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Abstract of the Dissertation

Modeling and Experimental Study of Wafer Manufacturing and

Machining Processes

by

Chunhui Chung

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2010

To achieve the stringent requirements for the future specification of wafers, the

progress in wafering processes such as slicing, lapping, grinding, and polishing is critical.

The improvement of the existing technology and the innovation of advanced machining

tools are necessary for the future wafer production. For example, study of vibration of a

moving wire in slurry wiresaws and active control of such vibration can reduce kerf loss,

and in turn reduce the cost of wafer manufacturing. Such study can also contribute to a

better surface finish with less subsurface damages. Mixed abrasives in slurry can increase

material removal rate in lapping to reduce time of machiningand cost. In this dissertation,

the research on the vibration of the wire in the slurry wiresaw system, mixed abrasive ef-

fect in lapping process, and wafer surface finishing by CNT brush are studied. Both free

and forced vibration response of damped axially moving wireare derived by modal analy-

sis and the Green’s function, respectively. The eigensolutions, orthogonality, frequency of

damped vibration, and frequency response with a point excitation are also obtained. Two

different sizes of abrasives, F-400 and F-600 SiC, are mixedwith different ratios in the

slurry for lapping process. The results show that mixed abrasive grits can enhance the ma-
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terial removal rate. However, the surface roughness becomes slightly worse. CNT brush is

introduced as a new polishing tool. Preliminary experimental results are presented.
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Chapter 1

Introduction

Wafering is an essential front-end manufacturing process in semiconductor and pho-

tovoltaic electronics industry. The wafer substrates affect the performance of the micro-

electronics fabrication, such as the production of IC chipsand solar cells. Therefore, the

quality of wafer substrates is extremely important. Defects and surface unevenness are un-

desirable and should be reduced to minimum. Another challenge in wafer production is the

reduction of the manufacturing cost to afford the development and spread of the electronic

and computer associated products. In order to reach these goals, advance in the wafer

manufacturing process plays an important role. Additionalinnovation of machining tools

enhances the development of the industry. The case in point is the development of modern

slurry wiresaw [48, 49], which replaces inner diameter sawsfor large wafer slicing. An-

other example is the double-side grinding [55], which is adopted to remove the waviness

of sliced wafers more effectively. Therefore, any improvement of the machining processes

could result in more progress of the semiconductor industry.

Following Moore’s law, the International Technology Roadmap of Semiconductors

(ITRS) projects that the 450mm wafer will be in production in 2012 [46] to keep the trend

of cost reduction. A lot of analyses and discussions start tofocus on this next generation

wafer size [19, 28, 37, 79, 87, 96]. With the agreement of Intel, Samsung Electronics, and

TSMC for the 450mm wafer manufacturing transition [43], the advance of wafer size is

inevitable. In addition, the 2008 update ITRS roadmap proposed the requirements of Site
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Flatness (SFQR) for the area of26×8mm2 from 68nm in 2007 to 36nm in 2012 [33, 47].

The trend of wafer production is larger but flatter, which is an enormous challenge.

To achieve the requirements for the future specification of wafers, the progress in

wafering processes such as slicing, lapping, grinding, andpolishing is urgent. The im-

provement of the existing technology and the innovation of advanced machining tools are

necessary for the future wafer production. In this dissertation, the research on the vibration

of the wire in the slurry wiresaw system, mixed abrasive effect in lapping process, and

wafer surface finishing by CNT brush will be presented. The corresponding influence on

the wafering process will also be discussed.

1.1 Wafer Manufacturing Processes and Surface To-

pography

1.1.1 Wafer manufacturing processes

The semiconductor wafer manufacturing processes can be divided into: (1) Crystal

growth, (2) Wafer Shaping, (3) Wafer Flattening, and (4) Cleaning, as shown in Figure 1.1.

Wafer slicing is the first post-growth process in wafer shaping. In slicing, the slurry wire-

saw has replaced the inner diameter saws (ID saws) for largerwafer, especially in produc-

ing the current 300mm standard silicon wafers. It has the advantages such as ability to cut

large ingot, higher throughput and lower kerf loss than the ID saw. Researchers have stud-

ied the machining behavior of slurry wiresaw such as the freeabrasive machining process

(FAM) [54, 63, 107], hydrodynamic effect [4, 64], slurry actions [44, 45, 89], and vibration

response of the wire in slurry wiresaw system [97, 111]. However, the machining mecha-

nism of slurry wiresaw remains a topic of active research investigation. After slicing, the

next step is to flatten the wafer surface topography and to remove the subsurface damage.

The machining processes used in this step are lapping, grinding, etching, and polishing.

According to different process design and the emergence of new technology, the flow of

2



Crystal 
Growth

Slicing Flattening Cleaning

Surface

Grinding
Edge

Rounding

Wiresaw

ID saw

Lapping 

Grinding

Etching

Polishing

Figure 1.1: Folw chart of wafer manufacturing

the entire machining processes may be changed [55, 77].

The manufacturing processes for solar wafers is simpler than the semiconductor

wafers. The as-sliced solar wafers are cleaned right after slicing, then sent to the cell

manufacturer [33]. There is no flattening process. Therefore, the slicing process dominates

the surface quality and evenness of solar wafers. Furthermore, the solar wafers, about 220

µm thick [33, 66], are much thinner than semiconductor wafer. The breakage of wafers

during slicing and handling is one significant concern of theyield.

Lapping and slurry wiresawing processes belong to the free abrasive machining

(FAM) process [22]. The major mechanism of free abrasive machining is rolling-indenting [48,

54, 107]. Most research shows that the major contribution ofthe material removal in lap-

ping is indentation cracking [11, 12, 16, 52]. However, the real situation is more compli-

cated [15, 38]. On the other hand, ID sawing, bounded abrasive wire sawing and grinding

are bounded abrasive machining (BAM) processes. The machining mechanism is plough-

ing and shearing as those in metal machining processes. The ploughing process of brittle

material is typically accompanied by microcracks along themachining path. Therefore,

FAM processes are more suitable for machining than BAM processes.
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Figure 1.2: Classification of topographical features basedon their spatial wavelengths. The
order of amplitude of each feature is also illustrated [1].

1.1.2 Wafer geometry and surface characteristics

Wafer surface topology and geometry are important in characterizing wafer surfaces

in wafer production. Due to the usage of popular capacitive probes in the wafer surface

measurement, several parameters are often employed to characterize wafer surfaces. They

are: (i) warp, (ii) total thickness variation (TTV), (iii) surface roughness, and (iv) waviness.

The measurements of these parameters can be found in [39] or other references.

Figure 1.2 illustrates the nano-topographical features onwafer surfaces, with classifi-

cation of topographical features based on their spatial wavelengths. Warp is the unevenness

of wafer which has wavelength over80 mm, and with an amplitude of unevenness in the

order of10 µm or larger. Most research attributed the reason of warp to thermal expansion

of the ingot and wire guides during slicing [2, 3, 6, 101]. Warp can also be caused by ma-

terials defect at the crystal growth stage and the ingot fixity during slicing [68]. Waviness

also describes the unevenness of sliced wafers, but at a smaller scale than warp. It has a

wavelength from20 mm to 80 mm, with a typical amplitude on the order of microns.

Waviness is a common characteristic of wiresaw-sliced wafer. The mechanism which

results in waviness is still not well known. Both warp and waviness have to be removed

in the flattening process. The requirement of site flatness (SFQR) after polishing is under

70 nm for 300 mm silicon wafer in 2006 [76]. Another important parameter is the total

thickness variation, which is a good indication of the global planarization. TTV is the
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difference between the maximum and minimum thicknesses of the wafer. The requirement

for TTV is under1 µm for 300 mm silicon wafers in 2006 [76].

1.2 Literature Review and Challenges

1.2.1 Vibration response of axially moving wire in slurry wiresaw system

The challenges of wafer manufacturing are always related tocost reduction. In order

to achieve this goal, the diameter of wafer becomes larger and larger to increase the area

of usage for IC fabrication. The thickness also becomes thinner to save material. Slurry

wiresaw is the major slicing tool for both semiconductor andsolar wafers today, and is ex-

pected to slice the next generation of 450mm silicon wafers. However, the corresponding

disadvantages such as warp and waviness still need to be overcomed. In addition, it is a

challenge to further reduce kerf loss, although wiresaw already surpasses conventional ID

saw in that. The vibration response of the wire in a slurry wiresaw system is a reason for

kerf loss, as well as the surface roughness and the subsurface damage of wafers. Figure 1.3

defines the directions of wire motion. Although the oscillation of the wire in transverse

direction can enhance the slicing efficiency [89], the motion in lateral direction can affect

the surface quality and subsurface damage. Research shows that the amplitude of vibration

response of the wire in wiresaw system under no-slurry and no-workpiece conditions can

be up to 50µm [62]. Nevertheless, the closed-form solution of the vibration response of

the axially moving wire immersed in fluid is still elusive.

The vibration of a moving wire in wiresaw belongs to the axially moving continua.

Because of the various applications such as thread line, power transmission belts, magnetic

tapes,. . . etc., this field of study has received attention in the last decades to understand

the properties and impacts of vibration of wire in such systems. A recent thorough review

of research on this topic was done by Chen [18].

The closed-form solution of a stationary wire is well-knownand can be solved by
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Figure 1.3: Schematics of wiresaw slicing and definition of directions

modal analysis [42, 61]. Wickert and Mote [99] first solved the general solution of an ax-

ially moving string by applying the modal analysis method for discrete linear gyroscopic

systems [59, 60]. Yang and Tan [106] proposed a transform method by using Green’s func-

tion [13, 83, 88]. Tan and Ying [92] applied the method with wave propagation function

to obtain the solution of an axially moving string with general boundary conditions. In

the same year, Renshaw [82] provided another decoupling concept and unified the modal

analysis method for discrete and continuous systems. Theirstudies can also be applied to

understand the vibration response of the wire in wiresaw system.

The moving wire of the modern slurry wiresaw immersed in abrasive slurry results in

damping during the manufacturing operation with free abrasive machining [48]. To further

understand the characteristics and render more relevant modeling and analysis, considera-

tion of damping is necessary. The model of damped axially moving wire system was first

proposed by Huang and Mote [40]. Wei and Kao [97] obtained numerical results of damped

model under external harmonic excitation to study slurry wiresaw systems. Because of

the hydrodynamic thin film formed between the wire and substrate surface, Zhu and Kao

included the hydrodynamic effect into the consideration ofvibration analysis [111]. How-

ever, the closed-form solution of the damped axially movingwire system remains unsolved.

In order to advance the modeling and analysis of the slurry wiresaw manufacturing process,

such closed-form solution is essential.
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1.2.2 Mixed abrasive effect in lapping process

Lapping has been for a long time a standard wafer machining process after slicing. It

belongs to the free abrasive machining (FAM) process which is the same as slurry wiresaw

slicing process [22]. This is one of the reasons why the lapping machining process is not

easy to model. Most research emphasized the major contribution of the material removal

on the cracking model [11, 12, 16, 52]. However, the real situation may be more compli-

cated [15, 38]. The most comprehensive modeling was done by Changet al. [15]. In their

model, four mechanisms were considered: two-body ductile,two-body brittle, three-body

ductile, and three-body brittle machining.

Many research emphasized the importance of abrasive size distribution in modeling.

Nonetheless, few studied the change of the distribution of the abrasive grit sizes. Bhaga-

vat et al. [7, 8] are probably the first and the only ones to study such topic. Their results

showed that the mixed abrasives (for example, mixing F-400 and F-600 SiC) had higher

material removal rate than the single-sized abrasives (forexample, only F-400 SiC abra-

sives). However, their experiments discussed one mixing ratio of the abrasives, and the

concentration of slurry of mixed abrasive is different formthat of the single-sized abrasives

slurry. To understand the influence of the change of abrasivedistribution in lapping pro-

cess, experiments with different abrasive distributions and fixed slurry concentration are

necessary.

1.2.3 Wafer surface finishing by CNT brush

In wafer production, the subsurface damage is always present under the machining

processes such as slicing, lapping, and grinding. To achieve the requirements of surface pla-

narization and to remove these subsurface damage introduced by the previous machining

processes, polishing is last step to finish the wafer surfacein the standard wafer manufactur-

ing processes. However, research shows that these brittle materials could be machined like

ductile materials under some conditions which is called Ductile-Regime Machining [72].
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In this case, the subsurface damage would not happen during the machining processes.

Ductile-Regime Machining on the brittle material has already been studied for over ten

years [9] and has fruitful results, which will be discuss in Chapter 6. However, a feasible

solution for the industry is still absent.

Carbon Nanotubes (CNTs), is one of the most popular materials under study since

last century. CNT has a lot of excellent properties in electronics and mechanics, with

potential applications in many fields [29]. However, it is unusual to utilize it as machine

tool. This idea first came out of machining of copper by CNT forest [41]. The results show

the improvement in the surface roughness. Nonetheless, thefeasibility of machining brittle

materials by CNT brush remains a challenge. Because brittlematerials are usually harder,

the strength of CNT brush becomes very important. Besides, Ductile-Regime Machining

is a very precise machining process. The control of depth of cut and machining velocity

may influence the outcomes.

1.3 Outlines and Contribution of the Chapters

In this dissertation, an introduction and literature review are provided in Chapter 1.

Following that are five chapters addressing three topics in wafer manufacturing. The vi-

bration response of damped axially moving wire in slurry wiresaw will be presented in

Chapters 2, 3, and 4. In Chapter 2, the closed-from solution of the free vibration response

of damped axially moving wire is provided. The classical modal analysis was utilized

to derive and obtain this solution. The corresponding eigenvalues, eigenfunctions, and or-

thogonal relationship are also presented. In Chapter 3, thecharacteristics of damped axially

moving wire will be analyzed based on the solution in Chapter2. The damping ratio and

damping index are defined in this chapter. The mode shapes andapparent damping effect

are also discussed. A parameter study of real slurry wiresawsystem is presented. In order

to derive the forced vibration response, the Green’s function is derived and presented in

Chapter 4. With the solution of the Green’s function of damped axially moving wire, the
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frequency response with a point excitation can be obtained.The results of mixed abrasive

effect experiments are presented in Chapter 5, as well as themodeling and analysis of sur-

face roughness. Preliminary study of CNT brushing will be presented in Chapter 6. The

conclusions of this dissertation are presented in Chapter 7with future research.
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Chapter 2

Free Vibration Response of Damped Axially Moving Wire

Modern slurry wiresaw has been utilized in wafer manufacturing to slice ingot into

wafers since the 1990s. It is important to understand and analyze vibration of the axially

moving wire in a slurry wiresaw equipment in order to improvethe performance and reduce

the kerf loss. However, the closed-form solution of axiallymoving wire with damping, un-

der the context of wire moving in slurry, is still elusive. Inthis chapter, the classical modal

analysis is applied to derive the analytical solution and toobtain the free vibration response

of damped axially moving wire. The corresponding eigenvalues, eigenfunctions, and or-

thogonal relationship are also presented. The orthogonality relationship is very important

in the derivation of analytical equations of free vibrationresponse with damping. The or-

thogonality property and closed-form solution of free vibration response with damping are

the main contribution of this chapter. In addition, the analytical modal analysis, with damp-

ing factor removed, shows agreement with those in existing research literature of moving

wire without damping.

2.1 Introduction

Wiresaw is a century-old technology, used to slab stones forconstruction since the

19th century. Nonetheless, wiresaw has been brought into focus of research today when it is

employed for wafer production in modern manufacturing withmore stringent requirements
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of surface finish and quality. The modern slurry wiresaws have numerous advantages such

as the ability to slice large ingots of different materials,low kerf loss, and high yield [48].

Various research has been conducted to study the slicing process of modern slurry wiresaw

technology [22]. The vibration analysis of the moving wire of slurry wiresaws has impor-

tant implication in the outcomes of the surface roughness ofsliced wafers and kerf loss

which are very important issues in wafer slicing using modern slurry wiresaw.

The vibration of a moving wire in wiresaw belongs to the axially moving con-

tinua [23, 24]. Because of the various applications such as band saw, power transmission

belts, magnetic tapes,. . . etc., this field of study has received attention in the last decades

to understand the properties and impacts of vibration of axially moving continua in such

systems. A recent thorough review of research on this topic was done by Chen [18].

Similar to a stationary wire, the axially moving wire can be modeled as a linear

system by small amplitude assumption. Wickert and Mote [99]first obtained the general

solution of axially moving string by converting the system into a canonical form and ap-

plying the modal analysis method for discrete linear gyroscopic systems [59, 60]. Yang and

Tan [106] presented a transform method by using the Laplace Transform and Green’s func-

tion. Later, Tan and Ying [92] applied the method with wave propagation function to obtain

the solution of axially moving string with general boundaryconditions. In the same year,

Renshaw [82] proposed another decoupling concept and unified the modal analysis method

for discrete and continuous systems. Other research has focused on the elastic founda-

tion [71, 78, 93, 94, 98] or stationary load system which constrains the wire between the

boundaries [17]. In addition, the variable length and tension of the wire have been studied

for the application of elevators [112, 113]. Their studies can also be applied to understand

the vibration response of the wire in wiresaw system.

The moving wire in modern wiresaw with abrasive slurry has appreciable damp-

ing effect due to the manufacturing operation with free abrasive machining [23, 24, 48].

To further understand the characteristics and render more relevant modeling and analysis,
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consideration of damping in wiresawing process is necessary. The model of damped axi-

ally moving wire system was first proposed by Huang and Mote [40]. Wei and Kao [97]

obtained numerical results of damped model under external harmonic excitation to study

slurry wiresaw system. Because of the hydrodynamic thin filmformed between the wire

and substrate surface, Zhu and Kao included the hydrodynamic effect into consideration of

vibration analysis [111]. However, the closed-form solution of the damped axially moving

wire system remains elusive. In order to advance the modeling and analysis of the slurry

wiresaw manufacturing process, such closed-form solutionis essential.

In this chapter, the classical method to solve the partial differential equation was

utilized with the adjoint equation to solve the equation of motion. The main contribution

of this chapter is the derivation of the orthogonal relationship and consequently the free

vibration response of an axially moving wire with damping. In Section 2.2, the equation of

motion of damped axially moving wire is derived based on extended Hamilton’s principle.

In Section 2.3, the eigensolutions are presented. In Section 2.4, modal analysis of the

damped axially moving wire is studied to obtain the orthogonal relationship. Based on the

the results in the previous sections, the solution of free vibration response is presented in

Section 2.5. General discussion is provided in Sections 2.6, followed by the summary of

this chapter in Section 2.7

2.2 Equation of Motion of Damped Axially Moving

Wire

An axially moving wire with transverse vibration is shown inFigure 2.1. The pa-

rameters are defined in the following:

• Spatial variable isX, which has the domain0 < X < L, whereL is the length of the

wire.

• Temporal variable is the timeT , with T ≥ 0.
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Figure 2.1: Schematic of wiresaw system. The transverse andlongitudinal directions are
defined and shown.

• The transverse displacement isU(X, T ), as shown in Figure 2.1, with fixed boundary

conditions. Therefore,U(X, T ) is zero atX = 0 andX = L.

• The mass per unit length of wire is denoted byρ(X).

• The tension of the wire is denoted byP (X).

• The wire speed is denoted byV , which is a constant.

• The external force per unit length isF (X, T ).

• The damping force per unit length isFη(X, T ) = −ηd(V UX + UT ), which is the

viscous damping force with(V UX + UT ) being the transverse velocity1 .

In the context of a moving wire in wiresaw, the ranges of parameters areV = 10 ∼

15 m s−1 andP = 25 ∼ 35 N. The viscous damping force,Fη, is caused by the abrasive

slurry in which the moving wire is immersed. The viscosity oftypical abrasive slurry was

presented in [48] in the range of200 ∼ 1000 cP.

Equation of motion is essential for the study of vibration. The equation of motion of

damped axially moving wire has been presented in literature[40, 97]. In this section, the

1 The viscous damping force is assumed to be the product of the component of the transverse velocity and
the viscous damping factor,ηd, of the abrasive slurry. The transverse velocity,(V UX +UT ), is the component
of velocity along the transverse direction shown in Figure 2.1.
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equation of motion is derived based on the extended Hamilton’s principle, which can be

expressed in the form [61]
∫ T2

T1

(

δET − δEV + δW nc

)

dT = 0, δU(X,T ) = 0 at T = T1, T2 (2.1)

where

ET =
1

2

∫ L

0
ρ(X)

[

V 2 +

(

∂U(X,T )

∂T
+ V

∂U(X,T )

∂X

)2
]

dX (2.2)

is the kinetic energy. The potential energy is due to the tension in the wire. It can be

expressed as

EV =

∫ L

0
P (X) (ds− dX) (2.3)

whereds is the elongated length of the differential elementdX as shown in Figure 2.2.

With the assumption of∂U/∂X ≪ 1, we can write

ds =

[

(dX)2 +

(

∂U

∂X
dX

)2
]1/2

=

[

1 +

(

∂U

∂X

)2
]1/2

dX ∼=
[

1 +
1

2

(

∂U

∂X

)2
]

dX (2.4)

Substituting equation (2.4) into equation (2.3), we obtain

EV =
1

2

∫ L

0
P (X)

(

∂U

∂X

)2

dX (2.5)

Moreover, the virtual work due to the nonconservative distributed external force and damp-

ing force is

δW nc =

∫ L

0
(F (X,T ) + Fη) δUdX (2.6)

From equation (2.2), the variation in the kinetic energy is obtained as

δET =

∫ L

0
ρ(X)

[

∂U

∂T
δ

(

∂U

∂T

)

+ V
∂U

∂X
δ

(

∂U

∂T

)

+ V
∂U

∂T
δ

(

∂U

∂X

)

+ V 2 ∂U

∂X
δ

(

∂U

∂X

)]

dX

(2.7)
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Similarly, the variation in the potential energy is obtained form equation (2.5)

δEV =

∫ L

0
P (X)

∂U

∂X
δ

(

∂U

∂X

)

dX (2.8)

Integrating equation (2.7) with respect to time, and assuming that the integration is inter-

changeable, we obtain

∫ T2

T1

δET dT

=

∫ T2

T1

∫ L

0

ρ(X)

[

∂U

∂T
δ

(

∂U

∂T

)

+ V
∂U

∂X
δ

(

∂U

∂T

)

+ V
∂U

∂T
δ

(

∂U

∂X

)

+

V 2 ∂U

∂X
δ

(

∂U

∂X

)]

dXdT

=

∫ T2

T1

∫ L

0

ρ(X)

[

∂U

∂T

∂δU

∂T
+ V

∂U

∂X

∂δU

∂T
+ V

∂U

∂T

∂δU

∂X
+ V 2 ∂U

∂X

∂δU

∂X

]

dXdT

=

∫ L

0

∫ T2

T1

ρ(X)

[

∂U

∂T
+ V

∂U

∂X

]

∂δU

∂T
dTdX+

∫ T2

T1

∫ L

0

ρ(X)

[

V
∂U

∂T
+ V 2 ∂U

∂X

]

∂δU

∂X
dXdT

=

∫ L

0

{

ρ(X)

(

∂U

∂T
+ V

∂U

∂X

)

δU

∣

∣

∣

∣

T2

T1

−
∫ T2

T1

ρ(X)
∂

∂T

[

∂U

∂T
+ V

∂U

∂X

]

δUdT

}

dX+

∫ T2

T1

{

ρ(X)

(

V
∂U

∂T
+ V 2 ∂U

∂X

)

δU

∣

∣

∣

∣

L

0

−
∫ L

0

∂

∂X

[

ρ(X)

(

V
∂U

∂T
+ V 2 ∂U

∂X

)]

δUdX

}

dT

=

∫ T2

T1

〈

−
∫ L

0

{

ρ(X)
∂

∂T

[

∂U

∂T
+ V

∂U

∂X

]

+
∂

∂X

[

ρ(X)

(

V
∂U

∂T
+ V 2 ∂U

∂X

)]}

δUdX+

ρ(X)

(

V
∂U

∂T
+ V 2 ∂U

∂X

)

δU

∣

∣

∣

∣

L

0

〉

dT (2.9)

Use integration by parts with respect toX and rewrite equation (2.8) to obtain

δEV =

∫ L

0

P (X)
∂U

∂X
δ

(

∂U

∂X

)

dX

=

∫ L

0

P (X)
∂U

∂X

∂δU

∂X
dX

= P (x)
∂U

∂X
δU

∣

∣

∣

∣

L

0

−
∫ L

0

∂

∂X

[

P (X)
∂U

∂X

]

δUdX (2.10)
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Substituting equations (2.6), (2.9) and (2.10) into equation (2.1), we can obtain
∫ T2

T1

〈

−
∫ L

0

{

ρ(X)
∂

∂T

[

∂U

∂T
+ V

∂U

∂X

]

+
∂

∂X

[

ρ(X)

(

V
∂U

∂T
+ V 2 ∂U

∂X

)]

− ∂

∂X

[

P (X)
∂U

∂X

]

− F (X, T ) − Fη

}

δUdX

+

[

ρ(X)

(

V
∂U

∂T
+ V 2 ∂U

∂X

)

− P (x)
∂U

∂X

]

δU

∣

∣

∣

∣

L

0

〉

dT = 0 (2.11)

Since the mass per unit lengthρ(X) and the tension of the wireP (X) are assumed to

be constants in this study, the equation of motion of the damped axially moving wire is

obtained as

ρ

(

∂2U

∂T 2
+ 2V

∂2U

∂X∂T
+ V 2 ∂

2U

∂X2

)

− P (X)
∂2U

∂X2
= F (X, T ) + Fη (2.12)

whereFη = −ηd(UT + V UX). The boundary conditions areU(X, T ) = 0 atX = 0 and

X = L.

2.3 Solution of the Eigenvalue Problem of a Moving

Wire in a Damped System

In this section, the solution of the eigenvalue problem associated with a damped

axially moving wire is presented first. After that, the adjoint eigenvalue problem is also

solved.

2.3.1 Eigenvalue problem

Modal analysis was first applied to obtain the closed-form solution for vibration of

axially moving continua in [99] and has become a popular method to solve this kind of

problems. The eigensolution of damped axially moving wire has been presented in [95].

The analytical solution of the eigenvalue problem presented in this section results in the

same solution as that in [95] when the corresponding parameters are correlated. How-

ever, the derivation of orthogonality and the resulting analytical solution of the free vibra-

tion response have not been presented before. In this section, a systematic solution of the
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eigenproblem is provided to support the derivation of the orthogonality and free vibration

response in the later sections.

The equation of motion can be non-dimensionalized by introducing the following

definitions of parameters

x = X/L u = U/L t = T

√

P

ρL2
f = FL/P v = V

√

ρ

P
η =

ηdL√
Pρ

(2.13)

Thus, the non-dimensionalized equation of motion of the damped axially moving wire can

be obtained from equation (2.12) in the following

utt + 2vuxt − (1 − v2)uxx + ηvux + ηut = f (2.14)

or expressed in the form of differential operators as

Mutt + (C + G)ut + (K + H) u = f (2.15)

whereM = I, C = η, G = 2v ∂
∂x

, K = −(1 − v2) ∂2

∂x2 , andH = ηv ∂
∂x

. The boundary

conditions becomeu(0, t) = u(1, t) = 0. The differential operatorsM, C, andK are

self-adjoint operators, whileG andH are not. The adjoint operators have the following

propertiesG∗ = −G, andH∗ = −H according to the boundary conditions.

To obtain the eigenvalues and eigenfunctions of this system, we first consider a ho-

mogeneous differential equation with no external excitation (i.e.,f = 0). Assume a solu-

tion of the form of

u(x, t) = ψ(x) eλt (2.16)

whereψ(x) is eigenfunction andλ is eigenvalue. Substitute equation (2.16) into equation

(2.15) to obtain

λ2Mψ(x) + λ (C + G)ψ(x) + (K + H)ψ(x) = 0 (2.17)

which can also be rewritten as

(1 − v2)
∂2ψ(x)

∂x2
− (2vλ+ vη)

∂ψ(x)

∂x
− (λ2 + ηλ)ψ(x) = 0
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Equation (2.17) does not represent a self-adjoint system and can not be converted into

Sturm-Liouville problem [36]. Therefore, the eigenfunctions of equation (2.17) do not

have the same orthogonal property associated with the vibration of a stationary wire. This

poses a challenge on the study of the vibration of axially moving wire. To solve equation

(2.17), we further assume

ψ(x) = eκx (2.18)

Substituting equation (2.18) into equation (2.17) and removing the common term,eκx,

equation (2.17) can be rewritten as

(1 − v2)κ2 − (2vλ+ vη)κ− (λ2 + ηλ) = 0

The roots of this quadratic equation are

κ1,2 =
v(2λ+ η) ±

√

4λ2 + 4ηλ+ v2η2

2(1 − v2)
= α± β (2.19)

whereα = v(2λ+η)
2(1−v2)

andβ =

√
4λ2+4ηλ+v2η2

2(1−v2)
. Therefore, the solution of the eigenfunction is

ψ(x) = eαx
(

A1e
βx + A2e

−βx
)

(2.20)

whereA1 andA2 are arbitrary constants. Because the boundary conditions areu(x, t) = 0

atx = 0 andx = 1, the corresponding boundary conditions forψ(x) areψ(0) = ψ(1) = 0.

Substitutingψ(0) = 0 into equation (2.20) to obtainA1+A2 = 0. Therefore,A1 = −A2 =

A. Equation (2.20) becomes

ψ(x) = A eαx
(

eβx − e−βx
)

(2.21)

Using the other boundary conditionψ(1) = 0, we haveeα
(

eβ − e−β
)

= 0. Becauseeα can

not be zero for non-trivial solution, soeβ − e−β = 0. Therefore,

βn = inπ, n = 0,±1,±2, . . . (2.22)

In order to solve the eigenvalues, we substitute the definition ofβ in equation (2.22)

into equation (2.19) to obtain

βn =

√

4λ2
n + 4λnη + v2η2

2(1 − v2)
= inπ

18



The eigenvaluesλn are

λn =
−η ±

√

[η2 − 4n2π2(1 − v2)] (1 − v2)

2

which can be written separately as

λ1n =
−η +

√

[η2 − 4n2π2(1 − v2)] (1 − v2)

2
= −η

2
+ iω1n (2.23)

λ2n =
−η −

√

[η2 − 4n2π2(1 − v2)] (1 − v2)

2
= −η

2
+ iω2n (2.24)

whereω1n = −ω2n = ωd,n is the damped vibration frequency associated withλn as follows

ωd,n =

√

[4n2π2(1 − v2) − η2] (1 − v2)

2
(2.25)

The correspondingα1n andα2n in equation (2.19) are

α1n =
v
√

[η2 − 4n2π2(1 − v2)] (1 − v2)

2(1 − v2)
=

ivω1n

1 − v2

α2n =
−v
√

[η2 − 4n2π2(1 − v2)] (1 − v2)

2(1 − v2)
=

ivω2n

1 − v2
= −α1n

According to equation (2.21), the eigenfunctions associated withλ1n andλ2n are

ψ1n(x) = eα1nx sinnπx = e
ivω1n
1−v2 x

sinnπx

ψ2n(x) = eα2nx sinnπx = e
ivω2n
1−v2 x

sinnπx
(2.26)

Applying the solution of the eigenvalues,λ1n andλ2n, and the eigenfunctions,ψ1n

andψ2n, the free vibration response can be obtained by substituting the solutions into equa-
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tion (2.16), as follows

u(x, t) =
∞
∑

n=−∞

[

B1nψ1n(x) eλ1nt +B2nψ2n(x) eλ2nt
]

=
∞
∑

n=−∞

[

B1n (eα1nx sinnπx) eλ1nt +B2n (eα2nx sinnπx) eλ2nt
]

=
−1
∑

n=−∞

[

B1n (eα1nx sinnπx) eλ1nt +B2n (eα2nx sinnπx) eλ2nt
]

+

∞
∑

n=1

[

B1n (eα1nx sin nπx) eλ1nt +B2n (eα2nx sinnπx) eλ2nt
]

=

∞
∑

n=1

[

B−1n (eα−1nx sin (−nπx)) eλ−1nt +B−2n (eα−2nx sin (−nπx)) eλ−2nt
]

+

∞
∑

n=1

[

B1n (eα1nx sin nπx) eλ1nt +B2n (eα2nx sinnπx) eλ2nt
]

whereB1n andB2n are coefficients. Becauseλ−1n = λ1n, λ−2n = λ2n, α−1n = α1n, and

α−2n = α2n, the responseu(x, t) can be simplified as

u(x, t) =
∞
∑

n=1

[

D1n (eα1nx sin nπx) eλ1nt +D2n (eα2nx sin nπx) eλ2nt
]

=
∞
∑

n=1

[

D1nψ1n(x) eλ1nt +D2nψ2n(x) eλ2nt
]

=

∞
∑

n=1

un(x, t) (2.27)

whereD1n = B1n − B−1n andD2n = B2n − B−2n are the coefficients. The termun(x, t)

represents thenth component of the free vibration response which is expected to be a real

function, not complex, in order to represent the free vibration response in the physical

system. In some literatures,un(x, t) is called as “mode.” However, “mode” is normally

specified for the spatial function (eigenfunction) in most of the vibration literature. In

order to avoid the confusion of terminology, we choose to call un(x, t) “thenth component

of response” ofu(x, t).

The stability of damped axially moving string was discussedin [95]. However, the

discussion did not consider the situation whenv = 1, and claimed that asymptotic stability
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of the motion was confirmed for all transport speeds and viscous damping factors. In reality,

based on the solution presented here, the eigenfunctions will become divergent and make

the system unstable when the velocity approaches the critical speed, corresponding to the

nondimensionalized parameterv = 1. As suggested in [97], operating a moving wire near

or at the critical speed, if that were possible, would cause instability of the system.

2.3.2 Adjoint eigenvalue problem

For a differential operator,D, there is an adjoint differential operatorD∗ that will

satisfy2

< D[g], h >=< g,D∗[h] >

whereg andh are functions [42]. IfD∗ = D, the differential operator is self-adjoint. The

adjoint eigenvalue problem of equation (2.15) is [82]

λ∗2M∗ψ∗(x) + λ∗ (C∗ + G∗)ψ∗(x) + (K∗ + H∗)ψ∗(x) = 0 (2.28)

Using the same steps presented in Section 2.3.1 to solve the eigenvalue problem of equation

(2.28), the corresponding adjoint eigenvalues and eigenfunctions are

λ∗1n = λ1n = −η
2

+ iω1n λ∗2n = λ2n = −η
2

+ iω2n = −η
2
− iω1n

ψ∗
1n(x) = e

− ivω1n
1−v2 x

sin nπx for ψ1n(x) = e
ivω1n
1−v2 x

sinnπx

ψ∗
2n(x) = e

− ivω2n
1−v2 x

sin nπx for ψ2n(x) = e
ivω2n
1−v2 x

sinnπx

(2.29)

The adjoint eigenvalue problem shares the same eigenvalueswith the original eigenvalue

problem. Whenω1n andω2n are real, the eigenvalues are complex conjugates, so are the

eigenfunctions. Here, we choose the eigenvalues and their adjoint eigenvalues to be the

same3 ; that is,λ1n = λ∗1n andλ2n = λ∗2n. As a result, the pairs of the eigenfunctions

and their corresponding adjoint eigenfunctions, (ψ1n, ψ∗
1n) and (ψ2n, ψ∗

2n), are complex

2 The definition of the bracket operation, or inner product, is< D[g], h >=
∫

D[g] · h̄dx, whereh̄ is the
complex conjugate ofh [42].

3 Note that the definitions and solutions of eigenvalues (λ1n, λ2n, λ∗
1n, λ∗

2n) and eigenfunctions (ψ1n,
ψ2n, ψ∗

1n
, ψ∗

2n
) are different from those in [53]. Consequently, the relationships of complex conjugates are

also different.
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conjugate pairs. This definition makes it easier for us to develop the orthogonal relationship

of damped axially moving wire, which will be discussed in thenext section.

2.4 Orthogonal Relationship of the Eigenfunctions

The orthogonality is critical to determine the coefficientsof the free vibration re-

sponse in Section 2.5. One cannot obtain the analytical solution without the orthogonally

property, which gives rise to the asymmetric motion of the axially moving wire. This is a

new contribution. The closed-form analytical solution of free vibration, as a result of the

orthogonality property, can be employed to discriminate the modes that play more signif-

icant role in free vibration under prescribed initial conditions. This is also validated by

the results. One of the contributions of this study is the derivation and presentation of the

orthogonal relationship for damped axially moving wire system. In this section, the orthog-

onality property will be derived using the relationship between the eigensolutions and their

corresponding adjoint eigensolutions discussed in the previous section.

Substituting the eigensolutions and adjoint eigensolutions into equations (2.17) and

(2.28), we obtain

λ2
nM [ψn(x)] + λn (C + G) [ψn(x)] + (K + H) [ψn(x)] = 0 (2.30)

λ2
mM∗ [ψ∗

m(x)] + λm (C∗ + G∗) [ψ∗
m(x)] + (K∗ + H∗) [ψ∗

m(x)] = 0 (2.31)

Multiply equation (2.30) byψ∗
m(x) and equation (2.31) byψn(x), and integrate both equa-

tions from0 to 1 to obtain

λ2
n

∫ 1

0
ψ∗

mM [ψn] dx+ λn

∫ 1

0
ψ∗

mC [ψn] dx+ λn

∫ 1

0
ψ∗

mG [ψn] dx+
∫ 1

0
ψ∗

mK [ψn] dx+
∫ 1

0
ψ∗

mH [ψn] dx = 0
(2.32)

λ2
m

∫ 1

0
ψnM∗ [ψ∗

m] dx+ λm

∫ 1

0
ψnC∗ [ψ∗

m] dx+ λm

∫ 1

0
ψnG∗ [ψ∗

m] dx+
∫ 1

0
ψnK∗ [ψ∗

m] dx+
∫ 1

0
ψnH∗ [ψ∗

m] dx = 0
(2.33)
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According to the relationship of differential operators and adjoint differential operators, we

have
∫ 1

0

ψ∗
mD [ψn] dx =

∫ 1

0

ψnD∗ [ψ∗
m] dx (2.34)

whereD andD∗ are the differential and adjoint differential operators, respectively. There-

fore, equation (2.33) can be written as

λ2
m

∫ 1

0
ψ∗

mM [ψn] dx+ λm

∫ 1

0
ψ∗

mC [ψn] dx+ λm

∫ 1

0
ψ∗

mG [ψn] dx+
∫ 1

0
ψ∗

mK [ψn] dx+
∫ 1

0
ψ∗

mH [ψn] dx = 0
(2.35)

In order to simplify the expressions, the notationMmn is used to represent
∫ 1

0
ψ∗

mM [ψn] dx

and so are the others. Equations (2.32) and (2.35) can be represented as

(−η
2

+ iωn)2Mmn + (−η
2

+ iωn) (Cmn +Gmn) + (Kmn +Hmn) = 0 (2.36)

(−η
2

+ iωm)2Mmn + (−η
2

+ iωm) (Cmn +Gmn) + (Kmn +Hmn) = 0 (2.37)

where(−η
2
+ iωn) = λn and(−η

2
+ iωm) = λm. Recall thatG = 2v ∂

∂x
andH = ηv ∂

∂x
. The

relationship betweenGmn andHmn is

Hmn =
η

2
Gmn (2.38)

Substituting equation (2.38) into equations (2.36) and (2.37), we obtain

(−η
2

+ iωn)2Mmn + (−η
2

+ iωn)Cmn +Kmn + iωnGmn = 0 (2.39)

(−η
2

+ iωm)2Mmn + (−η
2

+ iωm)Cmn +Kmn + iωmGmn = 0 (2.40)

Subtracting equation (2.40) multiplied byωn from equation (2.39) multiplied byωm, we

obtain

(ωm − ωn)

[(

η2

4
+ ωnωm

)

Mmn − η

2
Cmn +Kmn

]

= 0 (2.41)

The term in the bracket in equation (2.41) has to be zero whenωm 6= ωn. The orthogonal

relationship of damped axially moving wire is thus obtainedas

(

η2

4
+ ωnωm

)

Mmn − η

2
Cmn +Kmn = δmnR (2.42)
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whereλn includesλ1n andλ2n, ψn(x) includesψ1n(x) andψ2n(x), andψ∗
n(x) includes

ψ∗
1n(x) andψ∗

2n(x). Whenm = n, R can be obtained as

R =

(

η2

4
+ ω2

n

)
∫ 1

0

ψ∗
nM [ψn] dx− η

2

∫ 1

0

ψ∗
nC [ψn] dx+

∫ 1

0

ψ∗
nK [ψn] dx (2.43)

Substituting eigenfunctions, adjoint eigenfunctions, and damped frequencies in equations

(2.26), (2.29), and (2.25) into equation (2.43), the solution ofR can be obtained as follows

R = n2π2(1 − v2) − η2

4
(2.44)

Equation (2.42) can be converted into the inner product formof

(

η2

4
+ ωnωm

)

< Mψn, ψ̄
∗
m > −η

2
< Cψn, ψ̄

∗
m > + < Kψn, ψ̄

∗
m >= δmnR (2.45)

When η = 0, the orthogonal relationship (2.45) is identical to that in[82, 99]. When

ψm andψ∗
m are complex conjugate,ψm can replaceψ̄∗

m in equation (2.45). However,

< Mψn, ψ̄
∗
m > 6=< Mψn, ψm > when the eigenfunction and adjoint eigenfunction are

real functions. This is because the complex conjugate of a real eigenfunction is still the

same eigenfunction, not the corresponding adjoint eigenfunction. To apply equation (2.45)

generally,ψ̄∗
m should not be changed. In order to make the derivation easier, the integration

form of the orthogonal relationship will be used in the rest of this chapter.

2.4.1 Summary and comparison

The orthogonal relationship of eigenfunctions derived in the preceding section indi-

cates that the orthogonality is dependent upon the self-adjoint differential operators, damp-

ing factor, and the frequencies of vibration (the imaginaryparts of the eigenvalues). The

eigenvalues, eigenfunctions and orthogonal relationshipderived in previous section are
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summarized in the following:

λ1n =
−η +

√

[η2 − 4n2π2(1 − v2)] (1 − v2)

2

λ2n =
−η −

√

[η2 − 4n2π2(1 − v2)] (1 − v2)

2

ψ1n(x) = e
iv
√

[4n2π2(1−v2)−η2](1−v2)

2(1−v2) sin nπx

ψ2n(x) = e
−iv
√

[4n2π2(1−v2)−η2](1−v2)

2(1−v2) sin nπx

(

η2

4
+ ωnωm

)

Mmn − η

2
Cmn +Kmn = δmnR

If the damping factorη is removed from the eigenvalues and eigenfunctions, these

equations will become exactly the same as those in Wickert and Mote’s results before being

normalized for undamped system [99], which are

λ1n = inπ(1 − v2)

λ2n = −inπ(1 − v2)

ψ1n(x) = eivnπx sin nπx

ψ2n(x) = e−ivnπx sin nπx

Furthermore, the orthogonal relationship of the undamped system will be identical to that

in the previous research [82]. If the damping factor is removed, the orthogonal relationship

for an undamped system is

ωnωmMmn +Kmn = δmnR

whereiωn = λn because the eigenvalues are purely imaginary.

2.5 Free Vibration Response

The orthogonal relationship derived in Section 2.4 is the foundation for the forma-

tion of free vibration response for damped axially moving wire. In this section, the free

vibration response of damped axially moving wire will be presented.
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2.5.1 Analytical solution

As other distributed systems, the free vibration response of damped axially moving

wire can be obtained according to the orthogonality and initial conditions. Recall equation

(2.27)

u(x, t) =

∞
∑

n=1

[

D1nψ1n(x)eλ1nt +D2nψ2n(x)eλ2nt
]

If the initial displacement of the wire isa(x) and the initial velocity isb(x), the coefficients

D1n andD2n are obtained by the following equations (see Appendix A).

D1n =

(

η2

4

∫ 1

0

ψ∗
1nM [a(x)] dx− iω1n

(
∫ 1

0

ψ∗
1nM [b(x)] dx+

η

2

∫ 1

0

ψ∗
1nM [a(x)] dx

)

−η
2

∫ 1

0

ψ∗
1nC [a(x)] dx+

∫ 1

0

ψ∗
1nK [a(x)] dx

)/

R (2.46)

D2n =

(

η2

4

∫ 1

0

ψ∗
2nM [a(x)] dx− iω2n

(
∫ 1

0

ψ∗
2nM [b(x)] dx+

η

2

∫ 1

0

ψ∗
2nM [a(x)] dx

)

−η
2

∫ 1

0

ψ∗
2nC [a(x)] dx+

∫ 1

0

ψ∗
2nK [a(x)] dx

)/

R (2.47)

whereR = n2π2 (1 − v2) − η2

4
is defined in Section 2.4. One comment is worth noting

here. When the initial positiona(x) is not second differentiable,a(x) and the adjoint eigen-

functions in the terms
∫ 1

0
ψ∗

1nK [a(x)] dx and
∫ 1

0
ψ∗

2nK [a(x)] dx should be interchanged to

avoid a trivial solution. Equations (2.46) and (2.47) can berewritten as

D1n =

(

η2

4

∫ 1

0

a(x)M [ψ∗
1n] dx− iω1n

(
∫ 1

0

b(x)M [ψ∗
1n] dx+

η

2

∫ 1

0

a(x)M [ψ∗
1n] dx

)

−η
2

∫ 1

0

a(x)C [ψ∗
1n] dx+

∫ 1

0

a(x)K [ψ∗
1n] dx

)/

R (2.48)

D2n =

(

η2

4

∫ 1

0

a(x)M [ψ∗
2n] dx− iω2n

(
∫ 1

0

b(x)M [ψ∗
2n] dx+

η

2

∫ 1

0

a(x)M [ψ∗
2n] dx

)

−η
2

∫ 1

0

a(x)C [ψ∗
2n] dx+

∫ 1

0

a(x)K [ψ∗
2n] dx

)/

R (2.49)
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2.5.2 Examples

Examples are given in this section to apply the solution derived in Section 2.5.1.

Example 1 involves a damped axial moving wire of a wiresaw system with an initial dis-

placement ofa(x) = 0.02x when0 ≤ x < 0.5 anda(x) = 0.02(1− x) when0.5 ≤ x ≤ 1,

and an initial transverse velocity ofb(x) = 0. The damping factor isη = 1 with a speed of

v = 0.3. The vibration response can be obtained by equations (2.27), (2.48), and (2.49).

Figure 2.3 shows the free vibration response of the wire under the prescribed initial

conditions. Due to the fact that the givena(x) function is not second differentiable, equa-

tions (2.48), and (2.49) should be applied, instead of (2.46) and (2.47). The componentn

is taken from1 to 30 in equation (2.27) after several simulation to ensure that the results

can represent those ofn from 1 to∞, without undue computational cost.

Example 2 pertains to the free vibration response of damped axially moving wire

with an initial displacement ofa(x) = 0.01 sinπx, and no initial transverse velocity as

illustrated in Figure 2.4. The damping factor isη = 1 with a speed ofv = 0.3. Because the

function of initial displacement is second differentiable, either equations (2.46) and (2.47)

or equations (2.48) and (2.49) can be utilized to obtain the coefficients of the response,

u(x, t).

The vibration responses of axially moving wire are asymmetric in both examples. In

contrast to the symmetric vibration response of a stationary wire, the speed of the moving

wire affects the net speed of wave propagation, as discussedin [92, 93]. Therefore, the

speeds of wave propagation to the right and to the left are notthe same for a moving wire,

resulting in asymmetric vibration responses. However, when each wave bounced at the

boundaries (x = 0 or 1), the speeds of wave propagation are swapped. This can be seen

clearly with animation of motions, moving along the 8 plots of responses. These results in

the waveform shown in Figures 2.3 and 2.4.
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Figure 2.3: Free vibration response of a damped moving wire with η = 1 andv = 0.3. The
componentsn is from1 to 30, with an initial displacement shown at (t = 0)
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Figure 2.4: Free vibration response of a damped moving wire with η = 1 andv = 0.3. The
componentsn is from1 to 10, with an initial displacement shown at (t = 0)
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2.6 Discussion

The analytical form of the free vibration response is obtained in Section 2.5, and

illustrated with examples. In this section, the free vibration responses of undamped axi-

ally moving wire and damped stationary wire are compared with the solution obtained in

Section 2.5 by assumingη = 0 andv = 0, respectively.

2.6.1 Comparison with special cases

Case 1: Undamped axially moving wire

By assumingη = 0, the damped system will degenerate into an undamped system.

The solution of the degenerated system, such as the eigenvalues, eigenfunctions, orthog-

onal relationship, and coefficients of free vibration response, will be the same as those of

the undamped system presented in [82, 99]. Figure 2.5 is the free vibration response of

an undamped system under the same initial conditions as those of the Example 2 in Sec-

tion 2.5.2.

Whenη = 0, the eigenvalues becomeλ1n = inπ(1 − v2) andλ2n = −inπ(1 − v2).

The corresponding eigenfunctions are

ψ1n(x) = einπvx sinnπx

ψ2n(x) = e−inπvx sinnπx

which are identical to the solutions derived by Wickert and Mote [99].

Case 2: Damped stationary wire

If we setv = 0 in the damped axially moving wire system discussed earlier,the

system becomes a damped stationary wire system, with the differential operatorsG =

H = 0. Therefore, the equation of motion of damped stationary wire system is self-adjoint

which can be solved without considering the adjoint eigenproblem. The eigenvalues and

30



t=0 t=0.3 t=0.6 t=0.9

t=1.2 t=1.5 t=1.8 t=2.1

0.01

0

-0.01

0.2 0.4 0.6 0.8 1.0

0.01

0

-0.01

0.2 0.4 0.6 0.8 1.0

0.01

0

-0.01

0.2 0.4 0.6 0.8 1.0

0.01

0

-0.01

0.2 0.4 0.6 0.8 1.0

0.01

0

-0.01

0.2 0.4 0.6 0.8 1.0

0.01

0

-0.01

0.2 0.4 0.6 0.8 1.0

0.01

0

-0.01

0.2 0.4 0.6 0.8 1.0

0.01

0

-0.01

0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

t

0

0.5

1

x

-0.01

0

0.01

Amplitude

Figure 2.5: Free vibration response of undamped axially moving wire atv = 0.3 andη = 0.
The componentn is from1 to 10.
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eigenfunctions for such system are

λ1n =
−η+i

√
(4n2π2−η2)

2

λ2n =
−η−i

√
(4n2π2−η2)

2

ψ1n(x) = ψ2n(x) = sinnπx

(2.50)

Figure 2.6 shows the simulation of damped stationary wire under the same initial

conditions as those of the Example 2 in Section 2.5.2 withv = 0 andη = 1.

2.7 Summary

In this chapter, the closed-form solution of the free vibration response of damped

axially moving wire immersed in the slurry is first presented. The complementary eigen-

values, eigenfunctions, resonant frequencies, and orthogonality are also provided. These

functions show the consistent with the undamped axially moving wire and damped station-

ary wire by assumingη = 0 andv = 0, respectively. In Chapter 3, this damped vibration

response will be analyzed based on the solutions derived in this chapter.

Because the equation of motion is non-self-adjoint, the orthogonal relationship in-

cludes eigenfunctions, differential operators, resonantfrequencies, and damping factor.

Therefore, the decoupling of forced vibration response using such orthogonal relationship

will be a challenge. In Chapter 4, the closed-form solution of the forced vibration response

of damped axially moving wire will be obtained by an alternative method using Green’s

Function.
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Figure 2.6: Free vibration response of a stationary wire atη = 1. The componentn is from
1 to 10.
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Chapter 3

Characteristics of Damped Axially Moving Wire of Slurry

Wiresaw System

3.1 Introduction

The closed-form solution of the free vibration response of damped axially moving

wire was presented in Chapter 2. In this chapter, the damped vibration response will be

analyzed according to the solutions. Two damping ratios will be defined. Since the free

vibration response is a combination of infinite sets of solutions, it is not possible for the

system to be completely critically-damped or over-damped because of the existence of

under-damped modes at higher order. Therefore, a damped index,s, is introduced to help

in understanding the behavior of such system.

When physical damping is increased (for example, by using a more viscous carrier

fluid in slurry), all components are more damped accordingly. However, in addition to

the physical damping, the apparent damping caused by the increase of wire speed will

also damp out the response because of the reduction of resonant frequencies. These two

parameters, physical damping and apparent damping, control the behavior of an axially

moving wire. This is a new finding in vibration analysis of moving wire that, to our best

knowledge, has not been reported previously. In addition, the shift of the components of

response due to the increase of speed on the first several components of responses will be
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presented and discussed in this chapter. The results also show that the increase in speed

will excite components of response except the dominating one.

The damping ratios and damping index will be presented in Section 3.2, in which

the apparent damping is also discussed. Section 3.3 shows that the mode shapes change

with the increase of velocity. The specific relevance to wiresawing process is provided in

Section 3.4. The parameter study of damping ratios in wiresaw systems is also provided.

A summary of this chapter is given in Section 3.5.

3.2 Analysis of Damped Vibration

In discrete or lumped-parametered systems, damping ratio is an important index

to describe the decaying behavior of damped vibration. However, the damping ratio of

damped axially moving wire has not been discussed. Based on the analytical solution ob-

tained in Chapter 2, the damping ratio will be defined in this section. The results show

that the damping ratio is a function of both axial speed of wire and damping factor, and the

increase of speed accompanies the “apparent damping effect.”

In a typical second-order one-degree-of-freedom system, the system is called crit-

ically damped when the damping ratioζ = 1, in which the oscillation no longer exists.

Therefore, it is intuitive that the frequency of vibration will be zero when the system is

critically damped, and the damping ratio,ζω, will be defined. In addition, there is an al-

ternative method to define the damping ratio which is often used in the control theory and

one degree-of-freedom vibration system. In this case, the damping ratio,ζθ will be defined

by the eigenvalues in the complex plane. The details will be illustrated in the following

sections.

3.2.1 Damping ratio defined by frequency of vibration

Research has showed that the vibration response will be divergent or unstable when

v ≥ 1 [65, 99]. Therefore, we only consider the case whenv < 1. The frequency of
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damped vibration of a axially moving wire isωd,n from equation (2.25).

ωd,n =

√

[4n2π2(1 − v2) − η2] (1 − v2)

2

Whenv < 1, if λ1n andλ2n are complex conjugate, sayλn = −η
2
± iωd,n, the system

displays critically damped behavior with double roots whenωd,n = 0: that is,

4n2π2(1 − v2) = η2, n = 1, 2, . . .

or
η

2nπ

√

1

1 − v2
= 1

Thus, we can define the damping ratio as

ζω =
η

2nπ

√

1

1 − v2
, n = 1, 2, . . . (3.1)

Equation (3.1) defines a damping ratio which is proportionalto η but inversely proportional

to
√

1 − v2. Whenζω = 1, it corresponds to the case withλn = −η
2
. Whenζω < 1, it

corresponds to the behavior of a underdamped system.

It is obvious from equation (3.1) that the damping ratio,ζω, of damped axially mov-

ing wire is dependent on the component number,n, of the free vibration response. The

damping ratio,ζω, has to be calculated for eachnth component of response to understand

the overall vibration response of the damped axially movingwire system. The situation

is similar to the multi-dof second-order lumped system. By modal analysis, the multi-dof

system can be decoupled into eigenspace. For each decoupledequation, there is a corre-

sponding damping ratio.

In order to depict the damped behaviors of eachnth component quickly, a new index,

s, is introduced by defindings = nζω. From equation (3.1),s can be derived as

s =
η

2π

√

1

1 − v2
when v < 1 (3.2)

wheres is a function of onlyη andv. According to the index,s, the dampednth component

of response can be described as follows:
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(i) Whenn < s, thenth component of response is overdamped.

(ii) Whenn = s, thenth component of response is critical damped.

(iii) When n > s, thenth component response is underdamped.

Whenv < 1, asn goes from1 to∞, there are finite number ofnth components of response

which are overdamped and critically damped, with higher-order components kept as un-

derdamped. Since vibration response is a combination of infinite number of components

from n = 1, . . . ,∞, the system withv < 1 will always display underdamped modes of

vibration, regardless of the associated amplitudes of suchunderdamped vibration modes.

For example, ifs = 2.5, the first and second components of response,u1(x, t) and

u2(x, t), are overdamped, and the other higher-order components of response are under-

damped.

3.2.2 Damping ratio defined by the complex eigenvalues

When eigenvalues are complex withλ = −σ ± iω, the response is an exponentially

decaying harmonic response with the exponentially decaying envelop defined bye−σt. The

damping ratio is defined by the ratio between the real and imaginary parts of the eigenvalue:

that is,ζ = cos θ = σ√
σ2+ω2 .

Similarly, the solutions ofλ1n andλ2n presented here have a corresponding damping

ratio defined by the real and imaginary parts of the eigenvalues on complex plane as shown

in Figure 3.1. As indicated in Figure 3.1,θ is the angle between negative real axis and the

vector from origin to the eigenvalue. The damping ratio is defined as

ζθ = cos θ

=
η
2

√

(

η
2

)2
+

(√
[4n2π2(1−v2)−η2](1−v2)

2

)2

=
η

√

4n2π2 (1 − v2)2 + η2v2

(3.3)
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θ

(−η/2, iω
d,n

)

Figure 3.1: Complex eigenvalue and the definition of dampingratio on the complex plane.
The complex conjugate of the eigenvalue is not shown in the figure.

The definition ofζθ in equation (3.3) is different fromζω. For the situation of stationary

wire, ζω = ζθ at v = 0. However, whenv approaches1, ζω approaches∞; whereas

ζθ approaches1, implying that the system is close to critically damped. According to

equation (2.25),ωd,n = 0 at v = 1. Therefore,ζθ is preferred to determine the damping

ratio of damped axially moving wire. Nevertheless, the damping index,s, derived from

ζω is still an efficient tool to evaluate the damped behavior, which will be discussed in the

following sections.

3.2.3 Comparison ofζω and ζθ

Two damping ratiosζω and ζθ are defined based on different observations of the

solution of the complex eigenvalues and vibration response. In this subsection, they will be

discussed as functions ofv andη separately.

Damping ratio as a function of velocity:

Figures 3.2 illustrates the damping ratios as a function of the non-dimensionalized

speedv, and offers comparison between the two definitions of damping ratios. In Fig-

ure 3.2(a), the system is underdamped whenv = 0. With the increase ofv, bothζω andζθ

increase and intersect atζω = ζθ = 1. The corresponding speed can be solved from both

equations (3.1) and (3.3), which yield the same result in thefollowing equation:

vcr =

√

1 − η2

4n2π2
, whenζω = ζθ = 1 (3.4)
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Figure 3.2: Damping ratioζω andζθ (solid and dashed curves) as a function ofv for the
first component of response (u1(x, t) with n = 1). The damping factors are (a)η = 4 and
(b) η = 10

Based on equation (3.4), whenv >
√

1 − η2

4n2π2 , bothζω andζθ are greater than1, implying

an overdamped system. Therefore, when thenth component of response is overdamped,

eitherζω or ζθ will be greater than1. As a result, the overdamped components of response

predicted by the damping index,s, still work with damping ratioζθ. However,ζθ drops to

1 while ζω → ∞ asv → 1.

In this case, there is an apparent increase of damping in freevibration response with

increasing speed and constant damping factorη. We call this effect the “apparent damping

effect.” Figure 3.3 shows an example.

In Figure 3.2(b), the system is overdamped atv = 0. Whenv increases,ζω goes to

infinity while ζθ drops to1 as the case in underdamped system. The two damping ratios are

always over1 whenv is from0 to 1. Therefore, this system is always overdamped.

Damping ratio as a function of damping factor:

Figure 3.4 shows the damping ratios as functions of damping factor. It is obviously

thatζω is linear with the damping factor, which is also shown in equation (3.1). Meanwhile,

ζθ will approachη/v when the damping factor keep increasing. As discussed in theprevious

subsection,ζω andζθ intersect at1. The critical damping factor will be

ηcr = 2nπ
√

1 − v2, whenζω = ζθ = 1 (3.5)
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Figure 3.3: Apparent damping effect of free vibration response atx = 0.5(center of span)
with η = 1, initial displacementsin πx, and no initial velocity (that is, initially at rest).
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Therefore, the critical damping factor will decrease when the velocity increases as shown

in equation (3.5).

3.2.4 Physical and apparent damping

The free vibration responses of an axially moving wire with different damping fac-

tors η under the same wire speedv = 0.3 are plotted in Figure 3.5 for comparison. In

Figure 3.5(a), the vibration responses of the entire wire span (0 ≤ x ≤ 1) with differ-

ent damping factors,η = 0.5 andη = 2.0, are plotted with discrete time. The vibration

responses as a function of time in the middle of the wire atx = 0.5 are plotted in Fig-

ure 3.5(b). Both Figures 3.5(a) and 3.5(b) show more amplitude reduction with larger

damping factorη, as expected. According to the eigenvalues obtained in the previous sec-

tion, the vibration decaying rate ise−
η
2
t. The two frequencies of vibration,ωd, for η = 0.5

and2.0 are nearly the same.

The free vibration responses in Figure 3.6 are plotted with different wire speedsv

under the same damping factorη = 1. Figure 3.6(a) shows the vibration response of the

entire wire span (0 ≤ x ≤ 1) at discrete time. Figure 3.6(b) illustrates the motion in the

middle of the wire atx = 0.5. It can be observed from the responses in Figure 3.6(a) that a

full cycle is elapsed whenv = 0.1 from t = 0 to 2. Within the same time period, however,

only half cycle is elapsed forv = 0.7. Therefore, the amplitude of oscillation is also re-

duced with the increase of speedv within a cycle, as shown in Figure 3.6(b). However, such

decrease in each cycle of vibration is not a result of reduction of the exponentially decaying

envelop becauseη is kept the same. Instead, the reduction of amplitudes of vibration per

each cycle is due to the reduction in frequency, as shown in Figure 3.6(b). Equation (2.25)

expresses the frequency of vibration as a function of the wire speed. Atv = 0.7 and0.1,

the frequencies of their first components areωd,1 = 1.562 and3.070, respectively. At a

lower frequency of vibration forv = 0.7 shown with the dashed line in Figure 3.6(b), the

amplitude of the first valley att ≈ 2 is smaller than that ofv = 0.1 at t ≈ 1.
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Figure 3.5: (a) Free vibration response of the entire wire span (0 ≤ x ≤ 1) with different
damping factorsη = 0.5 andη = 2.0. The nondimensionalized speed of wirev is kept at
0.3. The componentn is from1 to 10. (b) The continuous vibration responses at the middle
of the wire (x = 0.5) are plotted forη = 0.5 andη = 2.0. As expected, the exponentially
decaying envelop,e−

η
2
t, reduces faster with largerη value. The two responses have nearly

identical frequencies of vibration.
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Figure 3.6: (a) Free vibration response of the entire wire span (0 ≤ x ≤ 1) with different
velocitiesv = 0.1 andv = 0.7. The nondimensionalized damping factorη is kept at 1.
The componentn is from 1 to 10. At v = 0.1, a full cycle is elasped fromt = 0 ∼ 2
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of vibration, as illustrated in (a).
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3.3 Mode Shape andnth Component of Response

In gyroscopic systems, the eigenfunctions or eigenvectorsare complex functions or

vectors. Either the real parts or the imaginary parts of eigenfunctions will affect the free

vibration response. However, the vibration response should not be complex in reality,

which means that the imaginary parts of the vibration response of the solution will cancel

each other. In this section, the mode shape and thenth component of response are studied

with the increase of wire speed. The results also show the imaginary parts are disappearing

in the components of response.

3.3.1 Mode shape

The eigenfunctions of damped axially moving wire were solved as complex functions

in the previous chapter. The real modes of the eigenfunctions are

ψreal(x) = cos
vωx

1 − v2
sin nπx n = 1, 2, 3, . . . (3.6)

and the imaginary modes are

ψimag(x) = sin
vωx

1 − v2
sinnπx n = 1, 2, 3, . . . (3.7)

where

ω = ωd,n =

√

(4n2π2 (1 − v2) − η2) (1 − v2)

2

Figure 3.7 illustrates how the real and imaginary modes change with the increase of

wire speed,v. It shows that only real modes exist atv = 0. This explains that the stationary

wire only has real modes,sinnπx. With the increase of wire speed, the imaginary modes

are excited and affect the vibration response.

3.3.2 Thenth response as a function of the speed

In this subsection, we discuss thenth component of response as a function of speed.

Unlike the stationary system, the solutions of axially moving system change with the axial
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speed of the wire accompanied by the apparent damping effect. We illustrate the results of

the free vibration response with sinusoidal initial conditions. Simulation and calculation of

the results are plotted for analysis and discussions.

Although the eigensolutions are complex, thenth component of response,un(x, t),

in equation (2.27) is a real function to represent the physical system of damped axially

moving wire. However, the eigenfunctions,ψ1n(x) andψ2n(x), of the solutions are not

pure real functions. They comprise a new set of complex functions which can represent

the vibration response of damped axially moving wire with the eigenvalues and the initial

conditions. Thenth response of free vibration for an initial displacement ofsinmπx and

initial transverse velocity of zero can be calculated and plotted based on the analytical

solution obtained in Chapter 2. The solution of each component of response in equation

(2.27) is as following

un(x, t) = E1 e−
ηt
2

(

E2 cos
vωx

1 − v2
sinnπx cosωt

+E3 cos
vωx

1 − v2
sinnπx sinωt+ E4 sin

vωx

1 − v2
sinnπx cosωt

+E5 sin
vωx

1 − v2
sinnπx sinωt

)

whereE1, E2, E3, E4, andE5 are coefficients and can be represented in the following
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equations

E1 =
(

4mnπ2v
(

−1 + v2
)3
ω
)/

(

4n2π2
(

−1 + v2
)

+ η2
)

[

m4π4
(

−1 + v2
)4

+
(

n2π2
(

−1 + v2
)2 − v2ω2

)2

−2m2π2
(

−1 + v2
)2
(

n2π2
(

−1 + v2
)2

+ v2ω2
)

]

E2 = −E5

= 2ηω − cosmπ cosnπ

(

2ηω cos
vω

−1 + v2

+
(

4m2π2
(

−1 + v2
)

+ η2
)

sin
vω

−1 + v2

)

E3 = E4

= 4m2π2
(

−1 + v2
)

+ η2 − cosmπ cosnπ
(

(

4m2π2
(

−1 + v2
)

+ η2
)

cos
vω

−1 + v2
− 2ηω sin

vω

−1 + v2

)

The sum of all components,un(x, 0) at t = 0 for n = 1 to ∞, will be the initial

displacement,sinmπx. The results of simulation are presented in Figures 3.8 to 3.10.

Whenv = 0, thenth component will dominate the free vibration response, and the other

components will vanish whenn = m. This is illustrated in Figures 3.8 to 3.10 for ini-

tial displacement ofsin πx, sin 2πx, andsin 3πx, respectively. We call those components

which have shape with corresponding initial displacement the dominating components of

response. However, the vibration of moving wire exhibits shrinking dominate components

as the speedv increasing. With respect to different initial conditions,it is shown in Fig-

ures 3.8 to 3.10 that the components other than the dominating component (eg.,u1 is the

dominating component for initial displacementsin πx, u2 is for sin 2πx, . . . etc.) have in-

creased amplitude of oscillation whenv becomes larger.

As the amplitudes of the components change withv, the dominating component

shrinks which means that the vibration energy shifts from the dominating frequency to the

others. Figures 3.8 to 3.10 show such shifting phenomena. The effect of such phenomena

in Figures 3.9 and 3.10 is more pronounced. Though Figures 3.8 to 3.10 illustrates only the
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first three components of response with initial displacement of sin πx, sin 2πx, andsin 3πx,

the observations presented here can be extended to higher order components.

3.4 Relevance to Slurry Wiresaw Systems

3.4.1 Reynolds number and drag force in wiresaw systems

For flow passing through an immersed body, the force due to friction drag is more

than the pressure difference when Reynolds numberRe < 1. The drag coefficient isCD
∼=

7
Re

for a cylinder, the shape of wire [70]1 . The Reynolds number can be formulated as

Re =
ρfDVtr

µ
(3.8)

whereρf andµ are the density and viscosity of fluid,D is the diameter of the wire,Vtr =

V UX + UT is the transverse velocity of the wire.

Polyethylene glycol is a water-soluble carrier for slurry,which has a density of1.1 ∼

1.2 g cm−3. The density of silicon carbide is3.21 g cm−3. Therefore, the density of slurry

is ρf = 1491 ∼ 1763 kg m−3 for the mixing ratios of0.75 ∼ 1.25 with kg of grit per liter

of carrier. The viscosity isµ = 200 ∼ 1000 cP. In industry applications, different recipes

may be used to optimize the slicing process, resulting in different range of parameters.

Since the slope of the wire,UX , is small, we approximate the transverse speed of

the wire asUT , neglecting the termV UX . The maximumUT can be approximated as

the product of vibration amplitude of the wire and natural frequency. The amplitude of

vibration of the wire is assume to be25 ∼ 150 µm by subtracting wire diameter,150 ∼ 175

µm, from the kerf loss,200 ∼ 300 µm. The natural frequency of the first component is

2047 ∼ 6781 rad s−1 with parametersV = 10 ∼ 15 m s−1, ρ = 0.1876 g m−1, P = 20 ∼

35 N, L = 0.2 ∼ 0.5 m [97]. Therefore, the transverse speed of the wire is0.0512 ∼ 1.017

m s−1. The true transverse speed should be smaller than this rangedue to damping. With

1 This is not the only equation of the the drag force in fluid flow for a cylinder at small Reynolds number.
Other literature such as reference [85] has a different expression. However, the results of analysis are within
the same order of magnitude.
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Figure 3.8: The variation of first three components of response with initial displacement
sin (πx), initial velocity0, and damping factorη = 1.
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Figure 3.9: The variation of first three components of response with initial displacement
sin (2πx), initial velocity0, and damping factorη = 1.
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Figure 3.10: The variation of first three components of response with initial displacement
sin (3πx), initial velocity0, and damping factorη = 1.
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Figure 3.11: Wire motion in slurry with transverse velocity, Vtr

these parameters, the Reynolds number in equation (3.8) canbe approximate as0.0115 ∼

1.5688. Although the range is not always smaller than one, it is still small enough. As a

result, we useCD
∼= 7

Re
to evaluate the damping factor.

The function due to drag force isfD = CD
ρf V 2

trA

2
, whereA = DL is the projected

area of a cylinder. BecauseCD
∼= 7

Re
andRe =

ρf DVtr

µ
, the drag force for a cylinder is

fD = 3.5µVtrL. The damping force per unit length becomes

Fη =
fD

L
∼= 3.5µVtr

It is also noted thatFη = ηdVtr. Therefore, the damping factor,ηd, can be obtained as

ηd
∼= 3.5µ (3.9)

3.4.2 Practical parameter study

Wiresaw is usually operated under high speed (typically10 ∼ 15 m s−1) and high

tension (20 ∼ 35 N). However, the actual non-dimensionalized speed of wire ofa wiresaw

is far below the critical speed because of its low mass density [97]. With typical process

parameters ofV = 10 ∼ 15 m s−1, ρ = 0.1876 g m−1, P = 20 ∼ 35 N, andL =

0.2 ∼ 0.5 m, the non-dimensionalized speed isv = 0.0232 ∼ 0.0459, much lower than the

critical speed atv = 1. Therefore, we only have to consider the situation whenv ≪ 1 in

wiresawing operations.
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Figure 3.12: Free vibration response with initial displacement0.01 sin πx and different
damping factorsη = 1.728, 2π, and28.57. The nondimensionalized velocityv is kept at
0.0306. The componentn is from1 to 10. The response at the middle of the wire becomes
non-oscillatory when the damping factorη ≥ 2π.
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Here, we assume that the viscosity of slurry is200 ∼ 1000 cP [48]. Thus, the approx-

imate range of the damping factor isηd = 0.7 ∼ 3.5 N s m−2 according to Equation (3.9).

The corresponding nondimensionalized damping factor isη = 1.728 ∼ 28.57. Figure 3.12

illustrates the vibration response at the middle point of wire with the initial displacement

of a(x) = 0.01 sin πx and no initial transverse velocity. The nondimensionalized veloc-

ity and damping factors are corresponding to the wiresaw system discussed earlier with

v = 0.0306, η = 1.728 ∼ 28.57, respectively. It shows that the typical vibration response

of wire is well damped.

3.4.3 Damping ratios

In order to study the damping ratio in slurry wiresaw system,convert the dimension-

less parameters into dimensionalized ones.

ζω =
ηdL

2nπ

√

1

ρP − ρ2V 2
(3.10)

ζθ = ηdL

√

P

4n2π2ρ (P − ρV 2)2 + η2
dL

2ρV 2
(3.11)

When the damping factor approaches infinity,ζω will approach infinity; whereasζθ ap-

proaches a constant value,
√

P
ρV 2 . If the first component of free vibration response,u1,

reaches critical damped condition,ζ1 = 1 can be substituted into equations (3.10) and

(3.11) to obtain the damping factor,ηd = 1.28 N s m−2. This damping factor is not high

which is also because of the low density of the wire. Therefore, the damped vibration

behavior of the wire in wiresaw system should perform plainly.

In Figure 3.13, 3.14, 3.15, and 3.16, the damping ratios,ζω andζθ, are plotted as

a function of damping factor,ηd, in small range. Four parameters, axially moving speed

V , tensionP , length of wireL, and mass density of wireρ, are compared in reasonable

range of the slurry wiresaw system. All of the four figures show thatζω andζθ do not have

obvious difference under small damping factor. The curves of damping ratios for different

velocities,v = 10, 20, and30 m s−1 are almost the same under small damping factor,ηd,
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Figure 3.13: Damping ratios as functions ofηd with respective to the axially moving speed
of wire in slurry wiresaw system.

as shown in Figure 3.13. The other three figures show higher damping ratio with lower

tension, longer wire length, and lower density of the wire.

3.5 Summary

Two damping ratios are defined by the frequency and eigenvalue of damped axially

moving wire, respectively. They are discussed and comparedwith respect to the nondimen-

sionalized parametersv andη separately. The results present the apparent damping effect.

In addition, a damping index,s, is also introduced to classify the damping behavior of each

component of response of the system.

The mode shape and thenth component of vibration response are studied according

to the closed-form solution. The results show that the imaginary modes and compoents of

response except the dominating ones are excited with the increase of wire speed.

In a practical slurry-wiresaw system, the speed of the wire is significantly lower than

the critical speed. The first component of the free vibrationresponse can reach critical

damped condition with quite a small damped factor. Consequently, the wiresaw system is

well damped. Method to estimate realistic damping factors for the analysis of damped vi-
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Figure 3.14: Damping ratios as functions ofηd with respective to the tension of wire in
slurry wiresaw system.
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Figure 3.15: Damping ratios as functions ofηd with respective to the length of wire in
slurry wiresaw system.
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Figure 3.16: Damping ratios as functions ofηd with respective to the mass density of wire
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bration was presented using typical process parameters of amoving wire in slurry wiresaw

systems. In parameter study, the results show that the damping ratio will increase of wire-

saw system with lower tension, longer wire length, and lowerdensity of the wire. In order

to obtain more characteristics of damped axially moving wire system, the forced vibration

response is necessary.

58



Chapter 4

Green’s Function and Forced Vibration Response of

Damped Axially Moving Wire

The Green’s function of damped axially moving wire is first derived in this chap-

ter. The corresponding frequency response with point excitation is also presented. The

results show agreement with previous research on free vibration response and correspond-

ing eigensolutions. The Green’s function and frequency response presented in this chapter

are essential for control theory and random vibration analysis.

4.1 Introduction

In the study of vibration response, forced vibration is fundamental to describe the

response of the system subject to external excitation. Analyses of frequency response,

random vibration analysis, and control theory require the knowledge of forced vibration

response. In general, the study of forced vibration response of distributed systems is much

more complicated than that of lumped-parameter systems. A distributed system involves

spatial and temporal variables; therefore, the motion of each point on the system not only

depends on the location, but also is a function of time as it vibrates.

To obtain the solution for the distributed system, the equation which describes the

spatial relationship is necessary. The solution of modal analysis consists of eigenfuctions

and eigenvalues, with the eigenfunctions illustrating themode shapes of each mode of the
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system. The Green’s function is the impulse response. It contains not only the response as

a function of time, but also describes the relative motion within the system [13, 14, 83].

Axially moving continua has been utilized in many mechanisms or machines such

as belts, chains, and saws. During such operations, the surrounding media may give extra

resistance which would reduce the oscillation. This resistance may be negligible in some

cases. However, for the manufacturing processes such as a wire in slurry wiresaw system

or a cable in water, the damping force has to be considered. The vibration responses of

axially moving wire and beam without damping have been obtain by Wickert and Mote

in 1990 [99]. Yang and Mote presented the Green’s function ofthe axially moving string

without damping [103]. The free vibration response of damped axially moving wire was

obtain by Chung and Kao [23, 25], and the forced vibration response is still exclusive.

Because the equation is non-self-adjoint, the classical modal analysis is not adequate to be

employed to solve the forced vibration response.

In this chapter, we present the research results of the Green’s function of a damped

axially moving wire to obtain the forced vibration response. To our best knowledge, the

Green’s function derived in this chapter is the first analytical and closed-form solution

for damped axially moving wire. This new result enables us to obtain forced vibration

response of an axially moving wire in a damped environment, such as that in a modern

slurry wiresaw [48].

The Green’s function of a damped axially moving wire is derived in Section 4.2,

followed by the standard form of equations in Section 4.3 andfrequency response with

point excitation in Section 4.4. The summary is in Section 4.5.

4.2 Green’s Function

In Chapter 2, the equation of motion of damped axially movingwire has been intro-

duced and non-dimensionalized as equation (2.14), which is

utt + 2vuxt − (1 − v2)uxx + ηvux + ηut = f (4.1)
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The boundary conditions areu(x, t) = 0 at x = 0 andx = 1 [25]. Assume that the

Green’s function for the differential equation (4.1) isg(x, ξ, t, τ), which satisfies the fol-

lowing equation [13, 32, 88].

gtt + 2vgxt − (1 − v2)gxx + ηvgx + ηgt = δ(x− ξ)δ(t− τ) (4.2)

whereδ(x−ξ) is a Dirac delta function, which implies that the external force is applied to an

arbitrary positionξ within the range ofx. Another Dirac delta functionδ(t− τ) represents

an impulse applied at the timet = τ . The boundary conditions areg(x, ξ, t, τ) = 0 at

x = 0 andx = 1. Since this system is stationary linear, which means that this system

depends on the difference(t − τ), the Green’s function can be represented in the form

g(x, ξ, t, τ) = g(x, ξ, t− τ) [13].

The Laplace transform of the Green’s function with respect to t− τ isL{g(x, ξ, t−

τ)} = G(x, ξ, s), and which still satisfies the boundary conditions,G(x, ξ, s) = 0 atx = 0

andx = 1. Assume the initial displacement and initial velocity are zero. Take Laplace

transform of the equation of motion (4.2) to obtain

s2G+ 2vs
∂G

∂x
− (1 − v2)

∂2G

∂x2
+ ηv

∂G

∂x
+ sηG = δ(x− ξ)

The equation can be written as

∂2G

∂x2
− v(2s+ η)

1 − v2

∂G

∂x
− s2 + sη

1 − v2
G = −δ(x− ξ)

1 − v2
(4.3)

Whenx 6= ξ, the right hand-side of the equation should be zero.

∂2G

∂x2
− v(2s+ η)

1 − v2

∂G

∂x
− s2 + sη

1 − v2
G = 0, for











0 < x < ξ

ξ < x < 1
(4.4)

Assuming thatG(x, ξ, s) = eκx, and substituting it into equation (4.4), we can obtainκ as

a function ofs.

κ(s) = α(s) ± β(s) (4.5)

where

α(s) =
v(2s+ η)

2(1 − v2)
, andβ(s) =

√

4s2 + 4sη + v2η2

2(1 − v2)
(4.6)
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Comparing to the modal analysis, we find thats is actually the eigenvalue of this system

and will be solved later. Therefore,

G−(x, ξ, s) = eαx
(

Aeβx +Be−βx
)

for 0 < x < ξ

G+(x, ξ, s) = eαx
(

Ceβx +De−βx
)

for ξ < x < 1

To satisfy the boundary conditions,G(x, ξ, s) = 0 at x = 0 andx = 1. The coefficients

have the following relationships

B = −A, andD = −Ce2β

Hence,

G−(x, ξ, s) = Aeαx
(

eβx − e−βx
)

for 0 < x < ξ

G+(x, ξ, s) = Ceαx
(

eβx − e2βe−βx
)

for ξ < x < 1

The functionG(x, ξ, s) is continuous atx = ξ. Therefore,

Aeαξ
(

eβξ − e−βξ
)

= Ceαξ
(

eβξ − e2βe−βξ
)

(4.7)

Integrate equation (4.3) with respect tox, and assume that the integral range is very small

aroundξ to obtain
∂G

∂x

∣

∣

∣

∣

ξ+

ξ−
= − 1

1 − v2
(4.8)

SubstituteG− andG+ into the equation (4.8) to obtain

Cαeαξ
(

eβξ − e2βe−βξ
)

+ Cβeαξ
(

eβξ + e2βe−βξ
)

− Aαeαξ
(

eβξ − e−βξ
)

−Aβeαξ
(

eβξ + e−βξ
)

= − 1

1 − v2
(4.9)

According to equations (4.7) and (4.9), the coefficientsA andC can now be solved as

A =
1

1 − v2

eβξ − e2βe−βξ

2βeαξ (1 − e2β)

C =
1

1 − v2

eβξ − e−βξ

2βeαξ (1 − e2β)
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We can now obtain the Laplace transform of the Green’s function

G(x, ξ, s) =











1
1−v2

eβξ−e2βe−βξ

2βeαξ(1−e2β)
eαx
(

eβx − e−βx
)

, for 0 < x < ξ

1
1−v2

eβξ−e−βξ

2βeαξ(1−e2β)
eαx
(

eβx − e2βe−βx
)

, for ξ < x < 1

which can be rearranged and written as

G(x, ξ, s) =











1
1−v2 eα(x−ξ) sinhβ(1−ξ) sinhβx

β sinhβ
, for 0 < x < ξ

1
1−v2 eα(x−ξ) sinhβ(1−x) sinh βξ

β sinhβ
, for ξ < x < 1

(4.10)

The solution of the inverse Laplace transform is

g(x, ξ, t− τ) = L−1{G(x, ξ, s)} =
1

2πi

∫ γ+i∞

γ−i∞
G(x, ξ, s)es(t−τ)ds (4.11)

Sincesinh β = 0 atβ = ±inπ, the equationGes(t−τ) has simple poles at

sn =
−η ± i

√

[4n2π2(1 − v2) − η2] (1 − v2)

2
= −η

2
± iωn, n = 1, 2, 3, . . . (4.12)

These simple poles are the exact eigenvalues as shown in equations (2.23) and (2.24) in

Chapter 2. Note that whenβ → 0 as well ass → −η±η
√

1−v2

2
, the limit ofG(x, ξ, s)es(t−τ)

exist. Therefore,β = 0 is not a pole forG(x, ξ, s)es(t−τ), neither is it forG(x, ξ, s) [104].

Applying the Residue Theory to solve the inverse Laplace transform [58].

1

2πi

∫ γ+i∞

γ−i∞
G(x, ξ, s)es(t−τ)ds = Res[G(x, ξ, s)es(t−τ), s = −η

2
± iωn] (4.13)

The Green’s function can be obtained by solving equation (4.13) as follows

g(x, ξ, t− τ) =
∞
∑

n=1

[

(1 − v2)e(− η
2
+iωn)(t−τ)eαn(x−ξ) sin nπξ sinnπx

iωn

− (1 − v2)e(− η
2
−iωn)(t−τ)e−αn(x−ξ) sinnπξ sinnπx

iωn

]

H(t− τ)

=
∞
∑

n=1

2(1 − v2)e−
η
2
(t−τ)

ωn

[

cos (ωn(t− τ)) sin

(

vωn

1 − v2
(x− ξ)

)

+ sin (ωn(t− τ)) cos

(

vωn

1 − v2
(x− ξ)

)]

sinnπx sinnπξ H(t− τ)

(4.14)
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whereαn = ivωn

1−v2 , andH(t − τ) is the Heaviside function. In the solution of the Green’s

function, the functions ofx are the eigenfunctions, and the functions ofξ are the adjoint

eigenfunctions.

The forced vibration response can now be obtained by the convolution integral of the

Green’s function,g(x, ξ, t− τ), in equation (4.14) and external force,f(x, t), such as

u(x, t) =

∫ t

0

∫ 1

0

g(x, ξ, t− τ)f(ξ, τ)dξdτ (4.15)

4.3 The Standard Form of Equations

The preceding differential equation requires the initial and boundary conditions to

complete the question. However, the non-homogeneous initial and boundary conditions

often complicate the process to solve such problem. The standard form of equations con-

verts the non-homogeneous initial and boundary conditionsinto homogeneous ones, and

the original initial and boundary conditions is replaced byextra terms in external force.

Therefore, the Green’s function obtained from the homogeneous initial and boundary con-

ditions still works for the non-homogemeous conditions [13].

Suppose that a stationary linear differential equation is given as

L(x, u) = a0u
(n) + a1u

(n−1) + · · · + anu = f(x, t) (4.16)

with initial conditions

u(x, t0) = u0(x),
∂u

∂t
(x, t0) = u1(x), . . . ,

∂n−1u

∂n−1t
(x, t0) = un−1(x) (4.17)

and boundary conditions

Γi(u) = gi, i = 1, 2, . . . (4.18)

Equations (4.16), (4.17), and (4.18) are a system of equations. This system can be converted

into the standard form [13].

L(x, u) = a0u
(n) + a1u

(n−1) + · · · + anu = f(x, t) + fI(x, t) + fB(x, t) (4.19)
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with homogeneous initial conditions

u(x, t0) = 0,
∂u

∂t
(x, t0) = 0, . . . ,

∂n−1u

∂n−1t
(x, t0) = 0 (4.20)

and homogeneous boundary conditions

Γi(u) = 0, i = 1, 2, . . . (4.21)

Equations (4.19), (4.20), and (4.21) are called a system of equations in standard form for

a given problem. The non-homogeneous initinal and boundaryconditions are carried into

fI(x, t) andfB(x, t), respectively. The standardizing function actually comprise two com-

ponents, standardizing function with respect to the initial conditions,fI(x, t), and standard-

izing function with respect to the boundary conditions,fB(x, t).

The Green’s function,g(x, ξ, t, τ), for such system can be obtained by giving an

impulse input,δ(x− ξ)δ(t− τ), to replace the right side of the differential equation (4.19).

The solutionu(x, t) will be

u(x, t) =

∫ t

t0

∫

D

g(x, ξ, t, τ) [f(ξ, τ) + fI(ξ, τ) + fB(ξ, τ)] dξdτ (4.22)

whereD is the domain ofx andξ.

Recall the equation of motion of the damped axially moving wire (4.1)

utt + 2vuxt − (1 − v2)uxx + ηvux + ηut = f

with a prescribed initial conditions as those in the Example2 in Section 2.5.2

u(x, 0) = a(x) = 0.01 sinπx, andut(x, 0) = 0 (4.23)

and fixed boundary conditions

Γ1(u) = u(0, t) = 0, andΓ2(u) = u(1, t) = 0 (4.24)

Since the boundary conditions are homogeneous,fB(x, t) = 0, only initial conditions have

to be standardized. Applying the Laplace transform to equation (4.1) by incorporating the
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initial conditions, we obtain

s2ū(x, s) − su(x, 0) − ut(x, 0) + 2v (sūx(x, s) − ux(x, 0)) − (1 − v2)ūxx(x, s)

+ηvūx(x, s) + η (sū(x, s) − u(x, 0)) = f̄(x, s)

whereū(x, s) is the Laplace transform ofu(x, t), andf̄(x, s) is the Laplace transform of

f(x, t). Moving the terms involving the initial conditions to the right-hand side of the

equation, we have

s2ū(x, s) + 2vsūx(x, s) − (1 − v2)ūxx(x, s) + ηvūx(x, s) + ηsū(x, s)

= f̄(x, s) + su(x, 0) + ut(x, 0) + 2vux(x, 0) + ηu(x, 0)

Therefore, the Laplace transform offI(x, t) is

f̄I(x, s) = su(x, 0) + ut(x, 0) + 2vux(x, 0) + ηu(x, 0)

The standardizing functionfI(x, t) can be obtained by taking inverse Laplace transform of

f̄I(x, s).

fI(x, t) = δt(t)u(x, 0) + δ(t) (ut(x, 0) + 2vux(x, 0) + ηu(x, 0)) (4.25)

Substituting the standardizing function into equation (4.22) with the corresponding initial

conditions given in equation (4.23), and zero external force,f(x, t) = 0, the free vibration

response of a damped axially moving wire can be obtained in the following

u(x, t) =

∫ t

0

∫ 1

0

g(x, ξ, t, τ)fI(ξ, τ)dξdτ

= 0.01

∫ t

0

∫ 1

0

g(x, ξ, t, τ) [δτ (τ) sin πξ + δ(τ) (2vπ cosπξ + η sin πξ)] dξdτ

= −0.01

∫ 1

0

gτ (x, ξ, t, 0) sinπξdξ + 0.01

∫ 1

0

g(x, ξ, t, 0) (2vπ cos πξ + η sin πξ) dξ

(4.26)

where the Green’s function,g(x, ξ, t, τ), is presented in equation (4.14). The closed-form

solution of equation (4.26) is given in Appendix B. Givenη = 1 andv = 0.3, the free vi-

bration response (4.26) is plotted in Figure 4.1, which matches with the results in Figure 2.4

of Section 2.5.2.
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Figure 4.1: Plot of free vibration response in equation of a damped moving wire in equation
(4.26) withη = 1 andv = 0.3. The initial displacement isu(x, 0) = 0.01 sin πx, and the
initial velocity is zero.
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a

u(x,t)

x f(a,t)
v

Figure 4.2: Schematic of wiresaw with point excitation

4.4 Frequency Response with Point Excitation

The frequency response with point excitation of the damped axially moving wire has

been numerically studied in [24]. However, once the closed-form solution of the Green’s

function is derived in equation (4.14), it can be employed toobtain the frequency response

analytically. In the following subsections, we present twomethodologies to obtain the

frequency response subject to a point harmonic excitation of f(x, t) = δ(x − a)eiωt, and

compare the results obtained by the two independent methods.

4.4.1 Frequency response by the Green’s function

Frequency response is very important in the analysis of vibration. It shows the re-

sponses and locations of the resonant frequencies and amplitudes of a system. In the study

of control theory and random vibration analysis, frequencyresponse and the spectral den-

sity are fundamental.

The Green’s function was derived in Section 4.2, and the vibration response can be

obtained by the integral equation (4.15), as follows

u(x, t) =

∫ t

0

∫ 1

0

g(x, ξ, t− τ)f(ξ, τ)dξdτ

In order to obtained the frequency response with point excitation, we assume a point

harmonic excitation,f(x, t) = δ(x − a)eiωt, wherea is the position to which external

68



excitation is applied as shown in Figure 4.2. The vibration response is

u(x, t) =

∫ t

0

∫ 1

0

g(x, ξ, t− τ)δ(ξ − a)eiωτdξdτ

=
∞
∑

n=1

1 − v2

iωn

[

eαn(x−a) sin nπa sinnπx
η
2

+ i(ω − ωn)
− e−αn(x−a) sin nπa sinnπx

η
2

+ i(ω + ωn)

]

eiωt

−
∞
∑

n=1

1 − v2

iωn

eαn(x−a) sin nπa sinnπx
η
2

+ i(ω − ωn)
e(− η

2
+iωn)t

+

∞
∑

n=1

1 − v2

iωn

e−αn(x−a) sinnπa sinnπx
η
2

+ i(ω + ωn)
e(− η

2
−iωn)t (4.27)

The transient response with the last two terms of summation decay with time and approach

zero as time progresses. The decaying envelop ise−
η
2
t. The first summation term is the

steady-state response, whose coefficient is

Z(x, a, ω) =
∞
∑

n=1

1 − v2

iωn

[

eαn(x−a) sinnπa sinnπx
η
2

+ i(ω − ωn)
− e−αn(x−a) sin nπa sinnπx

η
2

+ i(ω + ωn)

]

(4.28)

which is considered as the frequency response with point excitation. Figure 4.3 shows an

example of the absolute value of equation (4.28) with respect to the excitation frequency

ω.

4.4.2 Frequency response by the flexible influence function

Another method to solve the frequency response is the flexibility influence func-

tion [67]. To obtain the frequency response, assumeu(x, t) = Z(x, a, ω)eiωt andf =

δ(x − a)eiωt. whereZ(X, a, ω) is the frequency response of the axially moving wire,a is

the excitation point,ω is the frequency of the external force. Substitute these assumptions

into equation (4.1), to obtain

(1 − v2)
d2Z

dx2
− (ηv + 2ivω)

dZ

dx
+ (ω2 − iωη)Z = −δ(x− a) (4.29)

The impulse function,δ(x− a), of the equation is zero except atx = a. Thus, we have

(1 − v2)
d2Z−

dx2
− (ηv + 2ivω)

dZ−

dx
+ (ω2 − iωη)Z− = 0 for 0 < x < a

(1 − v2)
d2Z+

dx2
− (ηv + 2ivω)

dZ+

dx
+ (ω2 − iωη)Z+ = 0 for a < x < 1
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Figure 4.3: Absolute value of frequency response atx = 0.25 with point excitation at
a = 0.5 and dimensionless velocityv = 0.3, which are obtained from (a) equation (4.28)
and (b) equation (4.34).
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Next, we assumeZ(x, a, ω) = eλ(ω)x. Thus, the solutions ofλ are the roots of

(1 − v2)λ2 − (2ivω + ηv)λ+ (ω2 − iωη) = 0

Therefore,

λ =
2ivω + ηv ±

√

η2v2 − 4ω2 + 4iωη

2(1 − v2)
= α± β (4.30)

The frequency response is obtained in the following

Z−(x, a, ω) = eαx
(

Aeβx +Be−βx
)

for 0 < x < a

Z+(x, a, ω) = eαx
(

Ceβx +De−βx
)

for a < x < 1

Apply the boundary conditions,Z−(0, a, ω) = 0 andZ+(1, a, ω) = 0 to obtainB = −A

andD = −Ce2β . Thus, we have

Z−(x, a, ω) = Aeαx
(

eβx − e−βx
)

for 0 < x < a

Z+(x, a, ω) = Ceαx
(

eβx − e2βe−βx
)

for a < x < 1

Since the string is continuous atx = a, we requireZ−(x, a, ω) = Z+(x, a, ω) at

x = a. Consequently,

Aeαa
(

eβa − e−βa
)

= Ceαa
(

eβa − e2βe−βa
)

(4.31)

In addition, the force equilibrium atx = a renders

(

1 − v2
)

(

dZ+(x, a, ω)

dx
− dZ−(x, a, ω)

dx

)

= −1 (4.32)

Therefore,

C
[

αeαa
(

eβa − e2βe−βa
)

+ βeαa
(

eβa + e2βe−βa
)]

−A
[

αeαa
(

eβa − e−βa
)

+ βeαa
(

eβa + e−βa
)]

= − 1

1 − v2
(4.33)

The coefficients,A andC, can be obtained by solving the equations (4.31) and (4.33) as

follows

A =
eβa − e2βe−βa

2(1 − v2)β(1 − e2β)eαa

C =
eβa − e−βa

2(1 − v2)β(1 − e2β)eαa
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Therefore, the frequency response of the damped axially moving wire is

Z(x, a, ω) =











eβa−e2βe−βa

2(1−v2)β(1−e2β)
eα(x−a)(eβx − e−βx), for 0 < x < a

eβa−e−βa

2(1−v2)β(1−e2β)
eα(x−a)(eβx − e2βe−βx), for a < x < 1

which can be represented bysinh functions, and the frequency response can be simplified

as

Z(x, a, ω) =











eα(x−a)sinh(1−a) sinhx
(1−v2)βsinhβ

, for 0 < x < a

eα(x−a)sinha sinh(1−x)
(1−v2)βsinhβ

, for a < x < 1
(4.34)

One result of equation (4.34) is plotted in Figure 4.3 with the prescribed parameters,

and compared with the solution obtained by the Green’s function in equation (4.28). The

plots show consistent results between the two independent methods.

4.5 Summary

The Green’s function for the damped axially moving wire is derived and presented

in this chapter. The poles of the Green’s function in the s-domain of Laplace transform are

actually the eigenvalues. The Green’s function is a combination of the eigenfunctions and

adjoint eigenfunctions. Based on the Green’s function, we present theclosed-formsolution

of the forced vibration response of a damped axially moving wire, as well as the frequency

response with a point harmonic excitation. The results of frequency response are compared

with another method using the flexibility influence function, and show consistent results.

The free vibration response can also be obtained by converting the original equations into

the standard form. The results of this study of the analytical solution of the Green’s func-

tion is very important in control theory and random vibration analysis for damped axially

moving continua.
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Chapter 5

Effect of Mixed Abrasive Grits in Lapping Process

Wafers made of materials such as silicon, III-V and II-VI compounds, and optoelec-

tronic materials, require a high-degree of surface qualityin order to increase the yield in

micro-electronics fabrication to produce IC chips and devices. Measurements of wafer

surface quality include: nanotopography, surface morphology, global planarization, to-

tal thickness variation (TTV) and warp. Due to the reductionof feature size in micro-

electronics fabrication, the requirements of such properties become more and more strin-

gent. To meet such requirements, the wafer manufacturing processes of brittle semicon-

ductor materials, such as slicing, lapping, grinding, and polishing have been continually

improved. In this chapter, the lapping process of wafer surface treatment is studied with

experimental results of surface roughness and material removal rate. In order to improve

the performance of lapping processes, effects of mixed abrasive grits in the slurry of the

free abrasive machining (FAM) process are studied using a single-sided wafer-lapping ma-

chine. Under the same slurry density, experiments employing different mixing ratios of

large and small abrasive grits, and various normal loadingson the wafer surface applied

through a jig are conducted for parametric study. With various mixing ratios and loadings,

observations and measurements of the total amount of material removed, material removal

rate, surface roughness, and relative angular velocity arepresented and discussed in this

chapter. The experiments show that the1 : 1 mixing ratio of abrasives removes more ma-

terial than other mixing ratios under the same conditions, with a slightly higher surface
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roughness. Modeling of the mixed abrasive particle distributions correspondingly indicates

that the roughness trend is due to the abrasive distributionsize and the particle contact me-

chanics. The results of this study can provide a good reference for the FAM processes that

practitioners use today by exploiting different mixing ratios and loadings of abrasive slurry

in the manufacturing processes.

5.1 Introduction

With the development of larger wafers and smaller feature sizes in the semiconductor

industry, the requirements for the wafer substrate are becoming more and more stringent for

both cost and quality. Following Moore’s law, the International Technology Roadmap of

Semiconductors (ITRS) indicates that the 450mm wafer will be in production in 2012 [46]

to keep the trend of cost reduction. Many analyses and discussions start to focus on the

next generation wafer size [19, 28, 37, 79, 87, 96]. With the agreement of Intel, Samsung

Electronics, and TSMC at the 450mm wafer manufacturing transition [43], the next in-

crease of wafer size is inevitable. With such increase, it ismore difficult to achieve the

requirements of wafer surface quality such as global planarization. Therefore, the advance

of the machining processes such as wiresawing, lapping, andgrinding is important.

Lapping has been a standard surface finishing process for glass products and semi-

conductor wafers for a long time. It belongs to the free abrasive machining (FAM) process

which is the same as slurry wiresaw slicing [5, 22, 107]. FAM is a three-body abrasion

mechanism which is not desirable for the journal bearing because of wear [34, 84, 100].

However, it is the essential machining mechanism for lapping. Although most research

attributes the brittle material removal of lapping to indentation cracking model [11, 12, 16,

52, 80], the actual situation is more complicated [15, 38, 57]. Aside from the mechanical

properties of the workpiece and lapping plate, the distribution of abrasives, dynamic in-

dentation cracking, motion of the abrasive grits and the ductile-regime machining [9] also

complicate the analysis of lapping mechanism.
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Lapping and grinding are both post-slicing wafer surface finishing processes. Be-

cause of their advantages and disadvantages, one or both of them are utilized in the manu-

facturing process [56, 77]. It is not clear which one will be favorable or employed in the450

mm wafer industry. However, lapping was the one which can remove warp efficiently until

the invention of simultaneous double-sided grinding [55, 77]. In this chapter, experimental

study and modeling of surface roughness of mixed abrasive slurry in lapping provides the

information on the influence of abrasive distribution on lapping.

Past research has emphasized the importance of abrasive size distribution in model-

ing; however, few studied the change of the distribution of the abrasive grit sizes. Bhagavat,

Liberato, and Kao [7] are probably the first and the only ones to study such topic. Their

results showed that the mixed abrasives (for example, mixing F-400 and F-600 SiC) have

higher material removal rate than the single-sized abrasives (for example, only F-400 SiC

abrasives). However, their experiments discussed one mixing ratio of the abrasives, and

the concentration of mixed-abrasive slurries were different from that of the single-sized

abrasives slurry. To study the influence of the change of abrasive distribution in lapping,

experiments with different abrasive distributions and constant slurry concentration are nec-

essary.

In this study, experiments were conducted by mixing two different sizes of silicon

carbide powders: F-400 and F-600. Five different mixing ratios of the abrasives were

employed, though, the ratio of the abrasives to the carrier (DI water) was kept the same.

The results show that the50% mixing ratio (1 : 1) of the two different abrasives have the

highest material removal rate (MRR), with a slightly rougher surface finish. In addition, the

material removal rate is nearly proportional to the normal loading. The surface roughness,

however, depends on the distribution of mixed abrasive grits but not the total loading. This

is comparable to results presented in the literature [12, 80]. A model of surface roughness

based on particle contact depth was utilized to compare effects of different mixing ratios.

This model considers the particle size effect on the active abrasive grits, the abrasive size

75



Slurry Tank

Jig

Gauge

Figure 5.1: Logitech PM5 lapping machine, employed to conduct experiments in this study.

distributions, and applied load, to provide a correlation with the experiments using the

process parameters.

5.2 Experimental Setup

Logitech PM5 one-sided lapping machine, as shown in Figure 5.1, was employed

in this experimental study. A PP6GT jig was used to hold the silicon wafer which was

mounted on glass plate by wax. The dial gauge mounted on the jig provides real-time

measurement of the material removal depth during the lapping operation. In addition, the

jig provides a constant normal load on the wafer during the machining process. All wafers

used in the experiments are 3-inch< 1 1 1> silicon wafers.

Two different grades of silicon carbide powders, F-400 and F-600, were used in the

experiments. The median sizes of F-400 and F-600 powders are17.3 µm and 9.3 µm,

respectively1 . Table 5.1 shows the FEPAGrading Chart of these two abrasive grits. De-

ionized (DI) water was chosen as the carrier fluid. In order tostudy the different distribution

1 According to different measurement, there are different results for the distribution of abrasive grits [48].
In this study, we follow the FEPA grading chart.
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Table 5.1: FEPA Grading Chart of F-400 and F-600 SiC powders (µm)

SiC powder D3% D50% D94%

Fepa F-400 32 17.3±1.5 8
Fepa F-600 19 9.3±1 3

of abrasives in slurry, the ratio of the weight of abrasives to the weight of carrier fluid,C,

was kept at a constant value of0.154. Five different ratios of the weight of F-400 powder,

W400, to the total weight of abrasives,Wtotal, were employed in the experiments to study

the effect of different distribution of abrasives in lapping process. The ratios areW400

Wtotal
= 0,

1
4
, 1

2
, 3

4
, and1.

During the experiments, the angular velocity of the cast iron lapping plate was kept

at 70 RPM. The material removal depth and the angular velocity of the jig were recorded

every five minutes. Every experiment lasted for30 minutes. Two different loadings,2.3 and

4.1 kg (5 and9 pounds), were applied on the jig. Therefore, there were a total 10 different

settings, five distribution of abrasives by two loadings. Six experiments were conducted

under each setting of parameters.

After lapping, the wafer was cleaned by de-ionized water, and the wax was melted

to remove silicon wafer from the glass plate. Surface morphology was examined with a

Keyence optical microscope, and the surface roughness was measured with a XP2 diamond

probe profilometer at eight randomly selected locations. Each scan of surface roughness is

2 mm in length, which is much larger than the size of fracture on the wafer surface.

5.3 Results and Analysis

5.3.1 Material removal depth

The reduction of the thickness of wafer during lapping process was measured in

real-time by the dial gauge every five minutes, in order to record the history of the material

removal rate under different loadings and distribution of abrasive grits. Figure 5.2 plots the
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Figure 5.2: Depth of the material removal with (a) 2.3-kg and(b) 4.1-kg loadings in lap-
ping.

results of experiments.

There are two important observations in the two figures. First, when W400

Wtotal
= 0.5, it

has the highest material removal rate regardless of the loading being2.3 or 4.1 kg. When

W400

Wtotal
= 0, with only the F-600 grits in the slurry, the material removal rate is always the

lowest. The other three distribution ratios of abrasives have similar material removal rates.

However, the material removal rate with50% mixing ratio at the loading of4.1 kg is not

more prominent than the others compared with the case with the loading of2.3 kg. The

contrast can be observed from Figure 5.2. Furthermore, the material removal rate is always

higher under4.1 kg loading with the same mixing ratio of abrasive grits, as expected.

5.3.2 Angular velocity of the jig

The angular velocity of the jig is a passive parameter of the lapping experiments and

can not be controlled independent of the speed of the lappingplate. The results were also

recorded every five minutes during the experiments and plotted in Figure 5.3 to show the

history of the angular speed of the jig.

The figures show that the angular velocities of the jig vary within a small range. The
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Figure 5.3: Angular velocity of jig with the (a) 2.3-kg and (b) 4.1-kg loadings during
lapping.
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jig has higher angular velocity under the lower loading of2.3 kg than that under the higher

loading. This means that the relative angular velocity between the jig and the lapping plate,

which has a constant angular velocity of70 RPM during the experiments, is lower at the

2.3 kg loading. However, there is no significant correlation between the angular velocity of

the jig and the other parameters, such as material removal rate or surface roughness.

5.3.3 Surface roughness

One purpose of lapping is to flatten the wafer after slicing for better surface quality.

Although the chemical-mechanical polishing is the final process to achieve the mirror-like

wafer surface finish, the surface topography after lapping is very important. Figure 5.4

shows the average root-mean-square (RMS) surface roughness after lapping, measured by

the XP2 profilometer with a diamond probe. The figure shows that the surface roughness

does not correlate significantly to the increase of loading,as presented in the literature [12,

80]. However, the different ratios of the mixed abrasive grits result in different surface

roughness, with the half-half mixed abrasive slurry havingthe highest surface roughness

under the same loading.

Comparing to Figure 5.2, we found that the higher material removal rate in the ma-
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chining operation usually is accompanied by a higher surface roughness. This is intuitive.

The results here illustrate that the change of the distribution of abrasive grits will affect the

performance of material removal rate and the surface roughness.

5.3.4 Surface morphology

The surfaces of lapped wafers were examined by optical microscope. All surfaces

show the typical surface morphology of lapped wafers. Features and evidence of fractures,

cracks, indentation marks, and scratches can be seen on the lapped surface under the mi-

croscope. These surface features show the complicated machining mechanisms to shape

the surface. Figure 5.5 shows typical surface morphology ofsilicon wafers under different

setting of parameters conducted in experiments in this study.

5.4 Surface Roughness Model for Mixed Abrasive

Lapping2

The roughness resulting from the mixed abrasive lapping process is modeled by the

roughness contribution resulting from each abrasive powder in the mixed distribution. This

is accomplished by a rule of mixtures of the mass percentage of each abrasive constituent

in the slurry. By modeling the roughness in this manner, eachabrasive particle size can be

considered separately, though the contact interaction effect of each particle size on the other

will be considered within individual models. Take the roughness generated by the F-400

and F-600 abrasives on the silicon substrate asR400
s andR600

s , respectively, then combining

in a rule of mixtures yields the relationship for the total silicon substrate roughness,

Rs = χR400
s + (1 − χ)R600

s (5.1)

where the weight percent ratio isχ = W400/(W400 +W600).

2 This section is contributed by Professor Chad S. Korach [26]in the Department of Mechanical Engi-
neering, State University of New York at Stony Brook.
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Figure 5.5: Typical surface morphology of lapped wafer surface. The scale bar is20 µm.
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To model the roughness of the lapping process, the mechanicsbetween abrasive par-

ticles and the silicon substrate are modeled where a constant load applied to a spherical

particle penetrates the surface. Abrasive removal of material is assumed as the dominate

material removal mechanism. The general equation for the roughness is based on the pen-

etration depth of an abrasive particle into the silicon substrate. The framework has been

presented by Brown et al. [10] and later by Cook [27], and has been applied to glass polish-

ing, superpolishing of metals, and ductile grinding of brittle materials. Here, we extend the

model framework to consider mixed abrasive distribution effects on the resulting substrate

roughness from mixed abrasive lapping. If a concentration of k spherical abrasive particles

(with diameter ofφ) are in contact with a nominal pressure per particle (p), the roughness

for a specific distribution (Ri
s) is represented by the surface penetration,

Ri
s =

3φ

4

(

p

2kEr

)2/3

(5.2)

wherep is the nominal pressure of the wafer-platen interface and isdetermined by dividing

the applied load by the nominal wafer area (76.2 mm diameter wafer), andi indicates the

abrasive powder (either F-400 or F-600). The reduced modulus of the contact (Er) is given

by
1

Er
=

1 − ν2
p

Ep
+

1 − ν2
s

Es
(5.3)

whereEs is the Si(111) substrate elastic modulus (=190 GPa) with Poisson ratio ofνs =

0.26, and the abrasive particle, SiC, elastic modulus isEp = 415 GPa, with νp = 0.16.

These values yield a reduced modulus of the contact ofEr = 138 GPa. Since the slurry is

a mixed abrasive slurry, each particle size will contributeto the overall contact and hence

roughness of the substrate. Equation (5.2) is applied to both particle sizes, F-400 and F-

600, taking into consideration the contributions separately. The diameters are taken as one

standard deviation from the mean,15.8 and10.3 µm for F-400 and F-600, respectively.

From Eq. (5.2), the contact is governed by the concentrationfactork, where ask becomes

small, the roughness increases, due to an increase in the perparticle contact load.
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The interaction between the F-400 and F-600 particles will affect the resulting indi-

vidual abrasive powder roughness on the silicon substrate.For a single abrasive case, the

general relationship in Eq. (5.2) shows that as particle concentration decreases there will be

a subsequent increase in roughness, due to the per particle load increase, which increases

surface penetration. The model predicts a singularity in roughness ask → 0, where in real-

ity there will be a geometric limit to the roughness based on the particle size and the contact

with the substrate and platen, which is one-half the particle diameter, orRs,limit = 0.5φ.

For the abrasive particles (either F-400 or F-600), this limit would occur atk = 5.86×10−8

for P = 40.1 N (4.1 kg), andk = 3.25×10−8 for P = 22.3 N (2.27 kg). Though, the limit-

ing value of roughness for the particle distributions is never reached for the mixed abrasive

cases, due to the pressure of the second particle distribution in the slurry. For the F-400

case there would be a contact interaction effect beginning at a critical concentration of the

F-600 particles, where large diameter particles present inthe F-600 distribution begin to

make contact. This phenomenon occurs up to a limit based on the F-600 particles reaching

full concentration and hence limiting the F-400 particle surface penetration. The penetra-

tion limit of the F-400 particles is determined by considering the maximum penetration of

the F-600 particles at full concentration in addition to thedifference between the F-400 and

F-600 particle radius, and is given by

R400
S |limit =

3φ600

4

(

p

2kmaxEr

)2/3

+
1

2
(φ400 − φ600) (5.4)

In the case of the F-600 particles, the resulting roughness is affected by the F-400 parti-

cle concentration, which as it increases will effectively replace the F-600 particle contacts,

limiting the F-600 particles to only the largest in the distribution to contribute to the pene-

tration.

The model for the F-400 roughness contribution during mixedabrasive lapping is

84



0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 5 10 15 20 25 30 35 

F-600 

F-400 

Abrasive Diameter (µm)

N
o

rm
a

liz
e

d
 P

a
rt

ic
le

 P
e

rc
e

n
ta

g
e

Figure 5.6: Normalized linear distributions for FEPA F-400and F-600 SiC powders, based
on data in Table 5.1. The slope of the F-600 powder from the mean size to the maximum
size is calculated as−0.1%/µm. The tail portion of the F-600 distribution from15.8µm to
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written as,

R400
s =

3φ400

4

(

p

2k400Er

)2/3

, k∗ ≤ k400 ≤ kmax (5.5)

R400
s =

3φeff
400

4

(

p

2(k400 + β)Er

)2/3

, 0 ≤ k400 ≤ k∗ (5.6)

The concentrationk∗ represents the critical point where F-600 particles of large enough

diameter will begin to contribute to the load bearing and is represented by,

k∗ = kmax · χ|%cr (5.7)

whereχ|%cr is a percentage based on the F-600 particle distribution shape (Fig. 5.6). As-

suming a normalized linear particle distribution with a maximum at9.3 µm and a value

of 19 µm at 3% of the distribution, the slope of this linear distribution in Fig. 5.6 between

these two points is found to be−0.1%/µm. A critical particle diameter (15.8 µm) is as-

sumed for the F-600 distribution, above which will contribute to the contact. This value is

based on the F-400 particle distribution, and is determinedby taking one standard deviation

from the F-400 distribution mean value, i.e.17.3 − 1.5 µm = 15.8 µm. When the number

of F-600 particles greater than15.8 µm is equivalent to10% (%cr) of the total number of

particle contacts (combined with the F-400 particles) a criticalχ|%cr can be determined by,

(1 − χ)α

(1 − χ)α + χ
= %cr (5.8)

whereχ can vary between0 and 1, andα is the ratio of the number of critical F-600

particles that could be in contact. The ratioα is determined by the slope above of the F-600

distribution and the intersection of the lower value of the F-400 distribution mean (15.8

µm) and the F-600 distribution, which occurs atα = 7.3%. The value of%cr = 10% is

an assumption and states that10% of the F-600 particles which have a diameter size larger

than15.8 µm will contribute to the contact. It was found that the result of χ|%cr within

the experimentally measured range of the mixing ratios had small variations in%cr around

10%. Equation (5.8) yields a value ofχ|%cr = 0.4. Thus, from Eq. (5.7),k∗ = 0.4kmax,

86



for the F-400 and F-600 mixed abrasive slurry. Between concentrationsk = 0 to k∗, the

R400
s values follow Eq. (5.6). Since the maximum penetration of the F-400 distribution is

given by Eq. (5.4), the roughness from the F-400 particle distribution will fall on a curve

betweenR400
s |limit andR400

s |k=k∗; the latter, which is the intercept with theR400
s model

betweenk∗ < k < kmax, can be determined by Eq. (5.5) whenk = k∗. Thus, the roughness

between0 < k < k∗ is bound by the physical particle size limitation of the average F-400

particle and the critical concentration where the F-600 particles begin to make a significant

contribution to the load bearing, affecting the F-600 penetration depth. TheR400
s model in

Eq. (5.6) is fit between these two points whereφeff
400 andβ are constants. Physically,φeff

400

represents the effective change in the particle diameter with the introduction of the F-600

particles, which will affect the penetration depth. The constant can be solved by

φeff
400 =

4

3
R400

s |limit

(

2βEr

p

)2/3

(5.9)

whereR400
s |limit is given by Eq. (5.4), andβ represents a shift in the concentration to take

into consideration the addition of the F-600 particles on the load bearing. The constantβ

can be computed by

β = 0.4kmax

[

R400
s |k∗

R400
s |limit

]3/2
(

1 −
[

R400
s |k∗

R400
s |limit

]3/2
)−1

(5.10)

which is a function of the maximum concentration factor (kmax) and the pressure,p. Com-

bining the model in Eqs. (5.4), (5.5), (5.6), (5.9), and (5.10) piecewise continuously, there

is a decrease in the F-400 roughness (R400
s ) from a maximum value atk400 = 0 to k∗ and

minimizing atkmax (Fig. 5.7). The decrease inR400
s with increasing concentrationk400

is expected; as the load per particle decreases, the particle penetration will then decrease.

The critical concentration value is generated due to the particle distribution overlap and

proximity of the average particle sizes. As the distribution overlap decreases to zero, i.e.

the distributions separate, the critical pointk∗ will move towardsk400 = 0. This is a direct

result of the reduced interaction between the larger F-600 particles and the F-400 distri-

bution penetration depth. In fact, when the distributions move closer, i.e. an increase in
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the overlap due to a small separation between the mean values, the maximum depth limit

(Eq. (5.4)) which occurs at the low concentrations of F-400 will decrease; thoughk∗ will

increase due to a larger distribution overlap.

The model for the F-600 roughness contribution during mixedabrasive lapping is

written as

R600
s =

3φeff
600

4

(

p

2kmaxEr

)2/3

, 0 ≤ k600 ≤ kmax (5.11)

wherek600 is the volume concentration of the F-600 particles. Here,φeff
600 is the effective

particle diameter of the F-600 distribution and physicallyrepresents the effective increase

in the particle size due to the introduction of F-400 load bearing particles. The particle

concentration is held constant atkmax, since ask600 decreases, the F-600 particles will be

replaced by the larger F-400 particles, keeping the concentration of particles in contact

approximately constant. The F-400 interaction effect on the particle diameter is modeled

to increase in a linear manner, thereforeφeff
600 is represented by

φeff
600 = (1 − χ)φ600 + χφ400 (5.12)

whereφeff
600 → φ400 as the percentage of F-400 increases, since the F-600 particles will

not be the dominate contacts ask600 → 0 and will effectively be limited by the F-400

particle size on the particle penetration depth, and hence roughness. ThusR600
s |k=0 →

R400
s |k=kmax

is a logical conclusion of the model (Fig. 5.7). The effect ofthe F-400 particle

interaction onR600
s will cause a decrease in the roughness parameter over the result of

R600
s , and provide an upper bound at the F-600 low concentrations.The F-600 distribution

roughness increases as the concentrationk600 decreases (Fig. 5.7) up to a limit from the

minimum value wherek600 = kmax. As the abrasive distributions become similar, i.e.

the overlap decreases,R600
s will have bounding values at high and low concentrations of

similar magnitude and become in essence constant or have an extremely shallow slope.

This represents the insensitivity the roughness of the smaller abrasive would have due to

domination by the larger abrasive in the load bearing contacts. Though, as the distribution

overlap decreases, an effect onR400
s as described above will occur simultaneously due to
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Table 5.2: Values of model parameters used to generate modelresults in Figure 5.9

Parameter Symbol Value
P = 2.3 kg P = 4.1 kg

F-400 Diameter (µm) φ400 15.8
F-600 Diameter (µm) φ600 10.3

Pressure (kPa) p 4.9 8.8
Reduced Modulus (GPa) Er 138
Maximum Concentration kmax 8.5 × 10−7 1.6 × 10−6

Interaction Critical Weight Ratio χ|%cr 0.4

the changes in abrasive distribution interaction. The two distributions become homogenous

as the particle diameters become similar.

The total roughness given by Eq. (5.1) follows a rule of mixtures based on the mass

percentage of the slurry particles for each distribution multiplied by the distribution rough-

ness modeled in Eqs. (5.5), (5.6), and (5.11). The rule of mixtures assumption provides

an approximate representation of the roughness, since it isdetermining an average over a

surface, similar to a roughness average calculation. The percent of active abrasive particles,

n, is defined byn = kmax/(C/(ρH2O/ρSiC)), whereC is the mass percent of abrasive in

the slurry, which was held constant at15.4%, andρSiC is the SiC powder density (= 3.16

g/cm3), and is the relationship used to calculatekmax. The active abrasive percentage is

taken as a model parameter which is fit to the experimental data. The percentage of active

abrasives is the only parameter which is variable to the experimental data and the shape of

the model curve is generated solely on the assumptions made and described in the model

formulation. Table 5.2 presents the necessary model parameter values to compute the re-

sults found in the following section.

5.5 Discussion

In the following sections, we study the relationship among the parameters of the

loading, material removal rate, and surface roughness. We found that the abrasive distri-
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Table 5.3: The average material removal rate (µm/min) under differing loadings and mix-
ing ratios

W400

Wtotal
= 0 0.25 0.50 0.75 1

2.3 kg (5 lbs) 1.072 2.544 3.317 2.256 2.300
4.1 kg (9 lbs) 2.072 5.133 5.422 4.950 5.028

bution has significant contribution to the outcomes of lapping operation, as shown in the

previous sections. In this section, the normal loading, material removal rate, and surface

roughness will be compared to each other with different abrasive mixing ratios. Results

of the surface roughness will be explained in the context of the mixed abrasive roughness

model.

5.5.1 Loading versus material removal rate

In Figure 5.2, the material removal depth of the wafers in lapping is nearly linear

with respect of time during the operation. Therefore, the average material removal rate

(MRR) is defined as the total removal depth divided by the operation time,30 minutes, as

listed in Table 5.3.

The results in Table 5.3 show that higher total loading will result in higher MRR,

and the larger abrasive grits will produce higher MRR, as expected. However, the highest

MRR happens at the50% mixing ratio of abrasive grits (Fig. 5.8). This is consistent with

the results presented in Bhavagat et. al [7], although the slurry concentrations were not

kept at constant for the mixed and single-sized abrasive slurry in that work. In addition,

the increase of material removal rate from the single largerabrasive to the50% mixed ratio

abrasive grits is44% at the loading of2.3 kg. However, this increase of material removal

rate is only7.8% at the higher loading of4.1 kg. This means that the mixed abrasive slurry

does not significantly affect the material removal rate under higher loadings. The reason

could be due to the breakage of abrasives being more severe athigher loading, resulting

in similar abrasive distribution during machining. However, compared to lower loading,
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Table 5.4: The average RMS surface roughness (µm) under differing loadings and mixing
ratios

W400

Wtotal
= 0 0.25 0.50 0.75 1

2.3 kg (5 lbs) 0.6313 0.9688 1.0646 0.7688 0.8318
4.1 kg (9 lbs) 0.5771 0.9729 0.9792 0.8688 0.8458

the higher loading always results in higher material removal rate with the same abrasive

mixing ratio.

5.5.2 Loading versus surface roughness

Table 5.4 shows the root-mean-square surface roughness value of the wafer surfaces

after lapping. From the results, we find that the surface roughness is not dependent on the

loading which has been discussed [12, 80]. Normally, abrasive grits with smaller mean size

produce a smoother surface, and larger abrasives produce a rougher surface finish. In the

case of mixed abrasive grits, however, it is obvious that the50% abrasive mixing ratio pro-

duces the surface with the highest roughness. In addition, the abrasive distribution affects

the surface roughness. Based on the observation from experiments, the surface roughness

of wafers lapped by the mixed abrasives is similar quantitatively to the roughness produced

by the slurry with single large abrasives. With higher loading at4.1 kg, the surface rough-

nesses with mixed abrasive ratios0.25, 0.5, and0.75 have less variation (see Figure 5.4),

as compared with the variation under lighter loading. This variation is also observed in the

material removal rates in Figure 5.8. Figure 5.9(b) shows a comparison between the model

curve (based on Eqs. (5.1), (5.5), (5.6), (5.11)) and the experimental roughness measured

for a load of4.1 kg. Here,n = 3.29 × 10−5 and is on a similar order to active particle

percentages found by other lapping models [16]. Starting ata low concentration of F-400

(and large concentration F-600) the model predicts a roughness which rises to a maxiumum

value at∼ 40%kmax and decreases at a lower rate to a roughness value associatedwith a

high concentration of F-400 and low concentration of F-600 particles. The peak occurs
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Figure 5.9: Plot of the mixed abrasive model and the experiemntally measured roughness
as a function of F-400 particle concentration for (a) 2.3-kgand (b) 4.1-kg cases.
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Table 5.5: The ratio between the material removal rate and the RMS surface roughness
(unit: 1/min)

W400

Wtotal
= 0 0.25 0.50 0.75 1

2.3 kg (5 lbs) 1.6981 2.6259 3.1157 2.9344 2.7651
4.1 kg (9 lbs) 3.5904 5.2760 5.5372 5.6975 5.9447

due to the individual distributions having the opposite effect on roughness as a function of

the concentration. As the normal load is changed, the roughness is found to have a small

increase (Fig. 5.9 (a)) for a decreasing load (from4.1 to 2.3 kg), resulting in a change in

the active abrasive percentage from3.29× 10−5 to 1.75× 10−5 after fitting with the exper-

imental data. The decrease in the active abrasives occurs due to fewer large particles in the

distribution becoming trapped between the platen and waferresulting in less particles ac-

tively contributing to roughness generation by sliding contact. With fewer active particles,

the load bearing on the active particles increases, which increases the particle penetration,

and hence the roughness parameter. The slurry with single small abrasives seems to have

much lower surface roughness comparing to those mixed with big abrasives.

5.5.3 Material removal rate versus surface roughness

Figure 5.8 shows material removal rate and surface roughness in the same figure at

different loadings, respectively. From the results of thisstudy, it is obvious that the mixed

abrasives with the ratio ofW400

Wtotal
= 0.5 has the highest material removal rate, and also with

the highest surface roughness. The slurry with only F-600 abrasive grits has the lowest

material removal rate, but the best surface quality. These two figures also show that higher

material removal rate comes with the consequence of higher surface roughness in the free

abrasive machining process under the same loading.

Table 5.5 shows the ratios of the material removal rate to theRMS surface roughness.

In this table, the single small abrasive slurry has the smallest ratio, as expected. The differ-

ence between all the others is under18%. It follows that the single smaller abrasive slurry,
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Table 5.6: The increases of material removal rate (MRR) and RMS surface roughness from
pure F-600 and F-400 to1 : 1 mixed abrasive slurries

MRR Roughness

2.3 kg F-600 v.s. Mixed(1 : 1) 209% 69%
F-400 v.s. Mixed 44% 28%

4.1 kg F-600 v.s. Mixed 62% 70%
F-400 v.s. Mixed 7.8% 15%

F-600, has a different ratio of MRR to surface roughness fromthe other mixed abrasive

slurries.

The material removal rate follows for the most part a Prestonian relationship [81],

where the MRR is proportional to the applied pressure, or load. What the Prestonian re-

lationship does not consider is the interaction of the mixedabrasive particle distributions.

Here, the MRR follows a near identical trend as was observed for the wafer surface rough-

ness after lapping. Choi et al. [20] observed similar changes in the MRR as a function

of particle size. Though those authors were only considering a single abrasive distribu-

tion, for increasing particle diameter a higher MRR was observed. This is effectively the

relationship observed in Fig. 5.8, where as a higher concentration of F-400 particles are

added, the MRR increases. The continued increase of the MRR,which begins to decrease

(Fig. 5.8a) or actually level-off (Fig. 5.8b) after the1 : 1 mixing ratio can be caused by

the initiation of rolling-sliding contact with an increasein the percent solids, i.e. particle

concentration [20]. The roughness model presented in this chapter predicts a larger number

of active abrasives for the higher load (4.1 kg) case, which will in turn create more contact

points for material removal to occur, leading to an increased MRR at higher loads.

The main objectives of wafer lapping is to remove the layer ofsubsurface damage

due to slicing and global planarization. It is of interest inthe lapping process to have large

MRR to save process time. Slight increase in surface roughness can be taken care of in

the subsequent polishing processes, as long as further subsurface damage is not introduced.

From Table 5.6, we found that MRR is increased with1 : 1 mixing ratio, especially for
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the 2.3 kg loading. This increase of MRR observed in experiments is explained by the

proposed model through the interation of abrasive grits of two different sizes.

Overall, the mixed abrasive slurry performs in a similar manner to the single larger

abrasive grit in both material removal and surface roughness. The slurry with the single

smaller abrasive, on the other hand, performs differently from the others, indicating that

any addition of F-400 particles will alter the material removal rate. Furthermore, the1 : 1

mixing ratio removed more material, but resulted in a slightly higher surface roughness,

due to interaction between two grades of abrasive grits.

5.6 Summary

In this study, two different sizes of abrasive grits, F-400 and F-600, are mixed in

five different ratios to conduct an experimental study of theuse of mixed abrasive slurry in

lapping processes. The results show that the mixed abrasives with the ratio of W400

Wtotal
= 0.5

has the highest material removal rate, accompanied by a slightly higher surface roughness.

Higher loading always results in higher material removal rate regardless of the abrasive

mixing ratios following a Prestonian relationship for material removal. However, the sur-

face roughness does not correlate to the normal loading in a significant way. Although

the reduction of surface roughness is one of the main purposes in lapping, the removal of

subsurface damage is also important by quickly and efficiently taking down the layer of

material with certain subsurface depth. The results in thisstudy show a potential way of

increasing the material removal rate for the coarse lappingprocess.

Although higher material removal rate usually comes at a cost of larger wafer surface

roughness, when lapping at the same load, we have identified away to increase MRR in

lapping by1 : 1 mixing ratio of two grades of abrasive grits without extensively affecting

the surface finish. The surface roughness and material removal rate were found to be de-

pendent on the mixed abrasive grits. The interaction of different sizes of abrasive result in

the surface roughness and material removal achieving maximums at the1 : 1 mixing ratio.
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The interaction effect was integrated into a contact-basedmodel that was able to explain

the trends as a function of mixing ratios and applied load.

Lapping is a complicated machining process. Although much research has been con-

ducted to understand the mechanisms of machining, many factors such as abrasive size ef-

fect and mixed distributions remain unknown [57] in the lapping process, and will be topics

of future study. Nevertheless, it is observed from the results presented in this chapter that

the change of distribution of abrasive grits will influence the material removal rate, surface

roughness, and relative angular velocity between the jig and rotating lapping platform.

98



Chapter 6

Wafer Surface Polishing by Carbon Nanotube Brush

The purpose of the study in this chapter is to study the feasibility of surface polishing

of brittle materials by carbon nanotube (CNT) brush. Preliminary experiments were con-

ducted. Silicon and Lithium Niobate were both machined and observed under SEM and

AFM after machining. Although the experiments were preliminary, the results provide a

potential prototype of CNT-brushing on brittle materials and show the potential of this kind

of tool.

6.1 Ductile-Regime Machining

During the machining of brittle materials, it is well accepted that the model of sub-

surface cracks caused by abrasive indentation, which was first proposed by Lawn [52], is

the major reason of material removal [11, 12, 16]. Nonetheless, research showed that brittle

materials can change its phase under high pressure, which iscalled High Pressure Phase

Transformation (HPPT) [35]. Accordingly, it is possible tomachine brittle materials under

ductile regime with small depth of cut [9, 15]. In this situation, the relatively brittle mate-

rials can be machined like ductile materials and subject to ductile machining by shear. To

investigate this phenomenon, a lot of research has been doneduring the last 20 years [72].

Different brittle materials, such as silicon [69, 73, 86, 102], silicon nitride [51], and silicon

carbide [74, 75], were studied. Most of these studies were done by a single-point diamond
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turning (SPDT) tool, which is an effective cutting tool for the ductile-regime machining

of brittle material. However, an obvious disadvantage of this tool is that it will take an

enormous amount of time to machine a large surface area such as silicon wafers. There-

fore, the idea of using CNT brush as cutting tool is investigated as an alternative for ductile

machining of wafer surface.

6.2 Experimental Setup

6.2.1 Fabrication of CNT brush

There are three main methods to grow CNTs: (i) arc discharge,(ii) laser ablation,

and (iii) chemical vapor deposition (CVD) techniques. CVD is the only method to produce

large CNT forest. The CNT forests used in this experiment aremade by the CVD method.

Figure 6.1 illustrates the fabrication process of CNT brush. CNT forest was trans-

fered from the original silicon substrate surface to the base of the tool which can be silicon

wafer or steel. Epoxy glue was chosen as adhesive because it would not shrink after being

dried, and will not cause the CNT forest to deform. Figure 6.2shows the size of a CNT

brush compared to a penny.

6.2.2 Experimental devices

Two devices were used for the experiments. The first one is a combination of a

single-axis moving platform and a jig which can control the depth of cut up to 10µm, as

showed in Figure 6.3. Workpiece is mounted on the platform while the CNT brush is on

the jig. The cutting speed is managed by hand. In order to measure the initial contact of

CNT brush and the workpiece surface, a thin layer of gold was deposited on the surface of

the workpiece. Since carbon nanotube is conductive, a close-loop circuit would be formed

when the CNT makes contact with the layer of gold on the surface of the wafer. The depth

of cut will be controlled manually from the point of initial contact.
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Figure 6.1: Fabrication of CNT brush by growing vertically aligned CNTs.
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(b)

Figure 6.2: CNT brush compared to a penny
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In order to achieve the smaller depth of cut, an Atomic ForcedMicroscope (AFM)

was modified to conduct the experiment, as showed in Figure 6.4. The step of this AFM

in z-direction (vertical direction) can be as precise as 400nm. An acrylic jig was designed

to replace the original delicate component in the AFM. A harddisk drive was used as the

platform on which the workpiece was mounted by wax. The angular speed of the hard

disk is 4500 rpm. The cutting speed can be calculated by the distance from machining

position to the center of the spindle axis of the hard disk. Inorder to avoid the initial

contact problem, the depth of cut was increased gradually during the machining process.

6.3 Results of Experiments

In the following sections, the results of experiments usingdifferent wafer substrates

are discussed.

6.3.1 Polished silicon wafer

The polished silicon was brushed by the tool shown in Figure 6.3. Because the plat-

form was controlled by hand, the cutting speed was roughly 0.5 ∼ 1 m/s. Scratches were

found when the depth of cut was over 50µm, which was much larger than the ductile-

regime machining conducted by SPDT. These may be due to the buckling deformation of

CNT forest, and the alignment of CNT forest during machiningshown in Figure 6.5. Fig-

ures 6.6 and 6.7 show the wafer surface after machining. Experiments were also conducted

under the modified AFM machine. However, there was no obviousmachined mark on the

workpiece.

6.3.2 Lapped silicon wafer

In order to control the depth of cut more precisely, the modified AFM was used to

machine a lapped silicon wafer. The preliminary experimentshowed no tool marks on the
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Figure 6.3: Manual operating single-axis platform
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Hard Disk M5 AFM Jig
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Figure 6.4: Modified AFM as machining device.
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CNT Brush

Workpiece

Figure 6.5: CNT forest deformation during machining.

Figure 6.6: Polished silicon wafer surface after CNT brushing, observed by an optical
microscope.
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Figure 6.7: Polished silicon wafer surface after CNT brushing, observed by an atomic force
microscope.
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Figure 6.8: Lapped silicon wafer surface after CNT brushing.

workpiece surface, but only the residual carbon nanotubes.Figure 6.8 shows the residual

of CNTs. Figure 6.9 shows the observation under a Scanning Electron Microscope (SEM).

6.3.3 Lithium niobate

Lithium Niobate is a brittle material used in opto-electronic device fabrication. It

is softer than silicon, and is expected to be easier for machining. Modified AFM was

utilized to machine Lithium Niobate with CNT brush. The cutting speed was in the range

of 1.5∼ 3m/s. The depth of cut was increased by a total of 100∼ 200µm in 5 seconds

during machining. After machining, there were residual CNTs on the workpiece surface.

However, the tool marks can be clearly observed after cleaning the workpiece by ultrasonic

cleaner, as shown in Figure 6.10. Figures 6.11 and 6.12 show the machined and original

surface under AFM, respectively. The tool marks also can be easily distinguished.

6.4 Discussions

Ductile machining is a process of material removal without causing subsurface cracks.

From the experimental results in the previous sections, it seems that the CNT brush can be

used for ductile machining. However, there are some concerns here. First, the tool mark
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Figure 6.9: Lapped silicon wafer surface after CNT brushing, observed by SEM.

Figure 6.10: Lithium Niobate surface after CNT brushing, observed by an optical micro-
scope.
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Figure 6.11: The tool marks on the Lithium Niobate surface after CNT brushing, observed
by AFM.

Figure 6.12: The original Lithium Niobate surface, observed by AFM.
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shows the evidence of machining, but it can not be confirmed that if the material is in-

deed removed or just deformed. Secondly, the residual CNTs after machining may be an

issue for the environment. Third, the existence or lacks of subsurface damages need to be

examined.

The CNT brush was also observed after the machining process.The CNT brush was

found to buckle and deform during the machining. That can be areason why the higher

depth of cut is necessary to machine the material than that inthe Single Point Diamond

Turning, which accomplishes ductile-regime machining under 1µm. Figure 6.13 shows

the wrinkle and buckling of CNT brush after machining.

There were suspected chips due to ductile machining observed on the CNT brush sur-

face as shown in Figure 6.14. These “chips” need to be confirmed by the Energy-Dispersive

X-ray Spectroscopy (EDX or EDS).

6.5 Summary

In this chapter, preliminary experiments of ductile machining using CNT brushes on

brittle materials are presented. The results show the potential of polishing brittle material

surface by CNT brush, especially for Lithium Niobate. Ductile-regime machining needs

a very high-precision operation, including machining parameters such as the depth of cut,

cutting velocity, and rake angle. To further study the feasibility of ductile machining on the

surface of silicon wafers, more experiments with precise machine tools are necessary.
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Figure 6.13: Wrinkle on CNT forest after machining

Figure 6.14: Suspected Lithium Niobate chip on the surface of a CNT brush
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Chapter 7

Conclusions and Future Work

In this dissertation, wafer manufacturing processes were studied. The research topics

include vibration response of the wire in slurry wiresaw system, effect of mixed abrasive

grits in lapping process, and wafer surface finishing by carbon nanotube brush. Based on

the topics, the conclusions and future work will be given in the following.

7.1 Vibration Response of the Wire in Slurry Wire-

saw System

7.1.1 Conclusion

The closed-form solutions of free and forced vibration responses of damped axially

moving wire have been solved in Chapter 2 and Chapter 4, respectively. The free vibration

response was obtained by the classical modal analysis. The corresponding eigenvalues,

eigenfunctions, and orthogonality were also derived. The analysis of the damped behavior

was presented in Chapter 3. The damping ratios,ζω andζθ, and damping index,s, were

defined. The results also showed that the increase of wire speed will increase the damping

ratio, which is called ”apparent damping effect”. The mode shapes were affected by the

wire speeds. The imaginary parts of the mode shapes are excited with the increase of wire

speed. A brief estimation of the damping factor in slurry wiresaw system was provided, as

well as the corresponding analysis with respect to realistic and relevant parameters.
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Because of the non-self-adjoint property, the forced vibration response has to be

solved by Green’s function, as presented in Chapter 4. The poles of the Green’s function in

the s-domain of Laplace transform are actually the eigenvalues, and the results show that

the Green’s function is a combination of the eigenfunctionsand adjoint eigenfunctions. By

the method of the standard form, the free vibration responsecan also be derived by using

the Green’s function. The results showed agreement with those in Chapter 2. With the

solution of forced vibration response, the frequency response with a point excitation is also

obtained.

7.1.2 Future work

In this dissertation, the research of slurry wiresaw systemfocused on the theoretical

study on the vibration responses of the wire. However, a practical application to improve

the wiresaw performance is the main purpose of this study. Based on the research results

presented, the following future work is proposed:

• Active and passive control of damped axially moving wire

• Effect of vibration on the surface and subsurface quality

7.1.2.1 Active and passive control of damped axially movingwire

The Laplace transform of the Green’s function is actually the transfer function, which

is utilized in the feedback control under s-domain [13]. Theadvantage of using the Green’s

function is that the closed-form solution includes all the modes, and the method of approx-

imation or truncation is not necessary. In addition, with point sensing and point actuation,

as shown in Figure 7.1, the feedback control law can be achieved [13]. In Figure 7.1,

G(x, ξ, s) is the transfer function (Laplace transform of the Green’s function) of the sys-

tem, f̄(x, s) is the input,ū(x, s) is the output,a is the position of the sensor,b is the

position of the actuator, andK(s) is the feedback control law which needs to be designed.
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The transfer functionW (x, ξ, s) of the closed control system is

W (x, ξ, s) = G(x, ξ, s) +
G(x, b, s)G(a, ξ, s)K(x)

1 −G(a, b, s)K(s)

Yang and Mote applied the Green’s function on the control of axially moving string

without damping [103–105]. However, the modern optimal or robust control theory should

be able to be employed to design a more appropriate control law. In addition, a passive

control was developed by employing journal bearing for axially moving string [90, 91].

All of these approaches can be considered to reduced the vibration response of the wire in

slurry wiresaw systems.

7.1.2.2 The effect of vibration on the surface and subsurface quality

During slicing process, the motion of the wire drives the free abrasive grits to move

and to impact against the workpiece, as shown in Figure 7.2. The damage in transverse

direction is necessary to slice the ingot. However, the damage in lateral direction will

result in undesirable surface roughness and subsurface damage. In addition, wiresawing

introduces other surface topography such as wire marks and waviness which were not found

in conventional ID saw. Therefore, the dynamics of the wire motion could have potential

influence on the the surface and subsurface quality.

Research shows that the vibration amplitude of the wire of modern slurry wiresaw

can be up to 50µm with no slurry and no workpiece [62]. The oscillation is due to the

geometric tolerance of the roller grooves and other disturbances. In an actual slicing oper-

ation, the energy of vibration is expected to result in damages on the wafer surface when

the wire travels in the cutting tunnel. The dynamics ofintermittent motion has been stud-

ied for oilwell drillstrings [21, 108–110] and mechanical joints with clearances [30, 31, 50].

Further study is required for modern wiresaw system.

114



+ G(x,ξ,s)

δ(ξ-a)δ(x-b)

K(s)

u(x,s)f(x,s)

+

Regulator

Plant

f(x,s)

u(x,s)
x=a

x=b

Figure 7.1: Feedback control of distributed system with point sensing and point actua-
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Figure 7.2: Schematic of wire and free abrasives in slurry wiresaw system
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7.2 Effect of Mixed Abrasive Grits in Lapping Pro-

cess

7.2.1 Conclusion

In this study, two different sizes of abrasive grits, F-400 and F-600, were mixed in

five different ratios to conduct an experimental study for the use of mixed abrasive slurry in

lapping process. The results show that the1 : 1 mixing ratio of abrasive grits has the highest

material removal rate, accompanied by a slightly higher surface roughness. Higher loading

always results in higher material removal rate regardless of the abrasive mixing ratios,

following a Prestonian relationship for material removal.However, the surface roughness

does not correlate with the normal loading in a significant way. The interaction effect was

integrated into a contact-based model that was able to explain the trends as a function of

mixing ratios and applied loads.

Although the reduction of surface roughness is one of the main purposes in lapping,

the removal of subsurface damage is also important by quickly and efficiently taking down

the layer of material with certain subsurface depth. The results in this study show a potential

way of increasing the material removal rate for the coarse (first) lapping process, before the

fine (finishing) lapping process.

7.2.2 Future work

The study of mixed abrasive effect shows interesting results; however, it also aroused

more questions in the free abrasive machining process and tribology. In Chapter 5, the mean

sizes of F-400 and F-600 SiC grits are about the ratio of2 : 1 (17.3µm to 9.3µm). It will

be interesting to investigate mixing of grit sizes with different ratios of their mean sizes. On

the other hand, it is expected that the surface morphology would be more homogeneous if

the deviation of the size distribution is limited. Another interesting research can be mixing

two different kinds of abrasive grits such as Boron Carbide and Silicon Carbide. Boron

116



Carbide is an expensive material, which are utilized for machining harder material such as

sapphire. If the mixed abrasives could have similar performance as single Boron Carbide

abrasives, the machining cost will be reduced.

The subsurface damage is another issue which was not discussed in this dissertation.

The subsurface damages can affect the yield of the end products. Therefore, a good flat-

tening process should be able to reduce the layer of subsurface damages introduced by the

slicing process. Either lapping or grinding can introduce the subsurface damages. How-

ever, these damages should not exceed those from slicing process, and will be removed by

polishing.

7.3 Wafer Surface Finishing by Carbon Nanotube

Brush

7.3.1 Conclusion

The utilization of CNT brush on finishing wafer surface was studied and presented in

Chapter 6. The results show promising method to perform ductile machining on brittle ma-

terials using the CNT brush. However, more experiments and modeling are required, along

with better machine tool and CNT brush design, in order to further study this technique.

7.3.2 Future work

Based on the results presented in Chapter 6, further improvement of the experimental

process and machine is required to obtain better outcomes. The following consideration is

necessary.

(1) Increase the stiffness of CNT brushes to conduct experimental study

of their effectiveness.

(2) Design a better and more accurate machine tool.
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Appendix A

Derivation of the Coefficients in Equations (2.46) and

(2.47) in Free Vibration Response

As other distributed systems, the free vibration response can be obtained according

to the orthogonality and initial conditions. Recall equation (2.27)

u(x, t) =
∞
∑

n=1

[

D1nψ1n(x)eλ1nt +D2nψ2n(x)eλ2nt
]

and the orthogonal relationship (2.42)

(

η2

4
+ ωnωm

)

Mmn − η

2
Cmn +Kmn = δmnR (A.1)

If the initial displacement of the wire isa(x) and the initial velocity isb(x), we have

u(x, 0) =
∞
∑

n=1

[D1nψ1n(x) +D2nψ2n(x)] = a(x) (A.2)

ut(x, 0) =
∞
∑

n=1

[

D1n

(

−η
2

+ iω1n

)

ψ1n(x) +D2n

(

−η
2

+ iω2n

)

ψ2n(x)
]

= b(x) (A.3)

Applying the differential operatorK in equation (2.15) to equation (A.2), then multiplying

by ψ∗
1m and integrating from0 to 1, we can obtain

∞
∑

n=1

[

D1n

∫ 1

0

ψ∗
1mK [ψ1n] dx+D2n

∫ 1

0

ψ∗
1mK [ψ2n] dx

]

=

∫ 1

0

ψ∗
1mK [a(x)] dx

which can be represented as

∞
∑

n=1

[D1nK1m1n +D2nK1m2n] =

∫ 1

0

ψ∗
1mK [a(x)] dx (A.4)
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The same representation can be obtained for differential operatorsM andC, as follows

∞
∑

n=1

[D1nM1m1n +D2nM1m2n] =

∫ 1

0

ψ∗
1mM [a(x)] dx (A.5)

∞
∑

n=1

[D1nC1m1n +D2nC1m2n] =

∫ 1

0

ψ∗
1mC [a(x)] dx (A.6)

Next, we apply differential operatorM to equation (A.3), then multiply byψ∗
1m and inte-

grate from0 to 1 to obtain

∞
∑

n=1

[

D1n

(

−η
2

+ iω1n

)

M1m1n +D2n

(

−η
2

+ iω2n

)

M1m2n

]

=

∫ 1

0

ψ∗
1mM [b(x)] dx

(A.7)

Multiply equation (A.5) byη
2

and add to equation (A.7), and then premultiplied both sides

of the equal sign by(−iω1m) to obtain

∞
∑

n=1

[D1nω1mω1nM1m1n +D2nω1mω2nM1m2n]

= − iω1m

(
∫ 1

0

ψ∗
1mM [b(x)] dx+

η

2

∫ 1

0

ψ∗
1mM [a(x)] dx

)

(A.8)

In order to solve for the coefficients, the above equations have to be reorganized

to meet the orthogonal relationship (A.1). Therefore, we multiply equation (A.5) byη2

4
,

multiply equation (A.6) by−η
2
, and add them up with equations (A.4) and (A.8) to obtain

∞
∑

n=1

{

D1n

[(

η2

4
+ ω1mω1n

)

M1m1n − η

2
C1m1n +K1m1n

]

+D2n

[(

η2

4
+ ω1mω2n

)

M1m2n − η

2
C1m2n +K1m2n

]

}

=
η2

4

∫ 1

0

ψ∗
1mM [a(x)] dx− iω1m

(
∫ 1

0

ψ∗
1mM [b(x)] dx+

η

2

∫ 1

0

ψ∗
1mM [a(x)] dx

)

− η

2

∫ 1

0

ψ∗
1mC [a(x)] dx+

∫ 1

0

ψ∗
1mK [a(x)] dx (A.9)

Assume1m = 1n. According to the orthogonal relationship (A.1), the coefficient

D2n will disappear because1n 6= 2n. The coefficientD1n can be obtained as in equation

128



(2.46).

D1n =

(

η2

4

∫ 1

0

ψ∗
1nM [a(x)] dx− iω1n

(
∫ 1

0

ψ∗
1nM [b(x)] dx+

η

2

∫ 1

0

ψ∗
1nM [a(x)] dx

)

−η
2

∫ 1

0

ψ∗
1nC [a(x)] dx+

∫ 1

0

ψ∗
1nK [a(x)] dx

)/

R (2.46)

whereR = n2π2 (1 − v2)− η2

4
is defined in Section 2.4. The termD2n can be solved using

the same strategy,

D2n =

(

η2

4

∫ 1

0

ψ∗
2nM [a(x)] dx− iω2n

(
∫ 1

0

ψ∗
2nM [b(x)] dx+

η

2

∫ 1

0

ψ∗
2nM [a(x)] dx

)

−η
2

∫ 1

0

ψ∗
2nC [a(x)] dx+

∫ 1

0

ψ∗
2nK [a(x)] dx

)/

R (2.47)
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Appendix B

Closed-Form Solution of Equation (4.26)

in the following

Recall equation (4.26) in Section 4.3.

u(x, t) = −0.01

∫ 1

0

gτ (x, ξ, t, 0) sinπξdξ+0.01

∫ 1

0

g(x, ξ, t, 0) (2vπ cosπξ + η sin πξ) dξ

The integral result of equation (4.26) is presented in this appendix as follows.

u(x, t) =
∞
∑

n=1

un(x, t) =
∞
∑

n=1

2nπ2(1 − v2)e−
η
2
t

ωn

Nn

Dn

where

Nn =
[(

γnη +
(

γnη cos (γn) + 2
(

π2v − π2n2v + vγ2
n + γnωn

)

sin (γn)
)

cos (nπ)
)

cos (γnx+ ωnt)

−
(

2
(

π2v − π2n2v + vγ2
n + γnωn

)

+
(

2
(

π2v − π2n2v + vγ2
n + γnωn

)

cos (γn)

−γnη sin (γn)) cos (nπ)) sin (γnx+ ωnt)] sin (nπx)

and

Dn = π4 − 2n2π4 + n4π4 − 2π2γ2
n − 2n2π2γ2

n + γ4
n

The symbolγn = vωn

1−v2 , andωn is the frequency of vibration which is defined as

ωn =

√

[4n2π2(1 − v2) − η2] (1 − v2)

2
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Appendix C

Nomenclature for Chapters 2, 3, and 4

a(x) Initial displacement of the wire

A,B,D,EVarious coefficients in the derivation of vibration response

b(x) Initial transverse velocity of the wire

C Damping differential operator,C = η

D Differential operator

D∗ Adjoint differential operator corresponding toD

f Nondimensional external excitation

fB Standardizing function with respect to the boundary conditions

fI Standardizing function with respect to the initial conditions

F Dimensional external excitation, which has the unit ofN m−1

Fd Damping force, the product of damping factor and velocity ofthe wire

g(x, ξ, t, τ)The Green’s function

G Gyroscopic differential operator, whereG = 2v ∂
∂x

G(x, ξ, s) Laplace transform of the Green’s function

H Circulatory differential operator, whereH = ηv ∂
∂x

K Stiffness differential operator, whereK = −(1 − v2) ∂2

∂x2

L The length of the wire, which has the unit ofm

L Lapalce transform

L−1 Inverse Lapalce transform

131



M Inertial differential operator, whereM = I

P Tension of the wire, which has unitN

R Value defined in equations (2.42), (2.43), and (2.44)

s Damping index, defined in equation (3.2)

t Nondimensional time

T Time, which has the unit ofs (second)

u(x, t) Nondimensional response of free vibration of damped axially moving wire

un(x, t) Thenth component of response,u(x, t)

U(X, T ) Transverse displacement, also the response of free vibration of damped axially

moving wire

v Nondimensionalized axial speed of the wire

V Dimensional axial speed of the wire, which has the unit ofm s−1

x Nondimensionalized horizontal axis

X Horizontal axis

Z(x, a, ω) Frequency response with a point excitation at positiona

ζω Damping ratio defined by the frequency of vibration

ζθ Damping ratio defined by the complex eigenvalues

η Nondimensionalized damping factor

ηd Damping factor, which has the unit ofN s m−2

λ1n Eigenvalues, which will be
(

−η
2

+ iω1n

)

when it is complex

λ2n Conjugate eigenvalues, which will be
(

−η
2

+ iω2n

)

when it is complex

ρ The mass density per length of the wire, which has the unit ofkg m−1

ψ(x) Eigenfunction as defined in equations (2.16), (2.18), and (2.20)

ψ1n(x) Eigenfunctions corresponding toλ1n

ψ∗
1n(x) Adjoint eigenfunctions corresponding toψ1n(x)

ψ2n(x) Eigenfunctions corresponding toλ2n

ψ∗
2n(x) Adjoint eigenfunctions corresponding toψ2n(x)
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ψ̄∗
m Complex conjugate of adjoint eigenfunctionψ∗

m

ωd,n Frequency of damped vibration response corresponding to the nth component

of response,un(x, t)

ω1n Frequency associated withλ1n, equal toωd,n

ω2n Frequency associated withλ2n, equal to−ωd,n
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Appendix D

Nomenclature for Chapter 5

Rs Total surface roughness

R400
s Roughness due to F-600 particle distribution

R600
s Roughness due to F-400 particle distribution

χ Weight percent ratio of F-400

φ Particle diameter

p Nominal pressure per particle

k Concentration of particles in contact

kmax Maximum particle concentration factor

Er Reduced modulus

Rs,limit Geometric limit to roughness

R400
s |limit Penetration depth limit of F-400 particles

φ400 Diameter of F-400 particles

φ600 Diameter of F-600 particles

φeff
400 Effective diameter parameter of F-400 particles

φeff
600 Effective diameter parameter of F-600 particles

β Shift in F-400 particle concentration

k400 Concentration of the F-400 particles

k600 Concentration of the F-600 particles

k∗ Critical concentration of F-600 particles inR400
s

134



χ|%cr Weight percent ratio of F-400 at a given particle percentagerelated to interaction

effect

%cr Ratio of F-600 particles forφ600 > 15.8 µm to the total number of particles in

contact

α Ratio of the number of critical F-600 particles which could be in contact

n Percentage of load-bearing abrasive particles

135




