take a residual interaction of a separable form. Then,
the matrix equation to be solved has the dimension of
the rank of the separableinteraction; with asingleterm,
it isjust the well-known algebraic dispersion relation.

Given a separable interaction, there are several effi-
cient ways to get the RPA correlation energy (2) with-
out explicitly calculating all the roots of the dispersion
relation. One method was recently proposed by Donau
et al. [22] and also by Shimizu et al. [23]. Instead of
directly calculating the RPA correlation energy accord-
ing to Eq. (2), one carries out an integration of a func-
tion that depends on a free-response function and its
first derivative in the complex energy plane. An advan-
tage of this method is that one can choose the integra-
tion path so that the integrand is smooth enough, and
thus the mesh of the numerical integration along this
path can be much larger than the actual energy intervals
of the RPA solutions w,. This method is particularly
useful when a separable interaction is used so that the
free-response function and its first derivative are ana-
Iytically evaluated.

BERTSCH, HAGINO

Alternatively, one can aso use the Lanczos-type
method proposed in [24] to evaluate the RPA correla
tion energy. As we show below, this method quickly
convergeswhen theinteraction is separable. Theideais
to define at the outset a characteristic operator associ-
ated with each kind of correlation. That operator
applied to the mean-field ground state gives an excited
state, which is taken as the first vector in a space built
up by applications of the Hamiltonian to existing states.
Equation (2) is then evaluated in the restricted spaces,
and the method would be computationally feasible if
the convergenceis rapid enough.

Suppose the matrices A and B in the RPA equation
are given by

Aij = €i6i,j+Kf‘ f

ifjo

4
(5)
wherei and j l1abel particle-hole configurationsand f; is

= kf f

[

normalized as i fi2 = 1. For such an interaction, the

collective operator can be chosen as ; = f;. Notice that
fis an eigenvector of the matrix B with the eigenvalue
K and also that Bg = 0 for any vector @that isorthogonal
tof. Starting fromtheinitial vectors |X,C= |Wand |Y, =
0, the Lanczos manipulation [24] transforms the matri-
ces A and B into the form

Heya, 0 § Ok00 [
A.zgaleza2 E g=0000 0O (4
00ae O Hooo
. - B 0 . O

The Lanczos basis for the backward-scattering ampli-
tude |Y; Cremains al zero in the manipulation, and thus
the transformed matrix B' has only one element that is
not equal to zero. Thisisnot generally the case for non-
separable interaction. Note that the matrix B' measures
the degree of correlation in the transformed space.
Since it has a very simple form, the correlation energy
evaluated in the restricted space converges very rapidly.

We have tested the method with RPA matrices given
by Eqg. (5) with €; = g, + (i — 1)Ae. The method works
very well when thereis agap in the particle-hole spec-
trum. For example, if we take amodel with D = 20 par-
ticle-hole states and other parametersf, = 1, Ae=¢,/D,
and k = —0.035¢,, the RPA spectrum has a collective
state at w, = 0.145g,. The correlation energy from
Eqg. (2) withall eigenvaluesisE,,,, =—0.542¢,. Thesin-
gle-state approximation starting from the state ), =

f.//D isonly off by 20%. The two-state approximation
has an accuracy of 1%. The calculational effort to get
these numbers is essentially that of three applications
of the Hamiltonian to the ground-state single-particle
wave function, much less than the effort to get the con-
PHYSICS OF ATOMIC NUCLEI
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verged wave functions in the Hartree—-Fock minimiza-
tion (see table).

From our point of view, the problem isthen to define
a reliable separable interaction that can be used glo-
bally in RPA calculations. For particle-hole residual
interactions, a few possible ways to construct a separa-
ble interaction have been proposed on the basis of the
self-consistency argument [25-31]. The basic argu-
ment is that the collective motions primarily result in
the displacement of the nuclear surface; thus, the tran-
sition potential can be generated by displacing the self-
consistency potential associated with the ground-state
density. In equations, the transition density has aform
locally given by the gradient of the static density, and
the transition potential is the corresponding gradient of
the static potential:

dpo

8p = a(Q)5- )

5V dUO

a(Q) 4~

where Q is an angle giving the direction to an element
of the nuclear surface. The separable residual interac-
tion then has the shape of (8) and the required magni-
tude to satisfy (7). Thus, we have

v(ry,ry) = dV(Qq, r))oV(Q,, rz)/fdrévt')p. )

()

It is amusing to compare the above self-consistent
definition with the microscopic particle-hole interac-
tion proposed by Migdal [32]. For the above transition
density, his transition potential would be given by

5VU)=W@“+U”4aﬁj8%NU-

The two transition potentials for 2°*Pb are compared in
Fig. 5. We generate the static potential U, using the
velocity-independent part of the Skyrme interaction
with S11 parametrization, and we use a Fermi distribu-
tion for a static density p,(r). The parameters of the
Migdal interaction are given in [33]. We see that the
two transition potentials have a similar surface-peaked
radial dependence.

The above self-consistency argument can be applied
very eadly to the trand ation mode, where a(Q) = cos6
for trandations in the z direction. For the rotational
degrees of freedom, we would use the displacement
fields associated with the five components of the qua-
drupole operator, i.e., 8,(Q) = Y,,(Q), u=-2,-1,0, 1,
2. Notethat the RPA correlations areto be eval uated for
spherical and for deformed nuclei; amajor point of the
approach is that the theory appli%to al cases.

It is not so simple to construct a global, separable
pairing interaction. The commonly used forms for the
pairing interaction give divergent results without a cut-
off in the space of states included in the BCS calcula-

(10)

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001

593

Convergence characteristics of the Lanczos algorithm

Iteration number Econ/ w/e
1 -0.2211 0.3326

2 —0.2688 0.1539

3 -0.2710 0.1454

Exact -0.2711 0.1451

tion. Here, we propose a nonlocal surface-peaked sep-
arable form:

V(rira rirp) = 8(r;—r;)d(ri—r3)

x dUg dU, an

X {_E d_rl _ZY)\p(rl)Y)\u(f;l)i|

The pairing matrix elements of thisinteraction areto be

evaluated as
(o, pylv| p,po0

< du, >< > (12)
P1 P1 P2).

dr
This form is inspired by recent observations that the
pairing is essentially a surface phenomenon [34-36]. A
similar surface-peaked separable interaction was used
for the particle-hole channel in[37]. We have tested the
surface-peaked separable pairing interaction (11) by
comparing it with the density-dependent delta interac-
tion proposed in [38]. The problem of the cutoff is
much less severe with this interaction than with a con-
tact interaction, because the smoothness of dU,/dr cuts
off the radia integrals. Our preliminary calculations
show that the separable pairing interaction can repro-
duce results of the density-dependent pairing interac-
tion reasonably well once the strength x isadjusted. For

Y)\p( )

Arb. units
40

—40F ,’ - VSkyrme
L ,/I - dVSkyfme/dr
__________ - — dp/dr % Vijiggal
—-80 1 1 1 ! L !
0 5 10 15

r, fm

Fig. 5. Comparison between transition potentials obtained
with the Skyrme and Migdal interactions.
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the purpose of the globa binding systematics, the A
dependence of the strength has yet to be sorted out.

6. SUMMARY

Our goal is to develop a better microscopic theory
for the nuclear-binding systematics. In this paper, we
argued that the RPA approach provides a promising and
computationally tractable way to include correlation
effectsin a globa model, going beyond the mean-field
approximation. We have shown that the HF + RPA
approach indeed works well using simple Hamiltonian
models for the correlation associated with broken
mean-field symmetries, namely, the center-of-mass
localization, rotation, and pairing. The RPA equation
can be easily solved for aseparableresidual interaction.
For example, the Lanczos method is quite efficient to
solvethe RPA equation for aseparableinteraction. This
contrasts to other popular computational methods such
as the generator-coordinate method and the variation-
with-projection method, which are rather complicated
to apply. A work isnow in progressto tackle the nuclear
masses by using the HF + RPA approach discussed in
this paper.
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Abstract—The current status of the Al = 4 bifurcation in superdeformed bands is reviewed by making use of
a theoretical model based on the interaction of rotation and single-particle nucleon motion in nuclei with an
axial deformation. It is shown that the hexadecapol e-type distortion of anuclear shape by rotation is especially
important for explaining the phenomenon. The necessary condition for staggering is obtained from an analysis
of the nonadiabatic effect of rotation. This criterion is applied to 30 superdeformed bands in the mass region
around A ~ 150. An analysis confirms the configuration-dependence effect and allows us to discriminate
between single-particle states active and inactive for staggering. The consideration is based on the additivity of
the nonaxial hexadecapole moment, which plays a key role in the staggering phenomenon. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The Al = 4 bifurcation, or the Al = 2 staggering, is
a well-known mysterious phenomenon in the physics
of superdeformed (SD) bands. It is observed as regular
oscillations of the gammaray energy differences
against a smooth behavior. The amplitude of oscilla-
tions is approximately 100 eV (to be compared to a
transition energy of about 1 MeV), and the observation
of these oscillations is a good example of the experi-
mental potential of third-generation gamma-ray detec-
tor arrays, such as Eurogam and Gammasphere.
Although the phenomenon is of asmall energy scale, it
has been of considerableinterest, and much experimen-
tal and theoretical work has been devoted to it. The
motivation was furnished by a period of oscillations,
Al = 4, that was unusual for nuclear physics and by
their long and regular character.

The first experimental indication of the staggering
phenomenon in the octupole vibrational band of 23U
was reported by Peker et al. [1], who observed oscilla-
tions of the differences

AE(1) = E,(1+2)-E,(1), ()

where E, (1) is the transition energy between the | + 2
and | levels, with | being the level spin. It was proposed
to describe the rotational energy in a band by the for-
mula

E(1) = AI(1+1)
+BIP(1+1)°+ ...+ (=1)" "B,

where sl and 9B aretheinertial parameters representing
the regular part of the energy. The last term splits the
normal Al = 2 rotational band into two Al = 4 subbands

)

* This article was submitted by the authorsin English.

of spinsly, Ip+4,1,+8,...and 1, +2,1,+6, |, + 10, ...
by shifting them in opposite directions. Ten years | ater,
the phenomenon was discovered in the yrast SD band
of ¥Gd by Flibotte et al. [2]. They found it more con-
venient to represent the effect by comparing the AE, (1)
values with a smooth reference calculated by the
expression

AE(1)
1 (3)
= ZIAE,(1 +2) + 20E,(1) + AE (1 -2)].

Afterward, other examples of staggering [3-8] were
identified, but no exampl es have been found that would
exhibit the Al = 2 staggering as regular and over so
large region of spins as the “Gd(1) band.?

Several theoretical explanation of the phenomenon
were proposed [9-15]. It seems natural to explain the
Al = 4 bifurcation by fourfold symmetry, whose role
was already mentioned in [1]. Hamamoto and Mottel-
son [9] and Macchiavelli et al. [10] postulated the exist-
ence of such symmetry with respect to the 3-axis (the
axis of symmetry). The nonadiabatic nature of nuclear
rotation requires an effective rotational Hamiltonian as
a power series in the body-fixed components (I with
B =1, 2, 3) of the spin operator. The symmetry of asys-
tem imposes certain restrictions on the terms of this
series. For the C,, symmetry axis, the lowest order non-
axial operator in the Hamiltonian is proportional to

If +17 (1. =11 £ ily). This operator means that there
are four preferred directions for the spin | (which cor-

DAs arule, multiple SD bands in a nucleus are numbered accord-
ing to their intensities. Thus, the most intense yrast band is
labeled with 1.

1063-7788/01/6404-0595%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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respond to four minima of the rotational energy) in the
body-fixed frame (or four preferred orientations of the
nuclear shape with respect to the direction | in the
space-fixed frame). The tunneling of the spin between
these directions produces four almost degenerate states,
known as cluster states in molecular rotational spectra
[16]. The C,, cluster involves four states labeled with
the quantum numbers of this point-symmetry group.
The fact that the intrinsic shape has C,, symmetry
implies that the C,, quantum number of a cluster state
isdetermined by the intrinsic configuration. Of the four
states, only a single C,, eigenstate is therefore appro-
priate for the rotational band based on agiven intrinsic
state. Because the position of astatein acluster isalter-
nated with the quantum number I, the level energy of a
band has the regular Al = 4 oscillatory behavior in
accordance with Eq. (2).

Fourfold symmetry implies the existence of a non-
axial hexadecapole deformation of the nuclear surface.
However, calculations of the equilibrium shape for
nucle exhibiting staggering within the Strutinsky [17,
18] and the Hartree—-Fock—Bogolyubov [19] method
showed that the static deformation €4, is too small to
generate Al = 2 staggering with an amplitude of exper-
imental value [20]. Another inherent difficulty of the
theory based on this tunneling mechanism was reveal ed
by one of the present authors (1.M. Pavlichenkov) and
Flibotte [11]. It is well known that, because of an
increase in the tunneling path, the splitting of cluster
levels decreases with increasing angular momentum
[16]. Therefore, it isdifficult to fit the parameters of the
Hamamoto and Mottelson Hamiltonian to avoid a fast
damping of the staggering amplitude with increasing I,
but such damping has not been observed experimen-
tally. Important advances in testing this Hamiltonian
were made owing to the discovery [21] of the Al = 4
bifurcation in the SD bands “6Eu(1) and 48Gd(6),?
two bands identical to *°Gd(1). The aforementioned
three bands in different nuclei show a striking similar-
ity in the staggering behavior; this immediately rules
out the explanation [15] of the phenomenon by band
crossing. Further, the high degree of correlation (about
0.1 keV over 12 MeV in excitation energy) between the
staggering patterns in these bands of three different
nuclei give sufficient grounds to conjecture that the
Hamiltonian parameters are independent of both spin
and nucleus. This observation was used in [23] to con-
strain the parameters that turned out to be inappropriate
for SD nuclei. The result indicated that a tunneling
mechanism of the Hamamoto and M ottel son type could
not explain the Al = 4 bifurcation. Another important
observation of [23] is the second triplet of bands
¥Eu(1), ¥'Gd(4), and **8Gd(1) having the same sin-
gle-particle structures as the bands quoted above,
except that they lack a neutron in the positive-signature
N = 6 Nilsson orbital. Such a seemingly insignificant

2The SD bands in 1*8Gd are numbered according to the scheme
proposed in [22].
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change in the structures of these bands completely
destroys their staggering patterns. This experimental
fact is an excellent demonstration of the configuration
dependence, which offers the possibility of studying
the microscopic origin of the staggering phenomenon.

Thereisamore general cause of the Al = 4 bifurca-
tion. According to the approach proposed first in [2]
and confirmed later by the phenomenological treatment
in [11], a C,-symmetry perturbation may have a
dynamical origin. In [24, 25], this idea was formulated
at the microscopic level. In this theory, the operator

I# + 1% of the rotational Hamiltonian is explained by
the coupling of rotation to the single-particle motion of
nucleons in an axisymmetric nucleus. The essential
ingredients of this coupling are two-body hexadecapole
interaction and nucleons occupying active orbitals,
which generate, due to rotation, a large nonaxia hexa-
decapole moment. The coupling distorts rotational
motion and may lead to staggering, provided that some
conditions depending, in particular, on the occupation
of the active orbitals are satisfied. The contribution of
the high-j intruder states to active orbitals is dominant.
For this reason, active orbitals were approximated in
[26] by the states of isolated intruder subshells. It was
shown that the staggering behavior of the SD bandsin
A ~ 150 nuclel depends on the intruder configuration
6™ 7" with mprotons (1) and n neutrons (v) in the sub-
shellswith principal quantum numbers 6 and 7, respec-
tively. This result explains the experimental observa-
tion that the staggering is not a universal characteristic
of SD bands. However, the smplified model being used
is not reliable for the SD bands because the intruder
subshells cannot be treated as isolated ones. It cannot
explain, for example, the aforementioned triplet of the
nonstaggering bands.

Interest in the staggering problem has been revived
upon the versatile analysis of experimental data that
was undertaken in [27, 28]. In particular, Hadlip et al.
[28] presented a systematic survey and a stetistical
analysis of the Al = 2 staggering in 19 SD bands of Eu
and Gd nuclei. This rendered an improvement of the
theory highly desirable. Here, the rotation-single-parti-
cle coupling model of the Al = 4 bifurcation isreformu-
lated in the context of aredlistic shell-model potential.
The perturbation method developed in the theory of
nonadiabatic effects in nuclear rotational spectra [29—
31] ismodified in Section 2 to derive the effective rota-
tional Hamiltonian featuring aC,, -symmetry term. Itis
shown in Section 3 that the simple rotational regime of
this Hamiltonian may involve staggering. The neces-
sary condition of the staggering behavior is aso
obtained. Orbitals that are active and inactive for stag-
gering and which are involved in the configurations of
the SD bandsin the massregion around A~ 150 are dis-
cussed in Section 4. There, we al so estimate the param-
eters of the effective Hamiltonian. In Section 5, the
simple criterion found in Section 3 for the Al = 4
bifurcation is applied to 30 superdeformed bands of
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A ~ 150 nuclel. Our results are discussed and summa-
rized in Section 6.

2. EFFECTIVE ROTATIONAL HAMILTONIAN
WITHIN THE CRANKING HARTREE-FOCK
FORMALISM

Our consideration is based on the second quantized
Routhian

, + 1 5 0
H'= zeikai ak—é z X)\Q,)\ E@,)\ _lel_w2J21 (4)
ik A=24

with the quadrupole and hexadecapol e two-body inter-
actions of strengths X, and ¥,, respectively. The cen-

tered-dot symbol denotes the scalar product QAZA : SAlA =
Z“ 95,9, of the multipole-moment operators

gl)\u = zmlq}\ulk@-raki (5)
i,k

wherea* and a are the particle creation and annihilation
operators. Thefirst termin Eq. (4) isthe single-particle
energy. The last two terms are cranking with the angu-
lar-momentum projections

Jg = z [ |2y ay. (6)
i,k

They correspond to rotation about an arbitrary axis per-

pendicular to the 3-axis. For the sake of simplicity, we

ignore pairing interaction, whose role will be discussed

later.

Since al the numerical calculations performed so
far show the absence of a noticeable triaxial superde-
formation, it is reasonable to confine ourselves to the
axial case. Accordingly, we perform the canonical
transformation to the new single-particle functions |s[)
which satisfy the self-consistent Schrodinger equation

(Ho—w,j_—w_j,)|s0= &sl] (7)
where
Ho = €- z XaQo0ho (8)
A=24

isthe shell-model Hamiltonian with the quadrupole and
hexadecapole deformed potentials, which are propor-
tional to the axial collective coordinates a,, =

< dss (AO)N, (n, are the nucleon occupation numbers of

the given rotational band); j, = j, % ij,; and w, = (w, £
iw,)/2. The energy in the rotating frame as a function of
frequencies w, and w_is given by

' 1 1
€ = zssns+§ZX)\afo_§
s
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The last term of this equation contains the nonaxial
collective coordinates

a)\u = tr(q)\pp)i (10)

which are nonvanishing because the system density
matrix p in the representation of Eq. (7) isnot axial due
to the cranking terms. Let us decompose these quanti-
tiesinto two parts

Opy = Oy + Qo (11)

where a » and Q. are, respectively, the perturbative
and nonperturbative nonaxial multipole moments
induced by rotation. The separation of multipole
moments is explained by the two types of the single-
particle states generating nonaxial moments: inactive
and active orbitals. The former are responsible for the
regular w dependence of a,,,. It is possible to use per-
turbation theory to obtain this dependence for the first
quantity:

M= 12,14,

~ ~(2 ~(4

Gy = () + (P )+ (12)
where f)(n) is the nth order correction to the density
matrix of the perturbative states resulting from the
cranking term of Eq. (7):

V= - - . (13)

In performing corresponding calculations, we will uti-
lize the representation of nonrotating axially deformed
nuclei with the eigenfunctions satisfying the equation

0O o
€~ S XaOhoOhol[L0= €410 (14)
0

O A=24
It isimportant to note that the perturbation seriesfor the
axia collective coordinates, a,,, begins with the w-
independent quantity o i%) , which is equal to the multi-
pole moment of nonrotating nucleus,

0) _ (0)
Oyo = )

tr(dyop (15)

The active orbitals generate the nonaxial moments Q,,,
which cannot be treated by perturbation theory and
should be evaluated with the wave functions of Eq. (7).

Due to the extreme regularity of the SD-band spec-
tra, the first two termsin Eq. (9) can be approximated
by the Harris formula

zssns+ %zxxafo =€o—20,w_% — 4w w’B, (16)
s A
where €, is the energy of nonrotating nucleus and
1, .. 1, ..
9= =w(jp”), B=Su(:e%) a7
W

are the well-known coefficients of cranking expansion.
They depend on correctionsto the density matrix of the
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whole system. The decompositionin (11) and Egs. (12)
and (16) allow usto obtain the expansion of the energy
(9) in the powers of the rotational frequencies w, and
w_ with the same accuracy asin Eq. (16),

€ =E€o—20,0.9 — (00 + W) — 4w’ W’ s
—(oo+oo + W, 0 )F(4)—(co+ +w_ )F(4).

Here, the coefficients $ and 3 are modified by the cen-
trifugal distortion of the axial collective coordinates
0,- They are expressed in terms of the inertial param-
eters of Eq. (2) as (weassumef = 1)

1 B

5’ B P (19)
where $ isthe kinematical moment of inertia. The non-
axia terms of Eq. (18) arise from the quadrupole and
hexadecapole coupling of the active states with the
nonaxial distortion of the nuclear mean field. They are
proportional to the parameters

$ =

(n) = ZX)\QuO‘}(\?a (4) = X4Q440( (20)
where the w-independent quantities a ) are given by
air;) - &)(\n)_“ - w:(n+p)/2 (n—p)/2tr(q)\“p(n)) 1)

It isimportant to emphasize that Eq. (18) is not a usual
low-w expansion. Perturbation theory is used only for
part of orbitals, while an exact diagonaization is
employed for other. Thus, the method we have devel-
oped alows usto find correctly the nonaxial terms gen-
erating, as will be shown below, the staggering.

The next step is the transformation of the Routhian
(18) to the space-fixed-frame energy in terms of the
angular momentum by using the obvious expressions

NN o€’

€=1% ‘*’*aw+ ‘*’—aw_’ s ow,’
For our purposes, we need only the rotational energy
with accuracy to within quartic terms in the angular
momentum. We start with the rotational frequencies w,
and w_, which can be obtained from thelast of Egs. (22)

as power series in 1,/$. The small parameter 7 /9

simplifies calculations. The result with a reasonable
accuracy is

(22)

L, 12+129rf
W, = 2t -t AR RPN
29 89 6(10¢
(23)

@ _ B @

where the term with the partial derivative is caused by
the w dependence of the nonperturbative quantities Q,,.

PAVLICHENKOV, SHCHURENKOV

Thesevalues and thefirst of Egs. (22) allow usto obtain
the energy € as a power series in the angular momen-
tum components |, and I_. Finally, we have to quantize
these components. The cranking approach allows us to
do thiswith an accuracy of their commutators. In order

to obtain correctly the term proportional to F§4) ,weuse

the time-reversal invariance and the D,-group symme-
try of the effective Hamiltonian (see [32]). The result
for an isolated rotational band is

2 2 2 2,2 r(Z)
Har = (17 =12) + BO7-12) =5 ~5(17+19)
r(4) 5 by 5 (4) @4)
—32;4[|++|_;| By —i+19),

where[...], means an anticommutator and the parame-
ters ™" are the functions of 1/9.

The effective rotational Hamiltonian (24) is
obtained by a SU(2) mapping from the original fermion
space to the rotor one. This method allows us to sepa-
rate the rotational and the single-particle motion at the
cost of nonadiabatic terms. For small spin |, when the
values Q,, are close to zero, Eq. (24) is reduced to the
standard rotational Hamiltonian of axially symmetric

nuclei, which is a power series of the operator 12 — I§.

Itiseasy to show that such a Hamiltonian does not lead
to staggering. If a nucleus has a stable nonaxial defor-
mation €,,, the collective coordinates d,, a4, and Oy,

have w-independent parts by analogy with 0((0) [see

Eq. (15)]. Therotational Hamiltonian then hasthe form
of Eq. (24), but its nonaxial terms are greater than the
ones for axial nuclei. A similar Hamiltonian was con-
sidered in[13], where it was shown that it generatesthe
irregular Al = 2 staggering. For the g, deformation, a4,
is the only coordinate that involves an w-independent
part. Accordingly, the Hamiltonian has the C,,-sym-
metric form used in [9].

3. SSIMPLE ROTATIONAL REGIME
WITH THE Al = 2 STAGGERING

The Hamiltonian (24) is not fourfold-invariant. The

termswith the operator If +17 violatethe C,, symme-

try. In order to prove that the nonaxial terms of the
effective Hamiltonian are responsible for the Al = 2
staggering, we consider the rotational regimewith rota-
tion about an axis perpendicular to the symmetry axis.

Then, the terms proportional to I§ and |;‘ in Eq. (24)
are smaller than the nonaxial ones and the rotational

Hamiltonian takes the simplest form,

He = 12+ B4+ d(12+18 +c(14+1%, 25

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001
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with the inertial parameters 54 and 9B of itsregular part
and the parameters of nonaxia terms

(4)

d:_i{rgz)ﬂ(l +1)FL} @)
49 49

c= —X—“4Q440(44 .
89 (26)

The nonaxial terms split asingle band characteristic of
an axial nucleusin a series of bands that correspond to
different directions of the vector |. The Hamiltonian
(25) is adequate only for the description of the yrast
band, for which the angular momentum | is perpendic-
ular to the symmetry axis. All other bands are separated
from the yrast one by alarge energy gap caused by the
small nonaxial deformation induced by rotation. They
are beyond the scope of our interest. The Hamiltonian
is invariant under the D, point-symmetry group and
under the transformation d — —d with the simulta-
neous rotation through 90° about the 3-axis. The latter
invariance allows us to consider only the negative val-
ues of d. The transformation c — —c results in the
inversion of multiplet levels (or bands). In order to
investigate the staggering in the yrast band, we will
consider the positive values of c.

We begin with the study of therotational energy sur-
face defined by the spin projections in the body-fixed
frame,

I, = IsnBcosp, 1, = IsnBsing. (27)
Substituting these projections into the Hamiltonian

(25), we obtain the energy surface
E(1,68,0) = A1°+B1*+ 2d1°sin°0cos2¢
+ 20I4sin4ecos4¢

as afunction of the spherical angles and ¢ and spin .
Depending on I, there are three possibilities for the
arrangement of maxima, minima, and saddle points on
this surface. They are shownin Fig. 1 ford<0and c >
0. Two or four equivalent minima in the equatoria
plane provide the angular momentum | in the yrast
band to be localized in the plane normal to the symme-
try axis. As | increases, the quartic nonaxial term
becomes comparable with the quadratic one and the
stationary state with | directed along the 1-axis bifur-
cates at

(28)

= [d
le = ic (29)
to the C,, symmetrical state, which has four minima

and two saddle points. Inturn, as| increases further, the

saddle points are doubled at 1, = /21, and move off

the equatorial plane. For higher I, when the last term of
Eq. (28) becomes greater than the term proportional to

2 + 12, the four equivalent minima tend to form the

Iy
C,,~symmetric configuration. We are not interested in
this high-l limit; instead, we consider the low-spin
PHY SICS OF ATOMIC NUCLEI
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I1>1,4

Fig. 1. Phase space of the Hamiltonian (25) for ¢ > 0 and
d < 0. Depending on the spin |, the rotational surface of the
Hamiltonian has three possibilities for the arrangement of
stationary points [maximum (e), minimum (O), and saddle
point (x)]. In all cases, the minima corresponding to the
yrast band lie on the equator. Only one view of the phase
sphere is shown: we look from the direction of the 3-axis,
and the positive 1- and 2-axes are labeled. The separatrices
passing through saddle points are indicated by dotted lines.

region | <., where the C,-symmetric term is small in
relation to the C, one.

Two sets of the equivalent classical trajectories sur-
rounding the 1-axis inside the separatrices (see Fig. 1)
correspond to the quantum states of a yrast band. The
energy Ey(1) of these states is determined by the Bohr
guantization condition [33]

2n

Si(E) = Ih(tp, E)de = 2m, (30)

where the @-conjugate variable I, is the angular-
momentum projection onto the quantization axis, i.e.,
the 1-axis. The energy levels of the band occur in
degenerate pairs. The angular-momentum tunneling
removes the degeneracy and leads to the C,, doublets.
Only a single totally symmetric state of the doublet is
appropriate for the yrast SD band of even—even nuclei.
Its energy is given by

E(1) = Eo(1) —2[T| cos{ ReS,(Eo)}, (31)

where

_ PEQ iS(E) _
T= = e y SZ(E) - IZ(q)l E)d(p! (32)
b1, I
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Fig. 2. Staggering plot for the yrast band of Hamiltonian
(25) with the parameters /st =~0.01, 9B/ =4 x 107, and
c/sd =2x 1070 The staggering-amplitude-independent ref-
erence is used (see main body of the text). Note that AE,,
isgiven in units of #{. The staggering begins from the spi A
lg = 27, where the tunneling amplitude (32) acquires a real
part.

is the tunneling amplitude for the angular momentum
precessing on one trajectory to leak over on another.
The tunneling path y, connecting the points on the
equivalent trajectorieswherel, =0, isapart of the great
circle, which passes through the saddle point at the 3-
axis. Since the angle @ is taken around the 2-axis, the
representation of the Hamiltonian (25) should be used
with the 2-axis as the axis of quantization. Transform-
ing the Hamiltonian to new axes, we can estimate S,(E)
for the classical minimum E,;,, = (4 + 2d)I1%2 + (B +
2c)l*. The action S, calculated in this way acquires a
real partatl, < <I,, where

0= -2, = [2-2)S]"

As spin | increases in this region, the second term of
Eg. (31) changes its sign whenever the ReS, vaue
increases by 1t Thus, we have irregular staggering with
the phase inversion.

Figure 2 shows the staggering pattern obtained by
the direct diagonalization of the Hamiltonian (25) for
the I-independent parameters ¢ and d. We use the refer-
ence found in [34] by anal ogy with the extraction of the
pairing energy from nuclear masses:

AE

(33)

stag

34
—2) +40°E, (1 —4) + A°E (I -6)], G

1
= é[A3Ey(|

where A’E, means the third derivative of E,(1).

The above analysis shows that the staggering phe-
nomenon is connected with the wave-function oscilla-
tions in the classically forbidden regions of the rota-
tional-mation phase space. Thiseffect isunusual for the
Schrédinger equation and is the characteristic of a

PAVLICHENKOV, SHCHURENKOV

fourth-order wave equation. That is why the parameter
c appears in the condition for the staggering behavior,
which has the form

I >1, c>0. (35)

On the other hand, the term with the operator If +1°

breaks a fourfold symmetry and makes the staggering
pattern irregular (see also [13]). In other words, the
nonaxial terms of the Hamiltonian (25) crimp the rota-
tional energy surface. The short-wave crimps near the
stationary point (i.e., the axis of rotation) are important
for staggering. However, the crimped surface does not
yet solve the problem. The staggering may exist if the
stationary point is a minimum, which happens for ¢ >
0. For the negative value of this parameter, the stagger-
ing is absent in the yrast band but exists in the upper-
most one. The sign of d is not important for staggering.

4. PARAMETERS OF THE EFFECTIVE
HAMILTONIAN: ACTIVE AND INACTIVE
ORBITALS

Aswas shown in the preceding section, the stagger-
ing effect depends strongly on the parameters of the
Hamiltonian (25). Now, we consider these parameters,
which are functions of the spin | and the occupation of
single-particle states. At first, we addressamorereais-
tic model of a nucleus with Z protons and N neutrons.
Assuming that the mean square radius and deformation
are identical for neutrons and protons [35], we obtain
the inequality

3
—X4[[ZZD2/ Qu(m) +

3
2Zd N Q)]

Oa O
(36)
<[ 5 + N 50w | >0
gald OA O

which will be used for the staggering analysis of SD
bandsin the next section.

The parameter c involves the perturbative, 0(( ), and

the nonperturbative, Q,,, factors. The latter has the
form

Qu(t) = ZEﬁ;T|q44|STD T=TV, 37)

where the summation is performed over all occupied
active single-particle states. In calculating these values,
we use the eigenfunctions of Eq. (7), which, after per-
forming the rotation of the intrinsic coordinate system
through the angle n about the 3-axis (cosn = w,/w, W=
Jo: + w5), take the form of a cranked shell-model
potential:

(Ho—wj,)lstd= gy st (38)

We employ the redlistic modified oscillator (MO)
potential by using the GAMPN code[36]. The state sis
PHYSICS OF ATOMIC NUCLEI
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Rotational frequency w, MeV

Fig. 3. Expectation values of the multipole moment qu(r) versusthe rotational frequency w for various single-neutron orbitals. The
deformation parametersof €, = 0.555 and £, = 0.026 correspond to the cal cul ated minimum energy of '4°Gd(1) at | = 40. Theorbitals
are labeled with the asymptotic quantum numbers n = [Nn;A]Q. Their parity and signature a (+, +1/2), (+, =1/2), (-, +1/2), and (-,
—1/2) are represented by solid, dotted, dashed, and dash-dotted lines, respectively.

characterized by the quantum numbers n and the sigha-
turea. For n, we will use the asymptotic quantum num-
bers [Nn;A]Q of a nonrotating nucleus. The Kk and p
parameters of the MO potential have been taken from
[37]. The expectation values g,(nat) = at gy, [natd
involved in Eqg. (37) are calculated with the wave func-
tions

na -
llJnor = Zaljs‘lerotIJQD
1jQ
of the cranking potential, where N, is the principal
guantum number in the stretched rotating basis. The
small coupling between different N, shells is
neglected.

In order to single out the active orbitals, we have
investigated how the expectation values g,,(na) depend
on the rotational frequency w. All the single-particle
states occupied by neutrons and protons in the A ~
150 nuclei have been considered. The following con-
clusions can be drawn. (i) There are three different pat-
terns of the w dependence, which are shown in Fig. 3.
Each of the patternsis associated with the specific types
of orbitals. (ii) The perturbative (Fig. 3a) and nonper-
turbative (Fig. 3b) dependences are associated with
orbitals inactive and active for staggering, respectively.
These orbitals are the same for neutrons and protons.
(iii) The set of active orbitals is supplemented with the
inactive states interacting with the active ones. The

(39)
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orbitals [642]5/2 and [651]1/2 placed above the neu-
tron gap at N = 80 represent a classical example of an
avoided level crossing [38]. Figure 3c shows q,, as a
function of w for the two signature branches of these
orbitals. According to the Strutinsky prescription, we
use a renormalization factor of 1.27 to have the possi-
bility of a comparison with the observed rotational fre-
guencies. At alow frequency, the [651]1/2 orbitals are
inactive, whereas, at a high frequency, they involve a
large admixture of the active, [642]5/2, orbitals and
have the nonperturbative dependence for q44.3) These
interacting orbitals with the positive signature carry
considerable hexadecapole moment. Thus, the removal
or addition of a neutron in these states may change the
sign of theleft part ininequality (36). Other active states
induced by an avoided crossing make a moderate contri-
bution to the quantity Quu(T) or Qu(Vv). Let us note the
orbitals T{402]1/2 and 1{301]1/2 with both signatures,
which are active for virtualy all frequencies because
their avoided crossings with the orbitals v[422]3/2 and
v[303]5/2, respectively, occur at low frequencies. All the
considered pairs of interacting states belong to the same
N,o: shell. The coupling between different N, shellsgen-
erates the avoided crossings, which change the moments
gy ONly dightly due to asmall interaction.

The set of states active for staggering is shown in
Fig. 4. These are not necessarily intruder orbitals but al

3)The orbitals are followed adiabatical ly.
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Fig. 4. Nonaxial hexadecapole moments of active (filled triangles) and inactive (empty circles) neutron orbitals versus the ordinal
number of a single-particle state in the cranking modified oscillator potential for the rotational frequency of w = 0.8 MeV. The
asymptotic quantum numbers [NmAJQ label the active states with the signature a = +1/2 (upward-oriented triangles) and —1/2
(downward-oriented triangles). The deformation-parameter values are identical to those in Fig. 3.

have the asymptotic quantum numbers Q = 3/2 and 5/2.
Compared to inactive orbitals, active ones carry large
Qs Values, which are nevertheless smaller than the
hexadecapole g,, moment of the single-particle states
around the SD core of *?Dy [39]. As a rule, the
moments of the states with the same asymptotic quan-
tum numbers have close absolute values and opposite
signs for different signatures. They almost offset each
other. Thus, the contribution of the active orbitalsto the
total nonaxial hexadecapole moment has the same
order of magnitude as that of inactive ones. Conse-
guently, the equilibrium deformation €4, at high rota-
tional frequenciesis small [17-19].

To explain these findings, let us consider a cranking
isolated j shell with the Hamiltonian

(40)

whereH;, isthe spherical part and K isproportional to an
axia quadrupole deformation. Assuming the small rota-
tional frequency w, we shall use perturbation theory with
the unperturbed function in the signature representation

Uiaa = (liQ0F €™ - QD/2.

Hj = Hjo+ Kojs—Wjy,

(41)

There are the two types of states in the limit of small
rotational frequencies w. Those with Q = 3/2 and 5/2
generate q,,, which are proportional to w,

Qa(] 31200) = (] 5201)
w o AT -
= adrr()e™ ™,
0

where the form of the positive definite function f is
immaterial for us. For stateswith other Q, the first non-
vanishing contribution to q,,(jQa) is proportional to
higher powers of w and, consequently, issmall. Figures
3a and 3b show this distinction in the w dependence,
which becomes more obvious at high frequencies. The
equality (42) also explains the signature dependence of
the values q,, for amost al active orbitals shown in
Fig. 4 because they are mostly high-j intruder or high-j
ones with arather good quantum number j. An anoma-
lous signature dependence is observed for the five
states with small j.

(42)

The second factors, &f,f (1), depend smoothly on
the number and the configuration of nonperturbative
orbitals. This alows us to adopt the approximation

PHYSICS OF ATOMIC NUCLEI
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Table 1. Parameters of the Hamiltonian (25) that were calculated with an axially deformed oscillator potential for superde-
formed and normal deformed bands [in obtaining numerical data, we have used the following estimates for the pairing gap A
and the moment of inertia $: Alayy ~ A™Y3 and w.$ ~ A¥3, where wy, = 41A7Y3 MeV isthe deformation-independent oscillator
frequency and A ~ 150 isthe number of nucleons; the function f(wy/A) ischaracteristic of SD nuclei with pairing correlations,

f(x) = x<Inx]

Parameters BrA disA c/sA
SD band without pairing A/ P)* ~ 1070 AP (wpP)? ~ 1072 A P)* ~ 1078
SD band with pairing AR P)* ~ 1070 A P)? ~ 1074 fATR)(wpP)* ~ 1078
ND band with pairing A3 AP ~ 1073 A3 I(AS)? ~ 1072 AY(OP) ~ 107

aﬁ)(T) ~ &0 ﬁ)(T)Ar), where &, is the fraction of the

filled inactive states. The same estimations remain true

for the perturbative values &inz)(r) entering into the

parameter d. Thus, the problem is reduced to obtaining
the corrections to the nuclear density matrix of the sec-
ond and the fourth orders in the perturbation V (13). In
order to simplify the calculations, the Green's function
method is used. For independent nucleons, we have the
following expressions for these values in the represen-
tation of Eq. (14):

de
pg) = ZImGl(S)VnGz(S)V%Gs(S)1
‘e 43)
de
pg) = me61V1262V23G3VMG4V4565,

2,3,4¢C
where the unperturbed Green’s functionis

1

CGile) = e i =2ny)’

5> +0, (44)

and the contour C is located in the upper half-plane of
the complex € plane. The occupation numbersn, refer to
a nonrotating nucleus. The Green's function in the pres-
ence of pairing correlations is more complicated than
that in (44), but Egs. (43) remain valid (see [29, 30]).
The estimation of the quantities ai':l) is based on
modeling the real self-consistent nuclear field of
Eqg. (14) with the axially deformed harmonic-oscillator
potential with the frequencies w; aong the symmetry
axis and wy in the perpendicular plane. Being tested by
evaluating macroscopic quantities such as the rota-
tional constants & [40] and 9B [29] for normally
deformed (ND) bands, the oscillator potential has the
advantage that ai';) can be expressed analyticaly in

terms of the quantities Z(nm + 1), Z(n3 + 1/2),

DThere is no difference between active and inactive states in the
quantity aﬁ)(r).
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(n; + 1) etc., where n; = N — ng, and n; are the
guantum numbers (we use the representation [Nn;/\])
and the summation is performed over all occupied
states. It also alows us to use the self-consistent dou-
bly-stretched multipole interaction for the determina-
tion of the strength constants X, and x, [41]. The semi-
classical summation of the above quantities makes it
possible to find their A dependences.

First of al, it is interesting to study the expression
for the perturbative factor of the parameter ¢. Using the
small ratio (wy — w3)/ (W + ws), one obtains

q® = 35 9 [00g + Wy f
@ - |35
3210 g4 M2 0y 02 Hoy — 0051 (45)

X (3233 =125 13+ 32— 2Zp0)s

where M isthe nucleon massand Z,, are the sums of the
bilinear combinations of the oscillator quantum num-
bers n;, n;, and A over occupied orbitals. In the semi-
classical approximation, we have

425 = 323, 223 = Zg, 42N = 2
for SD bands;
(46)
2op = 32, 2oz = Ian T 2y
for ND bands.

Thus, the quantity G isnegative for both ND and SD
bands.

The perturbative factors of the parameter d are cal-
culated analogoudly. Table 1 shows the results of the
calculations for the parameters %8, ¢, and d in units of
A = e-A53, where g is the Fermi energy. The second
inertial parameter 9B representing the axial part of the
Hamiltonian (25) does not affect the staggering. We
need it only as a reference point in the calculation of ¢
and d. It is well known that the interaction of rotation
with quasiparticle motion and attenuation of pairing
correlations make the main contributions to %3 for the
ND bands[30]. The quenching of the pairing gap leads
to the decrease in &B by a factor of AZ3 [42]. On the
other hand, the static pairing playsalimiting rolein the
SD bands [43]. Thus, the estimates of the parameters c
and d shown in thefirst line of Table 1 seem to be more
relevant to SD bands.
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Table 2. Total moment Q,, of the neutron and proton active orbitals, sign of the coefficient ¢, and staggering significance
Y for the SD bands with the known equilibrium deformation for three rotational frequencies w (MeV) (the subscripts + and
— denote the sign of the signature a = +1/2; the standard notation is used for intruder orbitals)

2
Configuration Qug, (/M) .
Band (relative to 19Gd(1)) w04 w=06 0= 08 Signof ¢ Y
5771 177t
11Gd(2) v[mzﬂ v[651ﬂ 0.891 1.161 1194 >0 0.05
147 177
Gd(3) v[GSlﬂ e 0.389 0.485 0.443 >0 0.15
171t 17t
GA(4) v[411§} v[eslﬂ 0.284 0.195 ~0.341 <0 0.16
+ +
1
18Gq(1) v[GSlg 0.235 0.199 ~0.264 <0 0.23
+
148G(|(3) V7T 0.197 0.361 0.270 >0 01
1
148G4(4) v[ng 1011 1131 2,059 >0 0.98
-1
148G(6) v[4115 0.337 0.369 0.683 >0 31
149Gd(1) 0.321 0.227 0.505 >0 23
-1
149G4(5) v[4ozg} v[6515 0.344 0.456 0.600 >0
-1
149G4(6) v[402§ v[ﬁSlﬂ ~0.112 ~0.207 ~0516 <0
150Gg(1) V7, ~0.079 0.112 0.625 >0 05
10Gd(4a) v[4ozg} 0.485 0.316 0.864 >0
150Gd(4b) v[402§} 0.025 ~0.442 ~0.265 <0 10
15171 1) 697, 0.776 1.320 1477 >0
152py(1) 63T,V 7, —-0.040 0.618 0.784 >0
153py(1) TB3TIB,V 7,V 73 0.915 1.317 1.382 >0

The parameters obtained allow usto find thecritical  sary but insufficient. The estimations of the preceding
spin withwhich the Al = 2 staggering starts. Inthecon-  section show that the third multiplier on the left-hand
text of the rotational regime of the Hamiltonian (25), side of Eqg. (36) is hegative. The straightforward cal cu-

we have the following values in the A ~ 150 mass lation of the perturbative quantity &ﬁ) in the MO

region: lo ~ 400 for the SD nuclel without pairing, lo ~ model confirms this result. Thus, we will be interested
40 for the SD nuclei with pairing, and I, ~ 10 for the only in the sign of the second ml’JItipIier

ND nuclel with pairing.
_ 2zt 2Nf*

= 5= M + = V), 47

5. ANALYSIS OF Al = 4 BIFURCATION Qu = fgan Qu(M* gy Qulv) “47)

IN A ~ 150 SUPERDEFORMED NUCLEI where the moments Q,,(1) and Q,,(v) are calculated by
Inasimilar way asin [26], we now check the crite-  using additivity of contributions from individual orbit-
rion (36), bearing in mind that this condition is neces-  als according to Eg. (37). The main difficulty in this

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001



Table 3. Asin Table 2, but for the SD bands whose deformations € and €, were estimated by using the additivity principle
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Configuration .
Band (relativei GA(1) w, MeV £ £ Qus (B/Mwy)?| Sign of ¢ Y

1 -1 1 -1

YEU(2) n[301§} V[651ﬂ 0.8 0.554 0.043 ~0.117 <0 0.95
- +
1 -2 1 -1
W7EY(3) n[solﬂ n63v[651ﬂ 0.8 0573 0.047 1.101 >0 0.58
1
148 (1) n[3015 0.8 0.564 0.042 0617 >0 2.3
1772 1772
18G(5) n[301ﬂ n63n64v[411ﬂ v7,| 08 | 0619 0.037* 0.010 >0 2.8
2

150G4(2) n[solﬂ 116,T6,v7, 0.8 0.608 0.042 0.743 >0 0.14

=]
150Gq(8a) n[solﬂ negv[4ozg 0.8 0.553 0.029 0549 >0 0.13

-1
150G(8b) T[[3015 n63v[402§ 08 | 0553 0.029 1719 >0
151Gd(1a) v72v[402§} 06 | 0545 0.012 0.480 >0 18
151Gq(1b) v72v[402; 0.6 0.545 0.012 -0.280 <0 0.25
152T1(1) 16,v7,v| 402 g 0.6 0.554 0.012 1.051 >0

L 4
152Th(2) M6,V7,V V4oz§ 06 | 0554 0.012 0.276 >0
152Dy(4) T6,TI6,V k402§ 0.6 0.551 0.015 -0.387 <0
152Dy (5) T6,TI6,V k402§ 0.6 0.551 0.015 0.394 >0
L J+

159Dy (2) n63n64v72v[402% 06 | 0562 0.009 ~0.362 <0
159Dy(3) n63n64v72v[402; 06 | 0562 0.009 0.421 >0

* The deformation parameters were taken from [45].

calculation is the nuclear equilibrium deformation
since the shape trgjectories in the (g, &,) plane are
known for alimited number of SD bands. Starting with
these bands, we give, in Table 2, the estimated val ues of
Q. for threerotational frequencies. The corresponding
parameters € and €, have been taken from [44] (14’Gd),
[45, 46] ('#Gd), [47] ('“Gd), [48] (°Gd, '3'Th,
152.153Dy), and [49] ('3°Gd (44, 4b)). The present analy-

PHY SICS OF ATOMIC NUCLEI

Vol. 64 No.4 2001

sis has an advantage because the sign of ¢ can be com-
pared with the staggering significance Y found in [28].
According to that study, the significanceis equal to the
mean staggering amplitude divided by itsuncertainty. It
is highly unlikely that all the bands with the signifi-
cance Y > 2 exhibit the Al = 4 bifurcation only because
of statistical fluctuations in the y-ray energy measure-
ments. In particular, the independent measurements of
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Table 4. Deformation changes induced by a nucleon in a fixed single-particle state (only these orbitals are necessary to esti-
mate the deformation parameters of the SD bands presented in Table 3; with the exception of the state {301]1/2, all values
have been extracted from pairs of bandsin adjacent nuclei with an extra nucleon in the indicated orbital)

w=0.6 MeV w=0.8MeV
Orbital Source
o€ 0, o€ 0,

nk301g ~0.013 ~0.008 ~0.014 ~0.009 199Gd(4) vs 199Gd(1)

T[k301%a ~0.012 ~0.007 ~0.013 ~0.008 19Gd(3) vs 149Gd(1)

nk651§ 0.009 ~0.001 0.009 0.000 151Th(1) vs 159Gd(1)
L J+

111551%r 0.008 ~0.003 0.009 ~0.004 152Dy(1) vs 151Th(1)

vk6515 0.010 0.002 0.009 0.003 149Gd(1) vs 148Gd(2)

0.011 ~0.001 0.009 0.001 18G4 (1) vs Gd(1)

v[??Oﬂ 0.011 —0.006 0.012 ~0.004 150Gg(1) vs 149Gd(1)
+

the °Gd(1) staggering conclusively demonstrate the
existence of the effect. We use this band as a reference
for the single-particle structures of all the bands studied
in thiswork.

Table 3 presents the bands without calcul ated defor-
mation. In their analysis, we have used the observation
of [37] that the filling of any particular orbital aways
induces the same deformation change in different
nuclei. Subsequently, this feature has been explained
by the additivity of quadrupole and hexadecapole
moments for SD bandsin the A ~ 150 mass region [ 39,
50]. Inasimilar way asin the cited works, we find the
deformation changes d¢ and d¢, induced by a nucleon
in the given state. The corresponding values are pre-
sented in Table 4 for the two rotational freguencies.
They are used to evaluate the parameters € and €, of the
bands collected in Table 3. The bands **°Gd(63, 6b) are
omitted in this table because the deformation changes
induced by the orbital v[514]9/2 are not known.

Tables 2 and 3 help to understand which property of
the single-particle structure is responsible for the Al =
4 bifurcation. First of all, we emphasize that the neces-
sary condition (36) isnot violated in either of the bands
with the known staggering significance. This is not a
trivial fact because of the double cancellations in the
expression Q,,: the partial cancellation of the gy (na)
values with different signatures and the partia cancel-
lation of the quantities Q,(17) and Q4(v) for amost al
these bands. As adirect consequence of these cancella-
tions, the value Q,, for some bands with the small sig-
nificance Y changes sign and becomes negative for high

rotational frequencies. The zero point of Q,, depends
not only on the deformed shell-model potential but also
on the frequency renormalization factor, for which we
take the conventional value of 1.27. With such scaling,
the criterion (36) seems unreliable for small frequen-
cies. Thus, we use the high frequencies (w = 0.6 and
0.8 MeV) to compare the staggering criterion with the
experimental significance.

While Tables 2 and 3 exhibit definitely the correla-
tions between the sign of the parameter ¢ and the signif-
icance Y, they also show some discrepancies. The high
positive value of Q,, in the bands #/Gd(2) and Gd(4)
is the consequence of the neutron hole in the state
v[642]5/2 (a = 1/2), which has, according to Table 5,
the large negative g,,. The same effect is produced by
the orbital 16, in the bands *’Eu(3) and **Gd(8a). The
discrepancies observed in the bands #/Gd(3) and
148Gd(3) areless evident. Among the bands under study,
only these bands have the empty state v7;. It ispossible
that the first intruder plays the crucia role in the phe-
nomenon (let us recall that the criterion (36) is only
necessary). This tentative conclusion is confirmed by
the nonstaggering bands '*Gd(1, 2), 'Tbh(1), and
152Dy(1), but it disagrees with the staggering bands
148Gd(5) and >1Gd(1a). The first intruder is blocked up
by the second one, v7,, in these bands (see also [2]).
Let us also note that the first proton intruder 16, is
blocked up in all the bands under study.

From astrictly logical point of view, a better test of
theinequality (36) is provided by the pairs of the bands
with configurations that differ by a single nucleon

PHYSICS OF ATOMIC NUCLEI

Vol. 64 No. 4 2001



370NN DIINOLY 40 SOISAHd

¥ ON 9 'IOA

T00C

Table 5. Expectation values [| g, t(in (A/Mwy,)?, T = T, v) of the active states involved in the configurations of the bands with a known staggering significance Y (all

the quantities were calculated for the fixed rotational frequency of w = 0.8 MeV; ablank space means that the corresponding orbital isinactivein a given band)

Proton states Neutron states
pend 11[301%]+ n[541%]_ T[[651§]+ n[651g]_ v[541%1 v[523g]+ v [651%]+ v [651%]_ v[642§]+ v[402§]+ v [4022]_
17Ey(1) 0.153 0.817 ~0.204 0731 | -0022 | -1.39 0.609 0,583
17EY(3) 0824 | -0341 0.837 0041 | -1494 0.623 0,597
148E (1) 0.166 0834 | -0.353 0.856 0028 | -1521 0.614 0,588
WGd(2) ~0.012 0848 | -0.183 0.765 | —-0070 | -1.442 0588 | -0561
17Gd(3) 0.081 0.767 0175 | 0143 —0.402 0159 | -1.180 0.597 05570
17Gd(4) 0.064 0.859 —0.321 0872 | -0007 | -1549 0.560 0573
148G(1) 0.044 0.842 —0.231 0790 | -0042 | -1.463 0.597 05570
148G(3) 0.091 0.801 ~0.038 0090 | -1303 0.602 0575
148G (4) 0.006 0865 | -0.334 0888 | -0015 | -1570 0.594 0,567
148G(5) 0.877 0,673 —0.664 0071 | 0639 | -0613
18G(6) 0.080 0.290 0873 | —0.449 0.976 0042 | -1652 0605 | —0578
149Gd(1) 0.061 0858 | -0.376 0.914 0011 | -1501 0.603 0576
150Gd(1) 0.058 0.726 0886 | -0.558 0.947 0084 | -1620 0606 | —0579
150Gd(2) 0.862 0,637 0.372 0167 | -0991 0.640 0,613
150G d(4b) ~0.157 0.892 —0.422 0986 | -0012 | -1.683 0578 | —0551
150G (8a) 0.008 0.401 0.881 ~0.491 1.004 0045 | -1685 0599 | —0572
151Gd(1a, 1b) ~0.165 0.769 0.919 0,587 0.989 0065 | -1684 0.582 —0.554
15171(1) 0.089 0.892 ~0.606 0.764 0113 | -1427 0.615 0,588
152Dy(1) 0077 | -0.356 0908 | —0.666 0.408 0149 | -1057 0.620 0592

* Strongly disturbed orbital.
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Table 6. Test of the staggering criterion for the fixed rota-
tional frequency w= 0.8 MeV by employing the relative mo-
ment AQ,, of the band A with respect to the reference band
B [the symbol + or —is used to show whether the staggering
significance of the band A agrees or disagrees with the sign
of Qu4(A) obtained from Egs. (48) and (51); a blank space
means that such a comparison is impossible; it is assumed
that the sign of Q4(B) is unchanged if |AQy4| < 0.5]

B

A

18Eu(1)
18Gd(6)
149Gd(1)
151Gd(1a) + + +
147Gd(2) _ _ _ _
147Gd(3) _
WGH@E) | - - -
1SOGd(2) . _ _ _
150Gd(8a) _ o _
147Gd(4)
18Gd(1)
151Gq(1b)

148Eu(1)
+ | 148Gd(6)
+|19Gd(2)
151Gd(1a)
| 147Gd(2)
| 147Gd(3)
| 148Gd(3)
| 150Gd(2)
| | 59Gd(8a)
147Gd(4)
148Gd(1)
151Gd(1b)

+
=+
+
[
(I
(.
(I
[

+
+ + +

+ 4+ +H|+ + + 4+
+ 4+ +H|+ + +
+ 4+ +|+ o+

+ + +| +

occupying an active or an inactive orbital. Thefilling of
the inactive orbital T{301]1/2 (o = —1/2) does not
change Q.. Therefore, any pair of the identical bands
WEU(1)/MGd(1), “8Eu(1)/*4°Gd(1) has identical stag-
gering properties. The same is true for the identica
bands **'Gd(4)/**®Gd(1) and **Gd(6)/**°Gd(1), whose
configurations are distinguished by a neutron in the
state [411]1/2 (a = —1/2). This finding explains the
observation of the staggering effect in identica SD
bands [21]. Similarly, the two identica bands
10Gd(2)/*?Dy(1), whose configurations differ by the
two [301]1/2 protons, do not stagger. An exception is
the band Gd(5) exhibiting clear evidence for stagger-
ing. Its configuration is the same as those for the bands
150Gd(2) or >°Dy(1) apart from two neutron holesin the
state [411]1/2 or the two [411]1/2 neutron and two
[301]1/2 proton holes, respectively. Nevertheless, sta-
tistically significant staggering has not been observed
in the latter bands. One would suppose that the super-
position principle does not work in this case. This sug-
gestion is confirmed by the large nonaxial deformation
of 18Gd(5) found in the cal culations performed in [51].

The active orbitals give us amore rigorous verifica
tion of the theory. A nucleon occupying this state con-
tributes significantly to the quantity Q, and may
change its sign. Table 5 shows the estimated values q,,
for some active orbitals involved in the configurations
of almost al the studied bands. The orbital v[651]1/2
(a = 1/2) is one such example. Starting with the stag-
gering bands *Eu(1), *Gd (6), and *°Gd(1) and

PAVLICHENKOV, SHCHURENKOV

removing a neutron from this orbital, we get the bands,
respectively, "Eu(1), 1*'Gd(4), and 1*8Gd(1), which do
not stagger. Thus, this active orbital explains the
remarkable property of the Al = 4 bifurcation observed
in[23].

At the next step, we consider the signature partner
bands based on the state v[402]5/2, which is associated
with the generation of identical bands. The correspond-
ing active orbitals have reasonably large values of the
moment ¢, to modify the inequality in (36). Conse-
quently, a pair of identical bands may have different
staggering properties. The example is the band
10Gd(4b), which is identical to *°Gd(1), but which
does not exhibit staggering because the state v[402]5/2
(o =-1/2) hasthe large negative value q,,. Its signature
partner, °Gd(4a), should stagger. Other examples of
the signature partner bands involving this state are
shown in Tables 2 and 3.

We now extend this procedure to the two bands with
the configurations that differ by an arbitrary number of
particles and holes in active and inactive orbitals. For a
fixed rotational frequency, the Q,, values of the two
bands A and B are related by the equality

Qu(A) = Qu(B) +8Qy +8Ql,
where 6Q,, isthe contribution resulting from the differ-

encein active orbitals, while 5ij* represents the con-
tribution due to the deformation change induced by
both active and inactive orbitals. According to the addi-
tivity of multipole moments, the former quantity can be
written as

(48)

0Qy = zq44(a)a (49)

where a runs over the active particle and/or hole states,
which define the intrinsic configuration of the band A
with respect to the band B (the reference band). Since

the contributions 8Q,, and 6foff may be comparable,
we have used the values Q,, listed in Tables 2 and 3 to
evaluate the relative nonaxial moment of active orbit-
as,

AQu = 8Qu+8Q% = Qu(A)—Qu(B).

These quantities, along with the staggering significan-
ces Y, and Yy, alow usto obtain a more sophisticated
test of the staggering criterion.

We have first selected 12 bands having the proper
staggering significancesto deal with the sampleinvolv-
ing staggering (Y = 1.8) and nonstaggering (Y < 0.25)
bands with a reasonably high likelihood. According to
Egs. (36) and (47), the former are characterized by the
value Q,, > 0 and the latter have Q4 < 0. To compare
the staggering properties of the bandsA and B, we con-
sider the two strong inequalities

(50)

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001
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Qu(B) +AQ, >0 if Yg=1.8 and AQ,, >0,

51
Qu(B) +AQ, <0 if Ys<0.25 and AQ,, <O. Gb

For other combinations of the values Yy and AQ,,, the
sign of the sum Q. (B) + AQ,, becomes indefinite
unless |AQu4| < |Qu|- Let us consider, for example, the
bands '#Gd(1) with Y, = 0.23 and 'Y'Gd(3) with Y =
0.25, for which AQ,, = —0.71. According to Eq. (48)
and to the second inequality (51), we have Q. (A) <0,
which isin agreement with the absence of staggeringin
the band '“Gd(1). On the other hand, considering
148Gd(1) as a reference band, we cannot find the stag-
gering behavior of the band 4’Gd(3) because the sign
of the right-hand side of Eq. (48) isindefinite.

The result of such a comparison for 132 pairs of
bandsis presented in Table 6. The columns of thistable
involve the reference bands B, whereas the lines repre-
sent the bandsA. The symbol + (=) meansthat Eq. (48)
and the inequalities (51) determine the staggering
behavior of the band A correctly (incorrectly). A blank
space is used when the sign of Q,,(A) isindefinite and
its comparison with the significance Y, is impossible.
Three groups of bands are clearly visible in Table 6. (i)
The nonstaggering bands #Gd(4), *Gd(1), and
151Gd(1b). There is no contradiction in the staggering
behavior inside this group of bands. Such a contradic-
tion has not been found between these bands and the
bands of other groups either. (ii) The four bands
148Ey(1), 8Gd(6), *°Gd(1), and Gd(1a) with clear
evidence of staggering. Whether or not the staggering
behavior of the last band contradicts that of the band
148Eu(1) or 19Gd(1) is not clear. (iii) The most striking
feature of Table 6 is the third group of bands, whose
behavior is found to contradict that of all the bands of
the second group. The bands #/Gd(3) and #8Gd(3)
with the empty first intruder v7, and the band 1°Gd(2)
with the blocked first intruder belong to this group. It
should be noted that the band *Gd(5) being included
in the sample contradicts the bands of the first and third
groups.

6. CONCLUSION

In rapidly rotating nuclei, the Coriolis force pro-
duces a variety of nonadiabatic effects, including the
Al = 4 bifurcation, which appeared as a new and unex-
pected event. The analogy with molecular cluster states
allowed usto find the phenomenological background of
the phenomenon: the term proportional to the nonaxial

operator 1 + 1% in the rotational Hamiltonian. Its
microscopic origin is described in this article.

The Coriolisforce in arotating nucleus is the cause
of rotation-single-particle interaction, which leads to a
nonaxial distortion of the hexadecapole component of
the nuclear mean field. This dynamical mechanism
involves two kinds of the single-particle states generat-
PHYSICS OF ATOMIC NUCLEI
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ing a nonaxial hexadecapole moment: active and inac-
tive orbitals. The proper sign of the Q,, moment of all
active orbitals is the necessary condition for the exist-
ence of the Al = 4 bifurcation. The fluctuating depen-
dence of this quantity on the number of nucleons occu-
pying active orbitals explains the configuration depen-
dence of the staggering phenomenon. One can observe
the effect of filling each of the active orbitals near the
Fermi surface upon the staggering behavior of a band.
We have used this simple criterion to test the micro-
scopic theory.

A systematic study of the Al = 4 hifurcation in
30 SD bands of the mass region around A ~ 150 shows
that the criterion of staggering behavior works surpris-
ingly well and is in reasonable agreement with the sta-
tistical analysisof Hadlip et al. [28]. We have explained
the triplet of the identical staggering bands **Eu(1),
148Gd(6), and 1*°Gd(1) and the related triplet of the non-
staggering bands #’Eu(1), *'Gd(4), and “Gd(1).
Another important result is the fact that the necessary
condition is violated in none of the 18 bands with
known staggering significance. Discrepancies between
the theory and experiment may be attributed to other
requirements necessary for staggering, which are not
met in some bands. For example, the discrepancies
observed in the bands with the empty [*/Gd(3),
148Gd(3)] or the blocked [*Gd(1, 2), 'Tb(1),
152Dy(1)] first intruder v7; may indicate that this state
isan essential ingredient of the Al = 4 bifurcation. The
role of the first proton intruder is not clear because all
the bands analyzed in [28] have theintruder proton con-
figuration T62. The analysis also reveals contradictions
in the staggering behavior of some bands, whose con-
figurations differ in inactive orbitals. In these cases, we
cannot rule out the violation of the additivity principle,
which is a basic assumption of our theory. The band
148Gd(5) is a fine example of such a violation. These
contradictions may aso be due to some inconsistencies
in experimental data.

The theory is not intended for reproducing the pat-
tern of staggering, because it relies on a rather general
form of rotation-single-particle interaction. As a conse-
guence, we can only analyze the simplest rotational
regime and obtain the necessary condition. The simpli-
fied approach used isafirst step in dealing with so com-
plicated a phenomenon asthe Al = 4 bifurcation. A fur-
ther study is required for obtaining a sufficient condi-
tion and for reproducing staggering patterns.
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Abstract—Variousforms of superfluidity in nuclei and nuclear and neutron matter are characterized by therel-
evance of strong nucleon—nucleon correlations, as well as by gap values, which can be a substantial fraction of
the Fermi energy. We present amicroscopic many-body theory of nuclear superfluidity. Theinfluence of various
physical effectsisanalyzed within the Green’s function formalism and the Bethe-Brueckner—Gol dstone expan-
sion. In particular, dispersive effects are discussed in detail. We point out open problems that must be solved
before afull understanding of nuclear superfluidity can be achieved. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The pairing phenomenon in nuclei and nuclear mat-
ter is one of the fundamental issues in nuclear physics
that received invaluable contributions from the work of
Migdal [1]. Within the Green’s function formalism, he
showed the way in which nucleon—nucleon correlations
affect the pairing phenomenon in the case of weak
superfluidity—namely, when one can introduce an
effective pairing interaction concentrated around the
Fermi momentum. He also proposed, as the most con-
venient attitude, to handle the effective pairing interac-
tion and the quasiparticle strength as phenomenol ogi-
cal parameters, to be used in fitting the experimental
data or to be taken anyhow from other sets of experi-
ments. Nowadays, in view of the more recent develop-
ments in many-body theory and the rapid progress in
computer power, it appears challenging to try to under-
stand nuclear superfluidity merely on the basis of bare
nucleon—nucleon interaction and nucleon correlations
without the introduction of any free parameters. In par-
ticular, this is mandatory in the case of neutron-star
superfluidity. In this case, in fact, since the observa-
tional dataare only indirectly related to superfluidity or
need explicit models for their interpretation, afirm the-
oretical prediction of the superfluidity strength, based
on microscopic ab initio calculations, appears to be
highly required. Indeed, neutron and nuclear-matter
superfluidity is one of the main issuesin the physics of
neutron stars. Superfluidity is expected to play a major
role in some of the most striking phenomena occurring
in neutron stars, like glitches and postglitch transients
[2], vortex pinning [3], neutron-star cooling, and
maybe strong magnetic-field penetration [4]. Since
neutron and nuclear matter are strongly correlated sys-
tems, where short-range correlations dominate the
overall interaction energy even at densities well below

* This article was submitted by the authorsin English.

D ECT*, Strada delle Tabarelle 286, 1-38050 Villazzano (TN), ltaly,
and INFN, Sez. Catania, Corso Italia57, 1-95129 Catania, Italy.

2 Dipartimento di Fisica, Universitadi Catania, Corso Italia57, I-
95129 Catania, Italy.

the saturation value, the superfluidity problem turns out
to be a complex many-body problem, where a delicate
balance between short-range interactions and the long-
range pairing correlations needs an accurate treatment.
Many authors have tried to predict the pairing strength
in neutron matter within a definite microscopic many-
body theory, likethe variational Jastrow method [5], the
Babu-Brown approach [6] and its generalizations [7,
8], and Landau theory [9]. In general, these micro-
scopic approaches seem to indicate a reduction of the
pairing gap due to the medium, with respect to the BCS
[10] approximation with bare interaction. The use [11]
in the BCS scheme of redlistic bare nucleon—nucleon
interactions, which reproduce the experimental phase
shifts, can be a good starting point for a more sophisti-
cated many-body treatment, and the connection
between the pairing gap value and the phase shifts was
elucidated, in genera, in [12].

Dispersive effects, due to the energy dependence of
the single-particle self-energy, are usually neglected or
considered in the weak-coupling limit. Only in [13]
was a self-consistent scheme developed where the
short-range correlations and the pairing problem are
treated on the same footing. The method is numerically
complex, and it was solved only for a schematic inter-
action [13]. More recently [14], a scheme to treat dis-
persive effects has been proposed that is supposed to be
valid whenever the pairing gap is not too large with
respect to the Fermi energy and the quasi particle width
is small with respect to the quasiparticle energy. Both
conditions are indeed satisfied in the case of neutron
matter [14].

In this paper, we discussthe general scheme of treat-
ing strong superfluidity within the Green’'sfunction for-
malism and the Bethe-Brueckner—Goldstone method
for the inclusion of short-range correlations. The
Green's function formalism, generalized to the pairing
problem, was extensively developed long ago in [15,
16] and, of course, in [1]. The formaism will be
reviewed, for definiteness, in Section 2, and different
effects and mechanisms that can contribute to the

1063-7788/01/6404-0611$21.00 © 2001 MAIK “Nauka/Interperiodica’
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development of the superfluid phase are shortly dis-
cussed. In Sections 3 and 4, dispersive effects are dis-
cussed in detail. Section 5 is devoted to the application
to neutron-star superfluidity. The medium renormaliza-
tion of the nucleon—nucleon interaction is discussed in
Section 6. A short conclusion isdrawn in Section 7.

2. GENERAL FORMULATION
OF THE GAP EQUATION

The Green’sfunction (GF) formalism for the pairing
problem can be extended to generalize the Gorkov's
method beyond the BCS approximation [15, 16]. The
single-particle Green's function % has a 2 x 2 matrix
structure, with normal diagonal components F; and
abnormal off-diagonal components F,:

EFl(k, w) Fy(k w)

Yk w) =
(k) OF,(k, w) —F,(k, —w)

0l
0
5w

Ak, w) E

(g_l(k, w) = EEK—QH M(K, w) a
—(€x + w+ M(k, —w))O

O Ak w)

In the expression for the inverse Green's function ‘gfl,

we have introduced the quantity €x =7%2%k%2m—p asthe
single-particlekinetic energy, with respect to the chem-
ical potentia , the diagonal single-particle self-energy
M(k, w), and the momentum- and energy-dependent
gap function A(k, w). Here, we assume S-wave singlet
pairing; therefore, we omit spin indices. They simply
express the coupling between the time-reversal states
(k, 1) and (—k, 1).

The constituent equation for the pairing problem is
the generalized gap equation, which expresses the con-
dition that the gap function A(k, w) is solution of the
homogeneous Bethe-Salpeter equation [1, 15]. The
inhomogeneous Bethe—Sal peter equation is the general
equation for the two-body scattering matrix in the
medium [1]; therefore, the existence of a solution for
the corresponding homogeneous Bethe-Salpeter equa-
tion physically indicates the formation of bound Coo-
per pairsand the onset of the superfluid phase. The gen-
eralized gap equation [1, 15] can be written as

Ak, w) = ZJ‘doo'
7

I (ko, Kw)A(K, ')
Ere— + MK, &) (G + @ + M(K, —w)) +AK, w)*

where |(kw, Kw) is the irreducible NN interaction at
zero total energy and momentum.

Since both M(k, w) and A(k, w) can be expanded in
terms of the NN interaction and the full GF itself,
Egs. (1) and (2) in general imply a self-consistent pro-
cedure for both the self-energy and the gap function.

2)

X
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Alternatively, one can introduce the single-particle
spectral function as the quantity to be determined self-
consistently [13]. In general, of course, one hastointro-
duce a suitable approximation for the irreducible inter-
action | and the self-energy M, and then solve the
resulting gap Eq. (2). If one takes the bare NN interac-
tion for theinteraction |, and the Hartree—Fock approx-
imation for the diagonal self-energy M(k, w), the stan-
dard BCS approximation is recovered. The same result
holds true if one introduces an energy-independent
effective interaction, to be determined phenomenol ogi-
cally or within a microscopic many-body scheme.
Since we take the microscopic point of view here, our
first choice will be the bare NN interaction, but later we
will discuss possible improvement.

It has to be noticed that the energy dependence of
the gap function A(k, w) originates only from the
energy dependence of the irreducible interaction I. In
fact, if the interaction is taken as energy independent,
the gap function is aso energy independent, despite the
possible energy dependence of the self-energy M(k, w).
Thisindicatesthat dispersive effects, which are present
as soon as one goes beyond the Hartree—Fock approxi-
mation for the diagonal self-energy M(k, w), are well
distinct from the medium renormalization effects on
the NN interaction.

According to the so-called “conserving approxima-
tions’ [17], awell-defined relation between self-energy
and irreducible interaction should be used. If one con-
sidersthe self-energy asafunctional of the correspond-
ing Green's function, then the irreducible interaction
should be taken as the functional derivative of M with
respect to 9. However, it hasto be noticed that thistype
of many-body theory is mainly devised for describing
transport properties and ensure that conservation laws
are then fulfilled. The relevance of such a prescription
in describing the ground state properties, where conser-
vation laws play no role, is not clear. It appears, there-
fore, that an approximation scheme has to be devised
for both the self-energy and the irreducible NN interac-
tion.

The medium modifications of the irreducible NN
interactions were considered by few authors in the case
of pure neutron superfluidity. In general, a“ screening”
of theinteraction was found, namely, areduction of the
pairing strength [5, 7]. In[8], these findings were essen-
tially confirmed; however, at the highest densities the
attraction due to spin-density fluctuations was found to
overcome the repulsion due to density fluctuations and
an enhancement of the pairing gap was predicted near
the gap closure. Indeed, in [9], it was pointed out the
crucial role of the delicate balance between density and
spin-density fluctuations in determining the overal
medium effect on the renormalized NN interaction. At
present, no firm microscopic prediction of the medium
modifications of the NN interaction is available. This
point is further discussed in Section 5.
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3. DISPERSIVE EFFECTS

In order to single out dispersive effects, let us
assume that the irreducible NN interaction is energy
independent. Then the energy integration appearing in
the gap EqQ. (2) can be formally performed, since the
gap function A is also energy independent, as was
already noticed above. The denominator is an even
function of the energy w (we recall again that single-
particle energies are measured with respect to p). This
is afeature typical of the superconducting phase. Fur-
thermore, the propagation kernel isthen proportional to
the anomalous Green's function F, of (1), as can be
explicitly checked. Assuch, the kernel satisfiesthe gen-
eral dispersion relation fulfilled by the superfluid
Green'sfunctions. If we define

D(k, w) = (€k—w+ M(k, w)) 3)
x (& + w+ M(k, —w)) + Ak, w)?,

thenthe kernel 1/D(k, w) satisfiesthe (exact) dispersion
relation

1 _dw, 0 1 o
bk J 7 MOk @0
0

4

[ 1,1 ]
W-W—le W+w-—ie

Equation (4) allowsusto rewrite the general gap Eg. (2)
in a form that resembles the usual BCS gap equation.
Indeed, upon inserting (4) into (2), the w' integration
can be performed and one gets

A(K) = -3 1k k) 2L
4

2¢(k)’ ©)

where the following definition has been introduced:
1

1 leiamdl O
2%(K) Tt]’d(*)'mED(k,w‘)Er

where Im(...) indicates the imaginary part of the com-
plex number in the parenthesis. For a given approxima:
tion scheme for the self-energy M(k, w), Eq. (5) gives
the corresponding gap equation with the inclusion of
dispersive effects. In general, the w integration in (6)
can be easily done numerically for each value of the
momentum k. It has to be noticed that the kernel of the
integral (5) is areal function and, therefore, the gap
function A(k) can also still be taken asreal.

Of course, dispersive effects are easily included in
the gap eguation, once the weak coupling limit is
adopted [1]. Equations (5) and (6) generalize the treat-
ment to the strong coupling case, where the momentum
and energy integration cannot be restricted around the
Fermi surface, as it will be discussed in detail in the
next section.

(6)
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4. POLE APPROXIMATION

If theimaginary part of the self-energy issmall with
respect to the single-particle energy, it is possible to
approximate the energy integration of (2) in a simple
way (still assuming the NN interaction as energy inde-
pendent). Thiswill allow us to get a closer connection
with the weak coupling limit. In this case, in fact, the
main contribution is expected to come from the poles
closeto the real axis. The denominator is an even func-
tion of the energy w (we again recall that single-particle
energies are measured with respect to [); therefore, the
kernel has two poles symmetric with respect to the ori-
gininthe complex w plane. Formally, the pole energies
*+E, are the solutions of the implicit equation

+E, = %(M(k,iEk)—M(k, FE)

: ™
iJ[Eﬁ%(M(k, —E) + M(k, Ek))} + A(K)>.

If the energy dependence of M(k, w) is neglected, then
(7) reduces to the usual square root expression for the
guasiparticle excitation energy of the BCS approxima-
tion. On the other hand, in the nonsuperconducting
limit A —» 0 and neglecting the imaginary part of M(k,
w), one can verify that Eq. (7) reducesto the usual self-
consistent equation, e.g., Brueckner [18], for the sin-
gle-particle energy e

ek = Ek+ M(k, ek) (8)

Equation (8) is valid whenever A is negligible, in par-
ticular for momenta far away from the Fermi surface,
sincethen [A | < |€x|. Taking the corresponding residue
of the kernel at the pole, we can write the gap Eq. (2) as

AK) = =3 1(k K)Z
4

Iy ©)

X

2 J[Ek # S(M(k )+ M(K Ek))f +A(K)*

where Z, is a factor that is related to the quasiparticle
strength (see below). The pole approximation is exact
in the limit of vanishing imaginary part of the self-
energy, as can be checked from Egs. (5) and (6). It has
to be noticed that in the generalized gap Eg. (9) the
square root in the denominator does not coincide with
the quasiparticle energy, implicitly defined by Eq. (7),
in contrast with the usual BCS approximation, where
the full pairing quasiparticle energy appears.

Let usdiscuss Eqg. (9) in the extreme weak-coupling
limit, where one assumes that the main contribution to
the momentum integral is concentrated around the
Fermi surface and one neglects pairing in the diagonal
self-energy, which isthen identified with the onein the
normal phase. In thislimit, following the standard pro-
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cedure of expanding the integrand of Eq. (9) around k,
one gets[19]

[ 1 0

Er
Ar = 8—exXp~
F U mezeréngl (ko) E

- (10)
where n, is the density of state for the free Fermi gas
and mg is the so-called k mass (in units of the bare
mass) [20]. The interaction I (kg) is the diagonal matrix
element of the NN potential in the considered channel
(e.g., 'S for neutron matter), in the plane-wave repre-
sentation. The self-energy effects are, therefore, con-
tained mainly in the factor mzZz, which can be written

also as m* Z,Z: , since the full effective massm* = m./Z

[20]. Thisis the standard result for the weak coupling
limit [1]. Equation (9) generalizes the treatment to the
case where the contribution from momentafar from the
Fermi surface is relevant, within the adopted pole
approximation. The appearance of the k massis a pecu-
liar feature of the pairing phenomenon, and it isadirect
consequence of the coupling between time-reversa
states. In Eq. (9), the combination M(k, —w) + M(k, w)
gives rise to the combined density of state of the pair
{(k, w); (—k, —w)}, which is mainly determined by the
k mass.

The weak coupling limit is not valid in general for
neutron or nuclear matter [18], if one starts from the
bare NN interaction. This can be seen directly from the
observation that the gap equation often has a well-
defined solution even when the interaction matrix ele-
ment I(k:) is positive. Thisis due to the dominant role
of the off-diagonal matrix elements I(k, k). Therefore,
in this case one must solve the more general Egs. (9)
or (5).

In the case of neutron matter, a further approxima-
tion isviable. Short-range correlations are dominant in
this case, and the size of the nhormal-phase self-energy
is expected to be much larger than the pairing gap. It is
indeed of the same order of the Fermi kinetic energy
Er, and Eq. (8) will then be valid to the order of
A(kp)/Eg, which is expected to be small.

In the superfluid phase, in principle, the diagonal
self-energy M(k, w) differs from the self-energy in the
normal phase. The main contribution not present in the
normal phase originates from the coupling of the sin-
gle-particle motion with the superfluid collective
modes. The latter correspond mainly to the center-of-
mass motion of the Cooper pairs and their possible
“vibrations® [21, 22]. The branch starting at zero
energy, in the long wave-length limit, is the branch of
the Goldstone boson [21], corresponding to the gauge
invariance symmetry breaking at the superfluid phase
transition. This contribution to the diagonal single-par-
ticle self-energy is expected to be at most on the order
of the superfluid condensation energy per particle and
istherefore negligible with respect to the typical short-
range correlation energy, as calculated, e.g., in Brueck-
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ner theory, at least to the extent that A/Ex < 1. For the
same reason, the deviation of the occupation number
from the free-gas value and the presence of aforbidden
energy region, of the order of A, around the Fermi
energy, typical of the pairing phenomenon, seem to
play no relevant role in determining the size of the self-
energy. It therefore appears to be justified to adopt, for
M(K, w), its normal phase value.

Therefore, on the right-hand side of (7), we can
replace E, with g, solution of (8), to get
1
E=5(M(K [e&d) =M(k, &)

- (11)
+A(K)>.

+ J[gk + %(M(k, ) + M(K, ek))]

The procedureisjustified, provided M(k, w) isasmooth
function of w. Along the same lines, one can approxi-
mate the factor Z, of the kernel at the pole. The general
expression of the factor Z, at each one of the poles can
be easily calculated:

Z, = [1-3(1-09a+ (1+09b] .

Gt %(M(k, —E) + M(k, E))
5 ,

a, = MO b, = BMO
[B(DQquk’ k EBOOEJ»:—Ek’

where S, isthe square root appearing in Eq. (11). Inthe
limit A — O, thisis the usua expression for the qua-
siparticle strength, provided the momentum k is close
enough to kg. The correctionsto the normal phase value

of 1— 7, are of the order A(kp)/E; therefore, the fac-

tor can be identified with the quasiparticle strength, at
least in the vicinity of the Fermi surface. Far away from
the Fermi momentum, the factor Z, till hasthis expres-
sion (with E, ~ ) inthelimit of asmall imaginary part,
although the gquasi particle concept becomes less mean-
ingful, since its width can be large (but it can be still
much smaller than the real part of the energy). In this
case, the procedure is just an approximate method of
calculating the energy integral (i.e., within the pole
approximation) of (6).

O, =

(12)

5. APPLICATION TO NEUTRON-MATTER
SUPERFLUIDITY

In a set of calculations for neutron matter, we
focused the analysis on the dispersive effects. The cal-
culations were restricted to the 'S, channel, which
appears to be the strongest pairing channel. The irre-
ducible NN interaction was taken to coincide with the
bare Argonne v, potential [23], according to the con-
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siderations devel oped in the Introduction and in Section 2.
Consistently, we calculated the normal self-energy
within the Brueckner approximation with the same
interaction. The choice of the bare interaction for I(k,
K") is suggested by the observation that no ladder sum-
mation should be included in the irreducible interaction
kernel I(k, K) [1, 18]. Of course, other terms like polar-
ization diagrams should be included [8], as mentioned
in the Introduction. However, cal cul ationswith the bare
Argonne v,, potential, and no dispersive effects, in
nuclear matter are well reproduced [24] by calculations
which adopt phenomenological pairing forces. It
seems, therefore, that the medium renormalization of
the NN interaction is not too strong, at least to a first
approximation. The deep reason for that is not at all
clear. Some comments on this point are reported in the
next section, but surely the issue requires further inves-
tigations.

The neutron self-energy has been calculated from
the sum of the two diagrams depicted in Fig. 1. The
continuous choice [18] for the self-consistent single-
particle potential was used. It turns out that the second-
order diagram (in the Brueckner G matrix) is at least
one order of magnitude smaller than the first one,
whichisthe standard Brueckner diagram, in the consid-
ered density range. This gives confidence on the accu-
racy of the expansion in this case.

Once the norma self-energy is calculated in an
energy grid, for agiven momentum k, theintegral of (6)
can be performed numerically. In the pole approxima
tion discussed in the previous section, this energy inte-
gral producesthe Z, factor of (9), together with the cor-
responding square root in the denominator. The latter
can be evaluated once the quasiparticle energy is
obtained from Egs. (7) or (11).

It is possible to write down the gap Eq. (5) in the
sameform of Eq. (9) if weintroducethe“ effective” fac-

tor Z' defined as

z¢" = J[ak + (MK, ~E)+ M( Ek»f +ARHEK)

_ J[Ek + %(M(k, —E) + M(k, Ek))T +AK?  (13)

[

><2J’du)|mD 1 0
Tt
0

Dk, w)C

Then, Eq. (5) has the same form of Eq. (9), with Z{'
replacing Z,. In principle, the factor ZE” dependsonthe
value of the gap A(k). Because of the smallness of A(K),

it turns out that ZE” is actually independent of the gap
value with great accuracy. Even for momenta very

closeto ks, where Zﬁ” = Z,, the gap dependence can be
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(a) (b)

Fig. 1. Self-energy diagramsin the Bethe-Brueckner—Gold-
stone expansion. A wavy line indicates a Brueckner G
matrix.

Zk

1.2}

0.8 1 1 1 1 1
0 2 4  k,fm!

Fig. 2. The renormalization factor Z in the pole approxima-
tion (dashed line) andin the exact procedure (solid line). For
details, see the text.

neglected, as can be seen from (12). The closeness of Z,

to ZZ" indicates the accuracy of the pole approxima-
tion. In Fig. 2, these two quantities are reported as func-
tions of k for kz = 1.3 fmr!. As one can see, the pole
approximation introduces a systematic overestimation
of the factor Z,, but it appears to be an overal fair
approximation. The factor can even dlightly exceed
unity in the pole approximation for intermediate values
of k. Thisis not surprising, since the regular (nonpolar)
contribution to the integral can be negative. Of course,
close to the Fermi momentum, Z, is smaller than unity,
since then it acquires the meaning of quasiparticle
strength. According to Migdal—L uttinger theorem [1],
in fact, the value Z; of Z, at k = kg isthe discontinuity of
the momentum distribution at the Fermi momentum (in
the normal phase). One must have, therefore, 0 < Zg <
1. For higher momentum values, Z, tendsto unity, since
then the self-energy becomes energy independent [25].

Also, Z¥ tends smoothly to unity but from values

smaller than one. The asymptotic value of Zﬁﬁ can be

expected from the fact that, for large enough k, the self-
energy around the peak of the function Im(1/D(k, w))
becomes negligible with respect to the kinetic energy,
and the energy dependence of the kernel is then the
same as for free particle. In the case of Fig. 2, for k >
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ImM(k, w), MeV
1 —

-2 1 1 1
0 4

1 ]
8 W, MeV

Fig. 3. Theimaginary part of the self-energy asafunction of
the single-particle energy w (calculated with respect to the
chemical potential) for the Fermi momentum kg = 1.1 !
and the momentum k = 1.2 fm!.

A(kg), MeV
3 —

0 0.5 1.0 kg, fm™!

Fig. 4. The superfluid gap value, at the Fermi momentum, as
afunction of density, in the case of free single-particle spec-

trum (¢), with the inclusion of the factor Zﬁff (+) and with

the inclusion of both ZE” factor and the self-energy in the
single-particle spectrum (o).

6 fm!, the value of Zg' can be safely taken as equal
to one.

On the other hand, the numerical comparison

between Z, and ZE” cannot be done exactly at k. There,

in fact, the imaginary part of the self-energy is vanish-
ingly small and the integral in (6) cannot be done
numerically, since the integrand is too sharply peaked.
Indeed, for k — kg, it becomes a delta function,
which, of course, cannot be integrated numerically.
However, the pole approximation close to the Fermi
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momentum is expected to become accurate; therefore,

one should have Z{" = Z,. From our calculations, the
region around k- where this happens is quite small;
therefore, we could check this result numerically only
to a certain extent, namely, at distance not too small
from the Fermi surface. Still, at the shortest distance
allowed by the numerical accuracy, some discrepancies

between Z, and ZE" persist, despitetheir clear tendency

to be closer. Looking at the self-energy near the Fermi
momentum, one indeed notices that the ratio between
theimaginary part and the quasiparticle energy remains
small but amost constant down to values close to kg
Only at even closer values of k does the imaginary part
appear to display the expected quadratic dependence on
w [1] and to become vanishingly small with respect to
the quasi particle energy (which haslinear dependence),
seeFig. 3. It isfound that, for k < kg, the imaginary part
of the self-energy is quite small throughout the whole
energy range; therefore, we use the pole approximation
in any case there. Fortunately, it turns out that the val-

ues of ZE” just above ke and the values of Z, at and just
below kg 100k to join quite smoothly; therefore, a sim-

ple interpolation for Z{" across the Fermi surface
appears quite reliable.

Similar results are obtained for the other considered
values of k.

Oncethevaluesof Z" are evaluated asfunctions of

k, the gap equation can be numerically solved. In Fig. 4,
the gap value at the Fermi momentum as a function of
neutron density is reported. For comparison, three dif-
ferent cases are plotted: (i) the results with free single-
particle spectrum, i.e., without any self-energy [11]; (ii)

including only the fo factor in the numerator of the
gap Eqg. (9); (iii) with both the self-energy in the
denominator and the fo factor. The reduction of the

pairing gap is substantial at the highest densities, near
the gap closure. The gap valuesin cases (ii) and (iii) are
dlightly smaller than in [14], as expected, since there
the pole approximation was adopted. The comparison
with [14], however, indicates that the pole approxima-
tion is afairly good approximation, at least in neutron
matter. The results appear in line with the work of [13],
where the self-consistent treatment of pairing and short
range correlations seems indeed to reduce strongly the
gap value mainly because of these two factors [13, 26].
Dispersive effects seem, therefore, to be well estab-
lished with good accuracy in neutron matter.

6. RENORMALIZATION
OF THE NUCLEON-NUCLEON INTERACTION

The prablem of medium renormalization of the
nucleon—nucleon interaction has been considered by
severa authors. The main effect which has been con-
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sidered is the “screening” of the interaction due to the
coupling with particle-hole excitation of the Fermi lig-
uid. In neutron matter, the particle-hole excitations are
the density and spin-density fluctuations. As aready
noticed by Brown (see [6] for a review), the main dif-
ference between the particle-hole and particle—particle
irreducible interactionsisjust due to this coupling with
particle—hole excitations (see Fig. 5). Since at the Fermi
momentum the particle-hole irreducible interaction
can be identified with the relevant set of Landau—
Migdal parameters, it has been suggested [5] to esti-
mate the pairing particle—particle irreducible interac-
tion just by correcting the parameterswith theinclusion
of the particle-hole ring-diagram series. This amounts
to neglecting the momentum dependence of the parti-
cle-hole interaction. It turns out that, if one uses area-
sonable estimate of the Landau—Migdal parameters in
neutron matter the spin-density fluctuations produce a
strong additional repulsion to overcome the attractive
contribution coming from the density fluctuations [5,
18]. As a result, the pairing gap in neutron matter
appears strongly reduced by medium effects on the
pairing particle—particle interaction. This result was
somehow confirmed in [7—9], where more refined treat-
ments were adopted. The full-momentum dependence
of the particle-hole interaction was, however, never
considered, and it wasincluded only within some crude
approximate scheme. As we have already noticed, the
weak-coupling limit is not applicable in a microscopic
trestment of neutron- and nuclear-matter superfluidity.

The problem of the interaction renormalization is
gtill an open problem, and it is surely the only main
source of uncertainty in the microscopic theory of neu-
tron- and nuclear-matter superfluidity. The main diffi-
culty, besides the obvious numerical complexity of the
calculation, is the inclusion of the relevant set of dia-
grams in evaluating the particle-hole irreducible inter-
actions, keeping the full-momentum dependence. If the
irreducible particle-hole interaction is identified with
the Brueckner G matrix, then the problem is well
defined and numerically viable. However, in neutron and
nuclear matter, the situation is probably more complex,
sinceitisknown that the Brueckner G matrix isnot asuf-
ficient approximation, and at least the so-called “rear-
rangement term” has to be included, see, e.g., [27, 28].

Moreover, if onefollows the expansion scheme sug-
gested by the “conserving approximation” [17], one
gets awell-defined prescription for the irreducible par-
ticle—particle interaction consistent with the adopted
self-energy—namely, the former is obtained by afunc-
tional derivative of the latter (d-derivable theory, inthe
terminology of [17]). In neutron matter, where it
appears to be an excellent approximation to calculate
the sdlf-energy from the diagramsin Fig. 1, one finds
that one should include only one bubble in the ring
seriesin Fig. 5 (second diagram) instead of thefull RPA
series. As already noticed, it is not at all clear whether
this prescription has any relevance to ground-state
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Fig. 5. Diagrams defining the screened nucleon—nucleon
interaction.

properties; therefore, the role of the higher order terms
of the series should be checked.

In conclusion, it appears difficult, but numerically
feasible, to include in the pairing microscopic theory
the medium renormalization of the nucleon—nucleon
interaction, still keeping the momentum dependence of
the resulting effective interaction. Much work hasto be
done in this direction, but the solution of this still
unsolved problem will open the possibility of predict-
ing on afirm theoretical basisthe strength of the pairing
gap in neutron and nuclear matter.

7. CONCLUSIONS

We have discussed a general scheme for treating
strong superfluidity in neutron and nuclear matter,
where short-range correlations dominate the normal
single-particle self-energy. Dispersive effects can be
treated on a firm theoretical basis, and the correspond-
ing modification of the pairing gap has been calculated
in the case of pure neutron matter. In this case, it turns
out that dispersive effects are relevant mainly near the
gap closure, where the pairing strength is considerably
reduced.

The theoretical uncertainties in the theoretica eval-
uation of the gap values are mainly concentrated in the
estimate of the medium modification of the nucleon—
nucleon interaction. Still, much work has to be done
before this problem can be clarified.
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Abstract—The Fermi surface of dense neutron matter may experience a rearrangement near the onset of pion
condensation, due to a strong momentum dependence of the effective interaction by spin—isospin fluctuations.
For example, a second (inner) Fermi surface may arise as high-momentum single-particle states are filled and
low-momentum states are vacated. The influence of this phenomenon on the superfluid-transition temperature
isinvestigated with the aid of a separation transformation of the BCS gap equation. Attention is also given to
modifications of the specific-heat discontinuity at the transition temperature and the relation between the tran-
sition temperature and the zero-temperature energy gap. © 2001 MAIK “ Nauka/Interperiodica” .

Understanding the properties of strongly correlated
Fermi systems that may exist beyond the domain of
applicability of Fermi liquid theory presents a continu-
ing challenge for theorists. The study of such systems
promises valuable insights into exotic materials rang-
ing from high-T. superconductors to the matter inside
neutron stars.

Key aspects of behavior beyond Fermi liquid theory
hinge on the rearrangement of the characteristic Lan-
dau quasiparticle distribution ng(p). For the sake of
simplicity, we shall restrict the discussion to homoge-
neous systems, for which the Fermi liquid distribution
ne(p) coincides with the momentum distribution of an
ideal Fermi gas. The actual quasiparticle distribution
n(p) inevitably departs from ng(p) = 6(pg — p) if the
necessary condition for its stability isviolated. At T =
0, this condition requires that the change in the ground-
state energy E, remain positive for any admissible vari-
ation on( p) away from ng( p). More explicitly, stahility
of a given quasiparticle distribution implies

- dp
%, = [E(pn(p)oN(p) —5>0. (D

where &(p, n(p)) = &(p, n(p)) — M is the quasiparticle
energy measured relative to the chemical potential . In
the case of n(p) = ng(p), condition (1) is violated if
g(p) risesabove 1 at p < pg, or if €(p) dropsbelow | at
p > pr- A rearrangement of quasi particle occupanciesis
precipitated when the density p attains a critical value
p.r a which the relation

&(P, Ne(P); Per) = O 2)
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Physics, Washington University, St. Louis, USA.
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exhibits abifurcation leading to anew root p = p,. This
relation usualy serves only to determine the Fermi
momentum pg.

In homogeneous systems, the simplest type of rear-
rangement of the momentum distribution n(p) of qua-
siparticles of given spin and i sospin maintainsthe prop-
erty that its values are restricted to 0 and 1, but the
Fermi sea becomes doubly or multiply connected [1].
In particular, we may suppose that, at densities exceed-
ing the critical value pg, the normal-state distribution
B8(pe — p) is dtered by the formation of a “bubble,” or
particle void, over arange p; < p < p, < pg With the
Fermi momentum pg readjusted to maintain the pre-
scribed density. As shown in Fig. 1, one then has three
Fermi surfaces, namely, two inner surfaces|ocated at p;
and p,, along with the usual outer surface at p-. How-
ever, a more dramatic rearrangement can also occur,
resulting in a distribution with a partial occupation of
quasiparticle states that lacks the distinctive trademark
of Fermi liquid theory, namely, the discontinuity of
n(p) at the Fermi surface. In this scenario, called fer-
mion condensation, there exists a finite momentum
range over which the quasiparticle energy coincides
with the chemical potential, corresponding to the cre-
ation of a“fermion condensate” [2-4].

Any change in n( p) from the normal -state distribu-
tion n:(p) must entail an increase in the kinetic energy
of the quasiparticle system. Accordingly, the antici-
pated rearrangement only becomes possible if it is
accompanied by a counterbalancing reduction of the
potentia energy, which implies that the effective inter-
action between quasiparticles has acquired a substan-
tial momentum dependence. The emergence of such a
strong momentum dependence is exactly what one
expects to occur as the density is increased toward the
critical value p, for a second-order phase transition in
which abranch of the spectrum wy(k) of collective exci-
tations of the Fermi system collapses at anonzero value
k. of the wave vector k.

1063-7788/01/6404-0619%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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n(p)

Pi Pr Pk P

Fig. 1. The bubble-type rearrangement of the quasiparticle
occupation n(p).

To justify the latter assertion, we follow the lead of
Dyugaev [5] and consider the behavior of the quasipar-
ticle scattering amplitude F(p,, p,, K) = 22T (py, py; K,
w=0)M*/M in the vicinity of the phase-transition
point. In this construction, I (p,, ps; K, w) is the ordi-
nary (in-medium) scattering amplitude, M* isthe effec-
tive mass, and zis the renormalization factor determin-
ing the weight of the quasiparticle pole. The amplitude
F can be written as the sum F" + F® of aregular part F
and asingular part FS, with the latter taking the univer-
sal form

Fas: py(P1 P2 K; p—= Po)
= _OGBOBVD(k) + anOBBD(lpl_ p2 + kl)

in terms of the propagator D(k) of the collective excita-
tion. This form has been derived with due attention to
the antisymmetry of the two-particle wave function
under exchange of the particle coordinates (spatial,
spin, isospin). The collective propagator is conve-
niently parameterized according to [5]

D (k) = B>+ Yy (KIK: - 1), )

where the parameter B(p), with B(p,) = 0, measures the
proximity to the phase-transition point. The vertex O
appearing in (3) determines the structure of the collec-
tive-mode operator and is normalized by Tr(OO*) = 1.
Specifically, the choice O = 1 is made in treating the
rearrangement of the quasiparticle distribution due to
collapse of density oscillations [6], while O = ¢ is
appropriate when studying the rearrangement of ng(p)
triggered by the softening of the spin collective mode
[7]. In the present investigation, we will be concerned
with dense, homogeneous neutron matter in which
abnormal occupation isinduced by spin—isospin fluctu-
ations; thus the pertinent operator is O = (o - k).
Details aside, the most essential features of the
model defined by Egs. (3) and (4) are that the function
F(p1, p,, k =0) = D(p, —p,) depends on the difference
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p; — P, and that, in the neighborhood of the soft-mode
phase-transition point, this dependence becomes very
strong.

Equations (3) and (4) provide suitable raw material
for an efficient evaluation of the single-particle spec-
trum &(p) in the vicinity of the second-order phase
transition. We implement a straightforward connection
between &( p) and the scattering amplitude F(p,, p,, k =
0), thereby avoiding the awkward frequency integration
that would be encountered in an RPA approach. The
connection is made through the relation

an(p,) d’p;
op: (2m)*

which we derive in the Appendix using the Landau—
Pitaevskii identities [8]. The contribution to (5) from
the singular part (3) of F can be easily integrated over
the momentum p to obtain

0 1
—%(pp) = % + ZJ-FGB; aB(pi pl) ®)

2

d3 P1
(em®

In writing this result, we assume that the contributions
to the single-particle spectrum from the regular part of
F are accounted for by the replacement of the bare mass

M appearing in Eq. (5) by an effective mass M;* . (We
note that the generally accepted valuesfor this effective
mass due to the nonsingular interactionsliein therange
0.7-0.8 for the relevant densities in the neutron-star
interior.)

In his pioneering worksreviewed in[9, 10] (seeaso
[11]), A.B. Migdal revealed to usthat if the density p of
neutron matter in the liquid core of a neutron star
attainsacritical density p., of some 2-3 timesthe equi-
librium density p, of ordinary nuclear matter, the spin—
isospin collective mode collapses at afinite wave vector
k = k. ~ pr and a phase transition identified as pion con-
densation sets in. A conspicuous feature of the ground
state of the system beyond the phase-transition point is
the presence of a condensate of spin—-isospin density
waves. As shown in Egs. (3) and (4), spin-isospin fluc-
tuations with k ~ k, are significantly enhanced in the
vicinity of the transition as a consequence of the diver-
gence of the propagator D(k — k., p.).

Let us now apply Eq. (6) to dense neutron matter
near the onset of neutral pion condensation. Insertion of
the parametrization (4) into (6) yields the working for-
mula

_p
&(p) R

+3[D(p-p.In(p) ©)

2

_ D
£(p) = 5o
. O
1 1 d’p,
3 n(py)—% .
2 B+ ((p—p)2 k)UK (2m)’
PHY SICS OF ATOMIC NUCLEI \Vol. 64 No. 4 2001
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E(p)/ed
0.1+

1
1.0
plpe

Fig. 2. The neutron spectrum &(p) (measured in sg =

pé/ZM) at the critical densities p g corresponding to three
different setsof model parameters: (a) y= 1.25my;, k.= 0.9pg,

B2 =0.22m2 (pr = 1.19py), (b) y = 1.25my, k. = 0.9p,
B2 =0.25m2 (p. = 1.76pg), and () y = 1.25my, k. = pg,

BZ = 0.13m$[ (p.r = 1.88pg), where my is the pion mass.
Two different positions of the bifurcation point, namely,
po = O (for parameter sets (a) and (b)) and p, = 0.12pk (for
set (c)), areindicated by arrows.

Unfortunately, thereis as yet no definitive microscopic
treatment of neutron-star matter from which one can
extract or derive quantitatively reliable values for the
input parameters 3, y, and k.. Moreover, the predicted
values of the critical density p,,, range from 0.2 to
0.5 fm3 (corresponding to 1-3 times p,), depending on
anumber of theoretical assumptions [9-11].

We have little recourse but to perform calculations
based on the formula (7) for several choices (or
“guesses’) of the parameters of the microscopic model.
Substituting expression (7) into (2), one finds the criti-
cal density p r a which the solution of the latter equa-
tion bifurcates. For p > p, g, this equation then deter-
mines two new momenta p; and p, where &( p) vanishes
and between which &( p) is positive. The bubble region
evidently lies between these two momenta. Representa-
tive numerical results for the spectrum &(p) are dis-
playedin Fig. 2. Resultsfor the phase diagram of dense

neutron matter, plotted in the p/p, versus B%m2 plane,
are presented in Fig. 3. Different values of y are consid-
ered while keeping the parameter k. fixed at the value
0.9p¢ suggested by earlier numerical calculations [10].
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Fig. 3. Phase diagram of neutron matter in the variables p

(measured in py) and B? (measured in m2 ), ascal cul ated for

ke = 0.9pe and four different values of y, which (in my; units)

label the corresponding phase boundaries separating the
bubble phase (upper left) from the norma phase (lower
right).

It is quite clear that variation of the parameters 3, v,
and k, within sensible bounds can have strong effects
on the phase diagram and therefore on the extent, in
density, of the phase with rearranged quasiparticle
occupation. Nevertheless, our numerical study has doc-
umented four characteristic and generic features of the
bubble rearrangement.

(i) The critical density pg for the rearrangement is
less than the critical density p,,, for pion condensation.
Since both phenomena are linked with the strong
momentum dependence of the amplitude F(p;, p,;
k —= 0), rearrangement of the quasiparticle distribu-
tion may be viewed as a precursor of pion condensa-
tion.

(i) The bifurcation point associated with formation
of a bubble in the neutron momentum distribution is
located at small momenta, py < 0.2pg, regardliess of the
applicable value of pg.

(i) The spectrum &(p) exhibits a deep depression
for p ~ (0.5-0.6)pe.

(iv) The ratios p/pe and py/ pe are insensitive to
the actual value taken by p., within the range of plausi-
ble theoretical predictions.

The emergence in neutron matter of one or more
new Fermi surfaces positioned at low momentum val-
ues would provide a new avenue for rapid direct-Urca
neutrino cooling of neutron stars [12]. More broadly,
the creation of new Fermi surfaces by the mechanism
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we have described, as well as the more profound rear-
rangement involved in fermion condensation, would
call for revision of many of the conclusions that have
been developed within Fermi liquid theory. Here, we
shall focus on some elementary properties of pairing in
the reconfigured system.

For simplicity, we shall assume that, beyond the
instability point, there exist only two Fermi surfaces, an
outer one defined by the usual Fermi momentum pg and
an additional inner one at p, lying closeto the originin
momentum space. (Thus, we consider the limiting case
p, = 0inour original specification of the “bubble” rear-
rangement.) Also in the interests of simplicity, we
restrict the analysis to the 'S, pairing problem, for
which the BCS gap equation has the ssmple form

A(p) = V(P p)€ " (p; T)A(p)dT,  (8)

where V" is the effective particle—particle interaction.
For economy of expression, we have adopted the nota-
tion dt = p*dp/21e for the volume element and

-1, _ tanh[E(p)/2T]
€ (p;T) = —2E(p) ©)

for the usual combination of tanh-temperature factor
and energy denominator 2E( p). The form of the super-
fluid quasiparticle energy E(p) =[&2(p) + A%(p)] * isof
course responsible for the nonlinearity of the gap prob-
lem. The quantity &( p) isto beinterpreted asthe single-
particle spectrum in the system with pairing turned off.

Implementing the strategy for solving gap equations
that was introduced in [13] and elaborated in [14, 15],
we write the block V', identically, as a separable part
plus a remainder that automatically vanishes on the
outer Fermi surface. Thus, we write

V(P1 P2) = Ve@e(P1) @:(P2) + W(pPs, p2)  (10)

and choose @-(p) =V (p, pr)/Vs, where Ve = V' (pg, Pr).
It follows directly that W(p, pr) = W(pg, p) = 0, as
required. In the ordinary case where there is only one
Fermi surface, this decomposition allows us to replace
the singular nonlinear integral equation (8) by two
equivalent equations, namely, anonsingular quasilinear
integral equation for a T-independent shape factor
X(p) =A(p)/Ar and anonlinear “algebraic” equation for
the T-dependent gap value Ax(T) = A(pg, T). In the
present case involving two Fermi surfaces, we must
extend the procedure of [13] to deal consistently with
theinner Fermi surface aswell as the outer one. Thisis
achieved by decomposing the block W appearing in
(20) in the same manner as before, setting

W(py, P2) =W @ (p)@(py) + Y(Py ) (1D
with @ (p) =W(p, p)/W, and W, =\W(p;, p) =V '(pr, 1) —

V(pe, PV (Pe. Pe), S0 that Y(p, p) = Y(py, P) =
Y(pe, p) = Y(p, pe) = 0. The above relations imply the
boundary values

O(p) =1, @(p) =1, @(ps) =0, (12

CLARK et al.

whereas the key quantity @:(p,) ~ V'(p;, pr) character-
izes the connection between the quasiparticles of the
two Fermi surfaces in the particle-particle channel. If
@:=(p;) vanishes, these surfaces are disconnected and
the problem is obviated.

In the general case where ' (p,, pe) # 0, insertion of
Egs. (10) and (11) into the BCS gap equation (8) yields

A(p) = ~Ve@e(P) [0=(P)E " (py; TIA(Py)dr,
~Wi (P[P 6 (Py; T)A(pr)elT,
~[Y(p. p2)€” (ps; T)A(py) .

This eguation is conveniently recast as
A(p) = ~Vexe(P) [@(P)E " (ps; T)A(py)dlTy
Wi, (P) [ (P 6 (Py; T)A(pr)elty

or, equivalently,
A(p) = Bexe(p) + Bixi(p),

(13)

(14)

(15)
with

B: = —vijF(p)%‘l<p; T)A(p)dr,

B (16)
B = _WII(pI(p)% (p; T)A(p)dt

and

Xe(P) = 0c(p) = [¥(p, )€ (py; TXe(py)dTy,

Xi(P) = &(P) = [Y(P, P& (Py; TIXi (P,
Appealing to Egs. (12), we observe that

Xi(P) = Xe(Pe) = 1, Xi(pe) = O,

Xe(P1) = @(py) = V(py, PRV (Pe: PE)

because the block Y vanishes when either of its argu-
ments lies on a Fermi surface. By this same property, it
is permissible, within the quantity € appearing in the
integral equations (17), to replace the superfluid quasi-
particleenergy E(p,) by |&(p,)| and thetemperature fac-
tor tanh[E (p.)/2T] by unity. Because the energy gaps
involved are generally very small compared to the
Fermi energy, these replacements are valid to an excel-
lent approximation. We are then left with the linear
integral equations

(17)

(18)

Xe(P) = ¢:=(p) —_[Y(p. pl)mxp(pl)dn,
(19)
Xi(P) = @(P) - [Y(P. p1>—2—|g(151)—|x.(p1)dn

for the two shape functions needed to assembl e the gap
function A(p) viaEq. (15). Since thereremains no trace
PHYSICS OF ATOMIC NUCLEI
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of the temperature T in these equations, we are free to
regard the solutions X, (p) and xx(p) as T-independent
guantities.

Using the properties (18), Eq. (15) yields
A =A(pg) = Bg,
A =A(p) = B+ Bege(p).

Upon introducing the decomposition (15) in (16), we
arrive at the system of two equations

Br = —VeLeBe —VeLg B,
By = -W,LieBr —W,L;,B,

for determining the amplitudes B and B, entering into
the construction (15), with

Lee = [@e(P)E ™ (P; TIXe(P)d,
Lu = [@(P)€ " (p; THXi(p)el,
Lie=Le = [@(P)E (P TIXe(p)e
= [@:(P)E" (p; T)X/(P)elr.

In practice, it is advantageous to rewrite the system of
Egs. (21) in the equivalent form

[1+ VeLee(T) = Ve@e(p)Le (T)]Ae
+VeLg(T)4, = 0,

[WILi(T) = (1+W, L, (T)e=(p)]A:
+[1+WL,(T)]A = 0.

For a solution to exist, the determinant %(T) of (21) or
(23) must equal zero for any T. Together with either of
the two equations (21) [or either of (23)], the dispersion
relation 9(T) = 0 forms a closed system that allows one
to determine all characteristics of the superfluid system
feeding upon the two Fermi surfaces|ocated at p; and p;.

We begin to explore the implications of the formal-
ism we have developed by examining the influence of
the additional (inner) Fermi surface on the superfluid-
transition temperature T, and on the behavior of the
pairing gap near T.. As shown earlier, Egs. (21) [or
(23)] become decoupled if L = 0. Let us assume, asa
first case, that both of the interaction parameters Vi and
W, are negative, so that Cooper pairing could exist at
both Fermi surfaces when they are disconnected. The
pairing effect is naturally more intensive at the main
(outer) surface due to a greater density of states. From
the two solutions of the problem as stated, we therefore
choose A(p) = ApXp(p) With & = @(p)Ag, implying

that the individual critical temperatures T, and T, sat-
isfy TcF > Té . Itisworth noting that, in spite of thisine-

quality, the magnitude of theratio A, /A: ~ @-(p,) isnot
necessarily less than unity (see below).

(20)

21

(22)

(23)
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Working in the vicinity of the transition temperature
T., standard calculations in the spirit of BCS theory
establish the behaviors

|—FF(TH Tc)
—= Ne(0){ (1 +gf)(L +at)—B[Df + g/ D/1},
Ly (T — To) — N,(O)[L +aT—BD]],
Lie(T—> To)— N, (0)@e(p,)[L +at—BDf]

in terms of the dimensionless parameters T = (T, —
TT,, Dy = Ap/T,, and D, = A/T.. In Egs. (24), Ni(0)
and N;(0) are the densities of states at the indicated
Fermi surfaces; gir = @F (p,)N, (0)/Ns(0) is an effective
coupling constant; and L = In(e2 /TiT,) + C measures

the transition temperature, where 8,(:) is the free Fermi
energy and the value of Euler’s constant is C = 0.577.
Certainirrelevant constants entering the derivation of the
limiting behaviorsof L, (T), L,(T), and Le(T) reducein
effect to a renormalization of the critical temperatures
TCF and Tl and may hence be omitted in forming

Egs. (24). The temperature dependence of the relevant
guantities is determined entirely by the ratio a/f =
(812/7)(3), where {(X) is the Riemann zeta function.

Upon substituting the results (24) into (23), we are
led to

[1+VeNg(O)(L +at—PBD{)] D¢
+ VN, (0)@e(p)(L +aTt—BD{)D, = 0,
—@:(p)) D +[1+W,N,(0)](L +at—BD/)D, = 0.

Putting T = T, and evaluating the determinant %(T,) of
this system, we arrive at a closed formulagiving the new
critical temperature T, in terms of the individual critical

(25)

temperatures TcF and TL for the uncoupled system:

(L=1)(L=lp) =gl L = 0. (26)

Here, we have introduced the definitions | =

In(e2 /mTL ) + C==1/VeN(0) and |, = In(e 2 /mT.) + C =

—1/W,N, (0). Evidently, the inequality T, > T, implies
[ >

The situation for small coupling, gle <1, isespe-

cidly transparent. In this case, the value of L (which
measures T,) differs little from the value of | (which

measures TCF ), permitting us to replace L by I in the

last term of the determinantal condition (26). The solu-
tion of Eq. (26) isthen given by

L +1 I —1p)?
L, = I2Fi|:(I4F) +gI2FIIIFi|

12

(27)
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This formula resembles the familiar textbook solution
of the two-level problem. If, in that problem, the off-
diagonal interaction is switched on, the two energy lev-
els repel each other. The lower level moves downward
and the upper level moves upward. Correspondingly, in
the current problem, the greater logarithm (in this case,

L,) increases while the smaller logarithm (L)
decreases; in particular,
[
L —lp=—g>—LE (28)

IFI _

I
| F
Since |; and | are both positive in the case under con-

sideration, with |, > |, we conclude that the emergence
of the second Fermi surface increases the critical tem-

perature T, relative to TcF :

The picture changes nontrivially when we turn to
the more interesting case in which pairing is absent at
the new Fermi surface when the two surfaces are dis-
connected, though still present at the original surface.
Upon restoration of the coupling, apairing gap isfound
to exist on the new Fermi surface aswell asthe old one,
afeature which isdirectly seen from either of Eq. (23).
The result (27) remains valid. However, in contrast to
the preceding case, the value of |, becomes negative
whilel stays positive. Consequently, the single accept-
able value of L derived from Eq. (27) increases relative
tolg, implying adecrease of T, with respect to TCF . This
finding should not come as a surprise: the value of the
pairing gap depends on the shape of the single-particle
spectrum, and if the spectrum becomes flatter in a
region where the interaction is repulsive, there must be
asuppression of the gap value and a corresponding sup-
pression of T.. We should emphasize that the situation
is now quite different from that of perturbation theory,
where the gap increases independently of the sign of
the perturbating interaction. The distinctive behavior
we have described isindicative of afailure of perturba-
tion theory in this second case. We should al so point out
the close resemblance between the predicted behavior
and the proximity effect observed in junctions between
asuperconductor and anormal metal: the superconduc-
tor tends to induce superconditivity on the normal side
of the junction, at the expense of a suppression of its
intensity on the superconducting side.

Let us now turn to the matter of the jump in the
superfluid specific heat C, at T = T, triggered by the

branch point in AE (T) at the critical temperature T,.. In
BCStheory, there is a universal relation

AZ =3.06T (T.-T) (29)

whose origin is clarified if we set L,z = 0in Eq. (23).
Subtracting from the general equation its special case
for T=T,, several cancellations |eave uswith the result

Lee(T) = Lee(Te) = O, (30)

CLARK et al.

which is completely independent of the choice of the
interaction between the particles. The relation (29) fol-
lows directly.

In the genera case where L # 0, the same subtrac-
tion procedure yields

al2L -1, _IF_gIZFII]T

(31)
—Bl(L=1,)DZ+(L—l—g{!,)D{] = 0,

from which we learn that AE and A|2 arelinearin T, —
T. Consequently, the specific-heat jump at T = T, per-
sistsin the presence of the two Fermi surfaces.

To determine the gap values and the magnitude of
the specific-heat jJump, another relation between A- and
A, is needed. With the help of the second of Egs. (25),
we obtain

D, = @(p)(L-1e/) " De=dDe.  (32)
Together with Eq. (31), thisrelation permits usto eval-

uate both Az (T — T.) and A,(T —= T,).

Theresult (32) isreadily applied to the eval uation of
the specific-heat jump AC at T = T in the system with
the two Fermi surfaces. One has

AC = —TS—_IS_
RE SO R
T [ dar :|T=TC P)LL=N(P (2-,-[)3'

with n(p) = {1 + exp[&(p)/T]}~'. Simple algebra pro-
duces the result

AC

Cn

where C, is the specific heat of the system just above
the transition temperature and the excess R, again

assuming gle < 1, isgiven by

N 6D,2/6T_1
NelopZ/oT |

(1+REEE

n BCS

(34)

(35)

It is instructive to analyze the excess R in more
detail. On the one hand, its value is proportional to the
ratio N, (0)/Ng(0), which is seen to be small by phase-
space arguments. On the other hand, R also depends on
the departure of the quantity

OD//AT __ @i(p)

ADZAT  (L—1c/))°
from unity. This quantity, being positive and propor-
tional to theratio V'(p;, pr)/ V' (pg, Pr), canin fact have
avalue considerably in excess of 1. Indeed, the singular

interaction represented by (3) should be present in both
the particle-hole and particle—particle channels. If the
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ratio of V" sisevaluated for the amplitude F* of Eqg. (3),
we immediately infer that for k. close to pg the factor
1 + Rappearing in (34) does exceed unity.
In view of the above findings, it may be expected
that the touchstone formula
Dges(T =0) = 1.57T, (36)
of BCS theory fails for a system having two or more
Fermi surfaces. To verify this prediction, we (i) observe

that the vanishing of the determinant 2)(T = 0) givesthe
relation

—greLo(A)1, = 0,

[Lo(Ar) —Tel[Lo(A) —1i] (37)

where Ly(Ar) = In(e/Ar) and Ly(A) = In(e2/A); (ii)
insert EQ. (32) into this relation; and (iii) compare the
result with (26). After straightforward algebra, one
obtains

1.57T
LO(AF) —L= In[m-;%ﬁ}

_ Ind,
g'Fl (I/MD[1= (1) = Ind ]

(38)

Theratio in the last member of Eq. (38) should be pos-
itive for positive Ind,. Further, if the value of thisloga-
rithm is of order unity, the connection

[ _L57Te
[AF(T 0)

can be established between the excess in the specific-
heat jump and the deviation of the ratio T,/Az(T = 0)
fromits BCSvalue.

In summary, we have studied the rearrangement of
single-particle degrees of freedom that precedes the
phenomenon of pion condensation, the phase transition
in nuclear and neutron matter that was predicted by
A.B. Migdal more than 25 years ago. We have found
that this rearrangement may express itself in the emer-
gence of a bubble in the quasiparticle momentum dis-
tribution. As aconsequence, the Fermi surface becomes
doubly connected. We have examined some of the
repercussions of such a rearrangement for the super-
fluid properties of dense neutron matter, specifically the
ensuing modifications of the standard BCS results for
the specific-heat jump at the transition temperature and
for the relation between this critical temperature and
the gap value at zero temperature. The formalism we
have developed and the results we have obtained can be
applied more widely in the theory of strongly corre-
lated Fermi systems. In this spirit, it will be of special
interest to revisit the case of superfluid *He, which
offersarealistic example of aFermi liquid existing near
an antiferromagnetic phase transition.

} = RInd, 39)
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APPENDIX

Thekey relation (5) between the spectrum &( p), the
static limit 'k of the Landau scattering amplitude, and
the quasiparticle momentum distribution n(p) can be
derived from the following two formulas (19.2) and
(19.3) of [16]:

G '(p, €) _ 1.« .
—% = % + z[FaB,aB(p, P; € €1)
4 (A.1)
XG(pll ) G(pl+k 81! k—»O)
(2T[) i
and
aG_l(p, ep _ lorw _
T M % + i]'ras,as(lo, P1; € &)
, d' (A.2)
x G(py, El)MlG(pla g+ 0w, w— 0) i_ :
(2 i
The single-particle Green’s function
G(p, ) = 2G'(p,€) +G'(p, &) (A3)
ismade up of the pole term, namely G¢(p, €) = [e —&(p)]*

multiplied by the quasiparticle weight factor z, together
with the regular term G'(p, €). The symbol * entering
(A.1) denotes the static limit I'(py, p,, €, &, k —= 0,
w — 0) of the scattering amplitude, with the limits
taken so that wk — 0. Similarly, ' denotesthe static
limit evaluated under the opposite constraint, k/co — 0.
The amplitudes ' and ' are linked to one another by

K
raB,yé(pla P2; €1, &) = r;)B,yé(pla P2 €1, €5)

+J-rlo(rE,yr](pl’ p1 81! 8)'A\(pl 8)

w d4p1
XTI g es(Ps P2 € €)——,
(21

(A4)

where
A(p,€)=G(p,e)G(p +k, e, k —0) (A.S)

~G(p, £)G(p, € + W; W — 0) = 2Tz 5(5)32293
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Our objectiveisto recast (A.2) into aform contain-
ing only quasiparticle contributions. To this end, let us
multiply both membersof Eq. (A.2) from theleft by the
product A and integrate. Rewriting the result for the
first term on the right-hand side with the aid of (A.4),
we find

0G (p1. £)p, d'py

1
5[ Tan.an(P: P & DAy, €1

0g; Mo’
= 5[Teposl.Psi £, £) AP £) 2 Ty
- af,ap s M1y ©& 1y B

1 o
+ 5[ apap®: P; & &) = ap an(P, P €, €]
d*p,
(2n’i

Callecting, on the right-hand side of the equation, sim-
ilar terms containing M and using (A.1), we are led to

0G (p., £)p,; d'p,
0g,; M (21‘[)4i

_1l« . Py .

_zrraﬁ,aﬁ(p1 P 5’51)G(p1131)MG(p1+k131’ k—0)

fo (A7)
P1 ® ) P1
(2_’_[)4| - ZI.FUB,O(B(pv P €, sl)G(pla 81)-'\Z

x G(py, 81)%G(p1! € +w; w—0)

1
5[Tap.ap(P. s €. £) AP, €)

X

d4p1
(2m)’i’

Next, we subtract (A.1) and (A.2) from one another and
observe that the difference coincides (in magnitude)

with the right-hand side of Eq. (A.7). The latter equa-
tion may then be rewritten as

X G(py, & + W; W —=0)

9G(p,€) _ 3G '(p,€) p
ap o€ M

1
+ Zzzrrlc;g,ag(p: P1; €€, =0)

(PG (P1, ey P1dn(p,) d’py
0 og %Mdi(pl)(zme"

(A.8)
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We now set € = 0 and replace 0G'(p, €)/0p by the
derivative of the quasiparticlefactor (G?)'(p, €), whichis
reduced to z'0&( p)/0p. Analogous transformations of the
first term on theright-hand side of Eq. (A.8) yidld z'p/M.
Since (p/M)dn/dg, = (dr/dp)(M* /M), we arrive at

ﬁ = B
op M
(A9)
on(p,) &’p,
op: (2m)*

where F = Z2(M*/M)I'*. This is exactly the connection
formula (5) that has been applied in the main text of the
article.

1
+ EIFGB,GB(p’ pl; g, 81 = 0)
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Abstract—A realistic version of the generalization of the theory of finite Fermi systemsto the case where some
complex configurations involving phonons are explicitly taken into account is proposed. Secular equations
describing the fragmentation of simple states in odd and even—even nuclei over complex configurations that
belong to, respectively, the quasiparticle O phonon + quasiparticle O phonon O phonon and the two quasi par-
ticles O phonon type and which are presently of greatest interest are derived on the basis of general relations
for nuclei that involve pairing (nonmagic nuclei). These equations take into account effects associated with
ground-state correlations due to complex configurations and with the additional quasiparticle—phonon mecha-
nism of Cooper pairing in nuclei. The effects in question were disregarded previously, but they are of interest
since they can be observed in present-day experiments. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is well known that the conventional theory of
finite Fermi systems was developed by A.B. Migdal [1]
asageneralization of the Landau microscopic theory of
Fermi liquids to the case of afinite nucleus—that is, to
the case of a Fermi system consisting of two types of
nucleons, possessing the property of superfluidity, and
having finite dimensions. From the point of view of a
comparison with available aternative approaches to
studying even—even nuclei, the equations of the con-
ventional theory of finite Fermi systems appear to be
the equations of the random-phase approximation
(RPA) for magic nuclei or the equations of the quasi-
particle random-phase approximation (QRPA) for non-
magic nuclel as formulated in terms of the Green's
function method. However, the use of consistent many-
body theory in terms of the Green's function method
proved to be semina for a further development of the
microscopic theory of the nucleus. The statement that
the parameters of the theory have the same values for
al nuclel (with the exception of light ones)—the uni-
versality principle advocated by Migdal and his disci-
ples—is of paramount importance, especialy at
present, when much attention is being given to various
unstable nuclel not yet investigated experimentally. In
particular, this property of the theory of finite Fermi
systems was largely responsible for its rapid and suc-
cessful advancement to the fore as the underlying the-
ory in the physics of giant multipole resonances imme-
diately after their discovery in 1971 and 1972 (for an
overview, see[2, 3]).

A further development of the theory of finite Fermi
systems was associated primarily with taking into
account self-consistency effects [4-6] and mesonic
degrees of freedom [6]. Resorting to the coordinate rep-

resentation, which made it possible to treat reliably the
continuous single-particle spectrum in magic ([6]) and
nonmagic ([7]) nuclei, was of paramount importance
from the point of view of the computational technique.
This circumstance was crucial for describing unstable
nuclei whose binding energy is close to zero. Thus, the
theory of finite Fermi systems basically remained a
consistent microscopic theory that took into account
relatively simple configurations, 1plh within the RPA
or 2gp within the QRPA; that is, an excited state was
treated as a superposition of these configuraIionsl)
(more complex configurations were assumed to be
effectively absorbed in the phenomenological constants
of the theory of finite Fermi systems). For magic and
odd near-magic nuclei, particle + phonon configura-
tions were taken into account in order to compute the
energies of the corresponding multiplets and some
static effects (see the review articles [3-5]).

A microscopic theory that takes into account more
complex configurations in nonmagic nuclei and which
is based on the Green's function method has been
developed since the study of Belyaev and Zelevinskii
[8], who considered pairing effects in odd nuclei. For
even—even nuclei, it was the problem of describing the
widths of giant multipole resonances (for an overview,
see[2, 9-11]) that required generalizing the (Q)RPA. It
turned out that, in order to solve this problem, it was
sufficient, as arule, to take into account the simplest of
more complex configurations (that is, 1plh O phonon
[9, 10] or 2gp O phonon [11]). It should be emphasized
that, in relation to the problem of taking into account

DOf course, we also include ground-state correlations taken into
account within the RPA or QRPA. For the sake of simplicity, we
make use of the notation gp (quasi particle), implying Bogolyubov
quasiparticles and the full QRPA basis involving quasiparticle
1plh, 1hlp, 1plp, and 1h1h channels.

1063-7788/01/6404-0627$21.00 © 2001 MAIK “Nauka/Interperiodica’
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simple configurations, that which incorporates more
complex configurations is much more involved both
theoretically and numerically, especially for nuclei
where pairing effects are significant. A wide variety of
approaches have been devel oped to tackle the last prob-
lem. Of these, the most advanced approach is that
which is based on the quasi particle-phonon model [11]
relying on the Hamiltonian formulation and separable
forcesfitted to data on the energies of low-lying collec-
tivelevels. However, thismodel takes no account of the
single-particle continuous spectrum and, as a rule, of
ground-state correlations associated with complex con-
figurations.

In recent years, the need for refining and further
developing a microscopic theory for taking into
account complex configurations, especially in nuclel
with pairing, has ever become more pressing, predom-
inantly in connection with the emergence of new exper-
imental results. By way of example, welist below some
of the realms where advancements in experimental
techniques have made it possible to obtain relevant
information:

(i) Intensive development of modern germanium
detectors and multidetector gamma spectrometers like
those of the EUROBALL cluster and the EUROBALL
type (see [12-14]) ensured an unprecedentedly high
resolution and a high efficiency in recording gamma
rays of energy up to 20 MeV. This furnished radically
new information not only about deformed nuclei but
also about multiplets of the 1gp O phonon and the
1gp O 2phonon type [13, 14]—that is, direct informa-
tion about configurations involving phonons.

(ii) Results that have already been obtained—and
even to a still greater extent, those that will be
obtained—at radioactive-beam accelerators call for
theoretical approaches that would take into account
complex configurations for nuclei whose binding
energy is close to zero, nuclei with a high neutron def-
icit, neutron-rich nuclei, and other unstable nuclear
Species.

In addition, there are many unresolved questions in
the region of the neutron binding energy and above
(region of giant resonances). These include those that
are associated with the fine structure and decay proper-
ties of resonances, the origin of resonance-like struc-
tures, and the role of the odd nucleon [10, 11].

Experience gained in the first studies aimed at
applying thetheory of finite Fermi systems[6] to taking
into account complex configurations in odd nuclei on
the basis of thistheory [3, 5] and on the basis of its gen-
eralization that incorporates 1p1h O phonon configura-
tions [9, 10] showed that the Green’s function formal-
ism makes it possible to consider the single-particle
continuous spectrum, ground-state correlations associ-
ated with complex configurations[9, 15, 16], and com-
plex configurations in the particle—particle channel (in
particular, in the problem of Cooper pairing) [17, 18].
The magjority of these effects can be observed in
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present-day experiments, and it is of prime importance
that they can be incorporated in a theory that employs
the Green’s function formalism.

In order to formulate a viable approach—that is, an
approach that would allow a sufficiently fast numerical
implementation for a great number nuclei with pairing
(it should be borne in mind that such nuclei present
considerable computational difficulties) and which
would be able, on the other hand, to describe present-
day data—one can make use of two simplifying cir-
cumstances: the existence of the small parameter g> (g
is the dimensionless amplitude for the production of a
low-energy phonon) for semimagic nuclei [19] and the
absence of self-consistency (in just the same way asin
the conventional theory of finite Fermi systems) in our
problem featuring complex configurations (this means
that we will use two sets of input phenomenological
parameters—parametersthat describe the mean nuclear
field and parameters that describe nucleon interactions
in the particle-hole and the particle—particle channel).

On the basis of the Green’s function formalism, we
propose here viable methods for explicitly taking into
account some complex configurationsin odd and even—
even nuclei. We will derive secular equations that
describe the fragmentation of simple states over com-
plex configurations in nonmagic nuclei. In order to
avoid encumbering our presentation, some results will
be presented, however, only for magic nuclei.

2. GENERAL RELATIONS FOR NUCLEI
THAT INVOLVE PAIRING

In this section, we obtain general relations that will
be specified in Sections 3 and 4. Here, we do not preset
any concrete form of self-energy operators, only
assuming that they involve quasi particle—phonon inter-
action generating complex configurations.

Since there is no self-consistency, the phenomeno-
logical pairing gap A, and the phenomenological mean
field that is described by the Woods—-Saxon potential
and which determines the relevant single-particle ener-
gies e, and the corresponding wave functions appear as
inputs in our problem. Since the self-energy operators
contribute to the phenomenological quantities e, and
A, specia care should be taken here to avoid double
counting. For this, the above phenomenological quanti-
ties must be refined by removing the contribution of
guasi particle-phonon interaction contained in the self-
energy operators from these phenomenological quanti-
ties. The refining procedure—that is, a transition from

{e,, A} to their refined counterparts { €, AA}—is
specified at the end of this section.
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2.1. General Equations for Sngle-Particle Green’s
Functions

In [19, 20], general equations for single-particle
Green'sfunctionsfor aFermi system that involves pair-
ing were obtained in a form where known mean-field
components described by Green's functions of the
Gor’'kov type were singled out explicitly. This was
done by proceeding from the most general equations
for the normal (causal) and anomalous Green's func-
tions G and F in a Fermi system that involves pairing.
In the symbolic notation used in the present section,
they are given by

G = Gy+ GyZG -G,z VF?,
F? = Goz"F? + GozG
where 2, ", M, and =® are the corresponding total

self-energy operators, while G, and GQ arethe Green's

functions for a perfect gas. The set of Egs. (1) must be
supplemented with analogous equations for G" and
F®, which describe the inverse process. In order to
obtain redlistic equations, each self-energy operator is
represented as the sum of two terms,

(D

(e) = 5+ M(e), () = 5 +MYe), )

") = 5+ M), 3P(e) = 57+ MP(e).

Here, thefirst terms are independent of energy and cor-
respond to pairing described by a mechanism of the
Bardeen—Cooper—Schrieffer (BCS) type for the self-
energy operators XV and =® and to our mean field. The
second terms (self-energy operators M%) are not speci-
fied for the time being. It is assumed that they involve
guasiparticlephonon interaction, which generates
complex configurations. The set of Egs. (1) can then be
recast into the form [20]

G = G+GMG-FM"F? -GMWF® -
F® = F?+ F9MG + G'M"F?

~-FMPE? 4+ G"M%G.

Here, the tilde-labeled Green's functions are the
Gor’kov Green’'s functions

FOM®@g,
3)

~2 ~ 2
jad ~h U, Vi
G,(e) = G,(—€) = - + ~ ,
(€) () e—E,+id e+E,—-id
Fy(e) = F(e) @)
A}\ o 1 1 0

2E,E—E, +i5 e+E,—id"

= E)\+€)\’ |~E)\ = /\/E)\+A2.
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It isimportant here that, by definition, the tilde-labeled
guantitiesinvolve no contributions from the sel f-energy
operators M®. Since the input quantities {¢,, A} are
determined from experimental datain our approach, the
contribution of M® must be removed from them in

order to obtain the refined quantities { ¢, , Ah }.

It is advisable to recast Egs. (1) into an aternative
form that would make it possible to single out more
compactly that pairing mechanism which is different
from the conventional BCS mechanism. For this, we
represent Egs. (1) as[19]

G = Go+ GoMG —GozWE®,

@ _ 2 o) (5)
F G M"F +G 277G,

where the Green’s functions éo and Go define refined
quasiparticles (without pairing) in the mean field:
éo = Go+ Goiéo,

Go = GI+GIE"Gh.

(6)

Further, we introduce the Green’s function G" that sat-
isfies the Dyson eguation

G = Go+GoM"G .
The second equation in (5) then reduces to the form

(7

F? = 6"s%G. (8)

Substituting (8) into the first equation in (5), we find
that the Green’s function G satisfies the equation

G = Go+ GoMG -Gz VG s?G. ©)

By using the refined Gor'kov Green's function (4),
which satisfies the equation

G = Go-Go("Goz?)G, (10)
we eventually obtain
G = G+GMG + GM,G, (11)
where the self-energy operator
My = ~(2P6'=@ -5V GE?) (12)

represents the general expression for that part of the
self-energy operator in aFermi system which isrespon-
sible for the pairing mechanism additional to the
refined BCS mechanism{ here, thelast termin (12) [see
Eqg. (10)] corresponds to this mechanism}—that is, for
the quasi parti cle—phonon mechanism in our case.

By way of example, we indicate that, in the case
where al M® = 0, the above results coincide with the
results known from the theory of finite Fermi systems
if our refined quantities are replaced by their phenome-
nological analogs and if M, is set to zero.
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2.2. Secular Equation for the Excitation Energies
of an Odd Nucleus

For the sake of simplicity, we will henceforth use
the diagonal approximation in the single-particle indi-
ces A. For a spherical nucleus, this approximation of
M, is quite reasonable, since off-diagona M,, are
nonzero only for transitions where the initial and the
final state do not belong to the same shell or to neigh-
boring shells. For the problem without pairing, the off-
diagonal case was considered in [21]; the results
obtained there can easily be generalized to the case
where pairing is taken into account. In the diagonal
approximation, the required solutions to the set of
Egs. (3) are given by [19, 22]

Gy (€) = A
)\(e) e)\(e) 13
A(2)+ M(Z) (13)

F(Z)( ) — A A (E)

! Bi(e)

where

Bu(€) = [e—& —My()][e + &, + M;(e)]
A2 2/ _\12 14
—[Ay + M (e)]"
By setting 6,(¢e) to zero, we therefore obtain a secular
equation that determines the fragmentation of asingle-
particle state A over complex configurations specified

by the operators M® in an odd nucleus with pairing.
Accordingly, we have

[N —&, =M,y (N)][N + &, + My (N)]
~(2) (2)(n)]2 - 0’

—[A7 + M,
where ) is a solution to the equation 6,(e) = 0; it must
have two indices, A and n (solution number). Since
M"(e) = M(—€) and since M®(e) is an even function of
€, EQ. (15) isinvariant under the substitutionn — —n.

Following [22], we represent the operator M as the
sum of the even and the odd component,

M(e) = Me,(€) + Mgy(e).
Equation (15) then takes the form

(15)

(16)

E ~ ~(2)
nz_ Ei —2[] M)\od(n) _26)\ M)\e\,(r]) -2/, M}(\Z)(rl)

1
CMZ —Mig+MPm) =0, P

where By = JJes + AL,

From Eq. (3) or (15), we can aso obtain the formal

solution
_ [2 2
I"] =t €\n +A)\nv

(18)
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where

A(2)

6+ M) @ _ A +M2(n)
1+ag,(n)

€ Nn~" T4~ Y n —

MU L+gi(n) 7
with q, = —M,4(nN)/n. Equations that are similar in
formto thosein (18) and (19) were obtained in[17], but

the terms €, and A, were not singled out explicitly
there.

v (19)

2.3. Equations for the Refined Quantities €, and A,

By using Egs. (18) and (19), we can obtain the
refined quantities €, and A, from their phenomenol og-
ical counterparts €, and A,. The experimental single-
particle energies must correspond to dominant levels
(that is, levels characterized by the largest spectro-
scopic factors) obtained as solutionsto Eq. (17) or solu-
tions to the set of Egs. (18) and (19). Therefore, the
refining procedure must be implemented in such away
that one of the solutions coincides with the experimen-
tal value and that this solution (we denote by E, the cor-
responding energy) would remain dominant. We denote
the relevant quantities by €, and A,. With the aid of
Egs. (18) and (19), we then find that the refined quanti-
ties €, and A, are related to their phenomenological
counterparts €, and A, by the equations

~ ~(2)
QtMa(E) @ _ & +MI(E)
1+ag(E) @ 1+a,\(Ey)

[ 2 2
€) +A)\,

where g, = —M, ,4(E,)/E,. The nonlinear relations (20)

determine the refined quantities €, and A, if we know
the phenomenological quantities €, and A,. The latter
can be found from experimental low-lying single-
particle excitations in nonmagic nuclei (see, for exam-
ple, [19]).

Expression (20) for the observed pairing gap
receives contributions from two mechanisms of Cooper
pairing in nuclei. These are the conventional BCS
mechanism, which is concealed in the quantity A, , and
the quasi particlephonon mechanism, which is deter-

mined by the self-energy operators M iz) and M, 4. The

latter also contributesto A, [18, 19]. Thefirst quantita-
tive estimations of these mechanisms revealed [18]
that, for the '2°Sn nucleus, the total contribution of the
guasi particlephonon mechanism saturates 26% of the
observed pairing gap, the difference A, — A, being 31%
(these values were obtained for the relevant quantities
averaged over the states A).

“ " (20)

E, =
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3. FRAGMENTATION OF SINGLE-
QUASIPARTICLE STATES OVER COMPLEX
CONFIGURATIONS

3.1. Complex Configurations 1gp [ phonon

Let us derive the secular equation for the simplest
case of M ® ~ g?. The self-energy operator then has the
form

RLE T T

0 (D)
M=k =0 M M 0- _gpGg (1)
] ) h O
O—-M™ =M O
where
. 0~ L~
& - E G _IF(DE
OiF? 6" g

isthe matrix of the bare Green’s functions specified by
Egs. (4); no account istaken here of pair phonons. Here
and below, a dotted line represents the phonon Green's
function.

From expression (21), we can see that, for the ¢?
approximation to be realized, M must involve the

refined Green's functions G' constructed from €, and

Ay . For the case of MO(g?) considered here, it would
not be absolutely erroneous to use the phenomenol ogi-
cal quantities e, and A, in (21). Partly, this issue was

considered in [23] (difference €, — €,) and in [19],
where it was shown that, in order to obtain quantita-
tively correct results, it is necessary to take into account
the refinement of the gap. It would beinteresting to find
an experimental corroboration of this effect. But if it is
necessary toincludetermsof order g (see Subsection 3.2),
as is required in the majority of cases, the use of the
refined quantities is mandatory to avoid the double
counting of the operators M (or quasi particle-phonon
interaction).

The expressions for the operators MV(g?) are pre-
sented in the Appendix to [19]. Substituting these
expressions into (17), we obtain the secular equation

[Eln + EZS(Elgz —AlAz)}

2s

Ef—E;-2) [
2s Eln

1
+ |912| |912| =% (22)
Z Z EZS)(Eln E2‘s’)
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X[Efn Eésézs
2E2

whereA = A, =1 and Ezs = E> + w,. The double sum
over (2, s) and (2, S) involves g* terms obtained upon
taking into account the bracketed expression in
Eq. (17); note that there are no second-order poles in
the double sum. For semimagic nuclei, where g* < 1,
the contribution of this double sum can be quite mod-
est, but thiswas not verified numerically. Without terms
of order g*, the above equation coincides with the cor-
responding equation in the quasiparticle-phonon
model if we discard ground-state correlations, which

ensure invariance under time reversal, and replace ¢,

(22+AA)]

and AA by, respectively, €, and A, (for more details, see
[19]).

3.2. Complex Configurations
1gp O phonon + 1qgp O phonon O phonon

Since relevant expressions for nuclei where pairing
occurs are very cumbersome, we will henceforth
present the eventual analytic formulas only for magic
nuclei. Asto the genera procedure for deducing results
for odd and even—even nonmagic nuclei (present sub-
section and Section 4, respectively), it becomes clear
upon following the analogous procedure for magic
nuclei, which is modified by replacing, in the relevant
diagrams and in the corresponding general formulas,

the Green's functions G and G and the self-energy

operator M by, respectively, G, G, and M [see
Eqg. (21)] and by additionaly replacing, if pair phonons
are taken into account, the phonon amplitude g by the
matrix g .

It was mentioned above that, in order to describe
available experimental data for odd nuclei, it is neces-
sary to include, in addition to 1gp O phonon complex
configurations, at least 1gp O phonon [0 phonon config-
urations [13, 14]. The main problem here is to formu-
late equations that do not involve second-order poles.
In terms of Green's functions, the simplest 1gp O
phonon [0 phonon terms in the self-energy operator
have the graphic representation

| qee®® e,

Cd [ 0000 .0000.
o LI 1°e o oo ‘I'
1
1

. 0d

.
o’:o o.o_,_o
2

.

3 "o o
"4

"4 2 ’(23)

where thin lines stand for the refined Green’s functions

G. It can easily be seen, however, that these graphs
involve unphysical second-order poles [n — (€, + ws)]?,
which, at A, = A, correspond to cuts shown by dashed
lines. That one aims here at describing individual low-
lying levels renders this difficulty all the more serious.
A general recipefor sidestepping such problemsiswell
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known (see, for example, [23]): it is necessary to sum
diagrams belonging to a specific class in all ordersin
g?. For this reason, we will proceed from the general
representation of the self-energy operator for the case
of quasi particle-phonon interaction [24]:

ee0e
%o

.
.
° 0

e 0

=—gDGT. (24)
Here, the double line represents the total Green’s func-
tion G, while thetriangle stands for the vertex operator.
For phonons, we use the well-known Green's function
with experimenta features or features fitted to experi-
mental data [8]. In the vertex " taken in the approxima-
tion adopted here, it is necessary to include, in addition to
the bare expression, the simplest expression of order ¢?,

oo oo
o® ettt e,
° . . .
0 ° . .

o N N o N o N
21 2 1

. —_ . 1 '
iry = =igy +il) (e, €; w).

(25)

Here, the refined Green's functions G appear in D,
Taking into account (25), we then find from (24) that

XY
3
o %

M=-2S

ce00e, o000,
o e Se.
. d L

O 4 O o) Ie}

2 4

o =M+ M.
(26)

If configurations that are more complex than 1gp O
phonon [0 phonon are not needed, the total Green's
function G in Eq. (26) must be taken with the self-
energy operator involving only g [see Eq. (17)]:

[
o—
s

N K

G:

G = G+GM(g?G. (27)
Thus, the representation of the self-energy operator in
the form specified by Egs. (26) and (27) conforms to
the problem under consideration—as can be seen from
(26), neither term now has second-order poles sincethe
total Green’s function in (26) represents, according to
(27), an infinite sum of diagrams of order g (see aso
below). Solutions to Eg. (27) can easily be obtained
both for magic ([21, 25]) and for nonmagic ([19])
nuclei.

In order to derive the expression for the rainbow
graph M', we make use of the general representation of
the Green's function in the diagonal approximation
[21]. We have

—_ a)\k
G)\(G) - Ze_e)\k-}'iy%nﬁ)\k, (28)
where
M, (0% &)
- A ’
a = H-— 1., &
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and €, isasolution to Eq. (27). By explicitly singling

out the dominant (phenomenological) term, we can
recast expression (28) into the alternative form [21]

d 1-n n U
Gi(e) = a\[ A+ —2—[]
E—&atly e—¢e-lyQ
30
- R (30)
)‘k }‘k
+
Z E—&, 1Y E—E)\k—iy%

k#—l
For our purposes, it is important that, upon the substi-
tution of (30) into (26), €, # €4, which implies the
absence of second-order poles. Substituting expression
(28) into M", we obtain

p
Mi(e) = Z|912| Eﬁ+€2+'5
2,5k (31)
+a—gkg
et ws,—€, —id

The expressions derived for the vertex 'V and for
the crossed self-energy operator M with allowance for
(28) are presented in the Appendix. Substituting M =
M" + MY from (31) and (A.2) into Eq. (15) (thisismore
convenient in the case of magic nuclei—that is, when
A = M® = 0), we find that the secular equation that
determines the fragmentation of the single-particle
state A over 1gp O phonon and 1gp O phonon O
phonon configurations has the form

ay,

Z alglod @

2j,+1 D_r] Ws— €y,

nNFer¥
jitistizti;
X D (_1) 4 5
+— + T
ir]+005—€2k% ;32 2J1+1

[l D
D L
Js L 1 Bl g arrsl g acralg50

Ds "j; O

(32)

x Bl 1y (xn) = 0,

where §345 (n) is given by expression (A.2) in the

Appendix. It followsfrom (15) that Eq. (32) isinvariant
under the substitution of —n for n. We retained here k #
1 terms, but it seemsthat of greatest importance arek =
1terms—that is, the first two termsin Eq. (30).
Thereisevery reason to hopethat Eq. (32) describes
guite accurately not only the energies of levels that
appear to be superpositions of 1gp O phonon configu-
PHYSICS OF ATOMIC NUCLEI
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rations but also the energies of levels that are deter-
mined by 1gp O phonon O phonon configurations. In
stating the latter, we bore in mind that, on one hand,
such levels, sufficiently pure ones indeed, were
observed experimentally [13, 14] and that, on the other
hand, the contributions of diagrams of order g, which
correspond to taking into account three phonons, must
be modest for semimagic nuclei, since g*> < 1 for such
nuclear species. Additional terms, at least part of them
are aready contained in the above equations, can be
taken into account, if necessary, by analogy with the
procedure outlined here.

Equation (32) differs noticeably from the corre-
sponding eguation in the quasi particle—phonon model
(see [11]). Our equations disregard g° and g® terms,
which stem from the use of a more precise expression
for the phonon Green's function in [11], but—what is
more important—they take into account ground-state
correlations. A second distinctive feature of our

approachisthat it relieson the refined quantities €, and

AA (in the sense clarified above), which must be found

by formulas (20) with the aid of the above complicated
expressions for our self-energy operators. These two
distinctions may be of importance in describing indi-
vidual low-lying levelsin odd nuclei.

4. FRAGMENTATION OF PARTICLE-HOLE
STATES OVER 1plh O phonon COMPLEX
CONFIGURATIONS

Here, we will consider only magic nuclei and derive
equations not featuring second-order poles. In this
sense, our results emerge from a direct generalization
of the approach formulated in [23]; for this reason, we
discuss solely the most important point—namely, the
maodification of the propagatorsin the integral equation
for the density matrix or for the vertex function (the
remaining formulasretain the original form). By invok-
ing the result obtained in [26], the idea being discussed
can be straightforwardly generalized to nuclei where
pairing occurs.

For the problem of taking into account complex
configurations of the 1plh [ phonon type within the
Green’'sfunction formalism, an attempt at getting rid of
second-order polesisnot new. Previously, it wasimple-
mented numerically within amore complicated version
that is referred to as the method of the chronological
decomposition of diagrams and which is based on
approximately summing, in the propagator, diagrams
of order g’ that feature self-energy inserts and a phonon
in the transverse particle-hole channel (for detail, see
[10]). This approach was successfully used to describe
many giant multipole resonances in the doubly magic
nuclei “°Ca, °Ni, 4Ca, 2%%Pb, 7®Ni, 1°°Sn, and '*2Sn, as
well asin*¥Ni. In thisway, it appeared to be possible to
take simultaneously into account the single-particle
continuous spectrum, ground-state correlations, and
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nonseparable effective interaction [10]. However, the
problem of generalizing the method of the chronologi-
cal decomposition of diagrams is very cumbersome.
Anyway, it is instructive to consider an aternative
approach that would be in a sense more natural and
simpler in anumerical implementation, the latter being
of prime importance for its generalization to the case of
nonmagic nuclei.

The fragmentation of pure 1plh configurations that
isdueto particle-holeinteractionsistaken into account
within the theory of finite Fermi systems or within the
RPA. Our task is to include more complex configura-
tions—at least those of the 1plh O phonon type—in
such away as to avoid the emergence of second-order
poles. The equation for the density matrix or for the
vertex function is determined almost completely by the

propagator

_ de
Aw) = [K(e, o) (33)
where
e, —(.)..
K= + + I S + "y
K = GG+ GMGG + GGMG - GGgDgGG. (34)

Here, the total Green’s function G satisfies Eq. (27). It
seemsthat of greatest interest isthe case of k=1, which
corresponds to taking into account the first term in
expression (30) for thefunction K (34). In[23], usewas
made of the quantity K involving the Green’s function

G instead of the total Green's function G, but this
resulted in the emergence of second-order poles.

Expression (34) can be recast into two alternative
forms:

K = -GG+ GG+ GG - GGgDgGG,  (35)

K = GG — GMGGMG — GGgDgGG.  (36)

We must further specify thefull Green’sfunction G.
Proceeding in just the same way as in the case of odd
nuclei [see Eq. (26)], we can represent it intheform G =

[é_l —M(¢?, €)]! or make use of the solution to equation

G-!'=0intheform (28), whereit is necessary to takeinto
account the total sum over kin solving Eq. (27). With the
aid of (28), wefind for the propagator in (35) that

ni—n
Ap(w) = — T
e12

- n, —n;
2+zalk k+ 2
w - Elki w

e
2k€

12,

+w Z Z(e12+w)(e +Ww)

né(l - né)
eéé +tw,tw

M (1-n3) (1-ny)ng
x - —

-+ . -
0 €31, Ws €31, Ws

(37)
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N (1—n§)n§

Eéi—(x)s'i'(x) Gilk*‘(x)s—(x) €;

Ny (1-n;) .\ (1-ny)n;
p ~ W~ W

N né(l—ni) _(1—n§)n4~1%
€T s

€57 Ws

Where e;; = €; — €, and €;, = €; — ¢, and where we
. p h
havecondderedthat a; =a, (1-ny)anda, =a,n, .

All the remaining formulas, including those that
describe observables, are obtained from the corre-
sponding formulas in [23] by substituting expression
(37) for the propagator. This approach makes it possi-
ble to calculate much more straightforwardly all giant
multipol e resonancesin magic nuclei (and not only M1
resonancesasin[23]). Following aprocedure similar to
that outlined above and using the results presented in
[26], one can easily generalize the results obtained in
this section to the case of nonmagic nuclei.

5. CONCLUSION

A viable and, probably, the simplest possible proce-
dure has been proposed for generalizing the theory of
finite Fermi systemsto the case where it is necessary to
take explicitly into account more complex configura-
tions. More specifically, we have derived secular equa-
tionsfor describing the fragmentation of single-particle
(for odd nuclei) and particle-hole (for even—even
nuclei) states over complex configurations of, respec-
tively, the 1gp O phonon + 1gp O phonon O phonon
and the 2gp O phonon type, which are the most inter-
esting ones at present. A more detailed analysis, includ-
ing analysis of transition probabilities, and a numerical
realization of the proposed versions call for much addi-
tional effort, but the latter seems quite feasible. A gen-
erdization to the case of nonmagic nuclei would
require only algebraic complications. By using general
relations presented in Section 2, one can extend, if nec-
essary, the proposed scheme to the case of even more
complex configurations and to the case where effects
associated with a single-particle continuum are sizable
(see, for example, [26]).

In just the same way as the conventional theory of
finite Fermi systems, our approach is not self-consis-
tent. Unfortunately, no self-consistent theory that
would take into account complex configurations has
been formulated conclusively so far for either non-
magic or magic nuclei, although the first attempts for
the latter case have aready been made [27] (in [28],
self-consistency is satisfied only at the RPA level).

The equations obtained in the present study cover
two effects that have hitherto been disregarded and
which can be tested in experiments employing modern
gamma detectors and gamma spectrometers. These are
ground-state correlations associated with complex con-
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figurations and quasiparticle-phonon pairing mecha-
nism in nuclel (an additional one with respect to the
conventional BCS mechanism). It would be of great
interest to study these effects both theoretically and
experimentally. The proposed approach is advanta-
geous is that it produces, as afinal output, expressions
employing solutionsto Eq. (5), whereby the problem at
hand is broken down into two parts, each being solved
individually. This makesit possible to reduce computa
tiona difficulties.
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APPENDIX

Expressions for the Veertex I ) and the Self-Energy
Operator M¥: Magic Nuclei

Presented immediately below are the expressions
that we have used in Subsection 3.1 for the vertex M)
(25) and the self-energy operator MV (26). For the ver-
tex, we have

W, s (A)],S]
seos et e,

iM%, e, )= €6 B HE,
3 4 5 2

(1)s

irG%e, e, w) = %15 + w—e)

x ¥ (1) “r3lg’l aalgss]g 20
4,5,
a

0
O j i, s L j, O
xg S b deple B le et e ),
0—-m; —M mzl:]ang]iE

—(1— ni)(l— né)

g 1 —
Ya(€he) = (€ —we—e; +iy)(e—ws—ez +1Y)
—n:n: (A.1)
+ 45 '
(€' +wg—€;—ly)(e +ws—e;—1y)
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Hereafter, s= (n, L, M) and s = (n', L', M") are the
phonon number and quantum numbers.

The self-energy operator has the form

[ wy, 5
MYy (€ = 5 & ‘v o ,
3 4 5 2
0
M, (€) = 21—_'_1
D L %
J +igtiz+iz0 j
Z G I g 0
SS34% 515 I3 E

x ]g’l 3Bl g% 4l gl 58 lg% 108 5 (e)

Fos(€) = LZa(e) + [Lz ()],

1-n:)G ) Gs(e —wg) (A2
345(6)‘ZE( 7) Gs, (€ — ;) Gs (e — wy)

€ —W— Wy —€

al n;Dy(e —e5)Gs(e + wy)

6213k - (1)51

(1 -ng)Gg (€ + W) Dy (e —€;)
ws

€5

askn (1-n;)Dy(e - es)Ds(e—Eg)El

— + e~-
€—€3 T €5 O

where €5 = € — € and where the Green's functions

Gs(e), G, (€), and Dy(e) are given by

é _ l—né né
s(€) = e—e+iy e—e—iy
p h
__ % %,
Gale) = €—e€3 tiy e—eg—iy’
1 1
Ds(w) = -

W—W+iy w+w—iy’

In order to avoid encumbering expressions (A.2),
we have introduced the following formal operation
denoted by the symbol **:
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n;‘ — :I.—I']Z1

ng — 1—n§

< a3k4> a.3k

W5 —> — g
(A)sl — —(A)g

complex conjugation.
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Effective Field Theories, Landau—Migdal Fermi Liquid Theory,
and Effective Chiral Lagrangiansfor Nuclear Matter*
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Abstract—Wereinterpret Landau—Migdal Fermi liquid theory of nuclear matter as an effective chiral field the-
ory with a Fermi surface. The effective field theory is formulated in terms of a chiral Lagrangian with its mass
and coupling parameters scaling a la Brown—Rho and with the Landau—Migdal parameters identified as the
fixed points of the field theory. We show how this mapping works out for response functions to the EM vector
current and, then using the same reasoning, make a prediction on nuclear axial current, in particular on the
enhanced axial-charge transitions in heavy nuclei. We speculate on how to extrapolate the resulting theory,
which appearsto be sound both theoretically and empirically up to normal nuclear-matter density py, to hitherto
unexplored higher density regime relevant to relativistic heavy-ion processes and to cold compact (heutron)

stars. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In a recent beautiful development [1], Landau’s
Fermi liquid theory has been reformulated as a modern
effective field theory with the Fermi liquid state identi-
fied as a stable fixed point. This theory represents an
effective field theory, which is as beautiful as chiral
Lagrangian field theory for low-energy pionic interac-
tions. It is then most natural that Migdal’s theory of
nuclear matter [2], which is based on Landau’s Fermi
liquid theory, can also be formulated as an effective
field theory. We dedicate this paper, which is based on
recent work [3, 4], as a tribute to Migdal on the occa-
sion of his 90th anniversary.

2. EFFECTIVE FIELD THEORY

Effective field theories enter the nuclear physics
domain in two different ways. One is to make precise
predictionsfor certain processes involving few-nucleon
systems that are connected with fundamental issues of
physics. Thisis often called for to answer questions of
fundamental nature in other areas of physics such as
astrophysics or particle physics [5]. The other—which
is our objective here—is to be able to extrapolate the
knowledge available in normal conditions beyond the
normal nuclear-matter regime into a high-temperature
or high-density regime that will be the focus of experi-
mental efforts in the coming years. In making the
extrapolation, the usual quantum-mechanical many-
body approach lacks the necessary versatility, and field
theoretical approaches anchored in quantum chromo-
dynamics will be required. Migdal’s formulation of

* This article was submitted by the author in English.

D school of Physics, Korea Ingtitute for Advanced Study, Seoul,
Korea

2 Service de Physique Théorique, CE Saclay, Gif-sur-Yvette,
France.

Fermi liquid for nuclear matter has proven to be power-
ful at least up to normal nuclear-matter density and has
even led to a variety of predictions of phenomena that
might take place under extreme conditions [6]. In its
original form, however, it is somewhat limited in its
scope if one wishes to extrapolate to extreme condi-
tions, where QCD phase changes may be induced. Such
densities are expected in upcoming laboratories and
probably exist in neutron-star interiors. In this paper,
we wish to discuss our recent attempt to formulate the
Landau—Migdal theory of nuclear matter in a modern
effective-field-theory framework. Such a framework,
which offers the possibility of extrapolation to extreme
conditions, has been quite successful in such different
fields as condensed matter and high-energy physics.

2.1. Effective Field Theory for Light Nuclei

Before going into our main topic of dense matter,
we briefly summarize the status of effective field theo-
ries in few-nucleon systems. Here, the setting for an
effective field theory (EFT) is straightforward.

The objectives there are essentialy twofold. Oneis
to derive the nucleon—nucleon interactions—which are
fairly well understood from phenomenological
approaches—from fundamenta principles. The basic
guestionis: Can al two-nucleon systems, viz, nucleon—
nucleon scattering at low energy and bound states (e.g.,
the deuteron), be understood in the framework of an
effective field theory? This old question, which was
stimulated by the work of Weinberg [7], recently
became the focus of intense activities in many theoret-
ica communities. The status of the field is comprehen-
sively summarized in the proceedings of two recent
INT—Caltech workshops [8]. The origina Weinberg
approach had certain apparent inconsistency in the
power counting invoked for a systematic calculation,

1063-7788/01/6404-0637$21.00 © 2001 MAIK “Nauka/Interperiodica’
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but this problem can be readily resolved as shown by
the INT—Caltech collaboration [9]. In that work, the
notion of power-divergence subtraction was introduced
into the dimensional regularization. Thisenablesoneto
handle the anomal ous length scale that appears when a
quasibound state is nearby in a more straightforward
manner. We now know that when done correctly, the
two schemes (i.e., Weinberg’'s and the INT/Seattle-
Caltech scheme) are essentially equivalent in the treat-
ment of low-energy two-nucleon interactions.
Although they may differ in specific details, the two
schemes reproduce the low-energy observables thus far
studied with equal quality.

The other objective isto exploit the power of effec-
tive field theories in making bona fide predictions for
processes which cannot be accessed by standard
nuclear physics methods. Examplesthat have been dis-
cussed recently are the asymmetry observables in the
polarized np capture [10]

A+ B —d+y
and the solar hep process[11]
p+3He —“‘He+e" +v, (2

Thefirst process (1) has been studied theoretically in a
variety of different methods [10, 12] and is being mea-
sured [13]. The second process (2) has been recently
measured in the SuperKamiokande experiment [14]
and has generated a lot of excitement among theorists
[15]. It turns out rather remarkably that these two pro-
cesses complement each other in providing a theoreti-
cal strategy to overcome a nontrivial obstacle on the
way to a parameter-free calculation.

Now, in order to increase the predictive power in
general and to facilitate accurate calculations of the
above processes, a hybrid version of EFT (called
MEEFT or “more effective EFT”) was launched by
Park, Kubodera, Min, and Rho [11, 16, 17]. This
approach, which combines the sophisticated standard
nuclear physics approach with chiral perturbation the-
ory, turns out to be far more powerful and robust than
naively expected. Within this scheme, one can actually
make reliable calculations of observables that cannot
be obtained by other methods. Of equal importance is
the fact that such predictions can be confronted with
data. Thus, the validity of this approach will be settled
by experiment in the near future. The accuracy with
which such predictions can be madeisassessed in [11].

(D

2.2 EFT for Heavy Nuclel and Nuclear Matter

In both cases mentioned above addressing low-den-
sity systems, the effective Lagrangians are defined at
zero density and the relevant fluctuations are made on
top of the zero-density vacuum which is accessible by
various QCD analyses, treating the matter density asan
external perturbation. In a dense medium, the situation
is expected to be quite different. Whilein the light sys-
tems the parameters that figure in the effective

RHO

Lagrangian are in principle derivable from QCD (per-
haps on alattice) or more often from experimental data,
thisis not the case in adense medium. Deriving an EFT
for dense matter from QCD is praobably of similar diffi-
culty as deriving the Hubbard model from QED. The
best one can do is to start with a Lagrangian defined at
zero density and go up in density. Unfortunately, this
will be limited to low density and cannot be pushed to
high enough density to be useful in the regime we
would like to explore.

In this note, we circumvent the difficulty of deriving
such atheory directly. Rather, we construct an effective
chiral Lagrangian field theory that maps onto an estab-
lished many-body theory, specifically Landau—Migdal
Fermi liquid theory, and then extrapolate that field the-
ory to the regime of higher density. Thisis certainly in
accordance with the original spirit of Landau—Migdal
theory, though it is not clear if such a scheme will work
in al density regimes. We can only say that up to now
there is no evidence against the scheme. For a recent
review, see[4].

3. NUCLEAR MATTER AS A FERMI LIQUID
FIXED POINT

3.1. Chiral Liquid

How to obtain arealistic description of nuclear mat-
ter from an effective Lagrangian anchored in the funda-
mentals of QCD is very much an open problem at the
moment. There are, however, several models available.
One of them, the skyrmion with an infinite baryon num-
ber, isyet to be confronted in nature. The skyrmionisa
soliton solution of a Skyrme-type Lagrangian, whichis
an approximate Lagrangian for QCD at an infinite
number of colors, N, = «. Because the mathematical
structure of this model is not very well known at the
moment, only very little information can be extracted
fromit.

Another model isthe nontopological soliton picture
proposed in an embryonic form sometime ago by Lynn
[18]. This description has recently been given a more
realistic structure by Lutz, Friman, and Appel [19]. The
idea here is that one writes down an effective potential
or energy calculated to the highest order feasible in
practice in chiral perturbation theory, suitably taking
into account all relevant scalesinvolved, and then looks
for the minimum of the effective potential to be identi-
fied with the nuclear matter ground state. The state so
obtained may be identified with Lynn’s chiral liquid
state. The connection between the skyrmion with an
infinite winding number and the chiral liquid matter—
which must exist in large N, limit—is presently not
understood.

The starting point of our consideration is the
assumption that we have a chiral-liquid solution of the
type described in [19] that represents the ground state
(vacuum), on top of which fluctuations can be calcu-
lated. Thediscussion of [19] does not specify how these
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fluctuations are to be made. To proceed, we propose
that the parameters of the Lagrangian (such as masses,
coupling constants, etc.) of the fields representing the
relevant degrees of freedom are determined at this
ground state, not at the zero-density vacuum which
gives the starting point of the Lynn strategy and hence
run with density.3) The Lagrangian so defined is
assumed to satisfy the same symmetry constraints—
such as chiral symmetry and scale anomaly—as those
intrinsic to QCD at zero density.

3.2. Effective Chiral Lagrangian

L et us denote the parameters so defined at a density
p with astar. The mass of a nucleon in the system will
be denoted as M*, the pion decay constant f , etc. The

simplest chiral Lagrangian for the nuclear system so
defined takes the form

£ = N[iy, (8" +iv" +giysa") —M*]N

. 3)
=S CHNTINY .

where the éllipsis denotes higher dimensional nucleon
operators and theI";' s Dirac and flavor matrices as well
as derivatives consistent with chiral symmetry. Further-
more,

i/ £

€=Uu=e "
w = 5(E0,E+E0,EN,

<
I

4

8, = —5(E10,E~£0,E").

In (3), only the pion (1) and nucleon (N) fields appear
explicitly; all other fields have been integrated out. The
effect of massive degrees of freedom will be lodged in
higher dimensional and/or higher derivative interac-
tions. The external electroweak fields that we will con-
sider below are straightforwardly incorporated by suit-
able gauging.

If one considers symmetric nuclear matter and
restricts oneself to the mean-field approximation, one
can write, following [20], an equivalent Lagrangian
that contains just the degrees of freedom that appear in
alinear model of the Walecka-type [21],

£ = N(iy, (8" +ig} ") =M* + h*@)N

1 1 2 m*2 2 x? 2 ®
—ZFW+§(6“(p) oW - é" @+ ...,

3The meani ng of density dependence in the parametersin an effec-
tive Lagrangian we shall study will be precisely defined later.
Thereis asubtlety due to the requirement of chiral symmetry that
needs to be addressed.
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where the ellipsis denotes higher dimension operators.
ThisLagrangian istotally equivaent to (3) in the mean-
field approximation [20, 22]. Unless otherwise noted,
we will beusing (3).

3.3. Interpreting the Density Dependence
of the Parameters

From afield theory point of view, it is unclear what
density dependence of various constants of the
Lagrangian means. This is because the number density
p isdefined as the expectation val ue of the number den-

sity operator Ny,N with respect to the state vector one

isconsidering. Thus, the density p isdefined only when
the state is determined. The only way that such aquan-
tity can be introduced into the Lagrangian isto assume
that the parameters of the Lagrangian such as coupling
constants and masses are functions of the fields
involved. The constraint that the Lagrangian be invari-
ant under chiral-symmetry transformation then limits
the field dependence. One may choose a chiral singlet
scalar field or achiral invariant bilinear in the nucleon
fields. In what follows, we shall choose the latter.

For this purpose, we define the chirally invariant
operator

pu” = Ny*N, (6)
where
H 1 1 .
u = (1v) = (P, J) (7
ll_VZ /p2_j2
isthe fluid 4-velocity. Here,
j = INYNC ®)
isthe baryon current density, and
p= IN'ND= $n ©)

is the baryon number density. The expectation value of
p yieldsthe baryon density in the restframe of thefluid.

Using p it is easy to construct a Lorentz-invariant,
chirally invariant Lagrangian with density dependent
parameters. However, here we shall not use the relativ-
istic formulation.

Now, a density-dependent mass parameter in the
Lagrangian should be interpreted as

m* = m*(p). (10)

This means that the model (5) is no longer linear, but
highly nonlinear even at the mean-field level. We shall
illustrate thisusing the Lagrangian (5) in the mean-field
approximation and show that our interpretation is
thermodynamically consistent.

The Euler—Lagrange equations of motion for the
bosonic fields are the usual ones, but the nucleon equa
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tion of motion is not. This is because of the functional
dependence of the masses and coupling constants on
the nucleon field:

5% _ 0% 0% op

= [iy"(0, +ig} w,—iuE) —M* +h*@]N = 0

with
O
ap

NELHE VL
ap op

(12)

—N" YuN

Here, we assumethat (9/0p )h* = 0. It may be possible
tojustify this but we shall not attempt it here. The addi-

tional term 3, which may be related to what is referred
to in many-body theory as rearrangement terms, is
essential in making the theory consistent. This point
has been overlooked in the literature.

Here we shall briefly summarize the results. Details
can be found in [4, 23]. When one computes the
energy-momentum tensor with (5), one finds the canon-
ical term, which is obtained when the parameters are
treated as constants, as well as anew term proportional

to 2:

™ = 7o, + S(NuyN)g"’. (13)

The pressureisthen given by = Er,, 0J_ o The additional

termin (7) matches precisely the terms that arise when
the derivative with respect to p acts on the density-
dependent masses and coupling constants in the for-
mula derived from T,

_ O0E _ ,0%p _
P=—y = P75, ~HP—¢ (14)
where
¢ = M0 (15)

This matching assures energy—momentum conserva-
tion and thermodynamic consistency.

Oncethe interpretation of the density dependenceis
specified, the derivation of the Landau—Migdal param-
eters, thermodynamic quantities etc. from (5) is com-
pletely analogous to the procedure used by Matsui [24]
for Walecka's linear c—w model.

3.4. Nuclear Matter with Brown-Rho Scaling

We saw above that the masses and coupling con-
stants in (5) (or equivalently (3)) are to be treated as

RHO

functionals of p given by Eq. (6). When treated at the

mean-field level, p is just the number density, so the
parameters become density dependent. The depen-
dence of the parametersin the Lagrangian on the fields
rather than on the density is essential for thermody-
namic consistency. Note, however, that these consider-
ations do not require the parameters to satisfy scaling
relations. It isthe chiral symmetry and scale symmetry
that suggest that the masses satisfy Brown-Rho (BR)
scaling at the mean-field level [25]

T[ * * M*

O(p) = (p) m(pm(p) M (@) _ M(p).
T[ 0] mV

Here, V stands for the light-quark vector mesons p and

. The quantity ®(p) isthe scaling factor that needs to

be determined from theory or experiments. For con-
creteness, we shall assume

®(p) = (1+yplpy) ™ (17)

The value of y will be determined below by a global fit
of the ground-state properties of nuclear matter. Now
taking the free-space values,

M =938 MeV, m, = 783 MeV, m, = 700 MeV, (18)
and

(16)

0,=158, h=6.62, (29)
with one additional assumption that the vector coupling

g, scaleslikethe mass m; and h* isalmost constant,

one finds the following properties for the ground state
of nuclear matter

my/M = 0.62, E/A-M = -16.0 MeV,
ke = 257 MeV, K = 296 MeV.

Here, k is the Fermi momentum at the saturation point
and K is the corresponding compression modulus. The
best values favored by nature that are “well deter-
mined” and that “can be associated with an equal num-
ber of nuclear properties and general features of RMF
(relativistic mean field) models’ [24] 4 are

(20)

mi/M = 0.61+ 003, E/A—M = —16.0 £ 0.1 MeV,
ke = 256+ 2 MeV, K = 250+50 Mev. 2D

To arrive at (20), we need y = 0.28 which implies that
®(py) = 0.78. The scaling of g,, which is needed to
obtain a good fit, was not incorporated in the original
BR scaling [25] but it does not invalidate the scaling
relation (16) which isamean-field relation. The scaling
of the coupling constant is a fluctuation effect on top of
the BR scaling ground state, that is, arunning asin the

tisworth pointing out that the RMF that has been successful so
far involves nonlinear terms deemed natural in the terminology of
EFT. These terms can be interpreted as representing high-dimen-
sion Fermi operators.
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renormalization group as discussed in [27]. A caveat
here is that at this level, the Kawarabayashi—Suzuki—
Riazuddin—Fyazuddin (KSRF) relation that holds in
free space between the vector mass m, and f.g, must
have a density-dependent correction in order for the

scaling of gy to make sense. To date the possible valid-

ity of the KSRF relation or some generalization of it in
medium is not yet unravel ed.

Another observation of interest is the in-medium
mass of the scalar (p.5) In the analysis of [26], the scalar
mass does not have a simple scaling since it is a com-
plicated nonlinear theory. See [4] for adetailed discus-
sion on this matter. In the present theory, we in fact
have the relation

m$(po) = m,®(p,) (22)

which for ®(p,) = 0.78 gives the mass of the scalar in
nuclear matter to be 546 MeV which should be com-
pared with the value 500 £ 20 MeV favored by [26].

It should be stressed that, given the simplicity of the
model considered here, the agreement between thesim-
ple BR scaling model and the sophisticated nonlinear
mean-field model [26] is most remarkable. Whether
there is something deep here or it is just a coincidence
isanissueto be resolved.

4. DERIVING MIGDAL’'S FORMULAS
FROM EFFECTIVE CHIRAL LAGRANGIANS

Here, we sketch Migdal’s derivation of nuclear
orbital gyromagnetic ratio and then write an analogous
expression for the nuclear axial charge operator follow-
ing the same steps taken for the vector current. We have
no rigorous proof that the axial charge that resultsis a
unique one that follows from the premise of Fermi lig-
uid theory but we are offering it here as a possible one.

4.1. Landau—Migdal Formulation

4.1.1. Vector currents. Consider the response of a
heavy nucleus to a slowly varying electromagnetic
field. We wish to calculate the gyromagnetic ratio g, of
anucleon sitting on top of the Fermi sea. There are sev-
eral ways for doing this calculation [29]. Here we shall
use the simplest which turns out to be straightforwardly
applicable to the axia current, in particular to its time
component, i.e., the axial charge.

We are interested in the response of ahomogeneous
guasi particle excitation to the convection current. This
corresponds to the limit g/ — 0, where (w, q) isthe
four-momentum transfer induced by the electromag-
netic field. Thefirst step isto compute the total current
carried by the wave packet of alocalized quasiparticle

5The scalar that figures here is an effective degree of freedom
which need not be identified with a particle in the Particle Data
booklet. From our point of view, it is closer to the dilaton dis-
cussed by Beane and van Kolck [28].
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(b)

Fig. 1. Particle-hole contributions to the convection current
involving the full particle-hole interaction (solid circle)

given by Eq. (24). Here, the backward-going nucleon line N~
denotes ahole and the wiggly line the photon. These graphs
vanish in the g/eo — 0 limit.

with group velocity v = % where my, isthe Landau
N

effective mass of the quasiparticle and k is the momen-

tum carried by the quasiparticl e.9 The convection cur-

rent for alocalized quasiparticle is

J _LD1+T3|:|
LQP ™~ mitd 2 O

(23)

However, thisis not really what we want. Among other
things, it does not conserve the charge. Thisis because
the quasiparticle interacts with the surrounding
medium generating what is known as back-flow. Con-
sequently, we have to incorporate the back-flow to
restore gauge invariance. A simple way to account for
the back-flow isto compute the particle-hole contribu-
tions of the type given in Fig. 1 with the full particle-
hole interaction—represented in the figure by the solid
circle given by Eq. (24) (see below)—in the limit that
w/q —= 0. (Note that this contribution vanishes in the
other limit g/co— 0.) Thefull interaction between two
guasiparticles p, and p, at the Fermi surface of sym-
metric nuclear matter written in terms of afew spin and
isospin invariantsis[30]
1

= W[F(COSGQ) + F'(cosBy,)t, [,

P101T3, P205T;

+ G(cosB,,)0, [6,+G'(cosb,,)(0, [b,)(t; [k,) @

2 2
+ %H(Coseﬂ) Si(Q) + %H'(Coselz) Si(@)t sz}

F F
where 6,, is the angle between p, and p, and N(0) =

YE rgip
o LUlel}
We use natural units with # = 1. The spin and isospin
degeneracy factor y is equal to 4 in symmetric nuclear
matter. Furthermore, q = p; — p, and

S(q) = 3(e,0)(0,[§) -0, [b,,

6)This should be distinguished from the BR-scaling effective mass
M* that appearsin (3) and (5) and will be defined more precisely
later.

isthe density of states at the Fermi surface.

(25)
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where § = q/|q|. The tensor interactionsH and H' are
important for the axial charge which we will consider
later. ThefunctionsF, F', ... are expanded in Legendre
polynomials,

F(cosB,,) = ZFgPe(coselz), (26)
€

with analogous expansion for the spin- and isospin-

dependent interactions.

In terms of (24), the quasi particle—quasihole graphs
of Fig. 1, suitably generalized to the full interaction,
yield

1 O [
Jon = —=Kke(F1+ F115)
31T

(27)

k|:I21+|Ei'[3D
———
MO 6 [

where M denotes the free-space mass of the nucleon
and

Fi = (M/m%)F,. (28)
In order to obtain the desired current, we have to add
the back-flow term (i.e., —J,,) to thelocalized quasipar-
ticleterm (23),

k

Jvigia = Jigp—Jpn = Mg|
kl+t3 . 1 )

_k 3.l =[]

= MOz el TFUTg

where
1+14

o = +0g (30)

isthe orbital gyromagnetic ratio and

1 ~, ~
69| = é(Fl—Fl)T3. (31)
In arriving at (29), we have used the relation between
the Landau effective mass and the quasi particle interac-
tion
my _ 1_ _ 1~ g*
o = 1+3F; = %l—éFlm . (32)
It is important to note that, as a consequence of
charge conservation and Galilel invariance, the isosca-
lar term in (29) is not renormalized by the interaction.
Thus, the renormalization of g, is purely isovector. It is
also important to note that it is the free-space mass M,

not the Landau mass my, , that appearsin (29). Thisis

an analog to the Kohn theorem for the cyclotron fre-
guency of an electron in an external magnetic field [31,

RHO

32] ,) and constitutes a strong constraint for a consis-
tent theory to satisfy. The effective Lagrangian theory
discussed below does satisfy this condition.

4.1.2. Axial currents. Next we turn to the axial-

charge operator A; (where the superscript ais an isos-

pin index). In deriving the “Migdal formula’ for this
operator,” we assume that we can follow exactly the
same reasoning as above for the vector current. This
assumption needs still to be justified.

In matter-free space, the axial-charge operator for a
nonrelativistic nucleon with mass M is
To k
9™
while, in dense matter, a localized quasiparticle with a
Landau effective mass m{ has the axia charge

A = (33)

%0 [k
AgLQP = gAEOr.n_ﬁl (34)
Next we caculate the particle-hole contribution—
which is minus the back-flow contribution—in the
same way as for the vector current (i.e., Fig. 1 with the
photon vertex replaced by the axial-charge vertex). The
result [29] is

%0 [k
Aoph = —Oa5 (35)
ph A2 mp
with
i.. 10,,, 4,,., 2.,,
A = éGl—EHO'FéHl—l—SHZ, (36)

where G' and H' are the spin—isospin-dependent com-
ponents of the force given in Eq. (24). Therefore, the
total is

%6 [k

A5 %
2 m{

Advigia = AoLgp —Aopn = J (1+2). @37
It will become clearer when we calculate the same
quantity based on chiral Lagrangian, but at this point it
should be noted that, unlike the vector current, here
there isno analog of the Kohn theorem. Thisis because
chiral symmetry is realized, not in the Wigner mode,
but rather in the Goldstone mode for which the mean-
ing of a conserved charge is different from that of the
vector charge. Another point to be noted is that while

NThe cyclotron frequency of an electron with a Landau effective
mass my in an external magnetic field of magnitude B = 2rmy @/e,
where ry is the electron number density and @ is the flux integer
(=2 for fermions), is not wy = 2y @ m; , as one would naively

expect for alocalized quasiparticle but wgy = 21y ¢/m, due to the
back-flow effect.

Bwe put quotation marks since Migdal did not derive formulas for
the axial charge.
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for the convection current only F, and F; appear, it is
alot more complicated for the axia charge. It involves
spin—isospin dependent interactions as well as tensor
forces. These two features will show up nontrivially
when we compute the dg, and the A with the effective
chiral Lagrangian.

4.2. Calculation with Effective Chiral Lagrangian

We will now compute &g, and A using a BR-scaling
chiral Lagrangian. One can use either the Lagrangian
(3) or the Lagrangian (5) with BR scaling [25] incorpo-
rated. We shall use (3) aswe did for the vector current.
We need only the two terms of the four-Fermi interac-
tions that correspond to the w and p channels:

%2 %2

C, = 2 C
—T(NVHN) -

(Ny, tN) + .., (38)

2
i.e,, what remains when the vectors w and p are inte-
grated out. The subscripts represent not only the vector
mesons w and p nuclear physicists are familiar with but
also al vector mesons of the same quantum numbers,
so the two “counter terms’ subsume the full short-dis-
tance physics of the same chiral order.

4.2.1. Landau mass from the chiral Lagrangian.
We first calculate the single-particle energy with (3). In
the nonrelativistic approximation, we have

2
2
£ = 5hm + C5 IN'NDH Z,(p),
where M* = ®M is the BR-scaling nucleon mass and
>.{(p) is the nucleon self-energy due to the pion Fock
term. The Landau effective massis defined [33] by
my

_ Ked O _ ot 1z,
™ T MOapP|p D T P —3F(mg

where we have used the fact that the second term of
(39) does not contribute and

(39)

1

, (40

~ dz 2
Fi(T) = _3Md2«(p) = —3f2M|1, (41)
ke dp Jp=ic 8Pk
wheref = g,m./(2f,) = 1 and
1
X
[, = [dx
:[ 1—x+m/(2kP)
, , (42)
0 o 1l
= 2+ + Mrong + e
O 2ki0 O miO
Now using the Landau mass formula (32) and
Fi = Fi(w) + Fa(1), (43)
we find
Fi(w) = 3(1-07). (44)
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(a) (b) ()

A

Fig. 2. Feynman diagrams contributing to the EM convec-
tion current in effective chiral Lagrangian field theory. Dia-
gram (a) is the single-particle term, (b) and (c) the next-to-
leading chiral order pion-exchange current term. Diagram
(c) does not contribute to the convection current; it renor-
malizes the spin gyromagnetic ratio.

?”“Nv//

4.2.2. Convection current. Inthechiral Lagrangian
approach, the isovector magnetic multipole operator to
which the convection current belongs is chiral-filter-
protected [34], which means that the one-soft-pion
exchange should dominatein the correction to the lead-
ing single-particle term. The single-particle term for a
nucleon with the BR-scaling mass M* on the Fermi sur-
face with momentum k corresponding to Fig. 2ais

k 1+14

M* 2
Note that the nucleon mass appearing in (45) isthe BR
scaling mass M* asit appearsin the Lagrangian, not the

(Landau) effective mass my; that appears in the Fermi

liquid approach for the localized quasiparticle current.
To the next-to-leading order, we have two soft-pion
termsFigs. 2b and 2c asdiscussed in[7]. To the convec-
tion current, only Fig. 2b contributes

n k f° k 1=~ ~
Joboty = k_F4_n2|1T3 = M [%(Fl(n)_Fl(T[))Tg. (46)

Jibody = 45)

In arriving at this formula, it has been assumed that
pion properties are unchanged in medium up to nuclear
matter density. Since pions are almost Goldstone
bosons, this assumption seems reasonable. Indeed it is
consistent with what is observed in nature. Note that
there are no unknown parameters associated with the
pion contribution (46): the one-pion-exchange contri-

butions to the Landau parameters F; (1) and F1 () are
entirely fixed by the chiral effective Lagrangian at any
density.

The contributions from the four-Fermi interactions
(that is, the vector meson degrees of freedom) are sub-
leading to the pion exchange by the chira filter [34].
They are given by Fig. 3. Both the w (isoscalar) and p
(isovector) channels contribute through the antiparticle
intermediate state as shown in Fig. 3a. The antiparticle
is explicitly indicated in the figure. However, in the
heavy-fermion formalism, the backward-going antinu-
cleon line should be shrunk to a point as in Fig. 3b,
leaving behind an explicit /M* dependence folded
with a factor of nuclear density indicating a 1/M* cor-



(@) (b)

\/\N Y
p, @

Fig. 3. (a) Feynman diagram contributing to the EM convec-
tion current from four-Fermi interactions corresponding to
al channels of the wand p quantum numbers (contact inter-
action indicated by the blaob) in effective chiral Lagrangian

field theory. The N denotes the antinucleon state that is

given in the chiral Lagrangian as a /M correction and the
one without arrow is a Pauli-blocked or occupied state.
(b) The equivaent graph in heavy-fermion formalism with
the antinucleon line shrunk to a point. The blob representsa
four-Fermi interaction coupled to a photon that entersin (3)
asal/M counter term.

rection in the chiral expansion.?) One can interpret
Fig. 3a as saturating the corresponding counter term
athough this has yet to be verified by writing down the
full set of counter terms at the same order. We find

k ~
Iy = 2 CeF1(), (47)
o] _ k ~
Jobody = M E%Fl(p)Tsa (48)
where
2 2Kk3
*
Fi(w) = -C,, 5= (49)
™ M*
and
1 *2 2k§
Fi(p) = -C, ——. (50)
™ M*

Thetotal current given by the sum of (45)—(48) pre-
cisely agrees with the Fermi liquid theory result (29)
when we identify

F1 = Fi(w) + Fa(m), (51)

Fi = Fi(p) + Fi(m). (52)

If we further assume that the same flavor symmetry as
in free space holds in medium, then

F'(p) = F'(w)/9, (53)
which uses the nonet symmetry, and
F'(m) = —F(1)/3, (54)

NThe heavy-baryon formalism must be unreliable once the M*
drops for p = py. One would then have to resort to a relativistic
formulation [35(1). We expect, however, that our reasoning will
remain qualitatively intact.

RHO

which uses the isotopic invariance. The BR-scaling
chiral Lagrangian prediction reduces to a one-parame-
ter formula
1~ = ar - 1~
5 = 5(Fi-F)ts = g @7 - 1-3F(m [t 63)
Here, ®(p) is the only parameter in the theory that
needs to be determined from theory or experiment. As

mentioned, F1(m) is fixed for an arbitrary density from
the (assumed) chiral symmetry. It isimportant that the
result is consistent with charge conservation and Galilei
invariance.

4.2.3. Axial charge. The axia-charge operator in
nuclear matter is protected by the chira filter in the
chiral Lagrangian formalism, so all we need is the soft-
pion exchange implemented with BR scaling. We shall
continue assuming that pions do not scalein amedium.
It was shown in [36] that higher order chiral correc-
tions—such asloops, higher derivative, and four-Fermi
terms—to the soft-pion contribution are small. This
means that we can limit ourselves to the tree order in
the chiral counting and to the pionic range with shorter-
range interactions subsumed in the BR scaling.

The procedure for the case at hand will then beiden-
tical to that we used for the convection current. The
axial chargefor asingle particlewill beidentical to that
of aparticle in free space except that the nucleon mass
M isto be replaced by the BR, scaling mass M*

a TaO' Ck
Ao = Oa5 v (56)
Now the leading correction to the single-particle term
isgiven by adiagram similar to Fig. 2c with the photon
replaced by the weak axial charge. There is no term
equivalent to Fig. 2b due to G-parity invariance. The
calculation is straightforward and the result is

6kt~

At bosy = QA‘M—*‘EA (57)
with
- fkeM O m, O
A= ——==0-l-—5h0 (58)
2g,m,t 2k O
wherel, isasdefinedin (42) and |, is
1 1 2

0 4k:O
lo = [ox — = Indl+—0 (59
J 1—-x+m./(2kg) 0o m.0

The factor (1/ gi) in (37) arose from replacing 1/ f,2T by

grz[N,\I /(gf\Mz) using the free-space Goldberger—Tre-
iman relation.

Collecting al terms, the chiral Lagrangian predic-
tionis

a
a _ o[kt "
Agchira = gA_M* E(l"‘A)- (60)
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For comparison with the Migdal formula A(i)MigdaIa we
reexpress 1/M* in terms of 1/my

s 1o ®=
1UM* = mﬁgl 5Py - (61)
Thus
a _ (o) D(T_a ~
Agcira = Oa o~ 2(1+A), (62)
where
3 P PN
N = @+ S -z Py (63)

Comparing with the Migdal formula (37), we obtain a
formula that expresses a combination of spin—sospin-
dependent Landau—Migdal parameters in terms of con-
stantsthat figurein the chiral Lagrangian with BR scaling:

1.. 10, .4, 2
3%t 3T
Again, the result depends on only one parameter .

There are two points to note here. One is, as noted
in the Landau—Migdal formulation, that there is no
equivalent to the Kohn theorem for the axial charge.
The other is that the soft-pion contribution combined
with BR scaling does not lend itself to adirect term-by-
term identification on both sides. These are all different
from the case of the convection current. In the axial
case, both the Landau—Migdal approach and the chiral
Lagrangian approach involve complicated relations: on
the right-hand side of (64), the factor g, appears in a
nontrivial way and exhibits features that are character-
istic of the spontaneously broken axial symmetry and
on the left-hand side, this complexity is manifested by
the fact that, due to the tensor force, the Migdal param-
etersinvolved comprise several multipoles (I = 0, 1, 2)
of the quasiparticle interaction.

Hy = A (64)

5. COMPARISON WITH EXPERIMENTS

In confronting our theory with nature, we shall
assumethat data on heavy nuclei represent nuclear mat-
ter. This aspect has been extensively discussed else-
where so we shall be brief.

5.1. Extracting ®(p,)

If one assumes BR scaling, then there are several
ways to determine @ at normal nuclear matter density.
We shall mention three of them.

(i) Thefirst way isthat if pions are taken to be non-
scaling, then the in-medium Gell-Mann—Oakes—Ren-
ner relation

2,.%2
fn

= —(m, + my) [gq¥ (65)

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001

645
gives

fr _ w2
f. Umat

From the value of quark condensate in nuclear matter
estimated from the empirical TiN sigmaterm and using
Feynman—Hellmann theorem in the linear density
approximation'® one finds [22]
fr
—=0.78.
fr
(it) The second piece of evidence comes from the
property of nuclear matter in chiral Lagrangian models
with BR scaling. A global fit yields [4]

M*/M =0.78 + 0.02. (68)

(i) The third piece of evidence comes from QCD
sum-rule calculation of the mass of the vector meson p
in medium [37, 38]. Theresult is[38]

m*/m, = 0.78+ 0.08. (69)

All three methods give the same result. We are there-
foreled to

(66)

(67)

®(py) = 0.78. (70)

As a smooth interpolation, which seems reasonable at
least upto p = p,, wetake

®d(p) = (1+0.28p/py) . (71)

5.2. The Orbital Gyromagnetic Ratio

Given the scaling factor ®(p,) = 0.78 and the pionic
contribution (24) which at nuclear matter density yields

|~:1(T[) = —0.459, the anomalous orbital gyromagnetic
ratio turns out to be

8g, = g[cb‘l—l—:—zlf:l(n)}rs = 02271, (72)

This is to be compared! with the experimental value
for the proton obtained from the giant dipol e resonance
in the Pb region [39]

dg’ = 0.23+0.03. (73)

It isworth commenting at this point which assump-
tions enter into this calculation and what the possible
implications might be. Apart from the BR scaling, we
have assumed (1) that pions do not scale, (2) the nonet
symmetry for the vector mesons, and (3) the isospin
symmetry for the pions. The first is based on the obser-
vation that the pion is aimost a Goldstone boson and a

10) The linear-density approximation may be suspect already at
nuclear matter density, so it is difficult to assess the uncertainty
involved with this estimate.

1) The precise agreement is probably coincidental.
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Fig. 4. Particle-hole contribution to the axial chargeinvolv-
ing one-pion exchange which is minus the back-flow. Here,
A, stands for the external field probing axial charge, the

backward-going nucleon line N~! denotes a hole and the
wiggly line the W boson connected to the axial charge.
These graphs vanish in the g/ — 0 limit.

truly Goldstone boson would preserve its symmetry as
density isincreased beyond normal nuclear matter den-
sity. This assumption needs to be verified. The second
is hard to check and remainsto be verified. Thethird is
most probably solid. The upshot of the result isthat the
charge is conserved, the Kohn theorem is satisfied, and
the agreement with experiment essentially confirms, on
average, the BR scaling for the nucleon mass.

5.3. Landau Mass for the Nucleon
A quantity closely related to &g, isthe Landau effec-

tive mass my . Given ® and F () for p = p, we obtain
from Eq. (32) that

m’ = (1/0.78 + 0.153) ‘M = 0.70M. (74)

There are two sources of information that can be com-
pared with this prediction. One is theoretical, namely,
the QCD sum-rule result [40]

R (Po)
O M Gheo

The other is an indirect semiempirical indication com-
ing from peripheral heavy-ion collisions at the BEVA-
LAC and the SIS [41]:

*Hl

=~ 0.68M. (76)

The agreement here is essentially a reconfirmation of
the gyromagnetic ratio (72).

+0.14

= 0.69 907

(75)

5.4. Axial-Charge Transitionsin Heavy Nuclei

Before confronting the chiral Lagrangian prediction
(60) (with (58)) with experiments, we compare the left-
hand side of (64) (i.e., Migdal’s axial charge) with one-
pion exchange only and the right-hand side which is
given to next-to-leading order (NLO) chiral perturba—
tion theory with BR-scaling chiral Lagrangian.!?

To compute the Migdal charge, it is sufficient to
compute the one-pion-exchange graphs of Fig. 4 in the

12) Modulo correction less than 10%, this is valid to next-next-to-
leading order (NNLO) in chiral perturbation theory [36].
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limit w/q — 0. The negative of this gives the desired
quantity, namely, the back-flow. A simple calculation
gives

f kaN

1~ 10,,..4,,. 2
22(0_
mT[

5Gi-FHo* M~ 5hy =

where the subscript 11 denotes the pionic contribution.
Now since the right-hand side of (64) is valid beyond
the leading order in chiral perturbation theory, it con-
tains information that accounts for more than one-pion
exchange. Inthe samevein, Eq. (77) containsalot more
since the mass of the nucleon is given by the Landau

mass my;, athough the interaction is evaluated with

one-pion exchange. Therefore, there is no reason to
expect a one-to-one correspondence between the two.
Even so, we conjecture that, to the extent that the
dynamics is governed by the pion exchange corrected
by the BR-scaling @, the two must be approximately
the same. That is to say that the combination of the
Migdal parameters of (64) should be saturated by the
pions modulo what corresponds to higher chiral order
terms which are argued to be small. Thisisrequired if
the chiral-filter argument isto hold.

Let us consider how relation (64) fareswith the pion
for p = po/2 and p,. The left-hand side—given by
(77)—comes out to be, respectively, 0.42 and 0.50 for
P = Po/2 and py, whiletheright-hand side—whichisthe
full contribution from the BR Lagrangian—gives 0.37
and 0.55. Thusthe pions are seen to saturate about 90%
of thetotal predicted by the chiral field theory with BR
scaling.

Although far from direct, there is a beautiful confir-
mation of the prediction (60) from axial-charge transi-
tionsin heavy nuclei (denoted by the mass number A)

I 1) ’ (77)

AJ) — AT +e(e) +V(v), AT =1. (78)

The quantity we shall ook at is Warburton's ey [42]
defined by

€EMEC — M@(p/Msp’ (79)

where M., is the measured matrix element for the
axial- chargetransm on and M, isthe theoretical single-
particle matrix element for a nucleon without BR scal-
ing. There are theoretical uncertainties in defining the
latter, so the ratio is not an unambiguous object but
what is significant is Warburton's observation that in
heavy nuclel, ey can be as large as two:

Heavy Nuclei
€MEC

=1.9020. (80)

More recent measurements—and their analyses—in
different nuclei [43, 44] quantitatively confirm this
result of Warburton.

The theoretical prediction from (60) is

Chl ral

€vec = @ (1+A) (81)
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with A given by (58). For nuclear matter density, we
find

chiral

eord = 2.1. (82)

The theory therefore correctly describes the large
enhancement of the axial-charge matrix element in
nuclei in general and the density-dependent enhance-
ment in particular. There are two elements that account

for this enhancement. Pions contribute A ~ 1/2 with lit-
tle density dependence and the BR-scaling ® accounts
for the further enhancement for heavier nuclei. This
result represents astrong case for the validity of thethe-
ory in the normal density regime.

6. GOING TO DENSER MATTER
6.1. Evidence in Dense Matter?

The real strength in effective field theories is that
one may be able to describe quantitatively the state of
matter that is formed a a high density as one
approaches the chiral phase transition. If one assumes
that the matter isaFermi liquid all the way to the phase
transition, then one can use the BR-scaling chira
Lagrangian in the mean field. But this means that al
degrees of freedom, fermionic as well as bosonic, are
treated as quasiparticles. It is established that nucleons
are quasiparticles in nuclear matter as Migdal had
argued. The shell model for nucle is justified by the
guasiparticle picture. It is aso supposed that at asymp-
totic density where weak coupling of QCD is operative,
guarks can betreated as quasiquarks[45]. The presence
of a Fermi sea for nucleons and quarks is one of the
ingredients for treating them as quasiparticles. In the
discussions given above, bosons were not required to
be quasiparticles despite that BR scaling is invoked for
both fermions and bosons. In addressing heavy-ion pro-
cesses, however, properties of bosonsin medium might
play an important role. For instance, in CERN's
CERES experiments, it is the property (i.e., mass,
width, etc.) of the p meson in dense and hot medium
that seemsto play akey role. So the question ariseshhow
bosons behave in extreme conditions.

There are some indirect experimental evidences for
vector bosons with dropping masses in dense medium.
The effect isusually manifested in spin— sospin-depen-
dent nuclear forces and affect spin—isospin observables
[46, 47]. These observables probe off-shell properties
of the mesonsinvolved up to nuclear matter density and
do not in genera give direct information on their phys-
ical propertiesin medium. There are similar indications
from tensor forces in heavy nuclei which also can be
explained from the exchange of the p meson with a
reduced mass [48]. A more direct indication comes
from dilepton production in heavy-ion collisions at
CERN CERES. There, the quasiparticle picture of the
vector mesons with dropping mass in hot and dense
matter (at a density greater than that of normal nuclear
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matter) provides asimple and successful explanation of
the observed downward shift of the invariant mass of
the lepton pair [49]. The approximation used in [49]
consists of taking only tree-order graphs with an effec-
tive chiral Lagrangian ala BR scaling discussed above
that gives a realistic description of nuclear matter: no
loop corrections are taken into account in a proper
sense although partial account is of course made in the
unitarization of the amplitudes involved. The question
as to what happens when loop corrections are properly
taken into account in this theory so far remains unan-
swered. Itisalso not known whether thetree-order (i.e.,
quasiparticle) treatment correctly describes the excita-
tion of the vector quantum numbers in such dense
matter.

6.2. Perturbing from a Zero-Density Vacuum

One might attempt an ambitious program to start
from an effective chiral Lagrangian constructed at zero
density and do a systematic chiral expansionto arrive at
higher density. This is the spirit of [18, 19]. Aided by
experiments, this program could be made to work up to
nuclear matter density, but it is a completely different
matter if one wants to reach a density where the chiral
phase transition can occur. Dense matter probes short
distances, and chiral perturbation theory (ChPT) cannot
access such kinematic regime asis clear from Landau—
Migdal Fermi liquid theory. What has been done up to
dateis alow-order perturbation calculation in a strong-
coupling regime. Now, if such acalculation isbased on
an effective Lagrangian satisfying relevant symme-
tries (e.g., chira symmetry), leading-order (tree-
order) terms are consistent with low-energy theorems
and should give reasonable results at low density,
provided the parameters are picked from experi-
ments. See Rapp and Wambach [50] for a review
where the relevant references are found. In such low-
order calculations, one finds that the mesons, such as
the p and a,, get “melted” dueto increasing width and
lose their particle identities. However, as the density
increases away from zero, the tree-order approxima-
tions, which are essentially all one can work with,
cannot be trusted. Exactly where this discrepancy
will become serious is not known. Being in a strong-
coupling regime, anomalous dimensions of certain
fields (such as scalar fields) grow too big to be natu-
ral, signaling that one is fluctuating around the wrong
vacuum. We believe this to be the case already at
nuclear matter density. Brown-Rho scaling corre-
sponds to shifting to and fluctuating around a vacuum
defined at p = py where the effective coupling gets
weaker in the sense of quasiparticle interactions. As
the density approachesthe critical for the chiral phase
transition, the picture with quasinucleons goes over
to the one with quasiquarks. It seems extremely diffi-
cult, if not impossible, to arrive at this picture starting
from a strong-coupling hadronic theory effective at



Fig. 5. Particle-hole coherent modes excited by coupling to
Vector mesons p, , ... .

zero density. See [4, 51] for further discussion on this
point.

6.3. Perturbing from the BR-Scaling Ground State

Given a Lagrangian (3) or (5) with BR scaling
that gives the ground state of nuclear matter cor-
rectly, we would like to know how to make fluctua-
tions around the ground state. As an illustration, con-
sider kaon—nucleon interactions in a medium [22].
This process is relevant for both laboratory experi-
ments and for the structure of compact stars as we
will describe below.

For the problem at hand, it is convenient to general-
ize (5) to the SU(3) flavor so asto incorporate kaons in
the Lagrangian. The additional term relevant to the pro-
cessisgiven by

—6i  — _
d0Fn = W(NVON)KatK
(83)
+ ZNRN)RK + ... = Lo+ &
sz( ) T ELyt Lt

where KT = (K*K?), f* is the in-medium Goldstone
boson decay constant which, within the approximation
adopted here, may be taken to be the pion decay con-
stant, and the ellipses stand for higher order termsin the
chiral counting. The structure of the first two leading-
order terms of the fluctuating Lagrangian is dictated by
current algebras, whichimpliesthat 2, isthe usual KN
sigmaterm in free space and also that it may be valid
near nuclear matter density.

Within the scheme & la BR, we are to work in the
mean-field approximation. Assuming that this is valid
up to nuclear matter density, one gets from (83) the

potential energy for the scalar (¢) field S and the vec-
tor (w) field V- that K-feelsin nuclear matter at p = py:

S +V, _=-192 MeV. (84)
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For this we have used the value for the KN sigmaterm,

v =3.2mpand f/f, = ® Theexact valueis unknown

since the sigma term is not fixed precisely. The attrac-
tion (84) is consistent with what is observed in kaonic
atoms [52] and aso with the K-/K* production ratio in
heavy-ion collisions at GSI [53]. When applied to neu-
tron-star matter and extrapolating to higher density, itis
more appropriate to adopt the “top—down” approach
proposed in [22], in which the kaon field is introduced
as a matter field and the relevant fermion field is taken
to be the quasiquark rather than the nucleon. With a
suitable modification appropriate for the top—down
approach of [22] in the Lagrangian (83), one then pre-
dicts K- condensation at a matter density p. = 2 ~ 3p,
with the intriguing implication that the maximum sta-
ble neutron-star mass is 1.5 times the solar mass [53].
These mean-field results with BR-scaling Lagrangians
arein agreement with more refined cal culations carried
out in high-order chiral perturbation theory [54]. If it
turned out that condensation occurs at higher density
than the range considered so far (due to some higher
order effects that cannot be accessed by the effective
Lagrangian method used), then the presently available
machinery for handling short-distance physics would
not be powerful enough to allow usto pin down the crit-
ical density [55]. More work is needed in this area.

6.4. Sobar Model

Among Migda’s other major contributions to
nuclear physics is his work on pion-nuclear interac-
tions, in particular on pion condensation in dense
nuclear matter [6]. It is suggested that the Fermi liquid
description a la BR-scaling chiral Lagrangian can be
phrased in a form resembling Migdal’s description of
pion condensation. The initial idea is formulated in a
series of recent papers by Kim et al. [56].

Consider avector meson, say w, whichisinsertedin
a dense medium, and look at the excitation of coherent
modes of the w quantum number. The w meson will be
coupled to particle-hole excitations of the same quan-
tum number as depicted in Fig. 5. Analogous to the
treatment of pion condensation, the lowest energy col-
lective particle-hole mode is interpreted as an effective
vector meson field operating on the ground state of the
nucleus, i.e.,

%\Z [NFNTT = iZ[p(xi) or w(x)][Wol, (85)

with the antisymmetrical (symmetrical) sum over neu-
trons and protons giving the p-like (w-like) nuclear
excitation. Here, the “particle” is taken to be N*,
while the “hole” is anucleon hole. We will ignore the
nucleon as a particle since, in the channel we are con-
cerned with, we expect the nucleon to be more weakly
coupled than the N* to the (near on-shell) vector
PHYSICS OF ATOMIC NUCLEI
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meson. We call the collective mode (85) sobar, i.e., p-
sobar, w-sobar, etc.

The dropping vector meson masses could then be
calculated in terms of mixing of the nuclear collective
state, Eq. (85), with the elementary vector meson
through the mixing matrix elements of Fig. 5. Now
building up the collective nuclear mode, the latter can
be identified as an anal og to the state in the degenerate
schematic model of Brown for giant dipole resonance
[57]. The fields figuring in a BR-scaling chiral
Lagrangian are then to be identified with interpolating
fieldsfor the lowest branch modes that emerge from the
mixing. An important development which leads to the
assumption of Eqg. (85) was furnished by Friman, Lutz,
and Wolf [58]. From empirical values of the amplitudes
suchast+ N — p + N, €fc., they constructed the p-
like or wr-like states in agreement with our assumption
of Eq. (85). Thus, the input assumption made for the
sobar model receives substantial empirical support.

Since the development is at itsinitial stage and il
quite crude, we briefly summarize what we hope to
accomplish in the end.

The property of avector meson, say, w, inamedium
isencoded in the propagator of the meson in interaction
with the system. For simplicity, let us consider a two-
level schematic model. In (85), we take only one con-
figuration with N* = N*(1520) in the w channel. The
starting point is the w-meson propagator in nuclear
matter given by

D(9o, 95 Pn)
1 (86)

0o =0 —Mp = T (G O P)

where we have ignored the w decay width, and the den-
sity-independent real part of the self-energy has been
absorbed into the free (physical) mass m,, Here, py is
the nucleon-number density. Note that within the low-
order approximation made here the entire density
dependence resides in the in-medium w self-energy
> v+ induced by N* (1520)N-! excitations. In what fol-
lows, wewill, for simplicity, concentrate on the limit of
a vanishing three-momentum, where the longitudinal
and transverse polari zation components become identi-
cal. Due to the rather high excitation energy of AE =
My« — My =580 MeV, one can safely neglect nuclear
Fermi motion to obtain

Zonen(do)

gt BPuO 20E) O
wWN* N
m; 4 Hoo + i w/2)” - (8E)™
where I, is the sum of the full width of N*(1520) in
free space and the density-dependent width due to the
medium. If the widths of w and N*(1520) are suffi-
ciently small, one can invoke the mean-field approxi-
mation and determine the quasi particle excitation ener-
gies from the zeros in the real part of the inverse prop-

(87)
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agator. In particular, for g = 0, thein-medium w massis
obtained by solving the dispersion relation

0o = M; + ReZ e n(Co)- (88)

The pertinent spectral weights of the solutions are char-

acterized by Z factors defined by
a -1
z=0_ ——ZResz*NE . (89)
04,

The formulas written above are presumably valid
for low density since they can be made consistent (by
fiat) with low-energy theorems. However, there is no
reason to expect that a low-order calculation in strong
coupling will be viable at high density. For instance,
there is no way that the w mass will go to zero at any
density even in the chiral limit. We are therefore led to
make certain assumptions motivated by our objectiveto
model BR scaling. It isclear that with afew-order per-
turbative calculation in a strong-coupling regime, there
isno way to arrive at BR scaling. Lacking a workable
scheme to compute systematically, we will simply
impose a condition on the model and study the conse-
guence on the model. The simplest condition that we
can impose is that g, = 0 be a solution of (88) at some
density p, at which the in-medium pion decay constant

f* isto vanish (ala, eg., in-medium Weinberg sum
rule). Thisisreadily achieved if

2
x2 (o

irrespective of density asp — p... Note that we have
appended a star on the wN*N coupling constant to indi-
cate that higher order corrections will inject a non-lin-
ear density dependence into the vertex (as well as into
the width, etc.) The limit can be achieved only if the
density dependenceinf* cancelsthe samein g, asone
approaches the critical density. Now the constant can-
not be fixed a priori and what one takes for it will
determine at what p, the effective w-sobar mass will
vanish. The basic assumption here is that since the
vector mass drops while the pion mass does not, the
quasiparticle picture gets restored as p approaches p,
with the width shrinking due to the decreasing phase
space. This is consistent with the general premise of
BR scaling.

As stressed in [56], nobody has been able to derive
such a sobar description starting from effective field
theories defined at zero density. It seems however
promising that this is possible in a systematic way in
the framework laid down in [56]. How this can come
about is sketched in the references [56].
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Abstract—Effects of the propagation of particlesthat have afinitelifetime and an according width in their mass
spectrum are discussed in the context of transport description. First, the importance of coherence effects (Lan-
dau—Pomeranchuk—Migdal effect) on the production and absorption of field quanta in nonequilibrium dense
meatter is considered. It is shown that classical diffusion and Langevin results correspond to a resummation of
certain field-theory diagrams formulated in terms of full nonequilibrium Green’s functions. General properties
of broad resonancesin dense and hot systems are discussed in the framework of a self-consistent and conserving
@-derivable method of Baym by considering the examples of the p meson in hadronic matter and the pion in
dilute nuclear matter. Further, we address the problem of atransport description that properly takes into account
the damping width of the particles. The ®-derivable method generalized to the real-time contour providesa self-
consistent and conserving kinetic scheme. We derive a generalized expression for the nonequilibrium kinetic
entropy flow, which includes corrections from fluctuations and mass-width effects. In special cases, an H the-
oremisproven. Memory effectsin collision terms contribute to the kinetic entropy flow that, in the Fermi liquid
case, reproduces the famous bosonic-type TInT correction to the specific heat of liquid *He. For the example
of the pion-condensate phase transition in dense nuclear matter, we demonstrate the important role of the width

effects within the quantum transport. © 2001 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

Quasiparticle representations in many-body theory
were designed by Landau, Migdal, Galitsky, and others
(see [1-4]). This concept was first elaborated for low-
lying particle-hole excitationsin Fermi liquids. Migdal
was the first to apply these methods to description of
various nuclear phenomena and construction of a
closed semimicroscopic approach that is now usually
called the theory of finite Fermi systems [3]. The need
for an explicit treatment of soft modes within this
approach stimulated him to generalize this concept to
include pion and A excitations. Migdal suggested a
variety of interesting effects like the softening of the
pion mode in nuclei, pion condensation in dense
nuclear and neutron-star matter, and the possible exist-
ence of abnormal nuclei glued by apion condensate [5—
8]. These ideas stimulated further development of pion
physics with applications to many phenomena in
nuclei, neutron stars, and heavy-ion collisions (see [8—
10] and references therein). In this paper, we would like
to review briefly recent developments of some of the
aboveideas as applied to heavy-ion physics.

With the aim of describing a collision of two nuclei
at intermediate and high energies, one is confronted
with the fact that dynamics has to include particleslike
the in-medium excitation with the pion quantum num-
bers, as well as the delta and p-meson resonances with

* This article was submitted by the authorsin English.

1) Permanent address: Russian Research Centre Kurchatov Insti-
tute, pl. Kurchatova 1, Moscow, 123182 Russia.

2) Permanent address: Moscow State Engineering Physics Institute,
Kashirskoe sh. 31, Moscow, 115409 Russia.

lifetimes of less than 2 fm/c or, equivalently, with
damping widths above 100 MeV. Also, the collision
damping rates deduced from currently used transport
codes are on the same order, whereas typical mean tem-
peratures range from 50 to 150 MeV, depending on the
beam energy. Thus, the damping width of most of the
constituents in the system can by no means be treated
as a perturbation. As a consequence, the mass spectrum
of the particles in dense matter is no longer a sharp
deltafunction, but it rather acquires awidth dueto col-
lisons and decays. Thus, one arrives at a picture that
unifies resonances, which already have awidth in vac-
uum due to decay modes, with the “states’ of particles
in dense matter, which acquire awidth dueto collisions
(collision broadening). Landau, Pomeranchuk, and
Migdal were the first to demonstrate the importance of
finite-width effects in multiparticle scattering [11, 12].
Such a coherence scattering effect, known now as the
Landau—Pomeranchuk—Migdal effect, was recently
observed at the Stanford accelerator [13].

Theoretical concepts for a proper many-body
description in terms of areal-time nonequilibrium field
theory were devised by Schwinger [14], Kadanoff and
Baym [15], and Keldysh [16] in the early 1960s. How-
ever, aproper dynamical schemein terms of atransport
concept that deals with unstable particles, such as reso-
nances, is still lacking. Rather ad hoc recipes arein use
that sometimes violate basic regquirements as given by
fundamental symmetriesand conservation laws, detailed
balance, or thermodynamic consistency. The problem of
aconserving approximation hasfirst been addressed by
Baym and Kadanoff [17, 18]. They started from an

1063-7788/01/6404-0652%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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equilibrium description in the imaginary-time formal-
ism and discussed the response to external distur-
bances. Baym, in particular, showed [18] that any
approximation, in order to be conserving, must be so-
called ®-derivable. It turned out that the ® functional
required is precisely the auxiliary functional introduced
by Luttinger and Ward [19] (see aso [20]) in connec-
tion with the thermodymanic potential. In the nonequi-
librium case, the problem of conserving approxima
tions is even more severe than in near-equilibrium lin-
ear-response theory [21, 22].

In this review, we discuss recent developments of
the transport theory beyond the quasiparticle approxi-
mation and consequences of the propagation of parti-
cleswith short lifetimesin hadron matter. First, we con-
sider few equilibrium systems which clearly indicate
that treatment beyond the quasi particle approximation
is really needed. We start with a genuine problem
related to the occurrence of broad damping width, i.e.,
the soft-mode problem (Landau—Pomeranchuk—
Migdal effect). This is the direct radiation of quanta
from a piece of a dense medium [23]. Classicaly, this
problem isformulated as coupling of a coherent classi-
cal field, e.g., the Maxwell field, to a stochastic source
described by the Brownian motion of a charged parti-
cle. In this case, the classical current—current correla-
tion function can be obtained in closed analytic terms
and discussed as a function of the macroscopic trans-
port properties, the friction and diffusion coefficient of
the Brownian particle. We show that this result corre-
sponds to a partial resummation of photon self-energy
diagrams in the real-time formulation of field theory.
Subsequently, properties of particles with broad damp-
ing width areillustrated at the examples of the p meson
in dense matter at afinite temperature [24] and the pion
inthelimit of adilute nuclear matter [25]. The question
of consistency becomes especially important for amul-
ticomponent system like TiNAp, ..., where the proper-
ties of one species can change due to the presence of
interactions with the others and vice versa. The “vice
versa’ isvery important and corresponds to the princi-
pleof action = reaction. Thisimpliesthat the self-energy
of one species cannot be changed through the interaction
with other species without affecting the self-energies of
the latter ones also. The d-derivable method of Baym
[18] offers a natural and consistent way to account for
this principle.

Then we address the question how particles with a
broad mass width can be described consistently within
a transport picture [21, 22]. We argue that the
Kadanoff-Baym equations in the first gradient approx-
imation together with the ®-functional method of
Baym [18] provide a proper self-consistent approach
for kinetic description of systems of particles with a
broad mass-width. We argue that after gradient expan-
sion the full set of equations describing quantum trans-
port contains two equations, the differential general-
ized kinetic equation for a distribution function in 8-
dimensional (X, p) space and the algebraic equation for
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the spectral density. Other equations are resolved. We
discuss the problems concerning charge and energy—
momentum conservation, thermodynamic consistency,
memory effectsin the collision term and the growth of
entropy in specific cases. Finally, we demonstrate
finite-width effects in quantum kinetic description at
the example of pion condensation, where the width of
soft pionic excitations due to their decay into particle—
hole pairs governs the dynamics of the phase transition
in the isospin-symmetric nuclear matter.

We use the units # = ¢ = 1. For simplicity, we treat
fermions nonrelativistically, whereas bosons (mesons)
are treated as relativistic particles.

2. BREMSSTRAHLUNG FROM CLASSICAL
SOURCES

For the clarification of the soft-mode problem, fol-
lowing [23], we first discuss an example in classical
electrodynamics. We consider a stochastic source, the
hard matter, where the motion of a single charge is
described by the diffusion process in terms of the Fok-
ker—Planck equation for the probability distribution f of
the position x and velocity v:

0
a—tf(x, v, t)

1
- 29’ 0 00 M
= rxa—2+rxa—VV—Va—XDf(X,V, t).
v

Fluctuations also evolve in time according to this equa-
tion, or equivalently by the random-walk process [23],
and thisway determine correlations. Thischargeiscou-
pled to the Maxwell field. On the assumption of anon-
relativistic source, this case does not suffer from stan-
dard pathologies encountered in hard-thermal-loop
(HTL) problems of QCD, namely, the collinear singu-
larities, where v - q = 1, and from diverging Bose fac-
tors. The advantage of this Abelian example is that
damping can be fully included without violating cur-
rent conservation and gauge invariance. This problem
is related to the Landau—Pomeranchuk—Migdal effect
of bremsstrahlung in high-energy scattering [11, 12].

The two macroscopic parameters, the spatial diffu-
sion D and friction I, coefficients determine the relax-
ation rates of velocities. In the equilibrium limit (t —
o), the distribution attains the Maxwell-Boltzmann
velocity distribution with the temperature T = mv2[3 =
mDI,. The correlation function can be obtained in
closed form, and one can discuss the resulting time cor-
relations of the current at various values of the spatial
photon momentum q, Fig. 1 (details are given in [23]).
For the transverse part of the correlation tensor, this

correlation decays exponentialy as e O at g =0, and
its width further decreases with increasing momentum
g = |q|- The in-medium production rate is given by the
time Fourier transform T — w (right part of Fig. 1).
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Current corr. function
1.2

IVANOV et al.

Photon rate (diffusion model)

.. 100 MeV

=50 MeV

1
400
w, MeV
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Fig. 1. Left: Current—current correlation function (in units of e?(¥([) as a function of time (in units of 1/I",) for different values of

the photon momentum g2 = 3k2 F)z( /v2owith k= 0, 1, 2, 3. Right: Rate of real photons d2N/(dewdt) (in units of 4me?¥2IB) for a
nonrelativistic source for 'y = 50, 100, 150 MeV; for comparison, the |QF results (dashed curves) are also shown.

The hard part of the spectrum behaves as intuitively
expected; namely, it is proportional to the microscopic
collision rate expressed through I', (cf. below) and thus
can be treated perturbatively by incoherent quasifree
(IQF) scattering prescriptions. However, independently
of I, the rate saturates at a value of ~1/2 in these units
around w ~ I',, and the soft part shows the inverse
behavior. That is, with increasing collision rate the pro-
duction rate is more and more suppressed! Thisisinline
with the picture where photons cannot resolve the indi-
vidua collisons any more. Since the soft part of the
spectrum behaves like w/T ,, it shows a genuine nonper-
turbative feature which cannot be obtained by any power
seriesinI,. For comparison, the dashed curves show the
corresponding |QF yields, which agree with the correct
rates for the hard part while completely fail and diverge
towards the soft end of the spectrum. For nonrelativistic
sources [W?[1< 1, one can ignore the additional g depen-
dence (dipole approximation; cf. Fig. 1) and the entire
spectrum is determined by one macroscopic scale, the
relaxation ratel",. This scale provides aquenching factor

2
w

2 2
W+

Co(w) = (@)

by which the IQF results have to be corrected in order
to account for the finite-collision-time effects in dense
matter.

Fig. 2. Self-energy diagrams determining the production
and absorption rates.

The diffusion result represents aresummation of the
microscopic Langevin multiple-collision picture; alto-
gether, only macroscopic scales arerelevant to theform
of the spectrum and not the details of microscopic col-
lisions. Note also that the classical result fulfills the
classical version (A — 0) of the sum rules discussed
in[23, 26].

3. RADIATION AT THE QUANTUM LEVEL

We have seen that at the classical level the problem
of radiation from dense matter can be solved quite nat-
urally and completely, at least for simple examples, and
Fig. 1 displays the main physics. They show that the
damping of the particles due to scattering is an impor-
tant feature, which, in particular, has to be included
right from the onset. This not only assures results that
no longer diverge but also provides a systematic and
convergent scheme. On the quantum level, such prob-
lems require techniques beyond the standard repertoire
of perturbation theory or the quasiparticle approxima-
tion. In terms of nonequilibrium diagrammatic tech-
nique in the Keldysh notation, the production or
absorption rates are given by the self-energy diagrams
of thetype presented in Fig. 2 with anin- and out-going
radiating particle (e.g., photon) line [23, 27]. The
hatched loop area denotes all strong interactions of the
source. The latter give rise to a whole series of dia-
grams. As mentioned, for the particles of the source,
e.g., the nucleons, one has to resum the Dyson equation
with the corresponding full complex self-energy in
order to determine the full Green’s functions in dense
matter. Once one has these Green's functions together
with the interaction vertices at hand, one could in prin-
ciple calculate the required diagrams. However, both
the computational effort to calculate a single diagram
and the number of diagramsincrease dramatically with
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the loop order of the diagrams, such that, in practice,
only the lowest order loop diagrams can be considered
in the quantum case. In certain limits, some diagrams
drop out. We could show that in the classical limit,
whichinthiscaseimpliesthe hierarchy w, |q|, T < T <
m together with low phase-space occupations for the
source, i.e., f(x, p) < 1, only the following set of dia-
grams survives:

+ + + +
+/ TN+ - + -
A F K@ F Ao F©

In these diagrams, the bold lines denote the full nucleon
Green's functions which also include the damping
width, the black blocks represent the effective nucleon—
nucleon interaction in matter, and the full dots denote
the coupling vertex to the photon. The thin dashed lines
show how the diagrams are to be cut into two interfer-
ing amplitudes. This way, each of these diagrams with
n interaction loop insertions relates just to the nth term
in the corresponding classical Langevin process, where
hard scatterings occur at random with a constant mean
collisionratel". These scatterings consecutively change
the velocity of apoint chargefromv,tov,,tov,, ....In
between scatterings, the charge moves freely. For such
a multiple-collision process the space integrated cur-
rent—current correlation function takes the smple Pois-
son form

im0 o' x2< " t=37 %Z’H_E}

= oMoV (0= e’ Z 'r“ v

n=0

with v = (1, v). Here, [..denotes the average over the
discrete collision sequence. This form, which one
writes down intuitively, agrees with the analytic result
of the quantum correlation diagrams (3) in the limit f(x,
p) <landl < T. Upon the Fourier transformation, it
determines the spectrum in completely regular terms
(void of any infrared singularities), where each term
describes the interference of the photon being emitted
at a certain time or n collisions later. In specia cases
where velacity fluctuations are degraded by a constant
fraction a in each collision, such that [V, - v,[= a"[¥,, -
v,Jone can resum the whole seriesin Eq. (4) and thus
recover therelaxation result with 2I" 2= '[{v,—Vv,)*[]
at least for g = 0, and the corresponding quenching fac-
tor (2). Thus, the classical multiple collision example
provides a quite intuitive representation of such dia-
grams. Further details can be found in [23].

The above example shows that we have to deal with
particle transport that explicitly takes account of the
particle mass width in order to properly describe soft
radiation from the system.
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4. THE p MESON IN DENSE MATTER

Following the ®-derivable scheme, we will first dis-
cuss two examples within thermoequilibrium systems.
First, we will judge properties of the p meson and their
consequences for the p decay into dileptons [24]. In
terms of the nonequilibrium diagrammatic technique,
the exact production rate of dileptons is given by the
formula

dn€'e AN Y PV

didm ~— € G

(5)
= £,(m, p, x, ) Al(m, p, X, t)2mr ™ © (m).

Here, °°® (m) O I/m¥ is the mass-dependent electro-
magnetic decay rate of the p into the dilepton pair of
invariant mass m. The phase-space distribution f,(m, p,
X, t) and the spectral function A,(m, p, X, t) define the
properties of the p meson at spacetime point x, t. Both
guantities are in principle to be determined dynami-
cally by an appropriate transport model. However, the
spectral functions have not yet been treated dynami-
cally in most of the present transport models. Rather
one employs on-shell d functionsfor all stable particles
and spectral functions fixed to the vacuum shape for
resonances.

Asanillustration, we follow the two-channel exam-
ple presented by one of usin [28]. There, the p meson
just strongly couples to two channels, i.e., the i1t and
TN —— pN channdls, the latter being relevant at finite
nuclear densities. The latter component is representa
tive for all channels contributing to the so-called direct
p in transport caodes. For afirst orientation, the equilib-
rium properti are discussed in simple analytical
terms with the aim to discuss the consequences for the
implementation of such resonance processes into
dynamical transport simulation codes.

Both considered processes add to the total width of
the p meson

rtot(m! p) = rp R T[+T[—(m1 p) + rp R T[NN_l(m, p)! (6)
and the equilibrium spectral function then results from
the cuts of the two diagrams

T/ N /
, 7\ P P P
Ag(m, p) =TT / §o00 + :
N /T IN-1 , @)

2mrpn+n— + 2mrpn-NN*1

Re>R)2 4+ mzﬂ%t

2,2
(m —mg—

3)Far more sophisticated calculations have already been presented
in the literature [29-34]. It is not the point to compete with them
at this place.



656

Dilepton rates from thermal p mesons

rtot = rfree
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Fig. 3. e'e™ rates (arb. units) as afunction of the invariant pair massmat T = 110 MeV from 11 annihilation (dotted curve) and
direct p-meson contribution (dashed curve), the solid curve gives the sum of both contributions. L eft part: using thefree cross section

recipe, i.e., with My, = rpﬁn

Fp . m.(mp) =150 MeV and Fp NN (mp) =70 MeV.

In principle, both diagrams have to be calculated in
termsof fully self-consistent propagators, i.e., with cor-
responding widths for al particles involved. This for-
midabletask has not been done yet. Using microrevers-
ibility and the properties of thermal distributions, the
two terms in Eq. (7) contributing to the dilepton yield
(5) can indeed approximately be reformulated as the
thermal average of the ' — p — e*e~ annihila-
tion process and the TN — pN — efe"N scattering
process, i.e.,

dn®®

dmdt

+f fyVno(MN— pN — e'e'N)[3,

o0 L f T ——>p—¢€'€e’
- n_vmo(nn p ee) ®

where f, and fy are corresponding particle occupations
and v, and v, are relative velocities. However, an
important fact to be noticed is that, in order to preserve
unitarity, the corresponding cross sections are no
longer free, as given by the vacuum decay width in the
denominator, but rather involve the medium-dependent
total width (6). Thisillustratesin simpletermsthat rates
of broad resonances can no longer simply beaddedin a
perturbative way. Since it concerns a coupled-channel
problem, there is a cross talk between the different
channelsto the extent that the common resonance prop-
agator attains the total width arising from all partial
widths feeding and depopulating the resonance. While
a perturbative treatment with free cross sections in
Eqg. (8) would enhance the yield at the resonance mass,
m = m,, if a channel is added (left part of Fig. 3), the
correct treatment (7) even inverts the trend and indeed
depletes the yield at the resonance mass (right part in
Fig. 3). Furthermore, one sees that only the total yield
involves the spectral function, while any partia cross

_; right part: the correct partial rates (7). A isgiven by thethick curve. The calculations are done with

section refers to that partial term with the correspond-
ing partial width in the numerator! Compared to the
shape of the spectral function, both thermal compo-
nents in Fig. 3 show a significant enhancement on the
low-mass side and a strong depletion at high masses
dueto thethermal weight f U exp(—p,/T) intherate (5).
This kinematical effect related to the broad width aso
survives in nonequilibrium calculations and is a signa
ture of phase-space restrictions imposed for particles
with higher energies. The related question as to how to
preserve detailed balance in the case of broad reso-
nances was addressed by Danielewicz and Bertsch
[35]. The latter method has then been implemented in
transport models mostly applied to the description of
the A resonance. For the transport description of the p
meson, only quite recently has a description level been
realized that properly includes the width effects dis-
cussed above, e.g., in[36], cf. also the comments given
in [37]. The transport treatment of broad resonancesis
discussed further in Sections 5-8.

Asan example, we show an exploratory study of the
interacting system of 11, p, and a, mesons described by
the & functional

¢=++@ &)

(cf. Section 6 below). The couplings and masses are
chosen asto reproduce the known vacuum properties of
the p and a, mesons with nominal masses and widths

m, =770 MeV, m, = 1200 MeV, I, = 150 MeV, and
., =400 MeV. Theresults of afinite-temperature cal-

culation at T = 150 MeV with all self-energy loops
resulting from the ® functional of Eq. (9) computed
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[24] with the self-consistent broad-width Green’s func-
tionsaredisplayed in Fig. 4 (correctionsto thereal part
of the self-energieswere not yet included). Thelast dia-
gram of @ with the four-pion self-coupling has been
added in order to supply pion with broad mass width as
they would result from the coupling of pions to nucle-
ons and the A resonance in nuclear matter environment.
As compared to first-order one-loop results which drop
to zero below the two-pion threshold at 280 MeV, the
self-consistent results essentially add in strength at the
low-mass side of the dilepton spectrum.

Virial Limit

In the dilute-density limit (viria limit), the corre-
sponding self-energies of the particles and intermediate
resonances are entirely determined by two-body scat-
tering properties, in particular, by scattering phase
shifts. We illustrate this by example of the interacting
system of nucleons, pions, and delta resonances, which
have recently been investigated by Weinhold et al. [25].
Following their study, we consider a pedagogical
example, where the TNN interaction is omitted. Then,
with a p-wave TiNA-coupling vertex among the three
fieldsthefirst and only diagram of @ up to two vertices
and the corresponding three self-energies are given by

q::,zNz mzf@sz\ (10)

Here, the solid, dashed, and double lines denote the
propagators of N, 11, and A, respectively. In nonrelativ-
istic approximation for the baryons, we ignore contri-
butions from the baryon Dirac sea. Then, the bare pion
mass agrees with its vacuum value, while the nucleon
and delta masses require appropriate mass counter
terms. The A self-energy %, attains the vacuum width
and position of the deltaresonance dueto the decay into
apion and anucleon. The corresponding scattering dia-
grams are obtained by opening two propagator lines of
@ with the prominent feature that the TiN scattering pro-
ceeds through the delta resonance. Since in this case a
single resonance couples to a single scattering channel,
the vacuum spectral function of the resonance can be
directly expressed through the scattering T matrix and
hence through measured scattering phase shifts

T3 = 4sin333(p) = T ¥ (p)AR“(p),
(11)

where p = py + p, Thus, through (11), the vacuum
properties of the delta can be obtained from scattering
data amost in a model-independent way.

For the multicomponent system the renormalized
thermodynamic potential including vacuum counter
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p-meson spectral function
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Fig. 4. Upper part: contour plot of the self-consistent spec-
tral function of the p meson as afunction of energy and spa-
tial momentum, T = 150 MeV; lower part: thermal dilepton
rate (arb. units) as a function of invariant mass at |p| =
300 MeV/c, T =110 MeV.

terms can be written as
Q{ G, Gy, Gp}

FKtr{—In[-GX(p, +i0, p)]

al{m N, A}
R<R
+G, 2 bt Py,

(12)

(/2 for neutral bosons

K =10 : (13)
1 for charged bosons and fermions.

For any function f(p), the thermodynamic trace
tr{...} 7, . isdefined as

tr{ f(p)}ru

v, d . (14)
= +dﬂ(—2—f);n(po—u)2|mf(po+|o,p),
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an energy integral over thermal occupations n(€) =
[exp(e/T) + 1]7', of Fermi—Dirac or Bose-Einstein
type. The upper sign appearsfor fermions, the lower for
bosons, disthe degeneracy in that particle channel, and
V denotes the volume. Equation (12) still has the func-
tional property to provide the retarded Dyson's equa

tions for the Gf from the stationary condition which

we use in order to determine the physical value of Q.
For the particular case here, one can further exploit the

property
®; = KTU{Z.G.}r s
for a{N, m, A} and & of form (10),

valid for ®; that depend linearly on all propagators.
Compatible with the low-density limit, one can expand
thetr In{—G} termsfor the pion and nucleon around the
free propagators and finally obtain

QT[NA = Q{ Gm GN’ GA} |stationary
AZ+ Ttr{ IN[-GA(po +10, P)]} 1.1
Qmna = QI\:ee*'eree

d4p 0033(p)
+d, TV x 2 In[1-n —
A I(2n4 P, [ A(Po

free (15)

=%+ Q

(16)

Ha)l

for the physical value of Q. Here, the Q' are the free
single-particle thermodynamic potentials, 4 while M
and d, = 16 are the chemical potential and degeneracy
factor of the A resonance, respectively. The last termin
(16), obtained through (11), represents a famous result
derived by Beth—Uhlenbeck [38, 39], later generalized by
Dashen, Ma, and Bernstein [40] and applied to nuclear
resonance matter in [25, 41, 42]. It illustrates that the vir-
ia corrections of the system’s level density due to inter-
actions are entirely given by the energy variation of the
corresponding two-body scattering phase shifts dd/0p,,.

All thermodynamic properties can be obtained from
Q through partial differentiations with respect to T and
the y. Thefinal form (16) may give the impression that
one deals with noninteracting nucleons and pions. This
is, however, not the case. For instance, the densities of
baryons and pions derived from (16) become
— aQTrNA

free

pB - OHN = pN +pA+pcorr!

(17)
pr = Zame = gl g 4
T ap'n T A corr

“The appropriate cancellatlon of terms for the result (15) is only
achieved if one uses Q'™¢| i.e., the partition sum of free particles
with the free energy—momentum dispersion relation. Within this
model, even on the vacuum level the nucleon would acquire loop
corrections to its self energy which would lead to deviations
between Q2 and Q!™¢, as well as between the corresponding
propagators off their mass shell.

IVANOV et al.

with
d* p
Pa = dAj’mnA( Po—Ha) Aa(P), (18)
d4p
Peor = dAJ.@nA( Po— p—A) Bcorr( p) ) (19)

and [, = Py + MY Here, the density of deltas p, is
determined by the delta spectral function. The interac-
tion contribution contained in the correlation density
P.orr depends on the difference between the phase-shift
variation and the spectral function

0045( Po)

Bcorr =2 -A
a po A( p)

(20)
A ( p)

=2Im[ e )}

Due to the fact that ' ,(p) grows with energy and the
real part of G, changes sign at the resonance energy,
B...r becomes positive below and negative above reso-
nance, respectively. It leads to an enhancement of both
densities at low energies, i.e., below resonance, and
also to a further softening of the resulting equation of
state compared to the naive spectral function treatment
ignoring the B, terms. Thisillustrates that an interact-
ing resonance gas cannot consistently be described by
aset of free particles (here the pions and nucleons) plus
vacuum resonances (here the delta), described by their
spectral function. Rather the coupling of a bare reso-
nance to the stable particles determines its width and,
thus, its spectral properties in a vacuum. At the same
time, the stable particles are modified due to the inter-
action with the resonance. Only the account of all three
self-energiesin (10) provides aconserving and thermo-
dynamically consistent approximation.

Alternatively to the picture above, the properties of
the system can be discussed entirely in terms of the sta-
ble particles, i.e., the pion and the nucleon, thus elimi-
nating the delta. The thermodynamic potential is then
still given by (16). This form is valid even without
intermediate resonances and the phase shifts just
account for the TiN-interaction properties. Also, the
self-energy of the lightest particle in the system, the
pion, can be obtained from phase shifts by means of the
optical theorem [43, 44]. To the linear order in the
nucleon density py, one determines the pion self-
energy

Z(Pia) = 4T[§|ab

PnFn(0)

o 21

x 25in633ei o
Per, Gl

91n equilibrium, Uy has to be put to zero after differentiation.
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from the forward TtiN-scattering amplitude F(0).
Here, p,, and p. ., refer to the pion 3-momenta in the
matter rest frame and the c.m. frame of the TN colli-

sions. The arising kinematical factor p,,,/P.., = ~/S/My
which has mostly escaped notice even in standard ref-
erences on thelow-density theorem, e.g., [45], becomes
important for heavier projectiles like kaons, cf. [46].
Here, the degeneracy factorsdy: d,;: dy=4:3:16just
provide the proper spin-isospin counting. This self-
energy, which determines an optical potential or index
of refraction, is attractive below the A-resonance
energy and repulsive above. It agrees with a related
effect in optics, where a resonance in the medium
causes an anomalous behavior of the real part of the
index of refraction, whichislarger than 1 below theres-
onance frequency and less than 1 above the resonance.
Thus, absorption, e.g., by exciting a resonance, is
always accompanied by a change of thereal part of the
index of refraction of the scattered particle. The ®-
derivable principle automatically takes care about these
features.

As has been discussed in [47], the correctionsto the
system’s level density [last term in (16)] can also be
inferred from the time shifts (or time delays) induced
by the scattering processes. From ergodicity arguments
[47] one obtains, for asingle partial wave,

free

(Nlevel(po) Nlevel(po)) TfonNard + Tscait = Tdelaly
(22)
004 004,
SiNd4;C0S845] + 4sin°® = 2—=.
a 0[ 33 33] 336p0 apo

These expressions apply to the c.m. frame. Here, the
forward delay time T;,,..q r€lates to the change of the
group velocity induced by the real part of the optical
potential, cf. (21). The scattering time 1., finally
results from the delayed reemission of the pion from
the intermediate resonance to angles off the forward
direction.

5. QUANTUM KINETIC EQUATION

The three above-presented examples unambigu-
ously show that, for consistent dynamical treatment of
nonequilibrium evolution of soft radiation and broad
resonances, we need a transport theory that takes due
account of mass widths of constituent particles. A
proper frame for such a transport is provided by
Kadanoff-Baym equations. We consider the K adanoff—
Baym equations in the first-order gradient approxima:
tion, assuming that the spacetime evolution of asystem
is smooth enough to justify this approximation.

First of all, it is helpful to avoid all the imaginary
factors inherent in the standard Green's function for-
mulation (G" withi, j O {—+}) and introduce quantities
which are rea and, in the quasihomogeneous limit,
positive and therefore have a straightforward physical
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interpretation [22], much like for the Boltzmann equa-
tion. In the Wigner representation, we define

F(X, p) = A(X, p)T(X, p) = (F)iG (X, p),

- (23)
F(X,p) = AX, p)[1F (X, p)] =

iG™(X, p),
A(X, p)=—2ImG~(X,p) = F+F

(24)
=i(G7-G)

for the generalized Wigner functions F and F with the
corresponding four-phase-space distribution functions
f(X, p) and Fermi (Bose) factors[1 F f(X, p)], with the
spectral function A(X, p) and the retarded propagator
GX. Here and below, the upper sign corresponds to fer-
mions and the lower one, to bosons. According to rela
tions between the Green’s functions G¥, only two inde-
pendent real functions of all the G¥ are required for a
complete description. Likewise, the reduced gain and
loss rates of the collision integral and the damping rate
are defined as

Fin(X, p) = (F)IZ (X, p),
Cou(X, P) = iZ7(X, p),
(X, p) ==2ImZ"(X, p) = Fou(X, P) £ (X, P), (26)

where XV are contour components of the self-energy
and ZX isthe retarded self-energy.

In terms of this notation and within the first-order
gradient approximation, the Kadanoff—-Baym equations
for F and F (which result from differences of the cor-
responding Dyson equations with their adjoint ones)
take the kinetic form

(25)

GPF-{r,,ReG"} = C, (27)

GF —{I,, ReG"} = FC, (28)
with the drift operator and collision term, respectively,

IRes" dRes" 9
g = —
%T[“ apu %3)( ax“ ap

Fin(X, PYF(X, P) =T au(X, P)F(X, P30
2r¢ = v* = (1, p/m) for nonrelativistic particles and
TH = p* for relativistic bosons. Within the same approx-
imation level, there are two alternative equations for F

and F

(29)

C(X, p) =

MF-ReG™, = 3({T,F} ~{Fw A},  (30)

MF —ReG"T,, =

2T A —{TawA)) (D)
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with the “mass” function

Po— p2/2m— ReZR(X, p)
for nonrelativistic particles

—m’+ p2 - ReZR(X, p)
for relativistic bosons.

M(X, p) = (33)

These two equations result from sums of the corre-
sponding Dyson equations with their adjoint ones.
Equations (31) and (32) can be called the mass-shell
equations, since in the quasiparticle limit they provide
the on-mass-shell condition M = 0. Appropriate combi-
nations of the two sets (27), (28) and (31), (32) provide
us with the retarded Green’s function equations, which
are simultaneously solved [15, 48] by

R _ 1

M(X, p) +il (X, p)/2
I
M? +T%/4

M
M®+ /4

With solution (34) for Gf, Egs. (27) and (28)

becomeidentical to each other, aswell as Egs. (31) and
(32); however, Egs. (27) and (28) are not yet identical
to Egs. (31) and (32), while they were identical before
the gradient expansion. Indeed, one can show [22] that
Egs. (27) and (28) differ from Egs. (31) and (32) in sec-
ond-order gradient terms. This is acceptable within the
gradient approximation; however, the remaining differ-
encein the second-order termsisinconvenient from the
practical point of view. Following Botermans and
Malfliet [48], we express I',, = 'f + O(0y) and I, =
(1 ¥ f) + O(0y) from the left-hand side of the mass-
shell Egs. (31) and (32), substitute them into the Pois-
son-bracketed terms of Egs. (27) and (28), and neglect

all the resulting second-order gradient terms. The so-
obtained quantum four-phase-space kinetic equations

forF=fAand F = (1 ¥ f)Athen read

A= (34)

ReG" =

G (fA)—{rf, ReG"} = C, (35)

GB((1Ff)A)—{T(1Ff),ReG"} = FC.  (36)

These quantum four-phase-space kinetic equations,
which are identical to each other in view of retarded
relation (34), are at the same time completely identical
to the correspondingly substituted mass-shell Egs. (31)
and (32).

The validity of the gradient approximation [22]
relies on the overall smallness of the collision term C =
{gain—loss} rather than on the smallness of the damp-
ing width I". Indeed, while fluctuations and correlations
are governed by time scales given by I, the Kadanoff—
Baym equations describe the behavior of the ensemble
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mean of the occupation in phase space F(X, p). It
implies that F(X, p) varies on spacetime scales deter-
mined by C. In cases where I is not small enough by
itself, the system hasto be sufficiently close to equilib-
rium in order to provide avalid gradient approximation
through the smallness of the collision term C. Both the
Kadanoff-Baym (27) and the Botermans-Malfliet
choice (35) are, of course, equivalent within the validity
range of the first-order gradient approximation. Fre-
quently, however, such equations are used beyond the
limits of their validity as ad hoc equations, and then the
different versions may lead to different results. So far,
we have no physical condition to prefer one of the
choices. The procedure, where in all Poisson brackets
thel,, and I, terms have consistently been replaced
by fI" and (1 F f)I, respectively, is therefore optional.
However, in doing so we gained some advantages.
Beside the fact that quantum four-phase-space Kinetic
equation (35) and the mass-shell equation are then
exactly equivalent to each other, this set of equations
has particular features with respect to the definition of
a nonequilibrium entropy flow in connection with the
formulation of an exact H theorem in certain cases. If
we omit these substitutions, both these features would
become approximate with deviations at the second-
order gradient level. A numerical scheme of the BM
choice in application to heavy-ion collisions is con-
structed in [49, 50].

The equations so far presented, mostly with the
Kadanoff-Baym choice (27), were the starting point for
many derivations of extended Boltzmann and general-
ized kinetic equations, ever since these equations have
been formulated in 1962. Most of those derivations use
the equal-time reduction by integrating the four-phase-
Space equations over energy p,, thus reducing the
description to three-phase-space information (cf. [51—
59] and references therein). This can only consistently
be done in the limit of small width I employing some
kind of quasiparticle ansétze for the spectral function
A(X, p). Particular attention has been payed to the treat-
ment of the time-derivative parts in the Poisson brack-
ets, which in the four-phase-space formulation still
appear time-local, i.e., Markovian, while they lead to
retardation effects in the equal-time reduction. Gener-
alized quasiparticle ansitze were proposed, which
essentially improve the quality and consistency of the
approximation, providing those extratermsto the naive
Boltzmann equation (sometimes called additional col-
lision terms) which are responsible for the correct sec-
ond-order virial corrections and the appropriate conser-
vation of total energy (cf. [53, 56] and references
therein). However, all these derivations imply some
information loss about the differential mass spectrum
due to the inherent reduction to a 3-momentum repre-
sentation of the distribution functions by some specific
ansdtze. With the aim to treat cases as those displayed
in Figs. 3 and 4, where the differential mass spectrum
can be observed by dilepton spectra, within a self-con-
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sistent nonequilibrium approach, one has to treat the
differential mass information dynamicaly, i.e., by
means of Eq. (34) avoiding any kind of quasiparticle
reductions, and work with the full quantum four-phase-
space kinetic Eq. (35). In the following section, we dis-
cuss the properties of this set of quantum kinetic equa-
tions.

6. -DERIVABLE APPROXIMATIONS

The preceding considerations have shown that one
needs a transport scheme adapted to broad resonances.
Besides the conservation laws, it should comply with
requirements of unitarity and detailed balance. A prac-
tical suggestion hasbeen givenin [35] intermsof cross
sections. However, this picture is tied to the concept of
asymptotic states and istherefore not well suited for the
general case, in particular, if more than one channel
feeds into a broad resonance. Therefore, we suggest to
revive the so-called ®-derivable scheme, originally
proposed by Baym [18] on the basis of the generating
functional, or partition sum, given by Luttinger and
Ward [19] and later reformulated in terms of path inte-
grals[60Q].

With the aim to come to a self-consistent and con-
serving treatment on the two-point function level, we
generalized the ®-functional method [18, 19] to the
real-time contour (‘€) in[21]. It was based on adecom-
position of the generating functional ' with bilocal
sources into a two-particle-reducible part and an auxil-
iary functional ® which compiles all two-particle-irre-
ducible (2PI) vacuum diagrams:

MG, @A} =ilrG° +_[dx§£° @ 0,0}
{znz g} D 3@
+ln(1— GOGZ) +©G®Z +1<D{G oA (37)

Here, &’ () isthefreeclassical Lagrangian of the clas-
sical field ¢, G° and G denote the free and full-contour
Green's functions, while X is the full-contour self-
energy of the particles. Contrary to the perturbation
theory, here the auxiliary functional @ is given by all
two-particle-irreducible closed diagrams in terms of
full propagators G, full time-dependent classical fields
@, and bare vertices. The upper signsin Eq. (37) relate
to fermion quantities, whereasthe lower signs, to boson
ones, while ns and n, count the number of self-energy
insertionsin the ring diagrams and the number of verti-
ces in the diagrams of ®, respectively, A is the scaling
factor in each vertex. The stationarity conditions

3r{G, @ A}/3G = 0, 3M{G, @ A}/5¢ =0 (38)

provide the set of coupled equations of motion for the
classical fields @ and the Green's functions G (the
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Dyson equation)
o(x) = @°(x)— IdyG°(x, y)I(Y), (39)
4
G(xy) = G(xY)
(40)

+ J’dzdz‘GO(x, 2)3(z,2)G(Z, ),

where the superscript “0” marks the free Green's func-
tions and classical fields. The functional ®{G, ¢} acts
as the generating functional for the self-energy > and
source currents J(x) viathe functional variations

OiP _ _0i®
So00" 20 = FGy

The advantage of this formulation is that ® can be
truncated at any level, thus defining approximation
schemes with built-in internal consistency with respect
to conservation laws and thermodynamic consistency.
For details, we refer to [18, 19] and our previous paper
[21]. Note that @ itself is constructed in terms of the
“full” Green's functions, where “full” now takes the
sense of solving self-consistently the Dyson equation
with the driving term derived from this approximate ®
through relation (41). It meansthat even restricting our-
selvesto asingle diagram in @, in fact, we deal with a
whole sub-series of diagramsin terms of free propaga-
tors, and “full” takes the sense of the sum of thiswhole
subseries. Thus, restricting the infinite set of diagrams
for @ to either only afew of them or some subseries of
them defines a ®-derivable approximation. Such
approximations have the following distinct properties:
(a) they are conserving if ® preserves the invariances
and symmetries of the Lagrangian for the full theory;
(b) they lead to a consistent dynamics; and (c) they are
thermodynamically consistent. These properties origi-
nally shown within the imaginary-time formalism with
a time-dependent external perturbation [18, 19] also
hold in the genuine nonequilibrium case formulated in
the real-time field theory [21].

Transport equation (35) weighted either with the
charge e or with 4-momentum p*, summed over internal
degrees of freedomlike spin (tr), and integrated over
momentum gives rise to the charge or energy—momen-
tum conservation laws, respectively, with the Noether
4-current and Noether energy—momentum tensor
defined by the expressions [22]

iJ(x) = 41)

i"(X) = etrJ’ ><2T[“F(X p), (42)
o"(X) = trI d4p4><2T[“pVF(X, p)
(43)
(%”“(X) €™ (X)).
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Here,

oD
SA(X) |

isthe interaction energy density, whichin terms of dis
given by afunctional variation with respect to a space-
time dependent coupling strength of interaction part of

int

the Lagrangian density [ Al— A(x)é[f , cf. [21].
The potentia energy density &> takestheform

int int

e"(x) = ¥ (X)0= (44)

4
€™ = trf dp [ReZ F+ ReGRrF}
(2 A
Whereas the first term in squared brackets complies
with quasiparticle expectations, namely, the mean
potential times density, the second term displays the
role of fluctuations in the potential energy density.
The conservation laws only hold if all the self-ener-
gies are ®d-derivable. In [22], it was shown that this
implies the consistency relation,

(45)

{{Rez F} — EReG —FD c} 0(46)

0
and the consistensy relation for the conserved current
a\;(%pot_%im)
O 47
= trIp d p{{ Rez", F} — EReGR Lr +C}
A O

for the energy—momentum tensor.

They are obtained after first-order gradient expan-
sion of the corresponding exact relations. The contribu-
tions from the Markovian collision term C drop out in
both cases, cf. Eq. (50) below. Thefirst term in each of
the two relations refers to the change from the free
velocity v to the group velocity v, in the medium. It can
therefore be associated with acorrespondl ng drag-flow
contribution of the surrounding matter to the current or
energy—momentum flow. The second (fluctuation) term
compensates the former contribution and can therefore
be associated with a back-flow contribution, which
restores the Noether expressions (42) and (43) to be
indeed the conserved quantities. In this compensation,
we see the essential role of fluctuationsin the quantum
kinetic description. Dropping or approximating this
term would spail the conservation laws. Indeed, both
expressions (42) and (43) comply with the quantum
kinetic equation (35), being approximate (up to the
first-order gradient terms) integrals of it.

Expressions (42) and (43) for 4-current and energy—
momentum tensor, respectively, as well as self-consis-
tency relations (46) and (47), still need a renormaliza-
tion. They are written explicitly for the case of nonrel-
ativistic particles whose number is conserved. Thisfol-
lows from the conventional way of nonrelativistic
renormalization for such particles based on normal

IVANOV et al.

ordering. When the number of particles is not con-
served (e.g., for phonons) or a system of relativistic
particlesis considered, one should replace F(X, p) —

% (F(X.p) ¥ F (X, p))inal the aboveformulasin order

to take proper account of zero-point vibrations (e.g., of
phonons) or of the vacuum polarizationin the relativis-
tic case. These symmetrized equations, derived from
special (¥) combinations of the transport equations
(35) and (36), are generaly ultraviolet-divergent and,
hence, have to be properly renormalized at the vacuum
level.

7. COLLISION TERM

To further discuss the transport treatment, we need
an explicit form of the collision term (30), which is pro-
vided from the ® functional in the —+ matrix notation
viathe variation rules (41) as

Sid - 3id
SF(X, p)F(X' P)=5Ex py P as)

Here, we assumed @ to be transformed into the Wigner
representationand all FiG™" and iG*- to be replaced by

theWigner densitiesF and F . Thus, the structure of the
collision term can be inferred from the structure of the
diagrams contributing to the functional ®. To this end,
in close analogy to the consideration of [23], we dis-
cuss various decompositions of the @ functional, from
which thein- and out-rates are derived. For the sake of
physical transparency, we confine our treatment to the
local case, where in the Wigner representation all the
Green’sfunctions are taken at the same spacetime coor-
dinate X and al nonlocdlities, i.e., derivative correc-
tions, are disregarded. Derivative corrections give rise
to memory effects in the collision term, which will be
analyzed separately for the specific case of the triangle
diagram.

C(X, p) =

Consider a given closed diagram of @, at this level
specified by a certain number n, of vertices and a cer-
tain contraction pattern. This fixes the topology of such

acontour diagram. It leads to 2™ different di agramsin
the —+ notation from the summation over al —+ signs
attached to each vertex. Any — notation diagram of ®
that contains vertices of either sign can be decomposed
into two piecesin such away that each of the two sub-
pieces contains vertices of only one type of si gn6

. ~
iPop = ﬁﬁa =(@|F, ..F,..IB

6)To construct the decomposition, just deform a given mixed-vertex
diagram of ® in such away that all + and —vertices are placed | eft
and, respectively, right from a vertical division line and then cut
along thisline.
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d*p, - (49)
5 (2M)°0 &pi—zpig

(2m)

| (2m)*

XVEF,...Fy... Vg

with F,... F,F, ... F& linking the two amplitudes. The

Ve (X Py -.-P1y ) @nd V(X py, ... Py, -..) ampli-
tudes represent multipoint vertex functions of only one
sign for the vertices, i.e., they are either entirely time-
ordered (— vertices) or entirely antitime-ordered (+ ver-
tices). Here, we used the fact that adjoint expressions
are complex-conjugate to each other. Each such vertex
function is determined by normal Feynman diagram
rules. Applying the matrix variation rules (48), we find
that the considered ® diagram gives the following con-
tribution to the local part of the collision term (29):

Cloc(x’p)
dpl dpl
—=...R :
I(2n) (2m* {Z (=P
. . . (50)
—ZE’) (pi—p):|{|:1...|:1...—Fl...Fl...}
454 U
«(2's'Sy p- 3 Pl
with the partial process rates
R(X; py, .- P1, --2) 1)
P, ..}

()

The restriction to the real part arises, since with (a|()
also the adjoint (B|a) diagram contributes to this colli-
sion term. However, these rates are not necessarily pos-
itive. In this point, the generalized scheme differs from
the conventional Boltzmann kinetics.

An important example of approximate ® that we
extensively use below is

i i

where logarithmic factors due to the special features of
the d-diagrammatic technique are written out explic-
itly, cf. [22]. In this example, we assume a system of fer-
mionsinteracting viaatwo-body potential V = V,0(x—Y)
and, for the sake of simplicity, disregard its spin struc-

(52)
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ture. The & functional of Eq. (52) results in the local

collision term
2
) (53)

x (

x 8'(p+ Py Py Pa)(FoFsFF, — FoFoFF)),
whered isthe spin (and maybeisospin) degeneracy fac-
tor. From this example, one can see that the positive
definiteness of transition rate is not evident.

The first-order gradient corrections to the local col-
lison term (50) are called memory corrections. Only
diagrams of third and higher order in the number of ver-
tices give rise to memory effects. In particular, only the
last diagram of Eq. (52) gives rise to the memory cor-
rection, which is calculated in [22].

o d*p, d*p, dp;
I (em* 2m* (2m*

CIoc =d

8. ENTROPY

Compared to exact descriptions, which are time-
reversible, reduced description schemesin terms of rel-
evant degrees of freedom have access only to somelim-
ited information and thus normally lead to irreversibil-
ity. In the Green's function formalism presented here,
the information loss arises from the truncation of the,
exact Martin—Schwinger hierarchy, where the exact
one-particle Green's function couples to the two-parti-
cle Green's functions, cf. [15, 48], which in turn are
coupled to the three-particle level, etc. This truncation
isachieved by the standard Wick decomposition, where
all observables are expressed in terms of one-particle
propagators; therefore, higher order correlations are
dropped. This step provides the Dyson equation and the
corresponding loss of information is expected to lead to
agrowth of entropy with time.

We start with general manipulations which lead us
to definition of the kinetic entropy flow [22]. We multi-
ply Eq. (35) by —In(F/A), Eq. (36) by (F)In(F/A), take
their sum, integrate it over d*p/(2m)?, and finally sum
the result over internal degrees of freedom like spin (tr).
Then, we arrive at the relation

0,5 (X (54)
= tr j—"'—%AL‘(x, p)I(X, p). (55)
(2m)
where
o(X,p) = F[LF f]In[LF f]—fInf,  (56)
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Al

A(Xp) = =B, (57)
b _9Rez"m 0l
B = A[%n“ So M 6pJ’ (58)

cf. the corresponding drift term [proportional to d,, f in

Eqg. (35)]. The zero components of these functions, Ag

and B°, have ameaning of the entropy and flow spectral
functions, respectively, and satisfy the samesum rule as
A. If the considered particleisaresonance, likethe A or
p-meson resonances in hadron physics, the B function
relates to the energy variations of scattering phase shift
of the scattering-channel coupling to the resonance in

the virial limit discussed above. The value s&c isinter-
preted asthelocal (Markovian) part of the entropy flow.

Indeed, the sl(f)c has proper thermodynamic and quasi-

particle limits [22]. However, to be sure that this is
indeed the entropy flow, we must prove the H theorem
for this quantity.

First, let us consider the case where memory correc-
tions to the collision term are negligible. Then, we can
make use of the form (50) of the local collision term.
Thus, we arrive at the relation

d4p I’E loc
tr —
| (2m* F

d P1 d pl ~1
2-[(21'[) S (F,...F1. (59)
CFiFl}in L<2n)“6“§ p- Pl
FioFj.. NP

If all rates R are nonnegative, i.e., R= 0, thisexpression
is nonnegative, since (x — y)In(x/y) = 0 for any positive
x andy. In particular, R > O takes place for all ® func-

tionals up to two vertices. Then, the divergence of sl
iS nonnegative:

0,Si0c(X) 20, (60)

which provesthe H theorem in this case with (55) asthe
nonequilibrium entropy flow. However, as has been
mentioned above, we are unable to show that R always
takes nonnegative values for all ® functionals.

If memory corrections are essential, the situation is
even moreinvolved. Let us consider thissituation again
a the example of the ® approximation given by
Eqg. (52). We assume that the fermion—fermion poten-
tial interaction is such that the corresponding transition
rate of the corresponding local collision term (53) is
always nonnegative, so that the H theorem takes place
in the local approximation, i.e., when we keep only
C'c, Here, we will schematically describe calculations

IVANOV et al.

of [22] which, to our opinion, illustrate a general strat-
egy for the derivation of memory correction to the
entropy, provided the H theorem holds for the local
part.

Now Eq. (54) takes the form

E Ioc+ d4p| F

(et F

mem

" (61)

apslic(x) -

where s, is gtill the Markovian entropy flow defined

by Eq. (55). Our aim hereisto present the last term on
the right-hand side of Eq. (61) in the form of full X
derivative

d4p |’E mem u
tr IN=C™" = —0,Shem(X) +0Cem(X) (62
[ omi"F St (X) + BCen(X) (62)

of some function sk, (X), which we then interpret asa

non-Markovian correction to the entropy flow of
Eq. (55) plus a correction (&cC,.,,). For the memory
induced by the triangle diagram of Eq. (52), the
detailed calculations of [22] show that smallness of the
OC,em» Originating from small spacetime gradients and
small deviation from equilibrium, allows us to neglect
this term as compared with the first term on the right-
hand side of EqQ. (62). Thus, we abtain

denF loc

0 (Sloc + S"nem) = trI FC 20, (63)

which is the H theorem for the non-Markovian kinetic

equation under consideration with s, + She, as the

proper entropy flow. The right-hand side of Eq. (63) is
nonnegative, provided that the corresponding transition
rate in the local collision term of Eq. (53) is nonnega-
tive.

The explicit form of sh, is very complicated, see

[22]. In equilibrium at low temperatures we get s,?m ~

T3InT that gives the leading correction to the standard
Fermi-liquid entropy. Thisisthe famous correction [61,
62] to the specific heat of liquid He. Since this correc-
tion is quite comparable (numerically) to the leading
termin the specific heat (~T), one may claim that liquid
3He is a liquid with very strong memory effects from
the point of view of kinetics.

9. PION-CONDENSATE PHASE TRANSITION

As a further example for the role of finite-width
effects, we consider the phase-transition dynamics into
a pion condensate. The possible formation of such a
pion condensate in dense nuclear matter was initially
suggested by A.B. Migdal in hispioneering work [5]. In
realistic treatments of this problem applied to equili-
brated i sospin-symmetric nuclear matter at |ow temper-
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atures T < m,, the pion self-energy is determined by
nucleon—nucleon-hole and A—nucleon-hole contribu-
tions corrected by nucleon—nucleon correlations, 1t
fluctuations, and a residual interaction [9]. A recent
numerical analysis [63] within a variational method
with realistic two- and three-nucleon interactions gave
P. = 2p, for the critical density of 1", 1T, T° condensa-
tion in symmetric nuclear matter and p, = 1.3p, for T°
condensation in neutron matter, with p, being nuclear
saturation density.

In symmetric nuclear matter, the pion-condesate
frequency vanishes while the magnitude of condensate
momentum p. is approximately given by the nucleon
Fermi momentum |p.| = pe. The critical behavior of the
system is determined by the effective pion gap

@’(pe) = min{m;+p”+ReZ;(0, p, b = 0)},(64)
p

where the momentum p = p, corresponds to the mini-
mum of the gap at zero mean field ¢,, =018, 9]. Figure5

illustrates the behavior of the effective pion gap & (P)
as afunction of the baryon density p. At low densities,

RezR is smal and one obviously has &° > 0. The
dashed curve in Fig. 5 describes the case where the 17t
fluctuations are artificially switched off and the phase
transition turns out to be of second order. At the critical
point of the pion condensation (p = p.), this value of

&’ with switched-off Tortfluctuations changesits sign.
In reality, the Tt fluctuations are significant in the
vicinity of the critical point [64—66]. The correspond-
ing contribution to the pion self-energy behaves as

~ ~2 ~2

TI0(br, P a T > |w (br, P)/My|, and w (p.) does
not cross the zero line at al.”) Rather there are two
branches (solid curves in Fig. 5) with positive and

respectively negative value for &’ (p,) and the transi-
tion becomes of thefirst order. Calculations of [64—66]
demonstrate that at p > p, the free energy of the state

with @’ (pg) > 0, where the pion mean field is zero,
becomes larger than that of the corresponding state

with & (po) <0and afinite mean field. Thus, at p = p;
the first-order phase transition to the inhomogeneous
pion-condensate state occurs. At p > p. the state with

@’ (po) > 0is metastable and the state with &’ (p,) < 0
and ¢, # 0 becomes the ground state.

Before we discuss a self-consistent scheme for a
guantitative treatment of this problem, we should qual-

itatively explain how the instability toward pion con-
densation develops dynamically. To simplify the treat-

Here we have used the quantity (1)2 , which already takes account
of the pion mean field as explained below, cf. Eq. (69) and the
definition of @ (¢, po) after it.
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Fig. 5. Effective pion gap (64) versus nuclear density, see[9].

ment, we assume that the pion density islow (p, << p)
and further use the fact that the pion is much lighter
than the nucleon (m,/my = 1/7). This allows us to con-
sider the pion subsystem asalight admixturein aheavy
baryon environment, neglecting the feedback of the
pions onto the baryons. It provides the nucleon Green's
functions unaffected by the pion distribution. This very
approximation was used in the first works exploring the
possibility of the pion condensation in dense nuclear
matter [5—7]. We will use it for the pion retarded self-
energy, thus neglecting the contribution from pion fluc-
tuations (see dashed curve in Fig. 5). Within the above
approximations, the quantum kinetic equation (35) for
the pion distribution f; in homogeneous and equili-
brated baryon environment becomes

1

2

Here, B, is defined in Eq. (58) and all subscripts Tt are
omitted, except for the pion distribution function f,.

We now illustrate that the second branch in Fig. 5

with negative @’ constructed under the assumption of
vanishing mean field is indeed unstable and becomes
stabilized by a finite mean field. The instability of the
system can be discussed considering a weak perturba-

tion &f,, of the pion distribution ‘% = [exp(py/T) — 1],

which we assume equilibrated in the rest frame of the
system. Linearizing Eq. (65), we find

FB,okfr=pn—T"fn (65)

1
é|3Ha;iesf,1+ 5f, =0, (66)
with the solution
Ofn(t, p) = dfo(p)exp[-2t/By(p)], (67)

where for simplicity the initial fluctuation &f,(p) of the
pion distribution is assumed to be space-independent.
Let us consider the case where p, —= 0 and |p| = pr.
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This four-momentum region, being far from the pion
mass shell, isright the region where the pion instability
is expected in symmetric nuclear matter. Here, the real
part of the pion self-energy ReZX is an even function of
the pion energy p,, while the width is an odd function
and proportional to p, for p, — 0. Using the results of

[8, 9] 2p, —9Rex*/op, —= 0, = B(p)p,, and B(p) ~my

for p, —= 0, we get B, = B(p)/@(p) from Eq. (58) and
therefore

6](T[(t! pO = 01 p)
= 8f4(po = 0, p) exp[—20°(P)t/B(p)].

The above solution shows that for &’ > Oinitial fluctu-
ations are damped, whereas they grow in the opposite

case. Thus, the change of sign of & (p.) leads to an
instability of the virtual pion distribution at low ener-
giesand momenta=p,.. The solution (68) illustratesthe
important role of the width in the quantum Kinetic
description. If the width had been neglected in the
guantum Kinetic equation, one would fail to find the
above instability.

The growth of the pion distribution &f;; is accompa-
nied by agrowth of the condensate field ¢,. Dueto the
|atter, the increase of the virtual pion distribution slows
down and finally stops when the mean field reachesits
stationary value. Therefore, a consistent treatment of
the problem requires the solution of the coupled system
of the quantum kinetic equation (35) and the mean-field
equation (39). In order to find the behavior of the vir-
tual pion distribution, one also hasto include the mean-
field contribution to the pion self-energy. Considering
only small mean fields, we retain terms of the lowest
order in ¢,. Then, ZR acquires and additional contribu-
tion ZR(¢,) = ZR(d,; = 0) + Ayt |92, Where Ay denotes
the total in-medium pion—pion interaction. Within the
same order, the mean-field equation becomes

(&P + AaBi(0) + 3B(PIA[§u() = 0. (69)

Here, we have assumed the simplest structure for the
condensate field ¢, = § (t)exp(ip. - r), where §(t) is
a space-homogeneous real function which varies
slowly in time. Also, one should do the replacement

&’ (p) —= & (@, P) = @ (P) + AP in the
above Egs. (65)—(68) for the pion distribution.

The time dependence of ¢ can qualitatively be
understood inspecting the two limits of small and large
times. At short times, the mean field is still small and

one can neglect the )\eﬁcﬁz (t) termin Eq. (69). Then the
mean field

Ba(t) = §n(0)exp[20°(P)t/B(P)]  (70)
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grows exponentially with time, just like the distribution
function (68). Here, ¢,(0) isaninitial small fluctuation
of the field. At later times, the solution of Eq. (69)

approaches the stationary limit §,, —= o with

B3 = =6 (pe)Nar(Po)-

Since smultaneously & (0, p) = @ (p) +
Aeie|drF — 0O, the change in the pion distribution df,

will saturate. This stationary solution cﬁa isstable, as

(71)

can be seen from linearizing Eq. (69) around (T):a[,

Balt) = B —BBoexp[ 40’ (p)t/B(P)],

since the exponential function is negative. Here, &,

denoted an arbitrary initial space-homogeneous fluctu-
ation.

The physics can again be cast into a ®-derivable
form, where the ® functional should include at least the
following diagrams:

8 +§+E@+§§+§§_ )
e f g h i

Here, bold and bold wavy lines represents the baryon
and pion Green's functions, respectively, while awavy
line terminated by a cross denotes the pion condensate.
Since in the broken phase the mean pion field mixes
nucleon with A configurations, we adopt the SU(4) for-
mulation of the model, introduced in [67]. There, one
deals with a unified description of baryons (N and A),
based on 20 x 20 matrix Hamiltonian in the basis of 20
A—nucleon spin-isospin states. Thus, the solid lines
symbolize a unified propagator matrix for A resonance
and nucleon. The mixing is provided by condensate-
baryon coupling (diagram (g)). Numerical symmetry
factors are omitted in Eq. (73).

Functional variation of ® with respect to propaga
tors provides the corresponding self-energies. Dia-
grammatically, this variation corresponds to cutting
and opening the respective propagator lines of the dia-
grams of @ in Eq. (73). Thus, diagrams (a) to (d), (f),
and (h) contribute to the pion self-energy. Diagram (a)
accounts for the baryon particle-hole contributions to
the pion self-energy. It includes NN-!, AN-!, NA-!, and
AN terms. The subsequent series of diagrams (b) to (d)
renormalizes baryon—pion vertex including baryon—
baryon correlations in terms of the Landau—Migdal
parameter g'. Diagram (f) accounts for the pion fluctu-

ations. Itisproportional to T/ & (¢, p.) and thus causes
the transition to be of first order. This becomes espe-

(72)
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cialy important for the case of heated and even non-
equilibrium dense matter, where the effective pion gap
[65, 66] drops. One should natice that pion fluctuation
contributions are also present in the particle-hole dia-
gram (a) when opened perturbatively. Diagram (h) cor-
responds to pion interactions with the condensate,
which are responsible for the stabilization of the con-
densate solution (71).

Likewise, cutting and opening the solid lines in ®
determines the baryon self-energy, which describes the
feedback of the pions onto the baryonic subsystem.
This feedback is required for the conserving and ther-
modynamically consistent treatment of the problem.
Diagrams of the first line correspond to the modifica-
tion of the baryon motion by the multiple interaction
with the pions corrected by correlations. Diagram (€)
generates a purely local interaction contribution,
whereas diagram (g) with the coupling of the conden-
sate to baryons leads to the mixing of N and A.

Variation of @ with respect to the condensates
(wavy linewith across) determinesthe sourceterm Jin
the equation for the mean field (39). The value Ay
entering Eqg. (69) is generated by the last two diagrams
(h) and (i) of Eqg. (73).

Thekinetic description (35) for the particle distribu-
tion together with the equation of motion for the mean
field (39) is still insufficient for the numerical simula-
tions of the dynamics of the phase transition. The rea-
sonisthat the creation of seeds of the new phase, which
initiate the growth of the mean field and the particle dis-
tribution, is due to fluctuations, cf. Egs. (68) and (70).
However, the scheme of Egs. (35) and (39) provides no
sources of stochastic fluctuations. Thus, it can only
simulate the dynamics of one of the phases rather than
the transition between them. The required stochastic
sources may be introduced into the transport theory in
the spirit of the Boltzmann—Langevin approach devel-
oped in [68—70] and the stochastic interpretation of the
Kadanoff-Baym equations [71]. The stochastic trans-
port approach offers an appropriate framework for the
description of the unstable dynamics by means of asto-
chastic force in the mean-field equation and a stochas-
tic collision term in the transport equation, which both
act as a source for a continuous branching of the
dynamical trajectories.

The above example shows that we really need the
off-mass-shell kinetics to describe the dynamics of the
pion-condensate phase transition, since the correspond-
ing instability of the pion distribution function occurs
far from the pion mass shell, cf. Eq. (68). Besides the
conserving property and thermodynamic consistency
of the d-derivable approximation, it also leads usto the
proper order of the phase transition.

10. SUMMARY AND PROSPECTS

A number of problems arising in different dynami-
cal systems, e.g., in heavy-ion collisions, require an
PHY SICS OF ATOMIC NUCLEI
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explicit treatment of dynamical evolution of particles
with afinite mass width. This was demonstrated for the
example of bremsstrahlung from a nuclear source,
where the soft part of the spectrum can be reproduced
only provided the mass widths of nucleons in the
source aretaken explicitly into account. In thiscase, the
mass width arises owing to collisional broadening of
nucleons. Another example considered concerns prop-
agation of broad resonances (like p meson and A) in the
medium. Decays of p mesons are an important source
of dileptons radiated by excited nuclear matter. As
shown, a consistent description of the invariant-mass
spectrum of radiated dileptons can be only achieved if
one accounts for the in-medium modification of the p
meson width (more precisaly, its spectral function).
The action—reaction principle was demonstrated on a
pedagogical example when there is only TINA coupling
and in the limit of a dilute nuclear matter. We also
expect a consistent description of chiral o-, T-conden-
sates together with fluctuations, as an immediate appli-
cation of our results to multicomponent systems.

We have argued that the Kadanoff-Baym equation
within the first-order gradient approximation, slightly
modified to make the set of Dyson’s equations exactly
consistent (rather than up to the second-order gradient
terms), together with algebrai c equation for the spectra
function provide a proper frame for a quantum four-
phase-space kinetic description that applies also to sys-
tems of unstable particles. The quantum four-momen-
tum-space kinetic equation proves to be charge and
energy—momentum conserving and thermodynami-
cally consistent, provided it is based on a ®-derivable
approximation. The & functional also gives rise to a
very natural representation of the collision term. Vari-
ous self-consistent approximations are known since
long time which do not explicitly use the ®-derivable
concept like self-consistent Born and T-matrix approx-
imations. The advantage of the ®-functional method
consists in offering a regular way of constructing vari-
ous self-consistent approximations.

We have also addressed the question asto whether a
closed nonequilibrium system approaches the thermo-
dynamic equilibrium during its evolution. We obtained
a definite expression for alocal (Markovian) entropy
flow and were able to explicitly demonstrate the H the-
orem for some of the common choices of ® approxima-
tions. This expression holds beyond the quasiparticle
picture and thus generalizes the well-known Boltzmann
kinetic entropy. Memory effects in the quantum four-
momentum-space kinetics were discussed and a gen-
eral dtrategy to deduce memory corrections to the
entropy was outlined.

At the example of pion-condensate phase transition
in symmetric nuclear matter we demonstrated impor-
tant role of the width effects in the dynamics and we
formulated a self-consistent ®-derivable scheme for
the transport treatment of this problem. An interesting
application of such self-consistent transport description
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is possible to dynamics of the phase transition of a neu-
tron star to the pion or kaon condensate state accompa:
nied by the corresponding neutrino burst. In view of the
latter, another application concerns description of the
neutrino transport in supernovas and hot neutron stars
during first few minutes of their evolution. At an initial
stage, neutrinos typically of thermal energy, produced
outside (in the mantel) and inside the neutron-star core,
are trapped within the regions of production. However,
coherent effectsin neutrino production and their rescat-
tering on nucleons [23] reduce the opacity of the
nuclear medium and may alow for soft neutrinos to
escape the core and contribute to the heating off the
mantle. The extra energy transport may be sufficient to
blow off the supernova's mantle in the framework of
the shock-reheating mechanism [72]. The description
of the neutrino transport in the semitransparent region
should therefore be treated with the due account of
mass-widths effects.

Further applications concern relativistic plasmas,
such as QCD and QED plasmas. The plasma of decon-
fined quarks and gluons was present in the early Uni-
verse; it may exist in cores of massive neutron stars and
may also be produced in laboratory in ultrarelativistic
nucleus—nucleus collisions. All these systems need a
proper treatment of particle transport. Perturbative
description of soft-quantum propagation suffers of
infrared divergences and one needs a systematic study
of the particle mass-width effectsin order to treat them,
cf. [23]. A thermodynamic ®-derivable approximation
for hot relativistic QED plasmas—a gas of electrons
and positrons in a thermal bath of photons—was
recently considered in [73]. Their treatment may be
also applied to the high-temperature superconductors
and the fractional quantum Hall effect [74, 75]. The
approach formulated above alows for a natural gener-
alization of such ®-derivable schemesto the dynamical
case.
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Abstract—The semiclassical approximation and the technique of 1/n expansion are used to calculate the
eigenenergies and the wave functions for the radial Schrédinger equation. It is shown that the expressions that
are asymptotically exact in the limit n=n, + | + 1 — o0 and which describe the above eigenenergies and the
asymptotic coefficients at the origin and at infinity ensure a satisfactory precision even for states characterized
by modest values of the quantum numbers n, and |, including the ground state. © 2001 MAIK “ Nauka/Inter pe-

riodica” .

1. INTRODUCTION

Despite the impressive successes of computational
mathematics, qualitative and approximate analytic
approachesto solving physics problems are still of heu-
ristic value and appeal [1]. These include the semiclas-
sical approximation, which is also known as the Went-
zel-Kramers—Brillouin (WKB) approximation [1-5]
and which was developed when quantum mechanics
was till initsinfancy, and the technique of 1/N expan-
sion [6-11]. These methods are both widely used in
variousrealms of theoretical and mathematical physics.

Here, we discuss the application of these methodsto
calculating the eigenenergies (both for discrete levels
and for quasistationary states) and wave functions for
the radia Schrodinger equation. Representing the
potentia in the form

2

V(r) = -¢° v(r/R), (1.1)

2MR’?
where M isthe mass of the particle being considered, g
isthe dimensionless coupling constant, Risthe charac-
teristic range of the underlying interaction, and the
function v (r) specifies the form of this interaction, we
arrive at

2
d X'gr)+[k2+g2v(r)—|—(—l-tz—l—)}X|(f) =0 (1.2
dr r

Dingtitute of Theoretical Physics and Experimental Physics,
Bol’shaya Cheremushkinskaya ul. 25, Moscow, 117218 Russia.

This article is dedicated to the memory of Arkadi? Bene-
diktovich Migdal, who profoundly understood the semiclas-
sical method and successfully used it in various physics
problems. His remarkable monograph Qualitative Methods
in Quantum Theory had a strong impact on the present au-
thors and aroused their interest in the semiclassical ap-
proach.

Hereafter, we use the system of unitswhere#, = M =
R=1, sothat the relation between the quantity k and the
particle energy E is E = k?/2.

There are many physics problemswhereit isimpor-
tant to know the value of the normalized wave function
at the origin—more precisely, the asymptotic coeffi-
cientsc, (asusual, nand | are, respectively, the princi-
pal quantum number and the orbital angular momen-
tum of the particle; below, we will aso use the radial
guantum number n, specified by the relation n = n, +
[+ 1),

an(r) = Cnlr|+1+ RN

(see, for example, [11] and referencestherein). In order
to calculate the coefficients ¢, in the semiclassical
approximation, it is necessary to match the wave func-
tions at the boundary between the classically allowed
and the subbarrier region. It turns out that the conven-
tional Kramers conditions[12] must be modified in this
case[11, 13].

These issues are considered in Section 2, where we
obtain analytic formulas that describe the coefficients
¢, and which are asymptotically exact in the limit
n, — co. We also discuss the accuracy of these formu-
las for modest values of the quantum numbers.

r—=0 (1.3)

Section 3 is devoted to quantization by means of a
procedure where the centrifugal potential is eliminated
from the semiclassicad momentum. This modified
method of quantization makesit possibleto extend con-

1063-7788/01/6404-0670$21.00 © 2001 MAIK “Nauka/Interperiodica’
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siderably the potential of an analytic investigation of
the energy spectrum and wave functions.

In Section 4, we consider a 1/n expansion, whose
zero order correspondsto theclassical limit] — co. In
view of this, the technique of 1/n expansionisin asense
an alternative to the semiclassical expansion, which is
asymptotically exact for n, — . These two
approaches supplement each other quite well for finite
valuesof | and n,.

Finaly, a generaization of the Bohr—Sommerfeld
guantization rule to the case of quasistationary statesis
examined in Section 5. By way of example, we discuss
a calculation of the positions and widths of Stark reso-
nances in a hydrogen atom placed in a strong electric
field.

2. SEMICLASSICAL APPROXIMATION
AND CALCULATION OF WAVE FUNCTIONS
IN THE SUBBARRIER REGION

2.1. Modified Matching Conditions

It iswell known [1-5] that, in the one-dimensional
case, the matching of semiclassical wave functions on
the two sides of the turning point X = X,

-
C

7P(X)

) O
cosg pdx —Tydfor x> x, (2.1)
WKB D

() =+

Xo

1l [l
expB—J'Ipl dxgfor x< x,, (2.1
g d g

c
JIp(x)l

[p(x; E) = V2[E—-U(X)] isthe semiclassical momen-
tum] for smooth potentials U(x) is determined by the
Kramers conditions[12]

c=L =21
C/C—2, y—4

(2.2)
For these conditions to be valid, it is required that the
vicinity of the turning point where the linear expansion
of the potential

U(X) = U(X) + F(X—=Xg), [x=Xo <1, (2.3)
isvalid overlap the region
[d(1/p(x))/dx < 1, 2.4)

where the use of the semiclassical expansion is justi-
fied. Itisasowell known that, in the three-dimensiona
case, there arises a complication for states whose
orbital angular momentum isnonzero. The point isthat,
in Eg. (1.2) for the radia wave function ¥,(r), the
potential V(x) is replaced by the effective potential

u(r) = v+ D 2.5)
2r?
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and the condition ensuring the applicability of the
semiclassical approximation is violated at small dis-
tances because of the presence of the centrifugal poten-
tial.

This difficulty was circumvented by Langer [14],
who showed that, with the aid of the transformation

W) = e x(e), 2.6)
the radial Schrédinger equation is reduced to the form

r:ex, —00 < X<o00,

2
W) 4 p2xyw(x) = o,
dx 2.7)

p°(x) = [K*+g’v(e)]e™ ~ (I + 1/2),

for which the subbarrier region x — —oo is a region
where the semiclassical approximation is valid. This
ensures, among other things, a correct dependence of
the radial function on the orbital angular momentum at
small distances. Indeed, it follows from (2.1'), (2.6),
and (2.7) that

r

C'
x"C(r) = exp&j|p( (r)ldr &
Jp(r) 0
(2.8)
- CI\NKBrI+1+ -
r—0,
wherer_= €° isaturni ng point and
12
oM (r) = [k2+gzv(r)—)\—2} D= |+%. (2.9)
r

Thus, the requirement that the semiclassical approxi-
mation be valid for r — 0 leads to the substitution
(1 + 1) — (I + 1/2)? in the centrifugal potential. The
corresponding additional term is referred to as the
Langer correction [1].

At A ~ 1, it would be incorrect, however, to retain
only linear termsin expanding the potential at the turn-
ing point in matching semiclassical solutions to
Eqg. (2.7), because the semiclassical approximation is
not valid here. This can easily be demonstrated by con-
sidering the example of free motion—that is, the case
of g=0. Inthevicinity of the turning point x, = In(A/K),

we have p(x) = A, /2(Xx—Xy), and condition (2.4),
which ensures the applicability of the semiclassical
approximation, yields

AP < x—xd < 1.

Theseinequalitiesare satisfied only if A > 1—that is, if
I > 1, in which case the centrifugal potential becomes
semiclassical. At low values of the orbital angular
momentum, the matching rules (2.2) must be modified
[11, 13, 15, 16].
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The semiclassical wave functions can be matched,
provided that exact solutions to the Schrodinger equa:
tion are known in the region where the semiclassical
approximation isnot valid. Below, we therefore discuss
three typica possibilities, assuming a power-law
behavior of the potential for r — 0,

2
V(r) = %r“, a>-2. (2.10)
To be more specific, we consider attractive potentias
such that collapseinto the center does not occur (see[2]).

2.1.1. Matching at high energies. With increasing
energy, the turning point r_ approaches zero and X,
tends to negative infinity. By virtue of (2.10), the term
involving the potential can therefore be discarded in
Eqg. (2.7), whereupon it is solved in terms of Bessel
functions. Such a solution makes its possible to pass
through the turning point and match [13, 15] the semi-
classical asymptotic expressions (2.1), whereby one
obtains

e = 1 _1
CIC = ZEN), v =3, @2.11)

EN) = J2mV T PeMir(n), A = |+%. (2.12)

We note that £(1/2) = ./2/e = 0.8578 and &(1) =

J2me ™ =0.9221 and that, with increasing x, the func-
tion &(x) approaches unity,
1 1
E(X) = 1——==+
12X 288x”

sothat, for | > 1, relations (2.11) reduce to the Kramers
matching conditions (2.2).

2.1.2. Matching in the case of level condensation.
For power-law potentials—that is, in the cases where
the dependence given by (2.10) is valid over the entire
interval 0 <r < oo, it follows from simple scaling con-
siderations and from the Bohr—Sommerfeld quantiza-
tion rule that

+.., X—eo, (2.12)

GO0 nrz/(zw)

2a/(2+a)

E, On; n>1 (2.13)

If a <O, then E, — —0forn, —» oo; that is, energy

levels are condensed at the boundary of the continuum
[2]. In Eq. (2.7), the energy can then be disregarded
against the potentia (thisistrue for finite energy values
aswell). Asin the preceding case, the resulting equation
can be solved exactly, so that we eventually obtain
[11, 13]

] _1— _1‘ -—
CIC =38, y=7 M=

-2<0a<0,

where the function &(x) is given by the same expression
as before.

21+1
2+a

(2.14)

KARNAKOV et al.

In the casesconsidered above, itispossibleto find acor-
rection to the matching conditions (2.11) and (2.14) [16].

At high energies, the inclusion of the potential
yields

WKB

cic = {1-b"C @R, @19
where
b *(E)
_ gT(@2) R T (1+ a2l 1+ +ar2)
4k 0 r2+a)f(A—a/2) 2.15)

__m O
T((3+0)/2)

From the last expression, it follows that, at the particu-
lar values of a =—1 and 0 [the last case corresponds to
the logarithmic potential V/(r) = g’Inr], we have

WKB

2

where P(2) = IN'(2)/I (2) is a digamma function. Since,
for n, > 1, it follows from (2.13) and (2.15") that b, O
nd, it islegitimate to retain the above correction to the
conditionsin (2.11) only for a < 2.

The inclusion of the potential also yields a correc-
tion to the phase [13],

b| = 0,
(2.15")
by"® = E‘ﬁ(g[m(x)—mm ¥ 1},

WKB

y = 311-28"%(E)),

(2.16)

1

B"(E) = —~tan 0" (E), a<1.

At the particular values of a =—1 and O, we have

WKB

B

WKB

2
= %([In)\ —p(A+12)], BY® =0 (2.16)
Under the condition —2 < a < 0, in which case the
levels condense near the boundary of the continuum,
the correction for the energy [see Eg. (2.15")] has the
form

_r(2/2+a))da\
2+a)r OpqzU

WKB

b =

XD JT 2+0a [2+aﬁ2—ﬂ)/(2+a)
%((6+a)/(4+2a))_2(x_1)m N O

(2.17)

22+ a))l (2(A +1)/(2+0a)) %
ra/(2+a))rf (2A-1)/(2+a)) g '
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By way of example, we indicate that, for the Coulomb
potential (a =-1), theresult is

g~ — 1 _2I+1
C/C—Z[l - }E(2I+1)

2.18)

2.1.3. Coulomb singularity at the origin. The
dependence of the matching conditions on energy over
the entire interval of itsvariation can be obtained in the
physically important case of potentialsthat have a Cou-
lomb singularity at small distances,

u(r) = o(r_l).

No constraints areimposed on u(r) at large distances. If
we disregard u(r), the radial Schrédinger equation can
be solved in terms of Coulomb functions, whereby one
obtains [15]

V(r) = —%+ u(r), (2.19)

C/C = %E(I,n), v = %[l—ze(l,n)], (2.20)
where
¢(l,n) = EAN)Q(n)exp{-Af(A/n)},  (2.20)

o(,n) = %Erf.(n)—n[ Inn —h(—A/n)} (2.20)

Here, A = | + 1/2; n = —(sgnz)/kag is the Sommerfeld
parameter (n < 0 in the case of Coulomb attraction);
o,(n) = agl (I + 1 +in) is the Coulomb phase shift;
ag = |Z[! isthe Bohr radius; and

Qi(n) = exp(mn|/2)|F (I + 1+in)l/T (I +1),

f(2) = %In(l +77%) + (arctanz)/z, (2.20™)

h(z) = 1—%In(l+zz)—arccotz.
For E— o and E — 0, the matching conditions

(2.20) reduceto (2.11) and (2.14), respectively. By way
of example, weindicatethat, for n —» 0 (E — ), the

resultis
-
(kag)

£(ln) = EO\)[1+ 221

1
T+ 2L|J (I+1),sothata,=0.1775, a, =

0.0109, a, = 0.0025, etc. On the other hand, it can be
found that, for f — o0 (E — 0),

whereg =

A
£(,n) = 2(2)\)[1— 5 (kag)” + } (2.22)
It can easily be seen that expressions (2.21) and (2.22)
comply with (2.15") and (2.18), respectively.
PHY SICS OF ATOMIC NUCLEI
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In these limiting cases, we find for the function O(l,
n) that

o(l,n)
E(Z/ﬂ)[llJ(l’fl) InA]n for n—0 (2.23)

[(12nr|) 1-(\*=7/120)n7] for n— oo

[compare with expressions (2.16")]. At high orbital
angular momenta, we have

_ 1 2
§(1.n) = 1-5+ O\,
(2.24)
o(l,n) = —+0(™);
121

that is, the conditions in (2.20) reduce, as might have
been expected, to the Kramers conditions.

Since the semiclassical phase differs from the con-

ventional value of 174, the quantization rule assumes
here the form

Iy

Leo®mydr = o+ 371
Tlrfp (ndr = n +3[1-06(n)l, 225)

n =012 ..,

where r, are the semiclassical turning points (0 <r_<
r,). Equation (25) generalizes the Bohr—Sommerfeld
guantization rule with allowance for the Langer correc-
tion. As can be seen from (2.23) and (2.24), the addi-
tiona term ©(l, n) in Eq. (2.25) is small and can there-
fore be taken into account within perturbation theory.
Theresultis

AE, = —%oom@(l, n), (2.26)

where we have used the conventional notation wy, =
dE,, /on = 217T,, with

) dr
Tr =2 ——
rf p“(r)

being the period of radial oscillations of the particle
between the turning pointsr_and ..

If, at large distances, the function u(r) introduced in
(2.19) behaves as

2.27)

u(ryadr?, a>0,
it can be deduced from (2.23), with allowance for the
scaling properties (2.13), that O On @ whichis
parametrically greater than nr . Thus, we conclude
that, even for sharply varying potentials with a > 1, it

is legitimate to take into account the correction in
(2.25) since it exceeds the A semiclassical correction,

[ —— 00,
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Table 1. Asymptotic coefficients at the origin for the pow-

er-law potentials V(r) = % ro

afn | bl och eme | en | e

1|0 0 2 -2.03 0 —0.074
1 0 2 —0.459 0 -1.98
0 1 0.85326 | —3.94 128 | -0.040
1 1 1.45153 | -0.88 056 | -0.79

410 0 2.89797 0.29 034 | 424
1 0 6.78220 0.044 0.046 |-17.0
0 1 3.05888 | —2.97 3.59 -1.46
1 1 | 12.3423 -0.51 118 | -7.78

Note: Thet uncertainties of the calculation of p,, are given in per-
cent.

Table 2. Asymptotic coefficients at the origin for the loga-
rithmic potential V(r) = Inr

L e e e A
0| 0| 1951659 | 126 | 517 | 17.3 | —063
1] 0| 0995922 | -736 | 116 | 721 | -8.36
2| 0| 0678730 | -585 | 082 | 500| -

0| 1| 0339568 | -914 | 535 | - | -017
1] 1| 0326674 | -4.70 | -185 | —4.49 | -3.10
2| 1| 0204457 | -353 | -1.12 | -333 | -

Note: A dash instead of the corresponding value means that the
uncertainty in this value exceeds 25%.

which trandlatesinto an n,’ ' correction in the quantiza-
tionrule.

2.2. Asymptotic Coefficient in the Wave Function
at the Origin

The asymptotic coefficients ¢, [see Eq. (1.3)],
which determine the probability of finding the particles
at small distances from one another, are parametersthat
are especialy important for systems governed by inter-
actions featuring two markedly different radii (for
example, nuclear and Coulomb interactions).

According to Egs. (2.8), (2.11), and (2.14), we have

el = a(r)c“)(l "),
L 1 . (2.28)
¢ = AT *expﬂf[ ~[pf )(r)l}drm

(t=Afora>0andt=pfora < 0), where we have
used the semiclassical normalization condition [1, 2, 17]

C = 2T, %1+ o@n?)]. (2.29)

KARNAKOV et al.

Sincethe coefficients c,(ﬂL) were obtained with the aid of

the conventional normalization condition (2.2), a non-
trivial point isthat the factor &(1) is present in (2.28).

L et us discuss the accuracy of the semiclassical for-
mula (2.28). We begin by considering the exactly solu-
ble problems of a harmonic oscillator (a = 2) and a
Coulomb potential (a =-1). For those, we have

crﬂL) n +1) O+212 for a =2
o S LmE® T Diet for o = o1, @0
where

_ 1 E(x+12)7"

200 = B+ 5 €00 50 ]
(2.31)
:1+—1—— wll +....
48X 4608x°

From (2.30), it can be seen that, for n, —»= co—that is,
for states whose radia wave functions have a large

number of nodes—theratio c /cnI hasalimit different
from unity,

n“mmC oy = EOI.

Thus, the semiclassical approximation that employs
the rule in (2.2) for circumventing the turning point is
asymptotically exact for Q*(0) whenn, —» o at fixed |
(this result was obtained as far back as 1979 [18], but
no proper attention was given to it at that time). This
contradiction is removed by using modified matching
rules such that

WKB_2
Cni = M 2 — _L -3
[ Cn } _[ Z(n,) } =1 24nr2+O(nr ). (2.33)

It should be noted that, even in the case of the ground
state (n, = 0), thisratio is close to unity, amounting to
0.9679 and 0.9557 for a = 2 and —1, respectively.

For the power-law attractive potentials character-
ized by a = 1 and 4 and for the logarithmic potential,
the values of the asymptotic coefficients at the origin
and of the errors

WKB
WKB _ Cnl
pnl |: Cnl
are given in Tables 1 and 2 (for the energy values, the
reader isreferred to Table 2 of the first study quoted in
[13]). Since the scaling relations
En(9) = g"*"VEq(D),
cu(9) = g* "V ey (1)

hold for the power-law potentials (2.10) [19, 20], it is
sufficient to consider only the case of g = 1, as was

2
(1—b,WKB(E))} -1 (2.34)

(2.35)
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indeed done in the aforementioned tables. For the log-
arithmic potential V(r) = ¢’Inr, we have

E.(9) = g°[Eqn(2)-Ing],

cu(@) = g ey (2).

For the example of this potential, the role of the correc-

tion in (2.15) in the matching conditions was demon-

strated for modest valuesof n, and | the parameter f),\ﬂ/ Ke

WKB
=0.

in Table 2 is determined by Eq. (2.34) with b,

Table 3 also illustrates the accuracy of the modified
matching conditions for the funnel potential [20, 21]

Z ., 1
V(r) = ; + 2r,
whichiswritten herein the standard form. For the Cou-
lomb parameter Z = 0.68812 [Cornell potential, which
is used in QCD to describe charmonium (Cc) states],
the precise values of the energies and of the coefficients
Cy, were obtained by numerically solving the
Schrédinger equation and were partly reported in [22].
Tables 1-3 demonstrate that the semiclassical
approximation with the modified matching conditions
for the coefficients c,, which is asymptotically exact in
thelimit n, — oo, remains valid down to values of n, ~
1. As was shown in [13], the same is true for short-
range potentials in all cases with the exception of that
of shallow levels.

(2.35")

0<r <o, (2.36)

2.3. Sates at Zero Energy

This case requires a dedicated consideration,
because the asymptotic behavior of the wave function
of a bound state (that is, an | = 1 state since the wave
functions for s states are delocalized for E —~ 0)
changes:. for r — oo, X, (r, E = 0) decreases in propor-
tion to r ' rather than in proportion to an exponential.
Therefore, the conventional normalization condition
(2.29) must accordingly be modified.

For potentials featuring a power-law tail at infinity,

V(r) = —%gzr'“, B>2, (2.37)
a finite contribution to the normalization comes from
the subbarrier regionr > r, (in contrast to what we have
in the case of E < 0). At zero energy, the Schrodinger
equation with the potential (2.37) is solved in terms of

Bessdl functions. By using the resulting solution, we
find instead of (2.29) that [23]
C = 2R™“(B)T, ", (2.38)

where

p+2
B=2f-2r (2 +1+B)/(B-2))
DI+10  r(@-Dip-2) =

R(B) =
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Table 3. Asymptotic coefficients at the origin and energies of
the levelsfor the funnel potential V(r) = -0.68812r~1 + (1/2)r

n | | C§| En px\IIKB pr':/IIQ EmQ
0| 0| 4.34022 0.49018 | -1.5 82 |-13
10| 276673 1.61443 | -1.4 1.0 —-0.50
2 | 0| 235982 242105 |-0.97 | 046 | -0.16
0| 1| 0.80452 1.30557 |—-6.5 2.3 -3.8
1 (1] 1.14509 214835 | 25 1.8 -14
2 | 1| 1.39408 2.85424 | -1.5 13 -0.72

Note: The quantity in thelast columnis st = EmQ/ E, —1(in
percent); see Egs. (3.2) and (3.14).

It can easily be shown that

R(B) = 1-BE22) .

L >
12(B-2)I ”

(2.40)

whence it follows that, at high orbital angular
momenta, relation (2.38) reduces to the conventional
normalization condition. At the same time, we have

_21-10 4 B 0
RB) = Srgt—plin@+)=C1+..0
B—>c0,

where 6 = 0.5772... isthe Euler constant.
By way of example, we consider the Tietz potential

B=3

2

Ze

v(r) = -————,
") r(1+K0r)2

(2.42)

which is extensively used in atomic physics [24-26].
The critical values of the effective coupling constant
On = +/2Z,/Koag that correspond to the emergence of
the nl level can be found from an exact solution to the

Schrodinger equation or from the Bohr—Sommerfeld
quantization rule,

WKB

gn = S N(+T+D), gn'® = n+1+3 243)

For n — oo, we find from (2.43) that

WKB

SN P S
gnl

(2n+ 21 + 1)

— 1

(2.43")

For finite n and [, the semiclassical method ensures a
precision for g, at alevel of afew percent.
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At the coupling-constant value corresponding to the
emergence of alevel, we have

an(r)
n!T (4l +3) Pt 2+32l—rQ (2.44)
"rn+al+3)(r+n? Tt HArD

where C2I 32 () are Gegenbauer polynomials, those at
n =0 and 1 being, respectively, CS' 3lz(x) =1and

2I+3/2

(X) = (41 + 3)x (see, for example, [27]), while ¢,

are the asymptotic coefficients at the origin. Explicitly,
these coefficients are given by

2 (I+21)(21+3)(n, +41 +3)

= FRICDr @ )T Dy &)
where
4
s(n.1) = § o,
2,
g, = 4(1 +1)°(21 + 1)(2] + 3), (2.45)

o, = 4(1+1)(41 +3)°, 0, = (41 +3)(16l + 13),
o; = 6(41+3), o0, =3.

With alowancefor (2.28) and (2.38), it can be found
in this case that

WKB

[en®1” = (R3S, (2.46)
(1’
_ epful(z+Din(z+1) (2= Din(z- ppp 49
anz’ (3z -2)
where

RO = G- -
H H (2.46")

g 2”2;“, W= 2l +1.

As a result, we obtain R (3) = 0.4934, 0.8082, and
0.8997 at | =1, 2, and 3, respectively. For n, > 1, we
have

[cﬂKBT _ 21
Coi 12n°
which explains the astoundingly high accuracy of the

semiclassical approximation in thiscase (see Table6in
[13]).

+0(n),

(2.47)

KARNAKOV et al.

3. MODIFIED QUANTIZATION METHOD

3.1. Elimination of the Centrifugal Potential
from the Semiclassical Momentum

Since, for excited states (n, > 1), the centrifugal
potential at | ~ 1 isoperative only in the region of small
distances and since, over the region where the particle
is predominantly localized, this potential appears as a
perturbation of order #2 [see also Eq. (2.13)], it can
removed from the semiclassica momentum p-)(r),
whereupon the semiclassical radial function can berep-
resented in the form

r

O O
cosf p(r)dr —my, 3
) O

MQ _ C
Xer () m

12
p(r) = [K+g"v(r)]
The parameter y; is determined by matching x(r) in the
form (3.1) with the function that exactly satisfies the
Schrddinger equation and the boundary condition (1.3).
Obviously, the result depends on the small-distance
behavior of the potential. For the energies of the nl lev-
elsin the attractive potentials (2.10), we have [28-30]

r.

%mnw=m+w
0

(3.1

(3.2)

where p(r,) = 0, r_ = 0 is the left-hand turning point,
and

[(2I +3)/4 for a>0

Yi = (3.3)
[(ZI +3+0)/2(2+a) for -2<a<0.

We note that, in the particular case of the Coulomb
potential, the quantization condition (3.2) withy; =1 +
1 was obtained in the monograph [1].

By means of the modified quantization method, the
asymptotic coefficients at origin are found to be [31]

MQ

e = C{1-b"(E)}, (3.4)
where, at high energies, we have
[c! (0) 22—(E 2)@ 12
Tr(1 +3/2)
(3.5)

~dr
T=2—=
[0

and where b|MQ(E) coincides with the first term in

(2.15),
b"O(E) = gjuz“‘za F(a/2)F (L + A+ al2)
K F2+a)r(A—ar2) 46
A=+ %
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In the particular cases of the Coulomb and the linear
potential (a =—1 and a = 1, respectively), we have

TH 2
blMQ = __g

pVe _ 2mi(l+1)
2k’ N TP T3

(3.6

For the cases of power-law potentials and alogarithmic
potential, the accuracy of the calculation of ¢, on the
basis of Egs. (3.4)—(3.6), which were derived within the
modified quantization method, isillustrated in Tables 1
and 2 (seealso [31)).

In the case of the condensation of levels (E — -0)
for =2 < a <0, we obtain

+1
2“

(9% = 2ng’d
nl T EﬂCXlD (2+a)2p+1r2(u+ 1)1
_21+1
- 20
sinT(p —2a/(2+a)) (2 + a)la|F/@+)
asn(my) U g (3.8)
9 M4o/2+a))f(1-2a/2+a))l (u—2a/(2+a)) K
ra/(2+a))f(1+pu+2a/(2+a)) '

In particular, the result for the Coulomb potential
V() =-Z/)ris

3.7

b'? =

[en]”

1+1
20+3 4

O O 3.8)
Eﬂ—l(l +1)(21 + 1)D

=z
[(2l +1)!1]°n°D 6n’ O

which coincideswith the expansion of the exact expres-
sion for the coefficients ¢, [2].

3.2. Funnel Potential

Within the modified quantization method, we fur-
ther consider the funnel potential (2.36). In this case,
the quantization integral (3.2) can be calculated analyt-
ically. Theresultis

-3 4

v,F,(1/4, 3/4,2; -8Z"v") = N, (3.9)
whereN=n, +y; andv = Z(-2E)~"2. Let us now discuss
two extreme cases.

(i) For deep levels, which are determined primarily
by the Coulomb potential (E <0 and N = nisthe prin-
cipal guantum number), we find from (3.9) that

1.2 3¢ 14 39,
V—n_n% AR AT LA B
f—0,

where f = n*/Z3 is the effective coupling constant.
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A perturbation-theory series for screened Coulomb
potentials of the general form

k
kar
k=0

was constructed by McEnnan et al. [32] and Crant and
Lai [33], who showed that

V(r) =

=IN

1_zZ4 1, 2 1 .2 4 S[]2

vm_n% S 16% 0w 2nﬂf
(3.11)

1 2. .. 4 .. 6,60 503 O

—@%Q—ZOp +11p'—14p +F]5+;2_Df "

where p = JI(I +1)/n. A comparison of (3.10) and
(3.11) revealsthat the semiclassical Eg. (3.9) isagood
approximation for n > (1, 1), especialy for s states.

(i) In another extreme case—that where Z — 0,
E>0,andN=n- (2l + 1)/4—itisnecessary to perform
an analytic continuation of Eq. (3.9) to positive energy
values E = ¢/2 > 0 (asimilar situation arises in the the-
ory of the Stark effect in astrong electric field [34, 35]):

2 —1/4 1 € 0_
Z(G + 82) 2F1%/2, 5/2, 2, §|:1 + (2+—82)Mi||j = N.
€ (3.12)

It follows that

e =e{1+2([InC—-(2In2+1)] + O(ZZInZ)}, (3.13)
where

=1 _Z
2(T[N)4/3

Atl =0, €, coincides with the semiclassical spectrumin
the linear potential. The expansion in (3.13) involves
the term {In, which is nonanalytic in . For potentials
featuring a Coulomb singularity at the origin, it can be
shown, however, that, in the quantization rule (3.2), it is
possible to obtain explicitly [31] a correction associ-
ated with taking into account the potential at small dis-
tances:

€ = (3TN/2)*®, (3.13)

vy +y®
Yi Yty (3.14)

1
y = ﬁ[ln(kaB)w(l +1)+1], kag> L

In this case, the introduction of this correction is equiv-
aent to the substitution

N—» NE&-—Z——M[ln(Z/egz)-w + 1)-1]%
O T1iNeg O
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which compensates the term that is honanalytic in Z:
€ = ¢{1-2[In(31N) + 2In2 - (I + 1)]
5 (3.15)
+0({)}.

It can be seen that not only does the correction in (3.14)
to the quantization rule lead to the qualitative agree-
ment between the semiclassical and the exact spectrum,
but it also ensures a correct anaytic dependence of
energy levels on the parameters that determine the
small-distance behavior of the potential.

For states at high energies E,; > 0, the asymptotic
coefficients at zero can be computed by the formula

M= 011 -p 3 {1-b"3, (3.16)

where the coefficients crﬂ?) are specified in (3.5) and

where the correction terms bfc) and bfL) are given by
expressions (3.6") and are associated with, respectively,
the Coulomb component of the potential (2.36) and its

component that is linear in r. As to the energy E,':’:Q, it

is determined from the quantization condition (3.2)
with phase y; = (21 + 3)/4 + y\" [see Eq. (3.14)]. For a
potential that has a Coulomb singularity at the origin, it
is possible, however, to refine expressions (3.4) and
(3.16) by exactly taking into account the effect of this
potential at any values of the energy E =k?/2 > 0. It can

be shown [31] that, in (3.16), we must then make the
substitution

1-b?
| 1/2
D 2T[/kaB -2 —lD
— 1+ (sk
E,l—exp(—ZTr/kaB)SI:Il( (skag) ) O
nz 1zr19 2 17
:1+-2—I2+7;k—2—|:—6_+.,-.[—2w'(| +1)+ :|

(in the case of | = 0, the product in the braced expres-
sion must be taken to be unity).

In Table 3, the asymptotic coefficients at the origin
that were calculated on the basis of the modified quan-
tization method are contrasted against precise values
obtained by numerically solving the Schrodinger equa-

tion. It can be seen that the semiclassical values ch
are accurate to within a few percent. The same is true

for all energies EmQ, with the exception of ground-
state energy: the point is that, for the ground state, we
have kag = 1.44, but it is necessary, strictly speaking,
that kag > 1 for the quantization condition (3.2) and
expression (3.14) to be applicable. Thus, we can see
that, for the funnel potential (in just the sasmeway asfor
power-law potentials), the modified quantization
method ensures an acceptable accuracy in calculating

KARNAKOV et al.

the relevant energy levels and the asymptotic coeffi-
cients at the origin.

3.3. Asymptotic Coefficients at Infinity

Let us consider bound states of a particle for poten-
tials vanishing at infinity,

V(r) = —=Z/r + o(1/r?)

(3.18)
for r—»o, Z=0.

The asymptotic expression for the normalized radial
wave function then takes the form

X (r)=Cy ﬁ(xr)”e‘”, (3.19)

wherek = ./—2E isthe energy of alevel, whilev = Z/k
isthe effective principal quantum number, also denoted
as n*, The asymptotic coefficients C,;, along with the
coefficients at the origin, are extensively used in quan-
tum mechanics and its applications—in particular,
applications to peripheral processes. Taking into
account the asymptotic expression (3.18), we now
expressthe semiclassical formulasfor C,; and the quan-
tization condition in terms of the function v (r) deter-
mining the form of the interaction potential (1.1). For
the quantization condition, we have [29]

gJ(2) = N, N=n+y, (3.20)
where
r(2)
J(2) = 1 I A/v(r)—zzdr,
T 5 (3.21)

v(r,) = 7, z= K/g,
and v, is defined in (3.3). Equation (3.20) determines
the quantity z and the energies Em Q= —% (g2)? of the

levels as functions of the coupling constant. For the
asymptotic coefficients, we obtain

Cu® = [-81gzd'(2)] (gzr.(2)) "

. (3.22)
x exp{g[zr.(2) - 3.(2) — (I + 1/2)"J,(2)]},
where
1@ = | [A/zz-v(r)-z+ ZGir,  (3.23)
e gz
1 . dr
(2 =3 [ ——. (3.23")
Zr:(rz)rzA/zz—v(r)
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The above formulas makeit possibleto calculate the
energy spectra and the asymptotic coefficients quite
straightforwardly. Let us consider a few examples
where the calculations can be performed analytically.

(i) For an undistorted attractive Coulomb potential,
wehavev(r)=1/r,yi=l+1,N=n=n+l+1,Z=g%2,
and

=1 -1 ,-9

2

2ln2-1 y4
Jy(2) = 5

2z

Ji(2) = -

It follows that the exact spectrum of Coulomb levelsis
E, = —Z?/2n? and that the semiclassical formula of the
modified quantization method for the asymptotic coef-
ficients has the form

(1+12)°0

+12
1 2 >n o (324
U

4Jmcht

A comparison of the results produced by this formula
with precise values reveals that its error is at alevel of
apercent for n, = | = 1 states (for the ground state, we
have C%Q /C,o = 0.906) and that it fast decreases with
increasing n, at fixed |; that is,

Cr“,’lIQ = expm

cc, = 1- L +o

24[n° - (I + 1/2)°]

(ii) For the Hulthén potential v(r) = (¢ — 1)}, we
havey, =1+ 1;N=n=n+1+1=1,2, ... (injust the
same way as for the Coulomb potential); r.(2) = In(1 +

z2);andJ(2)= A1+ Z -z The guantization condition
yields

n—s 00,

(g -n?) n)
8n’

1mg 900 EMQ =
2lg, gU

(within the modified quantization method, the val ues of
g that are equal to g, = n correspond to the conditions
under which a bound state emerges). For s levels, this
semiclassical spectrum is exact.

(iii) For the exponential potential v(r) =e™, we have

z = , n<g (3.25)

:2|+3
yl 4

, J(2) = %(A/l—zz—Zarccosz), (3.26)

and further calculations are straightforward.

In calculating the energies of shallow levels, the
accuracy of the modified quantization method is not
very high (in just the same way as the accuracy of the
WKB method), but it becomes higher fast for deeper
levels (see Fig. 2in [29]).
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3.4. Zero-Energy Sates

Equation (3.20) determines the quantity z and the
energy of the levels together with it. Here, we discuss
the case of E,; = 0, which is the least favorable for
applying the semiclassical approximation. The emer-
gence of alevel correspondsto

MQ _ Nty
gnl - J(O) .

(3.27)

For ns states in some short-range potentials used in
atomic and nuclear physics, Table 4 quotes precise val-

uesof g, and §, = (g,“]’I °_ 0,)/9,. In the case of smooth
potentials, the constant y,, in the quantization condition
(3.2) corresponds to expression (3.3); for finite poten-
tials—that is, for potentials such that V(r) =0 for r >
R—we have

EUJZ for a>0

Yo = Da+a)a@+a) for 2<a<o,
(3.28)
_ 07112 for a>0
Yo = U7+ 2a)6(2+a) for —2<a<0

for potentials that are, respectively, discontinuous
(nos. 5, 14 in Table 4) and continuous (nos. 6, 15 in
Table 4) at r = R. A change in the constant y, is associ-

ated with the boundary condition X, (R) = 0, which
must now be satisfied at g = g, for slevels.

From the datain Table 4, it can be seen that the error
of the modified quantization method in determining the
coupling constant g, does not exceed afew percent and
that it decreases fast with increasing n.

The dependence of ng on the orbital angular
momentum | will be analyzed by considering the exam-
ple of the Tietz potential (2.42) [v(r) = 1/r(r + 1)], in
which case we have

v =1+1, N=n, r,=oo, JO) =1,
MO (3.29)
gnl =n,
whence it follows that
B4 = g, -1 = 21, 10D 38,
n (3.30)
n—s oo

[compare with (2.43"]. With increasing |, the error of
the modified quantization method naturally increases.
That case, however, can be efficiently investigated by
the aternative method of 1/n expansion.
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Table 4. Accuracy of the modified quantization method for short-range potentials

KARNAKOV et al.

No. 1 2 3 4 5
v(X) (e=11 e/x 1/shx exp(—x®)/x xO(1-x)
n =0 1(0) 1.29607 (—-3.3) | 0.80088 (5.8) 1.32326 (10) 1.20241 (-2.0)
1 2(0) 253915 (-1.3) | 1.67636(L1) 2.82261 (3.3) 2.76004 (~0.40)
2 3(0) 3.78700 (~0.72) | 2.53006 (0.46) | 4.29289 (1.8) 4.32686 (~0.17)
5 6(0) 7.53955 (—0.26) 5.07762 (0.11) 8.68001 (0.73) 9.03553 (—0.04)
Yo 1 1 1 1 3/4
1/3(0) 1 T 0.8472 1.4573 T2
No. 6 7 8 9 10
v(X) (xt-1)O(1-x) eXx 12 e eX/(1+X) (e+ 1)1
n =0 175902 (-5.3) | 1.31345(-33) | 120241(-20) | 191436(-6.1) | 1.31171(L9)
1 3.72572(-16) | 2.82127(-0.94) | 276004 (~0.40) | 4.25950 (-1.6) | 3.11034(0.27)
2 571187 (-0.79) | 4.33923(~0.46) | 4.32686(-0.17) | 6.63793(~0.75) | 4.89584 (0.11)
5 116952 (—0.24) | 8.90510(~0.14) | 9.03553 (—0.04) | 13.8066 (—0.23) | 10.2453 (0.02)
Yo 5/6 5/6 3/4 3/4 3/4
1/3(0) 2 15244 2 2.3957 1.7822
No. 11 12 13 14 15
v(X) exp(=x?) lchx Uch?x O(1-x) (1-x)0(1-x)
n=0 1.63829 (15) 0.87840 (2.3) 1.41421 (6.1) 1.57080 (0) 226311 (3.1)
1 4.21849 (4.0) 208357 (0.63) | 3.46410(1.0) 471239 (0) 6.29769 (0.57)
2 6.75081 (2.1) 3.28633(0.26) | 5.47723(0.42) | 7.85398(0) 10.3077 (0.25)
5 14.3010 (0.78) 6.88517 (0.06) | 11.4891(0.09) | 17.2788(0) 22.3181 (0.07)
Yo 3/4 3/4 3/4 1/2 7/12
1/3(0) N 1.1981 2 m 4

Note: The table presents the values of the coupling constant g,, that correspond to the emergence of s levelsin short-range potentials. The
potentials are represented in the form (1.1). Indicated parenthetically are the values (in percent) of the parameter &, characterizing
the accuracy of the approximation specified by Eq. (3.27).

4. 1/n EXPANSION

4.1. Energies and Wave Functions 4 @

Assuming that n > 1, n,, we set

An appealing feature of the 1/N-expansion method Eni
isthat it is closely related to classical mechanics since
the limit N — oo in quantum mechanics is equivalent
tothecase of # — 0 or M —» . In this limit, the
problem reduces to determining an equilibrium classi-
cal configuration; owing to this, the approach in ques-
tion can be applied to multidimensional problems not

admitting a separation of variables and to many-body Q=5 T o 2 (4.1
problems. Various versions of this method are associ- r

ated with the choice of expansion parameter N. We will ) 2n, +1 ¢®

consider that version of the method which was pro- Qp = ———=———=5=-(2n, + 1)Py(r),
posed in [36] and which can be applied both to discrete r o

and to quasigtationary states. Inthisversion, N=n=n, +

| +1; therefore, we will refer to it asa 1/n expansion. where 0 = 2n%/¢f is a parameter that is independent of
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n. From the Schrédinger equation

X' —nQ’x = 0 4.2)
it can then be deduced that the particleislocalized near
the classical equilibrium point determined from the
relation [36, 37]

rgv'(ro) = —0. (4.3)

By comparing Eq. (4.2) at r = r, with the Schrodinger
equation for aone-dimensiona harmonic oscillator, we
find that the parameter n playstherole of the ratio M/A.
Recalling that the amplitude of zero-point oscillations
isof order (A/Mw)'? 0 n~!/2, setting

-1/2

r=ro(l+n X)), 4.4)

and expanding the wave function x, in powers of n'2,
we determine consecutively the coefficientse® in (4.1)
and the corresponding coefficients for the wave func-
tion. Thisyields

O = (1+vy)(olry)?,

(4.5)
Y= (2n +1)(w-1)(0lry)’,

8(2) - 0O

9 D{s[2w —120° - 80" + 6w'W

B, 4.5

+ 24wu— 15u2] —60°— 4w + 6L W+ 6wU— 11u2} ,
wheres=2n.(n, + 1),

W = [3(1+vy)]" = [B+rv"(rg)/v'(re)]™?, (4.6)
u=21-vy), w= g(1+ V), 4.7
v, = 2 Dk 1d v/dvD 4.8)

(k+1)||:| dr drg r.
We note that nw is the frequency of small oscillation
about the equilibrium point r,.

The idea of calculating the wave functions for the
entire interval 0 <r < o is basically the following. In
the x region where the particle is predominantly local-
ized, the anharmonic corrections of order n—/2x, n~12x3,
and n~!x* in the potential can be taken into account asa
perturbation. This region also determines the normal-
ization of the wave function to terms of order 1/ninclu-
sive. For the wave function in the subbarrier region, use
is made of the WKB approximation including the first-
order correction in the parameter of the semiclassica
expansion, the quantity 1/n playing here the role of the
formal expansion parameter . The expressions men-
tioned immediately above are matched in the overlap
region

2

[(2n, + 1)/w] Y <x<n : 4.9)
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whereby the radial function is determined for all values
of r. By way of example, we indicate that, in the region
containing the equilibrium point r, and the turning
points r = r,, nodeless states are represented by the
functions

Xn n-1(r)
_ [ponDU“ o[, 1 1 u-w g (4.9)
Dr[r [1 wnWEBUX + o XD}’

where the bracketed expression takes into account the
correction for anharmonicity. In Fig. 1 from [38], the
results obtained with the aid of this formula are con-
trasted against the results of the numerical calculations
for the funnel potential.

To termsof order 1/n?, the asymptotic coefficients at
the origin are given by [11]

C'gil./n) _ cf”l/n‘o)[l— (4.10)

a(n)

n
Here, thefirst factor is determi ned from the relation [39]

(lln 0) 1 E] Ay (anro)
roD (4.11)
x exp[-2nJ,—(2n, + 1)J,],

where
Jo = Inro+I[Q0(r)—ﬂdr,
0 4.11"

To

) Po(r)
I = ﬂr(r S om

the functions Q,(r) and P,(r) being specified by (4.1
and (4.5), respectively. The correction d(n,) in the
bracketed expression on the right-hand side of (4.10)
has the form [40, 41]

d(n) = Jp+Js,

(4.12)
where

J, = Idr%[%—v ()

s 28()

—(1+ 2s)Po(r)}Qa?’(r)
_1 1 (1+35)r0

4.12Y
12w(ro—r)

w(ro—r)

r 0
+ ——[2(1+2s)w—(2+3s)U] %
Js = Ko+ K+ ko 2+ ke + kwa ™ Wiz
+ kE,uof3 + k6um"4 + k7w_5. .
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Table 5. Coefficientsin expression (4.12")

KARNAKOV et al.

n ko ky ko ks Ky ks Ke k
0 -1/24 1/24 13/8 1/2 —-61/48 -1/2 -11/4 293/96
1 —13/24 13/24 81/8 9/2 —217/48 =712 -63/4 1217/96

The numerical values of the coefficients k; for nodeless
(n, = 0) states and one-node states (n, = 1) arequoted in
Table 5.

4.2. Accuracy of the 1/n Expansion

The above expressions for the energy and for the
coefficients at the origin are asymptotically exact for
| —= oo and fixed n,. However, the extent to which the
1/n expansion can be of use at modest values of the
guantum numbersis not obvious from the outset. Let us
consider some examples to assess this.

Setting g = 1 as before for power-law potentials of
the form (2.10), we arrive at

_r - _2@-1!
vin) = -5+ Vi = (k+ 1)1 (a-K)!"  (4.13)
o= "9 w=(2+a)”

In accordance with (4.1) and (4.5), we find for an nl
level that the relevant energies can be expanded as

1 2ai2+ €
Eq = 5n alzra) —+n—§+ g @
where
_ 2 _
80 - 1+C_xl 81 - (an+l)((*)_1)v

€ = [(Zn Dw+ 3—16(012—1501 —-52)

2(2+a)
¥ %nr(n, +1)(a’=9a —34)].

For -1 < a < 4, the coefficients €, decrease fast with
increasing k. At a = -1 and a = 2, all g, vanish identi-
cally for k = 2, so that the seriesin (4.14) is truncated,
as a result, the energy spectrum coincides with the
exact one.

It should be emphasized that the approximation as
simple as that which is given by (4.14) has an astound-
ing precision. By way of example, we indicate that, for
a=0-8andn, =0, theerrorisless1%at | = 1 and less
than 0.06% at | = 5, decreasing fast with increasing .

For the Coulomb and for the oscillator potential, the
accuracy of the approximationsin (4.10) and (4.11) for
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the asymptotic coefficients can be investigated anal yti-
cally. According to (4.11), we have [39]

(1/n,0)_2
o
Cm

1171

1—64nz 33 12nr2+2n;°’+49nf+...}

for a = -1 (4.15)
= 111 2 3 4

1_24n2-4_8+ 2n,—n, —8n, +12n, + ]

for a = 2.

These expansions show that even the zero-order
approximation (4.11) of the 1/n expansion has a high
accuracy for nodeless states, but this accuracy sharply
becomes poorer with increasing n,. Theinclusion of the
1/n correction according to (4.10) improves substan-
tially the accuracy not only for nodeless but also for
one-node states (see [40, 41] and Tables 1 and 2).

It should be noted that the coefficients ¢, change by
many orders of magnitude—for example, ¢, O [2n/(2 +
o)!]! for nodeless states in the potential (2.10). For
large values of |, a numerical determination of ¢,
becomes more complicated because they decrease in
proportion to a factorial; at the same time, the 1/n
expansion becomes ever more precisewithincreasing l.

For short-range potentials, a similar situation pre-
vailsinall cases, with the exception of the case of shal-
low levels (that is, the case of g = g,;, where g,, is the
coupling-constant value at which an nl level emerges),
which calls for a dedicated consideration [11].

4.3. 1/n Expansion for Zero-Energy Sates

In the case of short-range attractive potentials, the
energy of an nl level increases with decreasing cou-
pling constant g, with the result that, as soon as this
coupling constant attains a value g, the level is
expelled into the continuous spectrum, its energy being
E,, =0 at thispoint. By using the 1/n-expansion method
to calculate g, we obtain

2n2 fl fz }
n = 1+ —+ + .
gl ocr|: n nz

The parameters of this expansion are determined by the
requirement that € vanish for all values of k > 0. From
Eg. (4.3) and from the condition € = 0, we obtain

4.17)

(4.16)

Og = 265V (rg), Tov'(ro) +2v(ro) = O.
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The corrections in the parameter 1/n are given by
fi = (2n +1)(0-1),

f, = —{ 200" - 260° — 100" + 6w(2u + W)
4w (4.18)

—110° + 2n,(n, + 1)[4w° - 4w’ — 18w"
+ 6w (4u+w) —15u°]},

where the quantities w, u, and w defined in (4.6)—(4.8)
are taken at the valuer, following from (4.17).

Let usillustrate the application of these formulas by
considering the examples of the Tietz and the Yukawa

1
r(l+ r)2 ’
ro=1,w=1/2, u=3/8, and w = 23/32; the first three
terms of the 1/n expansion in (4.16) then yield

potential. For the former, we have v(r) =

(4.19)

gil _ 4nz[1_2l’1r +1 N nr(nrn-;- 1)}

2n 4
which coincides with the exact valuein (2.43).

For the Yukawa potential, v(r) = €/r,r, =1, w =
1/4/2, u=2/3, and w = 55/48, so that

2-J22n+1
2 n

gnl =en Dl_

(4.20)

N [43-36J§ . 37-24./2

1
144 24 2

0
n(n+ 1|50
n 0

(e=2.718...). Table 6 illustrates the accuracy in calcu-

lating the value of g,f| corresponding to the emergence
of the level. The parameters

pu(K) = gm(K)/gg —1

characterize the accuracy of 1/n expansion in the case
where k terms are taken into account in expansion
(4.20) (for k=1, 2, 3).

Whenan| = 1 level arisesin ashort-range potential,
the asymptotic coefficients at infinity, A,, in the nor-
malized wave function

421

X(r) = Agr + .., T—>o, (4.22)
determine [42] the effective interaction range
_ =20 (2D)! 2
IFI"I| - 2 |:I'An|i| 1

which is an important parameter in the theory of low-
energy scattering. Following the sameline of reasoning
PHYSICS OF ATOMIC NUCLEI
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no| | 9 P | Pu@ | Pu(d
0 0 1.6799 62 14 55
1 9.0820 20 2.2 0.54
2 21.895 12 0.83 0.18
5 92.918 5.3 0.18 | 15(-2)
1 0 6.4472 69 -54 30
1 17.745 38 -25 0.55
2 34.420 26 1.4 0.18
5 | 116.99 14 -056 | 24(-2)

Note: Indicated parenthetically for each number lessthan 0.1 isthe
negative integral power of this number in the floating-point
representation a(b) = a x 10°.

as that adopted in calculating the asymptotic coeffi-
cients at zero, we obtain

[A(lln)]
(4.23)
_ A me’g (2nw)" zner g h(n)rf
0
where
o = Inrg+ [E—Q(r)}dr
0 0 Ir 0
Po(r) 1 }
| —— |dr,
: I[Qo(r) =
with
1 2 12
rev(r
Qo(f)=;{1———————2 ”} ,
roV(ro)

Po(r) = [1+(oo NEIALES V(r)}
r

roV(ro)

The correction of order 1/n for nodel ess states was cal -
culated in [41].

4.4. Calculation of Energies for Stationary
and Quasistationary Sates

We have presented above the analytic formulas (4.5)
for the first three terms of the 1/n expansion. The
explicit expressions fast become much more compli-
cated with increasing k. However, they can easily be
calculated with the aid of recursion relations [43]. For
nodeless states, this method admits the simplest imple-
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Table 7. Convergence of a 1/n expansion

- -g,l=n-1=3
0 2.2283 (-1) 0.222827
1 8.4564 (~2) 0.243968
2 ~1.2496 (-2) 0.243187
3 1152 (=3) 0.243205
4 3.14 (-4) 0.243206
5 ~1.02 (~4) 0.243206
6 _5.89 (-5) 0.243206
7 250 (<2) 0.243205
8 7.92 (1) 0.243193
9 1.21 (+1) 0.243147
10 1.23(+2) 0.243030
12 -1.14(3) 0.242918
15 4.44 (8) 0.247577

mentation because one can use logarithmic perturba
tion theory [44—46].

For a specific example, we consider the Yukawa
potential

V(r) = ~ZSep(—Ko),

where K, = 0/’ is the screening parameter. In this
case, we have

2 —2rg
w = , € =(rg—Le
- 1+ roD ° (4.24)

e = _(1+r)(l-w)e .

Asto the quantity r, = ry(0), it is determined from the
equation

(ri+ry)e "’ = o. (4.25)

For the nodeless | = 3 state, the values of € and the
partial sumseg, =€ +eD/n+ ... +eX/nk of the seriesin
guestion are quoted in Table 7 for o = 0.5. These values
illustrate convergence of the 1/n expansion. Since the

coefficients ¥ first decrease fast, the 1/n expansion
provides quite accurate resultseven at n ~ 1 [despite the
fact that, for k=7, the coefficients €¥ begin to increase
fast, so that the seriesin (4.1) as a whole is not more
than an asymptotic series]. From the datain Table 7, it
can be seen that, at k=46, the partial sumse, stabilize,
specifying the energy to a precision of about 107.

The reduced energies €, = 20°E,, /n*> calculated in
thisway are quoted in Table 8 for some nodel ess states
at afew values of the screening parameter 0. Also pre-
sented in thistable are the results obtained by summing
divergent perturbation-theory series [47]. We can see
that the two methods produce results that agree to
within a high precision.

It should be noted that, at 0 = o= 0.8399... > 0,
inwhich case w= 0, two classical solutions collide, the
coefficients €® become infinite for k = 2, and the 1/n
expansion ceases to be valid. Upon this collision (o >
o), the point of equilibrium ry(o) goes into the com-
plex plane, whereas the coefficients in the 1/n expan-
sion develop an imaginary part. Such a solution is
meaninglessin classical theory; in quantum mechanics,
however, it corresponds to the emergence of the width
of a quasistationary level and determines the asymp-
totic behavior of Breit-Wigner resonances, E,, = E, —
ilr/2, characterized by large values of the quantum
numbers n and |. Such a situation is prevalent for al
short-range potentias, and it isthe way in which Breit—
Wigner resonances of complex energy can be described
within the 1/n-expansion method.

It should be noted that, for quasistationary states,
the asymptotic behavior of higher orders of a 1/n
expansion is determined by the probability of the tun-
neling of the relevant particle through the potential bar-
rier and can be calculated by means of the imaginary-
time technique. This approach is applicable not only to
sphericaly symmetric potentials but also to cases
where the variables in the Schrédinger equations are
not separated. This was demonstrated by considering
the example of the two-body problem and the example
of the hydrogen atom in a constant electric and a con-
stant magnetic field (see[10, p. 149]).

Table 8. Reduced energies €, for the Y ukawa potential (n=1+ 1)

o 1=3 =10 =30
05 —2.43206 (1) —2.30412 (1) —2.25542 (1)
—2.43206 (1) —2.30412 (1) —2.25541 (-1)
O —3.6871 (-2) —1.40396 (-2) ~5.06734 (-3)
~3.6872 (-2) ~1.4040 (-2) —5.07 (=3)
1.25 0.10917 —i0.12189 0.15411 —{0.13427 0.17142 —i0.13768
0.10917 —i0.12189 0.1541 —{0.1343 0.1714-i0.1377

Note: At fixed valuesof | and g, the upper and the lower line correspond to, respectively, 1/n expansion and the result obtained by summing

the series of perturbation theory. At o, = 2™+ = 0.73575...,

whenn — oo,

we have eQ—that is, the level goes over to the continuous spectrum
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5. QUANTIZATION WITH ALLOWANCE
FOR BARRIER PENETRABILITY

5.1. Generalization of the Bohr—Sommerfeld
Quantization Rule

In many physics problems, the potential possesses a
barrier, with the result that the energy levels in this

|
él'.lf

the barrier penetrability issmall, it can easily be shown
that the generalization of the quantization rule to this
caseis (see, for example, [48])

potential prove to be quasistationary, E = E, —

i _ 1 L 2a
J’p(x)dx —f p(x)dx = n—§—4ne ,
CO].

wheren:1,2,...,

(5.1)

I[ (31" dX=—fde

C12

Xo < X< X, |sthecla$|cally alowed region; X, < X< X, is
subbarrier region; for X > X,, the particle goesto infinity;
and C,, areintegration contours circumventing the corre-
sponding turning pointsx; and x, in the positive direction

(5.2)

1/2
(i, k= 1, 2). Setting p = [ZDE 2F—U(X)E} and

assuming that I < |E,|, we arrive at the Gamow for-
mulafor the level width:

r= 1expE)—ZIzlp(x)lde, T= 2f_cix_ (5.3)
T 0 O p(X)

If the energy of the level is close to the barrier top
(or exceeds it), the turning points approach each other,
the width is no longer exponentially small, and
Eq. (5.1) becomes invalid. Let us now discuss an ana-
Iytic continuation of the quantization condition to the
above-barrier region.

Near the barrier top, X, = X,, we can make use of the
parabolic approximation

2
p(x) = mp —agj
(5.4)
— Um_E — Um_Er+i__r_
Q0 Q 2Q°

where p = (X — X,)/Q2, Q = [-U"(x,)]"* being the fre-
guency of the inverted oscillator. The Schrédinger
equation then has the exact solution

W(x) = const [D_y, (™), (5.5)

which satisfies the Sommerfeld radiation condition. In
(5.5), D,(2) is a parabolic-cylinder function [27]. By
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matching this solution with the semiclassical solution
(2.2) inthe overlap region

a<|pl <x,Q"

we find for x < X, that [49-51]

X

I(E)——Ip(x E)dx = n——— (I)(a), (5.6)
where
_ 1 D r(12+ia) D
@ = IR AL+ ep(2m@)] 2 (5.7)

—alna+a.

At a complex resonance energy, the turning points and
the parameter a defined in (5.2) are complex.

For Ja| — oo, the asymptotic expansions for the
function ¢(a) are

d(a)
1 7 i —oma Tt
—_—t—+t ... +=e for —<ar a<— 58
_|24a 2880a° 2° 2= 8)
—2|T[a+i+ ! . for 7—T<arga< M, (5.8")
24a 2880a 2

theray arga =172 being a Stokeslinefor thisfunction.
By using the expansion in (5.8), it can easily be shown
that, for deep levels (E, < U,,,, a> 1), Eq. (5.6) reduces
to (5.1).

If E, — U,,, the turning points x, and X, approach
each other, which invalidates the semiclassical approx-
imation near the barrier top. As E, increases further,
these points diverge, however, so that the conditions
ensuring the applicability of the WKB method are sat-
isfied again. It is important here that, for above-barrier
resonances, the parameter a occursin the second quad-
rant of the complex plane. Indeed, we can see from
Eqg. (5.4) that, in the subbarrier region, Rea > 0, while
the imaginary part of the parameter a is exponentialy
small. When the level being considered touchesthe bar-
rier top (E, = U, the point a traverses the positive
imaginary axis, sothat arga > 172 at higher energies of
the level. Taking into account (5.8, we find that, for
la| > 1,

X1 X2

1 1 . 1 i 2.1/2

p— = [ —— = —_— 4 - —

nfpdx n-5-ia=n-3 nf( p7) dx.
Xo X1
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Noticing that (—p*»)!> = ip(X), we recast this equation
into the form [52]

1

SfLP°001 ok = n—3, (59)
C

where the contour of integration circumvents the turn-
ing points x, and x,. It iswell known from [53] that the
Bohr—Sommerfeld quantization condition can also be
written in the form (5.9), but the contour C in that case
circumvents the turning points x, and x; both lying on
the real axis. Thus, we see that, in going over from the
subbarrier to the above-barrier region, the contour of
integration isrearranged in such away that goes around
adifferent pair of the characteristic points.

Equation (5.9) represents an analytic continuation
of the quantization rule to the above-barrier region E, >
U,,. This analytic continuation can aso be imple-
mented by means of the formal substitution

a —» aexp(-2m) (5.10)

directly in the quantization integral. Since we have[52]
1
I(E) = Io+ﬁalna—lla+ I2a2+

substitution (5.10) leadsto Eqg. (5.6), where useis made
of the asymptaotic expression (5.8") for the function
b(@).

With allowance for the barrier penetrability and the
semiclassical correction of order %2, the quantization
rule has the form [54]

1 n A7MU"(x)
Znﬁj P00 24p°(x) ey
o (5.11)

Ul‘(X)
{cb(a) 5 24mv|z(a)f )dx}
where

§(a) = —=0'(@) = S-[In(ia) ~(U2+ia)] (5.12)

and where we have explicitly recovered M and the
Planck constant 7.

If the resonance energy E, is not very close to the
barrier top U,,, so that the turning points can be consid-
ered individually, Eg. (5.11) is simplified, as before, to
become

U"(x)
24p (x)

(5.13)

él_r[f%g(x) %szn—%, n=12, ...
C

The contour C circumvents the turning points X, and x;
in the case of the discrete spectrum (E, < U,) or the
points X, and x, in the case of quasistationary states
(E, > U,). (The quantization rule allowing for terms of

KARNAKOV et al.

order #° inclusive was obtained [52].) Let us now pro-
ceed to analyze specific examples.

5.2. Anharmonic Oscillator
Let us consider the potential

U(x) = %XZ—ZXN, (5.14)
where the exponent N can take odd values of 3, 5, etc.
This potential attains amaximum value of U, at X = X,,

Xn= (N2, U, = B2 Ny 02, 14
The frequency Q = (N —2)'2, which was introduced in
(5.4), is independent of the coupling constant . The
Schrodinger equation with the potential (5.14) can

serve as a reference for the theory of quasistationary
states.

The equation U(x) = E() determines N complex
turning points and can be solved explicitly in the limit-
ing casesof { — 0 and { —» . For { —» o, we have

X=~(EI0)", %= (E10)exp i
and Eq. (5.9) assumesthe form
1, Ny 12 1
=[[2(E,+ (x dx =n-=, n=12....
nj[ (En+Cx7)] 5 (5.15)

Having calculated the integral, we find that, in the

strong-coupling regime, the energy of a quasi stationary
stateis given by

E(z>=fzn<o
2/(N+2) (5.16)
expDN HB“ }
where
Cn (5.16"
2N/(N+2)

:%(NQ)F%\;}“\I

Inwhat is concerned with the asymptotic expression
(5.16), we would like to note the following:

(i) Thedependence E,(Q) [Z ?N+2 followsfromthe
scaling considerations alone.

(if) According to (5.16), the imaginary part of the
energy, ImE () = -TI'/2, has a correct sign, the level
width being relatively small at large N: I'/E, O N This
smallness is associated with the fact that the potential
(5.14) becomes overly sharp for N —» oo,

M (1/N) cos(TV2N)
0
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(iii) For an oscillator featuring only a cubic anhar-
monicity (N = 3), the result given by Eqg. (5.16) coin-
cides with expression (5) from [55].

Of particular interest is the structure of the asymp-
totic expansion of E,({) at large {. By considering the
oscillator term x?/2 in (5.14) as a perturbation, it can be
shown [52] that

En(0) = ENQ) Y a7, (5.17)
k=0
where
d = d¥+dPn-12)2+dP(n-12)"+..., (5.18)

d® =1, and Zn = (n— 1/2)N-27Z isthe effective cou-

pling for highly excited levels. The coefficients d“)
be calculated anaytically; in particular, we have

4@ = N(N—-1) cos(1UN)

0 6T[(N+2)2tan(T[/2N)’

@ _ T(3/N)I((N+2)/2N) .
4 = FON)F(N+ 6)12N) (5.18)
—1+2IN 4t

x Cy os—— %eXpEN(N+2)D

The potential (5.14) at N = 3 was considered by
Alvarez [55]; by using the method of complex rota-
tions, which iswell known in atomic physics (see, for
example, [56]), he was able to compute E () atn=1
and 2 for { < 100 to avery high precision. In this case,
thefirst few coefficientsin expansions (5.17) and (5.18)
have the following numerical values:

C, = 1.658602..., d\” =0,
d¥ = —0.03658exp(-2iTU5),
d{¥ = 0.00558exp(iw5), d¥ = 0.01103,

The coefficients dﬁ” decrease fast with increasing k

and j; for thisreason, weretain only thefirst threeterms
in (5.17); that is, we set

E.(Q) = En(Q[1+dP(n—=12)" +d2:"]. (5.19)

In Table 9, the results obtained with the aid of this for-
mula are contrasted against the numerical values com-
puted in [55]. It can be seen that the region of applica
bility of expression (5.19), which is formally valid for
(> 1, extendsto { ~ 1 evenfor the ground-state (n=1)
level.

A particularly high precision is a achieved for the
ratio

= —ImE,(Q)/ReE, (), (5.20)
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Table9. Energies of quasistationary states in the potential

V(X) = 1,2 N
2
n=1 n=2
¢ ReE, 108 ReE, 108
100 3.8040 | 7.26541 | 13.8388 | 7.26542
3.848 7.26534 | 13.8399 | 7.26535
10 1.5502 7.2646 5.5093 7.26650
1571 7.2620 5.5098 | 7.2639
5 1.17547 | 7.2630 41751 7.2643
1.190 7.255 4.1757 7.261
1 0.6165 7.7323 2.1921 7.2502
0.610 7.128 2.1935 7.206
0.5 0.4664 7.1613 1.6596 7.2182
0.462 6.84 1.662 7.14

Note: At fixed values of { and n, the first and the second line con-
tain, respectively, the results of the numerical calculation
from [55] and the results based on the asymptotic expression
(5.19). The quantity & is defined in (5.20), its limiting value
being &,, = tan(1/5) = 0.7265425... .

which, in thelimit { — oo, isindependent of nand ¢,
taking thevalueof &, = tan(Tt/(N + 2)). It isastounding
that the approximation given by (5.19), which is very
simple indeed, provides not only a qualitative but also
a gquantitative description of resonance energies in the
region { = 1 (for n > 1 excited levels, its accuracy is
still higher).

5.3. Sark Effect in a Hydrogen Atomin a Strong
Electric Field

The Schrodinger equation for the hydrogen atom in
auniform electric field € admits a separation of vari-
ables in parabolic coordinates [2]. For m = O states
characterized by specific values of the parabolic quan-
tum numbers n, and n,, the quantization integrals are
expressed in terms of a hypergeometric function, so
that the condition in (5.9) can be represented in the
form [52]

(By/z1)G(-z) = —2v,F"
(Bo/2)G(2,) = 2v,F"

where 3; are the separation constants, 3, + B, =1; z =
16B;F/e%;

(5.21)

G(z) = zOOF,(V/4, 3/4, 2; 2);
and g, F, and v, are reduced variables given by
F = n'¢,
n=n+n,+1

£ = 2n°(E, =il /2),

(5.22)
v, = (n; + 1/2)/n,
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Table 10. Energy positions and widths of the peaks associ-
ated with the photoionization of the m = 0 Rydberg states of
the hydrogen atom in an electric field of strength € =
16.8 kV/cm

E,, cm™ r/2, cm
Ny, Ny F Fo
WKB | [57] |WKB]| [57]
16,1 | 1069 | 103.8 | 9.0 | 9.0 0.343 | 0.265
15,1 | 1678 | 1679 | 08 | 21 0.273 | 0.263
15,0 | 1965 | 1985 | — | 1.1(-4)| 0.214 | 0.308
14,2 | 2121 | 2101 | 54 | 6.6 0.273 | 0.236
13,2 | 273.6 | 275.8 — 0.23 0.214 | 0.233
12,3 | 313.3 | 314.8 — 16 0.214 | 0.214
11,4 | 3538 | 3514 | 25 | 3.0 0.214 | 0.200
11,3 | 384.2 | 386.3 - 1.8(=3)| 0.165 | 0.211
10,4 | 4187 | 4192 | - | 3.2(-2)| 0.165 | 0.197

Note: Here, ny and n, are the Earabolic quantum numbers of a
Stark resonance, F = n"% is the reduced electric-field
strength, and F;is the classical ionization threshold [58].
The case of F<Fp(F > F corresponds to subbarrier
(above-barrier) r@onanca

The variable z, increases monotonically with F; at z, =
1, the level touches the barrier top in the effective
potential U,(n), which includes the Langer correction.
The corresponding electric field is that which is equal
to the classical ionization threshold € ;= n"*F The
parameter a appearing in (5.6) isalso caFcuIated analyt-
icaly. Theresult is

a= —£/2)*°G(1-2,) = na,(1-2) + ..
4F (5.23)

F"F*.

In the near-threshold region, the second equation in
(5.21) must be modified in accordance with (5.6). This
is achieved viathe substitution

5—0(a). (5.24)

Vo—>Vy = V,— 2T[n

KARNAKOV et al.

An analytic continuation of Egs. (4.21) to the above-
barrier region (F > Fp) can be performed according to
(5.10) and (5.23) withthe aid of the substitution

1-7z,— = (1-2)e"", (5.25)

upon which the function G(z,) appearing in (5.21) is
replaced by G (2):

G(z) — G(z) = G(z) -i2G(1-2). (5.26)

Equations (5.21) can be solved numerically [34, 52].
The calculated values of E, are quoted in Table 10,
along with the experimentally measured positions of
the peaks in the cross section for the ionization of
hydrogen atoms at € = 16.8 kV/cm. It can be seen that,
within the measurement errors (1to 2 cm! according to
[57]), the semiclassical results agree with experimental
data. Since the relevant solutionsto Egs. (5.21) for F <
Fj are red, they cannot determine the resonance
widths; for thisreason, dashes stand for the correspond-
ing entries in this table. For F > F the analytically
continued quantization rules speci fy not only the reso-
nance positions but also the resonance widths I, which
are given in the table.

In order to calculate the widths of subbarrier and
above-barrier resonances, it is necessary to use
Egs. (5.21) with substitution (5.24), which take into
account a finite barrier penetrability in the effective
potential U,. Thisisillustrated in Table 11 for n, = n,
subbarrier resonances. Since the classical ionization
threshold is F7= 0.1837 for such states, the results of
the calculations for the effective quantum number v =
(=2E,)'? and the level widths ™ at moderate fields F <
Fr in which case the WKB method cannot determine
I, are presented in the table.

It was noted above that, in eventual formulas, the
semiclassical-expansion parameter # trandates into
1/n; therefore, A% corrections to the quantization inte-
gral are of order 1/n’. The quantitiesv and I' were cal-
culated in the semiclassical approximation with allow-
ancefor the barrier penetrability both in the 1/n approx-
imation [in other words, according to Egs. (5.21) with

Table 11. Energies of Stark resonancesin a hydrogen atom according to cal culations based on various methods

NNy, MO 2,2, 00 |5, 5, 001 |7, 7,00
¢ 1.8 (-4) 1.0 (-5) 3.0(-6)
F 0.1125 0.1464 0.1519
Method Y r r v r
n-A 4.92385 2.22 (—6) 10.7128 2.82 (—6) 14.5767 1.347 (—6)
Un?—A 4.92406 2.19 (-6) 10.7127 2.80 (-6) 14.5766 1.338 (—6)
PHA 4.92402 2.283 (-6) 10.713 2.83 (-6) 14.577 1.35 (—6)
[60] 4.9240 2.282 (—6) 10.688 2.815 (—6) 145771 1.338 (—6)

Note: Here, ny = ny, = (n—1)/2; thevaluesof €, v = (- 2E)1’2 and " are presented in a.u.; the classical ionization threshold is F ;= 0.1837

for ny = n, states.

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001



SEMICLASSICAL APPROXIMATION AND I/n EXPANSION

substitution (5.24)] and in the 1/n> approximation
[59]—that is, with alowance for the %2 correction
according to equations similar to thosein (5.11). In addi-
tion, Table 11 displays the results from [34], which
were obtained by summing perturbation-theory series
by means of Padé-Hermite approximants (PHA), and
the numerical results from [60]. It can be seen that the
results of the calculations performed by different meth-
ods are consistent and that, with increasing quantum
numbers n, and n, or reduced field F, the accuracy of
the semiclassical approximation becomes higher, while
the accuracy of the method based on summation of
divergent perturbation-theory series deteriorates.
Finally, we note that the energies of Stark resonances
corresponding to the circular states |0, 0, n— 1[tan eas-
ily be calculated by means of the 1/n-expansion tech-
nique [34].

6. CONCLUSION

The semiclassical approximation and the 1/n-expan-
sion technique have been used to calculate the energies
of discrete and quasistationary states and radial wave
functions for the Schrédinger equation. It has been
shown that not only do these methods provide qualita-
tive estimates for the above quantities, but they are also
appropriatefor calculating somefine features of therel-
evant wave functions like the asymptotic coefficients at
the origin and at infinity. The resulting analytic formu-
las for these coefficients, which are important for appli-
cations, are asymptotically exact in the limit of large
values of theradial quantum number n, (WKB method)
and in the limit of high angular momental (1/n expan-
sion). It turns out that, asarule, these formulas are also
applicable at modest values of n, and |, almost com-
pletely covering the region of al possible values of
these quantum numbers, with the exception of those
that correspond to shallow levels in short-range poten-
tials. But for this case, there are simple analytic expres-
sions that determine, to a reasonable precision even for
the ground state, coupling-constant values at which a
level emerges.

Both the semiclassical approximation and the 1/n-
expansion technique are especially convenient for solv-
ing physics problems where variables in the
Schrodinger equation cannot be separated. By way of
example, weindicatethat, in the case of the Stark effect
in astrong electric field, the complex energies of Stark
resonances in a hydrogen atom and the positions and
widths of peaks in the cross sections for the photoion-
ization of various Rydberg states of arbitrary atoms can
be computed by combining these two methods.
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Abstract—A meson-theoretical model for the reaction tp — 11n for large T momenta is developed
which treats the final-state interaction between the two produced pions microscopically. For small momentum
transfers, the squares of the Swave amplitudes of the produced two-pion system show adip for invariant two-
pion masses in the vicinity of the f,(980) meson, while for momentum transfers—t > 0.2 (GeV/c)?, the f,(980)
meson appears as a bump. The model provides a microscopic explanation of the long-standing puzzle seen by
both the GAMS and the BNL experimental collaborations. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The reaction TN — 7Tl is one of the major
sources of information about pion—pion scattering. For
pion beam momenta above approximately 10 GeV/c
and for small values of the squaret = (py — py)?* of the
momentum transfer between the incoming and the out-
going nucleon, the reaction is peripheral and is there-
fore dominated by one-pion exchange. During the last
decade, there has been significant experimental
progress due to new detector developments which
allow high-statistics studies of two-pion production [1,
2]. In this work, we concentrate on the charge-
exchange reaction Ttp — 1°rn. This reaction elimi-
nates the odd angular momenta from the partial-wave
analysis of the two-pion system and is selective to the
isospinl =0and | = 2.

The GAMS collaboration employs a T1r-beam
momentum of 38 GeV/c [1], while the BNL-E852 col-
laboration uses an incident beam momentum of
18.3 GeV/c [2]. The experimental results can be sum-
marized as follows. For momentum transfers -t <
0.2 (GeV/c)?, the squares of the Swave amplitudes
show a broad enhancement above the threshold with a
sharp dip near the invariant two-pion mass my, =
980 MeV. This dip corresponds to the excitation of the
f,(980). A similar dip has been seen in the reaction
pp — 31 by the Crystal Barrel collaboration [3, 4].
For momentum transfers above—t < 0.4 (GeV/c)?, how-
ever, a puzzle emerges: at m,,;= 1 GeV, adistinct peak
isseen. In the GAMS data, the peak istaller than in the
corresponding BNL data.

Despite alarge body of experimental and theoretical
work, the structure of the f;,(980) meson remains a con-
troversial issue (see, e.g., the recent review by Godfrey
and Napolitano [5]). Since at least three scalar— sosca-

* This article was submitted by the authorsin English.

lar mesons have been established to date, i.e., f,(980),
f,(1370), and f, (1500), and since the low-lying scalar—
isoscalar strength can be summarized as a meson
f,(400-1200), there is no obvious single candidate for

the scalar member of the qg nonet. Thef,(980) meson
was interpreted as amultiquark state [6], a KK mole-

cule [7-9], or as a unitarized qq state [10, 11]. The
issue could not be decided by analyses of theyy —
TiTtreaction [12, 13].

The earliest theoretical model that specifically
addresses the GAMS data is the K-matrix analysis by
Anisovich et al. [14, 15]. In that model, the transition
amplitude A(TiN — Nb) is given by the product of a
pionic vertex for the proton-to-neutron transition, a
standard pion propagator, and a unitarized Ttit—— b
transition amplitude which is parameterized as a sum of
Breit—-Wigner terms with momentum-dependent cou-
pling constants. A suitable multiplicative factor ensures
that the amplitude vanishes at the two-pion production
threshold.

An aternative model was suggested by Achasov and
Shestakov [16, 17], who point out that one-pion
exchange dies out rapidly as the momentum transfer —t
is increased. For large momentum transfers, the reac-
tion mechanism has to be generalized to include
mesons of larger mass. In addition to pion exchange,
Achasov and Shestakov therefore include the a
exchange. The necessity to include a, exchange in the
extraction of pion—pion phase shifts was emphasized
by Kaminski, Lesniak, and Rubicki [18, 19]. The
Tit— Turtand the a1t — TITttransition amplitudes
are parameterized by generalized Breit-Wigner-like
amplitudes and background terms with parameters
directly adjusted to the GAMS data. A good fit to the
GAMS datais obtained [16].

1063-7788/01/6404-0691$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Meson-exchange model for the reaction TN —
TiriN.

In our work, we present a meson-theoretical model
for the reaction tp — Tr’n. The advantage of a
microscopic approach like the present one is that one
does not have to rely on assumptions concerning the
background amplitude because the background is
explicitly generated by the meson—meson scattering
dynamics. In a meson-theoretical approach, one is
straightforwardly led to include both the pion and the a,
in the reaction mechanism.

2. THE MODEL

The reaction mechanism considered in the present
work isshownin Fig. 1. In addition to the pion, we aso
include the exchange of the a, meson. In principle, one
also hasto consider the exchange of the p meson, which
may contribute via G-parity violating couplings. At a
quantitative level, however, this contribution turns out
to be entirely negligible. The incoming pion and the
virtual meson can interact via meson exchanges and

can couple to both mmand KK intermediate states
which undergo final-state interactions.

First, we have to choose an effective Lagrangian for
the meson dynamics. By imposing SU(3)-flavor sym-
metry, one can reduce the number of triple meson cou-
plings[8, 9]. But the SU(3) symmetry does not yet con-
strain the couplings of the a, meson. Sincethe a; meson
ischirally related to the pion, chiral symmetry helpsto
reduce the number of independent coupling constants.
We sart from an underlying effective-quark
Lagrangian which respects chiral symmetry and derive
the required meson interactions by integrating out the
quark degrees of freedom using known techniques[20—
24]. We employ the simplest such Lagrangian avail-
able, i.e., the one due to Nambu and Jona-Lasinio [25].

The following three-meson couplings result.

The pseudoscal ar—pseudoscal ar—scalar coupling isa
typical D coupling which reads

£Lopso = tr({ P, P}9S)

1
_ZGpps

with the following relation between scalar and deriva-
tive coupling constants:

Gpps
Fops = P : (2)
A0
9M Dl+2|n—D
D M D

The coupling constant of the pseudoscal ar—pseudosca-
lar—scalar interaction is denoted by G, A\ is a cutoff
parameter, and M is the scalar mass, Mg and A are
defined within the NJL model.

In the actual calculations, we use the experimental
scalar mass and the corresponding cutoff parameters
given in the end of the section.

The pseudoscalar—pseudoscalar—vector  coupling
interaction is

7 tr([P, ,P]V"), (3)

ppvl = 4 Gppv

where Gy, is apseudoscal ar—pseudoscal ar—vector cou-
pling constant

The pseudovector—vector—pseudoscalar interaction
may be expressed as

i
'§£Avp0 = _Z_GAvptr([Apv Vu] P)
3.
+ ZI Favp tr([0"A" —a" A", 0,V, -0,V ]P)

3. 1.
+ SiFpptr([AY, 05V, ]P) + SiFarp )

2
2 3 v
xtr([0gA,, V']P) + 5 Faptr([0,A 0,V']P)

—iFa,ptr([0,A", V']0,P) +iF, tr((A", 0,V']0,P),

with the following relation between scalar and deriva-
tive coupling constants:

GAvp
A0

3M I:ﬂ.+ 2In—D
D M D

I:Avp -

o)

where G,,,, isacoupling constant of the pseudovector—
vector—pseudoscal ar interaction.
PHYSICS OF ATOMIC NUCLEI
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The pseudovector—pseudoscalar—scalar interaction is

1
FLapsr = = 7Capstl ({ A, 9,P}S)
1 (©)
+ 7Ghstr({ A", P}9,8) - Gl\pstr({a A" P} S),

with the coupling constant G,,s and the related con-
stants

2
3in
1 MS
GApS = 5 GAps1
2[;[L+§In/\—2
o 2 MO (7)
n 1
GAps - ZDGAPS
m+§|n’\—m
O M D

The vector—vector—pseudoscalar coupling has the
form

§£vvp2 = %invpepvp)\tr({ a\;Vpa V)\}app)
1L (8)
ZiG, e P tr({0,V,, 0,V,} P),

T

which isa pure D-type coupling with the coupling con-
stant G,,,,. Here, e"P denotes the totally antisymmet-
ric four- tensor The pseudovector—pseudovector—pseu-
doscalar coupling is

SwPAApz = iGpppe wp)\tr([a P,d,A]A)
)

+ ZGAAp r({a,A

with the coupling constant Gaa,. The pseudoscalar—
pseudoscal ar—tensor coupling is

0vA}P),

n o

[ v
Lot = 7Contr([0,P, a,P] "), (10)
with the coupling constant Gy;.

For the nucleon—nucleon meson interaction, we fol-
low Aitchison and Fraser [21, 22]. The resulting total
effective Lagrangian reads

°(£eff = N[yp(lau - gv(vp + VSAu)) _gs(S+ IVSP)

- 60, "IN + 5(0,50"S+0,P0"P) — Z(F1,F™"
(11)
#FAFA) = 23S + PP+ SpE (v + AY)

1 2¢

1 v
+§a)\fu a)\f 2“3 ;21v+§£|nt1
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where g and y,, are the experimental masses of the sca-
lar and vector mesons and &, is the sum of the three-
meson-interaction Lagrangians displayed above.

The meson—-meson scattering amplitudes are
obtained by solving the Blankenbecler—Sugar reduc-
tion of the Bethe—Salpeter equation.

As anumerical value of the pion—nucleon coupling

constant, we take g /4 =13.8 which is close to the
value determined in [26] from new experimental data,

Uann/ATE = 14.5. For the rho-meson—nucleon coupling

constant, we take gi /41t = 0.9, which corresponds to
the value employed in the Bonn meson-exchange

model of the nucleon—nucleon interaction, gﬁ,Np /ATt =

0.92. According to the construction of our Lagrangian,
this number directly fixesthe a,—nucleon coupling con-
stant. In [27], the experimenta tests of time-reversa
asymmetry give an upper limit of 0.9 for gﬁ,Nal/4n
assuming maximal symmetry violation.

In our model, we assume that the chiral partner of
the pion can be identified with the f,(1370) meson
which fixes the required coupling constants of the
f,(1370).

We take the following three-meson couplingsin our

calculation: Goue/4Tt = Gop, /ATL = 5.5, Gaps/4Tt =

GAVp/4T[= 0.6, and Givp/4n = 3.3. For regularization
purposes, standard form factors of the dipole type are
employed [9]. For the -channel and u-channel interac-

tions, we take (in MeV) Ay, = AL = 1355, Alk, =
3080, Ak, = 1000, and Ak, = 1400. For the s-chan-
nel, the values are (in MeV) A%, = AY . = 2355,

a,Tp
(s) (s) (s)
/\KKD = 2000, /\nnfo(1370) = /\317”0(1370) = 1500,

Agf2(1400) = /\;Sl)nfz(MOO) = 2320, and /\(Ksl)<f2(1400) =
2800. For the meson—nucleon form factors, we use
Anyy = 1300 MeV and A,y = 1800 MeV.

These values were determined from a fit to the Tt
phase shifts. The theoretical phase shifts obtained with
the present mode are virtually identical to the ones
aready published in [9]. The f,(980) isreproduced as a

quasibound KK molecule. We now proceed to discuss
the results of the model for thereaction tp — 11N,

3. RESULTS

We first analyze the BNL-E852 data. In Fig. 2, the
experimental events are shown as a function of the
square of the momentum transfer |t| summed over the
interval of invariant two-pion masses 0.98 < my, <
1.08 GeV. Gunter et al. point out that the experimental
distribution cannot be characterized by a single expo-
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Events/[0.0125 (GeV/c)?]
10* ¢

103 a
102 :
10"

100 E

1.0 L5
—t, (GeV/c)?

Fig. 2. The two-pion events obtained in the Ttp — 1°1°n reaction at a pion beam momentum of 18.3 GeV/c by the BNL-E852
collaboration [2] are shown as a function of the square -t of the momentum transferred between the proton and the neutron. The
invariant two-pion masses have been averaged over theinterval 0.98 < mp,;< 1.08 GeV. The dotted curve shows the results obtained

by assuming a pure one-pion exchange as a reaction mechanism, the dashed curve shows the corresponding result for a pure a;

exchange. The full model is given by the solid curve.

Intensity |S /(40 MeV)
4 —

x10%

0 500 1000 1500
M MeV

Fig. 3. The squares of the absolute values of the S-wave par-
tial wave amplitude are shown as afunction of the invariant
two-pion mass for events in the region 0.01 < -t <
0.10 (GeV/c)”. The present (Ti+ a,) calculation is given by
the solid curve. The contribution due to pion exchange is
displayed by the dotted curve, while the contribution due to
a, exchangeis given by the dashed curve. Circles represent
the BNL-E852 data.

nential. In order to fit the distribution, a sum of two
exponentials was required, which suggests more than
one production mechanism [2]. We identify the rapidly
decreasing amplitude with the one-pion exchange
mechanism and the slowly decreasing amplitude with
the a, exchange, as was done aready in [16]. The
amplitudes are multiplied by reduction factors
172, byt/2 172 _Pa,t/2 -
Cie” and C;’e " . The corresponding slope
parametersb, = 3.80 (GeV/c)? and b, =1.20 (GeV/c)?,
as well as the amplitudes C,; = 0.970 and C, = 0.004,

are phenomenological parameters which are chosen to
reproduce the data displayed in Fig. 2. As pointed out
by Achasov and Shestakov[17], the parameterization of
[14] predicts arapid variation of the distribution with t
which is not confirmed by the data [2]. This finding
supports the assumption that the a, exchange plays an
important role in the reaction mechanism.

The sguare of the Swave partial wave amplitude is
shown in Fig. 3 asafunction of the invariant two-pion
mass for values of the momentum transfer summed
over 0.01 < —t < 0.10 (GeV/c)>. The data show a broad
strength distribution above the threshold which isinter-
rupted by asharp dip in thevicinity of m.,,= 1 GeV. For

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001
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Intensity |S /(40 MeV)
10
x10°
8 -

|
1500
M MeV

1000

Fig. 4. The squares of the absolute val ues of the S-wave par-
tial wave amplitude are shown as afunction of the invariant
two-pion mass for events in the region 04 < —t <
1.5 (GeV/c)?. The present calculation is given by the solid
curve. The contribution due to pion exchange is displayed
by the dotted curve, while the contribution due to a
exchangeis given by the dashed curve. Circlesrepresent the
BNL-E852 data.

these small momentum transfers, the reaction mecha-
nism is dominated by one-pion exchange. The a,
exchange becomes noticeable only above 1 GeV. The
appearance of adip can be understood microscopically
in meson-exchange models: the exchange of ap meson
in thet channel of the two-pion system leadsto a strong
attraction between the two interacting pions. The pion—
pion phase shift consequently rises rapidly to 90°, and

Events/(10 MeV)

800 -

400 -

]
1500
My MeV

Fig. 5. Theoretica two-pion mass distributions for the
p — 11N reaction at a pion beam momentum of
18.3 GeV/c obtained in acalculation without a KK channel
are shown for two ranges of the square of the momentum
transfer: |t| < 0.2 (GeV/c)* (solid curve) and [t| >
0.4 (GeV/c)? (dotted curve).
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therefore interferes destructively with the amplitude
generated by the opening of the KK channel. Detailed

discussions on the structure of the &) partial-wave

amplitude as generated by meson-exchange models can
befoundin[8, 9].

In our model, we have only considered those f,
mesons above 1 GeV that arelisted in the Particle Data
Group [28] and fitted the pion—pion phase shifts, but
not the BNL-E852 data. Now, we note that the present
calculation misses some Swave strength above m, =
1GeV. A draightforward possible method for repro-
ducing the BNL-E852 datawould be to follow Anisov-
ich and Sarantsev and postulate that the f,(1370) reso-
nance summarizes two scalar resonances, namely, a
f,(1300) and a broad f,(1550) [29].

Figure 4 shows the squares of the S-wave ampli-
tudes summed over theinterval 0.4 < -t < 1.5 (GeV/c)>.
For these large momentum transfers, the pionic contri-
bution to the reaction mechanism amost disappears.
The dataisreproduced satisfactorily. The peak at m,=
500 MeV isdueto aK- contamination in the pion beam
which generates a small signal due to the decay

K2 —~ mmwhich survives despite the presence of a
veto detector [2]. The enhancement near the threshold
ismainly produced by the a,-exchange mechanism. In
the vicinity of 1 GeV, the theoretical calculation pro-
duces a clear peak. This is the maor result of the
present investigation. The meson-exchange model
straightforwardly produces the f,(980) meson as a peak
in the cross section, provided the momentum transfer is
sufficiently large. For large momentum transfers, there

Intensity |Dy[*/(40 MeV)
1.5

x10°

1.0

0.5

0 500

1000

1500
My MeV

Fig. 6. The squares of the absolute values of the D, partial-
wave amplitude are shown as a function of the invariant
two-pion mass for events in the region 0.01 < -t <
0.10 (GeV/c)2. The contribution due to pion exchange is
given by the solid curve, while the contribution due to a,
exchange is given by the dashed curve; the latter is negligi-
ble here. Circles represent the BNL-E852 data.
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Intensity |D,[*/(40 MeV)
4 —

><103 -
3 -
2 -
1 -
- §§
}
0 1500
My MeV

Fig. 7. The squares of the absolute values of the D, partial-
wave amplitude are shown as afunction of the invari ant two-
pionmassfor eventsintheregion0.4<-t< 1.5 (GeV/c) For
adescription of the theoretical curves and the experimental
data, see Fig. 6.

Events/(20 MeV)
300r 02 (GeV/c)?
2000

100

0
20

is no missing strength between 1 and 1.3 GeV, in con-
trast to the situation at smaller momentum transfers.

In Fig. 5, we show the results obtained after switch-

ing off the coupling to the KK channel. For small
momentum transfers (|t| < 0.2 (GeV/c)?), the dip disap-
pears. Likewise, for large momentum transfers (Jt| >
0.4 (GeV/c)?), there is no peak near 1 GeV. We have to
conclude that, in the present model, the description of
the f,(980) meson as a quasibound KK state is the
major ingredient that produces the strong variation of
the f,(980) production as a function of the momentum
transfer.

The partial wave D, is dominated by the f,(1270),
which isincluded as a pole diagram in our model. We
find, indeed, a fair agreement with the experimental
data for both small (Fig. 6) and large (Fig. 7) momen-
tum transfers.

The slope parameters b, and b, and the amplitudes

C, and C, summarize absorption effects and are

expected to change with the total available energy. For
analysis of the GAMS data, which were taken with a
beam momentum of 38 GeV/c, we employ C,;= 0.77,

Events/(20 MeV)
0.3 <-1< 1.0 (GeV/c)?

301

20

10

0
15

0
1 100 800 900
My MeV

0
800 900

1 000 1 000 11 OO

Fig. 8. The squares of the absolute values of the S partial-wave amplitude obtained in the reaction tp — 101 at a pion beam
momentum of 38 GeV/c by the GAMS collaboration [1] are shown as a function of the invariant two-pion mass for events averaged
over different t intervals. For a description of the theoretical curves, see Fig. 2.
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C,, = 0.001, b, = 720 (GeV/c)?, and b, =
3.50 (GeV/c)2. With this choice, the model can repro-
duce adip in the S-wave amplitudes for small momen-
tum transfers and a peak at large momentum transfers,
see Fig. 8. One notices that the bump at m;~ 1 GeV

can be seen even more clearly than in the case of the
BNL-E852 data.

4. CONCLUSIONS

The present microscopic model shows that the
f,(980)-production puzzle in the reaction Ttp —»
1n can be explained by meson dynamics. The a,
meson plays a crucial role in the reaction mechanism,
as was pointed out already by Achasov and Shestakov
[16]. The present meson-exchange model does not
include an explicit f,(980) resonance, but reproduces
the experimental scalar—isoscalar phase shifts by the

coupling to the KK channel, where the attractive vec-
tor—meson exchange in the  channel generates a quasi-
bound state, aswasaready foundin [8, 9]. Thefindings
of both the GAMS [1] and the BNL-E852 [2] collabo-
rations are therefore compatible with the assumption

that the f,(980) meson isa KK molecule.
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Abstract—We compare two different possibilities of including meson-loop corrections in the Nambu—Jona-
Lasinio model: astrict /N, expansion in the next-to-leading order and a nonperturbative scheme corresponding
to a one-meson-loop approximation to the effective action. Both schemes are consistent with chiral symmetry,
in particular, with the Goldstone theorem and the Gell-Mann—-Oakes—Renner relation. The numerical part at
zero temperature focuses on the pion and the p-meson sector. For the latter, meson-loop corrections are crucial
in order to include the dominant p — tTedecay channel, while the standard Hartree + RPA approximation
only contains unphysical gqg-decay channels. We find that my,, f, (P J and quantities related to the p-meson
self-energy can be described reasonably with one parameter set in the /N -expansion scheme, whereas we did
not succeed in obtaining such afit in the nonperturbative scheme. We a so investigate the temperature depen-
dence of the quark condensate. Here, we find consistency with the chiral perturbation theory to the lowest order.
Similarities and differences of both schemes are discussed. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

During the last few years, one of the principal goals
in nuclear physics has been to explore the phase struc-
ture of QCD. Along with this comestheinvestigation of
hadron properties in a vacuum, as well as in hot or
dense matter. In principle, all properties of strongly
interacting particles should be derived from QCD.
However, at least in the low-energy regime, where per-
turbation theory is not applicable, thisis presently lim-
ited to arather small number of observablesthat can be
studied on alattice, while more complex processes can
either be addressed by chiral perturbation theory or
within effective model calculations that try to incorpo-
rate the relevant degrees of freedom.

So far, the best descriptions of hadronic spectra,
decays, and scattering processes have been obtained
within phenomenological hadronic models. For
instance, the pion electromagnetic form factor in the
timelike region can be reproduced rather well within a
simple-vector dominance model with adressed p meson,
which is constructed by coupling a bare p meson to a
two-pion intermediate state [1, 2]. Models of this type
have been successfully extended to investigate medium
modifications of vector mesons and to calculate dilepton
production ratesin hot and dense hadronic matter [3].

In this situation, one might ask how the phenomeno-
logically successful hadronic models emerge from the
underlying quark structure and the symmetry proper-
ties of QCD. Since this question cannot be answered at
present from first principles, it has to be addressed
within quark models. For light hadrons, chiral symme-

* This article was submitted by the authorsin English.

try and its spontaneous breaking in a physical vacuum
through instantons play adecisiverolein describing the
two-point correlation functions [4], with confinement
being much less important. This feature is captured by
the Nambu—Jona-Lasinio (NJL) model, in which the
four-fermion interactions can be viewed as being
induced by instantons. Furthermore, the model allowsa
study of the chiral phasetransition, aswell as an exam-
ination of the influence of (partial) chiral-symmetry
restoration on the properties of light hadrons.

The study of hadrons within the NJL model has, of
course, along history. In fact, mesons of various quan-
tum numbers have aready been discussed in the origi-
nal papers by Nambu and Jona-Lasinio [5] and by many
authors thereafter (for reviews, see [6-8]).

In most of these works, quark masses are calcul ated
in the mean-field approximation (Hartree or Hartree—
Fock), while mesons are constructed as correlated
guark—antiquark states [random-phase approximation
(RPA)]. This corresponds to a leading-order approxi-
mation in /N, the inverse number of colors. With the
appropriate choice of parameters, chiral symmetry,
which is an (approximate) symmetry of the model
Lagrangian, is spontaneously broken in the vacuum and
pions emerge as (nearly) massless Goldstone bosons.
While thisis clearly one of the successes of the model,
the description of other mesons is more problematic.
Onereason isthefact that the NJL model does not con-
fine quarks. As a consequence, a meson can decay into
free congtituent quarksif its massis larger than twice the
congtituent quark mass m. Hence, for a typical value of
m~ 300 MeV, the p meson with amass of 770 MeV, for
instance, would be unstable against decay into quarks.

1063-7788/01/6404-0698%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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On the other hand, the physical decay channel of the p
meson into two pions is not included in the standard
approximation. Hence, even if alarge constituent quark
mass is chosen in order to suppress the unphysical
decays into quarks, one obtains a poor description of
the p-meson propagator and related observables, like
the pion electromagnetic form factor.

Similar problems arise if one wants to study the
phase structure of strongly interacting matter within a
mean-field cal culation for the NJL model, although this
has been done by many authors (see, e.g., [7-10]). In
these calculations, the thermodynamics is entirely
driven by unphysical unconfined quarks even at low
temperatures and densities, whereas the physical
degrees of freedom, in particular the pion, are missing.

This and other reasons have motivated severa
authors to go beyond the standard approximation
scheme and to include mesonic fluctuations. In [11], a
guark—antiquark p meson is coupled via a quark trian-
gleto atwo-pion state. Also, higher order correctionsto
the quark self-energy [12] and to the quark condensate
[13] have been investigated. However, as the most
important feature of the NJL model is chiral symmetry,
one should use an approximation scheme which con-
serves the symmetry properties in order to ensure the
existence of massless Goldstone bosons.

A nonperturbative symmetry-conserving approxi-
mation schemewas discussed in[14, 15]. In[14], acor-
rection term to the quark self-energy isincluded in the
gap equation. The authors find a consistent scheme to
describe mesons and show the validity of the Goldstone
theorem and the Goldberger—Treiman relation in that
scheme. The authors of [15] use a one-meson-loop
approximation to the effective action in a bosonized
NJL model. The structure of the meson propagators
turns out to be the same as in the approach of [14].
Based on this scheme, various authors have investi-
gated the effect of meson-loop corrections on the pion
electromagnetic form factor [16] and on TtTtSCattering
inthe vector [17] and the scalar channel [18]. However,
since the numerical evaluation of the multiloop dia-
grams is rather involved, the exact expressions are
approximated by low-momentum expansions in these
references.

Another possible method for constructing asymme-
try-conserving approximate scheme beyond the Har-
tree approximation and RPA is a strict /N, expansion
up to the next-to-leading order. Whereas, in the approx-
imation scheme mentioned above, the gap equation is
modified in a self-consistent way, the correctionsin the
UN.-expansion scheme are perturbative. The consis-
tency of the 1/N_-expansion schemewith chiral symme-
try was shown in [14]. It was studied in more detail in
[19, 20]. Recently, such an expansion was aso dis-
cussed in the framework of anonlocal generalization of
the NJL model [21].

In the present paper, we compare the results
obtained in the nonperturbative scheme with those
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obtained in the /N -expansion scheme. In vacuum, we
focus our discussion on the pion and the p meson cal-
culated with the full momentum dependence of all
expressions. Within the 1/N.-expansion scheme, the
influence of mesonic fluctuations on the pion propaga
tor was examined closely in [19]. This was mainly
motivated by the recent works of Kleinert and Van den
Bossche [22], who claim that chiral symmetry is not
spontaneously broken in the NJL model as a result of
strong mesonic fluctuations. In [19], we argued that
because of the nonrenormalizability of the NJL model,
new divergences and, hence, new cutoff parameters
emerge if one includes meson loops. Following [14,
15], we regularize meson loops by an independent cut-
off parameter A\,. The results are, of course, strongly
dependent on this parameter. Whereas, for moderate
values of A\, the pion properties change only quantita-
tively, strong instabilities are encountered for larger
values of Ay,. In[19], we suggested that this might hint
toinstability of the spontaneously broken vacuum state.
It turns out that instabilities of the same type aso
emerge in the nonperturbative scheme. This allows for
an analysis of the vacuum structure and, therefore, for
a more decisive answer to the question of whether
chiral symmetry indeed gets restored due to strong
mesonic fluctuations within this approximation.

In any case, in the /N -expansion scheme, the
region of parameter values where instabilities emerge
in the pion propagator is far away from the realistic
parameter set [20]. We used m,, f,, Opy [J and the
p-meson spectral function to fix the parameters. The
last oneis particularly suited to fix the parameters, asit
cannot be described realistically without taking into
account pion loops. An important result of the analysis
in [20] was that such a fit can be achieved with a con-
stituent quark mass that is large enough such that the
unphysical gg threshold opens above the p-meson
peak. Since the constituent quark mass is not an inde-
pendent input parameter, this was not clear apriori. In
this paper, we will try the same for the self-consistent
scheme. It turns out that it is not possible to find a
parameter set where the constituent quark mass comes
out to be large enough to describe the properties of the
p meson reasonably. In fact, we encounter instabilities
in the p-meson propagator that are similar to those we
found in the pion propagator for large Ay.

The inclusion of meson-loop effects should aso
improve the thermodynamics of the model consider-
ably. A first insight into the influence of mesonic fluc-
tuations on the thermodynamics can be obtained viathe
temperature dependence of the quark condensate. It
was shown in [23] that, in the self-consistent scheme,
the low-temperature behavior is dominated by pionic
degrees of freedom, which is a considerable improve-
ment on calculations in the Hartree approximation,
where quarks are the only degrees of freedom. Within
this scheme, the results obtained in lowest order chiral
perturbation theory can be reproduced. Thisis aso the
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Fig. 1. The Dyson equation for the quark propagator in the
Hartree approximation (solid lines). The dashed lines
denote the bare quark propagator.

case for the 1/N.-expansion scheme, which will be
demonstrated in the last part of this paper. The nonper-
turbative scheme also allows for an examination of the
chiral phasetransition [23], whereasthisis not possible
within the 1/N_-expansion scheme.

The paper is organized as follows. In Section 2, we
begin with abrief summary of the standard approxima
tion scheme used in the NJL model to describe quarks
and mesons and afterward present the scheme for
describing quantities in the next-to-leading order in
UN.. In Section 3, we discuss the nonperturbative
approximation scheme. The consistency of these
schemes with the Goldstone theorem and with the Gell-
Mann—Oakes—Renner (GOR) relation will be shownin
Section 4. The numerical results at zero temperature
will be presented in Section 5. The temperature depen-
dence of the quark condensate at nonzero temperature
within the above-mentioned approximation schemes
will be studied in Section 6. Finally, our conclusions
aredrawn in Section 7.

2. THE NJL MODEL IN LEADING ORDER
AND IN THE NEXT-TO-LEADING ORDER IN 1/N.

2.1. The Standard Approximation Scheme:
Hartree + RPA

We consider the generalized NJL-model Lagrangian
£ = P(i0—mo)W + gL (BW)” + (Biysth)’]

—g, [y 1) + (Ty"ysTw) ],

where Y is a quark field with N, = 2 flavors and N, =
3 colorsand g, and g, are coupling constants of dimen-
sion length?. In contrast to QCD, color is not related to
gauge symmetry in this model, but it is only related to
the counting of degrees of freedom. However, if one
defines the coupling constants to be of order 1/N.., the
large-N, behavior of the model agreeswith that of QCD
[14, 15]. Although we are not interested in the behavior
of the model for arbitrary numbers of colors in the
present article, the 1/N. expansion is introduced for the
purpose of book-keeping. Thiswill allow usto takeinto
account mesonic fluctuations in a symmetry-conserv-
ing way. In order to establish the expansion scheme, the
number of colorswill be formally treated as a variable.
All numerical calculationswill be performed, however,
with the physical value of N. = 3.

In the limit of vanishing current quark masses m,
(“chira limit”), the above Lagrangian isinvariant under
global SU(2), x U(2)k transformations. For a suffi-

2.1)
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ciently large scalar attraction, this symmetry is sponta-
neously broken. This has mostly been studied within
the Bogolyubov—Hartree approximation.?

The Dyson equation for the quark propagator in the
Hartree approximation is diagrammatically shown in
Fig. 1. The self-consistent solution of this equation
leads to a momentum-independent quark self-energy
2, and, therefore, only gives a correction to the quark
mass:

m = my+Z,(m)

= my+ ZZiQMI
M

Usually, miscalled the“ constituent quark mass.” Here,
Sp) = (p —m)! isthe (Hartree) quark propagator and
“tr" denotes a trace in color, flavor, and Dirac space.
The sum runs over al interaction channelsM =g, 11, p,

a with [o =1, Ty = iyste, Tp° = yke, and 37 =
Y"yst¢. The corresponding coupling constants are g,, =
g fooM=corM=mandg,=g,forM=porM=a,.
Of course, only the scalar channel (M = @) contributes
in avacuum. One gets

sy
(2n)

4

dp m
2n)4p2—m2+ie

m=my+ 2igs4NcNfI( (2.3)

In a1l/N. expansion of the quark self-energy, the Hartree
approximation corresponds to the leading order. Since g,
isof order /N, the constituent quark mass mand, hence,
the quark propagator are about unity.

For sufficiently large couplings gs, Eq. (2.3) alows
for a finite congtituent quark mass m even in the chiral
limit. In the mean-field approximation, this solution min-
imizes the ground-state energy. Because of the related
gap in the quark spectrum, one usualy refers to this
equation as the gap equation, in analogy to BCS theory.

A closely related quantity is the quark condensate,
which is generaly given by

4D i ().
(2m)*

In aHartree approximation, oneimmediately getsfrom
the gap equation

My =

Y= —i I (2.4)

_M-Mo
29s

DBecause of the local 4-fermion interaction in the Lagrangian,
exchange diagrams can aways be cast in the form of direct dia-
grams via a Fierz transformation. This is well known from zero-
range interactions in nuclear physics. In particular, the Hartree—
Fock approximation is equivalent to the Hartree approximation
with appropriately redefined coupling constants. In this sense, we
call the Hartree approximation the “standard approximation” to
the NJL model, although, in several references, the Hartree—Fock
approximation was performed.

) (2.5)
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where we have used the superscript (0) to indicate that
this corresponds to a Hartree approximation.

Mesons are described via a Bethe-Salpeter equa
tion. Here, the leading order in /N, is given by an RPA
without Pauli exchange diagrams. This is diagrammat-
ically shown in Fig. 2. The elementary building blocks
of this scheme are the quark—antiquark polarization
functions

. d4p . q . a7
M = tr[r iISH+ 2 IS ——},

wm(Q) I(Zﬂ)4 M E) Z%M %’ 50 2.6)
withT,,, M =0, 11, p, a,, as defined above. Again, the
trace has to be taken in color, flavor, and Dirac space.

Iterating the scalar (pseudoscalar) part of the four-fer-
mion interaction, one obtains for the sigma meson

(pion)

_ng
Do(q) = 7—S—F—7
1-2g.1,
g (qu) 2.7
ab _ _ - S
DT[ (q) - Dn(q)éab - 1_zgsl—|n(q)63b

Here, a and b are isospin indices and we have used the
notation M2°(q) = M,(q)3,,,

In the vector channel, this can be done in a similar
way. Using the transverse structure of the polarization
loop in the vector channel,

M5 (@) = Ma() T3,

v (2.8)
w _ w_o990
T =g9 *=p
q
one obtains for the p meson
v v _29 \
DA"*(0) =Dy (q) T8y = T3y,

Analogously, a, can be constructed from the transverse
part of the axia polarization function I, . As dis-

cussed, eg., in [24], Ny’ also contains a longitudinal

part, which contributesto the pion. Although thereisno
conceptional problem in including this mixing, we will
neglect it in the present paper in order to keep the struc-
ture of the model as simple as possible.

It follows from Egs. (2.6)—(2.9) that the functions
Dy (q) are of order 1/N... Their explicit forms are given
in Appendix B. For simplicity, we will call them “prop-
agators,” athough, strictly speaking, they should be
interpreted as the product of a renormalized meson
propagator and a squared quark—meson coupling con-
stant. The latter is given by the inverse residue of the
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s

Fig. 2. The Bethe-Salpeter equation for the meson propaga-
tor in the RPA (double line). The solid lines indicate quark
propagators.

T n

Fig. 3. The 1/N, corrections 33 (left) and 3= (right) to
the quark self-energy.

function Dy, (q), while the pole position determines the
meson Mass:

-0 _ dMy(q)

-1 _

PRl =0 o= =g 10
; : _ 2(0) —2(0)

Again, the superscript (0) indicates that my, ~ and gyqq

are quantities in RPA. One easily verifies that they are
of order unity and 1/,/N,, respectively.

2.2 Next-to-Leading Order Corrections

With the help of the gap equation, Eqg. (2.3), one can
show that the “standard scheme,” i.e., Hartree approxi-
mation + RPA, is consistent with chiral symmetry. For
instance, in the chira limit, pions are massless, as
required by the Goldstone theorem. Of course, one
would liketo preservethisfeature when one goes beyond
the standard scheme. One way to accomplish this is to
perform agtrict /N, expansion systematically including
higher order corrections. In this subsection, we want to
construct the quark self-energy and the mesonic polar-
ization functions in next-to-leading order in L/N...

The correction termsto the quark self-energy,

33(p) = 3@ + 5= (p), @2.11)

are shown in Fig. 3. In these diagrams, the single lines
and the double lines correspond to quark propagatorsin
the Hartree approximation (order unity) and to meson
propagators in the RPA (order 1/N,), respectively.
Recalling that one obtainsafactor N, for aclosed quark
loop, one finds that both diagrams are of order L/N..
One can aso easily convince onesdlf that there are no
other self-energy diagrams of that order.

According to Eq. (2.4), the 1/N, correction to the
guark condensate is given by
5 . d4p
Opgd= - _[

2

(2m)”*

troS(p), (2.12)
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(@) (b) ()

Q@@@g

RPA

(d)

Fig. 4. Contributionsto the mesonic polarization functionin
the leading (RPA) and the next-to-leading order in 1/N,..

NP2 M, ¥ 3 M;

/ﬁkMz

X P'=-P-q. M

—q, M,

¢/PhM1

\ﬁmM4

Fig. 5. (Left) The quark triangle vertex —i Ty, My, M, (a, p).
(Right) The quark box vertex =iy, . w, (P1. P2, Ps).

with

dS(p) = S(p)dZ(p)S(p) (2.13)

being the 1/N, correction to the Hartree quark propaga
tor Y(p). Since we are interested in a strict /N, expan-
sion, the self-energy correction must not be iterated.

The 1/N.-corrected mesonic polarization diagrams
read

Mu(d) = My(g) + > 3Mi’(a).  (2.14)
k=aDb,c,d
The four correction terms o1 ,(\f.’) to ol ﬁ,‘f), together

with the leading-order term I1,,, are shown in Fig. 4.
Again, the lines in this figure correspond to Hartree
guarks and RPA mesons. Since the correction terms
consist of either one RPA propagator and one quark
loop or two RPA propagators and two quark loops, they
are of order unity, whereas the leading-order term is of
order N,.

In analogy to Egs. (2.7), (2.9), and (2.10), the cor-
rected meson propagators are given by
_Zgy
1-2gyMwm(a)

while the corrected meson masses are defined by the
pole positions of the propagators:

Dw(q) = (2.15)

D () 2=z = 0. (2.16)
Aswewill seein Subsection 4.1, this schemeisconsis-
tent with the Goldstone theorem; i.e., inthe chiral limit,
it leads to massless pions. Note, however, that, because
of itsimplicit definition, m,, contains terms of arbitrary
ordersin 1/N.., although we start from a strict expansion
of the inverse meson propagator up to the next-to-lead-
ing order. This will be important in the context of the
GOR relation.

OERTEL et al.

For a more explicit evaluation of the correction
terms, it is advantageousto introduce the quark triangle
and box diagrams, which are shown in Fig. 5. The tri-

angle diagrams entering into 3@, &I ﬁ,‘]"), and oM ﬁ,ld)
can be interpreted as effective three-meson vertices.
For external mesons M, M,, and M, they are given by

=iy, m,m, (0 P)

= K [T i ST i SK = P 1Sk + O]
(2m 2.17)

[Ty, i k=)l i Sk + p)Iy, i S(K)] }
with the operators 'y, as defined below Eg. (2.2). We
have summed over both possible orientations of the

quark loop. For later convenience, we aso define the
constant

_1 d4p . .
A=3 —IDy =Ty, m,6(P.—P)),
2-]’(21'[)4%( iIDu(P)) (1T w,m,6(P.—P)) .18

which corresponds to a quark triangle coupled to an
external scalar vertex and a closed meson loop.

The quark box diagrams are effective four-meson
vertices and are needed for the evaluation of I Sf ) and

ol ﬁ,f ). 1f one again sums over both orientations of the
quark loop, they are given by

=T w1, My My M, (P2 P2r P3)
_ o dk : .
=[S ST i Sk )
(2m
Xy, i k= p2—pa)ly,i Sk + py)]
+ [y, i Sk—p)Fy,iSk+ p,+ py)
X Ty, Sk+ )M, iSK)]).

With these definitions, the various diagrams can be
written in a relatively compact form. For the momen-
tum-independent correction term to the quark self-
energy, we get

(2.19)

5:@ = _1p_ (0) d4p4D (P)T . m,o(P, —P)
2 %I (2m* " (2.20)
= D,(0)A.

In principle, there should also be a sum over the quan-
tum numbers of the meson that connects the quark loop
with the external quark legs, but all contributions from
mesons other than the 0 meson vanish. The factor of
1/2 is anecessary symmetry factor because, otherwise,
the sum over the two orientations of the quark propaga-
tors [which is contained in the definition of the quark
triangle vertex (Eg. (2.7))] would lead to double count-
ing.
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The evaluation of the momentum-dependent correc-
tion term d33® is straightforward:

5500 = 15 (9P Dy (P S(k=p)Ty. (2.
(k) '%I(zn)4 (PFuS(k=p)Fy. (2:21)

Inserting these expressions for 3@ and 3X® into
Eqg. (2.13), we can recast the 1/N -correction term to the
guark condensate, Eg. (2.12), into the form

D,(0)A
29s
For the mesonic polarization diagrams, we get

SYl= — (2.22)

@ _ i.dp
oM’ (a) = 2I(2n)4M% M., (0 P) D, (P)
X, mym, (=0, —P) Dy, (— p—a),
3My (q)

- _iedp _
= |I(2n)4er,M1,M1,M(q’ P, —P) Dy, (P),

My

3N (q) (2.23)
i .d'p

2J (em*

z M, my, v, (G P —0) D, (P)s
Ml

5M17(a) = 5T v m,0(c ~A)Do(0)

x I(gn‘;i M,y o(P. ~P) Dir,(P)

= _irM,M,c(qa _q)Da(O)A
The symmetry factor of 1/2 for ol ,(\,f) and or1 ﬁf’ has

thesameoriginasin Eq. (2.20). Similarly, in él‘lﬁj‘), we
had to correct for the fact that the exchange of M, and
M, leadsto identical diagrams.

For the further evaluation of Egs. (2.20) to (2.23),
we proceed in two steps. In the first step, we calculate
the intermediate RPA meson propagators. We can
simultaneously calculate the quark triangles and box
diagrams. Oneisthen left with ameson loop, which has
to be evaluated in a second step.

The various sums in Egs. (2.20) to (2.23) are, in
principle, over all quantum numbers of theintermediate
mesons. However, for most applications, we expect that
the most important contributions come from the pion,
which isthe lightest particle in the game. For instance,
the change of the quark condensate at low temperatures
should be dominated by thermally excited pions. Also,
for a proper description of the p-meson width in avac-
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uum, we only need the two-pion intermediate state in

diagram 6I‘Iﬁ},'°‘). Other contributions to this diagram,
i.e, Ty, PO, pP, and a,a, intermediate states, are much
less important since the corresponding decay channels
open far above the p-meson mass and—in the NJL
model—also above the unphysical two-quark thresh-
old. Hence, from a purely phenomenological point of
view, it should be sufficient for many applications to
restrict the sums in Eq. (2.23) to intermediate pions.
However, in order to stay consistent with chiral symme-
try, we have to include intermediate 0 mesons as well.
On the other hand, vector and axial-vector mesons can
be neglected without violating chiral symmetry. Since
thisleadsto an appreciable simplification of the numer-
ics, we have restricted the intermediate degrees of free-
dom to scalar and pseudoscalar mesons in the present
paper. Of course, in order to describe a p meson, we
have to take vector couplings at the external vertices of
the diagrams shown in Fig. 4.

3. NONPERTURBATIVE
SYMMETRY-CONSERVING SCHEMES

3.1. Axial Ward identities

The disadvantage of the 1/N.-expansion scheme is
that it is perturbative. Although we have constructed the
1N, corrections to the Hartree quark self-energy
(Fig. 3), we did not self-consistently include such dia-
grams in the gap equation. Since the iteration would
produce terms of arbitrary orders in 1/N., one is not
allowed to do so in a strict expansion scheme. There-
fore, all correction diagrams we have discussed in the
previous section consist of “Hartree” quark propaga
tors. This perturbative treatment should work rather
well as long as the 1/N, corrections to the quark self-
energy are small compared with the leading order, i.e.,
the constituent quark mass. On the other hand, itisclear
that the scheme must fail to describe the chira phase
transition, e.g., at finite temperatures. Here, a nonper-
turbative treatment is mandatory.

Therefore, in this section, we want to follow a dif-
ferent strategy, exploiting the fact that the Goldstone
theorem is basically a consequence of Ward identities.
Consider an external axial current jjs coupled to a
quark. Then, in the chiral limit, the corresponding ver-

tex function Fﬁs isrelated to the quark propagator S(p)
viathe axial Ward—Takahashi identity:

q'ris(p.g) = ST (P+Q)YsT" +YsT'S(p), (3.1)

where p and p + g are the 4-momenta of the incoming
and the outgoing quark, respectively. Obvioudly, for a
nonvanishing constituent quark mass, the right-hand
side of this equation remains finite even for ¢ — 0.

Consequently, Ff}5 (p, ) must have a pole in this limit
that can be identified with the Goldstone boson. More-
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Fig. 6. Vertex function for an external axial current coupled
to a“Hartree” quark.
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Fig. 7. Self-consistent scheme with a nonlocal self-energy
term: gap equation (upper part), equation for the vertex func-
tion of an externa current (middle), and the corresponding
equation for the quark—antiquark T matrix (lower part). The
double line denotes an RPA meson propagator (see Fig. 2),
which is sdlf-consistently constructed from the dressed-
quark propagators of the present equation (solid line).

over, the explicit structure of the Goldstone boson can
be constructed from the structure of the axial vertex
function.

Asalfirst example, et us start again from the Hartree
gap equation [Eq. (2.2), Fig. 1] and construct the axia
vertex function by coupling the propagator to an exter-
nal axial current. This is illustrated in Fig. 6. In the
upper line, the first term on the right-hand side
describes the coupling to the bare quark corresponding
to the bare vertex y,ys1% In the second term, however,
the current is coupled to a dressed quark; therefore, we
have to use the same vertex function as on the left-hand
side of the equation

Mos(P, Q) = Yuyst"
(3.2)

. d'k a
+ %ZgMFMJ’(—ZFtr[FMS(k + )l sk 9)S(K)].

Here, Sk) denotes the quark propagator in the Hartree
approximation. As in Eq. (2.2), the sum runs over al
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interaction channels, but, of course, only the pseudos-
calar and the axial vector contributions do not vanish.
Contracting Eq. (3.2) with q,, one obtainsalinear equa-

tion for qpl'f15 . One can easily verify that, in the chiral
limit, the solution of this equation is given by the axial
Ward-Takahashi identity, Eq. (3.1). To this end, we

replace qprﬁ5 on both sides of the equation by the

expressions given by Eq. (3.1) and check whether the
results agree. On the right-hand side, the insertion of
Eqg. (3.1) basically amounts to removing one of the
guark propagators from the loop. In this way, the loop
receives the structure of the quark self-energy and we
can use the gap equation, Eqg. (2.2), to simplify the
expression. For m, = 0, the result turns out to be equal
to the left-hand side of the equation, which proves the
validity of the axial Ward—Takahashi in this scheme.

We have seen above that this implies the existence
of a massless Goldstone boson in the chiral limit. As
illustrated in the second and the third line of Fig. 6, the
self-consistent structure of Eqg. (3.2) for the dressed ver-

tex Ff}5 leads to an iteration of the quark loop and an

RPA pion emerges. Hence, we can identify the Gold-
stone boson with an RPA pion.

Obvioudly, the above procedure can be generalized
to other cases. Starting from any given gap equation for
the quark propagator, we construct the vertex function
to an external axia current by coupling the current in
all possible waysto the right-hand side of the equation.
Aslong asthe gap equation does not violate chiral sym-
metry, this automatically guarantees the validity of the
axia Ward-Takahashi identity and, therefore, the exist-
ence of amassless pioninthechiral limit. The structure
of this pion can then be obtained from the structure of
the vertex correction.

As an example, we start from the extended gap
eguation depicted in the upper part of Fig. 7. There, in
addition to the Hartree term, the quark is dressed by
RPA mesons. These are defined in the same way as
before (Fig. 2), but now self-consistently using the
guark propagator which results from the extended gap
equation. Therefore, the RPA pions are no longer mass-
lessin the chiral limit. However, following the strategy
described above, we can construct the consistent pion
propagator. To that end, we again couple an externa
axia current to both sides of the gap equation. The
resulting equation for the vertex function is also shown
in Fig. 7 (middle part). The additional term in the gap
eguation leads to two new diagrams, which were not
present in Fig. 6. In the first, the current couples to a
guark—antiquark loop of the RPA meson, while, in the
second, it couplesto the quark inside of the meson loop.
Again, one can easily check that the vertex function and
the quark propagator fulfill the axial Ward—Takahashi
identity, Eq. (3.1), in the chiral limit.

In principle, one can construct the corresponding
massless Goldstone boson from the quark—antiquark T
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matrix given in the lower part of Fig. 7. In practice,
however, thisis very difficult. In fact, even solving the
extended gap equation is difficult, since the additional
self-energy term is nonlocal, leading to a nontrivial 4-
momentum dependence of the quark propagator. Note
that this propagator has to be self-consistently used for
the calculation of the RPA-meson propagator. There-
fore, the authors of [14] suggested droping the nonlocal
terms, but retaining a particular class of local diagrams
that arises from the combined iteration of the quark
loop and the meson loop. This gap equation isshown in
Fig. 8. Because of the restriction to local self-energy
insertions, we will call this scheme the “local self-con-
sistent scheme” (LSS). It will be discussed in the next
subsection.

3.2. The Local Sdlf-Consistent Scheme
The gap equation for the constituent quark mass in
the LSS (upper part of Fig. 8) reads

m = m0+i(m) = mO+ZH(m)+6i(m). (3.3)

Here, X is the Hartree contribution to the self-energy

as defined in Eq. (2.2). The correction term dZ corre-
sponds to the third diagram on the right-hand side of
Fig. 8. We have explicitly indicated that the self-energy
diagrams have to be evaluated self-consistently at the
quark mass m, which comes out of the eguation.

Because of the new diagram 8%, this massiis, in gen-
eral, different from the Hartree mass. However, since
al diagrams in the LSS are constructed from the con-
stituent quarks of Eq. (3.3), we prefer not to introduce
anew symbol for this mass. This has the advantage that
we can also keep the notation for the quark propagator
Sp) =(p —m), quark—antiquark loops, triangles, etc.
that we introduced earlier. The genera structure of
these diagramsisthe samein all schemeswe discussin
this article. Therefore, we introduce the convention
that, in the 1/N.-expansion scheme, m denotes the Har-
tree mass, while it denotes the solution of Eq. (3.3) in
the LSS, and al diagrams should be evaluated at that
mass, unless otherwise stated.

The self-energy term & consists of a quark loop
dressed by an RPA-meson loop. The quark loop is cou-
pled to the external quark propagatorsviathe NJL point
interaction. It can again be shown that only the scalar

interaction contributes. Hence, 5% is given by
5% = -29.4,

where A is the constant defined in Eq. (2.18).

Because of this additional self-energy diagram in
the gap equation, the RPA is not the consistent scheme
to describe mesons: in the chiral limit, RPA pions are
no longer massless. Hence, in order to find the consis-
tent meson propagators, we proceed in the way dis-
cussed in the previous subsection.

(3.4)
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Fig. 8. The “local self-consistent scheme’: gap equation
(upper part), equation for the vertex function of an external
current (middle), and the corresponding equation for the
consistent meson propagator (lower part). The double curve
denotes an RPA meson propagator (see Fig. 2) that is self-
consistently constructed from the dressed-quark propaga
tors of the present equation (solid curve).

The equation for the axial vertex function is shown
in the middle part of Fig. 8. Compared with the corre-
sponding equation that follows from the Hartree
approximation (Fig. 6), there are three extraterms. This
leads to three additional polarization diagrams, which
have to be iterated in the Bethe—Salpeter equation for
the consistent meson propagator (lower part of Fig. 8).

Obvioudly, these diagrams are identical to N,

3, and 3M; , which we defined in Subsection 2.2
[Fig. 4, Eq. (2.23)]; i.e., the new meson propagators are
given by

—20

S — (3.5)
1-2guMwm(a)

Du(a) =
with

Mu(@) = My@+ 5 8n@@. (o)

k=a,b,c

This structure agrees with the result of [14]. In that
reference, the scheme was motivated by a /N, expan-
sion. However, one should again stress that the self-
consistent solution of the gap equation mixes all orders
in UN.. Moreover, the next-to-leading-order self-
energy correction term 33® (cf. Fig. 3) isnot contained
in the gap equation of Fig. 8. Therefore, the consistency
of the scheme cannot be explained by 1/N, arguments.
In fact, our discussion shows that the structure of the
consistent pion propagator can be derived from the gap
equation without any reference to /N, counting.

On the other hand, if one performs a strict 1/N,
expansion of the mesonic polarization diagrams up to
the next-to-leading order, one exactly recovers the dia-
gramsshownin Fig. 4[14]. Thisisquite obviousfor the

diagrams oIl ﬁf) to 6I‘I§,‘f), which are explicitly con-
tained in poltilde. The diagram 6I‘Iﬁ,,d), which seems to

be missing, is implicitly contained in the quark—anti-
guark loop via the next-to-leading-order terms in the
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guark propagator, which arise from the extended gap
equation.

In this sense, the LSS may be viewed asthe simplest
nonperturbative extension of the standard scheme
which is consistent with the Goldstone theorem and
which contains al mesonic polarization diagrams up to
next-to-leading order in 1/N.. However, since the dia-
gram d3® is not contained in the gap equation, thisis
not true for the quark condensate: if we evaluate
Eq. (24) with the quark propagator of the present
scheme, we obtain

ﬂDwD: _E = —

(3.7)

Performing a strict /N, expansion of this expression
and only keeping the next-to-leading order term, one
does not recover Eq. (2.22) but only the contribution of
0@, This might be the reason why the authors of [14]
determine the quark condensate as

> m—m,

B o T T

(3.8)

In contrast to Eq. (3.7), this expression reduces to the
perturbative result in astrict 1/N, expansion. Moreover,
as we will discuss in Subsection 4.2, it is consistent
with the GOR rdation. On the other hand, Eq. (3.8)
obviously does not follow from Eq. (2.4) with the quark
propagator of the present scheme. A possible resolution
to this problem was given in [15], where the LSS was
derived using functiona methods. The meson propaga-
tors obtained in thisway are identical to Egs. (3.5) and
(3.6), while the quark condensate is given by Eq. (3.8).
Thiswill be briefly discussed in the following subsec-
tion.

Finaly, we would like to comment on the name
“local self-consistent scheme” which we have intro-
duced in order to distinguish this scheme from the per-
turbative 1/N. expansion. We call this scheme *“self-
consistent” because the quark propagator which is
determined by the gap equation is self-consistently
used in the loops and the RPA-meson propagator on the
right-hand side of the equation. However, as we have
seen, the scheme is not self-consistent with respect to
the mesons. the improved meson propagators given by
Egs. (3.5) and (3.6) are different from the RPA mesons
which are used in the gap equation and hence as inter-
mediate states in the mesonic polarization functions
5@ to 2. On the other hand, if we had used the
improved mesons aready in the gap equation, our
method of Subsection 3.1 would have led to further
mesonic polarization diagramsin order to be consistent
with chiral symmetry. Obviously, the construction of an
expansion scheme which is self-consistent for quarks
and mesons is an extremely difficult task.

OERTEL et al.

3.3 One-Meson-Loop Order in the Effective Action
Formalism

Both the nonlocal self-consistent scheme, which we
briefly discussed in Subsection 3.1 (Fig. 7), and the
local self-consistent scheme can be derived from func-
tional methods. the nonlocal self-consistent scheme
can be obtained as a ®-derivable theory [25, 26] if one
includes the “ring sum” in the generating functional.
The present section is devoted to a brief discussion on
how the local self-consistent scheme can be derived
from a one-meson-loop approximation to the effective
action. The interested reader is referred to [15, 27].
Here, we will basically follow [15].

In this section, we drop the vector and the axial-vec-
tor interaction and start from a Lagrangian which con-
tains only scalar and pseudoscalar interaction terms:

& = P(i0-mp)y + gl (BW)” + (Tiystd)]. (3.9)

The partition function of the system can be expressed in
terms of the path integral

z=¢"-= I@(w*)@(m)e‘““””, (3.10)

with the Euclidean action
W' w) = Id“xE{ W'Yo(0:Yo—iy IV + mo)w
—gs((W"yol)" + (W'YoiysTw) )}

Theintegration hereis over a Euclidean spacetime vol-
ume d*xz, where 0, corresponds to id,. The standard
procedure is now to bosonize the action by introducing

auxiliary fields @, ,a={0, 1, 2, 3}:

(3.11)

z= j@b(m*)@b(m)@bw;) .

D 1 1 |:|
X expi- (W', W) = 2 [d'%e( @5 + 20.0'Vol o) T
O 9 O

with T, = (1, iyst). Then, the action contains only bilin-
ear terms in the quark fields, so that they can be inte-
grated out. After performing a shift of the auxiliary
fields, ®, = @, + (m, 0), one finaly arrives at the
bosonized action

- 1 .4 2 2
(@) = —trInS ™+ = [d*x (P = 2m D, + M),
(®) =—tr agJd (@ —2mePo o), oo

where S! is the Dirac operator

St = yd, —iy OV +T,0,. (3.14)
The symbol tr in Eq. (3.13) is to be understood as a
functional trace and a trace over internal degrees of
freedom likeflavor, color, and spin; trinS! isthe quark-
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loop contribution. The imaginary part of this term van-
ishesfor the SU(2) case and we can rewritethe action as

I(®) = —%tnnS‘”S‘1

. (3.15)
+ ——[d*xc (P = 2m, >, + m?).
4gJ E( 00 0)

The effective action ' (®P) is defined as a Legendre
transform of the generating functional W(j). Its sta-
tionary point [®,[]}i.e.,

51 (D)
50,

represents the vacuum expectation values of the fields.

The quark condensate can be expressed via the
expectation value of ®,,. It isgiven as

_ow_ 1
DDLIJD_ - ng

omy
Another important feature of the effective action is that
the inverse propagators of the fields (in our case, the
propagators for Ttand o mesons) can be generated in a
symmetry-conserving way by second-order derivatives.

o = ET(P)
P 3D,8D,

To obtain an expression for the effective action, the
path integral is evaluated using the saddle-point
approximation. The lowest order contribution to the
effective action is

r%uom) = 1(®). (3.19)

This corresponds to the mean-field (Hartree) approxi-
mation [27]. The vacuum expectation values of the
fields in the mean-field approximation coincide with
the stationary point of the action |(®). This is obvious
if one combines Egs. (3.16) and (3.19). Including qua
dratic mesonic fluctuations leads to the following
expression for the effective action [27]:

:0’

®, = 0Op,0

(3.16)

(BP0 my). (3.17)

(3.18)

_ 1 03 H(P) [

r(e) =1(v) + ZtrInQCDaBCDbD

The second term in the above expression contains the

mesonic fluctuations. As discussed in [27], the method

isonly meaningful if the second-order functional deriv-

ative which enters into this term is positive definite.

Otherwise, severe problems arise due to an ill-defined

logarithm, which would then be complex. We will
come back to this point in Subsection 5.2.

Determining the stationary point of the effective action
in Eq. (3.20) leadsto the following “gap equation” [15]:

[, my— =, (BP0 —82(0P,0 = 0. (3.21)

(3.20)

Here, %, and 55 are the same functions we already
defined in Egs. (2.2) and (3.4) in the context of the Har-
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tree and the LSS gap equation. In fact, Eq. (3.21) is
identical to the LSS gap equation, Eq. (3.3), if weiden-
tify [@Owith the L SS-constituent quark mass m.

In the same way, we exactly recover the meson
structure of the LSS if we evaluate Eq. (3.18) at the sta-
tionary point. This meansthat the “local self-consistent
scheme” which was constructed from a somewhat arbi-
trary starting point in Subsection 3.2 can be derived in
a systematic way in the effective action formalism.
However, the interpretation is different; as emphasized
in [15], the solution of the gap equation is only the
expectation value of the @, field and does not corre-
spond to the pole of the quark propagator. This
becomes clear if we look at the quark condensate,
whichisgiven by Eq. (3.17). Theright-hand side of this
equationisidentical to Eq. (3.8) and istherefore differ-
ent from Eq. (3.7), which was derived by taking the
trace over what we called the “quark propagator” in
Subsection 3.2.

Hence, within the effective-action formalism,
Eqg. (3.8) isthe correct expression for the quark conden-
sate (in that approximation scheme), whereas the gap
equation should not be interpreted as an equation for
the corresponding inverse quark propagator. In the fol-
lowing, wewill adopt this point of view. For simplicity,
however, we will still call ma* constituent quark mass”
and (p —m)~! a“quark propagator,” although thisis not
entirely correct.

4. CONSISTENCY WITH CHIRAL SYMMETRY

By construction, the LSS is consistent with axial
Ward-Takahashi identities and hence—as discussed in
Section 1—with the Goldstone theorem. Since the
mesonic polarization functions of the LSS contain all
diagrams up to the next-to-leading order of the 1/N.-
expansion scheme and since the various contributions
to the pion mass have to cancel order by order in the
chira limit, thisimplies that the /N, scheme discussed
in Subsection 2.2 is also consistent with the Goldstone
theorem.

Nevertheless, for numerical implementation, it is
instructive to show the consistency of the different
schemes with chiral symmetry on a less formal level.
Since most of theintegralsthat have to be evaluated are
divergent and must be regularized, one has to ensure
that the various symmetry relations are not destroyed
by the regularization. To this end, it is important to
know how these relations emergein detail. Thiswill also
enable us to perform approximations without violating
chiral symmetry. Aswewill seein Subsection 5.2, thisis
very important for practical calculations within the
LSS, which cannot be applied asiit stands.

For both the /N, expansion and the LSS, we begin
our discussion with the explicit proof of the Goldstone
theorem. This was given first by Dmitrasinovi¢ et al.
[14]. After that, we discuss the GOR relation. Thisis of
particular interest in the context of the proper definition
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of the quark condensate in the LSS [cf. Egs. (3.7) and
(3.8)].

4.1. 1/N. Expansion

We begin with the 1/N, expansion scheme. For the
Goldstone theorem, one has to show that, in the chiral
limit, the inverse pion propagator vanishes at zero
momentum:

2gSI:In(O) =1 for my=0. 4.1)

Asbefore, we use the notation M’ = 8., M. The func-

tion M& has been defined in Eq. (2.14). It consists of
the RPA-polarization loop I'I?Tb and the four 1/N -cor-

rection diagrams 6I‘I,(Tk)ab, k=a, b, c, d. Restricting the
calculation to the chira limit and to zero momentum
simplifies the expressions considerably, and Eqg. (4.1)
can be proven analytically.

For the RPA loop, one obtains

2
2g,N(0) = —.

This is the relation that guarantees the consistency of
the Hartree + RPA scheme: in the Hartree approxima:
tion, we have m=m, + Z; hence, Eq. (4.1) isfulfilled
by Eq. (4.2). Since the gap equation is not changed in
the perturbative 1/N, expansion, thisremainstrueif we
include the next-to-leading order. Therefore, we haveto
show that the contributions of the correction terms add
up to zero:

4.2)

sn®0) =0 for m =0 (43)

k=ab,cd
The correction terms 6I‘I,(Tk) are defined in Eq. (2.23).

Let us begin with the diagram 3N . As mentioned

above, we neglect the p and a, subspace for intermedi-
ate mesons. Then, one can easily see that the externa
pion can only couple to atointermediate state. Evalu-
ating the trace in Eq. (2.17) for zero externa momen-
tum, one gets for the corresponding triangle diagram

Mo o(0, p) = —8,,4N N, 2mi(p), (4.4)

with a and b being isospin indices and the elementary
integral

_dk 1
1(p) _I 4, 2 2 . 2 N
2m) (kK =m +ie)((k+ p) —m" +ig) (4.5)
Inserting thisinto Eq. (2.23), we find
éﬂﬁa)ab(O)

4 (4.6)
—2——";(4N6Nfl(p))24mzoo(p)on( D).

=i
Iab(_,_[)
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Now, the essential step isto realize that the product of
the RPA-sigma and pion propagators can be converted
into adifference [14],

Da( p) - DT[( p)

Do(p)Dn(p) =i 5 4.7
AN N¢2m1(p)
to finally obtain
3% (o)
- SN[ 221 (p)( D () D)
* 0 Jent ° "

The next two diagrams can be evaluated straightfor-
wardly. One finds

SNY*(0) = —8,,4NN;

d AP Dy(P)(I(P) +1(0) - (P>~ 4m)K(p))
(2m)

+D(P)(31(p) +31(0) —3p°K(p))},
6|_|](Tc)ab(o)

9P | (p){~Du(p)~ Du(P)}-
(2m)

The elementary integral K(p) is of the same type as the
integral 1(p) and is defined in Appendix A.

Finally, we haveto calculate oI1 de) (0). According to

Eqg. (2.23), it can be written in the form
3N{P*0) = —ird, 4(0,0)D,(0)A.  (4.10)
For the constant A defined in Eq. (2.18), one obtains

4
AP Dy (p)(2(p)+1(0)
2m) (

4.9)

= - 6ab4NcNfI

A = 4N,N,m
o I( 4.11)

—(p*=4m*)K(p)) + Dn(p)(31(0) —3p°K(p))} .

Evaluating Dy(0) in the chiral limit and comparing the
result with Eq. (4.4), one finds that the product of the
first two factorsin Eqg. (4.10) issimply &,,/m; i.e., one
gets

A
et
With theseresultsit can be easily checked that Eq. (4.3)
indeed holds in this scheme.

As aready pointed out, most of the integrals we
have to deal with are divergent and have to be regular-
ized. Therefore, one has to make sure that all steps that
lead to Eq. (4.3) remain valid in the regularized model.
One important observation is that the cancellations
occur aready at the level of the p integrand, i.e., before
performing the meson-loop integral. This means that

3N = &, (4.12)
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there is no restriction on the regularization of thisloop.
We also do not need to perform the various quark loop
integrals explicitly, but we have to make use of several
relations between them. For instance, in order to arrive
at EqQ. (4.12) we need the similar structure of the quark
triangle ', . 4(0, 0) and the inverse RPA propagator
D,(0)™. Therefore, al quark loops, i.e., RPA polariza-
tions, triangles, and box diagrams, should be consis-
tently regularized within the same scheme, whereas the
meson |oops can be regularized independently.

Going away from the chira limit, the pion receives
afinite mass. To lowest order in the current quark mass,
it is given by the GOR relation

m2f2 = —m, @y (4.13)

However, in the 1/N-expansion scheme, we cannot
expect that the GOR relation holdsin thisform. In Sec-
tion 2, we calculated the quark condensate in the lead-
ing order and the next-to-leading order in 1/N,.. Hence,
to be consistent, we should also expand the left-hand
side of the GOR relation up to the next-to-leading order
in 1/N,:

MO 120 4 205 2 4 Bl 120

= —mo(@w? + 3pYD).

Here, similar to the notation we already introduced for

the quark condensate, mﬁ(o) and fﬁ(o) denote the lead-

(4.14)

ing-order and 6mT2[ and 631‘,2T the next-to-leading-order
contributions to the squared pion mass and the squared
pion decay constant, respectively. Since the GOR rela-
tion holdsonly in thelowest order in m,, Eq. (4.14) cor-

responds to a double expansion: mf[ has to be calcu-

lated in the linear order in my, ff[, and OpyY Ol in the
chira limit.

The leading-order and next-to-leading-order
expressions for the quark condensate are given in
Egs. (2.5) and (2.22). The pion decay constant f iscal-
culated from the one-pion to vacuum axial-vector
matrix element. Basically, this corresponds to evaluat-
ing the mesonic polarization diagrams, Fig. 4, coupled
to an external axia current and to a pion. This leads to
expressions similar to Egs. (2.6) and (2.23), but with
one external vertex equal to y*ys1%/2, corresponding to
the axial current, and the second external vertex equal
t0 Gnyqi Y5TP, cOrresponding to the pion. Here, the 1/N.-
corrected pion—quark coupling constant is defined as

2 _ _-2(0) 2 _ dI:In
Ynga = Gnaq + 6gnqq - (2q) ,
dgq” |¢*=m’

analogously to Eq. (2.10). Now, we take the divergence
of the axia current and then use the relation

, (4.15)

YsP = 2mys+ysS (k+p) +S(K)ys  (4.16)

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001

709
to simplify the expressions [14]. One finds
_ o [0n(@) = 1x(0)
fr = gnqunTm
I .40 4.17)
o’ =m;

In the chiral limit, g* = m,i — 0, Egs. (2.10) and
(4.15) can be employed to replace the difference ratios
on the right-hand side by pion—quark coupling con-
stants. When we square this result and only keep the
leading order and the next-to-leading order in 1/N,, we
finally obtain
1:2(0) + 6f 2

—2(0) 2 : -2 ’ —-2(0) (4.18)
Tqq + (m 6gnqq + szo(O)Agnqq

For the pion mass, we start from Egs. (2.15) and
(%.16) and expand the inverse pion propagator around
g-=0:

2
:mg

1-2g.M(0)

0d = (4.19)

_ZQ*IEF”"“”HZ i+ () = 0
q:

To find mﬁ in the lowest nonvanishing order in m,, we

have to expand 1 — 2g,M~(0) up to the linear order in
m,, while the derivative has to be calculated in the
chiral limit, where it can be identified with the inverse
squared pion—quark coupling constant, Eq. (4.15). The
result can be written in the form

2
2 _ ”_‘OM%[_DG(O)A

O 2
T ——g+O(mg).  (4.20)

Finally, one has to expand this eguation in powers of

1/N.. This amounts to expanding gf[qq, which is the

only termin Eq. (4.20) which is not of a definite order
in 1/N.. One gets

2(0)

2(0) 2 _ m gnqq
m;  +0m; = My-——"
U U rnOZgS m2

2(0
m gnéq)%z(m 2 Do(0)An
0295 m2 mqq ~Ymaq m U

It can be seen immediately that the leading-order term

isexactly equal to —m,py @/ ff[(o), asrequired by the
GOR relation. Moreover, combining Egs. (2.22),
(4.18), and (4.21), one finds that the GOR relation in
next-to-leading order, Eq. (4.14), holdsin this scheme.

However, one should emphasize that this result is
obtained by a strict 1/N, expansion of the various prop-
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erties which enter into the GOR relation and of the
GOR relationitself. If onetakesf, and m asthey result
from Egs. (4.17) and (4.20) and inserts them into the
left-hand side of Eq. (4.13), one will in genera find
deviations from the right-hand side which are due to
higher order termsin I/N.. In this sense, one can take
the violation of the GOR relation as a measure for the
importance of these higher order terms[19].

4.2. Local Self-Consistent Scheme

The proof of the Goldstone theorem in the LSS is
very similar to that in the 1/N.-expansion scheme.
Therefore, we can be brief, concentrating on the steps
which are different.

Again, we have to show the validity of Eq. (4.1). In

the LSS, the function My is given by Eq. (3.6); i.e,, it
differs from the corresponding function in the 1/N.-
expansion scheme (Eg. (2.14)) by the fact that the dia-
gram 3N is (formally) missing. (As we already dis-
cussed, it isimplicitly contained in the RPA diagram.)
The other diagrams have the same structure as before,
and we can largely use the results of the previous sub-
section. However, we should keep in mind that the con-
stituent quark mass is now given by the extended gap
equation, Eq. (3.3). Therefore, the right-hand side of
Eq. (4.2) is different from unity in the chiral limit and
RPA pions are not massless. This has important conse-
quences for the practical calculations within this
scheme, which will be discussed in greater detail in
Subsection 5.2.

Using Egs. (4.8), (4.9), and (4.11), as well as
Eq. (3.4), we get for the correction terms to the pion
polarization function

A _ 85
3Ny’ (0) = “m~ 2g.m
S

(4.22)

k=ab,c

Hence, together with the modified gap equation (3.3),
we find

Mo

2g,MMx(0) = l—ﬁ (4.23)

in agreement with Eq. (4.1).

The discussion concerning the regul arization proce-
dure can be repeated here. The structure of the proof
again leads to the conclusion that we have to regularize
al quark loops in the same way, whereas we have the
freedom to choose the regularization for the meson
loops independently.

Another important observation is that we do not
need the explicit form of the RPA propagators; Dy(p)
and D,(p) only need to fulfill Eq. (4.7). Thus, approxi-
mations to the RPA propagators can be made aslong as
Eqg. (4.7) remainsvalid.

OERTEL et al.

For a nonvanishing current quark mass, the pion
mass is given by the GOR relation (Eq. (4.13)). To the
linear order in my, thisrelation holds exactly inthe LSS,
if we choose the appropriate definition of the quark
condensate. Thiswill be demonstrated in the following.

For the pion decay constant f,,, we follow the same
steps as in the 1/N.-expansion scheme to arrive at the
following expression:
ﬁn(q) — |:| T[(O)

2

f = OrggM (4.24)

2_ 2
q =my

Here, the modified pion—quark coupling constant is
defined as

dMx(q)
dq2

-2
Ongq = R (4.25)
q =my

Inthechiral limit, m? — 0, the difference ratio on the

right-hand side of Eq. (4.24) can be replaced by the
pion—quark coupling constant [EqQ. (4.25)]. This leads
to the Goldberger—Treiman relation

frOnqq = M. (4.26)

Following the analogous steps which led us to
Eq. (4.20), wefind for the pion mass

2
2 _ ﬂ)% 2
g * o(my). 4.27)
Multiplying this by f2 as given by Eq. (4.26), we get
to the linear order in m,:

2
m°295'

22
mnfn =

(4.28)
Obvioudly, this is consistent with the GOR relation
(EQ. (4.13)) if the quark condensateisgiven by Eq. (3.8),
but not if it is given by Eqg. (3.7). In Subsection 3.3, we
saw that, within the effective action formalism, the
guark condensate is given by Eq. (3.8). Therefore, at
this point, we clearly see that the interpretation of mas
a constituent quark mass, which would mean that we
have to calculate the quark condensate according to
Eqg. (3.7), leads to a contradiction with the GOR rela-
tion. Therefore, in the numerical part, we will calculate
the quark condensate according to Eg. (3.8).

5. NUMERICAL RESULTS AT ZERO
TEMPERATURE

In this section, we present our numerical results at
zero temperature. We begin with a brief description of
the regularization scheme and then discuss peculiarities
related to the solution of the gap equation in the LSS.
After that, we study the influence of mesonic fluctua-
tions on quantities in the pion sector, thereby focusing
on possible instabilities. Finally, we perform a refit of
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these quantities within the 1/N_-expansion scheme and
the LSS and apply the model to observables in the p-
meson sector.

5.1. Regularization

Before we begin with the explicit calculation, we
have to fix our regularization scheme. As discussed in
Section 4, al quark loops, i.e., the RPA polarization
diagrams, the quark triangles, and the quark box dia-
grams, must be regularized in the same way in order to
preserve chiral symmetry. We use Pauli-Villars regu-
larization with two regulators; i.e., wereplace

I(z) )”I

with

Zc f(k; ) G.D

uf=m2+j/\§; =1 ¢ =-2, ¢c,=1

(5.2)
Here, A\, is acutoff parameter.

The regularization of the meson loop (integration
over d*pin Eq. (2.23)) isnot constrained by chiral sym-
metry and is independent of the quark-loop regulariza-
tion. For practical reasons, we choose a three-dimen-
sional cutoff A, in momentum space. In order to obtain
awell-defined result, we work in the rest frame of the
“improved” meson. The same regularization scheme
was already used in [19, 20].

5.2. Solution of the Gap Equation in the LSS

In contrast to the 1/N.-expansion scheme, where all
diagrams are constructed from “Hartree” quarks, the
LSS is based on the extended gap equation, Eq. (3.3).
In Subsection 3.2, this equation was the starting point
to find a consistent set of diagrams for the description
of mesons. In fact, in Subsection 4.2, we have shown
that various symmetry relations, namely, the Goldstone
theorem, the Goldberger—Treiman relation, and the
GOR relation, hold in this scheme. It is not surprising
that the structure of the extended gap equation was
needed to prove theserelations. So far, al this has been
done on a rather forma level. This section is now
devoted to the explicit solution of the modified gap
eguation in the LSS. We will see that this cannot be
donein astraightforward manner, and we are forced to
aslight modification of the scheme.

In addition to the Hartree term %;;, Eq. (3.3) con-

tains the term &%, which is a quark loop dressed by
RPA mesons (see Fig. 8). As dready pointed out, these
RPA mesons consist of quarks with self-consistent mass
m, which is in genera different from the “Hartree”
mass my,. Hence, the masses of these mesons are also
different from the meson masses in the Hartree + RPA
scheme. On theleft-hand side of Fig. 9, we have plotted
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Fig. 9. (Left) Squared pole masses of the pion (solid) and the
o meson (dashed) in RPA as functions of atria constituent
quark mass m' in units of the Hartree quark mass. (Right) Dif-
ference m — m, — X (M) between the left-hand side and the

right-hand side of the L SSgap equation, Eq. (3.3), asafunction
of thetria constituent quark mass m'. The real part is denoted
by the solid curve; theimaginary part, by the dashed curve.

the squared masses m(o)2 of the RPA pion (solid) and

the RPA 0 meson (dashed) as functions of atrial con-
stituent quark massm'. An important observation isthat

the pion becomes tachyonic; i.e., m ? becomes nega-

tive for quark masses smaller than the Hartree quark
mass. Strictly speaking, this is only the case in the
chira limit, whereas for nonvanishing current quark

Masses, m(o)2 becomes negative dightly below the

Hartree quark mass. A similar observation can be made

for m(o) ? but only for m much smaller than the Hartree

mass. This observation of tachyonic RPA mesons is
related to the point discussed in Subsection 3.3 that the
meson-loop term in the effective action [ second term of
Eq. (3.20)] isno longer positive definite.

Tachyonic RPA mesons lead to a complex correc-
tion to the quark self-energy. Therefore, the solution of
the extended gap equation can only bereal if it islarger
than the Hartree mass. Otherwise, it must be complex.
Toinvestigate this point, we plot the difference between
the left-hand side and the right-hand side of Eq. (3.3) as
a function of the (real) trial quark mass m. This is
shown in the right panel of Fig. 9. The solid curve
denotesthe real part; the dashed curve shows the imag-

inary part of m'—m,— Z (m'). Obviously, below the Har-
tree quark mass, the self-energy indeed gets complex.
Moreover, we see that there is no solution of the gap
equation for real constituent quark masses. Hence, in
principle, one should search for solutions of the gap
eguation in the complex plane. However, this would
mean that the RPA mesonswould also consist of quarks
with complex masses. In this case, e.g., a reasonable
description of the p meson would be completely impos-
sible, because its properties are mainly determined by
intermediate pions.

Therefore, we prefer to perform the gpproximation that
was introduced in [15]. As discussed in Subsection 4.2,
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Fig. 10. The ratios m>/m>"" (solid), 2/ 12 (dashed),

(py Iapy [ (dash-dotted),

-mypy Mmrzlf,i (dotted) as functions of the meson-loop
cutoff A\y,. Left: /N -expansion scheme. Right: LSS.

and the combination

the symmetry properties of the LSS are not affected by
approximations to the RPA-meson propagators which
preserve the validity of Eq. (4.7). The authors of [15]
simply replace the RPA-pion propagator in the
extended gap equation

D.(p) = —295[1—2igs4NcNf
L, (53)

4
dk 1 +2igs(2NcNf)p2|(p)}

XI 4,2 2 .
(2 k"—m" +i¢
by

m . -1
Dn(p) = —293[ﬁ+2I952Ncprzl(p)} (5.4

and, analogoudly, for the o propagator. The same
replacements are performed for the RPA-meson propa-

gators in the correction terms 6I‘I§,T) to the mesonic
polarization diagrams. The RPA contribution I1,, itself,
however, isnot changed. In thisway, the solution of the
gap equation and the masses of the intermediate
mesons remain real. Moreover, in the chiral limit, the
intermediate pions are massless, as one can immedi-
ately see from Eq. (5.4).

The above replacements would be exact in the Har-
tree approximation (cf. Eq. (A.13)). The authors of [15]
argue that the correction terms are suppressed because
they are of higher orders in /N, (beyond the next-to-
leading order). In the LSS, this is a questionable argu-
ment because the self-consistent solution of the gap
equation mixesall orders of 1/N, anyway. Nevertheless,
this approximation preserves the validity of the various
symmetry relations we checked in Subsection 4.2.

In the following, we will call this scheme, including
the above replacements, the “local self-consistent
scheme,” although it is, strictly speaking, only an
approximation to the LSS as it was originaly intro-
duced in Subsection 3.2.

OERTEL et al.

5.3. Meson-Loop Effects on Quantities
in the Pion Sector

In this subsection, we want to study the influence of
mesonic fluctuations on the quark condensate, the pion
mass, and the pion decay constant, both within the
1/N_-expansion scheme and within the LSS. Since the
strength of the fluctuations is controlled by the meson
cutoff A,,, we first keep al other parameters fixed and
investigate how the above quantities changewhen A, is
varied. For the 1/N.-expansion scheme, this has been
done in more detail in [19]. Later, in the next subsec-
tion, we will perform arefit of the parameters to repro-
duce the empirical values of [y [Im,, and f ..

Our starting point is the Hartree + RPA scheme,
which correspondsto A, = 0. Here, we obtain areason-

ablefit (Y [ = —2(241.1 MeV)3, m'® = 140.0 MeV,
and f,(TO) = 93.6 MeV) with the parameters A, =

800 MeV, gS/\s = 290, and my = 6.13 MeV. These
parameters correspond to a relatively small “Hartree”
constituent quark mass of 260 MeV.

Now, we turn on the mesonic fluctuations by taking
a nonzero meson cutoff A,,. All other parameters are
kept constant at the values given above. The resulting

behavior of mf[ , f,zT, and the quark condensate as func-
tions of Ay, isdisplayed in Fig. 10. The l€eft panel cor-
responds to the 1/N.-expansion scheme and the right
panel, to the LSS. As one can see, in both schemes, the
mesonic fluctuations lead to a reduction of f,; (dashed
curves), whilem, (solid) isincreased. At smaller values
of Ay, the absolute value of the quark condensate
decreases but goes up again for Ay, = 900 MeV. Thisis
also an effect that is found in both schemes.

In the Hartree + RPA scheme, the quantities mﬁ(o) ,

29 and [py [P are in almost perfect agreement with

the GOR relation, Eq. (4.13). As discussed in Subsec-
tion 4.1, the 1/N.-expansion scheme is consistent with
the GOR relation up to the next-to-leading order in UN,,
but the relation is violated by higher order terms. We
therefore expect aless perfect agreement in this scheme
becoming worse with increasing values of Ay. In the
LSS, on the other hand, the quantities should be in good
agreement with the GOR relation (see Subsection 4.2).

These expectations are more or less confirmed by
the results. In Fig. 10, the ratio of the right-hand side
and the left-hand side of Eq. (4.13) is displayed by the
dotted curves. In the 1/N.-expansion scheme (left
panel), the relation holds within 30% for Ay, < 900 MeV.
However, when the meson cutoff is further increased,
the deviation grows rapidly. This indicates that higher
order corrections in 1/N, become important in this
regime and this perturbative scheme should no longer
be trusted. In the LSS, the agreement with the GOR
relation is almost perfect.
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In Fig. 10, the various curves are only shown up to
Ay = 1250 MeV for the 1/N.-expansion scheme and up
to Ay = 950 MeV for the LSS. For larger values of Ay,
asecond, unphysical polewith aresidue of the“wrong”
sign emerges in the pion propagator. This would corre-
spond to an imaginary pion—quark coupling constant
and hence an imaginary pion decay constant. Upon fur-
ther increasing A\, the two poles merge and finally dis-
appear from the positive real axis.

For the 1/N.-expansion scheme, this has been dis-
cussed in more detail in [19]. In that reference, we sug-
gested that the instabilities of the pion propagator
might indicate an instability of the underlying ground
state against mesonic fluctuations. In fact, it has been
claimed by Kleinert and Van den Bossche [22] that
there is no spontaneous chiral-symmetry breaking in
the NJL model as a consequence of strong mesonic
fluctuations. Although this cannot be true in generd if
the strength of the mesonic fluctuationsis controlled by
an independent cutoff parameter A\, [19], this phenome-
non might very well occur for large values of Ay. In
other words, there could be somekind of “ chiral-symme-
try restoration” at a certain value of the parameter A\y,.

Clearly, this could not be studied within the 1/N.-
expansion scheme, where the mesonic fluctuations are
built perturbatively on the Hartree ground state. In the
LSS, however, where we encounter the same type of
instabilities in the pion propagator, this question can be
investigated more closely. To that end, we consider the
effective action Eq. (3.20), which describes the energy
density of the system. It is explicitly given by

_ d*p —p’d, (m—my)’
r 2i NN, |
(m) = 2i J’( ngﬂz . T

(5.5)

d p{ln(l 20.M,(p)) +3In(L - 29,1 (P))}

+ const.

Theirrelevant constant can be chosen in such away that
I(0) = 0. The positions of the extrema of I'(m) corre-
spond to the solutions of the gap equation (3.3). In par-
ticular, the vacuum expectation value mis given by the
value of m' at the absolute minimum of I". Note that,
according to Eqg. (3.8), mis proportional to the quark
condensate, i.e., to the order parameter of chiral sym-
metry breaking. Hence, for a given value of A\, chira
symmetry is spontaneously broken if the absolute min-
imum of I islocated at a nonzero value of m' and it is
unbroken (“restored”) otherwise.

We perform the calculations in the chiral limit.2)
Our resultsfor I'(m’) asafunction of m/m,, for different

2To be precise, we proceed as follows:. starting from the parame-
ters given above, we keep the Hartree constituent quark mass,
my = 260 MeV, fixed, while my, is reduced from 6.1 MeV to zero.
Therefore, the coupling constant is dlightly enhanced from

gM\g =2.90t0 GG = 2.96.
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Fig. 11. Effective action I" (m’) as a function of m/my in the
LSS for different values of the meson cutoff Ay,: 0 MeV
(solid), 300 MeV (long-dashed), 500 MeV (dotted),
900 MeV (dash-dotted), and 1200 MeV (short-dashed).

values of A\, are displayed in Fig. 11. For A, = 0, we
find, of course, the minimum at m' = my = 260 MeV,
while thereisamaximum at m' = 0. If there was indeed
a “phase transition” due to mesonic fluctuations, this
maximum should eventually convert to a minimum
when A, isincreased. In fact, for Ay < 900 MeV, the
results seem to point in this direction: in this regime,
the constituent quark mass mis reduced to about 30%
of the Hartree mass. At the same time, the “bag con-
stant” B =T (0) —I"(m) decreases from 48.7 MeV /fm? at
Ay = 0to 0.8 MeV/fm? at A, = 900 MeV. However,
upon further increasing A\y,, both mand B go up again.
In particular, the point I'(0) aways remains a local
maximum: inthe LSS, we do not observe a“phasetran-
sition” due to strong mesonic fluctuations.

Here we should remark that, according to the con-
jecture by Kleinert and Van den Bossche [22], the
mesonic fluctuations do not restore the trivial vacuum
in the NJL model, but they lead to a so-caled
pseudogap phase. (See also [28] for a critical discus-
sion of that article)) In that phase, the quarks still have
a nonvanishing constituent mass, if the latter is identi-
fied with the vacuum expectation value of the modulus
of the scalar field ® (cf. Subsection 3.3). Nevertheless,
chiral symmetry is not broken as the phase of the ®
field is strongly fluctuating. An anal ogous phenomenon
is well known from strong-coupling superconductors
above T, [29, 30], where Cooper pairs are formed but
do not condense. Obviously, our above investigations,
which focused on the change in m assuming a uniform
phase factor, cannot exclude atransition into a phase of
this type. Here, more refined investigations are needed
to give a conclusive answer.
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Another type of vacuum instability which is caused
by unphysical poles of the RPA-meson propagators has
recently been discussed by Ripka[31]. Here, “unphys-
ical” meansthat these polesarelocated in regions of the
complex plane where they are forbidden by microcau-
sality. Ripka stated that they are induced by the regula-
tor scheme, in his case, a 4-momentum cutoff or a
Gaussian form factor. In fact, the RPA-meson propaga-
tors have this unphysical feature for most of the known
regulator schemes, such as proper-time regularization,
subtracted dispersion relations, dimensional regulariza-
tion, or, as mentioned above, a 4-momentum cutoff. A
3-momentum cutoff and the Pauli-Villars regulariza-
tionintheformwe use (cf. Appendix B) are exceptions.
On the other hand, due to Pauli—Villars regulators, the
imaginary part of the quark loops can have the wrong
sign in some kinematical regions and we cannot rule
out that the instabilities we find for the pion propagator
are related to this. This supposition is corroborated by
the fact that these instabilities could be traced back to
the imaginary part of the diagram dN® (see Fig. 4),
which has the “wrong” sign and which becomes large
at large values of Ay, [19]. Further investigations are
needed, however, to clarify this point.

Recently, a second (unphysical) pole in the pion
propagator was also found in anonlocal generalization
of the NJL model [21]. The calculations indicate that
these instabilities could probably be removed by
including vector and axial-vector intermediate states.
Thispoint is certainly worth closer examination. In any
case, a least in the /N -expansion scheme, we found
[20] that, with areasonable fit of al parameters, we are
far away from the region where these instabilities occur.
We will come back to this point in Subsection 5.5.

5.4 Parameter Fit in the Pion Sector

In the previous subsection, we did not change the
parameters which were determined in the Hartree +
RPA scheme by fitting ¥, m{?, and Opy . Of
course, if one wants to apply the model to describe
physical processes, arefit of these observables should
be performed that includes the mesonic fluctuations. In
[20], this was aready done for the 1/N.-expansion
scheme, and we will now try to perform an analogous
fit within the LSS. Of course, by fitting the above three
observables, we cannot conclusively fix the five param-
eters of our model, gs, 9,, /\q, /Ay, and my,. Therefore,
wetry to proceed in asimilar way asin[20]: for various
values of Ay, wefix the scalar coupling constant g, the
current quark mass my, and the quark-loop cutoff A, to
reproduce the empirical values of the pion mass, f,, and
(Y [ Then, in the next subsection, we will try to fix
the two remaining parameters, i.e., the vector coupling
constant g, and the meson cutoff Ay, by fitting the pion
electromagnetic form factor in the timelike region,
which is related, via vector-meson dominance, to the
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p-meson propagator. Roughly speaking, this amounts
to fitting the p-meson mass and its width. Since, in our
model, the latter is due to intermediate RPA pions, we

decided to fix the empirical value of m, not my, in
order to get the correct threshold behavior. In [20], we
found for the /N -expansion scheme that the deviation
is about 10%. As we will see below, the difference is

somewhat larger in the LSS.

Of course, the p meson can only be described rea-
sonably if the unphysical qq threshold lies well above
the peak in the p-meson spectral function; i.e., the con-
stituent quark mass m should be larger than about
400 MeV. For that reason, we try to increase the con-
stituent quark mass as much as possible. Here, we have
some freedom as the empirical value of the quark con-
densate is not known very precisely. { Its absolute value
is probably lessthan 2(260 MeV)3, which roughly corre-
sponds to the upper limit extracted in [32] from sum
rules at arenormalization scale of 1 GeV. Recent lattice
resultsgive (Y [=—-2(231 +4 + 8+ 6 MeV)3[33].} On

the other hand, since the correction term 8 intheLSS
gap equation, Eq. (3.3), contributes negatively to m, it
is much more difficult to obtain sufficiently large quark
masses in the LSS than in the 1/N-expansion scheme.

Our results for the LSS are given in Table 1. For
comparison, we also summarize the results obtained in
[20] within the 1/N.-expansion scheme (Table 2). In
both tables, we list five parameter sets (corresponding
to five different meson cutoffs A,,), together with the
congtituent quark mass m, the values of m,, f,, and

[Py Oand the corresponding RPA quantities. In the
LSS, the “RPA quantities’ are calculated with the con-
stituent quark mass min order to represent the proper-
ties of the intermediate pion states. For completeness,
we also give the value of the Hartree massm,, in Table 1
and the value of the quark condensate according to
Eq. (3.7). We also show the ratio —mppy Dm;f2,
which would be equa to 1 if the GOR relation was
exactly fulfilled. Note that the deviations in the 1/N.-
expansion scheme are lessthan 10% (for /A, < 600 MeV,
they are even lessthan 3%), indicating that higher order
correctionsin /N, are small. Inthe LSS, the deviations

are considerably smaller, as already discussed in the
previous subsection.

In both schemes, we find that the constituent quark
mass increases with increasing meson cutoff A,,. Inthe
1/N_expansion scheme for A, = 500 MeV, the value of
mislarge enough to shift the qQ threshold abovethe p-
meson peak. Moreover, it turns out that we can only
stay below the limit of —2(260 MeV)3 for the quark con-
densate and simultaneously reproduce the empirical
value of f;if the cutoff isnot too large (/\y = 700 MeV).
In the LSS, the region of values for Ay, where, on one
hand, the constituent quark mass is large enough and,
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Table 1. Themodel parameters (Ay, \q, My, and gy); the resulting values of my, f;;, and [ Y{together with the correspond-

ing leading-order quantities); and the constituent quark mass m for the LSS. [The quantity —mg[ip LLJMmrz[f,zT is also given;
the quantity (p Y[denotes the quark condensate cal culated according to Eq. (3.7)]

Ay [MeV] 0 300 500 600 700
AqIMeV] 800 800 810 820 835
mo [MeV] 6.13 6.47 7.02 7.30 7.90
gNe 2.90 3.08 3.44 371 4.52
my [MeV] 260 305 390 450 600
m[MeV] 260 278.2 3200 355.7 468.4
m® [Mev] 140.0 139.9 140.0 139.7 140.0
my [MeV] 140.0 145.1 156.3 164.5 182.7
£ Mev] 93.6 96.7 1036 108.4 120.0
f-[MeV] 93.6 93.2 92.9 92.9 92.8
[ wO[MeVI] ~2(241.1)° —2(244.7)3 ~2(254.3)° ~2(261.9)3 ~2(277.3)°
[ yMeV?] -2(241.1)° —2(241.7)3 ~2(246.2)° ~2(250.8)° ~2(260.9)°
—myp Ym2 2 1.001 1.001 1.006 1.01 1.02
Table2. Thesameasin Table 1, but in the 1/N-expansion scheme
Ay [MeV] 0 300 500 600 700
Aq[MeV] 800 800 800 820 852
mo [MeV] 6.13 6.40 6.77 6.70 6.54
gAs 2.90 3.07 3.49 3.70 4.16
m[MeV] 260 304 396 446 550
m? [MeV] 140.0 140.0 140.0 140.0 140.0
my [MeV] 140.0 143.8 149.6 153.2 158.1
£ [Mev] 93.6 100.6 1111 117.0 126.0
f[MeV] 93.6 93.1 93.0 93.1 93.4
[ Wi [Mev?] ~2(241.1)° ~2(249.3) ~2(261.2)° ~2(271.3)° ~2(287.2)°
p Y MeV?] —2(241.1) —2(241.7)3 —2(244.1)3 —2(249.5) —2(261.4)
—modp YImZ 2 1.001 1.007 1.018 1.023 1072

on the other hand, the quark condensate stays below the
[imit is much narrower. This can be seen from the val-
ues listed in Table 1. For a meson cutoff of Ay =
600 MeV, mis still too small, and for Ay, = 700 MeV,
the quark condensate lies already dslightly above the
limit. The reason for thisis obvious: in the LSS, mand
the quark condensate are directly related by Eq. (3.8);
therefore, the mesonic fluctuations, which lower the
guark condensate, also decrease the constituent quark
mass. In the 1/N_-expansion scheme, on the contrary,
the meson-loop effects only contribute to the quark
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condensate and lower its value, whereas mis kept fixed
at its Hartree value.

5.5. Description of the p Meson

As aready pointed out, the parameter fit in the pion
sector was not complete. It isclear, e.g., that the meson-
loop cutoff A, cannot be determined just by fitting the

pion mass, f,, and [y L] since these observables can

already be reproduced in the Hartree + RPA scheme,
i.e., without any meson-loop effects. We only found an
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Fig. 12. Contributionsto the pion electromagnetic form fac-
tor in the /N -expansion scheme. The propagator denoted
by the curly line correspondsto the /N -corrected p meson,
while the double lines indicate RPA pions and sigmas.
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upper limit of Ay ~ 700 MeV in both schemes (see
Tables 1 and 2). In [20], we therefore fixed the remain-
ing parameters g, and Ay for the 1/N-expansion
scheme in the p-meson sector. In this subsection, we
want to give a short summary of these results and then
try to perform a similar fit for the LSS.

According to Egs. (2.14) and (3.6), the polarization
function of the p meson reads

(o) = M5" (@) + Y 3™ (a).
k

~ Uv, ab

M, (5.6)

Here, k runs over {a, b, ¢, d} in the 1/N.-expansion
scheme and only over {a, b, ¢} inthe LSS. Because of
vector-current conservation, the polarization function
has to be transversg; i.e.,

pv, ab

qpﬂp (@) = q,Mp " (q) =0. (5.7)

With the help of Ward identities, it can be shown that
these relations hold in both schemes, if we assume that
the regularization preserves this property. This is the
case for the Pauli—Villars regularization scheme, which
was employed to regularize the RPA part 1. Together
with Lorentz covariance, this leads to Eq. (2.8) for the
tensor structure of IM,. On the other hand, since we use
athree-dimensional sharp cutoff for the regularization

of the meson loops, the correction terms 3M /" *° are,

in general, not transverse. However, as mentloned in
Subsection 5.1, we work in the rest frame of the p
meson, i.e., q = 0. Inthisparticular case, Eq. (5.7) isnot

affected by the cutoff and the entire function M, can be
written in the form of Eq. (2.8):

[5"*°(q) = Np(q) T8

uv ab

0 0, (5.8)
= O1,(0)+ S 8Ny ()81
O . O

i.e., instead of evaluating all tensor components sepa-
rately, we only need to calculate the scalar functions

M, =—(U3)g, M, and 8N = —(1/3)g,, oM ™.

OERTEL et al.

A second consequence of vector-current conservar
tion is that the polarization function should vanish for
g? = 0. For the correction terms, thisis violated by the
sharp cutoff. We cure this problem by performing a
subtraction:

$ 8ng°(a) — Y (8Mp°(a) -3M;°(0)).
k k

Note, however, that, already at the RPA level, asubtrac-
tionisrequired, athough the RPA part isregularized by
Pauli-Villars regulators. Thisis due to arather general
problem that is discussed in detail in Appendix B.

In [20], we have fixed g, and A, in the 1/N_-expan-
sion scheme by fitting the pion electromagnetic form
factor, F(q), inthetimelike region, which isdominated
by the p meson. The diagramsweincluded in these cal-
culationsare shown in Fig. 12. Thetwo diagramsin the
upper part correspond to the standard NJL description
of the form factor [34] if the full p-meson propagator
(curly line) isreplaced by the RPA one. Hence, thefirst
improvement is the use of the /N, -corrected p-meson
propagator in the 1/N.-expansion scheme. Since, in the
standard scheme, the photon couplesto the p meson via
aquark—antiquark polarization loop, in the 1/N.-expan-
sion scheme, we should also take into account the /N, -
corrections to the polarization diagram for consistency.
This leads to the diagrams in the lower part of Fig. 12.
On the other hand, the external pi ons are taken to be

RPA pions (i.e., the massis m ) and the pion—quark—

(5.9)

quark coupling constant is gnqq) This is more consis-
tent with the fact that the p meson is also dressed by

RPA pions and, as discussed above, we have fitted m(o)
to the experimental value.

The numerical results for |F,J* as a function of the
center-of-mass energy squared are displayed in the left
panel of Fig. 13 together with the experimental data
from [35]. The theoretical curve was calculated with a
meson cutoff of A, = 600 MeV; avector coupling con-
stant g, = 1.6g,; and other parameters, A, g,, and m,
aslisted in Table 2. Thisroughly corresponds to a best
fit to the data [20]. Since we assumed exact isospin
symmetry, we can, of course, not reproduce the detailed
structure of the form factor around 0.61 GeV?, whichis
due to p—w mixing. The high-energy part above the
peak is somewhat underestimated, mainly due to the
subthreshold attraction in the p-meson channel below
the qg threshold at s=0.80 GeV2. Probably, thefit can
be somewhat improved if we take a dlightly larger
meson cutoff, but we are not interested in fine tuning
here.

A closely related quantity is the charge radius of the
pion, which is defined as

dF,
r D— 6— . (5.10)
dq =0
PHYSICS OF ATOMIC NUCLElI Vol. 64 No.4 2001
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Fig. 13. The pion electromagnetic form factor (left panel) and the rirephase shifts in the vector—isovector channel (right panel) for
Ny, =600 MeV and g, = 1.6g;. The other parameter values are taken from Table 2. The data points are taken from [35] and [36],

respectively.

With the above parameter set, we obtain a value of
Diﬂjz =0.61 fm. It lies dightly below the experimen-

tal value [F21” = (0.663 + 0.006) fm [37].

One can aso look at the TtTEphase shifts in the vec-
tor—isovector channel. We include the diagrams shown
inFig. 14, i.e., the s-channel p-meson exchange and the
direct Ttirescattering viaaquark box diagram. The latter
has to be projected onto spin and isospin 1, which is a
standard procedure. (For example, the analogous pro-
jection onto spin and isospin 0 can be found in [38,
39].) The result, together with the empirical data [36],
isdisplayedin theright panel of Fig. 13. Sincethemain
contribution comes from the s-channel p-meson
exchange, it more or less confirms our findings for the
form factor: below the p-meson peak, a good descrip-
tion of the data is obtained, while, at higher energies,

where qQ-threshold effects start to play a role, we
dlightly overestimate the data.

Let us now turn to the LSS. As already discussed in
the last paragraph of Subsection 5.4, there is not much
room to vary the meson cutoff A,, in this scheme: onthe
one hand, A\, is restricted to values <700 MeV by the

fit to f,and [P Y [(see Table 1). On the other hand, we
only have achanceto get arealistic description of the p
meson if the constituent quark mass mis larger than at
|east 400 MeV. To achievethis, the meson cutoff cannot
be much smaller than 700 MeV. This meansthat Ay, is
more or less fixed to thisvalue, so that the only remain-
ing parameter is the vector-coupling constant g, .

It turns out, however, that with A,, = 700 MeV, we
aready run into instabilities in the p-meson channel.
These instabilities are of the same type as the instabili-
tiesin the pion channel (see Subsection 5.3), but unfor-
tunately emerge already at lower values of A;,. Thiscan
be seen in Fig. 15, where the real part of the p-meson
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polarization function M o multiplied by 2g, isplotted as

a function of the energy ./s in the rest frame of the
meson. The LSS result corresponds to the solid curve.

// N /
ST T ST
\om,s PoNm

N 4 \

\
N\
TU
Tt 7
/
’

Fig. 14. Diagrams contributing to the TtTescattering ampli-
tude: quark box diagram (left) and s-channel p-meson
exchange (right).
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Fig. 15. Real part of the p-meson polarization function ﬁp
multiplied by 2g, = 17.6 GeV 2 as a function of the energy

Js in the rest frame of the meson. The dashed line corre-
sponds to the /N -expansion scheme with A, = 600 MeV;
the solid curve correspondsto the LSS with Ay, = 700 MeV.

The other parameters are given in Tables 2 and 1, respec-
tively.
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Fig. 16. RPA contribution 2g, M, (solid) and the various
correction terms to 2gvﬁp: 2g,0M F()a) (dashed),

2g,(8n " + 8N ") (dotted), and 29, 5N " (dash-dot-
ted). For al contributions, we performed a subtraction such
that they vanish at /s = 0. Theleft panel correspondsto the
1/N-expansion scheme; the right panel corresponds to the
LSS. The model parameters are the same asin Fig. 15.

For comparison, we also show thisfunctioninthe 1/N.-
expansion scheme using the “ best-fit parameters’ given
above (dashed curve).

According to Egs. (2.15) and (3.5), the function

29, Reﬁp has to become equal to 1 for /s = m,, Cross-

ing theIine29VReI:Ip = 1from below. Thisisobviously
the case in the /N -expansion scheme. In this scheme,

Rel o Isarising function and the above condition can
be easily fulfilled with the appropriate choice of g, .

The situation is quite different in the LSS, Here, Refl,,
hasamaximum at ./s ~ 740 MeV and then steeply drops.

Hence, if g, istoo smal, the equation 2g,Rell, =1 has
no solution at al (see Fig. 15). On the other hand, for
largevaluesof g,, we get a“physical” solution at lower
energies and an “unphysical” solution at higher ener-
gies. Itisclear that neither of these two scenarioswould
lead to arealistic description of the p meson.

One might wonder why the results in the 1/N.-
expansion scheme and in the LSS are so different. To
answer this question, we have separately plotted the
various contributions to the polarization function in
Fig. 16. The left panel corresponds to the resultsin the
1/N_-expansion scheme and the right panel, to the LSS.
One immediately sees that the unphysical behavior in

the LSS is due to the sum of the diagrams él‘lf,b) and

MY (dotted), whichisthe only negative contribution.
In the 1/N_expansion scheme, these diagrams behave

very similarly. However, in this scheme, their contribu-
tion is aimost cancelled by the contribution of the dia-

gram ol ,(Jd) , which isnot present in the LSS.

We should note that the diagram 3M<, which

describes the two-meson intermediate state, is well-
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behaved in both schemes. On the other hand, the
momentum dependence of all other diagrams is a pure
quark effect, which could berelated to theimaginary part
of these diagrams above the (unphysical) two-quark
threshold via dispersion relations. Hence, if we could
manage to further push up the constituent quark mass,
the momentum dependence of these contributions
should become smaller and the instabilities should even-
tually vanish. Perhapsthisis possibleif further interme-
diate mesons, like p and a;, areincluded in the model.

6. QUARK CONDENSATE AT T#0

It isexpected that, at sufficiently large temperatures,
chiral symmetry, which is spontaneously broken in vac-
uum, gets restored. The quark condensate as an order
parameter of chiral symmetry is well suited to study
indications of (partia) chiral-symmetry restoration. At
low temperatures, model-independent results for the
changes of the quark condensate can be obtained from
considering a gas of pions, which are the lightest parti-
cles and, therefore, the main degrees of freedom in this
range. Approaching the phase transition, we have to
rely on model calculations or |attice data because we do
not have any fundamental knowledge of the quark con-
densate at higher temperatures. Most of the results show
aphasetransition at atemperature of T, ~ 150 MeV.

Among others, the NJL model has been used to
examine the behavior of the quark condensate as a
function of temperature. Most of these investigations
were performed in the mean-field approximation [7-10].
There, onefindsasecond-order phasetransitionwith T, ~
150200 MeV. However, one has to mention that these
calculations suffer from the severe problem that the ther-
modynamics is generated exclusively by agas of quarks.
One consequence is that the low-temperature behavior,
which is driven mainly by pions, is completely missed.
Although we cannot bypass the fundamental problem of
lack of confinement inthe NJL model, which, inany case,
leads to the existence of a quark gas at nonzero tempera-
ture, we can hope to improve the situation at least at low
temperaturesviatheinclusion of mesonic degreesof free-
dom in a calculation beyond mean field.

Therefore, we begin with a closer look at the low-
temperature behavior of the quark condensate at T # 0.
After that, we will discuss our numerical results within
the 1/N.-expansion scheme and within the LSS.

6.1. Low-Temperature Behavior

In the chiral limit and at vanishing baryon density, a
strict low-temperature expansion in chira perturbation
theory leads to the following expression for the quark
condensate [40]:

0 T2 T O

My = MYl -— -———+...0

0O 8f, 384f, O

Here, (PP (denotes the quark condensate at zero tem-
perature. The T? term represents the contributions from

6.1)

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001



MESON-LOOP EFFECTS IN THE NJL MODEL

apure pion gas, whereas the higher order terms are due
to interactions between the pions. It has been shown
[40] that the T? and the T* term of this expansion are
model-independent results which follow from chiral
symmetry alone. Thus, in principle, every chirally sym-
metric model, including the NJL model, should repro-

duce these terms. However, as f,; is of order ,/N,, we

can see that they are of order /N, and ]JNf, respec-

tively. Therefore, a mean-field calculation, which cor-
responds to a restriction to leading order in 1/N.., will
not be able to reproduce these terms[23]. Indeed, NJL-
model calculations in mean field show a much flatter
behavior at low temperatures [ 10, 27]'

Eﬂ]mﬁo)%l. (2mT) do)

Extending the calculations to n@(t—to—leading order in
N, will allow usto reproduce the T2 term. Thiswill be
demonstrated in the following.

Our calculations at nonzero temperature are per-
formed within imaginary-time formalism. Basicaly,
this amounts to replacing the energy integration in the
various n-point functions by a sum over Matsubarafre-
guencies. The explicit expressions are listed in Appen-
dix D. Asthere exists a preferred frame of referencein
the heat bath, all dynamical quantities depend sepa-
rately on energy and three-momentum. Hence, in the
following, a finite-temperature RPA propagator, for
instance, will be denoted as Dy, (w, p). For scalar quanti-
ties, like masses or condensates at nonzero temperature,
we use a suffix T in order to distinguish them from the
analogous quantities in a vacuum (cf. Egs. (6.1) and
(6.2)).

In analogy to the vacuum expressions (Egs. (2.5)
and (2.22)), the quark condensate in the next-to-leading
order of the 1/N.-expansion schemeis given by

myG = myd” +3mpys

_mr—m,_Dy(0,0)Ar
20 20

Asshownin Eg. (6.2), the leading-order term D‘Lplp[ﬁ,o)
does not contribute to the change of the quark conden-
sate to order T2. Similarly, thermal effects in the o-
meson propagator can be neglected at low tempera
tures. Therefore, we only need to consider the temper-
ature dependence of A;. If standard techniques are
used, the sum over the Matsubara frequencies in
Eq. (A.30) can be converted into a contour integral [41]:

-m/T

myd” = + ..H (6.2)

(6.3)

1 d3p dz

A = 4iINNNimy=—= e
2',-“ 3 zIT

I(Zn) {e -1

x{ Dn(z P)(31(0, 0) = 3(z"— p*)K(z p))

(6.4)
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+Dy4(z p)(21(z p) +1(0, 0)— (Z—p*~ 4m7)K(z, p))} -

At low temperatures, the main contribution to the tem-
perature-dependent part of thisintegral comes from the
lowest lying pion pole, as the other contributions are
exponentially suppressed. In the chiral limit, we can
therefore approximate this part for low temperatures by

3

0 0
A;—A = 4N, mef( ‘; 2 3
2

3T _ 1 DIpI2N.N, 1 (6.5)

This integral can be evaluated analytically and we
obtain

2
= mL.
2
The last step is to realize that, in the chiral limit, the

vacuum o-meson propagator can be expressed through
the leading-order pion decay constant as

Ar—A (6.6)

1
41

1L

Dy(0) = - 6.7)

(see Egs. (A.16) and (A.21)). We finally obtain for the
guark condensate in the next-to-leading order at low
temperatures

My = Y- Ewwﬁ(” (6.8)

2(0)
Tt

Comparing this with the chiral-perturbation-theory
result, Eq. (6.1), we seethat we can, in principle, repro-
duce the T2 term. Note, however, that the coefficient is
given by the quark condensate and the pion decay con-
stant in the leading order in 1/N.. according to a strict
expansion of Eq. (6.1) up to the next-to-leading order in
UN,. The physical reason for this behavior is the fact
that the /N, correctionsto the quark condensate corre-
spond to fluctuating RPA mesons; hence, the thermal
corrections at low temperatures are due to thermally
excited RPA pionsin this model.

For the LSS, asimilar result was derived in [23]. In
the chiral limit, the authors find

T2

Y = Eﬂwtu 51700

(6.9)

Here, ff[(o) is understood as the RPA pion decay con-

stant, Eqg. (A.21), but evaluated at the quark mass m
which follows from the LSS gap equation, Eq. (3.3).
This corresponds to the fact that, in the LSS, the ther-
mal corrections to the quark condensate at low temper-
atures are due to RPA pions which consist of LSS
quarks.
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Fig. 17. Quark condensate as afunction of temperature, nor-
malized to the vacuum value, in the chiral limit (left) and

with m'® = 140 MeV (right): leading order in /N, (dashed

curve), next-to-leading order (solid curve), and free pion gas
(dotted curve).

6.2. Numerical Results within the 1/N.-Expansion
Scheme

Our numerical results for the temperature behavior
of the quark condensate within the 1/N.-expansion
scheme are displayed in Fig. 17. The right-hand side cor-

respondsto aredlistic parameter setwith m') = 140 MeV
(Table 2 with A, = 600 MeV) and the left-hand side, to
the chiral limit. The solid curves indicate the results
obtained in the next-to-leading order. For comparison,
we also show the leading order (dashed curve) and the
pure pion-gas result (dotted).

We begin our discussion with thechiral limit. At low
temperatures (T <= 100 MeV), our results show the
behavior discussed in the previous subsection: the next-
to-leading-order result isin very good agreement with
the pion-gas result (Eq. (6.8)), whereas the leading-
order result remains almost constant. Therefore, in this
regime, the extension of the NJL model to the next-to-
leading order in /N, leads to a considerable improve-
ment. Since the unphysical quark degrees of freedom,
which arein principle aways present in the NJL model,
are exponentialy suppressed, the system is dominated
by the (physical) pion degrees of freedom, which come
about in the next-to-leading order.

However, because of the much larger degeneracy
factor (24 as compared to 3), we cannot avoid the fact
that effects due to thermally excited quarks become
important at some temperature. In our present calcula-
tion, this happens at about T ~ 100 MeV. In afree-gas
approximation, this roughly corresponds to the temper-
ature at which the quark pressure becomes equal to the
pion pressure.

At this point, one might raise a question as to the
physical meaning of quark effects at these tempera-
tures. In nature, quark degrees of freedom can only be
excited above the deconfinement phase transition. In
the NJL model, there is no confinement and, hence, no
deconfinement transition. However, lattice calculations
[42] indicate that the deconfinement phase transition at
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finite temperature coincides with the chiral phase tran-
sition. One should therefore compare the temperature
at which thermally excited quarks become important
with the critical temperature for the chiral phase transi-
tion. Unfortunately, as already pointed out in Section 3,
the perturbative treatment of the mesonic fluctuations
does not allow for adescription of the chiral phasetran-
sition. Although the quark condensate vanishesat T ~
200 MeV, this does not correspond to atrue phase tran-
sition. (Notethat the slope of the curve does not diverge
at this point.) In any case, the perturbative-expansion
scheme probably breaks down much earlier. Therefore,
we cannot give a definite answer to the question of
whether the thermally excited quarks become impor-
tant near the phase transition or much below.

Our results with m, # 0 are shown on the right-hand
side of Fig. 17. Since the RPA pions are how massive
and therefore exponentially suppressed, the quark con-
densate as afunction of T stays much flatter than in the
chiral limit. Nevertheless, at low temperatures, pions
can still be most easily excited as they are the lightest
particles. Therefore, the next-to-leading-order result
(solid curve) can be approximated quite well, albeit not
perfectly, by the pure pion-gas result (dotted) in this
regime. The latter was calculated from the pressure p,,
of amassive pion gas as

do)ﬂdpn(T)
£20) 4 20

1 Tt

pyty = Opyl+ [y (6.10)

which can be easily derived with the help of the GOR
relation.

Quark effects become important at almost the same
temperature asin the chiral limit, at T ~ 100 MeV.

6.3. Local Salf-Consistent Scheme

Let us now compare the results of the previous sub-
section with the analogous calculations in the LSS. A
study of the temperature dependence of the quark con-
densate within the LSS can also be found in [23]. Here,
we restrict ourselves to the chiral limit.

Our results are shown on theleft-hand side of Fig. 18.
The calcul ations have been performed using the param-
eters of Table 1 for Ay, = 700 MeV, but m, = 0. Asdis-
cussed in Subsection 6.1, at low temperatures, the
model behaves again like afree pion gas (dotted curve).
Deviations from this behavior become visible at T ~
100 MeV, which is quite similar to our observationsin
the /N -expansion scheme.

In contrast to the /N, -expansion scheme, the treat-
ment of the mesonic fluctuationsin the LSS also allows
examination of the phase transition. With the present
parameters, this takes place at T, = 164.5 MeV, which
is considerably lower than in the Hartree approxima:
tion, wherewehave T, = 266.1 MeV. Note, however, that
about one third of this reduction can be attributed to the
fact that the congtituent quark mass m = 468.4 MeV in
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Fig. 18. Left: quark condensate in the chiral limit asafunc-
tion of temperature, normalized to the vacuum value, Har-
tree approximation (dashed), LSS (solid), and free pion gas
(dotted). Right: thermodynamic potential per volume as a
function of the constituent quark massin the self-consistent
scheme with T = 163.9 (dotted), 164.5 (dashed), and
165.3 MeV (solid).

the LSS is lower than the corresponding Hartree mass
my = 600.0 MeV. For my = 468 MeV, we would get a
critical temperature of about 236 MeV in the Hartree
approximation. (It is also interesting to note that the

critical temperature in the LSS calculation amost

coincides with the critical temperature TCRPA =

164.4 MeV one obtains in the Hartree approximation
for the parameters fitted in the RPA; i.e, m=my =
260 MeV.)

Whereas in the Hartree approximation, the phase
transition is of second order, in the LSS, the system
undergoes a first-order phase transition, as aready
reported in [23]. This can be inferred from the thermo-
dynamic potential w, which is displayed on the right-
hand side of Fig. 18 for different temperatures as a
function of the constituent quark massm'. At T = 164.5
MeV, one can clearly identify two degenerate minima
at m =0and m' 0 corresponding to afirst-order phase
transition at that temperature. One can ask the question
of whether this phenomenon depends on the strength of
the mesonic fluctuations that can be controlled by the
cutoff Ay. Varying this parameter, we find that the dis-
continuity decreases with decreasing A\, but, even for
very small values of the cutoff, we encounter a first-
order phase transition.

Let us come back to the questions on the relevance
of the unphysical quark degrees of freedom. As already
mentioned, deviations from the pure pion-gas result
become visible at T ~ 100 MeV, which corresponds to
about 0.6T.. At this temperature, one would not expect
guark effects to be present in nature. Furthermore,
according to universality arguments, it is generally
believed that the finite-temperature chiral phase transi-
tion in QCD with two massless quarks is of second
order [43]. Thisis based on the assumption that, at T,
there are four massless bosonic degrees of freedom
(three pions and one o) which determine the infrared
behavior of the system. In this case, QCD—and aso
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the NJL model—should lie in the same universality
class as the O(4) model, which is known to have a sec-
ond-order phase transition. Although some time ago it
was claimed that this argument might not hold if the
boson fields are not elementary but composite[44], itis
probably more likely that the first-order phase transi-
tion we observe is an artifact of the approximation
scheme. In this context, the application of renormaliza-
tion-group techniques to the NJL model would be
extremely interesting.

7. CONCLUSIONS

We have investigated quark and meson properties
within the NJL model, including meson-loop correc-
tions. These were generated in two different ways. The
first method is a systematic expansion of the self-ener-
gies in powers of 1/N. up to the next-to-leading order
[14, 19, 20]. In the second scheme, a local correction
term to the standard Hartree self-energy is self-consis-
tently included in the gap equation [14]. We therefore
cal it the “local self-consistent scheme.” This scheme
can also be derived as the one-meson-loop approxima:
tion to the effective action [15]. Both schemes, the
1/Nexpansion scheme and the LSS, are consistent
with chiral symmetry, leading to massless pionsin the
chiral limit. For nonvanishing current quark masses, the
pion mass is consistent with the GOR relation in the
LSS. Thisis aso true in the 1/N-expansion scheme if
one carefully expands both sides of the relation up to
next-to-leading order in 1/N..

The relative importance of the mesonic fluctuations
is controlled by a parameter A,,, which cuts off the
three-momenta of the meson loops. In both schemes,
we encounter instabilities in the pion propagator if the
meson effects become too strong. In order to find out
whether these instabilities are related to an unstable
ground state [19, 22] leading to a “chiral restoration
phase transition” at some critical value of Ay, we cal-
culated the effective action of the LSS for increasing
values of A,,. (Note that such investigations are not
possible within the 1/N.-expansion scheme, where
mesonic fluctuations are included only perturbatively.)
It turned out that, up to acertain value of Ay, the system
indeed seems to move toward a “phase transition.”
However, when A, is further increased, the nontrivial
ground state becomes again more stable and no phase
transition takes place.

Of coursg, at the end, the value of A,,, together with
the other parameters, has to be determined by fitting
physical observables. The p meson and related quanti-
ties are very well suited for this purpose, since the
meson loops are absolutely crucia in order to include
the dominant p — Ttredecay channel, while the Har-
tree + RPA approximation contains only unphysical
gq -decay channels. Here, another problem, which con-
straints the possible choice of parameter values,
becomes obvious: apriori, it is not clear to what extent
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these unphysical decay modes, which are an unavoid-
able conseguence of the missing confinement mecha-
nisminthe NJL model, are still present in the region of
the p-meson peak.

For the 1/N-expansion scheme, the parameters have
already been fixed in [20]. We obtained areasonabl e fit
of f,;, Py [J and the pion electromagnetic form factor
with a constituent quark mass of m = 446 MeV. This
means that the unphysical qq-decay channel opens at
892 MeV, about 120 MeV above the maximum of the
p-meson peak. Furthermore, the parameters of that fit
are far away from the region where the instabilities in
the pion propagator emerge. In fact, we found only
moderate changes in the pion and quark sector: f; and

[py Chrelowered by about 20% by the meson-loop cor-
rections, while the pion massisincreased by about 10%.
Thisindicates that the /N, expansion converges rapidly
and higher order termsin the /N, expansion are small.

Unfortunately, we did not succeed in obtaining a
similar fit within the LSS. Since, in this scheme, the
meson-loop effects lower the constituent quark mass as
compared to the Hartree mass, it is much more difficult
to evade the problem of unphysical qq-decay channels
inthevicinity of the p-meson peak. We found that arel-
atively large meson cutoff, Ay, ~ 700 MeV, isneeded in
order to get the quark mass large enough and, at the
same time, to get afit for f,;. However, to our surprise,
for this cutoff, the p-meson self-energy already suffers
from stability problems, similar to those aready dis-
cussed for the pion. Asaresult, we are not able to get a
reasonable description of the p-meson propagator and,
hence, of the pion electromagnetic form factor within
the LSS. It remains to be checked whether these prob-
lems can be cured by taking into account additional
intermediate states, like vector mesons and axial vector
mesons, or by different methods of regularization.

In the last part of this article, we investigated the
temperature dependence of the quark condensate. In
both schemes, the low-temperature behavior is consis-
tent with lowest order chiral perturbation theory, i.e.,
the temperature dependence arising from a free pion
gas. Thisisaconsiderableimprovement over the mean-
field result, where the temperature dependence is
entirely due to thermally excited quarks, i.e., unphysi-
cal degrees of freedom. At higher temperatures, how-
ever, thermal quark effects also become visible in the
two extended schemes. We argued that this could be
tolerable near the chiral phase boundary, which is,
according to lattice results, identical to the deconfine-
ment phase boundary at nonzero temperatures.

Whereas the perturbative treatment of the mesonic
fluctuations within the 1/N_-expansion scheme does not
allow an examination of the chiral phase transition, this
ispossiblein the LSS. For our model parameter set, we
found acritical temperature of 164.5 MeV. On the other
hand, quark effects are visible already at atemperature
of ~100 MeV. Obvioudly, this is till too early to be
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realistic. Maybe here the model can be improved by
including additional intermediate meson states.

In agreement with [23], we found afirst-order phase
transition in that scheme. This contradicts the general
belief that the nonzero-temperature chiral phase transi-
tioninamode with two light flavors should be of second
order and is probably an artifact of the approximation.
Here, further investigations, e.g., applying renormaliza-
tion-group techniques, would be very interesting.
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APPENDIX A
Definition of Elementary Integrals

It is possible to reduce the expressions for the quark
loops to some elementary integrals [45], see Appendi-
ces B and C. In this section, we give the definitions of
these integrals.

Iy :Id4k4 > 12 —, (A.1)
(2m) k" —m" +ig
d’k 1
I(p) = (A2
(P) -[(21'[)4(k2—m2+is)((k+p)z—m2+ie)( )
K(p)
_ o dk 1 (A3)
I(Zﬂ)4(k2—m2 +ig)’((k+p)2—m+ig)
M(p1, P2)
d4k 1 (A4)
_I(zn)4(k2—m2+is)(kf—m2+ie)(k§—m2+is)’
d’k
L(Pw P2y P3) =
(P1, P2 P3) I(2n)4

(A.S)
1

(K —m’+ig)(K> —m’+ig)(Ko—m’+ig)(K;—m’ +ig)
P My (Pa, P2) + PEM (P2, Ps)

_ . d'k K"
I(zn)4(k2—m2+ ie)(k>—m’+ig)(ko—m’ +ig)

with k; = k + p;. The function M,(p;, p,) can be
expressed in terms of the other integrals:

X

(A.6)
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Py P2l (p1) — P2l () + (Ps —

P1 D)1 (P —
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P.) + Pa(p; —

Mi(py, P2) =

Allintegralsin Egs. (A.1) to (A.6), are understood to be
regularized. As described in Subsection 5.1, we use
Pauli—Villars regularization with two regulators, i.e.,
we replace

d“k

Jam

HJ' Zc f(k; 1)
with

o= m A
(see Egs(5.1) and (5.2)).

One then gets the following relatively simple ana-
Iytic expressions for the integrals |, 1 (p), and K(p):

=1 ¢ =-2 ¢=1

—i 2 2
= ——N\ ¢ In(uy), A8
16“22 ik In(y)) (A.8)
—i
| = —— N\ C(X{In(X;;) + X:, In(=X;
(p) 161'[212 ]( j1 ( ]1) j2 ( ]2) (A9)
+ X1 In(=p*Xj1) + X1 IN(p°%;5)),
I(p=0) = (A.10)

—i 2
Eﬂz]zciln(uj)’

- 1
K = C —In(x;
® 1611212 JZpZ(le—XJ-Z)( 052) (A.11)

= In(=x;2) + In(x;2) + In(=x;2)),

with

T

sy (A.12)

1
Xj1,2 é

I\J

An analytic expression for the three-point function
(A.4) can be found in [46, 47]. In certain kinematical
regions, the four-point function (A.5) is also known
analytically [46, 47].

APPENDIX B
RPA Propagators

By using the definitions given in the previous sec-
tion, the gap equation (Eqg. (2.2)) can be reduced to the
form

m = my+ 2igA4ANN;ml ;. (A.13)
Similarly, one can evaluate the quark—antiquark polar-
ization diagrams (Eq. (2.6)) and calculate the RPA
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2((py Cp2)*— Pip2)

p1 [P,)M(py, P2) _ (A7)

meson propagators. The results for the 0 meson and
pion read

Ds(p)
_295
1 2ig.2N.N; (21,

(A.14)

—(p*=4m?)I(p))’
_ng
1-2ig2NN¢(21, - p’1(p))

If we evaluate these propagators with the constituent
guark mass in Hartree approximation, we can simplify
the above expressions with the help of the gap equation
(Eq. (A.13)) to obtain

Dr(p) = (A.15)

_2 s
Do(p) = : J —————, (A.16)
my/m + 2ig.2N N, (p* - 4m?) 1 (p)
_2 s
D.(p) = g (A.17)

mo/m + 2ig2N:N; p’1 (p)

As discussed in Subsection 5.2, this form is also used
for the internal meson propagatorsin the LSS.

A straightforward evaluation of the vector and axial-
vector polarization diagrams gives

Ma(P) = —i5NN, (=21, + (p*+ 211 (p)), (A.18)

Ma(p) = <I5NN, (=21, + (p° ~4m)1 (p)). (A.19)

Because of vector-current conservation, M, should van-
ish for p> = 0. Thisisonly true if

m I(O) =1y,

which is not the case if we regularize 1(p) and I, as
described in Appendix A. This corresponds to the stan-
dard form of Pauli—Villars regularization in the NJL
model [7]. Alternatively, one could perform the
replacement of Eg. (5.1) for the entire polarization loop.
In fact, thisismore in the origina sense of Pauli—Villars
regularization [48]. Then, the factor n¥ in Eq. (A.18)

should be replaced by a factor ujz inside the sum over
regulators and one can easily show that Eq. (A.20)
holds (see Egs. (A.8) and (A.10)). However, this
scheme would lead to even more severe problems: from
the gap equation (A.13), we conclude that il, should be
positive. On the other hand, the pion decay constant in
thechira limitandinleading orderin /N, isgiven by [7]

(A.20)

29 = _2iN.N;m’I(0), (A21)
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which implies that in?l(0) should be negative. Thus,
irrespective of the regularization scheme, Eg. (A.20)
cannot be fulfilled if we want to get reasonable results
for mand f,(TO) at the same time. Therefore, we choose

the standard form of Pauli—Villars regularization in the
NJL model [7] and replace theterm I, in Eq. (A.18) by

hand by m¥l (0). For consistency, a, istreated in an anal-
ogous manner. This leads to the following p- and a;-
meson propagator:

D,(p)
— _ng
1+2ig, 5NN, (~2m°1(0) + (p” + 20 1(p).

(A.22)

Da,(P)
- _29v
1+2ig, SNN, (-2m°1(0) + (p* - 4m) ()

(A.23)

APPENDIX C
Explicit Expressions for the Meson—Meson Vertices

In this section, we list the explicit formulas for the
meson—meson vertices. We restrict ourselves to those
combinations that are needed for the calculations pre-
sented in this article.

We begin with the
M, m,m,(G P) (SeeFig. 5):

three-meson  vertices

-l g.0,0(0 P) = i2MNH () +1(a) + 1(p)
+ B’ = 2(p% + p”+ )M (p, )]

M3 o(a, p) = 12mNB(1(p') + p CAM(p, -0)),
e p) = Suh(a, )R
_pd'q +g’p"p —p (Pt + ¢'pM)
g’ (p y)° DAa24
h(g, p) = imN(I(q) +1(p)—-21(p")

+(4m’ -2p - p“)M(p, -q)),
TR ne(0 ) = €ane(a"f (g, p) = p"f (P, ),
f(a, p)
= N(=1(q) + p°M(p,—0) + 2p M, (g, —p)),

withp'=—p—qgand N =4N.N,.
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For the four-meson vertices, we only need to con-
sider the special cases needed for diagrams (b) and (c)
inFig. 5:

i ro, g, o, o(qf p1 _q)

= -N

(P—9) 42-|(p +q) + 4m2(M(p, Q)+ M(p, —q))

OO

2 2
O
+2pn’(4m’ - p’ ") - L5 (p. g, P=a) 5

g 00.0(0 P —p) = —Nél(p+q) +1(0)

+4m’(K(p) + K(q) + 2M(p, —q))
+2p [M(p, —q) —q°K(q) — p°K(p)

2 2
+ m2%6m2_4p2_4q2 + %%(p, _q, O) @

T o, n(G P =0) = uN{1(p+0)
+1(p-q) + p°(4m°—q°)L(p, 4, p—0)},
T o(a P, —P) = 3oN{~1(p+q)~1(0)
—(4m’—q”)(K(q) - p’L(p, -0, 0))

+ p’K(p) —2p [HM(p, -q)},

abcd

_i rn, T[,TLT[(q1 p1 _q)
= —NKapeaf (P + Q) + 1(p—0) — p°9°L(P, =0, p— )} ,

. —abcd

=il (0 Py —=P) = =NKgpeaf 1(p + ) +1(0)

— p’K(p) —q°K(q) + 2p [gM(p, —q)

) 5 (A.25)
+pqL(p—a0)},
.—ab D
_Irp,c,pﬁ(q’ P, _q) = _26abNgl(p+q) + I(p_q)

+21(q) — p Lg(M(p, —9) — M(p, 9))
+(4m’ —2p%)(M(p, @) + M(p, —q))

4 2
_ 0
m’Bm’ —6p°+4q” + LB/ r(n'z ) H(p.—, p—q)%

. _al O
S o o(ap,—q) = 28N 1(p+ @) =10
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+(p®=4m*)K(p) + (4 + 2m*)K(q)
+(4m’ = 2p [)M(p, —q)

2 2
el tpm’-2p°+ 4¢° =235 (p. 0.0 El

abcd

Irpnpn(q1 p1 q) - 2NKabcd{ I(p+q)

—1(p-0a) — 21(q) + 2p°(M(p, q) + M(p, —q))
+p [g(M(p, —q) — M(p, 0))

+(2m’p’ = p* + (p0)°)L(p, —q, PO},

Al (0 P —=1) = 2NKapea{ I(p + @) + 1(0)

—p’K(p) - (q° + 2m*)K(q) + 2p (HM(p, =)
+p°(2m*+q*)L(p,-q, 0)},
with To 0@ P =) = Gl pwmm, @ P —0),

Font. o0 Py =P) = Gl v oo (G Py =), @D K gy =
6ab6Cd + 6ad6hc - 6a(r6bd'

APPENDIX D
Expressions at Nonzero Temperature

To determine the temperature dependence of vari-
ous guantities we need, for the calculation of the quark
condensate at nonzero temperature in Section 6, to
adopt the imaginary-time or Matsubaraformalism (see,
e.g., [41]). In principle, this amounts to replacing the
integration over energy in the zero-temperature expres-
sions by a sum over fermionic or bosonic Matsubara
frequencies w,:

d’k

[ ony

With this replacement prescri ptlon, we can define the
temperature analogue to the elementary integrals; e.g.,

_ o dk 1
J'(2 ) (K —m’ +ig)((k+ IO) —m’" +ig)

(A.26)

ns

— l(iw,p) =i (A.27)

1
(i)’ —kZ=m*)((iw, + i)’ = (k +p)>—m’)

This example also illustrates our notation: at non-
zero temperature, the integral depends on energy and
three-momentum separately, which is indicated via a
second argument. In this way, it can be clearly distin-
guished from its vacuum counterpart with only one
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argument. A similar notation is used for other momen-
tum-dependent integrals. The nonzero-temperature
analog to the integral 1, will be denoted by I,.

We will now summarize the explicit expressions for
various temperature dependent quantities which are
related to the determination of the quark condensate at
nonzero temperature. The temperature analog to the
gap equation (A.13) is given by

d’k 1
2m)%(iw,)’ - E°
= My + 294N Nimyl 1,

mr=mo—2954NcmeTTZJ'(

with E = ,/k*+m? and w, = (2n + 17T being fermi-
onic Matsubara frequencies.
The polarization functions for the RPA mesons read

no(iwla p) = 4iNcNfllT

—2iNN((iwy)® =p®—4m7)I (i, p),
nn(iwh p) = 4i NcNfllT

—2iNN{((io)*=p*) I (iw, p),

with w, = 2ITtT being bosonic Matsubara frequencies.
Below the phase transition, the integral |, can again be
replaced with the help of the gap equation (A.28) (cf.
Egs. (A.16) to (A.17)).

Finally, the constant AT isgiven by

(A.29)

A=

Z{D (i, p)(2l (i, p)

+1(0,0) = ((iw)*—p° —4mr)K (i, p))  (A.30)

+Dy(iw, P)(31(0, 0) - 3((iw)” ~p")K(iw, p))},
where w, are again bosonic Matsubara frequencies.
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Abstract—Electroweak form factors for the decays of heavy B and D mesons are considered within the cova
riant formulation of light-front dynamics. With the aid of this approach, it is possible to separate the physical
and unphysical contributions to the form factors. An analytic expression is obtained for gluon correctionsto the
electroweak vertex of the vector and the vector-axial quark current, and it isshown that, for constructing aquan-
titative description of available experimental data, it is important to take into account such corrections to the
decay widths of heavy hadrons. The effect of contact interaction on the transition form factorsis analyzed, and
the importance of taking into account contact interaction for 0~ — 1~ transitionsis demonstrated numerically.
The elements Vil [Vpuls [Vesl, @nd [Vq| of the Cabibbo—Kobayashi—Maskawa matrix are determined from an

analysis of the entire body of dataon 0~ — 0~ and 0 — 1~ semileptonic decays. Within the experimental
errors, theresults obtained in thisway areintrinsically consistent and comply with world-averaged data. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The semileptonic decays of heavy B and D mesons
furnish important information about the elements |V, |,
Mol M), @nd V4| of the Cabibbo-Kobayashi—
Maskawa (CKM) matrix. Sincethe differential and par-
tial widthswith respect to hadronic decays depend both
on the CKM-matrix elements and on the transition
form factors, theoretical models that describe ade-
guately the soft (nonperturbative) interaction of quarks
within hadrons are necessary for extracting, from
experimental data, reliable information about the quark
transition amplitude, which is proportional to the
CKM-matrix elements. Theoretical approachesthat are
used to describe the semileptonic decays of hadrons
employ, in addition to QCD lattice calculations, calcu-
lations based on QCD sum rules, calculations within
various effective theories, and calculations relying on
relativistic quark models. Weak-decay form factors cal-
culated on the basis of lattice QCD make it possible to
confirm or disprove one idea or another of the internal
structure of hadrons and to test relevant models. Unfor-
tunately, present-day lattice cal culations involve signif-
icant uncertainties. Therefore, quark models, whose
applicability range is comparatively wide, play an
important role in such investigations.

That light-front dynamics (LFD) isone of theviable
approaches to describing quark bound states is sug-

D Ingtitute of Theoretical and Experimental Physics, Bol’shaya
Cheremushkinskaya ul. 25, Moscow, 117259 Russia, and Mos-
cow Institute for Physics and Technology, Institutskii pr. 9, Dol-
goprudnyi, Moscow oblast, 141700 Russia.

gested by many arguments. In relation to various quark
models used to treat quark bound states, the LFD
approach stands out for a number of reasons. For an
arbitrary system quantized on a hypersurface specified
by the light-front equation wx = o, there dways exists a
kinematical subgroup of thetotal group of Poincarétrans-
formations. It follows that, within the LFD approach,
congtructing a state characterized by a specific value of
the tota 4-momentum reduces to solving a purely kine-
matical problem. At the sametime, the diagram technique
developed within the LFD approach is essentialy an ana
log of chronological perturbation theory and makes it
possible to describe correctly relativistic spin effects. It
should a so berecalled that, withinthis approach, vacuum
diagrams that correspond to the production of afew par-
ticles from avacuum are forbidden from the outset.

In this connection, it is highly desirable to apply the
LFD approach to two and three-quark systemsand to per-
form a detailed analysis of heavy-hadron decays within
thisscheme. Thisisthereason why the LFD approach has
recently been used in many studies to analyze inclusive
and exclusive hadronic trangitions (see [1-17]).

Within this approach, B-meson and A,-hyperon
decays associated with transitions of aheavy quark into
another heavy quark were considered in our previous
studies [18, 19]. Here, we analyze B- and D-meson
decays caused by a transition of a heavy quark into a
light one. Of particular interest in this connection are
the transitions B —» miv, and B — plv;, which make
it possible to explore the CKM-matrix element V,,,
which has not yet received adeguate study—at present,

1063-7788/01/6404-0727$21.00 © 2001 MAIK “Nauka/Interperiodica’
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measurement of this matrix element is an important
problem in heavy-quark physics. Yet another novel ele-
ment in the present analysisisthat we take into account
contact interaction, which inevitably arisesin LFD, and
gluon corrections (Sudakov form factor) to the vector
and the axial-vector current.

The ensuing exposition is organized as follows. In
Section 2, we give an account of the formalism for con-
structing matrix elements of the vector and the axial-
vector current within the covariant formulation of LFD,
taking into account contact interaction. In Section 3, we
discuss gluon corrections. In Section 4, we present our
basic results and compare them with available data. The
conclusions are summarized in Section 5.

2. MATRIX ELEMENTS OF THE VECTOR
AND THE AXIAL-VECTOR CURRENT
IN LIGHT-FRONT DYNAMICS

Following the covariant formulation of LFD [20],
we introduce the required definitions. Within the LFD
approach, vectorsthat characterize the states of the sys-
tem are defined on the hypersurface specified by the
equations wx = 0 and «? = 0. The conventional choice
of the 4-vector w, is

Wy = (W, Wy, y, ®,) = (1,0,0,1), M
W, = Wyt W,

The equation of the hypersurface is then written as x, =
const. The evolution of the system along the time axison
the light front [x, for the conventional choice of
according to (1)] is controlled by the Hamilton equation
on the light front. Transformations of the Poincaré group
that do not change the orientation of the light-front hyper-
surface and which map this hypersurface onto itself are
kinematical transformations—namely, the transforma-
tion properties of a state vector under kinematical trans-
formations do not depend on interaction and do not
require knowing the Hamiltonian of the system. The gen-
erators of the transformations that do not change the ori-
entation of the hypersurface wx = ¢ arekinematical trans-
formations forming a subgroup of the Poincaré group.
Owing to this, asystem having an arbitrary 4-momentum
can be transformed into a system having a preset 4-mo-
mentum by using only kinematical transformations.

The diagram technique on the light front (see [20]
and references therein) is similar to old chronological
perturbation theory, the only distinction being that the
variable T =t + z, an analog of time on the light front,
appears to be the evolution parameter along the time
axist. InLFD, al particlesare on their mass shells, the
momentum conservation law being violated for the
minus component P_ = P, — P, (for the conventional
choice of w,)—more generaly, for the 4-momentum
component proportional to wy,.

In the LFD diagram technique, vectors characteriz-

ing states of an arbitrary bound system can be expanded
inaseriesin Fock components with an increasing num-
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ber of particles, |[HO= Z]i o |q...qP01n this expres-
st

sion, the index i labels the Fock component involving i
particles, @ being the wave function of the ith state.
The physica matrix elements of the current are
obtained by summing the matrix elements of the cur-
rent between the individual Fock states of the expan-
sion. We assume that the main contribution to the tran-
sitions in question comes from the sector featuring the
minimum number of particles. Therefore, mesons will
be considered as quark—antiquark bound states.

For atwo-particle state that is pure in 4-momentum
and in mass, {P,, M}, and which is formed by a quark
g, and an antiquark Q, their 4-momenta and masses
being {p,,, m} and {p,,, My}, respectively, the 4-
momentum conservation law can be written as

Pu= Pyt Py = P+t )
Since the spatial component of 4-momentum is not
conserved, the rest frame of the composite particle does
not coincide with the c.m. frame of the (p,p,) state,
where P = 0: at P = 0, the spatial component of the 4-
momentum does not vanish—that is, P # 0.

Within the LFD approach, the (q,q) — (g,q) tran-
sition amplitudeis represented as the sum of the contri-
butions from the one-body current (Fig. 1) and the con-
tributions of diagrams corresponding to contact inter-
actionin LFD (Figs. 2-4).

According to genera rules of diagram technique
(for details, see [20]), the contribution of the one-body
current (Fig. 1) for a transition between states charac-
terized by specific values of momentum and spin (we
denote these quantum numbers by P, and j, for the ini-
tial state and by P, and j, for thefina state) hastheform

377 = [B(w(P: = P)B((P; + wr; — p)” )

X B(w(P,— P))B((P, + WT,—p)* ~My)B(wp) (3,
dt; dt, d'p
(1,-10)(1,=i0) (27"’

x 8(p° — A2 I 1]

where Fi[z = riﬂz (P12, P, P, wr, ,) are vertex functions
that arerel ated to the wave functions by the equations[20]

"(py, Py P, WD)
(p.+ p2)2 -M*
and T, = U(P){ Yy YuYs Hu(p,) isthequark vertex for the
one-body current. Integration with respect to 1, and 1,
in expression (3) corresponds to spurions describing 4-
momentum nonconservation in the intermediate state

(seeFig. 1).

Integration with respect to T,, T,, and k; is performed
with the aid of deltafunctions. Theresult is (recall that
the abbreviation OBC in the superscript indicated that
we are dealing here with the one-body-current contri-
bution)

cDji( pl! p21 Pv (*)T) = (4)

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001



TRANSITION FORM FACTORS AND PROBABILITIES OF THE SEMILEPTONIC DECAYS 729
Fig. 1. One-body current in light-front dynamics. Fig. 2. Contact interaction of the m; particle.
Fig. 3. Contact interaction of the m, particle. Fig. 4. Double contact interaction.
N ~_ % r(t A% (J1) N (Jp)* 3
3(080) _ tr{(p, + 0T5 + M)l (P + @OTT +My)@ (= p+m)e, ]9(0)(P 01)) d’p
u - \ 2 2 2 2 17 M 3
(1-X)(1=X)(M1=Mi)(M; — M) 2(2m)°e, )

y
_ 1 d
B 2(2n)3J;X(1 ~X)

where
N _ Pa
X = P1+! X = P2+1 - P1+s
P, = XP.  pp = XPig+Kp,
Pig = (1-X)Pig—Kp, Pan = (1-X)Pyr—Kp, ©6)
M2 = m2+k§+mf+k§
o=y 1-x '
V2 = m’+k?  mptkp
05y 1-x
i = [m;—(P,—p)’1/(2w(P; - p)), -

= [m;—(P,—p)1/(26(P,— p)).
In transforming the integral in Eg. (5), we have made
use of the relations

d’p _

Pr 2 _dx 2 _dx,2
p P~
PHYSICS OF ATOMIC NUCLElI Vol. 64 No.4 2001

X o A% ~ Ak (J1) a (Jp)*
(1_X.)Id2kmtr[(p2+wT2 +my)l (P + Ty + M@ (—p+m)e, ],

Having constrained the integration domain by the
inequality 0 < x <y (or 0 < p, < P,,), we took into
account the so-called parton contribution. The contri-
bution from the region P,, < p, < P,, corresponds to
that configuration of particles in the intermediate state
in which the valence quark in the final state is on the
mass shell. The spacetime pattern corresponding to this
configuration can be represented as follows. a pair
0,0, isproduced from avacuum, whereupon the quark

g, recombines with the spectator antiquark g, forming
the final meson; the remaining pair q,0, annihilates

into W-. This configuration can be described only if one
takes into account the relevant components of the ver-
tex function, which are not considered here.

In Eg. (5), the form factor is expressed in terms of
the wave functions dependent on 3-momentum. From
the point of view of the instantaneous form of dynam-
ics, these functions are specified in the infinite-momen-
tum frame. We will use the approximation where they
areindependent of the direction in which atransition to
the infinite-momentum frame occurs. In general, such a
dependence arises in LFD when one is dealing with
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Fig. 5. Parton contribution to the triangle diagram.

particles having a nonzero spin. It is important to note
that the problem of two particles treated on the basis of
field theory aways involves relative time. A reduction
to an expression of the typein (5) is equivaent to elim-
inating the relative timein LFD.

The problem of eliminating the relative time in the
theory of a QCD string with quarks was discussed in
[22]. In principle, this theory provides a basis for con-
structing hadron wave functions and diagonal and off-
diagonal form factorsin the QCD string model. In what
is concerned with constructing wave functions, our
approach is equivalent to the use of the rdativistic-
quark-model limit, which is obtained in string dynam-
icsatl =0{seeEq. (73) in[224]}. Formally, expression
(5) then invaolves the relativistic-quark wave functions
taken in the infinite-momentum frame. However, these
wave functions depend on the relative momentum;
therefore, it may seem, at first glance, that they are
taken in the rest frame, but, in fact, thisis not so. The
example of a relativistic oscillator on the light cone
reveals (see[23]) that the wave functions defined in the
infinite-momentum frame cannot be obtained directly
by determining the eigenfunctions of the Hamiltonian
on the light cone, since the angular-momentum opera-
tors depend on interaction in this representation.

Within LFD, the wave function CDCJ,;S of theJ=0
state ({p;, m;}, {p,, M,}) is generaly parametrized in
terms of two scalar functions:

J=0 _
0,0,

0(ps, 0)[0° " V1v(py 0,),

(J=1)

) = Yshy + ysioh,.

o)
€))

KONDRATYUK, TCHEKIN

In the quark—antiquark c.m. frame, this expression can
be represented in the form

W, o = p(kI)XI (o)W,

+ ngk (ml'\;()mZ) +iZ E[T(x n]%lJz}Xz(oz),

where p(k?) is given by

(10)

€€ M, m, —m,)?0]
o= 1€ :—O[ﬂ__( i 42)D. (1)
€, +¢, 40 Mg 0

with g = A/pz + miz.

Only the functions h, and ), survivein the nonrela-

tivistic approximation. They describe a qg bound state
in the Swave. The functions h, and Y, have no nonrel-
ativistic analogs. Their origin is associated with the fact
that, within the covariant LFD formalism, two invariant
functions h, and h, must be introduced in order to con-
struct a unified description of the 0- — (1/2)*(1/2)"
bound state (Fig. 5) and the (1/2)- — 0(1/2)* frag-
mentation (Fig. 6). Taking into account relativistic
effects in aminimal way, we will henceforth disregard
the functions h, and s, and the dependence of the func-
tions h, and Y, on the direction of the unit vector n
specifying atransition to the infinite-momentum frame.
We then have

h, = «/51+m1«/€2+m2
T (e my) (e, +my) +K

1
= > 2quSa
Mg —(m; —m,)

zpl'pS
(12)

where s is the wave function of the Swave bound
state of the g system.
Let us now consider the case of J = 1. Within LFD,

the wave function CD;;,? of the J = 1 state formed by

: O 1 0
two particles [, , = 5 P12, My, [J Can be parame-
0 0

trized as
J=1A

cboloz (pl1 P2, P, (’OT)

= 0(py, 01)(P;(1J i 1)( P1, P2)V (P2 GZ)ES(P, M),
where we generally have six independent terms:

(13)

= il il ~ W, v (’;)
L = fay o+ Py = Pt fa s + famg(pa—pa),
+ Tsm= o€ punoPru Pn @y + | 0,0 (9
57 BH v v 6 .
WP 5%uvio Miv M2a Yo ((DP)Z

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001
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Here, €,(P, M) isthe polarization 4-vector in the spin-1
state.

In the quark—antiquark c.m. frame, the wave func-
tion (13) can be parametrized in terms of six scalar
functions appearing as coefficients of independent spin
structures composed from the vectors k and n:

J=1A

chloz (p11 P2, P! (A)T)
= p(K)XE (o) [W;i(k, N)]oiXa(02)e],

Pii(k, n) = P, + qu%ij —3‘k‘z‘E+ Wsnin;  (15)

" w%((snikj +3kn, —2(k )3,)
1. 1
+ lIJ5R|8j|mk|nm0i + qJGRSijI[k xnj,.

Here, e? isthe polarization 3-vector in the c.m. frame.
In generd, Y, Y, ..., Y depend on the scalarsk? and k -

n; that is, Y, = Y,(k?, k - n). The functions fs, ..., fe
and y;, ..., Y have no nonreaivistic analogs. They are
associated with the covariant description of the (1/2)- —
1*(1/2)~ fragmentation process (Fig. 6). In just the same
way as in the case of zero spin (J = 0), we disregard
these functions. The functions f1 and f2 or g, and Y,
correspond to the S- and D-wave functions of the bound
guark—antiquark state. In [18], we took into account S-
and D-wave contributions. The D wave was introduced
in order to improve the description of the decay B —»
Dlv,. In [18], we neglected, however, the contact con-
tributions, which are of importance, as will be shown
here—their inclusion makes it possible to describe
experimental data without taking into account the D
wave. If we consider only the S wave, the 17—
(1/2)*(1/2)~ wave function in the c.m. frame has the
form

J=1 JEL+ My JE, + My

cbclcz = l_J(pli 0-1)
(es+m)(eo+m) +K° |
(PL—P2); ~\
X p|:yj _(51 Te,vm + mz)}v(pz, 0,)€ Ys.

Asin the case of zero spin, we neglect the dependence
of Yson the vector n.

According to the LFD diagram technique, the one-

body hadronic current JﬁOBC) must be supplemented
with the contributions corresponding to the contact
interaction of p, and p, particles with the weak-current
vertex. Each of the contact contributions is associated
with a diagram where the quark lines contactly interact
with the current q,I",g, (see Figs. 2, 3). A crossed
Vol. 64 No. 4
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Fig. 6. Fragmentation contribution to the triangle diagram.

~

quark line then corresponds to the quantity —%3,

where P isthe sum of the momentaflowing into the ver-
tex (for more details, see [20]).

Exact expressions for the contact terms can be
obtained if the vertex functions in (3) are taken to be
constant. In this approximation, the sum of the three
diagramsin Figs. 1-3 hasthe form

3 =3 ElOBC) ctl

ct2
+ Ju

H +Jy

(P, + M)W (Pr+ M@y (— P+ Mgy ]
(1=x)(1=X)(M; = M) (M3 — M3)
d3p
2(21‘[)38p

xB(w(Py—py)) (17)

y
_ 1 dx 2
) 2(2n)3{X(1—X)(1—X‘)Id o

o N (J1) ~ (J)*
Xtr[(p+mp)l (P +m)e, "(—p+m)e, ™ 1,
where

plp = Plp_pw p2u = PZu_pp- (18)

The double contact interaction corresponding to the
crossed lines of the two quarks p, and p, appearsto be
proportional to wy, and does not contribute to the com-
ponents J, and J of the current. Expression (17) will
be used below to calculate the spin structure of the
matrix elements of the current.

Thus, the contact interaction has no effect on the
vertex functions in the most genera parametrization
given by Egs. (13) and (14), but, according to (18), it
changes the momenta of the m, and m, particles
involved in the spin structure of expression (5). Gener-
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ally speaking, thisconclusionisvalid only for LFD dia-
grams where vertex functions do not depend on the
variables of integration. However, even this approxi-
mate inclusion of the contact interaction affects signif-
icantly the results of the calculations for the 0- — 1~
off-diagonal transition (see Section 5).

3. SELF-CONSISTENCY OF THE MODEL
AND DETERMINATION OF PHYSICAL
FORM FACTORS

An exact calculation of the form factorsin field the-
ory—in particular, in LFD treated as a field theory on
the light-front hypersurface—must lead to covariant
expressions for current matrix elements. In the approx-
imate scheme where we restrict ourselves to the contri-
butions of the sector featuring a fixed number of parti-
cles, the matrix elements of the current operator appear
to be dependent on the orientation of the vector .

This problem was discussed in [18, 19], where a
regular method for separating physical form factors
from unphysical structures was considered. In the
majority of studies, this problem is usually sidestepped
by indicating areliable choice of matrix elements. Asa
rule, quantities calculated with the current component
J,, which possesses “good” properties, are taken for
such matrix e ements. However, the number of matrix
elements corresponding to this good current compo-
nent is usually insufficient for determining all physical
form factors for a given transition.

In the covariant formulation of LFD, physical form
factors can be self-consistently determined by eliminat-
ing the unphysical dependence of the transition
form factors. To illustrate the general approach to the
covariant LFD parametrization, we first consider
0~ — O~ transitions.

In the matrix elements of the current, we introduce,
apart from the vectors P, and P,,, an explicit w,
dependence; that is,

I = Fi(d® y) (P + Py,

) > M;—
+ (Fo(d’, ¥) = F1(d’, y)) —5—2q, (19)

+ BO(q y)(A)(P +P )

wherey = (P,w)/(P,w), F, and F, are physical form fac-
tors; B, is aform factor that parametrizes the unphysi-
cal contribution; and superscript L.F. explicitly indi-
cates that the left-hand side was calculated approxi-
mately within the LFD approach. For the standard
choiceof w,, wehavey=P,,/P,,. In(19), we have con-
sidered that, within this approach, form factors can
involve w only in the form w, /(P;w), because the calcu-
lations on the light front depend only on the orientation
of the vector n = @/w,, undergoing no changes upon the

KONDRATYUK, TCHEKIN

multiplication of w, by an arbitrary integer. As amatter
of fact, the w dependence of the matrix elements can be
taken into account through the quantity y. All the
remaining dimensionless combinations of can be
reduced to this expression. Thus, the form factors
depend not only on ¢ but also on'y, which is reflected
in the form of (19).

In the two-body approximation, the matrix element
of the 0- — O~ transition current can be represented in
the form

1 dx
2(2T[)3-!)-X(1—X)(1—X')

xIdszhf)(x, k*)hi"(x, k%)

LFD

P, " |P,0=

(20)

Xtr[(P2+ M)y, (L—Yys)(Py + My)ys(— P+ m)ys],
where, in accord with the statements of Section 2,
Piu= Pou—puand p’ # m’. If wischosen in a stan-
dard way, the unphysical form factor does not contrib-
ute to the good and the transverse component of the
matrix elements of the current. In order to determine
two physical form factors, we must therefore consider
the matrix elements of J, and J.

We will use a reference frame where the momenta
of the initial and the final meson have small compo-

nents along the x axis. In this configuration, the square
of the 4-momentum transfer is given by

q =(1- y)BK/I a:)m

If P ischosen to be suffluently small, amost all kine-

_%D_

PZDD 1)

matically possible valuesin the region 0 < ¢f? < q;‘;ax =
(M, — M,)? can be redlized. By using the current com-
ponents J, and J, we find that the form factors F, and
F, satisfy the set of two equations

Mz

Fo(Pry + Pyy) + (Fom Fi) q. = 7,

: 22)

M
F1(Pio+ Pop) + (Fo—Fy) :

2

- M;
2 qD - ‘] & )

In order to take into account the Sudakov form fac-

tor (see below), the integrand on the right-hand side of

(20) [it determines the matrix elements of the current in
Eqg. (22)] must be multiplied by S(?%, x, k),

J’dszde(x, ko) —= J'dszde(x, ko) ST, X, Kp). 03

The dependence of the Sudakov form factor on x and
kg, which are the variables of integration in the rel evant
diagram, is a consequence of the fact that particles in
the intermediate state (quarks in our case) are on the
PHYSICS OF ATOMIC NUCLEI
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mass shell. In this case, the 4-momentum is not con-
served in the weak-current vertex, so that the quantity

dz in the timelike region is not equal to the physical

momentum transfer squared, (py, — Pg,)* = GRET

(P, - Py
In the set of Egs. (22), P, isaparameter that is can-
celed in each of the equalities and can be chosen arbi-

trarily. In the case of P, = P, = P, this set of equa
tionsis further simplified to become

(LF)
-M3 Ji
FA(1+y) + (Fo- F) (1) = =,
J(LF) (24)
2F, = P

At y = 1—we then have ¢ = 0 (P; — 0)—the l&ft-
hand side of the set of equations in question becomes
degenerate; on the right-hand side, the matrix elements
of the current components J, and J; concurrently
become proportional to each other, apart from the
factors P, and P. Formulas (24) express the physical
0~ — 0 transition form factors F, and F, in terms of
the matrix elements of the good and the transverse cur-
rent components as given by Eqg. (20).

For the 0- — 1~ transition, the genera LFD
expression for the matrix element of the current hasthe
more complicated form

dx
Ix(l xX)(1-X)

xfdzkmfﬁ"(x, k)£ (x, k')

LFD

[P,(e)ld, IP,0=

(25)
x tr[vuu—vs)(m +my)ys(—p+m)

(p
%/ Mzoimz"'m% (pz"'mz)}

where ¢ is the polarization 4-vector specified in the
c.m. frame of the congtituent quarks; in an arbitrary ref-
erence frame, it is given by

~J3

=+1 2
en (P = [O’ € (+1), P_EDPEI]

~J3=0 1 MO+Pé
&P = g PePo B 0
T 1 [ D
e (£1) = W
RV A 1
The momenta p,, and p,,, in (25) are defined as p,, =
P, — Py ad py, = Py, — p,. Thefunctions ¢ and 5"
PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001
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correspond to the Swave states of the initia and the
final meson.

The spin structures of the contributions from the
vector and the axial-vector current to thetracetr|...] on
the right-hand side of (25) are given by

tr[ 1a = tr[vuvs(bl +my)ys(=p +m)

(
%’ Mzopj- m, + m% P2+ mZ)}

= [4m2( plp Py — pp plv) - ml( pp Po, + p2p pv)
—M(P1y P2y + P2y P1y) + 9y (MppP; + M pp;

(27)

+mypp, + mmm,) ey

and

[ ]y = tr[vp(fH my)ys(— p + m)

(p2— }
+m
% My +m, + m% b 2) (28)
= 4(- )Sp)\a[3|:(mpla Pap + My Py Pap + MyP1g Pp)€x

(P—Pp2)€y
+ mpm pzs(—px)}-

We note that the transverse component of the meson
polarization vector €, coincides with that of the polar-

ization vector €, of the qq system.

Equations (27) and (28) represent the fullest LFD
parametrization that describes the transformation prop-
erties of the matrix elements of the current.

Thus, the most general parametrization of the
0~ — 1~ trangition current in the covariant LFD
approach can be represented as

LFD _ 2i
H M; + M,

2
\ V(q )EpvaBevplaPZB

*
+ Blspvaﬁev Plaw

+ BZSHV(XBG\T PZG (29)

w(P;+Py)

+ B3(S,P1y + P1uS))el + By(S,Pay + Py, S))e)

W, W, *
* BB 1Py Py ) S
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LFD

Al =

*
Al(M1+Mz)%K—€q—fquE
A9 _Ya— Vo
TRV SOl q % 0

€*qQ [E* W [e* W
+ —q,+H,=— +H,5—
Ag2M, q2 a, HlﬂoleDlu HZQOPZ 2u

*

€ P1 €W
+ H3D_(J0P1 %“’u +

P+ P

i P,,P .
Luvap® 128 0 magrix elements of
(A)( Pl + Pz)

the vector and the axial-vector current involve four
physical form factors, V for the former and A;, A,, and
A, for the latter; they also contain five (B, ..., Bs) and
four (H, ..., H,) unphysical form factorsfor the former
and the latter, respectively.

Let us choose the reference frame where

where ﬁl =

M3 + P
Plp = |:P+! PD1 lP Di||
i 3D

M,

PZLI = [yP+, 0, )7|-3—i|

In this frame, the final vector meson moves along the z
axis, which is singled out for the standard choice of w
[see (1)]. In numerical calculations, the parton contri-
bution is maximized by choosing a reference frame
where the initial-meson transverse momentum is small
in relation to the masses of particles participating in the
reaction (see [18, 19]). We further consider only the
matrix elements of the good and the transverse current
component, whereby the unphysical form factors Hs,
B,, and B, are eliminated from the outset. In order to
eliminate H, and H,, we consider only the transverse
polarization of the final meson. In this meson-momen-
tum configuration, the vector €, is orthogonal to the z-
axis direction and to the final-vector-meson momen-
tum, so that €, has only transverse components. In
order to eliminate the remaining unphysical form fac-
tors B, and B,, we introduce the auxiliary tensor [24]

Guv = A MlMZ(igepvaBpla PZB + BlepvaBplawB
+ B€yapP2q W) + VM My(B3(S,Pyy + P1,S)

+B,4(S,Poy + P2, S) + Bs(§ 0, + 0, S))).

The current calculated within LFD can then be repre-
sented as (see also [24])

(32)

Ju = Gyl (33)

For the transverse polarization vector, this can be done,
in the momentum configuration being considered, for
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aswell, since € does not involve, in this case,
guantities that depend on the integration variables x and
k; (in general, thisisincorrect). Upon antisymmetriza-
tion with respect to theindicespand v, G, — Gy =
%(Gw -Gy, the covariant structures at B, B,, and B;
vanish. For the remaining nonvanishing matrix ele-
ments of the current, we arrive at a set of equationsthat,
in terms of the form factors appearing at the 4-veloci-
tiesV, = P,/M, and V, = P,/M, (this representation is
chosen for the sake of convenience), has the form

Ai(e,) = JMM,[bVy, + D,V ] (=€ Vi),
Al(ey) = YMM,(f + Db,V n(—€5Vip)),
Ae,) = JMM,f,

where the form factors b;, b,, and f are defined via the
relation

(0BC)
Ju

(34)

[1[9,y,0:10 O
(35)

= MM, (f(N)ey + [Dy(N) V1, + by(N) Vo] (€% V).

They can be expressed in terms of the form factors A,,
A,, and V as given by Egs. (29) and (30). In the config-
uration being considered, the remaining matrix ele-
ments vanish.

Thus, relations (34) solve the problem of self-
consistently determining physical form factors for the
0- — 1~ electroweak transition within the covariant
LFD approach.

4. RADIATIVE CORRECTIONS
FOR THE VECTOR
AND THE AXIAL-VECTOR CURRENT

In this section, we calcul ate the Sudakov form fac-
tor, which corresponds to radiative corrections to the
electroweak vertex of the quark current [d;[J,|q,L]
Within QCD, the Sudakov form factor has been consid-
ered by many authors (see, for example, [25-29] and
referencestherein). In our case, the momentum transfer
sguared ¢f is positive and is constrained by the condi-
tion g < (m, — m,)?; therefore, attention is given here
primarily to a self-consistent analysis of radiative cor-
rectionsto thefirst order in o inthisregion. Theresult-
ing formulas have a unified analytic structure both at
positive and at negative ¢f values.

Since, within the covariant LFD scheme, intermedi-

ate-state particles are on the mass shell, we set pi2 = mi2

(for quark lines as well) in calculating radiative correc-
tions that correspond to the total contribution of the tri-
angle diagram (Fig. 7) and the total contribution of dia-
grams that describe the renormalization of externa
PHYSICS OF ATOMIC NUCLEI
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photon lines (Fig. 8) and the emission of soft gluons
(Fig. 9).

For the gluon field, we choose the Feynman gauge,
so that the gluon propagator is written in the form

i () =

where A is the gluon mass introduced formally.

Let us calculate the contribution of the triangle dia-
gram that corresponds to virtual-gluon exchange
between the m, and the m, quark. We have

—ieu(pz)r(”(qz)u(pl) = (-ie)’Ceu(p,)

pz"’R +m,
1—
I(zm (rrm Y g
bl+k+ml (=)

Xj

(pl+k) _ 2 vk }\ (pl)

where Cr = 4/3. Thus, the vector and the axial-vector
vertex function are determined in the form of integralsas

rO() = i 5.9s(K) s(k) C,
O 4’ O
A A 37
4 p, +k+m, p;+k+my 1
XJ'd Ky, AL 2 _2¥vo o
(P2 +K)"—my, (py+Kk)" —m; K —A
rOA) = 5 9s(K )ECF
4T[
A A (38)
4 p,+k+m, p,+k+m 1
XJ'd kyV 2 27pYs 2 21V 2 2"
(P2 + k) —m (pr+k) —m; k' =A

The Sudakov form factor for the vector and the axial-
vector vertex can be parametrized as

(v, 2

- V) Oy V) V)

= 0(p)| F§V,Ys —im— 0L — 0, P u(py),
(HA, 2

= U(pz)[FéA)vuvs—i %

O, F(A)—un(A)}u(pl).

In order to transform Eq. (37), we make use of the
Feynman relation

m, + m,

1
alaz...an
1 Xo_1 (41)
= (n=D)![d.. [ dx, 0t Xt ¥ X0
0 o (gt agXy ..+ agX,)
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Fig. 7. Diagram involving virtual-gluon exchange.

q q
k k
P1 P2 P1 1%}

Fig. 8. Diegrams renormalizing external quark lines.

q q
k k
P1 P2 P1 P2

Fig. 9. Diagrams involving soft-gluon emission.

and introduce the following notation for the spin struc-
ture of the amplitude in (36):

Spiny[Kk, Xy, X,]
= Yo (P2 + k+ M)y (1—ys)(Py + k+my)y,.

In performing four-dimensional integration with respect
to k, the right-hand side of (37) can be written as

(42)

1 Xy

2[dx, jdxzd“k[k2 +2[ PaxXp + Py(Xg—Xp) 1k

N1 —x)] 7 Spin [k, X, %]

4 2.2 2 2 -3 (43)
= 2J’dx1J'dx2d K[(K") = A"=A"(1-x,)]
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X Splnu[k - Ap! le X2] ’

where A, = X, Py, + (X = X)Py e

Further, the integration with respect to this four
dimensional variable reduces to evaluating integrals of
the two types

d'k 1 d'k K>
I(ZT[) [K—AZ—i0]’ I(21T) [K*— A —i0]’

» (44)

where A? = A + \2(1 - X))

The ultraviolet divergence in the second integra is
removed by the dimensional-regularization method,

1yl

I(Zn)4[k2 + A (2m)*2A2"
dk K
I(ZT[) [K2+ A2

(45)

(]

2 DA\ZD
T_c+iin@am+ 20,

em'l 2 0

We then proceed to perform integration with respect to x,
and x,; there, an infrared divergencein the limit A — 0

. . . 1
arisesonly inthe integral Zjldx dx,————
oPafo A%+ 2% (1-x,)
and stems from the region {x,, X,} — 0. In the limit
A2 —» 0, we can set Af = A2 + A\? over the entire inte-
gration domain 0 < X, < X, < 1 without changing the
structure of the infrared singularity.

For further integration, it is convenient to introduce,
instead of the Feynman variables x, and x,, the vari-
ables

X = Xy,
(46)
{ = X —0yXy,
where
O mi-mO O mi-mU
a1=%ﬂ+ - D O(z—l'Dl— - D(47)
O q q O
The integralswith respect to x; and x, then transform as
1 X1 1 ogx

ZJ'dXIIdsz[xl, X5] HZIdx J' diF[x,C]. (43)

0 X

The vector A, is expressed in terms of the new vari-
ablesas

Au = X p2u + (Xl - XZ) plu
= gy + (AP + 0P1) X,

A= g1 -,

(49)
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where

2 2.2
(my —my)

2 2
B _ %/\/1_2m1 +2m2 + = (50)
q (a)
The above auxiliary variables a,(g?), a,(g?), and
B(g?) have the following physical meaning: «/q_2 a, ()

and Jq_z |o,(g?)| are the energies of , respectively, the m,
and the m, particle (q = 0) in the c.m. frame, while

Jq_z B (¢?) is the absolute value of the 3-momentum of
each particlein thisframe. In the region corresponding
to the decay process m, —»= WWm,, the energy conserva-
tion law has the form

Jotay (@) = g+ Jofay(ad),
(Jofa) —m? = (Jo?B)”

Upon four-dimensional integration with respect to k,

the integrand [see Eq. (45)] involves the following
structures:

(51

J' Spi Z]
O A 1 1 1 1 1 10
— L In[ A} X=, (= X2—2, (x=, ZZ—Z, — 0
O 3 Ay v AL AL ALAD

Presented immediately below are integrals that are
taken of these functions F[x, {] and which arise upon
integrating (52) with respect to x and :

1 ogx
2(dx [ dg1 = 1,
J L
1 oy 2

2(dx dZIn = -3+ (a —B)In%ﬁg
I I Dpz 1 IZUZD

(200
(- B|)Inal—g+28|naai|1%%

1 ol
2J’dx I dZZ— = (g9 InE.nIT—]EL

-0y X

L g . M o By + ¢ (53)
ZIdXJXdeA—\Z = (q9) 5in l+B|a2|—BE’
el |1 Blad+ By
ZIdx_a[Xde = = ZqulnDJ1+[3|a2|—BD
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1 oyx

2J’dx [ deZ - & 1)|n$1€r
1 ogx :
1 9= Blag] + B
ZJ'dX_&[XdZZZA_\Z — q_[ —Bln 1+|3|0(z|_|3D}

Sincetheintegralsin (53) do not involve infrared diver-
gences, we everywhere set A2 = 0 (A> + A2 = A?) in the
above eguations. The most important (doubly logarith-

mic) term DL(cf) = ZJJdXJ"qz‘XdZ

resented in the form

5 can be rep-

DLIq = () ﬁx -

Loy +z o — 20

where y(f) = [B*() — A*/oP]'.
This doubly logarithmic term can be written in a
unified form for g> <0 and for 0 < @ < (M, — my)*:

_ z—liDo dz o —Z |0y + 7
—(Q)I( B)In

DL[a] = l%[sw} [Bl—_\ﬂ
(55)
] Jg e g

The function F[x rdZ In[1 + ] isreal for x > 1.

For positive g* values, we have a,, |a,| > 3 >y and
the doubly logarithmic term can be represented in the
form

DLIq] = (q) " BZ[q 1, (56)
where
24 _ a;+pB oy —B A
ol = In[ —Blog + B}In[mﬂnj

a, +B oy +P la,| + B

+ In[al—B @ —B}In[aﬁ B} (57)
2B 2B
+ 2|:[—O(1 = B} —2F[—|G2| = B}'
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2B
a, +p’

> -1, al functionsin (57) arereal-valued. In

Since the inequdlities ¢ > 0 hold for -

__2B

o +B
(57), weset A — 0 (y — P) in al expressions where
no divergence arises in this limit.

In the spacelike region ¢ < O, the relationsy > 3 >
|ay], |0, | hold and the doubly logarithmic term can be
recast into the form

3 2
QA LES

o 1}In[B;BO(1 + In[B;;(z}ln[B ;BO‘z}
_ZB:[B ;'Bal} N F[B ;BGZET
We note that the quantity Z[g?] determined by expres-

sion (58) isinvariant under the interchange of them, and
the m, particle and under the substitution o, < .

Finally, the expressions for the gluon corrections
(Fig. 7) are obtained by substituting (53), (56), (57),
and (58) into Egs. (52) and (42).

In order to takeinto account all gluon correctionsto
the first order in the strong-interaction constant a,, the
expression for the renormalized weak vertex must be
supplemented with the contributions of the diagrams
(Fig. 8) that renormalize the external quark propagators
and of the diagrams involving the emission of soft glu-
ons (Fig. 9).

The contributions (Fig. 8) that renormalize the
external quark propagators are independent of ¢? and
can be expressed in terms of the contributions of the
corresponding diagrams in Fig. 7 that are diagonal in
the quark flavor. Indeed, we consider the diagram in
Fig. 7 that is diagonal in the flavor of the m quark and
denote by F[¢?, m;, m,] its contribution and by Z[m] the
constant corresponding to the contribution of one of the
diagramsin Fig. 8. By virtue of vector-current conser-
vation, the relation F[g? =0, m, m] + 2Z[m] = 0 must
hold in thefirst order in a,, whence it follows that

+In[[3_a

Z[m] = ~3F[a’ = 0,m, m]. (59)
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Thus, the total contribution of the diagrams in Fig. 7
and 8 can be represented as

F[qz, my, my]

1 2 2 (60)
~S(FIq" = 0, my, m] + Fq" = 0, m,, my]),

Since Z[m] in (59) is associated with the vector vertex,
we then have

z[m] = Fy[m, m,q"=0]. 61)
The form factors FY and Ff transform as
Fo(q") —=F1(q")
LRG0, mym + B = 0 mumy),
Fo(q”) —=F1(q")
(63)

- 2IFYT” = 0, my, my] + Fy [ = 0, my, my]].
As aresult, Z[m] does not contribute to the form fac-
tors FY, F;/, Ff, and F?.

At ¢ = G = (M, — my)?, the form factors F,’ and

FiA are normalized as [gluon-emission diagrams,
which will be considered in the next section, do not
contribute at this g = (m, — m,)? valug] (see also [25])

Fy(dha) = 1425 32 -2+ ittt
FY (Gm) = § 32 MmN
P (aha) = 23 222 renEE g 2
Foldha) = 1+25 22 -3+ Emtnf, (o)
FL(G) = § 32w 2 InfLE],

4
2 (Oned) = § 75 A m)

mf + m§ —10mym, ELLTH 1
N 21—
m-m, (m —m,)

The ultraviolet divergence is independent of the
quark masses m; and m, and of ¢? and is canceled in
(60). The numerical procedure applied in (45) within
the dimensional-regularization method is validated in
(60). The functions F[¢?, m, m] involve an infrared

KONDRATYUK, TCHEKIN

divergence in the form of alogarithmic dependence on
the soft-gluon mass A. The infrared divergence is can-
celed upon taking into account soft-gluon-emission
diagrams. (While there are no free gluonsin nature, the
principle of quark—hadron duality treats a color-singlet
hadron as a system formed by constituent quarks and a
collinear hadron jet where the particle momenta can be
projected onto the hadron wave function.)

Let us consider radiative corrections to external
guark lines. In order to eliminate infrared divergences
in the total cross section, we must take into account
soft-gluon-emission diagrams (see Fig. 9).The expres-
sion for the cross section characterizing the emission of
soft gluons with a nonvanishing mass is well known
(see, for example, [30]). In the Feynman gauge, it can

be represented as
d’k
do®(q°) = —a.C.H P _ P [ Oq,
(@)= =% C 0~ Rl 2 (69)
where do,, is the differential cross section for the one-
body quark current T,y,(1 — ys)u;. As can be seen

directly from (65), the equality do( qfnax) = 0 holds at
0P = Ol = (M, —My)°.

Here, the gluon energy wx(k?) = JKZ+ 27 takesinto
account the fictitious gluon mass A. Upon restricting
thelimit of integration with respect to w(k?) by the con-
dition 0 < w(k?) < W,,,,, We obtain

a,C
aV(q%) = —F04(-2G[q’, my, my, A]
0 (66)
+G[q” = 0, m;, my, A] + G[q” = 0, m,, my, A]),
where
" 4Qk2dk  pLps
G 2,m,m,)\ =
R IR AT
1 (AN
1 d
= 4Tr(p1pz)‘|’dx—2{ | 2—E (67)
0 P 0 N& t+1

+o00 2
+J' POdE i|
0 NE +1(EP + Pg)
Thelast termistakeninthelimit A — 0 (wethen have

Whpax/A — +0). The first term can be reduced to the
form

WO/ A
[ =
0 Ez +1

(68)
2
- |n%")ﬁ<+ 1 + Pmax %m0
oA A2 Oax O
A0
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Thus, we have

Wmax 3

, _ d’k 1
Gla", my, m,, A] = (p.py) { e 2P (PK)

gi : E||32|| i E} In[zo;\max} (69)

am(pyp,) B-Lo
= 4T P1P n[
12@Bq2

S 1 1+ (L-r(x)"
—[dx= |
{XPZ(l—r(x))ﬂz n[ r?(x) }

Ooaad

where

2
r(x) = 2,
P2

P“(X) = ple+ pZu(l_X)- (70)

Expressions (67)—(69) specify gluon-emission-induced
corrections to the weak vertex for the quark current.

Let us now consider the g dependence of regular
contributions to o‘’(¢?). The quantity o‘”(¢f?) is not
invariant under Lorentz transformations, since integra-
tionin Eq. (67) is defined in a specific reference frame
where the gluon energy is constrained by the noninvari-
ant condition 0 < w(k? < w,,. In order to define
oM(p), itistherefore necessary to fix areferenceframe
where the 4-vector is specified. It seems that the
guasi-Breit frame, where the velocities of theinitial and
the final quark are equal in magnitude and opposite in
direction (see, for example, [31]), is the most conve-
nient for computing off-diagonal form factors. Thus,
we define the quantity Py(x) in (67) in the quasi-Breit
frame as
(m+m,)°—q’

2
Am.m, [ X2, + (X = X)my] ™. (71)

Po(X) =

The Sudakov form factor is specified in the region
—o0 < G < (m, —my)2, where §° = (p, - p,)?, p and p,
being the quark momenta ( pi2 = mi2 ); the boundaries of
the physical region are specified by the meson masses,
0<¢? < (M, — M,)% The sguare of the momentum
transfer is given by

CI2 = (P,— P2)2

- a-yue-dut] e -te

~2, 2 2y _ 2 2y 12 02
(% x k2) = (1—y>[M01(x. KE) =S Maa(x, km)}

1 2 (73)
_Y[Pm - )‘lpzm} .
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By way of example, weindicate that, for 0- — 0-, the
physical region of g is not covered by the region —o <

g’ < (m, —my2.

In the spacelike region ¢ < 0, one can aways
choose areference frame where g, = 0. In this case, we

have §° (6, x, k&) = ¢, since §° = (q, + w,(TF —TF))?

and ? = 0. The condition ¢? = §° makesit possible to
factorize the relevant diagram into the hadronic-current
diagram and the W—-meson propagator [20]. In the
timelike region ¢? > 0, there is no such possibility; for
this reason, the Sudakov form factor is calculated for a
given configuration of quarks (not mesons). Sinceinte-
gration over the intermediate quark configurations is
then performed for each meson configuration, the

Sudakov form factor, which now depends on dz (¢f, X,
ké ), isalso integrated in accordance with Eq. (23).

5. TRANSITIONS FORM FACTORS
AND PROBABILITIES
OF SEMILEPTONIC DECAYS

Meson wave functions are determined by solving
the relativistic wave equation

(Mo(k?) + YW = My™, (74)

As was indicated above, the dependence of the wave
functions on the variable (n - k) is disregarded in our
calculations.

We relied on the potential proposed by Godfrey and
Isgur [32]. The computational procedure used and the
choice of parameter values are given in [18]. For vari-
ous quark pairs, the parameter o that specifies the
smearing of the potential was set t0 Oy = Ok =
0.8 GeV, Opp+ = 1.0 GeV, and O+ = 1.2 GeV. For
the transitions B — D(D*), we also employed wave
functions obtained as solutions to the Schrodinger
equation (74) with the potential V,, and the confining
potentia V.4,

IC(S
= —+ — —
Vo =c+br 3 (75)

In order to take into account the difference between
the wave functions of the vector and the pseudoscalar

(0,0, ) bound state, the potential used in Eq. (74) was

V,q = CtDr,

supplemented with the spin-dependent potential
Vspin(kz) parametnzed as
2y - E ‘ 122
Vgin(K®) = -—-——mlmZSi [S;exp(—k°/a%),  (76)

where the parameter ¢ was determined for the (m;, m,)
guark systemin such away that the difference between
the masses of the corresponding 1~ vector meson and
the corresponding 0~ scalar meson was egual to its
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Table 1. Observables of the decays B — DIV, and B — D*|V, (partial decay widths are expressed in units of [Vy,[? x

10% s7%; |V, | was set to 0.037; and 15 = 1.60 x 10712 )

r(D) B (D), % r(D*) B(D*), % W r(D*)/F (D)
Model 1(S) 9.78 2.14 22.4 4.90 116 2.16
Model | 10.14 2.22 265 5.78 1.24 2.61
Model 11(S) 8.58 1.88 20.4 4.48 1.06 2.38
Model 1 8.87 1.94 24.2 5.28 1.16 2.73
QM:
WSB [2] 8.08 177 219 4.80 2.71
ISGW2 [6] 11.9 2.61 24.8 5.43 1.04 2.08
Jaus [4] 9.6 2.10 253 5.55 1.04 2.08
Faustov [8] 132 2.89 225 4.93 171
Melikhov [12] 8.7 1.90 232 5.08 1.28 2.65
DNKO [14] 9.09 1.99 231 5.06 115 2.54
SR
Narison 92 [33] 9+3 2006 17+6 37+13 0.98°15 19°0s
Experiment [34, 35] 195+ 0.27 505:025 | 124+0.16

physical value. To a high precision, this condition is
met at ¢ = 0.25 GeV?>.

With the Godfrey—Isgur potential, the partial widths
were calculated at m, = 5.1 GeV, m. = 1.70 GeV, m, =
0.45 GeV, and m= 0.33 GeV. For each of thetransitions
b—c,b—u,¢c— s andc— d, theform factors
were calculated for (a) the wave functions as obtained
by solving the wave equation and (b) the model Gauss-
ian wave functions with parameters set to the values
from [3].

The calculations were performed with allowance for
the Sudakov form factor (explicit expressions for it are
givenin Section 4) and also without it, S(@?) — 1. The
integrals that determine the Sudakov form factor are
dominated by the contribution from the region where
the gluon virtualities p? are modest; for this reason, a,
was set to 0.30 for all types of quark transitions (see
aso [25]).

In a calculation of the Sudakov form factor, the
parameter w,,,, has the meaning of the maximum pos-
sible energy of the emitted gluon or, what is the same,
of characteristic parton virtualities in a meson. For
quark states to be color-singlet (hadronic) both in the
initial and inthefinal state, it isnecessary to project the
emitted gluon onto the wave function of the initial or
the final meson; otherwise, a hard gluon with a charac-

teristic virtuality p? in excess of Iiké Owill lead, in the
initial or inthefinal state, to the formation of ahadronic
jet. Hence, the quantity w,,,, must be determined by
characteristic parton virtualities in a meson. If spin
interaction istaken into account, the wave function of the
initid meson may differ from the wave function of the

fina meson; however, our numerical caculations were
performed with the parameter w,,,, Set to the same value
for the scalar and for the vector meson (w,,,, = 0.5 GeV).

Tables 1-10 display the results of our calculations
performed with various wave functions of the initial
and the final meson and with or without allowance for
the Sudakov form factor. Listed immediately below are
further details on the models used in these calculations.

(i) Mode |I: The wave functions for the initial and
the final meson were determined as solutions to the
wave equation for the potential, the smearing parame-
ters, and the potential of spin—spin interaction as spec-
ified by the above formulas; no account was taken of
the Sudakov form factor.

(i) Model 1(S): The wave functions were deter-
mined as solutions to the wave equation; the Sudakov
form factor was included.

(iii) Model 11: Use was made of model wave func-
tions in the Gaussian parametrization Q(k) =
2

Nexp [_k?z} with the parameters B = By, , ; from
2

[6]; no account was taken of the Sudakov form factor.

(iv) Model 11(S): Use was made of model wave
functions; the Sudakov form factor was included.

In the tables, we aso quote relevant experimental
data and results obtained by other authors. The theoret-
ical approaches against which we contrast our results
include those that are based on quark models (QM),
sum rules (SR), and lattice calculations (Lattice). In
Tables 1, 5, 7, and 9, we present the results of the cal-
culations for the partial widths and branching fractions
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Table 2. Form factors for the decay processesB — DIV, and B — D*IV, at ¢?=0

F1(0) V(0) A(0) A0) V(0)/A4(0) A(0)/A4(0)
Model 1(S 0.69 0.73 0.62 0.54 1.19 0.88
Model | 0.73 0.74 0.70 0.59 1.06 0.84
Model 11(S) 0.63 0.67 0.56 0.52 1.20 0.92
Model I 0.67 0.68 0.64 0.55 1.07 0.87
QM:
WSB [2] 0.71 1.09 1.06
Jaus [4] 0.69 0.81 0.69 0.64 117 0.93
Melikhov [12] 0.684 112 0.68 1.08 0.89
DNKO[14] 0.683 0.677 0.623 0.556 1.08 0.89
SR:
Narison 92 [33] 0.62 + 0.06 0.58 £ 0.03 0.46 £ 0.02 0.53+ 0.09 1.26+0.08 1.15+0.20
Experiment (26 11855 0F | 0B sy

Table 3. Observablesof thedecaysB — DIV, and B— D*1v, (A) with and (B) without allowance for contact i nteraction

(the calculation of the branching fractions employed the parameter values of V| = 0.037 and 15 = 1.60 x 10712 5; no account
was taken of the Sudakov form factor)

BD), % BD*), % /Ty [(D*)/T (D) V(0)/A,(0) A5(0)/A,(0)
Model | A 2.22 5.78 1.24 2.61 1.06 0.84
Model | B 2.22 8.43 1.41 3.79 0.01 0.72
Model 11 A 1.94 5.28 1.16 2.73 1.07 0.87
Model 11 B 1.95 6.99 1.28 3.58 0.95 0.77
V=c+br—4ad3r (B) 221 9.02 1.49 1.96 0.69 0.02
V=c+br (B) 4.08 6.61 1.26 337 0.83 1.02

Table4. Observables of the decays B — DIV, and B — D*| v, without allowance for contact interaction in models B
and C (the calculations employed the parameter values of [V,,.| = 0.037and 15 = 1.60 x 107? g)

BD), % RBD*), % My I (D*)[T (D) V(0)/A(0) Ay(0)/A1(0)
Model | B 2.22 8.43 1.49 3.79 0.91 0.72
Model | C 2.22 7.33 1.45 3.30 0.91 112
Model |1 B 1.95 6.99 1.35 3.58 0.95 0.77
Model I C 1.94 6.32 1.32 3.26 0.95 0.81

for transitions into pseudoscalar and vector mesons and
the observable values of ' /[t and I (17)/I (0").

Inthefirst column of Tables 1, 5, 7, and 9, we quote
areference to atheoretical or an experimental study. In
the second and the fourth column, we give partial
widths (in V] units) with respect to semileptonic
decays into a pseudoscal ar and a vector meson, respec-
tively. It is convenient to compare these quantities with
the results of other theoretical studies. Thethird and the
fifth column contain the branching fractions for transi-
tions into a pseudoscalar and a vector meson, respec-
tively. The theoretical branching fractions % were
2001

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4

obtained by multiplying the widths in the second and
the fourth column by |Vi¢ Ty, , where the CKM-matrix

elements for the relevant transitions were taken to be
[Vie| = 0.037, [Vl = 0.003, |V = 0.975, and [V | = 0.24.
In the sixth and the seventh column, we quote the ratios
M /ryad MO — 1DHTO — 0), respectively.
These quantities are independent of the CKM-matrix
elements; therefore, they can be directly compared with
experimental data.

In Tables 2, 6, 8, and 10, we give the values of the
form factors F,(0), V(0), A,(0), and A,(0), aswell asthe
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Table5. Observables of the decays B — 1V, and B — peV, (partial decay widths are expressed in units of [V, [> x

10% s7%; |V, | was set to 0.003)

r(m RB(m), 10 r(p) RB(p), 10 MUy F(p)/T ()
Model (S 138 1.94 21.1 2.97 1.16 153
Mode | 148 2.07 23.7 3.32 1.33 1.60
Modél 11(S) 8.93 1.26 15.1 2.16 0.90 1.69
Model 1 9.18 1.29 165 231 1.02 1.80
QM:
WSB [2] 7.43 1.04 26.1 3.66 1.34 351
ISGW2 [6] 96 1.35 14.2 1.99 03 1.48
Jaus [4] 10.0 1.40 19.1 2.68 0.82 1.91
Faustov [10] 30+06 | 042+008 | 54%12 | 076+017 | 05%03 1.8+04
Melikhov [12] 7.2 1.01 9.64 1.36 113 1.34
DNKO [14] 8.72 1.22 132 1.85 151
SR:
Narison 92 [33] 30£01 | 042+001 | 333 4605 | 08803 11+1
Ball 93 [37] 51+11 | 072+0.16 12+4 1.7+06 | 006+002 | 24+08
Yang 97 [38] 54708 0.76.0% 31708 044707 048705 057+ 0.17
Lattice:
ELC 94[39] 12+8 1.7+12 13+12 18+17 1110
APE 96 [40] 8+4 1.2+06 2.0+0.9
UKQCD 98[41] 85y 1197050 165755 23°05 0.80 /0% 19703
Experiment B° [34] 1.8+ 0.6 25708 1.39

ratios V(0)/A,(0) and A,(0)/A;(0). A comparison with
experimental data is somewhat difficult here because
the form factors are not measured directly in experi-
ments. In view of this, they cannot be determined with-
out resort to some additional model assumptions.

The value of g = 0 stands out in describing various
hadronic processeswithin LFD. From the point of view
of the diagrammatic approach within the covariant
LFD scheme, there are no contact terms at g> = 0, so
that LFD calculations arethe most reliable there. More-
over, it turns out that, in the LFD diagram technique,
the hadronic current and the W-meson propagator can
be factorized at g* = 0. For negative ¢ far from the ana-
lytic singularities of the form factors, sum rules repre-
sent a good approximation to nonperturbative QCD.
For the semileptonic decays of hadrons, sum rules can
therefore be used in the region of small positive ¢?. On
the other hand, lattice calculations yield reliable results
for configurations in which the final meson has a small
recoil. In a sense, lattice calculations therefore supple-
ment calculations on the basis of sum rules. As to
results of lattice calculations for the form factors at the
point ¢ = 0, they involve alarge uncertainty, since the
form factors are continued in a model-dependent way
over the entire region of ¢ alowed in the decay pro-

cess. In al cases where there are results of lattice cal-
culations over the entire interval of ¢, the form factors
obtained within the covariant LFD formalism are con-
trasted against lattice results in the graphs.

5.1. Transitions B — Dlv, and B — D*lv,
(Contributions of the One-Body Current and of Contact
Interaction)

At present, the B — D(D¥*) transitions have been
best understood since the effective theory of heavy
quarks [48] is applicable to them. This makes it possi-
ble to determine many parameters of B — D decays
in a model-independent way. Corrections to the effec-
tive theory of heavy quarks are proportional to /A/m, or
A/m,, where A ~ Aqcp isthe expansion parameter in the
effective theory of heavy quarks. According to the Luke
theorem [49], corrections of order A/m,, . to the predic-
tions of the effective theory of heavy quarks for form
factors at the point g? = 0 vanish, so that the expansion
begins from (A/m, .)* terms. Nonetheless, corrections
to the effective theory of heavy quarks of order A/m.
may prove to be significant for integrated quantities
like the decay width.
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Table 6. Form factors for the decay processesB — 11V, and B —» plv, a ¢?=0

F1(0) V(0) A(0) A(0) V(0)/A1(0) A (0)/A(0)
Model 1(S 0.392 0.278 0.227 0.179 1.23 0.79
Modd | 0.380 0.321 0.273 0.217 1.18 0.79
Model 11(S 0.252 0.197 0.160 0.134 1.23 0.84
Model I 0.305 0.236 0.200 0.169 1.18 0.84
QM:
WSB [2] 0.33 0.33 0.28 0.28 1.2 1.0
ISGW2 [6] 0.09 0.27 0.05 0.02 54 0.4
Jaus [4] 0.27 0.35 0.26 0.24 1.35 0.92
Faustov [10] 0.20 £ 0.02 0.29+0.03 0.26 +£ 0.03 0.31+0.03 1.1 1.2
Melikhov [12] 0.293 0.215 0.169 0.154 1.27 0.91
DNKO[14] 0.293 0.216 0.170 0.155 1.27 0.91
SR:
Narison 92 [33] 0.23+£0.02 0.47+£0.14 0.35+0.16 042+0.12 1.3+£0.6 1.2+£05
Ball 93 [37] 0.26 + 0.02 06+0.2 05+0.1 04+0.2 12+04 0.8+04
Yang 97 [38] 0.29+0.04 0.19+0.01 0.07+£0.01 0.16 £ 0.01 2704 23103
Ball 98[42] 0.305+ 0.05 0.34£0.05 0.26 £ 0.04 0.22£0.03 1.20+£0.15 0.85+0.13
Lattice:
ELC 94 [39] 0.28+0.14 0.37+£0.14 0.24 £ 0.06 0.39+£0.24 1.4+£05 15+0.8
APE 96 [40] 0.29 + 0.06 0.45+0.22 0.29+0.16 0.24 + 0.56 16+0.8 08+15
UKQCD 98 [41] 0.27+0.11 0.35 000 0.46700 0.26'5%% 1.3+0.2 0.96 + 0.20

Table 7. Observables of the decays D — KIV, and D —= K*IV, (partial decay widths are expressed in units of [V x
10'% sL; the cal culations were performed at [V| = 0.975)

rK) BK). % F(K*) BK*), % /Ty MK/ (K)
Model (9 10.44 4.12 5.63 2.22 1.26 0.54
Modef | 9.77 3.85 6.14 242 1.32 0.63
Model [1(S) 10.05 3.97 5.74 2.27 1.20 0.57
Model 1 9.38 3.70 6.25 2.47 1.26 0.67
QM:
WSB [2] 7.95 3.14 8.13 3.21 134 1.02
ISGW?2 [6] 105 4.14 5.7 2.25 0.94 0.54
Jeus [4] 9.6 3.79 5.5 217 1.33 0.57
Faustov [8] 7.43 2.93 4.83 1.91 1.05 0.65
Melikhov [12] 9.15 36 5.66 2.2 131 0.62
DNKO [14] 9.88 3.90 6.70 2.64 1.30 0.68
SR:
BBD 91 [43] 6.8+ 1.4 2,68+ 0.55 39+13 | 154+051 | 0.86+006 | 057+0.5
Yang 97 [38] 8.65¢ 342 40+08 | 158+0.32 | 0.87+020 | 047:0.16
Lattice:
Lubicz 92 [44] 6.1%16 241+ 0.62 53:09 | 208+037 | 151+027 | 0.85+0.22
ELC 94 [39] 6.8+ 3.4 268+ 1.34 6022 | 237+087 | 127+029 | 092+055
UKQCD 95 [45] 741704 291071 60708 | 237+067 | 1.06:0.16 | 0.86%0.28
APE 96 [40] 96x21 9.1£20 73£19 | 69+018 | 12:03 | 0.76%0.20
Experiment [46] D° 378x012%025 237+0.29 0.62+0.08

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001
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Table 8. Form factors for the decay processesD — KIV, and D —= K*1V, at g?=0

F1(0) V() A 0) A0) V(O)/AL0) | Ax(0)/AL(0)
Model I(S) 0.82 0.88 0.61 0.44 1.44 0.73
Model | 0.81 0.84 0.65 0.45 1.30 0.70
Model 11(S) 0.77 0.87 0.60 0.45 1.46 0.75
Model II 0.77 0.83 0.63 0.46 131 0.72
QM:
WSB [2] 0.76 1.27 0.88 115 1.36 1.48
ISGW2 [6] 0.76 1.10 0.80 0.80 1.37 1.0
Jaus[4] 0.78 1.04 0.66 0.43 1.58 0.65
Faustov [§] 0.73 0.62 0.63 043 0.98 0.68
Melikhov [12] 0.78 0.77 0.64 0.46 12 0.72
DKNO [14] 0.78 0.777 0.633 0.464 1.23 0.73
SR:
BBD 91[43] 0.60/ 01 110+0.25 | 050+0.15 | 0.60+0.15 22+0.2 12+0.2
Yang 97 [38] 0.75+0.12 11+01 | 054+004 | 067+008 | 204+019 | 1.24+0.15
L attice:
Lubicz 92 [44] 063+008 | 086+010 | 053+003 | 019+021 | 062+0.07 | 036+0.40
ELC 94[39] 065+0.18 | 095+034 | 063+014 | 0.45+0.33 15028 | 07+04
APE 96 [40] 0.78+008 | 108+022 | 067+011 | 049+034 | 16+03 0.7+04
UKQCD 95 [45] 0.67 008 101058 0.70'5% 0.66 935 1470% | 09:02
Gupta 96 [47] 071+004 | 128+007 | 072+003 | 084+003 | 178+007 | 068+0.11
Experiment [34] D° 0.76+003 | 107009 | 058+003 | 041005

Table9. Observables of the decays D —» 11V, and D —= plV, (partial decay widths are expressed in units of [Vyf? x
10'° sL; the cal culations were performed at [V 4| = 0.24)

r(m B(m, 10°° r(p) B(p), 10°° U, r(p)/r(m
Model 1(S) 156 3.73 6.54 156 1.29 0.42
Model | 14.4 3.44 6.83 1.62 1.34 0.47
Model 11(S) 16.0 3.83 6.34 152 1.19 0.40
Model 1 145 3.47 6.57 157 1.24 0.46
QM:
WSB [2] 14.0 3.35 138 3.30 0.91 0.98
ISGW2 [6] 9.8 2.34 4.9 2.89 0.67 05
Jaus[4] 8.0 191 33 0.79 122 0.41
Melikhov [12] 12.8 3.06 5.37 1.28 1.27 0.41
DKNO [14] 153 3.66 7.85 1.88 0.51
SR
Ball 93[37] 80+17 | 191+004 | 24+07 | 057+017 | 03%01 | 031%0.1
Yang 97 [3§] 13475, 325w 2875% 0.67 7536 03555 | 021+0.10
Lattice:
Lubicz 92 [44] 10+ 4 0.24%0.10 82 019+005 | 186+056 | 0803
APE 96 [40] 162+41 | 039£010 | 122+41 | 0.29%0.10
UKQCD 95 [45] 106+37+10| 039£010 | 87%22 | 021+005 | 10502 | 082+031
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Table 10. Form factors for the decaysD — 1V, andD —» plV, a¢?=0

F1(0) V(0) A(0) A0) V(0)/A(0) A(0)/A1(0)
Model I(S 0.76 0.79 0.54 0.37 1.46 0.68
Model | 0.75 0.76 0.57 0.38 134 0.68
Model 11(S 0.72 0.75 0.51 0.37 1.46 0.73
Modé I 0.71 0.72 0.53 0.39 134 0.73
QM:
WSB [2] 0.69 123 0.78 0.92 1.58 1.18
Jaus [4] 0.67 0.93 0.58 0.42 1.60 0.72
Mélikhov [12] 0.68 0.66 0.50 0.37 132 0.74
DKNO [14] 0.681 0.663 0.502 0.366 1.32 0.73
SR:
Ball 93[37] 05+£01 10x+0.2 05+£0.2 04+£01 20+£0.8 0.8+£0.3
Yang 97 [38] 0.65+0.10 0.98+0.11 0.34+£0.08 0.57 £ 0.08 2.88+ 0.68 1.68+0.39
Lattice:
Lubicz 92 [44] 0.58 £ 0.09 0.78+0.12 0.45+0.04 0.02+0.26 17+03 0.04 £ 0.50
UKQCD 95 [45] 0615 09597 0.63°¢ 051558 15+0.5 0.81+0.25
Gupta 96 [47] 0.56+0.08 1.18+0.15 0.67 +0.07 0.44+0.24 1.77+£0.16 0.67+0.31

Tables 1 and 2 show the results of the calculations
for B— D and B — D* transitions. For B — D
transitions, the partial decay width calculated within
the covariant LFD scheme is (B — D) = 9.78 x
102V, s7! (see Table 1). By using this result together
with the experimental value of B(B — D)., = (1.95 £
0.27)% [34], we obtain |V,,.| = 0.0353 £ 0.0024. A cal-
culation within the covariant LFD approach yields
(B —» D*) = 22.4 x Ny|* (see Table 1). From this
result and from the experimental value of BB —
D¥)eypr = (5.05 + 0.25)%, we deduce that [Vy,.| = 0.0387 +
0.0009.

The tables gquote the experimental branching frac-
tions (D) and B(D*) averaged over the decays of B,
B+, and B, mesons. Accordingly, the calculation of the
theoretical branching fractions relied on the value of
Tg = 1.60 x 102 s, Although the value quoted by the
Particle Data Group for the branching fraction of the
transition B — D~(2010)*1V, is B(D(2010)*) =
(4.60 £ 0.27)% [34], the latest experimental datayield,
on average, B(D~(2010)*) = 5.5%: (5.08 + 0.21 *
0.66)% [50], (5.53 £ 0.26 + 0.52)% [51], and (5.52 +
0.17 £ 0.68)% [52]. The value of ' /Tt = 1.16 (see
Table 1) agreeswith the experimental result 1.24 £0.16
[35] within the errors. The partial transition width cal-
culated as afunction of ¢ isdisplayed in Fig. 10, along
with available experimental data [53]. The quantity
[Vie| was set to 0.037. We can see that the theoretical
curve faithfully reproduces the experimental data.

The effect of the Sudakov form factor is quite signif-
icant for B-meson decays (more significant than in the
PHYSICS OF ATOMIC NUCLEI
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case of D-meson decays—see bel ow), because the width
of theinterval of physical ¢ valuesis much greater than

the final-meson (quark) mass: qiw = 11 GeV? for

B — D(D*) transitionsand g, =25 GeV2forB—~
TIp) transitions. It can be seen from Tables 1, 2, 5, and
6, however, that thiseffect iscompensated in part by the

normalization of the Sudakov for factor at o = qfnax .
Since the probability of the B — D* transitions is
three times as great as the probability of theB —~ D
transition, the accuracy of an experimental determina-
tion of B(B — D*) ishigher.

The values obtained for [Vi|, [Viclpy) = 0.0387 *
0.0031 and [Vic|p+ =0.0394 + 0.0050, comply with
the results of the calculationsfrom [12, 14] and with the
values quoted in [34]. Within quark models, the value
determined for |V,.| from data on inclusive decays are
somewhat greater than the value extracted from an
analysis of exclusive decays.

Figure 11 displays the calculated pseudoscalar and
axial-vector form factors (EF1 and £, respectively),
which were obtained from F, and A, by the formulas

-1

2 U
>0 Ai(N),
g

M1+ MZD q
2/MM,0 (M, +M,)
M; + M,

2. /M M,

£™m) =
77

£n) = Fi(n).
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dr8 = 2"/dg?, ns~! GeV-2

1
2 4 6 8 10
qz, GeV?

Fig. 10. Differential width dr" /dg? with respect to the decay
B — D*|v,. Experimental datawere borrowed from [53].
The parameter |V,.| was set to 0.037.

& =PIVl
0.101

0.06

0.02

A
Fig. 11. Form factors (solid curve) & *() and (dashed

F
curve) € *(n) asfunctionsof n = V,V, . Points correspond-

ing to the Isgur—Wise function &(n) were obtained by pro-
cessing experimental data on the decays (closed circles)
B —— D*lv, [54] and (closed boxes) B — DlIv, [55]. The
matrix element [Vy| was taken to be 0.037.

The form factors EAl and EFl are represented by,
respectively, the solid and the dashed curve. The figure
also shows experimental values (points) obtained by
processing data for the differential width drP*/do? [54]
with respect to the transition B — D*lv, and the dif-
ferential width dP/dg? [55] with respect to the transi-
tion B— Dlv;. It can be seen that b — ¢ quark tran-
sitions are described reasonably well in the limit of the
effective theory of heavy quarks and that the resultsin
this limit comply with the results of the calculations
within the covariant LPD approach.

In general, acorrect comparison of the results of the
calculations for B — D* transitions with experimen-

KONDRATYUK, TCHEKIN

tal datais that which is performed directly for the dif-
ferential width dI'/dg? (see Fig. 10).

The problem of assessing the degree to which the
physical form factors obtained by taking into account
only the one-body current J©©B® make it possible to
reproduce experimental data and the degree to which
these form factors comply with other models deserves
a dedicated consideration. Since, in the proposed
approach, the physical form factors are determined in
terms of the matrix elements of the currents J, and J;,
such an analysis would enable us to estimate the contri-
bution of the contact interaction to LFD diagrams. Itis
convenient to perform this analysis for atransition of a
heavy quark into a heavy one by considering the exam-
ple of B — D and B — D* transitions, where the
results can be compared with the predictions of the
effective theory of heavy quarks.

Table 3 displays observables of the decays B —»
DIv, and B — D*Iv, for various options of potential
in EQ. (74). The calculations were performed (A) with
and (B) without allowance for contact interaction. In
these cal cul ations, the wave functions were determined
as solutions to the wave equation (model 1) for the con-
fining potentials V,.4(r) = ¢ + br and V, = ¢ + br —
40/3r (75). Mode 11 relies on model wave functions.
The partial widths with respect to the decays B —»
Dlv, and B— D*1v, were computed at |V,,| = 0.037.

It can be seen from the tables that, for atransition of
a pseudoscalar meson into a pseudoscalar one, the
inclusion of contact interaction has virtually no effect

on the results of the calculations: B(B —= DIV,) =

2.22% in model | and BB — DIV,) = 1.94% in
model 11, the experimental value being (1.95 + 0.27)%.
The results of the calculations with and without allow-
ance for contact interaction differ significantly for a
trangition that is off-diagonal in spin, in which case the
branching fractions 9B(D*) in models A and B differ by
a factor of about 1.5: B(D*)(A) = 5.78% in model A
and B(D*)(B) = 8.43% in modd B. In addition, the
ratio | /It in model B is greater by about 15%. These
effects are due primarily to the fact that, without allow-
ance for the contact interaction, the form factor A,,
which determinesthe behavior of the differential width,
is significantly overestimated, which can be seen from
a comparison of the data in the last two columns of
Table 3, which contain the form-factor ratios V(0)/A,(0)
and A,(0)/A;(0). The use of a linear potentia leads to
close values for integrated quantities. The results
obtained with the potential V, are less satisfactory,
because the term 4a./3r leads to an overly sow
decrease of the wave function in the momentum repre-
sentation.

One of the problemsin the approach based on model

B, where use is made of only the one-body current and
where the contact interaction is disregarded, is that it
PHYSICS OF ATOMIC NUCLEI
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yields a dightly exaggerated value for the branching
fraction of thedecay B— D*|v, . At the most reason-
able values of the potential parameters and |Vy| =
0.037, we have B(B — D*) = 8.43%, which exceeds
considerably the experimental value of (5.05 £ 0.25)%.
Obviously, the inclusion of the Sudakov form factor
cannot reconcile the results of the calculations with the
experimental value. The theoretical value of B(B —»
D*) can be reduced by introducing a D-wave admixture
in the D*-meson wave function. For a spin-1 particle,
the wave function is given by expression (16). The
magnitude of the D-wave admixture depends on the
coefficient ¢ in the vertex function of the 1~ meson:

(P1—P2)y
Ao s e

In the case of the Swave, ¢ = 1. Zero value of ¢ corre-
spondsto the presence of a D-wave admixture. We have
additionally calculated the branching fraction of the B
— D* decay under the assumption of y, dominancein
the D* — c¢Q vertex function—that is, at c = 0. The
results of this calculation are quoted in Table 4. By
model C, we mean that which assumes ¢ = 0. The
results in Table 4 were obtained without allowance for
the Sudakov form factor. At the most reasonabl e values
of the parameters in a potential of the Godfrey—sgur
type (model | C), we have B(B —= D*1V,) = 7.33%,
which is in better agreement with the experimental
value, but which is gill considerably exaggerated.
Thus, a description of the branching fraction in the
model employing only the one-body current requires
the presence of a D wave in the D* meson. In the case
of c=0, thisadmixtureis0.5%. The expressionsfor the
partial widths and branching fractions, whose values
are quoted in Table 4, were obtained without allowance
for the Sudakov form factor. Even upon the introduc-
tion of a D-wave admixture in the wave function of the
1--meson, we have obtained exaggerated partial-width
values not complying with experimental data.

(78)

Model B takes into account only the Swave in the
final D* meson, while model C correspondsto y, dom-
inance in the spin structure [see Eq. (78)].

Similarly, the introduction of D-wave admixturesin
the wave functions of the final-state p and K* mesons
for the transitionsb — u, ¢ — s, and c — d leads
to thereduction of the relevant form factors and branch-
ing fractions. However, contact-interaction-induced
changes in the transition form factors are sufficient in
the sense that the form factors and widths obtained
within the covariant LFD formalism become consistent
with experimental data. In view of this, it is not neces-
sary to introduce a D-wave admixture in the vector-
meson wave function.
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5.2. TransitionsB — 1dv, and B — plV,

The decays of B mesons into light 1tand p mesons
make it possible to analyze the poorly known CKM-
matrix element |V,,|. Presently, measurement of this
matrix element is one of the most important problems
in heavy-quark physics.

Theresults of the calculations with the various wave
functions (model |, model 1) are quoted in Tables 5 and
6, along with the results from other theoretical studies.
The parameters of the Sudakov form factor were taken
to be o, = 0.30 and w,,,, = 0.5 GeV. From these tables,
we can see that the inclusion of the Sudakov form fac-
tor and the choice of model wave functions affects the
results of the calculations to a degree below that which
might have been expected for this quark transition.

The partia width calculated within the covariant
LFD scheme for the transition B° — 1rl*y, into a
pseudoscaar stateisM(B° — 1) = 13.8 x 102V, [ s~
(Table 5), the corresponding branching fraction being
BB — 1) =22.1 x |V, >. Using this result together
with the experimental value of BB — 1) = (1.8 £
0.6) x 10*, weobtain |V,,| = (2.9 £ 0.5) x 103. The par-
tial width with respect to the transition into a vector
state is[(B* — p) = 21.1 x 102V, |* s7'. On this
basis, |V,,| can be etimated at |V,,,| = (2.8 £ 0.4) x 103,
Within the experimental errors, the predictions of the
covariant LFD approach for |V,,,| on the basis of dataon
the transitions B — 1tand B —~ p are consistent.

The results of our calculations for the B — mmand
B — p form factors are presented in Figs. 12-14,
along with the results of the lattice calculations
reported in [56, 45, 39] (see dso [57]). It can be seen
that, within the errors, our results agree with those lat-
tice data.

In Figs. 15 and 16, the normalized form factors
V(g»)/V(0) and A, (?)/A,(0) for the B — p~ transition
are contrasted against the pole parametrization

1
(1 - qz/Mpole)n

which is traditionally used in the literature to continue
form factorsto the region of positive ¢ (see the review
article of Stech [58]). The solid curves represent the
normalized form factors V(g?)/V(0) and A,(g?)/A(0)
calculated in the present study, while the dashed curves
correspond to the pole parametrization (79) at n= 1 and
2. The parameter M,,,;. is the minimum mass of a reso-

nance that can be formed from the bd system, Moote =
Mg = Mg = 5.28 GeV. Since the region of momentum
transfers squared g” iswide for B —» 11(p) transitions,
the applicability of the pole approximation over the
entire region 0 < > < (M, — M,)? is questionable.
Indeed, the form-factor Slope with increasing ¢? is
determined, in quark models, by the integrated overlap

(79)
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Fig. 12. Form factor F(q?) for the B — 1t transition.
The results of lattice cal culations were borrowed from [56].

of the wave functions of theinitial and the final meson;
therefore, it is directly governed by the parameters of
the wave functions.

It can be seen from the figures that only at ¢ values
in the vicinity of zero isit possible to obtain reasonable
agreement with the model parametrization of the form
factorsat ny = 1 (lower dashed curvesinFigs. 15, 16) and
n, =N, + 1= 2 (upper dashed curvesin Figs. 15, 16).

5.3. Transitions D — Klv, and D — K*lv,

The CKM-matrix element |V| isrelated to [Vq| by
the unitarity condition (see the review article of Caso
et al. [34]) and is one of the most accurately measured
ones, which is associated, among other things, with the
proximity of |V|to unity and with thefact that the tran-
sitionsD — Klv, and D — K*|v, are not suppressed
by the Cabibbo selection rule.

VB = P(g?)

A

0.75

0.25

5 10 15

1
20
q%, GeV?

Fig. 13. Form factor V(q?) for the B® — p~transition. The
results of lattice calculations were borrowed from (closed
boxes) [45] and (closed circles) [39].
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The D° — K (K#¥)I*v, semileptonic partial
widths and branching fractions are quoted in Table 7.
Table 8 gives the form factors F,(0), V(0), A,(0), and
A,(0) calculated here for model wave functions and for
wave functions determined as solutions to the wave
equation. The parameters of the Sudakov form factor

were chosen to be 0(:f " =0.30and W, = 0.5 GeV.

Tables 7 and 8 also display relevant experimental
values and the results obtained in other theoretical stud-
ies based on lattice calculations, sum rules, and quark
models. Within the errors, there is agreement with the
entire body of experimental data. The inclusion of the
Sudakov form factor has a modest effect (of 5 to 10%)
on the D — K partial widths (D — K): ['(K) =
9.77 x 10|V and 10.44 x 10|V s in model |
without and with allowance for the Sudakov form fac-
tor, respectively. Thisis explained by a relatively slow
variation of the Sudakov form factor in the region 0 <
o’ < (Mp — Mg k) =1 GeV2,

The D — K branching fraction predicted in our
model isB(D — K) =4.12 x 102 |V[>. By using the

experimental valueof B(D° —» K 1v,)=(3.78 £0.12 %

0.25)%, which was obtained by the CLEO collabora-
tion [46], we obtain [V| = 0.934 + 0.015 £ 0.030.

For the transition to the K*~ final state, the experi-

mental errors are somewhat greater, B(D° —» K" 7) =
(2.37 £ 0.29) x 107 (see Table 7). A comparison with

the theoretical result BD° —~ K*7) = 222 x
1072V yields [V| = 1.01 + 0.06.

Theform factors F,(¢?) and A,(g?) asfunctions of ¢
are shown in Figs. 17 and 18, respectively, along with

AR = P(g?)
07k

0.3 /

5 10 15

1
20
qz, GeV?

Fig. 14. Form factor A,(q?) for the B —» p~ transition.
The results of lattice calculations were borrowed from
(closed boxes) [45] and (closed circles) [39].
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V(gHIV(0)
1
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3.5F / !
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L /
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Gl - /I 1 1 1
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Fig. 15. Normalized form factor V(qz)N(O) for the transi-

tion B — p~ (solid curve). Also shown in thisfigure is
the pole approximation according to Eq. (79) atn=1and 2
(lower and upper dashed curves, respectively).

FP =K%

1.75

1.25

0.75

0.25

1
1.75
g%, GeV?

1 1 1
0.25 0.75 1.25

Fig. 17. Form factor F,(q?) for the transition D — Klv;.
Points represent the results of |attice cal culationsfrom [59].

the results of lattice calculations performed for these
decaysin [40, 59].

It can be stated that, by and large, the form factors
calculated here are in good agreement with available
experimental data and with the results of lattice calcu-
lations. For ¢ — stransitions, both theinclusion of the
Sudakov form factor and the choice of wave functions
affect the results of the calculations only slightly. The
latter is associated above al with the fact that the final
meson has alow recoil over the entire interval of phys-
ica ¢ values. As a consequence, the form factors are
calculated predominantly in the region of the maximum
Vol. 64 No. 4
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Fig. 16. Normalized form factor Al(qz)/Al(O) for thetransi-

tion BY — p~ (solid curve). Also shown in this figure is
the pole approximation according to Eq. (79) atn=1and 2
(lower and upper dashed curves, respectively).
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0.2

1
0.8
g%, GeV?

Fig. 18. Form factor A,(q?) for thetransition D —— Kx*lv,.

Points represent the results of lattice calculations from
(closed boxes) [40] and (closed circles) [59].

overlap of the wave functions, so that they are unaf-
fected by a decrease in the overlap of the wave func-
tions of the initial and the final meson with increasing
g?. Within LFD, the center of mass of a bound system
does not coincide with the rest frame of acomposite par-
ticle; therefore, the overlap of the wave functions of the
initial and the final meson is maximal in the o = (m, —
m,)? frame and not in the frame wheretheinitial and the

final meson are at rest [of = O = (M, — My)?].
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Fig. 19. Form factor F,(q?) for the transition D — Ttlv;.
Points represent the results of |attice cal culations from [59].
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Fig. 20. Form factor A,(q?) for thetransition DY —» p7lv;.
Points represent the results of |attice cal culations from [45].

A few comments on the value of |ff (0)]exp = 0.70,
which is quoted by the Particle Data Group [34] as an
experimental value, and on the value of V| = 1.04
0.16, which follows from the former, are in order here.

The value of ff (0) presented in [34] was obtained

under the assumption that the form factor obeys the
2

M
model dependence fy (¢?) = f (0)——2—, where
pole —

Mo = 2.1 GeV, in which case the D — Klv, decay
width is expressed in terms of |V| and |fi< (0)| as

11 S—l) .

2
M(D— Klv) = |£0)| |V.J3(1.54 x 10
( v) = £ Ved )

KONDRATYUK, TCHEKIN

Along with the parameter M., the product [V | x
|5 (0)] = 0.531 + 0.027 is determined from a fit to

experimental data. If one usesthe value of ff 0)=0.7=
0.1 from [2, 60, 61], the prediction for |V| appears to
be |V | = 1.04 £ 0.16. It israther difficult to assess the
model uncertainty in thisdetermination of |V|. In[34],

Vcd

the uncertainty in determining the ratio was esti-

Cs

mated at +14%(theor). Thus, the values of V| and
ff (0) from [34] may serve only as guidelines.

5.4. TransitionsD — 11V, and D — plV,

For some observables of theD — mandD — p
transitions, including their partial widths and branching
fractions, as well asfor the relevant form factors at the
point ¢ = 0, Tables 9 and 10 display the results of the
calculations performed within the covariant LFD for-
malism on the basisof models| and I1. Theseresultsare
contrasted against available experimental data and
against the results of lattice calculations and calcula
tions relying on sum rules and quark models. In calcu-
lating the branching fractions quoted in Table 9, use
was made of the value of |V4| = 0.24. The parameters
of the Sudakov form factor were chosento be a,=0.30
and w,,,, = 0.5 GeV. Theinclusion of the Sudakov form
factor reduces the D — p branching fractions by
about 10% and increases the D — 1t branching frac-
tions by nearly the same value. In just the same way as
for D — K(K*) transitions, the dependence on the
choice of model wave functions isinsignificant.

The D° —» 11+, partial width calculated within
the covariant LFD formalism is[(D? — 1) = 15.6 x
101V s7! (see Table 9). If one considers that the DO-
meson lifetime is To = (0.415 £ 0.004) x 10712 s, the

[Veq| value predicted in our model is V4| = 0.219 +
0.047. The value of |[V4| = 0.28 £ 0.10 is obtained by
using the model prediction I'(p) = 6.54 x 10'°V4[? s7!
(see Table 9) together with the experimental D® — p~
branching fraction B(p~) = (2.2 £ 0.8) x 1073.

The D — mttransition form factor F,(g?) is shown
in Fig. 19, aong with the results of the relevant calcu-
lations from [59]. Theresults of the calculationsfor the
form factor A,(g?) areillustrated in Fig. 20, which also
displays the predictions of the lattice cal culations from
[45] for thisform factor. We can see that the agreement
with the | attice calculations for the form factor A,(¢f) is

quite reasonable over the entire accessible region of g?.
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6. CONCLUSION

The semileptonic decays B — D(D*)Iv,, B —~
(mplv,, D — K(K*IV,, and D — 11p)IV, have
been analyzed within the covariant LFD approach. The
use of the covariant LFD parametrization has enabled
usto separate self-consistently physical and unphysical
contributions to the form factors under study. For the
above decays, we have caculated some important

observables and performed a comparison with avail-
able experimental data.

The meson wave functions have been determined as
solutions to the relativistic wave equation for two
quarkswith allowance for spin—spin interaction and for
the relativistic smearing of the interaction potential.
The inclusion of spin—spin interaction in solving the
wave equation has led to wave functions that behave
differently for the pseudoscalar and the vector meson.

For the case of different quark massesm, and m,, an
analytic expression for gluon corrections to the elec-
troweak vertices for the vector and the axia-vector
quark current has been obtained in the region —o < ¢ <
(m, — my)%. A cancellation of the infrared divergence is
achieved upon summation of al diagrams involving
gluon corrections in the first order in ag. It has been
shown that the inclusion of such corrections to the
decay widths of heavy mesons is of importance for
quantitatively describing experimental data.

By considering the example of the B — D(D*)lv,
transition form factors, we have analyzed the effect of
contact interaction, as well as the effect of introducing
a D-wave admixture in the vector-meson wave func-
tion. The statement that the inclusion of contact inter-
action is more important for 0- — 1~ transitions than
for spin-diagonal 0- — 0~ transitions has been veri-
fied numerically. For each type of semileptonic decays,
we have investigated the effect of the Sudakov form
factor and the effect of the choice of meson wave func-
tions on the results of the calculations. Our results have
been compared with the results of other theoretical
studies based on relativistic quark models, sum rules,
and lattice calculations,

It has been shown that the semileptonic decays of
mesons featuring b and ¢ quarks can be reasonably
described within the covariant LFD approach, provided
that the Sudakov form is taken into account. From an
analysis of the entire body of dataonthe0- —= 0~ and
0~ — 1~ semileptonic decays of B and D mesons, we
have determined the CKM-matrix elements V.|, [Vuul,
V|, and Vgl Within the experimenta errors, the
resulting values are intrinsically consistent and comply
with available world-averaged data.

ACKNOWLEDGMENTS

We aregrateful toV.A. Karmanov, |. M. Narodetskii,
Yu.A. Simonov, K.A. Ter-Martirosyan, and R.N. Faus-
tov for stimulating discussions.

PHYSICS OF ATOMIC NUCLEI

Vol. 64 No.4 2001

751

REFERENCES

1. M. B. Voloshin and M. A. Shifman, Yad. Fiz. 45, 463
(1987) [Sov. J. Nucl. Phys. 45, 292 (1987)]; 47, 801
(1988) [47, 511 (1988)].

2. M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C 34, 103

(1987); 29, 637 (1985); M. Bauer and M. Wirbel,

Z. Phys. C 42, 671 (1989).

N. Isgur, D. Scora, B. Grinstein, and M. B. Wise, Phys.

Rev. D 39, 799 (1989).

W. Jaus, Phys. Rev. D 41, 3394 (1990).

R. Singleton, Phys. Rev. D 43, 2939 (1991).

D. Scoraand N. Isgur, Phys. Rev. D 52, 2783 (1995).
V. L. Morgunov and K. A. Ter-Martirosyan, Yad. Fiz. 59,
1279 (1996) [Phys. At. Nucl. 59, 1221 (1996)].

R. N. Faustov, V. O. Galkin, and A. Y. Mishurov, Phys.
Rev. D 53, 1391 (1996).

9. R. N. Faustov, V. O. Galkin, and A. Y. Mishurov, Phys.
Lett. B 356, 316 (1995).

R. N. Faustov, V. O. Galkin, and A. Y. Mishurov, Phys.
Rev. D 53, 6302 (1996).

11. D. Melikhov, Phys. Rev. D 53, 2460 (1996); Phys. Lett.
B 380, 363 (1996).

12. D. Mélikhov, Phys. Lett. B 394, 385 (1997).

13. I. L Grach, I. M. Narodetskii, and S. Simula, Phys. Lett.
B 385, 317 (1996); N. B. Demchuk, I. L. Grach, I. M. Na
rodetskii, and S. Simula, Yad. Fiz. 59, 2235 (1996)
[Phys. At. Nucl. 59, 2152 (1996)].

14. N. B. Demchuk, P. Yu. Kulikov, I. M. Narodetskii, and
P.J. O’'Donnell, Yad. Fiz. 60, 1429 (1997) [Phys. At.
Nucl. 60, 1292 (1997)].

15. B. Konig, J. G. Korner, M. Kramer, and P. Kroll, Phys.
Rev. D 56, 4282 (1997).

16. D. Ebert, R. N. Faustov, V. O. Gakin, et al., Z. Phys. C
76, 111 (1997); D. Ebert, R. N. Faustov, and
V. O. Galkin, Phys. Rev. D 56, 312 (1997); Phys. Lett. B
434, 365 (1998); hep-ph/9906415; hep-ph/9912357.

17. A.Yu. Anismov, P. Yu. Kulikov, I. M. Narodetskii, and
K. A. Ter-Martirosyan, Yad. Fiz. 62, 1868 (1999) [Phys.
At. Nucl. 62, 1739 (1999)]; A. Yu. Anisimov, |. M. Nar-
odetskii, C. Semay, and B. Silvestre-Brac, Phys. Lett. B
452, 129 (1999).

18. L. A. Kondratyuk and D. V. Tchekin, Yad. Fiz. 61, 337
(1998) [Phys. At. Nucl. 61, 285 (1998)].

19. L. A. Kondratyuk and D. V. Tchekin, Yad. Fiz. 61, 355

(1998) [Phys. At. Nucl. 61, 302 (1998)].

J. Carbonell, B. Desplanques, V. A. Karmanov, and

J.-F. Mathiot, Phys. Rep. 300, 215 (1998).

B. Desplanques, V. A. Karmanov, and J.-F. Mathiot,

Few-Body Syst., Suppl. 8, 419 (1995).

A.Yu. Dubin, A. B. Kaidalov, and Yu. A. Simonov, Yad.

Fiz. 56 (12), 213 (1993) [Phys. At. Nucl. 56, 1745

(1993)]; A. Yu. Dubin, A. B. Kaidalov, and Yu. A. Simo-

nov, Yad. Fiz. 58, 348 (1995) [Phys. At. Nucl. 58, 300

(1995)].

L. A. Kondratyuk, Few-Body Syst., Suppl. 6, 512

(1992).

B. Desplanques, V. A. Karmanov, and J.-F. Mathiot,

Nucl. Phys. A 589, 697 (1995).

F. E. Close, G. J. Gounaris, and J. E. Paschalis, Phys.

Lett. B 149B, 209 (1984).

w

No gk

®©

10.

20.

21.

22.

23.

24.

25.



752

26
27
28

29.

30.

31

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42

43.

44,

. A. Czarnecki and K. Melnikov, hep-ph/9806258.
. M. Neubert, Nucl. Phys. B 371, 149 (1992).

. U. Adlietti, G. Corbo, and L. Trentadue, Int. J. Mod.
Phys. A 14, 1769 (1999).

E. Bagan, P. Ball, and V. M. Braun, Phys. Lett. B 417,
154 (1998); hep-ph/9709243.

V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Quantum Electrodynamics (Nauka, M oscow, 1980; Per-
gamon, Oxford, 1982).

L. A. Kondratyuk, Yad. Fiz. 4, 825 (1966) [Sov. J. Nucl.
Phys. 4, 587 (1966)].

S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
S. Narison, Phys. Lett. B 283, 384 (1992).

C.Caso et al., Eur. Phys. J. C 3, 1 (1998).

S. Sanghera et al., Phys. Rev. D 47, 791 (1993).

J. E. Duboscq €t al., Phys. Rev. Lett. 76, 3898 (1996).

P. Ball, Phys. Rev. D 48, 3190 (1993).

K.Yang and W.Y. Hwang, Z. Phys. C 73, 275 (1997).
A.Abadaet al., Nucl. Phys. B 416, 675 (1994).

C. Allton, Nucl. Phys. B (Proc. Suppl.) 47, 31 (1996).
L. Del Debbio et al., Phys. Lett. B 416, 392 (1998).
P.Ball andV. M. Braun, Phys. Rev. D 58, 094016 (1998);
P.Bdl, JHEP 9, 5 (1999).

P. Ball, V. M. Braun, and H. G. Dosch, Phys. Rev. D 44,
3567 (1991).

V. Lubicz, G. Martinelli, M. McCarthy, and C. T. Sachra-
jda, Phys. Lett. B 274, 415 (1992).

45
46
47

48.

49.

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

60.

61.

PHYSICS OF ATOMIC NUCLEI

KONDRATYUK, TCHEKIN

. K. C. Bowler et al., Phys. Rev. D 51, 4905 (1995).
. A.Beanet al., Phys. Lett. B 317, 647 (1993).

. T. Bhattacharya and R. Gupta, Nucl. Phys. B (Proc.
Suppl.) 42, 935 (1995); 47, 481 (1996).

N. Isgur and M. Wise, Phys. Lett. B 232, 113 (1989);
237, 527 (1990).

M. E. Luke, Phys. Lett. B 252, 447 (1990); C. G. Boyd
and D. E. Brahm, Phys. Lett. B 257, 393 (1991).

K. Ackerstaff et al., Phys. Lett. B 395, 128 (1997).
D. Buskulic et al., Phys. Lett. B 395, 373 (1997).
P.Abreu et al., Z. Phys. C 71, 539 (1996).

B. Barish et al., Phys. Rev. D 51, 1014 (1995).

M. Athanas et al., Phys. Rev. Lett. 79, 2208 (1997).
H. Albrecht et al., Z. Phys. C 57, 249 (1993).

D. R. Burford et al., Nucl. Phys. B 447, 425 (1995).
C. R.Allton et al., Phys. Lett. B 345, 513 (1995).
B. Stech, Z. Phys. C 75, 245 (1997).

C.W. Bernard, A. X. El-Khadra, and A. Soni, Phys. Rev.
D 43, 2140 (1991); 45, 869 (1992).

T.M.Aliev, V. L. Eletskii, and Ya. |. Kogan, Yad. Fiz. 40,
823 (1984) [Sov. J. Nucl. Phys. 40, 527 (1984)].

B. Grinstein, N. Isgur, and M. B. Wise, Phys. Rev. Lett.
56, 298 (1986).

Translated by A. Isaakyan

Vol. 64 No. 4 2001



Physics of Atomic Nuclei, Vol. 64, No. 4, 2001, pp. 753-774. From Yadernaya Fizika, \ol. 64, No. 4, 2001, pp. 813-835.

Original English Text Copyright © 2001 by Ivanov, Nikolaev.

90th ANNIVERSARY OF A.B. MIGDAL’S BIRTHDAY

ELEMENTARY PARTICLES AND FIELDS

Deep-Inelastic Scattering in k Factorization and the Anatomy
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l. P. lvanov

1),2),3),** and N. N. NikolagyD: 4+

Received 18 July, 2000

Abstract—The differential gluon structure function of the proton, %(x, Q?), introduced by Fadin, Kuraev, and
Lipatov in 1975 is extensively used in small-x QCD. We report here the first determination of F(x, Q%) from
experimental data on the small-x proton structure function F,,(x, Q?). We give convenient parametrizations for
F(x, Q?) based partly on the available DGLAP evolution fits (GRV, CTEQ, and MRS) to parton distribution
functions and on realistic extrapolations into the soft region. We discuss the impact of soft gluons on various
observables. The x dependence of the so-determined F(x, Q%) varies strongly with Q? and does not exhibit sim-
ple Regge properties. Nonetheless, the hard-to-soft diffusion is found to give rise to a viable approximation of
the proton structure function F,,,(x, @?) by the soft and hard Regge components with intercepts A, = 0 and

Dparg ~ 0.4. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION: WHY UNINTEGRATED
GLUON STRUCTURE FUNCTIONS?

The familiar objects from the Gribov—Lipatov—
Dokshitzer—Altarelli—Parisi (DGLAP) evolution des
cription of deep-inelastic scattering (DIS) are the
quark, antiquark, and gluon distribution functions g.(x,
@), 0, (x, @, g(x, @) (hereafter, x and Q? are the stan-
dard DIS variables). At small x, they describe the inte-
gral flux of partons with light-cone momentum x in
units of the target momentum and transverse momen-
tum squared <@? and form the basis of the highly
sophisticated description of hard scattering processes
interms of collinear partons[1]. On the other hand, the
object of the Balitsky—Fadin—-Kuraev—Lipatov (BFKL)
evolution equation at very small x is the differential
gluon structure function (DGSF) of the target [2],

2
F(x Q) = L&) (1)
0logQ

(evidently, the related unintegrated distributions can be
defined for charged partons as well). For instance, it is
precisely the DGSF of the target proton that emergesin
the familiar color-dipole picture of inclusive DIS at
small x [3] and diffractive DIS into dijets [4]. Another
familiar example is the QCD calculation of helicity

* This article was submitted by the authorsin English.
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amplitudes for diffractive DIS into a continuum [5, 6]
and the production of vector mesons |7, 8]. Differential
gluon structure functions are custom-tailored for a
QCD treatment of hard processes when one needs to
keep track of the transverse momentum of gluons
neglected in the standard collinear approximation [9].

Over the past two decades, the DGLAP phenome-
nology of DIS has become a big industry and several
groups—notably, GRV [10], CTEQ [11], MRS [12],
and some others [13]—keep continuously incorporat-
ing new experimental data and providing the high-
energy community with updates of the parton distribu-
tion functions supplemented with the interpol ation rou-
tines facilitating practical applications. On the other
hand, there are several pertinent issues—the onset of
the purely perturbative QCD treatment of DIS and the
impact of soft mechanisms of photoabsorption on the
proton structure function in the large-Q? region are top
ones on the list—that cannot be answered within the
DGLAP approach itself because DGLAP evolution is
obviously hampered at moderate-to-small Q2 The
related issue isthat of ng the extent to which the
soft mechanisms of photoabsorption can bias the Q?
dependence of the proton structure function and, conse-
guently, the determination of the gluon density from
scaling violations. We recall here the recent dispute
[14] on the applicability of the DGLAP analysis at
Q? = 2-4 GeV~? triggered by the so-called Caldwell’s
plot [15]. Arguably, the k-factorization formalism of
DGSF in which the interesting observables are
expanded in interactions of gluons of transverse
momentum K changing from soft to hard valuesis bet-
ter suited to look into the issue of the soft-hard inter-
face. Last but not least, neglecting the transverse
momentum K of gluons is a questionable approxima-
tion in evaluating cross sections for the production of
jets or hadrons with high transverse momenta. It isdis-

1063-7788/01/6404-0753%21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. The Fermi—-Weizsécker-Williamsdiagram for calcu-
lation of the flux of equivalent photons.

tressing, then, that convenient parametrizations of
DGSF are not yet available in the literature.

Inthisarticle, we report on asimple phenomenol og-
ical determination of the DGSF of the proton at small
X. We analyze x and Q? dependences of the proton
structure function F,(x, Q?) in the framework of the k-
factorization approach, which is closely related to the
color-dipole factorization. In the formulation of our
ansatz for %(x, k?), we take advantage of alarge body
of early work on color-dipole factorization [3, 16, 17]
and follow avery pragmatic strategy first applied in[5,
6]: (i) For hard gluons with large k, we make as much
use as possible of the existing DGLAP parametriza-
tions of G(x, k?). (ii) For the extrapolation of hard-
gluon densities to small k2, we use an ansatz [4] that
correctly describes the color-gauge-invariance con-
straints on the radiation of soft perturbative gluons by
color singlet targets. (iii) As suggested by color-dipole
phenomenology, we supplement the density of gluons
with small k2 with a nonperturbative soft component.
(iv) As suggested by soft-hard diffusion inherent in
BFKL evolution, we allow for the propagation of the
predominantly hard-interaction-driven small-x rise of
DGSF into the soft region, invoking plausible soft-to-
hard interpolations. The last two components of the
DGSF are parametrized on the basis of the modern
knowledge of the infrared (IR) freezing of the QCD
coupling and the short propagation radius of perturba-
tive gluons. Having specified the IR regularization, we
can apply the resulting F(x, k?) to the evaluation of the
photoabsorption cross section in the whole range of
small-to-hard Q2.

The practical realization of the above strategy is
expounded as follows. The subject of Section 2 is a
pedagogical introduction to the concept of DGSF by
considering the example of Fermi—Weizsacker—Will-
iams photons in QED. Taking electrically neutral
positronium as a target, we explain important con-
straintsimposed by gaugeinvariance on DGSF at small
K2 In Section 3, we present the Kk-factorization
approach, which forms abasis of our analysis of small-
x DISin terms of DGSF. We aso comment on the con-
nection between the standard DGLAP anaysis of DIS
and k factorization and property of soft-to-hard and
hard-to-soft diffusion inherent in K factorization. In
Section 4, we formulate our ansatz for DGSF. The
results obtained by determining DGSF from the exper-
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imental data on the proton structure function F,,(x, Q%)
and on the real-photoabsorption cross section are pre-
sented in Section 5. In Section 6, we discuss the anat-
omy of the so-determined DGSF in the momentum
space and comment on the interplay of soft and hard
componentsin the DGSF, the integrated gluon structure
function (GSF), and the proton structure function F,(x,

Q). In Section 7, we focus on the effective intercepts of
x dependence and the systematics of their change from
DGSF to integrated GSF to F,,(x, Q%), which illustrates
nicely the gross features of soft-to-hard and hard-to-
soft diffusion pertinent to BFKL physics. The subject
of Section 8 isacomparison of integrated gluon distri-
butions from k factorization and conventional DGLAP
analysis of the proton structure function. As antici-
pated, the two distributions diverge substantially at
very small x and small to moderate Q. In Section 9, we
discuss in more detail how different observables—the

scaling violations OF,,(x, Q2)/dlogQ”, the longitudinal
structure function F_(x, Q%), and charm structure func-

tion F3y(x, Q)—probe the DGSF. In Section 10, we
summarize our major findings.

2. DIFFERENTIAL DENSITY OF GAUGE
BOSONS: A QED EXAMPLE

For a pedagogical introduction, we recall the cele-
brated Fermi—Weizsacker—Williams approximation in
QED, which is the well-known precursor of the parton
model (for areview, see[18]). Here, high-energy reac-
tions in the Coulomb field of a charged particle are
treated as collisions with equivalent transversely polar-
ized photons—partons of a charged particle (Fig. 1).
The familiar flux of comoving equivalent transverse
soft photons carrying alight-cone fraction x, < 1 of the
momentum of a relativistic particle, let it be the elec-
tron, is given by
On K di’

2
_xdi” dx)_ Oen di’dXy
2 2.2
T (e +Kk5) %y

dn! = .
2
T x° X

(@)

Here, k is the photon transverse momentum and K, =
m, X, is the photon longitudinal momentum in the elec-
tron Breit frame. The origin of k2 in the numerator is
associated with current conservation—that is, with
gauge invariance. By definition, the unintegrated pho-
ton structure function of the electron is then given by

Y
gzy(Xv Kz) — 6Gy = x, dne
! 2 2
dlogxk dx,dlogk )
GemD KZ ﬁ
= w87,
T G+ k0

If therelativistic particle isa positronium P (Fig. 2),
we must take into account the destructive interference
PHY SICS OF ATOMIC NUCLE!
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Fig. 2. The Fermi—Weizsacker—Williams diagrams for calculating the flux of equivalent photons in positronium.

between the electromagnetic fields of the electron and
positron. Specifically, the electromagnetic fields of the
electron and positron cancel each other for soft photons
with wavelength A = /K > a, where a,, is the positro-
nium Bohr radius, and the flux of photons vanishes; for
A < ap, theflux of photonswill be twice aslarge asthat
for a single electron. The above properties are quanti-
fied by the formula

o0 2 D2
Fy(x,x)) = 22265 —AV(k), @)
T Ge” +k,

O
where the factor of 2 isthe number of charged particles
in the positronium and correspondsto the Feynman dia-
grams in Figs. 2a and 2b. The vertex function V(K) is

expressed in terms of the two-body form factor of the
positronium as

V(K) = 1-F,(x, —)
= 1-MPlexp(ix qr_-r,))|PO
wherer_—r, isthe spatial separation of et and e inthe
positronium. The two-body form factor F,(i, —x)
describes the destructive interference between the elec-

tromagnetic fields of the electron and positron and cor-
responds to the Feynman diagrams in Figs. 2c and 2d.

It vanishes for sufficiently large K = a,;l, leaving us
with V(K) = 2, wheress, for soft gluons, one has

&)

V(K) O k’a. (6)

One can say that the law in (6) isdriven by electromag-
netic gauge invariance, which guarantees that long-
wave photons decouple from the neutral system.

Finally, we recall that the derivation of the differen-
tial flux of transversely polarized photons would apply
to the case of massive vector bosons interacting with a
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conserved current, the only change being in the propa-
gator. For instance, for the neutral source, one finds

a0 2 O
Fy (X, k7)) = —ZH=—OV(K). %
T Ge® +m,0

Recall that the massive vector fields are Yukawa—Debye-
screened, with the screening radius being given by

R.=my. ®)

To thelowest order in QED perturbation theory, the two
exchanged photonsin Figs. 1 and 2 do not interact, and
we will often refer to (7) as the Born approximation for
the differential vector-boson structure function. One
can regard (7) as aminimal model for soft-k behavior
of the differentia structure function for Yukawa—
Debye-screened vector bosons.

3. INSIGHT INTO THE DIFFERENTIAL DENSITY
OF GLUONS

3.1. Modeling Virtual Photoabsorption in QCD
The quantity that is measured in deep inelastic lep-
toproduction is the total cross section of photo-absorp-

tion y; p — X summed over all hadronic final states
X, wherep, v =+1, O arethe helicities of (T) transverse
and (L) longitudinal virtual photons. One usualy starts
with theimaginary part of the amplitude A, for thefor-
ward Compton scattering y; p — Yy p', which, by
optical theorem, gives the total cross section for the
photo-absorption of virtual photons,

* 1
of Axe;, Q%) =

J+ Q- miy + 4Q’m;

ImA.., (9)
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Fig. 3. The pQCD modeling of DISin termsof multiproduc-
tion of parton final states.
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Fig. 4. Thek-factorization representation for DIS at small x.

1
Jo+ Q- miy + 4Q’m]

where W is the total energy in the y*p c.m.s,, m, isthe
proton mass, Q* is the virtuality of the photon, and

Xp; = QH(Q* + W2 — m,zj) isthe Bjorken variable.

Y* P, 2 _
o (X, Q) =

Im Ag.
(10)

In perturbative QCD (pQCD), one models virtual
photoabsorption in terms of the multiple production of
gluons, quarks, and antiquarks (Fig. 3). Experimental
integration over the full phase space of hadronic states
Xis substituted in the pQCD calculation by integration
over the whole phase space of QCD partons:

1
[IM el 0 Z|Mn|2|-|1d7’i‘idzxi, (a1
n 0
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where the integration with respect to the longitudinal
Sudakov variables x; and the transverse momenta ; of
partons goes over the whole allowed region

2
0< KiZS%WZ = W.

The core of the so-called DGLAP approximation [1] is
an observation that, at finite x, the dominant contribu-
tion to the multiparton production cross sections comes
from atiny part of the phase space

(12)

I2X2%2 ... 2X,_1 2 X, 2 X, a3
Oski<ki<..<k’, <K <@,

in which the upper limit of integration with respect to
the transverse momenta of partonsis much smaller than
thekinematical limit (12). At very small x, thislimitation
of the transverse phase space becomes much too restric-
tive and the DGL AP approximation isdoomed to failure.

Hereafter, we focus on how lifting the restrictions
on the transverse phase space changes our understand-
ing of the gluon structure function of the nucleon at
very small x, that is, very large 1/x. In this kinematical
region, the gluon density g(x, Q?) is much higher than
the density of charged partons g(x, @?) and g(x, Q2.
Fadin, Kuraev, and Lipatov [2] showed that, to the lead-

: 1 1 N : .
ing Iog)—( E_L)—E approximation, the dominant contri-

bution to photoabsorption comes from multigluon final
states of Fig. 3; alternatively, to the LL 1/, the splitting
of gluons into gluons dominates the splitting of gluons
into qg pairs. As a matter of fact, we do not need the
full BFKL dynamics for the purposes of the present
analysis, in the k factorization, only the qq loop is
treated explicitly to the LL1/x approximation. In this
regime, the Compton scattering can be viewed as an
interaction of the nucleon with the light-cone qq Fock
states of the photon viathe exchange of gluons (Fig. 4),
and the Compton scattering amplitude takes the form

Ay = W OA,OW (14)

v, AN BN

Here, LIJ“‘ is the light-cone photon wave function

AR
dependent on Q? and on the g and g helicitiesA and A,
while the QCD Pomeron-exchange gg-proton scatter-
ing kernel A, does not depend on the g and g helici-
ties and conserves them exactly, summation over these
helicities being implied in (14).

The resummation of the diagramsin Fig. 3 defines
the unintegrated GSF of thetarget, which is represented
in the diagrams of Fig. 4 as the striped oval. The calcu-
lation of the forward Compton scattering amplitudes

(A = 0) is straightforward and gives the k-factorization
formulas for photoabsorption cross sections [19, 20]

O1(Xgj, Qz)
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1

2
= em J' ZJ’dsz’i—f(xs(qz)@(xgl Kz)

Tt

° (15)
» t(1opi Kk k-x f
@ ( )]Ekz &2 (k—x)+el

2D 1 1 [fg

e (ke eel 0

o (Xg;, QZ)

_ Uem 2 2\ o 2
= ?Z IdzJ’d kIFGS(q )F(Xg ) (16)

2D 1 1 DZ

Ei<2+e C(k—w) e

Here, x is the transverse momentum of the gluon; k is
the transverse momentum in the quark—antiquark loop;
zand 1 — z are the fractions of the light-cone momen-
tum of the proton that are carried by the quark and the
antiquark, respectively; m, and ef are the mass and
charge of thequark f=u, d, s, c, b, .

2

x 4Q°Z*(1-2

= 2(1-2)Q”+m;; (17)

the QCD running coupling constant o ,(g?) enters into
the integrand at the largest relevant virtuality;

q° = max{e’+k> x’}; (18)
and the density of gluonsistaken at

2

2
+M o wm
Xy = Q2 = xgl+—0 (19)
W+ Q° O Q°O

Here, M, isthe transverse mass of the produced qq pair
in the photon—gluon fusion y*g — qQ:

M2 = m? +k° N m; + (k—K)zl
1-z z

(20)

For longitudinal photons, only thetransitionsy, —
0,05 into stateswith A + A =0 are allowed. In oy, the

terms Om; are the contribution of stateswith A + A =
K, whereas the dominant contribution in the scaling

regime of Q% > mf comes from the transitions y; —

0\0j intostatesA + A =0, when the helicity of the pho-

ton is transferred to the angular momentum of the
quark—antiquark pair. The corresponding transition
amplitudes are 0k, k * « (for more discussion see[7]).
No restrictions on the transverse momentum in the
gq loop, k, and gluon momentum « are imposed in the
PHYSICS OF ATOMIC NUCLEI
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representation (15) and (16). This representation was
contained essentially in the classic Fadin, Kuraev, and
Lipatov papers [2] of the mid-1970s; in recent litera-
ture, it is sometimes referred to as the k factorization.

We notethat Egs. (15) and (16) arefor forward diag-
onal Compton scattering, but similar representation in
terms of the unintegrated GSF holds also for the off-
forward Compton scattering at finite momentum trans-
fer A, off-diagonal Compton scattering when the virtu-
ditiesof theinitial and final-state photons are different,

Q? # Q7 including the timelike photons and vector
mesons, Qf = —m\z, , inthefina state.

The photoabsorption cross sections define the
dimensionless structure functions

Q
4n20(em

2

Fr. L(Xgj, Qz) = OT,L 2D

and F, = F; + F,, which admit the familiar pQCD par-
ton model interpretation

Fr (X, QZ)
5 5 (22)
Q") + 05 (Xg;, Q)1

= Y el
f=udschb,..

where g (xg;, Q%) an q (xg;, Q%) aretheintegrated den-

sities of quarks and antiquarks carrying the fraction xg;

of the light-cone momentum of the target and with

transverse momenta <Q. Hereafter, we suppress the

subscript Bj.

3.2. Wherek Factorization Meets DGLAP
Factorization

Recall the familiar DGLAP equation [1] for scaling
violations at small x,
dF,(x Q)
dIogQ2

_ 2 (Q) X
= e jdy[y+(1 y)]Gq,Q

f

(23)

S(Q )G(ZX Q )Zefy

where for the sake of ssimplicity we only consider light
flavors. Upon integration, we find

.2 d0as(@)
Fax Q)= € js 262x, Q). 9

f 0
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In order to see the correspondence between the k factor-
ization and DGLAP factorization, it isinstructive to fol-
low the derivation of (24) from the k representation (15).

Firgt, separatethe? integrationin (15) intothe DGLAP
part of the gluon phase space k? < (_32 =2+ k? and the
beyond-DGLAP region k2 = (_32 . Onereadily finds

n k  k-x r?
Heve? (k—w)?+eD
%z (1- z) Q" 27(1- z)Q i%{
0 Q Q  Qm
= if =0
0 20 _
L H1=9Q ¢ 2. q’,
xe; Q -
Consider first the contribution from the DGLAP

part of the phase space k? < (_32 . Notice that because of
the factor k2 in (25), the straightforward k2 integration

of the DGLAP component yields G(x,, (_32) and (_32 is
precisely the pQCD hard scale for the gluonic trans-
verse momentum scale;

(25)

de 2 k—x i
- [l
I s(q )F(Xg K )q(z (k—K)2+82D
(26)
%z (1- z) Q' 27(1- z)Q EG(Xg, ).
Q Q Q'

The contribution from the beyond-DGLAP region of
the phase space can be evaluated as

g 0 2]
jd%as(qz)@(xg, Aoy -A1=2Q
)x T o -

O -2)Q%0 = A
= 05 -89 (%, 9105, Q)
R Q 0

N %zz(l—z)zQA_Zz(l—z) E
- L 0

27

8

Q Q Q
x F(Xg Q )0gCy(%y Q' 2).

The latter form of (27) allows us to combine conveniently
(26) and (27) by rescaling the hard scale in the GSF:

G(X Q) + F(%g Q)I0gCy(%,, Q. 2)
= G(ng CZ(Xg! Q ’ Z)Q )

(28)
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Here, the exact value of 1(x,, (_)2) > 1 depends on the

rate of the k? rise of F(xg, k?). At small x; and small to
moderate (_32, one finds I (X, (_22) substantially larger

than 1 and Cy(xg, (_32, 7) > 1 (for extended discussion,
see Section 9 below).

Now change from dk? integration to d(_g2 and again
split the z, Q? integration into the DGLAP part of the

phase space (_22 < %QZ, where either z < (_QZIQ2 orl-—

52 Loo=2 1 2
z< Q /@7, and the beyond-DGLAP region Q = ZQ ,

where0 < z< 1. Asaresult, one finds

J.dz[zer(l_Z)]%za 2°Q° 22(1 Z)Q

D%

4 e =2 1
if Q <«=Q 29
B 4 >
) DZAQ4 a2+ alh it o'l
=5~ 2AI=t A0 i Q EZQ'
Q Q QD
where
1
= (a7 +(1-297°-2" G0
0

Let C, beCy(x,, (_22, 2) at amean point. Notice also that
Mt2 ~Q?, sothat X, ~ 2X. Then the contribution from the

DGLAP phase space of (_22 can be cast precisely in the
form (24)

Fa(X, Qz) | DGLAP

o 31)
dQ O‘S(Q )G(2 X, 0 )

R

The beyond—DGLAP region of the phase space
gives an extra contribution of the form

AF,(X, QZ) |n0n—DGLAP

ZO‘S(Q) dQQ
Dz IQ QG(z 09

) (32)
Q
Dzef a5(Q" )G(2x Q).
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Fig. 5. Huygens principle for Q?, x evolution of DIS structure functions with (a) DGLAP-restricted transverse phase space and (b)
for the BFKL x evolution without restrictions on the transverse phase space and hard-to-soft and soft-to-hard diffusion. The “IR
region” label refers to the domain of nonperturbative soft transverse momenta.

Equations (31) and (32) immediately revea the phe-
nomenological consequences of lifting the DGLAP
restrictions in the transverse momentum integration.
Indeed, the DGLAP approach respects the following
strict inequalities

K <k® and k’<Q’ (33)
Aswe just saw, removing the first limitation effectively
shifted the upper limitinthe O integral to §4—2Q2 £Q,

while lifting the second constraint led to an additional,
purely non-DGLAP contribution. Although both of

these corrections lack one leading IogQ2 factor, they
are numerically substantial. As amatter of fact, in Sec-

tion 9, we show that C, = 8.

The above analysis suggests that the DGLAP and k-
factorization schemes converge logarithmically at large
Q. However, in order to reproduce the results (31) and
(32) for the full phase space by the conventiona
DGLAP contribution (24) from the restricted phase
space (13), one has to ask for DGLAP gluon density
Gu(x, Q?) larger than the integrated GSF in the k-fac-
torization scheme and the difference may be quite sub-
stantial in the domain of strong scaling violations.

3.3. Different Evolution Paths; Soft-to-Hard Diffusion,
and Vice \Versa

The above discussion of the contributions to the
total cross section from the DGLAP and non-DGLAP
parts of the phase space can conveniently be cast in the
form of Huygens principle. To the standard DGLAP

leading IogQ2 (LLQ?) approximation, one only con-
siders the contribution from the restricted part of the
available transverse phase space (13). The familiar
Huygens principle for the homogeneous DGLAP LLQ?
evaluation of parton densities in the xg—Q? plane is
illustrated in Fig. 5a: one starts with the boundary con-
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dition p(x, QS) as afunction of x at fixed Qg, the evo-

lution paths (z, (52) for the calculation of p(x, Q2
shown in Fig. 5a are confined to arectanglex < z< 1,

Qi < 62 < @?, the evolution is unidirectiona in the
sense that there is no feedback on the x dependence of

p(X, Qf) from the x dependence of p(x, QS) at Q§ >

Qf . In Fig. 5a, we show some examples of evolution

paths which are kinematically allowed but neglected in
the DGLAP approximation. Starting with about flat or

slowly rising G(x, Q¢ ), one finds that the larger Q?, the
steeper the small-x rise of G(x, Q?).

At x < 1, the DGLAP contribution from the
restricted transverse phase space (13) no longer domi-
nates the multiparton production cross sections, the
restriction (13) must be lifted, and the contribution to

the cross section from small Kiz and large Kiz = Q?can
no longer be neglected. Huygens principle for the
homogeneous BFKL evolution isillustrated in Fig. 5b:
one starts with the boundary condition F(x,, Q?) as a
function of Q2 at fixed x, < 1, and the evolution paths

~2

(z, Q ) for the calculation of p(x, Q?) are confined to a
stripe X < z £ X In contrast to the unidirectional
DGLAP evolution, one can say that, under BFKL evo-
lution, the small-x behavior of p(x, Q?) at large Q®isfed
partly by the x dependence of soft p(x, Q%) at larger x
and vice versa. The most dramatic consequence of this
soft-to-hard and hard-to-soft diffusion, which cannot
be eliminated, isthat, at very small x, the x dependence
of the gluon structure in the soft and hard regions will
eventually be the same:

lim G(x Q) = 6(Q)L"

Am o0 (34)
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Parameters of the DGSF for various DGLAP inputs
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DGSF D-GRV D-MRS D-CTEQ
LOiEﬁkAP GRV98LO [10] MRS-L0-1998 [12] CTEQAL (v.4.6) [11]
QZ, Gev? 0.895 1.37 3.26
k2, Gev? (1+ 0.0018Iog4)—1( Y2 (1+ 0.038Iogz)—1( Y2 (1+ o.o47|og2)1( Y2
Meoit, GEV 0.1 0.07 0.1

where A istheintercept of the rightmost BFKL singu-
larity. The rate of such hard-to-soft diffusion is evi-
dently sensitive to the IR regularization of pQCD; the
model estimates show that it is very dow in the HERA
range of x [16, 21, 22].

4. ANSATZ FOR DIFFERENTIAL GLUON
STRUCTURE FUNCTION

The magjor insight into the parametrization of DGSF
comes from early experience with color-dipole phenom-
enology of small-x DIS. In the color-dipole approach,
which is closdly related to k factorization, the principa
quantity isthetotal cross section of interaction of the qq
color dipoler with the proton target [3, 20, 23]

2 die?4[1-J,(k)]

a(x,r) = 3 I (Kr)
d 0O M (33)
XO(SIZmaXDCZ, é[ﬂj}(x, Kz)v
O O r

which for very small color dipoles can be approximated

by
SDr 286 % 2D

where A= 10 comes from properties of the Bessel func-
tion Jy(2). The phenomenological properties of the
dipole cross section are well understood (for extraction
of o(x, r) from the experimental data, see[24, 25]). The
known dipole-size dependence of o(x, r) serves as a
constraint on the possible k2 dependence of Z(x, k2).

As we argued in Subsection 3.2, DGLAP fits are
likely to overestimate %, ,4(X, k) at moderate k2. Still,
approximation (36) does a good job when the hardness
Alr? is very large, and at large Q° we can arguably
approximate the DGSF by the direct differentiation of
avalable fits (GRV, CTEQ, MRS, ...) to the integrated
GSF Gy(x, Q9):

o(xr) = (36)

2 aGpt(X K )

Fu(X &
aloglc

)= (37)

Hereafter, the subscript “pt” serves as a reminder that
these gluon distributions were obtained from the pQCD
evolution analyses of the proton structure function and
cross sections of related hard processes.

The available DGLAP fits are only applicable at
k22> Q (seetablefor thevalues of QF); in the extrap-

olation to soft region k2 < Q, we are bound to an edu-
cated guess. To thisend, werecall that perturbative glu-
ons are confined and do not propagate over large dis-
tances; recent fits [26] to the lattice QCD data suggest
Yukawa—Debye screening of perturbative color fields
with a propagation/screening radius R, = 0.27 fm. Inci-
dentally, precisely thisvalue of R, for Yukawa screened
color fields has been used since 1994 in the very suc-
cessful color-dipole phenomenology of small-x DIS
[16, 17]. Furthermore, theimportant finding of [17] isa
good quantitative description of the rising component
of the proton structure function starting with the
Yukawa-screened perturbative two-gluon exchange as
aboundary condition for the color-dipole BFKL evolu-
tion.

The above suggests that, to the Born approximation,
the k2 dependence of perturbative hard %, (X, k?) in

the soft region k? < Qf is smilar to the Yukawa-
screened flux of photonsin the positron [cf. Eq. (4)] with
Oen replaced by the running strong coupling of quarks
Cra4x?) and with factor N, instead of two leptonsin the
positronium (for the early discussion, see [4])

S(K )

f
B—DV n(K).
Ge” + pptD
Here, u, = R, = 0.75 GeV is the inverse Yukawa
screening radius and must not be interpreted as a gluon
mass, more sophisticated forms of screening can be
considered. Following [16, 17, 19, 21], we also impose
the IR freezing of strong coupling: ag(k?) < 0.82;
recently, the concept of freezed coupling has become
very popular (for areview, see [27]).

The vertex function Vy (k) describes the decoupling
of soft gluons, K < 1/Rp, from color-neutral proton and
has the same structure asin Eq. (5). In the nonrelativis-

Fo (&%) = CeN, (38)
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tic oscillator model for the nucleon, one can relate the
two-quark form factor of the nucleon to the single-
quark form factor,

D2N
N, —

2D

Fo(x,—x) = F; (39)

To the extent that R < R}, the detailed functional

form of F,(1, =) isnot crucial, and the simple relation
(39) will be used aso for a more redlistic dipole
approximation

Fi(k®) = —

(1+KkNY?

(40)

The gluon probed radius of the proton and the charge
radius of the proton can be somewhat different and A ~
1 GeV must be regarded as a free parameter. Anticipat-
ing the forthcoming discussion of the diffraction slope
in vector-meson production, we put A = 1 GeV.

As discussed above, the hard-to-soft diffusion
makes the DGSF rise at small x even in the soft
region. We model this hard-to-soft diffusion by match-
ing the x? dependence (38) to the DGLAP fit F,(x,

QC) a the soft-hard interface Qc and assigning to

Frara(X, ¥2) intheregion of k2 < Qf the same x depen-

dence as shown by the DGLAP fit Fy(x, Qc) i.e.,
Frnalt, ) = T T80 Wl 07 _ 2
Fo c(Q) 41)

Faa(X, Kz)e(K -Q0)-

Because the accepted propagation radius R. ~ 0.3 fm
for perturbative gluons is short compared to a typical
range of strong interaction the dipole cross section (35)
evaluated with the DGSF (41) would miss an interac-
tion strength in the soft region, for large color dipoles.

In[16, 17], the interaction of large dipoles has been
modeled by the nonperturbative soft mechanism with
an energy-independent dipol e cross section, whose spe-
cific form [16, 8] has been driven by the early analysis
[19] of the exchange of two nonperturbative gluons.
More recently, several closely related models for
O4i(r) have appeared in the literature (see, for instance,
models for dipole—dipole scattering via polarization of
nonperturbative QCD vacuum [28] and the model of
soft—hard two-component Pomeron [29]). In order to
reproduce the required interaction strength for large
dipoles, we introduce the genuinely soft, nonperturba-
tive component of DGSF which we parametrize as

(B)
O—_soft(x K )
agx)0 2 O (42)
= agCeNe———"O5———0 Vn(K).
BN 'l'p-softEJ
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The principal point about this nonperturbative compo-
nent of DGSF isthat it must not be subjected to pQCD
evolution. Thus, the arguments about the hard-to-soft
diffusion-driven rise of perturbative DGSF even at
small «? do not apply to the nonperturbative DGSF and
wetakeit asthe energy-independent one. Such anonper-
turbative component of the DGSF would have a certain
high-x? tail which should not extend too far. The desired
suppression of soft DGSF at large x? and of hard DGSF
(41) at moderate and small k2 can be achieved by the
extrapolation of the form suggested in [5, 6]:

(B)

K
F(x, k%) = Fan(X, 62—
K+ K
(43)

+ @ha,d(x, K2)2—2
The above-described ansatz for DGSF must be
regarded as a poor man’'s approximation, and the
parameters entering into Egs. (42) and (43) will be dis-
cussed below in Section 5.1. The separation of small-x?
DGSF into the genuine nonperturbative component and
small-k? tail of the hard perturbative DGSF is not
unique. Specifically, we attributed to the | atter the same

small-xriseasinthe DGLAP fits at Qf , While one can-

not exclude that the hard DGSF has a small x-indepen-
dent component. The issue of soft-hard separation
must be addressed in dynamical models for IR regular-
ization of perturbative QCD. As we shall see below, in
Section 5.1, the soft component of the above-described
ansatz is about twice as large as the soft component
used in the early color-dipole phenomenology [16, 17].

The k-factorization formulas (15) and (16) corre-
spond to the full-phase space extension of the LO
DGLAP approach at small x. For thisreason, our ansatz
for F4q(X, Q) will be based on LO DGLAPfitsto the
GSF of the proton G,(x, Q°. We consider the
GRV98LO [10], CTEQ4L version 4.6 [11], and MRS
LO-1998 [12] parametrizations. We take the liberty of
referring to our ansatz for DGSF based on those LO
DGLAP input as D-GRV, D-CTEQ, and D-MRS
parametrizations, respectively.

Our formulas (15) and (16) describe the sea compo-
nent of the proton structure function. Arguably, these
LL1/x formulas are applicable at x < X, = (1-3) x 102,

At large Q?, the experimentally attainable values of x
are not so small. In order to give a crude idea of the
finite-energy effects at moderately small x, we stretch
our fits to x = X, multiplying the above ansatz for
DGSF by the purely phenomenological factor (1 — x)°
motivated by the familiar large-x behavior of DGLAP
parametrizations of the GSF of the proton. We also add
to the sea components (15) and (16), the contribution
from DIS on valence quarks borrowing the parametri-
zations from the respective GRV, CTEQ, and MRSfits.
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The latter are only available for Q2> Q2. At x < 102,

this valence contribution is small and fades away rap-
idly with decreasing x (for instance, see [17]).

5. DETERMINATION OF THE DIFFERENTIAL
GLUON STRUCTURE FUNCTION
OF THE PROTON

5.1. Parameters of DGFSfor Different DGLAP Inputs

Our goal is a determination of the small-x DGSF in
the whole range of k? by adjusting the relevant parame-
tersto the experimental data on small-x F,(x, Q) inthe
whole available region of Q? aswell asthereal photoab-
sorption cross section. The theoretical calculation of
these observables is based on Egs. (15), (16), and (43).

The parameters which we did not try adjusting but
borrowed from early work in the color-dipole picture
are R, = 0.27 fm, i.e,, Yy = 0.75 GeV, and the frozen
value of the LO QCD coupling with Agep = 0.2 GeV:

as(Qz) = minEp.SZ, 4T2[ > E;
g Bolog(Q/Ngep) O

We recall that the GRV, MRS, and CTEQ fits to GSF
start the DGLAP evolution at quite a different soft-to-

hard interface QC2 and diverge quite alot, especially at

(44)

moderate and small k2. The value of QC2 is borrowed
from these fits and is not a free parameter.

The adjustable parameters are Ug.g, 8, M, 4 KSZ,

and Kﬁ. We take mg = m, 4 + 0.15 GeV and m, =
1.5 GeV. Therole of these parametersisasfollows. The
quark mass m, 4 definesthe transverse size of the qq =

ut, dd Fock state of the photon, whereas g, con-
trols the r dependence of, and in conjunction with agy,
sets the scale for, the dipole cross section for large-size
qq dipolesin the photon. The both m, 4 and py have
clear physical meaning and we have certain insight into
their variation range from the early work on color-
dipole phenomenology of DIS. The magnitude of the
dipole cross section at large and moderately small
dipole size depends also on the soft-to-hard interpola-
tion of DGSF, which is somewhat different for different
LO DGLAP inputs for Gy (x, Q). This difference of

DGLAP inputs can be corrected for by adjusting u;ﬂ
and the value of K; . Because of soft-to-hard and hard-
to-soft diffusion, the DGLAP fits are expected to fail at
small x; therefore, we allow for the x dependence of Kﬁ .

Evidently, roughly equal values of F,,(x, Q%) can be
obtained for somewhat smaller %(x, Q%) at the expense
of taking smaller m, , and vice versa. Therefore,
though the quark mass does not explicitly enter into the

IVANOV, NIKOLAEV

parametrization for F(x, k2), the preferred value of m, ,
turnsout to be correlated with the ansatz for DGSF; i.e.,
each particular parametrization of DGSF implies a cer-

tain m, ;. In what follows, we set a; = 2, Ks2 =

30GeV? and m, 4 = 0.22 GeV, so that only k; and
M Varied from one DGLAP input to another (see
table). The soft components of the D-GRV and D-
CTEQ parametrizations turn out to be identical. The
eyeball fits are sufficient for the purposes of the present
exploratory study. The parameters found are similar to
those used in [5, 6], where the focus has been on the
description of diffractive DIS.

One minor problem encountered in numerical dif-
ferentiation of all three parametrizations for G,(x, Q%)
was the seesaw k2 behavior of the resulting DGSF (37),
which was an artifact of the grid interpolation routines.
Although this seesaw behavior of DGSF is smoothed
out in integral observables like G(x, Q%) or F,,(x, Q%),
we dill preferred to remove the unphysical seesaw
cusps and have smooth DGSF. This was achieved by
calculation of DGSF from (37) at the center of each
interval of the Q? grid and further interpolation of the
results between these points. by integration of the so-
smoothed ¥, (x, Q%) one recovers the input G, (x, Q?).

The values of ch cited in the table correspond to cen-
ters of thefirst bin of the corresponding Q? grid.

5.2. Description of the Proton Structure
Function F,,(x, Q°)

We focus on the sea dominated LL 1/x region of x <
102. The practical calculation of the proton structure
function involves the two running arguments of DGSF:
Xy and w2 We recall that in the standard collinear
DGLAP approximation, one hask? < k? < Q% and x; =
2x [see Eq. (23)]. Within the k factorization, one finds
that the dominant contribution to F,,(x, Q%) comesfrom

MZ ~ Q2 with little contribution from M? = Q2.
Because at small xg, the x, dependence of F(x,, Q?) is
rather steep, we take into account the x;—xg; relation-
ship (19).Anticipating the results on effective intercepts
to be reported in Section 7, we notice that for all prac-
tical purposes one can heglect the impact of ¥ on rela-
tionship (19), which simplifies greatly the numerical
analysis. Indeed, the x, dependence of F(x;, ¥?) is
important only at large k2, which contribute to F,(X,
Q?) only at large Q?; but the larger Q?, the better holds
the DGLAP ordering x? < k?, Q2. Although at small to
moderate Q?, the DGLAP ordering breaks down, the Xg
dependence of F(xg, ¥?) is negligibly weak here.
Aswe shall discussin more detail below, achieving
agood agreement from small to moderate to large Q? is
ahighly nontrivial task, because strong modification of
PHYSICS OF ATOMIC NUCLEI
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(x, Q%) inthe low-Q? region: open squares are E665 data [30],

closed circlesare ZEUS BPC data[31], open trianglesdenote H1 shifted vertex data[32]. Thesolid curverepresents K-factorization
results based on the D-GRV parametrization of the DGSF F(x, «2).

the soft contribution to % (x, Q%) unavoidably echoesin
the integral quantity Gp(x, Q%) throughout the whole
range of Q? and shall affect the calculated structure
function from small to moderate to large Q2.

The quality of the achieved description of the exper-
imental data on the small-x proton structure functionis
illustrated in Figs. 6 and 7. The data shown include
recent FNAL E665 experiment [30], HERA data
(ZEUS BPC [31], H1 shifted vertex [32], ZEUS [33],
ZEUS shifted vertex [34], H1 [35]), and CERN NMC
experiment [36]. When plotting the E665 and NMC
data, wetook theliberty of shifting the data pointsfrom
the reported values of Q? to the closest Q> boxes for

which the HERA data are available. For Q? < QF
0.9 GeV?, the parametrizations for valence distribu-
tions are not available and our curves show only the sea
component of Fy,(x, Q?), at larger Q? the valence com-
ponent isincluded.

At x < 1072, the accuracy of our D-GRV description
of the proton structure function is commensurate to that
of the accuracy of standard LO GRYV fits. In order not
to cram the figures with nearly overlapping curves, we
show the results for D-GRV parametrization. The situ-
ation with D-CTEQ and D-MRS is very similar, which
isseenin Fig. 8, wherewe show on alarger scale ssmul-
taneously the results from the D-GRV, D-CTEQ, and
D-MRS DGSFsfor several selected values of Q% Here,
at large Q? we show separately the contribution from
valence quarks. The difference between the results for
Fap(x, Q%) for different DGLAP inputs is marginal for
all the practical purposes (see al'so a comparison of the
results for o¥ for different DGLAP inputsin Fig. 9).
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5.3. Cross Section for Real Photoabsorption

In the limiting case of Q* = 0, the relevant observ-
able is the real photoabsorption cross section o,
Although the Bjorken variable is meaningless at very
small Q?, the gluon variable x, remains well defined at
Q> =0[see Eq. (19)]. In Fig. 9, we present our results
alongside with the results of the direct measurements of
oY and the results of extrapolation of virtual photoab-
sorption cross sections to Q* = 0 (for the summary of
the experimental data, see [31]). We emphasize that we
reproduce the observed magnitude and pattern of the
energy dependence of oY in an approach with the man-
ifestly energy-independent soft contribution to the total
cross section (which is shown separately in Fig. 9). We
recall that our parametrizations for (x, Q) give iden-
tical soft cross sections for the GRV and CTEQ inputs

(seetable). The barely visible decrease of 6%, towards

small Wisamanifestation of the (1 —X)° large-x behav-
ior of gluon densities. The extension to lower energies
requires introduction of the secondary Reggeon
exchanges, which goes beyond the subject of this study.

In our scenario, the energy dependence of o is
entirely due to the Xx,-dependent hard component
Frad(Xg, Q%) and as such thisrise of the total cross sec-
tion for soft reaction can be regarded as driven entirely
by very substantial hard-to-soft diffusion. Such a sce-
nario has repeatedly been discussed earlier [16, 17, 37].
Time and again, we shall see similar effects of hard-to-
soft diffusion and vice versa. Notice that hard-to-soft
diffusion is a straightforward consequence of full
phase-space calculation of partonic cross sections and
we do not see any possibility for decoupling of hard-
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gluon contribution from the total cross sections of any
soft interaction, whose generic example is the read
photoabsorption.

6. PROPERTIES OF DIFFERENTIAL
GLUON STRUCTURE FUNCTION
IN THE MOMENTUM SPACE

6.1. Soft—Hard Decomposition of DGSF

Now we focus on the x and k2 behavior of the so-
determined DGSF starting for the reference with the D-
GRV parametrization. The same pattern hods for DGSF
based on CTEQ and MRSDGLAPI nputs seebelow. In
Figs. 10 and 11, we plot the DGSF J (x4, k?), whilein
Fig. 12 we show the integrated GSF

Q2
Go(x, Q) = j‘f F(x k).

Here, the subscript D is a reminder that the integrated
Gp(x, @) is derived from DGSF. As such, it must not
be confused with the DGLAP parametrization
G, (x, Q%) supplied with the subscript pt.

Figures 10 and 11 illustrate the interplay of the non-
perturbative soft component of DGSF and perturbative
hard contribution supplemented with the above

described continuationinto k? < Q§ at variousx and k2.

The soft and hard contributions are shown by the
dashed and dotted curves, respectively; their sum is
given by the solid curve.

Apart from the large-x suppression factor (1 — x)°,
our nonperturbative soft component does not depend
on X. At anot so small x = 102, it dominates the soft
region of k? <= 1-2 GeV?, and the hard component takes
over at higher k2. The soft—hard crossover point isclose

to uf,t but because of the hard-to-soft diffusion it moves
with decreasing x to agradually smaller Q2.

(45)

6.2. Soft—Hard Decomposition of the Integrated Gluon
Sructure Function

Therole of the soft component is further illustrated
by Fig. 12, where we show by the solid curve the inte-
grated GSF (45) and by the dashed curve its soft com-

ponent G (x, Q). The soft contribution G, (x, Q%) is
adominant feature of the integrated GSF G, (x, Q?) for
Q’ = 1 GeV2. It builds up rapidly with @ and receives
the major contribution from the region x> ~ 0.3-
0.5 GeV?. Our ansatz for F_ . (X, k?) issuch that it starts
decreasing already at k> ~ 0.2 GeV? and vanishes rap-

idly beyond k2 = k2, (see Figs. 10, 11). Still, the

residual rise of the soft gluon density beyond Q° ~
0.5 GeV? is substantial: Gy (X, Q) rises by about the
factor of two before it flattens at large Q2. We empha-
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Fig. 9. A comparison of the k-factorization description of
the experimental data on real photoabsorption cross section
based on the D-GRV, D- MRS and D-CTEQ parametriza-
tions of the DGSF F(x, k2). The squares show the experi-
mental data from 1992—1993 direct measurements, the bul-
lets are the results of extrapolation of virtual photoabsorp-
tion to Q* = 0 ([31] and references therein). The solid,
dashed, and dotted curves represent k-factorization calcula
tions with the D GRV, D-MRS, and D-CTEQ parametriza-
tions of F(x, %), respectively. The soft component of pho-
toabsorption cross section is shown separately; it isidentical
for D-GRV (solid) and D-CTEQ-based calculations (dotted).

size that Go(Q?) being finite at large Q? is quite natu-
ral—a decrease of G (Q?) at large Q? is possible only
if F 41 (Q?) becomes negative-valued at large Q?, which
does not seem to be a viable option.

At moderately small x ~ 1072, the scaling violations
are &ill weak and the soft contribution Ggy (X, Q%)
remains a substantial part, about one half, of the inte-
grated GSF Gp(x, Q) at al Q% At very small x < 1073,
the scaling violations in the GSF are strong and G, ,.4(X,
Q) = Gp(x, Q@) - snft(x Q) > Ggni(x, Q) starting
from Q% ~ 1-2 GeV

6.3. Soft-Hard Decomposition of the Proton Sructure
Function F,(x, @)

Equations (15) and (16) define the soft—hard decom-
position of the proton structure function. In Fig. 13, we

show FS?I" (x, @) and Fzsopﬁ(x Q?) asfunctions of Q?for

the two representative values of x. Notice how the sig-
nificance of soft component as a function of Q? rises
from the fully differential &(x, Q?) to the integrated

soft

Gp(x, Q%) to doubly integrated F,, (x, Q?). At amoder-
ately small x ~ 1073, the soft contribution is adominant
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Fig. 11. The same asin Fig. 10, but overlaid onto one graph
for illustration of the x dependence of F(x, «2). The dashed
curves show the soft component %, (x, k%) and its slight
rise with x from x = 107 to x = 107 is due to the finite-x
factor (1—Xx)°.
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Fig. 12. The same as in Fig. 11, but for integrated GSF
Gp(x, Q%) as given by the D-GRV parametrization of the
DGSF F(x, k°) (for the discussion, see Section 6.2).
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part of F,,(x, Q%), although the rapidly rising hard com-
ponent ngrd (x, Q?) gradually takes over at smaller x.

soft

Notice that not only does F, (x, Q?) not vanish at
large Q?, but dso it rlseﬁslowly with Q? as

S)ft(Q )|Og 1 =
asg(Q7)
Again, the decrease of F;’) (x, @) with Q> would only

be possible at the expense of unphysical negative val-
ued Gsoft(Qz) a Iarge QZ.

Fao'(x, Q%) Dzef (46)

7. DGSF IN THE x SPACE: EFFECTIVE
INTERCEPTS AND HARD-TO-SOFT DIFFUSION

It isinstructive to look at the change of the x depen-
dencefrom the DGSF % (x, Q?) to mtegrated GSF Gp(x,
Q?) to proton structure function Fp,(x, Q?). It is custom-
ary to parametrize the x dependence of various struc-
ture functions by the effective intercept. For instance,
for the effective intercept 14 the DGSF structure func-
tion is defined by the parametrization

F(x, x%) O Dlﬁ“’“ B 7)

One can define the rel ated mtercepts Tharg fOr the hard
component F,,.,(x, @?). Noticethat in our ansatz T, =0.

The power law (47) isonly acrude approximation to
the actual x dependence of DGSF and the effective
intercept T will evidently depend on the range of fitted

X. To be more definite, for the purposes of the present
discussion, we define the effective intercept as

2y 10g[F (X5, €2 F (x4, )]
Tar(X) = log (X:/%;)

, (48)

F2]7
10!

100

107! 100 10! 102 103
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taking x, = 107 and x, = 10°3. The effective intercept
T,,.a(Q?) is defined by (48) interms of ZF,,.4(x, Q).

One can define the related intercepts Ay and Apaq
for the integrated GSF Gp(x, Q?):

(@)

(xQ)DDlﬂ . (49)

In the case of F,,(x, Q%), we define the intercept A(Q?)
in terms of the variable X defined as

_ QM

WZ + QZ

where M, is the mass of the ground state vector meson
in the considered flavor channel. Such a replacement
alowsoneto treat on equal footing Q* < 1 GeV?, where
the formally defined Bjorken variable x;; can no longer
be interpreted as a light-cone momentum carried by
charged partons. For the purposes of the direct compar-
ison with 1(Q?) and A(Q?) and in order to avoid biases

caused by the valence structure function, here we focus
on intercepts A and A4 for the sea component of the

0x (50)

g

proton structure function F3." (x, Q?):

«i(Q)
Fop (X, Q)DDldl : (51)

The results for the effective intercepts are shown in
Figs. 14-16.

In our smplified hard-to-soft extrapolation of
Foona(X, Q7), We attribute to F,,.,(x, Q%) at Q2 < QF the
same x dependence as at Q? = QC2 modulo to slight

modifications for the x dependence of Kﬁ . This gives

Fy,

107! 100 10! 102

02, GeV?2

Fig. 13. The soft-hard decomposition of K -factorization results for the proton structure function F,

(x, Q%) evaluated with the D-

GRV parametrization of the DGSF (X, i 2). The soft and hard contributions are shown with the dahed and dotted Ccurves, respec-
tively; their sumisgiveninthe solid curve. Closed circles show the ZEUS BPC data[31], opentrianglesand circlesare H1 data[32,

35], and open squares refer to E665 results [30].

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4

2001



768

1(D-GRV)
0.6

A(D-GRV)
0.6

0.4

0.2

0
10!
0.6
0.4

0.2

10! 103
k2, 02, GeV?

0
107!

103
02, GeV?

0
107! 10!

Fig. 14. Effective intercepts for total and hard components
of (a) the DGSF F(x, k2), (b) integrated GSF G (%, Q?), and
(c) proton structure function Fy,(X, Q%) evaluated with the
D-GRV parametrization of the DGSF F(X, Kz). In (d) we
compare the effective intercepts T (%), Aeg(Q7), and

AefefI(QZ) for %(X, Qz)r GD(XY Qz)v and FZp(Xl Qz)‘ reSpeC-
tiv y.

the cusp in Try(Q?) at Q2= Q7 i.e., thefirst derivative
of Tyg(Q?) is discontinuous at Q2 = Q7.

A comparison of Fig. 11 with Fig. 12 and further
with Fig. 13 shows clearly that only in DGSF Z(x, Q?)
isthe effect of the soft component concentrated at small
Q? inintegrated Gp(x, Q) and especialy in the proton
structure function F,y(x, Q?) is the impact of the soft
component extends to much larger Q2. Thelarger the soft
contribution, the stronger is the reduction of T4 from
Trarg @Nd SO forth, this pattern is evident from Fig. 14ato
Fig. 14b to Fig. 14c (see dso Figs. 15 and 16).

The change of effective intercepts from differential
F(x, Q) to integrated Gp(x, Q?) is straightforward, the
principal effect isthat Apgq(Q?) < Trag(@?) and Ay (Q%) <
T (Q%), which reflects the growing importance of soft
component in Gp(X, Q%). The change of effective inter-
cepts from F(x, Q?) and Gp(x, Q?) to Fypy(x, Q?) isless
trivial and exhibits two dramatic consequences of the
hard-to-soft and soft-to-hard diffusion. If the standard
DGLAP contribution (24) were al, then the change
from the intercept A(Q?) for integrated gluon density to
the intercept A(Q?) for the proton structure function
F,,(X, Q%) would have been similar to the change from
I(E)Z) to A(Q?); i.e, the effective intercept Ay (Q?)
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Fig. 15. Effective intercepts for total and hard components
of (a) the DGSF F(x, k2), (b) integrated GSF G (%, Q?), and
(c) proton structure function F,,,(X, Q?) evaluated with the
D-MRS parametrization of %(x, «2). In (d) we compare the
effectiveintercepts Tog; (%), Aegr (Q%), and Ao (Q) for F(x,
Q). Gp(x, @), and Fy,(x, Q%), respectively.

would have been close to zero for Q° < 1 GeV2. How-
ever, by virtue of the hard-to-soft diffusion phenome-
non inherent to the k factorization, F,,(x, Q?) receivesa
contribution from gluons with «2 > Qg, which enhances
substantially A4q(Q?) and Ag (Q9). The net result isthat,
at smal to moderately large Q?, we find A, 4(Q% >
Arard(@?) and Ay (Q7) > A (Q7). As we emphasized
above in Section 5.3, the rise of the real-photoabsorp-
tion cross section is precisely of the same origin.

The second effect is a dramatic flattening of the
effective hard intercept A, ,4(Q?) over the whole range
of Q. For all three DGLAP inputs, A 44(Q?) flattens at
approximately the same A4 = 0.4.

The set of Figs. 14-16 also showsthat the systematics

of interceptsin the hard region of Q> > Qf isnearly iden-
tical for al three DGLAP inputs. In the soft region, we

have a dight inequality Tpyq(k?)lp-wvrs > Thad(®?)lb-crv
which can be readily attributed to the slight inequality

Q?Z(MRS) > QZ (GRV). In the case of CTEQAL (v.4.6)
input, the value of QC2 (CTEQ) is substantially larger
than Q2(MRS), QZ(GRV). In the range Q2 (MRS),
Q?(GRV) < k2 < Q’(CTEQ), the effective intercept

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001
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Thaa(k?) rises steeply with k2. This explains why in the
Soft region Tpag(ie?)|creo is significantly larger than for
the D-GRV and D-MRS parametrization. The differ-
ence among intercepts for the three parametrizations
decreases gradually from the differential 2 (x, k?) tothe
integrated Gp(x, Q%) gluon density to the proton struc-
ture function F,(x, Q?).

Finaly, in Fig. 17 we compare our results for
A (Q%) with the recent experimental data from the
ZEUS collaboration [34]. In the experimentd fit, the
range of X = [X...» Xmin] Variesfrom point to point; in our
evaluation of A from Eq. (48), we mimicked the
experimental procedure, taking X, =Xy @nd X; = Xpin
This explains the somewhat irregular Q? dependence.
The experimental data include both sea and valence

components. At Q> > Qg (GRV) = 09 GeVv? we

included the valence component of the structure func-
tion taking the GRV98LO parametrization. For

CTEQAL (v.4.6) and MRS-LO-1998, the values of Q’

are substantially larger. However, the valence compo-
nent is a small correction and we took the liberty of

evaluating the valence contribution F;’Z' (x, @ for

Q?(GRV) < Q2 < Q*(MRS), Q*(CTEQ). The overall
agreement with the experiment is good. Difference
among the three parametrizations is marginal and can
of course be traced back to Figs. 14-16.

8. HOW THE GLUON DENSITIES
OF k FACTORIZATION DIFFER
FROM DGLAP GLUON DENSITIES

It is also instructive to compare our results for inte-
grated GSF (45) with the conventional DGLAP fit
Gu(x, Q9. In Fig. 18, we present such a comparison
between our integrated D-GRV distribution (solid
curves) and the GRV98LO distribution (dashed
curves). As was anticipated in Subsection 3.2, at very
large Q?, the two gluon distributions converge. We a'so
anticipated that, at small x and moderate Q? the
DGLAP gluon structure functions Gy (x, Q?) are sub-
stantialy larger than the result of integration of DGSF
[see Eq. (45)]. At x = 1075, they differ by asmuch asa
factor of two to three over a broad range of Q° =<
100 GeV2. The difference between integrated DGSF
and the DGLAPfit decreases gradually at largexand is
only marginal at x = 1072

Recall the substantial divergence of the GRV, MRS,
and CTEQ GSF of DGLAP approximation G, (x, Q%) at
small and moderate Q. Contrary to that, the k-factor-
ization D-GRV, D-CTEQ, and D-MRS GSF G, (x, Q?)
are nearly identical. We demonstrate this property in
Fig. 19, where we show integrated G, (x, Q%) and their
DGLAP counterparts G, (x, Q%) for the three parametri-

PHYSICS OF ATOMIC NUCLEI

Vol. 64 No.4 2001

769

A(D-CTEQ)
0.6
L D)

0.4}

1(D-CTEQ)
0.6

(@)

0.4

0.2 0.2

O_J_LLLIllII_LLLLI.IlII_LLLLIlIlI_LLLLI.IlIl

107!

A(D-CTEQ)
0.6

04L_ccaemmm777

0.2+

10! 103
K2, 02 GeV?

0
10 10!

Qz, GeV?

0
107! 10!

Fig. 16. Effective intercepts fort total and hard components
of (a) the DGSFF(x, k2), (b) integrated GSF Gp(x, Q%), and
(c) proton structure function F,,(x, Q?) evaluated with the
D-CTEQ parametrization of F(x, k2). In (d) we compare
the effective intercepts Toq; (%), Aogr (Q%), and Ay (Q7) for
F(x, Q%), Gp(x, Q%), and Fy,(x, Q?), respectively.
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Fig. 17. Effective intercepts A(Q?) of the proton structure
function F,,(x, Q?) inthe HERA domain eval uated for the D-
GRV, D-M IQS, and D-CTEQ parametrizations for the DGSF
F(X, KZ), shown in solid, dashed, and dotted curves, respec-
tively. The experimental data points are from ZEUS[34].
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Fi Zg 18. Comparison of our resultsfor integrated GSF Gp(X,
Q) (solid curves) evaluated with the D-GRV parametriza-
tion of the DGSF F(x, k?) with the GRV98LO DGLAP
input parametrization G, (X, Q?) (dashed curves).

zations at two typical values of x. Because of an essen-

tially unified treatment of the region of k2 < Q; and
strong constraint on DGSF in this region from the

experimental dataat small Q?, such aconvergence of D-
GRV, D-CTEQ, and D-MRS DGSFsis not unexpected.

One can aso compare the effective intercepts for
our integrated GSF G,(x, Q?) with those obtained from
DGLAP gluon distributions G, (x, Q*). Figure 20

shows large scattering of )\éf"ft)(QZ) from one DGLAP

input to another. At the same time, this divergence of
different DGLAP input parametrizations is washed out
to a large extent in the k-factorization description of
physical observables (see dso Fig. 17).

9. HOW DIFFERENT OBSERVABLES PROBE
THE DGSF F(x, Q%)

The issue we addressin this section is how different
observables map the x>-dependence of F(x,, k?). We
expand on the qualitative discussion in Section 3.2 and

corroborate it with numerical analysis following the
discussion in [20]. We start with two closely related
guantities—longitudinal structure function F,(x, Q%)

and scaling violations dF,(X, Qz)lalogQZ—and pro-
ceed to Fy,(x, Q%) and the charm structure function of
the proton, Fgg (x, @?). This mapping is best studied if,

in (15) and (16), we first integrate with respect to k and
z. In order to focus on the k2 dependence, we prefer pre-
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Fig. 19. A comparison of the divergence of GRV98LO,
CTEQ4L(v.4.6), and MRS-L0O-1998 GSF G,(x, Q%) (top)
with the divergence of our integrated gluon structure func-
tions Gp(x, Q%) (bottom) evaluated for the D-GRV, D-
CTEQ, and D-MRS parametrizations for differential gluon

structure function F(x, Qz) at two typical values of x. The
solid, dashed, and dotted curves refer to GRV, MRS, and
CTEQ ansatz, respectively.
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Fig. 20. A comparison of the intercept )\éfft)(Q2) of the x
dependence of the GRV98LO, CTEQ4L (v.4.6), and MRS
LO-1998 GSF G, (x, Q) (dashed curves) with their coun-
terpart A.q(Q?) for integrated G,(x, Q%) evaluated with D-
GRV, D-CTEQ, and D-MRS parametrizations for differen-
tial gluon structure function %(x, Q) (solid curves).
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senting different observables in terms of J(2x, ¥?) and

Gp(2x, ¥?):
FL(x Q%)
52
S(Q)z J- @I(_ff)(Q 2)9;(2)(’](2)’ ( )
IF,(x, Q°)
(Q) aIOgQ Y

“”(Q K)F(2x, k7).

X b

In the numerical calculation of F (x, Q%) starting
from Eq. (16), we have x; and x? as the two running
arguments of F(x,, k?). As discussed above, the mean
value of X, is close to 2x, but the exact relationship
depends on k. Thek, zintegration amountsto the aver-
aging of F(x, 2) over acertain range of x,. The result
of this averagl ng is for the most part controlled by the
effective intercept T4 (k?):

Ter(x7)
[ (g k)O= [F(2x, k7)) (2x/%) " 'O

= (k) F(2x, k°).
Because the derivative of 1.4 (x?) changes rapidly

(54)

around k2 = Qc2 , the rescaling factor r(k?) also has a

rapid variation of the derivative at k2 = Qf .Asfar as
the mapping of differential #(2x, k?) is concerned, this

is an entirely marginal effect. However, let us consider

the mapping of the integrated GSF Gp(x, Q?), which is

derived from Egs. (52) and (53) by integration by parts:
Fux Q)

d](Za@(f f)(Q )

alog
IF,(x Q%)
alogQ2

_ S(Q ) 2’008 (@7 k%)
B z I 0Iogn<:2

Then, because of rapid variation of the derivative of the
rescaling factor r(i2) around k2 = Q?, the weight func-

tions 69(”) (@

irregular behavior around k? = Q? . Evidently, such an
irregularity appears in any region of fast variation of
T« (2); in our simplified model, it is somewhat ampli-
fied by the cusp-like k2 dependence of T4 (k?).

,.(95)
Gp(2x, ¥ )

_ S(Q>z e

(56)
Gp (2, k7).

2)/6Ioglc2 will exhibit a dightly
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Fig. 21. The we|ght function ©; for mapping (52) of the
DGSF %(x, k2) asafunction of > for several values of Q?.
We show separately the results for light flavors, u, d, and
charm.
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Fig. 22. The weight function ©,_for mapping (53) of the
DGSF F(x, k2) asafunction of k> for several values of Q.
We show separately the results for light flavors, u, d, and
charm.

Finally, starting from (56), one obtains a useful rep-
resentation for how the proton structure function F(x,
Q%) maps the integrated GSF-:

Q’
_rdg’ag(q)
qu 3m

Fap(x, Q%) =

0
2 00 (o, k%) )
aloglc

Gy (2% Kz) 67

“Yef
= élﬁz ef,f O,I(szif D@ K)agk?)Gp(2x, k).

InFigs. 21 and 22, we show the weight functions ©,
and ©,. Evidently, for light flavors and very large Q?,
they can be approximated by step-functions

%) 08(C,Q°—x?),

o' (Q? (58)
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Fig. 24. The We|ght function W, for mapping of the inte-
grated GSF Gp)(x, ?) asafunction of k” for several values
of Q2. We show separately the results for light flavors and

charm.
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Fig. 25. A comparison of the experimental datafrom ZEUS [38] on the charm structure function of the proton with k-factorization

results for Fgg(x, Q?) based on the D-GRV parametrization of the DGSF %(x, Q). Predictions, given in solid and dashed curves,
refer to charmed quark mass m,. = 1.5 GeV and m,. = 1.3 GeV, respectively.

where the scale factors C, ~
readily read from thefigures (for the related discussion,
see [20]). Note that the value C, ~ 2 corresponds to

C, ~8introduced in Section 3.2. Recall that the devel-
opment of the plateau-like behavior of ©, and ©,,
@, signalsthe onset of the LLQ?

approximation. For large Q? in approximation (58), the
k2 integration can be carried out explicitly and F (X,

which extendsto k2 ~

1/2 and C, ~ 2 can be

Q) O Gp(2x,

C.Q).

Similarly, we have

OF,(x, Q3)/8logQ* 0 Gp(2x, C,Q?), cf. Eq. (28).

The first quantity is sharply peaked at k2 ~

A till better idea on how F, and scaling violations
map the integrated GSF is shown in Figs. 23 and 24,

where we show resultsfor 90" /dlogi? and W' .

C. Q% The

second quantity visibly develops a plateau at large Q2.
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As can be easily seen, scaling violations do receive a
substantial contribution from the beyond-DGLAP
region of k2> Q2.

Because of the heavy mass, the case of the charm
structure function FS; (%, @) issomewhat special. Fig-

ures 23 and 24 show the wesk sensitivity of F5p (x, Q)

to the soft component of J(xg;, %), which has an obvi-
ous origin: long-wavelength soft gluons with kK = m,

decouple from the color-neutral ¢t Fock state of the
photon which has a small transverse size <1/m.. Our

results for Fs, (x, Q) are shown in Fig. 25 and the

agreement with the recent precision experimental data
from ZEUS[38] is good.

10. SUMMARY

We present the first parametrization of DGSF (X,
Q%) of the proton inherent to the k-factorization
approach to small-x DIS. The form of the parametriza-
tion is driven by color gauge invariance constraints for
soft Q?, early ideas from color-dipole phenomenology
on the necessity of the nonperturbative soft mechanism
for the interaction of large color dipoles and by match-
ing to the derivative of familiar DGLAP fits G, (x, Q).
The latter condition is not imperative, though, and can
be relaxed; in this exploratory study, we simply wanted
to take advantage of theinsight on G, (x, Q) from early
DGLAP approximation studies on scaling violations.
The parameters of F(x, Q%) have been tuned to the
experimental dataon F,, inthelow-x (x < 0.01) domain

and throughout the entire Q? region, as well as on the

real-photoabsorption cross section o,y . The DGSF F(x,

Q?) is the principal input for pQCD calculation of many
diffractive processes and we anticipate that the consistent
use of our parametrizations shall reduce the uncertainties
of calculations of cross sections of such processes as dif-
fractive DISinto vector mesons and continuum.

Our results allow us to address several interesting
issues. First, our ansatz for Z(x, Q% have been con-
structed so as to ensure the convergence of Gp(x, Q?)—
theintegral of Z(x, Q?)—to the corresponding large Q?
DGLAPIinput G,(x, Q%. We notice that both gluon dis-
tributions provide acomparabl e description of the same
set of experimental data on the proton structure func-
tion, the only difference being that, in the k factoriza-
tion, we lift the DGLAP limitation on the transverse
phase space of quarks and antiquarks. We find very
slow convergence of and a numericaly very large dif-
ference between the k-factorization distribution Gp(X,
Q% and the DGLAP fit G,(x, Q). As anticipated, the
divergence of thetwo distributionsis especialy large at
small-x and persists even in the hard region up to Q? ~
10-100 GeV? at x = 10°5. We interpret this divergence
as asignal of breaking of the DGLAP approximation,
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which arguably becomes poorer at smaller x. The sec-
ond finding is a numerically very strong impact of soft
gluons on the integrated GSF Gp(x, Q?) and the proton
structure function F,y(x, Q). It is not unexpected in
view of the early work on color-dipole phenomenol ogy
of small-x DIS, but the evaluation of the soft compo-
nent of the integrated GSF is reported here for the first
time. In conjunction with the strong departure of the k-
factorization distribution Gp(x, Q%) from the DGLAP
fit Gu(x, Q?) it serves as a warning against the unwar-
ranted application of DGLAP evolution at Q? in the
range of several GeV?2.

The phenomenologically most interesting find isthe
anatomy of the rising component of the proton struc-
ture function from the Regge theory point of view. We
notice that the effective intercepts T,,4(Q%) and
Ararg(Q?) for hard components of the differential and
integrated gluon distributions are lively functions of Q?
which vary quite rapidly with Q? from=0.1 at small Q?
to=0.6 at Q% ~ 10° GeV2. In the language of Regge the-
ory, this evidently implies that the hard component of
neither & (x, Q%) nor Gp(x, Q?) isdominated by asingle
Regge-pole exchange and a contribution from several
hard Regge poles with broad spacing of intercepts is
called upon. However, an approximately flat Q2 depen-
dence of A,4(@?) showsthat the hard component of the
proton structure function can be approximated by asin-
gle Regge pole with an intercept of A4 = 0.4. Such a
scenario in which a contribution of subleading BFKL-
Regge poles to F,,(x, @) is suppressed dynamically
because of the nodal properties of gluon distributions
for subleading BFKL-Regge poles has been encoun-
tered earlier in the color-dipole BFKL approach [17].
The intercept An,4(Q?) found in the present analysisis
remarkably close to the intercept of the leading BFKL-
Regge pole Ap = 0.4 found in the col or-dipol e approach
in 1994 [16, 17, 21] (or the related two-Pomeron phe-
nomenology of DIS, see also [29]). From the point of
view of K factorization, the hard-to-soft diffusion is a
unique mechanism by which an approximate constancy
of Ang(Q) derives from a very rapidly changing
Traa(Q?). Fourth, the same hard-to-soft diffusion pro-
vides a mechanism for the rise of the real photoabsorp-
tion cross section 6 in a model with the manifestly
energy-independent soft cross section. We emphasize
that the hard-to-soft diffusion isageneric phenomenon
and we do not see any possihility for the decoupling of
hard contribution from photoabsorption at Q? = 0.

We restricted ourselves to a purely phenomenol ogi-
cal determination of differentia gluon distributions
from the experimental data on F,,(x, Q?), which is suf-
ficient for major applications of the k-factorization
technique. Whether the so-determined hard compo-
nents of F(x, Q%) and Gp(x, Q%) do satisfy the dynami-
cal evolution equations and what is the onset of
DGLAP regime will be addressed el sewhere.

One of the authors (N.N.N.) had the privilege of
belonging to the A.B. Migdal’s Nuclear Theory Divi-
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sion at the L.D. Landau Institute for Theoretical Phys-
ics. This paper is a humble tribute to the memory of
Arkadii Benediktovich, who was a great physicist,
teacher, artist, sportsman, a sparkling source of inspira-
tion, and a bull of aman with exemplary lust for lifein
all itsfacets.
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Abstract—The dynamics of partonsthat emerge as the result of quantum tunneling in aspatially uniform time-
dependent field is studied under conditions prevalent in ultrarelativistic heavy-ion collisions. A self-consistent
set of coupled equations that consists of the renormalized Maxwell equation and the Vlasov kinetic equation
that involves a source and which is derived on a dynamical basis is solved numerically. The time dependence
of the distributions of internal fields and currents for bosons and fermions is investigated within this back-reac-
tion mechanism, and their momentum spectra are constructed. Clear evidence that oscillations in the time
dependence of parton distributions in phase-space cells are of a stochastic character is obtained, and a signifi-
cant irregularity in the momentum distribution on large time scalesisfound. If theinfluence of the back reaction
is disregarded, these effects disappear completely, the oscillations becoming regular. A possible thermalization
scenario for such a quasiparticle plasmais considered in the rel axation-time approximation. A locally equilib-
rium state i s described within the two-component thermodynamics of particlesand antiparticles. The possibility
of introducing temperature under conditions of a strong vacuum polarization is discussed. © 2001 MAIK

,and V. D. Toneev
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1. INTRODUCTION

A.B. Migdal made a decisive contribution to the
development of quasiparticle concepts in many-body
theory, which were used as a basis for evolving meth-
ods for describing various phenomenain nuclear phys-
ics and the physics of neutron stars[1, 2]. In particular,
he predicted the softening of pion modes and pion con-
densation in dense nuclei as a genera corollary of
physical-vacuum instability in strong fields [3]. These
predictions gave impetus to subsequent intensive inves-
tigations into the properties of the equation of state of
hot and compressed nuclear matter and, in particular,
into possible phase transitions in nuclei; in a sense,
Migdal’s ideas served as a motivation and a precursor
to experimental heavy-ion studies that are being pres-
ently performed over awide interval of projectile ener-
gies. That one can vary, in thisway, the temperature and
the baryon density of the system formed in a nuclear
collision opens a unique possibility of seeking and
exploring various phase transitions in nuclei like lig-
uid—gas phase transitions, chiral-symmetry restoration,
and the phase transition through which hadrons trans-
form into a quark—gluon plasma.

In the present study, we develop a dynamical
approach to describing the evolution of quark—gluon
plasma, heavily relying on the concept of quasiparti-
cles. The conditions under which a quark—gluon plasma
can be formed are considered only to the extent that is
required by the purposes pursued here. Models of the
noneguilibrium evolution of the system and of its ther-

D saratov State University, Saratov, 410071 Russia.

malization differ by the degree of roughening and by
the underlying interaction mechanisms. Here, we
decide on a kinetic method for describing nonequilib-
rium matter and on the unsteady-state Schwinger
mechanism for vacuum particle production in strong
fields. Alternative models will be discussed precisely
from this point of view.

In accordance with general ideas of ultrarelativistic
heavy-ion collisions, it is assumed that, in each nucleus
that has suffered a collision, there arise color charges
generating chromoelectric fields between disklike
nuclear residues flying apart (flux-tube model [4, 5]).
These stringlike fields can prove to be sufficiently
strong (supercritical) to ensure intense vacuum tunnel -
ing of partons, which enrich the quark—gluon plasma
formed. If the density of such partons is sufficiently
high, parton collisions become operative, leading to
thermalization and local equilibration. Fast mation of
charges in a quark—gluon plasma induces a color field,
thereby affecting the vacuum production and annihila-
tion of partons. This scenario corresponds to the so-
called back-reaction problem; obviously, the evolution
of al field components of the system must be consid-
ered self-consistently in this case.

A guantum-field model of a system of massive par-
tonsoccurring in apreset spatially uniform time-depen-
dent classical electromagnetic field that is sufficiently
strong for inducing noticeable vacuum tunneling of
particles represents one of the possible realizations of
the flux-tube model. The assumption that the field in
guestion is of a semiclassical character is supported by
the result obtained in the leading 1/N approximation

1063-7788/01/6404-0775%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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(here, N is the number of identical copies of charged
matter fields) [6-11]. In conformity with the flux-tube
model, it would a so be reasonable to assume, for afirst
step, that the direction of the chromoelectric field is
fixed and that there is no chromomagnetic field.

This system of model assumptions, which leads to
the Abelian version of the theory, was extensively used
a the semiphenomenological level to construct a
Kinetic description of quark—gluon plasmas. Therole of
the Schwinger mechanism [10] of vacuum parton pro-
duction in strong fields was first realized within time-
independent models (see, for example, [11]). A further
step in describing the dynamics of vacuum particle pro-
duction consisted in introducing a kinetic equation for
the time-dependent momentum distribution of partons
[12-15],

of(p, t)
i eE(t)

where f(p, t) is the relevant distribution function. In
addition to the collision integral S(p, t), which ensures
redistribution of particles in energy and momentum as
the result of binary collisions, the right-hand side of
this equation involves a source C(p, t) describing the
change in the number of charged particles as the result
of vacuum tunneling in an electric field of strength E(t).
Originally, the two terms on the right-hand side of the
kinetic Eq. (1) were constructed phenomenologically
on the basis of the simplest physical considerations. For
example, the Schwinger source was chosen in the form

f(p t) = C(p,t) +S(p, 1), (1)

S(p,t) = IeE(t)IIn[l expD |EI(EtC)r|D}

x[1+2f(p, 1)]18(py).

where the critical field is E,, = n?/e and where a plus
(minus) sign correspondsto Bose—Einstein (Fermi-Dirac)
satistics. The form of the source was specified differently
in different studies; the statisticd factor (1 + 2f) was first
introduced in [16]. As arule, the relaxation-time approxi-
mation was adopted for the collision integral [17, 18].

Later, the Schwinger source in the kinetic Eq. (1)
was derived, for some simple cases, on a dynamical
basis as an exact solution to the equations of mation
[19, 20]. Thisderivation relied on the circumstance that
gauge-invariant theories (like QED and QCD) have
much in common, especialy in the formulation of
problems peculiar to the flux-tube model. In particular,
the theory of vacuum particle production in strong
time-dependent electromagnetic fields was studied in
[21-25]. Sometricks devised in those studies and based
on atransition to the semiclassical representation will
be used in Section 2 to derive a kinetic equation of the
type in (1) in the collision-free approximation. On the
basis of these exact equations, the dynamics of partons
originating from a vacuum in a strong field was inves-
tigated in [20, 26] (see also Section 3 in the present
study). The supercritical values of the amplitudes of

(@3]
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(chromo)electric fields are chosen in accordance with
estimates based on the flux-tube model. We will show
that the results obtained in Section 3 are in qualitative
agreement with the results produced by semiphenome-
nological approaches.

In Section 4, we investigate the back-reaction prob-
lem in the collision-free regime. Here, the role of an
external field reducesto the generation of aplasmacon-
sisting of particles and antiparticles that have origi-
nated from avacuum viatunneling. Upon switching the
external field off, the plasma formed undergoes self-
consistent evolution governed by the back-reaction
mechanism. As will be shown in the present study, a
transition to a self-consistent field generates sources of
nonlinearity in the description of the dynamics of mass-
less and massive fields, whereby there arise dynamical
singularities and large-scal e plasmaoscillations against
the background of small-scale instabilities [27]. These
oscillations are quickly damped as soon as one
switches on the thermalization mechanism associated
with binary collisions. In Section 5, this mechanism is
considered in the relaxation-time approximation for a
two-component thermodynamic system.

2. KINETIC EQUATION

In accordance with the ideology of the flux-tube
model, the vector potential of a semiclassical vector
field satisfying the gauge condition A’ = 0 is chosen
herein the form

A"(t) = (0,0,0,-A(t)). 3)

Let usfirst consider the case of scalar el ectrodynamics,
which describes the vacuum production of scalar
bosonsin such afield [19, 20, 28].

Solutions to the wave equation in the spatially uni-
form field (3) are sought in the form

(pf(t)(x) - (2_‘_[ _3/2[200_(k)]_llzeik D(g(i)(k, t), (4)
where the functions g®(k, t) satisfy the oscillatory-
type differential equation

69k, t) + w’(k, g (k, 1) = 0. (5)

Here, w(k, t) = €2 + [k; — A(t)]? is the quasiparticle
energy with €5 =n? + k2. In Eq. (4), w_(k) = lim w(k,
t - —0o0

t). Positive- and negative-frequency solutions are estab-
lished by considering their asymptotic behavior for
t— —0[21, 22, 24],
¢k, 1), O_explio (K)t]. ©)
The expansion of field operatorsin the orthonormalized
basis (4) hasthe form
90 = [dK@”(9ay +

oxal’1. o)
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KINETIC DESCRIPTION OF VACUUM PARTICLE PRODUCTION

The condition in (6) defines the operators a{’ and a

asthe operators annihilating particles and anti partlcles
respectively, in the initia (in) state and obeying a con-
ventional set of commutation relations.

The solutions given by Egs. (4) and (7) make it pos-
sible to diagonalize the Hamiltonian and to go over to
the quasiparticle representation by means of the time-
dependent canonical Bogolyubov transformation

b‘”(t) = oy (t)ay’ + By (1)asy,

Gt = aF (al) + By (al’

which isvalid under the condition |a, (t)]? — |B(t)]> = 1.
On the basis of the equations of motion as given by (5),
we can find, with the aid of the Lagrange method, that
the coefficients in the Bogolyubov transformation (8)
satisfy the equations [24, 25, 29, 30]

®)

(D) = sukp (e
©)
|3 (t) = oo(t) ak (t)e 2|O(t)
where the dynamical phase factor is given by
t
O(k,t) = J’drw(k,r). (10)

For the quasiparticle creation and annihilation opera-
tors, Egs. (9) in turn lead to the equations of motion (of
the Heisenberg type)

dei(t) _ w(t) ) )
dt Zw(t) —k (t) + I[H(t) C (t)]!
where we have introduced the operators
(1) = b (D exp[£io()],

which also obey the canonical commutation relations.
In the quasiparticle representation, the Hamiltonian
assumes the diagonal form

(1)

H® = 5 o®{c’Oc®) + M} (12)
k

The unusual form of the equations of motion in (11) is
associated with nonunitarity of the transition from the
original to the quasiparticle representation.

In the new representation, one can define the instan-
taneous value of the number of particles produced from
avacuum,

0, b ()b ()]0,
e et |O-

in|Ck ( )Ck ( ) |nD
and, in the same way, the analogous value for antiparti-
cles, f (k,t); obviously, we have f (k, t) = f(—k, t).

f(k,t) =
(k, 1) 13)
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Differentiating this definition with respect to time
with allowance for Eq. (11), we obtain
df(k,t) _ _eesE()
dt 20°(1)
The functions ®®(k, t) describe the production and

annihilation of a particle and an antiparticle as the
result of vacuum tunneling:

[DP (K, t) + DOk, 1)].

(14)

QJ( )(k t) - |:0:)|n|c (t)C(k)(t)|O|nD

®I(K, 1) = m,[ct” (e (1)]0,0

For these functions, we can easily derive equations.
From the outset, it is convenient to represent them in
the integral form

) _ S_ut ._eE(t) N
®@(k, 1) = 2:['0dtw2(k’t,)[2f(k,t) 1
x exp{ £2i[©(t) —O(t)]},

whereit isassumed that lim ®®(k, t) = 0.
t - —0
Substituting (15) into (14) and going over to the dis-
tribution with respect to the kinetic momentum, f(p, t)
withp =k — eA(t), wearrive a akinetic equation in the
aboveform (1), but without acallisionintegral and with
the source given by

cEEM)Ps(t t)
w’(t, 1)

_ eE(t) p3

2()'[

[l [l
x[1+2f(p,t)] cosDZJ’dToo(t, )
U d U

S(p,
(16)

where

(P%)? = g2+ p3,  o(t,t) = e+ p5(t, t),

t

p(t,t) =p —eJ'E(T)dT.

In a similar way, one can derive a kinetic equation for
spin-1/2 fermions produced from a vacuum [19, 20].
Combining the two cases, we can write the source in
thekinetic Eq. (1) as

S'(p,t) = W(p, 1) Idt'W(p(t, t),t)
(17)

t

0 0
x[1+2f(p,t)] cosDZIdroo(t, 0
0 ? 0
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where the transition amplitude W(p, t) hasthe form

_ €E(M) PsrEorf
W(p, ) @y

the degeneracy factor being g = 1 for spinless bosons
and g = 2 for spin-1/2 fermions.

The kinetic Eg. (1) with the source given by (17) is
a linear integro-differential equation of the non-
Markov type. The analytic structure of the source in
(17) is very intricate because of the quickly oscillating
factor that involvesthe dynamical phase (10) and which
describes the effect of an external field on vacuum
oscillations of charged particles [27].

In order to investigate the kinetic equation, it is
therefore convenient to represent it as a set of ordinary
differential equations. This can be done, for example,
by introducing two auxiliary real-valued functions [31]

t

v(k,t) = [drW(k—eA(t),t)

(18)

t

x[1x2f(k,t")] cosEQIdm)(t, T)%
o 0 19)

t

2(k,1) = [dtW(k —eA(t),t)

t

[l [
x[1+ 2f(k,t')]sinE2J’drw(t,r)D
U d U

Differentiating Eq. (19) with respect to time and using
the kinetic Eg. (1) with C(p, t) = 0, we arrive at the set
of ordinary linear differential equations

f = %Wv,
v = W(1+2f)-2wz, (20)
Z=2wv

with zero initial conditions and a parametric depen-
dence on the canonical momentum k. It should be
noted that the set of Eq. (20) has the obvious first inte-
gral

F(1z f)2+ vZ+u® = const. 21
Going over to observable momenta, we can represent the
set of Egs. (20) asthe set of partial differential equations

0ft(p. 1) ZW(p, v (p, 1),

2.0 eE(t)af(pst)

(22)
= W(p, [ 1 2f(p, t)] -2p°Z(p, 1),

VINNIK et al.

9z(p, t)
ot

The set of Egs. (20) or (22) or its subsequent modifica-
tions served as a basis for numerically simulating the
processes under investigation [20, 26, 32].

In the model being considered, Egs. (20) and (22)
can also be derived without resort to kinetic theory [25,
31]. However, the realization of the theory in the form
of akinetic equation is preferable for further develop-
ing relativistic kinetics with allowance for vacuum par-
ticle production.

+eE(t)aZ(‘; D = 2p% (p.1).
3

3. DYNAMICS OF VACUUM PARTON
PRODUCTION IN AN EXTERNAL FIELD

The application of the kinetic Eq. (1), which was
obtained on a dynamical basis and which involves a
source in the form (17), to the physics of quarks and
gluons (partons) ) |eads to some new effects that could
not be obtained within phenomenol ogical approaches.

A nontrivial momentum distribution of partons [20,
26, 36] seemsto be the most important of these. In con-
trast to the majority of phenomenological approaches,
where it is assumed that particles are produced at rest
[compare, for example, with relation (2)], the source
given by (17) generates particles of any momentum, the
relevant spectrum showing a power-law decrease. For
the parameter valuestypical of the flux-tube model [14,
37-40], Fig. 1 shows the momentum distributions of
bosons and fermions generated from a vacuum by the
electric field specified by the Narozhnyi—Nikishov
potential [21]

Aoq(t) = Egb[tanh(t/b) +1],
E..(t) = Eqcosh™(t/b).

The scale of the variables is specified by the parton
mass, which serves as a natural measurement unit for
them:t — tm p — p/m E, — eE,/m’,and b —
bm. Hereafter, the above quantities are given precisely
in these units, unless stated otherwise. Upon the substi-
tution of these variables reduced to a dimensionless
form into dynamical equations, the characteristic scale
of observablesisalso determined by the parton mass. In
particular, the field energy density then transforms as
€ — e’¢/mt. Owing to this, one can study, at the same
values of the external-field potential (23), systems hav-
ing markedly different energy densities—for example,
QED and QCD. In some cases, it is convenient to go
over to dimensionless variables with the aid of the
guantity €.

Once the external field is switched on, the momen-
tum distribution of bosons develops a valley in the
region of zero longitudinal momenta, while the distri-

(23)

Awe emphasize once again that many aspects of nonequilibrium
dynamicsin QED are similar to those in QCD [33-35].
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Fig. 1. Momentum spectraof product (left panel) bosonsand (right panel) fermionsfor eEO/m2 =7,bm=0.5, and €* = 4 at theinstant

tm=0.05.

bution of fermions develops a hill. These distributions
are concentrated within finite momentum regions and
are shifted with time toward higher longitudinal
momenta; the boson valley isfilled, while the fermion
hill is stabilized (saturation effect). If the external field
is operative for a sufficiently long time, oscillations in
the longitudinal momentum can arise in the momentum
spectrum (see Fig. 2); this is in qualitative agreement
with the results obtained in other studies under the
assumption that the external field is constant [28, 41].

We note that the effect of statistics in the source
manifestsitself both through the amplitude W(p, t) (18)
and through the statistical factor (1 + 2f). The former
determines primarily the shape of the momentum dis-
tribution, while the latter is responsible either for the
Fermi suppression or for the Bose enhancement of the
particle-production rate. Thelast effect isnonnegligible
only if the parton density is sufficiently high.

The time dependence of the distribution function
also exhibits new singularities associated with a non-
Markov character of the source given by (17) [26]. In
the case of sufficiently weak and slowly varying fields,
the statistical factor (1 + 2f) can be removed outside the
integral sign in (17), whereupon the kinetic equation
can be solved explicitly. The result has the form

t
fM(p,t) = $%Eﬂ—exp{iz'['dt'so(k,t')}% (24)
O J O

where

t

CE(t) ps(t, ')

1) = W(p,t) [dt
So(p: 1) (p. 1) _[) 2021 1)
t (25)
g sZD g-1
x cos[2fdtow(t, r)ﬁ - }
PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001

is the source function in the low-density approxima-
tion. From (24), it followsthat, in the low-density limit,
the distribution function assumes the form

t

fO(p! t) = Idt'SO(p! t') (26)
This relation can also be rewritten as[24]
t
1| o EE(t)ps(t, t)
fo(p,t) ==| [dt ——S—=
o0 =7 ;[ 20°(t, )
(27)

2

x[ §
pa(t, t')
whence it follows that f,(p, t) is aways nonnegative.

In the Markov approximation, it is more convenient
to perform numerical calculations not on the basis of
expressions (24)—27) but on the basis of the relevant
set of differential equations, which is derived by apply-
ing a procedure similar to that which has led to
Egs. (20). Specifically, we obtain

f= %W(liZf)v,

g-1
} exp[2i0(p, )]

v = W-2wz, (28)

Z=2wv.
In contrast to the set of Egs. (20), this set of equations
is nonlinear.
In order to assess non-Markov effects, it is conve-
nient to make use of two time scales characterizing vac-
uum particle production [20, 28, 42]. The first of these

is the tunneling time Ty ~ 1/, while the second is the
pair-production time
-1 d
Tyoo O [[dPIS(P. 0}, [dp] = g—F

(2’

(29)
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Fig. 2. Fermion-production rate asafunction of longitudinal
momentum in a constant field of strength (a) eE/sé =15

and (b) 0.5.

flks =0, r8p)

0.2

0.1

Fig. 3. Precise solution to the kinetic equation for fermions
(thick solid curve) aong with solutions in the Markov
approximation (thin solid curve) and in the low-density

limit (dotted curve) at pj =0 and eE/sé =3.

To state it otherwise, T;,lod represents the mean pair-

production rate. In the Markov approximation, we have
> Ty,
prod

In supercritical fields, memory effects become oper-
ative, so that phenomenological constructions of the
typein (2) canlead to sizableinconsistencies, as can be
seenin Fig. 3. In thisfigure, we can also observe oscil-
lations of the distribution function, which decay with
time and which were previously suggested by the
results of other studies (see, for example, [28, 37]). The
distribution functions themselves tend asymptotically
to constant values that are determined by the amplitude
of the externa field, the effects of Fermi suppression
and of Bose enhancement being leveled out in this case.
It can easily be verified, however, that, when E — oo,

VINNIK et al.

the Fermi distribution function tends to its limiting
value of unity, while the Bose distribution function
grows indefinitely.

4. DYNAMICS OF VACUUM PARTON
PRODUCTION IN THE MEAN-FIELD
APPROXIMATION

Let us now assume that the role of the external field

AL, reducesto triggering the generation of parton—anti-
parton pairs, which in turn produce the internal mass-

lessfield Al,,. As soon as the external field is switched
off, the parton plasma becomes an isolated self-consis-
tent system. For a first approximation, it is reasonable
to consider its dynamics in the mean-field approxima-
tion. The kinetic Eq. (1) with the source given by (17)
(in the collision-free version for the time being) must
be supplemented with the Maxwell equation

E(t) = —i(t), (30)

which renders the total field E(t) = —A«(t) — Ain(t)
consistent with the total current j(t) = j.(t) + ji, (1) in
the system. The interna current is the sum of the con-
duction current and the vacuum polarization current,

jint(t) = jcond(t) + jpol(t)v (31)
Jeons(t) = 2¢[[dP1 21 (P, ), (32)
im(® = eftdrl2vp ol o

where v (p, t) is given by (19), while the momentum-
space element [dp] is defined in (29).

In order to eliminate the ultraviolet divergences in
the currents given by (32) and (33), we will make use
of the procedure of n-wave regularization [24, 31, 43].
In order to construct counterterms according to the pre-
scription of this procedure, it is necessary to expand the
functionsf, v, and z (19) in asymptotic seriesin inverse
powers of w. Having implemented this procedure in the
set of Egs. (20), we obtain the leading contributions

_£)_3_ [EEDg—lir
4(;03Eb3D ’

P3 [?D[?
4|:b o

Ps ot
s[bD .

From a comparison with expressions (32) and (33), we
can see that the current j..,q IS finite, while the current
Jpor diverges logarithmically. In order to regularize the
currents, it is therefore sufficient to make the formal

f4=FHU
= eE(t) = (34)

z, = eE(t)

PHYSICS OF ATOMIC NUCLEI  Vol. 64 No. 4 2001
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10 for eEy/m? = 7.
fps/m) fp3/m)
10
(@ 1.0L ®)
| |
0.8+
| |
0.6
4r 0.4+ h\
2+ 0.21 w U
; : |
1 1 1 1 1 1 1 1 1 ]
T 8 4 0 -20 15 -10 -5 0 5
p3lm

p3/m

Fig. 5. Longitudinal-momentum (p;/m) distribution of (a) bosons and (b) fermions at the instant tm = 25 (p5 = 0).

substitution v — v — v5 in (33). We write the regular-
ized Maxwell equation as [44]

= Paf¢ , VB Pa CE0CPCT
Ein ZeI[dp] w[f * 20,0 eE8w4Eb3D }
(35)

The Maxwell equation (35), in conjunction with the
kinetic Eq. (1) with the source given by (17) [or the set
of Egs. (20)], forms a basis for studying the back-reac-
tion problem within the approach developed here. This
problem was solved by numerical methods in [32, 36]
for various versions of triggering external-field pulse.

Basic features of the dynamics of the system being
considered are associated with the essentially nonlinear
character of the self-consistent set of equations describ-
ing the back-reaction problem. This s reflected prima:

PHYSICS OF ATOMIC NUCLEI
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rily in the irregular dynamical behavior of the system,
most spectacularly in the evolution of the distribution
function. In Fig. 4, one can see how the smooth distri-
bution of bosons (see also Fig. 1) ceases to be regular
as soon as the back-reaction mechanism is included
[for the triggering pulse, we have chosen the potential
(23) with the parameter values corresponding to those
inFig. 1].

Irregularities can be seen both in the momentum
distribution (comb in Fig. 5) and in the time scan of the
distribution function (Fig. 6). Figure 6, which shows
the fermion distribution function versustime and longi-
tudina momentum, exhibits a small smooth fragment
that corresponds in time to the action of the external
pulse. After this pulse is switched off, the system
undergoes a self-consistent evolution, which is charac-
terized by an ever growing instability of multimode
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f p3/m

Fig. 6. Fermion distribution function versus time and longi-
tudinal momentum at eEy/nt = 7.

oscillations on small time scales (about T,,) and by the
emergence of large-scale plasmaoscillations of charac-
teristic time T, (within the semiphenomenological
approach, results similar to those in Fig. 6 were previ-
ously obtained in [37]).

On the basis of the above results, it can be conjec-
tured that a stochastic process is developed in the self-
consistent dynamics of vacuum particle production in
strong fields. Below, we present arguments in support
of this conjecture. Figure 7 displays the correlation
coefficient

K@)

M = g6

)

K(1) = _Tl_J’f(t)f(t+r)dt, (36)
0

where

f(t) = f(t)—%J’f(t)dt,
0

and the power spectrum

P(w) = J’dte‘“"(:(t) (37)
for the distribution function f(t) = (0, t), which were
constructed for thed = 1 + 1 version of the approach
proposed here. The results shown in this figure are
peculiar to systemsthat exhibit stochastic behavior (for
example, aLorenz system [45]): a continuous spectrum
and virtually no correlations. The presence of small
irregular oscillations in the vicinity of the origin fol-
lowing the exponential decay has no bearing on this
conclusion—they may be due to scanning the process
within abounded time interval.

From the point of view of the theory of dynamical
systems, the problem being considered belongs to the

VINNIK et al.
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Fig. 7. (a) Correlation coefficient and (b) power spectrum
for the distribution function at eEq/m? = 7.

class of nonlinear distributed quantum-mechanical
problems. Here, nonintegrability is one of the genera
criteria of the existence of stochasticity [46]. For the
basic set of equations studied herefor the back-reaction
problem, this criterion is obviously satisfied.

In contrast to the distribution function, other observ-
ables that are expressed in terms of its moments (cur-
rent, internal field, energy density, etc.) behave quite
regularly (Fig. 8). In the absence of dissipative mecha
nisms, these variables undergo undamped oscillations
whose character is weakly dependent on the shape of
the external-field pulse. The amplitude and frequency
of these oscillations depend strongly on statistics: they
are much greater for fermions than for bosons. The
presence of small ripples in the vicinities of extremal
points of the current corresponds to the time scale T,

PHYSICS OF ATOMIC NUCLEI
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In al probability, a stochastic behavior of parton
plasmas in the mean-field approximation exemplifies
the emergence of stochasticity in high-energy physics
[47] and can |ead to observabl e effects. Finally, we note
that the very existence of large-scale plasma oscilla-
tions (Fig. 6) can be interpreted in terms of self-organi-
zation effects [48].

5. THERMALIZATION

A consideration of plasma dynamics in the colli-
sion-free approximation has a significant drawback
associated with mean-field oscillations against the
background of particle density values n(t) close to the
Compton value. As soon as the field strength E is
reduced to values below en??, pair interaction becomes
dominant, so that the mean-field approximation ceasesto
bevalid inthis case. At the sametime, there are data sug-
gesting that, at an early stage of an ultrarelativistic
heavy-ion collision, partons interact strongly, whereby
matter isthermalized on thetime scalet, < 1 fm/c, which
is commensurate with the period of field oscillations.

Since solving the relevant self-consistent problem
requires performing very involved computations,
binary collisions are usually taken into account in the
relaxation-time approximation. In this case, the right-
hand side of the Vlasov equation is supplemented with
the model collision integral [17],

f(p,t) = feq(p, 1)
T(p, 1) '

The quasiequilibrium distribution function f,, depends
on thermodynamic parameters whose number is equal
to the number of conservation laws that must be satis-
fied in simulating collision events. The relaxation time
T, can be estimated as the ratio of the mean free path to
the mean velocity, 1, ~ n"'/3/u, or expressed in terms of
the total cross section as 1, ~ [on]~! [17]. Usually, the
system is assumed to be one-component and to be gov-
erned by a single thermodynamic parameter, the temper-
ature T(t), which is determined from the condition requir-
ing that the ingtantaneous energy densities in a nonequi-
librium and in a quasiequilibrium state be equal [49]:

I[dp]wf(p, t) = _[[dp]wfeq(p, f).

In this case, thermalization is described in the rest
frame of one of the components of the system, while
the relative hydrodynamic flows of the components are
disregarded.

This scheme was used in many studies [13, 49-51]
to describe QED and quark—gluon plasmas with a
model source.

There arises a serious problem when the scheme
specified by Eq. (39) is used in an exact kinetic equa
tion featuring a non-Markov source. In this case, the
matter energy density is negative at early plasma-for-
mation stages because of vacuum polarization by a

C(p.t) = - (38)

(39)
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Fig. 8. Electric-current density j(tm)/m’® (solid curve) and
electric field E(tm)/m? (dashed curve) in the system of
bosons produced from avacuum in the external field (23) at
eE,/m’” = 10, bm= 0.5, and €” versus time.

supercritical field, so that the scheme that introduces
the temperature according to Eq. (39) is not applicable
directly. The presence of the collision term in the
kinetic equation changes the asymptotic behavior of
f(p — o) in such away that this effect is partly com-
pensated, but this does not solve the problem com-
pletely.

A simpletrick that makesit possible to sidestep this
difficulty consists in that only after a lapse of some
delay time 14 from the application of the externa-field
pulse is the collision integral included in the kinetic
equation, whereby yet another phenomenological
parameter 1,4, which can beinterpreted asthelifetime of
astrongly nonequilibrium state, appears in the system.

The system of particlesf and antiparticles f , which
isconsidered here, isathermodynamically two-compo-
nent system, but, because of high symmetry of the
problem and of theinitia conditions, thereare only two
independent thermodynamic parameters, the tempera
ture T(t) and the longitudinal hydrodynamic velocity
w=vy(1,0,0, ut)), wherey= (1 —u?)-2, The chemical
potential is zero because of the el ectric neutrality of the
system, whenceit follows that the equilibrium distribu-
tion function has the form [52]

-1

— Pl 4y
fo(P.1) = mexp[T(t)}( ST

Sincewe havef(p, t) = f (—p,t) inview of the sym-
metry of the problem, particles and antiparticles have
oppositely directed mean velocities equal in magnitude
and identical temperatures. Thus, the antiparticle distri-

bution function fe(p, t) is obtained from expression
(40) upon the substitution u — —u, so that it is suffi-
cient to use only one kinetic equation for particles. The
mean velocity is determined from the momentum con-
servation law

J’[dp]pC(p, t) = 0. (41)
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Fig. 9. (@) Temperaturein parton-mass units and (b) entropy
density at various values of 1., = Tcm (numbers on the
curves) versus time (time delay is equal to half the pulse
duration tgm = 1; the pulseis applied at tym = -2).

In this approximation, the model collision integral can
be represented as

C(p. 1)

S 22O+ fu(P O+ falp ) g oy (42
- T, 0~ Ld)-

The presence of the collision integral (42) in the
kinetic Eq. (1) does not induce qualitative changes in
the asymptotic behavior of f(p, t) for p —» co—in par-
ticular, al singularities survive. Only the expression for
the leading term f, changes, devel oping a non-Markov
term:

fq

t
_ Dﬂﬁﬂ 1 . L 2 .0 (43)
Tol) El T_CEZJ[E(t yexp((t —t)/tc)] dt El

Since the integrand on the right-hand side of (43) is
positive definite, collisions only reduce the negative
contribution of vacuum polarization to the particle
energy density. This is, however, insufficient for the
scheme specified by Eg. (39) to become valid. In the
collision integral, we therefore introduce the factor
B(t- t, — 1y, which ensures that collisions become
operative after a lapse of the delay time 14 from the
instant t, at which the external pulse was applied.
Figure 9 illustrates the time evolution of the tempera-

VINNIK et al.
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Fig. 10. Energy density (solid curves) with and (dashed
curves) without allowance for the external-field energy at
eE,/n’ = 1.5 for eEy/n? = (thick curves) 20 and (thin
curves) 10. The product T;mwas set to 1.5 here.

ture and the entropy at various values of 1.. As might
have been expected, the inclusion of collisions leads to
an additional growth of the entropy and temperature,
each of which approaches a plateau with time, demon-
strating equilibration in the system.

The evolution of the energy density in the systemis
shownin Fig. 10. At the values chosen here for thefield
parameters, the relevant conditions reproduce those
that are prevalent in ultrarelativistic nuclear collisions
[51]. In just the same way as the temperature, £(t)
reaches a plateau as soon as tm exceeds unity—that is,
amost immediately after the instant at which the exter-
nal field is switched off; this is consistent with a very
fast decay of fluctuations (see also Fig. 7). The dou-
bling of the external-field strength leads to a sixfold
increasein the equilibrium quark density; concurrently,
the temperature changes from about 280 MeV (see
Fig. 9) to 500 MeV at m= 200 MeV.

6. CONCLUSION

The present investigation has been performed on the
basis of the kinetic Eq. (1) featuring a source in the
form (17) and describing, in the collision-free approxi-
mation, the dynamics of vacuum particle productionin
astrong spatially uniform time-dependent field of fixed
orientation in space[19, 20]. It isof importance that the
kinetic equation has been obtained on adynamical non-
perturbative basis. This has enabled us to consider an
essentially nonperturbative region of a nonequilibrium
parton—antiparton plasma and to analyze the effect of
various factors on process dynamics. In the simplest
situation wherethe external field is preset, the evolution
of our quantum system is of aregular character; at the
same time, the assumption (3) of an externa (back-
ground) field has shown natural conformity to the flux-
tube model. The inclusion of the back-reaction mecha-
nism via a self-consistent description of the dynamics
Vol. 64 No. 4
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of a parton plasma that has originated from a vacuum
and of itsintrinsic field has led to the emergence of a
significant irregularity in parton distribution functions.
Thisisindicative of a change in the character of evo-
lution from regular oscillations to stochastic behav-
ior. The additional inclusion of the dissipation mech-
anism due to collisions at the phenomenological level
contributes to thermodynamic equilibration in the
system. All these models make it possible to fit a the-
oretical description to conditions expected in ultrarel-
ativistic nuclear collisions. A more detailed applica-
tion of the proposed approach to specific nuclear sys-
tems at RHIC and LHC will be developed elsewhere.
It would be of great interest to elaborate further on
the model by going, for example, beyond the 1/N-
expansion technique within some nonperturbative
scheme.
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