
Physics of Atomic Nuclei, Vol. 65, No. 9, 2002, pp. 1563–1568. Translated from Yadernaya Fizika, Vol. 65, No. 9, 2002, pp. 1603–1608.
Original Russian Text Copyright c© 2002 by Penionzhkevich, Muzychka, Lukyanov, Kalpakchieva, Skobelev, Perelygin, Sobolev, Mikhailov, Ugryumov, Vincour, Dlouhy, Kostov,
Mrazek, Poroshin.

NUCLEI
Experiment
Above-Barrier Enhancement of Fusion
in the 6He+++ 209Bi Nuclear Reaction

Yu. E. Penionzhkevich, Yu. A. Muzychka, S. M. Lukyanov, R. Kalpakchieva,
N. K. Skobelev, V. P. Perelygin, Yu. G. Sobolev, L. V. Mikhailov, V. Yu. Ugryumov,

J. Vincour1), Z. Dlouhy1), L. Kostov2), Ya. Mrazek1), and N. O. Poroshin3)

Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia
Received July 10, 2001; in final form, January 23, 2002

Abstract—The fission cross sections for the 6He + 209Bi reaction as functions of the 6He-beam energy are
measured. The experimental excitation functions for the reaction 209Bi(6He, 4n)211At are also presented.
The 6He secondary ion beam is obtained on the basis of the extracted-beam transport system of the
U400-M accelerator (the Q4DQ spectrometer). A comparison of the experimental data obtained with
available results for the 6He + 209Bi reaction shows that a pronounced enhancement of the fission cross
sections in the above-barrier energy region is observed in the case of the reaction with the 6He beam. In
order to fit the results of theoretical calculations to the experimental data, it is necessary to reduce the
Coulomb barrier by 15% (20%). This corresponds to an increase of 1.5 (1.6) fm in the parameter r0 of the
nuclear potential. c© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The main direction of studies with secondary ra-
dioactive beams is measurement of cross sections for
reactions of exotic nuclei with target nuclei. These
data present a basis for extracting information on the
structure of nuclei far from the stability region and
on the distribution of nuclear matter or nuclear radii.
In particular, experimental evidence of the existence
of a neutron halo (11Li) or a skin (6He) for neutron-
rich nuclei was obtained [1, 2]. The reaction mecha-
nism for such nuclei has its specific features caused
by the existence of weakly bound valence protons.
The explanation of the mechanism of these reactions
requires going beyond simple one-dimensional mod-
els in which the interaction between colliding nuclei
is implied to depend only on the distance between
their centers. Valuable information is extracted from
experiments studying subbarrier fusion in reactions
induced by neutron-rich nuclei such as 6He and 8He.
The choice of subbarrier fusion is motivated by the
fact that, in this case, the basic channel associated
with the penetration through the one-dimensional
potential barrier turns out to be suppressed, so that
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it becomes possible to reveal other channels against
this background. Measurements of the fusion cross
sections are of interest within the region of beam
energies above the Coulomb barrier, where the effect
of weakly bound neutrons in the 6He and 8He nuclei
on the fusion process must manifest itself in this case.
The mechanisms of reactions in the above-barrier
energy region may differ from those that play the
main role at energies lower than the Coulomb barrier.
It is worth noting that, in the above-barrier region,
the situation is more complicated, since the expo-
nential growth of the fusion cross section (which is
associated with the necessity of overcoming the one-
dimensional barrier) will hinder the manifestation of
the contribution of other processes to that of fusion.
Therefore, the choice of a channel for compound-
nucleus decay that could be an indicator of the com-
plete fusion of nuclei participating in the reaction is
extremely important. We may hope that, in the case of
the use of sufficiently heavy and weakly fissile nuclei
as targets, such a channel could be the fission of an
excited compound nucleus. In this case, nuclei with
a reasonably high orbital angular momentum l� no-
ticeably contribute to fission. Therefore, the increase
in the fusion cross section, which is associated with
an extension of the population of levels of compound
nuclei being formed, will result in a noticeable en-
hancement of the fission cross section. In this case,
the contribution of the partial cross sections to the
2002 MAIK “Nauka/Interperiodica”
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cross section for the formation of a compound nucleus
is proportional to (2l + 1).

The fusion cross sections were calculated for
the 11Li + 208Pb and 11Li + 238U reactions [3–5].
In those studies, special attention was paid to the
influence that the breakup of 11Li into 9Li and two
neutrons in the field of the target nucleus exerts on the
fusion cross section. It was shown that the breakup
process significantly affects the cross section for 11Li
fusion with a target nucleus at energies close to the
Coulomb barrier, i.e., at a lower fusion probability.
However, these reactions were not experimentally
investigated because of the low intensity of secondary
11Li-ion beams. Studies of fusion–fission reactions
was first begun with secondary 6He beams [6, 7].
Later, these investigations were continued with 6He
[8–10], 11Be [11], and 38S [12] beams. Some of the
experimental data obtained imply an increase in the
fusion and fission cross sections. The data of [8, 9]
on the fusion cross sections in the subbarrier energy
region are inconsistent. In the experimental studies
[8] of 209Bi fission induced by 6He nuclei, the authors
did not observe an increase in the cross section
compared to 209Bi fission induced by α particles. On
the other hand, a strong increase in the cross section
for the 209Bi(6He, 3n) reaction in the subbarrier
energy region was found in [9]. This fact made it
possible to draw the conclusion that the fusion barrier
for the 6He + 209Bi reaction decreases by 25%. The
data of [11] on the cross sections for 11Be fusion
also have an ambiguous character. In the case of the
38S + 181Ta reaction, an enhancement of the fission
cross section was observed in relation to the cross
section for tantalum fission induced by 38S nuclei.
This could be explained by a decrease in the fusion-
barrier height [12].

In performing these investigations, the choice of
target nucleus is extremely important. This nucleus
cannot be too light, since the fission cross section
will be small in this case, so that such experiments
will be complicated by relatively low 6He-beam in-
tensities available at the moment. At the same time,
the target nucleus cannot be too heavy (e.g., ura-
nium and heavier nuclei). This is associated both
with the high probability of the neutron- and other-
particle-induced fission of such target nuclei and with
the fact that fission becomes the main decay mode
for the compound nucleus at all values of l. In this
case, revealing the influence of other channels on the
probability of compound-nucleus formation becomes
difficult. Nuclei close to lead, in particular, the 209Bi
nucleus, are the most suitable. For this nucleus, there
also exists a detailed measurement (in a wide energy
range) of the excitation function for fission induced
by α particles, i.e., for the 209Bi(4He, f ) reaction
P

[13]. This is very important for the analysis of the
experimental data obtained.

In the present study, we have measured the excita-
tion function for bismuth-nucleus fission induced by a
secondary 6He-ion beam and the excitation function
for the reaction accompanied by the evaporation of
four neutrons. These measurements were performed
in more detail in relation to our previous studies [6,
7], with higher statistics, and within a wider energy
range.

EXPERIMENTAL METHOD

A secondary 6He-ion beam was obtained in
the 7Li + 9Be reaction at a 7Li-beam energy of
35 MeV/A. The primary 7Li-ion beam from the
U400-M accelerator was focused onto a cooled Be
target 3 mm thick. In order to separate reaction
products that leave the target from primary-beam
ions and to form secondary beams, use was made of
the ion-optic beam-transport system of the U400-M
accelerator (so-called Q4DQ spectrometer). The
main characteristics of this system are presented
in [14].

The employment of a system of four dipole and
quadrupole magnets allowed us to obtain a 6He-beam
intensity not lower than 5 × 104 particle/s. For better
purifying the 6He beam from other secondary parti-
cles, slotted diaphragms and an additional charge-
exchange 2-mm polypropylene foil (degrader) were
installed between the dipole magnets. The control of
the size of the secondary beam, while it was formed,
and of its quality and beam monitoring were car-
ried out by means of position-sensitive plate-parallel
avalanche counters and semiconductor silicon detec-
tors.

The application of this technique made it possi-
ble to purify the 6He beam from other particles to
a degree not worse than 98%. The secondary 6He
beam obtained did not vary its characteristics during
a long-term operation of the accelerator. The content
of admixtures in long-term experiments varied within
2 to 5%. The energy spread of the secondary beam
was ±6 MeV.

Targets made of 209Bi (700 µg/cm2 thick) were
installed in the secondary 6He beam. These targets
were produced by the method of vacuum sputtering
of metallic bismuth onto a 2.5-µm polymeric backing.
Fission fragments were recorded on-line by means of
surface-barrier silicon detectors located around the
targets. The overall geometric efficiency could reach
30% of the total solid angle. At low 6He energies,
plastic solid-state detectors were used to measure
the excitation function and to detect fission fragments
[6, 7].
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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ANALYSIS OF THE EXPERIMENTAL
RESULTS

The excitation functions measured in the present
study for both the fission of 215At nuclei produced in
the 6He + 209Bi reaction and the formation of 211At
nuclei in the 209Bi(6He, 4n)211At reaction are pre-
sented in Fig. 1. For the sake of comparison, the data
from [7] for the fission of 209Bi nuclei that is induced
by α particles are shown in the same figure. It is
worth mentioning that the excitation function for the
209Bi(α, f ) reaction measured by the same method as
for 6He is in good agreement with the data of [13].
In Fig. 1, the difference between the fission cross
sections for the 4He + 209Bi and 6He + 209Bi reac-
tions is clearly seen. In order to extract quantitative
and, especially, qualitative information, we performed
a comparative analysis of the results obtained in both
reactions.

It is necessary to note that, in the analysis of
these data, there arises the important question of the
contribution of complete fusion and other channels
to the fission of 209Bi nuclei. In this reaction, fission,
in addition to complete fusion, can also arise in the
breakup of 6He into two neutrons and an α particle
with the subsequent capture of either the neutrons or
the α particle, with a 211Bi nucleus being formed in
the first case. If we consider the case of the maximum
energy of the 6He beam, which, in our experiments,
is ≈70 MeV, then the excitation energy of the 211Bi
nucleus is approximately equal to 33 MeV (24 MeV
is the kinetic energy of the neutrons, and 9.7 MeV is
the reaction Q value). In this case, only 0.0001 of all
formed compound nuclei can undergo fission, which
is a negligible quantity. At the same time, the capture
of the α particle (also at the maximum energy of 6He)
leads to the formation of a 213At nucleus with an exci-
tation energy of≈37 MeV (24 MeV is carried away by
the neutrons, and 9.3 MeV is the α-particle binding
energy in the 213At nucleus). In this case, 2% of the
213At nuclei undergo fission, and the cross section
for this process is smaller than 5% of the measured
fission cross section equal to 0.8 b. Naturally, this
quantity is even smaller at lower 6He energies. Thus,
we can state that all fission events recorded in the
irradiation of 209Bi nuclei with 6He ions arise upon
the complete fusion of the nuclei participating in the
reaction.

In the analysis of the experimental data, we used
the ALICE–MP code [15]. The calculations of fission
widths and evaporation widths according to this code
are based on the classical Bohr–Wheeler formula and
on the Weiskopf–Ewing formalism, respectively. In
the calculation of the level density, the relations of the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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Fig. 1. Experimental excitation functions for the 6He +
209Bi and 4He + 209Bi reactions {data on the 6He + 209Bi
fission channel from (�) our present study and (�) [7],
and data on the 4He + 209Bi fission channel from (�) [7,
13]} and for (•) the (6He, 4n) evaporation channel.

Fermi gas model with allowance for shell effects in the
level-density parameter were employed [16]:

aν(E∗)
= ãν{1 + [1 − exp(−0.054E∗)]∆wν(A,Z)/E∗}.

Here, aν(E∗) is the level-density parameter in the
evaporation channel for a particle ν at an energy E∗,
ãν is the asymptotic value of the level-density param-
eter in the evaporation channel for the same particle ν,
E∗ is the excitation energy of the compound nucleus,
and ∆wν is the shell correction to the mass of the
nucleus formed after the emission of the particle ν (n,
p, α).

We consider the level-density parameter af in the
fission channel to be independent of the excitation
energy and to be proportional to ãν . (In other words,
we assume the shell correction at the saddle point to
be negligible.) The fission barriers for the nuclei were
calculated according to the formula

Bf (l) = CBLD
f (l) + ∆Wf ,

where C is a free parameter, BLD
f (l) is the fission

barrier in the Cohen–Plasil–Swiatecki model of a
rotating liquid drop [17], and ∆Wf is the shell compo-
nent of the fission barrier for the compound nucleus (it
is equal to the modulus of the shell correction to the
mass of its ground state). In calculating the fission
barrier, we also ignored the small value of the shell
correction at the saddle point.

In analyzing the experimental data and formulat-
ing conclusions that follow from our results, the val-
ues of the parameters used in the calculations play an
2
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Fig. 2. Experimental excitation functions for the 6He +
209Bi reaction [data for the (�) (α, f), (�) (α, 4n), and
(�) (α, 5n) channels], along with relevant theoretical
results represented by solid, dashed, dotted, and dash-
dotted lines, respectively.

important role. Therefore, we consider the situation
for these parameters in more detail. In calculating
reaction cross sections associated with the evapora-
tion of particles and cross sections for the fission of
excited nuclei, we use two sets of parameters. One set
determines the production cross section for the com-
pound nucleus and is connected with the geometric
size of the nuclear part of the interaction potential
(radius parameter r0) and its shape (diffuseness d of
the potential and its depth V ). Numerous calculations
that were performed here to determine compound-
nucleus-production cross sections for reactions with
different particles (from 7Li to 48Ca) and targets (from
Ca to Cf) showed that, in all cases under considera-
tion, we can use the same set of parameters, namely,
r0 = 1.29 fm, V = 67 MeV, and d = 0.4 fm.

The other set of parameters determines the com-
petition of the fission and evaporation channels for the
produced compound nucleus. The density of nuclear
levels in the fission and evaporation channels depends
on the values of these parameters. In our calculations,
these were the ratio ãf/ãν of the asymptotic values
of the level densities in the fission and evaporation
channels and the free parameter C in the formula for
the fission barrier.

Furthermore, we compared the calculated results
with experimental data related to the excitation func-
tions for fission and evaporation reactions over a wide
range of nuclei. This analysis made it possible to
conclude that, in all cases, we may use the fixed ratio
P
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Fig. 3. Comparison of the experimental excitation func-
tions for the (6He, f) {according to (�) our present study
and (�) [7]} and (6He, 4n) {according to (•) [7]} reactions
with the calculated results. The results of the calculations
employing various values of the radius r0 and of the
angular momentum l are represented by the dotted (r0 =
1.29 fm, l = 40), dash-and-double-dot (r0 = 1.5 fm, l =
40), thick solid (r0 = 1.5 fm, l = 50), and dashed (r0 =
1.5 fm, l = 60) lines. The best agreement with the ex-
perimental data is achieved for r0 = 1.5 fm and l = 50–
60 (thick solid and dashed lines). The results calculated
for the (6He, 4n) reaction are represented by thin solid
(r0 = 1.29 fm) and dashed-dotted (r0 = 1.5 fm) lines.

ãf/ãν = 1. Moreover, the excitation-energy depen-
dence of the ratio Γn/Γf of the fission to the evap-
oration decay width for compound nuclei according
to data obtained in reactions induced by 22Ne ions
in 194,196,198Pt targets [18] was analyzed on the basis
of the statistical model. It was shown that the above
value of the ratio ãf/ãν yields results consistent with
the experimental data. Thus, this parameter has a
fixed value, too.

The parameter C determining the contribution of
the liquid-drop component to the fission barrier has
no fixed value. It varies with the charge numberZ and
the mass number A of the compound nucleus. It is of
importance that it varies very smoothly and monoton-
ically. This allows us to determine rather reliably its
value for a particular compound nucleus according to
the values obtained for nearby nuclei. The value of the
parameter C is 0.8 for heavy astatine isotopes.

Thus, none of the above parameters is free in
the analysis of the experimental data obtained in the
present study for the 6He + 209Bi reaction.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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There is yet another parameter that plays an im-
portant role in calculations of the fission cross sec-
tions. This is the critical angular momentum lcr that,
at sufficiently high energies (when lcr becomes lower
than the maximum angular momentum lmax), deter-
mines the number of partial waves leading to the
formation of a compound nucleus. The above param-
eters (r0, d, V , and ãf/ãν) either remain constant in
a sufficiently wide region of nuclei or very smoothly
vary with Z and A (parameter C). Therefore, the
cross sections for a definite reaction were calculated
by using the parameters obtained from the analysis
of other reactions leading to the production of com-
pound nuclei with sufficiently close values of Z and A
(apart from the parameter lcr). On the basis of rather
general considerations concerning the mechanism of
compound-nucleus formation, we may suppose that
lcr has a square-root dependence on energy, as well as
on the mass of the particle inducing the reaction. Of
course, this statement is true provided that, in going
over from one particle to another, there is no abrupt
change in properties [e.g., variations of the fusion-

channel radius that are not proportional to (A1/3
1 +

A
1/3
2 )].

Before analyzing the experimental data on fission
that were obtained in the 6He + 209Bi reaction, we
performed calculations for the 4He + 209Bi reaction,
for which there exists a detailed measurement of the
excitation function for fission [7, 13], as well as for
evaporation of three, four, and five neutrons [19]. This
allowed us, first, to verify the applicability of the pa-
rameter values used and, second, to perform a com-
parative analysis of the data for both reactions. The
latter would make it possible to reveal special features
of the 6He + 209Bi reaction.

Figure 2 presents the experimental and calculated
excitation functions for the (α, f ), (α, 3n), (α, 3n), (α,
4n), and (α, 5n) channels of the 4He + 209Bi reaction.
As was mentioned above, the only free parameter
of the calculation was lcr. Agreement between the
experimental and calculated cross-section values at
E∗ = 69.2 MeV (Elab = 80 MeV) was obtained for
lcr equal to 35. It should be noted that the parameter
lmax determined by the height of the Coulomb barrier
becomes equal to this value at Elab = 68 MeV (E∗ =
46.7 MeV) and begins to play a significant role at
Elab = 68 MeV (E∗ = 57.5 MeV). We may assume
that, in a greater part of the energy range under
consideration, the number of partial waves leading
to compound-nucleus production is determined by
the nuclear interaction potential. The good agree-
ment between the calculated and experimental data
demonstrated the applicability of the approach used
above to calculating reactions induced by such light
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
particles as helium isotopes and confirmed the validity
of our set of parameters.

With this set of parameters, the calculations of the
excitation functions for the fission and evaporation
of four neutrons in the 6He + 209Bi reaction were
carried out. The experimental excitation functions for
the (6He, f ) and (6He, 4n) reactions and the calcu-
lated results are shown in Fig. 3. The dotted curve
corresponds to the standard parameter set. It can be
seen that, for 6He (in contrast to 4He, for which good
agreement was obtained with these parameters), the
calculated fission excitation function falls consider-
ably short of the experimental one. At the same time,
good agreement is observed for the reaction accom-
panied by the evaporation of four neutrons (thin solid
curve). It is noteworthy that the calculated and ex-
perimental fission excitation functions are virtually
parallel to each other over the entire energy range un-
der consideration, the tendency of approaching each
other being absent.

It should be noted that, for the highest excita-
tion energy of E∗ = 70 MeV, the value of lcr = 40,
which nearly coincides with lmax, was used in the
calculations. Therefore, a simple increase in lcr did
not improve the agreement (the increase in lcr to 50
changes the quantity σf at the extreme point only by
15%). Therefore, a decrease in the Coulomb barrier
height is the only way to increase the cross section for
compound-nucleus formation and, hence, the fission
cross section. Within the one-dimensional model,
this can be achieved by increasing the interaction
radius. Indeed, the increase in the value of r0 to 1.5
or 1.6 fm (and of lcr to 50) leads to perfect agreement
between the experimental and calculated fission ex-
citation functions (see Fig. 3). This corresponds to
lowering the Coulomb barrier by 15–20% (r0 = 1.5–
1.6 fm). In this case, the results for the evaporation
reaction (4n) vary rather weakly. This is quite natural
since partial waves characterized by relatively low
values of l ≤ 30–35 mainly contribute to the cross
section for evaporation reactions at energies not far
from the excitation-function maximum.

The increase of 15% in the interaction radius in
going over from 4He to 6He (or even of 20%) is hardly
associated with the geometric size of the 6He nucleus
itself. Probably, this is associated with the manifesta-
tion of the enhancement of the above-barrier fusion
caused by the influence of other channels on the
fusion process. The questions related to the type of
these channels and their contribution need additional
investigations. However, the pair of weakly bound
neutrons in the 6He nucleus may play here a decisive
role.
2
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Abstract—New results on the energy dependence of the total cross section (σR) for 6He scattering on
28Si in the incident energy range 10–28 MeV/A are obtained. The α-particle-production cross sections
for the 28Si(6He, 4He)X channel are measured as well. The secondary beam of 6He with an intensity of up
to 5 × 104 particle/s was generated by bombarding a thick beryllium target with ∼ 32-MeV/A 7Li ions. In
the energy region below 17 MeV/A, σR increases sharply. The experimental dependences of the total cross
sections are compared with the results of σR calculations using the double-folding potential within the
optical model. The energy dependence of σR for 6He differs from that for the neighboring nuclei, which can
be associated with the structural features of the former nucleus. The energy spectra of α particles produced
in the 6He interactions with silicon indicate two mechanisms of their production: transfer reaction and 6He
breakup in the field of the 28Si nucleus. c© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Extensive experimental and theoretical studies of
the cross section (σI) for the interaction of radioactive
nuclei with stable nuclei—or the total cross section
for these reactions (σR)—were initiated by Tanihata
et al. [1]. It was just in this study that a conclusion
about substantial extension of the neutron-density
distribution in the neutron-rich isotopes of such nu-
clei was drawn on the basis of the analysis of the cross
sections for the interaction of 3,4,6,8He isotopes with
Be, C, and Al targets at 790 MeV/A. After this study
[1], it also became evident that experiments measur-
ing σI or σR by using the radioactive beams even at
low intensity are promising for obtaining information
on the size and the structure of unstable nuclei.

Subsequent measurements of σI or σR were per-
formed with extension of the energy range of bom-
barding particles, as well as with extension of the
diversity of their mass and atomic numbers. A review
of experimental data on the total cross sections and
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the interaction cross sections for light exotic nuclei
can be found in [2].

Among neutron-rich exotic nuclides, the 6He nu-
cleus stands out owing to the fact that, possessing a
relatively normal size (Rrms = 2.52 fm) [3], it can be
represented as a compact inert 4He-core surrounded
by two loosely bound neutrons. The properties of the
ground state of 6He can be properly simulated using
either the macroscopic three-cluster model [4] or the
microscopic model [5]. The energy dependence of the
total cross section for 6He + 28Si reaction measured
in the range 20–60 MeV/A [6] appeared to be weak,
which was in conflict with theoretical predictions.

In order to study in detail the behavior of the total
cross section of the 6He + 28Si reaction and to
extend the energy range to lower interaction energies,
we measured σR in the range from 10 to 28 MeV/A,
decreasing energy in smaller steps as compared to
those used in [6]. The total cross sections for 4He
production in the 6He breakup channel and in the
reaction of neutron transfer on silicon were measured
as well. We obtained the total cross sections for the
4He + 28Si reaction at two energies, which comple-
ment the data presented in [7].

EXPERIMENTAL PROCEDURE

The secondary beam of 6He ions was obtained at
the U400-M accelerator of the Laboratory of Nu-
2002 MAIK “Nauka/Interperiodica”
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clear Reactions (JINR, Dubna) by irradiating a thick
beryllium target (140 mg/cm2) with ∼240-MeV 7Li
ions. To separate the 6He ions and to focus them
onto the silicon target studied, the standard dipole
and quadrupole elements of the ion-optical system of
the main channel of the cyclotron were used. Addi-
tional purification of the 6He beam from admixtures
was achieved by inserting of a polypropylene plate
between two pairs of the dipole magnets; this plate
decreased in a different way the energy of the sec-
ondary particles. The main admixtures (up to 10% of
the total intensity) are deuterium and tritium ions.

The energy dependence of the total reaction cross
sections was measured by the well-known method
based on the use of a multilayer silicon telescope
[8, 9]. The detectors of the telescope simultaneously
served as a target, detecting the reaction products
and decreasing the energy of the 6He ions. The op-
erating detector cross section area was ∼3 cm2, and
the total telescope length was 10 cm. Immediately
in front of the telescope was installed a 2-cm-thick
aluminum diaphragm 12 mm in diameter, and a ring
silicon detector with an inner diameter of 10 mm was
placed behind the diaphragm. Thus, the secondary
beam striking the telescope had a transverse size of ∼
10 mm. The telescope detectors were of various thick-
ness in the range from 400 to 1200 µm; the thick-
ness was measured to within ± 3 µm. The energy
calibration was carried out using α decay of a 226Ra
source, as well as using the specific energy losses of
6He ions with various initial energies (135, 181, and
193 MeV). All recording channels (11 channels were
for the energy deposition, one channel for the ring
detector, and one channel for the time of flight) were
equipped with the standard set of electronics. A pulse
from the preamplifier or the time-to-code converter
was fed to the spectrometric amplifier and then to
the analog-to-digital converter (ADC). Startup of all
ADCs was effected by a scheme which analyzed fast
signals from the first and second detectors.

Further processing of the accumulated data and
determination of the reaction cross sections were per-
formed by the following scheme. First, the events
connected with 6He ions were separated from the
accumulated data. For this purpose, the following
conditions were applied to data sorting: a narrow
energy deposition range in the first detector, a narrow
range of the time of flight, and no dE signal from the
ring detector. Figure 1a shows the two-dimensional
matrices of energy depositions (dEi · dEk) in the se-
quential pairs of the detectors for the case when the
initial energy of 6He ions was E0 = 193.0 ± 1.9 MeV.

Dark spots, standing out on the matrices, corre-
spond to the energy deposition of 6He ions only due
to the ionization losses. The events outside the spots
P

correspond to the 6He nuclear interaction with silicon
in the given pair of detectors. To determine the num-
ber of events associated with the nuclear interactions,
a contour was drawn around the elastic peak (spot),
and then the events lying outside this contour were
separated. When passing over to the next pair, we
set the conditions of the presence of events inside the
contour of the previous pair and outside the contour
around the studied pair. Figure 1b demonstrates the
two-dimensional matrices for the events associated
only with the nuclear reactions in the fourth and fifth
detectors, in which the “loci” of 4He originating from
6He in the interaction with silicon are clearly seen.
The α particles ejected from 6He ions as a result of
their breakup or the neutron transfer reactions on sili-
con possess sufficient energy to penetrate into the last
three detectors. Figure 1b demonstrates the contour
on the dE8–dE9 matrix, which was used to separate
α particles from the nuclear reaction products in the
fourth and fifth detectors and to determine their num-
ber.

Figure 2a shows the energy spectrum of all the re-
action products observed in these detectors. The nar-
row peak in the region of 90–100 MeV is explained by
the charge exchange reaction 28Si(6He, 6Li)28Al. The
energy of 6Li almost coincides with the energy of 6He;
however, too high an energy deposition in the fifth
detector leading to saturation of the amplifier causes
distortion of the total spectrum of 6Li. Figure 2b
shows the energy spectrum of 4He produced in the
pair of the detectors indicated above. The peak at a
lower energy corresponds to α particles produced in
the 6He breakup channel; the peak at a higher energy
complies with the neutron transfer reactions.

On the basis of the measured total number of
events associated with the nuclear reactions (Figs. 2a
and 2b), the known thickness of the detectors, and
the number of 6He ions striking detectors 4 and 5, we
determined the total reaction cross section as

σR [mb] =
2 × 108N

LI
,

where N is the number of events in the nuclear reac-
tions, L is the total thickness of the fourth and fifth
detectors in microns, and I is the number of 6He ions
incident on the detectors.

The same procedure of determination of the total
reaction cross section and the cross section of the
reaction with the α-particle production was applied
to the other pairs of detectors.

The proposed procedure of determination of the
reaction cross section by means of the detector pairs
was used because the energy depositions from α par-
ticles adjoin closely those from noninteracting 6He
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Fig. 1. Energy deposition (MeV) in the telescope detectors.
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Fig. 2. The energy spectra (a) of all reaction products
observed in detectors 4 and 5 and (b) of α particles from
reaction 28Si (6He, 4He) in the same pair of detectors.

(Fig. 1b). Therefore, separation of the reaction prod-
ucts by one-dimensional spectra from the detector
used results in large measurement uncertainties.

EXPERIMENTAL RESULTS

Figure 3 shows the reaction cross sections deter-
mined in our measurements (closed circles) and the
similar data from [6] (open circles). As can be seen
from Fig. 3, our data on σR coincide with the data
from [6] to within the experimental uncertainty in the
energy range from 15 to 30 MeV/A. At the energies
below 15 MeV/A used in our experiment, a sharp
increase in σR is observed.

The cross sections of reactions with the α particle
produced in the 28Si(6He, 4He)X channel measured
in our experiments also differ only slightly from the
data from [6] within the overlapping energy range
(Fig. 3). However, a nonregularity is observed for the
energy dependences of these cross sections as well as
for the variation of σR; in this case, the cross section
decreases at energies below 15 MeV/A.

The widths of the energy intervals (Fig. 3) used in
the measurements were determined by the detector
thickness and by the E0 initial energy of 6He ions.
Some values of the intervals overlapped because the
PH
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Fig. 3. The total reaction cross sections of 6He (σR)
and the cross sections of the reaction 28Si (6He, 4He)
measured in this study (closed circles) and reported in [6]
(open circles).

experiments were performed at different E0. The un-
certainties of σR were±3%, as determined by the sta-
tistical errors, by uncertainty of themeasured detector
thickness, and mainly by the accuracy of separation
of the events caused by the nuclear interactions in the
given pair of detectors. The uncertainties were higher
in determining the cross section of the reaction 28Si
(6He, 4He)X, where they amounted to ±6%.

DISCUSSION

In our view, a comparison of the energy depen-
dence of the total cross section of 6He interaction with
28Si to the similar dependences for the neighboring
nuclei is of interest. Figure 4 shows the total reaction
cross sections for 4He, 6Li, and 8He together with
the data for 6He. The values of σR for 4He presented
in Fig. 4 are taken from [7] and marked with open
squares. The results of our measurements are indi-
cated by black circles. The procedure used for mea-
suring σR in [7] differed from that used in our study.
Nevertheless, good agreement is observed between
these data (Fig. 4). The σR values of the 6Li + 28Si
reaction are taken from [10]. It should be noted that
the σR values marked with open triangles in Fig. 4
were obtained from data on the elastic scattering of
6Li on 28Si [10]. The results on the direct σR mea-
surement presented in [6, 9] do not contradict the data
from [10]. The σR values for 8He were taken from [6].

Comparison of the experimental dependences of
the total reaction cross sections presented in Fig. 4
clearly indicates the “anomalous” behavior of the
σR excitation function for 6He in comparison to the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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neighboring nuclei—that is, an almost invariable
value within the range from 20 to 60 MeV/A and a
sharp increase in the region of ∼15 MeV/A.

Solid curves in Fig. 4 show the results of calcu-
lation of the total reaction cross sections based on
the semimicroscopic approach [11] using a double-
convolution potential within the framework of the
optical model for the analysis of σR. The interaction
potential of two colliding nuclei is presented in the
form

U(R) = UE(R) + UD(R), (1)

where UD(R) is the “direct” double-convolution po-
tential:

UD(R) =
∫ ∫

ρ(1)(r1)V D(s)ρ(2)(r2)dr1dr2. (2)

Here, V D(s) is the “direct” component of the ef-
fective interaction with s = r2 − r1 and ρi (i = 1, 2)
are the densities of the colliding nuclei. The main
contribution to the exchange potential UE(R) is due
to the single-nucleon exchange described within the
formalism of the density matrix

UE(R) =
∫ ∫

ρ(1)(r1, r1 + s)V E(s) (3)

× ρ(2)(r2, r2 − s) exp
(
i
k · (R)s

η

)
dr1dr2.

Here, V E(s) is the exchange component of the ef-
fective interaction ρi(r, r′) are the density matrices of
the colliding nuclei (i = 1, 2) and K(R) is the local
momentum determined by the relation

K2(R) =
2mη
�2

(E − U(R) − VC(R)), (4)

where η = A1A2/(A1 +A2), Ai (i = 1, 2) being the
mass numbers of the nuclei, and VC(R) is the
Coulomb potential. The initial data for the calculation
of the double-convolution potential are the effective
nucleon–nucleon forces and the densities of the
colliding nuclei. The proton and neutron densities can
be parametrized or calculated within the framework
of the nuclear structure models. The total optical
potential must comprise both the real part and the
imaginary part, the latter being responsible for the
absorption of the incident particle in the inelastic
channels. Thus, the total potential is

Ut(R) = U(R) + i

[
NwU(R) − αR

dU(R)
dR

]
, (5)

where U(R) includes the direct and exchange parts
and the imaginary part has two parameters (Nw and
α). For the calculations of the reaction cross sections
based on potential (5) to have a predicting power,
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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it is necessary to determine the Nw and α param-
eters from the analysis of the angular distributions
of elastic scattering measured at the same energy as
the total reaction cross sections. The table gives the
root-mean-square radii of the proton, neutron, and
matter distributions that served as the basis for the
calculations of the cross sections.

Figure 4 demonstrates that the theoretical calcu-
lations of the energy dependence of σR for 4,8He and
6Li are in reasonable agreement with the experimental
results. However, variation of the parameters of the
6He density or fitting of the Nw and α parameters in
potential (5) do not result in satisfactory description
of the behavior of the σR excitation function for 6He.

Root-mean-square radii of the distribution of protons,
neutrons, and matter (in fm)

Nucleus Rprms Rnrms Rmrms

4He 1.57 1.57 1.57
6He 2.04 2.79 2.56
8He 1.98 2.92 2.72
6Li 2.37 2.38 2.36
2
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CONCLUSION

The total cross sections of the reaction 6He + 28Si
measured in this study for the energy range not
studied previously complement the available data.
The sharp increase in σR is observed in the energy
range below 17 MeV/A. The energy spectra of α
particles produced in the 6He interaction with silicon
indicate two mechanisms of their production: transfer
reactions and 6He breakup in the field of the 28Si
nucleus. The energy dependence of σR for 6He, differ-
ent from that for the neighboring nuclei, is probably
caused by the structural features of this nucleus. The
observed behavior of σR indicates the necessity of
an experimental study of the σR variations in a wide
energy range up to theCoulomb barrier in more detail.
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Abstract—The advanced adiabatic approach previously proposed for describing collision problems in
atomic physics is extended to the specific case of mesic-atom collisions in the excited states n ≥ 2. The
method and the algorithm of the calculations are described. The calculations of the charge-exchange and
Coulomb deexcitation rates in collisions of (pµ)n, (dµ)n, and (tµ)n muonic atoms in the excited states
n = 3, 4, 5 with the hydrogen isotopes p, d, t are presented in comparison with the conventional adiabatic
approach. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There are several problems in muonic physics,
weak-interaction physics, and especially in physics of
muon-catalyzed fusion which need the cross section
of different collision processes of mesic hydrogen
isotope atoms in the excited states n ≤ 6, particularly

charge exchange

(aµ)n + b
λex

nn′−→ (bµ)n′ + a; (1)

Coulomb deexcitation

(aµ)n + b
λC

nn′−→ (aµ)n′ + b, n′ < n; (2)

Stark mixing

(aµ)nl + b
λStn−→ (aµ)nl′ + b. (3)

Here, (a, b) = (p, d, t), and collision energy 0.001 ≤
ε ≤ 100 eV.

This problem was first formulated in the classical
paper by Leon and Bethe [1], but it has not yet been
solved properly. At present, processes (1)–(3) are
becoming of special interest in the problem of muon-
catalyzed fusion (µCF), particularly for the descrip-
tion of µCF kinetics.

Initially, muonic atoms (aµ)nl are formed in the
quantum states (nl), n � (mµ/me)

1/2 ≈ 14. Then,

∗This article was submitted by the authors in English.
1)Macedonian Academy of Science and Art, Skopje, Mace-
donia; permanent address: Research Coordinative Center on
the Problems of Muon Catalyzed Fusion and Exotic Quan-
tum Systems (MUCATEX), Moscow, Russia.
1063-7788/02/6509-1575$22.00 c©
the distributions ρnl(ε) over the states (nl) and ki-
netic energy ε are determined by the collision pro-
cesses (1)–(3) as well as the Auger transitions

(aµ)n + H2 → (aµ)n′ + H+
2 + e (4)

and radiative transitions

(aµ)nl → (aµ)n′l′ + γ. (5)

The final results of µCF cascade (nl) → (1sσ) are the
distribution ρ1s(ε) in the ground state and the x-ray
intensities Ynl,n′l′ of process (5).

There are no rigorous quantum-mechanical cal-
culations of processes (1)–(3) for n > 2. Here, we will
apply the advanced adiabatic approach (AAAmethod)
[2, 3] for the calculations of the cross sections of
these processes. The first applications of the AAA
method for processes (1)–(3) were presented in [4–8].
However, these calculations were performed not for
the pure Coulomb three-body systems in processes
(1)–(3) but for the screened Coulomb centers chosen
in the static form [9].

In what follows, we will present the self-consistent
method of calculation of the rates of processes (1) and
(2) based on the AAAmethod modified to the specific
case of low-energy mesic-atom collisions.

2. ADIABATIC REPRESENTATION

The main and only difference of processes (1)–(3)
from the analogous atomic processes is the muon
mass mµ = 206.769me, which leads nevertheless to
an essential modification of the codes developed for
the description of atomic collisions.

As a consequence of themass ratiomµ/me ≈ 200,
the Bohr radius in mesic atomic physics is much
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Selected terms and illustration of inelastic transi-
tions via hidden crossings in the system pµd. The loca-
tions of hidden crossings are marked by arrows.

smaller (aµ = a0me/mµ = 2.56 × 10−11 cm) and the
unit of energy is much higher (Eµ = 2Ry(mµ/me) =
5606 eV). Hence, the typical energy in mesic atomic
collisions (∼1 eV) corresponds to superlow energy
(∼0.005 eV) in atomic collisions. In the collision-
energy range ε ≤ 100 eV, all processes (1)–(3) are
deep adiabatic (v/αc � 0.1) and the relative motion
of nuclei with reduced mass M ∼ 10mµ takes place
in the static potential formed by the averaged muon
motion.

Contrary to atomic collisions, where the classical
description of the relative nuclear motion is appropri-
ate, the low-energy mesic atomic collisions (1)–(3)
at n > 2 should be considered as semiclassical [9],
and impact-parameter approximation is inadequate
in this case due to the small number of partial waves
(J � 10).

All the peculiarities of mesic atomic processes
mentioned above are taken into account in the
method of calculation described below.

The Hamiltonian Ĥ of the problem in Jacobi co-
ordinates (R, r) has the form (in mesic atomic units,
m.a.u., � = e = mµ = 1)

Ĥ = − 1
2M

∆R − 1
2m∗∆r (6)

− Za
ra

− Zb
rb

+
ZaZb
R

.

Here, R is the vector of the internuclear distance,
r is the coordinate of muon referred to the c.m. of
P

nuclei, M = (1/Ma + 1/Mb)−1 is the reduced mass
of two nuclei (Ma ≥Mb), Za and Zb are the charges
of nuclei a and b, andm∗ = [1 + 1/(Ma +Mb)] is the
reduced mass of muon moving around nuclei.

The wave functions Ψ(r,R) describing reactions
(1)–(3) obey the Schrödinger equation

(Ĥ − E)Ψ(r,R) = 0, (7)

whereE is the total energy of the three-body problem.
Due to the adiabatic nature of reactions (1)–(3), the
wave function Ψ(r,R) can be expanded in the solu-
tions ϕjp(r;R) of the Coulomb two-center problem
[10]

Ψ(r,R) (8)

=
∑
jp

ϕjp(r;R)
1
R
χJjp(R)DJm(ϕ,Θ,Φ).

Here, J is the total angular momentum of the three-
body problem; DJm(ϕ,Θ,Φ) is the Wigner function;
χJjp(R) is the radial part of the wave function de-
scribing the relative nuclear motion; ϕjp(r;R) is the
complete set of the solutions of the Coulomb two-
center problem

ĥϕjp(r;R) = Ej(R)ϕjp(r;R), (9)

ĥ = − 1
2m∗∆r −

Za
ra

− Zb
rb
,

describing the motion of particle with effective mass
m∗ at fixed nuclei separated at the distance R; jp =
[nn1n2m]p is the set of parabolic quantum numbers
specifying the quantum state of the muon motion
(p is the state parity: g—gerade, u—ungerade). The
adiabatic energy potential curvesEj(R) represent the
energy of muon in the state j as a function of R.

After averaging of Eq. (7) over the coordinates
r of muon motion and angular variables (ϕ,Θ,Φ),
processes (1)–(3) are described by the infinite set of
ordinary differential equations

1
2M

d2χi(R)
dR2

+
[
E −Wi(R) − J(J + 1)

2MR2

]
(10)

× χJi (R) =
1

2M

∑
j

Uij(R)χJj (R),

where Wi(R) = Ei(R) + ZaZb/R is effective poten-
tial for internuclear motion and Uij(R) are the nona-
diabatic coupling potentials.

In the limit R→ ∞, the adiabatic terms Ej(R)
converge to the energy of the isolated atoms (aµ)j
and (bµ)j with the relative accuracy ∼M−1 only [10],
because the effective mass m∗ in Eq. (9) is different
from the reduced masses ma = Ma/(1 +Ma) and
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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mb = Mb/(1 +Mb) of atoms (aµ) and (bµ). To in-
corporate the corresponding isotopic corrections that
play the important role in processes (1)–(3), the stan-
dard adiabatic approach should be modified according
to [11], using the coordinates (q,Q) instead of Jacobi
pair (r,R) according to the formulas

q =
1
2
(
√
ma +

√
mb)Rµ −

1
2
(
√
maRa +

√
mbRb) ,

(11)

Q = (
√
ma −

√
mb)Rµ − (

√
maRa −

√
mbRb) ,

where ma and mb are the reduced masses of mesic
atoms (aµ) and (bµ). Then, the Coulomb three-body
Hamiltonian in the coordinates (q,Q) takes the form

Ĥ = −1
4

(1 +
√
mamb)∆q (12)

− (1−√
mamb)∆Q −

√
maZa

|q + Q/2| −
√
mbZb

|q − Q/2|

+
√
mambZaZb

|
(√
ma +

√
mb

)
Q/2 −

(√
ma −

√
mb

)
q|
,

which formally coincides with the Hamiltonian of the
three-body problem with two identical heavy quasi-
particles with masses

(
1 −√

mamb

)−1 � 1 and

the light-particle mass m = 2
(
1 +

√
mamb

)−1 ≈ 1.
(The small q corrections in the internuclear repulsion
potential are out of the leading order of the adiabatic
approximation.) It means that transformation (11)
converts the asymmetry in masses Ma and Mb into
asymmetry in charges: Za →

√
maZa and Zb →√

mbZb. The eigenvalues Ej(Q) of the modified
Hamiltonian (12) converge at R→ ∞ to the correct
binding energies of mesic atoms (aµ) and (bµ) with
the accuracy O(M−2). This is enough for further
consideration.

Transformation (11) destroys the (g, u) symmetry
of the solutions ϕjp(r;R), and the pair of terms
Ejg(R) and Eju(R) degenerate for R→ ∞, after
transformation (11), split into the pair Eja(Q) and
Ejb(Q), which, for Q ≈ R+ (m/M)r → ∞, r  R,
represent the energies of isolated atoms (aµ)j and

(bµ)j , respectively, with the accuracy ∼M−2 (their
ratio is represented exactly).

Quasiresonance charge-exchange process (1) at
n′ = n is described in this case as the transition from
the potential curve (pµ)n + d to the curve (dµ)n + p,
and Coulomb deexcitation n→ n′ (2) is described as
the transitions from the potential curve (pµ)n + d to
the curves (pµ)n′ + d or (dµ)n′ + p, respectively (see
Figs. 1 and 2, where transient points are marked by
arrows).
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3. PROBABILITY OF NONADIABATIC
TRANSITIONS

The boundary conditions for the system of equa-
tions (10) in the case of the initially populated ith
channel forR→ ∞ have the form

χJj (R) =

{
(−1)J+1e−ipiR + SJiie

ipiR, i = j

SJjie
ipjR, i �= j,

(13)

where pj = [2M(E − Ej(∞))]1/2 = (2Mε)1/2 is the
asymptotic momenta, SJji are the S-matrix elements
for the transition i→ j, and ε is the collision energy.
The cross sections of inelastic processes are

σij =
π

p2
i

∑
J=0

(2J + 1)|SJji|2. (14)

In the leading order of adiabatic approximation,
the coupling terms (2M)−1Uij(R) in Eqs. (10) can
be neglected and solutions χJj (R) can be presented in

the semiclassical form2)

χJj (R) = Cj
[
pJj (R)

]−1/2
exp


i

R∫
R0

pJj (R
′)dR′


 ,

(15)

where

pJj (R) =
[
2M

(
E − Wj(R)

R
− (J + 1/2)2

2MR2

)]1/2

.

In the adiabatic approach, the inelastic transitions
are located in the vicinity of the quasicrossings of the

2)This solution is valid at n ≥ 2 and R � 2M [9] due to the
relations pn(R)dp−1

n (R)/dR� 1 at R� 1 and En(R) ≈
3n(n1 − n2)/(2MR2).
02
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adiabatic potential curves. The quasicrossing of the
terms Ei(R) and Ej(R) at R = Rq = ReRc reflects
the exact crossing of terms Ei(Rc) = Ej(Rc) = Ec
in the complex plane R at R = Rc, and the unique
analytic surface E(R) = {Ei(R)} in Eq. (9) has the
root branch point

Ei,j(R) = Ec ± const × (R−Rc)1/2. (16)

The distribution and location of quasicrossings are
illustrated in Fig. 2, where effective quantum num-
bersNeff(R)=(−2Ej(R)/(Za + Zb))

−1/2 of the sys-
tem pµd are presented.3) The quasicrossings of terms
in this picture are marked by the arrows.

To obtain the transition probability, one should
continue asymptotic expression (15) into the complex
R plane. This asymptotic expression is valid every-
where except for the small regionΩ around a complex
branch point Rc where the operator of nonadiabatic
coupling Uij(R) has a singularity and the right-hand
side of Eq. (10) gives the contribution to the leading
order of adiabatic approximation. Inside Ω, it is nec-
essary to find a solvable system of equations (the so-
called comparison system) which takes into account
the singularities of Uij(R) at the point Rc explicitly.
The amplitude of the transition probability is obtained
by matching the solution of the comparison system
to the asymptotic expression given by (15) at the
boundary of the region Ω. The final expression for the
transition probability pij between i and j adiabatic
states reads [12]

P Jij = |SJji|2 = e−2∆J
ij , (17)

∆J
ij =

∣∣∣Im
Rc∫

ReRc

[
pJi (R) − pJj (R)

]
dR
∣∣∣. (18)

In the case of many quasicrossings, the density
matrix can be represented as ρ̂in = {ρij}, ρij = δij .
The evolution of the system in the collision process
fromR = ∞ to the turning pointR = R0 and back to
R→ ∞ can be presented in the matrix form

ρ̂out = P̂1P̂2 . . . P̂N−1P̂
2
N P̂N−1 . . . P̂2P̂1ρ̂

in (19)

= P̂T P̂ρ̂in,

P̂ = P̂N P̂N−1 . . . P̂1,

whereN is the number of passed quasicrossings. The
transient matrix P̂q at the quasicrossing point Rq of

3)In the limit R→ 0, Neff (R) → N , where N is the principal
quantum number in the united atom classification of terms
Ej(R). At Za = Zb = 1, j = (Nlm),N = n1 + l +m+ 1,
l = 2n2 or l = 2n2 + 1 for g and u terms, respectively.
P

two terms Eα(R) and Eβ(R) has the form [3](
P̂q

)
ij

= δij(1 − δiα)(1 − δiβ) + (1 − Pαβ) (20)

× (δiαδjα + δiβδjβ) + Pαβ(δiαδjβ + δiβδjα).

The probability of finding the system in the state j
coming from the state i is equal to

Pij =
(
ρ̂out

)
ij
. (21)

In the case of one quasicrossing in the two-state
system, expressions (19) take the well-known form

ρ̂in =


1 0

0 1


 ; (22)

ρ̂out =


(1 − p12)2 + p2

12 2p12(1 − p12)

2p12(1 − p12) (1 − p12)2 + p2
12


 ;

P12 =
(
P̂ 2

1 ρ
in
)

12
= 2p12(1 − p12);

p12 = exp {−2∆12} .

4. THE HIDDEN CROSSINGS

The quasicrossings are evident and visible on the
graphs of terms if ImRc is small enough, i.e., the
complex crossing point Rc is located near the real
axis R. Usually, these quasicrossings correspond to
the resonant subbarrier penetrations in the asymp-
totic regionR� 1. Nonadiabatic transitions at these
points are well known as Landau–Zener transitions.
This is quite a rare case, however, and, as a rule,
hidden crossings (HC) take place.

There are four types of HC: S, T , P , and Q
series [2].

(i) S series consists of an infinite set of branch
points connecting pairwise the states (N, l,m) and
(N + 1, l,m) of the two-center problem (in the united
atom classification). It means that the quasicrossed
terms differ from each other in “quasiradial” quantum
numbers n1 by unity:n1 ↔ n1 +1. This series reflects
the rearrangement of the topology of the wave func-
tion from the two-center geometry of quasimolecule
to the one-center geometry of united atom at the
moment of formation of the centrifugal barrier.

The values RSc are located in the small domain
of the R plane according to the relation ReRSc,N >

ReRSc,N+1 with limiting valueRSc,∞ [3],

RSc,∞ =
(l + 1/2)2

Za + Zb
exp

{
i
π(m+ 1)
2l + 1

}
. (23)

(ii) T series connects the states (N, l,m) and (N +
2, l + 2,m) in the symmetric case Za = Zb. In this
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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case, only the terms with the same parity and the
same quantum numbers n1 are connected and quan-
tum numbers n2 differ by unity: n2 ↔ n2 + 1.

The position of the T branch points can be esti-
mated by the asymptotic expression [3]

RT
±

c = n [6n2 + 3m+ 3 + i(6 ∓ 2)] , (24)

where n = n1 + n2 +m+ 1 and (±) parity W is re-
lated to (g, u) parity I by the relation I = Weimπ.

T series reflects changing the muon motion with
changing the internuclear distance near the top of
the potential barrier separating nuclei: at R < ReRTc ,
the muon belongs to both centers; at R > ReRTc ,
muon motion is located near one of the nuclei and
its wave function can be represented approximately by
the symmetric and antisymmetric superposition of the
solutions of the one-center separated atom problem
(at the value R = ReRTc , the energy of the system
coincides with the top of the potential barrier in the
angular equation of the two-center problem).

(iii) P series connects the states (N, l,m) and
(N + 1, l + 1,m) of the system with the slightly
different charges Za and Zb, which appear, for ex-
ample, as a result of isotopic transformation (11).
The P series connects the terms Eia(R) and Eib(R)
with the same set of parabolic quantum numbers
[nn1n2m] due to subbarrier penetration. They are lo-
cated in the region where the resonance defect ∆E =
Eib(∞) − Eia(∞) = (ma −mb)/2n2 is comparable
with the splitting ∆Egu(R) of the terms Eig(R) and
Eiu(R) in the symmetric system Za = Zb. The lower
term Eia(R) belongs to the heavier atom (aµ)i and
corresponds at Ma = Mb to the symmetric g state
(l = 2n2), and the upper term Eib(R) of the atom
(bµ)i corresponds to the u state (l = 2n2 + 1). At
R < ReRc, we can ignore the isotopic defect; at R >
Rq, the isotopic defect dominates, the approximate
(g, u) symmetry disappears, and the adiabatic states
are localized at one of the atoms (aµ)i or (bµ)i. The
position RPc of the P-series branch points can be
estimated from the relation [13]

ma −mb

2n2
= ∆Egu(R) = 2(2R/n)n−∆ (25)

× [n3n2!(n2 +m)!]−1exp(n−R/n).

The P series has a special structure in this case, and
the transition probability Pij is calculated with the
Rosen–Zener–Demkov formula, which differs from
the standard Landau–Zener one [14, 15]:

Pij =
∞∑
k=1

(−1)ke−2k∆ij =
e−∆ij

2ch∆ij
. (26)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
(iv) Q series connects the same states (N, l,m)
and (N + 1, l + 1,m), but it appears when Za and Zb
began to differ significantly. Its physical origin is the
same as the T series.

The sequence of the branching points Rc of the
different series at Za ≈ Zb for the same energy curve
is the following:

ReRSc < ReRQc < ReRPc . (27)

5. ALGORITHM OF THE CALCULATIONS

The numerical code for the calculations of the
cross sections of processes (1) and (2) is based on
the automated program package ARSENY [16]. It
includes the following subprograms:

(i) Calculations of the terms Ej(R) of the two-
center problem for the parabolic states jp =
[n n1 n2m]p, n = n1 +n2 +m+1, n ≤ 5, p = (g, u).
In the united atom classification, this basis includes
110 adiabatic states (N, l,m) with the principal
quantum numbersN ≤ 10.

(ii) Search for all the branch points Rc = ReRc +
iImRc of the HC in the complex plane R connecting
pairwise terms Ei(Rc) = Ej(Rc).

Calculations of the corresponding Stückelberg
parameters ∆J

ij(Rc), and S
J
ji matrix elements (17).

Calculations of the cross sections σij(ε) for the
selective transitions i→ j and total cross sections
σnn′(ε).

For the selective transition i→ j, i = [nn1 n2m],
j = [n′n′1n

′
2m], the Stückelberg parameter∆J

ij is cal-
culated by Eq. (18):

∆J
ij =

∣∣∣Im
Rc∫

ReRc

[
pJi (R) − pJj (R)

]
dR
∣∣∣.

The values ∆J
ij(ε) for the system pµd as a function of

collision energy ε at J = 0 are plotted in Fig. 3.

The selective cross sections σij(ε) are determined
by the equation

σij(ε) =
π

p2
i

∞∑
J=0

(2J + 1)P Jij , (28)

where ε is the impact energy, pi =
[2M(E − Ei(∞))]1/2 = (2Mε)1/2 is the momentum
in the entrance channel i, and P Jij is determined by
2
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Fig. 3. Stückelberg parameters ∆J
ij(ε) at J = 0 as a

function of energy: ∆0
ij(ε) ≈ const at ε � 1 eV.

(17). The averaged cross sections σnn′(ε) for the
transitions n→ n′ are equal to4)

σnn′(ε) =
∑

n1,n2,n′1,n
′
2,m

2 − δ0m
n2

σij(ε). (29)

The transition rates are defined at liquid-hydrogen
density ρ0 = 4.25 × 1022 cm−3 by the relation

λnn′ = σnn′υρ0, (30)

where υ is the relative velocity in collisions (1)–(3).
The calculation scheme can be illustrated in

Figs. 1 and 2, where terms Ei(R) with m = 0 and
∆ = −(n− 1) at n ≤ 5 are plotted. HC of P and
T types are marked by arrows. Only these two types
of quasicrossings give the contributions to the cross
sections σij of the processes (1) and (2). At low
collision energies under consideration, only attractive
terms at R� 1

Ei(R) ≈ − 1
2n2

+
3
2R

n∆ + · · ·

with ∆ = n1 − n2 < 0 contribute to σij . From
110 terms Ei(R) of the basis set at n ≤ 5, only 14
are attractive (∆ < 0). They are connected by the
branch points (13 of them are P-type and 25 are
T -type). Figure 2 demonstrates the transition from
terms Ei(R) with m = 0, ∆ = −(n− 1). It is clear
that quasiresonant charge–exchange reaction (1)
is ruled only by the P-type branch points: six for
transition (n = 5) → (n′ = 5, 4, 2, and one for the

4)Equation (29) is also valid for symmetrical systems (pµp,
etc.). In this case, however, the asymptotic atomic states
|ia〉 and |ib〉 are formed as a superposition of the two-center
states: |ia〉 = (|ig〉 + |iu〉)/

√
2, |ib〉 = (|ig〉 − |iu〉)/

√
2.
PH
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transitions from n = 4, 3, and 2, respectively (see
Table 1). The Coulomb deexcitations (2) are ruled by
the T -type branch points only. The combination of
the P- and T -type hidden crossings is of importance
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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tations (2) from the lighter mesic atom to the heavier one.

for the reactions

(pµ)n + d→ (dµ)n′ + p, n �= n′. (31)

It is quite easy to trace the path through the transient
points Rq for any reaction n→ n′ corresponding to
the selective transitions [nn1n2m] → [n′n′1n

′
2m] and

to extract the most essential of them which make the
main contributions to the transition probabilities Pij .
For example, in the case of the reaction (31) at n = 5,
the main contribution gives the quasicrossing point of
T type, which connects the states i = [5040] and j =
[4030] with parametersRq ≈ 83,∆ij � 2 (see Fig. 2).
For the reaction

(dµ)n + p→ (dµ)n′ + p (32)

from n = 4 to n′ = 3, only T -type quasicrossings are
significant at R ≈ 45.

6. ESTIMATIONS

Relations (16)–(21) and (28)–(30) give the com-
plete scheme for the calculation of all the cross sec-
tions σij(ε) and σnn′(ε) at collision energy ε. At ε
high enough, we can also use the impact parameter
language for the presentation of the results. In this
case,

π

p2

∑
J

(2J + 1) → 2π

ρm∫
0

ρdρ, (33)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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Fig. 8. Partial and total rates of Coulomb deexcitations
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′
2m] for the process (dµ)n=4 + p→

(dµ)n=3 + p.

where the maximal impact parameter ρm is deter-
mined from the relations

ρm = min{ρiq, ρjq}, (34)
2
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Table 1. HC parameters for the system (dµ)n + p at ε = 1 eV for the transitions [nn1n2m] → [n′n′
1n

′
2m] (initial shell

n = 4)

[n, n1, n2,m] [n′, n′
1, n

′
2,m] Type of HC G Rq ∆0(J = 0) Jm

4030(dµ) 3020(dµ) T 385.5 46.0 2.411 18

3020(dµ) 3020(pµ) P 535.7 46.0 0.279 0

3011(dµ) 3011(pµ) P 442.4 37.7 0.190 0

4031(dµ) 3011(dµ) T 294.3 36.2 2.338 13

3110(dµ) 3110(pµ) P 329.0 29.3 0.190 0

4120(dµ) 3110(dµ) T 166.4 28.2 2.491 7

3002(dµ) 3002(pµ) P 301.4 26.7 0.194 0

4012(dµ) 3002(dµ) T 150.5 26.0 2.490 7

2010(dµ) 2010(pµ) P 489.2 21.5 0.146 0

3020(dµ) 2010(dµ) T 319.3 20.4 2.564 0

3101(dµ) 3101(pµ) P 167.6 19.5 0.217 0

2001(dµ) 2001(pµ) P 333.4 15.0 0.138 0

3011(dµ) 2001(dµ) T 191.5 13.4 2.461 0

2100(dµ) 2100(pµ) P 177.5 9.6 0.137 0

1000(dµ) 1000(pµ) P 297.6 6.0 0.112 0

2010(dµ) 1000(dµ) T 91.6 4.8 3.786 0
ρiq = Rq

[
1 − Wi(Rq)

ε

]1/2

,

ε = E − Ei(∞),

Wi(R) =
Za + Zb

R
+Ei(R)− Ei(∞)

with the additional condition Rq ≥ R0, where Rq =
ReRc and R0 is the turning point for the motion in
the potential Wi(R). (It is evident that Pij = 0 at
Rq < R0.) The number Jm of the partial waves in the
sum (28) can be estimated from the relation

Jm = ent
(√

2Mερm − 1/2
)
. (35)

We can also determine the focusing factor

G =
ρm
Rq

, (36)

which reflects the amplification of the inelastic cross
sections comparing to the “geometrical” cross sec-
tions at straight-line collisions:

σij = πρ2
mPij = πR2

qG
2Pij . (37)

At low collision energy, G factors are large (Table 1).

The described method allows one to perform semi-
analytic calculations of the cross sections σij using
PH
the simple approximation of the Stückelberg param-
eter, which follows from (15), (18), and (33):

∆J
ij(ρ) = ∆0 + ∆1

(
ρ

ρm

)2

, (38)

where ρm is determined by (34), and ∆0 and ∆1

can be calculated from (18). Finally, we obtain the
simple estimate for the cross section determined by
a single HC:

σ = 2π

ρm∫
0

2e−2∆(ρ)
(
1 − e−2∆(ρ)

)
ρdρ (39)

=
πρ2

m

∆1
ξ(1 − ξ) =

π

∆1
(GRq)

2 ξ(1 − ξ),

ξ = e−2∆0
(
1 − e−2∆1

)
.

For example, the partial Coulomb deexcitation
rate [4030]→ [3020] in (dµ)n+ p collision at ε = 1 eV
is equal to λ = 1.30× 1011 s−1. According to Table 1,
it is determined by the T -type HC at Rq = 46 with
parameters G = 385.5 and ∆0 = 2.41. Having ∆1 =
1.06 from (18), we can find from (39) a very reasonable
estimate for this rate λ̃ = 1.44 × 1011 s−1.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Table 2. Charge-transfer (1) and deexcitation (2) rates (in s−1) in (pµ)n + d collisions (Jm is the number of partial
waves)

ε, eV
Charge transfer Deexcitation

Jm
n′ = n n′ = n− 1 n′ = n− 2 n′ = n− 1 n′ = n− 2

0.001 1.86 × 1013 1.68 × 1010 6.76 × 105 1.21 × 1010 5.38 × 105 8

0.004 9.29 × 1012 8.40 × 109 3.38 × 105 6.04 × 109 2.69 × 105 8

0.01 5.88 × 1012 5.31 × 109 2.14 × 105 3.82 × 109 1.70 × 105 8

0.04 2.94 × 1012 2.66 × 109 1.07 × 105 1.91 × 109 8.52 × 104 8

0.1 1.95 × 1012 1.68 × 109 6.78 × 104 1.21 × 109 5.40 × 104 8

0.5 8.80 × 1011 7.63 × 108 3.07 × 104 5.49 × 108 2.44 × 104 8

1.0 6.29 × 1011 5.48 × 108 2.20 × 104 3.95 × 108 1.75 × 104 8

5.0 3.65 × 1011 2.88 × 108 1.10 × 104 2.08 × 108 8.78 × 103 9

10.0 3.14 × 1011 2.41 × 108 8.85 × 103 1.74 × 108 7.04 × 103 11

50.0 4.72 × 1011 2.63 × 108 8.14 × 103 1.92 × 108 6.49 × 103 17

100.0 6.22 × 1011 4.10 × 108 1.07 × 104 3.03 × 108 8.59 × 103 23

n = 4

0.001 2.53 × 1013 1.13 × 1011 2.89 × 108 7.67 × 1010 2.17 × 108 11

0.004 1.26 × 1013 5.66 × 1010 1.44 × 108 3.83 × 1010 1.08 × 108 11

0.01 8.00 × 1012 3.58 × 1010 9.14 × 107 2.43 × 1010 6.85 × 107 11

0.04 4.00 × 1012 1.79 × 1010 4.58 × 107 1.22 × 1010 3.43 × 107 11

0.1 2.54 × 1012 1.14 × 1010 2.90 × 107 7.72 × 109 2.18 × 107 11

0.5 1.18 × 1012 5.21 × 109 1.33 × 107 3.54 × 109 9.96 × 106 11

1.0 9.68 × 1011 3.99 × 109 9.64 × 106 2.71 × 109 7.23 × 106 11

5.0 5.88 × 1011 2.29 × 109 5.22 × 106 1.56 × 109 3.92 × 106 13

10.0 6.03 × 1011 2.24 × 109 4.52 × 106 1.53 × 109 3.40 × 106 15

50.0 1.02 × 1012 4.18 × 109 7.79 × 106 2.83 × 109 5.90 × 106 25

100.0 1.42 × 1012 7.94 × 109 1.52 × 107 5.34 × 109 1.16 × 106 34

n = 5

0.001 3.75 × 1013 4.34 × 1011 5.12 × 109 2.22 × 1011 3.31 × 109 17

0.004 1.87 × 1013 2.17 × 1011 2.56 × 109 1.11 × 1011 1.65 × 109 17

0.01 1.19 × 1013 1.37 × 1011 1.62 × 109 7.04 × 1010 1.05 × 109 17

0.04 5.94 × 1012 6.89 × 1010 8.13 × 108 3.53 × 1010 5.25 × 108 17

0.1 3.77 × 1012 4.38 × 1010 5.17 × 108 2.25 × 1010 3.34 × 108 17

0.5 1.85 × 1012 2.13 × 1010 2.45 × 108 1.09 × 1010 1.57 × 108 17

1.0 1.39 × 1012 1.63 × 1010 1.89 × 108 8.22 × 109 1.20 × 108 17

5.0 1.08 × 1012 1.24 × 1010 1.39 × 108 6.13 × 109 8.71 × 107 19

10.0 1.18 × 1012 1.39 × 1010 1.49 × 108 6.68 × 109 9.23 × 107 22

50.0 2.31 × 1012 3.75 × 1010 4.00 × 108 1.84 × 1010 2.53 × 108 44

100.0 3.19 × 1012 7.85 × 1010 9.58 × 108 4.10 × 1010 6.22 × 108 61
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Table 3.Charge-transfer (1) and deexcitation (2) rates (in s−1) in (dµ)n+ p collisions (Jm is the number of partial waves)

ε, eV
Charge transfer Deexcitation

Jm
n′ = n n′ = n− 1 n′ = n− 2 n′ = n− 1 n′ = n− 2

0.001 0 3.76 × 1010 1.05 × 106 5.27 × 1010 1.32 × 106 10

0.004 0 1.88 × 1010 5.25 × 105 2.64 × 1010 6.60 × 105 10

0.01 0 1.19 × 1010 3.32 × 105 1.67 × 1010 4.17 × 105 10

0.04 0 5.95 × 109 1.66 × 105 8.34 × 109 2.09 × 105 10

0.1 0 3.77 × 109 1.05 × 105 5.28 × 109 1.32 × 105 10

0.5 0 1.70 × 109 4.73 × 104 2.38 × 109 5.94 × 104 10

1.0 0 1.21 × 109 3.37 × 104 1.69 × 109 4.23 × 104 10

5.0 0 5.74 × 108 1.60 × 104 8.02 × 108 2.01 × 104 10

10.0 0 5.23 × 108 2.25 × 104 7.30 × 108 2.83 × 104 10

50.0 3.27 × 1011 3.12 × 108 1.20 × 104 4.30 × 108 1.50 × 104 15

100.0 5.40 × 1011 4.09 × 108 1.36 × 104 5.56 × 108 1.70 × 104 21

n = 4

0.001 0 3.41 × 1011 9.62 × 108 6.48 × 1011 1.29 × 109 18

0.004 0 1.71 × 1011 4.81 × 108 3.24 × 1011 6.45 × 108 18

0.01 0 1.08 × 1011 3.04 × 108 2.05 × 1011 4.08 × 108 18

0.04 0 5.40 × 1010 1.52 × 108 1.03 × 1011 2.04 × 108 18

0.1 0 3.42 × 1010 9.65 × 107 6.50 × 1010 1.29 × 108 18

0.5 0 1.55 × 1010 4.37 × 107 2.95 × 1010 5.86 × 107 18

1.0 0 1.11 × 1010 3.14 × 107 2.12 × 1010 4.21 × 107 18

5.0 0 5.83 × 109 1.59 × 107 1.10 × 1010 2.13 × 107 18

10.0 3.09 × 1011 4.10 × 109 1.08 × 107 7.98 × 109 1.44 × 107 19

50.0 8.48 × 1011 4.96 × 109 1.24 × 107 9.39 × 109 1.64 × 107 23

100.0 1.28 × 1012 8.33 × 109 2.11 × 107 1.49 × 1010 2.77 × 107 34

n = 5

0.001 0 1.22 × 1012 1.84 × 1010 2.85 × 1012 3.06 × 1010 25

0.004 0 6.10 × 1011 9.19 × 109 1.43 × 1012 1.53 × 1010 25

0.01 0 3.86 × 1011 5.82 × 109 9.02 × 1011 9.67 × 109 25

0.04 0 1.94 × 1011 2.91 × 109 4.53 × 1011 4.85 × 109 25

0.1 0 1.23 × 1011 1.85 × 109 2.88 × 1011 3.08 × 109 25

0.5 0 5.63 × 1010 8.47 × 108 1.31 × 1011 1.41 × 109 25

1.0 0 4.15 × 1010 6.17 × 108 9.67 × 1010 1.03 × 109 25

5.0 0 2.37 × 1010 3.47 × 108 5.41 × 1010 5.74 × 108 26

10.0 7.09 × 1011 1.83 × 1010 2.64 × 108 4.19 × 1010 4.38 × 108 27

50.0 2.05 × 1012 3.06 × 1010 4.53 × 108 6.37 × 1010 7.23 × 108 42

100.0 3.03 × 1012 5.70 × 1010 9.32 × 108 1.13 × 1011 1.45 × 109 60
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Table 4. Partial rates (in s−1) of transitions [nn1n2m] → [n′n′
1n

′
2m] for Coulomb deexcitation (2) (n = 4) → (n′ = 3)

ε, eV [4030] → [3020] [4120] → [3110] [4021] → [3011] [4012] → [3002] Total rate of
(n = 4) → (n′ = 3), s−1

(pµ)n + d→ (pµ)n′ + d

0.001 0.755 × 108 0.181× 1012 0.367 × 1012 0.156× 1012 7.67 × 1010

0.004 0.378 × 108 0.906× 1011 0.183 × 1012 0.780× 1011 3.83 × 1010

0.01 0.239 × 108 0.573× 1011 0.116 × 1012 0.494× 1011 2.43 × 1010

0.04 0.120 × 108 0.287× 1011 0.581 × 1011 0.247× 1011 1.22 × 1010

0.1 0.762 × 107 0.182× 1011 0.369 × 1011 0.157× 1011 7.72 × 109

0.5 0.353 × 107 0.840× 1010 0.169 × 1011 0.721× 1010 3.54 × 109

1.0 0.261 × 107 0.615× 1010 0.133 × 1011 0.526× 1010 2.71 × 109

5.0 0.244 × 107 0.349× 1010 0.782 × 1010 0.292× 1010 1.56 × 109

10.0 0.296 × 107 0.345× 1010 0.757 × 1010 0.293× 1010 1.53 × 109

50.0 0.147 × 1010 0.631× 1010 0.117 × 1011 0.548× 1010 2.83 × 109

100.0 0.569 × 1010 0.120× 1011 0.195 × 1011 0.106× 1011 5.34 × 109

(dµ)n + p→ (dµ)n′ + p

0.001 0.399 × 1013 0.675× 1012 0.231 × 1013 0.548× 1012 6.48 × 1011

0.004 0.200 × 1013 0.338× 1012 0.115 × 1013 0.274× 1012 3.24 × 1011

0.010 0.126 × 1013 0.214× 1012 0.730 × 1012 0.173× 1012 2.05 × 1011

0.040 0.632 × 1012 0.107× 1012 0.365 × 1012 0.867× 1011 1.03 × 1011

0.1 0.400 × 1012 0.678× 1011 0.231 × 1012 0.550× 1011 6.50 × 1010

0.5 0.181 × 1012 0.308× 1011 0.105 × 1012 0.249× 1011 2.95 × 1010

1.0 0.130 × 1012 0.222× 1011 0.751 × 1011 0.180× 1011 2.12 × 1010

5.0 0.674 × 1011 0.114× 1011 0.377 × 1011 0.110× 1011 1.10 × 1010

10.0 0.550 × 1011 0.806× 1010 0.257 × 1011 0.663× 1010 7.98 × 109

50.0 0.660 × 1011 0.113× 1011 0.245 × 1011 0.982× 1010 9.39 × 109

100.0 0.957 × 1011 0.198× 1011 0.370 × 1011 0.176× 1011 1.49 × 1010
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Table 5. Partial rates (in s−1) of transitions [nn1n2m] → [n′n′
1n

′
2m] for charge exchange (1) at (n = 4) → (n′ = 3)

ε, eV [4030] → [3020] [4120] → [3110] [4021] → [3011] [4012] → [3002] Total rate of
(n = 4) → (n′ = 3), s−1

(pµ)n + d→ (dµ)n′ + p

0.001 0.226 × 108 0.267× 1012 0.538 × 1012 0.233× 1012 1.13 × 1011

0.004 0.113 × 108 0.134× 1012 0.269 × 1012 0.116× 1012 5.65 × 1010

0.01 0.715 × 107 0.846× 1011 0.170 × 1012 0.736× 1011 3.57 × 1010

0.04 0.358 × 107 0.424× 1011 0.853 × 1011 0.369× 1011 1.79 × 1010

0.1 0.228 × 107 0.269× 1011 0.542 × 1011 0.234× 1011 1.13 × 1010

0.5 0.106 × 107 0.124× 1011 0.248 × 1011 0.107× 1011 5.21 × 109

1.0 0.780 × 106 0.907× 1010 0.195 × 1011 0.783× 1010 3.98 × 109

5.0 0.730 × 106 0.512× 1010 0.115 × 1011 0.432× 1010 2.29 × 109

10.0 0.890 × 106 0.504× 1010 0.111 × 1011 0.433× 1010 2.24 × 109

50.0 0.461 × 1010 0.893× 1010 0.166 × 1011 0.784× 1010 3.90 × 109

100.0 0.175 × 1011 0.164× 1011 0.267 × 1011 0.147× 1011 7.29 × 109

(dµ)n + p→ (pµ)n′ + d

0.001 0.120 × 1013 0.452× 1012 0.154 × 1013 0.364× 1012 3.41 × 1011

0.004 0.601 × 1012 0.226× 1012 0.769 × 1012 0.182× 1012 1.70 × 1011

0.01 0.380 × 1012 0.143× 1012 0.487 × 1012 0.115× 1012 1.07 × 1011

0.04 0.190 × 1012 0.716× 1011 0.244 × 1012 0.576× 1011 5.40 × 1010

0.1 0.120 × 1012 0.454× 1011 0.154 × 1012 0.365× 1011 3.41 × 1010

0.5 0.546 × 1011 0.206× 1011 0.699 × 1011 0.166× 1011 1.55 × 1010

1.0 0.392 × 1011 0.149× 1011 0.502 × 1011 0.120× 1011 1.11 × 1010

5.0 0.204 × 1011 0.772× 1010 0.253 × 1011 0.731× 1010 5.83 × 109

10.0 0.167 × 1011 0.546× 1010 0.173 × 1011 0.445× 1010 4.10 × 109

50.0 0.205 × 1011 0.793× 1010 0.172 × 1011 0.684× 1010 4.78 × 109

100.0 0.303 × 1011 0.144× 1011 0.268 × 1011 0.127× 1011 7.73 × 109
7. RESULTS AND DISCUSSION

The results of calculations are presented in
Figs. 4–8 and Tables 2–5.

The rates of the quasi-resonance charge-exchange
reaction (1) n→ n are one order of magnitude higher
than the rates of the Coulomb deexcitation (2) ones
in the case of reaction (dµ)n + p→ (dµ)n−1 + p
and two orders of magnitude less than the rates
of reaction (pµ)n + d→ (dµ)n−1 + p. The highest
rate of the Coulomb deexcitation partial transitions
P

[nn1n2m] → [n′n′1n
′
2m

′] at n = 4 is the rate of tran-
sition [4030] → [3020], which is determined by the
T -type HC at Rq = 46.

The energy dependence

σij(ε) ∼ const/ε (40)

at ε < 1 eV is determined mainly byG factor (36) and
follows from (28) because Pij ≈ const at ε→ 0.

The described method is adequate at n > 2 only
because at n ≤ 2 the contribution of the polarization
potential ∼ R−4 becomes significant in comparison
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with the adiabatic terms. The interference effects,
which are important at small n, are also not taken
into account in the presented method. In both cases,
it is necessary to use rigorous ab initiomethods, e.g.,
the adiabatic hyperspherical approach [17, 18], which
is now in progress. At n = 3, they can be mutually
calibrated.

The method is illustrated on the collision pro-
cesses of muon atomic physics, but after simple scal-
ing the obtained results also describe the collision
processes involving aπ−-, aK−-, and ap̄-hydrogen
isotope exotic atoms (a = p, d, t).

We did not take into account the screening effects,
which are especially significant at low collision energy
for n � 5. Such calculations were done before [4–
7] and we concentrated on the methodical aspects of
the solution of the pure Coulomb three-body problem
without any additional complications related to par-
ticular experiments.

The HC method gives an effective tool for obtain-
ing reliable numerical results, but at the same time it
provides a transparent picture of inelastic transitions
(in strong contrast to fully numerical approaches).
Again, it is unique in providing not only a calcula-
tional prescription for quantum-mechanical transi-
tions but also a direct insight into the fundamental
dynamics of inelastic processes. Therefore, it is a
perfect method complementary to exact but highly
involved numerical ones and an indispensable tool in
the analysis of the results of such methods.
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Abstract—The fusion–fission reaction is treated as a multistep process. Langevin equations are used
to describe the evolution of the system at each reaction stage. The parameters of the fusion process are
calculated at the first stage. The results obtained in the input channel are employed as initial conditions
in calculating the features of the fission process. The cross sections for fusion and fission are successfully
described, and the cross sections for the formation of evaporation residues are estimated. In addition, the
procedure used makes it possible to describe the mass distribution of fission fragments and the fragment-
mass dependence of the multiplicity of prefission neutrons and to determine the mass–energy distribution
of fission fragments. From the calculations, it follows that all the fission features of the reaction in question
can be reproduced without considering the formation of a classical compound nucleus. The reaction times
are so long that it is impossible to separate experimentally such events from the case of true fission through
a compound nucleus. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For a long time, the nuclear fission and fusion pro-
cesses had been treated separately. To a considerable
extent, this was motivated by the fact that experimen-
tal investigations dealt primarily with the fusion of
nuclei with light ions, in which case it was assumed
that the light projectile is very fast absorbed by the
target nucleus. As the projectiles used became heav-
ier, the situation changed significantly [1]; presently,
when experimentalists have already implemented the
acceleration of uranium nuclei, the separation of the
fusion and the fission process does not seem justified.

The model of a dinuclear system [2] is one of
the versions of such an analysis. In this model, it is
assumed that objects constituting the system formed
retain their individual features. In [2], the parameters
of the input channel are included in the consideration
through the probability of the formation of a dinuclear
system, this quantity, which is determined on the
basis of the optical model, being thus the only piece
of information about the input channel in the memory
of the system.Without discussing the advantages and
disadvantages of the model in question, we only note
that different approaches are employed within this
model in taking into account information concerning
the input channel and in performing a further analysis
of the fission process.

1)Institute for Nuclear Research, National Academy of Sci-
ences of Ukraine, pr. Nauki 47, Kiev, 252028 Ukraine.

2)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.
1063-7788/02/6509-1588$22.00 c©
In this context, the models developed by Gon-
char [3] and by Pomorski [4] seem more appealing.
The inclusion of input-channel parameters (angular-
momentum dependence of the probability of com-
pound-nucleus formation) [5] and a further consid-
eration of the evolution of the system formed [3] are
based on the same approach. However, the model of a
dinuclear system starts from the instant at which the
nuclei involved come into contact, while the models
proposed in [3, 4] skip this instant altogether. Hav-
ing determined the angular-momentum distribution
of product nuclei, the authors of those models use
it to calculate the parameters of the fission process;
thereby, they describe the evolution of the system from
the ground state without addressing the question of
how this system has found its way to the ground state.
We deem that this results in the loss of a consider-
able amount of information about the evolution of the
system.

In the present study, we aim at filling this gap—
namely, at considering the evolution of a system in-
volved in the fusion–fission reaction within a unified
approach based on Langevin equations. For a test, we
will take the 18O + 208Pb reaction, because there is
a vast body of experimental data on this reaction and
because the spherical shape of the participant nuclei
facilitates the calculations.

2. DESCRIPTION OF THE MODEL

In treating the fusion–fission reaction, we break
down our calculations here into two steps. At the
2002 MAIK “Nauka/Interperiodica”



MULTIDIMENSIONAL LANGEVIN APPROACH 1589
first step, we consider the process through which the
colliding nuclei come into contact. Using information
obtained at the first step, we then proceed to analyze
the evolution of the system formed. Unfortunately,
there is no appropriate nuclear-shape parametriza-
tion that would make it possible to treat the two
stages simultaneously; therefore, we employ an in-
dividual form of parametrization for each step. The
calculation of the evolution process at each such step
is performed for a large number of collisions. In the
discussion that follows, each specific collision is re-
ferred to as a trajectory.

2.1. Equations of Motion

For dynamical equations, we take Langevin equa-
tions. In order to describe the fusion process, we use
the equations [6]

dr

dt
=
pr
m
, (1)

dpr
dt

= − ∂V (r,α)
∂r

− L2

mr3
−Kr

r

dr

dt
(2)

−
∑
j

Kj
r

πj
Dj

+ ξ,

dαi
dt

=
πi
Di
, (3)

dπi
dt

= − ∂V (r,α)
∂αi

−Kr
i

pr
m

−
∑
j

Kj
i

πj
Dj

(4)

− Ciαi −
1
2
ξ.

Here, r is the distance between the centers of colliding
nuclei; pr is themomentum conjugate to this variable;
m is the reduced mass; V (r,α) is the interaction
energy of the nuclei, which includes the Coulomb
and the nuclear part (the Gross–Kalinowski potential
VGK [7] is taken for the nuclear part); and Kj

i are the
friction parameters with respect to the corresponding
degrees of freedom. The second pair in the above
set of equations describes changes in the shapes of
colliding nuclei, with αi and πi being, respectively,
collective coordinates describing the shape of a nu-
cleus and the momenta conjugate to them (the in-
dex i distinguishes the target and the projectile); Di

and Ci are, respectively, the inertial and the friction
parameters for the coordinates that describe nuclear
shapes (these parameters were determined within the
liquid-drop model). The quantity ξ takes into account
random effects on the system—that is fluctuations.
The fluctuations depend on the excitation energy of
intrinsic degrees freedom; therefore, they are equal to
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Fig. 1. Dependence of (thick curve) the potential energy
of colliding ions (left scale along the ordinate) on the
distance r between them and r dependence of the mean
values of the deformations of (curve connecting boxes)
the target ion and (curve connecting circles) the projectile
ion (right scale along the ordinate). Also shown schemat-
ically are the shapes of the ions (on the right) at large
distances and (on the left) at the instant close to that at
which they come into contact.

zero at the initial instant. As the nuclei approach each
other, part of the kinetic energy is converted into the
internal energy because of friction; this leads to the
emergence and growth of fluctuations.

The set of Eqs. (1)–(4) does not include an equa-
tion that would describe the variation of the angular
momentum L of the system. In our calculations, we
assumed that this angular momentum is constant for
each specific trajectory.

For a mononuclear system, the set of equations in
question takes the form [8]

dqi
dt

= µijpj, (5)

dpi
dt

= −∂V (q)
∂qi

− 1
2
pjpk

∂µjk
∂qi

− γijµjkpk + ξi, (6)

where q are collective coordinates describing the
shape of thismononuclear system;p are themomenta
conjugate to them; µjk and γjk are, respectively, the
inertial and the friction parameters. For a mononu-
clear system, these parameters were calculated in [9]
on the basis of the linear-response model. We believe
that, here and below, it is more appropriate to refer
to the system in question as a mononuclear system
rather than as a compound nucleus. This is because
the use of the latter term tacitly assumes the occur-
rence of a spherical nucleus in the ground state, but,
in our calculations, such a situation is not frequently
realized.

2.2. Collective Coordinates
The deformation of colliding nuclei has a pro-

nounced effect on the process through which these
2
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nuclei come into contact; therefore, it is necessary to
parametrize their shapes. For this purpose, we use
Legendre polynomials of second degree; that is,

Ri(x) = λ−1R0(1 + α2iP2(x)),

where R0 is the radius of a spherical nucleus, the
index i distinguishes the target and the projectile, the
quantity α2i specifies the deformation of an ion, and λ
is a normalization factor that is determined from the
volume-conservation condition. In considering the
evolution of the system, it is assumed that the sym-
metry axes of colliding ions coincide (see Fig. 1); that
is, the rotation of the ions is disregarded. As a result,
the fusion cross section is somewhat reduced [10], but
we believe that this approximation is quite reasonable.

At the stage where the participant nuclei have
already come into contact and where they are con-
sidered as a discrete unit, their shape is described in
terms of Cassinian ovals [11]; that is,

ρs(x) =
1√
2
[(R4 + 2sR2(2x2 − 1) + s2)1/2

−R2(2x2 − 1) − s]1/2,

z(x) =
sign(x)√

2
[(R4 + 2sR2(2x2− 1)+ s2)1/2 (7)
PH
+R2(2x2 − 1) + s]1/2,

R(x) = λ−1R0(1 + α1P1(x) + α4P4(x)),

s = εR2
0,

ε=
1
4
(α−1)



(
1+
∑
m=1,4

αm

)2

+

(
1+
∑
m=1,4

(−1)mαm

)2



+
1
2
(α+1)


1+

∑
m=1,4

(−1)mα2m(2m− 1)!!/(2mm!)




2

,

where the coordinates α, α1, and α4 are taken for
variables specifying the shape ρs(x) of the relevant
mononuclear system. They define, respectively, elon-
gation (the configuration is spherical at α = 0 and is
that of two tangent fragments at α = 1), asymmetry,
and the dimension of the neck between fragments.
The quantity s is the square of the distance between
the focus of Cassinian ovals and the origin of coor-
dinates. We will consider only axisymmetric shapes
that are obtained by rotating ρs about the symmetry
axis (z axis).

Thus, we use three parameters both in calculating
collision dynamics and in calculating the evolution
of the resulting simply connected system. These are
the distance r between the centers of colliding ions
and their deformations αi in the first case and the
parameters α, α1, and α4 in the second case.

2.3. Potential Energy

In calculating fusion dynamics, the interaction
of the ions involved was described in terms of the
Gross–Kalinowski potential [7]

VGK =
1
2
(V12 + V21), (8)

V12 =
∫
V1(r − r′, α1)ρ2(r′, α2)dr′,

Vi(r, αi) =
Vp

1 + exp
(
r−Rp(αi,x)

ap

) ,

Rp(αi, x) = 1.25A1/3
i (1 + αiP2(x)) [fm],

ρi(r, αi) =
ρ0

1 + exp
(
r−Rd(αi,x)

ad

) ,

ρ0 = 0.17 fm−3, ad = 0.54 fm,

Rd(αi, x) = (1 + αiP2(x))

× (1.12A1/3
i − 0.86A−1/3

i ) [fm].
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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The parameters of the potential Vi(r, αi) (Vp and
ap) were chosen in accordance with [12]. In the dy-
namical calculations, we used a mesh of dimensions
100 × 41 × 41 (r × αp × αt).

In computing the nuclear potential energy, we took
into account shell corrections by means of a proce-
dure similar to that in [13]. As the system in question
undergoes evolution, part of its energy associated
with collective degrees of freedom is converted into
energy associated with intrinsic degrees of freedom.
This process, which leads to the damping of shell ef-
fects, was taken into account by the method proposed
in [14].

Figure 2 shows the potential-energy chart in
terms of the coordinates α and α1 at a fixed value
of the deformation parameter α4, which, as was
indicated above, determines the thickness of the neck
of our mononuclear system. It can be seen that,
with increasing temperature (the data in Fig. 2 are
presented for its values of 0.5, 1.0, and 1.5 MeV),
the potential energy is smoothed out, becoming ever
more similar to the liquid-drop potential energy—in
particular, there appears one fission valley instead of
two. Thus, we can conclude that, depending on the
internal excitation of the system, the mass distribu-
tion of fission fragments will be either asymmetric or
symmetric, but an intermediate shape of it may also
be realized.

2.4. Transition from Calculating the Fusion Cross
Section to Calculating the Parameters of the Fission

Process

At the first stage, we solve Eqs. (1)–(4), whereby
we obtain information about the input channel. This
information includes the probability that a mononu-
clear system is formed, the excitation energy of the
system at the instant of touching, and the deforma-
tions of fragments. Data obtained by considering the
input channel are displayed in Fig. 3.

For the case of the laboratory energy of 90 MeV,
Fig. 3a shows the initial-angular-momentum depen-
dence of the excitation energy at the instant when
colliding ions come into contact. Here, we can clearly
see that, for each specific value of the angular mo-
mentum, we have a distribution featuring a maxi-
mum. With increasing angular momentum, the en-
ergy value corresponding to this maximum tends to
zero. This reflects the fact that the rotational energy
of the system increases in this case.

Figure 3b presents the probability of touching as
a function of the initial angular momentum. Here,
we can clearly see the distinction between the fusion
process occurring at an energy considerably exceed-
ing the barrier height and the fusion process occur-
ring at an energy approximately equal to the barrier
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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Fig. 3. (a) Internal excitation energy of the mononuclear
system at the instant when colliding ions touch each
other and (b) coefficient of touching versus the initial
angular momentum at Elab = (�) 78 and (�) 90 MeV;
(c) distribution of the deformations of the target and the
projectile at the instant of touching (the deformation of
the projectile and the deformation of the target are plotted
along the ordinate and the abscissa, respectively). These
distributions are used to determine the initial conditions
in calculating the evolution of the mononuclear system
formed.

height. The graph starting from unity corresponds
to the projectile-ion energy equal to 90 MeV. At the
projectile-ion energy of 78 MeV, the probability of
touching is very small, in which case the maximum
does not exceed 0.2. In either case, the inclusion of
fluctuations leads to a smooth decrease in the fission
probability from a maximum value to zero.

The distribution of the deformations of colliding
nuclei at the instant of touching is given in Fig. 3c.
These deformations are negative, which corresponds
to oblate shapes. Themean values of the deformations
2
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in question are shown in Fig. 1 versus the distance
of the ions approaching each other. Proceeding to
calculate the evolution of the mononuclear system
formed, we chose the initial angular momentum, the
excitation energy of the system, and the deformations
of colliding ions (it is these deformations that deter-
mine the shape of the mononuclear system formed)
by the Neumann method (“hit-and-miss” method)
on the basis of the distributions displayed in Fig. 3.
All these data were initial conditions for Eqs. (5) and
(6)—namely, the initial angular momentum deter-
mines the rotational energy of the system, while the
initial excitation energy specifies the temperature of
the system and, hence, the degree of damping of shell
effects. In addition, we assumed that the energy asso-
ciated with collective degrees of freedom is given by

Ekin = Etot − Vpot − Eint,

where Etot is the total energy of the system as de-
termined from the energy-balance equation on the
basis of the initial energy of colliding ions, Vpot is
the potential energy of the system (it is determined
by collective coordinates—that is, by the shape of the
mononuclear system formed), and Eint is the internal
excitation energy of the system.

3. RESULTS AND DISCUSSION

For the case of spherical colliding nuclei, the thick
curve in Fig. 1 depicts the interaction energy as a
function of the distance between them (left scale
along the ordinate). When the projectile nuclei are
deformed, the potential changes slightly. The curves
P

connecting symbols illustrate changes suffered by
the mean deformation of the projectile nuclei as they
approach the target (right scale along the ordinate),
the curve connecting circles (boxes) corresponding
to a lighter (heavier) nucleus. It can clearly be
seen that, far off the barrier, there are virtually no
deformations or they are positive. Upon passing the
barrier, the deformations become negative; that is,
the ions assume an oblate shape. Of course, this
leads to an increase in the Coulomb energy. The
longer the distance that the ion travels on passing the
barrier, the greater the values that the deformations
take; it is noteworthy that, in contrast to the case
where the deformations of the ions are disregarded
(that is, colliding nuclei are taken to be spherical),
the point at which the ions come into contact can
be achieved in the calculations very rarely, if at all.
In our calculations, we therefore went over to a
mononuclear system as soon as the ions approached
at a distance that was shorter than the half-sum of
the diffuseness parameters of the potentials Vi, ap.
The cross section obtained in this way was identified
with the cross section for touching—that is, with the
cross section for the formation of the mononuclear
system. In Fig. 4, the values of these cross sections
are represented by upward oriented open triangles.

In the course of ensuing evolution, the system
being considered can undergo breakup almost imme-
diately or can walk for some time over the surfaces
depicted in Fig. 2. Depending on the results of these
walks, we will obtain (see Fig. 4) either the fusion
cross section (open squares) or the fission cross sec-
tion (open circles). In Fig. 4, closed boxes represent
the experimental values of the fusion cross section
from [15].

It can be seen that the values obtained for the
fusion cross section and for the fission cross section
agree with experimental data only at high projectile
energies. As the projectile energy approaches the
fission barrier in magnitude, the effect of tunneling
through the barrier comes into play. In our calcu-
lations, this possibility was disregarded (recall that
the model developed in [6] takes into account only
subbarrier processes).

The problem of separating fission events from
events of pure fusion (quasifission) is of interest
and importance in itself. The results displayed in
Fig. 4 were obtained in the following way. The entire
region of deformations of the mononuclear system
was broken down into two parts. The first part—that
from the line of touching (α = 1) to the stability line
(see Fig. 2)—reflects the position in which the system
loses hydrodynamic stability [16]; that is, the system
moving from the ground state (α = 0) can undergo
disintegration into two fragments at any instant of
time as soon as it intersects the stability line. But if
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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of reaction products (it corresponds to the thick curve
in Fig. 5a); and (c) same distribution as in Fig. 5b, but
only for fission events (this distribution corresponds to the
curve connecting circles in Fig. 5a).

the system traverses the stability line, moving from
the point of touching at α = 1, it becomes, on the
contrary, stable with respect to disintegration into
parts. Thus, we deem that all trajectories that traverse
the stability line α ∼ 0.94 lead to fusion. If trajectories
traverse the line α = 0.83, the respective events are
assumed to be fission events. We note that this value
of α corresponds to the position of the fission barrier if
one moves from the ground state and to the fusion
barrier if one moves from the point of touching. If
the system underwent disintegration prior to reaching
the deformation value of α = 0.94, this event is, in all
probability, that of transfer reactions or that of some
other fast processes (for example, reactions of deep-
inelastic transfer). At this stage, we are not interested
in such processes.

In order to identify, as fission events, events fea-
turing deformations more compact than that of α =
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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0.83, one needs some arguments. We can adduce a
few of them.

The first argument in favor of such an identifi-
cation is provided by the mass–energy distribution
of fission fragments. Figure 5 displays such a dis-
tribution prior to (Fig. 5b) and after (Fig. 5c) the
selection of fission events. In addition, Fig. 5a shows
the distribution of events with respect to the time
of the process (from the instant of touching to the
instant of fragment separation). The mass–energy
distribution in Fig. 5b and the thick curve in Fig. 5a
(time dependence) reflect the full pattern—that is, all
events. This full pattern is then subjected to selections
which consist in rejecting events where the minimum
value of the deformation is greater than α = 0.83. As
a result, the pattern changes drastically—all events
featuring a high asymmetry of fragments have not
passed the above selections (the respective mass–
energy distribution is shown in Fig. 5c), and only
the central section of the distribution has survived.
But distributions of precisely this type are obtained
in experiments that study mass–energy distributions
of fission fragments [17]. Concurrently, short-lived
events disappear from the distribution with respect to
reaction times (curve connecting circles in Fig. 5a)—
there remained only times longer than 10 × 10−21 s.
2
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We note that there are virtually no events whose du-
ration is longer than 150 × 10−21 s. A few events that
could not reach the scission point could be assessed
very roughly as those that have led to evaporation
residues (in Fig. 4, the corresponding cross sections
are represented by open inverted triangles).

The next argument can be inferred from the mass
distribution of fission fragments (left scale along the
ordinate in Fig. 6) and from the neutron multiplicity
corresponding to it (right scale along the ordinate
in this figure). Figure 6 shows mass distributions of
fission fragments and neutron multiplicities for two
values of the projectile-ion energy. The histogram
and open boxes represent the results of the calcu-
lations, while closed circles (mass distribution) and
curves connecting closed boxes (neutronmultiplicity)
correspond to experimental data from [18]. It can
be seen that, at the laboratory energy of 90 MeV
(lower panel), the agreement is fairly good both for
the mass distribution and for the neutron multiplicity.
Not only is this agreement qualitative, but it is also
quantitative. At the energy value of 78 MeV (upper
panel), the agreement is poorer. Here, the projectile
energy is nearly equal to the barrier height in the
input channel. It can be seen from Fig. 4 that, in
P

this case, the value that we obtained for the cross
section for touching is smaller than the experimental
cross section for fusion. All this suggests that tun-
neling through the barrier must be taken into account
at such energies. Nonetheless, the mass distribution
obtained at Elab = 78 MeV reproduces experimental
data rather well. At this energy value, the influence
of shell effects is already noticeable; in addition, the
distribution exhibits shoulders corresponding to an
asymmetric disintegration. The neutron multiplicity
calculated for this case falls short of experimental
data; it even fails to reproduce a qualitative pattern.
According to the calculations, the multiplicity is vir-
tually independent of the masses of the fragments,
whereas, in experiments, a modest minimum in the
neutron multiplicity is observed for symmetric fission.
Possibly, better agreement would be attained upon
taking into account the tunneling effect in the input
channel.

Figure 7a displays the distribution of all decay
events with respect to the minimum deformation.
Figure 7b shows the multiplicity of neutrons emitted
at a given deformation; here, the thick curve, the curve
connecting triangles, and the curve connecting boxes
were calculated for, respectively, all events involving
neutron emission, events featuring deformations less
than α = 0.94, and events where α < 0.64. Figure 7c
gives the mean number of neutrons per decay as a
function of α at two values of Elab. As follows from
the data presented in Fig. 7b, the bulk of neutrons
are evaporated in the region near the barrier. This is
because the majority of the trajectories do not pass
behind the barrier. If one considers events character-
ized by a minimal deformation such that α < 0.64,
it can be seen that, for them, there is also a modest
maximum in the barrier region. By and large, the
probability of neutron evaporation is rather uniformly
distributed along the deformation. But if we address
the neutron multiplicity per fission event, we can see
from Fig. 7c that, from α = 0.94, this multiplicity
undergoes virtually no changes; hence, a considerable
part of the trajectories do not pass behind the barrier.

4. CONCLUSION

Within a unified approach, we have calculated
both the fusion and the fission cross section; in ad-
dition, we have estimated the cross section for the
formation of evaporation residues. We have also ob-
tained the mass–energy distribution of reaction prod-
ucts, the multiplicity of prefission neutrons as a func-
tion of the fragment mass, and the mass-number de-
pendence of the fragment yield. A comparison of these
theoretical results with experimental data has re-
vealed that this approach provides satisfactory agree-
ment with these data at projectile-ion energies above
the fusion barrier.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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An analysis of the results obtained in the present
study has led to the conclusion that, even if the system
being considered was unable to reach the state of a
classical compound nucleus, the final pattern showed
absolutely no difference from that in which a com-
pound nucleus was present. In addition, it has been
found that, in the process of evolution, the majority
of the nuclei do not reach deformations more com-
pact than that at the saddle-point configuration. The
motion of the nuclei from the point of touching to the
ground state was accompanied by the emission of a
considerable number of neutrons in the barrier region.
Because of the loss of energy through this emission,
the system could overcome the barrier and decayed
into fragments, not reaching the ground state. In
order to reach the ground state, the system must pos-
sess a considerable amount of energy for passing the
saddle-point configuration. By way of example, we
indicate that, in synthesizing superheavy elements,
experiments where the system being studied emitted
three to four neutrons prior to reaching the ground
state proved to be successful.

Of course, we are aware that our result was ob-
tained in studying a specific system and that further
investigations are required. Moreover, the agreement
with experimental data in the energy region near the
Coulomb barrier is rather poor. Our further plans
include undertaking efforts aimed at improving a the-
oretical description in this region.
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Abstract—The charge distribution of fragments originating from the fission of the 236U compound nucleus
is calculated within a stochastic approach based on Langevin equations. The elongation coordinate, the
neck-thickness coordinate, and the charge-asymmetry coordinate are chosen as collective variables. The
friction parameter of the charge mode is calculated on the basis of two nuclear-viscosity mechanisms,
that of one-body and that of two-body dissipation. It is shown that the Langevin approach is applicable to
studying isobaric distributions. In addition, the charge distribution in question is studied as a function of
the excitation energy of the compound nucleus and as a function of the coefficient of two-body viscosity.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the last two decades, the approach based on the
set of multidimensional Langevin equations [1–6] has
been the most popular method for solving problems
of nuclear dynamics, including those that are asso-
ciated with the fission of highly excited compound
nuclei. In theoretical investigations into these realms,
preference was given to this approach primarily be-
cause Langevin equations can be efficiently solved to
a preset accuracy by using conventional numerical
schemes. It is obvious that, in developing a theoretical
approach to problems of the fission process (in partic-
ular, a Langevin approach), it is necessary to adapt it
in such a way as to meet the demand for describing
as vast a body of experimental data as is possible.
This will make it possible to assess the degree of
universality of the approach used and to reconstruct
the dynamic pattern of the fission process in minute
detail. As a matter of fact, all the aforesaid furnishes
a sufficient motivation for solving the set of Langevin
equations for as many collective variables as is possi-
ble. However, the introduction of each new collective
variable increases dramatically the volume of rele-
vant computations and, consequently, the machine
time. This is the reason why, until recently, only one-
(see [7, 8]) and two-dimensional problems were com-
prehensively investigated within the Langevin ap-
proach. Two-dimensional calculations enable one to
obtain either energy distributions for symmetric fis-
sion [2, 9, 10] or the mass distribution of fission frag-
ments that corresponds to the most probable kinetic
energy [3, 4]. However, the latest studies in these
realms resulted in formulating a model that makes it
possible to analyze, on the basis of three-dimensional
1063-7788/02/6509-1596$22.00 c©
Langevin equations, such features of the fission of
highly excited nuclei as mass–energy distributions
of fission fragments, multiplicities of prefission light
particles, and fission times [5, 6].

The charge distribution of fragments, which is an
important feature of the fission process indeed, has
not yet been investigated within the Langevin ap-
proach. This is partly due to the paucity of exper-
imental information about the isobaric distribution
of fragments originating from the fission of excited
compound nuclei. Moreover, a reliable model for cal-
culating transport coefficients of the charge mode has
yet to be developed.

In view of this, we aim here primarily at demon-
strating the applicability of the Langevin approach
to describing charge distributions and at revealing
general regularities in the evolution of the charge
degree of freedom. On the basis of three-dimensional
Langevin equations, we explore the charge distribu-
tion of fission fragments by considering the reaction
4He + 232Th→ 236U, where the excitation energy
of the compound nucleus formed varies in the range
E∗ = 39–160MeV. We investigate the charge distri-
bution for the case of disintegration into fragments
of equal masses. The mass parameter and the fric-
tion parameter of the charge mode are calculated on
the basis of the hydrodynamic model. In addition,
an attempt is made to employ, in dynamical calcu-
lations, the one-body nuclear-viscosity mechanism
to describe energy dissipation associated with the
evolution of the charge mode.
2002 MAIK “Nauka/Interperiodica”
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2. DESCRIPTION OF THE MODEL

2.1. Parametrization of the Nuclear Shape and
Collective Coordinates

It was indicated above that, in studying the iso-
baric distribution, we perform our calculations for the
symmetric fission of the 236U nucleus. The popular
{c, h, α} parametrization [11] is used here for the
profile function ρs(z), whose rotation about the sym-
metry axis specifies the shape of the nuclear surface.
In the symmetric case (α = 0) considered here, the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
equation of the nuclear surface in terms of cylindrical
coordinates has the form

ρ2s(z) =

{(
c2 − z2

) (
As +Bz2/c2

)
, B ≥ 0(

c2 − z2
)
As exp(Bcz2), B < 0,

(1)

where ρs is a polar radius of a point at the surface of
the nucleus being considered and z is the coordinate
along its symmetry axis. The quantities As and B are
expressed in terms of the nuclear-shape parameters
(c, h) as [2, 11]
As =




c−3 − B
5
, B ≥ 0

−4
3

B

exp(Bc3) +
(
1 +

1
2Bc3

)√
−πBc3erf(

√
−Bc3)

, B < 0;

B = 2h+
c− 1
2
, (2)
where c is the elongation parameter (the length of a
nucleus in units of the radius R0 of the initial sphere
is 2c) and h characterizes the change in the neck
thickness at a given elongation.
The convenience in implementing a numerical al-

gorithm for solving Langevin equations and its abil-
ity to tackle specific problems often depends on the
choice of collective coordinates. In the model pro-
posed here, the first two collective coordinates de-
scribe the evolution of the nuclear shape. In our cal-
culations, these are geometric parameters of the nu-
clear shape [(c, h)]. The third coordinate ηZ = (ZR −
ZL)/(ZR + ZL), where ZR and ZL are the charges
of, respectively, the right- and the left-hand frag-
ment, specifies the distribution of the charge among
fission fragments. Here and below, the subscripts R
and L label quantities referring to the right- and
the left-hand fragment. The variable ηZ was often
used as a charge coordinate [12, 13]; in our opin-
ion, it is the most convenient. We note that, in [14],
Strutinsky emphasized the advantages of the mass-
asymmetry coordinate ηA = (AR −AL)/(AR +AL),
whose structure is identical to the structure of the
charge coordinate ηZ chosen here.

2.2. Equations of Motion
Within the stochastic approach developed in [1, 7,

15], the evolution of collective degrees of freedom is
treated as the motion of a Brownian particle in a heat
bath formed by single-particle degrees of freedom of
a nucleus. In the case of three collective coordinates,
the set of coupled Langevin equations has the form

q̇i = µijpj, (3)
ṗi = −1
2
pjpk

∂µjk
∂qi

− ∂F
∂qi

− γijµjkpk + θijξj ,

where i, j, k = 1, 2, 3; q = (c, h, ηZ ) is the set of col-
lective coordinates; p = (pc, ph, pηZ

) is the set of mo-
menta conjugate to them; mij (‖µij‖ = ‖mij‖−1) is
the tensor of inertia; γij is the tensor of friction; F (q)
is the free energy of the system being considered; θijξj
is a random force; and ξi is a random quantity that
possesses the following statistical properties:

〈ξi〉 = 0, (4)

〈ξi(t1)ξj(t2)〉 = 2δijδ(t1 − t2).
In (4) and below, the angular brackets mean averag-
ing over the statistical ensemble.
The amplitude θij of the random force is related to

the diffusion tensorDij by the equation

Dij = θikθkj. (5)

The eigenvalues and the eigenvectors of the diffusion
matrixDij , which are used [7] to calculate the random
force, were determined by the Jacobi method [16]. As
to the diffusion tensor, it was found from the Einstein
relation

Dij = Tγij. (6)

We emphasize that the charge mode is finite; in
Eq. (6), it is therefore necessary to employ, instead
of temperature T , the effective temperature T ∗

Z [17]
that takes into account quantum oscillations in the
charge coordinate and which is given by

T ∗
Z =

�ωZ
2
coth

(
�ωZ
2T

)
, (7)
2
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Fig. 1. Dependences of various quantities on the fission
coordinate c along the mean trajectory: (solid curve) ef-
fective temperature of the nucleus for the charge degree
of freedom according to the calculation by formula (7),
(dashed curve) thermodynamic temperature of the nu-
cleus as given by Eq. (11), and (dotted curve) half the
energy of charge-density oscillations (�ωZ/2). The cal-
culations have been performed forE∗ = 110MeV.

where ωZ is the frequency of oscillations in ηZ . We
note that, in contrast to what occurs in the case of
a charge distribution, investigation of mass distribu-
tions does not require introducing the effective tem-
perature with respect to the mass-asymmetric coor-
dinate because, for this collective mode, the frequency
of oscillations is much less than the temperature
T of the heat bath [18]. In that case (T � �ωA/2,
where ωA is the frequency of oscillations in the mass-
asymmetric coordinate), the effective temperature T ∗

A
is approximately equal to the temperature T . As is
shown in Fig. 1, the frequency of oscillations in the
charge mode is so great over the entire interval of
descent from the saddle to the scission point along
the mean trajectory that the temperature T of the
heat bath and the quantity �ωZ are on the same
order of magnitude. In calculating the random-force
component along the coordinate ηZ , it is therefore
necessary to use the effective temperature. By a mean
trajectory, we imply that which is obtained by aver-
aging Langevin trajectories over the ensemble. Upon
averaging of this type, the random force appearing in
the set of Eqs. (3) vanishes by virtue of relations (4),
with the result that the set of Langevin equations
reduces to a set of generalized Hamilton’s equations.
Our calculations have revealed that the use of the ef-
fective temperature T ∗

Z instead of the thermodynamic
temperature T leads to an increase of 15% in the
variance of the charge distribution.
A numerical integration of the set of Eqs. (3)

was performed on the basis of the first-order Heuen
scheme [7]. For the initial values of the collective
coordinates, we took the coordinates corresponding
to the ground state of the compound nucleus (c = 1,
PH
h = 0, ηZ = 0); also, we set the initial momentum pηZ

to zero and assumed that the initial distributions with
respect to the momenta pc and ph are equilibrium.
The angular-momentum distribution was borrowed
from [7]. The integration of the stochastic Langevin
Eqs. (3) was terminated as soon as a dynamical tra-
jectory intersected the scission surface defined by the
condition (

∂2V (q)
∂h2

)
c,ηZ

= 0. (8)

As a scission criterion, we used here the condition
that the neck radius is 0.3R0, in which case the equal-
ity in (8) is satisfied identically. From the physical
point of view, fulfillment of relation (8) means that the
system loses stability with respect to variations in the
neck thickness.
Obviously, the concept of charge transfer between

the fragments is meaningful only in the case where
one can unambiguously separate one fragment from
another, but this is possible only if the nuclear shape
features a neck. In our dynamical calculations, the
evolution of the charge degree of freedom therefore
began as soon as the nucleus being considered de-
veloped a neck; as to shapes involving no neck, only
the coordinates specifying the shape of the nuclear
surface (coordinates c and h) evolved for them. In
the 236U nucleus, a neck appeared immediately upon
traversing the ridge separating the ground-state re-
gion from the fission valley. This brings about the
question of whether it is wise to begin dynamical
calculations from the ground state. (Would it not
be more appropriate to start from the ridge, for ex-
ample?) Our choice of initial conditions was moti-
vated by the desire to take fully into account the
evaporation of light prescission particles—and es-
pecially neutrons—which, as is well known, has a
pronounced effect on the distributions of fission frag-
ments. In [19], it was shown that the overwhelming
majority of prescission neutrons (more than half of
them) are evaporated from the ground-state region of
the nucleus before it reaches the ridge, and this is the
reason why it is desirable to choose initial conditions
in the ground state of the compound system. In dis-
cussing methods for calculating the potential energy
and transport coefficients, we will hereafter imply that
there is a neck in the nuclear shape.

In the case of excited nuclear systems, it is of
course necessary to use, in determining the conserva-
tive force, a thermodynamic potential (free energy, as
a rule) [20, 21] instead of the potential energy. Within
the Fermi gas model, the free-energy functional is
given by

F (q) = V (q)− a(q)T 2, (9)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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where V (q) is the potential energy and a(q) is the
level-density parameter. In calculating the density of
excited levels, we took into account the effect of the
nuclear deformation on the level-density parameter;
that is, we represented it as

a(q) = αA+ βA2/3Bs(q), (10)

where the values of α=0.073 MeV−1 and β =
0.095 MeV−1 were borrowed from [22] and where
Bs(q) is the collective-coordinate dependent func-
tional of the surface energy of a nucleus that is repre-
sented as a liquid drop with a sharp boundary [11,
23]. As will be described below in discussing the
calculation of the potential energy, the surface-energy
functional is independent of the charge coordinate
within our model. It follows that the use of the free
energy, instead of the potential energy, in calculating
the conservative force affects only the evolution of the
nuclear-shape coordinate. As to the conservative-
force component along the coordinate ηZ , it is deter-
mined exclusively by the dependence of the potential
energy of the charge coordinate.
The heat-bath temperature T used in our calcula-

tions was determined within the Fermi gas model as

T = (Eint/a(q))1/2, (11)

where Eint is the excitation energy of internal de-
grees of freedom. Over the entire interval of the evo-
lution of the nucleus from the ground state to the
scission point, we checked fulfillment of the energy-
conservation law in the form

E∗ = V (q) + Eint + Ecoll + Eevap(t), (12)

where Ecoll is the kinetic energy of the motion along
the collective coordinates and Eevap is the energy
fraction carried away by evaporated prescission parti-
cles by the instant t. In order to take into account the
discrete character of the evaporation of prescission
light particles and photons, our dynamical model was
combined, according to the method described in [24],
with the statistical evaporation branch of the calcula-
tions.

2.3. Potential Energy

In calculating the potential energy on the basis of
the liquid-drop model, it is usually assumed that the
charge density is constant over the entire volume of
the nucleus. It is obvious, however, that, because of
the Coulomb repulsion of the protons of the nucleus,
the intranuclear nucleons are redistributed in such a
way that the charge density is greater at the nuclear
periphery than in the interior of the nucleus. The
simplest solution to the problem of the form of the
charge-density function was proposed in [25], where
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
the charge density was approximated by a linear func-
tion of the coordinate z (coordinate along the sym-
metry axis). The problem of the charge distribution
in a nucleus was comprehensively studied in [26, 27],
where use was made of variational methods, the anal-
ysis in [27] being based on two versions of the liquid-
drop model. From experimental data on the charge
distribution that are presented in [28, 29], one can
conclude that the polarizability of nuclear matter is
rather small; on this basis, we assumed, for a first
approximation, that the charge density takes different
values in the different would-be fragments, but that it
is constant within each of them [30]; that is,

ρp(r) =

{
ρpR, r ∈ VR,
ρpL, r ∈ VL,

(13)

where VR and VL are the volumes of, respectively,
the right- and the left-hand fragment. Although the
representation of the charge density in the form (13)
is a rough approximation, it enables us to avoid
introducing additional parameters (like the charge-
polarization parameter [25]) and to describe the
distribution of the charge among the fragments in
terms of simple formulas that admit a straightforward
interpretation.
From the condition requiring that nuclear liquid be

incompressible, it follows that the sum of the proton-
and the neutron-liquid density is constant; that is,

ρpR + ρ
n
R = ρ

p
L + ρ

n
L = ρ

p
0 + ρ

n
0 = ρ, (14)

where ρp0 = Z/(4πR
3
0/3) and ρ

n
0 = N/(4πR

3
0/3) are

the densities of, respectively, protons and neutrons in
the case of a uniform charge distribution over the en-
tire nucleus and ρ is the intranuclear-nucleon density.
The quantities ρpR and ρ

p
L are related to the charge

coordinate ηZ by the equation

ρpR = ρ
p
0

(k + 1)
2k

(1 + ηZ), (15)

ρpL = ρ
p
0

(k + 1)
2

(1− ηZ),

where k = AR/AL is the ratio of the masses of
nascent fragments. The corresponding neutron den-
sities ρnR and ρ

n
L can easily be found on the basis of

Eqs. (14) and (15).
We assume that the potential energy of a nucleus

is the sum of the symmetry energy, the Coulomb
energy, the surface energy, and the energy associated
with the rotation of this nucleus as a discrete unit. The
parameters of the liquid-drop model were set to the
values chosen by Myers and Swiatecki [31]. We note
that the surface energy was taken to be independent of
the charge-asymmetry coordinate ηZ . This assump-
tion is inevitable in view of the ambiguity in breaking
2
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down the symmetry energy into the volume and the
surface component.

For an arbitrary nuclear shape, the symmetry en-
ergy can be calculated under the assumption that
this energy is uniformly distributed over the entire
nucleus, in which case we have [32]

Vsym = asym

∫
[ρn(r)− ρp(r)]2

ρ
dV, (16)

where asym = 23.7 MeV is the symmetry-energy
coefficient. Under the assumption that the neutron
and the proton density are constant within each
of the fragments, the symmetry energy can be re-
presented as

Vsym =
asym

ρ

[
(ρnR − ρpR)

2VR + (ρnL − ρpL)
2VL

]
. (17)

It is rather difficult to calculate the Coulomb en-
ergy for the case where the charge distribution over
the nuclear volume is not uniform. But for a uniform
charge distribution in each of the fragments, this
problem is significantly simplified; its solution is given
by the relation

VC(q) =
E0

C

(ρp0)2
[
(ρpR − ρpL) (18)

× (ρpRB
R
C (q)− ρ

p
LB

L
C(q)) + ρ

p
Rρ

p
LBC(q)

]
,

where E0
C is the Coulomb energy of the initial spher-

ical nucleus, while BC, BRC , and B
L
C are the Coulomb

energies (in units of the Coulomb energy of the corre-
sponding spherical nucleus) of the entire nucleus and
of the would-be fragments having a constant charge
density.

From (17) and (18), it can be found that the po-
tential energy as a function of the charge-asymmetry
parameter ηZ can be represented as

V (c, h, ηZ , J) = V (c, h, 〈ηZ 〉, J) (19)

+
CηZ

2
(ηZ − 〈ηZ〉)2,

where J is the angular momentum of the compound
nucleus. The mean value of the charge-asymmetry
parameter, 〈ηZ(c, h)〉, is the point of a local minimum
of the potential energy at given values of the shape
parameters (c, h). It should be noted that 〈ηZ〉 = 0
is the case of symmetric fission considered here. The
quantity

CηZ
=
∂2V (c, h, ηZ )

∂η2Z

∣∣∣∣∣
ηZ=〈ηZ 〉
P

is the stiffness of the nucleus in the coordinate ηZ . For
this stiffness, relations (17) and (18) yield

CηZ
=
(
(k + 1)Z
kA

)2(
2asymkA+

2E0
C

(1− δ)2 (20)

×
[
(1 + k)(BRC + kB

L
C)− kBC

])
,

where δ = (N − Z)/A. The stiffness computed by
formula (20) depends only slightly on the nuclear
deformation since the main contribution to it comes
from the symmetry energy [first term in (20)]. An
order-of-magnitude estimate of the stiffness isCηZ

=
(7–8) × 103 MeV.

2.4. Inertia Parameter of the Charge Mode

The calculation of transport coefficients is one of
the most important problems in nuclear dynamics.
For problems involving the charge degree of freedom,
the calculation of transport coefficients is complicated
by the fact that two collective coordinates (c and h)
are associated with variations in the nuclear shape,
while the third coordinate (ηZ) is associated with the
redistribution of charge in the nucleus being con-
sidered, the physical nature of this coordinate being
totally different from that of the shape coordinates.
In view of the above, it is obvious that a model for
describing the charge components of the mass and
the friction tensor must be different from a model for
describing the other components of these tensors. In
choosing a method for calculating the inertia- and
the friction-tensor components corresponding to the
coordinates of the nuclear shape, we relied on rich ex-
perience accumulated through investigations in these
realms (in particular, on our experience gained in
studying mass–energy distributions within Langevin
dynamics [5, 6] and on the conclusions on nuclear
viscosity that were drawn in [6]). The inertia-tensor
components mcc, mch, and mhh were computed by
the Werner–Wheeler method based on the hydrody-
namic model of the irrotational flow of incompressible
nuclear liquid [33], while the corresponding compo-
nents of the friction tensor were treated within the
model of surface one-body dissipation [34–36] with
allowance for the reduction of the contribution from
the wall formula, the corresponding reduction factor
being set to ks = 0.25 [6, 37, 38]. The problem of
determining the transport coefficients associated with
the charge mode is much more involved. A reliable
approach to studying the interplay of charge transfer
between fission fragments and variations in the nu-
clear shape has yet to be developed. In view of this,
the off-diagonal inertia-tensor componentsmcηZ

and
mhηZ

and the corresponding components of the fric-
tion tensor were set to zero.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Let us now discuss a method for computing the
mass factormηZηZ

associated with the charge mode.
As was noted above, the hydrodynamic approach
(Werner–Wheeler method) was successfully em-
ployed in calculating the mass tensor for the shape
coordinates; for this reason, the hydrodynamic model
was applied for the charge degree of freedom as well.
By way of example, we indicate that, in [39], the mass
parameter was determined by the formula

mηZηZ
(c, h) =

CηZ
(c, h)

ω2
1(c, h)

, (21)

where ω1 is the frequency of longitudinal dipole os-
cillations that is obtained by solving the Helmholz
equation for charge-density fluctuations [32, 40].
For the case of an inviscid liquid flowing through

a round hole of radius rN between two touching frag-
ments of spherical shape, it was found in [41] that the
inertia parameter associated with the charge mode
can be represented as

mηZηZ
(c, h) =

π

6
r30m

ZA2

N

1
rN
, (22)

where r0 is the nuclear-radius parameter; m is the
nucleon mass; A is the mass number of the nucleus
undergoing fission; and Z and N are the numbers of,
respectively, protons and neutrons in it.

The fact that the neck connecting the fragments
has a nonzero length was ignored in deriving expres-
sion (22). Moreover, viscosity plays an important role
in our model. In [42], it was shown that, for a flow of
a viscous incompressible liquid through a cylindrical
neck of radius rN and length l, the mass parameter of
the charged mode is given by

mηZηZ
(c, h) =

m

3πρ
ZA2

N

(l + 2rN )
r2N

, (23)

where ρ is the density of intranuclear nucleons.
We have compared the results produced by for-

mulas (21)–(23). The values of the mass parameter
according to (21) were borrowed from [39], where the
mass parameter as a function of the distance between
the centers of mass of the would-be fragments is
given for a few fixed values of the neck-thickness
parameter h. The results are presented in Fig. 2 at
the neck-thickness parameter set to h = 0 (the line
h = 0 roughly approximates the bottom of the fission
value [11]). The mass-parameter values in the figure
correspond to large values of the elongation param-
eter c in the region of nuclear deformations from the
saddle to the scission point. All three dependences ex-
hibit a characteristic increase in the inertia parameter
mηZηZ

as the nucleus approaches the scission point.
From Fig. 2, it can also be seen that formulas (21) and
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Fig. 2. Inertia parameter as a function of the fission
coordinate c at the neck-thickness parameter of h = 0:
(solid curve) mass parameter mηZηZ calculated by for-
mula (23) [42], (dashed curve) results of the calculation
by formula (22) [41], and (closed boxes) results of the
calculation by formula (21) according to [39].

(23) yield close values ofmηZηZ
, but that formula (22)

leads to values falling considerably short of these.
In our opinion, formula (21) is themost consistent.

However, it is rather difficult in practice to calcu-
late the frequencies of isovector dipole oscillations. It
should be emphasized that, from our analysis of the
above three formulas, it follows that formulas (21) and
(23) yield close values of the mass parameter mηZηZ

over the entire region of the nuclear-deformation pa-
rameters (c, h) that is of interest to us. Taking the
aforesaid into account, we calculate below the mass
parameter of the charge mode on the basis of (23). In
order to apply this formula, it is necessary to know
the neck radius rN and the neck length l at fixed
values of c and h. To specify them, the nuclear shape
in the region of deformations featuring a pronounced
neck was approximated by two spherical fragments
connected by a cylindrical neck of radius rN . The
centers of the spheres were taken to coincide with
the centers of mass of the nascent fragments, their
radii RR and RL being determined from the condition
of nuclear-volume conservation. The neck length is
then given by l = R−RR −RL, where R is the dis-
tance between the centers of mass of the would-be
fragments.

2.5. Friction Parameter of the Charge Mode

In theoretically studying isobaric distributions,
the friction coefficient γηZηZ

was frequently assumed
(see, for example, [39, 43]) to be a variable parameter
that is independent of coordinates. This is, however, a
rough approximation, because it is necessary to take
into account the dependence of the friction parameter
of the charge mode on the deformation of the nucleus.
In the present study, the coordinate dependence of
2
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the friction parameter γηZηZ
was taken into account

by two methods—that is, under the assumption of
the one-body dissipation mechanism and under the
assumption of the two-body dissipation mechanism.
The simplest procedure for assessing the friction
parameter is that which relies on the hydrodynamic
model where one studies energy dissipation accom-
panying the motion of a viscous incompressible liquid
in a pipe (neck connecting nascent fragments) of
length l and radius rN . In this case, the velocity
field obtained by solving the Navier–Stokes equation
has a nonvanishing component only along the z axis
(symmetry axis of the nucleus) [44]; that is,

u(r) = uz(r) =
∆p
4ν0l

(r2N − r2), (24)

where∆p is the pressure drop between the ends of the
pipe and ν0 is the coefficient of dynamical viscosity. In
the general case of a flow of a viscous incompressible
liquid, the kinetic energy of the liquid and the rate of
kinetic-energy dissipation are given by

Ekin =
mρ

2

∫
u2dV, (25)

Ėkin = −ν0
2

∫ (
∂ui
∂xk

− ∂uk
∂xi

)2

dV,

where it is implied that integration is performed over
the pipe (neck) volume and where i and k are Carte-
sian subscripts. For the velocity field given by rela-
tion (24), the kinetic energy of the liquid has the form

Ekin =
πmρ(∆p)2r6N

96ν2
0 l

, (26)

while the rate of kinetic-energy dissipation is

Ėkin = −π(∆p)
2r4N

8ν0l
. (27)

From (26) and (27), we find that the reduced coeffi-
cient of friction for the charge mode has the form

βηZηZ
=
γηZηZ

mηZηZ

= − Ėkin

2Ekin
=
6ν
r2N
, (28)

where ν is the coefficient of kinematic viscosity. It is
obvious that, in the hydrodynamic model, the fric-
tion coefficient for the charge mode is dependent on
the approach used to calculate the inertia parameter
mηZηZ

and is determined by the formula γηZηZ
=

mηZηZ
βηZηZ

. The value of ν = 13.5 × 1021 fm2 s−1

was extracted from experimental data on the widths of
giant dipole resonances [45]. We used this value of the
coefficient ν as an input in our dynamical calculations
that assume the two-body mechanism of nuclear vis-
cosity, since isovector dipole oscillations along the
symmetry axis make a dominant contribution to the
redistribution of charge among the fragments.
P

In calculating the friction parameter of the charge
degree of freedom, it is of particular interest to apply
the model of one-body viscosity. In this model, it is
considered in the one-body mechanism of viscosity
that a nucleus is a system of fermions and that, by
virtue of the Pauli exclusion principle, the range of
intranuclear nucleons is as large as the nuclear size.
We note that, in studying the fission of excited nuclei,
the one-bodymechanism of viscosity has not yet been
used as a mechanism of energy dissipation associated
with the charge mode (however, it was successfully
employed in exploring the widths of giant dipole reso-
nances [46, 47]). The classical formula expressing the
rate of collective-energy dissipation within a modified
version of the model of one-body viscosity can be
written in the following conventional form [35]:

−Ėkin= mρv̄

[ ∮
ΣL

(ṅ −QL)2dΣ+
∮

ΣR

(ṅ −QR)2dΣ

(29)

+
1
4
(2u2

‖ + u
2
⊥)∆σ +

16
9

1
ρ2∆σ

Ṅ2
1

]
.

Here, m is the particle mass; ρ is the density of
particles in a nucleus; v̄ is the mean velocity of their
motion; ṅ is the normal velocity of the nuclear-surface
element dΣ; QR(L) is the velocity of the right-hand
(left-hand) fragment as a discrete unit with respect
to the center of mass of the whole system; ∆σ is the
area of the window (the neck between two would-
be fragments); u|| and u⊥ are the components of the
velocity of the relative motion of would-be fragments,
respectively, along the normal to the window ∆σ and
in the plane orthogonal to this normal; and N1 is
the number of particles in one of the fragments (for
example, in the right-hand one). The quantity Ėkin
is related to the friction tensor by the well-known
equation

∑
i,j γij q̇iq̇j = −Ėkin, where {qi} is the set

of collective coordinates.
Here, we would like to make some comments that

are necessary for applying the model of one-body
viscosity to the charge mode. The idea underlying the
derivation of the formula for the friction parameter of
the charge mode consists in applying expression (29)
to the proton and the neutron liquid individually and
in representing the total rate of energy dissipation as
the sum of the contributions from the proton and the
neutron subsystem; that is, Ėkin = Ė

p
kin + Ė

n
kin. In

implementing this procedure, we impose the condi-
tion that number of nucleons is constant in each frag-
ment. In addition, we must fix the shape parameters,
since we are going to calculate the rate of collective-
energy dissipation associated with charge transfer
between nascent fragments and not with variations in
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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the nuclear shape. A similar procedure for calculating
the friction parameter was used in [47]. The first two
terms in expression (29) represent the wall formula
for each of the nascent fragments. For the charge
degree of freedom, the wall formula must describe
energy dissipation for the case where the neutron and
the proton liquid move with respect to each other
within would-be fragments. Indeed, it was shown
in [47] that the result produced by the wall formula
for the charge mode is proportional to Ḋ2

pn, where
Dpn is the distance between the centers of mass of
the proton and the neutron liquid. Since we do not
consider oscillations of the charge density within the
fragments and since we have assumed that the charge
density is constant,Dpn ≡ 0 in each of the fragments;
therefore, the term expressing the result given by the
wall formula for the charge mode vanishes identically.
In the case of the chargemode, the term describing

energy dissipation associated with the relative motion
of the fragments—the window formula [third term in
formula (29)]—has the form

−Ėwindow
kin = Ḋ2

p

mρ

2
Z

NA
[Nv̄p + Zv̄n]∆σ, (30)

whereDp is the distance between the centers of mass
of the proton subsystems of nascent fragments and v̄p
and v̄n are themean velocities of, respectively, protons
and neutrons within the nucleus. At a fixed nuclear
deformation, Dp is constant—in particular, it does
not depend on the ratio of the numbers of protons
in the fragments. In this case, Ḋp ≡ 0, and the cor-
responding term in the formula for the case of one-
body dissipation is also equal to zero. We note that
the first three terms in expression (29) will vanish for
any time-independent charge distribution of the form
ρp(r) = ρp0f(r), where ρ

p
0 is the density of protons in

the case of a uniform charge distribution over the vol-
ume of the nucleus and f(r) is an arbitrary function
of the radius vector of a point within the nucleus. It
is clear, however, that the exchange of protons and
neutrons between the fragments leads to a deviation
of the charge density from the equilibrium value; as
a result, damped oscillations tending to restore the
disturbed equilibrium arise in the fragments.
For the concept of equilibrium density [see

Eq. (13)] to be used in the model adopted here, it is
therefore necessary that the characteristic time over
which the proton-liquid oscillations relative to the
neutron liquid within the fragments are damped be
much less than the relaxation time in the charge mode
ηZ . The simple expression R/v̄, where v̄ is the mean
velocity of intranuclear nucleons and R is the nuclear
radius, was obtained in [46] for the time over which
charge-density oscillations are damped in a spherical
nucleus. If the radius of one of the fragments (RR or
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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Fig. 3. Friction parameter of the charge mode versus the
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Fig. 4. Charge yield obtained in our dynamical calcu-
lations employing the two-body mechanism of nuclear
viscosity in the charge degree of freedom (ν = 13.5 ×
1021 fm2 s−1). The calculations were performed for the
reaction 4He + 232Th → 236U at the excitation energy
of E∗ = 110MeV. The yield was normalized by 200%.

RL) is taken forR, the result for the time of relaxation
of proton-liquid oscillations relative to the neutron
liquid within one of the fragments will be (0.8–
1.0) × 10−22 s; for the coordinate ηZ , the character-
istic time of damping is τηZ

� 4× 10−22 s (see Fig. 5
below and the discussion of τηZ

in Section 3). By
virtue of this relationship between the corresponding
relaxation times, the charge distribution in a nucleus
can be taken to be steady-state and the charge-
density function can be assumed to feature no explicit
time dependence.
Thus, it turns out that, in the absence of proton-

liquid oscillations relative to the neutron liquid within
the fragments, a nonzero contribution comes only
from the last term in (29); this term, which was
2
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obtained in [35, 36] as a term that is additional to
the original formula of the model of one-body viscos-
ity [34], takes into account the reaction of the system
against variations in the mass asymmetry. In the case
of the charge degree of freedom, it describes energy
dissipation associated with the relative change in the
number of protons in the fragments without any vari-
ations in the nuclear shape. Within the model of one-
body viscosity, we obtained the following expression
for the friction parameter of the charge mode:

γηZηZ
=
4m
9ρ
AZ

N
[Nv̄p + Zv̄n]

1
∆σ
. (31)

Figure 3 shows the friction parameter of the
charge mode as a function of the elongation param-
eter c for both the two- and the one-body viscosity
mechanism (solid and dashed curves, respectively).
From expression (31), it can be seen that, in the case
of the one-body viscosity mechanism, the parameter
γηZηZ

is determined exclusively by the neck thick-
ness; therefore, γηZηZ

∼ 1/r2N for rN → 0 (that is,
as the nucleus approaches the scission point). As
to the two-body mechanism, the inertia parameter
computed by formula (23) is proportional to 1/r2N
when the neck radius tends to zero, whence it follows
that, in the case of two-body viscosity, the friction
parameter behaves as 1/r4N for rN → 0. Indeed, it can
be seen from Fig. 3 that, at deformation characteristic
of the saddle point, the two-body mechanism of
nuclear viscosity yields friction-parameter values
smaller than those for the one-body mechanism, but
that, as the nucleus being considered approaches the
scission point, the quantity γηZηZ

as given by the
two-body mechanism increases sharply, becoming,
at this point, more than twice as great as γηZηZ

values computed by formula (31). We would like to
emphasize yet another important distinction between
the two mechanisms of nuclear viscosity—namely,
the formula corresponding to two-body viscosity
involves a variable parameter (coefficient of viscosity
ν), but there are no variable parameters within the
one-body model.

3. RESULTS OF THE CALCULATIONS

It was indicated in the Introduction that, in the
present study, the charge distribution of fission frag-
ments is explored by considering the example of the
symmetric fission of the compound nucleus 236U
formed in the reaction 232Th + 4He→ 236U. The
calculations were performed for two mechanisms of
nuclear viscosity (that of one-body dissipation and
that of two-body dissipation). A typical histogram of
the charge distribution calculated under the assump-
tion of the two-body mechanism of viscosity in the
P

coordinate ηZ is shown in Fig. 4 for the case where the
excitation energy of the compound nucleus is E∗ =
110MeV. From this figure, it can clearly be seen that
the charge distribution obtained in our theoretical
calculations has the form of a Gaussian function,
the corresponding mean value being 〈Z〉 = Z/2. This
result is in qualitative agreement with experimental
data.

Previously the isobaric charge distribution for the
fission of the same compound nucleus of 236U was
studied theoretically in [39, 43] on the basis of the
Fokker–Planck equation. In those studies, however,
the coefficient of friction for the charge mode was
taken to be independent of collective coordinates and
was a variable parameter. For low excitation energies,
there is a vast body of experimental data on the vari-
ances of charge distributions for the 236U nucleus.
By way of example, we recall the well-known exper-
imental fact [48, 49] that, in the thermal-neutron-
induced fission of 235U nuclei, the charge variance
σ2
Z is independent of the excitation energy and is
equal to 0.4± 0.05. This behavior of the charge vari-
ance σ2

Z suggests that, at low excitation energies, the
formation of the charge distribution is governed by
quantum processes. It is also well known that, in this
energy region, experimental data on σ2

Z are closely
reproduced by the expression arising in the statistical
limit and having the form

σ2
Zstat(Eint) =

T ∗
Z(〈qsc〉)
CZ(〈qsc〉)

, (32)

where CZ(〈qsc〉) = 4CηZ
(〈qsc〉)/Z2 and 〈qsc〉 are

the coordinates of the mean scission point. If T �
�ωZ/2, then T ∗

Z � �ωZ/2, which explains invari-
ability of the charge variance at low energies. Our
dynamical model cannot be applied to describing
low-energy fission because shell effects and effects
of nucleon pairing are disregarded there in calculat-
ing the potential energy and transport coefficients.
Nonetheless, we can compute the quantity σ2

Zstat and
compare the result with experimental data. At the
excitation energy of 6.4 MeV (which corresponds to
235U fission by thermal neutrons), we obtained the
value of σ2

Zstat = 0.35, which is in good agreement
with experimental data.

Let us now proceed to consider the results of our
dynamical calculations.We begin by discussing char-
acteristic times for the charge mode of the nucleus.
As a characteristic time, a dissipating system features
the relaxation time [50] in the corresponding collec-
tive coordinate; that is,
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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PHYSICS OF ATOM
τηZ
=



2β̃−1

ηZ
, ωηZ

≥ β̃ηZ
/2

[
β̃ηZ
/2− (β̃2

ηZ
/4− ωη2Z )

1/2
]−1

, ωηZ
< β̃ηZ

/2,

(33)
where β̃ηZ
= βηZ

+ ṁηZηZ
/mηZηZ

is the generalized
coefficient of damping for the charge mode. In (33),
the first case (that ofωηZ

≥ β̃ηZ
/2) corresponds to the

regime of damped oscillations, while the second case
(ωηZ

< β̃ηZ
/2) corresponds to the regime of aperiodic

damping. The results obtained by calculating τηZ
are

displayed in Fig. 5 for both mechanisms of viscosity.
From this figure, we can see that the curve represent-
ing the relaxation time for the two-body mechanism
of viscosity differs significantly from the curve cal-
culated for the relaxation time under the assumption
of one-body viscosity in ηZ . In the case of the one-
body mechanism, the nuclear system in question is
in the regime of damped oscillations over the entire
interval of descent from the saddle to the scission
point, whereas, in the case of two-body viscosity,
there occurs a transition into the aperiodic-damping
regime at the final state of this descent.
Moreover, the relaxation time τηZ

calculated under
the assumption of the one-body mechanism remains
constant, in contrast to what occurs in the case
of two-body viscosity, over the entire interval of
descent from the saddle to the scission point. This
is because, in the case of the one-body mechanism of
friction, the inertia coefficient and the friction coeffi-
cient for the charge mode are proportional to 1/r2N ;
therefore, the generalized coefficient of damping β̃ηZ

does not change along the mean trajectory (the
ratio ṁηZηZ

/mηZηZ
is much less than βηZ

). Within
the two-body mechanism, the reduced coefficient
of friction [see relation (28)] depends strongly on
the neck thickness; therefore, τηZ

will also feature
a pronounced coordinate dependence if viscosity in
the charge mode is associated with the two-body
mechanism. As can be seen fromFig. 5, theminimum
value of the relaxation times for the charge mode is
τηZ

= (0.3–0.4) × 10−21 s. This is only two to three
times longer than the relaxation times for internal
degrees of freedom, so that theMarkov approximation
in solving stochastic Langevin equations is at the
margin of safety here. But even if Langevin equations
in the Markov approximation are inapplicable to
studying the evolution of the charge mode, gener-
alized Langevin equations including memory effects,
which lead to the emergence of retarded friction (see,
for example, the original study of Ayik et al. [51] and
the review article of Abe et al. [1]), can be employed
to study this evolution.
IC NUCLEI Vol. 65 No. 9 200
It is of great interest to study the variance of the
charge distribution versus the excitation energy. First
of all, this is necessary for comparing results ob-
tained within the two mechanisms of viscosity and for
drawing thereby definitive conclusions on the mech-
anism of nuclear viscosity in the charge coordinate.
In addition, our estimates demonstrate that the re-
laxation times for processes involving the charge co-
ordinate are much shorter than characteristic times
for modes associated with variations in the nuclear-
surface shape (see also [27]). On this basis, one may
expect that statistical equilibration with respect to the
charge mode will occur not only at low but also at
high excitation energies. Figure 6 shows the variance
of the charge distribution versus the internal exci-
tation energy of the nucleus at the scission point.
The curve in Fig. 6 represents the variance σ2

Zstat
as a function of Eint. In plotting this curve, we have
considered that, according to our calculations and the
results presented in [52], the neck length is virtually
independent of the nuclear deformation.

On the basis of the data presented in Fig. 6, we
can draw the following conclusions. First, the calcu-
lated variance of the isobaric distribution exhibits a
characteristic growth with excitation energy. Second,
the calculations employing the different mechanisms
of viscosity yield values of the variance that agree with
each other within the statistical error, which is asso-
ciated with the fact that the number of Langevin tra-
jectories is bounded (there were about 104 trajectories
in our calculations). Thus, we can state that, within
our model, the variance of the charge distribution is
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Fig. 5. Relaxation times for the charge mode versus the
elongation coordinate c for (solid curve) the two-body
(ν = 13.5 × 1021 fm2 s−1) and (dashed curve) the one-
body mechanism of viscosity.
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Fig. 6. Variance σ2
Z of the isobaric distribution as a func-

tion of the internal excitation energy of the compound
nucleus at the scission point: (closed boxes) results of
the calculation that assumes the two-body mechanism of
viscosity in the charge mode (ν = 13.5 × 1021 fm2 s−1),
(closed triangles) results of the calculation that assumes
the one-body mechanism of viscosity, and (solid curve)
statistical limit at the mean scission point [see for-
mula (32) and the comments to it].

insensitive to the mechanism of nuclear viscosity. It is
noteworthy that, for the same reaction of 232Th fission
induced by helium ions, the charge distribution was
studied in [53] at excitation energies ranging between
20 and 57 MeV. It was found there that the charge
distribution has a Gaussian form whose variance is
independent of the excitation energy up to 39 MeV.
Our dynamical calculations at an excitation energy of
39MeV yield σ2

Z = 0.46, which is in agreement with
the result quoted in [53], where values in the range
σ2
Z = 0.45–0.50 were obtained over the entire energy
range under study. Third, it can be seen from Fig. 6
that the variance σ2

Z obtained on the basis of our cal-
culations shows but very modest deviations from the
statistical-limit curve passing through experimental
data on the charge variance at the excitation energies
of E∗ = 6.4 and 39 MeV. Therefore, we can draw the
following important conclusion: statistical equilibra-
tion with respect to the charge coordinate occurs both
at low and at high energies.
The second derivative d2σ2

Zstat/dE
2
int carries

important information about the mechanism that
governs the formation of the charge distribution. We
found that the entire energy range can be broken
down into two parts: Eint < 20 MeV and Eint >
20 MeV. Within the first interval, we have
d2σ2

Zstat/dE
2
int > 0, which means that, over this

interval, quantum fluctuations play a dominant role
in the formation of the charge distribution. Within the
second interval, we have d2σ2

Zstat/dE
2
int < 0; there,

fluctuations associated with the charge mode are
predominantly of a thermal origin.
In discussing the calculation of the friction tensor,

we have already mentioned that the friction parameter
PH
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Fig. 7. Variance σ2
Z of the charge distribution versus

the coefficient of two-body viscosity, ν, at the excitation
energy of E∗ = 110 MeV. The solid and the dashed line
represent, respectively, the statistical limit and the limit
of frozen initial conditions. The vertical dash-dotted lines
bound the interval of values of the coefficient of two-
body viscosity from [18, 33, 54]. Points correspond to our
calculated values.

of the charge mode behaves differently for the differ-
ent mechanisms of nuclear viscosity (this distinction
becomes especially pronounced as the nucleus ap-
proaches the scission point). However, our dynamical
calculations have revealed the mechanism of nuclear
viscosity has virtually no effect on the width of the
charge distribution. Therefore, it is natural to expect
that σ2

Z depends only slightly on the coefficient of
kinematic viscosity ν, which is the only free parameter
of the model. In order to investigate this issue, we
have calculated the variance of the charge distribution
over the wide interval ν = (4.75–475) fm2 s−1. The
results of these calculations are displayed in Fig. 7 on
a logarithmic scale. The behavior of the variance of
the isobaric distribution as a function of the coefficient
ν can be explained in the following way. In the case
of high friction in the coordinates c and h and low
friction in the coordinate ηZ , statistical equilibration
in the charge coordinate has time to occur at any point
of a stochastic trajectory. A totally different situation
becomes prevalent as viscosity in the charge mode
increases—namely, memory effects come into play
that consist in that the nuclear system in question
memorizes the values of the charge coordinate that
it had prior to going over to this regime. Indeed, it can
be seen from Fig. 7 that the variance of the charge
distribution fits in the statistical-limit line (solid line)
at low values of the coefficient of viscosity, but that, as
the coefficient ν increases, the variance σ2

Z grows, ap-
proaching the limit of frozen initial conditions (dashed
line). By the limit of frozen initial conditions, we mean
the ratio T ∗

Z(qsd)/CZ(qsd), where qsd are the coordi-
nates of the saddle point. From Fig. 7, it can also be
seen that the variance σ2

Z grows very slowly as the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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viscosity parameter changes (indeed, an increase in
the coefficient ν by two orders of magnitude leads to
only a 50% increase in the variance). It is precisely
this circumstance that explains an extremely low sen-
sitivity of the variance σ2

Z to the nuclear-viscosity
mechanism in our calculations.
Previously, the mechanism of two-body viscos-

ity was widely used in studying mass–energy dis-
tributions of fission fragments, and some conclu-
sions were drawn on the value of the coefficient of
friction. In [33, 54], the mean kinetic energy of fis-
sion fragments was calculated over a broad range of
values of the fissility parameter Z2/A1/3; the values
found there for this coefficient from fits of the re-
sults of those calculations to experimental data are
ν = (6.7 ± 2.2) × 1021 fm2 s−1 [33] and ν = (14.1 ±
4.5)× 1021 fm2 s−1 [54]. On the basis of the Fokker–
Planck equation, mass–energy distributions of frag-
ments originating from the nuclear-fission process
were studied in [18], and it was found there that
the ν value at which the results of those dynam-
ical calculations reproduce experimental data most
closely is ν = (11.2± 3.7)× 1021 fm2 s−1. The above
values of ν were found by rescaling the values of
the coefficient of dynamic viscosity ν0 that were ob-
tained in [18, 33, 54]; this rescaling was performed
under the assumption that the nuclear-radius con-
stant is r0 = 1.2249 fm [31], the corresponding nu-
clear density having the standard value of 1.344 ×
10−45 MeV s2 fm−5. It can easily be seen that the co-
efficient of friction found for the charge mode from the
calculation of the widths of giant dipole resonances
has a value (13.5× 1021 fm2 s−1) that is astonishingly
close to the ν value extracted from the analysis of
the parameters of mass–energy distributions. From
Fig. 7, it also follows that values from the interval
(4 ≤ ν ≤ 20) × 1021 fm2 s−1 lead to good agreement
with the result in the statistical limit and, hence, with
the experimental values of σ2

Z .

4. CONCLUSIONS

A model has been proposed for describing the
charge distribution of fragments originating from the
symmetric fission of excited nuclei, and the charge
distribution and its features have been calculated for
the compound nucleus 236U. The friction parameter
of the charge mode has been calculated for twomech-
anisms of viscosity, that of one-body dissipation and
that of two-body dissipation. The main results of this
study can be summarized as follows:
(i) The proposed model, which is based on the

use of a set of three-dimensional Langevin equa-
tions, provides a fairly good description of the charge
distribution of fragments originating from the fission
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
of highly excited nuclei. In particular, the calculated
variances σ2

Z have characteristic values that are very
close to those obtained experimentally.
(ii) Over a wide interval of excitation energies, the

two viscosity mechanisms used—the one-body and
the two-body one characterized by the coefficient of
ν = 13.5 × 1021 fm2 s−1—lead to close values of σ2

Z .
This is a consequence of a weak sensitivity of the
width of the isobaric distribution to the magnitude of
nuclear viscosity.
(iii) A comparison of the results of our dynamical

calculations with experimental data makes it possible
to conclude that statistical equilibration in the charge
mode occurs not only at low but also at high exci-
tation energies. The statistical limit is reached both
for the one-body mechanism of nuclear viscosity and
for the two-body mechanism characterized by values
of the coefficient of two-body viscosity in the range
(4 ≤ ν ≤ 20) × 1021 fm2 s−1.

(iv) For ν > 30× 1021 fm2 s−1, the results ob-
tained by studying the variance σ2

Z as a function of the
parameter of two-body viscosity indicate that mem-
ory effects play an important role in the formation of
the isobaric distribution and that the strength of this
influence grows with increasing friction in the charge
mode.
To summarize the above, we emphasize once

again that only for the symmetric disintegration of a
nucleus into fragments have we performed dynamical
calculations of the charge distribution. It would be
of interest to study the mass–charge distribution;
for this, it is necessary either to introduce the fourth
coordinate (that of mass asymmetry) in the model
or to choose, as collective coordinates of the three-
dimensional model, the mass-asymmetry coordinate,
the charge-asymmetry coordinate, and the third
coordinate that would describe the elongation of the
nucleus being considered and eventually its disinte-
gration into fragments.
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7. P. Fröbrich and I. I. Gontchar, Phys. Rep. 292, 131
(1998).

8. I. I. Gontchar, L. A. Litnevsky, and P. Fröbrich, Com-
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Fiz. Élem. Chastits At. Yadra 19, 1229 (1988) [Sov. J.
Part. Nucl. 19, 529 (1988)].

19. P. N. Nadtochy, A. V. Karpov, and G. D. Adeev, Yad.
Fiz. 65, 832 (2002) [Phys. At. Nucl. 65, 799 (2002)].

20. A. Bohr and B. R. Mottelson, Nuclear Structure
(Benjamin, New York, 1975; Mir, Moscow, 1977),
Vol. 2.

21. A. V. Ignatyuk, Statistical Properties of Excited
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27. G. D. Adeev, Fiz. Élem. Chastits At. Yadra 23, 1572
(1992) [Sov. J. Part. Nucl. 23, 684 (1992)].

28. E. K. Hyde, I. Perlman, and G. T. Seaborg, The Nu-
clear Properties of the Heavy Elements,Vol. 3: Fis-
sion Phenomena (Prentice-Hall, Englewood Cliffs,
1964; Atomizdat, Moscow, 1969); R. Vandenbosh and
J. R. Huizenga, Nuclear Fission (Academic, New
York, 1973).

29. D. C. Hofman and M. H. Hofman, Annu. Rev. Nucl.
Sci. 24, 151 (1974).

30. G. D. Adeev, L. A. Filipenko, and P. A. Cherdantsev,
Yad. Fiz. 23, 30 (1976) [Sov. J. Nucl. Phys. 23, 15
(1976)].
PH
31. W. D. Myers and W. J. Swiatecki, Ark. Fys. 36, 343
(1967).

32. J. M. Eisenberg and W. Greiner, Nuclear Theory,
Vol. 1:NuclearModels (North-Holland, Amsterdam,
1970; Atomizdat, Moscow, 1975).

33. K. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys. Rev.
C 13, 2385 (1976).

34. J. Blocki et al., Ann. Phys. (N.Y.) 113, 330 (1978).
35. J. Randrup and W. J. Swiatecki, Nucl. Phys. A 429,

105 (1984).
36. H. Feldmeier, Rep. Prog. Phys. 50, 915 (1987).
37. J. R. Nix and A. J. Sierk, inProceedings of the Inter-

national School-Seminar on Heavy Ion Physics,
Dubna, USSR, 1986, Ed. by M. I. Zarubina and
E. V. Ivashkevich (Joint Inst. for Nuclear Research,
Dubna, 1987), p. 453.

38. Proceedings of the 6th Adriatic Conference on
Nuclear Physics: Frontiers of Heavy Ion Physics,
Dubrovnik, Yugoslavia, 1987, Ed. by N. Cindro,
R. Caplar, and W. Greiner (World Sci., Singapore,
1990), p. 333.

39. G. D. Adeev, I. I. Gonchar, and L. A.Marchenko, Yad.
Fiz. 42, 42 (1985) [Sov. J. Nucl. Phys. 42, 25 (1985)].

40. W. E. Undegraff and D. S. Onley, Nucl. Phys. A 161,
191 (1971).

41. U. Brosa andH. J. Krappe, Z. Phys. A 287, 65 (1978);
U. Brosa and D. H. E. Gross, Z. Phys. A 294, 217
(1980).

42. E. S. Hernandez, W. D. Myers, J. Randrup, and
B. Remaud, Nucl. Phys. A 361, 483 (1981).

43. B.Martschew and K. Pomorski,Acta Phys. Pol. B 13,
747 (1982).

44. L. D. Landau and E. M. Lifshitz, Course of The-
oretical Physics, Vol. 6: Fluid Mechanics (Nauka,
Moscow, 1986; Pergamon, New York, 1987).

45. R. W. Hasse and P. Nerud, J. Phys. G 2, L101 (1976).
46. W. D. Myers, W. J. Swiatecki, T. Kodama, et al.,

Phys. Rev. C 15, 2032 (1977).
47. B. Bush and Y. Alhassid, Nucl. Phys. A 531, 27

(1991).
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energies are considered in the framework of the one-nucleon-exchange approximation. Their strong
sensitivity to the 3He and deuteron spin structure at short distances is shown. c© 2002 MAIK “Nau-
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1. INTRODUCTION

The structure of light nuclei has been extensively
investigated over the last few decades using both
electromagnetic and hadron probes. The spin struc-
ture of these nuclei at short internucleonic distances
(or at large internal momenta) is of special interest.
One-nucleon-exchange (ONE) reactions like dp→
pd, d3He → p4He, or d3He → 3Hed are the sim-
plest processes with large momentum transfer and,
therefore, can be used as a tool for investigating the
structure of the deuteron and 3He at short distances.
In the framework of the ONE approximation, the
polarization observables of the above reactions are
defined by the D/S-wave ratios of these nuclei.

A significant amount of data for the deuteron spin
structure at short distances have been accumulated
over the last years. Recently, the tensor analyzing
power T20 and the polarization transfer coefficient κ0

in backward elastic scattering, dp→ pd, has been
measured at Saclay and Dubna [1, 2]. The tensor and
vector analyzing powers Ayy ,Axx,Axz ,Ady [3, 4], and
Apy [5] have been measured in dp elastic scattering
over a wide range of angles at intermediate energies
at the RIKEN and KVI. The polarization transfer
coefficients Ky

yy , Ky
xx, and Ky

xz have been evaluated
at 270 MeV at backward angles [4]. Another bi-
nary reaction, d3He → p4He, has been investigated
at the RIKEN using both polarized deuteron and
3He at energies up to 270 MeV [6, 7]. All the data
are sensitive to the deuteron spin structure at short
distances. For instance, T20 for both the dp→ pd and
the d3He → p4He reactions has a large negative value
reflecting the negative sign of the D/S-wave ratio
in the deuteron. The tensor analyzing power T20 in
d3He backward elastic scattering has been measured

∗This article was submitted by the authors in English.
1063-7788/02/6509-1609$22.00 c©
at 140, 200, and 270 MeV [8]. The sign of T20 is
positive in accordance with the sign of D/S-wave
ratio in 3He [9].

However, the polarization observables and the
ONE predictions using standard deuteron and 3He
wave functions strongly differ even at relatively small
internal momenta of ∼200 MeV/c. Such a discrep-
ancy may be due to the nonadequate description of
the light nucleus spin structure at short distances, as
well as to the importance of mechanisms other than
ONE reactions. In particular, the spin structure of
the three-nucleon forces when all three nucleons are
involved in the interaction may be overlooked [10].
Therefore, the new polarization data sensitive to
the spin structure of deuteron and 3He are of great
importance.

The dd→ 3Hp(3Hen) process also falls into the
class of ONE reactions. This reaction can be de-
scribed by the sum of two diagrams according to
the symmetry of the initial state. The analysis of the
polarization phenomena in the dd→ 3Hen reaction in
the collinear geometry, where 3He and beam deuteron
have the same direction of the momentum in the
c.m., was performed in [11]. Under these kinematical
conditions, one of the two diagrams is strongly sup-
pressed (by several orders of magnitude) by the fast
decrease in the deuteron and 3He wave functions with
increasing relative momenta (at incident deuteron
momenta higher than 200 MeV/c). The tensor ana-
lyzing power T20 due to the polarization of the beam
deuteron is defined by the D/S-wave ratio of the 3He
wave function. A more exhaustive analysis [12] per-
formed for the collinear geometry shows, for instance,
that the tensor analyzing power T20 is completely
defined by the deuteron or 3He spin structure when
3He is emitted in the backward or forward direction
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. The ONE diagrams for dd→ 3Hen: t-channel
diagram (a) and u-channel diagram (b). Momenta q1–4

are defined in the text.

in the c.m., respectively. Therefore, the dd→ 3Hen
reaction can be used to study both the deuteron and
the 3He spin structure at short distances.

The goal of this paper is to predict the angular
behavior of the tensor analyzing powers Ayy , Axx,
and Axz in the dd→ 3Hen(3Hp) reaction proposed
for the measurements at RIKEN [13]. In the next
section, the tensor analyzing powers are calculated
in the framework of ONE. The results are discussed
in Section 3. The conclusions are drawn in the last
section.

2. ONE-NUCLEON-EXCHANGE
APPROXIMATION

Within the framework of ONE, the dd→ 3Hen
process can be described by the sum of two diagrams
(Fig. 1) according to the symmetry of the initial state
of the reaction.

The deuteron wave function (DWF) in the mo-
mentum space can be represented in the following
PH
form [14]:

Φd(p) =
i√
2

1√
4π
ψα+
p

[(
(u1(p)(σ · ξ) (1)

− w1(p)√
2

(3(p̂ · ξ)(σ · p̂) − (σ · ξ))
)
σy

]
αβ

ψβ+
n ,

where ψp and ψn are the proton and neutron spinors,
respectively; ξ is the deuteron polarization vector de-
fined in the standard manner:

ξ1 = − 1√
2
(1, i, 0), ξ−1 =

1√
2
(1,−i, 0), (2)

ξ0 = (0, 0, 1);

p is the relative proton–neutron momentum inside
the deuteron; p̂ = p/|p| is the unit vector in the p
direction; and u1(p) and w1(p) are the S and D com-
ponents of the DWF.

To describe the 〈dp|3He〉 vertex, we use the ex-
pression suggested by Germond and Wilkin [15]:

Φτ (k) =
1√
2

1√
4π
ψα+
τ

[
u2(k)(σ · ξ) (3)

− w2(k)√
2

(3(k̂ · ξ)(σ · k̂) − (σ · ξ))
]
αβ

ψβp ,

where u2(k) and w2(k) are the S and D components
of the 3He wave function, k is the relative proton–
deuteron momentum inside 3He, k̂ = k/|k| is the unit
vector in the k direction, and ψτ is the 3He spinor.

In view of expressions (1) and (3), the matrix ele-
ment for the dd→ 3Hen process can be written as
M =
1
4π

i

2
ψα+
τ Fαβψ

β+
n =

1
4π

i

2
ψα+
τ (4)

×
[(
u2(q2)(σ · ξ2) −

w2(q2)√
2

(3(q̂2 · ξ2)(σ · q̂2) − (σ · ξ2))
))

×
(
u1(q1)(σ · ξ1) −

w1(q1)√
2

(3(q̂1 · ξ1)(σ · q̂1) − (σ · ξ1))
)
σy

+
(
u2(q3)(σ · ξ1) −

w2(q3)√
2

(3(q̂3 · ξ1)(σ · q̂3) − (σ · ξ1))
)

×
(
u1(q4)(σ · ξ2) −

w1(q4)√
2

(3(q̂4 · ξ2)(σ · q̂4) − (σ · ξ2))
)
σy

]
αβ

ψβ+
n .
In accordance with the definition of the arguments
of the deuteron and 3He wave functions, we have for
momenta qi

q1 =
p1

2
− k1, q2 = p2 −

2
3
k2, (5)
q3 = p1 −
2
3
k2, q4 =

p2

2
− k1.

Here, p1 and p2 correspond to the target and beam
deuteron momenta, and k1 and k2 are the momenta
of the final neutron and 3He, respectively.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Fig. 2. Tensor analyzing power T20 in the dd→ 3Hen
reaction for the collinear geometry. The curves are the
results of ONE calculations using the Urbana 3He wave
function [19] and Paris DWF [18] for the emission of 3He
at 0◦ (solid curve) and 180◦ (dashed curve) in the c.m.

We use a right-handed coordinate system defined
in accordance with the Madison convention [16]. This
system is specified by a set of three orthogonal vectors
z, y, and x, where z = p2/|p2|, y is taken to be or-
thogonal to the scattering plane (y = [p2 ×k2]/|p2 ×
k2|), and x = y × z.

We define the tensor analyzing power Aij due
to polarization of the beam for dd→ 3Hen(3Hp) in
terms of spin operators Qij for deuterons as [17]

Aij =
tr(MQijM+)

tr(MM+)
. (6)

Here, only three tensor analyzing powers, Ayy , Axx,
and Axz , are independent [17]. The corresponding
matrices Qij have the form

Qyy =
1
2



−1 0 −3

0 2 0

−3 0 −1


 , Qxx =

1
2



−1 0 3

0 2 0

3 0 −1


 ,

(7)

Qxz =
3√
8




0 1 0

1 0 −1

0 −1 0


 .

The expressions for Ayy , Axx, and Axz obtained
with formulas (4) and (6) are given in the Appendix.
The numerical results are discussed in the next sec-
tion.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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sults of ONE calculations using the Paris DWF [18] and
3He wave functions from [19] (solid curve), [20] (dashed
curve), and [21] (dotted curve).

3. NUMERICAL RESULTS
AND DISCUSSION

In the collinear geometry with 3He emitted at 0◦
or 180◦ in the c.m., the tensor analyzing powers Ayy
andAxx are equal. As mentioned above, the diagrams
presented in Figs. 1a and 1b dominate for the forward
and backward 3He emission, respectively. Hence, the
tensor analyzing powers T20 = −

√
2 Ayy due to the

beam deuteron polarization at 0◦ and 180◦ are defined
by the D/S-wave ratios in the 3He and deuteron,
respectively, and can be expressed as [12]

T20(0◦) =
1√
2

2
√

2u2(q2)w2(q2) − w2
2(q2)

u2
2(q2) + w2

2(q2)
, (8)

T20(180◦) =
1√
2

2
√

2u1(q4)w1(q4) − w2
1(q4)

u2
1(q4) + w2

1(q4)
.

Here, the momenta q2 and q4 are defined according to
Eq. (5) (see also Fig. 1).

The behavior of the tensor analyzing powers
T20(0◦) and T20(180◦) in the dd→ 3Hen reaction
2
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Fig. 4. The same as in Fig. 3 at 270 MeV.

versus initial deuteron energy is presented in Fig. 2
by the solid and dashed curves, respectively. The
calculations were performed within the ONE approxi-
mation (see Fig. 1) using the Paris DWF [18] and Ur-
bana 3He wave function [19] (with Germond–Wilkin
parametrization [15]). The relative sign of the S andD
waves of 3He is taken to be positive according to [9].
One can see the strong energy dependence of T20. The
positive and negative sign of T20 for the forward and
backward kinematics at intermediate energies clearly
demonstrates the sensitivity to the D/S-wave ratios
in the 3He and deuteron, respectively. The highest
values of |T20| for both kinematics are expected at
∼600 MeV. T20 at 0◦ and 180◦ changes sign at ∼1000
and ∼1500 MeV, respectively.

The measurement of the tensor analyzing powers
in the dd→ 3Hen reaction at nonzero emission an-
gles provides the probing of higher relative momenta
in the 3He and deuteron with respect to collinear
geometry. For instance, the momentum range up to
∼600 MeV/c in the 3He can be probed in the forward
kinematics at 270 MeV at the RIKEN [13].

The dependences of the tensor analyzing powers
Ayy , Axx, and Axz in the dd→ 3Hen reaction at 200
PH
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Fig. 5. The same as in Fig. 3 at 600 MeV.

and 270 MeV on the 3He scattering angle in the c.m.
are shown in Figs. 3 and 4, respectively. The solid,
dashed, and dotted curves are the ONE predictions
using 3He wave functions from papers [19], [20], and
[21] (with parameters taken from [22]), respectively.
All calculations were performed with the use of the
Paris DWF [18]. One can see the strong sensitivity
to the 3He spin structure when 3He is emitted in
the forward hemisphere in the c.m. and the strong
variation of the tensor analyzing powers with angle.
The dependence ofAyy , Axx, and Axz on the DWF at
90◦ or larger angles is insignificant.

The largest values of |T20| in the collinear geome-
try are expected at ∼ 600 MeV. The ONE predictions
for the angular behavior of Ayy , Axx, and Axz at
600 MeV are given in Fig. 5. The notation for the
curves are the same as in Figs. 3 and 4. Ayy and
Axx at 0◦ have a negative value of about −0.5 and
are virtually independent of the 3He wave function
used. These observables reach a maximal value of +1
at backward kinematics. The tensor analyzing power
Axz is more sensitive to the 3He wave function near
90◦ than Axx and Ayy . Note that the angular range
where the analyzing powers are most sensitive to the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Fig. 6. The same as in Fig. 3 at 1200 MeV.

3He spin structure changes with energy. The sensi-
tivity is observed in the angular ranges of 45◦–90◦,
35◦–90◦, and 15◦–90◦ at 200, 270, and 600 MeV,
respectively. The energy variation of the angular range
sensitive to the 3He spin structure is easy to under-
stand. Larger angles in the c.m. correspond to higher
internal momenta in 3He. Since the behavior of the
3He wave functions differs at internal momenta higher
than 250 MeV/c, these momenta will be probed at
decreasing angles as the initial energy increases.

The behavior of the tensor analyzing powers Ayy ,
Axx, and Axz at 1200 MeV is shown in Fig. 6. The
notation is the same as in Figs. 3–5. One can see the
strong sensitivity of all the analyzing powers to the
3He spin structure in the forward hemisphere. Note
that the sign of Ayy, Axx, and Axz at small angles
is positive, while, at 200, 270, and 600 MeV, it is
negative. This reflects the change in the D/S-wave
ratio sign in the 3He wave function. Axz is very small
in the backward hemisphere.

In principle, the analyzing powers in the GeV
range may depend significantly on the deuteron spin
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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Fig. 7. Tensor analyzing powerAyy, Axx, and Axz in the
dd→ 3Hen reaction at 1200 MeV. The curves are the
results of ONE calculations using the Urbana 3He wave
function [19] and Paris [18] (solid curve), Bonn B (dashed
curve), and Bonn C (dotted curve) [23] DWFs.

structure, especially, in the backward hemisphere.
Figure 7 demonstrates the results of the calculations
for Ayy , Axx, and Axz at 1200 MeV performed in
terms of ONE using the Urbana 3He wave func-
tion [19] and different DWFs. The solid, dashed,
and dotted curves were obtained with the use of
the Paris [18], Bonn B, and Bonn C [23] DWFs,
respectively. One can see the minor dependence of
the analyzing powers on the DWF in the backward
hemisphere.

The spherical tensor analyzing powers T20, T21,
and T22 are related to the Cartesian ones as

T20 = − 1√
2
(Axx +Ayy), (9)

T21 = − 1√
3
Axz,

T22 =
1

2
√

3
(Axx −Ayy).
2
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Fig. 8. Tensor analyzing power T20, T21, and T22 in the
dd→ 3Hen reaction. The dot-and-dash, dotted, solid,
and dashed curves and the results of ONE calculations
at the initial energies 200, 270, 600, and 1200 MeV,
respectively, using the Urbana 3He wave function [19]
and Paris DWF [18].

The behavior of T20, T21, and T22 in the dd→ 3Hen
reaction at different initial energies is shown in Fig. 8.
The curves were obtained in terms of ONE using the
Urbana 3He [19] and Paris deuteron [18] wave func-
tions. The dot-and-dash, dotted, solid, and dashed
curves represent the results of calculations at initial
energies of 200, 270, 600, and 1200 MeV, respectively.
One can see the strong energy dependence of the
angular distributions of these observables. T20 at 0◦
is positive at three low energies and changes sign at
1200 MeV. T20 is negative at 180◦ at all the four en-
ergies. |T20| achieves maximal values in the collinear
geometry at 600 MeV. There are two points where
T20 crosses zero regardless of the energy, namely, at
∼25◦ and ∼150◦ in the c.m. The tensor analyzing
powers T21 and T22 vary significantly with angle. They
are positive at small angles at three low energies and
change sign at 1200 MeV. All the analyzing powers
cross zero at ∼90◦ at 600 and 1200 MeV.

The strong energy dependence of the tensor ana-
P

lyzing powers in the dd→ 3Hen reaction within the
ONE approximation reflects their sensitivity to the
internal structure of the 3He and deuteron, because
different energies correspond to different internal mo-
mentum ranges.

4. CONCLUSIONS

The tensor analyzing powers Ayy , Axx, and Axz
in the dd→ 3Hen reaction within the ONE approx-
imation are considered. Their high sensitivity to the
spin structure of the 3He and deuteron, especially, at
intermediate energies, is found.

The measurements of these observables are being
planned at the RIKEN at energies up to 270 MeV [13].
The measurements of T20 at 0◦ in the GeV range
are proposed for the LHE–JINR Accelerator Com-
plex [24]. The measurements of the angular depen-
dence of Ayy at intermediate energies will be possible
at the COSY with the ANKE facility providing a
polarized deuteron beam.
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APPENDIX

The analyzing powers Ayy , Axx, and Axz in the
dd→ 3Hen reaction can be written as

Aij = A
(a)
ij +A

(b)
ij + 2A(inter)

ij , (A.1)

whereA(a)
ij ,A(b)

ij , andA(inter)
ij are defined below. These

terms in the first approximation are the contributions
of the diagrams shown in Figs. 1a and 1b and of their
interference, respectively.

A
(a)
ij can be expressed as

A(a)
yy = 2N−1(3a2

1(q1) + 2a1(q1)b1(q1) (A.2)

+ b21(q1))(2a2(q2)b2(q2) + b22(q2)),

A(a)
xx = 2N−1(3a2

1(q1) + 2a1(q1)b1(q1) (A.3)

+ b21(q1))(2a2(q2)b2(q2) + b22(q2))(1 − 3(q̂2 · x̂)2),

A(a)
xz = −6N−1(3a2

1(q1) + 2a1(q1)b1(q1) (A.4)

+ b21(q1))(2a2(q2)b2(q2) + b22(q2))(q̂2 · x̂)(q̂2 · ẑ).

The normalization factor N corresponds to the matrix
element square summed over all particle spin projec-
tions and is written as

N = tr(MM+)
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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= 2[3a2
1(q1) + 2a1(q1)b1(q1) + b21(q1)]

× [3a2
2(q2) + 2a2(q2)b2(q2) + b22(q2)]

+ 2[3a2
1(q4) + 2a1(q4)b1(q4) + b21(q4)]

× [3a2
2(q3) + 2a2(q3)b2(q3) + b22(q3)]

+ 4a1(q4)a2(q2)[3a1(q1)a2(q3) + a2(q3)b1(q1)

+ a1(q1)b2(q3) + b2(q3)b1(q1)(q̂1 · q̂3)2] (A.5)

+ 4a2(q2)b1(q4)[a1(q1)a2(q3)

+ a2(q3)b1(q1)(q̂1 · q̂4)2 + a1(q1)b2(q3)(q̂3 · q̂4)2

+ b1(q1)b2(q3)(q̂1 · q̂3)(q̂1 · q̂4)(q̂3 · q̂4)]
+ 4a1(q4)b2(q2)[a1(q1)a2(q3)

+ a2(q3)b1(q1)(q̂1 · q̂2)2 + a1(q1)b2(q3)(q̂2 · q̂3)2

+ b1(q1)b2(q3)(q̂1 · q̂2)(q̂1 · q̂3)(q̂2 · q̂3)]

+ 4b1(q4)b2(q2)[a1(q1)a2(q3)(q̂2 · q̂4)2

+ a2(q3)b1(q1)(q̂1 · q̂2)(q̂1 · q̂4)(q̂2 · q̂4)
+ a1(q1)b2(q3)(q̂2 · q̂3)(q̂2 · q̂4)(q̂3 · q̂4)

+ b1(q1)b2(q3)(q̂1 · q̂3)(q̂1 · q̂4)(q̂2 · q̂3)(q̂2 · q̂4)]
− 4b1(q1)b2(q2)b1(q4)b2(q3)(q̂1 · q̂3)(q̂2 · q̂4)
× [(q̂1 · q̂4)(q̂2 · q̂3) − (q̂1 · q̂2)(q̂3 · q̂4)].

Here, q̂1–4 are the unit vectors in the directions of the
momenta q1–4 defined in Eq. (5); x̂, ŷ, and ẑ are the
unit vectors of the coordinate system; and a1, b1, a2,
and b2 can be expressed through combinations of the
S and D components of the deuteron and 3He wave
functions:

a1,2(q) = u1,2(q) + w1,2(q)/
√

2, (A.6)

b1,2(q) = −3w1,2(q)/
√

2.

The terms A(b)
ij have the following forms:

A(b)
yy = 2N−1(3a2

2(q3) + 2a2(q3)b2(q3) (A.7)

+ b22(q3))(2a1(q4)b1(q4) + b21(q4)),

A(b)
xx = 2N−1(3a2

2(q3) + 2a2(q3)b2(q3) (A.8)

+ b22(q3))(2a1(q4)b1(q4) + b21(q4))(1 − 3(q̂4 · x̂)2),

A(b)
xz = −6N−1(3a2

2(q3) + 2a2(q3)b2(q3) (A.9)

+ b22(q3))(2a1(q4)b1(q4) + b21(q4))(q̂4 · x̂)(q̂4 · ẑ).

The interference term A
(inter)
ij can be written in

the general form for all the three tensor analyzing
powers as

A
(inter)
ij = 2N−1[δmnδkl + δmlδkn − δmkδnl] (A.10)

×
[
δm′k′δij −

3
2
δm′iδk′j −

3
2
δm′jδk′i

]

× [a2(q2)a1(q4)δmm′δkk′ + a2(q2)b1(q4)δmm′ q̂k4 q̂
k′
4
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+a1(q4)b2(q2)δkk′ q̂m2 q̂
m′
2 +b1(q4)b2(q2)q̂m2 q̂

k
4 q̂
m′
2 q̂k

′
4 ]

× [a1(q1)a2(q3)δkl + a2(q3)b1(q1)q̂n1 q̂
l
1

+ a1(q1)b2(q3)q̂l3q̂
n
3 + b1(q1)b2(q3)(q̂1 · q̂3)q̂n1 q̂

l
3].

Here, all summations over dummy discrete indices
are implied.
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Abstract—Theoretical analysis of the differential cross sections and angular correlation functions in the
12C(14N, d)24Mg∗(α)20Ne reaction at the energy of the incident nitrogen ions Elab = 29–42 MeV is
performed in the models of the direct transfer of 12C cluster and the compound nucleus. Amplitudes of
the reduced widths for the excited quasimolecular states like 12C ⊗12 C∗ in the 24Mg nucleus are obtained.
The effect of various states of the relative motion of nuclei in the 12C +12 C∗ configuration on the angular
dα-correlation functions is studied. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, there exists a large volume of the ex-
perimental and theoretical information on the differ-
ential cross sections and angular correlation func-
tions (ACF) in the reactions induced by semiheavy
ions with the production of excited final nuclei. An
analysis of these data shows that investigation of the
particle–particle angular correlations in reactions of
the direct transfer of α particles can be used to deter-
mine both the spin characteristics of strongly excited
α cluster states and the parameters of the internuclear
interaction potential in the excited states.

Investigation of the angular correlations in the
reactions involving multinucleon transfer opens new
possibilities for the study of the quasimolecular states
of the nuclei with high spin values and for a more
detailed investigation of the reaction mechanisms
and the spectroscopy of excited states containing 2α
and 3α clusters.
Experimental investigations of the angular dα-

correlation functions in the 12C(14N, d) ×
24Mg∗(α)20Ne reaction at E14N(lab) = 29–42 MeV
[1, 2] convincingly demonstrated the possibility of
the direct transfer of a 12-nucleon cluster upon
the excitation of one (13.45 MeV, 6+) of the states
of the 24Mg nucleus. The oscillating (proportional
to the squared Legendre polynomial of the sixth
order) ACF structure discovered in [1, 2] for the
small deuteron emission angle was related to the
presence of quasimolecular configurations of the
type 12C ⊗12 C∗ in this state of the 24Mg nucleus.

1)Mexican Independent University, Estado, Mexico.
1063-7788/02/6509-1616$22.00 c©
The previous measurements of the differential cross
sections for the 12C(14N, d)24Mg∗ reaction [3] and
a theoretical analysis using the Hauser–Feshbach
formalism of the compound nucleus (CN) model [4]
showed that such calculations describe on the aver-
age the behavior of the experimental cross sections.
An analysis of the deuteron angular distributions
together with the angular dα-correlation functions
in the CN model [5] confirmed the conclusion that
the CN contribution is important; at the same time,
this analysis demonstrated a smooth, rather than
polynomial, behavior of the angular dα-correlation
functions for the 13.45 MeV, 6+ state in 24Mg for all
forward deuteron emission angles.
Calculations performed by the method of distorted

waves with exact allowing for the finite interaction
region (EFRDWBA and MIVOKOR) [6, 7] for the
direct carbon transfer mechanism showed that the
angular distributions calculated in this model exhibit
a rich angular structure and in some cases provide
for a better description of the experimental data than
does the CN model. Recent EFRDWBA calculations
[8] allowing for the direct transfer of 12C (cluster
breakdown mechanism) and 10B (heavy breakdown
mechanism) confirmed that the main features of the
angular distributions of deuterons for the ground state
and the first excited state (1.37 MeV, 2+) in 24Mg
are well reproduced in the one-step mechanisms of
the cluster transfer with an allowance for excitation of
the intermediate nucleus. Nevertheless, the spectro-
scopic amplitudes calculated in [8] in the translation-
invariant shell model for the ground and the first
excited states in 24Mg should be increased by a factor
greater than 102 in order to obtain quantitative agree-
2002 MAIK “Nauka/Interperiodica”



INVESTIGATION OF QUASIMOLECULAR STATES 1617
ment between theoretical and experimental cross sec-
tions.
This paper is aimed at the further theoretical in-

vestigation of the problem of quasimolecular states
in the 24Mg nucleus and their effect on the reac-
tion characteristics. We analyzed the differential cross
section and the angular dα-correlation functions for
the 12C(14N, d)24Mg∗(α)20Ne reaction in the model
of the direct transfer of the massive cluster 12C and
in the model of the compound nucleus in order to ob-
tain a most complete description of the experimental
data and to understand the role of various reaction
mechanisms. The analysis made it possible to explain
why the oscillating structure of the experimental ACF
is observed for only one individual level of the 24Mg
nucleus and was never observed [1] for other strongly
excited states of this nucleus with a similar structure.
We studied the role of various quasimolecular states
in 24Mg in the process of the direct transfer of a
12-nucleon cluster and estimated the spectroscopic
amplitudes through the comparison of the calculation
results with the experiment.

2. METHOD OF CALCULATION OF THE
PARTICLE–PARTICLE ANGULAR
CORRELATION FUNCTIONS

2.1. General Formalism

Let us consider a binary nuclear reaction a(Ia) +
A(IA) → B∗(If ) + b(Ib) with the production of an
excited nucleus B∗ and a particle b in the final
state. The second stage of this reaction is the decay
B∗(If ) → C∗(I0) + c(I2) of the nucleus B∗ with the
spin If into the nucleus C∗ with the spin I0 and the
secondary particle c emitted with the spin I2.
According to the general formalism [9–11], the

ACF W (If ; Ωb,Ωc) is determined as the probability
of the simultaneous registration of the particle b in the
direction Ωb and the particle c in the direction Ωc and
can be represented in the form

W (If ; Ωb,Ωc) =
∑
kq

ρkq(If ; Ωb)ε∗kq(If , I0, I2; Ωc),

(1)

where 0 < k < 2If and q = −k, . . . , k. In (1), the spin
tensors ρkq(If ; Ωb) of the density matrix
ρIf (Mf ,M

′
f ; Ωb) of the nucleus B∗(If ) and the spin

tensors εkq(If , I0, I2; Ωc) of the matrix εIf (Ωc) of the
efficiency of registration of the final system C∗(I0) +
c(I2) are defined in the standard way [9, 10].
For the nonpolarized particles and nuclei in the

initial state, the spin density matrix of the nucleusB∗

in the state with the spin If and its projection Mf

can be written [11] in terms of the operator Tif of the
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system transition from the initial state |i〉 to the final
state |f〉:

ρIf (Mf ,M
′
f ,Ωb) =

1
(2Ia + 1)(2IA + 1)

(2)

×
∑

MaMAMbM
′
b

Tif,MaMAMbMf
(Ωb)T ∗

if,MaMAM
′
bM
′
f
(Ωb).

The density matrix (2) is normalized to the differ-
ential cross section by the condition

trρIf (Mf ,M
′
f ; Ωb) =

dσ

dΩ
= ρ00. (3)

We consider a special case when the spin state
of the residual system C∗(I0) + c(I2) is fixed as the
ground state, that is I0 = I2 = 0. In this case, the ef-
ficiency tensor εkq(If ; Ωc) assumes the simplest form,

εkq(If ; Ωc) (4)

= (−1)If (2If + 1)(4π(2k + 1))−1/2

× 〈If0If0|k0〉Y ∗
kq(Ωc),

and the expression for the ACF acquires the following
form [11, 12]:

W (If ; Ωb,Ωc) =
(2If + 1)1/2

(2Ia + 1)(2IA + 1)
(5)

×
∑
MfM

′
f

(−1)IfY ∗
IfMf

(Ωc)YIfM ′f (Ωc)

×
∑

MaMAMb

∣∣Tif,MaMAMbMf
(Ωb)

∣∣2 .
Therefore, expression (5) makes it possible to cal-

culate the ACF in any theoretical model, provided that
the form of the matrix element Tif of the transition
operator is known. We shall consider two comple-
mentary models: the model of direct nuclear reactions
in the MIVOKOR formalism [13] and the model of
compound nucleus in themodified Hauser–Feshbach
formalism [14, 15].

2.2. Angular Correlation Functions
in the MIVOKOR Formalism

In the general case, the ACF calculation in
MIVOKOR (EFRDWBA) is based on the transfor-
mation of expression (2) for the density matrix of
the nucleus B∗(If ) and its spin tensors ρkq(If ; Ωb)
using an expression for the matrix element Tif of the
operator of transition between the initial and the final
states in the reaction A(a, b)B written in MIVOKOR
[13, 16]. We shall apply a standard scheme of the
summation of the total momenta:

If = I1 + IA, Ia = I2 + Ib, (6)
2



1618 BELYAEVA et al.
l = Λ1 + Λ2,

where l is the angular-momentum transfer; Λ1 and
Λ2 are the orbital angular momenta of the relative
motion of the nuclei in the vertices B → X + A and
a → X + b; and I1 and I2 are the total angular-
momentum in the input and output channels, respec-
tively.
In the simplest case, when the residual nucleus C

and the emitted particle c are spinless, we can use
expression (4). The ACF assumes the form

W (If ; Ωb,Ωc) =
(2If + 1)1/2

(2IA + 1)
(7)

×
∑

I2M2MA

∣∣∣∣∣∣
∑
Mf

T
IfMf

I2M2MA
(Ωb)Y ∗

IfMf
(Ωc)

∣∣∣∣∣∣
2

,

where

T
IfMf

I2M2MA
(Ωb) (8)

=
∑
I1M1

(2I1 + 1)1/2 〈IAMAI1M1 | IfMf 〉

×
∑
lml

il 〈I2 −M2I1M1 | lml〉

×
∑

Λ1Λ2IXEX

(−1)l+Λ1+Λ2ΘlΛ1Λ2I1I2IX

× βlmlΛ1Λ2IXEX
(Ωb).

In (8), the kinematic factors βlmlΛ1Λ2IXEX
(Ωb) are

the overlap integrals of the input χ(+)(Ka · ra) and
output χ(−)(Kb · rb) distorted waves, the wave func-
tions of the relative motion Ψn1Λ1MΛ1

(rXA),
Ψn2Λ2MΛ2

(rXb) (we use index 1 for the vertex B →
X + A and index 2 for the vertex a → X + b), and
the interaction potential V . The structural factor
ΘlΛ1Λ2I1I2IX for the direct processes can be written
in the form

ΘlΛ1Λ2I1I2IX = (−1)IX
u(I1Λ1I2Λ2 : IX l)√

2IX + 1
(9)

× ΘB→X+A
Λ1I1IX

Θa→X+b
Λ2I2IX

,

where ΘB→X+A
Λ1I1IX

and Θa→X+b
Λ2I2IX

are the amplitudes
of the reduced decay widths of the nuclei B and a
through theX + A andX + b channels, respectively.
Let us calculate the structural factor (9) in the

scheme of summation of the total momenta (6) for
the case when the transferred nucleusX is a massive
cluster possessing excited states. For this purpose, it
is necessary to introduce a summation schemes for
the orbital angular momenta,

Lf = LX + Λ1 + LA = LX + L1, (10)
PH
La = LX + Λ2 + Lb = LX + L2,

and a summation scheme for the total momenta,

If = IX + Λ1 + IA = IX + J1 = I1 + IA, (11)

Ia = IX + Λ2 + Ib = IX + J2 = I2 + Ib,

where La,Lb,LA,Lf , and LX are the orbital angular
momenta of the corresponding nuclei and IX is the
total momentum of the transferred nucleus.
Then, the reduced width amplitude Θa→X+b

Λ2I2IX
,

which enters (9), can be presented in the following
form:

Θa→X+b
Λ2I2IX

=
∑
J2

u(IbΛ2IaIX : J2I2)Θa→X+b
Λ2IXJ2

, (12)

where the cluster spectroscopic amplitude of the re-
duced width that separates the heavy clusterX in the
nucleus a is defined in the standard way (see, e.g.,
[17, 18]):

Θa→X+b
Λ2IXJ2

=


Na

NX




1/2 ( a
X

)NΛ2
/2

(13)

×
∑

[fi]LiSiTi,i=a,b,X

aJaTa

[fa]LaSa
aJXTX

[fX ]LXSX
aJbTb

[fb]LbSb

× (−1)Λ2+IX+Ib−Iau(Λ2LbJ2Sb : L2Ib)
×K(Λ2Lb;L2)〈TXMTX

TbMTb
| TaMTa〉

×



LX SX IX

L2 Sb J2

La Sa Ia




× 〈Na[fa]LaSaTa | NX [fX ]LXSXTX ;
N2[fb]L2SbTb〉.

In (13), aJiTi

[fi]LiSi
are the intermediate coupling co-

efficients; K(Λ2Lb;L2) are the generalized Talmi–
Moshinsky–Smirnov coefficients [17, 18], which fac-
torize the wave function of the b nucleons with the
orbital angular momentum L2 into the product of the
wave function Ψn2Λ2MΛ2

(rXb) of the relative motion
with the orbital momentum Λ2 and the wave function
of the internal motion with the main quantum number
nb and the orbital momentum Lb (here, n2 + nb =
N2).

2.3. Spin Tensors of the Density Matrix
in the Statistical Model of Compound Nucleus

The modified CN model [14, 15] considered in this
paper makes it possible to allow for the arbitrary spins
of the nuclei participating in the reaction, spin–orbit
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Table 1. The reduced width amplitudes of the 14N →
12C + d vertex

IX I2 Λ2 Θ
14N→ 12C+d
Λ2IXI2

0 0 0 0.326

2 2 0.736

2 2 0 0.883

0 2 0.415

1 2 –0.533

2 2 0.198

interaction of the nuclei in the initial and the final
channels, and the interference of the incoming and
outgoing partial distorted waves.
According to the main statement of the CNmodel,

the matrix element Tif of the transition operator be-
tween the initial and the final states of the a + A =
C = b + B reaction in the asymptotic region of the
compound nucleus assumes the form

Tif = 〈Ψf | ΨC〉 〈ΨC | Ψi〉 , (14)

where Ψi,Ψf , and ΨC are the wave functions of the
initial, final, and intermediate states, respectively.
We define the summation rules for the angular

momenta as

I1 = Ia + IA, I2 = Ib + If , (15)

IC = I1 + La = I2 + Lb,

where la and lb are the orbital angular momenta of
the relative motion of particles in the input and output
channels and IC is the spin of the compound nucleus.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
Following [14], we first obtain an expression for
the density matrix ρIf (Mf ,M

′
f ; Ωb) allowing for one

quasistationary state (resonance) of the compound
nucleus and then pass to a quasicontinuous spectrum
of the compound nucleus through the summation
over all resonances in the interval of averaging. In
the reference frame with the z axis directed along
the incident beam and ϕb = 0, the expression for the
spin tensors of the density matrix of the final nucleus
assumes the form [14, 15]

ρkq(If ; Ωb) =
(2If + 1)1/2

2Ka
2(2IA + 1)(2Ia + 1)

(16)

×
∑

I1I2I′2IC lalbll
′mlm

′
l

(−1)2IC+If+Ib

× (2IC + 1)2 [(2I1 + 1)(2I2 + 1)]1/2

× w(If I2IfI ′2 : Ibk)(−1)ml+I1+I2+I′2

×
[
(2l + 1)(2l′ + 1)(2la + 1)(2lb + 1)

]1/2
× 〈lmll

′ −m′
l | kq〉〈la0lb −ml | lml〉

× 〈l′a0l′b −m′
l | l′m′

l〉w(I2lI ′2l
′ : I1k)

× w(I1laI2lb : IC l)w(I1l′aI
′
2lb : IC l′)

× Plbml
(θb)Pl′bml′

(θb)
T IC
laI1

T IC
lbI2

G(IC)
,

where the penetrability coefficients T IC
lI are calculated

in the optical model of the elastic scattering and the
total width G(IC) includes all energy-allowed decay
channels of the compound nucleus:
G(IC) =
∑
nlb

lb+IC∑
I2=|lb−IC |

I2+Ib∑
I′f=|I2−Ib|



Ec∑
E′f

T IC
lbI2

+

E∗f∫
Ec

T IC
lbI2

ρ(E∗
f , I

′
f )dE∗

f


 . (17)
In (17), n is the number of open channels; E∗
f is the

energy of the excited level of the final nucleus B̃∗

in the b̃ + B̃∗ channel; Ec is the energy edge of the
continuous spectrum of the nucleus B̃∗.
Using expressions (4), (16), and (17), it is possible

to calculate the ACF using expression (1).

3. 12C(14N, d)24Mg∗(α)20Ne REACTION
3.1. Reduced Width Amplitudes

We begin the analysis of the reaction in the
MIVOKOR formalism with the calculation of the re-
duced widths for the 14N → 12C + d vertex, since the
values obtained in some of the previous papers clearly
disagree with each other. We calculated the reduced
width amplitudes (RWAs) for the 14N → 12C + d
vertex in the case with the transfer of the 12C in
the ground and the first excited state (4.433 MeV,
2+). The calculation was based on the formalism
considered in the Section 2.2 using the summation
scheme of the total momenta (6), (10), (11) and
allowing for the transfer of a massive cluster pos-
sessing a number of excited states. Allowing for the
transfer of the higher excitations (for example, in the
14.05 MeV, 4+ state, as was done in [8]) requires
a more correct calculation of the wave functions
2



1620 BELYAEVA et al.
Table 2.Parameters of the optical potentials and the interaction potentials in the bound states of the nuclei 14N and 24Mg

Channel V , MeV R, fm aR, fm W , MeV RW , fm aW , fm RCoul, fm
12C +14 N 100 5.59 0.48 27 5.92 0.26 6.58

d +24 Mg 50 4.33 0.59 16 4.33 0.59 4.33

d +12 C 2.97 0.65 2.97
12C +12 C 4.235 0.7 4.235

Note: V = V f(r) +Wf(r) + VCoul, f(r) =

[
1 + exp

(
r −RnA

1/3

an

)]−1

, n = V ,W .
for the quasistationary states 12C ⊗ 12C∗ , because
in this case the binding energy becomes positive
even for the ground state of 24Mg. In other words,
it is necessary to allow for the decay width of the
state (see, for example, the ACF calculation for the
12C(7Li, t)16O∗(α)12C reaction [19], where the higher
quasistationary states in 16O were described by wave
functions of the Gamow type).

According to (12), we calculated the reduced
widths using the complete basis set of the wave
functions for the nuclei 12C and 14N, namely, three
components of the wave function of 14N, three com-
ponents of the wave function of 12C in the ground
state, and four components in the excited state
4.433 MeV, 2+ (we took the intermediate coupling
coefficients aJiTi

[fi]LiSi
from [20]). We also used the

fractional parentage coefficients of deuteron tabulated
in [21]. Table 1 displays the calculatedΘa→X+b

Λ2IXI2
for the

14N → 12C + d vertex.

It should be emphasized that the differential cross
section of the reaction in theMIVOKOR formalism is
the incoherent sumwith respect to the total momenta
I1, I2 and the transferred angular momentum l, while
expressions (7) and (8) for the ACF contain incoher-
ent summation with respect to the total momentum
I1, its projection M1, and the angular-momentum
transfer l. In both cases, the matrix element of the
reaction includes the coherent summation with re-
spect to the total momentum I2 and its projectionM2,
and the coherent summation with respect to the total
momentum IX of the intermediate nucleus and the
orbital momenta of the relative motion Λ1 and Λ2.

In our calculations, the reduced width amplitude
ΘB→X+A

Λ1IXI1
for the 24Mg∗ → 12C +12 C∗ vertex, which

enters the spectroscopic factor ΘlΛ1Λ2I1I2IX , was a
free parameter determined from the fit to the experi-
mental data.
P

3.2. Differential Cross Sections

We analyzed the reaction 12C(14N, d)24Mg∗ at
two different energies of the 14N ions Elab = 29 and
35 MeV for various excited states of 24Mg. The cal-
culations were performed in themodified CNmodel by
the program package CNCOR [15]. The main details
and the calculation parameters were discussed in the
previous paper [5]. Many investigations emphasized
the important role of the critical angular momentum
Jcr for the formation of the compound nucleus 26Al in
the calculation of the cross section magnitude in the
CNmodel. When the value of Jcr was chosen approx-
imately equal to Jgr (Jgr is the angular momentum
corresponding to the penetrability coefficients in the
input channel equal to ∼0.5 [4]), the reaction cross
sections calculated in the CN model for the most
part of levels exceeded the experimental values. Since
the critical angular momentum Jcr is determined by
the maximum orbital angular momentum lmaxa in the
input channel and characterizes the probability of
formation of the compound nucleus at la < lmaxa , it
seems to be reasonable that Jcr depends not only on
the incident ion energy, but also on the probability
of the existence of the competing channel, for exam-
ple, the direct breakdown channel, which gives the
maximum contribution at lmax

a � la � lgra . We used
Jcr ≈ Jgr � 13 for the 5.23 MeV, 3+ level in 24Mg
at E14N = 35 MeV, because the formation of this
level owing to the direct processes is forbidden by
the selection rules. For the other levels, we selected
Jcr < Jgr depending on the value ofE14N (lab).

Calculations in the MIVOKOR formalism were
performed by the program package OLYMP-5 [22,
15], modified to allow for the summation with respect
to the total momentum IX of the excited states of
the intermediate nucleusX and the total momenta I1
and I2. Table 2 displays the parameters of the optical
potentials and the interaction potentials.
Figures 1 and 2 present the calculation results

for the differential cross sections of the reaction
12C(14N, d)24Mg∗ for various excited states of the
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Fig. 1. The angular distributions of deuterons in the 12C(14N, d)24Mg∗ reaction at the energy E14N(lab) = 29 MeV. The
dashed (dashed-dotted) curves show the contribution of the mechanism of the direct transfer of the 12C cluster; the dotted
curves show the contribution of the CN mechanism. The solid curve is the incoherent sum of the contributions from both
mechanisms. The points represent the experimental data [6].
24Mg nucleus at E14N(lab) = 29 and 35 MeV. The
experimental data for these energies are taken from
[6] and [3], respectively. The data have high statistical
accuracy—the statistical errors usually do not exceed
the size of the points in the figures. Theoretical cross
sections represent the incoherent sums of the cross
sections calculated in the statistical CN model and
in the model of the direct transfer (the breakdown
mechanism) of the 12C nucleus in the ground and the
first excited state (E∗ = 4.433 MeV, 2+). Note that
the cross sections with excitation of the 4.12MeV, 4+

and 4.24MeV, 2+ states are experimentally forbidden.
While comparing these cross section with the experi-
ment, we calculated each cross section separately and
then summed the obtained results. Since we studied
the quasimolecular states 12C ⊗ 12C∗, we omitted
the calculations allowing for the heavy breakdown
mechanism, that is, the direct transfer of the nucleus
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
10B: in this case, the excited states in 24Mg are formed
owing to the configurations 14N ⊗ 10B.

The contribution of the direct transfer of the 12C
nucleus to the cross section of the reaction with the
production of the ground state 24Mg is dominating
compared to the contribution of the CN mechanism.
The former contribution reaches approximately 80–
85% in the forward angular region of the deuteron
emission, 65–85% in the region of medium emission
angles, and slightly decreases when the energy of the
incident ions increases from 29 to 35 MeV. At large
deuteron emission angles, the contribution of the di-
rect transfer mechanism decreases to 25–50% of the
total reaction cross section. For the cross sections
with the production of the excited states of 24Mg,
the contribution of the direct transfer mechanism also
exceeds that of the CN mechanism in the region of
2
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Fig. 2. The angular distributions of deuterons in the 12C(14N, d)24Mg∗ reaction at the energy E14N(lab) = 35 MeV. The
notations are the same that in Fig. 1. The points represent the experimental data [3].
forward angles and reaches 70% for the 2+ level, 50–
70% for the 4+ and 6+ levels, and 55–60% for the 8+

level. In the region of medium angles, the contribution
of the direct transfer mechanism is comparable with
the contribution of the CN mechanism and reaches
70% for the 2+ level, 40–50% for the 4+ level, 50–
65% for the 6+ level, and 35–45% for the 8+ level. At
large deuteron emission angles, the CN mechanism
dominates. The 13.45 MeV, 6+ level is distinguished
by the significant excess of the contribution from the
direct transfer mechanism over the contribution from
the CN mechanism. For this level, the direct transfer
mechanism gives 80 to 85% of the cross section for
the forward, medium, and large deuteron emission
angles.

Table 3 presents the reduced width amplitudes

Θ
24Mg∗→ 12C+12C∗

Λ1I1IX
obtained as a result of the compar-
P

ison of the calculated cross sections with the experi-
mental data.
An analysis of the results of calculation of the

differential cross section leads to the following con-
clusions.
The reduced width amplitudes Θ

24Mg∗→ 12C+12C∗

Λ1I1IX

for the quasimolecular states 12C ⊗ 12C∗ have suf-
ficiently high values comparable with RWA of the
deuteron in the 14N nucleus (see Tables 1 and 3). The
RWA difference for the 13.45 MeV, 6+ level at the ni-
trogen ion energies Elab = 29 [6] and 33 MeV [2] (see
Table 3) is related to the fact that the experimental
cross sections reported in various papers differ from
each other by a factor of more than 3.
For the lowest states of 24Mg with Iπ = 0+, 2+,

4+, the configurations in which the transfer of 12C
occurs in the ground state and in the first excited state
(4.433 MeV, 2+) give comparable contributions. In
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Table 3. The reduced width amplitudes of the 24Mg∗ → 12C +12 C∗ vertex for various energies of the incident 14N ions

Iπ, E∗
24Mg, MeV I1 Λ1 IX

Elab, MeV
29 35∗ 42

0+, ground state 0 0 0 0.84 0.84
2+, 1.37 2 2 0 0.66 0.66

2 0 2 0 0
2 2 2 0.66 0.66
2 4 2 −0.2 −0.2

2+, 4.24 2 2 0 0.66 0.66
2 0 2 0 0.2
2 2 2 0.66 0.66
2 4 2 −0.2 −0.2

4+, 4.12 4 4 0 0.35 0.35
4 2 2 0.35 0.35
4 4 2 0.35 0.35
4 6 2 0 0.35

6+, 8.11; 6+, 8.44 6 6 0 0 0 0
6 4 2 0.447 0.447 0
6 6 2 0.447 0.447 0.447
6 8 2 0.447 0.447 0.447

6+, 13.25 6 6 0 0 0 0
6 4 2 0.114 0.28 0
6 6 2 0.114 0.28 0.28
6 8 2 0 0 0.56

8+, 14.15 8 8 0 0
8 6 2 0.26
8 8 2 0.26
8 10 2 0

∗ The RWA for the 13.24 MeV, 6+ level are obtained at E lab = 33MeV.
particular, for IX = 2, all allowed momenta of the rel-
ative motionΛ1 = If + 2 of nuclei in the 12C + 12C∗

configuration are usually important. For the strongly
excited quasimolecular states of 24Mg (Iπ = 6+, 8+),
the role of configurations featuring the transfer of the
intermediate 12C nucleus in the ground state becomes
insignificant, and the main contribution comes from
the configurations with the transfer of 12C∗(2+). In
this case, the highest allowed momenta of the relative
motion Λ1 of the nuclei in the 12C + 12C∗ configura-
tion become dominating with increasing energy of the
incident ions.

It should be emphasized that the analysis of the
differential cross sections is insufficient for obtaining
reliable information about the higher quasistationary
states in 24Mg and should be supplemented by an
analysis of the angular correlation functions.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
3.3. The Angular dα-Correlation Functions
We calculated the ACFs for all excited states of the

24Mg nucleus with the excitation energy exceeding
the energy of the 4.12 MeV, 4+ level allowing for the
coherent summation with respect to the momenta
l,Λ1,Λ2, IX (Figs. 3–6). A specific feature of ACFs
in this reaction is a strong dependence of their shape
on the incident ion energy and on the structure (wave
function and weights of various configurations) of the
excited state of the final 24Mg nucleus. Investigation
of the ACFs at various energies enables sufficiently
reliable estimation of the contributions from various
states of the relative motion of 12C ⊗ 12C∗ in 24Mg.
If the levels of 24Mg possess a given quasimolecular
structure, then, starting from the 8.11 MeV, 6+ level,
the relative binding energy of the carbon nuclei be-
comes positive; that is, these states become quasis-
tationary. In these cases, we performed calculations
with an effective negative value of the binding energy
ε = −0.01MeV.
2
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the curves correspond to E14N(lab) = 29 (solid), 33 (dash), 35 (dot); 42 MeV (dash–dot).
Figure 3 displays the ACFs for the 13.24 MeV,
6+ level (the experimental data are taken from [2])
for two energies of the nitrogen ions Elab = 33 (a)
PH
and 42 MeV (b), calculated with various RWA values

Θ
24Mg→12C+12C∗

Λ1I1IX
taken from Table 3. Since the RWA
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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are determined as the calculated parameters from
the comparison of the corresponding differential cross
sections with experiment, their values automatically
allow for a difference in the experimental excitation
cross sections of this level at different energies of the
nitrogen ions observed in [2] and mentioned in the
preceding section. The shape of the ACF significantly
changes depending on the RWA ratio characterizing
the contributions of various momenta of the relative
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
motion of the carbon nuclei in the quasimolecular
12C ⊗ 12C∗ configuration.
Figure 4 displays the ACFs for the same level

calculated for Elab = 29 MeV with various RWAs
(a) and various energies of the nitrogen ions in the
interval 29–42 MeV (b) with the RWA from Table 3.
The ACF oscillations observed experimentally at 29
and 33 MeV appear only when the coherent sum of
two states with Λ1 = 4, 6 at IX = 2 are accounted
2
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for. As the ion energy increases to 42 MeV, the ACF
oscillations become smoothed owing to an increase
in the contribution of the higher momenta Λ1 = 6, 8
of the relative motion allowed by the selection rules.
Figures 5 and 6 present theACFs for the 8.11MeV,

6+ and 13.21 MeV, 8+ levels. Their shapes also
strongly depend on the contribution of different mo-
menta of the relative motion Λ1 (Figs. 5a and 6a)
and on the incident ion energy (Figs. 5b and 6b). An
analysis of the calculation results leads to the conclu-
sion that the absence of the oscillating polynomial
structure of ACFs for the 8.11 and 8.44 MeV, 6+

levels is probably related to the equal contributions
of all momenta of the relative motion Λ1 = 4, 6, 8
allowed by the selection rules. As the energy of the
nitrogen ions increases to 42 MeV, the maximum
of the ACF in the forward direction for these states
grows, but no oscillations of the type |P6(cos θ)|2
appear.
The calculated ACFs for the 13.21 and 14.15MeV,

8+ levels may exhibit a polynomial form, in particular,
when the ion energy increases up to 42 MeV. Unfor-
tunately, no experimental data were available for these
levels to be compared to the calculated ACFs.

4. CONCLUSION

The results of investigation of the differential cross
sections and the angular dα-correlation functions in
the 12C(14N, d)24Mg∗(α)20Ne reaction at the nitro-
gen ion energies Elab = 29–42 MeV demonstrated
the possibility of simultaneous description of these
characteristics of the reaction for a broad spectrum
of excited states in 24Mg, starting from the ground
state and up to the highly excited states Iπf = 6+, 8+

by the mechanism of the direct transfer of the 12-
nucleon cluster (12C nucleus). For this reaction, in-
duced by semiheavy nitrogen ions, the contribution of
the mechanism of the direct transfer of the 12C cluster
dominates over the CN contribution in the forward
hemisphere of the deuteron emission for the produc-
tion of all excited states of 24Mg, where the direct
transfer mechanism is not forbidden by the selection
rules. Our calculations confirmed the conclusion that
the quasimolecular configurations like 12C ⊗ 12C∗ in
24Mg play an important role in the understanding of
the reaction mechanism. We showed that the relation
between the contributions of various orbital momenta
of the relative motion of the carbon nuclei (which can
accept several values depending on the spin of the
excited state of the transferred nucleus) determines
specific features of the behavior of the differential
cross sections and the angular correlation functions
and, in particular, forms the polynomial shape of the
ACF. The corresponding reduced width amplitudes
P

obtained from a comparison of the theoretical and
experimental cross sections and ACFs acquire rather
large values. This is indicative of a significant prob-
ability of the formation of the quasimolecular states
in the 24Mg nucleus. The constancy of the obtained
RWAs at the nitrogen ion energies of 29 and 35 MeV
confirms reliability of the applied approach. At the
same time, an increase of the calculation energy up to
42 MeV results in a change of the ratio between the
contributions of various momenta and in an increase
in the contribution of the highest allowed momenta
of the relative motion of nuclei in the 12C + 12C∗

configuration.
In conclusion, we would like to attract the atten-

tion of experimenters and theoreticians to the further
investigation of strongly excited cluster and quasi-
molecular states in the nuclei of the 2s1d shell, in par-
ticular, by studying the angular correlation functions.
This requires, first of all, the development of adequate
theoretical methods for the calculation of the reduced
widths of massive clusters.

REFERENCES
1. K. R. Artemov, V. Z. Goldberg,M. S. Golovkov, et al.,
Phys. Lett. B 149, 325 (1984).

2. R. W. Zurmuhle, Z. Liu, D. R. Benton, et al., Phys.
Rev. C 49, 2549 (1994).

3. C. Volant, M. Conjeaud, S. Harar, et al., Nucl. Phys.
A 238, 120 (1975).

4. H. V. Klapdor, H. Reiss, G. Rosnerb, and
M. Schrader, Nucl. Phys. A 244, 157 (1975);
H. V. Klapdor, H. Reiss, and G. Rosner, Nucl. Phys.
A 262, 157 (1976).

5. T. L. Belyaeva, N. S. Zelenskaya, and N. V. Odintsov,
Izv. Akad. Nauk, Ser. Fiz. 58 (11), 112 (1994).

6. K. P. Artemov,M. S. Golovkov, V. Z. Gol’dberg, et al.,
Yad. Fiz. 44, 579 (1986) [Sov. J. Nucl. Phys. 44, 373
(1986)].

7. T. L. Belyaeva and N. S. Zelenskaya, Izv. Akad. Nauk,
Ser. Fiz. 52, 942 (1988).

8. S. B. Sakuta, D. L. Ukrainskiı̆, and
Yu. M. Chuvil’skiı̆, Yad. Fiz. 62, 2019 (1999)
[Phys. At. Nucl. 62, 1873 (1999)].

9. L. C. Biedenharn andM.E. Rose,Rev.Mod. Phys. 25,
729 (1953); L. C. Biedenharm and J. D. Louck,Angu-
lar Momentum in Quantum Mechanics (Addison-
Wesley, New York, 1981).

10. L. Goldfarb, in Nuclear Reactions, Ed. by P. M. Endt
and M. Demeur (North-Holland, Amsterdam, 1959;
Gosatomizdat, Moscow, 1962), Vol. 1.

11. N. S. Zelenskaya and I. B. Teplov, Nucl. Phys. A 406,
306 (1983); N. S. Zelenskaya and I. B. Teplov,Adjec-
tives of Excited States of Nuclei and Angular Cor-
relation in Nuclear Reactions (Énergoatomizdat,
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Abstract—The mechanisms of cumulative proton production are studied on the basis of data from the
SCAT propane–freon bubble chamber exposed to a wideband neutrino beam at the Serpukhov accelerator.
Kinematic correlations between the cumulative proton and muon, as well as pair correlations of the final
protons, are analyzed. The former correlations are predicted by the two-nucleon correlation mechanism
(TCM), whereas the latter are caused by the mechanism of secondary pion absorption (SPA) in the nucleus.
It is shown that the TCM contribution to the cumulative proton production is most significant in the
peripheral interactions (about 50%). The SPA contribution accounts for about a quarter of the inclusive
cross section of cumulative proton production. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In particle–nucleus interactions, cumulative pro-
tons (CPs) can be produced by direct (spectator)
or multistage mechanisms. In accordance with the
former, CP production is caused by interaction of
the incident particle with multinucleon or multiquark
clusters in the nucleus [1–3]. The simplest spectator
process is that according to the two-nucleon cor-
relation mechanism (TCM) [2], which implies cer-
tain kinematic correlations between secondary lep-
tons and cumulative protons with a momentum re-
flecting the properties of the nuclear wave function
at small distances. These correlations were observed
in the interactions of (anti)neutrinos with the neon
nucleus [4–6], in which the TCM contribution to CP
production was estimated for the peripheral interac-
tions [6]. In the nonperipheral interactions, as well
as in the neutrino interactions with heavy nuclei, the
TCM contribution was insignificant [7, 8]. In these
interactions, CP production is caused mainly by the
secondary interactions within the nucleus, that is, by
the multistage mechanisms.

The main multistage mechanism is secondary
pion absorption (SPA) on a quasi-deuteron pair,
which results in certain kinematic correlations be-
tween two final protons. At present, the SPA con-

1)Joint Institute for Nuclear Research, Dubna, Moscow
oblast, 141980 Russia.

2)Yerevan Physics Institute, ul. Brat’ev Alikhanyan 2, Yerevan,
375036 Armenia.
*e-mail: gulkan@jerewan1.yerphi.am
**e-mail: ivanilov@mx.ihep.su
1063-7788/02/6509-1628$22.00 c©
tribution is estimated only for the hadron–nucleus
interactions [9–12].
Our article is concerned with the study of the

aforementioned mechanisms of CP production in the
interactions of neutrinos with nuclei of a propane–
freon mixture at energies Eν = 3–30 GeV. The ex-
perimental procedure is described in Section 2. The
invariant cross spectra of CPs are presented in Sec-
tion 3. The contributions of the TCM and SPAmech-
anisms to CP production are estimated in Sections 4
and 5, respectively.

2. EXPERIMENTAL PROCEDURE

The experiment was performed in the SCAT
bubble chamber [13], exposed to a wideband neu-
trino beam obtained with 70-GeV primary pro-
tons from the Serpukhov accelerator. The chamber
was filled with a propane–freon mixture containing
87 vol% propane (C3H8) and 13 vol% freon (CF3Br)
with the percentage of nuclei H : C : F : Br = 67.9 :
26.8 : 4.0 : 1.3%. The density of the mixture was
0.55 g/cm3, the radiation length was X0 = 50 cm,
and the nuclear interaction length was 149 cm. The
total chamber volume and the fiducial one were 6.5m3

and 1.73m3, respectively. A 20-kG uniformmagnetic
field was provided within the operating chamber
volume.
We selected the interaction events caused by

a charged beam current with a muon momentum
of pµ > 0.5 GeV/c. A negatively charged particle
with the greatest transverse momentum among the
particles not exhibiting secondary interaction in
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Invariant spectrum of cumulative protons for all events with CPs (�) and the peripheral and nonperipheral events
(samples 1–4 and 1′–4′, respectively). For the notation, see the text and table.
the chamber was considered to be a muon. Other
negatively charged particles were considered to be
π− mesons. Protons with the momenta below 0.6–
0.65 GeV/c and a fraction of protons withmomentum
up to 0.8 GeV/c were identified by their stopping
in the chamber. The rest of the positively charged
particles were considered to be π+ mesons. The mean
probability of γ-quantum conversion in the chamber
was 0.67.
When the neutrino energy was determined, we

took into account the charged particles and the γ
quanta with a relative error of the momentum mea-
surement ∆p/p < 27% and ∆p/p < 100%, respec-
tively. Introducing corrections for unseen γ quanta,
neutrons, and tracks with high relative error of the
momentum measurement, we selected events with
neutrino energies within the range of 3GeV ≤ Eν ≤
30GeV. The total number of these events wasNtot =
7927; the mean neutrino energy was 〈Eν〉 = 9.0GeV;
the mean square transferred momentum was 〈Q2〉 =
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
2.2 GeV2. Then, we selected events containing at
least one CP, that is, the proton with an escape an-
gle of ϑ > 90◦ with respect to the neutrino beam
direction and with a momentum of p > 0.24 GeV/c
(the latter constraint was introduced to suppress the
contribution of “evaporation” protons). As a result,
1399 events were selected, which contained 1699
cumulative protons.

3. INVARIANT SPECTRA OF CUMULATIVE
PROTONS

Figure 1 shows the invariant spectrum of CPs
(triangles), corrected for the losses of protons with the
momentum of 0.6 < p < 0.8GeV/c caused by escape
from the chamber. This spectrum can be described
by an exponential function exp(−bp2) with the slope
b = 9.4 ± 0.4 (GeV/c)−2; to within the experimental
error, this parameter agrees with the measurements
performed with hadron, photon, and neutrino beams
2
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The number of cumulative protons (
←
p ); the slope of the invariant spectrum (b); the correlation parameter (β); the

contribution of the two-nucleon correlations (βTCM)

Sample Number b, β βTCM

of CP (GeV/c)−2

All CP events 1699 9.5± 0.4 0.43± 0.06 0.36 ± 0.05± 0.07

(1) 1
←
p + (≤ 1)

→
p 678 8.9± 0.6 0.56± 0.09 0.46± 0.08 ± 0.09

(1′) all events except for (1) 1021 9.9± 0.6 0.35± 0.08 0.29 ± 0.07± 0.06

(2) 1
←
p + 0

→
p 353 8.9± 0.9 0.54± 0.15 0.45 ± 0.12± 0.09

(2′) all events except for (2) 1346 9.8± 0.5 0.39± 0.07 0.33 ± 0.06± 0.07

(3) quasi-two-nucleon events 484 9.1± 0.7 0.58± 0.12 0.49 ± 0.10± 0.10

(3′) all events except for (3) 1215 9.9± 0.5 0.35± 0.07 0.29 ± 0.06± 0.06

(4) quasi-deuteron events 285 8.8± 0.9 0.75± 0.15 0.62 ± 0.13± 0.12

(4′) all events except for (4) 1414 9.9± 0.5 0.37± 0.07 0.31 ± 0.06± 0.06

Note:
→
p is proton escaping into the forward hemisphere.
within a wide range of incident energies from several
GeV to several hundred GeV (see [12] and references
therein).
It should be expected that the relative contribu-

tions of different mechanisms of CP production can
vary according to the degree of peripherality of the νA
interactions. Figure 1 compares the invariant spectra
of various samples of events enriched by the periph-
eral and nonperipheral interactions.
The following criteria were used to select the pe-

ripheral interactions: (1) events in which CP was
accompanied by no more than one noncumulative
proton; (2) events in which CP was not accompa-
nied by other protons; (3) quasi-two-nucleon events,
corresponding topologically to neutrino interactions
with (pn) and (pp) pairs, in which there was no more
than one proton in addition to CP in the final state and
the total charge of the final particles (including muon)
was q = 1 or 2; (4) quasi-deuteron events with q = 1
from the sample of quasi-two-nucleon events.
The samples 1′–4′ of the nonperipheral events

were obtained by eliminating the corresponding pe-
ripheral events from the total sample.
The slopes of the invariant spectra of the above

samples are summarized in table. Towithin the exper-
imental error, the values of parameter b are in agree-
ments with each other for all the samples. However,
there is some evidence that the spectra of peripheral
events drop at a somewhat slower rate with increasing
p than do the spectra of the nonperipheral events.
P

4. CONTRIBUTION OF TWO-NUCLEON
CORRELATION MECHANISM

According to TCM, CP are produced due to the
interaction of a primary lepton with a correlated nu-
cleon pair, in which the particle momenta are equal in
magnitude and opposite in direction. The neutrino is
scattered on the nucleonwith themomentum directed
into the forward hemisphere, while the spectator nu-
cleon escapes into the backward hemisphere with an
initial momentum p due to disruption of the bond
between nucleons of the pair. Neutrino scattering on
the nucleon moving forward causes an experimentally
observed effect of a shift to lower values of the distri-
bution versus the Bjorken variable x and that versus
v ≡ xy = (Eµ − pLµ)/m. The latter variable is deter-
mined by the kinematic parameters of the muon—
the energy Eµ and the longitudinal momentum pLµ—
and does not require separately measuring the scaling
variables x and y = (Eν − Eµ)/Eν . In this case, the
mean value 〈vα〉 of the variable v appears to be a
linearly decreasing function of the kinematic vari-
able α = (E − pL)/m of the cumulative proton [2, 6]
(where E, pL, and m are the CP energy, longitudinal
momentum, and mass, respectively):

〈vα〉/〈v〉 = 2 − α. (1)

Here, 〈v〉 is the mean value of the variable v in the
inclusive scattering process, which is determined by
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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averaging over all events without CP (in our experi-
ment, 〈v〉 = 0.138).
The dependence (1) is confirmed by experimental

data on the (anti)neutrino scattering on deuterons [6].
In the case of a complex target nucleus, the corre-
lation can be decreased by proton rescattering in the
nucleus.
Figure 2 shows the plots of 〈vα〉/〈v〉 versus α for

all the events considered above, and its approximation
by the linear expression

〈vα〉/〈v〉 = (1 + β) − βα. (2)

The values of the parameter β characterizing the
kinematic correlation between scattered leptons and
CPs are listed in table. These data indicate that the
degree of correlation is higher for the peripheral events
than for the nonperipheral ones and reaches a maxi-
mum for the quasi-deuteron events.
Previously, the β parameter was obtained for the

νNe (ν̄Ne) interactions at a minimum momentum of
pmin = 0.35GeV/c [6]. The values of β = 0.36± 0.19
(0.24 ± 0.20) and β = 0.90 ± 0.26 (0.69 ± 0.24) were
obtained for the total sample and for the peripheral
events without protons other than CP, respectively.
These values are comparable with the values obtained
from our data at pmin = 0.35GeV/c: β = 0.44 ± 0.06
for the total sample and β = 0.79 ± 0.14 for the sam-
ple without accompanying protons.
The relative contribution of TCM to CP produc-

tion can be estimated using the values of the pa-
rameter β presented in table. If we assume that the
observed correlations are determined completely by
TCM and there are no correlations in the competi-
tive mechanisms, then the relative contributions will
be equal to βTCM = β and β0 = 1 − β, respectively.
However, since some of the competitive mechanisms
can make a certain contribution as well, the β value
determines the upper limit of the relative contribution
of TCM, that is, βmax

TCM = β. Such processes include
multinucleon correlations (involving three or more
nucleons) with a weaker dependence [2]:

〈vα〉
〈v〉 =

k̄ − α

k̄ − 1
, (3)

where k̄ ≥ 3 is the effective number of correlated nu-
cleons from the cluster of which CP escapes. Since
the probability of multinucleon correlations is con-
siderably lower than that of the two-nucleon corre-
lations, it can be expected that their total relative
contribution is such that βk̄ < βTCM. If CP are pro-
duced via the three mechanisms considered above
(βTCM + βk̄ + β0 = 1), then the measured parameter
β is determined as

β = βTCM +
1

k̄ − 1
βk̄, (4)
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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from which it follows that βmin
TCM =

2
3
β (at βk̄ < βTCM

and k̄ ≥ 3). Combining the upper and lower limits,
βmax
TCM and βmin

TCM, the parameter can be estimated as

βTCM =
5
6
(β ±∆β)± 1

6
β. This expression takes into

account both the statistical uncertainty ∆β and the

maximum scattering ±1
6
β between the upper and

lower limits (the last column of table).
The estimates of the TCM contribution presented

in the table do not allow for the fact that a proton pro-
duced in the primary interaction event can exhibit re-
scattering in the nucleus causing attenuation of the
2
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Fig. 3. A distribution with respect to µ2 for the pairs of
protons with the minimum momenta of 0.25, 0.30, and
0.35 GeV/c (the notation is explained in the text).

correlation between 〈vα〉 and α. The mean potential
proton range in the nucleus is equal to l̄ 	 0.75R̄,
where R̄ = 3.6 fm for the neutrino interacting with
a mixture of the C, F, and Br nuclei possessing the
mean atomic number Ā = 27. For the mean free pro-
ton range in the nucleus λ = 5 fm [14, 15], the rescat-
tering probability is about 0.4. Thus, the estimates of
βTCM presented in the table can be underestimated
at about 40% for both the total sample and the sam-
ples of the nonperipheral interactions. This correction
must be substantially lower for the peripheral inter-
actions because of a smaller mean potential proton
range and owing to the fact that a secondary inter-
action can result in an increasing number of protons
in the final state, which will correspond topologically
to the kind of nonperipheral interactions.

As can be seen from the table, TCM dominates
in the quasi-deuteron sample. For this sample, the
invariant CP spectrum is characterized by slope
parameter b(pn) = 8.8 ± 0.9 (GeV/c)−2. Taking into
account that the competitive mechanisms (a small
admixture of which can be present in the sample of
quasi-deuteron events) are characterized by slightly
higher values of the slope, then b(TCM) ≤ b(pn)
is expected for the TCM slope. A comparison of
b(TCM) to a similar parameter of the cumulative
(spectator) protons produced in the (anti)neutrino
interactions with a free deuteron [6] (b(d) = 12.8 ±
2.0 (GeV/c)−2) indicates that the probability of the
high-momentum component is greater by a factor
of exp(p2/q2

0) for the quasi-deuteron than for the
deuteron (q0 = 0.50 ± 0.14 GeV/c).
P

5. CONTRIBUTION OF SECONDARY PION
ABSORPTION

The basic two-stage mechanism of CP production
is absorption of relatively low-energy pions (pπ ≤
0.5 GeV/c), produced in the primary νN interaction,
by a pair of intranuclear nucleons:

π(NN) → ←
pN, (5)

where one of the protons (
←
p) escapes into the back-

ward hemisphere. In a particular case of π+ meson
absorption on a free deuteron (π+d → pp), the value

µ2 = (T1 + T2)2 − (p1 + p2)2 (6)

does not depend on the pion momentum and is equal
to µ2 = m2

π. Here, T1, T2,p1, and p2 are the kinetic
energies and momenta of the final protons. In the
case of absorption of the intermediate pion by a pair
nucleons bound in the nucleus, the distribution with
respect to µ2 can be shown to have a maximum with
a width of γ ≈ 2|pd(p1 + p2)|, which is shifted from
m2
π to lower values by δ ≈ 2∆E(T1 + T2) + p2

d, where
∆E is the mean binding energy and pd is the mean
value of the Fermi momentum of the nucleon pair in
the nucleus (see the dashed curve in Fig. 3 calculated
for the nucleus with A = 27 [12]).
We should note that the minimum proton momen-

tum in reaction (5) on a deuteron at rest is equal
to pmin = 0.37 GeV/c, whereas this value decreases
due to the Fermi motion to pmin = 0.2–0.25 GeV/c.
Therefore, studying the SPA mechanism, we selected
events of the reaction

νA → ←
p + p+X, (7)

containing besides CP at least one proton with a
momentum p > 0.25 GeV/c flying out into the front
hemisphere. The minimum CP momentum was var-
ied between 0.25 and 0.35 GeV/c.
Figure 3 shows the distributions with respect to

µ2 for reaction (7). The solid curves correspond to
the combinatorial background obtained by combining
protons from various events which fly into the forward
and backward hemispheres. The background curve
is normalized to the experimental histogram within
the range µ2 < −0.25 (GeV/c2)2, where the expected
SPA contribution is negligibly small. A difference be-
tween the background and experimental distributions
has just the same shape as the calculated dashed
curve; therefore, it can be related to the SPA mech-
anism (over the whole range µ2 > −0.25 (GeV/c2)2).
The contribution of this mechanism to the inclu-
sive cross section of CP production with momen-
ta p > pmin was α(SPA) = 0.15 ± 0.02, 0.16 ± 0.02,
and 0.14 ± 0.02 at pmin = 0.25, 0.3, and 0.35 GeV/c,
respectively. We should note that these values are
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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appreciably smaller than the ones in the hadron-
nucleus interactions [9–12]: α(SPA) falls within the
range between 0.21 ± 0.03 and 0.26 ± 0.04 at pmin =
0.25 GeV/c for the light nuclei with 12 ≤ A ≤ 27.
Such discrepancy is caused probably by the fact that
the mean potential length l̄π of the pion passage
through the nucleus is slightly shorter for the neutrino
interactions than that for the hadron interactions.
The SPA probability can be expected to decrease

with increasing peripherality of the interaction—that
is, with decreasing l̄π. For a sample of relatively pe-
ripheral interactions, when there is one pair of nu-
cleons in the final state—that is, when the X state
on the right-hand side of expression (7) does not
contain identified protons—α(SPA) = 0.09 ± 0.05 is
obtained. It does not contradict the expected attenu-
ation of the role of the SPA mechanism.
Up to this point, we considered SPA correspond-

ing to process (5) with two protons in the final state—
that is, π+(pn) → ←

pp and π0(pp) → ←
pp. It is evident

that other processes with CP and neutron produc-
tion can take place: π+(nn) → ←

pn, π0(pn) → ←
pn,

π−(pp) → ←
pn. According to the estimates [9], the

contribution of these processes amounts to ∼60%
of the contribution of process (5) with two protons
in the final state. Thus, the total contribution of the
SPA mechanism to the inclusive cross section of
CP production can be estimated as αNN (SPA) =
1.6α(SPA) = 0.24 ± 0.03.
As was mentioned in the preceding section, the

estimates based on the observed kinematic correla-
tions can be underestimated, since these correlations
can be violated noticeably because of the processes
of intranuclear rescattering. Protons produced in re-
action π(NN) → ←

pp escape mainly at large angles;
their rescattering causes mainly a decrease in the
angle of expansion—that is, spreading of the distri-
bution with respect to µ2 towards negative values and
consequent depression of the observed effect.

CONCLUSION

The mechanisms of cumulative proton production
due to the interactions of high-energy neutrinos with
nuclei are studied. Kinematic correlations, between
CP and scattered lepton, caused by the mechanism
of two-nucleon correlations, are observed, as well as
the correlations, between coupled protons of the pair,
which are caused by the mechanism of secondary-
pion absorption.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
Estimates of the relative contribution of TCM
to CP production are obtained. This contribution is
0.36 ± 0.05 ± 0.07 in inclusive production of CPs and
increases in the peripheral interactions. In particu-
lar, TCM dominates in the quasi-deuteron sample
(βTCM = 0.62 ± 0.13 ± 0.12), which enables one to
extract information on the high-momentum com-
ponent in the quasi-deuteron, its probability being
higher by a factor of exp(p2/q2

0) than that in the
free deuteron (q0 = 0.50 ± 0.14 GeV/c). The con-
tribution of the SPA mechanism with due regard
to all processes π(NN) → ←

pN is 0.24 ± 0.03 of
the inclusive cross section of CP production. This
value is noticeably smaller than that for the hadron
interactions with the nucleus with A = 27.
Both considered mechanisms are responsible for

about a half of the inclusive cross section of the CP
production: β(TCM+SPA) = 0.52± 0.06± 0.14. In
the peripheral interactions, a dominant fraction of CP
is produced via these mechanisms.
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Abstract—A calculation of the cross section for the reaction νγ → νµ+µ−, which is induced by the
neutrino magnetic moment, is described in detail. The expression obtained for this cross section is
used to determine the asymptotic behavior of the cross section for the reaction νN → νNµ+µ− by the
Weiszäcker–Williams method. It is shown that, upon going over from the nucleus involved to a struc-
tureless particle (for example, an electron), the resulting expression is doubled owing to integration with
respect to the virtual-photon momentum over the regionmµ � Q � Eν , where the Weiszäcker–Williams
approximation is not applicable. The method developed here makes it possible to obtain straightforwardly
the known asymptotic expressions for the cross sections describing the reactions eN → eNµ+µ− and
e+e− → W+W−e+e−. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The main objective of this article is to describe in
greater detail the results that were previously pre-
sented in a concise form in [1] and which were ob-
tained by studying the question of whether it is pos-
sible to deduce constraints on the neutrino magnetic
moment from data of the CHARM II and CCFR
experiments, where the experimentalists observed the
production of muon pairs in the scattering of muon
neutrinos on target nuclei. A great number of the-
oretical studies have been devoted to the process
νN → νNl+l− since the early 1960s (see, for exam-
ple, [2–13]). Interest in this reaction is explained by
the fact that it admits a thorough theoretical analysis.
In experiments of the type being discussed, atten-
tion is given primarily to the production of muon
pairs. For example, the process νµN → νµNµ+µ−

was first observed in the neutrino experiment of the
CHARMcollaboration [14]. Subsequent experiments
[15–17] (CHARM II, CCFR, NUTEV) confirmed
that the relevant experimental data are in agreement
with the predictions of the Standard Model. Among
other things, it was established in [16], at a 99% con-
fidence level, that, in this process, neutrino interaction
is due not only to the charged but also to the neutral
current—specifically, the number of relevant events
observed experimentally was one-half as great as that
which is predicted by the theory that takes into ac-
count only the charged current. Within the Standard
Model, this can be explained by the interference be-
tween charged and neutral currents. Presently, exper-
imentalists are to address the problem of testing other
1063-7788/02/6509-1634$22.00 c©
neutrino features, including the neutrino magnetic
moment. The Standard Model predicts a nonzero
value of the neutrino magnetic moment (provided that
the neutrino has a nonzero mass); that is,

µν =
3eGFmν

8π2
√

2
, (1)

whereGF is the Fermi constant and µν andmν are the
neutrino magnetic moment and the neutrino mass,
respectively.
If one takes the present-day constraint on the

mass of themuon neutrino,mνµ < 0.19MeV [18], the
resulting limit on its magnetic moment, µνµ < 6 ×
10−14µB, is much less than that obtained from exper-
iments studying νµe scattering, µνµ < 7 × 10−10µB

[18]. It was shown in [1] that, according to the re-
sults of the CHARM II and CCFR experiments, the
constraint on µνµ is even more lenient, µνµ < 4 ×
10−8µB. It is obvious that the current state of the art
in particle experiments will give no way to measure
the neutrino magnetic moment if its value is on the
same order of magnitude as that which is predicted
by the Standard Model. Nonetheless, it is advisable
to perform such experiments since the discovery of a
large magnetic moment of the neutrino would sug-
gest the presence of new physics.

2. CONTRIBUTION OF THE NEUTRINO
MAGNETIC MOMENT TO MUON-PAIR
PRODUCTION IN NEUTRINO–PHOTON

SCATTERING
In this section, differential and total cross sections

for muon-pair production in neutrino–photon scat-
2002 MAIK “Nauka/Interperiodica”
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tering will be obtained for the case where the neutrino
has a nonzero magnetic moment. We assume that the
neutrino is a Dirac particle having both a left- and a
right-handed component. The process of interest is
described by two diagrams (see Fig. 1).
It is noteworthy that the cross section for this

process does not interfere with the Standard Model
cross section (Fig. 2), because the neutrino changes
helicity here.
The neutrino electromagnetic vertex has the form

V = µν ν̄σαβνAαqβ, σαβ =
1
2
(γαγβ − γβγα), (2)

where Aα is the 4-potential of an electromagnetic
field. Hereafter, we use the following notation: α =
e2/(4π) is the fine-structure constant; µν is the
neutrino magnetic moment; gαβ = (+,−,−,−) is
the metric tensor in Minkowski space; k1 and k2 are,
respectively, the initial and the final neutrino momen-
tum, k2

1 = k2
2 = 0; p− and p+ are the momenta of µ−

and µ+, respectively; q is the real-photonmomentum,
−q2 = Q2 = 0; k = k1 − k2 is the virtual-photon
momentum; ks = k1 + k2, k

2
s = −k2 = 2k1k2, and

ksk = 0; P = p+ + p− + k2 = k1 + q, P 2 = s; p1 =
p− − k = q − p+ and p2 = −p+ + k = p− − q are the
momenta of virtual fermion lines; p = k + q = p+ +
p−; k = (ω,k), p = (ε,p), q = (q0,q); κi = m2 − p2

i ,
where m is the muon mass; κ1 = 2p+q − q2 and
κ2 = 2p−q − q2; l = (p+ + p−)2 = p2 is the muon-
pair invariant mass squared; t = 2kq = κ1 + κ2 =
l − k2 − q2; v is the velocity of the product muons in
their c.m. frame, v = |p′

+|/ε′+ =
√

1 − 4m2/l (the
momenta and energies in the µ+µ− c.m. frame are
primed, while those in the c.m. frame of colliding
particles are unprimed); κ1,2 = (t/2)(1 ± v̂ cos θ′) =
t(1 ± v̂x)/2; x = cos θ′,q′ · p′

− = cos θ′ · |q′| · |p′
−|,

and v̂2/v2 = 1 − 4k2q2/t2; and do′± = 2πdx is a
solid-angle element in the µ+µ− c.m. frame.
The cross section is calculated by the formula

σ =
1
2

1
4k1q

∑
f,i

∫
|Mfi|2dτ (f)

3 , (3)
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where the factor 1/2 appears because of averaging
over the initial state of the photon involved.

Below, we present the expressions for the quanti-
ties appearing in (3):

4k1q = 2(s + Q2) = 2s; (4)

dτ
(f)
3 = dτ2(µ+µ−)

dk2

2ω2(2π)3
(5)

=
1

(4π)2
1
2s

dldtv
do′±
4π

is the phase space of the final state;

dτ2(µ+µ−) =
1
8π

v
do′±
4π

(6)

is the phase space of the product lepton pair;
∑
f,i

|Mfi|2 = µ2
νT

(ν)
αβ

1
(k2)2

e2T
(µ)
αβ,σλe

2(−gσλ) (7)

is the square of the matrix element, where the factors
involved are given by

T
(ν)
αβ = tr

[
k̂2σαµk

µk̂1k
νσνβ

1 + γ5

2

]
= k2

sk
α
s k

β
s ,

(8)

T
(µ)
αβ,λσ = tr[(p̂− + m)Qαλ (p̂+ −m)Qσβ ], (9)

Qαλ = γα
1

p̂1 −m
γλ + γλ

1
p̂2 −m

γα, (10)

T
(ν)
αβ

1
(k2)2

T
(µ)
αβ,σλ(−gσλ) = −4

kα1 k
β
1

k2
s

T
(µ)
αβ,λλ (11)

= 16
{[

−
(

2k1p−
κ2

+
2k1p+

κ1

)

+
s
(
s− k2

s

)
− 2 · 2k1p+ · 2k1p−
κ1κ2

]

+
2m2

k2
s

[(
2k1p− (s− 2k1p+)

κ2
1

+
2k1p+ (s− 2k1p−)

κ2
2

)

2
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− k2
s + 2 · 2k1p+ · 2k1p−

κ1κ2

]}
.

Upon integration with respect to the angles appearing
in the element do′± (see Appendix), we obtain [1]

d2σ

dtdl
=

α2µ2
ν

πs2

{
ln
(

1 + v

1 − v

){
1
t

(
−s− 2m2

)
(12)

+
1
t2
(
s2 + 2sl + 2m2(4s + l)

)

+
1
t3
(
−2sl(s + l) + 2m2(−4s2 − 6sl + 4m2s)

)

+ v

{
1
t

(s + l) +
1
t2
(
−(s + l)2 − 6sl

)

+
1
t3
(
8sl(s + l) + 4m2sl

)

+
1
t4
(
−8s2l2 − 4m2s2l

)}}
.

Expression (12) can be recast into a more com-
prehensible form if we consider that the tensor∫
T

(µ)
αβ,λλdo

′
± can be expressed in terms of two scalar

functions T1 and T2 depending on the variables t, l,
andm2 rather on s; that is,1)∫

T
(µ)
αβ,λλv

do′±
4π

= T1 ·
(
gαβ − kαkβ

k2

)
(13)

+ T2 ·
(

pαpβ

(pk)2
k2 +

kαkβ

k2
− pαkβ + kαpβ

(pk)

)

×
(
l + k2

l − k2

)2

,

where 2pk = l + k2, l − k2 = t.

By using this expression and the relation 2pks =
2s − t, we can straightforwardly obtain

−kαs k
β
s

k2
s

∫
T

(µ)
αβ,λλv

do′±
4π

= −T1 + T2
(2s − t)2

t2
, (14)

d2σ

dldt
=

α2µ2
ν

32πs2

[
−T1 + T2 cot

(2s − t)2

t2

]
. (15)

1)The tensor
∫
T

(µ)
αβ,λσdo

′
± describes lepton-pair production in

the scattering of two virtual photons. Apart from a factor, it
coincides with the tensor Wαβ,λσ introduced in [19], where
the tensor Wαβ,λσ was expressed in terms of eight scalar
functions—this corresponds to themost general case. In this
section, we consider the case where one of the photons is real
(q22 = 0), so that the functions T1 and T2 are linear combi-
nations of the functions WTT |q2

2=0 and WST |q2
2=0 used in

[19]. In particular, T1 coincides, apart from a factor, with
WTT |q2

2=0.
PH
It can easily be seen that expression (12) features
precisely this dependence on s. A comparison of for-
mulas (12) and (15) makes it possible to determine
the functions T1 and T2. the results are given by

T2 = 8
{

ln
(

1 + v

1 − v

)(
1 − 2(l + 4m2)

t
(16)

+
2(l2 + 6m2l − 4m4)

t2

)

− v

(
1 − 8l

t
+

(8l2 + 4m2l)
t2

)}
,

T1 − T2 = 32
t− l

t

{
2m2

t
ln
(

1 + v

1 − v

)
− v

l

t

}
.

Finally, we integrate (12) first with respect to t (l <
t < s) and then with respect to l (4m2 < l < s). For
the differential cross section with respect to the in-
variant mass of the productmuon pair and for the total
cross section, this yields [1]

dσ

dl
=

α2µ2
ν

2πl

{
ln
(

1 + v

1 − v

)
(17)

×
[
4
3

+ 2
l

s
ln
(
l

s

)
− 2

l2

s2
+

2
3
l3

s3
− 16

3
m4

l2

+ 4
m2

s
+ 8

m4

sl
+

4m2l

s2
ln
(
l

s

)

− 4m2l

s2
− 8

3
m4l

s3

]

+ v

[
2
3
− 6

l

s
+ 6

l2

s2

− 2
3
l3

s3
+ 2

(
l

s
+

l2

s2

)
ln
(s
l

)

− 4
3
m2

l

(
2s3 − 3ls2 + l3

s3

)]}
,

σ =
α2µ2

ν

2π

{{
1
2

ln
(

1 + vm
1 − vm

)
ln
( s

m2

)
(18)

+ F

(
−1 + vm

2

)
− F

(
−1 − vm

2

)}

×
[
4
3

+ r +
r2

4

]
+ ln

(
1 + vm
1 − vm

)

×
[
−19

9
+ r − r2

4
+

7
72

r3

]

+ vm

[
46
27

+
17
27

r +
7
36

r2

]}

=
α2µ2

ν

3π

{
ln2 s

m2
− 19

6
ln

s

m2
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+
23
9

− π2

3
+ O

(
m2

s
ln2
( s

m2

))}
,

where r = 4m2/s = 1 − v2
m and

F (s) =

s∫
0

ln(1 + x)
dx

x
(19)

is the Spens function.
Thus, the cross section in question varies at high

energies in proportion to ln2 s [1]:

σ =
α2µ2

ν

3π
ln2(

s

m2
). (20)

3. LEADING CORRECTION TO THE CROSS
SECTION FOR THE REACTION

νN → µ+µ−νN FROM THE NEUTRINO
MAGNETIC MOMENT:

WEISZÄCKER–WILLIAMS APPROXIMATION

The cross section calculated in the preceding sec-
tion for neutrino–photon scattering makes it possible
to obtain the leading contribution to the cross sec-
tion for neutrino scattering on a nucleus. For this
purpose, we write the exact formula expressing the
cross section for scattering on a nucleus in terms of
the cross section for scattering on a virtual photon
emitted by this nucleus, scattering on the nucleus
being considered to be elastic. We have

σνN→νNµ+µ− =
1

2ω1

∫
a00 (Ze)2

(q2)2
dq

(2π)3
. (21)

Here, Z is the charge of the nucleus and a00 is the
(0, 0) component of the tensor aαβ that is taken
in the rest frame of the nucleus and which is used
to represent the cross section for scattering on the
virtual photon in the form

σνγ∗→νµ+µ− =
1

4k1q
aαβeαeβ , (22)

where eα is the polarization of the virtual photon.
The tensor aαβ depends on two dimensionless

parameters Q2/s and m2/s (Q2 = −q2 
= 0). The
gauge-invariance condition aαβqβ = 0 makes it
possible to express aαβ in terms of two scalar func-
tions as

aαβ = a1 ·
(
−gαβ +

qαqβ

q2

)
(23)

+ a2 ·
(
s−Q2

s + Q2

)2(
Pαqβ + qαP β

Pq

− qαqβ

q2
− PαP β

(Pq)2
· q2

)
,
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where 2Pq = s−Q2.

The factor ((s−Q2)/(s +Q2))2 eliminates a spu-
rious pole at s = Q2. There is no pole at q2 = 0 either,
so that we have

a2

(
Q2

s
,
m2

s

)
(24)

= a1

(
Q2

s
,
m2

s

)(
1 + O

(
Q2

s

))
.

Using relation (23) and considering that, in our
case (Q is much less than the nuclear mass, and there
is only a momentum transfer to the nucleus), q0 = 0
and P 0 = k0

1 = ω1, we obtain

a00 = −a1 + a2
4ω2

1Q
2

(s + Q2)2
(25)

= a1

(
Q2

s
,
m2

s

)
tan2θ ·

(
1 + O

(
Q2

s

))
,

where θ is the angle between the vectors k1 and
q in the rest frame of the nucleus: s = 2k1q + q2 =
−2ω1Q cos θ −Q2 and cos θ = −(s + Q2)/(2ω1Q).

The function a1(0,m2/s) can easily be expressed
in terms of the cross section for scattering on the
virtual photon as

σr =
1
2s

a1

(
0,

m2

s

)
. (26)

Let us now use the condition that scattering on
the nucleus is elastic. It is well known that the
nuclear form factor decreases fast at momentum
transfers of about the inverse nuclear radius. In
(21), we must therefore perform integration with
respect to Q up to Qmax ≈ 1/RA ≈ mπA

−1/3 ∼ m
(RA is the nuclear radius, and A is the total number
of nucleons in the nucleus). Owing to the condi-
tion Q2

max/s ≤ Q2
max/(4m

2) � 1, we can expand the
function a00(Q2/s,m2/s) forQ < Qmax in a series in
Q2 [see (34)]; that is,

a1

(
Q2

s
,
m2

s

)
(27)

= a1

(
0,

m2

s

)(
1 + O

(
Q2

s

)
+ O

(
Q2

4m2

))

= a1

(
0,

m2

s

)(
1 + O

(
Q2

4m2

))
,

a00 = a1

(
0,

m2

s

)
tan2θ

(
1 + O

(
Q2

4m2

))
(28)

= 2sσrtan2θ

(
1 + O

(
Q2

4m2

))
.

2
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Substituting this expression into (21), we obtain
the cross section for scattering on the nucleus in the
form

σνN→νNµ+µ− =
2Z2α

π
(29)

×
smax∫

4m2

σr(s)sds

Qmax∫
s/(2ω1)

dQ

Q(s + Q2)2
(
1 − cos2 θ

)

×
(

1 + O

(
Q2

4m2

))

=
2Z2α

π

smax∫
4m2

σr(s)
ds

s

[
ln
(

2ω1Qmax

s

)
+ O (1)

]
,

where smax = 2ω1Qmax −Q2
max ≈ 2ω1Qmax if

ω1 � m.
That we discarded terms of orders Q2/s and cos θ

in the integral with respect to dQ—such terms do
not contribute to the leading logarithmic asymptotic
behavior—corresponds to the Weiszäcker–Williams
approximation [20–23]. To a logarithmic accuracy,
formula (29) can be represented in the form

σνN→νNµ+µ− =
2Z2α

π

ω1∫
m

σr(s) ln
(ω1

ω

) dω

ω
, (30)

where, by definition, s = mω. In the Weiszäcker–
Williams reference frame, where the neutrino energy
ism, ω is the energy of virtual photons from the cloud
of a fast nucleus and dn/dω = (2Z2α/π)(1/ω) ×
ln(ω1/ω) is their spectral density.
It should be noted that the disregard ofO(1) terms

against ln(ω1/ω) is legitimate only in the case where
σr does not grow with energy in proportion to sn,
where n > 0. In our case, σr grows as a logarithm,
whence it follows that, upon integration with respect
to s, the term ln(ω1/ω) yields an extra power of
ln(ω1/m) [1]; that is,

σνN→νNµ+µ− =
2Z2α

π

ω1∫
m

α2µ2
ν

3π
(31)

× ln2
( s

m2

)
ln
(ω1

ω

) dω

ω
=

Z2α3

18π2
µ2
ν ln4

(ω1

m

)
.

Expression (31) was used in [1] to deduce a con-
straint on the muon-neutrino magnetic moment on
the basis of data from the CHARM II and CCFR
neutrino experiments reported in [15] and [16], re-
spectively. The limits on µνµ that were obtained in [1],

µνµ � 6.5 × 10−8µB according

to the CHARM II data, (32)
P

µνµ � 4.0 × 10−8µB according

to the ССFR data, (33)

appeared to be approximately two orders of magni-
tude greater than those that follow from experiments
that studied νµe scattering [18]. In order to strengthen
the above constraints on the neutrino magnetic mo-
ment by two orders of magnitude, it is necessary to
improve the accuracy of cross-section measurements
by four orders of magnitude. But for this, an eight or-
der of magnitude enlargement of statistics is required
(∆σ ∼ 1/

√
N ), which is hardly possible at present.

The Weiszäcker–Williams approximation used
here is valid for the case of scattering on a nu-
cleus, where the nuclear form factor cuts off the
region of integration with respect to Q at Qmax. If
there is no such cutoff (for example, in the case of
scattering on an electron), integration with respect
to Q must be performed up to ω1. In this case,
the expansion in (28) is no longer correct since
the quantity σr must be replaced by the cross sec-
tion for scattering on a virtual photon at Q > m.
The calculations demonstrate that, if we include
the region m < Q < ω1, the cross section appears
to be twice as large as that given by (31) (if the
form factor of a particle is independent of Q). In
calculating the cross section for this reaction with
allowance for Q2 
= 0 (virtual initial photon), inte-
gration is actually performed with respect to /̂ =
l + Q2 rather than with respect to l (see Appendix);
therefore, the quantity /̂min = 4m2 + Q2 will be the
cutoff parameter for the cross section describing
the reaction γ∗ν → νl+l− [compare with (20)]; that
is,

σγ∗ν→νl+l− =
α2µ2

ν

3π
ln2 ŝ

4m2 + Q2
, (34)

where ŝ = s + Q2. [As a matter of fact, this for-
mula represents an interpolation between (20) and
(A.17).]
In order to obtain the contribution to the cross

section from the region 2m < Q < 2ω1, it is sufficient
to use the first equality in (29). The result is

σ(2) =
2Z2α

π

2ω1∫
2m

dQ

Q

2ω1Q∫
Q2

dŝ

ŝ
σγ∗ν→νl+l−(ŝ) (35)

=
Z2α3

18π2
µ2
ν ln4

(ω1

m

)
.

One can see that, if we distract our attention from
the nuclear form factor for the time being, the total
cross section will be the sum of expressions (31)
and (35). This differs radically from the case where
a lepton pair is produced in the scattering of two
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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charged particles and where the region Q > m is
not logarithmic. This is because, in charged-particle
scattering on a virtual photon, the cross section
behaves as 1//̂min, so that, at Q > m, an extra
power of Q2 from /̂min cuts off the logarithmic
integral

∫
dQ/Q. It should be emphasized that, at

Q > m, the Weiszäcker–Williams approximation is
not valid.

4. CONCLUSION

We have demonstrated that the cross section for
the lepton-pair production in a reaction where a neu-
tral particle having a nonzero magnetic moment is
scattered on a nucleus grows with energy in pro-
portion to ln4 E. It is well known [19, 24] that the
cross section for a similar process induced by the
scattering of two charged particles grows with energy
only in proportion to ln3 E. This can easily be tested
by considering the example of the reaction eN →
eµ+µ−N and by using the results obtained here. The
entire procedure reduces to making the substitution

µ2
νT

(ν)
αβ → e2T

(e)
αβ /2, where

T
(e)
αβ = tr

[
(k̂2 + me)γα(k̂1 + me)γβ

]
(36)

= 2
[
2(kα1 k

β
2 + kα2 k

β
1 ) + k2γαβ

]
.

The analog of formula (15) for the reaction γe →
µ+µ−e has the form(

d2σ

dldt

)
γe→µ+µ−e

=
α3

4s2

1
−k2

(37)

×
[
T1

(
4m2

t
,
k2

t

)
+

2s(s− t)
t2

T2

(
4m2

t
,
k2

t

)]
,

where −k2 = t− l.

This expression has a nonintegrable singularity for
−k2 → 0; therefore, we must take into account the
electron massme. In the case ofme � m, we have

(−k2)min ≈ m2
e

l2

s(s− l)
. (38)

By integrating expression (37), we can prove that,
at high energies, the cross section for the process
γe → µ+µ−e varies in proportion to ln s:

σγe→µ+µ−e =
α3

4s2

s∫
4m2

dl

s∫
l+(−k2)min

dt

−k2

2s2

t2
(39)

×
(

1 + O

(
t

s

))
T2

(
4m2

l
, 0
)(

1 + O

(
k2

t

))
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→ α3

4m2
ln
(

s

mem

) ∞∫
1

dx

x2
T2

(
1
x
, 0
)

=
28α3

9m2
ln

s

mem

)
, for s → ∞.

Accordingly, the cross section for the process
eN → eNµ+µ− grows in proportion to ln3 Ee (see
[24, 19]); that is,

σeN→eNµ+µ− (40)

=
∫

σγe→µ+µ−e(ω)
2Z2α

π

dω

ω
ln
(
Ee
ω

)

→ 28
27π

Z2α4

m2
ln3

(
Ee
m

)
,

where s = ωm andEe is the energy of the electron in-
cident on the nucleus in the c.m. frame of the nucleus.
In conclusion, we would like to note that, in the

literature, there is an example of a 2 → 4 process
(e+e− → e+e−W+W−) whose cross section has the
ln4 E asymptotic behavior [19, 25]. There, however,
the mechanism is totally different from that consid-
ered in the present article. The point is that, for E �
mW , the cross section for the reaction γγ → W+W−

approaches a constant [19, 25],

σγγ→W+W− ≈ 8πα2

m2
W

, (41)

while the cross section σγγ→µ+µ− decreases with
energy in proportion to (lnE2)/E2. Formula (37) en-
ables us to prove that the cross section
σe+e−→e+e−W+W− does indeed have the ln

4 E asymp-
totic behavior. By using the relation

σγγ→X =
πα2

2l
T1

(
4m2

l
, 0
)

(42)

to express Ti in (37) in terms of the cross section
σγγ→W+W− (X = W+W−), we obtain(

d2σ

dldt

)
γe→W+W−e

=
α3

4s2

1
−k2

[
1 +

2s(s− t)
t2

]

(43)

× 2l
πα2

σγγ→W+W−

(
1 + O

(
k2

t

))

=
α

π
· 1
l

(
1 − l

s
+

l2

2s2

)
1

−k2

× σγγ→W+W−

(
1 + O

(
k2

t

))
.

Under the condition ln(s/m2
e) � ln(s/m2

W ) � 1,
the factor ln(s/m2

e) can be isolated in the integrals
2
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∫
dk2/k2 and

∫
dq2/q2; that is,∫
dldt

−k2

(
1 + O

(
k2

t

))
(44)

=
(

ln
(

s

m2
e

)
+ O

(
ln

s

m2
W

))∫
dl.

As a result, the expression for σe+e−→e+e−W+W−

takes the form (see [19, 25])

σe+e−→e+e−W+W− (45)

≈
(
α

π
ln
(

s

m2
e

))2
s∫

4m2
W

ds′

s′

(
1 − s′

s
+

s′2

2s2

)

×
s′∫

4m2
W

dl

l

(
1 − l

s′
+

l2

2s′2

)
σγγ→W+W−(l)

≈
(α
π

)2
ln2

(
s

m2
e

)
σγγ→W+W−(s)

×
s∫

4m2
W

ds′

s′

s′∫
4m2

W

dl

l
=

4α4

πm2
W

ln2

(
s

m2
e

)
ln2

(
s

m2
W

)
.
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APPENDIX

Integrals over the Phase Space of a Lepton Pair

In Section 2, we integrated the matrix element
over the the phase space of the product lepton pair. In
this section of the Appendix, we present expressions
for all integrals required for this.
Let us recall that the phase space of a lepton pair

has the form

dτ2(l+l−) =
1
8π

v
do′±
4π

. (A.1)

The integrals presented below correspond to the case
of q2 = 0: ∫

do′±
4π

= 1, (A.2)
∫

v
do′±
4π

t

κi
= ln

(
1 + v

1 − v

)
, (A.3)

∫
v
do′±
4π

t2

κ1κ2
= 2 ln

1 + v

1 − v
, (A.4)
P

∫
do′±
4π

t2

κ2
i

=
l

m2
, (A.5)

∫
v
do′±
4π

2k1p+

κ1
=

sl

t2
ln
(

1 + v

1 − v

)

+
(
−2sl

t2
+

s + l

t
− 1
)
v, (A.6)

∫
v
do′±
4π

2k1p− · t
κ2

1

=
(

2sl
t2

− s + l

t
+ 1
)

ln
(

1 + v

1 − v

)
(A.7)

+
1
m2

·
(
−sl2

t2
+

(s + l)l
t

− l

)
v,

∫
v
do′±
4π

2k1p− · 2k1p+

κ1κ2
= 2sl

(
1 +

2m2

l

)
(A.8)

×
(
−sl

t4
+

s + l

t3
− 1

t2

)
ln
(

1 + v

1 − v

)

+
(

6s2l2

t4
− 6sl(s + l)

t3

+
6sl + (s + l)2

t2
− 2(s + l)

t
+ 1
)
v,

∫
v
do′±
4π

2k1p− · 2k1p+

κ2
1

(A.9)

=
(

6s2l2

t4
− 6sl(s + l)

t3
+

6sl + (s + l)2

t2

− 2(s + l)
t

+ 1
)

ln
(

1 + v

1 − v

)
+
(
sl

(
8 +

4m2

l

)

×
(
−sl

t4
+

s + l

t3
− 1

t2

)

+
(
−(s + l)2

t2
+

2(s + l)
t

− 1
))

v.

The relation 2k1p+ + 2k1p− = s + k2 is also useful.

4.1. Cross Section for the Reaction γ∗ν → νµ+µ−

at High Virtualities γ∗

Below, we present a derivation of formula (34).

We begin by indicating that, at −q2 = Q2 
= 0,
expression (15) takes the form

d2σ

dldt
=

α2µ2
ν

32πŝ2

[
−T̂1 + T̂2

(2ŝ − t)2

t2

]
, (A.10)

where ŝ = 2k1q = s + Q2; t = 2kq = l − q2 − k2 =
/̂− k2; /̂ = l + Q2; and the function T̂i depends on
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the variables 4m2/t, l/t, and Q2/t. Thus, we have

σ =
α2µ2

ν

8π

s∫
4m2

dl

ŝ+Q2(s−l)/s∫

�̂

dt

t2
(A.11)

×
(

1 + O

(
t

ŝ

))
T̂2

(
4m2

t
,
l

t
,
Q2

t

)
.

The function T̂2 cannot be expanded in a series
in Q2/t since it has the logarithmic singularity
ln(/̂/Q2). In order to demonstrate this, we note that
the doubly logarithmic behavior of the total cross sec-
tion is due toO(ŝ2/κ1κ2) terms in the matrix element
[see (11)], O(ŝt/κ1κ2) leading only to corrections
of order ∼ ln s. On the basis of expression (11), we
conclude that the leading contribution comes from
the term

(ŝ + k2)2 − 2 · 2k1p+ · 2k1p−
κ1κ2

(A.12)

=
(2k1p+)2 + (2k1p−)2

κ1κ2
= λ · (ŝ + k2)2

κ1κ2

= λ
ŝ2

κ1κ2

(
1 + O

(
k2

ŝ

))
,

the functionλ changing within the interval 1/2 ≤ λ ≤
1. Since, forQ2 
= 0, we have κi = t(1± v̂x)/2, where

v̂2

v2
= 1 − 4k2q2

t2
, (A.13)

expression (A.12) can be reduced to the following
form upon averaging over the phase space of the
lepton pair:∫

v
do′±
4π

· (2k1p+)2 + (2k1p−)2

κ1κ2
(A.14)

=
v

v̂
λ̄
ŝ2

t2
2 ln

(
1 + v̂

1 − v̂

)(
1 + O

(
k2

ŝ

))
.

We note that the function λ̄ depends on the same
variables as the quantity T̂i and changes within
the interval 1/2 ≤ λ̄ ≤ 1 and that, at m2 = Q2 = 0,
λ̄ ln[(1 + v̂)/(1 − v̂)] reduces to the analogous term
in the expression for the function T2/8 [see (16)]:

λ̄

(
4m2

t
,
l

t
,
Q2

t

)∣∣∣∣
m2=Q2=0

(A.15)

= λ̄

(
0,

l

t
, 0
)

= 1 − 2l
t

+
2l2

t2
.

In the region 2m < Q < 2ω1, the function T̂2 can
therefore be represented in the form

T̂2 = 8
v

v̂
· λ̄
(

0,
l

t
, 0
)(

ln
(

1 + v̂

1 − v̂

)
+ O (1)

)

(A.16)
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×
(

1 + O

(
Q2

t

))
.

Substituting (A.16) into (A.11), we obtain the ex-
pression for σ atQ � m in the form

σ =
α2µ2

ν

8π

ŝ∫
Q2

d/̂

/̂

ŝ/�̂∫
1

dy

y2

(
1 + O

(
y
/̂

ŝ

))
(A.17)

× 8
v

v̂

(
ln

(
/̂

Q2

)
+ ln

(
y2

y − 1

)
+ O (1)

)

× λ̄

(
0,

1
y
, 0
)(

1 + O

(
Q2

t

))

=
α2µ2

ν

π

[ ŝ∫
Q2

d/̂

/̂
ln

(
/̂

Q2

) ∞∫
1

dy

y2
λ̄

(
0,

1
y
, 0
)

+ O

(
ln
(

ŝ

Q2

)]
=

α2µ2
ν

3π

[
ln2

(
ŝ

Q2

)

+ O

(
ln
(

ŝ

Q2

))]
.
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Abstract—We perform calculations and comparative analysis of the off-shell scattering matrices and
related pp → ppγ reaction observables for various types of NN potentials—with forbidden states and with
short-range repulsion. The emphasis is on studying the effects of the shape and depth of the central part
of forbidden-state potentials on the behavior of the above quantities and on establishing the role of meson-
exchange components in the NN interaction. We show that, when using potentials that give a good
description of phase shifts and the proper behavior of the scattering matrix for low momentum transfers,
the reaction pp → ppγ does not allow the choice between the potentials to be made, at least up to a proton
energy of 400MeV in the laboratory frame. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Progress in many fields of strong-interaction
physics depends on the understanding of the internal
mechanisms underlying a particular phenomenon.
One of the most fundamental and, perhaps, most
accessible processes that are capable of uncovering
the mechanisms of subhadron dynamics and that
have a direct bearing on the properties of nuclei and
nuclear matter isNN interaction.

Since the discovery of vector mesons, single-
boson exchange models (among recent papers, see,
e.g., [1, 2]) have acquired the greatest popularity. In
these models, a set of exchange processes involving
the various types of mesons included in parametriza-
tion corresponds to theNN potential. More advanced
multiboson exchange models [3, 4] also include two-
meson exchange processes and take into account the
contribution from ∆ degrees of freedom. All meson-
exchange models describe elastic scattering of nucle-
ons well at low energies (up to 350 MeV in the lab-
oratory frame, lab) and, qualitatively, up to energies
∼1 GeV [3, 5]. They can also account for such subtle
effects as the violation of charge symmetry, charge in-
dependence, etc. [6]. At the same time, these models
have a number of drawbacks. There is no doubt that
the meson picture becomes inadequate at collision
energies when subhadron degrees of freedom, includ-
ing quark ones, come into play. In addition, meson-
exchange models are internally inconsistent even at
low energies. Therefore, they may be considered, from
the viewpoint of quantum chromodynamics (QCD),

*e-mail: shehalev@phys.vsu.ru
1063-7788/02/6509-1643$22.00 c©
only as an efficient method for describing NN inter-
actions. Finally, yet another major drawback is the
use of phenomenological form factors and coupling
constants of some mesons (e.g., ω and σ mesons).
In general, the cutoff parameters in the form factors
prove to be significantly overestimated compared to
those inferred directly from experiments on meson–
nucleon dynamics and from QCD predictions. As a
result, using meson-exchange potentials to describe
more complex processes than elastic NN scattering
cannot be considered to be strictly justified (e.g.,
for processes that require allowance for meson-
exchange currents). In recent years, all these factors
have stimulated the development of NN-interaction
models that, while based on QCD methods, included
quark degrees of freedom and the corresponding
symmetries. Among these, the various versions of the
quark cluster model (QCM) became most popular.

Chiral invariance is known to be one of the
heuristic symmetry principles of nonperturbative low-
energy chromodynamics. Its spontaneous violation
results in a certain type of interaction between quarks
through scalar and pseudoscalar Goldstone bosons;
while interacting with a QCD vacuum, the quarks
themselves acquire a constituent mass. The advan-
tage of the constituent quark model is that only a
few physically meaningful parameters can be used
to describe processes involving hadrons. The latter
favorably distinguishes them from the phenomeno-
logical parameters of meson-exchange potentials.

Among major achievements of the models in
which, apart from confinement, the interaction be-
tween quarks is effected by Goldstone meson ex-
change, we can point out the justification of the weak
2002 MAIK “Nauka/Interperiodica”
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spin–orbit splitting and the proper sequence of levels
with negative and positive parity in the hadron spec-
trum [7]. Based on the QCM [8, 9], it was also shown
that, if antisymmetrization in quark variables is taken
into account, the pseudoscalar interaction leads to
short-range repulsion, which was previously thought
to be the result of single-gluon exchange between
quarks. This gave grounds to diminish the role of
the single-gluon interaction and, thus, to explain the
large mass difference between the N(939) nucleon
and its chiral partner N∗(1535). Unfortunately, the
QCM-based description of elastic NN scattering
at collision energies below the π-meson production
threshold is still qualitative. The problem is that,
because of the weak spin–orbit interaction (there
are no vector mesons and the single-gluon-exchange
interaction is suppressed), the model is incapable of
reproducing the strong splitting in the 3PJ channel.
In addition, the mixing parameters ε1 and ε2 in this
model can be reproduced only at very low nucleon
energies [9], suggesting that there is another physical
mechanism responsible for the additional tensor
short-range interaction.

Based on the theoretical-group approach, the au-
thors of [10] proposed a slightly different NN-inter-
actionmodel for a six-quark (6q) system. The essence
of this model lies in different dynamics of the quark
configurations |s4p2[42]xL = 0, 2〉, |s3p3[33]xL =
1, 3〉 and |s6[6]xL = 0〉, |s5p1[51]xL = 1〉. Whereas
the first two configurations have a cluster structure
and are projected mainly on the NN channel, the
third and fourth configurations, being the most sym-
metric, have the structure of a quark bag with a large
weight of the ∆∆ and CC (color dipole) states. As a
result, the NN scattering wave function has a short-
range node, which results from the condition for or-
thogonality of the cluster wave function and the wave
function of the 6q compound state. It follows from
QCM-based calculations [8, 9] that allowance for the
coupling between the NN and ∆∆ channels gives
rise to additional short-range attraction. However,
this coupling is weak, and, therefore, the effect is
marginal. The possible existence of ∆∆ dibaryons
with spins S = 0 and 3 [11], which are strongly
coupled with the channels∆∆ → NNππ and∆∆ →
N∆π and which have large widths, also follows from
the QCM. In addition, because of the increase in the
density (or temperature) of 6q states with maximum
symmetry |s6〉 and |s5p1〉, chiral symmetry can be
partially restored. This gives rise to additional attrac-
tion in the 6q system and, as a result, to stabilization
of the above configurations [12]. In this case, the
QCM may prove to be unsuitable for describing
these states. In other words, the transitions |s4p2〉 →
|s6〉+ σ (or ρ), NN → ∆∆ππ (∆∆σ or ∆∆ρ),
PH
and NN → N∆ → ∆∆π (the σ and ρ mesons are
ππ resonances with J = 0 and 1, respectively) can
give rise to strong short-range (r < 1 fm) attraction
in the NN system. The model in which a virtual
σ or ρ meson acting as a stimulator for transi-
tions from the |s4p2〉 (|s3p3〉) configuration to the
|s6〉 (|s5p1〉) configuration is emitted simultaneously
with the transitionNN → ∆∆ is a microscopic basis
for the so-called forbidden-state potentials (FSPs)
[10, 13–15].

Of course, apart from short-range quark effects,
realistic NN potentials must also take into account
ordinary single- and two-meson exchange mecha-
nisms. Basically, the approach based on the hadron
quark structure and meeting the chiral symme-
try requirements allows only a few parameters to
be used to describe a broad range of phenomena.
However, the resulting NN potentials are rather
complex in structure (nonlocal, energy-dependent),
which significantly hampers their use, in particular,
when studying the properties of systems with a few
nucleons. Therefore, NN potentials that are simple
enough and, at the same time, take into account the
principal interaction mechanisms underlying a par-
ticular microscopic model are of particular interest.
In this case, of course, one has to introduce a large
number of phenomenological parameters that are the
result of excluding particular mechanisms or degrees
of freedom from analysis. Thus, theNN potentials for
single-boson exchange with short-range repulsion
are merely an efficient means of describing the un-
derlying QCM and the multiboson exchange model.
If a FSP, for example, the Moscow potential [10, 13])
is used, then the emphasis is on the existence in a
two-nucleon system of a deep attractive interaction
in S and P waves, which is an effective reflection of
the strong coupling between the |s4p2〉(|s3p3〉) and
|s6〉(|s5p1〉) 6q configurations. In order to emphasize
the influence of this effect on the observables of a two-
nucleon system and to reduce the number of fitting
parameters, we exclude all single- and multiboson
exchange mechanisms, except, perhaps, the single-
pion one, from an explicit analysis. As a result, this
potential is very simple in form and describes well
elastic NN scattering up to 300 MeV and basic
parameters of the deuteron. This success is perceived
as one of the most convincing arguments for the
microscopic model that underlies these potentials.

It is well known that even complete knowledge of
the elastic scattering amplitude and deuteron prop-
erties is not enough to unambiguously determine the
type of strong interaction. To completely establish the
properties of the potential requires investigating the
off-shell behavior of the scattering amplitude, i.e., to
consider reactions involving more than two particles.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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One of the most reliable sources of information on
the off-shell behavior of the NN interaction can be
bremsstrahlung (BS) NN → NNγ, because in this
case we have only two strongly interacting particles
in the final state. The reaction pp → ppγ was in-
vestigated previously (see, e.g., [16]) in an effort to
discriminate between the various meson-exchange
and phenomenological short-range repulsive core po-
tentials (RCPs). The result was disappointing: the
differences in the BS observables were too small to be
determined experimentally. This is because the scat-
tering amplitude for RCPs exhibit approximately the
same off-shell behavior attributable to a similar type
of long- and medium-range interaction and to a weak
sensitivity of the NN wave functions to a specific
short-range potential [17]. It would probably be of
greater interest to compare RCPs and FSPs in de-
scribing the reaction NN → NNγ. The short-range
node in the wave functions for forbidden state poten-
tials causes a significant increase in the mean kinetic
energy of a two-nucleon system and an increase in
the importance of components with large momentum
transfer. Since the short-range wave functions for
RCPs virtually become zero, it becomes possible to
discriminate between FSPs and RCPs [18].

Here, we perform calculations and comparative
analysis of the off-shell scattering matrices and
related BS observables in the reaction pp → ppγ for
several types of NN potentials (FSPs and RCPs)
in an effort to discriminate between them. This is
done both for standard potentials and for specially
selected ones in order to determine the role of the
meson-exchange NN-interaction components that
are commonly excluded from the FSPs and such key
parameters as the shape and depth of the central part
of the potential. All calculations for the reaction pp →
ppγ are performed in momentum representation and
in coplanar geometry. We show that, in contrast to
the results from [18], where the Moscow potential of
1992 (MP92) [13] was taken as a FSP, when using
potentials that give a good description of phase shifts
and the proper behavior of the scattering matrix for
lowmomentum transfers (which is determined mainly
by single-pion exchange), the reaction pp → ppγ
does not allow the choice between RCPs and FSPs
to be made, at least up to proton energies Elab �
400MeV in the laboratory frame.

2. FORMALISM

In many problems involving hadrons, the interac-
tion between particles must be taken into account
in all orders of perturbation theory. This implies that
calculating the scattering t matrix is a more direct
method of obtaining information on the dynamics of
a particular process than a direct investigation of
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the potentials alone. The differences in the off-shell
behavior of theNN scattering amplitudes may be due
to different structures of the corresponding NN po-
tentials and different approximations used to deduce
the scattering t matrix for a specific NN potential.
For all the potentials used here, except the Bonn
potential, the scattering t matrix in the c.m. frame
of two protons satisfies the Lippmann–Schwinger
equation. For the Bonn potential, the tmatrix satisfies
the Logunov–Tavkhelidze equation [19]. This equa-
tion is a three-dimensional quasi-potential reduction
to the four-dimensional relativistic Bethe–Salpeter
equation. However, the t matrix derived in this way
can also be expressed in terms of the solution to
the Lippmann–Schwinger equation with a normal
nonrelativistic coupling with scattering phases [2].

2.1. TheNN Scattering tMatrix

If we use the partial-wave decomposition of the
tmatrix

〈q′|t±(p)|q〉 = (4π)2 (1)

×
∑
JST
LL′M

iL−L
′YJML′S (q̂′)tJST±L′L (q′, q; p)YJM†

LS (q̂)P T ,

where P T is the isospin projection operator,

YJMLS (q̂) =
∑

MLMS

CJM
LMLSMS

YLML
(q̂)|SMS〉,

S and MS is the total spin of the NN system and
its projection, CJM

LMLSMS
is the Clebsch–Gordan co-

efficient, and q̂ specifies the direction of momen-
tum q: q̂ = q/|q|, and a similar decomposition of the
NN-interaction potential V (q′,q), then the partial-
wave Lippmann–Schwinger equation for tJST±L′L can
be represented as

tJST±L′L (q′, q; p) = V JST
L′L (q′, q) (2)

+
2m
π

∑
l

lim
η→0

∞∫
0

V JST
L′l (q′, p′)tJST±lL (p′, q; p)

p2 − p′2 ± iη
p′2 dp′.

Here, tJST±L′L (q′, q; p) is the partial scattering matrix
specified by the boundary conditions with incoming
(−) or outgoing (+) waves; V JST

L′L (q′, q) is the partial
NN potential; J,L, and T mean, respectively, the
total and orbital angular momenta and the isospin
state of the two-nucleon system. The momentum p is
related to the proton kinetic energy in the laboratory
frame by p2 = mElab/2, where m is the proton mass
(below, we use the system of units with � = c = 1)
and the momenta q′ and q can take on off-shell val-
ues. Since the potential V (q′, q) is Hermitian, it fol-
lows from (2) that [tJST−L′L (q′, q; p)]∗ = tJST+

L′L (q′, q; p).
2
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The two-particle elastic scattering amplitude is de-
termined by the on-shell t-matrix element (1)

f(q′,q) = −m

4π
〈q′|t+(p)|q〉,

where q′ = q = p.
For the scattering of two identical particles (e.g.,

two protons), we restrict our analysis to the isovec-
tor channel T = 1. In this case, the antisymmetrized
scattering matrix takes the form

〈q′, SM ′
S |t+(p)|q, SMS〉 = 2(4π)2 (3)

×
∑
JLL′

(S+L even)

∑
M

iL−L
′
CJM
L′M−M ′SSM ′S

YL′M−M ′S(q̂
′)

× tJS±L′L (q′, q; p)CJM
LM−MSSMS

Y ∗
LM−MS

(q̂).

The t matrix, which is not real, can be directly
obtained in principle from Eq. (2). However, in order
not to deal with complex-valued quantities, it is more
convenient to use the following standard relation from
a practical point of view:

lim
η→+0

(p2−p′2± iη)−1=P

(
1

p2 − p′2

)
∓ iπδ(p2−p′2),

where P means taking the principal-value integral. In
this case, instead of the t matrix, we can calculate a
real quantity, the K matrix, which satisfies the inte-
gral equation

KJST
L′L (q′, q; p) = V JST

L′L (q′, q) (4)

+
2m
π

∑
l

P

∞∫
0

V JST
L′l (q′, p′)KJST

lL (p′, q; p)
p2 − p′2

p′2 dp′.

The sought-for tmatrix is then related to theK mat-
rix by the Heitler equation

tJST+
L′L (q′, q; p)=KJST

L′L − imp
∑
ll′

KJST
L′l (q′, p; p)

×[I+impK(p, p; p)]−1
ll′ K

JST
l′L (p, q; p),

where I means the unit matrix δll′ and K(p, p; p)
means the matrixKJST

ll′ (p, p; p).

For an NN system, both particles have spin 1/2
and the interaction conserves the total angular mo-
mentum J and parity. Consequently, in the state with
total angular momentum J , tensor forces can couple
only the states with orbital angular momenta L =
J + 1 and J − 1. For uncoupled (in L) states, the
phase shifts δL(p) can be expressed directly in terms
of theK matrix:

KL(p) ≡ KJST
LL (p, p; p) = −tan δL(p)

mp
.

P

For the states coupled by tensor forces, we use the
parametrization of Stapp et al. [20]. Defining

K =


K− K0

K0 K+


 , Σ = mp(K− −K+),

∆ = mp(K− +K+), L = m2p2(K−K+ −K2
0 ),

tan 2σ = − ∆
1− L and tan 2τ = − Σ

1 + L ,

we obtain the following relations for the phase shifts
δ− and δ+ (which correspond to the states with L =
J − 1 and L = J + 1) and the mixing parameter εJ :

δ− = σ + τ, δ+ = σ − τ,

tan2εJ = − 2mpK0√
(1 + L)2 +Σ2

.

2.2. The Amplitude and Differential Cross Section
for the pp → ppγ Process

The BS process in pp collisions was considered in
terms of the potential model previously (see, e.g., [16,
18, 21–25]). In this case, the problem in question can
be solved on the basis of two different approaches,
which must basically yield identical results.

In the first approach, the wave functions of a two-
nucleon system can be derived from the solution to
the Schrödinger equation in coordinate representa-
tion. Subsequently, these functions are used to cal-
culate the matrix elements of the operator for the
interaction with an electromagnetic field [18, 21]. This
method allows one to easily take into account the
Coulomb interaction between protons and automat-
ically includes double rescattering diagrams. How-
ever, we use the second approach in our calculations.
It is based on the formalism of the momentum repre-
sentation. In this case, the BS amplitude is factorized
into the nucleon–nucleon part (t matrix), the two-
nucleon propagator, and the electromagnetic vertex
part [16, 23–25]. Computationally, this approach is
more convenient than the first one (e.g., it facilitates
the use of nonlocal NN potentials). In addition, it
allows the BS observables to be directly expressed in
terms of the off-shellNN-scattering tmatrix.

To simplify the problem, we disregard meson-
exchange currents and ∆ degrees of freedom. Their
inclusion will not significantly change our results,
although, of course, it would be necessary in a quan-
titative comparison of theory with experiment [24,
26]. We also ignore the Coulomb interaction between
protons. Its role was assessed in [27], and it was
shown that it could be ignored at proton energies
near the π-meson production threshold, where the
1S0 wave contribution is suppressed.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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The BS dynamics is contained in the invariant
matrix element

Mfi = 〈p̃1f , p̃2f ;S′M ′
S |Vem|p̃1i, p̃2i;SMS〉, (5)

where p̃1i, p̃2i, p̃1f , p̃2f are, respectively, the initial and
final proton 4-momenta (p̃ = (p0,p)) and Vem is the
operator for the interaction of the two-nucleon system
with an electromagnetic field. The Pauli exclusion
principle imposes standard constraints on the wave
functions of the pp system, more specifically,

|p̃1, p̃2〉 = (−1)S+1|p̃2, p̃1〉. (6)

Because of momentum transfer to the photon, the
frame in which the matrix element (5) is calculated
cannot be simultaneously the c.m. frame for the initial
and final states of the NN system. Besides, for the
relativistic description of a two-body system, intro-
ducing the relative momentum p̃ = 1

2 (p̃1 − p̃2) and
the c.m. momentum Pc.m. = p̃1 + p̃2 does not lead to
a trivial separation of the two-particle wave function
into the wave function of the relative motion and the
c.m. wave function. However, the following represen-
tation is known to be admissible:

|p1,p2〉 = |Pc.m.〉 ⊗ e−iχ(Pc.m.)|p〉, (7)

in which the dependence of the wave function for
the relative motion on the c.m. motion is taken into
account by the boost generator χ(Pc.m.). Given (7),
the matrix element (5) can be represented as

Mfi = 〈p̃f ;S′M ′
S |Ṽem|p̃i;SMS〉, (8)

where

Ṽem=Vem+i[χ(P(f)
c.m.)Vem−Vemχ(P(i)

c.m.)]+O

(
1
m4

)
;

(9)

p̃i and p̃f are the initial and final relative proton

4-momenta, respectively; and P
(i)
c.m.−P

(f)
c.m.= k, k is

the photon 4-momentum. As was shown in [24], the
term in the square brackets in (9) may be discarded if
we pass to the so-called averaged barycentric frame
in which

p1i + p2i −
k
2
= 0 = p1f + p2f +

k
2
. (10)
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Since we calculate here the matrix element (8) in the
averaged c.m. frame (10), we use the approximation
Ṽem = Vem. The passage between different frames is
made through the Lorentz transformations.

The scattering tmatrix is related to the wave func-
tion of the two-nucleon system by

〈q̃|p̃, Pc.m.;SMS〉 = (2π)4δ4(p̃− q̃)|SMS〉 (11)

+ iG

(
1
2
Pc.m. − q̃

)
G

(
1
2
Pc.m. + q̃

)

×
∑
M ′S

|SM ′
S〉〈q̃;SM ′

S |t(Pc.m.)|p̃;SMS〉,

where G(p̃) means the single-particle Dirac Green’s
function. The relative proton energy in the c.m. frame
is p0 = 0. However, after interaction, the particles
may prove to be off the energy shell and, in general,
q0 �= 0. The latter implies the existence of delay effects
in theNN interaction.

It is well known that the single-particle Dirac
Green’s function can be decomposed into compo-
nents with positive and negative energies:

G(p̃) =
m

Ep

[
Λ+(p)

p0 −Ep + iη
+

Λ−(p)
p0 +Ep − iη

]
,

where Ep =
√

p2 +m2 and Λ+ and Λ− are the pro-
jection operators on the states with positive and neg-
ative energies, respectively. Here, we do not take into
account the contribution of the states with negative
energy. For this purpose, we would have to resort to
the relativistic description ofNN interaction, includ-
ing when using FSPs, which presently seems to be
impossible.We also ignore delay effects in theNN in-
teraction; i.e., we set q0 = 0 in the t-matrix element
in (11). In this case, in the c.m. frame of two nucleons,
the t-matrix element is given by relations (2) and
(3). Only the NN-scattering matrix for the Bonn
potential, which is calculated from the Logunov–
Tavkhelidze equation [2], constitutes an exception.

Substituting (11) into (8) and using the conserva-
tion of 4-momentum at the electromagnetic vertex,
we obtain the following expression for the BS am-
plitude after the integration over q0 (the dependence
on q0 is retained in the Green’s functions):
Mfi =
∑
ν

{
m

Epi−k
2

〈
pi −

k
2
;S′ν|t−(pf )|pf ;S′M ′

S

〉∗〈
S′ν|V (1)

em

(
pi −

k
2
,pi +

k
2

)
|SMS

〉

2(Epf
− Epi−k

2
)

(12)

+
m

Epi+
k
2

〈
pi +

k
2
;S′ν|t−(pf )|pf ;S′M ′

S

〉∗〈
S′ν|V (2)

em

(
−pi −

dk
2
,−pi +

k
2

)
|SMS

〉

2
(
Epf

− Epi+
k
2

)

2
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+
m

Epf +k
2

〈
S′M ′

S |V
(1)
em

(
pf −

k
2
,pf +

k
2

)
|Sν
〉〈

pf +
k
2
;Sν|t+(pi)|pi;SMS

〉

2
(
Epi − Epf +k

2

)

+
m

Epf−k
2

〈
S′M ′

S |V
(2)
em

(
−pf −

k
2
,−pf +

k
2

)
|Sν
〉〈

pf −
k
2
;Sν|t+(pi)|pi;SMS

〉

2
(
Epi − Epf−k

2

)

+
∑
ν′

lim
η→0

∫
d3q

(2π)3
m

Eq

m

Eq − k
4

m

Eq+k
4

〈
q− k

4
;S′ν ′|t−(pf )|pf ;S′M ′

S

〉∗

×

〈
S′ν ′|V (1)

em

(
q − k

2
,q+

k
2

)
|Sν
〉〈

q+
k
4
;Sν|t+(pi)|pi;SMS

〉

4
(
Epi − Eq+k

4
+ iη

)(
Epf

− Eq−k
4
+ iη

)
}
.

Here, pi,f means |pi,f |. In deriving (12), we used the
equality

〈pf ;SM ′
S |[t−(pf )]†|pi;SMS〉

= 〈pi;SMS |t−(pf )|pf ;SM ′
S〉∗.

The first four terms in (12) correspond to the direct
and exchange diagrams for single scattering. The last
term describes double rescattering. Using symmetry
properties of the wave function for a two-proton sys-
tem (6), we can express the rescattering term, where a
photon is emitted by proton 2, via the term in which a
photon is emitted by particle 1. Subsequently, for the
antisymmetrized tmatrices, the diagram with photon
emission by proton 1 alone may be substituted for
the antisymmetrized sum of all rescattering diagrams
(some aspects of calculating the rescattering diagram
are given in Appendix A).

The operator V
(i)
em is the Dirac operator for the

interaction of the ith nucleon with an electromagnetic
field. In the transverse gauge, it is

V (i)
em (q−,q+)

= ελ

〈
u(q−)

∣∣∣ p
m

+
µp
4m

[γ(i), γν(i)]kν
∣∣∣u(q+)

〉
.

Here, ελ is the photon polarization vector; µp is
the proton magnetic moment (in units of the nu-
clear magneton µp = 2.793); q± = p ± k/2 and the
bispinor

|u(q)〉 =
√

Eq +m

2m

(
1

σq
Eq +m

)

(σ is the Pauli matrix). For the Dirac matrices γν ,
we use definitions from [28]. As was shown in [23],
relativistic corrections to the operatorVem appreciably
P

affect the BS spectrum near themaximum photon en-
ergy, where the off-shell effects in theNN interaction
are strongest.

Formally, the amplitudeMfi in (8) was determined
in the averaged c.m. frame (10). In practice, however,
the scattering t matrices are always calculated in the
c.m. frame of two protons. In our case, there are two
such systems that differ by the photon momentum
k. Each t matrix in (12) was calculated in its own
c.m. frame. As a result, the first two terms in (12)
are written in the final c.m. frame, while the third
and fourth terms are written in the initial c.m. frame
Strictly speaking, this is possible only when the tma-
trices themselves are Lorentz-invariant. This implies
that they must be solutions to the relativistic Bethe–
Salpeter equation or a quasipotential reduction to it
(e.g., the t matrix for the Bonn potential [2]) but
not to the Lippmann–Schwinger equation (2) with a
nonrelativisticNN potential, as in most cases [1, 10].

The cross section for the reaction pp → ppγ in the
laboratory frame is given by

d5σ

dΩ1dΩ2dθγ
=

αm3p2
1fp

2
2f

(2π)4p1iEp1f
Ep2f

Na

∣∣∣M̃fi

∣∣∣2 , (13)

whereα is the fine-structure constant (α = 1/137.04).
The angles Ω1 ≡ (θ1, ϕ1) and Ω2 ≡ (θ2, ϕ2) specify
the direction of the protons flying apart, and θγ is the
angle at which a γ-ray photon is emitted (the z axis is
chosen along the incident beam, the protons escape
on both sides of the beam, and the angle θγ is counted
off in the same sense as θ1). In coplanar geometry, the
phase factorNa is

Na = − p1f

Ep1f

sin(θγ + θ2) +
p2f

Ep2f

sin(θγ − θ1)

+ sin(θ1 + θ2).
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Parameters of the potentials

2S+1LJ
FSP1 FSP2 FSP3 FSP4

V0, MeV β, fm−1 V0, MeV β, fm−2 V0, MeV β, fm−2 V0, MeV β, fm−2

1S0 −1450 1.7 −18300 10

3P0 −4065 2.92 −1108 1.07 −3000 3.3 −6900 3.3

3P1 −3860 2.93 −1054 1.06 −2800 3.3 −6700 3.3

3P2 −10950 5.1 −2780 3.0 −2780 3.0 −6800 6.45
Specifying the angles θ1, θ2, and θγ completely
fixes the kinematics of the coplanar process and al-
lows us to calculate the final proton momenta p1f

and p2f and the photon momentum k for a known
incident protonmomentum p1i. Since we are not con-
cerned with polarization observables, the cross sec-
tion in (13) must be summed over the final proton spin
states, averaged over the initial proton spin states,
and summed over the photon polarization states, i.e.,∣∣∣M̃fi

∣∣∣2 = 1
4

∑
SMS

∑
S′M ′S

∑
λ

|Mfi|2 .

3. CALCULATIONS AND DISCUSSION

We calculated the scattering matrices [Eqs. (2)
and (4)] and bremsstrahlung observables [Eq. (13)]
for the reaction pp → ppγ for several types of poten-
tials, FSPs and RCPs. Since, as was noted in the In-
troduction, all potentials with short-range repulsion
yield similar results, we used the Nijmegen potential
(NijmI in the notation of [1]) as a representative of
this family. Some difficulties arose with the selection
of forbidden-state potentials. Although several ver-
sions of such potentials are currently available (see,
e.g., [10, 13, 14]), apart from advantages, they all have
drawbacks. One of the first potentials, MP92 [13], has
already been used previously [18] with a similar aim
to find differences in the pp → ppγ reaction observ-
ables calculated with the MP92 and RCP. However,
MP92 has a significant flaw—it unsatisfactorily re-
produces elastic NN-scattering phases, particularly
in the 3PF2 channel. As we show below, this can be
attributed to the following: an incomplete allowance
for the meson-exchange mechanisms (only single-
pion exchange was included in MP92) and the same
depth of the potential well at short range in 3P2

and 3F2 waves. Note that the latter requires has no
physical justifications and can be justified only by an
attempt to reduce the number of input parameters. To
improve the situation in P and F waves, a different
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
parametrization was introduced in [10], the Moscow
potential of 1999 (MP99). It has the following struc-
ture:

V = Vsep + Vc + VLS + VOPE,

where Vc, VLS, and VOPE are respectively, the central,
spin–orbit, and one-pion parts of theNN interaction,
Vsep is the separable orthogonalizing pseudopoten-
tial Vsep = κ|ϕ〉〈ϕ|(κ → ∞), which imposes the ad-
ditional condition for orthogonality of the scattering
wave functions to the forbidden states |ϕ〉 in S and P
waves. The functions |ϕ〉 reflect the structure of the
6q compound state (|s6〉 and |s5p1〉 configurations)
and have a Gaussian radial dependence. A peculiar-
ity of MP99 compared to MP92 is the small depth
of the central part in the P wave; it is an order of
magnitude smaller than that for MP92. It can be
verified that given the spin–orbit interaction in this
wave, MP99, becomes repulsive altogether. Although
the wave functions of both potentials have a short-
range node (which makes it necessary to use Vsep in
MP99), their amplitudes differ significantly. A shallow
depth for the P wave in MP99 was probably cho-
sen because it was impossible to reproduce well the
phase shifts with a deep potential based on a com-
mon parametrization of all 3PJ waves. If, however,
we proceed from the microscopic model, which is the
basis for all FSPs and which was briefly described in
the Introduction, then there is no particular reasons
to use the universal parametrization of 3PJ waves.
In our calculations, we use MP99, although, as was
pointed out above, it can be attributed to the family of
deep attractive potentials with a reservation. Below,
however, while studying the effects of the shape and
depth of the potentials on the off-shell behavior of the
scattering matrix, we are not bound by the condition
that the parameters of the central part of the potential
be the same for all 3PJ and 3F2 waves.

In principle, there are several more parametriza-
tions of the deep attractive potentials in S and
P waves that describe the corresponding phase shifts
2
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well [14]. However, their significant drawback is that
the tensor interaction in the P wave is ignored (i.e.,
the term VOPE is absent in the potentials). At the
same time, the BS observables in pp collisions are
known to be sensitive to this type of interaction, par-
ticularly to nondiagonal (in orbital quantum number)
matrix elements, and, hence, VOPE must be included
in the potential. Therefore, we will not calculate the
scattering matrices and BS observables directly with
the potentials from [14] but first will modify them. Let
us introduce two potentials, V = Vc + VLS + VOPE,
which differ by the central part Vc. We parametrize
them as follows: VLS and VOPE are left the same as
those in MP99, while Vc is taken in an exponential
form Vc = V0 exp(−βr) in the former case (the corre-
sponding potential is called FSP1) and in a Gaussian
form Vc = V0 exp(−βr2) in the latter case (FSP2).
The parameters V0 and β for 3PJ waves are given
in the table. They are comparable in magnitude with
the analogous parameters of the potentials from [14]
with the same radial dependence of the central part.
Since the principal interaction mechanism in waves
with L ≥ 2 is assumed to be meson exchange, to
describe them, we take the NijmI potential, whose
parametrization for these waves is theoretically more
justified than, for example, inMP99. In particular, this
implies that our potentials have different parametriza-
tions in 3P2 and 3F2 waves. As a result, the 3F2 phase
and the mixing parameter ε2 are reproduced much
better than for MP92. Note also the large depth of the
potential well in the 3P2 wave in FSP1. An attempt
to obtain the correct phases and mixing parameter
in this channel with a smaller depth of V0 failed.
The phase shifts for these two potentials and for the
Nijmegen potential are shown in Fig. 1 (for clarity,
we ignore the insignificant phase difference by π for
FSPs and RCPs, in accordance with the Levinson
theorem). We see that very close scattering phases
correspond to all three potentials.

We chose a real quantity, the K matrix (4), as
the parameter that describes the off-shell behavior
of a two-nucleon system [for PM99, we used rela-
tion (A.5) from Appendix B to calculate the K ma-
trix). Figure 2 shows off-shell parameters of the scat-
tering amplitudes. We see that for 3P0 and 3P1 waves,
the scattering amplitudes are similar for FSP1 and
FSP2 but differ significantly for NijmI even in the
range of low momenta q. This range is determined
by the behavior of the potential at medium and long
ranges, where the interaction is effected by meson ex-
change. At the same time, the behavior of theK ma-
trix at large q(q > 2 fm−1) is determined by the short-
range (r < 1 fm) wave function of theNN system and
is naturally different for RCPs and FSPs. It emerged
that the scattering amplitudes for FSP1 and FSP2
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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are almost the same as those for similar exponential
and Gaussian potentials from [14] at any q, despite the
presence of the term VOPE in them. In addition, the
wave functions of forbidden states in the P wave cal-
culated with these potentials are exponential in form,
while calculations based on the nucleon quark struc-
ture yield a Gaussian dependence. It thus follows that
FSP1, FSP2, and the potentials from [14] poorly de-
scribe the long- andmedium-rangeNN interactions.
As a result, this circumstance must manifest itself in
BS observables. Indeed, as we see from Fig. 3, using
the differential BS cross section of FSP1 leads to a
significant excess of the theoretical results compared
to both experimental data [29] and the results ob-
tained for potentials with short-range repulsion and
MP99. In this case, the BS cross section includes all
partial pp amplitudes with a total angular momentum
up to J = 6, while those of them that are not included
in the FSP parametrization are the scattering ampli-
tudes for NijmI.

Let us try to rectify the situation by noting that
the scattering phases are stable when the parameters
V0 and β are varied simultaneously. For example, we
can make the potential well narrower but deeper. Let
us now choose a slightly different parametrization
of the central part in the P wave for a Gaussian
potential (see FSP3 in the table) while leaving the
parametrization for the 3P2 wave unchanged (as for
FSP2). As a result, the parameters for all 3PJ waves
prove to be comparable in magnitude. The phases
calculated with FSP3 are also shown in Fig. 1. We
see that they agree with experiment slightly worse
than for FSP1 and FSP2, but the off-shell scattering
amplitude (Fig. 2) has the proper behavior at low
momenta.
2
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The unsatisfactory reproduction of the phase shifts
by FSP3 (particularly noticeable for the 3P0 wave)
stems from the fact that only single-pion exchange
is taken into account in describing the long- and
medium-range behavior of the potential. It may well
be that this is not enough. Let us try to rectify the
P

situation by introducing the following simple NN-
interaction model: V = Vc + Vme (we designate it as
FSP4). Here, Vc is the Gaussian central deep at-
tractive potential and Vme is the meson-exchange
potential (in our case, NijmI). Parameters forVñ in the
3PJ channel are also given in the table. The calculated
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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phases for FSP4 are shown in Fig. 4. We see that
the 3P0 and 3P2 phase shifts are now reproduced
appreciably better. Figure 5 shows the off-shell be-
havior of the scattering amplitudes for FSP4, MP99,
and the Bonn charge-dependent potential [2]. As we
see from comparison of the results, the components
with largemomentum transfer increase appreciably in
importance for FSP3 and FSP4. At the same time,
because of the suppressed oscillations of the MP99
wave function at short range, the off-shell scattering
matrices in the P wave for MP99 and RCP are virtu-
ally identical.

The BS observables at proton energies up to
400 MeV in the laboratory frame are determined
mainly by the medium- and long-range potential
structure. This implies that they are sensitive to off-
shell effects in the range of low q, where the scattering
amplitudes for FSP4 and RCP differ only slightly. In
Fig. 6, the calculated differential cross sections for
the reaction pp → ppγ [Eq. (13)] are plotted against
photon escape angle for various potentials at various
proton energies. Note that, in our kinematics, small
angles θ1 and θ2 correspond to the emission of the
hardest photons.We see that all theoretical curves are
very close and satisfactorily reproduce the available
experimental data [29]. This implies that we cannot
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choose between the various potentials by using the
reaction pp → ppγ alone.

Since MP99 in the 1S0 wave, in contrast, for ex-
ample, to NijmI, has the form of a deep attractive
potential, we may conclude that the scattering ampli-
tudes cannot be distinguished in the BS observables
from the S wave. This result agrees with the results
from [16], where it was argued that, in coplanar ge-
ometry and at sufficiently high proton energies, the
contribution of S and D waves is suppressed and P
waves play a major role.

The parameters of MP92 used in [18] in the
P wave are intermediate between the parameters
of FSP2 and FSP3. In this case, the difference
in the differential BS cross sections for FSP2 and
RCP clearly shows up even at proton energies
Elab = 280 MeV; for MP92 and RCP, they begin to
manifest themselves only at proton energies Elab =
350–450 MeV. They are the same in nature as those
for FSP2.

For the 1S0 wave, we can perform a similar anal-
ysis as for 3PJ waves. The FSP2 and FSP4 pa-
2



1654 ALMALIEV et al.
rameters for the 1S0 wave are also given in the ta-
ble; for FSP2, they are approximately the same as
for MP92 or the Gaussian potential from [14]. For
FSP4, the node of the scattering wave functions
orthogonal to the forbidden state lies approximately
at a distance of 0.35 fm, in agreement with models
for the nucleon structure [30]. Naturally, the depth
of V0 depends on the shape and parametrization of
the meson-exchange part of the potential. Figures 7
and 8 show, respectively, the calculated off-shell scat-
tering phases and amplitudes in the 1S0 wave for
FSP2, FSP4, and NijmI. We see from Fig. 8 that the
scattering amplitude for FSP4 is much closer to the
amplitude for RCP than that for MP99 and FSP2.
Here, the same conclusions as for the P wave can
be reached: even the reactions with protons in which
the S wave plays a prominent role may not reveal the
differences between FSP4 and RCP.

4. CONCLUSION

As follows from our analysis, the reaction pp →
ppγ at proton energies up to 400MeV does not allow
the choice between potentials with and without a core
to be made, in contrast, for example, to the αα and
αt systems, where this is apparently possible [31]. In
all likelihood, the point is that the dynamics underly-
ing the pp, αα, and αt interactions is different. In a
pp system, the deep attractive potential is attributable
to mechanisms related to the quark structure of nu-
cleons and, therefore, it is of a short-range nature
(r < 1 fm). At the same time, the BS observables
for proton energies at which the potential model is
valid are determined by the medium- and long-range
NN-interaction structure. An explicit allowance for
meson-exchange mechanisms was shown to be im-
portant in constructing realistic NN potentials. We
estimated the depth and width of the attractive well
at which the scattering amplitude has the proper off-
shell behavior for low momentum transfer. In the
course of our study, we found that a Gaussian de-
pendence of the central part of potentials with short-
range repulsion is preferred to an exponential de-
pendence, because the latter leads to an irregular
forbidden-state wave function. Note also that the in-
formation obtained from testing potentials by using
the phase shifts alone will definitely be ambiguous.

Extending the range of proton energies under
study to several GeV would be of great interest in
testing various NN-interaction models. In this case,
however, apart from the naturally arising inelastic
processes, the various contact diagrams underlying
the chosen microscopic model should be taken into
account to quantify the results obtained. Their impor-
tant role has recently been pointed out in [32]. In other
P

words, if it is necessary to test the structure of a short-
range interaction, in particular, to choose between the
attractive and repulsive mechanisms, then one should
not use the simple model of a local interaction (e.g., a
local optical potential). Strictly speaking, it is suitable
only for describing elastic scattering phases. The
nonlocal mechanisms that can affect the parameters
of various processes through NN interaction (e.g.,
the BS observables) will manifest themselves via
various kinds of contact diagrams; disregarding them
can significantly distort the results obtained.
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APPENDIX A

The double rescattering diagrams are difficult to
calculate, because the integrand in (12) has a pole
singularity. It corresponds to the emergence of both
protons on the energy shell before or after photon
emission.

The rescattering term from (12) can be concisely
written as

M res
fi = (2π)−3

∫
q2 dq d cos θ dϕ

Afi
G1G2

, (A.1)

where G1 = 2
(
Epf

− Eq−k
4
+ iη

)
and G2 =

2
(
Epi − Eq+k

4
+ iη

)
, and the quantity Afi includes

the rest, including the summation over ν and ν ′.
The integral in (A.1) is most convenient to calcu-

late in a coordinate system with the z axis directed
along the motion of the emitted photon, i.e., z ‖ k. In
this case, the quantities G1 and G2 are independent
of the angle ϕ, which allows the integration over ϕ
in (A.1) to be performed analytically.

Let us define the quantity Ffi ≡
∫
dϕAfi. Expres-

sion (A.1) can then be written as

M res
fi =

1∫
−1

d cos θ

∞∫
0

dq
Hfi(q)

Gi(q)Gf (q)
, (A.2)

where

Hfi(q) =
q2

4(2π)3
(
Epf

+ Eq−k
4

)(
Epi + Eq+k

4

)
Ffi,

Gi(q) = p2
i −

(
q+

k
4

)2

+ iη,

Gf (q) = p2
f −

(
q− k

4

)2

+ iη.
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The following momenta q correspond to the poles
in (A.2):

q±i = −k

4
cos θ ±

√
p2
i −

k2

16
sin2 θ =−k

4
cos θ±∆i,

q±f =
k

4
cos θ ±

√
p2
f −

k2

16
sin2 θ =

k

4
cos θ±∆f .

The poles at q = q−i , q
−
f can appear in integral (A.2)

only at small proton escape angles θ1 and θ2 in the
laboratory frame and, simultaneously, at small pho-
ton escape angles θγ < 2◦. In the kinematics used
here, no poles of this kind appear, which allows in-
tegral (A.2) to be split into only two parts:

∞∫
0

dq
Hfi(q)

Gi(q)Gf (q)
=

a2∫
a1

dq . . . +

b2∫
b1

dq . . . ,

where the interval [a1; a2] contains the pole q+
i and

the interval [b1; b2] contains the pole q+
f . In that case,

a2∫
a1

dq
Hfi(q)

Gi(q)Gf (q)
(A.3)

= P

a2∫
a1

dq
1

Gi(q)

[
Hfi(q)
Gf (q)

− Hfi(q+
i )

Gf (q+
i )

]
+P

a2∫
a1

dq

+
1

2∆i

Hfi(q+
i )

Gf (q+
i )

[
ln
∣∣∣ (a2 − q−i )(a1 − q+

i )
(a2 − q+

i )(a1 − q−i )

∣∣∣ −iπ

]
,

b2∫
b1

dq
Hfi(q)

Gi(q)Gf (q)
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= P

b2∫
b1

dq
1

Gf (q)

[
Hfi(q)
Gi(q)

−
Hfi(q+

f )

Gi(q+
f )

]
+P

a2∫
a1

dq

+
1

2∆f

Hfi(q+
f )

Gi(q+
f )

[
ln
∣∣∣ (b2 − q−f )(b1 − q+

f )

(b2 − q+
f )(b1 − q−f )

∣∣∣ −iπ

]
.

Here, q+
i and q+

f mean the vectors with magnitudes

q+
i and q+

f andwith the same direction as the vectorq.

APPENDIX B

If the NN potential V = V sep + V r contains the
separable part V sep, i.e.,

V sep
L′L(q

′, q) = κϕL′(q′)ϕL(q)δL′L,
then the Lippmann–Schwinger equation for the
K matrix (4) can be represented as

KL′L(q′, q; p) = κϕL′(q′)ϕL(q)δL′L+V r
L′L(q

′, q)
(A.4)

+
2m
π

κϕL′(q′)P

∞∫
0

ϕL′(p′)KL′L(p′, q; p)
p2 − p′2

p′2dp′

+
2m
π

∑
l

P

∞∫
0

V r
L′l(q

′, p′)KlL(p′, q; p)
p2 − p′2

p′2dp′.

Here, V r
L′L is the remaining inseparable part of the

potential. If, however, κ → ∞, which is the case for
MP99, then expression (A.4) becomes computation-
ally inconvenient. In this case, the following impor-
tant property of the separable potentials can be used:
the possibility of exactly solving the problem of scat-
tering in two-particle systems. Hence, we derive the
following expression for theK matrix from Eq. (A.4):
KL′L(q′, q; p) =
κϕL′(q′)
1− κI1L′

(
ϕL(q)δL′L + I2L′L(q)

)
+ V r

L′L(q
′, q) (A.5)

+
2m
π

∑
l

P

∞∫
0

(
V r
L′l(q

′, p′) + κϕL′(q
′)

1−κI1L′
I2L′l(p′)

)
KlL(p′, q; p)

p2 − p′2
p′2dp′,
where

I1L =
2m
π

P

∞∫
0

|ϕL(p′)|2

p2 − p′2
p′2 dp′,
2

I2L′L(q) =
2m
π

P

∞∫
0

ϕL′(p′)V r
L′L(p

′, q)
p2 − p′2

p′2 dp′.

We can now pass to the limit κ → ∞ in Eq. (A.5)
and then solve it by the same methods as those used
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to solve the standard Lippmann–Schwinger equa-
tion (4).
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Abstract—In a nonlocal U(3)× U(3) chiral quark model with the local ’t Hooft interaction, the first radial
excitations of scalar mesons are described. Simple Lorentz-covariant form factors, having a polynomial
form in the momentum space, are used for the description of radially excited states. Due to the chiral
symmetry, the form factors for scalar states coincide with those for pseudoscalars. As a result, using
the experimental values for the masses of pseudoscalar mesons, we predict the mass spectrum of the
ground and radially excited scalar-meson states. The scalar glueball is introduced into the effective meson
Lagrangian by means of the dilaton model. It is shown that 19 scalar states with masses from 0.4 to
1.7 GeV can be interpreted as two scalar nonets and a glueball. Strong decay widths of scalar mesons
are calculated. The state f0(1500) is shown to be the most probable candidate for the scalar glueball.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The description of scalar mesons withmasses from
0.4 to 1.7 GeV is an actual and complex problem
attracting the attention of many physicists in recent
years [1–4]. The final solution of this problem has
not yet been found. It is complicated by the fact that,
in this interval of masses, there exists a scalar glue-
ball which is noticeably mixed with scalar–isoscalar
quarkonia. In [5–7], we for the first time suggested
interpreting 18 scalar mesons, lying in the mass in-
terval under consideration, as two meson nonets: the
ground nonet of scalar quarkonia (with masses below
1 GeV) and the nonet of their first radial excitations
(with masses greater than 1 GeV). However, here,
an additional scalar-meson state [8] has been seen
experimentally. The origin of this extra, 19th, state
is supposed as connected to the scalar glueball. Two
possible candidates for the glueball are often argued:
f0(1500) and f0(1710) [1, 2, 4–7, 9–11]. Our present
paper is devoted to solving the problem of identifica-
tion of the true glueball state with one of these states.
This is to be done by introducing the scalar glue-
ball into the effective meson Lagrangian investigated
in [5–7].

A nonlocal U(3) × U(3) quark model of the Nam-
bu–Jona-Lasinio (NJL) type was first suggested
in [12, 13] to describe the ground and radially excited
nonets of pseudoscalar and vector mesons. Next,
in [5–7], this model was used to study scalar-
meson nonets. Its Lagrangian was completed by
the ’t Hooft interaction to describe the singlet–octet
mixing in the scalar and pseudoscalar sectors. For

∗This article was submitted by the authors in English.
1063-7788/02/6509-1657$22.00 c©
the description of excited states, simple Lorentz-
covariant form factors of a polynomial formwere used.
To investigate the first radial excitations, polynomials
of the second order by momentum sufficed. The form
factor was chosen in a form which allowed us to
reproduce all low-energy theorems in the chiral limit
and the mechanism of spontaneous chiral symmetry
breaking (SCSB) [12]. This model was applied for the
description of strong decays of radially excited scalar,
pseudoscalar, and vector mesons [5–7, 14].

The chiral symmetry allowed us to use the same
form factors for both the pseudoscalar and scalar
mesons. As a result, using the masses of excited
pseudoscalar meson states, we predicted the mass
spectrum of radially excited states of scalar mesons.
We also showed that 18 scalar-meson states with
masses from 0.4 to 1.7 GeV can be considered as
two scalar meson nonets: the ground and first radially
excited [5–7]. The state f0(1710) was considered as
a quarkonium (the radial excitation of f0(980)). A
calculation of widths for the strong decay modes of
these mesons and subsequent matching of them with
experimental data corroborated our conclusions con-
cerning the quark nature of the 18 states. Meanwhile,
the state f0(1500) happened to be beyond our model,
and its description required introducing a glueball
into the model.

To solve the problem of describing the glue-
ball, simple models that describe the ground scalar
quarkonia states only with the glueball were con-
structed in [9–11]. There, we introduced a glueball
into a U(3) × U(3) quark Lagrangian with the ’t
Hooft interaction by means of the dilaton model. The
2002 MAIK “Nauka/Interperiodica”
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dilaton model has often been used for this purpose by
many authors [1, 15–17].

The mixing of the glueball with scalar isoscalar
quarkonia was described, and widths of the main
modes of their strong decays were calculated. Our
calculations showed that, among the most proba-
ble candidates for the glueball, states f0(1500) and
f0(1710), the state f0(1500) better meets the as-
sumption that it is the glueball rather than f0(1710).
However, the final decision must be made after in-
cluding radially excited states and taking into ac-
count mixing between five scalar–isoscalar states
(four quarkonia and a glueball) and describing their
decays.

Methods used in [5–7] and in [9, 10] are unified in
the present paper to construct an extended nonlocal
U(3) × U(3) model with the glueball, allowing us to
describe all 19 scalar-meson states in the interval of
masses concerned. After calculating the widths of the
strong decay modes of scalar mesons, we once more
saw that the most probable candidate for the glueball
is the state f0(1500). Meanwhile, the glueball gets
noticeably mixed with the states f0(400–1200) and
f0(1370), mostly composed of u and d quarks, and is
almost not represented in f0(980) and f0(1710), con-
taining mostly s quarks. Isovector and strange states
change little after introducing the glueball. Therefore,
the results obtained here for isovectors and strange
mesons are close to those derived in [5–7], where the
glueball was not considered. All changes are con-
nected with new value of the constant K which, un-
like papers [5–7], is fixed in our paper not only by
masses of η and η′ but also by the lower experimental
bound for the mass of the lightest scalar–isoscalar
state f0(400–1200).

The structure of our paper is as follows. In Sec-
tion 2, a nonlocal chiral quark model of the NJL type
with the six-quark ’t Hooft interaction is bosonized
to construct an effective meson Lagrangian. In Sec-
tion 3, the meson Lagrangian is extended by intro-
ducing a scalar glueball as a dilaton on the basis of
scale invariance. The gap equations, the divergence
of the dilatation current, and quadratic terms of the
effective meson Lagrangian are derived in Section 4.
There, we also diagonalize quadratic terms. Numer-
ical estimates of the model parameters are given in
Section 5. InSection 6, the widths for themainmodes
of strong decays of scalar mesons are calculated. The
discussion over the obtained results is given in Sec-
tion 7. A detailed description of how to calculate the
quark loop contribution to the width of strong decays
of scalar mesons is given in the Appendix.
PH
2. U(3) × U(3) LAGRANGIAN
FOR QUARKONIA

We start from an effective U(3) × U(3) quark La-
grangian of the following form (see [5–7]):

L = Lfree + LNJL + LtH, (1)

Lfree = q̄(i∂̂ −m0)q, (2)

LNJL =
G

2

N∑
n=1

9∑
a=1

[(jaS,n)
2 + (jaP,n)

2], (3)

LtH = −K {det[q̄(1 + γ5)q] + det[q̄(1 − γ5)q]} , (4)

where Lfree is the free quark Lagrangian with q
and q̄ being u, d, or s-quark fields; m0 is a current
quark mass matrix with diagonal elements: m0

u, m
0
d,

m0
s (m0

u ≈ m0
d). The term LNJL contains nonlocal

four-quark vertices of the NJL type which have
the current-to-current form. The quark currents are
defined in accordance with [5–7, 12, 13]:

jaS(P),n(x) =
∫

d4x1d
4x2q̄(x1) (5)

× F a
S(P),n(x;x1, x2)q(x2),

where the subscript S is for scalar, and P for pseu-
doscalar, currents. The term LtH is the six-quark
’t Hooft interaction, which is supposed as local, so no
form factor is introduced into LtH.

For n > 1, currents (5) are nonlocal due to form
factors F a

S(P),n. This way of introducing nonlocality
allows us to consider radially excited meson states,
which is impossible in the standard local NJL model.
In general, the number of radial excitations N is infi-
nite, but we restrict ourselves to N = 2, leaving only
the ground and first radially excited states, because
extending this model by involving heavier particles is
not valid for this class of models.

Let us define the form factors in the momentum
space.

F a
S(P),n(x;x1, x2) (6)

=
∫

d4P

(2π)4
d4k

(2π)4
exp

[
i

2

(
(P + k)(x− x1)

+ (P − k)(x− x2)
)]

F a
S(P),n(k|P ),

where P is the total momentum of a meson and k is
the relative momentum of quarks inside the meson.
As it was mentioned in the Introduction, here we
follow papers [5–7, 12, 13], where the form factors
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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F a
S(P),n(k|P ) are chosen in the momentum space as

follows:

F a
S,n(k|P ) = τacaf

a
n(k⊥), (7)

F a
P,n(k|P ) = iγ5τacaf

a
n(k⊥),

and the functions fan (n = 1, 2) are

fa1 (k⊥) = 1, fa2 (k⊥) = 1 + da|k⊥|2. (8)

These depend on the transverse relative momentum
of the quarks:

k⊥ = k − P · k
P 2

P. (9)

In the rest frame of a meson P = (M,0), the vector
k⊥ equals (0,k); thereby the form factors can be
considered as functions of 3-dimensional momen-
tum. Further calculations will be carried out in this
particular frame. Thematrices τa are expressed via the
Gell-Mann λa matrices as follows:

τa = λa (a = 1, . . . , 7), (10)

τ8 = (
√

2λ0 + λ8)/
√

3, τ9 = (−λ0 +
√

2λ8)/
√

3.

Here, λ0 =
√

2/3 1, with 1 being the unit matrix.

Each form-factor function contains a slope pa-
rameter da which is fixed by special conditions given
in Section 4 (see Eq. (55) below). The arbitrary pa-
rameter ca can be absorbed by the four-quark inter-
action constant G. As a result, we obtain arbitrary
constants Ḡa = c2aG, where only four constants Ḡ1,
Ḡ4, Ḡ8, and Ḡ9 are free because the following rela-
tions take place:

Ḡ1 = Ḡ2 = Ḡ3, Ḡ4 = Ḡ5 = Ḡ6 = Ḡ7. (11)

Thus, the term LNJL (see (3)) can be rewritten for the
ground and first radially excited states in the following
form:

LNJL =
G

2

9∑
a=1

[(jaS,1)
2 + (jaP,1)

2] (12)

+
1
2

9∑
a=1

Ḡa[(j̃aS,2)
2 + (j̃aP,2)

2],

where

jaS(P),2 = caj̃
a
S(P),2. (13)

As follows from our further calculations (see Sec-
tion 4), we have only three different form factor func-
tions:

f1
2 = f2

2 = f3
2 = f8

2 = fu2 = 1 + duk2, (14)

f4
2 = f5

2 = f6
2 = f7

2 = fus2 = 1 + dusk2,

f9
2 = f s2 = 1 + dsk2.
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The values of constants du, ds, and dus are given in
Section 5. As a consequence of such a definition of
form factor functions, all arbitrariness connected with
introducing form factors reveals itself only in mass
definitions (see (63) below), while the interaction of
excited mesons is free of arbitrary parameters.

Instead of Lagrangian (1), it is convenient to use
its equivalent form containing only four-quark ver-
tices whose interaction constants take into account
the ’t Hooft interaction. Using the method described
in [5–7, 9, 18–20], we obtain

L = q̄(i∂̂ − m̄0)q (15)

+
1
2

9∑
a,b=1

[
G

(−)
ab jaS,1j

b
S,1 + G

(+)
ab jaP,1j

b
P,1

]

+
1
2

9∑
a=1

Ḡa

[
j̃aS,2j̃

a
S,2 + j̃aP,2j̃

a
P,2

]
,

where

G
(±)
11 = G

(±)
22 = G

(±)
33 = G± 4KmsJ Λ

0,1[1], (16)

G
(±)
44 = G

(±)
55 = G

(±)
66 = G

(±)
77 = G± 4KmuJ Λ

0,1[1],

G
(±)
88 = G∓ 4KmsJ Λ

0,1[1], G
(±)
99 = G,

G
(±)
89 = G

(±)
98 = ±4

√
2KmuJ Λ

0,1[1],

G
(±)
ab = 0 (a = b; a, b = 1, . . . , 7),

G
(±)
a8 = G

(±)
a9 = G

(±)
8a = G

(±)
9a = 0 (a = 1, . . . , 7),

and m̄0 is a diagonal matrix composed of modified
current quark masses,

m̄0
u = m0

u − 32KmumsJ Λ
0,1[1]J Λ

0,1[1], (17)

m̄0
s = m0

s − 32Km2
uJ Λ

1,0[1]
2, (18)

introduced here to avoid double counting of the
’t Hooft interaction in gap equations (see [9, 20]).
Here, mu and ms are constituent quark masses. All
integrals that appear in the paper are defined via the
functional J :

J Λ
l,n[f ] = −i

Nc

(2π)4

∫
d4k

f(k)θ(Λ2 − k2)
(m2

u − k2)l(m2
s − k2)n

,
(19)

where f(k) is a product of form factor functions,
e.g., fu2 (k)fu2 (k), and Nc = 3 is the number of colors.
Since the integral is divergent for some values of l and
n, it is regularized by a 3-dimensional cutoff Λ.

After bosonization of Lagrangian (15), we obtain

L̃(σ̄, φ) = L̃G(σ̄, φ) − itr ln
{
i∂̂ − m̄0 (20)

+
2∑

n=1

9∑
a=1

τaga,n(σ̄a,n + iγ5
√
Zφa,n)fan

}
,

2
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Fig. 1. The set of diagrams contributing to the effective
meson Lagrangian. Tadpoles (a) determine gap equa-
tions, polarization diagrams (b) give kinetic and mass
terms, triangle diagrams (c) and boxes (d) describe the
interaction of mesons.

where
L̃G(σ̄, φ) (21)

= −1
2

9∑
a,b=1

ga,1σ̄a,1

(
G(−)
)−1

ab
gb,1σ̄b,1

− Z

2

9∑
a,b=1

ga,1φa,1

(
G(+)
)−1

ab
gb,1φb,1

−
9∑
a=1

g2a,2
2Ḡa

(σ2
a,2 + φ2

a,2),

and σ̄ and φ are the scalar and pseudoscalar boson
fields. As follows from our further calculations of
quark-loop diagrams, the vacuum expectation values
(VEVs) of fields σ̄8,1 and σ̄9,1 are not equal to zero,
while 〈σ̄a,1〉0 = 0, a = 1, . . . , 7. This is connected to
the existence of tadpole diagrams (Fig. 1a) for the
ground meson states. Therefore, it is necessary to
introduce new fields σa,n with zero VEVs 〈σ8,n〉0 =
〈σ9,n〉0 = 0 using the following relations:

g8,1σ̄8,1 − m̄0
u = g8,1σ8,1 −mu, (22)

g9,1σ̄9,1 +
m̄0
s√
2

= g9,1σ9,1 +
ms√

2
.

VEVs taken from (22) give gap equations connecting
current and constituent quark masses (see (53) and
(54) in Section 4). This is a consequence of SCSB.
As a result, we obtain [9, 18]

L(σ, φ) = LG(σ, φ) − itr ln

{
i∂̂ −m +

2∑
n=1

(23)

×
9∑
a=1

τaga,n(σa,n + iγ5
√
Zφa,n)fan

}

= Lkin(σ, φ) + LG(σ, φ) + Lloop(σ, φ).

The term LG(σ, φ) is

LG(σ, φ) = −1
2

9∑
a,b=1

(ga,1σa,1 − µa + µ̄0
a) (24)

×
(
G(−)
)−1

ab
(gb,1σb,1 − µb + µ̄0

b)
P

− Z

2

9∑
a,b=1

ga,1φa,1

(
G(+)
)−1

ab
gb,1φb,1

−
9∑
a=1

g2a,2
2Ḡa

(σ2
a,2 + φ2

a,2).

Here, we introduced, for convenience, the constants
µa and µ̄0

a defined as follows: µa = 0, a = 1, . . . , 7,
µ8 = mu, µ9 = −ms/

√
2 and µ̄0

a = 0, a = 1, . . . , 7,
µ̄0
8 = m̄0

u, µ̄
0
9 = −m̄0

s/
√

2.
The term Lkin(σ, φ) contains the kinetic terms

and, in the momentum space, has the following form:

Lkin(σ, φ) =
P 2

2

2∑
n,j=1

(25)

×
9∑

a=1

(
σa,nΓaS,njσa,j + φa,nΓaP,njφa,j

)
,

where
ΓaS(P),11 = ΓaS(P),22 = 1, (26)

ΓaS(P),12 = ΓaS(P),21 = γaS(P),

γaS =




J Λ
2,0[f

u
2 ]√

J Λ
2,0[1]J Λ

2,0[f
u
2 f

u
2 ]

(a = 1, 2, 3, 8, )

J Λ
1,1[f

us
2 ]√

J Λ
1,1[1]J Λ

1,1[f
us
2 fus2 ]

(a = 4, 5, 6, 7)

J Λ
0,2[f

s
2 ]√

J Λ
0,2[1]J Λ

0,2[f
s
2f

s
2 ]

(a = 9),

(27)

γaP = γaS
√
Z. (28)

The term Lloop(σ, φ) is a sum of one-loop (see Fig. 1)
quark contributions1), from which the kinetic term
was subtracted:

Lloop(σ, φ) = L
(1)
loop(σ) + L

(2)
loop(σ, φ) (29)

+ L
(3)
loop(σ, φ) + L

(4)
loop(σ, φ),

where the superscript in brackets stands for the de-

gree of fields. Thus, L(1)
loop (Fig. 1a) contains terms

linear in the field σ; L
(2)
loop (Fig. 1b), the quadratic

ones; and so on. For example2),

L
(1)
loop(σ) = 8mug8,1J Λ

1,0[1]σ8,1 (30)

1)Here, we retain only the terms of order of fields not higher
than 4 (corresponding diagrams are shown in Fig. 1).

2)Here, the expressions (32) and (33) for Yukawa coupling
constants were used.
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− 4
√

2msg9,1J Λ
0,1[1]σ9,1,

L
(2)
loop(σ, φ) = 4

3∑
a=1

g2a,1J Λ
1,0[1] (31)

× (σ2
a,1 + Zφ2

a,1) + 2
7∑

a=4

g2a,1(J Λ
1,0[1] + J Λ

0,1[1])

× (σ2
a,1 + Zφ2

a,1) + 4g28,1J Λ
1,0[1](σ

2
8,1 + Zφ2

8,1)

+ 4g29,1J Λ
0,1[1](σ

2
9,1 + Zφ2

9,1)

+ 4
3∑
a=1

g2a,2J Λ
1,0[f

a
2 f

a
2 ](σ2

a,2 + φ2
a,2)

+ 2
7∑
a=4

g2a,2(J Λ
1,0[f

a
2 f

a
2 ] + J Λ

0,1[f
a
2 f

a
2 ])

× (σ2
a,2 + φ2

a,2) + 4g28,2J Λ
1,0[f

8
2 f

8
2 ](σ

2
8,2 + φ2

8,2)

+ 4g29,2J Λ
0,1[f

9
2 f

9
2 ](σ

2
9,2 + φ2

9,2)

− 2
2∑

i,j=1

[
m2
u

3∑
a=1

σa,iΓaS,ijσa,j

+
(
mu + ms

2

)2 7∑
a=4

σa,iΓaS,ijσa,j

+ m2
uσ8,iΓ

8
S,ijσ8,j + m2

sσ9,iΓ
9
S,ijσ9,j

]
.

The total expressions for L
(3)
loop and L

(4)
loop are too

lengthy; therefore, we do not show them here. Instead,
we will extract parts from them when they are needed
(see, e.g., the Appendix).

The Yukawa coupling constants ga,i describing
the interaction of quarks and mesons appear as a
result of renormalization ofmeson fields (see [5–7, 12,
13, 21] for details):

g2a,1 = [4J Λ
2,0[1]]

−1 (a = 1, 2, 3, 8), (32)

g2a,1 = [4J Λ
1,1[1]]

−1 (a = 4, 5, 6, 7),

g29,1 = [4J Λ
0,2[1]]

−1;

g2a,2 = [4J2,0[fu2 f
u
2 ]]−1 (a = 1, 2, 3, 8), (33)

g2a,2 = [4J1,1[fus2 fus2 ]]−1 (a = 4, 5, 6, 7),

g29,2 = [4J0,2[f s2f
s
2 ]]

−1.

For the pseudoscalar meson fields, π–A1 transitions
lead to the factor Z, describing an additional renor-
malization of pseudoscalar meson fields, with MA1

being the mass of the axial-vector meson (see [13,
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21]):

Z =

(
1 − 6mu

M2
A1

)−1

≈ 1.46. (34)

For the radially excited pseudoscalar states, a similar
renormalization also takes place, but in this case the
renormalization factor turns out to be approximately
equal to unity, so it is omitted in our calculations
(see [13]).

3. INTRODUCING THE DILATON

According to the prescription described in [9, 10],
we introduce the dilaton field into Lagrangian (23)
as follows: the dimensional model parameters G,
Λ, mu, ms, and K are replaced by the follow-
ing rule: G → G(χc/χ)2, Λ → Λ(χ/χc), mu(s) →
mu(s)(χ/χc), K → K(χc/χ)5, where χ is the dilaton
field with VEV χc. We also define the field χ′ as the
difference χ′ = χ− χc that has zero VEV. Below,
the effective meson Lagrangian is expanded in terms
of χ′ when calculating the mass terms and vertices
describing the interaction of mesons.

The current quark masses break scale invariance
and, therefore, should not be multiplied by the dilaton
field. The modified current quark masses m̄0

a are also
not multiplied by the dilaton field. Finally, we come to
the Lagrangian

L̄(σ, φ, χ) = Lkin(σ, φ) + L̄G(σ, φ, χ) (35)

+ L̄loop(σ, φ, χ) + L(χ) + ∆Lan(σ, φ, χ).

The term Lkin(σ, φ) remains unchanged, as it is al-
ready scale-invariant.

Here, the term L̄G(σ, φ, χ) is

L̄G(σ, φ, χ) = −1
2

(
χ

χc

)2
(36)

×
9∑

a,b=1

(
ga,1σa,1 − µa

χ

χc
+ µ̄0

a

)(
G(−)
)−1

ab

×
(
gb,1σb,1 − µb

χ

χc
+ µ̄0

b

)

− Z

2

(
χ

χc

)2 9∑
a,b=1

ga,1φa,1

(
G(+)
)−1

ab
gb,1φb,1

−
(

χ

χc

)2 9∑
a=1

g2a,2
2Ḡa

(σ2
a,2 + φ2

a,2).

Expanding (36) in a power series of χ, we can extract
a term that is of order χ4. It can be absorbed by the
term in the pure dilaton potential (see (39) below),
2
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which has the same degree of χ. This does not bring
substantial changes, because such terms are scale-
invariant and therefore do not contribute to the diver-
gence of the dilatation current (see (59) below). This
would lead only to a redefinition of constants χ0 and
B of potential (39).

The term Lloop(σ, φ) after introducing dilaton
fields takes the form

L̄loop(σ, φ, χ) = L
(1)
loop(σ)

(
χ

χc

)3
(37)

+ L
(2)
loop(σ, φ)

(
χ

χc

)2
+ L

(3)
loop(σ, φ)

χ

χc
+ L

(4)
loop(σ, φ).

The term L(χ) in (35) is the pure dilaton Lagrangian

L(χ) =
P 2

2
χ2 − V (χ) (38)

with the potential

V (χ) = B

(
χ

χ0

)4 [
ln
(

χ

χ0

)4
− 1

]
, (39)

which has a minimum at χ = χ0, and the parameter
B represents the vacuum energy when there are no
quarks. The kinetic term is given in the momentum
space, P being the momentum of the dilaton.

Note that Lagrangian (23) implicitly contains a
term Lan that is induced by gluon anomalies:

Lan(σ̄, φ) = −hφφ
2
0 + hσσ̄

2
0 , (40)

where φ0 and σ̄0 (〈σ̄0〉0 = 0) are pseudoscalar and
scalar meson isosinglets, respectively; hφ, hσ are con-
stants; φ0 =

√
2/3φ8,1 −

√
1/3φ9,1, σ̄0 =√

2/3σ̄8,1−
√

1/3σ̄9,1, where φ8,1 and σ̄8,1 (〈σ̄8,1〉0 =
0) consist of u quarks; and φ9,1, σ̄9,1 (〈σ̄9,1〉0 = 0),
of s quarks. In our model, the ’t Hooft interaction is
responsible for the appearance of these terms.

The term Lan breaks scale invariance. However,
when the procedure of the scale invariance restora-
tion is applied to Lagrangian (23), the term Lan also
becomes scale-invariant. To avoid this, one should
subtract this part in the scale-invariant form and add
it in a scale-breaking (SB) form. This is achieved by
including the term ∆Lan:

∆Lan(σ, φ, χ) (41)

= −Lan(σ̄, φ)
(

χ

χc

)2
+ LSB

an (σ, φ, χ).

Let us define the scale-breaking term LSB
an . The co-

efficients hσ and hφ in (40) can be determined by
P

comparing them with the terms in (24) that describe
the singlet–octet mixing3). We obtain

hφ = − 3
2
√

2
g8,1g9,1Z

(
G(+)
)−1

89
, (42)

hσ =
3

2
√

2
g8,1g9,1

(
G(−)
)−1

89
. (43)

If these terms were to be made scale-invariant, one
should insert (χ/χc)2 into them. However, as the
gluon anomalies break scale invariance, we introduce
the dilaton field into these terms in a more compli-

cated way. The inverse matrix elements
(
G(+)
)−1

ab
and(

G(−)
)−1

ab
,

(
G(+)
)−1

89
=

−4
√

2muKJ Λ
1,0[1]

G
(+)
88 G

(+)
99 −

(
G

(+)
89

)2 , (44)

(
G(−)
)−1

89
=

4
√

2muKJ Λ
1,0[1]

G
(−)
88 G

(−)
99 −

(
G

(−)
89

)2 , (45)

are determined by two different interactions. The nu-
merators are fully defined by the ’t Hooft interac-
tion, which leads to anomalous terms (40) break-
ing scale invariance; therefore, we do not introduce
dilaton fields here. The denominators are determined
by the constant G describing the NJL four-quark
interaction, and the dilaton field is inserted into it,
according to the prescription given above. Finally, we
come to the following form of LSB

an :

LSB
an (σ, φ, χ) =

[
− hφφ

2
0 (46)

+ hσ

(
σ0 − F0

χ

χc
+ F 0

0

)2 ]( χ

χc

)4
,

F0 =
√

2mu√
3g8,1

+
ms√
6g9,1

, (47)

F 0
0 =

√
2m̄0

u√
3g8,1

+
m̄0
s√

6g9,1
.

From it, we immediately obtain the term ∆Lan:

∆Lan(σ, φ, χ) (48)

=

[
hφφ

2
0 − hσ

(
σ0 − F0

χ

χc
+ F 0

0

)2]

×
(

χ

χc

)2 [
1 −
(

χ

χc

)2]
.

3)The singlet–octet mixing is fully determined by the ’t Hooft
interaction.
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4. EQUATIONS

One of the principal requirements for an effective
meson Lagrangian with a glueball is that the terms
linear in σ and χ′ should be absent in the effective
Lagrangian. This leads to the equations

δL̄
δσ8,1

∣∣∣∣
φ = 0

σ = 0

χ = χc

=
δL̄

δσ9,1

∣∣∣∣
φ = 0

σ = 0

χ = χc

=
δL̄
δχ

∣∣∣∣
φ = 0

σ = 0

χ = χc

(49)

=
δL̄

δσ8,2

∣∣∣∣
φ = 0

σ = 0

χ = χc

=
δL̄

δσ9,2

∣∣∣∣
φ = 0

σ = 0

χ = χc

= 0.

Gap equations follow from them. For the ground
states of quarkonia (σa,1) and the dilaton field χ′, we
obtain

(mu − m̄0
u)
(
G(−)
)−1

88
− ms − m̄0

s√
2

(50)

×
(
G(−)
)−1

89
− 8muJ Λ

1,0[1] = 0,

(ms − m̄0
s)
(
G(−)
)−1

99
−

√
2(mu − m̄0

u) (51)

×
(
G(−)
)−1

98
− 8msJ Λ

0,1[1] = 0,

4B
(

χc
χ0

)3 1
χ0

ln
(

χc
χ0

)4
(52)

+
1
χc

9∑
a,b=8

µ̄0
a

(
G(−)
)−1

ab
(µ̄0
b − 3µb)

− 2hσ
χc

(
F0 − F 0

0

)2 = 0.

Using (17) and (18), one can rewrite Eqs. (50) and
(51) in the well-known form [20] (see Fig. 2):

m0
u = mu − 8GmuJ Λ

1,0[1] (53)

− 32KmumsJ Λ
1,0[1]J Λ

0,1[1],

m0
s = ms − 8GmsJ Λ

0,1[1] − 32K(muJ Λ
1,0[1])

2. (54)

For excited states (σa,2), we require that the cor-
responding gap equations have the trivial solution
〈σa,2〉0 = 0. This is one of the possible particular
solutions of equations (49). An advantage of such a
solution is that in this case the quark condensates and
constituent quark masses remain unchanged after in-
troducing radially excited states. This solution surely
exists if the tadpole diagram (Fig. 1a) for the excited
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Fig. 2. The set of diagrams defining gap equations. In the
figure, 2(b) the six-quark interaction is taken into account
in the matrix of constants G(−). In order to avoid double
counting of the contribution of the ’t Hooft interaction,
the current quark massesm0 are replaced by the modified
masses m̄0.

scalar is equal to zero (see [7, 12]). This leads to the
condition

J Λ
1,0[f

u
2 ] = J Λ

0,1[f
s
2 ] = 0. (55)

In addition to these conditions, we impose a third:

J Λ
1,0[1 + dusk2] + J Λ

0,1[1 + dusk2] = 0, (56)

which fixes the constant dus. The calculation of the

second variation of the effective potential will prove
that the solution that we have chosen gives the mini-
mum of the potential.

In addition to the gap equations, a Ward identity
for the divergence of dilation current, coming from
QCD, should be taken into account. The identity
reads

〈∂µSµ〉 = Cg −
∑

q=u,d,s

m0
q〈q̄q〉0, (57)

where

Cg =
(

11Nc

24
− Nf

12

)〈α
π

(
Ga
µν

)2〉
0

(58)

andNf is the number of flavors; 〈απ (Ga
µν)2〉0 and 〈q̄q〉0

are the gluon and quark condensates with α being the
QCD constant of strong interaction.

Let us now consider VEVs of the divergence of
the dilatation current Sµ [9, 15] calculated from the
potential of Lagrangian (35):

〈∂µSµ〉=
[

2∑
i=1

9∑
a=1

(
σa,n

∂V

∂σa,n
+φa,n

∂V

∂φa,n

)
(59)
2
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+ χ
∂V

∂χ
− 4V

]∣∣∣∣∣ φ = 0

σ = 0

χ = χc

= 4B
(

χc
χ0

)4

− 2hσ
(
F0 − F 0

0

)2 − ∑
q=u,d,s

m̄0
q〈q̄q〉0.

Here, V = V (χ) + V̄ (σ, φ, χ), and V̄ (σ, φ, χ) is the
potential part of Lagrangian L̄(σ, φ, χ) (see (35)) that
does not contain the pure dilaton potential (39). In
the expression given in (59), the relation of the quark
condensates to integrals J Λ

1,0[1] and J Λ
0,1[1],

4muJ Λ
1,0[1] = −〈ūu〉0 = −〈d̄d〉0, (60)

4msJ Λ
0,1[1] = −〈s̄s〉0,

and the gap equation connecting these integrals with

constants G
(−)
ab (see (50) and (51)) were used. Com-

paring (59) with the QCD expression (57), one can
see that the term

∑
m0
q〈q̄q〉0 on the right-hand side

of (57) is canceled by the corresponding contribu-
tion from current quark masses on the right-hand
side of (59). Equating the right-hand sides of (59)
and (57),

Cg −
∑

q=u,d,s

m0
q〈q̄q〉0 = 4B

(
χc
χ0

)4
(61)

− 2hσ
(
F0 − F 0

0

)2 −∑
q=u,d,s

m̄0
q〈q̄q〉0,

we obtain the correspondence

Cg =4B
(

χc
χ0

)4
+

9∑
a,b=8

(µ̄0
a − µ0

a)
(
G(−)
)−1

ab
(62)

× (µb − µ̄0
b) − 2hσ

(
F0 − F 0

0

)2
,

where µ0
a = 0 (a = 1, . . . , 7), µ0

8 = m0
u, and µ0

9 =
−m0

s/
√

2. To derive (62), Eqs. (50), (51), and (60)
were used; the quark condensates were expressed
through model parameters. This equation relates the
gluon condensate, whose value is taken from other
sources (see, e.g., [22]), to the model parameter B.
The next step is to investigate gap equations.

To determine the masses of quarkonia and of the
glueball, let us consider the part of Lagrangian (35)
which is quadratic in fields σ and χ′ (including the
P

kinetic terms). We denote it by L(2):

L(2)(σ, φ, χ′) =
1
2

2∑
n,j=1

[
3∑

a=1

(P 2−4m2
u)σa,n (63)

× ΓaS,njσa,j +
7∑

a=4

(P 2 − (mu + ms)2)σa,n

× ΓaS,njσa,j + (P 2 − 4m2
u)σ8,nΓ

8
S,njσ8,j

+ (P 2 − 4m2
s)σ9,nΓ

9
S,njσ9,j

]

− 1
2
g28,1

[(
G(−)
)−1

88
− 8J Λ

1,0[1]
]
σ2
8,1

− 1
2
g29,1

[(
G(−)
)−1

99
− 8J Λ

0,1[1]
]
σ2
9,1

− 1
2
g28,2
[
1/Ḡ8 − 8J Λ

1,0[f
u
2 f

u
2 ]
]
σ2
8,2

− 1
2
g29,2
[
1/Ḡ9 − 8J Λ

0,1[f
s
2f

s
2 ]
]
σ2
9,2

− g8,1g9,1

(
G(−)
)−1

89
σ8,1σ9,1 −

M2
gχ

′2

2

+
9∑

a,b=8

µ̄0
a

χc
(G(−))−1

ab gb,1σb,1χ
′

+
4hσ(F0 − F 0

0 )
χc

√
3

(
σ9,1 − σ8,1

√
2
)
χ′,

where

M2
g =

1
χ2
c

(
4Cg +

9∑
a,b=8

µ̄0
a

(
G(−)
)−1

ab
(64)

× (2µ̄0
b − µb) +

9∑
a,b=8

4µ0
a

(
G(−)
)−1

ab
(µb − µ̄0

b)

− 4hσF 2
0 + 4hσ(F 0

0 )2
)

is the glueball mass squared before taking into ac-
count mixing effects. Here, the gap equations and
Eq. (62) are taken into account.

From this Lagrangian, after diagonalization, we
obtain the masses of five scalar–isoscalar meson
states: σI, σII, σIII, σIV, and σV and amatrix of mixing
coefficients b that connects the nondiagonalized fields
σ8,1, σ9,1, σ8,2, σ9,2, χ′ with the physical ones σI, σII,
σIII, σIV, σV:
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σ8,1

σ9,1

σ8,2

σ9,2

χ′




=




bσ8,1σI
bσ8,1σII

bσ8,1σIII
bσ8,1σIV

bσ8,1σV

bσ9,1σI
bσ9,1σII

bσ9,1σIII
bσ9,1σIV

bσ9,1σV

bσ8,2σI
bσ8,2σII

bσ8,2σIII
bσ8,2σIV

bσ8,2σV

bσ9,2σI
bσ9,2σII

bσ9,2σIII
bσ9,2σIV

bσ9,2σV

bχ′σI
bχ′σII

bχ′σIII
bχ′σIV

bχ′σV







σI

σII

σIII

σIV

σV




. (65)
The values of matrix elements are given in Table 1.
For the isovector states we introduce physical

states: the ground a0 and radially excited â0. The
corresponding mixing coefficients are represented as
elements of a matrix connecting the physical fields a0,
â0 with the fields a01, a02 before mixing:

a01

a02


 =


ba01a0ba01â0

ba02a0ba02â0




a0

â0


 . (66)

Their values are ba01a0 = 0.918, ba02a0 = 0.138,
ba01â0 = 0.761, ba02â0 = −1.18. Themixing of strange
scalar meson states is described as follows:
K∗

0 1

K∗
0 2


 =


bK∗0 1

K∗0
bK∗0 1

K̂∗0

bK∗0 2
K∗0

bK∗0 2
K̂∗0




K∗

0

K̂∗
0


 . (67)

The values of matrix elements are bK∗0 1
K∗0

= 0.866,
bK∗0 2

K∗0
= 0.232, bK∗0 1

K̂∗0
= 0.750, bK∗0 2

K̂∗0
= −1.12.

Here, the physical states are K∗
0 and its radial exci-

tation K̂∗
0 . The states K∗

0 1 and K∗
0 2 correspond to the

nondiagonalized Lagrangian.
After the diagonalization, we obtain the kinetic

and mass terms of the effective Lagrangian in a di-
agonal form. Expressions for the quadratic terms in
the case of isovector and strange mesons are given in
[5–7].

5. MODEL PARAMETERS AND NUMERICAL
ESTIMATES

The basic parameters of our model are G, Λ, mu,
and ms. They are fixed by the pion weak decay con-
stant Fπ = 93 MeV, the ρ-meson decay constant
gρ ≈ 6.14, and the masses of pion and kaon [21,
23, 24]. To fix Λ and mu, the Goldberger–Treiman
relation guFπ

√
Z = mu and the equation gρ =

√
6gu

are used. The parameter G is determined by the pion
mass; and ms, by the kaon mass. Their values do not
change after the radially excited states [5–7, 12, 13]
and the dilaton fields are introduced [9, 10]:

mu = 280 MeV, ms = 417 MeV, (68)
OMIC NUCLEI Vol. 65 No. 9 200
Λ = 1.03 GeV, G = 3.202 GeV−2.

To have a correct description of η and η′, one
should fix the ’t Hooft interaction constant by the
masses of η and η′. The lower bound for the light-
est scalar–isoscalar meson mass is also taken into
account here. As a result, for the model masses we
obtain Mη ≈ 500 MeV, Mη′ ≈ 870 MeV, and for K,

K = 4.4 GeV−5. (69)

After introducing the radially excited states, there
appear new parameters: the slope parameters da and
the arbitrary parameters ca. The constants da are not
arbitrary and are fixed by conditions (55) and (56):

du = −1.77 GeV−2, ds = −1.72 GeV−2, (70)

dus = −1.75 GeV−2.

The parameters ca are absorbed by the four-quark
interaction constants Ḡa and influence only masses
of mesons. They are fixed from experiment by masses
of excited pseudoscalar meson states. As a result, we
obtain

Ḡ1 = 4.45 GeV−2, Ḡ4 = 5.12 GeV−2, (71)

Ḡ8 = 4.64 GeV−2, Ḡ9 = 5.09 GeV−2.

Due to the chiral symmetry of Lagrangian (3), the
same values of the form-factor parameters are used
both for the scalar and pseudoscalar mesons, which
allows us to predict masses of excited scalar states4).

After the dilaton is introduced, three new parame-
ters χ0, χc, and B appear. To fix the new parameters,
one should use Eqs. (62) and (52) and the physical
glueball mass. As a result, we find for χ0 and B that

χ0 =χc exp

{
−
[ 9∑
a,b=8

µ̄0
a

(
G(−)
)−1

ab
(3µb− µ̄0

b) (72)

+ 2hσ
(
F0 − F 0

0

)2]/4
[
Cg −

9∑
a,b=8

(µ̄0
a − µ0

a)

4)The excited mesonK′ is an exception. Insofar as the experi-
mental status of the excitedK′ meson is unclear, we use the
experimental value of the mass ofK∗0 (1430) to determine Ḡ4

and predict the mass ofK′.
2
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Table 1. Elements of the matrix b, describing mixing
in the scalar–isoscalar sector. The singlet–octet and
quarkonia–glueball mixing effects are taken into account

σI σII σIII σIV σV

σ8,1 0.973 0.137 0.393 0.548 0.048

σ8,2 −0.064 0.204 −0.978 −0.647 −0.047

σ9,1 −0.225 0.876 0.160 0.011 0.628

σ9,2 0.025 0.146 0.136 −0.082 −1.09

χ′ −0.266 0.095 −0.495 0.813 −0.116

×
(
G(−)
)−1

ab
(µb − µ̄0

b) + 2hσ
(
F0 − F 0

0

)2]}
,

B =
1
4

(
Cg −

9∑
a,b=8

(µ̄0
a − µ0

a)
(
G(−)
)−1

ab
(73)

× (µb − µ̄0
b) + 2hσ

(
F0 − F 0

0

)2)(χ0

χc

)4
.

We adjust the parameter χc, so that the mass
of the scalar meson state σIV would be close to
1500 MeV (χc = 219 MeV).5) For the constants χ0

and B we have χ0 = 203 MeV, B = 0.007 GeV4. We
found that, if the state f0(1710) is supposed as the
glueball, the result turns out to be in worse agreement
with experiment (see the Conclusion). The masses of
scalar mesons calculated in our model, together with
their experimental values, are given in Table 2.

6. STRONG DECAYS OF SCALAR
ISOSCALAR MESONS

Once all parameters are fixed, we can estimate the
decay widths for the main modes of strong decays of
scalar mesons: σl → ππ, KK̄, ηη, ηη′, and 4π (2σ,
σ2π → 4π), where l = I, II, III, IV, and V; decays
of excited isovectors: ā0 → ηπ, ā0 → ηπ, ā0 → KK̄;
and of strange mesons: K̂∗

0 → Kπ.

Note that, in the energy region under consider-
ation (up to 1.7 GeV), we work on the brim of the
validity of exploiting the chiral symmetry and scale
invariance that were used to construct our effective
Lagrangian. Thus, our results should be considered
rather as qualitative.

5)To reach closer agreement with experimental data in the
description of strong decays of σIV, we chose the model value
ofMσIV = 1550 MeV (mass + halfwidth).
P

Table 2. The model and experimental masses of scalar–
isoscalar meson states

Theory Experiment [8]

σI 400 408 [25], 387 [26]

σII 1070 980± 10

σIII 1320 1200–1500

σIV 1550 1500± 10

σV 1670 1712± 5

â0 1530 1474± 19

K∗
0 1430 1429± 6

Let us start with the decay of a scalar–isoscalar
meson into a pair of pions. The corresponding ampli-
tude has the form

Aσl→ππ = A(1)
σl→ππ + A(2)

σl→ππ, (74)

where the first part comes from contact terms of La-
grangian (35) that describe the decay of the glueball
into pions. These terms come from L̄G(σ, φ, χ) and

(χ/χc)2L
(2)
loop(σ, φ) (see (36) and (37)). They turn into

the pion mass term if χ = χc. Expanding around χ =
χc in terms of χ′ and choosing the term linear inχ′, we
obtain, after the mixing effects are taken into account,
the following:

A(1)
σl→ππ = −M2

π

χc
bχ′σl

, (75)

where Mπ is the pion mass and bχ′σl
is a mixing coef-

ficient (see (65) and Table 1). The second contribution

A
(2)
σl→ππ describes the decay of the quarkonium part of

σl and is determined by triangle quark loop diagrams
(see Figs. 1c and 3). For details of their calculation
see the Appendix. As a result, we obtain the following
widths for decays of scalar isoscalar-mesons into two
pions (in MeV):

ΓσI→ππ ≈ 600,
ΓσII→ππ ≈ 36 (20),
ΓσIII→ππ ≈ 680 (480), (76)

ΓσIV→ππ ≈ 100,
ΓσV→ππ ≈ 0.3.

To calculate decay widths, we used the model masses
of scalar mesons. For the state σII, hereafter we give
in brackets the values obtained for its experimen-
tal mass. Concerning the state σIII, the values in
brackets correspond to calculations performed for the
lowest experimental limit for its mass (1200 MeV).
Note that for the experimental masses, the widths are
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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noticeably smaller than those derived for the model
masses.

Decays of scalar–isoscalar mesons into kaons are
described by the amplitude,

Aσl→KK̄ = A
(1)

σl→KK̄
+ A

(2)

σl→KK̄
, (77)

where A
(1)

σl→KK̄
originates from the same source as

A
(1)
σl→ππ and is determined by the kaon mass,

A
(1)

σl→KK̄
= −2M2

K

χc
bχ′σl

, (78)

while the other part A(2)

σl→KK̄
again comes from quark

loop diagrams (see the Appendix). The decay widths
thereby are6) (in MeV)

ΓσIII→KK̄ ≈ 260 (125),
ΓσIV→KK̄ ≈ 28, (79)

ΓσV→KK̄ ≈ 250.

The state σI cannot decay into kaons, as it is below
the threshold.

The amplitude describing decays of scalar–iso-
scalar mesons into ηη has a more complicated
form, because it contains a contribution from ∆Lan.
The singlet–octet mixing between pseudoscalar–
isoscalar states should also be taken into account
here. Using the expression for the fields φ8,1 and φ9,1

through the physical ones η and η′,

φ8,1 = bφ8,1ηη + bφ8,1η′η
′ + . . . , (80)

φ9,1 = bφ9,1ηη + bφ9,1η′η
′ + . . . , (81)

where . . . stand for the excited η and η′, which we
do not need here and therefore omit. The mixing
coefficients for the scalar–pseudoscalar meson states
were calculated in [5–7]. In the current calculation,
their values changed a little because the parame-
ter K varied; thus, bφ8,1η = 0.777, bφ8,1η′ = −0.359,
bφ9,1η = 0.546, bφ9,1η′ = 0.701. Thus, we obtain for
the amplitude

Aσl→ηη = A(1)
σl→ηη + A(2)

σl→ηη + A(3)
σl→ηη. (82)

Here the contact term A
(1)
σl→ηη has the form

A(1)
σl→ηη = −

M2
η

χc
bχ′σl

. (83)

The second term A
(2)
σl→ηη comes from a quark loop

calculation (see the Appendix), and the third term

A
(3)
σl→ηη originates from ∆Lan (see (48)):

A(3)
σl→ηη =

2hφ
3χc

(√
2bφ8,1η − bφ9,1η

)2
. (84)

6)The decay of σII into kaons occurs almost at the threshold;
therefore, we cannot give a reliable estimate for this process.
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As result, we obtain the following decay widths
(in MeV):

ΓσIII→KK̄ ≈ 260 (125),

ΓσIV→KK̄ ≈ 28, (85)

ΓσV→KK̄ ≈ 250.

The state σV can also decay into ηη′. The corre-
sponding amplitude is

Aσl→ηη′ = A
(2)
σl→ηη′ + A

(3)
σl→ηη′ . (86)

The contact term A
(1)
σl→ηη′ is absent here. The term

A
(2)
σl→ηη′ comes from quark loop diagrams, as usual,

and the last term has the form

A
(3)
σl→ηη′ =

4hφ
3χc

(√
2bφ8,1η − bφ9,1η

)
(87)

×
(√

2bφ8,1η′ − bφ9,1η′

)
.

The decay width is approximately equal to 100 MeV.

The scalar-meson states σIII, σIV, and σV can
decay into four pions. This decay can occur via in-
termediate scalar mesons. Similar calculations for
f0(1500) were performed in our previous works [9,
10]. Insofar as our calculations are qualitative, we
consider here, instead of the direct processes that
involve σI resonances, simpler decays: into 2σI and
σI2π as final states. Our investigation has shown that
the result thus obtained can be a good estimate for the
decay into 4π.

Let us consider decays into 2σI. Its amplitude can
be divided into two parts:

Aσl→σIσI
= A(1)

σl→σIσI
+ A(2)

σl→σIσI
. (88)

To calculate the first term A
(1)
σl→σIσI , one should first

take, from the effective meson Lagrangian, the terms
that contain only scalar meson fields in the third
power before taking into account mixing effects. The
corresponding vertices have the form

a1χ
′3 + a2χ

′2σ8,1 + a3χ
′σ2

8,1 + a4χ
′σ2

8,2, (89)

where the coefficients ak are given in the Appendix
(see (A.20)–(A.23)). These vertices come from L̄G,
L(χ), and ∆Lan (see Eqs. (36), (38), and (48)). We
neglected here the terms with σ9,i fields which rep-
resent quarkonia made of s quarks, because we are
interested in decays into pions that do not contain s
quarks.

Up to this moment, the contributionA
(1)
σl→σIσI was

considered. As to the termA
(2)
σl→σIσI in (88) connected
02



1668 VOLKOV, YUDICHEV
Table 3. The partial and total decay widths (in MeV) of scalar–isoscalar meson states

Decays
f0(400–1200) f0(980) f0(1370) f0(1500) f0(1710) a0(1250) K∗

0 (1430)

(σI) (σII) (σIII) (σIV) (σV) (â0) (K̂∗
0 )

ππ 600 36 (20) 680 (480) 100 0.3 – –

KK̄ – – 260 (125) 28 250 160 –

ηη – – 62 (26) 4 20 – –

ηη′ – – – – 100 – –

4π(2σI) – – 40 200 1 – –

ηπ – – – – – 250 –

η′π – – – – – 36 –

Kπ – – – – – – 200
K3π (K∗

0ππ,
K∗

0σI, KπσI)
– – – – – – ∼50

Γtot 600 > 40(> 20)a 1040 (670) 330 370 450 250

Γexp
tot 600–1200 40–100 200–500 112±10 133± 14 265± 13 287± 23

Note: a for themeson state σII, a decay into kaons is possible, which we did not calculate here, because its mass is at the threshold.We
show only the lowest limit for its total decay width allowing for decay into kaons that can increase the total decay width. The value is
given for the model mass 1070MeV. Next, in brackets, we also give the decay width calculated for the experimental mass 980MeV. In
the case of σIII, two values are given for its model mass and (in brackets) for the lowest bound for its experimental mass (1200MeV).
with quark loops, its calculation is given in the Ap-
pendix. As a result, we obtain the following decay
widths (in MeV):

ΓσIII→σIσI
≈ 40, (90)

ΓσIV→σIσI
≈ 200,

ΓσV→σIσI
≈ 1.

Four pions in the final state can also be produced
through the process with one σI resonance (σl →
σI2π → 4π). To estimate this process, we calculate
the decay into σ2π as a final state. The amplitude
again can be divided into two parts:

Aσl→σI2π = A
(1)
σl→σI2π

+ A
(2)
σl→σI2π

. (91)

The first term has the form

A
(1)
σl→σI2π

= −M2
π

χ2
c

bχ′σl
bχ′σI

(92)

+
8mu

χc
bχ′σl

J Λ
2,0[f̄σI

f̄πf̄π]

+
8mu

χc
bχ′σI

J Λ
2,0[f̄σl

f̄πf̄π],

where f̄a are “physical” form factor functions defined
in the Appendix. The pure quark contribution is cal-
culated as described in the Appendix. The result is

A
(2)
σl→σI2π

= −4J Λ
2,0[f̄σl

f̄σI
f̄πf̄π]. (93)
P

The corresponding decay widths (in MeV) are negli-
gibly small:

ΓσIII→σ2π ≈ 1, (94)

ΓσIV→σ2π ≈ 2,
ΓσV→σ2π ≈ 0.6.

Comparing the results obtained with experimental
data (see Table 3), one can see that the decays
σI → ππ and σII → ππ are in satisfactory agreement
with experiment. For the states σIII, σIV, and σV, we
have reliable values only for their total widths mea-
sured experimentally. Our results allow us to obtain
just the order of magnitude for the decay widths,
exceeding the experimental values by a factor of
2.0–3.0.

Concerning partial decay modes, the state
f0(1500) decays mostly into 4π and 2π. According
to the experimental data analysis given in [27], the
ratio Γ4π/Γ2π ≈ 1.34. We obtain Γ4π/Γ2π ≈ 2, which
is in qualitative agreement with [27]. The decays into
4π and 2π are suppressed for the state f0(1710).
Its main decay mode is into kaons. This agrees
with the analysis of experimental data given in [27]
and corroborates our assumption that f0(1500) is a
glueball.

The amplitudes describing decays of excited state
â0 into ηπ, η′π, and KK̄ are calculated through tri-
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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angle quark loop diagrams and look as follows:

Aâ0→ηπ = 16mu(J Λ
2,0[f̄â0 f̄

u
η f̄π] (95)

− P1 · P2J Λ
3,0[f̄â0 f̄

u
η f̄π]),

Aâ0→η′π = 16mu(J Λ
2,0[f̄â0 f̄

u
η′ f̄π] (96)

− P1 · P2J Λ
3,0[f̄â0 f̄

u
η′ f̄π]),

Aâ0→KK̄ = 8mu(CuuJ Λ
2,0[f̄â0 f̄K f̄K ] (97)

+ CusJ Λ
1,1[f̄â0 f̄K f̄K]) − P1 · P28msJ Λ

2,1[f̄â0 f̄K f̄K ],

where the constants C are defined in the Appendix
(see (A.18)). The momenta P1 and P2 are those of
the secondary particles. Their product is expressed via
masses of mesons (see (A.2) in the Appendix). As a
result, we obtain (in MeV)

Γâ0→ηπ = 250, (98)

Γâ0→η′π = 36,
Γâ0→KK̄ = 160.

The total width is thereby 446 MeV.
The decay amplitude of K∗

0 (1430) (denoted in for-
mulas as K̂∗

0 ) into Kπ has the form

AK̂∗0→Kπ = 8msJ Λ
1,1[f̄K̂∗0 f̄

u
K f̄π] (99)

− 8msP1 · P2J Λ
2,1[f̄K̂∗0 f̄

u
K f̄π].

The decay width is

ΓK̂∗0→Kπ = 200 MeV. (100)

There is also the possibility of the state K̂∗
0 to de-

cay intoK3π via the processes K̂∗
0 → K∗

0ππ → K3π,
K̂∗

0 → K∗
0σI → K3π and K̂∗

0 → KπσI → K3π. A
rough estimate of the corresponding decay widths
shows that it can add ∼50 MeV to the total width
of K̂∗

0 .

7. CONCLUSION AND DISCUSSION

In papers [9, 10], we suggested a chiral quark
model with a scalar glueball. However, in these pa-
pers, only ground states of scalar quarkonia were con-
sidered. To describe the whole spectrum of a scalar
mesons in the mass interval from 0.4 to 1.7 GeV, one
needs to introduce radially excited meson states. This
has already been done, thoughwithout the glueball, in
papers [5–7]. The radially excited quarkonia were de-
scribed by means of form factors. Each of these form
factors was a polynomial in the momentum space and
had two parameters: the external ca and the slope
parameter da. In general, the external parameters ca
can always be absorbed by the four-quark-interaction
constant G, giving rise to four different interaction
constants Ḡa, connected with excited meson states.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
The constants determine only the masses of excited
mesons and do not affect the interaction of mesons.
Only the slope parameters da influence decay ampli-
tudes. And they are fixed by conditions (55) and (56)
and are not arbitrary.

In papers [5–7], we have shown for the first time
that 18 scalar meson states with masses lying be-
tween 0.4 and 1.7 GeV can be considered as two
nonets of scalar quarkonia. In the present work, we
introduced a glueball into the Lagrangian investi-
gated in [5–7] and described themixing of five scalar–
isoscalar meson states: σI, σII, σIII, σIV, and σV with
the following masses: 400, 1070, 1320, 1550, and
1670 MeV, respectively. We showed that f0(1500) is
a glueball. This conclusion has followed the analysis
of strong decays of the meson state f0(1500). Indeed,
according to our calculations, the state f0(1500) de-
cays mostly into 4π and 2π, the decay into 4π being
more probable. This is in agreement with experi-
ment [8, 27]. Meanwhile, the decays of f0(1710) into
4π and 2π are suppressed as compared with those into
kaons and ηmesons (see [8, 27]). On the other hand, if
the model parameters were fixed from the supposition
that f0(1710) was the glueball, the main decay mode
of f0(1710) would be 4π (Γ4π = 150 MeV) and the
remaining partial widths would be too small: Γππ =
3 MeV, ΓKK̄ = 5 MeV, Γηη = 2 MeV, and Γηη′ =
2 MeV. For the state f0(1500) in this case, the main
decay would be into kaons (ΓKK̄ = 250 MeV) and
the other modes would give Γππ = 10 MeV, Γηη =
34 MeV, Γ4π = 90 MeV. This crucially disagrees with
experiment [27].

Note that, after the glueball is introduced into the
effective meson Lagrangian, the mass of σI noticeably
decreased as compared with the result from [5–7].
This is a consequence of the noticeable mixing be-
tween the glueball and the ground and radially excited
ūu (d̄d) quarkonia, f0(400–1200) and f0(1370). The
obtained mass and decay width of σI are in satisfac-
tory agreement with recent experimental data [8, 25,
26]. On the other hand, the s̄s quarkonia mix with the
glueball in small proportion (see Table 1). Therefore,
after introducing the glueball (compare with [5–7]),
the masses of σII and σV change less than the mass
of σI. However, here we obtain better agreement with
experiment for the mass of σV than in [5–7]. For
σIV, we obtain that the state contains 67% of the
glueball, which is in agreement with [2]. After this
analysis, we identify the five scalar–isoscalar states
σI, σII, σIII, σIV, and σV with physically observed me-
son states in the following sequence: f0(400–1200),
f0(980), f0(1370), f0(1500), f0(1710) (see Table 2).
We also have excited isovectors: â0 with a mass of
1530 MeV and strange scalar meson K̂∗

0 with a mass
of 1430 MeV.
2
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Fig. 3. The set of diagrams describing the decay of a
scalar meson into a pair of pions. The vertices where a
form factor occurs are marked by f . In this set of dia-
grams, the quark–meson vertices correspond to meson
fields before taking into account mixing effects.

The chiral symmetry has played a crucial role in
calculations. It allowed us to predict masses of scalar
mesons, using masses of pseudoscalars.

Let us remind that our model is based on the
U(3) × U(3) chiral symmetry and scale invariance
of an effective meson Lagrangian. Both symmetries
are very approximate for the energies under consid-
eration. Therefore, our results are rather qualitative.
As a result, the decay width obtained agrees with
experiment only in order of magnitude. Nevertheless,
we hope that the model gives, on the whole, a correct
description of scalar meson properties.
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APPENDIX

Calculation of the Quark Loop Contribution into the
Strong Decay Amplitudes

In the calculation of the quark loop contributions
to decay amplitudes, we follow our papers [5–7],
where the external momentum dependence of decay
amplitudes was taken into account.

It is convenient to take into account mixing effects
before integration. To demonstrate how to do this, let
us first calculate the decay of the state σI into pions.
As one can see, eight7) diagrams (Fig. 3) contribute
to this process. The expression for the amplitude is

7)Two pairs of them are identical, which leads to the symmetry
factor of 2.
P

as follows (see (8) for the definition of form factor
functions):

A(2)
σI→ππ = 8mu

[
g8,1bσ8,1σI

(g21,1Zb2π1πJ
Λ
2,0[1] (A.1)

+ 2g1,1g1,2
√
Zbπ1πbπ2πJ Λ

2,0[f
u
2 ]

+ g21,2b
2
π2πJ2,0[fu2 f

u
2 ])

+ g8,2bσ8,2σI
(g21,1Zb2π1πJ

Λ
2,0[f

u
2 ]

+ 2g1,1g1,2
√
Zbπ1πbπ2πJ2,0[fu2 f

u
2 ]

+ g21,2b
2
π2πJ

Λ
2,0[f

u
2 f

u
2 f

u
2 ])

− P1 · P2 (g8,1bσ8,1σI
(g21,1Zb2π1πJ

Λ
3,0[1]

+ 2g1,1g1,2
√
Zbπ1πbπ2πJ Λ

3,0[f
u
2 ]

+ g21,2b
2
π2πJ

Λ
3,0[f

u
2 f

u
2 ])

+ g8,2bσ8,2σI
(g21,1Zb2π1πJ

Λ
3,0[f

u
2 ]

+ 2g1,1g1,2
√
Zbπ1πbπ2πJ Λ

2,0[f
u
2 f

u
2 ]

+ g21,2b
2
π2πJ

Λ
2,0[f

u
2 f

u
2 f

u
2 ]))
]
.

The product of the momenta of secondary particles
can be expressed through masses of mesons:

P1 · P2 =
1
2
(M2 −M2

1 −M2
2 ), (A.2)

where M is the mass of the decaying meson and
M1 and M2 are the masses of secondary particles
(M = MσI

, M1 = M2 = Mπ in this case). Let us
continue (A.1) and calculate the sum before integra-
tion. The resulting expression becomes short:

A(2)
σI→ππ = 8mu(J Λ

2,0[f̄σIf̄πf̄π] (A.3)

− P1 · P2J Λ
3,0[f̄σIf̄πf̄π]),

where f̄a are form factor functions for the physical
meson states, defined as follows:

f̄σI
= g8,1bσ8,1σI + g8,2bσ8,2σI

fu2 , (A.4)

f̄π = g1,1bπ1π

√
Z + g1,2bπ2πf

u
2 . (A.5)

The coefficients bπ1π appear because of the mixing
between the ground and excited pion states. Their
values are bπ1π ≈ 0.997, bπ2π ≈ 0.007 [7]. Concern-
ing the decays into the other pairs of pseudoscalars,
the calculation of the corresponding contribution
is carried out in the same manner. For strange
pseudoscalar mesons, we have bK1K ≈ 0.96, bK2K ≈
0.09 [7].Wewill discriminate the form factor functions
by the superscripts u and s, respectively. Below we
give the physical form factors that were used in the
calculation:

f̄uσl
= g8,1bσ8,1σl

+ g8,2(1 + duk2)bσ8,2σl
, (A.6)

f̄ sσl
= g9,1bσ9,1σl

+ g9,2(1 + dsk2)bσ9,2σl
, (A.7)
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f̄π = g1,1bπ1π

√
Z + g1,2(1 + duk2)bπ2π, (A.8)

f̄K = g4,1bK1K

√
Z + g4,2(1 + dusk2)bK2K , (A.9)

f̄â0 = g1,1ba01â0 + g1,2(1 + duk2)ba02â0 , (A.10)

f̄K∗0 = g4,1bK∗0 1
K̂∗0

+ g4,2(1 + dusk2)bK∗0 2
K̂∗0

, (A.11)

f̄uη = g8,1bφ8,1η

√
Z + g8,2(1 + duk2)bφ8,2η, (A.12)

f̄uη′ = g8,1bφ8,1η′
√
Z + g8,2(1 + duk2)bφ8,2η′ , (A.13)

f̄ sη = g9,1bφ9,1η

√
Z + g9,2(1 + dsk2)bφ9,2η, (A.14)

f̄ sη′ = g9,1bφ9,1η′
√
Z + g9,2(1 + dsk2)bφ9,2η′ . (A.15)

Let us write the quark loop contribution to the
vertices of the effective meson Lagrangian in terms
of physical meson states. Only the vertices describing
the processes we are interested in are given below. For
l = I, II, III, IV, V, we have

A(2)
σl→ππσl(2π

+π− + π0π0) (A.16)

+ A
(2)

σl→KK̄
σl(K+K− + K0K̃0)

+ A(2)
σl→ηησlηη + A

(2)
σl→ηη′σlηη

′,

A(2)
σl→ππ = 8mu(J Λ

2,0[f̄
u
σl
f̄πf̄π] (A.17)

− P1 · P2J Λ
3,0[f̄

u
σl
f̄πf̄π]),

A
(2)

σl→KK̄
= 8mu(CuuJ Λ

2,0[f̄
u
σl
f̄K f̄K]

+ CusJ Λ
1,1[f̄

u
σl
f̄K f̄K ])

− 8
√

2ms(CssJ Λ
0,2[f̄

s
σl
f̄K f̄K ]

+ CsuJ Λ
1,1[f̄

s
σl
f̄K f̄K ])

− P1 · P2(8msJ Λ
2,1[f̄

u
σl
f̄K f̄K ]

− 8
√

2muJ Λ
1,2[f̄

s
σl
f̄K f̄K ]),

A(2)
σl→ηη = 8muJ Λ

2,0[f̄
u
σl
f̄ηu f̄ηu ]

− 8
√

2msJ Λ
0,2[f̄

s
σl
f̄ηs f̄ηs ]

− P1 · P2(8muJ Λ
3,0[f̄

u
σl
f̄ηu f̄ηu ]

− 8
√

2msJ Λ
0,3[f̄

s
σl
f̄ηs f̄ηs ]),

A
(2)
σl→ηη′ = 16muJ Λ

2,0[f̄
u
σl
f̄ηu f̄uη′ ]

− 16
√

2msJ Λ
0,2[f̄

s
σl
f̄ηs f̄ sη′ ]

− P1 · P2(16muJ Λ
3,0[f̄

u
σl
f̄ηu f̄uη′ ]

− 16
√

2msJ Λ
0,3[f̄

s
σl
f̄ηs f̄ sη′ ]),

where

Cuu =
2mu

mu + ms
, Cus =

ms(mu −ms)
mu(mu + ms)

, (A.18)

Css =
2ms

mu + ms
, Csu =

mu(ms −mu)
ms(mu + ms)

.

PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
Now we consider the decays of a scalar–isoscalar
meson into a pair of σI. To calculate the quark loop
contribution to the corresponding decay amplitudes,
one should follow the method described above for
pseudoscalar mesons. The quark loop contribution
can be represented as a set of diagrams that result
in a sum of integrals which can then be converted
into a single integral over the physical form factors for
scalar–isoscalar mesons. Thus, one obtains

A(2)
σl→σIσI

≈ 8muJ Λ
2,0[f̄

u
σl
f̄uσIf̄

u
σI

] (A.19)

for l = III, IV, V. In conclusion, we display the coeffi-
cients ak that determine contact terms (89):

a1 = − 1
χ3
c

[
10
3
Cg +

9∑
a,b=8

(
−4

3
µ̄0
a (A.20)

× (G(−))−1
ab µb +

7
3
µ̄0
a

(
G(−)
)−1

ab
µ̄0
b

+
1
6
µ0
a

(
G(−)
)−1

ab
(µb − µ̄0

b)
)

+ hσ
(
16F 2

0 − 18F0F
0
0 + 4(F 0

0 )2
)]

,

a2 = −
√

2hσ√
3χ2

c

(14F0 − 10F 0
0 ) (A.21)

− 1
χ2
c

9∑
a=8

g8,1

(
G(−)
)−1

8a
µ̄0
a,

a3 =
4hσ
3χc

(A.22)

− 1
χc

(
g28,1

(
(G(−))−1

88 − 8J Λ
1,0[1]
)

+ 4m2
u

)
,

a4 =
1
χc

(
g28,2
(
1/Ḡ8−8J Λ

1,0[f
u
2 f

u
2 ]
)
+4m2

u

)
. (A.23)
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The Isobar Model of the γN →→→ ηN Processes in the Energy Range
from the Threshold to 1200 MeV
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Abstract—The isobar model of the γN → ηN processes is constructed on the basis of the precision
measurements of the cross section for the γp → ηp process near the threshold in Mainz (Germany) and
the sensational results of recent measurements of the Σ beam asymmetry and dσ/dΩ for this process in
Grenoble (France). The model involves six nucleon resonances (MeV): S11(1535), S11(1650), P11(1440),
P13(1720), D13(1520), and F15(1680). The properties of these resonances are discussed. The P13(1720)
and F15(1680) resonances are responsible for large positive values of the Σ beam asymmetry for the γp →
ηp reaction at small angles. The contribution of the S11(1650) resonance must be taken into account in
addition to the contribution of the S11(1535) resonance in order to describe the experimental dependence of
the total cross section on the photon energy. The values characterizing the γn → ηn reaction are calculated
on the basis of the available data on the amplitudes of electromagnetic excitation of these resonances on
protons and neutrons. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Knowledge of the electromagnetic properties of the
baryon resonances is indispensable for constructing
the dynamical quark models of baryons. The informa-
tion on these properties comes mostly from studies
of the photoproduction of π mesons on nucleons or
nuclei. Since the photoproduction of pions involves a
rich variety of the ∆ and N∗ resonances, the relevant
properties of the resonances of mass greater than
1500 MeV are still not clearly understood. In contrast
to the photoproduction of pions, the photoproduction
of η mesons

γ + p → η + p (1)

involves only the N resonances with the isospin I =
1/2, so that numerous ∆ resonances with I = 3/2
and close masses are separated. It should be noted
that process (1) differs fundamentally from the pho-
toproduction of pions on nuclei: the η meson involves
a strange quark, whereas the pions involve only ordi-
nary u and d quarks.

A model of the photoproduction of η mesons on
nucleons over a wide range of energies consistent
with recent experimental data is required for two pur-
poses: firstly, for deriving information about the elec-
tromagnetic properties of resonances and, second, for
studying the photoproduction of η mesons on nuclei
and evaluating various backgrounds in the current
and future experiments.
1063-7788/02/6509-1673$22.00 c©
2. DESCRIPTION OF MODEL

The models [1–5] for process (1) adequately de-
scribe behavior of the reaction cross section near the
threshold. With an increase in the photon energy,
the number of resonances with higher angular mo-
menta involved in the process rapidly increases due
to a relatively large mass of the η meson. Some of
the aforementioned models [2, 3, 5] do not take into
account such resonances. Because of this, our study
relies on the isobar model of the photoproduction of
η mesons on nucleons. This model takes into account
the contribution of resonances only to the s channel.
The contributions of the nucleons and vector mesons
to the amplitude of the process under consideration
are incorporated in this model by including the ef-
fective s-channel contributions of the resonances.
Fortunately, the contributions of the nucleons and
vector mesons are sufficiently small even in the near-
threshold region [1–3]. In the case under study, the
P11(1440) resonance with a mass below the threshold
and large width is interpreted as the nonresonance
background.

In the center-of-mass system, the amplitude of
process (1) in the angular momentum representation
was expressed in terms of the multipole amplitudes
for the photoproduction of pseudoscalar mesons on
nucleons [6]. In the proposed model, all multipole
amplitudes of both electric (El±) and magnetic (Ml±)
types are considered as resonance and, therefore, rep-
2002 MAIK “Nauka/Interperiodica”
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resented in the Breit–Wigner form

El± =
ieiφr(ΓEγpΓηp)

1/2

2[kqj(j + 1)]1/2(Wr − W − iΓ/2)
, (2)

the same being true for the Ml± amplitudes. Here, k
and q are the momenta of the photon and meson in the
center-of-mass system; l is the orbital momentum
of the meson; j = l ± 1 for El± and j = l for Ml±;
subscripts of l indicate the total angular momentum
J = l ± 1/2 of the meson–nucleon system; W is the
total energy of the system; and Wr is the mass of the
resonance. The energy dependence of the total widths
Γ of the resonances coincides with that in [7]:

Γ =
∑
λ

pνl(pR)
pλνl(pλR)

Γλ, (3)

where Γλ are the partial widths of decay in the channel
λ; p and pλ are the momenta of the mesons produced
in the two-body decay of the resonance (the former
momentum corresponds to the energy W , and the
latter, to W = Wr); νl(x) are the barrier factors for
process (1) depending on the orbital momentum l
of the meson [8]; and R is the range of the strong
interactions (here it is fixed at the scale 1 fm). For all
resonances except S11(1535), only π meson channel
of the decay of the resonances was considered as
contributing to the sum in formula (3), whereas, for
the S11(1535) resonance, in view of its importance in
process (1), we set

Γ = (0.5q/qr + 0.4p/pr + 0.1)Γr,

where q(qr) and p(pr) are, respectively, the momenta
of the η and π mesons in the center-of-mass sys-
tem with the total energy W (W = Wr) and Γr are
the widths of the resonances in the rest frame. The
electromagnetic ΓE,Mγp and strong Γηp vertices of the
resonance multipole amplitudes (2) are parametrized
as

(ΓE,Mγp Γηp)1/2 (4)

= {[2kRνn(kR)][2qRνl(qR)}1/2γE,M ,

where n = l − 2 for the multipole amplitudes El− and
n = l for the others. The dimensional values γE,M

together with the energies Wr and thewidths Γr of the
resonances were considered as the fitting parameters
of the model. Moreover, the phases of the multipole
amplitudes φr [see formula (2)] have to be considered
as the additional parameters.

Similar models involving three resonances—
S11(1535), P11(1440), and D13(1520)—were suc-
cessfully employed for description of the γN → ηN
processes near the threshold [1, 4, 9]. In order to
reproduce the differential cross sections measured in
Mainz [10], it was sufficient to set the phase factors of
P

the multipole amplitudes equal to unity. Fortunately,
these models provide for a satisfactory description
of the data on the cross section dσ/dΩ and the
asymmetry Σ caused by the linear polarization of the
photons in reaction (1), which were obtained recently
in the experiment at higher energies at the Grenoble
facility [11, 12]. For this reason, our study is based on
the model proposed in [9] with taking into account
resonances with energies higher than 1535 MeV.
We assumed that contributions to the amplitude
of reaction (1) can come from resonances with the
orbital momentum L < 3: P13(1720), D13(1700),
and D15(1675). Based on the results of preliminary
calculations, the P13(1720) resonance was preferred.
Large positive values of Σ(θ) at small escape angles θ
of mesons were obtained in the experimental studies
of reaction (1) at a total energy of W = 1687 MeV
and above. In our opinion, this fact indicates that
the F15(1680) resonance has a profound effect on
the process under consideration. Since coupling of
this resonance to the electromagnetic field is reliably
strong [13], it is natural to assume a strong coupling
of this resonance with the ηN channel.

Experimental dependence of the total cross sec-
tion of reaction (1) on the photon energy over the
region under study [12] contradicts the fact that the
contribution of the S11(1535) resonance slowly de-
creases with the energy. For this reason, we have to
take into account the S11(1650) resonance in order to
compensate for a large contribution of the S11(1535)
resonance over the energy range under consideration.

3. RESULTS AND DISCUSSION

Using only six resonances indicated above and
varying their properties as proposed in [13], we
achieve a good agreement of our description with
the data obtained in both Mainz [10] and Grenoble
[11, 12]. For a comparison of the calculated values
with the experimental data, we use the dependence
of these values on the energy of the incident photons
K0 in the center-of-mass system at θ = 90◦ (as in
[5]). Note that, for this escape angle of mesons, the
experimental data are most exact. The result obtained
by visual fitting is shown in Figs. 1–4 by solid
curves in comparison with the experimental data. The
required properties of the resonances are presented in
the table.

It has been repeatedly pointed out that the domi-
nant contribution to the cross section of process (1)
is due to the S11(1535) resonance, which is most
strongly coupled to the decay channel ηN . However,
the experimental energy dependence of the total cross
section of process (1) in the entire energy range stud-
ied cannot be explained in terms of this S-wave con-
tribution only. An agreement with the data obtained
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Fig. 1. Dependence of the integrated cross section for the
processes γp→ ηp (solid curve) and γn→ ηn (dashed
curve) on the photon energy in the laboratory system.
The experimental data for the γp→ ηp reaction are taken
from [10] (◦) and [12] (•). The energy dependences of
the integrated cross section for the γp→ ηp reaction
with incomplete amplitudes were calculated with neglect
of the S11(1650) resonance (dotted curve), F15(1680)
resonance (dash-dotted curve), and P13(1720) resonance
(dash-and-double-dot curve).

in the two mentioned experiments (Figs. 1 and 2) was
obtained only upon taking into account the contri-
bution of the S11(1650) resonance “compensating”
for the contribution of the dominant resonance. It
should be noted that no such agreement with the
experimental data was obtained in [14] despite the fact
that the analysis performed in a similarmodel involved
a greater number of resonances.

The calculated angular distributions dσ(θ)/dΩ
also agree well with the results of the other two
experiments—MAMI (Germany) and GRAAL
(France) at the energies of the incident photon up
to K0 ≈ 950 MeV. At higher energies, the calculated
distributions dσ(θ)/dΩ show a pronounced decrease
in the forward direction. A similar decrease takes
place in the distributions predicted in [14] however,
it is not observed experimentally [12].

Using the data from the table, we find that the
S11(1535) resonance is characterized by the ratio

Γγ/Γr ≈ 0.34%

(Γγ is the total γ-width of the resonance), which
coincides with the maximum value of this ratio rec-
ommended in [13]. This is partly explained by the fact
that, in our model, some other, nonresonant, contri-
butions (nucleon exchanges in the s and u channels
and the vector-meson contributions in the t channel)
to the amplitude of process (1) are implicitly included
in the contribution of the S11(1535) resonance. The
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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Fig. 2. Differential cross sections dσ/dΩ of the reactions
γp→ ηp (solid curve) and γn→ ηn (dashed curve) as
functions of the energy of the photon in the laboratory
system at the meson escape angle θc.m. = 90◦. Dots show
the experimental data for the γp→ ηp process at θc.m. =
(90 ± 12)◦ [12].

obtained results for this resonance (see table) can be
represented in an illustrative form

ΓηpΓγ/Γr = 0.27 MeV.

At Γηp/Γr = 0.50, the invariant helicity amplitude
for the photoexcitation of this resonance is A1/2 =
0.1096 GeV−1/2. Conversely, given the value of the
amplitude A1/2 = 0.090 GeV−1/2 (as was proposed
in [13]), we arrive at Γηp/Γr = 0.74. Both these values
are much greater than those in [13]. However, our
value of the photoexcitation amplitude A1/2 of the
S11(1535) resonance is in good agreement with the
results of [14] (A1/2 = 0.103 GeV−1/2). The same is
valid for the ratio Γγ/Γr ≈ 0.4% characterizing the
S11(1650) resonance, which is determined from the
data fitting. This ratio is twice as large as the upper
limit of this value recommended in [13].

The dependence of the asymmetry Σ for process
(1) on the energy of the γ quanta is shown in Fig. 3.
This asymmetry is due to the linear polarization of
photons parallel or transverse to the plane of the reac-
tion. Large positive values of the asymmetry at small
values of the angle θ (θ < 50◦) for K0 > 950 MeV
(which are not seen in Fig. 3) are obtained with
regard for the contributions of the P13(1720) and
F15(1680) resonances to the amplitude (see the figure
in [15]). Taking these resonances into account makes
it possible to reproduce the second, small and wide,
maximum of the total cross section for process (1)
(see Fig. 1). Note that the authors of [14] failed to
reproduce this maximum. In our model, the maxima
of the angular distribution Σ(θ) for K0 > 950 MeV
2
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Fig. 3. Photon asymmetry Σ for the processes γp→ ηp
(solid curve) and γn→ ηn (dashed curve) as a function of
the photon energy in the laboratory system for the meson
escape angle θc.m. = 90◦. Dots show experimental data
for the γp→ ηp process at θc.m. = (90 ± 12)◦ [11].

and the maxima of dσ(θ)/dΩ for the respective en-
ergies occur at the same angles (θ ≈ 50◦). For this
reason, the asymmetry Σ rapidly increases with the
photon energies in the region of 1 GeV. The values
of γE,M characterizing the P13(1720) resonance are
in both qualitative and quantitative agreement with
the data reported in [13], whereas the electromagnetic
properties of the F15(1680) resonance disagree with
these data. The values from the table characterizing
this resonance imply the following ratio between the
helicity amplitudes A1/2 and A3/2:

| A1/2/A3/2 | = 1.41.

This value is an order of magnitude greater than the
value recommended in [13]. It is possible that replace-
ment of the F15(1680) resonance with the D15(1675)
resonance, which is close to the former resonance in

Properties of the resonances obtained from the phe-
nomenological analysis of the γp → ηp process in the en-
ergy range from the threshold to 1200 MeV

N∗ resonances Wr,
MeV

Γr,
MeV

γE,
MeV

γM ,
MeV

φr,
deg

S11(1535) 1535 158 2.15 – 0

S11(1650) 1645 120 −0.550 – 4.0

P11(1440) 1440 350 – 0.450 0

P13(1720) 1718 140 −0.085 0.409 132.0

D13(1520) 1520 120 0.200 0.330 0

F15(1680) 1678 120 0.190 0.800 18.0
P
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Fig. 4. Polarization P (K0) of the recoil nucleons in the
reactions γp→ ηp (solid curve) and γn→ ηn (dashed
curve) as a function of the photon energy in the labo-
ratory system for the meson escape angle θc.m. = 90◦.
Dots show experimental data for the γp→ ηp reaction at
θc.m. = (90 ± 10)◦ [16].

mass and has the same angular momentum, will re-
move the discrepancy; however, our attempt to do this
has failed. The calculated polarization of the recoil
protons P (K0) and the asymmetry T (K0) caused by
the polarization of the target protons in reaction (1)
are shown in Figs. 4 and 5 by solid curves. It is
seen that predictions of the model used disagree with
the results of the measurements of P (K0) [16] made
thirty years ago (see Fig. 4). Unfortunately, no pre-
diction for this value was made in [14]. Our attempts
to find an agreement of large positive values of Σ
with the positive values of the polarization P have not
met with success. In order to solve this problem, new
experimental measurements are needed.

Using the estimates [13] of the helicity amplitudes
for the photoexcitation of resonances on protons and
neutrons and taking into account the charge inde-
pendence of the hadronic vertices, we computed the
cross sections and polarization characteristics for the
photoproduction of η mesons on neutrons

γ + n → η + n. (5)

An exception from this rule is the multipole amplitude
of the S11(1535) resonance, for which we set

En
0+ ≈ −0.81Ep

0+, (6)

on the basis of the experimental data [17] on the ratio
of cross sections for the photoproduction of η mesons
on the neutron and proton in the neighborhood of this
resonance. Theoretical predictions for the observables
of reaction (5) are shown by dashed curves in Figs. 1–
5. It is of interest that the calculated dependences of
Σ(K0) for processes (1) and (5) are in close proximity
to each other (Fig. 3), whereas the calculated values
of P (K0) and T (K0) for these processes are opposite
in sign (Figs. 4 and 5).
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002



ISOBAR MODEL OF THE γN → ηN PROCESSES 1677

 

0.8

0.4

0

–0.4

–0.8

0.7 0.8 0.9 1.0 1.1 1.2

 

K

 

0

 

, GeV

 
T
 
(
 
γ
 

N 
 

→ η
 

N
 

)

Fig. 5. Asymmetry T (K0) caused by the polarization
of the target nucleons for the reactions γp→ ηp (solid
curve) and γn→ ηn (dashed curve) versus the photon
energy in the laboratory system for the meson escape
angle θc.m. = 90◦.

Introducing some additional N∗ resonances in the
proposed model could give better agreement with the
results of the experiments under consideration (how-
ever, at the expense of complexity). For this reason,
the proposed approach offers a ‘minimal’ model, that
is, the model with a minimum of resonances taken
into consideration in the energy range studied. New
experimental data on reaction (1) at higher energies
will force us to revise the role of the N∗ resonances
included in the model, because one has to introduce
resonances of higher mass, whose contribution at
K0 = 1200 MeV is small. In conclusion, we note that
a nonvanishing coupling of the S11(1650), F15(1680),
and P13(1720) resonances to the ηN channel comes
as no surprise to us but supports an ingenious con-
jecture of the authors of [8] made in the 1970s.
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Abstract—The analytic running coupling constant αan for strong interactions is considered for approx-
imations of standard perturbation theory up to the three-loop level. Nonperturbative contributions are
singled out explicitly in αan. They are represented in the form of an expansion in a series in inverse
powers of the Euclidean momentum squared. It is shown that two- and three-loop corrections lead to
a partial compensation of the nonperturbative one-loop contribution of order 1/q2, which is leading in
the ultraviolet region. An efficient method for calculating the analytic running coupling constant for all
q > Λ is developed on the basis of the above expansion. A comparative analysis of perturbative and
nonperturbative contributions is performed in the infrared region, where the latter play the most important
role. A simultaneous consideration of the momentum dependence of αan and its perturbative component for
one- to three-loop cases leads to the conclusion that the analytic running coupling constant is stable with
respect to higher corrections and that it depends only slightly on conditions imposed in matching solutions
that involve different numbers nf of active-quark flavors. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Perturbation theory, which is the main tool of
investigations within QCD, a theory that describes
strong interactions at sufficiently high values of the
energy scale, generates nonphysical singularities in
the infrared region. It is commonly believed that these
singularities must be canceled by nonperturbative
contributions. Such contributions naturally arise in
the analytic approach to QCD (see the review arti-
cle of Solovtsov and Shirkov [1]). In exploring such
issues, use is made of the so-called analyticization
procedure employing the ideas that date back to the
studies of Redmond [2] and Bogolyubov, Logunov,
and Shirkov [3], who considered the problem of an
nonphysical ghost pole in particle propagators. The
procedure hinges on the principle of summing, under
the sign of the Källén–Lehmann spectral integral,
information obtained from perturbation theory. This
yields expressions free from nonphysical singulari-
ties. By imposing the condition of analyticity on the
QCD running coupling constant (invariant charge)
as a function of the variable q2 (q2 is the square of
the Euclidean momentum, q2 > 0), a solution to the
problem of a ghost pole in QCD was proposed in the
recent studies of Shirkov and Solovtsov [4, 5]. Such
a condition is imposed within the dispersion approach
to QCD [6]. The value of the one-loop analytic run-
ning coupling constant at the origin proved to be finite
and independent of Λ (universal), α(1)

an (0) = 4π/b0.

*e-mail: alekseev@mx.ihep.su
1063-7788/02/6509-1678$22.00 c©
Within the hypothesis that the interaction is frozen
in the infrared region, the problem of the ghost pole in
QCD is also solved. In [7, 8], the question of whether
the coupling constant is frozen at low energies is con-
sidered within a specific computational scheme based
on an expansion around the point 161

2 − nf . Within
the model of a stochastic QCD vacuum [9, 10], the
coupling constant is also frozen in the infrared re-
gion. There, perturbation theory is constructed with
respect to a nonperturbative background field, and a
dimensional parameter dependent on the processmB
being considered arises in the expression for the run-
ning coupling constant [1/ ln(q2/Λ2) → 1/ ln((q2 +
m2
B)/Λ2),mB � 1 GeV].
In [4, 5], it was found that the analyticization pro-

cedure possesses the important property that the an-
alytic running coupling constant at the origin is stable

with respect to higher order corrections: α(1)
an (0) =

α
(2)
an (0) = α

(3)
an (0). Thus, higher order corrections do

not change the value of the analytic running coupling
constant at the origin. It should be noted that, al-
though the derivative of the analytic running coupling
constant at the origin is infinite, the quantity αan(q2)
proves to be stable with respect to higher order cor-
rections over the entire infrared region.

For the standard and for the iterative two-loop
solution, nonperturbative contributions to the ana-
lytic running coupling constant were calculated ex-
plicitly in [11]. Since the perturbative expressions
corresponding to these two cases behave differently in
the infrared region, the nonperturbative contributions
2002 MAIK “Nauka/Interperiodica”
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also behave differently there. It was shown that, in
the ultraviolet region—more precisely, for q > Λ—the
nonperturbative contributions can be represented as
power series in inverse powers of q2, where the ex-
pansion coefficients exhibit different dependences on
the ordinal number. In [12, 13], the nonperturbative
contributions to αan(q2) were isolated explicitly for
approximations of the perturbation theory up to the
three-loop level. The method developed there for per-
forming integration in the vicinity of the singularities
of the original perturbation theory is more general
than that which was used in [11].

In the present study, we will analyze the momen-
tum dependence of the QCD running coupling con-
stant and of its nonperturbative component, the one-
to three-loop cases being considered simultaneously.
This makes it possible to describe quantitatively sta-
bility of the analytic running coupling constant with
respect to the number of loops (it has already been
mentioned that this stability property was first discov-
ered in [4, 5]).

2. ONE-LOOP ANALYTIC COUPLING
CONSTANT

The fundamentals of the approach that is em-
ployed in the present study will be described here for
the simple example of the QCD one-loop running
coupling constant. The one-loop renormalization-
group equation for the running coupling constant
αs(q2) has the solution

αs(q2) =
αs(µ2)

1 + b0
4παs(µ

2) ln(q2/µ2)
, (1)

where b0 = 11 − 2
3nf , nf is the number of flavors of

active quarks, and µ is the normalization point. Intro-
ducing the renormalization-invariant parameter Λ,

Λ2 = µ2e
− 4π

b0αs(µ2) , (2)

we can can recast Eq. (1) into the form

αs(q2) =
4π
b0

1
ln(q2/Λ2)

, (3)

which involves an nonphysical pole at q2 = Λ2. The
vanishing of expression (3) for q2 → ∞ corresponds
to the remarkable property of asymptotic freedom [14]
of non-Abelian gauge theories, while the growth ofαs
(to some critical value or to infinity) with decreasing
q2 can have a bearing on a solution to the confinement
problem. Let us estimate the parameter Λ. Assuming
that, at q = MZ = 91.2 GeV (MZ is the Z-boson
mass), αs = 0.118 [15] and setting nf = 5, we obtain
Λ = 87.8 MeV from Eq. (3). In the region of q values
being considered, we have dΛ/Λ � 7dαs/αs, so that
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
a 1% uncertainty in αs leads to an approximately 7%
uncertainty in Λ.

Equation (1) can be represented as the result ob-
tained by summing the following series:

αs(q2) = αs(µ2)
∞∑
n=0

(
− b0

4π
αs(µ2)

)n
lnn(q2/µ2).

(4)

It is noteworthy that the sum of a finite number of
terms in the series on the right-hand side of Eq. (4)
is not a renormalization-invariant quantity. Thus, the
renormalization-group method makes it possible to
sum up an infinite class of diagrams, the renormal-
ization invariance of the result being concurrently re-
stored. However, the analytic structure in the complex
plane of q2 has changed significantly as a result. Each
term in Eq. (4) is an analytic function in the complex
plane of q2 with a cut along the negative real semiaxis,
but, in expressions (1) and (3), there is a pole at the
point q2 = Λ2 in addition to this cut. If one wants to
preserve analyticity in the complex plane of q2 with
a cut along the negative real semiaxis, it is possible
to make an analytic continuation of the terms in the
series on the right-hand side of (4) to the Minkowski
space, q2 → −σ − i0, and, after that, to sum up the
imaginary parts of all the imaginary parts of these
terms. This yields

Imαs(−σ − i0) = αs(µ2) (5)

×
∞∑
n=0

(
− b0

4π
αs(µ2)

)n
Im
[
lnn(−σ/µ2 − i0)

]

=
1
2i

{
αs(µ2)

1 + b0
4παs(µ

2)[ln(σ/µ2) − iπ]

− αs(µ2)
1 + b0

4παs(µ
2)[ln(σ/µ2) + iπ]

}

=
4π
b0

Im
1

ln(σ/Λ2) − iπ
=

4π
b0

π

ln2(σ/Λ2) + π2
.

Introducing the quantity ρ̃(σ) = Imαs(−σ − i0), we
define a new analytic running coupling constant
through the dispersion relation

αan(q2) =
1
π

∞∫
0

dσ ρ̃(σ)
σ + q2 − i0

. (6)

For the one-loop spectral density ρ̃(σ), the integral in
Eq. (6) can be taken explicitly, whereupon we arrive at

αan(q2) =
4π
b0

[
1

ln(q2/Λ2)
+

Λ2

Λ2 − q2

]
. (7)
2
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The ghost pole at the point q2 = Λ2 is canceled, so
that the running coupling constant in (7) as a func-
tion of q2 has the desired analytic structure. In order
to ensure the manifest renormalization invariance of
expression (7), one can solve the following equation
for the parameter Λ:

αan(µ2) =
4π
b0

[
1

ln(µ2/Λ2)
+

Λ2

Λ2 − µ2

]
. (8)

From a dimensional analysis, it follows that

Λ2 = µ2e−φ(αan(µ2)), (9)

where the function φ(z) is determined by the equation

b0
4π

z =
1

φ(z)
+

1
1 − eφ(z)

. (10)

Over the interval from zero to 4π/b0, the function
φ(z) decreases monotonically from +∞ to −∞.
For z → 0, the function φ(z) assumes the form

φ(z) � 4π/(b0z), so that Λ2 � µ2e−4π/(b0αan(µ2))

for αan(µ2) → 0; therefore, the second term in the
bracketed expression on the right-hand side of Eq. (7)
must be treated as a nonperturbative one. The new β
function can be represented in the form

β(αan) = q
∂αan(q2)

∂q
(11)

=
8π
b0

[
− 1
φ2(αan)

+
eφ(αan)(

1 − eφ(αan)
)2
]
.

For αan → 0, we have β(αan) � −(b0/2π)α2
an.

For z → 4π/b0, the function φ(z) behaves as
φ(z) � 1/(b0z/4π − 1); accordingly, β(αan) �
−(b0/2π)(αan − 4π/b0)2 for αan → 4π/b0. The new
β function has two second-order zeros. Of these, one
is an ultraviolet-stable point, while the other is an
infrared-stable point.

Thus, the QCD running coupling constant as ob-
tained within the analytic approach possesses the
following interesting properties:

(i) By construction, this running coupling con-
stant as a function q2 has an analytic structure that
is compatible with the causality principle.

(ii) As a function of αan(µ2), it has an essential
singularity at the origin; the asymptotic expansion
of its nonperturbative part in αan(µ2) for αan(µ2) →
+0 is equal to zero, which ensures conformity to the
original perturbation theory.

(iii) Apart from fast decreasing power-law terms, it
coincides with the usual result of perturbation theory
in the ultraviolet region (with allowance for renormal-
ization invariance).
P

(iv) In the infrared region, it does not have non-
physical singularities. Its value at the origin is finite
and is independent of the normalization condition,
αan(0) = 4π/b0.

As will be seen below, all these properties are
preserved at the two- and at the three-loop level. It is
important to note that, in the one-loop case, we have
not only the spectral representation (6); in addition,
there are, first, an expression where nonperturbative
contributions are singled out explicitly from the run-
ning coupling constant,

αan(q2) = αpt(q2) + αnpt
an (q2), (12)

and, second, a simple formula for nonperturbative
contributions. For q > Λ, these contributions can be
represented as the series

αnpt
an (q2) =

4π
b0

∞∑
n=1

cn

(
Λ2

q2

)n
, (13)

where cn = −1. With an eye to a subsequent exten-
sion of the above analysis to multiloop cases, we will
now try to assess the usefulness of the representation
of nonperturbative contributions in the form (13). We
will find the precision to which this series is approx-
imated by the sum of its first N terms. The absolute
error of this procedure,

∆(N) = −4π
b0

∞∑
n=N+1

(
Λ2

q2

)n
(14)

= −4π
b0

(
Λ2

q2

)N Λ2

q2 − Λ2
,

depends on q andN at given nf and Λ, an increase in
q andN leading to a decrease in this error. The relative
error of the approximation of αan is

δ(N) =
αapprox

an − αan

αan
(15)

=
−∆(N)

αan
=
(

Λ2

q2

)N ln(q2/Λ2)
q2/Λ2 − 1 − ln(q2/Λ2)

.

In the one-loop case, this quantity is independent of
nf explicitly. From Eq. (15), one can find the number
of terms of the approximation that ensure the required
precision:

N =
1

ln(q2/Λ2)
[
− ln δ − ln

(
q2/Λ2 (16)

− 1 − ln(q2/Λ2)
)

+ ln
(
ln(q2/Λ2)

)]
.

For δ = 10−2 and q = 1.1Λ, this formula yields N =
36.2, so that the required precision is ensured by
taking 37 terms of the series. For q = 10Λ, we obtain
N = 0.34; therefore, one term is quite sufficient in this
case. The approximation by one term is sufficient even
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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for q > 4.4Λ. Thus, we see that, if the dependence of
the coefficients cn on n is “not very bad,” the non-
perturbative contributions can be found to a preset
precision for q values rather close to Λ and that, at
fairly large q, it is sufficient to retain only the first term
of the series. For relative errors of the approximation
of αan that range between 10−2 and 10−8, Fig. 1
shows the numberN of terms in the power series (13)
for αnpt

an as a function of q/Λ. This dependence proves
to be useful in estimating the accuracy of the simple
approximation of nonperturbative contributions by a
partial sum of a power series in the case where the n
dependence of the coefficients cn in this series makes
it possible to consider the one-loops series as a ma-
jorizing series.

In the two- and the three-loop case, we single
out nonperturbative contributions fromαan, represent
them as series in inverse powers of q2, and explore the
accuracy of the approximations obtained by truncat-
ing these series at finite numbers of terms.

3. THREE-LOOP ANALYTIC COUPLING
CONSTANT

The QCD running coupling constant αs(µ2) is a
solution to the renormalization-group equation

µ
∂αs(µ2)
∂µ

= β(αs) = β0α
2
s + β1α

3
s + β2α

4
s + ...,

(17)

where the coefficients are

β0 = − 1
2π

b0, b0 = 11 − 2
3
nf , (18)

β1 = − 1
4π2

b1, b1 = 51 − 19
3
nf ,

β2 = − 1
64π3

b2, b2 = 2857 − 5033
9

nf +
325
27

n2
f .

The first two coefficients β0 and β1 are independent
of the choice of renormalization scheme, whereas
the next coefficients in expansion (17) are scheme-
dependent. The coefficient β2 in (18) corresponds
to the MS scheme [16]. The standard three-loop
solution to the renormalization-group equation for
the running QCD coupling constant is represented
as an expansion in inverse powers of the logarithm
ln(µ2/Λ2) (where Λ = ΛMS) [15]; that is,

αs(µ2) =
4π

b0 ln(µ2/Λ2)
(19)

×
[
1 − 2b1

b20

ln[ln(µ2/Λ2)]
ln(µ2/Λ2)

+
4b21

b40 ln2(µ2/Λ2)

×
((

ln[ln(µ2/Λ2)] − 1
2

)2

+
b2b0
8b21

− 5
4

)]
.
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Fig. 1. Number of terms in the power series in (13)
for αnpt

an as a function of q/Λ at the one-loop level for
preset values of the relative error δ in the approximation
of αan that range between (lower curve) 10−2 and (upper
curve) 10−8.

The first two terms in square brackets in Eq. (19)
corresponds to the two-loop solution, where there is
no term of the form 1/ ln2(µ2/Λ2). It should be noted
that the expansion of the iterative two-loop solution
from [5] in inverse powers of the above logarithm gen-
erates such a term; it can be canceled by redefining
the parameter Λ. We introduce the function a(x) =
(b0/4π)αs(q2), where x = q2/Λ2. Instead of Eq. (19),
we then obtain

a(x) =
1

lnx
− b

ln(lnx)
ln2 x

(20)

+ b2
(

ln2(ln x)
ln3 x

− ln(lnx)
ln3 x

+
κ

ln3 x

)
.

The coefficients b and κ are

b =
2b1
b20

=
102 − 38

3 nf

(11 − 2
3nf )

2
, κ =

b0b2
8b21

− 1. (21)

At nf = 3, the coefficients b and κ take the values of
b = 64/81 � 0.7901 and κ � 0.4147. At large values
of x, the one-loop term in Eq. (20) is a leading one,
the terms that follow it yielding corrections to this
one-loop term. At small values of x, these corrections
become dominant, which is due to the presence of
singularities at the point x = 1 that have different
analytic structures. Namely, we have the following
types of behavior at x � 1:

a(1)(x) � 1
x− 1

, (22)

a(2)(x) � − b

(x− 1)2
ln(x− 1),
2
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a(3)(x) � b2

(x− 1)3
ln2(x− 1).

The analytic approach makes it possible to get rid of
these nonphysical singularities without spoiling the
ultraviolet behavior of the coupling constant.

By definition, the analytic running coupling con-
stant can be calculated with the aid of the spectral
representation

aan(x) =
1
π

∞∫
0

dσ

x+ σ
ρ(σ), (23)

the spectral density satisfying the conditions ρ(σ) =
Imaan(−σ − i0) = Ima(−σ − i0). Performing an
analytic continuation of Eq. (20) to the Minkowski
space, x = −σ − i0, we obtain

a(−σ − i0) =
1

lnσ − iπ
− b

(ln σ − iπ)2
(24)

× ln (lnσ − iπ) + b2
{

ln2(lnσ − iπ)
(lnσ − iπ)3

− ln(ln σ − iπ)
(lnσ − iπ)3

+
κ

(lnσ − iπ)3

}
.

Calculating the imaginary part of expression (24), we
find the spectral density in the form

ρ(σ) =
π

t2 + π2
− b

(t2 + π2)2
(25)

×
[
2πtF1(t) −

(
t2 − π2

)
F2(t)

]

+
b2

(t2 + π2)3
[
π
(
3t2 − π2

)(
F 2

1 (t) − F 2
2 (t)

)

− 2t
(
t2 − 3π2

)
F1(t)F2(t)

− π
(
3t2 − π2

)
F1(t) + t

(
t2 − 3π2

)
× F2(t)+πκ

(
3t2 − π2

)]
,

where t = ln(σ) and

F1(t) ≡
1
2

ln(t2 + π2), F2(t) ≡ arccos
t√

t2 + π2
.

(26)

With the aid of (23), (25), and (26), the analytic run-
ning coupling constant can be explored, for example,
by numerical methods. In order to calculate αan, we
will develop an alternative method that is more con-
venient and more efficient than that and which does
not involve numerical integration.

The function a(x) in Eq. (20) is analytic in the
complex plane of the variable x with a cut along the
real axis from 1 to −∞ and is real at real x > 1. In
P

order to find the spectral density ρ(σ), we can there-
fore use the Schwarz reflection principle, according to
which (a(x))∗ = a(x∗). We then have

ρ(σ) =
1
2i

(a(−σ − i0) − a(−σ + i0)). (27)

Making a change of variable of the form σ = exp(t)
and using formulas (23), (24), and (27), we obtain the
representation

aan(x) =
1

2πi

∞∫
−∞

dt
et

x+ et
(28)

×
{

1
t− iπ

− 1
t+ iπ

− b

[
ln(t− iπ)
(t− iπ)2

− ln(t+ iπ)
(t + iπ)2

]
+ b2

[
ln2(t− iπ)
(t− iπ)3

− ln2(t+ iπ)
(t + iπ)3

− ln(t− iπ)
(t− iπ)3

+
ln(t + iπ)
(t+ iπ)3

+
κ

(t− iπ)3
− κ

(t+ iπ)3

]}
.

Let us now explore the singularities of the integrand
on the right-hand side of (28)—we denote this in-
tegrand by F (t)—in the complex plane of the vari-
able t. First of all, there are simple poles at t = lnx±
iπ(1 + 2n), n = 0, 1, 2, .... All residues of the function
exp(t)/(x + exp(t)) at these poles are equal to unity.
In addition, the integrand F (t) has singularities at the
points t = ±iπ; these are a simple pole; a third-order
pole; and logarithmic branch points, which coincide
with a second- and a third-order pole. In a standard
way, we draw, in the complex plane of the variable
t, the cuts t = ±iπ − λ, where λ is a real-valued
parameter, 0 < λ < ∞. The expression obtained by
multiplying the integrand F (t) by t tends to zero for
| t |→ ∞. Without changing the value of the integral
being considered, we can therefore include in it inte-
gration along an arc of infinite radius. Specifically, we
close up the integration contour C1 in the upper half-
plane of the variable t, eliminating the singularity at
t = iπ. This leads to the emergence of the additional
contributions from integration along the banks of the
cut and from integration around the singularities at
the point t = iπ. We denote the corresponding con-
tour by C2.

Let us now consider the integral along the contour
C1. The residues of the function F (t) at the points
t = ln(x) + iπ(1 + 2n), n = 0, 1, 2, ..., are

ResF (t) |t=ln(x)+iπ(1+2n) (29)

=
1

ln(x) + 2πin
− 1

ln(x) + 2πi(n + 1)
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− b

[
ln(ln(x) + 2πin)
(ln(x) + 2πin)2

− ln(ln(x) + 2πi(n + 1))
(ln(x) + 2πi(n + 1))2

]

+ b2
[
ln2(ln(x) + 2πin)
(ln(x) + 2πin)3

− ln2(ln(x) + 2πi(n + 1))
(ln(x) + 2πi(n + 1))3

− ln(ln(x) + 2πin)
(ln(x) + 2πin)3

+
ln(ln(x) + 2πi(n + 1))
(ln(x) + 2πi(n + 1))3

+
κ

(ln(x) + 2πin)3
− κ

(ln(x) + 2πi(n + 1))3

]
.

By using the Cauchy residue theorem, we evaluate
the contribution ∆(x) to the integral in (28) from
integration along the contour C1. The result is

∆(x) =
1

2πi

∫
C1

F (t) dt (30)

=
∞∑
n=0

ResF (t = ln(x) + iπ(1 + 2n)) =

=
1

lnx
− b

ln(lnx)
ln2 x

+ b2
(

ln2(ln x)
ln3 x

− ln(lnx)
ln3 x

+
κ

ln3 x

)
.

We can see that this contribution is exactly equal
to the original expression (20). Therefore, we call it
the perturbative part of aan(x), apt(x) = ∆(x). It is
natural to refer to the remaining part of integration
along the contour C2 as the nonperturbative part of
aan(x),

aan(x) = apt(x) + anpt
an (x). (31)

Let us now proceed to calculate anpt
an (x). In perform-

ing integration along the contour C2, we can discard
terms in the integrand on the right-hand side of (28)
that do not involve singularities at t = iπ. We further
make the change of variable t = z + iπ and introduce
the function

f(z) =
1

1 − x exp(−z) . (32)

For the nonperturbative contributions, we then arrive
at the representation

anpt
an (x) =

1
2πi

∫
C

dz f(z) (33)

×
{

1
z
− b

ln(z)
z2

+ b2
ln2(z)
z3

− b2
ln(z)
z3

+
κb2

z3

}
.

In the complex plane of the variable z with a cut along
the negative real semiaxis, the contour C goes from
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the point z = −∞− i0 along the lower bank of the
cut, circumvents the point z = 0, and then goes along
the upper bank of the cut to the point z = −∞ + i0.
Here, x is treated as a real variable satisfying the
condition x > 1. The contour C can then be drawn
in such a way as to avoid circumventing extra singu-
larities and to ensure fulfillment of conditions that are
used in the Appendix to calculate relevant integrals.
For x �= 0, the function given by (32), along with
its derivatives, decreases exponentially for z → −∞;
therefore, we can omit boundary terms in formulas
presented in the Appendix. Using formulas from the
Appendix and Eq. (33), we obtain

anpt
an (x) = − 1

2πi

∫
C

dz

{
f ′(z) ln(z) (34)

− bf ′′(z)
(

ln(z) +
1
2

ln2(z)
)

+ b2f ′′′(z)
[(

1 +
1
2
κ

)
ln(z)

+
1
2

ln2(z) +
1
6

ln3(z)
]}

.

The function f(z), along with its derivatives, is reg-
ular on the negative real semiaxis of the variable z;
therefore, Eq. (34) can be recast into the form

anpt
an (x) = −

−∞∫
0

du

[
f ′(u)∆̄1(u) (35)

− bf ′′(u)
(

∆̄1(u) +
1
2
∆̄2(u)

)

+ b2f ′′′(u)
((

1 +
1
2
κ

)
∆̄1(u)

+
1
2
∆̄2(u) +

1
6
∆̄3(u)

)]
,

where u is a real variable, while u < 0 and ∆̄i(u) are
the discontinuities of the powers of the logarithms
involved; that is,

∆̄1(u) =
1

2πi
(ln(u + i0) − ln(u− i0)) = 1, (36)

∆̄2(u) =
1

2πi
(
ln2(u + i0)

− ln2(u− i0)
)

= 2 ln(−u),

∆̄3(u) =
1

2πi
(
ln3(u + i0)

− ln3(u− i0)
)

= 3 ln2(−u) − π2.

Let us introduce the variable σ = exp(u). From
Eqs. (32), (35), and (36), we obtain the following
2
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expression for the nonperturbative contributions:

aan
an(x) =

1
1 − x

+ b

{
x

(1 − x)2
(37)

+ x

1∫
0

dσ ln(− ln(σ))
x+ σ

(x − σ)3




+ b2
{(

1 +
κ

2
− π2

6

)
x(1 + x)
(1 − x)3

− x

1∫
0

dσ

[
ln(− ln(σ)) +

1
2

ln2(− ln(σ))
]

× x2 + 4xσ + σ2

(x− σ)4

}
.

Let us prove that aan(0) = 1. Setting x = 0 in
Eq. (28), we obtain

aan(0) =
1

2πi

∞∫
−∞

dt

{
1

t− iπ
− 1
t+ iπ

(38)

− b

[
ln(t− iπ)
(t− iπ)2

− ln(t+ iπ)
(t+ iπ)2

]

+ b2
[
ln2(t− iπ)
(t− iπ)3

− ln2(t+ iπ)
(t+ iπ)3

− ln(t− iπ)
(t− iπ)3

+
ln(t + iπ)
(t+ iπ)3

+
κ

(t− iπ)3
− κ

(t+ iπ)3

]}
.

In the complex plane of the variable t, there are now
no singularities corresponding to perturbative con-
tributions. Following the same line of reasoning as
above, we obtain the following expression instead
of (33):

aan(0) =
1

2πi

∫
C

dz

{
1
z
− b

ln(z)
z2

(39)

+ b2
ln2(z)
z3

− b2
ln(z)
z3

+
κb2

z3

}
.

Here, the contourC is identical to that in (33). Let us
make use of formulas from the Appendix for f(z) = 1.
There are now no integrals on the right-hand sides,
but it is necessary to take into account boundary
terms. Setting z1 = −λ− iε and z2 = −λ+ iε, λ →
+∞, we can see that only the first term in expres-
sion (39) makes a nonzero contribution,

∫
C dz/z =

2πi. Thus, we have aan(0) = 1.
P

4. NONPERTURBATIVE CONTRIBUTIONS
AT q > Λ

The perturbative function a(x) has nonphysical
singularities at x = 1, the leading singularities being
given by (22). The nonperturbative contributions (37)
also have singularities at x = 1, which cancel the
singularities of the perturbative function a(x). For
x > 1, we can expand expression (37) in a series in
inverse powers of x; that is,

aan
npt(x) =

∞∑
n=1

cn
xn

, (40)

where

cn = −1 + bn


1 + n

1∫
0

dσ σn−1 ln (− ln(σ))


 (41)

− b2n2


1 − π2

6
+
κ

2
+ n

1∫
0

dσ σn−1

×
[
ln (− ln(σ)) +

1
2

ln2 (− ln(σ))
]}

.

Making the change of variable according to the re-
lation σ = exp(−t) and performing integration with
respect to t by using the results presented in [17, 18],
we obtain

cn = −1 + bn(1 − γ − ln(n)) (42)

− 1
2
b2n2

[
1 − π2

6
+ κ+ (1 − γ − ln(n))2

]
,

where γ is the Euler constant (γ � 0.5772). From
Eq. (42), it follows that the power series in (40) con-
verges uniformly for x > 1, the radius of convergence
being equal to unity. In the approximation being con-
sidered, the coefficients cn are given in Table 1 for
various values of n and nf and for various numbers
of loops from one to three. The one-loop contribution
to cn is equal to −1 for all n and nf . The two-
loop corrections to cn decrease monotonically with
increasing n for all physically interesting values of
nf , including nf = 0, 3, 4, 5, 6; with increasing n, the
three-loop corrections to cn first increase and then
decrease monotonically for all of the above values
of nf . In the ultraviolet region, the nonperturbative
contributions are determined by the first term of the
series in (40). The two-loop correction to the leading
term for x → ∞ is positive (it changes from 0.36 at
nf = 0 to 0.22 at nf = 6), whereas corrections to
the next terms are negative. For nf ≤ 4, the three-
loop correction to the leading term changes the two-
loop result for the nonperturbative contributions only
slightly. At nf = 5, the three-loop correction is 2.4
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Table 1. Coefficients cn and loop corrections ∆n for various values of n and nf at the one- to the three-loop level

nf n c
1-loop
n ∆2-loop

n ∆3-loop
n c

2-loop
n c

3-loop
n

0 1 −1.0 0.35640 −0.01568 −0.64360 −0.65929

2 −1.0 −0.45582 0.08741 −1.45582 −1.36841

3 −1.0 −1.70912 −1.03012 −2.70912 −3.73924

4 −1.0 −3.24886 −4.51236 −4.24886 −8.76122

5 −1.0 −5.00160 −11.31238 −6.00160 −17.31398

3 1 −1.0 0.33405 0.01608 −0.66595 −0.64987

2 −1.0 −0.42724 0.19623 −1.42724 −1.23101

3 −1.0 −1.60196 −0.63626 −2.60196 −3.23823

4 −1.0 −3.04517 −3.48652 −4.04517 −7.53168

5 −1.0 −4.68801 −9.19185 −5.68801 −14.87987

4 1 −1.0 0.31252 0.04949 −0.68748 −0.63799

2 −1.0 −0.39970 0.31340 −1.39970 −1.08630

3 −1.0 −1.49872 −0.23818 −2.49872 −2.73690

4 −1.0 −2.84891 −2.48499 −3.84891 −6.33389

5 −1.0 −4.38587 −7.15989 −5.38587 −12.54576

5 1 −1.0 0.27813 0.11653 −0.72187 −0.60535

2 −1.0 −0.35571 0.55755 −1.35571 −0.79817

3 −1.0 −1.33377 0.50736 −2.33377 −1.82641

4 −1.0 −2.53536 −0.73077 −3.53536 −4.26613

5 −1.0 −3.90317 −3.73728 −4.90317 −8.64045

6 1 −1.0 0.22433 0.25378 −0.77567 −0.52189

2 −1.0 −0.28692 1.07460 −1.28692 −0.21231

3 −1.0 −1.07581 1.93179 −2.07581 −0.14402

4 −1.0 −2.04500 2.37205 −3.04500 −0.67296

5 −1.0 −3.14826 2.01775 −4.14826 −2.13052
times less than the two-loop correction, but, at nf =
6, it exceeds the two-loop correction. We note that,
as nf is increased, a decrease in the two-loop cor-

rections is more than compensated by the growth
of three-loop corrections. It is of interest that the
inclusion of the two-loop corrections compensates,
to some extent, the 1/x leading term at large x, this
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2
remaining in force upon taking into account three-
loop terms.

For nf ≥ 3, the three-loop coefficient |c3-loop
1 | is

somewhat less than the two-loop coefficient |c2-loop
1 |.

From this, it does not follow, however, that, in the an-
alytic approach, higher corrections lead to a complete
compensation of nonperturbative contributions in the
ultraviolet region.
002
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Fig. 2. Relative error in calculating the analytic running
coupling constant versus momentum for the case where
the nonperturbative ultraviolet tail is approximated by one
term. The results obtained at the one-, the two-, and the
three-loop level are represented by the dotted, the dashed,
and the solid curve, respectively.

5. MOMENTUM DEPENDENCE
OF αan AND αnpt

an

Let us explore the convergence properties of the
series in (40). Since n > ln2(n) for n ≥ 1, the series

S3 =
∞∑
n=1

n3

xn
=

x(x2 + 4x+ 1)
(x− 1)4

(43)

is of use in estimating the accuracy of the approxima-
tion of the nonperturbative contribution by a partial
sum of the series in (40) with coefficients (42), the
convergence properties of the series in (40) not being
worse than those of the series in (43). The absolute
error of the approximation of the series in (43) by the
sum of the first N terms is

∆(N)
3 =

1
xN (x− 1)

[
x(x2 + 4x + 1)

(x− 1)4
(44)

+
3x(x + 1)N

(x− 1)3
+

3xN2

x− 1
+N3

]
.

Formula (44) is qualitatively similar to the one-loop
formula (14). The absolute error depends on x andN ,
becoming smaller for greater values of x and N . For
the value of x = 2 (q = 1.4Λ), which is rather small,
we find from Eqs. (43) and (44) that the relative error
of the approximation of the series in (43) for N = 30
is equal to δ̄(N) � 10−10. In our investigation of the
series in (40), we will therefore retain 30 terms (N∞ =
30). At large values of q, it is not necessary to sum up
many terms of the series. For the one- to the three-
loop case, the relative error of the approximation of
the analytic running coupling constant is shown in
Fig. 2 for the approximation of the nonperturbative
PH
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Fig. 3. Analytic running coupling constant aan and its
components apt and anpt

an (the perturbative and the non-
perturbative one, respectively) versus x = q2/Λ2 for the
one- to the three-loop case (the notation for the curves
is identical to that in Fig. 2). The number of active-quark
flavors was set to nf = 3.

contributions by the first term of the series in (40),

αan(q2) � αpt(q2) − 4π
b0

[
1 − b (1 − γ) (45)

+
1
2
b2
(

1 − π2

6
+ κ+ (1 − γ)2

)]
Λ2

q2
.

For the above region of q, we have chosen nf = 4.
Let us now consider the behavior of the nonper-

turbative contributions in the infrared region, where
these contributions are the most significant. In per-
forming calculations in this region, we set nf = 3. For
the one- to the three-loop case, Fig. 3 displays the
quantities apt, anpt

an , and aan versus x. Here, the non-
perturbative contributions were computed by sum-
ming the series in (40), while the analytic running
coupling constant was determined with the aid of
the dispersion relation (23) and formulas (25) and
(26). It turned out that, in the cases being consid-
ered, numerical integration must be performed with
caution. An insufficiently high precision of integra-
tion may manifest itself as excessively high stability
of the running coupling constant with respect to an
increase in the number of loops in the approximation
used. As a criterion of the accuracy of integration in
our calculations, we imposed the condition requiring
that the analytic running coupling constant aan(x)
as obtained by numerically integrating the spectral
density according to formulas (23), (25), and (26) be
consistent (to within 2 × 10−3%) with the quantity
aan(x) defined as the sum of its components apt(x)
and anpt

an (x), the nonperturbative component being
calculated by summing 30 terms of the series in (40).
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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that in Fig. 2). The number of active-quark flavors was
set to nf = 3.

The calculations in question were performed for val-
ues of the variable x that span the interval between 2
and 20. With decreasing x, the perturbative compo-
nent apt grows, reaching unity at q ∼ 1.7Λ. The non-
perturbative component is negative; with decreasing
x, it decreases, compensating for the growth of the
perturbative component. The quantity aan is regular

for x > 0 and a
(l)
an(0) = 1 (l is the number of loops).

As can be seen from Fig. 3, the curve representing
the two-loop analytic result is rather close to that
representing the three-loop analytic result, whence
we conclude that, even at this stage (that is, prior to
imposing normalization conditions), the results are
indicative of stability of solutions to changes in the
number of loops. As to the corresponding perturbative
curves, which do not have a common point at the
origin, they are not close to each other for x < 5.

Let us assess the magnitude of the nonpertur-
bative contributions. For the one- to the three-loop
case, the ratio of nonperturbative component of the
analytic running coupling constant to its perturbative
component is given in Fig. 4 as a function of x =

Table 2. Parameters Λ(l,nf )
pt and Λ(l,nf )

an (in MeV), where l
is the number of loops and nf = 3, under the normalization
condition α(Mτ ) = 0.35 atMτ = 1777.03 MeV

l = 1 l = 2 l = 3

Λ(l,3)
pt 241.78 431.54 400.75

Λ(l,3)
an 296.75 748.64 612.52
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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running coupling constant anpt

an to this coupling constant
as a function of x = q2/Λ2 for the one- to the three-loop
case (the notation for the curves is identical to that in
Fig. 2). The number of active-quark flavors was set to
nf = 3.

q2/Λ2. At x = 20, this ratio is about −0.15; with
decreasing x (x > 1), it tends to −1. For the same
numbers of loops, Fig. 5 shows the ratio of the non-
perturbative component of the analytic running cou-

Table 3. Analytic running coupling constant α(l)
an ver-

sus q, where l is the number of loops and nf = 3, un-
der the normalization condition α(Mτ ) = 0.35 at Mτ =
1777.03 MeV

q, MeV α
(1)
an α

(2)
an α

(3)
an

2000.0 0.3345 0.3354 0.3348
1900.0 0.3411 0.3416 0.3413
1800.0 0.3483 0.3484 0.3483
1700.0 0.3561 0.3557 0.3559
1600.0 0.3646 0.3635 0.3642
1500.0 0.3740 0.3721 0.3731
1400.0 0.3843 0.3815 0.3830
1300.0 0.3958 0.3919 0.3938
1200.0 0.4087 0.4034 0.4058
1100.0 0.4233 0.4162 0.4192
1000.0 0.4398 0.4306 0.4343
900.0 0.4589 0.4470 0.4513
800.0 0.4812 0.4659 0.4709
700.0 0.5076 0.4880 0.4935
600.0 0.5395 0.5143 0.5202
500.0 0.5789 0.5465 0.5523
400.0 0.6291 0.5870 0.5919
300.0 0.6956 0.6405 0.6425
200.0 0.7890 0.7157 0.7114
100.0 0.9333 0.8356 0.8189

0.0 1.3963 1.3962 1.3962
2
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pling constant to this coupling itself as a function of
x = q2/Λ2. This ratio is equal to−0.18 at x = 20, but
it decreases infinitely with decreasing x (x > 1).

If we impose a normalization condition on the
P

functions being considered, for example, at the q value
equal to the τ-lepton massMτ , the curves represent-
ing the two-loop and the three-loop result for αan

become still closer to each other. This can be seen
from Fig. 6. The normalization condition used for all
functions displayed in this figure is α(Mτ ) = 0.35 at
Mτ = 1777.03 MeV [15]. In just the same way as
in [4, 5], the number nf of active-quark flavors is
treated here as an effective parameter and is set to
three. Table 2 gives the values of the parameter Λ
that correspond to the above normalization condition,
while Table 3 presents the values ofαan for q changing
from 2 GeV to zero. The values of the parameter
Λ in the two- and three-loop approximation for the
analytic running coupling constant prove to be much
greater (by a factor ranging between 1.5 and 2) than
those for the perturbative coupling constant. This is
because the nonperturbative contributions are rather
large at the normalization point. The values of αan in
the two- and the three-loop case are close to each
other in the interval of q values being considered. At
q = 100 MeV, the distinction between them reaches
a maximum value of 2%. The values of α(l)

an(0) in
Table 3 enable us to check the accuracy of integra-

tion, since it is known from the outset that α(l)
an(0) =

1.396263.
Within perturbation theory, there is a recipe [19]

for matching solutions corresponding to different
values of nf . According to this recipe, the quantity
αs can be discontinuous at the matching point µ(nf ).
Since the coefficient c2 from [19] is positive and
since C2 is negative, the matching condition can
nevertheless be treated as the continuity condition
at some point µ̃(nf ). For the c quark, the value of
the running quark mass in the MS scheme is mc �
1.3 GeV and the pole mass is Mc � 1.5 GeV; taking
this into account, we find that the point µc ≡ µ̃(nf=4)

of matching according to the continuity condition
lies in the interval mc < µc < Mc. For the analytic
coupling constant, the requirement of continuity at
the point where the solutions in question are matched
is natural. Let us consider normalization conditions
that take into account the presence of the threshold
corresponding to the c quark. For the normalization
conditions α(Mτ ) = 0.35 at Mτ = 1777.03 MeV
with nf = 4 and αnf =4(mc) = αnf =3(mc) at mc =
1.3 GeV, Fig. 7 displays αpt and αan versus momen-
tum. The corresponding set of values of the parameter
Λ is given in Table 4, while the values of αan for the
values of the momentum q that were considered in
the preceding case are presented in Table 5. As in the

preceding case, the values of α(2)
an and α(3)

an are close to
each other, the maximum distinction of 2% between
them being observed at q = 100 MeV.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Table 4. Parameters Λ(l,nf )
pt and Λ(l,nf )

an (in MeV), where l
is the number of loops andnf is the number of active-quark
flavors, under the normalization conditions αnf =4(Mτ ) =
0.35 atMτ = 1777.03MeV and αnf =4(mc) = αnf =3(mc)
atmc = 1.3 GeV

l = 1 l = 2 l = 3

Λ(l,3)
pt 236.25 413.88 385.28

Λ(l,4)
pt 206.12 368.17 347.28

Λ(l,3)
an 294.68 750.18 613.02

Λ(l,4)
an 242.61 560.50 479.65

It is important to note that the values of α(2)
an and

α
(3)
an in Tables 3 and 5 differ by not more than 0.1% for

any value of q. As toαpt, the change in the normaliza-
tion condition changed significantly its momentum
dependence. This can be seen from a comparison of
the graphs of αpt(q) in Figs. 6 and 7. For example, the
three-loop perturbative curves at q = 0.7 GeV differ
by 15%. The data in Tables 2 and 4 demonstrate that,

in relation to the preceding case, the values of Λ(l,3)
pt

became somewhat smaller, while the values of Λ(l,3)
an

underwent virtually no change. Thus, we see that
not only is the analytic running coupling constant
stable with respect to the inclusion of higher approx-
imations, but it also possesses threshold stability. It
should also be noted that, in response to the change
in nf , Λan changes much more significantly than Λpt.

CONCLUSION

The representation of the QCD analytic running
coupling constant in the form

αan(q2) = αpt(q2) +
4π
b0

∞∑
n=1

cn

(
Λ2

q2

)n
(46)

with calculable coefficients cn provides an efficient
method for calculating αan for q > Λ to a precision at
the level of precision in calculating standard mathe-
matical functions. In applying this method, it is not
necessary to sum a large number of terms of the
series in (46). Even at q ∼ 5Λ, the approximation of
the nonperturbative tail by the leading term of this
series ensures a 1% precision in calculating αan.
For the standard three-loop solution (19), the explicit
expressions for the coefficients cn are given by the
simple formula (42). Owing to this, it is convenient
to analyze experimental data in terms of αan.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
Table 5. Analytic running coupling constant α(l)
an versus

q, where l is the number of loops, under the normalization
conditions αnf =4(Mτ ) = 0.35 atMτ = 1777.03MeV and
αnf =4(mc) = αnf =3(mc) atmc = 1.3 GeV

q, MeV α
(1)
an α

(2)
an α

(3)
an

2000.0 0.3349 0.3354 0.3349

1900.0 0.3413 0.3416 0.3413

1800.0 0.3483 0.3484 0.3483

1700.0 0.3559 0.3557 0.3559

1600.0 0.3642 0.3636 0.3641

1500.0 0.3734 0.3722 0.3731

1400.0 0.3835 0.3817 0.3830

1300.0 0.3947 0.3922 0.3940

1200.0 0.4076 0.4037 0.4060

1100.0 0.4221 0.4165 0.4194

1000.0 0.4386 0.4309 0.4344

900.0 0.4576 0.4473 0.4515

800.0 0.4798 0.4662 0.4710

700.0 0.5062 0.4883 0.4937

600.0 0.5380 0.5147 0.5204

500.0 0.5773 0.5469 0.5525

400.0 0.6275 0.5874 0.5920

300.0 0.6940 0.6408 0.6426

200.0 0.7874 0.7161 0.7115

100.0 0.9320 0.8359 0.8190

0.0 1.3963 1.3962 1.3962

The coefficients cn in the representation given by
(46) depend on the input approximate solution within
perturbation theory. By way of example, we take the
two-loop iterative solution presented by Shirkov and
Solovtsov [4] in the form

ait(x) =
1

lnx + b ln(ln x)
. (47)

The analytic expression corresponding to this solu-
tion can be represented in the form

aan(x) = ait(x) − 1

1 + bx
1/b
0

x0

x− x0
(48)

+ b

∞∫
0

dξ
1

1 − x exp(ξ)
1

[ξ − b ln ξ]2 + b2π2
,

2



1690 ALEKSEEV
where x0 is the solution to the equation lnx0 = x
−1/b
0 .

The coefficients of the expansion in 1/xn are given by

cn = − xn0

1 + bx
1/b
0

− b

∞∫
0

dξ
exp(−ξn)

[ξ − b ln ξ]2 + b2π2
.

(49)

At nf = 3, this yields c1 = −0.762, c2 = −1.166, and
c3 = −1.909. These values differ significantly from
the corresponding values in Table 1 for standard
nonperturbative contributions. In this connection, we
would like to mention the study of Magradze [20]; in
constructing the analytic coupling constant, he took,
for an input expression, that which is obtained as
an exact solution to the two-loop renormalization-
group equation and which is expressed in terms of
the Lambert functionW (y) specified by the equation
y = W (y) exp{W (y)}. It can be expected that the
corresponding nonperturbative contributions can be
represented in the form of expansion (40), where the
dependence of the coefficients cn on n and nf is
peculiar to the choice of the input.

In addition to the above ambiguity, there is the
ambiguity [21] that is inherent in the Redmond pro-
cedure and which is not removed by the requirement
of renormalization invariance. In studying the photon
propagator in QED, it was shown in [22] that, for
the ambiguity in summing a diagrammatic series to
be removed, it is necessary to require not only the
presence of spectral representations but also fulfill-
ment of the equations of motion. An approach to
studying nonperturbative contributions in QCD on
the basis of dynamical Dyson–Schwinger equations
was employed in [23]. As an example of going beyond
perturbation theory in models like massless QED and
the asymptotically free λφ3

6 model, we would like to
indicate the studies of Klimenko [24].
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APPENDIX

Suppose that f(z) is regular in a simply connected
region D and that z = 0 ∈ D. Since we have to deal
with integrands that have pole and logarithmic sin-
gularities at the origin, we draw a cut in the regionD
along the negative real axis. For any contour C that
lies in the region D̃ cut in the way indicated above and
PH
which goes from the point z1 �= 0 to the point z2 �= 0,
the following relations hold:
∫
C

dz

z
f(z) = −

∫
C

dz ln(z)f ′(z) + ln(z)f(z)

∣∣∣∣∣
z2

z1

,

∫
C

dz

z3
f(z) = −1

2

∫
C

dz ln(z)f ′′′(z)

+
{
− 1

2z2
f(z) − 1

2z
f ′(z) +

1
2

ln(z)f ′′(z)
}∣∣∣∣∣

z2

z1

,

∫
C

dz

z2
ln(z)f(z) = −

∫
C

dz

(
ln(z) +

1
2

ln2(z)
)

× f ′′(z) +
{
−1
z
f(z) − ln(z)

z
f(z)

+ ln(z)f ′(z) +
1
2

ln2(z)f ′(z)
}∣∣∣∣∣

z2

z1

,

∫
C

dz

z3
ln(z)f(z) = −

∫
C

dz

(
3
4

ln(z) +
1
4

ln2(z)
)

× f ′′′(z) +
{
− 1

4z2
f(z) − 3

4z
f ′(z)

− ln(z)
2z2

f(z) − ln(z)
2z

f ′(z)

+
3 ln(z)

4
f ′′(z) +

ln2(z)
4

f ′′(z)
}∣∣∣∣∣

z2

z1

,

∫
C

dz

z3
ln2(z)f(z) = −

∫
C

dz

(
7
4

ln(z)

+
3
4

ln2(z) +
1
6

ln3(z)
)
f ′′′(z)

+
{
− 1

4z2
f(z) − 7

4z
f ′(z) − ln(z)

2z2
f(z)

− 3 ln(z)
2z

f ′(z) +
7 ln(z)

4
f ′′(z) − ln2(z)

2z2
f(z)

− ln2(z)
2z

f ′(z) +
3 ln2(z)

4
f ′′(z) +

ln3(z)
6

f ′′(z)
}∣∣∣∣∣

z2

z1

.
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Abstract—The potential of static quarks that is consistent both with the three-loopQCD running coupling
constant, the two-loop perturbative matching of the MS and V schemes being taken into account here,
and with the regime of quark confinement at long distances is derived on the basis of the procedure and
arguments proposed by Richardson, Buchmüller, and Tye. Applications of this approach are discussed for
the masses of heavy quarks, for the mass spectra of heavy quarkonia, and for the leptonic widths of vector
states. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The potential of static heavy quarks reflects the
most important features of QCD dynamics, including
asymptotic freedom and confinement. In studying
subtle and rare electromagnetic processes in the
heavy-quark sector of the Standard Model, it is nec-
essary to understand profoundly strong-interaction-
induced effects. For hard processes, there are, in
addition to perturbative calculations, three general
approaches to obtaining comprehensive answers to
the question of how heavy quarks are bound within
hadrons and the question of how the measured prop-
erties of hadrons are related to the features of heavy
quarks with respect to their electroweak interactions
and QCD forces. These are an operator-product
expansion in inverse powers of the heavy-quark mass,
QCD sum rules, and potential models that em-
ploy various approximations of the Bethe–Salpeter
equation with a static potential. The first method is
usually used to deduce inclusive estimates, whereas
the second and the third one are invoked for exclusive
calculations. It is of paramount importance to find
out whether the results of calculations based on these
methods are consistent; therefore, a comparative
analysis of such results is urgently needed for this.
Obviously, the wider the set of systems and processes
involved in such an analysis, the more profound the
qualitative and quantitative understanding of the
dynamics of heavy quarks.
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In the leading order of perturbative QCD at short
distances and with a linear confining interaction in the
infrared region, the potential of static heavy quarks
was considered within the Cornell model [1], where
a simple superposition of two asymptotic limits was
introduced (an effective Coulomb interaction and a
stringlike interaction). The observed heavy quarkonia
occur in the intermediate region of distances, where
the contribution of either potential term is of im-
portance in determining the mass spectra. For this
reason, phenomenological approximations of the po-
tential (a logarithmic and a power-law dependence
[2, 3]) that were constructed with allowance for reg-
ularities observed in the mass spectra [4] could be
successfully used. In relation to the masses of bound
heavy-quark states, the quarkonium wave functions
at the origin, which determine leptonic coupling con-
stants and normalizations of the cross sections for
the production of quarkonia, are more sensitive to the
global properties of the potential. Potentials that are
consistent both with asymptotic freedom and with a
linear form of confinement were proposed by Richard-
son [5] within the one-loop approximation and by
Buchmüller and Tye [6] at the two-loop level. Tech-
nically, it is necessary to calculate, within a specific
regularization scheme—say, the modified minimal-
subtraction (MS) scheme—the perturbative expan-
sion of the potential of static quarks by representing
this potential in the form of a Coulomb potential with
a running coupling constant in the V scheme. As a
result, calculations within perturbation theory yield
conditions that ensure the matching of the MS and
V schemes. Calculations with the running coupling
constant αMS

s at the n-loop level require matching
with αV at the (n− 1)-loop level. We note that two
input coefficients corresponding to the β function are
quantities that are independent of either the regu-
2002 MAIK “Nauka/Interperiodica”
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larization scheme or the computational procedure,
whereas the remaining coefficients do generally de-
pend on the computational procedure. The V scheme
is defined for an observable, so that its β function
is gauge-invariant. For αV , Buchmüller and Tye in-
troduced a β function such that it is consistent with
the known asymptotic regimes at short and long dis-
tances. They proposed a functional form leading to an
effective charge that is specified by only two parame-
ters, a perturbative and a nonperturbative one (scale
in the running coupling constant at large virtualities
and tension of the quark–gluon string, respectively).
A full characterization also requires specifying the
coefficients in the β function. Only the two-loop β
function and the conditions of one-loop matching
with the potential had been known by the instant at
which the article of Buchmüller and Tye appeared. In
recent years, considerable advances have been been
in relevant computations: the two-loop conditions
of matching of the V and MS schemes [7, 8] can
be combined with the three-loop running coupling
constant αMS

s . Thus, it would be of great interest
to modify the Buchmüller–Tye potential for static
quarks in accordance with the present-day status of
perturbative calculations. Moreover, two questions
remain open at present. First, the asymptotic pertur-
bative expansion of the Buchmüller–Tye β function to
the third order leads to the three-loop coefficient that
differs drastically from the exact result—even its sign
is incorrect. Second, the parameter ΛMS used in the
Buchmüller–Tye potential is at odds with the results
of recent measurements reported in [9]. In order to
clarify these points, we will derive the potential of
static quarks that is consistent with the current state
of affairs in this realm of investigations.

Yet another facet of this study is associated with
the masses of heavy quarks. Once the potential has
been specified, the pole masses define the mass spec-
tra of heavy quarkonia without any arbitrariness.3)

Therefore, it is necessary to check the consistency of
mass estimates within this approach with the QCD
potential for static quarks and within QCD sum rules.

The ensuing exposition is organized as follows. In
Section 2, we generalize the Buchmüller–Tye proce-
dure to the case of three loops and derive the potential
of static quarks. We consider numerical values of the
potential parameters and their consistency with the
corresponding values known from other approaches.
In Section 3, we discuss the implications of this ap-
proach for the masses of heavy quarks, for the spectra

3)We are dealing here with so-called spin-averaged spectra,
since the inclusion of a spin-dependent splitting would lead
to the emergence of additional parameters that are beyond
the static approximation.
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of heavy quarkonia, and for the leptonic coupling con-
stants. The results that we have obtained are summa-
rized in the Conclusion.

2. QCD AND POTENTIAL OF STATIC
QUARKS

In this section, we discuss two regimes for QCD
forces between static heavy quarks: asymptotic free-
dom and confinement. Further, we present a con-
struction that combines these two regimes in a unified
β function that is consistent with both limits at small
and large values of the QCD coupling constant.

2.1. Perturbative Results at Short Distances

The static potential is defined in a manifestly
gauge-invariant form in terms of the vacuum expec-
tation value of the Wilson loop as [10]

V (r) = − lim
T→∞

1
iT

ln〈WΓ〉, (1)

WΓ = t̃rP exp
(
ig

∮
Γ
dxµA

µ

)
,

where Γ is a rectangular contour with sides T in time
and r in space. The gauge fields Aµ of charge g are
ordered along the path (this is denoted by the sym-
bol P), and the color trace is normalized according to
the condition t̃r(...) = tr(...)/tr1̂.
It is common practice to consider the V scheme for

the QCD coupling constant. This scheme is usually
introduced by defining the potential of static quarks
in momentum space via the relation

V (q2) = −CF
4παV (q2)

q2
, (2)

where αV can be matched with αMS
s specified at an

arbitrary normalization point µ; that is,

αV (q2) = αMS
s (µ2)

∞∑
n=0

ãn(µ2/q2)

(
αMS
s (µ2)

4π

)n

(3)

= αMS
s (q2)

∞∑
n=0

an

(
αMS
s (q2)

4π

)n

.

At present, our knowledge of this expansion4) does
not go beyond the tree, the one-loop, and the two-
loop matching condition, so that we have

a0 = ã0 = 1, a1 =
31
9
CA − 20

9
TFnf , (4)

4)For an analysis of the possible special features of the expan-
sion, the reader is referred to [10].
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ã1 = a1 + β0 ln
µ2

q2
,

a2 =
(

4343
162

+ 4π2 − π
4

4
+

22
3
ζ(3)

)
C2
A (5)

−
(

1798
81

+
56
3
ζ(3)

)
CATFnf

−
(

55
3

− 16ζ(3)
)
CFTFnf +

(
20
9
TFnf

)2

,

ã2 = a2 + β20 ln2 µ
2

q2
+ (β1 + 2β0a1) ln

µ2

q2
. (6)

Here, we have employed the usual notation for
the SU(Nc) gauge group: CA = Nc, CF = (N2

c −
1)/(2Nc), and TF = 1/2. The number of active quark
flavors is denoted by nf .

Upon setting a = α/(4π), the β function is defined
as

da(µ2)
d lnµ2

= β(a) = −
∞∑
n=0

βnan+2(µ2), (7)

so that we have βV0,1 = βMS
0,1 and

βV2 = βMS
2 − a1βMS

1 + (a2 − a21)βMS
0 (8)

=
(

618 + 242ζ(3)
9

+
11(16π2 − π4)

12

)
C3
A

−
(

445 + 704ζ(3)
9

+
16π2 − π4

3

)
C2
ATFnf

+
2 + 224ζ(3)

9
CA(TFnf )2

− 686 − 528ζ(3)
9

CACFTFnf

+ 2C2
FTFnf +

184 − 192ζ(3)
9

CF (TFnf )2.

The coefficients in the β function that were calculated
in theMS scheme [11] are given by

βMS
0 =

11
3
CA − 4

3
TFnf , (9)

βMS
1 =

34
3
C2
A − 4CFTFnf −

20
3
CATFnf , (10)

βMS
2 =

2857
54
C3
A + 2C2

FTFnf (11)

− 205
9
CACFTFnf − 1415

27
C2
ATFnf

+
44
9
CF (TFnf )2 +

158
27
CA(TFnf )2.

The expression for the potential in coordinate space is
obtained by applying the Fourier transformation. The
P

result is [7]

V (r) = −CF
αMS
s (µ2)
r

(12)

×
(

1 +
αMS
s (µ2)

4π
(
2β0 ln(µr′) + a1

)

+

(
αMS
s (µ2)

4π

)2(
β20

(
4 ln2(µr′) +

π2

3

)

+ 2(β1 + 2β0a1) ln(µr′) + a2
))

+ . . .
)
,

where r′ ≡ r exp(γE), with γE being the Euler con-
stant. Defining a new distance-dependent running
coupling constant via the relation

V (r) = −CF
ᾱV (1/r2)

r
, (13)

one can calculate its β function with the aid of (12);
as a result, it turns out that [7]

β̄V2 = βV2 +
π2

3
β30 (14)

and that the low-order coefficients β̄V0,1 are equal to
the scheme-invariant values presented above.
In order to normalize the coupling constants, we

use relations (3) at q2 = m2
Z .

2.2. Quark Confinement

The nonperturbative behavior of QCD forces be-
tween static heavy quarks at long distances r is usu-
ally represented by the linear potential (see the rele-
vant discussion in [12])

V conf(r) = k · r, (15)

which corresponds to the area law for theWilson loop.
This potential can be expressed in terms of a con-

stant chromoelectric field between sources that oc-
cur in the fundamental representation of the SU(Nc)
group. By way of example, we indicate that, in the
Schwinger–Fock fixed-point gauge

xµ · Aµ(x) = 0,

the gluon field is expressed in terms of the strength
tensor as

Aµ(x) ≈ −1
2
xνGνµ(0).

For static quarks separated by a distance r, one can
then obtain the following relation in terms of com-
ponents (the subscripts m and 0 are associated with
spatial and time components)

Q̄i(0)Ga
m0(0)Qj(0) =

rm
r
ET a

ij .
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Here, the fields of heavy quarks are normalized to
unity; T a

ij are the generators of the color-symmetry
group in the fundamental representation; i and j
are color indices of the quarks involved; and E
is the chromoelectric-field normalization, which is
expressed in terms of the gluon condensate (see
below). The potential that confines quarks can then
be represented as

V conf(r) =
1
2
g CF E · r.

Assuming that the same field strength corresponds
to the formation of the gluon condensate and intro-
ducing stochastic color sources ni, which must be
averaged over a vacuum, we can easily obtain

〈G2
µν〉 = −4 〈Ga

m0(0)Ga
m0(0)〉 = 4CF E

2〈n̄n〉,
where we have used the relation

〈n̄T aT bn〉 = −〈n̄T an · n̄T bn〉, (16)

which guarantees that the sources do not violate
gauge invariance, since they do not generate a gluon
mass.5) Further, it is obvious that

〈n̄T aT bn〉 = CF
δab

N2
c − 1

〈n̄n〉.

We then conclude that the relation between the field
strength E and the string tension depends on the
normalization of the vacuum sources ni. We set

〈n̄inj〉 = nlδij ,

where nl stands for the mean number of stochastic
light flavors, which is a free parameter of the present
consideration. Needless to say, the quantity nl must
be finite even in the case of pure gluodynamics featur-
ing no light quarks in the infrared region. Moreover,
light-quark loops can generate ruptures of a gluon
string—that is, strong decays of higher excitations.
We assume that nl is determined primarily by gluon
dynamics (that is, it depends on the number of colors),
weakly correlating with the number of quark flavors.
A simple consideration of the potential force between
two color sources in the fundamental and the adjoint
representation—that is, a comparison of color factors
for one-gluonCoulomb potentials—makes it possible
to determine the number of stochastic sources replac-
ing, in the approach adopted here, vacuum gluons for
pure gluodynamics. The result is

nl =
1
Nc

CA

CF
=

3
4
,

where the factor 1/Nc ensures the normalization of a
source to unity and CA/CF is the corresponding ratio

5)The mass term generated by the sources must have had the
form L ∼ Aa

νA
b
ν [n̄T aT bn+ n̄T an · n̄T bn], which vanishes,

by virtue of Eq. (16), upon averaging over the sources.
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of color charges. A shift of nl in QCD featuring light
quarks is not fixed explicitly; however, lattice cal-
culations revealed that the dependence of the string
tension on the number of light quarks is rather weak
[13]. Finally, the coefficient in the linear term of the
potential assumes the form

k =
π

2
√
Nc
CF

√〈αs
π
G2

µν

〉
. (17)

The quantity k is usually expressed in terms of α′
P
as

k =
1

2πα′
P

.

Buchmüller and Tye set α′
P

= 1.04 GeV−2; here, we
will also use this string-tension value, which is related
to the slope of Regge trajectories and which can be
compared with the estimate following from (17). At
〈αs
π G

2
µν〉 = (1.6 ± 0.1) × 10−2 GeV4 [14], we have

α′
P

= 1.04 ± 0.03GeV−2,

which complies well with the fixed value given above.6)

The form of the confining potential in (15) corre-
sponds to the limit where, for small virtualities, q2 →
0, the limiting behavior of the coupling constant αV is

αV (q2) → K

q2
, (18)

whence it follows that
dαV (q2)
d ln q2

→ −αV (q2). (19)

For the function βV , this yields the asymptotic behav-
ior corresponding to confinement.

2.3. Unified β Function and Potential

Buchmüller and Tye proposed a procedure for re-
constructing the β function in the entire region of
the charge variation on the basis of the known limits
in the regime of asymptotic freedom in a given or-
der of perturbation theory in αs and in the confining
regime. For example, the function βPT found within
asymptotic perturbation theory at the one-loop level
transforms into the Richardson β function; that is,

1
βPT(a)

= − 1
β0a2

→ 1
βRich(a)

(20)

= − 1
β0a2 (1 − exp [−1/(β0a)])

.

The Richardson function has an essential singularity
for a → 0, with the result that the relevant expansion

6)Arbitrariness in choosing nl can change the appropriate
value of the gluon condensate.
2
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leads to an asymptotic series in a. For a → ∞, the
function βRich tends to the confining-regime limit, as
is seen in (19).

At the two-loop level, an analysis based on the
same method leads to the Buchmüller–Tye β func-
tion,

1
βPT(a)

= − 1
β0a2

+
β1
β20a

→ 1
βBT(a)

(21)

= − 1
β0a2 (1 − exp [−1/(β0a)])

+
β1
β20a

exp[−la].

The exponential factor in the second term contributes
in the next-to-leading order in a at small a, so that
the perturbative limit is restored. However, we can
easily find that, when the relevant series expansion is
constructed, the third coefficient in the function βBT
is given by

β2,BT =
β1
β0

(β1 − lβ0).

We see that, at the chosen value of l = 24, it is nega-
tive [6], which is at odds with the new result obtained
in [7, 8] and presented in (8).

In order to make use of the three-loop results for
the perturbative β function, we introduce the trans-
formation

1
βPT(a)

= − 1
β0a2

+
β1 +

(
βV2 − β21/β0

)
a

β20a
(22)

→ 1
β(a)

= − 1
β0a2 (1 − exp [−1/(β0a)])

+
β1 +

(
βV2 − β21/β0

)
a

β20a
exp

[
− l

2a2

2

]
,

where, as before, the exponential factor in the second
term contributes only in the order that follows, in
accuracy, the order of the three-loop consideration for
a → 0. In the perturbative limit, the usual solution for
the running coupling constant,

a(µ2) =
1

β0 ln(µ2/Λ2)
(23)

×
[
1 − β1

β20

1
ln(µ2/Λ2)

ln ln
µ2

Λ2
+
β21
β40

1

ln2 µ2

Λ2

×
(

ln2 ln(µ2/Λ2) − ln ln
µ2

Λ2
− 1 +

βV2 β0
β21

)]
,

remains valid, where, as usual, we have introduced
the dimensional constant Λ that appears as the con-
stant of integration of the relevant renormalization-
group equation and which specifies the point of the
infrared singularity in the running coupling constant.
By using the asymptotic limits in (18) and (23), we
PH
can find an equation for any β function satisfying
given boundary conditions. For example, we have

ln
µ2

Λ2
=

1
β0a(µ2)

+
β1
β20

lnβ0a(µ2) (24)

+

a(µ2)∫
0

dx

[
1
β0x2

− β1
β20x

+
1
β(x)

]
,

ln
K

µ2
= ln a(µ2) +

∞∫
a(µ2)

dx

[
1
x

+
1
β(x)

]
. (25)

At a given β function, Eqs. (24) and (25) generally
specify the relationship between the scale Λ and the
parameterK of the linear potential [see Eq. (18)],

k = 2πCFK.

With the aid of (22), Eq. (24) can easily be integrated,
whereby one obtains an implicit solution for the scale
dependence of the charge. Specifically, we have

ln
µ2

Λ2
= ln

[
exp

(
1

β0a(µ2)

)
− 1
]

(26)

+
β1
β20

[
ln
β0

√
2
l

− 1
2

(
γE + E1

[
l2a2(µ2)

2

])]

+
βV2 β0 − β21

β30

√
π/2
l

Erf
[
l a(µ2)√

2

]
,

where

E1[x] =

∞∫
x

dt t−1 exp[−t]

is the exponential integral and

Erf[x] =
2√
π

x∫
0

dt exp[−t2]

is the error function.
Equation (26) can be inverted by applying the

method of iterations, as was done in deriving Eq. (23).
As a result, an approximate solution to Eq. (26) takes
the form

a(µ2) =
1

β0 ln [1 + η(µ2)(µ2/Λ2)]
, (27)

where

η(µ2) =
(

l

β0
√

2

)β1/β2
0

(28)

× exp

[
β1
2β20

(
γE + E1

[
l2a21(µ

2)
2

])
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− βV2 β0 − β21
β30

√
π/2
l

Erf
[
l a1(µ2)√

2

]]
,

with a1 being obtained in two iterations:

a1(µ2) =
1

β0 ln [1 + η1(µ2)(µ2/Λ2)]
, (29)

η1(µ2) =
(

l

β0
√

2

) β1
β2
0 (30)

× exp
[
β1/2β20

(
γE + E1

[
l2a20(µ

2)
2

])]
,

a0(µ2) =
1

β0 ln [1 + (µ2/Λ2)]
. (31)

Going over to the limit µ2 → 0, we arrive at the rela-
tion

ln 4π2CFα
′
PΛ2 = lnβ0 (32)

+
β1
2β20

(
γE +

l2

2β20

)
− β

V
2 β0 − β21
β30

√
π/2
l
,

which fixes completely the parameters in the β func-
tion and the charge in terms of the scale Λ and the
slope α′

P
, since the parameter l is specified, in the form

of an explicit function, by these two quantities in (32)
.
We recall that, for µ2 → ∞, the perturbative ex-

pression (23) becomes valid as the limit of the effective
charge in (27).
We can now proceed to discuss the numerical

values of the potential parameters.

2.4. Choice of Scales

As was mentioned above, the slope of Regge tra-
jectories, which specifies the linear part of the poten-
tial is fixed:

α′
P

= 1.04 GeV−2.

We also use the measured QCD coupling constant [9]
and take

αMS
s (m2

Z) = 0.123

for the basic parameter controlling the potential.
For this choice of normalization value for the QCD
coupling constant, the scale is ΛMS

nf=5 ≈ 273 MeV;
this differs somewhat from the averaged value of
ΛMS
nf=5 ≈ 208+25

−23 MeV, which is presented by the
Particle Data Group [9] and which corresponds to the
value of αMS

s (m2
Z) = 0.1181 ± 0.002. However, this

averaged value, which includes various data, is deter-
mined primarily by the most precise measurements—
specifically, by LEP data on hadronic events at the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
Z-boson peak (hadronic width), by τ-lepton decays,
by data on deep-inelastic scattering, and by lattice
calculations for systems of heavy quarkonia. In these
quantities, high-energy measurements at LEP for Z
and at HERA for the evolution of the nucleon struc-
ture functions yield the average values ofαMS

s (m2
Z) =

0.123 ± 0.004 and αMS
s (m2

Z) = 0.122 ± 0.004, re-
spectively, and only the evolution of the structure
functions at low virtualities, where the evolution is
affected by poorly defined nonperturbative effects
and by the contributions of higher twists, and the
energy-dependent sum rules for structure functions
at low energies shift sizably the average value of the
coupling constant in deep-inelastic lepton–nucleon
scattering. Thus, we conjecture that the method-
ological uncertainty in the above average value is
somewhat underrated, since, in this case, low-energy
data involve theoretical sources of uncertainty, which
are difficult to assess. Data on τ-lepton decays lead
to αMS

s (m2
Z) = 0.121 ± 0.003. This result is based on

sum rules, where knowledge of nonperturbative cor-
rections is much more precise than in deep-inelastic
scattering, although there are theoretical problems
even here that are associated with the formulation of
sum rules in the region of physical states, where there
are distinctions from the classical version of sum rules
at negative virtualities of large magnitude. Finally,
lattice calculations investigate the splitting of states
of heavy quarkonia that is determined by dynamics in
the infrared region; at the same time, such calcula-
tions employ approximations featuring zero number
of light quarks or nf = 2, relying on a subsequent
extrapolation to nf = 3, as well as to the region of
large virtualities owing to evolution. Nevertheless, a
high accuracy of such estimates is declared. As we
have seen, spectroscopic data on systems of heavy
quarks should be interpreted with great caution, since
the evolution of the potential parameters from the
region of bound states to high virtualities is affected
by nonperturbative factors. Thus, we can see that
the normalization value adopted here for the QCD
coupling constant agrees well with the results of
direct high-energy measurements; at the same time,
indirect data obtained at low energies prove to be
compatible with it if we take into consideration their
poorly controllable systematic uncertainties.
We note that the reduction of the normalization

value—for example, down to αMS
s (m2

Z) = 0.120—
results in the fact that it becomes impossible to de-
scribe data on the mass splitting in heavy quarko-
nia between the 1S and 2S levels, which is very
sensitive to variations in the normalization of the
QCD running coupling constant: instead ofM(2S)−
M(1S) ≈ 580MeV, there arises a result that is about
100 MeV less than that. Concurrently, a change in
2
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Fig. 1. Potential of static heavy quarks in QCD (solid
curve) along with that in the Cornell model (dashed
curve), an additive shift being made here along the energy
scale.

the other dimensional parameter, the slope of the
Regge trajectory, from the adopted value of α′

P
=

1.04 GeV−2 down to α′
P

= 0.87 GeV−2 leads to an
insignificant variation both in the splitting and in the
corresponding value of the coupling-constant scale
associated with its evolution toward low virtualities.
We then obtain

αV (m2
Z) ≈ 0.1306

and use this value as the normalization condition for
a(m2

Z). We then determine the values of the param-
eter Λ for the effective charge versus the number of
active flavors. We have

Λnf=3 = 643.48 MeV, l = 56, (33)

Λnf=4 = 495.24MeV, l = 37.876, (34)

Λnf=5 = 369.99MeV, l = 23.8967, (35)

where we set the threshold values for the changeover
of the number of flavors to m5 = 4.6 GeV and m4 =
1.5 GeV. Having determined the momentum depen-
dence of the charge, we make a Fourier transforma-
tion and arrive at

V (r) = k · r − 8CF

r
u(r), (36)

u(r) =

∞∫
0

dq

q

(
a(q2) − K

q2

)
sin(q · r),

where the function u(r) has been determined numer-
ically for r > 0.01 fm and is presented as a file of the
MATHEMATICA system in the notebook format on
the site quoted in [15].
We note that, at short distances, the behavior of

the potential is purely perturbative; in view of this, it
is legitimate, for r < 0.01 fm, to set [see Eq. (13)]

V (r) = −CF
ᾱV (1/r2)

r
,

PH
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Fig. 2. Potential of static heavy quarks in QCD (thick
solid curve) along with that in the Cornell model (dashed
curve), an additive shift being made here along the energy
scale, and their difference (thin solid curve) at short dis-
tances, which is due to the scale dependence of the QCD
coupling constant.

where the running coupling constant ᾱV (1/r2) is
given in Eq. (23) with the corresponding value of β̄V2
at nf = 5 and is normalized by the condition that
requires matching with the potential (36) at the point
rs = 0.01 fm; as a result, the numerical calculations
based on (36) and (13) appear to be consistent at

ᾱV (1/r2s ) = 0.22213,

which leads to ΛV
nf=5 = 617.42 MeV.

Thus, we have completely specified the model of
the potential of heavy quarks in QCD. Figure 1 shows
the potential as a function of the interquark spacing.
It can be seen that the calculated potential is close in
shape to the Cornell model potential, which was ob-
tained phenomenologically by fitting themass spectra
of heavy quarkonia.
A noticeable distinction between the QCD poten-

tial that we derived and that in the Cornell model at
long distances is due to a mere numerical difference
of values chosen for the string tension: we adopted the
value from the study of Buchmüller and Tye, whereas
the Cornell model employs a greater string tension.
The distinction between these two potentials at short
distances is muchmore significant (see Fig. 2), which
is caused by a clear physical reason: the QCD cou-
pling constant is running in our approach, but it is
fixed in the Cornell model.
For the sake of comparison, the differences of the

β functions in (20), (21), and (22) are displayed in
Fig. 3 at fixed values of the parameters l and nf = 3.
From this figure, it can be seen that the asymptotic
perturbative expansion of β for a → 0 plays a dom-
inant role for a < a0, where a0 ≈ 0.03 corresponds
to αV,0 ≈ 0.37. This value of the coupling constant
αV,0 coincides with the effective Coulomb constant in
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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the Cornell model. At greater values of the coupling
constant, contributions associated with the confining
regime become significant.

At this point, two comments are in order. First, the
potential that we derived was obtained by employing
a perturbative normalization to the measured value
of αMS

s (m2
Z) and the three-loop form of evolution to

lower virtualities. Second, the variation in the running
coupling constant is modified (numerically, the devi-
ation from the perturbative regime becomes sizable at
virtualities in the region µ < 3–4 GeV) in such a way
that the limiting value characteristic of the confining
regime is achieved for µ→ 0, in which case the per-
turbative relationship between the scales Λ and ΛMS

is violated at virtualities specifying the physical scale
of strong interactions in systems involving charmed
and beauty quarks. It was the reason why Buchmüller
and Tye determined ΛMS incorrectly.

3. MASSES OF HEAVY QUARKS
AND LEPTONIC CONSTANTS

In considering the features of bound states of
heavy quarks, it should be noted first of all that
one must clearly separate two theoretical problems.
The first is the problem of calculating the potential
of heavy quarks. This problem, where the static
limit mQ → ∞ is the leading-order approximation
of the operator-product expansion in the inverse
heavy-quark mass, was considered in the preceding
section. The second problem is that of calculating
the masses of bound states. In heavy quarkonia,
the kinetic energy of quark motion is commensurate
with the potential energy; therefore, the sum of the
nonrelativistic kinetic term and the static potential—
these two terms are precisely those that specify the
dominant term in the Schrödinger equation for bound
states—represents the leading approximation for the
effective Lagrangian in the operator-product expan-
sion in the inverse heavy-quark mass. Corrections
to bound-state masses computed on the basis of
the nonrelativistic Schrödinger equation with the
static potential stem from relativistic terms in the
kinetic energy and from operators that are dependent
on the quark spins and interquark spacings and
which are suppressed by inverse powers of the heavy-
quark mass, as well as from nonpotential effects
of the retardation of interaction. It will be shown
below that the magnitude of such corrections can
be restricted numerically, with the result that there
arises a methodological uncertainty in calculating the
mass spectra of heavy quarkonia within the potential
approach featuring a static potential.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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Fig. 3. Differences of the β functions versus the effective
charge: (solid curve) (β − βBT)/|β|, (short dashes) (β −
βRich)/|β|, and (long dashes) (βBT − βRich)/|βBT|.

3.1. Masses

For a potential that is specified in the static
approximation, we can determine the masses of heavy
quarks from a comparison of the mass spectra of
heavy quarkonia with the calculated values. The
predicted charmonium and bottomonium masses are
given in Table 17) at

mc = 1.468 GeV, mb = 4.873 GeV (37)

without taking into account relativistic effects, which
may prove to be of importance for charmonium [for
example, ∆M(c̄c) ∼ 40 MeV]. At present, the only
measured splitting of nS levels is the splitting of ηc
and J/ψ, which makes it possible to estimate the so-
called spin-averaged mass of a state:

M(1S) = (3MJ/ψ +Mηc)/4.

Assuming that the simple relation M(nS) =
Mψ(nS) − (MJ/ψ −Mηc)/4n is valid [4], we also
estimate the expected splittings for excited states to
a precision that we believe to be higher than 10 MeV.
For the P-wave levels, we use the masses

M(P ) =M1 +
1
3
(M2 −M0)

+
2
9

(M2 −M1 + 2(M0 −M1)),

where MJ is the mass of the state that is character-
ized by the total spin J and by the sum of the quark
spins that is equal to S = 1. Here, we assumed that

7)We assume that the ψ(3770) charmonium state is a mixture
of the 3S and 3D levels, the 3D mass being insignificantly
shifted.
2
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Table 1.Charmonium, bottomonium, and quarkonium (b̄c) masses predicted in the present study, along with experimen-
tal data treated according to the procedure described in the main body of the text

Q̄Q(nL) M , GeV M expt, GeV Q̄Q(nL) M , GeV M expt, GeV

c̄c(1S) 3.068 3.068 c̄c(2P ) 3.493 3.525

c̄c(2S) 3.670 3.671 c̄c(3P ) 3.941 –

c̄c(3S) 4.092 4.040 c̄c(3D) 3.785 3.770

b̄b(1S) 9.446 9.446 b̄b(2P ) 9.879 9.900

b̄b(2S) 10.004 10.013 b̄b(3P ) 10.239 10.260

b̄b(3S) 10.340 10.348 b̄b(3D) 10.132 –

b̄b(4S) 10.606 10.575 b̄b(5S) 10.835 10.865

b̄c(1S) 6.322 6.40 b̄c(2P ) 6.739 –

b̄c(2S) 6.895 – b̄c(3P ) 7.148 –

b̄c(3S) 7.279 – b̄c(3D) 7.013 –
the spin-dependent forces are given by

VSD = A(L · S) +B(L · S)2 − 1
3
BL2 · S2,

where the third term corresponds to the third term in
the expression for the massM(P ) and leads to a shift
of the levels that is proportional to the orbital angular
momentum L.
We also assumed that

MΥ −Mηb
≈ αs(mb)
αs(mc)

m2
c

m2
b

|Rb̄b(0)|2
|Rc̄c(0)|2

× (MJ/ψ −Mηc) ≈ 56 MeV,

whereRb̄b(0) andRc̄c(0) are the radial wave functions
at the origin calculated for the 1S-wave states of
the b̄b and c̄c quarkonia in solving the Schrödinger
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Fig. 4. Potential of static heavy quarks in QCD (solid
curve) along with the representation of the perturbative
expression (12) at µ = 1.5 GeV (dashed curve), an addi-
tive shift being made here along the energy scale.
PH
equation with the static potential. In such calcula-
tions, the dimensions of the quarkonia prove to be ap-
proximately equal to those in the model proposed by
Buchmüller and Tye, although the state masses that
we obtained are slightly different from those in their
model, since we have used, for the input parameters,
the different ground-state masses

Mc̄c(1S) = 3.068 GeV, Mb̄b(1S) = 9.446 GeV.

Further, we predict the mass of the heavy quarko-
nium b̄c,8) as is given in Table 1. The computed
mass values are seen to comply well with the values
obtained for the Buchmüller–Tye and for the Martin
potential [17].
The quarkonium wave functions at the origin are

related to the normalization of the cross sections for
quarkonium production. The computed values are
close to those that were obtained for the Buchmüller–
Tye potential, but they are somewhat less for two
reasons, that which is associated with the change in
the heavy-quark mass and that which is associated
with the distinction in the asymptotic behavior of the
potential for r → 0.
In the proposed approach, we fixed the pole heavy-

quark masses (37) as quantities that are independent
of the scale. In order to compare these values with
those that were obtained within QCD sum rules, we
note above all that, in QCD sum rules, use is usually
made of nonrelativistic QCD (NRQCD) [18] with
the nonperturbative potential (12), which explicitly
depends on the normalization point µ (the conven-
tional notation in the sum rules is µsoft). We have

8)The current experimental error in the measurements of the
ground-state mass is still high, δM = ±0.39 GeV [16].
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Fig. 5. As in Fig. 4, but for µ = 2.0GeV.

verified that, at short distances and large µsoft, the
perturbative potential (12) reproduces the form of the
potential derived in the present study, but that there is
a deviation at r� 1/µsoft. At distances characteristic
of the ground states of heavy quarkonia, 〈rb̄b(1S)〉 ≈
0.22 fm and 〈rc̄c(1S)〉 ≈ 0.42 fm, the potential can
be approximated by the perturbative expression at
µsoft = 1.5− 2.0GeV (see Figs. 4, 5) with an additive
energy shift δV (µsoft) that is shown in Fig. 6. Thus,
we can see that the masses of the charmonium and
bottomonium ground states can be computed by us-
ing the perturbative potential (12).

In order to illustrate the scale dependence of the
region where the total and the perturbative static
potential inQCDcoincide, we choose the scale values
of µsoft = 1.5 GeV and µsoft = 2 GeV in Figs. 4 and
5, respectively. From these figures, it can be seen that,
as the scale µsoft of normalization of the perturbative
potential is reduced, the region where this potential
coincides with the total static QCD potential intro-
duced above is shifted toward longer distances. If we
assume that characteristic distances are determined
by the inverse normalization scale, r ∼ 1/µsoft, this
result becomes quite expectable. By way of example,
we indicate that, at µsoft = 1.5 GeV, one has r ≈
0.15 fm for a typical interquark distance at which
the perturbative potential is expected to be consistent
with the total potential. However, the linear compo-
nent of the QCD potential grows rather slowly in
relation to the rate of variation of the Coulomb con-
tribution, with the result that the distinction between
the total potential and the perturbative one becomes
sizable not at r ≈ 0.15 fm but at longer distances
of r ≈ 0.5 fm. At scale values in the region µsoft <
1.5 GeV, the shape of the perturbative potential be-
gins to deviate significantly from the shape of the
potential including nonperturbative contributions.

It follows that, if we redefine the heavy-quark
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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Fig. 6. Additive shift that must be made along the energy
scale in order to match the µ-dependent perturbative
potential with the potential calculated in this study on the
basis of QCD. The solid and the dashed curve correspond
to the two- and the three-loop matching. The points
represent the results obtained within QCD sum rules for
bottomonium. The dotted curve was calculated according
to the relation between the running and the pole mass at
the scale µ.

masses as9)

mpole(µ)b, c = mb, c +
1
2
δV (µ),

masses that are rather close to the experimental val-
ues will be obtained by solving the Schrödinger equa-
tion with the perturbative potential. Thus, the pole
masses obtained within the potential QCD approach
have been matched with the pole masses of perturba-
tion theory that were calculated at the two-loop level.
We have numerically estimated the running mas-

ses m̄(m̄) within theMS scheme by using two-loop
relations10) to establish the relationship with the pole
mass [20, 21] and by setting the normalization scale
µsoft to m̄. As a result, we arrived at

m̄c(m̄c) = 1.40 ± 0.09 GeV,

9)This redefinition is indicative of a perturbative renormalon
(see the review article of Beneke [19]). Indeed, there are
two sources of the deviation δV . The first is represented
by the linear confining potential of static quarks. However,
this source makes an insignificant contribution to δV . The
second source is associated with the infrared divergence in
the running QCD coupling constant obtained within pertur-
bation theory. It can easily be shown that a small residual
term that is weakly dependent on µsoft arises upon subtract-
ing, from δV , the singular term, which is proportional to
∼1/(µsoft − Λ).

10)Here, we have not applied recent results from [20] for the
three-loop mass matching, since this would lead us beyond
the accuracy adopted in the present consideration.
2
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m̄b(m̄b) = 4.20 ± 0.06 GeV,

which is in good agreement with various sum-rule
estimates ofmb [22–25] andmc [26].11)

In [24], the dependence of the pole mass on the
scale µsoft was calculated to the third order of per-
turbation theory. The uncertainty in estimating the
heavy-quark mass fromQCD sum rules for bottomo-
nium was 0.1 GeV for the running mass in the MS
scheme and 0.06 GeV for the low-energy mass (ki-
netic mass). The b-quark pole mass depends both on
the normalization scale and on the order of perturba-
tive QCD in αs. In order to compare the sum-rule
results with the values obtained within the potential
approach developed in the present study, we fixed
the order in αs and restricted our consideration to
the two-loop approximation. At the value of µsoft =
2.5 GeV, taken by way of example, the estimates
obtained on the basis of the perturbative-potential
method and on the basis of sum rules then agree
within the uncertainties of the two methods. Taking
the above scale value for the initial-normalization
point, we present the sum-rule results in Fig. 6 in the
form of a shift along the energy scale. For the sake
of clarity, the µ-dependent pole mass as calculated
from the analysis in [24] is displayed in Fig. 6 with an
uncertainty of δm = 80MeV,which is a characteristic
error inherent in the running-mass estimates given
in [24]. Despite the different choices of normalization
for the QCD coupling constant αMS

s (m2
Z) = 0.118

in [24], we can see fairly good agreement between
the shapes of the µ dependences both for the energy
shift of the perturbative potential with respect to the
potential adopted in QCD and for the change in the
perturbative pole mass of the b quark within QCD
sum rules. As to the one-loop matching of the pertur-
bative potential, we only note that the corresponding
sum rules yield, in the same order, an energy shift
that is close to zero for µsoft > 2 GeV within the
accuracy of the method, and this estimate is con-
sistent with the result obtained on the basis of the
potential approach, as is shown in Fig. 6. Thus, we
can see that, in the case of the two-loop matching
of the V and MS schemes, the shift of the energy
scale in the perturbative potential indicates that the
shape of the QCD potential corresponds to the soft-
normalization-scale dependence in the perturbative
pole mass within QCD sum rules for bottomonium.

The µ dependence obtained in the pole mass can
now be compared with the equation relating the run-
ning heavy-quark mass in theMS scheme to the pole

11)We note that there are distinctions between the values usu-
ally quoted in the literature for m̄(m̄) and m̄(mpole).
PH
mass, as was derived in [27], where we find that

mpole = m̄(µ)

(
1 + c1(µ)

αMS
s (µ2)

4π
(38)

+ c2(µ)

(
αMS
s (µ2)

4π

)2



at

c1(µ) = CF (4 + 3L), (39)

c2(µ) = CFCA

(
1111
24

− 8ζ(2) (40)

− 4I3(1) +
185
6
L+

11
2
L2

)

− CFTFnf

(
71
6

+ 8ζ(2) +
26
3
L+ 2L2

)

+ C2
F

(
121
8

+ 30ζ(2) + 8I3(1) +
27
2
L+

9
2
L2

)

− 12CFTF (1 − 2ζ(2)).

Here, we have I3(1) = (3/2)ζ(3) − 6ζ(2) ln 2 and
L = 2 ln(µ/mpole). The result obtained in [21] is
reproduced at µ = mpole. It can easily be verified
that the logarithms can be eliminated from the
definition of c1,2 by expressing the running values
m̄(µ) and αMS

s (µ) in Eq. (38) in terms of m̄(mpole)
and αMS

s (mpole). Nevertheless, we find that the
explicit dependence on µ in (38) replicates the form
of the renormalon contribution, as can be seen in
the perturbative potential, where there is a similar
effect because of the truncation of the perturbation-
theory series and because of the infrared pole in
the QCD running coupling constant. The difference
2(mpole

b (µ) −mb) is displayed in Fig. 6 according
to Eq. (38) at m̄(m̄) = 4.3 GeV. From this figure,
we can see that the results obtained in [24] on the
basis of QCD sum rules agree with those expected
from Eq. (38) and that the µ-dependent shift of the
pole mass approximately coincides with the shift of
the perturbative potential with respect to the static
QCD potential, which is free from the renormalon
arbitrariness associated with the infrared singularity
in the coupling constant at a finite energy scale in
perturbation theory. This fact implies cancellation of
infrared indeterminacies in the sumof the perturbative
potential and the perturbative heavy-quark masses,
and it is precisely this sum that specifies the energy
of the heavy-quarkonium bound state. Thus, we can
define the pole mass

m̂pole = mpole(µ) − 1
2
δV (µ), (41)
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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which is free from this arbitrariness in taking into
account infrared contributions to the pole mass and
which involves, on the right-hand side, the pole mass
given by (38). For the beauty quark, the pole mass
defined according to (41) agrees, to within 80 MeV,
with the mass obtained on the basis of the potential
approach proposed in the present study:

m̂pole
b ≈ mb.

3.2. Heavy-Quark Masses and Potential
Nonrelativistic QCD

In this subsection, we discuss the line of investi-
gation that is being developed at present in the theory
of the heavy quarkoniaQQ̄′ on the basis of an effective
theory referred to as potential nonrelativistic QCD
(pNRQCD) [28]. This theory describes, in a natural
way, both the interaction of heavy quarks in terms
of a potential and the interaction with external ul-
trasoft fields within QCD.12) We compare the results
of pNRQCD calculations for the masses of heavy
quarks with the analogous results that were obtained
above within the approach employing the static QCD
potential.

First, the fact that the motion of heavy quarks
in heavy quarkonia is nonrelativistic makes it pos-
sible to introduce, within pNRQCD, three impor-
tant physical scales in such systems. These are m,
the heavy-quark mass; mv, the soft scale of the
heavy-quark momentum in a hadron; and mv2, the
ultrasoft energy scale. The parameters in question
are well separated because of the smallness of v,
which is the velocity of a heavy quark in a hadron.
Upon matching the effective theory with full QCD
at the hard scale µhard ∼ m, fields involving high
virtualities of about the heavy-quark mass are elim-
inated from consideration within NRQCD. This
leads to the introduction of perturbative Wilson
coefficients in the operator-production expansion
of the effective theory, and we are dealing with
heavy quarks interacting with gluons at virtual-
ities µfact, soft of about mv. In order that heavy-
quark fields could be considered at smaller val-
ues of the normalization scale µ down to mv2, it
is necessary to introduce the effective pNRQCD
Lagrangian from which soft fields are eliminated,
whereupon there remain the potential interaction

12)As a matter of fact, one elaborates here, in a formal way, on
the approach proposed long ago by Voloshin and Leutwyler
[29] for Coulomb-like systems whose interaction Hamilto-
nian involves a perturbation that is expressed in terms of
slowly varying external fields and corrections leading to the
Coulomb term.
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of heavy quarks with each other and the inter-
action with ultrasoft gluon fields within a multi-
pole expansion. The matching of pNRQCD and
NRQCD must be performed at the scale µfact ∼
mv. There is also an effective nonrelativistic QCD
theory (see [30]) involving a renormalization-group
summation over velocities (vNRQCD). In this the-
ory, the relevant renormalization group [31] is used
to match vNRQCD operators with full QCD at
the scale of about m and to trace the evolution
toward a small scale, where one may arrive at ei-
ther mv or mv2. Presently, the development of
vNRQCD is at the stage of the one-loop match-
ing of the potential of heavy quarks to the sec-
ond order in the velocity (v2)—that is, to spin-
dependent terms of order 1/m2, which are beyond the
present analysis. Therefore, we focus on discussing
pNRQCD.
The pNRQCD Lagrangian has the form

LpNRQCD = tr
{
S†
(
i∂0 −

P2

4m
− p2

m
+

p4

4m3
(42)

− Vs(r) −
V

(1)
s

m
− V

(2)
s

m2
+ . . .

)
S

+O†
(
iD0 −

P2

4m
− p2

m
+

p4

4m3

− Vo(r) −
V

(1)
o

m
− V

(2)
o

m2
+ . . .

)
O

}

+ gVA(r)tr
{
O†r · ES + S†r · EO

}

+ g
VB(r)

2
tr
{
O†r ·EO +O†Or ·E

}

− 1
4
Ga

µνG
µνa,

where P is the momentum canonically conjugate to
the c.m. coordinate; p is the heavy-quark momentum
in the c.m. frame; E is the external chromoelectric
field of ultrasoft gluons, its strength tensor beingGa

µν ;
and Vs,o,A,B are Wilson coefficients, which have the
meaning of potentials in different orders in the in-
verse heavy-quark mass m. Equation (42) does not
include power-law corrections in 1/m to VA and VB
and to purely gluon operators or higher terms of the
multipole expansion. In the leading order, the sin-
glet and the octet operator (S and O, respectively)
are represented as the relevant bilinear products of
the nonrelativistic heavy-quark and heavy-antiquark
spinors. The matching of the operators S and O with
the NRQCD spinors was performed in [28] up to the
three-loop level both for the potential and for the nor-
malization factors in the operator-product expansion
of the correspondingWilson loop. In this Lagrangian,
2
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the singlet potential Vs(r) and the octet potential
Vo(r) are the Wilson coefficients of the bilinear forms
in S and O, respectively, in the leading order in 1/m.
In [28], it is shown that this definition of the potential
of static quarks is consistent with the definition in
terms of the Wilson loop (1).

Cancellation of the renormalon arbitrariness in the
sum of the perturbative pole masses of heavy quarks
and the potential up to two loops is yet another im-
portant result within pNRQCD.

It should be emphasized that, for the running
coupling constant in coordinate space, the three-
loop matching of the V and MS schemes within
pNRQCD leads, in the leading-logarithm approxi-
mation, to the result

αV (1/r2, µ) = αMS
s (1/r2) (43)

×
{

1 + (a1 + 2γEβ0)
αMS
s (1/r2)

4π

+
[
γE (4a1β0 + 2β1) +

(
π2

3
+ 4γ2E

)
β20 + a2

]

×

(
αMS
s (1/r2)

)2
16π2

+
C3
A

12

(
αMS
s (1/r2)

)3
π

ln(rµ)

}
,

which, as can be seen, reduces to (12) in the two-
loop approximation. However, the three-loop con-
tribution generates an explicit scale dependence of
perturbative calculations in pNRQCD. This depen-
dence was discussed in [28] for two cases where the
confinement scale ΛQCD and the binding energymv2

are ordered in such a way that either (a) ΛQCD �
mv2 or (b)mv2 � ΛQCD. If case (a) is realized, then
nonperturbative effects are significant in the singlet
potential of static quarks; therefore, it can be calcu-
lated only upon introducing model-dependent terms
caused by ultrasoft gluons that form the gluon sea in
heavy quarkonia. The excitations of this sea, which
are referred to as gluelumps, have a characteristic
excitation energy appearing to be the nonperturba-
tive scale µ on which the potential depends.13) In
case (b), the potential is a purely perturbative quan-
tity. It should be noted, however, that, in calculating
observable physical quantities, such as the masses
of bound states, it is necessary to take into account
the contributions from ultrasoft perturbative gluons
whose virtualities are less than µ; this must lead to a
µ-dependent shift of energy, but this shift is of course
bound to be canceled by the contribution originating
from the µ-dependent term in the potential with the

13)The possible nonpotential interaction terms are discussed
in [28].
P

effective coupling constant (43) and possibly appear-
ing in the heavy-quark masses. In either case, cal-
culations within perturbative NRQCD for the singlet
operator14) explicitly indicate that it is necessary to
take into account gluon degrees of freedom in heavy
quarkonia. It was emphasized in [28] that, obviously,
this feature is peculiar precisely to a non-Abelian
theory [see the factor CA in front of the logarithmic
term in (43)].
In our opinion, this dependence on ultrasoft gluon

fields in the heavy-quarkonium potential reflects, in
a natural way, the fact of formation of a gluon string
between heavy quarks at long distances. Without
considering the ordering of the confinement scales
and the quark binding energy, the introduction of such
a string must eliminate the explicit dependence of the
total potential on an extra unphysical scale that is as-
sociated with a computational method. In the present
article, this was done above by introducing a unified
beta function for the coupling constant within the V
scheme. This solution to the problem is qualitatively
consistent with pNRQCD, because, in the perturba-
tive regime, the contribution of the logarithmic term
is negligible, as can be seen for the confining linear
term in the potential at short distances, and because,
at long distances, the nonperturbative contribution
confining quarks is significant, the string tension be-
ing a natural physical scale of such an interaction. In
the static QCD potential derived above, we have not
considered the possible nontrivial excitations corre-
sponding to a polygonal shape of the string, where a
cusp moves along the string at a speed equal to the
speed of light. Such excitations could be associated
with hybrid states featuring gluelumps. Thus, we can
see that the QCD potential for static quarks that was
proposed in the present study does not come into
conflict with the current status of pNRQCD.
A particular comment on the linear term in the

potential is in order here. In [28], Brambilla et al.
employed a specificmodel of infrared behavior, where-
by they obtained, at long distances between heavy
quarks, an ultrasoft correction in a form involving a
constant shift δV0 of energy and a quadratic term
σ2r

2. On this basis, those authors concluded that
a linear term could nevertheless appear in a more
involved model of infrared behavior. In the preceding
section, we have demonstrated how one can obtain a
similar linear regime of confinement.
Some recent studies (see [32, 33]) were devoted to

calculating the lowest bound state of a heavy quarko-
nium by a method that combines the potential ap-
proach in pNRQCDwith nonperturbative corrections

14)Here, we do not dwell upon the octet potential of static
quarks, although some qualitative conclusions could be di-
rectly extended from the singlet to the octet state.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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to the binding energy that arise upon performing a
multipole expansion in QCD [29] [this expansion is
explicitly presented in (42)]. For example, the pertur-
bative Bc-meson mass was calculated in [32] on the
basis of a perturbative expansion for the static po-
tential, the leading approximation being taken there
in the form of Coulomb wave functions. As we have
already seen, the perturbative potential is plagued by
renormalon indefiniteness. In order to eliminate this
dependence on the choice of scale µ in the potential,
Brambilla andVairo [32] calculated themasses of J/ψ
and Υ within the same approach at the same point
µ and inverted the problem of calculating the heavy-
quark masses by equating the computed perturbative
masses of the charmonium and bottomonium ground
states to the known experimental values. This proce-
dure leads to µ-dependent pole heavy-quark masses
that are represented in the form of series in αs(µ). It is
assumed that this procedure can ensure cancellation
of the renormalon in the hadron mass to a precision of
50 MeV. As a result, the perturbative mass of the Bc

meson takes the value

Mpert
Bc

= 6326+29
−9 MeV, (44)

which is rather stable against variations of µ over the
region 1.2 < µ < 2.0 GeV. It is natural to compare
this result with the value in Table 1 and with the µ
region described above in studying the matching of
the perturbative potential with the total QCD po-
tential. Brambilla and Vairo [32] did not present the
µ-dependent heavy-quark masses. In view of nearly
perfect agreement between the estimates of the Bc

mass in (44) and in Table 1, we can nevertheless
expect that such a dependence is close in shape to the
computed shift δV (µ).
In [33], the same perturbative method allowing

both for corrections from the gluon condensate in the
multipole expansion of QCD and for an additional
small contribution of the α5s logαs type was used to
calculate the heavy-quark masses on the basis of a
comparison of the resulting theoretical expressions
with experimental data on the masses of the char-
monium and bottomonium ground states. This pro-
cedure yielded the pole masses, which in fact depend
on the normalization scale since use was made of
the substitution µ = CFαsmQ in the potential. Ob-
viously, this led to a mass that is plagued by a renor-
malon indefiniteness, and the result was

mb = 5022 ± 58 MeV,

which is much greater than our estimate. The reason
behind this discrepancy is quite clear. This is the
shift δV (µ) of energy. The running mass in the MS
scheme from [33] is in excess of our estimate by ap-
proximately 260 MeV in the same order in αs for the
relation between the running and the pole mass. The
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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Fig. 7. Leptonic coupling constant for the bottomonium
vector ground state as a function of the soft normaliza-
tion scale. The dashed and the solid curve correspond
to µhard = 2mb and µhard = mb, respectively. The hor-
izontal band is bounded by the experimental limits on the
leptonic constant.

distinction becomesminor upon employing the three-
loop relation for the masses, as was done in [33].
However, the same correction reduces our estimate
in spectroscopic calculations based on the total static
potential withinQCD. In our opinion, all the aforesaid
casts some doubt on the values obtained in [33] for the
heavy-quark masses.
The dependence of the static potential on finite

heavy-quark masses was considered in [34]. This
dependence arises from a smooth variation in the
number of active flavors in the expressions for the
coefficients in the perturbative beta function and in
the conditions of matching for αV . As was described
above, we make use of a stepwise change in the
number of active flavors. In view of this, our analysis
suffers from an implicit model dependence, which can
hardly be removed from the problem under consider-
ation.
As to QCD lattice calculations for problems fea-

turing a potential, they are surveyed in [35]. Here, we
would like to emphasize that the potential of static
quarks on a lattice is very close in shape to the po-
tential in the Cornell model. However, the analysis in
[35] ignores the possible additive shift of the energy
of the perturbative potential with respect to the total
QCD potential. This led to the conclusion that the
total potential on a lattice differs significantly from
the perturbative potential in the region where lattice
calculations are applicable, which is bounded by the
lattice dimensions (asymptotically short distances are
beyond reach of such calculations). An up-to-date
review of phenomenological potential models is given
2



1706 KISELEV et al.

 

0.8

0.6

0.4

0.2

1.0 1.2 1.4 1.6

 
f
 

J

 

/

 

ψ

 
, GeV

 

µ

 

soft

 

, GeV

Fig. 8. Leptonic coupling constant for the vector ground
state of the charmonium as a function of the soft nor-
malization scale. The shaded region bounded by curves
corresponds to changing the hard scale from (dashed
curve) µhard = 1.07mc to (solid curve) µhard = 0.93mc.
The horizontal band corresponds to the experimental lim-
its on the constant. Also presented are the results for
(dashed curve)µhard = 1.26mc and (solid curve)µhard =
0.87mc.

in the lectures of Brambilla and Vairo [36]. Effects
associated with finite values of the quark masses in
nonrelativistic bound states are considered in [37].
Some applications of pNRQCD to heavy quarkonia
are described in [38].

3.3. Leptonic Constants

For heavy nonrelativistic quarks, the leptonic cou-
pling constant of a heavy quarkonium can be ex-
pressed in terms of the wave function at the origin as

fNR =

√
12
M

|Ψ(0)|,

where M is the bound-state mass and where the
leading approximation to the wave function is found
in solving the Schrödinger equation with the static
potential.
In the approximation of NRQCD for heavy quarks,

the calculation of leptonic coupling constants for
heavy quarkonia at the two-loop levels requires the
matching of the quark currents in NRQCD with the
currents in full QCD,

JQCD
ν = Q̄γνQ, J NRQCD

ν = χ†σ⊥ν φ.

Here, we have introduced the following notation:
Q stands for relativistic quark fields; χ and φ are
the nonrelativistic quark and antiquark spinors;
P

and σ⊥ν = σν − vν(σ · v), where v is the heavy-
quarkonium 4-velocity. We have

JQCD
ν = K(µhard;µfact) · J NRQCD

ν ,

where µhard specifies the normalization point for the
matching of NRQCD with full QCD, while µfact is
the normalization point for perturbative calculations
within NRQCD. On the basis of matching the po-
tential for static quarks in QCD with the two-loop
perturbative potential, we assume that the most ap-
propriate choice of scale in describing bottomonium
and charmonium is

µfact = µsoft = 1.3−2 GeV. (45)

For heavy quarkonia formed by quarks of the same
flavor, the two-loop expression for the Wilson coef-
ficient K is known to be [24, 39, 40]

K(µhard;µfact) = 1 − 8
3
αMS
s (µhard)
π

(46)

+

(
αMS
s (µhard)
π

)2

c2(µhard;µfact).

The explicit expression for c2 can be found in [39, 40].
Here, an additional problem is presented by the con-
vergence of (46) at a preset choice of scales. Setting
µhard = (1 − 2)mb and employing (45), we find that
the convergence of QCD corrections for bottomo-
nium is good and estimate its leptonic coupling con-
stant defined as

〈0|JQCD
ν |Υ, λ〉 = ελνfΥMΥ,

where λ is the polarization of the vector state εν . As a
result, we obtain

fΥ = 685 ± 30 MeV,

while the experimental value is f exptΥ = 690 ±
13MeV [9].
As can be seen from Fig. 7, a variation of the hard

scale over a wide region leads to the presence of a
stable point at which the result is weakly sensitive
to such a variation. Stability is observed at µsoft ≈
2.6 GeV, in which case the perturbative potential is
rather close to the potential of static quarks in QCD
at distances characteristic of the dimensions of the 1S
level in the b̄b system.
Results obtained by applying the above procedure

to estimate the leptonic coupling constant for the
charmonium J/ψ are more sensitive to the choice
of factorization scale. Indeed, the dimension of this
system is 〈rc̄c(1S)〉 ≈ 0.42 fm, which imposes more
stringent constraints on µfact ≈ 1.3–1.5 GeV, since,
at larger scale values, the perturbative potential de-
viates noticeably from the QCD potential of static
quarks in the region of the c̄c state, while, at smaller
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Table 2. Ratios of the leptonic coupling constants of heavy quarkonia according to the predictions of our present study,
along with experimental data

nS
f2
ψ(nS)/f

2
ψ f2

Υ(nS)/f
2
Υ

QCD experiment QCD experiment

2S 0.55 0.48 ± 0.07 0.47 0.47 ± 0.03

3S 0.32 0.25 ± 0.06 0.34 0.36 ± 0.02
values of the soft normalization scale, the perturbative
potential calculated at the two-loop level may have a
functional form totally different from that of the QCD
potential even within a limited range of interquark
distances. Yet another problem is that which is as-
sociated with the energy shift δV (µ) = 1.0–1.2 GeV,
which renormalizes significantly the pole mass of the
charmed quark:mpole

c = 1.968–2.068 GeV. This shift
does not introduce a perturbation in the bound-state
mass, but it is of importance for the wave-function
value at the origin. If, for example, following the fairly
accurate scaling relationship for the leptonic cou-
pling constants from [41], we introduce, in the equa-
tion for the leptonic coupling constant of the bound
state of nonrelativistic quarks, the quantity P (µ) =
κΨ(0) mpole

c (µ)/mc
15) instead of the wave function

Ψ(0), then the result obtained numerically will be
fJ/ψ = 400 ± 35 MeV,

which can be compared with the experimental value
of f expJ/ψ = 409 ± 15MeV.

From Fig. 8, we can see that the point of stability
with respect to variations in µhard occurs at soft-
factorization-scale values (µsoft ≈ 1.35 GeV) that
could be expected on the basis of the estimate of the
mean charmonium radius, so that µsoft ∼ 1/〈rc̄c(1S)〉.
However, stability occurs in a narrow range of µhard
near the charmed-quark mass.
At present, the conditions of matching of the quark

currents for a heavy quarkonium formed by quarks of
different flavors, b̄c, are known only at the one-loop
level [41, 42]. By way of example, we indicate that the
result for the pseudoscalar state has the form

K(µhard;µfact) (47)

= 1 − α
MS
s (µhard)
π

(
2 − mb −mc

mb +mc
ln
mb

mc

)
,

which is independent of the factorization scale. The
one-loop matching of the perturbative potential with

15)By solving the Schrödinger equationwith shiftedmasses and
a shifted potential, we have verified that this mass depen-
dence of the wave functions is valid to a precision better than
6%, so that we set κ = 0.95.
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the QCD potential of static quarks at r ∼ 0.3–0.4 fm,
which is a typical interquark distance for the Bc-
meson ground state [43], leads to results that can be
considered as a mere illustration, because deviations
in the form of potentials are quite sizable. Moreover,
it is mandatory to set µfact = µhard, since these scales
are indistinguishable as long as a nonzero anoma-
lous dimension is disregarded at the two-loop level.
Nonetheless, we set µhard = 1.3–1.8 GeV and ne-
glect the shift δV , which is so small at the one-
loop level that the inclusion of it would lead to going
beyond the level of precision adopted here. Indeed,
one can see from Fig. 6 that the value of the shift
along the energy scale in the one-loop approximation
is small at high virtualities of about 2 GeV, so that it
can be disregarded; at the same time, the form of the
perturbative potential at low virtualities approaches
the form of theQCDpotential only for distances in the
narrow range r = 0.1–0.25 fm; therefore, the results
that are based on the matching the perturbative and
the total potential at the one-loop level are unreliable
in evaluating the heavy-quark masses on the basis of
the parameters of the bound state that were calcu-
lated with the perturbative potential. Eventually, our
estimate of theBc leptonic constant is

fBc = 400 ± 45 MeV,

which can be compared with the sum-rule estimate
fSRBc

= 400 ± 25 MeV [41, 44].

Finally, Table 2 displays the ratios of the leptonic
coupling constants for excited nS-wave levels of the
b̄b and c̄c levels, along with experimental data.We can
see that the predictions are in good agreement with
the measured values. For the sake of completeness,
we made an attempt at estimating the leptonic cou-
pling constant for the 2S-wave level in the b̄c system.
The result is

fBc(2S) = 280 ± 50 MeV,

which agrees with the scaling relationship from [41].

Thus, we have analyzed the estimates that follow
from the method of QCD potential of static quarks
for the masses of heavy quarks and heavy quarkonia,
as well as for the leptonic coupling constants, and
2
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have found that these estimates are in good agree-
ment both with experimental data and with the results
obtained previously on the basis of QCD sum rules.

4. CONCLUSION

We have derived the QCD potential for static
heavy quarks from the known boundary regimes
at short and long distances—that is, asymptotic
freedom at the three-loop level and confinement.
The potential is determined by the following quan-
tities: the perturbative beta function; the coefficients
determined by matching the MS scheme with the
V scheme; the normalization of the QCD running
coupling constant at µ2 = m2

Z ; and the slope of
Regge trajectories, which controls the linear term
in the potential. As a result, we have modified the
Buchmüuller–Tye method in accordance with the
modern status of perturbative calculations.

In the static limit, a two-loop treatment of the
Coulomb potential leads to significant corrections to
the beta function for the effective charge, ∆β/β ∼
10%, as can be seen from Fig. 3. Such a correction
is of importance for determining the critical charge
value—that is, a value that specifies a transition re-
gion between the regime of perturbation theory and
the nonperturbative limit. Moreover, the two-loop
matching condition and three-loop evolution of the
running coupling constant normalized according to
high-energy data on mZ determine the energy-scale
region, where the changeover of these regimes oc-
curs. This scale is strongly correlated with data on
the mass spectra of heavy quarkonia. Indeed, it is
related to the splitting between the 1S and 2S lev-
els. It should be emphasized that a consistent two-
loop consideration leads to precisely that value of
the effective Coulomb constant which was obtained
by fitting the potential within the Cornell model. In
relation to the one-loop analysis of Buchmüller and
Tye, who determined aΛQCD value that is at oddswith
the modern normalization of the coupling constant at
high energies, this is an achievement of the present
study. As a result, the two-loop modification intro-
duced here results in a correct normalization of the ef-
fective Coulomb charge at interquark distances char-
acteristic of the mean dimensions of heavy quarkonia
and determines the evolution at short distances of
r < 0.08 fm (see Fig. 2). The latter is of importance in
calculating the relevant leptonic coupling constants,
which are related to the wave functions at the origin.

Other corrections to the potential of heavy quarks
are associated with effects due to finite quark masses,
whence it follows that they cannot be interpreted
P

within the static approximation. For example, spin-
dependent forces, relativistic corrections, and spe-
cific non-Abelian terms of the potential16) in heavy
quarkonia must generally be taken into account in
analyzing relevant mass spectra. The order of mag-
nitude of the leading nonstatic corrections can be
estimated by associating them with the characteristic
shift of levels due to, say, the hyperfine splitting of
the S-wave levels in heavy quarkonia.17) In this way,
we find that the uncertainty in the analysis of the
heavy-quark masses can be conservatively estimated
at δm � 80MeV.

Thus, the non-Abelian term in the potential α2s/r
2

involves a coefficient of the form 1/mQ; therefore,
it vanishes in the static limit mQ → ∞. The uncer-
tainty in the heavy-quark masses that arises because
of the disregard of such contributions has been as-
sessed above. If we formally consider perturbation
theory in order to compute the bound-state levels in a
heavy quarkonium with Coulomb functions taken for
a leading approximation—recall that this is beyond
the scope of our approach—the aforementioned non-
Abelian potential makes a contribution of the same
order in αs, α4s , as the two-loop corrections to the
matching of the perturbative static potential, since the
averaging of 1/r2 leads to a coefficient of the form
α2sm

2
Q. However, two-loop effects are of importance

for a consistent analysis of the static potential itself
and its normalization at high energies—that is, even
in the static limit, these correction play a significant
role in the evolution of the running effective charge in
the potential from high energies to the scale typical
of heavy-quark bound states; at the same time, non-
static contributions can everywhere be disregarded in
a numerical analysis. One can see that our consider-
ation is quite consistent in the static approximation,
and it is the approximation that we wanted to study in
this article.

The two-loop perturbative potential has been
matched here with theQCD potential of heavy quarks
in order to compute the heavy-quark masses and to
compare the values obtained within this approach
with the results based on QCD sum rules. It has
been found that the agreement between these two
approaches is good.

In recent years, the heavy-quark masses were de-
termined in [23–25] by using QCD sum rules, which
implement a consistent approach having a sound

16)They have the α2
s/r

2 form and involve a factor of the inverse-
quark-mass type.

17)This splitting is about 100 MeV or even less.
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theoretical basis. They rely on separating the contri-
butions of interactions at short distances from non-
perturbative effects by appropriately choosing val-
ues of the parameters that determine the scheme of
sum-rule calculations. In this approach, the nonper-
turbative contributions are specified in the form of
quark–gluon condensates with relevant Wilson co-
efficients of a factorized form, which are calculable
perturbatively since they depend on high virtualities
at short distances. However, it would be incorrect
to believe that these explicit contributions, which are
suppressed in some region of the scheme parameters,
are the only terms that are caused by nonperturbative
infrared dynamics within QCD. By disregarding the
condensate contributions, we can indeed find that
correlation functions in perturbative QCD suffer from
the renormalon arbitrariness, which means that the
perturbation-theory expansion in a series in αs is
asymptotic and that the sum of this series depends
on the method of summation. The physical reason
behind this divergence and this arbitrariness is that
there is an infrared singularity in the perturbative
QCD coupling constant. As a matter of fact, such a
singularity may possibly be regularized in an implicit
form because of nonperturbative dynamics associated
with quark–gluon condensates.18) As a result, the
perturbative pole mass in QCD sum rules is not a
well-defined quantity; in view of this, some more ap-
propriate quantities were introduced in the analysis by
the authors of [23–25]. They were constructed from
the pole mass with the aid of specific infrared subtrac-
tions, which are interpreted independently of quark–
gluon condensates. This constructions depend on the
subtraction methods proposed by their authors, who
present various physical arguments, more or less rig-
orous and justified. Such infrared subtractions imply
the introduction of nonperturbative regulators in the
consideration. In the present study, we have consid-
ered a unified beta function for the effective charge
in the potential, and the definition of this function
presumes infrared stability. Thus, we can see that an
analysis of the heavy-quark masses, both within sum
rules and within the potential approach, invokes ef-
fects caused by infrared QCD dynamics; although the
constructive procedures used have different explicit
forms, they have the same physical meaning and the
same irremovable methodological uncertainties.

The calculated mass spectra of heavy quarkonia
and the leptonic coupling constants of the nS-wave
levels are in good agreement with the measured val-
ues. The features of the Bc mesons have been pre-
dicted.

18)By way of example, we indicate that the perturbative heavy-
quark mass shell becomes physically meaningless in the
presence of nonperturbative condensates.
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Abstract—The initial stage of a phenomenological analysis of experimental data on the η meson photo-
production off nucleons in the energy range from the threshold to 1.1 GeV is carried out based on a linear
nonparametric model. The goal of this stage of the analysis is to obtain statistically reliable information
about the partial waves that form the main characteristics of the process. The analysis uses the data of three
laboratories about the angular distributions of η-mesons and their Σ and T asymmetries. The results of the
analysis of the angular distributions demonstrate the presence of contradictions in the data obtained by
different laboratories. The results of the analysis of the energy dependences of the polarization observables
Σ and T show that the process regime probably changes in the vicinity of 0.9 GeV, which may be caused by
the transition from the region of the S11(1535) and D13(1520) resonances to the region of the D15(1675)
and F15(1630) resonances. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the meson photoproduction pro-
cesses off nucleons makes it possible to extract
important information about the electromagnetic
and strong decay properties of nucleon resonances
from the characteristics of these processes. An in-
crease in the interaction energy is accompanied by
strong overlap of the resonances related to their large
hadronic widths, which hinders reliable estimation
of the resonance parameters. A unique possibility of
avoiding these difficulties is offered by the study of
the η-meson photoproduction process. This is related
to the existence of a small number of resonances
that decay into the pη channel. We can believe
that three resonances—P11(1440), D13(1520), and
S11(1535)—will play the dominating role immediately
above the threshold of the γp→ ηp reaction (Eγ =
706.92MeV). The available data [1] indicate the pos-
sibility of determining, first of all, the characteristics
of the S11(1535) and D13(1520) resonances.

The main goal of the analysis is to extract esti-
mates of the photoproduction amplitudes, usually the
multipole amplitudes, from the experimentally mea-
sured characteristics. This is justified by the fact that
these amplitudes are directly related to the production
of a nucleon resonance with certain quantum num-
bers corresponding to the given partial wave.

It is well known that the experimentally measured
characteristics, namely, the differential cross sections

*e-mail: yudin@helene.npi.msu.su
1063-7788/02/6509-1711$22.00 c©
dσ/dΩ of the process and the polarization proper-
ties (asymmetry Σ for the linearly polarized beam of
gamma radiation, asymmetry T for the polarized pro-
ton target, polarization P of the recoil nucleons), are
bilinear forms of the complex amplitudes of the pho-
toproduction process. Therefore, the analysis is natu-
rally separated into two stages. The first stage is a lin-
ear regression problem. Solution of the problem gives
information about the partial waves that contribute to
the process. The problem is solved through expanding
the observables into series, in this case, over the
orthogonal Legendre polynomials, by the standard
procedures [2] in order to determine the statistically
significant terms of the expansion. In contrast to
the expansion in power series with respect to cos θ,
where θ is the meson emission angle in the center-of-
mass frame (c.m.f.), the expansion with respect to the
Legendre polynomials is related to their orthogonality.
When the results of measurements for a sufficiently
large number of emission angles are available, this
property simplifies determination of the number of
terms in the series providing the best description of
data. The orthogonal polynomials give lower nondi-
agonal elements in the error matrix, which is impor-
tant for interpretation of the diagonal elements as the
errors of the regression coefficients. Thus, the first
stage of the analysis determines the set of the linear
regression coefficients that ensures the best (with
respect to statistics) description of the experimental
data. The data, obtained by various laboratories and
used in the analysis, should be compatible—this fac-
2002 MAIK “Nauka/Interperiodica”
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tor is important for obtaining reliable estimates of the
photoproduction amplitudes.1)

The second stage consists in solving a system of
nonlinear (quadratic) equations with respect to real
and imaginary parts of the multipole amplitudes. The
number and the type of equations are determined by
the results of the first stage. The right-hand sides of
the equations with respect to the amplitudes repre-
sent the obtained estimates of the regression coef-
ficients. Determination of the multipole amplitudes
usually requires removing continuous and discrete
ambiguities of the solutions caused by the individual
specific features of the system of nonlinear equations,
which, generally, make the system inconsistent.

2. THE ANALYSIS PROCEDURE

At the first stage of the phenomenological analysis
of the experimental data, we used a nonparametric
linear model where the observables are represented in
terms of the expansion into series with respect to the
Legendre polynomials Pl(cos θ). For the differential
cross section dσ(θ)/dΩ, the expansion assumes the
form

k

q

dσ(θ)
dΩ

=
∑

alPl(cos θ), (1)

where k and q are the momenta (in the c.m.f.) of the
γ quantum and η meson, respectively. The regres-
sion coefficients al are bilinear forms with respect to
the real and imaginary parts of El± and Ml±, which
are, respectively, the electric and magnetic transition
amplitudes to the final states with the total momenta
l± 1/2. The amplitudes depend on the γ quantum en-
ergy Eγ . The nonparametric model provides, gener-
ally, unbiased estimates of the regression coefficients,
which ensures reliability of the further estimates of the
multipole amplitudes of the process.
For the polarization observables, a similar expan-

sion is applied to the statistics that include the ob-
servables. In general, the first stage of the analysis
should provide statistically reliable information about
the partial waves that form the main characteristics
of the process. Reliability of the conclusions obtained
at this stage determines reliability of the final esti-
mates of the multipole amplitudes. We determined
the number of the expansion terms providing the best
description of the data on the basis of two statistical
criteria. The expansion was restricted to the terms for
which the coefficients at the Legendre polynomials

1)A similar analysis procedure was used in a series of papers
aimed at the determination of the isotopic components of
the multipole amplitudes for the γp −→ πN process in the
energy region of 300–400 MeV from experimental data on
the pion photoproduction only (see, e.g., [3]).
PH
significantly differ from zero. Here, we also checked
that subsequent terms introduce no nonvanishing
coefficients. Then, we determined the possibility of
improving the quality of description by increasing the
number of terms, as evaluated by the Fisher crite-
rion [2]. Usually, both criteria led to the same con-
clusions.
The experimental data included the observables

measured at a specified energy of the gamma quanta;
that is, we performed a so-called energy-independent
analysis. The energy-dependent analysis is based, as
a rule, on the parametric models which do not en-
sure the obtainment of unbiased estimates. Of special
importance is the question whether the experimental
data measured by various laboratories form a unique
general massive and therefore can be used to obtain
final unbiased estimates of the multipole amplitudes
of the process.

3. RESULTS OF THE ANALYSIS
OF THE DIFFERENTIAL CROSS SECTION

First, we analyzed the results of measurements of
the differential cross sections for the photoproduction
of η mesons off protons carried out at the Mainz ac-
celerator [1]. These results include ten angular distri-
butions measured at ten angles in the energy interval
of the gamma-quanta from 715 to 790 MeV. Retain-
ing only terms in the expansion with the coefficients at
the Legendre polynomials significantly different from
zero, we arrived at a three-term approximation that
provided the best description of the complete set of
experimental data on the differential cross sections.
The Fisher criterion confirmed the correct choice of
the three-term expansion. Table 1 presents the results
of the three-term approximation. The errors of the
individual regression coefficients are obtained from
the diagonal elements of the error matrix with an
allowance for the errors of the input data and the
residual sum of squares that characterizes the quality
of data description by the chosen model. The values
of χ2/n, where n is the number of degrees of freedom,
characterize the statistical substantiation of the cho-
sen linear model.
When analyzing the results in Table 1, attention

should be paid to the following facts. First of all, the
coefficient a0 exceeds the coefficients a1 and a2 by
one order of magnitude. Moreover, virtually all values
of a1 insignificantly differ from zero. This is clearly
illustrated by the expansion in which the term with
a1 is omitted. It is clear from Table 2 that the absence
of the term with a1 does not spoil the description. The
interpretation of these results requires consideration
of the expressions for the regression coefficients in
terms of the multipole amplitudes. When we use the
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Table 1. The values of coefficients a0, a1, a2 [µb/sr] in the three-term expansion (1) for the angular distributions from [1]

Eγ , MeV χ2/n a0 a1 a2

715.69 1.41 5.10 ± 0.06 0.03 ± 0.11 0.07 ± 0.14

723.92 0.48 4.59 ± 0.03 −0.14 ± 0.05 −0.19 ± 0.07

732.00 1.82 4.30 ± 0.05 0.01 ± 0.09 0.02 ± 0.12

739.95 1.47 4.18 ± 0.05 −0.09 ± 0.08 −0.30 ± 0.10

748.16 0.67 3.99 ± 0.03 −0.03 ± 0.05 −0.28 ± 0.07

757.03 0.73 3.86 ± 0.03 −0.05 ± 0.05 −0.16 ± 0.06

766.22 0.71 3.68 ± 0.03 −0.06 ± 0.05 −0.31 ± 0.06

775.05 1.86 3.54 ± 0.05 −0.11 ± 0.08 −0.22 ± 0.10

782.98 0.67 3.46 ± 0.03 −0.11 ± 0.05 −0.37 ± 0.07

789.73 1.39 3.33 ± 0.05 −0.17 ± 0.07 −0.37 ± 0.10
expansion (1) with respect to the Legendre polynomi-
als, these expressions up to the terms with E3−,M3−
assume the form

a0 = |E0+|2 + 6|E1+|2 + |M1−|2 + 2|M1+|2 (2)

+ 2|E2−|2 + 6|M2−|2 + 18|E2+|2

+ 9|M2+|2 + 9|E3−|2 + 18|M3−|2,

a1 = 2Re
[
E∗

0+(3E1+ +M1+ −M1−)

+M∗
1−(3M2− − E2−)

+
3
5
E∗

1+(24E2+ + 3M2+ − E2− − 3M2−)

Table 2. The values of coefficients a0 and a2 [µb/sr] in
the two-term expansion (1) for the angular distributions
from [1]

Eγ , MeV χ2/n a0 a2

715.69 1.24 5.10 ± 0.06 0.07 ± 0.13

723.92 0.89 4.59 ± 0.04 −0.20 ± 0.09

732.00 1.59 4.30 ± 0.05 0.02 ± 0.11

739.95 1.55 4.17 ± 0.05 −0.31 ± 0.10

748.16 0.63 3.99 ± 0.03 −0.29 ± 0.06

757.03 0.72 3.86 ± 0.03 −0.17 ± 0.06

766.22 0.74 3.68 ± 0.03 −0.32 ± 0.06

775.05 2.12 3.53 ± 0.05 −0.23 ± 0.11

782.98 1.07 3.45 ± 0.04 −0.38 ± 0.08

789.73 2.17 3.32 ± 0.06 −0.39 ± 0.12
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
+M∗
1+

(
3
5
M2− + E2− +

27
5
M2+

)

+
9
5
E∗

3−

(
3E2− − 4

7
E2+ −M2− +M2+

)

+
18
35
M∗

3−(2M2+ + 28M2− − 5E2+)
]
,

a2 = 3|E1+|2 − |M1+|2 − |E2−|2 + 3|M2−|2

+
108
7

|E2+|2 +
36
7
|M2+|2 +

36
7
|E3−|2

+
108
7

|M3−|2 + 2Re
[
E∗

0+(E2− − 3M2−

+ 6E2+ + 3M2+) −M∗
1−(3E1+ +M1+)

+ 3E∗
1+M1++3E∗

2−

(
M2+− 4

7
E2+−M2−

)

+
9
7
M∗

2−(M2+ − 4E2+) +
36
7
E∗

2+M2+

+ 3E∗
3−

(
M1+ −M1− − 3

7
E1+

)

+ 6M∗
3−

(
M1− +

2
7
M1+ − 6

7
E3− − 6

7
E1+

)]
.

Previous papers devoted to the analysis of the η-me-
son photoproduction off protons in the energy re-
gion above the threshold [1, 4] emphasized the dom-
inating role of the s wave, that is, of the amplitude
E0+ responsible for the formation of S11(1535); The
manifestation of p and d waves, corresponding to the
amplitudes E1+,M1± and E2±,M2±, was attributed
to their interference with the s wave.
Thus, the results of this analysis of the data on

the differential cross sections for the γp→ ηp pro-
cess, obtained at the Mainz accelerator, confirm the
2
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Table 3. The values of coefficients a0, a1, and a2 (in µb/sr) in the three-term expansion (1) for the angular distribution
from [5]

Eγ , MeV χ2/n a0 a1 a2

710.3 2.37 4.89 ± 0.71 −0.86 ± 1.23 0.57 ± 2.01

716.5 1.18 3.58 ± 0.16 −0.79 ± 0.31 0.72 ± 0.39

722.6 2.03 4.39 ± 0.16 −0.53 ± 0.32 0.16 ± 0.40

729.0 1.05 3.64 ± 0.13 −0.48 ± 0.24 0.15 ± 0.31

735.1 0.74 3.42 ± 0.09 −0.61 ± 0.18 −0.08 ± 0.23

747.4 0.60 3.42 ± 0.09 −0.30 ± 0.16 −0.11 ± 0.21

753.2 0.82 3.37 ± 0.09 −0.65 ± 0.18 −0.34 ± 0.23

759.2 0.82 3.20 ± 0.09 −0.21 ± 0.18 −0.14 ± 0.23

765.2 0.85 3.01 ± 0.09 −0.62 ± 0.17 −0.05 ± 0.22

771.0 1.47 3.14 ± 0.10 −0.41 ± 0.17 0.10 ± 0.22

776.9 0.72 3.15 ± 0.07 −0.19 ± 0.13 −0.17 ± 0.16

782.5 1.15 2.92 ± 0.09 −0.48 ± 0.16 −0.37 ± 0.20

788.2 0.94 2.85 ± 0.07 −0.40 ± 0.14 0.14 ± 0.18

793.8 2.01 2.96 ± 0.12 −0.21 ± 0.22 −0.14 ± 0.27

799.3 2.68 2.67 ± 0.13 −0.31 ± 0.26 0.27 ± 0.29

805.0 0.67 2.80 ± 0.07 −0.41 ± 0.13 0.04 ± 0.15

810.4 1.50 2.61 ± 0.10 −0.30 ± 0.19 −0.11 ± 0.20

815.8 1.55 2.65 ± 0.10 −0.33 ± 0.20 −0.28 ± 0.23

821.0 1.20 2.56 ± 0.10 −0.47 ± 0.20 0.52 ± 0.22

826.3 2.66 2.25 ± 0.15 −0.59 ± 0.28 −0.09 ± 0.31

832.6 0.73 2.36 ± 0.07 −0.35 ± 0.13 −0.17 ± 0.15

839.6 4.32 2.18 ± 0.15 −0.46 ± 0.29 −0.08 ± 0.36

846.7 2.53 2.21 ± 0.19 −0.57 ± 0.39 −0.39 ± 0.38

853.6 1.06 2.08 ± 0.12 −0.48 ± 0.21 0.28 ± 0.28

860.4 4.13 1.95 ± 0.19 −0.42 ± 0.37 0.29 ± 0.39

867.0 3.36 1.58 ± 0.13 −1.01 ± 0.25 −0.50 ± 0.29

873.6 1.17 1.86 ± 0.11 −0.40 ± 0.19 −0.19 ± 0.18

880.1 0.74 1.94 ± 0.08 −0.13 ± 0.17 0.04 ± 0.15

886.4 1.32 1.89 ± 0.13 −0.04 ± 0.26 0.12 ± 0.22

892.7 1.86 1.84 ± 0.20 0.20 ± 0.39 0.37 ± 0.29

898.8 1.14 1.37 ± 0.07 −0.47 ± 0.14 0.06 ± 0.12
manifestation of the contributions from resonances
S11(1535) (with the amplitude E0+) and D13(1520)

(with the amplitudes E2− andM2−), and the absence

of the effects from the p-wave resonances (with the
PH
amplitudes E1+ andM1±) in the process under con-
sideration.

We performed a similar analysis with the experi-
mental data on the differential cross sections for the
γp→ ηp process, measured at the Bonn accelera-
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Fig. 1. The coefficients a0, a1, and a2 (in µb/sr) for the three-term expansion (1) by the data from [1]; the curves (here and on)
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Fig. 2. Same that in Fig. 1 for the data from [5].
tor [5]. The analysis uses the results corresponding to
the energy range from the photoproduction threshold
up to 900 MeV. The data measured at higher en-
ergies were not used owing to their low statistical
accuracy and low number of the measurement angles.
Similarly to the analysis of the angular distributions
measured in Mainz, it turned to be sufficient to leave
the three lowest terms in the expansion with respect
to the Legendre polynomials, that is, to use a three-
term approximation of the differential cross sections.
Table 3 displays the corresponding regression coeffi-
cients. A comparison of the results in Tables 1 and 3
clearly demonstrates their inconsistency. In contrast
to the Mainz data, the approximation of the Bonn
data results in an insignificant contribution of the
interference between s and d waves up to an energy
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
of 0.9 GeV; at the same time, the contribution of
the sp interference virtually absent from the previous
analysis is significantly different from zero, which is
confirmed by the description of the data from [5] by
a two-term expression containing only a0 and a1

(see Table 4). Inconsistency of the experimental data
measured in two laboratories is illustrated in Figs. 1
and 2, which present the energy dependences of the
regression coefficients a0, a1, and a2 describing the
experimental angular distributions.

In this respect, an analysis of the angular distri-
butions in the γp→ ηp process measured in Greno-
ble [6] in the energy range from the threshold to
1.1 GeV is of special interest. Table 5 and Fig. 3
present the results of the analysis of these angular
distributions. Similarly to two previous cases, a sat-
2
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Fig. 3. The coefficients a0, a1, and a2 (in µb/sr) for the
data from [6].

isfactory description of the data is reached with the
three lowest terms left in the expansion with respect
to the Legendre polynomials. This result confirms the
dominating role of the s wave, or the coefficient a0.
However, in contrast to the results of analysis for the
angular distributions [1, 5], the values of a1 and a2

are approximately on the same order of magnitude.
Therefore, the contributions of p- and d-wave ampli-
tudes in the results of three experiments qualitatively
disagree with each other. This means inconsistency of
the estimates of a1 and a2, obtained from the experi-
mental data [1, 5, 6].

4. THE RESULTS OF THE ANALYSIS
OF THE POLARIZATION OBSERVABLES
At the moment, there are relatively systematic da-

ta only for two polarization observables: asymmetry
Σ(θ) of the linearly polarized beam of gamma ra-
diation measured in Grenoble [7] and the asymme-
try T (θ) for the polarized proton beam measured in
Bonn [8]. The analysis of the polarization observables
reduces to the Legendre expansion of the following
statistics:

k

q

dσ

dΩ
1

sin2 θ
Σ =

∑
blPl(cos θ), (3a)
P

k

q

dσ

dΩ
1

sin θ
T =

∑
clPl(cos θ). (3b)

Since the observables dσ/dΩ,Σ, and T aremeasured,
generally, at different values of angles and energies,
we formed the statistics using the interpolated values
of dσ/dΩ calculated from the coefficients a0, a1, a2,
obtained in the analysis of the angular distributions.
We used the sets of parameters obtained in the anal-
ysis of three experiments [1, 5, 6]. In other words, we
analyzed both the statistics (3) formed from the data
of one laboratory and the statistics for dσ/dΩ formed
from the data of two other laboratories. Tables 6–11
present the values of coefficients bl and cl obtained
as a result of this analysis. Figures 4 and 5 display
the energy dependences of the coefficients. It is clear
from these figures that using the inconsistent angular
distributions in statistics (3) does not affect the gen-
eral behavior of the corresponding coefficients bl and
cl which exhibit evident similarity. In other words, the
differences in dσ/dΩ are not explicitly reflected in the
polarization observables.
The coefficients bl and cl are expressed in terms

of the multipole amplitudes up to the terms with
E3−,M3−:

b0 =
3
2
|M1+|2 −

9
2
|E1+|2 +

3
2
|E2−|2 (4)

+ 12|M2+|2 − 24|E2+|2 − 12|E3−|2

+ 24|M3−|2 + 3Re[E∗
0+(E2− + E2+

+M2− −M2+) +M∗
1−(M1+ − E1+)

+ E∗
1+M1+ + E∗

2−(M2− + 4E2+ −M2+)
+M∗

2−(7M2+ − 4E2+) + 4E∗
2+M2+

+ E∗
3−(7E1+ +M1+ −M1− + 4M3−)

+M∗
3−(4E1+ + 4M1+ −M1−)],

b1 = 3Re[5E∗
0+(E3− +M3−) + 3E∗

1+(2E2− − 3E2+)
+M∗

1+(6M2− + 4M2+ + 5E2+)
+ 5M∗

1−(M2+ − E2+) + 4E∗
3−(9E2+ − E2−)

+M∗
3−(9M2− + 5E2− + 36M2+)],

b2 = −30|E2+|2 + 15|M2+|2 − 15|E3−|2 + 30|M3−|2

+ 15Re[E∗
2+(3E2− +M2+ −M2−) + 4M∗

2+M2−

+ E∗
3−(M3− + 4E1+) +M∗

3−(E1+ + 3M1+)];

c0 = Im[E∗
0+(3E1+ − 3M1+ − 2E3− − 2M3−) (5)

+M∗
1−(2M2+ − 2E2+ + 3E2− + 3M2−)
+ 5(M∗

1+ + 3E∗
1+)(E2+ −M2+)

+ 5(3M∗
2− − E∗

2−)(E3− +M3−)],
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Table 4. The values of coefficients a0 and a1 (in µb/sr) in the two-term expansion (1) for the angular distribution from [5]

Eγ , MeV χ2/n a0 a1

710.3 2.01 4.74 ± 0.44 −0.80 ± 1.11
716.5 1.54 3.43 ± 0.16 −0.71 ± 0.35
722.6 1.82 4.36 ± 0.13 −0.55 ± 0.30
729.0 0.95 3.62 ± 0.11 −0.50 ± 0.23
735.1 0.66 3.43 ± 0.08 −0.61 ± 0.17
747.4 0.55 3.43 ± 0.08 −0.29 ± 0.15
753.2 0.94 3.41 ± 0.10 −0.63 ± 0.19
759.2 0.76 3.22 ± 0.09 −0.19 ± 0.17
765.2 0.75 3.02 ± 0.09 −0.62 ± 0.16
771.0 1.32 3.13 ± 0.09 −0.42 ± 0.16
776.9 0.74 3.17 ± 0.07 −0.14 ± 0.13
782.5 1.52 2.94 ± 0.10 −0.42 ± 0.18
788.2 0.90 2.83 ± 0.07 −0.43 ± 0.13
793.8 1.82 2.97 ± 0.11 −0.17 ± 0.20
799.3 2.62 2.62 ± 0.12 −0.44 ± 0.22
805.0 0.59 2.80 ± 0.06 −0.43 ± 0.11
810.4 1.37 2.63 ± 0.09 −0.26 ± 0.17
815.8 1.65 2.68 ± 0.10 −0.22 ± 0.18
821.0 1.86 2.44 ± 0.11 −0.70 ± 0.21
826.3 2.25 2.26 ± 0.13 −0.56 ± 0.24
832.6 0.76 2.39 ± 0.06 −0.27 ± 0.11
839.6 3.73 2.19 ± 0.13 −0.43 ± 0.24
846.7 2.55 2.32 ± 0.16 −0.27 ± 0.27
853.6 1.06 2.01 ± 0.08 −0.57 ± 0.19
860.4 3.90 1.87 ± 0.15 −0.60 ± 0.28
867.0 4.21 1.65 ± 0.14 −0.76 ± 0.23
873.6 1.19 1.89 ± 0.10 −0.30 ± 0.17
880.1 0.65 1.92 ± 0.06 −0.16 ± 0.11
886.4 1.19 1.84 ± 0.09 −0.15 ± 0.16
892.7 2.06 1.63 ± 0.12 −0.23 ± 0.21
898.8 1.00 1.35 ± 0.06 −0.52 ± 0.10
c1 = 3Im[E∗
0+(4E2+ − 4M2+ − E2− −M2−)

+M∗
1−(M1+ − E1+) − 4E∗

1+M1+

+ E∗
2−(E2+ −M2+ − 4M2−)

+ 3M∗
2−(M2+ − E2+) − 18E∗

2+M2+

+ (E∗
3− +M∗

3−)(4M1− − 3E1+ −M1+)
− 18E∗

3−M3−].

5. DISCUSSION

It is necessary to emphasize that the following
conclusions from the results of analysis are obtained
P

from qualitative considerations and require quantita-
tive confirmation.
Note the following facts: irrespective of the data

on dσ/dΩ, the description of statistics (3a), which
includes Σ, requires the three-term expansion with
the coefficients (4), while the statistics (3b) is sat-
isfactorily described by the two-term expansion with
the coefficients (5). One should also pay attention to
the energy dependence of the coefficient a1. Accord-
ing to Eqs. (2), a change in this quantity in the en-
ergy interval from the threshold up to approximately
0.9 GeV can be related to a decrease in the s-wave
amplitude and the corresponding reduction of the sp
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Table 5. The values of coefficients a0, a1, and a2 (in µb/sr) for the angular distributions from [6]

Eγ , MeV χ2/n a0 a1 a2

714.2 0.17 5.17 ± 0.09 0.42 ± 0.16 0.51 ± 0.23
731.7 0.26 4.32 ± 0.09 0.29 ± 0.18 0.59 ± 0.18
749.1 0.44 4.12 ± 0.06 0.14 ± 0.16 −0.16 ± 0.18
766.3 1.39 3.64 ± 0.09 −0.12 ± 0.19 −0.18 ± 0.22
784.6 0.27 3.32 ± 0.03 −0.03 ± 0.07 −0.13 ± 0.08
800.6 0.36 2.97 ± 0.03 −0.09 ± 0.07 −0.14 ± 0.08
817.6 0.97 2.75 ± 0.06 0.07 ± 0.12 −0.12 ± 0.13
834.5 0.16 2.33 ± 0.02 −0.08 ± 0.05 −0.26 ± 0.05
851.2 0.68 1.99 ± 0.04 −0.31 ± 0.09 −0.34 ± 0.10
867.9 0.65 1.83 ± 0.04 −0.12 ± 0.08 −0.18 ± 0.09
884.0 1.06 1.64 ± 0.05 −0.10 ± 0.09 −0.10 ± 0.11
900.4 0.81 1.39 ± 0.03 −0.25 ± 0.07 −0.17 ± 0.08
917.2 0.76 1.13 ± 0.03 −0.18 ± 0.07 −0.18 ± 0.08
933.3 0.13 0.92 ± 0.01 −0.27 ± 0.02 −0.14 ± 0.03
949.4 1.29 0.77 ± 0.03 −0.22 ± 0.06 −0.14 ± 0.08
965.5 0.65 0.64 ± 0.02 −0.16 ± 0.04 −0.10 ± 0.05
981.3 1.00 0.53 ± 0.02 −0.19 ± 0.04 −0.13 ± 0.05
997.2 1.43 0.46 ± 0.02 −0.12 ± 0.04 −0.09 ± 0.05
1012.9 0.48 0.41 ± 0.01 −0.10 ± 0.03 −0.14 ± 0.03
1028.6 0.45 0.40 ± 0.01 −0.02 ± 0.02 −0.11 ± 0.03
1044.1 0.91 0.41 ± 0.02 0.06 ± 0.04 −0.07 ± 0.04
1059.4 0.35 0.44 ± 0.01 0.08 ± 0.02 −0.11 ± 0.02
1074.8 0.08 0.47 ± 0.01 0.21 ± 0.01 −0.03 ± 0.01
1089.2 0.37 0.47 ± 0.01 0.20 ± 0.03 −0.05 ± 0.03
1100.4 0.07 0.45 ± 0.01 0.12 ± 0.03 −0.11 ± 0.03

Table 6. The values of coefficients b0, b1, and b2 (in µb/sr) for statistics (3a): Σ from [7], dσ/dΩ from [6]

Eγ , MeV χ2/n b0 b1 b2

742.5 0.69 0.80 ± 0.10 0.44 ± 0.17 0.52 ± 0.26

807.0 1.07 0.79 ± 0.07 0.17 ± 0.12 0.43 ± 0.19

870.0 1.05 0.59 ± 0.03 −0.09 ± 0.05 0.13 ± 0.08

932.0 1.18 0.44 ± 0.02 −0.10 ± 0.04 0.12 ± 0.06

992.0 1.74 0.31 ± 0.02 0.06 ± 0.03 0.14 ± 0.05

1050.5 6.73 0.28 ± 0.03 0.32 ± 0.05 0.14 ± 0.07
interference. The increase in a1 in the energy interval
0.9–1.1 GeV is most likely caused by an increase
in the contribution from the higher partial waves,
because there are no known p-wave resonances in
this region [9]. Next, the energy dependence of b2
is qualitatively similar to a1 and b1, although b2, in
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
contrast to a1 and b1, does not include a contribu-
tion from the s wave. This probably means that the
decrease in b2, at energies below 0.9 GeV, is related
to the D13(1520) resonance; the increase in b2 in
the energy region 0.9–1.1 GeV might be caused by
2
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Table 7. The values of coefficients b0, b1, and b2 (in µb/sr) for statistics (3a): Σ from [7], dσ/dΩ from [5]

Eγ , MeV χ2/n b0 b1 b2

742.5 0.67 0.62 ± 0.08 0.25 ± 0.13 0.37 ± 0.20

807.0 1.11 0.74 ± 0.07 0.07 ± 0.12 0.41 ± 0.19

870.0 0.95 0.65 ± 0.03 −0.13 ± 0.06 0.24 ± 0.09

932.0 0.97 0.54 ± 0.04 −0.13 ± 0.07 0.26 ± 0.10

992.0 0.42 0.31 ± 0.05 −0.01 ± 0.08 0.34 ± 0.12

Table 8. The values of coefficients b0, b1, and b2 (in µb/sr) for statistics (3a): Σ from [7], dσ/dΩ from [1]

Eγ , MeV χ2/n b0 b1 b2

742.5 0.66 0.75 ± 0.09 0.38 ± 0.16 0.45 ± 0.24
Table 9. The values of coefficients c0 and c1 (in µb/sr) for
statistics (3b): T from [8], dσ/dΩ from [6]

Eγ , MeV χ2/n c0 c1

717.0 0.69 −0.05 ± 0.12 0.48 ± 0.25

738.0 0.51 0.18 ± 0.09 1.19 ± 0.20

765.0 0.96 0.17 ± 0.09 0.36 ± 0.18

790.0 0.95 0.10 ± 0.07 0.18 ± 0.15

820.0 0.69 0.16 ± 0.05 −0.07 ± 0.10

857.0 0.44 0.25 ± 0.04 −0.17 ± 0.09

895.0 1.12 0.18 ± 0.07 0.01 ± 0.15

947.0 0.50 0.06 ± 0.04 −0.11 ± 0.08

the effect ofD15(1675) and F15(1680) resonances. In
this case, the interference of d and f waves should
be manifested at energies of 1.0–1.1 GeV as a shift
of the angular distribution Σ(θ) toward small angles
relative to 90◦ in the c.m.f., which is observed in
experiment [7].

It is clear from expression (4) that behavior of
the parameter b1 at energies above 0.9 GeV can be
caused by the sf interference. However, in this case,
it is necessary to explain the absence of the term with
P3(cos(θ)) from the expansion of (k/q) (dσ/dΩ): the
coefficient a3 at this term contains a similar interfer-
ence contribution:

a3 ∼ 6Re[E∗
0+(E3− − 2M3−)]. (6)
PH
Table 10. The values of coefficients c0 and c1 (in µb/sr) for
statistics (3b): T from [8], dσ/dΩ from [5]

Eγ , MeV χ2/n c0 c1

717.0 0.74 −0.06 ± 0.09 0.35 ± 0.19

738.0 0.56 0.11 ± 0.08 0.91 ± 0.16

765.0 0.90 0.13 ± 0.07 0.29 ± 0.15

790.0 0.96 0.09 ± 0.06 0.14 ± 0.14

820.0 0.66 0.16 ± 0.05 −0.09 ± 0.10

857.0 0.40 0.26 ± 0.04 −0.21 ± 0.09

895.0 1.16 0.20 ± 0.08 0.01 ± 0.18

947.0 0.52 0.06 ± 0.04 −0.18 ± 0.10

It is possible that the absence of a3 is explained by the
fact that the amplitudesE3− andM3− enter b1 and a3

with opposite signs, leading to summation in b1 and
subtraction in a3.

Table 11. The values of coefficients c0 and c1 (in µb/sr) for
statistics (3b): T from [8], dσ/dΩ from [1]

Eγ , MeV χ2/n c0 c1
717.0 0.72 −0.06 ± 0.12 0.45 ± 0.24
738.0 0.56 0.16 ± 0.09 1.10 ± 0.19
765.0 0.92 0.16 ± 0.08 0.34 ± 0.17
790.0 0.95 0.11 ± 0.08 0.19 ± 0.16
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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In conclusion, we emphasize that the energy be-
havior of the coefficients a1, b1, b2, c0, and c1 revealed
by this analysis is probably indicative of a change in
the process regime in the vicinity of 0.9 GeV, which is
caused by the transition from the region of S11(1535)
andD13(1520) resonances to the region ofD15(1675)
and F15(1680) resonances.
Further progress requires improvement of the ex-

perimental data on the known observables and exten-
sion of the database by including other observables,
first of all, the polarization of the recoil protons.
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Abstract—The production of charged particles (π± mesons and protons) in nucleus–nucleus interactions
at energies in the range 3.3–3.7 GeV/nucleon is considered. It is shown that the FRITIOF model
adapted to moderately high energies reproduces satisfactorily the energy spectra of mesons emitted into the
backward hemisphere in the laboratory frame, as well as their dependence on the masses of colliding nuclei.
The FRITIOF model supplemented with the Reggeon model of nuclear breakup allows one to describe the
soft part of the spectra of backward-emitted protons. Other approaches are required for describing the hard
part of the spectra. c© 2002 MAIK “Nauka/Interperiodica”.
The mechanism of cumulative-particle production
in hadron–nucleus (hA) interactions was widely
discussed in the literature [1–10]. Much less atten-
tion was and is presently paid to nucleus–nucleus
(AA) interactions. This is because hA interactions
are analyzed by methods that do not require large
computational work, which involve explicitly spec-
ifying fragmentation functions, structure functions,
cross sections, etc. In the case of AA interactions,
only within the simplest approximation similar to
that of Czyz–Maximon [11] can cross sections be
obtained in the form of analytic expressions or single
and double integrals. Within the correct Glauber
approach, this is virtually impossible. In addition,
according to the Glauber approach, the variety of
elementary processes in AA interactions is much
broader than that in the case of hA interactions.
Even listing possible processes is quite a complicated
mathematical problem, but it can be effectively solved
by stochastic-simulation methods, that is, well-
known Monte Carlo programs generating simulated
events. At present, various computational algorithms
have been suggested. For example, the DIAGEN
program [12] makes it possible to generate random
samples of processes (diagrams of AA interactions).
Similar subprograms are included in all generator
programs. Simulation of a particle-production pro-
cess corresponding to a given interaction diagram

1)Yerevan Physics Institute, ul. Brat’ev Alikhanian 2, AM-
37503 Yerevan, Armenia.

*e-mail: galoyan@cv.jinr.ru
1063-7788/02/6509-1722$22.00 c©
presents another problem, which can be solved by us-
ing models like FRITIOF [13], RQMD [14–16], and
VENUS [17]. As a rule, these models are employed
to analyze the general characteristics of hA and AA
interactions. The use of these models in analyzing
cumulative-particle production provides additional
possibilities for verifying general statements of the
models and for clarifying the mechanisms of the
processes.

In contrast to analytic models, generator programs
provide an exclusive description of interactions, which
is needed for modern experiments in order to take
into account background conditions, setup geometry,
particle-detection efficiencies, etc. However, simula-
tion of rare processes requires considerable compu-
tational work (reduced by applying special methods
of weighted modeling), but this work can in principle
be done by using modern facilities. The production of
cumulative particles is not a rare process; therefore,
generator programs can efficiently be used to ana-
lyze it.

Previously [18], we showed that the FRITIOF
model reproduces the main characteristics of the pro-
duction of cumulative π0 mesons in the process of
fragmentation of helium and carbon projectile nuclei
interacting with helium and carbon nuclei at an en-
ergy of 3.6 GeV/nucleon. Here, we study the possi-
bility of employing the FRITIOF model to describe
the charged-particle yield in hA and AA interactions
near and beyond the kinematical limit for free NN
collisions.
2002 MAIK “Nauka/Interperiodica”
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1. FUNDAMENTALS OF THE FRITIOF
MODEL

The FRITIOF model assumes the two-particle
kinematics of inelastic hh interactions, a+ b −→ a′ +
b′, where a′ and b′ are excited states of initial hadrons
a and b, respectively. The excited states are character-
ized by their masses. In order to chose hadron masses,
we employ the approach presented in [13] (see also
[19]). The model parameters were refined in [20].

In the case of hA and AA interactions, it is as-
sumed that nucleons excited in primary collisions can
interact with each other and with other nucleons,
thus increasing theirmass. The probability of multiple
collisions is calculated within the Glauber approach.

Excited hadrons are considered as QCD strings
whose fragmentation produces hadrons. As the string
mass grows, the multiplicity of secondary particles
also increases. These factors are also responsible for
a higher multiplicity of AA collisions as compared
to that in hA and hh ones; the same factors control
cumulative-particle production.

In order to determine the time sequence of nucleon–
nucleon collisions in the case of hA and AA in-
teractions within the FRITIOF model, the Glauber
approximation is used. Since cascade processes
involving secondary particles are disregarded, the
characteristics of slow particles produced in the
breakup of a nucleus are not described within the
model. In order to eliminate this drawback, it was
suggested to supplement the FRITIOF model with
the Reggeon model of nuclear breakup [22].

We take into account nuclear breakup in two
steps. At the first step, we determine, by means
of the Glauber approximation [12], the number of
inelastically interacting nucleons, that is, the number
of so-called hit ones. At the second step, we con-
sider noninteracting nucleons. It is assumed that a
noninteracting nucleon that is at an impact distance
r from a hit nucleon can be involved in a Reggeon
cascade with the probability W = Cnde

−r2/r2nd . Such
a nucleon can involve another spectator nucleon, and
so on. It is assumed that all hit and involved nucleons
leave the nucleus.

In order to describe the multiplicity of protons
participating in the collisions of nuclei with carbon
nuclei, the following parameter values were chosen:
Cnd = 1 and rnd = 1.2 fm.

The excitation energy of the residual nucleus was
calculated according to themethod presented in detail
in [19]. To simulate the relaxation of excited nuclei, we
used the evaporation model [23] (see also [24]).

Within the modified FRITIOF model [19], it is
suggested that the distribution of nucleons emitted,
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
for example, from the target nucleus with respect to
kinematical variables has the form

P{x−i }, {pi⊥}

∝
NT∏
i=1

exp[−p2
i⊥/〈p2

⊥〉]exp[−(x−i −1/NT )2/(dx/NT )2],

NT∑
i=1

pi⊥ = 0,
NT∑
i=1

x−i = 1,

where NT is the multiplicity of emitted nucleons, pi⊥
is the transverse momentum of the ith emitted nu-
cleon, and x−i = (Ei − piz)/W−

T is the longitudinal-
momentum fraction carried away by the nucleon. The
law of energy–momentum conservation is used to de-
termine the quantity W−

T and the analogous quantity
W+
P for nucleons ejected from the projectile nucleus

[19].
The values of 〈p2

⊥〉 = 0.17 (GeV/c)2 and dx =
0.282 were determined from an analysis of the spectra
of particles emitted into the backward hemisphere in
hA and AA interactions. Below, this procedure will
be referred to as the method for taking into account
Fermi motion.

2. ANALYSIS OF PARTICLE PRODUCTION
INTO BACKWARD HEMISPHERE IN THE AA

INTERACTIONS

Figures 1 and 2 present experimental data from
[25] on invariant exclusive cross sections for π−-
meson production into the backward hemisphere in
AA interactions at an energy of 3.36 GeV/nucleon,
together with the results of the FRITIOF model cal-
culations [21]. It is seen that the model reproduces
qualitatively the dependences of the cross sections on
T (the kinetic energy of π− mesons), θ (the meson
emission angle with respect to the beam direction),
and the masses of the projectile and target nuclei.
In general, the calculated values are higher than the
experimental data. For θ varying from 90◦ to 110◦ and
from 110◦ to 130◦, the slopes of the calculated spectra
agree well with the experimental ones. For θ > 130◦,
the model predicts a somewhat smaller slope than
that which is needed to fit the experimental data.

There arises the natural problem of disclosing fac-
tors that made it possible to attain qualitative agree-
ment between the experimental data and our model
calculations. According to Fig. 3, the spectra of π−

mesons inAA interactions are similar to those inNN
collisions. To describe the latter spectra, considerable
efforts were made in [20]. As a result, the meson
spectra in AA interactions were described without
using fitting parameters.
2
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Fig. 1. Invariant inclusive cross sections for the production of π− mesons in pC, dC, αC, and CC interactions at an energy
of 3.36 GeV/nucleon. Here, T is the kinetic energy of π− mesons, while θ is the meson emission angle with respect to the
beam direction. Points stand for experimental data from [25], while the histograms (here and below) represent the results of our
calculations within the FRITIOF model.
The absolute normalization of the spectra is de-
termined by the Glauber cross sections. In order to
calculate these cross sections [12], one needs to spec-
ify certain characteristics ofNN interactions, namely,
the total cross section (σtot

NN ), the slope of the dif-
ferential cross section for elastic scattering (BNN ),
and the ratio of the real to the imaginary part of
the elastic scattering amplitude at zero momentum
transfer [ρNN = RefNN (0)/ImfNN (0)].

The amplitude of elastic NN scattering in the
impact-parameter representation was parametrized
in the form standard for the Glauber approximation,

fNN (b) =
σtot
NN (1 − iρNN )

4πBNN
e−b2/2BNN , (1)
PH
by using the parameter values [26]

σtot
NN = 42 mb, BNN = 7.8 (GeV/c)−2

,

ρNN = −0.23.

The single-particle densities of nuclei heavier than
helium were parametrized in the form

ρ(r) = const/[1 + e
r−RA

c ], (2)

RA = 1.07A1/3 fm, c = 0.545 fm.

Center-of-mass correlations were taken into ac-
count as in [27]. The densities of light nuclei were
parametrized as in [12]. No modification of the char-
acteristics of NN interactions in the nuclear medium
was introduced.
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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Within the approach considered, the similarity of
the particle spectra in hA and NN collisions ad-
mits a simple explanation. In NN collisions at suf-
ficiently high energies, the spectra in the fragmenta-
tion regions do not depend on the interaction energy.
In hA collisions, intranuclear nucleons involved in
the collision process undergo fragmentation irrespec-
tive of the projectile particle—in the same way, as
in NN interactions. Since each participant nucleon
contributes to the cross section independently and
since the average number of these nucleons is 〈ν〉 ∼
A1/3, the cross section is

σ ∼ 〈ν〉σin
hA ∼ A1/3A2/3 = A1.

In AA interactions, the similarity can take place
only if the nucleons of the target nucleus are in-
volved in a single collision. In the interactions be-
tween two light nuclei and between light and heavy
ones, this is precisely so. It follows that the inclusive
cross sections should be proportional to A1 and that
the Glauber approximation (applied to determine the
SICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
multiplicity of participant nucleons of the target nu-
cleus and the interaction cross sections) is responsi-
ble for reproducing the absolute values of the cross
sections. Since the analysis of general characteristics
of AA interactions in this model leads to underesti-
mating the multiplicity of mesons [28], it is reasonable
to suggest that the overestimation of the inclusive
cross sections is caused by certain drawbacks of the
Glauber approximation.

The spectra of mesons inNN andAA interactions
can be treated as similar ones only for a first ap-
proximation. A more careful analysis shows that the
spectra of mesons produced in NN collisions cannot
be described by a simple exponential dependence,
but that the spectra of AA collisions are described
well by such a dependence. The distinctions between
the spectra are caused by features of the proposed
interaction mechanism.

Of course, the main distinction between the spec-
tra is associated with the fact that the spectra of
2
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mesons in NN interactions are limited by the acces-
sible kinematical region, while those in AA interac-
tions are not limited by this factor. In the experimental
data considered, only the last points lie outside the
kinematical region for free NN collisions.

According to Fig. 3, the π−-meson spectra change
slightly after taking into account the Fermi motion
of nucleons within the kinematical region allowed
for NN interactions. The meson yield outside this
region, even without taking into account the Fermi
motion of nucleons, is described by the nucleon-
mass-increasing mechanism. By way of example, we
indicate that, in multiple hA interactions, the majority
of intranuclear nucleons interact with a fast excited
nucleon, which has a mass different from that of the
P

projectile particle. This is the effect that leads to a
change in the boundaries of the kinematical region.

3. ANALYSIS OF d + A → π−(0◦) + X
PROCESSES AT Pd = 8.9 GeV/c

Let us consider the dependence of the particle-
production cross section on the mass of the nucleus
on which the fragmentation process occurs. In order
to do this, we analyze the data from [29] on d +
A → π−(0◦) + X reactions at a momentum of Pd =
8.9 GeV/c. The experimental data from [29, 30] are
presented in Fig. 4 versus the variable x defined as

x =
MNEπ− − 1

2M
2
π−

ENMN − ENEπ− −M2
N + PNPπ− cos θπ−

,

HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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where MN , PN , and EN are, respectively, the nucleon
mass, momentum, and energy; Mπ− , Pπ− , and Eπ−
are, respectively, the π−-meson mass, momentum,
and energy; θπ− is the pion emission angle in the
laboratory frame; andPN= 4.45 GeV/c.

In Fig. 4a, the solid curve shows the cross sec-
tions for the reaction d + p → π−(0◦) +X calculated
within the standard version of the model. This curve
exhibits an irregularity at x ∼ 1 caused by the neglect
of the Fermi motion of nucleons inside the deuteron
(this problem appears to be nontrivial). Outside this
region, we see that the shape of the calculated spec-
trum is similar to that of the experimental distribution,
but that there is some overestimation in magnitude.

The simplest way to fit the experimental data is to
reduce the calculated cross section for inelastic inter-
actions. An alternative possibility (that is, variation of
the FRITIOF model parameters) leads to a change in
the spectrum slopes. As an example, the solid curve in
Fig. 4b shows the results of the calculation according
to the model version that neglects the deexcitation
of nucleons. In this case, the only possibility is to
reduce the inelastic cross section. For this purpose,
we replaced the function g in the Glauber expressions,

g(b) = fNN (b) + f∗
NN (b) − fNN (b)f∗

NN (b),

by

g(b) = θ(rNN − |b|), rNN =
√

σ/π.

Taking σ to be less than σin
NN by 50%, we obtained

the lower curve in Fig. 4a. The histogram that repre-
sents the best fit to the experimental data and which
is reproduced in Fig. 4b was calculated with the cross
section reduced by 30%. In this way, we achieved a
satisfactory description of the dependence of the cross
section not only on x, but also on the mass of the
nucleus on which the fragmentation process occurs
(see Fig. 5).
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Figure 5 presents the ratio of the calculated cross
section for π−-meson production on nucleus A to
that on a proton (Ed3σ/d3p)dA/(Ed3σ/d3p)dp upon
a 30% decrease in σin. The points correspond to
experimental data from [29] at x = 1.23. It is seen that
the model version featuring a reduced cross section
reproduces the weak dependence of the spectra on the
mass of the nucleus on which fragmentation occurs.

Presently, it is not clear what causes the need
for reducing the cross section. It could be either a
drawback of the Glauber approximation, or an incor-
rect parametrization of the deuteron wave function
[12], or errors in the experimental data. The problem
requires a more careful experimental and theoretical
consideration. However, even at this stage, we can
describe a weak A dependence of the cross section.

In Fig. 6, we present the spectra of π− mesons
in dCu interactions for various numbers of collisions
inside the nucleus. In the case of a single interaction,
there is naturally no production of cumulative parti-
cles. Double collisions make the main contribution
at x > 1. The contributions of collisions of higher
multiplicities are negligible in this region. In the case
of double interactions at x > 1, dominant processes
are those in which one nucleon of the nucleus collides
with two nucleons of the deuteron. Within the ap-
proximation of a hard projectile nucleus [31], the cross
section for such processes is given by the expression

E
d3σ

d3p
= (E

d3σ

d3p
)dp
∫

d2bTA(b)e−σdNTA(b), x > 1,

where TA is a function of the nucleus thickness. The
cross section is proportional to A1/3.

It is evident that the double collisions in question
occur on the nuclear periphery. However, in contrast
02
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to the concepts developed in [29], the peripheral char-
acter is caused by an increase in the longitudinal
momentum of hit nucleons of the deuteron in mul-
tiple collisions (this results in the “softness” of the
spectrum) rather than by the absence of absorption
of projectile deuterons and cumulative mesons in the
nucleus. Effectively, multiple interactions can be con-
sidered as processes that remove deuterons from the
double-collision channel.

Thus, within the approach considered, we can ex-
plain the strong dependence of the cross sections for
cumulative-particle production on the mass of the
nucleus on which the fragmentation process occurs.

4. DESCRIPTION OF THE PROTON
SPECTRA

The results of the calculations of the invariant
inclusive cross sections for proton production in
AA interactions and experimental data from [32] are
presented in Fig. 7. It is seen from the figure that
the model reproduces the slopes of the experimental
spectra in the angular interval 90◦ ≤ θ < 120◦. In the
region θ ≥ 120◦, the results of the calculations are
close to the experimental points for T ≤ 150 MeV. At
P

greater values of T , there is a systematic distinction
between the results of the calculation and the exper-
imental data. The model reproduces the dependence
of the cross section on the projectile-nucleus mass.
In Fig. 7, the dashed curves correspond to the results
of the calculation of the proton spectra in CC inter-
actions that disregards the nucleons involved (that
is, Cnd = 0). It is seen that, in order to describe the
proton yield, it is necessary to go beyond the Glauber
approximation in taking into account the breakup of
nuclei.

The description of the proton yield in collisions
with heavy nuclei requires varying the parameter Cnd.
In Figs. 8 and 9, we present the experimental data
from [33] on the characteristics of protons in nTa and
CTa interactions at a momentum of P = 4.2 GeV/c
per nucleon. In these figures, we also give the re-
sults of the calculations (solid curves) with the pa-
rameter Cnd = 0.2 and, for the sake of comparison,
the results of the calculations (dashed curves) with-
in the cascade–evaporation model, where the multi-
plicity of mesons in CTa interactions is considerably
overestimated. It should be noted that, within the
FRITIOF model disregarding the elastic rescattering
of nucleons, we were unable to describe the proton
multiplicities in pC, nTa, CC, and CTa interactions
with a constant parameter Cnd. Allowance for elas-
tic rescattering enabled us to unify the calculations.
However, different target nuclei are to be described
with different values of the parameter Cnd. Attempts
at describing all data with a common parameter Cnd

failed. Of course, this is a disadvantage of the model.
Nevertheless, the chosen value of the parameter en-
ables us to reproduce the soft part of the spectrum of
protons emitted into the backward hemisphere.

Figure 10 presents experimental data on the in-
variant cross sections for proton production in ATa
interactions at a momentum of 4.2 GeV/c per nu-
cleon, together with the results of the calculation
within the FRITIOF model at Cnd = 0.2. It is seen
that the model reproduces the slope of the spectrum
in the angular interval 90◦ ≤ θ < 120◦ for the kinetic
energy T ranging from zero to 250 MeV and in the
interval 120◦ ≤ θ ≤ 180◦ for T values from zero to
150 MeV. In these regions of T , the model leads to
a correct dependence on the projectile-nucleus mass.

We emphasize that the experimental distributions
change their behavior at high T . The model does
not reproduce this effect, although the number of
simulated events exceeds experimental statistics by a
factor of 10. Apparently, it is necessary to take into
account some other proton-production mechanisms.

Analogous results supplementing to those pre-
sented above were obtained from an analysis of
pC interactions at momenta of Pp = 18, 34, and
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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57 GeV/c [35] and pC and pTa interactions at Pp =
400 GeV/c [36]. As an example, Fig. 11 shows ex-
perimental data and the results of the calculations for
Pp = 400 GeV/c. The model predicts the production
of rather hard mesons and protons. For mesons, the
results of the calculations agree with experimental
data for θ ∼ 70◦ and θ > 130◦. At θ ∼ 90◦, the slope
of the spectrum exceeds the experimental values. As
for protons, the situation is different: the calculated
and experimental spectra agree at θ ∼ 70◦. For larger
angles, the calculations reproduce the soft part of
the spectrum. The yield of hard protons is under-
estimated. Moreover, the model does not predict an
exponential decrease of the spectra.

The meson spectra, as was shown above, slightly
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
change after taking into account the Fermi motion
of nucleons. The spectra and their dependence on
the meson emission angle are controlled mainly by
the meson-production mechanism—in particular, by
the mass-increase mechanism and the mechanism
of hit-nucleon fragmentation. Further investigations
are to demonstrate which of these is responsible for
the angular dependence. It is reasonable to assume
that an analysis of the great amount of available
experimental data on hA interactions would help to
solve this problem.

As to protons, their absolute yield, as mentioned
above, is controlled by the nuclear-breakup model,
while the spectrum depends on the method for taking
into account the Fermi motion of nucleons. Probably,
allowances for the interplay of the transverse and
2
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longitudinal momenta of ejected nucleons would help
to improve the model.

Summarizing this consideration, we can conclude
that the standard Reggeon model of nuclear breakup
does not allow us to describe the proton yield in colli-
sions of light and heavy nuclei with a constant param-
eter Cnd. This is probably because of the neglect of a
specific structure of light nuclei. However, the method
employed to take into account Fermi motion makes
it possible to describe the soft part of the spectra of
protons emitted into the backward hemisphere. Other
approaches are required for describing the hard part of
the spectra.

Probably, the most promising way is to take into
account the presence of multiquark configurations
in nuclei. Here, many problems arise. These include
the following: What multiquark bags can appear in
nuclei? What is the multiplicity distribution for these
bags? What is their spatial distribution? In what way
do these bags interact with each other and with the
nucleons? All these problems must be solved in con-
structing the Monte Carlo program. The majority of
them were considered in [37].

Komarov and Müller [37] used an uncorrelated nu-
cleon distribution in nuclei and took into account the
nucleon core (0.4 fm). By analogy with the majority
P

of approaches, they assumed that nucleons form a
flucton if their centers fall within a small volume Vc.
The cross section for the interaction of the projectile
hadron with a flucton was deduced within the geo-
metric approach. It was suggested that, in a hadron–
flucton collision, the excitation-energy transfer to the
flucton is distributed as

P (−Eexc) ∝ exp(−Eexc/〈Eexc〉),
0.2 ≤ Eexc ≤ 3 GeV.

It was also assumed that the excited flucton decays
either into nucleons or into nucleons and one meson,
with the matrix element for the decay process being
constant. This provides the possibility of reproducing
the proton spectra in pA interactions for energies
in the range from 0.64 to 400 GeV by using only
three parameters: Eexc = 0.14 GeV; a parameter that
specifies the flucton radius, rk = k1/3rc (where rc =
0.8 fm and k is the number of nucleons inside the
cluster); and the probability of flucton decay via a
mesonless channel.

Efremov et al. [38] used the standard concept of
fluctons that is close to that presented above. How-
ever, the decay matrix element was not assumed to be
constant—it was constructed according to the model
of quark–gluon strings. The consideration in [38] was
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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restricted to the π±- and K±-meson spectra in pBe
interactions at E = 40 GeV and to the ratio of the
spectra of K− mesons and antiprotons.

The scheme suggested in [37] can be included in a
Monte Carlo program of the FRITIOF type, probably
supplemented with the results obtained within the
quark–gluon approach [38]. Undoubtedly, this would
provide a description of the proton spectra; however,
this requires an independent study. Thus, investiga-
tion of hard cumulative protons can clarify in general
the role of multinucleon configurations in nuclei.
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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2. V. S. Stavinskiı̆, Fiz. Élem. Chastits At. Yadra 10, 949
(1979) [Sov. J. Part. Nucl. 10, 373 (1979)].
2



1732 GALOYAN et al.
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Abstract—Contributions of variousmechanisms to the heavy-quark-production cross section in ultrarela-
tivistic nucleus–nucleus collisions, including the direct pair production bb̄ and cc̄ as a result of hard primary
collisions and pair production in showers induced by hard-produced partons in the initial and final states,
are investigated. The sensitivity of the muon pair spectra with large invariant masses (from semileptonic
BB̄ decays) and spectra of the secondary J/ψ (from individual B decays) to the multiple scattering and the
energy losses of b quarks in dense quark–gluon matter is studied. The formation of such matter is expected
in heavy-ion collisions at the LHC. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Production of the heavy b and c quarks in high-
energy hadron collisions is interesting in view of the
possibility of studying the dynamics of the hard pro-
cesses applicable to the description of the standard
and new QCD physics [1–3] of these processes. As is
known, the light u, d, and s quarks can be produced as
a result of both hard QCD processes and the nonper-
turbative hadronization or fragmentation of valence
quarks—constituents of the initial hadrons. At the
same time, since the heavy b and c quarks are absent
from the initial flavor content of hadrons and their
production in the nonperturbative processes is neg-
ligible [1], the production of b and c quarks can be
completely described in the QCD perturbation theory
provided that the mass of the heavy quarkMQ signif-
icantly exceeds the characteristic QCD confinement
scale (MQ � ΛQCD). In this case, the heavy quark
production cross section is the product of the parton
cross section for QQ̄ pair production and the struc-
ture function of the distribution of quarks or gluons,
which produce theQQ̄ pairs in their collision.

The specific interest in heavy-quark production in
ultrarelativistic nucleus–nucleus collisions is caused
mainly by the possibility of studying the behavior
(interaction) of the massive color charge in a su-
perheavy QCD matter represented by the quark–
gluon plasma (QGP). The search for and charac-
terization of the QGP is one of the most interesting
problems in modern high-energy physics (see, e.g.,
reviews [4–8]). The experimental data obtained on the
SPS accelerator in CERN at the c.m. energy

√
s �

*e-mail: igor@lav01.sinp.msu.ru
1063-7788/02/6509-1733$22.00 c©
20 GeV per nucleon pair (anomalous suppression of
the J/ψ quarkonium production [9], enhanced yield
of strange particles [10]) and on the recently com-
missioned RHIC collider in the Brookhaven National
Laboratory at

√
s = 130 GeV per nucleon pair (sup-

pression of hard hadron production [11]) make it pos-
sible to assume that the QGP might be produced in
the most central heavy-ion collisions (Pb–Pb, Au–
Au). However, other interpretations still cannot be
excluded [12, 13].

The Large Hadron Collider, which is now un-
der construction in CERN, is expected to provide
lead ion interaction at significantly higher energy√
s = 5.5 TeV per nucleon pair. This may result

in the production of virtually “ideal” quark–gluon
(or gluon) plasma with an initial energy density
significantly exceeding the critical value for the
quark–hadron phase transition ε0 � 0.5 TeV/fm3 �
εcr ∼ 1 GeV/fm3 [14]. In this case, the inclusive
cross section for the production of b quarks will be
sufficiently high for the systematic study of various
aspects of “b physics,” while at the RHIC energy
we can merely expect to observe effects related to
the production of lighter c quarks. The quark pairs
produced at the very beginning of nucleus–nucleus
collisions as a result of heavy QCD scattering prop-
agate through the dense matter and interact with
the medium constituents, thus providing information
about the early stages of the matter evolution. We
emphasize that partons in the superdense quark–
gluon medium (ρ1/3 � ΛQCD, where ρ is the parti-
cle number density), where the color interaction is
screened owing to the collective effects, are asymp-
totically free. Therefore, it is possible to consider
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Examples of the diagrams for variousmechanisms
of the heavy quark production in the hadron collisions:
(a) with two heavy quarks (“pair production”); (b) with
one heavy quark (“flavor excitation”); (c) without heavy
quarks (“gluon splitting”) in the vertices of the hard sub-
process.

the problem of hard parton scattering in the QGP
within perturbative QCD [15, 16], where the Debye
screening mass µD is the natural regularization
parameter for the parton–parton interaction.

Investigation of the energy loss mechanism for
partons in dense QCD matter [17] is a relevant prob-
lem. The parton energy losses can be divided into ra-
diative losses related to emission of “bremsstrahlung”
gluons [15, 16, 18–21] and collision losses caused by
elastic rescattering [22–25]. The rescattering inten-
sity is an increasing function of the temperature (en-
ergy density). Therefore, the formation of superdense
and “hot” parton matter in heavy-ion collisions (with
the initial temperature estimated as T0 ∼ 1 GeV at
the LHC [14]) should result in significantly greater
energy losses for the hard partons as compared to the
case of a “cool” nuclear matter or a hadron gas with
T � 0.2 GeV. In particular, an interesting prediction
related to the coherent nature of the radiation induced
by the QCD medium is the dependence of the energy
losses per unit length dE/dx on the total distance
traveled in the dense medium L and a nontrivial en-
ergy dependence of the effect [18, 19]. Experimental
study of theL-dependence of the energy losses can be
carried out in various bins of the impact parameter of
the nucleus–nucleus collision, which determines the
effective volume of the dense area of the initial overlap
of the nuclei [26].

Considering the possibility of experimental obser-
vation of the aforementioned effects, we would like
to note that the energy losses of (mainly) gluon jets
can lead to suppression of the yield of hard hadron
jets [25–27] and hard hadrons [28], while the energy
losses of the jets induced mainly by the light u and
d quarks result in the pT disbalance in theZ + jet [29]
PH
and γ + jet [30] processes. At the same time, the
mass spectrum of muon pairs with large invariant
masses from the semileptonic decays of B and D
mesons is sensitive to rescattering of the heavy b and c
quarks [31–33]. The aforementioned production pro-
cesses can be investigated in heavy-ion collisions [34]
at the LHCwith the CompactMuonSolenoid (CMS)
detector, which is now under design. The detector is
optimized for the precise measurement of character-
istics of the high-energy muons, photons, electrons,
and hadron jets [35].

The main purpose of this work was to study sen-
sitivity of the mass spectra of the muon pairs with
large invariant masses (from semileptonicBB̄ decay)
and the spectra of the secondary J/ψ (from individual
B decays) to the multiple scattering and the energy
losses of b quarks from various sources in heavy-
ion collisions at the LHC. In Section 2, we analyze
various mechanisms of the heavy quark production at
the LHC energy and estimate their contributions to
the cross section for the kinematic acceptance of the
CMS experiment. In Section 3, we consider the dif-
ference between the medium-induced gluon radiation
of massive quarks and the case of massless quarks.
Section 4 briefly describes a model for heavy quark
rescattering in the QCD medium. In Section 5, we
present and discuss our results. In the Conclusion, we
formulate the conclusions of this study.

2. MECHANISMS OF HEAVY QUARK
PRODUCTION AND SPECTRA OF MUON

PAIRS IN ULTRARELATIVISTIC HEAVY-ION
COLLISIONS

The bb̄ and cc̄ pairs are produced at the very begin-
ning of the nucleus–nucleus collision as a result of
hard, mainly gluon–gluon collisions. They propagate
through the dense medium and “capture” u, d, or s
quarks at the hadronization stage, thus forming B
and D mesons. The latter decay into hadrons and
leptons in the time period on the order of the mean
lifetime (cτB± = 496 µm, cτB0 = 464 µm, cτD± =
315 µm, cτD0 = 124 µm). In particular, ≈20% of B
mesons and ≈12% of D mesons give muons; ap-
proximately one-half of muons from B mesons are
produced through the intermediate D mesons [36].

There are several mechanisms for the heavy quark
production in high-energy hadron collisions [3];
Fig. 1 displays the corresponding diagrams. Follow-
ing the classification and terminology of the authors
of [3], we distinguish three classes of such processes,
depending on the number of the heavy quarks in the
vertices of the hard subprocess (2, 1, or 0, respec-
tively):

1. “Pair production,” gg → QQ̄ and qq̄ → QQ̄ in
the leading O(α2

s) order of the QCD perturbation
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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theory (Fig. 1a) (allowance for the corrections O(α3
s)

missing from Fig. 1a is possible, for example gg →
QQ̄g, qg → QQ̄q, qq̄ → QQ̄g).

2. “Flavor excitation,” whereby one heavy quark
is produced in the vertex of the heavy process Qq →
Qq or Qg → Qg, while another heavy quark Q̄ is
produced as a result of the parton shower in the initial
state (Fig. 1b).

3. “Gluon splitting,” whereby both heavy quarks
are produced in the shower induced by the hard-
produced gluon in the final state g → QQ̄ (Fig. 1c).

Note that, at an intermediate energy, most of the
heavy quarks are produced directly as a result of the
hard initial scatterings (“pair production”), while, at
the LHC energy, we expect that the contribution from
the QQ̄ pairs produced in the parton showers in the
initial and final states (“flavor excitation” and “gluon
splitting”) will dominate (up to 90%). Despite a large
probability for the events with high transferred mo-
mentum (pT ) to involve at least one bb̄ or cc̄ pair, most
such quarks carry away a small part of the total trans-
verse momentum of the jet. As a result, quarks are
concentrated in the region of relatively small invariant
masses and pT . Nevertheless, as we shall see later,
even for sufficiently large invariant masses of muon
pairs from the decays of heavy quarks

Mµ+µ− =
√

(Eµ+ + Eµ−)2 − (pµ+ + pµ−)2,

the contributions of the three mechanisms are com-
parable in order of magnitude.

In order to estimate the spectra of muon pairs
from the heavy quarks in Pb–Pb collisions at the
LHC, we used the heavy quark production cross sec-

tion σQQ̄NN for the nucleon–nucleon interactions at√
s = 5.5 TeV, their spectra of initial momentum, the

hadronization and fragmentation schemes ofB andD
mesons obtained in the PYTHIA5.7 model [37] with
the STEQ2L parametrization of the structure func-
tion and included parton showers in the initial and
final states, which effectively allow for higher (with
respect to αs) corrections. We used the following
masses of b and c quarks:Mb = 5 GeV/c2 andMc =
1.35 GeV/c2. The corresponding cross sections in

Pb–Pb collisions are obtained by multiplying σQQ̄NN
by the number of binary nucleon–nucleon collisions.
Then, the initial distribution for the yield of QQ̄ pairs
with respect to the impact parameter b of the AA
collision assumes the form [26, 38]

d2σQQ̄AA
d2b

(b,
√
s)= TAA(b)σQQ̄NN (

√
s)
d2σin

AA

d2b
(b,

√
s), (1)
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Fig. 2. The initial distribution of µ+µ− pairs from a corre-
lated semileptonic decay of the BB̄ meson pairs with re-
spect to the invariant mass for various b quark production
mechanisms: “pair production” (solid histogram), “fla-
vor excitation” (dashed histogram), and “gluon splitting”
(dotted histogram); pµ

T > 5 GeV/c and |ηµ| < 2.4. The
histograms are normalized to the number of events in the
Pb–Pb collisions for two weeks of LHC operation with
the luminosityL = 1027 cm−2 s−1.

where the AA inelastic differential cross section is

d2σin
AA

d2b
(b,

√
s) =

[
1−
(

1− 1
A2
TAA(b)σin

NN (
√
s)
)A2

]
,

(2)

and the inelastic nondiffraction nucleon–nucleon
cross section is σinNN � 60 mb at

√
s = 5.5 TeV.

The standard nuclear overlap function is TAA(b) =∫
d2sTA(s)TA(|b− s|), where TA(s) = A

∫
dzρA(s, z)

is the nuclear thickness function for the nucleon
density in the nucleus ρA(s, z) [39]. It should be

emphasized that the obtained cross sections σQQ̄AA =

A2σQQ̄NN for the quark yield are merely estimates which
do not allow for the nuclear effects in the initial
(“nuclear screening”) and final (rescattering and
energy loss) states. We shall consider these effects
in Section 5.

Figure 2 displays the initial distribution of µ+µ−

pairs from the dominating source—fragmentation of
bb̄—with respect to the invariant mass (Mµ+µ− =
20–50 GeV/c2) with allowance for the kinematic ac-
ceptance of the CMS experiment at the LHC, pµT >
5 GeV/c and |ηµ| < 2.4 [34, 35]. The histograms
are normalized to the expected number of events in
Pb–Pb collisions for two operation weeks (R = 1.2×
106 s) of the LHC accelerator with the luminosity
2
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L = 1027 cm−2 s−1 [35], that is∫
dM

dNµ+µ−

dM
= Rσµ

+µ−

AA L.

Figure 2 demonstrates that the contributions from the
“pair production” and “flavor excitation” at large in-
variant masses are approximately equal, while the rel-
ative contribution of the “gluon splitting” decreases
with increasingM . The cross sections integrated over
Mµ+µ− > 20 GeV/c2 are 26.5, 20.5, and 9.5 µb for
the “pair production,” “flavor excitation,” and “gluon
splitting,” respectively. This corresponds to the to-
tal numbers of µ+µ− pairs 3.2 × 104, 2.5 × 104, and
1.15 × 104, respectively, in the mass rangeMµ+µ− =
20–50 GeV/с2.

We found that the initial number of µ+µ− pairs
from cc̄ decay is lower approximately by a factor of 5
than the signal from bb̄. Therefore, hereafter we shall
consider only the signal from the dominating channel
(bb̄→ BB̄ → µ+µ−X). Moreover, the energy losses
of c quarks induced by the medium can significantly
exceed the energy losses of b quarks owing to the
mass difference (see the next section); this would
result in additional suppression of the cc̄→ µ+µ−

yield.
In the analysis of the contribution of background

dimuons, we distinguish the correlated and uncorre-
lated sources. The main uncorrelated background is
the direct production of the Drell–Yan muon pairs,
qq̄ → µ+µ−, the corresponding production cross sec-
tion in the kinematic region studied being ∼5.5 µb.
Such dimuons do not interact with the medium in
the final state. The main difference in the production
geometry of the Drell–Yan dimuons and those from
the decays of B and D mesons is that the former are
emitted directly from the primary vertex of the nuclear
interaction, while the latter are produced at a certain
distance from the primary vertex (at the “secondary
vertex”) determined by the lifetime and the meson
γ-factor. Therefore, it is possible to suppress the yield
of the Drell–Yan dimuons by an algorithm of dimuon
reconstruction, which uses the tracker information
about the position of the secondary vertex of themuon
pair [34].

In addition, there is a contribution from the un-
correlated decays of pions and kaons, π±,K± →
µ±ν(ν̄), and from muon pairs of the “mixed” type
(for example, one muon from the hadron decay and
another one from b→ B, and so on). This contri-
bution is on the same order of magnitude as that
from bb̄. A standard method for the subtraction of the
uncorrelated part of the spectrum uses the spectrum
of the muon pair with the same charge sign:

dNuncor
µ+µ−

dM
= 2

√
dNµ+µ+

dM

dNµ−µ−

dM
. (3)
PH
One more process that can also give information
about the production and rescattering of b quarks in
ultrarelativistic collisions of heavy ions is the pro-
duction of secondary charmoniums. The decay of the
B meson gives J/ψ with a probability of 1.15%; the
so produced J/ψ decays into a muon pair with a
probability of 5.9% [36]:

bb̄→ BB̄ X → J/ψ Y → µ+µ−Y.

The cross section for the production of the sec-
ondary J/ψ(→ µ+µ−) from the bb̄ “pair production”
estimated for the same acceptance is ∼10.5 µb and
reaches only ≈17% of the total production cross sec-
tion for the secondary J/ψ, while the contributions
of the “flavor excitation” and “gluon splitting” are
approximately equal, being about 25.5 µb each. A dif-
ference from the picture of the relative contributions
from various mechanisms for the dimuons from the
semileptonic decays of BB̄ is explained by the fact
that, in the case of J/ψ, we consider the region of sig-
nificantly lower invariant masses,Mµ+µ− = MJ/ψ =
3.1GeV/c2. In this region, the contribution due to the
quarks from the parton showers is more significant.
At the same time, we emphasize that the spectrum
shapes of the secondary J/ψ with respect to the
transverse momentum and rapidity are virtually the
same for the different sources of b quark production.
The reason is that the spectra carry information about
the spectra of the individual b quarks, which weakly
depend on the production mechanism [3]. Signifi-
cantly different are the quark–antiquark correlations,
which leads to differences in the distributions with re-
spect to the quantities sensitive to theQQ̄ correlation,
in particular, with respect to the invariant mass of the
muon pair, their azimuthal correlation, and so on.

The main background signal for the production of
the secondary J/ψ is the primary J/ψ produced at the
first stage of nucleus–nucleus interaction as a result
of gluon fission. The estimated initial cross section
for the muon production from the primary J/ψ under
the same kinematic conditions is ≈4 µb. However,
the estimate of the actual cross section is a difficult
task: on the one hand, the yield of the primary J/ψ
might be suppressed owing to the color screening [40]
and/or dynamical dissociation [41] in the QGP; on
the other hand, the “thermal” models predict a certain
additional yield of J/ψ from the QGP (see review [42]
and references therein). In some models, the authors
assume that J/ψ can be regenerated at the hadron
stage as a result of the DD̄ interactions [43]. In any
case, there is a problem of separating the signals
from the primary and secondary J/ψ. The spacetime
scale of the primary J/ψ production is significantly
smaller than that of the secondary J/ψ produced as a
result of the B meson decays. Therefore, the dimuon
YSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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separation can be performed in the same manner as
was suggested for the Drell–Yan dimuons and the
dimuons fromBB̄ fragmentation, that is, using infor-
mation from the tracking system about the geometric
position of the vertex of the muon pair production.

Concluding this section, we emphasize that there
are theoretical ambiguities related to the calculation
of cross sections for the heavy quark production in
nucleon–nucleon collisions at LHC energies. The
total cross sections and the corresponding spectra of
µ+µ− pairs depend on the choice of parton struc-
ture functions, quark masses, B meson fragmenta-
tion schemes, higher (with respect to αs) corrections
to the cross section, and so on. Therefore, it is highly
desirable to measure the dimuon spectra at large
invariant masses for the secondary J/ψ in pp or dd
collisions at the same or close energy per nucleon as
that in the case of the heavy-ion collisions.

3. GLUON RADIATION OF HEAVY QUARKS
IN A DENSE MEDIUM

As was mentioned in the Introduction, the results
of recent investigations of the impact of the coherent
effects (QCD analog of the Landau–Pomeranchuk–
Migdal effect in QED—the LPM effect) on the
spectrum of the gluon radiation induced by the
medium [18, 19] are applicable only in the ultrarel-
ativistic limit of massless quarks. Mustafa et al. [44]
made an attempt to calculate the energy losses of a
quark with a nonzero massMq ; however, in the limit
Mq → 0, the obtained dependence of energy losses
on the initial quark energy E is qualitatively different
from the results of [18, 19]. Thus, the problem of
the correct description of the coherent picture of
the radiation energy losses by heavy quarks in the
entire range of momentum is still unsolved. We can
distinguish two limiting cases of the energy losses
by heavy quarks. There are grounds to assume that
the medium-induced gluon radiation of slow quarks
with pT � Mq should be suppressed [44]. At the
same time, the limiting ultrarelativistic case of pT �
Mq corresponds to the gluon radiation of massless
quarks.

The approximation used in [44] is based on the fac-
torization of the matrix element into elastic scattering
and gluon emission [45], when the distribution with
respect to the number of the emitted gluons assumes
the form

dNg
dηd2qT

=
3αs
π2

l2T
q2T (qT − lT )2

, (4)

where q = (q0,qT , q3) and l = (l0, lT , l3) correspond
to the 4-momenta of the emitted and intermediate
gluons, and η = (1/2) ln [(q0 + q3)/(q0 − q3)] is the
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
rapidity of the emitted gluon along the momentum
direction of the incident quark. Such an approxima-
tion is applicable in the limited qT interval for the
low rapidities η ∼ 0 and lT (q0/E) � qT . The authors
of [44] allowed for the coherent LPM effect for the
gluons with the formation time below the free path
length of the quark in the medium through restricting
the emission of such gluons by a step function [16].
However, we have already mentioned that this results
in a qualitative difference of the energy dependence
of the quark energy losses in the massless limit as
compared to that obtained from a more detailed con-
sideration in [18, 19].

In our case, the main contribution to the region
of the dimuon invariant massesMµ+µ− � 20 GeV/c2

and the secondary J/ψ comes from the b quarks with
the “intermediate” values of pT � 5 GeV/c, the radi-
ation spectrum of which is rather close to the incoher-
ent regime. Hereafter, in order to estimate the sensi-
tivity of the dimuon spectra to the medium-induced
effects, we consider two limiting cases: (1) the “min-
imum” effect with energy losses only by collisions
and (2) the “maximum” effect with energy losses by
collisions and radiation in the limit of the incoherent
radiation with no account for the coherent LPM sup-
pression of radiation (that is, dE/dx ∝ E and does
not depend on the traveled distance L). In the latter
case, we used the Bethe–Heitler cross section ob-
tained in the relativistic kinematics and estimated the
medium-induced energy losses by radiation per unit
length [19] as the integral over the complete spectrum
of emitted gluons:

dE

dx
=Eρ

1−Mq/E∫
0

dy
4αsC3(y)(4− 4y+ 2y2)
9πy

[
M2
q y

2 +m2
g(1− y)

] , (5)

C3(y) =
9πα2

sCab
4

[
1 + (1 − y)2 − y2

]

× ln
2
(
α2
sρEy(1 − y)

)1/4
µD

,

where mg ∼ 3T is the effective “mass” of the emit-
ted gluon at the temperature T ; y = q0/E is the
fraction of the initial quark energy carried by the
emitted gluon; ρ ∝ T 3 is the medium density; µ2

D =
4παsT 2(1 +Nf/6) is the squared Debye mass, which
regularizes the integral parton scattering cross sec-
tion at the lower limit; and Cab = 9/4, 1, and 4/9 for
gg, gq, and qq scattering, respectively.

4. RESCATTERING OF HEAVY QUARKS
IN THE DENSE MEDIUM

We carried out the Monte Carlo modeling of the
free path length of b quarks with the mass Mb =
2
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5 GeV/c2 in the expanding QGP produced in Pb–
Pb collisions in the region of the initial overlap of the
nuclei. In [26], we presented the details of the geo-
metric production model and propagation of the hard
parton through the dense matter. In the general case,
the rescattering intensity and the energy losses are
sensitive to the initial conditions (energy density ε0
and formation time τ0) and to the spacetime evolution
of the medium, which is described by the equations
for the longitudinally expanding quark–gluon liquid,
where partons are formed at the hypersurface of the
constant proper time τ =

√
t2 − z2 [46].

The rescatterings can be considered as indepen-
dent [16] when the free path length of the hard parton
exceeds the radius of the color screening in the QCD
medium, λ� µ−1

D . The transverse (with respect to
the collision axis z) distance between two succes-
sive collisions in the model, ∆xi = (τi+1 − τi)vT =
(τi+1 − τi)pT /E, corresponds to the probability den-
sity

dP

d(∆xi)
=

1
λ(τi+1)

exp


−

∆xi∫
0

ds

λ(τi + s)


, (6)

where the free path length isλ = 1/(σρ). Themedium
density ρ(τ) and the cross section for the quark scat-
tering σ(τ) are functions of the proper time. Then,
the main kinetic integral equations for the energy loss
∆E as a function of the initial energy E and the
covered distance L assumes the form

∆E(L,E) =

L∫
0

dx
dP (x)
dx

λ(x)
dE(x,E)
dx

, (7)

dP (x)
dx

=
1
λ(x)

exp (−x/λ(x)) ,

where the current transverse coordinate of the quark
x(τ) is determined from the equation dx/dτ = vT ,
and x = τ at vT = 1.

The dominating contribution to the differential
cross section dσ/dt for the quark scattering with

the energy E and momentum p =
√
E2 −M2

q off the

“thermal” parton with the energy (or effective mass)
m0(τ) ∼ 3T (τ) � E at the temperature T can be
calculated in the target reference frame as [16, 44]

dσab
dt

� Cab
2πα2

s(t)
t2

E2

p2
. (8)

The running QCD coupling constant is

αs(t) =
12π

(33 − 2Nf ) ln (t/Λ2
QCD)

(9)
P

for Nf active quark flavors, and the scale QCD pa-
rameter ΛQCD is on the order of the critical tempera-
ture Tc. The integral parton cross section is regular-
ized by the Debye screening mass µ2

D:

σab(τ) =

tmax∫
µ2

D

dt
dσab
dt
, (10)

where tmax = [s− (Mq +m0)2][s− (Mq −m0)2]/s
and s = 2m0E +m2

0 +M2
q .

In the next ith rescattering with the squared trans-
ferred momentum ti off the accompanying (moving
with the same longitudinal rapidity y) medium con-
stituent with the effective mass m0i, the quark loses
the transverse energy ∆ET and changes its rapidity
by ∆y:

∆ET = ET (11)

−

√(
pT − ET

pT

ti
2m0i

− ti
2pT

)2

+ ∆k2
t sin2 φ+M2

q ,

sh(∆y) =
kt cosφ
ET − ∆ET

, (12)

where the additional (with respect to the current)
transverse pT ) momentum

∆kt (13)

=

√(
ET−

ti
2m0i

)2

−
(
pT−

ET
pT

ti
2m0i

− ti
2pT

)2

−M2
q ,

and φ is the angle between the direction of the vector
∆kt and the z axis (the distribution is uniform with
respect to this angle). The radiation energy losses
induced by the medium are calculated through ex-
pression (5) without any additional change in the
longitudinal rapidity of the quark.

Our calculation used the well known scaling
Bjorken solution [46] for the energy density, tempera-
ture, and the QGP density:

ε(τ)τ4/3 = ε0τ
4/3
0 , (14)

T (τ)τ1/3 = T0τ
1/3
0 , (15)

ρ(τ)τ = ρ0τ0. (16)

For definiteness, we accepted the initial conditions for
the formation of the gluon-excessive plasma, which
are expected for the central Pb–Pb collisions at the
LHC [14]: τ0 ≈ 0.1 fm/c, T0 ≈ 1 GeV, Nf ≈ 0, ρg ≈
1.95T 3. We emphasize that the initial energy density
ε0 in the dense area of the nuclear overlap weakly
depends on the impact parameter b (δε0/ε0 � 10%)
at b � RA, but rapidly decreases for b � RA [26]. At
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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the same time, the distance traveled by a hard par-
ton in the dense medium, averaged over all possible
production vertices 〈L〉, decreases virtually linearly
with the b growth. Hence, for the impact parameter
b < RA, where ≈60% of the heavy quark pairs are
produced [34], the difference in the rescattering in-
tensity and the corresponding energy losses is deter-
mined mainly by the traveled distance, rather than by
different values of the initial energy.

We stopped generation of the quark rescatterings
when one of the following conditions become valid:

(1) Quark leaves the dense matter; that is, the
traveled distance exceeds the transverse dimension of
the dense area from the quark production vertex to the
left point. The details of the geometric calculations
of these values for the specified value of the impact
parameter b can be found in [26].

(2) Plasma is cooled to the critical temperature
Tc = 200 MeV. Therefore, we neglect the additional
small contribution to the energy loss from the quark
rescattering in the hadron gas.

(3) Quark loses so much energy that its transverse
momentum upon the next scattering becomes lower
than the average transverse momentum of the “ther-
mal” constituent of the medium at the temperature
T . Such quark becomes a part of the “thermalized”
system, and its momentum is generated in the rest
frame of the accompanying medium element from
the thermal distribution dN/d3p ∝ exp (−E/T ) and
transformed to the c.m. frame of the nucleus–nucleus
collision [32, 33].

5. MUON PAIR SPECTRA: NUMERICAL
RESULTS

In order to estimate the sensitivity of the dimuon
spectra to the nuclear effects, we carried out the cal-
culations for four scenarios:

(1) The heavy quark spectra and the corresponding
dimuon spectra from the decays of B mesons are
linear superpositions of the independent nucleon–
nucleon collisions [see expressions (1) and (2)]. In
other words, all nuclear effects are switched off and
the QQ̄ production cross section in AA collisions
integrated over all impact parameters is determined
by the corresponding cross section in the nucleon–
nucleon collisions just as σQQ̄AA = A2σQQ̄NN (the ob-
tained results correspond to Fig. 2).

(2) We allow for the nuclear effect in the ini-
tial state by modifying the nucleon structure func-
tions in the nucleus (nuclear screening) with the phe-
nomenological parametrization suggested by Eskola

et al. [47]; in this case, σQQ̄AA = A2βσQQ̄NN , where the
exponent β(x,Q2) ≤ 1 has a rather complex depen-
dence on the fraction of the carried 4-momentum x
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
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Fig. 3. The distribution of µ+µ− pairs from a semilep-
tonic decay of the BB̄ meson pairs: without nuclear
screening and the energy losses of b quarks (dash-dotted
histogram); with nuclear screening without energy losses
(solid histogram); with nuclear screening and collision
energy losses (dashed histograms); with nuclear screen-
ing, collision and radiation energy losses (dotted his-
togram). The three figures stand for various b quark
production mechanisms (from above): “pair production,”
“flavor excitation,” and “gluon splitting.” The kinematic
restrictions and the histogramnormalization are the same
as in Fig. 2.

and the square of the momentum transferred in the
hard subprocess Q2 involved in the evolution of the
structure function [47].

(3) In addition to the nuclear screening, we allow
for the minimum effect of the quark rescattering in the
final state, that is, for the collision energy losses (see
Section 4).

(4) In addition to the nuclear screening, we allow
for the maximum effect of the quark rescattering in
the final state, that is, for the collision and radiation
energy losses in the incoherent limit (see Section 3).

Figure 3 shows the distributions of µ+µ− pairs
from various sources of the bb̄ pair fragmentation
(“pair production,” “flavor excitation,” “gluon split-
ting”) with respect to the invariant mass Mµ+µ− ≥
20 GeV/c2 (kinematical acceptance pµT > 5 GeV/c,
2



1740 LOKHTIN, SNIGIREV

 

10

 

4

 

10

 

3

 

–2 –1 0 1 2

 

dN

 

/

 

d

 

η

η

 

(

 

b

 

)

(

 

a

 

)
10

 

4

 

10

 

3

 

10 14 18 22

 
dN

 
/

 
dp

 

T

 
, (GeV/

 
Ò

 
)

 
–1

 

p

 

T

 

, GeV/

 

Ò

Fig. 4. Total (from all three productionmechanisms) dis-
tributions of the secondary J/ψ(→µ+µ−) from decays
of the individual B mesons with respect to (a) the trans-
versemomentum and (b) pseudorapidity. The kinematical
restrictions, notation, and histogram normalization is the
same as in Fig. 2; the histogram notation is the same as
in Fig. 3.

|ηµ| < 2.4) for the four scenarios described above.
As in Fig. 2, the histograms are normalized to the
expected number of events in Pb–Pb collisions for
two weeks of LHC operation. For all three sources,
the effect of nuclear screening in the considered re-
gion is not very significant and results in the weak
(about 15%) reduction in the yield of the µ+µ− pairs.
The suppression of the dimuon yield owing to the
rescattering and the energy loss is more significant,
by a factor of 1.3–1.6 in scenario 3 (only collision
energy losses) and by a factor of 3.2–4.2 for scenario
4 (collision and radiation energy losses).

Note that the number of the muon pairs integrated
over the whole phase space is, of course, conserved,
while the suppression occurs in a restricted phase
space owing to the implication of the kinematic re-
strictions. As the collision energy losses are virtually
independent of the initial quark energy, the suppres-
sion of the dimuon yield is most significant for rel-
atively low invariant masses. At the same time, the
relative contribution of the gluon radiation to the total
energy losses increases with growing mass Mµ+µ− ,
because the radiation energy losses are described by
an increasing function of the initial quark energy (∝E
in the incoherent limit used in our calculations) and
P

affect the whole interval of the invariant masses, in
particular, the most energetic part of the spectrum.
The suppression effect for the dimuon yield owing to
the energy losses by b quarks is more pronounced for
quarks from“pair production” and is less pronounced
for quarks from “flavor excitation.” This is related
to the difference in the quark–antiquark correlations
for various production mechanisms. In particular, the
quark distributions from “pair production” with re-
spect to the difference in the transverse momenta and
azimuthal angles of the pairs QQ̄ have a pronounced
maximum at ∆pT = 0 and ∆ϕ = π. That is, such
pairs have a strong azimuthal “backward–backward”
correlation and mutually compensating pT , while the
distribution of the quark pairs with respect to ∆pT
and ∆ϕ for other mechanisms is smoother [3].

The quantitative picture of the suppression of
the secondary J/ψ from the decays of individual B
mesons is somewhat different from the suppression
picture for the dimuons from a correlated semileptonic
decay of BB̄ meson pairs. As the spectra of the
secondary J/ψ carry information about the spectra
of individual b quarks, which are virtually the same for
various production mechanisms [3], the suppression
factor of the secondary J/ψ is virtually the same for
the considered production mechanisms and reaches
≈1.3 in the case of collision losses and ≈2.2 in
the case of collision and radiation losses. Figure 4
displays the total (for all three production mecha-
nisms) distributions of the secondary J/ψ(→µ+µ−)
with respect to the transverse momentum and the
pseudorapidity for the indicated model scenarios and
the kinematic conditions. The lower sensitivity of
the yield of the secondary J/ψ to the rescattering
and the energy loss of b quarks as compared to the
large-mass dimuons is explained by the fact that
the secondary J/ψ reproduce the information about
only one b quark from the pair. Indeed, according
to the geometry, there exists (and is determined by
the position of the production vertex of the quark
pair) sufficiently large probability for one quark to
(virtually) avoid the rescattering and not (virtually)
lose energy. At the same time, the probability that
both quarks will lose a small part of the energy
is close to zero, in particular, in the case of their
strong azimuthal correlation. We also emphasize
that the effect of nuclear screening is somewhat
more significant for the secondary J/ψ from “pair
production” (≈25%) than for the secondary J/ψ from
the shower production mechanisms of b quarks and
dimuons with large invariant masses (≈15%). This is
related to a stronger nuclear screening for the lower
values of x and Q2 involved in the evolution of the
structure function.
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002
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6. CONCLUSION

Weconsidered variousmechanisms of heavy quark
production in ultrarelativistic nucleus–nucleus col-
lisions, including direct pair production as a result
of hard initial collisions and in showers induced by
hard-produced partons in the initial and final states.
Various mechanisms can be classified according to
the number of heavy quarks present in the vertices
of the hard subprocess (2, 1, or 0, respectively).
The processes that can give information about the
production of heavy quarks in hadron–hadron and
nucleus–nucleus interaction are the production of
µ+µ− pairs with large invariant masses (Mµ+µ− �
20 GeV/c2) from correlated semileptonic decays of
meson pairs (predominantly BB̄), and the production
of secondary J/ψ(→ µ+µ−) from the decays of in-
dividual B mesons. Most the “shower” b quarks are
concentrated in the region of relatively small invariant
masses and pT . Despite this, at the LHC energy they
give the contribution to the dimuon spectra at large
invariant masses on the same order of magnitude as
that of the b quarks produced directly in result of the
hard subprocesses; the contribution of the shower b
quarks to the spectra of the secondary J/ψ is the
dominating contribution.

We studied sensitivity of the muon pair spectra
with large invariant masses and the spectra of the
secondary J/ψ to multiple scattering and energy
losses by b quarks owing to various sources in hot
gluon matter, which is expected to appear in heavy-
ion collisions at the LHC. The problem of correct
description of the coherent picture of the radiation
energy losses by heavy quarks is still unsolved. There-
fore, in our numerical calculations, we considered two
limiting cases: minimum effect with energy losses
only by collisions and maximum effect with collision
and radiation energy losses in the incoherent limit.

We found that the rescattering and the collision
energy losses of b quarks induced by the dense
medium can reduce the yield of µ+µ− pairs in
the interval of the invariant mass 20 < Mµ+µ− <

50 GeV/c2 by a factor of 1.3–1.6 (depending on
the quark production mechanism), while the addi-
tional allowance for the radiation energy losses can
suppress such dimuons by a factor of 3.2–4.2. The
relative contribution of the radiation energy losses
to the suppression of the dimuons from BB̄ decay
increases with the invariant mass and pT owing to
more pronounced energy dependence of the radiation
energy losses compared to the collision losses. The
dimuon spectra from the bb̄ pairs produced directly in
the primary hard collisions are slightly more sensitive
to the energy losses as compared to the shower
pairs. The reason is that the former pairs feature
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 20
strong “backward–backward” correlation and mutu-
ally compensating pT . The effect of nuclear screening
in the indicated mass region is not very significant and
results in a weak (on a level of ≈15%) suppression of
the yield of µ+µ− pairs.

The spectra of the secondary J/ψ carry infor-
mation about the medium-induced energy losses
of only one b quark from the pair. As a result, the
corresponding suppression factor is lower than that
for dimuons from bb̄ fragmentation and varies from
≈1.3 (with only collision losses) to ≈ 2.2 (with colli-
sion and radiation losses), irrespectively of the quark
production mechanism. At the same time, the effect
of nuclear screening on the yield of the secondary J/ψ
from “pair production” is somewhat more significant
(≈25%) compared to the case of the secondary
J/ψ from the shower production mechanism of b
quarks and heavy-mass dimuons. This is related to
a stronger nuclear screening for the lower values of
x and Q2 involved in the evolution of the structure
function. We assume that the future experimental
comparison of the yields of the heavy-mass dimuons
and secondary J/ψ can help to clarify the nature of
the effects under consideration.

We also emphasize that the experimental resolu-
tion of the dimuon signal from BB̄ decay and from
direct Drell–Yan dimuons, as well as dimuons from
the primary and secondary J/ψ, can be carried out
using information from the tracking system about
the geometric position of the muon pair production
vertex.

Thus, the dimuon spectra are sensitive to the
rescattering and energy losses of heavy quarks in
dense QCD matter. These effects exceed the effect
of nuclear screening and suppress the yield of µ+µ−

pairs with large invariant masses and secondary J/ψ
in heavy-ion collisions as compared to the yields
expected from the picture of independent nucleon–
nucleon collisions. However, there are theoretical
ambiguities related to the calculation of the produc-
tion cross sections and the spectra of heavy quarks
in nucleon–nucleon collisions at LHC energies.
Therefore, it is desirable to carry out measurements
in pp or dd collisions at the same or higher energy per
nucleon that for heavy-ion collisions.
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Abstract—It is shown that if the a0(980) boson is the scalar chiral partner of a π meson, its contri-
bution to the transition η → πγγ has a value comparable to that originated by vector meson exchange.
Together, these two mechanisms give the decay probability consistent with the experimental observation.
c© 2002 MAIK “Nauka/Interperiodica”.
For the decay η → πγγ, the measured width [1]

Γexp(η → πγγ) = 0.84 ± 0.19 eV (1)

is twice that predicted by chiral perturbation theory
(ChPT) in the leading 1/Nc approximation,

ΓChPT(η → πγγ) = 0.42 ± 0.20 eV [2], (2)

and is more than twice that predicted by the Vector
Meson Dominance (VMD) model:

ΓVMD(η → πγγ) =

{
0.31 eV [2],
0.30+0.16

−0.13 eV [3].
(3)

Note that the mean value of ΓChPT = 0.42 eV turns
out to be slightly larger than what follows from the
data [1] for the rates of ρ → πγ, ρ → ηγ, and ω → ηγ
decays. This point will be elucidated later.

Incorporation of the C-odd axial-vector reso-
nances makes an additional contribution of 0.07 eV
to Γ(η → πγγ) [4] and does not change the situation.
Therefore, some other contributions are necessary.

The purpose of this paper is to show that, if the
a0(980) boson is the scalar partner of a π meson, its
contribution to η → πγγ decay is much larger than
that estimated in [2, 3] and eliminates a disagreement
between the experimental and theoretical widths. The
main feature of the present calculation is the theoreti-
cally reasonable definition of the coupling constants
ga0ηπ and ga0γγ , which turn out to be considerably
larger than the ones in [2, 3]. Before discussing this
point, let us represent formulas allowing one to sepa-
rate out the a0 contribution to Γ.

The most general form of the gauge invariant ma-
trix element of the decay η(p)→ π(k)γ(q1)γ(q2) is

M = εµ(q1)εν(q2)Mµν , (4)

∗This article was submitted by the author in English.
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where [5]
Mµν=A[q1νq2µ−(q1q2)δµν ]+B[−(pq1)(pq2)δµν (5)

− (q1q2)pµpν + (pq1)q2µpν + (pq2)q1νpµ]
and

AVMD =
∑

V=ρ,ω,φ

gV ηγg
∗
V πγ (6)

×
{

p(p− q1)
M2
V − (p− q1)2

+
p(p− q2)

M2
V − (p − q2)2

}
,

BVMD = −
∑

V=ρ,ω,φ

gV ηγg
∗
V πγ (7)

×
{

1
M2
V − (p− q1)2

+
1

M2
V − (p − q2)2

}
,

Aa0 =
gaηπgaγγ

M2
a − (q1 + q2)2

. (8)

Using the approximation MV =Mρ �Mω and ne-
glecting the φ-exchange contribution, we come to the
following expression for the total width:

Γ = ΓVMD + (1024π3m3
η)

−1

(mη−mπ)2∫
0

s2f(s) (9)

×
[
A2
a0 + 2Aa0

( ∑
V=ρ,ω

gV ηγg
∗
V πγ

)

×
(
1−

M2
ρ

f(s)
ln
2M2

ρ −m2
η −m2

π + s+ f(s)
2M2

ρ −m2
η −m2

π + s− f(s)

)]
ds,

where s = (q1 + q2)2 and f(s) = [(m2
η +m2

π − s)2 −
4m2

ηm
2
π]1/2. The constants gV Pγ can be evaluated

from the data for the rates of V → Pγ decays:

g2V Pγ =
96πΓV Pγ

M3
V (1−m2

P/M
2
V )3

; (10)
2002 MAIK “Nauka/Interperiodica”
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The constants gV Pγ predicted by the theory with θP = − arcsin(1/3) and the ones evaluated from the data [1] for the
V → Pγ-decay rates

gth
V Pγ(sin θP = −1/3) gth

V Pγ , 10
−4/MeV gexp

V Pγ , 10
−4/MeV

gωπγ (input) 7.04(1± 0.03) (input) 7.04(1± 0.03)

gωηγ =
√
2
27
gωπγ 1.915(1± 0.03) 1.61(1± 0.08)

gρπγ =
1
3
gωπγ 2.35(1± 0.03) 2.72(1+0.12

−0.13)

gρηγ =
√
2
3
gωπγ 5.74(1± 0.03) 4.42(1+0.17

−0.21)
some of them turn out to be smaller than those theo-
retically expected for the case

η = η8 cos θP − η0 sin θP =
uū+ dd̄− ss̄√

3
(11)

considered in [2] and corresponding to sin θP = −1/3
(that is, θP ≈ −20◦). The table illustrates the situa-
tion. Using the magnitudes of gV Pγ from the table,
we find
 ∑
V=ρ,ω

gV ηγg
∗
V πγ




exp/ ∑
V=ρ,ω

gV ηγg
∗
V πγ




th

(12)

= 0.87
(
1+0.15
−0.18

)
.

Then, the VMD result obtained in [2], ΓVMD(η →
πγγ) = 0.31 eV, must be replaced by

ΓVMD
new = 0.31 ·

[
0.87

(
1+0.15
−0.18

)]2 eV � 0.23+0.077
−0.078 eV

(13)

and Γ(η → πγγ) in (2) must be replaced by 0.34 ±
0.20 eV.

Now, let us turn to the contribution of the a0 bo-
son. The experimental determination of the constants
gaηπ and gaγγ is ambiguous, because it depends on
the true width of a0 decay. The true width may be as
large as 300 MeV [6, 7], although the visible width
in the K−p→ a0Σ−(1385) reaction is Γaηπ = 54 ±
7 MeV [8].

If Γaηπ � 300MeV, irrespective of the nature of a0
resonance, we have

|gaηπ | ≈ 4.8 GeV. (14)

The constant gaγγ can be evaluated in the same
manner as gπ0γγ , that is, by calculating the triangle
quark diagram. Such an evaluation does not depend
on the unknown parameters. Then, gaγγ differs from
gπ0γγ by a factor of 2/3, which was first found by
P

Schwinger [9]. The matrix element of the a0 → γγ
decay has the form [10, 11]

M(a0 → γ(q1)γ(q2)) = i
2α
3πFπ

(15)

× (q2µq1ν − (q1q2)δµν)εµ(q1)εν(q2),
where Fπ ≈ 93MeV.

Assuming that

gaγγ =
2α
3πFπ

(16)

and taking

gaηπ = −4.8 GeV, (17)

we come to the final estimate of the role of a0 in
η → πγγ decay:

Γ(η → πγγ) = (0.31)oldVMD · 0.75(1+0.32
−0.41) (18)

+ [0.31(1+0.15
−0.18)]VMD×a0 + (0.29)a0 = 0.83

+0.09
−0.11 eV.

This result is very close to the one obtained by
calculating the quark-box diagrams in the framework
of the constituent quark model,

Γ(box)(η → πγγ) = 0.70 eV, [12] (19)

and to the one obtained by collecting all (not only the
leading 1/Nc) contributions up to order p6 in ChPT:

Γ(p
6)

all (η → πγγ) = 0.77 ± 0.16 eV [13]. (20)

However, the number 0.77 in this relationship must
be reduced to ≈0.70, because in [13] the theoretical
value 0.31 eV was used for the VMD contribution in-
stead of 0.24 eV as follows from the above discussion.

The contribution of a0 to Γ(η → πγγ) found is
also close to 0.27 eV, which was obtained in [10] in
the framework of the model incorporating the con-
stituent quarks together with scalar and vector res-
onances. We conclude that within the limits of ex-
perimental error, there is no contradiction between
the experimental result and theoretical prediction for
HYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 2002



THE ROLE OF THE INTERMEDIATE RESONANCE 1745
Γ(η → πγγ). Our approach clearly shows the effect
of the intermediate bosons in this process. Contrary
to the existing opinion [2, 3, 13], the scalar and vector
bosons contribute to this transition with comparable
strengths.
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CHRONICLE
Theory
On the 80th Anniversary of Karen Avetikovich Ter-Martirosyan
The world-famous theoretical physicist Karen
Avetikovich Martirosyan, winner of the State and
Pomeranchuk prizes, Soros professor, an outstand-
ing scientist and a remarkable teacher, corresponding
member of the Russian Academy of Sciences, will
turn 80 this year on September 28.

Ter-Martirosyan was born in 1922 in Tbilisi.
Having graduated from the Tbilisi State University
in 1943, he became a postgraduate student of the
Leningrad Physicotechnical Institute under the guid-
ance of Yakov Il’ich Frenkel in 1945. After defending
his PhD dissertation in 1949, he joined the theoretical
department of the Leningrad Physicotechnical Insti-
tute, where he worked until 1955.

Aftermoving toMoscow in 1955, Ter-Martirosyan
started working at the Institute of Theoretical and
Experimental Physics, where he continued collabora-
tion with L.D. Landau, I.Ya. Pomeranchuk, V.B. Be-
restetskiı̆, and other physicists who determined the
1063-7788/02/6509-1746$22.00 c©
trends in the development of nuclear and particle
physics.
Subsequent scientific activity of Ter-Martirosyan

has been associated with the Institute of Theoreti-
cal and Experimental Physics. At this institute, he
obtained brilliant results and founded new scientific
trends, organized the laboratory of hadron physics,
and formed his scientific school. More than 40 years
ago, the Department Elementary Particle Physics of
the Moscow Institute for Physics and Technology
was created on the basis of the Institute of Theoretical
and Experimental Physics and was headed by Ter-
Martirosyan.
Ter-Martirosyan is the author of more than 150

papers in the field of nuclear physics, elementary
particle physics, and quantum field theory. In 1952,
he constructed the theory of Coulomb excitations of
nuclei, leading to the discovery of nonsphericity of
a number of heavy nuclei; in 1968, this work won
the State Prize for the author. In 1952–1954, Karen
Avetikovich constructed the solution of quantum-
mechanical three-body problem for the case of a
short-range potential. One of his greatest achieve-
ments in the field of quantum field theory at that
time was the creation of the method of parquet
equations for summation of planar graphs. Together
with Pomeranchuk and his student V.N. Gribov,
Ter-Martirosyan developed the theory of branching
points in the angular-momentum plane. He is also
the author of the theory of points of multi-Reggeon
processes, the theory of growing cross sections, and
the theory of critical and supercritical Pomeron.
Subsequent studies carried out by Ter-Martiro-

syan were devoted to hadron physics. He constructed
the theory of hadron multiplicity distribution at high
energies and proposed (together with A.B. Kaidalov)
a model of creation and decay of quark–gluon strings.
On the basis of this model, a realistic theory of gen-
eration of hadrons at high energies was constructed,
which provides a correct description of experimental
data. At the present time, topical investigations in the
field of supersymmetric theories, Higgs particles, and
the properties of heavy hadrons are being carried out
in the hadron physics laboratory under the guidance
of Ter-Martirosyan.
As before, the pedagogical activity occupies an

important place in the life of Karen Avetikovich.
Throughout his almost four decades of activity at the
2002 MAIK “Nauka/Interperiodica”
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Moscow Institute for Physics and Technology, hun-
dreds of physicists have passed through his hands.
His unique scientific school of theoretical physics
includes world-recognized scientists who, in turn,
have brought up a new generation of theorists. The
courses of lectures on quantum mechanics and field
theory delivered by Ter-Martirosyan to the students
of the Moscow Institute for Physics and Technology
formed the basis of the monograph Gauge Theory of
Particle Interaction by K.A. Ter-Martirosyan and
M.B. Voloshin, which was published in 1981 and
remains one of the best textbook in quantum field
theory.
In 2000, Prof. Ter-Martirosyan was elected a cor-

responding member of the Russian Academy of Sci-
PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 9 200
ences in the Department of Nuclear Physics. Karen
Avetikovich continues his scientific activity and still
delivers lectures to students and postgraduate stu-
dents of the Moscow Institute for Physics and Tech-
nology and Institute of Theoretical and Experimental
Physics with diligence. Being exceptionally attentive
to his colleagues, he is always accessible for dis-
cussing any problems, both scientific and humanitar-
ian.

Dear Karen Avetikovich, we congratulate you on
the occasion of your jubilee and wish you long years of
fruitful life and further achievements in your scientific
activity!

Your students and colleagues
2
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