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Abstract of the Dissertation 

Statistical Models for SNP Detection 

by 

Shengnan Cai 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 
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Stony Brook University   

2010 

 

Variations in DNA sequences of humans have a strong association with many 

diseases. Single Nucleotide Polymorphism (SNP) is the most common type of 

DNA variations. Our research is to detect SNPs from the data generated by 

Polymerase Chain Reaction (PCR) and next generation sequencing methods. In 

the first part of the study, we had a relatively small data set with fewer known 

SNPs as the training data. We developed a classification model based on the cross 

validation method. From the first part of the research, we gained knowledge of the 

properties of the data. In the next phase, we obtained a much larger data set with a 

much larger group of known SNPs. We developed eight measures for every 

genetic position with these data. Using these eight measures as the predictor 

variables, we applied several classification methods such as Random Forest (RF), 

Support Vector Machines (SVM), Single Decision Tree (ST) and Logistic 
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Regression (LR); then used cross validation to evaluate these classification 

methods. By comparing the predictive accuracy, sensitivity and specificity, we 

found the best performing model for the data. To compare the performances of 

these models while the number of observations for each genetic position (cover 

depth) is small, we randomly drew out subsets from the whole data and applied 

these classification models. Variable selection is also used to our study. The result 

shows, SVM using the selected variables has a significant higher average 

accuracy than the other methods in general, but RF using the selected variables 

performs the best when the cover depth is as small as 20. 
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Chapter 1 

Background 

1.1 SNPs and Traditional Approaches to Detect  

SNPs 

The genetic sequences of different people are remarkably similar. When the 

chromosomes of two humans are compared, their DNA sequences can be identical 

for thousands of bases. But at about one in every 1,000 bases, on average, the 

sequences will differ (Cooper et al., 1985). Differences in individual bases are by 

far the most common type of genetic variation (Lander, 1996). 

A single nucleotide polymorphism (SNP, pronounced “snip”) is a DNA 

sequence variation occurring when a single nucleotide - A, T, C, or G - in the 

genome (or other shared sequence) differs between members of a species (or 

between paired chromosomes in an individual) (Wang et al., 1998; Cargill et al., 

1999; Halushka et al., 1999). For example, two sequenced DNA fragments from 

http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Adenine
http://en.wikipedia.org/wiki/Thymine
http://en.wikipedia.org/wiki/Cytosine
http://en.wikipedia.org/wiki/Guanine
http://en.wikipedia.org/wiki/Genome
http://genome.cshlp.org/content/10/6/853.full#ref-29
http://genome.cshlp.org/content/10/6/853.full#ref-1
http://genome.cshlp.org/content/10/6/853.full#ref-1
http://genome.cshlp.org/content/10/6/853.full#ref-12
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different individuals, AAGCCTA to AAGCTTA, contain a difference in a single 

nucleotide. In this case we say that there are two alleles: C and T. Almost all 

common SNPs have only two alleles.  

Variations in the DNA sequences of humans can affect how humans develop 

diseases and respond to pathogens, chemicals, drugs, vaccines, and other agents. 

SNPs are the most common type of genetic variation (Risch et al., 1996; 

Chakravarti, 1999). Moreover, SNPs have a very low mutation rate, which is the 

number of mutations per generation expressed as a decimal value or a percentage. 

The general average mutation rate was estimated to be only between 
82.5 10 and 

84.4 10 per base pair per generation (Pitman 2001). Since SNPs are mostly 

inherited from parents, two related individuals have relatively small difference in 

their SNPs. However, the whole human population is huge; hence there are a 

large number of SNPs in the genome. Nowadays, millions of SNPs are 

documented. Hence, SNPs are thought to be the
 
ideal markers for the dissection of 

complex traits in association
 
studies and linkage disequilibrium mapping (Collins 

et al., 1997).  

For most of the current research, researchers focus on finding the association 

between genotype and disease phenotype. As described above, SNPs are ideal to 

be the genetic markers for disease diagnosis. Hence it is necessary to identify very 

large numbers of SNPs. Conventionally, direct sequencing methods, especially 

gel-based fluorescent sequencing methods, are widely used to identify the large-

scale SNP. In many recent strategies, overlapping sequences from multiple 

individuals are computationally aligned to identify high-quality mismatches 

(Taillon-Miller et al., 1998). Information about alignment depth, sequence context 

and read quality is summarized to identify if the site is a SNP or a sequencing 

error. Base-calling quality analysis programs have been widely developed to 

http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/Disease
http://en.wikipedia.org/wiki/Pathogen
http://en.wikipedia.org/wiki/Chemical
http://en.wikipedia.org/wiki/Medication
http://en.wikipedia.org/wiki/Vaccine
http://genome.cshlp.org/content/10/6/853.full#ref-22
http://genome.cshlp.org/content/10/6/853.full#ref-2
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obtain such information (Ewing et al., 1998). For example, PolyPhred which is 

integrated with the use of three other programs: Phred (Brent Ewing and Phil 

Green), Phrap (Phil Green), and Consed (David Gordon and Phil Green) is a 

typically traditional recently developed base-calling program. It compares 

fluorescence-based sequences across traces obtained from different individuals to 

identify heterozygous sites for single nucleotide substitutions (see URL: 

http://chum.gs.washington.edu/).  

Using the primary data generated by the Human Genome Project, 75% of the 

1,500,000 SNPs currently in the database dbSNP were identified from 

overlapping regions of genomic clones (Carlson et al., 2001). These SNPs are 

clustered in 10-50 kb regions.  A much smaller fraction of dbSNP (4% of all 

dbSNP entries) comes from similar data-mining efforts using single-pass 

sequence reads from expressed sequence tags (ESTs) as the raw data (Clifford et 

al., 2000). Although the large-scale SNP identification efforts generate most of 

the SNPs in dbSNP, directed SNP identification within candidate genes also 

provides a small but important fraction of SNPs (Cargill et al., 1999). Polymerase 

chain reaction (PCR) then is introduced to amplify the genomic DNA for targeted 

SNP discovery (Nakajima et al., 1998). Once amplified, many techniques are 

available to scan for SNPs in the PCR products obtained from different 

individuals (Kwok et al., 1994).  

 

1.2   PCR and Next-generation Sequencing Method  

Our data are from a targeted genomic DNA region, which is 55kb human 

PAK4 gene region. This region is related to neuronal disease, in which the 

http://www.phrap.org/
http://www.phrap.org/
http://www.phrap.org/
http://chum.gs.washington.edu/
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research interest lies. Our data are based on PCR and next generation sequencing 

technology. Since the next-generation sequencing method is pretty novel, our data 

format is distinct from others. The following are details of PCR and next-

generation sequencing method. 

PCR is a technique widely used in molecular biology. It derives its name from 

one of its key components, a DNA polymerase used to amplify a piece of DNA. 

This DNA polymerase enzymatically assembles a new DNA strand from DNA 

building blocks, the nucleotides, by using single-stranded DNA as a template and 

DNA oligonucleotides (also called DNA primers), which are required for 

initiation of DNA synthesis. The vast majority of PCR methods use thermal 

cycling, i.e., alternately heating and cooling the PCR sample to a defined series of 

temperature steps. These thermal cycling steps are necessary to physically 

separate the strands (at high temperatures) in a DNA double helix (DNA melting) 

used as template during DNA synthesis (at lower temperatures) by the DNA 

polymerase to selectively amplify the target DNA. The selectivity of PCR results 

from the use of primers that are complementary to the DNA region targeted for 

amplification under specific thermal cycling conditions. As PCR progresses, the 

DNA thus generated is itself used as a template for replication. Because both 

strands of DNA could be functioned as templates, this sets in motion a chain 

reaction in which the DNA template is exponentially amplified. 

The term DNA sequencing encompasses biochemical methods for 

determining the order of the nucleotide bases. Since 1970s, sequencing methods 

have evolved from relatively labor-intensive gel-based procedures to modern 

automated protocols based on dye labeling and detection in capillary 

electrophoresis that permit rapid large-scale sequencing of genomes and 

transcriptomes. There are several sequencing methods in biological research 

http://en.wikipedia.org/wiki/Molecular_biology
http://en.wikipedia.org/wiki/DNA_polymerase
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Oligonucleotide
http://en.wikipedia.org/wiki/Primer_(molecular_biology)
http://en.wikipedia.org/wiki/Thermocycler
http://en.wikipedia.org/wiki/Thermocycler
http://en.wikipedia.org/wiki/Thermocycler
http://en.wikipedia.org/wiki/DNA_melting
http://en.wikipedia.org/wiki/Template#In_molecular_genetics
http://en.wikipedia.org/wiki/Primer_(molecular_biology)
http://en.wikipedia.org/wiki/Complementary_DNA
http://en.wikipedia.org/wiki/Chain_reaction
http://en.wikipedia.org/wiki/Chain_reaction
http://en.wikipedia.org/wiki/Chain_reaction
http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Gel_electrophoresis
http://en.wikipedia.org/wiki/Capillary_electrophoresis
http://en.wikipedia.org/wiki/Capillary_electrophoresis
http://en.wikipedia.org/wiki/Capillary_electrophoresis
http://en.wikipedia.org/wiki/Genome
http://en.wikipedia.org/wiki/Transcriptome


5 
 

history, such as Maxam-Gilbert sequencing (Jou et al., 1972), Chain-termination 

methods, Large-scale sequencing strategies, high-throughput sequencing and 

next-generation sequencing.  

„Next-generation‟ is used in reference to the various implementations of 

cyclic-array sequencing that have recently been realized in many biological 

investigations (Margulies  et al., 2005).  In our research, we get the sequencing 

data using reversible terminator chemistry. Single molecules of DNA are attached 

to a flat surface, amplified in situ and used as templates for synthetic sequencing 

with fluorescent reversible terminator deoxyribonucleotides. Images of the 

surface are analyzed to generate a high-quality sequence (Bentley et al., 2008). 

The major difference between conventional sequencing and next-generation 

sequencing technologies is that the former one uses the fluorescence-signals from 

a group of DNA molecules to detect SNPs (Kwok, 2001), while the latter one is a 

single molecule sequencing method and the SNPs are detected by the analysis of a 

set of genotypes from many molecules sequenced separately. Figure 1 shows the 

comparison of next-generation sequencing and conventional sequencing results. 

In Figure 1b, the lines with four different colors stand for four nucleotides. The 

height of the peaks is correlated to the signals of specific base call, which are 

generated from the whole group of experimented DNA molecules. Using this 

technology, we can only determine the base by the strength of the signals, but 

have no idea about the ratio of different nucleotide reads. However, we can get 

this kind of information by using the next-generation sequencing method. As 

shown in Figure 1a, since we analyze every DNA molecule separately, we get 

every sequence as a read to summarize the genotype and detect the SNP in further. 

Actually, the marked position in Figure 1 is a heterozygous SNP candidate, which 

can be detected by both approaches. 
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Moreover, in order to identify those disease associated SNP markers, we need 

a large enough sample size from both patients and normal controls with available 

genotypes. The conventional SNP detection method is too expensive in both cost 

and time, which limit efficient SNP detection. However, next-generation 

sequencing technology is more efficient. That is they could detect genotypes for 

each individual fast accurately with less cost and time. 

Therefore, data analysis for SNP detection based on next-generation 

sequencing technology is feasible and valuable. Since the new SNP model is 

based on a newly developed technology, it requires building a new algorithm to 

analyze this new type of data. 

 

Figure 1: SNPs detection example 

-----------------atgat c GAAGCTCGCTGCTCcacGgt- NINA_1_2_83_380_433

---------------gaaTgat G gaagctcgctgctccacg--- NINA_1_1_4_937_575

---------------GAATGAT G GaagctcGCTGctccacg--- NINA_1_1_84_249_592

---------------GAATGAT G GAAGCTCGCTGCTCcacG--- NINA_1_1_86_756_247

---------------GAATgat C GaagCTCGCTGCTCcacG--- NINA_1_2_125_503_553

------------tctgAatgat c GAAGctcGCTGCTcc------ NINA_1_4_69_311_262

---------acCTCTGAATGAT C gaagCTCGCTGC--------- NINA_1_4_143_496_463

---cccgaaacctctgaatgAT g gaAGCT--------------- NINA_1_3_126_1001_32

CATCCCGAAACCTCTGAATGAT G GAAGCTCGCTGCTCCACGGTC genomicDNA

a. Next-generation sequencing  

b. Conventional sequencing
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Chapter 2 

Data Format 

2.1   Data Source 

The data source is from the International HapMap Project, which is a multi-

country effort to identify and catalog genetic similarities and differences in human 

beings.  The project studies 270 DNA samples: 90 samples from a US Utah 

population with Northern and Western European ancestry (samples collected in 

1980 by the Centre d‟Etude du Polymorphisme Humain (CEPH) ), and new 

samples collected from 90 Yoruba people in Ibadan, Nigeria (30 trios), 45 

unrelated Japanese in Tokyo and 45 unrelated Han Chinese in Beijing. All donors 

gave specific consent for their inclusion in the project. Our data are generated 

from one person (CEU-NA12762) of CEPH. The CEPH samples are available 

from the non-profit Coriell Institute of Medical Research (International HapMap 

Consortium, 2003). 
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2.2   Raw Data 

From the PCR and next-generation sequencing method, the data contain the 

following information. In Table 1, every row is a read of a typical position. The 

first column is the position; the second column is the reference base from the 

previous experiments; the third column is the location on the sequence which 

ranges from 0 to 31; the fourth column is the strand which stands for the direction 

of the sequence, either forward or backward; the fifth through eighth columns are 

the quality scores of the four nucleotides; the ninth column is the predicted base 

by comparing the scores; the last column is the highest score among the four 

scores. 

Quality score (QS) is the measure used to evaluate the base call. In our data, it 

ranges from -40 to 40, with a higher value corresponding to a higher accuracy. 

The following formula can explain the relationship between QS and the 

probability that a base call is incorrect. 

10

( )
10log [ ]

1 ( )

P Error
QS

P Error
 


 ,   where P(Error) is the probability of a wrong 

base call. 

For example, if the quality score for A in a particular observation is 40, then 

the probability that this base is not A is approximately 0.0001. Every observation 

has four quality scores for the four possible nucleotides: A, T, C, or G. In all cases, 

there is only one positive score among the four scores. The second highest score 

is at most the negative absolute value of the highest score (HS). We use HS to 

predict the bases. In the later analysis, we will only focus on the highest score 

since the base is predicted by this score. 

http://en.wikipedia.org/wiki/Adenine
http://en.wikipedia.org/wiki/Thymine
http://en.wikipedia.org/wiki/Cytosine
http://en.wikipedia.org/wiki/Guanine
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Table 1:  Raw Data 

position 
reference 

base 

location 
on the 

sequence 
Strand 

score 
for A 

score 
for C 

score 
for G 

score 
for T 

predicted 
base 

HS 

44308116 C 29 1 10 -12 -16 -25 A 10 

44308116 C 31 1 -13 -20 -15 10 T 10 

44308116 C 31 1 -21 -24 -15 14 T 14 

44308117 C 28 1 -20 20 -28 -40 C 20 

44308117 C 30 1 -13 10 -13 -28 C 10 

44308117 C 30 1 -17 13 -17 -21 C 13 

 

 

According to the QS formula, when the HS is small, the probability of 

erroneous base prediction will be high. Hence, we analyzed the distribution of the 

frequency of the predicted base given known reference base. We randomly 

selected 1,000 positions with 2,907,483 observations as a testing data set. Figures 

2-5 show the results given the reference base is A. The horizontal axis is the 

highest score of a typical nucleotide and the vertical axis is the frequency of the 

reads. The figures with reference bases C, G and T are almost the same as those of 

base A.  

Figure 2 shows that if the reference base is A, 57.1% of the reads with 

predicted base A have HS of 40. The lower scores have substantially lower scores 

than 40. The reads with predicted base A have HS greater than 10 is 84.6%. 

Moreover, 2.89% of the reads contain HS less than 0. This suggests that not all 

the observations are valid even when they have the same reference base. 
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Figure 2: Distribution of score A given A is the reference base (HS) 
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Figure 3 through Figure 5 show distributions of predicted bases different from 

A when the reference base is A. We can see that the distribution is skewed to the 

right, which implies that the reads with low HSs have higher chance to be 

predicted erroneously. In these figures, the read counts tend to decreas as HS 

increases for HS less than 40, but the frequency slightly picks up at HS=40. A 

large portion of these (HS=40) are suspected to be heterozygous SNPs. 
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Figure 3: Distribution of score C given A is the reference base (HS) 

FREQUENCY

0

1000

2000

3000

4000

5000

scor eC MI DPOI NT

- 6. 25 - 3. 75 - 1. 25 1. 25 3. 75 6. 25 8. 75 11. 25 13. 75 16. 25 18. 75 21. 25 23. 75 26. 25 28. 75 31. 25 33. 75 36. 25 38. 75 41. 25

 

 

Figure 4: Distribution of score G given A is the reference base (HS) 
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Figure 5: Distribution of score T given A is the reference base (HS) 
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To improve the accuracy of the SNP detection, we must keep relatively high 

base call accuracy. We excluded reads with a low HS from the analysis by 

implementing a threshold on HS, namely cut-off of the quality score.  

We analyzed the sample with 7,319,675 reads of 1999 positions to find the 

proportion of the reads and the accuracy of the prediction by comparing with the 

reference base given a constraint on the value of the highest score. Table 2 shows 

the result of quality score cut-off analysis. The first column is the threshold of the 

HS; the second one is the number of reads with the HS above the threshold; the 

third column is the number of reads with the same predicted base as the reference 

base; the fourth column is the proportion of the selected reads out of the total 

reads; the last column is the accuracy of predicted base.  In Table 2, we can see 

that if we use 10 as the threshold we retain a prediction accuracy of 0.995.  

Although we lose approximately 16% of the data, it is important to maintain high 

prediction accuracy in the SNP detection. In fact, the cut-off score of 10 is 
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commonly used in related research. Hence, we use 10 as the cut-off score to 

control the accuracy of the base prediction.  

 

Table 2:  Quality score cut-off analysis 

HS 
#Examined 
reads 

#reads with same 
predicted base as 
reference base Exam/Total Correct/Exam 

40 4059686 4049960 0.55462654 0.997604248 

>=35 4308131 4297476 0.58856862 0.99752677 

>=30 4585700 4573911 0.62648956 0.997429182 

>=25 4900523 4887180 0.66950008 0.997277229 

>=20 5259955 5244264 0.71860499 0.997016895 

>=15 5676192 5656557 0.7754705 0.996540815 

>=10 6148450 6120469 0.83998948 0.995449097 

>=5 6642928 6592923 0.90754412 0.992472446 

>=0 7015485 6910867 0.95844214 0.98508756 

>=-5 7079719 6943928 0.96721767 0.980819719 

 

 

 

2.3 Summarized Data 

In the raw data, we have thousands of reads for one position. Hence it is 

necessary to summarize these and reduce the size of data. For every position, we 

summarize the information by the strand and the sequence location. Table 3 

shows a sample of summarized data for a position. The contents of the columns 

are as follows: 

 Column 1:  position ID 

 Column 2:  DNA strand 
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 Column 3:  location on the sequence (from 0 to 31) 

 Columns 4-7: total of the highest scores of A, C, G and T, respectively 

 Columns 8-11: number of reads of A, C, G and T, respectively 

 Columns 12: total number of reads for a specific strand and sequence 

location 

 

Researchers commonly compare the numbers of reads of the four nucleotides 

to find SNPs. However, we have the quality scores containing more information 

than only the number of reads. The total of the quality scores of each of the four 

nucleotides turned out to be useful to identify the correct base.  

A remaining problem is that it is difficult to identify duplicated observations. 

Since the observations with different strands or sequence locations are definitely 

from different sequences, we organized the data by the strand and the sequence 

location to obtain a measure which can alleviate the problem of duplication in the 

detection of SNPs.   

 

 Table 3:  Summarized data for a position 

position strand 

location 
on the 
sequence 

sum 
of 
score 
A 

sum 
of 
score 
C 

sum 
of 
score 
G 

sum 
of 
score 
T 

# 
reads 
of A 

# 
reads 
of C 

# 
reads 
of G 

# 
reads 
of T 

# 
total 
reads 

44309757 0 0 0 0 0 1304 0 0 0 34 34 

44309757 0 1 0 0 0 975 0 0 0 25 25 

44309757 0 2 0 0 0 784 0 0 0 20 20 

44309757 0 3 0 0 0 1227 0 0 0 32 32 

44309757 0 4 0 0 0 718 0 0 0 19 19 

44309757 0 5 0 0 0 1058 0 0 0 27 27 

44309757 0 6 0 0 0 1590 0 0 0 40 40 

44309757 0 7 0 0 0 1648 0 0 0 42 42 

44309757 0 8 0 0 0 1584 0 0 0 40 40 

44309757 0 9 0 0 0 1680 0 0 0 42 42 

44309757 0 10 0 20 0 1120 0 1 0 28 29 

44309757 0 11 0 0 0 1211 0 0 0 31 31 
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44309757 0 12 0 0 0 1760 0 0 0 44 44 

44309757 0 13 0 0 0 1670 0 0 0 42 42 

44309757 0 14 0 0 0 1262 0 0 0 32 32 

44309757 0 15 0 0 0 1431 0 0 0 36 36 

44309757 0 16 0 0 0 960 0 0 0 24 24 

44309757 0 17 0 0 0 1360 0 0 0 35 35 

44309757 0 18 0 0 0 1298 0 0 0 33 33 

44309757 0 19 0 0 0 954 0 0 0 24 24 

44309757 0 20 0 0 0 791 0 0 0 20 20 

44309757 0 21 0 0 0 1030 0 0 0 26 26 

44309757 0 22 0 0 0 1510 0 0 0 38 38 

44309757 0 23 0 0 0 581 0 0 0 15 15 

44309757 0 24 0 0 0 988 0 0 0 26 26 

44309757 0 25 0 0 0 1567 0 0 0 40 40 

44309757 0 26 0 0 0 936 0 0 0 24 24 

44309757 0 27 0 0 0 966 0 0 0 29 29 

44309757 0 28 0 0 0 757 0 0 0 20 20 

44309757 0 29 0 0 0 1506 0 0 0 41 41 

44309757 0 30 0 14 0 933 0 1 0 27 28 

44309757 0 31 0 0 0 776 0 0 0 26 26 

44309757 0 32 0 0 0 936 0 0 0 24 24 

44309757 0 33 0 0 0 966 0 0 0 29 29 

44309757 0 34 0 0 0 1298 0 0 0 33 33 

44309757 0 35 0 0 0 954 0 0 0 24 24 

44309757 1 0 0 13 0 2000 0 1 0 50 51 

44309757 1 1 0 40 0 1476 0 1 0 37 38 

44309757 1 2 0 0 0 1491 0 0 0 38 38 

44309757 1 3 0 0 0 920 0 0 0 23 23 

44309757 1 4 0 40 0 996 0 1 0 25 26 

44309757 1 5 0 0 0 1377 0 0 0 35 35 

44309757 1 6 0 0 0 1010 0 0 0 26 26 

44309757 1 7 0 0 0 339 0 0 0 9 9 

44309757 1 8 0 0 0 753 0 0 0 20 20 

44309757 1 9 0 0 0 938 0 0 0 26 26 

44309757 1 10 0 0 0 480 0 0 0 13 13 

44309757 1 11 0 24 0 710 0 1 0 22 23 

44309757 1 12 0 0 0 1118 0 0 0 33 33 
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44309757 1 13 0 0 0 976 0 0 0 30 30 

44309757 1 14 0 0 0 619 0 0 0 18 18 

44309757 1 15 0 0 0 307 0 0 0 12 12 

44309757 1 16 0 0 0 977 0 0 0 36 36 

44309757 1 17 0 0 0 582 0 0 0 23 23 

44309757 1 18 0 0 0 587 0 0 0 20 20 

44309757 1 19 0 0 11 287 0 0 1 15 16 

44309757 1 20 0 0 0 738 0 0 0 32 32 

44309757 1 21 0 0 40 673 0 0 1 28 29 

44309757 1 22 0 0 40 628 0 0 1 22 23 

44309757 1 23 0 0 0 627 0 0 0 26 26 

44309757 1 24 0 16 0 610 0 1 0 29 30 

44309757 1 25 0 0 0 476 0 0 0 21 21 

44309757 1 26 0 12 0 224 0 1 0 12 13 

44309757 1 27 0 0 0 497 0 0 0 26 26 

44309757 1 28 0 0 0 168 0 0 0 9 9 

44309757 1 29 0 12 0 287 0 1 0 16 17 

44309757 1 30 0 26 0 92 0 2 0 5 7 

44309757 1 31 0 0 0 134 0 0 0 6 6 

44309757 1 32 0 0 0 753 0 0 0 20 20 

44309757 1 33 0 0 0 938 0 0 0 26 26 

44309757 1 34 0 0 0 307 0 0 0 12 12 

44309757 1 35 0 0 0 977 0 0 0 36 36 

Total      0   217    91 68161       0      11       3 1929 1943 
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Chapter 3 

First Part of the Study on SNP  

Classification 

There are two general types of DNA positions: one is homozygous position 

and the other one is heterozygous position. A homozygous position has most of 

reads with the same predicted base, which means that most of the highest scores 

appear on the same nucleotide. More than 95% of the positions are homozygous 

and not SNPs. However, if the predicted base with the highest reads is different 

from the reference base, this position is a potential homozygous SNP. Similarly, a 

heterozygous position has most of its reads with one of two different predicted 

bases. A heterozygous position is very likely a heterozygous SNP. 

To detect the SNPs from our data, we simply need to classify all the positions 

into two groups: homozygous positions and heterozygous positions. Those 

predicted heterozygous positions will be treated as heterozygous SNPs. After 

comparing the observed bases with the corresponding reference bases, we can 

also detect the homozygous SNPs. Therefore, we focus on the two nucleotides 
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with the highest and second highest values of features, such as total sum of scores, 

sum of absolute counts and independent counts.  

At the beginning of this research, we have the data including 51,473 positions 

after using the highest score cut-off of 10. Among them, 397 positions with too 

much artificial information due to experimental reasons are deleted. Thus the size 

of the data reduced to 51,076. In this data set, we had 21 known SNPs from other 

sources. Among these 21 known SNPs, 2 were homozygous SNPs, 17 were 

heterozygous SNPs and the other 2 were ambiguous ones which could not be 

detected by our method. We decided the threshold of the measures by examining 

the properties of these known SNPs. 

 

3.1  Introducing Three Measures  

To find potential SNPs, first we separated the positions into several groups. 

We used three measures to realize the goal.  

Measure 1: For the summarized data (total 72 rows), if the number of reads 

of a base for a specific position is not 0, take the log with base 2 to the number of 

reads and then add 1 to this value. If there is no read for a base, then we set it to 0. 

Finally, we add the 72 values for each base on this position.  We defined this 

measure as log-transformed value. This measure is designed according to the 

property of PCR and sequencing method.  In the PCR process, DNA sequences 

are amplified exponentially with base 2. The more reads with the specific strand 

and location on the sequence, the more chance that the reads are duplicated. 

Measure 2:  For each position, we added all the scores, and divided it into 

#total reads from all 4 nucleotides.  This measure turned out to be reliable to 
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identify the correct base of the position, but we cannot identify duplications by 

using this measure. 

Measure 3:  As we see in the introduction to the data above, one position 

may have many reads of the four alleles ACGT with different strands and 

locations on the sequence. For the same observed nucleotide, if two reads have 

different strands or sequence locations, they are independent of each other. For 

the summarized data, we have 72 different combinations of strand and sequence 

location. If the number of reads of an allele of a combination for a specified 

position is not 0, set the value as 1; otherwise, set it as 0. Finally, we add the 72 

values of each allele for a position and define it as the “independent count”. For 

example, in Table 3, the independent counts for A, C, G and T are 0, 10, 3 and 72 

respectively. We find the ratio of the counts for the highest and second highest 

frequent bases.   This measure is used for the second step of screening. To 

differentiate the independent counts and the observed reads, we also defined the 

reads as absolute counts.  

For measure 1 and measure 2, we calculate the proportions of four 

nucleotides. We use these proportions to classify the positions into different 

groups. Table 4 shows an example of the three measures of a specific position.  
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Table 4:  Three Measures of a Position 

 

 

3.2   SNP Detection Steps 

After the data preparation, we tried to detect the SNPs. The three measures 

introduced above are used to classify the positions into three groups: clearly 

homozygous group, clearly heterozygous group and group with the remaining 

positions.   

A clearly homozygous position has most of reads with the same predicted 

base, which means that most of the highest scores appear on the same nucleotide. 

More than 95% of the positions are clearly homozygous and not SNPs. However, 

if the predicted base is different from the reference base, this position is a 

potential homozygous SNP. Similarly, a clearly heterozygous position has most of 

reads with one of two different predicted bases. A clearly heterozygous position is 

very likely a heterozygous SNP. The remaining group, which contains hard-to-

classify positions, is set aside to investigate further.  

If the count in measure 3 is small, then most of the reads are from only a few 

sequences. Thus the base call may not be reliable. Thus we excluded the positions 

with highest count<5 based on measure 3 before classifying the clearly 

homozygous group and the clearly heterozygous group. After this exclusion, we 

determine the homozygous positions first. If the highest proportion in measure (1) 

 
A C G T 

Proportion 
of A 

Proportion 
of C 

Proportion 
of G 

Proportion 
of T 

Measure 1 3 249.2 270.1 0 0.006 0.477 0.517 0 

Measure 2 0.069 15.38 18.46 0 0.002 0.454 0.544 0 

Measure 3 3 61 64 0 
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is greater than 0.9 or the highest proportion in measure (2) is greater than 0.95, we 

move the position into the homozygous group. We compare the predicted base of 

these positions with the reference base. If they coincide, then the position is a 

normal base; otherwise, it is a homozygous SNP. For the remaining positions, we 

check if they are heterozygous using the constraint described as following: 

0.3 the highest and the second highest in measure (1)  0.7 or 0.2 the highest 

and the second highest in measure (2)  0.8. After classifying the positions to the 

clearly heterozygous group, the remaining positions are classified to the hard-to-

classify group. 

We classified 50,901 positions as clearly homozygous positions. Among them, 

8 positions were identified as homozygous SNP candidates because the predicted 

bases were different from the reference bases. The two known homozygous SNPs 

were included in these 8 positions. We also identified 63 heterozygous SNP 

candidates and 503 positions were classified to the hard-to-classify group. All the 

17 known heterozygous SNPs were included in the set of 63 heterozygous SNP 

candidates.  

 

3.3   Cross-Validation 

3.3.1   Use of Cross-Validation 

In Section 2.2, we predicted homozygous and heterozygous SNPs by the 

threshold on HS based on the observation from the known SNPs. However, the 

thresholds we used are not adequately validated. Hence cross-validation is used to 

evaluate the method for finding the optimal thresholds to predict SNPs.  Using the 
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information of known SNPs, we propose a method for finding an optimal 

combination of thresholds. 

 

We are using K-fold cross-validation.  In K-fold cross-validation, the original 

sample is randomly partitioned into K subsamples. Of the K subsamples, a single 

subsample is retained as the validation data for testing the model, and the 

remaining K – 1 subsamples are used as training data. The cross-validation 

process is then repeated K times (the folds), with each of the K subsamples used 

exactly once as the validation data. The K results from the folds then can be 

averaged (or otherwise combined) to produce a single estimation. The advantage 

of this method over repeated random sub-sampling is that all observations are 

used for both training and validation, and each observation is used for validation 

exactly once (Blum et al., 1999).  Ten-fold cross-validation is widely used even if 

computation power allows using more folds (Kohavi 1995). Hence, we use ten-

fold cross-validation in our research. 

 

3.3.2   Preparing the Data Set for Cross-Validation 

In Section 2.2, we made the prediction of SNPs.  Among all the bases 

analyzed, most of them were classified as non-SNP homozygous positions.  

Hence, we drew 100 positions out of these 50,509 positions randomly. We treated 

these 100 positions as known non-SNPs. Together with the 19 known 

heterozygous SNPs; we have a data set consisting of 119 positions for cross-

validation.  We randomly partitioned the 119 positions into 10 subsets.  Except 

for the 10
th

 subset, every subset has 12 positions.  

 



23 
 

3.3.3    Threshold Search 

Step 1 

Of the 10 groups of positions, take 1
st
 through 9

th
 groups as the training set 

and take the 10
th

 group as the test set.  

Step 2 

Apply various combinations of the thresholds for each measure (rule) which 

are used to determine the clearly homozygous positions and clearly heterozygous 

SNP candidates to the training set.  We calculate the accuracy of every 

combination as shown in Table 5.   

An example of the combinations is given below:  

Constraint for clearly homozygous base:            

Highest proportion in measure (1)  0.95 or highest proportion in measure 

(2)  0.95 

Constraint for clearly heterozygous base:         

0.2 both highest and second highest in measure (1)  0.8 or 0.2 both 

highest and second highest in measure (2)  0. 

            Table 5:  Accuracy of the proposed approach 

 #Real SNP #Real Non-SNPs  

Predicted #SNPs:      A B  

Predicted #Non-SNPs: C D #in middle data:  E 

Accuracy:  (A+D)/(A+B+C+D+E) 

Sensitivity:  A/(A+C) 

Specificity:  D/(B+D) 
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Step 3 

For each combination of thresholds we search for optimal thresholds for 

classifying homozygous positions and heterozygous SNPs using the training set in 

a sequential fashion.  We determine clearly homozygous positions first.  Among 

these positions, SNP candidates are identified by comparing with the reference 

base.  For the remaining positions, determine clearly heterozygous positions.  The 

remaining positions are considered “hard to classify” or positions in the “middle 

area”.  For the thresholds for a clearly heterozygous position, we search optimal 

thresholds for each of measure 1 and measure 2 for the proportion of the most 

frequent base.  All possible pairs of thresholds for measure 1 and measure 2 are 

searched starting with 0.95, and decrement of 0.05. We choose the pair of 

thresholds resulting in the highest classification accuracy of the prediction. 

Optimal combinations of thresholds for searching heterozygous SNPs are 

obtained as follows:  First, we find the combinations of thresholds with the 

highest accuracy.  Second, among these combinations, we select all non-nested 

most-balanced combinations. After this, find the least-balanced pair in each 

measure from the selected combinations. Third, among the combinations with the 

highest accuracy, select all non-nested least-balanced combinations, and find the 

most-balanced pair in each measure from the selected combinations.  Finally, take 

the average of the values obtained from the previous steps.  Further details are 

given in Section 3.3.4. 

Step 4 

Apply the threshold combinations obtained in Step 3 to the test set, and find 

the classification accuracy. 

 

Step 5 
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Use the 9
th

 subset as the new test set and repeat the step 2 through step 4 

similarly until all the subsets are used as test sets.  

Step 6  

Evaluate the cross-validation accuracy by averaging the accuracies obtained 

from steps 1 through 6. 

Step 7 

Implement step 2 and step 3 to the whole data (119 bases), and obtain an 

optimal combination of thresholds, and find the accuracy. 

 

3.3.4   Result of the Cross-Validation 

Table 6 shows the result from training sets. The first column is the number of 

combination; the second column is the threshold for clearly homozygous position; 

the third column is the threshold for clearly heterozygous position; the fourth 

through thirteenth columns are the accuracies of every combination with the 

training set corresponding to the specific test set, in which 1 means the 100% 

classification accuracy and blank means accuracy less than 100%. For example, 

the threshold pair of (0.95, 0.95) for clearly homozygous position gave 100% 

accuracy for all ten training sets.  
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             Table 6: Accuracy of training sets using different combination of 
thresholds  

Combinations 

Constraint for 
clearly 
homozygous base 

Constraint for clearly 
heterozygous  base Test set 

         

 
Homo Heter Group10 

           
G9 G8 G7 G6 G5 G4 G3 G2 G1 

combination1 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.1<=both<=0.9   
or  
measure(2)0.1<=both<=0.9 1 1 1 1 1 1 1 1 1 1 

combination2 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.1<=both<=0.9   
or  
measure(2)0.15<=both<=0.85 1 1 1 1 1 1 1 1 1 1 

combination3 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.1<=both<=0.9   
or  
measure(2)0.2<=both<=0.8 1 1 1 1 1 1 1 1 1 1 

combination4 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.1<=both<=0.9   
or  
measure(2)0.25<=both<=0.75 1 1 1 1 1 1 1 1 1 1 

combination5 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.1<=both<=0.9   
or  
measure(2)0.3<=both<=0.7 1 1 1 1 1 1 1 1 1 1 

combination6 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.1<=both<=0.9   
or  
measure(2)0.35<=both<=0.65 1 1 1 1 1 1 1 1 1 1 

combination7 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.1<=both<=0.9   
or  
measure(2)0.4<=both<=0.6 1 1 1 1 1 1 1 1 1 1 

combination8 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.1<=both<=0.9   
or  
measure(2)0.45<=both<=0.55 1 1 1 1 1 1 1 1 1 1 

combination9 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.15<=both<=0.85   
or  
measure(2)0.1<=both<=0.9 1 1 1 1 1 1 1 1 1 1 

combination10 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.15<=both<=0.85   
or  
measure(2)0.15<=both<=0.85 1 1 1 1 1 1 1 1 1 1 

combination11 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.15<=both<=0.85   
or  
measure(2)0.2<=both<=0.8 1 1 1 1 1 1 1 1 1 1 

combination12 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.15<=both<=0.85   
or  
measure(2)0.25<=both<=0.75 1 1 1 1 1 1 1 1 1 1 

combination13 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.15<=both<=0.85   
or  
measure(2)0.3<=both<=0.7 1 1 1 1 1 1 1 1 1 1 

combination14 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.15<=both<=0.85   
or  
measure(2)0.35<=both<=0.65 1 1 1 1 1 1 1 1 1 1 

combination15 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.15<=both<=0.85   
or  
measure(2)0.4<=both<=0.6 1 1 1 1 1 1 1 1 1 1 

combination16 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.15<=both<=0.85   
or  
measure(2)0.45<=both<=0.55 1 1 1 1 1 1 1 1 1 1 

combination17 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.2<=both<=0.8   
or  
measure(2)0.1<=both<=0.9 1 1 1 1 1 1 1 1 1 1 

combination18 measure(1) >=0.95  measure(1)0.2<=both<=0.8  1 1 1 1 1 1 1 1 1 1 
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or  
measure(2) >=0.95 

or  
measure(2)0.15<=both<=0.85 

combination19 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.2<=both<=0.8   
or  
measure(2)0.2<=both<=0.8 1 1 1 1 1 1 1 1 1 1 

combination20 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.2<=both<=0.8   
or  
measure(2)0.25<=both<=0.75 1 1 1 1 1 1 1 1 1 1 

combination21 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.2<=both<=0.8   
or  
measure(2)0.3<=both<=0.7 1 1 1 1 1 1 1 1 1 1 

combination22 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.2<=both<=0.8   
or  
measure(2)0.35<=both<=0.65 1 1 1 1 1 1 1 1 1 1 

combination23 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.2<=both<=0.8   
or  
measure(2)0.4<=both<=0.6 1 1 1 1 1 1 1 1 1 1 

combination24 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.2<=both<=0.8   
or  
measure(2)0.45<=both<=0.55 1 1 1 1 1 1 1 1 1 1 

combination25 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.25<=both<=0.75  
or  
measure(2)0.1<=both<=0.9 1 1 1 1 1 1 1 1 1 1 

combination26 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.25<=both<=0.75   
or  
measure(2)0.15<=both<=0.85 1 1 1 1 1 1 1 1 1 1 

combination27 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.25<=both<=0.75   
or  
measure(2)0.2<=both<=0.8 1 1 1 1 1 1 1 1 1 1 

combination28 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.25<=both<=0.75    
or  
measure(2)0.25<=both<=0.75 1 1 1 1 1 1 1 1 1 1 

combination29 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.25<=both<=0.75    
or  
measure(2)0.3<=both<=0.7 1 1 1 1 1 1 1 1 1 1 

combination30 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.25<=both<=0.75    
or  
measure(2)0.35<=both<=0.65 1 1 1 1 1 1 1 1 1 1 

combination31 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.25<=both<=0.75  
or  
measure(2)0.4<=both<=0.6 1 1 1 1 1 1 1 1 1 1 

combination32 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.25<=both<=0.75    
or  
measure(2)0.45<=both<=0.55 1 1 1 1 1 1 1 1 1 1 

combination33 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.3<=both<=0.7  
or  
measure(2)0.1<=both<=0.9 1 1 1 1 1 1 1 1 1 1 

combination34 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.3<=both<=0.7    
or  
measure(2)0.15<=both<=0.85 1 1 1 1 1 1 1 1 1 1 

combination35 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.3<=both<=0.7    
or  
measure(2)0.2<=both<=0.8 1 1 1 1 1 1 1 1 1 1 

combination36 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.3<=both<=0.7     
or  
measure(2)0.25<=both<=0.75 1 1 1 1 1 1 1 1 1 1 

combination37 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.3<=both<=0.7     
or  
measure(2)0.3<=both<=0.7 1 1 1 1 1 1 1 1 1 1 

combination38 
measure(1) >=0.95  
or  

measure(1)0.3<=both<=0.7     
or  1 1 1 1 1 1 1 1 1 1 



28 
 

measure(2) >=0.95 measure(2)0.35<=both<=0.65 

combination39 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.3<=both<=0.7   
or  
measure(2)0.4<=both<=0.6 1 1 1 1 1 1 1 1 1 1 

combination40 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.3<=both<=0.7     
or  
measure(2)0.45<=both<=0.55 1 1 1 1 1 1 1 1 1 1 

combination41 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.35<=both<=0.65  
or  
measure(2)0.1<=both<=0.9 1 1 1 1 1 1 1 1 1 1 

combination42 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.35<=both<=0.65    
or  
measure(2)0.15<=both<=0.85 1 1 1 1 1 1 1 1 1 1 

combination43 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.35<=both<=0.65    
or  
measure(2)0.2<=both<=0.8 1 1 1 1 1 1 1 1 1 1 

combination44 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.35<=both<=0.65     
or  
measure(2)0.25<=both<=0.75 1 1 1 1 1 1 1 1 1 1 

combination45 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.35<=both<=0.65     
or  
measure(2)0.3<=both<=0.7 1 1 1 1 1 1 1 1 1 1 

combination46 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.35<=both<=0.65     
or  
measure(2)0.35<=both<=0.65 

     
1 

    

combination47 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.35<=both<=0.65   
or  
measure(2)0.4<=both<=0.6 

     
1 

    

combination48 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.35<=both<=0.65     
or  
measure(2)0.45<=both<=0.55 

     
1 

    

combination49 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.4<=both<=0.6  
or  
measure(2)0.1<=both<=0.9 1 1 1 1 1 1 1 1 1 1 

combination50 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.4<=both<=0.6    
or  
measure(2)0.15<=both<=0.85 1 1 1 1 1 1 1 1 1 1 

combination51 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.4<=both<=0.6    
or  
measure(2)0.2<=both<=0.8 1 1 1 1 1 1 1 1 1 1 

combination52 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.4<=both<=0.6     
or  
measure(2)0.25<=both<=0.75 1 1 1 1 1 1 1 1 1 1 

combination53 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.4<=both<=0.6     
or  
measure(2)0.3<=both<=0.7 

  
1 

       

combination54 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.4<=both<=0.6     
or  
measure(2)0.35<=both<=0.65 

          

combination55 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.4<=both<=0.6   
or  
measure(2)0.4<=both<=0.6 

          

combination56 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.4<=both<=0.6     
or  
measure(2)0.45<=both<=0.55 

          

combination57 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.45<=both<=0.55  
or  
measure(2)0.1<=both<=0.9 1 1 1 1 1 1 1 1 1 1 

combination58 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.45<=both<=0.55    
or  
measure(2)0.15<=both<=0.85 1 1 1 1 1 1 1 1 1 1 



29 
 

combination59 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.45<=both<=0.55    
or  
measure(2)0.2<=both<=0.8 1 1 1 1 1 1 1 1 1 1 

combination60 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.45<=both<=0.55     
or  
measure(2)0.25<=both<=0.75 1 1 1 1 1 1 1 1 1 1 

combination61 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.45<=both<=0.55     
or  
measure(2)0.3<=both<=0.7 

  
1 

       

combination62 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.45<=both<=0.55     
or  
measure(2)0.35<=both<=0.65 

          

combination63 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.45<=both<=0.55   
or  
measure(2)0.4<=both<=0.6 

          

combination64 

measure(1) >=0.95  
or  
measure(2) >=0.95 

measure(1)0.45<=both<=0.55     
or  
measure(2)0.45<=both<=0.55 

          

 

For threshold for clearly heterozygous positions, we found {(0.1, 0.9), (0.1, 

0.9)} as the non-nested least-balanced combination for every training set.  

Consider the training set corresponding to the 10
th

 test set for example.  We find 

{(0.3, 0.7), (0.45, 0.55)}, {(0.35, 0.65), (0.3, 0.7)} and {(0.45, 0.55), (0.25, 0.75)} 

as the non-nested most-balanced combinations.  Among these, the least-balanced 

pair for measure 1 is (0.3, 0.7), and the least-balanced pair for measure 2 is (0.25, 

0.75).  Combining these two pairs, we obtain {(0.3, 0.7), (0.25, 0.75)}.  By taking 

the average thresholds for each measure between the least-balanced and most-

balanced thresholds, we obtain {(
0.3 0.1

2


,
0.7 0.9

2


), (

0.25 0.1

2


,
0.75 0.9

2


)}, 

or {(0.2, 0.8), (0.175, 0.825)}.  We use this combination of thresholds to the 

corresponding test set to obtain the accuracy for the training set.  Table 7 shows 

the accuracies for the test set using the result of training sets above.   
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Table 7: Cross-validation accuracy 

Group 10 as the test set. 

measure(1) >=0.95  or  measure(2) >=0.95  && measure(1)0.2<=both<=0.8  or  

measure(2)0.175<=both<=0.825 

    Real SNP  Real Non-SNP 

Test SNP:          3   0 

Test Non-SNP: 0   8   Middle data:  0 

Sensitivity: 1.000000 Specificity: 1.000000 Overall Accuracy: 1.000000 

-------------------------------------------------------------------------- 

 

Group 9 as the test set. 

measure(1) >=0.95  or  measure(2) >=0.95  && measure(1)0.2<=both<=0.8  or  

measure(2)0.175<=both<=0.825 

    Real SNP  Real Non-SNP 

Test SNP:      2  0 

Test Non-SNP:    0  10   Middle data:  0 

Sensitivity: 1.000000 Specificity: 1.000000 Overall Accuracy: 1.000000 

-------------------------------------------------------------------------- 

 

Group 8 as the test set. 

measure(1) >=0.95  or  measure(2) >=0.95  && measure(1)0.2<=both<=0.8  or  

measure(2)0.2<=both<=0.8 

    Real SNP  Real Non-SNP 

Test SNP:      4  0 

Test Non-SNP:        0  8   Middle data:  0 

Sensitivity: 1.000000 Specificity: 1.000000 Overall Accuracy: 1.000000 

-------------------------------------------------------------------------- 

 

Group 7 as the test set. 

measure(1) >=0.95  or  measure(2) >=0.95  && measure(1)0.2<=both<=0.8  or  

measure(2)0.175<=both<=0.825 

    Real SNP  Real Non-SNP 

Test SNP:      0  0 

Test Non-SNP:         0  12   Middle data:  0 
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Sensitivity: -1.#IND00 Specificity: 1.000000 Overall Accuracy: 1.000000 

-------------------------------------------------------------------------- 

 

Group 6 as the test set. 

measure(1) >=0.95  or  measure(2) >=0.95  && measure(1)0.2<=both<=0.8  or  

measure(2)0.175<=both<=0.825 

    Real SNP  Real Non-SNP 

Test SNP:      1  0 

Test Non-SNP:        0  11   Middle data:  0 

Sensitivity: 1.000000 Specificity: 1.000000 Overall Accuracy: 1.000000 

-------------------------------------------------------------------------- 

 

Group 5 as the test set. 

measure(1) >=0.95  or  measure(2) >=0.95  && measure(1)0.225<=both<=0.775  or  

measure(2)0.175<=both<=0.825 

    Real SNP  Real Non-SNP 

Test SNP:      2  0 

Test Non-SNP:       0  10   Middle data:  0 

Sensitivity: 1.000000 Specificity: 1.000000 Overall Accuracy: 1.000000 

-------------------------------------------------------------------------- 

 

Group 4 as the test set. 

measure(1) >=0.95  or  measure(2) >=0.95  && measure(1)0.2<=both<=0.8  or  

measure(2)0.175<=both<=0.825 

    Real SNP  Real Non-SNP 

Test SNP:      2  0 

Test Non-SNP:      0   10   Middle data:  0 

Sensitivity: 1.000000 Specificity: 1.000000 Overall Accuracy: 1.000000 

-------------------------------------------------------------------------- 

 

Group 3 as the test set. 

measure(1) >=0.95  or  measure(2) >=0.95  && measure(1)0.2<=both<=0.8  or  

measure(2)0.175<=both<=0.825 

    Real SNP  Real Non-SNP 

Test SNP:      3  0 

Test Non-SNP:      0   9   Middle data:  0 
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Sensitivity: 1.000000 Specificity: 1.000000 Overall Accuracy: 1.000000 

-------------------------------------------------------------------------- 

 

Group 2 as the test set. 

measure(1) >=0.95  or  measure(2) >=0.95  && measure(1)0.2<=both<=0.8  or  

measure(2)0.175<=both<=0.825 

    Real SNP  Real Non-SNP 

Test SNP:      1  0 

Test Non-SNP:      0   11   Middle data:  0 

Sensitivity: 1.000000 Specificity: 1.000000 Overall Accuracy: 1.000000 

-------------------------------------------------------------------------- 

 

Group 1 as the test set. 

measure(1) >=0.95  or  measure(2) >=0.95  && measure(1)0.2<=both<=0.8  or  

measure(2)0.175<=both<=0.825 

    Real SNP  Real Non-SNP 

Test SNP:     1  0 

Test Non-SNP:      0   11   Middle data:  0 

Sensitivity: 1.000000 Specificity: 1.000000 Overall Accuracy: 1.000000 

 

We see that all the accuracies are 1.  Hence the average accuracy for all the 

test sets, which is the cross validation accuracy, is 100%.   

 

3.3.5   Summary and Application to the Entire Data 

We found that the cross-validation accuracy using a 119 subject data set was 

100%.  This is based on limited information.  We believe the result will be more 

reliable if we can use a bigger data set with known SNP information. We applied 

the optimal combination of thresholds obtained from the data set of size 119 to the 

entire data set of size 51,076 to make a prediction as explained in Section 2.2.  
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We excluded the positions with count less than 5 based on measure 3 before 

applying our optimal thresholds.  We first checked if the position is homozygous, 

using the following constraint obtained as optimal thresholds using our approach:  

the highest proportion in measure (1) ≥0.95 or the highest proportion of measure 

(2) ≥0.95.  We obtained 50,509 homozygous positions by these thresholds. For 

these positions, we compared the predicted base with the reference base to 

determine if it is a homozygous SNP or not.  If it is not clearly homozygous, then 

we checked if it is heterozygous, using the constraint:  0.2≤ the highest and 

second highest proportions in measure (1) ≤0.8 or 0.175≤ the highest and second 

highest proportions in measure (2) ≤0.825. The positions which do not belong to 

either clearly homozygous bases or clearly heterozygous bases were assigned to 

the middle group. 

This process resulted in 8 homozygous SNP candidates, which is the same as 

the earlier prediction.  Next we identified 68 heterozygous SNP candidates 

including 5 new ones from the previous prediction in Section 2.2. All the known 

homozygous and heterozygous SNPs are included in our prediction. We classified 

499 positions to the hard-to-classify group. Among them, 454 positions have the 

count in measure 3 less than 5.  
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Chapter 4 

Advanced Classification Modeling 

In the previous study, we analyzed a relatively small data set with around fifty-

one thousand positions. Among them, there were only 21 known SNPs. In this 

chapter, we will introduce our further work on data set including 1,278,923 

positions and 308 known SNPs. Since the size of the training data is substantially 

increased, we introduced some popular classification methods, such as random 

forest (Breiman, 2001), Support Vector Machines (SVM) (Vapnik, 1995; Cortes, 

Vapnik, 1995), single decision tree and logistic regression.  

 

4.1   Developing Measures 

To make the prediction more accurate, we developed eight measures 

according to the property of the data. This time we further focus on the 

independent counts. 
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Measure 1: Ratio of sum of absolute counts of the top two alleles (the second 

highest sum of absolute counts divided by the highest one). If the ratio is close to 

0, it means that this position has the most of reads with the same allele, which 

indicates possible homozygosity.  If the ratio is close to 1, it means that this 

position has similar amount of absolute counts for two alleles and is possibly a 

heterozygous SNP. Taking Table 3 as an example, the ratio of measure 1 for 

position 44309757 is 11/1929, or 0.0057. 

Measure 2: Ratio of sum of quality scores of the top two alleles (the second 

highest sum of scores divided by the highest one). In Table 3, measure 2 is 

217/68161, or 0.0032. 

Measure 3: Ratio of sum of independent counts of the top two alleles (the 

second highest sum of independent counts divided by the highest one). Since 

independent counts avoid duplication, this ratio is a very important measure 

although it loses some information. In Table 3, measure 3 is 10/72, or 0.1389. 

Measure 4: Ratio of log-transformed values of the top two alleles. The log-

transformed value is introduced in Section 3.1. In Table 3, measure 4 is 11/404.9, 

or 0.0272. 

Measure 5: If we assume a position is a heterozygous SNP, then the 

independent counts for the two alleles are expected to be equally distributed to the 

two strands. We defined a chi-square value expressed below as a measure. 

2 2 2 2( 1 / 4) ( 1 / 4) ( 2 / 4) ( 2 / 4)

/ 4 / 4 / 4 / 4

A N A N A N A N
Chi square

N N N N

      
      

where 1A 
 denotes the independent counts of the most frequent allele with the 

negative strand; 
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1A 
 denotes the independent counts of the most frequent allele with the 

positive strand; 

2A 
 denotes the independent counts of the second most frequent allele 

with the negative   strand; 

2A 
 denotes the independent counts of the second most frequent allele 

with the positive     

strand; 

N denotes the total observed independent counts. 

If the position is heterozygous, this chi-square value should be small; otherwise it 

should be large. Hence, we can use it as a classifier.  

Measure 6: Similar to measure 5, if a position is heterozygous, we expect to 

observe the same independent counts for the two alleles. Therefore we define 

another chi-square value which is expressed below: 

2 2( 1 / 2) ( 2 / 2)

/ 2 / 2

A N A N
Chi square

N N

 
    

Where 1A  denotes the independent counts of the most frequent allele; 

2A  denotes the independent counts of the second most frequent allele; 

 N denotes the total observed independent counts. 

If the assumption holds, this chi-square value should also be small; otherwise it 

should be large. 

Measure 7: If we assume that a position is homozygous, then only one allele 

is expected to be observed. However, it is almost impossible to observe only one 

nucleotide in the experiment even if the position is truly homozygous. Hence, we 

assume that we have 99% probability of having only one allele if the position is 

homozygous. Then the probability of observing one of the other three possible 
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nucleotides is approximately 0.003. Using this assumption, we define the 

following chi-square value: 

2 2 2 2( 1 0.99) ( 2 0.003) ( 3 0.003) ( 4 0.003)

0.99 0.003 0.003 0.003

A N A N A N A N
Chi square

N N N N

       
    

   

and 

2 2 2 2( 2 0.99) ( 1 0.003) ( 3 0.003) ( 4 0.003)

0.99 0.003 0.003 0.003

A N A N A N A N
Chi square

N N N N

       
    

   

 

 Where 1A  denotes the independent counts of the most frequent allele; 

2A  denotes the independent counts of the second most frequent allele; 

3A  denotes the independent counts of the third most frequent allele; 

4A  denotes the independent counts of the least frequent allele; 

 N denotes the total observed independent counts. 

Since 1A and 2A are sometimes close to each other and we do not know which 

allele is the true homozygous nucleotide, we calculate the two chi-square values 

and choose the larger one. If the position is homozygous, this chi-square value 

should be small; otherwise it should be large. 

Measure 8: Proportion of independent counts of all non-reference alleles (the 

sum of the independent counts for three alleles other than the reference base 

divided by the total independent counts for the four alleles). A homozygous 

position can be either homozygous SNP or normal genome position. Hence, there 

are three possible ranges of this proportion. If a position is normal homozygous, 

the proportion will be close to 0; if it is a homozygous SNP, the proportion will be 

close to 1; if it is a heterozygous SNP, the proportion will be close to 0.5. In our 

classification models, we just want two classes: homozygous group and 

heterozygous group. Hence, we made a transformation to the proportion. We take 
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the absolute value of the difference between the proportion and 0.5. In Table 3, 

since the reference base is T, measure 8 is    0.5 10 3 / 10 3 72    = 0.32. 

 

4.2   Classification Methods 

4.2.1   Single Decision Tree 

A decision tree is a tree-structured plan of a set of attributions to test in order 

to predict the output. Classification and Regression Trees (CART) is a widely 

used tree algorithm (Breiman et al., 1984). R package “rpart” running CART is 

used in this study. The tree is built by the following process: first the single 

variable is found which best splits the data into two groups. The data are 

separated, and then this process is applied separately to each sub-group, and so on 

recursively until the subgroups either reach a minimum size or until no 

improvement can be made (Breiman et al., 1984; De‟ath et al., 2000).  

 

4.2.2   Random Forest 

Random Forest (Breiman, 2001) uses the result by combining multiple 

decision trees using the bagging algorithm. Bagging algorithm is a widely used 

ensemble based algorithm (Breiman et al., 1996). Different training data sets are 

randomly drawn with replacement from the entire training data set. Each training 

data set is used to generate a classifier. The result is then given as a combination 

of individual classifiers by taking a simple majority vote of their decisions.  
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In random forest, from the root of a tree, the given object follows the relevant 

branches and arrives at a leaf. Branches are features and leaves are classes. If the 

number of cases in the original data set is N, a bootstrap sample of size N is 

generated as a training set to grow each tree. If there are M input variables, a fixed 

number m which should be much less than M is specified. At each node of a tree, 

m variables are randomly selected out of the M variables and the best split on 

these values is used to split the node. All trees are grown to their largest extent 

possible without pruning. Each tree gives a classification for a new object from an 

input vector, and we say the tree votes for that class. The forest chooses the class 

having the most votes over all the trees in the forest. Each tree is constructed 

using a different training set obtained from the original data set. When a training 

set for a tree is selected with replacement from the original data set, 

approximately one-third of the cases are left and not used in the construction of 

the tree as explained earlier. This out-of-bag data can be used to get the estimates 

of the classification error or variable importance. 

 

 

4.2.3   Support Vector Machine 

Support vector machines (SVM) are a set of related supervised 

learning methods that analyze data and recognize patterns (Vapnik, 1995; Cortes 

et al., 1995). The standard SVM is a non-probabilistic binary linear classifier, i.e. 

it predicts, for each given input, which of two possible classes the input is a 

member of. Since SVM is a classifier, given a set of training examples, each 

marked as belonging to one of two categories, an SVM training algorithm builds a 

model that predicts whether a new example falls into one category or the other. 

More formally, SVM is a method to find a separating hyperplane in data space, 

which maximizes the margin between the two separated data sets. If the data are 

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Probabilistic
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nonseparable in the original feature space, they are transformed to a higher 

dimensional space, where the data become linearly separable. 

 

 

4.2.4   Logistic Regression 

Logistic regression is a model that fits the log odds of the response to linear 

combinations of the explanatory variables (Alpaydin et al., 2004). It is used 

mainly for binary responses, although there are extensions for multinomial 

responses as well. Regression coefficients are determined by maximizing the 

likelihood function. Usually the coefficients are estimated by numerical methods 

such as the Newton-Raphson algorithm. Logistic regression is known as a robust 

model for classification and the model is presented clearly and succinctly, but on 

the flip side, it might not be able to produce complex models, leading to under-

fitting. 

 

4.3   Preparing the Data 

We have 285 known SNPs including 137 heterozygous and 148 homozygous 

SNPs. These known SNPs are used as training set to create models. Before 

applying the four classification models to the whole data, we used 10-fold cross 

validation method to evaluate and compare the four methods. This time we took 

the 148 known homozygous SNPs in the training set instead of randomly 

selecting homozygous positions from the whole data. We conducted 10-fold cross 

validation using the 285 known SNPs  
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4.4   Results 

We calculated the generalized accuracies of the four methods. In order to 

compare the performance of them, we repeated 10-fold cross validation for 30 

times. After gathering all the generalized accuracies, we conducted paired t-tests 

to see if there was significant difference between every pair of the classification 

methods. Table 8 is the matrix of the p-values of the paired t-tests and Table 9 

shows the mean accuracies with standard deviation in parentheses of the four 

methods.   

Table 8:  P-values of paired t-tests 

P-values SVM ST LR 

RF 
<0.0001  

(SVM > RF) 
<0.0001  
(ST >RF) 

0.0005 
(RF>LR) 

SVM 
 

<0.0001 
(SVM > ST) 

<0.0001 
(SVM > LR) 

ST 
  

<0.0001 
(ST > LR) 

 

 

Table 9:  Mean accuracies, sensitivities and specificities (sd) of the four 
methods 

Methods RF SVM ST LR 

Mean accuracy 
(sd) 

0.991 
(0.0018) 

0.9955 
(0.0021) 

0.993 
(<0.0001) 

0.988 
(0.0034) 

Mean sensitivity 
(sd) 

0.9924 
(0.0014) 

0.9927 
(0.0000) 

0.9927 
(0.0000) 

0.9877 
(0.0052) 

Mean specificity 
(sd) 

0.9897 
(0.0034) 

0.9981 
(0.0040) 

0.9932 
(0.0000) 

0.9884 
(0.0047) 
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From Table 8, we see that the mean cross-validation accuracies of the four 

methods are significantly different from each other at the significance level of 

0.05. From Table 9, we see that SVM has the highest values of mean accuracy, 

mean sensitivity and mean specificity. Hence, we conclude that SVM performs 

the best among the four methods.  

We applied SVM to the whole data to predict the potential SNPs. We 

classified 213 unidentified positions as heterozygous SNP candidates. For the 

remaining positions classified as homozygous, the observed bases were compared 

with the reference bases, and we identified 100 homozygous SNP candidates.  
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Chapter 5 

Classification Based on a Subset of  

the Data 

5.1   Preparing the Data  

 In this study, the analyzed DNA positions have the numbers of absolute reads 

ranging from 200 to 5,000, which provide clear and sufficient information to 

identify the genome type.  However, in the real biological experiment, due to the 

limitation of time or funding, researchers often cannot obtain the data with 

sufficient reads. Hence, it is also important to find some efficient and accurate 

models to deal with data with fewer observations.  

In the previous section, we evaluated the four classification methods based on 

the whole data. In this section, we will conduct the similar process using the 

randomly selected subset of data and compare the performances of the four 

models. 
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For every position, we randomly selected 10, 20, 30 and 40 absolute reads 

from the raw data separately. We defined the number of randomly picked reads as 

cover depth. Under the different cover depths, we calculated the eight measures 

and generate the classification matrix. After that, we conducted 10-fold CV to the 

285 known SNPs to obtain accuracies. We repeated the processes for 30 times. In 

order to statistically compare the accuracies obtained from the four classification 

methods, we kept the same group members for the known SNPs with each cover 

depth. 

 

5.2   Results and Conclusion 

We calculated the mean accuracies and conducted paired t-test to compare 

performance of the four classification methods. Table 10 shows the average 

accuracies of the four classification methods for different cover depths and Table 

11 through Table 15 are the p-value matrices. 

 

    Table 10:  Mean accuracies (sd) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9776 

(0.0083) 
0.9885  

(0.0045) 
0.9908 

(0.0034) 
0.9915 

(0.0029) 
0.991 

(0.0018) 

SVM 
0.9739 

(0.0086) 
0.9891  

(0.0053) 
0.9927 

(0.0040) 
0.994  

(0.0031) 
0.9955 

(0.0021) 

Single Decision 
Tree 

0.9675 
(0.0101) 

0.9835  
(0.0097) 

0.988  
(0.0058) 

0.9908 
(0.0073) 

0.993 
(<0.001) 

Logistic 
Regression 

0.9736 
(0.0088) 

0.9883  
(0.0085) 

0.992  
(0.0053) 

0.9912 
(0.0051) 

0.988 
(0.0034) 
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       Table 11:  P-values of paired t-test for cover depth 10 

Cover Depth 10 SVM ST LR 

RF 
0.0336 

(RF > SVM) 
<0.0001 
(RF > ST) 

0.0061 
(RF > LR) 

SVM 
 

0.0129 
(SVM > ST) 

0.87 
 

ST 
  

0.0188 
(LR > ST) 

 

 

Table 12:  P-values of paired t-test for cover depth 20 

Cover Depth 20 SVM ST LR 

RF 

0.5018 

 

0.0012 

(RF > ST) 

0.8539 

 

SVM 

 

0.0025 

(SVM > ST) 

0.5702 

 

ST 

  

0.0138 

(LR > ST) 

 

 

Table 13:  P-values of paired t-test for cover depth 30 

Cover Depth 30 SVM ST LR 

RF 

0.0237 

(SVM > RF) 

0.0031 

(RF > ST) 

0.2887 

 

SVM 

 

<0.0001 

(SVM > ST) 

0.4299 

 

ST 

  

0.0021 

(LR > ST) 
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Table 14:  P-values of paired t-test for cover depth 40 

Cover Depth 40 SVM ST LR 

RF 

0.0023 

(SVM > RF) 

0.5798 

 

0.7389 

 

SVM 

 

0.0197 

(SVM > ST) 

0.0072 

(SVM > LR) 

ST 

  

0.7566 

 

 

 

Table 15:  P-values of paired t-test for the whole data 

Whole data SVM ST LR 

RF 

<0.0001 

(SVM >RF) 

<0.0001 

(ST > RF) 

0.0005 

(RF > LR) 

SVM 

 

<0.0001 

(SVM > ST) 

<0.0001 

(SVM > LR) 

ST 

  

<0.0001 

(ST > LR) 

 

 

From Table 10 through Table 15, we observed the following: 

1. When the cover depth is 10, the mean accuracy of RF is significantly 

greater than that of SVM, ST and LR. 

2. When the cover depth is 20, the mean accuracies of RF, SVM and LR are 

significantly greater than that of ST. The accuracies of RF, SVM and LR 

are not significantly different. 

3. When the cover depth is 30, the mean accuracy of SVM is significantly 

greater than that of RF and ST, while the mean accuracy of LR is 

significantly greater than that of ST. Although SVM has a slightly higher 

mean accuracy than LR, the difference is not significant. 
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4. When the cover depth is 40, the mean accuracy of SVM is significantly 

greater than that of the other three methods. 

5. When we use the whole data, the mean accuracy of SVM is significantly 

greater than that of the other three methods. 

 From Figures 6 and 7, we can see that when the cover depth grows, the mean 

accuracies of the four classification methods have an increasing trend in general. 

Among the four, SVM and single decision tree have a strictly increasing trend.  

When the cover depth is 10, RF has the highest accuracy. When the cover depth is 

greater than or equal to 20, SVM has the highest accuracy.  

Table 16 and Table 17 show the mean sensitivity and specificity, respectively, 

of the four methods. From the two tables, we see that SVM always has the highest 

mean sensitivities, which implies that SVM performs the best to detect the known 

heterozygous SNPs. SVM also has the highest specificity when the cover depth is 

greater than or equal to 40. However, RF has the highest specificity when the 

cover depth is 10 and LR has the highest specificity when cover depth is 20 or 30. 
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Figure 6: Average accuracies for different cover depths 

 

 

Figure 7: Average accuracies for different cover depths 
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  Table 16:  Mean sensitivities (sd) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9738 

(0.0116) 
0.9904  

(0.0062) 
0.9934 

(0.0049) 
0.9937 

(0.0047) 
0.9924 

(0.0014) 

SVM 
0.9763 

(0.0106) 
0.9924  

(0.0060) 
0.9957 

(0.0050) 
0.9965  

(0.0046) 
0.9927 

(0.0000) 

Single Decision 
Tree 

0.9726 
(0.0127) 

0.9887  
(0.0084) 

0.9922  
(0.0058) 

0.9942 
(0.0053) 

0.9927 
(0.0000) 

Logistic 
Regression 

0.9718 
(0.0099) 

0.9889  
(0.0111) 

0.9937  
(0.0064) 

0.9944 
(0.0057) 

0.9877 
(0.0052) 

 

   Table 17:  Mean specificities (sd) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9811 

(0.0082) 
0.9867  

(0.0056) 
0.9884 

(0.0044) 
0.9895 

(0.0039) 
0.9897 

(0.0034) 

SVM 
0.9716 

(0.0111) 
0.9860  

(0.0088) 
0.9900 

(0.0059) 
0.9916  

(0.0056) 
0.9981 

(0.0040) 

Single Decision 
Tree 

0.9627 
(0.0143) 

0.9788  
(0.0126) 

0.9842  
(0.0087) 

0.9877 
(0.0110) 

0.9932 
(0.0000) 

Logistic 
Regression 

0.9753 
(0.0113) 

0.9877  
(0.0085) 

0.9904  
(0.0066) 

0.9881 
(0.0074) 

0.9884 
(0.0047) 

 

Therefore, we conclude that SVM performs the best overall in this study, 

although RF performs the best when the cover depth is as small as 10. 
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Chapter 6 

Variable Selection 

6.1   Method 

We ran the four classification models using the 8 measures we developed. 

Although the number of variables is not large, these variables are highly 

correlated. To enhance the generalization performance of the classification 

models, we conducted a variable selection. In this section, we use BW ratio and 

variable important ranking technique in random forest. 

BW ratio is a widely used approach to determine the importance of the 

variables (Dudoit et al., 2002). By computing the between-group sum of squares 

(BSS) divided by the within-group sum of squares (WSS), we obtain the BW ratio. 

BW ratio is calculated for every variable, where the groups are the different 

classes of the response variable. The higher the BW ratio, the more important the 

variable is. For a particular variable j, the BW ratio is given as follows: 
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Random Forest also calculates the variable importance ranking (Van der Laan 

et al., 2006). For each tree, the prediction accuracy on the out-of-bag portion of 

the data is recorded. Then the same is done after permuting one predictor variable 

at a time. The difference between the two accuracies is then averaged over all 

trees, and normalized by the standard error. These mean decreases in accuracy are 

the importance scores for variables. An important variable has a high importance 

score. 

 

6.2   Variable Selection based on BW Ratio 

Table 18 shows the BW ratios for the eight measures introduced in this study. 

From the table, we can see that the measures of chi-square values have 

significantly low scores. Hence, we selected measures 1, 2, 3, 4 and 8 and 

included in the classification models.  
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Table 18:  BW ratios  

Variable Variable Label BW ratio 

Measure 8 non-reference allele ratio 17.97 

Measure 3 ratio of indep. counts 16.80 

Measure 4 ratio of log2 values 16.52 

Measure 2 ratio of quality scores 12.81 

Measure 1 ratio of absolute counts 10.20 

Measure 5 chi-square of (A1+, A1-, A2+, A2-) 3.48 

Measure 6 chi-square of (A1A2) 3.47 

Measure 7 chi-square of (A1, A2, A3, A4) 3.14 



Using the selected variables instead of all the eight measures, we conducted 

the same procedures to the same subset data. After calculating the mean 

accuracies, we conducted paired t-test to compare the performance of the four 

classification methods.  

Table 19:  Mean accuracies (SD) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9802 

(0.0096) 
0.9890 

(0.0038) 
0.9909 

(0.0034) 
0.9924 

(0.0028) 
0.9929 

(0.0007) 

SVM 
0.9723 

(0.0079) 
0.9875 

(0.0065) 
0.9926 

(0.0048) 
0.9938 

(0.0033) 
0.9961 

(0.0020) 

Single Decision 
Tree 

0.9677 
(0.0104) 

0.9837 
(0.0094) 

0.9880 
(0.0058) 

0.9909 
(0.0072) 

0.9930 
(<0.0001) 

Logistic Regression 
0.9742 

(0.0102) 
0.9880 

(0.0065) 
0.9915 

(0.0046) 
0.9909 

(0.0052) 
0.9906 

(0.0017) 
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Table 20:  P-values of paired t-test for cover depth 10 

Cover Depth 10 SVM ST LR 

RF 

0.0001 

(RF>SVM) 

<0.0001 

(RF>ST) 

0.0006 

(RF>LR) 

SVM 

 

0.0481 

(ST>SVM) 

0.2173 

 

ST 

  

0.0194 

(ST>LR) 

 

 

Table 21:  P-values of paired t-test for cover depth 20 

Cover Depth 20 SVM ST LR 

RF 

0.2115 

 

0.0011 

(RF>ST) 

0.3408 

 

SVM 

 

0.0174 

(SVM>ST) 

0.6775 

 

ST 

  

0.0319 

(LR>ST) 

 

 

 

Table 22:  P-values of paired t-test for cover depth 30 

Cover Depth 30 SVM ST LR 

RF 

0.0551 

 

0.0034 

(RF>ST) 

0.5382 

 

SVM 

 

0.0001 

(SVM>ST) 

0.2562 

 

ST 

  

0.0015 

(LR>ST) 
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Table 23:  P-values of paired t-test for cover depth 40 

Cover Depth 40 SVM ST LR 

RF 

0.0257 

(SVM>RF) 

0.1609 

 

0.1166 

 

SVM 

 

0.0205 

(SVM>ST) 

0.0192 

(SVM>LR) 

ST 

  

1.0000 

 

 

 

 

Table 24:  P-values of paired t-test for the whole data 

Whole data SVM ST LR 

RF 

<0.0001 

(SVM>RF) 

0.3259 

 

<0.0001 

(RF>LR) 

SVM 

 

<0.0001 

(SVM>ST) 

<0.0001 

(SVM>LR) 

ST 

  

<0.0001 

(ST>LR) 

 

Table 19 shows the average accuracies and standard deviations of the four 

classification methods using the selected variables by BW ratio for different cover 

depths and Table 20 through Table 24 show the p-value matrices. From these 

tables, we observed the following: 

1. When the cover depth is 10, the mean accuracy of RF is significantly 

greater than that of SVM, ST and LR. 

2. When the cover depth is 20 or 30, the mean accuracies of RF, SVM and 

LR are significantly greater than that of ST. The accuracies of RF, SVM 

and LR are not significantly different. 
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3. When the cover depth is 40, the mean accuracy of SVM is significantly 

greater than that of the other three methods. 

4. When we use the whole data, the mean accuracy of SVM is significantly 

greater than that of the other three methods. 

From Figures 8 and 9, we can see that the trend of the average accuracy is 

similar with that of Figures 6 and 7. When the cover depth grows, the mean 

accuracies increase in general. Among the four models, RF, SVM and ST have a 

strictly increasing trend. ST has the lowest accuracy for all the cover depths. 

Except for cover depths 10 and 20, SVM has the highest accuracy. When the 

cover depth is 10 and 20, the accuracy of RF is relatively greater than that of the 

other three.  

 

Figure 8:  Average accuracies for different cover depths  

(selected variables by BW ratio) 
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Figure 9:  Average accuracies for different cover depths  

(selected variables by BW ratio) 
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Table 25:  Mean sensitivities (sd) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9753 

(0.0100) 
0.9899  

(0.0053) 
0.9937 

(0.0042) 
0.9947 

(0.0051) 
0.9924 

(0.0014) 

SVM 
0.9784 

(0.0116) 
0.9894  

(0.0063) 
0.9957 

(0.0041) 
0.9950  

(0.0052) 
0.9927 

(0.0000) 

Single Decision 
Tree 

0.9726 
(0.0131) 

0.9891  
(0.0077) 

0.9922  
(0.0058) 

0.9942 
(0.0053) 

0.9927 
(0.0000) 

Logistic 
Regression 

0.9733 
(0.0119) 

0.9859  
(0.0093) 

0.9912  
(0.0063) 

0.9899 
(0.0090) 

0.9867 
(0.0028) 

 

 

   Table 26:  Mean specificities (sd) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9846 

(0.0115) 
0.9881  

(0.0056) 
0.9884 

(0.0047) 
0.9902 

(0.0034) 
0.9897 

(0.0000) 

SVM 
0.9667 

(0.0076) 
0.9858  

(0.0112) 
0.9897 

(0.0078) 
0.9928  

(0.0060) 
0.9981 

(0.0038) 

Single Decision 
Tree 

0.9632 
(0.0139) 

0.9786  
(0.0128) 

0.9842  
(0.0087) 

0.9879 
(0.0109) 

0.9932 
(0.0000) 

Logistic 
Regression 

0.9751 
(0.0125) 

0.9900  
(0.0067) 

0.9918  
(0.0064) 

0.9918 
(0.0052) 

0.9884 
(0.0024) 

 

Table 25 and Table 26 show the mean sensitivity and specificity, respectively, 

of the four methods. From the two tables, we see that SVM always has the highest 

sensitivity. SVM also has the highest specificity when the cover depth is greater 

than or equal to 40. However, RF has the highest specificity when the cover depth 

is 10 and LR has the highest specificity when cover depth is 20 or 30. 

In this section, we selected five variables based on the BW ratio. These 

selected variables were used to generate the classification models. According to 

the results above, we conclude that when the cover depth of the data is high, SVM 
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performs the best, although RF performs the best when the cover depth is as small 

as 20. 

 

 

6.3 Variable Selection based on RF Variable 

Importance Ranking 

 

 
Table 27 shows the RF mean decrease in accuracy for measuring variable 

importance ranking for the eight measures. Different from BW ratios, RF mean 

decrease in accuracy has an apparent trend. Except for measure 2, all the other 

measures have the score lower than 1. Since there is no formal inference (p-value) 

available for the random forest variable important measures, the variable selection 

is flexible. We wanted to check the performance of the chi-square values, but we 

also noticed that the measure 5 has the lowest value which is substantially smaller 

than the second lowest one; hence, we excluded measure 5 and used the others in 

the classification models.  

Using the selected variables, we conducted the same procedures to the same 

subset data. We again conducted paired t-test to compare the performance of the 

four classification methods with the 7 selected variables.  
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                Table 27:  RF Variable importance ranking 

Variable Variable Label RF Mean Decrease in Accuracy 

 

MeanDecreaseAccuracy 

MeanDecreaseAccuracy 

Measure 2 ratio of quality scores 1.365 

Measure 4 ratio of log2 values 0.950 

Measure 1 ratio of absolute counts 0.948 

Measure 8 non-reference allele ratio 0.852 

Measure 7 chi-square of (A1, A2, A3, A4) 0.733 

Measure 3 ratio of indep. counts 0.667 

Measure 6 chi-square of (A1A2) 0.624 

Measure 5 chi-square of (A1+, A1-, A2+, A2-) 0.203 





           Table 28:  Mean accuracies (SD) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9783 

(0.0084) 
0.9890 

(0.0038) 
0.9909 

(0.0036) 
0.9917 

(0.0029) 
0.9921 

(0.0024) 

SVM 
0.9733 

(0.0085) 
0.9887 

(0.0050) 
0.9926 

(0.0038) 
0.9944 

(0.0026) 
0.9960 

(0.0018) 

Single Decision 
Tree 

0.9675 
(0.0102) 

0.9835 
(0.0097) 

0.9880 
(0.0058) 

0.9908 
(0.0073) 

0.9930 
(<0.0001) 

Logistic 
Regression 

0.9742 
(0.0102) 

0.9880 
(0.0065) 

0.9915 
(0.0046) 

0.9909 
(0.0052) 

0.9906 
(0.0017) 

 

 

Table 29:  P-values of paired t-test for cover depth 10 

Cover Depth 10 SVM ST LR 

RF 

0.0026 

(RF>SVM) 

<0.0001 

(RF>ST) 

0.0161 

(RF>LR) 

SVM 

 

0.0327 

(ST>SVM) 

0.4749 

 

ST 

  

0.0155 

(ST>LR) 
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Table 30:  P-values of paired t-test for cover depth 20 

Cover Depth 20 SVM ST LR 

RF 

0.7579 

 

0.0009 

(RF>ST) 

0.3680 

 

SVM 

 

0.0036 

(SVM>ST) 

0.4765 

 

ST 

  

0.0315 

(LR>ST) 

 

 

Table 31:  P-values of paired t-test for cover depth 30 

Cover Depth 30 SVM ST LR 

RF 

0.0240 

(SVM>RF) 

0.0017 

(RF>ST) 

0.5621 

 

SVM 

 

0.0002 

(SVM>ST) 

0.2934 

 

ST 

  

0.0015 

(LR>ST) 

 

 

Table 32:  P-values of paired t-test for cover depth 40 

Cover Depth 40 SVM ST LR 

RF 

0.0002 

(SVM>RF) 

0.4823 

 

0.4483 

 

SVM 

 

0.0142 

(SVM>ST) 

0.0008 

(SVM>LR) 

ST 

  

0.9327 
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Table 33:  P-values of paired t-test for cover depth data 

Whole data SVM ST LR 

RF 

<0.0001 

(SVM>RF) 

0.0698 

 

0.0028 

(RF>LR) 

SVM 

 

<0.0001 

(SVM>ST) 

<0.0001 

(SVM>LR) 

ST 

  

<0.0001 

(ST>LR) 

 

Table 28 shows the average accuracies and standard deviations of the four 

classification methods using the selected variables by RF variable importance 

ranking for different cover depths and Table 29 through Table 33 show the p-

value matrices. From these tables, we observed the following: 

1. When the cover depth is 10, the mean accuracy of RF is significantly 

greater than that of SVM, ST and LR. 

2. When the cover depth is 20 or 30, the mean accuracies of RF, SVM and 

LR are significantly greater than that of ST. The accuracies of RF, SVM 

and LR are not significantly different. 

3. When the cover depth is 40, the mean accuracy of SVM is significantly 

greater than that of RF and LR. 

4. When we use the whole data, the mean accuracy of SVM is significantly 

greater than that of the other three methods. 

Figures 10 and 11 are similar to the previous average accuracy figures. When 

the cover depth grows, the mean accuracies increase in general. Among the four, 

RF, SVM and ST have a strictly increasing trend. Single decision tree has the 

lowest accuracy for all the cover depths. Except for cover depth 10, SVM has the 

highest accuracy. When the cover depth is 10, the accuracy of RF is relatively 

greater than those of the other three.  
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Figure 10: Average accuracies for different cover depths  

(selected variables by RF variable selection) 
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Figure 11: Average accuracies for different cover depths  

(selected variables by RF variable selection) 

 

 

Table 34:  Mean sensitivities (sd) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9746 

(0.0104) 
0.9904  

(0.0059) 
0.9937 

(0.0047) 
0.9940 

(0.0048) 
0.9924 

(0.0014) 

SVM 
0.9766 

(0.0116) 
0.9924  

(0.0046) 
0.9957 

(0.0041) 
0.9962  

(0.0042) 
0.9927 

(0.0000) 

Single Decision 
Tree 

0.9726 
(0.0127) 

0.9887  
(0.0084) 

0.9922  
(0.0058) 

0.9942 
(0.0053) 

0.9927 
(0.0000) 

Logistic 
Regression 

0.9733 
(0.0119) 

0.9859  
(0.0093) 

0.9912  
(0.0063) 

0.9899 
(0.0090) 

0.9867 
(0.0028) 
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   Table 35:  Mean specificities (sd) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9818 

(0.0090) 
0.9877  

(0.0057) 
0.9884 

(0.0047) 
0.9895 

(0.0043) 
0.9918 

(0.0042) 

SVM 
0.9702 

(0.0111) 
0.9853  

(0.0085) 
0.9897 

(0.0059) 
0.9927  

(0.0048) 
0.9991 

(0.0035) 

Single Decision 
Tree 

0.9627 
(0.0143) 

0.9788  
(0.0126) 

0.9842  
(0.0087) 

0.9877 
(0.0110) 

0.9932 
(0.0000) 

Logistic 
Regression 

0.9751 
(0.0125) 

0.9900  
(0.0067) 

0.9918  
(0.0064) 

0.9918 
(0.0052) 

0.9942 
(0.0024) 

 

Table 34 and Table 35 show the mean sensitivity and specificity, respectively, 

of the four methods. From the two tables, we see that SVM always has the highest 

sensitivity. SVM also has the highest specificity when the cover depth is greater 

than or equal to 40. However, RF has the highest specificity when the cover depth 

is 10 and LR has the highest specificity when cover depth is 20 or 30. 

In this section, we selected 7 variables based on the RF variable important 

ranking. According to the results above, we conclude that when the cover depth of 

the data is high, SVM performs the best, although RF performs the best when the 

cover depth is as small as 10. 

 

6.4 Variable Selection based on BW Ratio and RF 

Variable Importance Ranking 

 

After conducting variable selection based on BW ratio and random forest 

variable importance ranking, we also attempted to combine the two methods. 

From Table 36, we can see the measures of the chi-square values have relatively 

low scores for both BW ratio and RF mean decrease in accuracy. Moreover, RF 
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mean decrease in accuracy for measure 3 is 0.667, which is not significantly large 

compared to the other four out of the five measures with high BW ratio. Hence, 

we select measures 8, 4, 2 and 1 for the classification models.  

 

 

Table 36:  BW ratios and RF variable importance ranking 

Variable Variable Label BW ratio RF Mean Decrease in 

Accuracy 

Measure 8 non-reference allele ratio 17.96628 0.852 

Measure 3 ratio of indep. Counts 16.80413 0.667 

Measure 4 ratio of log2 values 16.51956 0.950 

Measure 2 ratio of quality scores 12.81418 1.365 

Measure 1 ratio of absolute counts 10.19642 0.948 

Measure 5 chi-square of (A1+, A1-, A2+, A2-) 3.476573 0.203 

Measure 6 chi-square of (A1A2) 3.468348 0.624 

Measure 7 chi-square of (A1, A2, A3, A4) 3.140116 0.733 



 

        Table 37:  Mean accuracies (SD) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9804 

(0.0085) 
0.9899 

(0.0046) 
0.9914 

(0.0036) 
0.9932 

(0.0034) 
0.9930 

(<0.0001) 

SVM 
0.9728 

(0.0075) 
0.9881 

(0.0070) 
0.9934 

(0.0048) 
0.9948 

(0.0033) 
0.9965 

(0.0016) 

Single Decision 
Tree 

0.9683 
(0.0108) 

0.9839 
(0.0095) 

0.9881 
(0.0057) 

0.9908 
(0.0073) 

0.9930 
(<0.0001) 

Logistic 
Regression 

0.9737 
(0.0110) 

0.9904 
(0.0061) 

0.9920 
(0.0050) 

0.9938 
(0.0045) 

0.9930 
(0.0016) 
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Table 38:  P-values of paired t-test for cover depth 10 

Cover Depth 10 SVM ST LR 

RF 

<0.0001 

(RF>SVM) 

<0.0001 

(RF>ST) 

0.0005 

(RF>LR) 

SVM 

 

0.0516 

 

0.5440 

 

ST 

  

0.0710 

 

 

 

Table 39:  P-values of paired t-test for cover depth 20 

Cover Depth 20 SVM ST LR 

RF 

0.1381 

 

0.0004 

(RF>ST) 

0.6018 

 

SVM 

 

0.0055 

(SVM>ST) 

0.0468 

(LR>SVM) 

ST 

  

0.0005 

(LR>ST) 

 

 

 

Table 40:  P-values of paired t-test for cover depth 30 

Cover Depth 30 SVM ST LR 

RF 

0.0087 

(SVM>RF) 

0.0008 

(RF>ST) 

0.5315 

 

SVM 

 

<0.0001 

(SVM>ST) 

0.1548 

 

ST 

  

0.0026 

(LR>ST) 
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Table 41:  P-values of paired t-test for cover depth 40 

Cover Depth 40 SVM ST LR 

RF 

0.0620 

 

0.0479 

(RF>ST) 

0.3935 

 

SVM 

 

0.0030 

(SVM>RF) 

0.3615 

 

ST 

  

0.0213 

(LR>ST) 

 

 

Table 42:  P-values of paired t-test for the whole data 

Whole data SVM ST LR 

RF 

<0.0001 

(SVM>RF) 

1 

 

1 

 

SVM 

 

<0.0001 

(SVM>ST) 

<0.0001 

(SVM>LR) 

ST 

  

1 

 

 

 

Table 37 shows the average accuracies and standard deviations of the four 

classification methods using the selected variables for different cover depths and 

Table 38 through Table 42 show the p-value matrices. From these tables, we 

observed the following: 

1. When the cover depth is 10, the mean accuracy of RF is significantly greater 

than that of SVM, ST and LR. 

2. When the cover depth is 20, the mean accuracies of RF, SVM and LR are 

significantly greater than that of ST. The accuracies of RF, SVM and LR are 

not significantly different. 
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3. When the cover depth is 30, the mean accuracy of SVM is significantly 

greater than that of RF and ST, while the mean accuracy of LR is 

significantly greater than that of ST. Although SVM has a slightly higher 

mean accuracy than LR, the difference is not significant. 

4. When the cover depth is 40, the mean accuracy of SVM is significantly 

greater than that of ST. There are no significant differences among RF, SVM 

and LR. 

5. When we use the whole data, the mean accuracy of SVM is significantly 

greater than that of the other three methods. 

Figures 12 and 13 are similar to the previous average accuracy figures. When 

the cover depth grows, the mean accuracies increase in general. Among the four 

models, SVM and ST have a strictly increasing trend. ST has the lowest accuracy 

for all the cover depths. Except for cover depth 10 and 20, SVM has the highest 

accuracy. When the cover depth is 10, the accuracy of RF is relatively greater 

than the other three. We also noticed that when we use the whole data, RF, ST 

and LR have exactly the same mean accuracy.  
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Figure 12: Average accuracies for different cover depths (selected 
variables) 
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Figure 13: Average accuracies for different cover depths (selected 
variables) 

 

 

Table 43:  Mean sensitivities (sd) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9771 

(0.0095) 
0.9904  

(0.0062) 
0.9939 

(0.0034) 
0.9955 

(0.0045) 
0.9927 

(0.0000) 

SVM 
0.9786 

(0.0122) 
0.9912  

(0.0066) 
0.9955 

(0.0045) 
0.9955  

(0.0049) 
0.9932 

(0.0019) 

Single Decision 
Tree 

0.9728 
(0.0138) 

0.9889  
(0.0082) 

0.9924  
(0.0057) 

0.9940 
(0.0059) 

0.9927 
(0.0000) 

Logistic 
Regression 

0.9728 
(0.0126) 

0.9892  
(0.0072) 

0.9914  
(0.0062) 

0.9945 
(0.0046) 

0.9917 
(0.0026) 
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   Table 44:  Mean specificities (sd) of the four classification methods 

 
Cover depth 10 Cover depth 20 Cover depth 30 Cover depth 40 Whole data 

Random Forest 
0.9835 

(0.0115) 
0.9895  

(0.0056) 
0.9890 

(0.0047) 
0.9911 

(0.0034) 
0.9932 

(0.0000) 

SVM 
0.9674 

(0.0076) 
0.9853  

(0.0112) 
0.9916 

(0.0078) 
0.9942  

(0.0060) 
0.9995 

(0.0038) 

Single Decision 
Tree 

0.9641 
(0.0139) 

0.9793  
(0.0128) 

0.9842  
(0.0087) 

0.9879 
(0.0109) 

0.9932 
(0.0000) 

Logistic 
Regression 

0.9746 
(0.0125) 

0.9916  
(0.0067) 

0.9925  
(0.0064) 

0.9932 
(0.0052) 

0.9942 
(0.0024) 

 

Table 43 and Table 44 show the mean sensitivity and specificity, respectively, 

of the four methods. The result is almost the same as that of the previous 

sensitivity and specificity tables. We see that SVM always has the highest 

sensitivity. SVM also has the highest specificity when the cover depth is greater 

than or equal to 40. However, RF has the highest specificity when the cover depth 

is 10 and LR has the highest specificity when cover depth is 20 or 30. 

According to the results above, we conclude that when the cover depth of the 

data is high, SVM performs the best, although RF performs the best when the 

cover depth is 10. 

 

6.5 Comparison of the Models using All Variables  

    and Selected Variables 

In the previous sections, we made the conclusion about the best model using 

either all variables or selected variables while cover depth is fixed. When the 

cover depth is greater than 20, SVM has the best performance among the four 

classification methods in general. When the cover depth is 20, SVM, RF and 
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logistic regression are equally good. When the cover depth is 10, RF always 

performs the best. 

For a fixed cover depth data, we need to decide whether to conduct variable 

selection before finding the optimal classification model. Therefore, we compared 

the mean accuracies of the best models using all variables or selected variables for 

each cover depth level, by conducting paired t-test. 

 

Table 45:  Paired t-test for all variables and selected variables 

Cover 

Depth 

All Variables BW ratio RF variable selection Both methods 

Best 

Model 

Mean 

Accuracy 

(SD) 

Best 

Model 

Mean 

Accuracy 

(SD) 

Best 

Model 

Mean 

Accuracy 

(SD) 

Best 

Model 

Mean 

Accuracy 

(SD) 

10 RF 
0.9776 

(0.0083) RF 
0.9802 

(0.0096) 
RF 

0.9783 

(0.0084) 
RF 

0.9804 

(0.0085) 

20 SVM 
0.9891 

(0.0053) RF 
0.9890 

(0.0038) 
RF 

0.9890 

(0.0038) RF 
0.9899 

(0.0046) 

30 SVM 
0.9927 

(0.0040) SVM 
0.9926 

(0.0048) 
SVM 

0.9926 

(0.0038) SVM 
0.9934 

(0.0048) 

40 SVM 
0.9940 

(0.0031) SVM 
0.9938 

(0.0033) 
SVM 

0.9944 

(0.0026) SVM 
0.9948 

(0.0033) 

All 

Data 
SVM 

0.9955 

(0.0021) SVM 
0.9961 

(0.0020) 
SVM 

0.9960 

(0.0018) SVM 
0.9965 

(0.0016) 

 

Table 45 shows the best model and the corresponding mean accuracy and 

standard deviation for a particular combination of cover depth and variable 

selection. 
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Table 46:  P-values of paired t-test for cover depth 10 

Cover depth 10 BW ratio RF variable selection Both Method 

All variables 0.0035 0.2460 0.0056 

BW ratio 

 

0.0701 0.7869 

RF variable selection 

  

0.0509 

 

Table 47:  P-values of paired t-test for cover depth 20 

Cover depth 20 BW ratio RF variable selection Both Method 

All variables 0.4238 0.1609 0.0257 

BW ratio 

 

1.0000 0.0433 

RF variable selection 

  

0.1033 

 

Table 48:  P-values of paired t-test for cover depth 30 

Cover depth 30 BW ratio RF variable selection Both Method 

All variables 0.8513 0.7689 0.3517 

BW ratio 

 

1 0.0698 

RF variable selection 

  

0.2144 

 

Table 49:  P-values of paired t-test for cover depth 40 

Cover depth 40 BW ratio RF variable selection Both Method 

All variables 0.8316 0.2930 0.2434 

BW ratio 

 

0.2829 0.0029 

RF variable selection 

  

0.5864 

 

Table 50:  P-values of paired t-test for whole data 

Whole data BW ratio RF variable selection Both Method 

All variables 0.0961 0.0433 0.0088 

BW ratio 

 

0.6626 0.0831 

RF variable selection 

  

0.1033 
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Tables 46 through Table 50 show the p-value matrices of paired t-test for different 

cover depths. By checking the p-values and the average accuracies, we observed 

the following: 

1. When the cover depth is 10, the mean accuracy of RF using the selected 

variables by BW ratios or both variable selection methods is significantly 

greater than using all variables or RF variable selection. 

2. When the cover depth is 20, the mean accuracy of RF using both variable 

selection methods is significantly greater than using all variables or each 

of the other two variable selection methods. 

3. When the cover depth is 30, there is no significant difference among the 

four different sets of variables. 

4. When the cover depth is 40, the mean accuracy of SVM using both 

variable selection methods is significantly greater than using BW ratio. 

But there is no significant evidence to conclude that using both variable 

selection methods is the best. 

5. When we use the whole data, the mean accuracy of SVM using both 

variable selection methods is significantly greater than using the other 

three methods. 

 From the result above, we found that the models perform better when we 

apply variable selection rather than using all variables. Among the three variable 

selection methods, the combination of BW ratio and RF variable importance 

ranking always improve the performance of each classification model. We 

conclude that for the small cover depth data such as 20 or less, the best model is 

RF using variables selected by the combination of BW ratio and RF variable 

importance ranking, but for the large cover depth data, the best model is SVM 

using variables selected by the combination of BW ratio and RF variable 

importance ranking. 
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Chapter 7 

Conclusion and Discussion 

In the first part of the study, we had very small training data including only 

19 known heterozygous SNPs and 2 homozygous SNPs. We developed three 

measures based on the data format and then decided the threshold of the measures 

by examining the properties of these known SNPs. Using 10-fold cross validation, 

we developed an algorithm to decide the optimal thresholds of the three measures. 

The thresholds are then used to classify the genomic positions. The positions with 

the highest proportion in measure (1) ≥0.95 or the highest proportion of measure 

(2) ≥0.95 are classified as homozygous position; the positions with 0.2≤ the 

highest and second highest proportions in measure (1) ≤0.8 or 0.175≤ the highest 

and second highest proportions in measure (2) ≤0.825 are classified as 

heterozygous positions. The positions which do not belong to either clearly 

homozygous bases or clearly heterozygous bases are assigned to the middle group. 

Using this approach we predicted 8 homozygous SNP candidates and 68 

heterozygous SNP candidates in the previous data set. All the known 13 SNPs are 

detected among these SNP candidates. 
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In the second part of the study, we had a substantially larger data set with 308 

known SNPs. We applied four widely used classification methods: random forest, 

SVM, single decision tree and logistic regression. Before generating the models, 

we developed five more measures based on the properties of the SNPs. Since 

biologists often cannot obtain the data with sufficient reads in practice, we 

evaluated the four classification methods based on different cover depths. As 

expected, when the cover depth grows, the mean accuracies of the four 

classification methods have an increasing trend in general.  According to the 

result of the paired t-tests, we found that SVM has the best performance when the 

cover depth is greater than 10 and random forest performs the best when the cover 

depth is 10.  

Since the eight measures developed based on the original information of 

positions are highly correlated, we conducted variable selection to enhance the 

generalization performance of the classification models. BW ratio and random 

forest variable importance ranking were used in the study. By applying both the 

BW ratios and RF mean decrease in accuracy, we selected four measures for the 

classification models. Using the selected variables, we evaluated the 

performances of the four classification methods based on the subset data with 

different cover depths. The result is similar to that using all the variables. SVM 

performs the best when the cover depth is relatively large and RF performs the 

best when the cover depth is small. Moreover, after the variable selection, the 

average accuracies of the best models for different cover depths are statistically 

higher than those using all the variables in general. Therefore, we conclude that 

when the cover depth of the data is large, such as greater than 20, SVM using the 

variables selected by the combination of the two variable selection methods has 

the best performance, and random forest performs the best when the cover depth 

is small.  
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We applied the SVM using the selected measures 1, 2, 4 and 8 to the whole 

data to predict the potential SNPs. There are 213 unidentified positions classified 

as heterozygous SNP candidates and 100 are classified as the homozygous SNP 

candidates. 
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Chapter 8 

Future Study 

Using the same data format as described in earlier chapters, biologists often 

predict SNPs only depending on the counts of nucleotides but not using quality 

scores. Our result is close to their prediction and it provides more information. 

The predicted SNP candidates are being tested in the lab. After obtaining the 

result, we will evaluate the accuracy of our prediction and then modify our 

method. Moreover, for the data with limited number of known SNPs, we still have 

positions in the hard-to-classify group. In future study, we will develop a 

probability model to identify these positions.  

To make the model developed in this study accessible, we will work on 

combining the procedures including data format transformation, measure 

calculation, model determination and prediction to an executable web-based 

program. After biologists use our program to classify their data, we will gather the 

feedback and make improvement of our model. 
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We will also try to add some more measures based on the properties of the 

SNPs. We also plan to study other classification models and compare them with 

the four classification methods used in this study. 
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