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Abstract—A brief survey of nuclear-physics aspects of the problems of controlled thermonuclear fusion is
given. Attention is paid primarily to choosing and analyzing an optimal composition of a nuclear fuel, reliably
extrapolating the cross sections for nuclear reactions to the region of low energies, and exploring gamma-ray
methods (as a matter of fact, very promising methods indeed) for diagnostics of hot plasmas (three aspects that
are often thought to be the most important ones). In particular, a comparative nuclear-physics analysis of hydro-
gen, DT, and DD thermonuclear fuels and of their alternatives in the form of D3He, D6Li, DT6Li, H6Li, H11B,
and H9Be is performed. Their advantages and disadvantages are highlighted; a spin-polarized fuel is consid-
ered; and the current status of nuclear data on the processes of interest is analyzed. A procedure for determining
cross sections for nuclear reactions in the deep-subbarrier region is discussed. By considering the example of
low-energy D + 6Li interactions, it is shown that, at ion temperatures below 100 keV, the inclusion of nuclear-
structure factors leads to an additional enhancement of the rate parameters 〈σv〉  for the (d, pt) and (d, nτ) chan-
nels by 10–40%. The possibility of using nuclear reactions that lead to photon emission as a means for deter-
mining the ion temperature of a thermonuclear plasma is discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Among important applications of nuclear physics,
that which is dealing with the problem of controlled
thermonuclear fusion stands out in many respects. One
of the main problems to be solved here is to evolve and
implement a large-scale thermonuclear reactor that
would represent an economical source of energy and
which would be safer than fission reactors. Searches for
an optimum composition of a nuclear fuel have so far
been one of the main lines in such investigations. Both
one- and multicomponent mixtures of light elements
have been considered. Despite many years of efforts in
these realms, preference has not yet been given to a
unique fuel cycle. Of factors that are of prime impor-
tance for this, we would like to mention knowledge of
the properties of light isotopes and the possibilities for
their production, understanding of mechanisms that
govern nuclear reactions between light nuclei, and pre-
cise information about cross sections for such pro-
cesses.

The present survey, which is based in part on previ-
ous studies of the present authors, is devoted to nuclear-
physics aspects of controlled thermonuclear fusion—
namely, to the role of nuclear-structure factors in reac-
tions between light nuclei, to radiative-capture pro-
cesses of the A(B, γ)C type in the deep-subbarrier
region of energies, and to the possibilities of using such
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reactions for extracting required information about the
dynamics of hot plasmas. In our opinion, attention
given to these important problems in review articles on
controlled thermonuclear fusion and in original investi-
gations into the allied range of problems is insufficient.
It is shown in the present study, however, that such
issues are of nonnegligible importance for further
advancements in the problem of controlled thermonu-
clear fusion and that they may even become crucial for
solving some problems. We hope that the present sur-
vey, which is pioneering in these realms, will fill, at
least partly, the gap between a vast body of currently
available information about the structure of light nuclei
and specific investigations into the problem of con-
trolled thermonuclear fusion.

Bearing in mind the technological potential of the
first experimental facilities of the tokamac type for
heating and confining hot plasmas, researchers had
focused, for a long time, on two types of hydrogen ther-
monuclear fuel, deuterium (DD) and deuterium–tritium
(DT) fuels [1]. It should be recalled that large cross sec-
tions for the process T(d, n)4He at low energies (E ≤
100 keV) and a considerable energy release in the reac-
tion, Q = 17.6 MeV, seemed to give sufficient ground to
hope for experimentally implementing the ignition of
the reaction as early as the 1970s at plasma tempera-
tures of a few keV, which were thought to be quite real-
istic at that time. These were the reasons why, despite
serious drawbacks of a DT mixture—a low efficiency
of the transformation of nuclear energy into electric
000 MAIK “Nauka/Interperiodica”
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energy because of the generation of an extremely
intense neutron radiation in the reaction being dis-
cussed and a need for producing and employing radio-
active tritium, which is extremely hazardous—it was
justifiably thought that there was no serious alternatives
to DT fuels.

However, radical improvements of tokamacs, the
advent of a new fusion reactor within the ITER interna-
tional project, and a vigorous development of different
reactor schemes (for example, open-type devices and a
configuration featuring a so-called inverted magnetic
field), as well as the emergence of the concept of iner-
tial thermonuclear fusion, created preconditions for
considering initial plasma heating to a few tens of keV
followed by the working range of burning temperatures
reaching a few hundred keV. This gave impetus to
studying alternative, non-hydrogen, fuels like D3He,
H6Li, D6Li, and H11B, which require higher ignition
temperatures (in relation to D + T fusion), but which
possess a number of important ecological and econom-
ical advantages. For example, burning in the H + 6Li
and H + 11B systems generates neutron fluxes and haz-
ardous radionuclides only in negligible amounts. At the
same time, such fuels are not expensive, since they con-
sist of stable light-element isotopes abundant on the
Earth.

At present, however, physical processes in the
majority of non-hydrogen fuels have received much
less study than analogous processes in DT or DD
cycles. Even the first investigations revealed that a the-
oretical analysis of some alternative cycles is very
involved because burning in hot plasmas is a highly
ramified process involving a few tens of exothermic
reactions proceeding simultaneously with commensu-
rate probabilities. This type of process dynamics is
markedly different from the character of the burning of
a DT fuel, where the channel T(d, n)4He dominates over
all possible reactions.

In studying thermonuclear fuels that show consider-
able promise, it is necessary to take into account two
types of processes. Of these, the first is associated with
first-generation reactions representing direct channels
of the burning of a nuclear fuel in reactions between
light elements originally present in the reactor region.
As a rule, such processes provide a major part of the
energy released in the fusion process. There are also,
however, secondary phenomena that accompany the
burning of any fuel and which play a very important
role in some cases. We will break up secondary pro-
cesses into two classes that differ in the physics under-
lying the phenomena that occur.

In the first class, we include processes that do not
lead directly to nuclear transformations, but which
appear to be a basic mechanism of fuel self-heating.
Above all, this is the elastic Coulomb scattering of fast
charged particles, products of nuclear reactions, on
plasma ions and electrons. In addition to Coulomb scat-
tering, there can occur the nuclear elastic scattering of
P

fast particles, both charged particles and neutrons, on
the ions of the fuel. The latter process proceeds at small
values of the impact parameter, but it involves high
momentum transfers. In the literature, the above elas-
tic-scattering processes are referred to as CES (Cou-
lomb elastic scattering) and NES (nuclear elastic scat-
tering) processes. Either leads to the heating of the
plasma and to an increase in its reactivity. Ion scattering
is a dominant mechanism of heating, but the role of
neutron scattering is nonnegligible in severely com-
pressed laser targets characterized by large values of
the parameter ρR, where ρ and R are, respectively, the
density and the radius of the target.

The second class of secondary phenomena accom-
panying the burning of a thermonuclear fuel includes
those that lead to nuclear transformations. These are, in
particular, catalytic nuclear reactions between fuel ions
and active isotopes produced in the plasma. Catalytic
processes proceed on both thermalized and nonther-
malized nuclei. In the latter case, the processes being
discussed are in-flight reactions—that is, some fast par-
ticles enter into nuclear reactions prior to undergoing
thermalization. It is necessary to take such phenomena
into account because particles produced in a plasma
have, on average, the mean energy of a few MeV, at
which the cross sections for nuclear reactions are much
larger than the corresponding cross sections at thermal
energies (10–50 keV). The set of in-flight processes is
not exhausted by reactions on the products of nuclear
fusion—reactions between fast fuel ions accelerated in
elastic collisions are also of importance. The above
suprathermal fusion reactions produce charged parti-
cles and neutrons of energies as great as a few tens of
MeV [2]. Among other secondary processes of nonneg-
ligible importance, mention should be made of neu-
tron-induced reactions leading to the production of
active isotopes. The role of second-generation pro-
cesses is greater in non-hydrogen fuels, where a large
number of active-isotope species are produced owing to
the occurrence of a wide variety of nuclear reactions
(see, for example, [3]).

Inputs necessary for a realistic analysis of the kinet-
ics of processes proceeding in thermonuclear-fusion
reactors must include reliable data on the cross sections
for many reactions in a broad range of energies. Above
all, this concerns reactions involving light nuclei and
proceeding in the low-energy region E < 500 keV,
which is of prime importance for controlled thermonu-
clear fusion. An additional incentive to study the rele-
vant cross sections at a high-precision level comes from
nuclear astrophysics, where many fundamental prob-
lems cannot be solved without this. At present, experi-
mentalists have accumulated a vast body of relevant
data. Compilations of measured cross sections and
computed reaction-rate parameters are presented in the
well-known reference literature [4–8]. For example, the
DATLIB database [8] contains 270 data files for
77 channels of nuclear reactions involving isotopes of
light elements from hydrogen to boron. References to
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
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other databases can be found in [8, 9]. We would also
like to mention the Russian handbook [10] on nuclear
processes and cross sections, which covers a very broad
range of energies and which additionally presents a
spline approximation of experimental data. A precision
R-matrix parametrization of the cross sections for low-
energy D + T, D + D, and D + 3He interactions, as well
as of their Maxwell reactivities, is given in [11].

In some cases, however, available experimental data
are insufficient for a detailed analysis of fuel burning
and of the possibility for monitoring this burning. Here,
we only note the following. First, low-energy radiative-
capture reactions like T(t, γ)6He, 3He(τ, γ)6Be, 6Li(d,
γ)8Be, 6Li(τ, γ)9B, 7Li(d, γ)9Be, and 7Li(t, γ)10Be, which
can be used to determine the ion temperature of a
plasma or to monitor its dynamics, have not yet
received adequate study. Moreover, there are no data on
some of such processes whatsoever. Second, neither
reliable measurements of some reactions involving
light radionuclides and proceeding at subbarrier ener-
gies nor relevant theoretical investigations have been
performed so far. For example, the interesting catalytic
reaction 7Be(d, p)24He in a D6Li fuel—this reaction,
which is accompanied by a large heat release of Q ~
17 MeV, produces only charged particles—has been
studied insufficiently. Third, the situation is not abso-
lutely clear in what is concerned with cross sections for
low-energy reactions on polarized nuclei. This is espe-
cially important since the use of spin-polarized fuels
can increase the energy released by a thermonuclear
plasma and suppress simultaneously the generation of
neutron fluxes. By way of example, we indicate that,
for the D + T resonance process, the estimate of the
nuclear-spin-polarization effect is known [12], but that,
for the D + D direct reaction, the situation is much more
complicated [13]. For the majority of non-hydrogen
thermonuclear fuels, no detailed investigations of
polarization processes have been undertaken thus far.

One of the objectives of the present study is to ana-
lyze various thermonuclear cycles based on the use of
hydrogen, helium, lithium, beryllium, and boron iso-
topes. We pay attention primarily to nuclear-physics
aspects of the issue—in particular, to the nuclear-struc-
ture effect on the cross sections for fusion reactions and
on the rates of these reactions.

The ensuing exposition is organized as follows. In
Section 2, we consider DT, DD, D3He, D6Li, DT6Li,
H6Li, H11B, and H9Be fuel mixtures and analyze their
advantages and disadvantages. The important case of
spin-polarized fuels is also analyzed. It should be
emphasized that difficulties encountered in simulating
the burning of some alternative fuels are associated
with uncertainties in the predicted cross sections for
nuclear reactions in the deep-subbarrier energy region,
where there are no experimental data. For this reason,
we further discuss (in Section 3) extrapolation methods
for determining cross sections in the region of low
(thermonuclear) energies. By studying some important
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
examples, we demonstrate there, among other things,
how the special features of the nuclear structure of 6Li
and 7, 9Be affect the behavior of the cross sections for
low-energy thermonuclear reactions. In Section 4, we
consider the possibility of determining the ion temper-
ature of a fuel by measuring the fluxes of reactor pho-
tons. The basic results of our consideration are summa-
rized in the Conclusion (Section 5).

2. THERMONUCLEAR FUELS
According to the classification of McNally [14],

thermonuclear fuels can be broken down by convention
into three groups: classical (DT), promising (DD,
D3He, D6Li), and exotic (3He3He, H6Li, H11B, H9Be)
fuels. We will consider them precisely in this order.

2.1. DT Fuels

A DT mixture of hydrogen isotopes is the most tra-
ditional form of fuel for nuclear reactors. The following
processes are usually considered in studying the deute-
rium–tritium cycle:

(i) the primary exothermic reactions

D + T  4He + n + 17.59 MeV, (1)

D + D  T + p + 4.03 MeV, (2)

D + D  3He + n + 3.27 MeV, (3)

T + T  4He + 2n + 11.33 MeV; (4)

(ii) the main secondary exothermic reaction

D + 3He  4He + p + 18.34 MeV; (5)

(iii) the tritium production in a lithium blanket,

n + 6Li  T + 4He + 4.78 MeV; (6)

(iv) the neutron-breeding processes

n + 9Be  2n + 24He – 1.57 MeV, (7)

n + D  2n + p – 2.23 MeV. (8)

Among all promising reactions, the D + T process
provides the highest energy release and is characterized
by the largest value of the reaction-rate parameter
(reactivity) r = 〈σv〉, a quantity obtained by averaging
the product of the nuclear cross section σ(E) and the
relative velocity v of the reacting particles over their
Maxwell velocity distribution f(v). That the reactivity
is so high in this case is due to a manifestly resonance
character of the D + T reaction in the region of low sub-
barrier energies. It proceeds through the JπT = [(3/2)+,
1/2] level of the compound nucleus 5He at the excita-
tion energy of E* = 16.76 MeV; this corresponds to an
incident-deuteron kinetic energy of Ed ~ 100 keV [15].
In [16], it was shown that this “thermonuclear” reso-
nance is a typical three-body near-threshold resonance
of the t + n + p structure and that the coupling of the
input and output channels (td  αn) is due both to
noncentral (tensor) and to central forces. Additional
gain in the reactivity can be obtained owing to a spin
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polarization of the fuel [12, 17]. In the presence of an
external magnetic field B, the cross section for the D +
T interaction can be represented in the form

(9)

where a = d+t+ + d–t–, b = d0, and c = d+t– + d–t+, d+(t+),
d–(t–), and d0 being the fraction of deuterons (tritons)
oriented, respectively, parallelly, antiparallelly, and
orthogonally to the field B. Since the reaction being
considered proceeds through the J = 3/2 channel at low
energies, a parallel orientation of the D and T spins
increases the cross-section value by 50% in the reso-
nance region [12]. However, the eventual estimate of
the gain in the energy release is complicated by various
depolarization effects associated with binary collisions,
fluctuations, nonuniformities of magnetic fields, and
other similar factors. In the literature, there are both
optimistic and pessimistic estimates of the depolariza-
tion rate (see, for example, [12, 17–21]).

In contrast to the D + T process (1), the D + D pro-
cesses (2) and (3) are not of a resonance character.
These reaction channels have approximately identical
probabilities and are both characterized by smaller
energy-release values and considerably reduced (in
relation to the D + T process) cross sections at low ener-
gies. As a result, the above D + D processes make a rel-
atively small contribution to the energy released in the
burning of DT fuels, and they are often referred to as a
satellite component. There exists, however, a third pos-
sible channel of D + D interactions, D(d, γ)4He; this
channel involves the production of high-energy pho-
tons and can have diagnostic applications—in particu-
lar, it can be used to determine the ion temperature of
the fuel [22]. The T + T process (4), which is the last in
the list of primary processes, does not make a signifi-
cant contribution to the reaction energy release either
and appears to be a by-process. At actual temperatures,
its rate is two orders of magnitude less than the rate of
reaction (1).

A DT mixture possesses important advantages.
First, the nτ value satisfying the Lawson criterion is
much less for D + T interactions than for other kinds of
thermonuclear fuels. Second, the D + T fusion reaction
is triggered at relatively low temperatures. The ideal
threshold temperature determined as the temperature at
which the energy release is equal to the energy loss by
bremsstrahlung in the case of a complete particle con-
finement is about 4 keV [23]; an optimum temperature
of burning is estimated at 15 keV in [23] and at 20 keV
in [1]. Finally, the specific-power release is at least two
orders of magnitude greater than similar energy charac-
teristics of other mixtures.

Nonetheless, the DT cycle has some serious draw-
backs. First of all, the burning process is accompanied
by intense neutron fluxes. High-energy neutrons carry
about 80% of the energy released in the D + T fusion
process (about 14 MeV per reaction event). This entails
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very serious technological problems of protecting
structural reactor materials from formidable neutron
fluxes. Moreover, the energy of neutrons escaping from
the reactor can be utilized with an efficiency not
exceeding 40%—in other words, immense energy
fluxes will circulate in the system at a typical thermo-
nuclear-reactor power of 5 × 103 GW if energy convert-
ers are included in the reactor circuit. But this is not the
whole story: tritium is radioactive; it must be produced
artificially; and the extraction of tritium from a lithium
blanket presents a nontrivial problem. To summarize,
the presence of a source of high-energy and high-den-
sity neutron radiation, together with the use of a
strongly radioactive material, imposes severe radiation-
safety requirements on the implementation of a DT
reactor.

2.2. DD Fuels

Primary D + D interactions have two almost
equiprobable exothermic channels (2) and (3). They
lead to the production of the active isotopes T and 3He
in the plasma. This in turn initiates the important sec-
ondary catalytic processes (1) and (5). Although the
burning of a DD fuel is also accompanied by the gener-
ation of neutron fluxes, they are less intense than those
in the D + T process. The DD cycle does not require
specially producing tritium; hence, the application of
this cycle makes it possible to avoid using a lithium
blanket and involved tritium technologies associated
with this. It has already been indicated, however, that,
at low energies, the D + D cross sections are much
smaller than the D + T cross sections and that triggering
the D + D process requires much higher plasma temper-
atures. By way of example, we indicate that the ideal
threshold temperature becomes as high as about 40 keV
in this case [23].

2.3. D3He Fuels

By convention, such fuels are categorized as neu-
tron-free fuels. In such a helium–hydrogen mixture, the
D + 3He process (5), the D + D processes (2) and (3),
and the reaction

3He + 3He  4He + 2p + 12.86 MeV (10)

appear to be primary reactions. Predominantly, useful
energy is released in the D + 3He channel (5). This reac-
tion, which has the greatest Q value of 18.34 MeV,
leads to the production of only charged particles, a cir-
cumstance that improves conditions for fuel self-heat-
ing. Of course, the neutron-free process (10), which is
accompanied by a considerable energy release per
fusion event, is also very appealing. The use of 3He
fuels as such seems tempting, but it is very difficult to
implement reaction (10) in practice because of a high
threshold for its ignition. At an operating ion tempera-
ture of the plasma about 100 keV, its rates are approxi-
mately two orders of magnitude less than the rates of
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
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the D + 3He reaction; as a consequence, the contribu-
tion of reaction (10) to the burning of D3He fuels is neg-
ligibly small.

The group of secondary processes in the D3He cycle
includes the catalytic reactions (1) and (4) (D + T and
T + T, respectively), as well as two reactions involving
fast protons,

D + p  2p + n – 2.23 MeV, (11)

T + p  3He + n – 0.76 MeV. (12)

Owing to dominance of the D + 3He channel (5), the
fuel being discussed can be thought to be neutron-free
by convention [24]. Here, the primary neutron channel
(3) of D + D interactions and the D + T catalytic reac-
tion (1) appear to be the sources of neutron contamina-
tion in the D3He cycle, the contribution of the latter
often being dominant [25]. The fraction of the neutron
component in the energy release is estimated at about
3% [26]. This is a serious advantage of reactors employ-
ing D3He mixtures, and the relevant possibility attracts
much attention at present.2) A detailed survey of the cur-
rent status of the problem can be found in [29].

Some gain in the energy release can be achieved by
burning a spin-polarized D3He fuel. It is difficult, how-
ever, to obtain an accurate estimate of the increase in
the reactivity because, near the d + τ threshold, there
are two (not one as in the case of d + t) excited states of
the intermediate nucleus 5Li at E* ~ 16.66 MeV [JπT =
(3/2)+, 1/2] and E* ~ 18 ± 1 MeV [(1/2)+, 1/2] [15] that
contribute to the S = 1/2 and 3/2 reaction channels (both
channels of the reaction being considered). The cross-
section-enhancement values adopted in the literature
fall within the range 44–49%. Another important objec-
tive pursued in using nuclear spin polarization is to sup-
press selectively the D + D reactions and neutron yields
associated with them [12, 30], but the degree of this
suppression is still debated. Previously, it was shown in
[31] that, for the low-energy D + D reactions, the con-
tribution of the 5S2 input channel is small in relation to
the contribution of the 1S0 channel, and this made it pos-
sible to consider the possibility of suppressing this
reaction in the case of parallel deuteron spins. Later on,
however, a pessimistic estimate of this suppression was
obtained upon taking into account the D-wave state in
3He [32], because an additional allowed contribution of
central forces arises in this case. After a number of
studies on the subject, the highly reliable analysis of
Zhang et al. [13], who considered the D + D reactions
in a polarized deuterium plasma, nonetheless revealed
that the ratio η = σ1, 1/σ0 (ratio of the cross sections for
reactions involving spin-polarized and unpolarized
nuclei) for deuteron energies between 30 and 90 keV
decreases monotonically from 0.86 to 0.22. The last

2)Yamagiwa [27] proposed using an 18O admixture in a D3He reac-
tor in order to produce the positron-unstable radionuclide 18F in
the reaction 18O(p, n)18F. Along with 11C, 13N, 15O, and 19Ne,
this element can be employed in positron tomography and find
diagnostic applications in cancer radiotherapy [28].
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value corresponds to a 4.5-fold suppression of the D +
D process. That the neutron channels in a polarized
D3He fuel can be suppressed so strongly gave incentive
to developing a conceptual design of a D3He fusion
reactor on the basis of a linear tandem device [33, 34].

Apart from a high ignition temperature, D3He fuels
have yet another serious drawback: 3He is a very rare
isotope on the Earth; moreover, there are presently no
efficient sources for its production. However, the possi-
bility of delivering 3He from the Moon’s surface, which
can contain, according to estimates based on studying
Moon rocks, about 106 t of this isotope [35], is dis-
cussed in the literature.

2.4. D6Li and DT6Li Fuels

The presence of the 6Li isotope in a hydrogen
plasma complicates dramatically an analysis of ther-
monuclear fusion. Nuclear reactions in a D6Li mixture
are multistep branched processes, a number of isotopes
of light elements being produced in them with com-
mensurate probabilities. In the first generation alone,
the possible processes include the two D + D channels
(2) and (3) and the seven exothermic D + 6Li reactions

D + 6Li  4He + 4He + 22.37 MeV, (13)

D + 6Li  7Li + p + 5.03 MeV, (14)

D + 6Li  7Li* + p + 4.55 MeV, (15)

D + 6Li  7Be + n + 3.38 MeV, (16)

D + 6Li  7Be* + n + 2.95 MeV, (17)

D + 6Li  4He + T + p + 2.56 MeV, (18)

D + 6Li  4He + 3He + n + 1.80 MeV. (19)

We do not present here other possible reactions in the
6Li + 6Li system, which are characterized by very small
cross sections and which do not therefore make a
noticeable contribution against the background of reac-
tions (13)–(19). Among secondary processes, whose
number exceeds 80, we only mention the strong reac-
tions (1) and (5) between D and T and between D and
3He, respectively, and the high-Q catalytic processes

D + 7Be  24He + p + 16.77 MeV, (20)

D + 7Li  24He + n + 15.12 MeV. (21)

In studying prospects for a D6Li fuel, it is necessary
to take into account its special features [3, 36].

(A) Branched character of burning. The reaction
cross sections at low energies are small in relation to
the D + T cross sections, but the number of processes
proceeding in the D6Li cycle is as large as a few tens.
For this reason, the total contribution of a large number
of channels—of these, some (for example, D + 7Be and
D + 7Li) have energy releases commensurate with the
energy release in the D + T processes—may prove to be
significant.
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(B) Relatively large yields of fast and slow
charged particles. Slow charged particles can effi-
ciently heat a fuel via elastic Coulomb collisions. As to
fast charged particles, their presence enhances the role
of other secondary phenomena like NES processes and
in-flight reactions. By way of example, we indicate the
following catalytic chain [37]:

the inelastic-scattering process
4He (fast) + 6Li  6Li*(2.18 MeV) + 4He (slow), 

the decay process

(22)

and the reaction

D (fast) + 6Li  24He (fast) + 22.37 MeV.

This chain results in the doubling of the number of fast
alpha particles (they appear to be some kind of a cata-
lyst for the process) and releases a large amount of
energy.

(C) Monotonic energy dependence of the reac-
tion cross sections. As was indicated above, the main
reaction of thermonuclear fusion (D + T) is of a reso-
nance character. Accordingly, its cross sections are
large in the region of subbarrier energies, but they begin
to decrease upon achieving a maximum at Ed ~100 keV.
On the contrary, the cross sections for the D + D and
D + 6Li processes at low energies are much smaller than
the D + T cross section, but they increase monotoni-
cally (and quite sharply for D + 6Li) as the deuteron
energy increases up to Ed ~ 1 MeV. This type of behav-
ior is peculiar to many secondary reactions of the D6Li
cycle as well. As a result, there can arise an additional
positive feedback in the mechanism of plasma self-
heating.

(D) Presence of the fluxes of neutrons having
moderate energies. It should be recalled that D6Li is
not a neutron-free fuel, but that its burning is accompa-
nied primarily by the generation of neutrons with ener-
gies between 1 and 3 MeV (in contrast to 14-MeV neu-
trons coming from the D + T process), so that a major
part of the energy release is associated with charged
particles. Neutron radiation makes but a small contribu-
tion to the total energy release, but it leads to the addi-
tional production of tritium in the blanket reaction
6Li(n, t)4He, which proceeds in this case directly in the
region of burning. We also note that neutrons from the
D + 6Li processes can be used in mixed reactors of the
breeder type [38].

(E) Uncertainties in the cross-section values. For
the first-generation D + D and D + 6Li processes, the
situation around nuclear data on low-energy cross sec-
tions is quite clear. The D + D processes were inten-
sively investigated earlier—for example, reliable data
on their cross sections in the region of thermonuclear
energies and on the rate parameters 〈σv〉 were pub-
lished in [11]. The D + 6Li cross sections, which can be
found, for example, in the DATLIB database [8] or in

Li6 * 2.18 MeV( ) He 4 slow( ) D fast( ),+
P

the handbook of Abramovich et al. [10], are known to
a somewhat poorer precision, which is nonetheless
quite sufficient for simulating the ignition and burning
processes. We would also like to mention the interest-
ing study of Cherubini et al. [39], who used quasielastic
data on the reaction 6Li(6Li, 2α)4He in the region of
above-barrier energies to extract the 6Li(d, α)4He exci-
tation function at very low relative energies. This indi-
rect method of analysis is based on the so-called Trojan
Horse model proposed in [40]. However, there also
remain unresolved questions. For example, the contri-
bution to the reaction being discussed from 8Be highly
excited states near the d + 6Li threshold at about 22 to
23 MeV has yet to be clarified conclusively. In particu-
lar, it was shown in [41] that the D + 6Li processes can
be described satisfactorily without resort to a resonance
mechanism. On the contrary, the contribution of the
excited state 8Be(2+) at about 22.28 MeV was found to
be large in the experimental study of Czersky et al.
[42], who measured the cross sections for the reaction
6Li(d, α)4He in the energy range Ed = 50–180 keV.
Thus, the highly exothermic reaction (13) receives a
considerable contribution from a resonance mecha-
nism. In this connection, it should be recalled that,
despite many years of strenuous efforts, there is pres-
ently no reliable general method for extrapolating the
cross sections for low-energy reactions to those near-
threshold energies that are of immediate importance for
calculating the plasma reactivity 〈σv〉. In Section 3, we
will discuss some extrapolation procedures and allied
problems. Among other things, it will be shown that
nuclear-structure factors play an important role in
extrapolating cross sections to the deep-subbarrier
region.

For some second-generation nuclear reactions in the
D6Li cycle, the cross sections required for studying the
role of these reactions in the heating of the fuel and
their contribution to the energy release have not yet
been determined to a sufficient precision. In some
cases, there are only fragmentary experimental data or
only theoretical estimates. For example, neither exper-
imental nor theoretical studies have been performed
thus far for the interesting second-generation reaction
7Be(d, p)24He + 16.77 MeV, which has an energy
release virtually identical to that from one event of the
D + T process, but which produces, in contrast to the
latter, only charged particles. The two-step process

D + 7Be  8Be*(2+) + p + 0.05 MeV, (23)

8Be*(2+)  24He + 16.72 MeV (24)

appears to be the most probable mechanism of the reac-
tion being discussed, since there is no Coulomb barrier
for neutron transfer in reaction (23) and since the 8Be
nucleus features the well-known Jπ = 2+ 16.63-MeV
level [15], whose population in the above process cor-
responds to a nearly vanishing energy release. The first
step leads to the formation of a relatively long-lived
8Be* state, which then decays into two fast alpha parti-
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cles. Since Q ≈ 0 in process (23), the reaction cross sec-
tion is given by

(25)

where the function ϕCoul(q2) is proportional to the pen-
etrability of the Coulomb barrier. It follows that, for
Q  0, the reaction cross section can sharply grow
slightly above the threshold [43]3) and that its values at
moderately small energy values must considerably
exceed simple barrier estimates.

The above exemplifies problems encountered in
these realms when one studies only one of more than 80
second-generation reactions in the D6Li cycle. A non-
conventional procedure for directly determining the
cross sections for a broad range of nuclear reactions at
low energies not yet explored by that time was pro-
posed in [44] on the basis of a laser compression of a
thermonuclear target. In contrast to conditions preva-
lent in conventional nuclear-physics experiments, high
matter densities, exceeding typical solid-state densities
by many orders of magnitude, are achieved in a laser
compression of a target. Despite very small cross-sec-
tion values for energies E ≤ 10 keV and despite a com-
paratively low hydrodynamic efficiency of targets, we
can therefore expect that the yields of nuclear prod-
ucts—in particular, neutrons and photons—will be suf-
ficient for purposes of reliable detection. Within this
approach, one determines not the absolute value of the
cross section for the reaction of interest at a specific
energy value, but its relative yield with respect to some
reference reaction [like D(d, n)3He] whose cross sec-
tion is well known. The absolute yield of products from
thermonuclear reactions is then found as the convolu-
tion of the required cross section with the velocity dis-
tribution of plasma ions, which is not known very well.
However, the parameters of this distribution can be cor-
rected on the basis of a series of measurements of the
yields of particles from a reference reaction thoroughly
studied in advance. The yields from both the reference
reaction and the reaction under study change in
response to variations in the conditions under which the
laser target is compressed. If one has sufficient statistics
of particle yields in the two reactions at his disposal and
if one knows the effective plasma temperature in the
target upon each shot of the laser gun used, it is possible
to establish the behavior of the required cross section in
the deep-subbarrier region [44]. By way of example,
we indicate that, according to the estimates presented in
[44], the cross sections for the D + 6Li processes can be
determined at extremely low energies of E = 1–10 keV
by applying the proposed procedure, provided that the
relative yield of fast particles from these processes has
been measured.

3)In the absence of a Coulomb barrier—that is, for neutrons—the
reaction cross section must grow indefinitely in this case from the
threshold.

σ
ϕCoul q

2( ) qd

Q q
2

+
----------------------------,∫∼
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(F) Effect of nuclear-spin polarization. At low
energies, the reaction 6Li(d, α)4He (13), which is char-
acterized by the highest energy release among the first-
generation processes, proceeds predominantly through
the S = 2 channel, provided that the 2+ level in 8Be at
E* ≈ 22.28 makes a dominant contribution (see above).
If this process is implemented with polarized particles
whose spins are parallel, the energy release must there-
fore increase by a factor close to 2, all other conditions
being the same.

In analyzing the prospects of D6Li fuels, it is impos-
sible to take into account completely all the aforemen-
tioned features. However, a simplified model incorpo-
rating all first-generation reactions and some secondary
processes that was developed in [3, 36] permitted draw-
ing some important conclusions on the role of 6Li in a
plasma consisting of hydrogen isotopes. In the first of
those studies, the kinetics of 13 D + D, D + 6Li, D + T,
D + 3He, D + 7Be, and D + 7Li nuclear processes was
investigated under the conditions of magnetic plasma
confinement. There, the mechanism of self-heating was
described within the CES process; that is, the plasma
temperature increased owing to the elastic Coulomb
scattering of fast particles on fuel ions.

On the basis of the results obtained in [3], one can
draw two important conclusions. First, a 10% admix-
ture of 6Li to a deuterium fuel can increase the plasma
reactivity. This means that an additional energy release
owing to the presence of 6Li exceeds the enhancement
of radiative losses because of a contamination of a
hydrogen plasma by an admixture with charge number
ZLi = 3. At the same time, the threshold ignition temper-
ature increases insignificantly, amounting to Tthr ~
50 keV—the corresponding temperature for a pure DD
fuel is about 40 keV [23]. The second conclusion con-
cerns a dominant mechanism of energy generation. It
turned out that it is of manifest catalytic character and
is due to the production of the active elements T, 3He,
and 7Be. Their fusion proceeds so vigorously that,
within some 10 to 14 s from the commencement of
burning, the concentration of these nuclei exceeds the
current value of the 6Li concentration. Characteristic
curves describing the dynamics of fuel burnup and the
production of active isotopes in a D + 6Li plasma are
presented in Fig. 1.

For yet another example of the use of 6Li nuclei in
fusion reactors, we can indicate a relatively simple
means for the ignition of a DD fuel at initial tempera-
tures of T0 ≤ 10 keV by injecting a T6Li pellet into the
reactor core [36]. This composition of a solid-state
igniter is recommended for the following two reasons.
First, it initiates a self-sustaining process of burning,
with an energy release in the three-component DD +
T6Li mixture being not less than that in the two-compo-
nent DD + T mixture.4) Second, the use of lithium trit-
ide (that is, tritium-substituted lithium hydride) makes

4)This notation for the plasma composition emphasizes that a T 6Li
or a T admixture is introduced in a deuterium plasma.
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unnecessary a separation of tritium from a lithium blan-
ket and its subsequent transportation to the zone of
burning.

A diagnostic application of the reactions
6Li(d, p)7Li* (478 keV) and 6Li(d, n)7Be* (431 keV)
furnishes an additional motivation for introducing a 6Li
admixture in a deuterium-containing plasma [45]. By
detecting monochromatic photons produced in these
reactions, one can attempt to measure the ion tempera-
ture Ti (see Section 4) or to control the dynamics of
burning.

However, Kernbichler and Heindler [46] assessed
more pessimistically the use of 6Li as a possible com-
ponent of a thermonuclear fuel and showed that the
energy released in a D6Li mixture decreases monotoni-
cally as its concentration is increased. In order to draw
a definitive conclusion on the prospects for the use of a
D6Li fuel, we need more detailed models taking into
account many second-generation processes; it is also
necessary to consider various reactor designs. Such an
analysis is hindered, however, by formidable computa-
tional difficulties and by the absence of some nuclear
data on cross sections.

A new attempt at refining the model for laser ther-
monuclear fusion was made by Nakao et al. [47], who
additionally studied the role of suprathermal nuclear
reactions in a DT + 6Li target. A numerical simulation
was performed there on the basis of coupled transport
and hydrodynamic processes [48]. This simulation took
into account all first-generation reactions in the DT +
6Li system; charged-particle and neutron scattering; the
deuteron-breakup reaction D(n, 2n)p; and the D + T,

D

6Li

3He

7BeT

1016
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1012

0 10 20
Time, s

Concentration, 1/cm3

Fig. 1. Concentrations of a fuel and of some active isotopes
produced in a D + 6Li plasma as functions of time [3].
P

D + D, and D + 6Li processes of suprathermal fusion on
deuterons and tritons accelerated in neutron scattering.
For the case of the volume fuel-ignition mechanism,
typical results are quoted in Table 1. The initial condi-
tions were characterized by the value of ρR = 10 g/cm2,
the equal ion and electron temperatures of Ti = Te =
1.5 keV, the degree of compression (on the scale of the
solid-state density) of ρ/ρ0 = 5000, and the 6Li content
of 5% in the DT mixture. Table 1 shows that the D + T
process, the main thermonuclear-fusion reaction, is
dominant here. This result might have been expected
from the outset, but it is of interest to compare the rela-
tive contributions of other channels. It can be seen that
the energy release is 30% greater in the D + 6Li pro-
cesses than in the D + D processes. The data quoted
here cannot be considered to be conclusive, since some
important issues associated with the optimization of the
nonhomogeneous structure of the target and with the
regime of its compression have yet to be clarified. In
addition, it is of interest to study the kinetics of nuclear
reactions at higher initial temperatures as well.

2.5. H6Li Fuels

The above special features of the D + 6Li nuclear
processes are inherent in part in H6Li fuels. As in the
case of D6Li, the burning of the fuel is highly branched
here, and the number of relevant reactions is as high as
a few tens [49]. However, the spectrum of the first-gen-
eration reactions is much narrower here than that for
D + 6Li. If we discard the suppressed 6Li + 6Li channel
and the weak radiative-capture process 6Li(p, γ)7Be,
there remains, in a H6Li mixture, only one exothermic
reaction

H + 6Li  4He + 3He + 4.02 MeV, (26)

which is pure in the sense that it produces neither neu-
trons nor radionuclides. The second-generation exo-
thermic reactions

3He + 6Li  24He + H + 16.88 MeV, (27)
3He + 6Li  7Be + D + 0.11 MeV (28)

do not lead to neutron production either; the first of
these regenerates protons. The processes in (26) and
(27) can be combined into the chain

H + 26Li  H + 34He + 20.90 MeV. (29)

In relation to the direct reaction 6Li(6Li, α)24He, this
chain provides an easier means for burning 6Li with the
Table 1.  Energy release in a DT + 6Li laser target

Initial internal
energy, MJ Energy release, MJ

Relative contribution of channels, %

thermal suprathermal

D + T D + D D + 6Li D + T D + D D + 6Li

0.634 476.2 90.1 0.8 1.2 7.6 0.2 0.1
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generation of three fast alpha particles. This process
was simulated, for example, in [28].

Despite the obvious attractiveness of H6Li fuels
(owing to the absence of strong neutron fluxes and their
cheapness), it has proven to be impossible at present to
accomplish its ignition.5) An analysis of the cycle in
(29) with allowance for the 6Li + 6Li thermonuclear
reactions does not lead to ignition even in the case of
large values of β ~ nT/B2 (where n and T are the plasma
density and temperature, respectively, while B is the
external-magnetic-field induction), in which case
losses by cyclotron radiation are minimal [51]. The
more recent investigation of Kernbichler and Heindler
[46] also demonstrated that, even at optimal operating
temperatures in the range 300–650 keV, the energy
characteristics of H6Li mixtures are below the thresh-
old values by about one order of magnitude. Nonethe-
less, H + 6Li plasmas may still be of interest for differ-
ent settings—for example, in the case of collisions
between plasma bunches [52].

2.6. H11B Fuels

As in the preceding case, the almost complete
absence of neutron generation and cheapness are
important advantages of boron–hydrogen mixtures. In
the first generation, the two possible exothermic reac-
tions are

H + 11B  34He + 8.68 MeV, (30)

H + 11B  γ + 12C + 15.96 MeV, (31)

the latter being severely suppressed. In the energy
region of our prime interest, the branching ratio for
these channels is about 10–5 [53]. The dominant reac-
tion (30) yields alpha particles of moderate energies,
Eα ~ 2.9 MeV; this favors the heating of the ion compo-
nent with an efficiency of 80–90% [54]. Over a broad
energy range, the reaction in question is of a resonance
character associated with a few excited states of the 12C
nucleus. Of these, the lowest is responsible for the low-
energy peak in the cross section at Ep ~ 163 keV. The
reactivity of secondary processes in H11B fuels is very
low. The weak reactions 11B(p, n)11C and 11B(α, n)14N
may prove to be neutron sources, the neutron contribu-
tion to the energy release being estimated at about 0.1%
[55]. A H11B fuel was proposed in [56] and was inves-
tigated, for example, in [53–57]. The reactivity attains
a maximum only at high temperatures (about 300 keV);
together with large losses by radiation because of a
large boron charge of Z = 5, this complicates fulfillment
of the energy-balance conditions. The general conclu-
sion from the aforementioned investigations is that it is
necessary to use laser thermonuclear facilities for

5)It is interesting to note that, under astrophysical conditions, the
reaction 6Li(p, α)3He plays an important role. Together with the
radiative-capture process 4He(d, γ)6Li, it is responsible for the
abundance of the 6Li isotope in the Universe [50].
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implementing the H + 11B process and that magnetic
confinement proves to be inefficient because of large
radiative losses. According to [58], the volume ignition
is achievable at ρR = 16 g/cm2 under certain conditions.
For ignition, Martinez-Val et al. [59] propose using par-
ticle beams under the conditions of the inertial com-
pression of a target with the aim of generating a ther-
mal-detonation wave. A new type of a thermonuclear
reactor, CBFR (colliding-beam fusion reactor, which is
appropriate for the use of a H11B fuel), was proposed by
Rostoker et al. [52], who argue that a CBFR is conve-
nient for the burning of a spin-polarized fuel, since the
depolarization rate is insignificant on the time scale of
nuclear fusion or diffusion [60]. It was shown that the
use of a polarized H11B mixture ensures a 60%
enhancement of the cross section [60].

2.7. H9Be Fuels

The H + 9Be process has two approximately
equiprobable exothermic channels of the production of
slow charged particles,

H + 9Be  4He + 6Li + 2.13 MeV, (32)

H + 9Be  24He + D + 0.65 MeV, (33)

which are able to transfer a major part of their energy to
plasma ions. Although the total energy release is as
small as some 2.8 MeV, the low-energy behavior of the
reaction is determined by the presence of a strong res-
onance at an incident-proton energy of Ep ~ 330 keV
[61], which corresponds to the excited state 10B(1–) at
E* ~ 6.88 MeV [15]. This conclusion was confirmed in
the earlier experimental study of Sierk and Tombrello
[62] as well. In this region, the reaction cross sections
are extremely large; the product σv exceeds that for the
D + 3He processes, falling short of only the correspond-
ing quantity for the D + T process [63]. It was also indi-
cated in [61] that the additional reason for extremely
large low-energy cross sections may be concealed in
the structural features of the 9Be nucleus as well. This
nucleus has a neutron weakly bound to the 8Be core, its
separation energy being as low as some 1.7 MeV [15,
64]. The 9Be density profiles found in [65] indicate that
the neutron wave function extends over a large dis-
tance, so that the direct reaction mechanism is quite
possible. This is confirmed by the latest experimental
study of the reaction on polarized protons at Ep ~ 80–
300 keV in [66], where it was shown that the direct
mechanism provides a good description of the cross
sections for the (p, d) channel (33) at very low ener-
gies.

It is of paramount importance that all products of the
H + 9Be processes (32) and (33) cause the second-gen-
eration exothermic processes [63]

D + 9Be  4 reactions with total Q ~ 21 MeV, (34)
6Li + 9Be  8 reactions with Ò Q ≈ 2–15 MeV, (35)

4He + 9Be  n + 12C + 5.70 MeV, (36)
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6Li + H  3He + 4He + 4.02 MeV, (37)

and that their role in plasma heating may prove to be
significant. However, no detailed investigations of
H9Be fuels have been performed thus far. Moreover, a
comprehensive simulation of its burning has not yet
been performed, and the role of secondary processes
has not been clarified. It is clear, however, that the res-
onance H + 9Be process can at least utilize moderated
protons very efficiently in the energy region below
1 MeV [63].

3. EXTRAPOLATION OF CROSS SECTIONS 
FOR NUCLEAR REACTIONS TO THE REGION 

OF LOW ENERGIES AND ROLE 
OF NUCLEAR-STRUCTURE FACTORS

In order to extrapolate the cross sections for nuclear
reactions to the region of low (deep-subbarrier) ener-
gies, where there are usually no experimental data, the
cross section σ(E) is represented as the product of a fac-
tor that changes slowly with energy and a factor that
changes fast. Specifically, we set

(38)

where the structural factor S(E) is weakly dependent on
energy or is taken to be a constant, a dominant energy
dependence being absorbed primarily in the potential-
barrier penetrability factor P(E).

It is clear, however, that, if the potential-barrier
shape or a method for computing the penetrability P(E)
is chosen inappropriately, the relevant error will trans-
late into the factor S. Thereby, the factor S(E) will
acquire an additional unphysical energy dependence
adversely affecting the extrapolation of cross sections
to the deep-subbarrier region. We recall in this connec-
tion that, since direct measurements at low energies of
E < 300 keV usually involve sizable errors, any uncon-
trollable energy dependence in S(E) will inevitably
impair the accuracy of the extrapolation. By way of
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Fig. 2. (1) Realistic ([70]) and (2) purely Coulomb potential
barrier in the D + 6Li system. For the Coulomb barrier, the
channel radius was taken to be a = 4.3 fm.
P

illustration, we indicate that, in the D + D system, the
p-wave contribution is of importance up to 15 keV, so
that a conventional use of an s-wave extrapolation (dis-
card of the p-wave contribution) leads to large errors.

Within the standard extrapolation, the penetrability
factor is usually calculated for a purely Coulomb shape
of the potential barrier in the semiclassical approxima-
tion, which leads to the Gamow formula [67]

(39)

where v is the relative velocity of particles with charge
numbers Z1 and Z2.

Within the more precise quantum-mechanical
model, we have (see, for example, [68])

(40)

where F and G are, respectively, the regular and the
irregular Coulomb wave function, k is the wave num-
ber, and a is the channel radius. The extrapolation pro-
cedure developed in [69, 70] is more correct. There, the
quantum-mechanical-tunneling factor P(E) is deter-
mined for a realistic shape of the potential barrier
(rather than for an ideal Coulomb shape) that contains
information about the inner structure of particles
involved in the reactions being considered. This is espe-
cially important in describing the interaction of nuclei
having a pronounced cluster structure. The realistic
barrier is constructed with allowance for the peripheral
attractive component of nuclear interaction in the sys-
tem, whereby the shape of the barrier is strongly modi-
fied, its height being reduced.6) This can clearly be seen
in Fig. 2, which displays the Coulomb and the realistic
potential barrier for the D + 6Li system [70]. The latter
was computed on the basis of the double-folding model
with reliable three-body wave functions of the 6Li
nucleus, (αn1p1), that provide a good description

of its structure and of many processes in which this
nucleus participates [72–74] and with the realistic deu-
teron wave functions ΨD(n2 p2) obtained by using the
Reid soft-core nucleon–nucleon (NN) potential [75]. In
our approach, both the nuclear and the Coulomb pair
potentials (Vij and Uij, respectively) of the αN and NN
interactions are weighted with the internal wave func-
tions of the nuclei involved in the reactions being con-
sidered. In the D + 6Li system, the binary interaction is
represented as

(41‡)

6)In passing, we would like to mention the independent investiga-
tion of Rowley and Merchant [71], who analyzed the effect of the
shape of the barrier on its penetrability in astrophysical reactions.
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where

(41b)

and R is the distance between the D and 6Li centers of
mass. It is important to note that the  wave func-

tions in (41a) were found by solving the three-body
problem with the same αN and NN potentials (41b) as
those used in the folding model. Thus, the shape of the
potential barrier in the D + 6Li system was calculated in
a fully self-consistent way without resort to adjustable
parameters (ab initio calculation); hence, it can be
thought to be quite reliable.

For the realistic barrier in (41), the tunneling factors
P(E) are depicted in Fig. 3. The Psemicl curve corre-
sponds to the penetrability factor found in the semiclas-
sical approximation [76],

(42)

where µ is the reduced mass of the nuclei, E is their
c.m. energy, and R1, 2 are the coordinates of the classical
turning points [they are determined from the condition

(R1) = (R2) = E]. The Ppres curve corre-

sponds to a precise calculation where the tunneling
penetrability factor is defined as the ratio of the flux
densities for the transmitted and reflected waves. It can
be seen that these two approaches lead to different
energy dependences for the tunneling factor P(E), as is
additionally illustrated in Fig. 4, which displays the
ratio of the penetrability factors Ppres(E) and Psemicl(E).
This comes as no surprise: the semiclassical expression
(42) is highly accurate only in the case of smooth
potentials (that is, potentials slowly varying with dis-
tance), but the interaction potential in (41) does not
possess this property—it decreases fast to the left of the
maximum (see Fig. 2), not ensuring the required accu-
racy. Thus, we have revealed that there arise sizable
errors when precise quantum-mechanical penetrability
of the actual potential barrier is replaced by that in the
semiclassical approximation.

The above barrier corrections proved to be of impor-
tance in describing the reaction between loosely bound
nuclei D and 6Li, which are characterized by a high
degree of clustering. We will demonstrate this by con-
sidering the example of the reaction rate in a D + 6Li
plasma under the condition of thermal equilibrium at
temperature kT. In this case, the velocity distribution of
particles has a Maxwellian form, and the reaction-rate
parameter 〈σv〉  is given by

(43)
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The equilibrium rate parameters 〈σv〉 calculated for the
(d, nτ) and (d, pt) channels of D + 6Li interaction, which
are responsible for the production of 3He and tritium,
are quoted in Table 2. In the ion-temperature range Ti ≡
kT = 1–100 keV, these results exceed those presented in
[77] by about 10–40%, the difference between the rate
parameters found from the two calculations becoming
greater with decreasing ion temperature.

In the above methods for extrapolating relevant
cross sections, the slowly changing structural factor
S(E) is parametrized analytically—for example, in the
form of a Padé approximant. In many cases, this
approach unfortunately does not ensure the required
accuracy and reliability of extrapolation, since the
errors in extracting the factor S from experimental data
often grow so sharply with decreasing energy that the
confidence interval ∆S for a determination of S(0) in an

..........
..

...
...

...
...

....
...

.. .
...

...
...

...

....
....

.....
......

......

êsemicl

êpres

100

10–3

10–6

10–9

0 100 200 300
Ö, keV

ê(Ö)

Fig. 3. Precise and semiclassical penetrability [Ppres(E) and
Psemicl(E), respectively] of a realistic potential barrier in the

D + 6Li system.

2

1

0 100 200 300
Ö, keV

êpres(Ö)/êsemicl(Ö)

Fig. 4. Ratio Ppres/Psemicl for a realistic potential barrier in
the D + 6Li system as a function of energy.



2062 VORONCHEV, KUKULIN
extrapolation to the threshold becomes commensurate
with the S(0) value itself.

In those frequent cases where there are no pro-
nounced compound resonance states near the threshold
(that is, where the existing near-threshold resonances
are of a so-called potential character—this is so in sys-
tems like D + D and 3He + 3He), it is possible to develop
an alternative, very promising approach to extrapolat-
ing cross sections, which is especially efficient for reac-
tions featuring spin-polarized particles. It consists in
using well-known data at not very low energies of E ~
0.5–5 MeV to construct a reliable multichannel interac-
tion potential with allowance for important reaction
channels a + b  ci + di (i = 0, 1, …, n). In contrast to
the scattering amplitude, this potential is in general a
very smooth function of E, and the threshold energy is
not a peculiar point for it. Therefore this potential can
be used to predict cross sections near the threshold for

Table 2.  Rate parameters 〈σv〉  of the reactions
6Li(d, nτ)4He and 6Li(d, pt)4He for the case of a Maxwell ve-
locity distribution of ions

Ion temperature
Ti , keV

Rate parameter 〈σv〉 , cm3/s

(d, nτ) (d, pt)

1 2.03 (–31) 2.46 (–31)

2 1.29 (–27) 1.59 (–27)

3 8.67 (–26) 1.08 (–25)

4 1.20 (–24) 1.52 (–24)

5 7.71 (–24) 9.83 (–24)

6 3.12 (–23) 4.03 (–23)

7 9.49 (–23) 1.23 (–22)

8 2.35 (–22) 3.14 (–22)

9 5.11 (–22) 6.68 (–22)

10 9.77 (–22) 1.27 (–21)

20 3.82 (–20) 5.43 (–20)

30 2.03 (–19) 3.22 (–19)

40 5.54 (–19) 9.70 (–19)

50 1.11 (–18) 2.05 (–18)

60 1.87 (–18) 3.63 (–18)

70 2.79 (–18) 5.65 (–18)

80 3.91 (–18) 8.01 (–18)

90 5.14 (–18) 1.08 (–17)

100 6.54 (–18) 1.37 (–17)

Note: In the second and in the third column, the numbers in front
of parentheses and the numbers presented parenthetically
stand, respectively, for the mantissa and the integral (nega-
tive) power of ten in the floating-point representation of
numbers—for example, 2.03 (–31) denotes 2.03 × 10–31.
the a + b channel. Although this approach had been
known for quite a long time, its specific realization on
the basis of a new method for constructing the multi-
channel potential being discussed was proposed only in
recent years (see [78–80]). The potential in question is
based on a direct iterative solution to the inverse scat-
tering problem. This solution proceeds directly from
experimental data on cross sections, as well as on vec-
tor and tensor analyzing powers. Although this method
has hitherto been harnessed only in elastic-scattering
problems featuring channel coupling, it can obviously
be applied to the general problem of predicting near-
threshold cross sections for rearrangement reactions.

4. TEMPERATURE DIAGNOSTICS 
OF A THERMONUCLEAR PLASMA 

BY THE GAMMA-RAY METHOD

A determination of the ion temperature and of its
profiles and time evolution is an important problem of
diagnostics of a thermonuclear plasma. At present, a
great number of diagnostic procedures that primarily
employ data from atomic physics have been proposed
for measuring the parameters of a thermonuclear
plasma. By and large, these procedures furnish only
indirect information about the ion plasma component,
but direct nuclear physics methods that make it possible
to monitor straightforwardly the dynamics of ions may
prove to be of paramount importance here. Of particu-
lar value are nuclear-physics methods relying on reac-
tions between charged particles. Such reactions may
proceed in a fuel initially, but they can also be activated
in a dedicated way by introducing diagnosing admix-
tures in a plasma.

Let us consider the possibility of determining the
ion temperature of a fuel, Ti, by using processes that
produce high-energy photons freely escaping from the
reactor core both in the case of a magnetic plasma con-
finement and in the case of inertial confinement. We
restrict ourselves to considering DT and D3He fuels,
which have received so far the most detailed study, and
choose, for activating (diagnosing) admixtures, 3He
and 6Li isotopes for DT mixtures and T and 6Li for
D3He mixtures. Presented below are the radiative-cap-
ture reactions proceeding in the systems under consid-
eration and involving the emission of photons of ener-
gies Eγ in excess of 10 MeV [processes (15) and (17)
could also be included in this list]:

T(d, γ)5He + 16.70, 3He(t, γ)6Li + 15.79,

D(d, γ)4He + 23.85, T(t, γ)6He + 12.31,

(44)

6Li(d, p)7Li*[0.478] (  7Li + γ + 0.478) + 4.55,

6Li(d, n)7Be*[0.431] (  7Be + γ + 0.431) + 2.95

He3 d γ,( ) Li5 16.39, Li6 d γ,( ) Be8 22.28,+ +

He3 τ γ,( ) Be6 11.49, Li6 τ γ,( ) B9 16.60,+ +
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(the energies released in these reactions are given in
MeV). Of the reactions listed here, T(d, γ), D(d, γ), and
3He(d, γ) have received adequate experimental study;
the same can be said about the last two processes 6Li(d,
pγ) and 6Li(d, nγ) [22, 81–83]. For the first time, the use
of these reactions for a hot-plasma thermometer was
proposed in [45, 84–86].

The idea of determining the ion temperature Ti is
based on the fact that the yield of photons from A + B
interactions, Yγ(AB), is proportional to the concentra-
tion of reaction products, nA(B), and to the γ-channel
reactivity 〈σv , which depends greatly on Ti . By
choosing an appropriate combination of a few reactions
from (44), it is possible to find the required tempera-
ture, irrespective of plasma-density values [45]. By
way of example, we indicate that, for a DT mixture, a
simultaneous detection of photon yields in the reactions
T(d, γ) and D(d, γ) leads to

(45)

where the ratio of the concentrations nT and nD can be
considered as a constant to a high precision. It follows
that the ratio of the yields of photons from the above
two reactions is a known function of the ion tempera-
ture Ti. Therefore, a simultaneous independent mea-
surement of the two photon fluxes provides a means for
determining Ti. The monitoring of three photon fluxes
from the reactions T(d, γ), D(d, γ), and T(t, γ) could be
very useful, but there are no nuclear data on the cross
sections for the last process.

The smallness of cross sections is a drawback com-
mon to all radiative-capture reactions, which are gov-
erned by electromagnetic interaction. For example, the
ratio of the branching fractions for the radiative and the
main channel at low energies is about 5 × 10–5 for D +
T and D + 3He interactions and about 10–7 for D + D
interactions [22]. Therefore, the problem of experimen-
tally detecting photons in such reactions is nontrivial.
However, Lerche et al. [87] reported that they recorded
16.7-MeV gamma radiation from D + T interactions at
the Nova laser facility and used it in studying the
dynamics of burning.

The last two processes in (44), which yield mono-
chromatic photons of energy Eγ about 500 keV, do not
have this drawback. These reactions are governed by
strong interaction, and the relevant low-energy cross
sections are relatively large. Their photon yield as esti-
mated for a facility implementing a magnetic plasma
confinement [45] is quite sizable even at a 1% concen-
tration of 6Li. That the reactions 6Li(d, nγ) and 6Li(d, pγ)
represent different output channels of the same process
is also of importance, because any current fluctuation
of the plasma density or some other parameter of the
plasma under study would not affect the accuracy in
determining Ti . However, the energy dependences of
the cross sections σ(E) for these channels differ only

〉 ABγ

Yγ TD( )
Yγ DD( )
-------------------

2nT

nD
--------

σv〈 〉 TDγ

σv〈 〉 DDγ

-------------------- f Ti( ),= =
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slightly in subbarrier region [82], so that the question of
whether this distinction is sufficient for attaining the
required degree of accuracy in determining the temper-
ature is still open. Anyway, a direct measurement of
photon yields from nuclear reactions proceeding in a
thermonuclear reactor would nevertheless furnish
unique information about the most important properties
of plasmas.

5. CONCLUSION

In the present review article, we have considered
some important nuclear-physics facets of the problem
of controlled thermonuclear fusion. Attention has been
given primarily to (i) choosing an optimum thermonu-
clear cycle for future thermonuclear power engineer-
ing, (ii) analyzing the problem of a reliable extrapola-
tion of measured cross sections to the deep-subbarrier
energy region, and (iii) discussing gamma-ray diagnos-
tics of a hot plasma on the basis of radiative-capture
reactions.

We have shown that special features of nuclear
structure—for example, pronounced clustering in light
nuclei—often play an important role in the low-energy
behavior of relevant cross sections for nuclear reactions
and can also affect the choice of strategies for investi-
gations in these realms. At the same time, these factors
have been virtually disregarded not only in monographs
and review articles devoted to the problem of controlled
thermonuclear fusion but also in a large number of orig-
inal specific studies. Fortunately, interest in these issues
has quickened somewhat in recent years, and a series of
studies, which are surveyed in our article, have been
performed along these lines.

We have conducted a comparative nuclear-physics
analysis of the following eight promising thermonu-
clear fuels based on isotopes of light elements: DT, DD,
D3He, D6Li, DT6Li, H6Li, H11B, and H9Be. Of these,
DT, DD, and D3He mixtures have received the most
detailed study. Among all cycles considered above, a
DT fuel possesses the lowest ignition temperature (T <
10 keV). However, practical uses of this fuel are
restricted by many disadvantages like the presence of
intense neutron fluxes carrying about 80% of the
energy released in D + T interactions, a relatively low
reactor efficiency, and the fact that one has to deal with
radioactive tritium. In what is concerned with radiation
safety and with the efficiency of conversion of nuclear
energy into electric energy, a D3He fuel is preferable
because, here, neutrons carry only about 3% of the total
energy release. Unfortunately, the ignition of this fuel
requires higher plasma temperatures of a few tens of
keV; in addition, there are practical difficulties in
obtaining the 3He isotope, one of the fuel components.
Additional gain in the energy release can be achieved
through the use of spin-polarized fuels, where the cross
sections for the two reactions increase by about 50%.
However, it is difficult to estimate this gain definitively,
since the result depends on the role of depolarization
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effects. Another objective pursued by the use of spin-
oriented nuclei is that there are hopes for suppressing
the neutron flux associated with the D + D by-process.
The degree of this suppression, which depends on the
cross sections for low-energy D + D interactions
involving polarized deuterons, is still hotly debated;
sometimes, the estimates presented in the literature are
at odds with one another.

A high ignition temperature is the main (and some-
times the only) drawback of non-hydrogen fuels. If,
however, operating temperatures of a few hundred keV
are achieved, the use of alternative fuels can prove to be
advantageous from the ecological and economical
points of view. For example, the cheap and “pure” fuel
H11B, for which the adopted estimate of the neutron
contribution to the total energy release is as low as
0.1%, is very appealing in this respect. Unfortunately,
the kinetics of nuclear processes has been studied much
more poorly in alternative fuels than in hydrogen fuels.
Virtually no investigations have been performed for
H9Be fuels, although σv values for H + 9Be interactions
are inferior only to those for D + T. Analysis of some
alternative fuels is extremely difficult because of a
complicated multistep character of their burning, which
results in the generation of a number of active light iso-
topes in such plasmas. Although the most recent devel-
opment of supercomputer technologies and the advent
of teraflop supercomputers capable of performing
about 1012 operations per second make it possible to
overcome many computational difficulties in simulat-
ing plasma dynamics, there unfortunately remains the
problem of sufficient motivation for performing this
formidable work.

Another factor complicating the analysis of non-
hydrogen thermonuclear fuels stems from the absence
of reliable nuclear data on some important processes. By
considering the example of D + 6Li interactions alone,
we have shown that, at ion temperatures of Ti < 100 keV,
the Maxwellian reactivities 〈σv〉  for the (d, pt) and (d,
nτ) channels are additionally enhanced by 10–40%
upon correctly taking into account nuclear-structure
factors. Similar investigations have yet to be performed
for many other interesting reactions induced by light
nuclei showing a considerable degree of clustering (for
example, H + 9Be).

Reactions that produce photons and which accom-
pany burning or which are deliberately activated by
diagnostic admixtures of light isotopes can serve as an
efficient thermometer of a hot plasma. The yield of
gamma radiation freely escaping from the reactor core
depends greatly on the ion temperature Ti in the thermo-
nuclear region and can therefore be used to determine
Ti. Under the condition that the above photon yields
exceed the gamma-radiation background, the possibil-
ity of simultaneously detecting a few radiative pro-
cesses opens the way to determine absolute values of
the ion temperature, irrespective of the initial plasma
densities and their current fluctuations.
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Abstract—A sample containing 6.3 × 1014 nuclei of the 16+ isomer of 178Hf having a half-life of 31 yr and an
excitation energy of 2.446 MeV was irradiated with x-ray pulses from a device operated at 15 mA to produce
bremsstrahlung with an endpoint energy of 90 keV. The gamma spectra of the isomeric target were taken with
a Ge detector. The intensity of the 325.5-keV (6+  4+) transition in the ground-state band of 178Hf was found
to increase by about 2%. Such an enhanced decay of the 178Hf isomer is consistent with an integrated cross sec-
tion value of 3 × 10–23 cm2 keV if resonance absorption occurs within energy ranges corresponding to the max-
ima of the x-ray flux, either near 20 keV or at the energies of the characteristic emission lines of W. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The four- and five-quasiparticle isomers of Lu, Hf,

and Ta are of interest because they have relatively long
lifetimes for states at excitation energies of 2 to 3 MeV.
They are referred to as K isomers because spontaneous
radiative decay is hindered by structural changes for-
bidden by K-quantum numbers. In this mass region,
nuclei are deformed and the projection of the total
angular momentum onto the symmetry axis contributes
this quantum number K, which can change by no more
than the multipolarity of the electromagnetic transition.
Decays from a high-K isomer to the rotational states of
a low-K band are forbidden; therefore, a relatively long
lifetime is inevitable. The most interesting example
may be the 31-yr, four-quasiparticle 178Hf isomer hav-
ing an excitation energy of 2.446 MeV.

Proposals to trigger the energy release of a nuclear
isomer by exciting it to some higher level associated
with freely radiating states have been known for over a
decade [1]. To be efficient, such schemes should be
applied at an energy near that of the K-mixing state of
the isomer. It was proposed in [1] to use the resonant
absorption of x rays from a bremsstrahlung source to
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1) Center for Quantum Electronics, University of Texas at Dallas,

Richardson, USA.
2) H. Hulubei National Institute of Physics and Nuclear Engineer-

ing and IGE Foundation, Bucharest, Romania.
3) Institute for Nuclear Research, National Academy of Sciences of

Ukraine, pr. Nauki 47, UA-252028 Kiev, Ukraine.
4) GREMI, CNRS–Universite d’Orleans, France.
5) Air Force Research Laboratory, DEPA, Kirtland Air Force Base,

Albuquerque, New Mexico, USA.
6) Sandia National Laboratory, Albuquerque, New Mexico, USA.
** e-mail: karamian@cv.jinr.dubna.su
1063-7788/00/6312- $20.00 © 22067
excite some fraction of a high-K isomeric population to
the K-mixing level. Then, the decay to the ground state
via one or more γ cascades could subsequently release
the total energy of the isomer plus that of the absorbed
trigger photon. The types of K-mixing states needed in
such schemes to induce the decay of nuclear isomers
have been reported [2] in 180Ta and described in 174Hf
and other isomers [3].

In 1999, the use of soft x-ray irradiation to enhance
the decay of the 178Hf isomer was reported in [4, 5]. In
that study, the continuous x-ray spectrum was most
intense in the range between 20 and 60 keV. While the
energy of the particular component causing the transi-
tion that initiated the process was not determined, the
data were analyzed under the assumption that the
energy lies near the 40-keV mean value of the spectral
distribution.

The two-step process leading to the excitation of the
intermediate level and following the decay to the
ground state is assumed here to be the same as earlier
for 180mTa [2]. The integrated cross section of σΓ ≈
10−25 cm2 keV measured for 180mTa corresponds to the pres-
ence of an activation level of width Γ ≈ 0.5 eV. The same

width assumed for  leads to σΓ ≈ 10–21 cm2 keV
when the cross section in the Breit–Wigner resonance
is used. This is in accord with the experimental results
reported in [4, 5], but the rescaling from 180mTa to

 looks straightforward. The level schemes of the
two nuclei are very different, and so are the energy and
the wavelength of the incident radiation: nearly 3 MeV
for 180Ta [2] and about 40 keV for 178Hf [4, 5]. The inte-
grated cross section (ICS) for photon resonance absorp-
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tion has been recently discussed in [6], and the possibil-
ity of modifying the recommended equations was con-
cluded. More experimental information is necessary for
calibrating ICS at photon energies in the region Eγ <
100 keV.

On the other hand, the systematics of nuclear transi-
tion strengths do not predict the widths of levels as
large as those known from the 180mTa experiment [2]

and obtained for  [4, 5]. The value of Γ = 0.5 eV
corresponds to a short lifetime (≈10–15 s), while a typi-
cal lifetime of nuclear states at excitation energies of 2
to 3 MeV is two orders of magnitude greater. Accord-
ingly, σΓ ≈ 3 × 10–27 cm2 keV could be predicted for
180mTa by using the value of B(E1) = 0.01 Weisskopf
units recommended in systematics. This is lower than
the experimental value by one order of magnitude. The
corresponding disagreement is even more impressive in
the 178Hf case, mainly because of the deficit of levels
with appropriate quantum numbers for the decay of the
high-spin intermediate state excited after the absorp-

tion of a photon by the  isomer. As a conse-
quence, the properties of intermediate K-mixing states
appear as an extraordinary phenomenon that naturally
stimulates more focused studies. In particular, more

details on the enhancement of the decay of the 
isomer are necessary in order to clarify the mechanism
of the x-ray induced deexcitation of the isomer. By
focusing upon a confirmation of the work previously
reported [4, 5], while extending it to include a study of
a fragment of a cascade not present in the spontaneous
decay of the isomer, the present study is aimed at meet-
ing these requirements.

Hf
178m2

Hf
178m2

Hf
178m2

Fig. 1. Scheme of the experimental arrangement showing
the geometric placements and dimensions of the compo-
nents.

41.6 cm

4-mm Pb shield

Cone of irradiation 3-mm Cu
+2-mm Pb

x-ray
head

133Ba position
Proximate position

Pb shield
P

2. EXPERIMENTAL DETAILS

The experimental work was performed at the Center
for Quantum Electronics, University of Texas at Dallas.
The irradiating bremsstrahlung beam was provided by
an x-ray unit operated at 15 mA and an endpoint energy
up to 90 keV. The device was operated in a way that
ensured a duty cycle for the irradiation of about 0.6%.

The irradiated sample consisted of a sealed plastic

target containing 6.3 × 1014  isomeric nuclei
placed in a 1-cm diameter well. The main radioactive
contaminants in the sample were the 172Hf nuclide and
its daughters at a level of activity comparable to the
intensity of the 31-yr spontaneous decay of the 178Hf
isomer. The sample was placed at 5.5-cm distance from
the emission point of the x-rays, and the only absorp-
tion was due to the glass of the x-ray tube and the 2-mm
plastic sealing of the x-ray device. The absorption in
the sealing of the sample was negligible.

Figure 1 shows the experimental arrangement. The
HP coaxial Ge detector was placed at 41.6-cm distance
from the sample being irradiated. The detector had the
efficiency of 10% relative to the standard NaI for 60Co
lines. A shielding built of 3-mm Cu and 2-mm Pb was
used in order to prevent detection of scattered x-rays in
the Ge detector. Thus, the pulse rate of scattered x-rays
allowed to get into the detector was measured to be
about 1500 counts/s. The count rate produced by the
radioactive target in the absence of the x-rays was about
4000 counts/s. Such an experimental arrangement
resulted in a low value of the total dead time of the
acquisition tract of about 9% during the irradiation. The
energy and efficiency calibration of the Ge detector was
done using standard calibration sources, 60Co, 133Ba,
and 137Cs. We estimated the maximum absolute detec-
tion efficiency to be of about 1.5 × 10–4 at a γ-ray
energy near 300 keV in the described geometry with
absorbers.

Data acquisition was enabled only when a signal
was presented from a p–i–n diode which monitored the
x-ray beam. The signal from the diode was processed in
order to produce a 4-ms gate centered on the burst of
the x-ray flux. We recorded γ-ray energies up to 2 MeV
with amplification set to give 0.25 keV/channel, allow-
ing for a good analysis of the possible admixtures in the
lines of interest. Spectra were stored during each three
hours and gain matched using internal γ lines before
adding them in order to compensate a weak variation
(within 0.05%) of the electronics gain.

Special attention was devoted to the measurement of
the incident x-ray flux. For this purpose, the x-ray
device was aligned to direct the flux to the Ge detector
placed at 8.2-m distance. The direct x-ray flux could
reach the active area of the detector only through a
1-mm-diameter hole placed near the detector. High
count rate still required the application of absorbers for
the measurement of the direct radiation spectrum. The
final spectra could be reconstructed from a few mea-

Hf
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surements with different absorbers. They are shown in
Fig. 2 for two conditions, with and without a 2.7-mm
equivalent thickness of Al available for covering the
output window. The spectrum taken with 1.5-mm Cu
absorber is given in the inset. It was one of the compo-
nent measurements from which the composite spec-
trum was assembled. In previous work [4, 5], the

 sample was irradiated with the presence of the
Al absorber between x-ray tube and the sample, while
in the experiment reported here it had been removed.
One can see from curve 1 in Fig. 2 that there is a high
intensity, above 4 × 1011 photons cm–2 keV–1 s–1, at low
energies near 20 keV; drastic decrease of the intensity
with increasing Ex values; and a clear manifestation of
the characteristic K-X lines of W (material of the con-
verter in the x-ray device). All these special features of
the incident radiation are important for conclusively
determining the integrated cross section, as discussed
below.

3. RESULTS

Acquired with the Ge detector, spectra of the
induced emission of γ radiation generally resembled
those obtained in the earlier work [4, 5]. However, in
the present experiment, normalization of the spectra
taken with and without x-ray irradiation was facilitated
by the deliberate inclusion of lines from the 133Ba
source placed near the Hf target, but not irradiated.
Those fiducial lines were within about 30 keV of the
325.5-keV (6+  4+) component of the ground-state
band (GSB) and therefore reduced any effects of a drift
or a nonlinear energy dependence of the efficiency. An
empty target holder, the “blank,” of a mass and con-
struction similar to the one carrying the isomeric nuclei
was available for use. Comparative measurements
showed that over 95% of the elastic and inelastic scat-
tering of the irradiating beam arose from the mass of
the holder, not from its contents.

Three geometric arrangements were important dur-
ing the collection of data: (1) “inbeam,” when the iso-
meric target was centered in the cone of irradiation as
shown in Fig. 1; (2) “outbeam,” when the target was
placed out of the beam of x-rays at the position denoted
as “proximate” in Fig. 1 and the “blank” target holder
replaced it in the cone of irradiation; and (3) “baseline,”
when the isomeric target was placed in the position of
the cone of irradiation, but the x-ray source was turned
off. During analysis, both inbeam and outbeam spectra
were scaled to the baseline spectrum, so that the areas
of the fiducial line in each spectra were the same.

Figure 3 shows the results of 16 h of acquisition
time, during which there were 340 s of actual counting
time enabled by the gate coincident with the detection
of x-rays. From top to bottom are shown the inbeam,
outbeam, and baseline spectra: when the spectra were
subtracted, the data were acquired so that the total num-
bers of photons collected in the 356.0-keV line of 133Ba

Hf
178m2
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were as nearly equal as could be arranged. The counts
in the areas under the relevant peaks are summarized in
Tables 1 and 2. In this case, more counts were used for
a better accuracy of the baseline spectrum accumulated.

It was mentioned above that the efficiency of the γ-
ray detection had a maximum near 300 keV, decreasing
to lower energies due to a presence of absorbers and to
higher energies due to an intrinsic efficiency of the Ge
detector. Accordingly, in this series of measurements,
we concentrated to detect the enhancement of the
325.5-keV line providing the best resolution and rea-

sonably good statistics. Some other lines of the Hf
178m2
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Fig. 2. Photon spectral flux expected at the inbeam position
of the isomeric target. These experimental data for a 90-keV
endpoint were measured by using a Ge detector from input
attenuated with a pin hole and placed at 8.2-m distance from
the x-ray tube. The radiation spectra correspond to this exper-
iment (curve 1) and the measurements in [4, 5] (curve 2),
where the Al absorber was used. The inset shows the raw
data taken with a 1.5-mm Cu absorber.
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Fig. 3. Spectra of the  from the irradiated target: (a) target inbeam minus scaled baseline, (b) target outbeam minus scaled
baseline, and (c) baseline spectrum. The region shown could be dependably normalized by comparing the areas under the 356.0-keV
line of 133Ba and included the 325.5-keV (6+  4+) component of the GSB of 178Hf.
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decay could be also enhanced (for instance 213.4 and
426.6 keV) under irradiation, but a statistical accuracy
for them was lower than that for the 325.5-keV line.

In addition, the difficulties in establishing precise
fiducial lines exist in other regions of the spectra; dif-
ferences in areas under peaks could not be attained with
the same high level of confidence as accomplished for
the 325.5-keV line. Previous reports [4, 5] suggested
that not all components of the spontaneous decay cas-
cade were enhanced by the x-rays. If several transitions
feeding the GSB in spontaneous decay are not enhanced,
there naturally arises the question of what channels are
involved in the induced decay of the isomer.

An analysis of the spectra suggested several “new”
components, some of them were obviously seen in the
spectra stored during 1998 series of experiments, but
the statistics was not enough to discuss them in papers
[4, 5]. Figure 4 shows the best of such lines observed in
the experiment reported here for Eγ = 210.6 keV. The
P

line 210.3 keV was known as a member of the Kπ = 6+

band in 178Hf, but it was not previously seen in sponta-
neous decay of the isomer [7]. Other transitions by this

band were observed neither for the  decay pre-
viously nor in present measurement.

According to [7], very weak line of 172Lu should be
detected at Eγ = 210.28 keV, and it was really seen in the
baseline spectrum. However, its intensity, being in
agreement with [7], was fourfold lower than that in the
spectrum taken “inbeam.” Thus, the 210.6-keV line
shown in Fig. 4 cannot be explained by a contribution
from 172Lu.

4. DISCUSSIONS AND CONCLUSION

The first reports [4, 5] of the great cross section for

the decay of the  isomer induced by low-energy
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Table 1.  Comparison of the gamma emission from the target irradiated at the inbeam position with the baseline obtained
without irradiation

Eγ, keV Nucleus
With irradiation 

area

Baseline
Excess, counts

area norm. area*

296.8 178Hf 1692 (68) 14925 (201) 1685 (27) 7 (73)

302.9 133Ba 6503 (103) 58052 (304) 6554 (64) –51 (121) 

323.9 172Lu 1403 (71) 12891 (222) 1455 (28) –52 (76)

325.5 178Hf 17035 (146) 147952 (451) 16703 (148) 332 (208)**

356.0 133Ba 22617 (180) 200333 (482) Normalizing line

372 + 373 172Lu 2439 (84) 21860 (250) 2468 (90) –29 (123)

377.5 172Lu 3098 (75) 27445 (225) 3098 (36) 0 (83)

383.8 133Ba 3225 (76) 28160 (261) 3179 (40) 46 (86)

  * Normalized to the 356-keV line of 133Ba. Statistical inaccuracy of normalization is included.
** Estimation of the effect: (2.0 ± 1.2)%.

Table 2.  Comparison of gamma emission acquired from the target in the outbeam geometry with the baseline obtained with-
out irradiation (normalization is identical to that in Table 1)

Eγ, keV Nucleus Outbeam area
Baseline

Excess, counts
area norm. area

296.8 178Hf 785 (52) 20826 (262) 832 (14) –47 (54)

302.9 133Ba 3021 (70) 75754 (352) 3028 (36) –7 (79)

323.9 172Lu 722 (49) 17737 (250) 709 (13) 13 (51)

325.5 178Hf 7961 (103) 199062 (517) 7957 (88) 4 (135)

356.0 133Ba 10408 (110) 260372 (551) Normalizing line

372 + 373 172Lu 1258 (57) 29652 (284) 1185 (55) 73 (79)

377.5 172Lu 1428 (51) 36429 (260) 1456 (19) –28 (54)

383.8 133Ba 1509 (52) 36928 (261) 1476 (19) 33 (55)

Table 3.  Integrated cross section σΓ calculated from a 2% enhancement of the 325.5-keV  line under the assumption
of different activation-energy values

Ex, keV 20 30 40 50 Kα1 (W)* 60 Kβ1 (W)* 70

σΓ, cm2 keV
Flux with no filter

3.2 × 10–23 5.4 × 10–23 1.6 × 10–22 3.4 × 10–22 1.6 × 10–23 3.9 × 10–22 3.3 × 10–23 1.1 × 10–21

σΓ, cm2 keV
Flux with 2.7-mm Al 
filter

3.5 × 10–22 1.2 × 10–22 2.4 × 10–22** 4.5 × 10–22 2.0 × 10–23 4.7 × 10–22 4.0 × 10–23 1.3 × 10–21

  * Under the assumption that the natural width of the emission line is 50 eV.
** For a comparison with [5].

Hf
178m2
x-rays seems to be unexpected because it was not pre-
dicted by any model. The problem has not been
resolved by the results of the experiment reported here.
However, some illumination of the unexpected nature
of the phenomenon has been realized, it is still instruc-
tive to examine the details.

Of prime importance is the fact that general phe-
nomenology has been reproduced in accordance with
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
[4, 5]. Table 1 shows that with the same type of small
x-ray generator traditionally used in dental medicine
enhancements of the order of 2% can be induced in the
rate of spontaneous decay of the Hf isomer. As can be
seen from Table 2, there is no comparable value of a
spurious enhancement found when the empty target

holder was irradiated while the  sample wasHf
178m2



2072 COLLINS et al.
placed in the outbeam geometry. The excess counts in
the 325.5-keV line are essentially zero, as can be seen
as well in Fig. 3.

The yield of triggering events would equal the prod-
uct of the number of isomeric atoms in the target, the
spectral flux density from Fig. 2 at the appropriate
energy, and the unknown integrated cross section, σΓ,
for the branch of the excitation of a K-mixing level that
ends in a state other than that of the initial isomer. Since
each quantity is known, except for the integrated cross
section for the “triggering branch,” the latter one can be
obtained if the transition energy is estimated. Possible
values of σΓ are summarized in Table 3. The specific
value of σΓ is strongly dependent on the position of an
intermediate level because of the strong variation of the
x-ray flux with energy. Assuming the resonance band
lies near the maxima of flux, one can derive σΓ ≈ (2–3) ×
10–23 cm2 keV. The emission lines of W were detected
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210.6

203.4
Lu

213.4
Hf

216.7
Hf

Fig. 4. Spectra obtained under the different conditions. From
top to bottom: inbeam spectrum, baseline spectrum normal-
ized to the previous one by the peak counts in the 213.4 line
(left scale for both), and full range baseline spectrum (right
scale). The FWHM values for the marked peaks are 1.10,
0.91, 1.06, and 1.04 keV from left to right, as given by the fit.
P

in the x-ray spectrum with resolution of 0.9 keV. The
natural width is much smaller, and, in reality, the flux is
respectively higher in the characteristic X-ray peaks.

For the case of isomeric 178Hf, we have confirmed
that the irradiation by photons with the energy of the
order of 20–60 keV can induce the prompt release of
the 2.446 MeV stored by the isomer into freely radiat-
ing states. This is an energy gain of about 60.

Further research is needed to provide greater preci-
sion to the measurements of the transition energy to the
K-mixing level and to clarify properties of the cascade
feeding the GSB. Such data will then facilitate a better
understanding of these first evidences of the triggering
of induced gamma emission from the 31-yr isomer of
178Hf with very low energy photons through large inte-
grated cross sections, σΓ ≥ 2 × 10–23 cm2 keV.
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Abstract—Recurrence relations of perturbation theory for the hydrogen ground state are obtained. With the aid
of these relations, polarizabilities in constant mutually perpendicular electric and magnetic fields are computed
up to the 80th order of perturbation theory. The high-order asymptotic expression is compared with its semi-
classical estimate. For the case of an arbitrary relative orientation of external fields, a general sixth-order for-
mula is given. The energy and the width of the ground state are obtained by means of a perturbation-series sum-
mation. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The hydrogen atom in constant uniform electric and
magnetic fields still remains the subject of theoretical
investigations. For example, the authors of [1] devel-
oped a recurrent nonperturbative method for construct-
ing a convergent double series representing the exact
wave function of the hydrogen atom in a magnetic field.
For a more extensive discussion of the problem, the
reader is referred to the review article of Lisitsa [2].

The well-known technical problem of the impossi-
bility of separating the variables only stimulates the
application of new investigation methods, including
perturbative ones. The method of moments, which was
first used to treat perturbatively an anharmonic oscilla-
tor [3], does not require separating relevant variables.
The recent application of this method to the Zeeman
effect problem [4] allowed a check of the behavior of
the high-order asymptotic expression for a perturbation
series. Independently of [3], the method of moments
was developed by Fernandez and Castro [5] in a form
similar to that used in [4]. It was then applied to the
hydrogen atom in parallel electric and magnetic fields
[6]; later on, the Zeeman effect problem was considered
for four sequences of hydrogen-atom states [7].

It seems even more important to apply it to the

hydrogen atom in crossed electric ( ) and magnetic

( ) fields because only initial terms of power expan-

sion in terms of  and  have hitherto been consid-
ered for this case [8–12]. As will be shown in the

%
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present study, the method of moments permits comput-
ing sufficiently high orders of this expansion.

The high-order asymptotic behavior can be obtained
by using the imaginary-time method [13–15]. This
asymptotic behavior is determined by the contribution
of an extreme subbarrier classical trajectory to the
atom-ionization probability [16, 17]. A pair of extreme
paths replaces this trajectory at some value of the ratio
of external fields, γ = */%. The γ dependence of high-
order terms in a perturbation series reflects this change
of extreme trajectory and should be especially sharp for
mutually perpendicular external fields. This is the case
that we study here.

2. RECURRENT EVALUATION 
OF A PERTURBATION SERIES

Let us consider the ground state of the hydrogen
atom placed in mutually perpendicular electric and
magnetic fields. These fields are assumed to be constant
and uniform. We restrict ourselves to the nonrelativistic
approximation and neglect the electron spin. From the
outset, we attempt to simplify numerical computations
and to achieve a sufficiently high order of perturbation
theory. For this purpose, we treat γ as a fixed parameter,
replacing the double expansion in external fields by the
single-variable series

(1)

where the wave-function corrections |k〉  and hyperpo-

larizabilities  depend on γ. We also introduce circu-
lar coordinates

after that, all relations given below will have real coef-
ficients. In terms of these coordinates, the Hamiltonian

ψ %
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of the problem in question has the form

(2)

We use atomic units. The electric and magnetic fields
are measured in the units of %at = m2e5/"4 = 5.142 ×
109 V/cm and *at = m2e3c/"3 = 2.35 × 109 G, respec-
tively. The wave-function correction of order k satisfies
the differential equation

(3)

In just the same way as in other problems to which the
method of moments was used [3, 4], it is easy to trans-
form Eq. (3) into the algebraic relation between the
moments of order k:

(4)

Multiplying (3) from the left by 〈0 |r σ – α – β  and
considering that the Hamiltonian is Hermitian, we
obtain the recurrence relation

(5)
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Ĥ2, Ĥ0+ +

1
2
---∆–

1
r
---,–= =
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Fig. 1. Functions fk(γ) = ln(| |/k!) resulting from the

recurrently computed hyperpolarizabilities.

Ek
⊥

P

where

The right-hand side of relation (5) and hyperpolariz-

ability  depend only on the moments of preceding
orders. As was usually done in the method of moments
[3], the following orthogonality condition is accepted:

(6)

An expression for hyperpolarizability arises from (5) at
σ = α = β = 0 and even k:

(7)

The closed system of recurrence relations (5)–(7)
enables us to calculate, at least in principle, an arbitrary
high order of the perturbation theory. The computation
starts from

The sequence of manipulations is similar to that used in
[4] to compute Zeeman shift of a nondegenerate state.

At every order k, only moments  from the sector
σ ≥ α + β – 1, α ≥ 0, β ≥ 0 are necessary. They are eval-
uated by successively increasing of σ, α, and β values
with the use of relation (5).

We have obtained hyperpolarizabilities in mutually
perpendicular fields up to the 80th order of perturbation
theory. This order is large enough to compare the
dependence of these coefficients on γ (see Fig. 1), with
the predictions following from semiclassical consider-
ations. One can see from Fig. 1 that the function fk(γ) ≡
ln(| |/k!) has two features. It has a minimum at
γ ≈ 3.4 and a sequence of singular points to the right of

this point. Note that the function (γ) changes its sign
at every singular point of fk(γ).

3. HIGH-ORDER ASYMPTOTIC BEHAVIOR

It is well known [16] that the dispersion equation
relates the asymptotic expression of high-order coeffi-

cients  to the ionization probability of the atom, i.e.,
to the penetrability of the potential barrier. This relation
is a consequence of the fact that the energy eigenvalue
E = E0(%

2
) – (i/2)Γ(%

2
) has essential singularity at

%
2
 = 0 and a cut along %

2
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E(*
2
) has essential singularity at * = 0 and a cut along

*
2
 < 0.)

To evaluate the ionization probability Γ, the imagi-
nary-time method was previously developed [13–15].

The leading term of the asymptotic expression  of

the  coefficients at k  ∞ is determined by the
classical subbarrier path with extremal value of the
abbreviated action. Time takes complex values during
this subbarrier motion. There are two kinds of complex
classical trajectories. As in the Stark effect case, the
ionization may be induced by the electric field in the
case of the stabilizing effect of the magnetic field. The
path of this kind produces the asymptotic expression

(8)

This asymptotic expression is applicable at a moderate
magnetic field for γ below some critical value γc .
According to [18], γc = 3. 54 for mutually perpendicular
external fields. It is possible to penetrate through the
barrier also at *

2
 < 0 as in the Zeeman effect problem.

Subbarrier trajectories of this kind are responsible for

the form of (γ) in the opposite case, γ > γc. This
change of asymptotic expression explains the origin of
the left minimum in Fig. 1.

To obtain an estimate for the function a(γ) entering

into , we apply the results of [18, 19] and represent
here some necessary expressions for the special case of
mutually perpendicular external fields. For more gen-

eral considerations related to arbitrary  and 
mutual orientation, see [18].

The time τ of subbarrier motion satisfies the equa-
tion [19]

(9)

which has a set of solutions τn = inπ + . The mini-
mum value of the imaginary part of the subbarrier
action is provided by τ0 for γ < γc and by a pair of solu-
tions τ±1 for γ > γc . In the region γ < γc , the energy half-
width is

(10)

The dispersion relation in %
2
 then leads to

(11)

Ẽk
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, another representation is applica-
ble:
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On the other hand, in the limit of large 
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, the following
simple relation appropriate for numerical evaluation
holds:

 

(16)
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, we used smoothed function

(
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) excluding the nodes vicinities. Figure 2 shows
the function 

 

a

 

(
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) obtained numerically in such a man-
ner as compared to expressions (13)–(15).

Now we turn to the region 

 

γ

 

 > 

 

γ

 

c . Two solutions of
Eq. (9), τ1 and τ–1, lead to complex conjugate values of
g(γ). Substituting approximate τ1 value into second
expression (10), we obtain the phase of the function
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Fig. 2. Parameter a(γ) of the perturbation-series asymptotic
behavior. The solid line follows from the semiclassical esti-
mate at γ ! 1 [see (13)]; the same estimate for γ @ 1 is
shown by dashed lines [see (14) and (15)]. Values obtained
numerically are denoted by asterisks.
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a(γ) in the form

Finally, the sign-alternating asymptotic behavior arises:

(17)

Here, β(γ) = arg(B) is the phase of the preexponential
factor. Its relative contribution to the total phase
decreases as 1/j.

When the perturbation theory order 2j is fixed and γ
increases, expression (17) changes its sign at every
point where the argument of the sinus turns to zero.
This could explain the singular points in Fig. 1 in terms
of the asymptotic expression. But rather lengthy calcu-
lations are required to establish a detailed quantitative
relationship between asymptotic expression (17) and

exact  coefficients including node vicinities. A sim-
ple approximate expression for α(γ) is not enough for
this aim.

4. CROSSED EXTERNAL FIELDS 
OF ARBITRARY MUTUAL ORIENTATION
For the general case of the ground-state-energy

expansion in powers of crossed external fields, the term
of the fourth power was known for a long time [9]:

(18)

(19)

The value of E(4) is confirmed for mutually perpen-
dicular fields in [12] and for parallel fields in [12, 17,

20]. The  coefficient computed by means of recur-
rence relations (5)–(7) exactly agrees with (19). How-
ever, there is a numerical difference between our coef-

ficient  and the corresponding quantity from [12].
Therefore, the sixth order of the perturbation theory
was analyzed in detail.

The magneto-electric susceptibilities, i.e., coeffi-
cients of the double series in powers of external fields,
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can be easily obtained from hyperpolarizabilities

(γ). Thus, in the sixth order, taking into account that
Stark and Zeeman coefficients are fixed, it is enough to
choose four different γ values and to solve a set of four
linear equations. As a result we obtain the representa-
tion

(20)

(The last identity introduces notation of [12].) Using
the linear relation between expansions (1) and (18) and
the known magneto-electric susceptibilities in parallel
fields [20], it is easy to obtain the following term of
series (18):

(21)

Some next terms of series (18) can be obtained by the
same procedure. Expressions (20) and (21) are conve-
nient to check term by term the sixth-order correction.
As follows from [12],

(22)

while the results of our computation are

(23)

All other coefficients from [12] coincide with our
respective results. We carried out an additional inde-
pendent calculation by means of the method from [9]
and obtained

(24)

Note that [9] contains complete correction of the sixth
power in external fields for the case of parallel fields
and only a part of it for the case of perpendicular fields.
These “celebrated” sixth-order terms result as a by-
product of fourth-order calculations in [9]. The agree-

ment between high-order hyperpolarizabilities  and

their asymptotic  confirms once again the correct-
ness of recurrence relations (5)–(7).
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5. ENERGY AND WIDTH CALCULATION

Summation of the obtained perturbation series was
performed with the use of Hermite–Padé approximants,
just as it was previously done for the case of Stark
effect [21]. Let us recall that this method is based on
employing the relation

(25)

where x = %
2
; E(%

2
) is series (1); and AL(x), BM(x), and

CN(x) are polynomials of the powers L, M, and N,
respectively. Normalization AL(0) = 1 is accepted. First,
Eq. (25) is considered as an identity in x, and the result-
ing system of linear equations is solved for the
unknown coefficients of polynomials AL , BM , and CN .
Then, Eq. (25) is solved as a quadratic equation for the
sum of series E(%

2
). This way, the branching of exact

function E(%
2
) at the point of its essential singularity

AL x( )E
2

x( ) BM x( )E x( ) CN x( )+ +
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Fig. 3. Real part of the lowest energy eigenvalue of hydro-
gen atom placed in mutually perpendicular external fields. 
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Fig. 4. Half-widths of the lowest hydrogen state in mutually
perpendicular external fields.
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%
2
 = 0 is approximately reproduced. In practice, suc-

cessions of approximants [L, L, L](%
2
) up to L = 13

were computed. As an example of their convergence,
we note that the obtained energy eigenvalues have five
exact decimal digits at * = 0.2, % = 0.1 and three exact
decimal digits at * = 0.2, % = 0.5. The resultant
ground-state energy and width are presented in Figs. 3
and 4. The magnetic field stabilizes the level diminish-
ing its binding energy and width.

We give now some technical remarks. The energy
convergence is worsened in the vicinity of the branch-
ing point, at % ~ 0.01–0.07 for * from 0.05 to 0.2,
respectively. At large electric fields, convergence is
observed up to % ~ 1. It is rather obvious that the preci-
sion of the final result may be increased and the range
of fields for which the convergence takes place may be
extended by increasing the order of employed approxi-
mants. Besides, it appears practically optimal if the
maximal order of the approximants used is almost

equal to the number of exact decimal digits of  coef-
ficients.

6. CONCLUSION

The problem considered above demonstrates once
again the high efficiency and convenience of the
method of moments. The resulting recurrence relations
have allowed advance up to the 80th order of perturba-
tion theory. The high-order asymptotic behavior was
also analyzed. Basic parameters of this asymptotic
expression are in good agreement with those previously
obtained in the semiclassical approximation with the
use of the imaginary-time method.

In the problem under consideration, the method of
moments can also be applied to excited states as well
just as it was previously used for the Zeeman effect case
[4]. The most substantial points of this application are
the following. The moments

(26)

allow consideration of an arbitrary hydrogen state. Note

that bra 〈 | in this definition is the nodeless exponential
factor of the unperturbed wave function, rather than the
unperturbed wave function. The degeneracy of each
excited state should be taken into account from the very

beginning, i.e., at the stage of  computation. In the
second approximation, a constraint excluding ambiguity
of energy correction is introduced. This is enough to
uniquely determine the mixing parameters inherited by
the moments from the unperturbed wave function.

It is well known that very strong magnetic fields are
created by some astrophysical objects. Pulsars possess
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a magnetic field up to at least * ~ 103*at. In addition,
magnetic white dwarfs with * ~ (0.2–0.5)*at are
observed [22, 23]. An atom moving fast in vicinity of
such an object is subjected in its rest frame to intense
mutually perpendicular electric and magnetic fields.
Quasistatic perpendicular fields are also present in the
radio waves emitted by a pulsar. These fields may be
strong enough near the surface of the radiating star. The
possibility of the investigations of the neutron-star
atmospheres in the ultraviolet and x-ray ranges of their
absorption spectra is discussed in [23].

For astrophysical applications, the properties of
hydrogen in crossed external fields were successfully
computed in an adiabatic approach with a Landau level
as the initial approximation [24]. However, avoided
crossings of hydrogen levels give no way to use the adi-
abatic approximation below * ~ 100*at . The perturba-
tive approach described above seems to be more appro-
priate for moderately strong external fields.
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Abstract—It is found that particle-mass-symmetric and particle-mass-asymmetric Coulomb systems are adia-
batically similar. Expressions are proposed for the mass dependence of upper and lower bounds on the energies
of asymmetric systems, and an expression approximating these energies is given. The energies of the families
of mesic molecules that are adiabatically similar to the mesic molecules dpµ, tpµ, and tdµ are investigated with
the aid of these expressions. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1], precise variational calculations were per-
formed for a large number of three-particle Coulomb
systems symmetric in the masses of likely charged par-
ticles, and analytic formulas that describe accurately
the energies of these systems were constructed on this
basis. In the present study, we consider relations
between the energies of mass-asymmetric three-parti-
cle systems, which have yet to receive adequate study.

The system of three particle having the unit charges
of q1 = q2 = ±1 and q3 =  and masses m1, m2, and m3
is described by the Hamiltonian

(1)

For physical quantities, we use here the system of
atomic units (" = me = |e | = 1). The likely charged par-
ticles 1 and 2 are numbered in such a way that m1 ≥ m2.
The eigenvalue spectrum of the operator in (1) begins
from E(m1, m2, m3), the ground-state energy of the sys-
tem with a fixed center of mass.

2. UPPER BOUND ON ENERGY

An upper bound on the energy E(m1, m2, m3) of a sys-
tem asymmetric in the masses of the likely charged par-
ticles 1 and 2 can be expressed in terms of the energy of
its symmetric analog. Let us consider the operator

(2)

which depends on the parameter λ. We denote by ε(λ)
its lower eigenvalue. A comparison with (1) shows that
the operator in (2) describes the system of particles
with masses m1, m2, and m3 at λ = 1 and the system of
two particles 1 and 2 with identical masses equal to
2m1m2/(m1 + m2) at λ = 0. Hence, the eigenvalues of the

1+−

H r1 r2 r3, ,( ) 1/2( ) ∆1/m1 ∆2/m2 ∆3/m3+ +[ ]–=

+ 1/r12 1/r13– 1/r23.–

H r1 r2 r3; λ, ,( ) 1/4( ) ∆1 ∆2+( ) 1/m1 1/m2+( )[–=

+ λ ∆1 ∆2–( ) 1/m1 1/m2–( ) ] ∆3/2m3– 1/r12+

– 1/r13 1/r23,–

1) Admiral Makarov State Marine Academy, St. Petersburg, Russia.
1063-7788/00/6312- $20.00 © 22079
operators in (1) and (2) satisfy the equalities

(3)

The reversal of the sign of the parameter λ in (2) corre-
sponds to the interchange of the numbers of particles 1
and 2. Since this does not change the energy of the sys-
tem, ε(λ) is an even function of λ,

(4)
so that its derivative vanishes at the origin:

(5)
Since the operator in (2) depends on λ linearly, the sec-
ond derivative of its lowest eigenvalue ε(λ) is nonposi-
tive (see Appendix),

(6)
From (5) and (6), it follows that ε'(λ) ≤ 0 for λ ≥ 0.
Hence, the function ε(λ) decreases monotonically in
the interval 0 ≤ λ ≤ 1,

(7)
Substituting the values of the function ε(λ) at the points
λ = 1 and 0 from (3) into (7), we arrive at

(8)

This inequality expresses an upper bound on the energy
of an asymmetric system involving likely charged par-
ticles of unequal masses in terms of the energy of the
symmetric system in which the masses of these parti-
cles coincide.

3. HAMILTONIAN IN TERMS 
OF JACOBI COORDINATES

We introduce the scaled Jacobi coordinates

(9)

ε 0( ) = E 2m1m2/ m1 m2+( ) 2m1m2/ m1 m2+( ) m3, ,( ),

ε 1( ) E m1 m2 m3, ,( ).=

ε λ–( ) ε λ( ),=

ε' 0( ) 0.=

ε'' λ( ) 0.≤

ε 0( ) ε λ( ) ε 1( ).≥ ≥

E m1 m2 m3, ,( )
≤ E 2m1m2/ m1 m2+( ) 2m1m2/ m1 m2+( ) m3, ,( ).

s m1m2/ m1 m2+( )[ ] r2 r1–( ),=

t m1m2m3/ m1 m2 m3+ +( )[ ] 1/2
=

× r3 m1r1 m2r2+( )/ m1 m2+( )–[ ]
000 MAIK “Nauka/Interperiodica”
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and rewrite the Hamiltonian (1) of the system of parti-
cles with a fixed center of mass in terms of s and t as

(10)

where the operator h(s, t) is given by

(11)

and where we have introduced the following two com-
binations of the particle masses:

(12)

(13)

We will refer to h(s, t) as the operator of the reduced
energy of the system. Its eigenvalues η depend on the
particle masses through the quantities x and y and are
related to the eigenvalues of the Hamiltonian for the
system with a fixed center of mass by the equation

(14)

4. ADIABATIC APPROXIMATION
In [2], it was shown that the lowest energy value Ead

of a quantum-mechanical system in the adiabatic
approximation coincides with its ground-state energy:

(15)

Going over to the adiabatic approximation, where
we consider the coordinates t and s as, respectively, a
fast and a slow one, we can represent an approximate
eigenfunction of the reduced-energy operator (11) in
the form

(16)

where ψ and χ are the wave functions for, respectively,
the fast and the slow subsystem. The wave function ψ
for the fast subsystem and the eigenvalue W of its adia-
batic energy are determined by the equation

(17)

This wave function is dependent on the coordinate t
playing the role of a dynamical variable and parametri-
cally on the coordinate s and the particle-mass combi-
nations x and y. If the vector s is fixed, Eq. (17) assumes
the form of the Schrödinger equation, in terms of the

H s t,( ) m1m2/ m1 m2+( )[ ]h s t,( ),=

h s t,( ) ∆s/2– ∆t/2– 1/ s 2x m1 m2 m3, ,( )–+≡
× 1/ t x m1 m2 m3, ,( ) y m1 m2 m3, ,( )+[ ]s+[
+ 1/ t x m1 m2 m3, ,( ) y m1 m2 m3, ,( )–[ ]s– ]

x m1 m2 m3, ,( )

=  m3 m1 m2+( )2
/4m1m2 m1 m2 m3+ +( )[ ]

1/2
,

y m1 m2 m3, ,( )

=  m3 m1 m2–( )2
/4m1m2 m1 m2 m3+ +( )[ ]

1/2
.

E m1 m2 m3, ,( )
=  m1m2/ m1 m2+( )[ ]η x m1 m2 m3, ,( ) y m1 m2 m3, ,( ),( ).

Ead m1 m2 m3, ,( ) E m1 m2 m3, ,( ).≤

Ψ t; s x y, ,( ) ψ t; s x y, ,( )χ s; x( ),=

∆t/2– 2x m1 m2 m3, ,( )–{
× 1/ t x m1 m2 m3, ,( ) y m1 m2 m3, ,( )+[ ]s+[

+ 1/ t x m1 m2 m3, ,( ) y m1 m2 m3, ,( )–[ ]s– ] }
× ψ t; s x y, ,( ) W s; x( )ψ t; s x y, ,( ).=
P

radius vector t, for a particle of charge –1 that moves in
the field of two fixed Coulomb centers having the equal
charges of q = 2x(m1, m2, m3). These centers are located
at the points where the denominators of the fractions in
the bracketed expressions on the left-hand side of (17)
vanish—that is, at the points whose t coordinates are

They are separated by the distance R = |t2 – t1| = 2sx(m1,
m2, m3). The eigenvalue W of the particle energy
depends on the charges q of the centers and on the dis-
tance R between them; therefore, this eigenvalue is a
function of the quantities s (the absolute value of the
vector s) and x. At the same time, it is independent of y
since a change in y implies parallel translation of the
two centers at a fixed distance between them, in which
case the particle energy W remains unaffected.

Since W is independent of y, the operator of the
reduced energy of the slow subsystem [–∆s/2 + 1/ |s | +
W] and its eigenfunction χ do not depend on y either.
The function χ, together with the adiabatic reduced-
energy levels ηad of the total system, is determined from
the equation

(18)

Since y does not appear in (18), the reduced-energy adi-
abatic levels depend on the particle masses only
through the combination x(m1, m2, m3). Taking into
account (14), we find that the adiabatic energy levels of
the system are given by

(19)

A systems of particles with masses m1, m2, and m3

and a system of particles with masses , , and 
are referred to as adiabatically similar systems if they
are characterized by the same value of x (12); that is,

(20)

whence it follows that

(21)

It can be seen from (18) that the ratio of the adia-
batic energies of such systems is equal to the ratio of the
reduced masses of likely charged particles,

(22)

This means that, for the system formed by particles
with masses m1, m2, and m3, Ead(m1, m2, m3) determines
the adiabatic value of the energy and, hence, a lower

t1 x m1 m2 m3, ,( ) y m1 m2 m3, ,( )+[ ]s,–=

t2 x m1 m2 m3, ,( ) y m1 m2 m3, ,( )–[ ]s.=

∆s/2– 1/ s W s; x( )+ +[ ]χ s; x( ) η ad x( )χ s; x( ).=

Ead m1 m2 m3, ,( )
=  m1m2/ m1 m2+( )[ ]ηad x m1 m2 m3, ,( )( ).

m1' m2' m3'

x m1 m2 m3, ,( ) x m1' m2' m3', ,( ),=

m3 m1 m2+( )2
/4m1m2 m1 m2 m3+ +( )

=  m3' m1' m2'+( )
2
/4m1' m2' m1' m2' m3'+ +( ).

Ead m1' m2' m3', ,( ) : Ead m1 m2 m3, ,( )

=  m1' m2' / m1' m2'+( )[ ]  : m1m2/ m1 m2+( )[ ] .
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Energies of asymmetric mesic molecules as estimated in terms of the energies of systems that are adiabatically similar to them
and which represent, in each case, a symmetric mesic molecule involving nuclei of identical masses and a mesic molecule
involving one fixed nucleus (see main body of the text) versus precise results (all energy values are given in atomic units)

Mesic mole-
cules under 

consideration

Asymmetry 
parameter u

Energies of symmetric 
mesic molecules

Energies of mesic mole-
cules with a fixed nucleus

Energies of mesic molecules
under consideration

estimate on the
basis of Eq. (28)

precise results
from [4, 5]

dpµ 0.1112615 –105.7065 –108.2807 –105.99 –106.01
tpµ 0.2402140 –106.9404 –109.0532 –107.47 –107.49
tdµ 0.0396933 –111.3272 –112.2274 –111.36 –111.36

Note: Precise energy values from [4, 5] were rounded off to five significant decimal places.
bound on the precise energies [see the inequality in
(15)] for the entire family of adiabatically similar sys-
tems, those that consist of particles whose masses ,

, and  satisfy Eq. (21).

5. APPROXIMATE EXPRESSION 
FOR THE ENERGIES OF ADIABATICALLY 

SIMILAR SYSTEMS

Extending equality (22) from the adiabatic energies
Ead to the precise energies E of adiabatically similar
systems, we arrive at the approximate relation

(23)

The form of the operator in (11) indicates that, for the
systems under consideration, the measure of inaccu-
racy of this relation is controlled by the difference of

y( , , ) and y(m1, m2, m3). Under the condition

y( , , ) = y(m1, m2, m3), the approximate rela-
tion (23) becomes exact.

6. ENERGIES OF THREE FAMILIES 
OF ADIABATICALLY SIMILAR 

MESIC MOLECULES

Let us apply relations (8), (22), and (23) to three
families of systems that are adiabatically similar to the
mesic molecules dpµ, tpµ, and tdµ.

Using the values of the muon, proton, deuteron, and
triton masses (mµ = 206.76826, mp = 1836.1527, md =
3670.4830, mt = 5496.9216), we find that, for these
molecules, x and y take the values

x(dpµ) = 0.2017599, x(tpµ) = 0.1911185,

x(tdµ) = 0.1515551, y(dpµ) = 0.06729878,

y(tpµ) = 0.09540891, y(tdµ) = 0.03019459.

The mesic molecules under consideration belong to
three different families of adiabatically similar systems
featuring the same third particle (muon, m3 = mµ). The

m1'

m2' m3'

E m1' m2' m3', ,( ) : E m1 m2 m3, ,( )

. m1' m2' / m1' m2'+( )[ ]  : m1m2/ m1 m2+( )[ ] .

m1' m2' m3'

m1' m2' m3'
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quantity x takes the same value for all members of a fam-
ily, which differ by y values varying in the range 0 ≤ y <
x. The masses of the first two particles of family mem-
bers are given by

(24)

At y = 0, we have a symmetric mesic molecule featur-
ing nuclei of identical masses, m1(x, 0) = m2(x, 0) = (1 –
x2)m3/2x2; at y = x, the system reduces to a molecule
where an infinitely heavy (immobile) first particle gen-
erates the field for the remaining two (mobile) particles,
the second particle having the mass m2(x, x) = (1 –
x2)m3/4x2 and the charge identical to that of the first par-
ticle and a muon, which has an opposite charge.

Upper bounds on the energies of the family mem-
bers were calculated according to (8). The required
energies of symmetric systems with identical masses of
the first two particles,  = 2m1(x, y)m2(x, y)/(m1(x, y) +
m2(x, y)), were calculated by the formula [1]

(25)

where C0 = –1.20526924, C1 = 0.641781090, C2 =
0.285160388, C3 = –0.177735530, C4 = –0.259757745,
C5 = 2.38013126, C6 = –21.1917686, C7 = 113.523948,
C8 = –376.094845, C9 = 777.364202, C10 =
−978.197128, C11 = 687.774491, and C12 =
−207.711422.

For the members of the above families of mesic
molecules, the adiabatic energy values (which coincide
with lower bounds on the exact energies) were calcu-
lated by formulas (15) and (22) by using the adiabatic
energies Ead(M, M, m) computed in [3] for the corre-
sponding symmetric systems, the latter being interpo-
lated in the form

(26)

m1 x y,( ) 1 y
2

x
2

–+( )m3/ 2x x y–( )[ ] ,=

m2 x y,( ) 1 y
2

x
2

–+( )m3/ 2x x y+( )[ ] .=

M

E M M m3, ,( )

=  Mm3/ 2M m3+( )[ ] Ck m3/ 2M m3+( )[ ]
k /2

,
k 0=

12

∑

Ead M M m3, ,( ) Dk m/ 2M m3+( )[ ] 1 k /2+
,

k 0=

7

∑=
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where D0 = –1.205278, D1 = 0.643267, D2 = –0.499109,
D3 = 2.085603, D4 = –27.07942, D5 = 172.0880, D6 =
–543.8975, and D7 = 674.7041.

Taking into account relations (24), we find that the
mass of particles 1 and 2 of the symmetric mesic mol-
ecule belonging to the family of adiabatically similar
systems that is characterized by a given value of x is
equal to

(27)

Setting  =  = M and  = m3 = mµ in (22) and
taking into account (26), we find that, for the energies

M 1 x
2

–( )m3/2x
2
.=

m1' m2' m3'

E, a.u.

–108

–112

1

2

3

4

1

2
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4

–104

dpµ

tpµ

0 4 8 u

1

2

3

4

tdµ

–111
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–113

(a)

(b)

(c)

Fig. 1. Ground-state energies of the families of mesic mole-
cules that are adiabatically similar to the (a) dpµ, (b) tpµ,
and (c) tdµ molecules versus the parameter u = (m1 –
m2)2/(m1 + m2)2 of the mass asymmetry of likely charged
particles. Vertical dashed lines in Figs. 1a, 1b, and 1c corre-
spond to the mesic molecules dpµ, tpµ, and tdµ, respec-
tively. Solid curves represent (1) the upper bounds accord-
ing to Eq. (8), (2) the estimates according to Eq. (23), (3) the
adiabatic lower bounds according to Eq. (15), and (4) the
results of a variational calculation.

–110

–105

–115
P

of the members of a family of adiabatically similar
mesic molecules, expression (15) yields the adiabatic
lower bound

(28)

where m1 and m2 depend on x and y according to (24),
while M is given by (27).

In addition to deriving the above upper and lower
bounds on the energies of the systems considered here,
we have also calculated the corresponding approxi-
mated values on the basis of (23).

The results of our calculations for the families of
systems that are adiabatically similar to the mesic mol-
ecules dpµ, tpµ, and tdµ are presented in Figs. 1‡, 1b,
and 1c, respectively, along with the variational values
obtained for the corresponding energies by using a
broad basis of Laguerre functions of the perimetric
coordinates of the relevant particles. These results are
in perfect agreement with those from [4, 5] for the
mesic molecules dpµ, tpµ, and tdµ.

From Fig. 1, we can see that the adiabatic lower
bound on the energy as given by (15) lies 1.5 to 2.5 a.u.
below the precise value. The approximation in (23),
which relies on the exact value of the symmetric-mole-
cule energy and which takes into account the property
of adiabatic similarity, yields a more accurate lower
bound on the energy.

Exact energy values for the members of the families
of adiabatically similar mesic molecules lie between
the lower bound in (23) and the upper bound in (8).
Within five decimal places, the energy values calcu-
lated precisely for the mesic molecules dpµ, tpµ, and
tdµ agree with the arithmetic mean of the above
bounds.

As can be seen from the figure, the precise energy
values for the members of the families of adiabatically
similar systems depend almost linearly on the parame-
ter u = (y/x)2 = (m1 – m2)2/(m1 + m2)2 (which character-
izes the mass asymmetry of likely charged particles),
and so do the estimates in (8), (15), and (23). This
enables us to approximate the energies of adiabatically
similar systems by the expression

(29)

where the dependence of the particle masses on the
parameters x and y is given by (24). By using the
expression for the parameters x, y, and u in terms of the
particle masses m1, m2, and m3, we can recast the result
presented in (29) in such a way as to obtain an approx-
imate formula that relates the energy of an asymmetric
mesic molecule involving particles of arbitrary masses

E m1 m2 mµ, ,( ) Ead m1 m2 mµ, ,( )≥

=  2m1m2/ m1 m2+( )[ ] Dk mµ/ 2M mµ+( )[ ] 1 k /2+
,

k 0=

7

∑

E m1 x y,( ) m2 x y,( ) m3, ,( )
. 1 u–( )E m1 x 0,( ) m2 x 0,( ) m3, ,( )

+ uE m1 x x,( ) m2 x x,( ) m3, ,( ),
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to the energies of two systems that are adiabatically
similar to the system being considered and which rep-
resent a mesic molecule symmetric in the masses of the
constituent nuclei and a mesic molecule featuring one
infinitely heavy nucleus,

(30)

where M = 2m1m2/(m1 + m2) – (m1 – m2)2m3/2(m1 + m2)2

and m = m1m2(m1 + m2 + m3)/(m1 + m2)2.
This expression was used to estimate the energies of

asymmetric mesic molecules. The values that are
obtained in this way and which are displayed in the
table demonstrate that the approximation in (30) is
quite accurate.

6. CONCLUSION

The results presented in this study give sufficient
ground to believe that the property of adiabatic similar-
ity can be employed in calculating the energies of Cou-
lomb mesic molecules that are asymmetric in the
masses of likely charged particles. That the energy of
the members of families of adiabatically similar sys-
tems is a nearly linear function of the mass-asymmetry
parameter has enabled us to construct a highly accurate
formula that expresses the energy of an asymmetric
system in terms of the energy of a symmetric mesic
molecule and the energy of a mesic molecule involving
one infinitely heavy nucleus.
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APPENDIX

The inequality in (6) follows from basic equations
of perturbation theory. We now consider a quantum-
mechanical system whose Hamiltonian depends lin-
early on a parameter λ; that is,

(A.1)

where the operator L is independent of λ.
We will rely on perturbation theory, associating the

operator in (A.1) with the Hamiltonian of the unper-
turbed system [H(0) = H(λ)] and taking the operator

(A.2)

for the total Hamiltonian of the perturbed system.
Here, we treat W and δλ as the perturbation operator

and the parameter of perturbation, respectively. For the
sake of simplicity, we will omit below the dependence
of the operators and of the wave functions on dynami-
cal variables, retaining only their dependence on the
parameters λ and δλ (if any).

E m1 m2 m3, ,( ) . 4m1m2E M M m3, ,( )[

+ m1 m2–( )2
E ∞ m m3, ,( ) ] / m1 m2+( )2

,

H λ( ) L λW ,+=

H λ δλ+( ) H λ( ) δλW+=
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We assume that, at λ and δλ values being consid-
ered, the ground state of the system at energy ε(λ + δλ)
is bound, so that the wave function Ψ(λ + δλ) is normal-
ized to unity. We expand the lowest eigenvalue ε(λ +
δλ) and the corresponding wave function Ψ(λ + δλ) in
a series in powers of the perturbation parameter,

(A.3)

(A.4)

Substituting expansions (A.3) and (A.4) into the
equation

(A.5)

of the relevant eigenvalue problem and equating the
coefficient at each power of the parameter δλ to zero,
we arrive at an infinite set of perturbation-theory equa-
tions. The first three of these are given by

(A.6)

(A.7)

(A.8)

Multiplying Eq. (A.7) by Ψ(1)(λ) from the left and
integrating the resulting product with respect to dynam-
ical variables, we obtain

(A.9)

Since ε(0)(λ) is the lowest eigenvalue of the operator
H(λ), the operator [H(λ) – ε(0)(λ)] is positive definite.
Therefore, the first term in (A.9) is nonnegative: it rep-
resents the expectation value of the positive-definite
operator for the wave function Ψ(1)(λ). Hence, the sec-
ond term on the left-hand side of (A.9) is nonpositive,

(A.10)

Further, we multiply Eq. (A.9) by Ψ(0)(λ) from the
left and integrate the resulting product with respect to
dynamical variables. By virtue of Eq. (A.6) and the fact
that the operator H(λ) is self-conjugate, the contribu-
tion of the term involving the second-order correction
function Ψ(2)(λ) vanishes. Considering that the unper-
turbed wave function is normalized by the condition
〈Ψ(0)(λ)|Ψ(0)(λ)〉  = 1, we find that the second-order cor-
rection to the energy is given by

(A.11)

ε λ δλ+( )

=  ε 0( ) λ( ) ε 1( ) λ( )δλ ε 2( ) λ( ) δλ( )2 …,+ + +

Ψ λ δλ+( )

=  Ψ 0( ) λ( ) Ψ 1( ) λ( )δλ Ψ 2( ) λ( ) δλ( )2 …  .+ + +

H λ δλ+( )Ψ λ δλ+( ) ε λ δλ+( )Ψ λ δλ+( )=

H λ( ) ε 0( ) λ( )–[ ]Ψ 0( ) λ( ) 0,=

H λ( ) ε 0( ) λ( )–[ ]Ψ 1( ) λ( )

+ W ε 1( ) λ( )–[ ]Ψ 0( ) λ( ) 0,=

H λ( ) ε 0( ) λ( )–[ ]Ψ 2( ) λ( )

+ W ε 1( ) λ( )–[ ]Ψ 1( ) λ( ) ε 2( ) λ( )Ψ 0( ) λ( )– 0.=

Ψ 1( ) λ( )〈 |H λ( ) ε 0( ) λ( ) Ψ 1( ) λ( )| 〉–

+ Ψ 1( ) λ( )〈 |W ε 1( ) λ( ) Ψ 0( ) λ( )| 〉– 0.=

Ψ 1( ) λ( )〈 |W ε 1( ) λ( ) Ψ 0( ) λ( )| 〉– 0.≤

ε 2( ) λ( ) Ψ 1( ) λ( )〈 |W ε 1( ) λ( ) Ψ 0( ) λ( )| 〉 .–=
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From the last two formulas, it follows that the sec-
ond-order correction to the ground-state energy is non-
positive, ε(2)(λ) ≤ 0. Taking into account the expansion
in (A.3) for the energy, we can say that the second
derivative of the ground-state energy with respect to the
parameter that enters linearly into the Hamiltonian is
indeed nonpositive, ε''(λ) ≤ 0.
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Abstract—An approach to studying three-body reactions that takes consistently into account the single-colli-
sion mechanism is discussed. Specific calculations are performed for elastic and quasielastic nucleon scattering
by a deuteron. The ability of the proposed simple approach to account for a wide range of experimental data
suggests that it can be applied to more complicated nuclear reactions. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of three-body processes in nonrelativ-
istic scattering theory furnishes important information
about fundamental problems in nuclear physics. It is
sufficient to mention that many serious difficulties
inherent in general many-body problems arise even at
the three-body level. We mean here the problem of
deriving and solving correct equations. For this reason,
not only did the advent of the set of Faddeev integral
equations [1] give impetus to a vigorous development
of the theory of three-body reactions proper, but it also
inspired hopes for evolving a consistent approach to
complicated processes.

However, a straightforward application of the Fad-
deev equations to three-body problems involves techni-
cal difficulties. For this reason, theorists usually resort
to various approximate schemes. In particular, unitary
schemes were proposed in [2–4]. However, these
schemes did not become popular because they do not
simplify calculations substantially. The method of
straightforwardly summing the truncated Watson–Fad-
deev iteration series [5] also proved to be inefficient.

Two formally different unitary approaches to study-
ing three-body reactions—the cutoff three-body
impulse approximation (CTBIA) [6] and the unitarized
three-body impulse approximation (UTBIA) [7]—
were proposed by one of the present authors (J.V. Me-
bonia). Either approach is based on consistently taking
into account the single-collision mechanism, but the
specific implementations of this were different. A
method for unitarizing the relevant amplitude on the
basis of approximately solving the Faddeev equations
in the K-matrix formalism was devised within the
UTBIA.

Provided that the stringent constraints of the eikonal
approximation are met and that the particles constitut-
ing the target nucleus are frozen, the differential elastic-
scattering cross section calculated within the UTBIA
coincides with the well-known Glauber–Sitenko for-
mula [8, 9].
1063-7788/00/6312- $20.00 © 22085
In the CTBIA, it is stated that, under certain condi-
tions, the Faddeev equations can be solved in the T-
matrix formalism by retaining only first-order terms.
However, such terms would correspond to a single col-
lision proper only if the incident particle (say, particle 1)
does not interact simultaneously with the two particles
forming the bound state (particles 2 and 3). These unde-
sirable interactions can be eliminated by cutting off the
Fourier transform of the radial wave function ϕ(r) for
the bound state: G(q)  G(q, R), where

(1)

The cutoff radius R must be greater than the de Broglie
wavelength λ associated with the motion of particle 1
with respect to the (2, 3) system. It can be expressed in
terms of the absolute value of the relevant momentum
w as (see Fig. 1)

(2)
where C is a constant that ensures fulfillment of the
requirement λ ≤ R. The amplitude for three-body scat-
tering within the CTBIA then assumes the form

(3)

where tj is the two-body scattering matrix for particles
l and n ( j ln = 123, 231, 312); Φi and Φf are the asymp-
totic functions associated with the initial and the final

state, respectively; and  is the operator of antisymme-
trization with respect to identical particles.

G q R,( ) 2/π r2drϕ r( ) qr( )sin
qr

------------------.

R

∞

∫=

R C/ w ,=

M fi Â Φ f t j
j 2 3,=
∑ Φi ,=

Â

1

2

3

w
R

Fig. 1.
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This brings up the question of why the cutoff
according to Eq. (1) leads to unitarization of the ampli-
tude for single scattering. As early as 1973, Nakamura
[10] showed that, in the expansion of the amplitude for
three-body scattering in two-particle partial-wave
amplitudes, three-particle unitarity is violated by par-
tial-wave amplitudes associated with low orbital angu-
lar momenta. For this reason, it was proposed to intro-
duce a cutoff in orbital space. In the semiclassical
approximation, the orbital angular momentum, the lin-
ear momentum, and the radius vector are related as L ~
Rk. Therefore, a cutoff in orbital space at a given value
of energy must be equivalent to a cutoff in coordinate
space. For this reason, the CTBIA can be considered as
a qualitative alternative to the UTBIA, because the lat-
ter has a firmer theoretical ground than the former. Nev-
ertheless, the CTBIA proved to be an efficient scheme
for treating various three-body processes [11–13].
Later on, the equivalence of the two approaches was
proven in [14] for the example of nucleon–deuteron
collisions.

The objective of the present study is to test the
potential of the CTBIA by extending the analysis of
three-body reactions to the cases of the elastic and
quasielastic nucleon–deuteron scattering processes
d(N, N)d and d(N, 2N)N.

2. ELASTIC-SCATTERING PROCESS d(N, N)d

The advent of the Faddeev equations initiated inten-
sive investigations into the physics of elastic Nd scatter-
ing [15–17]. The problem can be solved in a closed
form for any realistic nucleon–nucleon (NN) potential.

0 80 160

800
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80

160 1600

θc.m., deg

dσ/dΩ, mb/sr

Fig. 2. Differential cross section for elastic Nd scattering as
a function of the scattering angle θc.m. in the c.m. frame at
the laboratory incident-neutron energy of En = 14.1 MeV.
Presented in the figure are the results of the calculations per-
formed (solid curve and left scale) with and (dashed curve
and right scale) without a cutoff. The experimental data (left
scale) were taken from [19].
P

These potentials leading to the same results for the on-
energy-shell amplitudes of nucleon–nucleon scattering
may yield, however, different results for the off-energy-
shell amplitudes. The off-energy-shell partial-wave
amplitudes are required for solving the Faddeev equa-
tions at various energies. Owing to this, a comparison
of such solutions obtained with a sufficiently high pre-
cision with experimental data may be helpful in choos-
ing between various NN potentials. In this respect, valu-
able information comes not only from the differential
cross sections but also from the so-called polarization
asymmetry.

There is yet another important possibility associated
with studying Nd scattering. Such studies make it pos-
sible to test various approximate methods for solving
three-body problems in order to extend them to more
complicated cases. This served as motivation for apply-
ing the CTBIA, the simplest unitary scheme, to elastic
Nd scattering.

Formula (3) implies that the differential cross sec-
tion for elastic Nd scattering in the c.m. frame can be
represented in the form

(4)

where

(5)

(6)

Ψd is the total deuteron wave function, m is the nucleon
mass, Q is the deuteron binding energy, and k0 (k) is the
momentum of the incident nucleon in the initial (final)
state. Summation in formula (4) is performed over the
nucleon- and deuteron-spin projections prior to and
after a collision event; explicitly, these spin projections,
as well as the functions G(p0) and G(p0, R), appear after
expanding Ψd and tj in partial waves.

We use the system of units in which " = c = 1. In our
calculation, the two-nucleon off-energy-shell T matrix
and the radial part of the deuteron wave function were
constructed for the nonlocal separable Mongan poten-
tial [18].

We have calculated the differential cross section for
elastic Nd scattering as a function of the scattering
angle θc.m. The results of this calculation are displayed
in Figs. 2 and 3, along with relevant experimental data
at energies 14.1 and 22.7 MeV in the laboratory frame.
The solid curve and the left scale show the results
obtained within the CTBIA, whereas the dashed curve
and the right scale correspond to similar calculations
without a cutoff. Experimental data (left scale) were
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taken from [19, 20]. In the calculations, we took into
account the 1S0, 1P1, 1D2, 3S1 + 3D1, 3P0, 3P1, 3P2 + 3F2,
and 3D2 two-nucleon states. However, the eventual
results are dominated by the contribution of zero par-
tial-wave amplitudes, since we restrict our consider-
ation to sufficiently low energies.

As can easily be seen, the results that the cutoff-free
impulse approximation, which is usually associated
with the single-collision mechanism, yields for the dif-
ferential cross section differ sizably from experimental
data both in shape and in magnitude.

On the other hand, even the unitarization procedure
as simple as the application of cutoff to the bound-state
wave function improves considerably the agreement
between the theoretical results and the experimental
data. Nevertheless, some qualitative discrepancies still
remain. This might have been expected because we use
an approximate method for solving the problem. It is
quite natural that rigorous calculations on the basis of
the Faddeev equations adequately describe elastic Nd
scattering.

3. QUASIELASTIC-SCATTERING 
REACTION d(N, 2N)N

All that was said in the preceding section about elas-
tic Nd scattering remains in force for the quasielastic-
scattering reaction d(N, 2N)N. Moreover, the latter reac-
tion offers additional possibilities for studying a three-
nucleon system in the region of the continuous spec-
trum. This allows one to obtain new information about
the properties of the two-nucleon off-energy-shell
amplitudes. In what follows, we show that, within the
CTBIA, the matrix element for the quasielastic-scatter-
ing reaction d(N, 2N)N can be expressed directly in
terms of the half-off-energy-shell amplitudes for
nucleon–nucleon scattering, a circumstance of para-
mount importance indeed, which renders the analysis
of NN interactions clearer than the analysis of elastic
Nd scattering, because, in the latter case, one deals with
integrals involving the off-energy-shell NN amplitudes
[see Eq. (5)] and not the amplitudes themselves.
Finally, the reaction d(N, 2N)N represents the simplest
process from a wide class of quasielastic-scattering
reactions. The majority of such reactions involve rather
complex fragments, and the relevant matrix elements are
expressed in terms of two-fragment off-energy-shell
amplitudes, which are usually determined from experi-
mental data on free fragment scattering. Such a determi-
nation is possible only if the difference between the off-
and on-energy-shell amplitudes is disregarded or if two-
fragment phenomenological potentials are used. It is con-
ceivable that, at moderately low energies, a microscopic
description of the interaction between the fragments as
composite objects consisting of nucleons is essential. But
prior to proceeding to study these reactions at the micro-
scopic level, it is reasonable to test the method to be used
by applying it to simpler processes like the reaction
d(N, 2N)N.
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
We denote by k0 the laboratory momentum of the
incident nucleon and by k1, k2, and k3 the momenta of
the scattered nucleons. Usually, experiments of this
type are performed in coplanar geometry, and the quan-
tity subjected to investigation is the differential cross
section as a function of the scattering angles of two
final-state nucleons and the energy of one of these. The
remaining kinematical quantities are determined from
the law of energy–momentum conservation.

Within the CTBIA, the differential cross section for
the reaction d(N, 2N)N has the form

(7)

where

(8)

(9)

The rest of the notation and the computational proce-
dure are identical to those in the preceding section.

Measurements are usually performed in such a way
that the scattering angles are fixed, so that the differen-
tial cross section is determined as a function of the
energy E1 of one of the recorded nucleons. In recent
years, however, measurements often determine the dif-
ferential cross section as a function of the so-called arc
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Fig. 3. As in Fig. 2, but for En = 22.7 MeV. The experimental
data (left scale) were taken from [20].
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length S [21–24], which is related to the energies of the
final-state particles by the equation

(10)

and which is required to satisfy the condition S = 0 at
E2 = 0 and E1 ≠ 0.

A preliminary CTBIA analysis of the differential
cross section for the reaction d(N, 2N)N as a function of
the energy E1 was performed in [11–14]. Here, we pur-
sue the analysis of this dependence (see Figs. 4–6) fur-
ther, considering quite a wide range of incident-
nucleon energies (E0 = 10–160 MeV). Figures 7 and 8

dS dE1
2 dE2

2+=

Fig. 4. Differential cross sections for the reactions (a) d(p,
2p)n and (b) d(p, pn)p as functions of the energy E1 of a
recorded proton at scattering angles of θ1 = 42.5° and θ2 =
–42.5° and the incident-proton energy of E0 = 30 MeV.
Solid curves represent the results of the calculations that
were performed (thick curves) with and (thin curves) with-
out a cutoff and which take into account all phase shifts in
each case. Dash-dotted and dotted curves correspond to
similar calculations that were performed, respectively, with
and without a cutoff and which take into account only the
6-wave phase shifts in each case. The experimental data
were taken from (‡) [25] and (b) [26].
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display the differential cross section  as a

function of S. Solid curves represent the results of the
calculations that take into account all phase shifts (thick
curves) with and (thin curves) without a cutoff, while
dash-dotted and dotted curves correspond to analogous
calculations taking into account only the 6-wave
phases shifts. Experimental data were taken from [22,
25–28]. It can easily be seen that the introduction of the
cutoff improves the agreement between the theoretical
result and experimental data on the differential cross
section both in magnitude and in shape. With increas-
ing energy, the role of the cutoff becomes less pro-
nounced, which primarily concerns the differential
cross section. This must have been expected because, as
the energy is increased, the wavelengths of the collid-
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Fig. 5. As in Fig. 4‡, but for θ1 = 43.57°, θ2 = –43.57°, and
E0 = 85 MeV. The experimental data were taken from [27].
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Fig. 6. As in Fig. 4‡, but for θ1 = 52°, θ2 = –40° and E0 =
156 MeV. The experimental data were taken from [28].
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ing particles decrease, and so is, according to Eqs. (1)
and (2), the contribution associated with the discarded
part of the bound-state wave function. It is interesting
to note that, at sufficiently low energies, the cross sec-
tions for the reactions d(p, 2p)n and d(p, pn)p differ
substantially even under identical kinematical condi-
tions (see Figs. 4a, 4b). This can be explained as fol-
lows. The leading contribution to the differential cross
section comes from the amplitude describing the inter-
action between the recorded particles. At low energies,
the proton–neutron pair can be either in the 1S0 or in the
3S1 state, whereas the two protons can be only in the
first of these two state—the second is forbidden by the
Pauli exclusion principle. As a consequence, the maxi-
mum of the differential cross section for the reaction
d(p, pn)p is approximately twice as large as the maxi-
mum of the cross section for the reaction d(p, 2p)n.
This difference is reproduced by the theoretical calcu-
lations only upon introducing the cutoff—that is, if the
single-collision mechanism is consistently taken into
consideration. With increasing energy, the contribution
of other states increases, so that the difference between
the proton–proton and the proton–neutron amplitudes
gradually vanishes. Of particular interest is the depen-
dence of the differential cross section for the reaction
d(p, 2p)n on the arc length S (Figs. 7, 8). What is worthy
of note here above all is that both the magnitude of the
cross section and the shape of the corresponding curve
greatly depend on the incident-proton energy. For this
reason, we eagerly expect new experimental results in
this region at various energies and scattering angles.

Finally, we note that some degree of arbitrariness in
choosing the cutoff parameter C ≥ 1 was used to nor-
malize the theoretical plots to experimental data. It
turned out nonetheless that, in all cases considered

Fig. 7. Differential cross section for the reaction d(p, 2p)n
as a function of the arc length S at θ1 = 52°, θ2 = –63°, and
E0 = 19 MeV. The notation for the curves is identical to that
in Fig. 4‡. The experimental data were taken from [22].
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PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
here, the parameter C changed within 12% (C = 1.20 ±
0.15).

The above results reveal that the single-collision
mechanism, when consistently taken into account, has
not yet exhausted its potential, which can be of use in
studying complicated nuclear reactions. That the
CTBIA, a simple unitary method, is capable of
accounting for the experimental results considered here
demonstrates the importance of respecting basic physi-
cal principles in constructing approximate methods.
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Abstract—A model is proposed for double pion photoproduction on nuclei that is accompanied by nucleon
emission. Simple models that faithfully reproduce single-particle differential cross sections are used to describe
photon interactions with intranuclear nucleons. The calculated cross sections for pion photoproduction on 12C
nuclei are compared with inclusive pion spectra measured in the second resonance region of photon energies.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, much attention has been given to
studying modifications to the properties of hadrons
placed in a nuclear medium. The problem in question is
of interest since the internal structure of hadrons and
nonnucleonic degrees of freedom of the nucleus can
play an important role in this phenomenon of nuclear
physics [1, 2]. The question of modifications to the
properties of nucleons, mesons, and nucleon reso-
nances in a nucleus arises in studying (e, e') reactions
[3], pion-production processes [4], vector-meson-pro-
duction processes [5, 6], and other similar processes.
Results obtained by measuring the total cross sections
for photoabsorption on a proton and on C and Pb nuclei
[7] exemplify data whose analysis leads to the assump-
tion that the properties of hadrons suffer changes in a
nucleus. In particular, virtually no evidence for the
excitation of N(1520)D13 and N(1680)F15 resonances
could be seen in the energy dependences of the cross
sections for photoabsorption on nuclei. There are at
least three possible reasons for this behavior of the
cross section: (i) There exists a mechanism suppressing
the photoexcitation of the above resonances in nuclei
(modification of γN interaction in a nuclear medium).
(ii) The masses and widths of resonances excited in a
nuclear medium differ significantly from those in a vac-
uum. (iii) The dynamics of photon–nucleus interaction
is such that it smooths the energy dependence of the
cross sections.

It is obvious that a detailed analysis of individual
reactions leading to photon absorption is the most effi-
cient way toward solving this problem, but it is quite
laborious. It can easily be verified that, at an energy of
about 700 MeV, which corresponds to a cross-section
maximum associated with the photoexcitation of the
N(1520) resonance, two processes—single and double
pion photoproduction—nearly saturate the photoab-
sorption cross section. It can be expected that photon–
nucleus interaction will be dominated by the processes
of single and double quasifree pion photoproduction.
1063-7788/00/6312- $20.00 © 22091
Single quasifree pion photoproduction has been
studied for more than 20 years. As a result, a vast body
of experimental data has been accumulated over this
period of time, and theoretical models have been devel-
oped [8–12] that explain a major part of experimental
results. As to investigation of double pion photoproduc-
tion, the second process under discussion, it is still in its
infancy. There is only one experimental study, that
which is reported in [13], where the inclusive spectrum
of negative pions was measured in the energy region of
interest. Only in recent years has double pion photopro-
duction on nuclei attracted the attention of theorists
[14–16]: the inclusive total cross sections for pion pho-
toproduction in A(γ, ππ)X reactions were studied in [14,
15], while the coherent production of pion pairs on
nuclei was explored in [16]. Experimental data are
available neither for total inclusive cross sections nor
for coherent double pion photoproduction. Double pion
photoproduction on complex nuclei that is accompa-
nied by nucleon emission has been investigated neither
theoretically nor experimentally.

Information about some isotopic channels of single
and double quasifree pion photoproduction on nuclei in
the photon-energy region of interest will be obtained in
the near future from an experiment at the Tomsk syn-
chrotron, where the yields of π0p and π±p pairs originat-
ing from interactions between a beam of bremsstrahl-
ung photons having an endpoint energy of 900 MeV
and H, Li, C, and Al nuclei are being measured as func-
tions of the secondary-proton energy and of the azi-
muthal angle of pion emission.

For double pion photoproduction on nuclei that is
accompanied by nucleon emission, it is desirable to
develop a model that could be used, together with a
similar model for the production of single pions, to ana-
lyze experimental data in the second resonance region,
and it is precisely the objective that is pursued in the
present study.

The model proposed here to describe double pion
production on nuclei is based on the impulse approxi-
mation, where the amplitude of photon interaction with
000 MAIK “Nauka/Interperiodica”
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a nucleon bound in a nucleus is replaced by the ampli-
tude of photon interaction with a free nucleon. Within
this approach, which takes no account of intermediate-
isobar interaction with a nucleus, it is possible to
explain a significant part of experimental data on the
cross sections for single pion production in the reaction
12C(γ, π–p)11C in the ∆(1232) region [10–12]. Two man-
ifestations of a nucleus are usually considered in its
interaction with an isobar: (i) Because of the Pauli
exclusion principle, intranuclear nucleons restrict the
phase space of the nucleon formed in isobar decay,
whereby the isobar width is reduced. (ii) The scattering
of an isobar on intranuclear nucleons opens new chan-
nels of its decay, whereby the isobar width is increased.
According to [17], these two mechanisms governing
the changes in the isobar width compensate each other
near the ∆(1232) pole. This is one of the possible rea-
sons why quasifree pion production in the ∆(1232)
region is satisfactorily described within the impulse
approximation. That the degree to which the isobar
width changes depends on the density of nuclear matter
may be another reason for this. Because of the presence
of two strongly interacting particles in the final state of
A(γ, πN)B reactions, the cross sections for these reac-
tions are strongly suppressed by final-state interaction.
It follows that pions are more efficiently produced at
the nuclear periphery, where the modifying properties
of nuclei are weaker. In the second resonance region,
constraints associated with the Pauli exclusion princi-
ple are weaker for isobars of higher mass, N(1520) and
N(1680); as a result, their widths prove to be somewhat
greater than in a vacuum [17]. In the case of A(γ, ππN)B
reactions, however, pion production is superficial to a
much greater extent, which validated the disregard of
the interaction of intermediate isobars with the partici-
pant nucleus in the conceptual framework of the model
(impulse approximation).

The ensuing exposition is organized as follows. Three
different approximations of the amplitude for the ele-
mentary process γN  ππN that describe satisfactorily
single-particle pion and proton spectra and the experi-
mental azimuthal dependence of the charged-pion yield
as determined in Tomsk are considered in Section 2. In
Section 3, the A(γ, ππN)B amplitude is represented as the
sum of terms corresponding to quasifree, exchange, and
quasielastic pion-production mechanisms. The last two
mechanisms are dominant at low nucleon momenta. The
problem of kinematically defining one-nucleon ampli-
tudes is considered. Numerical results presented in Sec-
tion 4 for pion-photoproduction cross sections are com-
pared with experimental data.

2. PHOTOPRODUCTION OF TWO PIONS
ON NUCLEONS

The production of two pions in photon interactions
with nucleons occurs in six reactions

(a) γp  π+π–p, (b) γp  π+π0n,
P

(c) γp  π0π0p, (d) γn  π+π–n, (1)

(e) γn  π–π0p, (f) γn  π0π0n.

The most vigorous experimental investigations into
the photoproduction of two pions on a proton were con-
ducted in the late 1960s by using bubble chambers. The
cross sections for pion production on neutrons were
measured in the 1970s. A comprehensive list of refer-
ences to experimental studies performed by that time
can be found in [18]. In recent years, the advent of high-
current electron accelerators made it possible to con-
tinue investigating double pion photoproduction on a
proton by new methods ensuring a 4π coverage of mul-
tiparticle events. Some of the results obtained in Mainz
at a facility of this type (DAPHNE) are quoted in [18].
Measured total cross sections constitute the bulk of
information about double pion photoproduction. Pres-
ently, the cross section for reaction (1a) have been mea-
sured to a high statistical precision. The cross sections
for reactions (1b) and (1c) are known to a somewhat
poorer precision of (2–4)%. The accuracy achieved in
measuring the cross sections for reactions (1d) and (1e)
occurring on a neutron and leading to the formation of
charged particles in the final state is about 10%. There
are no experimental data on reaction (1f).

Concurrently, the theoretical model of the process
evolved, becoming ever more complicated, which is
reflected in the growth of the number of Feynman dia-
grams taken into account in the calculations: from 5 in
[19] to 67 in [20]. The model that was proposed in [20]
for reaction (1a) and which includes the intermediate
baryonic states N, ∆(1232), N*(1440), and N*(1520)
and the ρ meson as a two-pion intermediate resonance
was extended in [18] to other isotopic channels of the
photoproduction of two pions.

A calculation of cross sections for particle–nucleus
interactions in the impulse approximation involves
considerable technical difficulties associated with the
presence of multidimensional integrals. Such problems
arise even in the analysis of single pion production in
reactions like A(γ, πN)B. An increase in the number of
final-state particles can render these problems next to
insurmountable. For this reason, the model used to cal-
culate the amplitudes for the reactions in (1) must be as
simple as possible. Three comparatively simple model
versions satisfactorily reproducing available experi-
mental data will be considered here. Each of these is
based on experimental results for the total cross sec-
tions.

Let us represent the differential cross section for the
reaction γN  ππN in the form

(2)

dσ 2π( ) 5– δ4
Pγ PNi

Pπ1
– Pπ2

– PN–+( )=

× 1
j
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where Pγ = (Eγ, pγ),  = ( , ), and PN = (EN , pN)
are the 4-momenta of the incident photon, the initial-
state nucleon, and the final-state nucleon, respectively;

 = ( , ) and  = ( , ) are the 4-
momenta of two final-state pions; j is the particle flux;

and  is the quantity obtained by averaging the
squared modulus of the transition matrix element over
the polarization states of the photon and of the initial-
state nucleon and by summing the result over the polar-
ization states of the final-state nucleon.

From an analysis of γp  π+π–p events recorded
by a bubble chamber, it was deduced [21] that the dis-
tribution of these events with respect to the recoil-pro-
ton momentum pN is satisfactorily described by the
phase-space distribution normalized to the total cross
section σtot . Therefore, the squared modulus of the
matrix element (2) can be set to

(3)

where Stot = dmππ is the total phase

space of the reaction in question; mN is the nucleon
mass; mπ is the pion mass; mππ and m0 are, respectively,

the two-pion and the γN invariant mass;  is the

nucleon momentum in the γN c.m. frame; and  is
the pion momentum in the two-pion c.m. frame.

In the approximation specified by Eq. (3), the differ-
ential cross section with respect to the recoil-nucleon
momentum and the direction of emission in the labora-
tory frame is given by

(4)

In Fig. 1, the recoil-proton-momentum distribution
of γp  π+π–p events that was averaged over photon
energies in the range 600–700 MeV and which was
obtained on the basis of data presented in [21] is dis-
played for proton emission angles in the ranges 18°–
24° and 38°–44°. The dashed curve in Fig. 1 represents
the distribution of events that was calculated by averag-
ing the differential cross section in (4) in relevant kine-
matical regions and by performing normalization to the
total number of events recorded in the chosen photon-
energy interval. As can be seen, the distribution of
recoil protons is satisfactorily described in the approx-
imation that is specified by Eq. (3) and which does not
rely on any assumptions on the dynamics of the reac-
tion γp  π+π–p.

For charged-pion photoproduction on a proton,
Fig. 2 shows the differential cross section measured in
a beam of 730-MeV tagged photons from the synchro-
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tron of Tokyo University [22] at the polar pion emission
angle of θπ = 40°. The formation of positively charged
pions that contributed to the experimental cross sec-
tions in Fig. 2‡ was accompanied by the emergence of
charged particles. At the same time, no charged parti-
cles were found in recording pions that contributed to
the data in Fig. 2c. It can therefore be conjectured that

Fig. 1. Recoil-proton-momentum (pp) distribution of p(γ,
π+π–)p events at Eγ = 600–700 MeV in two ranges of the
recoil-proton emission angle (see main body of the text).
The experimental distributions were obtained on the basis of
data reported in [21].
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Fig. 2. Differential cross sections for charged-pion produc-
tion in the reactions (a) γp  π+ + charged particles, (b)
γp  π– + all the remaining particles, and (c) γp  π+

+ neutral particles as functions of the pion momentum pπ
(Eγ = 730 MeV, θπ = 40°). Points represent experimental
data from (d) [22] and (s) [23] as quoted in [22].
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the data in Figs. 2‡ and 2b correspond, respectively, to
positively and to negatively charged pions from the
reaction γp  π+π–p and that the data in Fig. 2c cor-
respond to positive pions from the reaction γp 
π+π0n. The dashed curves in Fig. 2 represent the cross
sections computed in the approximation specified by
Eq. (3). It can be seen that, in contrast to the proton
spectra, the pion spectra are not described by the phase-
space distributions.

According to [19, 20], the production of two pions
is dominated by the isobaric-reaction mechanism illus-
trated by the diagram in Fig. 3a. Taking this circum-
stance into account, we represent the expression for

 in the form

(5)

where m is the invariant mass of the π2N system;

B(m) =  is the Breit–Wigner func-

tion describing the mass distribution of the delta isobar;

S ' =  is the convolution of

the phase space of the cascade in Fig. 3‡ with the mass
distribution of the isobar; m∆ and Γ are the ∆(1232)

mass and width, respectively;  is the momentum of

the first pion in the γN c.m. frame; and  is the
momentum of the second pion in the π2N c.m. frame (for
further details of the notation used here, see Fig. 3‡).

In the approximation specified by Eq. (5), the
dependence of the cross sections on the momenta of the
pions π1 and π2 is given by

(6)

(7)

where m' is the invariant mass of the π1N system,  is
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Fig. 3. Diagrams representing the isobaric mechanism of
double pion photoproduction on a proton.
P

the momentum of the pion π2 in the π1N c.m. frame, and

For the scattered and the decay pion (π1 and π2 in
Fig. 3, respectively), the momentum distributions cal-
culated in the approximation specified by Eq. (5) are
represented by, respectively, the solid and the dotted
curves in Fig. 2. It can be seen that, within the experi-
mental errors, the differential cross sections (6) and (7)
satisfactorily reproduce experimental data. If, however,
we focus on the high-momentum slope of the cross sec-
tion, where the assumption that the recorded events are
associated with double pion production is more justi-
fied, we can conclude that the differential cross section
for the formation of positively charged pions in the
reaction γp  π+π–p complies better with the decay-
pion cross section (7) and that the cross section for neg-
atively charged pions rather agrees with the scattered-
pion cross section. The calculated cross sections for
negatively charged pions are in better agreement with
experimental data from [23]. The recoil-proton-
momentum distribution of γp  π+π–p events that
was calculated in the approximation specified by
Eq.  (5) and which is depicted by the solid curves in
Fig. 1 differs only slightly from the results of the calcu-
lations in the approximation specified by Eq. (3).

The exclusive differential cross sections exhibit the
highest sensitivity to reaction dynamics. Unfortunately,
there are presently no experimental data on the exclu-
sive cross sections for double pion photoproduction on
a nucleon, so that the models used cannot be subjected
to a detailed test on this basis. Information about the
azimuthal angular correlation of protons and charged
pions in the reaction γp  π+π–p was obtained from
an experiment that studied the production of πp pairs
on nuclei at the Tomsk synchrotron. For the reaction in
question, this experiment measured, as a function of the
azimuthal charged-pion emission angle φπ, the differen-
tial yield d3Y/dEpdΩpdΩπ, which is related to the cross
section

(8)

where E0 and p0 are, respectively, the energy and the
momentum of the γN system, by the equation
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In expression (9), f(Eγ) is the bremsstrahlung spectrum
normalized by the condition

,

where Eγmax is the maximal photon energy equal to
900 MeV. In the experiment, the azimuthal angle φπ
was varied in the interval 0°–40° with a step of 10°. The
azimuthal angle of proton emission was kept at a con-
stant value equal to π. At zero value of φπ, the momenta
of all particles participating in the reaction lie in the
same plane. The polar angles of pion emission and of
proton emission were chosen to be 61° and 41°, respec-
tively. A polyethylene target was used in the experi-
ment. The effect from hydrogen was determined from
the difference of the yields from the reactions occurring
on a polyethylene and on a carbon target. The differen-
tial cross section (8) for the scattered pions, that for the
decay pions, and their sum are displayed in Figs. 4‡, 4b,
and 4c, respectively, as functions of the azimuthal pion
emission angle at the proton kinetic energy of Tp =
140  MeV and the incident-proton energy of Eγ =
900 MeV. The cross sections calculated in the approxi-
mation specified by Eq. (3) and in the approximation
specified by Eq. (5) are depicted by the dotted and by
the dashed curves, respectively. The solid curves in
Fig. 4 represent the results of the calculations based on
the isobaric model proposed in [24]. This model takes
into account the contribution of two dominant diagrams
in Fig. 3: the contact diagram in Fig. 3b and the one-
pion-exchange diagram in Fig. 3c. Within this model,
the squared modulus of the transition matrix element is
given by

(10)

where

Here, λ and eλ are the photon polarization index and the
photon polarization vector, respectively; E∆ and E∆s are
the delta-isobar energies in the intermediate state and
on the mass shell, respectively; p∆ is the delta-isobar
momentum; S is the operator connecting the spin-3/2
and spin-1/2 states [25]; the isobar mass m∆ and width
Γ were chosen in accordance with [26]; and the quan-
tity S '' in (10) was determined in just the same way as
the quantities Stot and S ' in (3) and (5), respectively—
that is, by introducing a normalization of the cross sec-
tion in (2) to the total cross section σtot measured exper-
imentally.
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It can be seen that the aforementioned three approx-

imations for  lead to markedly different depen-
dences of the cross sections on the azimuthal angle. The
cross sections for scattered and decay pions in the
approximation specified by Eq. (5) differ considerably
from those in the approximation specified by Eq. (10).
However, the azimuthal dependence of the sum of the
cross sections for two pions is weakly dependent on the
model used. The results of the calculations for the azi-
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Fig. 4. Differential cross section for the reaction γp 
π+π–p as a function of the azimuthal pion emission angle φπ
at the proton kinetic energy of Tp = 140 MeV and the incident-
photon energy of Eγ = 900 MeV for (‡) scattered, (b) decay,
and (c) all product pions; (d) reaction yield as a function of the
azimuthal pion emission angle φπ at Tp = 160 ± 20 MeV.
Points represent experimental data obtained in Tomsk.



2096 GLAVANAKOV
muthal dependences of the differential reaction yields
(9) (see Fig. 4d, where these results are presented along
with experimental data obtained in Tomsk for protons
of kinetic energy Tp = 160 ± 20 MeV) show a similar
degree of distinctions. Satisfactorily reproducing the
shape of the experimental azimuthal dependence, the
calculated yield falls short of the experimental data in
absolute value.

3. A(γ, ππN)B CROSS SECTION

The differential cross section for the production of
two pions, π1 and π2, on a nucleus with the emission of
a nucleon N,

γ + A  B + N + π1 + π2,

can be represented in the form

where T is the matrix of the transition from the initial
state involving a photon and a nucleus to the final state
comprising two pions (π1 and π2), a nucleon, and a
residual nucleus; (pr , Er) is the 4-momentum of the
residual nucleus; and MT is the mass of the target
nucleus.

The transition matrix T can be written as [27]

(11)

where H is the Hamiltonian of the system, E is an
eigenvalue of H, VππAγ is the photon–nucleus interac-
tion resulting in the production of two pions, VππA is the
interaction of the pions with the residual nuclear sys-
tem, and VNB is the interaction of the nucleon involved
with the set of nucleons forming the nucleus B.

In the impulse approximation, the matrix element of
the interaction VππAγ has the form [28]

where xj is the complete set of variables (spatial, spin,
and isospin ones) of the jth nucleon; the integral sign
denotes integration with respect to spatial variables and
summation over spin and isospin variables; tππNγ is the
operator of pion photoproduction on a free nucleon; q =
pγ –  – ; Ψi = Ψα(x1, …, xA) is the antisymmetric
wave function of nucleus A in the state α; and Ψf is the
wave function of the system consisting of the residual
nucleus B and the knock-on nucleon.

Representing Ψf as the antisymmetrized product of
the wave function ϕn(x1) of a free nucleon in the state n

dσ 2πδ Eγ MT Eπ1
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× T
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A

∑
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P

and the wave function Ψβ(x2, …, xA) of the residual
nucleus B in the state β and the multiparticle wave func-
tion of nucleus A as a linear combination of the prod-
ucts of the wave functions of the system formed by A –
1 nucleons and one more nucleon, we can recast the
expression for the matrix element TIA into the form [29]

(12)

where

Here, the  sign denotes summation over spin and
isospin states and integration with respect to the
momentum of the relevant particle;

is the amplitude of pion production on a nucleon;

is the amplitude of pion production on a nucleus
formed by A – 1 nucleons; and

is an overlap integral that characterizes the probability
of the virtual-decay process A  (A – 1) + 1.

Two pole diagrams—that which features a nucleon
in a virtual state (Fig. 5‡) and that which features an
(A – 1)-nucleon nucleus in a virtual state (Fig. 5b)—
correspond to two terms in (12) [10]. These terms rep-
resent, respectively, the amplitude of quasifree pion
photoproduction and the exchange amplitude.

Let us consider the second term in the transition
matrix as given by (11). For a first approximation, the
mechanism of A(γ, ππN)B reactions is determined by
the dynamics of the nuclear system involved. In
expression (11), we therefore disregard the interaction
VππA . Under the assumption that the Green’s function
(E + iη – H)–1 is diagonal in the intermediate states, the
matrix element for the simplest intermediate state—
that is, a state where there is only one virtual particle,
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an excited nucleus A* in our case—can be represented
as [30]

where 〈α* |tππAγ|α〉 is the amplitude of partial pion pho-
toproduction accompanied by the transition of the tar-
get nucleus to the α* state, Eα* is the energy of the

nucleus in this state, and the  sign denotes summa-
tion over discrete states of the nucleus and integration
with respect to its momentum.

This expression is represented by the diagram in
Fig. 5c; following the terminology adopted in [27], we
will refer to the corresponding pion-production mecha-
nism as a quasielastic mechanism.

Thus, the transition matrix T taken in the approxi-
mation described above appears to be the sum of three
terms,

(13)

which correspond to the quasifree, the exchange, and
the quasielastic mechanism of pion production in
A(γ, ππN)B relations.

In the resonance energy region, where the cross sec-
tion shows sharp variations, it is of paramount impor-
tance to give a correct kinematical definition of the
pion-photoproduction amplitude—to a great extent,
what must be done for this reduces to taking correctly
into account the Fermi motion of intranuclear nucleons
and to considering that these nucleons are off the mass
shell. We will proceed as follows. In the terms of the
amplitude in the laboratory frame that correspond to
the above three reaction mechanisms, the structures
determining the kinematics of the amplitude for pion
photoproduction on a nucleon in the plane-wave
approximation are given by

(14)

where rA – 1 and rA – 2 are the coordinates of the nucle-
ons with respect to the centers of mass of the (A – 1)-
nucleon and the (A – 2)-nucleon system, respectively;
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Ψα(r) is the single-particle wave function of a bound
nucleon in the state α; and  and  are the nucleon-
momentum operators in, respectively, the initial and the
final state (these operators appear in the amplitude
tππNγ).

Substituting the bound-nucleon wave functions in
the form of expansions in the eigenfunctions of the
momentum operator into (14), we obtain

(15)

(16)

where Ψα(p) is bound-nucleon wave function in the
momentum representation, while tππNγ(pf , pi) is the
amplitude for pion photoproduction on a nucleon (pi
and pf

 

 are, respectively, the initial-state and the final-
state momentum).

In expressions (15) and (16) for the exchange and
the quasielastic mechanism, respectively, the one-
nucleon amplitude is averaged over nucleon momenta
with a weight appearing to be the transition density of
the momentum distribution of intranuclear nucleons.
Commonly, use is made here of the factorization
approximation: the one-nucleon amplitude is factored
outside the integral sign at the momentum value corre-
sponding to the maximal transition density. In the oscil-
lator model, the transition density

of the momentum distribution—generally, it depends
on the initial and on the final state of the nucleon—is

maximal at 
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In this case, which occurs quite frequently, the labora-
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mechanism in the factorization approximation and for
the quasifree mechanism are given by

(17)

It is well known that the factorization approxima-
tion is quite satisfactory if the amplitude of the reaction
occurring on a nucleon changes slowly in the region
being considered. Otherwise, the exact expressions
(15) and (16) must be used to calculate the amplitudes
for the exchange and for the quasielastic mechanism.

The averaging of the amplitude for pion production
on a free nucleon in (15) and (16) over the states of
intranuclear nucleons smooths the energy dependence
of the cross section for the reaction occurring on a
nucleus. In view of this, the region dominated by the
quasifree mechanism of pion photoproduction is more
appropriate for experimentally studying in-medium
changes in the properties of resonances because, there,
the kinematics of final-state particles furnishes the vast-
est amount of information for determining the one-
nucleon amplitude.

In order to specify kinematically the one-nucleon
amplitude for the quasifree reaction mechanism, quan-
tities that describe the state of the particles participating
in reactions of the Ni(γ, ππ)N type are assigned the val-
ues of the analogous quantities for the corresponding
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Fig. 6. Differential ross section for the reaction 4He(γ, π+π–

p)3H as a function of the proton momentum at the incident-
photon energy of Eγ = 700 MeV. The curves labeled with the
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reaction on a nucleus, A(γ, ππN)B. In the Ni rest frame,

the photon energy  is given by

where  is the free-nucleon mass and mππN = [(  +

 + EN)2 – (  +  + pN)2]1/2 is the invariant mass
of the π1π2N

 

 system. It is of importance that the active
nucleon is taken to be off the mass shell. From (17) and
from the conservation of energy at the vertex of the vir-
tual decay 
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 vertex as well. That the one-
nucleon amplitude was kinematically defined in this
way made it possible to describe satisfactorily the
energy dependence of the cross section for quasifree
single negative-pion photoproduction in the 

 

∆

 

(1232)

 

region [31].

4. NUMERICAL RESULTS

From the numerical results displayed in Fig. 6, we
deduce qualitative information about the kinematical
regions where the reaction mechanisms corresponding
to the three diagrams in Fig. 5 are operative. The con-
tributions of the three amplitudes in (13) to the cross
section for the reaction 
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He(
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π
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 are shown in
Fig. 6 as functions of the proton momentum. The calcu-
lation that yielded these results was performed in the
plane-wave approximation on the basis of expression
(3) for the amplitude of the reaction 

 

p

 

(

 

γ

 

, 

 

π

 

+

 

π

 

–

 

)

 

p

 

. The
contribution from the two lowest excited states of the

 

4

 

He nucleus at 20.1 and 21.1 MeV (their quantum num-
bers are 0

 

+

 

0 and 

 

0

 

–

 

0

 

, respectively) were taken into
account in calculating the amplitude for the quasielastic
reaction mechanism. It was assumed that the configura-
tions of these 

 

0
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 and 
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 states are (
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) and
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). It can be seen that the quasifree pion-photo-
production mechanism is dominant for proton
momenta exceeding the characteristic intranuclear-
nucleon momentum of about 200 MeV/

 

c

 

. The
exchange- and the quasielastic-mechanism contribu-
tion overlap in Fig. 6, but they are separated to a con-
siderable extent in the dependence of the cross section
on the invariant mass of the 

 

p

 

3

 

H

 

 system; at the minimal
excitation energy, these mechanisms can also be sepa-
rated by studying the differential cross section with
respect to the angle of divergence of the proton and the

 

3

 

H nucleus.
Figure 7 shows the inclusive spectra of negative

pions that were formed in the interactions of photons
having energies in the intervals 515–595, 595–675, and
675–755 MeV with 

 

12

 

C nuclei and which were emitted
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at an angle of 41° with respect to the photon-beam axis
[13]. The relevant data come from the experiment that
was performed at the synchrotron of Tokyo University.
The experimental results are presented in the form of
the dependence on the difference ∆p of the momentum
p0 that follows from the kinematics of single pion pro-
duction on a free nucleon and the momentum of the
recorded pion. It is rather difficult to analyze these data
since negatively charged pions can be formed in many
processes at these energies. However, the contribution
of some single-pion-production processes where the
final nucleus occurs in a bound state can be disregarded
because, under the kinematical conditions being con-
sidered, the minimal absolute value of the momentum
transfer, |pγ – pπ|, exceeds 300 MeV/c. For the same
reason, it is legitimate to disregard the exchange and
the quasielastic mechanism of single pion photopro-
duction accompanied by nucleon emission.

In the quasifree approximation, negative pions can
be formed via single pion photoproduction in the reac-
tion

(18)

and via three double-pion-photoproduction processes

(19)

In Fig. 7, the curves labeled with the symbol π rep-
resent the cross section calculated for reaction (18) in
the quasifree approximation with distorted waves,
while the curves labeled with the symbol ππ corre-
spond to the sum of the cross sections calculated for
three double-pion-photoproduction reactions (19)
within the approximation specified by Eq. (5). The
final-state interaction was taken into account in the
eikonal approximation. The potential that was pro-
posed in [32] and which describes satisfactorily the
effect of proton interaction with a residual nucleus in
the single-pion-production process at energies in the
∆(1232) region [33] was taken here for the nucleon–
nucleus optical potential. The pion wave function was
distorted by the optical potential used in [34]. The
states of intranuclear nucleons were described by oscil-
lator wave functions characterized by the oscillator
parameter equal to the charge radius of the 12C nucleus.

The high-momentum section of the pion spectrum
(small negative values of ∆p) is satisfactorily described
by the contribution from the single quasifree photopro-
duction of negatively charged pions. The contribution
of double quasifree pion photoproduction faithfully
reproduces the rate of the cross-section growth with ∆p
in the region ∆p > 100 MeV/c. At the minimal photon
energy, the absolute value of the cross section for the
reactions in (19) around the maximum is nearly one-
half as large as the experimental inclusive cross section.
As the photon energy is increased, the agreement
between the computed and measured cross sections is

C12 γ π–
p,( ) C11

C12 γ π–π+
p,( ) B11 , C12 γ π–π+

n,( ) C,11

C12 γ π–π0
p,( ) C11 .
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substantially improved. It is worth noting that the filling
of the cross section minimum is more pronounced in
the region where the cross sections for single and dou-
ble photoproduction overlap. One of the possible rea-
sons behind underestimating the experimental cross sec-
tions in this region of the pion spectra may be associated
with the contribution of the coherent photoproduction of
two pions on a carbon nucleus in the reaction 12C(γ, π–

π+)12C [16]. In the same interval of pion momenta, it is
natural to expect manifestations of the exchange and of
the quasielastic mechanism of the reactions in (19).

In analyzing experimental results for the photoab-
sorption cross section, it is of interest to compare the
total cross sections for single and double pion photo-
production on a proton with the total cross sections
(integrated over the total phase space) for quasifree sin-
gle and double pion photoproduction on a 12C nucleus.
This comparison makes it possible to assess a minimal
degree of the changes that the energy dependence of the
cross section for the reaction occurring on a nucleus
may suffer within the impulse approximation. It can be
expected that the contributions from other photoab-
sorption channels will provide a poorer description of
the cross section for photon–nucleon interaction.

In Fig. 8‡, the dashed and the dash-dotted curve rep-
resent the total cross sections for the reactions p(γ, π0)p
and p(γ, π+)n, respectively, as functions of the total c.m.
energy s1/2. These cross sections were obtained by inte-
grating the experimental differential cross sections
dσ/dΩ* represented in the form of an expansion in

powers of cos . The expansion coefficients were
taken from [35]. The dotted curve corresponds to the
sum of the total cross sections for the double-pion-pho-
toproduction reactions p(γ, π+π–)p, p(γ, π+π0)n, and
p(γ, π0π0)p [18]. In Fig. 8‡, the solid curve represents
the sum of the total cross sections for single and double
pion photoproduction on a proton as a function of
energy. The same notation for the curves is used in

θπ*

0.8

0.4

0
–200 2000 400 0 200 400 0 200 400

πππππππππ

Eγ = 515–595 MeV Eγ = 595–675 MeV Eγ = 675–755 MeV

d2σ/dpπdΩπ, µb (MeV/Ò sr)–1

p0 – pπ, MeV/Ò

Fig. 7. Differential cross section for the reaction 12C(γ, π–)X
as a function of the difference of the momentum p0 that fol-
lows from the kinematics of single pion production on a free
nucleon and the recorded-pion momentum pπ (θπ = 41°).
Experimental data were borrowed from [13].
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Fig. 8b to depict the cross sections for single pion pho-
toproduction in the reactions

(20)

and the sum of the cross sections for double pion pho-
toproduction in the reactions

(21)

These cross sections were calculated in the quasifree
approximation with distorted waves by using Eq. (5). In
the quasifree approximation, reactions (20) and (21)
proceed via photon interaction with the protons of the
12C nucleus. The final-state interaction was taken into
account in the eikonal approximation (the relevant
details were described above in connection with inter-
preting the negative-pion spectra displayed in Fig. 7).
The data in Figs. 8‡ and 8b are presented in the same
form as the measured cross sections in [7]: the same
photon energy in the laboratory frame for the reaction
on a proton and for the reaction on a nucleus corre-
sponds to a specific value of s1/2.

In the energy range being considered, the energy
dependence of the cross section for pion photoproduc-
tion on a free proton is governed by three factors:
∆(1232) excitation; a sharp growth of the cross section

C12 γ π0
p,( ) B11 , C12 γ π+

n,( ) B11

C12 γ π+π–
p,( ) B11 , C12 γ π+π0

n,( ) B,11

C12 γ π0π0
p,( ) B11 .

(a)

(b)
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ππ

πππ+

π0

σtot, µb

Fig. 8. (a) Cross sections for the reactions p(γ, π0)p and p(γ,
π+)n and sum of the cross sections for double pion photo-
production in the reactions p(γ, π+π–)p, p(γ, π+π0)n, and p(γ,
π0π0)p and (b) cross section for single pion photoproduction
in the reactions 12C(γ, π0p)11B and 12C(γ, π+n)11B and sum
of the cross sections for double pion photoproduction in the
reactions 12C(γ, π+π–p)11B, 12C(γ, π+π0n)11B, and 12C(γ,
π0π0p)11B as functions of the total c.m. energy s1/2.
P

for double pion production—at s1/2 ~ 1500 MeV, this
cross section reaches a maximum value; and the reso-
nance contribution of N(1520) to the cross section for
all processes. Effects resulting from the fact that intra-
nuclear nucleons are in a bound state are vividly exem-
plified by observables of the reactions p(γ, π0)p and
12C(γ, π0p)11B: the cross-section maximum associated
with the excitation of the ∆(1232) isobar is shifted to
the region of higher energies with increasing width of
the peak. Qualitatively similar changes in the cross sec-
tion are observed in the N(1520) region.

Final-state interaction has a pronounced effect on
the energy dependence of the cross section. At a reso-
nance photon energy, the mean energy of product pions
does not have a resonance value with respect to the
interaction with nucleons at rest. This leads to a shift of
the maximum of the cross-section suppression to the
region of higher photon energies. It follows that not
only does the final-state interaction suppress the cross
section in the ∆(1232) region by a factor greater than 3,
but it also deforms considerably the energy dependence
of the cross section. The latter effect is especially pro-
nounced when one compares the cross sections for the
production of positively charged pions in the reactions
p(γ, π+)n and 12C(γ, π+n)11B. In the N(1520) region, the
final-state interaction changes the relationship between
the cross sections for single and double pion photopro-
duction. Because of the presence of two pions, the sec-
ond process is more sensitive to nuclear-medium
effects than the first one. The suppression of the cross
section for double pion production because of pion
interaction with the residual nucleus is enhanced when
we approach the region where both pions reach the res-
onance energy with a high probability, in which case
the cross-section maximum in the N(1520) region
becomes more pronounced.

By comparing the sum of the total cross sections for
single and double pion production on a free proton with
that for the analogous processes on a nucleus, we can
conclude that, although the energy dependence of the
cross section for the reaction occurring on a nucleus
basically reproduces typical features of the cross sec-
tion for the analogous reactions on a proton, the energy
dependence of the former has a less pronounced struc-
ture. The cross-section minimum between the two res-
onance regions is filled sizably, but not to an extent suf-
ficient for explaining the absence of a maximum in the
energy dependence of the photoabsorption cross sec-
tion at the position of the N(1520) resonance. It should
be borne in mind, however, that, with allowance for the
isotopically symmetric reactions

the cross sections displayed in Fig. 8b saturate only 30–
40% of the photoabsorption cross section and that the

C12 γ π0
n,( ) C11 , C12 γ π–

p,( ) C11 ;

C12 γ π+π–
n,( ) C11 , C12 γ π–π0

p,( ) C11 ,

C12 γ π0π0
n,( ) C11 ,
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effect of N(1520) excitation is somewhat smaller in
photon–neutron interactions [18, 36].

A result that is qualitatively similar (to that
described above) in what is concerned with the mani-
festations of the cross-section maximum at the position
of the N(1520) resonance was obtained in the semiclas-
sical transport model used in [17] to explain the cross
section for photoabsorption on 40Ca. According to the
estimates presented there, the isobar width increases in
a nucleus by 20–40 MeV, which is one order of magni-
tude less than what is required for explaining the pho-
toabsorption cross sections [37].

5. CONCLUSION

Reactions of the A(γ, ππN)B type, which represent
one of the main channels of photon absorption by a
nucleus in the second resonance region of energies,
have been analyzed. The reaction amplitude has been
represented as the sum of the amplitude for quasifree
pion production, the exchange amplitude, and the
quasielastic amplitude. In the quasielastic process, the
production of a pion pair is accompanied by the excita-
tion of the nucleus, which further decays via the emis-
sion of a nucleon. The quasifree mechanism of pion pro-
duction is dominant in the kinematical region where the
proton momentum exceeds a value of about 200 MeV/c.

For the N(γ, ππ)N reactions, three models have been
considered here. These are (i) the phase-space model,
which satisfactorily reproduces the results of bubble-
chamber measurements for recoil-proton-momentum
distributions of events of the reaction p(γ, π+π–)p;
(ii) the phase-space model embedded in the isobaric
model—this approach makes it possible to describe the
spectra of charged pions from the reactions p(γ, π+π–)p
and p(γ, π+π0)n induced by a beam of tagged photons
from the synchrotron of Tokyo University; and (iii) the
isobaric model that takes into account the contribution
of the contact diagram and the contribution of the pion-
exchange diagram. For the shape of the azimuthal
dependence of the yield from the reaction p(γ, π+π–)p,
all these models provide results that are in satisfactory
agreement with data obtained at the Tomsk synchro-
tron.

Within the model that takes into account single and
double quasifree pion photoproduction, the spectra of
negatively charged pions from photon interactions with
a 12C nucleus have been calculated in the second reso-
nance region of energies. The results of the calculations
satisfactorily reproduce the high-momentum contribu-
tions to the experimental inclusive pion spectrum, which
are due to single pion production; the low-momentum
spectrum is described at energies Eγ > 600 MeV. At low
momenta, the calculated spectrum associated with dou-
ble pion photoproduction falls slightly short of the
experimental spectrum.

In order to clarify the nuclear-medium effect on the
energy dependence of the cross section for pion photo-
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
production on nuclei, the energy dependence of the
total cross sections for some isotopic channels through
which the reactions 12C(γ, πN)11B and 12C(γ, ππN)11B
proceed owing to prompt photon interactions with the
protons of the 12C nucleus has been calculated in the
quasifree approximation. Together with the cross sec-
tions for isotopically symmetric channels for pion pro-
duction, the cross sections for the above processes sat-
urate 30 to 40% of the photoabsorption cross section.
These results have been compared with the cross sec-
tion for single and double pion production on a free
proton. In addition to trivial broadening of resonance
peaks, which is due to the Fermi motion of the nucle-
ons, and a shift to the region of higher energies, a pro-
nounced effect of the final-state interaction on the
energy dependence of the cross section has been
revealed. The final-state interaction deforms noticeably
the energy dependence of the cross section in the
∆(1232) region and changes the relationship between
the cross sections for single and for double pion pro-
duction at the position of the N(1520) resonance. The
cross-section minimum between two resonance regions
is partly filled. The majority of the factors listed above
smooths the energy dependence of the cross sections
for above-type reactions on a nucleus. Nonetheless, this
provides no way to explain the absence of the maxi-
mum in the cross section for photoabsorption on 12C in
the N(1520) region.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project no. 97-02-17765).

REFERENCES

1. P. J. Mulders, Phys. Rep. 185, 83 (1990).
2. N. C. Mukhopadhyay and V. Vento, RPI Internal Report

RPI-97, No. 117 (1997); nucl-th/9712073.
3. R. M. Sealock, K. L. Giovanetti, S. T. Thornton, et al.,

Phys. Rev. Lett. 62, 1350 (1989).
4. D. Pelte, nucl-ex/9902006.
5. Ye. S. Golubeva, L. A. Kondratyuk, and W. Cassing,

Nucl. Phys. A 625, 832 (1997).
6. S. H. Lee, nucl-th/9904007.
7. A. Deppman, N. Bianchi, E. De Sanctis, et al., nucl-

th/9809085.
8. A. I. Shebeko, Yad. Fiz. 14, 1191 (1971) [Sov. J. Nucl.

Phys. 14, 664 (1971)].
9. J. M. Laget, Nucl. Phys. A 194, 81 (1972).

10. I. V. Glavanakov, Yad. Fiz. 49, 91 (1989) [Sov. J. Nucl.
Phys. 49, 58 (1989)].

11. C. Bennhold, X. Li, and L. E. Wright, Phys. Rev. C 48,
816 (1993).

12. J. I. Johansson and H. S. Sherif, Nucl. Phys. A 575, 477
(1994).

13. I. Arai, H. Fujii, S. Homma, et al., J. Phys. Soc. Jpn. 45,
1 (1978).



2102 GLAVANAKOV
14. J. A. Gómez Tejedor, M. J. Vicente-Vacas, and E. Oset,
Nucl. Phys. A 588, 819 (1995).

15. M. Effenberger, A. Hombach, S. Teis, and U. Mosel,
Nucl. Phys. A 614, 501 (1997).

16. S. S. Kamalov and E. Oset, Nucl. Phys. A 625, 873
(1997).

17. M. Effenberger and U. Mosel, nucl-th/9707010.
18. J. A. Gómez Tejedor and E. Oset, hep-ph/9506209.
19. L. Lüke and P. Söding, Springer Tracts Mod. Phys. 59,

39 (1971).
20. J. A. Gómez Tejedor and E. Oset, Nucl. Phys. A 571, 667

(1994).
21. P. Brinckmann and W. Mohr, Bonn-PI-1-111 (1970).
22. K. Maruyama, H. Fujii, S. Homma, et al., J. Phys. Soc.

Jpn. 46, 1403 (1979).
23. S. Fukui, Y. Inagaki, S. Iwata, et al., Nucl. Phys. B 81,

378 (1974).
24. J. M. Laget, Phys. Rev. Lett. 41, 89 (1978).
25. H. Sugawara and F. von Hippel, Phys. Rev. 172, 1764

(1968).
26. I. Blomqvist and J. M. Laget, Nucl. Phys. A 280, 405

(1977).
P

27. M. L. Goldberger and K. M. Watson, Collision Theory
(Wiley, New York, 1964; Mir, Moscow, 1967).

28. M. Lax and H. Feshbach, Phys. Rev. 81, 189 (1951).
29. I. V. Glavanakov, Vopr. At. Nauki Tekh., Ser. Obshch.

Yad. Fiz. 1 (34), 94 (1986).
30. I. V. Glavanakov, Yad. Fiz. 50, 1231 (1989) [Sov. J. Nucl.

Phys. 50, 767 (1989)].
31. I. V. Glavanakov, Yad. Fiz. 35, 875 (1982) [Sov. J. Nucl.

Phys. 35, 509 (1982)].
32. C. J. Batty, Nucl. Phys. 23, 562 (1961).
33. I. V. Glavanakov, Yad. Fiz. 31, 342 (1980) [Sov. J. Nucl.

Phys. 31, 181 (1980)].
34. Y. Futami and J. Suzumura, Prog. Theor. Phys. 66, 534

(1981).
35. H. Genzel, P. Joos, and W. Pfeil, Photoproduction of Ele-

mentary Particles (Springer-Verlag, New York, 1973).
36. F. X. Lee, C. Bennhold, S. S. Kamalov, and L. E. Wright,

nucl-th/9806024.
37. L. A. Kondratyuk and Ye. S. Golubeva, Yad. Fiz. 61, 951

(1998) [Phys. At. Nucl. 61, 865 (1998)].

Translated by A. Isaakyan
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000



  

Physics of Atomic Nuclei, Vol. 63, No. 12, 2000, pp. 2103–2110. From Yadernaya Fizika, Vol. 63, No. 12, 2000, pp. 2199–2206.
Original English Text Copyright © 2000 by Ladygin.

                                                                                                                                 

NUCLEI
Theory

                          
Reactions p(d, p)d and p(d, p)pn as a Tool for Studying 
the Short-Range Internal Structure of the Deuteron* 

V. P. Ladygin**
Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia

Received August 5, 1999; in final form, January 18, 2000

Abstract—In recent years, the deuteron structure at short distances has often been treated from the point of
view of nonnucleonic degrees of freedom. In this study, measurements of T-odd polarization observables by
using a tensorially polarized deuteron beam and a polarized proton target or a proton polarimeter are proposed
as a means for seeking quark configurations inside the deuteron. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent experimental results concerning the struc-
ture of the deuteron led to the speculations that mani-
festations of the quark–gluon degrees of freedom are
present even at relatively large distances between
nucleons. Measurements of the cross section for the
inclusive deuteron-breakup reaction A(d, p)X on carbon
with the proton emitted at zero angle [1] showed a rel-
atively broad shoulder at internal nucleon momenta of
k ~ 0.35 GeV/c in the deuteron defined in the light-cone
dynamics [2–4]. This enhancement was observed later
at different initial energies and for different A values of
the target [5–7]. This shoulder could not be reproduced
by calculations within relativistic impulse approxima-
tion (IA) by using the standard deuteron wave functions
[8–10] or by including rescattering corrections [11].
The theoretical study of Kobushkin and Vizireva led to
the possibility that there exists a 6q admixture in the
deuteron wave function [12]. This 6q amplitude, arising
from the S configurations of six quarks, must be added
to the S component of the standard deuteron wave func-
tion with a relative phase χ. A fit to the experimental
data [5] gave the probability of the 6q configuration
about 4% and relative angle of χ ~ 82° and ~61° for
the  Paris [8] and the Reid soft-core (RSC) [9] NN
potential, respectively. An admixture of the 6q state of
about 3.4% was introduced in [13] as well to describe
the tail of the momentum spectrum for the reaction
12C(d, p)X [5].

One of the important features of this hybrid wave
function is that an additional 6q admixture masks the
node of the NN S wave, and this is drastically reflected
in the behavior of polarization observables. For
instance, data obtained at Saclay for the tensor analyz-
ing power T20 and the cross section in inclusive deu-
teron breakup at zero angle and at an initial energy of
2.1 GeV [7] were explained by the hybrid wave func-

  * This article was submitted by the author in English.
** e-mail: ladygin@sunhe.jinr.ru
1063-7788/00/6312- $20.00 © 22103
tion with ~4% of the |6q〉  probability at 55° of the rela-
tive phase between |6q〉  and the S component from the
RSC potential [9].

Recent measurements of the tensor analyzing power
T20 for deuteron inclusive breakup at 0° that were per-
formed in Saclay [7] and in Dubna [14–16] at different
energies and for different targets showed the strong
deviation from the IA predictions at k ≥ 0.2 GeV/c. The
behavior of the coefficient of polarization transfer from
a vectorially polarized deuteron to a proton (κ0) [17–
19] also disagrees with the calculations using conven-
tional deuteron wave functions at k ≥ 0.2 GeV/c. On the
other hand, both T20 and κ0 data demonstrate some fea-
tures of the IA like a weak dependence on the target
mass number A and an approximate energy indepen-
dence. A consideration of the mechanisms additional to
the IA one [20, 21] cannot explain the experimental
data.

The most intriguing feature of experimental data is
that the tensor analyzing power T20 in deuteron inclu-
sive breakup and backward elastic deuteron–proton
scattering show, at high internal proton momenta, the
same negative value of about –(0.3–0.4) [15, 16, 22],
which is incompatible with the predictions using any
reasonable nucleon–nucleon potential. Various
attempts were undertaken to explain the T20 data by tak-
ing into account nonnucleonic degrees of freedom in
the deuteron. An asymptotic negative limit on T20 was
obtained within the QCD-motivated approach pre-
sented in [23] and based on the reduced-nuclear-ampli-
tude method [24]. The results of calculations [20] with
the hybrid deuteron wave function [25] made it possi-
ble to describe satisfactorily the T20 data up to k ~
1 GeV/c [15]. Recently, the data on T20 and κ0 in the
12C(d, p)X reaction at 0° were reasonably reproduced
within a model that incorporates multiple scattering
and the Pauli exclusion principle at the quark level [26].
By additionally taking into account the exchanges of
negative-parity nucleon resonances, Azhgirey and
Yudin [27] were able to improve the agreement
000 MAIK “Nauka/Interperiodica”
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between the results of the calculations and experimen-
tal data on T20 in backward elastic dp scattering. The
tensor analyzing power Ayy obtained for deuteron inclu-
sive breakup up to proton transverse momenta of
600 MeV/c [28] also disagrees with the calculations
within the hard-scattering model [29] using conven-
tional deuteron wave functions. However, the sign of
Ayy at high proton momenta at zero angle [14–16],1) as
well as at an angle of about 90° in the deuteron rest
frame [28], is identical to that predicted by the QCD-
motivated approach used in [23].

These special features of experimental data and rel-
atively successful attempts at describing them by con-
sidering nonnucleonic degrees of freedom stimulate
possible efforts to measure additional polarization
observables that are crucial to quark degrees of free-
dom in the deuteron.

In [30], it was proposed to study the deuteron struc-
ture at short distances by using a polarized proton target
and a proton polarimeter. Here, investigation of T-odd
polarization observables [31] in deuteron exclusive
breakup in collinear geometry and backward elastic dp
scattering is considered as a means for identifying the
exotic 6q configurations inside the deuteron.

2. MATRIX ELEMENTS OF THE REACTIONS 
dp  ppn AND dp  pd 

In this section, we analyze the polarization effects in
two processes: deuteron breakup in the strictly col-
linear geometry, d + p  p(0°) + p(180°) + n, and
backward elastic deuteron–proton scattering, d + p 
p + d, using the hybrid deuteron wave function with the
complex 6q admixture.

This function can be presented in the momentum
space in the following form:

(1)

where ψp and ψn are the proton and neutron spinors,
respectively; x is the deuteron polarization vector
defined in a standard manner:

(2)

p is the relative proton–neutron momentum inside the
deuteron; and  = p/ |p| is the unit vector in the p direc-
tion. Here, S and D components are defined as

(3)

1)At zero emission angle, we have Ayy = –T20/ .2
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4π
----------ψp

α+
U p( ) s x⋅( ) ---

=

–
W p( )

2
------------- 3 p̂ x⋅( ) s p̂⋅( ) s x⋅( )–( )

 σy
αβ

ψn
β+

,

x1
1

2
------- 1 i 0, ,( ), x 1––

1

2
------- 1 i– 0, ,( ),= =

x0 0 0 1, ,( );=

p̂

U p( ) u p( ) v 0 p( )e
iχ

,+=

W p( ) w p( ) v 2 p( )e
iχ

,+=
P

where u(p) and w(p) are S and D components of the
standard deuteron wave function based on the NN
potentials, and v0(p)eiχ and v2(p)eiχ are the complex 6q
admixtures to the S and D components of the standard
deuteron wave function, respectively.

Using parity conservation, time reversal invariance,
and the Pauli exclusion principle, we can write the
matrix of NN elastic scattering in terms of five indepen-
dent complex amplitudes [32] (when isospin invariance
is assumed):

(4)

where a, b, c, d, and e are the scattering amplitudes; s1
and s2 are the Pauli 2 × 2 matrices; k and k' are the unit
vectors in the directions of the incident and scattered
particles, respectively; and center-of-mass basis vec-
tors n, l, and m are defined as

(5)

However, at a zero angle there are only three indepen-
dent amplitudes, and the matrix element (4) can be
written as [32]

(6)

where amplitudes A, B, and C are related to the ampli-
tudes defined in [32] as follows:

(7)

We consider deuteron breakup reaction in the spe-
cial kinematics, i.e., with the emission of the spectator
proton at zero angle, while the neutron interacts with
the proton target and the products of this interaction go
along the axis of the reaction.

Using both expressions (1) and (6), the matrix ele-
ment of deuteron breakup process in collinear geome-
try can be written as [30]

(8)

The matrix element of backward elastic dp scatter-
ing within the framework of one-nucleon exchange has

M k' k,( ) 1
2
--- a b+( ) a b–( ) s1 n⋅( ) s2 n⋅( )⋅+(=

+ c d+( ) s1 m⋅( ) s2 m⋅( )⋅
+ c d–( ) s1 l⋅( ) s2 l⋅( ) e s1 s2+( ) n⋅( )+⋅ ),

n
k' k×
k' k×
----------------, l

k' k+
k' k+
----------------, m

k' k–
k' k–
----------------.= = =

} 0( ) 1
2
--- A B s1 s2⋅( ) C s1 k⋅( ) s2 k⋅( )+ +( ),=

A a 0( ) b 0( ), B+ c 0( ) d 0( ),+= =

C 2d 0( ).–=

}
i

2 2
---------- 1

4π
----------ψ1

+ψ2
+

U p( ) s x⋅( )
=

–
W p( )

2
------------- 3 p̂ x⋅( ) s p̂⋅( ) s x⋅( )–( )

 σy

× A B s1 s2⋅( ) C s1 k⋅( ) s2 k⋅( )+ +( )ψ1*ψ2.
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the following form:

(9)

3. SIX-QUARK CONFIGURATIONS

In this section, we consider different models consid-
ering the quark (or baryon–baryon) degrees of freedom
inside the deuteron.

In the hybrid model of the deuteron wave function
[12], the 6q amplitude arising from the s6 configura-
tions of six quarks must be added to the S component of
the standard deuteron wave function according to the
expression

(10)

where the parameter β and the phase χ represent the
value of the 6q admixture in the deuteron and the
degree of nonorthogonality between np and 6q compo-
nents of the deuteron wave function, respectively.

The 6q admixture has the following form:

(11)

Here, factor I ≈ 0.332 is the overlap factor of color
spin–isospin wave functions, ω defines the root-mean-
square radius of the 6q configuration r2 = 5/4ω, and k is
internal momentum of a nucleon in the deuteron
defined in the light-cone dynamics [2–4].

The parameters of the 6q admixture r, β, and χ were
obtained in [33] from the fit of the experimental data on
the momentum density of the nucleon in deuteron φ2(k)
[5], tensor analyzing power T20 [16], and polarization-
transfer coefficient κ0 [17–19] for inclusive deuteron
breakup with the emission of the proton at a zero angle
using standard deuteron wave functions [8–10]. The
results of the fit are given in Table 1 and shown in Fig. 1
by the solid, dashed, and dotted curves for the RSC [9],
Paris [8], and Bonn (version C) [10] deuteron wave
functions, respectively. One can see the satisfactory
description of the experimental data. The probability of
the 6q admixture is found to be 3–4%. The relative
phase is ~40° for the RSC [9], ~47° for the Paris [8], and
55° for the Bonn (C) deuteron wave function [10]. The
radius is r ~ 0.6 fm for all used deuteron wave functions.
The parameters are comparable with the results obtained
in [7] using the RSC deuteron wave function [9].
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In [20, 25], the nonnucleonic degrees of freedom
(NN*, NNπ, and higher components of the Fock space)
were taken into account in the following way:

(12)

where Φ2(α, kt) is the distribution of constituents in the
deuteron; φNN(α, kt) is the relativized standard deuteron
wave function; Gd(α, kt) is the distribution of NN*,
NNπ, …, or 6q component in the deuteron. Parameter
β2 gives the probability of this nonnucleonic compo-

Φ2 α kt,( ) 1 β2
–( )φNN

2 α kt,( )/ 2α 1 α–( )( )=

+ β2
Gd α kt,( ),

Fig. 1. Momentum density φ2(k) [5], tensor analyzing power
T20 [16], and polarization transfer coefficient κ0 [17] (open
squares), [18] (full triangles), and [19] (full circles and
squares) versus internal momentum k in deuteron inclusive
breakup with the emission of proton at 0°. Solid, dashed,
and dotted curves correspond to calculations with hybrid
wave function [12] using the RSC [9], Paris [8], and Bonn
(C) [10] deuteron wave functions, respectively.

Table 1.  Parameters of the 6q admixture in the hybrid mo-
del [12] for various standard deuteron wave functions [8–10]

DWF β2, % χ, deg r, fm

[8] 3.42 ± 0.09 47.2 ± 0.6 0.578 ± 0.009
[9] 4.07 ± 0.10 40.1 ± 0.6 0.590 ± 0.009
[10] 2.79 ± 0.09 55.1 ± 0.7 0.595 ± 0.010
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nent. The relativistic form of the deuteron wave func-
tion φNN(α, kt) can be written according to [2–4] as

(13)

where φ(k) is the standard deuteron wave function (for
instance, [8–10]) and internal momentum k and longi-

φNN α kt,( )
mp

2
kt

2
+

4α 1 α–( )
------------------------- 

 
1/4

φ k( ),=

Fig. 2. Momentum density φ2(k) [5], tensor analyzing power
T20 [16], and polarization transfer coefficient κ0 [17–19]
versus internal momentum k in deuteron inclusive breakup
with the emission of proton at 0°. Solid, dashed, and dotted
curves correspond to calculations with the wave function
adopted in [20, 25] using the RSC [9], Paris [8], and Bonn
(C) [10] deuteron wave functions, respectively. The notation
for the points is identical to that in Fig. 1.
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Table 2.  Parameters of the 6q admixture [20, 25] for various
standard deuteron wave functions [8–10]

DWF β2, % A2 B2 χ, deg

[8] 2.96 ± 0.18 10.0* 20.23 ± 0.42 47.0 ± 0.6

[9] 3.70 ± 0.43 10.0 ± 0.9 19.87 ± 2.72 40.2 ± 0.6

[10] 2.67 ± 0.19 10.0* 19.46 ± 0.48 54.6 ± 0.7

* This parameter is fixed.
P

tudinal momentum fraction α are defined as [2–4]

(14)

Here, k|| is the longitudinal momentum in infinite
momentum frame and mp is the nucleon mass.

The expression for nonnucleonic component Gd(α,
kt) is written as [25]

(15)

with

(16)

where Γ(…) denotes the Γ function. The parameter b is
chosen to be 5 GeV/c. We assume that nonnucleonic
component (15), (16) has the relative phase χ with the
S wave of the standard deuteron wave function [20].

The results of the fit of the experimental data [5, 16–
19] are given in Table 2 and shown in Fig. 2 by the
solid, dashed, and dotted curves for RSC [9], Paris [8],
and Bonn (C) [10] deuteron wave functions, respec-
tively. The probability of the nonnucleonic component
is found to be also ~3%. The relative phase χ between
NN and nonnucleonic components is 40°–60°. The
parameters A2 and B2 are found to be approximately the
same for Paris [8], RSC [9], and Bonn (C) [10] deu-
teron wave functions. Note that all the used NN deu-
teron wave functions provide satisfactory agreement
with the existing data; however, using the RSC deu-
teron wave function gives a better description of the
polarization transfer coefficient κ0.

4. T-ODD POLARIZATION EFFECTS

Let us define the general spin observable of the third
order in terms of Pauli 2 × 2 spin matrices σ for protons
and a set of spin operators Sλ for the spin-one particle
for both reactions as [34]

(17)

where indices α and λ refer to the initial proton and
deuteron polarization, and index β refers to the final
proton, respectively.

We use a right-hand coordinate system, defined in
accordance with Madison convention [35]. This system
is specified by a set of three orthogonal vectors L, N,
and S, where L is the unit vector along the momenta of
the incident particle, N is taken to be orthogonal to L,
and S = N × L.

k
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In this paper, we consider T-odd polarization
observables, namely, tensor-vector spin correlations
CN, SL, 0, 0 due to tensor polarization of the beam and
polarization of the initial proton and polarization trans-
fer coefficient C0, SL, N, 0 from tensor polarized deuteron
to proton in the dp  pd and dp  p(0°) + p(180°) +
n reactions. Note that such observables must be zero in
the framework of one-nucleon exchange using standard
deuteron wave functions; however, they do not vanish
with the existing 6q admixture in the deuteron wave
function.

Using the formulas for the matrix elements of the
p(d, p)pn and p(d, p)d reactions (8) and (9), respec-
tively, one can obtain the expression for the polariza-
tion transfer coefficient C0, SL, N, 0:

(18)

One can see that C0, SL, N, 0 does not depend on the initial
energy and is defined only by the interference between
the D wave of the standard deuteron wave function and
6q admixture. The results of the calculations with the
use of Paris [8], RSC [9], and Bonn (C) [10] deuteron
wave functions are presented in Figs. 3a, 3b, and 3c for
two different models of the 6q admixture: [12] (solid
curves) and [20, 25] (dashed curves). These two types
of hybrid deuteron wave functions give quite similar
behavior of the C0, SL, N, 0 up to k ~ 800 MeV/c; how-
ever, they differ at higher momenta. Both models pre-
dict the smooth variation of the C0, SL, N, 0 of about –1 at

C0 SL N 0, , ,
3

2
-------

wv 0 χsin

u
2

w
2

v 0
2

2uv 0 χcos+ + +
--------------------------------------------------------------.=

Fig. 3. Tensor-vector polarization transfer coefficient
C0, SL, N, 0 in deuteron exclusive breakup in the collinear
geometry and backward elastic dp scattering using 6q
admixture adopted in [12] (solid curves) and [20, 25]
(dashed curves). The curves are obtained with the use of the
(a) Paris [8], (b) RSC [9], and (c) Bonn (C) [10] deuteron
wave functions.
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k ~ 600 MeV/c. The dependence on the used NN deu-
teron wave function occurs only at high k of about
900 MeV/c. Therefore, the observation of a large neg-
ative value of C0, SL, N, 0 could indicate that quark
degrees of freedom play quite an important role in the
deuteron at large k.

Spin correlation parameter CN, SL, 0, 0 due to tensor
polarization of the beam and polarization of the initial

Fig. 4. Tensor-vector spin correlation parameter CN, SL, 0, 0
in deuteron exclusive breakup in the collinear geometry at
2.1 GeV of the deuteron initial energy using 6q admixture
adopted in [12] (solid curves) and [20, 25] (dashed curves).
The curves are obtained with the use of the (a) Paris [8], (b)
RSC [9], and (c) Bonn (C) [10] deuteron wave functions.
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Fig. 5. As in Fig. 4, but for the collinear geometry at
1.25 GeV.
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proton for the dp  p(0°) + p(180°) + n process can
be written as

(19)

CN SL 0 0, , ,

=  
3

2
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u
2
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2
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--------------------------------------------------------------Aoonn 0°( ),
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Fig. 6. Tensor-vector spin correlation parameter CN, SL, 0, 0
in backward elastic deuteron–proton scattering using 6 q
admixture adopted in [12] (solid curves) and [20, 25]
(dashed lines). The curves are obtained with the use of the
(a) Paris [8], (b) RSC [9], and (c) Bonn (C) [10] deuteron
wave functions.

Fig. 7. (a) Tensor-vector polarization transfer coefficient
C0, SL, N, 0 in deuteron exclusive breakup in the collinear
geometry and backward elastic dp scattering and (b) tensor-
vector spin correlation parameter CN, SL, 0, 0 in backward
elastic deuteron–proton scattering using results of [39] and
Paris deuteron wave function [8].
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where Aoonn(0°) is spin correlation of elastic neutron–
proton scattering at a zero angle for vertically polarized
particles (see notation used in [32, 30]). Therefore, the
behavior of CN, SL, 0, 0 in the dp  p(0°) + p(180°) + n
reaction is defined by both the deuteron wave function
and the np elementary amplitude, which is energy
dependent. The calculations of CN, SL, 0, 0 for the deu-
teron initial energy of 2.1 and 1.25 GeV using the
results of phase-shift analysis performed in [36] are
shown in Figs. 4 and 5, respectively. One can see that
CN, SL, 0, 0 is positive at 2.1 GeV up to k ~ 550 MeV/c
and negative at 1.25 GeV at k ~ 300–400 MeV/c. The
difference between the two models of 6q admixture
shown by the solid [12] and dashed [20, 25] curves for
(a) Paris [8], (b) RSC [9], and (c) Bonn (C) [10] deu-
teron wave functions is not dramatic at both energies.

Spin correlation parameter CN, SL, 0, 0 in backward
elastic deuteron–proton scattering is given by

(20)

The behavior of this observable for different types of 6q
admixture in the deuteron wave functions is shown in
Fig. 6 for (a) Paris [8], (b) RSC [9], and (c) Bonn (C)
[10] deuteron wave functions by the solid [12] and
dashed [20, 25] curves. One can see that the spin corre-
lation CN, SL, 0, 0 has a small negative value at low k, then
it approaches a minimum of –(0.7–0.8) at k ~ 400 MeV/c,
and afterwards it goes smoothly to a zero for both mod-
els of 6q component. However, the use of deuteron
wave functions with the 6q admixture adopted in [20,
25] gives systematically more negative value of spin
correlation at internal momenta ≥300 MeV/c. The use
of different NN potentials [8–10] (see Figs. 6a, 6b, and
6c, respectively) gives slightly different behavior of
CN, SL, 0, 0 for both models of 6q admixture. Neverthe-
less, one can conclude that the measurements of spin
correlation CN, SL, 0, 0 in backward elastic dp scattering
can help to distinguish between these two models.

Note that nonorthogonality in the deuteron wave
function results in the T-invariance violation, which
contradicts the experiment. However, NN and 6q com-
ponents can be orthogonalized following the procedure
described in [37]. Such a procedure only slightly
changes the probability of 6q admixture [37], but does
not affect the behavior of the considered observables.
For instance, the probability of 6q component changes
from 2.96 to 3.31% and from 3.42 to 4.17% for the
models [12] and [20, 25], respectively, in the case of the
use of the Paris deuteron wave function [8].

The six-quark wave function of the deuteron has
been calculated recently not only from s6, but also from
s4p2 configurations [38]. Such configurations are
orthogonal to the usual S and D waves in the deuteron.
Tensor analyzing power T20 and polarization transfer
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coefficient κ 0 in deuteron inclusive breakup at zero pro-
ton emission angle have been qualitatively reproduced
at large internal momenta using the results of these cal-
culations [39]. The probability of the D wave originated
from s4p2 configurations was found to be about 0.5% (a
small part of the total D wave probability ~6%). The
results on the polarization transfer C0, SL, N, 0 and spin
correlation CN, SL, 0, 0 in backward elastic dp scattering
using the Paris deuteron wave function [8] and the 6q
projection on NN component from [39] are given in
Figs. 7a and 7b, respectively. The behavior of this
observable differs significantly from the results shown
in Figs. 3 and 6. This deviation is due to presence of D
wave in the six-quark wave function. The results on
tensor-vector spin correlation CN, SL, 0, 0 in the reaction
dp  p(0°) + p(180°) + n at the initial deuteron energy
of 2.1 and 1.25 GeV are shown in Figs. 8a and 8b,
respectively. The behavior is qualitatively the same as
shown in Figs. 4 and 5; however, the value of CSL, N, 0, 0
at 2.1 GeV and k ~ 300 MeV/c is twice as much as that
in the case of absence of D wave.

One of the interesting features of QCD consists in
the possible existence of resonances in the dibaryon
system corresponding to six-quark states with domi-
nantly hidden color, i.e., the states orthogonal to the
usual np states. The rich structure in the behavior of the
tensor analyzing power T20 in backward elastic dp scat-
tering [22, 40] can be an indication of such dibaryon
resonances [41].

Of course, the mechanisms additional to one-
nucleon exchange can contribute to CN, SL, 0, 0 and
C0, SL, N, 0. However, the calculations taking into account
such mechanisms [20] show that their contribution is
small at large internal momenta. Thus, the observation
of large values of CN, SL, 0, 0 and C0, SL, N, 0 at momenta

0
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Fig. 8. Tensor-vector spin correlation parameter CN, SL, 0, 0
in deuteron exclusive breakup in the collinear geometry at
(a) 2.1 GeV and (b) at 1.25 GeV of the deuteron initial
energy results of [39] and Paris deuteron wave function [8].
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higher than 600 MeV/c could be a rather clear indica-
tion of the exotic 6q configurations.

5. CONCLUSION

We have considered T-odd observables in deuteron
exclusive breakup and backward elastic dp scattering,
namely, tensor-vector polarization transfer coefficient
C0, SL, N, 0 and tensor-vector spin correlation CN, SL, 0, 0.
These observables, which are associated with the tensor
polarization of the deuteron and the polarization of the
proton, are sensitive to quark degrees of freedom in the
deuteron and to their spin structure. The calculations
give a sizable effect at large internal momenta, which
could be measured with the existing experimental tech-
niques.

Measurement of these observables could be per-
formed at COSY at the Zero Degree Facility (ANKE)
using an internal polarized target with the detection of
two charged particles in case of deuteron breakup and
with the detection of the fast proton in case of backward
elastic dp scattering.

Such experiments could be also performed at the
Laboratory for High Energies of the Joint Institute for
Nuclear Research. The rotation of the primary deuteron
spin could be provided by the magnetic field of the
beam line upstream of the target or by the special spin-
rotating magnet.
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1. INTRODUCTION

Inclusive characteristics of neutral strange particles
produced in antiproton interactions with nuclei at inter-
mediate energies have not yet received adequate study.
Such investigations remain topical at present. Our
group has already analyzed the yields of neutral strange
particles (K 0, Λ, ) [1] and the associated multiplici-
ties of charged particles [2] produced in antiproton–
nucleus collisions at a momentum of 40 GeV/c. The
present article reports on an investigation of inclusive
features of neutral strange particles in antiproton colli-
sions with D, Li, C, S, Cu, and Pb nuclei. A global anal-
ysis of the aforementioned issues would make it possi-
ble to obtain deeper insights into the dynamics of had-
ron–nucleus interactions.

In studying antiproton–proton collisions at a projec-
tile momentum of 32 GeV/c, Bogolyubsky et al. [3]
compared the momentum characteristics of antiproton–
proton and proton–proton collisions at the same energy.

It was shown that  mesons produced in the annihila-
tion channel have broader longitudinal-momentum dis-
tributions than those in the nonannihilation channel. On
average, the kaon transverse momenta are somewhat
higher in antiproton–proton than in proton–proton
interactions.

In antiproton–proton collisions at c.m. energies of
200 and 900 GeV, the UA5 experiment [4] determined
the mean transverse momenta 〈p⊥ 〉 of neutral strange
particles in the rapidity region |y| ≤ 2 for Λ hyperons and

in the rapidity region |y| ≤ 2.5 for  mesons. The mean

values 〈p⊥ 〉Λ appeared to be greater than 〈p⊥  by a fac-

tor of 1.5 at 200 GeV and by a factor of about 1.2 at
900 GeV.

For  interactions at 200 GeV/c, the NA5 exper-
iment [5] analyzed the rapidity and transverse-momen-
tum distributions of K0 mesons and Λ hyperons. A shift
toward low rapidity values was found in the rapidity

Λ
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KS
0

〉
K

0

pXe
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distribution of K0 mesons. The leading-particle effect
was observed for Λ hyperons in the nucleus-fragmenta-
tion region.

2. DESCRIPTION OF THE EXPERIMENT 
AND PROCEDURE FOR DATA PROCESSING

An experiment that employed a relativistic ioniza-
tion streamer chamber (RISK) was performed at the
Serpukhov accelerator U-70 with the aim of studying
hadron–hadron and hadron–nucleus interactions under
the conditions of 4π coverage. A 5-m streamer chamber
that was placed in a magnetic field of strength 1.5 T and
which made it possible to measure charged-particle
momenta to within 10% served as a detector. An unsep-
arated beam that contained π–, K–, and  particles in
the proportion 98 : 1.7 : 0.3 traversed D, Li, C, S, Cu,
and Pb nuclear targets of thickness less than 1% of the
nuclear range that were arranged at a distance of 30 cm
from one another to minimize systematic errors. Eleven
targets featuring seven nuclear combinations—D, Li,
C, S, Cu, CsI, and Pb—were installed in the chamber of
fiducial volume 470 × 93 × 80 cm3. In fact, we analyzed
six pure nuclear species, discarding data on CsI
because of its complex composition. The targets were
of nonidentical thicknesses, which were reduced in
accordance with the growth of the cross section for the
production of secondary particles with increasing mass
number of the nucleus. Table 1 presents the parameters
of the targets in the same order as they were positioned
in the chamber.

Film data were viewed on a scanning table with a
magnification of 1 : 4 : 5 with respect to the actual
chamber dimensions. In scanning, we recorded all sec-
ondary two-prong stars (V 0 particles) whose total
momentum was directed toward the interaction vertex.
These events were further considered as candidates for
strange particles. After double viewing, the detection
efficiency was 99%.

p
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The vertex coordinates and the V 0-particle tracks
were measured and reconstructed within the chamber
volume. The momentum vectors and the polar and azi-
muthal emission angles for products originating from
V 0-particle decays were calculated on the basis of the
results of the reconstruction.

The candidate events were then kinematically pro-
cessed. This included calculating the coplanarity, the
mass, the total momentum, the transverse momentum,
the energy, the emission angle with respect to the pri-
mary-particle momentum, and the decay range for V0

particles. Each V 0 event characterized by a deviation
from coplanarity in excess of 6° at a root-mean-square
error of about 2° was excluded from a further analysis.
Such events were either two-prong inelastic interac-
tions of neutral particles (NI) or three-body decays.
After that, the V 0 events were identified by means of a

least squares kinematical fit to four hypotheses ( , Λ,

γ, ) at three degrees of freedom (3C fit). Each two-
prong event was taken to be unambiguously identified,
provided that χ2 did not exceed 11 for one of the

KS
0

Λ

Table 1.  Parameters of targets

Number Target Thickness, mm Labs, % Lrad, %

1 D 198 – –
2 Pb 0.867 0.315 15.480
3 S 7.123 0.890 6.720
4 Pb 0.612 0.222 10.930
5 Li 16.500 0.840 1.060
6 Pb 0.819 0.298 14.630
7 CsI 1.666 0.283 8.820
8 Cu 1.416 0.641 9.880
9 C 7.040 0.939 2.570

10 CsI 3.315 0.563 16.980
11 Cu 0.978 0.443 6.820

Fig. 1. (a) Mean emission angles 〈θ〉  for K0 mesons, Λ
hyperons, and  hyperons and (b) their mean decay ranges

versus the target mass number A. In both panels, data for K0,

Λ, and  are represented by crosses, open triangles, and
open circles, respectively.
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hypotheses. The distributions in , the transverse
momenta of decay products in the rest frame with
respect to the direction of the neutral-particle momen-
tum in the laboratory frame, were used to separate

ambiguously identified Λ/  and /  particles.

Unseparated particles were associated with  mesons

if  ≥ 105 MeV/c including the errors in the measure-
ment of this momentum. Only unambiguously identi-
fied neutral strange particles were analyzed to deter-
mine their physical properties. More details on the
selection and identification of the relevant events can be
found in [1].

3. ANALYSIS OF EXPERIMENTAL DATA

In this article, the inclusive features of neutral
strange particles as functions of the target mass number
are presented for the reactions

(1)

(2)

(3)
Figures 1a and 1b show the mean emission angles

〈θ〉  for strange particles from reactions (1)–(3) with
respect to the primary-particle momentum and their
decay ranges 〈R〉  as functions of the target mass number
A. It is obvious that 〈θ〉  is independent of A for 
hyperons and increases in nearly the same way for K0

mesons and Λ hyperons. For deuteron targets, the mean
emission angle for  hyperons is smaller than those for
K0 and Λ by a factor of about 2.5, and this difference
increases with increasing atomic number. For D, Li, C,
and S targets, the K0 and Λ decay ranges differ, but they
become indistinguishable within the measurement
errors in the case of heavy target nuclei (Cu and Pb).
With increasing A, the mean decay range is constant for
Λ hyperons and decreases in nearly the same way for K0

mesons and  hyperons.
As might have been expected, the mean decay range

〈R〉 of  antihyperons is sizably greater than the those
for K0 mesons and Λ hyperons (by factors of about 2
and 3, respectively). Since the decay range L0 = βγcτ0
depends not only on the lifetime, but also on the parti-
cle momentum,  hyperons that have β values in
excess of 0.98 decay at distances of R > 0.7 m from the
interaction vertex, and this explains the loss of 
hyperons having momenta above 20–25 GeV/c.
Lambda antihyperons that escape detection for this rea-
son originate predominantly from the targets in the sec-
ond half of the chamber in the downstream direction (C
and Cu), and that is why their mean momenta are
biased for the production processes on these targets.
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Fig. 2. (a) Mean momenta 〈 p〉  and (b) mean transverse momenta 〈 p⊥ 〉  of (crosses) K 0 mesons, (open triangle) Λ hyperons, and (open

circles)  hyperons versus the target mass number A.Λ

A102101100
Since measurements of short tracks after the ( , π+)
decay resulted in significant errors (in order that ∆p/p ~
10%, the length of such “energetic” tracks must exceed
1.5 m), these tracks were excluded from statistics.
According to our estimate, their number was about
1.5% of all observed  hyperons.

Figures 2‡ and 2b display, respectively, the mean
momenta 〈 p〉  and the mean transverse momenta 〈 p⊥ 〉  of
strange particles as functions of the mass number A. As
was mentioned above, the mean momenta of  hyper-
ons produced on C and Cu nuclei are somewhat under-
estimated. The mean momentum of K 0 mesons
decreases with increasing target mass number, while
the mean momentum of Λ hyperons remains constant.

A slight growth of the transverse momenta 〈 p⊥ 〉  with
increasing target mass number is observed for almost
all neutral strange particles.

The rapidity distributions are known to indicate the
kinematical regions where the particles under study are
produced. Figure 3 shows the mean laboratory rapidi-
ties 〈 y〉 as functions of the target mass number. It is
obvious that, in the interactions on deuterons, K0

mesons and  hyperons are produced in the central
rapidity region (the projectile-fragmentation region
〈y  = 2.27 ± 0.07 for kaons and 〈y  = 2.24 ± 0.10 for

lambda antihyperons), while Λ hyperons are produced
in the target-fragmentation region (〈y〉Λ = 1.39 ± 0.05).
With increasing mass number, 〈y〉 values for K0 mesons
are shifted to the left, while those for  remain con-
stant.

All the inclusive features studied above were fitted
in terms of the power-law function aAα. Table 2 shows
the fitted parameter values and the corresponding val-
ues of χ2/NDF.
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4. DISCUSSION OF THE RESULTS

In [1, 2], our group analyzed data on the yields of
neutral strange particles and on the associated multi-
plicities of charged particles in events leading to the
production of neutral strange particles in  interac-
tions at 40 GeV/c. The results of those analyses suggest
the development of an intranuclear cascade in reaction
(2) and the suppression of such cascades in reactions
(1) and (3). The present analysis confirms these conclu-
sions.

A possible explanation of the decrease in the mean
momentum 〈p〉  of K0 mesons with increasing target
mass number is that K0 mesons, which are products of
a primary interaction or annihilation, have time to
undergo rescattering in the nucleus.

It is well known that Λ hyperons are predominantly
produced in cascade processes, but the secondary inter-
actions of annihilation kaons with intranuclear nucle-
ons is an additional source of Λ hyperons in antiproton–
nucleus collisions. Our analysis of the experimental
data reveals that the mean momentum 〈p〉 of Λ hyper-

pA

〈 y〉

2.0

0.5

1.5

1.0

A102101100

2.5

Fig. 3. Mean laboratory rapidities 〈 y〉  of (crosses) K 0

mesons, (open triangle) Λ hyperons, and (open circles) 
hyperons versus the target mass number A.
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ons assumes a near-threshold value (about 2.5 GeV/c)
owing to these two processes. As a consequence, 〈p〉  is
virtually independent of A, in contrast to what occurs in
π–A interactions, where the mean momentum 〈p〉  of Λ
hyperons decreased from 4.5 to 2.3 GeV/c [6], because
there occurred only cascade processes.

Because of a high production threshold,  antihy-
perons originate only from primary interactions with
nuclei—they can be generated neither in cascade pro-
cesses nor in the interactions of annihilation kaons
within the target nucleus; as a result, the mean momen-
tum of  hyperons is virtually independent of the tar-
get mass number.

All the aforesaid is confirmed by the results of the
analysis of the mean rapidities 〈y〉  versus the target
mass number A for neutral strange particles. For K0

mesons, 〈y〉  is shifted from the projectile-fragmentation
region to the target-fragmentation region. For Λ hyper-
ons, 〈y〉  is always in the target-fragmentation region,

Λ

Λ

Table 2.  Fitted values of the parameters in the power-law
form aAα used to parametrize the inclusive features of neu-
tral strange particles

Particle α a χ2/NDF

〈p〉
K0 –0.07 ± 0.01 4.3 ± 0.4 2.9

Λ –0.035 ± 0.007 2.8 ± 0.2 0.5

–0.03 ± 0.01 8.2 ± 0.7 0.6

〈p⊥ 〉
K0 0.027 ± 0.006 0.48 ± 0.02 1.1

Λ 0.027 ± 0.004 0.40 ± 0.01 0.2

0.044 ± 0.003 0.48 ± 0.01 0.1

〈y〉
K0 –0.051 ± 0.007 2.3 ± 0.1 3.8

Λ –0.034 ± 0.009 1.3 ± 0.1 3.6

–0.001 ± 0.003 2.20 ± 0.05 0.3

〈θ〉
K0 0.12 ± 0.01 12.0 ± 1.3 3.5

Λ 0.112 ± 0.008 11.9 ± 0.8 0.6

0.02 ± 0.02 6.0 ± 1.0 3.8

〈R〉
K0 –0.069 ± 0.008 56.0 ± 4.0 1.6

Λ –0.001 ± 0.010 36.0 ± 4.0 1.0

–0.07 ± 0.01 92.0 ± 9.0 2.0

Λ

Λ

Λ

Λ

Λ

P

while, for  hyperons, the mean rapidities are always
in the projectile-fragmentation region and remain
invariable with increasing target mass number.

5. CONCLUSIONS

To summarize the results obtained from our investi-
gation of the mean inclusive features of neutral strange
particles (K0 mesons and Λ and  hyperons) produced
in antiproton–nucleus interactions at an incident
momentum of 40 GeV/c, we list here the changes that
these features have been found to undergo in response
to the increase in the mass number of the target nucleus.

(i) For K0 mesons, the mean emission angle 〈θ〉
increases, the mean decay range 〈R〉 decreases, the
mean momentum 〈p〉 decreases, the mean transverse
momentum 〈p⊥ 〉 increases, and the mean rapidity 〈y〉 is
shifted from the projectile-fragmentation region to the
target-fragmentation region.

(ii) For Λ hyperons, the mean emission angle 〈θ〉
increases, the mean decay range 〈R〉 and the mean
momentum 〈p〉 both remain virtually constant, the
mean transverse momentum 〈p⊥ 〉 increases, and the
mean rapidity 〈y〉 is always in the target-fragmentation
region.

(iii) For  hyperons, the mean emission angle 〈θ〉
remains unchanged, the mean decay range 〈R〉  and the
mean momentum 〈p〉  decrease, the mean transverse
momentum 〈p⊥ 〉  increases, and the mean rapidity 〈y〉  is
always in the projectile-fragmentation region.
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Abstract—For a relativistic spinning particle with an anomalous magnetic moment, Lienard–Wiechert poten-
tials are constructed within the pseudoclassical approach. Some specific cases of the motion of a spinning par-
ticle are considered on the basis of general expressions obtained in this study for the Lienard–Wiechert poten-
tials. In particular, the intensity of the synchrotron radiation from a transversely polarized particle moving along
a circle at a constant speed is investigated as a function of the particle spin. In the specific case of particles hav-
ing no anomalous magnetic moment and moving in an external uniform magnetic field, the resulting expres-
sions coincide with familiar formulas from the quantum theory of radiation. The spin dependence of the polar-
ization of synchrotron radiation is investigated. © 2000 MAIK “Nauka/Interperiodica”.
1. It is well known that theories of pointlike particles
where particle spins are described even at the classical
level can be constructed in terms of variables represent-
ing elements of a Grassmann algebra [1, 2]. Such theo-
ries, referred to as pseudoclassical theories, exemplify
constrained gauge systems. A detailed account of meth-
ods for quantizing systems of this type can be found,
for example, in [3–5]. That the spin in external fields
can be consistently described even within classical the-
ory by invoking Grassmann variables opens the possi-
bility of studying spin effects in some physical pro-
cesses on the basis of classical equations of motion. It
should be noted that the spin can also be introduced in
classical theories without resort to Grassmann vari-
ables, but all such theories do not lead, upon quantiza-
tion, to the conventional Dirac equation (see the review
article of Frydryszak [6] and references therein).

In the present study, the pseudoclassical approach is
used to construct Lienard–Wiechert potentials for a rel-
ativistic spinning charged particle having an anomalous
magnetic moment (AMM) and interacting with an elec-
tromagnetic field (a consistent pseudoclassical theory
for the interaction of a spinning particle having an
anomalous magnetic moment with an electromagnetic
field was developed in [7–9]). Some specific cases of
the motion of such a particle are considered here on the
basis of general expressions that we obtain for the
Lienard–Wiechert potentials. In particular, we derive
general expressions that describe the spin dependence
of the intensity and polarization of the synchrotron
radiation from a transversely polarized particle moving
along a circle at a constant speed. Our analysis is per-
formed in the second-order approximation in Grass-
mann variables (first-order approximation in the spin).

  * e-mail: gagri@lx2.yerphi.am
** e-mail: rogri@lx2.yerphi.am
1063-7788/00/6312- $20.00 © 22115
This corresponds to the inclusion of the spin in the
semiclassical approximation. In the case where the par-
ticle being considered moves in a uniform external
magnetic field, the formulas obtained here in this
approximation (with allowance for the external-mag-
netic-field dependence of the effective particle mass)
for particles having no anomalous magnetic moment
coincide with the analogous formulas derived previ-
ously either in the semiclassical theory of radiation [10]
or in the corresponding quantum theory [11]. We also
investigate the spin dependence of synchrotron-radia-
tion polarization.

It should be emphasized that a derivation of expres-
sions describing the spin dependence of observables of
the radiation from a relativistic particle is much more
straightforward within the approach being discussed
than within QED.

The ensuing exposition is organized as follows. In
Section 2, an action functional is formulated within
pseudoclassical theory that describes the interaction of
a relativistic spinning particle having an anomalous
magnetic moment with an electromagnetic field. We
present there relevant equations of motion, introduce
subsidiary gauge-fixing conditions, and derive general
expressions for Lienard–Wiechert potentials. In Sec-
tion 3, we consider the case of a spinning particle at rest
with a precessing spin. In Section 4, we obtain formulas
for the strengths of the electromagnetic field of the syn-
chrotron radiation from a transversely polarized relativ-
istic spinning particle moving along a circle at a con-
stant speed and investigate the spin dependences of the
intensity and the polarization of this radiation. The
motion of such a particle in a uniform external mag-
netic field is investigated in detail.

2. Let us consider the action functional within a the-
ory describing the interaction of a relativistic spinning
000 MAIK “Nauka/Interperiodica”
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particle having an anomalous magnetic moment with
an electromagnetic field in D = 4 space. We have [7–9]

(1)

where xµ are the particle coordinates; ξµ are Grassmann
variables describing spin degrees of freedom; ξ5, e, and
χ are auxiliary fields, e (χ and ξ5) being an even element
(odd elements) of the Grassmann algebra; Aµ is the 4-
potential of the electromagnetic field; Fµν = ∂µAν –
∂νAµ; g is the charge; G is the anomalous magnetic
moment; M = 1 + 2Gm/g is the total magnetic moment
of the particle in units of the Bohr magneton; overdots
denote differentiation with respect to the parameter τ
along the particle trajectory; and the derivatives with
respect to Grassmann variables are left-hand.

The action functional in Eq. (1) possesses three
gauge symmetries: reparametrization and supergauge
symmetries [8] and the gauge U(1) symmetry of elec-
tromagnetic interactions. These symmetries correspond
to the presence of three primary first-class constraints
in the Hamiltonian formulation of the theory. The rele-
vant degrees of freedom will be fixed below.

In order to derive expressions for the Lienard–
Wiechert potentials, we write down explicitly the equa-
tions of motion for the electromagnetic field Aµ and for
the fields e, ξ5, and χ:

(2)

(3)

(4)

(5)

S
1
2
--- τ ẋ

µ( )
2

e
------------ em

2
i ξµξ̇

µ
ξ5ξ̇5–( )–+d∫=

– 2gẋ
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Aµ igMeFµνξ

µξν
– 4iGFµν ẋ

µξνξ5+

– iχ
ξµ ẋ

µ

e
----------- mξ5 iGFµνξ

µξνξ5+ + 
  eG

2
Fµνξ
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1
4
--- d

4
zFµν z( )F

µν
z( ),∫

δS
δAλ y( )
----------------- ∂µF

µλ
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P

We fix one of the gauge degrees of freedom by
imposing the constraint

(6)

By virtue of relation (4), it is equivalent to the condition
ξ5 = 0. By using this condition and considering that,
from relation (6), it follows that the quartic terms in ξµ
vanish, we find from Eqs. (3) and (5) that the auxiliary
fields e and χ are given by

(7)

(The sign of e is chosen in such a way that the energy is
positive in the nonrelativistic limit.)

Substituting expression (7) for e and the condition
ξ5 = 0 into (2), we obtain the equation for the field Aµ in
the form

(8)

where jλ(y) is given by

(9)

This equation can be further simplified as follows.
We fix the remaining two gauges in the theory. For this,
we choose the gauge condition for the field Aµ in the
form ∂µAµ = 0 and take the parameter τ for the proper
time, whereby we fix, respectively, the U(1) gauge free-
dom and the reparametrization freedom. In this case,

(τ) = 1. We note that Eq. (8) involves only second-
order terms in ξµ. Since second-order terms in ξ will be
proportional to \ upon quantization, our consideration
is equivalent to taking into account spin in the semiclas-
sical approximation. With allowance for the above,
Eq. (8) takes the form

(10)

where h = ∂µ∂µ, and jµ is given by relation (9) in which

we have taken into account the condition  = 1. It is
convenient to represent the current vector jµ as the sum
of two terms,

(11)

where

(12)
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The first term in Eq. (11) corresponds to the current of
a charged particle having no dipole moment, while the
second term represents the contribution to the current
from the dipole moment of a charged spinning particle.

It can easily be seen that, by virtue of relation (6),
the particle electric dipole moment, which is related to

qµ by the equation qµ = –pµν  (see, for example, [12]),
vanishes,

(13)

as it must in the case of a pointlike particle. We will
now show that, from the pseudoclassical expression
(12) for pµν, it follows that the particle magnetic
moment is expected to be aligned with the spin vector.
For this, we consider that the particle-magnetic-
moment pseudovector mµ is related to the dipole-
moment tensor pµν by the equation [12]

(14)

By using Eq. (1), we further express the particle 4-

momentum 3µ = ( , 3333) as

(15)

Using the gauge specified by Eq. (6), taking into
account (7), and disregarding the quartic terms in ξ4, we

find from (15) (at  = 1) that

(16)

For the case being considered, the analog of the relation
between the particle 4-momentum and the particle

mass has the form  –  = 0. The signs on the
right-hand side of the first equation in (16) are governed
by the definition of the generalized momentum conju-
gate to the particle coordinate.

Substituting (12) and (16) into (14), we obtain

(17)

where Wµ is the pseudoclassical analog of the Pauli–
Lubanski vector and is given by (see [9])

(18)

while aµ/2 is a relativistic generalization of the
pseudoclassical spin vector (upon a canonical quantiza-
tion of the theory, the vector aµ goes over to the polar-
ization 4-vector of the spinning particle being consid-
ered). From (17), it follows that the vector of the mag-
netic moment of a particle is proportional to its
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polarization vector, the proportionality factor being
equal to the total magnetic moment of the particle.

By using the identity (see, for example, [12])

(19)

and taking into account Eqs. (13) and (17), we obtain
the equality

(20)

which will be needed below.
A solution to Eq. (10) with the current represented

in the form (11) was found in [12] in terms of retarded
fields. This solution can be written as

(21)

(22)

where Rµ ≡ yµ – xµ(τ), RµRµ = 0, ρ = Rν, and kµ =
Rµ/ρ; all the quantities in (21) and (22) are taken at the
time instant τr specified by the equation t0 = t0(τr) = t –
R(t0).

1) The explicit expressions for the quantities
appearing in (22) are

(23)

(24)

(25)
In Eqs. (21) and (22), the bracketed expressions cor-

respond to the contributions of a charged particle to Aµ
and Fµν without allowing for its spin, whereas the
braced expressions represent the contribution of the
dipole moment of this particle.

Substituting the explicit expressions for the quanti-
ties pµν and xµ and for their derivatives into (21)–(25),
we obtain, within pseudoclassical theory, the Lienard–

1)Hereafter, brackets […] in the subscript denote a complete anti-
symmetrization—for example, A[αβγ] = 1/3!{Aαβγ + Aβγα +
Aγαβ – Aβαγ – Aαγβ – Aγβα}; parentheses (…) denote a complete
symmetrization—for example, A(αβγ) = 1/3!{Aαβγ + Aβγα + Aγαβ +
Aβαγ + Aαγβ + Aγβα}.
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–( )qα ẋβ– εµνλσm

λ
ẋ
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Wiechert potentials in the general form and the corre-
sponding strength tensor for the electromagnetic field
created by a charged spinning particle.

3. In order to clarify the correspondence between
the pseudoclassical expressions obtained here for the
Lienard–Wiechert potentials and the well-known for-
mulas for the strengths of the electric and magnetic
fields of a charged particle having a magnetic moment,
we consider, by way of example, the case of a particle

at rest ( ) with a precessing spin.

From Eqs. (22)–(25), we can easily find that the
strength tensor of the electromagnetic field created by a
particle at rest is given by

(26)

where nµ = Rµ/R = (1, n) and R = R0 = 
(for retarded fields, we have R0 = y0 – x0(τ) > 0). For-
mula (26) was obtained by considering that, in the rest
frame, p0i = 0, which immediately follows from (20).
From (20) at v = 0, we can also obtain

(27)

(εijk = –ε0ijk = ε0ijk, ε123 = 1).
Considering that, in the particle rest frame, we have [13]

(28)

where Si is the particle spin, we arrive at

(29)

Accordingly,  and  are given by

(30)

Let us now assume that the particle spin precesses
about a certain axis at a constant angular velocity w;
that is,

(31)

Substituting (31) into (30), we obtain
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Ṡi w S×[ ] i εiklωkSl.= =
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P

By using (29) and (32) and the equality p0i = 0, we
find from (26) that the strengths of the electric and mag-
netic fields created by an immobile charged particle
with a precessing spin are given by

(33)

(34)

From these formulas, we can easily obtain expres-
sions for the strengths of the electric and magnetic
fields of an immobile particle having a fixed magnetic-
moment vector. The results are

(35)

Expressions (33)–(35) coincide with the corresponding
expressions for the fields generated by a particle having
the charge g and the total magnetic-moment vector m =

S (see, for example, [14, 15]).

4. In this section, we obtain expressions for the
strengths of the electromagnetic field of the synchro-
tron radiation generated by a relativistic spinning parti-
cle moving along a circle at a constant speed, as well as
for the power and polarizations of this radiation. This is
done for the case of a transverse particle polarization
(the vector of the particle spin is orthogonal to the plane
of its rotation). The problem is of interest for testing the
possibility of determining particle polarization in
cyclic accelerators on the basis of measured observ-
ables of synchrotron radiation.

It is well known that the radiation field is controlled
by those terms in expression (22) that are proportional
to 1/ρ; that is,

(36)

where  is given by (23).
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Let us now transform expression (36) with allow-
ance for the relations

(37)

where v ≡ (v i) = dxi/dt is the particle 3-velocity, a =
dv/dt, b = da/dt, and dt/dτ = (1 – v2)–1/2 = γ.

Upon substituting expressions (37) into the first
term in (36), we arrive at the well-known formula for

the strength  of the electric field of the radiation
from a charged spinless particle:

(38)

In order to transform the spin component  of the

tensor  [  contains pµν, which is related to Wµ by
Eq. (20)], we make use of the equation that relates Wµ
and the vector S ≡ (Si) of the particle spin in the rest
frame and which has the form [9, 13]

(39)

where  = –3µ = (%, 3333D) stands for the physical par-
ticle 4-momentum and where the second equality has
been written in the approximation linear in S.

Using Eq. (20) and taking into account Eq. (39), we
arrive at
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ẋ
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ẋ̇̇
µ

ȧ
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aligned with the external magnetic field; see Fig. 1)—
this is precisely the case that is considered here—we
have

(42)

where ω is the angular velocity of particle rotation.
Taking into account these equalities, we recast expres-
sion (41) into the form

(43)

Using (40) and (43) and taking into account (42), we
obtain

(44)

With the aid of the explicit expression (23) for ,
the contributions that the dipole moment of a particle
makes to the strengths Erad and Brad of the electromag-
netic field of the radiation generated by this particle can
be represented as

(45)

where
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From (37) and (42), we obtain
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Fig. 1. Reference frame for specifying angles in considering
angular features of radiation.
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Taking into account (40), (43), (44), and (47), we find
from (46) that

(48)

(49)

In the case of the motion of a transversely polarized par-
ticle along a circle at a constant speed, we also have, in
addition to the equalities in (42), the obvious relations

(50)

where SB is the spin-vector projection onto the direction
of the external magnetic field B. Taking these relations
into account, we can recast expression (48) into the
form

(51)

Substituting (51) and (49) into (45), we obtain

(52)

Using relations (38) and (52) and the equality

(53)

which is obtained with allowance for (42) and (50), we
can represent the energy of the synchrotron radiation
emitted by a particle into a solid-angle element dΩ per
unit of “particle time” (at the radiation instant) t0 as
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where θ and ϕ are angles that specify the direction of
the vector n in the coordinate frame determined by the
vectors v, a, and B(S) (see Fig. 1).

Integrating expression (54) over the solid angle, we
find that the radiation power is given by

(55)

In order to compare this expression with the analogous
expression obtained in the quantum theory of radiation,
we consider that, for the case of a uniform external
magnetic field, the effective particle mass, which is
given by (16), takes the simple form

(56)

The right-hand equality in (56) is written with allow-
ance for Eq. (12). Substituting the expression for pij
from (43) into (56), we find that, in the first order in the
spin, meff is given by

(57)

With the aid of (16), the expression for  in the case
of above-type motion in an external magnetic field can
be reduced to the form
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By means of expression (57) and the expression for
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γ @ 1) that
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In deriving the last equality, we have made use of
the relation gB = mωγ. Further taking into account (59),
we can recast (55) into the form
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Considering that S = ζ, where ζ = ±1 is the spin com-

ponent along the magnetic field, we find that, in the
absence of an anomalous magnetic moment (M = 1),
formula (60) (in the first approximation in the spin)
coincides with the analogous formulas obtained in the
semiclassical ([10]) or in the quantum ([11]) theory of
radiation. Thus, formula (60) appears to be a generali-
zation of the formula for the synchrotron-radiation
intensity in the first order in the spin to the case where
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the particle in question possesses an anomalous mag-
netic moment.

As in [16], we will investigate the polarization prop-
erties of synchrotron radiation by decomposing the
electric-field strength Erad into two components aligned
with two mutually orthogonal unit vectors e = a/a and
[n × e]:

(61)

This choice of unit vectors is reasonable when use is
made (with the aim of describing radiation from fast
particles) of the reference frame in Fig. 2 for specifying
the relevant angles. This reference frame is convenient
because the dominant contribution comes from small
angles β and ψ of about 1/γ, since the angle between the
vectors n and v is about 1/γ. As was indicated in [16],
the representation of Erad in the form (61) is disadvan-
tageous in that the right-hand side of Eq. (61) is not
orthogonal to the vector n, but this uncertainty is about
1/γ, so that the decomposition in (61) can be used to
compute leading terms (to a precision of 1/γ). From
Eqs. (38) and (52), we find, according to the decompo-
sition in (61), that E1 and E2 are given by

(62)

(63)

where µ2 = γ–2 + β2.
Taking into account Eq. (59), we represent the

expression for µ2 in the form

(64)

Further substituting the expression for µ2 into (62)
and (63), we find in the first order in the spin that

(65)

Erad
E1e E2 n e×[ ] .+=

E1
ga

πR µ2 ψ2
+( )

3
---------------------------------=

× ψ2 µ2
–( ) M

m
-----SBω4β2 µ2

5ψ2
–( )

µ2 ψ2
+( )

2
-----------------------------------+

τ τr=

,

E2
2ga

πR µ2 ψ2
+( )

3
---------------------------------–=

× βψ M
m
-----SBω4βψ 2µ2 ψ2

–( )
µ2 ψ2

+( )
2

-------------------------------------–
τ τr=

,

µ2 β2 m
%
---- 

  2 2
m
----SBω–+ µ0

2 2
m
----SBω,–= =

µ0
2 β2 m

%
---- 

  2

.+=

E1
ga

πR µ0
2 ψ2

+( )
3

--------------------------------- ψ2 µ0
2

–( ) ---




=

+
4
m
----SBω

2ψ2 µ0
2

–

µ0
2 ψ2

+
---------------------

Mβ2 µ0
2

5ψ2
–( )

µ0
2 ψ2

+( )
2

-------------------------------------+




τ τr=

,
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At  – ψ2 = 0, it follows from (65) and (66) that

(67)

(68)

From the above formulas, it can be seen that, in the
(a, v) plane (β = 0), there is radiation (proportional to
the spin) in the direction ψ = m/%, in contrast to what
we have in the case of a spinless particle.
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Abstract—The semileptonic decays of the Bc meson into heavy quarkonia J/ψ(ηc) and a pair of leptons are
investigated on the basis of three-point sum rules of QCD and nonrelativistic QCD (NRQCD). Calculations of
analytic expressions for the spectral densities of QCD and NRQCD correlation functions with allowance for
Coulomb-like αs /v terms are presented. At recoil momenta close to zero, generalized relations due to the spin
symmetry of NRQCD are derived for the Bc  J/ψ(ηc)lνl form factors, with l denoting one of the leptons (e,
µ, or τ). This allows one to express all NRQCD form factors in terms of a single universal quantity, an analog
of the Isgur–Wise function at the maximal lepton-pair invariant mass. The gluon-condensate corrections to
three-point functions are calculated both in full QCD in the Borel transform scheme and in NRQCD in the
moment scheme. This enlarges the parametric-stability region of the sum-rule method, thereby rendering the
results of the approach more reliable. Numerical estimates of the widths for the transitions Bc  J/ψ(ηc)lνl
are presented. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1], the CDF collaboration reported on the first
experimental observation of the Bc meson, a heavy
quarkonium with a mixed heavy flavor [1]. This meson
is similar to the families of the charmonium  and the

bottomonium  in what is concerned with its spectro-
scopic properties: two heavy quarks move nonrelativis-
tically, since the confinement scale, determining the
presence of light degrees of freedom (sea of gluons and
quarks), is suppressed with respect to the heavy-quark
masses mQ, and Coulomb-like exchanges result in trans-

fers about αs , which is again much less than the
heavy-quark mass. Therefore, the nonrelativistic picture
of binding the quarks leads to the well-known arrange-
ment of system levels, which is very similar to those in
the families mentioned above. The calculations of the

 mass spectrum were reviewed in [2, 3]. We expect

whereas the measurement yielded

There is a significant difference in the mechanisms
that govern the production of the heavy quarkonia ,

, and Bc . To bind the  and c quarks, one has to pro-
duce four heavy quarks in flavor-conserving interac-
tions,2) which allows one to use perturbative QCD,
since the virtualities are determined by the scale of the

cc

bb

mQ
2

bc

MBc
6.25 0.03 GeV,±=

MBc

exp
6.40 0.39 0.13 GeV.±±=

cc

bb b

* This article was submitted by the authors in English.
1) Institute of Theoretical and Experimental Physics, Bol’shaya

Cheremushkinskaya ul. 25, Moscow, 117259 Russia.
2) We do not consider the production in weak interactions.
1063-7788/00/6312- $20.00 © 22123
heavy-quark mass. Thus, we see that the production of
Bc is relatively suppressed, σ(Bc)/σ( ) ~ 10–3,
because of an additional heavy-quark pair in final
states. Basic special features of production mechanisms
appear owing to higher orders of QCD even in the lead-
ing approximation: the fragmentation regime at high
transverse momenta much greater than the quark
masses and a strong role of nonfragmentation contribu-
tions at pT ~ mQ , which admit a precise perturbative cal-
culation; a negligible contribution of the octet mecha-
nism [4] because there is no enhancement due to a
lower order in αs . The predictions for the cross sections
and distributions of Bc in various interactions are dis-
cussed in [5], where we see good agreement with the
CDF measurements [1].

In contrast to  and  states decaying owing to
the annihilation into light quarks and gluons, the Bc

meson is a long-lived particle, since it decays owing to
weak interaction. The lifetime and various modes of
decays were analyzed within (a) potential models [6], (b)
technique of operator-product expansion in the effective
theory of nonrelativistic QCD (NRQCD) [7] by consid-
ering the series in both a small relative velocity v of
heavy quarks inside the meson and the inverse heavy-
quark mass [8], and (c) QCD sum rules [9, 10] applied to
the three-point correlation functions [11–13]. The results
of potential models and NRQCD are in agreement with
each other. Thus, we expect that the total lifetime is

which agrees, within the errors, with the experimental
value given by CDF [1]:

bb

cc bb

τBc
0.55 0.15 ps,±=

τBc

exp
0.46 0.16–

+0.18
0.03 ps.±=
000 MAIK “Nauka/Interperiodica”



 

2124

        

KISELEV 

 

et al

 

.

                                                      
Further, a consideration of exclusive Bc decays within
QCD sum rules showed that the role of Coulomb cor-
rections to the bare-quark-loop results could be very
important to reach the agreement with the other
approaches mentioned [13]. This requires evaluating
αs /v corrections in NRQCD, which possesses spin
symmetry providing some relations between the exclu-
sive form factors. For semileptonic decays, such a rela-
tion was derived in [14]. Note that the CDF collabora-

tion observed 20   J/ψe+(µ+)ν events, so that a
consistent calculation of semileptonic decay modes is
of interest. For theoretical reviews on Bc-meson phys-
ics, the reader is referred to [15].

In this study, we perform a detailed analysis of semi-
leptonic Bc decays within QCD and NRQCD sum rules.
We recalculate the double spectral densities available
previously in [11] in full QCD for the massless leptons
and add the analytic expressions for the form factors
necessary in evaluation of decays to massive leptons
and P-wave levels of quarkonium with different quark
masses. We analyze the NRQCD sum rules for the
three-point correlation functions for the first time. We
derive generalized relations between the NRQCD form
factors, which extends the consideration in [14],
because we explore a soft limit of recoil momentum
close to zero, wherein the velocities of initial and final
heavy quarkonia v1, 2 are not equal to each other, when
their product tends to zero, in contrast to the hard limit
v1 = v2. The spin symmetry relations between the form
factors are conserved after taking into account the Cou-
lomb αs /v corrections, which can be written down in
covariant form. We investigate numerical estimates in
the sum-rule schemes of spectral-density moments and
Borel transform and show an important role of the Cou-
lomb corrections. Next, we perform the calculation of
gluon condensate contribution to the three-point sum
rules of both full QCD and NRQCD for the case of
three massive quarks, for the first time.

The QCD sum rules of three-point correlation func-
tions are considered in Section 2, where the spectral
densities are calculated in the bare quark-loop approx-
imation and with allowance for the Coulomb correc-
tions, and the gluon-condensate term in the Borel trans-
form scheme is presented. Section 3 is devoted to the
NRQCD sum rules for recoil close to zero. The spin
symmetry relations are derived, and the gluon conden-
sate is taken into account in the scheme of moments.
The numerical results are summarized in Section 4.
Appendices A and B contain technical details of evalu-
ation of decay widths for the massive leptons and gluon
condensate in full QCD, respectively.

2. THREE-POINT QCD SUM RULES

In this article, we will use the approach of three-
point QCD sum rules [9, 10] to study form factors and

decay rates for the transitions   J/ψ(ηc)l+νl ,

Bc
+

Bc
+

P

where l denotes one of the leptons e, µ, or τ. This pro-
cedure is similar to that of two-point sum rules, and
information from the latter on the coupling of mesons
to their currents is required in order to extract the values
of the form factors. Thus, in our work, we will use the
meson couplings, defined by the equations

(1)

and

(2)

where P and V represent the scalar and vector mesons
with desired flavor quantum numbers, respectively, and
m1 and m2 are the quark masses. Now we would like to
describe the method used.

2.1. Description of the Method

As we have already said, for the calculation of had-
ronic matrix elements relevant to the semileptonic Bc
decays into the pseudoscalar and vector mesons in the
framework of QCD, we explore the QCD sum-rule
method. The hadronic matrix elements for the transi-

tion   J/ψ(ηc)l+νl can be written down as fol-
lows:

(3)

(4)

(5)

where qµ = (p1 – p2)µ, eµ = eµ(p2) is the polarization vec-
tor of the J/ψ meson, and Vµ and Aµ are the flavor-
changing vector and axial electroweak currents. The

form factors f±, FV , , and  are functions of q2

only. It should be noted that by virtue of transversality
of the lepton current lµ = lγµ(1 + γ5)νl in the limit ml 
0, the probabilities of semileptonic decays into e+νe and

µ+νµ are independent of f– and . Thus, in calculation
of these particular decay modes of Bc meson, these
form factors can be consistently neglected [6, 11, 13].
However, since the calculation of both semileptonic
decay modes, including e, µ, or τ, and some hadronic
decays, stands among the goals of this paper, we will
present the results for the complete set of form factors
given in (3)–(5).

Following the standard procedure for the evaluation
of form factors in the framework of QCD sum rules, we

0〈 |q1iγ5q2 P p( )| 〉
f PMP

2

m1 m2+
-------------------=

0〈 |q1γµq2 V p e,( )| 〉 ieµMV f V ,=

Bc
+

ηc p2( )〈 |Vµ Bc p1( )| 〉 f + p1 p2+( )µ f –qµ,+=

1
i
--- J /ψ p2( )〈 |Vµ Bc p1( )| 〉  = iFVeµναβe*ν p1 p2+( )α

q
β
,

1
i
--- J /ψ p2( )〈 |Aµ Bc p1( )| 〉 F0

A
eµ*=

+ F+
A

e* p1⋅( ) p1 p2+( )µ F–
A

e* p1⋅( )qµ,+

F0
A

F±
A

F–
A
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consider the three-point functions

(6)

(7)

where (x)γ5q2(x) and (x)γµq2(x) are interpolating
currents for states with the quantum numbers of ηc and

J/ψ, respectively, and  are the currents Vµ and Aµ
of relevance to the various cases.

The Lorentz structures in the correlation functions
can be written down as

(8)

(9)

(10)

The form factors f±, FV, , and  will be determined,

respectively, from the amplitudes Π±, ΠV, , and

 = (  ± ). In (8)–(10) the scalar amplitudes

Πi are the functions of kinematical invariants, i.e., Πi =

Πi( , , q2).

To calculate the QCD expression for the three-point
correlation functions, we employ the operator product
expansion (OPE) for the T-ordered product of currents
in (6) and (7). The vacuum correlations of heavy quarks
are related to their contribution to the gluon operators.
For example, for the 〈 〉  and 〈 〉  condensates,
the heavy-quark expansion gives

Then, in the lowest order for the energy dimension of
operators, the only nonperturbative correction comes
from the gluon condensate:

(11)

Πµ p1 p2 q
2, ,( ) i

2
x ye

i p2 x⋅ p1 y⋅–( )
dd∫=

× 0〈 |T q1 x( )γ5q2 x( ) Vµ 0( ) b y( )γ5c y( ), ,{ } 0| 〉 ,

Πµν
V A,

p1 p2 q
2, ,( ) i

2
x ye

i p2 x⋅ p1 y⋅–( )
dd∫=

× 0〈 |T q1 x( )γµq2 x( ) Jµ
V A,

0( ) b y( )γ5c y( ), ,{ } 0| 〉 ,

q1 q1

Jµ
V A,

Πµ Π+ p1 p2+( )µ Π–qµ,+=

Πµν
V

iΠVeµναβ p2
α

p1
β
,=

Πµν
A Π0

A
gµν Π1

A
p2 µ, p1 ν, Π2

A
p1 µ, p1 ν,+ +=

+ Π3
A

p2 µ, p2 ν, Π4
A

p1 µ, p2 ν, .+

F0
A

F±
A

Π0
A

Π±
A 1

2
--- Π1

A Π2
A

p1
2

p2
2

QQ QGQ

QQ〈 〉 1
12mQ

-------------
α s

π
----- G

2〈 〉–
1

360mQ
3

----------------
α s

π
----- G

3〈 〉– …,+=

QGQ〈 〉
mQ

2
------- mQ

2( )
α s

π
----- G

2〈 〉log
1

12mQ

-------------
α s

π
----- G

3〈 〉– …  .+=

Π i p1
2

p2
2

q
2, ,( ) Π i

pert
p1

2
p2

2
q

2, ,( )=

+ Π i
G

2

p1
2

p2
2

q
2, ,( )

α s

π
-----G

2
.
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The leading QCD term is a triangle quark loop dia-
gram, for which we can write down the double disper-
sion representation at 

 

q

 

2

 

 

 

≤

 

 0:

 

(12)

 

where 

 

Q

 

2

 

 = –

 

q

 

2

 

 

 

≥

 

 0. The integration region in (12) is
determined by the condition

 

(13)

 

and

The calculation of spectral densities (

 

s

 

1

 

, 

 

s

 

2

 

, 

 

Q

 

2

 

) and
gluon-condensate contribution to (11) will be consid-
ered in the next sections. Now let us proceed with the
physical part of three-point sum rules. The connection
to hadrons in the framework of QCD sum rules is
obtained by matching the resulting QCD expressions of
current correlation functions with the spectral represen-
tation, derived from the double dispersion relation at

 

q

 

2

 

 

 

≤

 

 0:

 

(14)

 

Assuming that the dispersion relation (14) is well con-
vergent, the physical spectral functions are generally
saturated by the lowest hadronic states plus a contin-

uum starting at some effective thresholds  and :

 

(15)

 

where

 
(16)

 

and 

 

M

 

1, 2

 

 denote the masses of quarkonia in the initial
and final states. The continuum of higher states is mod-
eled by the perturbative absorptive part of 

 

Π

 

i

 

, i.e., by

 

ρ

 

i

 

. Then, the expressions for the form factors 

 

F

 

i

 

 can be
derived by equating the representations for the three-
point functions 

 

Π

 

i

 

 in (11) and (14), which means the
formulation of sum rules.

Π i
pert

p1
2

p2
2

q
2, ,( ) = 

1

2π( )2
-------------

ρi
pert

s1 s2 Q
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------------------------------------------ s1 s2dd∫–
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2
mc
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λ 1/2
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mc

2
s1 mb
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------------------------------------------------------------------------------------- 1< <

λ x1 x2 x3, ,( ) x1 x2 x3–+( )2
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ρi
pert

Π i p1
2

p2
2

q
2, ,( ) 1

2π( )2
-------------

ρi
phys

s1 s2 Q
2, ,( )

s1 p1
2

–( ) s2 p2
2
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------------------------------------------ s1 s2dd∫–=

+ subtractions.

s1
th

s2
th

ρi
phys

s1 s2 Q
2, ,( ) ρi

res
s1 s2 Q

2, ,( )=

+ θ s1 s1
th

–( )θ s2 s2
th

–( )ρi
cont

s1 s2 Q
2, ,( ),

ρi
res

s1 s2 Q
2, ,( ) 0〈 |cγµ γ5( )c J /ψ ηc( )| 〉=

× J /ψ ηc( )〈 |Fi Q
2( ) Bc| 〉 Bc〈 |bγ5c 0| 〉 2π( )2δ s1 M1

2
–( )

× δ s2 M2
2

–( ) higher state contributions,+
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2.2. Calculating the Spectral Densities

In this section, we present the analytic expressions
to one-loop approximation for the perturbative spectral
functions. We have recalculated their values, already
available in the literature [11]. Among new results there

are the expressions for ρ– , , and , where  are
spectral functions, which come from the double disper-

sion representation of  = (  ± ). These

spectral densities are not required for the purposes of
this paper, but they will be useful for calculation of
form factors for the transition of the Bc meson into a
scalar meson.3) The procedure of evaluating the spec-
tral functions involves the standard use of Cutkosky
rules [16]. There is, however, one subtle point in using
these rules. At Q2 > 0, there is no problem in applying
the Cutkosky rules in order to determine ρi(s1, s2, Q2)
and the limits of integration with respect to s1 and s2. At
Q2 < 0, which is the physical region, non-Landau-type
singularities appear [17, 18], which makes the determi-
nation of spectral functions quite complicated. In our
case, we restrict the region of integration in s1 and s2 by

 and , so that at moderate values of Q2 the non-
Landau singularities do not contribute to the values of
spectral functions. For spectral densities ρi(s1, s2, Q2),
we have the expressions

(17)

(18)

(19)

3)The meson at the P-wave level, for which 〈0| γµq2|P(p)〉 =

ifPpµ, where P(p) denotes the scalar P-wave meson under consid-
eration, and m1 ≠ m2.

ρ–
A ρ±'

A
ρ±'

A

Π±'
A 1

2
--- Π3

A Π4
A

q1

s1
th

s2
th

ρ+ s1 s2 Q
2, ,( ) 3

2k
3/2

----------- k
2
--- ∆1 ∆2+( )





=

– k m3 m3 m1–( ) m3 m3 m2–( )+[ ]
– 2 s2∆1 s1∆2+( ) u ∆1 ∆2+( )–[ ]

× m3
2 u

2
---– m1m2 m2m3– m1m3–+





,

ρ– s1 s2 Q
2, ,( ) 3

2k
3/2

----------- k
2
--- ∆1 ∆2–( )





–=

– k m3 m3 m1–( ) m3 m3 m2–( )–[ ]
+ 2 s2∆1 s1∆2–( ) u ∆1 ∆2–( )+[ ]

× m3
2 u

2
---– m1m2 m2m3– m1m3–+





,

ρV s1 s2 Q
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(24)

Here, k = (s1 + s2 + Q2)2 – 4s1s2, u = s1 + s2 + Q2, ∆1 =

s1 –  + , and ∆2 = s2 –  + ; m1, m2, and m3

are the masses of quark flavors relevant to the various
decays (see prescriptions in Fig. 1).

We neglect hard O(αs /π) corrections to the triangle
diagrams, as they are not available yet. Nevertheless,
we expect that their contributions are quite small
(~10%); bearing in mind the accuracy of QCD sum
rules, we therefore conclude that the correction will not
drastically change our results.

In expressions (12), the integration with respect to s1
and s2 is performed in the near-threshold region, where
instead of αs , the expansion should be done in the
parameters (αs/v13(23)), with v13(23) meaning the relative
velocities of quarks in  and  systems. For the
heavy quarkonia, where the quark velocities are small,
these corrections take an essential role (as in the case
for two-point sum rules [19, 20]). The αs/v corrections,
caused by the Coulomb-like interaction of quarks, are
related to the ladder diagrams shown in Fig. 2. It is well
known that, numerically, the Born value of the spectral
density is doubled or tripled upon taking into account
these corrections in two-point sum rules [21, 22].

Now, let us comment on the effect of these correc-
tions in the case of three-point sum rules [13]. Con-
sider, for example, the three-point function Πµ(p1, p2, q)

at q2 = , where  is the maximum invariant mass
of the lepton pair in the decay Bc  ηclνl. Introduce
the notation p1 ≡ (mb + mc + E1, 0) and p2 ≡ (2mc + E2,

0). At s1 =  and s2 = , we have E1 ! (mb + mc)
and E2 ! 2mc . In this kinematics, the quark velocities
are small, and, thus, the diagram in Fig. 2 may be con-
sidered in the nonrelativistic approximation. We will
use the Coulomb gauge, in which the ladder diagrams
with the Coulomb-like gluon exchange are dominant.
The gluon propagator then has the form

(25)

In this approximation, the nonrelativistic potential of
heavy-quark interaction in the momentum representa-
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tion is given by

with nf being the number of flavors, while the fermionic
propagators, corresponding to either a particle or an
antiparticle, have the following forms:

The notation concerning Fig. 2 is given by

Ṽ k( ) 4
3
---α s k2( )4π

k2
------, α s k2( )–

4π
b0ln k2

/Λ2( )
-----------------------------,= =

b0 11
2
3
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1
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6
------

5
9
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Ei k
0 k 2
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------------------------------------------,=

SF p( )
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k
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– k 2
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ki pi 1+ pi, li– qi qi 1– , pn 1+– q0 p.≡ ≡= =

p1 + k m1 m2 p2 + k

m3

q

p1 p2k

Fig. 1. The triangle diagram giving the leading perturbative
term in the OPE expansion of the three-point function.

q

p

k1 kn l1 lk. . . . . .

p1 . . . pn q1 . . . qk
E2E1

Fig. 2. The ladder diagram of the Coulomb-like quark inter-
action.
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Integration with respect to , p0, and  by means of
residues yields the expression

(26)

where Nc denotes the number of colors, and µ1 and µ2

are the reduced masses of the  and  systems,
respectively. This three-point function may be
expressed in terms of the Green’s functions for the rel-
ative motion of heavy quarks in the  and  systems

in the Coulomb field, (x, y):

(27)

Comparing expressions (26) and (27), we find
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For the Green’s function, we use the representation
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Provided x = 0, only the terms with l = 0 are retained in
the sum. For the spectral density we then have

(30)

where  are the Coulomb wave functions for the 

or  systems. An analogous expression can also be
derived in the Born approximation:

(31)

Here,  stands for the function of free quark motion.
Since the continuous-spectrum Coulomb functions
have the same normalization as the free states, we
obtain the approximation

(32)

(33)

where v13 and v23 are relative velocities in the  and
 systems, respectively. For them, we have the fol-

lowing expressions:
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Equation (32) is exact for the identical quarkonia in the
initial and final states of transition under consideration.
However, if the reduced masses are different, then the
overlapping of Coulomb functions can deviate from
unity, which breaks the exact validity of (32). From a
pessimistic viewpoint, this relation can serve as an esti-
mate of the upper bound on the form factor at zero
recoil. In reality, this boundary is practically saturated,
which means that in sum rules at low momenta inside
the quarkonia, i.e., in the region of physical resonances,
the most essential effect comes from the normalization
factor C, determined by the Coulomb function at the
origin. The latter renormalizes the coupling constant at
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the quark–meson vertex from the bare value to the
“dressed” one. After that, the motion of heavy quarks in
the triangle loop is very close to that of free quarks.

In accordance with (8) for the Lorentz decomposi-
tion of ρµ(p1, p2, q2), we have

(36)

As we have seen, the nonrelativistic expression of

ρµ(E1, E2, ) is proportional to the vector gµ0, which
allows us to isolate the evident combination of form
factors f±. The relations between the form factors
appearing in NRQCD at a recoil momentum close to
zero will be considered below. Here, we stress only that
we have

(37)

where the factor C has been specified in (33).
In the case of Bc  J/ψlνl transition, one can eas-

ily obtain an analogous result for (q2) (note that the

form factor  ~  gives the dominant contribution
to the width of this decay [14]). In the nonrelativistic
approximation, we have

(38)

To conclude this section, note that the derivation of for-
mulas (37) and (38) is purely formal, since the spectral

densities are not specified at  (one can easily show

(q2) to be singular in this point). Therefore, the
resultant relations are valid only for q2 approaching

. Unfortunately, this derivation does not give the q2

dependence of the factor C. But we suppose that C does
not crucially affect the pole behavior of the form fac-
tors. Therefore, the resultant widths of transitions can
be treated as the saturated upper bounds in the QCD
sum rules.

2.3. Gluon-Condensate Contribution

In this subsection, we will discuss the calculation of
Borel transformed Wilson coefficient of the gluon-con-
densate operator for the three-point sum rules with
arbitrary masses. The technique used is the same as in
[18] with some modifications to simplify the resulting
expression. As was noted in [18], this method does not
allow for the subtraction of continuum contributions,
which, however, only change our results a little, as the
total contribution of the gluon condensate to the three-
point sum rule is small by itself (≤10%), and, thus, its
continuum portion is small too. The form of the
obtained expression does not permit us to use the same
argument as in [18] to argue over the absence of those
contributions at all. Their argument was based on an
expectation that the typical continuum contribution can
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show up as incomplete Γ functions in the resulting
expression and the absence of them in the final answer
leads authors of [18] to the conclusion that such contri-
butions are actually absent in the processes they consid-
ered.

The gluon condensate contribution to three-point
sum rules is given by diagrams depicted in Fig. 3. For
calculations, we have used the Fock–Schwinger fixed-
point gauge [20, 23]:

(39)

where  (a = {1, 2, …, 8}) is the gluon field.
In the evaluation of the diagrams in Fig. 3, we

encounter integrals of the type4) 

(40)

4)Since the diagrams under consideration do not have UV diver-
gences, there is no need for a dimensional regularization.
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Fig. 3. The gluon-condensate contribution to three-point
QCD sum rules. The directions of p1, k1, and k2 momenta
are incoming, and that of p2 is outgoing.
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Continuing to Euclidean spacetime and employing the
Schwinger representation for propagators

(41)

we find the following expression for the scalar integral
(n = 0):

(42)

This representation proves to be very convenient for
applying the Borel transformation with
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where
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One can then express the results of calculation for any
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(a, b, c) and their derivatives with respect to the
Borel parameters, using the partial fractioning of the
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purpose, we have used the following transformation
properties of U0(a, b):

(51)

(52)

In Appendix B, we have presented an analytic expres-
sion, obtained in this way, for the Wilson coefficient of
the gluon-condensate operator, contributing to the Π1 =
Π+ + Π– amplitude. One can see that, even in this form,
the obtained results are very cumbersome. Thus, we
have realized the gluon-condensate corrections as C++
codes, where the functions U0(a, b) are evaluated
numerically. Analytic approximations that can be made
for the U0(a, b) functions are discussed in Appendix B.

In Fig. 4, we have shown the effect of gluon conden-
sate on the f1(0) form factor in the Borel transformed
three-point sum rules.

We can draw the conclusion that the calculation of
gluon-condensate term in full QCD sum rules allows
one to enlarge the stability region in the parameter
space for the form factors, which indicates the reliabil-
ity of the sum-rule technique.

3. THREE-POINT NRQCD SUM RULES

The formulation of sum rules in NRQCD follows
the same lines as in QCD; the only difference is the
Lagrangian, describing strong interactions of heavy
quarks.

3.1. Symmetry of Form Factors in NRQCD 
and One-Loop Approximation

At the recoil momentum close to zero, the heavy
quarks in both the initial and final states have small rel-
ative velocities, so that the dynamics of heavy quarks is
essentially nonrelativistic. This allows us to use the
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factors. As in the case of heavy quark effective theory
(HQET), the expansion in the small relative velocities
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to the leading order leads to various relations between
the different form factors. Solving these relations
results in the introduction of a universal form factor (an

analog of the Isgur–Wise function) at q2  .

In this subsection, we consider the limit

(53)

where  = /  are the four-velocities of
heavy quarkonia in the initial and final states. The study
of region (53) is reasonable enough, because in the rest

frame of the Bc meson (  = ( , 0), the four-veloc-

ities differ only by a small value |p2 | (  = ( , p2)),
whereas their scalar product w deviates from unity only
due to a term proportional to the square of | |p2 |: w =

 ~ 1 + . Thus, in the linear approxima-

tion at |p2|  0, relations (53) are valid and take place.

Here, we would like to note that (53) generalizes the
investigation of [14], where the case of v1 = v2 was con-
sidered. This condition severely restricts the relations
of spin symmetry for the form factors, and, as a conse-
quence, it provides a single connection between the
form factors.

As can be seen in Fig. 1, since the antiquark line
with the mass m3 is common to the heavy quarkonia,
the four-velocity of an antiquark can be written down as
a linear combination of four-velocities v1 and v2:

(54)
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Fig. 4. The gluon-condensate contribution to the f1(0) form

factor in the Borel transformed sum rules at fixed  =

70 GeV2. The dashed curve represents the bare-quark-loop
results, and the solid curve is the form factor including the

gluon-condensate term at  = 10 –2 GeV4.
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In the leading order of NRQCD for the kinematical
invariants, determining the spin structure of quark
propagators in the limit w  1, we have the following
expressions:

(55)

In this kinematics, it is an easy task to show that in (54)

a = b = – , i.e.,

(56)

Applying momentum conservation at the vertices in
Fig. 1, we derive the following formulas for the four-
velocities of quarks with the masses m1 and m2:

(57)

(58)

and in the limit w  1, we have  =  = 1, as it
should be.

After these definitions have been made, it is
straightforward to write down the transition form factor
for the current Jµ = ΓµQ2 with the spin structure Γµ
= {γµ, γ5γµ}

(59)

where Γ1 determines the spin state in the heavy quarko-

nium  (in our case it is pseudoscalar, so that Γ1 =
γ5), and Γ2 determines the spin wave function of
quarkonium in the final state: Γ2 = {γ5, eµγµ} for the
pseudoscalar and vector states, respectively (H = P, V).
The quantity h is a universal function at w  1, inde-
pendent of the quarkonium spin state. So, for the form
factors discussed in our paper we have

(60)
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ṽ 2
µ

v 2
µ m3

2m2
--------- v 2 v 1–( )µ

,+=
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(62)

where

(63)

For the form factors in NRQCD, we then have the fol-
lowing symmetry relations:

(64)

Thus, we can claim that, in the approximation of
NRQCD, the form factors of weak currents responsible
for the transitions between two heavy quarkonium
states are given in terms of the single form factor, say,
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From (66), one can see that the decomposition of polar-
ization vector e into the longitudinal and transverse
parts in NRQCD is singular in the limit w  1:

(67)

It means that the introduction into the form factor 

of an additional term ∆  = (w2 – 1)δh, which vanishes
at w  1 and, thus, is not under control in NRQCD,

leads to a finite correction for the form factors  and

. This correction is canceled in the special linear
combination of form factors presented in (64).

In the case of v1 = v2, we reproduce the single rela-

tion between form factors  and f± , as it was obtained
earlier in [14].

Thus, we have obtained the generalized relations
due to the spin symmetry of NRQCD Lagrangian for
the case v1 ≠ v2 in the limit where the invariant mass of
lepton pair takes its maximum value, i.e., at a recoil
momentum close to zero.

In the one-loop approximation for the three-point
NRQCD sum rules, i.e., in the calculation of bare-
quark loop, the symmetry relations (64) already take

place for the double spectral densities  in the limit
|p2|  0. We have checked that the spectral densities
of the full QCD in the NRQCD limit w  1 satisfy
the symmetry relations (64).

It is easily seen that in this approximation
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When integrating over the resonance region, we must
take into account that
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so we see that, in the limit |p2|  0, the integration
region tends to a single point. Here, p1 = (m1 + m3 + ω1,

0), p2 = (m2 + m3 + ω2 , p2), and mij =  is the

reduced mass of system .

After the substitutions of variables ω1 =  and

x = ω2 –  in the limit |p2 |  0 for the

e
µ 1

w
2

1–
--------------- v 1

µ
– wv 2

µ
+( ) e v 1⋅( )– β eT

µ
.⋅+=

F0
A

F0
A

F+
A

F–
A

F0
A

ρ j
NR

ρ0
A NR, 6m1m2m3

p2 m1 m3+( )
--------------------------------.–=

ω2 ω1m13 m23⁄– m2

p2 2ω1m13

------------------------------------------------- 1,≤

mim j

mi m j+
------------------

QiQ j

k
2

2m13
-----------

-
 k

2

2m23
-----------

 m2

p2 k
-----------
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      200
correlation function , we have the expression

(70)

where kth denotes the resonance region boundary. In the
method of moments in NRQCD sum rules, we set ω1 =
–(m1 + m3) + q1 and ω2 = –(m2 + m3) + q2 , so that in the
limit q1, 2  0 we have

(71)

In the hadronic part of NRQCD sum rules in the limit
|p2 |  0, we model the resonance contribution using
the following representation:
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ant mass of the lepton pair takes its maximum value.
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the leading order of relative velocity of heavy quarks,
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result for the nonrelativistic quarks. Thus, we can con-
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NRQCD Lagrangian lead to a universal Wilson coeffi-
cient for the gluon-condensate operator. As a conse-
quence, relations (64) remain valid.

Below, we perform calculations for the form factor

( , , q2) in the limit q2  . The contribu-
tion of gluon condensate to the corresponding correla-
tion function is given by the expression

(74)

where

(75)

In these expressions, the inverse propagators are

(76)

The functions Rg and Rk are symmetric under the per-
mutation of indices 1 and 2 and are given by 

(77)

Let us note that, in the calculation of the diagrams in
Fig. 3, we have used the following vertex for the inter-
action of a heavy quark with a gluon:
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After two differentiations of the nonrelativistic propa-
gators

(80)

two types of contributions to the gluon-condensate cor-
rection appear. The first is equal to

(81)

and it leads to the term with R0. The second expression
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leads to the term with R2, which is of the same order in
the relative velocity of heavy quarks as R0, but it is sup-
pressed numerically in the region of moderate numbers
for the momenta of spectral densities, where the non-
perturbative contributions (condensates) of higher
dimension operators are not essential.

It is easy to show that the contributions of R0 and R2
can be obtained by the differentiation of two basic inte-
grals:
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As a result, we have

(84)

(85)

Equations (74), (84), and (85) represent the most com-
pact analytic expression for the contribution of gluon

condensate to the form factor , whereas performing
the differentiations leads to very cumbersome expres-
sions.

In the moment scheme of sum rules, we suppose
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and expand ∆  in a series in {q1, q2} at the point {0,

0}, which allows us to determine ∆ [n, m] =

. Further analysis has been per-

formed numerically with the help of MATHEMATICA.

To conclude, we have calculated the contribution of
gluon condensate to the three-point sum rules for heavy
quarkonia in the leading order of relative velocity of
heavy quarks and in the first order of αs. Due to the
symmetry of NRQCD in the limit where the invariant
mass of the lepton pair takes its maximum value, i.e., at
a recoil momentum close to zero, the Wilson coefficient

for the form factor  is universal in the sense that it
determines the contributions of gluon condensate to
other form factors, in accordance with relations (64).

4. NUMERICAL RESULTS 
ON THE FORM FACTORS

First, we evaluate the form factors in the scheme of
spectral density moments. This scheme is not strongly
sensitive to the values of threshold energies determin-
ing the region of resonance contribution. In the QCD
sum rule calculations, we set (in GeV)

(86)

where kth is the momentum of quark motion in the rest
frame of quarkonium. The chosen values of threshold
momenta correspond to the minimal energy of heavy-
meson pairs in specified channels.

The typical behavior of form factors in the moment
scheme of QCD sum rules is presented in Fig. 5.
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Fig. 5. The QCD sum-rule results in the moment scheme for

the (0) form factor in the bare approximation.F0
A

10



2136 KISELEV et al.
Table 1.  Form factors for  decay into heavy quarkonia at q2 = 0 in the bare-quark-loop approximation with allowance for
the Coulomb correction

Approximation f+ f– FV, GeV–1 , GeV , GeV–1 , GeV–1

Bare 0.10 –0.057 0.016 0.90 –0.011 0.018
Coulomb 0.66 –0.36 0.11 5.9 –0.074 0.12

Bc
+

F0
A F+

A F–
A

The evaluation of the Coulomb corrections strongly
depends on the appropriate set of αs for the quarkonia
under consideration. The corresponding scale of gluon
virtuality is determined by quite a low value close to the
average momentum transfer in the system. So, the
expected αs is about 0.5. To decrease the uncertainty,
we consider the contribution of the Coulomb rescatter-
ing in the two-point sum rules giving the leptonic con-
stants of heavy quarkonia. These sum rules are quite
sensitive to the value of the strong-coupling constant,
as the perturbative contribution depends on it linearly.
The observed value for the charmonium, fJ/ψ ≈ 410 MeV,

can be obtained in this technique at ( ) = 0.6. The

value  = 385 MeV, as it is predicted in QCD sum

rules [22], gives ( ) = 0.45. We present the results
of the Coulomb enhancement for the form factors in
Table 1.

The result after the introduction of the Coulomb
correction is shown in Fig. 6. Such large corrections to
the form factors should not lead to confusion, as they
resulted from the fair account of the Coulomb correc-
tions both for the bare-quark-loop diagram and for the
meson-coupling constant.

Working in the same scheme for the case of
NRQCD sum rules, we have plotted in Fig. 7 the value

of  at fixed ncc = 4 with the following values
of the parameters:5) 

Further, in (72) we can take into account the dominant
subleading term, which is the contribution by the
2S  2S transition. In this case, one could expect that
the form factor is not suppressed in comparison with
the contribution by the 1S  2S transition, since in
the potential picture the latter decay has to be neglected
because the overlapping between the wave functions at

5)The evaluation of the ∆ [ncc, nbc] dependence in a broad

range of [ncc, nbc] takes too much calculation time, so we restrict
ourselves by showing the results in Figs. 7 and 8 for the fixed ncc = 4.

α s
C

cc

f Bc

α s
C

bc

F0 1S, 1S→
A

F0
G

2

kth 1.3 GeV,=

mb 4.6 GeV,=

mc 1.4 GeV.=

α s

π
-----Gµν

2
1.7 10

2–
 GeV

4
.×=
P

zero recoil is close to zero for the states with the differ-
ent quantum numbers.6) Thus, we can easily modify the
relation (73) due to the second transition and justify the

value of  to reach the stability of  at
low values of moment numbers. We find

/  ≈ 3.7 and present the behavior of

the form factor  at zero recoil in Fig. 8.

As can be seen in these figures, the gluon contribu-
tion, while varying the moment number in the region of
bound  states, plays an important role, because it
allows us to extend the stability region for the form fac-

tor  up to three times (from n < 5 to n < 15) and thus
the reliability of sum-rule predictions. Let us also note
that, in the scheme of saturation for the hadronic part of
sum rules by the ground states in both variables s1 and
s2, the allowance for the gluon condensate leads to the

20% reduction for the value of form factor .

The analysis of the dependence on the moment
number nbc in the region of bound states  at fixed ncc
shows that the contribution of gluon condensate in this
case does not affect the character of this dependence.
This may be explained by the fact that the Coulomb
corrections to the Wilson coefficient of gluon operator

 play an essential role.7) The summation of αs /v

terms for  may give a sizable effect, contrary to the
situation with the  system, where the relative veloc-
ity of heavy quarks is not too small.

In the scheme of the Borel transformation for QCD
sum rules, we find a strong dependence on the thresh-
olds of continuum contribution. We think that this
dependence reflects the influence of contributions com-
ing from the excited states. So, the choice of kth values
in the same region as in the scheme of spectral-density
moments results in form factors which are approxi-
mately 50% greater than the predictions in the

6)The corresponding estimates were performed in [24], where the
1S  2S transition is suppressed with respect to 1S  1S as
1/25.

7)At present, there is an analytic calculation of initial six moments
for the Wilson coefficient of gluon condensate in the second order
of αs [26]. In this region, the influence of gluon condensate on the
sum-rule results is negligibly small for the heavy quarkonia, con-
taining the b quark, which does not allow one to draw definite
conclusions on the role of such αs corrections.

F0 2S, 2S→
A

F0 1S, 1S→
A

F0 2S, 2S→
A

F0 1S, 1S→
A

F0
A

cc

F0
A

F0
A

bc

Gµν
2

bc
cc
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moments scheme, where the higher excitations numer-
ically are not essential. In this case, we can explore the
ideology of finite-energy sum rules [25], wherein the
choice of interval for the quark–hadron duality,
expressed by means of sum rules, allows one to isolate
the contribution of basic states only. So, if we set

(87)

then the region of the lowest bound states is taken into
account in both channels of initial and final states, and
the Borel transform scheme leads to results that are
very close to those of the moment scheme. The depen-
dence of calculated values on the Borel parameters is
presented in Figs. 9 and 10, in the bare and Coulomb
approximations, respectively.

As for the dependence of form factors on q2, the con-
sideration of bare-quark-loop term shows that, say, for

(q2), it can be approximated by the pole function

(88)

with Mpole ≈ 4.5 GeV. The latter is in good agreement
with the value given in [12]. However, we believe that
the pole mass can change after the inclusion of αs cor-
rections.8) From the naive meson dominance model, we
expect that Mpole ≈ 6.3–6.5 GeV.

We have calculated the total widths of semileptonic
decays in the region of Mpole = 4.5–6.5 GeV, which
result in the 30% variation of predictions for the modes
with the massless leptons and more sizable dependence
for the modes with the τ lepton (see Table 2).

To compare with other estimates, we calculate the

width of    transition as the sum of decays
into the pseudoscalar and vector states and find9)

8)In HQET, the slope of Isgur–Wise function acquires a valuable
correction due to the αs term.

9)For normalization of the calculated branching ratios, we used the
total Bc width obtained in the framework of the OPE approach [8].

kth bc( ) 1.2 GeV,=

k th cc( ) 0.9 GeV,=

F0
A

F0
A

q
2( )
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A
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1 q
2
/Mpole

2
–

----------------------------,=

b ce
+νe

F0 (0),A GeV

18
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14

nbc ncc

7.5

2.5

Fig. 6. The QCD sum-rule results in the moment scheme for

the (0) form factor with allowance for the Coulomb cor-

rections.
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PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
F0 (0),A GeV
4

3

2

1

0 10 20 nbc

Fig. 7. The NRQCD sum-rule results for the (0) form

factor. The solid curve represents the bare-quark-loop con-
tribution, the short dashed curve is the result obtained by
taking into account the gluon-condensate term R0 only, and
the long dashed curve is the form factor including the full
expression for the gluon condensate.

F0
A

F0 (0),A GeV
4

3

2

1

0 10 20 nbc

Fig. 8. The NRQCD sum-rule results for the (0) form

factor. The contribution of 2S  2S transition has been
taken into account. The notation is the same as in Fig. 7.
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Fig. 9. The Borel transformed sum-rule results for the

(0) form factor in the bare approximation of QCD.F0
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Br(   ) ≈ (3.4 ± 0.6)%, which is in good
agreement with the value obtained in potential models
[6] and in OPE calculations [8], where the following

estimate was obtained: Br(   ) ≈ 3.8%. As
for our estimates for exclusive decay channels, they
also agree with the results obtained previously in the
framework of potential models [6].

In the results presented, we have supposed the quark
mixing matrix element |Vbc | = 0.040.

As for the hadronic decays, in the approach of fac-
torization [27], we assume that the width of transition

  J/ψ(ηc) + light hadrons can be calculated with
the same form factors after the introduction of QCD
corrections, which can be easily written down as the

factor H = Nc . The factor a1 represents the hard αs

corrections to the four-fermion weak interaction.
Numerically, we set a1 = 1.2, which yields H ≈ 4.3. So,
we find

(89)

Bc
+

cce
+νe

Bc
+

cce
+νe

Bc
+

a1
2

Br Bc
+

J /ψ light hadrons+[ ] (11 2)%,±=

10

20

30

Mcc,
2 GeV2

20

60

40

Mbc,
2 GeV2

5.6

5.4

5.2

F0 (0),A GeV

Fig. 10. The Borel transformed sum-rule results for the

(0) form factor with allowance for the Coulomb correc-

tions.

F0
A

Table 2.  Width with respect to  decay into heavy quarko-
nia and leptonic pair and branching fractions calculated at

 = 0.55 ps

Mode Γ, 10–15 GeV Br, %

ηce
+νe 11 ± 1 0.9 ± 0.1

ηcτ+ντ 3.3 ± 0.9 0.27 ± 0.07

J/ψe+νe 28 ± 5 2.5 ± 0.5

J/ψτ+ντ 7 ± 2 0.60 ± 0.15

Bc
+

τBc
P

(90)

Neglecting the decays   , which are sup-
pressed by both the small phase space and the negative
Pauli interference of decay product with the charmed
quark in the initial state [8], we evaluate the branching
fraction of beauty decays in the total width of Bc as

which is in agreement with the estimates in other
approaches [6, 8], where this value is equal to 25%.

5. CONCLUSIONS

We have calculated the semileptonic decays of Bc
meson in the framework of sum rules in QCD and
NRQCD. We have extended the previous evaluations in
QCD to the case of massive leptons: the complete set of
double spectral densities in the bare-quark-loop
approximation have been presented. The analysis in the
sum-rule schemes of density moments and Borel trans-
form has been performed, and consistent results have
been obtained.

We have taken into account the gluon-condensate
contribution for the form factors of semileptonic transi-
tions between the heavy quarkonia in the Borel trans-
form sum rules of QCD, wherein the analytic expres-
sions for the case of three nonzero masses of quarks
have been presented.

We have considered the soft limit on the form fac-
tors in NRQCD at a recoil momentum close to zero,
which has allowed one to derive the generalized rela-
tions due to the spin symmetry of the effective
Lagrangian. The relations have shown good agreement
with the numerical estimates in full QCD, which means
that the corrections in both the relative velocities of
heavy quarks inside the quarkonia and the inverse
heavy-quark masses are small within the accuracy of
the method. Next, we have presented the analytic
results on the gluon-condensate term in the NRQCD
sum rules within the moments scheme.

In both the QCD and NRQCD sum rules, the
account of the gluon condensate has allowed one to
enforce the reliability of predictions, since the region of
physical stability for the form factors evaluated was
significantly expanded in comparison with the leading-
order calculations of bare-quark-loop contribution.

Next, we have investigated the role played by the
Coulomb αs /v corrections for the semileptonic transi-
tions between the heavy quarkonia. We have shown
that, as in the case of two-point sum rules, the three-
point spectral densities are enhanced due to the Cou-
lomb renormalization of quark–meson vertices.

Br Bc
+ ηc light hadrons+[ ] (4.0 0.5)%.±=

b ccs

Br Bc
+

cc X+[ ] (23 5)%,±=
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The complete analysis shows that the numerical
estimates of various branching fractions,

agree with the results obtained in the framework of
potential models and OPE in NRQCD. More detailed
results are presented in tables.

Thus, we draw the conclusion that at present the the-
oretical predictions on the semileptonic decays of Bc
meson give consistent and reliable results.
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APPENDIX A

Semileptonic Decay Width

In this Appendix, we present the derivation of exclu-
sive semileptonic widths for the Bc-meson decays into
the J/ψ and ηc mesons with allowance for lepton
masses.

The exclusive semileptonic width ΓSL for the decay
Bc  J/ψ(ηc) , where l = e, µ, or τ, can be written
down in the form [28]

(Ä.1)

where d4q = 2π|q|dq2dq0, dτl = |pl|dΩl /(16π2 ) is the
leptonic-pair phase space, dΩl is the solid angle of

charged lepton l, |pl| = Φl/2 is its momentum in the
dilepton center-of-mass system, and Φl ≡

, with λ± ≡ (  ± )/q2. The tensors

Lαβ and Wαβ in (A.1) are given by

(Ä.2)

Br Bc
+

J /ψl
+ν l[ ] (2.5 0.5)%,±=

Br Bc
+

cc X+[ ] (23 5)%,±=

lν l
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2π( )3
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2
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2
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4
q τ lL
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q
2

q
2

1 2λ+– λ–
2

+ ml
2
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2

L
αβ 1

4
--- l O

αν l( ) ν lO
β
l( )
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∑=

=  2 pl
α

pνl

β
pl

β
pνl

α
g

αβ
pl pνl

⋅( )– ie
αβγδ

plγ pνlδ+ +[ ] ,
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(Ä.3)

where

(Ä.4)

for the pseudoscalar particle in the final state, and

(Ä.5)

for the vector meson in the final state with the polariza-
tion eµ, where

(Ä.6)

and M2 is the mass of final-state meson (J/ψ or ηc).
The integral over the leptonic phase space in (A.1)

is given by

(Ä.7)

with

(Ä.8)

where λ1 ≡ λ+ – 2  and λ2 ≡ λ+ – . Introducing the

dimensionless kinematical variable t ≡ q2/  and inte-
grating with respect to q0, the semileptonic width takes
the following form:

(Ä.9)
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In (A.9), the limits of integration are given by tmin = 

and tmax = (M1 – M2)2.

Calculation of 〈Lαβ〉  yields the expressions

for the pseudoscalar meson in the final state, and

for the vector meson in the final state.

APPENDIX B

Gluon-Condensate Contribution to QCD Sum Rules

In this appendix, we illustrate the kind of expres-
sions that arise for the gluon-condensate contribution to
the form factors Fi(t) in the framework of Borel trans-
formed three-point sum rules in the case of the f1(t) =
f+(t) + f–(t) form factor.

Following the algorithm described in Subsection

2.3, for , we have the expression
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For functions U0(a, b), we have the expressions
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for a ≥ 0. Here, Kn[z] is the modified Bessel function of
the second order. In the case of U0(–1, –2) and U0(–1,
−1), we have failed to obtain exact analytic expressions,
so we present their analytic approximations:
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where v =  +  and Γ(a, z) is the incomplete
gamma function, which is given by the integral Γ(a, z) =

e–tdt.
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Abstract—The electroweak-decay width Γ(B  Xsγ) is investigated in a light-front (LF) constituent quark
model. A new partonlike formula is derived that establishes a simple relation between Γ(B  Xsγ) and the
b  sγ decay width. A treatment of the b quark as an on-mass-shell particle and the inclusion of effects that
arise from the transverse motion of the b quark in the B meson are basic features of this approach. Adopting
different b-quark LF distribution functions, both phenomenological ones and those that are derived from con-
stituent quark models, and neglecting perturbative corrections, we compute the photon energy spectra and the
moments of the shape function. It is shown that the LF approach can be matched completely with a heavy-quark
expansion (HQE), provided that the constituent b-quark mass is redefined in a way similar to that used in HQE
to define the pole mass of the b quark. In this way, the correction to first order in 1/mb can be eliminated from
the total width in agreement with the general statement of HQE. We also show that the photon energy spectra
calculated in the LF approach agree well with those obtained in the model of Altarelli et al., provided that the
same distribution function is used as an input in both cases. Despite the simplicity of the model, our results are
in fairly good agreement both with HQE predictions and with available experimental data. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In the Standard Model (SM), rare B-meson decays
are induced by one-loop W-boson- or up-quark-
exchange diagrams. In particular, the flavor-changing
neutral-current decay b  sγ may proceed via the
electroweak penguin diagram [1] where the quark
emits and reabsorbs a W boson, thus changing the fla-
vor twice, and a photon is radiated from either the W
boson or one of the charged-quark lines. Penguin
decays became increasingly appreciated in recent
years. They give insight into the SM because these
decays can be used to determine various elements of
the Cabibbo–Kobayashi–Maskawa (CKM) matrix that
enter into the SM Lagrangian. In particular, the penguin
transitions b  sγ and b  dγ are sensitive to |Vts |
and |Vtd |, respectively, which will be very difficult to
measure in top decay. In addition, penguin decays may
be quite sensitive to new physics [2].

At present, b-quark decays are under investigation
with high-statistics samples from the following three
colliders: the CESR at Cornell, which produces 

pairs at the ϒ(4S) resonance just above the e+e–  
threshold; the LEP collider at CERN, which produces

 pairs in Z0 decays; and the Tevatron at FNAL,

which produces  pairs in  collisions. For the
review of various aspects of these machines, the reader
is referred to [3]. Presently, the B-meson factories that

BB

BB

bb

bb p p

* This article was submitted by the authors in English.
1063-7788/00/6312- $20.00 © 22145
are under consideration at SLAC (BaBar) and KEK
(Belle) and the upgraded B factory at CESR (CLEO III
collaboration) will drastically change the experimental
situation concerning rare B decays in the near future.
With an expected high luminosity, radiative B decay
will no longer be rare events. An experimental error in
the inclusive mode b  sγ below 10% is possible.
This is also a motivation for increasing the accuracy of
theoretical predictions.

The existence of loop decays was first confirmed
experimentally by an observation of an electromag-
netic penguin in the exclusive mode B  K*γ by
the CLEO II collaboration [4]. The branching ratio
found for the decay B  Xsγ by the CLEO collabo-
ration in 1994 is [5]

(1)

and the very recent preliminary updated data from
CLEO yield [6]

(2)

The ALEPH measurement of the corresponding
branching ratio for B hadrons (mesons and baryons)
produced in Z0 decays yields [7]

Br(B  Xsγ) = (3.11 ± 0.80 ± 0.72) × 10–4. (3)

Br B Xsγ( )

=  2.32 0.57 stat.( )± 0.35 syst.( )±( ) 10
4–
,×

Br B Xsγ( )

=  3.15 0.80 stat.( )± 0.72 syst.( )±( ) 10
4–
.×
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Note that the measurements by CLEO and ALEPH
were quite different and should not be expected to give
identical results. The experimental results presented
above were obtained by measuring the high-energy sec-
tion of the photon spectrum and by extrapolating it to
the total rate. This requires the theoretical understand-
ing of the photon spectrum.

Processes of the B  Xsγ type are expected to be
dominated by the two-body decays such as B 
K*(892)γ and by final states with soft-gluon emission
that kinematically resemble two-body decays. In this
case, the photon energy in the B-meson rest frame has
a spectrum that peaks approximately at half of the B-
meson mass. In contrast, charged-current-initiated radi-
ative b decays, such as b  cW*γ and b  uW*γ
(where W* is a virtual W boson), produce photons with
a spectrum resembling that from bremsstrahlung and,
hence, of much lower energy. The experimental results
for the inclusive decay rate were obtained by measuring
the high-energy section of the photon spectrum,

(4)

with the present experimental cut of  ~ 2.1 GeV by
CLEO collaboration [8] and the extrapolation to the
total rate. To determine the total branching ratio for
B  Xsγ from such a measurement, one must know
theoretically the fraction R of the B  Xsγ events with

photon energies above . Therefore, the study of the
photon spectrum from the weak radiative decay B 
Xsγ is important for understanding the possible accu-
racy that can be attained in the prediction of the total
rate in the presence of an experimental cut on the pho-
ton energy Eγ. Gross features of the spectrum, such as
the average photon energy, may be used to measure the
fundamental heavy-quark-expansion (HQE) parame-
ters determining the quark pole mass and the kinetic
energy [9, 10].

The experimental results given above have been
solely based on the ACM model [11, 12]. This model
treats the heavy hadron as a bound state of the heavy
quark and a spectator, with a certain momentum distri-
bution Φ(p2). The photon energy spectrum from the
decay of the B meson at rest is then given by

(5)

Here, dΓ(b  sγ)/dEγ is the photon energy spectrum
from the in-flight decay of the b quark with floating

Br B Xsγ( ) Eγ
min( ) Brd

Eγd
--------- Eγ,d

Eγ
min

Eγ
max

∫=

Eγ
min

Eγ
min

dΓ B Xsγ( )
dEγ

-------------------------------------

=  p p
2Φ p

2( ) Γ b sγ( )d
Eγd

--------------------------------- Eγ m f p
2( ),( ).d

0

pmax

∫

P

mass mf(p2) = MB – , where msp is the mass

of the spectator quark, and  is the maximally
allowed value of p. Distribution Φ(p2) is usually assumed
to have the Gaussian form determined by a nonperturba-
tive parameter, pF,

(6)

with the wave-function normalization

Based on calculation of [13] for the photon energy
spectrum and adopting the Fermi motion model of [12],
CLEO used the value R = 85–94% [8] to determine
Br(B  Xsγ) from the measured partial branching
ratio.

In contrast to the exclusive decays, the inclusive
decay modes are theoretically simpler, because no spe-
cific model is needed to describe the final hadronic
states. Assuming the quark–hadron duality and the fact
that the b quark is heavy as compared to the character-
istic low-energy scale ΛQCD of the strong interactions,
the inclusive B  Xsγ decay rate was traditionally cal-
culated in a systematic QCD-based expansion [14] in
powers of Λ /mb:

(7)

This formula is known under the name of HQE. The
free quark decay width including the QCD perturbative
corrections from the real and virtual gluons emerges as
the leading term in this expansion. The nonperturvative

corrections are suppressed by the factor Λ2/ .1) The
fact that there are no first-order corrections is based on
a particular definition of mb [16] that can be regarded as
a nonperturbative generalization of the pole mass.

In the free-quark approximation neglecting the radi-
ative corrections, the spectrum of photons is a mono-
chromatic line:

(8)

For energy Eγ not too close to its maximal value, the
photon spectrum dΓ(b  sγ)/dEγ has a perturbative
expansion in the strong interaction coupling constant
αs , and the first (αs independent) term of the expansion

1)In addition, the nonperturbative contributions from  intermedi-

ate states were found which scale like 1/  and enlarge the

branching ratio by ≈3% [15].

p
2

msp
2

+

pmax

Φ p
2( ) 4

πpF
3

------------- p
2

pF
2

------–
 
 
 

,exp=

Φ p
2( ) p

2
pd

0

∞

∫ 1.=

Br B Xsγ( ) Br b sγ( ) 2
1

mb
2

------ 
  .+=

mb
2

cc

mc
2

dΓ b sγ( )
dEγ

--------------------------------- Γ b sγ( )δ Eγ
mb

2
------– 

  .=
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is given by (8). This expansion is known at the order of

αs [10]. The  contributions, where β0 = 11 – 2nf /3
is the one-loop β function, have been recently com-
puted [17]. However, near the end point, the energy
released for a light quark system is not of the order
2(mb) but of the order of  = MB – mb ~ ΛQCD. Thus,

the expansion parameter is no longer 1/ , but rather

1/mb  ~ 2 (1 GeV), and the operator product expan-
sion breaks down. The divergent series in the effective
theory corresponding to the nonperturbative effect due
to the soft interactions of the b quark with the light con-
stituents have to be resumed. This so-called “Fermi
motion” can be included in the heavy-quark expansion
by summing an infinite set of leading-twist contribu-
tions into a shape function F(x) [18], where a scaling
variable is defined as

(9)

This is quite similar to what happens for the structure
function in deep-inelastic scattering in the region,
where the Bjorken variable xB  1. A model-inde-
pendent determination of the shape function in the
effective theory is not possible at present; however, it
may be possible to solve this problem by using lattice
QCD [19]. An ansatz for the shape function constrained
by the information on its few first moments has been
recently used in [20] including the next-to-leading
(NLO) perturbative QCD corrections.

In this paper, we consider the light-front (LF)
approach to calculation for the photon energy spectra
from inclusive B  Xsγ decay. This approach was
originally suggested for the inclusive semileptonic
transitions [21–24] and has been recently refined in
[25]. The corresponding ansatz from [25] reduces to a
specific choice of the input LF distribution function

|ψ(ξ, )|2, which represents the probability that the b
quark carries a LF fraction ξ and a transverse momen-

tum squared  = |p⊥ |2. As a result, a new partonlike
formula for the width of inclusive semileptonic b 
c, u decays has been derived [25], which is similar to
the formula obtained by Bjorken et al. [26] in the case
of infinitely heavy b and c quarks.

Some of the dynamical features of this model get
obscured by the integration over the lepton energy.
They are better manifested in the spectrum of the pho-
tons in the radiative B  Xsγ transitions. In this paper,
we extend the work of [25] to compute the nonpertur-
bative corrections to the photon spectrum and the inclu-
sive rate B  Xsγ.2) We attempt to take into account
the B-meson wave function effects on the photon

2)A preview of this work can be found in [27].

α s
2β0

Λ
mb

2

Λ

x
2Eγ mb–

Λ
---------------------,=

with Λ MB mb– 2 1/mb( ).+=

p⊥
2

p⊥
2
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energy and the invariant mass distributions of the had-
rons recoiling against the photon. We will compare the
photon spectra dΓ/dEγ calculated in the LF and ACM
approaches and will show that the discrepancy between
the two is very small.

The paper is organized as follows. In Section 2, we
collect the main facts concerning the calculation of the
Br(b  sγ) in QCD. In Section 3, we derive the par-
tonic formula for the photon energy spectra from B 
Xsγ. In Section 4, we consider the ansätze for the distri-

bution function f(x, ). In Section 5, we discuss the
choice of the b-quark mass in our approach. The
numerical results for the photon energy spectra and the
moments are presented in Section 6, where we also
present the comparison of our results with those
obtained in the ACM model. In Section 7, we discuss
the invariant mass spectra and the calculation of
Br(B  K*γ) in our approach. Finally, Section 8 con-
tains our conclusions.

2. PERTURBATIVE TREATMENT 
OF Γ(b  sγ) IN QCD

In this section, we just briefly recall the main points
of the calculation of the b  sγ decay in QCD (for
general discussion see [28]).

At high energy scale µ ~ MW, the b  sγ quark decay
is governed by an electroweak penguin diagram. To obtain
an effective low-energy theory relevant for scales µ ~ mb,
heavy degrees of freedom related to W and Z0 bosons and
t quark must be integrated out to obtain an effective cou-
pling for the pointlike interactions of initial and final par-
ticles. After the integration, the effective Lagrangian for
b  s penguin decays takes the form

(10)

where Oi are current–current (i = 1, 2), gluonic penguin
(i = 3, …, 6), and electroweak penguin (i = 7, …, 10)
operators. In (10), GF is the Fermi constant and Vij are
the elements of the CKM matrix. The effects of the
heavy degrees of freedom are hidden in the effective
gauge coupling constants, running quark masses, and
the Wilson coefficients Ci describing the effective
strength of the local operators Oi in (10). The coeffi-
cients Ci at µ ~ MW serve in leading order as initial con-
ditions to the renormalization group evolution from µW
down to µb . An explicit form of the operators Oi in (10)
can be found, e.g., in [28]. The operators relevant for
leading approximation are the electroweak penguin

(11)

and the gluonic penguin

(12)

p⊥
2

+eff
4GF

2
----------VtbVts* Ci µ( )Oi µ( ),

1

10

∑=

O7γ
e

32π2
-----------mb µ( )sασµν 1 γ5+( )bα Fµν=

O8G

gs

32π2
-----------mb µ( )sασµν 1 γ5+( )Tαβ

a
bβGµν

a
,=
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where e and gs are the electromagnetic and strong cou-

pling constants, and Fµν and  denote the electro-
magnetic and the gluonic field strength tensor, respec-
tively. The contribution of other operators O3, …, O6
can be neglected to an excellent approximation. Wilson
coefficients of these operators originate from operator
mixing only and are numerically small.

Technically, the calculations are performed at a
high-energy scale µW ~ 2(MW) at which the full theory
is matched with the effective five-quark theory and then
is evolved to a low-energy scale µ ~ µb using renormal-
ization group equations. At µW ~ MW, the contribution
of the matrix element of O7γ to the b  sγ decay width
has the form3) 

(13)

The factor  in (13) originates from the two–body
phase space. In HQE, mb is usually associated with the
b-quark pole mass mb, pole . For µb ~ mb, one has

(14)

This difference does not enter the leading approxima-

tion. The basic functions c7γ (MW) = (xt) and

c8G(MW) = (xt), xt = /  were calculated by
many authors, in particular, by Inami and Lim [29].
Their explicit form is

(15)

(16)

For mt = 170 GeV,  = – 0.193, and  = –0.096.

Expressions (15) and (16) do not include QCD cor-
rection. The evolution of (10) down to µb mixes the
operators

(17)

In particular, Γ(b  sγ) in the leading order is again
given by (13) in which c7γ(µb) is replaced by “effective

3)The strange quark mass will be neglected throughout this paper; it

only enters the final results quadratically as / .

Gµν
a
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2

mb
2

Γ0 Γ b sγ( )=

=  
αGF

2

32π4
----------- VtbVts

2
c7γ

2 µW( )mb µW( )2
mb

3
.

mb
3

mb
2 µb( ) mb pole,

2
1

8
3
---

α s µb( )
π

----------------– 
  .=

C7γ
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C8G
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2
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2

C7γ
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8xt
3

5xt
2

7xt–+

24 1 xt–( )3
-------------------------------------,+=

C8G
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2
–

4 x 1–( )4
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– 5xt
2

2xt+ +

8 xt 1–( )3
--------------------------------------.+=

C7γ
0( )

C8G
0( )

Ci µb( ) U µb µW,( )C j MW( ).
j

∑=
P

coefficient” (µb) [30]

(18)

with (MW) = 1 and η = α(µW)/α(µb). The “magic
numbers” hi and ai are given, e.g., in Table 23 from
[28]. The scale µb enters into (18) only through η.

For mt = 170 GeV, (µW) = –0.096. Then, using

(19)

with µb = 5 GeV and αs(MZ) = 0.118, one obtains

(µb) = 0.695 (µW) + 0.085 (µW) –

0.158 (µW) = –0.3. In the absence of QCD correc-

tions, we would have η = 1 and (µb) = (µW).
Therefore, the leading QCD corrections cause the large
QCD enhancement of the B  Xsγ rate [31].

The predictions for Br(B  Xsγ) are usually
obtained by normalizing the result to that for the semi-
leptonic rate, thereby eliminating the uncertainties due

to the CKM matrix elements and the factor . In the
leading approximation, one obtains

(20)

where

(21)

g(ρ) = 1 – 8ρ + 8ρ2 – ρ4 – 12ρ2lnρ is the phase space
factor in the semileptonic b   decay, and ρ =

/ . The last factor in (21) parametrizes the
nonperturbative corrections in HQE to the semileptonic
and radiative decay rates [9]

(22)

where λ1 and λ2 parametrize the matrix elements of the
kinetic and chromomagnetic operators, respectively,
which appear in the effective Lagrangian of HQE at the
order of 1/mb . The value of λ2 is known from B*–B
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splitting, λ2 = 0.12 GeV2. The value of λ1 is controver-
sial, fortunately it cancels on the right-hand side of
(22). The two nonperturbative corrections in (22) both
are of a few percent and tend to cancel each other.
Therefore, the total nonperturbative correction in (22)
is much smaller than the accuracy of the perturbative
calculation of Rquark. The final result of the leading-
order analysis is [30]

(23)

where uncertainty reflects mainly the scale ambiguity µb.

The NLO corrections include the αs corrections to

 [32] and the αs corrections originating from one-
loop matrix elements 〈sγ|O7γ|b〉  and 〈sγ|O8G |b〉  and two-
loop matrix elements 〈sγ|Oi |b〉  of the remaining opera-
tors (see Eq. (21) of [32]). A part of NLO corrections
originates from the bremsstrahlung corrections. For an
updated review of NLO calculation, see [20]. All the
theoretical predictions with allowance of the NLO
QCD corrections in the SM fall in the range

(24)

i.e., the LO result is shifted by about 20%, and the
present theoretical uncertainty is reduced to about 10%.
This theoretical result is in good agreement with
updated experimental data (2) and (3).

3. THE PARTON FORMULAS

As a preliminary, we briefly discuss a derivation of
the inclusive photon energy spectrum for the B  Xsγ
decays in the context of the LF approach of [25]. Simi-
lar to the ACM model, the LF quark model treats the
beauty meson as consisting of the heavy b quark plus a
spectator quark. Both quarks have fixed masses, mb and
msp , though. This is at variance with the ACM model
that has been introduced in order to avoid the notion of
the heavy quark mass at all.

To calculate the B  Xsγ decay width, we use the
approach of [25] which assumes that the sum over all
possible strange final states Xs can be modeled by the
decay width of an on-shell b quark into an on-shell c
quark weighted with the b-quark distribution function

f(ξ, ). Going through the intermediate steps (for the
details, see [25]), we obtain the partial decay width of
the inclusive B  Xsγ decay in the form

(25)

where

(26)

Br B Xsγ( ) 2.8 0.8±( ) 10
4–
,×=

C7γ
0( )eff

Br B Xsγ( ) 3.3 0.3±( ) 10
4–
;×=

p⊥
2

dΓ 4x0Γ0

d
2
p⊥ ξd
ξ

------------------ f ξ p⊥
2,( ) τ ,d∫=

x0 mb/MB.=
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In our phenomenological consideration, we associate
mb with the constituent b-quark mass (see below). The

normalization of f(ξ, ) in (25) is as follows:

(27)

where the factor 1/ξ comes from the normalization of
the B   vertex [33]. The phase space factor dτ is
given by

(28)

We choose the z axis as being parallel to the 3-vector q,
so that q+ = 2Eγ, q– = 0, where q± = q0 ± qz , then dτ takes
the form

(29)

In the first approximation, we neglect  in the argu-
ment of the δ function. Then, in terms of the scaling
variable

(30)

the photon spectrum dΓ/dy in B  Xsγ takes the sim-
ple form

(31)

where

(32)

and

(33)

Equivalently, one can write the spectrum in the stan-
dard QCD form [34]

(34)

where

(35)

and x0 is defined by (26). Therefore, the specific choice

adopted for (ξ) corresponds to the following particu-
lar form of the QCD shape function

(36)
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Note that if one uses the infinite momentum frame pre-

scription [21, 22] pb = ξPB, i.e., (ξ) = ξ2 , then
one easily derives from (25) and (29) that dΓ ∝

(y)dEγ [35].

We take into account now the transverse motion of

the b quark, i.e., the term  in (29), to find a little
more complicated expression for RLF(y) [25]

(37)

where the integration limits follow from the condition

 ≥ 0, with

(38)

In this case, the shape of the spectrum is obtained by

direct integration of the distribution function f(ξ, ).
We will see below that the difference between RLF(y)
given by (32) and (37) is very small.

In the free-quark approximation,

(39)

the total inclusive width Γ(B  Xsγ) of the B meson
is the same as the radiative width Γ(b  sγ), and the
spectrum of photons is monochromatic [see (8)]. Due
to the heavy-quark motion, the δ function in (8) is trans-
formed into a finite width peak. This effect is solely
responsible for the filling in of the windows between
mb/2 and the kinematical boundary in the B-meson
decay, Emax = MB/2.4) Expressions in (32) and (37)
exhibit a pronounced peak, which is rather asymmetric.
It is a gratifying feature of the LF model, since it is in
qualitative agreement with both findings in QCD and
experimental data. The perturbative corrections arising
from gluon bremsstrahlung and one-loop effects [13]
also lead to a nontrivial photon spectrum at the partonic
level. Since our primary object here is to discuss nonper-
turbative effects due to the Fermi motion, we will implic-
itly ignore perturbative gluon emission throughout our
analysis. In this case, the parton matrix element squared
is a constant and can be taken out of the integral in (25).

4. ANSÄTZE FOR THE LF HEAVY-QUARK 
DISTRIBUTION

Since we do not have an explicit representation for
the B-meson Fock expansion in QCD, we shall proceed
by making an ansatz for the momentum representation of
the wave function. This is a model-dependent enterprise,
but it has close equivalence in studies of B  Xsγ by

4)The true endpoint is actually located at [  – (mK + mπ)2]/2MB ≈
2.60 GeV, i.e., slightly below MB/2 ≈ 2.64 GeV.

mb
2

MB
2

Eγ
3

f̃

p⊥
2

RLF y( ) 2mbπ f ξ p⊥
*2

,( ) ξ ,d

y

1

∫=

p⊥
*2

p⊥
*2

p⊥
*2

ξ E,( ) mb
2 ξ /y 1–( ).= =

p⊥
2

f ξ p⊥
2,( ) δ ξ ξ0–( )δ p⊥

2( ),=

MB
2

P

using the ACM model. In what follows, we will adopt
both a phenomenological LF wave function and the LF
functions corresponding to the various equal time (ET)
quark-model wave functions. As to the phenomenolog-
ical ansatz, we use a model first proposed in [36] and
also employed in [22, 24] to take into account the
bound state effects in B-meson decays. It is written in
the Lorentz-invariant form

(40)

where vb and vsp are the 4-velocities of the b quark and

the spectator quark, respectively, and εp = 
is the energy of the spectator. We use the normalization
condition

(41)

in this case,

(42)

where K1(λ) is the Macdonald function. The function
Φ(p2) = ψ2(|p |)/2εp represents a momentum distribution
of the spectator quark in the rest frame of B meson. We
go over from ET to LF momenta by leaving the trans-
verse momenta unchanged and letting

(43)

for both the b quark (i = b) and the spectator quark (i =
sp). The longitudinal LF momentum fractions ξi are
defined as

(44)

with  +  = . In the rest frame of B meson,

 = MB. Then, for the distribution function

(45)

(ξ = ξb), normalized according to (27), one obtains

(46)

where ξ0 = msp/MB . Function (46) is sharply peaked at

 = 0, ξ = ξ0. In what follows, we will refer to the LF
wave function of (46) as the case A.
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Table 1.  Values of the parameters ci (in units of GeV–3/2) and αi (in units of GeV–2) in (48) for the analytic parametrization
of the B-meson wave function corresponding to AL1 and DSR potentials (the wave function is normalized by the condition

(p)p2dp = 1)

Model α1 α2 α3 α4 c1 c2 c3 c4

AL1 4.979 2.184 0.638 0.097 4.845 1.839 0.128 0.097

DSR 5.294 2.022 0.758 0.233 1.448 2.303 0.650 0.067

ψ2
0
∞∫
A priori, there is no relation between the ET
momentum distribution Φ(p2) of a constituent quark

model and LF wave function ψ(x, ). However, the
mapping between the variables described above con-
verts a normalized solution of the ET equation of
motion into a normalized solution of the different-look-
ing LF equation [37]. Because the ET function depends
on the relative momentum, it is more convenient to use
the quark–antiquark rest frame instead of the B-meson
rest frame. Recall that these two frames are different in
the LF formalism. As a result, one obtains the LF wave
function in the form

(47)

The explicit form of this function is given by formulas
(10) of [24]. It is wave functions made kinematically
relativistic in this manner that were used in the recent
calculation of the Bc lifetime [38]. We calculate the
photon energy spectra using the three representative LF
wave functions corresponding to the nonrelativistic
ISGW2 [39], AL1 [40], and relativized DSR [41] con-
stituent quark models. The ISGW2 equal-time function
corresponds to the Gaussian distribution Φ(p2) of (6)
conventionally employed in the ACM model with pF =
0.43 GeV. For AL1 and DSR models, we use simple
analytic parametrizations of the ET wave functions [42]

(48)

The parameters ci and αi are listed in Table 1. The main
difference between the ET wave functions of these mod-
els lies in the behavior at a high value of the internal
momentum (for further discussion see [38]). We believe
that the spread of results obtained for these distribution
functions is a fair representation of model dependence
resulting from the inclusion of Fermi motion.

5. CHOICE OF mb

Having specified the nonperturbative aspects of our
calculations, we proceed to present numerical results
for the photon spectrum in the B  Xsγ decay. In this
section, we analyze the sensitivity of the calculated
spectra and the energy moments to the choice of the B-
meson radial functions. We will calculate the photon
energy spectra using both expressions (32) and (37) and

using the four distribution functions f(ξ, ) deter-

p⊥
2

ψ ξ p⊥
2,( ) ∂pz/∂ξ( )Φ p⊥

2
pz

2 ξ p⊥
2,( )+( ).=

ψ p( ) ci α i p
2

–( ).exp∑=

p⊥
2
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mined in the previous section. In the case A, we take
mb = 4.8 GeV, msp = 0.3 GeV, and λ = 2 as reference val-
ues. These values are motivated by a study of the b 
c decays [24]. For the models B to D, we use the con-
stituent quark masses listed in Table 2.

The choice of mb in our approach deserves some
comments. The numerical calculations using the con-
stituent b-quark masses show large deviations of the

Γ(B  Xsγ) from the free decay rate Γ0 ∝   (≈10%
for the cases B to D, see Table 2). This points to the
appearance of the linear 1/mb corrections to the free
quark limit. The reason is that the constituent quark
models usually employ the b-quark masses that are
300–400 MeV higher than the pole b-quark mass. This
fact seems to be a subtlety in applying the constituent
quark model to calculate the nonperturbative correc-
tions to the B  Xsγ inclusive rate. To overcome the
uncertainties induced by the mass of the constituent b
quark, we use a simple phenomenological recipe that
considerably improves the situation. Notice that, as in
the ACM model [34], 1/mb corrections can be absorbed
into the definition of the b-quark mass. We introduce

(49)

by imposing the condition ( ) = x0 , where

(50)

mb
3

m̃b mb δmb+=

y m̃b

y yRLF y( ) y.d

0

1

∫=

Table 2.  Values of the constituent quark mass mb and msp
(in GeV) for the models A to D [also indicated are the values

of  as defined by the HQET condition 〈x〉  = 0);  are
the average values of the floating mass mf(p

2)]

Model A B C D

mb 4.80 5.20 5.227 5.074

msp 0.30 0.33 0.315 0.221

a) 4.76 4.72 4.76 4.68

b) 4.73 4.68 4.73 4.60

4.73 4.68 4.73 4.60

Note: Cases a) and b) correspond to RLF(y) given by (32) and (37),
respectively.

m̃b mb
ACM

m̃b

m̃b

mb
ACM
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Table 3. Integrated photon spectra RLF and RACM calculated
with the use of (32) (case a)) and (37) (case b)) for the wave-
function models A to D [the integrated spectra RACM were
calculated by using Eq. (55)]

Model A B C D

RLF(mb)a) 0.9 0.9 0.9 0.9

RLF(mb)b) 0.973 0.900 0.905 0.899

RLF
a) 0.995 0.994 0.995 0.99

RLF
b) 0.987 0.986 0.989 0.974

RACM( ) 1.008 1.005 1.008 1.003

m̃b( )

m̃b( )

mb
ACM

Table 4.  Energy moments , n = 1, 2, 3, and HQE mo-
ments 〈x2〉  and 〈x3〉  for cases A to D [the LF photon energy
spectra were calculated by using Eq. (32); the scaling vari-
ables x and y are defined in Eqs. (9) and (30), respectively]

Model A B C D

(mb) 0.889 0.822 0.831 0.823

0.897 0.888 0.897 0.877

0.806 0.744 0.758 0.740

0.813 0.797 0.812 0.783

(mb) 0.733 0.676 0.693 0.670

0.739 0.718 0.737 0.705

〈x2〉 0.390 0.313 0.316 0.493

〈–x3〉 0.377 0.155 0.195 0.415

yn

y

y m̃b( )

y2 mb( )

y2 m̃b( )

y3

y3 m̃b( )

Table 5.  Energy moments , n = 1, 2, 3, and HQE mo-
ments 〈x2〉  and 〈x3〉  for cases A to D [the LF photon energy
spectra were calculated by using Eq. (37); the scaling vari-
ables x and y are defined in Eqs. (9) and (30), respectively]

Model A B C D

(mb) 0.873 0.806 0.818 0.795

0.885 0.873 0.885 0.851

0.787 0.726 0.742 0.709

0.798 0.778 0.796 0.751

(mb) 0.712 0.655 0.676 0.636

0.722 0.695 0.718 0.669

〈x2〉 0.378 0.295 0.302 0.456

〈–x3〉 0.348 0.130 0.176 0.348

yn

y

y m̃b( )

y2 mb( )

y2 m̃b( )

y3

y3 m̃b( )
P

This condition coincides with that used in HQE to
define the pole mass of the b quark. As a result, the cor-
rection to first order in 1/mb will be eliminated from the
total width in agreement with the general statement of
HQE.5)

To illustrate our arguments, we consider the exactly
solvable case of the photon spectrum of (32) with the
distribution function given by (46). In this case, we
have

(51)

and simple analytic expressions for 

and  have the form

(52)

where κn = Kn(λ)/K1(λ). The 1/MB correction to RLF can
be included into the definition of . Indeed, neglect-

ing  and letting  ≈ (1 – ξ0κ2)MB , one obtains

RLF =1 + 2(1/ ). The B-meson mass can be elimi-
nated in favor of the b-quark mass, so we have the
desired result in the form

(53)

For the models B to D, we have no analytic results.
However, the numerical effect of introducing  is the
same (see Table 3). We have calculated numerically the
values of  in different models using both (32) and

(37) for RLF(y). Although  depends on the assumed
shape of distribution, this dependence is marginal: the
uncertainty on  is between 4.6 and 4.7 GeV depend-

ing on the choice of f(ξ, ) (see Table 2). These val-
ues are consistent with the b-quark pole mass mb, pole =
4.8 ± 0.15 GeV [43].

6. PHOTON ENERGY SPECTRA 
AND THE ENERGY MOMENTS

We study first the photon spectra using (32) and (37).
Our results for the integrated photon spectra and energy
moments are presented in Fig. 1 and in Tables 3–5. The
different curves in Fig. 1 correspond to the models A to
D. For each case, we show separately the spectra calcu-
lated from (32) and (37) by using the corresponding

5)In this way, the bound-state effects are largely compensated by
the shift in the b-quark mass.
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values of  and the photon energy spectra calculated
in the ACM model (see below). The influence of the
various choices of the distribution function and the b-
quark mass can be seen from Table 3, where we show
both RLF (mb), RLF( ) and analogous quantities RACM

for the ACM model. In Tables 4 and 5, we show the
average photon energy  normalized to MB /2, and the

moments  and . We present the results obtained
using both (32) (Table 4) and (37) (Table 5). The
replacement mb   modifies the predictions for

the total rate and the moments  and  by about 8–9%
for the models B–D, while it changes the corresponding
quantities by less than 1.5% for the model A. Our final
results for the integrated photon spectra RLF( ) agree
well with the corresponding OPE prediction [9] ROPE =
1 + δRAD, where δRAD has been defined in (22). For λ1 =
−0.3 ± 0.2 GeV2 and λ2 = 0.12 ± 0.02 GeV2, ROPE changes
the free quark result by a few percent, ROPE = 0.975 ±
0.005. Note also that the sensitivity of RLF to the func-
tional form chosen for the distribution function is small.
This behavior agrees again with that based on the global
quark–hadron duality that ensures insensitivity of even
partially integrated quantities to the bound state effects.
Note that the effect of the transverse momentum is con-
siderably smaller than the model-dependent uncertainty.

The dependence of the energy moments  on mb is
rather weak, in contrast to that of the QCD moments of
the shape function

(54)

which are very sensitive to the difference between MB
and mb . In particular, change of the b-quark mass from
mb to  modifies 〈x2〉  and 〈x3〉  drastically. Note that the
resulting values of 〈x2〉  and 〈x3〉  are still considerably
model dependent. Our predictions for 〈x2〉  are relatively
small, although in agreement (for the model D) with the
result of [20] and compatible with the results obtained
from the QCD sum rules; 〈x2〉  ≈ 0.5. This means that the
LF ansatz can be made consistent with the QCD
description, provided the spectator quark is relativistic.
This conclusion agrees with the similar conclusion
obtained in the ACM model in [34].

In order to compare our results with those derived in
the ACM model, we have calculated the inclusive
B  Xsγ photon spectra in a simplified ACM model
[34] assuming the monochromatic distribution (8) for
the free b quark. In this case, one easily obtains

(55)
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where  is the floating b-quark mass and

(56)

We have used the momentum distributions Φ(p2) of the
spectator quark for the models A to D. In all cases, we
have found that the spectra calculated in ACM and LF
parton models are almost identical. This is not surpris-
ing because we have checked numerically that the
quark masses  defined using the LF models practi-
cally coincide with the values of the floating b-quark

mass  averaged over the distribution Φ(p2) (see
Table 2). The integrated energy spectra RACM for the
models A to D are presented in Table 3. They coincide
with RLF within a percent accuracy. The energy
moments for the ACM model are shown in Table 6.

Although in this paper we do not consider perturba-
tive corrections, it is instructive to compare theoretical
predictions for the Doppler shifted spectrum dB/dElab
in the laboratory frame with the CLEO data. To per-
form a fit to the data, we rebin the boosted photon spec-
tra in the same energy intervals as used by CLEO and,

mb
f

p0
2 ε( ) 1

4
---

msp
2

ε
-------- ε– 

 
2

, ε MB 1 y–( ).= =

m̃b

mb
f

0

1

2

3

0

1

2

3
A B

DC

(1/Γ0)dΓ/dE, GeV–1 (1/Γ0)dΓ/dE, GeV–1

0

1

2

3

0

1

2

1.8 2.2 2.6 1.8 2.2 2.6
E, GeV

Fig. 1. Theoretical predictions for the photon energy spec-
trum using the LF quark models described in the text. Each
plot shows the spectra calculated by using the b-quark
masses  from (32) (solid lines) and (37) (dashed lines).

The dash-dotted lines show the photon energy spectra calcu-
lated in the ACM model. The curves A to D show the results
for the corresponding models.

m̃b
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for each choice of the distribution function, adjust the
overall normalization to provide the best fit to the data.
The results are reported in Table 7, and the best fits are
displayed in Fig. 2. All fits have χ2/ndof ! 1, indicating
the present accuracy of experiment. Averaging over the
models, we obtain

(57)

where the last error originates from the model depen-
dence. This result is consistent with both the updated
CLEO value (2), and the recent reanalysis [20]

Br(B  Xsγ) = (2.62 ± 0.60(exp. (theor.)) × 10–4 of
the GLEO data.

7. INVARIANT-MASS SPECTRUM

In addition to the photon energy spectrum, the
invariant hadronic mass distribution in radiative B

Br B Xsγ( )

=  2.5 0.5 exp.( )± 0.3 model( )±( ) 10
4–
,×

) 0.30–
+0.37

Fig. 2. Theoretical predictions for the photon energy spec-
trum in the laboratory frame for the different distribution

functions f(ξ, ) and the corresponding . The notation

is the same as in Fig. 1. The experimental data are the CLEO
results [46]. Both the left-hand plot and the right-hand plot
show the results of the best fit reported in Table 7.
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P

decays can be studied. The invariant mass MH of the
hadronic final state is related to the scaling variable y by

 = (1 – y). Therefore, the theoretical results for
the photon spectrum can be translated into predictions
for the hadronic mass spectrum. The Xs mass distribu-
tion from the reconstruction analysis of CLEO inclu-
sive data shows a clear K* peak followed by a dip
which is expected since the next excited-kaon reso-
nance is K1(1270). A broad enhancement at and above
K1(1270) is observed; this is also expected since many
resonance states exist in this region. The present exper-
imental statistics are insufficient to identify any of the
individual resonances beyond K*(892). Combining the
exclusive and inclusive measurements, CLEO deter-
mines

(58)

Figure 3 shows the invariant mass distribution of the
hadrons recoiling against the photon for the models A–
D. Our predictions for hadronic mass spectra must be
understood in the sense of quark–hadron duality. The

true hadronic mass spectrum for low  ∝   has a
resonance structure that looks rather different from our
predictions. A realistic model for the hadronic mass

MH
2

MB
2

RK* 892( )
Br B K* 892( )( )

Br B Xsγ( )
-------------------------------------------------=

=  18.1 6.8±( )%.

MH
2

MK*
2

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

(1/Γ0)dΓ/dMH, GeV–1 (1/Γ0)dΓ/dMH, GeV–1

A B

DC

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

1 2 3 1 2 3
MH, GeV

Fig. 3. Comparison of the theoretical predictions for the
invariant hadronic mass spectrum for the LF and ACM mod-
els. The notation is identical to that in Fig. 1.
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spectrum consists of a single peak located at the mass
K*(892) followed by a continuum (above a threshold
value Mth) which is given by the inclusive spectrum and
is dual to a large number of overlapping resonances. In
Table 7, we show the ratios RK*(892) obtained by the inte-
gration of the inclusive spectrum in the range MH ≤ Mth.
The result crucially depends on the choice of Mth; we
use a value of Mth = 1.15 GeV adopted in [20]. Averag-
ing over the different model predictions, we obtain

RK*(892) = . This result agrees with both exper-
imental data and theoretical estimates based on QCD
sum rules [44] and lattice QCD calculation [45].

8. CONCLUSION

We have derived a new parton formula that estab-
lishes a simple relation between the electroweak decay
rate Γ(B  Xsγ) and the rate of free b-quark decay.
The main features of our approach are the treatment of
the b quark as an on-mass-shell particle and the inclu-
sion of the effects arising from the b-quark transverse
motion in the B meson. Formulas (32) and (37) present
our main result. Using various b-quark distribution
functions, we have calculated the photon energy spec-
tra and the corrections to the free decay rate. We have
shown that the decay width has no corrections linear to
1/mb only if it is expressed not in terms of the constitu-
ent quark mass, but in terms of a mass  which is
defined in the way similar to that used in the HQE to
define mb, pole. In this way, one avoids an otherwise large

0.157 0.44–
+0.24

m̃b

Table 6.  Energy moments , n = 1, 2, 3, and HQE moments
〈x2〉 and 〈x3〉 for cases A to D [the photon energy spectra were
calculated by using Eq. (55); the scaling variables x and y are
defined in Eqs. (9) and (30), respectively]

Model A B C D

0.903 0.894 0.901 0.883

0.817 0.800 0.813 0.786

0.743 0.718 0.737 0.706

〈x2〉 0.355 0.308 0.317 0.489

〈–x3〉 0.289 0.141 0.206 0.427

yn

y

y2

y3

Table 7. Branching ratios Br(B  Xsγ) obtained from a fit
to the CLEO data and partial fractions RK*(892)

Model A B C D

Γ0/ΓB × 104 2.54 2.59 2.50 2.91
RK*(892)

a) 0.192 0.158 0.174 0.218
RK*(892)

b) 0.168 0.131 0.149 0.181

Note: Cases a) and b) correspond to RLF(y) given by Eqs. (32) and
(37), respectively.
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(and model-dependent) correction of order 1/mb, but at
the expense of introducing the shift in the constituent
quark mass which substantially compensates the bound
state effects. A summary of our results presented in
Tables 3–5 shows a fairly good agreement with both the
QCD results and the available experimental data. We
have also found that the photon energy spectra calcu-
lated in our LF partonlike approach agree well with the
spectra obtained in the ACM model, provided the same
ET distribution function Φ(p2) is used as input in both
cases. Finally, we note that it would be interesting to
check whether the effective values of the b-quark mass

 are approximately the same for different channels
(b  c vs. b  u or b  s) and for different beauty
hadrons. This work is in progress, and the results will
be reported elsewhere.
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Abstract—The contribution to the kernel of the nonforward Balitsky–Fadin–Kuraev–Lipatov equation from
two-gluon production is calculated for the case of the antisymmetric color-octet state of two Reggeized gluons
in the t channel. The one-gluon contribution to the kernel in the one-loop approximation is also obtained by
using the one-loop expression for the effective vertex of the one-gluon production in Reggeon–Reggeon colli-
sions. An explicit form of the total kernel is presented. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The most common basis for describing processes at
small values of x = Q2/s (Q2 is a typical virtuality and

 is the c. m. s. energy) within perturbative QCD is
the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation
[1], originally derived in the leading-logarithm approx-
imation (LLA), which means resummation of all terms
of the type [αslns]n [αs = g2/(4π) is the QCD coupling
constant]. The calculation of radiative corrections to
the kernel of this equation took many years of hard
work [2–7]. Recently, the kernel was obtained in the
next-to-leading approximation (NLA) [8] for the case
of forward scattering—that is, for zero momentum
transfer (t = 0) and the vacuum quantum numbers in the

t channel. In the  renormalization scheme with a
reasonable scale setting, corrections appear to be large.
At present, this problem is being widely discussed in
the literature [9]. In this situation, it is very important to
be sure that both the basic hypotheses used and the cal-
culations performed in deriving the equation are cor-
rect.

It should be recalled that the derivation of the BFKL
equation (in the NLA, as well as in the LLA) is based on
one of the remarkable properties of QCD—gluon
Reggeization [10], which was proved in the LLA [1, 11].
In the NLA, this property was only checked in the first
three orders of perturbation theory [6]. Since gluon
Reggeization forms a basis for deriving the BFKL equa-
tion, it is clear that more powerful tests are necessary.

As for the calculations of radiative corrections to the
kernel, they are very complicated, and only some of them
has been independently performed [7] or checked [12].
Therefore, the calculations must be carefully verified.

s
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Both goals—a stringent test of gluon Reggeization
and an examination of the calculations—can be solved
simultaneously by the check of the bootstrap equations
[13, 14] appearing as the requirement of the compati-
bility of gluon Reggeization with s-channel unitarity. In
fact, the BFKL equation is the equation for the Green’s
function of two Reggeized gluons. In the color-singlet
state, these Reggeized gluons create a Pomeron. Self-
consistency requires that, in the antisymmetric color-
octet state, the two Reggeized gluons reproduce a
Reggeized gluon itself (bootstrap condition). The
above statements are valid in the NLA, as well as in the
LLA. Along with the stringent test of gluon Reggeiza-
tion, the check of the bootstrap equations provides a
global test of the calculations of the NLA kernel,
because these equations contain almost all quantities
appearing in the calculations.

In the BFKL approach, amplitudes of high-energy
processes are expressed in terms of the aforementioned
Green’s function and impact factors of scattered parti-
cles, which are defined by Reggeon–particle scattering
amplitudes. The nonforward impact factors for gluon
[15] and quark [16] scattering were recently calculated
in the NLA, and fulfillment of the bootstrap conditions
for them was demonstrated [15–17] for both helicity-
conserving and helicity-nonconserving parts, in an
arbitrary spacetime dimension D = 4 + 2e.

The quark contribution to the nonforward BFKL
kernel was also calculated [18], and fulfillment of the
bootstrap conditions for the kernel in the part associ-
ated with this contribution was explicitly demonstrated
in the NLA [18, 19], in an arbitrary spacetime dimen-
sion as well. Only one (but the most complicated) boot-
strap condition remains unchecked—for the gluon part
of the kernel. In this study, we calculate the gluon con-
tribution to the nonforward color-octet kernel of the
BFKL equation.
000 MAIK “Nauka/Interperiodica”
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The significance of the nonforward octet kernel is
not exhausted by the check of the bootstrap condition.
The kernel of the nonforward BFKL equation for an
arbitrary color state in the t channel is expressed in
terms of the gluon Regge trajectory and the part related
to real particle production in Reggeon–Reggeon scat-
tering (“real” part, for brevity). The trajectory is known
[4] and enters into the kernel in the universal (not
depending on a color state) way [13]. The “real” part
includes contributions from one-gluon, two-gluon, and
quark–antiquark pair production. The last two contri-
butions can be separated (for an arbitrary color state in
the t channel) in two pieces, one of which being deter-
mined by the color-octet state. Therefore, the color-
octet piece enters (with some group coefficient) into
kernels for other color states—in particular, for the
color-singlet state (Pomeron channel). In the Pomeron
channel, the nonforward BFKL equation can be used
directly to describe experimental data. Evidently, the
applicability range of this equation is much wider than
the forward-case one.

The ensuing exposition is organized as follows. In
Section 2, we present a general form of the gluon con-
tribution to the kernel and an explicit form of the gluon
piece of the gluon trajectory. In Section 3, we derive the
gluon part of the contribution to the kernel from one-
gluon production. In Section 4, we consider two-gluon
production in collision of two Reggeized gluons. The
contribution of this process to the kernel and the result
for the total gluon contribution to the kernel are pre-
sented in Sections 5 and 6, respectively.

2. DEFINITIONS AND BASIC EQUATIONS

In the BFKL approach, the high-energy-scattering
amplitudes are expressed in terms of the impact factors
Φ of the scattering particles and of the Green’s function
G for the scattering of Reggeized gluons [13]. Consid-
ering the Green’s function, we can take, without any
loss of generality, masses of the colliding particles with

momenta pA and pB equal to zero:  =  = 0 (pA +
pB)2 = 2(pApB) = s. As usual, in an analysis of high-
energy processes, we use the Sudakov decomposition
for particle momenta. The Mellin transform of the
Green’s function with the initial momenta of the
Reggeized gluons in the s channel q1 . βpA + q1⊥  and
−q2 . αpB – q2⊥  and the momentum transfer q . q⊥
obeys the equation [13]

(1)

where 5 denotes the representation of the color group
in the t channel. The transverse momenta are spacelike
and we use the bold font for them. Here and below, we
use for brevity v ' ≡ v – q for any v. The spacetime

pA
2

pB
2

ωGω
5( ) q1 q2 q, ,( ) q1
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2
δ D 2–( ) q1 q2–( )=

+
d

D 2–
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--------------_
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5( ) r q2; q,( ),∫
P

dimension D = 4 + 2e is taken different from 4 to regu-
larize the infrared divergences. We use the normaliza-
tion adopted in [13].

The nonforward kernel, as well as the forward one,
is given by the sum of the “virtual” part, defined by the
gluon trajectory j(t) = 1 + ω(t), and the “real” part

, related to the real particle production in the
Reggeon–Reggeon collisions

(2)

As is seen from (2), the gluon trajectory enters the
equation in the universal (independent from 5) way. In
the one-loop approximation (LLA), the trajectory is
purely gluonic:

(3)

where t = q2 = –q2, and N is the number of colors (N =
3 in QCD). In the NLA, the trajectory was calculated in
[4]. Since the quark contribution to the nonforward ker-
nel was already considered [18], we present here the
two-loop gluon contribution:

(4)

where

(5)

and Γ(x) is the Euler gamma function. In Eqs. (3)–(5)
and below, g is the bare coupling constant related to the

renormalized coupling gµ in the  scheme by the
relation
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where nf is the number of the quark flavors,

(7)

Let us stress that in this paper we will systematically
use the perturbative expansion in terms of the bare cou-
pling g.

The “real” part for the nonforward case in the LLA
is [1, 21]

(8)

where the superscript B means the LLA (Born) approx-
imation and the color group coefficients cR for the sin-
glet (R = 1) and octet (R = 8) cases are

(9)

In the NLA, the “real” part of the kernel can be pre-
sented as [13]

(10)

Here, (q1, q2; q) is the scattering amplitude of the
Reggeons with the initial momenta q1 = βpA + q1⊥  and
–q2 = αpB – q2⊥  at the momentum transfer q = q⊥  and
the representation 5 of the color group in the t channel,
and sRR = (q1 – q2)2 = sαβ – (q1 – q2)2 is the squared
invariant mass of the Reggeons. The sRR-channel imag-

inary part Im (q1, q2; q) is expressed in terms of
the effective vertices for the production of particles in
the Reggeon–Reggeon collisions [13]. The second term
on the right-hand side of Eq. (10) serves for the subtrac-
tion of the contribution of the large sRR region in the first
term, in order to avoid a double counting of this region
in the BFKL equation. The intermediate parameter sΛ
in (10) must be taken tending to infinity. At large sRR,
only the contribution of the two-gluon production does
survive in the first integral, so that the dependence of sΛ
disappears in (10) due to the factorization property of
the two-gluon production vertex [13].
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The remarkable properties of the kernel are

(11)

and

(12)

The properties in (11) mean that the kernel turns into
zero at zero transverse momenta of the Reggeons and
follow from the gauge invariance; expressions (11) are
the consequences of the symmetry of the imaginary
part of the Reggeon–Reggeon scattering amplitude (see
below (13)).

Using the operator  for the projection of the
two-gluon color states in the t channel on the irreduc-
ible representation 5 of the color group, we can repre-
sent the imaginary part of the Reggeon–Reggeon scat-
tering amplitude entering (10) in the form

(13)

Here, n5 is the number of independent states in the rep-
resentation 5, the sum {f} is performed over all states
f which are produced in the Reggeon–Reggeon colli-
sions and over all discrete quantum numbers of these

states. (q1, q2) is the effective vertex for the pro-
duction of the state f, and dρf is the phase space element
for this state,

(14)

where n is the number of identical particles in the state
f. In the LLA, only the one-gluon production does con-
tribute in (13), and Eq. (10) gives for the kernel its LLA
value (8); in the NLA, the contributing states include
also the two-gluon and the quark–antiquark states. The
normalization of the corresponding vertices is defined
in [13].

The most interesting representations 5 are the color
singlet (Pomeron channel) and the antisymmetric color
octet (gluon channel). We have for the singlet case

(15)
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and for the octet case

(16)

where fabc are the structure constants of the color group.

3. THE ONE-GLUON CONTRIBUTION
TO THE KERNEL

The gluon contribution to the Reggeon–Reggeon–
gluon (RRG) vertex was calculated in [3]. Recall that
the complicated analytic structure [20, 3] of the vertex
is irrelevant in the NLA, where only the real parts of the
production amplitudes do contribute (only these parts
interfere with the LLA amplitudes, which are real).
Recall also that, in the NLA, the vertex depends on the
energy scale sR used in the Regge factors. In (10) and
(13), it was assumed that sR = k2, where k is the pro-
duced gluon momentum. Neglecting the imaginary
part, we have for the gluon contribution to the RRG
vertex with this choice of sR [21]

(17)

Here, d is the color index of the product gluon, eµ(k) is

its polarization vector,  = –  are the matrix
elements of the color-group generator in the adjoint
representation, k = q1 – q2, 

(18)
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where ζ(n) is a Riemann zeta function. Note that the
one-loop contribution to the RRG vertex is not known
for arbitrary e. Therefore, Eqs. (19), contrary to all the
preceding formulas, are valid only in the limit e  0.
The only term of these equations which remains unex-
panded in e is (k2)e. For this term, the expansion is not
performed because the RRG vertex is singular at k2 = 0,
and in subsequent integrations of its contribution to the
kernel the region e|ln(k2)| ~ 1 does contribute. In (19),
all terms are retained, which gives, after these integra-
tions, contributions nonvanishing in the limit e  0.

The vertex (17) is explicitly invariant under the
gauge transformation

(20)

so that we can use the relation

(21)

Substituting (17) into (13) and using (21) for the sum
over polarizations and the relations

(22)
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(19), and (14)–(16), we obtain from (10) the gluon part
of the contribution to the kernel from the one-gluon
production in Reggeon–Reggeon collisions:

(23)

f 3
G( ) 11

3
------

q1
2q2

2

q1
2 q2

2
–( )

----------------------
q1

2

q2
2

-----
 
 
 

ln
k

2

6
----,+=

e
µ

k( ) e
µ

k( ) k
µχ ,+

eµ*
λ( ) k( )eν

λ( )
k( )

λ
∑ gµν.–=

δ
c1c1'

δ
c2c2'

Tc1c2

d
T

c1' c2'
d( )* N N

2
1–( ),=

f
c1c1'c

f
c2c2' c

Tc1c2

d
T

c1' c2'
d( )* N

2
N

2
1–( )/2=

_RRG
G 5( )

q1 q2; q,( )
g

2
c5

2π( )D 1–
--------------------

q1
2q2'

2
q1'

2
q2

2
+

k2
-------------------------------- q2

–
 
 
 







=

×
1

2
---

g
2
NΓ 1 e–( )

2 4π( )2 e+
------------------------------ k2( )

e 2

e
2

----- π2
– 4eζ 3( )+

 
 
 

–+




–
q1

2

q2
2

-----
 
 
 

ln
2



 g

2
NΓ 1 e–( )

6 4π( )2 e+
------------------------------

q1'
2

q2'
2

–

q1
2 q2

2
–

--------------------




+

–
k2

q1
2 q2

2
–( )

2
------------------------ q1

2 q2
2

4q1' q2'⋅ 2q2–+ +( )

×
2q1

2q2
2

q1
2 q2

2
–

-----------------
q1

2

q2
2

-----
 
 
 

ln q1
2

– q2
2

– 11
2q1

2q2
2

q1
2 q2

2
–

-----------------+
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000



NONFORWARD COLOR-OCTET KERNEL 2161
The symmetry properties (12) of (q1, q2; q)
are evident from (23). The properties in (11) are not so
evident, but can be easily checked.

4. THE TWO-GLUON PRODUCTION

Let us consider the production of two gluons with
momenta k1 and k2 in collisions of two Reggeons with
momenta q1 and –q2. We will use the Sudakov parame-
trization for the product-gluon momenta:

(24)

and the notation

(25)

so that sRR = k2. For the effective vertex of the two-gluon
production in the Reggeon–Reggeon collision, we have

(26)

where di are the color indices of the produced gluons,
and eµ(ki) are their polarization vectors. The tensor
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we can present the polarization vectors as

(30)

and their convolution with the tensor (k1, k2) as

(31)

The tensor cµν (k1, k2) in the transverse space was
defined in [6]. It can be presented in the form
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where the notation

(33)

is used, and  is the metric tensor in the transverse
plane,
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to sum over gluon polarizations and color indices. The
first sum can be obtained using the relation

(37)

and the second, for the most interesting singlet and
octet representations, with the help of

(38)

Using these formulas, we obtain

(39)

where (k1, k2) is obtained from (k1, k2) by the

substitution qi   and the coefficients aR and bR for
the singlet (R = 1) and octet (R = 8) representations are
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has the same form for both choices:
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where the group coefficients aR and bR are defined in
(40) and the functions fa(k1, k2) and fb(k1, k2) in (46) and
(47), respectively. The functions must be expressed in
terms of x and k1. It can be done by using (41) and the
relations

(51)

To understand the behavior of the functions fa(k1, k2)
and fb(k1, k2) in the integration region of (50), it is con-
venient to express the tensor cµν(k1, k2) in (32) in terms
of x and k1. After this, it is not difficult to show that, for
any x in the interval [0, 1], the tensor decreases in pro-

portion to 1/ , so that the integration over k1 is well
convergent in the ultraviolet region. As for the x behav-
ior at fixed k1, it is easy to see that in the limit x  0

the tensor (k1, k2) tends to zero, whereas at x 
1 the tensor has a finite value. It means that the function
fb(k1, k2) [see (47)] turns to zero both at x = 0 and x = 1,
so that performing the integration of the term with fb(k1,
k2) in (50) we can ignore the restrictions on the integra-
tion region imposed by θ(sΛ – k2). Recall that the
parameter sΛ must be taken tending to infinity, there-
fore, due to the convergence of the integral over k1 in
the ultraviolet region, the restrictions have the form
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This result and Eqs. (30), (31), and (18) give us the rela-
tion
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which means that in the multi-Regge limit, the vertex
for the two-gluon production is expressed in terms of
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try of the total contribution under the first transforma-
tion follows from the evident invariance of the convolu-
tions in (46) and (47) under this transformation. The
symmetry under the second transformation follows
from the invariance of these convolutions as well as the
integration measure [see (44)] with respect to the “left–
right” transformation given by (48) and (49). Turning to
(56), we see that the contribution of fb(k1, k2) is symmet-
ric with respect to both transformations. As for the
terms with fa(k1, k2), the last of them gives the contribu-
tion antisymmetric under the substitution q1  –q2,

  – . Therefore, this term can be omitted
together with antisymmetric contributions from the
remaining terms. So, the total contribution of all three
terms with fa(k1, k2) can be obtained by integration of
the first term with respect to x from zero to 1 – δ at arbi-
trary small δ with subsequent omission of terms pro-
portional to lnδ and terms antisymmetric under the sub-
stitution q1  –q2,   – . 

5. THE TWO-GLUON CONTRIBUTION 
TO THE OCTET KERNEL

Up to now, our results could be used for any color
representation 5. Starting from this point, we will con-
sider only the case of the gluon channel (antisymmetric
octet representation). In this case, only the function
fa(k1, k2) does contribute to the kernel. From the discus-
sion at the end of the preceding section, it follows that
the two-gluon contribution to the octet kernel can be
presented as

(57)

where  denotes the operator of symmetrization with
respect to the substitution q1  –q2,   – 
and (1 – x)+ means the subtraction

(58)

According to (46), the function fa(k1, k2) is determined
by the convolution of the tensor cµν(k1, k2) given by (32)

with the tensor (k1, k2) given by the same formula

with the substitution qi   ≡ qi – q. We obtain
(details of the calculation are given in Appendix A)

     

q1'      q2'

     q1'      q2'

_RRGG
8( )

q1 q2; q,( ) g
4
N

2

2π( )D 1–
-------------------- 6̂=

× xd
1 x–( )+

-------------------
d

2 2e+
k1

2π( )D 1–
--------------------

f a k1 k2,( )
x

-----------------------,∫
0

1

∫

6̂
q1' q2'

xd
1 x–( )+

------------------- f x( )
0

1

∫ xd
1 x–( )

---------------- f x( ) f 1( )–[ ] .

0

1

∫≡

cµν'

qi'

f a k1 k2,( ) 1 e+

k
2

----------- x
2

1 x–( )
Σ

----------------------q1'
2

q1 L -⋅






=

P

                

 

(59)

 

where  is obtained from  (51) by the substitution

 

q

 

1

 

  

 

(60)

+ 1 2x–( ) 1 x–( )
q1

2 L k⋅( )
Σ

----------------------
 q1' L⋅( ) q1 L⋅( )

k
2

--------------------------------------+

+
x 1 x–( )q1'

2

k
2Σ

---------------------------
x 1 x–( )q1

2

2k
2Σ

-------------------------k⊥
µ
k ⊥

ν k ⊥
µ
q1⊥

ν

k
2

--------------–
 
 
 

× 2 1 e+( )ΛµΛν L2
gµν

⊥
+( )

x
2q1'

2
q2

2

4k1
2Σ

------------------
xq1'

2
q2

2

4 1 x–( )k1
2
k

2
------------------------------+ +

+
x 1 x–( )

Σ
------------------ 

 
2q1'

2
q1

2

2
------------- 1 e+

2
----------- 3 2e+( )x 1 x–( )– 

 

–
x 1 x–( )q1'

2

2k
2Σ

-------------------------- 1 x–( ) 1 e+( ) 2 k1 q1⋅( ) xq1
2

–( )([

– ex k2 q2
2

–( ) ) 1 e+( )k2
2

– 2q2
2

+ ]
xq1

2q2

4 t̃1k1
2

--------------+

– q1 q⋅( ) 1 x–( )
q1'

2
2 k1 q1'⋅( )–( )

t̃1 t̃1'
----------------------------------------- 1 e+( ) 1 x–( )2

4
-----------------------------------+

×
q1'

2
2 k1 q1'⋅( )–( ) q1

2
2 k1 q1⋅( )–( )

t̃1 t̃1'
----------------------------------------------------------------------------------

+
1

k
2
t̃1

--------- 2 q1 q2⋅( ) k1 q1'⋅( ) q1' q2⋅( ) k1 q1⋅( )–( ) -

+ xq2'
2
q1

2
xk2 q1 q⋅( )– q1

2 q1' q⋅( )+

– q1'
2
q2

2 1 x–( )k1
2

Σ
---------------------- 1 e+

2
----------- 1 x–( )+

× q1
2

2 k1 q1⋅( )–( ) q1'
2

1 x–( ) 2 q1' L⋅( )–( )




+
k1

2k2
2q1'

2

Σ
-------------------



 q2( )

2

8 t̃1 t̃1'
------------

xq1
2q2k2

4k
2
t̃1k1

2
--------------------

xq1'
2

q2
2( )

2

4k
2Σ t̃1

-----------------------–+ +

–
xq2'

2
q1

2( )
2

4k
2
t̃1k1

2
-----------------------

xq2
2 q1

2 q1' k1⋅( ) q1'
2

q1 k1⋅( )–( )

2 1 x–( )k
2
t̃1k1

2
--------------------------------------------------------------------------+

–
q2

2 q1' q⋅( )

2 1 x–( )k
2
t̃1

-----------------------------




qi qi'{ } ,+

t̃1' t̃1

q1'

Λ 1 x–( )k1 xk2–( )⊥ ,=

Σ L2
x 1 x–( )k2

.+=
HYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000



NONFORWARD COLOR-OCTET KERNEL 2165
Unfortunately, integral (57) cannot be expressed in
terms of elementary functions (and dilogarithms) at
arbitrary e. Therefore, we present the result (see details
of the integration in Appendix B) in a “combined”
form, leaving untouched the terms in fa(k1, k2) which
cannot be integrated in elementary functions:

(61)
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The first of the symmetries in (12) of the two-gluon
contribution is explicit in (61); the second is also easily
seen. The properties in (11) are not so evident. It takes
some work to demonstrate their existence. In particular,
one has to calculate the function 
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and  = 0. It is not too easy, but possible (for details,
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In this limit, the function I(q1, q2; q) takes the form

(64)

The integral in (64) can be presented in another form:

(65)

It is also possible to express the integral in (64) in terms
of dilogarithms, but this expression is not too conve-
nient:

(66)

where φ is the angle between q1 and q2,

(67)

+ I q1 q2; q,( )


 g

4
N

2Γ 1 e–( )
4π( )Dπ1 e+

-------------------------------- qi    q i ' { } .+

I q1 q2; q,( ) 1
2
--- xd

q1 1 x–( ) q2x+( )2
--------------------------------------------

0

1

∫=

×
q1

2
1 x–( ) q2

2
x+

k2
x 1 x–( )

--------------------------------------
 
 
 

q2 k2 q1
2

– q2
2

–( ) 2q1
2q2

2 -+ln

– q1
2q2'

2
q2

2q1'
2

–
q1

2q2'
2

q2
2q1'

2
–

k2
-------------------------------- q1

2 q2
2

–( )+

+
q2

2
----- 4ζ 2( ) 1

2
---

q1
2

q2
2

-----
 
 
 

ln
2

–
 
 
  q1

2q2'
2

q2
2q1'

2
–

4k2
--------------------------------–

×
q1

2

q2
2

-----
 
 
  q1

2q2
2

k4
-----------

 
 
 

lnln
q2

4
----- 1

e
--- q2

ln+ 
  q1

2q2
2q1'

2
q2'

2

q8
--------------------------

 
 
 

ln–

+
1
2
---

q1
2

q1'
2

-------
 
 
 

ln
2 1

2
---

q2
2

q2'
2

-------
 
 
 

ln
2

+ .

xd

q1 1 x–( ) q2x+( )2
--------------------------------------------

q1
2

1 x–( ) q2
2
x+

k2
x 1 x–( )

--------------------------------------
 
 
 

ln

0

1

∫

=  
zd

z k2
+

-------------- 1

q1
2 q2

2
z+ +( )

2
4q1

2q2
2

–
----------------------------------------------------------

0

∞

∫

×
q1

2 q2
2

z q1
2 q2

2
z+ +( )

2
4q1

2q2
2

–+ + +

q1
2 q2

2
z q1

2 q2
2

z+ +( )
2

4q1
2q2

2
––+ +

-------------------------------------------------------------------------------------------
 
 
 
 

ln .

xd

q1 1 x–( ) q2x+( )2
--------------------------------------------

q1
2

1 x–( ) q2
2
x+

k2
x 1 x–( )

--------------------------------------
 
 
 

ln

0

1

∫

=  
2

q1 q2 φsin
---------------------------- ρ arctan

ρ φsin
1 ρ φcos–( )

-----------------------------ln–

---+ Im L ρ iφexp( )( ) ,

ρ min
q1

q2
--------

q2

q1
--------, 

  , L z( ) td
t
---- 1 t–( ).ln

0

1

∫= =
P

6. THE NONFORWARD OCTET BFKL KERNEL

The general form of the kernel (for arbitrary repre-
sentation 5 of the color group in the t channel) is given
by Eq. (2). The “virtual” part is universal (does not
depend on 5) and is determined by the gluon Regge
trajectory, which is given by Eqs. (3)–(5). (Recall that
in this paper we consider pure gluodynamics.) The
quark part of the kernel was considered in [18]. The
“real” part, related to real particle production in
Reggeon–Reggeon collisions, in the NLA is given by
the one-gluon and two-gluon contributions considered
in Section 3 and Section 5, respectively. Since the radi-
ative corrections to the effective vertex of the one-gluon
production are known only in the limit e  0, the total
“real” part of the kernel can be obtained only in this
limit. It is given by the sum of (23) and (63). After pow-
erful cancellations (in particular, between the terms

with singularities 1/e2 and all terms with (  – ) in
denominators), we obtain

(68)
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After cancellation of the terms ~1/e2, the leading
singularity of the kernel is 1/e. It turns again into ~1/e2

after subsequent integrations of the kernel because of
the singular behavior of the kernel at k2 = 0. The addi-
tional singularity arises from the region of small k2,
where e |lnk2 | ~ 1. Therefore, we have not expanded in
e the term (k2)e. The terms ~e are taken into account in
the coefficient of the expression divergent at k2 = 0 in
order to conserve all nonvanishing contributions in the
limit e  0 after the integrations.

The symmetries (12) of the kernel are easily seen.
The first of them is explicit in (68). To notice the sec-
ond, it is sufficient to change x  (1 – x) in the inte-
gral in (68).

In order to check that the kernel (68) vanishes at
zero transverse momenta of the Reggeons (11), one
needs to know the behavior of the integral in (68). A
suitable representation for this purpose is given in (65).
From this representation, one can see that singularities
of the integral at zero transverse momenta of the
Reggeons are no more than logarithmic. Verifying
Eq. (11) therefore involves no more problems. 

In conclusion, let us note that in [17] the octet kernel
was obtained using as a basis the bootstrap relation and
a specific ansatz to solve it. Our results disagree with
the results obtained in [17]. To see the disagreement, it
is sufficient to observe that the kernel obtained in [17]
is expressed in terms of elementary functions. We con-
clude that the ansatz used in [17] is not correct.
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APPENDIX A

In this appendix, we present the details of the calcu-
lation of the convolution fa(k1, k2) (46). 

It is suitable to represent the tensor cµν(k1, k2) in the
form
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(Ä.8)

(Ä.9)

(Ä.10)
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With the aid of Eqs. (A.1)–(A.10) and the equations

obtained from them by the substitution qi  , we
come to (59).

APPENDIX B

In this appendix, we present the details of the calcu-
lation of the integrals in (57) with fa(k1, k2) given by
(59). First, let us recall the notation used:

(B.1)

and  is obtained from  by the substitution q1  .

It is easy to see that

(B.2)
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The zero appears as a result of the integration with
respect to k1 (or, equivalently, with respect to L). The
first two terms here give zero due to parity, the third van-
ishes due to the dimensional regularization, and the
remaining terms vanish due to the isotropy of the trans-
verse space leading to the replacement 2(1 + e)ΛµΛν 

−L2  after the angular integration.

The calculation of the contributions of terms with
the denominators Σ, Σ2, k2Σ, and k2k2 is straightfor-
ward. We obtain, using usual Feynman parametrization
if necessary,

(B.3)

The subsequent integration of these terms with respect
to x can be done without difficulties.

The integrals of the terms with the denominators

 and  with respect to k1 cannot be expressed in
terms of elementary functions at arbitrary e. Neverthe-
less, these terms do not create problems. For such
terms, it is convenient to make integration with respect
to k1,

(B.4)

then to introduce the variable y = xz instead of z and to
change the order of the integrations with respect to x
and y. After that, the integrals can be easily calculated.

This way, we obtain
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(B.5)

(B.6)

The integrals with  in denominators can be cal-
culated with the help of the trick used in [18]. Let us
consider in (59) the first such term. It can be repre-
sented as

(B.7)

The first term on the right-hand side can be integrated
with respect to k1 and then with respect to x. For the sec-
ond, it seems more convenient to begin with the inte-
gration with respect to x in (57), getting

(B.8)

With the help of the representation

(B.9)
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integration with respect to z become trivial and give

(B.10)

Analogously, we obtain

(B.11)

The terms in fa(k1, k2) with the denominator k2  and
with xn in numerators at natural n can be calculated by
performing the integration with respect to k1 at fixed
Feynman parameter z and then making the change of
variable y = xz:

(B.12)

The change of variable y = xz has been performed in the
last equality. This integral can now be calculated inte-
grating first with respect to x and then with respect to y.
The complete calculation for all such terms in (59) is
long, but straightforward. The integration of the terms

can be done quite analogously, since under transforma-
tion (49) they acquire the form of the terms discussed
above. In this way, we obtain
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(B.13)

(B.14)

All the calculations discussed before were done
exactly at arbitrary e. This cannot be done for the
remaining terms. They contribute into the function I(q1,
q2; q) [see (62)]. We have used the following equality:

(B.15)
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(B.9) and the integral

(B.16)

The last integral can be easily obtained with the help of
the generalized Feynman parametrization.

Using the integrals calculated above, we come to the
representation (61) for the two-gluon contribution to
the kernel.

In the limit e  0, the expression (64) for I(q1, q2;
q) was obtained by performing the integration with
respect to k in (62) first. We have
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The integrals (B.17) and (B.18) are calculated for arbi-
trary small k2 and for x arbitrarily close to zero or unity.

The approximate form (64) for I(q1, q2; q) can be
obtained using (B.17)–(B.19) and the relation

(B.20)

APPENDIX C

Due to the symmetries (12) of the kernel in (61), it
is sufficient to show that the kernel vanishes at zero
transverse momentum of one of the Reggeons, say, at
q2 = 0. But even in this special case, integration in (62)
cannot be performed in terms of elementary functions.
Fortunately, expression (62) can be simplified at q2 = 0
and represented as

(C.1)

Note, that at q2 = 0, we have  = –q and  = k – q.

Evidently, the integral term in (C.1) rules out, for the
piece of the kernel (61) that does not change under the
substitution qi  , the possibility of vanishing
alone at q2 = 0. Therefore, we need to calculate I '(q1,

q2; q) ≡ I( , ; –q) at q2 = 0. This function can also
be simplified. Note that, as in the preceding case, sim-
plifications cannot be done for separate terms in (62)
and are possible only due to the definite combination of
them. We obtain
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(C.2)

In the sum of (C.1) and (C.2), the terms with ln(l – k)2

cancel each other; after that, the integrals can be calcu-
lated and we obtain

(C.3)

With this result, it is a simple task to show that the ker-
nel (61) vanishes at q2 = 0 [and, due to the symmetries
in (12), at zero transverse momentum of any of the
Reggeons].
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Abstract—The coordinate-space behavior of (vector) strong-coupling constant in the background field αB(r)
is compared with that in standard perturbation theory αV(r). The numerically calculated two-loop coupling con-
stant αB(r) is shown to exceed αV(r) by 1–5% at very small distances, r & 0.02 fm, and to be in agreement with
lattice measurements of the static potential. At large distances, αB(r) approaches the freezing value at r * 0.5 fm.
An analytic form of αB(r) is proposed that approximates αB(r) with a precision &2% in the region r * 0.5 fm.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Precise knowledge of the static potential between
heavy quarks is very important in quarkonium physics
because this potential determines the spectrum and the
wave functions of the  system. Usually, fundamen-
tal quarkonium properties are calculated in coordinate
space, where we need to know both perturbative and
nonperturbative contributions to the static potential. As
is well established now [1], the nonperturbative poten-
tial VNP(r) has a linear behavior beginning from rather
small distances, r * 0.2 fm, and, at smaller distances,
the exact form of VNP(r) is not very important in
quarkonium physics since VNP(r) is much smaller than
the perturbative part of interaction. Still, there is the
point of view that, at small distances, the linear poten-
tial σ0r also exists, with σ0 being approximately equal
to the asymptotic value of the string tension σ (see [2]
and references therein).

The situation with the perturbative static potential,
VP(r), is much more uncertain. In perturbation theory,

VP(r) is known only at small distances, r ! , where
ΛR is QCD constant in coordinate space which is signif-

icantly larger than  in  renormalization scheme
[3] (see also Section 3):

for the number of flavors nf = 4,  = 2.536  ≈
710 ± 100 MeV if the conventional two-loop value of

 = 280 ± 40 MeV is used [4]. Therefore, the pertur-
bative static potential calculated recently in the two-
loop approximation [5, 6] is, in strict sense, defined

QQ

ΛR
1–

Λ
MS

MS

ΛR

n f( )
Λ

MS

n f( ) a1

2β0
-------- γE+ 

  ;exp=

ΛR
4( ) Λ

MS

4( )

Λ
MS

4( )
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only in the region r ! 0.3 fm = , while the sizes of
quarkonium states below the open-charm or the open-
beauty threshold are much larger and change from 0.2
to 1 fm in bottomonium and from 0.4 to 1 fm in char-
monium.

A precise determination of the strong-coupling con-
stant at relatively large distances (or at small momenta
in momentum space) cannot be performed within stan-
dard perturbation theory; therefore, a large variety of
potentials were used in phenomenological calculations
of quarkonium properties. Among the most popular
potentials, we shortly discuss here only QCD-moti-
vated potentials.

(i) For the Cornell potential [7]

the running coupling constant αs(r) is taken to be a con-
stant over the entire region r ≥ 0; yet, this potential
gives an excellent description of the  spectrum with
only one drawback: the wave function at the origin,
ψ(0); and therefore the leptonic widths for the Cornell
potential are found to be larger than in the case where
the asymptotic-freedom behavior of αs(r) is taken into
account [8]. As a whole, one can conclude that the
freezing phenomenon of the strong-coupling constant
is extremely important in quarkonium physics.

(ii) For the Richardson potential defined in momen-
tum space as [9]

the nonperturbative part (~1/q4) corresponds to the lin-
ear potential σr, and it can be subtracted, so that the

ΛR
1–

VCorn r( ) 4
3
---α

r
---– σr C,+ +=

QQ

VRich q( ) 4
3
---4π

β0
------ 1

q
2

1 q
2
/Λ2

+( )ln
---------------------------------------;–=

VRich q( ) 4
3
---4π

β0
------ 1

q
2

-----Λ2

q
2

------ q
2
 ! Λ2( ),–≈
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perturbative coupling constant, αRich(q), can be defi-
ned as

(1)

This coupling constant is finite at q = 0: αRich(q = 0) =
2π/β0—that is, it has a freezing property—and has the
correct asymptotic behavior at high momenta, q2 @ Λ2,

However, the nonperturbative part of the Richard-
son potential is a Lorentz vector by definition, while, as
is now established in QCD, the linear potential must be
a Lorentz scalar [10, 11].

(iii) In the calculations of meson properties by God-
frey and Isgur [12], the dependence of αs(q) on q was
defined phenomenologically: αs(q) was represented as
the sum of exponentials and had also the property of
freezing—in particular, at low momenta

(iv) In [8], the asymptotic-freedom behavior of αs(r)
at small r and the freezing of αs(r) at r ≥ r0 were taken
into account, which resulted in a good description of
the quarkonium spectra and leptonic widths.

(v) In lattice calculations of the static potential [13,
14], it was observed that, at distances r * 0.2 fm, the
strong-coupling constant, taken as a constant, repro-
duces lattice measurements with a good accuracy.

Thus, one can conclude that, in phenomenological
calculations and in lattice QCD, two important proper-
ties of the strong-coupling constant are needed: the
asymptotic-freedom behavior at small r and the freez-
ing of αs(r) at relatively large distances.

On the fundamental level, the freezing phenomenon
was predicted in the framework of background field
theory (BFTh) in [15], where the static potential in vac-
uum background fields was considered. Later, this
approach was applied to the process e+e–  hadrons
[16], where it was shown that the presence of a back-
ground field results in the appearance of the back-
ground mass mB , so that the strong-coupling constant in

this case depends on the combination (q2 + ) instead
of q2 dependence in perturbation theory. The value of
mB was found to be defined by the hybrid excitations
[17], and the value of mB ≈ 1.0–1.1 GeV was also
extracted from fine-structure splittings in charmonium
[18] and bottomonium [19].

Similar ideas were discussed in [20, 21], where the
freezing of αs(q2) was considered as a natural conse-
quence of a picture where the gluon acquires an effec-
tive dynamical mass mg. In [20, 21], it was suggested
(not deduced as in [16]) that αs(q2) depends on the com-

αRich q( ) 4π
β0
------ 1

1 q
2
/Λ2

+( )ln
--------------------------------- Λ2

q
2

------– .=

αRich q ∞( ) 4π
β0
------ q

2

Λ2
------ln 

 
1–

.=

α s q 0( ) const 0.60.=

mB
2

P

bination (q2 + 4 ), i.e., the doubled effective gluon
mass, 2mg, plays a role of the background mass. In
recent calculations of dynamical gluon masses (which
depend on chosen quantum numbers) in [22], the low-
est gluon mass mg = 0.53 GeV was calculated, so that
2mg = 1.06 GeV. This number is in surprising agree-
ment with mB ≈ 1.0 GeV obtained in [17–19].

In the framework of perturbation theory, an analytic
effective coupling constant was constructed with the
use of an “analytization” procedure [23]. This analytic
αan(q) is finite in the infrared limit and the value of
αan(q = 0) was found to be 4π/β0. In this approach, one-
loop and two-loop expressions of αs(q) are modified,
but they do not contain any background mass. Note also
that the freezing value of αan(q = 0) = 4π/β0 is about
three times larger than the freezing values predicted in
[16, 18] and this significant difference can give rise to
different predictions of some observed experimental
values.

The theoretical formula describing the behavior of
the strong-coupling constant in the background field,
denoted as αB(q), was deduced in [16] at large

momenta, q2 * , and to find the behavior of αB(q) at

smaller momenta, q2 & , an interpolation of this

expression (valid at q2 * ) was used. Therefore, the
precise number of the freezing coupling constant value,
αB(q = 0), is not still theoretically fixed in BFTh. To get
this number, phenomenological analysis and lattice
measurements of static potential at small separations
can be very useful. Recently, lattice data on the static
potential in the range 0.04 ≤ r ≤ 0.4 fm were published
in [24], and from the analysis of these data the back-
ground mass mB can be estimated.

Our paper is mostly concentrated on the properties
of (r) in BFTh with a preliminary discussion of the
two-loop coupling constant in momentum and coordi-
nate spaces in perturbation theory, and also on the
approximations to (r) at large and small distances.

2. TWO-LOOP αV(q) IN MOMENTUM SPACE

The perturbative potential VP(q) can be used to
define a vector coupling constant αV(q):

(2)

where q2 ≡ q2. The coupling constant, expressed through

(µ) in the renormalization scheme , was
recently calculated in the two-loop approximation [5, 6]:

(3)

mg
2

mB
2

mB
2

mB
2

α̃B

α̃B

VP q( ) 4πCF

αV q( )

q
2

--------------,–=

α
MS

MS

αV q( ) α s µ( ) 1 C1

α s µ( )
4π

-------------- C2

α s µ( )
4π

-------------- 
 

2

+ +
 
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.=
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Here, αs(µ) ≡ (µ) and

(4)

and in (4), the variable y is

(5)
The constants a1 and a2 are given by

(6)

In (6), CF is the Casimir operator of the SU(N) group.
In particular, in the quenched approximation (nf = 0)
where the lattice measurements exist [24],

. (7)

In (6), ζ(3) =1.202057 denotes the Riemann ζ function.
On the other hand, if the definition of βV function is
used,

(8)

then with the help of expression (3) the coefficients of

the QCD βV function,  (n = 0, 1, 2), can be found [6]:

(9)

Here, βn ≡ , and for nf = 0, we have 

Correspondingly, for the vector coupling constant

 = 11,  = 102 are the renormalization scheme
(RS) invariants, and the coefficient

(10)

appears to be about three times larger than .

The value of  was recently calculated with a good
accuracy in the finite-size lattice technique [25] (nf = 0):

(11)

where r0 denotes the Sommer scale. With the use of

expression (3), QCD constant , defining the run-
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ning vector coupling constant αV(q), can be expressed

through  [3]:

(12)

or in the case nf = 0

(13)

If r0 is taken to be r0 = 0.5 fm ≈ 2.54 GeV–1 as in [25],
then

(14)

In our calculations below (see Section 6), we will use
the following values:

(15)

which satisfy relation (13).

Since ΛV and the coefficients  are known, the
running vector coupling constant αV(q) can be also
written in the form

(16)

where  is given by number (10) and

(17)

Note that, in (16), the small correction coming from the

last term, (4π/ )( / ), is about three times larger

than that in the  renormalization scheme.

3. TWO-LOOP (r) IN COORDINATE SPACE

The vector coupling constant in coordinate space,
(r), is also defined through the static potential:

(18)

By introducing the Fourier transform VP(q),

(19)
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it can be shown that (r) and αV(q), given by (3) or
(16), satisfy the relation

(20)

The integral in (20) can be analytically calculated if
αV(q) is taken in the two-loop approximation as in (3)
(see Appendix), and the following expression for (r)
was obtained in [6, 26] (µ = 1/r):

(21)

Here, the coefficients A1 and A2 are the following con-
stants:

(22)

Then, with the use of expansion (21), the coefficients of
the two-loop βR function in coordinate space can be cal-
culated [26]:

(23)

with the following result:  =  = β0,  =  = β1.
They are RS invariants, while

(24)

In the quenched approximation (nf = 0), we have  =
8602.9962…, A1 = 23.032079…, and A2 =

1396.27376…. The coefficient  appears to be about

two times larger than  in (10) and about six times

larger than . It means that the three-loop correc-
tions to the coupling constant in coordinate space are

significantly larger than in the  renormalization
scheme.

QCD constant  defining the running coupling

constant (r) in coordinate space can be expressed

through  [3, 24] and turns out to be large:

(25)
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From here (for nf = 0 and nf = 4),  and  are

about 2.5–2.8 times larger than :

(26)

If  = 240.7 MeV is taken as in [25], then in
coordinate space the QCD constant is

(27)

4. αB(q) IN BACKGROUND-FIELD THEORY

The properties of the coupling constants in momen-
tum and in coordinate spaces have been discussed above
in the framework of perturbation theory, which is appli-
cable only at large momenta, q @ ΛV, or at small dis-
tances, ΛRr ! 1. At smaller q2, the influence of vacuum
background fields on the interaction becomes important,
and, as a result, the vector coupling constant is modified
[15, 16]. The static potential VB(q) in the presence of
background fields can be written just as VP(q) in (2):

(28)

It is important that VB(q) does not include a purely con-
fining (scalar) contribution and takes into account only
the influence of background fields on the perturbative
(vector) part of interaction. In this respect, VB(q) essen-
tially differs from the Richardson potential discussed in
the Introduction and takes into account an interference of
perturbative and nonperturbative effects at small dis-
tances.

As is shown in [16], the strong-coupling constant in
the presence of a background field, denoted in (28) as

αB(q), depends on the combination (q2 + ), where
mB is a background mass. This mass can in general
depend on a considered channel and in the case of static
potential mB is defined by the lowest hybrid excitation
[16, 17] with mB ≈ 1.0 GeV. Just this value of mB was
extracted from fine-structure analysis of charmonium
and bottomonium in [18, 19].

In [16, 27], it was deduced that in BFTh the strong-
coupling constant αB(q) at large momenta can be
obtained as a generalization of the perturbative expres-

sion with q2 replaced by the combination (q2 + ).
Then the generalization of expansion (3) in momentum
space can be written in the following way:

(29)

with
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Here, the variable t is

(31)

In (30), the coefficients a1 and a2 are the same as in (6),

and the running coupling constant ( ) in the 

renormalization scheme now depends on :

(32)

(33)

In (32), it was also assumed that in BFTh  coin-

cides with  in perturbative theory. If mB = 0, then
expression (29) reduces to expression (2); therefore, in

BFTh the values of  coefficients [for the coupling
constant αB(q)] turn out to be the same as in perturba-
tive theory, and the running coupling constant αB(q)
can be written as

(34)

The only difference between (34) and (16) is that the
variable  is replaced by

(35)

Here, some remarks about QCD constants  and

 in BFTh are needed.

In the region of very large momenta,

(36)

and αB(q) in (34) and (q) in (33) coincide with per-
turbative expressions. Therefore, for nf = 5, QCD con-
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As is shown in [18], for nf = 4,  and  also coin-

cide within 1–2 MeV accuracy and even for nf = 3, 

is only by about 15–20 MeV larger than ; i.e., they
coincide within the theoretical and experimental errors.
Therefore we assume here that, in the quenched
approximation, we have

(38)

It is essential that in (35) there exists a region of q2 ~

 where the condition q2 @  is still satisfied but
the influence of background mass mB under the loga-
rithm becomes important. For example, if q = mB =

1.0 GeV and  = ΛV = 380 MeV, then q2/  = 7. This
region can be called a preasymptotic one. In (29), αB(q)
was defined at q * mB . However, the coupling constant

αB(q) was not defined at small q2: 0 ≤ q2 & . It was
only obtained in [15, 16] that αB(q) freezes at q = 0 at
some value αB(0) but the exact number of αB(q = 0) was
not calculated. Our main assumption here will be made
about αB(q) behavior at small momenta: the analytic
two-loop expression (29) or (34) for αB(q) is assumed
to be valid over all range of momenta q ≥ 0; i.e., expres-

sion (34) (obtained for q2 * ) is extrapolated to the

region of small q2:  * q2 ≥ 0.
This assumption has a pronounced effect on the

behavior of the static potential in coordinate space and
needs a special check, in particular, by comparison of
the theoretical formula for VB(r) with lattice measure-
ments. Therefore, the existing lattice data on the static
potential at small and average distances appear to be of
great importance for checking different theoretical con-
cepts about the freezing of the strong-coupling con-
stant.

5. (r) IN COORDINATE SPACE

The strong-coupling constant (r) in coordinate
space in BFTh can be defined through the static poten-
tial as in (18):

(39)

and with the help of the Fourier transform it can be con-
nected with αB(q) in momentum space, as in (20),

(40)
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instead of the y(x) dependence in (20).

In the two-loop approximation [with the use of rep-
resentation (29)], (r) can be calculated:

(41)

In contrast to the coefficients A1 and A2 in (21), now in

(41) (r) and (r) depend on the variable r, if the
renormalization scale µ = 1/r is chosen. In a general
case, we have

(42)

Here, the functions γn(r) (n = 1, 2) are defined by the
integrals (µ = 1/r)

(43)

with
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The function γ1(r) (calculated analytically in the
Appendix) can be written in two different forms:
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Here, γE is the Euler constant. To find γ1(r) at small r, it
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from (46),
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) is a decreasing function of 

 

r,
and in the range 0 ≤ r < ∞ it changes from γ1(0) = γE to
γ1(∞) = 0:

(49)

If one defines, as in perturbation theory, QCD constants

 in coordinate space in terms of  in momentum
space from representation (29),

(50)

then,  depends now on the distance r and only at
very small r coincides with the perturbative ΛR [28]:

(51)

At large distances (r  ∞) γ1(r)  0; therefore, 
coincides with QCD constant ΛV in momentum space:
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expression (see Appendix)
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The function ξ2(r) and therefore γ2(r) can be analyti-
cally calculated only at small and large distances:

(56)

At large distances, as seen from expression (54) (see
also Appendix),

(57)

therefore, expression (42) at large distances simplifies,

(58)

It is important to stress here that the dependence γ1(r)
on r is quite pronounced even at rather small distances;
e.g., if mB = 1.0 GeV and r = 0.1 GeV–1 = 0.02 fm, then
the correction to the function

(59)

coming from the second term is about 20%, and it
grows for larger distances.

6. RUNNING COUPLING CONSTANT IN BFTh

The functions (r) and (r) in expansion (41)
define the coefficients of βBR function in BFTh:

(60)

where β0 and β1 are RS invariants, while  is RS
dependent,
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and has different limits at small and large distances. At

small r(mBr ! 1) coefficient   , given by
(24), and at large distances, r  ∞, it approaches

—the coefficient of the vector coupling constant in
momentum space:
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Therefore, at large distances, the running coupling con-
stant can be approximated by the simple expression
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where under the logarithm the variable t0 is a number,
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and QCD constant is equal to ΛV . From the comparison
of (64) and (34), one can easily get that the freezing val-
ues in coordinate and momentum spaces coincide:
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7. OUR CALCULATIONS

The running coupling constant (r) can be numer-
ically calculated. To this end, it is convenient to use for
αB(q) expression (34) in integral (40). Also, the last

term in (34), proportional to , will be neglected here
for two reasons. First, its contribution to the coupling
constant is less than 1–5% over all region q2 ≥ 0; the
second reason is that two-loop expression used here,

(66)

with

(67)

contains only RS invariant coefficients β0 and β1. If nf =
0 in (67), ΛV = 385 MeV will be taken.

In the same approximation, (r) in (40) can be
written as

(68)

This integral was numerically calculated in the
quenched approximation (nf = 0), and the coupling con-

stant (r) is shown by the dotted curve in the figure
over the range 0 ≤ r ≤ 1 fm, along with two different
approximate curves.

(1) The “exact” (r), given by integral (68) with
mB = 1.0 GeV, is compared to αV in perturbation theory,
which was discussed in Section 3. In the two-loop
approximation, αV(q = 1/r, Λ = ΛR) is given by the
expression

(69)

with

(70)

The behavior of (q = 1/r, ΛR) is shown by the dash-

dotted curve in the figure. The values of (q = 1/r,
ΛR) are also given in Table 1.

From our calculations presented in Table 1, one can
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Table 1. Comparison of two-loop (r) in background-field theory with (q = 1/r, ΛR) in perturbation theory (ΛR =

686 MeV,  = 240.7 MeV) at small distances

r, fm (r)* (q = 1/r, ΛR)** r, fm (r)* (q = 1/r, ΛR)

0.002 0.09641 0.09235 0.0355 0.19881 0.19433

0.004 0.11095 0.10505 0.041 0.20851 0.20794

0.006 0.12159 0.12089

0.008 0.13032 0.12212 0.049 0.22036 0.22636

0.012 0.14455 0.13521 0.057 0.23108 0.24549

0.016 0.15640 0.14653 0.063 0.23844 0.26053

0.020 0.16657 0.15688 0.069 0.245321 0.27635

0.024 0.17573 0.16665 0.077 0.25394 0.29894

0.030 0.18797 0.18067 0.087 0.26386 0.33026

  * The values of (r) were found by calculating the integral in (68) with mB = 1.0 GeV and ΛV = 0.385 GeV.

** The approximate αV (q = 1/r, ΛR) is defined by Eq. (69), ΛR = 0.686 GeV.
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tances, r & 0.04 fm, is systematically smaller, by about

1–4%, than the “exact” coupling constant (r) in
BFTh. This fact takes place even at very small dis-
tances; e.g., at r = 0.002 fm the perturbative coupling

constant  is still smaller than (r) by about 4%.
However, this result is virtually independent of mB ,
because at such small distances the influence of the
background mass is immaterial.
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1/r, ΛR) with ΛR = 686 MeV (dash-dotted curve); the

strong-coupling constant in BFTh (r), defined by the

integral in (68) with mB = 1.0 GeV and ΛV = 385 MeV (dot-

ted curve); and (q = 1/r, ΛV = 385 MeV) with mB =

1.0 GeV (solid curve).
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one-loop approximation when
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contribution of the second (small) term in the denomi-
nator remains important up to very small distances: at
r = 0.02 fm this correction is 3%, and at r0 = 2 × 10–4 fm
this correction is still 1.4%. The importance of higher
order corrections is a characteristic feature of the cou-
pling constant in coordinate space.

(2) In our calculations, the background and pertur-
bative coupling constants coincide at the point r1 ≈
0.04 fm (see Table 1), and at r > r1, the perturbative

(q = 1/r, ΛR) becomes larger than (r). This
result of ours is in agreement with a similar observation
in lattice measurements of the short-distance static
potential [24]. In [24], it was observed that the absolute
value of the lattice static potential is larger than the two-
loop perturbative potential up to the separation rL ≈
0.12r0 ≈ 0.06 fm (r0 = 0.5 fm). This value of rL turns out
to be rather close to our point r1 = 0.04 fm discussed
above. Here, it is worth to noting that the value of rL in
lattice data can depend on the chosen normalization
condition and on the nonperturbative contribution to
the static potential and therefore can slightly differ
from the point r1 where perturbative and background
coupling constants are equal.

At larger distances, 0.1 > r > 0.04 fm, the perturba-

tive coupling constant becomes larger than (r),
being about 25% larger at the point r ≈ 0.09 fm (see
Table 1 and figure).

Thus, one can conclude that the perturbative two-
loop coupling constant (70) with Λ = ΛR has the accu-
racy &5% at the distances r & 0.06 fm and is signifi-
cantly different at larger distances.

3. At large distances, r * 0.2 fm, another approxima-

tion to (r) can be used. To get this approximation,
we have taken into account that at large distances QCD
constant Λ is close to the value ΛV and (r) freezes if
r  ∞. Therefore, the two-loop approximation to

(r) can be chosen as

(75)

where

(76)

The comparison of the approximate coupling constant

(q = 1/r, ΛV) and the “exact” coupling constant

(r) is illustrated by the numbers given in Table 2;
see also solid and dotted curves in the figure. From
Table 2, one can see that the approximate coupling con-

stant is very close to (r) at the distances r > 0.4 fm,
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remaining a bit smaller than (r) over the entire
region. The difference between them is 3.2, 2.3, and
1.6%, respectively, at the distances 0.5, 0.7, and 1.0 fm.
Still the approximate expression (74), given in the ana-
lytic form, is very simple and can be useful in phenom-
enological calculations.

It is also important that both coupling constants
have the same freezing value (63), which is determined
only by the background mass mB since QCD constant
ΛV is supposed to be known. To define mB, the lattice
static potential, as well as fine-structure splittings, can
be used [18, 19].

8. CONCLUSIONS

In our study, we have investigated the properties of
the strong-coupling constant (r) in BFTh, which
was numerically calculated in the quenched approxi-
mation (nf = 0).

It was found that at small distances two-loop (r)
is systematically 1–4% larger than a perturbative con-
stant up to very small distances, r ~ 10–4 fm. This prop-
erty does not depend on the value of background mass
mB , playing a role of a regulator, and is a characteristic
feature of the coupling constant in coordinate space.
This result is in good agreement with lattice data on the
static potential over small distances [24].

At average distances, 0.06 & r & 0.2 fm, it turns out
that there is no way to define QCD constant Λ in coor-

α̃B
2( )

α̃B

α̃B

Table 2. Comparison of (r) with the approximate cou-
pling constant αB (q = 1/r, ΛV) at large distances

r, fm “Exact” (r)*
αB (q = 1/r, ΛV)**

Λ = ΛV = 385 MeV, mB = 1.0 GeV

0.2 0.3367 0.3030

0.3 0.3710 0.3489

0.4 0.3914 0.3754

0.5 0.4041 0.3911

0.54 0.4077 0.3956

0.6 0.4121 0.4009

0.7 0.4171 0.4073

0.8 0.4204 0.4117

0.9 0.4225 0.4148

1.0 0.4238 0.4172

r  ∞ 0.42756 0.42756

  * The values of (r) were found by calculating the integral in
(68) with mB = 1.0 GeV.

** The approximate coupling constant αB (q = 1/r, ΛV) is defined
by Eq. (66).

α̃B

α̃B

α̃B
2( )
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dinate space as a constant. As a function of the distance
r, it changes in the range ΛR(r  0) ≥ Λ(r) ≥ ΛV(r 

∞), where ΛV = exp(a1/2β0) (  ≈ 1.6  for
nf = 0).

At large distances, r * 0.4 fm, (r) approaches fast

the freezing value (r  ∞), being only 3% smaller

than (r  ∞) at r = 0.5 fm. The freezing value in
BFTh is fully defined by the background mass mB since
QCD constant ΛV is supposed to be known (from lattice
data or from experiment). The value of mB = 1.0 GeV,
taken here from fine-structure analysis in charmonium
and bottomonium, gives (r  ∞) = αB(q = 0) =
0.428, which is very close to the values used in quarko-
nium phenomenology.
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APPENDIX

To derive the coefficients A1 and A2 in expansion
(21) of perturbative coupling constant (r), one needs
to calculate the integrals

(Ä.1)

Those integrals can be found in [29]:

(Ä.2)

By taking the renormalization scale µ = 1/r in (A.2),
one gets

(Ä.3)

i.e., J0, J1, and J2 turn out to be constants. With the use
of (A.3), one can obtain the explicit expansions (22) for
the coefficients A1 and A2 in (21).

In BFTh instead of integrals Jn(µ), given by (A.1),
one needs to calculate the integrals

(Ä.4)
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If n = 0, then η0 = J0 = 1. The function η1(r, µ) (for n =
1) can be found by considering [29] that the integral

(Ä.5)

Here, γE is the Euler constant, and

(Ä.6)

Then, we have

(Ä.7)

choosing µ = 1/r, one obtains expression (45) for γ1(r):

(Ä.8)

In the case of n = 2, the integral (A.4),

(Ä.9)

can be reduced to the expression

(Ä.10)

where the function ξ2(r),

(Ä.11)

was not found in an analytic form. To get (A.9), expres-
sion (A.5) for ξ1(r) was used. Then choosing again in
(A.9) the renormalization scale µ = 1/r, one obtains

(Ä.12)

It was shown (see Section 5) that, in the perturbative
limit, mB  0, r  0, the γ(r) and ξ2(r) functions
have the following limits:

(Ä.13)
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therefore, in this case the function γ2(r) in (42) is given by

(Ä.14)
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Abstract—The effect of the baryon-resonance admixture to the deuteron wave function on the momentum
dependences of the differential cross section, the tensor analyzing power T20, and the polarization-transfer coef-
ficient κ0 for backward elastic deuteron–proton scattering at high energies is investigated. The reaction in ques-
tion is assumed to proceed predominantly through nucleon and nucleon-resonance exchanges. The formalism
used in this study is based on light-front dynamics. The effect of various parameters of the problem on the
results of the calculations is analyzed, and it is shown that, even at a 1% level of the total admixture of nucleon
resonances to the deuteron wave function, a description of experimental data that is superior to that within the
one-nucleon-exchange approximation can be achieved by appropriately choosing the contributions of various
resonances. For qualitative agreement between the results of the calculations and experimental data to be
attained, it is sufficient to take into account the contributions of the lightest negative-parity baryon resonances.
Upon taking into account baryon exchanges, results computed for observables with different deuteron wave
functions show a smaller scatter than analogous results obtained within the one-nucleon-exchange approxima-
tion. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Among intermediate-energy-physics problems of
current interest, that of establishing the degrees of free-
dom that are operative in processes occurring at suffi-
ciently small distances between hadrons (about 0.3–
0.6 fm) attracts particular attention. Here, questions
that are of prime importance for developing intermedi-
ate-energy physics include the following: Is it neces-
sary at such distances to go over from effective had-
ronic degrees of freedom, which are widely used, for
example, to describe nucleon–nucleon interactions, to
fundamental quark–gluon degrees of freedom? What
kind of dynamics is associated with one degree of free-
dom or another at such distances?

It is obvious that answers to these questions and
some other questions of similar character cannot be
obtained immediately—it is sufficient to recall the long
way of development of nuclear physics and of the phys-
ics of nucleon–nucleon scattering. In the present study,
we will attempt to clarify the above questions by ana-
lyzing the effect of a baryon-resonance admixture in
the deuteron wave function on the characteristics of
backward elastic deuteron–proton scattering.

The problem of isobaric states in the deuteron has
been discussed for more than two decades. A number of
reviews articles (see [1, 2]) and many original studies
have been devoted to the subject. It could be thought
that the most reliable information about the small-dis-
tance structure of the deuteron would come from apply-

* e-mail: azhgirey@cv.jinr.ru
1) Moscow State University, Vorob’evy gory, Moscow, 119899 Russia.
1063-7788/00/6312- $20.00 © 22184
ing electromagnetic probes to it. In particular, such
investigations resulted in establishing the existence of
meson-exchange currents in the deuteron [3] and in
drawing the conclusion that it is necessary to take into
account nucleon isobaric states in dealing with such
probes [4]. As the time passed, it became clear, how-
ever, that the problem of resonances in the deuteron is
very involved and that it can be solved only on the basis
of additional experimental information accumulated by
using both electromagnetic and hadronic probes. Pro-
ton–deuteron scattering into the backward hemisphere
(in the c.m. frame) is one of the most appropriate reac-
tions for studying the small-distance structure of the
deuteron.

Available experimental data on the differential cross
section for this process [5–12] show the following spe-
cial features: (i) The differential angular distribution
has an ascending character as the c.m. scattering angle
approaches 180°. (ii) At a fixed angle, the differential
cross section decreases fast with increasing incident-
proton (incident-deuteron) energy. (iii) The cross sec-
tion as a function of energy has a plateau at proton
kinetic energies in the range 0.3–0.7 GeV (for back-
ward elastic deuteron–proton scattering, this approxi-
mately corresponds to primary deuteron momenta in
the range 1.6–2.6 GeV/c). To a great extent, these fea-
tures gave impetus to the original discussion of isobaric
states in the deuteron.

A radically new step in the investigation of deu-
teron–proton scattering was associated with the analy-
sis of the polarization characteristics of this reaction. In
particular, the tensor analyzing power T20 for backward
000 MAIK “Nauka/Interperiodica”
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elastic deuteron–proton scattering at primary deuteron
momenta between 1.1 and 3.9 GeV/c and between 3.5
and 6.5 GeV/c was measured in Saclay [13, 14] and in
Dubna [15], respectively; in addition, the coefficient κ0
of polarization transfer from the vectorially polarized
deuteron to the forward emitted proton was measured
for the reaction 1H(d, p)X at 3.5 GeV/c [16] and for the
reaction 12C(d, p)X in the deuteron-momentum range
from 6 to 9 GeV/c [17–19].

A theoretical analysis of backward deuteron–proton
scattering in the energy region under investigation is
rather complicated, since it involves some unresolved
dynamical problems of relativistic nuclear physics.
Presently, these questions have not yet been clarified
completely, and one has to rely on more or less reason-
able approximations. If it is assumed that deuteron–
proton scattering is dominated by effective hadronic
degrees of freedom, the u-channel pole mechanism
involving the transfer of a nucleon (in general, a
baryon) from the deuteron to the proton (see the dia-
gram in Fig. 1 below) appears to be the simplest and
most natural reaction mechanism. A covariant treat-
ment of this diagram on the basis of the Bethe–Salpeter
equation [20, 21] leads to results that do not differ very
strongly from those obtained within old-fashioned
approaches that relied on a direct use of the deuteron
wave function. It is necessary in this case that a right
value of the internal nucleon momentum k (that allow-
ing for relativistic kinematics) be substituted into the
wave function. A result that is common to such calcula-
tions of backward deuteron–proton scattering is that
they lead to a noticeable quantitative (and even qualita-
tive in the case of the tensor analyzing power T20) dis-
crepancy with experimental data. It also appeared that
the required behavior of T20 could be obtained by
assuming a P-wave admixture in the deuteron ground
state [22]. However, the antinucleon P wave that arises
automatically in solving the Bethe–Salpeter equation is
overly small to explain the observed internal-momen-
tum dependence of the analyzing power T20. A further
complication of the mechanism of deuteron–proton
scattering within the covariant field-theoretical formal-
ism does not seem reasonable since this would involve
introducing poorly defined form factors.

In view of this, the formalism of relativistic quan-
tum mechanics—in particular, its version in the form of
light-front dynamics, which realizes the Poincaré group
in the basis of a few particles promptly interacting with
one another (that is, through an instantaneous potential)
[23, 24]—has recently become a popular means for
analysis of deuteron–proton processes. This conceptual
framework seems quite appealing for the following rea-
sons. Based on calculations in terms of wave functions,
it is formally similar to nonrelativistic theory; in addi-
tion, it enables one to test the accuracy in solving the
scattering problem. Despite this, analyses within rela-
tivistic quantum mechanics that make use of a compli-
cated mechanism taking into account, among other
things, resonance exchanges, delta-isobar excitations,
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
and rescattering processes do not lead to reasonable
agreement with experimental data [25].

In analyzing backward deuteron–proton scattering,
we attempt here to revive the u-channel pole diagram
within light-front dynamics. Basically, the arguments
that motivated our attempt are the following: (i) As was
indicated above, the features of this process that are cal-
culated here significantly depend on those internal-
momentum values that are substituted into the deuteron
wave functions. It will be shown below that the method
of light-front dynamics opens new possibilities here.
(ii) Although the framework being discussed is very
attractive, a situation where some constraints are
imposed on the scattering angles cannot be described in
terms of relativistic quantum mechanics without invok-
ing very strong hypotheses. Indeed, it seems highly
improbable that an exact nonperturbative description
can be effectively reduced to a scheme within relativis-
tic quantum mechanics such that the operator associ-
ated with the spin of the system being considered
ceases to depend on interaction [26]. (iii) Previous cal-
culations of resonance-contribution effects assumed
values for the resonance admixture to the deuteron
wave function that are hardly justifiable. As is currently
discussed, a nucleon-resonance admixture can arise in
the deuteron wave function either via the meson mech-
anism [2] or via the formation of the s4p2 six-quark con-
figuration [27, 28]. However, neither mechanism can be
quantified precisely. It is especially important to
emphasize this because it was found in recent years that
the mesonic origin of nucleon–nucleon interaction is
not universal even at low energies [29].

The main objective that is pursued in the present
study and which is suggested by the aforesaid is twofold.
First, we want to calculate spin effects in backward deu-
teron–proton scattering within a somewhat modified for-
malism of light-front dynamics. Second, we will try find
out—without microscopically computing the resonance
admixture in the deuteron wave function—whether it is
possible in principle to attain, at reasonable phenomeno-
logical values of this admixture, at least qualitative
agreement between the calculated and the measured val-
ues of the analyzing power T20 for backward elastic deu-
teron–proton scattering. An implicit hypothesis here is
that it is this scattering process that must be the main
source of information about the admixture of, say, the P
wave in the deuteron wave function.

2. DESCRIPTION OF THE FORMALISM

2.1. Baryon Exchange within Light-Front Dynamics

In accordance with the comments presented in the
Introduction, we will use methods of quantum field the-
ory and consider that backward elastic deuteron–proton
scattering at incident-deuteron momenta about 5 GeV/c
is dominated by the exchange mechanism illustrated in
Fig. 1. In addition to nucleon exchange, exchange of
nucleon resonances also occurs.
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The covariant form of the amplitude associated with
this diagram requires introducing a large number of
unknown form factors in the deuteron vertices [30] and
nontrivial propagators for particles of spin s = 3/2, 5/2,
… [31]. Even in the particular case of only one dia-
gram, it is therefore necessary to simplify radically the
description of the process. It is of paramount impor-
tance that the formalism used be relativistically invari-
ant since, under the kinematical conditions being con-
sidered, even the particles transferred in the process are
essentially relativistic. In our opinion, light-front
dynamics combines the requirements of simplicity and
relativistic invariance in the most natural way [32].

Within light-front dynamics, the invariant amplitude
}fi corresponding to the diagram in Fig. 1 can be
approximately represented as the sum over poles asso-
ciated with the exchanges of a nucleon and of its
excited states; that is,

(1)

where }(d  p'R) and }(pR  d') are, respec-
tively, the deuteron-breakup and the deuteron-forma-
tion amplitude; R is the index labeling resonances
(including nucleon); R+ and R– are, respectively, the
“plus” and the “minus” components of the resonance 4-
momentum,

(2)

R0 and R3 being, respectively, the zeroth (energy) and

the third component of the momentum Rµ; and  is
the minus on-mass-shell component,

(3)

Here, RT is the Rµ component orthogonal to the z axis,
while MR is the resonance mass. In the Feynman dia-
gram technique, which is equivalent in this case to the
technique of time-ordered diagrams, we have

(4)
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Fig. 1. One-nucleon-exchange diagram for backward elastic
deuteron–proton scattering.
P

Expression (1) is approximate in that the spin part of
the resonance propagator is taken on the mass shell, as
is usually done [33]. On one hand, this makes it possi-
ble to go over from vertices to wave functions; on the
other hand, the propagator here proves to be noncovari-
ant, so that relativistic invariance is violated. In order to
restore covariance, it is necessary to add a contact part
to the propagator [34]. This results in that the numera-
tor of the propagator also involves the component R–

rather than . We believe that, in the approximation
used here, the above violations of relativistic invariance
are minimal.

By using the variable

(5)

we can recast Eq. (1) into the form

(6)

where

MN and Md being, respectively, the nucleon and the deu-
teron mass.

In light-front dynamics, the quantity

(7)

where µ and µR are the projections of, respectively, the
nucleon and the resonance spin onto the quantization
axis, plays the role of the wave function in the NR chan-
nel. In (7), we have used the new variable kRT defined as

(8)

where the subscript T labels the momentum component
transverse with respect to the z axis.

The wave function in (7) is normalized by the con-
dition

(9)

where the integration measure dτR has the form

(10)

In terms of the light-front-dynamics wave functions

(x, ), the amplitude in (6) can be represented in
the form
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where the quantity

(12)

corresponds to the kinematics of a deuteron emitted
from the lower vertex of the diagram in Fig. 1.

For the sake of convenience, we further go over
from the variables x and kRT to the momentum variables

kR = (kRT , ), where  is determined by the relations

(13)

(14)

In terms of the new variables, the amplitude }fi
assumes the form

(15)

where

The normalization condition for the functions 
then takes the form

(16)

where

In the ensuing analysis of polarization observables
expressed in terms of the S- and D-wave components of
the deuteron wave function, it is necessary to use the
orbital angular momenta and the spin moments. In the
LS representation of light-front dynamics, there arise
some difficulties, since the spin operator depends, in
general, on the interaction. In view of this, we further
adopt the approximation in which the wave function
used is identified, in each of the NR channels, with the
two-body wave function in the relativistic quantum
mechanics of the light front [24, 35, 36]. Within this
theory, the spin operator of free particles is taken for the

spin operator S, and the wave function (kR , µ, µR)

x' p
+
/d'
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can be represented in the form

(17)

where nR specifies the proton-emission direction and
where the Melosh matrices R+(kR) [37] are the D func-
tions of the spatial rotation through the Melosh angle,
which can be found from the explicit form of the
Melosh matrix in the NN channel,

(18)

Here, σs stands for the Pauli matrices; r, s = 1, 2; and ers
is the unit antisymmetric tensor normalized by the con-
dition e12 = –e21 = 1.

The problem of calculating the amplitude for the
diagram in Fig. 1 in terms of the deuteron wave func-
tions in various channels can in principle be solved with
the aid of Eqs. (15)–(17). Hence, the problem of deter-
mining the spin characteristics of backward elastic deu-
teron–proton scattering can also be solved at the model
level.

So far, our consideration has been quite general. Let
us now specify the direction of the z axis. Since the
effective Lagrangian of the degrees of freedom being
considered must be Lorentz invariant (in particular,
invariant under rotations), the z axis can be chosen arbi-
trarily in general. However, the use of light-front-
dynamics wave functions of relativistic quantum
mechanics that are subjected to a constraint on angles
instead of covariant vertices and the disregard of con-
tact diagrams generally lead to violation of rotational
invariance, so that the choice of the direction of the z
axis becomes significant. A general consideration of
this question is beyond the scope of the present article.
Therefore, we only mention that it is common practice
to align the z axis with the beam direction. This pre-
scription is adopted, for example, in the theory of deep-
inelastic scattering [38]. We will follow this tradition. A
comparison with experimental data can serve as a crite-
rion of correctness of this choice of direction [39]. Our

choice leads to x ≠ x' and, hence, to kR ≠ . In the case
of backward elastic deuteron–proton scattering, we
have

(19)

When the z-axis direction is chosen in this way, we do
not need to take into account Melosh matrices—in the
case of backward scattering, all transverse components
of the momenta vanish, so that there are no Melosh
rotations.
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2.2. Differential Cross Section for Backward Elastic 
Deuteron–Proton Scattering

The differential cross section dσ/dΩ for backward
elastic deuteron–proton scattering in the c.m. frame is
given by

(20)

where s is the square of the total c.m. energy, }fi is the
amplitude for the process, and the trace symbol tr
implies summation over the spin variables of the initial
and of the final state. After some simple, but cumber-
some calculations, we arrive at

(21)

where

(22)

(23)

Here, ks = s + s',  = ,  are Wigner

6j coefficients, and 〈l0l '0 |κs0〉  are Clebsch–Gordan
coefficients. In deriving Eq. (21), we have made use of
the relation

(24)

where M is the projection of the deuteron spin onto the
quantization axis (onto the z axis in our case).

If we restrict our consideration to the nucleon chan-
nel, it can be found from Eq. (20) that, in the one-
nucleon-exchange approximation, the differential cross
section has the form [40]

(25)
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It is interesting to note that this expression is sym-
metric under the interchange of the primed and
unprimed variables x and k. This means that the differ-
ential cross section for backward elastic deuteron–pro-
ton scattering as given by (25) is invariant under the
reversal of the z-axis direction.

2.3. Tensor Analyzing Power for Backward Elastic 
Deuteron–Proton Scattering

The tensor analyzing power T20 is given by

(26)

where the standard spin–tensor

(27)

is chosen for the spin operator T20.
Substituting expression (15) for the amplitude into

(26) and taking into account (17), we obtain

(28)

where

(29)

(30)

Here, κ l = l + l ',  are Wigner 9j coefficients,

and the expression for (kR , kR') is given above [see
Eq. (22)].

Formula (28) determines the components of the ten-
sor analyzing power T20 with the z axis directed along
the beam. In a number of experiments, however, the
polarization of the deuteron beam was specified with
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respect to the y axis that is orthogonal to the beam. It

can easily be seen that the tensor analyzing power 
with respect to this y axis is related to the above quan-
tity T20 by a simple equation. (Only the “20” compo-
nent of the density matrix is nonzero for a tensorially

polarized deuteron beam.) Indeed, the spin–tensors 
specified with respect to the y axis and the spin–tensors
t2q specified with respect to the z axis are related by the
equation

(31)

where R is the rotation from the z axis to the y axis
about the x axis and Dq'q(R) are matrices of an irreduc-
ible representation of the group of rotations. In terms of
the Euler angles, we have

(32)

From Eqs. (31) and (32), we obtain

If we take into account only the nucleon channel in
expression (28) and set k = k', there arises the well-
known formula (see, for example, [41])

(33)

where u(k) and w(k) are the radial wave functions cor-
responding to the S- and the D-wave deuteron state.

2.4. Polarization-Transfer Coefficient in Backward 
Elastic Deuteron–Proton Scattering

The coefficient of polarization transfer from the
vectorially polarized deuteron to the proton, κ0, is given
by [42]

(34)

where  and  are the y components of the proton
and the neutron spin operator, respectively. In order to
determine κ0, we first calculate the quantity

(35)

where  and  are the standard spin–tensors for the
final proton and the initial deuteron, respectively. By
using the simple, albeit cumbersome, relation

T20
R

t2q
R

t2q
R

Rt2qR
1–

Dq'q
2

R( )t2q' ,
q'
∑= =

R
π
2
--- 0 0, , 

  .=

T20
R

T20/2.=

T20
8u k( )w k( ) w

2
k( )–

2 u
2

k( ) w
2

k( )+[ ]
--------------------------------------------------,=

κ0

tr 2Jy
p}Jy

d}
+{ }

tr }}
+{ }

----------------------------------------,=

Jy
p

Jy
d

tr t1q
p }t1q

d }
+{ }

tr }}
+{ }

--------------------------------------,

t1q
p

t1q
d

ϕM kR µ µR, ,( ) 1–( )1 M'–
1M1 M'– κq〈 | 〉

MM'

∑

PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
(36)

we find for backward scattering that

(37)

where the quantities ( , ) are determined by
Eq. (22) and

(38)

Here, q = ±1, 0 are the spherical indices of the polariza-
tion vector,

and  = , g taking the minimal values in the
intervals |s – s' | ≤ g ≤ s + s', |1 – κs | ≤ g ≤ 1 + κs , and
|κl – κ | ≤ g ≤ κl + κ.

× ϕM'* kR' µ' µR', ,( ) 3

4π
---------- 1–( )l '
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ĝ 2g 1+



2190 AZHGIREY, YUDIN
Returning to the definition of the coefficient κ0 in
Eq. (34), we note that

With the aid of Eq. (37), we then obtain

(39)

If we again restrict our consideration to nucleon
exchange and set k = k', the result is

(40)

This expression differs from that which is used most
often only by a trivial normalization factor.

3. RESULTS OF THE CALCULATIONS 
AND DISCUSSION

We begin the discussion of our results by analyzing
the potential of the pole diagram in Fig. 1 in the one-
nucleon-exchange approximation of the present ver-
sion of light-front dynamics (that is, we take into
account, for the time being, only nucleonic degrees of
freedom).

For backward elastic deuteron–proton scattering, the
differential cross section (dσ(180°)/dΩ)c.m. calculated
with the deuteron wave functions for the Paris potential
[43], the Reid soft-core potential [44], the A and B ver-
sions of the Bonn potential [45], and the Moscow poten-
tial [46] (curves 1, 2, 3, 4, and 5, respectively) is displayed
in Fig. 2a as a function of the incident-deuteron momen-
tum in the laboratory frame. Also shown in this figure are
experimental data from [5–12] {the angular distributions
that were obtained in [5, 9] near the angle of θc.m. = 180°
were extrapolated to this angle on the basis of the depen-
dence (dσ(θ)/dΩ)c.m. = |cosθ|i}.

From Fig. 2a, it can be seen that the results of the
calculations with the different wave functions differ
quite sizably. The figure also shows that the pole dia-
gram does not describe the plateau in the range 2–
2.5 GeV/c. However, this feature in the energy depen-
dence of the differential cross section for elastic deu-
teron–proton scattering can be explained with the aid of
the triangle diagram, whereby the cross section for deu-
teron–proton scattering is expressed in terms of the
cross section for the process NN  dπ, the latter
being of a resonance character in the above energy
region [47–49]. By taking into account relativistic
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effects and the D-wave admixture in the deuteron wave
function, it was possible to improve additionally the
description of experimental data [50].

The tensor analyzing power T20 and the polariza-
tion-transfer coefficient κ0 calculated with the same
deuteron wave functions are displayed in Figs. 2b and
2c, respectively. It is important to emphasize here that
the discrepancy between the results of the calculations
and experimental data cannot be removed within the
one-nucleon-exchange model—in particular, it was
shown by Punjabi et al. [14] that, within this model, the
correlation between the T20 and κ0 values associated
with the same k value represents a circle on the (T20, κ0)
plane, whereas the experimental form of this correla-
tion is helical. A recent phenomenological analysis
revealed that the description of experimental data can
be somewhat improved by additionally taking into
account absorption effects [51].

In order to calculate directly the analyzing power
T20 and the polarization-transfer coefficient κ0 within
our approach, it is necessary to know the nucleon wave
function of the deuteron; the wave functions φls(kR); the
relation between the functions φls(kR) that are associ-
ated with the same resonance, but which correspond to
different s values; and, finally, the magnitude of the
admixture of baryon resonances to the deuteron wave
function. We will now discuss the choice of these
parameters in some detail.

3.1. Wave Functions φls(kR)

In a consistent treatment, these functions are derived
by solving the dynamical problem of a resonance
admixture in the deuteron. Since we do not aim here at
precisely describing experimental data, we approxi-
mate them by oscillator functions, which were success-
fully used to calculate nuclear hadronic systems local-
ized in space. Specifically, we set

(41)

where CR is a normalization factor and αR is a parame-
ter that characterizes the spatial localization of the res-
onance. It is natural to assume that the radius of the res-
onance distribution in the NR channels must be smaller
than the deuteron radius (that is, the radius of the NN
channel). This follows, in particular, from the uncer-
tainty relation—the resonance formed in the central
region of the deuteron cannot travel a distance greater
than 1/∆MR , where ∆MR = MR – MN . From the same
considerations, it follows that the heavier the reso-
nance, the smaller the spatial region where it must be
localized. In order to avoid increasing the number of
parameters, we approximated the oscillator radius rRj =

1/  as

(42)

φls kR( ) CRkR
l α RkR
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Fig. 2. Differential cross section (dσ/dΩ)c.m., tensor analyzing power T20, and polarization-transfer coefficient κ0 for backward elas-
tic deuteron–proton scattering versus the incident-deuteron momentum pd that were calculated in the one-nucleon-exchange approx-
imation with the deuteron wave functions for (curve 1) the Paris potential [43], (curve 2) Reid soft-core potential [44], (curve 3)
version A and (curve 4) version B of the Bonn potential [45], and (curve 5) the Moscow potential [46]. Experimental data were bor-
rowed from (open stars) [5], (closed inverted triangles) [6], (closed circles) [7], (open circles) [8], (closed stars) [9], (open triangles)
[10], (open diamonds) [11], and (open squares) [12] for (‡) the differential cross section; from (closed circles) [14] and (open circles)
[15] for (b) the tensor analyzing power T20; and from (closed circles) [14] for (c) the polarization-transfer coefficient k0.

κ0
where MR1 is the mass of the N(1440) resonance and r0

is a parameter common to all resonances.

3.2. Magnitude of Resonance Admixtures

As was indicated above, mechanisms that can be
responsible for the emergence of resonance admixtures
in the deuteron wave function are not discussed here.
Both conceivable mechanisms mentioned in the Intro-
duction predict the magnitude of the admixture at a
level of a few tenths of a percent to a few percent. At the
stage of choosing other parameter values, we fixed the
total magnitude of the admixture at 2%. As will be seen
below, this choice is not crucial—a qualitative descrip-
tion of data can be attained with a value of about 1% or
even with a somewhat smaller value.
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3.3. Relation between the Functions φls(kR) 
Corresponding to Different s Values

In the general case of the exchange of a spin-sR

baryon, two states, that of spin sR – 1/2 and that of spin
sR + 1/2, arise in the NR channel. The possible values of
the orbital angular momentum are determined by the
parity of the exchanged baryon resonance. Since the

functions (kR) that we use were not derived by solv-
ing the dynamical problem, the relations between the
functions that describe NR states and which are charac-
terized by different s values are determined by the qual-
ity of the description of data.

3.4. Wave Function of the NN Channel

As was shown above, the results of the calculations
in the one-nucleon-exchange approximation depend on

φls
NR
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Fig. 3. Tensor analyzing power T20 for backward elastic deuteron–proton scattering versus the incident-deuteron momentum pd
according to the calculations in which the deuteron wave function is assumed to include a 2% admixture of (a) one of the baryon
resonances N(1520, 3/2–), N(1535, 1/2–), N(1675, 5/2–), and N(1680, 5/2+) at r0 = 0.4 fm; (b) the negative-parity baryon resonances
N(1520), N(1535), N(1650), and N(1675) at various values of r0 (indicated in the figure); (c) all known resonances from N(1520) to
N(2600) at various values of r0 (indicated in the figure) under the assumption that a nonvanishing contribution comes only from the

wave function  corresponding to the lower channel spin of the possible two values; and (d) the negative-parity resonances

N(1520), N(1535), N(1650), and N(1675) at r0 = 0.4 fm and various values of the wave-function ratio /  (indicated in the

figure). The dotted curves were computed in the one-nucleon-exchange approximation. The displayed experimental data are identi-
cal to those in Fig. 2b.

φls
NR

φlsmin
φlsmax
the form of the NN-channel wave function. In choosing
parameter values, the deuteron wave function for the B
version of the Bonn potential [45] was used for the NN-
channel wave function. The eventual results were
obtained for all wave functions with which we per-
formed the calculations in the one-nucleon-exchange
approximation.

As can be seen from Fig. 2, the data on the tensor
analyzing power T20 show the most specific type of
momentum dependence; moreover, this spin observ-
able has been presently measured up to the highest val-
ues of the internal momentum k. For this reason, the
baryon-resonance contributions have been analyzed
predominantly on the basis of a comparison of the
results of the calculations precisely with these data.
P

As a typical illustration, the calculated analyzing
power T20 as a function of the incident-deuteron
momentum pd is shown in Fig. 3a for the cases where
the deuteron wave function contains a 2% admixture of
only one of the baryon resonances N(1520, 3/2–),
N(1535, 1/2–), N(1675, 5/2–), and N(1680, 5/2+) (indi-
cated in parentheses here are the baryon mass, spin, and
parity). At a fixed magnitude of the resonance admix-
ture, the resonance-contribution effect on the behavior
of T20 as a function of momentum depends on the
parameter r0 and on the relationship between the abso-

lute values and phases of the wave functions  cor-
responding to the different spin values of s = sR ± 1/2.
The curves in Fig. 3a were computed at r0 = 0.4 fm
under the assumption that a nonvanishing contribution
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comes only from the function for which the channel
spin takes the lower value of the possible two.

As can be seen from this figure, the reversal of the
sign of the analyzing power T20 in the region pd ≥
0.4 GeV/c is the most spectacular effect of taking into
account the contributions of 1/2– resonances [N(1535)
and N(1650)]. If, in addition, we include 3/2– reso-
nances, the minimum in the analyzing power T20 calcu-
lated in the one-nucleon-exchange approximation with
the deuteron wave function for version B of the Bonn
potential (dotted curve) is slightly filled; concurrently,
the T20 values are reduced in the momentum region pd ≥
0.4 GeV/c. The contributions of the even-parity bary-
ons alone have a smaller effect on the behavior of T20.
As might have been expected, the inclusion of the
N(1440) and N(1710) resonances, which have the
nucleon quantum numbers, does not change the shape
of T20(pd).

For the analyzing power T20(pd) as a function of the
incident-deuteron momentum at various values of r0,
the results of taking into account the total contribution
of the 2% admixture of the negative-parity resonances
N(1520), N(1535), N(1650), and N(1675) to the deu-
teron wave function are shown in Fig. 3b under the
above assumption that a nonvanishing contribution

comes only from the function  for which the chan-
nel spin takes the lower value of the possible two. It can
be seen from this figure that the inclusion of the addi-
tional contribution from negative-parity resonances
changes substantially the result obtained within the
one-nucleon-exchange approximation by taking into
account only the NN-channel wave function for version
B of the Bonn potential. Of course, it can hardly be
expected that all details of the experimental depen-
dence T20(pd) will be reproduced by using only one pole
diagram and quite a trivial form of the wave functions

. Nonetheless, it can be seen that, even with these
functions at r0 values from the region 0.3–0.5 fm, we
have achieved a better description of the data than
within the one-nucleon-exchange approximation.

Since there are no obvious reasons for taking into
account only the admixture of negative-parity reso-
nances, it is of interest to explore the implications of
including the exchanges of both negative- and positive-
parity baryons. For the analyzing power T20, the results
of taking into account the total contribution to the deu-
teron wave function from the 2% admixture of all
known resonances from N(1520) to N(2600) are shown
in Fig. 3c for various values of r0. Here, we again
assumed that a nonvanishing contribution comes only

from the function  corresponding to the lower value
of the channel spin. As can be seen from Fig. 3c, the
inclusion of the exchanges of all resonances again
improves the description of the experimental data on
T20 in relation to the description in one-nucleon-
exchange approximation with the deuteron wave func-

φls
NR

φls
NR

φls
NR
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
tion for version B of the Bonn potential. An optimal
value of the parameter r0 has not yet been chosen
among those that were used in the calculations.

For the analyzing power T20 as a function of the inci-
dent-deuteron momentum, Fig. 3d illustrates the effect
of variations in the wave-function ratio /  on
the results of the calculations. In the calculations, we
have taken into account the contributions of the nega-
tive-parity resonances N(1520), N(1535), N(1650), and
N(1675) and set the parameter r0 to 0.4 fm. As can be
seen from this figure, the best agreement with the
experimental data on T20 is achieved in the case where
the contribution of the functions corresponding to the
smaller value of the possible two channel spins exceeds
the contribution of the functions corresponding to the
higher spin value. In the calculations mentioned so far,
the sign of the function  was always taken to be

identical to the sign of the function . It is obvious
that, in the case where the contribution of the functions
corresponding to the smaller value of the channel spin
exceeds the contribution of the functions corresponding
to its higher value, the reversal of the relative sign is not

φlsmin
φlsmax

φlsmax

φlsmin

Fig. 4. Tensor analyzing power T20 for backward elastic
deuteron–proton scattering versus the incident-deuteron
momentum pd according to calculations performed at vari-
ous values of the total admixture (numbers on the curves) of
the negative-parity resonances N(1520), N(1535), N(1650),
and N(1675) to the deuteron wave function at r0 = 0.4 fm
and under the assumption that a nonvanishing contribution

comes only from the wave function  corresponding to

lower channel spin of the possible two values. The dotted
curve was computed in the one-nucleon-exchange approxi-
mation. The displayed experimental data are identical to
those in Fig. 2b.
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Fig. 5. Differential cross section (dσ/dΩ)c.m., tensor analyzing power T20, and polarization-transfer coefficient κ0 for backward elas-
tic deuteron–proton scattering versus the incident-deuteron momentum pd that were calculated in the one-baryon-exchange approx-
imation with the deuteron wave functions for (curve 1) the Paris potential [43], (curve 2) the Reid soft-core potential [44], versions
(curve 3) A and (curve 4) B of the Bonn potential [45], and (curve 5) the Moscow potential [46]. In the calculations, we took into
account the contribution of a 1% admixture of the negative-parity resonances N(1520), N(1535), N(1650), and N(1675) to the deu-

teron wave function at r0 = 0.4 fm and assumed that a nonvanishing contribution comes only from the wave function  corre-

sponding to the lower channel spin of the possible two values. The displayed experimental data are identical to those in Fig. 2.
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expected to affect significantly the results of the calcu-
lations.

Figure 4 illustrates the effect that the change in the
magnitude of the baryon-resonance admixture to the
deuteron wave function can have on the quality of
description of the data on T20. In the calculations, we
have taken into account the contributions of the nega-
tive-parity resonances N(1520), N(1535), N(1650), and
N(1675) and set the wave-function ratio /  to
3/1 and the parameter r0 to 0.4 fm. It can be seen that,
at high pd values, qualitative agreement with experi-
mental data can be achieved at a relatively small mag-
nitude of the admixture (about 0.5%).

Finally, Fig. 5 presents the momentum dependences
of the differential cross section [dσ(180°)/dΩ)]c.m., the
tensor analyzing power T20, and the polarization-trans-

φlsmin
φlsmax
P

fer coefficient κ0 calculated on the basis of the proposed
approach. These calculations have been performed with
the deuteron wave functions for the Paris potential [43],
the Reid soft-core potential [44], versions A and B of
the Bonn potential [45], and the Moscow potential [46]
(curves 1, 2, 3, 4, and 5, respectively). Also shown are
available experimental data. In the calculations, which
have been performed under the assumption that a non-
vanishing contribution comes only from the functions

 corresponding to the lower value of the channel
spin, we have taken into account the total effect of the
1% admixture of the negative-parity resonances
N(1520), N(1535), N(1650), and N(1675) to the deu-
teron wave function and set r0 = 0.4 fm. A comparison
of these results with those calculated within the one-
nucleon-exchange approximation (see Fig. 2) shows
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that the inclusion of baryon-resonance exchanges, in
addition to one-nucleon exchange, improves the
description of data in the region of high pd values. It is
interesting to note that, upon taking into account
baryon exchanges in calculating the observables con-
sidered in the present study, the values predicted for
these observables with the different deuteron wave
functions show a smaller scatter.

Let us briefly discuss the possible uncertainties that
are associated with the approximations made in deriv-
ing the formulas used in our calculations. We begin by
considering contact terms in the propagators. In instan-
taneous-form dynamics, a covariant field propagator
reduces to the sum of particle and antiparticle propaga-
tors only for spinless and spin-1/2 particles. For exam-
ple, the vector-particle propagator cannot be repre-
sented as the sum of particle and antiparticle propaga-
tors—it is necessary to add a contact term [34]. In light-
front dynamics, covariant propagators possess this
property for spin-1/2 particles as well [33]. As long as
the field-theory formalism is used, there is no problem
here—one can merely use a covariant propagator. But
once quantities of the wave-function type are intro-
duced, the problem of a contact part arises, since it can-
not be included in a wave function. At present, the
question of contact terms has received virtually no
study. Following common practice, we simply disre-
gard the contact part since this is a purely spin effect,
which is usually insignificant.

The second question concerns the choice of the z-
axis direction. In light-front dynamics, field theory
must be in general invariant under rotations, but it is not
straightforward to demonstrate this explicitly. More-
over, mechanisms that restore invariance under rota-
tions (for example, excitations associated with rota-
tions of new degrees of freedom) for the manifestly

noninvariant original variables p± = (p0 ± p3)/  have
not yet been disclosed. Usually, a formal way that con-
sists in introducing additional degrees of freedom (ori-
entation of the light hyperplane) is adopted in solving
the problem of invariance under rotations [30, 39], but
this significantly complicates the formalism. In our
case, the results may depend on the choice of the z-axis
direction. In all probability, however, the relevant
uncertainty is insignificant (as is suggested both by the
results of our calculations and by the results presented
by Karmanov [39], who studied the spectrum of for-
ward emitted protons in the deuteron-breakup reac-
tion). It was indicated above that, in the case of back-
ward elastic deuteron–proton scattering, the differential
cross section associated with nucleon exchange is
indeed independent of the reversal of the z-axis direc-
tion. Estimates show that uncertainties in other observ-
ables do not exceed the scatter of the results of the cal-
culations performed with the different deuteron wave
functions. A more comprehensive analysis of these
questions will be performed elsewhere.

2
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4. CONCLUSIONS
We have investigated quantitatively the effect of the

baryon-resonance admixture to the deuteron ground
state on the differential cross section [dσ(180°)/dΩ]c.m.,
the tensor analyzing power T20, and the polarization-
transfer coefficient κ0 for backward elastic deuteron–
proton scattering. It has been assumed that, every-
where, with the exception of the region of intermediate
momentum values between 1.6 and 2.6 GeV/c, the pro-
cess predominantly proceeds via the transfer of a
baryon (exchange of a nucleon and nucleon reso-
nances). The formalism corresponding to this mecha-
nism has been realized within light-front dynamics.
The basic results of the present study can be summa-
rized as follows:

(i) General formulas for the differential cross sec-
tion [dσ(180°)/dΩ]c.m., the tensor analyzing power T20,
and the polarization-transfer coefficient κ0 have been
obtained with allowance for admixtures of arbitrary
resonances.

(ii) Predictions for these observables have been ana-
lyzed within the semiphenomenological approach that
consists in choosing the wave functions for various NR
channels and phase relations between them.

(iii) The effect of various parameters of the problem
on the results of the calculations have been investi-
gated, and it has been shown that, even at a 1% level of
the nucleon-resonance admixture to the deuteron wave
function, a description of experimental data that is
superior to that within the one-nucleon-exchange
approximation can be achieved by appropriately choos-
ing the contributions of various resonances.

(iv) In order to fit the results of the calculations to
experimental data, it has been sufficient to take into
account the contributions of the lightest negative-parity
baryon resonances, but the addition of the contributions
from other resonances, including those of positive par-
ity, has not led to a noticeable mismatch with data.

(v) Qualitatively, the contribution of negative-parity
resonances slightly fills the deep minimum in the
momentum dependence of the tensor analyzing power
T20 calculated within the one-nucleon-exchange
approximation and strongly diminishes this analyzing
power at deuteron-momentum values not less than
3.5 GeV/c, thereby reducing the discrepancy between
the theoretical and experimental results.

(vi) It has been established that, for the observables
considered in the present study, a transition from one
set of the deuteron wave functions used to another leads
to a smaller scatter of the results when the baryon
exchange is taken into account than when it is disre-
garded.
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Abstract—We explore the phenomenological structure of E6-inspired grand unified group with the gauge
group SU(3)c × SU(2)L × U(1)Y × U(1), the emphasis being laid upon its implications for Higgs boson observa-
tion. In particular, we discuss the probability for the mass eigenstate Z2 to decay into a Higgs particle and a
bound state composed of heavy quarks. Constraints on and relations between the Z2 and Higgs masses are pre-
sented. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Very rare decay processes provide sensitive tests of
new theories and an important testing ground for the
Standard Model (SM). The field of very rare decays is
diverse and active since it offers a rich potential for
major discoveries. Theoretical interest in an extra neu-
tral vector boson Z ' has been mainly motivated by an
experimental observation of possible deviations from
SM predictions for the decay of the SM Z boson into

 and  quark pairs (Rc and Rb ratios) [1]. The devi-
ations may be considered as one of the indications of
new physics beyond the SM. The promising explana-
tion of the observed phenomena is implied in the extra-
Z ' models (see references [7–16] in [2]). New gauge
bosons can be detected at future high-energy collid-
ers—namely, Large Hadron Collider (LHC) at CERN,
which can test the nature and structure of many theoret-
ical models at a scale of 1 TeV, at least. Theoretical pre-
dictions of new neutral or charged gauge bosons come
from various extensions of the SM [3]. New extra
bosons naturally appear in the Grand Unification The-
ory (GUT) models [3]. A simple and well-known ver-
sion among the extensions of the SM is the minimal
one, which is aimed at unifying interactions, the E6

GUT model [3]. Since the breakdown of E6 GUT into
the SM is accompanied by at least one extra U(1) group
[E6  SU(3)c × SU(2)L × U(1)Y × U(1)], there may
exist a heavy neutral boson Z ', which can mix with the
ordinary Z boson. There are two new gauge bosons
appearing in E6 GUT models [3], where only one orig-

cc bb

  * This section completes the publication of the Proceedings of the
Second International Conference on Nonaccelerator New Phys-
ics (NANP) held at the Joint Institute for Nuclear Research
(JINR, Dubna, Russia) between June 28 and July 3, 1999. For
the main part of these proceedings, the reader is referred to
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inates from the SO(10) subgroup,

while the Z ' boson is a composition of ZΨ and Zχ com-
ponents mixed with a free angle θ [3]:

In order to seek Z ' at LHC, it is important to know as
much as possible about its decay modes both in stan-
dard sectors of the Drell–Yan (DY) type and in the
(super)rare ones. Other channels can provide important
information about the Z '-boson couplings. If we go
beyond the SM, there are several possibilities for some
quark bound-state resonances B ≡ { } to be pro-
duced via particle interplay accompanied by Higgs
boson (H) emission. It is known that the Z boson is not
yet an exact mass eigenstate, but that it turns out to be
mixed with Z '. In the Z–Z ' mixing scheme, the mass
eigenstates Z1 and Z2 are rotated with respect to the
basis formed by Z and Z ',

through the mixing angle κ,

with  and  being the masses for the mass
eigenstates Z1 and Z2, respectively.

We study a possible extra Z2 state and its interpreta-
tions that have direct implications for new physics at

E6 SO 10( ) U 1( )Ψ,×⊃

SO 10( ) SU 5( ) U 1( )χ,×⊃

SU 5( ) SU 3( )c SU 2( )L U 1( )Y ,××⊃

Z ' ZΨ θ Zχ θ.sin–cos=

QQ

Z1

Z2 
 
  κcos κsin

κsin– κcos 
 
  Z
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κ arctan
MZ
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LHC. Our interest is in Z2 production and possible pair
production process Z2(W, Z) with Z2 decay into pairs of

heavy quarks leading to  and (W, Z) events at

LHC with  invariant mass peaked at an O(0.4 TeV)
mass. If the Z2 state is sufficiently heavy for producing
an H boson, one can determine the effective coupling
for Z2–H interaction. Since H bosons are coupled to Z2
and quarks, this opens the possibility of finding these
Higgs bosons as products originating from the decays
of the Z2 mass eigenstate. We are to estimate the ratio
of the partial decay widths Γ,

(1)

where { }s = 1 stands for a spin-1 quark–antiquark
bound state. Among the possible decays, the process
Z2  H{ }s = 1 is of great interest, since it is
almost kinematically allowed, even for the Z2 mass as
low as 0.5 TeV. The main backgrounds to Z2 decays via
Higgs boson emission will depend on the precise sec-
ondary modes of the decay of the product Higgs boson.
In fact, background branches are most important if the
Higgs boson decays primarily to leptons or quarks
(with the exception of t quarks), as will be the case for
a sufficiently light Higgs boson. Model calculations of
the decays of the SM Z boson via Higgs boson emission
to onia were performed in [4]. The rates of (super)rare
decays Z2  H{ }s = 1 could be used as a check of
the theory or to extract some of the parameters of the
theory that are hard to reach through other processes.

2. DESCRIPTION OF THE FORMALISM
To analyze the effects of the Z2 state within the

model under consideration, we focus on the Z2 cou-
plings. The interactions of the mass eigenstates Zi (i >
1) with heavy quarks are described by the Lagrangian
density

(2)

where one of the sums is taken over all heavy quarks Q,

gZ is presented as the SM coupling g/  (sW ≡
sinθW),  is taken to mean the SM Z-boson field, and
Zi with i ≥ 2 are additional Z states in the weak-eigenstate
basis. We will consider the model featuring only one
light Z2 mass eigenstate. The vector and the axial-vector
couplings  and  (i = 1, 2) in (2) are defined as

(3)

QQ QQ

QQ

R Z2 H QQ{ } s 1= /QQ( )

≡
Γ Z2 H QQ{ } s 1=( )

Γ Z2 QQ( )
--------------------------------------------------------------,

QQ

QQ

QQ

LZiQ
– gZ Q gVi

gAi
γ5–( )γµQZiµ

,
Q

∑
i 1=

∞

∑=

1 sW
2–

Z1µ

gVi
gAi

gV1
gV κ gV' α κ ,sin+cos=

gA1
gA κ gA' α κ ,sin+cos=
P

(4)

where

T3L and eQ being the third component of the weak isos-

pin and the electric charge, respectively. Both  and

 in (3) and (4) represent the chiral properties of the
Z '-boson interplay with quarks and the relative
strengths of these interactions:

(5)

For GUT models, the free parameter  in (5) is related

to α in (3) and (4) as α ≡ ( /gZ) = sW [5],
where ω depends on the symmetry-breaking pattern
and the fermion sector of the model, but it is usually
taken to be ω ~ 2/3–1. The choice of α . 0.62 provides
the equality of both gZ and  on the scale of the mass
of the unification MX . MGUT into E6. Neglecting some
differences in the renormalization-group evolution of
both gZ and , one can deal with α at energies ~  ~

 ~ O(1 TeV).

Suppose that the Z2 state can be produced at LHC
via the subprocess   Z2 and that, in the approxi-
mation of a small Z2 width, the cross section

is dependent both on  and on κ. Here, GF is the
Fermi constant, and the factor K reflects the higher
order QCD process [6],

Note that the two-loop value is αs( ) ~ 0.1 at ΛQCD =

200 MeV for  < 2mt (five flavors) and  > 2mt

(six flavors), mt being the top-quark mass [2].

The partial width with respect to Z2 decays into
quarks is determined by the couplings  and 
(4)—namely, we have (the number of colors, Nc = 3, is
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taken into account)

(6)

Here, rq ≡ m2/ ; MZ and m are the masses of the Z
boson and a quark, respectively; and the C factor is
defined by the running strong coupling constant αs as

with an arbitrary scale µ. The interactions of the Z2 state
with quarks are expressed in terms of three parameters
x, yu, and yd [1], where the labels u and d mean, respec-
tively, the up and the down types of quarks:

3. RESULTS

The { }s = 1 bound state with a 4-momentum Qµ
and a mass mB may be produced in the decay of a Z2
state via the emission of an H boson with a 4-momen-
tum kµ in the heavy-quark-loop scheme. The decay
amplitude is given by [7]

(7)

where ΓQ(qµ) is the vertex function for the spin-1 quark
bound state—it depends on the relative momentum qµ

of  and Q—while Ti stand for the rest of the total
matrix element. In fact, Ti in (7) carry the dependence
of the interplay of H with heavy quarks (i = 1, 2) and
the interplay of the Z2 state with the H boson (i = 3) via

the couplings gH = m/〈H〉0 and  = 2 /〈H〉0,
respectively, where 〈H〉0 stands for the vacuum expec-
tation value of H. Generally, ΓQ(qµ) is constructed [8]
in terms of the quark and antiquark spinors u(Qµ) and

v( ) in a given spin configuration accompanied by
the covariant confinement-type wave function φQ(q2; β)
containing the model parameter β [9]:

(8)

Here, the symmetric rank-2 spinors Uαβ obey the standard

Bargmann–Wigner equations [10] (  – mB Uα'β = 0.
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The width with respect to the decay Z2 

H{ }s = 1 is given by

(9)
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Table 1.  Values of R(Z2  H{ }s = 1/ ) × 1010 for var-
ious embedding scales  and Higgs boson masses mH via

the ratio xH = (mH/ )2

, TeV
xH

0 0.2 0.4 0.6 0.8 0.9

0.2 2.60 2.00 1.40 0.90 0.43 0.21

0.3 1.20 0.90 0.62 0.40 0.19 0.09

0.5 0.42 0.32 0.23 0.15 0.07 0.03

0.7 0.21 0.16 0.11 0.07 0.04 0.02

bb bb
MZ2

MZ2

MZ2

Table 2.  Values of R(Z2  H{ }s = 1/ ) × 109 for vari-
ous embedding scales  and Higgs boson masses mH via

the ratio xH = (mH/ )2

, TeV
xH

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.6 1.00 0.81 0.61 0.49

0.8 0.33 0.30 0.26 0.22 0.18 0.10 0.06

1.0 0.17 0.15 0.14 0.12 0.11 0.09 0.07 0.05 0.02

1.2 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03

tt tt
MZ2

MZ2

MZ2
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For the sake of definiteness, we have considered the
four values of  = 0.2, 0.3, 0.5, and 0.7 TeV. As can
be seen, the distribution is very steeply peaked toward
low H-boson masses and drops to zero at the high-mass
end. In fact, we can render the results valid for any
masses by merely rescaling the ratios xH, B, β. To be
understood precisely, one has to note the following:
first, the B state is treated relativistically [see Eq. (8)]
and, in the case of zero binding energy, mB . 2m; sec-
ond, gluon corrections to the process have not been
included. For a heavy B state such as { }s = 1 or
{ }s = 1 (e.g., superheavy toponium bound via a Higgs
boson [11]), either approximation should be accepted.
The estimates of R(Z2  H{ }s = 1/ ) for  = 0.6,
0.8, 1.0, and 1.2 TeV are presented in Table 2.

For a light spin-1 B state (heavier Higgs boson), the
results can only be taken as a guide of an order of mag-
nitude of the rates.

4. CONCLUSION

We investigated the Z2 mass eigenstate of the sim-
plest E6-inspired GUT model and explored implica-
tions for the production and detection of Higgs bosons
accompanied by spin-1 heavy hadrons. It should be
emphasized that (super)rare decays Z2  H{ }s = 1
provide complementary information about potential
new interactions. These decay processes are sensitive to
new vector and axial-vector couplings  and .
The physically constrained nature of the model implies
that predictions need only be explored as functions of a
few parameters. In this paper, we have chosen these
parameters to be (i) the mass of the Z2 eigenstate, ;
(ii) the mass of the Higgs boson, mH; and (iii) the mass
of the heavy quark m; and (iv) the model parameter β
[7]. The present electroweak experiments lead to the

MZ2

bb
tt

tt tt MZ2

QQ

gV2
gA2

MZ2
P

lower mass bound for the Z2 boson on the order of
1 TeV [12]. The Z2 boson with  ~ O(1 TeV) should
be explored at future colliders such as LHC.

The possible existence of the Z ' does open the pos-
sibility of an additional source of Higgs boson detec-
tion—namely, the production of a large number of Z '
bosons followed by the decays Z '  H{ }s = 1. In
particular, the lightest Higgs boson (mH < 120 GeV)
that is predicted by the minimal supersymmetric exten-
sion of the SM should generally be observable among
Z ' decays. The active program of this investigation has
a major advancement in testing Z ' (super)rare physics
within new physics outside of the SM.
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Abstract—The features of data accumulated for 1817 h in an experimental search for the 2K(2ν)-capture mode
of 78Kr decay are discussed. A new limit on the half-life for this decay is found: T1/2 ≥ 2.3 × 1020 yr (at a 90%
C.L.). © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The first result on the 2K(2ν)-capture mode of 78Kr
decay was presented in [1, 2]. The limit derived from
the data collected for 254.2 h was given by T1/2 ≥ 0.9 ×
1020 yr (at a 90% C.L.). The known theoretical predic-
tions for the half-life with respect to the capture reac-
tion 78Kr(2e, 2ν)78Se are 3.7 × 1021 [3], 3.7 × 1022 [4],
and 6.2 × 1023 yr [5]. The corresponding half-life values
for the 2K(2ν)-capture decay mode are 4.7 × 1021, 4.7 ×
1022, and 7.9 × 1023 yr if one considers that 2K-electron
capture accounts for 78.6% in the total number of 2e
captures for 78Kr [6]. The method used in [1, 2] allows
one to reach a sensitivity level of up to 1022 yr for the
half-life and to test some theoretical models. The
results of the next step of measurement are presented
here.

2. EXPERIMENTAL SETUP

Our measurements were performed with aid of a
multiwire wall-less proportional counter (MWPC) by
using a krypton sample enriched in 78Kr. The main fea-
tures of the counter and measurement conditions were
described elsewhere [1, 2]. The MWPC comprises a
central main counter (MC) and a surrounding protec-
tion ring counter (RC) in the same body. A common
anode-wire signal (PAC) from the RC and PC1 and
PC2 signals from both ends of the MC anode are read
out from the MWPC. A scheme with a signal readout
from two sides of the MC anode allows one to deter-
mine the relative event coordinate β along the anode
[β = 100 × PC1/(PC1 + PC2)] and to eliminate events
that do not correspond to the selected working length.
A shaping amplifier with an integration and differenti-
ation shaping time of 26 µs was used to amplify the
PC1 and PC2 pulses to have a sufficiently high energy
resolution. The parameter f = 1000 × P12/(PC1 + PC2)

  * This article was submitted by the authors in English.
** e-mail: kuzminov@neutr.novoch.ru
1) Kharkov State University, pl. Svobody 4, Kharkov, 310077

Ukraine.
1063-7788/00/6312- $20.00 © 22201
was used to obtain information about the pulse rise time
and the pulse front features. P12 signals are output
pulses of the additional shaping amplifier that amplified
the summary signal (PC1 + PC2) with shaping times of
1.5 µs. The parameter f depends on the energy space
distribution of the event in the MC volume.

The K-shell double vacancy of the daughter 78Se**
isotope appears as a result of the capture reaction 78Kr
2K(2ν) 78Se. The total energy released is 2Kab =
25.3 keV, where Kab is the binding energy of the K elec-
trons in the Se nucleus. One can find that the total prob-
ability for Se** to emit one or two characteristic x rays
is 0.837 under the assumption that this double-vacancy
deexcitation is equivalent to the sum of deexcitations of
two single vacancies. A characteristic x ray (  ≅
11.2 keV,  ≅  12.5 keV) has a sufficiently long path
length in krypton. Two pointlike energy releases with
total energy 2Kab (total energy of the absorption peak)
will appear if the x ray is absorbed in the MC working
volume. One part is the x-ray energy release, while the
other is the release of the Auger electron cascade
energy accompanied by the characteristic L-shell x-ray
energy. The x rays may leave the MC volume. A one-
or a two-point event would be detected in this case
(escape peak). All single-electron-background events,
such as those due to Compton electrons or inner β-
decay electrons, will have one-point energy releases. A
multipoint-event pulse P12 would represent a sequence
of short pulses with a different time overlap. The num-
ber of pulses in the burst corresponds to the number of
local regions where total ionization is distributed. The
amplitude and the duration of each pulse in a burst
depend on a local track length, orientation, and distance
from the MC anode. The ADCs used to record the PAC,
PC1, PC2, and P12 signals are triggered with the input-
pulse-amplitude maximum. The P12 signal triggering
will be done for the first amplitude maximum, which
corresponds to the energy released in the nearest anode
region. The peaks corresponding to one-point ampli-
tudes P12 for the total energy of a fixed event appear in

EKα

EKβ
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the event-number distribution with respect to the
parameter f ( f distribution). Events with energy
released only in the MC and in the MC and RC simul-
taneously are referred to as “type-1” and “type-2”
events, respectively.

3. RESULTS

Krypton enriched in 78Kr to 94% was used to seek
the 78Kr(2K, 2ν)78Se capture mode. It contains an
admixture of natural β-radioactive 85Kr (T1/2 = 10.7 yr,
Eβmax = 670 keV) with the volume activity of 0.14 Bq/l.

Our measurements were performed in the under-
ground laboratory of the Baksan Neutrino Observatory
of the Institute for Nuclear Research (Russian Acad-
emy of Sciences, Moscow) at a depth of 4900 mwe.

Intensity, arb. units
600

400

200

0 40 80 120 160
E, keV

1

2

Fig. 1. Energy spectra of (1) the background and (2) the
109Cd source of (PC1 + PC2) signals for type-1 events from
the MWPC filled with pure xenon up to 4.8 atm.
P

The MWPC was placed in a low-background shield:
15 cm of lead, 8 cm of borated polyethylene, and 11 cm
of copper.

The intrinsic background of the MWPC filled up to
4.8 atm with pure xenon without radioactive contami-
nation was measured preliminary. The background
energy spectrum collected for 973.9 h and conveniently
scaled spectrum of a 109Cd source (Eγ = 88 keV) are
shown in Fig. 1 (curves 1 and 2, respectively). The
spectra consist of (PC1 + PC2) signals from type-1
events. Curve 2 has a peak at Eγ = 88 keV and a xenon
escape peak at E = Eγ –  = 88 – 29.8 = 58.2 keV.
The peak at 88 keV is not symmetric because of the
radiation scattered in the counter wall. The energy res-
olution for the 88-keV γ line is equal to 13.7%.

The background spectrum has some features. The
main peaks correspond to the energy values of 16, 35,
50, 68, 82, and 92 keV. In the energy region 35–68 keV,
there are initial peaks accompanied by the escape
peaks. The background counting rate in the energy
range 20–100 keV is 91 h–1.

Energy spectra of (PC1 + PC2) signals from type-1
and type-2 events for the 109Cd calibration source and
the krypton filling are shown in Fig. 2a (curves 1 and 2,
respectively).

One can see the 88-keV peak in the spectrum repre-
sented by curve 1. This spectrum was multiplied by a
factor of 0.5 for a convenient comparison. The energy
resolution is 10.8% for this peak. The highest energy
peak on curve 2 is the krypton escape peak at E = Eγ –

 = 88 – 12.6 = 75.4 keV. It appears in type-2
events because of absorption in the RC of krypton char-
acteristic radiation from the MC. The escape peak in
the spectrum represented by curve 1 is on the left slope
of the total absorption peak. The source radiation scat-
tered in the counter body wall lies in this region too.
The f distributions corresponding to this spectra are

EXeKα

EKrKα
Intensity, arb. units

600

400

200

2 1 (×0.5)

(a) (b)
Intensity, arb. units

400

200

2

1

80 1600 1000 20000
fβ

Fig. 2. (a) Energy spectra of (PC1 + PC2) signals for (1) type-1 and (2) type-2 events for the 109Cd source and the MWPC krypton
filling; (b) corresponding   f distributions (1 and 2, respectively). Curves 1 are multiplied by a factor of 0.5.
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Fig. 3. (a) Background energy spectra and (b and c) corresponding β and f distributions: (1) 0 ≤ β ≤ 100, 1 ≤ f ≤ 2000; (2) 36 ≤ β ≤
58, 1 ≤ f ≤ 2000; (3) 36 ≤ β ≤ 58, 1 ≤ f ≤ 710; (4) 36 ≤ β ≤ 58, 330 ≤ f ≤ 710; and (5) expected f distribution for the 2K-capture 78Kr
events.

3

4

shown in Fig. 2b with the same scaling and notation.
One can see a peak on curve 1 with a maximum at f1 =
166, which corresponds to two-point events from the
total absorption peak when the KrKα-ray ionization is
collected first on the MC anode. If the photoelectron
ionization is collected first, the relevant events form a
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
peak with a maximum at f2 = 920. The calculated f val-
ues of these maxima should be equal to f1 = 1000 ×
12.6/88 = 143.2 and f2 = 1000 × (88 – 12.6)/88 = 856.8
in the calibration when the P12 amplitude is equal to
the (PC1 + PC2) one for single-point events. Actual
values calculated on the basis of experimental data dif-
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fer slightly from the theoretical ones. This could be
explained by nonideality of the experimental setup. The
parameter f depends on energy for the same reason. The
energy spectrum represented by curve 2 in Fig. 2a is
formed primarily by one-point events, and its f distribu-
tion (curve 2 in Fig. 2b) has no multipoint peaks. The
peaks at f = 1015 and f = 1239 are one-point peaks for,
respectively, the energy region above 16 keV and the
krypton 12.6-keV x-ray peak. The f distribution repre-
sented by curve 1 has a one-point peak with a maxi-
mum at f = 1039.

The background energy spectrum of the MWPC
with krypton due to type-1 event is shown in Fig. 3a
(curve 1). It was collected for 1817 h. The counting rate
is 1506 h–1 for the energy range 20–100 keV. The cor-
responding β and f distributions are shown in Fig. 3b
(curve 1) and Fig. 3c (curve 1). One can see peaks at the
ends of the β distribution that are caused by events from
a high-energy part of the 85Krβ spectrum mainly col-
lected in an ionization mode, the end-effect corrections
associated with bugles of the anode being taken into
account. In order to eliminate this background compo-
nent, it is sufficient to perform the β selection of events
in the range 36 ≤ β ≤ 58 (Fig. 3b, curve 2). The energy
spectrum represented by curve 2 in Fig. 3a and the f dis-
tribution represented by 2 in Fig. 3c correspond to this
selection. One can see from this f distribution that back-
ground events corresponding to f ≤ 710 are mainly sup-
pressed. The energy spectrum of events characterized

Intensity, arb. units

20

10

0
20 30 E, keV

1

2

3

Fig. 4. (1) Residual energy spectrum of the background; (2)
best fit; and (3) expected spectrum of the effect.
P

by 36 ≤ β ≤ 58 and f ≤ 710 is shown in Fig. 3a (curve 3).
The shape of this spectrum follows that of the spectrum
represented by curve 1 in Fig. 1, with the exception of
the escape peaks. This means that almost all one-point
events from the 85Krβ spectrum are eliminated by the
selection used. Curve 5 in Fig. 3c shows roughly the
shape and the place of the f distribution expected for the
78Kr(2K, 2ν)78Se multipoint events.

For a final analysis, we used events corresponding to
36 ≤ β ≤ 58 and 330 ≤ f ≤ 710 because, for such a selec-
tion, there are no peaklike distortions of the residual
energy spectrum 4 in Fig. 3a in the region of interest.

A low-energy part of this spectrum is shown in
Fig. 4 (curve 1). A sample of this spectrum and the
location of the 78Kr(2K, 2ν)78Se effect is shown as
curve 3 (Fig. 4). The energy region 25.3 ± 3.8 keV
includes 95% of the events. The background was fitted
by using points below and above this region (curve 2).
The net fitted background for 25.3 ± 3.8 keV was found
to be 266. The sum over experimental data is equal to
262. The difference is –4 ± 23 or –19 ± 111 yr–1. Taking
into account the event-detection efficiency (0.22) and
the effective counter length (0.6 of working length), we
find that the limit on the half-life of 78Kr with respect to
the 2K(2ν) capture mode is given by T1/2 ≥ 2.3 × 1020 yr
(at a 90% C.L.).
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Abstract—The possibility of calibrating the solar-neutrino detectors GNO, BOREXINO, and LENS with the
same artificial neutrino source is discussed. For this purpose, the Russian heavy-water reactor L-2 can be used
to produce a 10 MCi neutrino source based on the 51Cr isotope. For the first time, the possibility of producing
and using a neutrino source based on the 75Se isotope is demonstrated. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Four pioneering experiments, Clorine [1], Kamio-
kande [2], GALLEX [3], and SAGE [4], observed neu-
trino fluxes with a substantially lower intensity than
that predicted by the standard solar model. This dis-
crepancy constitutes the so-called solar-neutrino prob-
lem (SNP), which is one of the most intriguing prob-
lems in modern physics and astrophysics. The majority
of physicists deem that the solution to this problem lies
in new neutrino physics, a possibility of great impor-
tance for modern physics.

From the experimental point of view, the most impor-
tant task for solving the solar-neutrino problem is to con-
tinue Ga–Ge experiments for the reason of sufficient
accuracy (SAGE [4] and GNO [5]) and to detect low-
energy neutrino fluxes from the pp and 7Be sources with
the real-time detectors BOREXINO [6] and LENS [7].

The detector BOREXINO (now under construction
at the Gran Sasso underground laboratory) is intended
to measure the 7Be neutrino, as well as to seek the neu-
trino magnetic moment [8] with an artificial neutrino
source (ANS).

The detector LENS [7] uses a Yb target for solar-
neutrino capture. Neutrino capture by the 176Yb nucleus
results in excited isomer states of 176Lu, which decay to
the ground state of 176Lu with a time delay of 50 ns.
These neutrino events have a highly specific signature:
two events produced at the same point in the detector
with an average delay time. This signature makes it
possible to discriminate the neutrino signal against the
background by a factor of 107. The interpretation of
such an experiment has one major problem: only an
order of magnitude of the neutrino cross section for the
transition of 176Yb to the excited states of 176Lu is
known {this cross section is deduced from the cross
sections for (p, n) or (33He, 3H) scattering reactions on
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the same isotope [9]}. The only possibility of solving
this problem is to calibrate the full-scale detector with
an artificial neutrino source of MCi activity.

Artificial neutrino sources based on the 51Cr isotope
with an activity of a few MCi were successfully used to
calibrate two gallium detectors, GALLEX [10] and
SAGE [11]. For these detectors, an artificial neutrino
source was mainly used for an overall check of the
detector; for the 176Yb detector, the calibration of the
detector is necessary in order to measure the unknown
cross section for neutrino capture with an accuracy not
poorer than 5%.

A scheme for calibrating three solar-neutrino detec-
tors (GNO, LENS, and BOREXINO) with the same
high-activity artificial neutrino source is under devel-
opment now. The objective of this study is to answer
major questions associated with the calibration proce-
dure and with the creation of an artificial neutrino
source with a very high activity for this purpose.

2. NEUTRINO EXPERIMENTS WITH ARTIFICIAL 
NEUTRINO SOURCES ON THE BASIS 

OF 51Cr AND 75Se

The 51Cr isotope decays by electron capture with a
Q value of 751 keV and T1/2 = 27.7 d to the ground state
of 51V (90.14% branching ratio) and to its first excited
state (9.86%), which is deexcited to the ground state
with the emission of a 320-keV γ ray. The neutrino
spectrum consists of four monoenergetic lines at
746  keV (81%), 751 keV (9%), 426 keV (9%), and
431 keV (1%) [10, 11].

The 75Se isotope [12] decays by electron capture
with a Q value of 865 keV to the excited states of 75As,
which are deexcited to the ground state with the emis-
sion of several γ rays of different energies. Considering
the atomic levels to which transitions can occur, we find
that the neutrino energies are 452 keV (83%), 465 keV
(11%), 585 keV (2%), and 600 keV (3.5%). The half-
000 MAIK “Nauka/Interperiodica”
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life for 75Se is 119.78 d; this allows one to make the cal-
ibration experiment quite uninhibitedly.

It is suggested that the neutrino source (its volume,
together with passive shielding, is 0.3 m3) will be
placed at the center of the GNO (or LENS) detector
(that is, in full-angle geometry). The volume of the
GNO detector is 54 m3 [3], while the volume of the
LENS detector is 108 m3.

The cross section for the inverse-beta-decay reac-
tion was calculated according to [13]. The matrix ele-
ments for the transitions to the excited states of 176Lu
were evaluated by using their Gamow–Teller strengths
BGT, which were measured by (p, n) and (3He, 3H) scat-
tering [9].

Figures 1 and 2 show the simplified nuclear data for
71Ge and 176Lu detection of solar neutrinos. Tables 1
and 2 list the results of the calculations of neutrino-cap-
ture events for 51Cr (75Se) neutrinos in the GNO and
LENS detectors.

746 keV
(90%)

426 keV

600 keV

175 keV

233 keV

(10%)

(2%)

465 keV

454 keV

585 keV
(3.5%)

(11%)

(83%)

500 keV3/2–

1/2– 

3/2–

5/2–

g.s.

71Ge71Ga

BGT = 0.010

BGT < 0.05

BGT = 0.087

51Cr 75Se

Fig. 1. Nuclear data for Ga–Ge detection of 51Cr and 75Se
neutrinos.
P

To achieve the accuracy required for the GNO
detector (about 5%), the activity of the 51Cr and 75Se
sources should not be less than 1.75 and 1.77 MCi,
respectively. For the experiment with the LENS detec-
tor, the activity of the artificial neutrino source based on
51Cr should not be less than 4.30 MCi (only events pro-
duced by 746-keV neutrinos are analyzed). In view of
the possible problems of delivering this comparatively
short-lived isotope from the reactor to the Gran Sasso
underground laboratory, the 51Cr activity should be
more than 5.1 MCi. The required activity of the artifi-
cial neutrino source based on 75Se should be more than
3.84 MCi (events produced by neutrinos with energies
of 452 and 465 keV are analyzed).

Thus, if GNO and BOREXINO (and LENS in the
future) are placed in the same underground laboratory,
there is an opportunity to calibrate all of these detectors
with the same artificial neutrino source of very high
activity.

746 keV
(90%)

426 keV

600 keV

339.0 keV

106.5 keV

(10%)

(2%)

465 keV

454 keV

585 keV
(3.5%)

(11%)

(83%)1+

176Yb

BGT = 0.12

51Cr 75Se

BGT = 0.21

194.5 keV1+

1–

7–

50.5ns

g.s.

71 keV

0+

176Lu

Fig. 2. Nuclear data for Yb–Lu detection of 51Cr and 75Se
neutrinos.
Table 1.  Calculation of neutrino-capture events in the GNO detector [activity of the 51Cr (75Se) source is 1 MCi and exposure
time is three months]

Neutrino 
source E, keV

Events

ground state, BGT = 0.0087 175 keV, BGT = 0.05 500 keV, BGT = 0.01 Sum
51Cr 746 205 8.2 5.4 218.6

426 10.3 0.3 – 10.6
Sum 215.3 8.5 5.4 229.2

75Se 452 177.7 5.4 – 183.1
465 24.7 0.7 – 25.4

585/600 17.4 0.6 – 18.0
Sum 219.8 6.7 – 226.5
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Fig. 3. Schedule of the GNO, LENS, and BOREXINO experiments with the same artificial neutrino source based on (a) 51Cr and
(b) 75Se. 
Figure 3a shows the schedule of the GNO, LENS,
and BOREXINO experiments with the same artificial
neutrino source based on 51Cr and the 51Cr activity at
various stages of the procedure. The activity of 51Cr at
the instant of the reactor shutdown should be more than
8.9 MCi. The 75Se isotope can be used as an artificial
neutrino source for the GNO and LENS experiments,
and the activity of this source should not be less than
3.48 MCi (Fig. 3b).

For the sake of simplicity, we assume that the time
it takes to deliver an artificial neutrino source from the
reactor to the laboratory is 7 d and that the time it takes
to transfer it from one detector to another is 3 d.

3. PRODUCTION OF ARTIFICIAL NEUTRINO 
SOURCES

3.1. Artificial Neutrino Source Based on 51Cr
51Cr is produced by neutron capture on 50Cr (a 4.5%

natural abundance) with a sufficiently large cross sec-
tion for thermal and epithermal neutrons (15.9 and
7.8 b, respectively). The source material must be
enriched in 50Cr and depleted in 53Cr (because of the
large cross section of this isotope equal to 18.2 b).
Owing to a high cost of enriched chromium, it was pro-
posed to use the available material produced for the
GALLEX Collaboration [35.6 kg of chromium
enriched in 50Cr to 38.6% and depleted in 53Cr to
0.7%)].

One more advantage of this material is that it is in
the form of chips; therefore, it is easy to homogenize
their irradiation and to perform the sampling proce-
dure. As a result, one can determine the activity of the
neutrino source by direct methods and by calorimetry
[10]. But it should be noted that there is a need for a
large volume (about 10 l) in a reactor to place this mate-
rial because of its low density and a certain temperature
of a starting material to avoid sintering of Cr chips.
PHYSICS OF ATOMIC NUCLEI      Vol. 63      No. 12      2000
In Russia, there are three reactors that are suited for
producing the required activity of 51Cr. These are the
fast breeder reactor BN-600 featuring a special irradia-
tion assembly [14], the research reactor SM-3 [15], and
the heavy-water reactor L-2 [16]. The reactor L-2 has a
very large volume with a high thermal neutron flux (up
to 2 × 1014 cm–2 s–1), a very effective cooling system,
and a continuous loading–unloading mode for the start-
ing material. If one takes into account the need for
unloading the starting material from the reactor at an
appropriate time and the use of 50Cr in the form of
chips, then the choice actually has to be the heavy-
water reactor L-2. It follows from the calculation [17]
(Table 3) that the expected activity of 51Cr after the irra-
diation of 35.6 kg of enriched chromium in the standard
mode of the L-2 reactor is 8.5 MCi, and it can be
increased to 10 MCi (in a modified mode of the reactor
L-2).

3.2. Artificial Source on the Basis of 75Se
75Se is produced by neutron capture on 74Se with a

large cross section for thermal and epithermal neutrons

Table 2.  Calculation of neutrino-capture events in the
LENS detector [activity of the 51Cr (75Se) source is 1 MCi
and exposure time is three months]

Neutrino 
source

E, keV

Events

194.5 keV, 
BGT = 0.21

339 keV, 
BGT = 0.12

sum

51Cr 746 72.7 30.7 103.4
426 4.2 – 4.2
Sum 76.9 30.7 107.6

75Se 452 70.2 26.8 97.0
465 9.7 4.0 13.7

585/600 6.3 2.6 8.9
Sum 86.2 33.4 119.6
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(51.8 and 520 b, respectively). The source material
should be enriched in 74Se and depleted in 76Se because
of the large cross section of the latter isotope (85 b).
Fortunately, the enrichment can be performed by a gas
centrifugation of volatile SeF6. An optimum value of
enrichment of Se in 74Se is on the order of 90%.

The starting material will be in the form of tablets of
pressed high-purity Se powder, sealed into a hermetic
shell of highly pure Al. The size of the tablets is less
than 5 to 6 mm in order to avoid the self-shielding of
74Se. Table 4 presents the results of 75Se production
with the L-2 reactor [18].

4. CONCLUSION

The calibration of detectors involving an artificial
neutrino source with well-determined characteristics
with to precision not poorer than 5% is the necessary
stage of the next generation of solar-neutrino experi-
ments. The experiments with the GNO, BOREXINO,
and LENS detectors can be performed with the same
artificial neutrino source based on 51Cr if its activity at
the time of reactor shutdown is not less than 8.9 MCi.
The activity of the artificial neutrino source based on
75Se, which can be used for the GNO and LENS exper-
iments, should be more than 3.48 MCi.

Table 3.  Results of 51Cr production at the L-2 heavy-water
reactor [17]

Site of target Number
of channels 

Activity, 
MCi

Specific 
activity, Ci/g

 Standard mode. Irradiation time is 130 d

Neutron traps 6 6.4 270
Core 3 2.1 180
Total 9 8.5 240

Standard mode. Irradiation time is 50 d 
(end of reactor campaign)

Neutron traps 6 5.3 220
Core 3 1.7 140
Total 9 7.0 200

Modified mode with the reduced loading fuel. 
Increasing of the reactor power 10%. 

Irradiation time is 130 d
Core 9 9.7 270

Table 4.  Results of 75Se production with the L-2 reactor (the
isotopic composition of the starting material is 90% 74Se and
10% 76Se)

Target type Specific activity, Ci Mass for 1 MCi, kg

∅ 3 × 3 mm 875 1.26
∅ 5 × 5 mm 737 1.5
P

The best way to produce a 51Cr source with an activ-
ity of up to 10 MCi is to use the Russian heavy-water
reactor L-2. The starting material for this purpose is
35.6 kg of 50Cr, which was previously used by the
GALLEX collaboration.

The specific activity of 75Se that can be produced at
the L-2 reactor is 740–900 Ci/g, resulting in a total
activity sufficient for the experiments in the Gran Sasso
laboratory, which have been discussed in this article.
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