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Abstract—The double-differential cross sections for the reaction 15N(p, αγ)12C induced by 7.5-MeV protons
are measured for alpha-particle emission angles from 20° to 160°. All even spin–tensor components of the den-
sity matrix for the 2+ state (4.44 MeV) of the final nucleus are reconstructed by a model-independent method.
For the same state of the carbon nucleus, the populations of magnetic sublevels and the components of the angu-
lar-momentum-orientation tensor are analyzed as functions of the alpha-particle emission angle. Our experi-
mental data are compared with theoretical predictions based on the triton-cluster-pickup mechanism treated
within the coupled-channel method. It is shown that correlation features are sensitive to the reaction mechanism
and to structural characteristics of the nuclei involved. The role of sequential processes is emphasized. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The present article reports on a continuation of our
investigations into angular correlations between pho-
tons and massive particles in nuclear reactions involv-
ing light nuclei and leading to the formation of 12C

nuclei in the  state. Our previous studies of elastic
alpha-particle and 3He scattering on 12C nuclei [1, 2]
and of the formation of the state in question in reactions
featuring the transfer of one nucleon or two nucleons
[3–5] revealed that, in some cases, angular correlations
are more sensitive to the reaction mechanism than
angular dependences of the relevant differential cross
sections.

The reaction 15N(p, α)12C has been studied rather
well. In particular, the angular and differential depen-
dences of the differential cross sections for the forma-
tion of the ground and the lowest excited state of the
final nucleus were measured over a broad energy range
extending to 45 MeV [6]. However, these measure-
ments could not be uniquely interpreted in terms of the
simplest direct transitions (such as the pickup of a clus-
ter and the DWBA), compound-nucleus formation, and
preequilibrium processes.

At the same time, correlation measurements provide
a clue to reaction dynamics and allow a verification of
the model assumptions used to interpret all existing
data on this reaction. In addition, such measurements
are sensitive to the structural properties of the initial
and final nuclei. In particular, the rotational origin of

the lowest –  states of the 12C nucleus, which has
a sizable quadrupole deformation (β2 ~ –0.5 [7, 8]), is
expected to affect all the aforementioned reactions.
This feature of the 12C nucleus dictates the use of the
coupled-channels method (CCM) in analyzing experi-
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mental data, whereby the eventual theoretical results
may differ significantly from the predictions of a con-
ventional DWBA analysis.

Here, we report on the first measurements of αγ
angular correlations in the three-nucleon-transfer reac-
tion 15N(p, αγ)12C. The data from these measurements
are sufficiently vast to allow a reconstruction of all even
spin–tensor components of the density matrix for the

 state of the final nucleus.

The reaction is assumed to proceed via the triton-
cluster-pickup mechanism analyzed on the basis of the
CCM.

2. EXPERIMENTAL PROCEDURE
AND DATA ANALYSIS

Incident protons with a kinetic energy of 7.5 MeV
were delivered by the 120-cm cyclotron installed at the
Institute of Nuclear Physics (Moscow State Univer-
sity). The proton energy was determined by comparing
the energy that beam protons scattered in a thin gold
target (0.22 mg/cm2) lose in a silicon detector with the
energy loss of alpha particles from the standard 226Ra
source OSAI-1. The incident energy was tuned by mod-
erating protons in thin aluminum foils, and the beam
spot on a target was formed by focusing magnetic qua-
drupole lenses (see [9] and references therein). The
energy spread of the proton beam amounted to some 70
and 150 keV at Ep = 7.5 and 3.5 MeV, respectively.

The detection of the reaction products and their time
and energy analysis were performed with the aid of a
data-acquisition system that was characterized by a dis-
tributed architecture and which provided several stages
of data processing [10]. The first stage, which was iden-
tical to that in our previous studies [11] and which
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relied on CAMAC modules and on a 131A processor,
consisted in sorting out the analog signals from spec-
trometric devices. At the second stage, these signals
were digitized by a minicontroller driven by a Siemens
CS167 processor. Finally, the accumulated data were
filtered and processed by a local network of two IBM
PCs.

In measuring double-differential cross sections,
charged secondaries were detected by an array of four
surface-barrier semiconductor counters 100 µm thick
that were made from silicon and which had an angular
resolution of ±2.5°. The angular and energy depen-
dences of the differential cross section were measured
by a single detector with an angular resolution of ±1°.
These detectors were attached to a table that was
arranged in the scattering chamber in such a way that its
angle of inclination with respect to the horizontal plane
could be changed within an angle of π/2.

Secondary photons were detected by an array of
four scintillation counters based on NaI(TI) crystals
with an angular resolution of ±12°. Photons of energies
between 2.0 and 4.5 MeV, which are characteristic of
the radiative transition of the 2+ excited state
(4.44 MeV) of 12C to the ground state, were analyzed
for coincidence with product alpha particles.

A layer of melamine powder enriched in 15N to 99%
and precipitated from a spirit suspension onto a thin
gold substrate was used as a target. The thickness of the
target estimated by comparing the yields of elastically
scattered alpha particles from the target under study
and from a Dacron film of known thickness was found
to be close to 1 mg/cm2. The amount of 15N in the target
was also estimated by irradiating it with 28-MeV alpha
particles and comparing the resulting angular depen-
dence with that measured in [12]. The reported mea-
surement of the cross section for the reaction 15N(p,
α)12C(g.s.) at Ep = 7.5 MeV proved to be consistent
with the data from [13] on the cross section for the
inverse reaction 12C(α, p)15N(g.s.) at Eα = 16.3 MeV.

A model-independent method for reconstructing the
spin–tensor components Akκ (θα) of the density matrix
on the basis of the measured double-differential cross
sections for the reaction, W(θγ, ϕγ; θα), was described
comprehensively elsewhere [14]. It consists in solving,
by the method of least squares, the following overdeter-
mined set of linear equations for nine components:

Here, the angles θα, θγ, and ϕγ specify the directions of
alpha-particle and photon emission in the system of
spherical coordinates with the z axis aligned with the
proton-beam direction and the xz plane taken to be

coincident with the reaction plane, while  are asso-
ciated Legendre polynomials. The overall normalizaion

d
2σ/dΩαdΩγ W θγ ϕγ; θα,( )≡

=  
1

4π
------ Akκ θα( )Pk

κ
θγcos( ) 2

2k 1+
--------------- κϕγ.cos

k κ,
∑

Pk
κ

of the spin–tensor components is fixed by the condition
A00(θα) ≡ dσ/dΩ(θα). The values of k are determined by
the relations k = Jf + Jf and k = L + L, where Jf is the
spin of the excited state and L is the multipole order of
the radiative transition, while κ may assume integral
values between –k and k.

The double-differential cross sections measured in
three planes (with respect to the reaction plane) made it
possible to reconstruct all nine even spin–tensor com-
ponents Akκ(θα) of the density matrix for the 2+ state
(4.44 MeV) of the 12C nucleus. For the same state of
12C, we were also able to estimate the population of
magnetic sublevels, P±M, and the components of the
angular-momentum-orientation tensor, tkκ, as functions
of θα [14]. In deducing the values of Akκ(θα) from the
measured cross sections, we took into account the finite
dimensions of the scintillation counters [14]. The quan-
tities Akκ(θα) were largely reconstructed at confidence
levels in excess of 0.1.

3. RESULTS AND DISCUSSION THEREOF

The measured cross sections for the formation of the
ground state of the 12C nucleus and of its first excited

state ( ) in the reaction 15N(p, α)12C are illustrated in
Figs. 1a and 1b, respectively, as functions of θα in the
range 20°–160° (in the laboratory frame). These depen-
dences are typical of direct processes, although the θα

distribution for the formation of the  state tends to be
symmetric with respect to θα = 90°.

For alpha-particle emission angles of 45°, 60°, and
120°, the measured cross sections are depicted in
Fig. 1c as functions of the incident energy Ep (varied
between 3.5 and 7.5 MeV). The data for the formation
of the ground state of 12C are consistent with excitation
functions for the inverse reaction from [13], where
these data overlap. The excitation functions for the for-

mation of the  state of 12C are quite regular and tend
to decrease toward higher Ep. At the same time, the
excitation function for the formation of the ground state
of 12C shows oscillatory behavior at all values of alpha-
particle emission angles.

The double-differential cross sections for the reac-
tion 15N(p, αγ)12C were measured for 18 values of θα
between 20° and 160° (in the laboratory frame), five to
nine values of θγ, and three values of the azimuthal
angle ϕγ (180°, 225°, and 270°). The density-matrix
elements Akκ(θα) for k = 2 and 4 as extracted from the
measured cross sections are illustrated in Fig. 2 as func-

tions of θα. For the same  state of 12C, the θα depen-
dences of the populations of magnetic sublevels and of
the components of the quadrupole- and hexadecapole-
moment-orientation tensors as inferred from the values
of Akκ(θα) are plotted in Figs. 3 and 4, respectively.
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Fig. 1. Differential cross sections for the formation of (a) the ground and (b) the first excited ( ) state of the 12C nucleus in the

reaction 15N(p, α)12C at Ep = 7.5 MeV as functions of the alpha-particle emission angle. Points represent our experimental data.
The solid curve, short dashes, the dotted curves, and the solid curves with crosses illustrate the results of the calculations assuming
the triton-cluster-pickup mechanism treated on the basis of the CCM with the parameter sets no. 1, 2, 3, and 5 from Table 1, respec-
tively. Long dashes show the prediction for the heavy-stripping-particle mechanism. (c) Energy dependences of the differential cross
sections for the above reaction leading to the transition to (α0) the ground and (α1) the first excited state of the 12C nucleus for three
different values of the angle θα (in the laboratory frame). The curves connecting the data points are drawn to guide the eye. The
coefficients by which the experimental data are multiplied are shown by the curves. In this figure and in those that follow, the error
bars on data points represent statistical uncertainties.

21
+

15N(p, α1)
12C

(b)

100

101

0 90 180
On the whole, the above quantities show complex
oscillatory dependences on θα, and the maximum val-
ues of all components of the tensors of various ranks
prove to be comparable. In particular, the quantities tkκ
show θα dependences suggesting a significant rear-
rangement of the nucleus. Relatively strong oscillations
of these components indicate that the nuclear surface
has considerable dynamical deformations in various
modes. The multipole moments of an excited 12C
nucleus are not collinear with its symmetry axis, and a
significant precession of the total angular momentum is
observed at all values of the light-particle emission
angle. To summarize, the angular dependences of the
measured dynamical characteristics of the reaction
15N(p, α)12C indicate that its underlying mechanism is
fairly intricate.

The data are compared with the predictions that are
based on the assumption of the cluster-pickup mecha-
nism and which were obtained by using the CHUCK
computer code [15], which takes into account the cou-
pling of channels in the initial and in the final state. The
quantities associated with correlations were computed
with the aid of some ancillary codes. Our computa-
tional scheme is illustrated in Fig. 5. Channel coupling
had to be taken into account both in the initial and in the
final state, since the 15N nucleus possesses a significant
quadrupole deformation [16]. The 3/2– state (6.32 MeV),
which fully relaxes to the ground state via an å1Ö2
transition [8], was chosen for a level in the rotational
band.

The values assumed for the CCM parameters are
listed in Table 1, while the parameters of the Woods–
Saxon optical potentials are quoted in Table 2. For the
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
real part of the final-state optical potential A1, we take
the form from [18], where it was obtained by fitting the
real generalized potential calculated theoretically
within the approximation of the four-body problem
(alpha-particle scattering on a bound system of three
alpha particles). The depth of the imaginary part of this
potential was found here from the best fit to all compo-
nents Akκ(θα); the parameters rW and aW were set to the
values from [19], where the optical potential in ques-

Table 1.  Parameter values used in the calculations by the
coupled-channel method

Option 
number β2(15N) β2(12C) Potential*

1 0.3 –0.5 A1 0.5 4.0

2 0.0 –0.5 A1 0.5 4.0

3 0.3 –0.5 A2 0.25 1.7

4 0.0 –0.1 A1 0.4 4.0

5 –0.3 –0.5 A1 0.4 2.6

6 0.3 –0.5 A3 15.0 8.0

7 0.1 –0.5 A1 0.5 5.3

8 0.2 –0.5 A1 0.6 5.0

9 0.4 –0.5 A1 0.5 3.5

10 0.5 –0.5 A1 0.45 2.0

  * The values of the optical-potential parameters are presented in
Table 2.

** The normalization factors k in the angular distributions of alpha
particles from transitions to the ground and the first excited state
of the final nucleus are labeled with the subscripts 0 and 1,
respectively.

k0
** k1

**
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tion was used to describe elastic alpha-particle scatter-
ing on 12C nuclei at Eα = 18.5–25.0 MeV. The standard
values of rV = 1.25 fm and aV = 0.65 fm were assumed
for the parameters of the Woods–Saxon potentials for the
bound states, while the depth parameter of the spin–orbit
term in the potential was assigned the value of λ = 25.

In alpha-particle-induced transitions between light
nuclei, the use of the optical model for constructing dis-
torted waves is known to lead to results that are very
sensitive to the parameters of optical potentials. In view
of this, we tried here not only the potential A1 but also
a few alternative assignments sometimes used for the
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Fig. 2. Reconstructed spin–tensor components Akκ of the

density matrix for the  state of the 12C nucleus according

to data on the reaction 15N(p, αγ)12C at Ep = 7.5 MeV versus
the alpha-particle emission angle θα (points). The ordinate
scale is chosen in such a way that the component A00 ≡
dσ/dΩ is expressed in mb/sr units. The solid curves, the dot-
ted curves, the dash-dotted curves, long dashes, short
dashes, and the solid curves with crosses represent the
results of the calculations assuming the triton-cluster-
pickup mechanism treated on the basis of the CCM with
parameter sets no. 1, 2, 3, 4, 5, and 6 from Table 1, respec-
tively.
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Fig. 3. Reconstructed populations of the magnetic sublevels

of the  state of the 12C nucleus in the reaction 15N(p,

αγ)12C versus the alpha-particle emission angle θα (points).
The solid curves, the dash-dotted curves, short dashes, long
dashes, the dotted curves, and the solid curves with crosses
represent the results of the CCM calculations with the
β2(15N) values from the parameter sets no. 1, 2, 7, 8, 9, and
10 from Table 1, respectively.
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optical-potential parameters in the energy range Eα ≈
9–16 MeV (see Table 2). However, we found that the
angular dependences of the majority of the spin–tensor
components Akκ(θα) could not be adequately repro-
duced with any alternative form of the final-state poten-
tial.

The spectroscopic amplitudes computed with the
wave functions from [20] are displayed in Table 3. In
the CCM calculations, we used the normalization fac-

tor of  = 46 × 104 MeV2 fm3 [21]. Additional nor-
malizations of the reaction cross section and of other
components Akκ(θα) were performed by fitting the com-
puted values of A00(θα) to the measured cross section at
small values of the alpha-particle emission angle. The
relevant normalization factors for the various sets of the
parameters are listed in Table 1. From this table, we can
see that the CCM calculations with the potentials A1
and A2 tend to underestimate the ratio of the cross sec-

tions for the formation of the  state of 12C and its
ground state. On the contrary, the use of the potential
A3 results in overestimating the above ratio. As soon as
the final-state potential is chosen to be A1, the normal-
ization factors prove to be fairly insensitive to varying
the parameter of 15N deformation between 0 and 0.4.

From Figs. 1‡ and 1b, it can be seen that the
CHUCK calculations fail to reproduce the observed
angular distributions of alpha particles, especially for
transitions to the ground state. This disagreement may
be caused by various factors, including that which is
associated with a 16O resonance whose manifestations
may be traced in the energy dependence of the cross
section for ground-state formation (see Fig. 1c). How-
ever, the shape of the angular distributions, which is
peculiar to direct processes, suggests that this is not the
only reason behind the above disagreement: a poor
description of the angular distributions may be associ-
ated with other direct mechanisms, of which the fore-
most consists in heavy-particle stripping (HPS).

For the HPS mechanism, the angular distributions
were calculated by the method of distorted waves as
implemented for finite-range interaction and codified in
the OLYMP-3 package [22]. The parameters of the
optical potentials for the initial and for the final state
were taken to be identical to those in the CCM calcula-
tions. The parameters of the potentials for bound states
are listed in Table 2. The widths with respect to the
decays 15N  11B + α and 12C  11B + p were com-
puted by using the SHIRINA package [23], which takes
into account the excited states of the 11B nucleus. The
wave functions of the nuclei involved were borrowed
from [20]. The calculated contributions of the HPS
mechanism to the angular distributions of alpha parti-
cles are depicted in Fig. 1 without extra normalizations.
We can see from this figure that, for the production of
the ground state, the inclusion of the HPS contribution
improves considerably the agreement between the mea-
sured and the calculated angular distributions of alpha

D0
2
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of the 12C nucleus according to data on the reaction
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Fig. 5. Scheme of the CCM calculations. Double-sided
arrows show the couplings between the nuclear levels
involved, while simple arrows correspond to transitions fea-
turing particle transfer. Also quoted in the figure are the
excitation energies of the levels (in MeV) and their spin–
parities.



1494 IGNATENKO et al.
Table 2.  Values of the optical-potential parameters

Channel Potential V, MeV* rV, fm aV, fm W, MeV rW, fm aW, fm Vso, 
MeV rso, fm aso, fm rc, fm

Refe-
rences

15N + p P1 49.84 1.205 0.605 1.61** 1.03 0.53 5.32 1.205 0.605 1.25 [17]
12C + α A1 161.0 0.85 0.770 5.0 1.5 0.6 1.4 [18]

A2 125.0 1.97 0.5 1.5** 1.97 0.5 1.4 [17]

A3 200.0 1.97 0.6 4.0** 1.87 0.3 1.4 [17]
15N  11B + α – 1.2 0.5
12C(2+)  11B + p – 1.6 0.6
12C  11B + p – 1.2 0.5

  * The depths of the potentials for bound states were derived from the corresponding values of the binding energy.
** The surface potential was taken in the Woods–Saxon form.
particles; moreover, this contribution proves to be dom-
inant everywhere with the exception of the region of the
smallest angles. For the transition to the first excited
state, the HPS contribution is significant only in the
region of the largest angles. On this basis, we can con-
jecture that the HPS mechanism but weakly affects
angular correlations in the αγ system.

Our estimates for the compound-nucleus-formation
mechanism (these results are not presented here) that
rely on the CNCOR package [24] indicate that its con-
tribution to the angular distribution for the formation of
the ground state is sizable only at small values of the
angle θα; for the production of the first excited state,
however, the compound-nucleus-formation mechanism
leads to a nearly isotropic distribution, in a glaring dis-
agreement with experimental data. For the components
Akκ(θα), this mechanism likewise predicts fairly struc-
tureless angular dependences symmetric with respect
to 90°, which are at odds with the experimental data. In
view of all the above, we can conclude that the reaction
15N(p, αγ)12C is not strongly affected by the formation
of a compound nucleus.

In the ensuing analysis of correlation features, we
therefore assume the mechanism of light-particle

Table 3.  Spectroscopic amplitudes Alj

JA  JB transition l j Alj

1/2–  0+ (g.s.) 1 1/2 –0.334

1/2–  2+ (4.44 MeV) 1 3/2 –0.575

3 5/2 –0.448

3/2– (6.33 MeV)  0+ (g.s.) 1 3/2 –0.172

3/2– (6.33 MeV)  2+ (4.44 MeV) 1 1/2 0.308

3/2 –0.244

3 5/2 0.117

7/2 –0.189
pickup. In Fig. 2, the reconstructed components Akκ as
functions of θα are compared with model predictions.
In this figure and in those that follow, the best fits to the
data are depicted by solid curves.

Since the adopted model involves a comparatively
large number of parameters, it is important to check the
sensitivity of the predictions to variations in the key
model parameters.

The deformations of the initial and final nuclei are
considered first. Only the quadrupole deformation was
taken into account here, since effects due to higher
modes are known to be small [2]. The deformation
parameters β2 for the 12C and 15N nuclei were chosen in
such a way as to obtain the best overall fit to the recon-
structed components Akκ(θα).

The highest sensitivity of the prediction to β2 varia-
tions is observed in the region θα ≤ 20°, where there are
no experimental data. Off this angular region, the β2
dependence proved to be less pronounced; still, the data
there permit drawing some conclusions on the defor-
mation parameters. By varying the values of β2 within
the ranges 0.1 < |β2(12C)| < 0.7 and 0 < |β2(15N)| < 0.5,
we have found that deformations of both the initial and
the final nucleus must be taken into account in order to
describe the data on the αγ correlation. By way of
example, we indicate that, irrespective of β2 (12C) val-
ues, the assumption of β2(15N) = 0 proves to be incom-
patible with the reconstructed angular dependences of
the components A21, A22, A41, and A42 [at the same time,
the description of the angular dependences of the dif-
ferential cross sections is somewhat better here than at
nonzero β2(15N)]. In the ensuing calculations, we there-
fore took the conventional value of β2 = –0.5 for the 12C
nucleus and further adjusted the magnitude and sign of
β2(15N).

It turned out that the description of all dynamical
quantities under analysis, Akκ(θα), P±M(θα), and tkκ(θα),
was considerably improved upon taking into account
the deformation of the 15N nucleus. As to the optimum
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
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value of the relevant deformation parameter, it was
found to be somewhat different for the different dynam-
ical quantities. The majority of the spin–tensor compo-
nents Akκ(θα) suggest the value of β2 = 0.3; the compo-
nents of the angular-momentum-orientation tensor
tkκ(θα) are better described at β2 = 0.3–0.4; and the pop-
ulations of the magnetic sublevels, P±M(θα), are com-
patible with β2 = 0.2–0.4. Thus, the value of β2 = 0.3
provides the best simultaneous fit to all the above quan-
tities. For the populations of the magnetic sublevels, the
predictions that assume β2 = –0.5 for the 12C nucleus
and various values of β2 for the 15N nucleus are illus-
trated in Fig. 3.

Negative values of β2 for the 15N nucleus were also
tried in our calculations, but none of these proved to be
compatible with the functional forms of the compo-
nents Akκ(θα). For example, the choice of β2 = –0.3
effectively results in that the components A21, A22, A40,
A41, and A42 for θα values in the forward hemisphere
appear to be in antiphase with the experimental depen-
dences (see Fig. 2), although the corresponding
changes in the angular dependence of the differential
cross section are not so pronounced (see Fig. 1b). Fig-
ure 4 shows the tkκ(θα) values calculated with the values
deformation differing only in sign (β2 = +3 and –0.3).
It can be seen that the positive value of β2 provides a
better description of the data in this case as well. Thus,
the sign of β2 for the 15N nucleus is reliably fixed by
analyzing the correlation features.

Fixing the value of β2(15N) at 0.3 and varying
β2(12C), we find that the data favors negative values of
the latter parameter in the range |β2 | ≅  0.4–0.5.

We proceed to probe the uncertainties associated
with the choice of optical potentials. The results of the
calculations prove to be particularly sensitive to varia-
tions in the parameters of the optical potential for the
12C + α final state. Indeed, the use of this potential in
the alternative forms A2 and A3 leads to significant
variations in the results for the components A40, A43, and
A44 (see Fig. 2); moreover, the calculation of the differ-
ential cross section with the potential A2 shows similar
trends (see Fig. 1). Even relatively small (within 10%)
variations in the parameters of the final-state optical
potential affect the results sizably.

To conclude, we have measured angular correlations

in the reaction 15N(p, αγ)12C( ) at Ep = 7.5 MeV. The
results of our measurements suggest that this reaction
largely proceeds via the pickup of a triton cluster from
the target nucleus. The measured correlations are sig-
nificantly affected by sequential processes associated
with a collective origin of the nuclear states involved in
the above reaction. As might have been expected, the
dynamical characteristics inferred from data on αγ cor-
relations show higher sensitivity to variations in the
model parameters than the angular distributions of
alpha particles.
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That the description of some components Akκ(θα) on
the basis of the triton-pickup mechanism is not fully
consistent with the data suggests possible contributions
from subtler mechanisms that may involve retarded
interactions. Since the inclusion of such additional
mechanisms in the computational scheme requires an
involved analysis, we will address this problem in our
future investigations.
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Abstract—Data on the (p, γ) reactions on 56, 58Fe that were taken at proton energies of Ep = 1.5–3.0 MeV and
which were averaged over resonances are used to determine the absolute values of the radiative strength func-
tion at energies below 10 MeV. The results obtained in this way are compared with the results of the calculations
that rely on the statistical approach and which take into account the temperature of the nucleus and its shell
structure. Good agreement with experimental data is achieved without any variation of parameters. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental and theoretical investigations of the
energy dependence of radiative strength functions for
nuclei whose shells are filled almost completely or
completely revealed that, if the Lorentz distributions
that describe well the electric giant dipole resonances
excited in such nuclei are extrapolated to the region of
low energies, the resulting curve complies with experi-
mental data neither in absolute value nor in shape. For
example, an extrapolation of a Lorentzian curve to the
region of low energies of gamma rays yields radiative-
strength-function values that are eight times as great as
the corresponding experimental values obtained in [1]
for the 59Co nucleus, which has a nearly filled proton
shell (Z = 27). Attempts undertaken in [1] to change the
absolute values of the radiative strength function by
varying parameters used in determining this function
proved to be futile; therefore, its behavior was consid-
ered to be anomalous. On the other hand, the same
authors [2] obtained data on the radiative strength func-
tion for the 65ëu nucleus that were in good agreement
with the extrapolation of the corresponding Lorentzian
form. A deviation of the radiative strength function
from the Lorentzian behavior is at odds with the well-
known Brink hypothesis. In accordance with this
hypothesis, primary E1 transitions that are observed in
radiative nucleon capture are associated with the same
processes as giant dipole resonances approximated by
a Lorentzian form; moreover, giant resonances built on
the ground state and on excited states of the final
nucleus are described in terms of the same parameters.
The above deviations may suggest the nuclear-structure
dependence of the radiative strength function.

The objective of the present study is to determine
the absolute values of the radiative strength functions

* e-mail: Ivan.D.Fedorets@univer.kharkov.ua
1) Kharkov Institute for Physics and Technology, Akademicheskaya

ul. 1, Kharkov, 310108 Ukraine.
2) Institute for Applied Physics, National Academy of Sciences of

Ukraine, Sumy, Ukraine.
1063-7788/00/6309- $20.00 © 1497
for the electric dipole transitions in 57, 59ëÓ nuclei near
the nucleon binding energy and to analyze their energy
dependence. We determine here the relevant radiative
strength functions from the averaged intensities of pri-
mary gamma transitions that proceed to individual low-
lying states of the nuclei being investigated and which
are excited in the (p, γ) reactions on 56, 58Fe nuclei at
incident-proton energies between 1.5 and 3.0 MeV. The
energy Q of the (p, γ0) reactions on these target nuclei
is 6.02 MeV for 56Fe and 7.37 MeV for 58Fe. These val-
ues of Q are sufficiently large for the densities of states
in compound nuclei to satisfy the requirements that
ensure the applicability of the statistical description.
The thresholds for the (p, n) reactions on 56Fe and 58Fe
nuclei exceed 5 and 3 MeV, respectively. Owing to this,
investigations could be performed over a wide range of
incident-proton energies below the neutron threshold.

2. EXPERIMENTAL RESULTS
AND THEIR ANALYSIS

Following [1], we determined the radiative strength
functions in question by the method of averaging over
the resonances of a compound nucleus formed upon
incident-proton capture by the target nucleus. This
averaging, which is necessary for effectively suppress-
ing Porter–Thomas fluctuations [3] and for achieving a
satisfactory statistical accuracy, was ensured by an
optimal choice of target thicknesses and by a succes-
sive addition of gamma-ray spectra measured at differ-
ent energies with a step equivalent to the target thick-
ness. In taking an average over an interval of width
180 keV for 57Co and an average over an interval of
width 220 keV for 59Co, the scatter of data that is asso-
ciated with Porter–Thomas fluctuations did not exceed
the statistical uncertainty of measurements, which was
within 20%.

We used targets manufactured by electrolytically
precipitating, onto a gold substrate, 56Fe (the degree of
enrichment was 99.9%) in order to obtain 849-µg/cm2-
2000 MAIK “Nauka/Interperiodica”
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Fig. 1. Cross sections for inelastic proton scattering on (‡) 56Fe and (b) 58Fe target nuclei (experimental points and calculated
curves): (closed and open circles) experimental data from [11] and [12], respectively; (dash-dotted and dashed curves) contributions
to the calculated cross sections from, respectively, Coulomb and nuclear scattering; and (solid curve) the sum of the Coulomb and
nuclear contributions.

σ(p, p1'), µb
and 1.729-mg/cm2-thick samples or 58Fe (the degree of
enrichment was 90.7%) in order to obtain 849-µg/cm2-
thick samples. The measurements were performed by
using protons accelerated by an electrostatic accelera-
tor to energies in the range 1.5–3.0 MeV, which was
scanned with a variable step equal to proton-energy
losses in the target. The spectra of gamma rays corre-
sponding to primary transitions were measured by a
pair spectrometer arranged at an angle of 55° to the pro-
ton-beam direction. The yields of gamma rays corre-
sponding to direct transitions to the ground states of
57Co and 59Co were also measured with the aid of a
NaI(Tl) detector of dimensions 200 × 200 mm2. The
strategy of our experiment and the procedure that we
used for specific measurements were described in detail
elsewhere [4].

As in [1], radiative strength functions were deter-
mined here by using the fact that the radiative-strength
function (Eγ) for electric dipole transitions can be
related to the proton-capture cross section σ(p, γf). With
the aid of the Hauser–Feshbach formula, the relation in
question can be reduced to the form

(1)

where λp is the incident-proton wavelength; I is the spin
of the target nucleus; Ic is the spin of the compound
nucleus; jp and lp are, respectively, the spin and the

Sλ f

σp γ f,
πλ p

2

2 2I 1+( )
----------------------- 2Ic 1+( )

Ic j plp

∑=

×
Tlp jp

2× πEγ
3Sλ f Eγ( )

Tlp' j p'

j p'lp'

∑ 2πρ j' Eλ Eγ–( )Eγ
3Sλ f Eγ( ) Eγd

0

Eλ

∫
j'

∑+

-----------------------------------------------------------------------------------------------------------,

–

orbital angular momentum in the input channel; jp' and
lp' are the corresponding quantities in the output chan-

nel involving proton emission; (Eγ) = (Eγ) +

(Eγ) is the sum of E1 and M1 radiative strength
functions for transitions from the group λ of com-
pound-nucleus states at energy Eλ to the state of energy
Ef ;  and  are the penetrability factors for pro-
tons in the input and the output channel, respectively;
and ρj ' (Eλ – Eγ) is the density of levels characterized by
a spin j' and an excitation energy E = Eλ – Eγ. In our cal-
culations, we took into account the correction for cross-
section fluctuations of the Ericson type, which arise
because of a small number of open channels, since such
a correction may prove to be of importance at low ener-
gies [5]. It was assumed in [1] that, for E1 transitions,
the dependence of the radiative strength function on the
energy Eγ has the form

(2)

where a and k are parameters, whose values are fixed in
fitting expression (2) to experimental data. The value of
k = 4.7 was obtained in [1] by extrapolating the Lorent-
zian form that describes the giant dipole resonance in
59Co to the energy region under study. For the case of a
direct γ0 transition to the ground state of the 59Co
nucleus, a least squares fit of the theoretical cross sec-
tion σ(p, γ0) to its experimental value yielded a = 1.5
[1]. The radiative strength function as determined by
using the above values of the parameters a and k repro-
duces the slope of the Lorentzian curve, but the abso-
lute values of this function differ from that which
would be expected on the basis of extrapolation by a
factor of 8 [1].

Sλ f Sλ f
E1

Sλ f
M1

Tlp jp
Tlp' j p'

Sλ f Eγ( ) a
10 14–

2π
------------A8/3Eγ

k 3–  MeV 3–( ),=
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In the present study, the radiative strength function
appearing in the denominator on the right-hand side of
(1) was parametrized either in a Lorentzian form or in
that form which was obtained in the approach devel-

(a) (b)
ρ, MeV–1

105

103

101

2 6 10 14 2 6 10 14
U, MeV

Fig. 2. Level densities in the (a) 57Co and (b) 59Co nuclei
versus excitation energy: (broken lines) discrete levels
established in [14, 15], (open circles) experimental data
from [17], (closed triangle) experimental result from [18],
(open triangle) experimental result from [19], (dash-dotted
curve) results of the calculation within the back-shifted
Fermi gas model with the parameter values from [20] and
the nuclear moment of inertia set to half the rigid-body
value, (dashed curve) results of the calculation within the
back-shifted Fermi gas model with the parameter values
from [20] and the nuclear moment of inertia set to the rigid-
body value, and (solid curve) results of the calculation with
the parameter values adopted in the present study.

m

ρ, MeV–1
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oped in [6, 7] on the basis of Fermi liquid theory. The
quantity (Eγ) in the numerator was chosen in such a
way as to reproduce the absolute values of the partial
cross section that were obtained experimentally. The
penetrability factors for protons were calculated with
allowance for the results reported in [8–10]. The param-
eters of the optical potential were determined from the
best fit to the experimental cross section for the reactions
56, 58Fe(p, p'γ) (Fig. 1), 56, 58Fe(p, γ), and 58Fe(p, n) in the
region of incident-proton energies below 4 MeV. The
experimental cross-section values presented in Fig. 1
were borrowed from [11, 12] for inelastic proton scatter-
ing on 56Fe nuclei and from [13] for inelastic proton scat-
tering on 58Fe nuclei. For the geometric parameters of the
real part of the optical potential, we chose the values

rr = 1.17 fm, rs = 1.32 fm,

ar = 0.70 fm, as = 0.58 fm.

With the exception of the diffuseness parameter set
to a value less than that in [8], all the above values are
identical to those from that study. For the real part of
the potential, we took the values

Vr(E) = 59.34 – 0.37E for 56Fe,

Vr(E) = 58.0 – 0.32E for 58Fe;

for the imaginary part of the surface potential, we set

Ws(E) = 3.85 + 0.72E for 56Fe,

Sλ f
σ(p, γf), µb

150

100

50

0
0 1 2 3 Ef, MeV

Fig. 3. (p, γf) partial cross sections for 58Fe targets: (shaded areas of the histogram) cross sections calculated with the radiative
strength functions as obtained within the statistical approach [6, 7] allowing for shell effects and for the nuclear temperature,
(unshaded sections of the histogram) cross sections calculated with the radiative strength functions in a Lorentzian form, and (open
triangles) experimental cross sections.
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Table 1.  (p, γf) partial cross sections for 56Fe targets

Ef , MeV Jπ
σexpt, µb,

Ep = 2.84 MeV,
∆Ep = 180 keV

, µb , µb , µb

0.0 7/2– 23.0 ± 4.4 37.53 19.57 26.55

1.224 9/2– 5.6 ± 1.5 3.44 2.96 4.50

1.378 3/2– 24.9 ± 4.7 50.63 14.74 23.15

1.505 1/2– 16.4 ± 6.3 33.42 8.97 13.58

1.690 11/2– 1.1 ± 0.5 1.56 0.93 1.21

1.758 3/2– 18.5 ± 4.2 40.15  11.16 16.00

1.897 7/2– 7.2 ± 1.8 12.86 5.22 6.55

1.920 5/2– 11.3 ± 3.1 19.49 6.77 8.79

2.133   5/2–* 14.4 ± 4.4 38.32 8.43 13.36

2.311 7/2–

2.479   3/2–* 4.9 ± 2.0 18.02 5.52 5.85

2.485 9/2–

2.514 7/2– 3.0 ± 1.5 19.02 4.15 4.51

2.523 13/2–

2.560 9/2–

2.611 7/2– 3.3 ± 1.6 24.54 6.69 7.31

2.615  9/2–*

2.723  9/2–* 12.0 ± 4.1 30.10 7.13 9.89

2.731 3/2–

2.743 11/2–

2.804 5/2– 9.2 ± 3.5 30.20 8.41 8.65

2.879 3/2–

2.981 1/2+ 8.0 ± 3.0 22.36 5.05 8.63

2.982  5/2–*

Note: The superscripts “expt” and “calc” label, respectively, the experimental and calculated cross-section values; the subscripts “1”, “2”,
and “3” on the latter label the theoretical values corresponding, respectively, to the radiative strength functions in a Lorentzian form,
to the radiative strength functions calculated with allowance for only the nuclear temperature, and to the radiative strength functions
calculated with allowance for nuclear temperature and shell effects. Asterisks indicate spin–parity assignments chosen in the present
study.

σ1
calc σ2

calc σ3
calc
Ws(E) = 5.6 – 0.25E for 58Fe.

In these expressions and in those that precede them, all
values are given in MeV.

The parameters of the real part of the optical poten-
tial differ only slightly from the global parameter set
that is presented in [8] and which was derived on the
basis of data on the scattering of protons with energies
in excess of 9 MeV; however, the parameters of the
imaginary part of the same potential differ from those
in the global set more pronouncedly. At the same time,
our parameters comply well with the results reported in
[10], where an optical-model version that takes into
account the dispersion relation between the imaginary
and the real part of the potential underlies the descrip-
tion of proton scattering on 56Fe target nuclei at inci-
dent-proton energies between 4.08 and 7.74 MeV.

The level densities in the 57Co and 59Co nuclei were
calculated on the basis of the back-shifted Fermi gas
model, with the parameters being set to a = 6.4 MeV–1

and ∆ = –0.02 MeV for the former and to a = 5.5 MeV–1

and ∆ = –0.77 MeV for the latter. In these calculations,
we used the rigid-body value for the 57Co moment of
inertia and half of it for the 59Co moment of inertia.
These parameter sets ensure the best agreement of the
computed values of the level densities (see Fig. 2) with
data from [14, 15] on the discrete section of the energy-
level diagram for the nuclei being investigated and with
data obtained from an analysis of the experimental
spectra of neutrons from (p, n) reactions in the proton-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
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Table 2.  (p, γf) partial cross sections for 58Fe targets

Ef, MeV Jπ
σexpt, µb

Ep = 2.8 MeV,
∆Ep = 220 keV

, µb , µb , µb

0.0 7/2– 49.0 ± 3.9 110.80 51.38 52.15

1.099 3/2– 68.6 ± 6.4 170.62 57.71 74.10

1.190 9/2– 8.5 ± 5.0 17.72 6.96 7.72

1.292 3/2– 64.3 ± 9.7 153.47 51.65 68.93

1.434 1/2– 65.8 ± 15 172.14 61.78 68.74

1.460 11/2–

1.482 5/2–

1.745 7/2– 19.5 ± 4.3 43.93 16.33 23.73

2.062 7/2– 29.5 ± 8.3 87.56 32.41 46.41

2.087 5/2–

2.154 9/2– 9.5 ± 2.3 12.17 6.42 8.03

2.184 11/2–

2.205 5/2– 23.7 ± 7.4 47.52 17.05 24.78

2.395 9/2– 4.4 ± 2.0 9.44 3.68 4.48

2.479 5/2– 19.3 ± 4.4 40.50 14.48 20.32

2.540 5/2– 68.1 ± 17 123.86 46.65 64.52

2.582 3/2–

2.586 7/2–

2.713 1/2+ 99.9 ± 25 148.38 58.73 89.18

2.722 9/2–

2.770 3/2–

2.782 5/2–

2.817 3/2– 32.9 ± 8.7 86.43 24.47 35.45

2.826 7/2–

2.912 3/2– 30.6 ± 17 147.37 42.74 54.93

2.958 5/2–

2.966 3/2–

3.015 7/2– 4.7 ± 2.2 20.35 7.33 9.09

3.063 1/2– 16.7 ± 6.4 30.33 19.78 21.47

3.082 9/2–

3.09 7/2–

3.141 7/2– 4.2 ± 1.8 19.36 6.72 8.06

3.160 3/2+ 23.4 ± 12 56.89 21.90 25.50

3.194 5/2–

3.220 3/2– 38.4 ± 8.6 96.21 32.46 43.27

3.276 3/2–

3.323 7/2– 4.8 ± 1.4 17.16 5.94 6.80

σ1
calc σ2

calc σ3
calc
energy range Ep = 6–10 MeV [16, 17], as well as with
data deduced from an analysis of Ericson fluctuations
at U = 14 MeV for 57Co [18].

The scheme used here to compute radiative strength
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
functions [6] takes into account the dependence of the
spread width of the giant dipole resonance on the
energy Öγ, the effect of the nuclear temperature, and the
role of shell corrections and of the Pauli exclusion prin-
ciple. Within this approach, the E1 strength function for
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the case of a double-peaked giant dipole resonance can
be represented in the form

(3)

where

Sγ
E1 8.67 10 8– 2× π 1 Eγ/T–( )exp+[ ] 1–×=

×
σiEi

2Γ R i( ) Eγ( )

Eγ
2 Ei

2–( )2
EiΓ R i( ) Eγ( )+

----------------------------------------------------------,
i 1=

2

∑

Γ R i( ) Eγ( ) Γ iρ2 p–2h Eγ T,( )/ρ2 p–2h Ei T,( ).=

(a)
σ, mb

100

10–1

3

1

0.2
1.5 2.0 2.5 3.0 2.0 2.5 3.0 3.5

Ep, MeV

Fig. 4. Total cross sections for the (p, γ) reactions on (a) 56Fe
and (b) 58Fe target nuclei: (closed circles in Fig. 4a) exper-
imental cross-section values derived from the estimates of
the results presented in [11, 12], (closed circles in Fig. 4b)
experimental cross-section values from [13], (dashed
curves) cross sections computed with the radiative strength
functions in a Lorentzian form, and (solid curves) cross sec-
tions computed with the radiative strength functions as
obtained within the statistical approach developed in [6, 7].

1
3
2

1

2

3

S, MeV–3

10–7

10–8

10–9

10–1 100 101

Eγ, MeV

5 7 9

10–8

10–9

Fig. 5. Experimental and theoretical values of the radiative
strength functions for primary gamma transitions in 57ëÓ:
(open circles) radiative-strength-function values at Ep =
2.84 MeV, (curve 1) Lorentzian dependence, (curve 2)
results of the calculations within the statistical approach
with allowance for only nuclear temperature, and (curve 3)
results of the calculations within the statistical approach
with allowance for the nuclear temperature and shell effects. 

(b)
σ, mb
 In these expressions, σi, Ei, and Γi are, respectively, the

cross sections at the maxima, the positions of the com-
ponents of the giant dipole resonance, and their widths.
The values of these parameters are chosen in such a
way as to ensure the best fit of the resulting Lorentzian
shape to experimental data that Alvarez et al. [21]
present for the (γ, n) reaction on 59Co. In calculating the
level density ρ2p–2h(Eγ, T), we took into account the
shell structure of the spectrum of single-particle levels
and the effect of the nuclear temperature on the occupa-
tion numbers for these nuclei.

In order to calculate the M1 strength function, we
made use of the relation [7]

(4)

where Bn is the neutron binding energy.

Tables 1 and 2 display the measured values of (p, γf)
partial cross sections for 56Fe and 58Fe target nuclei and
the values calculated for these cross sections by for-
mula (1) with various radiative strength functions. In
order to visualize these results more clearly, the exper-
imental and the calculated values of the (p, γf) partial
cross sections for direct gamma transitions to 59Co
states are shown in Fig. 3 as a histogram. The shaded
areas of the histogram correspond to the cross sections
computed with the radiative strength functions found
within the statistical approach [6, 7] with allowance for
the shell structure and nuclear temperature, while the
unshaded areas represent cross sections evaluated with
the radiative strength functions having a Lorentzian
form. In Fig. 4, the theoretical values of the total cross
sections for the (p, γ) reactions on 56Fe and 58Fe nuclei
are contrasted against relevant experimental data.

Sγ
E1/Sγ

M1 0.03A Eγ
2 πT( )2+( )/Bn

2,=

S, MeV–3

10–7

10–8

10–9

10–1 100 101

Eγ, MeV

10–6

10–8

6 8 10

1

2

3

1

3

2

Fig. 6. As in Fig. 5, but for 59ëÓ. Open circles represent the
radiative-strength-function values at Ep = 2.82 MeV. Closed
diamonds illustrate data from [21]. The notation for the
curves is identical to that in Fig. 5.
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The radiative-strength-function values obtained in
the present study from an analysis of the (p, γ) reactions
on 56Fe and 58Fe nuclei are displayed in Figs. 5 and 6.
The curves in these figures represent theoretical esti-
mates of the radiative strength function that correspond
to a Lorentzian form (curve 1), to the results of the cal-
culations that are based on expression (3) and which
allow for only temperature (curve 2), and to the results
of analogous calculations including both temperature
and shell effects (curve 3). The contribution of å1 tran-
sitions, which is not shown in the figures, does not
exceed 15% for various states of 57Co and 59Co. That
the known values of the giant-dipole-resonance param-
eters for 59Co were used throughout for want of exper-
imental data on the giant dipole resonance in 57Co obvi-
ously had an adverse effect on the degree of agreement
between the results of our calculations and the experi-
mental values of the radiative strength functions for
57Co.

3. CONCLUSION

Our results indicate that, in the gamma-transition-
energy range under study, the absolute values of the
radiative strength functions for 57Co and 59Co fall sig-
nificantly short of values on the Lorentzian curves that
describe the corresponding giant dipole resonances. At
the same time, the radiative strength functions as calcu-
lated within the approach developed in [6, 7]—this
approach relies on Fermi liquid theory and takes into
account nuclear temperature and shell effects—agree
with experimental data without the use of adjustable
parameters. This is at odds with the Brink hypothesis,
according to which the radiative strength function for
dipole transitions must not depend on the properties of
the final nuclear state.
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Abstract—The cross sections for the reactions 241Am(n, 2n)240Am and 241Am(n, 3n)239Am are measured for
several neutron-energy values in the range 13.42–14.86 MeV. An upper limit on the cross section for the reac-
tion 241Am(n, α)238Np is also obtained. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Conversion and utilization of long-lived radioactive
products of the nuclear industry are among the most
important problems being solved presently in this
realm. Here, problems associated with the transmuta-
tion of actinide elements are worthy of special note.
Difficulties are numerous in dealing with these nuclear
species, partly because experimental data on the cross
sections for nuclear reactions proceeding on them are
scanty or often nonexistent. The smallest amount of
information has been obtained for the relevant (n, 2n),
(n, 3n), (n, p), and (n, α) reactions, which are
extremely difficult from the experimental point of view.
Since reliable and maximally comprehensive informa-
tion about the cross sections for reactions induced in
radioactive nuclei would contribute substantially to
developing efficient technologies for the transmutation
of nuclear wastes and to reducing the costs of such
technologies, it is desirable to extend investigations in
these realms.

This article reports on the first ever experiment
devoted to measuring the cross sections for the reac-
tions 241Am(n, 2n)240Am and 241Am(n, 3n)239Am,
which has been recently performed at the Khlopin
Radium Institute (St. Petersburg, Russia). Additionally,
the experiment has enabled us to set an upper limit on
the cross section for the reaction 241Am(n, α)238Np. In
passing, the experiment has also determined cumula-
tive yields of more than 20 fragments of 241Am fission,
but these data will be published elsewhere.

2. EXPERIMENTAL PROCEDURE

The experiment was performed at the NG-400 neu-
tron generator that is installed at the Khlopin Radium
Institute and which produces quasimonochromatic neu-
trons via (d, T) reactions. Containers with irradiated
samples were arranged at various angles with respect to
a solid Ti–T target, whereby it became possible to cover
the neutron-energy range between 13.42 and 14.86 MeV.
1063-7788/00/6309- $20.00 © 21504
Induced gamma activity was measured with Ge(Li) and
HPGe detectors equipped with metal screens, which
significantly attenuated intense gamma radiation from
the products of the natural radioactive 241Am decay.
The gamma-ray spectra were measured continuously
for a few days after the exposure; this enabled us to
identify reliably γ peaks in the spectrum by additionally
using data on the half-lives of reaction products.

The measurements consisted of a few individual
runs, where we used various container designs, various
geometric arrangements of exposures, various detec-
tors and γ-radiation absorbers, and various procedures
for determining the sample masses. In view of this, the
results from individual experimental runs could be con-
sidered to be independent to a great extent. Table 1
quotes the experimental parameters of the measure-
ments.

Below, the individual steps of the experiment are
considered in more detail.

2.1. Exposures

A total of six exposures of nine freshly prepared
americium samples were performed, the samples being
arranged at different angles with respect to the acceler-
ator beam at distances of 1.5 to 3.6 cm from the target.
The exposure duration was varied from 1 to 17.5 h, with
the samples accumulating neutron fluences in the range
(0.4–10.7) × 1013 neutron/cm2.

The total neutron fluence received by the sample
was determined with two niobium foils fixed at the
front and back surfaces of the container with ameri-
cium. The cross section for the reaction 93Nb(n,
2n)92mNb was used as a reference; precision data on this
cross section were obtained earlier [1]. In the course of
irradiation, the neutron-flux variations were measured
by two independent scintillation detectors; of these,
one oscillated about the target between –120° and
+160° along the arc of radius 1 m, while the other was
rigidly fixed at an angle of 15° at a distance of 2.1 m
000 MAIK “Nauka/Interperiodica”
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Table 1.  Basic features of the experiment

Number 
of sample

Sample 
type

Sample 
mass, mg

Number of 
exposure

Exposure 
time, h

Neutron energy, 
MeV

Fluence ×1013, 
neutron/cm2

Detector of gam-
ma radiation Absorber

1 Solution 2.58 I 12.7 14.69 1.63 Ge(Li) Pb

2 Solution 2.58 I 12.7 14.21 1.36 Ge(Li) Pb

3 Solution 2.59 I 12.7 13.56 1.06 Ge(Li) Pb

4 Solution 0.54 II 17.0 14.84 2.98 Ge(Li) Cd

5 Solution 0.61 II 17.0 14.09 3.27 Ge(Li) Cd

6 Solution 1.13 II 17.0 13.48 0.55 Ge(Li) Cd

7 Solution 2.01 III 17.5 14.73 10.7 Ge(Li) Cd

8 Salt 3.10 IV 1.02 13.42 0.55 HPGe Cd

8 Salt 3.10 V 15.02 14.84 6.48 HPGe Cd

9 Salt 1.62 VI 3.13 14.86 0.44 HPGe Cd
from the target. Electronic modules servicing the detec-
tors were coupled, through CAMAC controllers, to a
PC that accumulated information about the properties
of the neutron flux that were measured in the course of
irradiation.

The spectral distribution of neutrons that interacted
with the sample nuclei was calculated on the basis of a
code that took into account actual experimental condi-
tions, such as the sample diameter and thickness, its
position with respect to the neutron-producing target,
deuteron-beam diameter and position at the target, total
thickness of the tritium-containing layer and the tritium
distribution in it, and variations in the angular and
energy parameters of the deuteron beam during its
moderation [1]. Figure 1 shows the integrated spectral
properties of neutrons in the samples as calculated by
this method for each exposure.

The mean relative values of the neutron fluences
received by the sample and by the niobium foils were
calculated by the same procedure allowing for the
details of actual geometry. In order to go over to the
absolute values, the geometric mean of the fluences cal-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
culated for two reference niobium foils was normalized
to the corresponding value measured experimentally.

2.2. Samples

The samples were prepared from an aqueous solu-
tion or from americium nitrate. Since the samples had
sizable activities (about 108 Bq), they were packed
thoroughly into containers that ensured their repeated
and reliable sealing. The design of the containers pro-
vided for their subsequent disassembly in order that
their expensive material could be used again after a
radiochemical purification of irradiated americium.

The dimensions of the volume filled with the solu-
tion or americium nitrate varied between 8 and 16 mm
in diameter and between 1 and 3.5 mm in height. Two
niobium foils of diameter 14 mm and thickness
0.1 mm, used to determine the neutron fluence, were
fastened to the front and to the back surface of the inner
container.

The samples were of high purity. According to the
certificate, the total concentration of alien fissile ele-
ments in the samples did not exceed 0.1%. However,
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Fig. 1. Calculated energy distributions of neutrons within the irradiated samples for the actual geometric arrangement.
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Table 2. Properties of gamma radiation from the products of the (n, 2n), (n, 3n), and (n, α) reactions on 241Am nuclei

Reaction Reaction product T1/2, h Decay product Eγ, keV Yγ, %

241Am(n, 2n) 240Am 50.8(3) 240Pu 888.80(5) 25.1(4)

987.76(6) 73.2(10)
241Am(n, 3n) 239Am 11.9(1) 239Pu 226.378(8) 3.30(20)

228.183(1) 11.3(6)

277.599(1) 15.0(7)
241Am(n, α) 238Np 50.81(5) 238Pu 984.45(2) 27.8

1025.87(2) 9.6(5)

1028.54(2) 20.3(8)
the requirements on the isotopic purity of the samples
were much more severe in this experiment. Especially
severe requirements were imposed on the possible
admixtures of other americium isotopes, 242mAm and
243Am, because the products of their spontaneous fis-
sion emit photons of the same energy as the products of
the reactions 241Am(n, 3n)239Am and 241Am(n, α)238Np.
The upper limit on the possible admixture of other
americium isotopes is determined by the conditions
prevalent in a given experiment of the type being dis-
cussed (primarily, neutron flux, exposure time, and
duration of photon counting), and it was required that
this limit not exceed 10–7 g/g. In order to verify whether
the samples satisfy these requirements, we performed
long-term measurements of the gamma-ray spectra of
the samples prior to exposures. In processing the spec-
tra, we did not reveal any traces of americium isotopes
other than the main isotope 241Am. An upper limit on
the possible content of 242mAm and 243Am in the sam-
ples used was estimated to be below 10–8 g/g.

2.3. Measurement of Gamma-Ray Spectra

As was mentioned above, the samples originally had
an activity on the order of 108 Bq, about half of the
decays of the initial nuclei being accompanied by the
emission of 59.5-keV photons and photons of lower
energies. It was necessary to suppress this intense
gamma radiation in order to provide favorable condi-
tions for measuring rather weak gamma radiation from
the reaction products in the energy range 226–
1029 keV, its activity being approximately between 1
and 100 Bq. Basic features of this gamma radiation that
were borrowed from [2–4] are quoted in Table 2.

In measuring the pursued gamma-ray spectra, vari-
ous absorbers were used to suppress soft intrinsic
gamma radiation from 241Am. After the first exposure,
the samples were placed into a lead container that had
walls 5 mm thick and which completely absorbed basic
gamma radiation from 241Am with energies below
60 keV. Concurrently, 987.8-keV gamma rays emitted
by 240Am nuclei from the relevant (n, 2n) reaction suf-
fered a 34% attenuation.
In order to determine the absolute efficiency of pho-
ton detection in the above nonstandard geometric
arrangement, an irradiated niobium foil containing the
92mNb isomer whose activity was measured separately
was placed at the geometric center of the americium
sample in the aforementioned lead container. Since pho-
tons emitted in 92mNb decay are of energy 934.2 keV,
which is close to the energy of 987.8 keV correspond-
ing to 240Am decay, only minor corrections for non-
identity of the americium and niobium samples were
needed. Under such conditions, the absorption of
934.2-keV photons (Nb) by the container bottom dif-
fered from that of 987.8-keV photons (Am) by 1.8%;
the difference of the recording efficiency without con-
tainer due to the energy difference was –5.3%; and the
difference of the recording efficiency due to variations
in the shape of the samples and their photon self-
absorptions was –0.6%. In total, the difference in effi-
ciencies of recording the 934.2- and the 987.8-keV
photons (Nb and Am, respectively) was –4.0%.

In subsequent measurements, a set of disk plates
from metal cadmium was used as absorbers, whereby a
sharper variation in gamma-radiation absorption was
ensured in the energy range between 60 and 200 keV
with the result that there arose more favorable condi-
tions for determining the cross section for the reaction
241Am(n, 3n)239Am, where it was necessary to measure
the induced activity of the samples emitting 227- and
277-keV photons. Figure 2 illustrates the typical geom-
etry of such measurements.

Under the above conditions, the gamma-radiation
attenuation as a function of the absorber thickness was
measured with a set of three standard gamma-ray
sources from 241Am, 152Eu, and 109Cd that were placed
at the position of the container shown in Fig. 2. The
attenuation values obtained experimentally for gamma
radiation of various energies were compared with the
results of the calculations relying on the tabular attenu-
ation-factor values from [5]. It can be seen from Fig. 3
that, over the entire range of the energies considered
here, the actual absorption is consistent with the attenua-
tion factor determined according to the relation C = e–µd.
A rise in the experimentally measured absorption at
energies below 200 keV, which were not used in deter-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
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mining the cross sections, seems to be due to an
increase in the contribution of inclined photon tracks,
which were ignored in the above attenuation law.

That gamma-radiation absorption in the geometric
arrangement illustrated in Fig. 2 was estimated cor-
rectly was additionally confirmed by the results
obtained by measuring gamma-ray spectra of unirradi-
ated 241Am, which feature a few γ lines associated with
spontaneous radioactive decay of 241Am and character-
ized by energies above 100 keV and yields on the order
of 10–6 per decay event [6]. These data are also shown
in Fig. 3.

In measuring the gamma-ray spectra of americium-
containing samples, the cadmium-absorber thickness
was chosen to be 3.5 mm, which ensured a more than
108 attenuation of 59.5-keV gamma radiation without
noticeable absorption of 228- to 988-keV photons, for
which the attenuation changed by a factor of 1.89 to
1.18.

The gamma-ray spectra of the irradiated samples
were measured repeatedly for 3 to 5 days. The spectra
were then processes with the aid of the SAMPO code
[7]. For each spectrum, we determined approximately
200 γ peaks. The majority of these were associated with
gamma radiation from the fission fragments, but a
small number of the peaks belonged to the spectra of
the products originating from the relevant (n, 2n) and
(n, 3n) reactions. In order to render the identification of
the γ peaks more reliable, the decay curves were plotted
for each of them. Even in the intricate cases where
gamma radiations from different sources overlapped,
this enabled us to determine correctly the intensity of
the components having expected half-lives.

Teflon

Pb

Cd
3 cm

Am

Ge(Li) detector

Fig. 2. Geometry of measurements of gamma-ray spectra.
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2.4. Determination of Sample Masses

Three methods were used to determine the number
of 241Am nuclei in the sample: (i) measurement of the
absolute α activity of a representative portion of the
corresponding sample; (ii) measurement of the inten-
sity of the basic 59.5-keV gamma-radiation line with a
yield of 0.395 per decay event for an irradiated 241Am
sample with respect to the same line of the standard
241Am γ source from the OSGI set; (iii) measurement of
the absolute intensities of other γ lines occurring at
energies above 100 keV and accompanying the alpha-
decay of 241Am. These lines, characterized by very low
yields, about 10–6 per decay event, were nevertheless
dominant in the gamma-ray spectra measured with an
absorber. The properties of the corresponding γ lines
were taken from the compilation presented in [6]. Their
energies and yields are the following: 146.55 keV and
4.61 × 10–6, 169.56 keV and 1.73 × 10–6, 322.52 keV
and 1.52 × 10–6, 376.65 keV and 1.38 × 10–6, 662.40 keV
and 3.64 × 10–6, and 722.01 keV and 1.96 × 10–6. The
last method appeared to produce the most precise
results. Eventually, the mass of a given sample was
determined as a weighted mean of individual measure-
ments.

2.5. Calculation of the Cross Sections

The reaction cross sections σAB were calculated by
the well-known formula

(1)

We determined the number of nuclei of the reaction
product, NB0, using the induced activity of the sample
and taking into consideration the decay of the product

σAB

NB0

NAΦn

--------------.=

2.4

102

Eγ, keV

1.6

0.8
103

ëexpt/ëcalc

Fig. 3. Ratio of the measured and the calculated photon
absorption as a function of energy. The cadmium absorber is
3.5 mm thick.
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nuclide over the exposure time and the time interval
within which we measured the γ-ray spectrum:

(2)

Here, Sγ is the γ-line area; λB is the decay constant; εγ is
the absolute efficiency of the γ spectrometer used; Yγ is
the quantum yield of the corresponding γ line; Fn(t i) is
the instantaneous value of the neutron flux; and t i and
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Fig. 4. Decay curves measured after exposure V for γ radia-
tion from the products of the reaction 241Am(n, 2n)240Am.
The solid lines correspond to the 240Am half-life of 50.8 h.

Table 3.  Measured cross sections for the reactions induced
by neutrons of energy about 14 MeV incident on 241Am nuclei

Neutron energy, 
MeV

Reaction cross section, mb

241Am(n, 2n)240Am 241Am(n, 3n)239Am

13.42 253(24)

13.48 247(20)

13.56 239(25)

14.09 207(22)

14.21 229(25)

14.69 199(22)

14.73 3(2)

14.84 193(22) 12(3)

14.86 215(15)

Note: The cross section for the reaction 241Am(n, α)238Np at
14.84 MeV does not exceed 1.5 mb.
t c are instants within, respectively, the exposure time
and the time over which we measured the gamma-ray
spectra. The number of initial nuclei, NA, is related by
simple equations to the mass or the activity of the
241Am sample used, these masses and activities being
determined as is described above. The neutron fluence
Φn received by the sample over the exposure time was
calculated by integrating, over the volume, the neutron-
flux values determined at discrete points on the basis of
a code for computing the neutron field. The absolute
value of the neutron flux was normalized to reference
data obtained with the niobium foils as was described
above.

The errors in the reaction cross sections received the
greatest contributions from the uncertainties in the neu-
tron-fluence estimate (3–6%), the sample-mass mea-
surement (3–8%), the determination of the γ-peak areas
(0.3–30%), the γ-line yields used (3–10%), and the effi-
ciency of γ-radiation detection (2–4%). The total contri-
bution to the error from other sources did not exceed 3%.
Hence, the total error in determining the reaction cross
sections amounted to 8–15% for the bulk of the results.

3. RESULTS AND DISCUSSION

3.1. Cross Section for the Reaction 241Am(n, 2n)240Am

The (n, 2n) cross section at a neutron energy of
about 14 MeV is expected to be a few hundred milli-
barns. It is of paramount importance to know it pre-
cisely, because the long-lived isotope 240Pu appears to
be a product of 240Am decay. Despite this, there have
been no experimental data until recently that could be
used to determine the cross section for the reaction
241Am(n, 2n)240Am. This is the reason why estimates
taken from different libraries differ significantly. In par-
ticular, upper and the lower bounds on the 241Am(n,
2n)240Am cross section at a neutron energy of 14.0 MeV
from different national libraries differ by a factor
greater than 2.3.

In our experiment, the 888.8- and 987.8-keV peaks
accompanying the β+ decay of 240Am were distinctly
seen in the gamma-ray spectra of the irradiated 241Am
samples. Variations in the intensities of these γ peaks
with time reckoned from the completion of one of the
exposures are illustrated in Fig. 4. As can be seen from
the figure, the experimental decay curves for the 888.8-
and 987.8-keV γ lines correspond to the known 240Am
half-life of 50.8 h. The relative intensities of these γ
peaks also agree well with the values of 0.251 and
0.732 per decay event, respectively, which are pre-
sented in handbooks. This suggests that gamma radia-
tion from 240Am was correctly identified and that no
disregarded source of gamma radiation contributes sig-
nificantly in the close vicinity of the above two γ peaks.

The cross section for the reaction 241Am(n,
2n)240Am was determined by means of the procedure
described above. The resulting numerical values are
quoted in Table 3, along with the corresponding errors.
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
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In Fig. 5, the experimental data are compared with the
estimates from various libraries (JENDL-3 [8],
ENDF/B-VI [9], JEF-2 [10], BROND-2 [11], and
CENDL-2 [12]). Despite a considerable scatter of the
estimates, the results of the present experiment are in
reasonable agreement with them, falling within the
intervals of the predicted values. The JEF-2 and
JENDL-3 estimates appeared to be the closest to the
experimental results in the neutron-energy range
13.42–14.86 MeV.

3.2. Cross Section for the Reaction 241Am(n, 3n)239Am

The reaction 241Am(n, 3n)239Am leads to the pro-
duction of 239Pu nuclei upon the β+ decay of 239Am
nuclei with a half-life of 11.9 h. As in the preceding
case, there have not hitherto been experimental data on
this reaction. The scatter of the estimates for the reac-
tion cross sections was still wider than that for (n, 2n).
By way of example, we indicate that, at the neutron
energy of 14.0 MeV, the lower and the upper bound on the
cross section for the reaction 241Am(n, 3n)239Am are,
respectively, 0.52 (ENDF/B-VI) and 46.7 mb (JENDL-3).

Experimental problems in measuring the 241Am(n,
3n)239Am cross section were still more serious than
those in measuring the (n, 2n) cross section. This was
due to a number of factors complicating these measure-
ments (a smaller cross-section value, a smaller gamma-
radiation yield further attenuated by the absorber, a
higher background level in this region of the γ-ray spec-
trum, and so on). A special difficulty is associated with
the gamma radiation of the fission fragments. Since the
fission cross section is two orders of magnitude larger
than the (n, 3n) cross section in the neutron-energy
region studied here, we cannot rule out the possibility
that gamma radiation from some fission fragments will
mask the weak radiation from 239Am. Unfortunately,
this is indeed the case. A preliminary analysis of the
experimental conditions revealed that 226.4- and
228.2-keV gamma transitions cannot be used to deter-
mine the number of product 239Am nuclei, because they
nearly coincide with the much more intense (by more
than two orders of magnitudes) gamma radiation from
132Te nuclei (Eγ = 228.2 keV, T1/2 = 3.204 d), which are
produced in 241Am fission. However, the 277.6-keV
γ line can be used for this purpose. This line features
three components of nearly coincident energies, but
their half-lives are markedly different. Owing to this,
the dominant contribution from 239Am decay could be
observed within a few hours after the exposure, with the
exception of the first two hours, when the γ-line inten-
sity is sizably affected by the decay of the short-lived
fission fragment 134Te (Eγ = 277.9 keV, T1/2 = 42 min).

One of the experimental decay curves constructed
for the 277-keV γ line and used to determine the cross
section for the reaction 241Am(n, 3n)239Am is displayed
in Fig. 6, where we can clearly see three components.
In order to isolate more reliably the component associ-
ated with 239Am decay, a special procedure was devel-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
oped that employed consistently a priori known infor-
mation about the relevant half-lives, whereby uncer-
tainties in the final results could be reduced somewhat.
The resulting numerical values of the cross sections for
the reaction 241Am(n, 3n)239Am are quoted in Table 3.
By comparing them with known estimates (see Fig. 7),
we can see that our experimental data agree best with
the BROND-2 and CENDL-2 estimates.

3.3. Cross Section for the Reaction 241Am(n, α)238Np

The expected cross section for the reaction
241Am(n, α)238Np is very small. At the neutron energy
of 14.0 MeV, FENDL/A-2.0 estimates it at 0.367 mb.
This explains the total absence of experimental data on
this reaction. Nevertheless, it is necessary to know the
241Am(n, α)238Np cross section both for the sake of

Fig. 5. Cross section for the reaction 241Am(n, 2n)240Am.
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Fig. 6. Decay curve for the 277-keV γ line used to determine
the cross section for the reaction 241Am(n, 3n)239Am.
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completeness and for the purposes of a satisfactory sys-
tematization in this range of nuclei. There is yet another
incentive to develop relevant experiments: since a cal-
culation of small cross sections for reactions associated
with the emission of charged particles is a rather
involved problem, experiments would furnish impor-
tant information enabling one to optimize the parame-
ters of the theoretical models and to improve their pre-
dictive power.

40

20

0

σ, mb

CENDL-2

ENDF/B-VI

En, MeV

JENDL-3

JEF-2

BROND-2

12 14 16

Fig. 7. Cross section for the reaction 241Am(n, 3n)239Am.

2500
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Eγ, keV

1500

N

2000

1000 1020 1040

Fig. 8. Section of the gamma-ray spectrum in the energy
region where the Eγ = 1028.5 keV line associated with the

decay of 238Np nuclei produced in the reaction 241Am(n, α)
was expected to occur.
The experimental conditions for measuring so small
a cross section against the background of the others
exceeding the (n, α) cross section by two or three
orders of magnitude were the least favorable. Figure 8
shows a section of the γ-ray spectrum, where the γ
peaks accompanying 238Np decay were expected to
occur. It took 100 h to obtain this spectrum the time
interval between the completion of irradiation and the
beginning of measurements being 60 h. The sample
mass was 3.1 mg, and the total neutron fluence received
by the sample used amounted to 6.48 × 1013 neu-
tron/cm2. No statistically significant peaks correspond-
ing to 238Np decay were revealed in the spectrum.
Assuming that the area of the sought peaks is smaller
than the three standard deviations from the background
in this region, we were able to set an upper limit of
1.5 mb on the 241Am(n, α)238Np cross section.

4. CONCLUSION

We have reported the 241Am(n, 2n)240Am and
241Am(n, 3n)239Am cross sections measured for the first
time at several neutron-energy values in the range
13.42–14.86 MeV. That there were no relevant experi-
mental data until recently had an adverse effect on the
quality of cross-section estimates that differed consid-
erably in various national libraries. We hope that our
experiment will be a useful supplement to intensively
developing theoretical investigations into the physics of
processes associated with the production and transmu-
tation of radioactive wastes.
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Abstract—The relativistic-electron (relativistic-positron) acceleration arising in its scattering on the potential
of a crystal atomic string is highly anisotropic, which causes polarization of accompanying radiation. The pos-
sibility of developing an efficient source of circularly polarized photons by using electrons or positrons of ener-
gies attainable at many operating accelerators is demonstrated and analyzed. © 2000 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

For a long time, coherent bremsstrahlung from rela-
tivistic electrons in oriented crystals [1] has been suc-
cessfully employed to obtain quasimonochromatic lin-
early polarized photons of high energy, which are
extensively used in elementary-particle physics and in
the physics of photonuclear reactions [2].

Circularly polarized gamma radiation is of no less
interest; however, no efficient sources of such radia-
tions have been developed so far. Previously, the bire-
fringence of photons in an oriented crystal was pro-
posed as a means for transforming a linear polarization
into a circular polarization [3] (advances in these
realms are surveyed in [4]). Unfortunately, this means
is sufficiently efficient only in the region of quite high
photon energies (on the order of 102 GeV or higher).

In order to generate circularly polarized radiation,
Lapko et al. [5] proposed using a high degree of circu-
lar polarization of the electron acceleration—that is,
the rotation that the vector of the electron acceleration
executes in the transverse plane as an electron is scat-
tered on the potential of an atomic string in a crystal.
The directions of the circular polarization of the accel-
eration (as well as the direction of the circular polariza-
tion of emitted photons) are different for particles mov-
ing on the right and the left of the atomic-string axis.
The contributions to the yield of radiation from these
particle groups can be separated under the conditions of
nondipole radiation. Bearing this in mind, the authors
of [5] proposed separating photons of specific circular-
polarization direction by collimating radiation at an
angle with respect to the incidence plane preset by the
string axis and the primary-particle momentum. An
important modification of the method was proposed in
[6] on the basis of the coherent interference of radiation
generated by a particle on different strings lying in the

1) National Research Center Kharkov Institute for Physics and
Technology, Akademicheskaya ul. 1, Kharkov, 310108 Ukraine,
and Belgorod State University, Belgorod, Russia.
1063-7788/00/6309- $20.00 © 21511
same atomic plane in a crystal of finite thickness. This
modification allows one to reduce sharply the width of
the emitted-photon spectrum.

The method proposed in [5, 6] requires high ener-
gies of emitting particles (a few tens of GeV or even
higher) and a collimation of the radiation, but the latter
presents a technical problem at such energies.

The generation of circularly polarized photons by a
relativistic-positron flux reflected from a crystal surface
(a crystal surface represents a plane of atomic strings
on which the radiation is produced) was considered in
[7]. The approach proposed in [7] is advantageous in
that it provides the possibility of using positrons of
moderately low energy (on the order of 102 MeV). A
significant drawback of the method is that it requires
crystals with an atomically pure surface of an area
about a few tens of square centimeters: such surfaces
can hardly be obtained at present.

In this article, we analyze the possibility of generat-
ing circularly polarized photons as the result of dipole
radiation from electrons and positrons in a thin crystal.
Interest in this problem is provoked primarily by the
following two circumstances:

(i) Electron and positron beams of energies on the
order of 102 MeV, which can be achieved at many oper-
ating accelerators, can be used for this.

(ii) As in the approach proposed in [5], it is possible
to obtain a high degree of circular polarization of the
radiation.

In our calculations, we use the system of units
where " = c = 1.

2. GENERAL RELATIONS

Let us consider coherent radiation from relativistic
particles entering a crystal with an incident momentum
parallel to the atomic planes at a small angle with
respect to the axis of atomic strings lying in these
planes. Our analysis will be based on the general semi-
000 MAIK “Nauka/Interperiodica”
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classical expression [8] for the polarization matrix of
the spectral density of radiation from a particle in an
external field:

(1)

Here, r1, 2 = r(t1, 2) is the trajectory of the radiating par-
ticle, v = dr/dt, ej, k are the polarization vectors, ε is the
particle energy, ω is the photon energy, ε' = ε – ω, ε'ω' =
εω, and n is a unit vector in the direction of the radia-
tion.

In the case of dipole radiation considered here, the
angle of particle scattering on the crystal must be
smaller than the specific radiation angle m/ε, where m
is the electron mass. Performing integration by parts in
expression (1) and setting the particle velocity to v(t) ≈
v = const in the resulting expression, we then arrive at

(2)

where T is the target thickness, while the particle accel-
eration w can be expressed, in accordance with the rel-
ativistic equation of motion, in terms of the crystal
potential ϕ(r) as

(3)

In the case being considered, the potential ϕ(r) can be
represented as

(4)
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∑+=
where (x) is the averaged potential of the atomic
planes; the two-dimensional oscillating component is
generated by atomic strings lying in these planes, the
string axes being aligned with ez; and gl = 2πl/a, a being
the distance between the neighboring strings. The
explicit expressions for (x) and ϕl(x) are different for
radiating positrons and electrons and will be presented
below in performing specific calculations.

According to Eqs. (3) and (4), the trajectory of the
radiating particle represents a superposition of a
smooth trajectory of the motion in the averaged poten-
tial (x) of the atomic planes and small-scale oscilla-
tions caused by periodic irregularities of the potential
of a plane that are induced by the atomic strings. The
characteristic radiation frequencies associated with
these two types of motion belong to different ranges.
The high-frequency radiation component of interest is
due to the scattering of a fast particle on the atomic
strings; therefore, only the quickly oscillating compo-
nent of the acceleration, (t), which is controlled by

the potential (x)cos(gl y), must be substituted
into the integrand on the right-hand side of (2). Let us
specify the initial particle velocity by the expression

The quantity (t + τ) can then be represented as

(5)

where the coefficients can easily be determined from
Eqs. (3) and (4). Since the trajectory x(t + τ) is a smooth
function against the quickly oscillating exponential, it
can be assumed that [x(t + τ)] ≈ [x(t)] when we
substitute (5) into (2). After some simple algebra,
Eqs. (2)–(5) yield the expression

(6)

for the radiation spectrum and the relation

(7)
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for the second Stokes coefficient ξ2, which character-
izes the degree of circular polarization of emitted pho-
tons.

In (6) and (7), η = ω/ε; ηl = 2εglψy/m2 is the ratio of
a characteristic energy in the radiation of the lth har-
monic to the radiating-particle energy ε; σ(x) is the
Heaviside function; and angular brackets denote aver-
aging over the trajectories of the particle flux, which are
determined by the point x0 at which the particles enter the
crystal and their angles of incidence, ψx. In deriving for-
mulas (6) and (7), we have used the following represen-
tations of unit vector n and the polarization vectors ej:

Expressions (6) and (7) form the basis for the ensuing
analysis of the spectral and polarization properties of
the radiation from the positron (electron) flux in the
crystal of small thickness T.

3. RADIATION FROM RELATIVISTIC 
POSITRONS

The averaged potential of a plane for positrons,
(x), is close to a parabolic potential with the well cen-

ter occurring in the middle between the neighboring
atomic planes. The functions (x) and ϕl(x) appearing
in the total potential (4) are given by

(8)

where  =  + R–2, R is the radius of the electron
screening of an atom (we use here the simplest statisti-
cal atomic model with exponential screening), c is the
distance between the neighboring atomic planes, b is
the distance between string atoms, u is the root-mean-
square amplitude of thermal vibrations of the atoms,
and Φ(x) is the error function.

Considering the fundamental aspect of the problem,
we neglect the angular spread of radiating positrons of
the beam. In this case, the equation of motion for parti-
cles entering the region of the averaged crystal poten-
tial (8) with a momentum parallel to the atomic planes
has the simple solution

(9)
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where x0 is the coordinate of the point at which a

positron enters the crystal (–c/2 ≤ x0 ≤ c/2) and  =

8e /εc2.

Let us now proceed to analyze the coefficient Fl =

 from (7) (the answer to the question of

whether it is possible in principle to obtain circularly
polarized photons by the method being considered
depends crucially on this coefficient). From the expres-
sion

(10)

it follows that Fl(–x0) = –F(x0), whence we can see that
positrons moving along trajectories that are symmetric
with respect to the center of the planar channel emit
photons whose circular polarizations have opposite
directions (at each instant, these particles have acceler-
ations whose circular components are of equal magni-
tudes, but they are of opposite signs). Moreover, it fol-
lows from (10) that, for a fixed trajectory, the sign of the
coefficient Fl is conserved only within the time interval
that does not exceed a quarter of the period of positron
oscillations in the channel. Therefore, the required
crystal thickness T is determined by the condition

(11)

whence it follows that the sign of the coefficient Fl
depends on the sign of the impact parameter x0 exclu-
sively and that the sign of x0 determines unambiguously
the direction of positron scattering on the potential of a
plane (for instance, a particle is deflected to the left of
the channel plane when x0 > 0).

Owing to these two important circumstances, a
coincidence scheme simultaneously recording a radi-
ated photon and the direction in which the positron that
has emitted this photon leaves the crystal makes it pos-
sible to single out the contribution to the radiation yield
from positrons having trajectories characterized by a
fixed sign of x0. Since experiments studying radiation
from relativistic particles in crystals are usually con-
ducted in the single-particle mode, the application of a
coincidence scheme is not expected to require much
more complex experimental facilities.

In practice, a system determining the direction of
positron escape from the crystal can be implemented by
using two thin semiconductor plates (Fig. 1) that are
transparent to hard photons, but which detect positrons
by ionization losses.

In calculating the integral in (10) with respect to t,
we must take into account a fast (exponential) decrease
of the potential harmonics ϕl(x) with increasing dis-
tance from the atomic planes. It is reasonable to per-
form averaging over x0 separately for the intervals

ω0
2

ϕ l
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dtϕ l

dϕ l

dx
--------

0

T∫
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0 < x0 < c/2 and –c/2 < x0 < 0. After some simple alge-
bra, we obtain

(12)

where, for example, the plus sign corresponds to parti-
cles from the interval 0 < x0 < c/2.

Since the coefficients Fl decrease fast with increas-
ing number l of a harmonic (Fl ≈ l–5/2), we can restrict
our consideration to the first harmonic. For the radia-
tion spectrum and the degree of circular polarization,
the eventual analytic expressions following from (6)
and (7) are given by

Fl

ϕ l
0( )2

4ω0c
------------± π

2κ lc
----------,≈

dE p( )

dη
------------ A p( )G η( )σ

η1

1 η1+
--------------- η– 

  ,=

1

2

e±

1
2

3

G

3

2

1

0.2 0.4 0.6 η

Fig. 1. Coincidence scheme: (1) crystal target and (2) semi-
conductor plates.

Fig. 2. Universal spectrum of radiation: η1 = (1) 0.3, (2) 1,
and (3) 3.
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Fig. 3. Degree of radiation polarization as a function of the
relative photon energy: η1 = (1) 0.3, (2) 1, and (3) 3.
P

(13)

Since 2g1κ1/(  + ) ≈ 1, the dependences of G
and ξ2 on the emitted-photon energy ω are character-
ized by single parameter η1. Figure 2 shows the curves
representing the spectral dependence G(η) at various
values of η1. The corresponding curves for ξ(η) in
Fig. 3 demonstrate the possibility of obtaining quasi-
monochromatic photons with a high degree of circular
polarization within the approach being discussed.

To conclude this section, we present an expression
for estimating the total number of radiated photons:

(14)

As can be seen from (14), the energy dependence of
N(p)(ε) is absorbed in the function Q(η1). The coeffi-
cient of this function in (14) is determined exclusively
by the parameters of the crystal and by the angle ψy

specifying the orientation of the positron velocity with
respect to the atomic strings. By way of example, we
indicate that, for positrons radiating photons in a silicon
crystal, N(p) ≈ 10–5Q(η1). It should be emphasized that
Q(η1) is a nonmonotonic function of η1: Q(η1) ≈
4 /3 for η1 ! 1 and Q(η1) ≈ (lnη1)/  for η1 @ 1.
It can easily be shown that an increase in the number of
emitted photons with increasing positron energy in the
low-η1 region, where the effect of quantum recoil is
immaterial in radiation, is associated with the increase
in the crystal thickness T determined from (11). A
decrease in N(p) with increasing positron energy at high
values of η1 is due to the suppression of the radiation
yield by the quantum-recoil effect. Figure 4 shows the
dependence Q(η1), which permits choosing optimum
values for the positron energy and for the orientation
angle ψy.
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4. RADIATION FROM RELATIVISTIC 
ELECTRONS

An analysis of the possibility of using electron
beams to generate circularly polarized photons by the
proposed method is of the greatest practical interest. In
the case of emitting electrons, the atomic strings are
located at the center of the planar channel at the bottom
of the potential well. The properties of the potential (4)
are then determined by the formulas

(15)

where the coefficients ϕ(0) and  coincide with those
given in (8) for |x | ≤ c/2.

Taking into account the sign of the electron charge,
we conclude that the potential (x) (15) is essentially
anharmonic for channeling electrons; as a result, the
period of electron oscillations in the channel depends
sharply on the impact parameter x0. In the case of
positron channeling in a crystal of thickness T given by
(11), the sign of x0 determines unambiguously both the
direction of positron escape from the crystal and the
sign of circular polarization of the emitted photon,
while, in the case being considered, these features
depend on the sign and on the absolute value of x0 in a
rather complicated way at a preset crystal thickness T.

In the case being discussed, the shape of the spec-
trum and the photon-energy dependence of the degree
of the circular polarization of emitted photons are given
by the expressions

(16)

which are similar to (13). The ± signs in (16) corre-
spond to the directions of electron escape from the
crystal. The functions f1(T) and f2(T), which determine
the crystal-thickness dependence of the radiation yield
and of the degree of circular polarization, can be repre-
sented as

(17)

Integration in (17) with respect to x0 is performed
within the regions S± corresponding to a certain direc-
tion of electron escape from the crystal and consisting
of a set of bands of x0 values, which can easily be
inferred from the trajectory of electron motion in the
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channel. From (3) and (15), it follows that this trajec-
tory is given by
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nient for a numerical analysis can be derived from (17)
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Fig. 4. Radiation yield as a function of the parameter η1,
which is proportional to the particle energy.
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where

Figure 5 displays the function f1(T ') illustrating a
nearly linear dependence of the radiation yield on the
crystal thickness. As the crystal thickness is increased,
the emitting particles are spread fast over the phase
space with the result that the degree of radiation polar-
ization decreases monotonically. Figure 6 shows the
dependence f2(T ').

Thus, a high degree of circular polarization of pho-
tons produced by the proposed method can be expected
only in the case of very thin crystals (of thickness T ≤
1/2ω0). We will now consider the example of how the
proposed scheme can be implemented by using an
extracted electron beam from the Pakhra synchrotron
of the Lebedev Institute of Physics (Russian Academy
of Sciences), where the energy of accelerated particles
is about 600 MeV and where the angular spread of their
beam is about 10–4. With a thin silicon crystal used as a
radiator and oriented along the (100) plane, the critical
angle of planar channeling is about 2.5 × 10–4, which
exceeds considerably the angular spread of the beam,
so that the total phase space of the beam can be used. At
an angle of the particle-velocity orientation with
respect to the crystal axis, ψy, about 10–2, the proposed
method makes it possible to obtain a quasimonochro-
matic flux of photons with an energy of about 150 MeV
at the maximum. At the crystal thickness of about
0.5 µm, the spectral density of radiation, dE/dω, is
about 2 × 10–4 in the region of maximum (this is nearly
20 times as great as the radiation density of ordinary
bremsstrahlung), the degree of circular polarization of
the radiation being about 0.4 at the maximum.

T ' ω0T , ym 1
1

cosh T '/m( )
----------------------------, T0'– ω0T0,= = =

z1 z T ' l 4k+( )T0'– y,( ),=

z2 z l 2 4k+ +( )T0' T '– y,( ),=

z3 z T ' 2kT0'– y,( ),=

κ cκ1, z4 z 2 2k+( )T0' T '– y,( ),= =

z t' y,( ) 1 1 y–( )cosht'.–=

T 'f1

0.4

0.2

0.5 1.0 1.5 T '

Fig. 5. Yield of radiation from electrons as a function of the
parameter T ' = ω0T, which is proportional to the crystal
thickness.
5. CONCLUSIONS

The above analysis of the possibility of generating
circularly polarized photons by relativistic charged par-
ticles in an oriented crystal leads to the following con-
clusions:

(i) Owing to an unambiguous relation between the
sign of the circular polarization of a photon emitted in
the scattering of a relativistic particle on atomic strings
lying in a crystal atomic plane and the direction of emit-
ting-particle scattering by this plane, the use of a coin-
cidence scheme would permit separating the yields of
radiation having left- and right-hand circular polariza-
tion.

(ii) The proposed scheme makes it possible to gen-
erate circularly polarized photons with a quasimono-
chromatic spectrum by using either electrons or
positrons moving in the planar-channeling mode in a
thin crystal.

(iii) The radiation in question is of a dipole charac-
ter, so that one can employ particle beams of energy
about 102 MeV, which can be achieved at many operat-
ing accelerators.

(iv) Numerical examples constructed on the basis of
the formulas that have been obtained in the present
study and which provide a complete quantitative
description of the spectral–angular and polarization
features of the radiation demonstrate a high efficiency
of the proposed method.

(v) Under the conditions of interference, the spec-
tral–angular distribution of the radiation undergoes a
significant rearrangement, which depends on the sign
of the emitting-particle charge. As a result, the radiation
may become much more intense.

(vi) The interference changes sharply the angular
dependence of polarization of the resulting radiation.
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Abstract—Excitation functions for 32S + α elastic scattering are measured by a new method based on inverse
kinematics and a thick gas target. Data corresponding to the 36Ar excitation range 12–16 MeV are treated within
the R-matrix approach. Spin–parity assignments are given for over 40 new levels. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

It is well known that α-cluster structures manifest
themselves in atomic nuclei. In [1, 2], it was shown that
such a structure persists at high excitation energies (20–
30 MeV).

The authors of [3–5] studied the α-cluster states of
32S in the resonance scattering of alpha particles on a
28Si target. They treated data in a broad excitation
region (10–20 MeV) within the single-level approxi-
mation of R-matrix theory and found a succession of
levels of different spins with negative and positive par-
ities. The states of the same spin were fragmented into
sharp peaks occupying about 2 MeV of the excitation
region (Lorentz distribution). It was claimed that the
density of these states is much lower than the density of
statistical levels in 32S. In lighter nuclei, like 16O or
20Ne, if a few levels of the same spin happened to be
nearby, they were assigned to different rotational or
cluster bands (see [6] and references therein). A heavier
nucleus, 44Ti, was investigated by Frekers et al. [7] in a
high-precision study, where α-cluster states were iden-
tified mainly after averaging over many compound-
nucleus levels. After proper averaging, α-cluster states
were observed as single bumps of a definite spin with
drastically different appearance as compared to α-clus-
ter structure observed in the 16O nucleus.

Such radical changes were not observed in our
review study of this structure for nuclei ranging from
16O to 24Mg [8]. Also, very fruitful investigations of α-
transfer reactions induced by 6Li [9–11] stressed simi-
larities rather than differences between the α-cluster
structures in 20Ne, 40Ca, and 44Ti, at least for the excita-
tion region up to 11 MeV.

* This article was submitted by the authors in English.
1) Department of Physics, Åbo Akademi University, Porthansgatan 3,

FIN-20500 Åbo (Turku), Finland.
2) St. Petersburg State University, St. Petersburg, Russia.
3) Department of Physics, University of Jyväskylä, PO Box 35,

FIN-40351 Jyväskylä, Finland.
4) Cracow Institute of Nuclear Physics, Poland.
1063-7788/00/6309- $20.00 © 21518
The 36Ar nucleus was not thoroughly studied earlier,
probably because of difficulties associated with the use
of sulfur targets. A measurement of elastic alpha-parti-
cle scattering by 32S in the bombarding-energy range
10.0–17.5 MeV, at 100-keV intervals, was carried out
by the Florida group [12]. The aim of that work was to
fix the optical-potential parameters, but no spin assign-
ments were made there. A study in the energy range
4.0–8.9 MeV at 50-keV intervals was reported by
Coban et al. [13], who gave tentative assignments for
three levels. Spin assignments for some levels were
also proposed by Artemov et al. [14], who made very
difficult correlation measurements.

To fill the existing gap in the mapping of α-cluster
structure for nuclei in the range between 32S and 44Ti,
we have decided to obtain new information about the
36Ar nucleus. For this purpose, we have measured the
excitation function for the elastic scattering of 32S on
helium at excitation energies of the compound system
36Ar between 11.5 and 22 MeV. Our recently perfected
method [15, 16] allowed us to obtain the excitation
function in a truly continuous way instead of the tradi-
tional step-by-step approach. Here, we present the
results of our analysis for the region from 11.5 to
16 MeV. The spin–parity assignments are made for 44
levels in 36Ar.

2. EXPERIMENT

The experiment was carried out at the K-130 cyclo-
tron at the Physics Department of the University of
Jyväskylä, Finland, with a 160-MeV 32S beam. The
beam entered a 1.3-m scattering chamber via 3-µm
thick window made from a Havar foil. In order to mon-
itor the beam intensity, we used 32S ions backscattered
from this foil. The chamber was filled with a helium
gas. Recoiling alpha particles (which result from the
interaction of sulfur ions with helium) were detected by
an array of silicon detectors positioned in the chamber
(in the gas) in the forward direction and also directly at
000 MAIK “Nauka/Interperiodica”
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zero degree. The gas pressure was adjusted in such a
way as to stop the 32S beam before the zero-degree
detector at a sufficient distance in order to reduce the
flux of low-energy recoils originating from Coulomb
scattering. This inverted-kinematics approach allowed
us to measure continuously a large excitation region of
36Ar in a single run. The experimental setup is sketched
in Fig. 1.

Since 32S ions lose about a fifth of their energy
(32 MeV) in the entrance foil, one might expect a seri-
ous degradation of the resolution, mostly due to strag-
gling. In fact, the straggling will contribute less than
0.4 MeV to the beam spread, and the total beam spread
upon passing the foil will be about 1.2 MeV, which
includes the initial beam spread of 0.5%. The observed
beam spread in the chamber after the window was
higher, about 3 MeV, largely because of the nonhomo-
geneity of the foil. This spread increases with penetra-
tion depth. Typically, a sharp resonance occurring
around the center of the chamber will have position
spread of about 4 cm. Fortunately, this spread does not
seriously affect the energy resolution for alpha particles
detected at zero degree. The alpha-particle energy in
the laboratory frame is

(1)

where m = 4, M = 32, and EHI is the heavy-ion energy
just prior to the collision. The sharp resonance selects
(in accordance with its width) the interaction energy;
hence, the energy of the recoiling alpha particle is also
fixed. The energy lost by recoiling alpha particles over
a 4-cm passage in helium will be about 200 times less
than that lost by heavy ions, as follows from the expres-
sion [the well-known Bethe–Bloch formula and expres-

Elab α( ) 4EHI
mM

m M+( )2
---------------------- θlabcos( )2,=

32S
160 MeV

Entrance window
Havar foil

4He gas

Ø
1300 m

m

Array of
Si detectors3 µm

Fig. 1. Experimental setup. Scattering chamber was filled
with a 4He gas acting as a target and as a beam absorber. The
pressure was 350 mbar. An array of Si detectors recorded
recoil alpha particles (result of interaction between sulfur
ions and nuclei of helium atoms).
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sion (1) were used to obtain it]

(2)

Therefore, the final resolution as recorded by the zero-
degree detector is quite good. A computer simulation of
the experimental resolution is illustrated in Fig. 2. The
experimental excitation function measured at zero
degree (zero degree corresponds to 180° in the c.m.
frame) is displayed in Fig. 3. With increasing detection
angle, the energy resolution deteriorates, as can be seen
in Fig. 2. The main reason for this deterioration is
detection-angle broadening associated with a reso-
nance spread along the beam path. In our experiment,
the largest laboratory angle relative to the chamber cen-
ter was 26°. It is worth noting that, because each detector
“sees” recoils emerging from the whole path in the gas,
resonances with different excitation energies are
observed at different laboratory angles by the same
detector placed at any angle different from zero degree.
Highly excited states populated by resonance scattering
near the entrance window are observed at smaller angles
than low excitations. Necessary transformations into the
c.m. frame are made by means of a computer code that
takes into account all relevant experimental conditions.

Unfortunately, we did not find a simple and reliable
way to make precision measurements of absolute cross
sections. Taking into account uncertainties in external
monitoring, we estimate that absolute cross sections are
obtained with a precision higher than 30%. A possible
error in absolute values of the excitation energy is less
than 50 keV, and the relative values are obtained with a
precision higher than 10 keV.

Figure 3 makes it possible to compare our measure-
ment at zero degree, which corresponds to 180° for a
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Fig. 2. Monte Carlo simulation of the experimental resolu-
tion at various detection angles and excitation energies.
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traditional setup, with that from a recent tandetron
study [13] (the results of the latter are shown in the
inset). The spectrum in the inset was obtained at 175°
with a resolution of 25 keV and with 50-keV steps. The
inset displays the values of absolute cross sections as
ratios to the cross section for Rutherford scattering. A
proper comparison shows that our cross sections are
smaller by about 20%.

3. RESULTS

Figure 4 presents excitation functions measured at
various laboratory angles of the detectors. (Approxi-
mately half of measured data are displayed.) For each
specific curve, we show border values of c.m. angles for
the low–high energy borders.

3.1. Treatment of Excitation Functions

The excitation functions were analyzed within the
R-matrix approach [17]. Following the procedure out-
lined in [18] and successfully used by the Wisconsin
group (see [6] and references therein), we partitioned
the scattering amplitude into a nonresonance term and
the sum of resonance partial waves.
For spinless particles, the scattering amplitude can
be written as

(3)

where ρ and χ are the background amplitude and the
background phase shift, respectively; βl is the reso-
nance phase shift; and φl is the relative background
phase shift. The cross section then takes the form

(4)

The resonance phase shift is given by

(5)

The background amplitude ρ was assumed to be a
smooth function of energy and was interpolated by the
lines connecting the set of energy points (five points for
a 5-MeV excitation interval). In order to reduce the
number of free parameters, the background phase shift

f θ( ) ρ θ( ) iχ( ) i
2k
------ 2lm 1+( )

Γ lm

Γ
-------
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∑–exp=

× 2iβlm
( ) 1–exp[ ] 2iφlm
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θcos( ),exp
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χ was considered to be zero. The phase shifts  were
fixed for each resonance and were not varied with
energy and angle. As was said above, the different parts
of the excitation functions obtained by each detector
placed at a certain position in the chamber correspond
to different solid angles and different laboratory angles
(apart from the zero-degree detector) and are measured
with somewhat different resolutions. A transformation
of the actual experimental conditions into calculated
distributions convoluted with the actual experimental
resolution was performed with a dedicated Monte
Carlo code. A separate fitting code enabled us to com-
pare the “ideal” calculated curves with the convoluted
ones. Some “ideal” curves are presented in Fig. 5.

In our analysis, the fitting procedure was shown to
consume the greatest part of time. We were unable to
find a good searching procedure for regions populated
by many interfering resonances. Therefore, a manual fit
was made first, and a final computer fit with a routine
χ2 procedure followed. The values of each spin were

φlm
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12.5 13.5 14.5 15.5
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171°–174°

250

0

0

400
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0

400
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dσ/dΩ, mb/sr

Fig. 4. Excitation functions at various angles. Solid curves
represent an R-matrix fit convoluted with the experimental
resolution.

E*
36Ar

, MeV
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checked at least twice for each resonance. The main
idea of the fit was to identify resonances with “substan-
tial” α widths. Our moderate energy resolution and a
limited angular region did not allow identification of all
possible states. However, a better overall fit provided
more confidence in basic results. Also, weak reso-
nances that were missed in the first approach were
included in this second fit. Such weak, uncertain reso-
nances were added only if their presence affected the
distributions in the expected way.

The parameters of the extracted resonances were
accumulated in the table. Some of the assigned widths
are much less than the experimental resolution. This is
possible owing to interference effects that are mani-
fested up to three widths apart from the resonance. The
widths of many resonances are close to the experimen-
tal resolution. In majority of such cases, the widths

dσ/dΩ, mb/sr
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171°–174°

5– 6+

155°–165°200

100

0

100

50
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134°–152°

11.5 12.5 13.5 14.5 15.5

Fig. 5. Excitation functions at various angles for 32S + α
elastic scattering with nonconvoluted theoretical curves
obtained from an R-matrix fit. The dotted and dash-dotted
curves in the figure for angles 171°–174° represent the
energy dependence of the maximum cross-section value that
could be observed in the present experiment for, respec-
tively, spin-6 and spin-5 resonances.

E*
36Ar

, MeV
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Summary of resonance parameters

N Ex , MeV Jπ Γc.m., 
keV

Γα /Γtot, 
%

, 
keV

/ , 
%

Ratio 
(9)

1 11.770 0+ 159 60 691 97 0.53
2 12.050 2+ 109 17 232 32 0.35
3 12.180 5– 9 10 560 78 0.55
4 12.405 3– 70 15 190 26 0.37
5 12.460 0+ 250 100 605 85 0.33
6 12.575 3– 59 18 146 20 0.35
7 12.840 1– 200 18 72 10 1.2
8 12.865 3– 50 11 51 7 0.62
9 12.920 3– 50 14 55 7 0.55

10 13.016 3– 48 36 119 16 0.22
11 13.182 3– 39 34 76 10 0.25
12 13.260 0+ 300 30 88 12 1.2
13 13.263 3– 29 25 37 5 0.36
14 13.320 2+ 35 25 17 2 0.51
15 13.410 1– 19 34 7 1 0.70
16 13.483 4+ 17 34 67 9 0.21
17 13.560 4+ 90 30 282 39 0.24
18 13.650 3– 100 25 80 11 0.39
19 13.750 3– 19 34 19 2 0.29
20 13.875 3– 159 54 209 29 0.19
21 14.010 3– 200 50 215 30 0.21
22 14.060 1– 300 50 99 13 0.49
23 14.175 3– 37 44 30 4 0.24
24 14.210 1– 159 64 61 8 0.37
25 14.250 2+ 79 23 15 2 0.65
26 14.325 5– 45 37 252 35 0.17
27 14.460 5– 35 30 134 18 0.21
28 14.650 3– 79 30 28 4 0.37
29 14.722 4+ 25 46 31 4 0.17
30 14.780 0+ 200 89 64 9 0.39
31 14.904 5– 50 11 46 6 0.51
32 15.071 2+ 201 66 67 9 0.22
33 15.117 4+ 106 12 25 3 0.61
34 15.160 6+ 74 24 462 64 0.23
35 15.300 6+ 70 17 255 35 0.32
36 15.415 4+ 50 23 18 2 0.31
37 15.420 1– 600 85 161 22 0.25
38 15.495 3– 79 23 12 1 0.44
39 15.595 5– 50 31 61 8 0.18
40 15.715 4+ 25 25 7 1 0.29
41 15.800 1– 150 30 12 1 0.64
42 15.813 4+ 19 37 8 1 0.19
43 15.940 2+ 39 34 4 1 0.38
44 16.065 4+ 100 38 37 5 0.18

γα
2 γα

2 γWL
2

could not be defined to a high precision. There is a
dilemma to make a peak either narrower and higher or
broader and lower. We have noticed a tendency of
experimentalists to create a nonconvoluted spectrum
closer to the observed one. This is the reason why, in
many cases, the widths presented for sharp resonances
in fact represent an upper limit on the width. Data on
the absolute values of α widths are much more reliable
(their precision is higher than 15%), because these are
defined by the product of the width and of the peak
height.

A much broader excitation-energy region was cov-
ered in the analysis. Therefore, the effect of far-away
resonances on the high-energy border of the displayed
data is taken into account.

The table also quotes the reduced α widths in units

of the Wigner limit. As usual, Γα = 2Pl , and the

Wigner limit, , is equal to 3"2/2µR2. The channel
radius R used to calculate the Wigner limit and the pen-
etrability factors Pl was chosen to be 5 fm. In all, we
have obtained data on more than forty new quasista-
tionary states in the 36Ar nucleus.

In order to interpret our results appropriately, it is
necessary to know the main experimental restrictions
that limit our observation of states characterized by
large α widths. The low-energy limit of the present
measurements is close to the value of the Coulomb bar-
rier. High-spin levels must be very narrow because of
penetrability factors; being convoluted with the experi-
mental resolution, they can be unobservable against the
background of Coulomb scattering and lower spin
states. It is expected that the total width of high-spin
states is controlled primarily by the alpha-particle par-
tial widths because the penetrability factors favor alpha
decay. Figure 5 displays the evaluated cross sections
convoluted with the experimental resolution for spin-5
and spin-6 resonances near the low-energy edge. The
curves give the highest limit on cross sections that is
reached when the total width of a resonance is equal to
its α width. The maximum widths of resonances were
evaluated on the basis of a potential model, but the
result is in fact governed by the penetrabilities. From
Fig. 5, we can see that, by means of our technique, it is
hardly possible to observe spin-6 resonances within the
excitation region around 12 MeV; spin-5 resonances
are still observable, but they can manifest themselves as
rather small peaks. On the other hand, low-spin reso-
nances could be very broad at higher energy; because of
the factor (2J + 1), they must be weak in relation to
high-spin ones. An analysis revealed that spin-zero res-
onances of width Γα ≥ 0.3Γtot could be observed by the
interference picture.

γα
2

γWL
2
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3.2. Does the Observed Structure Represent Statistical 
Fluctuations?

A general picture of rather broad well-separated
structures having widths in the range 20–200 keV and
a regular appearance at different scattering angles devi-
ates considerably from the picture of simple Ericson
fluctuations [19]. Estimates based on the expressions
given in [20] show that the density of states in the exci-
tation region being investigated increases by one order
of magnitude from a few hundred units per MeV at the
low-energy border, the average total width of a statisti-
cal state being changed from a few keV to 20 keV. It is
obvious that general features of the excitation function
(averaged over experimental resolution) are stable even
to some drastic changes in the statistical background. It
should also be noted that a regular change in the inter-
ference picture in response to sign reversal is incompat-
ible with the fluctuation picture. Sign reversals are
obvious in the analysis and can be seen in Fig. 5 at 13.5
and 14.5 MeV, where spin-4 and spin-5 resonances are
present. Figure 6 illustrates a formal analysis of the
angular correlation function for the excitation region
around 12 MeV, where we found two 3– levels and a
broader 0+ level. The dashed curve shows the expected
behavior of the angular correlation function for the pure
case of a compound nucleus (Ericson fluctuations),
while the solid curve represents the experimental result.
Figure 6 shows that these two curves are very different,
especially in view of the fact that the experimental
curve has a maximum at 145°. At this angle, any angu-
lar correlations of Ericson fluctuations are expected to
be broken. Differences in absolute value are generally
related to a contribution of direct processes (experi-
mental curve), which always allow correlations.

As a first step, one can try to estimate compound-
nucleus absorption within simple statistical models.
Neglecting direct contributions, we can decompose the
total resonance width as

(6)

where  is the entrance-channel width, while  is
the compound-nucleus-spreading width of the reso-
nance. The total spreading width of the spin-J reso-
nance can be broken down into the elastic α width and
the sum over all other decay widths:

(7)

In the case of an idealized compound nucleus, we have

 =  and

(8)

Γ J
tot Γ J

α Γ J
↓ ,+=

Γ J
α Γ J

↓

Γ J
tot↓ Γ J

CN α→ Γ J
CN i→ .

i

∑+=

Γ J
α Γ J

CN α→

Γ tot↓

Γ J
CN α→-----------------

PJα PJi

i

∑+

PJα
-----------------------------,=
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
where PJ are penetrabilities. For purely statistical reso-
nances, we therefore have

(9)

Using Eq. (9), one can now estimate the contribution of
compound-nucleus formation to the resonance width. If
the ratio on the right-hand side of (9) is close to unity,
then it is the compound nucleus that makes a dominant
contribution. The lower the ratio, the smaller the com-
pound-nucleus contribution. The values of this ratio are
quoted in the table for all resonances observed in the
present study. As can be seen from the table, the aver-
age experimental ratio is about 0.3. This value must be
treated as an upper limit (because of the “human” fac-
tors mentioned above). This fact only highlights the
unusually large α width of each observed resonance.

3.3. General Review of the Results

Spin-zero levels. The broad and strong levels near
12 MeV are obvious in the entire angular region of the
present measurements and are dominant at the largest
angles. Their summed α width is about 200% of the
Wigner limit. The other two, much weaker 0+ levels at
higher energies, were included largely because of inter-
ference effects.

Spin-1 levels. As a rule, spin-1 levels were obvious
in the entire energy region. Tentative assignments are
given for the weak levels nos. 7, 15, and 41. Indeed,
level no. 7 was included after the study reported in [13],
where a tentative 1– assignment was given to a broad
structure in this region. The inclusion of this level
improved the agreement with data at the largest angles.
There is no single 1– level with a dominant reduced α

Γ tot↓

Γ J
CN α→-----------------

PJα

PJα PJi

i

∑+

----------------------------- 1.=

C(θ, θ*)
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Fig. 6. Experimental angular correlation function averaged
over 400 keV at an excitation energy of 12.4 MeV (solid
curve) and expected behavior of the angular correlation
function for a pure compound-nucleus Ericson fluctuation
(dashed curve).
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width. The sum of the reduced widths of the observed
1– levels is about 40% of the Wigner limit.

Spin-2 levels. Five spin-2 levels have been found in
the region investigated here. The most intense spin-2
level (no. 32) is not reliable, because several other
intense levels overlap it. The sum of the reduced widths
of the observed 2+ levels is about 50% of the Wigner
limit.

Spin-3 levels. Fourteen 3– levels have been found in
the region. The authors of [13] reported a spin-3 reso-
nance as the result of the Regge pole analysis of the
angular distributions for the elastic scattering of
7.7-MeV alpha particles on a 32S target. This energy
obviously corresponds to the group at 13.5 MeV in our
measurements, where two 4+ and two 3– states could
have contributed to their data. Unfortunately, a more
straightforward comparison with data from [13] is not
possible. The sum of the reduced widths of the
observed 3−  levels is 170% of the Wigner limit.

Spin-4 levels. Eight 4+ levels have been found in the
region investigated here. Their total width is about 60%
of the Wigner limit. A dominant contribution to the sum
comes from two nearby levels in the vicinity of
13.5 MeV.

Spin-5 levels. Five 5– states have been found in the
region being discussed. Evidence for a 5– state at
12.2 MeV with a “large” reduced width was reported in
[14]. It was found from a measurement of (d, α) angular
correlations in the reaction 32S(6Li, d)36Ar(α). As was
shown above, observation of high-spin states at low
excitation energies is restricted by our experimental
resolution. Let us consider this level as a specific exam-
ple. If we take the Wigner limit to estimate the width of
the state, its natural width will be 2 keV. A few other
decay channels are possible for this state, but, because
of poor penetrability factors, we may take into consid-
eration only the protonic decay to the ground state in
35Cl. The penetrability factor for this protonic decay
could be ten times as great as (with the lowest possible
orbital angular momentum) that for alpha decay. There-
fore, a 20-keV width can be considered as a good esti-
mate for an upper limit on the width of the state in ques-
tion. A small anomaly at 12.18 MeV is seen in our spec-
tra obtained in measurements near zero degree. The
anomaly, which actually manifests itself as a spin of 5
in the angular distribution, can be described as a spin-5
resonance with Γα ≤ 0.1Γtot, Γtot being equal to 9 keV.
The agreement between the excitation energy obtained
in the two studies seems too good if we take into
account a 500-keV energy resolution in [14] and diffi-
culties in observing a level characterized by so small a
ratio of Γα/Γtot in the dα coincidence measurements.
We can easily obtain the same description of the anom-
aly if we increase Γα/Γtot up to 0.25 and simultaneously
decrease the width of the resonance down to 1.4 keV.
Our experimental resolution gives no way to distin-
guish between the two cases. (However, it is worth not-
ing that the reduced width increases only by 15% in the
second case.) In principle, the width of this 5– level can
be obtained in a very high-resolution study of alpha-
particle scattering. Another way is to make dα coinci-
dence measurements in a (6Li, d) reaction with an
energy resolution commensurate with that in [10, 11] to
determine the ratio Γα/Γtot. Knowing this ratio, we can
fix Γtot. Also, it is important to note that, if we move the
5– level by a few hundred keV to the low-energy border
of our measurements, it becomes too narrow to be
observed by resonance scattering. However, the
reduced α width (spectroscopic factor) is not changed,
and it is still large, allowing observation of this level in
a stripping reaction. The above considerations show
how resonance-scattering studies and investigations of
direct reactions supplement each other. The sum of the
reduced widths of the observed 5– levels is about 150%
of the Wigner limit.

Spin-6 levels. Two nearby 6+ levels have been found
in the present study. The sum of their reduced widths is
close to the Wigner limit. Artemov et al. [14] found a 6+

state at 15.4 MeV with a “large” reduced width. The
agreement within 100 keV between the results of the
two groups seems very good (see comments to spin-5
levels). Obviously, they should have observed two 6+

levels as a single group.

4. DISCUSSION

Clearly, our investigation is far from complete.
Therefore, it is too early to analyze level distributions
and their group assignments to specific bands. For this
purpose, it would be very important to obtain data in the
low-excitation region in 36Ar, as was done in [10, 11]
for the neighboring nuclei. Nevertheless, even our
present results allow a few general conclusions.

It is clear that an α-cluster structure distinctly man-
ifests itself in the 36Ar excitation region investigated
here. This follows from the fact that the reduced width
of a few levels with a well-defined spin saturates a sig-
nificant fraction of the Wigner limit. It is important to
recall that the majority of microscopic models select
shell-model states that contribute to α-structure config-
urations, along with the SU(3) classification of levels.
For the majority of cluster states in light nuclei, the
SU(3) classification [21, 22] provides a good approxi-
mation for the relevant wave function. Beyond the mass
of 28, spin–orbit forces become too strong and ruin the
symmetry underlying the model.

The α-cluster structure fragments into several states
with the same spin. For example, thirteen 3– states
occupy an excitation region of about 2 MeV. The com-
pound-nucleus density of 3– states was estimated
according to the expressions from [20]. The estimate
(about 100 compound-nucleus 3– states per 1 MeV at
the excitation energy of 14.5 MeV in 36Ar) shows that
the density of statistical states is only ten times as high
as the observed one and increases threefold along the
interval of 2 MeV. The majority of the levels are broad-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
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ened because of decay modes other than alpha decay.
Only a few decay modes can compete with alpha decay
because of small penetrability factors. It is obvious that
protonic decay to the lowest states in 35Cl must play an
important role in the broadening of the observed states
and that the reduced widths for protonic decays are also
large. All in all, it seems that our experimental data give
a good basis for specific interpretations, and it appears to
be promising to seek a description of the observed pic-
ture within the doorway-state approach with particle–
hole states as states “of the lowest complexity” [23].

Our data show that there are no relatively broad
regions (about 500 keV) where levels with the same
spin value would be absolutely dominant. There are
excitation regions spanning 2 to 3 MeV and containing
levels of the same spin, but they are interlaced with lev-
els of other spins in between. Frekers et al. [7] found
quite a different picture in the 44Ti nucleus at approxi-
mately the same excitation energy. They observed a few
separated intermediate resonances of widths between
0.2 and 0.5 MeV with different spins. It looked like
each group was created by sharp fine-structure reso-
nances of the same spin. The reason for this difference
between 36Ar and 44Ti is not clear to us.

We could not find experimental information to
relate the present data with the α-cluster structure at
lower excitation energies in 36Ar. However, there is
convincing evidence that the α-cluster structure mani-
fests itself from the lightest nuclei (like 6Li) up to at
least 44Ti. The success of local-potential models (see
[24, 25] and references therein) highlights this common
feature of nuclear structure. Assuming that the local α–
nucleus potential is basically the same for the alpha-
particle interactions with 32S, 36Ar, and 40Ca, we will try
to employ data of Yamaya et al. [10, 11] in the present
discussion. In their study of (6Li, d) reactions, those
authors could follow the α-cluster structure from the
ground states of 40Ca and 44Ti up to excitation energies
about 11 MeV. Figure 7 presents the data on the posi-
tions and on the spectroscopic factors of the 3– and 5–

α-cluster states in 44Ti and 40Ca (as given in [10, 11]),
along with our data for the 36Ar nucleus. As can be seen
from Fig. 6, a straight extrapolation from the data
reported in [10, 11] leads to the middle of distributions
of 3– and 5−  states found in the present study. However,
one should be very careful in extrapolating data
obtained for different nuclei along the excitation energy
values. Indeed, the A2/3 dependence of the relative level
positions in nuclei with different mass numbers A is
inherent in local-potential models. Changes in the aver-
aged excitation energies of the levels with the same
spin in 44Ti and 40Ca are too large (about 2 MeV) to be
explained by 6% changes in the A2/3 factor. Also, it is
well known that, as a rule, the ground states of nuclei
are not coupled to α-cluster degrees of freedom. It is
more natural to consider the excitation energies of α-
cluster states relative to the threshold for alpha decay.
In this case, the excitation energies of the 44Ti and 40Ca
levels in question agree very well, as can be seen from
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
Fig. 7. An extrapolation from 44Ti through 40Ca to 36Ar
leads to positions of 5– states exactly at the excitation
energy of 12.2 MeV in 36Ar, where the 5– state at 12.18
MeV was found, while the extrapolated positions for 3–

states are about 2 MeV lower than the low-energy bor-
der of the present measurements. On this basis, we
expect some mixture of 3– and 1– states with large α
widths in the excitation region 9–11 MeV in 36Ar, the 3–

states and the 1– states being, respectively, relatives of
the states observed in 40Ca and the members of a new
band seen in the present measurements. The same argu-
ments provide a very good correspondence between the
10.86-MeV 0+ state in 44Ti, which is believed to be a
candidate for the bandhead of a higher nodal state (N =
14) [10, 11, 26], and the block of the 0+ states found in
the present study near 12 MeV.

5. SUMMARY AND CONCLUSIONS

The α-cluster structure of atomic nuclei has been
investigated for a long time. However, new and impor-
tant experimental results in the region from the 32S to
the 44Ti nucleus [4, 10, 11, 14], as well as a flow of
recent theoretical studies (see [24, 25, 27, 28] and ref-
erences therein), show that interest in this realm has
been rekindled. We hope that the present work, which
has provided the first detailed investigation of a broad
excitation energy region in 36Ar, will contribute to a fast
accumulation of new data.

We believe that this interest is related not only to the
fact that α-cluster degrees of freedom is important for
a broad region of nuclear mass numbers but also to the
new features observed in extensive regions of excita-
tion energies. Probably, at high excitation energies, the
α-cluster structure gives rise to a doorway picture,
bringing some order in the chaos assumed there. This
article also provides an example of a detailed treatment
of data obtained by our thick-target inverse-kinematics
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method. Our results (over 40 new level assignments)
are expected to give impetus to further applications and
improvements of the method itself. Finally, we would
like to emphasize the importance of a combined inves-
tigation of the α-cluster structure in both resonance and
direct reactions.
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Abstract—The  resonance in the 12C nucleus is treated on the basis of the α + 8Be two-cluster model. An
equation for the function describing the relative motion of the clusters is derived by using the s-wave differential
Faddeev equations for the 3α system and by relying on the simplest version of the resonating-group method. A
phenomenological potential is taken to simulate the pair αα  interaction. A three-body potential binding three
alpha particles together gives rise to a resonance in two-cluster α + 8Be scattering. The calculated resonance
features and the calculated parameters of the wave function of the system are compared with the results
obtained by other authors. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The  resonance in the 12C nucleus plays a crucial
role in the stellar production of carbon, since carbon
nuclei are generated in reactions involving three alpha
particles. In order to explain carbon abundances, it is
necessary to assume that there exists some intermediate
state through which this reaction proceeds [1]. It is

agreed that the  resonance of the 12C nucleus plays
the role of this intermediate state. The experimental
values of the parameters of this resonance are Er =
0.3796 MeV and Γ = 8.5 eV [2].

Low-lying resonance states of the 12C nucleus,

including the  resonance, were analyzed in a number
of studies. The structure of a resonance state was deter-
mined either within the ααα  three-particle model or
within the α8Be two-particle model. A microscopic
approach based on the resonating-group method
(RGM) was used in [3–5]. Within the 3α cluster model
for the 12C nucleus, Hiyama et al. [6] solved the
Schrödinger equation via an expansion in the basis of
Gaussian functions. The αα  potential used in [6] leads
to an excessively high binding energy for the 3α sys-
tem. A correct value of the 12C binding energy was
obtained in [6] by additionally including a three-body
potential that increases Coulomb repulsion between the
alpha-particle clusters. Fedorov and Jensen [7] consid-
ered the system of three structureless alpha particles on
the basis of the differential Faddeev equations, which
they solved at positive energies by the adiabatic-expan-
sion method. By adjusting the parameters of the three-
body attractive interaction added to the pair αα  poten-
tial, those authors were able to reproduce the experi-

mental values of the energy and the width of the  res-
onance in the 12C nucleus. However, their model over-
estimates the ground-state energy of the 12C nucleus. In
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contrast to the pair potential, the three-body interaction
used in [7] does not depend on the angular variables
specifying the orientation in subsystems. It was found
[8] that the amplitude for the breakup of systems simi-
lar to that considered here has some special features
that are due to resonances in the two-body subsystems,
but which have nothing to do with three-body reso-
nances. In view of this circumstance, which was disre-
garded by Fedorov and Jensen [7], their results cannot
be considered as unambiguous evidence for the truly

three-body character of the  resonance in the 12C
nucleus. A relativistic approach to studying the 3α clus-
ter system was employed in the recent qualitative anal-
ysis of Hong and Lee [9], who relied on effective-
potential theory.

In the present study, the  state of the 12C nucleus
is treated as a resonance of α8Be two-cluster scattering
in the ααα  system. Our model hinges upon the follow-

ing premise: the decay of the  resonance in 12C
nucleus proceeds through the process 8Be + α  α +
α + α. According to experimental data, this channel is
much more probable than the mode of direct decay into
three alpha particles [10]. The contribution of the three-
body-breakup amplitude to the total amplitude for the

decay of the  resonance amounts to 4%. In order to
derive effective equations describing the relative
motion of the clusters in the α + 8Be system, we make
use of the differential Faddeev equations [11], which
are reduced by taking into account the two-particle

clustering of the  resonance in the 12C nucleus—in
other words, we invoke a method analogous to the
RGM. As to the breakup and rescattering amplitudes,
they are neglected in this approach. The short-range
interaction between two alpha particles is simulated by
the phenomenological potential from [12]. Of particu-
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lar interest are the three-body α-cluster-interaction
potentials that were proposed in [13] for 12C and in [14]

for , these nuclear species being treated on the basis
of, respectively, the 3α and the Λααα  cluster model. In
[13], the parameters of the three-body potential were
chosen in such a way as to reproduce the known values
of the binding energy, the root-mean-square radius, and
the charge form factor for the 12C nucleus. The param-
eters of the resonance in the 8Be + α system are calcu-
lated by using the energy dependence of the relevant
phase shift. The resonance obtained in this way is inter-

preted as the  resonance in the 12C nucleus.

The ensuing exposition is organized as follows. In
Section 2, we give an account of our model and formu-
late the boundary-value problem for the function
describing the relative motion of the clusters in the
8Be + α system. In Section 3, we present the results of
our calculations for the 8Be ground state, which corre-
sponds to the 0+ resonance in alpha-particle scattering
by an alpha particle; we also consider 8Be + α two-clus-
ter scattering at energies above the three-particle
threshold and calculate relevant phase shifts and the

parameters of the  resonance.

2. DESCRIPTION OF THE MODEL

Let us consider a system of three identical charged
spinless particles having no internal structure. This sys-
tem can be described by the differential Faddeev equa-
tions modified in such a way that the Coulomb interac-
tion potential is included in the unperturbed Hamilto-
nian [11]. For systems of identical particles, the
Faddeev equations take the simplest form (previously,
rich experience was gained in applying these equations
to such systems—see [15, 16]) and reduce to an equa-
tion for the component U of the total wave function:

Here, H0 is the kinetic-energy operator; the operators
P± execute cyclic permutations of the particles in the
system; V is the potential simulating the short-range
two-body interactions of the particles; VCoul is the Cou-

lomb potential represented as VCoul =  +  +

, where  is the potential of the Coulomb
interaction between particles i and k; and V3 is the
three-body-interaction potential in the system under
study. The potential V3 depends on the positions of the
particles with respect to the center of mass of the sys-

tem as V3 = V3(ρ), where ρ2 = , ri being the
radius vectors of the particles.

The system of three alpha particles will be consid-
ered here in the s-wave approximation—that is, the
total orbital angular momentum of the system and the

C12
Λ

02
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02
+

H0 VCoul V3 V E–+ + +( )U V P+ P–+( )U .–=

V12
Coul V13

Coul

V23
Coul Vik

Coul

ri
2

i 1=
i 3=∑
individual orbital angular momenta of all subsystems
are set to zero. The Faddeev component U is a function
of the relative coordinates

The s-wave Faddeev equation is an equation for the
coordinate part 8(x, y) of the Faddeev component U.
Its specific form is

(1)

where x = |x|, y = |y|, and h0 = –  –  is the kinetic-

energy operator as expressed in terms of the relative
coordinates, and

The Coulomb potential vCoul(x, y) is given by

where r> = max{x/2, y} and n = 4mαe2/"2 (n = 0.556 fm–1).
The short-range pair interaction between the alpha par-
ticles is simulated by the s-wave component of the Ali–
Bodmer potential [10]; that is, we set

where V1 = 125 MeV, b1 = 1.53 fm, V2 = –30.18 MeV,

b2 = 2.85 fm, and  = 10.44 MeV fm2. The three-
body potential v3(ρ) is taken in the form

(2)

where ρ2 = (2/3)y2 + (1/4)x2, V0 = –24.32 MeV, and β =
3.795 fm. These values were obtained in [13] by simul-
taneously fitting the binding energy, the root-mean-
square radius, and the charge form factor for the 12C
nucleus within the 3α cluster model based on the differ-
ential Faddeev equations. The relevant boundary-value
problem reduces to equation (1) with zero boundary
conditions for x, y  ∞. In the present study, equation
(1) is used to describe the system of three alpha parti-
cles at energies above the three-particle threshold. The

 state is treated as a resonance of α8Be two-cluster
scattering in the 3α system. Alpha-particle scattering
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by a 8Be nucleus corresponds to the following asymp-
totic representation of the function 8(x, y) for y  ∞:

(3)

Here, (3/4)p2 = ε – ε0; η = (4/3)n/p; and F0(η, ρ) and
G0(η, ρ) are, respectively, the regular and the irregular
Coulomb function. The energy ε0 of the quasistationary
state in the αα  system (8Be nucleus) exceeds the two-
particle threshold. This state is described by a function
χ0(x) specified below. The phase shift δ0 is related to the
amplitude a(p) by the equation a(p) = tan(δ0). It should
be noted that terms associated with breakup and rescat-
tering are ignored in equation (3) [11].

The solution 8(x, y) to equation (1) is represented
as the product of the function χ0(x) describing the two-
body cluster and the function f(y) describing the rela-
tive motion of the clusters:

(4)

The function χ0(x) is determined by the solution to the
following boundary-value problem for the Hamiltonian
of the two-body subsystem: this function must obey the
equation

(5)

and zero boundary condition at the origin, χ0(0) = 0,
and its asymptotic behavior for x  ∞ must be

where  = ε0 and η0 = (1/2)n/p0. The function χ0(x) is
normalized to unity over a sufficiently large domain of
size Rx:

A projection procedure reduces equation (1) to an inte-
gro-differential equation for the function f (y) describ-
ing the relative motion of the clusters. Specifically, we
have

(6)

where

8 x y,( ) χ0 x( ) F0 η py,( ) a p( )G0 η py,( )–( ).∼

8 x y,( ) χ0 x( ) f y( ).=

∂x
2– v αα x( ) n/x+ +( )χ0 x( ) ε0χ0 x( )=

χ0 x( ) F0 η0 p0x,( ) a0 p0( )G0 η0 p0x,( ),–∼

p0
2

χ0
2 x( ) xd

0

Rx

∫ 1.=

3
4
---∂y

2– v eff
3 v eff

Coul 3
4
--- p2–+ + 

  f y( ) v eff f( ) y( )+  = 0,

v eff
3 y( ) v 3 ρ( )χ0

2 x( ) x,d

0

Rx
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v eff
Coul y( ) 2n

r>
------χ0

2 x( ) x,d

0

Rx

∫=

v eff f( ) y( ) xd dµχ0 x( )v αα x( ) xy
x'y'
--------χ0 x'( ) f y'( ).
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1

∫
0
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∫=
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
The asymptotic boundary conditions for the function
f (y) in the limit y  ∞ are derived from formula (3)
by applying the projecting procedure. The result is

3. RESULTS OF THE CALCULATIONS
In this section, we present the results obtained by

numerically solving the effective equation (6) for the
function f(y) describing the relative motion of the clus-
ters. The function χ0(x) appearing to be a normalized
solution to the boundary-value problem (5) was calcu-
lated preliminarily. The parameter Rx specifying the
asymptotic domain in the variable x was taken to be
50 fm. The function χ0(x) is plotted in Fig. 1. The
parameters of the resonance state in the αα  system
were derived from the energy dependence of the s-wave
phase shifts for αα  scattering in the vicinity of the two-
particle threshold. The results of our calculation com-
ply with experimental data. The values obtained in the
present study for the resonance energy and the reso-

nance width are Er = 0.095 MeV (  = 0.092 MeV)
and Γ = 10 eV (Γexpt = 6.8 eV).

Equation (6) for the function f (y) was discretized in
y on a uniform grid. The asymptotic domain was
defined by the parameter Ry = 50 fm. It is worth noting
that variations in the parameters Rx and Ry in the vicin-
ity of the values chosen for them do not affect the
results of our calculations. By numerically solving the
equation for the function f (y), we determined the phase
shifts for α8Be scattering at energies above the 3α
threshold. The phase shifts for α8Be scattering are
shown in Fig. 2, where the energy of relative motion in
the c.m. frame is reckoned from the threshold for the
formation of a quasistationary state in the αα  two-body
system. The results of our calculations are represented
by the solid curve. Also shown in Fig. 2 for the sake of
comparison are the phase shifts calculated without
regard for the three-body potential V3 (long dashes) and
the results obtained in [14] on the basis of the RGM

f y( ) F0 η py,( ) a p( )G0 η py,( ).–∼

Er
expt

χ0(x)

0.4

0.2

0 20 40
x, fm

Fig. 1. Function χ0(x) for the 0+ resonance of αα scattering
at ε0 = 0.095 MeV.
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within the α + 8Be two-cluster model (short dashes).
Experimental data suggest the presence of yet two more
0+ quasistationary states of the 12C nucleus near the
three-particle threshold [5]. Their energies are 3.0(±03)
and 10.49(±0.02) MeV. However, no other low-lying
0+ resonances in the 12C nucleus could be reproduced
within the model adopted here. This implies that they
are truly three-particle states, whose parameters must
be calculated by using an exact three-body asymptotic

δ, deg
200

100

0

–100
0 2 4 6

Ö, MeV

Fig. 2. s-wave phase shifts for alpha-particle scattering on a
8Be nucleus: (solid curve) results of the present calcula-
tions, (long dashes) results of the calculation taking no
account of the three-body potential V3, and (short dashes)
results obtained in [4].

Binding energy EB and root-mean-square radius R of the 12C
nucleus (results of the calculations performed in [13, 14]
within the 3α cluster model on the basis of the differential
Faddeev equations with the same potentials as in the present

study) and energy Er and width Γ of its  resonance (the en-
ergy is reckoned from the three-particle threshold)

EB, 
MeV

R, 
fm Er, MeV Γ, MeV

Our study –7.26 2.47 0.47 0.0013

[5] –5.27 – 0.71 0.031

[6] –7.27 – 0.86 –

[3] –7.27 2.53 0.47 –

Experimen-
tal data [2]

–7.27 2.47 0.3796 ± 0.0002 (8.5 ± 1.0) × 10–6

02
+

behavior. The values obtained here for the parameters

of the  resonance comply well with the results of the
microscopic RGM calculations for the resonances of
the 12C nucleus within the α-cluster model [3–6]. The

results of the calculations for the  resonance are
quoted in the table.

In order to continue comparing the results presented
here and in [14] with the results obtained by other
authors, we now proceed to analyze the wave function
of the 3α system. The wave function in question, Ψ(x,
y, µ), depends on three variables. These are the absolute
values of the vectors x and y and the cosine of the angle
between them, µ = (x, y)/xy. Using equations (1) and
(4), we compute the wave function by the formula [11]

where x' and y' were defined above, while x'' and y'' are
given by

Once the wave function of the system has been con-
structed, it is of interest to explore the relative positions
of the alpha-particle clusters in the system. The most
probable configuration of the particles is determined by
the coordinates of the maximum of its wave function
squared. Our calculations yield x = 2.8 fm, y = 0 fm, and
µ = 0 (for the ground state of the 3α system, the analo-
gous results from [13, 14] are x = 2.9 fm, y = 2.5 fm,
and µ = 0). The relative positions of the alpha-particle
clusters are illustrated in Fig. 3, which displays the
square of the wave function Ψ(x, y, µ). The distance
between two alpha particles is fixed at x = 2.8 fm, and

02
+

02
+

Ψ x y µ, ,( )
χ0 x( ) f y( )

xy
-------------------------=

χ0 x'( ) f y'( )
x'y'

---------------------------
χ0 x''( ) f y''( )

x''y''
-----------------------------,+ +

x'' x2

4
----- y2 xyµ+ +

1/2

,=

y''
3x
4

------ 
 

2 y2

4
----

3
4
---xyµ–+

1/2

.=

–5
–4

–3
–2

–1
0

1
2

3
4

5 6 0 1 2 3 4 5

α

α

Fig. 3. Function Ψ2(x, y, µ) plotted against the coordinates

yµ and y , the distance x between the α clusters being
fixed at x = 2.8 fm. The closed circles show the positions of
the centers of mass for a chosen pairs of the particles.

1 µ2
–
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the function under consideration is plotted against the

coordinates yµ and y . Thus, we can see that the

arrangement of the alpha-particle clusters in the  res-
onance differs from that in the ground state of the 12C
nucleus. In the former case, the centers of mass of the
alpha-particle clusters form an equilateral triangle with
a side of 2.9 fm, whereas, in the latter case, they form a
linear chain rather than a triangle. Our result is similar
to that of Hong and Lee [9], who considered a linear
chain of clusters with a spacing of 2.8 fm between the
neighboring clusters. We now determine the probability
density ρ(rαα) for finding two alpha-particle clusters at

1 µ2–

02
+

r2
αα ρ(rαα), fm–1

0.6

0.5

0.4

0.2

0.1

0 2 4 6 8 10
rαα, fm

0.3

r2
αα ρ(rαα), fm–1

rαα, fm

0.20

0.16

0.12

0.08

0.04

0 2 4 6 8 10 12

Fig. 4. Function ρ(rαα) for the ground state of the 12C

nucleus: (solid curve) results of the present calculation
(based on the data from [13, 14]) and (dashed curve) results
obtained in [6].

rαα
2

Fig. 5. Function ρ(rαα) for the  resonance in the 12C

nucleus: (solid curve) results of the present calculation and
(dashed curve) results obtained in [6].

rαα
2

02
+
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a distance rαα. Figures 4 and 5 display the function

ρ(rαα) for, respectively, the ground state of the 12C
nucleus (according to the results obtained in [13, 14])

and its  resonance. The dashed curves in these fig-
ures represent the results obtained in [6], which are in
qualitative agreement with our results.

4. CONCLUSIONS

A model has been proposed where the  resonance
in the 12C nucleus is treated as a resonance of α8Be two-
cluster scattering in the 3α three-body system. Effec-
tive equations describing the relative motion of the
clusters in the α8Be system have been derived from the
differential Faddeev equations. A three-body interac-
tion between α particles ensures the existence of the s-

wave  resonance. The relevant 3α potential was pro-
posed in [13] to describe the ground state of the 12C
nucleus. The results of the present calculations can be
summarized as follows:

(i) A three-body potential of α-cluster interaction
makes it possible to describe simultaneously the

ground state and the  resonance of the 12C nucleus
within the s-wave potential model of the 3α system.

(ii) The  resonance in the 12C nucleus can be
interpreted as a two-particle resonance of α8Be scat-
tering.

(iii) The arrangement of the clusters in the  state
of the 3α system is most adequately described by a lin-
ear configuration differing, however, from a regular lin-
ear cluster chain considered in [9].
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Abstract—One hundred and sixty-one rotational bands of superdeformed states in nuclei are considered on the
basis of a model that admits triplet Cooper pairing in superfluid nuclear matter. The behavior of the dynamical
moment of inertia for such states is investigated within this model, which is shown to comply well with avail-
able experimental data and to describe successfully the rotational spectra of superdeformed states. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The rotational band of a superdeformed state of the
152Dy nucleus was observed for the first time in 1986
[1]. This state of 152Dy has the highest spin in the 60"
band, the corresponding excitation energy being about
30 MeV, which is close to the height of the fission bar-
rier. At such excitations, the density of ordinary thermal
levels is about 106 eV–1; nonetheless, approximately
30% of all transitions are 60+  58+ transitions pro-
ceeding via the emission of an "ω = 1449 MeV E2
gamma ray. Moreover, all 100% of transitions that
involve levels lying between 52+ and 24+ or 22+ are nec-
essarily accompanied by the emission of E2 gamma
rays. The rotational band is terminated at the 24+ or the
22+ level.

In subsequent years, more than 150 rotational bands
of superdeformed states were discovered in various
nuclei [2–50]. These bands are concentrated in four
mass regions: in the region around A ~ 190, 62 bands
were found in the Bi, Pb, Tl, Hg, and Au nuclei [2–18]
(in all, 21 isotopes from this region feature such bands);
in the region around A ~ 150, experiments revealed 61
bands in the isotopes of Ho, Er, Dy, Tb, Gd, Eu, and Sm
[10, 19–39] (in all, there are again 21 isotopes where
such bands exist) and three hyperdeformed bands in Dy
[40] and Gd [41]; in the region around A ~ 130, 27
bands were discovered in the Pm, Nd, Pr, Ce, and La
nuclei [10, 42–48] (in all, 13 isotopes of these nuclei
exhibit such bands); and, finally, in the region around
A ~ 80, 70, four bands in the 81Sr nucleus [49] and four
bands in 87Nb [50] had been reported by the middle of
1997.

† Deceased.
1) Moscow State Engineering Physics Institute (Technical Univer-

sity), Kashirskoe sh. 31, Moscow, 115409 Russia.
2) Russian Research Centre Kurchatov Institute, pl. Kurchatova 1,

Moscow, 123182 Russia.
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By convention, we will refer to a band as a rotational
one if the excitation energy of a nucleus is given by3) 

where the moment of inertia J(I) must be either a con-
stant or a slowly changing function of the spin I. The
probabilities of intraband electromagnetic transitions
are much greater than those for transitions into other
states and exceed single-particle estimates by nearly
two orders of magnitude.

Experiments measure a cascade of E2 photons,
which sometimes involves more than 20 transitions.
The photon energy Eγ(I) is given by

(1)

where J(1)(I) is the static moment of inertia of a rota-
tional band.4) It is related to the excitation energy by the
equation [51]

(2)

where I2 = I(I + 1). If, for example, J(I) = J(I), then
J(1)(I) = J(I), in which case the cascade energy appears
to be a linear function of I.

From the expression for the photon energy, one can
see that it involves, in addition to the static moment of
inertia, the spin of the level being considered. For the
rotational band of a superdeformed state, it is rather dif-
ficult to determine this spin independently. By using the
dynamical moment of inertia [51], it is possible to elim-

3)In the following, we set " = 1 in all equations.
4)In some cases (see, for example, [10]), the static moment of iner-

tia is determined by the relation J (1)(I) = (2I – 1)/Eγ(I) with
Eγ(I) = E(I) – E(I – 2).

E I( ) "
2I I 1+( )
2J I( )

------------------------,=

Eγ I( ) E I 2+( ) E I( )–
2I 3+

J 1( ) I( )
---------------,= =

J 1( ) I( ) 1
2
--- dE

dI2
------- 
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,=
000 MAIK “Nauka/Interperiodica”



 

1534

        

SHAPIRO 

 

et al

 

.

inate the spin of the level from experimental data. For
this purpose, it is convenient to introduce the quantity

(3)

where J(2)(I) is the so-called dynamical moment of iner-
tia, which can be expressed in terms of the excitation
energy of the nucleus as [51]

(4)

This quantity no longer depends on the spin of the
level; if the moment of inertia of the nucleus is con-
stant, we have J(2)(I) = J(I).

Depending on the spin I, the moment of inertia as
determined experimentally can exhibit four types of
behavior: (i) J(2)(I) is a growing function. (ii) J(2)(I) is a
constant. (iii) J(2)(I) is a decreasing function. (iv) J(2)(I)
is a nonmonotonic function.

The main objective of any theoretical model for
describing the rotational spectrum of a superdeformed
nuclear state is to reproduce qualitatively the behavior
of the dynamical momentum of inertia.

By using expression (3), we can determine J(2)(I)
from experimental data. Further assuming that J(2)(I) ≈
J(1)(I) and employing relation (1), we can estimate, on
the basis of experimental data, the spin of the level to
within one to two " units.

As a rule, a theoretical description of superde-
formed nuclear states is based either on the cranking
model [52] or on the model of a variable momentum of
inertia. Here, we present a different approach to
describing rotational states of superdeformed nuclei. In
1986, Fal’ko and Shapiro [53] put forth the idea that
nuclear matter can undergo a transition to a superfluid
state characterized by triplet Cooper pairing. In 1990,
Shapiro [54] assumed that, since the nucleon spins have
the same direction in the case of triplet pairing and
since the energy of spin–rotation interaction is propor-
tional to (S · W) (where W is the angular-velocity vec-
tor), the triplet pairing of nucleons may arise at high
angular momenta. As a result, nuclear matter undergoes
a transition to a superfluid state, and this phase transi-
tion is interpreted as the formation of a superdeformed
nuclear state.

In the present study, experimental data on the rota-
tional states of superdeformed nuclei are considered
within the model of superfluidity characterized by trip-
let pairing. The ensuing exposition is organized as fol-
lows. In Section 2, we present basic results obtained
within this model. Section 3 is devoted to an investiga-
tion of all known rotational bands in superdeformed
nuclei.

∆Eγ Eγ I 2+( ) Eγ I( )–
4

J 2( ) I( )
---------------,= =

J 2( ) I( ) d2E I( )

d I2( )
2

-------------------
 
 
  –1

.=
2. MODEL OF NUCLEAR-MATTER 
SUPERFLUIDITY INDUCED

BY TRIPLET PAIRING

For the first time, the idea that nuclear matter can
occur in the superfluid state was put forth in [55–57]. It
was assumed in those studies, however, that Cooper
pairs have zero total spin (S = 0) and zero orbital angu-
lar momentum (L = 0); that is, they have no internal
degrees of freedom. In the case of 3He [58–60], which
also exhibits the superfluidity property, Cooper pairs
occur in the S = 1 triplet state. Moreover, the orbital
angular momentum L of a pair must be odd—in partic-
ular, L = 1—because of antisymmetry of the wave func-
tion of Cooper pairs. Considering that spin–orbit cou-
pling is weak for 3He, we then find that the total sym-
metry group is

In 1986, Fal’ko and Shapiro [53] assumed that
nucleons of nuclear matter form Cooper pairs in the S =
1, L = 1 triplet state. In this case, we have to deal with
strong spin–orbit coupling; accordingly, the total sym-
metry group is

In the case of strong spin–orbit coupling, the total spin
of a Cooper pair, S = 1, and its orbital angular momen-
tum of relative motion, L = 1, are combined vectorially
to give the total angular momentum J = L + S with J =
0, 1, 2.

A superfluid liquid is a Bose condensate of identical
particles, where different phases correspond to differ-
ent values of J. Moreover, several phases can exist even
at a fixed nonzero value of J, since the state of each
phase is characterized by the total-angular-momentum
projection M = J, J – 1, …, –J as well. It should be borne
in mind here that the values of M = ±K (K = 0, …, J) cor-
respond to the same phase, since complex-conjugate
wave functions are associated with angular-momentum
projections having the identical absolute values and
opposite signs. Therefore, there are six different
phases: three at J = 2 (M = 2, 1, 0), two at J = 1 (M = 1,
0) and one at J = 0 (M = 0). The M ≠ 0 and M = 0 phases
are referred to, respectively, as nonunitary and as uni-
tary ones.

The wave function of a Cooper pair is determined as
the matrix element

where N is the number of identical fermions and (x)
(α = 1, 2) is the operator annihilating a fermion at the
point x. The variables r and R are given by

SO 3( )L SO 3( )S U 1( ).⊗ ⊗

SO 3( ) U 1( ).⊗

N Ψ̂α r1( )Ψ̂β r2( ) N 2+〈 〉 f αβ r R,( ),=

Ψ̂α

r r1 r2, R–
r1 r2+

2
---------------.= =
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Since the direct product of two spinors involves a sca-
lar, S = 0 and a vector, S = 1, we can rewrite the matrix
fαβ in the form

where a(r, R) is the wave function of a singlet Cooper
pair, b(r, R) is the wave function of a triplet Cooper
pair, and σj (j = 1, 2, 3) are the Pauli matrices; hereafter,
summation over dummy indices is implied. It is more
convenient to use the wave function in the momentum
representation, bi(k, R), i = 1, 2, 3. Since L = 1, bi(k, R)
can be represented in the form

The complex tensor  is the order parameter for the
JM phase.

All superfluid phases of nuclear matter, as well as
their order parameters and degeneracy spaces, were
determined in [53, 54] (see Table 1).

In the case of homogeneous nuclear matter, the
quantity Bij is independent of the center-of-mass posi-
tion of a pair (that is, on R). Under rotations about the
quantization axis z, the order parameter transforms as
BJM  eiMΦBJM, where Φ is the rotation angle. It fol-
lows that, for the unitary phases (M = 0), the order
parameter is invariant under rotations about the quanti-
zation axis z. In this case, it is meaningful to consider
rotations of the spontaneous anisotropy axis z only
about some axis orthogonal to z. For the nonunitary
phases (M ≠ 0), rotation about the z axis has actual
physical meaning since the axial symmetry of the
superfluid condensate is broken in this case. This dis-
tinction between the unitary and nonunitary phases is
of crucial importance for the origin of rotational bands
in superdeformed nuclei.

The energy of the system in question is a functional
of the order parameter:

That the J ≠ 0 phases of a superfluid liquid are anisotro-
pic may generate collective excitations that correspond
to rotations of the system as a discrete unit, whereby the
system develops a rotational spectrum. It should be
borne in mind in this connection that volume textures of
the quantized-vortex type cannot arise in our systems
because nuclear sizes are much smaller than the corre-
lation length. The energy of a rotating nucleus with
angular momentum I can be represented in the form

(5)

where W is the angular-velocity vector and EJM(W) is
the energy in the reference frame rotating with the
nucleus. The quantity EJM(W) can be expressed in terms
of scalars involving the order parameters and angular-
velocity vector. In specifying the forms of such scalars, we
must consider that, for the nonunitary phases (M ≠ 0),

f r R,( ) a r R,( )iσ2 b j r R,( )iσ2σ j,+=

bi
JM k R,( ) k jBij

JM k R,( ).=

Bij
JM

E F B[ ] .=

EJM I( ) EJM W( ) I W,⋅+=
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there exists the nonvanishing vector eijkBjl , so that

we can construct a scalar linear in the angular velocity;
that is,

For the unitary phases, we have eijkBjl  = 0; hence,

the angular-velocity vector must appear quadratically
in EJM(W). For another scalar constructed from the
order parameter, we can take

In the Ginzburg–Landau approximation, where the
energy functional is approximated by a polynomial of
fourth degree in the order parameter, the energy of a
homogeneous nucleus in the rotating reference frame
can be represented as

(6)

for a nonunitary phase and as

(7)

for a unitary phase.
In expressions (6) and (7), α, β, and γ are unknown

real parameters, while e is the energy of a normal
phase. Without loss of generality, we can assume that
β > 0.

The conditions under which the energy functional is
minimized are given by

(8)

Bkl*

ΩieijkB jlBkl* i W z⋅( )tr BB+[ ] .=

Bkl*

A2 tr BB+[ ] .=

EJM W( ) e α– βW z⋅+( )A2 γA4++=

EJM W( ) e α– βW2+( )A2 γA4+ +=

δE

δA2
--------- 0,

δ2E

δ A2( )2
---------------- 0.≥=

Table 1.  Tensor structure of the order parameter

J |M | G/H

0 0 δije
iΦ S1

1 0 εijkzke
iΦ (S1 ^ S2)/Z2

2 0 (3zizj – δij)e
iΦ P2 ^ S1

1 1 εijkvk P3

2 1 (zivj + zjvi) P3

2 2 vivj P3/Z2

Note: Here, we use the following notation: x2 = y2 = z2 = 1, x ⊥  y ⊥ z,

and v = (1/ )(x + iy); Φ is an arbitrary complex number.

Bij
J |M|

1

3
-------

1

2
-------

1

6
-------

1

2
-------

1

2
-------

2
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Considering that

(9)

and using expression (5), we find the rotational spec-
trum [53, 54]. For a nonunitary phase, we obtain

(10)

where

For the free-energy functional to have a minimum [this
is ensured by fulfillment of inequality (8)], it is neces-
sary that γ > 0. We note that conditions (8) lead to the
relations

(11)

(12)

The equality in (11) means that the nucleus being con-
sidered rotates about the quantization axis z. Such a
rotation is unusual for collective motions in a nucleus
[51]. From inequality (12), it follows that, for α < 0, the
conditions

(13)

where J is the moment of inertia of the nucleus with
respect to the z axis, must be satisfied.

Thus, we conclude that, in contrast to singlet pair-
ing, triplet pairing is not destroyed by a fast rotation
(high nuclear spin). Moreover, it follows from relation
(13) that nonunitary phases, which arise only in the
case of a sufficiently fast rotation, can exist. The situa-
tion here is analogous to that which is prevalent in 3He,
which can be in the A1 phase only in a magnetic field.

By using relations (4) and (10), we can easily derive
expressions for the dynamical moment of inertia. For
the nonunitary phase, we have

(14)

There are 32 rotational bands for which the dynamical
moment of inertia can be assumed to be independent of
the spin of a level in the band.

In the case of unitary phases (M = 0), the minimiza-
tion of the Ginzburg–Landau functional leads to the
expression

whence we find the relation between the angular veloc-
ity and the spin by using (9). With the aid of the substi-

I
∂EJM W( )

∂W
----------------------–=

EJM I( ) EJM 0( )–
1

2J0
-------- I I 1+( ) I0–( )2

,=

EJM 0( ) α2

4γ
------– 0, J0< β2

2γ
------, I0

αβ
2γ
-------.= = =

W z⋅
Ω

------------ 1,–=

A2 Ω( ) 1
2
--- α βΩ+( ) 0.>=

Ω Ωcr> α
β

------, I Icr> J
α
β

------,= =

J 2( ) I( ) J0 const.= =

EJM Ω( ) α βΩ2+( )2

4γ
---------------------------,–=
tution x = Ω2 + (2/3)(α/β), we transform this equation
to the standard form

where

From the condition under which the Ginzburg–Lan-
dau functional is minimized, it follows that γ > 0 [that
is, EJ0(0) < 0]. The parameter α can assume both nega-

tive and positive values, so that the sign of  is not
defined unambiguously. It should be noted that the

quantity  is a parameter that has nothing to do with
the spin in the rotational band. By using (5), we find
that the rotational spectrum of a unitary phase can be
represented as

(15)

where

Here, we have introduced the auxiliary quantity φ
defined as

For  > 0, expression (15) reduces to the expres-
sion for the rotational spectrum of a unitary phase from
[53, 54] {formula (3.11) in [54]}. In the case of unitary

phases, the connections of EJ0(I) for  > 0 with the
cranking model and with the model featuring a variable
moment of inertia were discussed in [61].

x3 3 px– 2q+ 0,=

p
210

38
-------

EJ0
2 0( )
Ic

2
----------------

 
 
 

2

– 0,<=

q
215

312
-------

EJ0
2 0( )
Ic

2
----------------

 
 
 

3

1 I I 1+( )
Ic

2
-------------------+ ,–=

EJ0 0( ) α2

4γ
------, Ic

2–
2
27
------α3β

γ2
---------.= =

Ic
2

Ic
2

EJ0 I( ) EJ0 0( )–
1
3
---EJ0 0( ) H1

2 I( ) 1–[ ] ,–=

H1 I( )

2 φ/3( )cosh 1, 0 Ic
2<–

2 φ/3( )cosh– 1, 1/2( )I I 1+( )– Ic
2 0< <–

2 φ/3( )cos– 1,–

I I 1+( )– Ic
2 1/2( )I I 1+( )–< <

2 φ/3( )cos 1, Ic
2 I I 1+( ).–<–

=

φ( )cosh I I 1+( )/Ic
2 1, 0 Ic

2;<+=

φ( )cosh I I 1+( )/Ic
2 1+( ), 1/2( )I I 1+( )– Ic

2 0;< <–=

φ( )cos I I 1+( )/Ic
2 1+( )– ,=

I I 1+( ) Ic
2 1/2( )I I 1+( );–< <–

φ( )cos I I 1+( )/Ic
2 1, Ic

2 I I 1+( ).–<+=

Ic
2

Ic
2
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By using (15), we can easily show that the dynami-
cal moment of inertia of a rotational band based on a
unitary phase has the form

(16)

so that it grows with spin. Here, the quantities H2(I) and
H3(I) are given by

Thus, the model of triplet pairing in superfluid
nuclear matter provides a natural explanation of the
behavior of the dynamical moment of inertia in cases
(i) and (ii) (see the Introduction), but it fails to describe
its behavior in cases (iii) and (iv) under the assumption
of homogeneous nuclear matter.

In this model of superfluid nuclear matter, there can
exist phases that possess natural anisotropy. In such
phases, axial symmetry is broken, so that there are no
connections between the rotational states associated
with them and conventional cranking models for states
that are nonspherical, but which are axisymmetric.

We note that, in expressions (10) and (15) for the
energy of rotational-band levels, the spin I changes by
unity. Therefore, ∆I = 1 and ∆I = 2 transitions are
allowed in such a band. However, ∆I = 1 transitions are
strongly suppressed for high-spin states: such E2 tran-
sitions are suppressed by kinematical factors, while M1

J 2( ) I( ) 9
4
---

Ic
2

EJ0 0( )
----------------–=

× H1H2
2
3
--- I I 1+( )

Ic
2

-------------------H2
2 4

3
--- I I 1+( )

Ic
2

-------------------H1H3–+
1–
,

H2 I( )

2 φ/3( )/ φ( ), 0 Ic
2<sinhsinh

2 5φ/3( )/ φ( ), 1/2( )I I 1+( )Ic
2 0<–sinhsinh

2 5φ/3( )/ φ( ),sinsin

I I 1+( ) Ic
2 1/2( )I I 1+( )–< <–

2 φ/3( )/ φ( ), Ic
2 I I 1+( ),–<sinsin

=

H3 I( )

=   

4 –cosh2 φ( ) 2φ/3( )sinh 8φ/3( )sinh /4+( )/ φ( ),sinh
3

0 Ic
2<

4 φ( ) 2φ/3( )sinhcosh
2

8φ/3( )sinh /4–( )/ φ( ),sinh
3

1/2( )I I 1+( ) Ic
2 0< <–

4 φ( ) 2φ/3( )sincos
2

–(

+ 8φ/3( )/4sin )/ φ( ),sin
3

I I 1+( )– Ic
2 1/2( )I I 1+( )–< <

4 φ( ) 2φ/3( ) 8φ/3( )/4sin–sincos
2

( )/ φ( ),sin
3

Ic
2 I I 1+( ).–<
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transitions are suppressed because of a slow rotation of
the charges. Thus, there are ∆I = 2 E2 transitions in
each rotational band, so that two rotational bands char-
acterized by identical moments of inertia and by spin
values differing by unity—that is, two overlapping
bands with weak signature splitting [62]—correspond
in experiments to the rotational spectrum based on each
phase. Joice et al. [63] were able to observe experimen-
tally M1 transitions between such bands.

To conclude this section, we note that two adjust-
able parameters correspond to each phase. These are

EJ0(0) and  for unitary phases and J0 and I0 for non-
unitary phases. In applying the model under discussion
to nuclei, it is necessary to consider that they are finite.
There then arises the question of which facet of these
objects—the properties of nuclear matter (that is, a
phase transition to a superfluid state) or spatial quanti-
zation (effects of finiteness)—is of crucial importance
for superdeformed nuclear states. If the aforementioned
parameters change weakly from one nucleus to another,
the phenomenon of superdeformation in nuclei is a fea-
ture inherent in nuclear matter.

3. DESCRIPTION OF EXPERIMENTAL DATA
ON ROTATIONAL STATES

OF SUPERDEFORMED NUCLEI

The present study heavily relies on the assumption
that, upon heavy-ion collisions, which excite high-
lying rotational states in the nuclei involved, triplet
Cooper pairing arises in nuclear matter, so that the
nuclear system formed appears to be in a superfluid
state upon a phase transition. Therefore, a superde-
formed state of nuclei, which is characterized by high
spins, (60–70)", is a superfluid state of nuclear matter.
In order to test this model, we analyze here more than
150 rotational bands for a broad range of nuclei.

For a basic criterion of our fits, we consider the
behavior of the dynamical moment of inertia as a func-
tion of the spin of the level or as a function of the fre-
quency of rotation, the relation between the former and
the latter being given by

(17)

If the dynamical moment of inertia grows with increas-
ing frequency of rotation, the rotational band must be
associated with a unitary superfluid phase, so that the
energy the cascade photons must be described by
expression (15). But if the dynamical moment of inertia
is constant, our fit is based on expression (10). No other
behavior of the dynamical moment of inertia can be
described within our approach. As was indicated above,
each of the two expressions involves two adjustable
parameters. For the overwhelming majority of the
bands, the spins of the levels cannot be determined
from experimental data directly. In view of this, it is
necessary to invoke a new parameter—the spin of the

Ic
2

ω 1
4
--- Eγ I( ) Eγ I 2+( )+[ ] .=
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lowest state in the band, Imin. For unitary phases, no dif-
ficulties arise in determining this parameter from a fit
because of high sensitivity of expression (15) to the
choice of spin. But for nonunitary phases, consistent
variations in Imin and I0 lead to the same expressions in

Table 2.  Results of fitting rotational bands of superde-
formed nuclei

Number of nucleons

81, 87, 129–137 142–154 189–198

Number of nuclei with 
different Z

7 7 5
19

Number of isotopes 15 21 21
57

Number of rotational 
bands in super- and hy-
perdeformed nuclei

35 61 + 3HD 62
158 + 3HD

Number of unitary 
bands

6 6 49
61

Number of nonunitary 
bands

3 24 5
32

Number of bands that 
can be described in two 
ways

0 9 + 3HD 5
14 + 3HD

Number of bands that 
elude description

26 22 3
51

J(2)(I), MeV–1

140

130

120

110

100

90
0 10 20 30 40 I

Fig. 1. Dynamical moment of inertia as a function of the
nuclear spin for the 194Hg(2) rotational band. The solid
curve corresponds to the best fit in terms of expression (16)
for the unitary phase.
the high-spin limit; therefore, the spin is determined, in
this case, by the method described in the Introduction.

Our fit was performed in terms of the root-mean-
square deviation

(18)

The quality of the fit was taken to be good if χ ≤ 5 keV.
To explain this, we remind the reader that, according to
our strategy outlined above, any viable model must
describe the behavior of the dynamical moment of iner-
tia J(2), which is determined from ∆Eγ [see equation
(3)]. Since the values of ∆Eγ for different bands vary
between 50 and 100 keV, the criterion χ ≤ 5 keV corre-
sponds to precision higher than 10% in a fit to ∆Eγ.

As the result of describing all 161 rotational bands
known to us from [2–50] (158 bands of superdeformed
nuclei and three bands of hyperdeformed nuclei), we
were able to single out four groups of bands (see Table 2).

The first group contains the rotational bands com-
patible with expression (15)—that is, of unitary bands.
The second group consists of rotational bands
described by expression (10)—that is, of nonunitary
bands. Figures 1 and 2 display both theoretical and
experimental results for the dynamical moment of iner-
tia of, respectively, the 194Hg(2) band (unitary case) and
the 195Pb(2) band (nonunitary case) versus the nuclear
spin I. For these descriptions of the data, we obtained
χ = 0.5 keV in first case and χ = 0.6 keV in the second
case.

There are a number of rotational bands for which the
behavior of the dynamical moment of inertia could not
be determined on the basis of experimental data. These

χ 1
N
---- Ei

theor Ei
expt–( )2

i 1=

N

∑ .=

J(2)(I), MeV–1

103

101

99

97

95
0 10 20 30

I

Fig. 2. Dynamical moment of inertia as a function of the
nuclear spin for the 195Pb(2) rotational band. The solid
curve corresponds to the best fit in terms of expression (14)
for the nonunitary phase.
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bands were described in two ways, in terms of expres-
sion (15) and in terms of expression (10). All such
bands (there are 17 of these) were included in the third
group, which is exemplified by the 148Gd(2) rotational

J(2)(I), MeV–1

90

85

80

75

70
25 35 45 55

I

Fig. 3. Dynamical moment of inertia as a function of the
nuclear spin for the 148Gd(2) rotational band. The solid
(dashed) curve corresponds to the best fit in terms of expres-
sion (14) [expression (16)] for the nonunitary (unitary) phase.

Table 3.  Example of fitting the 194Hg(2) band (δEγ =

 – ; energies are measured in keV; χ = 0.5 keV):
unitary phase

I δEγ

8 200.79 201.20 0.41

10 242.25 242.55 0.30

12 283.14 283.35 0.21

14 323.45 323.54 0.09

16 363.12 363.06 –0.06

18 402.05 401.88 –0.17

20 440.31 439.97 –0.34

22 477.68 477.29 –0.39

24 514.23 513.83 –0.40

26 549.93 549.59 –0.34

28 584.82 584.56 –0.26

30 618.96 618.74 –0.22

32 652.02 652.16 0.14

34 684.57 684.81 0.24

36 716.20 716.72 0.52

38 746.89 747.90 1.01

40 777.73 778.37 0.64

42 807.78 808.16 0.38

44 837.48 837.27 –0.21

46 867.08 865.74 –1.34

Eγ
theor Eγ

expt

Eγ
expt (plain) Eγ

theor (plain)
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band. Either type of fit (on the basis of a unitary or a
nonunitary phase) yields χ = 2.2 keV. The behavior of
the dynamical moment of inertia for this case is illus-
trated in Fig. 3. The experimental values of the photon
energies and the results obtained by fitting expressions
(15) and (10) to them for the 194Hg(2), 195Pb(2), and
148Gd(2) bands are quoted in Tables 3–5. For the last
case, we present the results of fits based both on a uni-
tary and on a nonunitary phase.

The fitted values of the parameters J0, I0, and Imin for
nonunitary bands and the fitted values of the parameters

EJ0(0), , and Imin for unitary bands are given in Tables
6 and 7, respectively. These tables also display the val-
ues of the root-mean-square deviations χ and refer-
ences to studies from which we borrowed experimental
data. It should be emphasized that the quantity Imin for
nonunitary rotational bands was determined by formu-
las (1) and (3) rather than fitted; therefore, its accuracy
was one to two ". The bands that could be described in
two ways were included in both tables and were labeled
with an asterisk.

Since we treat the phenomena of nuclear superde-
formation and hyperdeformation as a feature peculiar
to nuclear matter, the parameters of the bands are not
expected to show a large scatter in the mass region
being considered (they must become coincident upon
taking into account effects associated with the finite-
ness of nuclear sizes). Within the model used here, the
bands that can be described in two ways must therefore
be treated in terms of the phase with which their param-
eters comply better. For example, the fits to the 152Dy(6)
band lead to χ = 1.0 and 1.3 keV for, respectively, the
unitary and the nonunitary ansatz. The fitted values of
the parameters of the unitary phase, EJ0(0) = –1.5 ×
103 MeV and  = 3.8 × 104, are two orders of magni-
tude greater than the analogous values for other unitary
bands. The fitted value J0 = 89 MeV–1 for the parameter
of the nonunitary phase is close to the corresponding
values for the nonunitary phases. On this basis, we
interpret this band as that of the nonunitary phase.

In Tables 6 and 7, we also included three rotational
bands of hyperdeformed nuclei, although the fitted val-
ues of their parameters differ strongly from the param-
eters of rotational bands of superdeformed nuclei. As
was indicated in Section 2, nuclei can have rotational
bands with weak signature splitting and spins differing
by unity. In Tables 6 and 7, each pair of such bands is
combined into one row (in all, there are 28 such pairs).

The results of our fit agree with the analogous
results from [61, 64] for the same nuclei.

Finally, the fourth group comprises bands that do
not meet the above criterion—that is, bands for which
χ > 5 keV. First, these are bands for which the dynami-
cal moment of inertia is a decreasing function of the
frequency of rotation. For example, this is so for
150Gd(1). The experimental behavior of its dynamical

Ic
2

Ic
2
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moment of inertia is illustrated in Fig. 4. Second, there
are bands for which the dynamical moment of inertia is
a nonmonotonic function of the frequency of rotation.
This type of behavior is observed in 129Ce and 133Nd
(see Fig. 5). It can be seen that, in the case of 129Ce, the

Table 4.  Example of fitting the 195Pb(2) band (δEγ =  –

; energies are measured in keV; χ = 0.5 keV): nonunitary
phase

I δEγ

5.5 162.6 162.8 0.2

7.5 203.2 203.6 0.4

9.5 244.0 244.3 0.3

11.5 284.6 285.1 0.5

13.5 325.6 325.8 0.2

15.5 366.9 366.6 –0.3

17.5 408.0 407.4 –0.6

19.5 449.1 448.1 –1.0

21.5 489.7 488.9 –0.8

23.5 530.5 529.7 –0.8

25.5 570.3 570.4 0.1

27.5 610.8 611.2 0.4

29.5 650.6 652.0 1.4

Eγ
theor

Eγ
expt

Eγ
expt Eγ

theor

J (2)(ω), MeV–1

110

100

90

80

70
0.3 0.5 0.7

ω, MeV

120

Fig. 4. Dynamical moment of inertia as a function of the fre-
quency of rotation for the 150Gd(1) rotational band.
condition J(2) = const = 56 MeV–1 is strongly violated
only at one point, but this leads to χ = 16.3 keV. Third,
Fig. 6 displays the measured dynamical moments of
inertia for the 193Hg(1) and 193Hg(4) bands as functions
of the frequency of rotation. Gullen et al. [65] believe

Table 5.  Example of fitting the 148Gd(2) band (δEγ =  –

; energies are measured in keV; χnonun = χun = 2.2 keV):
unitary and nonunitary phases

I δ δ

30 787.8 789.2 788.2 1.4 0.4
32 837.1 838.7 838.0 1.6 0.9
34 889.4 888.2 887.8 –1.2 –1.6
36 939.2 937.7 937.6 –1.5 –1.6
38 989.3 987.2 987.3 –2.1 –2.0
40 1039.3 1036.7 1037.0 –2.6 –2.3
42 1088.4 1086.3 1086.6 –2.1 –1.8
44 1135.4 1135.8 1136.7 0.4 1.3
46 1181.4 1185.3 1185.7 3.9 4.3
48 1231.0 1234.8 1235.2 3.8 4.2
50 1282.0 1284.3 1284.6 2.3 2.6
52 1331.0 1333.8 1333.9 2.8 2.9
54 1385.0 1383.4 1383.3 –1.6 –1.7
56 1437.0 1432.9 1432.5 –4.1 –4.5

Eγ
theor

Eγ
expt

Eγ
expt Eγ

nonun Eγ
un Eγ

nonun Eγ
un

J (2)(ω), MeV–1

110

90

50

30
0.2 0.4 0.6

ω, MeV

130

70

Fig. 5. Dynamical moment of inertia as a function of the fre-
quency of rotation for the rotational bands in the (closed cir-
cles) 193Hg(1) and (open triangles) 193Hg nuclei. The solid
and the dashed line represent fits assuming a nonunitary
phase for 129Ce and 133Nd, respectively.
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Table 6.  Fitted parameters for nonunitary phases

Nucleus Imin –I0 J0, MeV–1 Number of transitions χ, keV References
197Bi(1)* 5.5 1.3 99 13 1.7 [3]
197Pb(2)* 7.5 1.3 99 16 2.2 [4]
195Pb(1)* 6.5 1.4 102 13 1.0 [5]
195Pb(2) 5.5 1.0 98 13 0.5 [6]
193Pb(1)* 11.5 1.1 101 10 0.7 [6]
193Pb(2) 6.5 1.0 94 9 1.0 [6]
192Tl(1)* 16 1.0 103 8 1.1 [11]
192Tl(3) 17 1.3 106 8 0.5 [11]
192Tl(4) 16 1.6 107 8 1.1 [11]
190Hg(2) 27 1.0 123 8 0.9 [13]
153Ho(2) 27.5 1.1 85 16 2.2 [19]
155Dy 36.5 1.3 87 15 0.9 [20]
154Dy 27 1.0 85 18 1.5 [21]
153Dy(HD)* 82.5 1.7 138 11 1.7 [40]
153Dy(1) 28.5 1.2 87 18 1.9 [22]
153Dy(2) 25.5 1.3 84 18 2.9 [22]
153Dy(3) 26.5 1.4 84 17 3.1 [22]
153Dy(4)* 27.5 1.5 85 16 4.3 [22]
153Dy(5)* 28.5 1.3 85 16 3.9 [22]
152Dy(1) 22 1.7 85 21 3.1 [23]
152Dy(6)* 31 1.4 89 16 1.3 [23]
151Dy(2) 23.5 1.1 84 19 4.1 [24]
151Dy(3) 26.5 1.4 82 16 3.4 [24]
151Dy(4) 26.5 1.8 84 16 1.1 [24]
151Dy(5)* 34.5 1.7 79 9 1.6 [24]
152Tb(2) 31 1.1 85 13 4.8 [25]
151Tb(2) 22.5 1.2 85 20 3.3 [26]
151Tb(3) 24.5 1.7 82 18 2.6 [26]
151Tb(4)* 29.5 1.1 84 16 0.8 [26]
151Tb(5) 24.5 0.8 76 16 2.6 [25]
151Tb(6) 25.5 1.0 76 15 3.2 [25]
151Tb(7) 26.5 0.8 77 15 3.2 [25]
151Tb(8) 27.5 0.9 77 12 2.4 [25]
150Tb(1) 19 1.8 76 20 4.1 [27]
145Tb* 18.5 1.7 69 14 1.8 [28]
150Gd(5)* 34 1.3 81 14 4.9 [29]
149Gd(3) 21.5 1.3 76 20 4.7 [37]
148Gd(2)* 29 1.4 81 14 2.2 [30]
147Gd(HD)(A)* 75.5 1.1 140 9 1.4 [41]
147Gd(HD)(B)* 67.5 1.4 139 12 1.8 [41]
146Gd(2) 26 0.9 71 15 4.1 [31]
145Gd(3) 29.5 1.3 70 10 1.7 [32]
143Eu 13.5 1.5 67 22 3.1 [33]
142Eu* 20 1.8 66 15 2.0 [34]
142Sm(1) 19 1.3 65 19 4.2 [35]
142Sm(2) 22 1.8 70 16 1.8 [35]
132Nd(2) 22 1.8 62 8 4.9 [43]
133Pr(2) 20.5 1.8 55 10 3.6 [44]
133Pr(4) 18.5 1.1 52 12 5.0 [44]
Note: Asterisks label bands that can be described in two ways.
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Table 7.  Fitted parameters for unitary phases

Nucleus Imin –Ej0(0), MeV  × 10–2 Number of transitions χ, keV References

197Bi(1)* 6.5 105.9 30.0 13 0.4 [3]
197Bi(2) 7.5 47.4 13.4 10 0.5 [3]
198Pb 12 36.4 9.5 16 0.8 [7]
197Pb(1) 7.5 87.7 25.4 17 0.4 [4]
197Pb(2)* 8.5 193 55.4 16 1.0 [4]
196Pb 6 21.1 5.4 11 0.4 [7]
195Pb(1)* 7.5 104 30.5 13 0.5 [5]
195Pb(3) 7.5 24.0 6.6 14 1.6 [5]
195Pb(4) 8.5 23.4 6.4 12 0.8 [5]
194Pb(1) 6 18.1 4.7 12 0.4 [8]
194Pb(2) 10 24.8 6.9 9 0.7 [9]
194Pb(3) 11 25.2 7.0 9 0.4 [9]
193Pb(1)* 11.5 48.6 13.5 10 0.7 [6]
193Pb(3) 12.5 37.3 10.5 9 2.2 [6]
193Pb(4) 13.5 24.6 6.8 9 0.3 [6]
193Pb(5) 8.5 25.5 7.0 9 0.5 [6]
193Pb(6) 9.5 24.2 6.7 10 0.6 [6]
192Pb 10 14.0 3.6 11 0.6 [10]
195Tl(1) 14.5 23.8 6.7 12 0.6 [10]
195Tl(2) 15.5 31.5 8.8 10 0.6 [10]
194Tl(1) 12 43.8 12.9 13 0.5 [10]
194Tl(4) 9 43.2 12.8 14 0.2 [10]
194Tl(2) 10 31.8 8.9 14 0.6 [10]
194Tl(5) 9 32.7 9.3 14 0.9 [10]
194Tl(3) 8 47.6 14.3 13 0.8 [10]
194Tl(6) 9 53.5 16.1 12 0.8 [10]
193Tl(1) 9.5 34.0 9.6 13 0.3 [10]
193Tl(2) 10.5 27.6 7.8 13 0.5 [10]
192Tl(1)* 16 71.3 20.4 8 0.6 [11]
192Tl(2) 17 34.3 9.7 8 0.7 [11]
192Tl(5) 15 13.3 3.2 8 0.5 [11]
192Tl(6) 17 24.3 6.3 7 1.3 [11]
191Tl(1) 13.5 27.4 7.5 10 0.6 [12]
191Tl(2) 15.5 22.6 6.1 8 0.4 [12]
195Hg(a) 12.5 21.6 6.0 19 1.4 [14]
195Hg(b) 11.5 21.1 5.8 19 1.3 [14]
195Hg(c) 10.5 18.1 4.5 17 4.4 [14]
195Hg(d) 15.5 42.1 12.2 17 1.2 [14]
194Hg(1) 10 19.1 5.1 20 2.2 [15]
194Hg(2) 8 25.3 7.0 20 0.5 [15]
194Hg(3) 11 26.9 7.5 19 0.7 [15]
193Hg(2) 10.5 25.2 6.9 19 0.6 [16]
193Hg(3) 9.5 24.8 6.9 19 0.6 [16]
193Hg(5) 9.5 43.7 11.8 17 0.6 [16]
192Hg 8 17.9 4.7 20 0.9 [10]
191Hg(1) 14.5 24.0 6.4 12 0.6 [10]
191Hg(2) 12.5 30.9 8.6 12 0.3 [10]
191Hg(3) 13.5 26.4 7.4 12 0.3 [10]
190Hg(1) 12 13.2 3.2 15 3.3 [13]
190Hg(3) 12 33.2 9.4 11 0.5 [13]
189Hg 14.5 19.5 4.9 10 0.7 [17]

Ic
2
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Table 7.  (Contd.)

Nucleus Imin –Ej0(0), MeV  × 10–2 Number of transitions χ, keV References

191Au(1) 6.5 19.8 5.2 20 3.5 [18]

191Au(2) 17.5 22.6 6.1 11 0.7 [18]
191Au(3) 16.5 20.4 5.5 13 0.5 [18]

153Dy(HD)* 73.5 204.1 69.6 11 1.5 [40]

153Dy(4)* 28.5 1592.0 394.5 16 2.7 [22]
153Dy(5)* 29.5 3023.3 751.1 16 2.0 [22]

152Dy(4) 24 319.2 71.5 15 1.0 [23]
152Dy(5) 23 358.8 80.5 14 0.8 [23]

152Dy(6)* 32 1464.3 381.3 16 1.0 [23]

151Dy(1) 18.5 429.1 96.4 21 0.7 [24]
151Dy(5)* 34.5 306.6 67.3 9 1.4 [24]

151Tb(4)* 30.5 3694.0 909.8 16 0.8 [26]

150Tb(2) 23 540.3 117.8 16 0.9 [27]

145Tb* 18.5 427.9 84.5 16 1.5 [27]

150Gd(5)* 35 4018.4 960.0 17 5.0 [29]

148Gd(2)* 30 1634.1 386.3 14 2.2 [30]

147Gd(HD)(A)* 74.5 1016.7 407.5 9 1.5 [41]

147Gd(HD)(B)* 67.5 1316.1 526.9 12 1.8 [41]

147Gd(1) 22.5 129.7 26.4 17 5.0 [30]

146Gd(3) 27 34.6 5.6 9 2.9 [31]

142Eu* 21 451.4 85.5 15 1.1 [34]

133Pm(5) 5.5 25.0 3.0 8 1.1 [42]
133Pm(6) 6.5 25.0 3.0 7 1.5 [42]

133Pm(7) 3.5 1.6 0.1 6 2.9 [42]

81Sr(2) 19.5 162.8 11.1 6 3.2 [49]

81Sr(3) 19.5 179.6 11.6 7 4.6 [49]

81Sr(4) 15.5 17.2 0.7 5 2.2 [49]

Note: Asterisks label bands that can be described in two ways.

Ic
2

that, in those cases, they observed the Landau–Zener
effect—that is, band crossing. Although the resulting
value of χ is less than 5 keV for these bands, they can-
not be described within the present analysis, which
takes no account of such effects.

From Tables 6 and 7, it can be seen that, in the mass
region around A ~ 190, only 3 of 62 bands subjected to
analysis elude description. At the same time, only
9 bands of 35 in the mass region around A ~ 130 can be
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
described. In the mass region around A ~ 150, only 22
bands of 64 could not be described. In all probability, this
is because the ground states of the nuclei in the mass
region around A ~ 190 are not deformed; therefore, their
rotational spectrum is completely determined by the
phase transition to the superfluid state, whereby the
nucleus appears to be in a superdeformed state. At the
same time, the ground states of the nuclei in the mass
regions around A ~ 150 and A ~ 130 are deformed.
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4. CONCLUSIONS

In the present study, the rotational states of superde-
formed nuclei have been investigated on the basis of a
model that admits triplet Cooper pairing in superfluid
nuclear matter. One hundred and sixty-one rotational
bands have been analyzed for nuclei from the mass
regions around A ~ 190; 150; 130; and 80, 70.

Within our approach, we have successfully
described 110 rotational bands. All these bands have
the following special features:

(i) The parameters appearing in (10) and (15) are
close within each mass region (this is illustrated by the
data in Tables 6 and 7). If the finiteness of nuclear sizes
has been taken into account correctly, these parameters
must feature no dependence on the nuclear species, but
they must appear to be characteristics of nuclear matter.

(ii) For nonunitary phases, the band must be termi-
nated at spin values higher than the corresponding val-
ues for unitary phases. Tables 6 and 7 illustrate the cor-
relation between the minimal spin of a band and the
phase with which this band is associated.

(iii) Within the model used, there must occur pairs
of bands showing weak signature splitting, correspond-
ing to a single phase, and having spins that differ by
unity. From the data in Tables 6 and 7, it follows that
there are 28 such pairs.

Thus, the model of superfluid nuclear matter featur-
ing triplet Cooper pairing is by and large consistent
with available experimental data on the rotational states
of superdeformed nuclei.

J (2)(ω), MeV–1

130

120

100

90
0 0.2 0.4

ω, MeV

140

110

Fig. 6. Dynamical moment of inertia as a function of the fre-
quency of rotation for the rotational bands in the (closed cir-
cles) 193Hg(1) and (open triangles) 193Hg(4) nuclei.
Despite obvious successes achieved in describing
superdeformed nuclei, the theory presented here is
unable to describe 51 rotational bands. For these bands,
the behavior of the dynamical moment of inertia differs
substantially from what is predicted by the theory. The
disregard of boundary effects may be one of the reasons
behind the aforementioned discrepancy.
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Abstract—The effect of the density dependence of effective nucleon–nucleon forces on the folded potential of
the interactions of the light exotic nuclei 6He, 11Li, 11Be, and 8B with the stable nucleus 12C is studied, and the
corresponding experimental data on the total reaction cross sections and on elastic scattering are analyzed. A
semimicroscopic double-folding model featuring various density-dependent forces based on the M3Y interac-
tion is used together with the nucleon densities as calculated within the density-functional method by using a
unified set of parameters for all the above nuclei. It is shown that the angular distributions recently measured
for elastic 6He scattering on 12C at an energy of 41.6 MeV per projectile nucleon and for elastic 11Be scattering
on 12C at an energy of 49.3 MeV per projectile nucleon can be described satisfactorily if the real part of the
optical folded potential is supplemented with a surface term mimicking the contribution of the dynamical polar-
ization potential. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The properties of exotic light nuclei lying far off the
beta-stability line have been vigorously studied in
recent years (for an overview, see [1–3] and references
therein). Quasielastic scattering of exotic light nuclei
on stable nuclei furnish information both about the
potential of interaction between colliding nuclei and
about the distribution of matter in them. The method
based on the double-folding model underlies the most
popular procedure for analyzing experimental angular
distributions at low energies. Various versions of this
model are surveyed in [3]. One of these versions was
developed in [4] and used in [5] to analyze the
quasielastic scattering of 11Li nuclei on 28Si nuclei at an
energy of 29 MeV per projectile nucleon, of 11Li nuclei
on 12C nuclei at an energy of 60 MeV per projectile
nucleon, and of 7Be and 8B nuclei on 12C nuclei at an
energy of 40 MeV per projectile nucleon, as well as to
study the energy dependence of the total reaction cross
sections for the 11Li + 12C, 8B + 12C, and 8B + 28Si
nuclear systems [6]. A reasonable description of exper-
imental data was obtained in all of these cases.

In [4–6], the M3Y interaction [7], which does not
depend on the density distribution in nuclear matter,
was used to simulate effective forces between the
nucleons of the colliding nuclei. An alternative version
of the folding model employs effective nucleon–
nucleon forces dependent on the density of nuclei.
Originally, the DDM3Y effective interaction was intro-

† Deceased.
1) Joint Institute for Nuclear Research, Dubna, Moscow oblast,

141980 Russia.
2) Russian Research Centre Kurchatov Institute, pl. Kurchatova 1,

Moscow, 123182 Russia.
1063-7788/00/6309- $20.00 © 21546
duced to analyze elastic alpha-particle scattering [8];
later on, it was applied to the case of heavy-ion scatter-
ing [9]. The effects of one-nucleon exchange were
taken into account implicitly in those studies. Khoa and
von Oertzen [10] employed density-dependent effec-
tive nucleon–nucleon forces and considered one-
nucleon-exchange effects explicitly within the density-
matrix formalism. These authors emphasized the
important role of the density dependence of effective
forces in describing the saturation of nuclear matter and
indicated that angular distributions in heavy-ion scatter-
ing (for example, in the 16O + 16O system) are sensitive
to the choice of the density-dependent factors. The set of
density-dependent factors was later extended in [11].

In the present study, the approach developed in [4]
is used to explore the effect of the density-dependent
factor in effective nucleon–nucleon forces on the inter-
actions between exotic light nuclei and stable nuclei
and to analyze recent experimental data on the elastic
scattering of such nuclei.

The ensuing exposition is organized as follows. In
Section 2, we discuss various options of effective forces
and schemes for computing double-folded potentials.
In Section 3, we consider procedures for constructing
nucleon densities for the 6He, 11Li, 11Be, and 8B nuclei
and their integrated features. The potentials simulating
the interaction of these nuclei with the target nucleus
12C are deduced in Section 4. There, we also analyze
the effect of the density-dependent factor on the prop-
erties of the double-folded potentials over a wide
energy region. In Section 5, we present the results of
the calculations performed within the proposed
approach for the angular distributions in the elastic scat-
tering of the nuclei being considered and for the corre-
sponding total reaction cross sections. In Section 6, we
000 MAIK “Nauka/Interperiodica”
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analyze experimental data on the elastic scattering of
6He nuclei on 12C nuclei at an energy of 41.6 MeV per
projectile nucleon [12] and of 11Be nuclei on 12C nuclei
at an energy of 49.3 MeV per projectile nucleon [13]
and discuss the role of the dynamical polarization
potential. In the Conclusions, we summarize the basic
results of our study.

2. EFFECTIVE NUCLEON–NUCLEON FORCES 
AND SCHEME FOR CONSTRUCTING

FOLDED POTENTIALS
2.1. Effective Nucleon–Nucleon Interaction

Our analysis will be performed within the popular
approximation factorizing the coordinate and the den-
sity dependence of the effective forces [8]:

(1)

Here, s is the modulus of the radius vector between two
nucleons from colliding nuclei, while the indices D and
E label, respectively, the direct and the exchange com-
ponent of effective forces. For the component of the
effective forces that is independent of the matter-distri-
bution density in nuclei, we take the total M3Y interac-
tion [7], which is based on the G-matrix elements of the
Reid and Elliott interactions. For the isoscalar compo-
nents of these interactions, we have

(2)

(3)

For the isovector components, we also use the
isovector part of the M3Y interaction:

(4)

(5)

In the present study, we consider the target nucleus
12C, for which N = Z, so that the role of the isovector
components is insignificant for practical purposes.

The factor of the density dependence is chosen in
the standard form

(6)

(7)

Here, FD(ρ) and FB(ρ) correspond to the DDM3Y inter-
action [8] and the BDM3Y interaction [10], respec-
tively. In the ensuing analysis, we employ the M3Y

V
D E( )

s ρ,( ) v
D E( )

s( )F ρ( ).=

v 0
D

s( ) 7999
4s–( )exp

4s
----------------------- 2134

2.5s–( )exp
2.5s

---------------------------,–=

v 0
E

s( ) 4631
4s–( )exp

4s
----------------------- 1787

2.5s–( )exp
2.5s

---------------------------–=

– 7.847
0.7072s–( )exp

0.7072s
------------------------------------.

v 1
D

s( ) 4886
4s–( )exp

4s
----------------------- 1176

2.5s–( )exp
2.5s

---------------------------,–=

v 1
E

s( ) 1518
4s–( )exp

4s
----------------------- 828.4

2.5s–( )exp
2.5s

---------------------------–=

– 2.616
0.7072s–( )exp

0.7072s
------------------------------------.

FD ρ( ) C 1 d γρ–( )exp+[ ] ,=

FB ρ( ) C 1 αρβ
+[ ] .=
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
interaction without density dependence (that is, the C =
1, α = 0 version), one version of the DDM3Y interac-
tion, and two versions of the BDM3Y interaction with
the parameters specified in [10]. These parameters are
quoted in Table 1.

It should be recalled that, in addition to the afore-
mentioned factor of density dependence, yet another
factor, that of energy dependence, is often introduced in
(1) [8–11]. Since this energy dependence is much
weaker than the energy dependence due to the explicit
inclusion of one-nucleon-exchange effects, we disre-
gard here the additional factor mentioned immediately
above.

2.2. Double-Folded Potentials

Let us consider the interaction of two composite
particles. In the first order in effective nucleon–nucleon
forces, the interaction potential can be represented in
the form

(8)

where UD(R) is the direct potential in the double-fold-
ing model [14]; it can be written as

(9)

where ρ(i)(ri) are the densities of colliding nuclei (i = 1,
2). The leading contribution to the exchange potential
UE(R) comes from one-nucleon-exchange effects,
which can be described in the density-matrix formalism
[15] as

(10)

This is the localized version of the exchange term.
Here, ρ(i)(r, r') stands for the density matrices describ-
ing colliding nuclei; s = r2 – r1 + R; and k(R) is the
local momentum, whose squared modulus is given by

(11)

where E is the c.m. collision energy; VC(R) is the Cou-
lomb potential; and η is the reduced mass number,

(12)

U R( ) U
D R( ) U

E R( ),+=

U
D R( ) ρ 1( ) r1( )V

D s ρ,( )ρ 2( ) r2( ) r1 r2,dd∫∫=

U
E R( ) ρ 1( ) r1 r1 s+,( )V

E s( )ρ 2( ) r2 r2 s–,( )∫∫=

× ik R( )s/η[ ]dr1dr2.exp

k
2 R( ) 2mη /"

2( ) E U R( )– VC R( )–[ ] ,=

η A1A2/ A1 A2+( ).=

Table 1.  Parameters of effective nucleon–nucleon forces

Version 
of forces C d γ, fm3 α, fm3 β, fm3

M3Y 1 0 – 0 –

DDM3Y1 0.2845 3.6391 2.9605 – –

BDM3Y1 1.2253 – – 1.5124 1

BDM3Y2 1.0678 – – 5.1069 2
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From the above relations, we can see that the calcula-
tion of the double-folded potential involves self-consis-
tently solving a set of nonlinear equations, because the
momentum k(R) depends on the sought potential. This
problem is solved by means of an iterative procedure.

Expressions (9) and (10) coincide in form with the
analogous formulas from [4], but a significant differ-
ence between these is that the former involve the den-
sity-dependent factor F(ρ) in the effective forces. In the
frozen-nucleon approximation, the expression for this
factor in the region where the nuclei overlap can be rep-
resented as

(13)

Thus, the density values are taken at the midpoint
between the nucleons of colliding nuclei. The presence
of the density-dependent factor F(ρ) makes the relevant
calculations cumbersome. By means of the same
method as in [4], we can reduce, however, the integrals
in (9) and (10) to radial integrals. By applying an itera-
tive procedure to the exchange term UE(R), it is possi-
ble, in principle, to calculate the potentials exactly
within the adopted approximation if we know the den-
sity matrices for colliding nuclei. A further consider-
able simplification of the calculations is achieved by
employing the mixed coordinate–momentum represen-
tation and by going over from the density matrices to
the nucleon densities with allowance for local correla-
tions. In practice, this transition can be implemented to
a high precision with the aid of the simple formula [16]

(14)

where j1(x) = 3(sinx – xcosx)/x3 is the exchange corre-
lation function. For s  0—that is, in the zero-range
approximation for the interaction—we have j1(x) 
1. The effective momentum keff takes into account
boundary effects; in the case of semi-infinite nuclear
matter, it coincides with the local Fermi momentum.
The expression for keff can be found in [16].

3. NUCLEON DENSITIES
Thus, we have seen that, apart from effective

nucleon–nucleon forces, the nucleon densities also
appear to be an important ingredient of the scheme for
computing the potentials being discussed. A distinctive
feature of the present study is that the single-particle
neutron and proton densities are calculated for all col-
liding nuclei—both projectiles and targets—rather than
parametrized (as is often done in considering nuclear
reactions on the basis of the double-folding model).
This calculation is performed within the density-func-
tional method [17–19] with a single set of parameters.

The density-functional method is based on the
Hohenberg–Kohn theorem [20] and on the Kohn–Sham
quasiparticle formalism admitting the introduction of a
quasiparticle Hamiltonian featuring a free kinetic-

F ρ( ) F ρ1 r1
s
2
---+ 

  ρ2 r1
s
2
---– 

 + .=

ρ r r s+,( ) ρ r s/2+( ) j1 keff r s/2+( )s[ ] ,=
energy operator where the effective nucleon mass m*
coincides with the vacuum mass m (m*/m = 1). The
nucleon density ρ is represented as a sum over single-
(quasi)particle orbitals—that is, as a shell sum mini-
mizing the energy of the system. The quasiparticle
spectrum and the wave functions are calculated in a
self-consistent mean field that is determined by the first
functional derivative of the total energy with respect to
the relevant density, while the effective interaction is
determined by the second functional derivative. This
approach can be considered as one of the versions of
the self-consistent theory of finite Fermi systems [22–
24], a version that has much in common with the Har-
tree–Fock–Bogolyubov method employing density-
dependent effective forces [25]. A basic problem here
lies in choosing that parametrization of the density
functional which is appropriate for practical applica-
tions. One of the versions was proposed in [17], where
the ρ dependence taking effectively into account many-
body forces and complicated correlations was intro-
duced via linear-fractional functions, while surface
effects were included via finite-range forces also admit-
ting the dependence on the density. The energy density
is represented in the form

(15)

where the first term is the kinetic-energy density given by

(16)

Here, nλ is the number of particles at the level λ (if pair-
ing is taken into account within the Bardeen–Cooper–

Schrieffer scheme, we have nλ = (2j + 1) , where 
is the quasiparticle population factor), ϕλ is the corre-
sponding single-particle wave function, and λ = nljmτ
is a standard set of the single-particle quantum num-
bers. For spherical nuclei, we have

(17)

The expression for the interaction-energy density
involves a few terms,

(18)

where

(19)

Here, x± = (ρn ± ρp)/2ρ0, ρn, ρp, and 2ρ0 being, respec-
tively, the neutron density, the proton density, and the
equilibrium density of symmetric nuclear matter (N = Z);
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 is the Fermi energy in symmetric nuclear matter;
and the density-dependent functions are given by

(20)

(21)

where

(22)

The second term in (22) is the Yukawa function normal-

ized by the condition (|r |) = 1. In the momentum

representation, we have

(23)

so that the last two terms in (19) correspond to the sur-
face isoscalar and isovector interaction energy; in the
case of infinite nuclear matter, they vanish. The Cou-
lomb energy density εC is chosen in a conventional
form with allowance for exchange in the Slater approx-
imation:

(24)

The term εsl in (18) corresponds to the contribution of
LS spin–orbit interaction. For spherical nuclei, it can be
expressed in terms of the spin–orbit densities as

(25)

where 〈s · l〉 λ = j(j + 1) – l(l + 1) – 3/4. With allowance
for the spin-dependent first Fermi-liquid velocity har-
monic proportional to , the LS interaction was cho-
sen in the form

(26)

where C0 = 2 /3ρ0 = π2"3/ m is the inverse density
of states at the Fermi surface in equilibrium nuclear
matter;  = κ + κ't1 · t2; and  = g1 +  · t2, κ, κ',

g1, and  being dimensionless strength constants. The
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+ ĝ1δ r1 r2–( ) s1 s2⋅( ) p1 p2⋅( ) } ,

eF
0

pF
0
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contribution of these forces to the energy density takes
the form

(27)

where κnn = κpp = κ + κ', κpn = κnp = κ – κ',  =  =

g1 + , and  =  = g1 – .

The last term in (18) corresponds to the pairing-
interaction-energy density

(28)

where ν is the anomalous (pairing) density and ^ξ is
the effective interaction in the particle–particle chan-
nel. In the present study, this interaction was taken in
the simplest form ^ξ = C0 f ξδ(r – r') with the same
constant f ξ for the neutrons and for the protons and was
included in the calculation in a self-consistent way in
terms of the basis of all bound single-particle states.

Below, we present the total set of parameters of the
functional that is employed in the present study (see
also [19]):

(29)

Some of the parameters are unambiguously related to
basic features of nuclear matter. In particular, we have

(30)

where

(31)

Here, we have used the following notation: µ0 is the
chemical potential (binding energy per nucleon in equi-
librium), K 0 is the compressibility modulus of nuclear

matter,  is the Fermi energy, and β0 is the parameter
of the symmetry energy. The above parameter values

εsl C0r0
2 1

r
---ρls

i κ ik∂ρk

∂r
-------- 1

4r
2

-------ρls
i
g1

ikρls
k

+ 
  ,

i k, n p,=

∑=

g1
nn

g1
pp

g1' g1
pn

g1
np

g1'

εpair
1
2
---ν†^

ξν ,=

a+
v

6.443, h1+
v

– 0.162, h2+
v

0.730,= = =

a–
v

5.473, h1–
v

h1+
v

, h2–
v

2.5,= = =

a+
s

11.0, h+
s

0.31,= =

a–
s

5.0, h–
s

0,= =

κ pp κ pn
0.185, g1

pp
g1

pn
– 0.10,–= = = =

f
ξ

0.4,–=

R 0.35 fm, r0 1.1462 fm.= =

a+
v α 5α 6+( )/5η+=

h1+
v

1 α / a+
vη( )–=

h2+
v

1/η 1–=

a–
v

3β0
/eF

0
1–( )/ f –

v
x+ 1=( ),=

α 3
µ0

eF
0

----- 9
5
---, η–

5K
0

6eF
0

+

18 eF
0

5µ0
–( )

-------------------------------.= =

eF
0



1550 BOLOTOV et al.
correspond to the following characteristics of equilib-
rium nuclear matter: µ0 = –16.12 MeV, K 0 = 200 MeV,

 = ( )2/2m = 36.62 MeV, and β0 = 28.2 MeV [ /" =

(9π/8)1/3/r0 = 1.329 fm–1, 2ρ0 = 3/4π  = 0.1585 fm–3,
and C0 = 308.0 MeV fm3].

The analysis reported here was performed for the
6He + 12C, 11Li + 12C, 11Be + 12C, and 8B + 12C systems.
All projectiles that we chose belong to the class of so-
called light exotic nuclei. They have a distinct nucleon
halo—a neutron one in 6He, 11Li, and 11Be and a proton
one in 8B (strictly speaking, it is preferable to use, in the

eF
0

pF
0

pF
0

r0
3

ρ, fm–3

10–2

10–4

10–6

100

6He 11Li

11Be 8B

10–2

10–4

10–6

100

0 4 8
r, fm

0 4 8
r, fm

Fig. 1. Distributions of the (dashed curves) neutron, (dotted
curves) proton, and (solid curves) matter densities in exotic
light nuclei.

Table 2.  Root-mean-square radii (in fm) of the neutron (n),
proton (p), and matter (m) distributions (also quoted are the

values of the difference ∆rnp = 〈 〉1/2 – 〈 〉1/2)

Nucleus 〈 〉1/2 〈 〉1/2 〈 〉1/2 ∆rnp

6He 2.806
(3.213)

2.014
(2.026)

2.569
(2.872)

0.792
(1.187)

11Li 3.255 2.235 3.012 1.020
11Be 2.718 2.306 2.576 0.412
8B 2.190 2.680 2.508 –0.490

Note: For 6He, the first and the second row display the results of the
calculations performed, respectively, with the parameters of
the functional from [18] and the parameter values (29) of our
study.

rn
2 rp

2

rn
2 rp

2 rm
2

last case, the concept of an extended proton tail rather
than of a proton halo). For all chosen nuclear combina-
tions, there are experimental data on angular distribu-
tions in quasielastic scattering. As was mentioned
above, the quasielastic scattering of 11Li and 8B on 12C
was previously analyzed in [5] within the approach out-
lined above. As to experimental data on the angular dis-
tributions in the quasielastic scattering of 6He and 11Be
on 12C, they are analyzed in the present study.

The pointlike neutron and proton densities com-
puted according to the above scheme are depicted in
Fig. 1, which also shows the matter-density distribu-
tion. The calculated root-mean-square radii of the neu-

tron, proton, and matter distributions ( , ,

and , respectively) in the 6He, 11Li, 11Be, and 8B
nuclei are quoted in Table 2. Also given are the differ-

ences ∆rnp =  – , which characterize the
spatial dimensions of the neutron—or proton for ∆rnp <
0—halo (or the dimensions of the corresponding
nucleon skin). As an illustration of the scatter of our
results obtained with various parametrizations of the
energy functional, quoted in Table 2 for the example of
the 6He nucleus are the integrated characteristics of the
density distributions in two versions: the values pre-
sented parenthetically were calculated with the param-
eter set (29), while the values in the first row were
found on the basis of the functional from [18]. The
effect of this scatter on the angular distributions for
elastic scattering is analyzed in Section 6. From data
presented in Fig. 1 and in Table 2, it follows that, by and
large, the results of the calculations are compatible with
the concept that these are exotic nuclei featuring a dis-
tinct nucleon halo (nucleon skin).

4. FOLDED POTENTIALS AND THEIR 
INTEGRATED CHARACTERISTICS

By relying on the neutron and proton densities
obtained within the density-functional method and pre-
sented in preceding section and on the four versions of
effective nucleon–nucleon forces (their parameters are
presented in Table 1) and by using the procedure
described in Section 2, we have calculated the poten-
tials of 6He, 11Li, 11Be, and 8B interaction with the target
nucleus 12C at energies between 20 and 60 MeV per
projectile nucleon. The choice of the energy interval
was motivated by the fact that, by now, it is the region
where the angular distributions for the quasielastic
scattering of the above exotic nuclei by 12C target nuclei
have been measured at several energy values (see [12,
13, 26, 27]). The radial dependence of the potentials
that we obtained is illustrated in Figs. 2–5. Table 3
quotes the values of the volume integrals Jv , while
Table 4 lists the values of the root-mean-square radii

 of these potentials.
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Fig. 2. Folded potentials for the 6He + 12C nuclear system at various energies. The results of the calculations with the M3Y,
DDM3Y1, BDM3Y1, and BDM3Y2 interactions are shown by the solid curves, short dashes, dotted curves, and long dashes, respec-
tively.
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Let us now discuss the results that we obtained.
From Fig. 2–5, we can easily see that, for the nuclear
species being considered, the distinctions between the
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
potentials due to the choice of the density dependence
for effective forces are of importance at small values of
the radius R—that is, in the region that can have but a
Table 3.  Volume integrals of the folded potentials (in 103 MeV fm3 units)

Version 
of forces

Energy, 
MeV/nucleon

Nuclear system

Version of 
forces

Energy, 
MeV/nucleon

Nuclear system

6 H
e 

+
 12

C

11
L

i +
 12

C

11
B

e 
+

 12
C

8 B
 +

 12
C

6 H
e 

+
 12

C

11
L

i +
 12

C

11
B

e 
+

 12
C

8 B
 +

 12
C

M3Y 20 –29.25 –52.68 –50.38 –37.85 BDM3Y1 20 –30.57 –54.91 –52.29 –39.43
30 –27.23 –49.07 –47.11 –35.32 30 –28.35 –50.93 –48.64 –36.63
40 –25.41 –45.82 –44.16 –33.04 40 –26.35 –47.34 –45.33 –34.10
60 –22.30 –40.27 –39.06 –29.12 60 –22.93 –41.21 –39.63 –29.74

DDM3Y1 20 –30.39 –54.42 –51.50 –39.00 BDM3Y2 20 –29.57 –53.10 –50.47 –38.11
30 –28.20 –50.50 –47.94 –36.25 30 –27.42 –49.23 –46.92 –35.38
40 –26.22 –46.97 –44.72 –33.77 40 –25.48 –45.75 –43.71 –32.93
60 –22.85 –40.96 –39.18 –29.51 60 –22.16 –39.80 –38.18 –28.70
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Fig. 3. As in Fig. 2, but for the 11Li + 12C nuclear system.

–110

–110

–210

–210
slight effect on the scattering cross section. In the sur-
face region, which affects the scattering cross section at
intermediate values of the angles, the distinctions
between the potentials, albeit still present, are less pro-
nounced. These regularities are independent of the pro-
jectile-nucleus species. The individual features of the
projectile are manifested in that the potential depth at a
fixed energy value increases with increasing mass num-
ber—that is, in going over from 6He to 11Li and 11Be.
The energy dependence of the potentials, which is asso-
Table 4.  Root-mean-square radii of the potentials (in fm)

Version 
of forces

Energy, 
MeV/nucleon

Nuclear system

Version of 
forces

Energy, 
MeV/nucleon

Nuclear system

6 H
e 

+
 12

C

11
L

i +
 12

C

11
B

e 
+

 12
C

8 B
 +

 12
C

6 H
e 

+
 12

C

11
L

i +
 12

C

11
B

e 
+

 12
C

8 B
 +

 12
C

M3Y 20 4.04 4.35 4.07 4.01 BDM3Y1 20 4.07 4.39 4.10 4.04
30 4.04 4.35 4.08 4.01 30 4.08 4.39 4.11 4.05
40 4.05 4.36 4.09 4.02 40 4.09 4.39 4.12 4.06
60 4.07 4.37 4.11 4.05 60 4.11 4.41 4.15 4.09

DDM3Y1 20 4.11 4.42 4.13 4.07 BDM3Y2 20 4.06 4.37 4.10 4.03
30 4.11 4.42 4.14 4.08 30 4.06 4.38 4.11 4.04
40 4.12 4.43 4.15 4.09 40 4.07 4.38 4.12 4.05
60 4.14 4.45 4.17 4.11 60 4.10 4.40 4.14 4.08
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Fig. 4. As in Fig. 2, but for the 11Be + 12C nuclear system.

–120
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ciated primarily with one-nucleon-exchange effects, is
sizable—in particular, the potential depth decreases by
a factor of 1.5 as the energy is increased within the
energy interval being considered.

A similar pattern is observed for the volume inte-
grals Jv of the computed potentials (see Table 3). For all
projectile-nucleus species, these integrals change
within 4 to 5% in response to variations in the factor
F(ρ), the effect of F(ρ) on Jv tending to become less
pronounced with increasing mass number; at the same
time, they decrease by 22–24% with increasing energy.
For the root-mean-square radius of the potentials (see
Table 4), the situation is reversed: changes in the abso-

lute values are still smaller here, but  is less
affected by variations in energy than by variations in
the factor of the density dependence of effective forces.

5. ANGULAR DISTRIBUTIONS AND TOTAL 
REACTION CROSS SECTIONS

We will make use of a semimicroscopic optical
model and the coupled-channel method (in order to

rv
2〈 〉

1/2
ATOMIC NUCLEI      Vol. 63      No. 9      2000
take into account the coupling of the elastic-scattering
channel to inelastic channels) to calculate the angular
distributions for elastic scattering and the total reaction
cross sections. In accordance with [8], the total optical
potential has the form

(32)

where U(R) is the double-folded potential (8) con-
structed without recourse to free parameters, while Nw
and αw are, respectively, the volume- and the surface-
absorption parameter. These two free parameters must
be determined by fitting the theoretical angular distri-
butions and the total reaction cross sections to relevant
experimental data. We note that, in the conventional
semimicroscopic model employing the Woods–Saxon
form factor, the absorption potential involves six free
parameters. The choice of absorption potential in the
form (32), with the radial dependence as determined by
a combination of a real folded potential and its spatial
gradient, can be considered as the simplest model of the
total optical potential. It is rather difficult to perform a
rigorous microscopic calculation of the imaginary part

Ut R( ) U R( ) i NwU R( ) αwR
dU R( )

dR
----------------– ,+=
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Fig. 5. As in Fig. 2, but for the 8B + 12C nuclear system.
of the optical potential, since this requires knowing
microscopic transition densities and fine details of
effective forces for a specific pair of colliding nuclei at
a given energy value. No reliable method for such cal-
culations has been developed so far. We only note that,
in principle, the radial dependence of the imaginary
part of the optical potential must differ, in accordance
with the multichannel approach [28], from the radial
dependence of the real part. This circumstance is taken
into account in (32) with the aid of the parameter αw. In
this section, we present the results of methodological
calculations with fixed values of the parameters Nw and
αw. For specific systems, their values correspond to an
optimal description of experimental angular distribu-
tions (see the next section; see also the relevant analysis
in [5]).

The results of the calculations are presented in
Figs. 6–9 and in Table 5. It can easily be seen that, for
all the systems being considered, the distinctions
between the angular distributions for elastic scattering
due to the density-dependent factor in effective forces
manifest themselves at scattering angles θc.m. in excess
of 15°–20°. These distinctions become more pro-
nounced with increasing scattering angle, while the
minimal scattering angle at which the density-depen-
dent factor is operative decreases with increasing
energy. At energies of 40 and 60 MeV per projectile
nucleon and θc.m. values in excess of 40°, the effect of
the choice of density dependence on the angular distri-
butions is qualitatively similar to that which was
observed in [10, 11] for the 16O + 16O nuclear system.
Unfortunately, the scattering cross sections for exotic
light nuclei decrease fast with increasing scattering
angle; at present, experimental data cover only a small
angular interval θc.m. < 20°.

We note that, in a number of cases, the scattering
pattern is of a rainbowlike character. For all systems
being considered, with the exception of 6He + 12C, rain-
bowlike effects manifest themselves at energies of
40 MeV per projectile nucleon and higher. They are the
most spectacular for the 11Li + 12C nuclear system at an
energy of 60 MeV per projectile nucleon. The inte-
grated features of the reactions, such as σr, as well as
the integrated features of the potentials, change insig-
nificantly in response to variations in the density-
dependent factor. As can be seen from Table 5, such
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
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Fig. 6. Ratio of the angular distributions for the elastic scattering of  6He nuclei on 12C nuclei to the corresponding Rutherford cross
section σR (Nw = 0.5, αw = 0.03). The notation for the curves is identical to that in Fig. 2.

σ/σR

10–1

10–3
changes in the total reaction cross section σr are within
3 to 4%; at the same time, an increase in the energy
leads to a 17–21% decrease in σr. These changes are
more pronounced for 11Li than for other projectile spe-
cies. The cross sections σr exhibit the greatest changes
in the energy range between 20 and 40 MeV per projec-
tile nucleon.

6. ANALYSIS OF EXPERIMENTAL DATA
ON ELASTIC SCATTERING

In this section, the above semimicroscopic approach
is used to analyze the angular distribution for the elastic
scattering of 6He nuclei on 12C nuclei at an energy of
41.6 MeV per projectile nucleon and of 11Be nuclei on
12C nuclei at an energy of 49.3 MeV per projectile
nucleon. In either case, experimental data were
obtained with a high energy resolution at GANIL,
where, in contrast to the previous experiments reported
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
in [26, 27, 29, 30], the contribution of the inelastic exci-
tation of the target nucleus 12C was isolated in the scat-
tering cross sections explicitly. In the case of the scat-
tering of 11Be projectiles, however, there is a contribu-
tion to the scattering cross section from the excitation
of the first (1/2)– level in the 11Be nucleus. Experimen-
tal data on 6He scattering were obtained by Al-Khalili
et al. [12], who simultaneously performed an analysis
of these data within the eikonal four-body model. The
first analysis of the experimental angular distributions
for the elastic scattering of 11Be nuclei on 12C nuclei at
an energy of 49.3 MeV per projectile nucleon was per-
formed in [13]. These data were presented in the private
communication of P. Roussel-Chomaz (GANIL, Caen,
France).

Available experimental data cover a narrow interval
of scattering angles (θc.m. < 13°). For this reason, only
one version of effective nucleon–nucleon interaction—
namely, the M3Y version from Table 1—is used in the
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Fig. 7. Ratio of the angular distributions for the elastic scattering of 11Li nuclei on 12C nuclei to the corresponding Rutherford cross
section σR (Nw = 0.3, αw = 0.05). The notation for the curves is identical to that in Fig. 2.

10–2

σ/σR

10–4
present analysis. The scheme for constructing the cross
sections is described in Section 5. The results that we
obtained for this case are displayed in Fig. 10. We can
see that, if the imaginary part of the optical potential is
parametrized according to (32) in terms of only two
parameters (Nw and αw), oscillations in the computed
Table 5.  Total reaction cross sections (in mb)

Version 
of forces

Energy, 
MeV/nucleon

Nuclear system

Version of 
forces

Energy, 
MeV/nucleon

Nuclear system

6 H
e 

+
 12

C

11
L

i +
 12

C

11
B

e 
+

 12
C

8 B
 +

 12
C

6 H
e 

+
 12

C

11
L

i +
 12

C

11
B

e 
+

 12
C

8 B
 +

 12
C

M3Y 20 1355 1839 1506 1437 BDM3Y1 20 1391 1884 1542 1474

30 1269 1706 1428 1358 30 1303 1747 1461 1391

40 1200 1604 1364 1292 40 1231 1642 1394 1322

60 1089 1448 1260 1185 60 1116 1479 1285 1211

DDM3Y1 20 1404 1900 1553 1485 BDM3Y2 20 1367 1853 1520 1450

30 1315 1761 1471 1402 30 1280 1719 1441 1370

40 1242 1654 1403 1332 40 1210 1615 1374 1302

60 1125 1490 1292 1219 60 1096 1455 1267 1192
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Fig. 8. Ratio of the angular distributions for the elastic scattering of 11Be nuclei on 12C nuclei to the corresponding Rutherford cross
section σR (Nw = 0.4, αw = 0.03). The notation for the curves is identical to that in Fig. 2.

σ/σR

10–2

10–4
angular distributions are shifted in phase with respect to
experimental data. In the calculations, the parameters
Nw and αw were set to 0.5 and 0.03, respectively, for the
6He nucleus and to 0.4 and 0.03, respectively, for the
11Be nucleus. That the real part of the potential was sup-
plemented with an additional surface term of the form

αvR , which has the same structure as the sur-

face term in the absorption potential, resulted in a satis-
factory description of experimental data in both cases
(solid curves).

The features of the potentials used in our analysis—
specifically, their radial dependences, volume integrals,
and root-mean-square radii—are displayed in Fig. 11
and in Table 6. In either case, the extra terms are of the
same sign as the dominant potentials. For the 6He
nucleus, αv = 0.15, the volume integral increases by

45%, and  increases by 10%. For the 11Be
nucleus, the contribution of the additional surface term

dU R( )
dR

----------------

rv
2〈 〉 1/2
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is smaller: αv = 0.07, the volume integral increases by

32%, and  increases by 8%. Usually, the intro-
duction of the surface term in the real part of the optical
potential is associated with the so-called dynamical
polarization potential. This additional potential can be
computed by the method of Green’s functions within
the multichannel theory of reactions [28]. Since this
requires cumbersome computations, the dynamical
polarization potential is introduced phenomenologi-
cally in the overwhelming majority of studies, in which

rv
2〈 〉 1/2

Table 6.  Integrated characteristics of the potentials for the
6He + 12C and 11Be + 12C nuclear systems

System 6He + 12C 11Be + 12C

αv 0 0.15 0 0.07

Jv , 103 MeV fm3 –25.14 –37.20 –41.67 –54.99

〈 〉1/2, fm 4.05 4.45 4.10 4.43rv
2
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Fig. 9. Ratio of the angular distributions for the elastic scattering of  8B nuclei on 12C nuclei to the corresponding Rutherford cross
section σR (Nw = 0.5, αw = 0.03). The notation for the curves is identical to that in Fig. 2.
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Fig. 10. (a) Ratio of the angular distributions for the elastic scattering of 6He nuclei on 12C nuclei at an energy of 41.6 MeV per
projectile nucleon to the corresponding Rutherford cross section σR (Nw = 0.5, αw = 0.03): (dashed curve) results of the calculations
with the folded potential and (solid curve) results of the calculations employing an additional surface term in the real part of the
optical potential (αv = 0.15). (b) Results of similar calculations for the 11Be + 12C nuclear system at an energy of 49.3 MeV per
projectile nucleon (Nw = 0.5, αw = 0.03, αv = 0.07).
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case the sign of the dynamical polarization potential
with respect to the sign of the leading real potential
depends on its structure: it can either be opposite to it
or coincide with it (see, for example, [30]). Moreover,
the reversal of the sign of the dynamical polarization
potential may occur in response to changes in the inter-
nuclear spacing [31].

In [13, 32], experimental data on the elastic scatter-
ing of 11Be nuclei on 12C nuclei at an energy of
49.3 MeV per projectile nucleon were analyzed by two
methods: (i) within the Glauber approximation with
allowance for noneikonal effects and (ii) on the basis of
the adiabatic approach. The effect of the radius of the
matter distribution in the 11Be nucleus on the angular
distributions was studied in either case. It was estab-
lished that the optimal value of the matter radius is

 = 2.9 fm. We note that, in our approach, the
proton and neutron densities for all colliding nuclear
species were computed by the density-functional
method independently of the procedure for the analysis
of scattering. For the 11Be nucleus, we obtained the

value of  ≈ 2.6 fm (see Table 2), which is less
than that in [13, 32] by 11%. The use of the oscillator
representation for the density in [33] in analyzing the
cross sections for 11Be interactions at an energy of

800 MeV per projectile nucleon yielded  = 2.52 ±

0.03 fm. Thus, the greater value of  for the 11Be
nucleus in [13, 32] may be explained by implicitly tak-
ing into account the effects of core polarization. This is
consistent with the results of the analysis performed in
the present study. To some extent, these considerations
apply to the 6He nucleus as well. At the same time, it
should be noted that, within the folding model featuring
no dynamical polarization potential, it is impossible to
reproduce data on elastic scattering (measured thus far
only at small values of the scattering angle) even by
admitting wide density-distribution variations corre-

rm
2〈 〉

1/2

rm
2〈 〉

1/2

rm
2〈 〉

1/2

rm
2〈 〉

1/2

U, MeV

–50

–100

–150

0

0 4 8 r, fm

0

–50

–100

–150

–200
0 4 8

U, MeV

Fig. 11. Potentials of the interaction of the (a) 6He and (b)
11Be nuclei with the target nuclei 12C at energies of, respec-
tively, 41.6 and 49.3 MeV per projectile nucleon: (dashed
curves) folded potentials and (solid curves) same folded
potentials with the inclusion of a surface term (see the cap-
tion under Fig. 10).

(a) (b)
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sponding to strongly different values of . This
statement is illustrated in Fig. 12, which displays the
nucleon-density distributions in the 6He nucleus for
two versions of the interaction (see Table 2) and the
corresponding folded potentials and the angular distri-

rm
2〈 〉

1/2

ρ, fm–3

100

θc.m., deg

0.2

0.1

0

(a)

2 4 6
r, fm

(b)

r, fm

U, MeV

–50

–100

–150
0 4 8 12

0

σ/σR

0 10 20 30

(c)

Fig. 12. (a) Matter-density distributions in the 6He nucleus,
(b) folded potentials, and (c) angular distributions for the
elastic scattering of 6He nuclei on 12C nuclei at an energy of
41.6 MeV per projectile nucleon: (solid curves) results of
the calculations with the parameter values specified in (29)
(Nw = 0.5, αw = 0.03) and (dashed curves) results of the cal-
culations with the parameters of the functional from [18]
(Nw = 0.5, αw = 0.03).
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butions for the elastic scattering of 6He nuclei on 12C
nuclei at an energy of 41.6 MeV per projectile nucleon.
It can be seen that, at small scattering angles, the angu-
lar distributions computed for the two versions in ques-
tion differ insignificantly and that these versions show
poor agreement with experimental data; the distinc-
tions between the versions are pronounced beyond the
measured region of angles.

The introduction of an additional surface attraction
in the real part of the optical potential is not the only
possibility for improving the description of the angular
distributions in the case being considered: we can sim-
ulate successfully the role of the dynamical polariza-
tion potential by a combination of the volume and sur-
face terms, relating the real part of the optical potential
to its imaginary part through dispersion relations and
introducing simplifying assumptions (for example, the
approximation of separability in the spatial and energy
variables [34]). However, this approach requires not
only introducing additional parameters but also per-
forming a global analysis of experimental data over a
broad range of angles and, what is more important, over
a maximally broad range of energies. This program was
performed, in particular, for elastic 6Li + 12C scattering
by Goncharov et al. [34], who obtained, among other
things, evidence for anomalous dispersion—a sharp
increase in the dispersive volume correction to the real
part of the optical potential at energies of about 10–
15 MeV per projectile nucleon. The total dispersive
correction was found there to be positive at the surface
and negative in the volume. More reliable conclusions
on the magnitude and radial dependence of dispersive
corrections to the real part of the optical potential in the
scattering of exotic nuclei and on the role of the rela-
tionship between the surface and volume contributions
to the imaginary potential—this relationship can siz-
ably affect the angular distributions both in the region
of small angles and in the region of rainbow scatter-
ing—can be drawn only after the appearance of new
experimental data.

7. CONCLUSIONS

On the basis of the double-folding model, we have
investigated the effect of various factors of density
dependence in the M3Y effective forces on the real
parts of the optical potentials, on the angular distribu-
tions in elastic scattering, and on the total cross sections
for collisions of exotic light nuclei with stable 12C
nuclei at low energies. The effects of one-nucleon
exchange are represented in a localized form within the
density-matrix formalism by using spatial nucleon dis-
tributions as obtained for all nuclear species on the
basis of the local-density approximation. For the unsta-
ble nuclei investigated here, these distributions have
anomalously extended tails, which suggest the exist-
ence of nucleon halo in these nuclei. The imaginary
part of the optical potential has been expressed in terms
of its real part with the aid of two free parameters
describing volume and surface absorption. The values
of these parameters were fixed by fitting the results of
the calculations to the measured angular distributions.
The available body of experimental data cover limited
angular and energy regions; for this reason, the conclu-
sions that can be drawn from the present investigation
are predominantly of a qualitative character. These con-
clusions are the following:

(i) The distinctions between the potentials due to
different choices of the density-dependent factor F(ρ)
in effective forces take the greatest values at small dis-
tances. At a fixed energy value, the volume integrals of
the potentials change only by a few percent in going
over from one density-dependent factor to another, the
root-mean-square radii of the potentials showing still
smaller variations. The most pronounced energy depen-
dence of the potentials is due to one-nucleon exchange:
in the energy range 20–60 MeV, the potential depths
decrease by a factor of 1.5 with increasing energy.

(ii) In response to variations in F(ρ), the total reac-
tion cross section σr changes only by 3 to 4%. At the
same time, an increase in energy within the range being
considered leads to a 17–21% decrease in σr. It is inter-
esting to note that the changes in question are more pro-
nounced for 11Li than for the other nuclear species
investigated here.

(iii) In the energy range being considered, the dis-
tinctions between the angular distributions in elastic
scattering due to variations in F(ρ) manifest themselves
in the scattering-angle region θc.m. > 15°–20°. These
distinctions become more pronounced with increasing
scattering angle and cover a wider angular region (that
is, they appear at smaller angles) as the energy is
increased. At energies in excess of 40 MeV per projec-
tile nucleon, the scattering pattern may be of a rainbow-
like character. The 11Li + 12C nuclear system at an
energy of 60 MeV per projectile nucleon shows the
most pronounced rainbow effects.

(iv) Experimental data on the angular distributions
for the elastic scattering of 6He nuclei on 12C nuclei at
an energy of 41.6 MeV per projectile nucleon and of
11Be nuclei on 12C nuclei at an energy of 49.3 MeV per
projectile nucleon can be described satisfactorily by
supplementing the real folded potential with an addi-
tional term, which is treated as that which takes effec-
tively into account the dynamical polarization poten-
tial. The simplest choice, which improves considerably
the agreement with available experimental data, con-
sists in the inclusion of an extra surface term expressed
in terms of the gradient of the optical potential. Addi-
tional experiments extending the angular and energy
intervals of measurements are required for drawing
more reliable conclusions on the role and the structure
of the dynamical polarization potential in reactions
involving exotic light nuclei.
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
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Abstract—The results are presented that are obtained from searches for and an investigation of isospin-two
narrow resonances in the effective-mass spectrum of ppπ+ combinations originating from the reaction np 
ppπ+π–π– induced by Pn = 5.20 ± 0.13 GeV/c neutrons. Data subjected to our analysis come from the 1-m
hydrogen bubble chamber installed at the Laboratory for High Energies, Joint Institute for Nuclear Research
(Dubna), and exposed to a beam of quasimonochromatic neutrons. Narrow structures in the effective-mass
spectrum of ppπ+ combinations are found at 2175, 2221, 2321, 2398, 2471, 2525, 2596, and 2709 MeV/c2. The
experimental widths of the resonances are determined primarily by the instrumental resolution. The branching
fractions for various channels through which the 2596-MeV/Ò2 resonance decays are determined to be (83 ±
23)% for the p channel, (10 ± 3)% for the (BB π+ channel, and ( )% for the ppπ+ channel; here,

(BB  is a dibaryon in the two-proton system with a mass around 2095 MeV/Ò2. A qualitative analysis of the

spins of the 2596- and 2709-MeV/c2 resonances is performed. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The fact that quarks have color degrees of freedom
underlies the prediction of a host of resonance states.
For example, the formula from [1] for calculating
dibaryon-resonance masses within the stretched-bag
model predicts about 20 resonances in the ppπ+ system
between 2 and 3 GeV/c2. The values obtained on this
basis for the resonance masses comply well with our
data. Physically, it is clear that the widths of these new
resonances must be at least one order of magnitude
smaller than the widths of conventional resonances. We
have already observed this property of exotic reso-
nances in pp (see [2–12]; a survey of these results is
given in [13]) and π–π– (see [14]) systems. Some theo-
retical considerations relying on the fact that the sys-
tems being discussed have large dimensions were put
forth in the study that was reported in [12] and which
was devoted to an analysis of narrow pp resonances. An
account of the approaches based on QCD sum rules
was given in the studies of Bordes et al. [15] and Ellis
and Lanik [16], who analyzed the properties of scalar
glueballs. A general conclusion—presently, an intuitive
one to a considerable extent—is that, in the case of nar-
row exotic resonances, we are dealing with nonpertur-
bative effects generated by the large-distance structure

1) Lebedev Institute of Physics, Russian Academy of Sciences,
Leninskiœ pr. 53, Moscow, 117924 Russia.
1063-7788/00/6309- $20.00 © 21562
of the QCD vacuum. A consistent theory of allied phe-
nomena has yet to be developed.

The requirements on relevant experiments both in
what is concerned with their statistical significance and
in what is concerned with the purity of the data sample
under study are quite high because the pursued objects
are very intricate. The experiments at the Laboratory
for High Energies, Joint Institute for Nuclear Research
(JINR, Dubna), that were devoted to searches for exot-
icism in baryon resonances took advantage of a neutron
beam from the synchrophasotron installed at this labo-
ratory. By using unique properties of the beam (its rel-
ative momentum spread is ∆Pn/Pn ≈ 2.5%; its angular
divergence for angles close to zero is ∆Ω ≈ 10–7 sr; its
initial momentum is readily controllable in the range
1.25–5.20 GeV/c; and the neutron flux is high in the
chamber used) in conjunction with the potential of the
domestic 1-m liquid-hydrogen bubble chamber (4π
coverage and a high precision in the measurements of
the track momenta and angles), it was possible to obtain
data from an exclusive experiment that were sufficient
for investigating some exotic phenomena—in particu-
lar, resonance states in the ppπ+ system that are discussed
in the present article and which include a triply exotic
baryon with isospin I = 2 and electric charge Q = 3.

In view of the aforementioned high requirements on
the implementation of relevant experiments, the first
sections of the article are devoted to various method-
ological issues. Further, we expose our physical results
000 MAIK “Nauka/Interperiodica”
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and draw a comparison with other available data, which
are rather scanty at present. We do not aim at a detailed
comparison of our results with theoretical predictions
because the theoretical situation is very uncertain in
this realm.

Preliminary results of these investigations were
reported at the XII and XIII International Seminars on
Problems in High-Energy Physics and published in
[17–19].

2. PROCEDURES FOR ISOLATING
REACTION CHANNELS

In the present study, we use five-prong events
obtained in five experimental runs where the 1-m
hydrogen bubble chamber was irradiated with quasi-
monochromatic neutrons originating from the stripping
of deuterons on the internal target of the synchropha-
sotron [20]. The use of a neutron beam enabled us to
increase the density of the primary-particle flux to the
chamber by one order of magnitude in relation to irra-
diations with charged particles. The distributions of the
relative errors in the measurements of the tracks are
peaked, the corresponding FWHM value being (2.0 ±
0.8)% for positively charged tracks and (1.9 ± 0.7)% for
negatively charged tracks; the analogous values are
0.0013 ± 0.0009 and 0.0023 ± 0.0014 for the errors in
the tangents of the immersion angles (∆tanα) and
0.0008 ± 0.0005 and 0.0013 ± 0.0008 rad for the errors
in the azimuthal angles β.

The data subjected to a physical analysis were
selected by requiring that the results of measurements
for a given group of events not deviate by more than
2.55σ from the mean value of the measured quantity
over all groups of measurements, σ being the root-
mean-square deviation of the relevant quantity over all
groups of events.

Determination of Incident-Neutron-Beam Parameters

In each irradiation run, the absolute value of the
momentum and the direction of the incident-neutron
beam in the 1-m hydrogen bubble chamber were deter-
mined on the basis of the total-momentum distribution
of charged particles for events that resulted in the pro-
duction of only charged particles and which were sin-
gled out by means of an iterative procedure imple-
mented as is described immediately below.

For each event, we calculated the total momentum

of charged particles (Ps = ) and the energy bal-

ance F =  + mp – Es, where mn is the neutron

mass, mp is the target-proton mass, and Es = 
is the sum of the energies of charged secondaries. For
events featuring no neutral final-state particles (this is
so in the reaction np  ppπ+π–π–), the mean value of
the energy balance ( ) must be equal to zero. Since it

Pii 1=
5∑

Ps
2 mn

2+

Eii 1=
5∑

F
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is unknown in advance which one of the three posi-
tively charged secondaries is a π+ meson, the energy
balance F was calculated for three hypotheses:

, , and  (here, a subscript indi-

cates the number of a positive track). Of the three
hypotheses, we chose that for which F had a value clos-

est to zero. We further calculated the mean value  of
the total momentum and its root-mean-square deviation

 and the analogous values for the energy balance (
and σF), for the azimuthal angles of the total momenta

Ps (  and σβ), and for the tangents of the immersion

angle for the total momenta Ps (  and ). From
the initially selected group of events, we took those that
satisfied the following four conditions simultaneously:

This procedure was repeated until the next iterative step
added or rejected no event. The distributions of the
quantities Ps, F, β, and  prior to and following
iterations are shown in Fig. 1.

The values , , and  obtained after the com-
pletion of the iterative process were taken for the
parameters of the incident neutron beam.

If the iterative process singled out a group of events
that was characterized by a sizable deviation of the
mean value of the energy balance from zero or by a dis-
torted (asymmetric) distribution of the energy balance,
it was assumed that either an incorrect value of the
magnetic field was introduced in the code for geometric
reconstruction or a disregarded spurious curvature was
present. In such cases, the results were corrected for
these quantities.

The corrections for the magnetic field in the cham-
ber and for a spurious curvature were tested in various
ways—for example, by checking the mass positions of
the eta and omega mesons, which are clearly seen in the
effective-mass spectrum of π+π–π0 combinations origi-
nating from the reaction np  ppπ+π–π–π0, and by
verifying fulfillment of isotopic symmetry in the reac-
tion np  pπ+π+π–π–n (in this reaction, the momen-
tum spectra of isotopically symmetric particles in the
reaction c.m. frame must be coincident, while the par-
ticle emission angles θ* must exhibit mirror symme-
try). The parameters of the neutral particles π0 and n
were reconstructed by a kinematical-fit code as is
described below. Figure 2 displays the effective-mass
distribution of π+π–π0 combinations originating from
the reaction np  ppπ+π–π–π0 induced by Pn ≈

p1 p2π3
+ p1π2

+ p3 π1
+ p2 p3

Ps

σPs
F

β
tanα σ αtan

Ps Ps– 3σPs
,≤

F F– 3σF,≤

β β– 3σβ,≤

α tanα–tan 3σ αtan .≤

αtan

Ps β tanα
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Fig. 1. Distribution of events with respect to (a) the total momentum Ps of charged particles, (b) the tangent tanα of the immersion
angle for the total momentum, (c) the azimuthal angle β of the total-momentum direction, and (d) the energy balance F (unshaded
histograms) prior to and (shaded histograms) after event selection by an iterative process (see main body of the text).
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Fig. 2. Effective-mass distribution of π+π–π0 combinations
originating from the reaction np  ppπ+π–π–π0 induced
by Pn ≈ 5.2 GeV/Ò neutrons. The solid curve represents two
Breit–Wigner resonance peaks on top of a smooth back-
ground (their noncoherent sum). Arrows indicate the world-
average values of the eta- and omega-meson masses.
5.2 GeV/Ò neutrons (summary data from all irradiation
runs). The distribution in question was approximated
by the noncoherent sum of the background curve repre-
sented as a superposition of Legendre polynomials of
degrees not higher than five (the coefficients of the
polynomials of higher degrees—if those are
included—are insignificant) and two Breit–Wigner res-
onance peaks. The background fraction was 91.0%. Off
the resonance regions, the above description of the
background is characterized by the χ2/NDF value of
1.03 ± 0.11, the square root of the variance of the χ2 dis-

tribution being  = 1.47 ± 0.08; these values are
close to those for a purely statistical distribution

(χ2/NDF = 1,  = 1.41).
Our data on the eta and omega mesons are listed in

Table 1, which displays (first column) the particle spe-
cies; (second column) the world-average values of their
masses; (third column) the experimental values of the
resonance masses; (fourth columns) the experimental
resonance widths; (fifth column) the cross sections for
resonance production in the reaction np  ppπ+π–π–π0,
along with the uncertainties that include the errors in
the determination of the cross section for this reaction
(see [22]); and (sixth column) the number of standard
deviations, which was calculated by the formula S.D. =

(Nexpt – Nbackgr)/ , where Nexpt is the number of

D

D

Nbackgr
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Table 1

Particle species Mt ± ∆Mt , MeV/c2 Me ± ∆Me, MeV/c2 Γe ± ∆Γe , MeV/c2 σ ± ∆σ, µb S.D.

η 547.45 ± 0.19 548.6 ± 2.1 15.4 ± 2.1 13.4

ω 781.94 ± 0.12 783.1 ± 2.5 34.6 ± 5.0 10.7

11.2+2.6
–3.1

32.8+7.7
–6.6
events in a given experiment and Nbackgr is the number
of background events in the mass region being consid-
ered.

As can be seen from Table 1, the values found from
our experiment for the eta- and omega-meson masses
agree with the world-average values to within 1.5 MeV/c2

(the maximal deviation is 0.3%).
The values that the different exposures of the hydro-

gen bubble chamber yield for the effective masses and
the widths of eta and omega mesons and for their pro-
duction cross sections are consistent within the experi-
mental errors.

3. PARTITION OF EVENTS INTO REACTION 
CHANNELS

A kinematical fit of events was performed with the
aid of a code developed specially for irradiations on the
basis of the algorithm set forth in [23]. The neutron-
momentum spread was taken to be 2.5% of the mean
momentum value. This spread value was obtained from
a theoretical calculation of the neutron spectrum in the
stripping of deuterons [20], and it is in agreement with
the value determined for this spread experimentally.
Errors in the immersion angle and in the azimuthal
angle of neutron-beam direction in the chamber were
computed geometrically from the arrangement and
dimensions of the aluminum target and of the second
collimator. As a result, the same error value of
0.00033 rad was obtained for each of the two angles.

Five-prong events were assumed to be associated
with one of the three reaction channels

np  ppπ+π–π– (0 channel; 4C fit),

np  ppπ+π–π–π0 (π0 channel; 1C fit),

np  pπ+π+π–π–n (N channel; 1C fit).

Since it is not known in general which of the posi-
tively charged particles are protons and which are π+

mesons, three hypotheses were tested in each channel;
of these, we chose that which was characterized by the
smallest value of χ2. By estimating the fraction of
events for which the choice of hypothesis was incorrect
for one reaction channel, we have found that there are
1.1% of such events in the 0 channel, 2.9% of such
events in the π0 channel, and 2.2% of such events in the
N channel.

In separating events into groups associated with the
various reaction channels, we made use of the χ2 crite-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
rion. Specifically, we selected events corresponding to

χ2 ≤ , with  being set to 12.5 for the 0 chan-
nel and to 6.5 for the reaction channels featuring the
production of one neutral particle. These boundaries in
χ2 corresponded to an approximately 1% confidence

level. If an event satisfied the criterion χ2 ≤  for
the hypothesis of the 0 channel, it was assigned to this
channel, irrespective of χ2 values for the other channels
(preference rule [24]). When the hypothesis of the π0

channel and the hypothesis of the N channel both
passed the above selection, we decided on the hypothe-
sis for which χ2 was smaller. According to our esti-
mates, the admixtures of alien events in the individual
channels did not exceed the following values: 3.2% π0-
channel events and 0.5% N-channel events in the
0 channel, 3.9% N-channel events in the π0 channel,
and 2.1% π0-channel events in the N channel.

In selecting events in the various reaction channels,
we additionally employed constraints on the error in the
total momentum of all charged particles (∆Ps /Ps ≤ 3%)

and on the missing mass (  <  < ) for all
reaction channels, on the cosine of the π0 emission
angle in the reaction c.m. frame (the condition requir-
ing that the distribution in cos  be smooth) for the π0

channel, and on the π+ momentum in the laboratory
frame [in order to take into account the requirement
that d /d (lab) = d /d (antilab)] for the

N channel.

The reliability of our separation of events into
groups associated with the various reaction channels is
illustrated in Fig. 3, which demonstrates fulfillment of
isotopic symmetry in the reaction np  pπ+π+π–π–n,
where the momentum distributions for isotopically
conjugate particles must be identical in the reaction
c.m. frame and where the angular distributions of such
particles must be obtained by means of mirror reflec-
tions from each other. The histograms in Fig. 3 repre-
sent (a) the momentum distributions of the secondary
proton and neutron in the reaction c.m. frame, (b) the
distributions of events with respect to the squares of the
transverse momenta of the secondary proton and neu-
tron in the reaction c.m. frame, (c) the distributions of
events with respect to the cosines of p and n emission
angles measured from the reaction axis in the c.m.
frame, (d) the momentum distributions of the product

χbound
2 χbound

2

χbound
2

Mmin
2 Mmiss

2 Mmax
2

θ
π0*

N
π+ P

π+ N
π– P

π–
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Fig. 3. Distributions demonstrating fulfillment of isotopic invariance in the reaction np  pπ+π+π–π–n (for a detailed description
of the figure, see main body of the text).
π+ and π– mesons in the c.m. frame, (e) the distributions
of events with respect to the squares of the π+ and π–

transverse momenta in the c.m. frame, (f) the distribu-
tions of events with respect to the cosines of π+ and π–

emission angles measured from the reaction axis in the
c.m. frame, (g) the effective-mass distributions of pπ+

and nπ– combinations, (h) the effective-mass distribu-
tions of pπ+π+ and nπ–π– combinations, and (i) the
effective-mass distributions of π+π+ and π–π– combina-
tions.
Table 2 displays the mean values of the above parame-
ters and the square roots of the variances for the distribu-
tions depicted in Fig. 3. From this figure and from the table
in question, it can be seen that the above distributions for
isotopically symmetric particles agree fairly well. A mod-
est distinction between the absolute values of mean angular
distributions is due to a loss of a small number (a few per-
cent) of particles that are very slow in the laboratory frame.

Upon the separation of the reaction channels and the
application of additional selection criteria, there remain
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
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Table 2

Parameter Mean value

Pp, MeV/c 532.6 ± 2.3 194.3 ± 1.7

Pn, MeV/c 527.1 ± 2.3 193.2 ± 1.6

, (GeV/c)2 0.491 ± 0.0017 0.1419 ± 0.0012

, (GeV/c)2 0.437 ± 0.0017 0.1411 ± 0.0012

cos –0.0489 ± 0.0082 0.6827 ± 0.0058

cos +0.0253 ± 0.0083 0.6933 ± 0.0059

, MeV/c 268.6 ± 1.0 123.1 ± 0.7

, MeV/c 270.3 ± 1.1 123.5 ± 0.7

, (GeV/c)2 0.0534 ± 0.0005 0.0537 ± 0.0003

, (GeV/c)2 0.0530 ± 0.0005 0.0530 ± 0.0003

cos –0.0431 ± 0.005 0.5881 ± 0.0035

cos +0.0685 ± 0.005 0.5896 ± 0.0035

, MeV/c2 1268.4 ± 1.1 124.4 ± 0.7

, MeV/c2 1270.3 ± 1.1 125.1 ± 0.8

, MeV/c2 1596.4 ± 1.8 149.1 ± 1.3

, MeV/c2 1597.4 ± 1.8 153.6 ± 1.3

, MeV/c2 474.0 ± 1.6 130.6 ± 1.1

, MeV/c2 471.4 ± 1.6 130.5 ± 1.1

D

P⊥ p
2

P⊥ n
2

θp
*

θn
*

P
π+

P
π–

P
⊥ π+
2

P
⊥ π–
2

θ
π+
*

θ
π–
*

M
pπ+

M
nπ–

M
pπ+π+

M
nπ–π–

M
π+π+

M
π–π–
8394 events of the reaction np  ppπ+π–π–, 3884
events of the reaction np  ppπ+π–π–π0, and 6680
events of the reaction np  pπ+π+π–π–n. This distri-
bution of events among the reaction channels is consis-
tent with the cross sections determined for these chan-
nels in [22].

4. INVESTIGATION OF I = 2
NARROW DIBARYON RESONANCES

IN NEUTRON–PROTON INTERACTIONS

In seeking and investigating narrow resonances in
the effective-mass spectra of ppπ+ combinations, we
made use of the reactions

np  ppπ+π–π– at Pn ≈ 5.20 GeV/Ò (8365 events), (1)

np  ppπ+π–π–π0 at Pn ≈ 5.20 GeV/Ò (3822 events),
(2)
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
(3)

(4)

(5)

(6)

Figure 4 shows the effective-mass distribution of
ppπ+ combinations originating from reaction (1). This
distribution was approximated by the noncoherent sum
of the background contribution represented by a super-
position of Legendre polynomials of degrees not higher

np ppπ+π–π–

at Pn 4.43 0.11 GeV/c 742 events( ),±=

np ppπ+π–π–π0

at Pn 4.43 0.11 GeV/c 215 events( ),±=

np ppπ+π–π–

at Pn 3.88 0.10 GeV/c 388 events( ),±=

np ppπ+π–π–π0

at Pn 3.88 0.10 GeV/c 65 events( ).±=
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than four (the inclusion of higher order Legendre poly-
nomials is unnecessary since the fitted coefficients of
these polynomials prove to be small) and eight Breit–
Wigner resonance terms. The background fraction was
93.1%. Off the resonance regions, the description of the
background was characterized by the χ2/NDF value of
0.89 ± 0.12, the square root of the variance of the χ2 dis-

tribution being  = 1.34 ± 0.08. These values are veryD

(Number of events)/(9.2 MeV/Ò2)
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0
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Fig. 4. Effective-mass distribution of ppπ+ combinations
originating from the reaction np  ppπ+π–π– induced by
Pn ≈ 5.2 GeV/Ò neutrons. The solid curve represents eight
Breit–Wigner resonance peaks on top of a smooth back-
ground (see main body of the text). The dashed curve corre-
sponds to the background contribution approximated by a
Legendre polynomial of fourth degree.
close to those for a purely statistical distribution

(χ2/NDF = 1,  = 1.41). An attempt at describing the
experimental distribution by the background curve nor-
malized to the total number of events (which is taken to

be 100%) resulted in χ2/NDF = 1.14 ± 0.10 and  =
1.65 ± 0.07. We see that, in this case, the deviations
from the theoretical values for a purely statistical distri-
bution are much more pronounced.

The data that we obtained are compiled in Table 3,
which displays (first column) the central values of the
resonance masses; (second column) the experimental
(apparent) resonance widths; (third column) the true
resonance widths as obtained from the apparent ones
by quadratically subtracting the relevant resolution
with respect to the effective masses of ppπ+ combina-
tions; (fourth column) the cross sections for resonance
production in reaction (1), together with the uncertain-
ties that include errors in the determination of the cross
section for reaction (1) (see [22]); (fifth column) the
number of standard deviations from the background;
and (sixth column) the product of the probability that
the structures being discussed are background fluctua-
tions and the ratio of the number of bins in the whole
distribution to the number of bins in the region around
a given resonance.

The number of standard deviations was calculated

by the formula S.D. = (Ne – Nb)/ , which has
already been used in connection with data quoted in
Table 1 and which involves the same quantities as in
that case.

The experimental resolution σres(M) with respect to
the effective masses of ppπ+ combinations is closely
approximated by the formula σres = 2.1[(M – M0)/ 0.1] +
2.7, where M is the effective resonance mass (in
GeV/c2) and M0 is the rest mass (in GeV/c2) of the sys-
tem formed by two protons and a π+ meson, the resolu-

D

D

Nb
Table 3

Me ± ∆Me, MeV/c2 Γe ± ∆Γe, MeV/c2 Γres ± ∆Γres, MeV/c2 σ ± ∆σ, µb S.D. P

2175 ± 6 1.7 ± 0.7 2.8 7.4 × 10–2

2221 ± 6 2.5 ± 0.8 3.5 9.2 × 10–3

2321 ± 24 2.2 ± 1.1 3.2 1.0 × 10–2

2398 ± 8 0.0+23.4 2.9 ± 1.4 2.3 3.3 × 10–1

2471 ± 5 0.0+9.6 4.1 ± 1.3 3.4 1.1 × 10–2

2525 ± 7 4.0 ± 1.4 3.2 2.6 × 10–2

2596 ± 6 9.2 ± 1.9 5.6 1.9 × 10–7

2709 ± 6 0.0+15.4 4.9 ± 1.6 3.5 7.1 × 10–3

17.6+13.9
–5.5

12.8+13.9
–5.5

18.5+12.8
–5.3

12.1+12.8
–5.3

35.1+62.4
–15.5

30.0+62.4
–15.5

19.7+23.4
–6.6

21.9+9.6
–4.7

28.6+31.7
–10.7 10.1+31.7

–10.1

31.5+18.0
–9.1 10.3+18.0

–9.1

19.2+15.4
–5.8
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tion σres being given in MeV/c2. From this formula, it
can be seen that the mass resolution grows linearly
from 2.7 to 17 MeV/Ò2 as the mass M is changed from
M0 to a value of about 2.7 GeV/c2.

The resonances discovered in reaction (1) can man-
ifest themselves in reaction (2) as well. Figure 5 shows
the effective-mass distribution of ppπ+ combinations
originating from reactions (1) and (2). In conformity
with what was done for the distribution in Fig. 4, that in
Fig. 5 was approximated by the noncoherent sum of the
background contribution represented by a superposi-
tion of Legendre polynomials of degrees not higher
than four (there is no need to include higher order poly-
nomials, since the fitted coefficients of those proved to
be insignificant) and eight Breit–Wigner resonance
terms. The background fraction was 93.9%. Off the res-
onance regions, the description of the background

yielded χ2/NDF = 0.89 ± 0.12 and  =1.41 ± 0.09.
Figure 5 also displays the effective-mass distribution of
ppπ+ combinations produced in reaction (2) exclusively
(lower histogram). The vertical dotted lines indicate the
mass positions of the resonances. The results of the
above fit are presented in Table 4, where we quote the
values of the same parameters as in Table 3 (in the same
columns).

From a comparison of the results listed in Tables 3
and 4, it can be seen that the growth of the statistical
significances of the structures occurring in the ppπ+

mass region from 2200 to 2500 MeV/c2 roughly com-
plies with the increase in statistics in this mass region.

At the same time, the significances of the reso-
nances at about 2184, 2602, and 2716 MeV/c2

decreased. As can be seen from Fig. 5 (lower histo-
gram), these resonances occur at the ends of the phase
space of reaction (2). The effective-mass distribution of
ppπ+ combinations originating from reaction (2) has
edges going downward more steeply (below the mass

D
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of 2200 MeV/c2 and above the mass of 2550 MeV/c2).
For this reason, the behavior of the background polyno-
mial that describes the summary distribution for reac-
tions (1) and (2) is determined, in these regions, prima-
rily by reaction (1) with the result that the background
is overestimated in the region of the above masses.

2.1

50

2.3 2.5 2.7 2.9
Mppπ+, GeV/Ò2

2184

2218

2300
2716

2402

2491

2530
2602

100

150

200

250

0

(Number of events)/9.8 MeV/Ò2

Fig. 5. Effective-mass distribution of ppπ+ combinations
originating from reactions (1) and (2). The solid curve rep-
resents eight Breit–Wigner resonance peaks on top of a
smooth background (see main body of the text). The dashed
curve corresponds to the background contribution approxi-
mated by a Legendre polynomial of fourth degree. The
lower histogram represents the distribution in question for
reaction (2) exclusively. The vertical dotted lines indicate
the fitted resonance masses.
Table 4

Me ± ∆Me, MeV/c2 Γe ± ∆Γe, MeV/c2 Γres ± ∆Γres, MeV/c2 S.D. P

2184 ± 7 2.5 2.3 × 10–1

2218 ± 5 4.1 1.1 × 10–3

2300 ± 8 3.7 2.5 × 10–3

2402 ± 5 0.0+12.6 3.6 8.3 × 10–3

2491 ± 5 0.0+6.7 4.8 3.0 × 10–5

2530 ± 8 3.2 1.8 × 10–2

2602 ± 7 0.0+20.6 4.1 5.9 × 10–4

2716 ± 6 0.0+6.9 2.0 7.4 × 10–1

17.2+21.7
–6.8

11.6+21.7
–6.8

21.0+12.4
–5.5

15.8+12.4
–5.5

37.4+45.2
–14.8

32.7+45.2
–14.8

21.3+12.6
–5.5

23.8+6.7
–4.0

29.5+18.7
–8.2 10.6+18.7

–8.2

26.7+20.6
–8.6

20.6+6.9
–9.7
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Figure 6 shows the effective-mass distribution of
ppπ+ combinations originating from reactions (3)–(6).
In this figure, the shaded regions correspond to the
positions and the apparent widths of the resonances
observed in reactions (1) and (2) (see Fig. 5 and Table 4).
It can be seen that the features of these resonances com-
ply well with the enhancements in the experimental
effective-mass distributions in reactions (3)–(6).

These facts confirm the existence of the structures
discovered in reaction (1).

4.1. Determination of Decay Modes for the 2596-
MeV/c2 Resonance in the ppπ+ System

In a further analysis, we used only data for reaction (1).
In order to determine the relative weights of various

modes of the decay of the 2596-MeV/c2 resonance, we
have analyzed the possible channels

(BB   ppπ+,

(BB   p,

(BB   (BB)++ π+,

where (BB)++ is a resonance in the pp channel. Figu-
res 7‡ and 7b display the effective-mass distributions
of, respectively, pπ+ and pp combinations for events
from the mass region around the 2596-MeV/c2 reso-
nance (2582 <  < 2628 MeV/c2). The background

distributions in Figs. 7c and 7d were obtained by means
of a linear interpolation between the corresponding dis-

)2596
+++

)2596
+++ ∆33

++

)2596
+++

M
ppπ+
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Fig. 6. Effective-mass distribution of ppπ+ combinations
from reactions (3)–(6). Shaded regions correspond to the
positions and apparent widths of the resonances found in
reactions (1) and (2).
tributions in the regions to the left (2536 <  <

2582 MeV/c2) and to the right (2628 <  <

2683 MeV/c2) of the resonance. By subtracting the dis-
tributions in Figs. 7c and 7d from the distributions in
Figs. 7a and 7b, respectively, we derived the mass spec-
tra of pπ+ and pp combinations in the decay of the
2596-MeV/c2 resonance (Figs. 7e and 7f, respectively).

The mass spectrum of pπ+ combinations shows a 
isobar, while the mass spectrum of pp combinations has
a structure in the region around Mpp ≈ 2095 MeV/c2.

On the basis of the GENBOD code, we further simu-
lated the decays of the ppπ+ system at the total energies
set to the experimental values of the mass . In

doing this, we considered three possibilities (channels):
(i) the three-body phase space;

(ii) the production of a  isobar and a proton

(  = 1204 MeV/c2,  = 101 MeV/c2);

M
ppπ+

M
ppπ+

∆33
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M
ppπ+

∆33
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M
∆33

++ Γ
∆33

++

(e)

(c)

(a)
Number of combinations

150

100

50

0
150

100

50

0

60

40

20

0

1.2 1.4 1.6
Mpπ+, GeV/Ò2

(f)

2.0 2.2 2.4
Mpp, GeV/Ò2

(d)

(b)80

40

0
60

40

20

0

40

20

0

–20

Fig. 7. (a, b) Effective-mass distributions of pπ+ and pp
combinations from the region around the 2596-MeV/c2 res-
onance; (c, d) background distributions in the resonance
region that were obtained by means of a linear interpolation
of the relevant distributions from the regions to the left and
to the right of the resonance; and (e, f) difference of the dis-
tributions in the resonance region and the background distri-
butions. The solid curves represent simulated distributions.

2.095
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(iii) the production of a (BB)++ resonance and a π+

meson (  = 2095 MeV/c2,  = 10 MeV/c2).

The  and (BB)++ masses and widths were chosen
by simultaneously fitting the effective-mass spectra of
pπ+ and pp combinations. By approximating the exper-
imental effective-mass distributions of pπ+ and pp com-
binations by the generated distributions, we then deter-
mined the contributions of the processes involving the

production of a  isobar and of a (BB  resonance
(in the regions to the right and to the left of the peak,
there are no contributions from this resonance) for each
of the three regions of the mass . Solid curves in

Fig. 7 represent the results of the above fit.
Knowing the contributions of the process involving

 production in the regions of  values to the

right and to the left of the resonance, we were able to
determine (by means of a linear interpolation) the frac-
tion of this process in the background component
within the resonance region. By subtracting this frac-

tion from the  contribution to the whole region of
the peak, we deduced the branching fraction for the res-

onance decay into  and p. It was straightforward to
determine the probability of resonance decay into

(BB  and π+, since the (BB  resonance was not
observed in the background regions (see Fig. 7d). As a
result, we obtained the following values of the relevant
branching fractions:

(83 ± 23)% for (BB   p,

(10 ± 3)% for (BB   (BB π+, 

( )% for (BB   ppπ+. 

4.2. Estimating the Spins of the 2596- and 2709-MeV/c2 
Resonances in the ppπ+ System

Figure 8 displays the results obtained from an analy-
sis of the spins of the 2596- and 2709-MeV/c2 reso-
nances produced in reaction (1). It is well known that, in
strong three-body resonance decays, the distributions of
events with respect to the cosine cos  of the angle
between the normal n to the resonance-decay plane and
the direction of the resonance momentum Pres in the
reaction c.m. frame are described by a superposition of
Legendre polynomials of even degrees not higher than
2J, where J is the total spin [25]. Since available statistics
are insufficient for unambiguously determining the reso-
nance spins, the ensuing analysis is only qualitative.

For the 2596-MeV/c2 resonance, Fig. 8c shows the
background distribution with respect to cos  as
obtained by linearly interpolating, to the peak region,

M
BB( )++ Γ

BB( )++

∆33
++

∆33
++ )2095

++

M
ppπ+

∆33
++ M

ppπ+

∆33
++

∆33
++

)2095
++ )2095

++

)2596
+++ ∆33

++

)2596
+++ )2095

++

7 7–
+15 )2596

+++
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the distributions from the regions to the right and to the
left of the resonance. Figure 8d displays the analogous
distribution for the 2709-MeV/c2 resonance. In these
figures, the horizontal dashed lines correspond to the
description of distributions in terms of the Legendre
polynomial of zero degree (isotropic distribution),
while the solid curves represent the results of a fit in
terms of the Legendre polynomial of second degree.
The corresponding confidence levels are given in the
figures. Since polynomials of second degree provide
the best description, we have taken them for the back-
ground distributions in the resonance regions. For
events from the regions around the 2596- and
2709-MeV/c2 resonances, the distributions with respect
to cos  as obtained upon background subtractions
are presented in Figs. 8‡ and 8b, respectively. It can be
seen that these distributions differ from the background
ones, exhibiting a more complicated structure.

A further analysis consisted in the following. We
constructed the distributions with respect to cos
from 0 to 1 for events from the resonance region,
employing partitions into 11, 12, …, 30 bins (in all, 20
histograms for each resonance). For each binning, the
distributions were approximated by a set of Legendre
polynomials of even degrees. The maximal degree of
the polynomials was gradually increased in implement-
ing this procedure. Upon each approximation, special
attention was given to that coefficient of a Legendre
polynomial (Ci, i being the degree of the corresponding
polynomial) which was characterized by the largest rel-
ative error ∆Ci/Ci. If this relative error was greater than
50%, the coefficient was set to zero, and the procedure
was repeated. At the end of the iterative process, we
were therefore left only with those degree of polynomi-
als for which ∆Ci/Ci ≤ 50%. A large error in a given
coefficient implies that the contribution of the relevant
polynomial is insignificant and can be disregarded.
After that, we chose polynomials of those degrees that
passed reliably the selection ∆Ci/Ci ≤ 50% in the major-
ity of the cases for which we constructed approxima-
tions of the above type. By way of example, we indicate
that, for the 2596-MeV/c2 resonance, polynomials of
second and sixth degree were always rejected by the
above selection, whereas polynomials of fourth and
eighth degree passed it in, respectively, 100 and 90% of
the cases considered here. The results obtained by
using approximations in terms of these polynomials are
illustrated in Fig. 8‡, where the dashed (horizontal)
line, the dash-dotted curve, and the solid curve repre-
sent, respectively, the Legendre polynomial of zero
degree; a superposition of the polynomials of zero and
fourth degree; and a superposition of the polynomials
of zero, fourth, and eighth degree. The polynomials that
survived for the 2709-MeV/c2 resonance processed in
the same way are those of fourth and eighteenth degree
(see Fig. 8b, where the dash-dotted and the solid curve
represent, respectively, a superposition of the polyno-

θn Pres,

θn Pres,
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mials of zero and fourth degree and a superposition of
the polynomials of zero, fourth, and eighteenth degree).
The same figures display the mean confidence levels
for the descriptions of these distributions for versions
employing 12 to 18 bins. It can be seen that, although
we cannot exclude out of hand the possibility that the
actual distribution is isotropic, the most probable spin
values are J ≥ 4 for the 2596-MeV/c2 resonance and J ≥
9 for the 2709-MeV/c2 resonance.
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2.58 % Mppπ+ % 2.62 GeV/Ò2 2.70 % Mppπ+ % 2.72 GeV/Ò2

Fig. 8. Distributions of events from the regions around the
(a) 2596- and (b) 2709-MeV/Ò2 resonances with respect to
cos  upon background subtractions (horizontal

dashed lines represent the Legendre polynomial of zero
degree, while the dash-dotted curves depict a superposition
of Legendre polynomials of zero and fourth degree; the
solid curve in Fig. 8a corresponds to a superposition of Leg-
endre polynomials of zero, fourth, and eighth degree, while
the solid curve in Fig. 8b corresponds to a superposition of
Legendre polynomials of zero, fourth, and eighteenth
degree) and background distributions with respect to
cos  in the regions around the (c) 2596- and (d)

2709-MeV/Ò2 resonances according to a linear interpolation
of the distributions from the regions to the right and to the
left of the resonances (the horizontal dashed lines and the
solid curves represent fits to these background distributions
in terms of Legendre polynomials of, respectively, zero and
second degree).

θn Pres,

θn Pres,
4.3. Survey of Experiments Devoted to Searches
for I = 2 Dibaryon Resonances

So far, very few experimental studies have been
aimed at pursuing and investigating resonances of the
type being considered.

No statistically significant (above three standard
deviations) structures were observed in [26, 27], but
enhancements in the effective-mass spectrum of ppπ+

combinations at 2160 MeV/Ò2 were discussed there.
The analysis of Ermakov et al. [26] was performed on
the basis of data obtained by irradiating 40Ar nuclei (in
a hybrid gas–liquid chamber) with Pp ≈ 1.7 GeV/c pro-
tons, but the statistical significance was insufficient
there. Combes-Comets et al. [27] investigated this
structure in the reaction p + p  π– + X at Tp =
2.1 GeV (the product π– mesons were recorded at an
angle of 13.8°); its statistical significance in that study
was 2.6σ. In the same reaction at Tp = 2.7 GeV, those
authors also observed a narrow enhancement (2σ) in
the mass region around 2460 MeV/Ò2. Parker et al. [28]
found no structures, but they explored either bound
states in the nnπ– system or the effective masses of this
system in the region near the NNπ threshold.

Some studies (see, for example, [29] and references
therein) were devoted to investigating the resonance
yield of π+ mesons from the interactions of T ≈
350 MeV protons with various nuclei. The effect in
question can be treated in terms of the production and
subsequent decay of I = 2 resonances in proton–nucleus
interactions, but there are explanations that do not
invoke exotic resonances, but which are no less con-
vincing than that discussed immediately above. A reso-
nance-like structure was observed in reactions of π–

double charge exchange on various nuclei at meson
energies less than the threshold for ∆33-isobar forma-
tion (see references in the article of Brodowski et al.
[30]). One of the possible explanations of the effect
relies on the assumption that the NNπ system features a
resonance—it was dubbed d '—having a mass of M ≈
2.06 GeV/c2, a width of ΓNNπ ≈ 0.5 MeV/c2, an even
isospin, and a spin–parity of JP = 0–. In order to verify the
hypothesis that this resonance exists, Brodowski et al.
[30] studied the reaction pp  ppπ–π+ at Tp = 750 MeV.
They found an enhancement of four standard devia-
tions in the effective-mass spectrum of the ppπ– system
around  = 2.063 GeV/c2. These authors observed

no such enhancement in the mass spectrum of the ppπ+

system, but they emphasized that the experimental
mass resolution for ppπ+ is much poorer than that for
ppπ–; therefore, the question of the isospin of the M ≈
2.06 GeV/c2 resonance remains open. The accumula-
tion of statistics is being continued in a number of
experiments. By the method of effective-mass spectra,
Vorobyev et al. [31] studied ppπ– and ppπ+ combina-
tions in the reaction pp  ppπ+π– at Tp = 920 MeV. In

M
ppπ–
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the ppπ– system, they discovered an indication of a
structure having a mass of 2.057 ± 0.002 GeV and a
width of Γ = 10.8 ± 2.1 MeV. No special features were
found in the ppπ+ system.

It is worth noting that the aforementioned effects from
[26–31] were observed in mass regions lying much lower
than that which has been studied in our experiment.

5. BASIC CONCLUSIONS

For the first time, a set of narrow resonances in the
ppπ+ system has been discovered in the reaction np 
ppπ+π–π– induced by Pn ≈ 5.2 GeV/Ò neutrons. It has
been shown that analogous structures are observed in
the channel np  ppπ+π–π–π0. These data comply
well with the enhancements in the effective-mass spectra
of the ppπ+ systems from the reaction np  ppπ+π–π–

and np  ppπ+π–π–π0 that we have investigated at
Pn ≈ 4.4 and 3.9 GeV/c, respectively.

For the decay of the 2596-MeV/Ò2 resonance in the
ppπ+ system through various channels, we have found
the following branching fractions: (83 ± 23)% for the

p channel, (10 ± 3)% for the ((BB π+ channel

[here (BB  is a dibaryon in the two-proton system
with a mass of about 2095 MeV/Ò2], and (7 ± 15)% for
the ppπ+ channel.

A qualitative analysis of spin assignments has been
performed for the 2596- and 2709-MeV/Ò2 resonances.
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Abstract—A method is developed for separating νN interactions from interactions involving an intranuclear
cascade in νNe scattering at a mean neutrino energy of 145 GeV. The fraction of events featuring a cascade is
evaluated by using a sample of νNe charged-current interactions. It is found that the multiplicity of charged
particles in the forward direction takes the same value for events with and without a cascade for 4 < W 2 <
550 GeV2. In the backward direction, cascade events have the charge multiplicity higher than the multiplicity
for cascade-free events by 2.36 units. It is found that particles with momenta less than 2 GeV/c make a dominant
contribution to the rescattering process. A depletion of the fastest particles for W 2 < 50 GeV2 is observed, in
accord with the formation-time concept. © 2000 MAIK “Nauka/Interperiodica”.
1063-7788/00/6309- $20.00 © 1574
1. INTRODUCTION
Nuclei are common targets used in high-energy

physics; hence, nuclear effects are an inevitable part of
many experiments. For some, these may represent only
a complication, but, for others, it offers a unique way to
investigate various questions, such as the nature of had-
ron formation and the spacetime development of the
hadronization process. The interaction of hadrons,
immediately after their generation by string rupture,
differs from ordinary hadron–nucleon interactions
since product hadrons consist of valence quarks and do
not have the full system of sea quarks, antiquarks, and
gluons; therefore, they have a reduced probability for
interaction [1–5].

Lepton–nucleus scattering is studied as a first step to
understand better much more complicated hadron–
nucleus or nucleus–nucleus collisions, where several
strings interact with one another and with spectator
nucleons. In the case of a lepton beam, only one color
string is involved, and its direction is well known. But,
as was indicated in [2], a virtual photon exhibits had-
ronic features in charged-lepton interaction at small
values of xB and can cause more than one projectile col-
lision. Hence, neutrino interactions are thought to be
particularly suitable for investigating hadron formation
and intranuclear rescattering. However, only a few
results from neutrino experiments have been published
so far [6–11].
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A basic way to study nuclear effects is to compare a
hadron system in neutrino–nucleus interactions with
that in neutrino–nucleon interactions. In the past, a
painstaking comparison of two different experiments
was necessary to achieve this goal [9]. It is therefore of
interest to develop methods for extracting the desired
results from only one experiment, as was proposed pre-
viously in [11] and, in a different context, in [12, 13].
We use this approach and compare the multiplicity and
rapidity distributions for neutrino–nucleon (νN colli-
sion involving no cascade) and neutrino–nucleus inter-
action featuring a cascade. Several methods for classi-
fying (anti)neutrino–nucleus interactions were pro-
posed: by the presence or absence of “gray” protons
with momenta below 600 MeV/c [13], by the presence
of backward protons, by the final-state electric charge
[14], or by means of some kinematical criteria [11]. In
the present study, we examine criteria such as the target
mass and the balance of longitudinal particle momenta
in the hadron c.m. frame and consider a correlation
between them.

This article is organized as follows. In Section 2, we
present a summary of the data sample and the Monte
Carlo model. In Section 3, we describe the method used
to separate events with and without a cascade. Experi-
mental results are given in Section 4: data on the multi-
plicity of charged hadrons in νNe and νN interactions
are compared with the corresponding quantities for νp,
νD, , and µp scattering [15–17]; the excess multi-
plicity due to an intranuclear cascade as a function of
W 2 is studied for forward and backward hemispheres;
and the rapidity distributions are compared for two data
samples and for different intervals of W 2. Our conclu-
sions are summarized in Section 5.

2. EXPERIMENTAL PROCEDURE

2.1. Experiment and Data Sample

The Fermilab experiment E632 used a 15-foot bub-
ble chamber (BC) both as a target and as a part of a
detector system that also included the internal picket
fence and the external muon identifier (EMI). The bub-
ble chamber was exposed to a neutrino beam designed
to obtain the highest neutrino energies. (Anti)neutrinos
originated from the decays of charged mesons pro-
duced by 800-GeV/c protons from the Tevatron. Within
the bubble chamber, neutrino and antineutrino interac-
tions occurred in the ratio of 6 : 1 and had average ener-
gies of 145 and 110 GeV, respectively. Data were taken
in two runs in 1985 and 1987. In the first (second) data
run, the chamber was filled with a neon–hydrogen mix-
ture containing 75% (63%) molar neon having a den-
sity of 0.71 g/cm3 (0.54 g/cm3). Events were recorded
on film, scanned, and measured in the different labora-
tories of the collaborating institutions. Further experi-
mental details are given in [18].

νD
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The present study is based on charged-current (CC)
neutrino interactions:

(1)

A muon candidate is required to have a momentum
p in excess of 5 GeV/c and to be identified as a muon
by EMI. The efficiency of identification for muons with
such momenta is 91%. The background from hadron
and muon decays and from accidental association does
not exceed 0.7%. The total number of νNe CC events in
our sample is 5567.

The range information is used to identify protons
with momenta up to 1 GeV/c. All charged secondaries
with momenta plab > 1 GeV/c are assigned a pion mass.
(For Monte Carlo events, the fractions of protons and
K+ among possible particles with plab > 1 GeV/c are
20% and 8%, respectively.)

In an intranuclear cascade following a neutrino
interaction, the product particles can knock protons and
neutrons out of the residual nucleus and leave the
nucleus in an excited state. This excitation energy is the
basis for nuclear evaporation and fragmentation. All
identified protons with momenta p < 300 MeV/c are
considered to be evaporated and are excluded from fur-
ther analysis. According to a Monte Carlo (MC) simula-
tion, this cut removes, in addition to evaporated protons,
20–25% of the identified knock-on cascade protons. The
probability for protons in cascade-free events to have
momenta p < 300 MeV/c was less than 0.2%. In Section 3,
we examine the effect of this cut on our final results.

The incident-neutrino energy E ν is equal to the sum
of the muon and hadron energies. The measured hadron
energy is corrected for missing neutral particles by
applying a factor based on transverse-momentum bal-
ance (Bonn method, [16]),

(2)

where p|| (p⊥ ) are components parallel (perpendicular)
to the incoming-neutrino momentum. The average cor-
rection factor (bracketed expression) is equal to 1.4.
Events characterized by a correction factor in excess of
two (9% of the data sample) were excluded from our
analysis. The root-mean-squared (RMS) error in the Eν
determination of Monte Carlo events is about 14%.
Only events with 10 GeV < Eν < 700 GeV were
accepted for the analysis. In general, events character-
ized by low multiplicities have a larger value of the
Bonn correction. Weights for the effects of the cut on
the Bonn correction factor are applied to the multiplic-
ity distribution and are shown in Table 1 (n± is the mul-
tiplicity in the hadron system, the muon from the pri-
mary interaction being excluded).

The cuts applied to select deep-inelastic-scattering
(DIS) events are 

(3)

ν N µ– X , X hadrons.++

Eν p||
µ p||

h 1
p⊥

µ p⊥
h+

p⊥
h∑

---------------------+ ,∑+=

Q2 1 GeV/c( )2, W 2 GeV,>>
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where Q2 = –q2 is the 4-momentum transfer squared
and W is the total energy of the hadronic system in its
rest frame. These cuts leave 4476 νNe CC events.

Hadron production was analyzed in the hadronic
c.m. frame, which is defined as

(4)

The properties of individual hadrons in the hadronic
c.m. frame are measured by two longitudinal variables,
the Feynman variable xF and the rapidity y,

(5)

where E* is the energy and  is the longitudinal
momentum component (parallel to the current vector, q).

It should be noted that, in the case of a neon target,
the final state is affected by intranuclear rescattering,
where the direction of the particle momentum can be

p⊥
h p⊥

µ ; p||
h– p||

h corr( );∑= =

W2 MN
2 2MN Eν Eµ–( ) Q2.–+=

xF

2 p||*

W
----------, y

1
2
---

E* p||*+
E* p||*–
--------------------,ln= =
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Table 1. Weights applied to correct the multiplicity distribu-
tion after a cut on the Bonn correction factor

n± W n± W

1 1.35 10 1.07

2 1.28 11 1.06

3 1.22 12 1.05

4 1.17 13 1.04

5 1.14 14 1.03

6 1.11 15 1.02

7 1.10 16 1.01

8 1.09 >17 1.00

9 1.08

Table 2. Fraction of events with and without intranuclear
cascade and main characteristics of the two data samples

Without cascade With cascade

Nev 2188 2288

f (stat. error) 0.49 ± 0.01     0.51 ± 0.01

f (after correction) 0.46 ± 0.05(syst.) 0.54 ± 0.05(syst.) 

± 0.01(stat.) ± 0.01(stat.)

, GeV 142 ± 2 145 ± 7

Q2, (GeV/c)2 26.7 ± 0.8 28.5 ± 0.8

W, GeV 8.9 ± 0.2 8.8 ± 0.1

θh, deg 4.8 ± 0.1 5.0 ± 0.1

xB 0.227 ± 0.003 0.238 ± 0.003

yB 0.45 ± 0.2 0.45 ± 0.1

〈n±〉 5.26 ± 0.06 7.66 ± 0.07

Eνµ
changed and where new particles can be created. But
the c.m. frame of the overall hadron system is scarcely
affected by a nuclear cascade since it is defined in terms
of the neutrino and muon parameters. It can be seen
from Table 2 that, within the statistical errors, Eν, Q2,
W, θh (angle between the momentum of the hadron sys-
tem and the beam axis), and yB take the same values for
cascade and cascade-free events.

2.2. Monte Carlo Model

Many theoretical effects of hadron fragmentation in
nuclear matter are discussed in the literature. These
include an increase in multiplicities, different produc-
tion rates for negative or strange particles [6, 19], the
energy loss of quarks before the formation of color-sin-
glet objects (constituent-formation time) [9], and time
evolution of color-singlet objects (“yo-yo” formation
time) [4]. It is difficult to test the theoretical ideas with-
out detailed model predictions. Unfortunately, there are
only a few models incorporating lepton–nucleus inter-
actions and rescattering occurring between product
particles and target spectators. For our analysis,
we   have chosen the VENUS 4.10 code [20, 21],
which  describes rescattering processes in a rather sim-
plified way.

In the VENUS package, the parton-fragmentation
process is simulated by using the ideas of classical
string theory embodied in the AMOR code (Artru
Menessier Off-shell Resonances). Here, the initial
string breaks up into substrings, and this process is con-
tinued until the mass of every string fragment becomes
smaller than some cutoff. These fragments are then
identified with resonances in accordance with their
masses and quark content. After the corresponding life-
time, a resonance decays into two or more daughter
particles. The VENUS package follows a complete
spacetime evolution of the string and its decay products
from the instant of string formation. This makes rein-
teractions possible at an early stage, before the string
fragmentation is completed. Reinteractions occur
mainly via fusion. Trajectories are assigned to all string
fragments and spectator nucleons. Whenever trajecto-
ries of two objects (string fragments, decay products,
clusters—results of previous fusions, spectator nucle-
ons) come so close together that the distance between
them is less than the sum of their sizes ri + rj, an inter-
action occurs. The scale of the distance of the closest
approach is given by the meson and baryon radii, rM
and rB, depending on the baryon number of the object.
An interaction event results in cluster formation. The
product cluster may interact again or may decay after
an appropriate time interval. In addition to rM and rB,
there is one more parameter describing rescattering, the
reaction time—that is, the time (in the comoving
frame) within which all interactions of a string (or a
string fragment) are forbidden. It is assumed to be dis-
tributed exponentially with a mean value τr. This time
affects most strongly whole strings, which would oth-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
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erwise interact immediately, and it is meant to be the
time it takes to perform a color exchange.

To sum up, a lepton–nucleus interaction in the
VENUS package is performed in the following way:
after the first stage, an elementary lepton–nucleon
interaction, the string fragments in a medium of target
nucleons. Slow hadrons from string decay, which are
close in momentum space to the spectator nucleons,
interact with these nucleons, fuse into moderately
excited resonances, and decay again into a baryon and
one or two hadrons. In this way, the multiplicity is
increased owing largely to additional nucleons. The
default value of τr is 1.5 fm/c, and the meson and
baryon radius are rM = 0.35 fm and rB = 0.65 fm; all
these values are tuned to reproduce better experimental
distributions. These parameters are not independent—
for example, the effect of increasing τr is similar to the
effect of decreasing rM or rB [21].

The inputs of our Monte Carlo calculations include
the actual neutrino-beam energy spectrum, the experi-
mental resolution, and the efficiencies of track mea-
surements in the bubble chamber; we also take into
account the Fermi motion of the nucleons in the
nucleus. The LEPTO 6.3 [22] program was used to gen-
erate W, the total energy of the hadronic system in its
rest frame (“string mass” in the VENUS model), and
the flavor of the struck quark. Only the leading-order
parton processes W ±q  q' are generated. The
VENUS program was used to simulate fragmentation
and rescattering processes. Nuclear evaporation and
breakup were not included in our model.

3. SEPARATION OF νN
AND INTRANUCLEAR CASCADE SAMPLES

A collision between a neutrino and a neon nucleus
can be considered as a two stage process: (i) the neu-
trino interacts with a single nucleon; (ii) particles pro-
duced in this elementary interaction have to move
through the nucleus and can rescatter on spectator
nucleons in the target nucleus, causing an intranuclear
cascade. In the case where a primary collision involves
a peripheral nucleon, product particles may leave the
nucleus without any interaction. Such events are simi-
lar to νp or νn interactions, apart from the fact that the
nucleon has a nonzero momentum due to the Fermi
motion of the nucleons in the nucleus. It will be shown
that these simple νN interactions can be separated by a
number of criteria. Let us consider these criteria and
their correlation in detail.

3.1. Target Mass

Taking into account the conservation of energy and

momentum and considering that Eν = pν = , we
find that the target mass Mt is given by

(6)

p||
i∑

Mt Ei Eν–∑ Ei p||
i–( ).∑= =
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The experimental distribution of Mt normalized to
unity is shown in Fig. 1a. In the case of νN interaction,
Mt = MN. Any additional interaction of product particles
with a nucleon increases Mt by MN. However, the distri-
bution of Mt is smeared out because of undetected neu-
tral particles and a wrong mass assignment of some
charged particles. This smearing is simulated for events
generated by the Monte Carlo method, and the results
are shown by lines in Fig. 1a. The shaded area repre-
sents the fraction of Monte Carlo events without a cas-

(1/Nev)dN/dMt

0.20
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0.10

0.05

0

rB = 0.65 fm, rM = 0.35 fm, τr = 1.5 fm/c

rB = 0.50 fm, rM = 0.40 fm, τr = 1.5 fm/c

rB = 0.65 fm, rM = 0.35 fm, τr = 3.5 fm/c
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(a)

(b)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Mt, GeV/c2
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Fig. 1. Criteria used to separate νN interactions from inter-
actions involving an intranuclear cascade: (a) target mass
Mt; (b) the sum of the longitudinal momenta in the rest

frame of the hadron system, ; and (c) correlation

between Mt and . The histograms in Figs. 1a and 1b are

normalized to unity. The curves represent the results of
Monte Carlo simulations using various rescattering param-
eters: the default values, the optimization from the study of
the E665 collaboration, and the optimization used in the
present analysis. The shaded area shows Monte Carlo events
involving no intranuclear cascade. In Fig. 1c, all three sets
of parameters give similar results; for this reason, we show
only the results corresponding to the third set.
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cade. One can see that, in the absence of an intranuclear
cascade, Mt lies in the region 0 < Mt < 1.5 GeV/c2 with
a maximum at Mt ≈ 0.7 GeV/c2. Because of this smear-
ing effect, the region Mt < MN is partly contaminated by
cascade events.

3.2. Sum of Longitudinal Momenta in the Rest Frame
of the Hadron System

In the c.m. frame of the hadron system, the total
momentum of particles produced in a νN interaction,

(7)

is equal to zero. Our  distribution is displayed in
Fig. 1b. The distribution is smeared for the above rea-
sons. Moreover, according to our Monte Carlo simula-
tion (shaded area for cascade-free events), the peak of
this distribution is shifted to 0.7 GeV/c. In the case of a
intranuclear cascade, particles produced in reinterac-
tions move in the negative direction in the hadron c.m.
frame; hence, the sum of the longitudinal momenta 
for such events is also negative.

3.3. Total Charge of the Hadron System

The electric charge of the hadron system,

(8)

can also be used to separate events with an intranuclear
cascade. If a neutrino interacts with a proton, the total
charge of the hadron system is Qtot = 2; if it interacts
with a neutron, then Qtot = 1. Any additional cascade
interaction with a proton increases the value of Qtot by
one, while an interaction with a neutron does not
change it. A problem associated with this method is that
it relies on a charge determination: in our data sample,
36% of events have at least one track with ∆p/p > 0.7,
and the determination of the charge for such a track
cannot be reliable. The mass of the target and the sum
of the longitudinal momenta are not affected to so great
an extent by tracks with large ∆p/p. 

3.4. Separation Criteria

Using these parameters, we have separated νN
events from νNe events involving an intranuclear cas-
cade. According to Monte Carlo calculations, the best
separation is obtained for the cut

(9)

The correlation between the first two criteria is
depicted in Fig. 1c. The dotted line corresponds to Mt =

0.9 GeV/c2. We notice that, for  > –1, events have
〈Mt〉  < 0.9 GeV/c2.

P||* p||*,∑=

P||*

P||*

Qtot qi,∑=

Mt 0.9 GeV/c2.<

P||*
The combination of cuts on Mt and  does not
improve separation of the two samples. Hence, all
events with Mt < 0.9 GeV/c2 are assumed to be “pure”
νN interactions, and the rest of the events are taken to
involve an intranuclear cascade. This selection gives
2188 νN events and 2288 cascade events. Let us define
the cascade fraction f as the ratio of the number of
events featuring a cascade to the total number of events:
f = 0.51 ± 0.01 (stat.).

To be sure that our results are stable to slight varia-
tions in the separation criteria, all the above was
repeated with other criteria (the fraction f of cascade
events is shown in parentheses):

Mt < 1 GeV/c2 ( f = 0.46),

|  – 0.7| < 2 GeV/c ( f = 0.53),

Mt < 1 GeV/c2 and |  – 0.7| < 4 GeV/c ( f = 0.47).

In the present analysis, we use only protons with
plab > 300 MeV/c. Meanwhile, slow protons make sig-

nificant contribution to Mt because, for them, Ei –  ≤
Ei – pi ≈ MN. As has already been noted in Subsection
2.1, this cut removes some of the protons that origi-
nated from an intranuclear cascade and has almost no
effect on protons from primary interactions (<0.2%).
Hence, there are two possible ways in which it can
affect our analysis: (1) make cascade events mimic cas-
cade-free events and reduce the fraction of cascade
events and (2) decrease the multiplicity of positive par-
ticles in cascade events. If no cut is imposed on the pro-
ton momentum, f becomes 0.60.

In our Monte Carlo simulation, the fraction f is var-
ied in a wide range, depending on cascade parameters.
Since the default values in the VENUS model (rB =
0.65 fm, rM = 0.35 fm, τr = 1.5 fm/c) overestimate the
cascade fraction, we attempted to increase τr to fit bet-
ter the experimental distributions. The dependence of
the fraction f on τr is shown in Fig. 2. There, the solid
line corresponds to the “actual” cascade fraction in
simulated events, points represent the fractions derived
by our method, and the area restricted by the dotted
lines shows experimental data with the statistical error.
The best agreement with the experimental data is
achieved for τr = 3–3.5 fm/c (which is about half the
diameter of the Ne nucleus) and the default values of
the meson and the baryon radius.

An optimization of rescattering parameters was per-
formed for muon–xenon interactions in the E665 col-
laboration study [23]. They varied the meson and the
baryon radius (to rM = 0.40 fm and rB = 0.50 fm) and
obtained a similar result—a reduction in the fraction of
cascade events in the Monte Carlo simulation. All three
sets of parameters are shown in Figs. 1a and 1b.

P||*

P||*

P||*

p||
i
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3.5. Cascade Fraction

It can be seen from Fig. 2 that our method of sepa-
ration underestimates the cascade fraction. This under-
estimation, which decreases with increasing τr, may be
due to slow protons, as was discussed in the preceding
subsection, as well as particle misidentification: a pro-
ton with plab > 1 GeV/c makes a smaller contribution to
Mt when assigned a pion mass. Our experimental data
corrected by using the data in Fig. 2 yield

(10)

All values are summarized in Table 2, which also
quotes some characteristics of the two data samples.

Measurements of the rescattering fraction were per-
formed for a deuteron in (anti)neutrino, pion, and pro-
ton beams (see [11] and references therein): fνD = 0.118 ±
0.010, fπD = 0.148 ± 0.006, and fpD = 0.189 ± 0.010. It
was found that f is smaller at low values of energy trans-
fer to the hadron system and becomes constant for
higher values. At the energies of the present experi-
ment, f is independent, within the statistical errors, of
the mass of the hadron system or of energy transfer, as
is shown in Table 3.

4. RESULTS
4.1. Charged-Hadron Multiplicities

Table 2 quotes mean charged-particle multiplicities
for cascade and cascade-free events, the difference
between them being 2.40 ± 0.09. In this section, we
study charged-hadron multiplicities as functions of W 2

and determine the differences of the multiplicities of
cascade and cascade-free events.

The mean charged-particle multiplicities for all νNe
events and for the isolated νN events as functions of W2

are plotted in Fig. 3. They are seen to follow straight
lines parallel to each other up to W 2 ≈ 400 GeV2. The
lines were fitted to

(11)

(solid lines), and the parameters of the fit are given in
Table 4, along with the results of previous lepton–had-
ron experiments. It can be seen that νNe and νN events
have the same slope and that these values are in agree-
ment with other neutrino experiments. The fact that the
total sample of νNe events and separated events involv-
ing no intranuclear cascade are characterized by the
same slope indicates that there is an excess multiplicity
due to the rescattering process and that this excess does
not depend on W 2: 〈n±〉νNe – 〈n±〉νN = 1.18 ± 0.06. In
[15], the difference between deuterium and hydrogen
targets varied between 0.3 and 0.5 and was attributed to
double-scattering effects.

Our νN data have a lower intercept A than νµD or
νµ p. This may be due to the difference in the separation
criteria (we excluded protons with plab < 300 MeV/c),
the different fractions of interactions with protons and
neutrons (in relation to νp data), and the method for

f 0.54 0.05 syst.( ) 0.01 stat.( ).±±=

n±〈 〉 A B W2ln+=
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
separating cascade-free events. The multiplicities of
Monte Carlo events tend to grow faster with W 2 and
have a smaller difference between interactions on Ne
and on a nucleon.

4.2. Comparison of Forward and Backward 
Multiplicities for Cascade and Cascade-Free Events

The multiplicities of charged particles for lepton–
nucleon interactions are different in the forward and in

Fraction of events with cascade
1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5
τr, fm/c

MC, Mt > 0.9 GeV/c2

Fig. 2. Fraction of events featuring intranuclear rescattering
versus the parameter τr in the Monte Carlo model. The solid
line shows the true fraction of cascade events in the simula-
tion, and points represent the fraction of events separated by
our method. Dashed lines restrict the area of experimental
data with a statistical error (Mt > 0.9 GeV/c2).

〈n±〉
10

8

6

4

2

0
102101 103

νNe
νNe(MC)

νN
νN(MC)

W 2, GeV2

Fig. 3. Mean multiplicities of charged secondaries, 〈n±〉 ,
versus W 2. The solid lines represent linear fits to experi-
mental data (the last points were not included in the fitting
procedure).

Table 3. Rescattering fraction (only statistical errors are quot-
ed) as a function of the mass of the hadron system, W (in GeV)

W f W f

2–4 0.52 ± 0.02 10–12 0.53 ± 0.02

4–6 0.52 ± 0.02 12–16 0.48 ± 0.02

6–8 0.49 ± 0.02 16–20 0.54 ± 0.03

8–10 0.52 ± 0.02 20–30 0.46 ± 0.06
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Table 4. Parameters of the linear fit 〈n±〉  = A + BlnW2

Reaction Intercept A Slope B W2 range, GeV2 Target References

νµNe 0.80 ± 0.18 1.38 ± 0.04 4–400 Ne This experiment

νµN –0.30 ± 0.17 1.36 ± 0.04 4–400 Ne This experiment

νµNe 0.37 ± 0.11 1.45 ± 0.03 4–400 Ne Monte Carlo

νµN –0.49 ± 0.12 1.48 ± 0.03 4–400 Ne Monte Carlo

νµD 0.05 ± 0.06 1.43 ± 0.02 4–140 D E545(Fermilab) [15]

νµp 0.37 ± 0.02 1.33 ± 0.02 4–350 H WA21(BEBC) [26]

νµp 1.35 ± 0.15 4–100 H Fermilab [16]

p 0.02 ± 0.20 1.28 ± 0.08 6–140 D WA25 (BEBC) [17]

n 0.80 ± 0.09 0.95 ± 0.04 2–140 D WA25 (BEBC) [17]

νµNF 0.06 ± 0.11 0.76 ± 0.03 4–400 Ne This experiment

νµNB –0.22 ± 0.10 0.56 ± 0.03 4–400 Ne This experiment

νµ –0.19 ± 0.11 0.81 ± 0.03 4–400 Ne This experiment

νµ 2.07 ± 0.19 0.59 ± 0.05 4–400 Ne This experiment

pF 0.22 ± 0.05 0.68 ± 0.02 4–140 D WA25 (BEBC) [17]

pB 0.56 ± 0.05 0.39 ± 0.03 4–140 D WA25 (BEBC) [17]

nF 0.22 ± 0.08 0.72 ± 0.03 4–140 D WA25 (BEBC) [17]

nB 0.80 ± 0.08 0.18 ± 0.04 4–140 D WA25 (BEBC) [17]

νµ

νµ

NF
casc

NB
casc

νµ

νµ

νµ

νµ
the backward hemisphere because a single quark and a
diquark fragment differently. In addition, particles pro-
duced in the forward hemisphere move faster relative to
nucleons in a nucleus; therefore, their contribution to
the intranuclear cascade must be different. For these
reasons, we study the multiplicities of charged particles
in the forward (xF > 0) and in the backward (xF < 0)
hemisphere separately. Figure 4 shows the mean multi-
plicities 〈n±〉F, B as functions of W 2 (a) for the total sam-

(a)

10 102 103

(b)

10 102 103

(c)

10 102 103

W 2, GeV2

〈n±〉

6

4

2

0

νNe With cascade

forward
backward

νN
E545(νD)

Fig. 4. Mean charged-hadron multiplicities versus W2 in the
forward (xF > 0) and in the backward (xF < 0) hemisphere
for (a) the entire data sample and for selected events (b) with
and (c) without a cascade. The solid lines in Fig. 1c are
approximations of the deuterium-target data from [15].
ple of νNe events, (b) for cascade events, and (c) for νN
events. As in the case of the overall multiplicities, each
one satisfies a linear approximation in the form 〈n±〉F, B =
A + BlnW2. For the complete event sample, 〈n±〉F and
〈n±〉B lie almost on one line; for the separated samples,
however, they diverge considerably. In cascade events,
the mean forward multiplicity 〈n±〉F is smaller than the
backward one, 〈n±〉B. On the other hand, the situation is
opposite for “pure” νN interactions: the mean forward
multiplicity exceeds the mean backward multiplicity in
the entire range of W 2 and shows a stronger increase
with energy. The data in Fig. 4 thus demonstrate the dif-
ference in the fragmentation of diquarks and single
quarks. The solid lines approximate the deuterium-tar-
get data from [15] and agree with our forward multi-
plicities, but they are systematically higher than our
backward multiplicities. The parameters of the linear fit
to νµN data with and without a cascade are given in
Table 4.

To investigate the effect of intranuclear rescattering
on the multiplicity as a function of W 2, we subtract
〈n±〉F, B for νN interactions from that of cascade events.
It can be seen from Fig. 5 that, in the forward hemi-
sphere, the multiplicities at all values of W 2 for cascade
events are nearly identical to those for cascade-free

events: 〈n±  – 〈n±  = −0.06 ± 0.04. In the backward
hemisphere, the multiplicity is higher by 2.36 ± 0.06 units

〉 F
casc 〉 F

N
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over a large region of W 2. The lines represent Monte
Carlo predictions, which slightly underestimate the
cascade multiplicity in the backward hemisphere. This
underestimation persists for all values of τr from 1.5 to
4.5 fm/c.

The corresponding difference between the negative

hadron multiplicities 〈n–  – 〈n–  has the same
behavior: it is close to zero in the forward hemisphere
and has an excess of 0.63 ± 0.03 units in the backward
hemisphere. If we do not exclude protons with plab <
300 MeV/c from our experimental-data sample or use
other criteria for separating cascade and cascade-free
events, the difference in the backward hemisphere var-
ies slightly, but it is always around zero in the forward
hemisphere.

In the separation of the forward and backward jets,
we arbitrarily use the selections xF > 0 and xF < 0, the
region of small xF being contaminated by resonance-
decay products, which may cross the hemisphere
boundary. To eliminate complications due to reso-
nances, we studied the difference of the multiplicities
between cascade and cascade-free events, excluding
the central region (|xF | < 0.05). The multiplicity differ-
ences behave very similarly to those in Fig. 5, with the
difference in the forward and in the backward hemi-
sphere being close to zero and ranging from 2.0 to
2.8 units over the entire W 2 region, respectively.

We can conclude that charged-hadron multiplicities
in the forward hemisphere take the same values for cas-
cade and cascade-free events and that nuclear effects
occur primarily in the backward hemisphere in the rest
frame of the hadron system.

4.3. Rapidity Distributions of Cascade and Cascade-
Free Events

Figure 6a shows normalized rapidity distributions
of charged particles for νN and cascade events. The dis-
tributions are normalized to the total number of events
for each data sample, so that the ordinate at any point
represents the mean multiplicity of product particles
per unit rapidity interval. We note that, for rapidity val-
ues of y > 1, the two distributions match very closely.
For negative rapidities, cascade events have signifi-
cantly larger multiplicities in the target-fragmentation
region.

The shape of the rapidity distribution is affected by
the mass misidentification of particles: the rapidities of
kaons and especially protons assigned a pion mass
increase by 0.5 to 2.0 units, this effect being more pro-
nounced for faster particles. But this fact does not alter
our analysis because, in the forward hemisphere, the
rapidity distributions for cascade events change in the
same way as the analogous distributions for cascade-
free events. In the backward hemisphere, protons are
rather slow, and the majority of these can be identified.

〉 F B,
casc 〉 F B,

N
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In Fig. 6b, we show the ratio R(y) of the normalized
rapidity distributions for cascade events to that for νN
interactions:

(12)

It can be seen from the figure that, in the target-frag-
mentation region, the ratio R(y) increases to a value of
ten. In the leading-quark-fragmentation region, this
ratio flattens around unity within the experimental
errors, showing equal mean multiplicities for cascade
and cascade-free events.

R y( )
1/Nev( )dn±/dy[ ] casc

1/Nev( )dn±/dy[ ] N

-----------------------------------------------.=

forward
backward

〈n±〉casc – 〈n±〉N

4

2

0

101 102

xF < 0

xF > 0

W 2, GeV2

Fig. 5. Difference of the forward (xF > 0) and backward
(xF < 0) multiplicities for the two data samples versus W 2.
The lines represent Monte Carlo predictions.
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Fig. 6. (a) Rapidity distributions of charged particles for
(solid line) cascade and (dashed line) cascade-free events
(in each data sample, the distributions are normalized to the
total number of events). (b) Ratio of the normalized rapidity
distributions for events featuring an intranuclear cascade to
those for cascade-free events. The results are depicted sepa-
rately for all charged particles and only for negative parti-
cles. The lines represent the results of our Monte Carlo cal-
culations.
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To avoid effects due to proton contamination, we
also show the rapidity ratio R–(y) for negative particles.
It is very similar to R(y), suggesting that our data are not
significantly affected by misidentified protons. Figure 6b
also shows Monte Carlo predictions for various values
of τr. They are in reasonable agreement with the exper-
imental data, although all of them underestimate the
cascade multiplicity in the far backward region. Varia-
tions in τr change the distribution only slightly.

The same analysis was performed for the data sam-
ple with all protons included and with different criteria
for separating νN and cascade events; the basic features
of the distribution of the ratio R(y) remain as before: it
increases up to around ten in the region of negative
rapidities and is around one in the quark-fragmentation
region.

A similar analysis of rapidity distributions for had-
ron interactions on nuclear targets was performed at
Fermilab [24] with π+/p/K+ beams of energy 200 GeV
and at CERN [25] with π+/K+ beam of energy 250 GeV.
The shape of the ratio R(y) for hadron–nucleus interac-
tions should be different from that for neutrino–nucleus
interactions, since the absorption of the spectator
quark(s) of a beam particle in nuclear matter can cause
depletion of the fastest particles and produce a plateau
at R(y) > 1 in the central rapidity region. Indeed, the
ratio in the projectile-fragmentation region was found
to be less than one, which in both experiments was
interpreted in terms of the loss of the leading-particle
energy in collisions within the nucleus. The Fermilab
experiment [24] also observed a plateau in the region
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Fig. 7. (a–c) Normalized rapidity distributions for the two
data samples and for three intervals of W 2. (d–f) Ratios of
the normalized rapidity distributions for the various inter-
vals of W 2. The areas between the lines correspond to
Monte Carlo predictions with statistical errors.

4 < W 2 < 50 GeV2

50 < W 2 < 120 GeV2

120 < W 2 < 700 GeV2
(2 < y < 4) with a value of R ≈ 2. In the target-fragmen-
tation region, the authors of [24, 25] observed that the
ratio for negative particles rises up to 10, in agreement
with our results.

The rapidity distributions become wider with
increasing W; for this reason, we separated W 2 into
three intervals with more or less equal numbers of
events and considered the ratio R(y) for each of these
intervals separately. It can be seen from Fig. 7 that, in
the region W 2 < 50 GeV2, this ratio is less than unity by
more than one standard deviation for y > 2, R(y) = 0.6 ±
0.1 (statistical error). At smaller y, R(y) flattens around
unity in the central region and peaks at y ≈ –2. For W 2 >
50 GeV2, R(y) = 1 within the statistical errors in the
quark-fragmentation region and begins to grow
between y ≈ –0.5 and y ≈ –1 in the target-fragmentation
region. We also note that the point where the R(y) dis-
tribution begins to grow moves toward smaller values
of rapidity with increasing W 2, but this rapidity region
always corresponds to the mean particle momentum in
the laboratory frame about 1 to 2 GeV/c.

The Monte Carlo model [21] reproduces the general
trend of the data, but it does not show the falloff in R(y)
at large y as seen for W 2 < 50 GeV2. Also, in all three
W 2 intervals, the model gives R(y) values in the target-
fragmentation region that are smaller than those that are
observed.

The depletion of leading particles at low W 2 is due
to interactions with target nucleons. With increasing
W 2, this depletion disappears because leading particles
become faster to such an extent that, at the instant of
their eventual formation, they have already escaped
from the nucleus. In an analysis of the ν/ Ne data from
BEBC, Burkot et al. [9] considered two possible rea-
sons for fast-hadron attenuation in nuclear matter: the
hadron-formation time (or “yo–yo” time) and the con-
stituent-formation time. The former, the time necessary
for hadron formation, increases with increasing hadron
energy owing to the Lorentz factor. Experimentally,
this means that the absorption of the fastest particles in
nuclear matter becomes less intense with increasing
energy. The constituent-formation time is the time that
elapses before the first hadron constituent appears via
the rupture of the color string; this time tends to
decrease with energy. If the cross section for single-
quark interactions is different from zero, the attenua-
tion of the fastest particle will not disappear at higher
energies. We have an indication of the hadron-forma-
tion time, but no attenuation of fast hadrons at higher
energies is observed within our statistics.

5. CONCLUSIONS

We have extracted two data samples for analysis:
neutrino–neon interactions with and without an intra-
nuclear cascade. The main results of our analysis are
the following:

ν
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(i) A method for isolating νN interactions in νNe
scattering has been developed. The fraction of events
involving an intranuclear cascade is about 54% and is
independent of the energy of the hadron system.

(ii) In the forward direction, the multiplicity of
charged particles for νN events is approximately iden-
tical to that for events featuring an intranuclear cascade,
this result being valid over a wide interval of W 2.

(iii) An intranuclear cascade adds 2.36 ± 0.06 units
to the backward-hemisphere multiplicity in the region
up to W 2 ≈ 400 GeV2.

(iv) The VENUS model [21] provides a reasonable
description of νNe interactions in the backward hemi-
sphere and, for W 2 > 50 GeV2, in the forward hemi-
sphere. Within this model, the observed fraction of
events involving intranuclear rescattering suggests a
reaction time in the range τr = 3.0–3.5 fm/c.
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Abstract—The spectra of π– mesons originating from pC, HeC, CC, and CTa collisions are analyzed in terms
of the light-front variables ξ and ζ. The angular and momentum distributions of π– mesons are studied in various

regions of the variables ξ± and ζ±. These distributions in the regions ξ+ <  and ξ+ >  do not admit a unified

description. In the region ξ+ < , the distributions in question are consistent with predictions of the statistical
model. The temperature parameter T decreases almost linearly with increasing product of the mass numbers of
colliding nuclei (that is, with increasing number of interacting nucleons). The distributions in the region ξ+ >

 are fitted to semiempirical forms. © 2000 MAIK “Nauka/Interperiodica”.
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An appropriate choice of kinematical variables for
studying observables is of great importance for clarify-
ing the properties of hadron–hadron interactions. By
studying π–p collisions at 5 and 40 GeV/c and colli-
sions at 22.4 GeV/c in terms of light-front variables, it
was found in [1–3] from an analysis of differential
invariant cross sections that the angular and momentum
distributions of secondary π– mesons have some special
features. In particular, these distributions proved to be
very different in two regions of the phase space that
were selected in terms of light-front variables.

In this connection, it is of interest to analyze the
inclusive spectra of π– mesons from relativistic
nucleus–nucleus collisions in terms of light-front vari-
ables. Here, we perform such an analysis, paying spe-
cial attention to the dependences of these spectra on the
mass numbers of the incident and target nuclei (Ai and
At, respectively).

The experimental data used here were collected
with the 2-m propane bubble chamber (PPK-500)
installed at the Laboratory for High Energies, Joint
Institute for Nuclear Research (JINR, Dubna), [4]. The
chamber, which housed tantalum targets of thickness
about 1 mm, was irradiated with protons and deuterons
and by relativistic He, C, F, and Mg nuclei of incident
momenta that varied between 2 and 10 GeV/Ò per pro-
jectile nucleon. Here, we analyzed π– mesons emitted
in pC, HeC, CC, and CTa collisions at an incident
momentum of 4.2 GeV/Ò per nucleon. Methodological

p p
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questions associated with processing and analyzing
data collected with the PPK-500 chamber are discussed
in [4, 5].

Let us consider an arbitrary 4-vector pµ = (p0, p) and
introduce the corresponding light-front variables p± =
p0 ± p3 [6], which are convenient in studying relativistic
composite systems (see [7–13] and references therein).
For a generic reaction A + B  C + X, we define the
scale-invariant quantities

(1)

where p± = p0 ± pz are the aforementioned light-front
variables for the particles A, B, and C (the z axis is
aligned with the collision axis, pz = p3). The variables
ξ± are seen to be invariant under Lorentz boosts along
the collision axis. In the c.m. frame of an NN collision,
we have

(2)

where  is the c.m. energy of such a collision; by con-
vention, the upper (lower) sign refers to particles trav-
eling in the forward (backward) hemisphere—that is, to
pz > 0 (pz < 0).

The invariant cross section in terms of the variables
(ξ±, p⊥ ) can be written as

(3)

ξ± p±
C
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The variables ξ± differ from the Feynman variable

xF = 2pz/  in that the region |ξ±| ≤ mC/  (near the
point ξ± = 0) is kinematically forbidden (the differential
cross section vanishes there) and in that ξ± distributions
of secondary particles show maxima at relatively small

values of ξ± that are denoted by  [1, 2].
In order to clarify the origin of these enhancements,

the angular and  distributions of secondary π–

mesons were separately plotted in [1, 2] for the regions

|ξ±| < | | and |ξ±| > | |. The angular distributions

proved to be very anisotropic in the region |ξ±| > | |

and nearly isotropic in the region |ξ±| < | |. In addition,

the  distributions for the two regions showed very
different slopes. These observations suggest that pions
populating two parts of the phase space that are sepa-
rated by the surfaces

(4)

have very different characteristics.
We note that, in the large-pz limit (according to the

commonly adopted terminology,  @  singles
out the fragmentation region), the variables ξ± reduce to
the well-known scale-invariant Feynman variable xF

and that, in the large-p⊥  limit (  @ ), these vari-

ables go over to x⊥  = 2p⊥ / .
For a further analysis of inclusive reactions in terms

of light-front variables, it is convenient to define [1, 2]

(5)

where the upper and the lower sign again refer to sec-
ondaries, respectively, with pz > 0 and pz < 0 in the c.m.
frame.

Within the approach outlined above, the reactions
p + C  π– + X, He + C  π– + X, C + C  π– +
X, and C + Ta  π– + X at 4.2 GeV/Ò per nucleon are
analyzed here in terms of the light-front variables. The
data on the reaction  + p  π± + X at 22.4 GeV/Ò [2]
are also quoted in Tables 1 and 2 for the sake of com-
parison.

The measured invariant differential spectra
(ξ±/π)(dN/dξ±) and (1/π)(dN/dζ+) are illustrated in Figs. 1
and 2, respectively. For all spectra of either type, the
positions of the maxima are seen to be virtually coinci-

dent (Table 1), these positions being denoted by  and

 for the former and the latter spectra, respectively.
For a further, more detailed, analysis and comparison
with theoretical hypotheses, we choose the reaction
C + C  π– + X. Since this reaction is symmetric, it

s s
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is sufficient to consider one hemisphere—in particular,
the right-hand one. For π– mesons emitted in the

regions ξ+ <  and ξ+ > , the squared-transverse-

momentum distribution dN/d  and the distribution
dN/dcosϑ with respect to the cosine of the emission
angle in the c.m. frame are plotted in Figs. 3 and 4,
respectively. Secondary π– mesons emitted into the

region ξ+ <  show a more anisotropic angular distri-
bution and a steeper squared-transverse-momentum

distribution than those emitted into the region ξ+ > .

The inclusive spectra of π– mesons emitted into the

region |ξ±| < | | were then fitted in terms of the Boltz-
mann distribution

(6)

In this region, the distributions (1/π)(dN/dζ),

ξ̃
+

ξ̃
+

p⊥
2

ξ̃
+

ξ̃
+

ξ̃
±

f E( ) e
E/T–

.∼

Table 1.  Results of fitting the distributions (1/π)(dN/dζ+),

dN/d , and dN/dcosϑ  of secondary pions in the region

ξ+ <  on the basis of expressions (7)–(9)

Reaction

Temperature T, MeV

  π± + X 2.0 119 ± 3 105 ± 1 86 ± 3

pC  π– + X 2.0 107 ± 15 89 ± 20 75 ± 7

HeC  π– + X 1.8 100 ± 4 99 ± 10 87 ± 3

CC  π– + X 1.9 93 ± 3 60 ± 4 72 ± 2

CTa  π– + X 2.0 71 ± 5 68 ± 10 64 ± 4

p⊥
2

ξ̃
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±

1
π
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dζ+
--------- dN
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d p⊥
2
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Table 2.  Results of fitting the distributions dN/d  and

(1/π)(dN/dζ+) of secondary pions in the region ξ+ >  on
the basis of expressions (13) and (14)

Reaction

α β1, 
(GeV/c)–2

β2,
 (GeV/c)–2 n

  π± + X 0.8 ± 0.3 6.0 ± 0.1 2.8 ± 0.3 3.7 ± 0.1

pC  π– + X 0.9 ± 0.1 11.3 ± 2.4 3.0 ± 1.5 3.8 ± 0.2

HeC  π– + X 0.9 ± 0.1 7.8 ± 1.1 0 3.8 ± 0.2

CC  π– + X 0.66 ± 0.04 24.0 ± 3.1 6.7 ± 0.4 3.8 ± 0.2

CTa  π– + X 0.8 ± 0.3 11.9 ± 3.0 4.9 ± 3.0 4.4 ± 0.3

p⊥
2

ξ̃
+

dN

d p⊥
2

--------- 1
π
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Fig. 1. Distributions (ξ±/π)(dN/dξ±) for the reactions (‡) p + C  π– + X, (b) He + C  π– + X, (c) C + C  π– + X, and
(d) C + Ta  π– + X.
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In the region ξ+ < , the distributions (1/π)(dN/dζ),

dN/d , and dN/dcosϑ , were approximated by expres-
sions (7), (8), and (9), respectively. The results of this
approximation are presented in Figs. 2–4 and in Table 1.

In the region ξ+ > , the above parametrizations
lead to unsatisfactory results. There, the distributions
dN/dp2 and (1/π)(dN/dζ) were approximated as

(13)
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(We note that these parametrizations fail in the region

ξ+ < .) In the limit ξ+  1, the last parametrization
corresponds to the well-known xF distribution predicted
by the quark–parton model in the form of (1 – x)n,

where x = 2pz/ . The fitted values of the parameters
α, β1, β2, and n are listed in Table 2, and the correspond-
ing fits are depicted by dashed curves in Figs. 2 and 3.

In the region ξ+ < , the fits to the observed distri-

butions (1/π)(dN/dζ), dN/d , and dN/dcosϑ  on the
basis of expressions (7)–(9) predicted by the statistical
model show (see Table 1) that the temperature T
decreases with increasing number of nucleons involved
in the reaction A + B  π– + X. To illustrate this, the
T values deduced from the above fit to the distribution
(1/π)(dN/dζ) is plotted in Fig. 5 as a function of
(AiAt)1/2. In all probability, the reduction of the temper-
ature with increasing number of interacting nucleons is
due to the growth of mean multiplicity, in which case a
secondary receives a smaller fraction of primary
energy.

In the future, it would be of interest to analyze and
compare the characteristic temperatures for various
nucleus–nucleus, nucleon–nucleus, and lepton–
nucleon collisions at various energies.
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Fig. 2. Distributions (1/π)(dN/dζ+) for the reaction C +

C  π– + X in the regions (×) ξ+ <  and (w) ξ+ > .
The solid and the dashed curve represent fits on the basis of,

respectively, expression (7) for ξ+ <  and expression (14)

for ξ+ > .
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Fig. 3. Distributions dN/d  for the reaction C + C 

π– + X in the regions (×) ξ+ <  and (w) ξ+ > . The solid
and the dashed curve represent fits on the basis of, respec-

tively, expression (8) for ξ+ <  and expression (13) for

ξ+ > .
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We may conclude that, for nucleus–nucleus colli-
sions, in just the same way as for hadron–hadron colli-
sions [1, 2], an analysis of inclusive spectra of π–

mesons in terms of the light-front variables (ξ±, ζ±)
reveals that the angular and transverse-momentum dis-
tributions of secondary pions are very different in the

kinematical regions |ξ±| < | | and |ξ±| > | |. That the
maxima in the distributions with respect to the vari-
ables ξ± and ζ± single out two regions where secondar-
ies behave so differently may suggest that the produc-
tion mechanisms are different in these two regions.
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Abstract—For   (γ) processes induced by polarized incident particles, exact covariant expres-
sions for the energy spectrum of one of the emitted fermions, for the total cross section, and for the polarization
asymmetry are obtained in the α3 order of QED. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

A correct interpretation of observables in modern
elementary-particle physics requires taking into
account radiative corrections. In this respect, fermion–
antifermion annihilation into two other fermions,

(1)

has received the most detailed study both in the Stan-
dard Model and beyond it [1]. But even for this simple
process and even at the QED level, an analytic calcula-
tion of radiative corrections is very cumbersome. The
problem is pressing, however, since, the inclusion of
QED corrections as a background to finer physical
effects is of prime importance. In the case being consid-
ered, the main difficulty is presented by hard-photon
bremsstrahlung (R contribution)

(2)

where pi (i = 1, …, 5) are the particle momenta, and ξ±
are the incident-fermion polarization vectors. We now
know only one study, that reported in [2], where the
authors were able to calculate analytically the correc-
tions under discussion, retaining nonzero particle
masses, but they disregarded polarizations.

In recent years, plans for constructing linear e+e–

and µ+µ– colliders have been widely discussed in the lit-
erature [3, 4], where a great deal of attention has been
given to the possibility of creating polarized beams.
With an eye to this possibility, we calculate here, fol-
lowing the same lines as in [2], the energy spectrum of

one of the fermions emitted in   (γ) pro-
cesses and the total cross section for such processes,
taking into account arbitrary polarizations of incident

f 1 f 1 f 2 f 2,+ +

f 1 p1 ξ–,( ) f 1 p2 ξ+,( )+

f 2 p5( ) f 2 p3( ) γ p4( ),+ +

f 1 f 1 f 2 f 2

1) Belarus State University, Minsk, Belarus.
1063-7788/00/6309- $20.00 © 21589
particles. The resulting expressions prove to be much
more cumbersome in this case, and additional difficul-
ties arise in relevant integrations. The calculation
would hardly be possible without invoking systems for
analytic computer transformations. Thus, the problem
of automating the calculations of radiative corrections
becomes very acute (see, for example, the review arti-
cle of Harlander and Steinhauser [5]). We have intro-
duced some refinements in the method of tensor inte-
gration (see [6]), obtained a convenient representation
for the polarization vectors, and developed a REDUCE
code that performs a major part of the calculations.

Corrections associated with the exchange of an
additional virtual photon (V contribution) are known
exactly (see, for example, [7]). We only note that they
factorize in front of the Born cross section and that all
contributions to them, with the exception of the anom-
alous-magnetic-moment and two-photon-exchange
contributions are independent of polarizations. How-

ever, the total cross section for   (γ) QED
processes is a ë-even quantity; therefore, the two-pho-
ton-exchange diagrams and the interference of the dia-
grams describing bremsstrahlung from the initial and
from the final particles do not contribute (see [2, 7]). We
tested our calculations by requiring that these contribu-
tions vanish. We eliminated an infrared divergence by the
Bardin–Shumeiko covariant method [8] (see also [9]).

The ensuing exposition is organized as follows. In
Section 2, we introduce the required notation and rep-
resentations for the polarization vectors. In Section 3,
we describe an improved technique of tensor integra-
tion. In Section 4, we present exact expressions to order
α3 for the polarization parts of the fermion energy spec-

trum and of the total cross section for  

(γ) QED processes.

f 1 f 1 f 2 f 2

f 1 f 1

f 2 f 2
000 MAIK “Nauka/Interperiodica”
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2. KINEMATICS AND NOTATION

We begin by introducing the notation

(3)

In the c.m. frame, we have

In performing tensor integration and in obtaining
exact expressions for the polarization vectors, we use
Gram determinants [10] and more general notation for
them that is based on the generalized Kronecker symbols
[11]. We restrict our consideration to the interesting case
of four-dimensional space and set ε0123 = –ε0123 = 1 for
the sake of definiteness. By way of example, we indi-
cate that the nonsymmetric fourth-order Gram determi-
nant constructed from the vectors pi and some 4-vectors
qi (i = 1, …, 4) can be represented as (here, we use a
convenient notation for contractions of vectors)

If a generalized Kronecker symbol involves less than
four momenta, then

A more detailed discussion for the case of n dimensions
can be found in [11]. Below, we will need a condensed
notation for the following Gram determinants:

(4)

Let us express the phase space of reaction (2) in
terms of four independent invariant variables as

(5)

q p1 p2, S+ q
2
, Q p5 p3+( )2

,= = =

X 2 p3q, t 2 p1 p3, SX S X– 2 p5 p4,= = = =

v 2 p3 p4, z 2 p1 p4, z 2 p2 p4,= = =

Xt X t, St– S t, τ– SX M
2
,+= = =

λS S
2

4m
2
S, λ X– X

2
4M

2
S.–= =

t
X
2
----

λSλ X

2S
---------------- p1 p3, Xcos– 2 S p30.= =

G
p1 p2 p3 p4

q1 q2 q3 q4 
 
 

=  ε
α1α2α3α4εβ1β2β3β4

pα1
pα2

pα3
pα4

q
β1q

β2q
β3q

β4–

=  ε
p1 p2 p3 p4εq1q2q3q4

– δq1q2q3q4

p1 p2 p3 p4.=

δq1…qm

p1… pm ε
p1… pmαm 1+ …α4εq1…qmαm 1+ …α4

/Γ 5 m–( ).–=

∆2 δp1 p2

p1 p2 λS/4, ∆3– δp1 p2 p3

p1 p2 p3, ∆4 δp1 p2 p3 p4

p1 p2 p3 p4,= = = =

∆v δq p3 p4

q p3 p4, ∆k δp1 p2 p4

p1 p2 p4, ∆pk δp1 p2 p3

p1 p2 p4.= = =

dΓ∫ π
4 λS

------------ X t Q
zd

4 ∆4–
----------------,
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∫d

Qmin
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∫d

tmin

tmax

∫d

2M S

S

∫=
where the limits of integration are given by

(6)

For the polarization vectors, we introduce the repre-
sentation

(7)

which is similar to that which was used in [12] and
which relied on an expansion of the polarization vec-
tors in a specially chosen basis in four-dimensional

space. The quantities , , and  are the degrees
of various particle polarizations (longitudinal, trans-
verse, and orthogonal, respectively) defined with

respect to the plane of  emission as the following
projections of the particle polarization vectors: PL is the
projection onto the z axis aligned with the f1-beam
direction; PT is the projection onto the x axis lying in
the plane determined by the z axis and the direction of

 emission; and P⊥  is the projection onto the y axis.

Often, the degrees of transverse polarization ( ), one
of the azimuthal angles of the polarization vectors (ϕ±),
and their difference (∆ϕ) are used instead of the vari-

ables  and , which are expressed as

(8)

As is obvious from (5), integration with respect to the
azimuthal angle ϕ (which can be identified with one of
the angles ϕ±) has already been performed (this integra-
tion yielded the factor 2π) because, upon the substitu-
tion of the expansions for the tensor integrals (see Sec-
tion 3) into the integrand, we arrive at an expression
where the degree of transverse polarization appears
only in the combination

(9)

which is independent of ϕ. Here, we have used repre-
sentation (7) and taken into account Eq. (8).

3. TECHNIQUE OF COVARIANT INTEGRATION

In order to calculate the total cross section, it is nec-
essary to perform integration over the phase space of

tmin max( )
X
2
----

λSλ X

2S
----------------,+−=

Qmin max( )
M

2
S

τ
----------

SX

2τ
----- X λ X+−( ),+=
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4
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the emitted photon and antifermion. Expressions
involving the scalar products p3ξ± and p4ξ± lead to the
vector and tensor integrals (which are later contracted

with the vectors )

(10)

where A is a relevant function of invariant variables.
We applied a refined technique of tensor integration

using the basic ideas of the algorithm proposed in [11]
for reducing one-loop tensor integrals.

Let us consider the determinant

For , we then have

(11)

where

(12)

If we substitute (11) into the vector integral [ ], the

term that involves  does not contribute, because

[ ] is expressed in terms of a linear combination of
the remaining free vectors p1 and p2 and because

 is orthogonal to either of these. Similarly, we

can consider the vector  (it is only necessary to
replace the subscript 3 by 4). For the vector integrals,
we therefore arrive at

(13)

Let us consider the product

Since the integral [ ] can eventually be repre-

sented as the sum of terms proportional to  (i, j =
1, 2) and gµν, we again conclude that terms linear in δ
make zero contribution. As to the integral

[ ], it can be proportional only to the pro-

jection operator . The proportionality factor

is easily calculable. By considering [ ] and
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µ

p3
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µ
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µ
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δp1 p2 p3

p1 p2µ
p3

µ∆2 p1
µδp3 p2

p1 p2– p2
µδp3 p1

p1 p2.–=

p3
µ

p3
µ

P3
µ δp1 p2 p3

p1 p2µ
/∆2,+=
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[ ], we similarly arrive at

(14)

The calculation of the squared matrix element and
four analytic integrations were performed by using a
code based on the REDUCE system for analytic trans-
formations. Instead of calculating the form in (10) for
each individual function A, we substituted (13) and (14)
into the general expression for the squared matrix ele-
ment and contracted it with the polarization vectors (7).
The ensuing calculation of the resulting scalar integrals
was performed in a conventional way by substituting
the table of z, Q, t, and X integrals. The majority of the
integrals were calculated in [13], but a few new inte-
grals have appeared owing to the inclusion of polariza-
tion in our consideration.

The expressions for the energy spectrum are
obtained as an intermediate result upon performing
integration with respect to z, Q, and t.

In order to calculate the total cross section for

  (γ) processes to order α3, it is neces-
sary, in addition to performing integration with respect
to X in the finite part of the R contribution, to take into
account the V contribution and the soft-photon-emis-
sion contribution, which we consider on the basis of the
covariant method developed in [8]. The code performs
integration of all contributions to the total cross section,
producing a result free from infrared divergences.

4. RESULTS OF THE CALCULATIONS

The final expression for the energy spectrum of one
of the final fermions has the form

(15)

where

p3
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g
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p3
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2
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g
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.+=
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(16)

(17)

Qi (Qf) are the charges of the initial (final) fermions in
the positron-charge units; and

∆SL x( )
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S
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2
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Here, x and βx are, respectively, the c.m. energy in units
of E (energy of colliding particles) and the c.m. velocity
of one of the final fermions; βf is its maximum velocity;
and β is the velocity of colliding particles. Exact
expressions for the functions SI (x) and SF(x) can be
found in [2] [Eqs. (6) and (7)].

We can see that the part generated by the transverse
polarization is proportional to the mass of the incident
particles, and we include it here merely to demonstrate
the feasibility of an exact calculation. The polarization
structure of radiation from the final state is very sim-
ple—it is completely described by the bracketed factor
in expression (15). The functions ∆SL(x) and ∆Str(x) rep-
resent a new result. They characterize the deviation
from the aforementioned proportionality for radiation
from the initial state. These functions do not contribute
to the infrared divergence for x  1. In the ultrarela-
tivistic approximation (ρ, ρf ! 1), ∆SL(x) assumes the
form

(18)

It can be seen from Fig. 1‡ that the difference
between the exact and approximate results for ∆SL(x) is
insignificant.

Following [6], we can introduce yet another observ-
able—the asymmetry in the spin flip of one of the initial
particles (this asymmetry determines the polarized part
with respect to the unpolarized one),

(19)

where

Substituting (15) into (19) and neglecting the trans-
verse polarization, we arrive at

(20)

where

(21)

In other words, radiation from the initial state—more
precisely, the function ∆SL(x)—determines primarily
the difference of the asymmetry and A0 at high ener-
gies. Figure 1b displays a typical x dependence of the
asymmetry and the difference of the exact and the
approximate expressions. The asymmetry is seen to
tend to unity for x  1; this is due to the infrared
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divergence of the functions SI (x) and SF (x) in the
denominator on the right-hand side of (20). The curve
slowly approaches unity with increasing energy {in the
high-energy limit, doubly logarithmic terms vanish in
∆SL(x) [see (18)]}.

To order α3, the total QED cross section for

  (γ) processes induced by polarized par-
ticles has the form

(22)

where

is the unpolarized part of the Born cross section, while

are the parts of the Born cross section that are generated
by, respectively, the longitudinal and the transverse part
of incident-particle polarization.

The corrections δa , δp, and δtr are given by
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(24)

f 1 f 1 f 2 f 2

σ σa PL
+
PL

– σp Ptr
+
Ptr

– ∆ϕσtrcos+ +=

=  σa
0

1 δa+( ) PL
+
PL

– σp
0

1 δp+( )+

+ Ptr
+
Ptr

– ∆ϕσtr
0

1 δtr+( )cos

=  σa
0

PL
+
PL

– σp
0

Ptr
+
Ptr

– ∆ϕσtr
0

cos+ +( ) 1 δa+( )

+ PL
+
PL

– σp
0∆δp Ptr

+
Ptr

– ∆ϕσtr
0 ∆δtr,cos+

σa
0 σ0

β f

β
----- 1 2ρ+( ) 1 2ρ f+( )=

σp
0
 = σ0

β f

β
----- 1 2ρ–( ) 1 2ρ f+( ), σtr

0
 = σ0

β f

β
-----ρ 1 2ρ f+( )

δa δI δF δVP, δp+ + δa ∆δp,+= =

δtr δa ∆δtr,+=

δI
α
π
---Qi

2 1
2
--- 1 β2

+
β

--------------L β( ) 2–
β f

4

ρ f
2ρ

---------ln




=

–
4L β f( ) βL β( ) 1–[ ]

β f 3 β2
–( ) 3 β f

2
–( )

---------------------------------------------

+
1 β2

+
β

-------------- Li2
2β

β 1–
------------ 

  Li2
2β

β 1+
------------ 

 – π2

2
-----+

+
2
3
--- 1 2

1 β2
–

3 β2
–

--------------
 
 
  3 2β f

2
–

3 β f
2

–
------------------

 
 
 

+

–
L β( )

3β 3 β2
–( )

------------------------- 1
1 β2

–( )
3 β f

2
–( )

------------------- 24 + 9β2
2β f

2
– 5β2β f

2
–( )+





,

∆δp
α
π
---Qi

2 1

β2
1 β2

+( )
------------------------- 3

2
--- L β( )

β
------------





=

PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
(25)

(26)

and Li2(x) = – .

The correction δa (23) corresponds to the absence of
polarization. It includes the quantities δI  (δF) appearing
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Fig. 1. (a) Function ∆SL(x) and (b) asymmetry A(x, ρ, ρf) for

the process   e+e–γ at E = 16 GeV versus x accord-
ing to the (solid curves) exact and (dashed curves) approxi-
mate calculations.
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to be the sum of the factorized parts of the R contribu-
tion, the contributions of the vertex functions for the
initial (final) particles (see [2]), and the vacuum-polar-
ization contribution δVP (see, for example, [7]). The
corrections δI and δF were obtained in [2] [Eqs. (12) and
(13)]. Our expression for δI differs slightly from eq.
(12) presented in [2]: our denominator of the last term

in (24) contains 3 –  instead of 2(3 – ). Among
new results, we can indicate deviations of the polariza-
tion corrections from δa as represented by the expres-
sions for ∆δp and ∆δtr. Like the energy spectra, they are
generated by the radiation from the initial state exclu-
sively. In the ultrarelativistic approximation, we have

(27)

(28)

where Lm = ln  and LM = ln . As in the cases of

, the part associated with the transverse polarization

is of merely theoretical interest because of the small-

ness of . The spin-flip asymmetry can be introduced
for the longitudinal polarization as well:

(29)

β f
2 β f

2

∆δp
α
π
--- 2LM– 16

3
------+ 

  ,=

∆δtr
α
π
--- LmLM–

25
6
------Lm 2LM

22
3
------–+ + 

  ,=

S

m
2

------ S

M
2

-------

dσ
dX
-------

σtr
0

A ρ ρ f,( ) 1

PL
+
PL

–
-------------σ↑↑ σ↑↓

–

σ↑↑ σ↑↓
+

-----------------------
σp

σa

------= =

=  A0

1 δp+
1 δa+
-------------- A0 1 δA+( ).=

–4 –2–6–8

–2

–4

–6

–8

mτ

δA, %

logρf

mµme

Fig. 2. Radiative correction δA as function of the final-fer-

mion mass for   (γ) processes at E = 2 GeV. The
dashed curve represents the approximate value of δA.

p p f f
Here, the Born asymmetry A0 and the correction to it,
δA, are given by

(30)

Figure 2 displays the difference of the exact and the
approximate values of δA. The difference is noticeable
only near the threshold.

5. CONCLUSION

Thus, we have obtained exact QED expressions to
order α3 for the energy spectrum of one of the final fer-

mions in   (γ) processes involving mas-
sive fermions, as well as for their total cross sections
and the corresponding polarization asymmetries. Our
calculations extend the results obtained in [2] to the
case of arbitrarily polarized incident particles, an
improved method for tensor integration and the use of
computer systems for analytic transformations playing
a key role in our derivation.
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Abstract—The differential and total cross sections for the photoproduction of vector D* mesons and for their
production in deep-inelastic interactions at the HERA collider are estimated on the basis of a model motivated
by perturbative calculations within QCD. The proposed model makes it possible to take into account higher
twists in the meson transverse momentum at pT ~ mc and to reproduce correctly the dominance of c-quark frag-
mentation for pT @ mc. The possibility of the hadronization of an octet  state into a meson is considered,
whereby good agreement with experimental data is obtained both for the case of D*-meson photoproduction
and for the case of D*-meson formation in a deep-inelastic process. © 2000 MAIK “Nauka/Interperiodica”.

cq
1. INTRODUCTION

In connection with the emergence of new data on
charm photo- and electroproduction that were obtained
by the ZEUS ([1]) and H1 ([2]) collaborations from
experiments at the HERA collider, there arises the
question of interpreting these data within perturbative
QCD (pQCD). This point is of importance because,
along with a confirmation of qualitative pQCD predic-
tions, glaring quantitative discrepancies between the
measured cross sections and their theoretical estimates
are observed in some kinematical domains—in particu-
lar, discrepancies in the shapes of the D*-meson spectra.

The use of perturbation theory in such processes is
firmly justified by the high D*-meson transverse
momenta involved, pT ≥ mc. At the same time, nonper-
turbative effects cannot be eliminated from the calcula-
tions completely, and the hadronization of c quarks
formed in a hard collision of initial partons is described
in terms of the fragmentation function D(z, µ), where
the parameter µ specifies the factorization scale for the
perturbative subprocess and the scale of the quark bind-
ing energy in a hadron, this binding energy being deter-
mined by the dynamics of confinement.2) Information
about the nonperturbative fragmentation function is
extracted from data on charm production in e+e– annihi-
lation [3, 4]. The µ dependence of the fragmentation
function is determined by the leading-logarithm
approximation in QCD (leading order abbreviated as
LO) and by corrections to it in the next-to-leading order
(NLO) and in the order next to the NLO (NNLO) [4].

1) Institute of Nuclear Physics, Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia.

2) Although the evolution of parton distributions in response to
variations in the factorization scale for structure functions can be
considered within pQCD, a description of these distributions in
the initial state appears to be yet another realm where it is neces-
sary to invoke phenomenological parametrizations because of a
nonperturbative character of interactions.

* e-mail: kiselev@mx.ihep.su
1063-7788/00/6309- $20.00 © 1595
In calculating the cross section for heavy-quark pro-

duction to O(α ) terms, some authors disregard the
dependence of D(z, µ) on µ ~ pT in the hadronization
process [5]. In other studies, this additional dependence
in the fragmentation function was taken into account in
the NNLO [6]. The input fragmentation function at µ =
µ0 ~ 1 GeV was taken either in the form of ansätze based
on the reciprocity relation [7] or in the form proposed for
the fragmentation function by Peterson et al. [8].

At present, two approaches are used in pQCD to cal-
culate the cross section for -pair production to

O(α ) terms. In one of these, it is assumed that only
light quarks and gluons are present in the photon or in
the proton as partons and that c quarks are produced as
the result of light-parton interactions. The finite c-quark
mass is taken into account in this approach [5].

In the other approach, a c quark appears to be an
extra active flavor. There, the c quark is assumed to be
massless, and the c-quark component of initial particles
is taken into account in the form of relevant structure
functions [6, 9].

In either case, the hadronization of c quarks is
described within the fragmentation model in terms of
the convolution of the perturbative distribution of c
quarks and the fragmentation function; that is,

(1)

where Dc → D* (z, µ) is the fragmentation function nor-
malized to the probability of the c-quark transition into
a D* meson {this probability, w(c  D*) = 0.22 ±
0.014 ± 0.014, was determined from data on e+e– anni-
hilation [3]} and µ is the factorization scale for the per-
turbative parton cross section /dkT.

α s
2

cc

α s
2

dσD*

d pT

------------ dσ̂cc kT µ,( )
dkT

---------------------------
kT

pT

z
------=

2 pT / ŝ

1

∫
Dc D*→ z µ,( )

z
-------------------------------dz,=

dσ̂cc
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The condition pT @ mc or  @ mD, which leads to
a jet character of events, plays a key role in the ideology
of the fragmentation of a heavy c quark. However, a
dominant contribution to the total number of events
comes from the region around pT ~ mc, where the model
specified by equation (1) is inapplicable.

In our model, which is based on pQCD, we describe
the formation of a  state, which reproduces, accord-
ing to the assumption of semilocal duality [10], the
hadron distribution, apart from a factor dependent on
the  and hadron quantum numbers. For this purpose,
we consider the total set of Feynman diagrams corre-
sponding to the formation of a  system in the leading
order in α and αs. Not only does this procedure enable
us to describe correctly the formation of D mesons at
pT ~ mc, but it also reproduces faithfully the results that
arise in the fragmentation model for pT @ mc.

2. FRAGMENTATION FUNCTION
One of the known parametrizations of the fragmen-

tation function (it was introduced within the model pro-
posed by Peterson et al. [8]) has the form

(2)

where N is a normalization factor and e is a free phe-
nomenological parameter; it can be assumed that this
parameter is dependent on µ. This fragmentation func-
tion describes fairly well experimental data on B- and
D-meson production in e+e– annihilation at high ener-
gies, in which case the fragmentation mechanism is
dominant.

According to the argument presented by the authors
of the parametrization in (2), the z dependence in this
expression is determined primarily by the propagator
for the heavy c quark. We will discuss this point in
some detail. We denote by PD* the momentum of the
product D* meson and by Pjet the momentum of the jet
accompanying it. The denominator of the perturbative
propagator can then be written as

mcc

cq

cq

cq

D z( ) N

z 1 1
z
---– e

1 z–( )
----------------– 

  2
--------------------------------------------,=

mc
2 PD* Pjet+( )2.–

γ*, Z

D*

u

c–

Fig. 1. Leading-order diagram for D*-meson production in
the reaction e+e–  γ*, Z  D* + X.
By expanding this expression in powers of the small
parameters mD*/ED* and mjet/Ejet and considering that
z = ED*/(ED* + Ejet), we obtain

Although N and e appear in (2) as phenomenologi-
cal parameters, it is clear that e has the meaning of the
square of the ratio of the jet mass to the quark mass and
that this ratio increases logarithmically with increasing
energy of an e+e– collision.

By consistently analyzing heavy-quark fragmenta-
tion with allowance for the quantum numbers of final-
state mesons and for the QCD structure of the vertices
of the diagram in Fig. 1, the authors of [11] obtained the
analytic expression

(3)

where r = mq /(mq + mc) and

In the nonrelativistic potential model, the last expres-
sion reduces to the square of the wave function at the
origin for two heavy quarks: 〈O(1)〉|NR = |Ψ(0)|2. The
effective mass of the light quark, mq, determines both
the form and the normalization of the fragmentation
function; that is,

(4)

where

(5)

In our model, we assume that the fragmentation proba-
bility w(c  D*) is independent of the scale µR, so
that this probability w can be treated as a strictly fixed
quantity, which is determined from experimental data
(see above).
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In the fragmentation model being considered, the
heavy-quark virtuality is given by

so that r2 ≈ e. By choosing appropriately the parameters
mq and mc, we can ensure that the behavior of the frag-
mentation function in (3) becomes similar to the behav-
ior of the fragmentation function in (2). The aforemen-
tioned logarithmic dependence of the parameter e in the
near-threshold region, where ln(pT/mc) ~ 1, can be dis-
regarded.

3.  PHOTO- AND ELECTROPRODUCTION

It was shown above that, in the case of e+e– annihi-
lation, it is possible to obtain a reliable description of
the inclusive cross section for charm production by
using perturbative calculations with nonzero light-
quark mass. Here, all calculations amount to evaluating
the contribution of one diagram in the special axial
gauge (see Fig. 1) [11]. The number of diagrams con-
tributing to other reactions is much greater. The full set

of O(α ) diagrams for the process gγ*  D* is dis-
played in Fig. 2. In this set (here, the initial photon is
real in the case of photoproduction and virtual in the
case of deep-inelastic interaction), there are diagrams
(for example, diagrams 16 and 19) in which  produc-
tion to order αα s is followed by heavy-quark fragmen-

tation to order . The contribution of these diagrams
is dominant in the kinematical region pT @ mc, where
they reproduce the predictions of the fragmentation
model specified by equation (1).

In order to demonstrate this, we consider suffi-
ciently high energies of the gγ* subprocess and com-
pare the asymptotic expression for the full set of dia-
grams3) in the high-pT limit with the predictions of the
fragmentation model specified by equation (1), where

/dk is the cross section for the production of a 
pair in the Born approximation (that is, in order αα s).
From Fig. 3, it can be seen that, at pT . 12 GeV, the fac-
torization hypothesis is valid, so that the differential
cross section can be represented in the form (1). For
pT < 12 GeV, the fragmentation model is inapplicable
since this region is dominated by the contribution of
diagrams that are different from the fragmentation dia-
grams and which involve the independent production of

 and  pairs—we will refer to such diagrams as
recombination diagrams (these include diagrams 5, 6,
and 7 in Fig. 2). In the region pT @ mc, the contribution

3)A technique that can be used to evaluate numerically such dia-
grams within pQCD is described in [12].

mc
2 PD* Pjet+( )2 mD*

2 1 r–( )2 1
z
---– r2

1 z–
-----------–≈–

=  
mD*

2

z 1 z–( )
------------------ 1 1 r–( )z–[ ]2,–

cc

α s
3

cc

α s
2

dσ̂cc cc

cc qq
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of these diagrams to dσ/d  decreases in proportion to

~1/ , in contrast to the contribution of the fragmenta-

tion diagrams showing the 1/  behavior. Thus, the

pT
2

pT
6

pT
4

Fig. 2. Leading-order QCD diagrams for the production of
a  state in gγ* interactions.cq

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

dσgγ/dpT, nb/GeV

100

10–1

10–2

10–3

0 4 8 12 16 20
pT, GeV

Fig. 3. Transverse-momentum distribution of the cross sec-
tion for D*-meson production in gγ interactions at 40 GeV
(upper curve) along with the relevant prediction of the frag-
mentation model (lower curve).
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inclusion of the recombination diagrams enables us to
take into account the contribution of higher twists in the
transverse momentum.

It should be emphasized that perturbative calcula-
tions for the production of  systems can describe the
region around pT ~ mc, provided that the effective mass
of the light quark, mq, is chosen appropriately. In our
calculations, we set mq = 0.3 GeV ~ mρ/2. Since the

gluon virtualities exceed | | ~  +  in this case,
we can use pQCD, not caring about the region of infra-
red divergence.

It should be recalled that, in the region pT > 12 GeV,
we normalize the absolute cross-section value on the
basis of relation (4), assuming that the fragmentation
probability is independent of the scale.

Further, we note that, in addition to the formation of
the color-singlet  state, it is necessary to take into
account the formation of the color-octet  state,
which is then converted into a hadron (D* meson). For
mesons consisting of two heavy quarks, it is well
known that the octet contribution to the production pro-
cess is suppressed, the suppression factor being propor-
tional to the third power of the relative velocity v of the
quarks in the meson [13]. In our case, this velocity is
not small, so that the octet contribution can be com-
mensurate with the singlet contribution. Because of the
special features of the color amplitude, the relationship
between the production of the color-singlet  state
and the production of the color-octet  state in e+e–

annihilation is such that, when the octet contribution is
taken into account, the quantity 〈O(1)〉  in expressions (3)
and (4) for the fragmentation process must be replaced
by 〈Oeff〉 ,

(6)

where

For mesons containing a light relativistic quark, we
can expect that 〈O(8)〉/〈O(1)〉  ~ 1 since v ~ 1; from (6), it
then follows that color-singlet production is dominant
in e+e– annihilation. Within the fragmentation model,
the differential cross section has the same form for the
singlet and for the octet mechanism, so that it is impos-
sible to separate the singlet and the octet contributions
to D*-meson production in e+e– interactions. The situa-
tion is totally different for the photoproduction pro-
cess—and this case is not unique in this sense, because
analogous conclusions are valid for the electroproduc-
tion process—where our calculations have led to very

cq

kg
2 pT

2 mρ
2

cq
cq

cq
cq

Oeff〈 〉 O 1( )〈 〉 1
8
--- O 8( )〈 〉 ,+=

O 8( )〈 〉 1
8M
-------- gµν– pµ pν

M2
-----------+ 

 =

× D* p( ) cγµλaq( ) qγνλ
bc( ) D* p( )〈 〉 δab

8
-------.
dissimilar relationships between the fragmentation and
the recombination contributions for the octet and for
the singlet mechanism. If 〈O(8)〉/〈O(1)〉 ~ 1, the contribu-
tion of recombination diagrams to octet production
proves to be commensurate with their contribution to
singlet production. It follows that, at pT ~ mc—these are
transverse-momentum values at which recombination
is dominant—the cross section for octet production is
commensurate with the cross section for singlet pro-
duction, while, for pT @ mc—this is the region domi-
nated by the fragmentation process—octet production
is suppressed in proportion to 1/8, in accordance with
Eq. (6).

It should be emphasized that the inclusion of the
octet contribution induces virtually no changes in the
cross section for D*-meson production at transverse-
momentum values much higher than the charmed-
quark mass, but this generates an additional contribu-
tion in the region where the transverse momentum is on
the same order of magnitude as this mass.

4. DESCRIPTION OF ZEUS DATA ON D*-MESON 
PHOTOPRODUCTION

Provided that the specific values of the parameters
µR, mq, and mc are chosen in one way or another and that
the condition in (4) is imposed, the fixed value of
w(c  D*) = 0.22, which was extracted from data on
D*-meson production in e+e– annihilation at LEP, deter-
mines unambiguously the expectation value 〈O eff(µR)〉.
If, for example,

(7)

then we have

This choice has enabled us to describe data on D*-
meson photoproduction. The calculated cross sections
for D*-meson photoproduction are displayed in Fig. 4,
along with ZEUS data from [1], which were obtained in
the kinematical region specified by the inequalities pT >
2 GeV, –1.5 < η < 1.5, 130 < W < 280 GeV, and Q2 <
1 GeV2, where W is the total energy of γp interaction,
Q2 is the photon virtuality squared, and η is the D*-
meson pseudorapidity.

From Fig. 4, it can be seen that the experimental
value of the cross section for D*-meson production is
not saturated by the color-singlet contribution within
our model. The relative value of the color-octet contri-
bution, 〈O(8)〉/〈O(1)〉  = 1.3, enables us to describe well
the D*-meson spectrum. It is worth noting once again
that the transverse-momentum distributions behave
very differently for the octet and for the singlet mecha-

µR mD*,=

mq 0.3 GeV,=

mc 1.5 GeV= ,

w c D*( ) 0.22,=

Oeff mD*( )〈 〉 0.25 GeV3.=
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nism. At the above expectation values of the relevant
operators, the octet contribution is commensurate with
the singlet contribution at pT ~ mc and is much less than
it in the region pT @ mc.

For the gluon structure function in the proton, the
factorization scale was fixed at µF = 2mD*. In calculat-
ing the differential cross section, we have chosen two
factorization-scale values for the matrix elements
〈O(1, 8)〉  of the relevant quark operators: µR = mD* (upper
curve) and µR = 2mD* (lower curve). It can be seen that
HERA data on D*-meson photoproduction are best
reproduced by our model at µF = 2mD* and µR = mD*.

Figure 5 illustrates the predictions for D*-meson
photoproduction in a different kinematical region stud-
ied by the ZEUS collaboration [14], that which is spec-
ified by the inequalities pT > 2 GeV, –1.0 < η < 1.5, 80 <
W < 120 GeV, and Q2 < 0.01 GeV2. In the relevant cal-
culations, we have employed the same expectation val-
ues 〈O(1)〉  and 〈O(8)〉  as in the preceding case.

Unfortunately, available experimental data are
insufficient for establishing the value of 〈O(8)〉 . Taking
into account the variations in the factorization scale
[15], we can only assume that

It is obvious that, by varying 〈O(1)〉/〈O(8)〉 , we can
enhance or reduce the contributions of higher twists in
the region of small pT. In our calculations, we can also
disregard the difference of the spectra of vector and
pseudoscalar octet states, whose contributions are
effectively summed in the relevant operator. No
account is taken here of the possible effect of P-wave
octet states either, since our experience gained from
previous calculations suggests that the production of
these states is suppressed in relation to the S-wave con-
tributions.

5. DESCRIPTION OF ZEUS DATA ON Ds-
AND -MESON PHOTOPRODUCTION

Within our model, we also predict the cross sections
for the production of Ds and  mesons. According to
approximate SU(3) symmetry, the expectation values
〈O(1)〉 s and 〈O(8)〉 s of the color-singlet and color-octet
operators in -meson production satisfy the relations

(8)

In addition, we assume that the expectation values
of the relevant operators for the production of a pseudo-
scalar Ds meson are approximately equal to the corre-
sponding expectation values for the production of a
vector  meson.

By making use of these two assumptions and by
replacing mq = 0.3 GeV by ms = 0.5 GeV in our calcu-

O 8( )〈 〉 0.33–0.49 GeV3.≈

Ds*

Ds*

Ds*

O 1( )〈 〉 s O 1( )〈 〉 ,≈

O 8( )〈 〉 s O 8( )〈 〉 .≈

Ds*
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Fig. 4. Calculated transverse-momentum (pT) and pseudora-
pidity (η) distributions of the cross section for D*-meson
photoproduction (curves) along with data obtained by the
ZEUS collaboration in the region specified by the inequali-
ties 130 < W < 280 GeV and Q2 < 1 GeV2 (points): (dashed
curves) contribution of the color-singlet state, (dotted curve)
contribution of the color-octet state, and (solid curves) sum
of these two contributions. The upper and lower curves of
the same type correspond to two factorization scales for the
matrix elements of the quark operators (see main body of
the text).

Fig. 5. Differential distributions of the cross section for D*-
meson photoproduction in the region specified by the ine-
qualities 80 < W < 120 GeV and Q2 < 0.01 GeV2. The nota-
tion is identical to that in Fig. 4.
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Fig. 6. Differential distributions of the cross section for Ds-

and -meson photoproduction in the region specified by

the inequalities 130 < W < 280 GeV and Q2 < 1 GeV2. The
notation is identical to that in Fig. 4.

Ds
*

Fig. 7. Differential cross sections for D*-meson production
with respect to (‡) the photon virtuality Q (in GeV), (b) the
Bjorken variable x, (c) the invariant mass of final-state had-
rons, (d) the transverse momentum, (e) the pseudorapidity,
and (f) the Feynman variable xF in deep-inelastic e+p inter-
actions along with data obtained by the ZEUS collaboration.
The notation is identical to that in Fig. 4.
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lations, we were able to predict the total differential
cross section for the production of Ds and  mesons,
a quantity that is most appropriate for data analysis,
since it is difficult to separate experimentally Ds and

 events (the point is that the detection of the domi-

nant decay mode   Dsγ requires recording a soft
photon, but this is hardly possible, as a rule). The results
of the relevant calculations are displayed in Fig. 6.

It should be recalled that a preliminary investigation
of this process was reported in [16], but the experimen-
tal constraints at the operating facilities were disre-
garded there.

6. D*-MESON ELECTROPRODUCTION

The computational procedure used here also makes
it possible to obtain the cross sections for D*-meson
production in the case where the virtuality of the initial
photon is sizable. For this purpose, the matrix element
for photoproduction, Mi , where the subscript i indicates
photon polarization, is squared and contracted with the
spin-averaged square of the electron current according
to the formula

(9)

where |A|2 is the square of the amplitude for D*-meson
electroproduction; k1 and k2 are, respectively, the initial
and the final positron momentum; and Q2 = – (k1 – k2)2.

The results of the calculations for D*-meson pro-
duction in a deep-inelastic e+p collision are presented in
Fig. 7, along with the experimental data of the ZEUS
collaboration [17] for the kinematical domain specified
by the inequalities 1 < Q2 < 600 GeV2, –1.5 < η < 1.5,
1.5 < pT < 15 GeV, and 0.02 < y < 0.7, where y = W 2/s.

In the calculations of the matrix element, the run-
ning coupling constant for strong interaction was taken

at the scale µR =  (upper curve) or at the

scale µR =  (lower curve); for the gluon
structure function in the proton, the scale was set to

µF = . This option makes it possible to
describe electroproduction, on one hand, and to go over
at Q2 = 0 to the scale values that we used in the case of
photoproduction.

The ratio 〈O(1)〉/〈O(8)〉  was chosen to be identical to
that in the case of photoproduction, an option that
makes it possible to describe experimental data fairly
well.
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ij

∑ MiM j*,=
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7. TOTAL CROSS SECTION FOR CHARM 
PHOTOPRODUCTION

Since the model being considered describes better
data on charm photoproduction at pT ~ mc, it is interest-
ing to verify its predictions for the total charm-photo-
production cross section over a wide energy region
[18]. We have estimated the cross section for charmed-
particle production at γp-interaction energies ranging
from 20 to 300 GeV (see Fig. 8).

In order to assess the cross section for charm pro-
duction in the gγ subprocess, we divided the cross sec-
tion for D*+ and D*– production by 0.44, the charm-
production fraction saturated by these particles accord-
ing to the results deduced from the investigation of e+e–

annihilation. Moreover, the additional contribution
from diagrams associated with D*-meson formation on
valence quarks in the subprocess γqv  ( ) + c 
D*– + X must be taken into account for low-energy
data. This contribution can be considered without intro-
ducing additional parameters, since the normalization
of the cross section is again determined by the factor
〈O eff〉 . In contrast to the contribution of the subprocess
gγ  ( ) + c + , the contribution of the subprocess
γqv  ( ) + c is weakly dependent on the light-
quark mass mq. In view of the subsidiary condition (4),
which relates mq and 〈O eff〉 , there is, however, an
implicit mq dependence of the cross section for charm
production on a valence quark. By way of example, we
indicate that, when the light-quark mass is reduced
from 0.3 to 0.26 GeV, the contribution of this subpro-

cq

cq q
cq

σγp, µb

101

100

10–1

10–2

10–3

101 102 W, GeV

Fig. 8. Charm-photoproduction cross section as a function
of the γp-interaction energy W. Closed symbols represent
experimental data borrowed from (j) [1], (w) [2], and (d)
[18]. The results of the calculations performed without and
with allowance for the valence-quark contribution are
shown by open circles and crosses, respectively.
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cess decreases by a factor of about 1.5, all the remain-
ing contributions suffering no changes.

By varying the mass mq, we can therefore modify
the contribution of the subprocess γqv  ( ) +
c  D*– + X owing to the normalization factor 〈Oeff〉;
in this way, a slight excess of the results of our calcula-
tions over the experimental data from [18] can be rem-
edied by means of a modest correction of mq.

At HERA collider energies, the contribution of
valence quarks is as small as a few percent; therefore, it
does not seem reasonable to discuss this contribution
here.

8. CONCLUSION

We have presented a model for describing the pro-
duction of charmed mesons. That the degrees of free-
dom of both heavy and light quarks are taken there into
account within pQCD in the transverse-momentum
region pT ≥ mc is an important element of the model.
Within this model, the hadronization process is
described at the level of matrix elements via the factor-
ization of a hard parton subprocess and nonperturbative
quark operators corresponding to quark transitions into
hadrons. According to semilocal quark–hadron duality,
the differential characteristics of a quark pair reproduce
the characteristics of hadron distributions in the region
where pQCD is applicable (pT ≥ mc). In the region of
high transverse momenta (pT @ mc), the production
cross section is represented, as might have been
expected on the basis of the theorem of factorization of
hard subprocesses in the form of the convolution of the
cross section for heavy-quark production and the frag-
mentation function.

The region around pT ~ mc is described by contribu-
tions differing from the fragmentation contribution and

having a 1/  asymptotic behavior. In addition, we
have increased the cross section for charm production
in the region being considered by taking into account
the contribution of the octet  state.

Within the uncertainties, we have been able to
describe, on the basis of our model, data on D*-meson
photo- and electroproduction at HERA collider ener-
gies and data on the total cross section for charm pho-
toproduction on a fixed target.

Of prime importance is that the proposed approach
has enabled us to take into account interference and
higher twists in the transverse momentum.

It is obvious that the scheme proposed here for cal-
culating additional contributions to heavy-meson pro-
duction can be extended to the case of hadroproduction.
In this connection, it would be interesting to perform a
comparison with data on B-meson yields at the TEVA-
TRON. We are going to do this in the near future.

cq

pT
6

cq
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Abstract—For ultrarelativistic muons, the cross section for the process µ + Z  µ + Z + µ+ + µ– is calculated
with allowance for the nuclear and atomic form factors. It is shown that the nuclear form factor affects signifi-
cantly the cross-section value. The transverse-momentum distribution of muons is calculated. An approximate
formula determining the total cross section to within 2 to 3% is derived. The fluxes of groups of cosmic-ray
muons generated by the above process are estimated at various depths. It is shown that calculations performed
earlier overestimate significantly the fluxes of such groups. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The cross section for the direct production of muon
pairs in muon–nucleus collisions,

(1)

is much smaller than the cross section for the
bremsstrahlung process and for the production of elec-
tron–positron pairs. Since the cross-sections ratio
σ(µ  µµ+µ–)/σ(µ  µe+e–) is on the order of 10–4,
the effect of process (1) on the formation of the cosmic-
ray-muon spectra is negligible. Nevertheless, this pro-
cess can lead to observable events when a group of
three or two1) muons separated by small distances
traverses the detecting array. In the following, such
events will be referred to as triples and couples.

The first estimates of the fluxes of triples and cou-
ples and a comparison of the results of calculations
with experimental data were presented in [1, 2]. The
estimates in question were based on the cross section
that was derived from the results obtained in [3] and
which describes muon-pair production by a muon on a
screened Coulomb center to a logarithmic accuracy
only in the limiting case of full screening. This cross
section, which is quoted in [4] [expression (1.51)], has
been used thus far as a basis for calculating the features
of triples and couples. In particular, it underlay the
analysis of Kudryavtsev and Ryazhskaya [5, 6], who
performed a Monte Carlo simulation of the generation
of triples and couples and their propagation to depths of
3000 and 10000 mwe. They showed that couples and
triples originating from the direct production of muon
pairs contribute noticeably to the number of events
characterized by low multiplicities and small distances
between the particles involved. The same cross section
was also employed by Battistoni and Scapparone [7] in
simulating muon groups.

1)A third muon can be moderated by a medium or miss the array
used.

µ Z µ Z µ+ µ–,+ + + +
1063-7788/00/6309- $20.00 © 1603
However, the Coulomb center and full-screening
approximations within which expression (1.51) from
[4] is valid are incorrect in the case being considered
for the following reasons:

(i) The characteristic momentum transfer to the
nucleus involved in the process under investigation is
about muon mass—that is, it is on the same order of
magnitude as the inverse radius of the nucleus. It fol-
lows that, here—in just the same way as in the case of
bremsstrahlung from muons [8]—the nucleus cannot
be treated as a Coulomb center. As will be shown
below, the replacement of an actual nucleus by a point-
like object leads to an overestimation of the cross sec-
tion.

(ii) In calculating the fluxes of triples and couples, it
is more correct to disregard screening, since the screen-
ing of nuclei by atomic electrons is operative only in
the muon-energy region E @ 183Z–1/3µ2/m ≈ 4Z–1/3 TeV,
where m and µ are, respectively, the electron and the
muon mass. Within a logarithmic accuracy, the total
cross section for pair production on an unscreened
Coulomb center has the form (see, for example, [9])

(2)

In the limit of full screening, we have

(3)

where κ and κ' are undetermined factors emerging in
the calculation to a logarithmic accuracy and rµ is the
classical radius of the muon. Expressions (2) and (3) are
commensurate only at E ~ (183Z–1/3µ/m)3µ ~ 1011 GeV (at
Z = 11). At energies close to E ~ 103 GeV, which are
characteristic of the production of triples and couples
(see below), a transition to the full-screening limit con-
siderably overestimates the cross section.

σc
28

27π
--------- Zαrµ( )2 κ 2× E/µ( ).ln

3
=

σs
28
9π
------ Zαrµ( )2 κ ' 2× E/µ( )ln

2
=

κ ' 183× Z 1/3– µ/m( ),ln×
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It should be noted that, for pair production by a par-
ticle (in contrast to pair production by a photon or
bremsstrahlung), the use of the logarithmic approxima-
tion can lead to a large error in the cross section. For
scattering on a Coulomb center, an exact expression for
the cross section can be obtained with the aid of for-
mula (71) from [10]. Having calculated the numerical
coefficients in that formula, we obtain

(4)

where l0 = ln(2E/µ). The coefficient of  is large in

relation to the coefficient of  and is of opposite sign.
If we retain only the leading logarithmic term in this
formula [this is equivalent to setting κ = 1 in (2)], then
the cross section at E = 100 GeV (we take this value by
way of example) is enhanced by a factor of 3. A reason-
able choice of κ in (2) is possible only if we know the
cross section exactly. In the case being considered, the
coefficient κ is much smaller than unity. If we set κ =
1/12, the distinction between expressions (2) and (4) in
the region E > 20 GeV will not exceed 3%.

Thus, we see that the formula from [4] overesti-
mates the cross section for muon-pair production,
thereby leading to excessive fluxes of muon groups. In
this study, we obtain a more precise expression for the
cross section and use it to estimate the fluxes of couples
and triples formed via reaction (1).

2. REACTION CROSS SECTION
In calculating the total and differential cross sec-

tions, we use the results reported by one of the present

σc = Zαrµ( )2

× 0.3301l0
3 2.098l0

2– 0.8669l0 13.160+ +( ),

l0
2

l0
3

σ(E, Ethr)/(Zαrµ)2

102

101

100

10–1

101 103 105

E, GeV

1

2 3 4

Fig. 1. Total cross section for muon-pair production by a
muon in standard rock at the threshold energy values of
Ethr = (1) µ, (2) 1, (3) 2, and (4) 5 GeV.
authors (S.R.K.) in [3], where he analyzed the produc-
tion of electron–positron pairs by a muon. In a collision
of a muon with a Coulomb center, the distribution of
particles forming the product pair with respect to the
energies E± and the momentum transfer q to the target
can be represented as

(5)

where E is the incident-muon energy, and fa and fb are
the contributions of, respectively, diagrams a and b
from [3] (or the γγ and γ diagrams in the notation
adopted in [11]). The explicit expressions for the func-
tions fa and fb involve double integrals and are very
cumbersome. If the masses of the particles forming the
product pair are set to the muon mass, then expression
(5) will describe the cross section for the process under
investigation but without the interference between the
direct and exchange diagrams.

The interference term σint can be estimated on the
basis of the following considerations. The cross section
for the production of an electron–positron pair by
muons on atomic electrons (µ + e–  µ + e– + e+ + e–)
was calculated in [12] with allowance for exchange dia-
grams. Since the muon mass differs significantly from
the electron mass and since the total cross section is
invariant, the results presented in [12] also describe the
production of an electron–positron pair by an electron
on a Coulomb center. By replacing the electron mass by
the muon mass, we obtain the cross section for the pro-
duction of a muon pair by a muon. By using the results
from [12], we find that σint reduces the total cross sec-
tion by about 5% at the muon energy of E = 10 GeV and
by 3% at E = 30 GeV; for E > 100 GeV, the contribution
of σint is less than 1%. Therefore, the quantity σint can
be disregarded at high muon energies.

In order to take into account the screening of a
nucleus by electrons and the finiteness of nuclear sizes,
we must multiply expression (5) by the factor [Fn(q) –
Fa(q)]2, where Fn(q) and Fa(q) are, respectively, the
nuclear and the atomic elastic form factor. The atomic
form factor was determined on the basis of the Tho-
mas–Fermi model; for the nuclear form factor, use was
made of the Fermi charge distribution in a nucleus with
the parameters from [13]. The total and the differential
(with respect to E+ and E–) cross section were calcu-
lated numerically.

The total cross section for the production of muon
pairs by muons in standard rock (Z = 11, A = 22) is plot-
ted in Fig. 1 for several values of the threshold energy
Ethr (it is assumed that the total energy of each of the
three final muons exceeds Ethr). As the muon energy
increases, the Ethr dependence of the cross section
becomes weaker.

Figure 2 illustrates the effect of the atomic and the
nuclear form factor on the total reaction cross section.
The elastic nuclear form factor changes significantly

dσ Zαrµ( )2=

× f a E E+ E– q, , ,( ) f b E E+ E– q, , ,( )+[ ]dE+dE–dq,
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the cross section at any energy value. By way of exam-
ple, we indicate that, at E = 100 GeV, the cross section
for the process on a finite nucleus is nearly one-half as
large as the cross section for the process on a Coulomb
center. At the same time, the screening of a nucleus by
atomic electrons is operative only for E @ 104 GeV. At
E = 5 × 105 GeV, the atomic form factor diminishes the
cross section only by 5%. Curve 3 in Fig. 2 represents
the ratio of the cross section calculated by formula
(1.51) from [4] to the cross section for the process on a
Coulomb center. In the energy range E = 103–104 GeV,
the values corresponding to curve 3 are three to four
times as great as those of the precise cross section cal-
culated with allowance for the nuclear form factor and
depicted by curve 1.

Muon pairs can also be produced in collisions of
muons with atomic electrons,

(6)

provided that the incident-muon energy exceeds the
threshold energy  = µ(4µ + 3m)/m = 87.7 GeV.
Numerical calculations reveal that the cross section σe

for this process2) is much smaller than σc /Z 2. The rea-
son behind this smallness can be clarified in the follow-
ing way. To a logarithmic accuracy, the cross section for
process (6) is given by

(7)

where le = ln(Em/4µ2). The factor of 1/4 in the argu-
ment of the logarithmic function was chosen on the
basis of a fit to the results of numerical calculations, the
accuracy of the formula in (7) being approximately
20%. The cross section σc depends on E/µ, while σe
depends on mE/µ2. Therefore, the graph of the function
σe(E) is shifted with respect to the graph of the function
σc(E) by two orders of magnitude in energy toward
higher values of E.

The correction to the total cross section from the
process in (6) can be taken into account by replacing
the factor Z 2 in (5) by Z(Z + ζ). The quantity ζ grows
with increasing muon energy, but it is much smaller
than unity for all reasonable energy values (for exam-
ple, ζ = 0.1 at E = 10 TeV and ζ = 0.2 at E = 100 TeV).
In calculating the fluxes of triples and couples in stan-
dard rock without taking into account muon-pair pro-
duction on atomic electrons, this will lead to an error
not exceeding 1%.

Let us consider the correction to the cross section
from the excitation of the nucleus in the process of
muon-pair production. In order to calculate this correc-
tion, we must know the nuclear inelastic electromag-

netic form factor (q). Andreev et al. [14] suggest a

2)In order to determine σe, it is sufficient to interchange the muon
and the electron mass in the code used in [12] to calculate numer-
ically the cross section for the process e + µ  e + µ + e+ + e–.

µ e µ e µ+ µ–,+ + + +

Ethr'

σe
28

27π
--------- αrµ( )2le

3,=

Fn
in
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simple model that makes it possible to express the
nuclear inelastic form factor in terms of the elastic one as

(8)

This equality is obtained in the approximation where
the wave function of the nucleus is described by a
nonantisymmetrized product of the wave functions of
individual protons. The cross section for the process
involving the excitation of the nucleus can be written in

the form dσ' = (q)dσ/Z. From (8), it follows that,
within this model, the correction associated with the
nuclear inelastic form factor can be estimated as

(9)

where dσCoul is the differential cross section for the pro-
cess on a Coulomb center and dσel is the cross section
calculated with allowance for the nuclear elastic form
factor. For standard rock, correction (9) to the total
cross section is approximately 6% at E = 100 GeV and
3% at E = 10 TeV.

3. TRANSVERSE-MOMENTUM DISTRIBUTION

The distances between the muons in triple- and cou-
ple-type events are determined by the initial transverse
momenta of the particles forming a pair and by the
transverse momentum of the parent particle, as well as
by multiple scattering. For the muon groups produced
near the detection point, the initial transverse momen-
tum can have a strong effect on the spatial distribution
of particles.

Fn
in q( ) 1 Fn q( )( )2.–=

Fn
in

dσ' dσCoul dσel–( )/Z ,=

σ/σc
5.0

2.0

1.0

0.5

105 107103101

E, GeV

3

2
1

Fig. 2. Ratios of the cross section taking into account (curve
1) the atomic and nuclear form factors or (curve 2) only the
nuclear factor to the cross section σCoul for the production
process on the Coulomb center. Curve 3 represents the ratio
of the cross section from [4] to σCoul. All curves were cal-
culated for standard rock, the threshold energy being set to
1 GeV.
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Since the interference term makes but a small con-
tribution to the total cross section, the transverse-
momentum distribution was calculated without taking
into account the interference between the direct and
exchange diagrams. In interpreting the results, we can
therefore disregard the presence of two identical parti-
cles in the final state. We denote by f(p⊥ )dp⊥  the proba-
bility that the transverse momentum p⊥  of a particle
from the pair lies within the interval (p⊥ , p⊥  + dp⊥ ) and
by g(p⊥ )dp⊥  the analogous probability for the parent
particle.

The functions f (p⊥ ) and g(p⊥ ) were obtained by
numerically integrating the precise fully differential
cross section dσ determined on the basis of Feynman
diagrams. Analytic calculations were computerized by
using the Maple code, while numerical calculations
were performed by the Monte Carlo method. We deter-
mined the total cross section for pair production by
evaluating a sevenfold integral and simultaneously con-
structed histograms characterizing transverse-momen-

102

101

100

10–1

(dσ/dp⊥ )/(Zαrµ)2

(a)

(b)
102

101

100

10–1
1 3 5

p⊥

Fig. 3. Transverse-momentum distributions of (‡) the parti-
cles forming a product pair and (b) the parent particle for
two initial muon energies at the threshold energy of 1 GeV
(the results presented in this figure are normalized to the
total cross section): (histograms) results of numerical calcu-
lations and (curves) results based on approximate formulas
(10) and (11). The lower and upper curves correspond to
energies of 100 and 1000 GeV, respectively. The transverse
momentum are measured in µc units.
tum distributions. The nuclear elastic form factor was
taken in accordance with the model of a uniformly
charged sphere, the screening of the nucleus by elec-
trons being disregarded.

Our numerical calculations revealed that the func-
tions f (p⊥ ) and g(p⊥ ) depend only slightly on the inci-
dent-muon energy and on the radius R of the nucleus.
At the detection threshold Ethr of 1 GeV and at incident-
muon energy E in excess of 100 GeV, the mean trans-
verse momentum of the particles from a pair is 〈p⊥ 〉 =
1.5µ, while the mean transverse momentum of the par-
ent particle is 〈p⊥ 〉 = 1.0µ. These estimates are valid to
a precision higher than 10% for all substances from
helium to lead. Under the same conditions, the func-
tions f (p⊥ ) and g(p⊥ ) can be approximated by the sim-
ple expressions

(10)

(11)

In the transverse-momentum region µEthr/E ! p⊥  ! µ,
formula (11) complies with the expression g(p⊥ ) ~
ln2(Ep⊥ /µEthr)/p⊥ , which can easily be obtained analyt-
ically to a logarithmic accuracy by using the results
from [11].

The curves calculated numerically and those
obtained on the basis of (10) and (11) are compared in
Fig. 3.

That the shape of the p⊥  distribution depends weakly
on the radius R of a nucleus can be explained in the fol-
lowing way. Let us write the differential (with respect
to the transverse momentum p⊥  and the momentum
transfer q to the nucleus) cross section as

(12)

In order to obtain the p⊥  distribution, we must integrate
expression (12) over the region q > qmin, where

(13)

is the minimum momentum transfer at a given value of
p⊥ . A calculation to a logarithmic accuracy yields

(14)

To the same accuracy, we can set ln(1/qminR) ≈
ln(E/4µ2R), so that the dependence of the cross section
on R factorizes.

f p⊥( )d p⊥
p⊥ d p⊥

1 p⊥
2 / p f

2+( )9/4
---------------------------------, p f∼ 1.3µ,=

g p⊥( )d p⊥ 1
E p⊥

3µEthr
----------------+ 

  d p⊥

p⊥ 1 p⊥
2 / pg

2+( )3/2
---------------------------------------,ln

2∼

pg µ E/4Ethr( )ln( )1/2.=

dσ Φ p⊥ q,( ) Fn q( ) 2dq
q

------d p⊥ .=

qmin
1

2E
------- 

= p⊥
2 4µ2+ p⊥

2 µ2++ 


2

µ2–

dσ Φ p⊥ 0,( ) 1/qminR( ) d p⊥ .ln=
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4. APPROXIMATE FORMULA

For practical purposes—for example, in calculating
the fluxes of triples and couples or in simulating events
by the Monte Carlo method—expression (5) is not con-
venient because the integrals involved are multidimen-
sional and because the relevant integrands are cumber-
some. To perform calculations, it is therefore desirable
to have simpler analytic formulas. Approximate formu-
las describing the cross section for the production of
electron–positron pairs by a muon were constructed in
[15] with allowance for the screening of a nucleus by
electrons and the finiteness of nuclear sizes. Following
[15], we can approximate the double-differential cross
section for the process under investigation as

(15)

Here, v = (E – E ')/E = (E+ + E–)/E is the energy fraction
transferred to the particles of a pair, where E and E ' are,
respectively, the initial and the final energy of the par-
ent particle and E+ and E– are the energies of the prod-
uct particles, and ρ = (E+ – E–)/(E+ + E–) is the asymme-
try parameter. The energies of the final particles are
expressed in terms of the quantities v and ρ as

(16)

The kinematical region of the variables v and ρ is deter-
mined by the inequalities

(17)

The function Φ has the form

(18)

where

(19)

The argument X of the logarithmic function in (15)
is determined as follows. We denote by U(E, v, ρ) the
function

(20)

where B = 183, e = 2.718…, A is the atomic weight, and

(21)

σ E v ρ, ,( )dvdρ

=  
2

3π
------ Zαrµ( )21 v–

v
-------------Φ v ρ,( ) Xdvdρ.ln

E' E 1 v–( ), E±
1
2
---Ev 1 ρ±( ).= =

2µ
E

------ v 1
µ
E
---, ρ ρmax 1

2µ
vE
-------.–≡≤–≤ ≤

Φ v ρ,( ) = 2 ρ2+( ) 1 β+( ) ξ+ 3 ρ2
+( )[ ] 1 1

ξ
---+ 

 ln

+ 1 ρ2+( ) 1
3
2
---β+ 

  1
ξ
--- 1 2β+( ) 1 ρ2–( )–

× 1 ξ+( ) 1 3ρ2– β 1 2ρ2–( ),+–ln

ξ v 2 1 ρ2–( )
4 1 v–( )

-------------------------, β v 2

2 1 v–( )
---------------------.= =

U E v ρ, ,( ) 0.65A 0.27– BZ 1/3– µ/m

1 2 eµ2BZ 1/3– 1 ξ+( ) 1 Y+( )
mEv 1 ρ2–( )

------------------------------------------------------------------+

----------------------------------------------------------------------------,=

Y 12 µ/E.=
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We then have

(22)

where ρmax is defined in (17). The function U is chosen
in such a way that, in the limiting cases of the absence
of screening and full screening, formula (15) repro-
duces the leading logarithmic term in the cross section.
The factor 0.65A–0.27 in (20), which takes into account
the finiteness of nuclear sizes, was borrowed from [16],
where it was shown that, for light nuclei, this factor
leads to a cross-section value more accurate than that
containing the factor (2/3)Z–1/3 normally used [8]. The
function Y and the numerical constants were chosen in
such a way that the approximate formula guarantees a
more accurate value of the total cross section. It should
be noted that the cross section σ(E, v, ρ) is nonnegative
over the entire kinematically accessible region (17) and
vanishes on the lines ρ = ±ρmax, as it must.

For primary-muon energies in the region E > 10 GeV
and secondary-particle energies satisfying the condi-
tions E', E+, E– > 1 GeV, the discrepancy between the
precise differential cross section and its approximated
form (15) does not exceed 10%. The total cross section
calculated by the approximate formula is smaller than
the cross section obtained by numerically integrating
precise formulas from [3] by about 5% in the energy
range 10 < E < 30 GeV and by 2 to 3% for energies in
the region E > 30 GeV.

The formula for the cross section σ(E, v, ρ) takes
into account the finiteness of nuclear sizes and the
screening of a nucleus by electrons. In the limiting case
of no screening [E ! µ2BZ–1/3(1 + ξ)/mv(1 – ρ2)], the
function U is simplified considerably to become

(23)

This function describes pair production on a finite
(nonpointlike) nucleus. In the opposite case of full
screening, we have

(24)

The cross section from [4] can be represented as

(25)

This expression differs from (15) in that the arguments
of the logarithmic function are different and in that the
product Z(Z + 1) occurs in the former instead of Z 2. In
Fig. 4, the differential cross sections as calculated by
formulas (15) and (25) are shown as functions of ρ.
Since the cross section is an even function of ρ, only
half of the graph is displayed in the figure. We can see
that formula (25) overestimates strongly the cross sec-
tion over the entire kinematical region of variables and
even distorts the qualitative dependences, since it does

X 1 U E v ρ, ,( ) U E v ρmax, ,( ),–+=

U E v ρ, ,( ) 0.197A 0.27– Ev 1 ρ2–( )
µ 1 ξ+( ) 1 Y+( )

------------------------------------------------------= .

X U E v ρ, ,( )≈ 0.65BZ 1/3– A 0.27– µ/m.=

σ E v ρ, ,( )dvdρ 2
3π
------Z Z 1+( ) αrµ( )21 v–

v
-------------=

× Φ v ρ,( ) BZ 1/3– µ/m( )dvdρ.ln
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not take into account the vanishing of the cross section
at the points ρ = ±ρmax.

For the cross sections (15) and (25), the distribution
with respect to the energy fraction v transferred to the
product pair is plotted in Fig. 5 for two energy values.
Although the energy E does not enter into expression
(25), the E dependence of dσ/dv emerges upon integra-
tion with respect to ρ, since the domain of integration
depends on the initial muon energy. A noticeable dis-
tinction between the curves is due primarily to an

vσ(E, v, ρ)/(Zαrµ)2

30

10

3

1
0.2 0.6 1.0

ρ

0.1

0.5

1

0.1

1
0.1

(vdσ/dv)/(Zαrµ)2

80

40

0
10–2 10–1 100

v

Fig. 4. Cross sections calculated by formulas (solid curves)
(15) and (dashed curves) (25) as functions of the parameter
ρ. The values of v are indicated on the curves. All calcula-
tions were performed for standard rock at a primary-muon
energy of 1 TeV.

Fig. 5. Distributions with respect to the energy fraction v
transferred to a pair. The solid and dashed curves represent
the results of the calculations by formulas (15) and (25),
respectively. The muon-energy values (in TeV) are indicated
on the curves. All calculations were performed for standard
rock and the threshold energy of 1 GeV.
excessive contribution of asymmetric pairs (ρ ~ 1) to
the cross section (25).

Expressions (15)–(22) describe the distribution of
final particles with respect to v and ρ. The distribution
with respect to the energies E+ and E– of the particles
forming a product pair is given by

(26)

whence it follows that

(27)

In order to take into account the correction associ-
ated with the excitation of the nucleus involved, it is
sufficient to substitute the quantity (0.65A–0.27)(1 – 1/Z)

for the factor 0.65A–0.27 in the definition (20) of the
function U(E, v, ρ). This substitution approximately
corresponds to taking into account the nuclear inelastic
form factor in the form (8).

5. EQUILIBRIUM FLUXES OF TRIPLES
AND COUPLES

As was indicated above, muon-pair production by a
muon generates events in which three or two muons
traverse simultaneously the detecting array used. We
will estimate the frequency of such events for a vertical
muon flux, disregarding fluctuations in energy lost by
secondaries; that is, we assume that, at depths h' and h,
the energies of final muons Eh ' and Eh are related by the
equation

(28)

where a and b are coefficients determining the mean
energy losses: 〈dE/dx〉 = – (a + bE). The integrated flux
of triples and couples can then be represented in the
form

(29)

where NA is Avogadro’s number, Nµ(E, h') is the differ-
ential spectrum of single muons at a depth h', and (E,
Eh') is the muon-pair-production cross section inte-
grated with respect to the final-particle energies. It
should be recalled that, in the case of triples, the energy
of each of the three particles must exceed Eh'; in the
case of couples, the energy of the two final particles
must exceed Eh', while the energy of the third particle
must be less than this. The lower limit of integration
with respect to energy is Emin = 3Eh' for the triples and
Emin = 2Eh' + µ for couples.

We emphasize that, by couples, we mean here only
those events where one of the three final muons is
stopped in a medium. Analysis of events where one of

σ E E+ E–, ,( )dE+dE– σ E v ρ, ,( )dvdρ,=

σ E E+ E–, ,( ) 2

E2v
----------σ E v ρ, ,( ).=

Eh' Eh
a
b
---+ 

  b h h'–( )[ ] a
b
---,–exp=

J >Eh h,( )
NA

A
------- dh' dENµ E h',( )σ̃ E Eh',( ),

Emin

∞

∫
0

h

∫=

σ̃
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the particles misses the array requires calculating muon
transport with allowance for the angular distribution of
the product particles and their multiple scattering. Such
calculations must be performed for a specific array and
are beyond the scope of this article.

The differential spectrum of a vertical muon flux at the
surface was specified in the form (see, for example, [17])

(30)

where γ = 2.7, Bπ = 105 GeV, and BK = 770 GeV. The
integrated spectrum of primary muons at a depth h was
determined by the formula

(31)

where

(32)

The parameters bef,  ≠ b take into account the effect
of fluctuations of energy losses on the spectrum of pri-
mary muons at large depths (for details, see [18]) Our
numerical calculations by formula (29) were performed at
the following parameter values: a = 2.2 × 10–3 GeV cm2/g,
b = 4.5 × 10–6 cm2/g, bef = 3.8 × 10–6 cm2/g, and  =
bef – (b – bef)/(γ – 1).

Figure 6 displays the ratios of the integrated fluxes
of triples and couples and their sum to the integrated
flux of single muons as functions of the depth of obser-
vation according to the calculations with the aid of the
cross sections (15) and (25). The calculations were per-

Nµ E 0,( ) const

Eγ------------ 0.71
E Bπ+
---------------- 0.29

E BK+
----------------+ 

  ,=

Jµ >Eh h,( ) Jµ >E0 0,( ) γh bef bef'–( )–[ ] ,exp=

Eh E0
a

bef'
------+ 

  bef' h–( ) a
bef'
------.–exp=

bef'

bef'

J2, 3/J1

10–3

10–4

10–5

104 105 106

Depth, g/cm2

3 + 2

2

3

2

3

3 + 2

Fig. 6. Ratios of the integrated fluxes of (3) triples and (2)
couples and of (3 + 2) their total flux to the integrated flux
of single muons as functions of the depth of observation.
The solid and dashed curves were calculated with the aid of
the cross sections (15) and (25), respectively. Points repre-
sent data from [6].
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formed for standard rock, with the threshold for muon
detection being set to 1 GeV. As can be seen from the fig-
ure, the calculation with (25) overestimates the fluxes of
triples and couples by a factor of about 3. Figure 6 also
displays the results obtained in [6] at depths of 3000
and 10000 mwe. The calculations from [6] were per-
formed by using the cross section (25); therefore, the
computed points should fall on the dashed curves. For
a depth of 3000 mwe, the results from [6] agree with
ours, provided that the cross section (25) is used, while,
for a depth of 10000 mwe, the values from [6] appear
to be noticeably smaller, especially for the flux of tri-
ples. The discrepancy is partly due to the fact that only
one (first) interaction producing a muon triple was
taken into account in [6]. As a result, a sizable part of
muons (10–15% at 10000 mwe) ceased to produce tri-
ples prior to achieving the observation level. Another
reason for the discrepancy may be associated with low
statistics accumulated in simulating triples by the
Monte Carlo method (only 53 events were obtained in
[6] at a depth of 10000 mwe).

Muon pairs are formed within all layers of sub-
stance above the array. It is interesting to determine the
contributions from different layers to the total flux of
triples and couples at a given depth. For this, it is nec-
essary to perform integration in (29) only with respect
to the primary-muon energy. The distribution of triples
and couples with respect to the distance x = h – h' from
the production vertex to the detection point is plotted in
Fig. 7 for two depths (x = 0 corresponds to the detection
point). As can be seen from this figure, the relative con-
tribution of events featuring pair production near the
detection point appears to be much greater for triples
than for couples. In the case of triples, “close” events

[dJ2, 3/d(logx)]/J1, 10–4

2

1

0
102 104 106

x, g/cm2

h2

h1

h2

h1

Fig. 7. Distributions of (solid curves) triples and (dashed
curves) couples with respect to the distance x from the pro-
duction vertex to the detection point in standard rock at the
depths of h1 = 3 × 105 g/cm2 and h2 = 106 g/cm2.
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contribute considerably to the integrated flux. From
Fig. 7, it is also obvious that, if muon-pair production
occurs at distances smaller than 5 × 103 g/cm2, such an
event will be detected as a triple with a high probability.

Let us denote by x∗  a characteristic distance such
that, for x ! x∗ , the spatial divergence of the particles
forming a product pair is determined by the initial
opening angle and that, for x @ x∗ , it is determined by
multiple scattering. On the basis of the results pre-
sented in Section 3, this characteristic distance can be
estimated at x∗  ≈ 5000 g/cm2. As can be seen from
Fig. 7, approximately 30% of triples are produced at
distances from the detection point that do not exceed
x∗ ; therefore, the inclusion of the initial transverse
momenta is necessary in analyzing the spatial distribu-
tion of particles forming triples.

The parent-particle-energy distribution of events
contributing to the fluxes of triples and couples is dis-
played in Fig. 8 for two depths of observation. These
results were obtained from expression (29) by perform-
ing integration only with respect to the depth h'. As fol-
lows from this figure, the characteristic energies of pri-
mary muons making the main contribution to the fluxes
of triples and couples at large depths appear to be on the
order of 103 GeV.

6. CONCLUSION

The above analysis of muon-pair production by a
muon has revealed that the effect of the nuclear form
factor on the cross section for the process is significant
at all muon energies; at the same time, the atomic form
factor becomes operative only in the energy region E @

[dJ2, 3/d(logE)]/J1, 10–4

2

1

0
102 103 104 105

h2

h2

h1

E, GeV

h1

Fig. 8. Distribution of (solid curves) triples and (dashed
curves) couples with respect to the parent-particle energy in
standard rock at the depths of h1 = 3 × 105 g/cm2 and h2 =

106 g/cm2.
4 Z–1/3 TeV (Fig. 2). Formula (1.51) from [4] [it is
equivalent to our expression (25)], which is usually
used to estimate the reaction cross section, corresponds
to the case of full screening and takes no account of the
nuclear form factor. This formula significantly overes-
timates the cross section at energies E in the region
around 1 TeV, which makes the main contribution to the
equilibrium fluxes of muon triples and couples in rock.

The approximate formula (15) derived here
describes the differential cross section for the direct
production of muon pairs by a muon with allowance for
the atomic and the nuclear elastic form factor and
makes it possible to calculate the total cross section to
within 2 to 3%. We have also obtained the simple
approximate formulas (10) and (11) describing the
transverse-momentum distribution of particles. For
muon groups produced at distances x < 5000 g/cm2

from the array, the initial divergence of particles affects
the distances between the tracks.

The previous estimates of the observed fluxes of tri-
ples and couples obtained on the basis of the cross sec-
tion (25) must be revised. Relevant quantitative calcu-
lations must be performed for a particular experimental
array with allowance for the angular and energy distribu-
tions of product muons and for their multiple scattering.
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Abstract—Fitted phase-shift curves from the threshold to the dipion mass, which is equal to 1 GeV, are con-
structed on the basis of all available experimental values of the S- and P-wave phase shifts for five charged chan-
nels of pion–pion scattering. The resulting phase-shift curves are introduced in the Roy equations in order to

obtain the subtraction constants (s). By using these subtraction-constant values as functions of the dipion

mass, the S0- and S2-wave pion–pion scattering lengths are found to be  = (0.240 ± 0.023)  and  =

(−0.034 ± 0.013) . A strong correlation of the S-wave scattering lengths is demonstrated. © 2000 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

Although pion–pion interaction has been studied for
more than 40 years, investigations into these realms are
being actively developed even nowadays. That it is of
paramount importance to know the parameters of pion–
pion interaction and that it is difficult to deduce these
parameters reliably continue furnishing a sufficient
motivation for this. Presently, a special role is played by
the investigation of the near-threshold parameters of
pion–pion interaction—especially of scattering
lengths. This is associated with evolving QCD models
in the region of low energies and models featuring the
breakdown of chiral symmetry. By way of example, we
indicate that models based on chiral perturbation theory
[1–3] and on generalized chiral perturbation theory [4–
7] have been actively developed at present. These mod-
els predict light-quark masses of about 1 GeV in the
first version and small values for these masses in the
second version, the value of the quark condensate, and

the pion–pion scattering lengths (  = 0.21 in the first

version and  = 0.27 in the second version1)). Thus, a
reliable determination of the pion–pion scattering
lengths would make it possible to estimate the amount
of chiral-symmetry violation and to choose thereby an
adequate version of theory. The current accuracy of the
scattering lengths for pion–pion interaction is rather
poor. The main reason for this is that it is impossible to
obtain direct information about pion–pion interac-
tion—only indirect methods can be used. Despite many
attempts at harnessing various processes to extract

1)The S-wave scattering lengths  and  are given in  units,

while the P-wave scattering lengths  are given in  units.
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required information, investigation of processes like
πN  ππN (or πN  ππ∆) that is followed by an
extrapolation of the parameters of pion–pion scattering
to the pion pole remains the source of the most impor-
tant data of relevance. In implementing this program, it
is assumed that experimentalists are able to isolate the
one-pion exchange (OPE) diagram.

Of course, the procedure being discussed depends,
to a considerable extent, on the presence of other dia-
grams and on the methods for their inclusion. It is usu-
ally assumed (for an overview, see, for example, [8, 9])
that, at an incident-pion momentum of a few GeV/c
units, we can hope for the dominance of the OPE dia-
gram and, accordingly, for a reliable determination of
the parameters of pion–pion scattering. Although data
on the S- and P-wave phase shifts from different exper-
iments show considerable scatter, their general behav-
ior is thought to be well established.

The use of the general principles of unitarity, analy-
ticity, and crossing symmetry is one of the seminal
approaches to studying pion–pion interaction. The inte-
gral equations derived with the aid of dispersion rela-
tions and known as the Roy equations [10, 11] proved
to be very useful on this path. These equations deter-
mine the real parts of the partial-wave amplitudes in the
region –4 < s < 60, which includes the unphysical
region –4 < s < 4, in terms of relevant quantities in the
physical region 4 < s < ∞.2) Once the Roy equations had
been derived, it became possible to compensate for the
absence of reliable experimental data in the region of
low energies by constructing an analytic continuation
that satisfies the Roy equations and the unitarity condi-

2)Here and below, s is the Mandelstam variable defined as s =

/ .mππ
2

mπ
2
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tion. This computational method, which relies both on
theoretical principles and on relevant experimental
information, was used, for example, in [12, 13] to
determine the S- and P-wave scattering lengths.

When calculations of this type are based on a single
specific set of experimental data, it is necessary to
invoke, as a rule, iterative processes, but this impairs
the reliability and accuracy of results. An attempt was
made in [14] to employ the entire body of data on pion–
pion scattering phases as inputs for the calculations on
the basis of the Roy equations. At present, vast arrays
of experimental information have been accumulated
over the entire dipion-mass range of our interest. This
makes it possible to construct solutions to the set of
Roy equations without recourse to iterative processes.
Thereby, questions concerning the convergence of such
solutions are lifted, and there arises the possibility of
seeking solutions more consistently and more correctly
without harnessing ad hoc assumptions.

In the present study, we invoke all available experi-
mental values of the S- and P-wave pion–pion phase
shifts as obtained from an analysis of five charged
channels in the region from the threshold to 1 GeV. The
exposition is organized as follows. In Section 2, we per-
form fitting for each phase shift and obtain a smooth
curve adequately describing experimental data. The
resulting phase-shift curves are introduced in the Roy
equations in order to determine the subtraction con-

stants (s). It is shown that these subtraction constants
are described, as they must in accordance with the Roy
equations, by a linear function of the dipion mass; that
is, the present procedure for utilizing the Roy equations
is self-consistent. Sections 3 and 4 are devoted to
describing this procedure and the computational meth-

ods used. In Section 5, the dependences (s) derived
within the proposed procedure are used to determine
the S-wave pion–pion scattering lengths for which the
partial-wave amplitudes satisfy the requirements of
analiticity, unitarity, and crossing symmetry and fit well
experimental data in terms of the χ2 criterion. In Sec-
tion 6, we describe a method for deducing the P-wave

scattering length . In Section 7, we present basic
conclusions and discuss our results.

The results of the calculations for the features of
pion–pion interaction (such as scattering cross sections
and angular distributions), which are important for
practical applications, will be presented in a separate
publication.

2. FITTING THE S- AND P-WAVE PHASE SHIFTS

This study, as well as that reported in [14], is based
on the assumption that experimentalists extract cor-
rectly the values of the pion–pion phase shifts from
data on πN  ππN and πN  ππ∆ processes. In
order to apply the Roy equations, it is necessary to have

λ l
I

λ l
I

a1
1
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at our disposal smoothed curves for the S- and P-wave
phase shifts in the region from the threshold to 1 GeV.
Such smoothed curves are obtained here on the basis of
the experimental values of the phase shifts in five
charged channels of pion–pion scattering. The basic
data set used in [14] is supplemented here with experi-
mental data from [15], which are characterized by vast
statistics. Of four possible versions reported in [15], we
use here only the values from the down-flat set. In the
region being studied, the down-steep set coincides with
the down-flat solution, whereas the up-flat and up-steep
versions cannot be described by a smooth phase-shift
curve and are strongly different from the other data
used.

2.1. S0-Wave Phase Shift

Data from [15–20] enabled us to obtain a smoothed

curve for the phase shift (s) over the entire region
being considered. In order to arrive at this description,
we approximated the phase shift by a polynomial in
odd powers of the pion momentum q; that is, we relied
on the expansion usually used near the threshold:

(1)

The coefficients ai are treated as adjustable parameters,
their optimal values being

A further increase in the number of terms in the series
does not improve the accuracy of description in terms
of the χ2 criterion, nor does this lead to significant
changes in the values of the coefficients ai. Thus, we
conclude that the proposed polynomial description is

stable. The experimental values of the phase shift (s)
are presented in Fig. 1, along with the fitting curve. This
description corresponds to the value of χ2 = 127 for
98 degrees of freedom. This demonstrates that the
present fit to the data used is of reasonably good qual-
ity. The question of whether there are (or there are no)
possible scalar resonances (see, for example, [15, 21,
22]) has not been considered in the present approach.

2.2. S2-Wave Phase Shift

It should be emphasized that, until recently, there

were no experimental values of the phase shift (s)
near the threshold. Because of this, it was necessary to
construct a fitting curve by relying only on the data for
the dipion mass in excess of 500 MeV. At the same
time, it was shown in [23] that it is the near-threshold
behavior that is crucial for finding solutions to the Roy
equations; therefore, the absence of reference points

δ0
0

δ0
0 s( ) 2

s
------ a1q a2q3 a3q5 a4q7+ + +( ).=

a1 0.236 0.037, a2± 0.323 0.027,±= =

a3 0.033– 0.006, a4± 0.0018 0.0004.±= =

δ0
0

δ0
2
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near the threshold impairs drastically the accuracy of
the results obtained in this way.

Precise values of the cross sections (s) near the

threshold were obtained in [24]. This permitted esti-

mating the phase shift (s) under the assumption that

the phase shift (s) is known. By using the values of

(s) from [14], we have calculated the phase shift

(s) and the error in it, σ( ), on the basis of the cross

section (s). The resulting values are displayed in

the table.

Thus, reference experimental data near the thresh-
old have appeared, which made it possible to obtain a
more reliable description of the S2-wave phase shift
without ad hoc assumptions. It should be noted that the

(s) values that have been taken for calculating (s)
comply well with the values presented in [24]. The

(s) values computed in the near-threshold region
were added to the basic set of data from [18–20, 23–31].

σ
π+π–

δ0
2

δ0
0

δ0
0

δ0
2 δ0

2

σ
π+π–

δ0
0 δ0

2

δ0
2

δ0
0, deg

150

120

90

60

30

0 10 20 30 40 50
s

Fig. 1. S0-wave phase shift. The solid curve represents the
result of fitting in terms of expression (1).

Table

s E, MeV , deg σ( ), deg

4.15 284.3 –1.14 0.71

4.45 294.3 –1.89 1.00

4.75 304.2 –1.50 1.13

5.05 313.7 –1.37 1.25

5.35 322.8 0.025 2.34

5.65 331.8 –5.38 2.46

δ0
2 δ0

2

At this step, the data were also fitted in terms of the
threshold expansion

(2)

The coefficients in (2) were again treated as adjustable
parameters, their optimal values being

The experimental data used and the fitting curve that we
obtained are displayed in Fig. 2. The resulting descrip-
tion corresponds to the value of χ2 = 34 for 24 degrees
of freedom.

Data from the electron experiment reported in [26]
were processed separately, because it was shown earlier
(see [14]) that the results obtained upon taking those
data into account differ considerably from the results of
the calculations disregarding them. For the data of the
electron experiment, we obtained a description charac-
terized by the value of χ2 = 9 for four degrees of freedom.
Thus, we can see that the smoothing procedure is correct
in either case, although the values of the coefficients ai
exhibit a considerable scatter between the two cases. The
results obtained by processing the electron experiment
are presented in Fig. 3. In the following, we will revisit
the two possible descriptions of the S2-wave phase shift.

2.3. P Wave

In the present study, we assume that, in the energy range
being considered, the P wave is determined by the ρ reso-
nance almost completely. In order to smooth the depen-

dence (s), it is therefore natural to employ the relation

(3)

δ0
2 s( ) 2

s
------ a1q a2q3 a3q5 a4q7+ + +( ).=

a1 0.058– 0.031, a2± 0.053– 0.019,±= =

a3 0.022 0.035, a4± –0.00002 0.00018.±= =

δ1
1

δ1
1 s( )

mρΓρ

mρ
2 E2–

------------------ q
qρ
----- 

  3

,arctan=

δ0
2, deg

0

–10

–20

–30
0 10 20 30 40 50

s

Fig. 2. S2-wave phase shift. The solid curve represents the
result of fitting in terms of expression (2).
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000



DETERMINATION OF THE ππ SCATTERING LENGTHS 1615
where mρ and Γρ are, respectively, the mass and width

of the ρ resonance; q =  is the c.m. pion

momentum; qρ = ; and E is the total

energy in the dipion c.m. frame. Here, we treat mρ and
Γρ as adjustable parameters. Relation (3) represents a
particular case of a more general, so-called relativistic,
relation that is obtained upon introducing the Durr–
Pilkuhn form factor [31]:

(4)

Here, A = R2, where R is a parameter that characterizes
the dimensions of the spatial interaction region. It is
obvious that, according to the physical meaning of the
parameter R, it is nonnegative. At A = 0, expression (4)
reduces to expression (3). It should be noted that the fit-
ting of the P wave involves some serious problems.

First, the fitting of the experimental dependence (s)
in terms of either (3) or (4) leads to an overly great
value of χ2. Second, nonpositive values of the parame-
ter A were obtained upon fitting in terms of (4)—that is,
R2 takes negative values.

The experimental values of the phase shift (s) that
are used here are shown in Fig. 4, along with the opti-
mal dependences chosen on the basis of (3) and (4). It
should be noted that, in either case, we are dealing with
large values of χ2, although the description of the

dependence (s) visually seems correct, especially in
the case of expression (4). Let us consider this situation
in greater detail.

We obtain the value of χ2 = 1117 for 79 degrees of
freedom in the case of fitting in terms of (3) and χ2 =
376 for 78 degrees of freedom in the case of fitting in
terms of (4). Thus, the introduction of the additional
parameter A reduces the value of χ2 by 741—that is,
nearly by a factor of 3. This is direct evidence for the
significance of this parameter. At the same time, the
value of χ2/Ns ≈ 5 (Ns is the number of degrees of free-
dom) is still overly high, although the dependence
given by (4) describes smoothly experimental points
(see Fig. 4). We assume that this situation arises as the
result of the concerted effect of several factors. The
right-hand sides of equations (3) and (4) feature a sin-
gularity at E = mρ; since the fitting function changes
very fast in the vicinity of this point, the behavior of the
phase shift in this region is very sensitive to errors in
determining the energy E. That such errors do indeed
exist is proven by means of a simple analysis. We per-
formed fitting on the basis of expression (4) and calcu-
lated χ2 for individual groups of experimental data in

1
2
--- E2 4mπ

2–

1
2
--- mρ

2 4mπ
2–

δ1
1 s( )

mρΓρ

mρ
2 E2–

------------------ q
qρ
----- 

  3 1 q2A+

1 qρ
2 A+

------------------
 
 
 

.arctan=

δ1
1

δ1
1

δ1
1
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overall statistics. As a result, the sum of  taken over

all groups turned out to be  = 222. In fitting the
entire array of data borrowed from different experi-
ments and treated as a whole, we obtained χ2 = 376 (see
above)—that is, χ2 is nearly doubled in relation to the
case of processing separately individual groups of data.
This confirms the conjecture that, between the results
coming from different experiments, there is some
methodological bias, which is most likely due to errors
in determining the energy E. This in turn affects the χ2

value that results from fitting. In other words, this
implies that, the authors of some studies underestimated
errors in phase shifts because of the disregard of method-
ological uncertainties in determining the energy E.

Thus, we deem that the problem of regularly
smoothing data on the P wave can be solved quite reli-
ably on the basis of expression (4). At the same time, it
should be borne in mind that, in describing the P-wave
phase shift in terms of the relativistic formula (4),

χ i
2

χ i
2∑

δ0
2, deg

–5

–10

–15

–20

–25
5 15 25 35 45 s

Fig. 3. S2-wave phase shift. Data from the electron experi-
ment are presented here. The solid curve represents the
result of fitting in terms of expression (2).

δ1
1, deg

180

120

60

0
5 15 25 35 45 s

Fig. 4. P-wave phase shift. The dashed and the solid curve
represent the results of fitting in terms of expressions (3) and
(4), respectively.
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which involves the Durr–Pilkuhn form factor, the
parameter characterizing the dimensions of the interac-
tion region proves to be negative:

We were unable to find any explanation for this fact. At
the same time, the dependence in (4) serves our present
purposes quite well, since we now address the problem
of regularly smoothing the experimental dependence

(s) in order to use it subsequently in integrating the
Roy equations. Nonetheless, the problem of negative R2

is of considerable interest in itself, and it calls for a fur-
ther study.

The optimal values of the remaining parameters mρ
and Γρ as obtained from a fit in terms of expression (4)
are

which are very close to the world-average values [21]

3. ROY EQUATIONS

The Roy equations represent a set of nonlinear inte-
gral equations relating the real parts of the partial-wave
amplitudes to integrals over the physical region that
involve combinations of the imaginary parts of the par-
tial-wave amplitudes. In the derivation of these equa-
tions, use is made of the dispersion relations with a
double subtraction at fixed t3) and of the properties of
analyticity and crossing symmetry of the scattering
amplitude.

Here, we restrict our consideration to S and P waves
(so-called S–P analysis). For the case of charged pions,
the Roy equations are given by

(5)

where (x, s) = Im (x)1 (x, s) + Im (x)2 (x, s) +

Im (x)3 (x, s).

Explicit expressions for the kernels (x, s) of the
integral equations (5) are presented in the Appendix.

The corrections (s) standing for the estimated contri-

3)The quantity t is defined as the 4-momentum transfer in the ππ
c.m. frame.

R2 2.81– 0.06 GeV 2– .±=

δ1
1

mρ 770.5 0.6 MeV,±=

Γρ 154.7 1.4 MeV,±=

mρ 770.0 0.8 MeV,±=

Γρ 150.7 1.1 MeV.±=

Re f l
I s( ) λ l

I s( ) 1
π
--- Ψl

I x s,( ) x ϕ l
I s( ),+d

4

51

∫+=

Ψl
I f 0

0 Kl
I f 0

2 Kl
I

f 0
2 Kl

I

KI
j l

ϕ l
I

butions from higher waves (l ≥ 2) and from the region
of large masses were borrowed from [12] in the form

(6)

In accordance with the theory being considered, the

subtraction constants (s) are given by

(7)

(8)

(9)

The real and the imaginary part of the ππ-scattering
amplitude are expressed in terms of the phase shift in a
standard way by taking into account the unitarity con-
dition:

(10)

4. DETERMINATION OF THE SUBTRACTION 
CONSTANTS

Our objective is to solve equations (5) for the sub-
traction constants—that is, to obtain the experimental

dependences (s)—and, after that, to estimate, with

the aid of equations (7)–(9), the scattering lengths 

and . It is natural that, on the basis of the dependence

(s), we can estimate only the parameter (2  – 5 ),
which characterizes the so-called universal curve. In
order to integrate the singular equations (5), it is neces-
sary to smooth, for each set of the phase-shift curves,
the experimental dependences with the aid of some
analytic function by using the χ2 criterion of consis-
tency.

Solving the Roy equations for the subtraction con-

stants (s) reduces to integrating these equations for

each set of (s). The integration was performed to pre-

cision higher than 1%. The values of Re (si) were
taken at each experimental point si where the phase

shift (si) was measured. By solving the Roy equa-
tions for each value of si, we obtained, for the first time,

ϕ0
0 13 5±( ) 10 5– s2 16–( ),×=

ϕ0
2 13 6±( ) 10 5– s s 4–( ),×=

ϕ1
1 3.0 1.5±( ) 10 5– s s 4–( ).×=

λ l
I

λ0
0 s( ) a0

0 s 4–
12

----------- 2a0
0 5a0

2–( ),+=

λ0
2 s( ) a0

2 s 4–
24

----------- 2a0
0 5a0

2–( ),–=

λ1
1 s( ) s 4–

72
----------- 2a0

0 5a0
2–( ).=

Re f l
I s( ) 1

2
--- s

s 4–
----------- δl

I s( ),sin=

Im f l
I s( ) 1

2
--- s

s 4–
----------- 1 δl

I s( )cos–( ).=

λ l
I

a0
0

a0
2

λ1
1 a0

0 a0
2

λ l
I

δl
I

f l
I

δl
I
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the values of the subtraction constants (si) from the
experimental data on the phase shifts for pion–pion
scattering. These values, together with the theoretical
approximations described by formulas (7)–(9), are
depicted in Figs. 5–8. It should be noted that the error
bars presented in the figures are purely statistical—that
is, they are eventually determined by the errors in the

measured phase shifts (s). For the variance Dλ of the

quantity (s), we use the sum of the variances,

(11)

Here, DRe is determined by the error in the quantity

Re (si), while DI is the variance of the integral I =

(x, s)dx in formula (5) due both to the errors in

determining the smoothing parameters ai in formulas
(1), (2), and (4) and to the correlation between these
parameters. The explicit expression for this variance is

(12)

where Kij are the correlation moments of the quantities
ai and aj. It should be emphasized that the expression
for the variance Dλ does not contain the theoretical

errors ∆ (si) in the quantities (si), since they are
not, generally speaking, statistical: they change the
behavior of the function simultaneously for all s [see
equation (6)]. Because of this, the theoretical error in

(s) behaves as a random function with respect to

∆ (si). Therefore, a dedicated consideration is
required for taking into account the effect of the theo-

λ l
I

δl
I

λ l
I

Dλ DRe DI.+=

f l
I

1
π
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51∫
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Fig. 5. Subtraction constant (s) as obtained from the Roy

equations (5). The straight line represents the result of fitting
in terms of expression (7).
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retical error ∆ (si) on the calculation of uncertainties

in the scattering lengths  and . It will be conducted
below.

5. EXTRACTING THE VALUES OF  AND  

FROM THE DEPENDENCE (s)

We have calculated the scattering lengths  and 
and the correlation factor r separately for each depen-

dence (si) by fitting this dependence with the aid of
linear functions by formulas (7)–(9). Let us consider

each dependence (s) separately.

(a) (s). By fitting the constructed dependence

(s) (see Fig. 5) in terms of expression (7), we
obtained

(13)

These values, together with their errors and the correla-
tion factor, determine the statistical ellipse of scatter
(due to the statistical uncertainties in the experiment)

for the parameters  and . This result is depicted in
Fig. 9. Further, we consider the effect of the theoretical

error ∆  on the uncertainties in determining  and

. In solving the Roy equations, the substitution of

∆  for the theoretical function (s) in (6) modifies

the subtraction constants (s) and, accordingly, the

ϕ l
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I
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2

λ l
I

λ l
I
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Fig. 6. Subtraction constant (s) as obtained from the Roy

equations (5). The straight line represents the result of fitting
in terms of expression (8).
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sought scattering lengths  and . Thus, the theoret-

ical error translates into the errors in the values of 

and . The errors determine the degenerate ellipse of
scatter with the parameters

(14)

It is also depicted in Fig. 9. Since the statistical experi-

mental errors and the theoretical error ∆  do not
depend on each other, the resulting ellipse of scatter
due to both the experimental errors and the theoretical

error ∆  (that is, to the concerted effect of these two
factors) is formed by combining the above two ellipses

of scatter. For the set of (s), we eventually obtain

(15)

The resulting ellipse of scatter is displayed in Fig. 9.

(b) (s). Following the same line of reasoning and

fitting the dependence (s) (Fig. 6) on the basis of
expression (8), we obtain the parameters of the statisti-
cal ellipse of scatter. Explicitly, the results are

(16)

a0
0 a0

2

a0
0

a0
2

a0
0 0.238 0.016, r± 1,= =

a0
2 0.039– 0.012.±=

ϕ0
0

ϕ0
0

λ0
0

a0
0 0.238 0.023, r± 0.987,= =

a0
2 0.039– 0.015.±=

l0
2

λ0
2

a0
0 0.285 0.051, r± 0.995,= =

a0
2 0.020– 0.017, Ns± 25, χ2 25.= = =

λ0
2, mπ

–1

–0.4

0

–0.8

–1.2

5 15 25 35 45 s

Fig. 7. Subtraction constant (s) as obtained from the Roy

equations (5) according to data from the electron experi-
ment. The straight line represents the result of fitting in
terms of expression (8).

λ0
2

P

The theoretical uncertainty ∆  forms a degenerate
ellipse of scatter with the following parameter values:

(17)

Combining the two ellipses, we eventually obtain the

following values for the set (s):

(18)

All these results are presented in Fig. 9.

(c) (s) + (s). For the scattering lengths  and

, we have obtained the ellipses of scatter on the basis

of each set (s) and (s) individually (these sets
were in turn deduced from solutions to the Roy equa-
tions). Since these results were derived independently,
it is legitimate to perform averaging in order to deter-

mine the weighted means of  and  for the sets

(s) and (s) with allowance for statistical weights.

On the basis of the entire array of (si) and (si) val-
ues, we eventually obtain the following parameter values:

(19)

The resulting ellipse of scatter and the corridor for the
universal curve are displayed in Fig. 10.
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Fig. 8. Subtraction constant (s) as obtained from the Roy

equations (5). The straight line represents the result of fitting
in terms of expression (9).
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(d) (s), electron experiment. As was indicated

above, data on the phase shifts (s) from the electron
experiment [26] were processed here separately,
because it was indicated previously that the scattering

lengths  and  as deduced from data of this electron
experiment differ considerably from the results
obtained by processing the rest of the data array for the

phase shifts (s). The subtraction constants (si)
determined in solving the Roy equations for the present
case are displayed in Fig. 7, along with the fitting func-
tion that corresponds to expression (8). The statistical
ellipse of scatter has the following parameters:

(20)

On the basis of these results, we can conclude that the
data from the electron experiment are described by the
theoretical dependence (8) much more poorly (in terms
of the χ2 criterion) than the main array of data on the S2

wave. The errors in  and  due to the theoretical
uncertainty specify the ellipse of scatter with the
parameters

(21)

Performing summation, we eventually find the follow-

ing parameter values as determined from a set of (si)
values coming from the electron experiment:

(22)

The resulting ellipse of scatter is presented in Fig. 10.

In summary, we can state that the  and  values as
obtained from the data coming from the electron exper-
iment lie far off the values deduced from the remaining

array of data on  and  (this is clearly seen in

Fig. 10), as well as far off the region of the  and 
values quoted in the majority of studies. Thus, we can
conclude that, although the overall statistics of events
of pion–pion scattering is much vaster in the electron
experiment than the entire body of remaining data on
the S2 wave, so that it could be considered as a basic
experiment, it appears unfortunately that the presence
of some methodological errors distorted the results for

the phase shifts (s). This conclusion is confirmed

both by the fact that the subtraction constants (si) are
poorly reproduced by the theoretical function in (8) and
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by the extremal values obtained for the scattering

lengths  and .

(e) (s). In order to deduce the parameter (2  –

5 ), we fitted the constructed dependence (s) in
terms of expression (9). From our fit, we excluded three

points characterized by individual  values in excess
of 50, assuming that such points correspond to
extremely large fluctuations. After that, we obtained
χ2 = 218 for 74 degrees of freedom. As was indicated in
Subsection 2.3, there still remains the problem of large

χ2 values in smoothing data on the phase shifts (s).
Naturally, this problem is present in fitting the depen-

dence (s) as well. The resulting data with allowance

for the theoretical error ∆  are the following:

(23)

Taking into account all that was said in Subsec-
tion 2.3, we can state that there arise problems in ana-

lyzing the phase shifts (s); therefore, we present the
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Fig. 9. (1) Statistical ellipse of scatter on the basis of data on

(s), (2) degenerate ellipse of scatter on the basis of data

on (s) that are associated with the theoretical error ∆ ,

(3) resulting ellipse of scatter on the basis of data on (s),

(4) statistical ellipse of scatter on the basis of data on (s),

(5) degenerate ellipse of scatter on the basis of data on (s)

that are associated with the theoretical error ∆ , and (6)

resulting ellipse of scatter on the basis of data on (s).
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results in (23) as an illustration that calls for a further
refinement, but we do not use these data in eventually deter-

mining the scattering lengths  and . The dependence

(si) is shown in Fig. 8, along with the theoretical straight
line optimally chosen on the basis of expression (9).

To conclude this section, we would like to highlight
the following circumstance. In analyzing the structure

of the ellipses of scatter in Fig. 9 for the sets of  and

, one can notice that the contribution to the final
result from the uncertainties due to the statistical exper-
imental errors is commensurate with theoretical uncer-
tainties. Therefore, the problem of reducing uncertain-

ties in the scattering lengths  and  cannot be
solved by increasing statistics and improving experi-
mental accuracies. Theoretical efforts at reducing the

theoretical uncertainty ∆  are also necessary.

6. EVALUATION OF 

The P-wave scattering length  does not appear in
the Roy equations, but it can be obtained from the Gri-
bov–Froissart integral representation

(24)
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Fig. 10. (1) Resulting ellipse of scatter on the basis of data

on (s) + (s); (2) corridor for the universal curve,

(2  – 5 ); and (3) ellipse of scatter on the basis of data

on (s) from the electron experiment.
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By using the same smoothed dependences of the
pion–pion phase shifts as in solving the Roy equations,
we obtain

(25)

It should be noted that the error in the scattering length

 is determined completely by the theoretical uncer-

tainty ∆  in equation (24).

In order to draw a comparison with a solution
obtained from the Roy equations, we further calculated

the parameter (2  – 5 ) by using the Wanders trans-
formation

(26)

Performing integration in (26) and substituting the

value of  from (25), we arrive at

(27)

This result is quite consistent with the value in (19),
which was obtained from the Roy equations. Yet
another special feature is worthy of note. We make use

of the definition of  as a limit and assume that the
near-threshold behavior of the phase shift is completely
determined by the ρ resonance. By definition, we have

(28)

By using expression (28) with the optimal parameter
values presented in Subsection 2.3, we arrive at

(29)

In all probability, the distinction between the values

 and ( )lim should be treated as a manifestation of

the fact that, near the threshold, the phase shift (s) is
not exhausted by the contribution of the ρ resonance.
However, this issue requires a dedicated consideration.

7. CONCLUSIONS

(i) By using data on pion–pion phase shifts for
charged pions from the threshold to the dipion mass of
1 GeV, we have obtained the S- and P-wave subtraction

constants (s) (which appear to be solutions to the
Roy equations) satisfying the conditions of analyticity,
unitarity, and crossing symmetry. It has been shown
that the solutions that we obtained are described well
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by linear dependences, in accord with theoretical con-
siderations.

(ii) On the basis of the resulting solutions (s) and

(s), we have calculated the scattering lengths:

The relevant correlation coefficient proved to be r =
0.945. For the universal curve, the corresponding result is

For the sake of comparison, we have calculated the
parameters of the universal curve from the Wanders
relation. The result is

That the above solutions are close demonstrates the
reliability of the approach used.

(iii) The effect of the statistical experimental errors
on the uncertainties in the scattering length and the

analogous effect of the theoretical uncertainties ∆
have been taken into account separately. It has been
shown that the contributions to the final results from
these two sources of error are commensurate.

(iv) We would like to emphasize that, in describing

the P-wave phase shift (s) by the relativistic formula
involving the Durr–Pilkuhn form factor, the parameter
characterizing the dimensions of the interaction region
proved to be negative: R2 = –2.81 ± 0.06 GeV–2. The
remaining ρ-resonance parameters obtained in this
way, mρ = 770.5 ± 0.6 MeV and Γρ = 154.7 ± 1.4 MeV,
are virtually coincident with the corresponding world-
average values.

(v) The ê-wave scattering length  obtained from
the Gribov–Froissart relation is

In calculating  as the limit of /q3 near the thresh-
old, we have arrived at the value

This suggests that, near the threshold, the P wave
receives some contributions other than those from the ρ
resonance.
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Abstract—Bosonization of two-dimensional QCD in the large-NC limit is performed within the Hamiltonian
approach in the Coulomb gauge. A generalized Bogolyubov transformation is applied to diagonalize the Hamil-
tonian in the bosonic sector of the theory, and the composite operators creating (annihilating) bosons are
obtained in terms of dressed quark operators. The bound-state equation is reconstructed as the result of the gen-
eralized Bogolyubov transformation, and the form of its massless solution, a chiral pion, is found explicitly. The
chiral properties of the theory are discussed. © 2000 MAIK “Nauka/Interperiodica”.
Two-dimensional quantum chromodynamics
(QCD2) in the large-NC limit was first considered many
years ago [1], but it still remains popular in studies of
various aspects of strong interactions. The reason for
this is twofold. There are no transverse gluons in two
dimensions, so that the theory is relatively simple;
moreover, in the large-NC limit, only planar graphs are
to be summed, and a simple diagrammatic approach
can be developed. On the other hand, this theory does
have a nontrivial content, exhibiting both confinement
and chiral-symmetry breaking.

The majority of the studies in QCD2 were per-
formed in the light-cone gauge, which considerably
simplifies the spectrum calculations, but which yields a
perturbative vacuum. An alternative approach based on
the Coulomb gauge A1 = 0 is more technically involved
[2], and it is not a straightforward exercise to demon-
strate the equivalence of the two formulations. In par-
ticular, it appears that the vacuum is nontrivial in the
Coulomb gauge version, and a nonzero quark conden-
sate exists for massless quarks [3]. The latter feature is
confirmed by the sum-rule approach [4] in the light-
cone gauge. The confused situation was resolved to a
large extent in the formulation on finite intervals [5],
and the equivalence was demonstrated.

In the present paper, we study the Hamiltonian for-
mulation of QCD2 in the Coulomb gauge. In contrast to
[5], the theory is quantized on the ordinary time hyper-
surface. Our main purpose is to investigate some spe-
cial properties of meson wave functions. It will be
shown that the Bogolyubov–Valatin approach offers
the most natural setting for such studies. Finally, we
perform a generalized Bogolyubov transformation and
reformulate the theory in terms of the effective mesonic
degrees of freedom. The proposed approach allows
straightforward calculations of any matrix elements of

      * This article was submitted by the authors in English.
    ** e-mail: yulia@vxitep.itep.ru
  *** e-mail: nefediev@vxitep.itep.ru
**** e-mail: volodin@vxitep.itep.ru
1063-7788/00/6309- $20.00 © 21623
quark operators, and we exemplify this property by
evaluating the pion decay constant.

The Lagrangian of QCD2 has the form

(1)

where  = (∂µ – ig )γµ, and our convention for γ
matrices is γ0 = σ3, γ1 = iσ2, and γ5 = γ0γ1. The large-NC

limit implies that g2NC remains finite.
The gluon propagator in the Coulomb gauge A1 = 0

takes the form D00(k0, k) = –1/k2, and the infrared sin-
gularity is regularized by the principal-value prescrip-
tion yielding linear confinement:

(2)

The Hamiltonian can be obtained by standard meth-
ods and reads

(3)

where the quark and antiquark fields are defined by

(4)

(5)

with

(6)

The parameter θ(k) has the meaning of the Bogoly-
ubov–Valatin angle describing a rotation from the bare
to the dressed quarks. As in [2], the Hamiltonian in (3)

L x( ) 1
4
---Fµν

a
x( )Fµν

a
x( )– q x( ) iD̂ m–( )q x( ),+=

D̂ Aµ
a
t

a

D00
ab

x0 y0– x y–,( ) i
2
---δab

x y– δ x0 y0–( ).–=

H xq
+

x( ) iγ5 x∂
∂

– mγ0+ 
  q x( )d∫=

–
g

2

2
----- x yq

+
x( )t

a
q x( )q

+
y( )t

a
q y( ) x y–

2
--------------,dd∫

qi x0 x,( ) = 
kd

2π
------ u k( )bi x0 k,( ) v k–( )di x0 k–,( )+[ ] e

ikx
,∫

bi k( ) 0| 〉 di k–( ) 0| 〉 0= =

u k( ) T k( ) 1
0 

  , v –k( ) T k( ) 0
1 

  ,= =

T k( ) e
1
2
---θ k( )γ1–

.=
000 MAIK “Nauka/Interperiodica”



1624 KALASHNIKOVA et al.
can be normally ordered in the basis of the fermion oper-
ators (5):

(7)

Here, %v is the vacuum-energy density (L being the
one-dimensional volume of the space):

(8)

The part : H2 : is bilinear in quark fields,

(9)

and the projection operators Λ± are introduced as

(10)

The angle θ(k) is defined from the condition of diag-
onalizing the bilinear in the quark-field part of the
Hamiltonian : H2 :. This condition gives a system of
integral equations for θ(p) and quark dispersion E(p),
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which leads to a gap equation for the angle θ(p),
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Note that, once the “dressed” quarks, (4) and (5),
define excitations over the true quark vacuum |0〉 , then
gap equation (12) could be reconstructed as the extre-
mum condition
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which ensures that the vacuum energy is minimal.
Thus, the diagonalized Hamiltonian : H2 : takes the

form
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Alternatively, equation (12) could be found as a
solution to the Schwinger–Dyson equations for the
quark propagator:

(15)

(16)

The gap equation (12) contains the entire body of
information about the one-fermion sector of the theory,
but not about the interaction between fermions, because
the : H4 : part of the Hamiltonian was not involved so
far. To proceed further, we introduce, as in [5], the
color-singlet bilinear operators
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with the commutation relations

(18)

(19)

S p0 p,( ) 1
p̂ m– Σ p( )–
-------------------------------,=

Σ p( ) i
γ

2π
------

k0 kdd

p k–( )2
-------------------γ0S k0 k,( )γ0∫–=

=  E p( ) θ p( )cos m–[ ] γ1 E p( ) θ p( )sin p–[ ] .+

B p p',( )
1

NC

-----------bi
+

p( )bi p'( ),=

D p p',( )
1

NC

-----------di
+

p–( )di p'–( ),=

M p p',( )
1

NC

-----------di p–( )bi p'( ),=

M
+

p p',( )
1

NC

-----------bi
+

p'( )di
+

p–( )=

M p p',( )M
+

q q',( )[ ]

=  
2π
NC

----------- D q p,( )δ p' q'–( ) B q' p',( )δ p q–( )+{ }–

+ 2π( )2δ p' q'–( )δ p q–( ) 2π( )2δ p' q'–( )δ p q–( ),
NC → ∞

B p p',( )B q q',( )[ ]

=  
2π
NC

----------- B p q',( )δ p' q–( ) B q p',( )δ p q'–( )–( ) 0,

D p p',( )D q q',( )[ ]

=  
2π
NC

----------- D p q',( )δ p' q–( ) D q p',( )δ p q'–( )–( ) 0,
NC → ∞

NC → ∞

B p p',( )M q q',( )[ ]

=  
2π
NC

-----------M q p',( )δ p q'–( ) 0,–

B p p',( )M
+

q q',( )[ ]

=  
2π
NC

-----------M
+

q p,( )δ p' q'–( ) 0,

D p p',( )M q q',( )[ ]

=  
2π
NC

-----------M p' q',( )δ p q–( ) 0,–

NC → ∞

NC → ∞

NC → ∞
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In terms of these operators, the Hamiltonian in (3) can
be represented as

(20)

It can be easily verified that the ansatz [5]

(21)

satisfies the commutation relations (19), so that, in the
leading order in NC, the Hamiltonian in (20) can be
rewritten as

(22)

D p p',( )M
+

q q',( )[ ]

=  
2π
NC

-----------M
+

p q',( )δ p' q–( ) 0.
NC → ∞

H LNC%v NC
kd

2π
------E k( ) B k k,( ) D k k,( )+{ }∫+=

–
γ
2
--- p k Qddd

2π( )2
p k–( )2

--------------------------------- 2
θ p( ) θ k( )–

2
--------------------------cos





∫

× θ Q p–( ) θ Q k–( )–
2

---------------------------------------------- M
+

p p Q–,( )D k Q– k,( )[sin

+ M
+

p Q– p,( )B k Q– k,( ) B p p Q–,( )M k Q– k,( )–

– D p p Q–,( )M k k Q–,( ) ] θ p( ) θ k( )–
2

--------------------------cos+

× θ Q p–( ) θ Q k–( )–
2

---------------------------------------------- B p Q– p,( )B k k Q–,( )[cos

+ D p p Q–,( )D k Q– k,( ) M
+

p Q– p,( )M k Q– k,( )+

+ M
+

p p Q–,( )M k k Q–,( ) ] θ p( ) θ k( )–
2

--------------------------sin+

× θ Q p–( ) θ Q k–( )–
2

---------------------------------------------- B p p Q–,( )D k k Q–,( )[sin

+ B p Q– p,( )D k Q– k,( ) M p p Q–,( )M k Q– k,( )+

--+ M
+

p Q– p,( )M
+

k k Q–,( ) ]




.

B p p',( )
1

NC

----------- q''d
2π
--------M

+
q'' p,( )M q'' p',( ),∫=

D p p',( )
1

NC

----------- q''d
2π
--------M

+
p q'',( )M p' q'',( )∫=

H LNC%v
Q pdd

2π( )2
--------------∫+=

× E p( ) E Q p–( )+( )M
+

p Q– p,( )M p Q– p,( ){

–
γ
2
--- kd

p k–( )2
------------------- 2C p k Q, ,( )M

+
p Q– p,( )M k Q– k,( )[∫

+ S p k Q, ,( ) M p p Q–,( )M k Q– k,( )(

+ M
+

p p Q–,( )M
+

k Q– k,( ) ) ] } ,
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where

(23)

We are now to perform a second Bogolyubov trans-
formation that should diagonalize this Hamiltonian. Let
us define the new operators as

(24)

where the functions  and  parametrize this trans-
formation and obey a Bogolyubov-type normalization
and completeness conditions (m, n > 0):

(25)

(26)

By using these conditions, it can easily be shown
that, in the limit NC  ∞, the new operators m(Q) and
m+(Q) obey the standard boson commutation relations

(27)

A straightforward, but tedious, calculation shows
that the transformation in (24) diagonalizes the Hamil-

tonian in (22) if the functions  and  are solutions
to the set of equations

(28)

C p k Q, ,( ) = 
θ p( ) θ k( )–

2
-------------------------- θ Q p–( ) θ Q k–( )–

2
----------------------------------------------,coscos

S p k Q, ,( ) = 
θ p( ) θ k( )–

2
-------------------------- θ Q p–( ) θ Q k–( )–

2
----------------------------------------------.sinsin

mn
+

Q( )
qd

2π
------ M

+
q Q– q,( )ϕ+

n
q Q,( ){∫=

+ M q q Q–,( )ϕ–
n

q Q,( ) } ,

mn Q( )
qd

2π
------ M q Q– q,( )ϕ+

n
q Q,( ){∫=

+ M
+

q q Q–,( )ϕ–
n

q Q,( ) } ,

ϕ+
n ϕ–

n

pd
2π
------ ϕ+

n
p Q,( )ϕ+

m
p Q,( ) ϕ–

n
p Q,( )ϕ–

m
p Q,( )–( )∫ δnm,=

pd
2π
------ ϕ+

n
p Q,( )ϕ–

m
p Q,( ) ϕ–

n
p Q,( )ϕ+

m
p Q,( )–( )∫ 0;=

ϕ+
n

p Q,( )ϕ+
n

k Q,( ) ϕ–
n

p Q,( )ϕ–
n

k Q,( )–( )
n 0=

∞

∑
=  2πδ p k–( ),

ϕ+
n

p Q,( )ϕ–
n

k Q,( ) ϕ–
n

p Q,( )ϕ+
n

k Q,( )–( )
n 0=

∞

∑ 0.=

mn Q( )mm
+

Q'( )[ ] 2πδ Q Q'–( )δnm,=

mn Q( )mm Q'( )[ ] mn
+

Q( )mm
+

Q'( )[ ] 0.= =

ϕ+
n ϕ–

n

E p( ) E Q p–( ) Q0–+[ ]ϕ+ p Q,( )

=  γ kd

p k–( )2
-------------------[C p k Q, ,( )ϕ+ k Q,( ) S p k Q, ,( )ϕ– k Q,( )]– ,∫

E p( ) E Q p–( ) Q0+ +[ ]ϕ– p Q,( )

=  γ kd

p k–( )2
-------------------[C p k Q, ,( )ϕ– k Q,( ) S p k Q, ,( )ϕ+ k Q,( )]– .∫

–

–
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The resulting Hamiltonian takes the form

(29)

where (Q) is the nth positive eigenvalue of the set of
equations (28). The Hamiltonian in (29), together with
boson operators (20), comprises our procedure of
bosonization. Note that, here, the vacuum-energy den-
sity  contains an O(1/NC) extra contribution that
comes from the mesonic-operator ordering.

Equations (28) are nothing but those that were
obtained by Bars and Green in [2] for the Bethe–Sal-
peter wave function

(30)

There is a very important point concerning Bars–
Green equations (28). While equations (25) and (26)
represent quite natural conditions imposed on the
parameters of Bogolyubov–Valatin transformations, it is
apparently unacceptable to assume such normalization
and completeness conditions for solutions to bound-state
equations. In fact, the problem is rooted in the properties
of Bars–Green equations (28). It can easily be verified
that, if the set of equations (28) is rewritten in the form
of the matrix integral Schrödinger-like equation

(31)

then the integral operator  is not Hermitian. Fortu-
nately, this does not cause a disaster since the eigenval-
ues are real: integrating both sides of (28) with respect
to p, doing the same for the complex-conjugate equa-
tions, and taking the appropriate linear combination,
one arrives at

(32)

which yields

(33)

together with the orthonormality condition

(34)

H LNC%v'
1
2
--- Qd

2π
-------Qn

0
Q( )∫

n 0=

+∞

∑+=

× mn
+

Q( )mn Q( ) mn Q( )mn
+

Q( )+{ } ,

Qn
0

%v'

Φ p Q,( ) T p( )
1 γ0+

2
--------------γ5ϕ+ p Q,( )

=

+
1 γ0–

2
-------------γ5ϕ– p Q,( )

 T
+

Q p–( ).

Q0
n ϕ+

n

ϕ–
n

 
 
 

K̂
ϕ+

n

ϕ–
n

 
 
 

,=

K̂

Qn
0

Qm
0*–( ) pd

2π
------ ϕ+

n
p Q,( )ϕ+

m* p Q,( )(∫
n ∞–=

+∞

∑

– ϕ–
n

p Q,( )ϕ–
m* p Q,( ) ) 0,=

Q0
n

Q0
n*=

pd
2π
------ ϕ+

n
p Q,( )ϕ+

m
p Q,( ) ϕ–

n
p Q,( )ϕ–

m
p Q,( )–( )∫ δnm,=

pd
2π
------ ϕ+

n
p Q,( )ϕ–

m
p Q,( ) ϕ–

n
p Q,( )ϕ+

m
p Q,( )–( )∫ 0.=
Solutions to the set of equations (28) come in pairs:

for each eigenvalue  with the eigenfunction ( ,

), there exists another eigenvalue –  with eigen-

function ( , ). With this symmetry, equation (34)
can be rewritten in the form (25), which involves only
positive eigenvalues. Similarly, the completeness con-
ditions (26) can be derived in an attempt at constructing
the Green’s function for the set of equations (28).

From the point of view of the Bethe–Salpeter equa-
tion, the reason for such an unusual norm is the follow-
ing. The matrix equation for the function Φ contains the
projection operators (10), so that Φ is subject to the
constraint

(35)

as is clear from (30). Thus, both the norm and the
completeness conditions are defined in the truncated
space (35).

It is well known that not only does the Bogolyubov–
Valatin transformation change the operators, it also
transforms the ground state. Indeed, the boson-annihi-
lation operator mn(Q) does not annihilate the vacuum
state |0〉  defined by equation (5). The explicit expres-
sion relating bosonic (|Ω〉) and fermionic (|0〉) vacua is
rather complicated, but the matrix elements of quark
bilinears calculated in the old and in the new vacua for-
tunately coincide in the large-NC limit. For example,
the chiral condensate

(36)

coincides with that which was found in [3].

The form (24) of the operator (Q) suggests the
obvious particle–hole interpretation: the wave function
of a meson moving forward in time contains two
pieces, that of a quark–antiquark pair moving forward
in time with the amplitude ϕ+ and that of a pair moving
backward with the amplitude ϕ–. No such effect could
ever occur in potential quark models.

What can be said about the relative magnitude of the
two amplitudes ϕ+ and ϕ–? The set of equations (28)
was solved numerically in [6], and it was shown that the
component ϕ– is small (i) if the quark mass is large and
(ii) for higher excited states. In these two cases, the
potential quark model with a local linear confinement
serves as a good approximation.

In addition, the component ϕ– dies out with increas-
ing total meson momentum Q: in the infinite-momen-
tum frame (Q  ∞), it is zero, whereas the equation

Q0
n ϕ+

n

ϕ–
n

Q0
n

ϕ–
n ϕ+

n

Λ+ p( )Φ p Q,( )Λ+ Q p–( )

=  Λ– p( )Φ p Q,( )Λ– Q p–( ) 0,=

qq〈 〉 Ω〈 |qi x( )q
i

x( ) Ω| 〉 0〈 |qi x( )q
i

x( ) 0| 〉=

=  NC
kd

2π
------tr γ0Λ– k( ){ }∫

NC

2π
------- k θ k( )cosd

∞–

+∞

∫–=

NC → ∞

mn
+
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for ϕ+ goes over to the ’t Hooft equation [1] after appro-
priate rescaling, as was shown in [2].

In conclusion, let us briefly consider the state that
suffers from the effect of backward motion in the most
dramatic way. It is the two-dimensional pion. It was
shown in [3] that the gap equation has a nontrivial solu-
tion in the chiral limit m = 0 and that the chiral conden-
sate (36) does not vanish with this solution. Therefore,
the Goldstone mode must exist in the spectrum. Indeed,
the set of functions

(37)

is a solution to the set of equations (28) for Q0 = 
and Q > 0 (for Q < 0, ϕ±  ). Here, Nπ is the pion
norm defined according to the general form (34),

(38)

or, with solution (37) substituted, one arrives at

(39)

For Q = 0, we have ϕ+(p, 0) = ϕ–(p, 0) ~ cosθ(p); the
pion spends half of the time in the backward motion of
the pair, and, as follows from equation (39), such a
function has zero norm, as this should be for a massless
particle at rest. In the opposite limiting case of Q 
∞, the backward-motion part dies out, so that

(40)

which coincides with the Goldstone mode of the
’t Hooft equation. Nevertheless, this does not mean that
pion physics is exhausted by the simple picture of a lin-
ear confinement in the infinite-momentum frame. The
nontrivial content of the wave function (37) is concen-
trated entirely in the boundary regions x  0 and
x  1, x = p/Q. The same is true of course for the
QCD2 quantized at the light-cone [4], where quantities
like chiral condensate do not come out trivially, and one
is forced to employ the sum-rule approach to arrive at a
reliable answer.

With the above Hamiltonian approach, it is straight-
forward to calculate any matrix element of currents
between mesonic states. By way of example, we indi-
cate that, in order to evaluate the pion decay constant fπ
defined in the standard way as

(41)

ϕ±
π

p Q,( )

=  Nπ
1– θ Q p–( ) θ p( )–

2
-------------------------------------cos θ Q p–( ) θ p( )+

2
-------------------------------------sin± 

 

Q
2

     ϕ+−!

pd
2π
------ ϕ+

π
p Q,( )( )

2
ϕ–

π
p Q,( )( )

2
–[ ]

∞–

+∞

∫ 1,=

Nπ
2

Q( )
pd

π
------ θ p( )sin θ Q p–( )sin+[ ]

∞–

+∞

∫ 2
π
---Q.= =

ϕ+
π

p Q,( ) 2π
Q
------, 0 p Q,≤ ≤Q → ∞

Ω〈 |Jµ
5

x( ) π Q( )| 〉 f πQµ
e

iQx–

2Q0

--------------,=
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we can express the axial-vector current (

 

x

 

) =

(

 

x

 

)

 

γ

 

µ

 

γ

 

5

 

ψ

 

(

 

x

 

) in terms of meson creation–annihilation

operators  and 

 

m

 

n

 

. This allows us to calculate the
matrix element on the left-hand side explicitly. The
resulting expression for 

 

f

 

π

 

 is

 

(42)

 

It is instructive to note that, for any mesonic state

 

}

 

n

 

(

 

Q

 

), the analogous matrix element

 

〈Ω|

 

(

 

x

 

)

 

}

 

n

 

(

 

Q

 

)

 

〉

 

 contains this meson wave function
integrated with the pion wave function, which obvi-
ously vanishes for any mesonic state but the pion, in
which case there appears the pion norm (39). Thus, the
matrix element (41) is the only nontrivial one, and the
corresponding decay constants for higher excitations of
mesonic states vanish.

We can now slightly relax the chiral limit and find
the pion mass in the limit of a small, but nonzero, quark
mass 

 

m

 

. To this end, we rewrite the set of equations (28)
as a single equation for the matrix function 

 

Φ

 

(

 

p

 

, 

 

Q

 

) in
the form

 

(43)

 

Multiplying equation (43) by 

 

γ

 

0

 

γ

 

5

 

, taking the trace
over spinor indices, and integrating the result with
respect to the momentum 

 

p

 

, one can arrive at

 

(44)

 

By substituting the pion wave function (37) and
using the definition in (30), we can recast the last equa-
tion into the well-known relation [7]

 

(45)

 

For the pion mass, we then have the expression

 

(46)

 

which vanishes in the exact chiral limit.
The last concluding remark concerning the Hamil-

tonian in (29) is in order here. As could have been antic-
ipated from the outset, this Hamiltonian describes free
noninteracting mesons, whereas the interaction sup-

Jµ
5

ψ
mn

+

f π
NC

π
-------.=

Jµ
5

Q0Φ p Q,( ) γ5 p γ0m+( )Φ p Q,( )=

– Φ p Q,( ) γ5 Q p–( ) γ0m+( )

+ γ kd

p k–( )2
------------------- Λ+ k( )Φ p Q,( )Λ– Q k–( ){∫

– Λ+ p( )Φ k Q,( )Λ– Q p–( ) Λ– k( )Φ p Q,( )Λ+ Q k–( )–

+ Λ– p( )Φ k Q,( )Λ+ Q p–( ) } .

Q0
pd

2π
------tr γ0γ5Φ p Q,( )[ ]∫ Q

pd
2π
------tr γ0Φ p Q,( )[ ]∫–

=  2m
pd

2π
------tr γ5Φ p Q,( )[ ] .∫–

f π
2
Mπ

2
2m qq〈 〉 .–=

Mπ
2

2m p θ p( )cosd

0

∞

∫ m γ,∼=



1628 KALASHNIKOVA et al.
pressed by powers of NC is hidden in the terms that are
present in (20), but which are omitted in (29). These
terms define three- and four-meson vertices, so that
recovering them gives quite a natural way to consider
strong meson decays and scattering amplitudes. This
investigation is of special interest in view of the fact
that the pion wave function is found explicitly; hence,
the “mysterious” influence of -pair backward
motion in time upon excited-meson decay into pions
can easily be resolved. This work is in progress and will
be reported elsewhere.
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Abstract—Within the nonrelativistic quark–diquark model for heavy baryons, the fragmentation functions for
the transitions of a c-quark and a doubly charmed vector diquark into an Ωccc baryon are calculated in the lead-
ing order of perturbative QCD. The cross section for Ωccc production in high-energy hadron interactions is esti-
mated. It is assumed that Ωccc baryons are formed via the fragmentation of a c quark or a vector (cc) diquark
produced in the partonic subprocesses gg  ,   , gg  (cc) +  + , and   (cc) +

. © 2000 MAIK “Nauka/Interperiodica”.
cc qq cc c c qq

c  +  c
1. INTRODUCTION
Interest in the physics of baryons containing heavy

quarks has quickened considerably in recent years [1].
This is due primarily to the emergence of new experi-
mental data on the masses and decay widths of charmed
and beauty baryons and on the cross sections for their
production [2]. Advances in experimental studies has
stimulated theoretical work aimed at predicting pro-
duction rates for doubly heavy baryons in the ep and pp
interactions at high energies [3–6]. It is probable that
the  and  baryons containing two charmed
quarks each can be detected at the Tevatron energies

(  = 1.8 TeV). At the LHC energies (  = 14 TeV),
the production rate for doubly charmed baryons is
expected to be greater than that at the Tevatron energies
by four orders of magnitude [7]. The predicted produc-
tion rates for bc and bb baryons at LHC amount to,
respectively, 1/3 and 1/100 of that for the cc baryons [8].

In the present study, an attempt is made to estimate
the cross sections for the production of triply heavy
baryons Ωccc in pp collisions at the Tevatron and LHC
energies. It is assumed that triply heavy baryons are
formed in the fragmentation of heavy quarks or doubly
heavy diquarks produced in the hard subprocesses gg 

,   , gg  (cc) +  + , and  
(cc) +  + . In contrast to the production of heavy and
doubly heavy baryons, the production of baryons
involving three heavy quarks can be self-consistently
calculated within perturbative QCD and the nonrelativ-
istic quark model for hadrons, which is successfully
employed to describe the production of heavy-quarko-
nia [9].

The form factor for the transition of a virtual gluon
into a pair consisting of a cc diquark and a ( ) antidi-
quark, g*  (cc) + ( ), can be calculated rigorously
in the leading order in αs and (v/c)2. This form factor can
be expressed in terms of the diquark wave function at the

Ξcc' Ξcc*

s s

cc qq cc c c qq
c c

cc
cc
1063-7788/00/6309- $20.00 © 1629
origin, Ψcc(0). Owing to this, the fragmentation func-
tions for c-quark and cc-diquark transitions into a Ωccc

baryon can be related to the parameters of the diquark
form factor and the baryon wave function at the origin,

(0) in the quark–diquark approximation [6, 10].

2. FORM FACTOR FOR THE VECTOR cc 
DIQUARK

In the process g*  (cc) + ( ), where (cc) is a
doubly heavy vector diquark, the gluon virtuality satis-

fies the relation k2 >  =  @ , where mc

is the c-quark mass and mcc is the diquark mass. Owing
to this condition, the diquark elastic form factor FD(k2)
for the transition g*  (cc) + ( ) can be calculated
within perturbative QCD. In the leading order in the
coupling constant αs, four diagrams in Fig. 1 contribute
to the form factor in question.

In the nonrelativistic approximation, the diquark is
assumed to be the system consisting of two quarks with
equal 4-momenta and occurring in the spin-1 color-
antitriplet state. From an analysis of the diagrams in
Fig. 1, it can be deduced that the vertex for the transi-
tion g*  (cc) + ( ) can be parametrized as

(1)

Here, gs = ; T a = λa/2 are the Gell-Mann matri-
ces; p1 is the diquark 4-momentum, p2 is the antidi-
quark 4-momentum; and

(2)

ΨΩccc

cc

4mcc
2 16mc

2 ΛQCD
2

cc

cc

igs–( )TaFD p1 p2+( )2( )Vαµβ p1 p2,( ),

Vαµβ
a p1 p2,( ) gαβ p1 p2–( )µ–=

–  gβµ 3 p2 2 p1+( )α gµα 3 p1 2 p2+( )β.+

4παs

FD k2( ) FD0

mcc
2

k2
--------

 
 
 

2

,=
2000 MAIK “Nauka/Interperiodica”
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where

3. 

 

c

 

-QUARK FRAGMENTATION FUNCTION FOR 
THE TRANSITION INTO A 

 

Ω

 

ccc

 

 BARYON

Heavy-quark fragmentation into heavy quarkonia
was considered in the study of Braaten 

 

et al.

 

 [11], who
proposed a method for calculating the relevant frag-
mentation functions on the basis of perturbative QCD
and the nonrelativistic quark model. This method was
then used to compute the analogous functions for
heavy-quark fragmentation into a doubly heavy
diquark, 

 

(

 

z

 

, 

 

µ

 

)

 

 [3], and into a doubly heavy
baryon, 

 

D

 

Q

 

 

 

→

 

 (

 

QQq

 

)

 

(

 

z

 

, 

 

µ

 

)

 

 [6]. In the latter case, the calcu-
lation treated a doubly heavy baryon as a two-particle
system consisting of a heavy quark 

 

Q

 

 and a light–heavy

FD0 128πα s

Ψcc 0( ) 2

mcc
3

---------------------.=

DQ QQ( )→

                         
Fig. 1. Diagrams describing the diquark form factor for the
transition g*  (cc) + ( ) in the leading order in αs
(wavy lines, solid lines, and ovals represent, respectively,
gluons, quarks, and diquarks and antidiquarks).

cc

q

k

pc pcc

q'

Fig. 2. Diagram making the leading contribution to c-quark
fragmentation function for Ωccc-baryon production.

Ĝ

diquark (qQ) and employed phenomenological (qQ)-
diquark form factors, which are poorly known.

Below, c-quark fragmentation into a Ωccc baryon is
considered in a similar manner, but the well-defined
expression (2) is used here for the diquark form factor.

The c-quark fragmentation function for Ωccc-baryon
production is given by [11]

(3)

where } is the amplitude for the production of an Ωccc

baryon of mass M and an antidiquark  of mass m
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momentum 
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, we obtain

We use the axial gauge, where the gluon propagator is
given by

with 

 

n

 

 = (1, 0, 0, –1). In this gauge, the dominant con-
tribution to the amplitude 
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 in the leading order in 
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s

 

comes from the diagram in Fig. 2. The corresponding
expression is
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4-momentum 
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the antidiquark. In the nonrelativistic approximation,
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scalar products of the 4-vectors 
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, and 

 

q
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expressed in terms of the invariant mass 

 

s of the c quark
as follows:
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The sum over the polarizations of the spin-3/2
baryon is computed by making use of the projection
operator:

(5)

However, we consider that, in the nonrelativistic limit,
the quark and the vector diquark in the baryon are free
particles. In this case, summation over baryon polariza-
tion is equivalent to summation over the polarizations
of the quark and the vector diquark:

(6)

Upon evaluating the ratio |} |2/ |}0 |2 and performing a
trivial integration with respect to s in the limit q0 
∞, we arrive at

(7)

where

The fragmentation function (z, µ) for µ >
µ0 = 4mc can be determined by solving the evolution
equation

(8)

where 3c → c(x, µ) is the splitting function in the lead-
ing order in αs,

(9)

where

The fragmentation function (z, µ) normalized
to unity is shown in Fig. 3 for µ = µ0 (curve 1) and µ =
45 GeV (curve 2). The corresponding mean values of z
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are  = 0.61 and 〈z〉45 = 0.42. By virtue of the con-
dition

the probability  of quark fragmentation into a
baryon does not depend on the parameter µ appearing
in the fragmentation function. Specifically, we have

(10)

where

4. (cc)-DIQUARK FRAGMENTATION FUNCTION 
FOR Ωccc-BARYON PRODUCTION

Alternatively, Ωccc baryons can be produced in a
two-stage process where c-quark fragmentation into a
(cc) diquark is followed by the hadronization of the
product diquark into an Ωccc baryon. The c-quark frag-
mentation function for Ωccc-baryon production can then

z〈 〉 µ0

3c c→ x µ,( ) xd

0

1

∫ 0,=

Pc Ωccc→
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D(z)

2

1

0 0.2 0.4 0.6 0.8 1.0

1

2

z

Fig. 3. Fragmentation function (z, µ) at (curve 1)

µ = µ0 and (curve 2) µ = 45 GeV.

Dc Ωccc→
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be represented as the convolution of the fragmentation
functions Dc → (cc)(z, µ) and (z, µ); that is,

(11)

The c  (cc) fragmentation function has the form [3]

(12)

The corresponding fragmentation probability is given by

(13)

The fragmentation function (z, µ) is
determined by expression (3), where the following
notation is used: } is the amplitude for the production
of an Ωccc baryon of mass M and c-antiquark of mass mc

with a 4-momentum q = (q0, 0, 0, q3), and an invariant
mass s = q2, while }0 is the on-mass-shell amplitude
for the production of a vector (cc) diquark of momen-
tum q. In the limit q0  ∞, we obtain

In the axial gauge, the amplitude } is determined by
the diagram in Fig. 4. The resulting expression is

(14)

where the factor Gα describes the production of a vector
diquark of 4-momentum q = p + q'. The rest of the nota-
tion is similar to that in (4).
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Fig. 4. Diagram making the leading contribution to the (cc)-
diquark fragmentation function for Ωccc-baryon production.
It is convenient to compute the square of the abso-
lute value of the amplitude, |} |2, for the longitudinal
and transverse components of the diquark polarization
separately. Transversely polarized states are described
by the 4-vectors

which satisfy the orthogonality conditions

A longitudinal polarization of the diquark is described
by the 4-vector

which satisfies the relations

The scalar products of the relevant 4-vectors can be
expressed in terms of the invariant s as

Upon integrating the ratio |} |2/ |}0 |2 with respect to s
in the limit q0  ∞, we obtain

(15)

The probability of (cc)-diquark fragmentation into an
Ωccc baryon is given by

(16)

where

Using the “schroe” package [12] and simulating the
quark–quark interaction by the Martin potential [13]

where A = –8.064 GeV, B = 6.898 GeV, and n = 0.1, we
obtain the following values for the masses of the vector
(cc) diquark and the Ωccc baryon and for their wave
functions at the origin: mcc = 3.48 GeV, M = 4.70 GeV,
|Ψcc(0)|2 = 0.03 GeV3, and | (0)|2 = 0.115 GeV3.
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Let us compare the probability of c-quark fragmen-
tation immediately into an Ωccc baryon and the proba-
bility of c-quark fragmentation into an Ωccc baryon via
the production of a (cc) diquark in the intermediate
state. At the effective QCD coupling constant of
αs(µ0) = 0.2, we obtain

(17)

For the latter case, the fragmentation probability is

(18)

If the c quark fragments immediately into an Ωccc
baryon, picking up a (cc) diquark, the probability of the
process is

(19)

5. Ωccc PRODUCTION IN HADRON 
INTERACTIONS

It was shown in [7] that the fragmentation produc-
tion of hadrons containing heavy quarks (Bc, Ξcc, …) in
partonic subprocesses is dominant only at sufficiently

high transverse momenta (p⊥  > 30 GeV/Ò at  =
100 GeV). For this reason, the fragmentation mecha-
nism saturates only a small fraction of the total cross
section for the production of these baryons. An accurate
description of the production of triply heavy baryons
presents a problem on two counts: first, the number of
Feynman diagrams is an order of magnitude greater
than that for the production of doubly heavy baryons;
second, it is necessary to take into account a direct had-
ronization of three heavy quarks into a baryon—that is,
a hadronization process skipping the formation of a
doubly heavy diquark in the intermediate state.

Although the fragmentation mechanism is well jus-
tified only at high p⊥ , the heavy-hadron spectra
obtained as convolutions with the parton distributions
in colliding hadrons agree by and large with the results
of precise calculations even in the transverse-momen-
tum region p⊥  > 5 GeV/c [7, 14].

Within the fragmentation mechanism, we estimate
below the cross section for Ωccc production at the Teva-
tron and LHC energies for p⊥  > 5 GeV/c and |y| < 1.

From the factorization hypothesis, it follows that, in
the fragmentation region, the transverse-momentum
spectrum of Ωccc baryons is related to the transverse-
momentum spectrum of charmed quarks by the equations

(20)
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(21)

where (x1, 2, µ) and (x1, 2, µ) are the quark or
gluon distributions, in respectively, the proton and the
antiproton, (in the calculations, we use the CTEQ5
parametrization [15]), while K is a phenomenological
factor, which is approximately equal to three and which
takes effectively into account the contributions of
higher order perturbative corrections in αs. The value of
this factor is determined by comparing the results of the
calculations in the leading order of perturbation theory
with data on b-quark production in  interactions at

 = 1.8 TeV.
In the leading order in αs, the cross sections for the

partonic subprocesses are given by

(22)

(23)

where

By performing a numerical integration on the right-
hand side of Eq. (20) for p⊥  > 5 GeV/c and |y | < 1, we
arrive at

(24)

(25)

At integrated luminosities of the Tevatron and LHC
about 102 and 105 pb–1, respectively, we expect less
than one event of Ωccc production per year at the Teva-
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tron and some 3.5 × 103 such events per year at the
LHC.

In conclusion, we note that the above results have
been obtained by using the elastic form factor for the
transition g*  (cc) + ( ). It is obvious that the con-
tribution of the inelastic form factor for g*  (cc) +

 +  to the production of a single Ωccc baryon is con-
siderably greater than the contribution of the above
elastic form factor. If we assume that the probability of
( )-antidiquark hadronization into a doubly charmed
antibaryon is equal to unity, our results actually
describe the associated production of a Ωccc + 
baryon pair. Roughly, the cross section obtained with
the (cc)-diquark inelastic form factor must involve the
extra factor

Thus, we can conjecture that the cross section for the
Ωccc production is two orders of magnitude larger than
the values in (24) and (25). In this case, the number of
Ωccc-production events per year will amount to a few
tens at the Tevatron and about 105 at the LHC.

Since the present estimate is no more than a lower
bound on the event rate for Ωccc production—more
accurate calculations can only increase it—it is highly
feasible that Ωccc production will be observed at the
LHC.
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Abstract—It is shown that, in the relativistic case, the fine-structure splittings of the excited 23PJ and 33PJ

states in charmonium are as large as those of the 13PJ state if the same value of αs(µ) ≈ 0.36 is used. The pre-
dicted mass of M(23P0) = 3.84 GeV appears to be 120 MeV lower than the center of gravity of the 23PJ multiplet

and lies below the  threshold. Our value of M(23P0) is nearly 80 MeV lower than that from the Godfrey
and Isgur article [Phys. Rev. D 32, 189 (1985)], while the differences in other masses are not greater than
20 MeV. © 2000 MAIK “Nauka/Interperiodica”.

DD*
1. INTRODUCTION

At present, only the 13D1 and 23D1 states lying

above the  threshold have been identified with the
experimentally observed  mesons, ψ(3770) and
ψ(4160). Still, a large number of other excited P- and
D-wave states above the flavor threshold were pre-
dicted. Their masses and fine-structure splittings were
calculated by Godfrey and Isgur in 1985 within the rel-
ativistic approach [1]. Also, the properties of P- and D-
wave levels in charmonium and bottomonium were
intensively studied in the nonrelativistic approximation
[2, 3]. There is the point of view that one or more char-
monium 2PJ states can be sufficiently narrow to have a
substantial branching ratio for the γ + ψ(2S) channel [4,
5] and could play a role in the hadronic production of
ψ(2S) mesons. In particular, 2P states can be related to
the enhancement observed in the J/ψπ+π– system near
M = 3.84 GeV in [6] (but not confirmed by another
group, [7]). Therefore, precise knowledge of their
masses is especially important.

A precise description of the charmonium spectrum
and of the fine-structure splittings of the 1P level was
presented in [8, 9], where the relativistic kinematics
was taken into account, as in [1], by means of the spin-
less Salpeter equation. As was shown in [9], relativistic
corrections to the matrix elements, like 〈r–3〉 , defining
the spin structure, are on the order of 40%; therefore,
the nonrelativistic approach cannot be considered as an
appropriate one in investigating the spin structure.

We will show here that, in the relativistic approach,
spin–orbit and tensor splittings are sufficiently large for
P-wave states, both for the ground state and for excited
levels. This result depends weakly on the choice of the

DD
cc
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1) Free University, Amsterdam, The Netherlands.
1063-7788/00/6309- $20.00 © 21635
strong-coupling constant αs(µ). Here, the value of
αs(µ) ≈ 0.36 (µ = 0.92 GeV) will be used for all states,
but the splittings remain virtually unchanged if one
takes αs(µ) = 0.30 (µ = m = 1.48 GeV).

The fine-structure splittings predicted here appear to
be larger than those in [1], especially for the 2P and 3P
states. (The reasons for this will be discussed in Section 3.)
As a result, the 23P0 mass, M(23P0) = 3.84 GeV, in our
case is nearly 80 MeV smaller than that in [1], and this
level lies below  threshold. The 23P1, 2 levels have
mass values close to the Godfrey–Isgur predictions,
and so do n3DJ states. For the first time, we also predict
large fine-structure splittings for the 3P states.

2. SPIN-AVERAGED SPECTRUM

The relativistic effects in charmonium are not
expected to be small, especially for the wave functions
and matrix elements in which we are mostly interested
here. In order to find the spin-averaged spectrum, the
spinless Salpeter equation will therefore be solved as
was already done in several studies [1, 10, 11]:

(1)

The static interaction V0(r) will be taken in the form of
the Cornell potential

(2)

and the values of  ≡ αV (µ), the string tension σ, and
the pole mass of the c quark will be taken as in [8] in a
fit to the fine structure of the 1P charmonium state,

m =1.48 GeV, σ = 0.18 GeV2,  = 0.42. (3)

On the basis of a fit to the spin-averaged mass of 1S
state, (1S) = 3067.6 MeV [12], the constant C0 in (2)

DD*

2 p
2

m
2

+ V0 r( )+[ ]ψ nl r( ) Mnlψnl r( ).=

V0 r( ) 4
3
--- α̃

r
---– σr C0,+ +=

α̃

α̃

M
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Table 1. Spin-average masses (nL) (in MeV) in charmonium for two sets of parameters

(nL)

Godfrey, Isgur [1] This paper

Experimentm = 1.628 GeV, σ = 0.18 GeV2, 
αcr = 0.6 (running α (r)), C0 = –253 MeV

m = 1.48 GeV, σ = 0.18 GeV2,
 = 0.42, C0 = –140 MeV

ψ(1S) 3067.5 3067.6 3067.0 ± 0.6
ψ(2S) 3665 3659* 3663 ± 1.3
ψ(3S) 4090 4077** 4040 ± 10
ψ(4S) 4450 4425 4415 ± 6
ψ(5S) 4732
χc(1P) 3520 3528 3525.5 ± 0.4
χc(2P) 3960 3962
χc(3P) 4320
M(1D) 3840 3822 3768.9 ± 2.5
M(2D) 4210 4194 4159 ± 20
M(3D) 4520 4519.5

  * Mixing of 2S- and 1D-wave states is not taken into account.
** Mixing of 3S- and 2D-wave states is not taken into account.

M

M

α̃

was fixed at C0 = –140.2 MeV. In our approach, the
strong-coupling constant  in the potential (2) was
taken to be invariable, while, in general, it depends on
the distance r. In perturbation theory, valid at small dis-
tances, the static potential in coordinate space was cal-
culated in the one-loop approximation some years ago
[13] and was recently deduced in the two-loop approx-
imation in momentum and coordinate spaces [14, 15].
These perturbative expressions for αs(r) can be used if

r !  ≈ 0.3 fm, whereas the sizes of nP and nD states
in charmonium are significantly larger; for example,

their root-mean-square radii R(nL) =  are the
following:

R(1P) ≅  0.65 fm, R(2P) ≅  1.0 fm, R(3P) ≅  1.3 fm,

R(1D) ≅  0.85 fm, R(2D) ≅  1.2 fm. 

It was indicated in [8] that, at such large distances,
the influence of vacuum background fields must be
taken into account and that the strong-coupling con-
stant in background-field theory, denoted as αB(r), is
modified. At distances r * 0.4 fm, αB(r) approaches the
constant or the freezing value αB(r  ∞). The esti-
mates in [8] yield αB(∞) ≈ 0.40–0.45, and, as soon as
the point r = 0.6 fm is achieved, the difference δαB(r),

(4)

appears to be less than 3%. To a high precision, the
effective constant can therefore be taken to be  ≈
0.40–0.45.

α̃

ΛR
1–

r
2〈 〉 nL

αB r( ) α̃ δαB r( ), α̃+ const,= =

δαB r( ) αB r( ) α̃ ,–=

α̃

The parameters chosen as in (3) can be compared
with the parameters from [1], where m = 1.628 GeV,
while σ = 0.18 GeV2 coincides with σ in (3). For α, God-
frey and Isgur used the running coupling constant whose
critical value of αcr = α(r = 0) = 0.60 is greater than the
constant  = 0.42 in our case. Also, C0 = –253 MeV in
[1], whereas C0 = –140 MeV in our calculations.

Nevertheless, the calculated spin-averaged masses
for the two parameter sets are close to each other: the
differences are less than 10 MeV for P-wave states and
less than 20 MeV for D-wave states (see Table 1).

In many studies, charmonium excited states were
analyzed in the nonrelativistic approximation [16],
which works quite well for the spectrum. It was shown
in [8, 9], however, that relativistic corrections to matrix
elements like 〈r–3〉 and 〈r–3ln(mr)〉, which determine
fine-structure splittings, are sufficiently large, about
30–40%. That is why only relativistic calculations of
fine-structure splittings of charmonium excited states
will be considered in this article.

3. FINE-STRUCTURE PARAMETERS OF P-WAVE 
LEVELS

Although the spin-averaged masses in our calcula-
tions are very close to those in [1], we expect that spin–
orbit and tensor splittings of P-wave states will be
larger in our case. There are two reasons for this. First,
the second-order αs corrections will be taken into
account here. Second, our calculations of various
matrix elements have shown that, for excited P-wave
states, the matrix element 〈r–3〉, which determines split-
tings, does not decrease. For the parameter set in (3), it
was found that, in the relativistic case, 〈r–3〉1P = 0.142,

α̃
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〈r−3〉2P = 0.157, and 〈r–3〉3P = 0.167 GeV3—that is, 〈r–3〉nP
even increase for 2P and 3P states. This result is pecu-
liar to the Salpeter equation; in the nonrelativistic case,
the matrix elements 〈r–3〉 for excited states decrease—
for example, 〈r–3〉1P = 0.101, 〈r–3〉2P = 0.093, and 〈r–3〉3P =
0.089 GeV3. The accuracy of our calculations was
checked to be (1–2) × 10–4.

The fine-structure parameters are defined as the
matrix elements of the spin–orbit and tensor interac-
tions,

(5)

where the scalar functions (r) and (r) are intro-
duced as

(6)

Here, the spin–orbit parameter a is defined in the same
manner as in other studies, whereas the definition of the
tensor parameter c differs from that in [1], where the
tensor parameter is T = (1/2)c, and from that in [2],
where b = 4c.

In our calculations, we assume that the P-wave
hyperfine splitting is small, as is the case for the hc(1P)
meson, for which the hyperfine shift relative to the cen-
ter of gravity of the 3PJ multiplet, (13PJ), is less than
1 MeV. When hyperfine splitting is neglected, the mass
of the S = 0 states coincides with the center of gravity
of the 3LJ multiplet denoted as . Their values, taken
from Table 1, are

(7)

which are by about 20 MeV lower than in [1] for D- and
some S-wave states.

For S = 1, L ≠ 0 states, the mass of a state can be rep-
resented as

(8)

where the operator  is defined as in (6). For P-wave
states, this yields

M(3P2) =  + a – 0.1c,

M(3P1) =  – a + 0.5c, (9)

M(3P0) =  – 2a – c.

Godfrey and Isgur [1] took into account only first-
order terms in αs and, for a and c, obtained the values

a(1P) = 28 MeV, c(1P) = 26 MeV, (10)

a Ṽ LS r( )〈 〉 , c ṼT r( )〈 〉 ,= =

Ṽ LS ṼT

V̂ LS r( ) Ṽ LS r( )L S,⋅=

V̂T r( ) ṼT r( )Ŝ12, Ŝ12 3 s1 n⋅( ) s2 n⋅( ) s1s2,–= =

n
r
r
--.=

M

ML

M 1 P1
1( ) 3528 MeV, M 2 P1

1( ) 3962 MeV,= =

M 1 D1
2( ) 3822 MeV, M 2 D1

2( ) 4194 MeV,= =

M P3
J( ) ML a L S⋅〈 〉 c Ŝ12〈 〉 ,+ +=

Ŝ12

M1

M1

M1
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a(2P) ≈ 17 MeV, c(2P) ≈ 8 MeV. (11)

These are about 20% and 30% less than the currently
existing experimental values for the 1P state [8, 12]:

(12)

In our approach, we will take into account second-order
terms in αs and represent the total values of a and c as

(13)

where the nonperturbative contribution to spin–orbit
splitting coming from linear confining potential is

(14)

In the tensor splitting (13), the small nonperturbative
term cNP will be neglected (see the discussion in [9]). In
order to consider perturbative contributions, Godfrey
and Isgur [1] introduced some smearing of short-range
potentials at small distances, but this generates addi-
tional unknown parameters. Here, we consider spin-
effects as a perturbation using explicit analytic expres-
sions for spin–orbit and tensor potentials in coordinate

space within the  renormalization scheme from

[13]. The first-order terms in αs,  and , are

(15)

while the second-order perturbative corrections are

(16)

(17)

The second-order expressions are given here for nf = 3,
where nf is the number of flavors. Our calculations have
shown that, at nf = 4, the values of a and c remained vir-
tually unchanged (the differences are less than 0.5 MeV);
therefore, only the nf = 3 case will be presented here.

With the solutions to the Salpeter equation (1), all
matrix elements defined by (14)–(17) can be calcu-
lated, and the only uncertainty comes from the choice

aexp 1P( ) 34.56 0.19 MeV,±=

cexp 1P( ) 39.12 0.62 MeV.±=

atot aP
1( )

aP
2( )

aNP,+ +=

ctot cP
1( )

cP
2( )

cNP,+ +=

aNP
σ

2m
2

--------- r
1–〈 〉 .–=

MS

aP
1( )

cP
1( )

aP
1( ) 2α s µ( )

m
2

----------------- r
3–〈 〉 , cP

1( ) 4
3
---

α s µ( )

m
2

--------------,= =

aP
2( ) 2α s

2 µ( )

πm
2

------------------ 4.5
µ
m
---- r

3–〈 〉ln 2.5 r
3–

mr( )ln〈 〉+




=

---+ 1.582 r
3–〈 〉





,

cP
2( ) 4α s

2 µ( )

3πm
2

------------------ 4.5
µ
m
---- r

3–〈 〉ln 1.5 r
3–

mr( )ln〈 〉+




=

---+ 3.449 r
3–〈 〉





.
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of the strong-coupling constant αs(µ) and the value of
renormalization scale µ. In [9], it was found that, for the
charmonium 1P state, the value 

αs(µ) = 0.365 (µ = 0.92 GeV) (18)

gives a precise description of spin splittings. For
excited 2P and 3P states, where there are no experi-
mental data, we will also use the same value in (18) for
αs(µ). The main argument in favor of this choice can be
taken from a fine-structure analysis in bottomonium,
where the values of αs(µ) for 1P and 2P states differ by
only about 20% [17].

Table 2. Spin–orbit and tensor splittings a and c (in MeV) for
P and D levels

Godfrey, Isgur* This paper 
αs(µ) = 0.365 Experiment

a(1P) 28 34.56 34.56 ± 0.19

c(1P) 26 39.12 39.12 ± 0.62

a(2P) 17 38.7

c(2P) 8 41.5

a(3P) 42.3

c(3P) 44.0

a(1D) ≈5 3.64

c(1D) ≈10 10.94

a(2D) ≈5 5.43

c(2D) ≈10 11.37

* The values of a, c for 2P and D states are extracted from the mass-
es M(3DJ) and M(23PJ) given in [1].

Table 3. Masses of n3PJ and n3DJ states (in MeV) in charmo-
nium

Godfrey, Isgur* This paper 
αs(µ) = 0.365 Experiment

23P0 3920 3843

23P1 3950 3944

23P2 3980 3996

33P0 4192

33P1 4300

33P2 4358

13D1 3820 3800* 3768.9 ± 2.5

13D2 3840 3823

13D3 3850 3827

23D1 4190 4167** 4159 ± 20

23D2 4210 4195

23D3 4220 4204

  * Mixing of 2S- and 1D-wave states is not taken into account.
** Mixing of 3S- and 2D-wave states is not taken into account.
With αs(µ) = 0.365 for the 1P state in [8], it was
found that

(19)

so that atot(1P) and ctot(1P) just agree with their experi-
mental values in (12).

For the excited 2P state, the spin–orbit and tensor
parameters are as large as those for the 1P state,
because the matrix element 〈r–3〉2P is even about 10%
larger than 〈r–3〉1P for the 1P state. Here, we face the dif-
ference between the relativistic approach and the non-
relativistic one for which matrix elements like 〈r–3〉nP
decrease with increasing n = nr + 1. For the 2P state, our
calculations yield

(20)

so that

atot(2P) = 38.7 MeV, ctot(2P) = 41.5 MeV (21)

are even slightly greater than the corresponding values
for the 1P state.

Comparing the values obtained for a(2P) and c(2P)
with those in (11) from [1], one can see that a and c in
our calculations are, respectively, twice and fivefold as
great as the corresponding Godfrey–Isgur values (see
also Table 2). This discrepancy is partly due to the
inclusion of the second-order radiative corrections,
which are not large. But even with only first-order per-
turbative terms, our values of a(2P) and c(2P) are much
greater than the values in (11).

With the values of a and c from (21) and with
(2P) = 3962 MeV from Table 1, the masses of the

23PJ states can be calculated to be 

M(23P0) = 3843 MeV,

M(23P1) = 3944 MeV, (22)

M(23P2) = 3997 MeV.

Our predicted mass of the 23P0 state, M(23P0) =
3.84 GeV, appeared to be about 80 MeV less than that
in [1]; for the other two states, 23P1 and 23P2, the pre-
dicted masses only slightly differ from the Godfrey–
Isgur values (see Table 3) owing to the cancellation of
terms having opposite signs.

It is important that, in our calculations, the 23P0

level lies below the  threshold [Mthr( ) ≈
3.87 GeV] but higher than Mthr( ) = 3.73 GeV. This
fact can affect the 23P0-state decay rates.

aP
1( )

1P( ) 47.6 MeV, aP
2( )

1P( ) 3.6 MeV,= =

aNP 1P( ) 16.6 MeV, cP
1( )

1P( )– 31.7 MeV,= =

cP
2( )

1P( ) 7.4 MeV,=

aP
1( )

2P( ) 52.5 MeV, aP
2( )

2P( ) 0.4 MeV,–= =

aNP 2P( ) 13.4 MeV, cP
1( )

2P( )– 35.0 MeV,= =

cP
2( )

2P( ) 6.5 MeV,=

M1

DD* DD*

DD
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For the 3P state, we again use αs(µ) = 0.365 and µ =
0.92 GeV (as for the 1P state); from (14)–(17), we can
then obtain

(23)

so that
atot(3P) = 42.3 MeV, ctot(3P) = 44.0 MeV. (24)

With these values of a and c and the spin-averaged
mass (3P) = 4320 MeV, it follows that

(25)

The level 33P0 lies 128 MeV lower than the center of
gravity of the 33PJ multiplet. It is of interest that the dif-
ference M(n3P2) – M(n3P0) ≡ ∆(nP) = 3a + 0.9c is large
in all cases, slightly increasing for excited states,

(26)

We have checked the sensitivity of the predicted val-
ues of a and c to the choice of the renormalization scale
µ and of αs(µ). To this end, we considered the com-
monly used value of µ = m, which leads to αs (µ = m =
1.48 GeV) = 0.29. We then obtain atot(2P) = 36.5 MeV
and ctot(2P) = 37.5 MeV for the 2P state and atot(3P) =
40.5 MeV and ctot(3P) = 39.8 MeV for the 3P state.
These results are very close to the values in (20), (21),
(23), and (24) with µ0 = 0.92 GeV and αs(µ0) = 0.365,
which were found in [8] from a fit to the fine-structure
splittings of the 1P states.

4. FINE-STRUCTURE SPLITTINGS OF D-WAVE 
LEVELS

For D-wave states, the expressions for the masses
M(n3DJ) in terms of the parameters a and c can be
found in [2]:

M(3D1) =  – 3a – 0.5c, 

M(3D2) =  – a + 0.5c, (27)

M(3D3) =  + 2a –  

For the spin-averaged masses (nD), our calculations
with the parameters from (3) yield

(1D) = 3822 MeV, (2D) = 4194 MeV. (28)

All fine-structure parameters, a and c, for D-wave
levels are given in Table 2, along with their values from
[1]. As can be seen from Table 2, the values of a and c
virtually coincide in the two cases. Still, our predicted

aP
1( )

3P( ) 56.7 MeV, aP
2( )

3P( ) 3.6 MeV,–= =

aNP 3P( ) 11.8 MeV, cP
1( )

3P( )– 37.8 MeV,= =

cP
2( )

3P( ) 6.2 MeV cNP 0=( ),=

M1

M 3 P3
1( ) 4300 MeV, M 3 P3

2( ) 4358 MeV,= =

M 3 P3
0( ) 4192 MeV.=

∆ 1P( ) 138.9 MeV, ∆ 2P( ) 143 MeV,= =

∆ 3P( ) 166 MeV.=

M2

M2

M2
1
7
---c.

M

M2 M2
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masses for the 13DJ and 23DJ states appear to be about
20 MeV lower than those in [1] because of the smaller
value of the spin-averaged masses.

5. CONCLUSIONS
Our analysis has led to the following conclusions:
(i) In the relativistic case, the fine-structure split-

tings of charmonium S = 1 P-wave states are much
larger than those in the nonrelativistic case.

(ii) For the excited 2P states, the fine-structure
parameters are even slightly larger than those for the
ground 13PJ state.

(iii) The mass of the n3P0 state (n = 1, 2, 3) appears
to be about 130 MeV lower than the center of gravity of
the n3PJ multiplet. This fact can be important for
explaining decays of charmonium excited states.

Our predicted value of M(23P0) = 3.84 GeV is about
80 MeV lower than that in [1]. This state lies below the

 threshold and only about 100 MeV higher than

the  threshold. There exists the point of view that
this state could be very broad because it lies above the

 threshold and should therefore have a large had-
ronic width [18]. On the other hand, this state lies rela-
tively close to the  threshold, and the phase space
could be suppressed. Therefore, this state could play a
role in the production of ψ(2S) charmonium mesons as
was discussed in [5, 6].
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Abstract—Vector-particle fragmentation into possible S-wave bound states involving a heavy antiquark is con-
sidered for high-energy processes at high transverse momenta, and the relevant fragmentation function is cal-
culated in the leading order of perturbative QCD for various patterns of the anomalous magnetic moment. One-
loop equations describing the q2 evolution of the fragmentation-function moments that is caused by hard-gluon
emission from the vector particle are derived. The integrated probabilities of fragmentation are obtained. The
distribution of the bound state in the transverse momentum defined with respect to the fragmentation axis is
calculated in the scaling limit. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the production of hadrons contain-
ing leptoquarks [1]—that is, scalar and vector particles
appearing in various Grand Unified Theories in the
form of color triplets if their total width is less than the
QCD confinement scale, ΓLQ ! ΛQCD—is of interest in
connection with inquiries into the properties inherent in
interactions beyond the Standard Model. In [2], the pro-
duction of ( ) baryons is discussed for the scalar-
leptoquark case.

In the present article, we study the production of
baryons involving a vector leptoquark. Within QCD,
the leptoquark represents a local triplet vector field;
therefore, our results can be used to calculate vector-
diquark fragmentation into baryons. For the sake of
convenience, a local triplet vector field will be referred
to below as a leptoquark.

Here, we have to solve the new problem of choosing
the Lagrangian for the interaction of a vector color par-
ticle with a gluon field. For this, the Lagrangian
obtained by extending the derivatives in the free-vec-

tor-field Lagrangian −1/2Hµν , where Hµν = ∂µUν –
∂νUµ, Uµ being a complex vector field, can be supple-
mented with a gauge-invariant term proportional to

GµνUβ , where  = 1/2(  – ) is the
spin tensor, and Gµν is the gluon-field strength tensor.
This leads to a certain parameter (anomalous magnetic
moment—see Section 2) in the leptoquark–gluon inter-
action vertex. In the present study, we consider the
effect of this parameter on the high-energy production
of a spin-1/2 bound state involving a heavy vector par-
ticle.

qLQ

H
µν

Sµν
αβ Uα Sµν

αβ δµ
αδν

β δν
αδµ

β
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At high transverse momenta, the production of
heavy-leptoquarkonium bound states is dominated by
leptoquark fragmentation, which can be calculated
within perturbative QCD [3] upon isolating the factor
of soft bound-state production as obtained within non-
relativistic potential models [4, 5]. The relevant frag-
mentation function appears to be universal for any
high-energy process resulting in direct leptoquarko-
nium production.

In the leading order in αs, the fragmentation func-
tion has a scaling form, which provides the initial con-
dition for perturbative QCD evolution caused by hard-
gluon emission from the leptoquark prior to hadroniza-
tion. The relevant splitting function differs from that for
a heavy quark because of the spin structure of gluon
coupling to the leptoquark, which is a color-triplet vec-
tor particle.

This article is organized as follows. In Section 2, the
scaling fragmentation function is calculated in the lead-
ing order of perturbation theory for two different types
of behavior of the anomalous magnetic moment. The
limit of an infinitely heavy leptoquark, mLQ  ∞, is
obtained from a QCD analysis of fragmentation. In
Section 3, the distribution of the heavy quarkonium in
the transverse momentum defined with respect to the
fragmentation axis is calculated in the leading order of
perturbative QCD. In Section 4, we derive the splitting
kernel within Dokshitzer–Gribov–Lipatov–Altarelli–
Parisi (DGLAP) evolution and obtain and solve one-
loop renormalization-group equations for the fragmen-
tation-function moments. These equations appear to be
universal since they do not depend on whether the lep-
toquark occurs in a free or a bound state in the low-vir-
tuality region, where the perturbative-evolution regime
ceases to be valid. In Section 5, we determine the inte-
grated probabilities of leptoquark fragmentation into
000 MAIK “Nauka/Interperiodica”
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heavy leptoquarkonia. The results of this study are
summarized in the Conclusion.

2. FRAGMENTATION FUNCTION
IN THE LEADING ORDER

The fragmentation contribution to direct heavy-lep-
toquarkonium production is given by

where dσ and  are the differential cross sections for,
respectively, the production of a quarkonium of 4-
momentum p and the hard production of a leptoquark
of 4-momentum p/z, while D(z) is the fragmentation
function dependent on the momentum fraction z carried
away by the bound state. The quantity µ specifies the
factorization scale. According to the general pattern of
DGLAP evolution, the µ-dependent fragmentation
function satisfies the equation

(1)

where P is a kernel that is controlled by hard-gluon
emission from the leptoquark until a heavy-quark pair
is formed. Therefore, the initial form of the fragmenta-
tion function is determined by the diagram in Fig. 1, so
that the relevant initial factorization scale is µ = 2mQ.
Moreover, this function can be obtained within an
expansion in αs(2mQ). The leading-order contribution
is calculated in this section.

We now consider the fragmentation diagram in the
reference frame where the initial-quark momentum is
q = (q0, 0, 0, q3) and where the initial leptoquarkonium
momentum is p, so that

Within the static approximation, the masses of the
heavy quark and of the leptoquark in their bound state
satisfy the relations mQ = rM and m = (1 – r)M = .
The vertex for vector-leptoquark interaction with a
gluon is given by

(2)

where κ is the anomalous magnetic moment and t a is
the generator of the QCD group in the fundamental rep-
resentation.

The sum over the polarizations of the vector lepto-
quark of momentum q (q2 = s) depends on the choice of
gauge in the free-field Lagrangian (this can be, for

dσ lH p( )[ ] dz σ̂ LQ p/z( ) µ,[ ] DLQ lH→ z µ,( ),d

0

1

∫=

dσ̂

∂DLQ lH→ z µ,( )
∂ µln

------------------------------------

=  
dy
y

------PLQ LQ→ z/y µ,( )DLQ lH→ y µ,( ),

z

1

∫

q2 s, p2 M2.= =

rM

Tαµν
VVg = igst

a gµν q r p+( )α gµα 1 κ+( )r p κq–( )ν–[–

– gνα 1 κ+( )q κr p–( )µ ] ,
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example, the Stückelberg gauge), but the physical
quantity under calculation (the fragmentation function)
is independent of the gauge parameter, which affects
the form of the contribution of the longitudinal field
components. Without loss of generality, the sum over
polarizations can then be chosen in the form

The matrix element for fragmentation into a spin-1/2
state has the form

(3)

where the sum over gluon polarizations is written in the
axial gauge with n = (1, 0, 0, –1),

and k = q – (1 – r)p. The spinors lH and  correspond,
respectively, to the leptoquarkonium and to the heavy
quark accompanying fragmentation. The quantity }0
stands for the matrix element for high-energy hard lep-
toquark production, while R(0) is the value of the radial
wave function at the origin. Upon squaring the matrix
elements and performing summation over the helicities
of the final particles, we arrive at

In the high-energy limit qn  ∞, Wµν assumes the
form

(4)

where Rµν can depend on the gauge parameters. Upon
an expansion in the Lorentz structures, R leads to scalar
quantities that are much smaller than W. We define

The fragmentation function has the form [6]

where W is given by (4). At a constant anomalous mag-
netic moment not equal to –1, the integral appearing in
the expression for the fragmentation function diverges
logarithmically. Here, we consider two types of behav-
ior of the anomalous magnetic moment. The first is κ =
–1, in which case the resulting fragmentation function
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coincides, apart from a spin factor of 1/3, with that for
the scalar leptoquark;2) that is,

(5)

For r  0 and y = (1 – (1 – r)z)/(rz), expression (5)
tends to

(6)

The limiting form (y) is obtained in accordance with
the general consideration of an 1/m expansion for the
fragmentation function [7], where

It should be noted that the resulting y dependence is
identical to that for heavy-quark fragmentation into a
quarkonium [6].

2)An incorrect sign appeared in [2] because of an arithmetic error,
but this error affects the final result insignificantly in the small-r
region considered there.
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Fig. 1. Diagram for leptoquark fragmentation into a heavy
leptoquarkonium.
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Fig. 2. Leptoquark fragmentation function for heavy-lepto-
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In the other case under consideration, κ behaves as

–1 + AM 2/(s – ). The resulting fragmentation func-
tion is given by

(7)

For r  0 and y = (1 – (1 – r)z)/(rz)

 

, it tends to

 

(8)

 

The perturbative fragmentation functions calculated in
the leading order in 

 

α

 

s

 

 are displayed in Fig. 2 at 

 

r

 

 = 0.02.
They represent rather hard distributions, which become
softer upon taking into account evolution (see [2]).

3. TRANSVERSE MOMENTUM
OF THE LEPTOQUARKONIUM

In the reference frame where the momentum of the
fragmenting leptoquark is infinitely high, its invariant
mass can be expressed in terms of the leptoquarkonium
longitudinal-momentum fraction 
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 and the transverse
momentum 
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 with respect to the fragmentation axis. In
this way, we arrive at (see Fig. 1)
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. Evaluation of the diagram in Fig. 1
yields the double distribution for the fragmentation
probability in the form
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in the case of κ = –1 and as

(10)

in the case of κ = –1 + AM 2/(s – ).

It can then be easily seen that the transverse-
momentum distribution can be obtained by means of
integration with respect to z:

For the first case, this yields

(11)

The distribution for the second case at A = 3 is pre-
sented in the Appendix. A typical shape of the distribu-
tions of leptoquarkonia in the transverse momentum as
defined with respect to the leptoquark-fragmentation
axis is illustrated in Fig. 3.

4. HARD-GLUON EMISSION

The one-loop contribution of hard-gluon emission
can be calculated by the same method as that described
in the preceding sections. This contribution depends
only on that part of the leptoquark–gluon interaction
vertex which is independent of the anomalous magnetic
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moment. Hence, the splitting kernel for a vector lepto-
quark coincides with that for a scalar leptoquark and
has the form

 

(12)

 

where the plus symbol denotes the following standard

operation: 
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g
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) = [
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) – 

 

g
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. The

splitting function can be compared with the analogous
function for a heavy quark,

which has the same normalization factor for  x   1 .

By multiplying the evolution equation by 
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 and
integrating the result with respect to 
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, we can find from
(1), within the renormalization-group method, that, in
the one-loop approximation, the 
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 dependence of the
fragmentation-function moments 
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 is governed by the
equation
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At 

 

n

 

 = 0, the right-hand side of (13) is equal to zero.
This implies that the integrated probability of lepto-
quark fragmentation into a heavy leptoquarkonium
does not change in the course of evolution, being spec-
ified by the initial fragmentation function calculated
above within perturbative QCD [2].

A solution to (13) has the form
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where we have used the one-loop expression

for the QCD coupling constant with β0 = 11 – 2nf /3, nf
being the number of flavors of quarks with mass values
mq < µ < mLQ.

α s µ( ) 2π
β0 µ/ΛQCD( )ln
----------------------------------=

0.55

w(r)

0.45

0 r0.2 0.4
0.35

Fig. 4. Function w for vector-leptoquark fragmentation into
a heavy leptoquarkonium as a function of the ratio r =
mQ/M: (dashed curve) κ = –1 and (solid curve) κ = –1 +

3M2/(s – ).mLQ
2

The relation in (14) is universal since it does not
depend on whether the leptoquark is free or bound at
virtuality values less than µ0. In the present study, we
take into account evolution in fragmentation into a
heavy leptoquarkonium. The leptoquark can lose up to
about 20% of its momentum before undergoing had-
ronization [2].

5. INTEGRATED FRAGMENTATION 
PROBABILITIES

As was indicated above, the integrated fragmenta-
tion probability remains unchanged throughout the
evolution process and admits an explicit evaluation.
The result is

(15)

For the first of the cases considered above, we obtain
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For the second case at A = 3, we arrive at

(17)

The functions w(r) for small r values are displayed in Fig. 4.

6. CONCLUSION

We have studied the production of spin-1/2 bound
states of a local color vector field (referred to by conven-
tion as a leptoquark) with a heavy antiquark in high-
energy processes at high transverse momenta, in which
case fragmentation appears to be a dominant production
mechanism. In doing this, we have considered two types
of behavior of the anomalous magnetic moment. The first
is that of κ = –1 (at any other constant value of the anom-
alous magnetic moment, the integral appearing in the
expression for the fragmentation function diverges). In this
case, the fragmentation function coincides, apart from a
factor, with that for scalar-color-particle fragmentation into
a bound state involving a heavy quark and has the form
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 is the ratio of the quark mass to the bound-state
mass. In the limit of an infinitely heavy leptoquark,
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a general consideration of the 
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 expansion of the
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, the fragmentation function assumes
the different form

This distribution function will be employed in the
subsequent study to calculate the heavy-quark frag-
mentation function for baryon production. The distri-
bution of leptoquarkonia in the transverse momentum
defined with respect to the leptoquark-fragmentation
axis has also been calculated in the leading order of per-
turbative QCD. The relative distributions are given by
(11) and by the corresponding expression from the
Appendix for the first and the second case, respectively.
Hard-gluon corrections caused by vector-leptoquark
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splitting can be taken into account perturbatively. The
evolution kernel then assumes the form

which leads to the corresponding one-loop equation for
the fragmentation-function moments [see equations
(13) and (14)].

According to numerical estimates, the probability of
fragmentation into the bound states of a heavy vector
leptoquark of mass about 300 GeV with c and b quarks,
amounts to 10–4–10–3. In view of this suppression, it is
rather hard to observe the above states experimentally.
Nevertheless, we can employ perturbative expressions
as models for fragmentation into hadrons involving
light and strange quarks, in which case the bound-state-
formation probabilities are as large as a few tens of per-
cent. In this sense, it is of interest to consider the pro-
duction of doubly heavy baryons via the fragmentation
of heavy diquarks consisting of two heavy quarks, but
this will be the subject of our further studies.

ACKNOWLEDGMENTS
The work was supported in part by the Russian

Foundation for Basic Research (project nos. 99-02-
16558 and 96-15-96575).

APPENDIX

For the case of κ = –1 + 3M 2/(s – ), the trans-
verse-momentum distribution of leptoquarkonia is
given by
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Abstract—The results of evaluating the leading-order αs corrections to the correlation function for tensor cur-
rents in pure gluodynamics are presented. These corrections to the parton result for the correlation function are
not large numerically, which allows one to use perturbation theory to analyze the resonance spectrum within
the sum-rule method. © 2000 MAIK “Nauka/Interperiodica”.
Gluonia—hadronic resonances strongly coupled to
gauge-invariant operators built from gluon fields—rep-
resent a very spectacular manifestation of the color
structure of strong interactions. The experimental dis-
covery of these particles would decisively confirm the
validity of QCD as a theory of hadrons (see, for exam-
ple, [1]). Theoretically, information about the proper-
ties of gluonia can be obtained (apart from numerical
simulations on a lattice) from an analysis based on the
sum-rule technique, which requires computing various
correlation functions for corresponding gluonic inter-
polating currents within an operator-product expansion
(OPE). An extensive review of gluonia properties is
presented in [2], while Borel sum rules and finite-
energy sum rules (FESR) were analyzed for the first
time in [3–5] (see also [6–10]).

One of the most striking features of perturbation
theory used so far to analyze gluonic-current correla-
tion functions within the sum-rule approach is a large
scale of higher order corrections. In the case of scalar
and pseudoscalar gluonic currents, the next-to-leading-

order corrections are too large in the standard 
scheme of renormalization and are entirely out of con-
trol [11]. In view of this, the applicability of a complete
analysis based on OPE is questionable. Perturbation-
theory corrections to correlation functions for gluonic
currents with other quantum numbers have not been
available yet. In the present study, we fill this gap and
report on the results for the leading-order correction to
the correlation function for tensor gluonic currents in
pure gluodynamics [12]. Tensor mesons in full QCD
were considered in [13–15].

As to the origin of large corrections in the scalar and
pseudoscalar channels, there are serious arguments,
based on a consideration of instanton contributions
possible in both these channels, that perturbation the-
ory (and OPE) breaks down even at a very large scale.
This conclusion was drawn from an analysis of the

MS

* This article was submitted by the author in English.
1063-7788/00/6309- $20.00 © 21646
magnitude of power-law corrections to the gluonic-cur-
rent correlation functions in the leading-order of pertur-
bation theory [3, 4]. Perturbation-theory corrections are
also large in both channels [11]. On the other hand, the
interaction of instantons with tensor gluonic currents is
thought to be much weaker (no direct instanton contri-
bution to the correlation function is possible because of
the unsuitable quantum numbers JPC = 2++), and one
expects that perturbation-theory corrections are not too
large and that OPE is still applicable at momenta con-
siderably smaller than those for the (pseudo)scalar
case. The results of the present study strictly confirm
this expectation: the computation shows that perturba-
tion-theory corrections to the correlation function for
tensor gluonic currents are not large and that the expan-
sion is valid at smaller scales than in the case of the sca-
lar and pseudoscalar gluonic currents.

To analyze the resonance spectrum in the channel of
tensor gluonic mesons, one considers a two-point cor-
relation function for gluonic operators that have a non-
zero projection onto the JPC = 2++ hadronic state. The
gauge-invariant interpolating current for the tensor glu-
onium, jµν, is chosen in the explicit form

(1)

where

Here, Gµν is the gluon-field strength, Aµ is the gluon
field, Dµ is the covariant derivative, and t a are the gen-
erators of the color gauge symmetry group SU(Nc) that
are normalized by the relation

where G 2 is the condensed notation for . The
current jµν coincides with the energy–momentum ten-

jµν Gµα
a Gαν

a 1
4
---gµνG2, a+ 1 … Nc

2 1,–, ,= =

Gµν Dµ Dν,[ ] Gµν
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Aµ Aµ
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tr tatb( ) 1
2
---δab,=

Gµν
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a
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sor for pure gluodynamics. It is symmetric and trace-
less at the tree level and is conserved owing to the equa-
tions of motion for the gluon fields. These properties
lead to some linear constraints on the components of
the tensor jµν. These constraints effectively kill the
superfluous components of the general two-index ten-
sor in four-dimensional spacetime and preserve just the
necessary number of components to describe five
polarization states of a massive spin-2 meson in four-
dimensional spacetime. Radiative corrections are
known to destroy this perfect picture and lead to the
trace anomaly of the form [16–19]

(2)

where β(αs) is the standard renormalization-group beta
function describing the evolution of the running cou-
pling constant. While a rigorous proof of the relation
for the trace anomaly requires more delicate definitions
of the quantities entering into (2), there is a simple
mnemonic rule to recover the proper normalization of
the right-hand side of it. In D-dimensional spacetime

(with D = 4 – 2ε), one finds formally from (1) with  =
D that

(3)

Recalling that the D-dimensional βε function is given

by the expression βε(αs) = –εαs + O( ) and substitut-
ing ε = –βε(αs)/αs into the expression on the right-hand
side of (3), one reproduces the correctly normalized
form on the right-hand side of (2) upon noticing that

(αs) = β(αs).

The emergence of a nonzero trace of the gluonic
operator in (1) means that the operator has a nonvanish-
ing projection onto scalar hadronic states as well.

In terms of Green’s functions, this means that the
correlation function

(4)

receives contributions not only from the JPC = 2++ ten-
sor mesons but also from the JPC = 0++ states (scalar
gluonium). Therefore, the correlation function (4) is
not described by a single scalar function when radiative
corrections are included. The most general tensor
decomposition of the correlation function (4) has the
form

(5)

where the tensor object ηµν, αβ(q) is defined in terms of
the elementary transverse tensors

jµ
µ β α s( )

2α s

-------------G2,=

gµ
µ

jµ
µ D 4–

4
-------------G2 ε

2
---G2.–= =

α s
2

βε
ε 0→
lim

Tµν αβ, q( ) i dxeiqx T jµν x( ) jαβ 0( )〈 〉∫=

Tµν αβ, q( ) ηµν αβ, q( )T q2( ) f µν αβ, q( )TS q2( ),+=

ηµν qµqν q2gµν–=
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by the expression

(6)

The quantity ηµν, αβ(q) is the density (polarization)
matrix for a spin-2 particle, which determines the struc-
ture of its propagator in the momentum space. It pos-
sesses the inherent properties

(7)

Note that the last two relations in (7) are valid only in
four-dimensional spacetime. The proper tensor in D-
dimensional spacetime, necessary for computations
within dimensional regularization, reads

(8)

It has zero trace and is orthogonal to the quantity
fµν, αβ(q). However, these two are equivalent to the per-
turbation-theory order that we use here, and the differ-
ence between (6) and (8) is of no importance. The
quantity ηµν, αβ(q) is symmetric in both pairs of sub-
scripts (µν) and (αβ). The second tensor object entering
into (5),

,

is the tensor structure related to the contribution of sca-
lar particles. In a more general D-dimensional space-
time, the tensors fµν, αβ(q) and ηµν, αβ(q) are not orthog-
onal to each other. The perturbation-theory expansion

of the function TS(q2) begins from  terms (nonvan-
ishing imaginary part) and is negligible in the (next-to-
leading) order in αs to which we limit ourselves in the
present study. The nonvanishing term of this tensor
structure emerges because of the trace anomaly. Thus,

we conclude that, up to O( ) terms, the correlation
function (4) is determined by the single scalar function
T(q2) related only to the contribution of tensor gluonia.
The anomalous dimension of the current jµν vanishes,
which renders the function T(q2) invariant under renor-
malization-group transformations.

The results of direct computations of the function
T(q2) are as follows. The leading-order contribution to
the function T(q2) is well known [4]. Within a dimen-
sional regularization, where D = 4 – 2ε is the spacetime
dimensionality, it has the form

(9)

Here, the quantity G(ε) is related to the specific defini-
tion of the integration measure in the D-dimensional
momentum spacetime and has the series expansion
G(ε) = 1 + O(ε) at small ε [20], while µ is the ’t Hooft

mass of dimensional regularization. The factor  – 1

ηµν αβ, q( ) ηµαηνβ ηµβηνα
2
3
---ηµνηαβ.–+=

qµηµν αβ, q( ) 0, qαηµν αβ, q( ) 0,= =

ηµµ αβ, q( ) 0, ηµν αα, q( ) 0.= =

ηµν αβ,
D q( ) ηµαηνβ ηµβηνα

2
D 1–
-------------ηµνηαβ.–+=

f µν αβ, q( ) ηµνηαβ=

α s
2

α s
2

Nc
2 1–

4π( )2
--------------- 1

10ε
-------- µ2

Q2
------ 

 
ε

G ε( ), Q2 q2.–=

Nc
2
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counts the number of gluons (or partons at this level of
computation within perturbation theory) of the color
group SU(Nc) that propagate in the single loop to which
the correlation function reduces in this order of pertur-
bation theory.

For the amplitude T(Q2), with allowance for the
two-loop perturbation-theory corrections, one finds

(10)

This expression represents the main result of the
present study. The coefficient of the leading-order cor-
rection to the correlation function was first computed in
[12] and later confirmed by the independent computa-
tion from [21]. The basic method of the computation
was described in detail by Kataev et al. [11], who con-
sidered the scalar and pseudoscalar cases. Relevant dia-
grams are identical to those in the tensor case. The
explicit expressions for vertices and the results for indi-
vidual diagrams can be found in [12]. The only compli-
cation in the present case is associated with the tensor
structure of the diagrams. There are several different
tensor projection operators that can reduce the neces-
sary expressions to the scalar form. Some relevant inte-
grals can be found in the study of Pivovarov and Popov
[22], who considered the correlation function for quark
currents with spin n. Poles of order ε2 that are possible
at the two-loop level (in αs order) and which are actu-
ally present in the expressions for particular diagrams,
cancel in expression (10), as they must because of
renormalization-group invariance of the current jµν. For
the corresponding D function [a derivative of the ampli-
tude T(Q2)], which is multiplicatively renormalized,
one has

(11)

The coefficient of αs in the last expression is indepen-
dent of the renormalization scheme used to calculate
the amplitude T(Q2); this can also be seen from the fact
that it is not necessary to fix a precise definition of the
integration measure: the quantity G(ε) enters into the
final answer only as the factor G(0) = 1. Evaluating this
coefficient is the actual content of the two-loop calcula-
tion of the correlation function (4) and the amplitude
T(q2) in (5), in particular.

For the standard gauge group with Nc = 3, we
numerically obtain

(12)

T Q2( )
Nc

2 1–

10 4π( )2
-------------------1

ε
--- µ2

Q2
------ 

 
ε

G ε( )=

× 1
α s

4π
------Nc

10
9
------– 

  µ2

Q2
------ 

 
ε

G ε( )+ .

DT Q2( ) Q2 d

dQ2
---------T Q2( )–=

=  
Nc

2 1–

160π2
--------------- 1

α s

4π
------Nc

20
9
------– 

  .

DT Q2( ) 1

20π2
----------- 1

5
3
---

α s Q2( )
π

-----------------– .=
Thus, the next-to-leading-order correction to the corre-
lation function for tensor gluonic currents is not large,
and the perturbation-theory expansion is quite well
convergent numerically even at αs ≈ 0.3, which corre-
sponds to the scale of ordinary hadrons. A remarkable
feature of this correction is its sign. In the majority of
cases, αs corrections are positive, while, for the tensor
correlation function for currents (1), it is negative. The
inclusion of fermions has a twofold effect: loop correc-
tions through the gluon propagator and mixing with
fermionic operators at the tree level. The former effect
is trivial (explicit results can be found in [12]), while
the latter was discussed in the literature.

The small value of the first-order correction to
observables that are renormalization-group-invariant at
the parton level is a general feature of hadron phenom-
enology. The most famous example is the total cross
section for e+e– annihilation into hadrons, where pertur-

bative corrections in the  scheme are not large, with
the leading-order correction being explicitly given by

However, they can be rather large in the  scheme if
corrections depend on the definition of the coupling
constant in the channels being considered (as in the
case of scalar or pseudoscalar gluonia). In particular,
the result for the pseudoscalar gluonium with the inter-
polating operator

is [11]

(13)

The correction of order αs in (13) is much larger than
that in (12), violating the applicability of perturbation
theory at momenta close to hadron-resonance masses.

It is worth noting that the functions D are defined in
Euclidean domain, while the physical spectrum
requires the correlation functions to be evaluated on the
physical cut. For two-point correlation functions, the
analytic properties are well established, and the ana-
lytic continuation can be performed in all orders in αs
(see, for example, [23]), which can, however, change
the effective numerical value of the total correction in
specific applications.

The question of whether the value of corrections
reflects the physical situation—the contribution of
instantons and an early breakdown of perturbation the-
ory—is still open, urgently requiring a further investi-
gation.

MS

σtot e+e– hadrons( ) 1
α s

π
----- ….+ +∼

MS

jPS α sGG̃ α s
1
2
---εµναβGµν

a Gαβ
a= =

DPS Q2( )
2α s

2 Q2( )
π2

--------------------= 1
97
4
------

α s Q2( )
π

-----------------+ .
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Abstract—Criteria of reliability are studied for results obtained within the sum-rule approach in QCD and in
some toy models. The criterion of validity of the approximation for current correlation functions based on oper-
ator-product expansion within Borel sum rules, suggested previously in the literature, is critically reexamined.
A new criterion of validity of a perturbative approximation that makes use of the Källen–Lehmann representa-
tion and finite-energy sum rules is proposed. The stability of criteria against small variations in expansion coef-
ficients is investigated in an exactly solvable model and in QCD. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quantum chromodynamics (QCD), being a consis-
tent theory of strong interactions and quite successful
in describing the properties of hadrons in the high-
energy domain within perturbation theory, is not
directly applicable in the low-energy region, where res-
onances are formed. In contrast to electroweak interac-
tions, where the small value of the coupling constant
allows one to perform perturbative calculations in good
agreement with experimental data, one encounters seri-
ous difficulties in computing low-energy processes
with hadrons as strongly interacting particles. The
QCD coupling constant grows with increasing dis-
tances, and perturbation theory is applicable only at
high energies, where quarks become asymptotically
free owing to small values of the coupling constant.
Nonperturbative methods have to be used to study the
infrared, or low-energy, region. These include an
approach based on dispersion sum rules combining the
high-energy behavior of Green’s functions described
within perturbation theory with the behavior in the low-
energy resonance region (see, for example, [1–4]).
Although the sum-rule method has proved to be a use-
ful tool for studying various problems arising in ele-
mentary-particle physics, the question of its predictive
power and of the reliability of the results that it yields
has not been ultimately solved. There is no strict quan-
titative criterion that could allow one to accept or reject
definitively a model spectrum that is usually obtained
from the sum-rule analysis. In some well-known cases,
sum rules lead either to a deeper theoretical under-
standing of the situation in question or to a better quan-
titative accuracy than other methods, but the validity of
sum-rule results is uncertain to a considerable extent if
the qualitative structure of the spectrum in the channel
being considered is unknown a priori. The absence of
such an estimator for the applicability of the sum-rule

* This article was submitted by the authors in English.
1063-7788/00/6309- $20.00 © 21650
method based on the inherent properties of the proce-
dure itself rather than on invoking additional phenome-
nological information reduces the predictive power of
the approach and restricts its applicability in new chan-
nels where there is a deficit of experimental data. The
difficulty of introducing an estimator that satisfies the
natural requirements of reliability lies in the nature of
the problem: theoretical simulations of the spectrum
from theoretical calculations in the asymptotic region is
a nonuniversal procedure. For instance, the method of
analytic continuation, which can be used for this pur-
pose, is known to be an ill-posed problem. Various
aspects of the reliability problem have been considered
since the technique was developed both in realistic cases
[5] and in exactly solvable models (see, for example,
[6]). In recent years, interest in this problem has been
rekindled in connection with more stringent require-
ments on the accuracy of the predictions and on the reli-
ability of estimates within new physics [7–9].

The present article is devoted to an analysis of a cri-
terion that guarantees the validity of results obtained
through the sum-rule method. While there exist a great
number of implementations of the general sum-rule
idea, we will consider here only finite-energy sum rules
(FESR) [3, 10, 11] and Borel sum rules [4] as the most
popular techniques for practical applications.

The basic object for analysis within the sum-rule
technique is the vacuum expectation value of the chro-
nological product of two hadronic currents,

(1)

In this equation, we have chosen a conserved vector
current that leads to the transverse correlation function
Πµν(q). The invariant scalar function Π(q2) admits the

Πµν q( ) qµqν qµνq2–( )Π q2( )=

=  i 0 T jµ 0( ) jν x( ) 0〈 〉 eiqx x.d∫
000 MAIK “Nauka/Interperiodica”
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standard Källen–Lehmann representation

(2)

where

is the spectral density. From this representation, it is
possible to infer analytic properties of the polarization
function Π(z): it is an analytic function in the entire
complex plane, with the exception of the positive part
of the real axis, where a cut is chosen. Equation (2) is
an ill-posed problem when considered as an integral
equation for the unknown spectral density ρ(s) with the
function Π(q2) on the left-hand side. Small variations in
the function Π(q2) can lead to arbitrarily large varia-
tions of the depending quantity ρ(s).

The sum-rule method provides a way to extract any
information about the physical spectrum ρ(s) from the
calculation of the polarization function Π(q2). As has
been mentioned before, this is not the most correct way
because of an unstable solution to the integral equation.
Finite-energy sum rules appear after integrating the
product Π(z)zk along the contour shown in Fig. 1. The
factors zk have no singularities at positive integral val-
ues of k in the entire complex plane, whence it follows
that the analytic properties of the product Π(z)zk are
identical to those of the polarization operator itself. The
basic relation has the form

(3)

The function Π(z) can be computed for large values of
the complex variable z that lie sufficiently far from the
positive part of the real axis. For a theoretical evalua-
tion, the operator-product expansion in the deep
Euclidean region and perturbation theory are used. We
denote by Πtheor(z) this approximation for Π(z). By sub-
stituting Πtheor(z) for Π(z) in (3), we arrive at finite-
energy sum rules in the form

(4)

where

Note that, in the massless-quark limit (which is a good
approximation for the light-quark sector), the averag-
ing-interval length s1 is the only dimensional parameter
in (4). It determines the scale of the process for a per-
turbative analysis and enters as a scale into the running
coupling constant of strong interactions. Therefore, the

Π q2( ) ρ s( )
s q2–
------------- s,d

0

∞

∫=

ρ s( ) Π s iε+( ) Π s iε–( )–[ ] /2πi=

1
2πi
-------- ρ s( )sk sd

0

s1

∫ Π z( )zkdz.

C

∫°–=

ρ s( )ϕ s( ) sd

0

s1

∫ ρtheor s( )ϕ s( ) s,d

0

s1

∫=

ϕ s( ) sk, k 1 2 …,, ,= =

ρtheor s( ) 1
2πi
-------- Π theor s iε+( ) Π theor s iε–( )–[ ] .=
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simplest (necessary) criterion of validity for the sum
rules (4) is the natural inequality s1 @ ΛQCD for pertur-
bation theory to converge.

The shape of the exact spectral density ρ(s) is
extracted from experimental data. The hadronic spec-
trum is usually seen as a set of resonances plus some
continuum contribution, and there is some energy gap
between these two parts. Therefore, the solution for the
spectral density ρ(s) can be sought in the general form

where delta functions represent the resonance contribu-
tions and θ(s – s0) is the continuum part. Substituting
the right-hand side of this expression into (4), one
obtains a set of equations for the resonance masses mi
and the coefficients Fi related to the constants of reso-
nances coupling to the interpolating quark–gluon cur-
rents. The general criterion for the validity of the results
obtained is the existence of well-pronounced reso-
nances closely coupled to the current, as well as the
wide energy gap between resonances and the contin-
uum, which begins from the energy s0; the difference

(s0 – ) has to be sufficiently large. The FESR method
is supplied with a semiphenomenological inclusion of
the complex vacuum structure that introduces terms

containing nonzero quark and gluon condensates, 〈 〉
and 〈α s 〉 , in the expansion of the polarization func-
tion Π(q2) [4]. This allows us to deduce useful informa-
tion about the most important dynamical properties of
hadrons [3, 10]. It should also be noted that, because
averaging is performed only along a part of the spec-
trum, these sum rules reflect the local duality between
quarks and hadrons. The concept of local duality is dif-
ferent from the pointwise analysis of the spectral den-
sity, the latter being the least reliable way to analyze the
spectrum theoretically.

ρ s( ) Fiδ s mi
2–( ) θ s s0–( ),+

i 1=

n

∑=

mn
2

qq

Gµν
2

Fig. 1. Contour of integration in the complex plane of the
variable q2.

C

s1
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It is worth emphasizing that, by choosing the special
averaging interval s1 = ∞ and the particular weight

function ϕ(s) =  in (4), one can transform the
FESR into the Borel sum rules [4]. The introduction of
the exponential cutoff suppresses contributions of high
states; therefore, the Borel sum rules are applicable
only to studying the ground state of the resonance spec-
trum. To do this, it is necessary to use the criterion of
stability of results against variations in the Borel vari-
able M 2 within some proper interval. The Borel sum
rules can also be obtained by means of the Borel trans-
formation

(5)

applied to the polarization function Π(Q2) (Q2 = –q2 is
an Euclidean momentum). Because averaging runs
through the whole spectrum in this case (at least for-
mally, since the weight function does not vanish every-
where on the real positive semiaxis), this setting reflects
the global duality between quarks and hadrons.

2. PREDICTIVE POWER OF SUM RULES
AND UNIQUENESS OF THE SOLUTION

The sum-rule method has demonstrated its effi-
ciency for a quantitative improvement of accuracy for
some known channels quite successfully. Still, the
uniqueness of solutions and the reliability of the results
related to prediction of new states remain an important
question. There is the question of whether the agree-
ment of a trial resonance spectral density with the
asymptotic behavior of the polarization function is a
sufficient criterion for the existence of particles with
corresponding quantum numbers in nature. This ques-
tion is definitely an exaggerated quest; still, to some
extent, it is the way that sum rules are used. The answer
to this question is negative because the solution to the
relation

considered as an integral equation for unknown func-
tion ρ(s), is unstable when Π(Q2) is defined only within
the interval Q ∈  [s1, ∞]. This means that some small
variations in the function Π(Q2) can induce a noticeable
change in the spectral density ρ(s). Because the exact
function Π(Q2) is unknown, one should not conclude
that a resonance occurs in the real world. Despite these
imperfections, the sum rules remain one of a few theo-
retical tools that is based on the first principles of QCD
and which is nearly model-independent. In this respect,
it is more similar to the lattice approximation, which is,
however, purely numerical. Therefore, the predictive
power of the sum-rule method is still of great interest.
A situation can emerge where two different spectral

e s/M
2–

B̂
Q2n

n 1–( )!
------------------ d

dQ2
--------- 

  n

n Q
2 ∞ ,→,

Q
2/n M

2=

lim=

Π Q2( ) ρ s( )
s Q2+
--------------- s,d

0

∞

∫=
densities approximate the same correlation function
rather well, although their shapes are not close to each
other. This paradox was discovered in the toy model
based on the ladder approximation for the correlation
functions in four-dimensional spacetime [7]. The para-
dox is quite straightforward: the phenomenological res-
onance solution, being in good agreement with the sum
rules, is different from the exact one given by the ladder
approximation. This is an explicit failure of the sum-
rule method to detect the true structure of the spectrum,
while the formal requirements of stability for a phe-
nomenological solution are satisfied. Therefore, it
would be desirable to have some criterion enabling one
to reject the solution given by sum rules or showing that
a particular approximation used for the correlation
function is wrong. Such criteria are usually based on
some general properties of quantum field theory—for
instance, positivity of the scalar product or of the state-
vector length. A criterion for the Borel sum-rule analy-
sis was considered in [8, 9]. In the present study, we
critically reexamine the efficiency of this criterion and
propose a new criterion for an FESR analysis.

3. BOREL SUM-RULE CRITERION
The Borel transformation (5) applied to the correla-

tion function (1) with the truncated spectrum from (2)
determines the function

(6)

where τ = 1/M 2. In the standard approach based on the
stability analysis, the ratio R1/R0 gives the mass of the
lowest resonance in the simple resonance-plus-contin-
uum model for the spectral density ρ(s). However, the
functions Rk(τ, s0) are subject to some restrictions fol-
lowing immediately from the general properties of pos-
itivity of the spectral density and the functional form of
dispersion relations. To formulate the restrictions, we
introduce the concept of Hölder’s inequality, which, for
integrals over the measure dµ, is given by

(7)

where

At p = q = 2, the Hölder’s inequality reduces to the
well-known Schwarz’s inequality. The spectral density
in (2) is positive (the spectrality condition), which leads
to a positive measure of integration and to the applica-
bility of Hölder’s inequalities. By choosing

Rk τ s0,( ) 1
τ
--- B̂ Q2–( )kΠ Q2( )[ ] continuum–=

=  
1
τ
--- B̂ Q2–( )k ρ s( )

s Q2+
--------------- sd

0

s0

∫ tke tτ– ρ t( ) t,d

0

s0

∫=

f t( )g t( ) µd

t1

t2

∫ f t( ) p µd

t1

t2

∫ 
 
 

1/ p

g t( ) q µd

t1

t2

∫ 
 
 

1/q

,≤

1
p
--- 1

q
---+ 1, p,  q 1. ≥ =

ρ t( )dt dµ, f t( ) tαe atτ– , g t( ) tβe btτ–= = =
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in (6) and applying Hölder’s inequality, we find the fol-
lowing restrictions on the physical correlation function:

(8)

The function Rk(τ, s0) on the left-hand side of (6) is well
defined only within that area of the (τ, s0) parameter
space where the stability analysis is carried out. There-
fore, we can introduce the variable

within the interval [τmin, τmax]. Assuming that

and considering that the parameters k = α + β, α /ω, and
β/(1 – ω) must take integral values, we obtain the fol-
lowing results at k = 0, 1:

(9)

(10)

(11)

(12)

0 ≤ ω ≤ 1,    τmin ≤ τmax.

Similar inequalities can be written for k ≥ 2 as well.
However, we restrict ourselves to studying (9) and (10)
because, for small δτ ≡ τmax – τmin (in realistic examples
from QCD, δτ ≈ 0.1 GeV–2), (11) and (12) are generally
kept in the first two inequalities. Other relations furnish
no additional information of use.

For these Borel sum rules to give reliable and con-
sistent results, it is proposed using them only in that
region of the (τ, s0) parameter space where the follow-
ing fundamental restrictions are valid:

(13)

(14)

It is worth noting that, for the one-resonance spec-
tral density, the identity r0 ≡ r1 ≡ 1 holds. Let us apply

Rα β+ τ s0,( ) Rαp
1/ p apτ s0,( )Rβq

1/q bqτ s0,( ),≤
a b+ 1.=

ω
τmax τ–

δτ
------------------, 0 ω 1≤ ≤=

a
τmin

τ
--------

τmax τ–
δτ

------------------
ωτmin

ωτmin 1 ω–( )τmax+
-----------------------------------------------= =

R0 ωτmin 1 ω–( )τmax s0,+( )

≤ R0
ω τmin s0,( )R0

1 ω– τmax s0,( ),

R1 ωτmin 1 ω–( )τmax s0,+( )

≤ R1
ω τmin s0,( )R1

1 ω– τmax s0,( ),

R0

τmin τmax+
2

------------------------ s0, 
  R0

1/2 τmin s0,( )R2
1/2 τmax s0,( ),≤

R1

τmin τmax+
2

------------------------ s0, 
  R2

1/2 τmin s0,( )R0
1/2 τmax s0,( ),≤

r0 ω s0,( )
R0 ωτmin 1 ω–( )τmax s0,+( )
R0

ω τmin s0,( )R0
1 ω– τmax s0,( )

----------------------------------------------------------------- 1,≤≡

0 ω 1,≤ ≤∀

r1 ω s0,( )
R1 ωτmin 1 ω–( )τmax s0,+( )
R1

ω τmin s0,( )R1
1 ω– τmax s0,( )

----------------------------------------------------------------- 1,≤≡

0 ω 1.≤ ≤∀
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this criterion to the toy model from [7], where

(15)

(16)

Here, ζ(n) are Riemann zeta functions. The inequalities
in (13) and (14) are violated in some area of the (τ, s0)
parameter space. This suggests that the exact spectral
density of the model,

(17)

is negative within some interval on the positive part of
the real axis. The region where r0(ω, s0) ≤ 1 and r1(ω,
s0) ≤ 1 is shown in Fig. 2. [In this case, (13) contains
(14); τmin = 0.05, τmax = 0.125, and, respectively, δτ =
0.075 GeV–2.) As one can see, this region does not over-
lap the area of stability; hence, the analysis employing
Borel sum rules is not justified according to our crite-
rion. Thus, there does not arise the paradox of two quite
different spectral densities [9].

On the other hand, one has the following (simpli-
fied) expressions for the polarization function in the
realistic case of the ρ meson:

(18)

R0 τ s0,( ) 1 e
s0τ–

–
τ

------------------ 6ζ 3( )– 20ζ 5( )τ+=

– 35ζ 7( )τ2 42ζ 9( )τ3 …,+ +

R1 τ s0,( )
1 1 s0τ+( )e

s0τ–
–

τ2
----------------------------------------=

– 20ζ 5( ) 70ζ 7( )τ 129ζ 9( )τ2 ….+–+

ρ s( ) 1 ∆ρ s( )+=

=  1
ns s

4

n2
----- s–

-----------------θ 4

n2
----- s– 

  θ s( ),
N 0=

∞

∑–

Π theor Q2( ) Q2

µ2
------

4π2 mu md+( ) qq〈 〉
Q4

---------------------------------------------+ln–=

+
π2

3Q4
---------

α s

π
-----G2 896π3

81Q6
-------------- α sqq〈 〉 2

.–

22

20

16

s0

0.06 0.08 0.12 τ

18

0.10

Fig. 2. Toy model. The inequalities are satisfied within the
shaded region. The boxed region is the area of stability
where we perform a common analysis on the basis of Borel
sum rules.
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The corresponding results for the quantities R0(τ, s0)
and R1(τ, s0) are

(19)

(20)

In our model analysis, we use the standard numerical val-

ues for the vacuum condensates,  = 0.012 GeV4

and  = (– 0.25 GeV)3.

R0 τ s0,( ) 1 e
s0τ–

–
τ

------------------=

+ 8π2mu qq〈 〉
π2 α s

π
-----G2

3
-----------------------+

 
 
 
 

τ 448π3

81
-------------- α sqq〈 〉 2τ2,–

R1

1 1 s0τ+( )e
s0τ–

–

τ2
----------------------------------------=

+ 8π2mu qq〈 〉
π2 α s

π
-----G2

3
-----------------------+

 
 
 
 

896π3

81
-------------- α sqq〈 〉 2τ .–

α s

π
-----G2

α sqq〈 〉

3

2

1

0

s0, GeV2

1.0 1.4 1.8
τ, GeV–2

Fig. 3. Region where the inequalities hold for the ρ meson.

4

3

1

0

s0, GeV2

0.4 0.6 0.8
τ, GeV–2

2

1.0

Fig. 4. Region where the inequalities hold for the A1 meson.
In this case (see Fig. 3), the inequalities are valid
within some stability region; therefore, the criterion
allows one to use Borel sum rules to analyze the system
in question [9].

Yet another example familiar from QCD is that of
the A1 meson (axial-vector channel with the ground-
state resonance mass of m = 1.23 GeV). In this case, the
criterion being discussed is also satisfied, and the use of
sum rules giving a good agreement with experimental
data is justified. The polarization function for the A1
meson,

(21)

is well approximated by the two-resonance (π and A1-
mesons) spectral density

where 4π/  = 0.16,  = 1.27 GeV, and fπ = 93 MeV

and  are the coupling constants [〈0| (0)|π(p)〉  =

ifπ pµ and 〈0| (0)|A1(λ, p)〉  = εµ(λ, p), εµ(λ, p)

being A1-meson polarization]. One can see from Fig. 4
that, in this case, the criterion allows a sum-rule analy-
sis. As is obvious from the examples given above, this
criterion allows one to apply the Borel sum rules when
the spectral density does contain a resonance and pre-
vents the use of the Borel sum rules in the toy model
where there is no resonance.

4. STABILITY OF THE CRITERION AGAINST 
SMALL VARIATIONS

Let us discuss this criterion in more detail. One of
the main properties of this criterion is the stability
against small variations in Πtheor(Q2). This is so because
the coefficients at powers Q–2n in the theoretical expan-
sion of a correlation function are not known exactly.
For instance, only ladder diagrams are taken into
account in the toy model, while the numerical values of
the quark and gluon condensates in QCD are known
only within some uncertainty as well. For example, the
most important four-quark correction in correlation
functions for ρ- and A1 mesons is calculated within the

factorization hypothesis [4]  ≈ 
(the use of this relation may result in more than twofold
deviations from true values), which brings about a large
uncertainty. The criterion mentioned above is unstable.
In the toy model, the surface [x = 1 – r0(ω, s0)] is close

Π theor Q2( ) Q2

µ2
------

4π2 mu md+( ) qq〈 〉
Q4

---------------------------------------------–ln–=

+
π2

3Q4
---------

α s

π
-----G2 44π3 32

81Q6
------------ α sqq〈 〉 2

.+

ρexpt s( ) 8π2 f π
2δ s( )

mA1

2

f A1

2
--------δ s mA1

2–( )+ θ s s0–( ),+=

f A1

2 mA1

f A1
jµ

A1( )

jµ
A1( ) mA1

2

f A1

--------

α sq
2q2〈 〉 α sqq〈 〉 2
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to zero; therefore, the area where r0(ω, s0) ≤ 1 depends
sizably on the coefficients of Πtheor(Q2). For the criteria
to be satisfied everywhere within the stability region, it
is therefore sufficient to vary independently the coeffi-
cients by some amounts: specifically, changes of –3%,
4%, and –12% in the coefficients at, respectively, the
first, the second, and the third power of 1/Q2 will suf-
fice. On the other hand, the inequalities become invalid
over the whole stability area upon increasing the

numerical value of the quark condensate  for
the ρ and the A1 mesons by 40 and 20%, respectively;
hence, the results appear to be inconsistent according to
the criterion, but the shape of the spectrum does not
change drastically—the resonances do not vanish.
Moreover, the agreement with experimental data
becomes even better. The variation procedure for the
condensate values in the ρ-meson correlation function
seems to be quite large, but it is worth emphasizing that
the uncertainty in the parameter s0 (width of the stabil-
ity rectangle) from [9] is large (25%) as well. Thus, this
criterion is not valid from the viewpoint of stability.

5. VALIDITY CRITERION FOR FESR

Let us now consider the FESR method. The crite-
rion of reliability has not yet been formulated in the lit-
erature. In this study, we propose one such criterion
based on the spectral properties of two correlation func-
tions for vector and axial currents. It is useful to define
the function

(22)

where

(23)

is the correlation function related to the truncated spec-
tral density. By means of the Källen–Lehmann repre-
sentation, formula (22) can be written as

Considering the right-hand side of this relation as an
integral of the product of two functions ((s' + Q2)–1 and

((s' + )–1 with the measure dµ = ρ(s')ds' and using
Schwarz’s integral inequality, we find that the exact
correlation function is constrained as

(24)

α sq
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0
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 ∫  =
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2 s, ,( ) ρ s'( )

s' Q2+( ) s' Q0
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0

s
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Q0
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F Q2 Q0
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PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 9      2000
 with (  Q
 

2
 ) =  d  Π

 s  (  Q
 

2
 )/  dQ

 
2

 . Therefore, this inequality
should be satisfied if we calculate the correlation func-
tion 

 

Π

 

theor

 

(

 

z

 

) within perturbation theory and believe that
it is a good approximation to the realistic one in some
internal region of momenta. Let us apply this criterion
to the FESR. In deriving the sum rules, it is assumed
that 
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) is close to 
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) when 

 

|

 

z

 

|

 

 > 

 

s

 

1

 

 [see (3)];
hence, the inequality

 

(25)

 

should be valid in this area. If, however, this inequality
is not valid in this region, the sum rules are not applica-
ble. It is worth noting that 

 

s

 

1

 

 must be sufficiently small
in order that the continuous part of the spectrum not
suppress the resonance contribution, but it must not be
overly small in order that we could calculate Πs(Q2) as
the left-hand side of (23). It is reasonable to take it to be

Π s'

G Q2 Q0
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Fig. 5. Function G(Q2, 10s0, s0) in a toy model. The general

picture is independent of  > Q2 and s.Q0
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Fig. 6. Function G(Q2, 10s0, s0) for the ρ meson.
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close to s0. The function G(Q2, , s) of the toy model
of the ρ and A1 mesons is shown in Figs. 5–7 (the vari-

ation of the parameters  and s does not modify the
general picture).

One can see that, in contrast to the last two cases, the

function G(Q2, , s0) in the toy model is negative; that

is, G(Q2, , s0) < 0. This means that the ladder dia-
grams poorly approximate the true correlation function
and that sum rules are not applicable here. For the ρ and
A1 mesons, the above criterion is satisfied and is stable:
this is so for the A1 meson in a wide range of varied
coefficients and for the ρ meson (see Fig. 8) up to the
threefold greater value of the quark condensate

. As the numerical value of the condensate is
increased further, the area where our inequality is valid
is displaced rightward, with the continuum beginning
to suppress the resonance contribution.

Q0
2

Q0
2

Q0
2

Q0
2

α sq
2q2〈 〉

0.12

0.08

0
1.6 11.2 20.8

Q2, GeV2

G

0.04

G
0.05

0

–0.10

–0.05

1.29 6.45 11.61
Q2, GeV2

s0, = 1.29 GeV2

Fig. 7. Function G(Q2, 16s0, s0) for the A1 meson.

Fig. 8. Function G(Q2, 16s0, s0) for the ρ meson with a 
quark condensate scaled by a factor of three.
In the toy model, however, stability against small
variations in the coefficients does not appear, and the
inequality in (25) becomes valid in two cases: (i) if s =
s0 with the same variation in the coefficients as in the
Borel sum-rule criteria and (ii) if s = s0 /2 with separate
variations in the coefficients (by –5%, 8%, and –46%
at, respectively, the first, the second, and the third
power of 1/Q2).

This suggests that one can find a truncation of the
whole series that does not change the general shape of
the spectrum, but which satisfies the criterion of appli-
cability.

6. CONCLUSION

To summarize, we have studied the reliability of
results given by sum rules in QCD. We have verified the
criterion of the Borel sum-rule reliability and have
shown that it is unsatisfactory from the viewpoint of
stability against small variations in the correlation-
function coefficients. The criterion of applicability for
the FESR method has also been proposed, and its appli-
cation to the same problems has been considered. This
criterion imposes more stringent constraints on the cor-
relation function and is stable against small variations
in the operator-product-expansion coefficients for the
correlation functions. Thus, we have constructed a
powerful method for estimating the accuracy of theo-
retical calculations.
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Abstract—The chiral superfield model associated with the low-energy limit of superstring theory and charac-
terized by the Kähler and the chiral potential [K(Φ, ) and W(Φ), respectively] is analyzed. An approach to

solving a general problem is developed, and quantum loop corrections at arbitrary K(Φ, ) and W(Φ) are
found. Various aspects of a supergraph technique that are associated with calculating perturbative contributions
to the superfield effective action are analyzed. Explicit expressions for the one- and two-loop corrections to the
Kähler potential are calculated. The leading two-loop correction to the chiral potential is obtained, and it is
shown that, irrespective of the form of K(Φ, ) and W(Φ), counterterms are not needed for deducing this cor-
rection. © 2000 MAIK “Nauka/Interperiodica”.

Φ
Φ

Φ

1. INTRODUCTION

From the viewpoint of superstring theory, low-
energy models of elementary particles are effective the-
ories where integration with respect to massive string
modes is performed and where a ten-dimensional back-
ground manifold has the structure M4 × K; here, M4 and
K are, respectively, four-dimensional Minkowski space
and a suitable six-dimensional compact manifold, and
a reduction to M4 is accomplished. It turns out [1] that
the resulting effective theories comprise, as an ingredi-
ent, N = 1 chiral superfields Φi governed by the action
functional

(1)

Here, d 8z = d 4xd 2θd 2  and Φi = Φi(z), where zA ≡ (x a,

θα, ) with a = 0, 1, 2, 3 and α = 1, 2 (  = , ). The

real-valued function K( , Φi) is referred to as a
Kähler potential, while a holomorphic function W(Φi)
is known as a chiral potential [2]. Expression (1) repre-
sents the most general action functional for a chiral
superfield without higher derivatives at the component
level [2]. The theory specified by the action functional
(1) will be referred to as the model of a general chiral

superfield. In the particular case where K( , Φi) =

 and W(Φi) ~ Φ3, we arrive at the well-known
Wess–Zumino model. At W(Φi) = 0, the theory repre-
sents the N = 1 supersymmetric sigma model [2]. In
accordance with the procedure for deriving expression
(1) for the action functional from superstring theory,
this expression must be interpreted as a classical action
functional specifying a theory used to describe phe-

S Φ Φ,[ ]  = d
8
zK Φ

i
Φi,( )∫ d

6
zW Φi( ) h.c.+∫( ).+

θ
θα̇ α̇ 1̇ 2̇

Φ
i

Φ
i

ΦΦ
1063-7788/00/6309- $20.00 © 21657
nomena whose characteristic energies are much less
than the Planck energy. The general chiral-superfield
model considered here is extensively used to study pos-
sible phenomenological implications of superstring
theory (see [3, 4] and references therein).

The present study is devoted to calculating the low-
energy effective action within the theory governed by
the classical action functional (1). We will consider the
case of a one-component chiral superfield. A transition
to the case of a multicomponent field appears to be
quite straightforward in the matrix notation.

It should be emphasized from the outset that, at arbi-

trary K( , Φi) and W(Φi), the theory specified by
equation (1) is unrenormalizable in the index; in order
to eliminate divergences, one needs an infinite number
of counterterms, which cannot be generated by a finite
number of renormalization constants. It should be
borne in mind, however, that the theory under investi-
gation is essentially an effective one; therefore, it is
characterized by some energy scale, which plays the
role of a natural cutoff. The relevant dimensional
parameters arise in the model specified by Eq. (1) in
deriving this model from superstring theory and are
expressed in terms of the string tension and the charac-
teristic size of the compact manifold K.

Our objective here is to calculate lower order loop
contributions to the effective action dependent on
superfields without going over to components at any
stage of the calculations. In this way, we ensure mani-
fest supersymmetry at intermediate stages and in the
final result. In just the same way as in the nonsupersym-
metric case, the low-energy effective action for the
model specified by Eq. (1) is described by effective
potentials that are now dependent on superfields.

Φ
i
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Below, it will be shown, however, that, if W ''(Φ)|Φ = 0 ≠
0, corrections to the Kähler potential K( , Φ) are the
only admissible corrections beginning from the one-
loop approximation. At W ''(Φ)|Φ = 0 = 0, the chiral
potential W(Φ) also develops quantum corrections, the
first of these emerging in the two-loop approximation.
It should be noted that the concept of a superfield effec-
tive potential was introduced in [5, 6] and that the
superfield technique for calculating quantum correc-
tions to the chiral potential was developed in [7, 8]. The
method of a superfield effective potential was further
refined in [4, 9, 10]. Previously, all these investigations
were performed within the Wess–Zumino model. Here,
we evolve a general approach to determining the effec-
tive potentials in the theory that is specified by equation
(1) and which involves arbitrary functions K(Φ, ) and
W(Φ).

The ensuing exposition is organized as follows. In
Section 2, we describe the classical action functional,
Green’s functions, and the general structure of the
effective action. Section 3 is devoted to calculating the
one-loop Kähler effective potential. Further, we calcu-
late the two-loop chiral effective potential in Sections 4
and 5 and the two-loop Kähler effective potential in
Section 6. It is interesting to note that, despite unrenor-
malizability of the model in the general case, the chiral
effective potential does not require renormalization and
does not depend on normalization conditions; there-
fore, it is automatically finite. The results that we
obtained are summarized in the Conclusion. Through-
out this study, we heavily rely on the technique of Fey-
nman diagrams in superspace—that is, the supergraph
technique (see, for example, [2]).

2. STRUCTURE OF THE EFFECTIVE ACTION

Let us consider the theory of a chiral and an anti-
chiral superfield [Φ(z) and (z), respectively] gov-
erned by the action functional (1). It should be recalled
that all fields entering into this action functional are
taken to be one-component. As usual, the effective
action Γ[Φ, ] is determined with the aid of the Leg-
endre transformation of the generating functional
W[J, ] for connected Green’s functions; that is,

(2)

In order to perform loop calculations, it is conve-
nient to make a shift in the functional integral (2)

Φ

Φ

Φ

Φ

J

i
"
---W J J,[ ] 

 exp

=  $ϕ$ϕ i
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--- S ϕ ϕ,[ ] d
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zJϕ∫ h.c.+( )+( ) 

  ,exp∫
Γ Φ Φ,[ ] W J J,[ ] d

6
zJΦ∫ h.c.+( ).–=
according to the rule Φ  Φ +  and    +

 and to recast relation (2) into the form

(3)

(for details, see [2, 11]). Let us represent the effective

action as Γ[Φ, ] = S[Φ, ] + [Φ, ], where [Φ,

] is a quantum correction to the classical action func-
tional. From (3), we then obtain

(4)

Each loop correction Γ(n)[Φ, ] can be expressed in
terms of functional integrals. In particular, the one-loop
correction has the form

(5)

where S2[Φ, ; φ, ] is the second-order part of the

classical action functional S[Φ + ,  + ] in

quantum superfields. It can be represented as

(6)

where  = ∂2K(Φ, )/ , KΦΦ = ∂2K(Φ,

)/∂Φ2, etc., and where W '' = d2W/dΦ2. We assume

that the effective action functional Γ[Φ, ] can be
expanded in terms of the supercovariant derivatives
DA = (∂a , Dα, ) as (below, we use the notation
adopted in [2])

(7)

where +eff is the general effective Lagrangian, while

 is the chiral effective Lagrangian. Each of these
Lagrangians can be expanded in powers of the deriva-
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tives DAΦ, DADBΦ, , , …, so that we
have

(8)

where ellipses stand for terms dependent on the covari-
ant derivatives DA of the superfields Φ and . Here,

Keff(Φ, ) and Weff(Φ) are referred to, respectively, as a
Kähler effective potential and as a chiral effective poten-
tial; K(n) is the n-loop correction to the Kähler potential
K; and W (n) is the n-loop correction to the chiral potential
W. The objective of our study is to calculate the one- and
two-loop expressions for Keff(Φ, ) and Weff(Φ) within
the theory specified by the action functional (1).

Let us consider the theory of superfields φ and  in

the background fields Φ and  that is specified by the

action functional S2[Φ, , φ, ] (6). This theory is
characterized by the matrix superpropagator

(9)

which satisfies the equation

(10)

Here, an arrow over an operator means that this opera-
tor acts on all functions on the right of it; δ+ =

− δ8(z1 – z2) and δ– = – D2δ8(z1 – z2) are, respec-

tively, a chiral and an antichiral delta function; and the
plus (minus) sign in the matrix elements of the super-
propagator G(z1, z2) indicates that they are chiral (anti-
chiral) in the corresponding argument. It is obvious that
superpropagator (9) depends on the background super-
fields Φ and .

We now note that, as soon as the covariant deriva-
tives are applied to KΦΦ, , and  in Eq. (10), we

inevitably arrive at terms involving DαΦ, , D2Φ,

DAΦ DADBΦ

+eff Keff Φ Φ,( ) …+=

=  K Φ Φ,( ) K
n( ) Φ Φ,( )

n 1=

∞

∑ …,+ +

+eff
c( )

Weff Φ( ) …+ W Φ( ) W
n( ) Φ( )

n 1=

∞

∑ …,+ += =

Φ
Φ

Φ

φ
Φ

Φ φ

G z1 z2,( ) G++ z1 z2,( ) G+ – z1 z2,( )
G–+ z1 z2,( ) G–– z1 z2,( ) 

 
 
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4
---D

2
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1
4
---D

2
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1
4
---D

2
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1
4
---D

2
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 
 
 
 
 
 
 

G++ G+ –

G–+ G–– 
 
 

=  
δ+ 0

0 δ– 
 
 
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1
4
---D

2 1
4
---

Φ

KΦΦ KΦΦ
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and . If superpropagator (9) is used in calculating
the effective action, the above terms cannot contribute
to the quantity , because it is independent of deriv-

atives. In calculating , we can therefore omit all
such terms in Eq. (10) and assume that the matrix
superpropagator G(z1, z2) satisfies the equation

(11)

This equation can be solved explicitly for the back-
ground superfields that contribute to the effective
potentials Keff(Φ, ) and Weff(Φ). The resulting solu-
tion is written as

(12)

It is this propagator that will be used in the following to
derive the one- and two-loop contributions to the
Kähler effective potential Keff(Φ, ). The problem of
the chiral effective potential Weff(Φ) will be investi-
gated in Sections 4 and 5.

3. ONE-LOOP KÄHLER EFFECTIVE POTENTIAL

According to relations (5), the one-loop contribu-
tion to the effective action has the form

(13)

where G is the matrix superpropagator (12). In order to
calculate the functional Γ(1), we will use the supergraph
technique (see, for example, [2]). Since we aim here at
finding Keff , we will assume that the quantities ,

, KΦΦ, W '', and  are constants.

Let us represent the action functional S2 = S2[Φ, ;

φ, ] (6) in the form

(14)

D
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---tr G,ln–=
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S2 S0 Sint,+=
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8
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(15)

In order to find Keff, we sum the contributions to Γ(1)

from all one-loop supergraphs generated by the action
functional S2 (14).

Let us proceed to describe the supergraph technique
for the case under consideration. The superpropagator
G0 associated with the action functional S0 is obtained

from the general expression (12) at W '' = . By vir-
tue of the definitions of the chiral and antichiral delta
functions, the result has the form

(16)

In constructing the required diagram technique, each

vertex of the form (z2)φ2(z2) in the expres-

sion for the relevant diagram will be associated with the
structure

(17)

Thus, each vertex proportional to W ''(zi) will be associ-

ated with the factor – . By virtue of this, it is natural

to include the factors – /4 and –D2/4 entering into
(16) in vertices and to assume that the propagator cor-
responding to the second-order action in (14) has the
form

(18)

(For the Wess–Zumino model, the details are described

in [2].) As a result, the factor – /4 (–D2/4) is associ-

ated with each vertex involving W '' ( ). As to verti-

ces of the KΦΦφ2 and  types, we can say that, if

there is, for example, the vertex KΦΦφ2 in a diagram, the

Sint
1
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8
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2

+( )∫=
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6
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2

contribution of this diagram develops the term

that is, there arises the expression D2KΦΦ, which inevi-

tably generates terms featuring DαΦ, , D2Φ, and

 when D2 is applied to KΦΦ. In a similar way, we

can show that the presence of the vertex  again
leads to the emergence of contributions in the effective
action that are dependent on the derivatives of super-
fields. Because of this, diagrams involving such verti-
ces do not contribute to the Kähler effective potential. 

Thus, possible diagrams that lead to the one-loop
Kähler effective potential can involve only vertices that

are proportional to W '' and . We note that the same

number of the vertices W '' and  must be contained
in each such diagram. In order to demonstrate this
explicitly, we recall that, by virtue of the well-known
property of the variational derivatives of chiral super-

fields [2], the factor  (D2) corresponds to each vertex

W '' ( ). Upon transformations of the D algebra, the

equal numbers of the factors D2 and  are converted

into momenta according to the rules  =

−16k2  and  = –16k2D2. The contraction of
a loop into a point in θ space according to the rule

 = δ12 also requires one factor D2 and one

factor . If the contribution of some diagram contains

unequal numbers of the factors D2 and , the extra

factors D2 ( ) can act only on external lines, so that
such diagrams do not contribute to the Kähler effective
potential. It should be emphasized that vertices propor-

tional to W '' and  must alternate—otherwise, at

least one of the two factors D2 (or ) occurring at the

neighboring  (W '') vertices can be transferred to
only an external superfield upon the transformations of
the D algebra, whereby it is proven that such diagrams
make no contribution to the Kähler effective potential.
The structure of possible diagrams is illustrated in Fig. 1.
There, double external lines correspond to alternating

W '' and  vertices; lines between the vertices (〈 〉)
represent propagators of the form (18); and the factor

d
8
z2

1
2
---KΦΦ z2( ) 1

KΦΦ
2

z2( )h
2

--------------------------- 1
16
------D1

2
D2

2δ8
z1 z2–( )∫

× 1
16
------D2

2
D3

2
δ8

z2 z3–( ) d
8
z2

1
8
--- D2

2
KΦΦ z2( )( )∫=

× 1

KΦΦ
2

z2( )h
2

---------------------------1
4
---D1

2δ8
z1 z2–( ) 1

16
------D2

2
D3

2δ8
z2 z3–( );

Dα̇Φ

D
2
Φ

KΦΦφ
2

W ''

W ''

D
2

W ''

D
2

D
2
D

2
D

2

D
2

D
2
D

2
D

2

δ12D1
2
D1

2δ12

D
2

D
2

D
2

W ''

D
2

W ''

W '' φφ
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− /4 (–D2/4) is associated with each vertex propor-

tional to W '' ( ). A diagram that has the above struc-
ture and which features 2n external legs appears to be
an n-link ring of the type shown in Fig. 2.

The contribution of each such link is given by

(19)

According to the definition of a Kähler effective poten-

tial, the superfields W '' and  are taken here to be
constant in spacetime, and the external momenta are
equal to zero.

The contribution of such a diagram with 2n external
legs has the form

(20)

where 2n is a symmetry factor (see, for example, [9]).
Considering that supercovariant derivatives obey the

relation  = –16k2D2, we can show that

(21)

In the momentum representation, the total contribu-
tion from all diagrams having the above structure is
determined by the sum of all I2n; that is, we have

(22)

By using the well-known relation

we further reduce K(1) to the form

(23)
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Via a Wick rotation and subsequent integration with
respect to angular variables, we now go over from d4k
to π2k2dk2. Since the integral with respect to k2 is diver-
gent, it is necessary to introduce some regularization at
this stage. We will rely on a dimensional regularization,
making the substitution π2k2dk2  π2k2(1 + e/2)dk2,
where e is a regularization parameter. As a result, the
expression for the one-loop Kähler effective potential
takes the form

(24)

where µ is an arbitrary parameter of mass dimension.
Further, it can easily be shown that

where γ is the Euler constant. Therefore, the one-loop
correction to the Kähler potential can be represented as

(25)

Relation (25) explicitly demonstrates that the theory
being considered is not multiplicatively renormalizable
at arbitrary K(Φ, ) and W(Φ). We will illustrate this
statement by considering the example of W(Φ) ~ Φ4 and
K(Φ, ) = . In this case, the divergent part has the

form  ~ ( )4. In order to remove divergences

K
1( ) µ e–

d
4θ k

2
k

2( )
e/2

d

32π2
----------------------- 1 W''W''

KΦΦ
2

k
2

----------------+
 
 
 

,ln∫–=

µ e–
k

2
k

2( )
e/2

1 A

k
2

----+ 
 lnd

0

∞

∫– A
1 e+ Γ 1– e/2–( )–=

=  2
e
---– γ 1–+ 

  A A
A

µ2
-----ln– O e( ),+

K
1( )

 = 
1

32π2
----------- d

4θW''W''

KΦΦ
2

--------------- 2
e
--- γ– 1 W''W''

µ2
KΦΦ

2
----------------ln+ +

 
 
 

.∫–

Φ

Φ ΦΦ

Kdiv
1( ) 1

e
--- ΦΦ

W''
–

W'' W''
–

W''
–

W''

W''

W''

W''
–

W''

W''

W''
–

W''
–

...

Fig. 1. Diagrams contributing to the one-loop Kähler poten-
tial.

W '' W ''
–

D2D2–

Fig. 2. Element of the one-loop diagram contributing in the
Kähler potential.
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and ensure that the renormalization was multiplicative,
it is necessary to assume that the input function is
K(Φ, ) ~  + ( )4. According to (25), however,

the divergent part  will appear to be an infinite

power series in terms of . In performing renormal-
izations, multiplicativity requires that the input func-
tion K(Φ, ) also be an infinite power series in terms

of  with an infinite set of coefficients, which must
be interpreted as an infinite set of coupling constants.
But now, elimination of divergences requires introduc-
ing an infinite number of counterterm types. The only
choice of K(Φ, ) and W(Φ) leading to a finite number
of counterterm types corresponds to the Wess–Zumino
model, in which case we have K(Φ, ) =  and
W(Φ) ~ Φ3. As a result, we arrive at the conclusion that
the model being discussed must be interpreted as an
effective theory whose applicability range is bounded
by some energy scale chosen on the basis of phenome-
nological considerations. Presently, (multiplicatively
unrenormalizable) effective theories are being widely
used in quantum field theories and its applications (for
example, four-dimensional Gross–Neveu model,
Nambu–Jona-Lasinio model, and quantum gravity).
From this point of view, the chiral-superfield model is
not unique.

In order to obtain a finite one-loop correction to the
Kähler potential, we will merely assume that the
Lagrangian is supplemented with the one-loop counter-
term

(26)

As a result, we obtain a finite one-loop correction 
in the form

(27)

Expression (27) represents the eventual form of the
one-loop quantum contribution to the Kähler potential.
At K =  and W(Φ) ~ Φ3, it reduces to the well-
known result for the one-loop Kähler potential in the
Wess–Zumino model [5, 6].

4. PROCEDURE FOR CALCULATING
THE CHIRAL EFFECTIVE POTENTIAL

Let us now consider a chiral effective potential. By
definition, it depends only on the chiral superfield but
not on its derivatives. The reason behind the emergence
of chiral corrections is the following. According to the
nonrenormalization theorem (see, for example, [2]), all
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ΦΦ
corrections to the effective action can be represented in
the form of an integral over the full superspace; that is,

(28)

where f (Φ, ) is a function of superfields. Naively, it
can be thought that the nonrenormalization theorem
forbids the emergence of corrections proportional to an
integral over the chiral subspace, but this is not so in
fact. As was indicated in [12] (see also [7]), the emer-
gence of finite corrections of the form

(29)

in the effective action does not contradict this theorem.
Upon going over to an integral over chiral superspace

according to the rule (Φ, ) = (– /4)F(Φ,

), expression (29) takes the form

(30)

where f(Φ) and g(Φ) are functions of the chiral super-
field Φ. In the above transformations, it is important
that the superfields Φ and  are not constants, because
expression (29) depends substantially on the deriva-
tives of the superfields.

Let us now show that, at a nonzero mass, the effec-
tive action does not develop chiral corrections. We
begin by indicating that the factor h–1 in (29) may orig-
inate only from the propagators of massless superfields.
Indeed, the propagators in massive theories are propor-
tional to (h – m2)–1. Instead of a structure of the type in
(29), we will then obtain the expression

(31)

Going over to integration over chiral subspace, we
obtain

(32)

In the momentum representation, this corresponds to
the expression

(33)

which obviously disappears in the limit of slowly vary-
ing fields, p2  0, if m ≠ 0. Hence, a nontrivial chiral
effective potential may arise only in a massless theory.

In order to derive chiral corrections to the effective
action, it is sufficient to set  = 0. Here and in the next
section, we will therefore consider all the derivatives of
K and W at  = 0. It can then be established that the
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action functional dependent only on chiral background
fields has the form

(34)

since |Φ = 0 = 0. In expression (34), the ellipsis stands
for vertices of third and higher orders in quantum fields.
In order to construct perturbation theory, we single out
the free term and interaction vertices in this action
functional. For the free term, it is convenient to choose
the expression

with the standard superpropagator

(35)

all the remaining terms in (34) being associated with
interaction. Thus, we must refer all factors D to propa-
gators rather than to vertices. In constructing a diagram
technique, it should be borne in mind, however, that, for
vertices of the W ''φ2 and W '''φ3 types and for other ver-
tices proportional to an integral over chiral (antichiral)

subspace, one of the factors (D2) contained in the
propagators is used to go over to integration over a full
superspace in the corresponding vertex function.
Therefore, one of the propagators associated with one

of such vertices has one factor (D2) less.

The one- and two-loop corrections receive contribu-
tions from the vertices

(36)

and from the vertices conjugate to those in (36). The
first three vertices from (36) can be present in one-loop
diagrams, while the remaining ones appear only from
the two-loop approximation.

We further perform a dimensional analysis of dia-
grams that contribute to the chiral effective Lagrangian
in the one- and the two-loop approximation.

Each loop yields a contribution of 2 to the dimen-
sionality. This can be explained as follows: (i) Each
loop includes momentum integration, which yields 4.
(ii) Each contraction of a loop into a point according to

the rule  = 16δ12 reduces the number of the
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factors D and  capable of transforming into momenta
by 4; hence, the possible dimension is reduced by 2, so
that the eventual contribution to the dimensionality
from each loop is equal to the value indicated above.

Zero contribution comes from each propagator,
since the propagators are given by (35) (in performing
a dimensional analysis, it is more convenient to include
the factors D in propagators, as was done in Section 3,

rather than in vertices). Formally, two factors  are
associated with each vertex proportional to W ''. Of

these two, one factor  is used to go over to an eight-
dimensional integral with respect to z. Therefore, each
such vertex reduces the dimensionality by one. In just
the same way, each vertex that is independent of W '',
but which is proportional to an integral over chiral sub-
space—that is, vertices of the forms W'''φ3 and W''''φ4,
as well as those that are conjugate to them—also
reduces the dimensionality by one. One of the factors
D2 does not contribute to the total dimensionality since
it is converted into the square of the total momentum in
transforming expressions of the type (29) into an inte-
gral over chiral subspace [integral of the form (30)].
Further, an additional square of the total momentum
arises upon going over from (29) to (30). Therefore, the
dimensionality of the contribution from each diagram
is 2L + 1 – nW '' – , where L is the number of loops,

nW '' is the number of external lines W '', and  is the

number of vertices of the types W '''φ3 and W ''''φ4 and
those that are conjugate to them. By definition, the
effective potential represents the effective Lagrangian
in the limit p2  0. Therefore, a nontrivial contribu-
tion to the effective potential is possible only at

(37)

The contribution of a diagram that does not satisfy this
condition either vanishes in the infrared limit or has a
singularity in this limit. We note that vertices propor-
tional to the derivatives of K(Φ, ) do not contribute to
dimensionalities.

For a given contribution to be chiral, it must include
one extra factor D2 in relation to the number of factors

, once all the vertices have been represented in terms
of four-dimensional integrals with respect to θ. This is
necessary because, after the conversion of each pair

 into the square of the internal momentum, there
remains one more factor D2, which is transformed into
the square of the external momentum in going over
from a four-dimensional to a two-dimensional integral
with respect to θ [see Eqs. (29) and (30)].

By literally repeating the proof from the preceding

section, it can be shown that one of the two factors 
appearing in the vertex function proportional to KΦΦ

D
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D
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nVc

nVc

2L 1 nW ''– nVc
–+ 0.=

Φ

D
2

D
2
D

2
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can be transferred only to an external leg. Since all the
derivatives of K and W are considered at  = 0, the

action of  on the external leg KΦΦ yields zero result.
In calculating the chiral effective potential, we can
therefore set KΦΦ = 0.

Let us now consider possible one- and two-loop dia-
grams. By virtue of (37), the relation nW '' +  = 3 is

fulfilled in one loop. Since  is equal to zero for one-
loop diagrams, we have nW '' = 3. For the contribution of
a given diagram to include one factor D2 more in rela-

tion to the number of the factors , two vertices pro-

portional to  must be present because  corre-
sponds to each of the three external lines W ''. A direct
construction reveals, however, that a one-loop diagram
of this type involves a line proportional to

( /16)δ12 = 0. Therefore, the contribution of this
diagram as a whole is zero—that is, the one-loop cor-
rection to the chiral potential vanishes, W (1)(Φ) = 0.

From (37), it follows that two-loop diagrams satisfy
the condition nW '' +  = 5. Since the number of purely
chiral and antichiral vertices independent of W '' can be
0, 1, or 2 in two-loop diagrams, the number of external
lines W '' is equal to 3, 4, or 5, respectively.

It is well known that there exist two types of single-
particle-irreducible two-loop diagrams (see Fig. 3).

In order to evaluate the contributions of these dia-
grams, it should be borne in mind, however, that each
of these may include all vertices listed in (36). It was

shown above that (i) one factor  corresponds to each

vertex proportional to W '', (ii) n – 1 factors (D2) cor-
respond to a chiral (antichiral) vertex proportional to φn

( ),1) and m factors  and n factors D2 correspond

to a vertex proportional to φm . It is worth noting that

the propagator 〈 〉  is the only Green’s function in the

1)We recall that each such vertex is associated with a six-dimen-
sional integral with respect to z ( ). Here, each field φ ( ) gener-

ates one factor (D2). Therefore, n factors (D2) are associ-

ated with a vertex proportional to φn ( ). Of these, one factor is
used to go over to an eight-dimensional integral with respect to z.

Φ

D
2

nVc

nVc

D
2

KΦΦ D
2

D1
2
D2

2

nVc

D
2

D
2

φ
n

D
2

z φ

D
2

D
2

φn

φ
n

φφ

(a) (b)

Fig. 3. Possible two-loop diagrams.
theory being considered. In all possible supergraphs,
the vertices must therefore be chosen in such a way as
to ensure equality of the total numbers of quantum
chiral superfields φ and antichiral superfields  corre-
sponding to all vertices. Moreover, it was indicated
above that the contribution to the chiral effective poten-
tial from any diagram is nontrivial if—and only if—this
contribution involves one extra factor D2 in relation to

the number of factors .
Let us first consider diagrams of the type in Fig. 3‡.

The only fourth-order vertex in quantum superfields

has the form , where l is an integer that can vary

from 0 to 4. Two fields φ ( ) are associated with each
vertex proportional to W '' ( ). Finally, one field φ

and one field  correspond to each vertex proportional
to  – 1. Thus, the total number of the fields φ at the

vertices leading to such a diagram is l + 2nW '' + ,

while the number of the fields  is accordingly 4 – l +
2  + , where nW '' , , and  are the num-

bers of vertices proportional to W '',  – 1, and ,
respectively. Thus, the condition requiring that the
numbers of the fields φ and  be equal has the form l +
2nW '' = 4 – l + 2 , whence it follows that  =

nW '' + l – 2.

Let us consider the question of the factors D2 and

 in this diagram. We begin by indicating that l fac-

tors  and 4 – l factors D2 correspond to a vertex pro-

portional to . If, however, l = 0 (l = 4), the num-

ber of the factors D2 ( ) must be reduced by unity
since a transition from integration over chiral (anti-
chiral) subspace to integration over the entire super-
space decreases by unity the number of the factors

(D2) present in the diagrams in question. Therefore,

l – NV factors  and 4 – l –  factors D2, where NV

and  are the numbers of, respectively, chiral and
antichiral vertices of third and higher orders in quantum
fields (in the case being considered, NV and  can
take values of 0 and 1), correspond to a fourth-order
vertex in quantum fields. Moreover, two factors D2 (one

factor ) correspond (corresponds) to a vertex pro-
portional to  (W ''). As a result, the total number of

the factors D2 is 2  + 4 – l –  + , while the

total number of the factors  is nW '' + l – NV + .
The corresponding contribution to the chiral effective

φ

D
2

φlφ
4 l–

φ
KΦΦ

φ
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nKΦΦ

φ
nKΦΦ

nKΦΦ
nKΦΦ

nKΦΦ
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φ
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nKΦΦ

D
2

D
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D
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D
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D
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D
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potential is nonzero if the total number of the factors D2

is greater by one than the total number of the factors

. Taking into account the condition  = nW '' + l –

2 (see above), we can show that this relationship

between the numbers of the factors D2 and  is ful-
filled if nW '' + NV –  = 1. Previously, it was shown,
however, that the two-loop chiral effective potential is
nonzero if nW '' ≥ 3. Since the numbers NV and  take

only the values of 0 and 1, the relation nW '' – NV +  =
1 cannot be satisfied. Therefore, diagrams of the type
being considered do not contribute to the chiral effec-
tive potential.

Let us now consider diagrams of the type in Fig. 3b.
Such diagrams involve two third-order vertices in quan-

tum fields. These are proportional to either  or

, where l1 and l2 can take integral values from 0
to 3. By analogy with the preceding case, we can show
that the total number of the fields φ leading to a diagram
of this type is l1 + l2 + 2nW '' + , while the total num-

ber of the fields  is accordingly 4 – l + 2  + .

The condition requiring that their numbers be equal
leads to the relation  = nW '' + l1 + l2 – 3. Further, the

number of the factors D2 is 2  + 6 – l1 – l2 –  +

, while the number of the factors  is nW '' + l1 +

l2 – NV + . As before, the number of the factors D2

must be greater by one than the number of the factors

. Taking into account the relation  = nW '' + l1 +

l2 – 3, we arrive at the conclusion that a nontrivial con-
tribution to the chiral effective potential arises at nW '' +
NV –  = 1. This condition is satisfied only in the case

where nW '' = 3, NV = 0, and  = 2. Thus, either third-

order vertex in quantum fields has the form ;
hence,  = 0. We note that no restrictions on the

number of vertices proportional to  – 1 arise. A
possible diagram that obeys all these requirements con-
tains three external legs W '' and two antichiral vertices

of the  type. There is only one such diagram (see
Fig. 5 below). Its contribution will be considered in the
next section.

5. TWO-LOOP CORRECTION TO THE CHIRAL 
EFFECTIVE POTENTIAL

Let us now proceed to evaluate directly the two-loop
contributions to the chiral effective potential. As was

D
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shown in the preceding section, possible supergraphs
can contain only vertices proportional to W '', , and

 – 1. This implies that the relevant diagram tech-
nique can be constructed on the basis of the following
action functional for quantum fields [compare with
Eq. (34)]:

(38)

Let us establish the form of the propagator for the quan-
tum field φ whose dynamics is governed by the action

functional S0 = . It is convenient to repre-

sent this propagator as an expansion in terms of the ver-
tices  – 1. In this expansion as illustrated in Fig. 4,
thick and thin lines depict, respectively, the propagator
corresponding to the quadratic part of the action func-
tional in Eq. (38) and the standard superpropagator
(35); dash-dotted lines represent the external field

 – 1.

Summing the chain of diagrams depicted in Fig. 4,
we find the required propagator in the form

(39)

We note that, in general, the superfield (z1) is not
constant.

The analysis performed in the preceding section
revealed that, in order to determine the two-loop chiral
correction to the effective potential, it is sufficient to con-
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Fig. 4. Superpropagator 〈 〉 .φφ

Fig. 5. Diagram determining the two-loop chiral potential.
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sider the only diagram shown in Fig. 5. In this diagram,
double external lines represent the superfields W ''.

The contribution of the diagram in Fig. 5 is given by

(40)

Upon the transformations of the D algebra, this expres-
sion assumes the form

(41)

Let us consider expression (41) in some detail.
According to the definition in (8), the effective poten-
tial is equivalent to the effective Lagrangian in the limit
of superfields that change slowly in spacetime. In the
following, we therefore assume that, upon integration
with respect to internal momenta, expression (41),
which represents the sought contribution to the effec-
tive action, becomes

(42)

I
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× W'' p1 p2 θ,+( )S p1 p2,( ),
where p1 and p2 are external momenta. In the case being
considered, the function S(p1, p2) is equal to

Upon going over to the coordinate representation,
expression (42) takes the form

(43)

Since the superfields change slowly in spacetime, we
can set W(x1, θ)W(x2, θ)W(x3, θ) . W 3(x1, θ), which
leads to the expression

(44)

Four-dimensional integrations with respect to x2 and x3
yield delta functions forming the combination δ(p2)δ(p1 +
p2); as a result, expression (43) assumes the form

(45)

Upon the above transformations, the quantity I in (40)
becomes

where we have considered that [8]
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Therefore, the eventual result for the two-loop cor-
rection to the chiral potential has the form

(46)

We note that the two-loop chiral correction (46) is gen-
erally finite, requiring no renormalization. In the case

of W =  and K = , the above expressions

reproduce the result known within the Wess–Zumino

W
2( ) 6

16π2( )
2

------------------ζ 3( )W'''
2 W'' z( )

KΦΦ
2

z( )
------------------

 
 
  3

.=

λ
3!
-----Φ3 ΦΦ
model [7, 8].

6. TWO-LOOP KÄHLER EFFECTIVE POTENTIAL

Let us now proceed to calculate the two-loop Kähler
effective potential. In order to determine it, we can
make use of the background-superfield-dependent
matrix superpropagator in the form (12). The possible
vertices, which are also dependent on background
superfields, are presented in (36). We further note that,
by definition, the Kähler potential depends only on the
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superfields Φ and , but that it is independent of their
derivatives. Upon representing all vertices in the form
of four-dimensional integrals with respect to θ, the con-
tributions to the Kähler effective potential must there-

fore include equal numbers of the factors D2 and .
This is necessary for ensuring fulfillment of the
requirement that the eventual contribution obtained
upon transforming the spinor supercovariant deriva-

tives into momenta according to the rules  =

−16p2  and  = –16p2D2 and upon contract-
ing loops in θ space into a point according to the rule

 = δ12 not depend on the derivatives of the
superfields.

The components of the matrix superpropagator (12)
are given by

(47)

It is obvious that equal numbers of the factors D2 and

 are possible in the following cases (see Fig. 6):
(i) A diagram involves only the G+– and G–+ lines

and a single vertex, proportional to a four-dimensional
integral with respect to θ (Fig. 6‡).

(ii) A diagram contains only the G+– and G–+ lines
and two vertices proportional to a four-dimensional
integral with respect to θ (Fig. 6b).

(iii) A diagram contains only the G+– and G–+ lines,
one vertex proportional to a two-dimensional integral
with respect to θ, and the second vertex proportional to a
two-dimensional integral with respect to  (Fig. 6c).

(iv) A diagram contains equal numbers of the G– –
and G++ lines, a G+– line, and two vertices proportional
to a four-dimensional integral with respect to θ
(Fig. 6d).

(v) A diagram contains two G+– lines, one G–– line,
one vertex proportional to a two-dimensional integral with
respect to , and the second vertex proportional to a four-
dimensional integral with respect to θ (Fig. 6e).

(vi) A diagram contain two G+– lines, one G++ line,
one vertex proportional to a two-dimensional integral
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with respect to θ, and the second vertex proportional to a
four-dimensional integral with respect to θ (Fig. 6f).

In the diagrams presented in Fig. 6, we use the fol-
lowing notation:

We denote by J1, J2, etc., the contributions of the
diagrams in Figs. 6‡, 6b, etc. These contributions are
given by

- - -
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Fig. 6. Diagrams contributing to the two-loop Kähler poten-
tial.
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(48)
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In the expression for J1, the factor ( /16)δ11 should

be treated as ( /16)δ12 if θ1 = θ2—that is,

D1
2
D1

2

D1
2
D1

2

( /16)δ11 = 1. The two-loop Kähler effective poten-
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upon a dimensional regularization, it can be repre-
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The renormalization of the resulting contribution is
performed by subtracting the one- and two-loop diver-
gences according to the standard scheme. For this, we
supplement the Lagrangian with the one-loop counter-
term (26) and the two-loop counterterm

(51)

In implementing this procedure, it is necessary to sub-
tract both the one-loop and the two-loop divergences in
order to renormalize the first term. The renormalization
of the second term reduces to subtracting only the one-
loop divergence with the aid of the counterterm in (26).
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The resulting renormalized correction to the two-loop
Kähler effective potential has the form

(52)

Relation (52) is the eventual result. The normalization
point µ can be fixed by means of an appropriate normal-
ization condition. In the case of W = (λ/3!)Φ3 and K =

, we arrive at the well-known result for the Wess–
Zumino model [7, 8].

7. CONCLUSION

We have considered the general chiral-superfield
model that is specified by Eq. (1) and which involves an
arbitrary Kähler potential K(Φ, ) and an arbitrary
chiral potential W(Φ) and have investigated the prob-
lem of determining the superfield effective action with-
out fixing the explicit form of the functions K(Φ, )
and W(Φ). It is this problem that arises naturally in
exploring the possible phenomenological implications
of superstring theory.

It has been shown that a supergraph technique mak-
ing it possible to preserve manifest supersymmetry at
all stages of loop calculations can be formulated and
used efficiently to determine quantum corrections to
arbitrary classical potentials K(Φ, ) and W(Φ). We
have calculated the one- and two-loop quantum correc-
tions to the Kähler potential [expressions (27) and (52),
respectively] and the leading two-loop corrections to
the chiral potential [expression (46).] It turned out that,
although the model specified by Eq. (1) is unrenormal-
izable at arbitrary K(Φ, ) and W(Φ), the chiral poten-

tial is always finite. In the particular case of K(Φ, ) =

 and W(Φ) ~ Φ3, the situation corresponds to the
Wess–Zumino model—our results given by Eqs. (27),
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(46), and (52) then reduce to well-known results
obtained previously (see [5–8, 12].

The approach developed in the present study admits
a natural generalization to models involving multicom-
ponent chiral superfields, which play an important role
in phenomenological applications of superstring theory
(see, for example, [3]). In our study performed together
with Cvetic (see [4]), it was shown that the inclusion of
the one-loop quantum corrections within the model of
the two-component scalar superfield associated with
the low-energy limit of superstring theory leads to the
new aspects of the decoupling of massive states and can
change some phenomenological predictions that had
been obtained without taking into account quantum
effects. In this connection, investigation of general
models involving a few chiral superfields seems very
promising. Another important possibility for a further
development of the approach described in this study is
associated with taking into account the interaction with
a gauge superfield that is naturally present in models
obtained in the low-energy limit of superstring theory.
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In our previous publication [1], we announced the
discovery of a T-odd angular correlation in ternary 233U
fission induced by cold polarized neutrons. The
observed angular distribution of long-range alpha par-
ticles can be described as

(1)

where D is the correlation coefficient; S is a unit vector
in the direction of neutron polarization; and PLF and Pα
are unit vectors in the directions of, respectively, the light-
fragment and the alpha-particle momentum. The mea-
sured value of D was found to be equal to (–2.34 ± 0.7) ×
10−3. This correlation seems to be odd under time rever-
sal, but theory predicts that this can be due to strong or
electromagnetic interaction of particles in the final
state. It should be noted that the contribution to the
measured asymmetry from trivial s- and p-wave inter-
ference effect in the entrance reaction channel, which
leads to left–right asymmetry of the resulting distribu-
tion of fragments relative to the plane spanned by the
vectors of neutron polarization, S, and momentum, Pn,
should be excluded because, for binary 233U fission
induced by cold polarized neutrons, it is one order of
magnitude less [2] than the observed correlation. More-
over, our experiment was performed in a longitudinally
polarized neutron beam, for which the sp-interference
effect should vanish.

W const 1 D S× PLF Pα×[ ]⋅+( )× ,=
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Actually, I—the unit vector in the direction of fis-
sile-nucleus polarization—should be substituted for S
in expression (1); therefore, the measured coefficient D
should be corrected by taking into account the average
degree of nuclear polarization, P. The last depends on
the spin value of the compound nucleus in the follow-
ing way:

(2)

Here, Pn is the degree of neutron-beam polarization and
J is the spin value of the target nucleus. The negative
sign of polarization means that the direction of fissile-
nucleus polarization is opposite to the direction of the
neutron-beam polarization.

Actually, both spin states contribute to the fission
cross section at any neutron-energy value. In order to
calculate the average degree of fissile-nucleus polariza-
tion, it is therefore necessary to know the spin-depen-
dent fission cross section. Unfortunately, such data are
available only for 235U [3]. Using these data, we can
easily find that the average degree of the polarization of
235U nuclei at thermal neutron energies is 0.14Pn. The
degree of neutron-beam polarization was measured
many times during both experiments, and it is equal to
0.95. Thus, we have P ≈ 0.13.

To measure the correlation coefficient D for 235U,
the same experimental setup was used with one excep-
tion: we employed thicker PIN diodes in detecting ter-
nary charged particles to provide sufficient depletion
depths to stop at least the alpha particles.

As in the previous experiment, two types of detec-
tion of coincidences between pulses from PIN diodes
and from MWPCs (fragment detector) were used: on-
line (with the aid of counters) and off-line (evaluation
from accumulated data). The results of the former on-
line measurement for 233U was D(233U) = (–2.76 ±
0.06) × 10–3, whereas the result of the off-line evalua-

P +Pn/3( ) 1 2/ 2J 1+( )+[ ] for I J 1/2,+= =

P Pn/3–( ) for I J 1/2.–= =
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tion was found to be D = (–2.34 ± 0.07) × 10–3. This dif-
ference of the results was due to the use of different
electronics in the on-line and in the off-line method.
Afterward, it was found that the asymmetry coefficient
D depends on the amplitude of PIN diode pulses [4].
Physically, this can be explained as the dependence of
D on the kinetic energy of ternary alpha particles: the
modulus of D increases with alpha-particle energy. But
it is impossible to rule out the existence of some phys-
ical background that contributes to the low-energy part
of the amplitude spectrum from PIN diodes. A more
detailed handling of the accumulated data will give the
final results. In order to compare now the values of D
for 233U and 235U, we will use the results of the on-line
measurements.

The on line measurement of D with counters gave
Don(235U) = (0.76 ± 0.09) × 10–3. Because the opposite
sign and the lower value of D were obtained for 235U,
the measurements for 233U target were repeated at the
same threshold. The result is Don(233U) = (–1.90 ±
0.11) × 10–3.

Thus, the asymmetry coefficient for 235U is approx-
imately 2.5 times less than that for 233U and has an
opposite sign. It is easy to explain these differences if
we assume that, at the neutron energy of En = 0.0017 eV
(20 K), the 2+ neutron resonances mainly contribute to
the cross section for 233U fission. Under this assump-
tion, the left–right asymmetry will be universal (that is,
it does not depend on the fissile nucleus), and its abso-
lute value is equal approximately to 7 × 10–3. It is then
possible to predict the magnitude and the sign of the
left–right asymmetry coefficient for the ternary fission
of 239Pu because, in the region of thermal neutrons, only
one of the two possible spin states, 0+ and 1+, may con-
tribute to the correlation under investigation in s-wave
neutron capture. Considering that the well-known reso-
nance at a neutron energy of 0.3 eV is responsible for
51% of the fission cross section at thermal neutron
energies and using expression (2), we can estimate the
mean degree of nucleus polarization at 0.38. Therefore,
the expected experimental value of the asymmetry
coefficient is

The measurement of D for 239Pu in the near future will
test the validity of our assumption.
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